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Amy Rose Carmel Thomas 

 
Abstract 

 
 
 

Spatial factors are of particular importance to the sustainability of land based energy crops, due 

both to the need to minimise feedstock transport, and to the importance of cultivation site 

attributes in determining key environmental impacts. This study uses geographical information 

system (GIS) mapping to identify sites suitable for the cultivation of Miscanthus or short rotation 

coppiced (SRC) SRC willow for co-firing with coal or generation of combined heat and power (CHP). 

Modelling using an adapted version of DayCent was performed for typical sites to assess variation 

in yield, nitrous oxide (N2O) emissions, evapotranspiration (ET) and change in soil organic carbon 

(SOC) according to soil properties, hydrologic regime and previous land use. 

 

Development of the DayCent model as part of this research gave improved simulation of the 

impacts of tillage on soil porosity, and resultant N2O emissions from soil, and improved simulation 

of growth of SRC willow following coppicing management, leading to improved yield predictions. 

For land use change from arable to perennial cultivation, increased SOC was simulated, along with 

reduced N2O emissions, particularly on soils prone to anoxia. However, in general, benefits of 

cultivation of Miscanthus and SRC willow for energy are maximised when the crops are grown at 

sites where high yields are achieved, and used to generate CHP, since this minimises the land area 

required per unit energy generated. Further model development work and additional field data 

for model verification are necessary for firmer conclusions on the change in net greenhouse gas 

(GHG) emissions following land use change. Additionally, indirect land use change may negate 

perceived benefits, and locations are difficult to predict or identify in a complex global system.  

 

Given the magnitude of identified variations in yields and changes in N2O emissions, spatial 

variation in benefits of bioenergy cultivation should be a factor in decisions to provide economic 

support for cultivation. However, calculations suggest that emissions offset by replacing energy 

generation from fossil fuels may have greater impact on GHG savings per gigajoule (GJ) than 

cultivation site attributes. Since total energy conversion efficiency may be in the region of 30% for 

electricity-only generation and up to 90% for CHP generation, planning feedstock supply chains to 

maximise efficiency of feedstock end use is therefore beneficial.  
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1. Introduction 
 

This chapter identifies key impacts of land use change for perennial energy crops, and sets out 

how the thesis will investigate variation in this for locations where perennial crops may be grown 

for energy end uses in England. The chapter begins with an overview of bioenergy in Section 1.1. 

Section 1.2 considers both the efficiency of conversion to energy and the fit with existing energy 

infrastructure; issues which are highly significant in the debate between perennials and arable 

crops for energy. Section 1.3 introduces Miscanthus and SRC willow, the two energy crops which 

will be the focus of this research, and Section 1.4 then discusses key issues pertaining to the 

sustainability of these, and other, perennial energy crops. Section 1.5 then draws out the need for 

this study, and is followed by the study aims in Section 1.6 and objectives in 1.7. Finally, the 

structure of the thesis is laid out in Section 1.8. 

1.1 Overview 
 

Biomass has long been used as a traditional energy source in the burning of wood for cooking and 

heating.  Usage has decreased in industrialised countries, but traditional biomass remains the 

main energy source for an estimated 2.5 billion people in developing countries (International 

Energy Agency, 2008). Although this is a renewable energy source, it is not always sustainably 

sourced, and conversion is inefficient, often around 10 % (International Energy Agency, 2009; 

Kishore, 2004; McKendry, 2002b).  

 

The European Commission (EC) prescribes an increase in renewable energy generation, in order to 

combat rising energy demand, reduce GHG emissions from energy, and overreliance on non-

renewable energies (European Commission, 2008b). Reducing anthropogenic GHG emissions is of 

particular importance for climate change, for which the IPCC state that long lived GHGs, such as 

CO2, N2O, CH4 and halocarbons, are most significant (IPCC, 2007). The UK has set a target of 60% 

reduction in carbon emissions by 2050; part of the pathway to achieving this is to reduce fossil 

fuel combustion by increasing renewable energy to 15% of total generation by 2020 (The UK 

Department for Business, Enterprise and Regulatory Reform, 2008). 
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Bioenergy currently contributes two thirds of renewable energy in Europe: 70% of this is in the 

form of transport fuel, which fits conveniently into existing systems of agriculture and energy 

infrastructure (Don et al., 2012; European Commission, 2008a; Powlson et al., 2005; Sims et al., 

2006). Energy crops can be used for electricity and heat  production, as biomass for combustion, 

pyrolosis or gasification or as transport fuel, in the form of liquid biofuels, bio ethanol or biodiesel 

(McKendry, 2002b).  Usage of bioenergy for electricity, heat and transport in industrialised 

countries was 11.3 EJ in 2008 (Chum, 2011). Since timing of generation is controlled, electricity 

from perennial crops has advantages over intermittent renewables such as wind and solar, 

however the need for changes to agriculture and energy systems are significant limiting factors 

(Dondini et al., 2009; Powlson et al., 2005). 

 

Studies assessed by Slade et al. (2011) predicted future global bioenergy generation ranges from 

100 to 1200 EJ, with a maximum of 200 EJ from wastes and residues and between 0.4 Gha and 2.5 

Gha of land being used to cultivate bioenergy feedstock; upper estimates of land area assume 

yield improvements and or population and dietary changes which reduce land area requirements 

for food production. As part of the 2007 UK biomass strategy, there was an aim to increase the 

area of the UK covered by perennial energy crops, up to 0.35 Mha by 2020 (Defra, 2007) and 

more recent assessment has suggested that as much as 0.93–3.63 Mha could be cultivated in 

England and Wales without reducing food production, although socioeconomic and practical 

issues may prevent these figures from being realised (Aylott and McDermott, 2012; Department 

of Energy & Climate Change, 2012). Since currently energy crops are cultivated mostly on land 

suitable for food cropping, it is expected that cultivation of dedicated energy crops will increase 

pressure on land resources, and competition with food agriculture (Don et al., 2012; Miyake et al., 

2012; Slade et al., 2011). To avoid reduction in food production, it may be necessary to expand 

agricultural land reduce setaside or increase fertiliser and pesticide inputs (CBD, 2008). 

 

In common with other renewables, bioenergy is not always a sustainable low carbon energy 

source; given the land area requirements, the cultivation stage may be particularly important 

(Clair et al., 2008; Department of Energy & Climate Change, 2012; Hillier et al., 2009). Conversion 

of agricultural land to cultivate energy crops may involve change in cropping or management 

scheme, and change in GHG balance may be positive or negative depending on specific cropping 

systems involved (Don et al., 2012). Indirect land use change may then occur to accommodate 

food agriculture displaced by cultivation for energy. Where land use change applies to native and 

un-cultivated ecosystems, associated CO2 emissions are high, and may offset the reduction in 
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fossil fuel emissions (Fargione et al., 2008; Searchinger et al., 2008). Conversion of non-

agricultural land for energy crop cultivation or for food agriculture displaced by energy crops, 

particularly native ecosystems or land currently in set-aside schemes can be the most significant 

environmental cost of bioenergy (Tonini et al., 2012). Indirect land-use change for displaced food 

agriculture, and increased fertiliser inputs with intensification of existing food production may be 

responsible for much of the emissions linked to bioenergy (Melillo et al., 2009). 

 

Agriculture contributes 10-12% of anthropogenic GHG emissions globally (Smith, 2007), and  in 

particular is responsible for 84% of anthropogenic N2O emissions (Smith et al., 2008), largely from 

fertiliser inputs and soil disturbance (Brown et al., 2002; Curley et al., 2009). Soil C storage has 

been identified as the greatest climate change mitigation potential from agriculture (Smith, 2007), 

however Li  et al. (2005a) observed increased N2O emissions associated with soil C storage, which 

offset this mitigation by 75-310%. N2O emissions in response to agricultural land management 

vary significantly between sites, hence the change in emissions with land use change will also be 

site specific (Chatskikh and Olesen, 2007). Since N2O has a global warming potential (GWP) of 310 

compared to 1 for CO2, this may have a significant impact on the GHG balance of bioenergy (1995 

IPCC).   

1.2 Effectiveness of perennial crops for bioenergy; 
with comparison to annual alternatives 
 

Energy crops can include annuals such as oil seed crops and sugarcane, or perennials with higher 

lignin content. Desired qualities include high yield, low energy, water and nutrient input 

requirements, and low levels of contaminants in the combusted feedstock (McKendry, 2002a).  

 

1.2.1 Energy Ratios 
 

Energy ratios, expressed as energy return on energy invested (with values over 1 representing net 

gain in energy) are useful in making absolute and comparative judgements on the efficiency of bio 

energy (Mulder et al., 2010; Powlson et al., 2005). Higher values are preferable, although since 

direct conversion of fossil fuels for energy has an energy ratio less than one, it could be argued 

that energy ratios less than one still represent an acceptably productive system if inputs are 
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renewable energy (Powlson et al., 2005).  Promising values have been reported for perennials, for 

example  10.34:1  for CHP produced from SRC willow via gasification, and 3.68:1  for large scale 

electricity generation from Miscanthus, (Rowe et al., 2009). Annual crops tend to require greater 

energy input due to requirement for fertilisers and the additional fuel demands of annual tillage 

and planting. Calculations for corn bioethanol vary from below one Patzek (2004) to  1.5:1  (Farrell 

AE, 2006). Other annuals show better performance, for example 7:1  for sorghum ethanol and  8 

for sugarcane ethanol  and around 4:1  for palm oil biodiesel (de Vries et al., 2010). Reported 

figures can be misleading however, for example the energy ratio of 8:1  for  sugarcane ethanol 

excludes renewable energy inputs (Howarth, 2009). The energy ratio calculated for a given energy 

crop will vary with yield fluctuations, system boundaries and how much energy cost is attributed 

to co-products (Cherubini et al., 2009; Rowe et al., 2009).  

 

Given that land is a limited resource, net energy generation per hectare is significant, so yield and 

energy density of the chosen crops must be compared. Annuals commonly provide less energy, 

such as around 2 GJ ha-1 a-1 for grain ethanols  and 10 GJ ha-1 a-1 for corn and soy biofuels, 

compared to 110 GJ ha-1 a-1  for SRC electricity generation, and even more if heat is utilised (de 

Vries et al., 2010; McKendry, 2002b). However some annuals such as sugarcane and palm oil can 

provide up to 135 GJ ha-1 a-1  (de Vries et al., 2010). Use of waste residues from food crops such as 

rice husks and bagasse from sugar cane may show better performance than dedicated energy 

crops, since cultivation energy, agrochemical inputs and land use are often regarded as zero. 

However, quantities may be limited, and residue removal can result in soil erosion, decreased soil 

fertility and loss of soil carbon storage, so it has been suggested that collection should be limited 

to 20 – 30% of residues (Mollersten, 2003; Wilhelm, 2004). High diversity mixed grasses are 

suitable as a biomass feedstock, and provide a range of ecosystem benefits including increased 

nitrogen use efficiency, increased microbial activity and reduced nutrient leaching (Fornara, 2009; 

Weigelt, 2009). However net energy is less than SRC willow at 18.1 GJ ha-1 (Tilman et al., 2006). It 

is also important to consider potentially restricting factors such as water availability, climate, soil 

type and nutrient availability which may affect relative yields of different crops (Aylott et al., 

2008; Lovett et al., 2009; Richter et al., 2008). 
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1.2.2 Processing and conversion 

 

Processing of wheat and sugar beet bioethanol made up 44% , and 71% of energy inputs and 36% 

and 66% of GHG emissions (Mortimer, 2004). Higher lignin content means perennial crops require 

more processing to be used for liquid transport fuels, increasing costs, and requiring  plant sizes 

around 1 gigawatt‐thermal (GWth) for good efficiency; technology is not yet available at 

commercial scale, so improvements cannot yet be anticipated (Edwards, 2008; Wetterlund et al., 

2012). Technical improvements making processing of lignocellosic biomass for liquid transport 

fuel more commercially attractive may increase this usage in future (Chum, 2011), however 

generation of electricity and or heat is currently the preferred end use (Edwards R, 2008; Powlson 

et al., 2005; Wetterlund et al., 2012). Processing of perennials for combustion may be limited to 

drying, which has little impact on the GHG and energy balance (McKendry, 2002b; Powlson et al., 

2005), although chopping of Miscanthus and chipping and pulverisation of SRC willow where 

necessary will have some effect on the overall balance (Styles and Jones, 2007). 

 

At the end-use stage, energy loss for conversion in ethanol transport engines is around 64-74%, 

whilst blending biodiesel into conventional diesel has little effect on the 58 % loss at conversion 

(Sims et al., 2006). Perennial feedstock has wide ranging conversion efficiencies; losses for 

combustion to electricity varies from 80- 60% depending on plant size, or where heat and 

electricity are utilised, losses can be reduced to 10% (Sims et al., 2006).  

 

1.2.3 GHG emission balance 

 

Mitigation of climate change is one of the two key stimuli for renewable energy; failure of energy 

crops on these issues undermines the purpose of renewable energy (Cherubini et al., 2009; Clair 

et al., 2008). Perennials generally require less agrochemical inputs such as nitrogen based 

fertilisers, which can halve N2O emissions, and long periods between tillage encourage soil carbon 

accumulation, hence they tend to have favourable greenhouse gas balance compared to annual 

crops (Kavdir et al., 2008; Powlson et al., 2005; Rowe et al., 2009). For biofuels from annual crops,  

N2O emissions from soil make up from 5-80% of their GHG emissions (Don et al., 2012).  

 



 
30 
 

Greenhouse gas emissions savings are highly variable for biofuels depending on processing 

methods and input energy type. For example sugarcane bioethanol in Brazil processed using 

biomass energy from bagasse has only 10 – 20% of the GHG emissions of gasoline, whereas corn 

bioethanol in the US has 70-90% of the GHG emissions of petrol based fuel (International energy 

agency, 2008). Variation is also seen for electricity from biomass according to land management, 

yield, processing and transport distances as well as system boundaries, for example inclusion of 

emissions from indirect land use change. Miscanthus has 23% of the GHG emissions of generation 

from coal, or 38% of the emissions from natural gas, and SRC willow generates 4-23% of the GHG 

emissions of coal, or 6-38% of emissions from natural gas (Rowe et al., 2009). 

 

1.2.4 UK Market penetration 

 

In general, multiple benefits have been identified for perennial crops over annuals, in terms of 

energy return on energy invested, energy return per ha, and greenhouse gas emissions associated 

with cultivation and processing. Between 2010 and 2011, domestically cultivated energy crops 

offset an estimated 0.4 % of UK energy usage (Hastings et al., 2014) compared to 3.1 % of total 

road transport fuel supplied by biofuel (Department for Transport, 2011). Powlson et al. (2005) 

suggest that, in spite of better energy ratios and greater reductions in CO2 emissions for electricity 

and heat generation from perennials, biofuels from arable crops have been a preferred focus for 

energy cropping, since they fit easily into existing systems of agriculture and energy 

infrastructure. Technological research and development have the potential to make big changes 

in the bioenergy sector; improvements in processing enabling crops with lower pre harvest energy 

input to be used for biofuel, or improvements in efficiency of conversion of biomass may increase 

potential energy ratios (Powlson et al., 2005).  

 

Energy Crop Scheme (ECS) funding aims to assist market penetration from perennials by providing 

funding to cover 50% of establishment costs, however as of 2011 total uptake only amounted to 

10 kha, and was seen to fall during the second phase, in spite of increases in grants (Aylott and 

McDermott, 2012). Issues of policy support for energy crop cultivation will be discussed further in 

Section 2.6. From current levels, significant increase in area planted to bioenergy crops would be 

necessary to meet government targets; given timescales such as the three to six year lead  in 

period for establishment of crops (Natural England, 2009) and the long development times for 

bioenergy plants (Thornley, 2006) this issue should be addressed urgently (Hastings et al., 2014). 
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1.2.5 Fit to existing energy infrastructure 

 

It is important to assess the fit between perennial feedstock and existing energy infrastructure, 

since this issue is considered partly responsible for the failure of energy generation from 

perennials to achieve the same market penetration as biofuel from annuals (Powlson et al., 2005). 

Although improvements in processing may ultimately enable high lignin perennials to replace 

annuals for liquid transport fuels, it is useful to consider more currently available end uses. 

 

Biomass feedstock is bulky and has a low energy density compared to fossil fuels meaning it is 

necessary to minimise road transport distances to achieve emissions savings and ensure energy 

returns greater than energy invested (McKendry, 2002a; Powlson et al., 2005). As a result, it is 

necessary to establish localised supply chains, and agreements between farmers and plant 

operators are of particular importance. This also limits the  potential scale of generation from 

biomass only feedstock; since smaller plants tend to have low conversion efficiency, alternative 

approaches must be considered to make efficient usage of relatively small quantities of feedstock 

(Gross, 2003).  

 

In order to minimise impacts per unit energy generated, it is therefore important to identify the 

most efficient potential end uses for relatively small quantities of biomass feedstock, and assess 

potential availability of feedstock close to those end uses. Issues of fit to existing energy 

infrastructure, and potential bioenergy generation once these issues have been taken into 

account will therefore be explored in Chapter 2. Fit to infrastructure is one of many issues which 

may potentially limit generation from bioenergy, including farm scale economics and farmer 

choices, public attitudes to landscape change and perceptions of impacts on food production 

(Alexander et al., 2014; Department of Energy & Climate Change, 2012; Dockerty et al., 2012; 

Jensen et al., 2007). Socioeconomic factors are not an intended focus for this study, but will be 

discussed briefly where necessary to address issues of feasibility; in particular, issues regarding 

supply chains, competition between local and imported feedstock, profitability for farmers and 

generators and perceptions of food versus fuel will be discussed in Chapter 2. 
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1.3 Miscanthus and SRC willow 
 

Perennials have been chosen as a focus for this research, due to lower agrochemical input 

requirements, and evidence for increased soil C storage, leading to favourable greenhouse gas 

balance. Popular perennials include trees suitable for short rotation coppicing, such as SRC willow 

or poplar, and rhizomatous grasses, such as switchgrass, reed canarygrass and Miscanthus 

(Powlson et al., 2005). Of these Miscanthus and SRC willow are most popular in the UK (Rowe et 

al., 2009). 

 

Miscanthus, is a tall rhizotomous grass, becoming popular in England, due to potential high 

energy ratio of 32:1 (before transport, processing and conversion of feedstock have been taken 

into account) and high rates of photosynthesis in a range of European and Asian climates, 

producing high yields (Atkinson, 2009). Miscanthus also benefits from translocation of nutrients; 

reducing contaminants in the combusted feedstock, as well as providing nutrients for the next 

year’s growth (Heaton et al., 2010). Recommended Miscanthus lifecycle is around 15 to 20 years 

(Department for Environment Food and Rural Affairs, 2007); decline in productivity with age 

occurs due to increasing space taken up by unproductive rhizome (Christian et al., 2008; Don et 

al., 2012).The hybrid Miscanthus x giganteus is preferred in the UK, and for brevity will be 

referred to simply as Miscanthus throughout this thesis. 

 

Willow is a fast growing shrub, with quickly establishing root systems and responds to coppicing 

with rapid new growth, giving a potential energy ratio of 30:1 with short rotation coppicing (SRC) 

(Atkinson, 2009; Smart, 2005). Multiple genotypes have shown good performance for cultivation 

in the UK, and can be grown together to increase resistance to disease and mitigate against low 

yield years (Boyd, 2000; Tallis et al., 2013). Winter harvesting enables recycling of nutrients 

through senescence (Boyd, 2000) and nutrient and water demands may be met using treated 

sewage sludge at some sites (Hilton, 2002). Harvested every three years, SRC willow has a lifecycle 

around 21 to 30 years (Keoleian and Volk, 2005), after this stems can become too thick to harvest 

(Don et al., 2012). In a commercial agricultural context a field of SRC willow is generally planted as 

a number of varieties, whilst field trials for research which provide yield data for modelling may 

prefer to plant a single variety on each plot. 
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1.4 Sustainability of perennial energy crop 
cultivation 
 

For some forms of bioenergy, land use change can have a significant environmental cost, while for 

perennials, there is evidence of potential environmental benefits from the cultivation stage, in the 

form of increased soil carbon storage, and reduced N2O emissions from agrochemical inputs 

(Brandão et al., 2011; Clair et al., 2008; Rowe et al., 2009; Tonini et al., 2012). As well as the 

environmental impacts of cultivation of the new crop, the removal of existing biomass and the 

interaction of a new crop and management regime with the soil conditions produced by previous 

land use must be considered (Brandão et al., 2010; Fargione et al., 2008; Searchinger et al., 2008). 

Spatial variation in existing land use is therefore a factor; as well as the major differences 

between arable and grassland, variation within these broad categorisations must be considered. 

In terms of available data on land use, the Centre for Ecology and Hydrology 2007 land cover map  

(Centre for Ecology and Hydrology, 2011) lumps arable land, hence the specific crop and nutrient 

application regime for a location cannot be identified. Grassland is split into improved, neutral, 

acid and calcerous; some of the differences between these may be difficult to represent in the 

context of modelling, as will be discussed in Section 2.10 and Section 6.2.  

 

Perennial crops differ from common arable crops in terms of management requirements and 

growth patterns; change to these affects water cycling and availability, as well as soil physical and 

chemical properties and resulting carbon (C) and nitrogen (N) cycling and emissions (Haughton et 

al., 2009; Rowe et al., 2009). It is necessary to have a good understanding of these changes, and 

how they may interact with existing site properties, in order to understand how the impacts of 

land use change for perennials may vary between sites. Figure 1.1 illustrates C, N and water 

cycling for an agroecosystem, and Sections 1.4.1 through to 1.4.3 describe how these cycles may 

be affected by land use change for perennial energy crops.  

 

The discussion of nutrient cycling in relation to energy crops tends to focus on N and C 

(Hellebrand et al., 2008; Kavdir et al., 2008; Keoleian and Volk, 2005; Kramer, 2006) , because of 

the importance of N2O and CO2 in global warming, and the eutrophication and acidification 

impacts of N inputs to fluvial ecosystems. There are also some studies on P (e.g. Ekholm et al. 
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2005) since this is also important in Eutrophication, but less so than N since it is often bound to 

sediments in fluvial ecosystems. This study also focusses on C and N, because of the importance 

of assessing GHG balance to ensure that emissions savings promised by bioenergy are achieved. 

 

 

Figure 1.1 C, N and water cycling for an agroecosystem.  
 

 

1.4.1 Soil Carbon cycling 

 

 Atmospheric CO2 is used by crops in photosynthesis; in the case of energy crops, the C stored in 

harvested parts will be released on their combustion, however non-harvested C will move into soil 

storage in the form of litter, roots and exudates (Powlson et al., 2005). For SRC willow and 

Miscanthus, around 85% of C uptake is re-released as CO2 once cultivation and energy generation 

stages have been considered (Tonini et al., 2012). Soil C storage is only temporary; CO2 is also 

emitted from soil organic matter (SOM), by soil respiration which can also be accelerated by 

erosion (Fargione et al., 2008; Keoleian and Volk, 2005) or can be adsorbed by crop roots from the 
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soil (Thornley, 2006). Given the unpredictability of duration of soil C storage, it has been 

suggested that sequestration should not be a focus for carbon mitigation efforts, however it 

remains important that activities are not reducing plant and soil C storage (Clifton-Brown et al., 

2007; Keoleian and Volk, 2005). Soil C storage has been identified as the source of greatest 

uncertainty in predicting GHG balance of bioenergy crop cultivation (Cannell, 1999). 

 

The balance of C storage varies with land use e.g. oil seed rape releases 0.40 to 0.24 t C ha-1 a-1 

depending on management; and forest can store around 0.32 t C ha-1 a-1 (Brandão et al., 2011). 

For a given crop, C storage rates will vary due to variation in C inputs with yield and management, 

and variation in rates of C breakdown and loss according to soil type and climate factors (Hamelin 

et al., 2012; Tonini et al., 2012). Since tillage aerates soil increasing decomposition rates, and 

resulting CO2 loss from soil; the no till (NT) practice for perennials should reduce gaseous losses of 

C inputs (Ball et al., 1999; Del Grosso et al., 2008; Keoleian and Volk, 2005; Li et al., 2005a). Year 

round soil cover and reduced surface disturbance means perennial biomass crops also reduce soil 

erosion, increasing soil accumulation in the field and reducing sediment inputs to the river 

(Thornton, 1998; Jørgensen and Schelde, 2001; Powlson et al., 2005). However depending on 

weather conditions, there is also a risk that winter harvesting can lead to soil compaction and loss 

of sediment to streams (McKay, 2011) and planting operations may cause erosion on slopes (Finch 

et al., 2009). Borzêcka-Walker (2008) cite C sequestration rates from 0.15 to 0.41 t C ha-1 a-1 for 

SRC willow SRC and 0.13 to 0.91 t C ha-1 a-1 for  Miscanthus. High levels of soil C sequestration 

observed for Miscanthus and SRC willow may exceed both arable land and recent setaside, but 

are likely to be less than more natural habitats, unimproved grasslands and former arable land in 

longer term setaside programs (Fargione et al., 2008; Rowe et al., 2009; Smith, 2004). Soil C 

stocks prior to land use change, which can be related to previous land use and management as 

well as site factors, may be the greatest determinant of GHG balance (Hillier et al. 2009). 

Alternatively, if maximum postulated increases in SOC storage were achieved by SRC, this would 

outweigh all other GHG flows involved (Keoleian and Volk, 2005). Since change in soil C storage is 

dependent on previous land use type, duration and management, as well as type and 

management of new crop, these issues should be factored into decisions about land use change. 

 

Following change in land use, there is a variable period before a catchment reaches steady state 

due to: time taken for establishment of new vegetation (canopy, roots etc.); and rates of 

processes, such as soil organic matter accumulation, decay or erosion (Breemen et al., 2002, 

Keolian and Volk, 2005, Darracq et al., 2007). New C inputs occur at or near soil surface; these will 



 
36 
 

be mixed through the soil by tillage, or can result in soil C stratification for NT systems (Soane et 

al., 2012). For example, Hellebrand et al. (2010) note that most of increase in SOC with SRC willow 

is in the top 4cm of the soil. Annual soil C changes such as those observed for Willow are often 

very small compared to the total soil C store (Verlinden et al., 2013). Soil organic carbon (SOC) 

accumulation rate for a new land use will also vary over time, it is often greatest during 

establishment and usually curvilinear until SOC reaches equilibrium, under constant conditions 

(IPCC, 2006; Smith, 2004). Whilst soil C storage at equilibrium may be higher for Miscanthus or 

SRC willow than for an existing NT land use, time taken to reach equilibrium is unpredictable, and 

there will be a carbon debt associated with C released during land preparation, until C storage 

reaches previous levels. 

 

Once at equilibrium, soil C storage levels can be maintained until there is a change in land use or 

management (Lal, 2004). Equilibrium may not have been achieved by the end of crop lifecycle; 

around 21 to 30 years for SRC willow (Keoleian and Volk, 2005) and  15 to 20 years for Miscanthus 

(Department for Environment Food and Rural Affairs, 2007). Removal of roots and ploughing of 

soil at the end of the energy cropping cycle will release C stored in belowground plant matter and 

some of the stored soil C. This loss should be offset by the next cropping cycle if land use is 

maintained (Keoleian and Volk, 2005).  

 

1.4.2 Nitrogen cycling 

 

N2O has a global warming potential (GWP) of 310 compared to 1 for CO2, hence it is crucial to also 

assess N cycling in order to fully consider GHG emissions (IPCC, 1995). Although N2O emissions 

predictions are often based on type and amount of N fertiliser input (Bouwman, 1996), this 

relationship varies with factors such as climate and soil type, and will also be affected by 

interaction between new land management and crop factors, such as leaf litter inputs or timing of 

application relative to crop uptake (Brown et al., 2002; Chatskikh et al., 2005; Keoleian and Volk, 

2005; Müller et al., 1997). Site specific variation in nutrient cycling response to new land use must 

be anticipated; however prediction of these impacts is hampered by an incomplete understanding 

of processes. 

 



 
37 

 

Nitrogen naturally exists mostly as inert N2 which can be fixed into useable nitrogen nutrients 

such as NH4
+ by bacteria in soil and root nodules.  This NH4

+ can then be nitrified to NO3
- in soil 

where both nutrients can be taken up by plants or leached downwards (Socolow, 1999). These N 

nutrients can be stored, leached, or transformed and lost as N2O or N2 gas, with varying 

proportions and timings (Cherubini et al., 2009). Nitrogen retention in soils and aquifers can last 

for decades to centuries (Haag and Kaupenjohann, 2001, Breemen et al., 2002). Agriculture has 

significant impacts on nitrogen cycling; the addition of fertilisers increases the N nutrient pool, 

tillage breaks up soil aggregates speeding decomposition, and irrigation can speed the anaerobic 

process of denitrification, producing increased N2O and N2 (Cherubini et al., 2009; Del Grosso, 

2008). 

 

C and N are coupled in organic systems, and hence N cycling will also be affected by changes to 

soil C associated with land-use change for perennial energy crops (Ball et al., 1999; Li et al., 2008).  

The form of organic matter inputs to soil is significant since decomposition and mineralisation 

rates are affected by factors such as lignin content and C:N ratio (Del Grosso et al., 2008; Parton 

et al., 2010; Porporato et al., 2003).  High C:N inputs to soil increase microbial immobilisation of 

soil N, thus reducing availability for plant uptake and gaseous losses (Delgado et al., 2010). 

Mineralisation is the reverse process, increasing soil N availability, and may be stimulated by 

inputs of residues with low C:N ratios, or by decomposition losses of C following tillage (Curley et 

al., 2009). Miscanthus has been shown to increase the proportion of insoluble C in SOM and due 

to translocation of N prior to senescence, organic matter in Miscanthus leaf litter has a high C:N 

ratio reducing rates of microbial decomposition of SOM (Foereid et al., 2004; Heaton et al., 2010). 

Organic matter inputs to soil from SRC willow also have low N content, due to high C:N ratio of 

both leaf litter and root inputs (Jug et al., 1999). Given that crop inputs with high C:N will 

encourage N immobilisation, and the NT system means no tillage associated decomposition and 

mineralisation, soil N availability may be relatively low under these perennial energy crops. 

 

Soil N2O emissions vary according to rates of nitrification and denitrification, and rates of diffusion 

out of soil, which affect whether N2O is consumed by further reactions (Del Grosso et al., 2000; Li 

et al., 2005b). Nitrification and denitrification can occur concurrently, in aerobic and anaerobic 

soil pores respectively (Boyer et al., 2006; Chen et al., 2008). Kavdir et al (2008) explain that soil 

texture and drainage of soils are important controls of soil pore water and oxygen status, which 

affects  N cycling. For example fine grained soils with many capillary pores to retain moisture are 

more prone to anaerobic conditions favouring denitrification, whilst well drained soils with low 
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bulk density favour nitrification. Between 35–60% water filled pore space (WFPS) nitrification is 

dominant, whereas above 70% WFPS denitrification is the only source of N2O (Bateman and 

Baggs, 2005). Linn and Doran (1984) suggest that N2O emissions are highest around 60% WFPS; at 

lower levels denitrification is less common, and at higher levels completion of reactions to 

produce N2 is more likely. Aerobic denitrification has been theorised at 20% WFPS by some 

genera of bacteria capable of aerobic N respiration (Bateman and Baggs, 2005). 

 

N2O emissions response to changes in soil water and nutrient inputs is dependent on whether 

nitrification or denitrification is dominant. For example, if nitrification is dominant, emissions will 

decrease with increasing soil water content, due to reduction in aerobic processes and increased 

leaching, whereas if denitrification was dominant emissions would be likely to increase (2008). 

Since nitrification acts primarily on ammonium, whilst denitrification acts on nitrates; saturation 

of soil causes a greater increase in emissions from nitrate based than ammonium based fertiliser 

(Keoleian and Volk, 2005). Differences in soil texture and drainage between sites can be used to 

explain observed differences in rates of nitrification and denitrification, and how these processes 

respond to changes in management. However due to complexity of soil structural changes 

controlling WFPS and nonlinearity of denitrification and N2O emissions response to changes in 

WFPS, N2O emissions response to change in land use and management can be difficult to predict. 

 

As well as water filled pore space (WFPS), nitrification and denitrification are controlled by: 

diffusion and temperature, which control microbial activity and diffusion of products from soil 

(Chatskikh et al., 2005; Müller et al., 1997) as well as pH (Li et al., 2005a), labile C and inorganic 

nitrogen available to microbial biomass (Davidson et al., 1998; Li et al., 2005a; Müller et al., 1997; 

Parton et al., 2010; Verchot et al., 2006). These variables interact, for example microbial 

decomposition of C and N consumes soil pore oxygen (Boyer et al., 2006).  

 

1.4.2.1 Spatiotemporal variation 

 

Controls on N cycling vary at field scale, particularly with factors affecting water movement such 

as topography and soil texture and compaction. As a result, nitrification and denitrification 

processes and associated emissions are highly spatially variable (Boyer et al., 2006; Li et al., 

2005a). Processes also have significant temporal variation with ambient temperature change, soil 
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disturbance, inputs of water and movement through soil, and nutrient input or uptake events 

(Beheydt et al., 2007; Grant et al., 2006). Jarecki et al. (2008) identified a pattern of significant 

spatial and temporal variation in N2O throughout the literature, with emissions varying by 3 

orders of magnitude over a period of days, and greater than 100% variation in coefficients of 

spatial variation. Heide et al. (2010) suggest that this may partially be explained by “hot-spots” of 

denitrification related to non-homogenous distribution of soil C and N and microbial biomass 

although at some sites, (e.g. Hellebrand, 2008) hot-spots may only occur with additions of N 

fertiliser. 

 

Some existing studies on energy crops, which will be discussed in Section 1.4.2.5, measure N2O 

emissions from field trials; however spatiotemporal variation in emissions must be taken into 

account when interpreting these data.  

 

1.4.2.2 N2:N2O 

 

N2O is an intermediate product of the denitrification process, with N2 as the final product, hence 

factors controlling the N2:N2O ratio of gaseous losses from soil will have a significant impact on 

GHG emissions (Basset-Mens et al., 2006; Groffman et al., 2000a; Kramer, 2006).  N2:N2O ratio  

varies with soil type and changes in WFPS, temperature, pH,  and C and N composition; further 

study is needed to improve understanding of the influence and interaction of these variables 

(Frolking et al., 1998; K. L. Weier, 1993). Del Grosso et al. (2000) note that ratio is even less 

predictable in disturbed soils due to changes in diffusivity and disruption of pore connectivity. 

 

Heide et al. (2010) state that increased residence time allows increased production of N2O in 

groundwater, but also results in more N2O being fully reduced to N2. Soil type and structure 

control diffusivity of gases in and out of soil; affecting both amount of N2O lost before completion 

of denitrification, and the amount of O2 entering soil, creating conditions unsuitable for 

denitrification. N2:N2O is reduced by low pH and high O2 which reduce completion of 

denitrification to N2, since the enzymes which reduce N2O are denatured (Groffman et al., 2000a). 

Likewise NO3 acts as an electrons accepter and thus can inhibit completion of denitrification at 

high concentration (Weier, 1993). Conversely high denitrification rates and low NO3 create high 

demand for electron acceptors, increasing rates of N2O reduction, leading to increased N2:N2O 
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(Groffman et al., 2000a). Stratification of SOM under NT systems means that soil N may be 

concentrated near the surface, and thus more easily lost, meaning denitrification reactions are 

less likely to complete to N2, increasing the relative proportion emitted as N2O (Soane et al., 

2012).  

 

N2:N2O ratio is difficult to predict under tilled or NT conditions, hence it is uncertain what the 

impacts of land use change for perennial energy crops might be. High denitrification rates under 

NT combined with, low NO3 due to low inputs and tendency towards immobilisation as opposed 

to mineralisation could act to increase N2:N2O ratio. However lack of mixing will mean available N 

is concentrated near surface so the intermediate products of denitrification are more easily lost. 

Soil structural changes immediately following tillage will act to increase diffusivity of intermediate 

products from soil, whereas soil structure develops over time under NT, which may result in faster 

diffusion from soil through macropores. 

 

1.4.2.3 Impacts of change in tillage  

 

Impacts of change in tillage regime on N2O emissions may be highly significant; Li, et al. (2005a) 

found that the GWP of N2O emissions following reduction in tillage offset the benefits of 

increased soil C storage by 75-310%. This response of C and N cycling to land use change is 

complex; further studies found a decrease in N2O emissions with no till practice (Del Grosso et al., 

2008; Kavdir et al., 2008; Regina and Alakukku, 2010). Changes in N2O with tillage are not well 

understood or quantified, however, variables identified as affecting response include; previous 

land use and associated C and N accumulation, amount and type of fertiliser inputs  (Hellebrand 

et al., 2008; Novoa and Tejeda, 2006), soil type (Rochette et al., 2008), humidity (Regina and 

Alakukku, 2010), soil moisture, climate, soil physical properties and topography (Li et al., 2005a). 

 

Higher field emissions of N2O from tilled soil have been attributed to higher levels of available N: 

since tillage aerates soil and redistributes surface residues to more microbially active layers, 

decomposition and mineralisation of N within soil are increased (Almaraz et al., 2009; Del Grosso 

et al., 2008; Metay et al., 2007). Tillage also breaks down aggregates, making organic matter more 

physically available for decomposition (Drury et al., 2004). Emissions may be reduced under NT 

due to the cooling effect of surface residues, since lower temperatures may mean slower rates of 
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microbial processes (Kaharabata et al., 2003). Residues also protect soil from aggregate 

breakdown by precipitation, erosion, surface crusting and splash infilling of macropores (Bradford 

and Huang, 1994). 

 

Observed increases in N2O emissions under NT have been attributed to the increase in soil C over 

time under NT, which may stimulate microbial activity and release of N2O. This may be offset by a 

reduction in soil loss, meaning a decrease in indirect emissions from eroded soils (Ball et al., 1999; 

Li et al., 2005a). Elsewhere, studies have posited an increase in rates of denitrification under NT 

due to structural changes to the soil increasing rates of denitrification (Heinen, 2006; Soane et al., 

2012).  

 

Tillage increases porosity over the affected depth, whilst compaction from precipitation, freeze-

thaw settling, or traffic may reduce porosity; severity of compaction may increase at higher 

organic matter content, and inter-aggregate pores are more easily lost than textural pores (Alletto 

and Coquet, 2009; Balland et al., 2008). As a result, porosity tends to be lower for NT soil, and 

may decrease over time under NT (Bateman and Baggs, 2005).  

 

Decrease in porosity, produces increase in the percentage of water filled pore space (WFPS) and 

reduction in drainage, leading to reduced O2 diffusivity, and increased tendency for anoxic 

conditions, increasing rates of denitrification, whilst decreasing rates of nitrification (Ball et al., 

1999; Hellebrand et al., 2008; Regina and Alakukku, 2010; Rochette et al., 2008; Six et al., 2004). 

As such, a review of published studies by Rochette (2008) identified that the increase in rate of 

denitrification under NT commonly occurred in poorly drained soils, whilst well drained soils 

experienced decreased rates of nitrification, or no change to soil pore water contents. Soil 

porosity changes due to tillage regime may be  less important for soils with good drainage or high 

evaporation from surface layers (Metay et al., 2007). Where change to NT increases N2O 

emissions, store exhaustion may occur, causing a later drop in emissions, as observed by Six et al. 

(2004) for humid climates after 20 years  of NT.  

 

Structural changes to macroporosity and organic structure may also be significant. Macropore 

connectivity affects flow of water through soil, impacting both on leaching (affected by flow rate 

and contact with soil matrix N) and soil pore water: vertical channels are particularly important 
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(Logsdon, 1995). Macropore connectivity is disrupted by tillage, and builds over time with root 

channels, and vertical fracturing or burrowing (Jarvis, 2007; Soane et al., 2012). Disruption of 

these pores also affects rates of gaseous losses from soil, thus impacting N2:N2O ratio as described 

above (Section 1.4.2.2) (Del Grosso et al., 2000). Organic matter also contributes to structure, and 

correlates with porosity, SWC, soil water retention and aggregate stability (Azooz and Arshad, 

1996; Gupta, 1991; Gupta and Larson, 1979; Rawls et al., 2003; Six et al., 2000). Increase, or 

stratification of soil carbon under no till will therefore affect soil water profile, and anoxic 

conditions may increase near the surface where SOM is concentrated (Yang et al., 2008). Since 

gases produced in surface layers have less distance to escape, this may increase N2O emitted. 

Aggregate size is also a control; when structural pores have low WFPS, aggregates may still 

contain anaerobic zones favourable for denitrification; in contrast under anoxic conditions, 

aggregate size has been found to correlate negatively with N2O and CO2 emissions (Drury et al., 

2004; Parkin and Tiedje, 1984; Uchida et al., 2008).  

 

Changes to tillage regime will affect porosity and pore connectivity of soil, however the impacts 

on WFPS and rates of N2O production will be dependent on soil texture and drainage, form and 

availability of N and C:N ratio of inputs to soil. Understanding and prediction of these impacts is 

hampered by an incomplete understanding of processes and their interactions. 

 

1.4.2.4 Nutrient requirements of willow and Miscanthus 

 

Both SRC willow (Adegbidi et al., 2001) and Miscanthus (Cadoux et al., 2012) are often described 

as having high nutrient use efficiency (NUE) compared to arable crops, however Jørgensen and 

Schelde (2001) note that NUE data for energy crops is often calculated as dry yield/nutrient 

content.  Although this is useful to calculate ash and emissions likely to be produced at 

combustion, it is not informative in terms of input requirements unless crop uptake efficiency is 

also considered along with below ground crop N storage, and any symbiotic N fixation 

relationships (Cadoux et al., 2012; Jørgensen and Schelde, 2001). NUE  assessment  tends not to 

consider internal nutrient requirement  of crops, as this is harder to assess ( Adegbidi et al., 2001). 

Broad distinctions can be made, for example C4 photosynthesis is more nitrogen efficient than C3, 

and so Miscanthus, a C4 perennial plant is likely to make very efficient use of nitrogen and thus 

require less artificial inputs (Curley et al., 2009). 
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NUE is increased by delaying harvest to winter, to allow recycling of nutrients by translocation 

from stems and branches into the rhizome for Miscanthus (Beale and Long, 1997; Heaton et al., 

2009) and in the case of SRC willow to roots in winter (Bollmark, 1999) and back to new growth in 

spring (Jug et al., 1999; Shibu et al., 2012). Nutrients remaining in leaves are returned to the soil 

at senescence; in the case of SRC willow, this can provide up to two thirds of nutrient 

requirements for the following year (Keoleian and Volk, 2005). 

 

Several studies have identified N fixing communities associated with Miscanthus roots (Davis et 

al., 2010; Eckert, 2001; Keymer and Kent, 2013). A review by Cadoux (2012) suggested the need 

for proof the crop is able to use this N; this appears to have been resolved by N isotope dilution 

studies by (Keymer and Kent, 2013). Furthermore Davis (2010) and Gopalakrishnan (2012) 

required an assumption of symbiotic N fixation to explain observed nutrient balance and crop 

yield for Miscanthus modelling, suggesting fixed N is available to the crop. There is evidence of 

symbiotic N fixation for SRC willow also (e.g.Doty, 2009) in the form of association with 

diazotrophic endophytic bacteria, which they use to explain survival in N poor environments. 

However Knoth (2012) state that cultivated energy crops may not display the same relationships, 

and Moukoumi et al. (2012) found improved yield for intercropping of SRC willow with Caragana 

species in which N fixation takes place within root nodules, and is therefore less sensitive to the 

disruptions of commercial farming. Further nutrient support comes from mycorrhizae 

communities, which thrive under the NT system required for perennials and provide N and P to 

the roots of both SRC willow and Miscanthus in exchange for C (An et al., 2008; Rooney et al., 

2009). 

 

It has been postulated that extensive deep rooting systems, enable high efficiency of nutrient 

uptake, reducing the proportion of inputs lost from the crop soil system (Hellebrand, 2005; 

Keoleian and Volk, 2005; Rowe et al., 2009). However experiments at Rothamsted have observed 

very low uptake of fertiliser applied to one year old Miscanthus; 60 kg N ha-1 labelled fertiliser was 

applied as NH4 and NO3, of this 22% was retained in soil, 38% was taken up and 40% was lost from 

the crop soil system (Christian, 1997). Losses were reduced to 16-24% with increased crop uptake 

in years two and three ; these values are proportional to those for arable crops, but due to lower 

inputs, absolute values of N loss would be reduced (Christian et al., 2006). It has been postulated 

that lower than expected N uptake efficiency may reflect a delayed root emergence, which takes 

place one month after shoot emergence, meaning N uptake only occurs for around six months 
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(compared to around nine months for some cereals), and timing of applications should be delayed 

(Christian et al., 2006; Christian et al., 2008). 

 

Cycling and fixation of N should reduce input requirements of SRC willow and Miscanthus, and 

numerous field studies have identified no significant yield response to fertiliser in Miscanthus (e.g. 

Beale and Long, 1997; Christian and Riche, 1998; Culman et al., 2010; Heaton et al., 2010). 

However yield dependence on N inputs is recorded at some sites  e.g. (Danalatos et al., 2007; 

Lewandowski and Schmidt, 2006). Miscanthus response to N inputs varies with genotype and site 

(Karp and Shield, 2008), hence intermittent test applications of fertiliser at commercial plots have 

been recommended to identify where yield may be N limited (Christian et al., 2008), although 

some studies suggest that energy ratio and system efficiency may be maximised at little or no N 

input (Danalatos et al., 2007; Lewandowski and Schmidt, 2006). A reduction in soil N of 150 kg N 

ha-1 was recorded over the first 150 cm soil depth, during a three year period including rhizome 

establishment for a Miscanthus field trial in France indicating risk of N depletion for some sites 

where plant requirements are met from soil alone (Dufossé et al., 2012). In 2001, Defra 

recommended inputs of 88 kg N ha-1a-1 in the UK (Nixon P, 2001), but their 2007 (Department for 

Environment Food and Rural Affairs, 2007) handbook does not give a recommended application 

rate, and cites the lack of yield response observed by Christian et al. (2008).  

 

For SRC willow cultivation, Jug et al. (1999) found SRC willow to require N inputs for good yield, 

and  several studies have found yield improvements with fertiliser input to SRC willow. Lack of 

agreement on recommended inputs may indicate site variation in needs (H. G. Adegbidi et al., 

2001). Recommended average application rates vary between countries, for example 70 kg N ha-

1a-1  is recommended in Sweden (Boyd, 2000) and 100 kg N ha-1a-1  every 3 years for the US 

(Keoleian and Volk, 2005). In the UK recent field trials have achieved reasonable yield over short 

term with no applications (e.g.  Aylott et al., 2008), however best practice guidelines (Hilton, 

2002) recommend a cycle of 40 (post coppice), 60, 100 kg N ha-1a-1 , and (Bullard et al., 2002) note 

that commercial low input, low management approaches often produce yields below the 

economically viable threshold. These values can be considered low, compared to the maximum 

allowable rate of 250 kg N ha-1a-1 in the UK. 

 

UK field trials tend not to apply N fertiliser for SRC willow or Miscanthus, however researchers at 

Rothamsted (personal communication) have observed store depletion in later years with no 

nutrient input at former arable sites, although former grass sites remain N rich. It has been 
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suggested that nutrient inputs may be necessary to avoid depletion, but should not exceed 

removal at harvest, which for Miscanthus is around 4.9 g kg-1 of N,  0.45 g kg-1 P  and 7.0 g kg-1  of 

K, although these values will vary with yield (Cadoux et al., 2012). Removal is generally below 

average atmospheric deposition rates for Europe (Don et al., 2012) hence depletion may not be 

seen without N inputs, even after 14 years of growth (Christian et al., 2008). For SRC willow, N 

removal at harvest is seen to vary with nutrient input levels, in the range of 29-47% of inputs (Jug 

et al., 1999). Lower agrochemical requirements, combined with high efficiency of uptake and low 

levels of N in harvested biomass give perennial energy crops potential to reduce N2O emissions 

compared to annual crops, although where N inputs are required there may be significant impacts 

(Cherubini et al., 2009). 

 

1.4.2.5 Observed N2O emissions for willow and Miscanthus 

 

Field studies on perennial energy crops often do not measure emissions of N2O (e.g.  Christian et 

al., 2008; Christian and Riche, 1998; Dondini et al., 2009; Heaton, 2004; Price et al., 2004) perhaps 

in part due to issues of high spatiotemporal variation.  Given the expectation of low N inputs, low 

N2O emissions may be expected and a reduction in N2O emissions compared to arable is generally 

postulated (Kavdir et al., 2008; Powlson et al., 2005; Rowe et al., 2009). Since N cycling is highly 

complex, further consideration and field observation is warranted. 

 

In a review of studies by Don et al. (2012) total N2O emissions and emissions as a proportion of N 

inputs (emissions factor (EF)) were lower for SRC willow and Miscanthus when compared to 

annuals, with the exception of a one year study (Jørgensen, 1997) comparing Miscanthus and rye, 

in which emissions were similar without fertiliser, and EF for Miscanthus was three times that of 

rye. Additionally Kavdir et al. (2008) found higher emissions for SRC willow than for a rotation of 

annuals (rape/rye/triticale) where fertiliser was not applied to the perennials or the annuals . It is 

significant that these experimental conditions do not reflect conventional farming approaches, i.e. 

that annuals usually receive higher fertiliser applications than perennials. A study by Drewer et al. 

(2012) on loam over clay recorded  much higher N2O emissions for wheat and OSR compared to 

Miscanthus and SRC willow, which they attribute largely to differences in fertiliser regime, and 

state that Miscanthus only reduces N2O if little or no fertiliser is applied. Christian et al.  (2008) 

note that fertiliser inputs may be required to maintain yields on nutrient poor soils, and that 

warm moist soils may experience enhanced denitrification, hence a significant proportion of 
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observed losses of 16- 40% of N fertiliser inputs to Miscanthus plots in Christian et al. (1997) and 

(2006) may have been in the form of N2O emissions. 

 

Hellebrand et al. (2008; 2005) and Kavdir et al. (2008) suggest that their finding of an EF for 

perennials to be around half that for annual crops is a result of the impacts of NT, whilst Don et al. 

(2012) attribute this difference to more efficient nutrient uptake by perennials. Drewer et al. 

(2012) observed similar rates of denitrification in response to fertiliser inputs for Miscanthus and 

OSR, however gaseous losses for the Miscanthus field had a higher N2:N2O ratio, which may 

reflect higher pH or lower diffusivity due to the NT system. Hellebrand et al. (2010) record higher 

WFPS for SRC willow (38.4%) than annual crops (35.4%); since nitrification is dominant under 

these conditions, lower oxygen availability under SRC willow may reduce rates of N2O production. 

Jørgensen et al. (1997) suggest that low emissions for their study were due to low precipitation 

and sandy soil; their finding of higher N2O emissions for Miscanthus is therefore attributed to NT 

soil structure and residues increasing WFPS and associated levels of denitrification; emissions 

were higher from Miscanthus than rye, in spite of lower fertiliser inputs. 

 

A range of modelling approaches have identified lower N2O emissions for perennial energy crops 

e.g. (Davis et al., 2010; Hamelin et al., 2012; Tonini et al., 2012). Using the IPCC methodology 

Tonini et al. (2012) calculate N2O emissions of 5.8 kg N ha-1 a-1 for Rye, 2.3 kg N ha-1 a-1  for SRC 

willow and 2.0 kg N ha-1 a-1  for Miscanthus according to assumed levels of of fertiliser input. 

Calculations elsewhere identified almost twice the N2O emissions associated with leaf litter 

compared to direct fertiliser inputs for Willow with 100 kg N ha−1 ammonium sulfate added every 

three years (Keoleian and Volk, 2005). Modelling by Dufossé et al., (2012) of Miscanthus 

cultivation over a 20,000 km2 region of France identified that N2O from Miscanthus could 

contribute an average of 13-8.8 kg ha-1 CO2 equivalent per ha per year, depending on estimation 

methods, with significant spatial variation in both yield and N2O emissions according to soil type;  

the resultant variation in N2O emissions per unit energy contributes to relative benefits of 

bioenergy.  For land use change, existing N2O emissions should also be considered; for arable 

usage of the same area, simulated emissions varied from 93 to 1744 kg ha-1 a-1 CO2 equivalents 

due to site factors (Dufossé et al., 2012), meaning that spatial variation in potential emissions 

reduction is of even greater significance.  
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Prior to establishment of perennial energy crops, soils are often left fallow over winter, leaving 

them vulnerable to erosion and leaching, then tilled  for planting in Spring, causing significant 

mineralisation loss of N from soil in the case of former grassland or otherwise undisturbed soil 

(Christian and Riche, 1998; Jug et al., 1999). Losses due to mineralisation from soil disturbance 

accounted for 24.7Gg of the 78.4Gg of UK soil N emissions in 1990 (Brown et al., 2002; Curley et 

al., 2009). A further important consideration which has not been well assessed is the risk of high 

emissions following an N pulse on ploughing in of the significant N storage in Miscanthus roots 

and rhizomes at the end of the crop lifecycle (Christian et al., 2006). 

 

In general, N2O emissions losses appear to be lower for SRC willow and Miscanthus than for 

arable crops to which they have been compared. However there is variation with site factors and 

N fertiliser inputs, and emission during site preparation and crop removal must be included in 

assessments.  Comparisons are rarely made for grazed lands; emissions from these relate to 

compaction of soil by trampling of livestock and N inputs in manure and urine, leading to 

emissions (Mosier, 1998). 

 

Variation in change in N2O emissions between sites according to current land usage, as well as site 

and land management factors will affect the relative benefits of bioenergy cultivation. 

 

1.4.2.6 Leaching 

 

Leaching losses are expected to be lower for Miscanthus and SRC willow compared to annuals, 

due to low N inputs and efficient uptake (Curley et al., 2009; Powlson et al., 2005). The IPCC 

emission factor (EF) for leached N is twice that for applied N, hence indirect emissions of N2O 

must be regarded a key component of the GHG balance (Groffman et al., 2000b; Nevison, 2000). 

Leaching also has ecological implications, polluting river systems and coastal waters, causing 

eutrophication (Brown et al., 2002; Kramer, 2006).  

 

Haag and Kaupenjohann (2001) state that at a watershed scale, most applied N is retained, and 

often stored for decades, whilst Breemen et al. (2002) suggest retention can last from decades to 

centuries. This may explain why leaching can be traced to historic land management Koh et al. 
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(2010). Land use change may encourage either release or accumulation of N in catchment stores, 

making them a significant area for research. Differences between inputs and outputs in N budget 

calculation are often attributed to retention (Alexander, 2002), however other factors should be 

considered first (Galloway  1995). For example N budgets often overlook dissolved organic nitrate 

(DON) which contributes around 20% N leaching (van Kessel et al., 2009), as well as emissions 

from shallow aquifers (Heide et al., 2009) and flow interaction between surface and subsurface 

water systems (Baresel and Destouni, 2006)  both of which remain poorly understood 

 

The IPCC standard methodology used for governmental calculations assumes that 30% of fertiliser 

input is leached; calculations by Tonini et al. (2012) gave values of around 74 kg N ha-1 a-1 for Rye, 

10 kg N ha-1 a-1 for SRC willow and 10 kg N ha-1 a-1 for Miscanthus, although these are dependent 

on assumptions about fertiliser application rate. The ultimate fate of N from fertiliser is poorly 

understood in agricultural studies, and use of a default value for leaching rates may compound 

inaccuracies (Nevison, 2000; Van Breemen et al., 2002). Variation in leaching rates is significant; 

an analysis of 16 US catchments by Breemen et al. (2002) found that 20-60% N inputs were lost as 

leached N, whilst Meisinger  and Delgado (2002)  suggested a value of 10-30% leaching for grain 

systems. A review by Alexander et al. (2002) of several catchment studies suggested that 

predictions of fluvial N export could be improved by mapping patterns of variation in processes 

controlling Nitrogen cycling. Other crucial factors include timing and amount of fertiliser 

application, nitrates applied faster than they can be used by plants will remain in soil and can be 

easily leached in the event of rain (Christian and Riche, 1998). Precipitation and soil structure and 

drainage are also important controls, since good drainage and increased precipitation increase 

leaching and decrease in-field N2O losses (Basset-Mens et al., 2006; Christian and Riche, 1998; 

Hutchins et al., 2010).  

 

Mineralisation due to over-winter fallow and tillage pre-planting can leave soils rich in available N, 

leading to higher leaching during the first year of establishment; SRC willow leaching has been 

recorded at levels comparable with maximum values for arable crops (Mortensen, 1998), and 

Miscanthus leaching at significantly higher levels (Christian and Riche, 1998). Reduced 

mineralisation under the NT system may mean lower levels of available soil N in subsequent 

years, and thus leaching is often much below that seen for annuals (Jørgensen and Schelde, 2001). 

Soil type affects pattern of nutrient loss during establishment; Mortensen (1998) found that 

leaching was reduced in year 2 for coarse sand and year three for loamy sand. Structural changes 

which develop in soil under NT systems may increase bypass flow, which avoids contact with N 
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stored in the soil matrix, thus reducing concentration of N in percolating water (Soane et al., 

2012). 

 

 Energy crops such as SRC willow with high uptake have been recommended as riparian buffers to 

protect water quality by uptake of nutrients in throughflow (Delgado et al., 2010; Elowson, 1999; 

Jørgensen and Schelde, 2001). Growing season is a significant factor; Lesur et al. (2013) suggest 

that N uptake in autumn by perennial energy crops can reduce leaching in response to high 

rainfall inputs in autumn and winter, whereas Christian et al. (2008) note that Miscanthus root 

activity is delayed by a month compared to shoot activity, and suggest that period of root uptake 

is shorter than for arable crops.  The year round cover provided by perennials also reduces soil 

and N losses from surface runoff (Jørgensen and Schelde, 2001).  

 

Measurements by Behnke et al. (2012) show leaching of 8 kg N ha-1 a-1  for Miscanthus with no 

fertiliser input, and 28 kg N ha-1 a-1 leaching  with  120 kg N ha-1 a-1 fertiliser input.  Even at slurry 

application rates of  180 kg N ha-1 a-1 Miscanthus  N levels remain within safe drinking water 

limits, and at similar levels to annuals (Curley et al., 2009). A study in Denmark (Mortensen, 1998) 

found increased leaching with N input during the first year of SRC willow, but thereafter 75 kg N 

ha-1 a-1 was added without increased leaching and values around 10 kg N ha-1 a-1 were recorded, 

comparable with other studies. It is therefore likely that land use change to perennial energy 

crops could reduce N leaching compared to annual arable crops, although soil N and amount and 

timing of any fertiliser inputs will affect the overall outcome. 

 

1.4.3 Water cycling 

 

Due to high production, perennial crops such as Miscanthus may have high water requirements 

compared per hectare to annual crops which may be used for energy such as maize, although 

given a lower energy yield per ha for maize, this does not indicate a better energy return on water 

invested for annuals (Vanloocke et al., 2010). Miscanthus also has higher water usage per MJ 

compared to fossil fuel generation, for which the water requirements are largely non consumptive 

(Mulder et al., 2010). Since energy crops are not for consumption, different management 

standards are applied, and there is potential to use wastewater for irrigation, reducing demand 
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for freshwater, fertilizing crops and treating the wastewater at the same time, although this may 

increase contaminants on combustion (Paine et al., 1996).  

 

Without irrigation or high precipitation, high water use of perennial energy crops can reduce both 

soil and groundwater storage; the water resources and environmental impacts of this depend 

upon the previous hydrological regime (Jørgensen and Schelde, 2001). As well as land availability, 

water resources may be a limiting factor in many areas, so water use efficiency is an additional 

limiting factor on bioenergy (de Fraiture et al., 2008; Mulder et al., 2010). The change in water 

usage with cultivation of perennial energy crops is dependent on previous land use, new crop 

species, amount of rainfall and hydraulic properties of soil (Finch et al., 2004). Key factors 

controlling evapotranspiration (ET) are: growing season (which dictates the timing of water usage 

and interception (Goodrich et al., 2000; McKendry, 2002; Vanloocke et al., 2010)); rooting depth 

(deeper roots may enable water access during shortages (Finch et al., 2004)); and photosynthesis 

type (C4 plants have double the water use efficiency of plants using C3 photosynthesis (Smeets et 

al., 2009)).  

 

Although Miscanthus uses efficient C4 photosynthesis, other variables may lead to higher ET than 

a C3 annual at some sites (McKendry, 2002; Smeets et al., 2009). High productivity increases 

transpiration and longer ground coverage increases evaporation due to interception (Berndes, 

2002; Finch et al., 2004; McKendry, 2002a). Finch et al. (2004) speculate that Miscanthus may 

require less water than annuals but suggest that more data are needed to confirm this. 

 

If SRC willow has access to water, usage is likely to exceed that of annuals, whilst if access to 

water is limited, growth will be restricted (Finch et al., 2004). Water use is lowest in the year 

following coppicing, increasing to year three of the cycle when stems are harvested (Borek R, 

2010). 

 

Miscanthus growing season varies with species and climate factors; studies in the Midwest US  

recorded longer growing season and greater associated ET than arables (Gerbens-Leenes et al., 

2009; Vanloocke et al., 2010). Growing season may also be limited by water availability, which will 

also result in restricted yield (Richter et al., 2008). Depending on depth to water table, deep roots 

of SRC willow and Miscanthus may have access to groundwater, meaning that evapotranspiration 
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is not limited by recent precipitation, reducing water limitation on growth, but increasing risk of 

groundwater depletion (Don et al., 2012; Finch et al., 2004). Where these crops are grown as a 

riparian buffer access to groundwater is good, but impacts on stream flow may be more severe 

(Goodrich et al., 2000). ET will also vary for annual arable crops, according to species, site factors 

and management choices which affect growing season, yield and water use efficiency.  As a result 

of these factors, the difference in ET between annuals and perennials may vary considerably 

between sites (Berndes, 2002). 

 

Increased water use has environmental  impacts including; increased depth to water table, 

shrinking lakes, rivers with reduced flows (also leading to reduced flushing of coastal ecosystems 

and reduced flooding) altered sedimentation patterns, and unspecified impacts on fisheries and 

biodiversity (de Fraiture and Berndes, 2008; de Fraiture and Berndes, 2009; Vanloocke et al., 

2010). Reduction in effective rainfall may be detrimental to water resources in some locations, or 

may reduce flood risk in others (Rowe et al., 2009). In order to reduce transport, perennial energy 

crops may be planted heavily in regions around power plants, meaning the reduction in available 

water would be concentrated in these areas (de Fraiture et al., 2008; Vanloocke et al., 2010). 

 

Increasing  proportions of bioenergy with higher water usage per hectare than annuals and per 

MJ than fossil fuel generation will increase pressure on water resources, which may create 

competition for water between energy and food (Gerbens-Leenes et al., 2009; Hoogeveen et al., 

2009; Mulder et al., 2010). Concentrated planting of perennials in areas around power plants to 

minimise transportation may cause significant regional impacts and exacerbate local water 

shortages (de Fraiture et al., 2008; Mulder et al., 2010). These issues would likely be greatest in 

countries with growing populations and increasing demand for food and energy (Hoogeveen et 

al., 2009). In China, competition for water with increases in energy crop cultivation was blamed 

for rising food prices, and this has led to downscaling of plans for bioenergy (de Fraiture et al., 

2008). Pressure on water resources may be compounded by population increases, as well as 

increasing demand for meat, and associated cultivation of feed (de Fraiture and Berndes, 2008; 

Hoogeveen et al., 2009; Mulder et al., 2010).  
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1.5 Need for this study 
 

As discussed in Section 1.2, research suggests that energy generation from perennial crops often 

performs better than biofuel from annuals in terms of energy return on energy invested 

(Cherubini et al., 2009; Rowe et al., 2009), energy return per ha (de Vries et al., 2010; McKendry, 

2002b), and greenhouse gas emissions associated with cultivation and processing (Powlson et al., 

2005; Rowe et al., 2009). However biofuels make up 70% of bioenergy in Europe (Don et al., 2012) 

due in part to the greater convenience of fit with the existing energy use and distribution systems; 

bioethanol can be mixed into gasoline up to 10% without requirement for engine modifications or 

additional infrastructure for transport, storage etc. (Sims et al., 2006).  

 

By contrast perennial biomass feedstock does not fit easily into the large scale electricity 

generation system currently operating in England; biomass is a distributed feedstock with a low 

energy density, hence it is necessary to minimise transport distance and associated costs and 

emissions (Powlson et al., 2005). As will be argued in Section 2.3, it is therefore useful to assess 

existing potential energy end uses for this feedstock in England within the current system of 

supply and demand.  

 

Previous assessments of Biomass feedstock energy end uses have looked at potential demand for 

CHP for district heating in the UK (Jablonski et al., 2008), Denmark (Möller and Lund, 2010) and 

Austria (Schmidt et al., 2010). Schmidt et al. (2010) integrate data on potential supply from 

forestry according to region to make some assessment of the capacity to meet demand. 

Relationships between supply and demand have been assessed in detail for a UK co-firing  power 

plant by mapping  potential yield and production costs to create a supply curve for Drax (Bauen et 

al., 2010). This study aims to extend these approaches to the national scale for England, using 

spatial relationships between potential supply and demand, to identify locations where perennial 

energy crops could usefully be grown, and the energetic magnitude and land use requirements of 

potential generation. 

 

More recently, work by Wang et al. (2014) in a Global Change Biology special issue matched 

spatial data on potential supply of feedstock crops to spatial data on space-heating demands 

(domestic plus nondomestic as calculated in the “Disaggregated Scenarios for Demand Studies” 
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project (DS4DS, 2013)) and applied an optimisation model to identify locations and capacities of 

generation. The research presented here differs in mapping point demands for heat, including 

industrial process heat and space heating. This simpler approach was selected based on the 

preference of generating companies for a single heat off-taker due to the complexity of 

contractual agreements (Bailey, 2011), and availability of data at the time the mapping exercise 

was performed. Potential demands for domestic space heating and co-firing with coal will be 

considered separately, due to specific socioeconomic issues which will be discussed in Sections 

2.3.2 and 2.3.1 respectively.  

 

Spatial studies modelling potential for perennial biomass crop cultivation in the UK tend to focus 

on yield, e.g. Hastings et al. (2014) compared simulated spatial variation in yields for a range of 

potential feedstocks. In dictating land area required for a given level of generation, variation in 

yield may be a key contributing factor to the extent of other impacts. However, spatial variation in 

impacts on changes in SOC and N2O emissions, which contribute to GHG balance, must be 

considered, to identify contribution to emissions per unit energy.  Due to impacts on yield, ET 

associated with perennial energy crops is often considered (e.g. Lindroth, 1994; Lindroth, 1999; 

Zeri et al., 2013) and variation in Miscanthus yield with precipitation and soil available water 

capacity has been modelled for the UK (Richter et al., 2008). Changes in ET due to land use change 

for perennials may deplete soil and groundwater reserves (Jørgensen and Schelde, 2001), and  

reduce streamflow  (Goodrich et al., 2000), with impacts varying between sites (Rowe et al., 2009) 

which should also be taken into account. 

 

It has been suggested that current SOC may be the most significant variable in dictating overall 

GHG balance of land use change for energy crops (Hillier et al., 2009). Potential change in C 

storage is well studied; average values are available for a range of land use changes (e.g. Smith et 

al., 2008) and IPCC guidelines are available for estimations (IPCC, 2003). Field values for change in 

soil carbon will vary with yield and associated C inputs to soil, and with temperature and other 

variables affecting the rate of C accumulation or loss (Lal, 2004). Studies often apply standardised 

values from databases, hence there is scope to consider spatial variation in changes in SOC, since 

where maximum values are achieved, this may control overall GHG balance (Keoleian and Volk, 

2005).  
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There is less research on N2O emissions for perennial energy crops due to low N input 

requirements, meaning emissions savings can be expected compared to annual crops. Field data 

generally uphold this expectation, although there are exceptions (e.g. Jørgensen, 1997), and there 

is concern about ploughing in of high N below ground crop biomass at end of lifecycle (Christian et 

al., 2006). Change to NT system for conversion from arable to energy crops causes structural 

changes leading to increased N2O emissions in poorly aerated soils where denitrification is 

dominant (Rochette, 2008); although this is likely to be offset by reduction in emissions associated 

with N fertiliser inputs (Don et al., 2012), these structural changes may reduce the N2O emissions  

savings at relevant sites.  

 

Dufossé, et al. (2012) simulated direct N2O emissions around 13 kg ha-1 a-1 CO2 equivalent, with 

significant variation observed between sites, from around 0 to 272 kg ha-1 a-1 CO2 equivalent 

according to soil type. Given that simulated emissions for an annual crop varied from around 93 

to around 1744 kg ha-1 a-1 CO2 equivalent for the same area, the potential reduction in direct N2O 

emissions may make a significant contribution to overall GHG balance (Dufossé et al., 2012). 

Assuming similar or greater spatial variation in current N2O emissions from UK arable land, it is 

likely that current emissions level could be more significant than other factors in determining the 

change in N2O emissions at a site following land use change; hence this is of particular 

importance. 

 

Assessments of the impacts of perennial crop cultivation generally do not consider the impacts of 

site variation on change in N2O emissions; field comparison of perennials and annuals is usually 

for an individual site (e.g. Hellebrand et al., 2010; Jørgensen, 1997) whilst calculations often use 

generalised approaches such as IPCC EFs (e.g. Clair et al., 2008), which do not account for site 

differences (Stehfest and Bouwman, 2006). As a result, understanding of spatial variation in N2O 

emissions associated with land use change for perennial energy crops is incomplete, and there is 

scope for a study to simulate potential variation for sites in England where the crops could be 

cultivated. Due to the data requirements of process based models advocated by the IPCC Tier 3, it 

would be impractical to perform modelling for all potential sites, however, the application of such 

a model at a range of sites, combined with appropriate assessment of the findings, may improve 

current understanding of site specific factors controlling GHG impacts of land use change. 
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Policy should seek to maximise both efficiency of energy generation and GHG benefits of 

renewable energy. If the cultivation of these crops is to be encouraged, it is therefore important 

to fully assess GHG balance, and to consider spatial variation in change in emissions, as well as 

spatial and crop variation in energy yield per ha, which affects the land use requirements. 

Understanding of variation in benefits such as efficiency and emissions is crucial to inform policies 

which can affect the economics of choices about energy generation (Thomas et al., 2013; Waller 

et al., 2011).  

 

The intention is to evaluate variation in the sustainability of land based renewable energy by 

looking at the impact of energy crops on both the host catchment and the wider environment. 

This will include study of water flows, nutrient cycling and leaching and GHG emissions. Nitrate 

leaching and N2O loss both have serious environmental impacts, and both increase for managed 

land, so it will be worthwhile to study how these factors vary under different energy crops (Brown 

et al., 2002; Kramer, 2006). Change in SOC storage is a major factor in controlling GHG balance, so 

this should also be assessed (Fargione et al., 2008; Keoleian and Volk, 2005). 

1.6 Aims 
 

This research aims to assess the potential for land-based renewable energy in England, and 

simulate likely impacts at potential cultivation sites. Assessment of sustainability of perennial 

energy crop cultivation in Section 1.4 identified potentially significant impacts on soil carbon 

storage (Section 1.4.1), N2O emissions (Section 1.4.2), leaching of nitrates and associated indirect 

N2O emissions (Section 1.4.3) and hydrology (Section 1.4.4). Therefore this research seeks to take 

an approach which can simulate all of these impacts. It is also useful to simulate yield variation 

between sites, as it dictates economic viability and the land area required for a given amount of 

energy, as well as extent of competition with other land use. 

 

To do this it is necessary to take a whole system approach, first looking at supply and demand of 

energy (heat and electricity), given the importance of minimising feedstock transport as 

introduced in Section 1.3, and then identifying impacts of land use change where cultivation could 

usefully take place. Lifecycle analysis of bioenergy often applies an assessment approach for the 

cultivation stage which does not take into account site specific factors affecting GHG emissions, 

water use and yield. This study does not aim to undertake complete lifecycle assessment of the 
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bioenergy systems considered, but the intention is that findings should be informative in terms of 

spatial variation in costs and benefits of bioenergy. 

1.7 Objectives  
  

In order to explore the potential for land-based renewable energy in England, and identify how 

the impacts of land use change might vary in terms of impact on N2O emissions, soil C and ET, the 

following objectives will be set;  

 

1. Assess potential for willow and Miscanthus feedstock to be used for bioenergy at high 

efficiency within the existing energy system in England 

2. Assess spatial relationships between potential supply and demand for the identified 

forms of biomass energy using GIS mapping techniques.  

Based on data from Objective 2, locations where the crops could usefully be cultivated 

will be identified, and analysed to extract common combinations of site properties. 

3. Assess approaches for simulating perennial energy crop yield along with change in N2O 

emissions, soil C and ET for land use change at these sites.  

A model will be selected to apply to a range of “typical” sites based on common 

combinations of site variables identified following Objective 2. 

4. For simulated cultivation of Miscanthus and SRC willow, assess spatial variation in: 

yield; N2O emissions; soil C storage; evapotranspiration.  

This will be done for sites typical of those identified as suitable for energy crop cultivation 

following Objective 2, using the model selected following Objective 3. Findings will be 

analysed in terms of how spatial variation may affect the benefits of bioenergy. 

1.8 Thesis structure  
 

Chapters 2 to 5 outline the stages of the methodology; 

 

Chapter 2 details the site identification approach, in which factors affecting potential for supply 

and demand of perennial biomass feedstock are used to identify possible cultivation sites. This 

chapter addresses Objective 1 through discussion of factors affecting potential biomass energy 

generation and identification of high efficiency potential feedstock end uses. To meet Objective 2, 
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a GIS mapping approach is applied to predict potential energy generation and locations of land 

use change under two policy scenarios for two identified end uses. Output from the mapping 

were used to identify “typical” sites of potential land use change, in terms of soil and climate 

properties which may affect response to land use change; tables of variables are included.  

 

Chapter 3 discusses potential approaches to predicting how change in N2O emissions and soil C, as 

well as crop yield and ET may vary between sites, outlining the potential for an agroecosystem 

modelling approach, and what the requirements of such a model might be, in order to meet 

Objective 3.  

 

Chapters 4 and 5 outline the development and verification of the chosen model including 

description of improvements to process representation and remaining limitations of the model to 

enable Objective 4 to be met in Chapter  6. Chapter 6 details the process of running the model for 

the identified land use change scenarios. 

 

Objective 4 is then addressed in Chapter 6 by a process of scenario development and analysis of 

model output. This chapter identifies some of the factors which may influence simulated spatial 

variation in the benefits of land use change for bioenergy, and looks at the extent of that variation. 

Finally Chapter 6 identifies limitations in the model which could be addressed in future research. 

  

Chapter 7 highlights the main conclusions from the study, and how they address the objectives 

listed in Section 1.7.  The key impacts of all cultivation to meet demand in an example location are 

calculated and contextualised, followed by a critical appraisal of the research project as a whole. 
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2. Site identification approach  
 

This chapter describes the approach taken to identify sites where SRC willow or Miscanthus could 

usefully be grown for bioenergy generation. This chapter fulfils Objectives 1 and 2 as outlined in 

the introduction.   

 

Biomass feedstock is bulky, and has low energy density compared to fossil fuels, meaning that it is 

necessary to minimise feedstock transport, making the spatial relationship between supply and 

demand important, as detailed in Section 2.1. This creates a need for localised supply chains, 

which are discussed in Section 2.2, and limits the scale of bioenergy generation, according to the 

amount of feedstock which can be cultivated within that localised area. Section 2.2 also 

introduces specific issues affecting the establishment of these supply chains.  

 

As a distributed low energy density feedstock, biomass does not fit easily into the existing energy 

infrastructure in England of large scale, centralised generation of electricity with a national grid 

distribution system.  It is therefore necessary to assess potential for SRC willow and Miscanthus 

feedstock to be used for bioenergy at high efficiency within the existing energy system in England, 

as was stated in Objective 1. Chapter 2 addresses this issue in Section 2.3 by identifying end uses 

for biomass feedstock which can be efficient at relatively small scales, requiring relatively little 

feedstock,  compared to more typical large scale fossil fuel plants. Government incentives can 

significantly affect economics of different energy forms, so existing policy relating to these forms 

of generation is examined in Section 2.4 to consider issues of economic feasibility or risk. 

