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Abstract 

Low-grade inflammation has been associated with the risk of chronic pathologies 

including cancer, atherosclerosis and type 2 diabetes. Epidemiological studies 

demonstrate an inverse correlation between diets rich in cruciferous vegetables and risk 

of cancer, cardiovascular disease mortality and circulating levels of pro-inflammatory 

cytokines. Sulforaphane (SF), an isothiocyanate obtained from broccoli, has many 

biological functions. The aim of this thesis was to test whether SF was able to suppress 

pro-inflammatory signalling using in vitro models of chronic inflammation.  

 

In human monocytes (PBMCs and THP-1 cells), physiologically relevant concentrations 

of SF significantly suppressed the production of LPS-induced cytokines IL-6, IL-1β and 

TNFα. The suppression was also observed with all genes induced by 1ng/ml LPS as 

measured by whole genome arrays. In addition, it was demonstrated that SF could 

directly interact with thiol groups of cysteine residues 609 and 246 within the LPS 

receptor, TLR4 under non-reducing conditions, to reduce the levels of inflammatory 

mediators that are produced in response to LPS.  

 

The anti-inflammatory effect of SF was not restricted to the TLR4 pathway, and 

significant reductions were observed in NF-κB activity induced in response to TLR2 and 

NOD2 ligands. These findings were translated into a more complex in vitro model, 

investigating the effect of SF on lipid accumulation within adipocytes and adipose tissue 

inflammation in response to macrophage-conditioned medium (MaCM) using human 

SGBS adipocytes. SF at 10µM significantly reduced levels of lipid accumulation within 

adipocytes and increased the expression of carnitine palmitoyltransferase-1A (CPT1A), 

suggesting a role in energy metabolism, a process often disrupted in obesity. In addition, 

a significant suppression in SGBS adipocyte IL-1β and IL-6 expression was observed 

when adipocytes were exposed to MaCM from SF-treated macrophages, when SF was 

used at a concentration as low as 2µM.  

 

This work demonstrates that concentrations of SF that could be achieved via reasonable 

broccoli consumption can suppress pro-inflammatory cytokine production, induced in 

response to a number of signalling pathways in addition to suppression of lipid 

accumulation and adipose tissue inflammation. The relevance of this data supports the 

concept that consumption of broccoli could lead to a reduction in the chronic 

inflammatory status in vivo as well as a suppression of lipid accumulation within 

adipocytes, to reduce the risk of developing chronic disease. 
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TNFα     Tumor necrosis factor alpha 

TRAM    TIR-domain-containing adapter-molecule 2 

TRIF     TIR-domain-containing adapter-inducing interferon-β 

Tris     Tris(hydroxymethyl)aminomethane 

Trp     Tryptophan 

TXN     Thioredoxin 

TXNRD1   Thioredoxin reductase 

UC     Ulcerative colitis 

VCAM-1    Vascular cell adhesion molecule 1 

WST-1 4-[3-(4-iodophenyl)-2-(nitrophenyl)-2H-5-tetrazolio]-1,-benzene 

disulfonate 
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Symbols 

°C     Degrees Celsius 

CaCl2    Calcium chloride 

cm     Centimetres 

CO2    Carbon dioxide 

Cu
2+/1+   

Copper (II)/(I) 

Da     Daltons 

H2O2    Hydrogen peroxide 

HCl    Hydrochloric acid 

kDa    Kilodaltons 

µm    Micrometres 

µM    Micromoles per litre 

µg/ml    Micrograms per millilitre 

M     Moles per litre 

mg/l    Milligrams per litre 

mg/ml    Milligrams per millilitre 

ml     Millilitre 

ml/min   Millilitres per minute 

mm    Millimetres 

mm
3
    Cubic millimetres 

mM    Millimoles per litre 

m/z    Mass to charge ratio 

NaCl    Sodium chloride 

NaPi    Sodium phosphate 

ng/µl     Nanograms per microlitre 

ng/ml    Nanograms per millilitre 

nl/min   Nanolitres per minute 

nm     Nanometre 

nM    Nanomolar per litre 

pg/ml    Picograms per millilitre 

ppm    Parts per million 

rpm    Revolutions per minute 

V     Volts 

v/v     Volume per volume 

w/v    Weight per volume 
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1.0. Summary of the thesis 

This thesis contains the results of a research project that was concerned with 

investigating the hypothesis that sulforaphane (SF) would exert anti-inflammatory 

effects on a number of different inflammatory signalling pathway using physiologically 

relevant in vitro models of chronic inflammation. Cell culture models are often used in 

research and have both benefits and limitations. Cell models, either primary or 

immortalised can provide an alternative to in vivo experiments with few ethical issues, 

which allows for initial studies into the mechanistic details and efficacy of the test 

compound to be carried out. These models can present an indication of potential 

biological activities and can behave as a basis for designing in vivo studies with animals 

or humans. However, primary and immortalised cell lines are often homogenous cell 

populations which are not representative of the in vivo environment where a tissue is 

supported by multiple cell types. In addition, they are not cultured under hypoxic 

conditions and are not subjected to certain growth factors and proteins that would be 

present in the blood circulation. However, in vitro models are practically simple to use 

and can be well-controlled and demonstrate reproducibility. 

  

Initially, human monocyte cell models were used to investigate whether physiologically 

relevant concentrations of SF were able to suppress lipopolysaccharide (LPS)-induced 

cytokine production measuring selected pro-inflammatory biomarkers interleukin-6 (IL-

6), interleukin -1 beta (IL-1β) and tumour necrosis factor alpha (TNFα) in terms of the 

secretion level and also the transcriptional level. This was progressed into investigating 

the effect of SF on global gene expression induced by LPS at a low concentration of 

1ng/ml, relevant to that found circulating in individuals with chronic disease. Next, 

investigations were carried out into the mechanistic details of the effects of SF and the 

aim was to determine whether SF was able to directly target the LPS receptor, Toll-like 

receptor (TLR) 4 via modification of thiol groups of cysteine residues present in the 

extracellular domain of the receptor, the area responsible for ligand binding, using cell-

free and in vitro models. The scope of the investigations were broadened to investigate 

whether SF was able to target additional important inflammatory signalling pathways 

namely TLR2 and NOD2 (nucleotide-binding oligomerisation domain-containing 

protein 2), by measuring whether SF could target nuclear factor kappa B (NF-κB) 

activation in response to appropriate ligands. In the experiments with cell models 

expressing the individual inflammatory receptors, the two commonly studied forms of 

SF were compared, the L-SF and the DL-SF. The L-SF is the natural form of SF 
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extracted from broccoli while the DL-SF is a synthetic analogue of L-SF and it was 

hypothesised that these would behave to a similar extent.  

 

The final stage of this thesis involved translating the multi-targeted anti-inflammatory 

effects of SF into a more complex in vivo model of obesity, a condition characterised by 

chronic inflammation. Firstly, it was investigated whether SF was able to exert effects 

on lipid accumulation and metabolism in human SGBS adipocytes, followed by studying 

whether physiologically relevant concentrations of SF could suppress SGBS adipocyte 

cytokine expression induced in response to macrophage-conditioned medium (MaCM) 

from human THP-1 macrophages.  

 

The purpose of this general introduction is to introduce the concept of inflammation and 

how a low-grade, persistent state can impact on the development of chronic diseases 

including cancer, cardiovascular disease (CVD) and type 2 diabetes mellitus (T2DM). It 

will cover how diets rich in cruciferous vegetables have been shown to demonstrate 

beneficial effects on the risk of developing such pathologies, and will describe how 

glucosinolates (GSLs), which are found at high levels in cruciferous vegetables, may be 

responsible for the observed health benefits. The breakdown of GSLs to biologically 

active isothiocyanates (ITCs) will be explained with a particular focus on SF and its 

known functions. As the objectives of each chapter focuses on different aspects of the 

anti-inflammatory effects of SF, each results chapter will also provide an introduction to 

the literature relevant to the research aims of that chapter. 

 

 

1.1. Inflammation 

Inflammation is a complex adaptive response that occurs in response to harmful stimuli 

in order to counteract the insult they are trying to exert. This process behaves to underlie 

a number of physiological and pathological disorders and while a great deal is 

understood about the cellular and molecular mechanisms involved in the response to 

infectious stimuli, much less is known about the instigators of systemic chronic 

inflammation. Nevertheless, a common explanation for inflammatory responses 

irrespective of the cause is the drive to restore homeostasis. 
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1.1.1. Acute versus chronic inflammation 

Classic triggers of an acute inflammatory response are infection and tissue injury. 

Macrophages sense the presence of the inflammatory stimulus leading to the recruitment 

of neutrophils to the site of insult [1, 2]. In the majority of cases, this process occurs 

over a short time course and is beneficial to the organism. However, if the process 

becomes disordered and the inflammatory response is unable to eradicate the pathogen, 

the inflammatory response persists replacing the neutrophils with additional 

macrophages and T lymphocytes. If this course of action is still insufficient, a chronic 

inflammatory state develops, with detrimental effects [3]. While the causes and 

mechanisms of localised chronic inflammation are partly understood, the development 

of systemic chronic inflammation, which occurs in a wide variety of diseases including 

cancer, CVD and T2DM, is less well understood. It is suggested that it is associated with 

a tissue malfunction where a number of fundamental physiological processes that are not 

necessarily directly related to tissue repair or the host defence response are disrupting 

the homeostatic balance [3]. 

 

 

1.1.2. Inflammatory signalling pathways involved in chronic inflammation 

Thus far, four different families of pattern recognition receptors (PRRs) have been 

identified, with the most commonly studied being the TLRs and the NOD-like receptors 

(NLRs). They behave to recognise exogenous microbial products known as pattern-

associated molecular patterns (PAMPs) as well as endogenous molecules released from 

damaged cells, collectively known as damage-associated molecular patterns (DAMPs) 

[4]. Each class of PRRs have a number of family members which allows a certain level 

of specificity towards different microbial or non-microbial structures. Most relevant to 

the studies within this thesis, are the TLR4, TLR2 and NOD2 pathways. 

 

 

1.1.2.1. TLR4 and TLR2 signalling pathways 

The TLR family of PRRs consists of 10 family members in humans all of which are 

characterised by a common structure consisting of an N-terminal domain of leucine-rich 

repeats (LRRs), a region that spans the cell membrane, followed by a cytoplasmic 

Toll/IL-1R homology (TIR) domain [4]. The LRRs extend into the extracellular space of 

the cell and are responsible for the recognition of each specific ligand, which leads to the 

activation of the receptors and downstream signalling, a process controlled by the TIR 

domain [5]. A diverse array of the TLR family members are commonly identified on 
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cells that are involved in the immune response such as leukocytes and cells of the 

spleen. In addition, they are highly expressed in cells that are exposed to microbial 

pathogenic components such as those in the lungs, small intestine or colon [6]. TLR1, 2 

and 4-6 are present on the plasma membrane, while TLR3, 8 and 9 are present 

intracellularly on endosomes or lysosomes [4]. 

 

The TLR4 molecule was identified as the receptor able to respond to LPS, an endotoxin 

that is present as a component of the outer membrane in Gram-negative bacteria [7]. The 

lipid portion of LPS known as lipid A is responsible for the pathogenic nature of this 

endotoxin and is the causative agent of septic shock [7]. When LPS is released from the 

cell wall of Gram-negative bacteria, it binds directly to the LPS-binding protein (LBP), 

present in circulation, which in turn interacts with CD14, a glycosylphosphatidylinositol 

(GPI)-anchored protein present at the cell membrane. This complex then facilitates the 

transfer of LPS to MD2, the co-receptor for TLR4 (Figure 1.1). The structure of LPS 

consists of six lipid chains, of which five bind within the hydrophobic pocket of MD2, 

with the remaining chain able to bind to the TLR4 [8]. This binding results in 

homodimerisation of two TLR4-MD2-LPS complexes which is necessary for 

downstream signal transduction [5]. 

 

The TLR2 receptor is able to recognise a number of different components from bacteria, 

mycoplasma, fungi and viruses, of which lipoproteins from bacteria and mycoplasma are 

most commonly described [4]. Unlike the TLR4 molecule, following ligand activation 

the TLR2 receptor undergoes heterodimerisation with either the TLR1 molecule to form 

a complex capable of recognising triacyl lipopeptides, or TLR6 in order to recognise 

diacyl lipopeptides (Figure 1.1) [4]. This specificity is as a result of different structures 

within the TLR dimers. The TLR2-TLR1 complex forms a structure where two acyl 

chains of a triacylated lipopeptide are able to interact with TLR2 and the third acyl chain 

is able to interact with the hydrophobic pocket of TLR1. In the TLR2-TLR6 dimer, the 

TLR6 molecule does not have a hydrophobic pocket and as a result can only recognise 

lipopeptides with two acyl chains [5]. 

 

In addition, TLR2 has the capability to interact with other cell surface receptors such as 

CD36, the principle receptor for oxidised low-density lipoprotein (oxLDL) (Figure 1.1) 

[9]. CD36 has a function analogous to CD14, in which it accentuates the response of 

TLR2 to diacylglycerides by binding with the ligand directly via its ectodomain [10, 11]. 

OxLDL is known to induce pro-inflammatory cytokine production with TLR2, CD36 
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and also TLR4 being necessary for this cell response [12]. This emphasises the 

important role of TLR2 in the recognition of endogenous ligands such as oxLDL which 

are crucial in chronic disease, most importantly in CVD.  

 

Following ligand binding, downstream signalling is dependent on the recruitment of 

adaptor proteins. For TLR4 signalling, two pathways can be activated following the 

recruitment of MyD88 (myeloid differentiation primary response gene 88) and TRIF 

(TIR-domain-containing adapter-inducing interferon-β), while TLR2 signalling is 

specifically MyD88-dependent (Figure 1.1) [5]. The MyD88-dependent pathway is 

responsible for the activation of the transcription factors NF-κB (nuclear factor kappa-

light-chain-enhancer of activated B cells) and AP-1 (activator protein-1), which control 

the expression of pro-inflammatory cytokines and chemokines [13]. In TLR4 signalling, 

following MyD88-dependent pathway activation, the TLR4-MD2-LPS homodimers 

undergo endocytosis which initiates the recruitment of TRIF. This MyD88-independent 

pathway ultimately activates interferon regulatory factor 3 (IRF3) which is responsible 

for controlling the expression of type I interferons (IFNs) and subsequently IFN-

inducible genes [5]. Even though the TLR4 is able to activate these distinct signalling 

pathways, the expression of pro-inflammatory mediators is dependent on the activation 

of both pathways, for reasons which remain unknown [5]. 
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Figure 1.1. Overview of TLR2 and TLR4 signalling. During recognition by TLR4, 

LPS binds to the TLR4-MD2 complex with the aid of LBP and CD14 accessory 

proteins. The binding of LPS to the TLR4-MD2 complex results in homodimerisation 

and activation of an intracellular signalling cascade. This can be MyD88-independent or 

dependent. The MyD88-independent pathway occurs following internalisation of the 

TLR4-MD2-LPS complex, where it is retained within the endosome, leading to the 

recruitment of TRIF. This results in the early activation of IRF3 followed later by NF-

κB which controls the expression of type I IFNs and IFN-inducible genes [5]. The 

MyD88-dependent pathway stimulates NF-κB and AP-1 resulting in pro-inflammatory 

cytokine and chemokine expression [5, 13, 14]. The MyD88-dependent pathway is also 

activated as a result of lipopeptides binding to TLR2 heterodimers with TLR1 and TLR6 

and also in response to endogenous ligands such as oxLDL with the aid of CD36 [11, 

12]. 

 

 

1.1.2.2. NOD2 signalling pathway 

The NLR family of receptors consists of cytoplasmic PRRs that share a conserved 

structure of a C-terminal LRR domain involved in ligand recognition, a central NOD 

domain that allows self-oligomerisation, in addition to a varying number of N-terminal 

caspase-recruitment domains (CARDs) involved in protein-protein interactions [15]. 

NOD2 is mainly expressed in the cytosol of antigen-presenting cells but also by 

epithelial cells at a lower level. The expression level of NOD2 is augmented by pro-
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inflammatory cytokines including tumour necrosis factor-α (TNFα), meaning once 

activated following ligand binding, NOD2 is able to control its own expression [15]. It 

behaves to specifically recognise muramyl dipeptide (MDP), a breakdown product of 

peptidoglycan (PGN) derived from both Gram-positive and Gram-negative bacteria. The 

ubiquitous nature of PGN presence, allows in principle, for NOD2 to respond all 

bacteria [15]. The way in which the cells are able to encounter the breakdown products 

of PGN is unclear, however one suggestion applicable to antigen-presenting cells is the 

notion that phagocytic cells such as macrophages are able to engulf the whole bacteria 

and digest them into their relevant peptides [16]. The same mechanism is not thought to 

apply to epithelial cells and instead it has been proposed that MDP is delivered to the 

receptor through a peptide transporter [17]. 

 

Once MDP is available to the NOD2 receptor, it is able to bind directly to the LRR 

domain of the receptor [15, 18]. Unlike with TLR signalling, there is no dimerisation 

with other members of the family and instead it is suggested that ligand binding induces 

a conformational change in the NOD2 receptor. It is this change in conformation that is 

responsible for the activation of the receptor and recruitment of RICK (receptor-

interacting serine/threonine kinase) via a CARD-CARD interaction [19]. RICK is 

responsible for targeting the inhibitor of NF-κB (IκB)-kinase-γ (IKKγ) for 

polyubiquitinylation resulting in its degradation and the ultimate activation of NF-κB to 

allow production of pro-inflammatory cytokines (Figure 1.2) [19]. 
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Figure 1.2. NOD2 signalling. PGN from both Gram-positive and Gram-negative 

bacteria is broken down into MDP. MDP is the specific ligand for NOD2 and interacts 

with the LRR domain (purple) of NOD2 in order to activate the receptor. This results in 

the recruitment of RICK which is able to interact with the NOD2 receptor through a 

CARD-CARD (red) interaction. RICK targets the principle regulator of the NF-κB 

inhibitor, IKKγ for polyubiquitination and subsequent degradation. While NF-κB is 

sequestered in the cytosol it is inactive. Degradation of the IKKγ leads to translocation 

of NF-κB to the nucleus leading to its activation and induction of pro-inflammatory 

cytokine expression [19]. 

 

 

1.1.3. The importance of chronic inflammation in disease 

The complex signalling pathways that are necessary to maintain appropriate homeostasis 

of the immune system following an inflammatory attack may become less efficient with 

age and this in turn would lead to disorder in immune responses [20]. This lack of 

regulation presents itself with an increase in the levels of circulating inflammatory 

biomarkers including interleukin-6 (IL-6) and TNFα, observed in an elderly population 

as compared to a younger cohort, which could lead to unfavourable health consequences 

[21]. 

 

The link between a state of low-grade inflammation and the development of chronic 

pathologies such as CVD, cancer and T2DM has been widely studied in recent years. 

