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Abstract 

α-Glucans are typically used for carbon storage in bacteria, however, they are also a major 

component of the mycobacterial capsule. In this context, glucans have been implicated in the 

evasion of recognition by macrophages. A novel α-glucan synthesis pathway, called the GlgE 

pathway, is a potential source of the capsular glucan in mycobacteria. The pathway converts 

the disaccharide trehalose into α-glucan by the action of four enzymes: TreS, Pep2, GlgE and 

GlgB. Functional redundancy between other glucan synthesis pathways has made 

characterising the GlgE pathway difficult in mycobacteria. The genes encoding the enzymes 

of the pathway are found in 14% of sequenced bacterial genomes, suggesting the pathway is 

relatively wide-spread amongst bacteria. α-Glucans have also been isolated in a number of 

streptomycetes, which are distant relatives of mycobacteria. In this study Streptomyces 

venezuelae was used to show for the first time that the GlgE pathway is responsible for 

glucan synthesis in vivo, as was predicted by the annotations in the genome. A ΔglgE mutant 

was devoid of α-glucan and instead accumulated α-maltose 1-phosphate, which was 

associated with a developmental phenotype. The spores produced by the ΔglgE strain had 

normal levels of trehalose and had compromised resistance to abiotic stresses, with the 

exception of desiccation resistance, which was comparable to wild-type. In this study, 

another mutant from S. venezuelae ΔotsA was also investigated, which was hypothesised to 

be feeding the substrate trehalose into the GlgE pathway from glucose. However, under 

normal laboratory growth conditions, no phenotype was observed and the strain was able to 

accrue α-glucan. Surprisingly, a developmental phenotype arose when ΔotsA was grown on a 

galactose carbon source. This developmental phenotype was associated with the 

accumulation of GDP-glucose. Recombinant S. venezuelae OtsA was produced heterologously 

and the substrate preference for this enzyme was found to be GDP-glucose, as predicted by 

the phenotypic study of the ΔotsA strain. The crystal structure of S. venezuelae OtsA was 

solved to a resolution of 1.95 Å and the unusual substrate specificity was rationalised by 

comparison with a solved Escherichia coli OtsA structure, which has substrate specificity for 

UDP-glucose, and a pseudo-glycosyltransferase VldE, which uses GTP during catalysis. Four 

key resides were identified as being important for the substrate specificity of S. venezuelae 

OtsA: Ser345, Phe342, Glu341 and Asp340. Finally, TreS was found to be stereospecific for the α 

anomer of maltose, the appropriate anomer for Pep2, which confirms the prediction of an α-

retaining mechanism.        
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This thesis describes studies addressing questions relating to the biosynthesis of 

complex carbohydrates in bacteria, some of which may have a role in the persistence of 

human pathogens. The work will initially be placed in the context of the biology of 

carbohydrates. This will be followed by an introduction relating to certain aspects of 

carbohydrate metabolism in bacteria.   

1.1 Carbohydrates  

Carbohydrates play an integral role in all living organisms in which they serve a variety 

of functions. This ranges from energy transfer, providing structural integrity to 

regulatory roles (Varki, 1993). Despite their central importance to so many aspects of 

any organism’s life-cycle, there has been little research effort focussed on the study of 

carbohydrates, compared with DNA and protein. This is in part because they are not 

directly encoded by the genome and their structures are far more diverse than any 

other biopolymers. The sheer variety of carbohydrates observed in nature as well as 

the numerous ways in which they can be connected makes them difficult to 

characterise and they can vary considerably from organism to organism. Moreover, the 

enzymes involved in carbohydrate metabolism share considerable amino acid sequence 

similarity despite having altered substrate specificities and producing different sugars 

(Cantarel, et al., 2009).  

Carbohydrates are defined as a molecule comprising, carbon, hydrogen and oxygen 

with an empirical formula Cm(H2O)n. Generally carbohydrates are classified according 

to their structure as being mono-, di-, oligo- or poly-saccharides. Monosaccharides are 

individual carbohydrates that cannot be hydrolysed into smaller carbohydrate 

constituents. Disaccharides comprise two monosaccharides condensed together by a 

glycosidic bond. Polysaccharides are long chains of monosaccharides bonded by 

glycosidic linkages.  

The variety in monosaccharide building blocks, the arrangement of glycosidic bonding 

and the different stereochemistry leads to great diversity amongst the carbohydrates. 

This structural diversity affords functional diversity and this is, in part, why 

carbohydrates have been adopted into so many different aspects of biology. For 

example, the polysaccharides cellulose and amylose both comprise thousands of 

glucose molecules bonded by 1,4-glycosidic linkages. Cellulose contains β-1,4 glycosidic 

linkages whereas amylose contains α-1,4 glycosidic bonds (Dintzis and Tobin, 1969; 
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Updegraff, 1969). The β-1,4 glycosidic linkages orient the hydroxyl groups of the 

glucoses in such a way that hydrogen bonds can form within a linear chain of cellulose 

as well as between different chains, and this creates a strong rod-like fibre (Marrinan 

and Mann, 1954). The hydrogen bonding network is lacking in α-1,4 glycosidic-bonded 

amylose as the glucose units are not correctly orientated to form hydrogen bonds. The 

different properties of these polymers are reflected in their biological roles. Cellulose is 

a component of the plant cell wall in which it confers tensile strength and it is the most 

abundant polymer on the planet (Updegraff, 1969). Amylose is instead used as a 

constituent of starch which is a storage polymer used to store excess carbon in an inert 

form (Haworth, et al., 1946). The different properties of these polysaccharides, despite 

comprising the same constituent monosaccharide, demonstrate that small 

modifications in the bonding of polysaccharides can lead to very different chemical 

properties.  

In recent years there have been concerted efforts to characterise enzymes involved in 

carbohydrate synthesis and degradation. The two major classes of enzymes using 

carbohydrates as substrates are glycoside hydrolases (GHs) and glycosyl transferases 

(GTs) in the carbohydrate active enzyme (CAZy) database (Cantarel, et al., 2009).  

 

GT enzymes typically catalyse the formation of glycosidic bonds by combining an 

activated sugar donor with a specific acceptor (Cantarel, et al., 2009). As such they can 

form oligosaccharides and polysaccharides when a saccharide acceptor is used (Cabib 

and Leloir, 1958). Some GT enzymes can instead transfer a sugar donor onto a non-

saccharide acceptors, such as protein or lipids, to yield glycoconjugants (Choi, et al., 

2010). Despite a whole suite of different products made by GT enzymes and the high 

substrate specificity observed for individual GTs, only three distinct structural folds are 

known (Breton, et al., 2006). The major folds within this class of enzymes are GT-A and 

GT-B however, a GT51 fold has also been identified in the structure of a peptidoglycan 

glycosyl transferases (Breton, et al., 2006; Lovering, et al., 2007). The enzymes proceed 

either by a single step, inverting mechanism or by a SNi mechanism, which is also a 

single step reaction, that instead leads to the net retention of stereochemistry relative 

to the substrate (Figure 1.1) (Errey, et al., 2010; Hancock, et al., 2006).      
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The glycosidic bonds formed by GT enzymes are the most stable bond found in 

biopolymers from natural sources (Zechel and Withers, 1999). This is exemplified by 

cellulose which contains glycosidic bonds with a remarkably slow spontaneous rate of 

hydrolysis, with a half-life of 4.7 million years (Wolfenden, et al., 1998). In spite of this 

kinetic barrier, GH enzymes are able to catalyse bond cleavage at rates constants up to 

1000 s-1 (Zechel and Withers, 1999). The hydrolysis reaction either yields a product with 

a retained anomeric configuration or with an inverted anomeric configuration relative 

to the substrate (Figure 1.1 and 1.2).   

 

 

Figure 1.1: Scheme showing transition states of GT enzyme mechanisms 
Scheme showing transition states of an inverting SN2 mechanism (a) and a retaining SNi 
mechanism (b) of GT enzymes. The inverting scheme is applicable to inverting GH 
enzymes also, where R’= H. 
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Figure 1.2: General reaction mechanism of a retaining GH enzyme 

1.2 Glycogen 

The major focus of this thesis is bacterial glycogen metabolism (Figure 1.3). Glycogen is 

a biopolymer comprising hundreds of thousands of glucose molecules predominantly 

(~90%) bonded by α-1,4-links with infrequent (~10%) α-1,6-linked branch points  (Bell 

and Young, 1934; Young, 1957). It is a sub-class of glucan, which is defined as a 

polysaccharide comprising D-glucose substituents. Glycogen is a ubiquitous carbon 

storage polysaccharide found in bacteria, yeast, fungi, and animals (including humans) 

(Bell and Young, 1934; Levine, et al., 1953; Northcote, 1953; Rothman and Cabib, 

1969). In bacteria, glycogen typically accumulates when growth is limited by a nutrient 

other than carbon (Montero, et al., 2009). Whilst glycogen is soluble, it is relatively 

inert and does not significantly affect a cells internal osmotic pressure, which offers a 

significant advantage over using other mono- or di-saccharides (Wilson, et al., 2010).   
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Figure 1.3: Schematic representation of glycogen with the two types of bonding 
highlighted 
 

There are three known bacterial glucan synthesis pathways: GlgAC, GlgE and Rv3032 

(Figure 1.4) (Chandra, et al., 2011). Whilst two of these pathways (GlgE and GlgAC) are 

known to synthesise glycogen, the third (Rv3032) has only been known to synthesise a 

glucan polymer, which is ultimately used to produce methylglucose lipopolysaccharides 

(MGLP) (Figure 1.5) (Chandra, et al., 2011). Glucan is non-essential for the viability of all 

bacterial species tested and indeed 60% of sequenced bacterial species do not contain 

any genes encoding the three known glucan synthesis pathways, which suggests that 

these bacteria need no glucan for survival (Chandra, et al., 2011; Preiss, 1984).       

The first known, and best elucidated, pathway is the GlgAC pathway which has been 

extensively characterised in Escherichia coli (Preiss, 1984). The first enzyme of the 

pathway is a nucleotide diphosphoglucose pyrophosphate pyrophosphorylase (GlgC) 

that catalyses the formation of adenosine diphosphate (ADP)-glucose from glucose 1-

phosphate (Preiss, et al., 1975; Shen and Atkinson, 1970). The ADP-glucose is then used 

by a glycogen synthase (GlgA), which catalyses a polymerisation reaction to produce an 

α-1,4-glucan chain (Leloir and Goldemberg, 1962). The final step of the pathway is 

catalysed by a branching enzyme (GlgB) that introduces α-1,6- linked branch points by 

transferring a non-reducing-end maltooligosaccharide (MOS) from the 4-position to the 

6-position (Larner, 1953). Bioinformatic analysis predicts that this pathway is the most 
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widely distributed amongst bacterial species, with the genes encoding the pathway 

present in 32% of sequenced bacteria (Chandra, et al., 2011).  

A second route to glucan synthesis is via the MGLP pathway (Figure 1.4) (Jackson, et al., 

2007). The presence of this pathway is limited to some actinomycetes, with one 

example being Mycobacterium, and the genes encoding the α-glucan synthesis 

enzymes of the pathway are present in only 2% of sequenced bacterial genomes 

(Chandra, et al., 2011). To date, all enzymes involved in producing MGLP are not 

known, however, the first two steps in the biosynthesis of the oligosaccharide 

backbone is predicted to lead to the production of a branched glucan (Jackson and 

Brennan, 2009). Firstly, a glucosyl transferase, Rv3032 (a paralogue of GlgA) is 

preliminarily thought to use ADP-glucose as well as uridine diphosphoglucose (UDP)-

glucose as a donor to synthesise a linear α-1,4-glucan (Kaur, et al., 2009; Stadthagen, et 

al., 2007). Rv3031 is a predicted to be a branching enzyme that is able to introduce a 

single α-1,6-branch to produce an α-glucan polysaccharide with a single branch, in a 

comparable manner to GlgB (Stadthagen, et al., 2007).   

 

 
Figure 1.4: Overview of glucan synthesis pathways 
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Figure 1.5: Structure of a typical MGLP, which is synthesised by the Rv3032 pathway 

The third, and final, known α-glucan synthesis pathway is the GlgE pathway (Figure 1.4) 

(Elbein, et al., 2010; Kalscheuer, et al., 2010a). The pathway comprises four enzymes, 

the genes encoding the enzymes are all present in 14% of sequenced bacterial 

genomes and they are often clustered together in these genomes (Chandra, et al., 

2011). The starting substrate of the GlgE pathway is a disaccharide, unlike the GlgAC 

and Rv3032 pathways. Briefly, trehalose synthase (TreS) is the first enzyme of the 

pathway and converts trehalose (α-D-glucopyranosyl-(1,1)-α-D-glucopyranoside) to 

maltose (α-D-glucopyranosyl-(1,4)-D-glucopyranose) (Nishimoto, et al., 1995; 

Nishimoto, et al., 1996). A maltose kinase (Pep2) subsequently phosphorylates maltose, 

to form α-maltose 1-phosphate (αM1P), which is added to the non-reducing end of a 

linear α-glucan chain by a maltosyltransferase (GlgE) (Drepper, et al., 1996; Kalscheuer, 

et al., 2010a). Finally, GlgB converts the linear α-glucan chain to a branched α-glucan 

(Larner, 1953). Whilst the individual enzyme activities have been confirmed 

experimentally, an unequivocal link between the pathway and glucan production in 

vivo has not been demonstrated. 
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1.3 Enzymes of the GlgE pathway 

1.3.1 TreS 
TreS is a maltose α-D-glucosylmutase (EC 5.4.99.16) that interconverts maltose and 

trehalose (Figure 1.6) (Nishimoto, et al., 1995; Pan, et al., 2004). It also displays weak 

hydrolytic activity (Nishimoto, et al., 1996) and has been observed to slowly hydrolyse 

glycogen to maltose (Pan, et al., 2008). TreS proceeds via an intramolecular pathway, in 

which both glucose units from a single molecule of trehalose are used to form a single 

molecule of maltose and vice versa (Kobayashi, et al., 2003; Koh, et al., 2003; 

Nishimoto, et al., 1996). 

The enzyme belongs to the GH13_33 sub-family according to the CAZy database 

(Cantarel, et al., 2009; Stam, et al., 2006). Thus, it is predicted to have a (β/α)8  barrel 

fold, defining an active site containing an Asp nucleophile and a Glu proton donor that 

is expected to catalyse an α-retaining double-displacement reaction mechanism, which 

will be explored in more detail in subsequent chapters (Figure 1.2). Therefore, the 

mechanism predicts that TreS should indeed be stereospecific in which it should only 

interconvert α-maltose and trehalose. From a biological perspective this has 

implications for flux into the pathway because the second enzyme of the pathway is 

stereospecific (see 1.3.2) and therefore it is unclear if flux of the GlgE pathway is 

limited by the slow mutarotation of maltose as there are few known maltose 

mutarotases in bacteria (Bailey, et al., 1967; Stults, et al., 1987). Crystallography of TreS 

from two mycobacterial species has confirmed the predicted active site configuration 

(Caner, et al., 2013; Roy, et al., 2013). Furthermore, the glucosyl-enzyme intermediate 

involves Asp230 in the Mycobacterium smegmatis TreS, which supports the mechanistic 

prediction (Figure 1.2) (Zhang, et al., 2011). Interestingly, crystallography also identified 

a remote acarbose binding site located 40 Å away from the active site (Caner, et al., 

2013). 

 

TreS was initially discovered in Pimelobacter sp. R48 but it has been reported in a 

number of bacteria since, including Mycobacterium tuberculosis, Pseudomonas 

syringae and Thermus caldophilus (De Smet, et al., 2000; Freeman, et al., 2010; Koh, et 

al., 2003; Nishimoto, et al., 1995). Before the discovery of the GlgE pathway, the 

physiologically relevant reaction of TreS was assumed to be trehalose production from 

maltose. However, in the context of the GlgE pathway, TreS would be required to 
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catalyse the reverse reaction and produce maltose from trehalose. Therefore, the role 

it plays in metabolism is somewhat ambiguous.  

 

Figure 1.6: Overview of TreS reaction  
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1.3.2 Pep2  
Pep2 (EC 2.7.1.175) is a phosphotransferase that produces αM1P (Figure 1.7) (Drepper, 

et al., 1996; Niehues, et al., 2003). The gene encoding Pep2 is present in 17% of 

bacterial genomes (Chandra, et al., 2011)  and the Pep2 protein has been characterised 

from a number of actinomycetes (Jarling, et al., 2004; Mendes, et al., 2010). The 

physiological role of Pep2 was not immediately apparent prior to the discovery of the 

GlgE pathway but it is now thought to exclusively function within the GlgE pathway. 

This is consistent with the finding that the treS gene is frequently associated with the 

pep2 gene and indeed both protein functions are more often encoded as a single gene 

fusion than as separate genes in bacterial genomes (Chandra, et al., 2011). Moreover, 

recent work has shown that TreS and Pep2 proteins from M. tuberculosis form a 

hetero-octameric complex in vitro that increases the activity of Pep2 (Roy, et al., 2013).  

 

Figure 1.7: Overview of Pep2 reaction   
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1.3.3 GlgE  
The defining enzyme of the pathway is the maltosyl transferase GlgE (EC 2.4.99.16) 

belonging to the GH13_3 family that also exhibits disproportionation activity of linear 

α-glucans (Figure 1.8) (Cantarel, et al., 2009; Elbein, et al., 2010; Kalscheuer, et al., 

2010a).  GlgE transfers maltose from αM1P to the non-reducing end of linear α-glucan 

via a ping-pong mechanism (Kalscheuer, et al., 2010a). The enzyme requires an α-

glucan acceptor with a degree of polymerisation (DP) at least above 4 (Kalscheuer, et 

al., 2010a). Based on its CAZy family membership allocation, it is predicted to proceed 

via an α-retaining, two-step, double displacement reaction (Figure 1.2) (Cantarel, et al., 

2009). The crystal structure of the apo form of GlgE from S. coelicolor, as well as mutein 

forms of the enzyme bound to deoxy-fluoro-glucosyl intermediates, has revealed how 

GlgE catalysis occurs (Syson, et al., 2014; Syson, et al., 2011). Small angle X-ray 

scattering has shown that the overall shape of the outer pocket of S. coelicolor GlgE is 

comparable to M. tuberculosis GlgE (Syson, et al., 2014). Moreover, all kinetic and 

substrate specificity features are identical and they share a conserved donor site 

according to homology modelling (Syson, et al., 2011). Therefore, the structure of S. 

coelicolor enzyme crystal structure has potential to be used in the rational design of 

novel M. tuberculosis GlgE inhibitors (Syson, et al., 2014). 

 

 

Figure 1.8: Overview of GlgE reaction 

GlgE
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1.3.4 GlgB 

The final enzyme of the GlgE pathway is GlgB (EC 2.4.1.18), which introduces α-1,6-

linked branch points by transferring a non-reducing-end MOS from the 4-position to 

the 6-position (Figure 1.9) (Lares, et al., 1974). It belongs to the GH 13_9 sub-family, 

and as with TreS and GlgE, is predicted to proceed via an α-retaining, 2 step, double 

displacement mechanism (Figure 1.2) (Cantarel, et al., 2009; Stam, et al., 2006). Prior to 

the discovery of the GlgE pathway, GlgB was thought to be solely involved in classical 

glycogen synthesis by the GlgAC pathway. However, the glgB gene is more frequently 

associated with the other genes of the GlgE pathway rather than with the genes 

required for the GlgAC pathway (Chandra, et al., 2011). The crystal structures of several 

GlgBs have provided insight into the mechanism of catalysis with four domains involved 

in substrate binding and catalysis (Abad, et al., 2002; Pal, et al., 2010). Furthermore, the 

potential catalytic triad of Asp411, Glu464 and Asp532 was identified in the M. tuberculosis 

GlgB, which could carry out general acid catalysis (Pal, et al., 2010). As with GlgE, the 

structure of this enzyme could help with the design of novel inhibitors (Pal, et al., 

2010). 

 
Figure 1.9: Overview of GlgB reaction 
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1.4 The GlgE pathway in Mycobacterium 

The GlgE pathway was initially discovered in M. tuberculosis, which is the causative 

agent of the human disease tuberculosis (Dye, 2006; Kalscheuer and Jacobs, 2010). 

Approximately 2 billion people worldwide are estimated to have asymptomatic latent 

infections of the bacterium and are at risk of developing the disease (Zumla, et al., 

2013). Whilst in up to 90% of these cases active disease will not develop, globally there 

were 8.7 million new cases of tuberculosis with 1.4 million deaths in 2011 (Zumla, et 

al., 2013). Treatment of the disease requires a long course of a cocktail containing 

several antibiotics (Dye, 2006). As the disease symptoms typically subside before the 

infection is completely eradicated by antibiotics, patients frequently do not complete 

their treatments, which therefore present a strong selection pressure for multiple-drug 

resistant strains of M. tuberculosis to develop (Zumla, et al., 2013). This has led to the 

emergence of extensively drug resistant strains in a number of countries across all 

continents (Zumla, et al., 2013). Consequently there is an urgent need to develop new 

therapies with novel modes of actions to target M. tuberculosis in order to increase the 

number of therapeutics available. 

 

The gene encoding GlgE was predicted to be essential for the survival of M. smegmatis 

and M. tuberculosis (Sassetti, et al., 2003); and accordingly attempts to generate ∆glgE 

in M. tuberculosis failed (Kalscheuer, et al., 2010a). However, ∆glgE in M. smegmatis 

was only conditionally lethal, with lethality observed when excess trehalose was 

supplied exogenously in the growth media (Kalscheuer, et al., 2010a). In the absence of 

GlgE, there is accumulation of the toxic metabolite αM1P (Kalscheuer, et al., 2010a). 

Therefore, to avoid accumulation of αM1P, chemical genetics was used to generate an 

inducible ∆glgE strain in M. tuberculosis (Kalscheuer, et al., 2010a). In addition to being 

non-viable in a free-living form, the ∆glgE strain was unable to colonise mouse tissues 

and cause pathogenicity (Kalscheuer, et al., 2010a). Thus an inhibitor of GlgE has 

potential for use in the treatment tuberculosis. The mechanism by which αM1P causes 

toxicity remains elusive, however, microarray experiments have shown that there are 

global changes in gene expression upon αM1P accumulation and therefore toxicity is 

unlikely to be caused by perturbation of a single pathway and/or mechanism 

(Kalscheuer, et al., 2010a). 
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GlgE is a particularly attractive drug target because it lacks a human homolog, which 

minimises the risk of adverse side effects caused by non-specifically disrupting host 

enzymes (Kalscheuer and Jacobs, 2010; Kalscheuer, et al., 2010a). It is noteworthy that 

GlgB is also essential for M. tuberculosis and therefore it too has potential to be used as 

a drug target (Sambou, et al., 2008). However, homologues of GlgB exist in humans and 

therefore any therapies targeting GlgB could be more likely to have adverse side-

effects in humans (Kalscheuer, et al., 2010a).  

One potential destination of the α-glucan product synthesised by the GlgE pathway is 

to the capsular layer of Mycobacterium (Kalscheuer, et al., 2010a). The capsule is a 

non-covalently linked structure located in the outermost compartment of the cell 

envelope (Ortalomagne, et al., 1995; Sani, et al., 2010). It comprises carbohydrates, 

proteins and small amounts of lipid (Lemassu, et al., 1996; Ortalomagne, et al., 1995). 

The capsule plays a key role in pathogenesis as it is the part of the mycobacteria that 

directly interacts with the host. For example, the capsule enhances interactions made 

between Mycobacterium bovis BCG and macrophages, thereby facilitating infection 

(Sani, et al., 2010). Several publications have reported that extracellular α-glucans from 

M. tuberculosis are responsible for suppressing recognition within the host and 

preventing an appropriate immune response being mounted (Gagliardi, et al., 2007; 

Geurtsen, et al., 2009).  

The carbohydrate of the capsule is known to predominantly take the form of an α-

glucan, like the products of the GlgE and GlgAC pathways (Dinadayala, et al., 2008; 

Lemassu and Daffe, 1994; Ortalomagne, et al., 1995). Immunoelectron microscopy has 

shown that the M. tuberculosis TreS is cytosolic and as such the other enzymes of the 

GlgE pathway are unlikely to be located extracellularly, which suggests the α-glucan will 

require export to the extracellular space (Vizcaino, et al., 2010). Whilst mycobacteria 

are known to release active membrane vesicles, α-glucan is absent from such vesicles, 

which suggests that export is instead taking place via a specific set of transporters 

(Prados-Rosales, et al., 2011). There are three known pathways that synthesise α-

glucan in Mycobacterium: GlgAC, GlgE and Rv3032 pathways (Figure 1.10). It remains 

unclear if one pathway or several pathways are producing α-glucan for the capsular 

layer as well as contributing to cytosolic glycogen levels (Jackson, et al., 2007; 

Kalscheuer, et al., 2010a; Sambou, et al., 2008). Exchange of substrates and/or 
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products between two of these pathways is very likely to occur because the Rv3032 

and GlgE pathways are synthetically lethal but the point of cross-talk between these 

pathways remains unknown (Kalscheuer, et al., 2010a). Mutants in glgA and Rv3032 

had  major changes in flux balances of extracellular capsular α-glucan and α-glucan 

levels respectively (Sambou, et al., 2008). Furthermore, the glgA mutant produced 

fewer colonies in a mouse infection model, implying a specific role for α-glucans in the 

persistent phase infection of mice (Sambou, et al., 2008). 

The functional redundancy between these pathways makes it difficult to understand 

their roles in isolation in Mycobacterium. Consequently, understanding the 

biochemistry of the GlgE pathway, such as characterising the polysaccharide it 

synthesises, is also difficult in a mycobacterial system. 

 

 

Figure 1.10: Overview of glucan metabolism in Mycobacterium 
Dashed lines indicate pathways containing multiple enzymes. Green arrows indicate 
glucan synthesis pathways and the red arrows indicate enzymes/pathways involved in 
glucan degradation. Glc = glucose, P= phosphate 
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1.5 Regulation of the GlgE pathway in Mycobacterium 

The first report of glgE came from researchers characterising a temperature sensitive 

mutant of M. smegmatis called SMEG53 (Belanger and Hatfull, 1999). SMEG53 grows 

like WT under normal culture conditions; however, at temperatures ≥42 °C it ceases to 

divide and has altered cell wall morphology (Belanger and Hatfull, 1999). The mutation 

in SMEG53 mapped to a single amino-acid substitution within GlgE (H349Y) (Belanger 

and Hatfull, 1999). His349 is conserved in S. coelicolor GlgE and the crystal structure 

suggests it is located close to a facile lid that allows entry of αM1P into the active site 

(Syson, et al., 2011). The SMEG53 phenotype is restored to WT by the reintroduction of 

a non-mutated glgE (Belanger and Hatfull, 1999), which suggests that GlgE (H349Y) is a 

loss of function mutant but the mechanism by which this mutation diminishes GlgE 

activity remains unclear.  

  

Surprisingly, a WT phenotype is also restored in SMEG53 by the introduction of 

multiple copies of the garA gene (Belanger and Hatfull, 1999). Recently, GlgE has been 

shown to be negatively regulated by phosphorylation in M. smegmatis (Leiba, et al., 

2013). The kinase specifically involved in phosphorylation of GlgE is PknB (protein 

kinase B) (Leiba, et al., 2013). GarA is also a phosphorylation target of PknB. GarA is 

involved in the regulation of carbon and nitrogen metabolism in other organisms 

(England, et al., 2009; Ventura, et al., 2013). Therefore, GarA may be acting as a 

phosphorylation decoy, to prevent phosphorylation and further de-activation of the 

temperature sensitive GlgE by saturating PknB in the SMEG53 strain, thereby 

ameliorating the temperature sensitive phenotype (Leiba, et al., 2013).    

 

Together, these observations suggest that mycobacteria are able to regulate 

accumulation of α-glucan by phosphorylation of GlgE. It is noteworthy that an 

orthologue of PknB in S. ceoelicolor AfsK was also observed to specifically 

phosphorylate S. coelicolor GlgE, suggesting that these regulatory networks may be 

conserved in at least actinomycetes (Leiba, et al., 2013). Interestingly, this type of 

regulation contrasts with the allosteric regulation observed in the GlgAC pathway 

(Preiss, et al., 1983).  

 

  

17 
 



Chapter 1: Introduction 

 
 
1.6 The GlgE pathway in Streptomyces 

Streptomyces are soil dwelling, multi-cellular colony forming bacteria with distinct 

developmental stages (Figure 1.11) (Flardh and Buttner, 2009). Streptomyces typically 

produce a diverse array of compounds with anti-microbial activities and over half of 

antibiotics used by medicine were originally isolated from Streptomyces (Kieser, et al., 

2000).  

 

Figure 1.11: Overview of the life-cycle of Streptomyces 
Adapted from (Kieser, et al., 2000) 
 
Glycogen has been identified in a number of different Streptomyces species, including 

the model streptomycete S. coelicolor (Brana, et al., 1980; Braña, et al., 1982; Brana, et 

al., 1986; Bruton, et al., 1995; Homerova, et al., 1996; Ranade and Vining, 1993; Rueda, 

et al., 2001). In S. coelicolor, glycogen is deposited transiently at the interface between 

the substrate and aerial hyphae in what is known as phase I glycogen deposition 

(Plaskitt and Chater, 1995). This is followed by phase II deposition of glycogen in the 

pre-spore compartments. Phase II deposition is prolonged and qualitative inspection of 

microscopy images suggests that it is associated with greater glycogen deposition. 

Ultimately, the mature spores are devoid of glycogen but have high levels (up to 20% of 
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dry cell weight) of trehalose (Brana, et al., 1986; Ranade and Vining, 1993). Therefore, 

it has been proposed that glycogen deposition allows localisation of carbon reserves in 

pre-spores so as to provide a carbon source for trehalose production during spore 

maturation. This is consistent with the observation in Streptomyces venezuelae that 

gene expression of the sequence encoding the TreZ enzyme (involved in glycogen 

degradation via the TreYZ pathway) is regulated by a sporulation specific transcription 

factor (Bush, et al., 2013).  

 

In S. coelicolor the genes encoding the GlgE pathway enzymes are all located in the 

same operon from which they are co-transcribed to produce a polycistronic transcript 

with three of the genes predicated to be translationally coupled (Schneider, et al., 

2000). Unusually S. coelicolor has two gene clusters each encoding functional GlgE 

enzymes (Schneider, et al., 2000). Single disruption mutants of each of the glgB genes 

have shown that each GlgB branches glucans at different phases (Bruton, et al., 1995). 

Therefore, it suggests that genes from one GlgE operon are responsible for phase I 

deposition and that genes from the other GlgE operon are required for phase II 

deposition (Bruton, et al., 1995). 

 

Consistent with this hypothesis is the fact that the two GlgE clusters are under separate 

developmental control (Plaskitt and Chater, 1995; Schneider, et al., 2000; Yeo and 

Chater, 2005). The complex morphology of the S. coelicolor is mediated by a number of 

different regulatory genes that are responsible for different developmental stages 

(Flardh and Buttner, 2009). Two such classes of regulatory genes are bld and whi. Bld 

regulatory genes are required for aerial hyphae formation and Whi genes are required 

for regular septation of aerial hyphae (Flardh and Buttner, 2009). The bld genes are 

required for normal phase I glycogen however, normal phase II glycogen is reliant upon 

WhiG (a σWhiG factor for specifying RNA polymerases to initiate sporulation septation) 

(Plaskitt and Chater, 1995; Yeo and Chater, 2005). 

Further investigations on glycogen metabolism S. coelicolor are compounded by the 

fact that the genes encoding the GlgAC pathway are also present. With three glycogen 

synthesis pathways, genetic studies to generate glycogen deficient mutants are more 

challenging. Interestingly, another streptomycete, S. venezuelae, contains only a single 

GlgE operon and lacks genes encoding enzymes of the GlgAC and Rv3032 pathways 
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(Figure 1.12). Glycogen has been reported in S. venezuelae; however it is not deposited 

biphasically as in S. coelicolor but instead monophasically during the early stages of 

sporulation (Ranade and Vining, 1993).   

 

 

Figure 1.12: Overview of bioinformatic predictions of glucan metabolism in 
S. venezuelae 
Dashed lines indicate pathways containing multiple enzymes. Green arrows indicate 
glucan synthesis pathways and the red arrows indicate enzymes/pathways involved in 
glucan degradation. Glc = glucose, P= phosphate 
 

1.7 Trehalose synthesis in Mycobacterium and Streptomyces 

In contrast to the other glucan synthesis pathways, a disaccharide (instead of a 

monosaccharide) trehalose is the initial substrate of the GlgE pathway (Kalscheuer, et 

al., 2010a).  Trehalose is a non-reducing disaccharide that has many roles in biology 

(Arguelles, 2000; Elbein, et al., 2003; Iturriaga, et al., 2009). For example, it is a 

precursor for the mycomembrane, trehalose mycolates, which are essential for the 

growth and virulence of mycobacteria, such as M. tuberculosis (Takayama, et al., 2005). 

Intracellular trehalose levels also increase in response to different stresses in  

M. smegmatis, suggesting that it has a dual function as a stress protectant and has a 

structural role, which makes it essential for virulence (De Smet, et al., 2000). Trehalose 

is also present throughout the life-cycle of Streptomyces, with maximal accumulation 

observed in mature spores (McBride and Ensign, 1987). In the spores, trehalose is 

thought act as a compatible solute, enhancing desiccation tolerance of dormant spores 

(McBride and Ensign, 1990). Following the onset of germination, trehalose is rapidly 

hydrolysed to glucose by trehalase, therefore it also acts as a carbon reserve to fuel 

vegetative growth (McBride and Ensign, 1990). 
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There are at least three alternate trehalose biosynthetic routes known in bacteria 

(Figure 1.13) (Iturriaga, et al., 2009). Interestingly, Mycobacterium and Streptomyces 

have genes encoding what have to date been considered to be the three most common 

pathways, perhaps reflecting the critical role trehalose has in these genera (Chandra, et 

al., 2011; De Smet, et al., 2000).   

 
Figure 1.13: Overview of what have been proposed to be trehalose synthesis 
pathways in bacteria 
The most widely distributed pathways associated with trehalose biosynthesis in 
actinobacteria, reviewed by (Iturriaga, et al., 2009). 
 

The OtsAB pathway synthesises trehalose by condensation of two glucoses, via two 

enzymes: OtsA (EC 2.4.1.15) and OtsB (EC 3.1.3.12) (Cabib and Leloir, 1958; Matula, et 

al., 1971). OtsA is classified as a GT20 retaining enzyme and proceeds via an SNi 

reaction mechanism (Figure 1.1a) (Cantarel, et al., 2009; Errey, et al., 2010; Lee, et al., 

2011). OtsA condenses glucose 6-phosphate to a nucleoside diphospho glucose (NDP-

Glc) to form trehalose 6-phosphate (Cabib and Leloir, 1958). Whilst glucose 6-

phosphate is required, the substrate specificity of NDP-glucoses varies between 

organisms. For example E. coli is specific for UDP-glucose, whereas Streptomyces 

hygroscopicus is specific for GDP-glucose (Elbein, 1968; Gibson, et al., 2002). This is 

followed by dephosphorylation of trehalose 6-phosphate by the phosphatase OtsB to 

yield trehalose (Matula, et al., 1971). 

 

The TreYZ pathway degrades glycogen and/or glucans into trehalose by a three step 

process involving the enzymes TreX (EC 3.2.1.33), TreY (EC 5.4.99.15) and TreZ (EC 

3.2.1.141) (Maruta, et al., 1996). The first step of the pathway involves de-branching of 
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α-1,6 branch points of glucans by TreX (Nakayama, et al., 2001). The reducing-end 

glycosidic bond is then transglycosylated from α-1,4 linkage to a α-1,1 linkage by TreY 

(Kim, et al., 2000; Maruta, et al., 1996). The terminal α-1,1 bonded disaccharide is 

subsequently cleaved in a hydrolysis reaction by maltooligosyltrehalose 

trehalohydrolase TreZ (Kim, et al., 2000). 

 

In vitro experiments have shown that all three pathways could, in principle, operate in 

Mycobacterium (De Smet, et al., 2000). Moreover, genetic experiments appeared to 

show that all pathways are capable of synthesizing trehalose de novo in M. smegmatis 

(Woodruff, et al., 2004). It is noteworthy that these studies were using non-specified 

culture media, that could have contained maltose, and therefore interpretations of the 

results are ambiguous. In contrast, it has been reported that the OtsAB pathway is 

dominant in trehalose biosynthesis in M. tuberculosis (Murphy, et al., 2005).  However, 

in a close relative of mycobacteria Corynibacterium glutamicum the TreYZ pathway 

produces the majority of trehalose (Wolf, et al., 2003). The observed hierarchies will 

probably be subject to change depending on the nature of the carbon source and 

therefore it is important to conduct such studies on well-defined media. The presence 

of several trehalose synthesis pathways is likely to allow organisms to ensure adequate 

intracellular trehalose supply regardless of the external supplied carbon source.   

1.8 Project aims 
The main aims of this thesis are threefold: 

1. Biochemical characterisation of two of the enzymes of the GlgE pathway, with 

a view to determining if TreS is stereospecific so as to support the catalytic 

mechanism by which it undergoes catalysis. Pep2 expression is explored with a 

view to determining if the enzyme could be combined with TreS in vitro to 

synthesise αM1P.  

2. Reverse genetics on S. venezuelae to determine experimentally if the GlgE 

pathway is responsible for glycogen production in this organism and to 

determine whether glgE is essential through αM1P toxicity as well as its overall 

impact on development of S. venezuelae.    