 

Sections 2.5 through to 2.8 address Objective 2; to assess spatial relationships between potential 

supply and demand for the identified forms of biomass energy using Geographical Information 

System (GIS) mapping techniques by integrating data on these demand types with data on 

potential for supply and calculating local potential feedstock availability. Section 2.5 describes the 

approach used by Lovett et al. (2009) to rule out sites unsuitable for Miscanthus feedstock 

cultivation, and the calculation of predicted yields at remaining sites using the Richter et al. (2008) 

model. These spatially referenced values of potential yield for the locations where crops could be 

grown enable calculation of available feedstock to meet demand in later stages of the 
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methodology. Section 2.6 then discusses issues of policy relating to feedstock cultivation, in terms 

of how they may affect feedstock availability. Section 2.7 outlines the mapping approach by which 

data on supply and demand are integrated, and Section 2.8 details the mapping of locations with 

energy demands which could efficiently be met using bioenergy feedstocks, along with the 

hindcasting calculations to establish how much feedstock would be required to meet these energy 

demands.  Section 2.9 then uses the data introduced in Section 2.5 to calculate the extent to 

which feedstock could be cultivated locally to meet the demands calculated in Section 2.8. 

 

In addressing Objective 2, this chapter also makes broad calculations of theoretical potential for 

biomass energy generation in England, which are discussed in Section 2.9, and can be compared 

to government targets for bioenergy to assess how achievable they may be. Current land use for 

the locations where energy crops may be grown is significant, in terms of environmental impacts 

and impacts on food production, which are also considered in Section 2.9. This research considers 

England as opposed to the whole UK due to availability of appropriate data. 

 

Output from the mapping was also used in Section 2.10 to collate site data for areas where 

perennial energy crops might be grown. These data were then analysed using cluster analysis, to 

extract common combinations of site properties, to provide input data for predictive modelling to 

meet Objective 4 in Chapter 6.  

2.1 Importance of spatial relationships between 
supply of biomass and demand for energy feedstock 
 

Biomass feedstock is a distributed resource with a low energy density, meaning that transport can 

account for up to 70% of delivered feedstock costs, as well as requiring fossil fuel use and 

associated emissions (McKendry, 2002a; Powlson et al., 2005). As a result, bioenergy is only 

economically feasible in Europe with localised supply chains (Upham and Speakman, 2007) or 

using feedstock grown more cheaply elsewhere, for example Latin America, and then imported by 

ship (Hamelinck et al., 2005). Energy consumption and associated GHG emissions from biomass 

transport vary with bulk density of feedstock, load per truck and distance transported. For 

example for 100km road transport, Miscanthus uses 1738 MJ ha-1a1 baled;  chopping reduces 

usage to 1436 MJ ha-1a-1 but requires an additional 2280 MJ ha-1a-1 for drying (Venturi, 1999 ). 

Additionally, around 15 % dry matter may be lost during transport (Hamelinck et al., 2005). 
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The requirement to source feedstock locally reduces the potential scale of generation from 

biomass only feedstock, which does not fit conveniently into the conventional energy supply 

system in England, of centralised generation at large scale for efficiency (Gross, 2003). Spatial 

relationships between supply and appropriate demand types for smaller scale or co-firing 

generation are therefore significant. As a result, biomass supply and demand issues have been the 

subject of much research, for example by the Towards a Sustainable Energy Economy (TSEC) 

group (Akgul et al., 2012; Aylott et al., 2008; Hosseini and Shah, 2011; Sims et al., 2006). Previous 

studies have identified potential for biomass generation at individual sites, according to local 

factors dictating viable transport distances and costs. When allocating feedstock to an individual 

plant, it is necessary to assess both supply and demand side economics, as well as spatial 

distribution of feedstock, to identify whether demand can be met at an acceptable cost.  

 

Supply curves have been created for a range of crops (Miscanthus (Bauen et al., 2010), corn 

stover and switchgrass (Brechbill et al., 2011)). These curves indicate how cost per tonne 

increases with the total amount of feedstock required, due to the need to source feedstock from 

a greater distance, and transport costs per km. Feedstock price for these curves is generally based 

on cultivation cost, however, opportunity cost may also be relevant (Brechbill et al., 2011), hence 

it may be more appropriate to use market prices, since competition with other end uses can push 

up feedstock cost, e.g. animal bedding or conversion to second generation biofuel. Cost of 

delivered feedstock is therefore dependant on: required quantity, fuel costs and road network 

tortuosity, cost of cultivation, availability of cheaper alternatives such as wastes or residues, 

market price of feedstock and spatial patterns of yields (Bauen et al., 2010; Brechbill et al., 2011). 

Supply curves can be used in conjunction with data on feedstock availability to establish total cost 

of delivered feedstock up to the required demand for an individual plant (Bauen et al., 2010; 

Brechbill et al., 2011). The affordable total feedstock cost will be dependent on plant size and 

efficiency, sale price of energy, and any additional policy factors such as renewable obligation 

certificates (ROCs), renewable heat incentive (RHI) and feed in tariffs (FITs) which will be 

discussed in section 2.4. Therefore economics will dictate a different supply radius for any given 

biomass plant, and this will vary with fluctuations in transport costs, feedstock costs, spatial 

patterns of yields, energy sale price and changes to incentive schemes yields (Bauen et al., 2010; 

Brechbill et al., 2011). To analyse the relationship between feedstock supply and demand at a 

national scale the analysis must be simplified, compared to assessment of individual plants. The 

research presented here necessarily takes a more generalised approach, to allow national scale 
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assessment of capability to meet fixed location demands, and quantify theoretical potential 

generation under relevant scenarios. 

 

Several studies have applied a sourcing radius of 25 km to limit emissions and costs from 

transport (Aylott et al., 2008; Gasol et al., 2011; Sims and Venturi, 2003). For England the 25 km 

sourcing radius was previously justified e.g. Aylott et al. (2008)) by the stipulation from the 

Department for Environment, Food and Rural Affairs (DEFRA) that Energy Crop Scheme (ECS) 

funding was only available where an end use within 25 km could be demonstrated. Updated 

regulations require end use to be within a “reasonable distance” meaning other economic factors 

will now dictate distance. Drax, the largest coal plant in England, currently sources from a supply 

radius of 96 km, but these distances would not be necessary or economic for smaller plants 

(Farmer’s Weekly Interactive, 2012). Biomass demand for 10% co-firing at Drax is over double 

almost all other potential feedstock demands identified by this study. To make a more 

conservative assessment of potential, the 40 km radius applied by International Energy Crops is 

used here (Farmer’s Weekly Interactive, 2011). Another radius might be more appropriate for 

assessment in another country, depending on local regulations, stipulations in incentives, or 

industry specifications. Based on market prices paid by Drax for 2012, of £63/t and road network 

tortuosity factor of 1.6 (to account for the fact that roads to not take a direct route) and transport 

costs of £2.72 + £0.27/km (Bauen et al., 2010) delivered feedstock from a 40 km radius would cost 

£83/t, and from 25 km would cost £76.52/t. However this is variable with fuel costs and market 

prices so may differ for subsequent years. It is useful to compare potential generation applying a 

40 km radius to the likely potential if the 25 km stipulation of the previous regulation had been 

maintained, so that the implications of such policies can be considered.  

 

Relationship between supply and district heating (DH) demand has been assessed previously using 

modelling (Schmidt et al., 2010) and GIS (Möller and Lund, 2010) analyses. For the UK, GIS has 

also been used with supply curves for co-firing at a single plant (Bauen et al., 2010), supply based 

analysis has been used to identify 40 km radius supply areas with most feedstock potential (Aylott 

et al., 2008) and a thorough assessment has been made of demand side factors for residential 

heat from bioenergy (Jablonski et al., 2008). The study presented in this thesis extends these 

ideas to use a Geographical Information System (GIS) mapping approach to assess the relationship 

between the potential supply of local feedstock and the identified likely demand forms, and thus 

identify theoretical potential generation. The approach is illustrated using ArcMap software to 
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assess the relationship between yield data for Miscanthus feedstock, and combined heat and 

power (CHP) and co-firing demands in England. 

2.2 Biomass feedstock supply chains  
 

As well as the need for spatial proximity of supply and demand, there is also a temporal 

component to the relationship; bespoke feedstocks such as SRC willow and Miscanthus have 

relatively long preparation and establishment periods before useful harvests are achieved, 

creating a three to six year lead in period (Natural England, 2009a). Supply chain establishment is 

complicated by the conflict between a need for long term contracts (both for farmers to commit 

land (Styles and Jones, 2007), and for construction of new plants) and the economic and technical 

uncertainties surrounding new technology, preventing set long term pricing. Land use change to 

Miscanthus or Willow requires high initial investment and long term commitment of land 

compared to traditional annual crops (Clifton-Brown et al., 2007; Jensen et al., 2007; Styles and 

Jones, 2007). Farm scale economics may be used to calculate where energy crop cultivation would 

be more profitable than alternative land uses, however several sources of uncertainty (such as 

variations in feedstock price and yield) must be considered, and market uncertainty or reluctance 

to try novel crops is likely to prevent cultivation potential from being attained (Alexander et al., 

2014a; Alexander et al., 2014b). 

 

For a dedicated energy generation feedstock, with limited alternative market, farmers want 

security of demand before they will invest in cultivation and commit land (Styles and Jones, 2007). 

Bioenergy plants have long development times relative to other forms of energy generation, and 

unwillingness of farmers to cultivate feedstock until the end use is guaranteed and construction is 

near completion may add an additional time lag (Thornley, 2006). The change to the farming 

system involved in uptake of perennial energy crops makes farmer choice an important and 

perhaps less predictable variable when considering where energy crops may be grown (Jensen et 

al., 2007). 

 

Although the requirement for long-term feedstock supply to a plant should theoretically provide 

farmers with a secure on-going demand, operators may be unwilling to commit to a long-term 

supply contract. Whilst plant operators require guaranteed availability to construct a plant, they 

may prefer to maintain choice of suppliers in an uncertain market. Since imported or alternative 
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feedstocks may be preferred, potential demands identified by this study may not represent a 

secure market for local feedstock suppliers, making cultivation economically risky. Planned 

biomass plants 100 MWe or greater are mostly on the coast (Table 2.1), which enables plant 

operators to maintain choice of feedstock suppliers, avoiding the need for long term contracts. 

Ocean transport is less costly than road transport, which combined with cheaper cultivation 

overseas, means that European bioenergy using feedstock shipped from Latin America can be 

economically competitive with fossil fuel generation  (Hamelinck et al., 2005).  

 

As well as economics, environmental considerations should be applied to restrict transport 

distances, to ensure that GHG savings compared to fossil fuel generation are preserved. Sourcing 

feedstock from Latin America may entail deforestation and land use change, damaging habitats 

and causing significant losses of above and below ground carbon stores (Fargione et al., 2008; 

Hamelinck et al., 2005). Planned UK regulations from 2015 will require bioenergy plants to prove 

that fuel is sustainable to receive financial support;  sustainability criteria will be set until 2027 to 

reduce uncertainty for investors (Department of Energy and Climate Change, 2013b).  

 

Due to difficulties establishing supply chains and contracts for dedicated feedstocks, many 

existing plants use residues from agriculture and waste from industry (Thornley, 2006). Limited 

availability of these feedstocks reduces potential scale of generation, and removal of agricultural 

residues may reduce soil fertility (Lal, 2004). Renewable energy policies have facilitated contracts 

for existing bioenergy plants using bespoke feedstocks (Thornley, 2006). Investing up the supply 

chain by plant operators has been suggested as a potential solution to the issue of market and 

supply chain security. 

 

Biomass can be processed to increase energy density and enable increased transport, and hence 

increased scale of generation. The large planned inland plants in Table 2.1 (Drax and Ironbridge), 

plan to use pellets, which reduces storage and transport space and costs, and improve fit with the 

coal plant systems of fuel injection and combustion (Spackman, 2011). Integrated modelling of 

logistics and processing has been advocated  (Hosseini and Shah, 2011) and will become more 

relevant if processing by torrefaction moves past the demonstration stage (International Energy 

Agency, 2009; Jaap Koppejan et al., 2012). Processing is likely to entail some energy use and GHG 

emissions, as well as material losses, which may or may not be compensated for by efficiencies of 

scale and improved fit with the existing centralised generation system (Hamelinck et al., 2005).  
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Table 2.1 Planned and proposed new bioenergy generation facilities in England 
(Forestry Commission, 2013) 
Project - in 
planning 

Location  Company  Fuel  Output 
(MWe) 

Output  

Avonmouth Avonmouth  Helius  Pellets  100.0 Electricity 

Billingham  Teesside Gaia Power  Recycled 
wood  

45.0 Electricity 

Blackburn 
Meadows  

Sheffield  E.ON  Wood  25.0 Electricity 

Brigg  North 
Lincolnshire  

Eco2  Straw  40.0 Electricity 

Castle Cary  Castle Cary  Bronzeoak  Wood  12.7 Electricity 

Drax  Yorkshire  Drax Pellets  2000.0 Electricity 

Enfield Biomass  London  Kedco  Wood  12.0 CHP  

Ferrybridge  Nr Castleford  SSE  Multifuel, 
RDF  

68.0 Electricity 

Ironbridge  Ironbridge  E.ON  Pellets  1000.0 Electricity 

Mendlesham Mendlesham, 
Suffolk  

Eco2  Straw  40.0 Electricity 

Pollington Pollington  Dalkia 
Bioenergy  

  52.0 Electricity 

Portbury Docks  Bristol  E.ON  Wood  150.0 Electricity 

Sleaford Lincolnshire  Eco2  Straw  40.0 Electricity 

Stallingborough  Stallingborough, 
Lincs.  

Helius/RWE 
npower  

Wood  65.0 Electricity 

Tansterne  Hull  GB Bio  Straw  12.5 Electricity 

Tees REP  Middlesborough  MGT Power  Wood  300.0 Electricity 

Tilbury Biomass  Tilbury  RWE npower  Pellets  870.0 Electricity 

Tilbury Green 
Power  

Tilbury  Express 
Energy  

Biomass & 
SRF  

60.0 Electricity 

Tyne REP Tyneside  MGT Power  Imported 
wood  

295.0 Electricity 

Wetwang  Yorkshire  E Yorks Power  Wood & 
straw  

15.0 Electricity 

   total 5202.2 Electricity 

Project - 
proposed 

Location  Company  Fuel  Output 
(MWe) 

Output 

Blyth  Blyth  RE Systems  Wood  100 Electricity 

Claycross  Derbyshire  Kedco  Wood  12 CHP  

Drakelow  Drakelow  E.ON Wood    Electricity 

Greenpower.54  Wolverhampton  Express 
Energy  

Biomass & 
SRF  

30 Electricity 

Hull  Hull  Dong    300 Electricity 

Peterborough  Peterborough  Peterborough 
RE  

Agricultural 
waste  

66 Electricity 

Southampton  Southampton  Helius  Pellets  100 Electricity 

Thetford Wood  Thetford  EPRL  Wood  40 Electricity 

     total 648 Electricity 
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Processing techniques currently under development aim to make biomass feedstock more 

comparable to fossil fuels, for improved fit with existing energy technologies and perspectives; 

however it may be more beneficial to apply energy conversion technologies appropriate to 

bioenergy feedstocks (Robbins et al., 2012).  

2.3 Integrating biomass feedstock with existing 
energy infrastructure 
 

Minimising feedstock transport improves supply side economics, but reduces effectiveness of 

electricity-only generation, since plant capacity is limited by local feedstock growing area, and 

smaller plants tend to achieve lower energy conversion efficiency (Gross, 2003; Powlson et al., 

2005; Schmidt et al., 2010). This means that bioenergy generation must be in a form able to 

achieve high efficiency with relatively small feedstock availability, compared to fossil fuel plants, 

in order to make effective use of feedstock, and improve economics for the generator. Hence 

there is a problem with the tendency to base calculations of potential bioenergy generation on 

supply side data only, as noted in (Jablonski et al., 2008), since locations and magnitudes of 

appropriate demand  must also be considered. Assessments of the future potential of bioenergy 

must therefore take into account spatial factors for both supply and demand in order to minimise 

transport of feedstock whilst maximising efficiency of generation (Aylott et al., 2008; Berndes et 

al., 2010; Schmidt et al., 2010).  

 

Without significant energy densification processing, there are two main approaches through 

which penetration of generation from biomass may be increased in countries like England with 

developed energy systems. First, integrating with the existing large scale centralised generation  

systems  by co-firing with coal (e.g. Berndes et al., 2010; Perry and Rosillocalle, 2008); or second 

through decentralised co-generation of heat and power, which can achieve higher efficiency at 

small scales by avoiding waste of generated heat (e.g. Schmidt et al., 2010; Speirs et al., 2010). For 

countries with less developed infrastructure, or significant off-grid rural areas, assessment based 

on supply and population density would be a more appropriate methodology.  
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2.3.1 Potential for co-firing biomass with coal 
 

In 2010, co-firing with coal was operational using a range of feedstocks at 228 plants worldwide 

(Al-Mansour and Zuwala, 2010). By using feedstock in large plants, efficiency benefits of large 

scale generation are maintained (Berndes et al., 2010; Cherubini, 2010). Co-firing up to 10%  

requires little investment in plant conversion, and can be implemented more rapidly compared to 

the establishment of new biomass only generating facilities, 20% is also possible with relatively 

little modification (Berndes et al., 2010; Perry, 2006). Since the proportion of co-fired biomass can 

be varied, flexibility is maintained; the plant does not commit to a certain feedstock, which  

removes the uncertainty issue of feedstock availability for the plant operator, but not the issue of 

demand security for the farmer (Berndes et al., 2010). There is also the added certainty of using 

established technology (Wood and Dow, 2011). If a shortfall in meeting required renewables 

targets is anticipated, the flexibility and speed with which the proportion of co-firing can be 

increased may enable the gap to be bridged at relatively short notice, if feedstock is available. For 

2012, bioenergy co-firing generated 1,783 GWh, well below the theoretical capacity of around 

14,318 GWh (Department of Energy and Climate Change, 2013b). To assess the potential for co-

firing local biomass feedstock with coal, it is necessary to identify plant locations, calculate the 

feedstock requirement for 10% (or 20%) co-firing, as described in Section 2.8.1, and then calculate 

if the required feedstock could be cultivated within the local area, taking into account constraints 

on land where the feedstock may be grown and appropriate transport distances as described in 

Section 2.9.1. 

 

2.3.2 Potential for co-generation of heat and power  
 

Since generation using biomass feedstock must be small scale to minimise transport, it is likely 

that biomass only generation of electricity  would achieve comparatively low efficiency (Gross, 

2003; Powlson et al., 2005). However, on combustion, a significant proportion of the energy 

stored in the biomass will be released as heat; using this otherwise wasted heat could 

dramatically increase total efficiency of energy production (Babus’Haq and Probert, 1996; Hawkes 

and Leach, 2008; Powlson et al., 2005). Transmission losses and costs of distribution 

infrastructure are significant; therefore, heat must be generated close to demand, meaning that 

distributed generation of heat is more efficient than centralised generation, making combined 

heat and power (CHP)  an appropriate end use for distributed feedstock (McKendry, 2002b; Rowe 

et al., 2009). Whilst geothermal and solar energy may be suitable for supplying low temperature 
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heat for space and water heating, biomass generation is unique among renewables in being able 

to efficiently supply high temperature heat for industrial processes (Thornley, 2006). 

Improvements in efficiency and carbon savings through CHP generation, compared to separate 

generation of heat and electricity, are dependent upon the appropriate reference systems 

(Martens, 1998). 

 

Total efficiency of CHP drops with electric power increase, so in order to maximise efficiency gains 

compared to electricity alone, heat generation should be maximised, but should not exceed heat 

demand (International Energy Agency, 2009; Martens, 1998). Policy can also be a factor in the 

decision to shift generation towards heat or electricity, so it is important that financial incentives 

do not encourage less efficient use of plants. 

 

CHP is most efficient where the heat off-taker has a large, consistent demand; industry tends to 

require higher temperatures than domestic users, with less seasonal variation, enabling more 

efficient supply (Hawkes and Leach, 2008). However, a generation plant may produce heat energy 

at a range of temperatures; reducing the demand temperature increases the proportion of this 

heat that can be used, and therefore may be a more efficient application (Mortensen and 

Overgaard, 1992). In the UK in 2008, 58% of domestic energy consumption was for space heating 

and 24% for hot water (Department of Energy and Climate Change, 2010) suggesting that biomass 

district heating (DH) in England could significantly reduce carbon emissions. Although existing 

domestic heat demand is significant, it is important to take into account that new housing will be 

built to higher thermal efficiency specifications, which can reduce peak heat demand by 50-90% 

(Roberts, 2008; Wood and Dow, 2011). Although this would reduce the heat generation displaced 

by DH, the electricity proportion of generation can increase (Martens, 1998; United Nations 

Environment Programme, 2007). The infrastructure costs of DH installation may be prohibitive in 

many cases, however payback periods can be as low as 4 years, assuming sufficiently cheap 

biomass supply, compared to an average system lifetime of 25 years (Vallios et al., 2009). 

Although DH is considered likely to be profitable at demand densities over 180 MJ m-2 a-1 (Bøhm 

et al., 2008), cultural factors such as lack of familiarity may prevent investment in new projects, 

whereas areas with existing DH systems can convert to biomass, and are more likely to build new 

DH (Vallios et al., 2009).  
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To assess the potential for CHP using local biomass feedstock, it is necessary first to identify the 

location and magnitude of appropriate heat demands and calculate the feedstock requirement to 

generate the required heat according to methodology laid out in Section 2.8.2 for large demands 

and Section 2.8.3 for DH. Having calculated the feedstock demands, it is then necessary to 

calculate if the required feedstock could be cultivated within the local area, taking into account 

constraints on land where the feedstock may be grown and appropriate transport distances; 

methodology for this is detailed in Section 2.9.2 for large demands and Section 2.9.3 for DH. 

Since both DH and large demand applications of bioenergy CHP have the potential for improved 

efficiency and economics compared to separate heat and electricity generation, the potential for 

both should be assessed to some extent.   

2.4 Policy for energy generation factors 
 

Fossil fuels are advantaged over bioenergy feedstocks by higher energy density, existing 

infrastructure, and commodities markets (Thornley, 2006). Jablonski  et al. (2008) note a lack of 

focus on demand side policy to increase generation from bioenergy. Bioenergy may be an 

important contributor to the renewable energy mix with advantages over intermittent 

renewables such as wind and solar, in that timing of generation can be controlled, however it may 

require greater economic incentives and support for supply chain establishment (Finney et al., 

2012; Schmidt et al., 2010; Thornley, 2006). To effectively encourage investment in renewable 

energy, policy must provide long term stability and risk reduction (Mitchell et al., 2006). Recent 

policy initiatives may have contributed to the increase in UK biomass energy capacity from 159.7 

MWe in 2004 to 1090.2 MWe in 2013, however there remains much unfulfilled potential 

(Department of Energy and Climate Change, 2013b; Finney et al., 2012; Forestry Commission, 

2013; Thornley, 2006). Although incentives are targeted at both ends of the supply chain, failure 

to address the issue of agreements between farmers and plants may contribute to low levels of 

expansion. 

 

Renewable obligation certificates (ROCs) were brought in in 2002 to replace the non-fossil fuel 

obligation (NFFO) as a stimulus for renewable energy. Suppliers are obligated to supply a 

proportion of energy from renewables in return for ROCs, or to pay a buyout price for any 

shortfall; the buyout money will then be redistributed among suppliers according to the number 

of ROCs they received to maintain a market value above the buyout price (Ofgem, 2013c; 
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Thornley, 2006). Lack of banding meant that the initial ROC scheme favoured more profitable 

schemes without taking into account environmental or community benefits, or the energy mix, 

and as a result no new bioenergy plants were proposed in the first few years (Thornley, 2006).  

 

Energy policies from 2006 have aimed to stimulate distributed generation (Upham and Speakman, 

2007), however uptake of policy incentives was initially curtailed by problems such as the lack of 

long term security and insufficiencies of grants to cover start-up costs for smaller generators 

(Finney et al., 2012). 

 

Since April 2009, banding of ROCs provided differing levels of support for different technologies to 

increase support for less economically favoured generation which has additional socioeconomic 

or energy security benefits; for example doubled ROCs for small scale generation attempted to 

compensate for greater investment risks (Finney et al., 2012). Previous policy stated that co-firing 

would only receive ROCs until March 2016,  and could not make up more than a set proportion of 

a supplier’s total ROCs (Thornley, 2006), however the cap has been replaced by different banding 

for co-firing (Ofgem, 2013c). In 2010 the ROC legislation end date was increased from 2027 to 

2037, with the aim of providing stability and reducing risk, however bandings will be reassessed 

every four years (Finney et al., 2012; Ofgem, 2013c). Required percentage renewable generation 

and buyout price are both increased every year; the 2010-2011  price was £36.99  for every MWh 

which increased to £42.02 for 2013-2014 (Ofgem 2013b).  

 

Feed in tariffs (FITs) introduced in the UK in 2010 require energy companies to pay small scale 

generators, however lack of contracts reduces long-term security, limiting the appeal for investors 

(Finney et al., 2012). FITs are the only incentive scheme for renewables in most other European 

countries; differences in the policy overseas have provided greater long-term security and often 

improved success, but recent economic decline has reduced support for new contracts (Finney et 

al., 2012; Mitchell et al., 2006). 

 

Renewable heat incentive (RHI) was brought in in 2011 in the UK to provide an additional 

incentive for growth in CHP, since heat generation produces 50% of carbon emissions (Finney et 

al., 2012). The incentive includes DH schemes, with plans to extend to individual households 

(Department of Energy and Climate Change, 2011; Ofgem 2013a). However, plans to exclude 
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bespoke feedstock from RHI if there is significant expansion remove long-term guaranteed returns 

and may discourage cultivation (Department of Energy and Climate Change, 2011; Jensen et al., 

2007; Sherrington and Moran, 2010; Styles and Jones, 2007). Initial uptake has also been reduced 

by lower than proposed tariffs (Finney et al., 2012). Extra ROCs are also available for generation of 

electricity in CHP schemes (Ofgem, 2013c). Since overall efficiency of CHP is greater for lower 

electricity to heat ratios (provided a suitable heat off-taker is available) policy should not 

incentivise electricity over heat, as this would encourage plant inefficiency. 

2.5 Mapping of biomass feedstock supply 
 

Lovett  et al. (2009) performed constraints mapping to rule out locations unsuitable for the 

cultivation of perennial energy crops in England, and mapped predicted Miscanthus yield for 

suitable sites, using spatial data on site properties and regression equations from Richter et al. 

(2008). Yield predictions are crucial, due to significant spatial variability, the threshold of 

economically viable yields, and the use of predicted yields in forecasting generation potential. 

Equally it is vital to rule out locations where perennial crops cannot or should not be grown to 

make meaningful assessments of technical potential feedstock availability (Lovett et al., 2009). 

 

Briefly, the constraints ruled out: specific areas where high C losses might be expected (organic 

soils, forest, improved grassland); areas where the crops physically could not be grown (urban 

areas, major rivers, lakes); as well as natural and semi-natural habitats, sensitive landscape areas 

and designated areas such as nature reserves to protect ecosystems; and cultural heritage sites, 

to minimise socioeconomic detriment. Slope steepness places a practical constraint on 

agricultural uses; slopes over 15% were constrained out based on locations of existing Miscanthus 

cultivation; agricultural SRC willow cultivation is also predominantly on gentler slopes, so this 

constraint is also appropriate for this study. Improved grassland and landscape sensitivity are 

considered secondary constraints but these areas are excluded for the purpose of this study to 

produce more conservative findings. Research elsewhere e.g. Wang et al. (2014) following Lovett 

et al. (2014) does not exclude higher grade farmland on economic grounds, since this is 

potentially available if energy crop cultivation were economically advantageous, however 

excluding high grade farmland reduces the need to include farm scale economic analysis as per 

Alexander et al. (2014b). Land which has thus far been converted under ECS schemes is 

predominantly agricultural land classification grades three and four, so higher and lower grades 

were also constrained out. 
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Applying 11 constraints and assuming crops would only be grown on grade 3 or 4 land for 

socioeconomic reasons left 3.12 M ha of suitable land, with predicted annual yield of 38.9 oven 

dry mega tonnes (odMt)  (Lovett et al., 2009). For the purposes of this thesis, land where 

simulated Miscanthus yields fell below the economically viable threshold was also excluded from 

analysis. 

 

Although the study detailed in this thesis considers the impacts of cultivation of SRC willow as well 

as Miscanthus, it is convenient to use yield data for a single feedstock type for the purposes of 

national scale analysis. SRC willow yields are likely to differ from those predicted for Miscanthus, 

however the differrence may not be consistent, or significant in comparisson to interannual yield 

variation or model error. Predicted Miscanthus yield data from the constraints mapping study was 

therefore used in this thesis to estimate potential feedstock availability. 

2.6 Existing policy for biomass feedstock cultivation 
 

Energy Crop Scheme (ECS) grants are available from Natural England to incentivise the cultivation 

of SRC willow and Miscanthus for energy end uses. In phase one these were too low to stimulate 

much uptake and many of the farmers who did plant were left without an energy end use when a 

40 MWe biomass only project was decommissioned without coming into operation due to 

financing and technical issues (Aylott and McDermott, 2012; Piterou et al., 2008). This combined 

with a two year hiatus in the funding may have reduced farmer confidence, and there has been 

even less uptake in the 2008-2012 period of the second phase of the grant, in spite of payments 

being increased from a flat rate per ha (£900-£1000 depending on region (Natural England, 2006)) 

to cover 50% start-up costs of SRC willow and Miscanthus cultivation for energy. It has been 

suggested that current assessments may be too complex, and that a return to a flat rate, with 

clear maps outlining payment level for each region may be more appealing to farmers 

(Lindegaard, 2013). Nonetheless, market analysis by Alexander et al. (2014a) suggests that ECS is 

an economically efficient scheme, and Lindegaard (2013) advocate a third phase. Supply chain 

issues as discussed in Section 2.2 may thus be considered a greater barrier to energy crop 

cultivation than a lack of policy support for cultivation. 
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2.7 Mapping approach 
 

The GIS approach developed in this study is based on application of mapping and spatial analysis 

actions as detailed in Figure 2.1. The approach is designed to be applied at national scale to 

provide an initial forecast of biomass generation potential, to identify regions or plants with 

limitations, and to calculate potential land area taken out of food production. The underlying logic 

is similar to the WISDOM methodology (Drigo et al., 2002); data on supply must be assessed in 

relation to demand due to the need to view biomass as a local feedstock in order to minimise 

costs and emissions from transport. It differs in scale from research for individual plants or 

regions (e.g. Aylott et al., 2008; Brechbill et al., 2011), and from other national scale assessments 

(e.g. Akgul et al., 2012; Drigo et al., 2002) in the incorporation of multiple fixed site potential end 

uses and analysis of interaction of demand zones.  

 

Elsewhere, Wang  et al. (2014) have performed  more detailed analysis integrating spatial data on 

predicted yields with spatially disaggregated energy demand, including combined domestic and 

non-domestic space heating and as well as electricity, using an optimisation model to determine 

size and location of plants for maximum profit whilst meeting all demands. This output formed 

part of a large research project, incorporating data from Taylor et al. (2014) and modelling 

approaches developed in Wang et al. (2012). This level of assessment is outside the scope of this 

thesis, instead, the approach taken considers preferences in the energy industry for single 

offtaker heat agreements (Bailey, 2011) and for convenient, low investment, low commitment 

incorporation of renewables as co-firing in existing coal plants. This approach seems reasonable 

given the assertion by Lovett  et al. (2014) that the current energy crop cultivation in England is 

located to meet feedstock demand for co-firing and small CHP or local biomass heating systems. 

 

Locations and magnitudes of these existing demands were mapped, and data on potential yields 

for the surrounding area was used to identify where demand can be met. The analysis in this 

thesis is intended to broadly indicate generation potential; subsequent, more detailed 

individualised analysis would be necessary to calculate economic merits and relative GHG savings 

of individual plants. 
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Figure 2.1 Methodology relating potential yield data spatially to identified potential 
energy end uses. Data were extracted using the “extract by mask” tool in ARCGIS; this 
creates a new raster of values from the selected raster dataset which spatially coincide 
with a selected “mask” raster or polygon. 
 

Locations of potential end users of feedstock in the three categories identified in Section 2.3 were 

identified, and hindcasting calculations using methodology from Table 2.2 and Table 2.3 were 

performed to identify the potential demand for feedstock in odMt of Miscanthus. 

2.8 Mapping of demand 
 

2.8.1 Mapping potential bioenergy generation as co-firing  
 

To assess the potential for co-firing local biomass feedstock with coal, it is necessary to identify 

plant locations, calculate the feedstock requirement for 10% (or 20%) co-firing. Location data for 

existing coal generation were used to map existing plants for England with data available from 

energy providers (Perry, 2006). Potential demand for biomass feedstock for co-firing in existing 

coal powered stations is likely to be up to 10% of total fuel. A greater proportion, up to 20% is 
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feasible, but would require willingness of owners to invest in modifications to deal with by-

products and potential sources of corrosion (Perry and Rosillocalle, 2008). The tonnage of 

feedstock required is calculated based on plant output, using a measure of efficiency to calculate 

the energy input required, and dividing by the energy density of Miscanthus to calculate the mass 

required. Detailed steps for co-firing up to 10% or 20% are outlined in Table 2.2. 

Table 2.2 Calculations used to establish tonnage of biomass required for 10% co-firing at 
a coal fired plant 
Power Energy output = 

Power × utilization 
factor × hours in a 
year 

1 kWh =3.6 MJ 

Energy input required; 
based on average 
efficiency (Berndes et al., 
2010) 

Biomass 
energy 
assuming 10% 
co-firing 

Oven-dry 
Miscanthus 
demand at 17 
GJ t-1 
(Department for 
Environment 
Food and Rural 
Affairs, 2007) 

kW Capacity×0.6 
×8760×3.6 MJ 

Energy×(100/30)  Input× 
(10/100)  

Biomass 
energy/17 000 

Utilization factor is taken from the UK biomass strategy (Department of Energy and 
Climate Change, 2011 ). These calculations can be performed in reverse to calculate 
energy generation from figures for available feedstock. 
 

Since co-firing is flexible, for coal-fired plants, the proportion of biomass fired was assumed to be 

variable up to the 10% or 20% demand figure (calculated as per Table 2.2). Therefore any 

feedstock up to this amount could be used, so the total feedstock available for co-firing was 

calculated, applying the specified radius, and subtracting excesses up to both 10% and 20% 

demand for individual English coal plants. To assess whether this demand could be met, the 

potential local feedstock cultivation is calculated in Section 2.9.1 according to constraints on land 

use detailed in Section 2.5, and the two theoretical transport distance limits considered by this 

study. 

2.8.2 Mapping potential bioenergy generation as CHP for 
industrial and other large demand sites 
 

To assess the potential for CHP using local biomass feedstock, it is necessary first to identify the 

location and magnitude of appropriate heat demands and calculate the feedstock requirement to 

generate the required heat. Potential locations for industrial scale CHP were established from the 

UK Government’s Department for Energy and Climate Change (DECC) heat map; data were 

compiled for all large heat demands not already utilising CHP. The tonnage of feedstock required 

to supply a CHP plant meeting heat demand is calculated from the heat energy requirement, 
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maximum thermal energy generation efficiency and energy density of Miscanthus, according to 

the steps outlined in Table 2.3. 

 

Table 2.3 Calculations used to establish tonnage of biomass required to provide 
industrial CHP 
Heat 
demand 

Heat energy demand = 
Power × utilization factor 
× hours in a year,  
1 kWh = 3.6 MJ 

Energy input required; 
based on maximum 
thermal efficiency 
(Hans Falster et al., 
2002) 

Oven-dry Miscanthus 
demand at 17 GJ t-1  
(Department for 
Environment Food and 
Rural Affairs, 2007) 

kW Demand × 0.569 × 8760 × 
3.6 MJ 

Output × (100/70) Energy input/17 000 

Utilization factor is based on UK statistics (Department of Energy and Climate Change, 
2012).  These calculations can be performed in reverse to calculate energy generation 
from figures for available feedstock. Hindcasting calculations are based on meeting heat 
demand. Therefore, efficiency values for generation to maximise heat production are 
applied to calculate energy input; 70% efficiency of conversion to heat can be expected  
and 20% efficiency for conversion to electricity are applied when reversing calculations 
to calculate total energy generation (Falster et al., 2002).  
 

Calculations assume that generation would target meeting heat demand, although excess 

feedstock may be used to increase the electricity component of generation. A utilisation factor 

must be applied to account for downtime of the heat demand; existing CHP in the UK has 57 % 

utilisation, although variation with end use is likely (Department of Energy and Climate Change, 

2012). To assess whether this demand could be met, the potential local feedstock cultivation is 

calculated in Section 2.9.2 according to constraints on land use detailed in Section 2.5, and the 

two theoretical transport distance limits considered by this study. 

 

For industrial and other large heat demands, feedstock requirement may not be flexible unless 

alternative feedstock can be used, hence ability to meet total demand for sites individually is 

more important. The feedstock demand for each potential unit (calculated as per Table 2.3) was 

compared to potentially available feedstock within the applied radius to assess viability. Where 

there is excess feedstock available for CHP relative to heat demand, it is possible to increase the 

electricity component of generation to utilise this, although total efficiency may decrease as a 

result. 
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2.8.3 Mapping potential bioenergy generation as CHP for 
district heating  
 

Due to expected profit margins, DH is likely to be installed only in regions with heat demand 

densities over 180 MJ m-2 a-1 (Bøhm et al., 2008). Areas of profitable demand were identified for 

England based on annual total gas consumption statistics, obtained from government databases, 

provided per district (divided by district area to obtain demand density)  assuming 98% of gas 

usage to be for space and water heating (Department of Energy and Climate Change, 2010) and 

an 80% efficiency for conversion to heat in domestic boilers (Martens, 1998).  

 

In rural areas, such as the south-west of England where 16% of homes are not connected to the 

gas grid (Lindegaard, 2013), biomass DH systems would be likely to have high uptake due to 

economic benefits for residents. Although high uptake increases potential for DH, low population 

density may mean that heat demand is not over the threshold quoted here; since these areas are 

not on the gas grid, demand density must be calculated using a different approach, and these 

regions are excluded from this assessment. 

 

Demand will vary over time with outside temperatures, changes to housing standards and the age 

and income of occupants, as well as how much time they spend at home (Taylor et al., 2014). 

Increasing temperatures with climate change and improved household insulation funded by 

initiatives such as the green deal may therefore reduce demand over time (Taylor et al., 2014). 

Conversely if DH was supplied at a low price, demand for some houses may increase. 

 

Modelling approaches to identify optimum potential DH plant locations in terms of energy supply 

and demand are illustrated elsewhere (Schmidt et al., 2010) and ideally incorporate detailed 

information on individual buildings (Möller and Lund, 2010). As well as modelling, additional 

consideration of site factors may be required to identify feasible locations for generation to 

supply an individual district. Furthermore, distribution losses for potential DH are dependent on 

the system specification, lengths of pipes and distribution temperatures (Bøhm et al., 2008), and 

many variables such as household level choice and local demand density variations must also be 

taken into account (Möller and Lund, 2010; Schmidt et al., 2010). Estimates can be made to cover 
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some of these parameters, for example based on existing systems DH network radius can be up to 

30 km, however without known system specification it is not possible to analyse this issue fully.  

 

Because national scale analysis cannot take into account factors such as availability of sites for DH 

CHP plant, distribution system specification, and level of uptake, it was decided to perform a basic 

level of assessment for DH. Therefore, calculations have been limited to approximations based on 

locations and magnitude of end user demand. Calculations are based on total gas usage, so it is 

not relevant to apply a utilisation factor to allow for down time, however seasonal and daily 

variability in heat demand is likely to be significant. This analysis is best used for initial visual 

assessment of potential for DH, and for identifying competition with other potential feedstock 

end uses. A map has been produced (Figure 2.5) to visualise the general potential of feedstock 

availability for this purpose, with potential yield extracted to 40 km and 25 km buffers of districts 

with potential for DH installation. Modelling approaches could be applied following on from this 

to identify optimum sites and capacity (Schmidt et al., 2010).  

 

2.8.4 Calculating potential generation of bioenergy at 
identified end uses 
 

Table 2.4 compares total potential for Miscanthus cultivation in England (based on predicted 

potential yield data (Lovett et al., 2009)) to demands from hindcasting calculations. Without 

taking into account spatial factors, there is sufficient potential supply for both 10% co-firing with 

coal, and for all industrial and large-scale heat demand to be supplied by biomass CHP.  

 

The potential generation identified in Table 2.4 does not take into account spatial relationship 

between supply and demand. To assess how the need to localise biomass road transport-based 

supply chains will affect generation potential, data on locations of demands was then integrated 

into the assessment.  
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Table 2.4 Potential Miscanthus yield calculations for the whole of England, compared to 
demand of identified potential end uses of feedstock  
Predicted oven-dry yield 
range (t ha-1a-1) 

Available land (ha) Oven-dry Miscanthus production 
(Mt) 

9 or less 591,900 N/A 

9 – 12 520,600 5.47  

12 – 15 1,211,900 16.36  

15 or more 789,500 11.84  

Total 33.67  

Potential usage Required oven-dry feedstock (Mt) 

Co-firing at 10% of capacity 8.6  

Industrial CHP for identified heat demand 2.2  

Total 10.8  

Yield data are from a previous study (Lovett et al., 2009)modelling potential yield of 
Miscanthus for sites identified as suitable for cultivation based on 11 constraints (Lovett 
et al., 2009). Since 9 oven- dry t ha-1a-1 is the minimum economically viable yield, areas 
with lower yield are considered unattractive for cultivation and are not included in 
calculations (Lovett et al., 2009; Richter et al., 2008).Total yields for viable areas are 
calculated conservatively, as the average for each yield range, or as the minimum for the 
15 or more range. 
 

For the coal fired stations identified in 2.8.1, the potential large demand CHP sites identified in 

2.8.2, and the DH zones identified in 2.8.3 a transport radius buffer was produced in ArcMap, and 

spatial data on potential Miscanthus yield were extracted for each feedstock catchment area to 

give potential local feedstock. Comparison of potential supply and demand was made individually 

for large scale CHP and co-firing, whilst for DH the assessment was made for the whole regions, 

since locations of potential generation cannot be pinpointed, and adjacent demand regions may 

be supplied together or separately. Adjacent CHP or co-firing demand sites with mutually 

overlapping feedstock demand zones were grouped as illustrated in Figure 2.2, and feedstock 

extracted to the group buffer zone. 
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Figure 2.2 Map to illustrate calculation of available feedstock for a group of individually 
viable demands. Demand sites (in this case for CHP) are grouped for convenience of 
calculations, with groups selected to have intersections between all included buffers. 
Thick black lines indicate buffer zones for the group of CHP sites being assessed, and the 
predicted yield data extracted to this group is displayed.  
 

Using feedstock demands calculated as per Table 2.2 and Table 2.3, any excess feedstock was 

calculated as: 

Excess feedstock = (group) Local feedstock – (group) Feedstock demand.  

Finally, total potential local feedstock was calculated by applying the “dissolve and merge” GIS 

tool to the original buffer zones, and again extracting potential yield data to this mask. An 

intersect analysis was then performed on these buffers to identify where feedstock catchment 

areas overlap, and predicted yield data were extracted for these zones to give overlap feedstock. 

The usable total feedstock for all England, for the identified demand type, can then be calculated 

according to: 

Total useful feedstock = Useful local feedstock – non excess overlap feedstock. 
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Where: 

Non excess overlap feedstock = Overlap feedstock – excess feedstock. 

 

When applying this method to project maximum potential generation, overlap feedstock should 

be included in calculations for the most efficient generation type to which it is applicable. 

Therefore, since large scale CHP has higher conversion efficiency than co-firing, feedstock which 

was also suitably located for CHP was subtracted from co-firing figures before calculation of 

excess. DH was prioritised last due to significant cultural barriers in England; non-excess feedstock 

overlapping between DH and large-scale CHP or co-firing was subtracted from the total within the 

DHP catchment zone to give an estimate of potential generation. 

2.9 Results 

2.9.1 Co-firing 
 

Having calculated the feedstock demand in Section 2.8.1, it is then necessary to calculate if the 

required feedstock could be cultivated within the local area, taking into account constraints on 

land where the feedstock may be grown and appropriate transport distances. Predicted 

Miscanthus yield data from Lovett et al. (2009) for the locations suitable for energy crop 

cultivation were clipped to the 40km and 25km feedstock transport zones using the methodology 

described in Section 2.7 to calculate potential feedstock available to each demand. Where 

demand zones overlapped, values were calculated for the group as indicated in Figure 2.2. Tables 

A1.1 and A1.2 in Appendix Section 1 contain data on feedstock demands and potential local 

cultivation, and the associated Figures A1.1 and A1.2 indicate the demand groups as referred to in 

the tables. Figure 2.3 displays the data visually; there is most coal fired capacity and potential 

local biomass cultivation in Yorkshire and the Midlands, giving these locations the best potential 

for co-firing of locally grown Miscanthus.  
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Figure 2.3 Map to show potential Miscanthus feedstock supply and demand for co-firing. 
 

Table 2.5 Potential biomass availability for co-firing (assuming conservative potential 
cultivation within 40km of all existing coal plants) 
Percentage 
biomass to 
be co-fired 

Total PJ that 
could be 
from 
biomass 

Miscanthus 
demand 
(odMt) 

Transport 
radius  

Potentially available 
Miscanthus (up to 
specified local 
demand) within supply 
radius (odMt) 

Generation for 
potentially 
available 
Miscanthus (PJ) 

10% 43 8.6 40 km 8.2 42 

25 km 7.9 41 

20% 86 17.2 40 km 10.7 55 

25 km 8.6 44 

 

As indicated in Table 2.5; based on useful feedstock figures from Table A1.1 and Table A1.2, 42 PJ 

could be generated from locally-sourced Miscanthus with co-firing at 10%, or 55 PJ at 20%. Of 13 

odMt, 11 are also suitably located for industrial CHP. Were a 25 km transport restriction imposed, 

41 PJ could be generated with co-firing at 10%, or 44 PJ at 20%. 
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2.9.2 CHP for Industrial and large demand sites heat 
 

Having calculated the feedstock demand in Section 2.8.2, it is then necessary to calculate if the 

required feedstock could be cultivated within the local area, taking into account constraints on 

land where the feedstock may be grown and appropriate transport distances. Predicted 

Miscanthus yield data from Lovett et al. (2009) for the locations suitable for energy crop 

cultivation were clipped to the 40km and 25km feedstock transport zones using the methodology 

described in Section 2.7 to calculate potential feedstock available to each demand or demand 

group. Proximity of sites with potential for industrial CHP means that there is significant overlap 

of catchment regions for adjacent sites, meaning that competition for feedstock must be 

considered as well as potential local yields. To assess whether this overlap reduces total potential, 

adjacent sites whose individual demands can be met within the defined radius were grouped, 

extracting feedstock availability data to this zone as indicated in Figure 2.2, and viability assessed 

as for an individual plant. Tables A1.3 and A1.4 in Appendix Section 1 contain data on feedstock 

demands and potential local cultivation, and the associated Figures A1.3 and A1.4 indicate the 

demand groups as referred to in the tables; data are displayed here visually in Figure 2.4. 

Significant feedstock potential in these regions combined with mostly low demands mean CHP 

groups remain viable, and have excess feedstock when assessed as per Figure 2.2. Viability of 

adjacent demands is dependent on appropriate feedstock allocation; in a free market, feedstock 

purchasing is likely to be based on proximity not optimising national generation, and competition 

may also have economic impacts. The issue of overlapping demand zones is likely to be common, 

since industry, and therefore industrial heat demand, is likely to be clustered in most countries, 

due to spatial patterns of transport links and raw material availability ( Henderson, 1988).  

 

Total potential large demand CHP generation from local Miscanthus in England identified by this 

analysis is 25 PJ of heat and 7 PJ of electricity (see Table A1. 3). Calculated potential generation is 

reduced to 18 PJ of heat and 5 PJ of electricity by restricting feedstock transport, since two of the 

sites cannot be supplied from 25 km (see Table A1. 4). Since calculations are based on cultivation 

at 100% of suitable sites, it is likely that restrictions on feedstock transport distance would further 

impact generation potential. Whilst identified locations are indicative of heat demand, social and 

economic factors are critical to the potential for bioenergy CHP being used to meet this demand; 

non-renewable CHP, or generation of heat only, may be preferred. The use of an average 

utilisation factor of 57 % based on data for 2009 CHP may underestimate total potential, due to 



 

84 

 

exclusion of incomplete months from dataset, or failure to account for variation in proportions of 

heat and electricity, or on site usage. Furthermore current rates of downtime due to technical 

factors may be significantly reduced as the technology develops; utilisation factors of up to 80% 

are theoretically achievable (Thornley, 2006). This would increase competition for feedstock, and 

may make several sites no longer viable. 

 

Figure 2.4 Map to show potential Miscanthus feedstock availability in relation to 
locations of potential demand for industrial and large scale Combined Heat and Power 
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2.9.3 CHP for district heating (DH) 
 

As before, predicted Miscanthus yield data from Lovett et al. (2009) for the locations suitable for 

energy crop cultivation were clipped to the 40km and 25km feedstock transport zones using the 

methodology described in Section 2.7, and total local feedstock was calculated. Calculations were 

not performed for individual DH systems due to the complications described in Section 2.8.3. 

Figure 2.5 shows that potential DH installations are distributed in clusters throughout England. 

The map shows significant feedstock potentially available within 40 km of many of these sites. In 

regions with potential for DH, there is a total end user demand of 461 PJ of delivered heat, which 

would require 39 odMt of biomass feedstock, assuming 70% conversion efficiency, and without 

taking into account additional generation to cover distribution losses. Calculations indicated that 

in England 31 odMt could be cultivated for this purpose, producing 366 PJ of DH as well as 104 PJ 

of electricity; hence not all of England’s potential for DH could be realised through local 

Miscanthus feedstock.  

 

These values do not exclude feedstock which is also suitably located for other end uses; once this 

feedstock has been subtracted, the total combined energy generation potential from DH is 334 PJ, 

although distribution losses will apply to the generated heat. Were a 25km transport restriction 

imposed, feedstock availability drops to 25 OdMt, producing 295 PJ of heat and 84 PJ of 

electricity. 

 

In practice, feasibility of meeting DH demand is dependent on heating requirements which vary 

with temperature, housing standards and population density, and the potential for cultivation 

close to higher population densities (Möller and Lund, 2010; Schmidt et al., 2010). Total efficiency 

is increased by linking demands with different timings of demand i.e. accommodation and schools 

or offices, to facilitate a more consistent plant running capacity (Roberts, 2008). Previous work 

suggests optimum locations for DH generation are at the edge of urban areas (Schmidt et al., 

2010), with highest demand likely to coincide with urban centres such as capital cities. In England, 

greatest demand density is in London, which is entirely urbanised with no cultivation potential; 

however, data displayed in Figure 2.5 indicate significant local feedstock potential to the north of 

the city. 
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Figure 2.5 Map to show potential Miscanthus feedstock availability in relation to 
locations of potential District Heating installations. Grey and white zones indicate 
regions with potential for profitable DH systems, and feedstock located within 40 km of 
these zones is displayed  
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2.9.4 Competition for feedstock between identified end 
uses 
 

Overlap of feedstock catchment zones for different forms of demand must also be taken into 

account since demand sites of each type tend to cluster in similar locations (Henderson, 1988). 

Figures 2.6 and 2.7 show the overlap between catchment zones of different potential end uses of 

biomass for energy. Overlap between feedstock catchment zones for different forms of demand 

can be significant; calculations for England applying 40 km radius showed that 11 odMt of 

feedstock have potential end-use competition between co-firing and large scale CHP. Generalised 

40 km catchment zones for regions of DH potential cover much of England, with 10 odMt 

Miscanthus on areas coinciding with co-firing, and 21 odMt coinciding with industrial CHP.   

 

Figure 2.6 Map to illustrate overlapping of 40 km demand zones for identified 
Miscanthus energy end uses 
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Figure 2.7 Map to illustrate overlapping of 25 km demand zones for identified 
Miscanthus energy end uses 
 

Feedstock from areas identified in England as within 40 km of both industrial CHP and coal plants 

has a generation value of 38 PJ of electricity and 134 PJ of heat as CHP (at 20 % and 70 % 

conversion efficiency), or 57 PJ of electricity from co-firing with coal (at 30% conversion 

efficiency). This would appear to suggest that CHP may be a better choice if the objective is to 

increase the proportion of generation from renewables. Although in the scenario analysed here 

there is sufficient feedstock not to make allocation decisions between industrial CHP and co-firing, 

in practice cultivation is unlikely to take place on all available land, and competition for feedstock 

will be dependent on economics and spatial pattern of availability. Additionally, the associated 

CO2 mitigation achieved through deployment of bioenergy generation is dependent on the 

reference system (i.e. the emissions from the generation replaced) as well as the life cycle analysis 

(LCA) of the bioenergy process (including cultivation and transport of feedstock as well as the 

power generation step).  



 

89 

 

 

Bioenergy LCA requires consistent, well defined, ideally inclusive system boundaries, as well as 

incorporation of site specific factors, particularly in terms of GHG balance of cultivation (Cherubini 

et al., 2009). Therefore, if GHG emissions reduction is taken into account as a secondary aim, 

many other factors must be considered when comparing potential bioenergy generation. There is 

a need for system-specific LCA to gain a true picture of any benefits in terms of energy and GHG 

savings of CHP in practice (Martens, 1998). 

 

Before transmission losses have been considered, DH efficiency is more than double co-firing 

efficiency, with potential generation from overlap feedstock of 168 PJ compared to 56 PJ. 

However, DH was prioritised last for overlap feedstock in these calculations due to significant 

socioeconomic obstacles in England.  

 

When comparing DH and industry as end users of CHP there are further variables affecting 

efficiency, and therefore generation proportion; the large, consistent demand of industrial type 

users enables more efficient generation patterns (Hawkes and Leach, 2008), however the lower 

temperatures required by domestic end users enable a more efficient use of the full temperature 

spectrum of generated heat (Martens, 1998). Combination of industry and DH may, therefore, be 

the most efficient approach in terms of heat utilisation, although generation companies tend to 

prefer a single heat off-taker due to the complexity of contractual agreements (Bailey, 2011). 

Large demand sites such as hospitals, airports and public buildings may combine the benefits of 

domestic lower temperature requirements, with the large demand advantage of reduced 

infrastructure requirements, making an optimum location for CHP (Chicco and Mancarella, 2009). 

 

2.9.5 Total potential bioenergy generation from identified 
end uses 
 

Observations in section 2.9.4 suggest an order of preference for allocating feedstock of:  large 

demand CHP, then co-firing, then DH, in order to achieve efficient usage of feedstock, whilst 

allowing for socioeconomic influences. Therefore, in Table 2.6, feedstock is allocated to CHP and 

co-firing up to the useful value, then non-excess overlap between DH and other uses is subtracted 

before total potential DH is calculated. A total of 406 PJ of energy could be generated annually 
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from local Miscanthus in England. This exceeds the DECC (2009) UK biomass generation target of 

259 PJ or 30 % of the UK renewables target.  

Table 2.6 Calculations of total potential generation applying a transport radius of 40 km 
40 km Useful local 

feedstock 
(odMt) 

Electricity 
(PJ) 

Heat 
(PJ) 

Total 
(PJ) 

Overlap 
(odMt) 

Local 
excess 
(odMt) 

Excesses - 
overlap 
(odMt) 

Useful CHP 2.01 7 24 31 11.24 20.16 13.85 

Useful  
co-firing 

8.16 42  42 4.93 

 Non-excess overlap 
(odMt) 

DH 30.76     22.79 8.94 

DH-overlap 21.82 74 260 334  

Table 2.7 indicates that the target could, in fact, theoretically be met taking feedstock only from 

within the 25 km radius originally stipulated. However, since Miscanthus is unlikely to be grown at 

all potential sites, increasing the allowable transport distance improves prospects for bioenergy. 

 

Table 2.7 Calculations of total potential generation applying a transport radius of 25 km 
25 km Useful local 

feedstock 
(odMt) 

Electricity 
(PJ) 

Heat 
(PJ) 

Total 
(PJ) 

Overlap 
(odMt) 

Local 
excess 
(odMt) 

Excesses - 
overlap 
(odMt) 

Useful CHP 1.49 5 18 23 4.71 11.75 8.38 

Useful  
co-firing 

4.22 22  22 1.34 

 Non-excess overlap 
(odMt) 

DH 24.84    13.09 4.72 

DH-overlap 20.12 68 239 308  

 

Of the 407 PJ of energy identified in Table 2.6, 123 PJ would be electricity, around 1.4 % of the UK 

2013 demand of 8972 PJ (Department of Energy and Climate Change, 2013a). Policy, regulation, 

economics and local choices would affect the generation balance and capacity achieved. The end 

use may affect the carbon and energy savings, and policy reflecting this may encourage optimum 

utilisation of potentially available biomass feedstock.  

2.9.6 Land area requirements for identified potential 
biomass feedstock cultivation  
 

The UK Biomass Strategy aims for 350,000 ha of land to be converted for perennial energy crops. 

This figure has been identified elsewhere as the maximum UK land availability for biomass (2008). 
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Therefore the 2.4 Mha identified here for England as viable for cultivation of Miscanthus within 40 

km of the identified potential end uses of feedstock, may require further consideration of 

competition with other land uses, which could significantly reduce bioenergy generation 

potential. 

 

Total potential cultivation area for Co-firing, large scale CHP and DH areas is shown in Figure 2.8, 

and has been mapped according to CEH data on 2007 land use using the extract tool, with CEH 

land use data as the input raster and  identified cultivation locations as the mask. Potentially 

displaced land-uses include 1.5 Mha arable and horticulture, 0.69 Mha grassland as well as 0.05 

Mha broadleaved woodland. To achieve the maximum potential generation of 406 PJ identified by 

this study, roughly 94 % of this land would need to be used. It has been suggested that 0.9- 3.6 

Mha in the UK may be available for bioenergy (Hastings et al., 2014). Upper estimates for the UK 

may indicate that the area of land indicated by this study could be made available in England, 

however land may still not be available in the identified areas or from the identified current land 

uses. 

 

 

Figure 2.8 Map to illustrate current land use for potential cultivation sites identified by 
this study 
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To meet the 2011 UK biofuel target of 27 PJ using wheat bioethanol, 3 Mt of cereal would be 

required (Akgul et al., 2012), threatening food availability. Generating the same amount of energy 

from industrial CHP would require 1.7 odMt feedstock; assuming a distribution of yields and land 

use representative of the whole area, this would require 0.13 Mha, which would displace 

approximately 0.08 Mha arable as well as loss of 0.04 Mha grassland. Assuming average cereal 

yields for converted land (based on 2012 data (Department for Environment Food and Rural 

Affairs, 2012)), this would result in a loss equivalent to roughly 0.51 Mt cereal. Highly productive 

agricultural land was excluded from consideration (as described in Lovett et al., 2009) so use of 

average yields should not underestimate the impacts. Due to lower than expected yields in the UK 

in 2012, there was net import of 0.97 Mt cereal, compared to 1.2 Mt net export from the UK for 

2011. Whether the impacts of land use change could be offset by reducing exports to maintain 

food security is therefore uncertain, and dependant on yields; in either case there will be 

economic trade-offs and changes to balance of trade. As well as considering economics and 

impacts on food security, GHG emission associated with land use change must be considered (Del 

Grosso et al., 2005; Li et al., 2005); Chapters 3, 5 and 6 look to address this. Indirect land use 

change to replace cereal losses may take place in the UK or overseas in countries previously 

receiving the imports. Accounting for and attributing land use change is complicated when 

considering a global system with a range of drivers in addition to bioenergy cultivation (Kim et al., 

2012). Although it has been suggested that improvements in farming techniques and  cereal 

genotypes may offset some losses, data for the UK indicate reduction in average yield since 2008 

(Department for Environment Food and Rural Affairs, 2012). Previous work has suggested that 

much of the emissions linked to bioenergy may be caused by land-use change and increased 

fertiliser inputs to compensate for land coming out of food agriculture (Melillo et al., 2009). 

 

2.9.7 Other factors affecting total potential bioenergy 
generation as identified in this chapter 
 

The complexity of agricultural systems dictates that yield predictions based on model output 

should be regarded only as a guide (Price, 2004; Schoumans et al., 2009). Model Miscanthus yield 

predictions were supplied as three ranges, and although average estimates were used in 

calculations, this is not a guarantee of feedstock availability. Based on these ranges, total 

potential cultivation on land identified by this study would range from 30 odMt to 35 odMt, as 

indicated in Table 2.8.  
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Table 2.8 Data for calculation of range in simulated yield 
Simulated yield 
range 

Relevant area 
(ha) 

Minimum yield prediction 
(odt) 

Maximum yield prediction 
(odt) 

9-12.9 490783 4417047 5840318 

13-14.9 1154703 13856436 17205075 

15 or greater         
(16 used) 

764055 11460825 12224880 

Total 2409541 29734308 35270272 

 

Inter-annual yield variability with temperature, radiation and precipitation may exceed model 

predicted ranges, and yield variation between genotypes and between species interacts with 

spatial and climate factors (Lovett et al., 2009; Richter et al., 2008). Feedstock type is also 

significant; predicted yields are for a the hybrid Miscanthus x giganteus, chosen due to its high 

yield in field trials in England (Lovett et al., 2009), however other Miscanthus variants, or 

alternative energy crops such as SRC willow or SRC poplar may produce higher yield at some sites, 

hence a mosaic of different feedstocks may give higher total yield (Clifton-Brown et al., 2001). 

Contracts between biomass power plants and farmers tend to be agreed based on minimum 

expected yield for a specific site, to ensure that the plant has reliable supply (Spackman, 2011). 

Annually varying spatial patterns of availability will affect feedstock costs as well as required 

transport distances and costs. An increase in allowable transport distance may be helpful in 

enabling demand to be met in years when more local sites experience low yield, hence capping 

transport distances to minimise emissions may diminish feasibility. 

 

Feedstock demand calculations were based on average efficiency values for existing power plants. 

As well as existing variation in efficiency, future technological improvements in efficiency may 

affect demand. Coal is a mature technology and CHP already has high efficiency in terms of total 

output, making efficiency improvements unlikely, although future developments in CHP could 

improve efficiency at higher proportional electricity generation, which would allow efficient 

generation flexibility (Gross, 2003). This would be particularly beneficial for DH systems, since 

heat demand is likely to drop with increasing insulation standards, whilst electricity demand tends 

to rise with proliferation of technologies (Roberts, 2008). 

 

A radius of 40 km was used to approximate 40 km road transport regions, since it is impractical to 

incorporate site specific data on potential transport routes. Hence, this approach may generate 

optimistic estimations of local cultivation potential, particularly in regions with limited road 

networks. Lower emissions for boat transport may mean that GHG emissions savings can be 
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maintained over longer distances for non-road transport, however costs may be prohibitive, 

depending on feedstock costs.  

 

Due to differences in parameters and considerations, total generation values calculated here were 

much lower than the 809 PJ heat and 405 PJ electricity calculated by Wang et al. (2014) and 

higher than the 0.21-0.83 PJ primary energy mentioned in  Hastings et al. (2014). Wang et al. 

(2014) performed calculations for the whole UK, and incorporated greater heat demand by 

combining domestic and non-domestic space heating demands, and applying a model to meet all 

demands as opposed those over a set threshold. Additionally, for this thesis, analysis in Section 

2.9.5 allocated feedstock to co-firing (lower energy output) before DH (higher energy output) due 

to lower investment requirements, and less socioeconomic considerations. Hastings et al.  (2014) 

also consider the whole UK, however total values quoted are based on an average energy ratio (or 

"energy intensity" from Hastings et al., 2009), and thus energy inputs to the system have already 

been subtracted from the values quoted. 

 

Land availability for biomass is based on holistic GIS assessment of land use impacts (Lovett et al., 

2009), although in practice an in-depth site specific assessment may identify reasons why land use 

change should not or would not take place. Potential reasons include: habitat mosaic impacts on 

food webs  (Firbank, 2008); excessive GHG emissions from disruption of soil (Brandão et al., 2011; 

Fargione et al., 2008; Natural England, 2009a); and water use of Miscanthus compared to existing 

land cover (Richter et al., 2008; Vanloocke et al., 2010). Conversely, constraints mapping rules out 

environmentally sensitive landscapes and grasslands which, if economically attractive, may be 

converted for biomass. This may increase local potential capacity of biomass generated energy, 

but the potential environmental impacts should also be taken into account (Lovett et al., 2009).  

 

CHP has a conversion efficiency over double that of co-firing, reducing environmental impact per 

unit of useful energy. However economic not environmental issues are likely to control the rate of 

expansion in generation from biomass; co-firing may be initially cheaper since little investment is 

required, whereas new district heating would require significant investment in infrastructure, 

which may deter energy generators. The costs and commitment of land required for perennial 

feedstock cultivation mean that guaranteed income may be a pre-requisite for cultivation. Where 

policy has economic implications, it can become a deciding factor, making it crucial that low-

carbon future objectives are supported without unsustainable detriment to the environment or 
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food production. Encouraging cultivation of biomass feedstock for CHP whilst minimising food 

security detriment, as well as safeguarding the environment, is highly complex. Ideally policy 

incentives and sustainability assessment should reflect this, without adding uncertainty to an 

already imperfect market.  

 

Socioeconomic factors which complicate supply chain establishment (as discussed in Section 2.2 

above) may present the greatest obstacle to the expansion of bioenergy generation, along with 

policy factors affecting confidence in profitability of generation and cultivation (as discussed in 

Sections 2.4 and 2.6). Incomplete usage of installed bioenergy generation was observed in in part 

due to co-firing with cheaper non-renewable feedstock and, unplanned plant downtime due to 

technical problems (Thornley, 2006).  

 

Existing housing stock represents a significant heat demand, however retrofitting of district 

heating systems is costly and disruptive, and homeowners may choose not to be connected, 

reducing demand density, potentially below profitable levels (Rüdig, 1986; Vallios et al., 2009). On 

the other hand it is easier and cheaper to fit DH systems when building new housing, and planning 

permission can be used as leverage to encourage this; however greater thermal efficiency of new 

build may reduce peak heat demand by 50-90%, thus reducing viability in terms of demand 

density threshold, as well as emissions and energy savings (Hawkes and Leach, 2008; Roberts, 

2008; Wood and Dow, 2011). In addition to this, lack of familiarity may mean lower investor 

interest and homeowner confidence in DH systems, and is likely to be a significant obstacle to 

new projects in the UK (Vallios et al., 2009). These socioeconomic barriers to uptake of DH could 

significantly affect total bioenergy generation potential; without DH, total potential generation for 

England drops from 406 PJ to 72 PJ. Current land use for the area suitable for cultivation of 

perennial energy crops for large scale CHP or co-firing is indicated in Figure 2.9, and consists of 

around 0.7 Mha arable and 0.3 Mha grassland. 
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Figure 2.9 Current land use for suitable cultivation sites within 40 km of potential CHP 
and co-firing end uses 
 

Social opposition to land use change must also be considered; there is a perception of a conflict 

between cultivation of food and fuel, since it is assumed that food could have been cultivated on 

land which may be taken up for cultivation of energy crops, and there is evidence of rising prices 

and declining production (Mitchell, 2008; Nonhebel, 2005). However the significance of pressure 

on land varies between countries. For England, food production is not limited by land or water 

availability, and food export was increasing prior to reductions in yield associated with poor 

weather conditions in 2012 (Department for Environment Food and Rural Affairs, 2012; Paice, 

2011). Kim et al. (2012) suggest that the “food versus fuel” problem should in fact be reframed as 

“nutrition versus fuel” with consideration of the land use efficiency of  human dietary choices, 

and resultant impacts of cultural preferences and trends. 

 

Unlike other energy types, bioenergy may have focussed regional impacts, particularly in rural 

areas, due to spatial constraints on supply chains. Objections to associated infrastructure, traffic 

and landscape change may create a barrier to planning permission for plants. Alternatively, there 

may be many benefits to the rural economy, and for rural areas not connected to the gas grid, 

bioenergy heating schemes can offer significant savings over alternatives (Thornley, 2006). 



 

97 

 

2.10 Soil data analysis for potential sites 
 

Given the significant socioeconomic barriers to district heating systems in England and the 

incomplete nature of the assessment of DH in this thesis, locations suitable for cultivating 

feedstock for co-firing and larger scale CHP were chosen for the final analysis. These were overlaid 

in GIS with the Centre for Ecology and Hydrology 2007 land cover map at 1km resolution (Centre 

for Ecology and Hydrology, 2011), and harmonised soil data layers from JRC (European 

Commission - Joint Research Centre and Institute for Environment and Sustainability) including 

bulk density and texture of topsoil and subsoil, the depth to textural change and organic carbon 

and pH of topsoil at 1km resolution. The ARC GIS sample tool was then used to produce a table of 

values from these soil and land use data layers, at points spatially coinciding with yields over 9 odt 

ha-1 from the raster file of the identified potential cultivation sites. Sample points were taken from 

these data on a 10 ha by 10 ha grid, creating a database of over 30,000 cases. 

 

It has been noted by Aylott et al. (2008) that energy crop yield is controlled by interaction 

between site properties. Given the likelihood that change in ET and soil C storage will be affected 

by yield, the occurrence of site factors in combination as opposed to individually may be more 

significant in controlling these outputs, than individual site properties. The same is true of N2O 

emissions, given that different processes are responsible for N2O production in different soil types, 

and taking into account the complexity of controlling processes, which will be introduced in 

Section 3.4. Therefore to extrapolate from model output to multiple sites it is necessary to look at 

combinations of site properties.  

 

A two-step cluster analysis was run to identify the most common combinations of site properties 

in this sample, in order to produce input files for modelling representative sites. Two-step 

clustering was chosen because this test is the most appropriate for datasets with over 1000 cases, 

and can be performed for data which are not normally distributed, and include categorical 

variables (Kaufman and Rousseeuw, 2009).  It was necessary to use log-likelihood as the measure 

of distance between cluster centres, since Euclidean is only appropriate for continuous variables. 

The data are categorical, with each category covering a range of numerical values, as can be seen 

in Table 2.9 and 2.10. To account for the maximum and minimum numerical values in each 

category, two model runs must be performed for each site. Given the time demands for compiling 

input data, running the model and analysing output, and limited time availability at the modelling 
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stage, it was decided to limit the number of sites analysed to 12 (i.e. 24 model runs). Since each 

soil type and land use combination will be modelled for one location with low precipitation and 

one with high, this means that six clusters are required as output from this analysis. In order to 

have three clusters at arable sites and three at grassland sites, the number of clusters was set to 

three. 

 

Because the model sets soil organic matter pools by simulating historic land use using a “spin up” 

period approach (described in Section 4.2), numeric SOC values are not required for model input, 

hence category values from high to very low (according to JRC classifications) are used for this 

variable also. 

 

The three clusters indicated in Table 2.9 all have land use as arable and horticulture, which can be 

seen in Figure 2.9 to apply to the majority of identified sites. However, grassland has less 

economic value, so may be more likely to be used for cultivation of energy crops, assuming high 

yields can be expected.  Tillage of grassland may cause significant carbon loss, so it is particularly 

useful to perform modelling for these sites. Therefore a second cluster analysis was performed on 

the grassland subset of the data, which is shown in Table 2.10. The 25km CEH land cover map 

differentiates between improved, neutral, acid and calcerous grassland, however the 1km 

resolution version used for data extraction has aggregated classifications, so grassland is either 

improved or unimproved. Improved grassland was ruled out for economic reasons as part of the 

original constraints mapping, so grassland considered in Table 2.10 is in the broad category 

“unimproved grassland”. The pH differences between acid, neutral and calcerous grassland may 

be accounted for by the soil pH layer from the JRC harmonised soil layers, however resulting 

differences in other site properties may not be completely represented in the model, as will be 

discussed in Section 6.2. 

 

Other parameters which will interact with the soil parameters tabulated in determining yield and 

other outputs include latitude and climate variables; these will be discussed when scenario 

analyses are developed in Sections 6.1 and 6.2. 
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Table 2.9 Combinations of site properties typical of identified locations, as extracted by 
cluster analysis  
Cluster1 Cluster 2 Cluster 3 

39% 32% 26% 

15140 cases 12564 cases 11556 cases 

Depth to textural change Depth to textural change Depth to textural change 

>120 cm 20-40 cm 20-40 cm 

82 % 57 % 26 % 

Depth to gleyed horizon Depth to gleyed horizon Depth to gleyed horizon 

<40 cm <40 cm >120 cm 

59 % 100 % 75 % 

Subsoil Packing Density Subsoil Packing Density Subsoil Packing Density 

high high medium 

90 % 100 % 93 % 

Topsoil Packing Density Topsoil Packing Density Topsoil Packing Density 

medium low medium 

99 % 100 % 75 % 

Soil organic carbon Soil organic carbon Soil organic carbon 

very low medium very low 

29 % 81 % 37 % 

pH pH pH 

5-6 5-6 6-7 

62 % 84 % 51 % 

Subsoil texture Subsoil texture Subsoil texture 

fine (35%< clay<60%) fine (35%< clay<60%) medium  (18%<clay < 35% 
and sand>=15% or18%<clay 
and 15%<sand<65% ) 

91 % 82 % 52 % 

Topsoil texture Topsoil texture Topsoil texture 

fine (35%< clay<60%) medium  (18%<clay < 35% 
and sand>=15% or18%<clay 
and 15%<sand<65% ) 

coarse (18% < clay and > 
65% sand) 
 

57 % 100 % 50 % 

Water regime Water regime Water regime 

Wet within 80 cm for over 6 
months, but not wet within 
40 cm for over 11 months 

Wet within 40 cm depth for 
over 11 months 

Not wet within 80 cm for 
over 3 months, nor wet 
within 40 cm for over 1 
month 

69 % 100 % 87 % 

Land use Land use Land use 

arable and horticulture arable and horticulture arable and horticulture 

70 % 50 % 67 % 
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Table 2.10 Combinations of site properties typical of identified locations, as extracted by 
cluster analysis of grassland sites only  
Cluster1 Cluster 2 Cluster 3 

48 % 31 % 19 % 

5424 cases 3581 cases 2216 cases 

Depth to textural change Depth to textural change Depth to textural change 

>120 >120 >120 

53 % 60 % 100 % 

Depth to gleyed horizon Depth to gleyed horizon Depth to gleyed horizon 

<40 cm >120 cm <40 cm 

100 % 87 % 90 % 

Subsoil Packing Density Subsoil Packing Density Subsoil Packing Density 

high medium high 

98 % 75 % 100 % 

Topsoil Packing Density Topsoil Packing Density Topsoil Packing Density 

low medium medium 

100 % 76 % 100 % 

Soil organic carbon Soil organic carbon Soil organic carbon 

medium very low medium 

76 % 49 % 58 % 

pH pH pH 

5-6 6-7 5-6 

82 % 47 % 82 % 

Subsoil texture Subsoil texture Subsoil texture 

fine (35%< clay<60%) medium  (18%<clay < 35% and 
sand>=15% or 18%<clay and 
15%<sand<65% ) 

fine (35%< clay<60%) 

76 % 34 % 100 % 

Topsoil texture Topsoil texture Topsoil texture 

medium  (18%<clay < 35% and 
sand>=15% or 18%<clay and 
15%<sand<65% ) 

medium  (18%<clay < 35% and 
sand>=15% or 18%<clay and 
15%<sand<65% ) 

fine (35%< clay<60%) 

94 % 45 % 100 % 

Water regime Water regime Water regime 

Wet within 40 cm depth for 
over 11 months 

Not wet within 80 cm for over 3 
months, nor wet within 40 cm for 
over 1 month 

Wet within 80 cm for over 
6 months, but not wet 
within 40 cm for over 11 
months 

93 % 62 % 70 % 

Land use Land use Land use 

grassland grassland grassland 

100% 100% 100% 
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2.11 Summary 
 

This chapter has outlined the approach taken to identify sites where perennial bioenergy crops 

such as SRC willow or Miscanthus could be grown in England. The approach was based on 

integrating data on where the crops could be grown with data on locations of high efficiency 

potential end uses. The approach aims to avoid excessive transport of feedstock and low 

efficiency energy conversion, both of which reduce the overall ratio of energy out to energy in, as 

well as increasing relative and absolute GHG emissions. Potential generation of 406 PJ of energy 

was identified; reducing to 72 PJ if DH schemes are excluded. The approach taken is based on 

logical decisions about feedstock cultivation and allocation in order to maximise energy 

generation, whilst in reality socioeconomic factors will control such decisions. Additionally, 

socioeconomic barriers to expansion of bioenergy such as establishment of supply chains for 

bioenergy feedstock, uncertainty about government incentive schemes and lack of familiarity with 

DH have been identified. 