With the risk of developing these diseases largely increasing with age, it is possible that 

the elevation observed in the levels of pro-inflammatory cytokines in older populations 

may have an important role.  
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1.1.3.1. Cancer 

When a chronic inflammatory state persists, there is a cycle of consistent activation of 

macrophages resulting in a continued process of tissue damage, which in turn activates 

cell proliferation. A continued increase in the level of cell proliferation lends itself to the 

possibility of neoplasia [22]. Inflammation has been consistently associated with cancer 

development in recent years with a highlighted role of NF-κB, the transcription factor 

responsible for controlling the expression of pro-inflammatory cytokines including IL-6, 

TNFα and C-reactive protein (CRP) [23-25].  

 

The role of circulating IL-6 in cancer was reviewed by Heikkila and colleagues 

involving the findings of 189 studies. Across the majority of the studies, there were 

consistent findings of elevated levels of circulating IL-6 in cancer patients compared to 

healthy controls, however this review was unable to determine any diagnostic capability 

due to few prospective studies included [26]. Aggarwal and colleagues also aimed to 

understand the link between pro-inflammatory cytokines and cancers at different sites. 

They identified an important role for IL-6 particularly in multiple myeloma, lymphoma, 

bladder, lung, breast and colon cancer risks, while with TNFα, the main association was 

with pancreatic cancer [25, 27, 28]. Furthermore, Il’yasova and colleagues discovered 

that the increased level of pro-inflammatory cytokines were more strongly associated 

with the risk of cancer mortality rather than cancer development [29]. 

 

As previously described, activation of TLR4, TLR2 and NOD2 signalling pathways 

results in the induction of pro-inflammatory gene expression. Interestingly, in patients 

suffering from multiple myeloma, a higher expression level of both TLR2 and TLR4 

was observed in bone marrow-derived mononuclear cells [30]. 

 

 

1.1.3.2. Cardiovascular disease 

In terms of CVD, a widely accepted risk factor is elevated cholesterol levels which are 

highly predictive in younger populations. However, when studying elderly populations, 

this risk factor becomes less reliable [31]. It was hypothesised that this may be as a 

result of not accounting for the increased levels of pro-inflammatory cytokines within 

circulation of the older populations. This suggests that a state of low-grade inflammation 

has a more extensive role in the development of CVD in the ageing population [21]. In a 

large population of elderly men and women, it was observed that those diagnosed with 

sub-clinical or clinical CVD had elevated levels of IL-6, interleukin-1β (IL-1β), TNFα 
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and CRP [32, 33]. Additionally, these cytokines, in particular IL-6, had the ability to 

predict the risk of CVD incidence [34, 35]. 

 

Also of importance are the elevated expression levels of TLR2 and TLR4 that have been 

identified in human atherosclerotic plaques isolated from patients [36]. In combination 

with findings of significantly higher levels of endotoxin in patients diagnosed with 

carotid atherosclerosis than those observed in patients with no diagnosis, it is possible 

that the endotoxin could activate the TLR4 signalling pathway resulting in the elevation 

of pro-inflammatory markers seen in CVD [37]. 

 

 

1.1.3.3. Type 2 diabetes mellitus 

Similarly, the development of T2DM has been linked to inflammation, due to the 

involvement of pro-inflammatory cytokines in the development of insulin resistance 

[21]. Elevated levels of IL-6, IL-1β and TNFα have been identified in subjects with 

T2DM compared to healthy controls [38-42]. It was also determined that those 

individuals that presented with the highest levels of circulating IL-6, were most likely to 

develop T2DM in the future [43]. Additionally, both TLR2 and TLR4 were up-regulated 

in obese patients suffering from T2DM compared to non-diabetic obese subjects [44]. 

The relevance of this increase may be further explained following the findings presented 

by Creely and Al-Attas, where levels of circulating endotoxin were elevated in those 

patients suffering from T2DM [45, 46]. 

 

 

1.1.3.4. Inflammatory bowel diseases 

Crohn’s disease and ulcerative colitis (UC) are collectively known as inflammatory 

bowel diseases (IBDs). The innate immune system is largely involved in these disorders 

and increased levels of a large range of pro-inflammatory cytokines including IL-6 and 

TNFα are often observed [47]. In addition, there is a significant increase in the 

expression levels of TLRs including the TLR2 and TLR4 receptors in patients suffering 

from IBDs [48-50]. 

 

Principally, the gene most commonly studied and linked to Crohn’s disease is the NOD2 

gene. Three polymorphisms in NOD2 were commonly identified in Crohn’s disease, 

which collectively account for approximately 82% of all mutated alleles observed in 

sufferers [51, 52]. The Leu1007 (3020insC) insertion polymorphism results in a 
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frameshift mutation leading to the introduction of a premature stop codon and the 

translation of a truncated NOD2 protein with the final 33 amino acids missing [53]. The 

two other single nucleotide polymorphisms (SNPs) result in missense mutations 

Arg702Trp and Gly908Arg with a single amino acid substitution within the LRR of 

NOD2 [53]. TLR2 and TLR4 polymorphisms have also been identified as potential risk 

factors in Crohn’s disease but with a much lower prevalence and the results are 

controversial [54-62]. 

 

 

1.1.3.5. Involvement of obesity in chronic diseases 

An additional independent risk factor that may play a role in the increase in levels of 

pro-inflammatory cytokines within these chronic diseases is the coexistence of obesity 

[63-74]. Due to the knowledge that the likelihood of suffering from obesity increases 

with age [75], it is possible that this is in part responsible for the elevated levels of 

circulating pro-inflammatory cytokines found in elderly populations, which in turn, may 

result in an increased risk of developing chronic diseases.  

 

In terms of the link with cancer, obesity has been consistently associated with cancers in 

many locations and it was found that with each increase of 5kg/m
2
 in body mass index 

(BMI), a 30% increase was observed in all-cause mortality and a 10% increase in cancer 

mortality specifically was identified, highlighting the enormity of the obesity problem 

[76]. Further support for the link between obesity and cancer comes from evidence 

demonstrating that with weight loss as a result of bariatric surgery, the risk of 

developing cancer reduced by around 20% [77, 78]. A relationship is also observed 

between higher BMI status and risk for developing CVD [79]. This association as with 

cancer and obesity, was found to be also affected by bariatric surgery with individuals 

who had undergone surgery reducing their risks of cardiovascular adverse effects, 

specifically myocardial infarction (MI) and stroke [80]. With CVD, there is however a 

paradoxical nature to the relationship with evidence to suggest that in patients that have 

suffered a MI for example, have a better survival rate if overweight [81]. However while 

this may be true, this positive impact of obesity is at an endpoint e.g. after a MI. 

However, if these individuals were not overweight prior to the attack, it is possible that 

this event could have been prevented.  
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1.1.4. Characteristics of Obesity 

Obesity is characterised by an increased fat mass, thought to be due to the hypertrophy 

of adipocytes in combination with the proliferation and differentiation of preadipocytes 

within the adipose tissue [82]. Two major processes involved in the symptoms and 

common accompanying conditions of obesity are disordered lipid metabolism and an 

increased inflammatory response (Figure 1.3). 
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Figure 1.3. Overview of changes in adipose tissue in obesity. In lean individuals, the adipose tissue is able to control lipid metabolism for the body. The 

adipose tissue in a lean individual is composed of approximately 10% macrophages and they are found in close proximity to blood vessels [83]. When 

skeletal muscle tissue develops increased energy demand, lipids are supplied from the adipose tissue for β-oxidation and subsequent adenosine triphosphate 

(ATP) production [84]. In the adipose tissue of an obese individual, the adipocytes are larger in size as a result of increased lipid accumulation [82]. The level 

of macrophage infiltration can reach up to 40% of the stromal vascular fraction and they cluster around the adipocytes in crown-like structures. These 

macrophages secrete increased levels of pro-inflammatory cytokines [83]. Lipids are deposited into skeletal muscle tissue with the rate of uptake outweighing 

the rate of β-oxidation [84]. This results in release of free fatty acids (FFAs) into circulation. 
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1.1.4.1 Lipid metabolism  

Adipocytes are able to store triglycerides intracellularly as an energy source from dietary 

intake. The adipose tissue principally regulates lipid metabolism for the whole body. 

When energy is required, the adipocytes are able to induce the rapid hydrolysis of the 

stored triglyceride molecules for conversion to FFAs which can be transported to where 

they are required in the body in order to be metabolised as an energy source [84]. When 

these mechanisms become disrupted and the levels of triglyceride storage expands 

within the adipocytes as a result of increased consumption of saturated fat in the diet, 

lipolysis may be induced regardless of energy requirements, leading to increased levels 

of circulating FFAs [84]. A significant positive correlation has been consistently found 

between the elevated levels of circulating FFAs in patients with obesity and insulin 

resistance in addition to an increased level of fatty acids accumulating in skeletal muscle 

[85-87]. In a lean subject, fatty acids are deposited into skeletal muscle when energy is 

required from an alternative source to glycogen, which in some circumstances can 

account for 90% of the total energy demand [88].  

 

When FFAs are taken up by the cells they are esterified into long-chain acyl coenzyme 

A (CoA) molecules, and require transport across the mitochondrial outer and inner 

membranes. This involves a complex of enzymes that enable conjugation of the long 

chain acyl-CoA molecules to carnitine by the enzyme carnitine palmitoyltransferase 

(CPT)-1, the rate-limiting enzyme which catalyses the production of acylcarnitines. 

Acylcarnitines are transported across the mitochondrial membranes by carnitine 

translocase. Once inside the mitochondrial matrix, CPT2 catalyses the conversion of the 

acylcarnitines back to their respective acyl-CoA and carnitine components. The long 

chain acyl-CoA is then able to enter β-oxidation [88, 89]. 

 

During the β-oxidation process, the long chain acyl-CoA molecule is shortened by two 

carbons each time resulting in the production of acetyl-CoA, NADH (nicotinamide 

adenine dinucleotide) and FADH (flavin adenine dinucleotide). These intermediates are 

able to enter the tricarboxylic acid (TCA) cycle and ultimately produce ATP following 

the electron transport chain process [88]. Due to increased uptake of lipids during 

obesity as a result of excessive dietary intake, the rate of lipid uptake outweighs the rate 

of β-oxidation which in turn leads to the export of FFAs into the systemic circulation 

[88]. 
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The link between the increased level of lipid accumulation within the growing 

adipocytes and a heightened pro-inflammatory status may be due to the ability of FFAs 

to signal via the TLR4 as an endogenous stimulus, resulting in the activation of NF-κB 

and subsequent production of pro-inflammatory cytokines, as demonstrated in murine 

3T3-L1 cells and BV-2 microglial cells [90, 91]. 

 

 

1.1.4.2. Adipose tissue inflammation 

Elevated levels of pro-inflammatory mediators including TNFα, IL-6 and CRP have 

consistently been demonstrated within the adipose tissue of obese subjects [92-94]. 

While this elevation in pro-inflammatory cytokines is well documented, it was not until 

2003 that Weisberg and colleagues reported that there were significantly higher levels of 

macrophage infiltration within the adipose tissue of obese individuals [83]. In research 

by Fain and colleagues it was determined that the production of particularly IL-6, IL-1β 

and TNFα, was by cells present in the stromal vascular fraction (SVF) of the adipose 

tissue and not the adipocytes themselves [95, 96]. Adipose tissue macrophages (ATMs), 

were found to constitute around 50% of the leukocytes found within the SVF [97] and 

Weisberg was able to provide some evidence that the pro-inflammatory cytokines 

identified within the adipose tissue were primarily produced by these ATMs [83].  

 

A potential explanation for the observed increase in macrophage infiltration into adipose 

tissue of obese individuals was the induction of hypoxia [98, 99]. As the adipocytes 

grow in size, an increase in the tissue mass may result in the vasculature becoming 

insufficient to maintain normal oxygen conditions throughout the expanding adipose 

tissue. Hypoxic conditions thus induce an inflammatory response which leads to the 

infiltration of macrophages into the adipose tissue and subsequently the production of 

pro-inflammatory mediators in order to induce angiogenesis to improve available 

vasculature [99]. The notion of hypoxia-induced inflammation was confirmed via the 

exposure of stromal vascular cells to hypoxic conditions in vitro which resulted in a 

significant increase in pro-inflammatory cytokines such as IL-6 and TNFα, with the 

production dependent on the ATMs that had infiltrated the tissue [97, 100]. An in vivo 

study with the use of an obese murine model was able to demonstrate that the hypoxic 

conditions observed in the adipose tissue was responsible for up-regulating the levels of 

pro-inflammatory cytokines including IL-6, IL-1β and TNFα [98].  
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The adipose tissue of lean humans contains around 10% macrophages, compared to up 

to 40% in obese individuals [83]. While in lean individuals the present ATMs are 

identified as single cells in close proximity to endothelial cells [101], ATMs in obese 

subjects appear as aggregates and form ‘crown-like’ structures surrounding adipocytes 

[83, 100-102]. These macrophage aggregates were also found to exhibit high levels of 

intracellular lipids and resembled foam cells, which have distinct roles in the 

development of atherosclerosis [100, 101, 103]. Furthermore, the macrophages stained 

positively for CD68, a marker for phagocytic activity, suggesting an ability for these 

inflammatory cells to phagocytose adipocytes within adipose tissue [100, 101]. 

 

Evidence to support the idea of targeting obesity and its associated pro-inflammatory 

status in order to reduce the risk of developing more complex chronic diseases come 

from studies investigating the effect of weight loss on the pro-inflammatory status of 

obese individuals. In a study by Cancello and colleagues, a significant reduction in the 

percentage of infiltrated macrophage as well as a change in the macrophage phenotype 

was observed, where an increase in the ATM expression of the anti-inflammatory 

cytokine interleukin-10 (IL-10) was observed in patients that had undergone gastric 

bypass surgery when compared to before surgery [101]. Further support for the 

importance of weight loss came from several studies that demonstrated a decrease in the 

serum levels of the pro-inflammatory mediators including IL-6 and soluble TNFα 

receptors, in combination with an increase in the levels of the anti-inflammatory 

adipokine, adiponectin [104-108].  

 

The findings discussed in this section provide support for targeting pro-inflammatory 

cytokine production with pharmaceutical or dietary interventions as a potential 

mechanism to reduce the risk of developing chronic diseases.  

 

 

1.2. Epidemiological data for fruit and vegetable intake and 

chronic disease risk 

It is not a recent concept that what we consume in our diets is able to largely influence 

our health. Currently, chronic diseases such as cancer and CVD are the leading cause for 

mortality in Western countries. Development of these diseases may involve genetic 

predisposition, but most importantly are dependent on a large array of environmental 

factors including physical exercise, dietary patterns, smoking and alcohol consumption. 
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Development of chronic disease as a result of these lifestyle factors is largely 

preventable by changing these influences, as demonstrated by the analysis of over 

100,000 men and women where there was a significantly reduced risk of developing 

chronic disease, in particular CVD with individuals who closely adhered to dietary 

recommendations [109, 110]. 

 

A high intake of fruit and vegetables within the diet has been commonly associated with 

a lower risk of developing chronic diseases [111]. A disadvantage of these analyses is 

that by investigating the effect of fruit and vegetables as a whole, it may shadow 

potential specific associations with certain groups of fruit and vegetables. A 

considerable amount of data in the last 20 years has demonstrated a potential link 

between the risk of developing cancer and the consumption of cruciferous vegetables 

such as broccoli, Brussels sprouts, cabbage and cauliflower [112]. Based on the studies 

reviewed by Verhoeven in 1996, a more consistent decrease in risk of developing cancer 

of the lung and the gastrointestinal (GI) tract was observed [113]. In more recent studies, 

breast, prostate and pancreatic cancers have also been associated with decreased risk of 

development in individuals consuming high levels of cruciferous vegetables [114]. 

 

While the effect of cruciferous vegetable consumption has been studied widely in terms 

of its associations with cancer, there is very little known about effects of these 

vegetables on other chronic diseases such as CVD and T2DM. In one study by Zhang 

and colleagues, it was determined that increased fruit and vegetable consumption was 

inversely associated with total risk of mortality in both men and women. A more evident 

association was observed with cruciferous vegetable intake demonstrating a dose-

dependent inverse relationship with the risk of CVD mortality [115]. Additional support 

for these findings comes from two studies that demonstrated a lower risk of MIs in 

individuals consuming a high level of cruciferous vegetables [116, 117]. In terms of 

T2DM, one prospective study demonstrated approximately a 20% reduction in the risk 

of developing the disease with men from a Japanese cohort who consumed high levels of 

cruciferous vegetables. This reduction was however, not statistically significant [118]. 

Furthermore, some indication of the involvement of cruciferous vegetable intake on the 

risk of developing T2DM came from a study where it was found that a higher incidence 

of T2DM was observed in individuals that followed a dietary pattern which included the 

low intake of cruciferous vegetables [119]. 
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The most recent supporting evidence involving cruciferous vegetable intake and chronic 

inflammation came from a study by Jiang and colleagues who investigated whether there 

was an association between intake of cruciferous vegetables and circulating levels of 

pro-inflammatory cytokines. In a population of over 1000 middle-aged Chinese women, 

significant inverse correlations were found with increasing levels of cruciferous 

vegetable consumption and the circulating levels of IL-6, IL-1β and TNFα with between 

a 12-25% reduction in levels [120].  

 

 

1.3. Cruciferous vegetables 

Cruciferous or Brassica vegetables belong to the Cruciferae or Brassicaceae family 

which consists of some of the most highly consumed vegetables throughout Europe and 

Asia, including broccoli, cabbage, Brussels sprouts, cauliflower, kale, bok choy and 

Chinese cabbage [112]. These vegetables are a major source of GSLs, the 

phytochemicals that are thought to be responsible for the beneficial health effects seen in 

response to diets rich in cruciferous vegetables [113-115, 118-120]. 

 

 

1.3.1. Glucosinolates 

Different Brassica vegetables have different GSL compositions. While for broccoli the 

predominant GSL is glucoraphanin, for cabbage, sinigrin is found at high levels. In 

rocket high levels of glucoerucin can be found and in kale, high levels of glucoiberin are 

present. GSLs share a structure consisting of a sulphur-linked β-D-glucosepyranose 

moiety in addition to a variable side chain (Figure 1.4). The sulphate group is strongly 

acidic and as a result, GSLs accumulate within cells commonly as a potassium salt 

[121]. It is the variable side chain that is able to determine whether the GSL is 

characterised as aliphatic (methionine), aryl (phenylalanine) or indole (tryptophan) 

[122]. Thus far, 120 members of the GSL family have been identified [123]. 