3. Reverse genetics and biochemical characterisation of candidate genes that are 

hypothesised to be either feeding substrate into the GlgE pathway or involved 

in glycogen degradation in S. venezuelae. 
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2.1 Molecular biology methods 
 
2.1.1 Growth media and supplements 

 
Table 2.1: Constituents of all media used in this study, including supplements 

Media Constituents (g L-1)  
Lysogeny broth (LB)  (10 agar*), 10 tryptone, 5 yeast extract, 10 

NaCl, distilled water (dH2O) 
Lennox (Lx) (10 agar*), 10 tryptone, 5 yeast extract, 5 

NaCl,  
1 Glucose, dH2O 

Auto Induction Media (AIM) 10 tryptone, 5 yeast extract, 3.3 (NH4)2SO4, 
6.8 KH2PO4, 7.1 Na2HPO4, 0.5 glucose, 2 α-
lactose, 0.15 MgSO4, 0.03 ForMediumTM  
trace elements, dH2O   

Super Optimal Broth with Catabolite 
Repression (SOC) 

20 tryptone, 5 yeast extract, 0.58 NaCl, 3.6 
glucose, 0.19 KCl, 2.03 MgCl2, 2.46 
MgSO4.7H2O, dH2O 

Super Optimal Broth (SOB) 20 tryptone, 5 yeast extract, 0.5 NaCl, dH2O 
Malt-Yeast-Maltose (MYM) (20 agar*), 4 maltose, 4 yeast extract, 10 

malt extract, 0.4 mL R2 trace elements, 1:1 
dH2O: JIC borehole H2O 

Malt-Yeast- Galactose (MYGal) (20 agar*), 4 galactose, 4 yeast extract, 10 
malt extract, 0.4 mL R2 trace elements, 1:1 
dH2O: JIC borehole H2O 

Minimal Mediaǂ (MM) (10 Lab M agar*),0.5 L-asparagine, 0.5 
K2HPO4, 0.2 MgSO4.7H2O, 0.01 FeSO4.7H2O, 
dH2O, pH 7.0 

Mannitol Soya Flour (SFM) (20 Lab M agar*), 20 mannitol, 20 soya flour, 
JIC borehole H2O 

Difco Nutrient Agar (DN) 2.3 Difco nutrient agar, dH2O 
Minimal Media Iberian Agarǂ     
(MM-+) 

(10 Iberian agar*), 1 (NH4)2SO4, 0.5 K2HPO4, 
0.2 MgSO4.7H2O, 0.01 FeSO4.7H2O, dH2O, 
pH 7.0 

R2 Trace Elements 0.04 ZnCl2, 0.2 FeCl3.6H2O, 0.01 CuCl2.2H2O, 
0.01 MnCl2.4H2O, 0.01 Na2B4O7.10H2O, 0.01 
(NH4)6 Mo7O24.4H2O, dH2O 

* If solid media was required then agar was added at quantities indicated in 

parentheses.  

 
ǂ Additional carbon sources were added to these media after re-melting the agar, prior 

to pouring into Petri dishes. The amount added was dependent on the carbon source 

and varied from 5-10 gL-1.  

 
All media were sterilised by autoclaving at 121 °C, 1.3 bar for 20 min.   
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2.1.2 Antibiotics 

 
Table 2.2: Antibiotic concentrations used in this study    

Antibiotic Solvent Final concentration in 
media (µg.mL-1) 

Apramycin sulphate (apr) dH2O 50 
Carbenicillin sodium salt (carb) dH2O 100 
Chloramphenicol (cml) 70% ethanol 25 
Hygromycin B (hyg) dH2O 50 
Kanamycin sulphate (kan) dH2O 50 
Nalidixic acid sodium salt (nal) dH2O, 0.2M NaOH 25 

 
2.1.3 Plasmids 

 
Table 2.3: Plasmids used in this study 

Name Antibiotic resistance and/or relevant 
genotypes 

Source/ reference 

pLysS CmlR Invitrogen 
pUC57 CarbR Genscript 
pET21a(+) CarbR Invitrogen 
pIJ773 CarbR, AprR, P1-FRT-oriT-aac(3)IV-FRT-P2 JIC,(Gust, et al., 2003)  
pIJ790 CmlR, λ-RED (gam, bet, exo), araC, rep101ts JIC, (Gust, et al., 2003) 
pUZ8002 KanR, RP4, tra JIC, (Paget, et al., 1999) 
pUC19 CarbR NEB 
pMS82 HygR JIC, (Gregory, et al., 2003) 
Supercos1 CarbR, KanR Stratagene 

 
2.1.4 Cosmids 

 
Table 2.4: Cosmids used to generate mutants in this study 

Name Antibiotic resistance Source 
Sv-3-D04 CarbR, KanR JIC 
Sv-3-H03 CarbR, KanR JIC 
Sv-6-H09 CarbR, KanR JIC 
1-H1 CarbR, KanR JIC 
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2.1.5 Bacterial strains 

 
Table 2.5: Bacterial strains used and generated in this study 

Strain Antibiotic resistance and/or 
relevant genotypes 

Source/ Reference 

Streptomyces 
venezuelae  ATCC 10712 

wild type (WT) JIC 

Escherichia. coli  K-12 
DH5α 

F– Φ80lacZΔM15 Δ(lacZYA-
argF)U169 recA1 endA1 hsdR17 
(rK–, mK+) phoA supE44 λ– thi-
1 gyrA96 relA1 

Invitrogen 

E. coli BL21 (DE3) F-ompT hsdSB (rB- mB-) gal dcm 
(DE3) 

Invitrogen 

E. coli BL21 (DE3) pLysS F-ompT hsdSB (rB- mB-) gal dcm 
(DE3), pLysS CmlR 

Invitrogen 

E. coli soluBL21TM (DE3) F-ompT hsdSB (rB- mB-) gal dcm 
(DE3)* 

Genlantis 

E. coli BW25113 Δ(araD-araB)567 Δ 
lacZ4787(::rrnB-4) lacIp-
4000(lacIQ), l-rpoS369(Am) rph-
1 Δ(rhaD-rhaB)568 hsdR514 

JIC, (Datsenko and 
Wanner, 2000) 

E. coli ET12567 dam-, dcm-, hsdM, hsdS, hsdR, 
CmlR, TetR 

JIC, (Macneil, et al., 
1992) 

S. venezuelae  FM001 ΔglgE::apr† This study 
S. venezuelae  FM002 Δpep2::apr This study 
S. venezuelae  FM003 ΔotsA::apr This study 
S. venezuelae  FM004 ΔtreS::apr This study 
S. venezuelae  FM005 ΔtreZ::apr This study 
S. venezuelae  FM006 ΔglgP::apr This study 
S. venezuelae  FM007 ΔglgE::apr attBΦBT1::pMS82 This study 
S. venezuelae  FM008 ΔglgE::apr attBΦBT1::glgE-treS This study 
S. venezuelae  FM009 ΔglgE-::apr attBΦBT1::glgE This study 
S. venezuelae  FM010 Δpep2::apr attBΦBT1::pMS82 This study 
S. venezuelae  FM011 Δpep2::apr attBΦBT1::pep2 This study 
S. venezuelae  FM012 ΔotsA::apr attBΦBT1::pMS82 This study 
S. venezuelae  FM013 ΔotsA::apr attBΦBT1::otsA This study 

 
*This strain contains uncharacterised mutations 
† This strain is a polar mutant in which the treS gene is not translated 
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2.1.6 Reagents 

 
Table 2.6: Constituents of reagents used in this study 

Reagent Constituents 
Plasmid/Cosmid isolation buffer 1 
(P1) 

50 mM  tris(hydroxymethyl)aminomethane) 
(Tris)-HCl (pH 8.0), 10 mM 
ethylenediaminetetraacetic acid (EDTA),  
100 µg mL-1 RNaseA 

Plasmid/Cosmid isolation buffer 2 
(P2) 

1% (w/v) sodium dodecyl sulphate (SDS), 
 200 mM NaOH 

Plasmid/Cosmid isolation buffer 3 
(N3) 

4.2 M guanidine-HCl, 0.9 M potassium 
acetate (pH 4.8) 

Plasmid/ DNA wash buffer (PE) 10 mM Tris-HCl (pH 7.5), 80% (v/v) ethanol 
1 × Tris-acetate-EDTA (TAE) DNA gel 
running buffer 

40 mM Tris (pH 8.0), 20 mM acetic acid, 1 
mM EDTA 

Streptomyces cell lysis buffer  25 mM Tris (pH 8), 25 mM EDTA (pH 8), 
0.3 M sucrose, 50 µg mL-1 RNaseA 
2 mg mL-1 lysozyme 

SET buffer 75 mM NaCl, 25 mM EDTA (pH 8), 
 20 mM Tris (pH 7.5) 

DNA re-suspension buffer (TE) 10 mM Tris (pH 7.5), 1 mM EDTA (pH 7.5) 
20 × saline sodium citrate (SSC) 3 M NaCl, 300 mM tri-sodium citrate-HCl (pH 

7.0) 
Denaturation solution 1.5 M NaCl, 0.5 M NaOH 
Neutralisation solution 1.5 M NaCl, 0.5 M Tris-HCl (pH 7.5) 
Pre-hybridisation buffer 1% (w/v) blocking reagent, 1% (v/v) N-

lauroylsarcosine, 0.1% (v/v) 20% SDS, 25% 
(v/v) 20× SSC 

Washing solution 1 10% (v/v) 20× SSC, 0.5% (v/v) 20% SDS  
Washing solution 2 0.5% (v/v) 20× SSC, 0.5% (v/v) 20% SDS 
Detection buffer 1 0.1 M maleic acid (pH 7.5), 0.15 M NaCl  
Detection buffer 2 1% (w/v) blocking reagent in detection 

buffer 1 
Detection buffer 3 100 mM Tris-HCl (pH 9.5), 100 mM NaCl 
Tbf1  30mM potassium acetate, 100mM KCl, 

10mM CaCl2, 50mM MnCl2, 15% (v/v) 
glycerol 

Tbf2 10mM 3-(N-morpholino) propanesulfonic 
acid (MOPS) (pH 6.5), 75mM CaCl2,  
10mM KCl, 15% (v/v) glycerol 

Buffer A 20 mM Tris-HCl (pH 7.4), 500 mM NaCl, 20 
mM imidazole 

Buffer B 20 Mm Tris-HCl (pH 7.4), 500 mM NaCl, 500 
mM imidazole 

Lugols iodine buffer 50 mM Tris-HCl (pH 7.0) 
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2.1.7 Preparation and transformation of electrocompetent cells 

A single colony of E. coli was cultured overnight in selective liquid LB with agitation at 

37 °C.  A 1% (v/v) sample of the overnight culture was used to inoculate fresh selective 

liquid LB and, when the culture reached an OD600nm of ~0.4, cells were harvested by 

centrifugation at 3000 × g for 5 min at 7 °C. The supernatant was decanted and the 

cells were gently re-suspended in an equal volume of 10 % (v/v) ice-cold glycerol. The 

centrifugation step was repeated as above twice and the resulting cell pellet was re-

suspended in ~100 µL of 10 % (v/v) ice-cold glycerol.     

 

A 50 µL aliquot of the cell suspension was incubated with 100 ng of DNA for 1 min in an 

ice-cold 0.2 cm electroporation cuvette (GeneFlow Ltd.). An electric current was 

applied to the mixture using a GenePulser II (Bio-Rad) set to 200 Ω, 25 µF, 2.5 kV and a 

time constant of between 4.6-4.8 ms was observed. This was followed by the addition 

of 750 µL of ice-cold LB and the incubation of the mixture with agitation at 37 or 30 °C 

(depending on the strain) for 60 min. Successful transformants were identified by 

spreading the mixture on to selective LB agar and incubating at 37 or 30 °C overnight.     

 
2.1.8 Preparation and transformation of chemically competent cells 

A single colony of E. coli was cultured overnight in liquid LB with agitation at 37 °C. A 

2% (v/v) sample of the overnight culture was used to inoculate fresh liquid LB and, 

when the culture reached an OD600nm of ~0.6, the culture was left in an ice water bath 

for 15 min. The cells were then harvested by centrifugation at 5000 × g for 5 min at 4 

°C. The supernatant was decanted and the cells were gently re-suspended in ice-cold 

Tbf1 and left on ice for 30 min. After further centrifugation at 5000 × g for 5 min at 4 

°C, the cells were gently re-suspended in 8 mL Tbf2 and then aliquoted into ice-cold 

tubes. Aliquots were snap-frozen in liquid N2 and stored at -80 °C until required. 

 

A thawed 50 µL aliquot of the cell suspension was incubated with 100 ng of DNA for 30 

min on ice. The mixture was then subjected to a 30 s heat shock at 42 °C followed by 

the addition of liquid LB and incubation on ice for 90 s. The mixture was then incubated 

at 37 °C for 60 min with agitation. Successful transformants were identified by 

spreading the mixture on to selective LB agar. Any colonies arising after incubation 

overnight at 37 °C were either used or screened for presence of the plasmid.        
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2.1.9 Plasmid purification and quantification from E. coli 

A single colony containing the plasmid of interest was incubated with agitation at 37 °C 

overnight in selective liquid LB. Cells were harvested by centrifugation at 15000 × g, the 

supernatant was discarded and the plasmid was extracted using QIAprep Spin Miniprep 

Kit (Qiagen) according to the manufacturers guidelines. Samples were stored at -20 °C. 

Plasmid concentration was determined using the NanoDrop (NanoDrop®) or by gel 

electrophoresis (see section 2.1.14).    

  

2.1.10 Cosmid purification and quantification from E. coli 

A single colony containing the plasmid of interest was incubated with agitation at 37 °C 

or 30 °C (depending on the strain) overnight in selective liquid LB. Cells contained in 5 

mL overnight culture were harvested by centrifugation at 15000 × g for 1 min. The 

pellet was re-suspended in P1, followed by P2, mixed by inversion, and then N3 was 

added followed by further mixing. The sample was centrifuged as above for 5 min and 

the supernatant was mixed with 1:1 phenol:chloroform by vortexing for 2 min. After 

centrifugation, as stated above, the top aqueous layer was combined with 600 µL 

isopropanol and left on ice for 10 min. Further centrifugation, as stated above, resulted 

in a pellet of cosmid DNA, which was washed with 70% (v/v) ethanol. The remaining 

supernatant was removed by air drying and the pellet was re-suspended in dH2O. 

Samples were stored at -20 °C. The cosmid was quantified by gel electrophoresis (see 

section 2.1.14).     

 

2.1.11 Restriction digests 

In a typical reaction 2 µL (~150 ng) of purified plasmid DNA was digested by incubation 

with 5-10 U of restriction enzyme in a 20 µL buffered solution. For cosmids, 5 µL of 

purified cosmid was used in a 20 µL reaction volume. Samples were incubated at 37 °C 

for 60 min. The samples were viewed by gel electrophoresis (see section 2.1.14). 

 

2.1.12 Klenow filling of 5′ DNA overhangs 

A 100 ng sample of DNA was incubated with 2 U of large fragment polymerase I 

(Invitrogen) in the appropriate buffer and with 0.08 µM dNTPs. The reaction mixture 

was left at room temperature for 40 min followed by heat inactivation at 70 °C for 5 

min.  
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2.1.13 Ligation reactions 

For blunt end ligations, linearised vectors were de-phosphorylated by 1 U shrimp 

alkaline phosphatase (SAP) and incubating in a buffered solution at 37 °C for 60 min. 

This was followed by deactivation of SAP at 65 °C for 15 min. The insert was 

phosphorylated by 1 U T4 polynucleotide kinase (PNK) in a buffered solution containing 

1 mM adenosine triphosphate (ATP). After incubation at 37 °C for 60 min PNK was 

inactivated at 65 °C for 20 min.     

 

The insert and vector were combined in a molar ratio of 3:1 in a 10 µL reaction volume 

containing 200 ng total DNA. A 10 µL volume of ligase buffer (Roche) was added and 

then 1 U of ligase (Roche) was added. Samples were incubated at 23 °C for 10 min and 

2 µL of the reaction was used for chemical transformation. 

 

The method used for sticky end ligations was identical to blunt end ligation with the 

following exceptions: the insert was not phosphorylated and a 1:1 molar ratio of insert 

and vector was used.   

 

2.1.14 DNA gel electrophoresis 

Typically, a 1% (w/v) TAE agarose gel was made to visualise and quantify DNA. Ethidium 

bromide at a concentration of 1 µg mL-1 was added to the molten agarose when the gel 

was prepared. When the gel solidified, it was transferred to a gel tank containing 1 × 

TAE buffer.  

 

Typically, 1 × DNA loading dye (Invitrogen) was added to each sample and the samples 

were then loaded in to wells. A voltage potential of 90 V was applied to the gel so that 

the DNA would migrate. After 45 min, the gel was removed from the tank and the DNA 

was visualised by exposing to UV light of a wavelength (λ) of 360 nm. Typically, a 1 

kilobase pair (Kbp) DNA ladder (NEB) was used as a standard.    

 

2.1.15 Preparation of digoxygenin (DIG) labelled probe for Southern hybridisation 

A 500 ng sample of purified cosmid in a total volume of 15 µL was boiled for 10 min and 

then stored on ice for 10 min. The sample was centrifuged briefly at 15000 × g and 2 µL 

of 10 × hexanucleotide mixture (vial 5 DNA DIG labelling kit, Roche), 2 µL of 10 × dNTP 

labelling mixture (vial 6 DNA DIG labelling kit, Roche) and 1 µL of Klenow enzyme (vial 7 
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DNA DIG labelling kit, Roche) was added to the sample. The sample was mixed by 

flicking and centrifuged briefly at 15000 × g and incubated at 37 °C for 20 h.  

 

2.1.16 Preparation of blot for Southern hybridisation 

A 8 µg sample of gDNA in a maximum volume of 43 µL was incubated in a buffered 

solution with 20-30 U of restriction enzyme overnight at 37 °C. The following day, 1 × 

loading dye was added to the sample and it was loaded on to a 0.6 % (w/v) agarose gel 

with a thickness of ~2.5 cm. The gel was run at 45 V for ~7 h. The gel was then stained 

in 1 µg mL-1 ethidium bromide, DNA was visualised under UV light and the gel was de-

stained in dH2O. The gel was soaked in 0.25 M HCl for 20 min, followed by soaking in 

denaturation buffer for 30 min and then soaked for 30 min in neutralisation buffer. 

 

A nylon Amersham N+ membrane (GE healthcare) was soaked in 2 × SSC. The 

membrane was placed on top of the gel and capillary blotting was performed 

overnight. The membrane was then soaked in 2 × SSC and the DNA was cross-linked 

using a UV-cross-linker (Stratagene).  The blot was transferred to a tube containing 20 

mL pre-hybridisation buffer and incubated with rotation for 2 h at 68 °C.  The DIG-

labelled probe was then boiled for 10 min, stored on ice for a further 10 min and 30 mL 

of ice-cold pre-hybridisation buffer was added. The pre-hybridisation buffer was 

replaced with hybridisation buffer and incubated overnight with rotation at 68 °C. The 

blot was then washed twice in washing solution 1 for 5 min. Followed by incubation 

twice with washing solution 2 for 15 min at 68 °C. Afterwards the blot was incubated in 

detection buffer 1 for 1 min followed by detection buffer 2 for 60 min. Detection buffer 

2 was replaced with detection buffer 2 containing anti-DIG antibodies (15 µL antibodies 

in 50 mL of buffer) and incubated for 60 min. The blot was then washed for 15 min in 

detection buffer 1 and transferred to detection buffer 3. Colour solution was prepared 

by dissolving a SIGMAFAST™ BCIP®/NBT tablet (Sigma) in 10 mL water in the dark. The 

blot was transferred to a PVC bag containing the colour solution and incubated in the 

dark until bands were visible.  

 

2.1.17 DNA sequencing 

In order to determine the sequence of DNA, a sequencing reaction was carried out. 

Typically 1 µL of plasmid DNA was mixed with 2 µL 5 × sequencing buffer, 1 µL (v/v) 

30% dimethyl sulfoxide (DMSO), 1 µL of 2 µM primer, 4 µL dH2O and 1 µL Big Dye v3.1 
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(Life Technologies). The reaction mixture was subjected to the following cycling 

conditions: 

1. 96 °C, 2 min 

2. 96 °C, 15 s 

3. 50 °C, 10 s 

4. 60 °C, 4 min 

5. 2 °C, 2 min 

Steps 2-4 were repeated 24 times before step 5 was carried out. The samples were 

submitted for analysis (Eurofins) and the sequences were determined using Chromas2 

(Technelysium) software. 

 
2.2 Protein methodologies 
 

2.2.1 Sequence design 

The DNA sequence of all genes used for heterologous protein expression in this study 

were synthesised with optimum codon usage for expression in E. coli (Genscript). The 

sequences were flanked at the 5′ end by an Nde I restriction site and a sequence 

encoding a His6-tag and a TEV protease cleavage site, and at the 3ꞌ end by a Bam HI 

restriction site (for the exact sequences see Appendix). The genes were supplied in 

pUC57 vectors. 

 

2.2.2 Protein over-production 

All genes were sub-cloned in to a pET-21a (+) (Novagen) vector and heterologously 

expressed in strains of E. coli BL21(DE3) (see table 2.7). Cells containing the expression 

plasmid were cultured in selective liquid media at 37 °C (see table 2.7). When the cells 

reached an OD600nm of 0.6, expression was induced by the addition of isopropyl β-D-1-

thiogalactopyranoside (IPTG). In some instances the temperature was lowered and 

additives, like DMSO, were added to aid soluble expression of the protein of interest 

(see table 2.7). After further incubation, the cells were harvested by centrifugation at 

1700 × g for 10 min at 4 °C and re-suspended in 30 mL  of buffer A containing 6 mg mL-1 

DNase 1 and a cOmplete™ protease inhibitor cocktail tablet (Roche). The cells were 

disrupted with a TS Series Benchtop 1.1 kW cell disruptor (Constant Systems Ltd.) at 25 

kPSI. The resulting cell lysate was separated from the cell debris by centrifugation at 

20000 × g for 25 min at 4 °C. 
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The proteins were purified from cell lysates by application onto a 1 mL FF HisTrap 

column (GE Healthcare). After subsequent application of 10 column volumes of buffer 

A, the proteins were eluted with buffer B. Typically the proteins were further purified 

using a HiLoad 16/600 Superdex 200 size exclusion chromatography column (GE 

healthcare) equilibrated with different buffers (see table 2.7). Fractions that contained 

the protein were combined, concentrated and in some cases were solvent exchanged, 

using an Amicon Ultra-15 centrifugal filter unit with a 30 kDa cut-off (MerckMillipore) 

and centrifugation at 5000 × g. Aliquots of proteins were stored at either 4 or -20 °C.  

 

2.2.3 SDS- polyacrylamide gel electrophoresis (PAGE) of protein samples 

Pre-cast 12% (w/v) SDS-PAGE gels (Expedeon Ltd.) were used to determine if the 

correct sized protein was present in solution. Samples were prepared by the addition of 

1 × RunBlue LDS Sample buffer (Expedeon Ltd.) followed by heating at 98 °C for 5 min. 

Samples were loaded into individual wells, in addition, a molecular weight marker 

(Expedeon Ltd.) was also added to one of the wells. Gels were run in 1 × SDS running 

buffer at 200 V for 45 min. The gel was stained with InstantBlue (Expedeon Ltd.) for 20 

min. 

 

2.2.4 TEV-protease cleavage of His6-tag  

A 2.5 mg sample of protein in 1 mL was incubated overnight with 100 μL TEV-protease 

in a buffer of 50 mM Tris, pH 8 and 150 mM NaCl. The following day a final 

concentration of 30 mM imidazole was added to the reaction and the whole solution 

was applied onto a FF HisTrap column. The flow-through, containing protein with His6-

tag cleaved, was collected and purity was checked by SDS-PAGE. All of the flow-through 

was concentrated and solvent exchanged.    

 

2.2.5 Protein concentration determination 

Protein concentration was determined either using the Bradford assay (Bradford, 1976) 

or DirectDetect (MerckMillipore). For the Bradford assay a standard curve was 

generated by recording the A595nm of solutions with different concentrations of bovine 

serum albumin (BSA). A 100 µL sample of protein solution was incubated with 200 µL 

1:5 Bradford reagent (Bio-Rad) and 700 µL H2O for 20 min. After incubation the A595nm 

was measured. 
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2.2.6 Protein identification by matrix-assisted laser desorption/ionization-time-of-

flight mass spectrometry (MALDI-TOF MS) 

SDS-PAGE gel slices containing the predicted protein of interest were submitted to the 

JIC proteomics facility. The subsequent procedures were performed by G. Saalbach.  

Samples were washed, treated with trypsin, and extracted according to standard 

procedures adapted from Shevchenko et al. (2007). The resulting peptide solution was 

spotted onto a Prespotted AnchorChipTM MALDI target plate (PAC plate) (Bruker 

Daltonics), and the spots were washed with 10 mM ammonium phosphate, 0.1% (v/v) 

trifluoroacetic acid. 

 

Samples were dried and then analysed by MALDI-TOF MS on a Bruker Ultraflex 

TOF/TOF. The instrument was calibrated using the pre-spotted standards (ca. 200 laser 

shots). Samples were analysed using a method optimised for peptide analysis and 

spectra were summed from ca. 30 x 15 laser shots. Data were processed in FlexAnalysis 

(Bruker) and submitted for a database search using an in-house Mascot Server 2.2 

(Matrixscience), comparing against a Uniprot database with taxonomy set to 

actinobacteria. For the search criterion, the enzyme was set to trypsin with maximum 

one missed cleavage using a peptide mass tolerance of 50 ppm. Carbamidomethyl (C) 

was used as fixed and oxidation (M) as variable modification. 

 

2.2.7 Dynamic light scattering (DLS) of proteins 

The oligomeric states of some proteins were determined by DLS (Wyatt Technology). 

The technique also indicated if proteins had a tendency to aggregate. Samples were 

passed through a 0.1 µm filter (MerckMillipore) by centrifugation at 12000 × g. A 12 µL 

sample of protein was transferred to a microsampling cell (Wyatt Technology) and 20 

scattering measurements were recorded at 20 °C. Data analyses were performed using 

DYNAMICS V6 software (Wyatt Technology).    
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2.3 Enzymology methods 
 

2.3.1 Nuclear magnetic resonance (NMR) spectroscopy 

Spectra were recorded using a Bruker Avance III 400 spectrometer using standard pulse 

sequences and a probe temperature of 25 °C at 400 and 376 MHz for proton (1H) 

solvent-suppressed and fluorine (19F) proton-decoupled spectra, respectively. Chemical 

shifts are expressed in parts per million (ppm) relative to internal H2O (4.70 ppm) or 

CFCl3 (0.00 ppm). Spectra were analysed using Topspin 3.0 (Bruker) and resonances 

were integrated manually to ensure consistency. NMR spectra associated with 

trehalose, maltose, maltose 1-phosphate and glucose were assigned using COSY and 

HSQC experiments, which were consistent with the literature (Usui, et al., 1974). 

  

2.3.2 TreS enzymology 

For 1H-NMR spectra, the co-suppression of resonances within 1 ppm of that of solvent 

was determined with control samples using citrate as an internal standard. A spectrum 

with solvent suppression of trehalose (10 mM), maltose (10 mM) in 90 mM citrate 

buffer, pH 6.7, and 10% (v/v) D2O was compared with that of an identical sample 

without solvent-suppression after freeze drying and reconstitution in 100% D2O. The 

four resonances from the citrate buffer arise from a second order spin system centred 

on 2.52 ppm that is remote from those of solvent (4.70 ppm) and carbohydrates. 

Doublet signals associated with α/β-maltose H-1′ (5.32 ppm) and trehalose H-1 (5.10 

ppm) gave 89 and 87% of the expected integrals, respectively. Since the ratio of 

maltose anomers changed as a function of D2O concentration, it was not possible to 

directly determine the degree of suppression of the maltose H-1 resonance (5.14 ppm) 

with confidence. However, since suppression was a function of how close the chemical 

shift was to that of solvent and the maltose H-1 resonance was between those of 

maltose H-1′ and trehalose H-1, the maltose H-1 signal was estimated to be 88% of that 

expected. The double doublet H-2 resonances associated with the β anomers of 

maltose and glucose (3.19 and 3.15 ppm, respectively) were distant enough from 

solvent (4.70 ppm) not to be suppressed. The corresponding doublet H-1 resonances of 

the β anomers (4.57 and 4.56 ppm, respectively) were too significantly supressed, so 

were not used to quantify reaction products. Thus, resonances associated with 

trehalose H-1, α/β-maltose H-1′, β-maltose H-2, and β-glucose H-2 were used to 
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quantify these species. The amount of α-maltose could then be calculated by 

subtracting the amount of β-maltose from that of α/β-maltose. Although the 

resonances of the α anomers of maltose and glucose overlapped completely, the 

concentration of α-glucose could be calculated by subtracting the amount of α-maltose 

from the combined amounts of the α anomers.              

 

2.3.3 OtsA activity assay 

A 0.26 µM sample of OtsA was incubated with 1 mM glucose 6-phosphate, 1 mM 

nucleotide diphosphate (NDP)-glucose and 1 mM MgCl2 in deuterated buffer at pH 7.0. 

The reactions with different NDP-glucoses were monitored using solvent 

suppressed 1H-NMR, as described in section 2.3.2.   

 

Integrals of a doublet of doublet signal associated with H-1 bonded to the anomeric 

carbon of the glucose molecule of the NDP-glucose (~5.5 ppm) and a doublet signal 

associated with H-1 of trehalose 6-phosphate (5.10 ppm) were used to determine the 

substrate to product ratio. Both the doublet of doublet of the NDP-glucose and the 

doublet of trehalose 6-phosphate represented a single H per molecule. These allowed a 

percentage conversion to be determined for each selected time-point with different 

NDP-glucose substrates and therefore the substrate preferences of OtsA.  

  

2.3.4 GalU activity assay 

Activity of GalU was monitored by measuring the release of pyrophosphate (PPi) using 

a malachite green stopped assay. First a standard curve was generated by adding a 

known concentration of phosphate (Pi) and recording the corresponding A630nm when 

incubated for 5 min with malachite green. A 2 µM sample of GalU was incubated with 1 

U pyrophosphorylase, 1 mM glucose 1-phosphate and 2 mM nucleotide triphosphate 

(NTP) in a 50 mM MOPS pH 8.0 buffer containing 10 mM MgCl2. Reactions were 

incubated at 37 °C for 20 min and 10 µL of each assay mixture was quenched with 90 µL 

of 1 M HCl. The stopped reaction mixture was combined with 700 µL of malachite 

green and the A630nm was recorded after 5 min. A standard curve was used to 

determine the PPi released during the reaction. A hierarchy of the substrate 

preferences of GalU was determined by comparing the Pi released when GalU was 

incubated with different NTPs. 
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2.3.5 Pep2-TreS activity assay 

A sample of TreS-Pep2 was incubated with 10 mM trehalose, 10 mM MgCl2 and 5 mM 

ATP in a 20 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) buffer at 

pH 7.5 containing 150 mM NaCl. The reaction mixture was incubated at 37 °C and 0.5 

µL samples were spotted periodically on silica coated aluminium thin layer 

chromatography (TLC) plates (MerckMillipore). The TLC plate was run in a 85:20:20:50 

acetonitrile:ethylacetate:isopropanol:H2O solvent system. Spots were visualised by 

submerging the plate in 80% H2SO4 in ethanol followed by charring.  

 

2.3.6 Pep2 activity assay 

Samples of Pep2 were incubated with 10 mM maltose, 10 mM MgCl2 and 10 mM ATP 

in a 25 mM bis-tris propane buffer at pH 7.5 containing 50 mM NaCl. The reaction 

mixture was incubated at 37 °C and 0.5 µL samples were spotted periodically on silica 

coated aluminium TLC plates (MerckMillipore) and processed as described in section 

2.3.5. 

 
2.4 Protein crystallographic methods 
 
Protein structures were determined in collaboration with C.E.M. Stevenson (JIC), D. M. 

Lawson (JIC) and scientists at the Diamond Light Source (Oxford).  

 
2.4.1 Crystallisation trials 

Protein crystallisation trials were set up in a 96-well MRC plate (Molecular Dimensions) 

format using the following screens: JCSG-plus (Molecular Dimensions), PACT premier 

(Molecular Dimensions), Structure (Molecular Dimensions), Morpheus (Molecular 

Dimensions), ammonium sulphate (Qiagen) and PEG suite (Qiagen). Protein 

concentrations of between 10-15 mg mL-1 were used in each condition. Each reservoir 

was filled with 50 µL of the screen using the Freedom evo liquid handling robot (Tecan).  

A 0.3 µL sample of precipitant was subsequently mixed with 0.3 µL protein in a sitting 

drop format using an OryxNano robot (Douglas Instruments Ltd.). The plates were 

sealed and stored at 20 °C. Screens were checked regularly using a SMZ800 microscope 

(Nikon) to monitor physical changes in the drops. Conditions that yielded poor or 

fragile crystals were optimised further in a 24-well hanging drop format using VDX 

optimisation plates (Molecular Dimensions) with a reservoir volume of 1 mL and by 

mixing 1 µL of precipitant with 1 µL protein. 
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2.4.2 Crystal storage and transport 

Crystals were removed from the crystallisation condition using litho-loops (Molecular 

Dimensions) and, if required, were soaked in cryo-protectant solution comprising the 

mother liquor with an additional 5% (v/v) glycerol. They were then flash-cooled by 

plunging into liquid N2 and stored in unipuck casettes for transport to Diamond Light 

Source (Didcot, UK) for data collection. 

 

2.4.3 Data collection and processing 

X-ray data were collected on the macromolecular crystallography beamlines (i02 and 

i04-1) or the microfocus beamline (i24), with X-ray diffraction recorded on a Pilatus 2M 

and 6M detectors (Dectris). Three test images collected at phi = 0°, 45° and 90° were 

used to determine the quality of diffraction, to estimate the resolution, to establish the 

crystal symmetry and cell parameters, and to derive a data collection strategy. The 

resultant datasets were then processed using the XIA2 expert system  (Winter, 2010) 

and scaled using SCALA (Evans, 2006). A 5% subset of the total number of reflections 

was set aside in order to determine the free R factor (Kleywegt and Brunger, 1996) 

during model building and refinement. All subsequent processing was conducted using 

the CCP4 suite (Winn, et al., 2011).  

 

2.4.4 Molecular replacement, model building and refinement 

All structures in this study were solved by molecular replacement using PHASER 

(McCoy, et al., 2007).  Crystal structures of the same enzyme from different organisms 

were used as the search model and these had between 30-40% amino acid 

conservation to the target structures. Density modification was carried out using 

PARROT (Cowtan, 2010) and model building into the maps from PARROT performed 

with Buccanneer (Cowtan, 2006). Model building was carried out using COOT software 

(Emsley and Cowtan, 2004) alternating with refinement with REFMAC (Murshudov, et 

al., 1997). 

 

2.4.5 Structural validation 

Validation was carried out throughout to ensure no bias had been introduced during 

the refinement process.  A number of tools within the COOT suite (Emsley and Cowtan, 

2004) were utilised, including Ramachandran plots (Ramachandran, et al., 1963), 
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modelling in molecules of H2O in extra density regions as well as minor adjustments to 

the amino acid backbone and side chain angles so that they better represented the 

observed electron density. Validation was also carried out using MOLPROBITY (Chen, et 

al., 2010).  

 
2.5 Streptomyces venezuelae methods  
 
2.5.1 Generation of S. venezuelae mutants 

All mutants of Streptomyces were generated using PCR targeting via the REDIRECTTM 

method (Gust, et al., 2003). The method utilises endogenous conjugation and 

homologous recombination. Primers were designed using the same method as Gust et 

al., 2003. The primers comprise 2 parts; one part contains sequence flanking the gene 

of interest and the other part contains sequence complementary to the disruption 

cassette (Table 2.8). The cassette contains a marker conferring resistance to an 

antibiotic and the apr resistance cassette was used in this study.  

 

The disruption cassette used as a template for the PCR was generated by double 

digestion of pIJ773 with Eco RI and Hind III. The cassette was separated from the vector 

plasmid by gel electrophoresis and the band containing the cassette was gel purified 

using a QIAquick gel extraction kit (Qiagen) following the manufacturer’s protocol. The 

resulting DNA was tested for absence of circularised plasmid contaminant by 

transformation. If the transformation yielded no colonies, it indicated that only the 

linear cassette was present. This was subsequently used as the template for PCR. PCR 

was performed using Expand High Fidelity Polymerase (Roche) according to the 

manufacturer’s guidelines. The reaction mixture contained 50 pmoles of each primer, 

50 ng template DNA, 1 x polymerase buffer, 50 µM of each dNTP, 5% DMSO and 2.5 U 

polymerase, and was made up to 50 µL using dH2O. Typically the following cycling 

conditions were used: 

1. 94 °C, 2 min  

2. 94 °C, 45 s 

3. 50 °C, 45 s  

4. 72 °C, 90 s 

5. 94 °C, 45 s  

6. 55 °C, 45 s 

7. 72 °C, 90 s  
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8. 72 °C, 5 min 

Steps 2-4 were repeated 9 times and steps 5-7 were repeated 14 times. 

A 4 µL sample of the PCR product was analysed by DNA gel electrophoresis and, if the 

correct sized product was generated, the remaining product within the reaction 

mixture was purified with a MiniElute PCR purification kit (Qiagen) according to the 

manufacturer’s guidelines. 

 

A single colony of E. coli BW25113/pIJ790 was grown overnight at 30 °C in selective 

liquid LB. A 1% (v/v) sample of the overnight culture was used to inoculate selective 

SOB supplemented with 20 mM MgSO4. When OD600nm reached ~0.4, the cells were 

recovered by centrifugation at 3000 × g for 5 min at 7 °C. The cells were then made 

electrically competent and transformed with an extracted cosmid containing the gene 

of interest. Successful transformants were screened by culturing colonies overnight to 

allow the extraction of a sufficient concentration of cosmid, followed by restriction 

digests and gel electrophoresis. The restriction pattern was compared to the expected 

pattern. If the two patterns matched, then a sample of the same colony was used to 

inoculate fresh selective liquid LB. A 1% (v/v) sample was used to inoculate selective 

SOB containing 10 mM L-arabinose to induce expression of λ red genes present on 

pIJ790. When OD600nm reached ~0.4, the cells were recovered by centrifugation at 3000 

× g for 5 min at 7 °C. The cells were then made electrically competent and transformed 

with 100 ng of the extended apr disruption cassette. Successful transformants were 

screened by extracting the cosmid containing the disruption cassette and testing with 

restriction enzymes.  When a cosmid with a restriction pattern as predicted was found, 

it was used to transform E. coli ET12567/pUZ8002 by electroporation. 

 

Successful transformants were re-cultured in 10 mL selective liquid LB until cells 

reached an OD600nm of ~0.4. The cells were then harvested by centrifugation at 3000 × g 

for 5 min at 7 °C, washed twice with liquid LB and re-suspended in 0.5 mL liquid LB. 

They were then mixed with 20 µL WT S. venezuelae spores and plated onto SFM agar. 

Plates were left overnight at room temperature. The plates were subsequently overlaid 

with 1 mL dH2O containing 0.5 mg nal and 1.25 mg apr and were stored at 30 °C for 3-4 

days. Successful transformants appeared as white colonies and were subjected to 3 

further rounds of selective re-streaking and replica plating to test for AprR KanS. Spore 

stocks of clonal strains were generated and colony PCR and/or Southern hybridisation 
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were used to confirm integration of the disruption cassette in the intended region of 

the genome. 