 

The land area identified here as potentially suitable for cultivation of bioenergy crops is largely 

arable, and could have significant impacts on food production, although per PJ of energy, these 

would be much lower than for cultivation of cereal crops for liquid biofuels. Data on the locations 

identified as suitable for cultivation was used to identify common combinations of soil properties 

which affect site specific impacts of land use change, in terms of soil and climate properties which 

may affect change in N2O emissions and soil C, as well as crop yield and ET. Cluster analysis has 

been used to identify three common arable site types, and three common grassland site types. 

The following chapter (Chapter 3) assesses approaches for predicting change in N2O emissions, 

soil C and ET for land use change at these sites. These data were used as input to modelling in 

Chapter 5, wherein the selection of geographic locations at which each typical soil type occurs, 

and creation of site and weather input data files is also described. 
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3. Selecting a model to predict 
environmental impacts of land use 
change for perennial energy crops  
 

This chapter addresses Objective 3; to assess approaches for predicting perennial energy crop 

yield along with change in N2O emissions, soil C and ET for land use change.  

 

Section 3.1 identifies gaps in existing assessment of the impacts of land use change for SRC willow 

and Miscanthus on water use, direct GHG emissions from soil, and indirect GHG emissions from 

downstream transformation of leached nitrates. The need for assessment approaches which can 

adequately represent how site factors interact to control these impacts is articulated. Section 3.2 

gives the rationale for taking a whole agroecosystem approach in order to simulate interaction 

between crop, soil and atmospheric systems, which is supported by the illustration of C, N and 

water cycling for an agroecosystem in Figure 1.1 of Chapter 1. Section 3.3 explains multi criteria 

decision analysis (MCDA), and how the stages of identifying and addressing multiple criteria are 

appropriate for selecting a whole-agroecosystem model. Section 3.4 takes a literature based 

approach to identify required representation of potential agroecosystem impacts of land use 

change for perennial energy crops and variation between sites. Section 3.5 states the approach 

taken to compile a database of potential models. A two-step MCDA is then applied; Section 3.6.1 

takes a conjunctive approach to rule out models which do not meet crucial criteria, and 

Section 3.6.2 applies factors specific to this study to select which of the suitable models will be 

used. The chosen model is described in Section 3.7 and will be refined in Chapters 4 and 5, and 

then in Chapter 6, will be applied to the locations identified by Chapter 2. 

 

3.1 Limitations of existing assessment of site 
variation in identified impacts of land use change for 
perennial energy crop cultivation 
 

Chapter 1 discussed several factors which could lead to site variation in the identified impacts of 

land use change for perennial energy crops. Specifically; 
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 Section 1.4.1 outlined how anticipated increase in soil C storage will be dependent on 

current crop type, management and C storage 

 Section 1.4.2 described how change in N2O emissions will be dependent on current 

nutrient inputs, rates of nitrification and denitrification and soil texture and drainage  

 Section 1.4.3 identifies that change in ET and impacts on water availability or flood risk 

will be dependent on climate, root access to water table and how perennial crop growing 

season varies from that of current land cover 

 

Section 2.6 of Chapter 2 introduces ECS funding, which covers 50% of establishment costs, 

reducing the economic barrier for farmers considering cultivating perennial energy crops. 

Currently, the extent of environmental appraisal required for ECS is dependent on recent land use 

history.  Environmental Impact Assessment (EIA) is required for crop cultivation on natural or semi 

natural land (as defined by flora and fauna), or land that has not been managed for 15 years.  In 

the EU, there is variation in the level of permits required for a bioenergy project, and no universal 

requirement for prediction of environmental impacts of associated land use change (IPCC, 2006a). 

Policy for indirect land use change is limited and there is added complexity with the difficulty of 

attributing land use change for agriculture to displacement by energy crops, as opposed to 

population increase and dietary change (Gawel and Ludwig, 2011; Kim et al., 2012; Smith et al., 

2010b). Alternatively it has been suggested that increases in yield due to agronomic 

improvements and new varieties may reduce land use requirements for food provision, for 

example, assuming 50 % increases in arable yields,  Perlack et al. (2005) suggest that by 2030 

24 Mha of agricultural land in the U.S. could be converted to biomass without reducing food 

production. In a global system, with other changes to agricultural systems and efficiencies to 

account for, attributing land use change to energy crop cultivation, and identifying particular 

schemes as responsible is even more complex (Kim et al., 2012).  

 

Where EIA is required for ECS some of these issues are likely to be assessed if they are identified 

as important for that site. For example where water shortages are a concern, the risk of 

exacerbating these would be considered by EIA. ECS appraisal suggests that sandy soils and low 

rainfall may cause water availability to limit yields, but does not discuss potential impacts on local 

hydrology if roots have access to groundwater. Economically it would be unwise for perennial 

energy crops to be cultivated where irrigation might be required, or where yields might be limited 

by water availability, and therefore some level of consideration by a farmer is likely before land 

use conversion 
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The issue of GHG emissions associated with bioenergy cultivation was not well considered until 

assessments by Fargione et al. (2008) and Searchinger et al. (2008) in 2008. However, there are a 

standard set of IPCC guidelines set out for calculating the GHG impacts of land use change (IPCC, 

2006b). Underestimating impacts of direct and indirect land use change risks failing to identify net 

increase in GHG emissions, as well as ecological impacts such as biodiversity loss, whereas 

overestimation stifles bioenergy development unnecessarily (Gawel and Ludwig, 2011). In theory 

ECS provides leverage to put a more thorough sustainability assessment in place, however such 

assessment should not be too costly or off-putting to farmers. 

 

Woody perennial energy crops fall under the forestry commission 1999 regulations requiring EIA 

for afforestation on designated sites, or for plots over 2 hectares on all other land (Natural 

England, 2009). Although EIA is intended to ensure sustainable development, there is often a 

focus on socioeconomic sustainability and local ecological impacts, as opposed to broader 

environmental impacts, and there is not always a requirement to predict GHG balance or change 

in water use (Bond et al., 2010). There is an intention to build in consideration of sustainability in 

terms of GHG emission savings and variation with feedstock and site, however this is not included 

in the latest appraisal guidelines (Natural England, 2013). 

 

The IPCC methodology for calculating GHG from land use change is a three tiered approach. Tier 1 

requires least data, applying previous C storage assumptions based on ecosystem type, and 

biomass accumulation rates according to agroecosystem and climate region. Tier 2 improves on 

Tier 1 by application of country specific rates for new biomass accumulation, and accounting for 

incomplete removal of previous biomass. Tier 3 is most data intensive, and applies measured data 

on existing biomass and calculates accumulation rates based on species and management specific 

factors, local climate and soil, and process based models (IPCC, 2006a). Similarly the IPCC 

methodology for emissions from N inputs has three tiers building from generalised emissions 

factors (EF) to more process based modelling for Tier 3, for which data may be difficult to acquire. 

Site specific variation in response to land use, and land use change outlined in Section 1.3 is not 

incorporated into Tiers 1 and 2 of the IPCC approach.   
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To minimise data requirements and costs, in most cases either Tier 1 or 2 is applied, with Tier 3 

only applied where the land classification has been identified as significant for changes in C stocks 

(IPCC, 2006a). However, current understanding of crop soil processes is incomplete making such 

change difficult to anticipate, and furthermore change in N may be more relevant in terms of 

GHGs. Due to the data requirements of process based models advocated by the IPCC Tier 3, it 

would be impractical to perform modelling for all potential sites, however, the application of such 

a model at a range of sites, combined with appropriate assessment of the findings, may improve 

current understanding of site specific factors controlling GHG impacts of land use change. 

 

The IPCC land use change assessment focuses on GHG emissions, meaning that change in ET for a 

new crop is not considered, although it could be an output for a Tier 3 process based model, and 

would be incorporated by a full EIA. This consideration may be restricted to economics, and may 

not give in depth consideration to ecosystem impacts where it is not obligatory. To avoid 

increasing flood risk by physical obstruction of water flow, ECS applies restrictions to locations on 

the one in 200 year flood plain; planting is not permitted 500m upstream or downstream of urban 

areas, or within 10m of the river channel (or five times the river width if larger)(Natural England, 

2013).  

 

Since both Willow and Miscanthus have low nutrient input requirements, potential N2O emissions 

are unlikely to be thoroughly assessed. It is likely that tier 1 and 2 of the IPCC methodology would 

be applied, as described in section 2.6. These approaches do not take into account variables such 

as tillage, crop species, fertiliser type and timing of application or site specific factors such as soil 

type and drainage, all of which influence field N2O emissions response to fertiliser (Brown et al., 

2002; Keoleian and Volk, 2005).  There is some broad allowance for variation in soil and climate, 

such as country specific values, and an additional EF for organic soils, but this is not adequate to 

capture likely variation between sites as identified in Section 1.4, and is more useful for national 

scale assessment than choosing between sites (IPCC, 2000; Smeets et al., 2009). The IPCC tier 1 

and 2 approach also fails to account for the varying rate of residue decomposition with species 

and part of plant (Novoa and Tejeda, 2006) which is of particular importance for representing 

inputs with high C:N ratios such as those from SRC willow (Jug, 1999) and Miscanthus (Foereid et 

al., 2004a; Heaton et al., 2010), as these increase N immobilisation (Delgado et al., 2010). 
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For changes in soil C tiers 1 and 2 of the IPCC methodology are usually applied, requiring 

application of emission factors, or use of inventory values, which may be specific to country and 

land use type, but again these will not identify differences for soil properties and precipitation 

regime identified for the sites to be assessed in this thesis. Where land classification has been 

identified as significant for changes in C stocks tier 3 assessment will be applied, although for 

many sites the data required may be difficult to acquire (IPCC, 2006a).  

 

For both C and N, IPCC tier 3 involves site specific modelling studies; this can provide site specific 

output on changes in soil C stocks, N2O emissions and water availability, enabling comparison of 

relative benefits of cultivation at different sites. This would also identify potentially significant 

impacts of soil disturbance in terms of N2O and CO2 emissions for sites not currently tilled. 

 

Since the IPCC tier 1 and 2 approaches cannot identify where interactions of site factors will 

create variation between sites in terms of the identified impacts of land use change for bioenergy, 

there is arguably a need for tier 3 assessment, using process based models. This study aims to 

identify an existing model suitable for predicting water usage, soil carbon storage as well as GHG 

emissions from land use change for SRC willow and Miscanthus in the UK, in line with the IPCC tier 

3 approach.  Associated time and data requirements make it prohibitive to do such assessment 

for all sites at which land use change may occur, however by applying the model at each of the 

typical sites identified by cluster analysis in 2.10, inferences can be made about other sites with 

similar properties, and could be used to inform policy decisions. 

3.2 Potential for a whole agroecosystem predictive 
modelling approach  
 

Ideally, field data would be available on the relevant impacts for land use change for, and 

cultivation of, perennial energy crops at a range of sites reflecting typical soil properties and 

climate conditions. Although field experiments are costly, and considerable time is required for 

assessment of a full lifecycle, there are multiple studies underway, for example the Forestry 

Commission are cultivating experimental plots of SRC willow at multiple sites throughout the UK, 

and researchers at Rothamsted, led by Angela Karp, have plots of Miscanthus which have been 

studied for 20 years. Given that N2O emissions may vary by 3 orders of magnitude over a period of 

days, and exhibit greater than 100% variation in coefficients of spatial variation, point 
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measurements from field studies may not be informative (Jarecki et al., 2008). Since field studies 

tend to apply little or no N fertiliser, N2O is often not measured at test plots, and furthermore, to 

assess change in N2O emissions would also require field data for previous land use, which is 

unlikely to be available. 

 

Comparatively, models are a cheap, quick and convenient way of predicting impacts of possible 

land use and management changes (Chirinda et al., 2010).  Models can apply equations to 

represent relevant processes, and how these interact to produce changes to the system. Models 

tend to apply temporal discretisation to solve these equations for a given point in time - i.e. using 

a daily or hourly time step, and calculating the change in the system over this time. Spatial 

discretisation is also applied, for example in a one dimensional model; a finite difference 

approach can be used to simulate vertical water movements through a continuum of soil, by 

splitting it into layers, and solving the relevant equations for each layer separately (Li et al., 2007). 

 

N cycling is complex and there is incomplete understanding of many of the factors required for 

representation, for example: factors affecting N2:N2O ratio (Section 1.4.2.3); changes in N2O 

production and emission with tillage (Section 1.4.2.4). Prediction and model representation is also 

complicated by spatial variation in processes. Wagener and Gupta (2005) state that statistical 

models can perform better when representing poorly understood processes, however statistical 

models are based on input output data relationships, meaning that performance decreases when 

applied to new situations.  

 

The impacts of land use change for cultivation of perennial energy crops on carbon, nitrogen and 

water cycling are site specific, and variation in these affects overall benefits of bioenergy. 

Statistical models are therefore inappropriate for scenario analysis where differences between 

sites are significant, and site calibration data are unavailable (Frolking et al., 1998; Groffman et 

al., 2000a).  Process based models show better performance for scenario analysis (e.g. in the 

EUROHARP studies Perrin et al., 2001; Schoumans et al., 2009b), provided that processes, and 

process interactions, are represented appropriately. This explicit process representation increases 

input data demand for running the models (Chen et al., 2008; Clifton-Brown et al., 2007; Keoleian 

and Volk, 2005).  
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For the purposes of this study, it is unlikely that sufficient calibration data will be available, due to 

the difficulty of measuring N2O emissions, the relatively limited area of existing Miscanthus and 

SRC willow in the UK, and the need to take into account variations throughout the 20 year 

cropping cycle (Clifton-Brown et al., 2007; Keoleian and Volk, 2005), therefore process based 

models may perform better (Chen et al., 2008) and this will be one of the initial selection criteria.  

 

Objective 3 seeks to assess approaches for predicting perennial energy crop yield along with 

change in N2O emissions, soil C and ET for land use change. Figure 1.1. in Chapter 1, showing C, N 

and water cycling for an agroecosystem, illustrates how these systems are linked; C and N are 

coupled in soil organic matter (SOM) pool cycling and C fixation, water and N uptake of a plant are 

all part of the same photosynthesis and crop growth processes resulting ultimately in yield.  

Simulation of small scale short term fluxes of organic matter is important to facilitate simulation 

of nutrient dependant crop processes (Stockle et al., 2012). Similarly, crop growth representation 

is dependent on accurate simulation of water availability, which may limit yield, or may be over 

extracted where crops have access to the water table (Fraiture et al., 2008; Vanloocke et al., 

2010). Resulting changes in soil water will themselves impact SOM cycling processes by altering 

soil pore oxygen status. It therefore makes sense to model yield and water use together, and to 

bring C and N cycles into the crop growth and water use model, enabling prediction of direct and 

indirect GHG emissions, yield and water usage together, taking a whole agroecosystem approach. 

 

The whole agroecosystem approach taken here is not common in research on land use impacts, 

which tends to focus on a single output (e.g. Grant and Pattey, 2003; Hendriks et al., 2008; Richter 

et al., 2008; Toma et al., 2010; Vanloocke et al., 2010). This may be because agricultural GHG 

emissions and evapotranspiration are separate issues in terms of impact scale; evapotranspiration 

is likely to impact local water resources and ecosystems (de Fraiture and Berndes, 2008; 

Vanloocke et al., 2010); whereas GHG emissions are a global issue in terms of climate change, 

which will have feedback on the agroecosystem via changes in CO2, temperature and 

precipitation, which directly affect rates of crop growth (Dondini et al., 2009). However, the 

whole agroecosystem approach is well recognised in agriculture, and is often utilised for 

improving efficiency of amounts and timings of fertiliser inputs and irrigation, and has also been 

recommended in the literature for approaching land use problems (e.g. by Li et al., 2007; 

Stockmann et al., 2013).  
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Land use change and energy crop cultivation impacts falling outside the scope of the physiological 

crop growth process such as; ecology and biodiversity, landscape structure, socioeconomic 

systems and emissions from fuel use, will not be represented by a crop-soil system based model 

(Cherubini, 2010; Hanegraaf et al., 1998; Paine et al., 1996). It is not practical to model these 

issues together with nutrient and water cycling, as they are not directly involved in crop growth in 

the same way. Fuel use associated with cultivation and harvesting of the crop is crucial in terms of 

the greenhouse gas balance of the crop, and should be included in a full lifecycle analysis (LCA), 

however this will not be included here since it also falls outside of the scope of the physiological 

crop growth process. Full LCA should take into account emissions and energy used for 

construction and operation of plant, as well as emissions and energy use from transport of 

feedstock in addition to the emissions from land use change and cultivation of feedstock 

(Thornley, 2006). A fully inclusive LCA should also consider emissions from indirect land use 

change, however allocation is complex. 

 

LCA including GHG costs of all stages of energy crop cultivation should be compared to a fossil fuel 

reference system in order to ensure that the GHG reduction aims of bioenergy are met. The 

predictive models considered are not intended to give a complete assessment, but could 

contribute a useful input to a broader LCA.  

3.3 Multi criteria decision analysis (MCDA) 
 

This research sets out an objective approach to identify the most appropriate model(s) to assess 

the environmental impacts of land use change for perennial energy crops, in terms of carbon, 

nitrogen and water cycling. The approach takes the form of multi-criteria based decision analysis 

(MCDA) which is a robust, logical approach to meeting multiple demands. The term MCDA covers 

a wide range of approaches to structured decision making, using ranking and multiple 

stakeholders, or individual decision makers as appropriate. MCDA comprise four stages:  

1. Structuring and framing the decision problem;  

2. Articulating preferences;  

3. Aggregating alternative preferences;  

4. Making recommendations.  

In this case, the decision problem is structured as a need to predict site-specific changes in crop 

and soil processes and resulting GHG balance and ET, for land use change to perennials. 
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For stage two, the relative importance of criteria must be considered, and this may incorporate 

weighting and ranking, or a compensatory approach where poor performance on one criterion 

can be balanced by good performance on another criterion (Guitouni and Martel, 1998). 

Alternatively, where several criteria are essential, a conjunctive method, as used by Hwang and 

Youn (1981) and Chen and Hwang (1992), may be necessary, where all approaches not meeting 

these key criteria are ruled out. A wide range of other approaches to MCDA have been developed 

for different situations. A comprehensive review of MCDA is provided by Guitouni and Martel 

(1998). 

 

The objectivity of the MCDA approach is dependent on the objectivity of the criteria identification 

in the first two stages, so it is crucial that a transparent approach is used, based on appropriate 

stakeholder input, or data and literature. MCDA often incorporates stakeholder input for criteria 

identification, however a literature review may be used in proxy. Therefore, the purpose of stage 

two is to identify what potential impacts have been discussed in the literature, and use these to 

map out criteria to be represented by the chosen approach. The decision problem structure is 

then used to outline the relative benefits of different assessment approaches, and the relative 

importance of different factors to be included in the assessment according to the second stage of 

MCDA. These considerations are then aggregated to select an appropriate MCDA approach, and 

an appropriate set of criteria on which to base recommendations.  

3.4 Required representation of potential 
agroecosystem impacts of land use change for 
perennial energy crops 
 

Land use change for perennial energy crops often represents major change to tillage regime, 

evapotranspiration, crop rooting depth and seasonality of land cover. This will have knock on 

effects on soil chemical and physical properties such as texture, water filled pore space (WFPS) 

and available C and N, and resulting GHG emissions of CO2 and N2O.  In the case of conversion 

from grassland to perennial energy crops, there is also the issue of soil disturbance, resulting in 

loss of stored C and N through mineralisation and decomposition. Also, water usage may differ 

from previous vegetation, affecting the catchment regime, and potentially limiting crop yield. 
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Hence, understanding these variables and how they interact may help to minimize negative 

impacts and to fulfill the emissions savings potential of bioenergy crops.  

 

An important review by Chen et al. (2008) makes a general assessment of existing N2O emission 

model characteristics, intended to inform researchers to select a model suitable for their 

purposes. This chapter builds on this, and similar reviews, by making specific assessment of model 

capability to represent an agroecosystem, in terms of soil C and N cycling and effects on of soil 

formation, and GHG emissions, as well as changes to ET, and how these might affect water 

resources or flood risk locally. Overall there is no existing comparative assessment of model (or 

sub model combination) suitability to predict these outputs and assess impact of land use change 

for perennial energy crops on a catchment. Figure 3.1 is a schematic representation of the 

conceptual model in Chapter 1 (Figure 1.1); it shows how the processes described below are 

linked, and how they interact to produce the desired outputs. It is difficult to include all processes 

in a model and the importance of some processes is uncertain; therefore it is necessary to assess 

literature and existing data to establish which processes are important and need to be included 

within the model.  
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Figure 3.1 Conceptual model of whole agroecosystem; includes the components and 
processes required to produce the desired outputs. This is a schematic version of Figure 
1.1 in Chapter 1, produced to enable additional processes to be included. 
 

Previous land use is highly significant, and in some cases, removal of existing biomass and 

disruption of soil to allow cultivation of energy crops causes CO2 emissions which exceed any 

savings from avoided fossil fuel use (Fargione et al., 2008).  These may be significant for 

conversion of mature grassland, whilst in the case of arable land, there is annual soil disruption 
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and plant biomass removal, meaning these losses need not be considered. In either case, soil C 

and N levels resulting from the previous ecosystem will contribute to nutrient cycling and crop 

growth in the new ecosystem (Brandão et al., 2011; Fargione et al., 2008; Searchinger et al., 

2008). For useful prediction, the model must therefore be able to simulate any biomass removal 

and soil disruption, soil conditions produced by previous land use in the form of N and C storage 

and availability, as well as the new crop and management regime, and how all of these interact to 

produce the new crop-soil-atmosphere system.  

 

After change in land use, there is a variable period before a catchment reaches steady state due 

to: nitrogen retention in soils and aquifers; time taken for establishment of new vegetation 

(canopy, roots etc.); and rates of processes, such as soil organic matter accumulation, decay or 

erosion (Breemen et al., 2002, Keolian and Volk, 2005, Darracq et al., 2007). Models often predict 

equilibrium at steady state for a given system, whereas to simulate land use change, it is 

necessary to also represent the transition period (Hutchins et al., 2010). This is particularly 

important due to the impacts of small scale short term organic matter fluxes on crop growth 

(Stockle et al., 2012) and variation in the proportion of N lost from soil as N2O emissions according 

to ephemeral soil properties.  

 

The first year’s model results will not be representative of a full cycle average for C or N, since C 

accumulation is greatest during establishment, as identified in Section 1.2.3, whilst N uptake is 

initially high, then lower in later years due to internal N recycling by both SRC willow and 

Miscanthus. The model must therefore be run over at least a full growing cycle for both SRC 

willow and Miscanthus (25 and 20 years respectively) to predict total changes. It would be 

preferable to run the model until equilibrium is reached, if applicable, so the impacts at steady 

state can also be assessed. Disturbance of soil at the end of each growing cycle is likely to prevent 

a constant equilibrium from being reached; accumulation from a second growing cycle can be 

expected to offset emissions from decomposition of old roots, which may mean a dynamic 

equilibrium is reached as opposed to a constant level of storage (Keoleian and Volk, 2005). 

Therefore the model could be run for multiple growing cycles to gain a more complete picture of 

long term impacts. Basset-Mens et al. (2006) highlight the difficulty of creating and validating 

models to predict steady state for a system which is unlikely to reach equilibrium in reality due to 

the constant changes in farming practices and potentially long timescales of slow transport and 

storage of N.   
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As discussed in Section 1.4.1, soil C storage under perennial energy crops is likely to exceed that 

of the previous ecosystem, particularly at arable sites. This is due to higher inputs, in the form of 

leaf litter and root exudates, compared to arable crops where less aboveground material remains 

after harvest. Soil organic matter (SOM) exists as a range of compounds with different availability 

and reactivity; C and N flows generally make up a small proportion of the store, annual turnover 

may be around 2%, whilst short term changes can have significant impact on crop growth 

processes. To give useful simulation of this multiscale system, pools can be separated according to 

turnover rate and composition, for example; microbial, litter, and labile and passive humus 

(Parton et al., 2010; Porporato et al., 2003). Since data are not available on SOC distribution over 

the relevant soil pools, the model must be able to assign these partitions according to land use 

and management history. 

 

As well as storage pool, the model should represent variation in decomposition according to soil 

pH (relationship varies with soil type), soil moisture (decomposition rate increases with moisture 

until oxygen availability becomes limiting), and temperature (tends to increase decomposition 

rate e.g. Dao (1998)). It would also be useful to represent variation according to proportions of: 

clay (provides physical protection Parton et al. (1994)); organic matter (increases soil water 

holding capacity Gupta and Larson (1979)); and sand (increases decomposition rate and CO2 loss 

Parton et al. (1987)). Decomposition should be represented both as transfer of C to a more active 

pool and loss as CO2 from microbial respiration (Stockle et al., 2012). Since C and N are coupled in 

soil, transfers of N out of pools should occur according to the C:N ratio, and N immobilisation or 

mineralisation should be simulated to ensure that the C:N ratio of the receiving pool is also 

maintained (Del Grosso et al., 2008; Parton et al., 2010; Porporato et al., 2003). As mentioned in 

Section 1.4.2, organic matter inputs associated with SRC willow and Miscanthus tend to have high 

C:N; in this case transfers of N from more available to less available pools will simulate impacts on 

N availability via increased N immobilisation.   

 

To represent the previous arable system, the model must be able to represent tillage in terms of 

the oxygenation and physical breakdown of organic matter which will cause transfers to more 

available pools and increased gaseous losses of C. If there is no explicit representation of soil 

particle aggregation, a proxy factor will suffice. 
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Since tillage increases erosion and aerates soil increasing decomposition rates, and resulting CO2 

loss from soil, the no till practice for perennials should encourage SOC accumulation producing a 

CO2 sink (Ball et al., 1999; Keoleian and Volk, 2005; Li et al., 2005a). However, as discussed in 

Section 1.4.2.3,  there are also potential negative environmental impacts; since C and N cycles are 

coupled, it has been suggested that increase in soil C with NT practice may stimulate microbial 

activity and release of N2O  (Ball et al., 1999; Li et al., 2005a) or that reduction in soil porosity 

under NT may create anoxic conditions increasing denitrification (Heinen, 2006; Soane et al., 

2012), whilst elsewhere reduction in N2O emissions under NT is attributed to reduction in 

decomposition and associated N availability (Metay et al., 2007), or reduction in porosity reducing 

oxic conditions for nitrification (Hellebrand et al., 2008). As described in Section 1.4.2.3, 

interaction between soil drainage, the dominant N2O producing process, N availability for that 

process, and change in soil pore oxygen status will dictate whether N2O emissions increase or 

decrease under NT. To represent this interaction it would be useful if the model could simulate 

soil porosity changes induced by tillage, and their impacts on WFPS. 

 

New land management will interact with precipitation regime, leaf litter inputs, and fertiliser 

application schedule and relative timings of uptake. Lower agrochemical requirements give 

perennial energy crops potential to reduce N2O emissions compared to annual arable crops 

(Cherubini et al., 2009) and field observations for SRC willow and Miscanthus as discussed in 

Section 1.2.4.6 have recorded reduction in N2O where fertiliser was not applied. The extent of 

N2O emissions reduction will vary by site, according to the interaction of N inputs, N storage, and 

factors controlling rates of N2O emission both before and after land use change. It is therefore 

necessary to represent these processes, rather than apply default emission factors (EFs) to predict 

emissions based directly on fertiliser values (Chamberlain et al., 2011; IPCC, 2006). 

 

Because of the complexity of nitrogen cycling it is useful to identify key processes controlling N 

flows  to ensure that these are also properly represented in the chosen model (Delon et al., 2007). 

In Chapter 1, Section 1.4.2.1 nitrification and denitrification controls were identified as; soil 

texture and lateral water movement, which control WFPS and diffusion; temperature, which 

controls microbial activity and nitrogen availability for reaction. Although microbial population 

dynamics are a crucial control, changes may be represented implicitly through the relationship to 

other variables (Del Grosso et al., 2000; Müller et al., 1997). For the UK, it is also necessary to 

model impacts of freezing temperatures, which reduce oxygen diffusion into soil, can kill microbes 

and reduce available soil water (Frolking et al., 1998).  
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Chatskikih et al. (2005) note that assessments of N2O  emission models often focus on capability 

to replicate timings of emission peaks and troughs (e.g. Beheydt et al., 2007; Chen et al., 2008; 

Grant and Pattey, 2003; Li et al., 2005b). Given that N2O emissions are a result of highly nonlinear 

reactions affected by changes in soil pore oxygen status, time series predictions are unlikely to be 

accurate without incorporation of complex data on water movement and spatial heterogeneity of 

soil (Del Grosso et al., 2005; Li et al., 2005b). However, since N2O emissions peaks make a 

significant contribution to annual totals, failure to simulate these can create inaccuracies in longer 

term predictions (Beheydt et al., 2007; Bessou et al., 2010). The temporal resolution of a model is 

also important in terms of process representation, for example, the DNDC model uses a finer 

temporal scale to model denitrification because of the rates and variability of the process;  a finer 

(daily) timescale version of the  CENTURY model has shown improved performance (Chen et al., 

2008).   

 

Soil saturation, which varies with water movements and diffusion is crucial in controlling oxygen 

availability and therefore decomposition, nitrification and denitrification; as well as diffusion and 

release of produced gases (Metivier et al., 2009).  Given spatiotemporal variation in controlling 

processes, model representation can be expected to perform better at an appropriate resolution, 

incorporating data on this variation. Different processes may become important at different 

spatial scales; to produce accurate representation of spatiotemporal variation in gas emission, 

small scale processes must be considered (Giltrap et al., 2010). By taking a distributed approach 

to simulating processes closer to the scale at which they are occurring, incorporating spatial 

variation in controlling variables has the potential to also produce a more accurate average value; 

assuming that data on the controlling variables is accurate. There is a trade-off; although 

aggregating processes enables reduction in input data making the model easier to apply to data 

poor sites, this comes at the cost of reduced quality of output data. 

 

Models such as Ecosys, which include topographic data, simulate water movement through the 

landscape, and associated changes in soil saturation and oxygen availability (Grant and Pattey, 

2003). Soils are often highly heterogeneous, hence variability texture is also a key control on 

spatial variation in WFPS (Boyer et al., 2006; Li et al., 2005a). N2O flux is also affected by spatial 

variation in soil N concentration (Hellebrand, 2006). A lack of distributed data on soil texture and 

N content may necessitate use of interpolated or average values, which may negate the 
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improvement on a lumped approach (Chen et al., 2008; Potter et al., 1996; Schoumans et al., 

2009a). Without representation of spatial variation in controlling factors, it has been suggested 

that explicit representation of microbial processes will not improve model performance (Chen et 

al., 2008; Potter et al., 1996). 

 

Elsewhere it has been suggested that a lumped approach is sufficient to simulate N2O emissions 

at annual field scale, as required for identifying the impacts of change in land use (Del Grosso et 

al., 2005; Del Grosso et al., 2008; Grant and Pattey, 2003). Therefore in spite of high 

spatiotemporal variability, assessment will focus on model ability to predict field scale average 

impacts of change in conditions (Chatskikh et al., 2005). 

 

Vertical spatial resolution must be considered as well as horizontal; discretisation into layers 

enables the model to represent vertical water movement.  C and N cycling controls such as 

texture, porosity and soil water content vary with depth, and deeper soil layers may make an 

important contribution to N2O emissions (Bessou et al., 2010; Rochette et al., 2008). Accurate 

representation of changes in soil texture with depth would significantly increase data demand; 

the site data compiled in Section 2.10 only includes textural properties for two layers. However by 

splitting the soil into more layers, representation of soil water movement and resultant soil water 

content will be greatly improved, so multi-layered models should still be preferred. 

 

Based on an opinion study for switchgrass by Jensen et al. (2007) not all farmers with suitable 

land would be keen to grow perennial energy crops; thus it is likely that land use change would 

occur at plot or farm scale as opposed to over an entire region, and plot scale representation is 

most appropriate. Plot scale is a convenient level of discretisation due to spatial variability in 

current land use and its vintage. However; as well as affecting the soil and ecology within the 

altered plot, there will be interaction with atmosphere and impacts from and to areas upslope 

and downslope respectively, meaning adjacent land use and landscape composition are also 

relevant (Lane et al., 2009). Therefore there is a choice between; modelling the full catchment; or 

modelling at plot scale (including atmosphere) and making separate consideration of the impact 

of altered ET and leaching on the wider area. Simulating land use and site properties for an entire 

catchment, as well as the hydrological linkages between plots as discretised would significantly 

add to computational demands. Additionally plot location within the catchment would be 

different for other sites of the same “typical” profile as identified in Section 2.10, hence a whole-
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catchment approach would make it more difficult to make inferences for other sites based on 

output. Therefore modelling will be performed at plot scale, and consideration of wider 

catchment impacts will be made separately.  

 

As well as direct N gas emissions from soils, the model must be able to represent indirect 

emissions from leached or stored nitrates, in particular due to proportionally high emissions from 

leached N (Groffman et al., 2000b; Nevison, 2000; Reay et al., 2009). Soil profile representation  is 

therefore also important to simulate leaching and associated indirect downstream emissions 

which may offset changes in field emissions (Chen et al., 2008). Additionally, the model must not 

assume annual turnover rates, since N released from storage can have greater impact on fluvial N 

concentration than current application rates (Baresel and Destouni, 2006; Nevison, 2000). 

 

As indicated in Section 1.4.4; due to variation in relative productivity and timing of growing 

season, change in rates of ET will vary between sites, and may affect water availability and flood 

risk, as well as whether water availability limits yields (McKendry, 2002; Rowe et al., 2009; 

Vanloocke et al., 2010). It is therefore useful to represent water usage and availability in terms of 

both catchment and productivity impacts, using explicit representation of crop growth and water 

uptake, according to local climate and soil data (Aylott et al., 2008; Lovett et al., 2009; Richter et 

al., 2008). To do this, the model must have capability for representing differences between the 

crops considered, in terms of timing of growth processes, and water uptake.  

 

Representing nutrient cycling for the specific crops is also important, since inputs from crop to soil 

feed back into representation of soil C and N cycling; forms of nutrient input from crops include 

root exudates and dead root matter, senesced leaves and residue left after harvest (Heaton et al., 

2009; Jørgensen and Schelde, 2001; Jug et al., 1999). Models which have already been 

successfully validated for specific perennials will be preferred, since relevant process 

representation can be ascertained. 

 

Models tend to perform better in a similar environment to where they were developed, and may 

sometimes fail to include processes occurring at new sites such as snow melt and fluvial retention 

(Frolking et al., 1998; Groffman et al., 2000a; Schoumans et al., 2009a). Therefore a geographical 

scope must be outlined for each model, in terms of development location, and validation regions.  
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Due to the required range of outputs, it may be necessary to couple models; in particular, indirect 

GHG emissions tend not to be a standard output for agroecosystem models. Potential impacts of 

coupling must be considered; accuracy can be reduced depending on quality and suitability of 

data feeding into the coupled model (Smith et al., 1997). Model complexity may increase scope, 

however simple models may perform better when coupled, and structure may be more important 

than complexity in determining model accuracy (Perrin et al., 2001; Smith et al., 1997). While 

structure and complexity may be considered, validation performance is likely to be most 

indicative of suitability.  

3.5 Compiling a database of suitable models 
 

The next step is to identify a process based model which can fulfil the requirements outlined in 

Section 3.4, and be applied at individual sites where land use change is planned, perhaps as part 

of a Tier 3 IPCC approach. There are a great number of models available which could be used to 

predict part(s) of the required outputs; therefore it is not possible to consider every existing 

model. Given the availability of models meeting the review criteria, it is not necessary to build a 

new model for application to perennial energy crops, although it may be useful to adjust existing 

models to refine relevant processes and eliminate any unnecessary input data requirements. 

 

A database of several models widely utilised by existing studies (for which it is therefore possible 

to establish reliability, scope etc.) was compiled from the literature. A Scopus search was run to 

find models using “TITLE-ABS-KEY-AUTH (soil greenhouse gas emission model)”; this gave 765 

results. Of these 765 results several models were featured strongly; 325 discussed the IPCC 

methodology, 124 DNDC, 83 DayCent (182 CENTURY), 11 Expert-N, 19 ecosys, 1 hole in the pipe, 8 

artificial neural networks, 4 NLOSS, 3 WNMM, 3 CASA, 10 STICS, 8 FASSET, 10 InfoCrop, 2 NL-CAT, 

7 FullCAM (12 Roth C), 2 MCROPS and MGRASS, 1 INCA, 29 EPIC, 5 CropSyst, 13 APSIM, 4 3PG 

simulation model and 23 CERES.  

 

Detailed model descriptions can be found in the IPCC Guidelines For National Greenhouse Gas 

Inventories (IPCC, 2006a) for the IPCC methodology; Davidson et al. (1998) for HIP; Ryan et al. 

(2004) for ANN;  Brisson et al.(1998) for TNT-STICS-NEMIS; Aggarwal et al. (2006) for InfoCrop;  
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Potter et al. (1996) for CASA; Renaud et al. (2006) for NL-CAT; Lokupitiya and Paustian (2006) for 

FullCAM; Roelandt et al. (2005) for MCROPS and MGRASS; Whitehead et al. (1998) for INCA; Chen 

et al. (2008) for DNDC, DayCent, FASSET, Expert-N, Ecosys, NLOSS, WNMM and CERES; Williams 

(1990) for EPIC;  Stockle et al. (2003) for CropSyst; McCown et al. (1996) for APSIM; Landsberg et 

al. (1997) for the 3PG simulation model. 

3.6 Comparison 
 

As indicated in Section 3.4, multiple criteria must be taken into account in choosing a model 

appropriate to the purposes of this thesis, and selection requires a transparent, well-structured 

decision making process, for clarity. Model criteria were therefore established based on the 

processes which would be affected by land use change for perennials and appropriate resolution, 

and models unable to meet these requirements were ruled out.  

 

From Sections 3.2 and 3.4, primary criteria to compare process based models were identified as; 

 Representation of complete agroecosystem  

 Potential to produce required output (diamond boxes in Figure 3.1) 

 Explicit representation of required soil, crop and land management processes (square 

boxes in Figure 3.1)  

 

Traditionally MCDA incorporates weighting of criteria at this stage (stage two); however as 

illustrated in Figure 3.1; crop soil and site properties interact to control output. Process based 

models are unlikely to perform well unless the whole system and all relevant processes are 

represented, making it difficult to separate the importance of these primary criteria. As a result an 

analytic hierarchy process ranked many criteria (soil chemical and physical properties, soil 

nutrient cycling, crop growth and management, site specific interactions between variables, 

whole agroecosystem representation) equally (Del Grosso et al., 2005; Frolking et al., 1998; 

Groffman et al., 2000a; Schoumans et al., 2009a; Smith et al., 1997). Therefore a partially-

compensatory MCDA framework was adopted as per Guitouni and Martel (1998), and models not 

meeting all primary criteria were excluded at the initial assessment stage, with lesser or study-

specific criteria grouped in a second table. Indirect emissions do not affect representation of 

other processes, and could be represented by a separate sub-model. However, the high IPCC 
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indirect GHG EF suggests that failing to represent indirect emissions would give poor 

representation of the system impacts, so potential to meet this output was included as a primary 

criterion (Groffman et al., 2000b; Nevison, 2000). Table 3.1 shows application of these primary 

criteria to identified models. Although the analytic hierarchy process was performed by an 

individual decision maker, the extensive use of literature to support rankings should ensure 

robust objectivity. 

 

Microbial population dynamics correlate with other parameters and may be represented 

implicitly, and hence were identified as of lesser importance by the analytic hierarchy process (Del 

Grosso et al., 2000; Müller et al., 1997). Therefore models unable to represent these processes 

will not be ruled out, but this ability will be considered as a limiting factor. 

 

Since resolution appears to be of secondary importance, this was included in a second criteria 

matrix in Table 3.2, along with locations and crops to which the model has been applied (Del 

Grosso et al., 2005; Del Grosso et al., 2008; Grant and Pattey, 2003). These secondary criteria are 

of varying importance depending on the location, crops and data availability of the study in which 

a land use change model is required; in the case of this study, it is preferable that the model has 

been applied to SRC willow and or Miscanthus in the UK or Europe.  

 

3.6.1 Aggregating alternative preferences: application of 
primary criteria 
 

Given the need to apply the model at sites where calibration data are unavailable, non-process-

based models were ruled out first.  

 

Tiers 1 and 2 of the IPCC methodology apply a statistical approach to calculate N2O emissions 

from fertiliser input multiplied by an EF (which may be specific to country and land use type) and 

soil C loss from use of inventory values (IPCC, 2006a). These approaches may be applied to assess 

average GHG emissions associated with land use change for perennial energy crops; however they 

cannot identify how these vary with site specific factors. 
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MCROPS and MGRASS are empirical models, which use statistical relationships to calculate N2O 

emissions according to fertiliser input and seasonal climate variability, to improve on the 

generalised factors used by the IPCC tier 1 approach (Roelandt et al., 2005). Artificial neural 

networks (ANN) use recursive pattern recognition techniques and can be applied to optimise 

calculation of statistical relationships between input and output data; excellent validation 

performance has been observed for prediction of daily N2O from climate and N availability 

properties (Ryan et al., 2004). Due to the lack of appropriate calibration data for the sites to be 

modelled in Chapter 5, ANN and MCROPS and MGRASS may not give good representation, and 

are therefore ruled out. 

 

Where the data demands of a process based model cannot be met, one of these models could be 

applied if it had been calibrated at a similar site. However predictions will be less reliable than for 

calibrated sites, or than from an appropriate process based model. Having ruled these statistical 

models out, the remaining models identified from the Scopus search were then compared on 

primary criteria (see Table 3.1). 
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Table 3.1 Primary criteria to select a model capable of representing impacts of land use 
change for perennial energy crops. Where models can be ruled out due to a failure to 
meet key criteria this is stated. References are given as subscript numbers, and cited at 
the end of the table. 
  Full 

agroecosystem 
Processes modelled explicitly Outputs met/ 

Potential to produce all output 

TNT2 (TNT-
STICS-NEMIS) 

Full 20. Separate root and shoot growth, 
tillage, water balance, leaching, 
soil aquifer exchange and riparian 
zone circulation soil N, C and 
temperature. 20.22.35. Ruled out: 
No separation of slow and fast 
soil pools.  

Direct GHG emissions, leaching, 
ET, yield, SOM. 20. 22. 35. 
Downstream N transformation 
can be separate or coupled. 

INCA Ruled out: 
Partial 26. 

Nitrification and denitrification, 
seasonal average plant uptake. 
Surface and subsurface flow 
pathways, river flow and N 
concentration and 
transformation 26.  

Direct and indirect N GHG 
emissions, ET, SOM.  26. 
Requires additional crop model 

FullCAM 
(CAMFor, 
CAMAg, 
GENDEC, 
Roth-C) 

Ruled out: 
Partial 32. 

Soil C turnover, separated slow 
and fast C pools, residue 
decomposition, tillage, 
afforestation/deforestation 24.  

Direct C GHG emissions, SOM. 32. 

24. 
Requires additional sub models 
for N, yield and leaching. 

Hole In the Pipe Ruled out: Soil 
system only. 16.  

Nitrification, denitrification, 
biological assimilation and 
lumped non biological retention 
reactions 16. 

Direct GHG emissions, SOM. 16. 
Requires additional sub models 
for ET, yield and leaching. 

CASA (19. 
Describe soil 
component as a 
“HIP” method) 

Coupled crop 
and soil system 
submodels. 18. 

19. 

Plant carbon fixation, nutrient 
allocation, litterfall, separated 
slow and fast coupled C and N 
pools, N mineralisation and 
immobilisation are represented 
implicitly according to C cycling 19. 
No ecological succession, 
compaction, or irrigation, implicit 
representation of tillage 18. 

Direct GHG emissions, SOM, NPP 

18. 19 
Ruled out: N leaching not 
modelled, actual ET not modelled 

6. 

CERES-NOE Full 2. Nitrification, denitrification, 
separated slow and fast coupled 
C and N pools, water movement 
and nutrient leaching. No 
methane balance or gas diffusion 

2. NOE2 represents compaction 
and tillage. 36. 

Direct GHG emissions, SOM, ET 
and yield. 2. 
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EPIC Full 38. Erosion, nitrification, 
denitrification (only at > 90% 
WFPS), separate root and shoot 
growth, nutrient uptake, water 
flows, tillage, N mineralisation 
and immobilisation 38.  C cycling 
routines from DayCent added 39. 
Ruled out: Trace gas emission 
from soil not modelled 40. Crop 
representation simplistic and 
generic 41. 

C and N loss from soil, yield, SOM.  
leaching, ET 38. 

CropSyst Full 41. Net  mineralization, nitrification, 
denitrification,  tillage, irrigation 

41.  crop growth, residue 
decomposition, slope runoff, 
erosion, freeze thaw 43. Separated 
slow and fast C pools, N2O 
emissions 42. 

ET, yield, changes in soil N and C 
leaching 41., direct GHG emissions 

42. 

APSIM Full 44. N mineralisation, N 
immobilisation and nitrification, 
denitrification 45. Erosion, crop 
growth, soil C 44. 

Yield, leaching, ET, soil C 44. 
Adapted to give N2O emissions 46.  

3PG Ruled out: 
Crop system 
only. 47. 

Root growth, multiple shoot 
growth, soil water balance 47. 

Yield, ET 47. 

Ecosys Full 2. Freeze thaw, multiple crop layers, 
leaf and root vertical distribution, 
tillage, simultaneous 
denitrification and nitrification 
lateral flows simulated from 
topography, microbial dynamics, 
separated slow and fast coupled 
C and N pools 8. 11. 33. 

Direct GHG emissions, leaching, 
yield, ET, SOM. 2. 10. 
Downstream N transformation 
can be separate or coupled. 

NLOSS Full 2. 28. 29. Microbial dynamics, separated 
slow and fast coupled C and N 
pools, simultaneous 
denitrification and nitrification, 
water/gas/heat translocation, not 
tillage or freeze-thaw 

1. 21.13. Ruled out: no 
representation of freeze thaw or 
variation in tillage 

Direct GHG emissions, ET, 
leaching, yield, SOM. 2. 28. 29. 
Downstream N transformation 
can be separate or coupled. 

WNMM Full 11. Freeze –thaw, tillage, separated 
slow and fast coupled C and N 
pools, simultaneous 
denitrification and nitrification, 
microbial dynamics. 

22. 7. 

Direct GHG emissions, ET, Yield, 
Leaching, SOM. 11. 2. 
Downstream N transformation 
can be separate or coupled. 
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InfoCrop Full 23. Microbial dynamics, separated 
slow and fast coupled C and N 
pools, simultaneous 
denitrification and nitrification. 
No soil tillage or cold temps. 9. 
Ruled out: no representation of 
variation in tillage 

Direct GHG emissions, leaching, 
ET, yield, SOM. 23. 
Downstream N transformation 
can be separate or coupled. 

ExpertN Full 6. 9. Freeze thaw, snow, tillage, 
separated slow and fast coupled 
C and N pools, simultaneous 
denitrification and nitrification, 
microbial dynamics. 1. 20. 31. 

Direct GHG emissions, ET, Yield, 
SOM, Leaching. 6. 9. 
Downstream N transformation 
can be separate or coupled. 

FASSET 
(agroecosystem 
submodel) (11. 
Describe N2O 
calculation as a 
“HIP” method) 

Full 2. 11. Grazing/cutting, separate root 
and shoot growth, tillage levels, 
separated slow and fast coupled 
C and N pools, freeze-thaw, 
simultaneous denitrification and 
nitrification, microbial dynamics. 

2.  

Direct GHG emissions, leaching, 
ET, SOM, yield. 2. 11. 
Downstream N transformation 
can be separate or coupled. Code 
available for coupling. 2. 

NL-CAT  
(ANIMO 
coupled with 
SWAP, SWQN, 
SWQL) 

Requires 
additional 
coupled 
external crop 
model 12. 13.  

Freeze –thaw, snowmelt, tillage, 
retention in surface waters, 
simultaneous denitrification and 
nitrification, microbial dynamics, 
can have external crop model. 2. 

14. 16. 

Leaching, yield, ET, SOM, 
extended for direct GHG 
emissions. 13. 31.12. 

DayCent Full 27. 7. Freeze –thaw, snow, tillage, root 
turnover rates (FORCENT), 
simultaneous denitrification and 
nitrification, separated slow and 
fast coupled C and N pools. No 
microbial dynamics. 17. 18. 19. 19. 23. 

Direct GHG emissions, ET, Yield, 
Leaching, SOM. 27. 7. 8. 
Downstream N transformation 
can be separate or coupled. 

DNDC Full 4. Freeze –thaw, cold temp (-5 
activation), snow coverage, 
weeding, tillage, water/gas/heat 
translocation, simultaneous 
denitrification and nitrification, 
microbial dynamics, separated 
slow and fast coupled C and N 
pools. 1. 5. 

Direct gas emissions, ET, Yield, 
Leaching, SOM. 4.5. 
Potential to couple to SWAT for 
downstream transformation, code 
available for coupling. 2. 34. 

ECOSSE Full 37. Tillage, separated slow and fast 
coupled C and N pools, 
simultaneous denitrification and 
nitrification. 37. 

Direct GHG emissions, ET, Yield, 
Leaching, SOM. 37. 
Downstream N transformation 
can be separate or coupled. 
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Waring, 1997) 

 

3PG, HIP, INCA, and FullCAM were ruled out as not representing linked crop-soil systems. In terms 

of required process representation, STICS does not separate SOM pools according to availability 

and rates of decay, and so was ruled out. NLOSS and InfoCrop are ruled out due to poor 

representation of tillage, which is crucial to modelling difference in management (Del Grosso et 

al., 2008; Li et al., 2005a; Rochette et al., 2008). NLOSS also cannot represent freeze thaw, which 

is crucial to representation of winter denitrification in temperate climates such as the UK (Frolking 

et al., 1998). EPIC does not represent trace gas emissions from soil, making it unsuitable for GHG 

predictions in its current form (David et al., 2009). 

 

Table 3.1 then lists which of the desired outputs of Direct and indirect GHG emissions, yield and 

ET are produced. Leaching is included where the model does not simulate  indirect GHG, since 

leaching can be used to give a value for indirect fairly easily (Gassman et al., 2007). CASA was 

ruled out due to not simulating leaching or actual ET. 

 

All of the remaining models can represent rain, flooding and irrigation, gaseous losses from soil, 

crop uptake and growth, fertiliser and residue application, tillage and simultaneous denitrification 

and nitrification; using partitioning based on WFPS or aerated fraction of soil (Chen et al., 2008; 

Chirinda et al., 2010; Frolking et al., 1998; Li et al., 2000; Renaud et al., 2006). The remaining 

models are; NL-CAT, DNDC, DayCent, Expert-N, Ecosys, WNMM, CERES-NOE, ECOSSE, CropSyst, 

FASSET, APSIM. 
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Of these, some have limitations in representation of certain processes which must be taken into 

account. DayCent, WNMM and CERES-NOE don’t represent SOM below 20 cm, so conclusions 

cannot be drawn for changes at greater depth (Chen et al., 2008; Del Grosso et al., 2008; Del 

Grosso et al., 2000; Müller et al., 1997). However since deeper soil tends to consist of older, less 

available C, and since NT means no OM inputs to deeper layers from mechanical mixing, this may 

be of limited importance (Jenkinson, 1992).  DayCent also does not explicitly model microbial 

dynamics (Del Grosso et al., 2008). FASSET applies a constant value for N2:N2O ratio of emissions, 

and function parameters for denitrification and nitrification controls are derived from site specific 

data, which may impede performance at new sites (Chen et al., 2008). 

 

In representing the same processes, these models tend to draw from the same theories, often 

applying the same approaches or equations, for example, the empirical equations to represent 

solute movement, and the crop model in WNMM are both based on EPIC (Li et al., 2007), whilst 

EPIC takes on soil C partitioning equations from DayCent (Farina et al., 2011) and EXPERT-N can 

incorporate the CERES crop model (Chen et al., 2008). Given the history of model development, 

whereby a model is designed to solve a specific problem in the context of specific (usually 

localised) sites, the duplication identified in the literature search is, to some extent, inevitable. 

 

3.6.2 Application of secondary criteria and resulting 
recommendations  
 

The remaining models were then assessed and compared in Table 3.2 on the basis of the 

following secondary criteria; 

 

 Existing studies applying the model in the UK and to Miscanthus and SRC willow; it would 

be advantageous if the model selected had already been tested and parameterised for UK 

conditions and perennial crop physiology and management. However this is not crucial 

provided that the required processes can be represented. 
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 Resolution; although this study does not require fine resolution output (lumped annual 

output is sufficient), the spatial and temporal scale of processes means that finer 

resolution models may be expected to perform better.  

 

Preference should be given to models tested and developed for appropriate locations and crops, 

and of a resolution appropriate to study data availability. Discussion will also consider processes 

which are not represented explicitly by all models; variation in tillage (which is crucial to 

modelling difference in management (Del Grosso et al., 2008; Li et al., 2005a; Rochette et al., 

2008)) and microbial dynamics (which may influence spatiotemporal variation in activity (Del 

Grosso et al., 2000; Müller et al., 1997)).  

 

 

 

 

Table 3.2 Secondary criteria to select an appropriate model from those capable of 
representing impacts of land use change for perennial energy crops. References are 
given as subscript numbers, and cited at the end of the table. 
 Regions 

applied 
Crops 
parameterised for  

Spatial resolution Temporal 
resolution 

NL-CAT  
(ANIMO 
coupled 
with 
SWAP, 
SWQN, 
SWQL) 

Europe 3. 1. Grassland, 
woodland, annual 
crops 1. (option to 
use external crop 
model) 

1m vertical / 
horizontal 0.01 km2 
(1 ha) up to 100 km2 

3. 

Daily  

3. 

DNDC USA, Canada, 
Australia, New 
Zealand, 
Europe, China 
and India 4. 5. 

Grassland, forest, 
annual crops, 
perennials 4. 6. 16.  

Region mode; 
heterogeneous 
polygons – use 
coarsest resolution 
dataset  
Site mode; lumped 6. 

Daily input data and 
decomposition. 
Hourly 
denitrification 
handling 4. 6. 
 

DayCent USA, Canada, 
Australia, New 
Zealand and 
Europe 4.7. 

Grassland, forest, 
annual crops 4. 8. 

 

Lumped at plot scale 

9. 
Daily 4.  

Expert-N Germany, UK, 
USA and 
Canada 4. 10. 

Annual crops 4. Lumped at plot scale 

12. 
Daily 11.  

Ecosys USA and 
Canada 4. 

Grassland, forest, 
annual crops 4. 

Spatially referenced 
(coupled with GIS) 

Hourly 13.  
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e.g. 50m by 50m 28. 

13. 

WNMM China, 
Australia, 
Korea and 
Mexico 4. 

Grassland, annual 
crops 4. 

Spatially referenced 
(coupled with GIS)  
100-1000 m2 
common for 
regional 11. 15. 

Daily/ hourly 4. 14. 
 

CERES-
NOE 

France, Puerto 

Rico 2. 
Annual crops 2. Spatially lumped at 

plot scale, or may be 
applied at regional 
scale with 
compromises on 
input data 4. 

Daily 2. 

ECOSSE Scotland, 
France, 
Germany 17. 18. 

Grassland and forest 

17. 18.  
Spatially lumped, 
input parameters as 
available for 
regional scale 18. 

Daily. 18. 

CropSyst Mediteranean 
Argentina, 
Australia 21. 22. 

Arable 21. fallow 22. Spatially lumped at 
plot scale, or may be 
applied at regional 
scale with 
compromises on 
input data 4. 

Daily 20. 

FASSET Europe 24. Grassland, legumes, 
ryegrass and catch 
crops 24. 25. 26. 

Lumped at plot scale 

27. 
Daily 4. 24. 

APSIM Australia 29. Sugarcane cereal 
and grain legumes 

28. 29. 

Lumped at plot scale 

28. 
Daily 28. 

Refs. 1. (Wolf et al., 2005) 2. (Gabrielle et al., 2006) 3.(Schoumans et al., 2003) 4.(Chen et 
al., 2008) 5.(Brown et al., 2002) 6.(DNDC User Guide, 2009) 7.(Abdalla et al., 2010) 
8.(Davis et al., 2010) 9.(Del Grosso et al., 2005) 10.(Frolking et al., 1998) 11.(Li et al., 
2007) 12.(Stenger et al., 1999) 13.(Metivier et al., 2009) 14.(Li et al., 2005a) 15.(Li 
and Chen, 2010) 16.(Gopalakrishnan et al., 2011) 17.(Smith et al., 2010a) 18.(Bell et 
al., 2011) 19. (Nelson, 1993) 20. (Stockle et al., 2012) 21. (Pala, 1996) 22. (Monzon, 
2006) 23. (Silgram et al., 2009) 24. (Chatskikh et al., 2005) 25. (Doltra et al., 2010) 26. 
(Berntsen et al., 2006) 27.  (Hutchings et al., 2007) 28. (Huth et al., 2010) 29. 
(Thorburn et al., 2010) 
 

 

WNMM, DayCent and DNDC have been applied over the widest geographical scope.  However, 

the models identified are only as good as their performance at validation, and this must be 

considered both in model selection, and also in inferences based on model output. Good 

performance over a wide range of geographic regions suggests good representation of processes, 

although further work on validation in England or similar climate is necessary where not already 

performed. NL-CAT, DNDC, DayCent and FASSET have been applied in Europe, and ECOSSE and 

Expert-N have been tested in the UK; all of these could be expected to be suitable for scenario 

analysis in England, in terms of being able to represent the relevant climate conditions, although 
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more detailed assessment of validation performance under relevant conditions should be made 

for the chosen model. Further validation studies could increase the geographical scope of the 

other models, or highlight regions where they should not be applied. Models cannot be tested for 

future climates, which may affect longer term predictions.  

 

In terms of crops, NL-CAT, Ecosys, DNDC and DayCent are well tested over a useful range of crop 

types (annual arable crops, and perennial grassland and forest) and should therefore perform well 

for land use change to perennial energy crops, although calibration and validation may be 

necessary to add specific new crop types. To see which models have been specifically applied to 

SRC willow or Miscanthus, a Scopus search of the literature was performed using “((TITLE-ABS-

KEY(Miscanthus) OR TITLE-ABS-KEY( SRC willow)))”.  None of the papers found applied Ecosys, 

Expert-N, CERES-NOE, WNMM, ECOSSE, CropSyst, FASSET or APSIM. NL-CAT requires an external 

crop model, so it is possible that a SRC willow or Miscanthus model could be coupled, however, 

no articles using NL-CAT for these crops were identified. MISCANMOD or the FORTRAN modified 

version MISCANFOR are often used to predict Miscanthus yield. However, predictions are only of 

non-nutrient limited growth, and additional modelling is necessary to assess change in soil C (e.g. 

using DNDC (Hastings et al., 2009), or the Matthews and Grogan model (Mishra et al., 2013)). 

 

DayCent has been calibrated for Miscanthus, using evidence for N fixation to balance N cycling 

and match observed yields (Davis et al., 2010). The model was subsequently applied regionally to 

look at GHG impacts of replacing corn with Miscanthus for ethanol production in the U.S.; 

simulated  yield and N2O emissions closely matched available field data (Davis et al., 2012). 

DayCent also has a separate option for modelling forest systems, which could be adapted to 

represent SRC willow. 

 

Gopalakrishnan et al. (2012) applied DNDC to model Miscanthus, with parameterisation values 

taken from the literature. Yield predictions for Miscanthus grown as a buffer strip in the U.S. 

Midwest were improved by incorporating evidence for N fixation from Davis et al. (2010). Yield 

predictions were reasonable, but overestimated for some years, and they suggest greater 

understanding of N fixation would improve model performance. The model is intended to 

simulate potential yield according to climate and nutrient factors, but does not take into account 

possible pests or other damage, which may prevent potential yield from being achieved.  The crop 

model for DNDC is relatively simple, with 12 parameters, compared to 108 in DayCent. 
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In terms of temporal resolution, all models implement at least a daily time-step, and are therefore 

capable of providing output more detailed than the annual values required. Of the models 

assessed; Ecosys, WNMM and DNDC implement hourly processing, at least for N cycling, which 

may be expected to give improved simulation of certain processes, although validation 

performance would be a better indicator of whether this results in improved prediction of annual 

average values.  

 

Of the models in Table 3.2, NL-CAT, Ecosys and WNMM can be coupled to GIS. Of these, only 

Ecosys can apply a distributed approach incorporating data on topography, however, since soil 

data compiled in Section 2.10 is at a 1km2 scale, there are no data on small scale variations in soil 

properties to represent how they interact with topography to produce WFPS as occurring in the 

field (Chen et al., 2008; Potter et al., 1996; Schoumans et al., 2009a). WNMM and DNDC apply a 

one dimensional representation of soil water, so there is no capability for factoring in impacts of 

topography or lateral subsurface water movement (Li et al., 2007). NL-CAT splits the modelled 

area into hydrologic response zones, and may therefore be appropriate for a more detailed site 

specific study incorporating impacts of landscape composition (Schoumans et al., 2003). 

 

Vertical spatial resolution varies significantly between the identified models; N-Loss uses 10 10 cm 

layers (Christensen et al., 2006) CropSyst employs a system of layers and sub-layers (Stöckle et 

al.), and FASSET (Chatskikh et al., 2005), APSIM (Vogeler et al., 2013),  Expert-N (Stenger et al., 

1999) and ECOSSE (Smith et al., 2010a) can also have at least 10 layers. Number of layers is often 

user defined, for example; NL-CAT can have up to 50 (Renaud et al., 2006), the soil-water 

component of DAYCENT has up to 10 (Lewis and McGechan, 2002), Ecosys can have up to 15 

(Amthor et al., 2001), WNMM has a user defined number (Li et al., 2007), DNDC varies between 

versions, soil layers may be fixed or user defined (Chirinda et al., 2010). The updated version of  

NOE has soil split into fine 1 cm layers, giving improved simulation of nitrification (Bessou et al., 

2010).  

 

DNDC uses layer discretisation to simulate C and N profiles over the top 50cm (DNDC User Guide, 

2009) and ECOSSE can simulate soil C cycling over at least the top 100 cm (Smith et al., 2010a). 

DayCent simulates lumped SOM cycling using water and oxygen availability for upper layers to 



 

133 

 

predict process rates, on the assumption that most soil respiration and nutrient cycling occurs in 

the top 15 cm (Parton at al., 1998). Following decomposition DayCent distributes mineralised NO3 

through all soil water layers for N2O calculations, whilst FASSET, WNMM and CERES-NOE only 

simulate N2O production in the top 20 cm of soil (Chen et al., 2008). Given that denitrification in 

deeper layers may make an important contribution to N2O emissions (Bessou et al., 2010), the 

approach applied by DayCent may be preferable. 

 

Depth is also important when representing deep rooting crops; Miscanthus roots may go 250 cm 

into the soil, so greater representation of depth would be advantageous in simulating root access 

to water (Christian 2006). There is significant variation between models in the depth of water 

movement simulated, for example N-Loss simulates only the top 100 cm (Christensen et al., 2006) 

whilst APSIM can simulate down to at least 200 cm (Huth et al., 2010). DayCent simulates 

evapotranspiration uptake from the top 210 cm of soil; although where a water table is simulated 

evaporation can draw up deeper stores of water, although direct root access to water at these 

depths cannot be simulated.   

 

Identified models are only as good as their process representation. The representation of tillage is 

particularly significant and often incomplete, for example DayCent represents an increase in 

decomposition immediately after tillage, but does not represent changes in bulk density for tilled 

versus no tilled systems. Similarly, WNMM only represents organic matter mixing, NL-CAT applies 

user-defined, as opposed to calculated values for bulk density, and Ecosys, CERES-NOE, ECOSSE 

and DNDC do not represent change in soil structure with tillage (Groenendijk et al., 2005; Li et al., 

1992; Li et al., 2007). Expert-N gives better representation of tillage, as some versions are able to 

simulate impacts on bulk density as well as mixing (Stenger et al., 1999). Expert-N is a flexible 

modular system for combining models, often recommended for testing which combinations work, 

however no studies are available showing calibration for perennial crops. Furthermore 

documentation in English is limited (Stenger et al., 1999), and the model is not currently available 

according to the research group website (Priesack, 2012). 

 

DayCent does not explicitly represent microbial dynamics; accuracy of output may be reduced by 

assuming that rates of microbial output can be inferred implicitly from the parameters controlling 

microbial processes (Del Grosso et al., 2000; Müller et al., 1997). However Potter et al. (1996) and 

Chen et al. (2008) suggest that improvement in accuracy is minimal where microbial processes are 
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not represented at sufficiently fine scale, and  Grant and Pattey (2003) and Boyer et al. (2006) 

suggest that information on topographically controlled saturation of soil is crucial to accurate 

representation of microbial activity. Of the models selected only Ecosys uses distributed microbial 

process representation and includes the impact of topography on lateral variation in soil water 

content. SWAT (coupled to ANIMO in NL CAT) includes lateral water flows for groundwater, but 

applies a vertical one dimensional approach for topsoil. Therefore explicit representation of 

microbial dynamics in most of the models considered here may not represent a significant 

improvement in performance. 

 

Whilst several of the identified models were suitable for this study, the DayCent model has been 

selected, due to good validation performance for prediction of yield and N2O emissions for 

Miscanthus (Davis et al., 2012) and because good performance outside of development region 

suggest that the model should be appropriate for England (Foereid et al., 2004b).  

 

Model verification is crucial due to limited understanding of many of the processes discussed, and 

the tendency of model equations to be based at specific location. It is important to base 

confidence in the model on performance at validation as opposed to calibration (Perrin et al., 

2001). Although validation is often based on GHG emissions, the temporal variability of emissions 

at field scale complicates the process; validation based on change in soil C and N and proxy values 

for gaseous emissions may be more reliable (Bessou et al., 2010; Del Grosso et al., 2005; Li et al., 

2005b). Lastly, a model which has been calibrated for both perennial and annual crops may still 

not perform well for the transition between the two, where representation of relevant processes 

is incomplete. Ultimately the development of models identified by this review to give more 

complete representation of key processes should yield improved performance at validation. 

3.7 Brief description of the DayCent model 
 

The Century (Parton, 1994) agroecosystem model is designed to represent exchange of C, N and 

water, through biogeochemical processes including decomposition, infiltration and crop growth 

(Parton et al., 1998). The model was originally produced by biogeochemists to improve 

understanding of soil C and N cycling (David et al., 2009). DayCent is an adapted version of 

Century, which can represent soil processes at a daily time step, to enable improved 

representation of trace gas fluctuation with soil water and nitrogen levels through finer spatial 
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and temporal scale of simulation. Input data requirements include; daily weather, soil textural 

composition, pH and bulk density, a schedule file of types and timings of land uses and a set of 

parameters for the crop model. The model runs on a daily time step to solve a series of equations 

describing transfers and transformations of C, N and water within and between interconnected 

crop, soil and atmosphere systems. Parameter values for the specific site, date, crop, and any 

management events are read from input files of formatted text.  

 

The main files required to run the model are; a schedule file of events to be modelled; a site file of 

data specific to the modelled location; a weather file of daily weather parameters; two separate 

files of set default values; a soil file to indicate how physical properties vary over the soil profile. 

These are listed in Table 3.3, along with additional “event” files which may be required depending 

on the scheduled events.  

 

 

Table 3.3 Files to run the DayCent model 
File name Description 

*.sch (where * is a name set by the user) Dates of all events to be simulated:  
land use start and end dates, management 
activity dates 

*.100 (where * is a name set by the user) Site specific parameters: Latitude and 
Longitude, soil textural composition, bulk 
density, pH and monthly weather data.  

*.wth (where * is a name set by the user) Daily weather data: precipitation, maximum 
temperature, minimum temperature  

Fix.100 Fixed parameters 

Soil.in Properties of texture, field capacity, wilting 
point, bulk density, hydraulic conductivity and 
pH for each soil layer 

Outfiles.in Indicates desired outputs 

SItepar.in Fixed parameters 

Event files Event type 

Crop.100 Planting of a crop  

Tree.100 Planting of a tree 

Cult.100 Cultivation event 

Harv.100 Harvest event 

Omad.100 Organic matter input event 

Fert.100 Fertiliser input event 

Trem.100 Tree removal event 

Irri.100 Irrigation event 

Graz.100 Grazing event 

Fire.100 Fire event 
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The model is run from command prompt, so before a run can be initiated, it is necessary to 

navigate to the folder containing the model file and all ancillary files. Commands are then input to 

run the model, reading from a named schedule file, and outputting data to a named bin file, as 

well as producing output files, with the ending “.out”.  

 

 

Figure 3.2 Schematic of DayCent 
 

When running, the model reads values from input files of formatted text, beginning from the first 

line of the schedule file. The schedule file begins with start and end dates, and a pointer, in the 

form of *.100 (where * is a name set by the user) to read in the relevant site file. The modelled 

time period is split into blocks of land use, with a start and end time, and a pointer to read in the 

appropriate weather file, and the dates of events scheduled according to year and Julian day. To 

schedule an event, the model requires a pointer to the relevant ancillary file as per Table 3.3, and 

a label to indicate the event subtype within that input file. Each ancillary file is formatted into 

subsets of variables, each of which represents a subtype of event, and is formatted as a set 

number of parameters in a set order.  For example an event type might be cult, and the subtype, 

e.g. rotovator plough, would have a label to call it from the schedule file, which would correspond 

to a subheading in the cult.100 file, followed by the list of cultivation parameters, each listed with 

a value appropriate to describe the impact of a rotovator plough. Values are thus read in 
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according to ancillary file name, event subtype label, and a line number and parameter label 

within that subtype. 

 

Detailed model description is available in the literature, and a manual is distributed with the 

model, although as the model code is available to users for development, documentation does 

not always keep pace with changes to the model (Parton et al., 1998; Parton, 1996). 

3.8 Summary 
 

Based on a literature review and conceptual model, the potential impacts of land use change for 

perennial energy crops were identified, as well as likely controlling variables. Based on these 

findings, criteria for model selection were derived.  Due to interaction between crop, soil and 

atmosphere, a process based model representing the complete agroecosystem was identified as 

the best predictive tool. Crucial outputs for this study are; crop yield, direct and indirect GHG 

emissions, N leaching and ET. Indirect emissions may not be included in outputs, but can be easily 

calculated from predicted leaching rates. Crucial process representation includes rain, flooding 

and irrigation, crop uptake and growth, fertiliser and residue application, tillage, simultaneous 

denitrification and nitrification and gaseous losses from soil. Given the need to simulate all 

relevant aspects of the system, a conjunctive MCDA approach was applied, and models unable to 

represent all of these processes were ruled out. 

 

DNDC, DayCent, Expert-N, Ecosys, CERES-NOE, ECOSSE, CropSyst, APSIM, WNMM, FASSET and NL-

CAT were all identified as suitable, and cover a range of regions and crop types. For this thesis, 

DayCent was chosen due to calibration work for Miscanthus to match observed yields (Davis et 

al., 2010 ), and subsequent good performance simulating yield and N2O emissions at  validation 

(Davis et al., 2012), as well as evidence that the model performs well outside of development 

region and hence should be appropriate for England (Foereid et al., 2004b).  
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4. Model development: tillage 
representation 
 

This chapter follows on from Chapter 3 by developing the model which will be applied to sites 

typical of those which may undergo land use change for cultivation of perennial energy crops. In 

order to usefully predict the desired outputs of perennial energy crop yield and change in N2O 

emissions, soil C and ET for land use change at these sites, some changes to the chosen model are 

necessary.  

 

The key changes to the agroecosystem associated with land use change for perennial bioenergy 

crops are as identified in Section 3.4: change in tillage system; change in fertiliser regime; change 

in crop growth pattern. DayCent has only incomplete representation of tillage, as discussed in 

Section 3.6.2, so development to improve performance in simulation of impacts of tillage regime 

on N2O is necessary to adequately simulate emissions under arable conditions prior to land use 

change, and how these vary between sites. Model adaptation for this purpose will be detailed in 

this chapter. The model is able to represent change to fertiliser regime, since nutrient inputs can 

be simulated in terms of quantity, timing, and C:N ratio. However, improvements to simulation of 

change in tillage regime should enable the model to represent interaction between changes to 

these two land management factors.  In terms of representing new crop growth pattern, DayCent 

has shown good validation performance for simulation of Miscanthus, as mentioned in Section 

3.6.2, however model capability to simulate SRC willow cultivation has not been assessed, so this 

issue will be addressed in Chapter 5. 

 

Intensity of tillage is variable; different equipment will disturb the soil to differing extents and 

different depths. For example a moldboard plough (often described in the literature as 

“conventional tillage”) causes inversion of the top layer of soil (around 20cm) increasing aeration 

significantly and redistributing residues and other surface organic matter, whilst a rotovator is 

designed to break up clods, and only affect around the top 10cm of soil. Secondary tillage such as 

tillering may also be applied for seed bed preparation, with relatively minimal disturbance, but 

some increase in aeration. In some cases rollering may also be applied to compact the soil 

increasing contact with seeds or rhizomes following planting. Images of relevant tillage equipment 

are included the visual glossary.  As well as variations in tillage equipment, timing, particularly in 
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relation to precipitation events can significantly alter the impacts. Arable land in England is 

generally under annual tillage, whereas permanent grasslands may be tilled and re-seeded at 

intervals of five years, and tillage may be more frequent for improved grasslands (UK Agriculture, 

2010c).  A no till system is necessary for the full lifecycle of perennial energy crops, hence this will 

represent a reduction in tillage frequency. Disturbance at the end of the lifecycle will be 

necessarily intensive to remove or breakdown remnants of the crops; in the absence of calibrated 

values for the relevant equipment, this may be simulated as multiple passes of more conventional 

tillage equipment, as will be discussed in section 6.2. 

 

Given that Section 1.4.2.3 identified structural changes to soil as the key impact of tillage on N2O 

emissions, Section 4.1 identifies equations which can calculate the impacts of these changes on 

key soil properties, and outlines the extent to which these approaches can be incorporated into 

the DayCent model.  The required algorithms were identified at this point, and added to the 

model code to recalculate variables used to calculate the rates of nitrogen cycling and 

decomposition processes. Section 4.2 details changes to the model code and input files to 

incorporate these new algorithms, although in order to be concise, some of this information is 

necessarily relegated to the appendix.   

 

Model verification is then detailed in Section 4.3 to show that improvement in model 

performance is not merely theoretical.  Section 4.3 gives descriptions of field sites and the 

calibration approach, followed by an assessment of model performance at simulating time series 

of water filled pore space (WFPS) and N2O emissions, to identify whether the model can replicate 

the observed field changes occurring in response to land management. Relative deviation of 

model predictions from measured data over the study period is then calculated to create an 

objective measure of model performance which can be compared to other models and studies. 

 

The change in porosity associated with tillage will interact with site properties, to produce 

different levels of SOC storage, CO2 and N2O emissions, depending on factors such as soil textural 

properties and precipitation regime. Following land use change, the NT system no longer 

experiences oxygenation, aggregate breakdown and increased porosity; again this change will 

interact with site properties such as soil textural properties and precipitation regime to produce 

the new levels of SOC storage, CO2 and N2O emissions.  Given the relatively high fertiliser inputs 

for arable land, and the high GWP of N2O emissions, it is particularly important to represent 
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impacts of tillage on N cycling, to identify current variation in emissions. Whilst perennial energy 

crops are likely to receive little or no fertiliser inputs, it would be useful for the model to 

represent impacts of changes in soil porosity and structure under NT, and how these affect 

emissions and cycling of retained N and the high C:N OM inputs from the new crop as discussed in 

Section 1.4.2.4, as well as any N inputs which become necessary in the event of soil store 

exhaustion. Representation of impacts of tillage is limited by incomplete understanding of 

processes, and the need to minimise complexity, as will be outlined in Section 4.1.  