 

 

 

 

 

Figure 1.4. Glucosinolate structure. Each GSL contains a sulphur-linked β-D-

glucosepyranose group, a sulphonated oxime group and a variable side chain that 

determines its aliphatic, aryl and indole characteristics [121]. 
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When cruciferous vegetables are consumed, it is not the GSLs that are biologically 

active. Due to the chemical stability of GSLs within the plant, the hydrolysis process is 

controlled enzymatically by the only thioglucosidase enzyme known to be able to 

catalyse this reaction, namely myrosinase [122, 124]. The enzyme is physically 

separated from the GSLs within the plant but when the plant cells are damaged by 

chewing or mild cooking, the enzyme and GSLs can come into contact to allow the 

hydrolysis reaction to occur, however, the myrosinase enzyme may become denatured 

following long and high temperature cooking [114]. Tests investigating the stability of 

GSLs within the stomach have demonstrated that even in the highly acidic environment 

(pH 2) most are fairly stable and due to the potential denaturation of myrosinase during 

cooking practices, it is thought around 60% of GSLs reach the colon intact. Within the 

colon, it is possible for these GSLs to be hydrolysed by the gut microbiota 

demonstrating myrosinase-like behaviour, however the details are unclear [122].  

 

Broccoli is now commonly available both fresh and frozen and evidence suggests that 

consumption of frozen broccoli, produced following blanching at 91°C for around 2.5 

minutes, compared to lightly cooked fresh broccoli, can result in significantly less ITCs 

in the plasma. This is likely due to the degradation of the myrosinase enzyme, 

demonstrating that the source of the broccoli significantly affects the potential ITC 

concentration achieved [125]. A later study by Dosz and colleagues demonstrated that if 

the blanching process was carried out at a temperature of 86°C or higher, myrosinase 

was inactivated. However, if the blanching step was carried out at a temperature of 

76°C, there was only an 18% loss observed in myrosinase converstion of glucoraphanin 

to SF [126]. These studies demonstrate the importance for using specific cooking 

practices to ensure the potential concentration of SF that can be reached in the plasma is 

achieved.  

 

The enzymatic breakdown of GSLs can lead to the production of a number of different 

compounds depending on the reaction conditions such as ITCs, thiocyanates and nitriles 

[122]. At a neutral pH, the most common products are stable ITCs and while under 

acidic or alkaline conditions, nitriles are most commonly produced (Figure 1.5) [122].  
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1.4. Sulforaphane 

SF is the most commonly studied ITC both in vitro and in vivo. It is derived from the 

GSL glucoraphanin, which is the predominant GSL found in broccoli [122] (Figure 

1.5). Over the next few sections, its bioavailability and subsequent modes of actions will 

be introduced. 

Figure 1.5. Enzymatic breakdown of glucoraphanin. Myrosinase behaves to cleave 

the thioglucose bond which results in the formation of an unstable aglycone. Depending 

on the pH of the environment, the ITC SF can be formed or following the loss of a 

sulphur, SF nitrile (Adapted from [121]).  

  

 

1.4.1. Bioavailability 

Once converted to SF, the ITC is readily conjugated to increase stability and allow 

distribution around the body. ITCs are known to accumulate intracellularly with the 

concentration reaching mM levels [127], much higher than that achieved in circulation 

following the consumption of broccoli. A study in rats found that except for the liver, GI 

tract and kidneys, the only other relatively high concentrations of ITCs and their 

metabolites were found within the blood [122]. In order to study the presence of ITCs 

within the plasma and urine, a cyclocondensation method was developed allowing 

quantification via HPLC. Within the plasma, different studies have reported varying 

levels of ITCs. In a study by Ye and colleagues, when individuals consumed a broccoli 
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sprout preparation supplying around 200µmoles of ITCs, predominantly SF, a peak 

concentration of 1µM SF was recorded after 1 hour indicating rapid absorption [128]. In 

a study by Gasper and colleagues, a higher level of SF was recorded with a peak 

concentration of 2µM at 2 hours following standard broccoli consumption and 7.4µM 

after consuming high-GSL broccoli [129].  

 

The bioavailability of ITCs is limited due to the fact that after ITCs enter the cells, there 

is rapid conjugation to glutathione (GSH) to form dithiocarbamates, a reaction catalysed 

by glutathione-S-transferase enzymes (GSTs). The liver is the organ known to 

demonstrate the highest level of GST activity and also contains a high concentration of 

GSH [122]. These GSH conjugates are subsequently metabolised via the mercapturic 

acid pathway [130-132]. This pathway involves a number of sequential enzymatically 

controlled steps in which the ITC-GSH conjugate has the glutamine and glycine residues 

removed, before the remaining cysteine residue undergoes N-acetylation to ultimately 

form the N-acetylcysteine (NAC) conjugate [133]. The kidney is the principle organ 

involved in this conversion of ITC-GSH conjugates to NAC conjugates [122]. In terms 

of the ITC conjugates identified in urine, the NAC conjugate can account for up to 60% 

of the initial dose consumed [132]. However, the result of this conjugation means that 

the ITCs are modified at their electrophilic sulphur and consequently, the metabolites 

will have very low biological activity levels as many of the functions are reliant on a 

thiol modification.  

 

The GST enzymes are categorised into cytosolic, mitochondrial and microsomal 

families. The cytosolic GSTs all exist as dimers and consist of at least 17 subunits which 

themselves are divided into 7 classes [134]. Of all the GSTs available, only a small 

subgroup have been investigated in terms of their effects on the conjugation of ITCs, 

namely GSTA1, M1, M4 and P1 [135]. Of these, the GSTM1 enzyme was most efficient 

at catalysing the conjugation reaction, followed by GSTP1. While aromatic ITCs were 

the favoured substrates, SF was the poorest [131, 135]. Based on their essential function 

in ITC conjugation, it is unsurprising that common polymorphisms within these 

enzymes have demonstrated variable rates in the response to SF. A null mutation in 

GSTM1 that results in the absence of a functional protein was thought to be as common 

as approximately 50% of the population potentially carrying the mutation [136]. When 

considering the presence of common mutations within the GST genes, epidemiological 

data found that GSTM1 positive individuals demonstrated greater reductions in the risk 
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of developing certain cancers, for example lung and prostate cancer [137-139]. 

However, these findings have been largely contradictory.  

 

In a study by Gasper and colleagues, it was identified that individuals with the GSTM1 

null genotype excreted a significantly higher proportion of SF from the broccoli 

consumed over a more rapid time course [129]. While these results are controversial 

compared to other studies, it may be an important factor to consider in terms of the 

effect of varying conjugation and excretion levels of SF, which may in turn impact on 

the level available to exert its beneficial actions.  

 

 

1.4.2. Targets of SF 

Within the last 20 years a great deal of research has been carried out into the effects of 

SF and several modes of actions have been consistently demonstrated. While much of 

the research has been carried out in vitro with the pure compound, its effects in vivo 

using both mouse models and humans has also been studied, principally in relation to the 

effects on carcinogenesis but more recently, in terms of its anti-inflammatory effects. 

Over the next few sections, the common functions of SF are discussed including the 

ability of SF to induce phase 2 enzymes, reduce oxidative stress, effect cell metabolism, 

induce cell cycle arrest and apoptosis and also the reduction of inflammatory signalling.  

 

 

1.4.2.1. Phase 2 enzymes and oxidative stress 

Phase 2 enzymes detoxify xenobiotics and oxidants that may be encountered by the body 

allowing them to be rapidly excreted, preventing damaging effects to DNA and other 

molecules. Examples of phase 2 enzymes include the GSTs previously mentioned, 

NAD(P)H-quinone oxidoreductase (NQO1), superoxide dismutase 1 (SOD1) and 

hemoxygenase 1 (HO-1). These genes share a common mechanism for transcriptional 

regulation with each of the genes containing an antioxidant response element (ARE) 

within their promoters which are recognised by the transcription factor, nuclear factor 

(erythroid-derived)-like 2 (Nrf2). SF, along with several other agents with an 

electrophilic nature, is able to induce the activity of the Nrf2 transcription factor as 

demonstrated consistently by many groups in vitro and in vivo [140-153]. 

 

The mechanism, by which SF is able to induce Nrf2 activity, is via the targeting of its 

associated inhibitor Kelch-like ECH-associated protein 1 (Keap1). Keap1 behaves to 
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sequester the Nrf2 transcription factor to the cytoplasm where it is inactive and targeted 

for degradation. In response to SF, Nrf2 dissociates from Keap1, allowing translocation 

of the transcription factor to the nucleus where it is able to recognise and bind to AREs 

and activate the expression of its target genes [154, 155]. 

  

The structure of SF results in an electrophilic nature and SF is thus able to directly bind 

to the free thiol groups of the available cysteine residues within Keap1 to form thioacyl 

adducts [156, 157]. It is predicted that this mechanism results in Nrf2 being able to 

accumulate within the nucleus and subsequent induction of the transcription of its target 

genes however, due to the reversible nature of SF binding this is yet to be confirmed 

[157-159]. 

 

 

1.4.2.2. Cell metabolism 

Recently, several papers have described evidence for a function of SF in cell 

metabolism. Following global gene expression analysis, a study in a non-cancerous 

breast cell line identified the up-regulation of a selection of enzymes involved in 

glycolysis and the pentose phosphate pathway [160]. Furthermore, SF has been shown to 

prevent adipogenesis which is reliant on the accumulation of lipids within adipocytes 

and moreover, in murine adipocyte-like cells, lipolysis was induced [161-164]. Thus far, 

the main pathway thought to be responsible for this function was the AMP-activated 

protein kinase (AMPK) pathway, which behaves to monitor the energy status of cells 

[165]. 

 

In a recent human intervention study, consumption of high-GSL broccoli for 12 weeks 

resulted in a significant alteration in the plasma metabolite profile, indicative of an 

improvement in the integration of fatty acid β-oxidation and TCA cycle activity [166]. 

The dysfunction of β-oxidation and TCA cycle activity is linked to the increased levels 

of FFAs in systemic circulation as well as cholesterol synthesis as a result of increased 

citrate. This link is supported by the findings that SF was able to induce a reduction in 

the levels of hepatic cholesterol in hamsters with dietary-induced hypercholesterolemia, 

hypothesised as a result of the down-regulation of the levels of enzyme fatty acid 

synthase (FAS) and sterol regulatory element-binding proteins (SREBP-1 and 2) [167]. 

While there are hypothetical links evident, more research should be carried out to further 

investigate the details of how SF can exert such profound effects on cellular metabolism.  
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1.4.2.3. Cell cycle and apoptosis 

Another mechanism that has been explored in a number of different models e.g. prostate, 

colon and breast cells is the ability of SF to arrest the cell cycle. The cell cycle is made 

up of five phases: G0 where the cells are senescent; G1 where the cell increases in size; S 

which is responsible for DNA replication; G2 where the cells prepare to divide; and M 

where the cells undergo mitosis. Each phase is regulated by a number of different 

molecules; the cyclin-dependent kinases (CDKs), cyclin proteins, and CDK inhibitors. 

SF has demonstrated the ability to inhibit the cell cycle at a number of phases with 

G2/M being commonly described in prostate cell lines [168-170]. This is thought to be 

as a result of altering the expression levels of cyclin B1 in addition to the cell cycle 

inhibitors including p21 and p27 [168, 171-176].  

 

Furthermore, in some cases SF has been shown to induce apoptosis in a number of cell 

lines and in mouse models where an increase in transcription factors or proteins e.g. 

caspases involved in apoptosis are up-regulated [170, 172, 177, 178]. It is however, 

important to note that these results were achieved in studies with concentrations of SF in 

excess of 15µM which would require high levels of broccoli consumption or 

supplementation. 

 

 

1.4.2.4. Inflammation 

With most relevance to the research aims of this thesis, SF has been shown to exert anti-

inflammatory effects through several mechanisms. In response to pro-inflammatory 

stimuli such as TNFα, IL-1 and more commonly LPS, SF was able to significantly 

suppress the expression of pro-inflammatory mediators: cytokines including IL-6, IL-1β 

and TNFα; inflammatory enzymes such as cyclooxygenase-2 (COX-2) and inducible 

nitric oxide synthase (iNOS) and proteins involved in vascular cells e.g. vascular cell 

adhesion molecule 1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) in a 

number of different cell models from both murine and human origin [179-189].  

 

A number of different mechanisms have been suggested to explain these observations: 

induction of Nrf2, inhibition of NF-κB and targeting of the TLR4 molecule. In terms of 

Nrf2 induction, Lin and colleagues demonstrated a significant reduction in the levels of 

pro-inflammatory mediators induced in response to LPS when murine macrophages 

were treated with SF. However, the effect was seen to a much greater extent with 

macrophages derived from Nrf2 (+/+) mice as compared to Nrf2 (-/-) mice [185]. A 



General introduction 

 

26 

 

similar dependence was seen in endothelial cells where SF was able to significantly 

reduce VCAM-1 expression only in the Nrf2 wildtype animals and not in those without 

Nrf2 expression [190]. 

 

More commonly described is the finding that SF is able to significantly suppress the 

levels of the active subunit of NF-κB p65 observed in the nucleus, as well as its 

transcriptional activity and the reduction in the levels of its inhibitor IκB [184, 189, 191-

194]. This is likely of fundamental importance in the anti-inflammatory effects of SF in 

response to LPS in particular, due to the downstream activation of the transcription 

factor in response to TLR4 activation (Figure 1.1). More recently, however, Youn and 

colleagues described the potential for SF to interact with the TLR4 receptor directly via 

free thiol groups of cysteine residues within the extracellular domain of the receptor, 

which resulted in the suppression of oligomerisation, a step required for downstream 

production of inflammatory mediators [195]. Further support for the targeting of SF at 

the ligand-receptor interaction, came from the same research group, which demonstrated 

an additional interaction between SF and a cysteine residue within the MD2 molecule, 

the co-receptor for TLR4 [196]. 

 

It is however, important to note that there is a requirement for the development of an in 

vitro experimental design which mimics a state of low-grade inflammation. As 

previously mentioned, endotoxin levels circulating in individuals suffering from a 

chronic inflammatory disorder is in the range of 1ng/ml, whereas the concentrations 

used in the experiments above are much higher, often surpassing those seen following 

acute inflammation [37, 45, 46, 197].  

 

 

1.5. Thesis Aims 

Previously the majority of studies investigating inflammation in vitro use concentrations 

of LPS that are far in excess of that found in circulation of patients suffering from 

chronic disease. In addition, investigations of the anti-inflammatory effects of SF have 

principally been carried out in murine cell models with a reductionist approach of 

selecting only several biomarkers for measurement. The overall hypothesis of this thesis 

was that SF would suppress chronic inflammatory signalling via a multi-targeted 

approach at physiologically relevant concentrations. In order to test this overall aim, a 

number of different research questions were tested to progress the research from the 

present literature.  
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Within this thesis the following objectives were addressed: 

 

1. The development of an in vitro model of chronic inflammation with human 

monocytes and physiologically relevant concentrations of both LPS and SF. 

Much of the previous literature investigating pro-inflammatory biomarker 

production has been carried out in cell lines of murine origin and with a 

concentration of inflammatory stimulus that is out of range of even acute 

inflammatory attack. With one of the main limitations of in vitro investigations 

being that it is difficult to translate the findings to an in vivo situation, this 

objective was fundamental in going some way to bridge this problem.  

 

2. To investigate whether SF was able to target global gene expression in response 

to LPS and whether the mechanism was directly via TLR4 in vitro. While 

several pro-inflammatory biomarkers have been reported to be suppressed by SF 

in the presence of an inflammatory stimulus, little research has been carried out 

into the scope of this effect. SF alone has been studied on a global scale in a 

number of different cell models however, there have been no previous studies 

that investigated the effect of SF on inflammation on a global scale. 

Additionally, while the investigations into the global effect of SF can be 

potentially highly informative in terms of the capability of SF, it is important to 

try and elucidate the mechanism by which SF is able to have an effect on 

inflammation, by progressing previous research into the thiol modification of the 

TLR4. 

 

3. To establish whether the anti-inflammatory effects of SF were restricted to 

TLR4 alone or if it was also able to target additional signalling pathways. The 

initial experiments all utilised LPS as the artificial inducer of pro-inflammatory 

biomarkers due to its relevance with chronic disease. However, a more 

informative approach would be to investigate whether effects of SF on LPS-

signalling are able to be replicated in response to the activation of additional 

signalling pathways including the TLR2 which is important in the response to 

lipopeptides and the NOD2 pathway, which has been highly implicated in the 

IBD Crohn’s disease. 

 

4. To progress the methods used initially into a more complex model of chronic 

inflammation using human SGBS adipocytes and MaCM from human THP-1 
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macrophages to determine the effect of SF on adipogenesis and cytokine 

production as a result of adipose tissue inflammation. By using this more 

complex in vitro model of adipose tissue inflammation, different endpoints are 

able to be tested with disease relevance e.g. lipid accumulation in adipocytes 

and the inflammatory response to MaCM, mimicking the infiltration of 

macrophages within adipose tissue of obese individuals. This objective behaves 

to investigate the potential multi-targeting ability of SF in a disease-related 

context.  
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2.1. General reagents 

SF was supplied from LKT laboratories (L-SF; Cat. # S8046 and DL-SF; S8044, 

respectively). DL-SF was used in all chapters, while L-SF was only used in Chapter 6. A 

stock solution of each was prepared in dimethyl sulfoxide (DMSO). As the vehicle 

control for SF, it was ensured that the final concentration of DMSO added to the cell 

culture medium was below 0.1% (v/v). LPS from Escherichia Coli strain 055:B5 (Cat. # 

L6529, Sigma-Aldrich) and 0111:B4 (for experiments with PRR cell lines, Cat. # tlrl-

eblps, InvivoGen) were used in experiments to induce inflammation. LPS was prepared 

in phosphate buffered saline (PBS) to produce stock solutions. Pam3CSK4 (Cat. # tlrl-

pms), FSL-1 (Cat. # tlrl-fsl) and MDP (Cat. # tlrl-mdp) were also supplied from 

InvivoGen. All stock solutions were prepared in sterile endotoxin-free water at 

concentrations of 1mg/ml, 100µg/ml and 5mg/ml, respectively. TNFα was supplied from 

R&D systems (Cat. # 210-TA-005). A stock solution was prepared in PBS at a 

concentration of 100µg/ml.  

 

 

2.2. Cell culture  

2.2.1. Human monocytes 

Human peripheral blood mononuclear cells (PBMCs) were isolated from 10ml of whole 

blood provided by healthy, volunteer assay blood donors (male and female) from the 

Human Nutrition Unit of the Institute of Food Research. Ethical approval was obtained 

from the Human Research Governance Committee at the Institute of Food Research for 

optimisation of techniques and experimental design. Whole blood was anti-coagulated 

using EDTA-containing tubes and diluted 1:1 with PBS to improve the separation 

process. PBMCs were isolated from the whole blood using sterile, endotoxin-free 

Accuspin
TM

 System-Histopaque® 1077 (Cat. # A7054, Sigma-Aldrich) according to 

manufacturer’s instructions. From 10ml of whole blood, approximately 10-20 x 10
6
 

PBMCs were isolated. Cryopreserved PBMCs were also supplied from ZenBio (Cat. # 

SER-PBMC-F, Cambridge Biosciences). They were a pooled sample from 5 different 

donors, both male and female, ranging in age and ethnicity.  