Table 2.8: Primers used to generate mutants in this study 
Oligonucleotide 
name 

Sequence (5’- 3’) 

F: Pep2 ReDirect AGTCCATTGCGCACCCCGGGGAAAGGACGCGATGCCATGATTCCGG
GGATCCGTCGACC 

R: Pep2 
ReDirect 

CGGCTGGGCGGAGGAGCCTGGGGCGGGGGGTGGTGGTCATGTAGG
CTGGAGCTGCTTC 

F: SVEN_6388 ATGAAACTGACGATTCTCGGAGGCGGCGGGTTCCGGGTGATTCCGG
GGATCCGTCGACC 

R: SVEN_6388 GGTTCCCCGACGGCCGGAACCCTCGCATCCGCCCGATCATGTAGGCT
GGAGCTGCTTC 

F 7731 ReDirect GCGACCGTCCCCGCAGACCGGAGGGTCACCCACATCATGATTCCGGG
GATCCGTCGACC 

R 7731 ReDirect CCGTCCCACCCCGGACGTATCCGAACTGACCGGCGGTCATGTAGGCT
GGAGCTGCTTC 

F: otsA CGTTTGAGCGTTTACGGGACGGGCTAGGTTCGCCACATGATTCCGGG
GATCCGTCGACC 

R:otsA CTGGAGCGGCCCCCACCTCGACAAGGTTCCAGGCGCTCATGTAGGCT
GGAGCTGCTTC 

F: GlgP TGGTGCGTCCACTCCGCTCCGTACTCGCCTGCGAAGGTGATTCCGGG
GATCCGTCGACC 

R: GlgP CCCTGAGCCGCCCGGGGCCGATCCGAAGGGCGGCCCCTATGTAGGCT
GGAGCTGCTTC 

F: TreZ GATGGGGGCGTAGGTCCGTCGACGAGGGGATTTGGCGTGATTCCGG
GGATCCGTCGACC 

R: TreZ ATGGCCCTCGTCGAATAGCACGGCCGCGCGGCGGGCTCATGTAGGCT
GGAGCTGCTTC 

SMD07732 
FORWARD 

GACCCGCCATCCGAGTGAACGCGGACAGGAGCGGCCATGATTCCGG
GGATCCGTCGACC 

SMD07732 
REVERSE 
 

TGTCCTCGAAGGTGTCGGGGACGGGCTCGTTGACAGTCATGTAGGCT
GGAGCTGCTTC 

SMD07728 
Forward 
 

GCCACACATACCCCCGTACCCCCAGGAGGCACCCCGGTGATTCCGGG
GATCCGTCGACC  
 

 

2.5.2 Preparation of Streptomyces genomic deoxyribonucleic acid (gDNA) for PCR 

S. venezuelae was cultured overnight in 10 mL liquid MYM and 1.5 mL was harvested by 

centrifugation at 18000 × g. The cell pellet was re-suspended in 500 µL of Streptomyces 

lysis buffer and incubated at 37 °C for 30 min. A 250 µL sample of 2% (v/v) SDS was 

added to the sample and mixed by vortexing. A 250 µL sample of 1:1 phenol: 

chloroform was added and mixed by vortexing. Phase separation was reached by 

centrifugation at 18000 × g for 3 min. The top aqueous layer was transferred to 

another tube and the above process was repeated until little or no white interface was 
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observed. A 0.1 volume sample of 3 M sodium acetate, pH 4.8, was added to the 

separated aqueous layer, followed by 1 volume of isopropanol. The mixture was 

incubated at room temperature for 5 min and a glass Pasteur pipette was used to spool 

out the visible fragments of gDNA. The gDNA was dipped in 70% (v/v) ethanol and re-

dissolved in 500 µL of water by gently flicking the tube. When the gDNA was 

completely re-dissolved it was stored at 4 °C.     

 
2.5.3 Preparation of Streptomyces gDNA for Southern hybridisation 

S. venezuelae was cultured overnight in 10 mL liquid MYM and was harvested by 

centrifugation at 5000 × g for 7 min. The cells were washed with 10% (v/v) sucrose and 

re-suspended in 2 mL SET buffer. A 0.02 mg sample of RNase and 0.8 mg lysozyme 

were added and the mixture was incubated at 37 °C for 60 min. This was followed by 

the addition of 1.12 mg of proteinase K and 240 µL of 10% (v/v) SDS and incubating at 

55 °C for 2 h with occasional mixing by inversion of the tube. Afterwards, 800 µL of 5 M 

NaCl was added and the mixture was allowed to cool so that 2 mL chloroform could be 

added. The mixture was mixed by hand for 30 min at room temperature and 

subsequently centrifuged at 6000 × g for 15 min. The supernatant was combined with 

0.6 volumes of isopropanol. After gentle mixing, strands of DNA were visible and were 

spooled out with a glass Pasteur pipette and dipped in 70% (v/v) ethanol. The DNA was 

re-suspended in 100 µL TE by gentle flicking and heating to 60 °C. When dissolved the 

sample was stored at 4 °C.      

 
2.5.4 Generating complemented strains   

WT gDNA was extracted and used as a DNA template for PCR. Primers were designed 

flanking the gene of interest (Table 2.9). The forward primer was selected to be 

approximately 300 base pairs (bp) upstream of the start codon so as to ensure the 

endogenous promoter and ribosome binding site were amplified.  

 

PCRs were carried out using either Q5 (NEB) or Phusion (NEB) polymerases using 

conditions and reagents recommended by the manufacturer. Typically, 4 µL of PCR 

product was analysed by gel electrophoresis. If the product was the correct size, the 

remainder of the DNA was purified using QIAquick PCR purification kit (Qiagen) 

following the manufacturer’s guidelines. The PCR product was phosphorylated, ligated 

to a de-phosphorylated pUC19 vector and the resulting plasmid was transformed into 

E. coli DH5α.  Blue-white screening (Vieira and Messing, 1982) was used to select for 
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transformants containing the circularised vector with insert and the plasmids were 

sequenced using M13 primers (Table 2.9). If the insert had the same sequence as WT, it 

was removed from the vector by restriction digestion and purified by gel extraction. 

The 5ꞌ overhangs of the insert were filled using klenow large fragment polymerase I 

(Invitrogen) and subsequently ligated into a linearised (with Eco RV), de-

phosphorylated pMS82 vector and transformed into E. coli DH5α. Transformants were 

screened by extracting the plasmids followed by restriction digestion. If the correct 

insert was present, then the plasmid was transformed into ET12567/pUZ8002 by 

electroporation and conjugated with the appropriate mutant strain on SFM agar media. 

pMS82 confers resistance to hyg, therefore overlays contained nal as well as 1.25 mg 

hyg and were incubated at 30 °C in the dark. Successful exoconjugants appeared as 

white colonies and were selectively re-streaked 3 times on DN agar media.     

 

2.5.5 Cell-free extract preparation for 1H-NMR spectroscopy 

Spores were counted by plating out a dilution series and counting colony forming units 

(CFUs). All spore stocks were standardised to 1×109 CFUs and 5 µL was mixed with 70 

µL dH2O and plated on to cellophane discs placed on top of 25 mL MYM-Agar. The 

spores were distributed evenly throughout the Petri-dish using spreaders (VWR) and 

left to dry in the flow hood for ~30 min. After incubation for certain times at 30 °C, the 

cells were scraped off the cellophane disc and placed into a tube. The cells were then 

dried overnight by freeze-drying.  When dry, the cells were powdered using a micro-

pestle.  

 

For each sample, 25 mg of dry, powdered S. venezuelae were weighed and re-

suspended in 800 µL of water by vortexing. The samples were then boiled for 7 min and 

left to cool on ice. Once cool, the samples were sonicated using a 500 W ultrasonic 

processor (SONICS®) for 10 cycles of 30 s on and 30 s off at 40% amplitude. The cell 

debris was pelleted by centrifugation at 18000 × g for 30 min at 4 °C. Typically, 540 µL 

of the cell free extract was transferred to a tube containing 60 µL D2O and 4 µL 

deuterated trimethylsilyl propanoic acid (TMSP-d4).  
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Table 2.9: Primers used to test mutants and generate complementation plasmids 
Oligonucleotide name Sequence (5’- 3’) 
7732 Test Forward CCGCCCTACAAGGGCGGGG 
7732 Test Reverse CGGCGGCAGCCAGAGGCAG 
7728 Test Forward CGGACTGGCTCCCGGTCCC 
Test forward 7732 CCCTACAAGGGCGGGGTCT 
Test reverse 7732 CAGCCAGAGGCAGTCCACG 
7732 Flanking forward GTCCGGTGTCCGTGCTTGC 
7732 Flanking reverse GTCCCCGTTGCTGTCCTGG 
F 7732 complementation plasmid CTGGTCGACGGATCCGTCC 
Complementation treS R GGGACGGGAGGAAACCGTC 
Complementation glgB R CGGGCTGCCCGAACAGGTG 
Internal sequencing TreS CTGCCTCTGGCTGCCGCCG 
Internal sequencing TreS v2 GGAGCGGGCCGGTACCACG 
TreS test F GGAACTCGGCCTCGACTGGC 
TreS test R GGGTGCGCAATGGACTGTCG 
SVEN_6388 test F GGTCTTGCGTCGGGACATGG 
SVEN_6388 test R CCAGAAGGCAGGCGGTGACG 
ostA test F far CGATGGCCGCGACCGGCG 
ostA test F close CGTATACGTACGTTTGAGCG 
ostA test R CCGGTTTTCACGACCTGGCG 
TreZ test F CCTGGGCAACGTCCCGATGG 
TreZ test R CGAACCCGGCGTCTACCTGC 
GlgP test F CCCGGCCATCGGCTGAGACG 
GlgP test R CGGCCGGCATGGACGAGTGC 
F GlgP Complement GTCCATCGTCGACGCGCGC 
R GlgP Complement CTAGCGGAGCAGCACCCCC 
F OtsA Complement GACCGGCCCAAGCCCACCC 
R OtsA Complement TCAGGCGTCGCTCAGCCCC 
F TreZ Complement GTGCCGGAGCCGAAGGGCC 
R TreZ Complement TCAGCCGTCCGTCAGGAGG 
F TreS+IR Complement GGAGCGGCCATGACTGTCAACGAGCCCG 
R IR+TreS Complement GTTGACAGTCATGGCCGCTCCTGTCCGCG 
F Internal seq GlgP CTGCCCGGCGGCCGCAGC 
R Internal seq GlgP GAGGACGGAGAGGTTGAG 
Pep2 Comp F GGTCAGTTCGGATACGTCCG 
Pep2 Comp R GTCATGGGCTGGTGGAGAGG 
F M13  GTAAAACGACGGCCAGT 
R M13 AACAGCTATGACCATG 
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2.5.6 Lipid derivitisation and gas chromatography mass spectrometry (GCMS) analysis 

Powdered freeze dried cells were prepared as stated in section 2.5.5 and 10 mg of 

sample was weighed into a glass tube (Agilent Technologies) containing 0.75 mg 

benzoic acid in methanol. The samples were derivitised by the addition of, 500 µL 

chloroform and 500 µL 15% (v/v) sulphuric acid in methanol followed by heating at 100 

°C for 4 h. After cooling, 1 mL dH2O was added and the sample was left until phase 

separation occurred. The lower phase was collected into a separate tube and was used 

for GCMS analysis.       

 

Analysis was performed on an Agilent GCMS 6890N (Agilent Technologies) by A. Jones 

(JIC) equipped with a ZB-5HT column (with the dimensions: 30 m by 0.25 mm by 0.10 

µm) (Zebron). A 2 µL sample was injected (pulsed splitless, 30 psi for 2 min) on to the 

column per run and Helium (1 mL min-1) was used as the carrier gas with an inlet 

temperature of 250 °C, interface temperature of 280 °C, source temperature of 230 °C 

and a quadrupole temperature of 150 °C. A temperature programme was used as 

follows: 60 °C for 3.0 min, temperature ramp of 20 °C min-1 until 350 °C was reached. 

 

2.5.7 Glycogen quantification with Lugol's iodine 

Freeze dried and powdered cells were prepared as previously described and 25 mg 

were re-suspended in 600 µL Lugols iodine buffer, by vortexing. Samples were boiled 

for 7 min and then cooled on ice. Once cool, the samples were sonicated using a 500 W 

ultrasonic processor (SONICS®) for 10 cycles of 30 s on and 30 s off at 40% amplitude. 

The cell debris was pelleted by centrifugation at 18000 × g for 30 min at 4 °C. Typically, 

300 µL of the cell-free extract was mixed with 580 µL 50 mM Tris-HCl, pH 7.0 and 120 

µL of Lugol's iodine solution (Sigma). The mixture was transferred to a 1.5 mL plastic 

cuvette (Sarstedt Ltd.) and sealed with parafilm (Slaughter Ltd.) and the colour was 

allowed to develop for 3 min. Spectra were recorded on a Lambda 25 

spectrophotometer (Perkin Elmer) in the region between 900 nm until 400 nm.  Sample 

spectra were analysed using WinLab software (Perkin Elmer). 

 

2.5.8 Spore abiotic stress resistance tests 

Spores were harvested by coating a plate with sterilised, acid-washed glass balls. 

Typically, 500 µL dH2O was added to 5 spore coated balls, samples were subsequently 
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sonicated using a 500 W ultrasonic processor (SONICS®) for 4 cycles of 15 s on and 45 s 

off at 40% amplitude. Samples were then treated with their respective stresses: 0.5 µg 

lysozyme, sonication, heat shock or desiccation (at a relative humidity of 0% for 8 h). 

Serial dilutions of the spores were generated before and after stress treatments. A 100 

µL sample of each dilution was plated and CFUs were counted after incubation at 30 °C 

for 1-2 days.     

 
 
2.6 Microscopy methods 
 

All samples for electron microscopy were prepared for imaging and imaged by either E. 

Barclay (JIC) or K. Findlay (JIC). 

 

2.6.1 Sample preparation for transmission electron microscopy  

Single colonies of Streptomyces were cut out of the agar and placed in a solution of 

2.5% (v/v) glutaraldehyde in 0.05M sodium cacodylate, pH 7.3, and left overnight to fix 

the samples (Gordon, et al., 1963). The fixative was washed out by three successive 10 

min washes in 0.05 M sodium cacodylate and then the samples were placed in a EM TP 

machine (Leica, Milton Keynes) to proceed with the remaining steps automatically; 

post-fixed in 1% (w/v) OsO4 in 0.05M sodium cacodylate for 60 min at room 

temperature. This was followed by three 15 min washes in distilled water before 

beginning the ethanol dehydration series (10%, 20%, 30%, 50%, 70%, and 95% each for 

a minimum of 30 min, then two changes of 100% ethanol each for 60 min) (Beringer, et 

al., 1977). Once dehydrated, the samples were gradually infiltrated with LR white resin 

(London Resin Company, Reading, Berkshire) by successive changes of resin:ethanol 

mixes for at least 60 min each at room temperature (1:1, 2:1, 3:1) then 100% resin for 

16 h and repeated with fresh resin for a further 8 h.  The samples were then removed 

from the EM TP machine and transferred into gelatin capsules filled with LR White resin 

and placed at 60 oC for 16 h to polymerise.  

 

The resulting material was sectioned with a diamond knife using a UC6 ultramicrotome 

(Leica, Milton Keynes). Ultrathin sections of approximately 90 nm were picked up on 

200 mesh gold grids which had been coated in pyroxylin and carbon. For contrast 

staining, the sections were stained with 2% (w/v) uranyl acetate for 60 min and 1% 

(w/v) lead citrate for 1 min, washed in distilled water and air dried. 
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The grids were viewed in a FEI Tecnai 20 transmission electron microscope (FEI UK Ltd, 

Cambridge, UK) at 200 kV and imaged using an AMT XR60 digital camera (Deben, Bury 

St Edmunds, UK) to record TIF files. 

 

2.6.2 Periodic acid-thiocarbohydrazide-silver proteinate (PATAg) staining of glycogen 

Sections of a Streptomyces colony were placed onto gold grids coated with pyroxylin 

and carbon. The grids were inverted onto drops of 1% (v/v) periodic acid for 20 min at 

room temperature and covered. The grids were washed successively 3 times in dH2O 

for 10 s and then a further 3 times in dH2O for 10 min. The grids were inverted onto 

1mL of 0.2% (w/v) thiocarbohydrazide in 20% (v/v) acetic acid and incubated overnight 

in a sealed tube (Robertson, et al., 1975). The grids were then washed in 10% (v/v) 

acetic acid 3 times for 10 s followed by 3 times in 10% (v/v) acetic acid for 10 min with 

gentle shaking. The grids were then washed in 5% (v/v) acetic acid for 10 s followed by 

washes in 2.5% acetic acid for 10 s. The grids were washed successively 3 times in dH2O 

for 10 s and then a further 3 times in dH2O for 10 min. The grids were inverted on to 

drops of 1% (w/v) silver proteinate for 30 min in the dark (Robertson, et al., 1975). The 

grids were washed three times in dH2O for 10 s followed by 3 washes in dH2O for 10 

min. The grids were viewed as described in section 2.6.1. 

 

2.6.3 Cryo-scanning electron microscopy 

Samples of Streptomyces were mounted on an aluminium stub using Tissue TekR (BDH 

Laboratory Supplies, Poole, England) containing optimal cutting temperature 

compound (Agar Scientific Ltd, Essex, UK). The sample was then cryopreserved by 

placing into liquid N2 maintained at approximately -210 °C, and transferred to the 

cryostage of an ALTO 2500 cryotransfer system (Gatan, Oxford, England) attached to a 

Zeiss Supra 55 VP field emission gun scanning electron microscope (Zeiss SMT, 

Germany) or the same type of cryo-system on an FEI Nova NanoSEM 450 (FEI, 

Eindhoven, The Netherlands). Surface frost was sublimated at -95 °C for 3 min. The 

sample was then transferred to an agar high resolution sputter coater and coated with 

platinum for 3 min at 10 mA at below -110 °C. Finally, the sample was moved onto the 

cryostage in the main chamber of the microscope, held at approximately -130°C, 

viewed at 3.0 kV and digital TIFF files were stored. 
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2.6.4 Fluorescence light microscopy 

Streptomyces was grown at the base of glass cover slips penetrating MYM agar at 

approximately 45˚ for 5 days at 30 ˚C. The cover slips were left to dry for 10 min in a 

flow hood and then soaked in 300 µL ice-cold methanol for 1 min, which was rinsed off 

by dipping in dH2O. A solution of 25 µg mL-1 propidium iodide (PI) (Sigma) and  

50 µg mL-1 wheat germ agglutinin Alexa Fluor® 488 conjugate (WGA) (Life Technologies)  

was prepared in dH2O and 25 µL of the solution was applied to the growth line on the 

coverslip. The samples were then incubated in the dark for 30 min and excess dye was 

removed by successively dipping in dH2O for 20 s. The samples were then blotted dry 

and 9 µL of 20% (v/v) glycerol was applied to a microscope slide. The coverslip was 

placed onto the microscope slide and finally nail polish was applied at the edges to 

ensure the coverslip was secured to the microscope slide.  The samples were kept in 

the dark until viewed with a Nikon Eclipse 600 CCD microscope (Cairn) at  

× 100 magnification with oil immersion. Photographs were taken by Orca HQ cooled 

CCD digital camera (Hamamatsu). Digital images were prepared using Image J (NIH) 

software. 
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3.1 Introduction  

The first enzyme of the GlgE pathway is trehalose synthase (TreS), which is a maltose α-

D-glucosylmutase (EC 5.4.99.16) that interconverts maltose (α-D-glucopyranosyl-(1,4)-D-

glucopyranose) and trehalose, with weak hydrolytic activity (α-D-glucopyranosyl-(1,1)-

α-D-glucopyranose) (Nishimoto, et al., 1995; Pan, et al., 2004).  

 

TreS is classified in the glycoside hydrolase (GH) 13_33 sub-family (Stam, et al., 2006) 

according to the carbohydrate active enzyme (CAZy) classification system (Cantarel, et 

al., 2009). Consequently, it has a (β/α)8 fold, defining an active site containing an 

aspartate (Asp) nucleophile and a glutamate (Glu) proton donor that catalyse an α-

retaining double-displacement reaction mechanism (Figure 3.1)(Caner, et al., 2013; 

Roy, et al., 2013). In support of this mechanism, evidence for the glucosyl-enzyme 

intermediate involving Asp230 in the Mycobacterium smegmatis enzyme has been 

reported (Zhang, et al., 2011). As α,α-trehalose (and no variants with β-configurations) 

was the only stereoisomer interconverted by TreS (Koh, et al., 2003) it suggests that 

only α-maltose is used and produced by TreS. Furthermore as TreS proceeds via an α-

retaining mechanism, it should be stereospecific for α-maltose.   

 

There were no reports of experimental evidence defining the anomeric configuration of 

the non-reducing terminus of maltose that TreS produces. The configuration could 

have consequences for metabolic flux, because the non-enzymatic mutarotation of 

maltose is so slow that the half-life of anomeric equilibration is of the order of tens of 

minutes (Bailey, et al., 1967). Moreover, although maltose mutarotase enzymes are 

known, they have only been detected in higher plants (Bailey, et al., 1967) and 

Lactobacillus brevis (Shirokane and Suzuki, 1995). 

 

The focus of experiments in this chapter was to obtain experimental evidence to define 

the anomeric configuration of maltose that TreS produces and consumes. Fluorinated 

maltose analogues were also used as substrates in order to determine if TreS could 

utilise substrate analogues and to observe if any stereospecificity was retained when 

these analogues were used.   
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Figure 3.1: Summary of predicted TreS catalysis 
The predicted reaction scheme of TreS, indicating that it should interconvert α-maltose 
and trehalose as well as slowly hydrolyse both substrates into glucose constituents. The 
labelled protons (Hs) were used to quantify reaction components in this study.  
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3.2 Heterologous over-production of Mycobacterium tuberculosis TreS 

 

3.2.1 Small-scale production trials 

A codon-optimised DNA sequence encoding M. tuberculosis TreS was synthesised and 

sub-cloned into an expression vector. Chemical transformation was used to insert the 

plasmid in to two Escherichia coli cell lines optimised for high heterologous protein 

production; BL21* (DE3) and BL21 (DE3) pLysS. Protein expression was initiated by the 

addition of isopropyl β-D-1-thiogalactopyranoside (IPTG) when cultures reached an 

appropriate OD600nm. Protein production was monitored by sodium dodecyl sulphate 

polyacrylamide gel electrophoresis (SDS-PAGE) (Figure 3.2). Any bands that 

dramatically increased upon IPTG induction on the gel were deemed as likely to be TreS 

and therefore were excised and its identity was confirmed by matrix-assisted laser 

desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS).  

 

3.2.2 Large-scale production 

As initial protein production yielded soluble TreS, the culture medium was scaled up. 

TreS was purified from the cell lysate using a HisTrap column (Figure 3.3) and further 

purified by size exclusion chromatography (SEC) (Figure 3.4a). The SEC chromatogram 

suggested that TreS formed two oligomeric states in solution, which were stored 

separately (Figure 3.4b). 

 

3.3 Initial characterisation of TreS 

 

3.3.1 TreS exists as two oligomers in solution 

An estimate of the size of oligomers was made based on the elution volume (VE) of 

each oligomer by comparison to the VE of proteins of known masses. This suggested 

that the larger oligomer was a hexamer (observed size: 427 kDa expected size: 423 

kDa) and that the smaller oligomer was a trimer (observed size: 229 kDa; expected size: 

211.5 kDa). Dynamic light scattering (DLS) suggested that the larger oligomer may even 

be a decamer ( observed size 691 kDa; expected size 705 kDa) but confirmed that the 

smaller oligomer was likely to be a trimer (observed size 195 kDa; expected size 211.5 

kDa). 
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The oligomers did not seem to interconvert (data not shown). Analytical 

ultracentrifugation was attempted to confirm the size of the oligomers but TreS was 

not sufficiently stable and precipitated during the procedure (data not shown). 

 

 
Figure 3.2: Initial TreS expression trials 
SDS- PAGE of cell lysates from E. coli BL21* (DE3) (lane 1-3) and BL21 (DE3) pLysS (lane 
4-6). Lanes 1 and 4 were cell lysates prior to IPTG induction. Lanes 2 and 5 were cell 
lysates 5 h after induction and lanes 3 and 6 were cell lysates ~17 h after induction. The 
black arrow indicates the approximate position of TreS (expected size 70.5 kDa).  
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Figure 3.3: Large scale purification of TreS 
SDS- PAGE of protein-containing fractions after elution from a HisTrap column. 
 

 
Figure 3.4: Further purification of TreS 
(A) SDS-PAGE of protein-containing fractions after elution from a size exclusion 
chromatography (SEC) column.  
(B) SEC (A280nm) chromatogram showing that TreS forms two oligomeric states in 
solution. Initially, fractions were pooled separately as peak one and peak two.
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3.3.2 1H- NMR spectroscopy can differentiate between the substrates and products of 

TreS  

TreS was known to interconvert trehalose and maltose, but for this study an assay 

technique that could differentiate between the α and β anomers of maltose was 

required. Moreover, the assay had to be able to distinguish the disaccharides from 

glucose, which is a known hydrolysis product of TreS (Nishimoto, et al., 1995; Pan, et 

al., 2004; Zhang, et al., 2011). NMR spectroscopy was predicted to be one of the few 

techniques that could be used to distinguish anomers of maltose because it utilises 

magnetic in-equivalence of the α and β anomers of maltose, it is also non-destructive 

and so it was possible to take multiple readings of a single TreS reaction. Furthermore, 

it allowed mixtures to be analysed without chromatography. 

 

A trial experiment monitored by 1H- NMR spectroscopy showed that purified TreS was 

active and validated this technique for future assays (Figure 3.5). The only challenging 

aspect regarding the use of this technique was the overlap of resonances associated 

with α-maltose and α-glucose. However, as resonances associated with β-maltose were 

resolved from those of β-glucose and there was also a well-defined resonance 

attributable to the α-1,4 glycosidic bond, it was possible to determine α-maltose 

concentrations.    
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Figure 3.5: 1H-NMR spectroscopy resolves the products and substrates of TreS 
A typical 1H-NMR spectrum recorded when 2 µM TreS was incubated with 10 mM 
maltose for 919 min. Only the regions of the spectrum used to quantify reaction 
components are shown. For the assignments see materials and methods and figure 3.1. 
 
 
 
 
 
 

 
Figure 3.6: Different oligomers of TreS had the same specific activity 
TreS at a concentration of 1.75 μM (based on Mw of a single monomer) was incubated 
with 10 mM maltose and trehalose production was monitored. The rate of conversion 
was comparable regardless of the oligomer of TreS used in the reaction.    
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3.3.3 TreS oligomers have similar activity 

Time-courses using the same concentration of each TreS oligomer suggested that the 

two oligomers of TreS had similar specific activities (Figure 3.6). SEC experiments 

suggested that the oligomers remained discrete and did not inter-convert (data not 

shown). Consequently, for further enzymology experiments both oligomers were 

pooled.     

 

3.3.4 Citrate was the optimal buffer for TreS assays 

Initial experiments with TreS were performed in a phosphate buffer, which was initially 

preferred because it does not have any protons and so the 1H-NMR spectra were not 

affected by the presence of the buffer. However, the rate of mutarotation of glucose 

increases in the presence of phosphate (Stults, et al., 1987). In order to determine if 

TreS was stereospecific, it was important to ensure the rate of mutarotation was slow 

so as to allow the faster TreS enzymatic reaction to be sufficiently distinguishable from 

relatively slow mutarotation reactions. Initial experiments suggested that, at a 

phosphate concentration of 145 mM, it was difficult to resolve the two processes 

occurring. Whilst the concentration of phosphate could have been lowered 

dramatically, it would have impacted on the buffering capacity of the phosphate and 

therefore another buffer that operated in the same pH range as phosphate was sought, 

tris (and bis-tris propane by association) was excluded from this screen because it has 

been shown to competitively inhibit TreS from M. smegmatis (Pan, et al., 2004).     

 

The only buffer tested that had no proton resonances in the same region as that of 

maltose and trehalose was citrate (Figure 3.7). The rate of maltose mutarotation was 

much slower than with phosphate and it did not dramatically change as a function of 

citrate concentration (Figure 3.8).  
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Figure 3.7: Buffer screens showed that citrate buffer was optimal 
All samples had a H2O solvent resonance (4.7 ppm). (A) A spectrum showing all maltose 
and trehalose resonances. MOPS (B), PIPES (C) and HEPES (D) contained resonances 
within the maltose and trehalose resonance region but citrate (E) did not. 

 
Figure 3.8: Citrate did not accelerate the rate of equilibration between α-maltose and 
β-maltose 
Rates of equilibration with a phosphate buffer were comparable to the rate of catalysis 
of TreS; therefore it was difficult to distinguish between TreS catalysis and non-
enzymatic mutarotation. However, when a citrate buffer was used the rate of 
mutarotation between α-maltose and β-maltose was much slower and did not increase 
as a function of citrate concentration.    
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3.3.5 Solvent suppression correction factors were used 

In order to determine the exact concentrations of products and substrates by 1H-NMR 

spectroscopy it was necessary to determine the area of the integrals and correct for the 

number of protons each resonance represented. Reaction mixtures contained 10% D2O 

to assist spectrum acquisition without significant risk of introducing solvent kinetic 

and/or equilibrium isotope effects. This necessitated solvent suppression. However, as 

the resonances of interest were close to the solvent resonance (Figure 3.9), they too 

were suppressed by solvent suppression. The resonances corresponding to β-maltose 

H-1 and β-glucose H-1 (Figure 3.1) were not used as they were significantly supressed 

and instead β-maltose and β-glucose H-2 were used as they were further from the H2O 

resonance. Solvent correction factors were determined for trehalose (5.1 ppm) and 

maltose (5.3 ppm) resonances by comparing integrals in a 100% D2O non-solvent 

suppressed sample with 10% D2O solvent-suppressed sample (Figure 3.9; Table 3.1). 

The different amounts of D2O could affect the α-maltose/β-maltose equilibrium 

position and therefore it was not possible to directly determine the suppression of α-

maltose. However, as the resonance was in between the maltose and trehalose 

resonances, an average of the two resonances was calculated (13.9%) and was used as 

the suppression correction factor for α-maltose. 
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Figure 3.9: Solvent suppression also suppresses resonances used to determine 
trehalose, maltose and glucose concentrations 
Spectra collected using non-solvent suppressed 1H-NMR spectroscopy, containing equal 
concentrations of trehalose and maltose dissolved in 100% D2O (A) and solvent 
suppressed 1H-NMR spectroscopy, containing trehalose and maltose dissolved in 10% 
D2O and 90% H2O (B).  
 
 
 
 
Table 3.1: Solvent suppression factors for trehalose and maltose when citrate 
resonances were used as an internal standard 
 
Resonance Integral in 100% 

D2O  
Integral in 10% 
D2O  

Difference % suppression 

trehalose 
H-1 

0.61 0.52 0.09 14.9 

α/β-
maltose H-
1’ 

0.30 0.26 0.04 12.9 
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3.4 TreS interconverts only the α anomer of maltose 

 

3.4.1 Non-enzymatic mutarotation rate determination 

Since anomers mutarotate non-enzymatically, their equilibration upon dissolution of 

crystalline materials in citrate buffer at 25 °C was monitored using 1H-NMR 

spectroscopy (Figure 3.10). The rate constants determined, by fitting to a single 

reversible step reaction, for the mutarotation of α-glucose to β-glucose and the reverse 

reaction were 0.0316 ± 0.0004 and 0.0192 ± 0.0004 min-1 and, for maltose, 0.0286 ± 

0.0002 and 0.0187 ± 0.0001 min-1, each respectively (Figure 3.10). These rate constants 

were consistent with the literature values of 0.027 min-1 in 5 mM 

ethylenediaminetetraacetic acid (EDTA), pH 7.4, at 25 °C (Bailey, et al., 1967) and 0.018 

min-1 in water at 21 °C (Stults, et al., 1987), and the expected dominance of the β 

anomers.  

 

3.4.2 TreS produces α-maltose from trehalose  

The conversion of trehalose into maltose by TreS in citrate buffer as a function of time 

was monitored using 1H-NMR spectroscopy (Figure 3.11). The α anomer of maltose was 

formed 5.4-fold more rapidly than its β anomer, suggesting TreS generates the α 

anomer. A low level of glucose was also produced through hydrolysis, as observed 

previously. At longer times, the ratio between trehalose and α/β -maltose was 2.2:1 (at 

25 °C and pH 6.7), which is reasonably similar to the equilibrium position of 4.6:1 

determined from the free energies of hydrolysis of these disaccharides (at 25 °C and pH 

5.65) (Syson, et al., 2011; Tewari and Goldberg, 1991; Tewari, et al., 2008) and of 3.2:1 

determined from the kinetics of M. smegmatis TreS (Zhang, et al., 2011). The expected 

equilibrium positions between the anomers of both maltose and glucose were also 

approached at longer times. 
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Figure 3.10: Non-enzymatic mutarotation rates of glucose and maltose 
(A)  Time course of the non-enzymatic mutarotation glucose. The concentrations of 
each anomer of glucose were determined as a function of time after the dissolution of 
solid glucose (giving 10 mM in 90 mM citrate buffer, pH 6.7, containing 10% (v/v) D2O 
at 25 °C) using 1H-NMR spectroscopy. Fitting of the data gave rate constants of 0.0316 
± 0.0004 and 0.0192 ± 0.0004 min-1 for the mutarotation of the α to the β anomer and 
the reverse reaction, respectively. These values were consistent with not only the 
literature (0.027 min-1 in 5 mM EDTA, pH 7.4, at 25 °C (Bailey et al., 1967) and 0.018 
min-1 in water at 21 °C (Stults et al., 1987), respectively) but also the expected 
dominance of the β anomer. 
(B) Time course of the non-enzymatic mutarotation of maltose. The concentrations of 
each anomer of maltose were determined as a function of time after the dissolution of 
solid maltose (giving 10 mM in 90 mM citrate buffer, pH 6.7, containing 10% (v/v) D2O 
at 25 °C) using 1H-NMR spectroscopy. Fitting of the data gave rate constants of 0.0286 
± 0.0002 and 0.0187 ± 0.0001 min-1 for the mutarotation of the α to the β anomer and 
the reverse reaction, respectively, consistent with the literature (0.017 min-1 in 5 mM 
EDTA, pH 7.4, at 25 °C (Bailey et al., 1967) for the reverse reaction) and the expected 
dominance of the β anomer. 
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Figure 3.11: TreS produces the α anomer of maltose from trehalose 
The conversion of 10 mM trehalose into maltose by 2 µM of TreS according to 1H-NMR 
spectroscopy. Each component was quantified by signal integration using citrate as an 
internal standard.  
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3.4.3 TreS consumed α-maltose to form trehalose  

As TreS formed trehalose from pre-equilibrated α/β-maltose (α:β anomeric ratio of 

1:1.5), a rapid depletion of α-maltose was immediately apparent (Figure 3.12A). By 

contrast, the consumption of β-maltose was significantly slower and conformed to a 

single exponential function (Figure 3.12B) with a rate of 0.019 min-1 that was consistent 

with the rate constant for the mutarotation described above (0.0187 ± 0.0001 min-1). 

This implied that TreS does not utilize the β anomer. When the experiment was 

repeated with lower TreS concentrations, the rate of consumption of α-maltose 

decreased, while that of the β anomer remained similar. Thus, the transient increase in 

the β/α ratio of the maltose anomers was less pronounced at lower enzyme 

concentrations (Figure 3.13), providing further evidence that TreS converts only the α 

anomer of maltose into trehalose, as expected. While the initial formation of glucose 

through hydrolysis appeared to be more rapid from maltose than trehalose, this most 

likely reflected the more rapid initial consumption of maltose. This implies the equal 

probability of either α-maltose or trehalose being hydrolysed based on these data. It is 

also noteworthy that the α anomer of glucose was produced more rapidly from 

maltose than its β anomer, suggesting that α-glucose is the product of hydrolysis. 
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Figure 3.12: TreS converts the α anomer of maltose to trehalose 
(A) The conversion of pre-equilibrated 10 mM α/β-maltose into trehalose by 2 µM TreS 
according to 1H-NMR spectroscopy. TreS was added immediately after the t = 0 data 
were acquired, resulting in a small and reproducible change in the apparent 
concentration of starting materials at the second recorded time point. The times taken 
to produce 2 mM trehalose and consume 50% of the α/β-maltose were 14 and 55 min, 
respectively.  
(B) Fitting of the time course of the depletion of β-maltose during a reaction with α/β-
maltose and TreS. The conversion of 10 mM α/β-maltose by 2 μM TreS was monitored 
using 1H-NMR spectroscopy. Fitting of the data for β-maltose (open squares) to a single 
exponential (solid line) gave a rate of 0.019 min-1. This was indistinguishable from the 
rate constant determined for the mutarotation of β-maltose to α-maltose (0.0187 ± 
0.0001 min-1 shown above). 
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Figure 3.13: β/α-Maltose ratio moves closer to the natural β/α maltose ratio as the 
reaction proceeds 
Time courses of the ratios between the β and α anomers of maltose with different TreS 
concentrations during the conversion of pre-equilibrated α/β-maltose. The broken line 
indicates the equilibrium between the two anomers in these conditions in the absence 
of TreS. 
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3.5 The specificity of TreS for the α anomer of maltose was retained with deoxyfluoro 

analogues  

Deoxyfluorotrehalose analogues have been shown to label M. tuberculosis cells and 

exhibit weak anti-mycobacterial activity (Backus, et al., 2011). Since M. tuberculosis has 

a trehalose transporter (Kalscheuer, et al., 2010b) and TreS has been reported to utilize 

2-fluoro-2-deoxymaltose as a substrate (Zhang, et al., 2011), the ability of TreS to 

convert 2-, 3-, and 6-deoxyfluoromaltose analogues (Tantanarat, et al., 2012) was 

monitored using 19F-NMR spectroscopy (Figures 3.14 and 3.16).  

 

The 2-deoxy-2-fluoro and 6-deoxy-6-fluoro compounds were converted to the 

corresponding deoxyfluorotrehalose analogues ~2-fold and ~180-fold less efficiently 

than the normal substrate (Figures 3.14A and 3.14C). The hydrolysis of each analogue 

to the corresponding deoxyfluoroglucose compounds was detected (Figure 3.14), 

particularly with the 3-fluoro-3-deoxy and 6-fluoro-6-deoxy compounds, with the 

former being exclusively hydrolysed (Figure 3.14B). The expected concomitant 

formation of non-fluorinated glucose was detected using 1H-NMR spectroscopy (data 

not shown). The α anomer was consumed more rapidly than the β anomer with all 

three analogues (Figure 3.14) consistent with TreS only acting on α anomers. The 

mutarotation rates of the deoxyfluoro analogues are not known, but fitting the decay 

of the β anomer of the 2-deoxy-2-fluoro analogue (Figure 3.14A) suggested a rate 

constant of ~0.004 min-1, an order of magnitude slower than that for maltose. 