4.1 Existing and potential tillage representation 

 

Existing complex agroecosystem models such as DayCent and DNDC tend to apply proxy factors to 

simulate impacts of tillage on processes such as decomposition, which limits the ability to account 

for variation in response with site factors such as soil texture or climate. The EPIC model uses 

change in bulk density with tillage to simulate change in porosity, and impacts on other 

parameters. However N2O:N2 ratio is not simulated; hence this model is less useful for 

consideration of GHG emissions. A similar approach could be built into the DayCent model to 

account for impact of tillage on bulk density, and simulate impacts of this change on other 

processes. DayCent is a crop-soil-atmosphere model which has been applied to a range of crops 

and climate zones, and was identified by MCDA in Chapter 3 as potentially suitable for simulating 

land use change to NT conditions (Chen et al., 2008; Parton et al., 1998; Parton et al., 1996; 

Thomas et al., 2013b).  

 

Modelling of the impacts of tillage on N2O emissions is hampered by incomplete understanding of 

processes, and limited research aimed at predicting soil hydraulic properties from management 

(Green et al., 2003). There is a need for further development and testing of whole agro ecosystem 

model approaches to representation of tillage, to give improved potential to provide site specific 

guidance on appropriate tillage regimes (Gupta, 1991; Strudley et al., 2008). To achieve 

reasonable yields, NT farming must necessarily differ from tilled farming in other aspects of land 

management, hence field studies do not only change tillage system in the manner of a controlled 

experiment (Derpsch, 2010). However, to address the topic fully, calibration in Section 4.2.4.1 

focusses only on the models ability to represent tillage. 
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Model development is constrained both by current knowledge and available equations, and the 

level of representation in the existing model. It is therefore necessary to first outline how DayCent 

represents aspects of the soil system which are affected by tillage, before considering how the 

impacts of tillage might be represented. The DayCent agroecosystem model is designed to 

represent exchange of C, N and water, through biogeochemical processes including 

decomposition, infiltration and crop growth (Parton et al., 1998; Parton et al., 1994). The model 

consists of a soil water sub-model, which simulates storage and movement of water, and a SOM 

sub-model which simulates transfer of SOM between pools defined by availability and 

decomposition rates (Chen et al., 2008; Parton et al., 1998; Parton et al., 1996). 

Recommendations suggest that the model is run for an 1800 year “spin-up” period with pre 

agricultural land-use parameters, followed by a “clear cut” (100 %) tree removal event, tillage, 

and 200 years of roughly modern arable land management and crops to set SOM pools.  

 

Existing representation of tillage by DayCent is limited to a temporary increase in SOM 

decomposition ( Parton et al., 1994; Ogle et al., 2012; Parton et al., 1998). Thus, the model is only 

able to represent the aspects of tillage which cause increased N2O emissions, and there is no 

representation of porosity changes controlling WFPS which may decrease emissions with tillage. 

The model is described in Section 3.8, and more in-depth model description is available in the 

literature (Chen et al., 2008; Parton et al., 1998; Parton et al., 1996), therefore discussion of 

process representation in this chapter is limited to the context of tillage, in order to identify 

potential for improvement. The key processes affected by tillage, as identified in Section 1.4.2.4., 

are decomposition of organic matter, soil water retention and drainage, nitrogen cycling and gas 

diffusivity. These processes are affected primarily by changes in soil porosity and pore 

connectivity. 

 

4.1.1 Increase in inter-aggregate porosity 

 

Tillage produces an immediate but temporary increase in inter-aggregate porosity, whilst the 

breakdown of aggregates reduces intra-aggregate porosity (Ahuja et al., 1998; Leij et al., 2002a). 

This will affect water and gas flow and storage in soil according to the differing properties of intra-

aggregate and inter-aggregate pores. Porosity is represented in DayCent as a constant value of 

inter-aggregate pore space based on b, and as a constant value of intra-aggregate porosity 

calculated from texture and organic matter content.  
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A range of equations could be integrated to update b and thus inter-aggregate pore space for 

tilled soil (Chen et al., 1998b; Williams, 1984; Williams, 2008). Prior to development of these 

equations, models required experimental data input to represent such change (Gupta, 1991). 

Impacts of tillage on soil processes can then be represented, provided these correlate with bulk 

density, and are not more strongly affected by other changes occurring at tillage. 

 

Change in bulk density (b) could be calculated according to the following empirical equation, 

based on initial b, and final consolidation b (Williams, 1984; Williams, 2008); 

 

  ( )       [     
 
 
   ]   

where  b(i)  = bulk density after tillage (g cm- 3) 

bo  = bulk density before tillage (g cm- 3) 

bc  = consolidation bulk density at 33-kPa pressure (g cm-3) 

I  = tillage intensity (0-1) 

 

This equation is applied in some existing models (APEX and EPIC), however, it relies on known 

consolidation bulk density, as opposed to the more readily available parameters of soil textural 

composition. Consolidation occurs with compaction from precipitation, freeze-thaw settling, and 

traffic, reducing porosity over time, potentially to below pre-tillage levels, since smaller 

aggregates can have closer packing (Bronick and Lal, 2005; Green et al., 2003).  

 

More recently (Chen et al., 1998b) derived equations to calculate change in b at tillage, 

according to soil texture, using constants based on data from a range of published studies; 

 

bija + bmcl + cmsi + dmsa + eOM  

where  bij = change in b for soil layer and tillage implement 

mcl  = mass of clay 



144 

 

msi  = mass of silt 

msa = mass of sand 

OM = mass of organic matter 

and a,b,c,d and e are constants varying with tillage implement and soil layer 

 

Since soil data in Section 2.10  does not include consolidation b value (Chen et al., 1998b), 

equations were considered more appropriate to build into the DayCent model, although these are 

based on a limited number of field studies, and there is difficulty accounting for factors such as 

soil moisture content at the time of tillage, which may introduce error (Chen et al., 1998b). 

Although soil data in Section 2.10 does not include potential range of b, it remains necessary to 

apply constraints to avoid simulation of b values outside of the likely range for a given soil 

texture. DayCent will not run with b values which are not representative of soil texture, but does 

not supply a b range for given texture, so this must be established iteratively during model 

development, and then built into model algorithms.  

 

Changes in processes such as decomposition and denitrification can then be calculated using the 

new b value, to reflect impacts of change to porosity. Rates of both nitrification and 

denitrification are affected by soil pore oxygen status, affected by the change in porosity at 

tillage. DayCent represents nitrification and denitrification simultaneously, occurring in aerobic 

and anaerobic pores respectively. Simulated rates are controlled by WFPS, CO2 and nitrate or 

ammonium per layer, as well as pH and temperature (Boyer et al., 2006; Chen et al., 2008; Del 

Grosso et al., 2000; Li et al., 2005b). To account for impacts of tillage on these processes, it is thus 

required that updated b be applied to calculation of WFPS. 

 

These changes to representation of tillage will also affect SOM representation, since updated 

WFPS is applied to calculations for decomposition rates. Therefore tillage factor should be 

adjusted to account only for aggregate breakdown and change to OM availability and microbial 

community. 

 

Simulation of change in b with tillage enables representation of some of the impacts of porosity 

changes on soil C, N and water cycling. System complexity and gaps in knowledge and 
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understanding mean that model representation is inevitably imperfect. It is important to consider 

possible sources of error where factors cannot be accounted for, particularly the soil moisture 

content at time of tillage, which will affect the change in b. Propagation of errors in b 

recalculation may be amplified by nonlinearity of equations representing rates of processes 

according to WFPS. However in the absence of field data, the changes in rates of these processes 

cannot be predicted for a specific site. 

 

Impacts of tillage on soil porosity are temporary, so changes should either be applied for a set 

period, or gradually removed with successive rainfall events (Green et al., 2003; Li, 1994). Given 

that calculations of settling following tillage should be independent of initial b, Onstad et al. 

(1984) formulated the following equation to calculate the change, based on experiments with 

soils ranging from sandy loam to clay loam; 

 

     ( )    
 ( )

   ( )
 

where  b(i)  = bulk density after tillage (g cm- 3) 

b   = new bulk density (g cm-3) 

P(t) = cumulative precipitation 

a  = empirical constant, generally around 0.1 

Changes in processes such as decomposition and denitrification can then be calculated to reflect 

impacts of change to porosity.  

 

Separation of porosity into inter-aggregate and intra-aggregate pores is a simplification; in 

particular inter-aggregate pore size is highly variable according to aggregate size and packing. 

Following tillage larger pores are likely to experience more change in size, and over time with 

natural settling a reduction in size and frequency of modal pore size is observed (Leij et al., 

2002b). Models with detailed structural representation can incorporate approaches such as the 

Fokker-Planck equation, using a stochastic approach to quantify impacts of tillage on different 

pore size distribution controls (Or, 2000);  
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Where  f  = frequency (μm- 1) 

t   = time (s) 

r  = pore radius (μm) 

V  = drift coefficient (μm s- 1) 

D  = dispersion coefficient (μm2 s-1) 

M  = degradation coefficient (s-1) 

 

Pore size distribution and changes over time following tillage cannot be represented within the 

limited dual porosity approach adopted by DayCent, and therefore these equations cannot be 

built into the model without significant additional complexity. 

 

Field studies have noted more impact on soil water retention under wet conditions, when  inter-

aggregate pores hold more water, i.e. at  high matric potentials (Gupta, 1991). This indicates 

greater impact from the temporary increase in inter-aggregate porosity at tillage than from the 

breakdown of aggregates and loss of internal pores (Green et al., 2003). Since intra-aggregate 

porosity is not strongly affected by tillage, this variable need not be recalculated.  

 

The key range in which change to the soilwater retention curve occurs is between air entry 

pressure (hb) and 10hb. A new gradient for this portion of the curve can be calculated according to 

Ahuja et al. (1998); 

 

      
   (          )    [ (    )    ]

   |  |     |    |
 

Where  till = new gradient 

hb= air entry pressure (cm) 

Өr = residual water content (m3
m

-3
) 
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Өs,till = tilled soil saturated water content (which can be calculated from b) (m3
m

-3
) 

DayCent applies the assumption that the soil water retention curve has similar slope to particle 

size distribution, and therefore it is not directly related to porosity in the model (Gupta, 1991). 

The equation above would enable updated values of effective porosity to be applied for 

recalculation of soil water retention curve, however, known values of hb and 10hb would also be 

required, and these are not included in the soil data in Section 2.10. Furthermore, the process 

would be complicated by the need to update only the relevant portion of the curve, hence this 

part of the model has not been adapted (Ahuja et al., 1998; Gupta, 1991).  

 

4.1.2 Disruption of pore connectivity 

 

Hydraulic conductivity and diffusivity also correlate with b, however the impacts of tillage on this 

relationship are complicated by changes to pore connectivity. 

 

As well as soil water retention curve, saturated hydraulic conductivity (Ksat) is a key variable in 

the calculation of drainage rates. In DayCent, K, calculated from Ksat and relative saturation, 

controls the rate of water entry and downward flow through soil. In the event of water input, a 4 

hour saturated flow cycle is computed with initial water entry at the Ksat of the top layer, and 

downward flow at the rate of the slowest layer Ksat. For unsaturated periods, 2 hour time steps 

use Darcy’s law to simulate flux of water between soil layers based on hydraulic potential and 

hydraulic conductivity (Parton et al., 1998). Assuming a consistent relationship, it is possible to 

calculate a new value of Ksat for the updated b following tillage via effective porosity, according 

to (Green et al., 2003); 

 

         
  

Where      = Saturated hydraulic conductivity (cm h
-1

) 

     = effective porosity (cm
3
cm

-3
) 

 B,n = empirical constants 

 



148 

 

B and n can be calculated prior to tillage from effective porosity based on Kozak and Ahuja (2005). 

 

   
     

  
  

      

Where   is a pore size distribution function which can be calculated as: 

 

     
            

     

 

However Ksat, is also affected by soil structure, due to faster flow through macropores, and as a 

result, the relationship between Ksat and effective porosity is altered by tillage. Therefore, 

although Ksat can be scaled with effective porosity changes at tillage, without simulation of 

connectivity and tortuosity this is unlikely to give good representation, and should not be 

recalculated using pre tillage values as constants (Moldrup, 2001; Schwen, 2011).  

 

Changes to Ksat with tillage cannot therefore be represented in the developed model, which 

limits representation of affected processes (Green et al., 2003; Kozak and Ahuja, 2005; Moldrup, 

2001). Drainage affects two key N cycling controls; soil oxygen status (via water filled pore space 

(WFPS) and impacts on diffusion) and soil N (via leaching). Flux and storage of water affect N2O 

emissions since leaching affects nitrate per layer, and WFPS affects soil pore oxygen status and 

connectivity for gas diffusion. Limitations in predicting N2O emissions as a result of not being able 

to simulate these impacts must be taken into account when assessing model output. Field studies 

on changes in land management or crops have produced varying findings on impacts on N 

leaching, leading to a lack of consensus on this issue; this incomplete understanding further 

reduces potential for good representation (Soane et al., 2012). Representation is further 

complicated by spatial variation in soil structure in terms of macropore numbers and connectivity, 

which can lead to orders of magnitude differences in Ksat, exceeding the impacts of management 

(Strudley et al., 2008). Soil structure, pore continuity, drainage and gas diffusivity may be 

enhanced over time under no tillage by aggregate formation, and greater abundance and activity 

of soil biota (Capowiez et al., 2009; Derpsch, 2010; Schwen, 2011; Six et al., 2004). Although many 

of these changes may be measurable within months of the last tillage event, others may take 
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several successive seasons of NT to develop, for example macropore and SOM changes usually 

don’t reach equilibrium within 3 years (Soane et al., 2012).  

 

Since N2O is an intermediate product of denitrification, the rate of diffusion from soil affects the 

ratio of N2O to the completed reaction product N2  (David et al., 2009; Davidson et al., 1998; 

Green et al., 2003; Moldrup, 2001; Petersen et al., 2008). As well as gaseous losses, diffusivity also 

controls O2 availability, so accuracy of simulation of rates of N cycling processes will also be 

affected (Skiba, 2002). As with hydraulic conductivity, the molecular diffusion coefficient is 

controlled by the continuity and tortuosity of the pore network (Gupta, 1991). The diffusion 

coefficient can be calculated from air filled porosity based on a range of approaches with varying 

complexity; better performance is seen for models which require empirical data to calculate 

multiple constants, and models which divide pores by size or accessibility (Moldrup, 2004). Scaling 

diffusivity with b would give increased diffusion of N2O from soil at tillage, which may not be 

representative of field conditions, since connectivity of pores will be disrupted by tillage, and acts 

as a more significant control on fluid flow through soil. Macrostructure controls relationship 

between tillage and diffusivity, making it difficult to analyse what is really happening for a given 

site. Tillage does not always increase diffusivity e.g. (Elmi, 2003), and impacts on product ratio are 

low where N2O producing processes occur close to the surface of the soil (Ball et al., 1999). Again, 

without equations to account for the impacts of disturbance on connectivity, the potential to 

represent impacts of tillage on diffusivity is limited, and additional complexity may not be 

warranted (Leij et al., 2002a; Moldrup, 2004). Connectivity can be simulated based on soil surface 

area for undisturbed soils, however there is no existing approach to represent variation with time 

and tillage (Moldrup, 2001; Strudley et al., 2008). This lack of suitable equations to simulate 

change in connectivity limits potential for modelling, although simulation of change in such 

hydraulic properties may be possible where pore connectivity can be measured (Gupta, 1991). In 

the context of this study, such data are not available, so changes cannot be made to the DayCent 

model, and the original b must be applied for these calculations.  

 

4.1.3 Soil aggregate breakdown and SOM mixing 

 

SOM is linked to land management; loss may be accelerated by tillage, due to the breakdown of 

protective aggregates, and aeration of soil which combine to accelerate organic matter 

decomposition (Paustian, 2000). In models with representation of aggregate size distribution, it 
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may be possible to account for impacts of tillage, for example using fractal theory (Pirmoradian et 

al., 2005). However, for simplicity, existing models usually combine the impacts of aggregate 

breakdown and increased pore oxygen, by applying a factor to increase decomposition rates (Li, 

1994). Provided resulting decomposition rates are simulated reasonably, this approach is 

adequate in terms of representing change in SOM, but may not enable accurate simulation of fate 

of decomposition products and associated GHG emissions from soil. Therefore, to avoid the 

model complexity required for explicit aggregate simulation, a proxy factor for increased 

decomposition rates from reduced physical protection may be adequate 

 

DayCent represents impacts of tillage on SOM by transfer of OM from surface to soil pools, and  

the application of tillage factors as a proxy for aeration and aggregate breakdown, to increase 

decomposition and microbial yield efficiency for the rest of the month ( Parton et al., 1994; Ogle 

et al., 2012; Parton et al., 1998). The tillage factor is applied for one month, to simulate loss of 

inter-aggregate porosity over time with precipitation and other natural compacting forces. 

 

Tillage also reduces stratification of SOM by incorporating surface inputs such as residue or 

fertiliser over the tilled depth. Mixing of nutrients over the ploughed layer can be simulated in 

models with vertical disaggregation of SOM representation by transferring SOM between pools 

(Li, 1994; Williams, 1990, 2008).  

 

In terms of vertical stratification, the DayCent SOM sub model is only split into surface and soil 

pools, hence redistribution with tillage can only be represented as a transfer from surface to soil. 

There is also no representation of aggregate size and stability and associated impacts on 

availability of SOM for decomposition or other reactions. It has been suggested (Ogle et al., 2007) 

that this may cause bias in representation of soil C stocks, particularly under NT conditions, 

however it would significantly increase model complexity to resolve this issue.  

4.2 Improvement – changes to code 

 

The model code is made up of over 200 subcomponents- some are in C, some are in FORTRAN, 

hence both a FORTRAN and a C compiler must be used. Changes were made to both sets of code, 
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and the relevant ancillary files. Code changes are given in full in Appendix Section 2 and the 

technical details are outlined in Figure 4.1.  

 

 

 

Figure 4.1 Main changes made to the model: code components and event files. Changes 
were made to the code components (square boxes), and these were compiled to produce 
the new executable. The event and schedule files (oval boxes) must be present in the 
same folder as the executable for the model to run. The schedule file is specific to the 
model run, as detailed in Section 3.7. Five parameters CULTC(1-5)were added to each 
event type in the cult.100 file to account for values of a – e in the algorithm added to the 
simsom.f model component. The values of CULTC(1-5) will vary according to tillage 
implement and are read in along with other variables pertaining to cultivation. 
 

In brief, change in bulk density following a tillage event is calculated using Chen et al. (1998b) 

equation; inputs are soil textural components (set at the start of the model run) and OM 

(recalculated to account for change over time) and variables a-e (represented by CULTC (1-5)). 

The values of CULTC(1-5) will vary according to tillage implement; a number were listed by Chen 

et al. (1998b), although the terminology used does not match with that used for the existing 

cult.100 types, due to variation in both implements and terminology between agriculture in 
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different areas. Values used and reasoning behind selection of the closest match for tillage type 

are listed in Appendix Section 2.2. Proportions of the textural components are set by the original 

input files, whilst the value for OM is recalculated in org_bdc.c, by summing all soil pools, as SOM 

may have changed significantly from the initial values, due to the 1000 year spin up period. b is 

then calculated.  

 

The value for change in bulk density is then added to each soil layer in the bd_till.c  model 

subcomponent. It is necessary to apply constraints to avoid simulation of bulk density values 

outside of the likely range for a given soil texture. To do this, positive b is not applied if b is 

too much greater than the preset value, and negative b is not applied if bulk density  is too 

much less than the preset value. In the absence of equations to indicate bulk density range for 

given texture, boundaries were established iteratively during model development, and then built 

into model algorithms. Based on testing, boundaries were set as indicated in the box for code 

component bd_till.c  in Figure 4.1; application outside of this range caused the model run to 

terminate. 

 

To account for impacts of tillage on nitrogen cycling and associated GHG emissions, the updated 

bulk density was applied to calculation of WFPS. The new value of bulk density is only used to 

recalculate water capacity for simulation of soil drainage and soil pore oxygen status, and was not 

applied to recalculate the diffusivity coefficient. Although bulk density is also used in the initial 

calculation of field capacity and wilting point, it is important that these are not recalculated for 

the change in bulk density, since intra-aggregate porosity is not affected in the same way. 

 

The existing actions of a cultivation event; OM transfer and a proxy factor for increased 

decomposition were left in the source code and input files. Values of the proxy factor were 

reduced so that SOC change following till is similar to if no porosity factor was applied- i.e. the 

factor now no longer needs to account for the increased soil pore oxygen status, but should still 

be applied to account for the other impacts of tillage on decomposition rate. Graphs to indicate 

the calibrated values are also included in Appendix Section2.3. 

 

To remove the impact of tillage on b after one month, a virtual cultivation event is applied, read 

from cult.100 as before. Ideally the settling event would be applied at the first rainfall event, 

however due to model structure, it is more convenient to apply this at a defined interval, and this 

approach was also used for cultivation effects in the model as distributed, so was deemed 
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adequate. For the settling event CULTC(2-5) are set to 0, and CULTC(1)is set as the total value for 

b, which  is calculated using the settling equation from (Onstad et al., 1984), and a value of 

average precipitation for the relevant month and site. For sites under NT, additional settling 

events were added for the months with highest precipitation in the first year, in order to match 

with field observations of higher bulk density. No OM transfers or proxy factors for aggregate 

breakdown are required for the settling events. 

4.3 Improvement-model performance testing 

 

After model code changes had been implemented, parameterisation and calibration of this 

adapted model were then carried out for appropriate datasets identified in the literature.  Given 

the need to test model behaviour for different conditions of soil pore oxygen, study sites were 

selected to cover a spectrum of values for drainage and aeration status (Rochette, 2008). Land 

use change is accompanied by a period of soil structural changes before a new equilibrium is 

reached, hence preference was given to sites with data collected close to the timing of transition 

from T to NT conditions, in order to test model capability fully. Study location is also relevant; 

although the daily version of the model was originally developed and tested for Colorado and 

Europe (Parton et al., 1998),  it has shown reasonable performance in other regions (Thomas et 

al., 2013b). It would be preferable to assess performance for a range of climates, however, the 

need for relatively complete datasets collected close to change in management scheme limited 

choice of sites.  

 

4.3.1 Calibration datasets 

 

Six datasets were compiled from studies in Denmark, Canada and England with available, useable 

data on land management, soil type and N2O emissions, covering a spectrum of drainage and 

aeration states from good to poor. Three datasets begin two years after change to tillage regime 

(Chatskikh et al., 2008; Rochette et al., 2008a); two begin at the time of regime change (Baggs, 

2003; Webster, 2003); the remaining dataset does not record land management history prior to 

the start of data collection (Lemke, 1999). Daily weather data inputs as required by DayCent were 

either provided by the authors, or compiled from online repositories and checked against 

statistics provided in the study. All studies used soil chambers to collect gas measurements, and 

provided N2O data in the form of both graphs and totals for stated time periods. Time series data 
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were not available for the published studies, except for site 5, for which Webster (2004) provided 

time series data, which is included in the graphs. Therefore, assessment of model simulation of 

the measured WFPS and N2O emission response to land management was based on qualitative 

comparison to graphs included in the publications, which are reproduced in Appendix Section2.4. 

Excepting site 5, quantitative assessment was limited to measured versus modelled totals over 

the experiment time period, for both management conditions, and the difference between the 

two. Information missing from the published studies, such as a failure to describe tillage 

implements, or detail land use history is limiting both to application of published data to model 

testing, and to comparison of findings between studies.  

 

Table 4.1 compares key characteristics of the datasets used; more detailed descriptions of sites 

and study methodology can be found in the relevant publications identified therein. In terms of 

land management, tillage types included moldbord plough and rotovator, with varying degrees of 

intensity and N application rate varied from 12 to 200 kg ha-1 a-1. In terms of site properties, bulk 

density varied from 1 to 1.5, and clay percentage varied from 8 to 77. Details on the moldbord 

plough, rotovator  and other tillage implements can be found in the Visual Glossary on page 311. 

The sites also encompass a reasonable range of climate types, with precipitation from 61 to 300 

cm a-1, minimum air temperatures ranging from -19 to 1.3°C and maximum temperatures ranging 

from 12.5 to 25°C. 
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Table 4.1 Key characteristics of calibration datasets (Images of relevant tillage equipment 
are included the visual glossary) 

Site 1 (Lemke et 
al., 1999)  

4 (Baggs et 
al., 2003) 

2 (Chatskikh 
et al., 2008)  

5 (Webster, 
2004) 

6 (Rochette 
et al., 2008a) 
Kamourska 
soil 

3 (Rochette 
et al., 2008a) 
St Andre soil 

Drainage intermediate intermediate good intermediate 
to poor 

poor good 

Aeration 
status 

good intermediate Intermediate poor poor Intermediate 

Time since 
change to NT 

Not stated 0 years 2 years 0 years 2 years 2 years 

lat long 53°25N, 
113°22W 

51°10′18 N, 
0°51′46E 

56°29N, 
09°34E 

51°46.51'N 
0°28.26'W 

46°48′ N, 
71°23′W 

46°48′ N, 
71°23′W 

tillage type  rotovator *2 
(for till only) 
hoe drill 
planting (both) 

conventional 
zero 

rotovator 
(for till only)  

plough, press 
(for till only)  
and top tilth 
(both) 

moldboard 
plough (for 
till only)  and 
tillering 
(both) 

moldboard 
plough (for 
till only) and 
tillering 
(both) 

vegetation Spring wheat Maize/Rye Barley/Rye winter wheat barley barley 

OM and 
nutrient 
inputs 

Urea was 
applied at an N 
rate of 56 kg 
ha-1a-1 

N rate of 200 
kg ha-1a-1 as 
well as 
straw/residue 

N rate of 12 
kg ha-1a-1 

 N rate of 180 
to 200               
kg ha-1a-1 

N rate of 70 
kg ha-1a-1 

 N rate of 70  
kg ha-1a-1 

annual 
average air 
temp 
range °C 

-14 to 23 -0.7 to 12.5 -2 to 23 1.3 to 23 -19 to 25 -19 to 25 

annual 
average 
precipitation 
cm 

300 79 61 68 119 119 

Precipitation 
SD 

19.14 2.20 2.04 1.51 2.45 2.45 

Clay % 39 15 8 31 77 22 

pH 6 5.8 6.1 7 6.2 5.9 

bulk density 1.01 1.5 1.3 1.04 to 1.23 1 1.4 

measurement 
approach 

3 or 4 vented 
soil covers per 
sample date. 
At least twice 
monthly. No 
WFPS data 

2 chambers 
daily or less 
often. No 
WFPS data 

chambers, 3 
measureme
nts per 
sample date 

weekly 8 
chambers per 
field/Daily 
autosamples 
at key times 

weekly 
chambers 

weekly 
chambers 

 

4.3.2 Calibration approach 

 

Although the adapted model gives improved theoretical representation of processes relating to 

tillage, it is crucial to assess whether model performance is also improved. Ideally, this would 
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include calibration to improve model representation for an initial time period, and a validation 

stage where measures of model performance for a subsequent time period are used to evaluate 

the new model (Thomas et al., 2013b). In the case of this study, the limited duration of available 

datasets prohibits application of both calibration and validation methodology in this manner. 

Taking an alternative approach, minor changes to model inputs were made to calibrate b, WFPS 

and N2O for four of the sites, followed by validation only assessment for N2O emissions only for 

the other two sites (where data on WFPS and b was not available).Values used and impacts on 

model output are detailed in Table 4.3. Conclusions about likely model performance for scenario 

analysis where calibration data are unavailable should be based on the latter studies. 

 

WFPS and b were chosen as calibration variables because both control diffusivity and oxygen 

availability, and hence N2O emissions. Given the nonlinear relationships between WFPS, and the 

differing rate profiles of denitrification and nitrification processes, misrepresenting the initial 

saturation will result in poor simulation of N2O emissions response to change in soilwater 

(Frolking et al., 1998). Comparison of WFPS to field data is therefore a useful start point to 

improving and evaluating model performance. Parton et al. (1996) note the importance of WFPS 

in simulating N2O emissions, and that performance for DayCent may be variable over different 

sites and seasons. 

 

A degree of calibration was required for some sites to achieve reasonable WFPS representation. 

To increase WFPS in line with field data, presence of a water table was applied for poorly drained 

sites, whereas an increased value for sand content and reduced value for clay was applied to 

match lower WFPS field data for better drained sites. Settling events were scheduled to follow 

tillage events, in line with common field observations (Franzluebbers, 1995; Moret and Arrue, 

2007) applying equations by  Onstad et al. (1984) set out on page 144. Since bulk density is 

commonly regarded as having a consolidation value i.e. a point at which further porosity is 

unlikely to be lost without additional compacting forces such as vehicle traffic, models such as 

EPIC utilise a consolidation factor. Often subsequent settling will negate impacts of tillage on b, 

however this may take more than a year (Franzluebbers et al., 1999), and consolidation does not 

always create a stable value for b (Green et al., 2003). Reduction from year to year may occur 

even where fields had previously been under long term tillage; changes of -0.14 over one year for 

site 5 indicate that this change can be significant, as opposed to a transitional phase leading into a 

plateau. 
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Whilst the model is required to replicate this site behaviour, it is necessary to set boundaries in 

the model code for change in b to avoid unrealistic values and prevent calculation errors. Model 

parameterisation therefore focussed on restricting the range for application of the factor to 

change b, to avoid simulation of unrealistic values outside the range accepted by the model for a 

given soil texture. 

 

Settling factors were included in the schedule file, coded as cultivation events, scheduled to 

coincide with the month following tillage, and the peak rainfall months, to produce b values 

matching those in field data for sites 5 and 2. Changes to these enabled the model to give 

reasonable simulation of b, following which additional changes were made to textural 

composition and water table simulation as necessary to simulate field data for WFPS. 

 

4.3.3 Time series WFPS  

 

Field data plotted in Chatskikh et al. (2008) (see appendix Figure A2.4) indicated a drop in WFPS 

immediately following tillage; for site 2 (Figure 4.2), this was not simulated by the old model 

version, but the developed version of the model simulated timing and magnitude well. Simulated 

values of WFPS prior to tillage from both models are slightly higher than those measured by 

Chatskikh et al. (2008), whereas from May to July, simulated values from both models are lower 

than the field data, and at the end of the measurement period, the WFPS simulated by the 

developed version of the model for the tilled site is lower than measured values, whereas the 

other three sets of model output are slightly higher than measured values. 
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 Figure 4.2 Time series WFPS at site 2, model data from  Chatskikh et al. (2008). Where 
land management events are; T = Tillage, P = Planting, F = Fertiliser input 
 

The pattern of WFPS measured by Rochette et al. (2008a) for the loamy soil (see appendix Figure 

A2.2) corresponding to modelled site 3 was characterised by 10-20% lower saturation for the 

conventional till site from September 2001 to May 2002, and May to June, as well as much of 

August through September in 2003 and there is no data for December through to April in any of 

these years. This pattern was well simulated by the updated version of the DayCent model, as can 

be seen in Figure 4.3, although the magnitude of the difference between conditions was 

underestimated in 2001-2002, and the magnitude of WFPS was sometimes overestimated by 

around 10%. Comparatively, there were a number of issues with output from the old model; 

simulated WFPS was consistently around 20% higher than measured values, and NT WFPS was 

often simulated as higher than T, whereas measured values indicated the reverse. Both model 

versions simulated peaks higher than indicated by field data. Calibration efforts tested the impact 

of reducing clay content to reduce simulated WFPS at peaks using the developed model, however 

this was not effective, and had a detrimental effect on simulation of N2O emissions over the full 

measurement period. 
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Figure 4.3 Time series WFPS at site 3, model data from Rochette et al.  (2008a). Where 
land management events are; T = Tillage, P = Planting, F = Fertiliser input, H = Harvest 
 

Webster et al. (2004; 2008) measured values of WFPS under minimum till around 20% higher than 

for NT for the period November to March in 2002-2003 and November to May in 2003-2004; 

output from the updated model for site 5 (Figure 4.4), followed a very similar pattern, although 

the magnitude for both conditions was simulated 5-15% too low between November and May. 

Output from the old model version was also 5-15% below measured values between November 

and May, and the old model version failed to simulate the observed difference between T and NT. 

The model was tested for increased clay content and presence of a water table to increase 

simulated WFPS at the start of the measurement period, however the general trend of simulated 

WFPS was still not in line with measured values, and although simulation of N2O emissions for the 

T condition with the new model was improved, simulation of the NT condition was worsened. 
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Figure 4.4 Time series WFPS at site 5, model data from Webster et al. (2008; 2004). 
Where land management events are; T = Tillage, F = Fertiliser input. The “conventional 
till: old model” line exactly matches the line for “minimum till: old model”, and hence is 
not visible. 
 

The pattern of WFPS measured by Rochette et al. (2008a) for the clay soil (see appendix Figure 

A2.1) corresponding to modelled site 6 was characterised by 10-20% lower saturation for the 

conventional till site from September to May, although they state that this was not statistically 

significant in 2002, and again there are no data for December through to April in any of these 

years. This pattern was well simulated by the updated version of the DayCent model, as can be 

seen in (Figure 4.5); predicted WFPS was 20-30 % too high, but the difference between 

management conditions was well represented. The old model version also predicted WFPS 20-

30 % higher than measured values and failed to represent observed difference between T and NT 

conditions. Both model versions simulated very high WFPS for both sites during the period not 

measured by Rochette et al. (2008a), which cannot be validated. Overprediction of saturation 

level may reflect limitations for extremes of texture, since clay content for this site is particularly 

high (77%) which is a key control for simulation of drainage. The model was tested for 10% 

reduced clay content (in line with Post et al. (2008) spatial variation) and for presence of water 

table, but WFPS remained much higher than measured. The input data version chosen was 

therefore once again based on optimising prediction of N2O emissions. 
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Figure 4.5 Time series WFPS at site 6, model data from Rochette et al.  (2008a). Where 
land management events are; T = Tillage, P = Planting, F = Fertiliser input, H = Harvest  

 

In general, the updated model seems to give good representation of trends in WFPS and, in 

particular, gives improved simulation of response to tillage and the difference between T and NT 

sites, which was not represented by the old version of the model, and is crucial to simulating the 

impacts of tillage on N2O emissions. However, for both model versions, absolute values are not 

always well represented, which due to the nonlinear relationships between WFPS and rates of 

both nitrification and denitrification is likely to lead to errors in predicting both relative and 

absolute values for N2O. 

 

Having checked simulated WFPS against measured data where available, comparison of observed 

and predicted N2O emissions was then performed. The remaining field sites (sites 1 and 4) do not 

have available data on b, WFPS or soil water content; validation of data was performed for these 

sites, to draw conclusions about potential model performance in scenario analysis. 
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4.3.4 Time series N2O emissions  

 

Field observations from Chatskikh et al. (2008) indicate an increase in N2O emissions for the tilled 

site following tillage (see appendix Figure A2.4); this was not well simulated by either version of 

the DayCent model, as can be seen in Figure 4.6 for modelled site 2. The authors attribute the 

observed peak to an increase in diffusivity; it is a limitation of both versions of the model that 

there is no simulation of change in diffusivity following tillage. N2O emissions at the start of the 

measured period are well simulated by both model versions, and the magnitude of the post 

fertiliser peak is also well represented for the T site. Measured data in Chatskikh et al. (2008) 

showed a higher, later peak for the NT condition; both model versions simulated this peak lower 

and beginning earlier. 

 

 

Figure 4.6 Time series N2O emissions at site 2, model data from  Chatskikh et al. (2008). 
Where land management events are; T = Tillage, P = Planting, F = Fertiliser input 
 

Field data in Rochette et al. (2008a) for the loamy site corresponding with modelled site 3 (Figure 

4.7; for measured data see appendix Figure A2.2), suggest that T generally exhibits similar N2O to 

NT, except for peaks at the tilled site immediately following tillage. The developed version of the 

DayCent model simulated a period of higher emissions following tillage, but several peaks were 

simulated at the NT site during this period, which reflect observed and simulated increase in 
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WFPS at this time, but were not observed in the field. The old model simulated a similar pattern 

for both T and NT conditions to that modelled for the NT site using the developed model. Field 

data for site 3 is not a complete record; the excluded Spring thaw period often displays high 

emissions, with spatial variability due to patchy snow cover which cannot be represented in a 

spatially lumped model like DayCent, hence low values simulated for this period may not be 

representative of the site (Parton et al., 1998; Smith, 2008).  

Figure 4.7 Time series N2O emissions at site 3, model data from Rochette et al.  (2008a). 
Where land management events are; T = Tillage, P = Planting, F = Fertiliser input, H = 
Harvest 

Webster et al. (2008; 2004) recorded periods of higher emissions for their minimum tilled site in 

December 2002 and April through to June 2004, along with an overall trend of increase in 

emissions over the measured period.  Simulations for site 5, shown in Figure 4.8, indicate that the 

updated model represented periods of greater emissions from the minimum tilled site at 

appropriate dates, whereas the original version of the DayCent model simulated virtually no 

difference in N2O emissions between the two sites. Both the original model and the developed 

version generally simulated much higher emissions than were measured by Webster et al. (2008; 

2004). This may be attributed to the simulated WFPS which was generally in the optimum zone 

for either nitrification or denitrification, due to being around 5-15% below measured values. Both 

model versions show little immediate response of N2O emissions to tillage events; gaps in the 

data prevent verification with field data.  

 

F,P 

H 

T F,P 

H 
T 

F,P H T 0

200

400

600

800

1000

1200

01/04/2001 01/10/2001 01/04/2002 01/10/2002 01/04/2003 01/10/2003

N2O emissions 
g N ha-1 d-1 

Title 

Conventional till: new model No till: new model

Conventional till: old model No till: old model

Land management events



164 

 

 

 

Figure 4.8 Time series N2O emissions at site 5, model data from Webster et al. (2008; 
2004). Where land management events are; T = Tillage, F = Fertiliser input 

Researchers at Rothamsted made time series data (Webster, 2004) available for this study, so it 

was possible to complete further statistical analysis for site 5, using equations outlined in Smith et 

al. (1997); results are displayed in Table 4.2. 

Table 4.2 Statistics for evaluating model performance at site 5 

 

The updated model has higher values for EF and lower values for NRMSE than the old model, 

suggesting improved representation. Using the new model, a higher proportion of N2O emissions 

variance is explained by simulated values for NT, with a coefficient of determination of 0.78 than 

for T (0.02); again these values indicate improved performance compared to the old model 

version.  
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N2O NT -0.15 10.83 237.21 0.78 -247.98 

N2O T -59.33 13.80 1574.57 0.02 5649.06 

WFPS NT 0.25 12.86 23.52 0.64 11.60 

WFPS T 0.28 12.45 27.94 0.88 10.97 

Old model  

N2O NT -0.33 11.62 254.57 0.68 -212.45 

N2O T -72.55 15.33 1748.70 0.01 2191.59 

WFPS NT -0.94 20.73 37.91 0.36 24.55 

WFPS T 0.01 14.61 32.77 0.59 11.69 
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Field data from Rochette et al. (2008a) for the clay soil corresponding to modelled site 6 (see 

appendix Figure A2.1) indicate generally similar emissions for T and NT sites, with higher 

emissions from the NT site in the period following tillage. Figure 4.9 shows that both model 

versions simulated increased emissions from both conditions around the timing of tillage or 

tillering in the case of the NT site; this likely results from decomposition increasing N availability, 

given the high SOM at this site. Simulated reduction in WFPS to around 45% following tillage does 

not supress emissions, since this is in the region favouring nitrification (35-60%), whereas 

measured values at the tilled site for this time were around 20% WFPS, and low water availability 

may have limited microbial activity. Measured emissions peaks for the NT condition were very 

large, which may indicate that location and timing captured hotspots; simulated values were 

lower with both model versions.  

 

Figure 4.9 Time series N2O emissions at site 6, model data from Rochette et al.  (2008a). 
Where land management events are; T = Tillage, P = Planting, F = Fertiliser input, H = 
Harvest 

N2O emissions for sites 1 and 4 were validated against site data with no calibration stage.  

 

Measured values in Lemke et al. (1999) corresponding to modelled site 1 show much higher N2O 

emissions in response to fertiliser input at their intensively tilled site compared to the NT site. For 

site 1, both old and new versions of the model (Figure 4.10) give an appropriately timed response 
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to fertiliser input, with similar magnitude to the field data for NT, whilst for the CT condition, both 

model versions predict emissions marginally greater than for the NT site, but significantly lower 

than measured values (see appendix Figure A2.3 for measured values). 

 

Figure 4.10 Time series N2O emissions at site 1, model data from Lemke et al. (1999). 
Where land management events are; F = Fertiliser input 

 

Field data in Baggs et al. (2003) (see appendix Figure A2.5) corresponding to modelled site 4 

indicate a significantly higher peak with response to fertiliser for the NT condition. Both model 

versions simulated higher N2O emissions from the T condition than the NT condition, although 

this was less extreme for the updated version of the model (Figure 4.11). This may reflect a 

difference in field versus simulated WFPS; predicted values for the tilled site are in the region 

favouring nitrification (35-60%) whereas values for the NT site are at the bottom of the range 

favouring denitrification (above 70%). Assuming field values of WFPS for this site were 5 or 10 % 

higher than modelled may explain why field values of N2O following fertiliser input were higher 

for the NT condition and slightly lower for the T condition. 
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Figure 4.11 Time series N2O emissions at site 4, model data from Baggs et al. (2003) . 
Where land management events are; P = Planting, F = Fertiliser input 

 

In general, the updated model version gives greatly improved simulation of the difference in N2O 

emissions response to land management between T and NT conditions. Where performance is 

poor, this can often be attributed to poor simulation of WFPS. 

 

4.3.5 Relative deviation total N2O emissions  

 

In order to assess model performance objectively using total measured and modelled values of 

N2O for the same time period, relative deviation was calculated according to: 
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Relative deviation of simulated versus measured N2O emissions is shown in Table 4.3 for 

simulations with both the original and the adapted DayCent model. Large values of RD are 

common, particularly for sites with low emissions, where slight miscalculations will produce large 

percentage error. Figure 4.12 indicates RD compared to model testing for DNDC compiled by De 

Vries, et al. (2005) and shows best performance was found for the adapted version of DayCent. 

Crucially, Table 4.3 indicates that performance for validation is as good as for calibration, and that 

for 5 out of the 6 sites, the updated DayCent model showed improved performance for 

representing NT-T. In spite of identified issues in representation of Spring melt emissions, RD 

values for site 1 which incorporates measured and simulated data for the thaw period are good.  

 

Figure 4.13 and Table 4.4 compare the performance of the original and the adapted DayCent 

model versions, in terms of the relationship between modelled and measured emissions; the 

adapted version showed higher r2 and correlation coefficient, although the difference was quite 

small. 

 

 

Figure 4.12 Relative deviation of simulated from observed N2O emissions with adapted 

DayCent, compared to the distributed version, and the performance of the DNDC model in 
other studies: taken from a database compiled by de Vries et al. (2005) 
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Table 4.3 Relative deviation for final model runs and other values tested during calibration, using N2O emissions over the full measured 
time period 
Site 
number 

Till 
or no 
till 

Clay  
fraction 

Initial 
ρb 

Water 
table 
(months 
out of 12) 

Measured 
N2O 
emissions 
(Kg) 

Updated 
model 
simulated 
N2O 
emissions 
(Kg) 

Original 
model 
simulated 
N2O 
emissions 
(Kg) 

Relative 
deviation 
updated 
model 

Relative 
deviation 
original 
model 

NT-T 
relative 
deviation 
updated 
model 

NT-T 
relative 
deviation 
original 
model  

1 NT 0.39 1.01 0 3.18 2.39 1.90 -24.77 -40.10 -0.09 54.55 

1 T 0.39 1.01 0 5.28 4.49 5.15 -14.95 -2.45   

2 NT 0.081 1.3 0 0.72 0.95 0.99 31.74 36.82 -120.50 -79.97 

2 T 0.081 1.3 0 0.89 0.91 1.02 2.66 14.51   

3 NT 0.22 1.2 0 3.30 6.08 7.69 84.14 132.91 -64.53 446.48 

3 T 0.22 1.2 0 3.00 5.97 6.05 99.01 101.55   

4 NT 0.15 1.5 0 11.66 3.55 3.76 -69.57 -67.76 -102.36 -125.95 

4 T 0.15 1.5 0 1.61 3.79 6.37 135.63 296.43     

5 NT 0.21 1.2 0 1.60 3.01 2.49 88.32 55.70 -49.13 -100.50 

5 T 0.21 1.2 0 0.31 2.36 2.50 660.28 705.70   

6 NT 0.77 1 6 98.00 46.22 41.59 -52.84 -57.56 -83.14 -111.66 

6 T 0.77 1 6 40.00 36.44 48.35 -8.90 20.89    

Alternative values tested during calibration 

5 NT 0.31 1.2 6 1.60 3.19 3.07 99.44 92.16 -24.30 -65.64 

5 T 0.31 1.2 6 0.31 2.21 2.63 614.32 748.79   

6 NT 0.67 1.00 0 98.00 47.49 18.75 -51.54 -80.86 -55.42 -107.91 

6 T 0.67 1.00 0 40.00 21.64 23.34 -45.90 -41.64     

6 NT 0.77 1.00 0 98.00 44.79 41.59 -54.30 -57.56 -83.34 -111.66 

6 T 0.77 1.00 0 40.00 35.12 48.35 -12.19 20.89     

3 NT 0.12 1.2 0 3.30 5.85 9.39 77.31 184.58 -348.38 786.44 

3 T 0.12 1.2 0 3.00 6.60 6.73 119.88 124.40   
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Table 4.4 Correlation coefficients for relationship between modelled and measured N2O 
emissions using the updated DayCent model and the original version 

 

 

 

Figure 4.13 Modelled N2O emissions with updated DayCent and the original version, 
plotted against measured values.  
The updated model version showed a relationship of:  y = 0.4961x + 2.6935 with 
R² = 0.895. Whereas for the original model:  y = 0.4826x + 3.7844 with R² = 0.7221 
 

Previous studies have found that DayCent tends to underestimate soil nitrate, and underestimate 

soil ammonium in the absence of fertiliser inputs, or overestimate shortly after fertiliser inputs 

(Del Grosso et al., 2008; Jarecki et al., 2008). 

 

As can be seen from Table 4.3 and Figure 4.12; simulated emissions are sometimes higher than 

measured, and sometimes lower. Although this rules out systematic under or over prediction of 

soil N, it remains useful to compare model output to field data where available. Field data on 
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ammonium or nitrate in soil are not available for sites 1, 2 and 5, but comparisons are made for 

the other three.  For Sites 3 and 6 shown in Figures 4.14 and 4.15 respectively, simulated 

ammonium is higher than field data, whilst nitrate is simulated reasonably well. Over prediction of 

ammonium at site 3 could contribute to over prediction of N2O emissions, since aerobic processes 

are likely to be dominant at this site. For Site 4 (Figure 4.16) poor simulation of soil N may 

contribute directly to error in prediction of N2O emissions since simulated ammonium is higher 

than field data, which may contribute to over prediction of aerobic gaseous losses, more 

significant at the conventional till site, where simulated N2O emissions are higher than measured 

values, whereas simulated nitrate is lower than field data, which could contribute to under 

prediction of  N2O emissions in anaerobic conditions more common at the NT field site, where 

field emissions were higher than simulated. 

 

Del Grosso et al. (2008) suggest that tweaking the proportion of nitrification to reduce the 

amount which goes to N2O and increase the amount which goes to NO can improve simulation of 

both, but that the appropriate proportion is likely to be soil specific. Elsewhere Jarecki  et al. 

(2008) found that both soil N and gaseous N losses of N were under predicted, hence in this case 

the solution must lie elsewhere; for example leaching losses may be lower than simulated, 

although these were not measured or discussed. As such, there is not a convenient, universal 

solution to the identified issues with simulating soil nitrate and ammonium; site specific 

calibration of nitrification products or leaching rates is likely to lead to improvements, but this is 

not applicable for scenario analysis.  

 

Figure 4.14 Simulated soil ammonium and nitrate for Site 3 (Rochette et al., 2008a) 
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Figure 4.15 Simulated soil ammonium and nitrate for Site 6 (Rochette et al., 2008a) 
 

 

 

Figure 4.16 Simulated soil ammonium and nitrate for Site 4 (Baggs, 2003)  
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4.4 Discussion 

 

Although models are necessarily assessed by comparison to field data, it is important to note that 

movement and retention of water varies over a field with small scale topographic features, 

textural composition, aggregate packing density and pore connectivity (Boyer et al., 2006; Gupta, 

1991; Li et al., 2005a). This spatial variation in soil water controls oxygen availability for nitrogen 

cycling processes, creates variation in N2O emissions within a field which may exceed variation for 

land management approach (Green et al., 2003; Strudley et al., 2008). As a result, there will be 

significant variation in chamber measurements at different locations over a field, and there are 

issues with scaling up point data for comparison to hectare scale simulation. Regression models 

used for upscaling may create significant misrepresentation of  N2O emissions (Beheydt et al., 

2007). Temporal variation is also a problem for scaling up; ambient temperature and soil moisture 

vary diurnally and with local weather patterns, and nutrient cycling or plant uptake affect 

availability (Beheydt et al., 2007; Grant et al., 2006). Although sampling strategies may be 

designed to capture some of the spatiotemporal variation, there remain problems for scaling up 

point measurements, which must be taken into account in addition to measurement error when 

evaluating model performance. There are similar complications with spatially lumped models, in 

the need to simulate at large scale using averages, given those relationships between N2O and for 

example WFPS are nonlinear and affected by other factors such as tortuosity. As well as 

spatiotemporal scaling errors, field data will include measurement error, for example (Webster, 

2003) suggest that their methodology may underestimate flux by 20%. Rochette et al. (2008b) cite 

low confidence for most studies during the time period relevant to datasets used here, and 

suggest that estimates of emissions are often biased, but can be useful for comparison between 

conditions. As a result, it may be better to draw conclusions from statistics comparing modelled 

and measured NT-T than from statistics on absolute values. As a result of these issues, many 

studies report difficulty in modelling N2O emissions (e.g. Beheydt et al., 2007; Brown et al., 2002). 

System complexity and gaps in knowledge and understanding mean that model representation is 

inevitably imperfect. 

 

As well as spatial variability and errors from scaling nonlinear relationships, potential sources of 

modelling error to be considered include input data uncertainty and calculation errors due to 

poorly understood or difficult to represent processes (Laville et al., 2005; Post et al., 2008).  
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In terms of input data for this calibration study, potential sources of error include use of data 

from major local weather stations as opposed to field specific climate input data for many of the 

sites, spatial variability in soil textural properties, and use of values for textural composition or 

bulk density based on published values for the soil type in the absence of measured values for the 

specific study site. 

 

RD values of simulations using the modified model code suggest sub-optimal performance, but 

better performance than the original model code for most of the tested sites, particularly in terms 

of predicting the difference between T and NT conditions. General time series performance may 

not be reflected in RD, due to the disproportionate impact of large pulses, and variation in the 

total emissions value, since a small margin between measured and modelled values is more 

significant as a proportion of low emissions.  

 

Table 4.3 indicates that the new model gives improved representation of N2O emissions for the 

tilled land management for all but sites 1 and 6, suggesting there may be problems representing 

impacts of tillage at sites with high clay content. Figures in Table 4.3 also indicate that the 

updated model better simulates the difference in N2O emissions between conditions for all but 

site 2. This may be due to the fact that the updated model has been developed to represent the 

greater likelihood of anoxia in the NT condition, but not any increase in diffusivity with tillage. 

Therefore the updated model could be expected to perform worse than the original version 

where increase in diffusivity with tillage has a greater impact on N2O emissions than the increase 

in anoxia under NT conditions.  

 

It is likely that impacts of tillage on soil pore oxygen are more significant than impacts on 

denitrification product ratio, particularly where N2O producing processes occur close to the 

surface of the soil (Ball et al., 1999). Additionally, tillage does not always increase diffusivity (e.g. 

Elmi, 2003) and increased diffusivity may increase O2 availability (Skiba, 2002), thus reducing 

denitrification rates, and making any impacts on product ratio less significant. Therefore improved 

simulation of porosity following tillage can be expected to give improved simulation of N2O 

emissions in most cases, even though change to pore connectivity cannot be simulated. 
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Model validation at sites 1 and 4 showed equally good performance for RD, when compared to 

the calibrated sites. Time series data were well simulated at site 1, whereas at site 4 both model 

versions gave poor representation of the impacts of tillage on response to fertiliser. This could be 

attributed to poor representation of WFPS, leading to misrepresentation of impacts on N2O 

emissions from reduced WFPS with tillage. Simulation of absolute WFPS was often poor, however 

the developed model gave good simulation of changes in WFPS with land management. Although 

average WFPS does not theoretically enable simulation of average N2O, due to nonlinearity of 

relationships, it remains one of the best available predictors for a spatially lumped model. 

Therefore where initial WFPS is well represented, model output can be considered a reasonable 

predictor of impacts of land use change on N2O emissions. Ideally, the model should be calibrated 

to match field data on current WFPS (and if possible N2O emissions) in order for more reliable 

conclusions to be drawn. Since these data are not available for the sites modelled in Chapter 6, it 

is appropriate to test the model for a range of input values at each typical site, and to consider 

model output with the caveat that conclusions about the impacts of tillage regime change on N2O 

emissions will only hold for soils where WFPS is similar to simulated values. Thus when 

extrapolating from findings at the theoretical sites to consider potential impacts at actual sites 

where such land use change may take place, some verification of WFPS conditions under current 

management regime would greatly enhance the certainty of predicted change in N2O emissions. 

Simulated values for N leaching should be considered carefully in comparison to field data, and 

model verification performance in previous studies, since this study has not performed model 

verification for N leaching. 

4.5 Summary 

 

Alterations were made to the model code to recalculate b for tillage and subsequent settling, 

and to apply the updated value to calculation of inter-aggregate porosity for WFPS. These changes 

theoretically give improved representation of N2O producing and emitting processes by enabling 

the updated model to simulate the greater tendency for anoxia in poorly drained soils under NT. 

Since soil pore oxygen status is a key contributor to differences in N2O emissions associated with 

different tillage regimes, the updated model was better able to simulate variation in field 

measurements between conditions. The adapted model is not able to simulate changes in 

diffusion and hydraulic conductivity associated with tillage, due to a lack of appropriate 

equations, hence where these factors have greater impact on N2O emissions than changes in total 

inter-aggregate porosity, impacts of tillage regime on N2O emissions may be poorly simulated. 
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The datasets used (Table 4.1) span a range of drainage and aeration statuses, and were selected 

as such in order to test model capability to differentiate the opposing impacts on N2O identified in 

the field data with change to NT for well versus poorly aerated soils. Based on model performance 

over the range of sites, there may be some limitations in simulating impacts of tillage on sites with 

a high proportion of clay. Since model performance was better for simulating changes in WFPS 

with tillage than absolute values of WFPS, stronger conclusions can be drawn where the model 

can be calibrated to current site behaviour in terms of WFPS. Calibration involved manipulating 

drainage rates, by altering the textural composition values within likely site variation (10 %), and 

ensuring b matched site data by altering initial values and scheduled events to enable good 

representation of WFPS. For scenario analysis, such as application of the model to the “typical 

sites” identified in Chapter 3, data are not available to calibrate the model to give good simulation 

of WFPS, thus conclusions drawn about potential impacts will only hold for sites where WFPS is in 

the range simulated by the model, as opposed to for sites where soil texture and precipitation 

regime match input values.  Since the developed version of the model gave improved 

performance for simulation of impacts of tillage regime on N2O emissions, this version will be 

applied in scenario analysis. 
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5. Model development: SRC willow 

 

This chapter follows on from Chapter 3 by developing the model which will be applied to sites 

typical of those which may undergo land use change for cultivation of perennial energy crops. In 

order to usefully predict the desired outputs of perennial energy crop yield and change in N2O 

emissions, soil C and ET for land use change at these sites, some changes to the chosen model are 

necessary.  The model was developed to improve simulation of WFPS and thus N2O emissions in 

Chapter 4, and the changes made to the model code in Section 4.3 are retained in the version of 

the code edited here. 

 

This chapter aims to improve the DayCent model to ensure good representation of crop growth 

processes, and their interaction with the soil and atmosphere systems. DayCent has already been 

successfully calibrated and validated for Miscanthus, and parameters used are available. Willow 

can be represented using the tree.100 input file (as introduced in Table 3.3 of Chapter 3) to 

simulate crop parameters; parameterisation will be necessary to identify appropriate values from 

published ranges. Additionally, some development of model code may be necessary to simulate 

response of the crop to coppicing agroecosystem management. 

 

Unlike in Chapter 4, it is not necessary to build complex new algorithms into the model; instead, 

change to tree growth following coppicing may be simulated by incorporating different parameter 

values into existing algorithms. Model performance for simulation of yield can be expected to be 

much better than for simulation of N2O emissions where both prediction and measurement is 

complicated by high spatiotemporal variation in controlling properties, and nonlinear reaction 

responses (Jarecki et al., 2008). 

 

This chapter first outlines the importance of good crop representation. In Section 5.1, key 

processes which must be simulated to predict both overall yield and the timings of nutrient and 

water uptake, taking into account the impacts of coppicing management, are identified. Section 

5.2 then outlines the extent of tree growth representation in the existing DayCent model, and 

looks at existing approaches to simulating coppicing which could be implemented in DayCent in 
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order to simulate variation in growth over the coppice cycle. Section 5.3 details changes to the 

model code to enable simulation of changes to tree growth processes immediately following 

coppicing, and Section 5.4 then describes parameterisation and calibration, and assesses the 

performance of the updated model. As part of the validation process, the model is also run for 

Miscanthus, using crop parameters from Davis (2009) to assess whether their crop parameters 

also gave reasonable performance under UK field conditions. 

 

DayCent parameterisation for SRC willow in this chapter is derived from material produced by 

Forest Research and The Forestry Commission by permission of Forest Research and the Forestry 

Commission on behalf of the Controller of Her Majesty’s Stationery Office. © 2012 Crown 

Copyright.   

5.1 Required crop process simulation 

 

Perennial crops such as Miscanthus and SRC willow differ from annuals in terms of growing 

season, ET, nutrient uptake and land management requirements. The DayCent model has already 

shown  good performance at calibration (Davis et al., 2010) and validation (Davis et al., 2012) for 

prediction of yield and N2O emissions associated with Miscanthus cultivation. However, as noted 

in Section 3.6.2, the model has not previously been used to simulate yield or GHG emissions 

associated with cultivation of SRC willow or other SRC managed forest.  A review of potential 

coppice models by Philippot (1996) identified senescence and biomass partitioning between plant 

organs as the most important crop processes to be simulated, so capacity to model these 

processes must be assessed. 

 

As a whole agroecosystem model, DayCent simulates interaction between tree growth and soil 

properties: as stated in Section 3.4, it is crucial to simulate timing of water uptake and nutrient 

exchange associated with tree growth, due to impacts on oxygen and nutrient status of the soil, 

which controls carbon and nitrogen cycling processes. Similarly, availability of water and nutrients 

at the times they are required by the crops for growth will control whether potential yield is 

attained (Fraiture et al., 2008; Vanloocke et al., 2010). Therefore the model must simulate 

seasonal variation in growth (and associated water and nutrient requirements) as well as variation 

over coppice cycle and lifecycle.  
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Simulation of root growth and uptake is important to simulating supply to the tree, as well as 

changes to soil water, oxygen and N availability, although data to inform modelling is limited 

(Philippot, 1996; Tallis et al., 2013). Pacaldo et al (2012) have published a 19 year dataset for SRC 

willow which includes root biomass measurements, and can be used to calibrate changes in the 

relative proportions of above and below ground biomass, but further datasets from different sites 

would be helpful to identify how root biomass growth varies with soil texture, water and nutrient 

availability. Simulation of crop root access to groundwater would also be necessary to fully 

simulate impact of water availability on yield and enable consideration of potential environmental 

impacts of any groundwater depletion.  Simulation of root growth and controlling factors is 

described in Section 5.2, whilst limitations of lack of field data on model calibration will be 

discussed in Section 5.4. 

 

 Increased above ground biomass growth relative to incident sunlight immediately following 

coppicing can be anticipated due to translocation of nutrients stored in the below ground plant 

organs and above ground stool (Jug et al., 1999; Shibu et al., 2012). Additionally, the growing crop 

has a proportionally large amount of biomass in the form of leaves, but initially little selfshading, 

meaning a high LAI relative to total biomass (Ceulemans, 1996).  

 

Since DayCent has not previously been used to simulate coppicing management, it will be 

necessary to adapt the code to enable representation of changes to above ground biomass 

growth following coppicing. Section 5.2 will describe existing simulation of tree growth in the 

DayCent model, and investigate the extent to which simulation of coppicing can be incorporated 

at the existing level of resolution.  

5.2 Existing and potential representation 

 

Recently developed mechanistic approaches to coppice growth simulation provide an 

improvement on previous statistical approaches such as Aylott et al. (2008) for the UK or Mola-

Yudego et al.  (2008) for Sweden, in that these models can be applied to new climate and soil 

conditions, provided that plant growth and interaction with soil properties are adequately 

simulated (Tallis et al., 2013).  Simulation must include: drivers and limitations to growth; 

partitioning of new plant C between organs, and how this may vary over the lifecycle and in 

response to coppicing; senescence and breakdown of dead plant components. Figure 5.1 



 

180 

 

summarises DayCent simulation of tree carbon fixation, partitioning and loss, and Sections 5.2.1 

through to 5.2.4 outline the details of DayCent representation, assess appropriateness for 

simulating SRC willow, and discuss alternative approaches and potential model development.  

 

 

 

Figure 5.1 DayCent simulation of tree carbon fixation, partitioning and loss 
 

5.2.1 Drivers and growth-limiting factors  

 

Solar radiation, calculated from latitude and date, is the driver of crop and tree production in 

DayCent. Tree specific maximum monthly production is then calculated from solar radiation 

according to a conversion factor (PRDX(2) in the tree.100 file; see Table 5.3). A factor is applied to 

limit growth according to leaf area index (LAI) where it is below the plant maximum (MAXLAI in 

the tree.100 file; see Table 5.3), and therefore less light can be intercepted. Additional limitations 

on growth rate are factored into this calculation according to soil temperature and moisture. Soil 

temperature impact is calculated according to a tree specific Poisson Density Function relating 

temperature and growth. Soil water restriction is calculated according to the relationship 

between potential ET and available soil water plus precipitation and irrigation for the day, 

adjusted for soil texture.  
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Tree rooting depth can be simulated by setting  the parameter to allocate the number of soil 

layers used for water uptake (TLAYPG in the tree.100 file; see Table 5.3); for SRC willow, this 

should equal 7, since rooting depth can be up to 130cm (Crow and Houston, 2004) and soil water 

simulation layer 7 represents the 120-150 cm depth. This value is in fact only used to calculate 

nutrient and water access for tree survival; growth is calculated according to availability in the top 

30cm of soil, since the majority of roots are found at this depth; this is true of SRC willow (Crow 

and Houston, 2004) as well as crops more commonly simulated with DayCent. 

 

Following this initial calculation of maximum production, production is then reduced if N demand 

cannot be met. Demand is calculated according to the C:N ratio, and availability is based on soil N 

availability plus any N fixation: uptake of both fixed and soil available N is adjusted for total root 

biomass (adjustment is set according to a factor calculated in the RTIMP.F module). Respiration is 

calculated as a fraction of the maximum rate according to temperature, size of C pool and plant 

component C as a fraction of that plant component C at optimum LAI. 

 

Dates of first and last growth and senescence can be set in the schedule file, according to 

available information on growing cycle, and coppicing dates should be set according to 

management practices for the site modelled, if known, or a date selected during the 

recommended harvest time period if not. 

 

5.2.2 Partitioning 

 

The tree.100 input file (as introduced in Table 3.3 of Chapter 3) allows the user to set Juvenile and 

mature values for C partitioning (using FCFRAC(1-5,1-2); see Table 5.3), enabling the model to 

simulate the difference between establishing and mature trees. Organs simulated are: leaves; fine 

branches; coarse wood; fine roots; coarse roots. Maximum, minimum and initial C:N ratios of the 

partitions are also pre-set (according to CERFOR(1-3,1-5,1); see Table 5.3), C:N will lie somewhere 

between maximum and minimum depending on availability relative to demand. Maximum and 

minimum values for juvenile roots are set separately to allow for variation with availability of 

water (according to TFRTCW(1-2) or N TFRTCN(1-2) see Table 5.3); maximum values will be 

applied in the event of nutrient or water shortages, resulting in an increase in the proportion of 

below ground biomass.  
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Coppicing reintroduces the juvenile tendency towards rapid growth in woody plants, whilst the 

presence of established roots  enables even faster growth by supplying water and nutrients to 

leaves, and energy stores in below ground and remaining above ground plant parts provide 

additional reserves for growth (Philippot, 1996). Spatial distribution and numbers of new stems 

are important in determining “free growth” through internode elongation, and the resultant leaf 

numbers. Therefore it has been suggested that explicit simulation of individual stem sprouting 

and as well as resultant leaf numbers and canopy architecture, using an individual plant level 

demographic approach, could give improved representation of the rate of post coppice growth 

(Ceulemans, 1996; Philippot, 1996). However explicit, individual tree-level simulation would 

require significantly greater complexity than the stand-level of simulation currently applied in 

DayCent, and is not synonymous with a useful simulation of coppice growth. For example the 

ECOPHYS model applies an individual plant level demographic approach to coppice modelling, and 

incorporates complex 3D simulation of individual leaf positions to calculate LAI, but cannot 

simulate multiple stems or self-thinning (Philippot, 1996). 

 

Conversely, complex demographic approaches can be incorporated into stand-level simulations; 

for example ForestGrowth explicitly simulates average stem numbers according to user input, and 

can simulate stem death to represent self-thinning over the course of the coppice cycle.  

ForestGrowth  applies a simplified approach to leaf architecture simulation, by assuming 

horizontal uniformity over the stand, but is still able to simulate variation in photosynthetic 

capacity without individual tree-level simulation, by discretising the canopy by height to simulate 

changes in average leaf angles and LAI with height in canopy (Tallis et al., 2013).  

 

Amichev et al. (2011) adapted  the multi-stem approach  to represent a single stem (with total 

mass of all separate stems) using the 3PG model to remove the need for highly specific input data 

on bud  numbers.  To simulate post coppice growth without multi-stem simulation, the 3PG 

model resets the age of the trees at the start of each coppice cycle, to reinstate juvenile growth 

patterns, but retains the root biomass from the end of the last coppice cycle (Amichev et al., 

2011). This enables the model to simulate fast canopy closure following coppicing, and the 

increase in above ground biomass growth with the first three successive coppice cycles, since the 

established root system creates a high root:leaf ratio enabling good supply of water to leaves 

(Amichev et al., 2011; Philippot, 1996).  
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Alternatively, the PALM model, which is similar to DayCent in terms of drivers and partitioning, 

simulates post coppicing translocation of nutrients from root to shoot explicitly as an immediate C 

transfer of 20% (Shibu et al., 2012). DayCent has the option to simulate root death to coincide 

with a tree removal event; hence a similar transfer could be built in relatively easily, with some 

minor changes to the model code, to transfer the root C and N to the forest C and N stores 

respectively.  

 

Whilst Miscanthus translocates nutrients from above ground to below ground organs at the start 

of the dormant winter period, this would be disadvantageous for woody tree species where the 

perennial organs are also above ground (Brereton et al., 2013). Numerous studies suggest that 

translocation of nutrients into roots prior to coppicing does not occur for SRC willow, hence there 

is no need to build such transfers into the model (Bollmark, 1999; Deckmyn et al., 2004; Shibu et 

al., 2012).  

 

Simulation of post coppicing growth with the PALM model  is initially partitioned to above ground 

biomass, due to application of a parameter to prevent root biomass exceeding a set proportion of 

above ground biomass (Shibu et al., 2012). Given the evidence for variation in root: shoot over 

lifecycle (Amichev et al., 2011; Pacaldo et al., 2012), setting a fixed ratio to limit below ground 

growth is not ideal. An alternative approach to ensure that the transferred C and N is applied to 

above ground biomass growth, and thereby account for the impact of coppicing on carbon 

metabolism and N translocation, would be to set different C partitioning to be applied during this 

period. Since DayCent already applies two sets of C partitioning for juvenile and established trees, 

it is relatively easy to add a third set, favouring above ground growth, to be applied during a user 

defined post coppicing period. 

 

Due to increased photosynthesis post coppicing, resulting from multiple shoots and limited self-

shading (Ceulemans, 1996; Philippot, 1996), simulation may be further improved by applying  an 

increased photosynthetic conversion factor to account for increased activity and to allow the 

model to be parameterised to fit observed levels of post coppice growth.  Again, the model code 

can be altered to apply a different photosynthetic conversion factor for the same user-defined 

post-coppicing period. 
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5.2.3 Senescence and decomposition 

 

Unlike some of the more complex tree growth simulation models, e.g. ECOPHYS (Philippot, 1996) 

DayCent incorporates full simulation of senescence, organ death and decomposition. The 

tree.100 input file includes user defined values for monthly death rate for all partitions, and the 

proportion of leaves to senesce in the scheduled month. Following simulation of (partial) organ 

death, decomposition is simulated at a proportion of the maximum rate (which can be set in the 

tree.100 file) adjusted for substrate lignin content, C:N ratio and the impact of temperature and 

relative moisture content of soil. 

5.3 Improvement – changes to model code 

 

The model code is made up of over 200 subcomponents- some are in C, some are in FORTRAN, 

hence both a FORTRAN and a C compiler must be used. It was only necessary to alter the 

FORTRAN code (and ancillary files) in this instance, since this includes most of the crop and tree 

growth components.  

 

Unlike the code changes implemented in Chapter 4, there are no complex algorithms to be built in, 

instead alterations simply allow for transfer of C and N on coppicing, and enable a choice of 

parameters to be used in the existing model algorithms, depending on whether a coppice event 

has recently taken place. Code changes are given in full in Appendix Section 3 but are described in 

brief here; Figure 5.2 outlines the key code changes and introduction of new parameters to event 

files, whilst Figure 5.3 can be compared directly to Figure 5.1 to illustrate how this model 

development alters DayCent simulation of tree carbon fixation, partitioning and loss. 



 

185 

 

 

Figure 5.2 Main changes made to the model: code components and event files. Changes 
were made to the code components (square boxes), and these were compiled to produce 
the new executable. The event files (oval boxes) must be present in the same folder as the 
executable for the model to run.   
 

An additional parameter COPP was added to each subtype of event in the trem.100 event file, to 

indicate whether the tree removal event is coppicing. Negative values for COPP indicate 

coppicing; the value increases by one for every day of tree growth, to allow growth parameters to 

return to pre-coppicing values after a user defined period of growing days. The value for COPP is 

read in by the tremin.f component, and passed to the killrt.f, treegrow.f and potfor.f 

components.  

 

The killrt.f component was then amended to simulate C translocation up from roots; where the 

value of COPP is less than 0, the fraction of coarse roots killed at the tree removal event is 

transferred into C and nutrient storage pools to provide nutrients for the tree, instead of to litter 

pools for decomposition.  
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To apply an increased value of conversion of light energy to drive a growth pulse, and altered C 

partitioning, to reflect more juvenile growth behaviour and preferential allocation to above 

ground growth, an alternative coefficient for calculating potential monthly forest production as a 

function of solar radiation outside the atmosphere (labelled PRDC) and an extra set of C 

partitioning parameters (labelled FCFRAC(1-5)) were then added to the tree.100 input file. The 

potfor.f component was set to apply the new potential growth coefficient (PRDC) when COPP is 

less than 2, and the treegrow.f component was also set to apply the updated partitioning values 

(FCFRAC(1-5,3)) when COPP is less than 2. 

 

Altering the value of COPP in the trem.100 input file enables post-coppice growth parameters to 

be applied for a used-defined number of days as required for calibration.  

 

 

Figure 5.3 Alterations to DayCent simulation of tree carbon fixation, partitioning and 
loss 
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5.4 Improvement-model performance testing 

 

After model code changes had been implemented, parameterisation and calibration of this 

adapted model were then carried out for datasets provided by Eric Cassella, from Forestry 

Commission field trials. The model was then validated against yield data for a Centre for Ecology 

and Hydrology field site in Lincolnshire, provided by Emily Bottoms and Niall McNamara for a site 

in Lincolnshire. 

 

5.4.1 Calibration datasets 

 

The Forestry Commission field trials included several different genotypes of SRC willow at 53 

different UK field sites. Four of these sites were selected for calibration; the sites were chosen to 

cover a range of values for the drivers (latitude, temperature, water and N availability) as well as 

variation in parameters which affect soil water availability modelling (precipitation, soil textural 

composition and bulk density). Completeness of the weather datasets was also taken into account 

when choosing which sites to model, since many sites had gaps in the record. Site properties are 

listed in Table 5.1. At the field scale, spatial variation in yield is significantly less than that 

observed for N2O emissions; hence biomass field data can be expected to be much more reliable. 

 

Field studies have observed variation between genotypes in terms of response to fertilizer inputs, 

N utilisation efficiency and growth response, root, shoot and leaf biomass accumulation and 

proportional N allocation to different organs (Brereton et al., 2013). As a result of observed 

variations, modelling studies often calibrate for one genotype (Amichev et al., 2011), or identify 

which genotypes may perform better at different sites (Bauen et al., 2010). There is generally a 

preference for single clone cultivation in field trials; however mixed clones may produce more 

consistent yields, due to varying yield responses to interannual weather variations. For the 

Forestry Commission field trials there is significant variation in yield; of the three genotypes 

trialled most frequently, average yields were: 20; 12; 15 odt ha-1.  The highest yielding clone 

varied between sites, with clone 1 (Jorunn) highest yielding at 33 sites, 2 (Germany) highest 

yielding at 3 sites, and 3 (Q83) highest yielding at 14 sites. 
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Table 5.1 Site properties for calibration sites 
Site identifier TALY CARR DEMO BORE 

Site variable 

Latitude 51.457 55.0421 53.2699 51.2101 

Longitude -3.392 -3.6356 -0.5274 0.1491 

Available water capacity (mm) No data 74.3 123 152.3 

Slope Flat Convex Flat Convex 

Maximum temperature (C) 33.4 35 34.2 35 

Minimum temperature (C) -13.4 -7.7 -11 -7.7 

Average annual precipitation (cm) 150 116 74 86 

pH 5.54 5.53 7.64 6.50 

% sand 39.73 67.20 28.63 8.43 

% silt 45.80 25.30 41.73 47.47 

% clay 14.27 7.40 29.67 44.17 

Bulk density 1.45 1.61 1.33 1.23 

% organic matter 4.33 7.51 3.33 2.33 

Extractable ammonium  (mg kg-1) 6.7 16.4 8.2 6.8 

Extractable nitrate  (mg kg-1) 1.40 7.47 4.86 5.01 

Mineral nitrate (mg kg-1) 19.50 26.63 10.95 6.33 

 

However, for the four chosen calibration sites, there is limited variation between average yields 

for the three genotypes, as can be seen from Table 5.2. 

Table 5.2 Genotype variation in average yields for calibration sites 
 Genotype 1                       

yield (odt ha-1) 

Genotype 2                      

yield (odt ha-1) 

Genotype 3                       

yield (odt ha-1) 

BORE 15.0 15.2 17.1 

CARR 14.5 15.8 15.4 

DEMO 12.4 11.9 12.3 

TALY 19.6 18.6 17.1 

 

To avoid the complexity of calibrating for multiple genotypes, this study will take average yield for 

each site, as per (Shibu et al., 2012). This will have the limitation of meaning that variation in 

genotype performance cannot be simulated for the study sites to be assessed in Chapter 6. The 

model can be considered to be simulating a genotype mixture, although interspecies interactions 

may increase yield for mixed clones (Hofmann-Schielle, 1999), and the model is unable to account 

for  this. 