 

PBMCs were routinely cultured in RPMI-1640 medium with stable glutamine (Cat. # 

E15-840, PAA Laboratories) supplemented with 10% (v/v) foetal bovine serum (FBS; 

Cat. # 10270, Life Technologies) and 1% (v/v) penicillin/streptomycin (Cat. # 15140, 

Life Technologies). 
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Human monocytic THP-1 cells were obtained from the European Collection of Cell 

Culture (ECACC; Cat. # 88081201). THP-1 cells were originally isolated from the 

peripheral blood of a one year old male suffering from acute monocytic leukaemia 

[198]. THP-1 cells were routinely cultured in RPMI-1640 medium with stable glutamine 

supplemented with 10% (v/v) FBS and 1% (v/v) penicillin/streptomycin. THP-1 

monocytes have the capability to be chemically differentiated into macrophages as a 

result of culturing the monocytes in serum-free RPMI-1640 medium in the presence of 

125ng/ml phorbol 12-myristate 13-acetate (PMA; Cat. # P1585, Sigma-Aldrich) for 48 

hours [199]. This differentiation process was monitored simply by following the 

morphological transition of the monocytes, which grow in suspension, becoming 

adherent as they differentiate in to macrophages.  

 

 

2.2.2. PRR-transfected cell lines 

Human embryonic kidney (HEK)-Blue
TM

 cells were obtained from InvivoGen (Cat. # 

hkb-htlr4, hkb-htlr2 and hkb-hnod2). All HEK-Blue
TM

 cells were developed by stable 

transfection with the necessary receptors, TLR4, the MD2/CD14 co-receptors, TLR2 or 

NOD2, along with a secreted embryonic alkaline phosphatase (SEAP) reporter gene. 

The SEAP reporter gene is under the control of an IL-12 p40 minimal promoter fused to 

five NF-κB and AP-1 binding sites. Stimulation with the appropriate ligands activates 

NF-κB and AP-1 which induces the production of SEAP.  

 

To generate the mutant G908R NOD2-expressing lines, HEK cells (Cat. # 293-null, 

InvivoGen) were co-transfected with a pSV-β-Galactosidase control vector, pNifty2-

SEAP (Cat. # pnifty2-seap, InvivoGen) and the mutant form of the receptor, pUNO-

hNOD2a G908R, generated as a result of the substitution of the glycine residue at 

position 908 in the amino acid sequence for an arginine. For transient transfection 

experiments, 293-hMD2-CD14 cells (Cat. # hek-hmdcd, InvivoGen), prepared by the 

co-transfection of HEK cells with the MD2 and CD14 genes, were used and transiently 

transfected with TLR4 wildype (pUNO-hTLR4-A) and mutant receptors D299G where 

an aspartate at position 299 has been exchanged for a glycine (pUNO-hTLR4-A, 

rs4986790) and T399I where a threonine at position 399 has been exchanged for an 

isoleucine (pUNO-hTLR4-A, rs4986791).  

 

All PRR-expressing cell lines were maintained in DMEM medium with stable glutamine 

(Cat. # 41965, Gibco) supplemented with 10% (v/v) FBS and 1% (v/v) 
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penicillin/streptomycin, with variations in the necessary antibiotic combinations. The 

growth media for HEK-Blue
TM

 TLR4 and TLR2 cell lines required the addition of 1% 

(v/v) penicillin, streptomycin, gentamicin cocktail, 0.18% (v/v) Normocin
TM 

(Cat. # ant-

nr, InvivoGen) and 1X HEK-Blue
TM

 selection antibiotics (Cat. # hb-sel, InvivoGen). The 

NOD2 cell lines required 1% (v/v) penicillin, streptomycin, 0.06% (v/v) blasticidin (Cat. 

# ant-bl-5b, InvivoGen) and 0.1% (v/v) Zeocin
TM 

(Cat # ant-zn, InvivoGen). The 

transiently transfected 293-hMD2-CD14 cells required 1% (v/v) penicillin, 

streptomycin, gentamicin cocktail and 0.05% (v/v) Hygrogold
TM

 (Cat. # ant-hg-1, 

InvivoGen). 

 

To produce HEK cells transiently transfected with either the wildtype or mutant TLR4 

receptors, 293-MD2-CD14 cells were grown to a confluency of 60-80% before being 

transfected using Lipofectamine 2000 (Cat. # 11668027, Invitrogen) according to the 

manufacturer’s instructions. The cells were co-transfected with the wildtype or mutant 

plasmids and the reporter SEAP plasmid (pNifty2-SEAP) with optimised conditions 

(1µg TLR4 plasmids and 8µg pNifty2-SEAP).  

 

 

2.2.3. HT-29 colon adenocarcinoma cells 

The human colon adenocarcinoma HT-29 cells were supplied by ECACC (Cat. # 

91072201). They were isolated from a primary tumour in a 44 year old Caucasian 

female. These cells can form a well differentiated adenocarcinoma consistent with 

colonic primary grade I. The cells were routinely cultured in McCoys’s 5A modified 

medium with stable glutamine (Cat. # M9309, Sigma-Aldrich) supplemented with 10% 

(v/v) FBS and 1% (v/v) penicillin/streptomycin. 

 

 

2.2.4. SGBS preadipocyte cells 

The human preadipocyte SGBS cell line was kindly gifted by Prof. M. Wabitsch 

(University of Ulm, Germany). This cell line was isolated from an infant suffering from 

Simpson-Golabi-Behmel Syndrome (SGBS) which is characterised by enhanced 

prenatal and postnatal growth associated with large adipose tissue depots [200]. This cell 

line is characterised by the high capacity to be differentiated into mature adipocytes up 

to generation 60. SGBS preadipocyte cells were routinely cultured in DMEM/F12 (1:1) 

medium with stable glutamine and Hank’s Balanced Salt Solution (HBSS; Cat. # 11330, 

Life Technologies) supplemented with 33µM biotin (Cat. # B4639, Sigma-Aldrich), 
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17µM pantothenate (Cat. # P5155, Sigma-Aldrich), 10% (v/v) FBS (not heat-

inactivated) and 1% (v/v) penicillin/streptomycin. 

 

In order to differentiate SGBS preadipocytes into mature adipocyte cells, the cells were 

cultured to reach 70-80% confluency before replacing the medium with basal growth 

medium (serum-free) supplemented with 0.01mg/ml transferrin (Cat. # T2252, Sigma-

Aldrich), 20nM insulin (Cat. # I1507, Sigma-Aldrich), 0.1µM cortisol (Cat. # H0888, 

Sigma-Aldrich), 0.2nM triiodothyronine (T3; Cat. # T6397, Sigma-Aldrich), 25nM 

dexamethasone (Cat. # D1756, Sigma-Aldrich), 0.25mM isobutylmethylxanthine 

(IBMX; Cat. # I5879, Sigma-Aldrich) and 2µM rosiglitazone (Cat. # CAY71740, 

Caymen Chemicals) on day 0. On days 4, 8 and 12, the medium was replaced with basal 

growth medium (serum-free) supplemented with only 0.01mg/ml transferrin, 20nM 

insulin, 0.1µM cortisol and 0.2nM T3 to continue differentiation. By day 14, the 

differentiation process was complete and the cells were treated as mature adipocytes. 

This process was monitored by following the increased accumulation of lipid droplets 

within the cells, giving clear morphological changes. 

 

All cell lines used were maintained in a humidified atmosphere containing 5% CO2 at 

37°C and were routinely passaged to continue growth.  

 

 

2.3. Cell viability assay 

2.3.1. Background 

The viability of all the cell lines described in the previous section was estimated in 

response to a number of different treatments using the WST-1 assay. This assay is based 

on the conversion of the tetrazolium salt WST-1 (4-[3-(4-iodophenyl)-2-(nitrophenyl)-

2H-5-tetrazolio]-1,3-benzene disulfonate) into formazan by mitochondrial 

dehydrogenase enzymes (Figure 2.1). If a reduction of viability is observed as a result 

of the cell treatment, fewer cells will be metabolically active and therefore will be 

unable to carry out the conversion due to a reduction in the activity of mitochondrial 

dehydrogenases. The product of the enzymatic reaction, formazan is a deep red colour 

and this colour change enables a spectrophotometric assay to be used to allow 

quantitative determination of the number of viable cells.  
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Figure 2.1. Conversion of WST-1 to formazan.  

WST-1 can be reduced to formazan resulting in a colour change that is proportional to 

cell viability. (EC = electron coupling reagent; MSTR = mitochondrial succinate-

tetrazolium reductase system). Figure adapted from product data sheet. 

 

 

2.3.2. Measurement of cell viability 

Cells were seeded into 96 well plates for this assay. For the adherent cell lines, (THP-1 

macrophages, HEK-Blue
TM

, HT-29 and SGBS) cells are grown to around 70-80% 

confluence. For THP-1 monocytes and PBMCs, 1 x 10
5
 cells and 2.5 x 10

5
 cells 

respectively, were seeded into 96 well plates and treated immediately. SGBS 

preadipocytes were seeded into 96 well plates and allowed to reach 70-80% confluence. 

For adipocytes, the preadipocytes at this point followed the differentiation process as 

described in section 2.2.4. THP-1 monocytes were differentiated into macrophages 

following the protocol explained in section 2.2.1. Cells were treated with concentrations 

of SF ranging from 1-200µM (vehicle control for SF = < 0.1% (v/v) DMSO) in six 

replicate wells. 

 

For treatment with MaCM, THP-1 monocytes were differentiated by treating cells with 

125ng/ml PMA for 48 hours in serum-free conditions. Once the differentiation of the 

macrophages was complete, the medium was replaced with serum-free RPMI-1640 

containing 0.5% (w/v) bovine serum albumin (BSA; Cat. # A9418, Sigma-Aldrich) to 

stabilise the macrophage-secreted factors for a further 48 hours to produce the MaCM. 
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The MaCM was collected and cleared of cell debris by centrifugation. SGBS adipocytes 

were treated with doses of MaCM (10, 20 and 50%; v/v) in six replicate wells.  

 

After 24 hours of cell treatments, 10µl (per 100µl media) of WST-1 reagent (Cat. # 

05015944001, Roche) was added to each well. Cells were incubated in a humidified 

atmosphere containing 5% CO2 at 37°C for up to 3 hours. The metabolic conversion of 

the WST-1 reagent to formazan was quantified by measuring the absorbance using a 

spectrophotometer at 450nm with a reference wavelength of 610nm. Medium only was 

used for the blank correction to compensate for any absorbance contribution of the basal 

colour from the phenol red present within the medium.  

 

 

2.3.3. Data analysis and statistics 

Optical density (OD) values from 450nm reading (corrected with data from 610nm) 

were used to determine the percentage cell viability. For all treatments the percentage 

viability was calculated against the untreated control cells. The IC50 (half maximal 

inhibitory concentration) was calculated using GraphPad Prism software including a 

logarithm transformation of the data and a non-linear analysis to determine the 

concentration at which 50% cell viability remained. The effect of the treatment was 

analysed using one-way analysis of variance (ANOVA) followed by Bonferroni multiple 

comparison tests.  

 

 

2.4. Measuring cytokine secretion using enzyme-linked 

immunosorbant assay (ELISA) 

2.4.1. Background 

To determine the concentration of cytokines secreted in to the cell culture supernatant 

following cell treatments, Quantikine ELISA kits were used: IL-6 (Cat. # D6050); IL-1β 

(Cat. # DLB50) and TNFα (Cat. # DTA00C) kits were all purchased from R&D systems 

and carried out according to manufacturer’s instructions (Figure 2.2). These kits all 

provide a standard of each compound in order to produce a calibration curve enabling 

quantification.  
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Prepare all reagents, standards and samples as described 

Add 100-200µl** standard, control and samples to each well 

Aspirate and wash four times to remove unbound cytokine  

Add 200µl Conjugate (enzyme-linked secondary antibody) to 

each well 

Cover and incubate for 1-2 hours*** 

Aspirate and wash four times to remove unbound conjugate  

Add 200µl Substrate Solution to each well 

Cover and incubate for 30 minutes shielded from direct light 

Add 50µl Stop Solution to each well 

Read at 450nm within 30 minutes. Wavelength correction at 

540nm 

Add 0-100µl* Assay diluent to each well  

Cover and incubate for 2 hours 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2. Quantikine ELISA protocol. Information taken from the protocol provided 

within the kits. Same protocol for all ELISA kits with the following variations. *0µl 

Assay diluent added for IL-1β, 50µl for TNFα and 100µl for IL-6. **100µl of standards, 

samples and controls for IL-6, 200µl for IL-1β and TNFα. ***Incubation for 1 hour for 

IL-1β and TNFα, 2 hours for IL-6. 
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2.4.2. Measurement of cytokine secretion 

Cells were seeded into 6, 12, 24 or 48 well plates depending on the cell type used and 

grown to 70-80% confluency. Cells were exposed to the treatments for varying times 

depending on the experimental design. Cell culture supernatant was collected and 

centrifuged at 13000rpm for 20 minutes at 4°C to remove any cell debris. Supernatants 

were stored at -20°C until required. On the day of use, the samples were thawed and 

inspected for the presence of precipitates. If visible, samples were centrifuged at 

13000rpm for 10 minutes at 4°C and the supernatant was transferred to a fresh tube. 

Depending on the levels of cytokines expected to be present within the samples, 

necessary dilutions were carried out with the appropriate calibrator diluent provided in 

the kit to ensure the measurements remained within the calibration curve. After 

following the manufacturer’s instructions, the levels of cytokines in the samples were 

quantified (Figure 2.2).  

 

 

2.4.3. Statistics 

In experiments carried out with ranging doses of treatments, one-way ANOVA was 

performed followed by Bonferroni multiple comparison tests. In experiments with two 

variables (dose of treatment and time of exposure) two-way ANOVA was performed 

with Bonferroni multiple comparison tests. In experiments that were carried out over a 

period of time with single dose treatments, the area under the curve (AUC) was 

measured and Student t-tests carried out to statistically compare each time point.  

 

 

2.5. Gene expression using real-time reverse transcriptase – 

polymerase chain reaction  

2.5.1. Background 

Real-time RT-PCR is a common technique used to quantify gene expression. A number 

of different companies provide products that allow detection of amplified target gene 

expression levels and for the present study, Taqman® was used (Applied Biosystems) 

which relies on the detection of the products via the generation of a fluorescent signal. 
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2.5.2. RNA extraction and quantification 

Total RNA was extracted from treated cells using the QIAGEN® RNeasy Mini Kit (Cat. 

# 74104, QIAGEN) according to manufacturer’s instructions. Cells were initially lysed 

using the provided Buffer RLT and further homogenised using a QIAshredder (Cat. # 

79654, QIAGEN). The differentiated SGBS adipocyte cells were the only exception in 

which total RNA was extracted from the cells using the QIAGEN® RNeasy Lipid 

Tissue Mini Kit (Cat. # 74804, QIAGEN) due to the high levels of intracellular lipid 

accumulation. Lysis of the SGBS adipocytes required the QIAzol Lysis Reagent 

provided with the kit. Additional steps were necessary to remove the lipid content from 

the homogenate. Chloroform was added to the homogenate to promote precipitation of 

the lipids and a centrifugation step was used to separate the aqueous layer containing the 

RNA for the subsequent steps.  

 

RNA samples were quantified after extraction using the NanoDrop ND-1000 

spectrophotometer. Triplicate readings for RNA quantification were performed per 

sample and the average was calculated. This technique also gives an indication of the 

purity of the RNA. Each sample receives a 260/280 absorbance ratio, where the 260nm 

reading is the wavelength absorbed by nucleic acids and the 280nm reading is indicative 

of protein absorbance. When the RNA is pure, you would expect a ratio of 2.0, however 

this does not necessarily mean that the RNA is of high quality due to the 280nm reading 

being susceptible to errors.  

 

 

2.5.3. Real-time RT-PCR 

For the quantification of gene expression, the Taqman® RNA to CT 1-step kit was used 

(Cat. # 4392938, Life Technologies). This uses RNA extracted from the cells as its 

starting material and in one step produces the complimentary DNA strand based on the 

RNA sequence and amplifies the target genes. The fluorescent signal is generated 

through the use of dual-labelled probes. The probes are labelled with a reporter dye 

attached at the 5’ end e.g. FAM (6-carboxyfluorescein) and a quencher dye at the 3’ end 

e.g. TAMRA (6-carboxytetramethylrhodamine). When the probe is intact, the close 

proximity of the two dyes means that no fluorescent signal is generated. However, when 

the Taq polymerase extends the complementary DNA strand where the probe is bound, 

the 5’ nuclease activity of the polymerase is able to cleave the probe resulting in the 

reporter and quencher dyes being decoupled and a fluorescent signal can occur. As each 
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cycle takes place, the fluorescent signal increases and this signal can be used to 

determine relative expression level of the target gene.  

 

To prepare the samples for real-time RT-PCR, the CAS-1200 robot and Robotics 4 

software was used (Corbett Life Sciences). MicroAmp Optical 96 well reaction plates 

(Cat. # N8010560, Life Technologies) were used for the ABI Prism 7500 Detection 

System (Applied Biosystems) and 96 well Semi-Skirted fast plates (Cat. # LW2214, 

Alpha Laboratories) were used for the ABI StepOne Plus machine (Applied 

Biosystems). A No Template Control (NTC) was loaded (double-autoclaved RNase-free 

water) to ensure there is no RNA contamination, followed by each of the samples of 

which there were three biological replicates and three technical replicates.  

 

The ABI Prism 7500 Detection System or the ABI StepOne Plus instruments were used 

to quantify target mRNA expression levels under the following conditions: 48°C for 30 

minutes to allow reverse transcription, 95°C for 10 minutes to activate the AmpliTaq
TM

 

Gold polymerase, followed by 40 cycles of 95°C for 15 seconds for denaturation and 

60°C for 1 minute to anneal and extend the target gene DNA. Each of the reactions were 

performed in a volume of 20µl containing RNA, primers and probes either individually 

or as part of a prepared assay kit (IDT technologies), Taqman® Master Mix and the 

reverse transcriptase enzymes. Table 2.1 gives the sequences of the primers and probes 

used for the assays. 
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Table 2.1. Primer and probe sequences of genes analysed 

Gene Name IDT kit I.D.  Sequence 

IL-6  Forward: 

Reverse: 

Probe: 

5’-CTCTTCAGAACGAATTGACAAACAAAT-3’
a
 

5’-ATGTTACTCTTGTTACATGTCTTCTTTCTC-3’
a
 

5’-FAM-TACATCCTCGACGGCATCTCAGCCC-TAMRA-3’
b  

IL-1β Hs.PT.51.20299051 Forward: 

Reverse: 

Probe: 

5’-AGGAGCACTTCATCTGTTTAGG-3’
c
 

5’-GCCAATCTTCATTGCTCAAGTG-3’
c
 

5’-FAM-TTCACTGGCGAGCTCAGGTACTTC-TAMRA-3’
b
 

TNFα Hs.PT.51.22572112.gs Forward: 

Reverse: 

Probe: 

5’-CTCAGCTTGAGGTTTGC-3’
c 

5’-CCTCTCTCTAATCAGCCCTCT-3’
c
 

5’-FAM-CAGGCAGTCAGATCATCTTCTCGAACC-TAMRA-3’
c
 

18S  Forward: 

Reverse: 

Probe: 

5’-GGCTCATTAAATCAGTTATGGTTCCT-3’
b
 

5’-GTATTAGCTCTAGAATTACCACAGTTATCCA-3’
b 

5’-FAM-TGGTCGCTCGCTCCTCTCCCAC-TAMRA-3’
b
 

CPT1A Hs.PT.56a.28218391 Forward: 

Reverse: 

Probe: 

5’-TGAAGACAACAAACGTGAACG-3’
c
 

5’-CAGAAGTGAAGACCCGGATAC-3’
c
 

5’-FAM-CAAACCACCTGTCGTAACATCGGCC-TAMRA-3’
c
 

a
Primers were designed and purchased from Eurofins. 

b
Primers and probes were designed and purchased from Sigma-Aldrich. 

c
Pre-designed assay kits were purchased from IDT technologies. 
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The Applied Biosystems software calculated the threshold cycle (CT) values for each 

reaction and with the use of a standard curve of known total RNA quantities, the 

quantity of the target RNA was calculated. In order to normalise the expression of the 

specific target genes, an endogenous control, also known as a housekeeping gene, was 

used to account for potential differences in the total amount of RNA in each sample. For 

normalisation of the target genes used in the present study, 18S ribosomal RNA was 

used as the chosen housekeeping gene. The expression level of this gene should not vary 

with experimental treatment as it is very highly expressed and therefore the normalised 

data will allow demonstration of changes in target gene expression that are only as a 

result of experimental treatments.  