 

In order to assess whether fluoro substitution at the three and six positions resulted in 

poor binding to TreS or slow conversion by TreS, the extent of conversion of 0.52 mM 

2-deoxy-2-fluoromaltose was monitored in the presence and absence of 2.1 mM of 

each of the other two analogues (Figure 3.15). Neither of the analogues gave inhibition, 

and there may indeed have been a modest stimulation of activity. Given that the Km for 

maltose is 8–10 mM with the M. smegmatis enzyme (Pan, et al., 2004; Zhang, et al., 

2011) and the Km for the 2-deoxy-2-fluoro analogue would not be expected to be 

orders of magnitude lower than this, the lack of inhibition is consistent with fluoro 

substitution at the three and six positions, compromising the ability of maltose 

analogues to bind to TreS. 
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Figure 3.14: TreS Converts the α anomer of deoxyfluoromaltose analogues 
These experiments were performed by M. Rejzek. 
(A) The conversion of 10 mM pre-equilibrated 2-deoxy-2-fluoro-α/β-maltose by 2 μM 
of TreS was monitored using 19F-NMR spectroscopy. The times taken to produce 2 mM 
2-deoxy-2-fluorotrehalose and consume 50% of the maltose analogue were 25 and 
125 min, respectively, both ∼2-fold longer than with maltose.  
(B) Corresponding data as with 3-deoxy-3-fluoro-α/β-maltose. The time taken to 
consume 50% of the maltose analogue was 1,100 min, 20-fold longer than with 
maltose. No 3-deoxy-3-fluorotrehalose was detected.  
(C) Corresponding data with 6-deoxy-6-fluoro-α/β-maltose. The times taken to produce 
2 mM 6-deoxy-6-fluorotrehalose and consume 50% of the maltose analogue were 
2,500 and 1,500 min, respectively, 180- and 27-fold longer than with maltose. 
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Figure 3.15: Lack of inhibition of the TreS-catalysed conversion of 2-deoxy-2-
fluoromaltose to trehalose by either 3-deoxy-3-fluoro or 6-deoxy-6-fluoromaltose 
according to 19F-NMR spectroscopy 
(A) A sample of 0.2 μM TreS was incubated with 0.52 mM 2-deoxy-2 fluoromaltose for 
30 min. A relatively short incubation time was used to allow the estimation and 
comparison of the initial rates of the reactions. A sample of 0.2 μM TreS was incubated 
with 0.52 mM 2-deoxy-2 fluoromaltose for 30 min pre-incubated with 2.1 mM 3-deoxy-
3-fluoromaltose (B) or 6-deoxy-6-fluoromaltose (C). 
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Figure 3.16: Summary of proposed TreS catalysis with deoxyfluoromaltose analogues 
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3.6 Crystallisation trials of TreS 

Attempts were made to crystallise TreS but were unsuccessful. A number of factors 

were varied such as protein concentration (7.5- 15 mgmL-1), buffer constituents, 

oligomer separation and the His6-tag was cleaved by TEV protease. Co-crystallisation 

with glucose was also attempted.   

 

3.7 Discussion 

The findings reported in this chapter confirm the mechanistic prediction that TreS is 

stereospecific. Recent work has demonstrated that TreS is likely to predominantly 

operate in the direction that produces α-maltose in Mycobacterium (Miah, et al., 2013). 

The findings in this chapter have also highlighted that, in a biological context, the 

mutarotation between the α and β anomers of maltose and glucose is slow. Moreover, 

there are no mutarotases in Mycobacterium and consequently mutarotation would 

have to occur non-enzymatically in these bacteria. Therefore, if TreS was non-

stereospecific or indeed only used the β anomer of maltose flux into the GlgE pathway 

could have been limited by the slow rate of mutarotation because the second enzyme 

of the GlgE pathway, the maltose kinase (Pep2), is stereospecific for α-maltose 

(Drepper, et al., 1996; Niehues, et al., 2003).  

 

Recently, two crystal structures of TreS from M. tuberculosis and M. smegmatis have 

been published (Caner, et al., 2013; Roy, et al., 2013). It is noteworthy that the 

concentration of protein used for crystallisation was much greater, especially M. 

tuberculosis TreS (80 mg mL-1) but also M. smegmatis TreS (20 mg mL-1), than used in 

this work (Caner, et al., 2013; Roy, et al., 2013). This could potentially be why 

crystallisation failed in this study because the protein concentration was not sufficiently 

high for TreS to crystallise as similar crystallisation conditions were used.  

 

Unlike trehalose, the deoxyfluorotrehalose products are asymmetric and might have 

been converted to the corresponding nꞌ-deoxy-nꞌ-fluoromaltose analogues but were 

not. This could have been due to the destabilisation of oxocarbenium ion-like transition 

states associated with these reactions (Withers, et al., 1988). Alternatively, other 

effects could be involved, such as reduced binding affinities. Indeed, neither of the 3-

deoxy-3-fluoro and 6-deoxy-6-fluoromaltose analogues appeared to bind well to the 

enzyme. The 3-deoxy-3-fluoromaltose was exclusively hydrolysed meaning that 3-
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deoxy-3-fluoroglucose was less able than a water molecule to attack the glucosyl-

enzyme intermediate. This could be due to changes in the nucleophilicity of 3-deoxy-3-

fluoroglucose or more likely due to an inability to orient itself appropriately within the 

active site. 

 

3.8 Summary 

In summary, results in this chapter show definitively that TreS is stereospecific, thereby 

only catalysing the inter-conversion of the α anomer of maltose and trehalose. This 

stereospecificity was also retained with maltose analogues.   
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4.1 Introduction 

Maltose kinase activity was initially identified in crude extracts of Actinoplanes sp. SN 

223/29 (Drepper, et al., 1996). The gene encoding Pep2 was first identified in 

Actinoplanes missouriensis and the gene product was subsequently confirmed as a 

maltose kinase (Niehues, et al., 2003). Further work has identified the corresponding 

homologues in Streptomyces coelicolor and Mycobacterium bovis BCG (Jarling, et al., 

2004; Mendes, et al., 2010). A bioinformatic study revealed that 40% of bacterial 

genomes which contained treS also contained pep2 (also referred to as mak1) 

(Chandra, et al., 2011). Furthermore, in 75% of the genomes containing both treS and 

pep2, the genes were fused and predicted to be expressed as a single protein (Chandra, 

et al., 2011).  

 

Given the close association of the treS and pep2 genes in many bacterial genomes, it 

seemed possible that there would also be a physical association between the two 

enzymes. Furthermore, there was no evidence that TreS and Pep2 were able to 

collectively synthesise α-maltose 1-phosphate (αM1P) from trehalose in vitro. There 

are no commercial sources of αM1P and its chemical synthesis is non-trivial, therefore 

if this enzyme could be purified easily with high yield there is potential for enzymatic 

synthesis of αM1P (Syson, et al., 2011).  

 

This focus of this chapter was to express and purify Pep2 from Mycobacterium 

tuberculosis in order to determine if it could be used with TreS to generate αM1P from 

trehalose. In addition, as the M. tuberculosis TreS was not amenable for 

crystallographic studies, a fusion protein of TreS and Pep2 was expressed and purified 

for use in crystallisation trials.    

 

4.2 Initial Pep2 production trials 

Initial overexpression trials in Escherichia coli BL21 StarTM (DE3) did not seem to yield 

soluble Pep2 (Figure 4.1A). Toxicity tests suggested that Pep2 expression was not toxic 

for E. coli (data not shown) and therefore an alternative expression strain was sought. 

E. coli BL21 (DE3) was chosen becuase Pep2 from M. bovis was over-produced in this 

strain (Mendes, et al., 2010). Whilst cell lysates did not have any bands that clearly 

increased in intensity upon treatment with isopropyl β-D-1-thiogalactopyranoside 
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(IPTG), when the cell lysate was passed through a HisTrap column there was a clear 

protein band that eluted from the column (Figure 4.1B). The band was excised from the 

gel and the identity of the protein was confirmed by matrix-assisted laser 

desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS). 

 

As the yield of protein was relatively low, culture conditions were further optimised 

before large-scale production was attempted. 

 

4.3 Large scale production of Pep2 and oligomerisation state 

Pep2 was purified from other proteins in the cell lysate by a HisTrap column followed 

by size exclusion chromatography (SEC) (Figure 4.2).The protein eluted from the SEC 

column as two separate oligomers. The elution volume of the oligomers was used to 

estimate their sizes by making comparisons with the elution volumes of proteins of 

know sizes. The values calculated were consistent with Pep2 eluting as a dimer and 

monomer. Fractions containing Pep2 were pooled, concentrated and solvent 

exchanged. Previous work on Pep2 from a related organism suggested that it would 

aggregate upon a single freeze-thaw cycle; so it was stored at 4 °C (Mendes, et al., 

2010).  

 

Dynamic light scattering (DLS) was used to further investigate the oligomeric state of 

Pep2. It suggested that it existed predominantly as a monomer (observed size 56 kDa; 

expected size: 51.7 kDa), however over 10% of the total protein mass was attributable 

to aggregate in the sample, indicating the protein was unstable in solution. The 

presence of > 5% of the total protein mass as aggregate can adversely affect detection 

of other oligomers by DLS because it is only capable of accurately determining the size 

of a monodisperse sample. As the size of the aggregates was much larger (4600 kDa) 

than any oligomer, the majority of the signal would have been from the aggregate, 

which would have skewed the signal relating to the size of the oligomers. 
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Figure 4.1: Initial Pep2 production trials 
 (A) SDS-PAGE of cell free extracts of E. coli BL21 StarTM (DE3) (lane 1-3). Lane 1 is the 
cell free extract before induction with IPTG; lane 2 is the cell-free extract 5 h after 
induction and lanes 3 is the cell-free extract one night after induction. No distinct band 
corresponding to Pep2 (expected size 52 kDa) was observed. 
(B) SDS-PAGE of E. coli BL21 (DE3) cell free extracts before (lane 1) and after (lane 2) 
passing the supernatant through a 0.1 mL HisTrap column. A distinct band was 
observed after elution with buffer B, suggesting the protein was His6 -tagged and could 
be Pep2 (expected size 52 kDa) despite appearing too large when compared to the Mw 
marker.  
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Figure 4.2: Large scale purification of Pep2 
(A) SDS-PAGE of protein-containing fractions after elution from a HisTrap column. M= 
marker 
(B) SDS-PAGE of protein-containing fractions after eluting from a size exclusion 
chromatography (SEC) column. M= marker 
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4.4 Pep2 activity 

Initial activity studies were monitored by thin layer chromatography (TLC) (Figure 4.3). 

A solvent system that led to differential migrations of maltose and αM1P was used to 

determine if Pep2 had maltose kinase activity. After 1 h it was evident that there was 

conversion of maltose into αM1P (Figure 4.3). However, after prolonged incubation a 

white precipitate was visible in the assay. The white precipitate was only observed 

when Pep2 was present suggesting that the protein, whilst active, had limited stability 

in solution at 37 °C.  

 

4.5 TreS and Pep2 might form a physical complex  

A sample of TreS was combined with Pep2 in a 1:1 molar ratio and incubated at room 

temperature. Given that Pep2 seemed to be relatively unstable, the sample was left for 

30 min. The mixture was then placed on an analytical SEC column in order to observe if 

the two proteins had formed a complex with one another. The A280nm showed that two 

distinct species eluted from the SEC column. When the fractions were viewed by SDS-

PAGE it suggested that TreS and Pep2 eluted separately and did not co-elute as would 

be expected if the two proteins formed a complex (Figure 4.4). 

 

DLS was also used to gain insights in to the possible interaction between the TreS and 

Pep2. The percentage of total protein mass that was aggregated in the sample was 

much less (<3%) than was observed when compared to samples containing only Pep2. 

This suggested that the presence of TreS with Pep2 increased the stability of Pep2 and 

prevented it from aggregating, supporting the notion of complex formation. The major 

species detected by DLS closely matched the theoretical size (observed size: 724 kDa; 

expected size: 733 kDa) of a hetero-hexameric complex comprising 6 subunits each of 

TreS and Pep2.  

 

Therefore these data, whilst not conclusive, indicated that perhaps TreS stabilised Pep2 

by forming a complex with the protein.    
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Figure 4.3: Pep2 has maltose kinase activity 
A sample of an assay containing Pep2, 10 mM maltose, 10 mM ATP and 10 mM MgCl2 
were spotted onto TLC plates after incubation at 37 °C for 1 h. The tear-shaped spots 
from the assay migrated to the same position as the αM1P and maltose standard 
implying that Pep2 can produce αM1P.   
 

 
Figure 4.4: TreS and Pep2 do not co-elute from a SEC column 
An equimolar solution of TreS and Pep2 was mixed and incubated at room temperature 
for 30 min. The sample was then injected on to an analytical SEC column to observe if 
the two proteins co-eluted. Fractions eluting from the column were collected and run 
on SDS-PAGE. The majority of TreS eluted in earlier fractions and separately from Pep2, 
which eluted later. 
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4.6 TreS and Pep2 collectively synthesised αM1P 

Enzyme assays were carried out to investigate if TreS and Pep2, at an equimolar 

concentration and with all the necessary substrates, could synthesise αM1P in vitro. 

TLC suggested that there was production of αM1P under these conditions (Figure 4.5A). 

This was confirmed by proton nuclear magnetic resonance (1H-NMR) spectroscopy 

(Figure 4.5B). After prolonged incubation at 37 °C, a white precipitate was visible. As 

this was also observed in the Pep2 assay, it seems likely that it was Pep2 precipitate. 
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Figure 4.5: TreS and Pep2 convert trehalose into αM1P  
(A) A sample of an assay containing 1.5 nM TreS, 1.5 nM Pep2, 10 mM trehalose, 10 
mM ATP and 10 mM MgCl2 were spotted onto TLC plates after incubation at 37 °C for 1 
h. The tear-shaped spots from the assay migrated to the same position as the αM1P 
and maltose/trehalose standard which demonstrated that TreS and Pep2 can 
collectively convert trehalose into αM1P in vitro. 
(B) The assay was scaled-up and probed by 1H-NMR spectroscopy and resonances 
matched those for αM1P.  A slight shift in the ppm at which the doublet appears was 
due to the reaction mixture being a different pH to the control αM1P solution. 
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4.7 Sub-cloning and production trials of TreS-Pep2 

A codon-optimised P .aeruginosa treS-pep2 gene was sub-cloned into a pET21a vector 

using restriction digestion followed by ligation (Figure 4.6).  

 

Initial small-scale expression trials with E. coli BL21 (DE3) seemed to yield large 

amounts of soluble TreS-Pep2 (Figure 4.7A), which was confirmed by MALDI-TOF mass 

spectrometry. However, when the condition was scaled-up to 0.5 L there was no 

significant increase in the amount of TreS-Pep2. 

 

Therefore, more small-scale expression trials of TreS-Pep2 were performed (Figure 4.8). 

As many conditions initially tested yielded insoluble TreS-Pep2, E. coli SoluBL21TM was 

used because this strain was designed to increase soluble protein expression. Many 

conditions using E. coli SoluBL21TM resulted in soluble TreS-Pep2 (Figure 4.8). The 

condition yielding greatest levels of soluble TreS-Pep2 was scaled-up and yielded 

enough protein for further characterisation (Figure 4.9 and 4.10) and possibly 

crystallography. Aliquots were stored at -20 °C until required.   
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Figure 4.6: Sub-cloning treS-pep2 into a pET21a expression vector 
The treS-pep2 gene was synthesised (GenScript) for optimal codon usage in E. coli and 
inserted into a pUC57 cloning vector (GenScript). Lane 1 shows that the gene (upper 
band 3.3 kbp) was excised from the vector (lower band 2.5 kbp) by restriction digestion 
using NdeI and BamHI. A ligation reaction subsequently fused the gene sequence to a 
linearised pET21a vector, creating a circularised plasmid suitable for protein 
expression. E. coli DH5α was transformed with the resulting plasmid. Plasmids from 
successful transformants were purified and subjected to restriction digestion to screen 
for the correct plasmid. Lane 2 shows the result of a restriction digest of the pET21a 
vector (upper band 5.5 kbp) containing the full treS-pep2 gene (lower band 3.3 kbp).     
 
 

 
 
Figure 4.7: Initial expression trials 
(A) SDS-PAGE of E. coli BL21 (DE3) whole cell fraction (lane 1) and soluble fraction (lane 
2) after induction with IPTG and overnight incubation in LB. This suggested that TreS-
Pep2 (expected size 125 kDa) was over-expressed in high yields in the soluble fraction.   
(B) The above culture was repeated on a 0.5 L scale. Fractions eluted from the column 
were collected and run on a SDS-PAGE gel. Whilst TreS-Pep2 was observed in the 
fractions, the protein yield was low.    
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Figure 4.8: TreS-Pep2 further expression trials 
SDS-PAGE of whole cell fractions (all lanes labelled a) and soluble fraction (all lanes 
labelled b) of small scale expression trials using conditions as outlined in Table 4.1. 
These gels suggested that condition 12 produced the greatest soluble yield of TreS-
Pep2 (expected size 125 kDa). L= marker 
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Table 4.1: Expression trial conditions for TreS-Pep2 

Sample 
Number 

 E. coli 
strain 

Liquid 
media 

IPTG 
concentration 
(mM) 

DMSO 
 % (v/v) 

1 BL21 LB 2 0 

2 BL21 LB 4 0 

3 BL21 LB 6 0 

4 BL21 LB 1 0.2  

5 BL21 LB 1 0.3  

6 BL21 LB 1 0.4  

7 BL21 SOC 1 0.2  

8 BL21 L 1 0.2 

9 BL21 AIM 0 0.2  

10 SoluBL21 LB 1 0.2  

11 SoluBL21 LB 1 0.3  

12 SoluBL21 LB 1 0.4  

13 SoluBL21 SOC 1 0.2  

14 SoluBL21 L 1 0.2  

15 SoluBL21 AIM 0 0.2  

16 SoluBL21 LB 0 0.2  
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Figure 4.9: Large scale purification of TreS-Pep2 
SDS- PAGE of protein-containing fractions after elution from HisTrap column. 
 
 

 
 
Figure 4.10: SEC suggests that TreS-Pep2 elutes as a pentamer 
(A) SDS-PAGE of protein-containing fractions after elution from a SEC coumn. 
(B) A280nm chromatogram as TreS-Pep2 (monomeric size 125 kDa) eluted from SEC 
column showing that it eluted as a single pentamer (expected size 625 kDa; observed 
size 600 kDa).    
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4.8 TreS-Pep2 was active but predicted to be disordered and unstable  

The A280nm chromatogram as TreS-Pep2 eluted from the SEC column suggested that it 

eluted as a single pentameric oligomer (Figure 4.10). DLS confirmed the results from 

the SEC (observed size: 625 kDa; expected size 625 kDa).  

 

Activity assays suggested that the protein was active and could produce αM1P from 

trehalose (Figure 4.11). There was no visible white precipitate after prolonged 

incubation, which contrasts to the observations made with TreS and Pep2 from M. 

tuberculosis assays, suggesting the Pep2 is more stable in this enzyme. However, 

analysis by SEC suggested that the protein was not stable at room temperature for a 

prolonged period and that it formed aggregates (Figure 4.12). Based on the primary 

amino acid sequence of TreS-Pep2 it was predicted to have several highly disordered 

regions (Figure 4.13) (Ward, et al., 2004). Given that TreS-Pep2 was unstable and had 

many highly disordered regions, crystallisation of this protein was not attempted.      
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Figure 4.11: TreS -Pep2 converts trehalose into αM1P  
Samples of an assay containing TreS-Pep2, 10 mM trehalose, 10 mM ATP and 10 mM 
MgCl2 were spotted onto TLC plates after incubation at 37 °C for 1 h. The spots from 
the assay migrated to the same position as the αM1P and trehalose standard, which 
demonstrated that TreS-Pep2 converts trehalose into αM1P.   
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Figure 4.12: TreS-Pep2 formed aggregates 
(A) Thawed TreS-Pep2 was injected (VI) onto and eluted (VE) from an analytical SEC 
column.  
(B) After incubation for 2.5 h at room temperature, another sample of TreS-Pep2 was 
injected (VI) and eluted (VE) from the analytical SEC column. There was less TreS-Pep2 
eluting as a pentamer, and the mAu was approximately half of that observed in 4.12A. 
There was a concomitant increase in the protein that eluted in the void volume (V0), 
suggesting that whilst at room temperature the protein had aggregated. There were 
also a number of other fragments eluting after the majority of TreS-Pep2. These 
fragments eluted after the smallest standard that had been used to calibrate this 
column. The smallest standard used was 12 kDa, which suggested that TreS-Pep2 was 
broken down by proteolysis into peptide fragments.   
 

 
Figure 4.13: Disopred profile for TreS-Pep2 suggested the protein is highly disordered 
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4.9 Discussion 

The focus of this chapter was to characterise the maltose kinase Pep2. Generally, the 

protein was relatively difficult to purify and had limited stability in assays. 

 

Pep2 was more stable in the presence of TreS. Whilst there was conflicting data for 

complex formation between the two proteins in vitro, there is recently published 

evidence that M. tuberculosis TreS and Pep2 do form a complex under different 

experimental conditions (Roy, et al., 2013). Small angle X-ray scattering and analytical 

ultracentrifugation confirmed that TreS and Pep2 form a hetero-octameric complex in 

solution (Roy, et al., 2013). This is in the same order magnitude as observed in this 

study by DLS. The study also presented SEC data to show complex formation (Roy, et 

al., 2013). A 2:1 molar ratio of Pep2:TreS was used in the published work (Roy, et al., 

2013), unlike the 1:1 ratio used in this study, which could be an explanation as to why 

no conclusive complex formation was observed in this study. Moreover, a different 

buffering system was employed in the published work, which could have also 

contributed to the lack of complete complex formation being observed (Roy, et al., 

2013).   

 
Attempts to produce the fusion TreS-Pep2 were successful. The fusion protein was also 

found to be active in vitro.  However, the protein was unstable and was subject to 

proteolysis. This combined with the large pentameric oligomerisation state made it 

unfavourable for crystallisation.  

 

4.10 Summary 

In summary, Pep2 as well as TreS-Pep2 were expressed and purified. These proteins, 

whilst active, were relatively unstable which made them difficult to characterise. The 

results are the first demonstration that a TreS-Pep2 fusion protein has activity and is 

able to synthesise αM1P from trehalose. The TreS-Pep2 protein also has most potential 

to be used to enzymatically synthesise αM1P as it seemed to have the highest activity 

that was retained even after the protein was freeze-thawed.  

 
 
 
 
 
 

91 
 



Chapter 5: The GlgE Pathway Produces Glycogen in S. venezuelae 

 
 

 
 
 
 
 
 
 
 
Chapter 5: The GlgE Pathway 
Produces Glycogen in Streptomyces 
venezuelae  
  

92 
 



Chapter 5: The GlgE Pathway Produces Glycogen in S. venezuelae 

 
 
5.1 Introduction 

The enzyme encoded by the glgE gene is a maltosyl transferase that extends linear α-

1,4 glucan chains (Kalscheuer, et al., 2010a). Interestingly, GlgE is essential for the 

viability of Mycobacterium tuberculosis because in its absence there is accumulation of 

α-maltose 1-phosphate (αM1P), which is toxic for the bacterium (Kalscheuer, et al., 

2010a).  

 

There is strong evidence of a functional association between the products of the treS, 

pep2, glgE and glgB genes in M. tuberculosis (Kalscheuer, et al., 2010a). It has been 

proposed that the four enzymes collectively synthesise α-glucan and that the GlgE 

pathway is a novel glucan synthesis pathway (Kalscheuer, et al., 2010a). Bioinformatics 

has been used to show that all of the genes encoding the enzymes of the GlgE pathway 

are present in 14% of sequenced bacterial genomes and that all four genes are 

frequently clustered together (Chandra, et al., 2011). Furthermore, evidence from 

Streptomyces coelicolor suggests that three of the four genes are transcribed as a single 

polycistronic messenger ribonucleic acid (mRNA) (Schneider, et al., 2000). In summary, 

there is compelling in vitro biochemical and bioinformatic evidence for the existence of 

a novel α-glucan synthesis pathway. 

 

In M. tuberculosis and Mycobacterium smegmatis there are at least two other 

pathways that synthesise glucans (Jackson, et al., 2007; Sambou, et al., 2008). Due to 

this functional redundancy, genetic evidence proving that the GlgE pathway produces 

α-glucan in vivo in Mycobacterium is lacking as this would involve knocking out multiple 

clusters of genes in a single strain.  

 

Mycobacteria are distant relatives of Streptomyces, which are developmentally 

complex bacteria (Kieser, et al., 2000). Many species of Streptomyces accumulate 

abundant levels of cytosolic glycogen during certain points of their life-cycle (Brana, et 

al., 1986; Bruton, et al., 1995; Ranade and Vining, 1993; Rueda, et al., 2001). The model 

organism of Streptomyces is S. coelicolor, which contains the genes encoding the GlgE 

pathway (Schneider, et al., 2000). However, the gene cluster is duplicated and the two 

clusters are under differential developmental control (Plaskitt and Chater, 1995; Yeo 

and Chater, 2005). Moreover, the organism contains genes encoding GlgA and GlgC, 

which are involved in a separate glycogen synthesis pathway (Martin, et al., 1997). 
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Therefore, S. coelicolor is not an ideal model to study the GlgE pathway in isolation. 

Streptomyces venezuelae is now emerging as an alternative Streptomyces model 

organism, predominantly because of its ability to develop and sporulate in liquid 

culture (Ranade and Vining, 1993). Consequently, the full genome sequence is known 

and, unlike S. coelicolor, it contains a single gene cluster encoding the GlgE pathway 

and it lacks the genes encoding any alternate glycogen synthesis pathways. Therefore 

S. venezuelae was potentially an ideal organism to study the GlgE pathway.  

 

The work presented in this chapter aimed to understand if the GlgE pathway is 

responsible for glycogen synthesis in vivo in S. venezuelae. It also aimed to determine if 

glycogen is essential for the viability of S. venezuelae and what impact the absence of 

glycogen has on the developmental life-cycle of the organism. Finally, this work sought 

to determine if αM1P is also toxic as observed in other actinomycetes. 

 

5.2 Generation and confirmation of ΔglgE::apr 

A ΔglgE::apr mutation was made following the ReDirectTM protocol (Gust, et al., 2003). 

Primers were designed according to the protocol suggestions and the formation of the 

correct polymerase chain reaction (PCR) product was monitored by agarose gel 

electrophoresis (Figure 5.1). Insertion of the apr cassette in place of glgE gene in a 

cosmid was confirmed by restriction digestion of the cosmid followed by agarose gel 

electrophoresis (Figure 5.1). The mutated cosmid was then transferred into S. 

venezuelae by conjugal transfer and antibiotic selection was used to identify colonies 

containing the ΔglgE::apr mutation. After three further rounds of selective re-streaking 

from single colonies, spores of the mutant were re-suspended in 20% (v/v) glycerol and 

stored at -20 °C.  

 

A sample of spores was re-suspended in malt extract-yeast extract-maltose (MYM) 

liquid medium and incubated overnight at 30 °C with agitation. The cells were 

harvested and the genomic deoxyribonucleic acid (gDNA) was extracted. The gDNA was 

used to confirm the mutation by PCR using primers flanking the site of mutation 

because there was a size difference between the glgE and the apramycin (apr) genes 

(Figure 5.2). Southern hybridisation was also used to confirm the mutation as well as to 

ensure further gene re-arrangements had not occurred during the double cross-over 

event (Figure 5.2).   
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Figure 5.1: The glgE gene was replaced with the acc(3)IV-oriT cassette in the Sv-3-D04 
cosmid 
(A) The acc(3)IV-oriT cassette (1.4 kbp) was isolated from pIJ773 by restriction digestion 
with HindIII and EcoRI.  
(B)  The cassette was used as a template for PCR to generate an acc(3)IV-oriT cassette 
with flanking regions complementary to the flanking regions of glgE (1.5 kbp). 
(C) E. coli BW25113/pIJ790 was transformed with Sv-3-D04 followed by the glgE 
specific acc(3)IV-oriT cassette, which replaced glgE in Sv-3-D04 by homologous 
recombination. The cosmid was extracted and digested with MscI (lane 1: WT cosmid; 
lane 2: ΔglgE::apr). A new band emerged (~6.8 kbp) as the cassette was smaller than 
glgE, therefore a doublet in Sv-3-D04 was resolved as 2 separate bands. M=marker 
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Figure 5.2: Generation of ΔglgE::apr was confirmed by Southern hybridisation and 
PCR analyses 
(A) S. venezuelae gDNA was extracted and digested with either XcmI or BamHI. For the 
BamHI digest, one fragment (b) as in wild-type (WT) (lane 1) was expected to form 2 
fragments in the ΔglgE::apr strain (lane 2), one was visible (C) but the other fragment 
was too small (0.24 kbp) to be visible. For the XcmI digest, one fragment (a) from WT 
(lane 3) disappeared and two smaller fragments appeared (d and e) in the ΔglgE::apr 
strain (lane 4), as predicted. The entire Sv-3-D04 cosmid was used as the probe. 
(B) S. venezuelae gDNA was extracted and used as template for PCR. Primers flanking 
glgE were designed and the PCR product from a reaction in which WT gDNA (lane 1) 
was used as a template was larger (2.6 kbp) than the product (1.6 kbp) generated from 
ΔglgE::apr gDNA (lanes 2-6) because glgE is larger than aac(3)IV-oriT. M= Marker. 
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5.3 Complementation of ΔglgE::apr 

After the mutant was generated, attempts were made to generate complementation 

strains. This was to determine if any phenotype observed in the ΔglgE::apr mutant 

could be restored by re-insertion of the glgE gene, which would suggest that the 

mutation was the sole cause of the mutant phenotype. 

 

The glgE gene was likely to be translationally coupled to the down-stream treS gene 

and therefore it was not clear if there was a polar effect (Figure 5.5). Sequence analysis 

suggested that there was a putative ribosome binding sequence within the glgE gene 

upstream of the treS gene which might have been required for efficient translation of 

treS (Figure 5.5). Consequently, two complementation plasmids were designed; one 

contained the endogenous promoter as well as the glgE gene and a second additionally 

contained the treS gene. PCR was used to amplify the gene fragments from a wild-type 

(WT) gDNA template (Figure 5.3). The fragments were cloned into a pUC19 vector and 

the corresponding plasmids were screened for the correct sized insertion by restriction 

digestion followed by agarose gel electrophoresis (Figure 5.3). Plasmids that contained 

the correct sized insert were then sequenced.  

 

When a plasmid containing the correct sequence was identified the gene fragment was 

sub-cloned into the pMS82 complementation vector (Figure 5.4). The incorporation of 

the entire fragment into the vector was confirmed using restriction digestion followed 

by agarose gel electrophoresis. A plasmid containing the correct gene fragment was 

then used to transform Escherichia coli ET12567/pUZ8002. A successful transformant 

was used to conjugally transfer the complementation plasmid into ΔglgE::apr and 

antibiotic selection was used to screen ΔglgE::apr colonies containing the 

complementation plasmids. 

 

After three rounds of selectively re-streaking from single colonies, the resulting spores 

were re-suspended in 20 % (v/v) glycerol and stored at -20 °C.   
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Figure 5.3: Generation of glgE and glgE-treS fragments by PCR and ligation into 
pUC19 for sequencing 
(A) WT S. venezuelae gDNA was extracted and used as a template for PCR. Primers 
were designed so that the gene as well as the endogenous promoter would be 
amplified from the gDNA. Fragments corresponding to glgE (lane 1, 2.6 kbp) and glgE-
treS (lane 2, 4 kbp) were generated. 
(B) The PCR products were subsequently ligated into a pUC19 vector. The resulting 
plasmid was used to transform E. coli DH5α. Transformants were cultured, and their 
plasmids were extracted. The plasmids were digested with restriction enzymes (XbaI 
and EcoRI for glgE-treS;  XbaI, DdeI and EcoRI for glgE)to ensure whole fragments were 
ligated into the vector (lane 1, glgE-treS (upper band; 4 kbp) pUC19 (lower band; 2.7 
kbp); lane 2, glgE (upper band; 2.5 kbp) pUC19 (lower three bands).  
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Figure 5.4: Sub-cloning glgE and glgE-treS fragments into pMS82 
(A) Plasmids containing the correct sequence of glgE and glgE-treS were excised and 
purified from pUC19 by restriction digestion followed by gel electrophoresis. To ensure 
the purified sample was free of contaminants, the products were checked by gel 
electrophoresis (lane 1, glgE (2.5 kbp); lane 2, glgE-treS (4 kbp)). The pMS82 vector (5.5 
kbp) was linearised by restriction digestion with EcoRV (lane 3). M= marker   
(B) The glgE fragments were ligated to linearised pMS82. The resulting plasmid was 
used to transform E. coli DH5α. Transformants were cultured, and their plasmids were 
extracted. The plasmids were digested with BglII to ensure glgE was ligated into the 
vector (lane 1-3 clonal strains containing pMS82-glgE; expected sizes 2.7 and 5.5 kbp). 
(C) As in B above but with glgE-treS. Some transformants contained re-circularised 
vector only (lane 1) and therefore the digest resulted in two bands just below 3 kbp in 
size. However transformants containing the desired insert (lanes 2 and 3) gave two 
bands of varying sizes, indicating the additional gene fragment had been ligated into 
the plasmid (expected sizes 2.7 and 7 kbp). 
 
 

 
Figure 5.5: Schematic arrangement of genes encoding enzymes of the GlgE pathway 
in S. venezuelae 
The glgE and treS genes are translationally coupled, sharing a 4 bp atga sequence. 
Furthermore, there is a putative ribosome binding sequence comprising GGAGG 12 bp 
upstream of the treS start codon, within the glgE gene (represented in red). The pep2 
and glgB genes, however, are not translationally coupled. 
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5.4 Polar effects led to no TreS expression in ΔglgE::apr 

When grown on solid MYM agar, the mutant had a developmentally delayed 

phenotype (Figure 5.6). The developmental delay was restored when the strain was 

complemented with either glgE or glgE-treS (Figure 5.6), suggesting the phenotype was 

solely due to the absence of the glgE gene.  

 

TreS activity was probed in ΔglgE::apr by adding trehalose to non-boiled cell extracts 

and monitoring maltose and trehalose levels as a function of time (Figure 5.7). Whilst 

there was a decline in trehalose levels with time, it was not clear if there was 

conversion into maltose because there was also a decline in α-maltose 1-phosphate 

(αM1P). Therefore, the rise in maltose could have been attributed to either TreS 

activity or phosphatase activity.  

 

The cell extracts were subsequently incubated with maltose instead to test for TreS 

activity (Figure 5.8). The results showed that in WT cell extracts trehalose content 

initially increased, which was followed by a slight decline, most likely due to trehalase 

activity. However, in the ΔglgE::apr mutant only a decline in trehalose levels was 

observed, which indicated that TreS activity was lacking in the mutant. Therefore, from 

a genetic perspective, a completely complemented strain required the re-insertion of 

both glgE and treS genes. 

 

Sections of WT S. venezuelae were stained with periodic acid- thiohydrocarbazide-silver 

proteinate (PATAg) and visualised with transmission electron microscopy (TEM) (Figure 

5.8). This showed that  glycogen was found abundantly in pre-spores, as observed in S. 

coelicolor (Figure 5.8) (Bruton, et al., 1995). PATAg staining of the partially 

complemented strain, which contained only the glgE gene showed that it too deposited 

glycogen in pre-spores, much like WT. This demonstrated that TreS activity was not 

required for glycogen deposition under typical laboratory growth conditions (Figure 

5.8). As the growth medium contained predominantly a maltose carbon source, it 

seems likely that the maltose is transported directly in to the cytosol, thereby negating 

the requirement of TreS activity for glycogen production in this organism.     
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Figure 5.6: Development was delayed in ΔglgE::apr and WT-like development was 
restored by the insertion of glgE or glgE-treS 
Strains of S. venezuelae were grown for 2 days, which was sufficient for sporulation of 
WT (indicated by the green pigmentation of spores, which form at the end of the 
developmental life-cycle).  Development was delayed in ΔglgE::apr when compared to 
WT but was restored by the introduction of either glgE or glgE-treS. 
 

 
Figure 5.7: TreS activity in ΔglgE::apr was unsuccessfully probed by the addition of 
trehalose 
Cell-free extracts of ΔglgE::apr were prepared and trehalose (5 mM) was added to the 
extract. The extracts were monitored by proton nuclear magnetic resonance (1H-NMR) 
spectroscopy. Whilst there was a noticeable decline in trehalose and increase in 
maltose as well as glucose, there was also a decline in αM1P and therefore it was 
unclear if there was TreS activity or not.  
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Figure 5.8: There was no detectable TreS activity in ΔglgE::apr and it was not required 
for glycogen synthesis in laboratory growth conditions  
(A) Cell-free extracts of ΔglgE::apr as well as WT were prepared and maltose (5 mM) 
was added to the extracts. The extracts were monitored by 1H-NMR spectroscopy. In 
WT cell-free extracts there was a rapid increase in trehalose levels, suggesting TreS was 
active and converting α-maltose into trehalose.  However, there was no increase in 
trehalose content in ΔglgE::apr, which demonstrated there was no TreS activity within 
the limits of detection.   
(B) PATAg staining of glycogen and visualisation by TEM of WT grown for 5 days 
showed that glycogen (black granules, highlighted by the arrow) was present in pre-
spores. Samples were prepared for microscopy and visualised by K. Findlay and E. 
Barclay. 
(C) PATAg staining of glycogen and visualisation by TEM showed that ΔglgE::apr 
attBφBT1::glgE deposited glycogen granules (highlighted by the arrow) like WT. Samples 
were prepared for microscopy and visualised by K. Findlay or E. Barclay. 
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5.5 ΔglgE::apr had a developmental phenotype and altered metabolism 

As mentioned in the previous section, the ΔglgE::apr strain had a developmentally 

delayed phenotype (Figure 5.9). Whilst the strain did sporulate with prolonged 

incubation, pigmentation was less pronounced when compared to WT and the 

complemented strain. Furthermore there were consistently fewer spores in the 

ΔglgE::apr strain when compared to WT and complemented strains.    

 

Cell extracts of the ΔglgE::apr strain had significant increases in maltose and αM1P 

levels when compared to WT and the complemented strains throughout their 

developmental life-cycle (Figure 5.10). The end of the developmental time-course was 

assumed to be when only trehalose was detected as WT spores are known to contain 

only trehalose (Ranade and Vining, 1993). Trehalose levels were initially much lower 

than WT and complemented strains but at the end of the developmental time-course, 

trehalose levels in ΔglgE::apr were similar to WT (Figure 5.10). There was a 

concomitant decline in αM1P levels, which suggested that the strain re-cycled its 

carbon stored as αM1P to trehalose (Figure 5.10). Results from non-boiled cell extracts 

suggested that αM1P was being de-phosphorylated with time (Figure 5.11). This 

suggested that, in the absence of TreS, a phosphatase was involved in re-cycling carbon 

to form maltose, which could subsequently be hydrolysed to glucose and then 

condensed to form trehalose.  