 

Field data on above ground biomass used for calibration from the Forestry Commission are based 

on allometric relationships between shoot diameter 100cm above ground level (D100) and shoot 
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dry mass, which were calculated as part of the study for each site and genotype. These 

relationships should not be affected by interannual variations in growth resulting from water or 

nutrient deficiencies etc, but will be altered by crop damage (Amichev et al., 2011). Damage 

observed at field sites included aphid activity, caterpillar activity, rust, skeletonising, hail and 

frost; since these cannot be simulated by the DayCent model, the fact that their impact on yield is 

also not accounted for in field data could be expected to increase apparent agreement between 

model and field data. Due to the iterative nature of model calibration and parameterisation, and 

the need to match field data from multiple sites, a qualitative approach is taken here as opposed 

to use of statistical measures.  

 

The files required for running DayCent were introduced in Table 3.3. of Chapter 3; only the files 

which are specific to an individual model run are discussed here. For each site, five specific input 

files were required including: daily weather in terms of precipitation, maximum and minimum 

temperature; a site file with data on latitude and longitude, soil textural composition and bulk 

density; and a schedule file with previous land use and management, dates of planting and 

coppicing of SRC willow, as well as first and last growth days for each year of SRC willow. 

Additionally, a soil.in file is required to represent the soil profile, and a site.in file, which in this 

case will be edited to simulate presence or absence of water table.  

 

The schedule file must include a spin up period to account for the impact of previous land use on 

site properties such as soil C and N stores. Around 2000 years is recommended, in the form of 

1800 years of native vegetation and 200 years of current cropping management  (Adler, 2007) in 

this case arable. Therefore the schedule files began at year 0014, with land forested until 1813, 

followed by 200 years of arable use. This does not match with the land use history of arable land 

in the UK which was for the most part cleared of forestation much earlier, however the schedule 

file was written in this way to match the instructions distributed with the model, and applied in 

numerous previous studies in which the model has shown good performance. The intention of the 

recommended spin up approach is to set reasonable soil pools for arable land not yet at 

equilibrium, i.e. still losing carbon; in the absence of known soil carbon values or long term land 

use history, this approach is probably the most sensible. Since soil carbon will not be known for 

the scenario analysis sites, the spin up approach will be applied to sites in chapter 6, and is 

applied here also for consistency. Data on site properties and weather were provided by the 

Forestry Commission, with missing weather data populated based on the same dates in previous 

years. The weather dataset was looped for the entire spin up period. Planting dates were included 
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in Forestry Commission  site data, and dates for first and last growth were obtained from the 

literature (Martin and Stephens, 2006). 

 

There are no data on planting density, nor is there a facility to input this to DayCent, however 

planting density may be unimportant, since due to  impacts on shading (Shibu et al., 2012) and 

self-thinning, higher planting density may only increase yields if coppicing frequency is increased 

(Bullard et al., 2002). 

 

 

5.4.2 Calibration and parameterisation 

 

Since DayCent had not previously been applied to SRC willow, it was first necessary to set 

appropriate parameters in the tree.100 input file. The tree.100 file has 153 parameters, many of 

which cannot be measured directly, therefore the parameterisation approach involved use of 

default values, and values from other studies where available (as per. Amichev et al., 2011; Shibu 

et al., 2012). The trem.100 file has only 21 parameters, most of which can be set based on 

previous studies. The calibration approach involved fitting model output to field data on above 

ground biomass for the four sites, by altering carbon partitioning, the coefficients for calculating 

potential monthly forest production, and tree age at which to apply mature partitioning in the 

tree.100 file, and duration for which to apply post-coppicing growth behaviour in the trem.100 

file. Model output for biomass is in the form of g C m-2;  C does not make up a consistent 

proportion of biomass, total biomass was calculated based on proportions as indicated by Pacaldo 

et al. (2012) since this study was also used to set composition values in the tree.100 input file. The 

accepted values for tree.100 and trem.100 following calibration are included in full in Appendix 

Sections 3.2 and 3.3 respectively, with key parameters shown here in Tables 5.3 and 5.4. 

 

The approach taken for calibration is very similar to that applied by Chamberlain et al. (2011) in 

terms of modelling for a spin-up period of 1800 years natural vegetation and 200 years of 

previous land management to set SOC, and parameterisation by manipulation of sensitive 

parameters, with calibration based on yield data only. They state that good calibration 

performance for yield simulation gave modest confidence in predictions of N2O emissions and 

changes in system C associated with land use change 
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Fitted values for tree.100 were generally within the range of model defaults, except for PRDC and 

SNFXMX(2). Since the PRDC (or PRDX(2) if a coppice event has not occurred) parameter is used to 

calculate maximum monthly production, the use of a higher parameter value following coppicing 

is justified by the observed increase in photosynthetic activity, plus the supply of energy from 

below ground biomass. The high value of SNFXMX(2) , shown in Table 5.3, was necessary to 

match field data: regardless of values applied elsewhere, yields were significantly under predicted 

for values of symbiotic N fixation below the maximum of 0.0001 recommended, as can be seen 

from Figure 5.7. The need for a higher value for N fixation may indicate that SRC willow benefits 

from higher levels of symbiotic N fixation than previously modelled tree species, or may suggest 

that N cycling is not adequately simulated by the model, making it necessary to increase the value 

of SNFXMX(2) to prevent yield from being underestimated due to simulated N deficiencies. 

Table 5.3 Key parameters in the tree.100 input file. It is necessary for NLAYER in the 
site.100 file to be greater than or equal to TLAYPG in order for soil water to be simulated 
to the required depth. 
Parameter code Parameter description Value Method of 

estimation 

PRDX(2) coefficient for calculating 
potential monthly forest 
production as a function of 
solar radiation outside the 
atmosphere 

Standard 0.6 Fitted 

PRDC Following 
coppicing 

0.8 

PPDF(1) values for production for 
parameterization of a Poisson 
Density Function curve to 
simulate temperature effect 
on growth 

Optimum 

temperature (C) 

20 (Amichev et 
al., 2011) 

PPDF(2) Maximum 

temperature (C) 

40 

PPDF(3) Left curve 1.7 Fitted 

PPDF(4) Right curve 3.7 

FCFRAC(1,1) Leaves for juvenile forest 0.37 Fitted 

FCFRAC(2,1) Fine roots for juvenile forest 0.15 

FCFRAC(3,1) Fine branches for juvenile forest 0.12 

FCFRAC(4,1) Large wood for juvenile forest 0.21 

FCFRAC(5,1) Coarse roots for juvenile forest 0.15 

FCFRAC(1,2) Leaves for mature forest 0.34 

FCFRAC(2,2) Fine roots for mature forest 0.04 

FCFRAC(3,2) Fine branches for mature forest 0.35 

FCFRAC(4,2) Large wood for mature forest 0.25 

FCFRAC(5,2) Coarse roots for mature forest 0.03 

FCFRAC(1,3) Leaves for coppiced forest 0.20 

FCFRAC(2,3) Fine roots for coppiced forest 0.01 

FCFRAC(3,3) Fine branches for coppiced forest 0.44 

FCFRAC(4,3) Large wood for coppiced forest 0.34 

FCFRAC(5,3) Coarse roots for coppiced forest 0.01 
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TFRTCN(1) Maximum C fraction to fine root, water stress 0.15 Fitted 

TFRTCN(2) Minimum C fraction to fine root, no water stress 0.01 

TFRTCW(1) Maximum C fraction to fine root, nutrient stress 0.15 

TFRTCW(2) Minimum C fraction to fine root, no nutrient stress 0.01 

BTOLAI 
 

Biomass to leaf area index (LAI) conversion factor 0.013 
 

(Lindroth, 
1994) 

MAXLAI Theoretical maximum leaf area index achieved in 
mature forest 

8 

SWOLD Growing days after which to switch to mature C 
allocations 

800 Fitted 

WOODDR(1) Fraction of forest deciduous 1 Fitted 

WOODDR(2) Monthly death rate fraction Fine root (juvenile) 0.04 

WOODDR(3) Fine root (mature) 0.04 

WOODDR(4) Fine branch 0.01 Used default 
maximum to 
account for 
self-thinning 

WOODDR(5) Large wood 0.002 Fitted 

WOODDR(6) Coarse root 0.12 

SNFXMX(2) Symbiotic N fixation maximum for forest 0.004 Fitted 

TLAYPG Number of soil layers used 7 To account for 
roots down to 
130 cm 

TMPLFF Temperature at which leaf drop will occur (C) 5 (Kopp, 2001) 

TMPLFS Temperature at which leaf out will occur (C) 8 (Kopp, 2001) 

CERFOR(1,1,1) Minimum C/N ratio for leaves 22.99 Fitted based 
on (Pacaldo et 
al., 2012) 

CERFOR(1,2,1) Minimum C/N ratio for fine roots 64.99 

CERFOR(1,3,1) Minimum C/N ratio for fine branches 100.99 

CERFOR(1,4,1) Minimum C/N ratio for large wood 120.99 

CERFOR(1,5,1) Minimum C/N ratio for coarse roots 112.98 

CERFOR(2,1,1) Maximum C/N ratio for leaves 40.01 

CERFOR(2,2,1) Maximum C/N ratio for fine roots 70.01 

CERFOR(2,3,1) Maximum C/N ratio for fine branches 200 

CERFOR(2,4,1) Maximum C/N ratio for large wood 220 

CERFOR(2,5,1) Maximum C/N ratio for coarse roots 200 

CERFOR(3,1,1) Initial C/N ratio for leaves 38 

CERFOR(3,2,1) Initial C/N ratio for fine roots 50 

CERFOR(3,3,1) Initial C/N ratio for fine branches 98 

CERFOR(3,4,1) Initial C/N ratio for large wood 98 

CERFOR(3,5,1) Initial C/N ratio for coarse roots 113 

'FURGDYS' Number of days after leaf out of unrestricted 
growth of woody components 

100 Fitted 

The value of FD(2), shown in Table 5.4, is set at 0.2 to account for 20 % coarse root transfer to 

above ground biomass following COPP. This proportion was applied by Tallis et al. (2013) after 
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Deckmyn et al. (2004) on the assumption that carbon metabolism response to coppicing is similar 

to that of poplar, although there is no record of how the value was originally calculated, or 

whether response may vary with site factors such as soil water and nutrient availability. 

Table 5.4 Key parameters in the trem.100 input file 
Parameter Definition Value for 

coppice 
event 

Method of 
estimation 

'EVNTYP' Event type flag 0= cut, 1= fire 0  

'REMF(1)' Fraction of leaf live component removed 1  

'REMF(2)' Fraction of fine branch live component removed 1 (Shibu et al., 
2012) 'REMF(3)' Fraction of large wood live component removed 0.95 

'REMF(4)' Fraction of fine branch dead component removed 1 

'REMF(5)' Fraction of large wood dead component removed 0.95 

'FD(1)' Fraction of fine root component that dies  0.0  

'FD(2)' Fraction of coarse root component that dies 0.2 (Deckmyn et al., 
2004; Tallis et al., 
2013) 

'RETF(1,1)' Fraction of C in killed live leaves that is returned 
to the system (ash or litter) 

1  

'RETF(1,2)' Fraction of N in killed live leaves that is returned 
to the system (ash or litter) 

1  

'RETF(1,3)' Fraction of P in killed live leaves that is returned 
to the system (ash or litter) 

0  

'RETF(1,4)' Fraction of S in killed live leaves that is returned 
to the  system (ash or litter) 

0  

'RETF(2,1)' Fraction of C in killed fine branches that is 
returned to the system (ash or dead fine 
branches) 

0  

'RETF(2,2)' Fraction of N in killed fine branches that is 
returned to the system (ash or dead fine 
branches) 

0  

'RETF(2,3)' Fraction of P in killed fine branches that is 
returned to the system (ash or dead fine 
branches) 

0  

'RETF(2,4)' Fraction of S in killed fine branches that is 
returned to the system (ash or dead fine 
branches) 

0  

'RETF(3,1)' Fraction of C in killed large wood that is returned 
to the system (ash or dead large wood) 

0  

'RETF(3,2)' Fraction of N in killed large wood that is returned 
to the system (ash or dead large wood) 

0  

'RETF(3,3)' Fraction of P in killed large wood that is returned 
to the system (ash or dead large wood) 

0  

'RETF(3,4)' Fraction of S in killed large wood that is returned 
to the system (ash or dead large wood) 

0  

'COPP' Growing days to apply coppiced values for C 
partitions and radiation conversion efficiency 

-150 Fitted 
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Derived from material produced by Forest Research and The Forestry Commission by 
permission of Forest Research and the Forestry Commission on behalf of the Controller of 
Her Majesty’s Stationery Office. © 2012 Crown Copyright.   
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Figure 5.4 Measured and modelled time series above ground biomass for the four 
calibration sites with error bars showing   one standard deviation of measured data. 
Owing to the relationship between precipitation and site moisture in the dataset 
provided by the Forestry Commission, presence of water table was simulated for six 
months of the year at sites BORE and DEMO, and none of the year at sites TALY and CARR. 
The three sets of model output are: updated and calibrated version= Impacts of coppicing 
simulated, parameters as set in Tables 5.3 and 5.4; calibrated version= Impacts of 
coppicing not simulated, other parameters as set in Table 5.3; default input values= 
tree.100 values using the default for  temperate deciduous forest 
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Figure 5.4 indicates good performance of the DayCent model following calibration and code 

changes; modelled values for above ground biomass often fall within the range of the standard 

deviation of field data. The graphs in Figure 5.4 also indicate very poor performance for use of the 

default tree.100 input values, which are intended to broadly represent mixed temperate 

deciduous forest. Performance was improved for the parameterised and calibrated input values, 

but it was necessary to apply the code changes to simulate changes in carbon metabolism and 

increased photosynthetic activity and above ground growth following coppicing in order to 

produce output representative of field data. 

 

Figure 5.5 Leaf biomass as a proportion of total above ground biomass for the four 
calibration sites 
 

Figure 5.5 indicates variation in the proportion of total biomass made up of leaves over the 

coppice cycle: modelled values compare well with measured values from Proe et al. (2002) of 

40;18;12. 

 

Dimitriou et al. (2009) recorded ET in the range of 36-59 cm a-1 which accounted for around 76 % 

of precipitation; proportional values for the four calibration sites as indicated in table 5.5 are 

significantly lower than this, but absolute values are mostly within range.  
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Table 5.5 Annual evapotranspiration at the four calibration sites, with reference to 
annual precipitation values 
 Precipitation  cm ET cm % ET 

BORE / Average 87.55 47.95 55.55 

1997 101.21 52.54 51.91 

1998 76.32 49.91 65.39 

1999 75.34 49.16 65.25 

2000 99.84 47.32 47.40 

2001 78.89 49.23 62.40 

2002 78.77 38.12 48.39 

2003 75.24 45.63 60.64 

2004 101.11 48.21 47.68 

2005 101.21 51.45 50.84 

CARR / Average 116.28 51.41 45.53 

1998 131.08 52.62 40.14 

1999 101.18 53.40 52.78 

2000 101.30 48.90 48.27 

2001 101.32 49.13 48.49 

2002 161.66 42.14 26.07 

2003 131.08 64.55 49.24 

2004 101.30 48.13 47.51 

2005 101.29 52.44 51.77 

DEMO / Average 73.24 45.06 62.48 

1997 70.30 51.69 73.53 

1998 75.34 49.21 65.31 

1999 70.93 45.34 63.92 

2000 78.51 46.15 58.79 

2001 76.33 46.37 60.75 

2002 81.49 31.00 38.04 

2003 81.57 43.19 52.95 

2004 54.38 41.68 76.65 

2005 70.30 50.91 72.42 

TALY / Average 148.47 51.16 35.71 

1997 134.86 57.12 42.36 

1998 159.20 50.90 31.97 

1999 167.04 51.83 31.03 

2000 188.60 51.24 27.17 

2001 117.33 51.65 44.02 

2002 189.36 49.31 26.04 

2003 136.66 41.25 30.18 

2004 108.32 50.31 46.45 

2005 134.86 56.82 42.13 

 

It is worth noting that potential ET is likely to correlate more strongly with factors controlling 

water demand, and that water availability may be affected more strongly by site drainage factors 

than by precipitation, hence ET may not be expected to make up a consistent proportion of 
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precipitation. Field data for poplar suggests lower yield from the first rotation, since roots are not 

yet fully established, followed by more consistent values of biomass both above and below 

ground in subsequent rotations (Deckmyn et al., 2004). Modelled and measured values from 

studies on SRC willow also indicate slow establishment of roots, taking around 2 years to reach 

values over 1 t ha-1 increasing to around 5 t ha-1 by the third year of the rotation (Shibu et al., 

2012) and arriving at 35 t ha-1  22 years from planting (Amichev et al., 2011). Output from DayCent 

for the four calibration datasets shown in Figure 5.4 indicates faster initial root development, with 

5 t ha-1 reached in the first year of the first rotation, and 35 t ha-1  achieved at some sites by 9 

years from planting, although values appeared to level off at this point. During calibration, 

alternative partitioning parameters were tested, allocating smaller proportions to root biomass 

were tested, however due to the use of root biomass in calculation of nutrient and water supply, 

this approach resulted in under prediction of yield. This may indicate that DayCent fails to fully 

simulate the efficiency of water and nutrient uptake, or that the genotypes considered here have 

more prolific root systems than those assessed elsewhere. Ultimately, it is likely that good 

simulation of above ground growth rates was at the expense of accurate representation of below 

ground growth rates 

 
Figure 5.6 Above and below ground biomass for the four calibration datasets 
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5.4.3 Validation dataset 

 

For the validation site, field data is based on harvested biomass, hence should account for impacts 

of pests and other damage, and it is not necessary to take into account potential error in 

allometric equations. Error may be introduced however if the harvested proportion of above 

ground biomass differs from the 95% applied in the model.  Site properties for the validation site 

are listed in Table 5.6, and the model was run as for the calibration sites, but with tree 

parameters kept constant. Presence of a water table was simulated all year round in order to 

match measured values for WFPS. For the validation site, Miscanthus data were also available, 

along with N2O measurements for both crops; since scenario analysis in Chapter 6 will also be 

performed for Miscanthus, and since output on N2O emissions for both crops will be considered, 

it is useful to assess model performance using these data also.  

 
Table 5.6 Site properties for the validation site 
Soil 
horizon 

Depth to 
top (cm) 

Depth to 
bottom 
(m) 

Mean clay % Mean 
silt % 

Mean 
sand % 

bd 
(CST) 

pH 

1 0 20 25 29 46 1.38 6.75 

2 20 45 22 32 46 1.4 6.75 

3 45 70 44 32 24 1.26 6.75 

4 70 150 42 38 20 1.26 6.75 

Weather 
data 

Maximum temperature 

(C) 

Minimum 

temperature(C) 

Average annual precipitation 
(cm) 

 31.3 -14.2 57.26 

 

5.4.4 Validation performance  

 

Table 5.7 indicates model performance for yield simulation at the validation site; values of relative 

deviation for SRC willow are comparable to the 14.3 and -2.7 achieved for yield modelling with 

ForestGrowth by Tallis et al. (2013) suggesting that explicit simulation of stem numbers is not vital 

to reasonable prediction of yield.  

Table 5.7 Relative deviation of yield predictions for the validation site 
 SRC willow Observed 

yield t ha-1 
Modelled 
yield t ha-1 

Relative 
deviation 

2004 18.9 18.1 -4.2 

2007 30 27.4 -8.5 
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Figures 5.7 and 5.8 are included to indicate the impacts of applying lower values for SNFXMX(2). 

Figure 5.7 indicates that applying lower values for SNFXMX(2) caused simulated above ground 

biomass to be significantly underestimated from the first rotation. Whilst the pattern in response 

to interannual climate variation is the same for all simulated values of SNFXMX(2), the impact of 

root establishment to increase yields after the first rotation is not seen for simulations with 

reduced N fixation, presumably due to soil N depletion meaning that yields as high as those 

simulated during establishment can no longer be supported. As stated in Section 1.4.2.4, without 

fertiliser input N soil depletion may be observed in later years at former arable sites, however the 

effect simulated here is faster than would be expected, and causes yield to be underestimated by 

the first rotation. At lower values of N fixation, below ground biomass levels off more quickly, and 

does not reach the 35 t ha-1 peak  identified by previous studies (Amichev et al., 2011), whilst root 

growth during establishment is still faster than suggested elsewhere in the literature (Shibu et al., 

2012). Hence it appears that the 0.004 level of N fixation applied in the tree.100 file is necessary 

to simulate above ground and below ground biomass, particularly in later rotations. 

 

Figure 5.8 indicates that altering N fixation has limited impact on soil nitrate and ammonium 

concentrations. Peak concentrations are higher at lower N fixation rates, however values are low 

for all conditions most of the time from the first rotation. Therefore, value of N fixation does not 

appear to affect simulation of N exhaustion. Given the very low level simulated for both 

ammonium and nitrate, it is useful to assess whether N retention may be poorly simulated by the 

model in general.  
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Figure 5.7 Modelled above and below ground biomass with a range of values for N 
fixation (SNFXMX(2)) for SRC simulated willow cultivation at the validation site. 
 

 

Figure 5.8 Modelled soil N with a range of values for N fixation (SNFXMX(2)) for 
simulated SRC willow cultivation at the validation site. For both ammonium and nitrate, 
little difference was simulated between conditions, meaning that the lines for 0.002 and 
0.004 are often not visible behind the line for 0.001. 
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As was noted in Section 4.4.5, previous studies have identified poor simulation of soil nitrate, and 

ammonium with DayCent (Del Grosso et al., 2008; Jarecki et al., 2008). For the calibration studies, 

field data is not available to assess model performance; however Figure 5.9 and Figure 5.10 

respectively indicate that both ammonium and nitrate fall to relatively low levels quite rapidly 

after fertiliser applications. Although a degree of retention is simulated under fertilised land use, 

both graphs indicate a baseline around zero under no fertiliser land use, with small peaks 

following crop inputs to soil. Figure 5.11 and Figure 5.12 indicate that for ammonium and nitrate 

respectively, measured values at the validation site were significantly higher than simulated by 

the model, in line with findings of previous studies. Poor representation of soil N availability may 

be a limitation in terms of simulating both crop growth and N2O emissions. However, by applying 

a value of 0.004 for SNFXMX(2), observed levels of crop growth can be simulated in spite of under 

prediction of soil N. Under prediction of soil N availability may be a factor in the need to over-

predict the rate of below ground biomass accumulation in order to simulate observed above 

ground biomass. Under prediction of soil N availability may reflect over prediction of leaching or 

gaseous losses (Del Grosso et al., 2008; Jarecki et al., 2008). As discussed in Section 4.4.5 there is 

not a convenient, universal solution to the identified issues with simulating soil nitrate and 

ammonium, hence it will be necessary to consider this as a possible limitation when drawing 

conclusions from model output. 
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Figure 5.9 Simulated values of ammonium in the top 15cm of soil at all 4 calibration sites 
over a 20 year period  
 

 

Figure 5.10 Simulated values of nitrate at all 4 calibration sites over a 20 year period  
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Figure 5.11 Comparison of modelled and measured soil ammonium for for SRC willow 
cultivation at the validation site. Measured values are indicated as dots, due to being 
point values, whereas simulated values are continuous, and are hence represented with 
a line. 
 

 

Figure 5.12 Comparison of modelled and measured soil nitrate for SRC willow cultivation 
at the validation site. Measured values are indicated as dots, due to being point values, 
whereas simulated values are continuous, and are hence represented with a line. 
 

Error bars in Figure 5.13 representing spatial variation in measurements indicate that the SRC 

willow field showed significant variation in N2O flux, in line with field scale variation identified by 
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generally within the range of measurements for the date, which suggests that simulation of N2O 

emissions may be acceptable in spite of issues with representation of soil N availability. 

 

Figure 5.13 Comparison of modelled and measured soil N2O flux for SRC willow 
cultivation at the validation site. Error bars on measured values indicate maximum and 
minimum of five measurements taken at different points over the field on the same day. 
 

 

It is also useful to assess model performance for Miscanthus at the validation site, since field data 

for yield and N2O emissions are also available. Field data for Miscanthus indicated lower yield for 

the first harvest; as for SRC willow, establishment yield for Miscanthus is generally lower, and the 

model does not appear able to simulate this. For this site, yields are lower for Miscanthus than 

SRC willow, meaning that the second harvest also shows high relative deviation in Table 5.8, 

although absolute deviation is only -0.84 t ha-1. 

Table 5.8 Relative deviation of yield predictions for the validation site 
Miscanthus Observed yield t/ha Modelled yield t/ha Relative deviation 

2009 2.80 5.96 113.04 

2010 4.14 3.30 -20.19 

 

Figure 5.14 indicates that the Miscanthus field also showed significant spatiotemporal variation in 

N2O flux, and again modelled values were low, and generally within the range of measurements 

for the date. 
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Figure 5.14 Comparison of modelled and measured soil N2O flux for Miscanthus 
cultivation at the validation site. Error bars on measured values indicate maximum and 
minimum of five measurements taken at different points over the field on the same day. 
 

5.5 Discussion 

 

For the parameterisation of SRC willow growth rate, field data errors may be present in the 

calibration data, due to use of d100 values to estimate above ground biomass, and in the 

validation data due to possible variation in the proportion of above ground biomass harvested. In 

terms of input data, further potential sources of error include missing weather data, which was 

populated based on the same dates in previous years, and use of dates for first and last growth 

obtained from the literature, which may differ slightly from the dates at the specific sites, due to 

variation with climate and latitude. 

 

Additionally, the use of average yield for all genotypes at each calibration site will have the 

limitation of preventing assessment of variation in genotype performance for the study sites to be 

assessed in Chapter 6. However, given the low level of variation in yield between genotypes for 

the sites assessed, calibrating the model to these separately may not have been useful; to 

calibrate to each genotype separately, it would have been better to choose sites with greater 

genotypic variation to identify which site properties are important.  
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For the calibration sites, modelled above ground biomass was generally within  one standard 

deviation of measured data for year one of the rotation, indicating good simulation of regrowth 

following coppicing. Simulated above ground biomass was also generally within  one standard 

deviation of measured data for year three of rotations, which points to potentially good 

performance for simulating yield, although confidence must be based on performance at 

validation. The adapted and parameterised model gives improved representation for the 

calibration sites, except the second year of the second rotation, when the parameterised version 

of the model which did not account for the impacts of coppice more closely matched field data at 

three of the four calibration sites (these appear to have experienced dieback, possibly due to 

frost, which is not simulated by the model). The adapted parameterised version of the model also 

gives best simulation of final yield for both rotations, and hence overall, is better. 

 

Validation performance for simulating SRC willow yield was good, with less than 10% 

underestimation for both modelled rotations, hence confidence in model yield predictions in 

scenario analysis can be relatively high, although it is important to consider potential limitations if 

the model is applied to sites with climate and soil types outside of the range assessed here.  

 

Below ground biomass was not as well simulated as above ground, although the model is 

theoretically capable of simulating the 130 cm rooting depth of SRC willow appropriately, using 

the   TLAYPG value of 7 applied here. Poor simulation of below ground biomass for SRC willow 

may be attributed to failure of DayCent to fully simulate the efficiency of water and nutrient 

uptake. Although predicted below ground biomass is less important than above ground in terms 

of yield, requirement for water and nutrients to complete this growth may result in over 

prediction of crop water and nutrient demands. 

 

In terms of the scenario analysis required by this study it is also important to note that the 250 cm 

rooting depth of Miscanthus (Christian 2006) can also be simulated by applying a value of 9 for 

the crop.100 equivalent parameter. Using crop parameters from Davis et al. (2010), DayCent 

performance for simulation of Miscanthus yield was reasonable for the second harvest, but first 

harvest was significantly over-estimated. 
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Issues with simulation of soil N availability have also been identified. Potential associated 

deficiencies in simulation of N2O emissions and N leaching must be considered, however 

parameterisation of symbiotic N fixation goes some way to resolving potential impacts on 

simulation of crop growth. Therefore, confidence in simulated N2O emissions will be based on the 

assessment of validation performance in Chapter 4, and reasonable performance at the validation 

sites for SRC willow and Miscanthus, as shown in Figures 5.13 and 5.14 respectively. Simulated 

values for N leaching should be considered carefully in comparison to field data, and model 

verification performance in previous studies, since this study has not performed model 

verification for N leaching.  

 

Since the tree.100 file has 153 parameters, many of which cannot be measured directly, or vary 

with growing conditions in a way which cannot easily be measured, hence values used from other 

studies may not be reliable, likewise default values will only provide an approximation of the 

appropriate parameter value, and fitted values are simply the parameter value required to 

produce output matching field data. As a result, high confidence in model output should be 

limited to simulation of above ground biomass for sites relatively similar to those used in 

verification. In terms of timing and amount of water and nutrient uptake, confidence should be 

based on data used to parameterise the tree.100 file, and data used to set first and last growth 

dates. 

5.6 Summary 

 

To predict yield, and to model how SRC willow differs from annuals in terms of amounts and 

timing of ET and nutrient uptake requires simulation of how growth processes vary seasonally, 

over the crop lifecycle, and in response to coppicing management. Alterations were made to the 

model code to enable the model to simulate variation in growth rate and C partitioning following 

coppice event. These changes theoretically give improved representation given the observed 

differences in tree growth following coppicing, but are reliant on use of appropriate values for the 

new parameters in the tree.100 file. Since the model had not previously been applied for SRC 

willow, it was also necessary to adjust parameters in the tree.100 file to better represent growth 

of SRC willow, using values from previous studies where available, and default or fitted values for 

the remaining parameters.  
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The updated model appeared better able to simulate the observed pattern of growth over the 

coppice cycle, and the updated parameters in the tree.100 file gave significantly improved yield 

prediction compared to defaults. The updated model parameters give improved representation of 

the relationship between simulated soil N and SRC willow growth, but this does not resolve 

simulation of soil N in terms of N cycling, leaching, gaseous emissions or soil response to crop 

uptake. 

 

In terms of crop growth simulation, latitude and soil water availability are the most important site 

factors to be considered: the calibration datasets span a range of latitudes from 51 to 55 degrees 

North and available water capacity varies from 152 to 73 mm. Based on model performance over 

this range of sites, no limitations in representing yield under certain conditions were identified. 

Calibration focussed on fitting parameters in the tree.100 and trem.100 files, as well as altering 

presence or absence of water table to ensure model output for WFPS was in line with field 

observations on soil moisture status. For scenario analysis, such as application of the model to the 

“typical sites” identified in Chapter 2, there are no field data to match simulated WFPS to, so as 

was stated of N2O emissions in Section 4.6, conclusions drawn about potential yield will only hold 

for sites where WFPS is in the range simulated by the model.  
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6. Scenario Development and Model 
output                 
 

Chapter 6 meets Objective 4; “For simulated cultivation of Miscanthus and SRC willow, assess 

spatial variation in: yield; N2O emissions; soil C storage; evapotranspiration”. The objective is met 

by performing scenario analysis for land use change to perennial energy crops at 12 sites typical 

of those identified as suitable for cultivation in Chapter 2, and comparing model output between 

these sites. 

 

The first step was to select specific sites where common combinations of site properties occur, 

using the spatial database produced from the two-step cluster analysis in Section 2.10. Section 6.1 

details the processing of this database to select representative “typical sites” at which to perform 

scenario analysis using the DayCent model.  Chapter 6 does not consider the end use, or distance 

from end use- these were covered in Chapter 2, and will be discussed further in Chapter 7. 

 

The DayCent model applied in this chapter was identified as suitable in Chapter 3 and developed 

to give improved representation in Chapters 4 and 5. Improvements made in Chapter 4 enable the 

model to simulate impacts of change in tillage regime on WFPS, where the previous version only 

simulated the effect on decomposition rates. This change should enable improved simulation of 

N2O emissions. Improvements made to the DayCent model in Chapter 5 gave improved yield 

prediction for SRC managed SRC willow; in addition to enabling improved yield prediction in the 

scenario analysis, the improved simulation of crop growth should in turn enable improved 

representation of transfers of water and nutrients between plant and soil.  

 

Section 6.1 describes the site selection process, and includes data on site locations, soil properties 

and precipitation. Section 6.2 then details how the improved model was applied at the identified 

sites, including preparation of input data for modelling, and how the model was run. The 

description includes details on how input files for the DayCent model were produced from the 

database and available historic local weather data, and points to information from the literature 

used to generate the cultivation schedule for Miscanthus and SRC willow. Once input data files 

have been produced, model running is relatively simple, so description of this stage is brief. 
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Section 6.3 explores model output, to address Objective 4; “For simulated cultivation of 

Miscanthus and SRC willow, assess spatial variation in: yield; N2O emissions; soil C storage; 

evapotranspiration”. Analysis aims to identify some of the factors which may influence simulated 

spatial variation in the benefits of land use change for bioenergy. Section 6.4 will then draw these 

findings together, to answer the question; what is the variation in identified impacts of land use 

change for bioenergy at these sites? And consider the extent to which these findings may be 

extrapolated to sites with similar soil properties and precipitation regimes. Finally, Section 6.5 

identifies limitations in the model and the approach taken which could be addressed in future 

research. 

6.1 Site data for scenario analysis 
 

Chapter 2 identified which of the locations identified as potentially suitable for Miscanthus 

cultivation by Lovett et al.  (2009) were sufficiently close to appropriate energy end uses to be 

useful for energy crop cultivation. Given that both energy crop yield and the impacts of land use 

change are controlled by complex interaction of site factors, it is useful to perform modelling 

analysis for common combinations of site properties.  A database of potential sites with latitude 

and longitude as well as soil properties, hydrological regime and precipitation was produced for 

the suitable locations, and cluster analysis used to identify common combinations of site 

properties, which were compiled in Tables 2.9 and 2.10.  

 

These “typical sites” are intended to be representative in terms of the identified properties 

considered to be important controls of the impacts of land use change; topsoil and subsoil texture 

and packing density, hydrological regime and depth to gleyed horizon. As well as these site 

properties, the model requires latitude and local weather data, hence it was necessary to select 

specific locations from the database, in order to produce the required input files for the DayCent 

model. However, categories of precipitation which will be used to select sites are necessarily 

broad, to limit the number of modelled sites to fit with time constraints. Temperature and 

latitude are also key drivers of crop growth, which were not taken into account when identifying 

typical sites for practical reasons, but must be considered when analysing and extrapolating from 

findings.  
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The complete dataset of potential cultivation sites from Chapter 2 was filtered using the typical 

combinations of site properties identified in Section 2.10, listed in Table 2.9 and Table 2.10. This 

was done for each of the six typical combinations in turn, to produce six separate spreadsheets of 

all locations where this typical combination of properties is expressed. Given the importance of 

precipitation as a crop growth driver, each spreadsheet was then split into higher precipitation 

(greater than 75 cm per year) and lower precipitation (less than 75 cm per year) to give a total of 

12 spreadsheets. The threshold was set at 75 cm because this was roughly the median 

precipitation of the sites in the database. One site was then selected at random from each 

spreadsheet, and the 12 chosen sites are mapped in Figure 6.1 and listed in Table 6.1.  

 

Figure 6.1 Locations of sites selected for scenario analysis, shown in relation to the 40km 
transport radii for feedstock end uses identified in Chapter 2 
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Table 6.1 Site data for model scenario locations 

Site 
number 

Annual total 
precipitation 

pH Topsoil 
texture 

Topsoil 
packing 
density 

Subsoil 
texture 

Subsoil 
packing 
density 

Depth to 
textural 
change 

Depth to gleyed 
horizon 

Water regime Existing land 
use 

1 1037 5-6 Medium  Low Fine  High  20-40 cm < 40 cm Wet within 40 cm depth for 
over 11 months 

Arable and 
horticulture 2 605 

3 1056 5-6 Fine  Medium Fine  High > 120 cm  < 40 cm Wet within 80 cm for over 6 
months, but not wet within 40 
cm for over 11 months 

4 560 

5 543 6-7 Coarse  Medium Medium  Medium 40-60 cm  > 120 cm Not wet within 80 cm for over 3 
months, nor wet within 40 cm 
for over 1 month 

6 837 

7 1445 5-6 Medium  Low Fine  High > 120 cm < 40 cm Wet within 40 cm depth for 
over 11 months 

Grassland 

8 687 

9 1172 6-7 Medium  Medium Medium  Medium  > 120 cm > 120 cm Not wet within 80 cm for over 3 
months, nor wet within 40 cm 
for over 1 month 

10 736 

11 570 5-6 Fine  Medium Fine  High > 120 cm <  40 cm Wet within 80 cm for over 6 
months, but not wet within 40 
cm for over 11 months 

12 1056 

 

Where textural compositions are; 

Medium= (18% < clay < 35% and >= 15% sand, or 18% <clay and 15% < sand < 65%) 

Fine = (35% < clay < 60%) 

Coarse= (18% < clay and > 65% sand 
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6.2 Producing input files and running the model 
 

As described in Section 3.7, the model runs by reading in values from formatted text files, some of 

which contain defaults, or pertain to specific event types, which should not be altered, except as 

part of parameterisation work, such as that performed in Chapter 5. In addition to these, in order 

to run for a specific scenario, the DayCent model requires data on site specific properties. For 

each scenario analysis, changes to two of the default input files were required, and three new 

input files had to be produced; these are detailed in Table 6.2. 

 

Table 6.2 DayCent input files with input variables to be altered for scenario analyses; where the 
name of the input file is specific to the relevant scenario, the file ending only is given here. For 
the bottom two cases, the model requires the given file name and ending. 

Input file File name Key input variables 

Daily weather data file  .wth Precipitation, maximum temperature, minimum 
temperature 

Site file .100 Monthly weather data: this section can be populated 
automatically, using the ancillary tools provided with 
the model to extract averages from the weather data 
file. 
Site data: Latitude and Longitude, soil textural 
composition, bulk density and pH. 

Schedule file .sch Dates of all events to be simulated:  
Previous land use (start and end dates, management 
activity dates). Energy crop planting, coppicing or 
harvesting management dates, as well as first and last 
growth days for each year of SRC willow, and 
senescence dates for each year of Miscanthus 

Default site properties 
file 

site.in Edited to simulate presence or absence of water table 
for months 1-12. 

Soil properties file soil.in Properties of texture, field capacity, wilting point, bulk 
density, hydraulic conductivity and pH for each layer, 
varying with depth to represent the soil profile 

 

Weather data were accumulated from the British Atmospheric Data Centre (Met Office) using 

data from the nearest Met Office station with the required daily values of maximum and 

minimum temperature and total precipitation. Data were accumulated for the period 1980 to 

2000, using multiple Met Office sites where necessary to fill gaps in the data. Ideally, weather 

input data for DayCent would include solar radiation flux, relative humidity, and wind speed, to 

enable improved calculation of potential ET, however the model can be run using only 

precipitation, minimum and maximum temperature. Due to difficulty in obtaining the additional 

weather parameters at the required daily scale, the decision was taken to run the model using 

only precipitation, minimum and maximum temperature. 
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Since the soil data originally compiled in Chapter 2 were supplied in the form of a range, site files 

were produced for each of the 12 sites (labelled 1 to 12) from section 6.1.1 according to the 

maximum and minimum of the textural range (used to create an error bar in output graphs, 

accounting for uncertainty in soil input data). Bulk density was based on the expected value for 

the given soil texture according to Saxton et al. (1986), adjusted where necessary to account for 

high or low packing density values for that site.  

 

Soil input files, given in Appendix 4.1, were produced from these site files using an ancillary 

program which was distributed with DayCent (The program is called file.100 and is included on 

the attached data stick). The JRC soil data includes separate values of texture and packing density 

for topsoil and subsoil, and a value for the depth to textural change. Therefore the tool was run 

twice to produce a soil input file for topsoil, then subsoil, and the two were combined to create a 

soil profile with two sections, accounting for change in properties with depth. All 24 soil profiles 

(maximum and minimum for each of the 12 sites) are included in the appendix Section 4.1. 

 

Values for hydrological regime were used to decide whether a water table should be simulated; 

where wet soil was indicated, a water table was simulated for the appropriate portion of the year 

in the default site properties input file. For months where presence of water table is simulated, 

water is allowed to flow up into the soil profile from the deep storage layer. Values were 

converted as follows; 

Wet within 40 cm depth for over 11 months; Water table simulated for 12 months of the year 

Wet within 80 cm for over 6 months, but not wet within 40 cm for over 11 months; Water table 

simulated for 6 months of the year 

Not wet within 80 cm for over 3 months, nor wet within 40 cm for over 1 month; Water table 

simulated for 0 months of the year  

 

Schedule files were produced to simulate previous land use, land use change to the relevant 

energy crop, and multiple cycles of that energy crop. The full schedule files are included on the 

attached cd. The schedule file must include a spin up period to account for the impact of previous 

land use on site properties such as soil C and N. Around 2000 years is recommended, in the form 
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of 1800 years of native vegetation and 200 years of current cropping management  (Adler, 2007). 

Therefore the schedule files begin at year 0014, with land forested until 1813, followed by 200 

years of either grazing or arable use, depending on the current land use at the site. As previously 

stated, this is not likely to be a realistic representation of the land use history of the site, but is 

based on the recommended approach to setting soil C pools prior to a model run. Grassland was 

simulated using timings of activities taken from a distributed schedule file, no inputs were 

simulated, since improved grassland was ruled out at the constraints mapping stage, and a no-till 

management was assumed, although grasslands may be ploughed every few years and still 

defined as permanent pasture. Grassland sites simulated will include calcerous, acid and neutral, 

however since these types cannot be distinguished in the 1km resolution land cover data, there 

will be no distinction in the input data, and it is assumed that the pH values based on JRC soil layer 

data will account for the differences. The impacts of this variation in pH on SOM turnover are 

accounted for in DayCent pH using an arctangent function to calculate a decomposition rate 

modifier. Grassland sites selected based on cluster analysis were either acid, with pH 5-6, or 

neutral, with pH 6-7 as these conditions were most commonly occurring for grassland sites 

identified by spatial analysis in Chapter 2. Arable land management was simulated as a wheat and 

oilseed rape crop rotation, with scheduling of events based on information from the UK 

Agriculture website calendars for wheat (UK Agriculture, 2010b) and oilseed rape (UK Agriculture, 

2010a) respectively. The simulation of either arable or grassland management before the energy 

crop is intended to set a baseline starting point for the scenario analysis. 

 

The 20 years of weather data were looped for the entire spin up period. In order for the first 

energy crop lifecycle to be directly comparable to the previous time period, the weather data file 

was restarted from the year 1980 both at the start of the energy crop lifecycle in 2014, and 

exactly one lifecycle prior to the simulated land use change. Dates shown in the analysis are used 

simply to show the passage of time in a virtual experiment; weather data used are not intended 

to be representative of the time period stated. 

 

The schedule file for tillage management was written according to Finch et al. (2009), who state 

that site preparation for planting of energy crops is likely to use the same equipment and be of 

similar intensity to traditional arable management, with ploughing operations performed the 

autumn prior to planting, and the field left bare over winter to aid breakdown. Since freeze thaw 

is not simulated a second tillage operation was scheduled prior to planting. 
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Scheduling data for SRC willow were produced as in Section 5.4.1; according to planting dates 

from Forestry Commission  site data, and dates for first and last growth from Martin and Stephens 

(2006). For the Miscanthus schedule file, it is not necessary to stipulate first and last days of 

growth, however a value for SENM must be specified, and this is used to initiate simulation of 

stem senescence. Detailed study of green stem area by Finch et al. (2004) identified senescence 

from the start of August, so a value of (Julian day) 213 was used. Timing of harvests and 

scheduling of management was simulated according to guidance from DEFRA (2007) with no 

harvest in the first year due to low production during establishment, and annual harvesting on 

March first thereafter.  Images of harvesting and planting equipment are included in the visual 

glossary; additional settling was simulated in an attempt to account for the compacting impact of 

this heavy machinery, in the absence of more appropriate specific equations. 

 

At the end of the energy crop lifecycle, removal was simulated based on recommendations by 

Finch et al. (2009). For Miscanthus, a single herbicide application is usually sufficient, although it 

usually takes two years for complete removal, hence herbicide application was scheduled after 

the final harvest, in Spring 2034 and ploughing in of the residues; ploughing was performed again 

before the next rotation in 2035 to incorporate Miscanthus regrowth and weeds which are likely 

to spring up during the fallow period.  

 

For SRC willow, removal options for a mature plantation include complete removal of stumps and 

roots, mulching in of stumps and roots down to 90cm using a modified peat cutter, both of which 

require specialised machinery and may damage soil structure and lead to erosion, or stump 

removal with planting of a cover or fodder crop (Finch et al., 2009; Mitchell et al., 1999). In order 

to avoid damage to soil structure, and minimise the economic and soil losses of a fallow year, 

cover cropping is likely to be preferred, hence the approach simulated clear cutting after the final 

harvest in 2040, shortly followed by growth of a fodder crop in 2041, which was partially 

harvested, and the remainder ploughed in at the end of 2041. 

 

The model was run for multiple lifecycles of the new energy crop to assess model simulation of 

long term trends in soil C, and to enable consideration of the level at which dynamic equilibrium is 

reached, and what factors might affect this. 
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The standard process of running the model was described in greater detail in Section 3.7, and will 

not be repeated here. In brief: to run the model for the scenario sites, it was necessary to make 

sure that command prompt was pointing to the folder containing the model and ancillary files as 

detailed in Table 6.2. For each run, it was then necessary to set the default site properties file to 

simulate a water table for a number of months appropriate to the hydrological regime, and to 

populate the soil input file with the correct soil profile values. 

 

For several of the sites, the model produced an error message during the first year of the run, 

indicating an NO3 calculation error. This error message was generated by well drained sites due to 

rapid leaching causing the model to calculate negative NO3. Hence for site 3 no output was 

generated, and only one set of output was generated for sites 9 and 10 (meaning that there is no 

output range for these sites). 

6.3 Output analysis  
 

The DayCent model produces multiple output files, although some of these are optional, for the 

purpose of this exercise, the full complement were generated in case they were required for later 

analysis. Assessment of sustainability of perennial energy crop cultivation in Section 1.4 identified 

potentially significant impacts on soil carbon storage (Section 1.4.1), N2O emissions (Section 

1.4.2), leaching of nitrates and associated indirect N2O emissions (Section 1.4.3) and hydrology 

(Section 1.4.4).  

 

Table 6.3 Variables of interest and their containing model output files  

Variable Output file Variable name 

Yield dc_sip.csv Miscanthus=aglivc+ stdedc 
Willow= fbrchc + rlwodc + 
wood1c +  wood2c 

Direct N2O emissions nflux.out nit_N2O-N + dnit_N2O-N    

Indirect N2O emissions Extracted from .bin using the 
list.100 executable file 

(strmac(4) + strmac(8))0.025 
((IPCC indirect EF Groffman et 
al., 2000) 

Soil carbon dc_sip.csv strucc(1)+ metabc(1)+ 
strucc(2)+ metabc(2)+ 
som1c(1)+ som1c(2)+ 
som2c(1)+ som2c(2)+ som3c  

Evapotranspiration and 
interception 

waterbal.out Intrcpt + evap + transp   
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Therefore output on soil C, N2O emissions, leaching and evapotranspiration must be analysed to 

assess and compare these impacts. Model output for yield must also be considered due to 

impacts on the area of land use change required per unit of energy generation. The output files 

containing variables of interest are listed in Table 6.3. The output from the scenario modelling will 

be analysed to identify patterns, and consider what conclusions can be drawn from the findings in 

terms of spatial variation in benefits of bioenergy cultivation. This analysis aims to address 

Objective 4, to “assess spatial variation in: yield; N2O emissions; soil C storage; 

evapotranspiration”, and  to consider how this would affect the benefits of bioenergy. 

 

Section 6.3 assesses simulated values of yield, N2O emissions, SOC storage and ET for all of the 

identified sites. It was first necessary to compare predicted values of yield, ET, N2O and soil C to 

published data to check for systematic model errors. Further analysis considers site variation in 

yields and the identified environmental impacts, as well as looking for informative trends in model 

output.  

 

Given the expectation that interaction between input variables will be a significant control on the 

outputs of interest, it is not appropriate to perform multiple regression analysis to look for a 

predictive relationship between input and output. Instead, correlation analysis will be used to 

consider controlling factors, through Pearson correlation coefficient. The discussion focusses on 

site factors which may be expected to cause positive or negative outcomes if the simulated land 

use change were to take place, and the extent to which findings may be extrapolated to other 

sites with the same soil properties and hydrological regime. This assessment may be limited by 

the relatively small number of data points. 

 

Section 6.4 then looks at interactions between model outputs to identify where land use change 

would have the best outcomes in terms of emissions per unit energy generation. 

6.3.1 Yield 
 

Figure 6.2 shows Miscanthus yield over the seven complete energy crop lifecycles. Predicted 

values at all sites were unrealistically high for the first harvest of each cycle, resulting in an 

averaged value of nearly 20 odt ha-1 for year one in Figure 6.2. As described in Section 6.2, the 
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first year of Miscanthus growth is only around 2 odt ha-1, and is not usually harvested, meaning 

that the first harvest accounts for two years of growth. The model is unable to simulate slower 

growth and different biomass partitioning during establishment when simulating perennial non-

tree crops, and therefore overestimates growth during this period. Future work to develop the 

model to apply different growth parameters at different stages in the lifecycle, similar to the 

simulation of tree growth, as discussed for SRC willow in Chapter 5, could correct this issue. 

Simulation of excessive growth during establishment may result in oversimulation of N uptake, 

although since field studies have observed uptake of most available N during this period (Dufossé 

et al., 2012), this is not a significant concern. Overestimation of establishment yield for 

Miscanthus will not, in itself, be discussed further, although it is important to consider knock on 

effects on simulation of water use during this period.  

  

Figure 6.2 Annual Miscanthus yields over seven Miscanthus lifecycles, as simulated by DayCent, 
beginning with the first harvested yield, averaged across all of the modelled sites. Error bars 
indicate maximum and minimum values for that year. Years with zero yields indicate years 
between Miscanthus cycles. 
 

Miscanthus field studies  (e.g. Christian et al., 2008b) have observed increase in yield up to 14 

harvests, followed by falling yields. Modelled annual yields showed variation between years, 

which would be expected with inter-annual weather variation, and a general trend of slight 

increase over the first growing cycle (18 harvests), as can be seen from Figure 6.2. It has been 

suggested that the decline in Miscanthus productivity in later years occurs due to increasing space 

taken up by unproductive rhizome (Christian et al., 2008a; Don et al., 2012). DayCent could not 

represent this explicitly, since crop architecture is not simulated, however development to apply 
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different growth parameters at different stages in the lifecycle would enable the model to 

represent this trend. Figure 6.2 indicates that simulated yields were not reduced over seven 

Miscanthus lifecycles, indicating either that soils did not become N deficient, or that the model 

does not simulate any impact on yield from soil N depletion.  

 

Figure 6.2 shows averaged yields ranging from 11.6 - 15.3 odt ha-1 following the first harvest. The 

raw yield data for all sites in the first cycle ranged from 11.26 - 15.80 odt ha-1. These values seem 

reasonable compared to field data, for example Christian et al. (2008a) recorded yields from 

10.53 - 16.94 odt ha -1 dry matter for unfertilised Miscanthus over 14 years on silty clay loam. 

However,  from Table 6.4 it can be seen that DayCent predictions are often outside the range 

predicted by Lovett et al. (2009) for that specific location, although there is no consistent pattern 

of over or under estimation.  Predicted yield values mapped in the Lovett et al. study (2009) were 

based on an empirical relationship formulated by Richter et al. (2008) according to relationships 

between yield, crop age, weather variables and soil available water capacity. Richter et al. (2008) 

reported model root mean square error (RMSE) of 1.38, and r2 0.51 odt ha-1 , and their plot of 

modelled against measured yields indicated up to +/- 6 odt ha-1 error for individual sites. 

Therefore although simulated yields produced by DayCent were up to -2.18 or +1.56 outside of 

the range published in Lovett et al. (2009) they fall within that error margin, and may still be 

considered reasonable predictions. 

 

Calibration of DayCent for modelling Miscanthus was not performed as part of this study; 

crop.100 values were provided by Sarah Davis, as calculated in the Davis et al. (2010) study. Davis 

et al. (2010) parameterised the model using data from European and US field trials, and the 

model showed good performance in calibration (Davis et al. 2010) and validation (Davis et al., 

2012) both against US field data.  

 

Figure 6.3 indicates that for the first complete SRC willow lifecycle, DayCent simulated harvests 

which, averaged across all modelled sites, ranged from 14.7 - 29.5 odt ha-1. Simulated values were 

lower for the first harvest, ranging from 4.79 - 33.12 odt ha-1, producing an average of around 

15 odt ha-1 across all modelled sites, which reflects higher allocation of new growth below ground 

and less root mass for uptake of water and nutrients. Defra state that first harvest will range from 

21-36 odt ha-1 which could suggest establishment yields are underestimated at some sites (Hilton, 

2002).  However in the field dataset used in model calibration establishment year yields were as 
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low as 2.16 odt ha-1. The average simulated SRC willow yield over all sites for the first cycle, 

excluding establishment yield, was 26.8, which falls within the range of genotype averages from 

21.15 - 32.1 modelled elsewhere by Aylott et al. (2008). 

 

Table 6.4 Average annual yield as simulated by DayCent, compared to predicted yields at that 
site taken from the Lovett et al. study (2009). “Difference” denotes how far outside of the range 
given by Lovett et al. (2009) the values simulated by DayCent fall. Note that sites 9 and 10 are 
based only on the minimum of the texture range, due to model errors for the maximum. 

Site Predicted average annual  Miscanthus yield odt ha-1 a-1 

(Lovett et al., 2009) DayCent  Difference 

1 13-14.9 13.8-13.9 -0.08 

2 15 or greater 14.0-14.2 -1.85 

4 9-12.9 12.0-12.2 1.16 

5 15 or greater 13.4-13.6 2.59 

6 9-12.9 13.5-13.7 -2.38 

7 15 or greater 14.1 3.19 

8 15 or greater 14.5-14.6 -1.43 

9 15 or greater 14.7 -1.34 

10 9-12.9 14.1 3.15 

11 13-14.9 12.5-12.7 -1.34 

 

 

Chapter 5 calibrated and validated DayCent for simulation of SRC willow yield over the first two 

coppice cycles, however field data were not available to verify model performance over 

subsequent cycles. The expected trend of increasing yield until the trees are 14 years old (4 or 5 

harvests) identified by Pacaldo et al. (2012) was observed in calibration model runs, and is also 

simulated for these scenario analysis sites, as can be seen in Figure 6.4. Since the field dataset 

only covers the first two rotations, average yields from the model output for the full crop lifecycle 

may be expected to be higher than those observed in the field. Analysis of longer term model 

performance in Section 5.4 compared to literature values suggested that above ground growth 

rates are well simulated, at the expense of accurate representation of below ground growth rates. 

Poor simulation of below ground growth rates is likely to affect simulation of N, C, and water, as 

will be discussed in Sections 6.3.2, 6.3.3 and 6.3.4 respectively.  
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Figure 6.3 SRC willow yields over seven SRC willow cycles, with harvest simulated every three 
years.  Yield was simulated by DayCent for each harvest, and is plotted here averaged across all 
of the modelled sites, beginning with the first harvested yield. Error bars indicate maximum and 
minimum values for that year. Years with zero yields indicate years between willow cycles. 
 

Looking at longer term SRC willow yields in Figure 6.3, predicted values are much higher for 

subsequent rotations, and these do not include an establishment period (i.e. low yielding first 

harvest). This is likely caused by a modelling error; establishment growth partitioning is not 

applied in subsequent rotations, because the age of the tree is not reset. This limitation means 

that the model cannot currently be used to predict yields during subsequent rotations. This is due 

to the model not re-reading the input file and resetting the values when the same tree is grown in 

two consecutive periods; minor modification of the code should enable the age of the tree to be 

reset following replanting. This simulation issue may affect longer term simulation of soil C 

cycling, as will be discussed in Section 6.3.3. 
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Table 6.5 Comparison of DayCent simulated values of SRC willow and Miscanthus yield per year 
for all modelled sites, with descriptive statistics. SRC willow yields tabulated here are calculated 
as harvest/3 since a three year rotation was simulated. 

Site Predicted average Miscanthus 
yield odt ha-1 a-1 

Predicted average SRC willow 
yield odt ha-1 a-1 

1+ 13.92 8.63 

1- 13.82 8.38 

2+ 14.23 9.18 

2- 14.08 8.70 

4+ 12.24 4.51 

4- 11.98 5.17 

5+ 13.44 4.48 

5- 13.63 4.30 

6+ 13.55 5.70 

6- 13.70 5.36 

7+ 14.13 14.25 

7- 14.14 14.29 

8+ 14.50 14.59 

8- 14.64 15.73 

9- 14.66 9.55 

10- 14.10 8.98 

11+ 12.55 9.23 

11- 12.68 9.91 

Mean 13.67 8.94 

Maximum 14.66 15.73 

Minimum 11.98 4.30 

Range 2.68 11.43 

Standard deviation 0.78 3.62 

 

Although per harvest SRC willow yields are higher than those predicted for Miscanthus (as can be 

seen from comparison of Figures  6.2 and 6.3), since harvesting interval is longer for SRC willow, 

yields per year are generally lower, as can be seen from Table 6.5. Variations in energy density, 

harvesting energy expenditure, processing and transport should also be considered when 

comparing the relative benefits of SRC willow or Miscanthus. 

 

Table 6.5. indicates much greater variation in simulated yield for SRC willow than Miscanthus; 

maximum annualised yield values for SRC willow are higher than for Miscanthus, whilst minimum 

annualised yield values for SRC willow are much lower than for Miscanthus.  This is in line with 

modelling by Hastings (2014) for the UK, which simulated higher yield for Miscanthus in most 

regions, but higher yields for SRC willow at lower temperatures. Sites where Lovett et al. (2009)  
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indicated yields below the economic threshold for Miscanthus were ruled out in Section 2.5, 

which explains why very low yields for Miscanthus were not simulated for any sites in this study; 

modelling could be performed for sites with low Miscanthus yield to assess whether economically 

feasible yields could be achieved for SRC willow.  

 

Simulated SRC willow yields were lower on land formerly in arable usage (sites 1-6), where they 

did not reach 10 odt ha-1 a-1. Bullard et al. (2002) note that the suggested economic threshold of 

10-12 odt ha-1 a-1 may not be achieved without amendments, hence it may be worthwhile to run 

the model to assess whether viable yields would be simulated with the addition of fertiliser or 

irrigation amendments at these sites.  

 

Although low simulated SRC willow yields at former arable sites appear to suggest this land use 

change may not be profitable or productive, good yields have been observed in field trials on 

former arable land, for example the Centre for Ecology and Hydrology field site in Lincolnshire 

used for model validation in Sections 5.4.3 and 5.4.4 produced a yield of 10 odt ha-1 a-1 for the 

second harvest; similar to the maximum simulated here for the former arable sites. Tendency for 

lower SRC willow yields on former arable sites, by around 1 odt ha-1 a-1 compared to former 

grassland or setaside sites was also noted by Aylott et al. (2008). To identify why the model 

simulates much higher yields for former grassland, it is first necessary to explore how other model 

outputs are affected by previous land use, therefore this will be discussed in Section 6.5.  

 

Modelled SRC willow yields averaged by site range from 12.90 to 47.19 odt ha-1 per harvest; well 

within the 2.16 to 51.15 odt ha-1 per harvest recorded in the forestry commission field trials for 

the genotypes used for model parameterisation. However, for some harvests, yields as high as 58 

odt ha-1 were simulated for sites 7 and 8, exceeding measured values from the study dataset for 

the UK, and maximum expected yields quoted by Defra of around 36 odt ha-1 per harvest (12 odt 

ha-1 a-1) (Hilton, 2002), although they are within estimates for the UK in (Hastings et al., 2014).  

 

Converting  yields simulated by DayCent into energy generation potential gives a range of 61.1 - 

74.7 GJ ha-1 a-1  for Miscanthus, and 25.0 – 91.5 GJ ha-1 a-1 for SRC willow; assuming energy 

densities of  17 GJ odt-1 for Miscanthus (Department for Environment Food and Rural Affairs, 2007) 

and 19.4 GJ odt-1 for SRC willow (Volk and Luzadis, 2008) and a conversion efficiency of 30% as 
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co-firing with coal (Berndes et al., 2010). For a more complete assessment, variation in energy 

inputs for cultivation, processing and transport should also be considered when comparing energy 

yield per area between SRC willow and Miscanthus.  

 

Other factors which may affect farm yields, for example pests and diseases and altitude (Aylott et 

al., 2008) are not modelled by DayCent. Additionally, significant variation in yields may be 

observed at field and landscape scales due to non-homogeneity of soil properties, and interaction 

with topographic factors controlling water flows (Richter et al. 2008). Aylott et al. (2008) note that 

in practice, field trial yields are unlikely to be replicated at commercial scale due, where 

management approaches may be less stringent and scientific. This may not mean that projected 

values based on field trials cannot be achieved, since improvements in crop varieties may balance 

out the discrepancy. 

 

Table 6.6 Statistically significant correlations between yield and input variables  

 

Table 6.6 shows statistically significant correlations between yield and various data inputs. 

Although Richter et al. (2008) suggest that Miscanthus yield varies with available water capacity 

(AWC) not precipitation, as previously suggested by Heaton et al. (2004); Table 6.6 indicates a 

positive relationship between precipitation and yield for Miscanthus, whilst the relationship with 

AWC was not statistically significant. Miscanthus yield showed statistically significant positive 

correlations with average temperature and average maximum temperature. A statistically 

significant negative correlation was simulated between Miscanthus yield and topsoil clay 

percentage, this is presumably due to better infiltration into soils with lower clay content, leading 

to increased water availability.  

 Miscanthus Yield  SRC Yield  

   
 

Correlation 
Coefficient 

Significance (2-
tailed) 

Correlation 
Coefficient 

Significance (2-
tailed) 

Topsoil clay % -.577 .012 -.084 .740 

Subsoil available 
water capacity 

.118 .642 .490 .039 

Months with water 
table 

.397 .103 .554 .017 

Annual precipitation .651 .003 .391 .109 

Average temperature .597 .009 .176 .485 

Average maximum 
temperature 

.656 .003 .260 .297 

Average minimum 
temperature 

-.443 .066 -.528 .024 
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Figure 6.4 Graph of above ground carbon for one three year SRC willow rotation at half of the 
model sites (-VE) for the purpose of illustrating variation in start and end times of growth. 

 

Willow showed positive correlation with both subsoil available water capacity and duration of 

water table, as would be expected from a crop with significant water demand, although the 

correlation with precipitation was not statistically significant. Willow yield shows a negative 

correlation with minimum temperature, which may indicate that the parameter to limit length of 

growing season ('FURGDYS' as mentioned in Table 5.3 of Chapter 5) should be more flexible. 

Examining time series above ground carbon for different sites in Figure 6.4, it can be seen that 

some sites (i.e. those with lower latitude and higher winter temperatures) begin growth earlier in 

the year, hence when simulated growth is curtailed at the end of a set number of days, this 

artificially limits yield. 

 

Table 6.6 also shows a negative correlation between Miscanthus yield and minimum 

temperatures (although this trend is not statistically significant) suggesting that simulation of 

Miscanthus growth may suffer a similar issue. DayCent was calibrated for Miscanthus by Davis et 

al.  (2010) using data from a trial in Illinois (published in Heaton et al., 2008) where temperature 
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range is greater than the UK and average temperatures over  winter months are often between -1 

and -5C, thus parameters may not describe growth as well for UK temperature regimes. 

 

Both energy crops appear to produce higher yields at sites with greater water availability, 

although they differ in terms of the specific model inputs which are correlated with higher yields. 

Statistically significant correlations with temperature variables for yield of both Miscanthus and 

SRC willow mean that similar yield may not be simulated for other sites with the same soil 

properties and similar total precipitation.  
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6.3.2 N2O emissions 
 

Table 6.7 Average direct N2O emissions over one crop lifecycle. Figures are also shown for 
averages excluding the planting and removal period, for purposes of comparison to the 
literature.   

 

Table 6.7 shows that average annual emissions for the established energy crop (i.e. excluding the 

period following planting and removal) are 0.17 - 1.94 kg N2O-N ha-1 a-1 for Miscanthus and 0.19 - 

2.19 kg N2O-N ha-1 a-1 for  SRC willow. Values are higher where establishment and removal periods 

were included in the averaged time period, however available field data were mostly collected 

from established crops, and there is a shortage of data on the impacts of removal, hence values 

based on the full period are less useful for comparison. Figures for Miscanthus compare 

reasonably to values published in the literature, for example Behnke et al. (2012) measured 0.73 

 Average direct N2O emissions over one crop lifecycle  
kg N2O-N ha-1a-1 

Site label Miscanthus (full 
lifecycle; averaged 
over 21 years) 

Miscanthus 
(without planting 
and removal; 
averaged over 19 
years) 

Willow (full 
lifecycle; 
averaged over 
27 years) 

Willow (without 
planting and 
removal; averaged 
over 24 years) 

1+ 1.49 0.96 2.26 0.92 

1- 1.82 0.99 2.38 1.20 

2+ 1.50 0.92 2.04 0.87 

2- 2.05 1.13 2.05 1.08 

4+ 0.51 0.25 0.59 0.34 

4- 0.42 0.22 0.76 0.37 

5+ 0.46 0.30 0.43 0.27 

5- 0.34 0.19 0.30 0.19 

6+ 0.67 0.42 0.56 0.41 

6- 0.31 0.17 0.29 0.20 

7+ 2.72 1.94 3.03 2.19 

7- 2.79 1.91 2.81 2.12 

8+ 2.01 0.94 1.95 1.27 

8- 2.29 1.58 2.42 1.84 

9- 1.29 0.94 1.36 1.05 

10- 1.03 0.75 1.06 0.94 

11+ 0.70 0.41 0.73 0.62 

11- 0.69 0.45 0.92 0.69 

Maximum 2.79 1.94 3.03 2.19 

Minimum 0.31 0.17 0.29 0.19 

Range 2.47 1.77 2.74 2.00 

Standard 
deviation 0.81 0.55 0.90 0.61 
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kg N2O-N ha-1 a-1 for unfertilised Miscanthus, Roth et al. (2013) measured 0.37 kg N2O-N ha-1 a-1 

for established Miscanthus and 0.61 kg N2O-N ha-1 a-1 for recently planted Miscanthus, and 

Drewer et al. (2012) measured 0.32 kg N2O-N ha-1 a-1 from established Miscanthus, whilst Dufossé 

et al.  (2012) modelled 0.4 kg N2O-N ha-1 a-1 for unfertilised Miscanthus. Figures for SRC willow 

also compare reasonably to values published in the literature, for example Balasus et al.  (2012) 

measured 0.7 kg N2O-N ha-1 a-1 for newly planted SRC willow and Drewer et al. (2012) measured 

0.017kg N2O-N ha-1 a-1 from established SRC willow. The lower end of modelled values are in 

range of these literature values for unfertilised energy crop cultivation, ranging up to 2 or 3 times 

those values. The range of values seen with both modelling and field studies reflects the influence 

of variables other than crop type and fertilisation level on N2O emission rate, making it difficult to 

draw direct comparisons. Given nonlinearity of equations to calculate N2O emissions, combined 

with spatiotemporal variation in controlling parameters, model performance at simulation may be 

expected to be poor compared to other outputs. However, confidence in model output for N2O 

emissions should be based on validation performance in Chapter 4; i.e. relative deviation from 

measurements may range from -66 % up to + 660 %, with greater proportional deviation at low 

levels of emissions. 

 

Reliability of model output for N2O emissions is dependent on accurate simulation of soil N, 

porosity and WFPS, which cannot be verified for this type of scenario analysis, however output 

can be assumed to be reasonable for cultivation on soils as simulated. Uncertainty surrounding 

input data, in particular the amount of soil settling following crop establishment and land use 

change will thus contribute to uncertainty in model output. Poor simulation of growth rates 

during Miscanthus establishment, as mentioned in Section 6.3.1, may affect simulation of N 

availability for nitrification and denitrification, contributing to N2O emissions error. Similarly, poor 

simulation of below ground growth rates for SRC willow, as mentioned in Section 6.3.1, may also 

affect simulation of N availability for transformation reactions, thus creating additional error.  

Alternatively, the high levels of simulated symbiotic N fixation required to match field data may 

cause overestimation of N availability, resulting in overestimation of N2O emissions.  

 

Overall, simulated emissions from SRC willow and Miscanthus are low, with average complete 

lifecycle emissions of 0.31 to 2.79 kg N2O-N ha-1 a-1 for Miscanthus and 0.29 to 3.03 kg N2O-N ha-1 

a-1 for SRC willow, compared to 1.40 to 14.74 kg N2O-N ha-1 a-1 for arable crops. Range in simulated 

N2O emissions is greater for SRC willow at 2.74 kg N2O-N ha-1 a-1 compared to 2.47 kg N2O-N ha-1 a-

1 for Miscanthus. Figures 6.5 and 6.6 indicate that land use change to Miscanthus and Willow only 
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reduces direct N2O emissions for arable sites (1-6); DayCent predicted slight increase in direct 

emissions for conversion of most of the grassland sites (7-12) to either energy crop. Emissions 

simulated for both energy crops were higher on former grassland, but the simulated increase 

mainly reflects lower emissions of the existing land use; grassland emissions were simulated at 

0.67 to 3.10 kg N2O-N ha-1 a-1, which may be attributed to lower N inputs. Thus according to 

model output, the impact of land use change in terms of direct N2O emissions is generally 

beneficial for conversion of arable land and detrimental for conversion of grassland. For 

comparison, using the IPCC tier 1 default emission factor of 0.125 (IPCC, 2006), emissions from 

arable land as simulated here are 17.5 kg N2O-N ha-1 a-1, whereas emissions from energy crops 

would be 0 kg N2O-N ha-1 a-1 since annual fertiliser applications were not simulated, meaning a 

reduction following land use change of 17.5 kg N2O-N ha-1 a-1. It is more difficult to give an IPCC 

value for the grassland, since the defaults require given stocking density and animal type which 

are not modelled explicitly in DayCent.  

 

Figure 6.5 Impact of land use change for Miscanthus on N2O emissions. Values at each site were 
averaged over a complete energy crop lifecycle (average 1LC following LUC) of 21 years, and 
compared to 21 years of the previous land use, simulated with the same weather data (average 
1LC prior to LUC). Change in N2O is calculated as after - before (negative values indicate a 
decrease) 
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Figure 6.6 Impact of land use change for SRC willow on N2O emissions. Values at each site were 
averaged over a complete energy crop lifecycle (average 1LC following LUC) of 27 years, and 
compared to 27 years of the previous land use, simulated with the same weather data (average 
1LC prior to LUC). Change in N2O is calculated as after - before (negative values indicate a 
decrease) 
 

 

Over the lifecycle of the energy crop, N2O emissions were generally relatively low, with significant 

peaks associated with the removal process, and the establishment period in the case of 

Miscanthus. For Miscanthus, as shown in Figure 6.7 removal peaks were simulated in 2034 and 

emissions at the start of the second energy crop cycle in 2035 were generally higher than at the 

start of the first cycle in 2014. For Willow, as shown in Figure 6.8, N2O emissions peaks were 

simulated in 2040 and 2041, with emissions at the start of the second energy crop cycle in 2042 

again higher than at the start of the first cycle in 2014. Due to a lack of data, it is not possible to 

verify these simulations with field observations, although Lavoie et al. (2013) provide some 

evidence for increase in N2O following forest clearcut which they postulate reflects an increase in 

N availability. Although these emissions pulses are significant, lifecycle averages are more 

relevant for comparison, since N2O is long lived. 
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Figure 6.7 Time series N2O emissions for a full lifecycle of Miscanthus, averaged across all sites  
 

 

Figure 6.8 Time series N2O emissions for a full lifecycle of SRC willow, averaged across all sites  
 

Table 6.8 indicates statistically significant correlations between direct N2O emissions and input 

variables. The correlation with latitude may be a result of covariance with other factors such as 

temperature. Given that the processes responsible for N2O emissions from soil take place under 
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different conditions of soil moisture status, it is harder to draw conclusions about controlling 

factors or to interpret correlations with input variables. Positive correlations with water table and 

precipitation and negative correlations with topsoil sand content may indicate dominance of 

denitrification, or may reflect covariance with yield; simulated N2O emissions for both energy 

crops correlate with yield, and yield is proportional to N fixation, and hence will increase N 

availability. Positive correlation with latitude and negative correlation with minimum 

temperatures may reflect covariance of these inputs with precipitation, and negative correlation 

with bulk density may well reflect the statistically significant correlation of -0.773 between bulk 

density and available water capacity. Statistically significant correlations with latitude for N2O 

emissions under both Miscanthus and SRC willow, and with minimum temperature under 

Miscanthus mean that similar N2O emissions may not be simulated for other sites with the same 

soil properties and similar total precipitation.  

 

 

Table 6.8 Statistically significant correlations between direct N2O emissions and input variables 

 N2O emissions for a full 
lifecycle of Miscanthus  

N2O emissions for a full 
lifecycle of SRC willow  

 Correlation 
Coefficient 

Significance 
(2-tailed) 

Correlation 
Coefficient 

Significance 
(2-tailed) 

Latitude .722 .001 .735 .001 

pH -.568 .014 -.636 .005 

Topsoil sand % -.494 .037 -.527 .025 

Topsoil bulk density -.480 .044 -.492 .038 

Topsoil available water 
capacity 

.447 .063 .516 .028 

Subsoil available water 
capacity 

.569 .014 .643 .004 

Months with water table .809 <0.001 .842 <0.001 

Annual precipitation .695 .001 .733 .001 

Average minimum 
temperature 

-.543 .020 -.397 .103 

Miscanthus yield  .717 .001 .639 .004 

 SRC willow yield  .789 <0.001 .707 .001 
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Table 6.9 Average indirect N2O emissions over one crop lifecycle. 

 Average leached N over one crop 
lifecycle                       kg N ha-1a-1 

Average indirect N2O emissions 
over one crop lifecycle    kg N2O -N 
ha-1a-1 

 Miscanthus  SRC willow Miscanthus  SRC willow 

1+ 449.14 241.49 11.23 6.04 

1- 437.57 247.17 10.94 6.18 

2+ 526.19 271.65 13.15 6.79 

2- 496.03 269.89 12.40 6.75 

4+ 551.94 181.41 13.80 4.54 

4- 532.90 198.59 13.32 4.96 

5+ 667.69 171.38 16.69 4.28 

5- 668.71 163.71 16.72 4.09 

6+ 680.13 205.92 17.00 5.15 

6- 684.36 196.59 17.11 4.91 

7+ 456.83 648.37 11.42 16.21 

7- 465.49 647.68 11.64 16.19 

8+ 596.02 720.14 14.90 18.00 

8- 638.45 703.63 15.96 17.59 

9- 599.54 531.09 14.99 13.28 

10- 642.96 537.59 16.07 13.44 

11+ 552.51 615.21 13.81 15.38 

11- 536.67 624.73 13.42 15.62 

EF 5 for estimating N2O emissions from leaching based on (Nevison, 2002) 

 

Table 6.10 Literature values of indirect N2O emissions 

Source Context Leaching  
kg N ha-1 a-1   

Emissions  
kg N2O-N ha-1 a-1   

(Mortensen, 
1998) 

 SRC willow establishment year 136 3.4 

 SRC willow, year 3 3 0.075 

(Christian and 
Riche, 1998) 

Miscanthus establishment year 154 3.85 

Miscanthus, year 2 8 0.2 

Miscanthus, year 3 3 0.075 

 

Data in Table 6.10 suggest high leaching during establishment for both perennial energy crops, 

followed by very low leaching in later years, which may reflect N store exhaustion, or more 

efficient uptake of N. Goodlass et al. (2007) recorded leaching following removal of SRC poplar at 

similar levels to during the establishment phase, perhaps due to soil disturbance and organic 

matter breakdown. Modelled indirect N2O emissions and leaching values in Table 6.9 are higher 

than measured values for established Miscanthus and SRC willow indicated in Table 6.10, 

although modelled SRC willow values for some sites were in the region of those measured for 

establishing SRC willow by Mortensen et al. (1998). Previous work by Del Grosso et al. (2005) 
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indicated good performance by DayCent in simulating leaching rates for a range of arable sites. 