 

The amplification efficiency is calculated using the standard curve and for all the genes 

considered, efficiencies were > 96%. A reaction that has been 100% efficient will result 

in the gradient of the standard curve being -3.32, meaning the CT difference between two 

sequential 2-fold dilutions will equal 1. The final essential parameter to take note of is 

the R
2
 value of the standard curve line of best fit. With an R

2
 value of 1, the value of Y 

(the CT) can be accurately from the X value. Values > 0.99 are considered to be highly 

accurate.  

 

 

2.5.4. Statistics 

In experiments carried out with ranging doses of treatments, one-way ANOVA was 

performed followed by Bonferroni multiple comparison tests. In experiments with two 

variables (dose of treatment and time of exposure) two-way ANOVA was performed 

with Bonferroni multiple comparison tests. In the experiments that were carried out over 

a period of time with single dose treatments the AUC was measured and Student t-tests 

carried out to statistically compare each time point. 

 

 

2.6. Whole genome expression analysis using microarray 

techniques 

2.6.1. Background 

In the present study, commercially available Affymetrix GeneChip® Human Exon 

1.0ST arrays were used to analyse whole genome expression and has the capability to 

monitor expression at the exon level. Compared to the traditional 3’ expression arrays 
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that have been commonly used, the Affymetrix GeneChip® Human Exon 1.0ST array 

contains probes that span the entire length of the gene and is not restricted to only the 3’ 

end. In addition, with probes assigned to each individual exon, the expression of each 

exon within the gene can be measured allowing information on potential alternative 

splicing events.  

 

The Affymetrix GeneChip® Human Exon 1.0ST array is made up of approximately 1.4 

million probe sets and more than 5.5 million individual probes. Four individual probes 

comprise one probe set, with each probe set corresponding to individual exons. 

Depending on the length of the exon, more than one probe set may be assigned. While 

the 3’ expression arrays contains ‘mismatch probes’, the Affymetrix GeneChip® Human 

Exon 1.0ST array contains only perfectly matched probes and the non-specific 

hybridisation is accounted for using background correction based on the GC content of 

the probes. Each of the probe sets specific for individual exons are grouped into 

transcript clusters. Gene level analysis is measured by considering all probes within a 

single transcript cluster. By focusing on the individual exons and not the gene as a 

whole, novel transcripts can be identified which may be present as a result of alternative 

splicing in response to factors within the experimental design. Many genes have a 

number of transcripts associated where the exons are spliced together in various 

combinations for example, certain exons may be missing from the final transcript. Each 

of the probe sets are categorised based on the level of characterisation of each exon. 

‘Core’ probe sets are those which are annotated by RefSeq; ‘extended’ probe sets have 

mRNA evidence available and ‘full’ probes sets are those where there is a prediction 

based on bioinformatics for a particular exon. In the present study, the analysis was 

carried out using the ‘core’ probe sets (18708 transcripts, 284258 probe sets). 

  

THP-1 monocytes (6 x 10
6
 cells per 10cm dish) were treated with 1ng/ml LPS (vehicle 

control for LPS = PBS) in the presence or absence of 5µM SF (vehicle control for SF = 

< 0.1% (v/v) DMSO) for 12 hours with three biological replicates for each condition. 

RNA was extracted using the QIAGEN® RNeasy Mini Kit according to manufacturer’s 

instructions and quantified as in section 2.5.2.  

 

 

2.6.2. Assessment of RNA quality 

As explained in section 2.5.2, RNA quantity and purity was determined using the 

NanoDrop ND-1000 spectrophotometer. An absorbance ratio between 260nm and 
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280nm of 2 is indicative of highly pure RNA but this does not necessarily mean the 

RNA is of high quality. To measure the quality of RNA, the Agilent 2100 Bioanalyzer 

was used. The system uses an electrophoretic principle with quick separation on a chip 

system. The microchannels within the chip are filled with a sieving polymer and 

fluorescence dye. Once the wells are filled, the chip becomes part of an electrical circuit. 

When the dye molecules intercalate with the RNA, fluorescence occurs and this is 

measured and plotted graphically over time, in addition to a densitometry plot to show 

the two markers of ribosomal RNA, 28S and 18S. In order to quantitate the RNA quality 

a ladder was used and the ratio of the 28S and 18S ribosomal RNA markers was 

calculated to assess the integrity of the RNA. The 28S peak should have a larger area 

than 18S in samples of high quality. In addition, an RNA integrity number (RIN) can be 

used to estimate the quality and is based on the electrophoretic trace of the RNA sample. 

The RIN number ranges from 1-10 where 1 is a completely degraded sample and 10 is a 

perfect quality sample. All samples used for microarray analysis had a RIN value of ≥ 

9.6.  

 

The RNA samples were sent to Nottingham Arabidopsis Stock centre and the 

Affymetrix GeneChip® Human Exon 1.0ST array was carried out according to 

manufacturer’s protocols.  

 

 

2.6.3. Data analysis and statistics 

For the analysis of the data from the microarray, the R/Bioconductor package was used. 

The raw signal intensity data was provided in .CEL files. The data was RMA (robust 

multi-array analysis)-background corrected and quantile normalised to determine if any 

outliers are present. Once complete, linear probe level models were fit to the data to 

analyse gene level summaries. For annotation of the data, the current file available at the 

aroma.affymetrix website (HuEx-1_0-st-v2.na32.hg19.transcript.csv) was downloaded, 

which contains the information available for all transcripts and the core CDF probe set 

was selected. Subsequent statistical data analysis to identify differentially expressed 

genes was performed using limma [201]. Identification of genes that were differentially 

expressed were analysed for the level of statistical significance at different Benjamini 

and Hochberg adjusted p-values, to account for the potential false discovery rate.  

To highlight pathways that were largely represented by the differentially expressed 

genes, functional analyses using the Database for Annotation, Visualisation and 

Integrated Discovery v6.7 (DAVID; http://david.abcc.ncifcrf.gov) was used [202, 203].   

http://david.abcc.ncifcrf.gov/
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Microarray data generated in this study were compliant to MIAME (Minimum 

information about a microarray experiment) criteria and were made publicly available 

through ArrayExpress (Accession E-MEXP-3931, Date of Release: December 2014). 

 

 

2.7. Western blotting 

2.7.1. Background 

Western blotting is a fundamental technique used in cell and molecular biology to 

identify specific proteins from a crude protein extract. The extracted proteins are 

separated based on their molecular weight via gel electrophoresis and transferred to a 

membrane producing a band for each protein. The membrane is incubated for the 

relevant times with antibodies specific to the protein of interest. The next step involves 

incubation of the membrane with an enzyme-linked secondary antibody which allows 

visualisation of the blot following the addition of a chemiluminescent substrate.  

 

 

2.7.2. Sample preparation 

HT-29 cells were treated with SF (5, 10 and 25µM, vehicle control for SF = < 0.1% 

(v/v) DMSO) in the presence or absence of 1ng/ml LPS (vehicle control for LPS = PBS) 

for 1 hour. Following treatment, the proteins were extracted from the cells using the 

Novagen ProteoExtract® Transmembrane Extraction kit (Cat. # 71772, Millipore) which 

enables the separation of the insoluble membrane fraction from the soluble cytoplasmic 

fraction to allow determination of the target protein level in both locations of the cell.  

 

Briefly, HT-29 cells were washed with PBS and scraped into solution. Cells were 

centrifuged at 1000 x g for 5 minutes at 4°C before being resuspended in 1ml of 

extraction buffer 1 supplied in the kit. The solution was incubated for 10 minutes at 4°C 

and after repeating the centrifugation step, the soluble cytoplasmic fraction was 

collected. The remaining cell pellet was resuspended in 0.2ml of extraction buffer 2A 

(1:1 extraction buffer 2: reagent A supplied in the kit). The suspension was incubated at 

room temperature for 45 minutes with gentle agitation before centrifugation at 16000 x g 

for 15 minutes at 4°C yielding the membrane fraction.  

 

The bicinchoninic acid (BCA) assay was used to determine the quantity of total protein 

within each sample (Cat. # BCA1-1KT, Sigma-Aldrich). The principle of the assay 

relies on the formation of a Cu
2+

 protein complex under alkaline conditions followed by 
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the reduction of Cu
2+

 to Cu
1+

. The extent of the reduction is proportional to the amount 

of protein present and can be analysed by measuring absorbance of the purple-blue 

complex formed between BCA and Cu
1+ 

[204]. Each of the protein samples were diluted 

1:5 with NaPi buffer (50mM NaPi, pH 6, containing 5mM EDTA) prior to quantification 

and a standard curve using BSA was produced ranging from 0-1000µg/ml by diluting 

the standards in NaPi buffer. The assay was performed in a 96 well plate in which 25µl 

of the standards and samples were added to each well in addition to 200µl of BCA 

working reagent (50:1 dilution between BCA and copper (II) sulphate solution) in 

duplicate. The plate was incubated at 37°C for 30 minutes and shielded from the light to 

allow the reduction to occur. The absorbance was measured at 550nm on the FLUOstar 

OPTIMA microplate reader (BMG Labtech) and the concentration of protein was 

calculated using the standard curve. 

 

For gel electrophoresis, 35µg of protein was used for each sample. Protein samples were 

diluted appropriately with ultra-pure water to produce the final concentrations in a total 

volume of 18µl. 4.5µl of NuPAGE® LDS sample buffer (4X; Cat. # NP0008, Life 

Technologies) was added to each sample and samples were heated at 70°C for 10 

minutes to denature tertiary and secondary protein structures. No dithiothreitol (DTT) 

was added as the samples required non-reducing conditions. The samples were 

centrifuged briefly to remove any air bubbles present before loading on to the gel. 

 

 

2.7.3. Gel electrophoresis 

2µl of MagicMark
TM

 XP Western Standard (Cat. # LC5602, Life Technologies) was 

used as the protein ladder to determine the size of the proteins. A total volume of 22.5µl 

of each protein sample was loaded in to the wells of a NuPAGE® 10 well 10% Bis-Tris 

SDS-PAGE gel (Cat. # NP0306, Life Technologies) for electrophoresis. Appropriately 

diluted NuPAGE® MOPS SDS running buffer (20X, Cat. # NP0001, Life Technologies) 

was used and the gel was run at 200V for 50 minutes at room temperature using the 

XCell SureLock
TM

 Mini-Cell Electrophoresis system (Life Technologies).  

 

 

2.7.4. Immunoblotting 

Once the gel electrophoresis was complete, the gel was separated from the plates and 

together with blotting paper, sponges and nitrocellulose membrane (Cat. # 162-0112, 

BioRad) that had been soaked in dilute NuPAGE® transfer buffer (20X, Cat. # NP006, 
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Life Technologies) containing 10% (v/v) methanol, were loaded into the XCell II
TM

 Blot 

Module (Life Technologies). The blot module was then placed in the XCell SureLock
TM

 

Mini-Cell Electrophoresis system and the running chamber saturated with NuPAGE® 

transfer buffer while the outer chamber was filled with distilled water. The transfer was 

run at 30V for 1 hour to allow the proteins to transfer from the gel to the membrane.  

 

Ponceau S staining (Sigma-Aldrich, Cat. # P7170) was used to determine successful 

transfer of the proteins from the gel to the membrane. The membrane was washed with 

Tris-buffered saline Tween-20 (TBST; 50mM Tris, pH 7.4; 200mM NaCl and 0.1% 

(v/v) Tween-20) three times for 5 minutes to ensure the Ponceau S stain was removed 

before the membrane was blocked with 5% (w/v) skimmed milk powder solution in 

TBST at room temperature for 1 hour with gentle agitation. Three washes with TBST 

were carried out after blocking to remove any residual milk powder solution before the 

membrane was probed with the primary antibodies. Anti-TLR4 (Cat. # ab22048, 

Abcam) at a concentration of 2µg/ml in 5% (w/v) BSA/TBST solution and the anti-

Sodium-Potassium ATPase transporter used as the housekeeping protein for the 

membrane fractions (Cat. # ab76020, Abcam) at a 1:20000 dilution in 2% (w/v) 

BSA/TBST were incubated overnight at 4°C with gentle agitation. Anti-GAPDH (Cat. # 

AM4300, Life Technologies) was diluted 1:4000 in 5% (w/v) skimmed milk powder in 

TBST and incubated for 1 hour. Following incubation, the primary antibody was 

removed and the three washes with TBST were repeated to remove any unbound 

primary antibody. The enzyme-linked secondary antibody, either anti-Mouse (Cat. # 

A3682, Sigma-Aldrich) or anti-Rabbit HRP-linked IgG antibodies (Cat. # 70745, New 

England Biolabs) as appropriate were diluted 1:1000 with a 5% (w/v) skimmed milk 

powder solution in TBST and the blot was incubated at room temperature for 1 hour 

with gentle agitation. Three TBST washes were completed after the incubation to 

remove any unbound secondary antibody before adding the working reagent of 

SuperSignal West Pico Chemiluminescent Substrate (1:1 Luminol/Enhancer: Stable 

Peroxide buffer; Cat. # 34080, Thermo Scientific) according to manufacturer’s 

instructions. The blot was protected from the light and incubated for 5 minutes to allow 

the enzyme linked to the secondary antibody to convert the substrate to a 

chemiluminescent product. The intensity of the chemiluminescence was measured using 

the BioRad Fluor-S MultiImager. To re-probe the membrane, the previous antibodies 

were stripped for 15 minutes at room temperature using Restore
TM

 Western blot 

Stripping buffer (Cat. # 21059, Thermo Scientific) before re-blocking the membrane and 

repeating the process.  



General materials and methods 

 

47 

 

2.7.5. Data analysis and statistics 

In experiments carried out with ranging doses of treatments, one-way ANOVA was 

performed followed by Bonferroni multiple comparison tests.  

 

 

2.8. Analysis of SF modifications on TLR4 using liquid 

chromatography-tandem mass spectroscopy (LC-MS/MS) 

2.8.1. Sample preparation 

2.8.1.1. Recombinant TLR4 protein 

Purified extracellular domain of TLR4 (sourced from a mouse myeloma cell line, NS0-

derived, Glu24-Lys631, with a C-terminal Ser and 10-His tag) was obtained from R&D 

systems (Cat. # 1478-TR-050). TLR4 (1μg) was incubated with SF (5-50µM; vehicle 

control for SF = < 0.1% (v/v) DMSO) for 1 hour at 37°C in a 100mM Tris-HCl (pH 7.8) 

and 10mM CaCl2 digestion buffer. For reducing conditions, 1mM DTT was added for 15 

minutes following SF treatment. Sequencing grade chymotrypsin (Cat. # 11418467001, 

Roche) was added for 7 hours, followed by trypsin digestion overnight after thermal 

denaturation of the chymotrypsin for 5 minutes at 95°C (both at 1:50 enzyme to 

substrate ratio). Protein digestion was quenched using formic acid at a final 

concentration of 5%. OMIX C18 pipette tips (Cat. # A57003100, Agilent Technologies) 

were used to concentrate the peptide fragments and remove undigested protein.  

 

 

2.8.1.2. Cytoplasmic and membrane protein extracts 

Duplicate membrane and cytoplasmic protein fractions were subjected to gel 

electrophoresis as explained in section 2.7.3. 

 

 

2.8.1.3. Immunoprecipitation of TLR4 protein 

In order to enrich the samples with TLR4, an immunoprecipitation (IP) method was 

used. The Pierce Classic IP Kit (Cat. # 26416, Thermo Scientific) was used according to 

manufacturer’s instructions (Figure 2.3).  
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Figure 2.3. Protocol for immunoprecipitation of TLR4. 

 

 

  

HT-29 cells treated with SF (5, 10 and 25µM) +/- 1ng/ml LPS for 1 

hour 

Cell lysate vortexed twice and centrifuged for 10 minutes at 13000 x g 

Supernatant transferred to fresh tube and protein quantified using 

the BCA assay (section 2.7.2.)  

1mg protein added to control agarose resin to pre-clear. Incubate for 

1 hour and centrifuge 1000 x g 30 seconds 

10µg anti-TLR4 added to lysate and left overnight at 4°C 

Antibody-lysate solution incubated with protein A/G agarose for 1 

hour at 4°C 

Wash twice with wash buffer and once with conditioning buffer 

Elute complex with sample buffer with added DTT to dissociate 

antibody-protein complex 

10µl for western blot analysis and the rest was subjected to gel 

electrophoresis for gel digest 

Proteins extracted using IP lysis buffer. Incubate on ice 5-10 minutes 
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2.8.2. Gel digestion of protein bands 

Following gel electrophoresis, gels were fixed with a solution of 50% (v/v) methanol 

and 7% (v/v) acetic acid for 15 minutes to improve staining. The fixed gels were washed 

with distilled water three times to remove any remaining fixing agent. The gels were 

stained with GelCode Blue Stain Reagent, a coomassie blue protein stain (Cat. # 24590, 

Thermo Scientific) for 1 hour, followed by destaining with three washes of distilled 

water in order to reduce the background, resulting in only the proteins being stained. The 

gels were visualised using the GS800 Calibrated Densitometer (BioRad) using the 

Quantity One 4.6.1 software with Gel Coomassie setting and selected at 36.3µm.  