  

The dry cell mass was also recorded for the strains throughout the developmental 

time-course (Figure 5.12). The results suggested that ΔglgE::apr initially accumulated as 

much mass as WT and complemented strains. However, during later developmental 

stages ΔglgE::apr accumulated significantly less mass than WT and complemented 

strains (Figure 5.12).  
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Figure 5.9: ΔglgE::apr sporulated after longer periods of incubation but pigmentation 
was not as pronounced as in the WT or complemented strains 
 

 
Figure 5.10: ΔglgE::apr accumulated large amounts of αM1P and maltose but 
trehalose levels were the same as in WT at the end of a developmental life-cycle 
Error bars are the standard error of the mean (SE) of three observations 
(A) Initially, trehalose levels were dramatically lower in ΔglgE::apr compared to WT and 
complemented strains. However, there was a rapid increase in the trehalose content of 
ΔglgE::apr at the end of the developmental life-cycle. 
(B) αM1P accumulated in ΔglgE::apr but as the life-cycle progressed it declined, which 
suggested that it was broken down and metabolised. 
(C) Maltose levels in ΔglgE::apr were approximately twice that of WT and 
complemented strains. 
  

ΔglgE::apr

ΔglgE::apr
attBφBT1 ::glgE-treSWT

1 day
ΔglgE::apr

ΔglgE::apr
attBφBT1 ::glgE-treS

WT

5 days

ΔglgE::apr

ΔglgE::apr
attBφBT1 ::glgE-treS

WT

3 days

0

2

4

6

8

10

12

14

16

18

20

20 40 60 80 100
Time (h)

0

1

2

3

4

5

6

7

20 40 60 80 100
Time (h)

αM
1P

 (%
 d

ry
 ce

ll 
w

ei
gh

t)

Time (h)

0

2

4

6

8

10

12

14

20 40 60 80 100

m
al

to
se

  (
%

 d
ry

 ce
ll 

w
ei

gh
t)

tr
eh

al
os

e 
(%

 d
ry

 ce
ll 

w
ei

gh
t)

Complemented

ΔglgE::apr

WT

Complemented

ΔglgE::apr

WTComplemented

ΔglgE::apr
WT

A B

C

104 
 



Chapter 5: The GlgE Pathway Produces Glycogen in S. venezuelae 

 
 

 
Figure 5.11: αM1P was broken down into maltose by a phosphatase 
A non-boiled cell-free extract of ΔglgE::apr was probed by 1H-NMR spectroscopy. αM1P 
was broken down and there was a concomitant increase in maltose levels, suggesting 
that a phosphatase dephosphorylated αM1P.  
 
 
 
 

 
Figure 5.12: ΔglgE::apr accumulates less mass  
Plates containing MYM-Agar were inoculated with 5 ×106 spores and after set time-
points the cell material on the entire plate was scraped off. The samples were 
subsequently freeze-dried and their masses were recorded. Error bars are the SE of 
three replicates. 
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5.6 ΔglgE::apr accumulated no glycogen 

Samples of WT, complemented and ΔglgE::apr strains were prepared for TEM analysis. 

Samples were stained with PATAg in order to visualise if, and where, glycogen 

accumulated in colonies. The results suggested that WT and complemented strains 

accumulated glycogen abundantly in pre-spore compartments (Figures 5.13). Glycogen 

appeared as electron-dense black granules when stained with PATAg that were each 

~50 nm in diameter (Figure 5.13). The mutant strain, however, contained no dark black 

granules which suggested that it did not accumulate any glycogen (Figure 5.13). This is 

consistent with the bioinformatic predictions that suggested the GlgE pathway was the 

only glycogen synthesis pathway in S. venezuelae.  

 

Attempts were then made to corroborate the TEM results in a more quantitative 

fashion. Initial attempts focussed on enzymatic degradation of glycogen into glucose by 

amyloglucosidases followed by quantification of glucose release, using a modified 

protocol derived for starch quantification in plants (Smith and Zeeman, 2006). 

However, the results often suggested that there were equal amounts of glycogen in the 

WT and ΔglgE::apr strains (data not shown). This could be a result of the 

amyloglucosidase hydrolysing the αM1P in the ΔglgE::apr samples, thereby giving a 

false positive result.   

 

As iodine staining had been routinely used to identify glycogen deficient E. coli mutants 

in high throughput screens (Romeo, et al., 1991; Torija, et al., 2005), this method was 

subsequently explored. Both WT and mutant strains were grown on a single MYM Agar 

plate and were then placed in a chamber containing a saturated solution of Lugol’s 

iodine. Unlike E. coli, there was no differential staining of the two strains (Figure 5.14) 

on agar plates. This could have been due to a lack of penetration of the iodine into the 

aerial hyphae at the surface of Streptomyces colonies. However, if the cells were lysed, 

the cell extracts were differentially stained with Lugol’s iodine (Figure 5.14). This 

suggested that Lugol’s iodine could be used to quantify glycogen levels in S. venezuelae. 

The absorbance maxima of cell extract with added Lugol’s solution was dependent 

upon the specific glycogen structure and varied between glycogens isolated from 

different organisms (Morris, 1946). Therefore, glycogen was extracted from WT S. 

venezuelae to generate a standard curve, using known amounts of dry glucan mass 

(Figure 5.15). The standard curve was then used to quantify the glycogen levels at 
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different developmental time-points (Figure 5.16). The results of these assays 

confirmed that there was no glycogen in the mutant strain at any developmental time-

point tested (Figure 5.16). The WT and complemented strains, however, accumulated 

up to 19% of their dry cell weight as glycogen (Figure 5.16). Interestingly, this matched 

the maximum αM1P accumulated by the mutant (Figure 5.10), suggesting that it was 

able to compensate for absence of glycogen by accumulating comparable amounts of 

αM1P.          

 

A third method was also used to confirm the absence of glycogen in the ΔglgE::apr 

strain. A monoclonal antibody (mAb) raised against glycogen from M. tuberculosis 

recognised glycogen in the cell extract of WT S. venezuelae but did not bind to the cell 

extracts of the ΔglgE::apr strain (Figure 5.15) (Baba, 1993).   
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Figure 5.13: WT and complemented S. venezuelae accumulated glycogen in pre-
spores whereas ΔglgE::apr did not 
Samples were prepared for imaging and visualised by either K. Findlay or E. Barclay. 
PATAg stained sections of S. venezuelae grown for 5 days and visualised by TEM 
suggested that there was glycogen deposited in pre-spore chains of WT (A) and 
complemented (C) strains, which appeared as black granules highlighted by the black 
arrows. However, ΔglgE::apr had no such black granules (B) in cells at a similar 
developmental stage, suggesting no glycogen was present in this strain.  
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Figure 5.14: Lugol’s iodine solution differentially stains cell-free extracts of ΔglgE::apr 
and WT 
(A) A plate containing single colonies of WT and ΔglgE::apr was placed in a sealed 
chamber containing Lugol’s iodine. The colonies stained yellow and did not 
differentiate glycogen and non-glycogen containing colonies.  
(B) Cell lysates of WT and ΔglgE::apr were placed on glass fibre filter paper and placed 
in a chamber containing a saturating solution of Lugol’s iodine. WT stained a brick 
red/brown colour indicative of glycogen and ΔglgE::apr instead stained yellow, much 
like the whole colonies. 
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Figure 5.15: Standard curve for Lugol’s iodine staining S. venezuelae glycogen 
Glycogen was extracted from S. venezuelae, and known quantities of glycogen were 
incubated with Lugol’s iodine and the A500nm was recorded. 

  
Figure 5.16: Glycogen quantification in S. venezuelae strains 
(A) Cell-free extracts of S. venezuelae strains were incubated with Lugol’s iodine and 
A500nm was recorded, which was used to calculate the glycogen content in the sample. 
Error bars are the SE of three observations. 
(B) Three independent samples of cell-free extracts were treated with a mAb raised 
against M. tuberculosis glycogen and that bound only to WT cell-free extracts. Dot-blot 
analysis was performed by H. Koliwer Brandl.   
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5.7 ΔglgE::apr produced spores with irregular sizes 

It was evident that whilst the ΔglgE::apr strain did sporulate, spore pigmentation was 

less pronounced (Figure 5.9). It was not clear if this was due to fewer spore chains 

being produced or instead due to reduced spore pigmentation. Therefore, cryo 

scanning electron microscopy (cryo-SEM) was used to visualise the outer morphology 

of the spore chains. The images suggested that qualitatively there were comparable 

amounts of spore chains in all strains (Figure 5.17; K. Findlay personal communication). 

Therefore, this suggests that there was reduced pigmentation of colonies due to lower 

levels of spore pigment formation. 

 

Images from cryo-SEM also suggested that although there were abundant spore chains 

in the mutant strain, the strain frequently produced elongated spores (Figure 5.17). 

Whilst irregular sized spores were also present occasionally in the WT and 

complemented strain they were not observed as frequently. Attempts were made to 

quantitate the numbers of irregular spores by counting all spores in three randomly 

selected cryo-SEM images of each strain and judging how many had an irregular length. 

The number of spores present in each image was comparable between every image but 

~17% from the mutant strain were irregular in size, which was significantly greater than 

the WT and complemented strains (Figure 5.18).     

 

5.8 ΔglgE::apr spores chromosomal DNA did not condense like WT 

Septation in Streptomyces spore chains is tightly co-ordinated to DNA replication and 

condensation (Flardh and Buttner, 2009). Given that irregular septation was observed 

in the mutant strain, attempts were then made to observe if the condensation and 

partition of genetic material in spore chains was comparable to WT.  All strains were 

grown on glass coverslips and their cell walls as well as their DNA were stained with 

wheat germ agglutinin (WGA) and propidium iodide (PI) respectively (Figure 5.19). The 

samples were viewed with fluorescence microscopy. The images revealed that the 

mutant strain did not condense its nucleoid DNA like those of WT and complemented 

strains. In many cases there were several copies of the chromosome in a single 

elongated spore that was approximately double the normal length in the mutant strain.  
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Figure 5.17: ΔglgE::apr spores had irregular dimensions when compared to WT and 
complemented strains  
Samples were prepared for imaging and visualised by either K. Findlay or E. Barclay. 
Cryo-SEM of S. venezuelae strains grown for 7 days showed that spores produced by 
WT (A and B) and complemented (E and F) strains were predominantly of uniform 
shape and size. Spores of the ΔglgE::apr strain, however, were more frequently 
irregular. Typically the irregular spores were twice the length of regular spores (C and 
D).   
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Figure 5.18: Approximately 17 % of ΔglgE::apr spores were irregular in size     
Spores from three SEM images of each strain were assessed to estimate the percentage 
of irregular spores. Approximately 100-200 spores were counted in each image. 
* = ΔglgE::apr was statistically significantly (p<0.05) different to WT and complemented 
strains. Error bars are SE determined for three images.     
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Figure 5.19: ΔglgE::apr DNA in pre-spores is diffuse 
(A) WT S. venezuelae grown for 5 days with nucleic acids stained with PI and cell walls 
stained with WGA. Spores of uniform size were observed, each containing a single 
discrete compact nucleoide. 
(B) ΔglgE::apr was stained as above. Spores were frequently double the normal length 
and the nucleoides were diffusely distributed throughout the length of the spores. 
(C) Complemented strain stained as above appeared to produce spores like those of 
WT. 
 
  

2 µm

A

2 µm

C

2 µm

B

114 
 



Chapter 5: The GlgE Pathway Produces Glycogen in S. venezuelae 

 
 
5.9 ΔglgE::apr spores were less resistant to some abiotic stresses 

Given that the spores of the mutant strain were not like WT, their properties were 

investigated. Resistance to four different abiotic stresses was tested. The spores from 

the mutant strain were less resistant to lysozyme, heat shock and sonication treatment, 

suggesting that their cell walls were compromised in some way (Figure 5.20). 

Interestingly the mutant strain did not have compromised resistance to desiccation 

stress. Trehalose has been implicated in conferring resistance to desiccation. The 

metabolite data suggested that trehalose levels in spores were similar to that of WT 

and complemented strains in the mutant. Therefore, it suggests that as the trehalose 

content remained the same as WT, ΔglgE::apr spores also retained the same ability to 

survive desiccation stress as WT.       
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Figure 5.20: ΔglgE::apr spores are less resistant to most abiotic stresses with the 
exception of desiccation stress 
Samples of spores were treated with different stresses. An aliquot of spores were 
taken, prior to treatment, and used to make a serial dilution and plated on to MYM. 
Colony forming units (CFUs) were counted 1-2 days after the plates were incubated at 
30 °C. Survival was determined as a percentage by comparing CFUs before and after 
treatment.  
* = ΔglgE::apr was statistically significantly (p <0.05) different to WT and 
complemented strains as determined by t-tests.    
Error bars are SE determined for three replicates, with the exception of sonication, 
which were of six replicates. 
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5.10 The phenotype of ΔglgE::apr spores was due to accumulation of αM1P 

Initially, it was not clear if the phenotype of the mutant was due to the accumulation of 

αM1P or the absence of glycogen. In order to determine which of the possibilities it 

could be, an alternative carbon source to maltose was sought. It was hypothesised that 

by growing the strains on minimal media with different carbon sources it would be 

possible to have the mutant growing on a carbon source that did not readily allow the 

ΔglgE::apr strain to accumulate αM1P. Growth on a range of different carbon sources 

was tested (Table 5.1). The most consistent growth and development was observed 

when maltose was used as the sole carbon source. However, if the duration of 

incubation was increased, galactose also led to consistent growth and development of 

WT. 

 

When WT and mutant strains were grown on minimal media with galactose as the 

carbon source, no developmentally delayed phenotype was observed for the mutant 

(Figure 5.21). The cell extracts also did not contain any detectable levels of αM1P, 

suggesting that the developmentally delayed phenotype could be attributable to the 

build-up of αM1P and not the absence of glycogen.     

 

Cryo-SEM was also used to visualise the spore morphology of the strains when grown 

on minimal media with either galactose or maltose as the carbon source. This was 

performed with a view to determining if spore morphology was comparable to WT 

when the ΔglgE::apr strain did not accumulate αM1P. However, unexpectedly, the 

spore morphology of both WT and the mutant strain was drastically different when 

grown on galactose (Figure 5.22) and so this question could not be addressed.      
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Table 5.1: WT S. venezuelae growth on different carbon sources   

 

 
Figure 5.21: Developmental delay was only observed in ΔglgE::apr when there is a 
build-up of αM1P 
(A) Cell pellets of strains grown either with maltose or galactose as a carbon source. A 
phenotype was only visible when ΔglgE::apr was grown on maltose. The cell pellet was 
smaller and had less green pigmentation compared to the other cell pellets.   
(B) 1H-NMR spectroscopy of cell-free extracts showed that αM1P was only present in 
ΔglgE::apr when it was grown on maltose, which correlated with the developmentally 
delayed phenotype.  

Carbon source Growth after9 days on minimal media with 
iberian agar (MMIA-+)

Maltose Developed and sporulated

Fructose Developed and sporulated

Trehalose Developed

Glycerol Developed and sporulated

Galactose Developed and sporulated

Cellobiose Poor growth

Starch Poor growth

Sucrose Poor growth

Lactose Poor growth

A B
trehaloseαM1P

5.25.4 PPM5.6

ΔglgE::apr
galactose

WT
galactose

ΔglgE::apr
maltose

WT
maltose
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Figure 5.22: Strains grown on different carbon sources had different spore 
morphologies 
Samples were prepared for microscopy and imaged by E. Barclay.  
(A) WT S. venezuelae was grown for 7 days on MMIA-+ with maltose as a carbon 
source. Cryo-SEM showed that spores were cylindrical in morphology, as previously 
observed when WT was grown on MYM.  
(B) ΔglgE::apr was grown as outlined in A and they had a similar cylindrical shape, as 
WT.  
(C) WT S. venezuelae was grown for 9 days on MMIA-+ with galactose as a carbon 
source. Cryo-SEM showed that spores were spherical, which is different to the spore 
morphology when WT was grown on MYM.  
(D) ΔglgE::apr was grown as outlined in C, showed that as with WT the spores were 
spherical in shape.  
  

2 µm

2 µm

2 µm

2 µm

A B

C D

119 
 



Chapter 5: The GlgE Pathway Produces Glycogen in S. venezuelae 

 
 
5.11 Δpep2::apr and the corresponding complementation strain were generated 

To further confirm that the developmental delay phenotype was due to αM1P 

accumulation, a strain lacking the pep2 gene encoding a maltose kinase was generated. 

As with the previous mutant, the ReDirectTM protocol was used (Gust, et al., 2003). 

Replacement of the pep2 gene with the apr cassette in the appropriate cosmid was 

confirmed by restriction digestion followed by gel electrophoresis (Figure 5.23). After 

conjugal transfer of the mutated cosmid, Δpep2::apr mutants were identified by 

antibiotic selection. After three rounds of selective re-streaking single colonies, the 

Δpep2::apr strain was allowed to sporulate fully. The mature spores were re-suspended 

in 20% (v/v) glycerol and stored at -20 °C. 

 

gDNA was extracted from cells that were cultured overnight incubated in MYM 

medium at 30 °C. The resulting gDNA was used to confirm the mutation by Southern 

hybridisation as well as indirectly by PCR (Figure 5.24).    

 

WT gDNA was used as a PCR template to amplify the pep2 gene along with its native 

promoter. Correct product formation was monitored by gel electrophoresis and the 

purified PCR product was cloned into a sequencing vector (Figure 5.25) and used to 

transform E. coli. Several positive transformants were screened by colony PCR (Figure 

5.25) followed by gel electrophoresis. Plasmid DNA was isolated from any colonies 

containing the correct sized PCR product and was used for sequencing reactions. A 

single plasmid containing the correct pep2 gene sequence was then subjected to 

restriction digestion. The DNA fragments containing the pep2 sequence was excised 

and purified from the vector. It was then sub-cloned into a complementation vector. 

The incorporation of the entire fragment into the vector was confirmed using 

restriction digestion followed by gel electrophoresis (Figure 5.25). The plasmid was 

then used to transform E. coli ET12567/pUZ8002. A successful transformant was used 

to conjugally transfer the complementation plasmid into Δpep2::apr and antibiotic 

selection was used to screen for S. venezuelae Δpep2::apr colonies containing the 

complementation plasmids. 

 

After three rounds of selectively re-streaking from single colonies, the resulting spores 

were re-suspended in 20 % (v/v) glycerol and stored at -20 °C.   
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Figure 5.23: The pep2 gene was replaced with the acc(3)IV-oriT cassette in the Sv-3-
D04 cosmid 
(A) The acc(3)IV-oriT cassette (1.4 kbp) was used as a template for PCR to generate a 
cassette with flanking regions complementary to the flanking regions of pep2 (1.5 kbp). 
(B)  E. coli BW25113/pIJ790 was transformed with Sv-3-D04 followed by the pep2 
specific acc(3)IV-oriT cassette, which replaced pep2 in Sv-3-D04 by homologous 
recombination. The cosmid was extracted and digested with BglII. A large band (lane 
1a: Sv-3-D04 (Δpep2), 11.7 kbp) appeared in place of 2 smaller bands (lane 2b and 2c: 
Sv-3-D04, 8 and 3.7 kbp respectively) as the cassette was the same size as pep2, but 
had no BglII recognition site. 
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Figure 5.24: The Δpep2 mutation was confirmed in S. venezuelae by PCR and 
Southern hybridisation  
(A) gDNA from WT (lane 1) and three clonal strains of Δpep2 (lanes 2-4) was extracted 
and digested with PstI. When probed using the native Sv-3-D04 cosmid, two smaller 
bands (b (7.8 kbp) and c (3.4 kbp)) in Δpep2 appeared in place of one large band  
(a (11.2 kbp)) in WT, as the cassette contained a PstI restriction site whilst pep2 did not. 
The entire Sv-3-D04 cosmid was used as the probe.   
(B) gDNA was used as a PCR template. PCR reactions were set up using different 
primers. In lane 1 cassette specific primers were used (expected size 1.4 kbp). In lane 2 
a forward primer flanking pep2 was used with a cassette specific reverse primer 
(expected size 1.5 kbp). In lane 3 a reverse primer flanking pep2 was used with a 
cassette specific forward primer (expected size 1.5 kbp). In lanes  4 and 5 used primers 
specific for the kanamycin (Kan) resistance cassette, no product was detected when 
Δpep2 gDNA  was used as the template but a product was observed if the Sv-3-D04 
cosmid was used (lane 5, 0.9 kbp) suggesting that a double crossover had occurred.       
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Figure 5.25: A complementation plasmid containing pep2 was generated 
(A) WT gDNA was used as a PCR template and primers were designed to amplify the 
promoter as well as the pep2 gene (1.6 kbp). 
(B)  The product was ligated into a linearised pUC19 vector and used to transform E. 
coli DH5α. Transformants were screened by colony PCR (1.7 kbp). Transformants 
containing the correct sized product were sequenced. 
(C)  The pep2 insert (1.6 kbp) was separated from the pUC19 (2.7 kbp) vector by 
restriction digestion with EcoRI and SapI followed by gel electrophoresis. 
(D) The purified insert was subsequently ligated to an EcoRV linearised pMS82 vector 
and the plasmid was used to transform E. coli DH5α. Plasmids were isolated from 
successful transformants  and screened by restriction digestion with BglII. Lane 1 was 
the restriction digest from a plasmid containing no insert, which resulted in an 
unresolved doublet (3 kbp). Lane 2 was the restriction digest from a plasmid containing 
the pep2 insert, which yielded a three resolved bands (3, 2.7 and 1.9 kbp) 
 
 

 
Figure 5.26: Δpep2::apr did not display a developmental phenotype 
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5.12 Δpep2::apr did not accumulate glycogen or have a developmental phenotype 

When Δpep2::apr was grown on solid MYM agar, no developmental phenotype was 

observed (Figure 5.26). The strain was stained with PATAg, visualised by TEM and the 

images suggested that the strain had no detectable levels of glycogen (Figure 5.27). The 

absence of glycogen was confirmed by dot-blot analysis using a glycogen specific mAb 

(Figure 5.27). The complemented strain contained abundant glycogen in pre-spores, 

like WT (Figure 5.27).      

 

The morphology of the spores produced by Δpep2::apr was also investigated. Cryo-SEM 

suggested that the strain produced spores comparable to WT that were of consistent 

dimensions indicating few irregular septation events (Figure 5.28).  PI staining followed 

by fluorescence microscopy suggested that the genetic material of the spores were 

compacted in to single nucleoids in each pre-spore, as observed with WT (Figure 5.28).   
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Figure 5.27: Δpep2::apr had no glycogen, which was reversed by the insertion of pep2 
Samples were prepared for microscopy and imaged by E. Barclay; dot blot analysis was 
performed by H. Koliwer Brandl.  
(A) TEM with PATAg staining suggested that glycogen was absent in Δpep2::apr, with no 
dark granules observed in pre-spores.  
(B)  The absence of glycogen was confirmed in three independent cells extracts of each 
strain by dot-blot analysis with a mAb raised against M. tuberculosis glycogen, which 
bound to WT cell-free extracts only. 
(C) A complemented strain of Δpep2::apr containing pep2 deposited glycogen 
(highlighted by the black arrow) in pre-spores, like WT. 
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Figure 5.28: Spore morphology of Δpep2::apr was like WT 
(A) Cryo-SEM of Δpep2::apr strain grown for seven days showed that spores produced 
were of uniform shape and size, as in WT.  
(B) A sample of Δpep2::apr was grown for five days with nucleic acids stained with PI 
and cell walls stained with WGA. Spores of uniform size were observed, each 
containing a single discrete compact nucleoid, like WT. 
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5.13 Δpep2::apr had altered metabolism when compared to the WT strain as well as 

ΔglgE::apr 

Sugar content of cell extracts of Δpep2::apr was monitored over a developmental time-

course (Figure 5.29). The results suggested that sugar metabolism was unlike either the 

WT or the ΔglgE::apr strain. Maltose content was higher in the Δpep2::apr strain than 

in WT but maltose content was similar to that observed in the ΔglgE::apr strain. 

Trehalose content, however, was different in the Δpep2::apr when compared to both 

WT and ΔglgE::apr (Figure 5.29). Whilst the trehalose content of ΔglgE::apr was like 

that of WT at the end of the developmental time-course, Δpep2::apr had approximately 

50% less trehalose in its spores (Figure 5.29). The final ratio between maltose and 

trehalose (1:6) in the spores of Δpep2::apr matched the equilibrium position of 

recombinant M. tuberculosis TreS (see chapter 3) (1:6) and was comparable to the 

equilibrium determined in recombinant M. smegmatis TreS (1:3.2) (Zhang, et al., 2011), 

which suggests that TreS could be producing the trehalose observed in the  Δpep2::apr 

spores.  

 

The cell extracts suggested that Δpep2::apr could not store its carbon as αM1P and 

therefore could not recycle its carbon through αM1P like ΔglgE::apr (Figure 5.30). This 

also confirmed that the developmental phenotype of the ΔglgE::apr mutant was solely 

due to αM1P accumulation.  In the absence of glycogen synthesis, it was possible that 

Δpep2::apr was instead channelling its carbon into lipid formation as observed in other 

bacteria (Wang, et al., 2007). Therefore, the fatty acid methyl ester (FAME) content of 

Δpep2::apr were analysed (Figure 5.31). Preliminary data suggested that whilst the 

FAME profile and the species present were comparable to WT, there was an 

approximate 45% increase in the overall FAME content of the Δpep2::apr strain as 

determined by calculating the sum of areas of all species eluting from the GC column 

(Figure 5.31).  
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Figure 5.29: Δpep2 had elevated maltose and decreased trehalose content in cell 
extracts 
Developmental time-courses of Δpep2::apr, WT and  a complemented strain containing 
pep2 suggested that maltose content was increased in Δpep2 (A) compared to other 
strains and that trehalose content in spores at the end of the developmental time-point 
was about half WT and complemented strains (B). Error bars are the SE of three 
replicates. 
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Figure 5.30: There was no build-up of αM1P in Δpep2::apr 
1H-NMR spectroscopy of cell-free extracts was used to show that no αM1P was 
deposited in Δpep2::apr, unlike ΔglgE::apr.   
 
 
 

 
Figure 5.31: There was an increase in the overall FAME content of Δpep2::apr 
Gas chromatography mass spectrometry (GCMS) profiles of WT (A) and Δpep2::apr (B) 
grown for two days suggested that similar lipids were present in both strains. However, 
there were increased abundances of a number of the major lipid constituents in the 
Δpep2::apr strain. Methyl ester benzoic acid (elution time= 5.9 min) was used as an 
internal standard in both samples.  
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5.14 ΔtreS::apr, ΔtreZ::apr and ΔglgP::apr mutants were generated and had no 

developmental phenotype 

Further mutants were generated in S. venezuelae with a view to determining how they 

might impact overall metabolism during development. ΔtreS::apr, ΔtreZ::apr and 

ΔglgP::apr were all generated using the ReDirectTM protocol (Gust, et al., 2003). 

Specifically, ΔtreZ::apr and ΔglgP::apr were generated with a view to understanding 

which plays a bigger role in glycogen degradation during the sporulation process 

(Figure 5.32). There was a difference in the size of each targeted gene when compared 

to the apr resistance cassette and therefore PCR could be used to confirm the gene 

replacements (Figure 5.33). 

 

No developmental phenotype was observed when all strains were grown on solid MYM 

medium (Figure 5.34). Alternative carbon sources were also used to establish if a 

developmental phenotype was present on a different carbon source. However, no 

developmental phenotype was observed on alternate carbon sources (Figure 5.35). It is 

conceivable that there might be a metabolic phenotype without an associated 

developmental phenotype, like that observed with Δpep2::apr. However, in the 

absence of a developmental phenotype, these mutants were not further characterised.  
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Figure 5.32: Overview of pathways predicted to be involved in glycogen turnover in S. 
venezuelae 
 

 
Figure 5.33: ΔtreS::apr, ΔtreZ::apr and ΔglgP::apr mutants were generated and their 
mutations were confirmed by PCR 
Further strains were generated using ReDirectTM protocol (Gust et al., 2003). gDNA 
from these strains was extracted and used as a template for PCR using primers that 
flanked the targeted genes. In all of these mutants the targeted gene was larger than 
the aac(3)IV-oriT cassette and therefore the PCR product was smaller than in WT 
strains.  
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Figure 5.34: ΔtreS::apr, ΔtreZ::apr and ΔglgP::apr strains had no developmental 
phenotype when grown on MYM 
Excess condensation was present on the plate with ΔtreZ::apr growing. 
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Figure 5.35: ΔtreS::apr, ΔtreZ::apr and ΔglgP::apr mutants did not have a 
developmental phenotype on different carbon sources 
Strains were grown on minimal media with galactose (A) or fructose (B) as the carbon 
source, no developmental phenotypes were observed for ΔtreS::apr, ΔtreZ::apr and 
ΔglgP::apr. Strains were also grown on MYM agar in which the maltose carbon source 
was replaced with galactose (C) and fructose (D) and again no developmental 
phenotype was observed. ΔotsA::apr was also grown on these plates, but this mutant 
will be the focus of chapter 6.  
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5.15 Discussion 

The results presented in this chapter demonstrate that the GlgE pathway is solely 

responsible for glycogen production in S. venezuelae. The results also suggest that in 

the absence of glycogen production, αM1P can be accumulated instead, which led to 

equivalent trehalose production in spores. However, there is a fitness consequence to 

re-cycling carbon in the form of αM1P instead of glycogen such that strains 

accumulated less mass, had delayed development and produced fewer under-

pigmented spores that were less resistant to various stresses. αM1P also adversely 

affected other processes in the sporulation process such as spore pigment formation 

and cell wall maturation.  

 

In the absence of glycogen and αM1P there was reduced trehalose in spores. This is 

consistent with the hypothesis that glycogen deposition in the pre-spore chains allows 

the organism to relocate its carbon source and use it predominantly for trehalose 

production for spores.  

 

Furthermore, this work demonstrates that 1H-NMR spectroscopy is a reliable new 

method to determine sugar content in Streptomyces cell extracts. The trehalose 

content of WT S. venezuelae was the same as reported by previous studies (Ranade and 

Vining, 1993), suggesting that this method is comparable to previous methods for sugar 

detection. 1H-NMR spectroscopy is preferable to previous methods because it can be 

used to determine multiple sugars in a single sample and does not rely on enzymic or 

chemical degradation.  

   

The precise mechanism by which αM1P accumulation leads to developmental delay in  

S. venezuelae remains unclear and further work will need to be carried out to 

understand the connection. It could be that sequestration of carbon sources as αM1P 

limits flux of carbon to processes required for the correct development of spores, 

leading to spores with compromised stress tolerance. Another possibility may be that 

the organism becomes phosphate limited due to perturbation of cytosolic phosphate 

levels by a build-up of αM1P. Phosphate is known to be a limiting nutrient in soil 

environments and Streptomyces have developed sophisticated mechanisms to enhance 

phosphate uptake under such conditions (Sola-Landa, et al., 2003). One response is to 

increase the expression of phosphatases (Allenby, et al., 2012). Given that αM1P 
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degradation is dependent on the activity of phosphatases, it could be that the 

activation of a phosphate starvation response is required in order to break-down 

αM1P. This would explain the delayed development of the ΔglgE::apr strain.      

 

Biochemical characterisation of the ΔtreS::apr, ΔtreZ::apr and ΔglgP::apr mutants will 

need to be carried out in order to determine if there are any metabolic phenotypes 

associated with these mutants.  

 

5.16 Summary  

This chapter provides the first evidence that glycogen is non-essential for 

Streptomyces. It also provides the first in vivo evidence that the GlgE pathway is 

responsible for glycogen synthesis. Finally, αM1P accumulation caused developmental 

delay in S. venezuelae. Whilst strains that accumulated αM1P did sporulate, they had 

impaired resistance to abiotic stresses. 
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6.1 Introduction 

Glycogen production via the GlgE pathway is dependent on the formation of trehalose from 

glucose (Figure 6.1). In S. venezuelae, the most likely source of this trehalose is via the 

OtsAB pathway. The pathway involves two enzymes, the first of which is trehalose 

phosphate synthase (hereinafter referred to as OtsA; EC 2.4.1.15) that condenses a 

nucleoside diphosphate glucose (NDP-glucose) and glucose 6-phosphate to form trehalose 

6-phosphate. The second enzyme of the pathway is trehalose 6-phosphate phosphatase 

that de-phosphorylates trehalose 6-phosphate to form trehalose. 

 

OtsA is in the glycosyl transferase (GT) 20 family according to the carbohydrate active 

enzyme (CAZy) classification (Cantarel, et al., 2009; Gibson, et al., 2002).  The enzyme 

proceeds via a SNi mechanism that results in the retention of stereochemistry (Errey, et al., 

2010) (Figure 6.2). Whilst it is known that OtsA has specificity for glucose 6-phosphate, 

there are reports from different organisms that it can accept different nucleotide glucose 

sugars (Gibson, et al., 2002; Pan, et al., 1978). For example, Escherichia coli OtsA has 

substrate specificity for uridine diphosphate glucose (UDP-glucose) (Gibson, et al., 2004). 

This contrasts to Mycobacterium smegmatis OtsA, which has a preference for UDP-glucose 

and guanosine diphosphate glucose (GDP-glucose) but will accept adenine diphosphate 

glucose (ADP-glucose) as well as cityidine diphosphate glucose (CDP-gluose) (Pan, et al., 

1996; Pan, et al., 1978). Furthermore, Streptomyces hygroscopicus OtsA has been reported 

to exclusively use GDP-glucose (Elbein, 1968). The molecular mechanisms underlying the 

altered substrate specificity is poorly understood, partly due to the absence of 

crystallographic data.   

 

There are two other potential trehalose synthesis pathways in S. venezuelae, the TreS and 

TreYZ pathways (Figure 6.1). Recent evidence shows that the net flux of TreS is conversion 

of trehalose into α-maltose in Mycobacterium (Miah, et al., 2013). This means that it is 

perhaps an unlikely route to trehalose in S. venezuelae. The OtsAB pathway produces the 

majority of trehalose in Mycobacterium tuberculosis and it dominates over the TreYZ 

pathway (Murphy, et al., 2005). However, this hierarchy is not always maintained, even in 

close relatives of Mycobacterium. For example, the TreYZ pathway is the dominant 

pathway for trehalose synthesis in another actinomycete Corynebacterium glutamicum 

(Wolf, et al., 2003). Therefore, it is not clear if removal of the OtsAB pathway would impact 

S. venezuelae glycogen levels by limiting flux through the GlgE pathway in the pre-spores. 
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However, it is noteworthy that this bacterium is cultured on a maltose-rich medium and 

therefore the OtsAB pathway may not be physiologically relevant when grown on maltose. 

Furthermore, it is not clear if the OtsAB pathway is instead operating to produce trehalose 

during spore maturation.  

 

Experiments in this chapter sought to determine if OtsA is required for normal 

development of S. venezuelae on a maltose-rich carbon source or indeed other carbon 

sources. Biochemical characterisation of OtsA was also carried out, with a view to 

determining the substrate specificity of the OtsA from this organism. Given that 

Streptomyces hygroscopicus OtsA uses GDP-glucose as do other actinomycetes, it suggests 

that S. venezuelae OtsA will also use GDP-glucose. Furthermore, the UDP-glucose 

pyrophosphorylase (hereinafter referred to as GalU; EC 2.7.7.9) was also characterised with 

a view to determining if it was responsible for generating the appropriate NDP-glucose 

substrate for OtsA.    
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Figure 6.1: Overview of hypothetical glucose and trehalose metabolism in S .venezuelae 
Enzymes highlighted in red are the focus of experiments in this chapter.   
 
 

 
Figure 6.2: OtsA reaction 
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6.2 A ΔotsA::apr strain and a complemented strain was generated 

A ΔotsA::apr mutation was made following the ReDirectTM protocol (Gust, et al., 2003). The 

formation of the correct polymerase chain reaction (PCR) product was monitored by 

agarose gel electrophoresis (Figure 6.3). Insertion of the apramycin (apr) cassette in place 

of otsA gene in a cosmid was confirmed by restriction digestion of the cosmid, followed by 

agarose gel electrophoresis (Figure 6.3). The mutated cosmid was then introduced into S. 

venezuelae by conjugal transfer and antibiotic selection was used to identify colonies 

containing the ΔotsA::apr mutation. After three rounds of selective re-streaking from single 

colonies, spores of the mutant were harvested and re-suspended in 20 % (v/v) glycerol and 

then stored at -20 °C until required.  

 

Genomic deoxyribonucleic acid (gDNA) was then extracted and used to confirm the 

mutation by Southern hybridisation as well as to ensure further gene re-arrangements had 

not occurred during the double cross-over event (Figure 6.4).  

 

After the mutant was generated, a complementation strain was generated. This was to 

determine if any phenotype observed in the ΔotsA::apr mutant could be restored by re-

insertion of the otsA gene. 

 

PCR was used to amplify the gene fragment along with the upstream native promoter from 

a wild-type (WT) gDNA template (Figure 6.5). The fragment was cloned into a pUC19 vector 

and the corresponding plasmids were screened for the correct sized insertion by colony 

PCR (Figure 6.5) and then sequenced.  