Prior to land use change,  simulated values were much higher for grassland sites than arable sites, 

as can be seen in Figures 6.10 and 6.11; this is in line with field data, where high leaching from 

grazed grassland is attributed to inputs from ruminant livestock (Ryden et al., 1984). 

 

Del Grosso et al.  (2005) note that DayCent simulates leaching of N from N fixation; as such the 

high values of leaching simulated are likely due to high values of simulated symbiotic N fixation 

required to match yield. This suggestion is supported by time series data (Figure A4.1 in the 

Appendix) which indicate greater leaching during energy crop growth than establishment and 

removal periods. Significantly lower values by year three for Miscanthus and SRC willow in the 

studies referenced in Table 6.10 may suggest that levels of N fixation associated with Miscanthus 

and SRC willow cultivation in the field do not result in significant leaching. Therefore, high 

simulated values of leaching, which do not match well with measured data may indicate that the 

rate of symbiotic N fixation is set too high, and that N uptake efficiency is set too low. Excess soil 

N resulting from this model error may also be responsible for the increase in direct N2O emissions 

simulated for grassland sites. Fixation rate is proportional to growth, thus the strong positive 

correlation of indirect N2O emissions with energy crop yield with a coefficient of 0.981, significant 

at the 0.001 level displayed in Figure 6.9 would support the assertion that this model artefact is 

responsible for the simulated high levels of leaching. This also explains the observation in Section 

5.4 that altering N fixation had limited impact on soil nitrate and ammonium concentrations, since 

fixed N appears to be leached as opposed to stored in soil. Figure 6.9 also shows that there is no 

discernible correlation for Miscanthus yield; analysis showed a weak negative correlation which 

was not statistically significant, hence high simulated levels of N leaching for Miscanthus may 

require further explanation. 

 

In either case, model output poses an interesting question, as to what extent N fixation does take 

place in association with the roots of SRC willow and Miscanthus in the context of field scale 

cultivation, and points to a need for additional field data on N leaching, to make more confident 

predictions on what the water course pollution and GHG emissions impacts of energy crop 

cultivation might be.  
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Figure 6.9 Graph to show simulated relationship between yield and N leaching 
 

The model simulates an increase in indirect N2O emissions for land use change to Miscanthus or 

SRC willow, as can be seen in Figure 6.11 and 6.12. Comparison of figures 6.10 and 6.11 with 

figures 6.5 and 6.6 indicates that, following land use change, simulated indirect N2O emissions are 

somewhat higher than simulated direct emissions, although as indicated above this may reflect 

model error, and is not representative of field observations.   

 

 

Figure 6.10 Impact of land use change for Miscanthus on indirect N2O emissions. Values at each 
site were averaged over a complete energy crop lifecycle (average 1LC following LUC) of 21 
years, and compared to 21 years of the previous land use, simulated with the same weather 
data (average 1LC prior to LUC). Change in N2O is calculated as after - before (negative values 
indicate a decrease) 
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Figure 6.11 Impact of land use change for SRC willow on indirect N2O emissions. Values at each 
site were averaged over a complete energy crop lifecycle (average 1LC following LUC) of 27 
years, and compared to 27 years of the previous land use, simulated with the same weather 
data (average 1LC prior to LUC). Change in N2O is calculated as after - before (negative values 
indicate a decrease) 
 

6.3.3 Soil carbon 
 
Given the uncertainty associated with amount and duration of Soil C storage associated with 

bioenergy crop cultivation, it may be excluded from inventories (Cannell, 1999; Keoleian and Volk, 

2005; Matthews, 2001b). However, since DayCent has been shown to perform well at simulating 

SOC ,  modelling incorporating site factors and current land use should produce informative 

predicted values for individual sites. 
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Table 6.11 Modelled soil C increase over one crop lifecycle (excluding planting and the 
ploughing in of roots and residues associated with energy crop removal, for purposes of 
comparison to the literature) 

 Increase in Soil C t ha-1 a-1 over the full energy crop lifecycle 

 Miscanthus (averaged over 19 years) Willow (averaged over 24 years) 

1+ 1.41 0.41 

1- 1.53 0.41 

2+ 1.55 0.46 

2- 1.60 0.43 

4+ 1.65 0.27 

4- 1.63 0.33 

5+ 1.89 0.36 

5- 1.77 0.31 

6+ 1.92 0.41 

6- 1.84 0.37 

7+ 0.86 0.62 

7- 0.92 0.60 

8+ 0.92 0.50 

8- 1.06 0.50 

9- 1.33 0.64 

10- 1.52 0.63 

11+ 1.08 0.51 

11- 1.05 0.54 

Maximum 1.92 0.64 

Minimum 0.86 0.27 

Range 1.06 0.37 

Mean 1.42 0.46 

Standard 
Deviation 0.34 0.11 

 
In general, the literature suggests that Miscanthus and SRC willow cultivation would result in 

increased soil C for former arable land and recent setaside, but may reduce soil C when cultivated 

on undisturbed land or longer term grassland and setaside (Fargione et al., 2008; Rowe et al., 

2009; Smith, 2004). Table 6.11 shows that the model simulated an increase in SOC for all 

modelled sites; simulated soil C accumulation was 0.86 to 1.92 t C ha-1 a-1 for Miscanthus and 0.27 

to 0.64 t C ha-1 a-1 for SRC willow. Accumulation was calculated prior to ploughing in of residues 

and roots at the end of the lifecycle, since time series data indicate that this tends to cause a 

short term C peak, and since available field data do not include this portion of the lifecycle.  

 

The database value of SOC accumulation under Miscanthus is 0.62 t C ha-1 a-1 (Brandão et al., 

2011), which is lower than model output in Table 6.11. Model output shown in Figure 6.12 

supports literature observations (e.g. by Smith, 2004) that SOC accumulation following land use 
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change is often greatest during establishment, and  the average accumulation rate of 

1.43 t C ha-1 a-1  over the first four years for grassland sites is comparable to the relative increase 

recorded by Kahle et al. (2001) under Miscanthus (compared to a grassland control) of 1.7 t C ha-1 

a-1 over the first four years. Based on this comparison, it appears the DayCent model simulates 

the rate of initial accumulation under Miscanthus well, but may overestimate long term 

accumulation. 

 

For cultivation of Miscanthus, a greater increase in soil C is simulated for land use change from 

arable than from grassland, as could be expected given the initially higher SOC value for grassland. 

Some field studies have recorded no increase in soil C, for  Miscanthus  compared to grassland 

despite high inputs during establishment; this may be attributed to a rhizosphere priming effect 

causing increased soil C decomposition, triggered by readily available C from root exudates (Zatta 

et al., 2013; Zimmermann et al., 2012). The DayCent model is not able to simulate this type of 

effect, and thus may overestimate SOC accumulation for affected sites.  

 

The database values for SOC accumulation under SRC willow is 0.09 to 0.18 t C ha-1 a-1 (Brandão et 

al., 2011), which is below model output in Table 6.11. Elsewhere Clair et al. (2008) modelled 

values which indicate accumulation of 0.115 t C ha-1 a-1 for conversion from annual tilled arable, 

but no accumulation for conversion from grassland whilst Matthews (2001b) states that  

conversion from grassland to SRC may result in SOC loss due to soil disruption for planting. Based 

on these figures, the model may slightly overestimate SOC accumulation for SRC cultivation on 

former arable land, and simulates accumulation on former grassland which is disputed elsewhere. 

 

Previous work by Del Grosso et al. (2002) found DayCent performed well for simulation of soil C; 

although simulations deviated from measured values for specific cropping systems, variation 

according to land use was correctly simulated. Based on comparison of model output to values 

published in the literature, DayCent correctly simulates greater accumulation with Miscanthus 

compared to SRC willow, however simulation of greater SOC for energy crop systems than 

grassland may not be representative of field response. Furthermore, although DayCent correctly 

simulated higher soil C for the grassland than the arable site, total soil C values (for the top 20cm) 

are slightly low; with averages of 20.8 t C ha-1 for arable land and 35.4 t C ha-1 for grassland at the 

end of the spin up period, compared to reference values in the range 30 to 220 t C ha-1. Given that 

constraints mapping ruled out organic soils and high quality farmland, modelled sites could be 
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expected to be towards the lower end of the SOC range; output from cluster analysis in Tables 2.7 

and 2.8. indicates that site SOC values ranged from very low to medium, hence sites SOC may be 

underestimated at the end of the spin up period at sites 1, 2, 7, 8 and 11 where medium SOC is 

indicated by JRC data. A study by Foereid (2012) also used DayCent to predict soil C values for UK 

sites, and found a strong tendency to under predict SOC, particularly for grassland sites. These 

issues, combined with possible underestimation of SOC at the end of the spin up period may point 

to a need to improve model calibration of C cycling.  

 

This research did not attempt to improve soil C cycling; although the model was successfully 

calibrated for SRC willow above ground biomass in Chapter 5, no calibration was performed for C 

cycling associated with SRC willow cultivation, since data on change in soil C was not available for 

the sites. Although analysis in Chapter 5 notes that simulated below ground biomass 

accumulation was initially too rapid, final values were reasonable; hence the overall SOC 

accumulation may not be affected.  However, death rates for both above and below ground 

biomass were fitted based on model defaults and best fit to field data for above ground biomass, 

hence associated inputs to SOC may be misrepresented.  

 

DayCent was calibrated by Davis et al. (2010) for above ground Miscanthus biomass, although the  

approach taken to set ratio of above to below ground biomass is not detailed, and there is no 

separate validation of soil C. Davis et al. (2010) simulated SOC accumulation of 4 t ha-1a-1over 10 

years  for the calibration site, and in a subsequent study simulated an average rate of 5.23 t ha-1a-1 

over 10 years  for a large area in the central US (Davis et al., 2012). Although calibration for 

Miscanthus was not performed as part of this study, simulated SOC accumulation was closer to 

literature values than that simulated by Davis et al. (2010), suggesting that the model performs 

well for simulation of SOC accumulation under Miscanthus for English climate conditions. 
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Figure 6.12 Soil carbon over seven complete lifecycles of Miscanthus 
 

 

Figure 6.13 Soil carbon over seven complete lifecycles of SRC willow 
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Figure 6.14 Simulated slow SOC pools for SRC willow cultivation at sites 4- (previously arable) 
and 11- (previously grassland). Forest was originally simulated at both sites to set soil C pools; 
the graph covers the modelled period from removal of forest, through over 200 years of energy 
crop cultivation commencing in 2014. som2c(1)=Carbon in surface slow soil organic matter; 
som2c(2)= Carbon in soil slow soil organic matter; som3c=Carbon in passive soil organic matter. 
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Figure 6.15 Simulated SOC pools for SRC willow cultivation at a former grassland site.  
strucc(1)=Carbon in structural component of surface litter; metabc(1)= Carbon in metabolic 
component of surface litter; strucc(2)= Carbon in structural component of soil litter; metabc(2) = 
Carbon in metabolic component of soil litter; som1c(1) = Carbon in surface active soil organic 
matter; som1c(2)= Carbon in soil active soil organic matter; som2c(1)=Carbon in surface slow 
soil organic matter; som2c(2)= Carbon in soil slow soil organic matter; som3c=Carbon in passive 
soil organic matter.  
 

It was noted in Section 6.3.1 that yield is significantly overestimated where DayCent was run for 

more than one SRC willow lifecycle, and that this may affect soil C simulation for the relevant time 

period. Although simulated values of both above and below ground biomass were higher, model 

output shown in Figure 6.14 indicates lower SOC for these subsequent SRC willow lifecycles at 

former grassland sites. For conversion of arable land to SRC willow, Figure 6.14 shows slower 

increase for second rotation, in a similar trend to that seen for conversion of arable land to 

Miscanthus in Figure 6.13. 
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Figure 6.16 Simulated SOC pools for Miscanthus cultivation at a former grassland site.  
strucc(1)=Carbon in structural component of surface litter; metabc(1)= Carbon in metabolic 
component of surface litter; strucc(2)= Carbon in structural component of soil litter; metabc(2) = 
Carbon in metabolic component of soil litter; som1c(1) = Carbon in surface active soil organic 
matter; som1c(2)= Carbon in soil active soil organic matter; som2c(1)=Carbon in surface slow 
soil organic matter; som2c(2)= Carbon in soil slow soil organic matter; som3c=Carbon in passive 
soil organic matter.  
 

Data collected from SRC poplar indicate that soil loss and erosion may occur for several years 

following establishment, but from 12-18 years, SOC accumulation (relative to arable control) was 

recorded (Hansen, 1993). Model output shown in Figure 6.13 indicates a one year dip in SOC on 

conversion of arable land to SRC willow, whereas in the case of grassland, rapid accumulation 

followed land use change, which may be attributed to input of plant organic C from the previous 

land use.  

 

To understand patterns in total SOC, it is useful to break model output down into constituent 

pools; Foereid et al. (2012) note that differences between sites tends to reflect historical 

conditions, and associated recalcitrant C in slowly decomposing pools. In general, this was also 

true of model output: sites with initially higher soil C reached a higher dynamic equilibrium level 

of C. As stated in Section 6.2, a spin up period of 1800 years forestry was simulated for all sites, to 

set SOC pools; Figure 6.14 starts from the removal of this forest, and shows long term trends in 
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slow SOC pools at example arable (4) and grassland (11) sites, followed by changes with 

conversion to SRC willow cultivation. Following conversion from forest; passive soil organic matter 

(som3c), surface slow soil organic matter (som2c(1)) and soil slow soil organic matter (som2c(2)) 

all decrease much more rapidly at the arable site than the grassland site. The passive organic C 

pool som3c did not stabilise over 200 years of cropping or grassland; steady reduction was 

simulated for arable and steady increase for grassland, which may indicate a problem with C 

cycling simulation, since it could be expected that equilibrium would be reached during this time. 

For both sites, this pool increased following conversion to SRC willow in 2014, at a rate slightly 

steeper than that observed under grassland. The slow surface organic C pool som2c(1)) exhibits a 

slow increase during each 27 year SRC willow cultivation lifecycle, which is much greater for the 

former grassland site in the first lifecycle. Drops in surface slow C are accompanied by peaks in 

the soil slow organic C pool som2c(2) following conversion of grassland to SRC willow, and at the 

end of each complete SRC willow lifecycle, as directed by scheduled cultivation events. The 

increase in these pools following ploughing in of grassland crop C appears to be responsible for 

the higher total SOC during the first SRC willow lifecycle. From comparison of Figures 6.15 and 

6.16, it can be seen that the greatest differences between SOC simulation for SRC willow 

compared to Miscanthus is the continuing high levels of som2c(1) and strucc(1) during the second 

Miscanthus lifecycle, presumably due to significant inputs from senescence. It is apparent that 

virtually no breakdown or loss of surface carbon pools is simulated in the absence of tillage, and 

this may contribute to unrealistically high predicted SOC values, given Zimmermann et al. (2013) 

recorded that 79.7% of SOC inputs from Miscanthus were in the form of labile particulate organic 

matter, and hence it would be more representative to allocate the majority of inputs to active 

pools, or to simulate faster breakdown of surface pools.  

 

Failure to simulate the anticipated 12 year deficit in SOC on conversion to SRC willow may indicate 

that in general, decomposition of slow organic matter pools is too slow, or that too great a 

proportion of OM inputs are allocated to the slow and surface pools for grassland also. Further 

model calibration focussed on C cycling following conversion to SRC willow and Miscanthus would 

enable more informative predictions on SOC storage to be made. 

 

Previous modelling work by Matthews and Grogan (2001a) simulated soil C accumulation as 

directly proportional to inputs, although simulation of C pools was less complex than in DayCent. 

Table 6.12 indicates that for cultivation of SRC willow, there is a statistically significant correlation 

between yield and SOC increase (as can be seen in Figure 6.17), with a correlation coefficient of 
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0 .738. This results in generally greater increase in soil C for land use change from grassland than 

from arable, contrary to what would be expected from previous studies (e.g. Clair et al., 2008; 

Matthews, 2001b). Conversely, for cultivation of Miscanthus, a statistically significant negative 

relationship with yield was simulated, which may indicate greater control on soil C of factors 

controlling decomposition rate, or may suggest that lower yields result from greater loss of 

biomass to surface litter prior to harvest. Table 6.12 also indicates positive correlation between 

precipitation and SOC increase for SRC willow, which likely reflects covariance of precipitation and 

yield, and a negative correlation with pH. For Miscanthus, Table 6.12 indicates negative 

correlations between SOC accumulation and subsoil AWC, presence of water table and annual 

precipitation. In terms of SOC, it appears to be advantageous to cultivate Miscanthus at drier sites 

with high pH and SRC willow at wetter sites with low pH. 

 

 

Figure 6.17 Modelled soil C increase over one crop lifecycle (excluding the ploughing in of roots 
and residues associated with energy crop removal) plotted against yield 
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Table 6.12 Statistically significant correlations between change in SOC and input variables 

 SOC change under Miscanthus SOC change under SRC willow 

 Correlation 
Coefficient 

Significance (2-
tailed) 

Correlation 
Coefficient 

Significance 
(2-tailed) 

pH .568 .014 -.091 .720 

Subsoil 
available 
water 
capacity 

-.569 .014 .184 .464 

Months with 
water table 

-.596 .009 .191 .449 

Annual 
precipitation  

-.388 .112 .480 .044 

Miscanthus 
Yield  

-.513 .030   

SRC willow 
Yield  

  .829 <0.001 

 

Although change in SOC shows no statistically significant correlations with temperature inputs or 

latitude, the strong correlations with yield may limit the potential to extrapolate findings to other 

sites with similar soil properties and precipitation. 

 

6.3.4 Evapotranspiration  
 

 

Figure 6.18 Impact of land use change for Miscanthus on evapotranspiration (ET). Values at 
each site were averaged over a complete energy crop lifecycle excluding establishment year 
(average 1LC following LUC) of 20 years, and compared to 20 years of the previous land use, 
simulated with the same weather data (average 1LC prior to LUC). Change is calculated as after 
- before (positive values indicate an increase). 
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Figure 6.19 Impact of land use change for SRC willow on evapotranspiration (ET). Values at each 
site were averaged over a complete energy crop lifecycle (average 1LC following LUC) of 27 
years, and compared to 27 years of the previous land use, simulated with the same weather 
data (average 1LC prior to LUC). Change is calculated as after - before (positive values indicate 
an increase). 
 

 

Figure 6.20 Comparison of average annual evapotranspiration (ET) for Miscanthus (excluding 
establishment year) and SRC willow: statistically significant positive correlation, coefficient 
0.979 
 

DayCent simulated increased evapotranspiration (ET) for all land use change to perennial energy 

crops, as can be seen from Figures 6.18 and 6.19. The increase is generally greater for transition 

from arable land than for transition from grassland, and comparable for SRC willow and 

Miscanthus.   

 

Figure 6.20 shows a comparison of simulated ET for Miscanthus and SRC willow; the relationship 

between X and Y indicates that ET for Miscanthus was generally higher, although simulated values 

of ET were higher for SRC willow at some sites.  
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Elsewhere Jørgensen  and Schelde (2001) fitted the  COUP model to field data for fertilised SRC, 

and found higher ET for clones which produced higher yield, with values of 70.7 cm a-1 for 8.3 odt 

ha-1 a-1and 87.8 cm a-1 for 9.1 odt ha-1 a-1. Simulated annual evapotranspiration for SRC willow 

using the DayCent model was lower than this, ranging from 30.6 to 48.3 cm a-1.  These figures 

from DayCent were  similar to field values tabulated in Dimitriou et al. (2009) which ranged from 

35 to 59 cm a-1. Although minimum values simulated by DayCent were slightly lower than 

literature values, this may be attributed to site factors causing lower yields; simulated values can 

be accepted as reasonable, but the possibility that ET is underestimated should also be 

considered.  

 

Values of annual evapotranspiration simulated for Miscanthus using the DayCent model were in 

the range of 30.8 to 50.1 cm a-1; these are in general slightly higher than values tabulated in 

Richter et al. (2008) which ranged from 25.9 to 45.6 cm a-1 but only covered the growing season, 

whilst Zeri et al. (2013) measured values from 58 to 75cm for a full year at a US site, with 

interannual variation due to amount and timing of precipitation relative to crop growth cycle. 

Again, minimum values simulated by DayCent were slightly lower than the literature values, 

although again this may reflect site and climate factors, for example higher temperatures for the 

US field site cited here, so the simulated values can be considered reasonable for site conditions. 

 

Given that the DayCent model does not represent variation in water use efficiency, particularly 

between C3 and C4 photosynthesis, it could be expected that Miscanthus transpiration may be 

somewhat overestimated by the model. Elsewhere, models such as PALMS incorporate algorithms 

developed specifically to represent photosynthesis for C4 crops (e.g. Woo, 2013), in order to 

account for variation in water use efficiency, and potential benefits of C4 energy crops. Two 

parameters in the fix.100 input could be fitted to Miscanthus to give improved representation of 

water availability impacts on growth: 

pprpts(3) the lowest ratio of available water to PET at which there is no restriction on 

production 

pprpts(1) the minimum ratio of available water to PET which would completely limit 

production  
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Compared to the other outputs considered, short term trends in water availability have greater 

importance, therefore time series graphs were also produced to look at interannual variation, and 

how this was affected by land use. Graphs for Miscanthus (Figure 6.21) clearly indicated very low 

ET in year 1, hence this was excluded from site averages to ensure they were representative of 

the bulk of the crop lifecycle. It was noted in Section 6.3.1 that Miscanthus yield was 

overestimated for the first harvest, which could result in overestimation of ET; Figure 6.21 

indicates that values of ET in year 2 are in line with simulation for later years, and thus they were 

included in site averages, although the possibility that field values of ET may be lower than 

simulated for this year should be considered when thinking about potential impacts on flood risk 

during crop establishment. Additionally, the possibility of influx of sediment to rivers during fallow 

years, or with soil disturbance on removal should be considered when thinking about possible 

impacts on flood risks. Interannual variation in ET at a site appeared to be similar for Miscanthus 

and previous land use, whereas ET for SRC willow did not correlate with either preceding land use, 

as can be seen from Figures 6.21 and 6.22 respectively. 

 

 

Figure 6.21 Time series data for evapotranspiration (ET) with transition to Miscanthus for an 
example arable site and an example grassland site. 
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Figure 6.22 Time series data for evapotranspiration (ET) with transition to SRC willow for an 
example arable site and an example grassland site. Numbered years indicate the year after a 
coppice event, when crop growth parameters may cause a lower rate of ET. 
 

In addition to climate and other factors causing interannual variation in ET, Borek et al. (2010) 

note that SRC managed systems have lowest ET in the year following coppicing, with annual 

increase over a three year cycle. The first year after coppicing is labelled in Figure 6.22; although 

the described pattern of ET is not always observed, there may be interaction between crop 

factors causing lower ET for labelled years, and climate factors causing additional interannual 

variation in ET.  

 

For both Miscanthus and SRC willow the increased evapotranspiration may be during summer 

months, when water shortages are more likely; seasonality of water availability must be taken 

into account when considering the practical implications of changes in evapotranspiration. 

Therefore, monthly breakdown graphs for each site before and after land use change were also 

produced; Figures 6.23 and 6.24 show the simulated change in regime for an example arable and 

grassland site, with transition to Miscanthus and SRC willow. These indicate that DayCent 

simulated increase in ET from months 4 through to 9 or 10 at former arable sites (although the 
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difference was often negligible in months 6 and 7), and increase in ET from months 3 through to 8 

at former grassland sites (although the difference was often negligible in months 5 and 6). In 

general, increased ET at times of high precipitation may have a positive impact on the catchment 

by reducing flood risk, whilst increases at times of low precipitation may have negative impacts on 

ecology and water availability for human usage. For site 4, precipitation is relatively high during 

the energy crop growing season, whereas for site 9 the precipitation profile is almost the reverse 

of the evapotranspiration profile; these site differences will affect the impacts of increases in ET. 

Although in the context of this thesis land use change is modelled at plot scale, findings must be 

contextualised in terms of local energy crop demand, and the likelihood that feedstock will be 

grown in a relatively concentrated area, meaning that a small increase in ET over a large area of a 

catchment may represent a significant volume of water: this will be discussed in Section 6.4.  

 

Simulated timing of ET is dependent on simulated timings of growth, which has not been explicitly 

validated for SRC willow on a sub-annual scale, hence further work could improve confidence in 

this output. Additionally, poor simulation of below ground growth during establishment may 

result in overprediction of water uptake during this time period, and this may also benefit from 

further work. 

 

Figure 6.23 Monthly average precipitation and monthly average evapotranspiration (ET) with 
transition from an example arable site (4+) and an example grassland site (9-) to Miscanthus 
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Figure 6.24 Monthly average precipitation and monthly average evapotranspiration (ET) with 
transition from an example arable site (4+) and an example grassland site (9-) to SRC willow 
 
 

 

Change in ET ranged from 1.73 to 8.78 cm a-1, which suggests that reduction in water availability is 

not necessarily a concern, whereas in some cases, even if water resources are currently plentiful, 

energy crop cultivation on the scale required for useful generation could cause water shortages to 

be an issue. 

 

Table 6.13 Statistically significant correlations between ET output and input variables 

 ET under Miscanthus ET under SRC willow 

 Correlation 
Coefficient 

Significance (2-
tailed) 

Correlation 
Coefficient 

Significance (2-
tailed) 

Topsoil clay % -0.491 0.039 -0.545 0.019 

Subsoil sand % 0.396 0.104 0.471 0.049 

Months with water 
table 

0.559 0.016 0.485 0.041 

Annual precipitation 0.522 0.026 0.516 0.028 

Average temperature 0.499 0.035 0.542 0.020 

Average maximum 
temperature 

0.566 0.014 0.601 0.008 

Average minimum 
temperature 

-0.486 0.041 -0.367 0.134 

Yield 0.893 <0.001  0.647 0.004 

 

Table 6.13 indicates a strong relationship between ET and yield for both energy crops, also shown 

in Figure 6.26. Given the <0.001  significance level for correlation between Miscanthus yield and 

ET, it is possible that the other correlations for ET may largely reflect controls on Yield; Table 6.6 

indicated that Miscanthus yield also showed strong positive relationships with annual 

precipitation, average temperature and average maximum temperature, and strong negative 
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correlation with topsoil clay. The correlation coefficient between SRC willow yield and ET is less 

strong, and there are fewer shared correlations with inputs.  Positive correlations of ET for both 

energy crops with months with water table and annual precipitation and a negative correlation 

with topsoil clay content (high clay impedes infiltration) indicate a simulated link to water 

availability in the soil profile. Positive correlations with temperature variables result from the use 

of temperature to calculate potential ET (PET).  The negative correlation between ET for 

Miscanthus and average minimum temperature is difficult to explain given the use of average 

minimum temperature to calculate PET. Given the positive correlations with yield, SRC willow and 

Miscanthus should not be located to minimise ET, but to ensure that negative impacts of high ET 

are minimised, i.e. planting should be favoured in catchments prone to flood risk and minimised 

in areas with water resource limitations. Given the strong correlations with temperature inputs 

and yield, there are limits to the potential to extrapolate findings on predicted ET to other sites 

with similar soil properties. 

 

 

Figure 6.26 Relationship between average annual ET and yield for SRC willow: statistically 
significant with a coefficient of 0.647; and between average annual ET and yield for Miscanthus: 
statistically significant with a coefficient of 0. 893 
 

It could be expected that increased water use would coincide with improvement in water quality, 

as has been observed by Dimitriou et al.  (2009), due to a reduction in uptake; the model 

simulated the reverse pattern, due to high levels of simulated N fixation, but it is likely this would 

not be borne out in the field. 
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6.4 Spatial variation in benefits of land use change 
for bioenergy 
 

Yield per hectare is significant in dictating area of land use change required, however as well as 

land, water must be considered as a finite resource, and it is also useful to consider variation in 

other land-use change impacts for a given energy generation. Output displayed in Sections 6.3.1 

through to 6.3.4 can be synthesised to consider the degree of spatial variation in identified 

impacts of land use change for bioenergy. Therefore Figures 6.27 through to 6.29 indicate 

variation between sites in impacts per GJ of electricity generation if feedstock were used for co-

firing with coal. Although total energy generation would be much greater if feedstock were used 

for CHP, coal is a useful metric for comparison of emissions, given that it is replaced directly in co-

firing. This section will also discuss issues with extrapolating findings to sites with similar soil 

properties and precipitation, but different latitude and temperature regime. 

 

Figure 6.27 indicates over 100m3 per GJ variation in ET associated with feedstock cultivation, and 

suggests that SRC willow generally has greater ET per GJ, but the reverse is true at sites 7 and 8, 

which were the highest yielding sites for SRC willow. This may indicate co-benefits of land-use 

efficiency and water-use efficiency under the conditions modelled for sites 7 and 8. There remains 

a possibility that ET may be underestimated for SRC willow, as discussed in Section 6.3.4. Given 

the observation by Jørgensen  and Schelde (2001) that per hectare ET is increased for high 

yielding varieties (although this may not translate to higher ET per odt) this is a particular concern 

for high yielding sites, where significant areas of cultivation within the same catchment could risk 

depleting water resources. 
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Figure 6.27 Variation between sites in evapotranspiration per GJ of electricity yield, if feedstock 
were used for co-firing with coal. Evapotranspiration is generally expressed as a depth over the 
hectare, but is here expressed as volume of water, to account for variation in size of land area 
required to generate 1 GJ energy. Difference indicates how much more evapotranspiration is 
associated with Miscanthus cultivation than the same energy generation from willow feedstock 
cultivated at the same site. 
 

There will be further site specific issues for ET, in terms of whether increased water usage may 

have beneficial or adverse impacts. Scaling up, for example to meet the demand of 3.7 PJ for 10 % 

co-firing at West Burton, the nearest co-firing plant to sites 4 and 11, water taken up by ET for 

feedstock cultivation could range from 53 m3 GJ-1 for cultivation of Miscanthus at site 11, which 

would equate to 1.96 108 m3, up to 126 m3 GJ-1 for cultivation of SRC willow at site 4, which would 

equate to 4.66108 m3. It is noteworthy that simulated SRC willow yields for site 4 may not be 

economically feasible even before impacts of ET on local hydrology and water resources are 

considered. 

 

Figure 6.28 indicates direct N2O emissions in kg CO2 equivalents per GJ of electricity yield from the 

cultivation of both bioenergy feedstocks, variation between sites and crop types is over 13 kg CO2 

equivalents per GJ, which is significant compared to the highest value of around 15 kg CO2 

equivalents per GJ. Emissions are generally greater for the cultivation of SRC willow, except for at 

the two sites with highest SRC willow yields, again suggesting that benefits may be co-located by 

maximising yield, and minimising the area of land to supply the same energy.  
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These N2O emissions are significantly lower than from the combustion of the coal replaced by 

these bioenergy feedstocks, which is in the region of 92 kg CO2 equivalent per GJ (de Mira and 

Kroeze, 2006): potential total emissions savings will be considered in Chapter 7. Figure 6.29 shows 

variation in change in N2O emissions per GJ: reduction in emissions is seen for both crops when 

grown at the former arable sites (1 to 6) however, displacement of current arable agriculture is 

likely to counterbalance this, although without knowing if and where such land use change may 

take place, this cannot be factored in to calculations. Reduction in emissions per GJ are greater for 

SRC willow feedstock, however, since total emissions per unit energy were generally higher, it is 

likely that this reflects greater land use, and would thus result in greater displacement of 

agriculture, and associated emissions. Therefore, whether this appears to be beneficial may be 

dependent on the inventory approach used, but it should not be regarded as a benefit in decision 

making. 

 
 
Figure 6.28 Variation between sites in direct N2O emissions in kg CO2 equivalents per GJ of 
electricity yield, if feedstock were used for co-firing with coal.  Difference indicates how much 
more direct N2O emissions are associated with Miscanthus cultivation than the same energy 
generation from willow feedstock cultivated at the same site. 
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Figure 6.29 Variation between sites in change in direct N2O emissions in kg CO2 equivalents per 
GJ of electricity yield, if feedstock were used for co-firing with coal.  Difference indicates how 
much more direct N2O emissions are associated with Miscanthus cultivation than the same 
energy generation from willow feedstock cultivated at the same site. 
 

Figure 6.30 indicates that both energy crops result in SOC sequestration, indicating further 

benefits in comparison to the 92 kg CO2 equivalent per GJ associated with coal combustion. For 

many sites, SOC sequestration attributed to 2 GJ of generation from Miscanthus would 

counterbalance the emissions associated with 1 GJ of coal generation. Whilst encouraging, given 

that SOC storage is temporary, this should be regarded as an ancillary short term benefit, and it 

may not be appropriate to include these values in inventories. Again, there is significant variation 

in SOC storage between sites, and storage is greater for Miscanthus than SRC willow for all sites. 

 

In general, modelled  benefits are greatest for cultivation of SRC willow at sites 7 and 8, or 

Miscanthus at sites 5 and 6; in terms of maximising energy yield and minimising area of land use 

change, which tends to also minimise ET and N2O emissions per unit energy. SOC storage per unit 

energy was also lowest for cultivation of SRC willow at sites 7 and 8, however this was due to high 

yields meaning low area of land conversion per unit energy; SOC storage per area of land use 

change compared favourably to other sites. The process of extrapolating findings from the 

modelled sites to the database of locations with similar soil properties and precipitation regimes 

is complicated by identified strong correlations between model output and inputs such as latitude 

and temperature regime which were not accounted for by the site selection process. Additionally, 

simulation of previous land use and management is highly generalised, and in particular the wide 
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range in conditions at former grassland sites may not be well represented. Nonetheless, model 

output is in theory more informative about impacts at these sites than application of default 

factors and database values. 

 

Figure 6.30 Variation between sites in soil carbon emissions in kg CO2 equivalents per GJ of 
electricity yield, if feedstock were used for co-firing with coal. Difference indicates how much 
more soil carbon emissions are associated with Miscanthus cultivation than the same energy 
generation from willow feedstock cultivated at the same site. 

 

6.5 Discussion of model limitations 
 

Sources of error in model output can be separated into; input data errors and model structural 

error associated with parameters and algorithms. The model was run using soil input data for the 

maximum and minimum of the supplied range, in an effort to account for some of the impacts of 

input error.  AWC values were calculated by a tool distributed with the model by applying 

pedotransfer functions to user defined values for soil textural properties; this approach has been 

identified as a common source of input error for modelling (Richter, Riche et al. 2008), and may 

have significant impact on model output due to relationships with yield, N2O emissions and SOC 

storage as discussed in Sections 6.3.1, 6.3.2 and 6.3.3 respectively.  

 

Weather data may also include errors, owing to use of data from nearby met office sites, as 

opposed to data collected from the specific location of the modelled site, and the use of a looped 
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20 year record to represent historic conditions, and future conditions, as opposed to using a 

complete historic record and projected future weather based on climate change scenarios. The 

use of looped weather data from a nearby site to represent historic conditions was justified by the 

intention that model output be indicative of the impacts of land use change at sites similar to the 

modelled site, as opposed to specific to that site. It would however be useful to consider the 

impacts of future changes in climate and atmospheric CO2 on model simulations; predictions of 

reduced lowland precipitation in future UK climates (e.g. Hulme et al., 2002) may reduce potential 

energy crop yields, given the correlation with water availability variables for both SRC willow and 

Miscanthus. However reduced stomatal conductance under increased CO2 levels may be expected 

to counterbalance this, by reducing demand for water; this will have less impact on C4 crops such 

as Miscanthus (Cure, 1986). C:N ratio may also be expected to increase under elevated CO2 , 

reducing crop demand for N, potentially increasing yield for sites where N availability is currently 

a limiting factor. Schedule files were also intended to represent averaged management and event 

dates, and do not factor in land management decisions or variation in senescence dates 

associated with variation in growing season at different latitudes. 

 

In the context of scenario analysis, it is not possible to account for internal model error, although 

likely contribution to output error can be discussed based on findings from previous studies and 

identified limitations of the model. Previous work by Del Grosso et al. (2010) identified that at an 

annual, national scale for the US the DayCent  95% confidence interval for simulating N2O 

emissions was +50% and -35%, 85% of which was attributed to model structural error, with the 

remainder reflecting input data. Analysis in Section 4.4.5 identified relative deviation of model 

output from measurements from - 66 % up to + 660 %; again this was at an annual scale, however 

resolution of soil input data was finer than available for this scenario analysis.  

 

Soil water is an important control on crop growth representation; hence limitations in model 

simulation of crop available water can also be considered an important source of uncertainty in 

model output. As well as being affected by parameter uncertainty in terms of calculation of AWC, 

and values assigned for rooting depth and presence of water table, crop available water will also 

be affected by structural uncertainty in the simulation of soil drainage. Inability of DayCent to 

simulate small-scale variations in drainage and soil texture affects simulation of WFPS, 

contributing to model error in terms of N2O emissions simulation, as discussed in Section 4.4.2 

and 4.4.3.  
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Poor simulation of response of WFPS to land management was discussed in Chapter 4; whilst 

model development resulted in a noticeable improvement in simulation of immediate change in 

WFPS, longer term changes are more complex. Blanco-Canqui (2010) suggests that bulk density is 

generally reduced under perennial grasses, whilst Schmer et al. (2011) identified site specific 

variation in the response of soil bulk density to perennials.  Since DayCent cannot account for 

changes to soil structure over time under no tillage, which improve drainage as opposed to 

increasing soil water availability as discussed in Section 4.2.2,  schedule files produced for this 

study simulated settling following tillage to prepare the site for the energy crop (which caused a 

variable increase in bulk density) and no subsequent changes.  Figure 6.31 indicates the change in 

bulk density due to tillage and settling up to the start of cultivation of the energy crop; due to 

calculation of tillage and settling factors based on soil texture, and constraints set on application 

of these factors, bulk density may be increased or decreased depending on schedule file, initial 

bulk density value, and soil texture. In general, updated bulk density was lower for former arable 

sites.  Given the impact of the constraints on application of tillage and settling factors, bulk 

density during the simulation of energy crop growth may be regarded as a model artefact. In 

practice, the impact of tillage regime on bulk density would be dependent on moisture content at 

time of tillage as well as the variables included in the calculation (tillage type and soil texture). 

Furthermore, bulk density following settling will be site specific, and affected by climate and biotic 

factors, leading to an unpredictable equilibrium value. Further work to calibrate bulk density, 

could give improved simulation of nitrogen cycling and organic matter decomposition rates 

before and after land use change. 

 

Since simulation of tillage and settling under arable management results in reduced bulk density 

for site 4, where lowest SRC willow yields were simulated, it does not appear that the tendency to 

simulate lower bulk density at grassland sites is directly responsible for the higher yields, 

however, it remains important to assess the impact this may have on model output. 
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Figure 6.31 Graph to display relationship between initial bulk density and bulk density following 
spin up and land use change; i.e. during first energy crop lifecycle 

 
Additional model runs were performed for a chosen site to consider: 

i) whether reduction in bulk density should have been simulated under energy crops, to 

account for aggregate formation over time (run b) 

ii)  whether bulk density increases simulated for some arable sites had a significant 

impact on output (run c) 

Simulations were run for SRC willow, to compare sites 1 and 7, due to similarities in initial site and 

soil properties, and differences in both calculated bulk density values after simulation of settling, 

and predicted yields. For site 7, topsoil bulk density was 0.08 lower and subsoil bulk density was 

0.48 lower, whilst yield was over 5 odt ha-1 a-1 greater for the former grassland site. Run b 

simulated a reduction in bulk density to account for increased aggregate formation one year into 

land use change to SRC willow. Run c simulated a reduction in settling under the arable land 

management, which resulted in lower bulk density under previous land use. 

 

It can be seen from Table 6.14 that reducing bulk density during SRC willow growth reduced N2O 

emissions and increased SRC willow yield slightly, whereas reducing bulk density under the 

previous land use reduced N2O emissions more, and increased yield more, even though bulk 

density during SRC willow cultivation was not reduced by as much. From comparison with site 7, it 

does not appear that bulk density is the main control on either output. Figure 6.32 compares soil 

C for the same set of model runs, and indicates that soil C is higher for 7 than 1 (for both 

maximum (+) and minimum (-) of the soil textural range) and that reducing settling under the 

arable land management reduces this difference. 
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Table 6.14 Comparison of bulk density, lifecycle N2O emissions and average yield for SRC willow 
at sites 1 and 7. For site 1, three different versions of the schedule file were tested; the original 
(1) as described in Section 6.2, 1b, in which bulk density was reduced in year 2 of willow growth 
and 1c, in which settling was reduced under arable usage. Each schedule file was applied for 
maximum (+) and minimum (-) of the soil textural range, as described in Section 6.2. 

run + 
or - 

initial 
bulk 
density 
topsoil 

topsoil bulk 
density 
during SRC 
willow 
growth 

initial 
bulk 
density 
subsoil 

subsoil bulk 
density 
during SRC 
willow 
growth 

lifecycle N2O 
emissions 

average 
yield 

1 + 1.40 1.57 1.38 1.55 2.26 8.63 

- 1.20 1.32 1.28 1.40 2.38 8.38 

1b + 1.40 1.30 1.38 1.28 2.18 8.70 

- 1.20 0.98 1.28 1.06 2.10 8.86 

1c + 1.40 1.34 1.38 1.32 2.04 9.13 

- 1.20 0.98 1.28 1.06 1.92 9.31 

7 + 1.40 1.49 1.38 1.47 3.03 14.25 

- 1.20 0.85 1.28 0.93 2.81 14.29 

 

 

 Figure 6.32 Comparison of soil C under SRC willow at sites 1 and 7. For site 1, three different 
versions of the schedule file were tested; the original (1) as described in Section 6.2, 1b, in which 
bulk density was reduced in year 2 of willow growth and 1c, in which settling was reduced under 
arable usage. 
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Figure 6.33 Graph to indicate relationship between soil C at land use change and yield. The 
relationship is stronger for willow, with a correlation coefficient of 0.827 and a significance of 
<0.001 , compared to a correlation coefficient of 0.513 and a significance of 0.030 for 
Miscanthus. 
 
 

Table 6.15 Comparison of field data with simulated soil C for the four sites used in 
parameterisation of the SRC willow crop model. Failure to simulate field values of C during 
parameterisation may reduce confidence in model output, however since the same spin up 
approach was applied to set soil C levels for these parameterisation sites was applied to 
scenario analysis (as described in Section 6.2), soil C may be underestimated at the scenario 
analysis sites 1-11 as well, and crop parameters may be set appropriately to simulate yield for 
underestimated soil C. 

Site TALY CARR DEMO BORE 

Field data SOC T/ha 125.57 No data 88.58 57.31 

Model output T/ha 30.72 30.72 31.65 39.18 

Relative deviation % -75.54 N/A -64.27 -31.64 

 

Adler et al. (2007) suggest that soil C may be important in determining yield. Given that C and N 

are coupled in soil organic matter, the strong relationship between soil C and yield observed for 

SRC willow, as indicated in Figure 6.33, may also reflect a dependence on soil N availability. This 

relationship may also contribute to the overestimation of SRC willow yields in the second SRC 

lifecycle (harvest 10 onwards in Figure 6.3). The model was parameterised for SRC willow without 

calibration of soil C, and Table 6.15 indicates that SOC was underestimated by up to 75%. It is 

possible that this underprediction of initial soil C at the parameterisation sites may have led to the 

need for a high value of symbiotic N fixation to match yield. Model verification based on yield 

data only is commonly applied, e.g. Chamberlain et al. (2011) took a very similar approach to use 

the DayCent model to predict yield, N2O emissions and changes in system C associated with 
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switchgrass cultivation, as stated in Section 5.4.2. Similarly regression model approaches in 

Richter et al. (2008) do not account for any impact of SOC on yield. 

 

Although soil C was underestimated for parameterisation sites in Chapter 5 and may also be 

underestimated in the scenario analysis in this chapter, previous studies applying the same 

approach to SOC setting have stated that levels were reasonable (Adler, 2007), and within 11% of 

measured values (Del Grosso S, 2002). Underprediction of soil C at the former arable (1-6) 

scenario analysis sites may result in underprediction of SRC willow yield, and may have 

contributed to simulation of yields below economic limits at some of these sites, in spite of high 

simulated levels of N fixation. As stated in Section 5.5 “high confidence in model output should be 

limited to simulation of above ground biomass for sites relatively similar to those used in 

verification”; simulated soil C for the sites with SRC yield below economic values was much lower 

than that simulated in the calibration studies (8.7 to 20.6 t ha-1 compared to 30.7 to 39.2 t ha-1 

respectively) which may limit confidence in output. Simulation of yields in excess of those 

observed in the field at former grassland sites was not limited to sites where soil C was outside 

the range simulated for the calibration sites, since for the sandy end of the soil texture range at 

site 7, an SRC yield of 14.25 odt ha-1 a-1 was simulated for starting soil C of 35.6 t ha-1, in a similar 

range to the calibration sites. In general work to parameterise the SRC willow model for a wider 

range of site conditions could improve confidence in the yield values simulated in Section 6.3.1. 

 

The rate of N fixation calculated for SRC willow in Chapter 5 may not be considered that high, 

since Davis et al. (2010) identified higher N fixation for Miscanthus in a study which did calibrate 

for soil C. High simulated N fixation for Miscanthus may explain the weak relationship between 

Miscanthus yield and soil C in Figure 6.33. It is important to also consider that symbiotic N fixation 

rates will vary according to soil availability, given the metabolic expense involved, and that 

potential rates may vary according to geneotype and preparation, and that higher values may be 

possible in the future with selective breeding (Keymer and Kent, 2013).  

 

In addition to the need to improve calibration of soil C as identified in Section 6.3.3, further work 

may be necessary to re-set the value of symbiotic N fixation for SRC willow, to account for higher 

than simulated C, and associated N at the parameterisation sites used in Section 5.4. Improved 

parameterisation of rates of symbiotic N fixation and improved simulation of soil C during the spin 

up period would in turn improve the simulation of changes in soil C and N under energy crops; as 
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mentioned in Section 5.4 low levels simulated for both ammonium and nitrate suggest that N 

retention may be poorly simulated by the model in general. Some field studies have observed that 

depletion is a greater risk for former arable sites (Ian Shield Rothamsted personal communication 

2013), whereas elsewhere it has been observed that mineralisation resulting from disturbance of 

grassland in preparation for planting of SRC created an excess of available soil N (Jug, 1999).  

 

Given the likely impact of simulated N fixation on simulated N leaching as postulated in Section 

6.3.2, this further work may also be expected to yield improved simulation of N leaching. 

However, work by Davis et al. (2010) to calculate the maximum rate of  N fixation for Miscanthus 

included calibration for soil C, and thus may not be altered by this work. Since simulated N 

leaching for Miscanthus was also much greater than field values, it may therefore be expected 

that there are additional issues with simulation of N leaching which must be addressed. 

 

Figure 6.34 Graph to indicate relationship between soil C at land use change and N2O emissions. 
The relationship is strong for both crops; willow has a correlation coefficient of 0.789 and a 
significance of <0.001 , and Miscanthus has a correlation coefficient of 0.853 and a significance 
of <0.001 .  
 

Figure 6.34 indicates that there is also a strong relationship between soil C at the start of the 

simulated energy crop cultivation period and simulated direct N2O emissions. As such, soil C is an 

additional factor to consider when predicting impacts of land use change for energy crops, and 

improved model simulation of C should also give more reliable simulation of N2O emissions.  
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6.6 Chapter summary 
 

Input data were compiled for 12 sites representative of the typical soil property and land use 

combinations identified in Chapter 2. Input files for the DayCent model were produced from these 

data, to be run for the maximum and minimum of soil data value ranges at each site. Analysis was 

run successfully for most sites, although the model terminated with error messages at sites 3 and 

12. 

 

Additional model errors identified during initial assessment of results were; overestimation of 

yield during Miscanthus establishment, and overestimation of SRC willow yields in subsequent 

lifecycles if removal and replanting is simulated.  A more significant issue is simulation of N 

leaching at levels much higher than those observed by field studies; output for this variable 

cannot be considered reliable, hence a complete GHG balance cannot be calculated. 

 

The model simulated the greatest benefits from energy crop cultivation where yields were highest, 

since this minimised associated ET and direct N2O emissions per unit energy generation. Although 

SOC storage per unit energy was greater for lower yields, since a greater land area is subject to 

accumulation, this benefit is temporary, and may not counterbalance the negative impacts of 

associated indirect land use change for the displaced agriculture. Similarly, reduction in direct N2O 

emissions from soil per GJ was greater where lower yields required a greater area of land use 

change, however, again, this benefit would likely not be upheld once indirect land use change 

impacts were taken into account. 

 

Extrapolation to other sites with similar soil properties and precipitation was complicated by 

additional influence from latitude and temperature variables, but this approach should still 

represent an improvement over the application of a constant EF. 

 

Calibration in Chapter 5 which overlooked SOC resulted in limitations in model performance for 

SRC willow yield at some sites, and may also limit confidence in other outputs; further work on 

developing this aspect of the model is recommended. 

 



 

270 

 

 



287 
 

References 
 

Abdalla, M., Jones, M., Yeluripati, J., Smith, P., Burke, J., Williams, M., 2010. Testing 

DayCent and DNDC model simulations of N2O fluxes and assessing the impacts of climate 

change on the gas flux and biomass production from a humid pasture. Atmospheric 

Environment 44, 2961-2970. 

Abdalla, M., Kumar, S., Jones, M., Burke, J., Williams, M., 2011. Testing DNDC 

model for simulating soil respiration and assessing the effects of climate change on the 

CO2 gas flux from Irish agriculture. Global and Planetary Change 78, 106-115. 

Adler, P.R., Stephen J. Del Grosso, and William J. Parton, 2007. Life-cycle 

assessment of net greenhouse-gas flux for bioenergy cropping systems. Ecological 

Applications 17, 675-691. 

Aggarwal, P., Kalra, N., Chander, S., Pathak, H., 2006. InfoCrop: A dynamic 

simulation model for the assessment of crop yields, losses due to pests, and 

environmental impact of agro-ecosystems in tropical environments. I. Model description. 

Agricultural Systems 89, 1-25. 

Ahuja, L.R., Fiedler, F., Dunn, G.H., Benjamin, J.G., Garrison, A., 1998. Changes in 

soil water retention curves due to tillage and natural reconsolidation. Soil Science Society 

of America Journal 62, 1228-1233. 

Akgul, O., Shah, N., Papageorgiou, L.G., 2012. Economic optimisation of a UK 

advanced biofuel supply chain. Biomass and Bioenergy 41, 57-72. 

Alexander, P., Moran, D., Rounsevell, M.D.A., Hillier, J., Smith, P., 2014a. Cost and 

potential of carbon abatement from the UK perennial energy crop market. GCB Bioenergy 

6, 156-168. 

Alexander, P., Moran, D., Smith, P., Hastings, A., Wang, S., Sünnenberg, G., Lovett, 

A., Tallis, M.J., Casella, E., Taylor, G., Finch, J., Cisowska, I., 2014b. Estimating UK perennial 



288 
 

energy crop supply using farm-scale models with spatially disaggregated data. GCB 

Bioenergy 6, 142-155. 

Alexander, R.B., 2002. Estimating the sources and transport of nutrients in the 

Waikato River Basin, New Zealand. Water Resources Research 38, 12, 14-23. 

Alletto, L., Coquet, Y., 2009. Temporal and spatial variability of soil bulk density and 

near-saturated hydraulic conductivity under two contrasted tillage management systems. 

Geoderma 152, 85-94. 

Almaraz, J.J., Zhou, X., Mabood, F., Madramootoo, C., Rochette, P., Ma, B.-L., Smith, 

D.L., 2009. Greenhouse gas fluxes associated with soybean production under two tillage 

systems in southwestern Quebec. Soil and Tillage Research 104, 134-139. 

Amichev, B.Y., Hangs, R.D., Van Rees, K.C.J., 2011. A novel approach to simulate 

growth of multi-stem willow in bioenergy production systems with a simple process-based 

model (3PG). Biomass and Bioenergy 35, 473-488. 

Amthor, J.S., Chen, J.M., Clein, J.S., Frolking, S.E., Goulden, M.L., Grant, R.F., 

Kimball, J.S., King, A.W., McGuire, A.D., Nikolov, N.T., Potter, C.S., Wang, S., Wofsy, S.C., 

2001. Boreal forest CO2 exchange and evapotranspiration predicted by nine ecosystem 

process models: Intermodel comparisons and relationships to field measurements. 

Journal of Geophysical Research 106, 623-648. 

An, G.-H., Miyakawa, S., Kawahara, A., Osaki, M., Ezawa, T., 2008. Community 

structure of arbuscular mycorrhizal fungi associated with pioneer grass species 

Miscanthus sinensis in acid sulfate soils: Habitat segregation along pH gradients. Soil 

Science and Plant Nutrition 54, 517-528. 

Atkinson, C.J., 2009. Establishing perennial grass energy crops in the UK: A review 

of current propagation options for Miscanthus. Biomass and Bioenergy 33, 5, 752–759. 

Aylott, M., McDermott, F., 2012. Domestic Energy Crops; Potential and Constraints 

Review. Project Number: 12-021. A report for DECC. URN: 12D/081, In: Consultants, N.T.B. 

(Ed.). 



289 
 

Aylott, M.J., Casella, E., Tubby, I., Street, N.R., Smith, P., Taylor, G., 2008. Yield and 

spatial supply of bioenergy poplar and willow short-rotation coppice in the UK. New 

Phytologist 178, 358-370. 

Azooz, R.H., Arshad, M.A., 1996. Soil infiltration and hydraulic conductivity under 

long-term no-tillage and conventional tillage systems. Can J Soil Sci 76, 143-152. 

Babus’Haq, R.F., Probert, S.D., 1996. Combined Heat-and-Power Implementation in 

the UK: Past, Present and Prospective Developments. Applied Energy 53, 41-76. 

Baggs, E.M.S., M.; Pihlatie, M.;  Regar, A.;  Cook, H.;  Cadisch,G., 2003. Nitrous 

oxide emissions following application of residues and fertiliser under zero and 

conventional tillage. Plant and Soil 254, 361-370. 

Balasus, A., Bischoff, W.-A., Schwarz, A., Scholz, V., Kern, J., 2012. Nitrogen fluxes 

during the initial stage of willows and poplars in short-rotation coppices. Journal of Plant 

Nutrition and Soil Science 175, 729-738. 

Ball, B.C., Scott, A., Parker, J.P., 1999. Field N2O, CO2 and CH4 fluxes in relation to 

tillage, compaction and soil quality in Scotland. Soil & Tillage Research 53, 29-39. 

Balland, V., Pollacco, J.A.P., Arp, P.A., 2008. Modeling soil hydraulic properties for a 

wide range of soil conditions. Ecological Modelling 219, 300-316. 

Baresel, C., & Destouni, G. , 2005. Novel quantification of coupled natural and 

cross-sectoral water and nutrient/pollutant flows for environmental management. Environ 

Sci Technol 39, 6182-6190. 

Baresel, C., Destouni, G., 2006. Estimating subsurface nitrogen accumulation–

depletion in catchments by input–output flow analysis. Physics and Chemistry of the 

Earth, Parts A/B/C 31, 1030-1037. 

Basset-Mens, C., Anibar, L., Durand, P., van der Werf, H.M., 2006. Spatialised fate 

factors for nitrate in catchments: modelling approach and implication for LCA results. The 

Science of The Total Environment 367, 367-382. 



290 
 

Bateman, E.J., Baggs, E.M., 2005. Contributions of nitrification and denitrification 

to N2O emissions from soils at different water-filled pore space. Biology and Fertility of 

Soils 41, 379-388. 

Bauen, A.W., Dunnett, A.J., Richter, G.M., Dailey, A.G., Aylott, M., Casella, E., Taylor, 

G., 2010. Modelling supply and demand of bioenergy from short rotation coppice and 

Miscanthus in the UK. Bioresource Technology 101, 8132-8143. 

Beale, C.V., Long, S.P., 1997. Seasonal dynamics of nutrient accumulation and 

partitioning in the perennial C4-grasses Miscanthus X Giganteus and Spartina 

Cynosuroides. Biomass and Bioenergy 12, 419-428. 

Beaujouan, V.r., Durand, P., Ruiz, L., Aurousseau, P., Cotteret, G., 2002. A 

hydrological model dedicated to topography-based simulation of nitrogen transfer and 

transformation: rationale and application to the geomorphology- denitrification 

relationship. Hydrological Processes 16, 493-507. 

Beheydt, D., Boeckx, P., Sleutel, S., Li, C., Vancleemput, O., 2007. Validation of 

DNDC for 22 long-term N2O field emission measurements. Atmospheric Environment 41, 

6196-6211. 

Behnke, G.D., David, M.B., Voigt, T.B., 2012. Greenhouse Gas Emissions, Nitrate 

Leaching, and Biomass Yields from Production of Miscanthus × giganteus in Illinois, USA. 

BioEnergy Research 5, 801-813. 

Bell, M.J., Jones, E., Smith, J., Smith, P., Yeluripati, J., Augustin, J., Juszczak, R., 

Olejnik, J., Sommer, M., 2011. Simulation of soil nitrogen, nitrous oxide emissions and 

mitigation scenarios at 3 European cropland sites using the ECOSSE model. Nutrient 

Cycling in Agroecosystems 92, 161-181. 

Berndes, G., 2002. Bioenergy and water—the implications of large-scale bioenergy 

production for water use and supply. Global Environmental Change 12, 253-271. 

Berndes, G., Hansson, J., Egeskog, A., Johnsson, F., 2010. Strategies for 2nd 

generation biofuels in EU – Co-firing to stimulate feedstock supply development and 



291 
 

process integration to improve energy efficiency and economic competitiveness. Biomass 

and Bioenergy 34, 227-236. 

Berntsen, J., Petersen, B.M., Olesen, J.E., 2006. Simulating trends in crop yield and 

soil carbon in a long-term experiment—effects of rising CO2, N deposition and improved 

cultivation. Plant and Soil 287, 235-245. 

The UK Department for Business, Enterprise and Regulatory Reform (BERR), 2008. 

UK Renewable Energy Strategy-consultation. Available at: 

http://webarchive.nationalarchives.gov.uk/+/http://www.berr.gov.uk/files/file46799.pdf  

[accessed  1/42014]. 

Bessou, C., Mary, B., Léonard, J., Roussel, M., Gréhan, E., Gabrielle, B., 2010. 

Modelling soil compaction impacts on nitrous oxide emissions in arable fields. European 

Journal of Soil Science 61, 348-363. 

Blanco-Canqui, H., 2010. Energy Crops and Their Implications on Soil and 

Environment. Agron J 102, 403-419. 

Bøhm, B., Kristjansson, H., Ottosson, U., Rämä, M., Sipilä, K., 2008. District heating 

distribution in areas with low heat demand density, In: Zinko, H. (Ed.), IEA R&D 

Programme on “District Heating and Cooling, including the integration of CHP”. IEA. 

Bollmark, L., Sennerby-Forsse, L., and Ericsson, T. , 1999. Seasonal dynamics and 

effects of nitrogen and carbohydrate reserves in cutting-derived Salix viminalis plants. Can. 

J. For. Res 29, 85-94. 

Borek R, F.A., Kozyra J, 2010. Water implications of selected energy crops cultivated 

on a field scale. Journal of Food Agriculture & Environment 8, 1345-1351. 

Bouwman, A.F., 1996. Direct emission of nitrous oxide from agricultural soils. 

Nutrient Cycling in Agroecosystems 46, 53-70. 

Boyd, J., Christerson, L., & Dinkelbach, L., 2000. Energy from willow. SAC. 



292 
 

Boyer, E.W., Alexander, R.B., Parton, W.J., Li, C., Butterbach-Bahl, K., Donner, S.D., 

Wayne Skaggs, R., J., D.G.S., 2006. Modeling denitrification in terrestrial and aquatic 

ecosystems at regional scales. Ecological Applications 16, 2123-2142. 

Bradford, J.M., Huang, C.-h., 1994. Interrill soil erosion as affected by tillage and 

residue cover. Soil & Tillage Research 31, 353-361. 

Brandão, M., Milà i Canals, L., Clift, R., 2011. Soil organic carbon changes in the 

cultivation of energy crops: Implications for GHG balances and soil quality for use in LCA. 

Biomass and Bioenergy 35, 2323-2336. 

Brechbill, S.C., Tyner, W.E., Ileleji, K.E., 2011. The Economics of Biomass Collection 

and Transportation and Its Supply to Indiana Cellulosic and Electric Utility Facilities. 

BioEnergy Research 4, 141-152. 

Brereton, N.J., Pitre, F.E., Shield, I., Hanley, S.J., Ray, M.J., Murphy, R.J., Karp, A., 

2013. Insights into nitrogen allocation and recycling from nitrogen elemental analysis and 

15N isotope labelling in 14 genotypes of willow. Tree Physiol. tpt081, 00, 1-11 

Brisson, N., Gary, C., Justes, E., Roche, R., Mary, B., Ripoche, D., Zimmer, D., Sierra, 

J., Bertuzzi, P., Burger, P., Bussiѐre, F., Cabidoche, Y.M., Cellier, P., Debaeke, P., Gaudillѐre, 

J.P., Hénault, C., Maraux, F., Seguin, B., Sinoquet, H., 2003. An overview of the crop model 

STICS. Europ. J. Agronomy 18, 309-332. 

Brisson, N., Mary, B., Ripoche, D., Jeuffroy, M.H., Ruget, F., Nicoullaud, B., Gate, P., 

Devienne-Barret, F., Antonioletti, R., Durr, C., Richard, G., Beaudoin, N., Recous, S., Tayot, 

X., Plenet, D., Cellier, P., Machet, J., Meynard, J.M., Delécolle, R., 1998. STICS: a generic 

model for the simulation of crops and their water and nitrogen balances. 1. Theory and 

parameterization applied to wheat and corn. Agronomie 18, 311-346. 

Bronick, C.J., Lal, R., 2005. Soil structure and management: a review. Geoderma 

124, 3-22. 

Brown, L., Syed, B., Jarvis, S.C., Sneath, R.W., Phillips, V.R., Goulding, K.W.T., Li, C., 

2002. Development and application of a mechanistic model to estimate emission of 

nitrous oxide from UK agriculture. Atmospheric Environment 36, 917-928. 



293 
 

Bullard, M.J., Mustill, S.J., McMillan, S.D., Nixon, P.M.I., Carver, P., Britt, C.P., 2002. 

Yield improvements through modification of planting density and harvest frequency in 

short rotation coppice Salix spp.—1. Yield response in two morphologically diverse 

varieties. Biomass and Bioenergy 22, 15–25. 

Cadoux, S., Riche, A.B., Yates, N.E., Machet, J.-M., 2012. Nutrient requirements of 

Miscanthus x giganteus: Conclusions from a review of published studies. Biomass and 

Bioenergy 38, 14-22. 

Cannell MGR, M.R., Hargreaves KJ, Brown TA, Cruickshank MM, Bradley RI, Spencer 

T, Hope D, Billett MF, Adger WN, Subak S., 1999. National inventories of terrestrial carbon 

sources and sinks: the UK experience. Climatic Change 42, 3 505-530. 

Capowiez, Y., Cadoux, S., Bouchant, P., Ruy, S., Roger-Estrade, J., Richard, G., 

Boizard, H., 2009. The effect of tillage type and cropping system on earthworm 

communities, macroporosity and water infiltration. Soil and Tillage Research 105, 209-

216. 

CBD, 2008. The potential impacts of biofuels on biodiversity. Matters arising from 

SBSTA recommendation XII/7. UNEP/CBD/COP/9/26 Convention on Biological Diversity, 16 

pp. 

Center for Ecology and Hydrology, 2011. Land Cover Map (1km dominant target 

class, GB) 2007 Version 1.0, Available at: 

https://gateway.ceh.ac.uk/download?fileIdentifier=337f9dea-726e-40c7-9f9b-

e269911c9db6 [accessed  1/8/2011].© NERC (CEH) 2011. © Crown Copyright 2007. 

Ordnance Survey Licence number 100017572. © Crown Copyright 2011. Licence number 

100,427. © third-party licensors. 

Ceulemans, R., A. J. S. McDonald, and J. S. Pereira, 1996. A comparison among 

eucalypt, poplar and willow characteristics with particular reference to a coppice, growth-

modelling approach. Biomass and Bioenergy 11, 215-231. 

Chamberlain, J.F., Miller, S.A., Frederick, J.R., 2011. Using DAYCENT to quantify on-

farm GHG emissions and N dynamics of land use conversion to N-managed switchgrass in 

the Southern U.S.. Agriculture, Ecosystems and Environment 141, 332-341. 



294 
 

Chatskikh, D., Olesen, J.E., 2007. Soil tillage enhanced CO2 and N2O emissions from 

loamy sand soil under spring barley. Soil and Tillage Research 97, 5-18. 

Chatskikh, D., Olesen, J.E., Berntsen, J., Regina, K., Yamulki, S., 2005. Simulation of 

Effects of Soils, Climate and Management on N2O Emission from Grasslands. 

Biogeochemistry 76, 395-419. 

Chatskikh, D., Olesen, J.E., Hansen, E.M., Elsgaard, L., Petersen, B.M., 2008. Effects 

of reduced tillage on net greenhouse gas fluxes from loamy sand soil under winter crops in 

Denmark. Agriculture, Ecosystems & Environment 128, 117-126. 

Chen, D., Li, Y., Grace, P., Mosier, A.R., 2008. N2O emissions from agricultural lands: 

a synthesis of simulation approaches. Plant and Soil 309, 169-189. 

Chen, S.-J., Hwang, C.-L., 1992. Fuzzy Multiple Attribute Decision Making: Methods 

and Applications. Springer, Berlin. 

Chen, Y., S. Tessier, and J. Gallichand, 1998a. Estimates of tillage effects on 

saturated hydraulic conductivity. Canadian Agricultural Engineering 40, 169-178. 

Chen, Y., Tessier, S., Rouffignat, J., 1998b. Soil bulk density estimation for tillage 

systems and soil textures. Transactions of the American society of engineers. 41, 1601-

1610. 

Cherubini, F., 2010. GHG balances of bioenergy systems – Overview of key steps in 

the production chain and methodological concerns. Renewable Energy 35, 1565-1573. 

Cherubini, F., Bird, N.D., Cowie, A., Jungmeier, G., Schlamadinger, B., Woess-

Gallasch, S., 2009. Energy- and greenhouse gas-based LCA of biofuel and bioenergy 

systems: Key issues, ranges and recommendations. Resources, Conservation and Recycling 

53, 434-447. 

Chicco, G., Mancarella, P., 2009. Distributed multi-generation: A comprehensive 

view. Renewable and Sustainable Energy Reviews 13, 535-551. 

Chirinda, N., Kracher, D., Lægdsmand, M., Porter, J.R., Olesen, J.E., Petersen, B.M., 

Doltra, J., Kiese, R., Butterbach-Bahl, K., 2010. Simulating soil N2O emissions and 



295 
 

heterotrophic CO2 respiration in arable systems using FASSET and MoBiLE-DNDC. Plant 

and Soil 343, 139-160. 

Christensen, L., Riley, W.J., Ortiz-Monasterio, I., 2006. Nitrogen Cycling in an 

Irrigated Wheat System in Sonora, Mexico: Measurements and Modeling. Nutrient Cycling 

in Agroecosystems 75, 175-186. 

Christian, D., Poulton, P., Riche, A., Yates, N., Todd, A., 2006. The recovery over 

several seasons of 15N-labelled fertilizer applied to Miscanthus×giganteus ranging from 1 

to 3 years old. Biomass and Bioenergy 30, 125-133. 

Christian, D., Riche, A., Yates, N., 2008a. Growth, yield and mineral content of 

Miscanthus×giganteus grown as a biofuel for 14 successive harvests. Industrial Crops and 

Products 28, 320-327. 

Christian DG, P.P., Riche AB, Yates NE. , 1997. The recovery of 15N-labelled fertilizer 

applied to Miscanthus giganteus. Biomass and BioEnergy 12, 21-24. 

Christian, D.G., Riche, A.B., 1998. Nitrate leaching losses under Miscanthus grass 

planted on a silty clay loam soil. Soil Use and Management 14, 131-135. 

Christian, D.G., Riche, A.B., Yates, N.E., 2008b. Growth, yield and mineral content 

of Miscanthus×giganteus grown as a biofuel for 14 successive harvests. Industrial Crops 

and Products 28, 320-327. 

Chum, H., A. Faaij, J. Moreira, G. Berndes, P. Dhamija, H. Dong, B. Gabrielle, A. Goss 

Eng, W. Lucht, M. Mapako, O. Masera Cerutti, T. McIntyre, T. Minowa, K. Pingoud, 2011. 

Bioenergy. In IPCC Special Report on Renewable Energy Sources and Climate Change 

Mitigation [O. Edenhofer, R. Pichs-Madruga, Y. Sokona, K. Seyboth, P. Matschoss, S. 

Kadner, T. Zwickel, P. Eickemeier, G. Hansen, S. Schlömer, C. von Stechow (eds)]. 

Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. 

Clair, S., Hillier, J., Smith, P., 2008. Estimating the pre-harvest greenhouse gas costs 

of energy crop production. Biomass and Bioenergy 32, 442-452. 

Clifton-Brown, J.C., Breuer, J., Jones, M.B., 2007. Carbon mitigation by the energy 

crop, Miscanthus. Global Change Biology 13, 2296-2307. 



296 
 

Clifton-Brown, J.C., Lewandowski, I., Andersson, B., Basch, G., Christian, D.G., 

Kjeldsen, J.B., Jorgensen, U., Mortensen, J.V., Riche, A.B., Schwarz, K.U., Tayebi, K., 

Teixeira, F., 2001. Performance of 15 Miscanthus genotypes at five sites in Europe. Agron J 

93, 1013-1019. 

Crow, P., Houston, T.J., 2004. The influence of soil and coppice cycle on the rooting 

habit of short rotation poplar and willow coppice. Biomass and Bioenergy 26, 497-505. 

Culman, S.W., DuPont, S.T., Glover, J.D., Buckley, D.H., Fick, G.W., Ferris, H., Crews, 

T.E., 2010. Long-term impacts of high-input annual cropping and unfertilized perennial 

grass production on soil properties and belowground food webs in Kansas, USA. Agr 

Ecosyst Environ 137, 13-24. 

Cure, J.D., Acock.  B., 1986. Crop responses to carbon dioxide doubling: A literature 

survey. Agricultural and Forest Meteorology 38, 127-145. 

Curley, E.M., O'Flynn, M.G., McDonnell, K.P., 2009. Nitrate leaching losses from 

Miscanthus x giganteus impact on groundwater quality. J. Agronomy 8, 107-112. 

Danalatos, N., Archontoulis, S., Mitsios, I., 2007. Potential growth and biomass 

productivity of Miscanthus×giganteus as affected by plant density and N-fertilization in 

central Greece. Biomass and Bioenergy 31, 145-152. 

Dao, T.H., 1998. Tillage and crop residue effects on carbon dioxide evolution and 

carbon storage in a Paleustoll. Soil Sci. Soc. Am. J. 62, 250-256. 

David, M.B., J., S., Grosso, D., Hu, X., Marshall, E.P., McIsaac, G.F., Parton, W.J., 

Tonitto, C., Youssef, M.A., 2009. Modeling denitrification in a tile-drained, corn and 

soybean agroecosystem of Illinois, USA. Biogeochemistry 93, 7-30. 

Davidson, E.A., Potter, C.S., Schlesinger, P., Klooster, S.A., 1998. Model estimates of 

regional nitric oxide emissions from Soils of the Southeastern United States. Ecological 

Applications 8, 748-759. 

Davis, S.C., Parton, W.J., Dohleman, F.G., Smith, C.M., Grosso, S.D., Kent, A.D., 

DeLucia, E.H., 2010. Comparative Biogeochemical Cycles of Bioenergy Crops Reveal 



297 
 

Nitrogen-Fixation and Low Greenhouse Gas Emissions in a Miscanthus × giganteus Agro-

Ecosystem. Ecosystems 13, 144-156. 

Davis, S.C., Parton, W.J., Grosso, S.J.D., Keough, C., Marx, E., Adler, P.R., DeLucia, 

E.H., 2012. Impact of second-generation biofuel agriculture on greenhouse-gas emissions 

in the corn-growing regions of the US. Frontiers in Ecology and the Environment 10, 69-74. 

de Fraiture, C., Giordano, M., Liao, Y., 2008. Biofuels and implications for 

agricultural water use: blue impacts of green energy. Water Policy 10, 1, 67-81. 

de Fraiture, C., Berndes, G., 2008. Biofuels: Environmental Consequences and 

Interactions with Changing Land Use; Biofuels and Water, In: Howarth, R.W., Bringezu, S. 

(Eds.), Scientific Committee on Problems of the Environment (SCOPE) International 

Biofuels Project Rapid Assessment, Gummersbach Germany.Cornell University, Ithaca NY, 

USA, pp. 139-142. 

de Fraiture, C.d., Berndes, G., 2009. Biofuels and water. Pages 139-153 in R.W. 

Howarth and S. Bringezu (eds.) Biofuels: Environmental Consequences and Interactions 

with Changing Land Use. Proceedings of the Scientific Committee on Problems of the 

Environment (SCOPE) International Biofuels Project Rapid Assessment, 22-25 September 

2008, Gummersbach Germany. Cornell University, Ithaca NY, USA. 

(http://cip.cornell.edu/biofuels/). 

 

de Mira, R.R., Kroeze, C., 2006. Greenhouse gas emissions from willow-based 

electricity: a scenario analysis for Portugal and The Netherlands. Energy Policy 34, 1367-

1377. 

de Vries, S.C., van de Ven, G.W.J., van Ittersum, M.K., Giller, K.E., 2010. Resource 

use efficiency and environmental performance of nine major biofuel crops, processed by 

first-generation conversion techniques. Biomass and Bioenergy 34, 588-601. 

De Vries, W., Kros, J., Kuikman, P.J., Velthof, G.L., Voogd, J.C.H., Wieggers, H.J.J., 

Butterbach-Bahl, K., Denier Van Der Gon, H.A.C., Van Amstel, A.R., 2005. Use of 



298 
 

measurements and models to improve the national IPCC based assessments of soil 

emissions of nitrous oxide. Environmental Sciences 2, 217-233. 

Deckmyn, G., Laureysens, I., Garcia, J., Muys, B., Ceulemans, R., 2004. Poplar 

growth and yield in short rotation coppice: model simulations using the process model 

SECRETS. Biomass and Bioenergy 26, 221-227. 

Defra, 2007. Department for Environment, Food and Rural Affairs (DEFRA) UK 

Biomass Strategy, Available at: 

http://www.biomassenergycentre.org.uk/pls/portal/docs/PAGE/RESOURCES/REF_LIB_RES

/PUBLICATIONS/UKBIOMASSSTRATEGY.PDF. [accessed 17/10/2011], p. 49. 

Del Grosso, S., Mosier, A., Parton, W., Ojima, D., 2005. DAYCENT model analysis of 

past and contemporary soil NO and net greenhouse gas flux for major crops in the USA. 

Soil and Tillage Research 83, 9-24. 

Del Grosso S.J., Parton W.J., Mosier A.R., Peterson G., Schimel D., 2002. Simulated 

effects of dryland cropping intensification on soil organic matter and greenhouse gas 

exchanges using the DAYCENT ecosystem model. . Environmental Pollution 116, 75-83. 

Del Grosso, S.J., Halvorson, A.D., Parton, W.J., 2008. Testing DAYCENT Model 

Simulations of Corn Yields and Nitrous Oxide Emissions in Irrigated Tillage Systems in 

Colorado. Journal of Environment Quality 37, 4, 1383-1389. 

Del Grosso, S.J., Ogle, S.M., Parton, W.J., Breidt, F.J., 2010. Estimating uncertainty 

in N2O emissions from US cropland soils. Global Biogeochemical Cycles 24, 1 pp 12. 

Del Grosso, S.J., Parton, W.J., Mosier, A.R., Ojimal, D.S., Kulmala, A.E., Phongpan, S., 

2000. General model for N2O and N2 gas emissions from soils due to dentrification. Global 

Biogeochemical Cycles 14, 1045-1060. 