 

The approximate band size of the expected TLR4 band is at 93kDa therefore from the 

gels where the cytoplasmic and membrane fractions were used, the area of gel excised 

was between the 80 and 100kDa markers. For the IP product, several bands were excised 

as described in further detail in Chapter 5, section 5.2.4. Once excised from the gel, as 

much unstained gel as possible was removed and the stained portion was cut finely into 

1mm
3
 with a razor blade. The samples were transferred in to 1.5ml eppendorfs and 

400µl distilled water was added. The gel pieces were washed with 1ml of 0.2M 

ammonium bicarbonate (ABC) in 50% acetonitrile via vortexing briefly and leaving for 

15 minutes to remove the GelCode Blue Stain Reagent. This step was repeated two-three 

times until the gel pieces were clear in colour. Once the stain was completely removed, 

the solution was aspirated. 1ml of acetonitrile was added for 10 minutes to remove 

aqueous solutions resulting in the gel pieces become white in colour and dry. The 

solution was aspirated and the tubes were left open to allow the remaining acetonitrile to 

evaporate. 

 

For the enzyme digestion step, chymotrypsin was prepared in a solution of 20mM 

ABC/10mM CaCl2. A 25µg aliquot of chymotrypsin was dissolved in 500µl 20mM 

ABC/10mM CaCl2 and 100µl of this solution was added to 150µl solvent to give a 

20ng/µl working concentration and was kept on ice. A 5µg aliquot of trypsin was 

solubilised in 245µl 20mM ABC/10mM CaCl2 to give a 20ng/µl working concentration 

and was left on ice. 10-20µl of each enzyme was added which was absorbed by the gel 

pieces, allowing the proteins within the gel pieces to be enzymatically digested. An 

appropriate volume of 20mM ABC/10mM CaCl2 was subsequently added to each 

sample to ensure all gel pieces were in solution and samples were left overnight in a 

water bath at 37°C. To quench the enzyme reaction, the total volume of liquid added to 
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the gel pieces was calculated and this amount of 1% formic acid was added to each 

sample before they were left on dry ice for 10 minutes.  

 

Samples were thawed and the digest solution was aspirated and transferred into fresh 

1.5ml eppendorfs. The gel pieces were washed with 50% acetonitrile for 10 minutes 

before the solution was collected to increase the recovery of the digested proteins. The 

extracted digest samples were then dried down on the medium drying setting using the 

Speed Vac SC110 (Savant) fitted with a refrigerated condensation trap and a Vac V-500 

(Buchi). The samples were then frozen at -80°C until ready for Orbitrap analysis.      

 

 

2.8.3. LC-MS/MS analysis 

Samples were prepared in 50% acetonitrile and subjected to micro-LC-MS/MS analysis 

using the LTQ Orbitrap mass spectrometer (Thermo Electron) and a nanoflow-HPLC 

system (nanoACQUITY; Waters). Peptides were trapped on line to a Symmetry C18 

Trap (5µm, 180µm x 20µm) held at 45°C. Peptides were eluted by a gradient of 0-80% 

acetonitrile in 0.1% formic acid over 50 minutes at a flow rate of 250nl/min. The mass 

spectrometer was operated in positive ion mode with a nano-spray source at a capillary 

temperature of 200°C.  

 

The Orbitrap was run with a resolution of 60,000 over the mass range m/z 300-2000 and 

an MS target of 10
6
 and 1 second maximum scan time. The MS/MS was triggered by a 

minimal signal of 2000 with an Automatic Gain Control target of 30000 ions and a 

maximum scan time of 150 milliseconds. For MS/MS events selection of 2+ and 3+ 

charge states selection were used. Dynamic exclusion was set to 1 count and 30 second 

exclusion time with an exclusion mass window of ± 20ppm. 

 

 

2.8.4. Data analysis and statistics 

The protein levels of the bands from the IP product gel stained with coomassie blue were 

quantified using the Quantity One software. Adjusted % band volumes were used and 

for normalisation, the antibody band was used (Chapter 5, section 5.2.4). 

 

For the LC-MS/MS data, the spectra were analysed using Mascot against the Uniprot 

protein database, restricted to taxonomy Homo sapiens of the SPtrEMBL database, 

chymotrypsin/trypsin digest which was permitted to have four missed cleavages and 
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oxidised methionine and cysteine-bound SF were selected as variable modifications. The 

peptide masses were monoisotopic and either 2+ or 3+ charged and the peptide error 

tolerance was ± 1.5Da and MS/MS error tolerance was ± 0.5Da. Data was also analysed 

using Peaks software to investigate the significance of the fragmentation pattern and 

Progenesis software to evaluate the dose-response relationship. 

 

For investigating the relationship between SF treatment and the abundance of the 

modified cysteine-containing peptides, the abundance values were extracted from the 

Progenesis software and a one-way ANOVA was carried out followed by Bonferroni 

multiple comparison tests.  

 

 

2.9. Measure of NF-κB activity using QUANTI-Blue
TM

 assay 

2.9.1. Background 

QUANTI-Blue
TM 

is a colorimetric enzyme assay which is able to determine the amount 

of alkaline phosphatase (AP) activity in cell culture supernatants via an enzymatic 

reaction resulting in the change of the QUANTI-Blue
TM

 solution from a pink colour to a 

purple-blue colour in the presence of AP. SEAP, a truncated form of the GPI-anchored 

protein placental AP, is a commonly used reporter gene. It is secreted into the cell 

culture medium making this a quick assay that does not require disruption of the cells. 

 

 

2.9.2. QUANTI-Blue
TM

 assay 

HEK-Blue
TM

 cells (described in section 2.2.2) were grown to 70% confluence in 384 

well plates. Once treated for 24 hours with appropriate ligands in the presence or 

absence of SF (L-SF or DL-SF; 2, 5 and 10µM; vehicle control for SF = < 0.1% (v/v) 

DMSO), the level of SEAP was measured. QUANTI-Blue
TM 

powder (Cat. # rep-qb1, 

InvivoGen) was dissolved in distilled water and warmed to 37°C before use. 50µl of 

QUANTI-Blue
TM

 was added to each well of a new 384 well plate before the addition of 

5µl cell culture supernatant from each replicate. The plate was then incubated at room 

temperature (required between 10-60 minutes depending on which cells were used) and 

was shielded from the light to allow a colour change to occur from pink to purple-blue 

after which the absorbance was measured at 650nm using the MultiSkan Spectrum 

spectrophotometer (Thermo Scientific). 
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2.9.3. Statistics 

With ranging doses of treatments, one-way ANOVA was performed followed by 

Bonferroni multiple comparison tests. 

 

  

2.10. Analysis of lipid accumulation and lipolysis in SGBS cells 

2.10.1. Background 

During adipogenesis, preadipocyte cells can be differentiated into mature adipocytes in 

response to a number of signals which results in the increased accumulation of lipids 

within the cells. This lipid accumulation can be used to quantify the level and 

progression of differentiation over time. In the present study, Oil Red O staining was 

performed. 

  

Oil Red O is otherwise known as Sudan Red 5B and is a fat soluble diazo dye used for 

staining lipids. By using isopropanol as a solvent, the dye is able to enter the cells and 

stain the lipids bright red while the excess can be removed via washing with water. An 

advantage of this protocol is that the Oil Red O stain can be eluted from the cells using 

isopropanol without dissolving the lipids themselves and the level of staining can be 

quantified spectrophotometrically. 

 

In terms of measuring lipolysis within the cells, a commonly used technique is 

measuring the glycerol release into the cell culture supernatant. Glycerol is the backbone 

of triglycerides and under a number of physiological conditions triglycerides can be 

hydrolysed, resulting in the release of glycerol and FFAs. Unlike the FFAs, glycerol is 

not reutilised by the adipocytes and is released by the cells. By measuring the levels of 

glycerol in the cell culture supernatant we can consider this to reflect the level of 

lipolysis. Kits are commercially available and involve an enzymatic reaction in which a 

coloured product is formed. The absorbance is proportional to the amount of glycerol 

released. Figure 2.4 presents the reactions involved in measuring glycerol levels. 
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Figure 2.4. Glycerol assay principle.  

Glycerol is phosphorylated by glycerol kinase to produce glycerol-3-phosphate and 

adenosine diphosphate (ADP). The glycerol-3-phosphate is oxidised by glycerol 

phosphate oxidase producing dihydroacetone phosphate and hydrogen peroxide (H2O2). 

Peroxidase catalyses the redox-coupled reaction of H2O2 with 4-aminoantipyrine (4-

AAP) and N-ethyl-N-(3-sulfopropyl)-m-anisidine (ESPA), producing a brilliant purple 

product with an absorbance maximum at 540nm. Figure adapted from the kit protocol. 

 

 

2.10.2. Oil Red O staining 

Oil Red O was obtained from Sigma-Aldrich (Cat. # O0625) and a stock solution of 

3.4mM in isopropanol was produced. This was left on a stirrer plate overnight, filtered 

using a sterile 0.2µm pore size syringe filter and stored at 4°C. The working solution 

was produced using a 1.6-fold dilution in water to yield a working concentration of 

2.1mM. The solution was mixed and left at room temperature for 20 minutes before 

being filtered again using a sterile 0.2µm pore size syringe filter. Details of the protocol 

are given in Figure 2.5. 
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Medium was removed from cells and stored for additional 

analyses 

Aspirated and replaced with fresh 10% formalin and left 

overnight 

Aspirate and wash with 60% isopropanol  

Add Oil Red O Stain for 10 minutes 

Aspirate stain and wash immediately with distilled water four 

times 

Pictures can be taken of stained intracellular lipids 

Elute intracellular Oil Red O with 100% isopropanol 

Solution transferred into a 96 well plate with 6 replicates 

Read absorbance at 500nm with 100% isopropanol as a blank 

measurement  

Cells were fixed: 10% formalin for 5 minutes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5. Oil Red O staining protocol. 

 

 

2.10.3. Glycerol release analysis 

Prior to the Oil Red O staining, the cell culture supernatant was collected and cleared by 

centrifugation at 13000rpm for 20 minutes at 4°C before being stored at -20°C. For 

glycerol analysis, the Glycerol Colorimetric Assay Kit (Cat. # 10010755, Cambridge 

Biosciences) was used.  
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20µl of the Glycerol Standard was diluted with 980µl of the diluted Standard Diluent 

(all reagents were provided in the kit) to produce a stock solution of 20mg/l. From the 

stock solution, a standard curve was produced over the range of 0-20mg/l in order to 

allow the quantification of glycerol present in the samples. 10µl of standards and 

samples were added to the 96 well plate provided in the kit before the reaction was 

initiated via the addition of the diluted Enzyme Buffer solution to each well. The plate 

was shaken for a few seconds to mix before being covered and incubated for 15 minutes 

at room temperature. The absorbance was then measured at 550nm using the FLUOstar 

OPTIMA microplate reader. The concentration in each sample was determined by the 

use of the standard curve algorithm.  

 

 

2.10.4. Data analysis and statistics 

For the Oil Red O data, the OD values were corrected by subtracting the value found 

with isopropanol alone and these raw data values were used for analysis. For the 

glycerol release data, OD values were blank-corrected by subtracting the value found 

with 0mg/l of the glycerol standard curve and applying the standard curve equation to 

calculate the concentration of glycerol in each sample.  

 

In experiments carried out with ranging doses of treatments, one-way ANOVA was 

performed followed by Bonferroni multiple comparison tests. In experiments with two 

variables (dose of treatment and time of exposure) two-way ANOVA was performed 

with Bonferroni multiple comparison tests. 

 

 

2.11. Analysis of TCA intermediates in MaCM using LC-MS/MS 

analysis 

2.11.1. Sample preparation 

MaCM was produced following the differentiation of monocytes into macrophages as 

described in section 2.3.2. 

 

Both the DMEM/F12 + 10% (v/v) non-heat inactivated FCS (normal growth medium for 

the SGBS cells) and RPMI-1640 serum-free with and without 0.5% (w/v) BSA 

(differentiation medium for the monocytes to macrophages) were measured in 

combination with a number of doses (10, 20 and 50% MaCM). All were carried out in 
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two biological replicates and two technical replicates. Once prepared, all solutions were 

centrifuged at 1200 x g for 10 minutes at room temperature and the supernatant 

transferred to a fresh eppendorf. 100µl 3mM perchloric acid was added to all media 

samples to acidify the solution and samples were immediately placed on ice for 10 

minutes. Samples were centrifuged at 12000 x g for 10 minutes at 4°C and the 

supernatant was collected. 100µl of each sample was added to amber 2ml HPLC vials 

with inserts.  

 

A standard curve was produced with 1mg/ml concentration of a number of TCA 

intermediates, all purchased from Sigma-Aldrich; glutamic acid (Cat. # G1251), citric 

acid (Cat. # C0759), malic acid (Cat. # M0875), oxaloacetic acid (Cat. # O4216), 

succinic acid (Cat. # S3674), fumaric acid (Cat. # 47910), malonic acid (Cat. # M1296) 

and lactic acid (Cat. # L0625) were all solubilised in acidified medium (RPMI-1640 + 

10% 3mM perchloric acid). 100µl of each of the standards were added together and 

made up to 1ml to give a solution of 100µg/ml of each standard. A separate standard 

curve was made up for isocitric acid (Cat. # I1252) and 100µl was taken and made up to 

1ml in the same way as with the other intermediates. A five point standard curve is 

produced with a 10-fold serial dilution over the range of 10000ng/ml to 0ng/ml. 10µl of 

deuterated citrate is added to all samples as an internal standard (final concentration of 

10µg/ml) to allow quantification based on the ratio of the internal standard to each 

intermediate peak. 

 

 

2.11.2. LC-MS/MS analysis 

For LC-MS/MS analysis, the Agilent 1200 Series LC 6490 Triple Quad LC-MS mass 

spectrometer was used (Agilent). The HPLC column was a Kinetex C18 1.7µm (100 x 

2.1mm) from Phenomenex. The flow rate was 0.4ml/min with a mobile phase of 0.2% 

formic acid. Electrospray ionisation (ESI) was used in the positive mode for glutamic 

acid and in the negative mode for the remaining intermediates investigated. 2µl was used 

for the injection volume and the autosampler was maintained at 4°C. Table 2.2 

summarises the monitored ions and the optimised MS operating parameters of the 

analytes.  
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Table 2.2. LC-MS/MS parameters for analytes measured  

Analyte Retention time 

(minutes) 

Precursor Ion 

(m/z) 

Product Ion 

(m/z) 

Polarity 

Glutamic Acid 0.6 148.1 129.9 Positive 

Citric Acid 0.9 191.0 110.9 Negative 

Iso-Citric Acid 0.7 191.0 154.9 Negative 

α-Ketoglutaric acid * 145.1 100.9 Negative 

Malic Acid 0.7 133.1 114.8 Negative 

Oxaloacetic Acid * 131.0 87.1 Negative 

Succinic Acid 1.2 117.0 98.9 Negative 

Fumaric Acid 1.1 115.0 70.9 Negative 

Malonic Acid * 103.0 58.9 Negative 

Lactic Acid 0.8 89.0 42.9 Negative 

* The retention time was unavailable as compounds were not found in samples 

 

 

2.11.3. Data analysis and statistics 

Data files were explored and analysed using MassHunter Workstation software 

(Agilent). The peak areas of the analytes were determined and using the peak area ratio 

(peak area of analyte/peak area of the internal standard) the concentration of the analyte 

was determined. In the present study, the treatment consisted of a number of doses thus 

requiring one-way ANOVA followed by Bonferroni multiple comparison tests. 
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Chapter Three 

Effect of SF on LPS-induced cytokine 

production in human monocytes 
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3.0. Introduction 

Chronic inflammation is a complex condition that has been described as the ‘common 

soil’ in the aetiology of a number of multifactorial diseases such as cancer, CVD and 

T2DM [205]. It is often characterised by the modulation of inflammatory mediators, e.g. 

cytokines, following a sustained response to an inflammatory stimulus. Cytokines are a 

large group of signalling molecules involved in cell communication and are often 

described as either pro- or anti-inflammatory [206]. However, many cytokines have a 

pleiotropic nature and can function as both pro- and anti-inflammatory, depending on the 

circumstances, which makes classification difficult. Of the cytokines found to be altered 

in chronic diseases, IL-6, IL-1β and TNFα are commonly investigated in vitro and in 

vivo, and most research classifies these as pro-inflammatory [33, 42, 43, 45, 206-213].  

 

Chronic inflammation occurs when an acute inflammatory attack becomes dissociated 

from a specific stimulus. This stimulus may be a bacterial infection in which structural 

components of the bacteria elicit an inflammatory response. An example is LPS, a 

bacterial endotoxin found in the cell walls of Gram-negative bacteria. Endotoxin can be 

measured at detectable levels in circulation. In healthy individuals, it is present at a level 

in the low pg/ml range, however, in individuals suffering from chronic disease levels 

may be elevated at levels up to 0.9ng/ml [37, 45, 46]. LPS is a specific agonist for 

TLR4, a PRR which when activated by ligand binding, results in the stimulation of 

transcription factors including NF-κB and AP-1, which in turn control the expression of 

pro-inflammatory mediators [13]. Thus, elevation of LPS in circulation may be 

responsible for increased serum levels of cytokines seen in sufferers of chronic disease.  

 

Monocytes are a fundamental cell type involved in both acute and chronic inflammation. 

They are found in circulation and are primed with the ability to rapidly invade tissues in 

response to an inflammatory stimulus [214]. In a low-grade inflammatory state, for 

example during atherosclerosis, monocytes are recruited as a result of increased LDL 

levels within the plasma. A positive correlation is seen between the number of 

monocytes in circulation and atherosclerotic plaque size in animal models and in 

humans, resulting in the level of circulating monocytes being described as an 

independent risk factor for CVD [215]. As a result, monocytes are commonly chosen as 

a model to study chronic inflammatory signalling pathways. 

 

When investigating the role of dietary agents in human health, biological relevance is of 

critical importance. The fact that a state of low-grade systemic inflammation is common 
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to a number of chronic diseases makes the process a crucial target for dietary 

interventions. Diets rich in cruciferous vegetables have been associated with a decreased 

risk of developing cancer at a number of different sites and also with a lower risk of 

CVD mortality [115, 216-222]. ITCs, derived from GSLs present in cruciferous 

vegetables such as broccoli, are bioactive components that may mediate the observed 

beneficial health effects with increased cruciferous vegetable consumption. SF is the 

predominant ITC obtained from broccoli. Based on research by Gasper and colleagues, a 

peak concentration of 2.4 ± 0.4µM of total SF metabolites were found in the plasma of 

individuals 2 hours after consumption of standard broccoli, while consumption of high-

GSL broccoli achieved a concentration of 7.4 ± 3.1µM [129]. This provides direct 

experimental evidence that consumption of broccoli results in the presence of 

biologically active SF in circulation.  

 

SF has been previously shown to exert anti-inflammatory effects both in vitro and in 

vivo [181-187, 190-192, 195, 223, 224]. Taking into consideration the elevation of pro-

inflammatory cytokines in sufferers of chronic disease, with the evidence that SF is able 

to exert anti-inflammatory effects, the hypothesis that SF was able to significantly 

suppress IL-6, IL-1β and TNFα expression and secretion in human monocytic cells in 

response to LPS was tested within this chapter. 