 

The fully sequenced gene fragment was sub-cloned into the pMS82 complementation 

vector (Figure 6.5). The incorporation of the entire fragment into the vector was confirmed 

using restriction digestion followed by agarose gel electrophoresis. A plasmid containing 

the correct gene fragment was then used to transform E. coli ET12567/pUZ8002. A 

successful transformant was used to conjugally transfer the complementation plasmid into 

ΔotsA::apr and antibiotic selection was used to screen for successful conjugants. After 

three rounds of selectively re-streaking from single colonies, the resulting spores were re-

suspended in 20 % (v/v) glycerol and stored at -20 °C until required.   
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Figure 6.3: The otsA gene was replaced with the acc(3)IV-oriT cassette in the 1-H1 cosmid 
(A)  The acc(3)IV-oriT cassette was used as a template for PCR to generate a acc(3)IV-oriT 
cassette  with flanking regions complementary to the flanking regions of  otsA (1.5 kbp). 
(B)  E. coli BW25113/pIJ790 was transformed with 1-H1 followed by the linear otsA specific 
acc(3)IV-oriT cassette, which replaced otsA in 1-H1 by homologous recombination.  The 
cosmid was extracted and digested with NruI. A new band emerged (~6 kbp) as the otsA 
gene contained two NruI cut sites (resulting in 4.1, 1.1 and 0.8 kbp sized fragments; black 
arrows) whereas the acc(3)IV-oriT cassette contained no cut sites. Therefore, the three 
fragments merged into a single 6 kbp fragment in the acc(3)IV-oriT cassette containing 
cosmid (red arrow).   
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Figure 6.4: The ΔotsA::apr was confirmed by Southern hybridisation 
S. venezuelae gDNA was extracted and digested with either XhoI or ApaLI. For the XhoI 
digest, one fragment (band a) as in WT (lane 4) was expected to form two smaller 
fragments (bands b and c) in the ΔotsA::apr strain (lanes 5 and 6). For the ApaLI digest, two 
fragments (bands d and e) from WT (lane 1) were predicted to form a single larger 
fragment (14.7 kbp). The resolution of the blot was not sufficient to distinguish 13.2 kbp 
fragment in WT from the 14.7 kbp fragment in ΔotsA::apr. However, the disappearance of 
the smaller fragment (band e) in ΔotsA::apr was clearly visible, suggesting the gene 
disruption had occurred at the predicted position within the genome. The entire 1-H1 
cosmid was used as the probe. 
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Figure 6.5: A complementation plasmid for the ΔotsA::apr strain was generated 
(A) WT S. venezuelae gDNA was extracted and used as a template for PCR. Primers were 
designed so that the gene as well as the endogenous promoter would be amplified from 
the gDNA. A fragment corresponding to otsA (1.8 kbp) was generated. 
(B) The PCR products were subsequently ligated into a pUC19 vector. The resulting plasmid 
was used to transform E. coli DH5α. Successful transformants were used as template for 
colony PCR, a number of colonies were screened and any colonies yielding the correct sized 
PCR product (lane 5; 2 kbp) were sequenced. 
(C) A single plasmid containing the correct otsA sequence was excised and purified from 
the pUC19 vector (lane 1) as was linearised pMS82 (lane 2). 
(D)  To confirm the presence of the otsA fragment, plasmids from successful transformants 
were excised and digested with BglII. Whilst some colonies contained re-circularised pMS82 
(lanes 1 and 3), some also contained the otsA insert (lanes 2 and 4; expected sizes 3 and 5 
kbp). 
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6.3 ΔotsA::apr had no phenotype under normal laboratory growth conditions  

When ΔotsA::apr was grown on solid malt extract-yeast extract-maltose (MYM) agar, there 

was no developmental phenotype when grown as a lawn or a as a single colony (Figure 

6.6). As MYM media is rich in maltose it seems unlikely that the OtsAB pathway would be 

required under these growth conditions as the maltose would be imported in, and 

therefore act downstream of the OtsAB pathway, and subsequently be used to produce 

glycogen. Therefore, a phenotype would only be expected if ΔotsA::apr were grown on a 

carbon source that made the presence of OtsA necessary for the production of metabolites 

from trehalose 6-phosphate. 

 

Metabolite analysis suggested that there were increased trehalose levels and contained 

unexpectedly 4% more trehalose by dry cell weight than WT spores (Figure 6.7). However, 

the trehalose content of ΔotsA::apr was similar to the complemented strain and as they 

were set up at the same time, unlike WT, it could be due to variations between the 

amounts of carbon source in the batch of medium used. This suggests that the OtsAB 

pathway is not the pathway responsible for trehalose production in spores. Maltose levels 

were also elevated and, during some parts of the life-cycle, the maltose content was 

double that of WT in the mutant strain (Figure 6.7). However, at the end of the 

developmental time-point no maltose was detected suggesting that it was not present in 

spores (Figure 6.7). In general, the metabolic differences were less marked than that of the 

ΔglgE::apr strain (see chapter 5).  

 

Transmission electron microscopy (TEM) suggested that glycogen deposition was still 

present in the ΔotsA::apr strain in pre-spore compartments as observed in WT, which 

suggests that the OtsAB pathway is not required for glycogen synthesis (Figure 6.8). This is 

consistent with evidence suggesting that TreS activity was not required for glycogen 

production, in the presence of maltose, in other mutants of S. venezuelae (see chapter 5). 

There were hints that there may be increased irregular septation events from cryo-

scanning electron microscopy (cryo-SEM) images (Figure 6.8). However, this was relatively 

subtle, varied considerably between different images and was not as obvious as observed 

previously for the ΔglgE::apr strain (see chapter 5).  
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Figure 6.6: ΔotsA::apr had no developmental phenotype when grown on MYM agar 
medium 
 

WT ΔotsA::apr
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Figure 6.7: ΔotsA::apr had slightly elevated trehalose content   
Error bars are the standard error of the mean (SE) of three replicates.  
(A) ΔotsA::apr had elevated maltose content throughout the time course but had no 
maltose at the end of the developmental life-cycle, like WT. 
(B) Initially ΔotsA::apr had less trehalose than WT but had elevated trehalose levels at the 
end of the developmental life-cycle. 
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Figure 6.8: ΔotsA::apr deposited glycogen and produced spores 
Microscopy was performed by E. Barclay or K. Findlay.  
(A) ΔotsA::apr was not impaired in glycogen synthesis as shown by TEM when the cells 
were stained with periodic acid-thiocarbohydrazide-silver proteinate (PATAg). Glycogen 
appeared as deeply staining granules, highlighted by the black arrow. 
(B) Cryo-SEM on ΔotsA::apr suggested that there might be more spores with irregular 
septation than in WT.  
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6.4 ΔotsA::apr had delayed development when grown on galactose 

As no phenotype was observed on the maltose-rich medium MYM, different carbon 

sources were used for growth. A monosaccharide carbon source was preferred because it 

was hypothesised to be more likely that the carbon source would have to be metabolised 

via the OtsAB pathway to form trehalose and glycogen and thereby making a physical 

phenotype more likely.  

 

As previously observed with WT, the carbon sources that gave the most consistent growth 

and development on solid minimal media (MM-+) were galactose and fructose. Therefore, 

they were the first two carbon sources trialled with ΔotsA::apr (Figure 6.9). Whilst there 

was no phenotype on fructose there was a cell-density dependent growth inhibition 

phenotype when the ΔotsA::apr strain was grown on media containing galactose (Figure 

6.9). In regions of high cell density there was limited development whereas at the single 

colony level there was no obvious difference between WT and the ΔotsA::apr strain (Figure 

6.10).  

 

Due to this observation, the maltose in MYM was replaced with galactose to determine if 

there was also a phenotype in complex media that would yield enough cell material for 

metabolite analysis. A developmental delay was also observed on the malt extract-yeast 

extract-galactose (MYGal) solid media (Figure 6.11). Whilst the phenotype observed on 

MYGal was consistent with the phenotype observed on MM-+, it was not identical. On  

MM-+ the strain did not develop beyond substrate mycelium with increased incubation 

time (Figure 6.10). However, on MYGal with prolonged incubation time, the strain did 

develop and eventually sporulated (Figure 6.11).  

 

Images of cryo-SEM of the ΔotsA::apr strain grown on MYGal suggested that spore 

morphology was similar to that of the strain when grown on MYM as well as being 

comparable to WT (Figure 6.12). Interestingly, spores of ΔotsA::apr grown on MYGal had 

lower trehalose content (5.4% of dry cell weight ± 0.1 SE of three replicates) than the 

complemented strain (17.9% of dry cell weight ± 0.4 SE of three replicates). This suggests 

that the OtsAB pathway is in part required to maximise the trehalose content of spores 

when grown on a galactose carbon source.    
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Figure 6.9: ΔotsA::apr had a developmental phenotype when grown on galactose but not 
on fructose 
Strains were grown on minimal media containing Iberian agar (MM-+) with galactose (A) or 
fructose (B) as their carbon sources. There was a cell density dependent developmental 
phenotype when ΔotsA::apr was grown on galactose but not when the strain was grown on 
fructose. 
 
  
 

Figure 6.10: ΔotsA::apr had a developmental phenotype when grown on galactose  
Strains were grown on MM-+ with galactose as the sole carbon source. After 7 days growth 
there was an evident developmental delay in the ΔotsA::apr strain when compared to WT. 
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Figure 6.11: ΔotsA::apr had a developmental phenotype when grown on complex media 
containing galactose  
Strains were grown on media as with MYM with the exception of maltose in the media was 
replaced with galactose (MYGal). There was a clear lag in development, but with prolonged 
incubation the strain did develop and sporulate. 
 

 
Figure 6.12: ΔotsA::apr spore morphology was comparable to WT when grown on 
complex media containing  
Cryo-SEM of WT colonies grown on MYGal containing 4 g L-1(A) and 8 g L-1 (B), suggested 
spores morphologies were comparable to spores developing on MYM.  ΔotsA::apr spores 
were also visualised after growth on  MYGal containing 4 g L-1(C) and 8 g L-1 (D), which 
suggested that their morphologies were comparable to WT.  
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6.5 The phenotype of ΔotsA::apr was associated with metabolic changes  

Galactose is typically metabolised into glucose 1-phosphate and UDP-glucose, which can be 

fed into central metabolism such as glycolysis by enzymes that make up the Leloir pathway 

(Holden, et al., 2003) (Figure 6.13). A number of intermediates, most notably galactose 1-

phosphate, of the Leloir pathway are known to have adverse effects in different biological 

systems ranging from humans to yeast (Lai, et al., 2009; Ross, et al., 2004; Zaffanello, et al., 

2005). Furthermore, OtsA was hypothesised to be using a product of the Leloir pathway, 

UDP-glucose, and therefore it was predicted that this sugar was accumulating in cells 

extracts of ΔotsA::apr. The samples were spiked with several sugars and nucleotide sugars 

hypothesised to be intermediates of the Leloir pathway. Given that a developmental 

phenotype was only observed when galactose was the primary carbon source, it suggested 

that the phenotype could be attributable to build-up of a toxic metabolite, as observed 

with the ΔglgE::apr strain (see chapter 5).  

  

To explore this hypothesis further, cell extracts of ΔotsA::apr grown on MYGal was 

compared to ΔotsA::apr grown on MYM to identify metabolic differences between the two 

growth conditions (Figure 6.14). There were two distinct doublet of doublets that were 

only present when the strain exhibited developmental delay (Figure 6.14). The doublet of 

doublets appeared in a region of the proton nuclear magnetic resonance (1H-NMR) 

spectrum which is characteristic of phosphorylated sugars (Figure 6.14). There was, 

however, an absence of resonances attributable to protons neighbouring any glycosidic 

bonds, which suggested that the phosphorylated sugars were monosaccharides (Figure 

6.14).          

 
As there seemed to be accumulation of phosphorylated sugars, phosphorus NMR (31P-

NMR) spectroscopy was also performed with a view to determining if there were also 

perturbations in phosphate species in cell extracts. There were some distinct changes 

associated also with phosphorus content (Figure 6.14). The developmentally delayed 

ΔotsA::apr had several additional resonances as well as lacked two resonances observed in 

ΔotsA::apr that developed as WT.      
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Figure 6.13: Overview of the Leloir pathway 
The Leloir pathway converts galactose into activated glucoses which are subsequently used 
for glycolysis, trehalose and glycogen production.  
 

 

 
Figure 6.14: The developmental phenotype of ΔotsA::apr was associated with several 
metabolic changes 
A sample of non-standardised ΔotsA::apr was grown on sterile cellophane discs that were 
laid on top of either solid MYM or MYGal. After 1.5 days there was a developmental delay 
when the mutant was grown on MYGal and not MYM. The cell extracts were probed by 1H-
NMR and 31P-NMR. The spectra suggested that there were a number of changes in 
metabolism when ΔotsA::apr was grown on the different media. Trehalose resonances 
were greater when the strain was grown on MYM. New resonances emerged when the 
strain was grown on MYGal, most noticeably two doublet of doublets at 5.45 and 5.6 ppm 
in the 1H-NMR and multiple resonances at -10 and 3 ppm in the 31P-NMR. There was also 
the absence of resonances at 20 ppm in 31P-NMR when the strain was grown on MYGal.        
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6.6 Developmentally delayed ΔotsA::apr accumulated GDP-glucose and glucose 1-

phosphate  

Attempts were then made to identify the sugars that accumulated when ΔotsA::apr 

displayed a developmental phenotype. This was achieved by spiking cell extracts with 

known phosphorylated sugars that were thought most likely to accumulate under galactose 

rich conditions (Figure 6.15). The phosphorylated sugar resonances arise typically at very 

similar regions of the spectrum and can shift subtly at different pHs. Consequently, it was 

rationalised that spiking cell extracts with known sugars would circumvent shifts due to pH 

differences between samples and would be more likely to identify correctly the sugars 

present in cell extracts.  

  

The most likely candidates were UDP-glucose and glucose 1-phosphate because they are 

the final products of the Leloir pathway (Frey, 1996) (Figure 6.13). Activated galactose 

compounds were also used because it was conceivable that some of the intermediates of 

the Leloir pathway could also have accumulated (Figure 6.15).  

 

One of the species was identified as glucose 1-phosphate, as predicted (Figure 6.15). 

Surprisingly, however, UDP-glucose did not accumulate (Figure 6.15). The nucleotide sugar 

was initially identified as ADP-glucose as the doublet of doublet overlapped with the 

accumulating sugar resonance. However, other resonances downfield of this region did not 

match resonances associated with ADP-glucose (Figure 6.16). Therefore, other nucleotide 

sugars were screened and GDP-glucose also overlapped with the doublet of doublets 

observed in ΔotsA::apr as ADP-glucose did. GDP-glucose also matched resonances 

observed downfield of the doublet of doublets. The presence of these phosphorylated 

sugars was confirmed by 31P-NMR spectroscopy (data not shown) and corresponded with 

the extra resonances observed in previous samples (Figure 6.14). This suggested that 

perhaps either the enzymes of the Leloir pathway in S. venezuelae were synthesising GDP-

glucose instead of UDP-glucose or that the major substrate of S. venezuelae OtsA under 

physiological conditions is GDP-glucose (Figure 6.15 and 6.16).            
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Figure 6.15: Spiking experiments suggested the two doublet of doublets in ΔotsA::apr 
corresponded to ADP-glucose and glucose 1-phosphate 
The non-spiked sample ΔotsA::apr spectrum was amplified relative to the other two 
spectra so the location of the doublet of doublets could be observed clearly.   
 
 

 
Figure 6.16: Downfield resonances suggested ΔotsA::apr was accumulating GDP-glucose 
and not ADP-glucose  
The non-spiked sample ΔotsA::apr spectrum was amplified as in the previous figure.   
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Further attempts were made to correlate build-up of one of these metabolites with the 

developmental phenotype. The severity of the developmental phenotype was dependent 

upon the amount of galactose present in the medium (Figure 6.17). Attempts were 

subsequently made to scale-up and grow ΔotsA::apr on separate plates containing different 

amounts of galactose. However, when this was done using a standardised spore stock of 

ΔotsA::apr using the same concentration of spore inoculum typically used for metabolite 

analyses, the developmental phenotype was not as pronounced as previously observed 

(Figure 6.18). There was a subtle developmental phenotype, in which ΔotsA::apr would not 

develop on certain patches only on the plates with increased galactose concentrations 

(Figure 6.18). In these areas there was substrate mycelia present that had failed to develop 

(Figure 6.18). Whilst there were also small areas that were devoid of growth on plates 

containing lower galactose concentrations, these areas were clear indicating no spores 

were distributed on these areas (Figure 6.18). Nevertheless, the cells were harvested and 

cell extracts probed. GDP-glucose was only present in ΔotsA::apr when grown at the higher 

galactose concentration (0.6% of dry cell weight ± 0.04 SE). If the spore inoculum was 

increased four-fold then there was a more severe phenotype observed (Figure 6.19). It is 

noteworthy that developmental delay was only observed at the periphery of the 

cellophane disc and that cells with developmental delay had GDP-glucose. Whereas the 

cells that grew on the centre of the plate developed as WT and did not accumulate GDP-

glucose. This also suggests that the cellophane may be acting as a barrier preventing 

contact with a developmental inhibitor and therefore the phenotype could be a 

consequence of changes in the growth environment. For example, one contributory factor 

could be acidification of the nutrient supply and in this context the cellophane could be 

acting to buffer such fluctuations in pH. The GDP-glucose accumulation was not in the same 

order of magnitude as α-maltose 1-phosphate (αM1P) build up in ΔglgE::apr. Glucose 1-

phosphate was present at both galactose concentrations. There were also shifts in 

phosphate species within the samples and therefore the phenotype could also be 

attributable to shifts in phosphate pool metabolism.          
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Figure 6.17: The severity of developmental delay of ΔotsA::apr correlated with the 
galactose content of the media  
Strains were grown on MYGal media containing 8 g L-1 (A) and 4 g L-1 (B) galactose for two 
days. Whilst the WT and complemented strains looked similar when grown on both plates, 
the ΔotsA::apr strain displayed the strongest developmental delay when grown on higher 
amounts of galactose.    
 

 
Figure 6.18: The concentration of spore inoculum was too low to observe a differential 
phenotype 
Standardised stocks of ΔotsA::apr were grown on MYGal media containing 8 g L-1 (A) and 4 
g L-1 (B) galactose for two days. The spore inoculum was not sufficient to observe as strong 
phenotype as observed previously. There were, however, regions of growth inhibition only 
when ΔotsA::apr was grown at the higher galactose concentrations.   
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Figure 6.19: The severity of the ΔotsA::apr phenotype was enhanced when spore 
inoculum was increased 
The spore inoculum was increased four-fold and around the periphery of the cellophane 
disc there was a developmental phenotype. The cells were harvested into two separate 
samples: one contained predominantly developed cells that were as WT (red spectra) and 
the second contained the cell material that was developmentally delayed (blue spectra). 
The cell lysates of these two samples were probed with 1H-NMR (B) and 31P-NMR (C). The 
major difference in sugar content was the presence of GDP-glucose in the developmentally 
delayed cell material.  
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6.7 S. venezuelae OtsA was heterologously produced in E. coli 

As the ΔotsA::apr strain accumulated GDP-glucose under certain growth conditions, it was 

hypothesised that GDP-glucose was a major substrate of S. venezuelae OtsA. Therefore, a 

codon-optimised DNA sequence encoding S. venezuelae OtsA was synthesised and sub-

cloned into an expression vector (Figure 6.20). Chemical transformation was used to insert 

the plasmid in to three E. coli cell lines optimised for high heterologous protein production; 

BL21 (DE3), SoluBL21 and BL21 (DE3) pLysS. Protein production was initiated by the 

addition of isopropyl β-D-1-thiogalactopyranoside (IPTG) when cultures reached an OD600nm 

of 0.6. Protein production was monitored by sodium dodecyl sulphate polyacrylamide gel 

electrophoresis (SDS-PAGE). Any bands that sharply increased upon IPTG induction on the 

gel were likely to be OtsA and were excised and the identity of the protein was confirmed 

by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-

TOF MS).  

 

As initial protein expression yielded soluble OtsA, the volume of culture medium was 

scaled-up. OtsA was purified from the cell lysate using a HisTrap column (Figure 6.21), 

further purified by size exclusion chromatography (SEC) and buffer exchanged.  

6.8 GDP-glucose is the preferred NDP-glucose substrate for S. venezuelae OtsA 

Aliquots of 0.26 μM OtsA were incubated with 1 mM each of glucose 6-phosphate and 

different NDP-glucoses in order to determine the substrate preference of S. venezuelae 

OtsA. Trehalose 6-phosphate production was monitored by 1H-NMR spectroscopy and the 

conversion rate was determined by comparing integrals of substrate and products. The 

results showed that OtsA had a strong preference for GDP-glucose, followed by ADP-

glucose and slowly consumed UDP-glucose (Table 6.1). The hierarchy of substrate 

preference is different to the enzyme from E. coli (Gibson, et al., 2002). As the two 

preferred substrates contained purines, it suggested that the active site could be 

configured to accommodate the larger nucleotides and that there should be structural 

differences when compared to the E. coli enzyme structure, which is highly specific for 

UDP-glucose (Gibson, et al., 2002)(Figure 6.22).        
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Figure 6.20: Sub-cloning of S. venezuelae otsA  
The gene encoding S. venezuelae OtsA was synthesised with optimal codon usage for 
expression in E. coli. The DNA was excised from a pUC57 vector and sub-cloned into a 
pET21a vector. Plasmids from successful transformants were screened for the insertion of 
the whole otsA fragment by restriction digestion (expected sizes otsA: 1.5 kbp and pET21a: 
5.5 kbp).  
 

 
Figure 6.21: Large-scale production of S. venezuelae OtsA  
E. coli SoluBL21 cells were used for over-production of OtsA. The protein was purified from 
other proteins in the cell lysate by application onto a HisTrap column. All fractions that 
eluted from the HisTrap column were run on an SDS-PAGE gel in order to determine which 
fractions contained OtsA.  
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Table 6.1: Substrate preferences of OtsA 

 

 
Figure 6.22: The structures of different NDP-glucoses  
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6.9 Structural determination of S. venezuelae OtsA  

The crystal structure was determined in collaboration with C.E.M. Stevenson, D.M. Lawson 

and scientists at the Diamond Light Source. Figures were generated with assistance from 

C.E.M. Stevenson and S. Bornemann.   

  

Purified OtsA was buffer exchanged into 5 mM HEPES, pH 7.0, containing 60 mM MgCl2 and 

concentrated to 15 mg mL-1. The resulting protein solution was used in crystallisation 

screens that were set up in a sitting-well format. The crystallisation screens were stored at 

a constant temperature of 20 °C. Protein crystals appeared in a number of screen 

conditions after 3 days of incubation. The most promising crystals were mounted onto 

litho-loops, flash cooled by plunging in liquid nitrogen and subsequently transported to the 

Diamond Light Source. Cryo-protectant was not necessary for most of the crystals because 

they were isolated from the Morpheus Screen (Molecular Dimension) in which all screen 

conditions contain cryo-protectant. One rectangular plate crystal isolated from the 

Morpheus Screen (Molecular Dimensions) condition B7 (0.12 M ethylene glycols, 0.1 M 

imidazole and 2-(N-morpholino)ethanesulfonic acid (MES), pH 6.5, 30% (v/v) ethylene 

glycol and PEG 8K)  gave the best diffraction  (Figure 6.23).     

 

Data were collected from this crystal to 1.95 Å resolution with the data collection statistics 

reported in Table 6.2. The structure of OtsA was solved by molecular replacement using a 

model generated from the output of the Phyre2 server (Bennett-Lovsey, et al., 2008). This 

model was based on the crystal structure of VldE from Streptomyces hygroscopicus (PDB 

accession code 3T5T, Zhang et al., unpublished), with which OtsA shares 31% amino acid 

sequence identity. The solvent content was calculated using the Matthews program, which 

suggested that four copies of the OtsA monomer (molecular weight 51,258 Da) were likely 

to be present in the asymmetric unit, giving a solvent content of 46% (Kantardjieff and 

Rupp, 2003). A molecular replacement search with the monomer of OtsA was carried out 

using PHASER and was successful in finding four copies of the monomer per asymmetric 

unit (McCoy, et al., 2007) (Figure 6.24). After density modification with four-fold averaging 

in PARROT, BUCCANEER was used and approximately 74% of the residues were built 

automatically (Cowtan, 2006; Cowtan, 2010). This was then refined using REFMAC, 

followed by a further iteration of PARROT and BUCCANEER, which resulted in 92% of the 

residues being built (Cowtan, 2006; Cowtan, 2010; Murshudov, et al., 1997). This model 

was completed through several iterations of restrained refinement in REFMAC5 
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(Murshudov, et al., 2011), and manual rebuilding in COOT (Emsley and Cowtan, 2004).  The 

apo model has Rwork and Rfree values of 0.202 and 0.231 respectively at 1.95 Å resolution. 
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Figure 6.23: OtsA crystals 
(A) Initial protein crystallography screens yielded rectangular plate crystals in Morpheus 
Screen condition B7.  
(B) The crystals were positioned within litho loops and sent to the Diamond light source. 
The X-ray beam was focussed on the region highlighted with +. 
(C) The resulting diffraction patterns of the X-rays were recorded.  
  
 
 
 
 
 
 

A B
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Table 6.2: Summary of OtsA X-ray data collection  

 
a Figures in parentheses indicate values for the outer resolution shell. 
b Rmerge =Phkl Pi|Ii(hkl)  hI(hkl)i|/PhklPiIi(hkl). 
c Rmeas =Phkl [N/(N  1)]1/2 Pi |Ii(hkl)  hI(hkl)i|/Phkl PiIi(hkl), where Ii(hkl) is the ith observation of reflection hkl, hI(hkl)i is the weighted 

average intensity for all observations i of reflection hkl and N is the number of observations of reflection hkl. 
d CC½ is the correlation coefficient between intensities taken from random halves of the dataset. 
f The R-factors Rwork and Rfree are calculated as follows: R =P(|Fobs _ Fcalc|)/P|Fobs| _ 100, where Fobs and Fcalc are the observed and 

calculated structure factor amplitudes, respectively. 

g As calculated using MolProbity (Chen, et al., 2010). 

Number of crystals 1

Beamline I04-1, Diamond Light Source, UK

Detector Pilatus 2M detector

Space group P21

Cell parameters (Å) a= 41.43, b= 168.40
c= 133.90, β= 97.19  

Wavelength (Å) 0.92

Resolution range (Å) 32.64- 1.95

Unique reflections 131515 (9597)

Completeness 99.6 (98.6)

Multiplicity 6.9 (6.2)

Rmerge
b 0.092 (0.984)

Rmeas
c 0.109 (1.190)

CC½d 0.998 (0.661)

Mean I/σ(I) 14.6 (1.6)

Wilson B value  (Å2) 22.102

Refinement

Resolution rangea (Å) 364–1.95 (2.0–1.95)

Reflections: working/freee 124836/6621

Rwork/ Rfreea,f 0.202/0.231 (0.313/0.334)

Ramachandran: favoured/allowed/disallowedg (%) 96.8/2.9/0.3

R.m.s. bond distance deviation (Å) 0.010

R.m.s. bond angle deviation (Å) 1.25

No. of protein residues (ranges): 
chains A/B/C/D 

447 (2-18, 23–452)/432 (2-18, 24-29, 43–
451)/447 2-18, 23-452)/ 448 (2-18, 23-
453)

No. of water molecules/MES/Ethylene glycol 
molecules

672/4/2

Mean B factors: protein/water/MES/PEG/overall (Å2) 17.41/40.67/40.87/37.36/18.465
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Figure 6.24: S. venezuelae OtsA structure  
There were four copies of OtsA in the asymmetric unit (labelled chains A-D). There was 
clear electron density for MES, which was present in the crystallisation condition, in all four 
sub-units. Figure generated using CCP4mg (McNicholas, et al., 2011). 
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The solved structure was submitted to the Proteins, Interfaces, Structures and Assemblies 

(PDBePISA) server to ascertain the most likely biologically relevant oligomer (Krissinel, 

2011). The output suggested it was most likely to exist as a dimer, with chains A and C, as 

well as chains B and D forming dimers with a buried surface area of 1320.5 and 1312.3 Å2 

respectively (Figures 6.24 and 6.25). This is consistent with the only deposited structure of 

OtsA from E. coli, which also forms a dimer (Gibson, et al., 2002). Even though both 

proteins formed dimers it is noteworthy that the dimer interface in each is significantly 

different (Figure 6.25).  

 

The S. venezuelae OtsA monomer comprises twin Rossman-like β/α/β domains in a  

GT-B configuration. The active site is located in a cleft at the interface between the two 

domains and there was clear electron density for MES, which was bound within the active 

site (Figure 6.26). The majority of the amino acids were built into the model, with the 

exception of a flexible loop comprising residues 29-32 in chain A, this flexible loop is also 

present in the E. coli OtsA. The loop is located in the vicinity of the active site and its 

positioning suggests that these residues may be involved in gating the active site, which 

would explain the flexibility of the region (Figure 6.26). 

 

Attempts were then made to co-crystallise S. venezuelae OtsA with 1 mM GDP-glucose as 

well as to soak crystals in a saturated solution containing GDP-glucose. This was pursued in 

order to determine the structural basis for the altered substrate specificity of the E. coli and 

S. venezuelae OtsA enzymes. Co-crystallisations and soaking experiments were carried out 

and data was collected, but no density was apparent for any ligand. 

 

In the absence of a ligand bound structure, comparisons were made to other structures 

deposited in the PDB database (www.pdb.org) (Berman, et al., 2000). This was achieved by 

using the output of the DALI server (Holm and Rosenström, 2010). The most structurally 

similar entries (in rank order) were a putative glycosyl transferase (RMSD 2.1), VldE (RMSD 

2.1) and E. coli OtsA (RMSD 2.0). Whilst there were no nucleotide bound ligands to the 

putative glycosyltransferase, there was a GDP bound VldE structure.      
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Figure 6.25: OtsA dimers 
Both S. venezuelae (A) and E. coli (B) OtsAs are predicted to form biologically relevant 
dimers. The dimer interface in these two proteins is, however, very different. Figure 
generated using CCP4mg (McNicholas, et al., 2011). 
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Figure 6.26: OtsA monomer 
The overall fold of OtsA represented as a ribbon diagram (A) and space-fill model (B). The 
active site is located at the interface between the two domains. There was clear electron 
which suggested that MES was bound in the vicinity of the active site. The space-fill model 
suggested that the active-site is located within a cleft. Figure generated using CCP4mg 
(McNicholas, et al., 2011).   
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VldE is a pseudo-glycosyltransferase isolated originally from Streptomyces hygroscopicus 

that is involved in the biosynthesis of validamycin A that catalyses the formation of a C-N 

bond instead of a glycosidic bond (Cavalier, et al., 2012). The enzyme mechanism is similar 

to that of OtsA, in which it uses nucleotide- and phosphate-activated compounds to form a 

pseudo-disaccharide. Interestingly, VldE uses GDP-valienol that is structurally comparable 

to GDP-glucose substrate used by OtsA from S. venezuelae but not from E. coli, which uses 

UDP-glucose (Cavalier, et al., 2012; Gibson, et al., 2002).  

 

S. venezuelae OtsA shared modest primary sequence identity to E. coli OtsA and VldE of 32 

and 31% respectively (Figure 6.27). Overlays of the solved structure were performed with 

the UDP-glucose bound E. coli OtsA structure (PDB: 1UQU) as well as the GDP-bound VldE 

structure (PDB: 4F96) (Figures 6.28 and 6.29). Despite the relatively low primary sequence 

conservation and the absence of a ligand in S. venezuelae OtsA, the overall folds of the 

monomers were similar, with the exception of an additional β-hairpin motif in VldE, which 

is not present in either of the OtsAs (Figures 6.28 and 6.29) (Cavalier, et al., 2012). It was 

also apparent that whilst MES was bound within the active site of S. venezuelae OtsA, it 

was not located at the donor site and so its presence is not relevant to understanding 

altered substrate specificities (Figures 6.28 and 6.29).  
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Figure 6.27: Sequence alignments 
Sequence alignment of S. venezuelae OtsA (S.ven), E. coli OtsA (E.coli) and VldE (S.hyg). 
Residues in red boxes are conserved amongst all three sequences and residues in blue 
boxes, whilst not conserved, have similar chemical properties in all three sequences. Figure 
generated using ESPript (Gouet, et al., 2003).  
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Figure 6.28: Structural overlays of OtsAs 
Both A chains of the structures of E. coli (red structure) and S. venezuelae (blue structure) 
OtsA were overlaid, the overall fold of both proteins was similar (RMSD: 2.04 Å over 403 
residues), despite one being an apo structure and the other being bound to UDP-glucose. 
Figure generated using CCP4mg (McNicholas, et al., 2011). 
  

 
Figure 6.29: Structural overlay of OtsA and VldE 
Both A chains from the structures of S. venezuelae (blue structure) OtsA and VldE (gold 
structure) were overlaid, the overall fold of both proteins were similar, with the exception 
of an extra β-hairpin loop in the VldE structure (RMSD: 1.68 Å over 393 residues), despite 
one being an apo structure and the other being bound to GDP. Figure generated using 
CCP4mg (McNicholas, et al., 2011). 
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As the overall fold of these structures was similar, it allowed informative superpositions to 

be made of the active site donor region between all three structures (Figure 6.30). The 

structures were aligned by fixing the positions of the α-carbons of the residues: Arg264, 

Leu366 and Glu370, which were conserved in all three structures. The overlaid structures 

suggested that the ligands were bound at similar positions within the donor site, with the 

phosphate and ribose moieties practically overlapping (Figure 6.30). However, the 

positioning of the uracil and guanine moieties were markedly different and they were in 

different planes, suggesting that they were interacting with different residues in each of 

the structures (Figure 6.30). Moreover, the hydrogen bonding networks and amino acid 

residues were located at similar positions around the phosphates and ribose sugars but 

varied considerably at the regions interacting with guanine and uracil (Figure 6.30). The 

conserved binding of the phosphates and riboses would most likely be required because 

the mechanisms between these enzymes are conserved. The positioning of the phosphates 

in particular is important as the phosphate bond to the sugar (or pseudo-sugar in VldE) is 

cleaved during catalysis.      

 

The interactions between the ligands and amino acid residues were investigated further by 

generating 2 dimensional (D) representations of their respective nucleotide binding sites 

(Figure 6.31). As in the 3D depiction, the ribose and phosphate moieties of GDP were 

predicted to make interactions with the side chain residues of Arg264, Glu370 and Lys269 

as well as the backbone residues of Leu366 and Val367 in S. venezuelae OtsA (Figure 6.31). 

These interactions were conserved in all three structures. The guanine moiety of GDP was 

interacting with the side chain of residues of Ser345 and Asp340 as well as the backbone 

residue of Glu341 in S. venezuelae OtsA, which are all hydrophilic residues. Furthermore, 

the hydrophobic residue Phe342 secures the guanine in place by potentially stacking above 

it. The interactions made by S. venezuelae OtsA at the guanine moiety closely match the 

interactions made by VldE, which also interacts with three hydrophilic residues and has a 

hydrophobic residue positioned above the guanine ring (Figure 6.31) (Cavalier, et al., 2012). 

This contrasts to the E. coli OtsA nucleotide binding site, in which the uracil moiety of UDP 

only interacts with the backbone of a Phe339 residue (Figure 6.31) (Gibson, et al., 2004). 

Therefore, there are four key residues that are predicted to be important for S. venezuelae 

OtsA to discriminate for the nucleotide component of GDP-glucose over UDP-glucose.   
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Figure 6.30: Overlay of donor site with ligands  
 An overlay was performed focussing on the donor site of both OtsA structures and the 
VldE structure. Both ligands (UDP-glucose and GDP) are shown within the donor site. The 
amino acid residues are coloured on a graded scale based on sequence conservation. The 
overlay shows that there is conservation in sequence and space between all of the amino 
acids interacting with both the phosphate and ribose components of the ligands, as 
indicated by the blue coloration. However, towards the base region there are considerable 
deviations between the structures, as indicated by the yellow coloration. The diagram also 
shows that whilst the ribose and phosphate moieties of the ligands superimpose well, the 
nucleotide moieties of the ligands are positioned in different planes within the donor site. 
The uracil base is positioned perpendicular relative to the positioning of the guanine base, 
which is indicative of different interactions taking place between the residues in the 
different structures. Image generated using Swiss-PdbViewer (Guex and Peitsch, 1997).       
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Figure 6.31:  2D representation of the OtsA and VldE nucleotide binding sites 
2D representations were generated for E. coli OtsA bound to UDP (1UQU), VldE bound to 
GDP (4F96) and the GDP from VldE was superimposed into S. venezuelae OtsA (Sven). The 
hydrogen bonding networks for all structures are very similar towards the ribose and 
diphosphate regions of the ligand, with several positively charged side chains interacting 
with the negative charges on phosphate groups. However, in the GDP-bound structures 
there are further interactions with amino acid side chains, leading to three hydrogen 
bonds, which is not possible in the UDP-bound structure as the amino acids present in this 
region too different. 
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6.10 S. venezuelae GalU was over-produced heterologously in E. coli 

GalU was hypothesised to be producing the NDP-glucose substrate for OtsA. Given that 

OtsA uses GDP-glucose, it was hypothesised that GalU could be the source of GDP-glucose. 

Therefore, GalU was over-produced using the same approach as described previously for 

OtsA in section 6.7 (Figure 6.32). The only exception was a different strain was used and 

that the protein was deemed to be of sufficient purity after elution from a HisTrap column 

and therefore did not require further purification by SEC (Figure 6.33).  

6.11 GalU was not able to produce GDP-glucose 

Cell extracts of ΔotsA::apr indicated that GDP-glucose accumulated. However, the source of 

GDP-glucose in S. venezuelae was unknown and there were no genes annotated in the 

genome as GDP-glucose synthases or similar. Close homologues of GalU are normally UDP-

glucose pyrophosphorylases, which use glucose 1-phosphate and UDP to synthesise UDP-

glucose. The enzyme was widely thought to provide UDP-glucose for OtsA.  

 

However, enzyme assays in which 2 mM glucose 1-phosphate was incubated with 2 mM 

nucleotides suggested that the preferred nucleotides were UTP and dTTP (Table 6.3). 

Indeed no activity with GTP was observed, which suggests it is not the source of GDP-

glucose in S. venezuelae.  The specific activity for UTP in S. venezuelae GalU was several 

orders of magnitude lower than that of the S. coelicolor enzyme (Asencion Diez, et al., 

2012). However, this could be in part due to non-optimal assay conditions. Optimisation 

was not attempted in this study because it was unlikely this would alter substrate 

specificity.   

6.12 S. venezuelae GalU was crystallised 

Crystallisation of GalU was also attempted in a similar fashion to OtsA using a protein 

concentration of 13 mg mL-1. Crystals formed after three weeks incubation in the structure 

screen (Molecular Dimensions) condition F2 (0.2 M ammonium sulphate, 0.1 M sodium 

cacodylate, pH 6.5, 30% (w/v) PEG 8k) but were too small and fragile to handle, therefore 

they were used as a seed stock. Optimisations were set up in which the PEG concentration 

and ammonium sulphate concentration were altered in hanging-drop, vapour diffusion 

plates. Co-crystallisation was also attempted by the addition of  

1 mM of either UTP or glucose 1-phosphate. After several weeks larger plate crystals were 

present in some of the optimisation screen (Figure 6.34).  These crystals were flash-cooled 

and sent to the Diamond Light Source for data collection. A preliminary data set was 
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recorded with collection parameters outlined in Table 6.4. As the resolution was relatively 

poor (3.41 Å) manual structural refinement was not attempted as at this resolution there 

would have been considerable ambiguity in the density maps.  

 

Co-crystallisation trials were also attempted using a customised screen called the KISS 

screen. After three weeks incubation, crystals appeared in condition E7 (0.2 M ammonium 

sulphate, 0.1 M sodium citrate, pH 5, 30% (w/v) PEG 3350) and E8 (0.2 M ammonium 

sulphate, 0.1 M sodium citrate, pH 5, 35% (w/v) PEG 3350) (Figure 6.34). One of these 

crystals was sent to the Diamond Light Source for data collection, the data collection 

parameters are reported in Table 6.5. The resolution at which the data was collected was 

slightly improved compared to the previous crystal (3.11 Å). However, the space group and 

the asymmetric unit differed from the previous data set collected. 