Del Grosso, S.J., Wirth, T., Ogle, S. M., & Parton, W. J. , 2008. Estimating 

Agricultural Nitrous Oxide Emissions. Transactions American Geophysical Union 89, 529-

529. 



299 
 

Delgado, J.A., Del Grosso, S.J., Ogle, S.M., 2010. 15N isotopic crop residue cycling 

studies and modeling suggest that IPCC methodologies to assess residue contributions to 

N2O-N emissions should be reevaluated. Nutrient Cycling in Agroecosystems 86, 383-390. 

Delgrosso, S., Mosier, A., Parton, W., Ojima, D., 2005. DAYCENT model analysis of 

past and contemporary soil NO and net greenhouse gas flux for major crops in the USA. 

Soil and Tillage Research 83, 9-24. 

Delon, C., SerÇA, D., Boissard, C., Dupont, R., Dutot, A., Laville, P., De Rosnay, P., 

Delmas, R., 2007. Soil NO emissions modelling using artificial neural network. Tellus B 59, 

502-513. 

Department for Environment Food and Rural Affairs, 2007. Miscanthus Growers' 

Handbook. 

Department for Environment Food and Rural Affairs, 2011. TRP - Technical Report : 

UK Agricultural GHG Inventory 2011 projections summary v3 

http://randd.defra.gov.uk/Default.aspx?Menu=Menu&Module=More&Location=None&C

ompleted=0&ProjectID=15542  

Department for Environment Food and Rural Affairs, 2012. Agriculture in the UK, 

Available at: http://www.defra.gov.uk/statistics/foodfarm/cross-cutting/auk/ [accessed 

1/10/2013]. 

Department for Transport, 2011. Biofuel statistics: Year 3 (2010 to 2011), Biofuels 

statistics https://www.gov.uk/government/publications/biofuels-statistics-quarterly-year-

to-april-2011. [accessed 22 March 2014]. 

Department of Energy & Climate Change, D.f.E., Food & Rural Affairs, Department 

for Transport, 2012. UK Bioenergy Strategy. Department of Energy & Climate Change, 

London. 

Department of Energy and Climate Change, 2010. UK energy consumption 

statistics, Available at: 

http://www.decc.gov.uk/en/content/cms/statistics/publications/ecuk/ecuk.aspx [accessed 

23/3/2011]. 



300 
 

Department of Energy and Climate Change, 2011. Renewable Heat Incentive, 

Available at: 

http://www.decc.gov.uk/assets/decc/What%20we%20do/UK%20energy%20supply/Energ

y%20mix/Renewable%20energy/policy/renewableheat/1387-renewable-heat-

incentive.pdf [accessed 1/4/2011]. 

Department of Energy and Climate Change, 2011 UK Energy Sector Indicators. URN 

11D/193. http://www.decc.gov.uk/assets/decc/11/stats/publications/indicators/3327-uk-

energy-sector-indicators-2011.pdf [accessed 1/4/2011]. 

Department of Energy and Climate Change, 2012. Digest of UK Energy Statistics 

(DUKES), Chapter 7, Available at: 

http://www.decc.gov.uk/en/content/cms/statistics/energy_stats/source/chp/chp.aspx 

[accessed 20/09/12]. 

Department of Energy and Climate Change, 2013a. Digest of UK Energy Statistics 

(DUKES), Chapter 6, Available at :https://www.gov.uk/government/publications/digest-of-

united-kingdom-energy-statistics-dukes-2013-printed-version-excluding-cover-pages 

[accessed 20/09/13]. 

Department of Energy and Climate Change, 2013b. 

https://www.gov.uk/government/news/new-biomass-sustainability-criteria-to-provide-

certainty-for-investors-to-2027 [accessed 1/2/2014] 

Derpsch, R., Friedrich, T., Kassam, A., & Hongwen, L. , 2010. Current status of 

adoption of no-till farming in the world and some of its main benefits. Int J Agric & Biol 

Eng 3, 1 - 25. 

Dimitriou, G., Busch, S., Jacobs, P., Schmidt-Walter, N., 2009. A review of the 

impacts of Short Rotation Coppice cultivation on water issues Landbauforschung vTI. 

Agriculture and Forestry Research 59, 197-206. 

DNDC User Guide, 2009. User's Guide for the DNDC Model. Version 9.3. Institute 

for the Study of Earth, Oceans and Space. University of New Hampshire. 

https://www.gov.uk/government/news/new-biomass-sustainability-criteria-to-provide-certainty-for-investors-to-2027
https://www.gov.uk/government/news/new-biomass-sustainability-criteria-to-provide-certainty-for-investors-to-2027


301 
 

Dockerty, T., Appleton, K., Lovett, A., 2012. Public opinion on energy crops in the 

landscape: considerations for the expansion of renewable energy from biomass. Journal of 

Environmental Planning and Management 55, 1134-1158. 

Doltra, J., Lægdsmand, M., Olesen, J.E., 2010. Cereal yield and quality as affected 

by nitrogen availability in organic and conventional arable crop rotations: A combined 

modeling and experimental approach. European Journal of Agronomy. 34, 2, 83–95 

Don, A., Osborne, B., Hastings, A., Skiba, U., Carter, M.S., Drewer, J., Flessa, H., 

Freibauer, A., Hyvönen, N., Jones, M.B., Lanigan, G.J., Mander, Ü., Monti, A., Djomo, S.N., 

Valentine, J., Walter, K., Zegada-Lizarazu, W., Zenone, T., 2012. Land-use change to 

bioenergy production in Europe: implications for the greenhouse gas balance and soil 

carbon. GCB Bioenergy 4, 372-391. 

Dondini, M., Van Groenigen, K.-J., Del Galdo, I., Jones, M.B., 2009. Carbon 

sequestration under Miscanthus: a study of 13C distribution in soil aggregates. GCB 

Bioenergy 1, 321-330. 

Doty, S.L., Brian Oakley, Gang Xin, Jun Won Kang, Glenda Singleton, Zareen Khan, 

Azra Vajzovic, and James T. Staley, 2009. Diazotrophic endophytes of native black 

cottonwood and willow. Symbiosis 47, 23-33. 

Drewer, J., Finch, J.W., Lloyd, C.R., Baggs, E.M., Skiba, U., 2012. How do soil 

emissions of N2O, CH4 and CO2 from perennial bioenergy crops differ from arable annual 

crops? GCB Bioenergy 4, 408-419. 

Drigo, R., Masera, O.R., Trossero, M.A., 2002. Woodfuel integrated supply/demand 

overview mapping—WISDOM: a geographical representation of woodfuel priority areas. 

Unasylva 211, 36-40. 

Drury, C.F., Yang, X.M., Reynolds, W.D., Tan, C.S., 2004. Influence of crop rotation 

and aggregate size on carbon dioxide production and denitrification. Soil and Tillage 

Research 79, 87-100.  

DS4DS, 2013. Project. available at: http://www.ds4ds.org  [accessed  10/1/2014]. 



302 
 

Dufossé, K., Gabrielle, B., Drouet, J.-L., Bessou, C., 2012. Using Agroecosystem 

Modeling to Improve the Estimates of N2O Emissions in the Life-Cycle Assessment of 

Biofuels. Waste and Biomass Valorization 4, 593-606. 

Eckert B., Kirchhof G, Halbritter A, Stoffels M, Hartmann A., 2001. Azospirillum 

doebereinerae sp nov., a nitrogen fixing bacterium associated with the C-4-grass 

Miscanthus. Int J Syst Evol Microbiol 51, 17-26. 

Edwards R., Neuwahl F, Mahieu V, 2008. Biofuels in the European context: Facts 

and uncertainties. , In: European Commission, J.R.C. (Ed.), Brussels. 

Ekholm, P., 2005. Phosphorus loss from different farming systems estimated from 

soil surface phosphorus balance. Agriculture, Ecosystems & Environment 110, 266-278. 

Elmi, A., Madramootoo, C., Hamel, C., & Liu, A., 2003. Denitrification and nitrous 

oxide to nitrous oxide plus dinitrogen ratios in the soil profile under three tillage systems. 

Biology and Fertility of Soils 38, 340-348. 

Elowson, S., 1999. Willow as a vegetation filter for cleaning of polluted drainage 

water from agricultural land. Biomass Bioenergy 16, 281-290. 

Environment Agency, 2013. Environment Agency Geostore 

http://www.geostore.com/environment-agency/WebStore?xml=environment-

agency/xml/ogcDataDownload.xml  [accessed 8/12/2013]. 

Environment Agency, 2013b. Catchment abstraction management strategies 

(CAMS) http://www.environment-agency.gov.uk/business/topics/water/119927.aspx 

7/12/2013. 

European Commission - Joint Research Centre, Institute for Environment and 

Sustainability, 2013. European Soil Database v2 Raster Library, © European Communities, 

1995-2013. Last updated: 6/9/2013 

http://eusoils.jrc.ec.europa.eu/projects/ProjectsData.html. 

European Commission, 2008a. Document SEC 85 V2; accompanying the package of 

implementation measures for the EU's objectives on climate change and renewable 

energy for 2020. 



303 
 

European Commission, 2008b. Proposal for a Directive of the European Parliament 

and of the Council on the promotion of the use of energy from renewable sources. 

Falster, H. Gamborg, C., Gundersen, P., Hansen, L., Heding, N., Houmann Jakobsen, 

H., Kofman, P., Nikolaisen, L., Thomsen, I. M. 2002. CHP and Power Plants, In: Serup, H. 

(Ed.), Wood for Energy Production. Technology - Environment - Economy. Danish centre 

for biomass. 

Fargione, J., Hill, J., Tilman, D., Polasky, S., Hawthorne, P., 2008. Land Clearing and 

the Biofuel Carbon Debt. Science 319, 1235-1238. 

Farina, R., Seddaiu, G., Orsini, R., Steglich, E., Roggero, P.P., Francaviglia, R., 2011. 

Soil carbon dynamics and crop productivity as influenced by climate change in a rainfed 

cereal system under contrasting tillage using EPIC. Soil and Tillage Research 112, 36-46. 

Farmer’s Weekly Interactive, 2011. Contracts aim to entice more Miscanthus 

growers. Available at: http://www.fwi.co.uk/Articles/26/08/2011/128649/Contracts-aim-to-

entice-more-Miscanthus-growers.htm [accessed 26/10/12]. 

Farmer’s Weekly Interactive, 2012. Renewables gathers pace at Cereals. Available 

at: http://www.fwi.co.uk/Articles/16/05/2012/132935/Renewables-gathers-pace-at-

Cereals.htm [accessed 26/10/12]. 

Farrell AE, P.R., Turner BT, Jones AD, O’Hare M, Kammen DM., 2006. Ethanol can 

contribute to energy and environmental goals. Science 311, 506-508. 

Finch, J.W., Hall, R.L., Rosier, P.T.W., Clark, D.B., Stratford, C., Davies, H.N., Marsh, 

T.J., Roberts, J.M., Riche, A., Christian, D., 2004. The hydrological impacts of energy crop 

production in the UK. Final report. CEH Project Number: C01937, 151pp. 

Finch, J.W., Karp, A., McCabe, D.P.M., Nixon, S., Riche, A.B., Whitmore, A.P., 2009. 

Miscanthus, short-rotation coppice and the historic environment. Available at: 

http://nora.nerc.ac.uk/7566/1/EngHerit_Report_final.pdf [accessed 6/7/13]. 

Finney, K.N., Sharifi, V.N., Swithenbank, J., 2012. The negative impacts of the global 

economic downturn on funding decentralised energy in the UK. Energy Policy 51, 290-300. 

http://www.sciencedirect.com/science?_ob=RedirectURL&_method=externObjLink&_locator=url&_cdi=271429&_issn=03062619&_origin=article&_zone=art_page&_plusSign=%2B&_targetURL=http%253A%252F%252Fnora.nerc.ac.uk%252F7566%252F1%252FEngHerit_Report_final.pdf


304 
 

Firbank, L.G., 2008. Assessing the Ecological Impacts of Bioenergy Projects. 

BioEnergy Research 1, 12-19. 

Foereid, B., Bellamy, P.H., Holden, A., Kirk, G.J.D., 2012. On the initialization of soil 

carbon models and its effects on model predictions for England and Wales. European 

Journal of Soil Science 63, 32-41. 

Foereid, B., de Neergaard, A., Høgh-Jensen, H., 2004a. Turnover of organic matter 

in a Miscanthus field: effect of time in Miscanthus cultivation and inorganic nitrogen 

supply. Soil Biology and Biochemistry 36, 1075-1085. 

Foereid, B., Deneergaard, A., Hoghjensen, H., 2004b. Turnover of organic matter in 

a Miscanthus field: effect of time in Miscanthus cultivation and inorganic nitrogen supply. 

Soil Biology and Biochemistry 36, 1075-1085. 

Forestry Commission, 2013. UK biomass power stations. Version 1.4 March 2013 

ed. 

Fornara, D.A.a.T., D., 2009. Ecological mechanisms associated with the positive 

diversity–productivity relationship in an N-limited grassland. Ecology Letters 90, 408-418. 

Thornton, F., Bock, B., Bandaranayake, W., Tyler, D., Pettry, D.,  Green, T., Makik, R., 

Bingham, L., Houston, A., Shires, M., Dewey, J., 1998. Soil and Water Quality Aspects of 

Herbaceous and Woody Energy Crop Productions: Lessons from Research-Scale 

Comparisons with Agricultural Crops. Paper presented at BioEnergy '98: Expanding 

Bioenergy Partnerships, Madison, Wisconsin, October 4-8, . 

Franzluebbers, A.J., Hons, F.M.,  Zuberer, D.A., 1995. Tillage and crop effects on 

seasonal dynamics of soil CO 2 evolution, water content, temperature, and bulk density. 

Applied Soil Ecology 2, 95-109. 

Franzluebbers, A.J., Langdale, G.W., Schomberg, H.H., 1999. Soil Carbon, Nitrogen, 

and Aggregation in Response to Type and Frequency of Tillage. Soil Sci. Soc. Am. J. 63, 

349-355. 

Frolking, S.E., Mosier, A.R., Ojima, D.S., Li, C., Parton, W.J., Potter, C.S., Priesack, E., 

Stenger, R., Haberbosch, C., Dörsch, P., Flessa, H., Smith, K.A., 1998. Comparison of N2O 



305 
 

emissions from soils at three temperate agricultural sites: simulations of year-round 

measurements by four models. Nutrient Cycling in Agroecosystems 52, 77-105. 

Gabrielle, B., Laville, P., Hénault, C., Nicoullaud, B., Germon, J.C., 2006. Simulation 

of Nitrous Oxide Emissions from Wheat-cropped Soils using CERES. Nutrient Cycling in 

Agroecosystems 74, 133-146. 

Galloway, J.N., Schlesinger, W. H., Levy, H., Michaels, A., & Schnoor, J. L. , 1995. 

Nitrogen fixation: Anthropogenic enhancement-environmental response. Global 

Biogeochemical Cycles 9, 235-252. 

Gascuel-Odoux, C., Aurousseau, P., Durand, P., Ruiz, L., Molenat, J., 2010. The role 

of climate on inter-annual variation in stream nitrate fluxes and concentrations. Science of 

The Total Environment 408, 5657-5666. 

Gasol, C.M., Gabarrell, X., Rigola, M., González-García, S., Rieradevall, J., 2011. 

Environmental assessment: (LCA) and spatial modelling (GIS) of energy crop 

implementation on local scale. Biomass and Bioenergy 35, 2975-2985. 

Gassman, P.W., Reyes, M.R., Green, C.H., Arnold, J.G., 2007. The Soil and Water 

Assessment Tool: Historical Development, Applications, and Future Research Directions. 

Transactions of the ASABE: American Society of Agricultural and Biological Engineers 50, 

1211-1250. 

Gawel, E., Ludwig, G., 2011. The iLUC dilemma: How to deal with indirect land use 

changes when governing energy crops? Land Use Policy 28, 846-856. 

Gerbens-Leenes, P.W., Hoekstra, A.Y., van der Meer, T., 2009. The water footprint of 

energy from biomass: A quantitative assessment and consequences of an increasing share 

of bio-energy in energy supply. Ecological Economics 68, 1052-1060. 

Giltrap, D.L., Li, C., Saggar, S., 2010. DNDC: A process-based model of greenhouse 

gas fluxes from agricultural soils. Agriculture, Ecosystems & Environment 136, 292-300. 

Goodlass G, G.M., Hilton B, McDonough S, 2007. Nitrate leaching from short-

rotation coppice. Soil Use Manage 23, 178-184. 



306 
 

Goodrich, D.C., Scott, R., Qi, J., Goff, B., Unkrich, C.L., Moran, M.S., Williams, D., 

Schaeffer, S., Snyder, K., MacNish, R., Maddock, T., Pool, D., Chehbouni, A., Cooper, D.I., 

Eichinger, W.E., Shuttleworth, W.J., Kerr, Y., Marsett, R., Ni, W., 2000. Seasonal estimates of 

riparian evapotranspiration using remote and in situ measurements. Agricultural and 

Forest Meteorology 105, 281-309. 

Gopalakrishnan, G., Cristina Negri, M., Salas, W., 2012. Modeling biogeochemical 

impacts of bioenergy buffers with perennial grasses for a row-crop field in Illinois. GCB 

Bioenergy 4, 739-750. 

Grant, R., 1995. Dynamics of energy water, carbon and nitrogen in agricultural 

ecosystems: simulation and experimental validation. Ecological Modelling 81, 169-181. 

Grant, R.F., Pattey, E., 2003. Modelling variability in N2O emissions from fertilized 

agricultural fields. Soil Biology and Biochemistry 35, 225-243. 

Grant, R.F., Pattey, E., Goddard, T.W., Kryzanowski, L.M., Puurveen, H., 2006. 

Modeling the Effects of Fertilizer Application Rate on Nitrous Oxide Emissions. Soil Science 

Society of America Journal 70, 1, 235-248. 

Green, T.R., Ahuja, L.R., Benjamin, J.G., 2003. Advances and challenges in 

predicting agricultural management effects on soil hydraulic properties. Geoderma 116, 3-

27. 

Groffman, P.M., Brumme, R., Butterbach-Bahl, K., Dobbie, K.E., Mosier, A.R., Ojima, 

D., Papen, H., Parton, W.J., Smith, K.A., Wagner-Ridd, C., 2000a. Evaluating annual nitrous 

oxide fluxes at the ecosystem scale. Global Biogeochemical Cycles 14, 1061-1070. 

Groffman, P.M., Gold, A.J., Addy, K., 2000b. Nitrous oxide production in riparian 

zones and its importance to national emission inventories. Chemosphere - Global Change 

Science 2, 291-299. 

Gross, R., 2003. Progress in renewable energy. Environment International 29, 105-

122. 

Guitouni, A., Martel, J.M., 1998. Tentative guidelines to help choosing an 

appropriate MCDA method. European Journal of Operational Research 109, 501-521. 



307 
 

Gupta, S.C., Larson, W.E., 1979. Estimating Soil Water Retention Characteristics 

From Particle Size Distribution, Organic Matter Percent, and Bulk Density. Water 

Resources Research 15, 1633-1655. 

Gupta, S.C., Lowery, B., Moncrief, J.F., Larson,W.E., 1991. Modeling tillage effects 

on soil physical properties. Soil Tillage Research 20, 293-318. 

H. G. Adegbidi, T.A. Volk, E. H. White, L. P. Abrahamson, R. D. Briggs, Bickelhaupt, 

D.H., 2001. Biomass and nutrient removal by willow clones in experimental bioenergy 

plantations in New York State. Biomass and Bioenergy 20, 399-411. 

H.J. Hellebrand, V.S., J. Kern, 2008. Nitrogen conversion and nitrous oxide hot spots 

in energy crop cultivation. RES. AGR. ENG. 54, 58-67. 

Hamelin, L., Jørgensen, U., Petersen, B.M., Olesen, J.E., Wenzel, H., 2012. 

Modelling the carbon and nitrogen balances of direct land use changes from energy crops 

in Denmark: a consequential life cycle inventory. GCB Bioenergy 4, 889-907. 

Hamelinck, C.N., Suurs, R.A.A., Faaij, A.P.C., 2005. International bioenergy 

transport costs and energy balance. Biomass and Bioenergy 29, 114-134. 

Hanegraaf, M.C., Biewinga, E.E., Van der Bijl, G., 1998. Assessing the ecological and 

economic sustainability of energy crops. Biomass and Bioenergy 15, 345-355. 

Hansen, E.A., 1993. Soil carbon sequestration beneath hybrid poplar plantations in 

the north central United States. Biomass and Bioenergy 5, 431-436. 

Hastings, A., Clifton-Brown, J., Wattenbach, M., Mitchell, C.P., Smith, P., 2009. The 

development of MISCANFOR, a newMiscanthuscrop growth model: towards more robust 

yield predictions under different climatic and soil conditions. GCB Bioenergy 1, 154-170. 

Hastings, A., Tallis, M.J., Casella, E., Matthews, R.W., Henshall, P.A., Milner, S., 

Smith, P., Taylor, G., 2014. The technical potential of Great Britain to produce ligno-

cellulosic biomass for bioenergy in current and future climates. GCB Bioenergy 6, 108-122. 

Hawkes, A., Leach, M., 2008. On policy instruments for support of micro combined 

heat and power. Energy Policy 36, 2973-2982. 



308 
 

Heaton, E., 2004. A quantitative review comparing the yields of two candidate C4 

perennial biomass crops in relation to nitrogen, temperature and water. Biomass and 

Bioenergy 27, 21-30. 

Heaton, E.A., Dohleman, F.G., Long, S.P., 2008. Meeting US biofuel goals with less 

land: the potential of Miscanthus. Global Change Biology 14, 2000-2014. 

Heaton, E.A., Dohleman, F.G., Long, S.P., 2009. Seasonal nitrogen dynamics 

ofMiscanthus×giganteusandPanicum virgatum. GCB Bioenergy 1, 297-307. 

Heaton, E.A., Dohleman, F.G., Miguez, A.F., Juvik, J.A., Lozovaya, V., Widholm, J., 

Zabotina, O.A., McIsaac, G.F., David, M.B., Voigt, T.B., Boersma, N.N., Long, S.P., 2010. 

Miscanthus: A Promising Biomass Crop, In: Turkan, I. (Ed.), Advances in Botanical 

Research. Elsevier, pp. 76-137   

Heide, C., Böttcher, J., Deurer, M., Duijnisveld, W.H.M., Weymann, D., Well, R., 

2009. Spatial and temporal variability of N2O in the surface groundwater: a detailed 

analysis from a sandy aquifer in northern Germany. Nutrient Cycling in Agroecosystems 

87, 33-47. 

Heinen, M., 2006. Simplified denitrification models: Overview and properties. 

Geoderma 133, 444-463. 

Hellebrand, H., Kern, J., Model, A., and Berg, W. 2006. Nitrous Oxide Fluxes from 

Loamy Sand Soil in Northeast Germany - Seasonal Variations and Influence of Nitrogen 

Fertilization, Precipitation, and Crop Types. Workshop on Agricultural Air Quality, 

Washington 682-692 

Hellebrand, H., Scholz, V., Kern, J., 2008. Fertiliser induced nitrous oxide emissions 

during energy crop cultivation on loamy sand soils. Atmospheric Environment 42, 8403-

8411. 

Hellebrand, H.J., Scholz, V., Kern, J., & Kavdir, Y. , 2005. N2O release during 

cultivation of energy crops. Agrartechnische Forschung 11, 114-124. 



309 
 

Hellebrand, H.J., Strähle, M., Scholz, V., Kern, J., 2010. Soil carbon, soil nitrate, and 

soil emissions of nitrous oxide during cultivation of energy crops. Nutrient Cycling in 

Agroecosystems 87, 175-186. 

Hendriks, R.F.A., Wolleswinkel, R.J., van den Akker Alterra, J.J.H., 2008. Predicting 

greenhouse gas emission from peat soils depending on water management with the 

SWAP–ANIMO model, In: Farrell, C., Feehan, J. (Eds.), 13th International Peat Congress 

After Wise Use - The Future of Peatlands   International Peat Society, Tullamore, Ireland, 

Jyväskylä, Finland, pp. 583-586. 

Hillier, J., Whittaker, C., Dailey, G., Aylott, M., Casella, E., Richter, G.M., Riche, A., 

Murphy, R., Taylor, G., Smith, P., 2009. Greenhouse gas emissions from four bioenergy 

crops in England and Wales: Integrating spatial estimates of yield and soil carbon balance 

in life cycle analyses. GCB Bioenergy 1, 267-281. 

Hilton, B., 2002. Growing short rotation coppice, best practice guidelines. DEFRA 

Publication. 

Hofmann-Schielle, C., A. Jug, F. Makeschin, and K. E. Rehfuess., 1999. Short-

rotation plantations of balsam poplars, aspen and willows on former arable land in the 

Federal Republic of Germany. I. Site–growth relationships. Forest Ecology and 

Management 121, 41-55. 

Hoogeveen, J., Faurès, J.-M., van de Giessen, N., 2009. Increased biofuel 

production in the coming decade: to what extent will it affect global freshwater 

resources? Irrigation and Drainage 58, S148-S160. 

Hosseini, S.A., Shah, N., 2011. Multi-scale process and supply chain modelling: 

from lignocellulosic feedstock to process and products. Interface Focus 1, 255-262. 

Howarth, R.W.B., S., Martinelli, l.A., Santoro, R., Messem, D. and Sala, O.E., 2009. 

Introduction: Biofuels and the Environment in the 21st Century, In: Howarth, R.W.a.B., S. 

(Ed.), Biofuels: Environmental Consequences and Interactions with Changing Land Use. 

Proceedings of the Scientific Committee on Problems of the Environment (SCOPE) 

International Biofuels Project Rapid Assessment. Cornell University, Ithaca NY, USA, 

Gummersbach Germany, pp. 14-36. 



310 
 

Hulme, M., Jenkins, G., Lu, X., Turnpenny, J., Mitchell, T., Jones, R., Lowe, J., 

Murphy, J., Hassell, D., Boorman, P.e.a., 2002. Climate change scenarios for the United 

Kingdom: the UKCIP02 scientific report., Norwich, UK: Tyndall Centre for Climate Change 

Research. 

Hutchings, N., Olesen, J., Petersen, B., Berntsen, J., 2007. Modelling spatial 

heterogeneity in grazed grassland and its effects on nitrogen cycling and greenhouse gas 

emissions. Agriculture, Ecosystems & Environment 121, 153-163. 

Hutchins, M.G., Deflandre-Vlandas, A., Posen, P.E., Davies, H.N., Neal, C., 2010. 

How Do River Nitrate Concentrations Respond to Changes in Land-use? A Modelling Case 

Study of Headwaters in the River Derwent Catchment, North Yorkshire, UK. Environmental 

Modeling & Assessment 15, 93-109. 

Huth, N.I., Thorburn, P.J., Radford, B.J., Thornton, C.M., 2010. Impacts of fertilisers 

and legumes on N2O and CO2 emissions from soils in subtropical agricultural systems: A 

simulation study. Agriculture, Ecosystems & Environment 136, 351-357. 

Hwang, C.L., Youn, K., 1981. Multiple Attribute Decision Making - Methods and 

Application: A State of the Art Survey. Springer, New York. 

International Energy Agency, 2008. World energy outlook  

International Energy Agency, 2009. Bioenergy - a sustainable and reliable energy 

source. A review of status and prospects, Available at: 

http://www.ieabioenergy.com/LibItem.aspx?id=6479 [accessed 1/3/2011]. 

IPCC, 2000. Robert T. Watson, Ian R. Noble, Bert Bolin, N. H. Ravindranath, David J. 

Verardo and David J. Dokken (Eds.) Cambridge University Press, UK. pp. 375 Available from 

Cambridge University Press, The Edinburgh Building Shaftesbury Road, Cambridge CB2 

2RU ENGLAND Summary for Policymakers IPCC, Geneva, Switzerland. pp. 20. Available 

from IPCC Secretariat in Arabic, Chinese, English, French, Spanish and Russian. 

IPCC, 2003. Good Practice Guidance for Land Use, Land-Use Change and Forestry, 

pp. 89-112. 



311 
 

IPCC, 2006a. IPCC Guidelines for National Greenhouse Gas Inventories, In: Rodel D. 

Lasco, S.O., John Raison, Louis Verchot, Reiner Wassmann, K.Y., Sumana Bhattacharya, 

John S. Brenner, Julius Partson Daka, Sergio P. González, Thelma Krug, Y.L., Daniel L. 

Martino, Brian G. McConkey,  Pete Smith, Stanley C. Tyler, and Washington Zhakata (Eds.). 

IPCC, 2006b. IPCC Guidelines For National Greenhouse Gas Inventories, In: 

Eggleston H.S., B.L., Miwa K., Ngara T. and Tanabe K. (Ed.), Prepared by the National 

Greenhouse Gas Inventories Programme. Published: IGES. 

IPCC, 2007. Intergovernmental Panel on Climate Change (IPCC) AR4 Climate 

Change: Synthesis Report, 2007, Available at: 

http://www.ipcc.ch/publications_and_data/ar4/syr/en/main.html [accessed 1/4/2011]. In: 

Allali, A., Bojariu, R., Diaz,S., Elgizouli, I., Griggs, D., Hawkins, D., Hohmeyer,O., Jallow, B. P., 

Kajfez-Bogataj, L., Leary, N., Lee, H., Wratt, D. (Ed.), pp. 23-73. 

IPCC  [Core Writing Team, P., R.K and Reisinger, A. (eds.)], 2007. Climate Change 

2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth 

Assessment Report of the Intergovernmental Panel on Climate Change, p. 104 pp. 

Koppejan, J., Sokhansanj, S., Melin, S., Madrali, S., 2012. FINAL REPORT; Status 

overview of torrefaction technologies, IEA Bioenergy Task 32  

Jablonski, S., Pantaleo, A., Bauen, A., Pearson, P., Panoutsou, C., Slade, R., 2008. 

The potential demand for bioenergy in residential heating applications (bio-heat) in the 

UK based on a market segment analysis. Biomass and Bioenergy 32, 635-653. 

Jarecki, M.K., Parkin, T.B., Chan, A.S.K., Hatfield, J.L., Jones, R., 2008. Comparison of 

DAYCENT-Simulated and Measured Nitrous Oxide Emissions from a Corn Field. Journal of 

Environment Quality 37, 5, 1685-1690. 

Jarvis, N.J., 2007. A review of non-equilibrium water flow and solute transport in 

soil macropores: principles, controlling factors and consequences for water quality. 

European Journal of Soil Science 58, 523-546. 



312 
 

Jenkinson, D.S., D.D. Harkness, E.D. Vance, D.E. Adams, A.F. Harrison., 1992. 

Calculating net primary production and annual input of organic matter to soil from the 

amount and radiocarbon content of soil organic matter. Soil Biol. Biochem 24, 4, 295-308. 

Jensen, K., Clark, C., Ellis, P., English, B., Menard, J., Walsh, M., Delatorreugarte, D., 

2007. Farmer willingness to grow switchgrass for energy production. Biomass and 

Bioenergy 31, 773-781. 

Jørgensen, R.N., Jørgensen, B. J., Nielsen, N. E., Maag, M., & Lind, A. M. , 1997. N2O 

emission from energy crop fields of Miscanthus “Giganteus” and winter rye. Atmospheric 

Environment 31, 2899-2904. 

Jørgensen, U., Schelde, K., 2001. Energy crop water and nutrient use efficiency, IEA 

Bioenergy Task 17, Short Rotation Crops. The International Energy Agency. 

Jug, A., Hofmann-Schielle, C., Makeschin, F., Rehfuess, K.E., 1999. Short-rotation 

plantations of balsam poplars, aspen and willows on former arable land in the Federal 

Republic of Germany. II. Nutritional status and bioelement export by harvested shoot 

axes. Forest Ecology and Management   121, 67-83. 

Jug, A., Hofmann-Schielle, C., Makeschin, F., Rehfuess, K.E., 1999. Short-rotation 

plantations of balsam poplars, aspen and willows on former arable land in the Federal 

Republic of Germany. III. Soil ecological effects. For. Ecol. Manage. 121, 85-99. 

Henderson, JV. 1988. Locational Pattern of Heavy Industries - Decentralization Is 

More Efficient. Journal of Policy Model 10, 569-580. 

K. L. Weier, J.W.D., J. F. Power, and D. T. Walters, 1993. Denitrification and the 

Dinitrogen/Nitrous Oxide Ratio as Affected by Soil Water, Available Carbon, and Nitrate. 

Soil Sci. Soc. Am. J. 57, 66-72. 

Kaharabata, S.K., Drury, C.F., Priesack, E., Desjardins, R.L., McKenney, D.J., Tan, C.S., 

Reynolds, D., 2003. Comparing measured and Expert-N predicted NO emissions from 2 

conventional till and no till corn treatments. Nutrient Cycling in Agroecosystems 66, 107-

118. 



313 
 

Kahle, P., Beuch, S., Boelcke, B., Leinweber, P., Schulten, H.R., 2001. Cropping of 

Miscanthus in Central Europe: biomass production and influence on nutrients and soil 

organic matter. European Journal of Agronomy 15, 171-184. 

Karp, A., Shield, I., 2008. Bioenergy from plants and the sustainable yield 

challenge. New Phytol 179, 15-32. 

Kaufman, L., Rousseeuw, P.J., 2009. Finding Groups in Data: An Introduction to 

Cluster Analysis. 344. John Wiley & Sons. 

Kavdir, Y., Hellebrand, H., Kern, J., 2008. Seasonal variations of nitrous oxide 

emission in relation to nitrogen fertilization and energy crop types in sandy soil. Soil and 

Tillage Research 98, 175-186. 

Keoleian, G., Volk, T., 2005. Renewable Energy from Willow Biomass Crops: Life 

Cycle Energy, Environmental and Economic Performance. Critical Reviews in Plant Sciences 

24, 385-406. 

Keymer, D.P., Kent, A.D., 2013. Contribution of nitrogen fixation to first year 

Miscanthus × giganteus. GCB Bioenergy, in press. 

Kim, S., Dale, B.E., Ong, R.G., 2012. An alternative approach to indirect land use 

change: Allocating greenhouse gas effects among different uses of land. Biomass and 

Bioenergy 46, 447-452. 

Kishore, V., 2004. Biomass energy technologies for rural infrastructure and village 

power—opportunities and challenges in the context of global climate change concerns. 

Energy Policy 32, 801-810. 

Knoth, J., 2012. Analysis of the Potential for Diazotrophic Endophytes to Increase 

Efficiency of Bioenergy Crop Production: Growth promotion effects of the endophytes 

isolated from Populus trichocarpa and Salix sitchensis. University of Washington. 

Kopp, R.F., L. P. Abrahamson, E. H. White, T. A. Volk, C. A. Nowak, and R. C. Fillhart., 

2001. Willow biomass production during ten successive annual harvests. Biomass and 

Bioenergy 20, 1-7. 



314 
 

Kramer, S.B., 2006. Reduced nitrate leaching and enhanced denitrifier activity and 

efficiency in organically fertilized soils. Proceedings of the National Academy of Sciences 

103, 4522-4527. 

Lal, R., 2004. Soil Carbon Sequestration Impacts on Global Climate Change and 

Food Security. Science 304, 1623-1627. 

Landsberg, J.J., Waring, R.H., 1997. A generalised model of forest productivity 

using simplified concepts of radiation-use efficiency, carbon balance and partitioning 

Forest Ecology and Management 95, 209-228. 

Lane, S.N., Reaney, S.M., Heathwaite, A.L., 2009. Representation of landscape 

hydrological connectivity using a topographically driven surface flow index. Water 

Resources Research 45, 10. 

Laville, P., Hénault, C., Gabrielle, B., Serça, D., 2005. Measurement and Modelling 

of NO Fluxes on Maize and Wheat Crops During their Growing Seasons: Effect of Crop 

Management. Nutrient Cycling in Agroecosystems 72, 159-171. 

Lavoie, M., Kellman, L., Risk, D., 2013. The effects of clear-cutting on soil CO2, CH4, 

and N2O flux, storage and concentration in two Atlantic temperate forests in Nova Scotia, 

Canada. Forest Ecology and Management 304, 355-369. 

Leij, F.J., Ghezzehei, T.A., Or, D., 2002a. Analytical models for soil pore-size 

distribution after tillage. Soil Science Society of America Journal 66, 1104-1114. 

Leij, F.J., Ghezzehei, T.A., Or, D., 2002b. Modeling the dynamics of the soil pore-size 

distribution. Soil & Tillage Research 64, 61-78. 

Lemke, R.L., Izaurralde, R. C., Nyborg, M. and Solberg, E. D., 1999. Tillage and N 

source influence soil-emitted nitrous oxide in the Alberta Parkland region. Can. J. Soil Sci. 

79, 15-24. 

Lesur, C., Bazot, M., Bio-Beri, F., Mary, B., Jeuffroy, M.-H., Loyce, C., 2013. Assessing 

nitrate leaching during the three-first years of Miscanthus × giganteus from on-farm 

measurements and modeling. GCB Bioenergy, 6, 4, 439–449. 



315 
 

Lewandowski, I., Schmidt, U., 2006. Nitrogen, energy and land use efficiencies of 

Miscanthus, reed canary grass and triticale as determined by the boundary line approach. 

Agriculture, Ecosystems & Environment 112, 335-346. 

Lewis, D., McGechan, M.B., 2002. SW—Soil and Water A Review of Field Scale 

Phosphorus Dynamics Models. Biosystems Engineering 82, 359-380. 

Li, C., Aber, J., Stange, F., Butterbach-Bahal, K., Papen, H., 2000. A process-oriented 

model of N2O and NO emissions from forest soils. 1. Model development. Journal of 

Geophysical Research 105, 4369-4384. 

Li, C., Frolking, S., Butterbach-Bahl, K., 2005a. Carbon Sequestration in Arable Soils 

is Likely to Increase Nitrous Oxide Emissions, Offsetting Reductions in Climate Radiative 

Forcing. Climatic Change 72, 321-338. 

Li, C., Frolking, S., Frolking, T.A., 1992. A model of nitrous oxide evolution from soil 

driven by rainfall events: 1. Model Structure and sensetivity. Journal of Geophysical 

research 97, 9759-9776. 

Li, C., Frolking, S. and Harriss, R.C. 1994. Modeling carbon biogeochemistry in 

agricultural soils. Global Biogeochemical Cycles 8, 237-254. 

Li, Y., Chen, D., 2010. Modelling N2O emissions from agroecosystems: the WNMM 

experience. 19th World Congress of Soil Science, Soil Solutions for a Changing World  

Li, Y., Chen, D., Zhang, Y., Edis, R., Ding, H., 2005b. Comparison of three modeling 

approaches for simulating denitrification and nitrous oxide emissions from loam-textured 

arable soils. Global Biogeochemical Cycles 19, 3, pp 15. 

Li, Y., Tullberg, J., Freebairn, D., McLaughlin, N., Li, H., 2008. Effects of tillage and 

traffic on crop production in dryland farming systems: I. Evaluation of PERFECT soil-crop 

simulation model. Soil and Tillage Research 100, 15-24. 

Li, Y., White, R., Chen, D., Zhang, J., Li, B., Zhang, Y., Huang, Y., Edis, R., 2007. A 

spatially referenced water and nitrogen management model (WNMM) for (irrigated) 

intensive cropping systems in the North China Plain. Ecological Modelling 203, 395-423. 



316 
 

Lindegaard, K., 2013. Why we need an Energy Crops Scheme 3. Position paper. 

Crops for Energy Ltd. pp 14. 

Lindroth, A., and A. Båth. , 1999. Assessment of regional willow coppice yield in 

Sweden on basis of water availability. Forest Ecology and Management 121, 57-65. 

Lindroth, A., Verwijst, T., and Halldin, S. 1994. Water-use efficiency of willow: 

variation with season, humidity and biomass allocation. Journal of Hydrology 156, 1-19. 

Linn, D.M., and Doran, J.W. 1984. Effect of water-filled pore space on carbon 

dioxide and nitrous oxide production in tilled and nontilled soils. Soil Science Society of 

America Journal 48, 1267-1272. 

Logsdon, S.D., 1995. Flow mechanisms through continuous and buried 

macropores. Soil Science 160, 237-242. 

Lokupitiya, E., Paustian, K., 2006. Agricultural Soil Greenhouse Gas Emissions. 

Journal of Environment Quality 35, 1413. 

Lovett, A., Sünnenberg, G., Dockerty, T., 2014. The availability of land for perennial 

energy crops in Great Britain. GCB Bioenergy 6, 99-107. 

Lovett, A.A., Sünnenberg, G.M., Richter, G.M., Dailey, A.G., Riche, A.B., Karp, A., 

2009. Land Use Implications of Increased Biomass Production Identified by GIS-Based 

Suitability and Yield Mapping for Miscanthus in England. BioEnergy Research 2, 17-28. 

Low Carbon Transport Steering Group, 2010. Scope 3 Third party Road Freight CO2  

emissions pilot model. Rev 21-07-10 In: 

http://www.google.co.uk/url?q=https://www.gov.uk/government/uploads/system/upload

s/attachment_data/file/218576/lct-steering-group-carbon-em.xls&sa=U&ei=Ag4iU-

6CCY7whQeb-4D4Aw&ved=0CCsQFjAD&usg=AFQjCNEgLOFJnxfpWiVTwXY4uPYTo4Utwg 

Borzêcka-Walker, M., and Borek, R. 2008. Evaluation of carbon sequestration in 

energetic crops (Miscanthus and coppice willow). Int. Agrophysics 22, 185-190. 

Martens, A., 1998. The energetic feasibility of CHP compared to the separate 

production of heat and power. Appl Therm Eng 18, 935-946. 



317 
 

Martin, P.J., Stephens, W., 2006. Willow growth in response to nutrients and 

moisture on a clay landfill cap soil. I. Growth and biomass production. Bioresource 

Technology 97, 437-448. 

Matthews, R.B., Grogan, P., Bullard, M. J., Christian, D. G., Knight, J. D., Lainsbury, 

M. A., & Parker, S. R. , 2001a. Potential C-sequestration rates under short-rotation 

coppiced willow and Miscanthus biomass crops: a modelling study. In Biomass and Energy 

Crops II, University of York, York, UK, 18-21 December 2001. (No. 65, pp. 303-312). 

Association of Applied Biologists. 

Matthews, R.W., 2001b. Modeling of energy and carbon budgets of wood fuel 

coppice systems. Biomass and Bioenergy 21, 1-19. 

McCown, R.L., Hammer, G.L., Hargreaves, J.N.G., Holzworth, D.P., Freebairn, D.M., 

1996. APSIM: a Novel Software System for Model Development, Model Testing and 

Simulation in Agricultural Systems Research. Agricultural Systems 50, 255-271. 

McKay, H.e., 2011. Short Rotation Forestry: review of growth and environmental 

impacts. . Forest Research Monograph, 2, Forest Research, Surrey, 212pp. 

McKendry, P., 2002a. Energy production from biomass (part 1): overview of 

biomass. Bioresource Technology 83, 37-46. 

McKendry, P., 2002b. Review paper. Energy production from biomass (part 2): 

conversion technologies. Bioresource Technology 83, 47-54. 

Melillo, J.M., Reilly, J.M., Kicklighter, D.W., Gurgel, A.C., Cronin, T.W., Paltsev, S., 

Felzer, B.S., Wang, X., Sokolov, A.P., Schlosser, C.A., 2009. Indirect emissions from biofuels: 

how important? Science 326, 1397-1399. 

 Meisinger J.J., Delgado J.A., 2002. Principles for managing nitrogen leaching. 

Journal of Soil Water Conservation 57:485–498. 

Met Office, Met Office Land Surface Stations Data (1900-2000), 

http://badc.nerc.ac.uk/browse/badc/ukmo-surface/data/united_kingdom. 



318 
 

Metay, A., Oliver, R., Scopel, E., Douzet, J.-M., Aloisio Alves Moreira, J., Maraux, F., 

Feigl, B.J., Feller, C., 2007. N2O and CH4 emissions from soils under conventional and no-till 

management practices in Goiânia (Cerrados, Brazil). Geoderma 141, 78-88. 

Metivier, K.A., Pattey, E., Grant, R.F., 2009. Using the ecosys mathematical model to 

simulate temporal variability of nitrous oxide emissions from a fertilized agricultural soil. 

Soil Biology and Biochemistry 41, 2370-2386. 

Mishra, U., Torn, M.S., Fingerman, K., 2013. Miscanthus biomass productivity 

within US croplands and its potential impact on soil organic carbon. GCB Bioenergy 5, 391-

399. 

Mitchell, C., Bauknecht, D., Connor, P.M., 2006. Effectiveness through risk 

reduction: a comparison of the renewable obligation in England and Wales and the feed-in 

system in Germany. Energy Policy 34, 297-305. 

Mitchell, C.P., Stevens, E.A., Waters, M.P., 1999. Short-rotation forestry - 

operations, productivity and costs based on experience gained in the UK. Forest Ecology 

and Management 121, 123-136. 

Mitchell, D., 2008. A Note on Rising Food Prices, The World Bank Development 

Prospects Group, 21. pp 20. 

Miyake, S., Renouf, M., Peterson, A., McAlpine, C., Smith, C., 2012. Land-use and 

environmental pressures resulting from current and future bioenergy crop expansion: A 

review. Journal of Rural Studies 28, 650-658. 

Mola-Yudego, B., Aronsson, P., 2008. Yield models for commercial willow biomass 

plantations in Sweden. Biomass and Bioenergy 32, 829-837. 

Moldrup, P., Olesen, T., Komatsu, T., Schjønning, P., & Rolston, D. E. , 2001. 

Tortuosity, diffusivity, and permeability in the soil liquid and gaseous phases. Soil Science 

Society of America Journal 65, 613-623. 

Moldrup, P.O., T.;  Yoshikawa, S.; Komatsu, T.; Rolston, D. E.; , 2004. Three-Porosity 

Model for Predicting the Gas Diffusion Coefficient in Undisturbed Soil. Soil Sci. Soc. Am. J. 

68, 750-759. 



319 
 

Möller, B., Lund, H., 2010. Conversion of individual natural gas to district heating: 

Geographical studies of supply costs and consequences for the Danish energy system. 

Applied Energy 87, 1846-1857. 

Mollersten, K., 2003. Potential market niches for biomass energy with CO2 capture 

and storage?Opportunities for energy supply with negative CO2 emissions. Biomass and 

Bioenergy 25, 273-285. 

Monzon, J.P., V.O. Sadras, and F.H. Andrade., 2006. Fallow soil evaporation and 

water storage as affected by stubble in sub-humid (Argentina) and semi-arid (Australia) 

environments. Field Crops Research 98, 83-90. 

Moret, D., Arrue, J.L., 2007. Dynamics of soil hydraulic properties during fallow as 

affected by tillage. Soil & Tillage Research 96, 103-113. 

Morgan, M.E., Kingston, J. D., & Marino, B. D., 1994. Carbon isotopic evidence for 

the emergence of C4 plants in the Neogene from Pakistan and Kenya. Nature 367, 162-

165. 

Mortensen, H.C., Overgaard, B., 1992. Chp Development in Denmark - Role and 

Results. Energy Policy 20, 1198-1206. 

Mortensen, J., Nielsen, K. H., and Jorgensen, U., 1998. Nitrate leaching during 

establishment of willow (Salix viminalis) on two soil types and at two fertilization levels. 

Biomass and Bioenergy 15, 457-466. 

Mortimer N.D., E.M.A., Horne R.E., 2004. Energy and greenhouse gas emissions for 

bioethanol production from wheat grain and sugar beet, pp. P9-11. 

Mosier, A., Kroeze, C., Nevison, C., Oenema, O., Seitzinger, S., & Van Cleemput, O., 

1998. Closing the global N2O budget: nitrous oxide emissions through the agricultural 

nitrogen cycle. Nutrient cycling in Agroecosystems 52, 225-248. 

Moukoumi, J., Farrell, R.E., Rees, K.J.C., Hynes, R.K., Bélanger, N., 2012. 

Intercropping Caragana arborescens with Salix miyabeana to Satisfy Nitrogen Demand and 

Maximize Growth. BioEnergy Research 5, 719-732. 



320 
 

Mulder, K., Hagens, N., Fisher, B., 2010. Burning Water: A Comparative Analysis of 

the Energy Return on Water Invested. AMBIO 39, 30-39. 

Müller, C., Sherlock, R.R., Williams, P.H., 1997. Mechanistic model for nitrous oxide 

emission via nitrification and denitrification. Biol Fertil Soils 24, 231-238. 

Natural England, 2006. Energy Crops Scheme 1: 

http://www.naturalengland.org.uk/Images/ECS1_tcm6-26820.pdf [accessed 6/4/2014]. 

Natural England, 2009a. Environmental Appraisal of Applications Under The Energy 

Crops (ECS) Scheme For Miscanthus, Short Rotation Coppice (SRC) and Short Rotation 

Energy Crops (SREC): Guidance Notes For Natural England and Forest Commission 

Appraisers, Available from Natural England: ecsqueries@naturalengland.org.uk., 26. pp. 

Natural England, 2009b. Rural Development Programme for England. Energy Crops 

Scheme. Establishment Grants Handbook. 3rd Edition. 

Natural England, 2013. Environmental Appraisal of Applications Under The Energy 

Crops (ECS) Scheme For Miscanthus, Short Rotation Coppice (SRC) and Short Rotation 

Energy Crops (SREC):Guidance Notes For Natural England and Forest Commission 

Appraisers, Available from Natural England: ecsqueries@naturalengland.org.uk. 

Nelson, C.O.S.a.R., 1993. Cropping Systems Simulation Model: User's Manual, In: 

Campbell, G.S., Donatelli, M., Yan, Y., Ferrer, F., Evert, F.V., McCool, D., Martin, S., Mulla, D., 

Bechini, L., Deabaeke, P. (Eds.). Biological Systems Engineering Department, Washington 

State University. 

Nevison, C., 2000. Review of the IPCC methodology for estimating nitrous oxide 

emissions associated with agricultural leaching and runoff. Chemosphere-Global Change 

Science 2, 493-500. 

Nevison, C., 2002. Indirect N2O emissions from agriculture, Background Papers: 

IPCC Expert Meetings on Good Practice Guidance and Uncertainty Management in 

National Greenhouse Gas Inventories. IPCC. Kanagawa, Japan, Intergovernmental Panel on 

Climate Change, pp. 381-397. 



321 
 

Nixon P, B.M., 2001. Planting and growing Miscanthus, best practice guidelines. 

DEFRA Publications. 

Nonhebel, S., 2005. Renewable energy and food supply: will there be enough 

land? Renewable and Sustainable Energy Reviews 9, 191-201. 

Novoa, R.S.A., Tejeda, H.R., 2006. Evaluation of the N2O emissions from N in plant 

residues as affected by environmental and management factors. Nutrient Cycling in 

Agroecosystems 75, 29-46. 

Ofgem, 2013a. Non-Domestic Renewable Heat Incentive (RHI). Available at: 

https://www.ofgem.gov.uk/publications-and-updates/non-domestic-renewable-heat-

incentive-guidance-published [accessed 26/2/14] 

 

Ofgem, 2013b. Renewables Obligation - total obligation levels for 2012-13. 

Available at: https://www.ofgem.gov.uk/publications-and-updates/renewables-obligation-

total-obligation-levels-2012-13 [accessed 26/2/14] 

Ofgem, 2013c. Renewables Obligation: Guidance for Generators. Available at: 

https://www.ofgem.gov.uk/publications-and-updates/renewables-obligation-guidance-

generators-may-2013 [accessed 26/2/14] 

Ogle, S.M., Breidt, F.J., Easter, M., Williams, S., Paustian, K., 2007. An empirically 

based approach for estimating uncertainty associated with modelling carbon 

sequestration in soils. Ecological Modelling 205, 453-463. 

Ogle, S.M., Swan, A., Paustian, K., 2012. No-till management impacts on crop 

productivity, carbon input and soil carbon sequestration. Agriculture, Ecosystems & 

Environment 149, 37-49. 

Onstad, C.A., Wolfe, M. L., Larson, C. L., & Slack, D. C., 1984. Tilled soil subsidence 

during repeated wetting [Forman, egan, clay loams, Barnes loam, sverdrup sandy loam].  . 

Transactions of the ASAE[American Society of Agricultural Engineers](USA). 



322 
 

Or, D., Leij, F. J., Snyder, V., & Ghezzehei, T. A., 2000. Stochastic model for post 

tillage soil pore space evolution. Water Resources Research 36, 1641-1652. 

Pacaldo, R.S., Volk, T.A., Briggs, R.D., 2012. Greenhouse Gas Potentials of Shrub 

Willow Biomass Crops Based on Below- and Aboveground Biomass Inventory Along a 19-

Year Chronosequence. BioEnergy Research 6, 252-262. 

Paice, J., 2011. International Food Expo, London, UK. 

Paine, L.K., Peterson, T.L., Undersander, D.J., Rineer, K., Bartelt, G.A., emple, S., 

Sample, D.W., Klemm, R.M., 1996. Some Ecological and Socio-Economic Considerations for 

Biomass Energy Crop Production. Biomass and Bioenergy 10, 231-242. 

Pala, M., C.O. Stöckle, and H.C. Harris., 1996. Simulation of durum wheat (triticum 

durum) growth under differential water and nitrogen regimes in a mediterranean type of 

environment using CropSyst. Agricultural Systems 51, 147-163. 

Parkin, T.B., Tiedje, J.M., 1984. Application of a soil core method to investigate the 

effect of oxygen concentration on denitrification. Soil Biology and Biochemistry 16, 331-

334. 

Parton, W., Hartman, M., Ojima, D., Schimel, D., 1998. DAYCENT and its land 

surface submodel: description and testing. Global and Planetary Change 19, 35-48. 

Parton, W.J., A. R. Mosier, D. S. Ojima, D. W. Valentine, D. S. Schimel, K. Weier, and 

Airi E. Kulmala., 1996. Generalized model for N2 and N2O production from nitrification 

and denitrification. Global Biogeochemical Cycles 10, 401-412. 

Parton, W.J., D. S. Schimel, C. V. Cole, and D. S. Ojima, 1987. Analysis of factors 

controlling soil organic matter levels in Great Plains grasslands. Soil Sci. Soc. Am. J. 51, 

1173-1179. 

Parton, W.J., Hanson, P.J., Swanston, C., Torn, M., Trumbore, S.E., Riley, W., Kelly, R., 

2010. ForCent model development and testing using the Enriched Background Isotope 

Study experiment. Journal of Geophysical Research 115 pp 15. 



323 
 

Parton, W.J., Hartman, M., Ojima, D., & Schimel, D., 1998. DAYCENT and its land 

surface submodel: description and testing Original Research Article. Global and Planetary 

Change 19, 35-48. 

Parton, W.J., Ojima, D.S., Cole, C.V., Schimel, D.S., 1994. A general model for soil 

organic matter dynamics: sensitivity to litter chemistry, texture and management. 

Quantitative Modelling of Soil Forming Processes. Soil Science Society of America, 

Madison, 147-167. 

Patzek, T.W., 2004. Thermodynamics of the Corn-Ethanol Biofuel Cycle. Critical 

Reviews in Plant Sciences 23, 519-567. 

Paustian, K., Six, J., Elliott, E. T., & Hunt, H. W., 2000. Management options for 

reducing CO2 emissions from agricultural soils. Biogeochemistry 48, 147-163. 

Perlack, R.D., Wright, L. L., Turhollow, A. F., Graham, R. L., Stokes, B. J., & Erbach, D. 

C. , 2005. Biomass as feedstock for a bioenergy and bioproducts industry: the technical 

feasibility of a billion-ton annual supply. Oak Ridge National Lab TN. 

Perrin, C., Michel, C., Andreâassian, V., 2001. Does a large number of parameters 

enhance model performance? Comparative assessment of common catchment model 

structures on 429 catchments. Journal of Hydrology 242, 275 - 301. 

Perry, M., Rosillocalle, F., 2008. Recent trends and future opportunities in UK 

bioenergy: Maximising biomass penetration in a centralised energy system. Biomass and 

Bioenergy 32, 688-701. 

Perry, M.a.R.-C., F. , 2006. Co-firing report—United Kingdom. , IEA Task 40, p. 75. 

Petersen, S., Schjonning, P., Thomsen, I., Christensen, B., 2008. Nitrous oxide 

evolution from structurally intact soil as influenced by tillage and soil water content. Soil 

Biology and Biochemistry 40, 967-977. 

Philippot, S., 1996. Simulation models of short-rotation forestry production and 

coppice biology. . Biomass and Bioenergy 11, 85-93. 



324 
 

Pirmoradian, N., Sepaskhah, A.R., Hajabbasi, M.A., 2005. Application of Fractal 

Theory to quantify Soil Aggregate Stability as influenced by Tillage Treatments. Biosystems 

Engineering 90, 227-234. 

Piterou, A., Shackley, S., Upham, P., 2008. Project ARBRE: Lessons for bio-energy 

developers and policy-makers. Energy Policy 36, 2044-2050. 

Porporato, A., Odorico, P.D., Laio, F., Rodriguez-Iturbe, I., 2003. Hydrologic controls 

on soil carbon and nitrogen cycles. I. Modeling scheme. Advances in Water Resources 26, 

45-58. 

Post, J., Hattermann, F.F., Krysanova, V., Suckow, F., 2008. Parameter and input data 

uncertainty estimation for the assessment of long-term soil organic carbon dynamics. 

Environmental Modelling & Software 23, 125-138. 

Potter, C.S., Matson, P.A., Vitousek, P.M., Davidson, E.A., 1996. Process modeling of 

controls on nitrogen trace gas emissions from soils worldwide. Journal Of Geophysical 

Research 101, 1361-1377. 

Powlson, D.S., Riche, A.B., Shield, I., 2005. Biofuels and other approaches for 

decreasing fossil fuel emissions from agriculture. Annals of Applied Biology 146, 193-201. 

Price, L., 2004. Identifying the yield potential of Miscanthus x giganteus: an 

assessment of the spatial and temporal variability of M. x giganteus biomass productivity 

across England and Wales. Biomass and Bioenergy 26, 3-13. 

Price, L., Bullard, M., Lyons, H., Anthony, S., Nixon, P., 2004. Identifying the yield 

potential of Miscanthus x giganteus: an assessment of the spatial and temporal variability 

of M. x giganteus biomass productivity across England and Wales. Biomass and Bioenergy 

26, 3-13. 

Priesack, E., 2012. Expert-N research group: http://www.helmholtz-

muenchen.de/en/iboe/expertn/, In: Ecology, M.g.o.t.I.o.S. (Ed.). 

Proe MF, G.J., Craig J 2002. Effects of spacing, species and coppicing on leaf area, 

light interception and photosynthesis in short rotation forestry. Biomass and BioEnergy 23, 

315-326. 



325 
 

Raphael Slade, Robert Saunders, Robert Gross, Bauen, A., 2011. Energy from 

biomass: the size of the global resource. Imperial College Centre for Energy Policy and 

Technology and UK Energy Research Centre, London. 

Rawls, W.J., Pachepsky, Y.A., Ritchie, J.C., Sobecki, T.M., Bloodworth, H., 2003. 

Effect of soil organic carbon on soil water retention. Geoderma 116, 61-76. 

Reay, D.S., Edwards, A.C., Smith, K.A., 2009. Importance of indirect nitrous oxide 

emissions at the field, farm and catchment scale. Agriculture, Ecosystems & Environment 

133, 163-169. 

Regina, K., Alakukku, L., 2010. Greenhouse gas fluxes in varying soils types under 

conventional and no-tillage practices. Soil and Tillage Research 109, 144-152. 

Renaud, L.V., Roelsma, J., Groenendijk, P., 2006. ANIMO 4.0. User’s guide of the 

ANIMO 4.0 nutrient leaching model, p. 191. 

Richards, G.P., 2001. The FullCAM Carbon Accounting Model: Development, 

Calibration and Implementation, IEA Bioenergy Task 38: Workshop in Canberra/Australia, 

March 2001. Carbon Accounting and Emissions Trading Related to Bioenergy, Wood 

Products and Carbon Sequestration, p. 56. 

Richter, G.M., Riche, A.B., Dailey, A.G., Gezan, S.A., Powlson, D.S., 2008. Is UK 

biofuel supply from Miscanthus water-limited? Soil Use and Management 24, 235-245. 

Riley, W.J., Matson, P.A., 2000. NLoss: A Mechanistic model of denitrified N2O and 

N2 evolution from soil. Soil Science 165, 237-250. 

Robbins, M.P., Evans, G., Valentine, J., Donnison, I.S., Allison, G.G., 2012. New 

opportunities for the exploitation of energy crops by thermochemical conversion in 

Northern Europe and the UK. Prog Energ Combust 38, 138-155. 

Roberts, S., 2008. Infrastructure challenges for the built environment. Energy 

Policy 36, 4563-4567. 

Rochette, P., 2008. No-till only increases N2O emissions in poorly-aerated soils. Soil 

and Tillage Research 101, 97-100. 



326 
 

Rochette, P., Angers, D.A., Chantigny, M.H., Bertrand, N., 2008. Nitrous Oxide 

Emissions Respond Differently to No-Till in a Loam and a Heavy Clay Soil. Soil Science 

Society of America Journal 72, 1363–1369. 

Rochette, P., Eriksen-Hamel, N.S., 2008. Chamber Measurements of Soil Nitrous 

Oxide Flux: Are Absolute Values Reliable? Soil Science Society of America Journal 72, 331–

342. 

Roelandt, C., van Wesemael, B., Rounsevell, M., 2005. Estimating annual N2O 

emissions from agricultural soils in temperate climates. Global Change Biology 11, 1701-

1711. 

Rooney, D.C., Killham, K., Bending, G.D., Baggs, E., Weih, M., Hodge, A., 2009. 

Mycorrhizas and biomass crops: opportunities for future sustainable development. Trends 

Plant Sci 14, 542-549. 

Roth, B., Jones, M., Burke, J., Williams, M., 2013. The Effects of Land-Use Change 

from Grassland to Miscanthus x Giganteus on Soil N2O Emissions. Land 2, 437-451. 

Rowe, R., Street, N., Taylor, G., 2009. Identifying potential environmental impacts 

of large-scale deployment of dedicated bioenergy crops in the UK. Renewable and 

Sustainable Energy Reviews 13, 271-290. 

Rüdig, W., 1986. Energy conservation and electricity utilities A comparative 

analysis of organizational obstacles to CHP/DH. . Energy policy 14, 104-116. 

Ryan, M., Müller, C., Di, H.J., Cameron, K.C., 2004. The use of artificial neural 

networks (ANNs) to simulate N2O emissions from a temperate grassland ecosystem. 

Ecological Modelling 175, 189-194. 

Ryden, J.C., Ball, P.R., Garwood, E.A., 1984. Nitrate leaching from grassland. Nature 

311, 50-53. 

Saxton, K.E., W_J Rawls, J. S. Romberger, and R. I. Papendick., 1986. Estimating 

generalized soil-water characteristics from texture. Soil Science Society of America Journal 

50, 1031-1036. 



327 
 

Schmer, M.R., Liebig, M.A., Vogel, K.P., Mitchell, R.B., 2011. Field-scale soil 

property changes under switchgrass managed for bioenergy. GCB Bioenergy 3, 439-448. 

Schmidt, J., Leduc, S., Dotzauer, E., Kindermann, G., Schmid, E., 2010. Potential of 

biomass-fired combined heat and power plants considering the spatial distribution of 

biomass supply and heat demand. International Journal of Energy Research 34, 970-985. 

Schoumans, O.F., Silgram, M., Groenendijk, P., Bouraoui, F., Andersen, H.E., 

Kronvang, B., Behrendt, H., Arheimer, B., Johnsson, H., Panagopoulos, Y., Mimikou, M., Lo 

Porto, A., Reisser, H., Le Gall, G., Barr, A., Anthony, S.G., 2009a. Description of nine 

nutrient loss models: capabilities and suitability based on their characteristics. Journal of 

Environmental Monitoring 11, 506-514. 

Schoumans, O.F., Silgram, M., Walvoort, D.J.J., Groenendijk, P., Bouraoui, F., 

Andersen, H.E., Lo Porto, A., Reisser, H., Le Gall, G., Anthony, S., Arheimer, B., Johnsson, 

H., Panagopoulos, Y., Mimikou, M., Zweynert, U., Behrendt, H., Barr, A., 2009b. Evaluation 

of the difference of eight model applications to assess diffuse annual nutrient losses from 

agricultural land. Journal of Environmental Monitoring 11, 540. 

Schoumans, O.F., Silgram, M.E., Andersen, H.E., Anthony, S., Arheimer, B., Barr, A., 

Behrendt, H., Bouraoui, F., Ejhed, H., Groenendijk, P., Jeuken, M., Johnsson, H., B. 

Kronvang, Le Gall, G., Murdock, A., Lo Porto, A., Price, L., Schoumans, O., Silgram, M., 

Smit, R., Varanou, E., Zweynert, U.A., 2003. Review and literature evaluation of nutrient 

quantification tools.  EUROHARP report 1, NIVA report SNO 4739-2003, 120 pp. 

Schwen, A., Bodner, G., Scholl, P., Buchan, G. D., & Loiskandl, W. , 2011. Temporal 

dynamics of soil hydraulic properties and the water-conducting porosity under different 

tillage Soil and Tillage Research 113, 89-98. 

Searchinger, T., Heimlich, R., Houghton, R.A., Dong, F., Elobeid, A., Fabiosa, J., 

Tokgoz, S., Hayes, D., Yu, T.H., 2008. Use of U.S. Croplands for Biofuels Increases 

Greenhouse Gases Through Emissions from Land-Use Change. Science 319, 1238-1240. 

Sherrington, C., Moran, D., 2010. Modelling farmer uptake of perennial energy 

crops in the UK. Energy Policy 38, 3567-3578. 



328 
 

Shibu, M.E., Matthews, R.B., Bakam, I., Moffat, A.J., Baggaley, N.J., 2012. 

Estimating greenhouse gas abatement potential of biomass crops in Scotland under 

various management options. Biomass and Bioenergy 47, 211-227. 

Silgram, M., Anthony, S.G., Collins, A.L., Strőmqvist, J., Bouraoui, F., Schoumans, O., 

Lo Porto, A., Groenendijk, P., Arheimer, B., Mimikou, M., Johnsson, H., 2009. Evaluation of 

diffuse pollution model applications in EUROHARP catchments with limited data. Journal 

of Environmental Monitoring 11, 3, 554-571. 

Sims, R.E.H., Hastings, A., Schlamadinger, B., Taylor, G., Smith, P., 2006. Energy 

crops: current status and future prospects. Global Change Biology 12, 2054-2076. 

Sims, R.E.H., Venturi, P., 2003. All-year-round harvesting of short rotation coppice 

eucalyptus compared with the delivered costs of biomass from more conventional short 

season, harvesting systems. Biomass and Bioenergy 26, 27-37. 

Six, J., Bossuyt, H., Degryze, S., Denef, K., 2004a. A history of research on the link 

between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil and Tillage 

Research 79, 7-31. 

Six, J., Elliott, E.T., Paustian, K., 2000. Soil macroaggregate turnover and 

microaggregate formation: a mechanism for C sequestration under no-tillage agriculture. 

Soil Biology & Biochemistry 32, 2099-2103. 

Six, J., Ogle, S.M., Jay breidt, F., Conant, R.T., Mosier, A.R., Paustian, K., 2004b. The 

potential to mitigate global warming with no-tillage management is only realized when 

practised in the long term. Global Change Biology 10, 155-160. 

Skiba, U.v.D., S.;  Ball, B.C., 2002. The influence of tillage on NO and N2O fluxes 

under spring and winter barley. Soil Use and Management 18, 340-345. 

Smart, L.B., Volk, T. A., Lin, J., Kopp, R. F., Phillips, I. S., Cameron, K. D.,  White, E. H., 

Abrahamson, L. P. , 2005. Genetic improvement of shrub willow (Salix spp.) crops for 

bioenergy and environmental applications in the United States. UNASYLVA-FAO 56, 51-55. 



329 
 

Smeets, E.M.W., Bouwman, L.F., Stehfest, E., van Vuuren, D.P., Posthuma, A., 2009. 

Contribution of N2O to the greenhouse gas balance of first-generation biofuels. Global 

Change Biology 15, 1-23. 

Smith, J., Gottschalk, P., Bellarby, J., Chapman, S., Lilly, A., Towers, W., Bell, J., 

Coleman, K., Nayak, D., Richards, M., Hillier, J., Flynn, H., Wattenbach, M., Aitkenhead, M., 

Yeluripati, J., Farmer, J., Milne, R., Thomson, A., Evans, C., Whitmore, A., Falloon, P., Smith, 

P., 2010a. Estimating changes in Scottish soil carbon stocks using ECOSSE. I. Model 

description and uncertainties. Climate Research 45, 179-192. 

Smith, P., 2004. Carbon sequestration in croplands: the potential in Europe and the 

global context. European Journal of Agronomy 20, 229-236. 

Smith, P., D. Martino, Z. Cai, D. Gwary, H. Janzen, P. Kumar, B. McCarl, S. Ogle, F. 

O’Mara, C. Rice, B. Scholes, O. Sirotenko, 2007. Agriculture. In Climate Change 2007: 

Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the 

Intergovernmental Panel on Climate Change, In: [B. Metz, O.R.D., P.R. Bosch, R. Dave, L.A. 

Meyer (eds)] 

Smith, P., Gregory, P.J., van Vuuren, D., Obersteiner, M., Havlik, P., Rounsevell, M., 

Woods, J., Stehfest, E., Bellarby, J., 2010b. Competition for land. Philos Trans R Soc Lond B 

Biol Sci 365, 2941-2957. 

Smith, P., Martino, D., Cai, Z., Gwary, D., Janzen, H., Kumar, P., McCarl, B., Ogle, S., 

O'Mara, F., Rice, C., Scholes, B., Sirotenko, O., Howden, M., McAllister, T., Pan, G., 

Romanenkov, V., Schneider, U., Towprayoon, S., Wattenbach, M., Smith, J., 2008. 

Greenhouse gas mitigation in agriculture. Philosophical Transactions of the Royal Society 

B: Biological Sciences 363, 789-813. 

Smith, P., Smith, J.U., Powlson, D.S., McGill, W.B., Arah, J.R.M., Cherto, O.G., 

Coleman, K., Franko, U., Frolking, S., Jenkinson, D.S., Jensen , L.S., Kelly, R.H., Klein-

Gunnewiek, H., Komarov, A.S., Li, C., Molina J, J.A.E., Mueller, T., Parton , W.J., Thornley, 

J.H.M., Whitmore, A.P., 1997. A comparison of the performance of nine soil organic matter 

models using datasets from seven long-term experiments. Geoderma 81, 153-225. 



330 
 

Smith, W.N.G., B. B.; Desjardins,R. L.; Rochette, P.;  Drury,C. F.; and LiC.; , 2008. 

Evaluation of two process-based models to estimate soil N2O emissions in Eastern Canada. 

Can J Soil Sci 88, 2, 251-260. 

Soane, B.D., Ball, B.C., Arvidsson, J., Basch, G., Moreno, F., Roger-Estrade, J., 2012. 

No-till in northern, western and south-western Europe: A review of problems and 

opportunities for crop production and the environment. Soil and Tillage Research 118, 66-

87. 

Socolow, R.H., 1999. Nitrogen management and the future of food: lessons from 

the management of energy and carbon. Proceedings of the National Academy of Sciences 

96, 6001-6008. 

Spackman, P., 2011. Burning ambitions for biomass. Farmer’s Weekly Interactive, 

2011, Available at:  http://www.fwi.co.uk/Articles/07/04/2011/126268/Burning-ambitions-

for-biomass.htm [accessed 26/10/12], Farmers Weekly. Reed Business information ltd, p. 2. 

Speirs, J., Gross, R., Deshmukh, S., Heptonstall, P., Munuera, L., Leach, M., Torriti, 

J., 2010. Building a roadmap for heat 2050 scenarios and heat delivery in the UK, 

Combined Heat and Power Association Reports, p. 44. 

Stehfest, E., Bouwman, L., 2006. N2O and NO emission from agricultural fields and 

soils under natural vegetation: summarizing available measurement data and modeling of 

global annual emissions. Nutrient Cycling in Agroecosystems 74, 207-228. 

Stenger, R., Priesack, E., Barkle, G., Sperr, C., 1999. Expert-N. A tool for simulating 

nitrogen and carbon dynamics in the soil-plant-atmosphere system, In: Tomer, M., 

Robinson, M., Gielen, G. (Eds.), NZ Land Treatment Collective. Proceedings Technical 

Session 20: Modelling of Land Treatment Systems. New Plymouth, pp. 19-28. 

Stöckle, C., Roger Nelson, M., 2003. CropSyst, a cropping systems simulation 

model. European Journal of Agronomy 18, 289-307. 

Stöckle, C., Campbell, G.S., Donatelli, M., Yan, Y., Ferrer, F., Evert, F.V., McCool, D., 

Martin, S., Mulla, D., Bechini, L., Deabaeke, P., Nelson, P.R., 2004. Cropping Systems 

Simulation Model: User's Manual, Washington State University. 



331 
 

Stöckle, C., Higgins, S., Kemanian, A., Nelson, R., Huggins, D., Marcos, J., Collins, H., 

2012. Carbon storage and nitrous oxide emissions of cropping systems in eastern 

Washington: A simulation study. Journal of Soil and Water Conservation 67, 365-377. 

Stockmann, U., Adams, M.A., Crawford, J.W., Field, D.J., Henakaarchchi, N., Jenkins, 

M., Minasny, B., McBratney, A.B., Courcelles, V.d.R.d., Singh, K., Wheeler, I., Abbott, L., 

Angers, D.A., Baldock, J., Bird, M., Brookes, P.C., Chenu, C., Jastrow, J.D., Lal, R., Lehmann, 

J., O’Donnell, A.G., Parton, W.J., Whitehead, D., Zimmermann, M., 2013. The knowns, 

known unknowns and unknowns of sequestration of soil organic carbon. Agriculture, 

Ecosystems & Environment 164, 80-99. 

Strudley, M., Green, T., Ascoughii, J., 2008. Tillage effects on soil hydraulic 

properties in space and time: State of the science. Soil and Tillage Research 99, 4-48. 

Styles, D., Jones, M., 2007a. Current and future financial competitiveness of 

electricity and heat from energy crops: A case study from Ireland. Energy Policy 35, 4355-

4367. 

Styles, D., Jones, M., 2007b. Energy crops in Ireland: Quantifying the potential life-

cycle greenhouse gas reductions of energy-crop electricity. Biomass and Bioenergy 31, 

759-772. 

Tallis, M.J., Casella, E., Henshall, P.A., Aylott, M.J., Randle, T.J., Morison, J.I.L., 

Taylor, G., 2013. Development and evaluation of ForestGrowth-SRC a process-based model 

for short rotation coppice yield and spatial supply reveals poplar uses water more 

efficiently than willow. GCB Bioenergy 5, 53-66. 

Taylor, S.C., Firth, S.K., Wang, C., Allinson, D., Quddus, M., Smith, P., 2014. Spatial 

mapping of building energy demand in Great Britain. GCB Bioenergy 6, 123-135. 

Thomas, A.R.C., Bond, A.J., Hiscock, K.M., 2013a. A GIS based assessment of 

bioenergy potential in England within existing energy systems. Biomass and Bioenergy. 55, 

107-121 



332 
 

Thomas, A.R.C., Bond, A.J., Hiscock, K.M., 2013b. A multi-criteria based review of 

models that predict environmental impacts of land use-change for perennial energy crops 

on water, carbon and nitrogen cycling. GCB Bioenergy 5, 227-242. 

Thorburn, P.J., Biggs, J.S., Collins, K., Probert, M.E., 2010. Using the APSIM model 

to estimate nitrous oxide emissions from diverse Australian sugarcane production 

systems. Agriculture, Ecosystems & Environment 136, 343-350. 

Thornley, P., 2006. Increasing biomass based power generation in the UK. Energy 

Policy 34, 2087-2099. 

Tilman, D., Hill, J., Lehman, C., 2006. Carbon-Negative Biofuels from Low-Input 

High-Diversity Grassland Biomass. Science 314, 1598-1600. 