 

 

3.1. Materials and Methods 

The cell models used were human PBMCs from healthy blood donors in order to 

optimise experimental design or from a commercial source, in addition to THP-1 

monocytes. Details of these cell types are described in section 2.2.1. In order to measure 

the levels of cytokines secreted in response to LPS in the presence or absence of SF, an 

ELISA specific to each of the cytokines measured (IL-6, IL-1β and TNFα) was 

performed and the technique is described in further detail in section 2.4. To determine 

the viability of the cells in response to SF a WST-1 cell viability assay was used (section 

2.3). For investigations into the level of expression of each cytokine in the THP-1 

monocytes, real-time RT-PCR was used (section 2.5). 
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3.2. Results 

3.2.1. PBMCs  

3.2.1.1. Effect of SF on LPS-induced cytokine secretion 

Human PBMCs were the chosen cell model in this experimental design due to their 

principle involvement in responding to pro-inflammatory signals. LPS is commonly 

used as an artificial inducer of inflammation but often at very high concentrations. The 

reason LPS was favoured in this experimental design as opposed to other inflammatory 

stimuli such as IL-1β and TNFα, was due to the presence of endotoxin circulating in 

different chronic conditions e.g. CVD and T2DM. Also, with choosing to measure IL-1β 

and TNFα as my endpoint biomarkers, using them as the inflammatory stimulus would 

have been inappropriate for the secretion studies and expression would have been 

potentially induced as a result of positive feedback. In the present study, concentrations 

of LPS were used in the range of 1-500ng/ml, with a level of 1ng/ml being relevant to 

the levels found circulating in sufferers of chronic disease [37, 45, 46]. When human 

PBMCs were treated with 1ng/ml LPS for 4 hours, a significant increase in the levels of 

IL-6 secretion was observed (Figure 3.1). Thus demonstrating that this physiologically 

relevant concentration was sufficient for induction of an inflammatory response and it 

was not necessary to further increase the concentration of LPS used.  

 

 

 

  

 

 

 

 

 

 

 

Figure 3.1. Induction of IL-6 secretion with different LPS concentrations in human 

PBMCs. Human PBMCs were treated with LPS at different concentrations (1, 5 and 

500ng/ml; vehicle control for LPS = PBS) for 4 hours. The cell culture supernatant was 

collected and IL-6 was measured by ELISA. Data shown = mean ± SD. Data was 

statistically analysed using one-way ANOVA followed by Bonferroni multiple 

comparison tests. ***p<0.001 vs. 0ng/ml. 

 

 

The measurement of IL-6 secretion in response to LPS (1ng/ml) in human PBMCs was 

repeated over a 24 hour period to observe the secretion pattern. The secretion of IL-6 is 
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significantly induced at 4 hours initially (consistent with response seen in Figure 3.1) 

and continues to rise with increasing the time of exposure to LPS (Figure 3.2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2. LPS significantly induces IL-6 secretion in human PBMCs over 24 

hours. Human PBMCs were treated with 1ng/ml LPS (vehicle control for LPS = PBS) 

with varying times of exposure (0.5-24 hours). The cell culture supernatant was 

collected and IL-6 was measured by ELISA. Data shown = mean ± SD. Data was 

statistically analysed using AUC followed by Student t tests for each time point 

comparing the cumulative AUC values. *p<0.01 and **p<0.001 vs. untreated controls at 

the same time point.  

  

 

In order to investigate the effect of SF on LPS-induced IL-6 secretion, the time of SF 

exposure required determination. In previous experiments within the research group, 

human PBMCs were pre-treated with SF for 20 hours prior to LPS treatment for 4 hours. 

In terms of what was observed in vivo, Gasper and colleagues found that the 

concentration of SF peaks in the plasma 2 hours after ingestion of broccoli [129]. Based 

on those results, the effect of SF on LPS-induction with both a 2 hour and 20 hour pre-

treatment of SF was compared. In both conditions, SF significantly suppressed LPS 

induction of IL-6 secretion (Figure 3.3A and B). 
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Figure 3.3. SF suppresses LPS-induced IL-6 secretion in PBMCs with a 2 hour pre-

treatment (A) and 20 hour pre-treatment (B). PBMCs were treated with 2µM SF 

(vehicle control for SF = < 0.1% (v/v) DMSO) for 2 hours (A) or 20 hours (B) prior to 

treatment with 1ng/ml LPS (vehicle control for LPS = PBS) for 4 hours. The cell culture 

supernatant was collected and IL-6 was measured by ELISA. Data shown = mean ± SD. 

Data was statistically analysed using one-way ANOVA followed by Bonferroni multiple 

comparison tests.***p<0.001 against LPS or as annotated.  

 

 

The suppression of LPS-induced IL-6 secretion by SF was explored further through 

measuring IL-6 secretion over 24 hours. Additional measurements of IL-1β and TNFα 

secretion were also taken throughout a 24 hour period to determine the specificity of 

SF’s effect. It was found that SF significantly reduced the level of LPS-induced 

secretion of all three cytokines throughout the 24 hours when PBMCs were pre-

incubated with SF for 2 hours (Figure 3.4).  
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Figure 3.4. SF significantly suppresses LPS-induced secretion of IL-6 (A), IL-1β (B) 

and TNFα (C) in PBMCs over time. PBMCs were treated with 2µM SF (vehicle 

control for SF = < 0.1% (v/v) DMSO) at 0 hours. After 2 hours, 1ng/ml of LPS (vehicle 

control for LPS = PBS) was added to the cells. The cell culture supernatant was 

collected after 4, 6, 10 and 26 hours and cytokines were measured by ELISA. Data 

shown = mean ± SD. Data was statistically analysed using AUC followed by Student t 

tests for each time point comparing the cumulative AUC values. **p<0.01 and 

***p<0.001 LPS vs. untreated controls and LPS + SF vs. LPS only.  
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3.2.1.2 Effect of SF on PBMC cell viability 

To ensure that the significant suppression observed with SF on LPS-induced cytokine 

secretion was not due to cytotoxic effects, a WST-1 viability assay (section 2.3) was 

carried out with a wide range of SF concentrations (0-200µM). SF was found to 

significantly reduce the viability of human PBMCs at concentrations of 10µM and above 

(Figure 3.5). The IC50 was calculated at 15.6 ± 6.0µM. Importantly, no significant 

reduction was seen in cell viability as compared to the control with concentrations below 

10µM. This confirms that 2µM SF used in the cytokine secretion experiments was not 

significantly reducing LPS-induced cytokine production as a result of cytotoxic effects. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5. Effect of SF on PBMC cell viability. PBMCs were treated with SF (0-

200µM) for 24 hours (vehicle control for SF = < 0.1% (v/v) DMSO). After treatment 

was complete, 10µl WST-1 reagent was added to each well. The plates were incubated 

at 37°C and measured using a spectrophotometer at 450nm every 15 minutes for 3 

hours. Data shown is from the 2.5 hour measurement at which the levels of absorbance 

were all measurable and consistent. Data shown = mean ± SD.  Data was statistically 

analysed using one-way ANOVA followed by the Bonferroni multiple comparison test. 

***p<0.001 vs. 0µM SF. 

 

 

3.2.2 THP-1 monocytes 

3.2.2.1 Effect of SF on LPS-induced cytokine secretion 

The physiologically relevant concentration of 1ng/ml LPS was sufficient for inducing 

cytokine secretion in human PBMCs (Figure 3.1). Using a range of concentrations from 

1-100ng/ml LPS, it was investigated whether human THP-1 monocytes, a cancerous cell 

line isolated from a sufferer of acute monocytic leukaemia [198], behaved in the same 

way. No induction in IL-6 secretion was observed following LPS treatment for 4 hours 

(data not shown) and subsequently LPS treatment for 24 hours was investigated with the 

THP-1 monocytes. 
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LPS at 1ng/ml was sufficient to significantly induce IL-6 secretion in THP-1 monocytes 

(Figure 3.6), replicating what was seen with PBMCs. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6. Induction of IL-6 secretion with different LPS concentrations in THP-1 

monocytes. THP-1 monocytes were treated with LPS at different concentrations (1, 10 

and 100ng/ml; vehicle control for LPS = PBS) for 24 hours. The cell culture supernatant 

was collected and IL-6 was measured by ELISA. Data shown = mean ± SD. Data was 

statistically analysed using one-way ANOVA followed by Bonferroni multiple 

comparison tests. ***p<0.001 vs. 0ng/ml. 

 

 

LPS induction of IL-6 was further examined over a 24 hour period as was carried out 

with the PBMCs (Figure 3.2). IL-6 secretion was also found to be induced by LPS over 

time with the secretion beginning at 12 hours continuing linearly up to 24 hours (Figure 

3.7).  
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Figure 3.7. LPS significantly induces IL-6 secretion in THP-1 monocytes over 24 

hours. THP-1 monocytes were treated with 1ng/ml LPS (vehicle control for LPS = PBS) 

with varying times of exposure (0.5-24 hours). The cell culture supernatant was 

collected and IL-6 was measured by ELISA. Data shown = mean ± SD. AUC followed 

by Student t tests for each time point comparing the cumulative AUC values. 

***p<0.001 vs. untreated controls at the same time point.  

 

 

To investigate whether SF could suppress LPS-induced IL-6 secretion, THP-1 

monocytes were treated with SF (2, 5 or 10µM) in combination with 1ng/ml LPS for 24 

hours. Concentrations of 5µM and 10µM SF were able to significantly suppress the LPS 

induction of IL-6 secretion in THP-1 monocytes while 2µM, the concentration used with 

the PBMCs, shows a small but non-significant reduction (Figure 3.8). 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8. SF suppresses LPS-induced IL-6 secretion in THP-1 monocytes. THP-1 

monocytes were treated with 1ng/ml LPS (vehicle control for LPS = PBS) for 24 hours 

in the presence or absence of SF (2, 5 and 10µM; vehicle control for SF = < 0.1% (v/v) 

DMSO). The cell culture supernatant was collected and IL-6 was measured by ELISA. 

Data shown = mean ± SD. Data was statistically analysed using one-way ANOVA 

followed by Bonferroni multiple comparison tests. ***p<0.001 vs. LPS (1ng/ml) or as 

annotated.  
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The suppression of LPS-induced IL-6 secretion by SF was further investigated over 

time. 5µM SF completely suppressed LPS induction of IL-6 secretion for up to 72 hours 

with the levels of secretion remaining very close to those of the untreated controls 

(Figure 3.9). IL-6 was induced with LPS from 12 hours, which is consistent with what 

was previously shown (Figure 3.7). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9. SF significantly suppresses LPS-induced IL-6 secretion in THP-1 

monocytes over time. THP-1 monocytes were treated with 1ng/ml LPS (vehicle control 

for LPS = PBS) over a range of time points (0.5-72 hours) in the presence or absence of 

5µM SF (vehicle control for SF = < 0.1% (v/v) DMSO). The cell culture supernatant 

was collected and IL-6 was measured by ELISA. Data shown = mean ± SD. Data was 

statistically analysed using AUC followed by Student t tests for each time point 

comparing the cumulative AUC values. *p<0.05 and ***p<0.001 LPS vs. untreated 

controls and LPS + SF vs. LPS only.  

 

 

To ensure that the effect of SF was not limited to IL-6 alone, the effect of LPS and SF 

on the levels of IL-1β and TNFα secretion was also measured. THP-1 monocytes were 

co-treated with 1ng/ml LPS and 5µM SF for 12 hours before measuring the cytokine 

secretion. Both IL-1β and TNFα demonstrated a significant induction with 1ng/ml LPS, 

which was significantly suppressed in the presence of 5µM SF (Figure 3.10). 
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Figure 3.10. SF significantly suppresses LPS-induced IL-1β (A) and TNFα (B) 

secretion in THP-1 monocytes. THP-1 monocytes were treated with 1ng/ml LPS 

(vehicle control for LPS = PBS) in the presence or absence of 5µM SF (vehicle control 

for SF = < 0.1% (v/v) DMSO) for 12 hours. The cell culture supernatant was collected 

and IL-1β and TNFα was measured by ELISA. Data shown = mean ± SD. Data was 

statistically analysed using one-way ANOVA followed by Bonferroni multiple 

comparison tests. ***p<0.001 vs. LPS or as annotated.  

 

 

3.2.2.2. Effect of SF on THP-1 monocyte cell viability 

Due to the significant reduction in LPS-induced IL-6, IL-1β and TNFα secretion in 

THP-1 monocytes, the effect of SF on THP-1 cell viability was investigated to ensure 

that this reduction was not simply due to a cytotoxic effect on the cells. THP-1 

monocytes were treated with concentrations of SF from 0-200µM for 24 hours. 

Concentrations up to 15µM SF did not demonstrate any significant cytotoxic effects in 

THP-1 monocytes (Figure 3.11) with an IC50 calculated at 36.4 ± 5.9µM.  
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Figure 3.11. Effect of SF on THP-1 monocyte cell viability. THP-1 monocytes were 

treated with SF (0-200µM; vehicle control for SF = < 0.1% (v/v) DMSO) for 24 hours. 

After treatment was complete, 10µl WST-1 reagent was added to each well. The plates 

were incubated at 37°C and measured using a spectrophotometer at 450nm every 15 

minutes for 3 hours. Data shown is from the 1 hour measurement at which the levels of 

absorbance were all measurable and consistent. Data shown = mean ± SD.  Data was 

statistically analysed using one-way ANOVA followed by the Bonferroni multiple 

comparison test. *p<0.05, ***p<0.001 vs. 0µM SF. 

 

 

3.2.2.3. Effect of SF on LPS-induced cytokine expression 

In order to evaluate which stage of cytokine production SF was targeting, cytokine 

expression was measured to see whether the induction by LPS and inhibition by SF was 

occurring at a transcriptional level in the THP-1 monocytes. Initially, a time course 

experiment was carried out with 1ng/ml LPS treatment measuring IL-6 expression. After 

2 hours of LPS exposure, there was significant induction of IL-6 expression, with the 

peak level occurring after 12 and 24 hours (Figure 3.12). 
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Figure 3.12. LPS significantly induces IL-6 expression in THP-1 monocytes over 

time. THP-1 monocytes were treated with 1ng/ml LPS for varying amounts of time (0.5-

24 hours; vehicle control for LPS = PBS). The RNA was extracted, quantified and 

analysed by real-time RT-PCR. Data shown = mean ± SD. Data was statistically 

analysed using AUC followed by Student t tests for each time point comparing the 

cumulative AUC values. LPS-treated conditions are compared to their own untreated 

control at each time point. **p<0.01, ***p<0.001 vs. untreated controls. 

 

 

Following these results, a co-treatment of 1ng/ml LPS and 5µM SF was carried out in 

order to monitor IL-6 expression over a 72 hour time period. It was demonstrated that at 

this physiologically relevant concentration of SF, a significant inhibition of IL-6 

expression induced by LPS across all the time points measured was observed, with the 

levels of IL-6 expression being comparable to that found in the untreated controls 

(Figure 3.13). 
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Figure 3.13. SF significantly suppresses LPS-induced IL-6 expression in THP-1 

monocytes over time. THP-1 monocytes were treated with 1ng/ml LPS for varying 

amounts of time (0.5-72 hours; vehicle control for LPS = PBS) in the presence or 

absence of 5µM SF (vehicle control for SF = < 0.1% (v/v) DMSO). The RNA was 

extracted, quantified and IL-6 expression was analysed by real-time RT-PCR. Data 

shown = mean ± SD. Data was statistically analysed using two-way ANOVA followed 

by Bonferroni multiple comparisons tests. ***p<0.001 LPS vs. untreated controls and 

LPS + SF vs. LPS only. 

 

 

To confirm SF can suppress the LPS-induced expression of both IL-1β and TNFα, real-

time RT-PCR was carried out with the RNA from THP-1 monocytes treated for 12 hours 

with 1ng/ml LPS and 5µM SF. IL-1β and TNFα expression were both induced by LPS 

treatment (Figure 3.14). However, while IL-1β expression followed the same trend as 

IL-6 with 5µM SF treatment resulting in a significant suppression of LPS induction 

(Figure 3.14A), the suppression of LPS-induced TNFα expression by SF approached, 

but did not reach statistical significance (Figure 3.14B). 
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Figure 3.14. SF significantly suppresses LPS-induced IL-1β expression (A) and 

shows a trend for suppression of TNFα expression (B) in THP-1 monocytes. THP-1 

monocytes were treated with 1ng/ml LPS (vehicle control for LPS = PBS) in the 

presence or absence of 5µM SF (vehicle control for SF = < 0.1% (v/v) DMSO) for 12 

hours. The RNA was extracted, quantified and IL-1β and TNFα expression was analysed 

by real-time RT-PCR. Data shown = mean ± SD. Data was statistically analysed using 

one-way ANOVA followed by Tukey multiple comparisons tests. 

 

 

3.3. Discussion 

Taking into account the elevated levels of endotoxin and pro-inflammatory cytokines in 

sufferers of chronic disease, this study aimed to establish a relevant cell model of 

chronic inflammation. LPS has been widely used in vitro as an artificial stimulant of 

inflammation. However, it is typically used at concentrations in the high ng/ml to low 

µg/ml range, a level that is higher than that found during acute inflammation such as 

sepsis [197]. The initial requirement of the model was to establish whether levels of LPS 

in the range of that observed in circulation of patients with chronic inflammatory 

diseases was sufficient to induce pro-inflammatory cytokine secretion.  

 

Low-level endotoxin (≤ 1ng/ml) has been shown to significantly induce levels of a 

number of pro-inflammatory mediators including the chemokines interleukin-8 (IL-8) 

and monocyte chemotactic protein-1 (MCP-1), as well as the cell adhesion molecules 

VCAM-1 and ICAM-1 [197, 225-227]. Based on this data, it was investigated whether a 

physiologically relevant concentration of 1ng/ml LPS was sufficient to significantly 

induce the production of pro-inflammatory cytokines. The initial experiments were 

carried out investigating the effect of 1ng/ml LPS on IL-6 secretion, as this is the 

cytokine with the most consistent data supporting its involvement in chronic disease. In 

vivo, levels of IL-6 are commonly elevated in patients suffering from chronic diseases, 
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with the majority of studies find levels of IL-6 to be around 1-15pg/ml in both cases and 

controls [26, 27, 29, 34, 35, 39-41, 43].  

 

PBMCs are an ex vivo model, making them a more suitable representation of what 

occurs in vivo as compared to established cell lines, and are a good candidate to use in a 

model of chronic inflammation. However, they do have their limitations. In vivo, 

monocytes would be subjected to hypoxic conditions and without the influence of the 

blood circulation, there will be a number of growth factors and signalling molecules the 

cells are not exposed to when in culture [228]. While cell lines are not directly from a 

patient and are therefore not as good a representation of what happens in vivo, they have 

distinct advantages for use. This includes their ability to be sub-cultured over a period of 

time in order for the same batch of cells to be used for a number of experiments, 

resulting in lower variation as compared to the use of primary cells from a number of 

individuals. Also, the use of cell lines does not require ethical approval, unlike primary 

cells.  