 

The solvent content was calculated using the Matthews program, which suggested that 12 

copies of the GalU monomer (molecular weight 34,906 Da) were likely to be present in the 

asymmetric unit, with a solvent content of 68% (Figure 6.35) (Kantardjieff and Rupp, 2003; 

Matthews, 1968). It is highly unusual to have so many copies of a monomer in a single 

asymmetric unit. Manual refinement would have been challenging at such a low resolution 

and therefore was not attempted. However, a model was generated using the non-refined 

structure to show how the crystal would have packed and this suggested that there were 

large solvent channels within the crystal. This suggests that the fragility of the crystals could 

in part be due to the high solvent content of the crystals (Figure 6.35).     
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Figure 6.32: Sub-cloning of S. venezuelae galU  
The gene encoding S. venezuelae GalU was synthesised with optimal codon usage for 
expression in E. coli. The sequence was excised from a pUC57 vector and sub-cloned into a 
pET21a vector. Plasmids from successful transformants were screened for the insertion of 
the whole galU fragment by restriction digestion (expected sizes galU: 0.8 kbp and pET21a: 
5.5 kbp).  
 
 
 

 
Figure 6.33: Large-scale production of S. venezuelae GalU  
E. coli BL21 (DE3) pLysS cells were used for over-production of GalU. The protein was 
purified from other proteins in the cell lysate by application onto a HisTrap column. All 
fractions that eluted from the HisTrap column were run on an SDS-PAGE gel in order to 
determine which fractions contained GalU.  
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Table 6.3: GalU nucleotide preferences 

 
 
 
 
 
 
 
 
 

 
Figure 6.34: GalU crystals 
Initial protein crystallography screens yielded delicate plate crystals (A) but cuboids in the 
KISS screen (B).  
 
 
 
 
   
 
 
 
 
 
 
 

Nucleotide (2mM) Specific activity
(U mg-1)

UTP 0.52

ATP 0.00

GTP 0.03

ITP -0.01

CTP 0.05
dTTP 0.50

A B
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Table 6.4: Summary of GalU-1 X-ray data collection  

Number of crystals 1 

Beamline I04-1, Diamond Light Source, UK 

Detector Pilatus 2M detector 

Space group P21212 

Cell parameters (Å) a= 59.03, b= 91.10, c= 137.20, 

Wavelength  (Å) 0.92 

Resolution range  (Å) 75.89-3.41 

Unique reflections 10647 (774) 

Completeness 99.7 (97.5) 

Multiplicity 12.9 (12.5) 

Rmerge
b 0.217 (1.527) 

Rmeas 
c 0.234 (1.657) 

CC½d 0.997 (0.747) 

Mean I/σ(I) 11.5 (1.9) 

Wilson B value  (Å2) 175.593 

a Figures in parentheses indicate values for the outer resolution shell. 
b Rmerge =Phkl Pi|Ii(hkl)  hI(hkl)i|/PhklPiIi(hkl). 
c Rmeas =Phkl [N/(N  1)]1/2 Pi |Ii(hkl)  hI(hkl)i|/Phkl PiIi(hkl), where Ii(hkl) is the ith observation of reflection hkl, hI(hkl)i is the weighted average 

intensity for all observations i of reflection hkl and N is the number of observations of reflection hkl. 
d CC½ is the correlation coefficient between intensities taken from random halves of the dataset 
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Table 6.5: Summary of GalU-2 X-ray data collection  

Number of crystals 1 

Beamline I02, Diamond Light Source, UK 

Detector Pilatus 6M detector 

Space group P21 

Cell parameters (Å) a= 84.25, b= 262.8, c= 147.60,  
β= 94.04     

Wavelength  (Å) 0.979 

Resolution range  (Å) 62.38-3.11 

Unique reflections 110507 (8297) 

Completeness 96.5 (98.2) 

Multiplicity 3.0 (3.0) 

Rmerge
b 0.095 (0.730)  

Rmeas 
c 0.135 (1.030) 

CC½d 0.992 (0.570) 

Mean I/σ(I) 10.8 (1.7) 

Wilson B value  (Å2) 34.815 
a Figures in parentheses indicate values for the outer resolution shell. 
b Rmerge =Phkl Pi|Ii(hkl)  hI(hkl)i|/PhklPiIi(hkl). 
c Rmeas =Phkl [N/(N  1)]1/2 Pi |Ii(hkl)  hI(hkl)i|/Phkl PiIi(hkl), where Ii(hkl) is the ith observation of reflection hkl, hI(hkl)i is the weighted average 

intensity for all observations i of reflection hkl and N is the number of observations of reflection hkl. 
d CC½ is the correlation coefficient between intensities taken from random halves of the dataset 
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Figure 6.35: GalU crystal packing  
A partially solved structural solution to GalU suggested there were at least 12 copies of the 
GalU monomer in each asymmetrical unit (A) and that the crystal was packed in such a way 
that there were large solvent channels (B), which would have made the crystals fragile.   
   

A B
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6.13 Discussion 

Results from this chapter suggest that OtsA is not the major source of trehalose in spores of 

S. venezuelae, when grown on maltose. This suggests that instead the TreYZ pathway is 

responsible for trehalose production, after the maltose has been converted to glycogen. 

This is consistent with abundant glycogen observed in the pre-spores, which will be 

degraded into trehalose by the TreYZ pathway (Figure 6.36). This is also consistent with 

published data showing that TreZ expression is activated by a transcription factor 

associated with sporulation in S. venezuelae (Bush, et al., 2013). However, it is conceivable 

that on an alternative carbon source, such as one that did not lead to glycogen deposition 

in the pre-spores, that the OtsAB pathway may have a greater role in trehalose production. 

Indeed the ΔotsA::apr had reduced trehalose content in its spores compared to the 

complemented strain when the strains were provided with galactose as a carbon source.  In 

this instance TreS could have been operating to convert α-maltose into trehalose within the 

pre-spores. 

 

Interestingly, ΔotsA::apr has a cell density dependent developmental phenotype when 

grown on a galactose carbon source. This demonstrates that there is interplay between 

pathways involved in trehalose synthesis and galactose catabolism and that there are 

developmental consequences that arise if flux is limited at the point of OtsA. The 

underlying mechanism by which this leads to a developmental phenotype remains poorly 

understood. However, the phenotype was associated with alterations in phosphorus 

metabolism and an accumulation of GDP-glucose, which suggests it could be a result of 

perturbation of either the phosphate or nucleotide pools. However, some experiments 

suggested that cellophane was providing some form of protection against an inhibitor of 

development and so it could also be due to the release of a compound or acidification of 

the solid media as well. Further work is needed in order to understand the root cause of 

this phenotype and how cellophane ameliorates the developmental delay.  

 

Biochemical characterisation of S. venezuelae OtsA showed that the GDP-glucose build-up 

was because it is the preferred substrate of OtsA. However, the source of GDP-glucose in S. 

venezuelae remains unknown. There are several putative nucleotide-glucose transporters 

annotated in the S. venezuelae genome. Further bioinformatic analysis twinned with 

biochemical characterisation of the top candidates should be able to identify the GDP-

glucose source. Given that the Leloir pathway is highly conserved from bacteria through to 
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humans and plants, it seems unlikely that one of the enzymes of the Leloir pathway is 

synthesising GDP-glucose, but it nevertheless remains a possibility (Frey, 1996).  

 

This study has shown that GalU is not the source of GDP-glucose in S. venezuelae.  The 

function of GalU was hypothesised to be providing a substrate for OtsA. However, in light 

of this evidence, the role GalU plays in carbon metabolism in S. venezuelae is now unclear 

but it is likely to be involved in cell wall proteoglycan biosynthesis. A genetic disruption of 

galU would be useful to determine its potential role in metabolism. Initial characterisation 

suggested it was orders of magnitude slower than the same enzyme purified from S. 

coelicolor (Asencion Diez, et al., 2012). This may be due to the enzyme being assayed in 

sub-optimal conditions. Whilst structural studies were pursued, as the enzyme does not 

have altered substrate specificity, crystallisation of GalU is unlikely to increase scientific 

understanding of this enzyme as there is already a known structure that has the same 

substrate specificity (Kim, et al., 2010).  

6.14 Summary 

In this chapter, an ΔotsA::apr knockout was characterised and found to have a 

developmental phenotype when provided a galactose carbon source. The S. venezuelae 

OtsA was also expressed, purified, characterised and crystallised. It was revealed to have 

substrate specificity for GDP-glucose. Using crystallography, the key residues underlying 

this substrate specificity have been identified. This is the first known OtsA structure with a 

substrate preference for GDP-glucose. GalU was also expressed, purified and characterised 

and it was found that it does not exhibit substrate specificity like OtsA and it was specific 

for dTTP and UTP.   
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Figure 6.36: Summary of proposed galactose metabolism and glucan metabolism in S. 
venezuelae  
Items in red emphasise the altered metabolism of ΔotsA::apr.  
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The focus of this thesis was to characterise aspects of the GlgE pathway using 

enzymology and genetics. A diagrammatic summary of the mutants generated and the 

proteins characterised in this thesis are shown in figures 7.1 and 7.2 respectively. 

 

 
Figure 7.1: Overview of gene disruptions made in Streptomyces venezuelae                
Six gene disruption mutants were generated in this study. Genes encoding the coloured 
enzymes in the above diagram were disrupted to generate single gene disruptions. 
Disruptions of the enzymes coloured green had no developmental phenotype, when 
grown under normal laboratory conditions as well as on some alternative carbon 
sources. Disruptions of the genes encoding enzymes coloured in red displayed a distinct 
developmental phenotype.   
 

S. venezuelae was identified as a potential model system to characterise the GlgE 

pathway because bioinformatics suggested that it contained only a single copy of the 

GlgE pathway encoding gene cluster and no other glucan synthesis pathways. 

Therefore, it suggested genetic studies in which single gene deletions could be made in 

order to ascribe a biological function to the pathway. Mutants generated and 

characterised in this thesis demonstrate for the first time that the GlgE pathway is 

solely responsible for glycogen production in vivo.  

 

A Δpep2::apr strain was generated with a view to determining if glycogen was essential 

for normal growth and development in S. venezuelae and indeed to determine if the 

GlgE pathway was operating in a biological context. The strain has no developmental 

phenotype but is devoid of glycogen, there-by confirming that the GlgE pathway 

operates in a biological context and is solely responsible for glycogen production. The 
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fact that this strain was viable and has no developmental phenotype suggests that 

glycogen is non-essential in S. venezuelae, which is consistent with findings in 

Escherichia coli (Eydallin, et al., 2007). However, there was a metabolic phenotype in 

the absence of glycogen as the spores of Δpep2::apr had reduced trehalose content. 

This confirms the long held view that glycogen deposition in the pre-spore chains 

allows the organism to relocate its carbon reserves for trehalose production in spores 

(Rueda, et al., 2001). As trehalose has been implicated in conferring resistance to 

abiotic stresses (Rueda, et al., 2001) and is consumed during germination (McBride and 

Ensign, 1990), the results suggest that S. venezuelae deposits glycogen in the pre-

spores to maximise the trehalose content of the spores, which in turn increases the 

likelihood of spore survival as well as increases the initial nutrient supply upon 

germination.    

 

In the absence of glycogen synthesis, it was hypothesised that Δpep2::apr could 

channels its carbon into an alternate storage compound, such as lipid, as observed in 

other bacteria (Wang, et al., 2007). Preliminary results suggested that the Δpep2::apr 

strain accumulated 45% more fatty acid methyl esters (FAME) than WT when grown 

under the same conditions. This suggests that in the absence of glycogen, carbon flux is 

channelled into increased synthesis of other metabolites. Other metabolites 

synthesised by some strains of S. venezuelae are the antibiotics chloramphenicol and 

jadamycin (Yang, et al., 1995). Indeed, chloramphenicol is known to accumulate during 

the same stages of development as glycogen in S. venezuelae, which suggests that 

there may be competition between the two processes for the same carbon reserves 

(Ranade and Vining, 1993). Therefore, an avenue to explore in the future would be to 

determine the impact removal of glycogen synthesis has on antibiotic production in S. 

venezuelae. The type-strain of S. venezuelae used in this study produces virtually no 

antibiotic and therefore it was not feasible to determine if antibiotic production was 

elevated in the Δpep2::apr strain.         

 

A ΔglgE::apr strain was generated with a view to understanding if S. venezuelae could 

accrue αM1P and, if so, what the developmental consequences were. The results show 

that the in the absence of glycogen production in the ΔglgE::apr strain, αM1P 

accumulated instead. This is a surprising finding as Mycobacterium tuberculosis is 

known to be acutely sensitive to αM1P stress (Kalscheuer, et al., 2010a), such that 
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secondary mutations that suppress αM1P accumulation frequently arise (R. Kalscheuer, 

unpublished data). In sharp contrast, the ΔglgE::apr strain of S. venezuelae could 

accumulate upto 17% of its dry cell weight as αM1P. Whilst αM1P accumulation in S. 

venezuelae causes a delay in development, the organism can relieve itself of the 

developmental inhibition by degradation of αM1P over the course of its life-cycle. 

Evidence suggests this occurs by de-phosphorylation of the αM1P into maltose, which 

happens to be the preferred carbon source of S. venezuelae.  Whilst the trehalose 

content of ΔglgE::apr spores is not affected, there is a fitness consequence to re-cycling 

carbon in the form of αM1P instead of glycogen with the strain accumulating less mass, 

having a delayed development and, producing fewer viable and under-pigmented 

spores that were less resistant to various abiotic stresses. However, it also suggests 

that the carbon is being used for other purposes as well, such as growth and cell wall 

maturation and growth in general because the ΔglgE::apr spores were less resistant to 

lysozyme treatment, heat shock and sonication. 

 

The mechanisms that lead to αM1P-induced toxicity or delayed development in  

M. tuberculosis and S. venezuelae, respectively, remain unclear and further work is 

needed to understand the precise connection. The effects of αM1P accumulation could 

be organism-specific, but there may also be some conserved pathways that are 

adversely affected by αM1P accumulation. Microarray studies in M. tuberculosis 

suggest no single mechanism, but rather a suite of pleiotropic affects that occur upon 

αM1P accumulation (Kalscheuer, et al., 2010a). The pleiotropic affects could be a 

consequence of accumulating such high amounts of a phosphorylated sugar, which is 

unlikely to be chemically and osmotically inert like glycogen. Microarray studies could 

also be employed to understand how αM1P delays development in S. venezuelae. 

These would necessitate characterisation of ΔglgE::apr grown in liquid media 

conditions yet to be studied. However, the metabolic phenotype should be comparable 

to the phenotype observed on solid media as the preferred carbon source in liquid 

media is also maltose, which would also lead to accumulation of αM1P. Given that a 

phosphatase is required to re-cycle αM1P, a hypothesis that seems most likely is that 

the organism becomes phosphate-limited due to the perturbation of cytosolic 

phosphate levels when αM1P accumulates. This in turn would lead to increased gene 

expression of genes associated with phosphate scavenging. One known response to 

phosphate limitation is to increase the gene expression of phosphatases (Allenby, et al., 
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2012). Therefore, it could be that the activation of a phosphate starvation response is 

required to de-phosphorylate αM1P. 

 

Other mutants outside of the GlgE pathway were also generated in this study. Whilst 

these genes were not encoding enzymes of the GlgE pathway, they were either 

hypothesised to be encoding enzymes that were feeding substrate into the pathway 

(OtsA) or instead were involved in recycling glycogen (TreZ and GlgP). Results from the 

ΔotsA::apr mutant suggest that OtsA is not required for trehalose deposition in spores 

when grown on a maltose carbon source, which is consistent with it functioning to 

convert glucose to trehalose to be fed into the GlgE pathway. This suggests that instead 

the TreYZ pathway is responsible for trehalose production, when grown on a maltose 

carbon source. This is consistent with abundant glycogen observed in the pre-spores, 

which could be degraded into trehalose by the TreYZ pathway. This is also consistent 

with published data showing that TreZ expression is activated by a transcription factor 

associated with sporulation in S. venezuelae (Bush, et al., 2013). Based on results from 

the characterisation of the ΔotsA::apr strain, it suggests that ΔtreZ::apr should be more 

impaired in glycogen re-cycling than the ΔglgP::apr strain because it seems that the 

TreYZ pathway is the major glycogen re-cycling pathway. However, it is conceivable 

that these genes can compensate for the absence of the other gene in the mutants and 

therefore it could be that neither are impaired in glycogen re-cycling and so a double 

knockout of both genes may be required. Biochemical characterisation of the 

ΔtreZ::apr and ΔglgP::apr mutants generated in this study would determine if either 

have a metabolic phenotype and to confirm the observed hierarchy in S. venezuelae. 

 

All of the mutants of S. venezuelae were grown on different carbon sources with a view 

to determining if any phenotypes were dependent on the carbon source. Interestingly, 

ΔotsA::apr has a cell density-dependent developmental phenotype when grown on a 

galactose carbon source. This demonstrates that there is interplay between pathways 

involved in trehalose synthesis and galactose catabolism and that there are 

developmental consequences that arise if flux is limited at the point of OtsA. The 

underlying mechanism by which this leads to a developmental phenotype remains 

poorly understood. However, the phenotype is associated with alterations in 

phosphorus metabolism and there is also accumulation of guanosine diphosphate 

(GDP)-glucose, which suggests the phenotype could be a result of perturbation of 
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either the phosphate or nucleotide pools. Further work is needed to understand if the 

phenotype is caused by build-up of a specific metabolite as reported in other organisms 

(Zaffanello, et al., 2005). It is noteworthy that there is no evidence that the strain was 

accumulating any phosphorylated galactose compounds, which are frequently 

associated with disease in other organisms (Frey, 1996; Zaffanello, et al., 2005). It 

would be worthwhile to test if a WT phenotype could be restored with the additional 

exogenous phosphate in order to determine if the phenotype is due to phosphate 

limitation. Moreover, the pH of the surrounding media could also be tested to observe 

if the regions of developmental delay is due to acidification of the surrounding area.     

 

Characterisation of the metabolic phenotypes of the mutants generated in this study 

was facilitated by using a new method to determine sugar content in Streptomyces cell 

extracts; namely proton nuclear magnetic resonance (1H-NMR) spectroscopy. The 

trehalose content of WT S. venezuelae spores were comparable to those reported in 

previous studies (observed: 11%; published: 12%) (Ranade and Vining, 1993), which 

validated the technique. 1H-NMR spectroscopy is preferable to previous methods 

because it can be used to determine multiple sugars in a single sample of cell extract 

that do not require purification and do not rely on downstream enzymic or chemical 

degradation.  
 

1H-NMR spectroscopy has also been routinely used in this study to characterise 

enzymes of the GlgE pathway as well as enzymes feeding into the pathway. An 

overview of the enzymes characterised in this study is given in Figure 7.2.   
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Figure 7.2: Overview of enzymes characterised in this study                                             
Five enzymes originating from S. venezuelae (coloured red), M. tuberculosis (coloured 
green) and Pseudomonas aeriginosa (also coloured green) were characterised in this 
study. 
 

The most notable finding relating to the enzymology component of this study is that 

the first enzyme of the GlgE pathway, TreS, is stereospecific, which confirms the  

α-retaining mechanistic prediction. TreS enzymology showed that TreS only uses and 

produces α-maltose, which is also the case with deoxyfluoro-maltose analogues. It is 

now possible to propose schemes defining the anomeric configurations and origins of 

all species associated with the TreS-catalysed reactions studied (Figure 3.1). This finding 

also had biological significance because TreS operates in the direction of α-maltose 

synthesis in M. tuberculosis and M. smegmatis (Miah, et al., 2013). As TreS produces 

the correct anomer for Pep2, the second enzyme of the GlgE pathway, flux through the 

pathway is not limited by the relatively slow chemical mutarotation of maltose, which 

would be the case if TreS produced an anomeric mixture of α and β-maltose or just β-

maltose (Niehues, et al., 2003).  

 

TreS is hypothesised to sterically capture the glucose molecule such that it liberates a 

glucose molecule but also transiently excludes access to the active site. Therefore, 

exogenously supplied glucose is not incorporated into the products of TreS (Koh, et al., 

2003; Nishimoto, et al., 1996; Zhang, et al., 2011).  Thus, TreS catalyses an 

isomerisation, whereby the non-covalently captured glucose molecule must rotate 

within an enclosed active site. This study has established that this glucose molecule 
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retains its α-configuration regardless of whether it goes on to produce normal 

disaccharide products or is instead released during the hydrolytic side 

reaction. Although two crystal structures of TreS from Mycobacterium are known, they 

do not have any relevant ligands bound at the active site (Caner, et al., 2013; Roy, et 

al., 2013). Further co-crystallisations of TreS may help identify the key residues involved 

in the proposed steric capture as well as rationalise the rotation of the free glucose 

whilst trapped within the active site. Furthermore, the structure could be used to 

design site-directed muteins with compromised steric capture capabilities that would 

instead lead to the release of the free glucose. 

 

Collectively, these findings on the flux through TreS have implications for the design 

and efficacy of inhibitors as well as imaging agents that target either trehalose 

mycolate or α-glucan biosynthetic pathways (Backus, et al., 2011; Swarts, et al., 2012). 

It is now much clearer that the enzymes of the OtsAB and TreYZ pathways need to be 

targeted to affect trehalose mycolate production and that TreS should instead be 

targeted if α-glucan biosynthesis is the therapeutic target. Furthermore, substrate 

analogues can now be designed as pro-drugs for a given pathway that avoid de-

toxification by competing pathways. For example, when targeting the synthesis of 

essential trehalose mycolates (Backus, et al., 2011; Swarts, et al., 2012), it would be 

beneficial if trehalose analogues were not turned-over and de-activated by TreS, which 

tolerates small modifications of its substrates. However, when targeting GlgE or GlgB 

(Kalscheuer and Jacobs, 2010), there is the challenge of a trehalose analog being 

tolerated by not only TreS but also the trehalose importer (Kalscheuer, et al., 2010b) 

and maltose kinase. 

 

Labelling of the M. smegmatis capsule by using a 4-azido trehalose analogue was TreS-

dependent (Swarts, et al., 2012). This observation implies that perhaps there is 

tolerance of this analogue in each step of the biosynthesis of capsular α-glucan rather 

than trehalose mycolates. Whilst unlikely, the labelling could also be a consequence of 

the weak hydrolytic activity of TreS rather than its isomerase activity and therefore 4-

azido trehalose may not be tolerated by all the enzymes involved in capsular α-glucan 

synthesis. Further work should seek to explore this by feeding the 4-azido analogue, in 

the first instance, to TreS to determine if TreS isomerises or hydrolyses the compound. 

If TreS can isomerise the 4-azido trehalose, then the compound should subsequently be 
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fed collectively to all of the enzymes of the GlgE pathway in vitro to determine if a 

labelled α-glucan is synthesised. Furthermore, the azido-labelled product of in vivo 

feeding studies could be purified and characterised.    

 

In the majority of cases the pep2 and treS genes were often fused and expressed as a 

single gene product. However, there were no reports of whether these gene products 

were functional and if they were able to synthesise αM1P from trehalose. Therefore,  

P. aeruginosa TreS-Pep2 was partially characterised in this study. The fusion protein 

was initially difficult to over-produce in E. coli, in part due to its large (125 kDa) size and 

it frequently accumulated in insoluble fractions of the cell. However, using an E. coli 

SoluBL21 strain that was optimised for soluble protein expression, soluble TreS-Pep2 

was produced. In solution it was a single oligomeric state that was a pentamer. Due to 

its large size, oligomeric state and tendency to aggregate, attempts were not made to 

crystallise this protein. Nevertheless, the protein is able to convert trehalose into αM1P 

and activity is retained after freeze-thaw cycles. This is the first demonstration that a 

TreS-Pep2 fusion protein can produce αM1P from trehalose. Whilst this enzyme may 

not be optimal for crystallography studies, it has potential to be used for αM1P 

synthesis. The enzyme could also be used for substrate-tolerance studies with 

trehalose substrate analogues. 

 

Pep2 from M. tuberculosis was also partially characterised, with a view to determining 

an enzymic route to synthesise αM1P as the chemical synthesis route is non-trivial. As 

with TreS-Pep2, this protein was not very stable. A relatively low yield of soluble Pep2 

was eventually obtained, it had limited stability in assays, and it would precipitate with 

prolonged incubation. Buffer conditions may not have been optimal as recent work has 

biophysically characterised Pep2 in complex with TreS from the same mycobacterial 

strain (Roy, et al., 2013). This suggests that it does behave sufficiently well under 

certain conditions. The stability of the protein is enhanced when it is combined with 

TreS. Therefore, co-expression with TreS could be attempted to stabilise Pep2 such that 

it could be further characterised.   

 

The final enzymes characterised in this study were enzymes that were thought to feed 

into the GlgE pathway in S. venezuelae. By characterising the metabolism of ΔotsA::apr, 

it is known that GDP-glucose accumulates in this strain when grown on a galactose 
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carbon source. This therefore suggested that perhaps the major substrate for OtsA was 

GDP-glucose. In order to establish if this was the case, this study determined the in 

vitro substrate specificity of this OtsA, which demonstrates that its preferred substrate 

was indeed GDP-glucose. However, OtsA was also able to use ADP-glucose as a 

substrate and, to a lesser extent, UDP-glucose. Whilst the E. coli OtsA had substrate 

specificity for only UDP-glucose another OtsA from M. tuberculosis is known to accept 

all NDP-glucoses, with a substrate preference for UDP-glucose, ADP-glucose and GDP-

glucose (Pan, et al., 2002). The Km of each NDP-glucose varied considerably depending 

on additives present in the conditions and therefore it is not clear from this study 

which substrate might be the preferred under physiological conditions (Pan, et al., 

2002). Other OtsAs from Rubrobacter xylanophilus and Streptomyces hygroscopicus 

have been reported to have a substrate preference for GDP-glucose (Elbein, 1968; 

Nobre, et al., 2008). Therefore, it suggests that GDP-glucose could be the preferred 

substrates in the majority of actinobacterial OtsAs. Further enzymology on the S. 

venezuelae OtsA should be carried out to estimate the kcat and Km so that relative 

catalytic efficiency can be determined.  

 

S. venezuelae OtsA has also been successfully crystallised in this study, this is first 

known structure of an OtsA that has a substrate preference for GDP-glucose and only 

the second known structure of OtsA. By comparing the structure to solved E. coli OtsA 

structure, it is apparent that there are different residues involved in binding the 

different nucleotide moieties of NDP-glucose and that the two OtsA active sites are 

configured differently to accommodate the different substrates (Gibson, et al., 2004). 

There is scope to carry out site-directed mutagenesis of the key residues (Ser345, Phe342, 

Glu341 and Asp340) involved in guanosine binding to test if the substrate specificity can 

be altered to UDP-glucose. 

 

The final enzyme investigated in this study was GalU because it was hypothesised it 

might have altered substrate specificity such that it was able to produce GDP-glucose. 

However, it was not able to use GTP to synthesise GDP-glucose and therefore the 

source of GDP-glucose in S. venezuelae remains unknown. Moreover, the role of GalU 

in central carbon metabolism of S. venezuelae is unclear because its major role was 

assumed to be feeding substrate to OtsA, which is no longer the case in light of 

evidence presented in this thesis. 
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Chapter 7: Discussion and Future Work 

 
 
 

Future work could include exogenously supplying cell extracts of the ΔotsA::apr with 

glucose 1-phosphate and GTP to determine if the enzyme responsible for GDP-glucose 

production catalyses a similar reaction to that of GalU. If so, bioinformatics analysis 

could then be conducted to identify candidate genes that encode proteins that are 

similar to GalU in the S. venezuelae genome. Biochemical characterisation of the top 

candidates should then be able to identify the protein responsible for GDP-glucose 

production in S. venezuelae. A genetic disruption of galU would also be valuable in 

order to understand its role in carbon metabolism. Whilst attempts were made to 

crystallise GalU, given that its substrate preference is the same as observed for other 

GalU enzymes and there are numerous structures deposited in the protein data bank 

(Berman, et al., 2000), it is not an avenue worth pursuing.   

 

In summary, this work has developed S. venezuelae as a model organism to understand 

the biochemistry of the GlgE pathway and determined that this pathway operates in 

vivo to produce α-glucan. It has also determined a novel carbon source dependent 

phenotype in a ΔotsA strain that was associated with the build-up of GDP-glucose and 

rationalised the substrate preference of the OtsA enzyme from S. venezuelae. Finally, 

the study has determined the stereospecificity of TreS.   

 

By validating S. venezuelae as a model organism for the GlgE pathway it has allowed 

the structure of the glucan polymer produced in S. venezuelae to be isolated and 

characterised (A. Rashid, unpublished data). This has also led to the discovery that the 

glucan polysaccharide produced has a laminate structure, rather than an arboreal 

structure, which overturns a widely held notion in glycobiology (A. Rashid, unpublished 

data).   
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The DNA sequence of the synthesised genes with optimum codon usage for expression 

in Escherichia coli (Genscript) is shown 5′-3′ with the start codon in bold and the first 

stop codon underlined. It is flanked at the 5′ end by an NdeI restriction site and a 

sequence encoding a His6 tag and a TEV protease cleavage site, and at the 3′ end by a 

BamHI restriction site.  

 
1) Streptomyces venezuelae ATCC 10712 otsA gene 
CATATGCATCATCATCATCATCACGAAAATCTGTACTTCCAAGGTGCTTCTGTCCTGGTTGC
TTCTAATCGCGGTCCGGTCTCCTACGTCCGTGGCGAAGATGGTGAACTGGACGCACGTCGCG
GCGGTGGCGGTCTGGTGTCTGGCCTGTCCGCAGTTAGCTCTCAGGACTCCCTGTGGGTGTGC
GCAGCACTGGGTGAAGGTGATCGTGAAGCAGTCCGTCGCGGTATTGGTGAACCGGGCGTGCG
CATGCTGGATATCGCACCGGACGTTTATGCAGATGCTTACAACGGTATTGCGAATTCAGTTC
TGTGGTTTCTGCATCACCATCTGTATGACATCCCGCGTGAACCGGTGTTTGATGCAGCTTTC
CGTCACCGCTGGGAAGCATATCGTGCTTACAACCGTGCATTCGCAGAAGCACTGGCAGCAGC
AGCTGACGAAGGTGCAGCAGTTCTGGTCCAGGATTATCATCTGGCGCTGGTTCCGGGCCAAC
TGCGCGAACTGCGTCCGGATCTGCGCATTGGTCACTTTACCCATACGCCGTGGGCGAGCCCG
GAATACTTCCGTATGCTGCCGGCCGATATCGGTGACGAACTGCTGCGTGGTATGCTGGGTGC
AGATGAACTGGGTTTTCATACCTCAGCTTGGGCATCGGCCTTCCTGAGCTGTGCCGGCGGTG
AACAGCCGCGTACCCGTGTGCGTGTTCACCCGCTGGGTGTGGACGCGGAAGAACTGCGTGCA
CTGGCTCATCGCCCGCAAGTCGATGAACGTCTGGCACGTCTGCGTGAAGAAGTGGGTGACCG
CAAAACCATTGTCCGCGTGGATCGTACGGAACTGTCGAAGAACATCCTGCGTGGTCTGCTGG
CGTATCGCGAACTGCTGACCGTTCACCCGGAATGGCGCGACCGTGTGGTTCATCTGGCGTCT
GCCTACCCGAGTCGTCAGGATCTGGCAGCTTATCGCGCGTACACCGCCTCCGTGACGGAACT
GGCAGCAGAAATTAATGCAGAATTTGGCACCGCTGATTGGCAACCGGTTCTGGTCTCCGTGG
AAGATGACTTCACGCGTTCACTGGCAGCTTATCGCCTGGCAGACGTTGCTCTGGTCAACCCG
GTGCGTGATGGCATGAATCTGGTTGCGAAAGAAATCCCGGTCGTGTCGGATGCAGGTTGCGC
ACTGGTCCTGAGCACCGGTGCAGGTGCTTATGAAGAACTGAAGGAAGACGCCCTGACCGTTC
ACCCGTACGATGTCAGCGAAACGGCGGAAGCCCTGCATACCGCACTGACGATGCCGCCGCCA
GAACGTGCTGATCGTACCAAACGCCTGGCGTCTGCAGCAACGGCACTGCCGCCGCAGCGTTG
GTTTCTGAATCAACTGGAAGGTCTGAGTGATGCGTAATGAGGATCC 
 