Toenshoff, C., Joergensen, R.G., Stuelpnagel, R., Wachendorf, C., 2013. Dynamics of 

soil organic carbon fractions one year after the re-conversion of poplar and willow 

plantations to arable use and perennial grassland. Agriculture, Ecosystems & Environment 

174, 21-27. 

Toenshoff, C., Stuelpnagel, R., Joergensen, R.G., Wachendorf, C., 2012. Carbon in 

plant biomass and soils of poplar and willow plantations—implications for SOC 

distribution in different soil fractions after re-conversion to arable land. Plant and Soil 367, 

407-417. 

Toma, Y.O., Fernández, F.G., Sato, S., Izumi, M., Hatano, R., Yamada, T., Nishiwaki, 

A.Y.A., Bollero, G., Stewart, J.R., 2010. Carbon budget and methane and nitrous oxide 

emissions over the growing season in a Miscanthus sinensis grassland in Tomakomai, 

Hokkaido, Japan. GCB Bioenergy 3, 116-134. 

Tonini, D., Hamelin, L., Wenzel, H., Astrup, T., 2012. Bioenergy production from 

perennial energy crops: a consequential LCA of 12 bioenergy scenarios including land use 

changes. Environ Sci Technol 46, 13521-13530. 

Uchida, Y., Clough, T., Kelliher, F., Sherlock, R., 2008. Effects of aggregate size, soil 

compaction, and bovine urine on N2O emissions from a pasture soil. Soil Biology and 

Biochemistry 40, 924-931. 



333 
 

UK Agriculture, 2010a. Oilseed rape production cycle. Available at:  

http://www.ukagriculture.com/production_cycles/oilseed_rape_production_cycle.cfm. 

[accessed 2/7/2014], 

UK Agriculture, 2010b. Wheat production cycle. Available at:  

http://www.ukagriculture.com/production_cycles/wheat_production_cycle.cfm [accessed 

2/7/2014] 

UK Agriculture, 2010c.Grassland in the UK- an introduction. Available at: 

http://www.ukagriculture.com/crops/grassland_uk.cfm[accessed 29/8/2014] 

United Nations Environment Programme, 2007. Buildings and Climate Change: 

Status,Challenges and Opportunities,  Available at: 

http://www.unep.fr/scp/publications/details.asp?id=DTI/0916/PA [accessed 2/4/2011], 

United Nations Environment Programme. 

Upham, P., Speakman, D., 2007. Stakeholder opinion on constrained 2030 

bioenergy scenarios for North West England. Energy Policy 35, 5549-5561. 

Vallios, I., Tsoutsos, T., Papadakis, G., 2009. Design of biomass district heating 

systems. Biomass and Bioenergy 33, 659-678. 

Van Breemen, N., Boyer, E.W., Goodale, C.L., Jaworski, N.A., Paustian, K., Seitzinger, 

S.P., Lajtha, K., Mayer, B., Vandam, D., Howarth, R.W., Nadelhoffer1, K.J., Eve, M., Billen, 

G., 2002. Where did all the nitrogen go? Fate of nitrogen inputs to large watersheds in the 

northeastern U.S.A. Biogeochemistry 57/58, 267-293. 

van Kessel, C., Clough, T., van Groenigen, J.W., 2009. Dissolved Organic Nitrogen: 

An Overlooked Pathway of Nitrogen Loss from Agricultural Systems? Journal of 

Environment Quality 38, 393. 

Vanloocke, A., Bernacchi, C.J., Twine, T.E., 2010. The impacts of Miscanthus × 

giganteus production on the Midwest US hydrologic cycle. GCB Bioenergy, 180-191. 

Venturi, P., Gigler, J. K., & Huisman, W., 1999 Economical and technical comparison 

between herbaceous Miscanthus x giganteus and woody energy crops Salix viminalis. 

Renewable Energy 16, 1023-1026. 



334 
 

Verchot, L.V., Davidson, E.A., Henrique Cattanio, J., Ackerman, l.L., Erickson, H.E., 

Keller, M., 1999. Land use change and biogeochemical controls of nitrogen oxide 

emissions from soils in eastern Amazonia. Global Biogeochemical Cycles 13, 31-46. 

Verchot, L.V., Hutabarat, L., Hairiah, K., van Noordwijk, M., 2006. Nitrogen 

availability and soil N2O emissions following conversion of forests to coffee in southern 

Sumatra. Global Biogeochemical Cycles 13, 31–46. 

Verlinden, M.S., Broeckx, L.S., Zona, D., Berhongaray, G., De Groote, T., Camino 

Serrano, M., Janssens, I.A., Ceulemans, R., 2013. Net ecosystem production and carbon 

balance of an SRC poplar plantation during its first rotation. Biomass and Bioenergy 56, 

412-422. 

Vogeler, I., Giltrap, D., Cichota, R., 2013. Comparison of APSIM and DNDC 

simulations of nitrogen transformations and N2O emissions. The Science of The Total 

Environment 465, 147-155. 

Volk, T.A., Luzadis, V.A., 2008. Willow biomass production for bioenergy, biofuels, 

and bioproducts in New York, Renewable Energy from Forest Resources in the United 

States p. 238. 

Wagener, T., Gupta, H.V., 2005. Model identification for hydrological forecasting 

under uncertainty. Stochastic Environmental Research and Risk Assessment 19, 378-387. 

Waller, I., Lundgren, G., Bailey, N., Bradley, D., Labastida, R.R., 2011. Building 

Robust Regional and International Supply Chains, World Biofuels Markets, Rotterdam. 

Wang, S., Hastings, A., Smith, P., 2012. An optimization model for energy crop 

supply. GCB Bioenergy 4, 88-95. 

Wang, S., Hastings, A., Wang, S., Sunnenberg, G., Tallis, M.J., Casella, E., Taylor, S., 

Alexander, P., Cisowska, I., Lovett, A., Taylor, G., Firth, S., Moran, D., Morison, J., Smith, P., 

2014. The potential for bioenergy crops to contribute to meeting GB heat and electricity 

demands. GCB Bioenergy 6, 136-141. 

Webster, C.P., T.S.Scott., 2004. Rothamsted project number 074454. 



335 
 

Webster, C.P.S., T and Goulding, K. W. T., 2003. Can tillage practice affect the 

contribution of nitrous oxide to the total greenhouse gas production from arable 

agriculture. Controlling N Flows and Losses. Abstracts for the 12th Nitrogen Workshop, 

Exeter Theme 3a. 

Weigelt, A., Weisser, W.W., Buchmann, N. and Scherer-Lorenzen, M., 2009. 

Biodiversity for multifunctional grasslands: equal productivity in high-diversity low-input 

and low-diversity high-input systems. Biogeosciences 6, 1695-1706. 

Wetterlund, E., Leduc, S., Dotzauer, E., Kindermann, G., 2012. Optimal use of forest 

residues in Europe under different policies—second generation biofuels versus combined 

heat and power. Biomass Conversion and Biorefinery 3, 3-16. 

Whitehead, P., Wilson, E., Butterfield, D., 1998. A semi-distributed integrated 

nitrogen model for multiple source assessment in catchments (INCA): Part I — model 

structure and process equations. Science of The Total Environment 210/211, 547-558. 

Wilhelm, W.W.J., J.M.F. Hatfield, J.L. Voorhees, W.B. and Linden D.R., 2004. Crop 

and Soil Productivity Response to Corn Residue Removal: A Literature Review. Agronomy 

Journal 96, 1-17. 

Williams, J.R., 1990. The Erosion-Productivity Impact Calculator (EPIC) Model: A 

Case History. Philosophical Transactions of the Royal Society B: Biological Sciences 329, 

421-428. 

Williams, J.R., Izaurralde, R. C., & Steglich, E. M., 2008. Agricultural 

Policy/Environmental eXtender Model: Theoretical documentation version 0604. BREC 

Report, 17. 

Williams, J.R., Jones, C.A., Dyke, P.T., 1984. A modeling approach to determining 

the relationship between erosion and soil productivity. Trans. ASAE 27, 129- 142. 

Wolf, J., Broeke, M., Rotter, R., 2005. Simulation of nitrogen leaching in sandy soils 

in The Netherlands with the ANIMO model and the integrated modelling system STONE. 

Agriculture, Ecosystems & Environment 105, 523-540. 



336 
 

Woo, D.K., 2013. Soil carbon and nitrogen cycle modeling for bioenergy crops, Civil 

Engineering. University of Illinois at Urbana-Champaign, Urbana, Illinois. 

Wood, G., Dow, S., 2011. What lessons have been learned in reforming the 

Renewables Obligation? An analysis of internal and external failures in UK renewable 

energy policy. Energy Policy 39, 2228-2244. 

Yang, X., Drury, C., Reynolds, W., Tan, C., 2008. Impacts of long-term and recently 

imposed tillage practices on the vertical distribution of soil organic carbon. Soil and Tillage 

Research 100, 120-124. 

Zatta, A., Clifton-Brown, J., Robson, P., Hastings, A., Monti, A., 2013. Land use 

change from C3 grassland to C4 Miscanthus: effects on soil carbon content and estimated 

mitigation benefit after six years. GCB Bioenergy, 6, 4, 360-370. 

Zeri, M., Hussain, M.Z., Anderson-Teixeira, K.J., DeLucia, E., Bernacchi, C.J., 2013. 

Water use efficiency of perennial and annual bioenergy crops in central Illinois. Journal of 

Geophysical Research: Biogeosciences 118, 581-589. 

Zimmermann, J., Dauber, J., Jones, M.B., 2012. Soil carbon sequestration during 

the establishment phase of Miscanthus × Giganteus: a regional-scale study on commercial 

farms using 13C natural abundance. GCB Bioenergy 4, 453-461. 

Zimmermann, J., Dondini, M., Jones, M.B., 2013. Assessing the impacts of the 

establishment of Miscanthus on soil organic carbon on two contrasting land-use types in 

Ireland. European Journal of Soil Science 64, 747-756. 

 

 

 



 
337 

 

Visual glossary 

Moldbord plough 

 

(Farm Weekly, 23 Feb, 2009) 

 

 

 (National Resources Conservation Service, 2010) 
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Rotovator 
 

  

(Chetak Agro Industries) 

Rototiller 
 

The primary difference between the rotovator and the rototiller is user control over rate of 

rotation; the rotovator has a gearbox enabling change in rate of movement over soil- combined 

with constant rate of tine rotation this enables user control over degree of “engagement” of soil

 

(Aliimg.com global trade site)  

 

 

 

 

 



 
339 

 

 

Ridger 

 

(National Resources Conservation Service, 2010) 

Rotary Harrow 

 

(National Resources Conservation Service, 2010) 

 

For planting of SRC willow: images from defra best practice guide (Hilton, 2002) 
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Direct chip harvesting of SRC willow: images from defra best practice guide (Hilton, 2002) 

 

Miscanthus harvesting images from defra best practice guide Nixon (2001) 
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Appendix 1: Mapping 
Table A1.1 Calculations of potential supply and demand for co-firing using Miscanthus 

from a 40 km supply radius  

Coal Plant 10% 
demand 
(odt) 

Group Feedstock (odt) 
in 40 km 

excess 10 % 
(odt) 

excess 20 % 
(odt) 

Cottam  730893.18 1       

Drax  1435815.53 1       

Eggborough  727183.06 1       

Ferrybridge C  725328.00 1       

West Burton  716794.73 1 3566133 -769881 -5105896 

Ironbridge 359881.41 2       

Ratcliffe 742023.53 2       

Rugeley  362107.48 2 3385085 1921072 457060 

Kingsnorth 732377.22 3       

Tilbury B Generation 
Aggregates  

378432.00 3 1434945 324136 -786673 

Didcot A Generation 
Aggregates 

749443.76 N 1044671 295227 -454217 

Fiddlers Ferry 727554.07 N 988798.5 261244 -466310 

Lynemouth 155824.94 N 1051191 895366 739541.1 

Wilton  37101.18 N 1275017 1237915 1200814 

Whole area 8580760.09  13091313 4934960 2397415 

 useful feedstock 10% (odt) 20% (odt) 

useful feedstock = total - excess 8156353 10693898 

 

Figure A1.1 Map to show groupings of 40 km demand zones for co-firing. 
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Figure A1.2 Map to show groupings of 25 km demand zones for co-firing.  
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Table A1.2 Calculations of potential supply and demand for co-firing using Miscanthus 

from a 25 km supply radius  

 

Coal Plant 10% demand 
(odt) 

Group Feedstock (odt) in 
25 km 

excess 10 % 
(odt) 

excess 20 % 
(odt) 

Cottam  730893 1      

Drax  1435816 1      

Eggborough  727183 1       

Ferrybridge C  725328 1       

West Burton  716795 1  4336014 -2186726 -6522740 

Kingsnorth 732377 2      

Tilbury B Generation 
Aggregates  

378432 2  1110809  -608389  -1719198 

Ironbridge 359881 N 446593.5 86712 -273169 

Didcot A Generation 
Aggregates 

749444 N 388647 -360797 -1110241 

Fiddlers Ferry 727554 N 488085 -239469 -967023 

Lynemouth 155825 N 535287 379462 223637 

Ratcliffe 742024 N 811881 69857 -672166 

Rugely 362107 N 672252 310145 -51963 

Wilton 37101 N 527713.5 490612 453511 

Whole area 8580760  9317283 1336788 677148 

 useful feedstock 10% (odt) 20% (odt) 

useful feedstock = total - excess 7980495 8640135 
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Figure A1.3 Map to show groupings of 40 km demand zones for industrial and large scale 

Combined Heat and Power  

Table A1.3 Calculations of potential supply and demand for CHP using Miscanthus from a 

40 km supply radius  

Site name Demand 
(odt) 

Feedstock 
40 km 
(odt) 

Group Group 
demand 
(odt) 

Exclusive 
feedstock 
(odt) 

Excess 
feedstock 
(odt) 

SembCorp Utilities (UK) 
Limited 

473114 1207476 1 
 

598387 1940693 1342305 

Petroplus Refining 
Teesside Ltd and Phillips-
Imperial Petroleum Ltd 

99793 1377530 

Elementis Chromium LLP 8256 1689995 

TG Power Limited 17223 623270 

BP Chemicals Ltd 79929 1352775 2 
 

138999 1291731 1152732 

Aarhus United UK Ltd 23319 1324442 

Croda Chemicals Europe 
Ltd 

14477 1504619 

Gassco AS 21274 882389 

Harworth Power Ltd 23089 1823495 3 
 

120886 1967348 1846461 

Redfearn Glass Ltd and 
Rexam Glass Barnsley Ltd 
and Rockware Glass Ltd 

68755 930141 

Sheffield Teaching 
Hospitals NHS Trust 

11515 893103 

Sheffield Teaching 
Hospitals NHS Trust 

9451 794400 

Campbell Grocery 
Products Limited 

8076 1792433 

The University of 
Manchester 

16212 803823 4 
 

149107 1050492 901385 

Basell Polyolefins UK Ltd 13493 915525 

Manchester Airport plc 9196 839672 

Vauxhall Motors Ltd 20635 708402 

Eastham Refinery Ltd 19796 686673 

Ford Motor Company Ltd 
and Jaguar Cars Ltd 

16582 846000 

Innospec Ltd 10529 737993 

Vauxhall Motors Ltd 20635 708402 

AstraZeneca UK Ltd 22029 889466 

Nottingham University 
Hospitals NHS Trust 

10924 2160576 5 
 

44122 2234486 2190364 

University Of Nottingham 8481 2195975 

Rolls-Royce plc 10276 1697514 

AstraZeneca plc 14441 2591816 

Ministry of Defence 9336 1103070 6 
 

21820 571434 549614 

SI Group UK Ltd 12485 1312976 

Ministry of Defence 7732 1651575 7 
 

1063172 6683670 5620498 

IBC Vehicles Ltd 9810 2118485 

GlaxoSmithKline plc 11231 1819329 
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ExxonMobil Chemical 
Limited 

191561 730908 

Fleet Support Ltd 10460 492785 

SmithKline Beecham plc 
and Glaxosmithkline Plc 

12308 632253 

Star Energy UK Onshore 
Ltd 

16389 1233599 

Gatwick Airport Ltd 8431 1013304 

AWE plc 31198 1134353 

Heathrow Airport Ltd and 
British Airways plc 

19111 22391921 

Guys & St Thomas' 
Hospital NHS Trust 

9977 1396452 

Guys & St Thomas' 
Hospital NHS Trust 

7544 1332315 

Ford Motor Company Ltd 31110 1273154 

Ford Motor Company Ltd 8356 1299812 

BP Oil UK Ltd 687954 1238657 

Not grouped       

Garden Isle Frozen Foods 
Ltd 

7642 701126    693483 

Muntons plc 15516 2314878    2299362 

Innovia Films Ltd 18524 762515    743991 

Devonport Royal 
Dockyard Ltd 

14197 45920    31722 

 Total useful feedstock (odt) 

Useful feedstock = sum of demands which can be met 2009251 
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Figure A1.4 Map to show groupings of 25 km demand zones for industrial and large 

scale Combined Heat and Power 

 

Table A1.4 Calculations of potential supply and demand for CHP using Miscanthus from a 

25 km supply radius 

Site name Demand 
(odt) 

Feedstock 
25 km (odt) 

Group Group 
demand 
(odt) 

Exclusive 
feedstock 
(odt) 

Excess 
feedstock 
(odt) 

SembCorp Utilities (UK) 
Limited 

473114 473592 1 
 

581164 1054806 473642 

Petroplus Refining 
Teesside Ltd and 
Phillips-Imperial 
Petroleum Ltd 

99793 645128 

Elementis Chromium  8256 1002741 

BP Chemicals Ltd 79929 579038 2 
 

138999 832050 693051 

Aarhus United UK Ltd 23319 590051 

Croda Chemicals Europe 
Ltd 

14477 658658 

Gassco AS 21274 274749 

Redfearn Glass Ltd and 
Rexam Glass Barnsley 
Ltd and Rockware Glass 
Ltd 

68755 472421 3 
 

97797 921716 823918 

Sheffield Teaching 
Hospitals NHS Trust 

11515 328704 

Sheffield Teaching 
Hospitals NHS Trust 

9451 283934 
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Site name Demand 
(odt) 

Feedstock 
25 km (odt) 

Group Group 
demand 
(odt) 

Exclusive 
feedstock 
(odt) 

Excess 
feedstock 
(odt) 

Campbell Grocery 
Products Limited 

8076 627525 

The University of 
Manchester 

16212 370449 4 
 

60929 504371 443441 

Basell Polyolefins UK 
Ltd 

13493 522000 

Manchester Airport plc 9196 471920 

AstraZeneca UK Ltd 22029 426587 

Nottingham University 
Hospitals NHS Trust 

10924 785487 5 
 

44122 1547643 1503521 

University Of 
Nottingham 

8481 773076 

Rolls-Royce plc 10276 666968 

AstraZeneca plc 14441 924740 

Ministry of Defence 9336 538197 6 
 

21820 745221 723401 

SI Group UK Ltd 12485 469661 

Ministry of Defence 7732 772667 7 
 

28773 1930910 1902137 

IBC Vehicles Ltd 9810 999431 

GlaxoSmithKline plc 11231 897471 

Eastham Refinery Ltd 19796 235040 4b 88177 204606 116429 

Ford Motor Company 
Ltd and Jaguar Cars Ltd 

16582 340839 

Innospec Ltd 10529 269019 

Vauxhall Motors Ltd 20635 249909 

Vauxhall Motors Ltd 20635 249909 

ExxonMobil Chemical 
Limited 

191561 251105 7b 202021 298922 96901 

Fleet Support Ltd 10460 194156 

Star Energy UK Onshore 
Ltd 

16389 587037 7c 47587 674697 627110 

AWE plc 31198 496784 

Heathrow Airport Ltd 
and British Airways plc 

19111 305411 7d 76098 777728 701630 

Guys & St Thomas' 
Hospital NHS Trust 

9977 251297 

Guys & St Thomas' 
Hospital NHS Trust 

7544 292010 

Ford Motor Company 
Ltd 

31110 529872 

Ford Motor Company 
Ltd 

8356 699933 

Not grouped       

TG Power Limited 17223 250559   244008 226785 

Harworth Power Ltd 23089 899037   838725 815636 

SmithKline Beecham plc 
and Glaxosmithkline Plc 

12308 237581   116775 104467 

Gatwick Airport Ltd 8431 541748   349711 341281 
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Site name Demand 
(odt) 

Feedstock 
25 km (odt) 

Group Group 
demand 
(odt) 

Exclusive 
feedstock 
(odt) 

Excess 
feedstock 
(odt) 

Garden Isle Frozen 
Foods Ltd 

7642 139619   139618 131976 

Muntons plc 15516 1220090   1220089 1204573 

Innovia Films Ltd 18524 367718   367717 349194 

Devonport Royal 
Dockyard Ltd 

14197 4094 Not viable 

BP Oil UK Ltd 687954 587733 Not viable 

 Total useful feedstock 
(odt) 

Useful feedstock = sum of demands which can be met 1490221 
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Appendix 2: Model development for 
tillage 

2.1 Code development for simulation of changes in 

bulk density 

2.1.1 Filename bd_till.c 
 

#include <stdio.h> 

#include <stdlib.h> 

#include "n2o_model.h" 

#include "soilwater.h" 

#include "swconst.h" 

#include <math.h> 

 

 

extern LAYERPAR_SPT layers; 

float hydr_cond(float satcond, float theta, float thetas, float soiltavg, 

                float volmin); 

void bd_till(float *bdc, float *bulkden, float *rsetbd, float *thetas_bd, float *A) 

{ 

 int ilyr; 

 

for (ilyr=0; ilyr < layers->numlyrs; ilyr++) { 

 

 if((layers->rsetbd[ilyr] > layers->bulkd[ilyr] - 0.2) && (*bdc < 0.0)) { 

  layers->rsetbd[ilyr] = layers->rsetbd[ilyr] + *bdc; 

 

 }else if((layers->rsetbd[ilyr] < layers->bulkd[ilyr] + 0.1) && (*bdc > 0.0)) { 

  layers->rsetbd[ilyr] = layers->rsetbd[ilyr] + *bdc; 

 

 }else { 

  layers->rsetbd[ilyr] = layers->rsetbd[ilyr];} 

 printf("layers->rsetbd[%1d] = %8.6f\n", ilyr, layers->rsetbd[ilyr]);  

 

     layers->thetas_bd[ilyr] = 95*(1-layers->rsetbd[ilyr]/(float)PARTDENS);   

} 

 

return; 

} 
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2.1.2 Filename org_bdc.c 
 

#include <stdio.h> 

#include <stdlib.h> 

#include "n2o_model.h" 

#include "soilwater.h" 

#include <math.h> 

 

extern LAYERPAR_SPT layers; 

void org_bdc(float *obdc) 

{ 

/*   calculate organic matter for tillage calculation*/ 

 *obdc = (layers->orgfrac[0]*layers->width[0] + 

                 layers->orgfrac[1]*layers->width[1] + 

                 layers->orgfrac[2]*layers->width[2]) / 

                (layers->width[0] + layers->width[1] + layers->width[2]); 

 

} 

 

 

2.1.3 Changes to enable call to bd_till and org_bdc from 

simsom.f (in simsom.f) 
 

c ... Fortran to C prototype 
      INTERFACE 
 
SUBROUTINE org_bdc(obdc) 
          !MS$ATTRIBUTES ALIAS:'_org_bdc' :: org_bdc 
     REAL    obdc 
        END SUBROUTINE org_bdc 
 
SUBROUTINE bd_till(bdc, bulkden, clyr, nlayer, bulkd) 
          !MS$ATTRIBUTES ALIAS:'_bd_till' :: bd_till 
          REAL    bdc 
     REAL    bulkden 
     INTEGER clyr 
     INTEGER nlayer 
     REAL    bulkd 
        END SUBROUTINE bd_till  
 
    END INTERFACE 
…………………………………………………………………………… 
 
   if (docult .and. (cultday .eq. curday) .or. 
     &      (cultcnt .gt. 0. .and. cultcnt .lt. 31)) then 
          do 34 ii = 1, 4 
            cltfac(ii) = clteff(ii) 
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34        continue        
           do 47 ii = 1, 5 
            cultbd(ii) = cultc(ii) 
 
47        continue 
 
     if (cultday .eq. curday) then 
            cultcnt = 0 
    endif 
c..... bdc is bd multiplier to calculate the effect of cult on bd. 
c ..... calculate newbd using = bd (asread in) * bdc  
      
c ..... chen 1999 equationto calc bdc: bdc = cultc(1) + cultc(2) * clayfrac + cultc(3) *  
c.......siltfrac + cultc(4) * sandfrac + cultc(5) * orgfrac  
 
c ..... cultc is the effect of cultivation on bulk density;read from 
c ..... the cult.100 file.  
 
c ..... if we are within 1 month of cult, apply bd multiplier 
         if (cultcnt .eq. 0) then 
            
      do 49 ii = 1, 5 
            cultbd(ii) = cultc(ii) 
 
49        continue 
 
          call org_bdc(obdc)    
     bdc= cultbd(1) + cultbd(2) * clay + cultbd(3) *  
     &   silt + cultbd(4) * sand   
     &   + cultbd(5) * obdc 
 
      print *, "bdc", bdc 
 
 
    call bd_till(bdc, bulkden, clyr, nlayer, bulkd)  
c48        continue 
        endif        
          cultcnt = cultcnt + 1 
 
         else 
          do 35 ii = 1, 4 
            cltfac(ii) = 1.0 
35        continue 
          cultcnt = 0 
       endif 
 

2.1.4 Application of newly calculated rsetbd 
Initlyrs.c: layers->rsetbd[ilyr] = layers->bulkd[ilyr]; 

This sets the initial value of rsetbd 

 

Wfps.c:  porespace = 1.0f - layers->rsetbd[ilyr] / (float)PARTDENS; 
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This applies the updated value of bd to porespace calculations 

 

2.1.5 Added to cultin.f 
        read(16, *) cultc(1), name  

        call ckdata('schedl','cultc',name) 

        read(16, *) cultc(2), name  

        call ckdata('schedl','cultc',name) 

        read(16, *) cultc(3), name  

        call ckdata('schedl','cultc',name) 

        read(16, *) cultc(4), name  

        call ckdata('schedl','cultc',name) 

        read(16, *) cultc(5), name  

        call ckdata('schedl','cultc',name) 

 

2.1.6 Added parameter listings 
Parameters which have been added must be listed in .inc (for fortran) or .h (for c) ancillary files to 

ensure that the model recognises them  

 

soilwater.h: float  rsetbd[MAXLYR]; 

soilwater.h: void bd_till(float *bdc); 

soilwater.h: void obdc(float *obdc); 

Param.inc: &    cgresp(3),fgresp(6), obdc, 

Param.inc: &        cgresp,fgresp, obdc, 

Dovars.inc: c ... cultcnt     number of days that cultivation effect on decomposition 

Dovars.inc:  &              omadday, plntday, seneday, tremday, cultcnt, 

Dovars.inc: integer  cultcnt, fertcnt, erodcnt, grazcnt, irricnt, plntcnt, 

Parcp.inc: &    cfrtcn(2),cfrtcw(2),clteff(4),cultc(5),cthc(2),cmxturn, 

Parcp.inc: &     cfrtcn,cfrtcw,clteff,cultc,cthc,cmxturn,crprtf,cultra, 

2.2 Types of tillage  
Site 5 states “moldbord plough” (See p# visual glossary) 

Site 4 states “conventional till” (assume moldbord plough) 

Sites 3 and 6 state “moldbord plough” 

 

K     Moldbord_Plough 

0.0               'CULTRA(1)'  

0.05              'CULTRA(2)'  

0.95              'CULTRA(3)'  

0.05              'CULTRA(4)'  

0.95              'CULTRA(5)'  

0.95              'CULTRA(6)'  

1.0               'CULTRA(7)'  

1.0               'CLTEFF(1)'  

3.0              'CLTEFF(2)'  

3.0              'CLTEFF(3)'  
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1.15               'CLTEFF(4)'  

-0.363    'CULTC(1)' 

0.000     'CULTC(2)'   

0.000           'CULTC(3)'    

0.389          'CULTC(4)'   

0.000              'CULTC(5)' 

 

Site 2 states “rotovator”: this is similar to the rototiller in terms of morphology and functionality 

(see p# visual glossary) 

Values were taken from Chen for CULTC(1-4) and the other parameters are from the existing 

DayCent input files 

 

ROT     rotavator_rototiller_cultivator 

0.0               'CULTRA(1)'  

0.4               'CULTRA(2)'  

0.6               'CULTRA(3)'  

0.1               'CULTRA(4)'  

0.6               'CULTRA(5)'  

0.25              'CULTRA(6)'  

0.7               'CULTRA(7)'  

1.700             'CLTEFF(1)'  

1.700             'CLTEFF(2)'  

2.000             'CLTEFF(3)'  

2.000             'CLTEFF(4)'  

-0.23000    'CULTC(1)' 

0.0000    'CULTC(2)'   

0.0000     'CULTC(3)'    

0.0000         'CULTC(4)'   

0.0000         'CULTC(5)' 

 

 

Site 2 states “rotary harrowing to 8–10 cm”: this is similar to ridger (see p# visual glossary) 

 

Values were taken from Chen for CULTC(1-4) and the other parameters are from the existing 

DayCent input files 

 

D     Field_and_Row_Cultivators_ridger 

0.0               'CULTRA(1)'  

0.4               'CULTRA(2)'  

0.6               'CULTRA(3)'  

0.1               'CULTRA(4)'  

0.6               'CULTRA(5)'  

0.25              'CULTRA(6)'  

0.7               'CULTRA(7)'  

1.0               'CLTEFF(1)'  

1.0               'CLTEFF(2)'  

1.0               'CLTEFF(3)'  
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1.0               'CLTEFF(4)' 

-0.292    'CULTC(1)' 

-0.4135    'CULTC(2)'   

0.000            'CULTC(3)'    

0.0000           'CULTC(4)'   

0.0485           'CULTC(5)' 

 

2.3 Calibrating Cult.100 decomposition factor 
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Figure A.2.1Graphs produced for cult.100 type ROT, listed in Appendix Section 2.2, 

produced at tillage calibration site 2, to indicate relationship between soil C pool as 

simulated with the DayCent model as distributed (X axis) and the adapted DayCent 

model (Y axis) over 30 days following simulated tillage. Where all values are in Daily 

carbon in soil organic matter pools g m-2 and:  

metabc(2) = metabolic C in soil litter  

strucc(2) = soil litter structural C  

som1c(1) = C in surface active pool soil organic matter  

som1c(2) = C in soil active soil pool organic matter  

som2c(1) = C in surface slow pool soil organic matter  

som2c(2) = C in soil slow pool soil organic matter  

som3c = C in passive pool soil organic matter  
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Figure A.2.2Graphs produced for cult.100 type K, listed in Appendix Section 2.2, produced 

at tillage calibration site 3, to indicate relationship between soil C pool as simulated with 

the DayCent model as distributed (X axis)and the adapted DayCent model (Y axis) over 

30 days following simulated tillage. Where all values are in Daily carbon in soil organic 

matter pools g  m-2 and:  

metabc(2) = metabolic C in soil litter  

strucc(2) = soil litter structural C  

som1c(1) = C in surface active pool soil organic matter  

som1c(2) = C in soil active soil pool organic matter  

som2c(1) = C in surface slow pool soil organic matter  

som2c(2) = C in soil slow pool soil organic matter  

som3c = C in passive pool soil organic matter  
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2.4 Figures from publications used to calibrate 

tillage  
 

Figure A2.1: Figure 1 from Rochette et al. (2008a) Time series WFPS and N2O emissions 

for the heavy clay soil 

This figure could not be included for copyright reasons, but can be found in: 

Rochette, P., Angers, D.A., Chantigny, M.H., Bertrand, N., 2008. Nitrous Oxide Emissions Respond 

Differently to No-Till in a Loam and a Heavy Clay Soil. Soil Science Society of America Journal 72, 

1363–1369. 

This figure shows the pattern of WFPS in m3m-3  for the clay soil measured by Rochette et al. 

(2008a) which was between 0.6  m3m-3 and 0.8  m3m-3 for much of the measured period, dropping 

to around half this value in summer. Minimum measured WFPS was around 0.2 m3m-3. 

Significantly, the figure indicates 0.1 – 0.2 m3m-3 lower saturation for the conventional till site 

from September to May, and this difference between sites may be important for N2O emissions. 

The figure also shows measured data for N2O emissions over the same period, indicating generally 

similar emissions for T and NT sites, with higher emissions from the NT site in the period following 

tillage in September. Measured emissions were low for much of the study period with very large 

peaks for the NT condition, particularly in September and October, in the region of 10 to 15 mg m-

3 h-1. These peaks were much smaller in 2002. There are no data for December through to April in 

any of these years for N2O or WFPS.  

 

Figure A2.2: Figure 3 from Rochette et al. (2008a). Time series WFPS and N2O emissions 

for the loam soil 

This figure could not be included for copyright reasons, but can be found in: 

Rochette, P., Angers, D.A., Chantigny, M.H., Bertrand, N., 2008. Nitrous Oxide Emissions Respond 

Differently to No-Till in a Loam and a Heavy Clay Soil. Soil Science Society of America Journal 72, 

1363–1369. 

 

This figure shows the pattern of WFPS for the loamy soil measured by Rochette et al. (2008) which 

was between 0.4  m3m-3 and 0.6  m3m-3 for much of the measured period, with minimum values 

below 0.1 m3m-3, and 0.1 – 0.3  m3m-3 lower saturation for the conventional till site from 

September 2001 to May 2002, and May to June, as well as much of August through September in 

2003. The figure also shows measured data for N2O emissions over the same period, indicating 

generally similar emissions for T and NT sites, with higher emissions from the conventional till site 

in the period following tillage. Measured emissions over the whole study period were much lower 

than values recorded for either management on the clay soil, generally below 0.1 mg m-3 h-1, with 

peaks at the tilled site following tillage, reaching around 0.2 mg m-3 h-1. Measured N2O emissions 
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were slightly elevated at both T and NT sites between April and July, but never exceeded 0.4 mg 

m-3 h-1. There are no data for December through to April in any of these years for N2O or WFPS.  

 

Figure A2.3: Figure 2 from Lemke et al. (1999). Time series N2O emissions  

 

 

Figure A2.4: Figure 3 from Chatskikh et al. (2007). Time series soil water content and N2O 

emissions  
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Figure A2.5: Figure 3 from Baggs et al. (2003). Time series WFPS and N2O emissions –the 

model run in chapter 4 represents the fertilised bean (residue) condition. Arrow 

indicates timing of fertiliser application. 

This figure could not be included for copyright reasons, but can be found in: 

Baggs, E.M.S., M.; Pihlatie, M.;  Regar, A.;  Cook, H.;  Cadisch,G., 2003. Nitrous oxide emissions 

following application of residues and fertiliser under zero and conventional tillage. Plant and Soil 

254, 361-370. 

Field data in Baggs et al. (2003) show the N2O emissions peak in response to fertiliser which was 

significantly higher for the NT condition; around 300 compared to 60g N2O-N ha-1d-1. For both 

tillage conditions, emissions peaked 2 or 3 days after fertiliser input, halved by around 5 days 

after the peak, and returned to a baseline of 10-20 g N2O-N ha-1d-1 around 10 days after the peak. 

WFPS data for the site were not included in the publication. 
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Appendix 3: Model development for 
coppicing of trees (SRC willow) 

3.1 Code development for coppicing of trees 

3.1.1 Added to tremin.f 
 

c ... Number of lines to read for each tree removal type 

      parameter (TREMLNS = 21) 

        call ckdata('schedl','copp',name) 

 print *, "copp", copp 

 

3.1.2 Ammendment of killrt.f 
 

 

c ... Death of COARSE ROOTS 
 
      if (crootc .gt. 0.001) then 
        crd = crootc * fd(2) 
 
c ... Amendment to transfer  C and nutrients into forest growth pool instead of dead root OM pool 
if c ... COPP event scheduled 
      
       if (copp .lt. 0) then 
      do 23 iel = 1, nelem 
 dethe = crd * (croote(iel)/crootc) 
 
          call flow(croote(iel),forstg(iel),time,dethe) 
23      continue 
 
        call csched(crd,crtcis(LABELD),crootc, 
     &              crtcis(UNLABL),carbostg(FORSYS,UNLABL), 
     &              crtcis(LABELD),carbostg(FORSYS,LABELD), 
     &              1.0,accum) 
 Endif 
c ... Where: 
c ... croote(iel)  Coarse root nutrients (N, P and S are flowed separately) 
c ... forstg(iel)  Forest store of nutrients (N, P and S) 
c ... crtcis   Coarse root carbon 
c ... carbostg  Carbon storage 
c ... FORSYS   denotes that this is a forest system (as opposed to crop or grassland) 
c ... LABELD and UNLABL  refer to whether or not C is labelled 
c ... End amendment 
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    do 20 iel = 1, nelem 
          dethe = crd * (croote(iel)/crootc)  
 
 
          call flow(croote(iel),wood3e(iel),time,dethe) 
20      continue 
 
        call csched(crd,crtcis(LABELD),crootc, 
     &              crtcis(UNLABL),wd3cis(UNLABL), 
     &              crtcis(LABELD),wd3cis(LABELD), 
     &              1.0,accum) 
      endif 
 

 

3.1.3 Added to treein.f 
 

c ... Number of lines to read for each tree type 

      parameter (TREELNS = 153) 

 

 

        read(11, *) prdc, name 

        call ckdata('treein','prdc',name) 

 

3.1.4 Added to potfor.f 
 

if (copp .ge. 2) then 

 prdx(2)= prdx(2) 

 else 

 prdx(2)= prdc 

 

3.1.5 Added to treegrow.f 
 

if (copp .ge. 2) then 

 if (trage .le. swold) then 

c ..... Use juvenile forest C allocation fractions 

        iptr = 1 

 

      else 

c ..... Use mature forest C allocation fractions 

        iptr = 2 

 

 endif 

 else 

c ..... Use coppice C allocation fractions 

        iptr = 3 
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      Endif 

 

 

c ..... Increment the counter that is tracking the number of days to 

c ..... apply COPP growth parameters 

 

    copp= copp +1 

 

3.1.6 Added to default.f 
 

 prdc = 0.0 

 

3.1.7 Added parameter listings 
Parameters which have been added must be listed in .inc (for fortran) or .h (for c) ancillary files to 

ensure that the model recognises them  

 

Param.inc: &  trage, prdc 

 

3.2 Willow input values in tree.100 
 

WILL     Willow_[Callibrate] 

1.00000           'DECID'      

0.6           'PRDX(2)'    

0.80           'PRDC'    

20.00000          'PPDF(1)'    

40.00000          'PPDF(2)'    

1.70000           'PPDF(3)'    

3.70000           'PPDF(4)'    

22.99000          'CERFOR(1,1,1)' 

396.00000         'CERFOR(1,1,2)' 

40.00000          'CERFOR(1,1,3)' 

64.98723        'CERFOR(1,2,1)' 

500.00000         'CERFOR(1,2,2)' 

83.00000          'CERFOR(1,2,3)' 

100.98589      'CERFOR(1,3,1)' 

500.00000         'CERFOR(1,3,2)' 

70.00000          'CERFOR(1,3,3)' 

120.98589           'CERFOR(1,4,1)' 

479.00000         'CERFOR(1,4,2)' 

131.00000         'CERFOR(1,4,3)' 

112.9807          'CERFOR(1,5,1)' 

833.00000         'CERFOR(1,5,2)' 

100.00000         'CERFOR(1,5,3)' 

40.01242          'CERFOR(2,1,1)' 

396.00000         'CERFOR(2,1,2)' 

40.00000          'CERFOR(2,1,3)' 
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70.01277          'CERFOR(2,2,1)' 

500.00000         'CERFOR(2,2,2)' 

83.00000          'CERFOR(2,2,3)' 

200.00000         'CERFOR(2,3,1)' 

500.00000         'CERFOR(2,3,2)' 

70.00000          'CERFOR(2,3,3)' 

220.01411          'CERFOR(2,4,1)' 

479.00000         'CERFOR(2,4,2)' 

113.02000         'CERFOR(2,4,3)' 

200.0193          'CERFOR(2,5,1)' 

833.00000         'CERFOR(2,5,2)' 

100.00000         'CERFOR(2,5,3)' 

38           'CERFOR(3,1,1)' 

396.00000         'CERFOR(3,1,2)' 

40.00000          'CERFOR(3,1,3)' 

50           'CERFOR(3,2,1)' 

500.00000         'CERFOR(3,2,2)' 

83.00000          'CERFOR(3,2,3)' 

98.00000          'CERFOR(3,3,1)' 

500.00000         'CERFOR(3,3,2)' 

70.00000          'CERFOR(3,3,3)' 

98            'CERFOR(3,4,1)' 

479.00000         'CERFOR(3,4,2)' 

131.00000         'CERFOR(3,4,3)' 

113            'CERFOR(3,5,1)' 

833.00000         'CERFOR(3,5,2)' 

100.00000         'CERFOR(3,5,3)' 

1.50000           'DECW1'      

0.50000           'DECW2'      

0.60000           'DECW3'       

0.37           'FCFRAC(1,1)'     

0.15      'FCFRAC(2,1)'     

0.12    'FCFRAC(3,1)'     

0.21     'FCFRAC(4,1)'     

0.15        'FCFRAC(5,1)'     

0.339991       'FCFRAC(1,2)'     

0.038439    'FCFRAC(2,2)'     

0.347103   'FCFRAC(3,2)'     

0.248706    'FCFRAC(4,2)'     

0.025762     'FCFRAC(5,2)'      

0.20           'FCFRAC(1,3)'     

0.01          'FCFRAC(2,3)'     

0.44       'FCFRAC(3,3)'     

0.34        'FCFRAC(4,3)'     

0.01         'FCFRAC(5,3)'  

0.15000            'TFRTCN(1)'  

0.0100            'TFRTCN(2)'  

0.1500            'TFRTCW(1)'  

0.0100           'TFRTCW(2)'  

0.00000           'LEAFDR(1)'  

0.00000           'LEAFDR(2)'  

0.00000           'LEAFDR(3)'  

0.00000           'LEAFDR(4)'  

0.00000           'LEAFDR(5)'  

0.00000           'LEAFDR(6)'  

0.03000           'LEAFDR(7)'  

0.03000           'LEAFDR(8)'  

0.03000           'LEAFDR(9)'  

0.03000           'LEAFDR(10)' 
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0.00000           'LEAFDR(11)' 

0.00000           'LEAFDR(12)' 

0.0130           'BTOLAI'     

441.00           'KLAI'       

-0.47000          'LAITOP'     

8.00000           'MAXLAI'     

1.00000           'MAXLDR'     

0.750000           'FORRTF(1)'  

0.75000           'FORRTF(2)'  

0.75000           'FORRTF(3)'  

1500.00           'SAPK'       

1000.00           'SWOLD'      

0.20300           'WDLIG(1)'   

0.16000           'WDLIG(2)'   

0.25000           'WDLIG(3)'   

0.25000           'WDLIG(4)'   

0.25000           'WDLIG(5)'   

0.25000           'WDLIG(6)'   

1.000           'WOODDR(1)'  

0.0400           'WOODDR(2)'  

0.0400           'WOODDR(3)'  

0.01000           'WOODDR(4)'  

0.00200           'WOODDR(5)'  

0.12000           'WOODDR(6)'   

0.14000           'WRDSRFC'    

0.05000           'WMRTFRAC'   

0.004         'SNFXMX(2)'  

-26.000           'DEL13C'     

1.25000           'CO2IPR'     

0.75000           'CO2ITR'     

1.25000           'CO2ICE(1,1,1)' 

1.00000           'CO2ICE(1,1,2)' 

1.00000           'CO2ICE(1,1,3)' 

1.25000           'CO2ICE(1,2,1)' 

1.00000           'CO2ICE(1,2,2)' 

1.00000           'CO2ICE(1,2,3)' 

1.00000           'CO2IRS'     

1.00000           'BASFC2'     

1.00000           'BASFCT'     

0.80000           'SITPOT'     

13.5000           'MAXNP'      

0.01525           'FKMRSPMX(1)' 

0.30000           'FKMRSPMX(2)' 

0.01525           'FKMRSPMX(3)' 

0.01525           'FKMRSPMX(4)' 

0.01525           'FKMRSPMX(5)' 

0.16000           'FKMRSPMX(6)' 

0.00000           'FMRSPLAI(1)' 

0.00000           'FMRSPLAI(2)' 

0.75000           'FMRSPLAI(3)' 

1.00000           'FMRSPLAI(4)' 

2.00000           'FMRSPLAI(5)' 

2.00000           'FMRSPLAI(6)' 

0.23000           'FGRESP(1)'  

0.23000           'FGRESP(2)'  

0.23000           'FGRESP(3)'  

0.23000           'FGRESP(4)'  

0.23000           'FGRESP(5)'  
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0.23000           'FGRESP(6)'  

0.50000           'NO3PREF(2)' 

7                 'TLAYPG'   

0                 'TRAGE' 

0.25000           'TMIX'       

5.00000           'TMPLFF'     

8.0000           'TMPLFS'     

100.0             'FURGDYS' 

1.0               'FLSGRES' 

0.12              'TMXTURN' 

1.0               'NPP2CS(2)' 

3.3 Coppice input values in trem.100 
 

COPP   coppice 

0.00000           'EVNTYP'     

1.00000           'REMF(1)'    

1.00000          'REMF(2)'    

0.95000           'REMF(3)'    

1.00000           'REMF(4)'    

0.95000            'REMF(5)'    

0.00000           'FD(1)'      

0.20000           'FD(2)'      

1.00000           'RETF(1,1)'  

1.00000           'RETF(1,2)'  

0.00000           'RETF(1,3)'  

0.00000           'RETF(1,4)'  

0.00000           'RETF(2,1)'  

0.00000           'RETF(2,2)'  

0.00000           'RETF(2,3)'  

0.00000           'RETF(2,4)'  

0.00000           'RETF(3,1)'  

0.00000           'RETF(3,2)'  

0.00000           'RETF(3,3)'  

0.00000           'RETF(3,4)'  

-150                 'COPP' 
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Appendix 4: Scenario analysis 
4.1 Soil input files 
Column  1 - Minimum depth of soil layer (cm) 

Column  2 - Maximum depth of soil layer (cm) 

Column  3 - Bulk density of soil layer (g cm-3) 

Column  4 - Field capacity of soil layer, volumetric 

Column  5 - Wilting point of soil layer, volumetric 

Column  6 - Evaporation coefficient for soil layer (currently not being used) 

Column  7 - Percentage of roots in soil layer, these values must sum to 1.0 

Column  8 - Fraction of sand in soil layer, 0.0 - 1.0 

Column  9 - Fraction of clay in soil layer, 0.0 - 1.0 

Column 10 - Organic matter in soil layer, fraction 0.0 - 1.0 

Column 11 - Minimum volumetric soil water content below wilting point for soil layer, soil water 

content will not be allowed to drop below this value 

Column 12 - Saturated hydraulic conductivity of soil layer (cm s-1)  

Column 13 - pH of soil layer 

 

 

 

 

1+ 2+ 
0.0   2.0  1.40  0.23365  0.10340  0.80  0.01  0.65  0.18  0.01  

0.08  0.00060  5.50 

  2.0   5.0  1.40  0.23365  0.10340  0.20  0.04  0.65  0.18  0.01  

0.06  0.00060  5.50 

  5.0  10.0  1.40  0.23365  0.10340  0.00  0.25  0.65  0.18  0.01  

0.04  0.00060  5.50 

 10.0  20.0  1.40  0.23365  0.10340  0.00  0.30  0.65  0.18  0.01  

0.01  0.00060  5.50 

 20.0  30.0  1.40  0.23365  0.10340  0.00  0.10  0.65  0.18  0.01  

0.00  0.00060  5.50 

30.0  45.0  1.38  0.35334  0.16525  0.00  0.05  0.33  0.35  0.01  

0.00  0.00018  5.50 

 45.0  60.0  1.38  0.35334  0.16525  0.00  0.04  0.33  0.35  0.01  

0.00  0.00018  5.50 

 60.0  75.0  1.38  0.35334  0.16525  0.00  0.03  0.33  0.35  0.01  

0.00  0.00018  5.50 

 75.0  90.0  1.38  0.35334  0.16525  0.00  0.02  0.33  0.35  0.01  

0.00  0.00018  5.50 

 90.0 105.0  1.38  0.35334  0.16525  0.00  0.01  0.33  0.35  0.01  

0.00  0.00018  5.50 

105.0 120.0  1.38  0.35334  0.16525  0.00  0.00  0.33  0.35  0.01  

0.00  0.00018  5.50 

120.0 150.0  1.38  0.35334  0.16525  0.00  0.00  0.33  0.35  0.01  

0.00  0.00018  5.50 

150.0 180.0  1.38  0.35334  0.16525  0.00  0.00  0.33  0.35  0.01  

0.00  0.00018  5.50 

180.0 210.0  1.38  0.35334  0.16525  0.00  0.00  0.33  0.35  0.01  

0.00  0.00018  5.50 
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1+ 2+ Bulk density under energy crop 
layers->rsetbd[0] = 1.569405 

layers->rsetbd[1] = 1.569405 

layers->rsetbd[2] = 1.569405 

layers->rsetbd[3] = 1.569405 

layers->rsetbd[4] = 1.569405 

layers->rsetbd[5] = 1.549405 

layers->rsetbd[6] = 1.549405 

layers->rsetbd[7] = 1.549405 

layers->rsetbd[8] = 1.549405 

layers->rsetbd[9] = 1.549405 

layers->rsetbd[10] = 1.549405 

layers->rsetbd[11] = 1.549405 

layers->rsetbd[12] = 1.549405 

layers->rsetbd[13] = 1.549405 

 

 

1- 2- 
  0.0   2.0  1.20  0.38649  0.16504  0.80  0.01  0.15  0.35  0.01  

0.13  0.00026  5.50 

  2.0   5.0  1.20  0.38649  0.16504  0.20  0.04  0.15  0.35  0.01  

0.10  0.00026  5.50 

  5.0  10.0  1.20  0.38649  0.16504  0.00  0.25  0.15  0.35  0.01  

0.07  0.00026  5.50 

 10.0  20.0  1.20  0.38649  0.16504  0.00  0.30  0.15  0.35  0.01  

0.02  0.00026  5.50 

 20.0  30.0  1.20  0.38649  0.16504  0.00  0.10  0.15  0.35  0.01  

0.00  0.00026  5.50 

 30.0  45.0  1.28  0.51250  0.29618  0.00  0.05  0.20  0.60  0.01  

0.00  0.00013  5.50 

 45.0  60.0  1.28  0.51250  0.29618  0.00  0.04  0.20  0.60  0.01  

0.00  0.00013  5.50 

 60.0  75.0  1.28  0.51250  0.29618  0.00  0.03  0.20  0.60  0.01  

0.00  0.00013  5.50 

 75.0  90.0  1.28  0.51250  0.29618  0.00  0.02  0.20  0.60  0.01  

0.00  0.00013  5.50 

 90.0 105.0  1.28  0.51250  0.29618  0.00  0.01  0.20  0.60  0.01  

0.00  0.00013  5.50 

105.0 120.0  1.28  0.51250  0.29618  0.00  0.00  0.20  0.60  0.01  

0.00  0.00013  5.50 

120.0 150.0  1.28  0.51250  0.29618  0.00  0.00  0.20  0.60  0.01  

0.00  0.00013  5.50 

150.0 180.0  1.28  0.51250  0.29618  0.00  0.00  0.20  0.60  0.01  

0.00  0.00013  5.50 

180.0 210.0  1.28  0.51250  0.29618  0.00  0.00  0.20  0.60  0.01  

0.00  0.00013  5.50 
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1- 2- Bulk density under energy crop 
 

layers->rsetbd[0] = 1.324396 

layers->rsetbd[1] = 1.324396 

layers->rsetbd[2] = 1.324396 

layers->rsetbd[3] = 1.324396 

layers->rsetbd[4] = 1.324396 

layers->rsetbd[5] = 1.404397 

layers->rsetbd[6] = 1.404397 

layers->rsetbd[7] = 1.404397 

layers->rsetbd[8] = 1.404397 

layers->rsetbd[9] = 1.404397 

layers->rsetbd[10] = 1.404397 

layers->rsetbd[11] = 1.404397 

layers->rsetbd[12] = 1.404397 

layers->rsetbd[13] = 1.404397 

 

 

4+ 
0.0   2.0  1.31  0.35334  0.16525  0.80  0.01  0.33  0.35  0.01  

0.13  0.00018  5.50 

  2.0   5.0  1.31  0.35334  0.16525  0.20  0.04  0.33  0.35  0.01  

0.10  0.00018  5.50 

  5.0  10.0  1.31  0.35334  0.16525  0.00  0.25  0.33  0.35  0.01  

0.07  0.00018  5.50 

 10.0  20.0  1.31  0.35334  0.16525  0.00  0.30  0.33  0.35  0.01  

0.02  0.00018  5.50 

 20.0  30.0  1.31  0.35334  0.16525  0.00  0.10  0.33  0.35  0.01  

0.00  0.00018  5.50 

 30.0  45.0  1.31  0.35334  0.16525  0.00  0.05  0.33  0.35  0.01  

0.00  0.00018  5.50 

 45.0  60.0  1.31  0.35334  0.16525  0.00  0.04  0.33  0.35  0.01  

0.00  0.00018  5.50 

 60.0  75.0  1.31  0.35334  0.16525  0.00  0.03  0.33  0.35  0.01  

0.00  0.00018  5.50 

 75.0  90.0  1.31  0.35334  0.16525  0.00  0.02  0.33  0.35  0.01  

0.00  0.00018  5.50 

 90.0 105.0  1.31  0.35334  0.16525  0.00  0.01  0.33  0.35  0.01  

0.00  0.00018  5.50 

105.0 120.0  1.38  0.35334  0.16525  0.00  0.00  0.33  0.35  0.01  

0.00  0.00018  5.50 

120.0 150.0  1.38  0.35334  0.16525  0.00  0.00  0.33  0.35  0.01  

0.00  0.00018  5.50 

150.0 180.0  1.38  0.35334  0.16525  0.00  0.00  0.33  0.35  0.01  

0.00  0.00018  5.50 

180.0 210.0  1.38  0.35334  0.16525  0.00  0.00  0.33  0.35  0.01  

0.00  0.00018  5.50 
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4+ Bulk density under energy crop 
 

layers->rsetbd[0] = 1.355653 

layers->rsetbd[1] = 1.355653 

layers->rsetbd[2] = 1.355653 

layers->rsetbd[3] = 1.355653 

layers->rsetbd[4] = 1.355653 

layers->rsetbd[5] = 1.355653 

layers->rsetbd[6] = 1.355653 

layers->rsetbd[7] = 1.355653 

layers->rsetbd[8] = 1.355653 

layers->rsetbd[9] = 1.355653 

layers->rsetbd[10] = 1.425653 

layers->rsetbd[11] = 1.425653 

layers->rsetbd[12] = 1.425653 

layers->rsetbd[13] = 1.425653 

4- 
0.0   2.0  1.21  0.51250  0.29618  0.80  0.01  0.20  0.60  0.01  

0.24  0.00013  5.50 

  2.0   5.0  1.21  0.51250  0.29618  0.20  0.04  0.20  0.60  0.01  

0.18  0.00013  5.50 

  5.0  10.0  1.21  0.51250  0.29618  0.00  0.25  0.20  0.60  0.01  

0.12  0.00013  5.50 

 10.0  20.0  1.21  0.51250  0.29618  0.00  0.30  0.20  0.60  0.01  

0.03  0.00013  5.50 

 20.0  30.0  1.21  0.51250  0.29618  0.00  0.10  0.20  0.60  0.01  

0.00  0.00013  5.50 

 30.0  45.0  1.21  0.51250  0.29618  0.00  0.05  0.20  0.60  0.01  

0.00  0.00013  5.50 

 45.0  60.0  1.21  0.51250  0.29618  0.00  0.04  0.20  0.60  0.01  

0.00  0.00013  5.50 

 60.0  75.0  1.21  0.51250  0.29618  0.00  0.03  0.20  0.60  0.01  

0.00  0.00013  5.50 

 75.0  90.0  1.21  0.51250  0.29618  0.00  0.02  0.20  0.60  0.01  

0.00  0.00013  5.50 

 90.0 105.0  1.21  0.51250  0.29618  0.00  0.01  0.20  0.60  0.01  

0.00  0.00013  5.50 

105.0 120.0  1.21  0.51250  0.29618  0.00  0.00  0.20  0.60  0.01  

0.00  0.00013  5.50 

120.0 150.0  1.28  0.51250  0.29618  0.00  0.00  0.20  0.60  0.01  

0.00  0.00013  5.50 

150.0 180.0  1.28  0.51250  0.29618  0.00  0.00  0.20  0.60  0.01  

0.00  0.00013  5.50 

180.0 210.0  1.28  0.51250  0.29618  0.00  0.00  0.20  0.60  0.01  

0.00  0.00013  5.50 
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4- Bulk density under energy crop 
layers->rsetbd[0] = 1.208802 

layers->rsetbd[1] = 1.208802 

layers->rsetbd[2] = 1.208802 

layers->rsetbd[3] = 1.208802 

layers->rsetbd[4] = 1.208802 

layers->rsetbd[5] = 1.208802 

layers->rsetbd[6] = 1.208802 

layers->rsetbd[7] = 1.208802 

layers->rsetbd[8] = 1.208802 

layers->rsetbd[9] = 1.208802 

layers->rsetbd[10] = 1.208802 

layers->rsetbd[11] = 1.278802 

layers->rsetbd[12] = 1.278802 

layers->rsetbd[13] = 1.278802 

5+ 6+ 
0.0   2.0  1.37  0.25474  0.16569  0.80  0.01  0.65  0.35  0.01  

0.13  0.00011  6.50 

  2.0   5.0  1.37  0.25474  0.16569  0.20  0.04  0.65  0.35  0.01  

0.10  0.00011  6.50 

  5.0  10.0  1.37  0.25474  0.16569  0.00  0.25  0.65  0.35  0.01  

0.07  0.00011  6.50 

 10.0  20.0  1.37  0.25474  0.16569  0.00  0.30  0.65  0.35  0.01  

0.02  0.00011  6.50 

 20.0  30.0  1.37  0.25474  0.16569  0.00  0.10  0.65  0.35  0.01  

0.00  0.00011  6.50 

 30.0  45.0  1.37  0.25474  0.16569  0.00  0.05  0.65  0.35  0.01  

0.00  0.00011  6.50 

 45.0  60.0  1.37  0.25474  0.16569  0.00  0.04  0.65  0.35  0.01  

0.00  0.00011  6.50  

 60.0  75.0  1.27  0.25474  0.16504  0.00  0.03  0.15  0.35  0.01  

0.00  0.00026  6.50 

 75.0  90.0  1.27  0.25474  0.16504  0.00  0.02  0.15  0.35  0.01  

0.00  0.00026  6.50 

 90.0 105.0  1.27  0.25474  0.16504  0.00  0.01  0.15  0.35  0.01  

0.00  0.00026  6.50 

105.0 120.0  1.27  0.25474  0.16504  0.00  0.00  0.15  0.35  0.01  

0.00  0.00026  6.50 

120.0 150.0  1.27  0.25474  0.16504  0.00  0.00  0.15  0.35  0.01  

0.00  0.00026  6.50 

150.0 180.0  1.27  0.25474  0.16504  0.00  0.00  0.15  0.35  0.01  

0.00  0.00026  6.50 

180.0 210.0  1.27  0.25474  0.16504  0.00  0.00  0.15  0.35  0.01  

0.00  0.00026  6.50 
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5+ 6+ Bulk density under energy crop 
layers->rsetbd [0] = 1.539405 

layers->rsetbd[1] = 1.539405 

layers->rsetbd[2] = 1.539405 

layers->rsetbd[3] = 1.539405 

layers->rsetbd[4] = 1.539405 

layers->rsetbd[5] = 1.539405 

layers->rsetbd[6] = 1.539405 

layers->rsetbd[7] = 1.439405 

layers->rsetbd[8] = 1.439405 

layers->rsetbd[9] = 1.439405 

layers->rsetbd[10] = 1.439405 

layers->rsetbd[11] = 1.439405 

layers->rsetbd[12] = 1.439405 

layers->rsetbd[13] = 1.439405 

5- 6- 
0.0   2.0  1.50  0.21260  0.10540  0.80  0.01  0.82  0.18  0.01  

0.08  0.00057  6.50 

  2.0   5.0  1.50  0.21260  0.10540  0.20  0.04  0.82  0.18  0.01  

0.06  0.00057  6.50 

  5.0  10.0  1.50  0.21260  0.10540  0.00  0.25  0.82  0.18  0.01  

0.04  0.00057  6.50 

 10.0  20.0  1.50  0.21260  0.10540  0.00  0.30  0.82  0.18  0.01  

0.01  0.00057  6.50 

 20.0  30.0  1.50  0.21260  0.10540  0.00  0.10  0.82  0.18  0.01  

0.00  0.00057  6.50 

 30.0  45.0  1.50  0.21260  0.10540  0.00  0.05  0.82  0.18  0.01  

0.00  0.00057  6.50 

 45.0  60.0  1.50  0.21260  0.10540  0.00  0.04  0.82  0.18  0.01  

0.00  0.00057  6.50   

 60.0  75.0  1.47  0.23365  0.10340  0.00  0.03  0.65  0.18  0.01  

0.00  0.00060  6.50 

 75.0  90.0  1.47  0.23365  0.10340  0.00  0.02  0.65  0.18  0.01  

0.00  0.00060  6.50 

 90.0 105.0  1.47  0.23365  0.10340  0.00  0.01  0.65  0.18  0.01  

0.00  0.00060  6.50 

105.0 120.0  1.47  0.23365  0.10340  0.00  0.00  0.65  0.18  0.01  

0.00  0.00060  6.50 

120.0 150.0  1.47  0.23365  0.10340  0.00  0.00  0.65  0.18  0.01  

0.00  0.00060  6.50 

150.0 180.0  1.47  0.23365  0.10340  0.00  0.00  0.65  0.18  0.01  

0.00  0.00060  6.50 

180.0 210.0  1.47  0.23365  0.10340  0.00  0.00  0.65  0.18  0.01  

0.00  0.00060  6.50 
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5- 6- Bulk density under energy crop 
layers->rsetbd[0] = 1.670512 

layers->rsetbd[1] = 1.670512 

layers->rsetbd[2] = 1.670512 

layers->rsetbd[3] = 1.670512 

layers->rsetbd[4] = 1.670512 

layers->rsetbd[5] = 1.670512 

layers->rsetbd[6] = 1.670512 

layers->rsetbd[7] = 1.640512 

layers->rsetbd[8] = 1.640512 

layers->rsetbd[9] = 1.640512 

layers->rsetbd[10] = 1.640512 

layers->rsetbd[11] = 1.640512 

layers->rsetbd[12] = 1.640512 

layers->rsetbd[13] = 1.640512 

7+ 8+ 
0.0   2.0  1.40  0.23365  0.10340  0.80  0.01  0.65  0.18  0.01  

0.08  0.00060  5.50 

  2.0   5.0  1.40  0.23365  0.10340  0.20  0.04  0.65  0.18  0.01  

0.06  0.00060  5.50 

  5.0  10.0  1.40  0.23365  0.10340  0.00  0.25  0.65  0.18  0.01  

0.04  0.00060  5.50 

 10.0  20.0  1.40  0.23365  0.10340  0.00  0.30  0.65  0.18  0.01  

0.01  0.00060  5.50 

 20.0  30.0  1.40  0.23365  0.10340  0.00  0.10  0.65  0.18  0.01  

0.00  0.00060  5.50 

 30.0  45.0  1.40  0.23365  0.10340  0.00  0.05  0.65  0.18  0.01  

0.00  0.00060  5.50 

 45.0  60.0  1.40  0.23365  0.10340  0.00  0.04  0.65  0.18  0.01  

0.00  0.00060  5.50 

 60.0  75.0  1.40  0.23365  0.10340  0.00  0.03  0.65  0.18  0.01  

0.00  0.00060  5.50 

 75.0  90.0  1.40  0.23365  0.10340  0.00  0.02  0.65  0.18  0.01  

0.00  0.00060  5.50 

 90.0 105.0  1.40  0.23365  0.10340  0.00  0.01  0.65  0.18  0.01  

0.00  0.00060  5.50 

105.0 120.0  1.40  0.23365  0.10340  0.00  0.00  0.65  0.18  0.01  

0.00  0.00060  5.50 

120.0 150.0  1.38  0.35334  0.16525  0.00  0.00  0.33  0.35  0.01  

0.00  0.00018  5.50 

150.0 180.0  1.38  0.35334  0.16525  0.00  0.00  0.33  0.35  0.01  

0.00  0.00018  5.50 

180.0 210.0  1.38  0.35334  0.16525  0.00  0.00  0.33  0.35  0.01  

0.00  0.00018  5.50 
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7+ 8+ Bulk density under energy crop 
layers->rsetbd[0] = 1.492550 

layers->rsetbd[1] = 1.492550 

layers->rsetbd[2] = 1.492550 

layers->rsetbd[3] = 1.492550 

layers->rsetbd[4] = 1.492550 

layers->rsetbd[5] = 1.492550 

layers->rsetbd[6] = 1.492550 

layers->rsetbd[7] = 1.492550 

layers->rsetbd[8] = 1.492550 

layers->rsetbd[9] = 1.492550 

layers->rsetbd[10] = 1.492550 

layers->rsetbd[11] = 1.472550 

layers->rsetbd[12] = 1.472550 

layers->rsetbd[13] = 1.472550 

7- 8- 
  0.0   2.0  1.20  0.38649  0.16504  0.80  0.01  0.15  0.35  0.01  

0.13  0.00026  5.50 

  2.0   5.0  1.20  0.38649  0.16504  0.20  0.04  0.15  0.35  0.01  

0.10  0.00026  5.50 

  5.0  10.0  1.20  0.38649  0.16504  0.00  0.25  0.15  0.35  0.01  

0.07  0.00026  5.50 

 10.0  20.0  1.20  0.38649  0.16504  0.00  0.30  0.15  0.35  0.01  

0.02  0.00026  5.50 

 20.0  30.0  1.20  0.38649  0.16504  0.00  0.10  0.15  0.35  0.01  

0.00  0.00026  5.50 

 30.0  45.0  1.20  0.38649  0.16504  0.00  0.05  0.15  0.35  0.01  

0.00  0.00026  5.50 

 45.0  60.0  1.20  0.38649  0.16504  0.00  0.04  0.15  0.35  0.01  

0.00  0.00026  5.50 

 60.0  75.0  1.20  0.38649  0.16504  0.00  0.03  0.15  0.35  0.01  

0.00  0.00026  5.50 

 75.0  90.0  1.20  0.38649  0.16504  0.00  0.02  0.15  0.35  0.01  

0.00  0.00026  5.50 

 90.0 105.0  1.20  0.38649  0.16504  0.00  0.01  0.15  0.35  0.01  

0.00  0.00026  5.50 

105.0 120.0  1.20  0.38649  0.16504  0.00  0.00  0.15  0.35  0.01  

0.00  0.00026  5.50 

120.0 150.0  1.28  0.51250  0.29618  0.00  0.00  0.20  0.60  0.01  

0.00  0.00013  5.50 

150.0 180.0  1.28  0.51250  0.29618  0.00  0.00  0.20  0.60  0.01  

0.00  0.00013  5.50 

180.0 210.0  1.28  0.51250  0.29618  0.00  0.00  0.20  0.60  0.01  

0.00  0.00013  5.50 
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7- 8- Bulk density under energy crop 
 

layers->rsetbd[0] = 0.845400 

layers->rsetbd[1] = 0.845400 

layers->rsetbd[2] = 0.845400 

layers->rsetbd[3] = 0.845400 

layers->rsetbd[4] = 0.845400 

layers->rsetbd[5] = 0.845400 

layers->rsetbd[6] = 0.845400 

layers->rsetbd[7] = 0.845400 

layers->rsetbd[8] = 0.845400 

layers->rsetbd[9] = 0.845400 

layers->rsetbd[10] = 0.845400 

layers->rsetbd[11] = 0.925400 

layers->rsetbd[12] = 0.925400 

layers->rsetbd[13] = 0.925400 

9- 10- 
0.0   2.0  1.47  0.23365  0.10340  0.80  0.01  0.65  0.18  0.01  

0.08  0.00060  6.50 

  2.0   5.0  1.47  0.23365  0.10340  0.20  0.04  0.65  0.18  0.01  

0.06  0.00060  6.50 

  5.0  10.0  1.47  0.23365  0.10340  0.00  0.25  0.65  0.18  0.01  

0.04  0.00060  6.50 

 10.0  20.0  1.47  0.23365  0.10340  0.00  0.30  0.65  0.18  0.01  

0.01  0.00060  6.50 

 20.0  30.0  1.47  0.23365  0.10340  0.00  0.10  0.65  0.18  0.01  

0.00  0.00060  6.50 

 30.0  45.0  1.47  0.23365  0.10340  0.00  0.05  0.65  0.18  0.01  

0.00  0.00060  6.50 

 45.0  60.0  1.47  0.23365  0.10340  0.00  0.04  0.65  0.18  0.01  

0.00  0.00060  6.50 

 60.0  75.0  1.47  0.23365  0.10340  0.00  0.03  0.65  0.18  0.01  

0.00  0.00060  6.50 

 75.0  90.0  1.47  0.23365  0.10340  0.00  0.02  0.65  0.18  0.01  

0.00  0.00060  6.50 

 90.0 105.0  1.47  0.23365  0.10340  0.00  0.01  0.65  0.18  0.01  

0.00  0.00060  6.50 

105.0 120.0  1.47  0.23365  0.10340  0.00  0.00  0.65  0.18  0.01  

0.00  0.00060  6.50 

120.0 150.0  1.47  0.23365  0.10340  0.00  0.00  0.65  0.18  0.01  

0.00  0.00060  6.50 

150.0 180.0  1.47  0.23365  0.10340  0.00  0.00  0.65  0.18  0.01  

0.00  0.00060  6.50 

180.0 210.0  1.47  0.23365  0.10340  0.00  0.00  0.65  0.18  0.01  

0.00  0.00060  6.50 
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9- 10- Bulk density under energy crop 
ayers->rsetbd[0] = 1.526600 

layers->rsetbd[1] = 1.526600 

layers->rsetbd[2] = 1.526600 

layers->rsetbd[3] = 1.526600 

layers->rsetbd[4] = 1.526600 

layers->rsetbd[5] = 1.526600 

layers->rsetbd[6] = 1.526600 

layers->rsetbd[7] = 1.526600 

layers->rsetbd[8] = 1.526600 

layers->rsetbd[9] = 1.526600 

layers->rsetbd[10] = 1.526600 

layers->rsetbd[11] = 1.526600 

layers->rsetbd[12] = 1.526600 

layers->rsetbd[13] = 1.526600 

11+ 
0.0   2.0  1.31  0.35334  0.16525  0.80  0.01  0.33  0.35  0.01  

0.13  0.00018  5.50 

  2.0   5.0  1.31  0.35334  0.16525  0.20  0.04  0.33  0.35  0.01  

0.10  0.00018  5.50 

  5.0  10.0  1.31  0.35334  0.16525  0.00  0.25  0.33  0.35  0.01  

0.07  0.00018  5.50 

 10.0  20.0  1.31  0.35334  0.16525  0.00  0.30  0.33  0.35  0.01  

0.02  0.00018  5.50 

 20.0  30.0  1.31  0.35334  0.16525  0.00  0.10  0.33  0.35  0.01  

0.00  0.00018  5.50 

 30.0  45.0  1.31  0.35334  0.16525  0.00  0.05  0.33  0.35  0.01  

0.00  0.00018  5.50 

 45.0  60.0  1.31  0.35334  0.16525  0.00  0.04  0.33  0.35  0.01  

0.00  0.00018  5.50 

 60.0  75.0  1.31  0.35334  0.16525  0.00  0.03  0.33  0.35  0.01  

0.00  0.00018  5.50 

 75.0  90.0  1.31  0.35334  0.16525  0.00  0.02  0.33  0.35  0.01  

0.00  0.00018  5.50 

 90.0 105.0  1.31  0.35334  0.16525  0.00  0.01  0.33  0.35  0.01  

0.00  0.00018  5.50 

105.0 120.0  1.38  0.35334  0.16525  0.00  0.00  0.33  0.35  0.01  

0.00  0.00018  5.50 

120.0 150.0  1.38  0.35334  0.16525  0.00  0.00  0.33  0.35  0.01  

0.00  0.00018  5.50 

150.0 180.0  1.38  0.35334  0.16525  0.00  0.00  0.33  0.35  0.01  

0.00  0.00018  5.50 

180.0 210.0  1.38  0.35334  0.16525  0.00  0.00  0.33  0.35  0.01  

0.00  0.00018  5.50 
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11+ Bulk density under energy crop 
layers->rsetbd[0] = 1.091540 

layers->rsetbd[1] = 1.091540 

layers->rsetbd[2] = 1.091540 

layers->rsetbd[3] = 1.091540 

layers->rsetbd[4] = 1.091540 

layers->rsetbd[5] = 1.091540 

layers->rsetbd[6] = 1.091540 

layers->rsetbd[7] = 1.091540 

layers->rsetbd[8] = 1.091540 

layers->rsetbd[9] = 1.091540 

layers->rsetbd[10] = 1.161540 

layers->rsetbd[11] = 1.161540 

layers->rsetbd[12] = 1.161540 

layers->rsetbd[13] = 1.161540 

11- 
0.0   2.0  1.21  0.51250  0.29618  0.80  0.01  0.20  0.60  0.01  

0.24  0.00013  5.50 

  2.0   5.0  1.21  0.51250  0.29618  0.20  0.04  0.20  0.60  0.01  

0.18  0.00013  5.50 

  5.0  10.0  1.21  0.51250  0.29618  0.00  0.25  0.20  0.60  0.01  

0.12  0.00013  5.50 

 10.0  20.0  1.21  0.51250  0.29618  0.00  0.30  0.20  0.60  0.01  

0.03  0.00013  5.50 

 20.0  30.0  1.21  0.51250  0.29618  0.00  0.10  0.20  0.60  0.01  

0.00  0.00013  5.50 

 30.0  45.0  1.21  0.51250  0.29618  0.00  0.05  0.20  0.60  0.01  

0.00  0.00013  5.50 

 45.0  60.0  1.21  0.51250  0.29618  0.00  0.04  0.20  0.60  0.01  

0.00  0.00013  5.50 

 60.0  75.0  1.21  0.51250  0.29618  0.00  0.03  0.20  0.60  0.01  

0.00  0.00013  5.50 

 75.0  90.0  1.21  0.51250  0.29618  0.00  0.02  0.20  0.60  0.01  

0.00  0.00013  5.50 

 90.0 105.0  1.21  0.51250  0.29618  0.00  0.01  0.20  0.60  0.01  

0.00  0.00013  5.50 

105.0 120.0  1.21  0.51250  0.29618  0.00  0.00  0.20  0.60  0.01  

0.00  0.00013  5.50 

120.0 150.0  1.28  0.51250  0.29618  0.00  0.00  0.20  0.60  0.01  

0.00  0.00013  5.50 

150.0 180.0  1.28  0.51250  0.29618  0.00  0.00  0.20  0.60  0.01  

0.00  0.00013  5.50 

180.0 210.0  1.28  0.51250  0.29618  0.00  0.00  0.20  0.60  0.01  

0.00  0.00013  5.50 
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11- Bulk density under energy crop 
layers->rsetbd[0] = 1.175600 

layers->rsetbd[1] = 1.175600 

layers->rsetbd[2] = 1.175600 

layers->rsetbd[3] = 1.175600 

layers->rsetbd[4] = 1.175600 

layers->rsetbd[5] = 1.175600 

layers->rsetbd[6] = 1.175600 

layers->rsetbd[7] = 1.175600 

layers->rsetbd[8] = 1.175600 

layers->rsetbd[9] = 1.175600 

layers->rsetbd[10] = 1.175600 

layers->rsetbd[11] = 1.245600 

layers->rsetbd[12] = 1.245600 

layers->rsetbd[13] = 1.245600 

 

 

Figure A4.1Time series (by year) organic N leaching over the full simulated period at 

site1 for willow and Miscanthus 
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