2) Streptomyces venezuelae ATCC 10712 galU gene 
CATATGCATCATCATCACCATCACGAAAATCTGTACTTCCAAGGCAATCAATCATTCCCGCG
TCTGGGTCGCATCTCAAAAGCCGTTATTCCGGCAGCAGGTCTGGGTACCCGTTTTCTGCCGG
CGACCAAAGCCACGCCGAAAGAAATGCTGCCGGTGGTTGACAAACCGGCAATTCAGTATGTC
GTGGAAGAAGCTGTGGCAGCTGGCCTGTCCGATGTTCTGATGATCACGGGTCGTAACAAACG
CCCGCTGGAAGATCATTTCGACCGCAATTATGAACTGGAAGAAGCGCTGAGTCGTAAAGGCG
ATGACGAACGCCTGTCCAAAGTTCAGGAAAGCTCTGATCTGGCCACCATGCACTACGTGCGT
CAAGGTGCACCGCGCGGCCTGGGTCATGCCGTCCTGTGCGCGGCCCCGCACGTTGGCGATCA
GCCGTTTGCGGTGCTGCTGGGTGATGACCTGATTGATCCGCGTGACCCGCTGCTGAGCCGTA
TGGTCGAAGTGCAGGAACGTGAAGGCGGTTCAGTTATTGCCCTGATGGAAGTCGAACCGTCG
CAAATCCATCTGTACGGCTGTGCAGCTGTTGAAGCAACCGTCGATAGCGACGTTGTCAAAGT
GACGGACCTGGTTGAAAAACCGGATGCAGGCGAAGCTCCGTCTAACTATGCAATTATCGGTC
GCTACGTCCTGGACCCGGCGGTGTTTGGCATGCTGCGTGAAACCGAACCGGGTCGCGGCGGT
GAAATTCAGCTGACGGACGCGCTGCAAAAACTGGCCAGTGATGAAAAAATCGGCGGTCCGGT
TCACGGCGTGGTTTTCAAAGGTCGTCGCTATGATACCGGCGACCGTGGTGATTACCTGCGTG
CAATCGTGCGCCTGGCTTGCGAACGTGAAGACCTGGGCCCGGACTTTCGTGCGTGGCTGCGT
CGCTATGTGTCGGAAGAAATGTAATGAGGATCC 
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3) Mycobacterium tuberculosis H37Rv treS gene 
CATATGCATCATCATCATCATCATGAAAACCTGTATTTTCAGGGCAACGAAGCGGAACAT 
AGCGTGGAACATCCGCCGGTGCAGGGCAGCCATGTGGAAGGCGGCGTGGTGGAACATCCG 
GATGCGAAAGATTTTGGCAGCGCGGCGGCGCTGCCGGCAGATCCAACCTGGTTTAAACAT 
GCGGTGTTTTATGAAGTGCTGGTGCGTGCATTTTTCGATGCGAGCGCGGATGGCAGCGGC 
GATCTGCGTGGCCTGATTGATCGTCTGGATTATCTGCAGTGGCTGGGCATTGATTGCATT 
TGGCTGCCGCCGTTTTATGATAGCCCGCTGCGTGATGGTGGATATGATATTCGTGATTTT 
TATAAAGTGCTGCCGGAATTTGGCACCGTGGATGATTTTGTGGCGCTGGTGGATGCGGCG 
CATCGTCGTGGCATTCGTATTATTACCGATCTGGTGATGAACCATACCAGCGAAAGCCAT 
CCGTGGTTTCAGGAAAGCCGTCGTGATCCGGATGGCCCGTATGGCGATTATTATGTGTGG 
AGCGATACCAGCGAACGTTATACCGATGCGCGTATTATTTTTGTGGATACCGAAGAAAGC 
AACTGGAGCTTTGATCCGGTGCGTCGTCAGTTTTATTGGCATCGTTTCTTTAGCCATCAG 
CCGGATCTGAACTATGATAACCCGGCGGTGCAGGAAGCGATGATTGATGTGATTCGTTTT 
TGGCTGGGCCTGGGCATTGATGGCTTTCGTCTGGATGCGGTGCCGTATCTGTTTGAACGT 
GAAGGCACCAACTGCGAAAACCTGCCGGAAACCCATGCGTTTCTGAAACGTGTGCGTAAA 
GTGGTGGATGATGAATTTCCGGGCCGTGTGCTGCTGGCGGAAGCGAACCAGTGGCCGGGC 
GATGTGGTGGAATATTTTGGCGATCCGAACACCGGCGGCGATGAATGCCACATGGCGTTT 
CATTTTCCGCTGATGCCGCGTATTTTTATGGCGGTGCGTCGTGAAAGCCGTTTTCCGATT 
AGCGAAATTATTGCGCAGACCCCGCCGATTCCGGATATGGCGCAGTGGGGCATTTTTCTG 
CGTAACCATGATGAACTGACCCTGGAAATGGTGACCGATGAAGAACGTGATTATATGTAT 
GCGGAATATGCGAAAGATCCGCGTATGAAAGCGAACGTGGGTATCCGTCGAAGACTGGCG 
CCGCTGCTGGATAACGATCGTAACCAGATTGAACTGTTTACCGCGCTGCTGCTGAGCCTG 
CCGGGCAGCCCGGTGCTGTATTATGGCGATGAAATTGGCATGGGCGATGTGATTTGGCTG 
GGCGATCGTGATGGCGTGCGTATTCCGATGCAGTGGACCCCGGATCGTAACGCGGGCTTT 
AGCACCGCGAACCCGGGCCGTCTGTATCTGCCGCCGAGCCAGGACCCAGTGTATGGCTAT 
CAGGCGGTGAACGTGGAAGCGCAGCGTGATACCAGCACCAGCCTGCTGAACTTTACCCGT 
ACCATGCTGGCGGTGCGTCGAAGACATCCGGCCTTTGCCGTGGGTGCCTTTCAGGAACTG 
GGCGGCAGCAACCCGAGCGTGCTGGCGTATGTGCGTCAGGTGGCGGGCGATGATGGCGAT 
ACCGTGCTGTGCGTGAACAACCTGAGCCGTTTTCCGCAGCCGATTGAACTGGATCTGCAG 
CAGTGGACCAACTATACCCCGGTGGAACTGACCGGCCATGTGGAATTTCCGCGTATTGGC 
CAGGTGCCGTATCTGCTGACCCTGCCGGGCCATGGCTTTTATTGGTTTCAGCTGACCACC 
CATGAAGTGGGCGCACCTCCAACCTGCGGCGGCGAACGTCGTCTGTAATAAGGATCC 
4) Mycobacterium tuberculosis H37Rv pep2 gene 
CATATGCATCATCATCATCATCATGAAAACCTGTATTTTCAGGGCACCCGTAGCGATACC 
CTGGCGACCAAACTGCCGTGGAGCGATTGGCTGAGCCGTCAGCGTTGGTATGCGGGCCGT 
AACCGTGAACTGGCGACCGTGAAACCGGGCGTGGTGGTGGCGCTGCGTCATAACCTGGAT 
CTGGTGCTGGTGGATGTGACCTATACCGATGGCGCGACCGAACGTTATCAGGTGCTGGTG 
GGCTGGGATTTTGAACCGGCGAGCGAATATGGCACCAAAGCGGCGATTGGCGTGGCGGAT 
GATCGTACCGGCTTTGATGCGCTGTATGATGTGGCGGGCCCGCAGTTTCTGCTGAGCCTG 
ATTGTGAGCAGCGCGGTGTGCGGCACCAGCACCGGCGAAGTGACCTTTACCCGTGAACCG 
GATGTGGAACTGCCGTTTGCGGCGCAGCCGCGTGTGTGCGATGCGGAACAGAGCAACACC 
AGCGTGATTTTTGATCGTCGTGCGATTCTGAAAGTGTTTCGTCGTGTGAGCAGCGGCATT 
AACCCGGATATTGAACTGAACCGTGTGCTGACCCGTGCGGGCAACCCGCATGTGGCGCGT 
CTGCTGGGCGCGTATCAGTTTGGCCGTCCGAACCGTAGCCCGACCGATGCGCTGGCGTAT 
GCGCTGGGCATGGTGACCGAATATGAAGCGAACGCGGCGGAAGGCTGGGCGATGGCGACC 
GCGAGCGTGCGTGATCTGTTTGCGGAAGGCGATCTGTATGCGCATGAAGTGGGCGGCGAT 
TTTGCGGGCGAAAGCTATCGTCTGGGTGAAGCCGTGGCCAGCGTGCATGCCACCCTGGCC 
GATAGCCTGGGTACCGCCCAGGCGACCTTTCCGGTGGATCGTATGCTGGCGCGTCTGAGC 
AGCACCGTGGCGGTGGTGCCGGAACTGCGTGAATATGCGCCGACCATTGAACAGCAGTTT 
CAGAAACTGGCGGCGGAAGCGATTACCGTGCAGCGTGTGCATGGCGATCTGCATCTGGGC 
CAGGTGCTGCGTACCCCGGAAAGCTGGCTGCTGATTGATTTTGAAGGCGAACCGGGTCAG 
CCGCTGGATGAACGTCGTGCCCCGGATAGCCCGCTGCGTGATGTGGCCGGTGTGCTGCGT 
AGCTTTGAATATGCGGCGTATGGCCCGCTGGTGGATCAGGCGACCGATAAACAGCTGGCG 
GCGCGTGCGCGTGAATGGGTGGAACGTAACCGTGCGGCGTTTTGCGATGGCTATGCGGTG 
GCGAGCGGCATTGATCCGCGTGATAGCGCGCTGCTGCTGGGCGCGTATGAACTGGATAAA 
GCGGTGTATGAAACCGGCTATGAAACCCGTCATCGTCCGGGCTGGCTGCCGATTCCGCTG 
CGTAGCATTGCGCGTCTGACCGCGAGCTAATAAGGATCC 
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5) Pseudomonas aeruginosa PAO1 treS-pep2 gene 
CATATGCATCATCATCATCATCACGAAAATCTGTACTTCCAAGGTGCCCGCCGCGAAAAACC
GGTCTTCCTGAACGACCCGCAGTGGTATAAAGATGCGGTGATTTATCAGGTCCATGTGAAAT
CTTTTTACGATGCGAACAATGACGGCATCGGTGATTTCGCCGGCCTGATTGAAAAACTGGAC
TATATCGCGGATCTGGGTGTTAACACCCTGTGGCTGCTGCCGTTTTACCCGAGCCCGCGTCG
CGATGACGGCTATGATATTGCCCAGTACCGTGGCGTCCATAGCGACTATGGTTCTCTGGCCG
ATGCACGTCGCTTTATCGCTGAAGCACACCGTCGCGGTCTGCGTGTCATTACCGAACTGGTG
ATCAACCATACGTCAGATCAGCACCCGTGGTTCATTCGTGCCCGCCATGCGAAAAAAGGCTC
GCGTGCCCGCGATTATTACGTGTGGAGCGATTCTGACGAAAAATATCAGGGTACCCGTATTA
TCTTTATCGACACCGAACAAAGCAATTGGACGTGGGACCCGGTTGCGCAGCAATATTACTGG
CATCGCTTTTACTCTCACCAGCCGGACCTGAACTTCGATAATCCGCAAGTTCTGCGTGAAGT
GCTGGGCGTTATGCGCTATTGGCTGGACATGGGCGTCGATGGTCTGCGTCTGGACGCGATTC
CGTACCTGATCGAACGCGATGGTACCAGCTCTGAAAACCTGCCGGAAACGCATCAGGTGCTG
AAACGTATTCGCGCGGAACTGGACGCCCACTATCCGGATCGTATGCTGCTGGCCGAAGCAAA
TCAGTGGCCGGAAGATACCCGCCCGTACTTTGGCGGTGAAGACGGCGGTGAAGGCGATGAAT
GCCACATGGCGTTTCACTTCCCGCTGATGCCGCGTATGTATATGGCTATCGCGCAGGAAGAC
CGTTACCCGATTACCGATATCCTGCGCCAGACGCCGGATATTCCGGCAAACTGTCAATGGGC
TATCTTCCTGCGCAATCATGATGAACTGACCCTGGAAATGGTGACGGATGACGAACGTGACT
ATCTGTGGAACCACTACGCAGCAGATCGTCGCGCACGTCTGAATCTGGGTATTCGTCGCCGT
CTGGCACCGCTGGTTGAACGTGATCGCCGTCGCATCGAACTGCTGCATAGTCTGCTGCTGTC
CATGCCGGGTACCCCGACGCTGTATTACGGTGACGAAATTGGCATGGGTGATAACATCTATC
TGGGTGATCGTGACGGTGTGCGTACCCCGATGCAGTGGAGCGTTGACCGTAATGGCGGTTTT
TCGCGCGCTGATCCGGCGAAACTGGTGCTGCCGCCGATTCTGGACCCGCTGTATGGCTACCA
GACGATCAACGTTGAAGCCCAAGCACGTGATCCGCACAGCCTGCTGAATTGGATGCGTCGCC
TGCTGGCAGTGCGTTCTCAGCAAAAAGCTTTCGGCCGCGGTAGTCTGAAAATGCTGGCCCCG
TCCAACCGTCGCATTCTGGCGTACCTGCGTGAATATGCCGAAGGCGAACGCCAGGATAGCAT
CCTGTGCGTTGCAAATCTGTCTCGCGCAGCTCAAGCTGTCGAACTGGATCTGGCCAGTCATG
CCGGTAAAGTTCCGGTCGAAATGATTGGCGGTATGTCCTTTCCGCCGATCGGCGAACTGACC
TATCTGCTGACGCTGCCGCCGTATGGTTTTTACTGGTTCTATCTGGCTGACGCGACCCAGAT
GCCGAGTTGGCACGTTGCAGCAGATGAACGTCTGCCGGAACTGCCGACCCTGGTGGTGAAAC
AGCGTCTGGGCGAACTGCTGCAGGGTGCGTCCCGCAACATTCTGGAAGGCGAAACCCTGCCG
GCATATCTGCCGAAACGTCGCTGGTTTGCTGGCGAAAAGGGTCAGCCGCGTCTGTGTTACAT
TGTGCCGCTGGACGAAGCAGAACCGCGTTGCGCCCTGTGTGAAGTTGAAATCGATGGTCTGC
GCTATCAGCTGCCGCTGGGCTTCCTGGATGCAGACCAGCGCGGTGATTCACTGCCGCAACTG
CTGGCACTGGCACGTCTGCGTCGCGGTCGCAAAGTGGGTCTGCTGACGGATGCAGCTTCGCT
GCCGCTGTTTGCACGTAAAGTCCTGGCTCAGCTGCGCGCTGAAGCGGTGATTGCGCATGGCG 
ATGGTGAAATTCAATTCATCCCGGCGGCCGGCCTGGCAGAAATGGATGACATTGCTGATGAA
GACGTTCTGCCGTTTTCAGTCGAACAGTCGAACAGTTCCATCCGTTTCGGCGAACGCATGGT
CCTGAAAGTGCTGCGTAAAATTCTGCCGGGTCTGCATCCGGAAATCGAAGTGGGCGGTTATC
TGACCCGTCACGGTTACCCGGGTATTGCACCGCTGCTGGGTGAAGTTCGTCGCGTCGGCGCC
GATGGTGAACCGCATACCCTGATGATCCTGCAGGGCTATCTGAACAATCAAGGTGACGCATG
GAACTGGACGCTGGATAATCTGGAACGTGCGGTTCGCGACGAAATTAGTGCAGCTTCCGAAG
CGCTGGAAGGCCAGTATGATAGCCTGGCCGAACTGCGTGGTTTTGCGGCCAATCTGGGCGCA
CGCCTGGGTGAAATGCACAGCGTCCTGGCGGGCGAATCTGATGACCCGGCCTTCGGTTCACG
TGAATCGGATGAAGCGAGTGTGCAGGCCTGGGCACTGCGCATTGCGGAACAACTGCGTGAAG
CAGGTAAACGTCTGTCCGAACCGCCGCGTCCGCTGCAGGGTGAAGCAGCTGAACAAGCACGT
CGCCTGCTGGAACGTCTGCCGGCTCTGCTGGAACGCCTGCCGCTGCTGGCACGTCAGGCAGC
CGGCGGTCTGCTGATTCGTGTGCATGGCGATCTGCACCTGGGTCAGGTGCTGATGGTTCAAG
GCGACGCACGCTTTATCGATTTCGAAGGTGAACCGGCGCGTAGTCTGGAAGAACGTCGCCAG
CGCCATTCCCCGATGAAAGACGTCGGCGGTATGCTGCGTAGCTTTGATTATGCAGCTGCGAT
GGTGCTGCGCAATGCCCAGTCAACCGACTCATCGGAACAAGCTGATTCGGCGCGTCGCAAAG
TTGCAATGCGTTATCGCAGCGAAGCCCGTGATGCATTCCTGGCTGGTTACCGTGCAGCAGCT
GCAGGTCTGATGCATGCATGGCACGGTCGTGAAGGTGAAGGTGCAGCACTGGCTCTGGCATG
CCTGGAAAAAGCTGCGTACGAACTGCTGTATGAAGCGGACTACCGCCCGGATTGGCTGGAAG
TCCCGCTGGCTGGTCTGGCTGAACTGACGGAACACCTGCTGAAAGGCAAAAACCGCTAATAA
GGATCC 
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SUMMARY

Trehalose synthase (TreS) was thought to catalyze
flux from maltose to trehalose, a precursor of essen-
tial trehalose mycolates in mycobacterial cell walls.
However, we now show, using a genetic approach,
that TreS is not required for trehalose biosynthesis
in Mycobacterium smegmatis, whereas two alterna-
tive trehalose-biosynthetic pathways (OtsAB and
TreYZ) are crucial. Consistent with this direction of
flux, trehalose levels in Mycobacterium tuberculosis
decreased when TreS was overexpressed. In addi-
tion, TreS was shown to interconvert the a anomer
of maltose and trehalose using 1H and 19F-nuclear
magnetic resonance spectroscopies using its normal
substrates and deoxyfluoromaltose analogs, with
the nonenzymatic mutarotation of a/b-maltose
being slow. Therefore, flux through TreS inmycobac-
teria flows from trehalose to a-maltose, which is
the appropriate anomer for maltose kinase of the
GlgE a-glucan pathway, which in turn contributes
to intracellular and/or capsular polysaccharide
biosynthesis.

INTRODUCTION

Trehalose (a-D-glucopyranosyl-(1/1)-a-D-glucopyranoside) is

a nonreducing disaccharide that has many roles in biology

(Argüelles, 2000; Elbein et al., 2003; Paul et al., 2008). For

example, it is a precursor for cell wall trehalose mycolates (Fig-

ure 1A) that are essential for the growth and virulence of myco-

bacteria, such as Mycobacterium tuberculosis (Takayama

et al., 2005), the causative agent of the globally widespread

human disease tuberculosis (Dye, 2006). For this reason, treha-

lose has attracted attention in the development of imaging

agents (Backus et al., 2011; Swarts et al., 2012) and drugs (Lin

et al., 2007; Rose et al., 2002;Wang et al., 2004) to help diagnose

and treat tuberculosis. It has been widely thought that there are

three pathways responsible for the biosynthesis of trehalose in

mycobacteria (Figure 1A): the OtsAB, TreYZ, and trehalose syn-

thase (TreS) pathways (Avonce et al., 2006; Elbein et al., 2003).
Chemistry & Biology 20,
In vitro experiments have shown that all three pathways could,

in principle, operate in mycobacteria (De Smet et al., 2000). In

addition, genetic experiments appeared to show that all path-

ways are capable of synthesizing trehalose de novo in the fast-

growing avirulent species Mycobacterium smegmatis (Woodruff

et al., 2004). By contrast, it has been reported that the OtsAB

pathway is dominant in trehalose biosynthesis inMycobacterium

tuberculosis and that TreS could have a role only in late-stage

pathogenesis in infected mice (Murphy et al., 2005). This implies

Mycobacterium smegmatis is not an appropriate model organ-

ism with respect to the metabolism of trehalose in Mycobacte-

rium tuberculosis. The picture is complicated further by evidence

that only the OtsAB and TreYZ pathways, but not the TreS

pathway, appear to be important in the de novo biosynthesis

of trehalose and trehalose mycolate formation in the related acti-

nomycete, Corynebacterium glutamicum (Tzvetkov et al., 2003;

Wolf et al., 2003).

TreS is a maltose a-D-glucosylmutase (EC 5.4.99.16) that

interconverts maltose (a-D-glucopyranosyl-(1,4)-D-glucopyra-

nose) and trehalose (Nishimoto et al., 1995; Pan et al., 2004).

Therefore, an oft ignored puzzle has been the lack of an obvious

and significant source of maltose in amycobacterium either from

its own metabolism or its environment. This is compounded by

the lack of a maltose transporter in Mycobacterium tuberculosis

(Kalscheuer et al., 2010a). However, we recently discovered an

alternative route for a-glucan biosynthesis, the GlgE pathway,

which is widespread among bacteria and involves the consump-

tion of trehalose by TreS (Chandra et al., 2011; Kalscheuer et al.,

2010b). These observations prompt the question as to whether

TreS contributes to the biosynthesis of either trehalose myco-

late, a-glucans, or both in mycobacteria.

There are no reports of experimental evidence defining the

anomeric configuration of maltose that TreS produces. The

configuration could have consequences for metabolic flux,

because the nonenzymatic mutarotation of maltose is so slow

that the half-life of anomeric equilibration is of the order of tens

of minutes (Bailey et al., 1967). Furthermore, although maltose

mutarotase enzymes are known, they appear to be rare and

have only been detected in higher plants (Bailey et al., 1967)

and Lactobacillus brevis (Shirokane and Suzuki, 1995). TreS is

a glycoside hydrolase GH13_3 (Stam et al., 2006) family member

according to the CaZy database (Cantarel et al., 2009). Thus, it is

predicted to have a (b/a)8 fold, defining an active site containing

an Asp nucleophile and a Glu proton donor that catalyze an
487–493, April 18, 2013 ª2013 Elsevier Ltd All rights reserved 487

mailto:rainer.kalscheuer@med.uni-duesseldorf.de
mailto:stephen.bornemann@jic.ac.uk
http://dx.doi.org/10.1016/j.chembiol.2013.02.014
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.chembiol.2013.02.014&domain=pdf


trehalose

maltose cytosolic and/or
capsular -glucans

TreSOtsAB pathway

TreYZ pathway

GlgE pathway

cell wall trehalose mycolatescytosolic -glucan

glucose phosphates

Ag85 pathway

f lux?

or ?
-maltose

1-phosphate

Pep2

O

HOHO

OHHO

O

HO
HO

O OH
HO

4

O

HOHO

OHHO O

OH

OH

OH

O

OH

-1 -1

Asp

-O O

Glu

OO
H

rotateO

HOHO

OHHO O

OH

OH

OH

HO

OH

Asp

O

Glu

O-O

O

O

HOHO

OHHO

Asp

O

Glu

O-O

O
O

HO
HO

O OH
HO

H

Asp

-O O

Glu

OO
H

-1

4

-1
-1

4
-1'

4

trehalose

-maltose

A

B

Figure 1. Metabolism of Trehalose in Myco-

bacteria and Proposed Mechanism of TreS

(A) All known metabolic pathways associated with

trehalose in mycobacteria are shown, except for

its hydrolysis by trehalase to form glucose as a

carbon source for growth (Carroll et al., 2007). The

questions addressed by this work are indicated in

boxes.

(B) Proposed catalytic mechanism of TreS with

the most likely relative orientations of the glucose

rings of trehalose and maltose. Hydrolysis would

be expected to occur when water attacks

the glucosyl-enzyme intermediate, generating a

second glucose molecule with an a anomeric

configuration.
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a-retaining double-displacement reaction mechanism (Fig-

ure 1B). In support of this mechanism, evidence for the gluco-

syl-enzyme intermediate involving Asp230 in theMycobacterium

smegmatis enzyme has been reported recently (Zhang et al.,

2011). One would therefore predict that a-maltose is utilized

and produced by TreS, but evidence to support this notion is

currently lacking.

We now show, using a genetic approach, that flux through

TreS is from rather than to trehalose in both Mycobacterium

smegmatis and Mycobacterium tuberculosis. Therefore, TreS

supplies intermediates for the GlgE a-glucan pathway rather

than the trehalose mycolate pathway, both potential targets for

imaging agents and therapeutic inhibitors. Furthermore, we

show using 1H-nuclear magnetic resonance (NMR) spectros-

copy, supported by 19F-NMR spectroscopy and deoxyfluoro

substrate analogs, that the appropriate a anomer of maltose is

formed for maltose kinase of the GlgE pathway. These findings

have implications for the study and targeting of trehalose-depen-

dent pathways in mycobacteria and other bacteria.

RESULTS

Characterization of Trehalose Auxotrophs
of Mycobacterium Smegmatis

In order to definitively assess the contribution of TreS for the de

novo biosynthesis of essential trehalose in mycobacteria, we

generated site-specific gene deletion mutants inMycobacterium

smegmatis in the three reported trehalose biosynthetic pathways

by targeting the genes treS, otsA, and treY1-treY2-treZ, both

individually and in combination (Figure S1 available online).
488 Chemistry & Biology 20, 487–493, April 18, 2013 ª2013 Elsevier Ltd All rights reserved
Inactivation of treS alone or in combina-

tion with either otsA or treYZ did not

lead to any detectable growth defect in

the absence of exogenous trehalose (Fig-

ure 2A). In contrast, we found that not only

the DtreS(u)DotsA(u)DtreYZ triple mutant

but also the DotsA(u)DtreYZ double

mutant strictly required trehalose supple-

mentation for growth on solid medium

(Figure 2B) and in liquid culture (Fig-

ure 2C), despite the double mutant

possessing an intact treS gene. Supple-

mentation with exogenous trehalose in
the mM range was sufficient to support growth of these two

trehalose auxotrophs (Figure 2C), showing that TreS does not

contribute significantly to the de novo production of trehalose

inMycobacterium smegmatis. In the absence of trehalose, exog-

enous maltose in the mM range could partially restore growth of

the DotsA(u)DtreYZ but not the DtreS(u)DotsA(u)DtreYZ mutant

(Figure 2D). These data indicate that TreS could be capable of

synthesizing trehalose in mycobacteria but that the biosynthesis

of maltose is severely limited in the growth conditions tested.

TreS Consumes Trehalose in Mycobacterium

Tuberculosis

In order to assess the direction of flux through TreS inMycobac-

terium tuberculosis, we analyzed intracellular trehalose levels in

Mycobacterium tuberculosis wild-type, the DtreS mutant and

treS-overexpressing strains (Figure 2E). Deletion of treS had no

influence on the intracellular trehalose concentration, precluding

the ability to distinguish between TreS having a role in trehalose

formation and consumption. However, the intracellular trehalose

level in the treS-overexpressing strain was dramatically reduced,

which indicates that TreS has a role in the consumption of treha-

lose inMycobacterium tuberculosis, a direction of flux consistent

with that in Mycobacterium smegmatis.

TreS Interconverts Trehalose with the a Anomer
of Maltose According to 1H-NMR Spectroscopy
With a view to establishing whether TreS interconverts the a

anomer of maltose, we explored the use of 1H-NMR spectros-

copy. A spectrum of a reaction mixture generated from maltose

by TreS allowed each component to be detected (Figure S2A),



Figure 2. The TreS Pathway Does Not

Contribute to the De Novo Biosynthesis of

Trehalose in Mycobacteria

(A) Trehalose growth requirements in liquid culture

of Mycobacterium smegmatis gene deletion

mutants (see Figure S1 for how they were gener-

ated). Cultures were incubated for 48 hr at 37�C in

Middlebrook 7H9 medium containing 0.5% (v/v)

glycerol and 10% (v/v) albumin-dextrose-saline

(ADS) enrichment containing either 0 or 50 mM

trehalose. Values are means of triplicates ± SD.

(B) Trehalose growth requirements on solid media

of the trehalose-auxotrophic Mycobacterium

smegmatis mutants DotsA(u)DtreYZ and DtreS(u)

DotsA(u)DtreYZ. Cells were cultivated for 72 hr on

Middlebrook 7H10 agar containing 0.5% (v/v)

glycerol and 10% (v/v) ADS enrichment in the

presence or absence of 100 mM trehalose.

(C) Trehalose growth requirements in liquid culture

of the trehalose-auxotrophic Mycobacterium

smegmatis mutants DotsA(u)DtreYZ and DtreS(u)

DotsA(u)DtreYZ. Growth conditions were essen-

tially as described for (A) with 0–50 mM trehalose.

(D) Maltose supplementation of trehalose auxo-

trophic Mycobacterium smegmatis gene deletion

mutants. Growth conditions were essentially

as described for (A) without trehalose but

with 0–10 mM maltose. Values are means of

triplicates ± SD.

(E) Effect of treS deficiency and overexpression on

intracellular trehalose concentration in Mycobac-

terium tuberculosis. Cultures of Mycobacterium

tuberculosis H37Rv wild-type, the DtreS mutant

and a treS overexpressing strain (wild type [WT] +

treS) were incubated for 14 days in Middlebrook

7H9 medium containing 0.5% (v/v) glycerol and

10% (v/v) oleic acid-albumin-dextrose-catalase

enrichment before enzymatically determining

trehalose concentrations. Values are means of

sextuplicates ± SD.
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including glucose, a known product of hydrolysis (Nishimoto

et al., 1996; Pan et al., 2004; Zhang et al., 2011), and the anomers

of each reducing sugar. Since anomers mutarotate non-

enzymatically, their equilibration upon dissolution of crystalline

materials in citrate buffer at 25�C was monitored using 1H-

NMR spectroscopy (Figure S2B). The rate constants determined

for the mutarotation of a-glucose to b-glucose and the reverse

reaction were 0.0316 ± 0.0004 and 0.0192 ± 0.0004 min�1

and, for maltose, 0.0286 ± 0.0002 and 0.0187 ± 0.0001 min�1,

each respectively (Figure S2C). These rate constants were

consistent with the literature (Bailey et al., 1967; Stults et al.,

1987) and the expected dominance of the b anomers.

The conversion of trehalose into maltose by TreS in citrate

buffer as a function of time was monitored using 1H-NMR spec-

troscopy (Figure 3A). The a anomer of maltose was formed

5.4-fold more rapidly than its b anomer, suggesting TreS gener-

ates the a anomer. A low level of glucose was also produced
Chemistry & Biology 20, 487–493, April 18, 2013
through hydrolysis, as observed previ-

ously. At longer times, the ratio between

trehalose and a/b-maltose was 2.2:1 (at

25�C and pH 6.7), which is reasonably
similar to the equilibrium position of 4.6:1 determined from the

free energies of hydrolysis of these disaccharides (at 25�C and

pH 5.65) (Syson et al., 2011; Tewari and Goldberg, 1991; Tewari

et al., 2008) and of 3.2:1 determined from the kinetics of Myco-

bacterium smegmatis TreS (Zhang et al., 2011). The expected

equilibrium positions between the anomers of both maltose

and glucose were also approached at longer times.

As TreS formed trehalose from pre-equilibrated a/b-maltose

(a:b anomeric ratio of 1:1.5), a rapid depletion of a-maltose

was immediately apparent (Figure 3B). By contrast, the con-

sumption of b-maltose was significantly slower and conformed

to a single exponential function (Figure S2D) with a rate of

0.019 min�1 that was consistent with the rate constant for the

mutarotation described above (0.0187 ± 0.0001 min�1). This

implied that TreS does not utilize the b anomer. When the exper-

iment was repeated with lower TreS concentrations, the rate of

consumption of a-maltose decreased, while that of the b anomer
ª2013 Elsevier Ltd All rights reserved 489
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Figure 3. Mycobacterium Tuberculosis

TreS Interconverts the a Anomer of Maltose

(A) The conversion of trehalose (10 mM) into

maltose by TreS (2 mM) according to 1H-NMR

spectroscopy (see Figures S2A–S2C for repre-

sentative spectra and nonenzymic mutarotation

controls). Each component was quantified by

signal integration using citrate as an internal

standard. Reaction mixtures contained 10% D2O

to assist spectrum acquisition without significant

risk of introducing solvent kinetic and/or equilib-

rium isotope effects. This necessitated solvent

suppression and the introduction of experimen-

tally determined correction factors for the cosup-

pression of resonances that were close to the

solvent resonance.

(B) The conversion of pre-equilibrated a/b-maltose

(10 mM) into trehalose by TreS (2 mM) according to
1H-NMR spectroscopy. Note that enzyme was

added immediately after the t = 0 data were ac-

quired, resulting in a small and reproducible

change in the apparent concentration of starting

materials at the second recorded time point. See

Figure S2D for the fit of the b-maltose curve

(Hoops et al., 2006). The times taken to produce

2 mM trehalose and consume 50% of the

a/b-maltose were 14 and 55 min, respectively.

(C) Time courses of the ratios between the b and a

anomers of maltose with different TreS concen-

trations during the conversion of pre-equilibrated

a/b-maltose. The broken line indicates the equilib-

rium between the two anomers in these conditions.

(D) Proposed reaction scheme to account for

TreS-catalyzed reactions. Protons used to quan-

tify components of the reaction mixtures by
1H-NMR spectroscopy (Figure S2A) are indicated.
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remained similar. Thus, the transient increase in the b/a ratio of

themaltose anomerswas less pronounced at lower enzyme con-

centrations (Figure 3C), providing further evidence that TreS con-

verts only the a anomer of maltose into trehalose, as expected.

While the initial formation of glucose through hydrolysis ap-

peared to be more rapid from maltose than trehalose, this most

likely reflected the more rapid initial consumption of maltose.

This implies the equal probability of either a-maltose or trehalose

being hydrolyzed. It is also noteworthy that the a anomer of

glucose was produced more rapidly from maltose than its b

anomer, suggesting that a-glucose is the product of hydrolysis.

The Specificity of TreS for the a Anomer of Maltose
Is Retained with Deoxyfluoro Analogs According
to 19F-NMR Spectroscopy
Deoxyfluorotrehalose analogs have been shown to label Myco-

bacterium tuberculosis cells and exhibit weak antimycobacterial

activity (Backus et al., 2011). Since Mycobacterium tuberculosis

has a trehalose transporter (Kalscheuer et al., 2010a) and TreS

has been reported to utilize 2-fluoro-2-deoxymaltose as a sub-

strate (Zhang et al., 2011), the ability of TreS to convert 2-, 3-,

and 6-deoxyfluoromaltose analogs (Tantanarat et al., 2012)

was monitored using 19F-NMR spectroscopy (Figure 4). The

2-deoxy-2-fluoro and 6-deoxy-6-fluoro compounds were con-

verted to the corresponding deoxyfluorotrehalose analogs

�2-fold and �180-fold less efficiently than the normal substrate
490 Chemistry & Biology 20, 487–493, April 18, 2013 ª2013 Elsevier
(Figures 4A and 4C). The hydrolysis of each analog to the corre-

sponding deoxyfluoroglucose compounds was detected (Fig-

ures 4A–4C), particularly with the 3-fluoro-3-deoxy and

6-fluoro-6-deoxy compounds, with the former being exclusively

hydrolyzed (Figure 4B). The expected concomitant formation of

nonfluorinated glucose was detected using 1H-NMR spectros-

copy (data not shown). The a anomer was consumed more

rapidly than the b anomer with all three analogs (Figures 4A–

4C), consistent with TreS only acting on a anomers. The mutaro-

tation rates of the deoxyfluoro analogs are not known, but fitting

the decay of the b anomer of the 2-deoxy-2-fluoro analog (Fig-

ure 4A) suggested a rate constant of �0.004 min�1, an order of

magnitude slower than that for maltose.

In order to assess whether fluoro substitution at the three and

six positions resulted in poor binding to TreS or slow conversion

by TreS, the extent of conversion of 0.52 mM 2-deoxy-2-fluoro-

maltose was monitored in the presence and absence of 2.1 mM

of each of the other two analogs (Figure S3D). Neither of the

analogs gave inhibition, and there may indeed have been a

modest stimulation of activity. Given that the Km for maltose is

8–10 mM with the Mycobacterium smegmatis enzyme (Pan

et al., 2004; Zhang et al., 2011) and the Km for the 2-deoxy-2-

fluoro analog would not be expected to be orders of magnitude

lower than this, the lack of inhibition is consistent with fluoro sub-

stitution at the three and six positions, compromising the ability

of maltose analogs to bind to TreS.
Ltd All rights reserved
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Figure 4. Mycobacterium Tuberculosis

TreSConverts the aAnomers of Deoxyfluor-

omaltose Analogs

(A) The conversion of pre-equilibrated 2-deoxy-2-

fluoro-a/b-maltose (10 mM) by TreS (2 mM) was

monitored using 19F-NMR spectroscopy (see

Figure S3A for spectra). The times taken to

produce 2 mM 2-deoxy-2-fluorotrehalose and

consume 50% of the maltose analog were 25 and

125 min, respectively, both �2-fold longer than

with maltose.

(B) Corresponding data with 3-deoxy-3-fluoro-

a/b-maltose (Figure S3B). The time taken to con-

sume 50% of the maltose analog was 1,100 min,

20-fold longer than with maltose. No 3-deoxy-3-

fluorotrehalose was detected.

(C) Corresponding data with 6-deoxy-6-fluoro-

a/b-maltose (Figure S3C). The times taken to

produce 2 mM 6-deoxy-6-fluorotrehalose and

consume 50% of the maltose analog were 2,500

and 1,500 min, respectively, 180- and 27-fold

longer than with maltose.

(D) Proposed reaction scheme to account for the

conversion of deoxyfluoromaltoses by TreS.
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DISCUSSION

We have shown that the direction of flux through TreS is from

trehalose to maltose and that the source of trehalose is a combi-

nation of the OtsAB and TreYZ pathways in Mycobacterium

smegmatis (Figure 2). The overexpression of TreS led to a

decrease in trehalose levels, indicating the same direction of

flux in Mycobacterium tuberculosis. Thus, TreS appears not to

generate trehalose for trehalose mycolate biosynthesis but to

convert trehalose intomaltose for theGlgE pathway inmycobac-

teria (Elbein et al., 2010; Kalscheuer et al., 2010b). Although the

equilibrium of the TreS-catalyzed reaction is not in line with

the direction of flux, the ATP requirement of maltose kinase for

the formation of a-maltose 1-phosphate provides most of the

driving force through the GlgE pathway, as discussed elsewhere

(Syson et al., 2011). Consistent with this, exogenously supplied
14C-labeled trehalose is rapidly and substantially converted to

a-maltose 1-phosphate in a Mycobacterium smegmatis DglgE

mutant, with maltose only being detected when the pep2

maltose kinase gene was inactivated (Kalscheuer et al.,

2010b). The observed direction of flux contrasts with a previous

study inMycobacterium smegmatis (Woodruff et al., 2004). How-

ever, the authors did not employ a defined DotsADtreY double

mutant to study the specific contribution of TreS in the de novo

biosynthesis of trehalose but rather a surrogate strain (a DotsAD

treSDtreY triple mutant with a reconstituted treS gene constitu-

tively expressed from an episomal multicopy plasmid) that likely
Chemistry & Biology 20, 487–493, April 18, 2013
exhibited a much higher treS expression

level compared with the native gene.

Moreover, as nonspecified culture condi-

tions were used, it is unclear whether the

medium was devoid of maltose, which

might be sufficient to support growth in

this genetic context in the absence of

trehalose. In any case, our observations
are consistent with those of others in Mycobacterium tubercu-

losis (Murphy et al., 2005) and Corynebacterium glutamicum

(Tzvetkov et al., 2003; Wolf et al., 2003). Thus, we have shown

that the metabolism of trehalose in Mycobacterium smegmatis

is similar to that inMycobacterium tuberculosis after all, allowing

Mycobacterium smegmatis to be used as a model organism in

this context. Furthermore, our Mycobacterium smegmatis

strains, particularly the strains that are auxotrophic for trehalose,

could be used to study the impact of trehalose analogs on spe-

cific pathways. It is also intriguing that TreS may be important in

late-stage pathogenesis in mice (Murphy et al., 2005), implying a

potential role of GlgE pathway-generated cytosolic and/or

capsular a-glucan in this process, noting that the latter has

been implicated in immune evasion (Sambou et al., 2008).

TreS generates the appropriate a anomer for maltose kinase

(Drepper et al., 1996; Mendes et al., 2010) of the GlgE pathway

(Kalscheuer et al., 2010b). Thus, the formation of a-maltose

1-phosphate is not limited by the mutarotation of maltose in

mycobacteria. This is relevant to many other species, because

the treS gene coexists with the other genes of the GlgE pathway

in 14% of all sequenced bacterial genomes (Chandra et al.,

2011). In a further 28% of genomes that possess the treS

gene, one or more of the other GlgE pathway genes is missing.

It is therefore not possible to rule out that flux through TreS favors

the conversion of maltose to trehalose in organisms that have

access to sufficient cytosolic maltose from intracellular or extra-

cellular sources. If the maltose were generated by an enzyme
ª2013 Elsevier Ltd All rights reserved 491
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such as b-amylase, themutarotation of b-maltose could become

an issue for flux through TreS to trehalose. Indeed, this work

highlights that the mutarotation of any given reducing sugar

should not be assumed to be fast comparedwith themetabolism

of a specific sugar anomer.

It is now possible to propose schemes defining the anomeric

configurations and origins of all species associated with the

TreS-catalyzed reactions studied (Figures 3D and 4D). TreS in-

terconverts the a anomer of maltose (Figures 3A–3C) as

expected (Figure 1B), and specificity was also retained with

deoxyfluoro analogs (Figures 4A–4C). The TreS enzyme is

thought to sterically capture the glucose molecule that it liber-

ates (Figure 1B) and transiently exclude access to the active

site such that exogenously supplied glucose does not get incor-

porated into the products of TreS (Koh et al., 2003; Nishimoto

et al., 1996; Zhang et al., 2011). Thus, TreS catalyzes an isomer-

ization, whereby the noncovalently captured glucose molecule

must rotate within an enclosed active site. We have now estab-

lished that this glucose molecule retains its a configuration,

whether it goes on to produce normal disaccharide products

or is released in the hydrolytic side reaction. Therefore, TreS cat-

alyzes the mutarotation of neither maltose nor glucose.

Unlike trehalose, the deoxyfluorotrehalose products are

asymmetric and might have been converted to the correspond-

ing n0-deoxy-n0-fluoromaltose analogs but were not (Figure 4D).

This could have been due to the destabilization of oxocarbenium

ion-like transition states associatedwith these reactions (Withers

et al., 1988). Alternatively, other effects could be involved, such

as reduced binding affinities. Indeed, neither of the 3-deoxy-3-

fluoro and 6-deoxy-6-fluoromaltose analogs appeared to bind

well to the enzyme. That 3-deoxy-3-fluoromaltose was exclu-

sively hydrolyzed means that 3-deoxy-3-fluoroglucose is less

able than a water molecule to attack the glucosyl-enzyme inter-

mediate. This could be due to changes in the nucleophilicity of

3-deoxy-3-fluoroglucose or more likely to an inability to orient

itself appropriately within the active site.

SIGNIFICANCE

Our findings about the flux through TreS to supply the

trehalose mycolate and a-glucan biosynthetic pathways

(Figure 1A) have implications for the design and efficacy of

inhibitors/imaging agents that target them (Backus et al.,

2011; Swarts et al., 2012). It is now much clearer which en-

zymes need to be targeted to affect either one or both of

these pathways. Furthermore, substrate analogs can now

be designed as prodrugs for a given pathway that avoid

detoxification by competing pathways. For example, when

targeting the synthesis of essential trehalose mycolates

(Backus et al., 2011; Swarts et al., 2012), it would be an

advantage if trehalose analogs were not converted and de-

activated by TreS. Indeed, we have observed the limited

ability of TreS to tolerate relatively small modifications of

its substrates. However, when targeting GlgE or GlgB

(Kalscheuer and Jacobs, 2010), there is the challenge of a

trehalose analog being tolerated by not only TreS but also

the trehalose importer (Kalscheuer et al., 2010a) andmaltose

kinase. Therefore, the weak inhibition of the growth of

Mycobacterium tuberculosis by either 2-deoxy-2-fluoro or
492 Chemistry & Biology 20, 487–493, April 18, 2013 ª2013 Elsevier
6-deoxy-6-fluoromaltose (Backus et al., 2011) could be due

to a lack of either import, efficient processing, and/or inhibi-

tion of the GlgE/GlgB targets. Interestingly, labeling of

Mycobacterium smegmatis using a 4-azido analog of

trehalose is TreS-dependent (Swarts et al., 2012). This

observation implies the tolerance of this analog through

each step in the biosynthesis of capsular a-glucan rather

than trehalose mycolates. Our work supports this interpre-

tation and also shows that this observation in Mycobacte-

rium smegmatis is likely to be relevant to Mycobacterium

tuberculosis.
EXPERIMENTAL PROCEDURES

All details about the Experimental Procedures used are given in the Supple-

mental Experimental Procedures.
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