 

The cell line chosen for comparison to primary PBMCs was the THP-1 monocytic cell 

line. THP-1 cells were derived from a one year old boy suffering from acute monocytic 

leukaemia in 1980, and following characterisation were confirmed as a leukaemic cell 

line with distinct monocytic markers [198]. THP-1 cells have often been used as a model 

of monocytes, and while there are evident differences, Qin and colleagues discuss how 

THP-1 cells behave in a similar way to monocytes from patients suffering from chronic 

disease [229]. One difference that was evident was the exposure time to LPS; while the 

PBMCs respond after around 4 hours of treatment THP-1 monocytes require at least 12 

hours. This is possibly due to the fact that the PBMCs used were from a healthy 

individual, while the THP-1 monocytes are a cancerous cell line and may be more 

resistant to IL-6 induction by LPS. Differences in IL-6 secretion in response to LPS 

treatment in PBMCs and THP-1 monocytes was found previously by Schildberger and 

colleagues [230]. Nevertheless, from the data presented in this chapter, there is 

validation for the use of THP-1 monocytes as well as PBMCs to investigate chronic 

inflammation.  

 

Once the response to LPS was confirmed, the next step was to investigate whether SF 

was able to exert an anti-inflammatory effect to reduce the level of LPS induction of 

cytokine production. SF has been previously shown to have the ability to significantly 

reduce the levels of pro-inflammatory cytokine production in a number of different cell 
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and animal models using varying concentrations [181-187, 190-192, 195, 223, 224]. 

This research led to the hypothesis that SF would reduce LPS-induced cytokine 

expression and secretion in THP-1 monocytes and PBMCs. Based on the study by 

Gasper and colleagues who demonstrate that the peak plasma concentration of SF was 

reached 2 hours following ingestion of broccoli [129], a 2 hour pre-treatment of PBMCs 

with SF was investigated and proved to significantly suppress LPS induction of IL-6 

(Figure 3.3A), leading to a more physiologically relevant model. For the THP-1 

monocytes, a co-treatment design was used with 1ng/ml LPS and 5µM SF, and LPS-

induced IL-6, IL-1β and TNFα expression and secretion was suppressed. The reason for 

the increase in the SF concentration used as compared to the PBMCs was due to a lack 

of a statistically significant suppression with 2µM SF in THP-1 monocytes. For all 

subsequent experiments with the THP-1 cells (including in Chapter 4 and 8), 5µM SF 

was used. 

 

It is important to note that in the experiments with LPS and the PBMCs there was 

evident variation in the absolute level of IL-6 secretion that was induced in response to 

LPS at the same concentration (1ng/ml) and for the same time of exposure. As these 

experiments were carried out with PBMCs from different donors, it is likely that these 

variable levels are as a result of individual differences in the donor. Also with the THP-1 

monocytes the induction in response to 1ng/ml LPS was highly variable from observing 

an increase to 350pg/ml in Figure 3.6 as compared to an increase to only 20pg/ml in 

Figure 3.8 in response to the same concentration of LPS for the same length of time. As 

the THP-1 monocytes are a cell line, these results are not as result of individual 

differences and instead it is likely as a result of varying passage number. Following 

these results, it was ensured that experiments were carried out over a narrow passage 

number range to limit the level of variation.  

  

While there was no significant suppression in cell viability for the chosen concentrations 

of SF used with the PBMCs (2µM) and the THP-1 monocytes (5µM), the IC50s from 

each cell type are significantly different (p<0.001; data not shown) and this could be due 

to several reasons. Being a primary cell type, the PBMCs are likely to be more sensitive 

to the SF treatment not only because they come from a healthy volunteer which will 

have no inherent inflammatory status, but also because they have a limited life span in 

culture before becoming senescent, due to a lack of growth factors and extracellular 

matrix components. The THP-1 monocytes on the other hand are an immortalised cell 

line, isolated from a sufferer of acute monocytic leukaemia and therefore as a cancerous 
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cell line may be able to withstand higher concentrations of the inflammatory stimulus 

LPS, and SF compared to human PBMCs.  

 

Of the previous research investigating the effect of SF on LPS-induced cytokine 

production, a number of publications support the findings reported here. In murine 

macrophages, 5µM SF was found to significantly reduce LPS-induced IL-1β and TNFα 

secretion [185, 192] and in rat glial cells, 5µM SF was sufficient to suppress LPS-

induced IL-1β and IL-6 secretion, while 15µM SF was required for TNFα secretion 

[187]. In all of these publications, LPS was used at a concentration of 0.1-1µg/ml, 

concentrations considerably higher than levels of endotoxin observed in chronic disease. 

  

Research by Guo and colleagues using murine RAW 264.7 macrophage cells 

demonstrated that treatment with very low concentrations of SF (0.3 and 0.6µM) were 

able to suppress the capability of 1µg/ml LPS to induce both IL-1β expression and 

secretion, in addition to TNFα secretion [182]. In contrast, a publication by Cheung and 

colleagues found no significant reduction in LPS-induced IL-1 and TNFα secretion by 

1µM SF when using 1µg/ml LPS [223]. This highlights that even with the use of the 

same experimental design with identical cell models, differing results can be observed.  

 

In research published by Brandenburg and colleagues, a concentration of 1µM SF was 

able to significantly reduce the expression of IL-6, IL-1β and TNFα when induced with 

100ng/ml LPS in primary mice microglia [184]. While the concentration of SF was 

lower than the 5µM used in the present study, the research was carried out in primary 

microglia isolated from rat and therefore species differences in addition to the fact that 

the cell model may have functional differences to the monocytes used in this chapter, 

may account for the differences observed in the SF response. This was supported by the 

fact that a different expression pattern was observed, with SF suppressing the LPS-

induced cytokine expression at 6 hours followed by a much lower level of suppression at 

12 hours before reverting back to almost complete suppression after 24 hours of 

exposure to LPS and SF [184]. Furthermore, it may be more appropriate in this 

experimental design with microglial cells to use a lower concentration of SF, because 

the level of SF that would be biologically available in the brain is not well established. 

  

The publication most relevant to the research presented in this chapter is by Yehuda and 

colleagues who used THP-1 monocytes treated with 500ng/ml LPS and concentrations 

of SF of 1.13µM and 2.26µM, before measuring the expression of IL-1β and TNFα. 
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There were significant reductions in the LPS-induced expression of IL-1β with both 

concentrations of SF, and TNFα expression was suppressed by the higher concentration 

[181]. While the study by Yehuda used the same cell model as was used in this chapter, 

they use a different experimental design, using a concentration of LPS at 500ng/ml, 

rather than 1ng/ml used in this work, which is more representative of an acute 

inflammatory attack. Additionally, they measured the expression and secretion of the 

cytokines in response to LPS in differentiated THP-1 cells, which develop macrophage-

like behaviours. They found that a concentration of 4.5µM was required to significantly 

reduce the levels of IL-6, IL-1β and TNFα expression, which supports my work with the 

monocytes and also lends some support to data shown in Chapter 8 (section 8.2.1) [181].  

 

SF has also been shown to exert effects in vivo with the use of animal models. SF was 

able to significantly reduce the LPS-induced expression of TNFα and IL-6 in the 

hippocampus of mice [224] and the circulating levels of these cytokines in the serum of 

mice [195]. Most recently an epidemiological study was published demonstrating that 

consumption of diets rich in cruciferous vegetables was inversely correlated with a 

decreased level of circulating pro-inflammatory biomarkers [120]. This study provides 

evidence that the in vitro findings presented in this chapter are plausible for translation 

into humans.  

 

All of the previously published data that has been mentioned has focused more on a cell 

model of acute inflammation based on excessive concentrations of LPS used however, 

most find significant anti-inflammatory effects with SF. The data from this chapter 

furthers these previous findings by demonstrating that SF, at concentrations that can be 

achieved via broccoli consumption, is able to significantly suppress LPS-induced 

expression and secretion of fundamental biomarkers in a model more comparable to 

chronic inflammation.  

 

 

3.4. Conclusions 

It is apparent from the experiments performed that 1ng/ml LPS, a level relevant to that 

found in circulation of patients suffering from a prolonged low-grade state of 

inflammation, is sufficient to induce the expression and secretion of the pro-

inflammatory cytokines, IL-6, IL-1β and TNFα in human monocyte cells. When the 

cells were treated with physiologically achievable concentrations of SF (2µM for 
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PBMCs and 5µM for THP-1 monocytes) there was a highly significant suppression of 

the LPS-induced cytokine production, without any effect on cell viability. 

  

These data may help to explain the significant correlations found between consumption 

of a diet rich in cruciferous vegetables and an improved risk of cancer and CVD 

mortality via targeting a common factor in both of these chronic diseases. This study 

provides novel experimental evidence that SF at concentrations achievable by 

consumption of only 100-200g of standard broccoli or less than 100g of high-

glucosinolate broccoli could mitigate chronic inflammation by targeting the response of 

monocytes to the elevated levels of circulating LPS found in sufferers of chronic 

diseases. 

 

This chapter only focuses on a trio of important pro-inflammatory cytokines and so to 

further this research the next chapter will employ whole genome analysis of the THP-1 

monocytes to investigate whether the effect of SF is restricted to a small selection of 

genes or if it is able to target the LPS signalling pathway on a global scale. 
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Chapter Four 

Effect of SF on global gene expression of 

THP-1 monocytes exposed to LPS 
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4.0. Introduction 

In the previous chapter, the hypothesis that 5µM SF would be able to significantly 

suppress LPS-induced expression and secretion in THP-1 monocytes was tested in a 

targeted approach with a selection of three specific cytokines, IL-6, IL-1β and TNFα. In 

this chapter, this work was expanded with the use of a non-targeted approach using 

Affymetrix GeneChip® Human Exon 1.0ST arrays to investigate the effect of 5µM SF 

on global gene expression in THP-1 monocytes treated with or without 1ng/ml LPS. 

Advantages for using this non-targeted approach are the removal of bias on the selection 

of biomarkers studied and also the vast amount of information that can be obtained from 

whole genome analysis. For example, the effect of SF can be investigated on all genes 

that are differentially expressed in response to LPS exposure in THP-1 monocytes to 

gain information on whether SF is able to target the TLR4 pathway as a whole. In 

addition, the genes differentially expressed in response to SF alone can be analysed. 

 

As previously discussed, LPS is the specific agonist for the TLR4 molecule. It behaves 

to activate the receptor with the aid of a number of accessory proteins. LBP carries the 

LPS molecule to the GPI-anchored, N-glycosylated CD14 receptor which in turn, 

transfers LPS to the TLR4-MD2 complex [13]. MD2 is a membrane-associated receptor 

that has high binding affinity for TLR4, and is able to accentuate the ability of LPS to 

bind to TLR4 [13]. LPS binding to the TLR4-MD2 complex induces receptor 

dimerisation, which in turn initiates the downstream signalling cascade [13]. The TLR4 

signalling pathway is summarised in Figure 4.1. Upon stimulation of the TLR4-MD2 

receptor complex, either MyD88-dependent or MyD88-independent pathways can be 

stimulated. Activation of the MyD88-dependent pathway results in rapid activation of 

the transcription factor NF-κB, which subsequently induces the expression of pro-

inflammatory cytokines including IL-6, IL-1β, TNFα and chemokines such as IL-8. 

Activation of MyD88-independent pathway results in the swift activation of IRF3, 

followed later by activation of NF-κB, leading to the release of type 1 IFNs e.g. IFNβ. 

IFNβ activates STAT1 leading to the production of chemokines such IP-10 and many 

other IFN-induced genes [14].  
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Figure 4.1. Overview of the TLR4 signalling pathway. LPS is bound to the TLR4-

MD2 complex via the aid of LBP and CD14 accessory proteins. The binding of LPS to 

the TLR4-MD2 complex results in homodimerisation and activation of an intracellular 

signalling cascade. This can be MyD88-dependent or independent. The MyD88-

dependent pathway activates NF-κB and AP-1 resulting in pro-inflammatory cytokine 

and chemokine expression, while the MyD88-independent pathway results in activation 

of predominantly IRF3 followed later by NF-κB, leading to the expression of type I 

IFNs and IFN-inducible genes [13, 14].  

 

 

It was hypothesised that THP-1 monocytes will have a number of differentially 

expressed genes in response to 5µM SF alone. SF has been studied previously in vitro at 

a range of concentrations in a number of different cell models and global gene 

expression patterns have commonly highlighted an induction in genes encoding phase 2 

enzymes and enzymes involved in xenobiotic metabolism [145, 147, 160, 231, 232]. The 

induction of these genes by SF is controlled by AREs found to be present in their gene 

promoter region. These AREs are recognised by Nrf2, which is sequestered within the 

cytoplasm by Keap1 in unstimulated conditions by directly binding to the Nrf2 

transcription factor and targeting it for proteasomal degradation [154]. When cells are 

exposed to SF, Nrf2 is able to dissociate from Keap1 allowing it to translocate into the 

nucleus where it is able to recognise and bind to AREs to activate the expression of its 

target genes. 
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SF behaves as an electrophile and is able to bind to free cysteine thiol groups within a 

number of proteins to form a thioacyl adduct. Keap1 has 27 cysteines within its structure 

that are readily available to react with electrophiles. SF is able to form thioacyl adducts 

with cysteine residues within the Keap1 protein [156-158] and it is predicted that these 

modifications are responsible for the mechanism by which Keap1 is no longer able to 

target Nrf2 for proteasomal degradation. This results in Nrf2 accumulation within the 

nucleus and subsequent induction of the transcription of its target genes. However, this 

has yet to be shown in cells due to the thioacyl adduct formation being reversible and 

sensitive to hydrolysis and alkylation [157-159]. By investigating the constitutive effect 

of 5µM SF on THP-1 monocytes, it will provide an indication as to whether SF is 

behaving with these cells in agreement with previous literature i.e. a number of the 

phase 2 enzymes and those involved in xenobiotic metabolism would be expected to 

demonstrate up-regulated expression levels [145, 147, 160, 231, 232]. 

 

The main aim of this chapter was to investigate whether 5µM SF is able to affect all 

genes differentially expressed in response to 1ng/ml LPS using Affymetrix GeneChip® 

Human Exon 1.0ST arrays to expand the previous studies of investigating the effect on 

selected biomarkers. 

 

 

4.1. Materials and Methods 

Within this chapter, the THP-1 monocytes have been treated for 12 hours with SF (5µM) 

and LPS (1ng/ml) both alone and as a co-treatment to determine the effects on global 

gene expression. RNA was extracted from treated THP-1 monocytes and subjected to 

whole genome expression analysis using the Affymetrix GeneChip® Human Exon 

1.0ST microarrays (section 2.6). 

 

 

4.2. Results 

4.2.1. Effect of SF on THP-1 monocytes 

To establish the effect of SF on global gene expression in the absence of any 

inflammatory stimulus, the THP-1 monocytes were treated with 5µM SF for 12 hours 

before RNA was extracted and subjected to an Affymetrix GeneChip® Human Exon 

1.0ST array. An initial pairwise comparison was carried out between 5µM SF and 

untreated controls to determine the numbers of genes changed at different adjusted p  
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values (Table 4.1). 

 

 

A total of 407 genes were differentially expressed in response to 5µM SF compared to 

untreated controls (adjusted p < 0.01). Of these 407 genes, 284 had less than a 1.5-fold 

change with a relatively even number of genes being increased (152 genes) and 

decreased in expression (132 genes). Only 38 of the 407 genes that were differentially 

expressed in response to 5µM SF (adjusted p < 0.01) demonstrated more than a 2-fold 

change in expression with 27 genes being up-regulated by SF and 11 genes being down-

regulated (Table 4.1).  

 

The next question addressed was whether there were common functions to the genes that 

were altered in THP-1 monocytes in response to 5µM SF. Based on a large body of 

previous research, it was expected that a number of phase 2 enzymes and xenobiotic 

metabolism genes would be differentially expressed [145, 147, 160, 231, 232]. However, 

very few groups have investigated a concentration of SF as low as the physiologically 

relevant 5µM used in this study. To carry out analysis of the genes differentially 

regulated by SF in terms of the pathways affected, DAVID software was used (Table 

4.2) [202, 203]. Glutathione metabolism had the highest fold enrichment level of 4, 

signifying that four times the amount of genes expected by chance were identified. 

Inflammatory signalling and cancer pathways were also highlighted, in addition to 

carbohydrate metabolism. However, while each of these pathways demonstrated 

significant p values, when adjusted using the Benjamini and Hochberg algorithm used to 

account for the rate of false discoveries, the only pathway that remained significant was 

cytokine-cytokine receptor interactions (Table 4.2).  

  

Table 4.1. Number of genes differentially expressed in response to SF  

Fold change in Gene Expression 

 <1.5 1.5-2.0 2.0-4.0 Total Gene Number 

CTRL v SF*     

< 0.05 699 (335,364) 95 (46,49) 38 (27,11) 832 

< 0.01 284 (152,132) 85 (46,39) 38 (27,11) 407 

< 0.001 76 (43,33) 59 (38,21) 34 (27,7) 169 

The number in bold gives the total number of transcripts changed. In brackets, the number of up-

regulated transcripts is followed by the number of down-regulated transcripts. 

* P values are adjusted for false discovery rates using the Benjamini-Hochberg correction 
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Table 4.2. Pathway analysis of genes differentially expressed in response to SF 

Term Count % P Value Fold 

Enrichment 

Benjamini 

p value* 

Cytokine-cytokine receptor 

interaction 
21 5.30 9.7 x 10

-5
 2.638 0.0136 

Chemokine signalling pathway 14 3.54 0.0039 2.466 0.2414 

p53 signalling pathway 7 1.77 0.0194 3.246 0.3265 

Toll-like receptor signalling 

pathway 
9 2.27 0.0115 2.896 0.3358 

Glutathione metabolism 6 1.52 0.0154 4.025 0.3536 

Glycolysis / Gluconeogenesis 6 1.52 0.0372 3.207 0.3846 

Pathways in cancer 16 4.04 0.0772 1.577 0.5301 

The list of genes used for analysis was SF v CTRL p<0.01. 

*While the initial p values are significant for these pathways, only the cytokine-cytokine receptor 

interaction pathway remained significant after correction with Benjamini-Hochberg. 

 

 

Out of the 407 genes found to be differentially expressed with 5µM SF at p < 0.01, only 

79 were significantly classified into common pathways. For this reason, the data was 

interrogated further to identify related groups of genes. Table 4.3 presents the genes 

encoding phase 2, phase 3 and xenobiotic metabolising enzymes differentially expressed 

in response to 5µM SF. Moreover, a number of genes involved in carbohydrate 

metabolism were identified (Table 4.4).  
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Table 4.3. Genes differentially expressed in response to SF involved in detoxification 

pathways 

Affymetrix 

Transcript 

Cluster ID 

Gene 

Symbol 
Gene 

SF Fold Change 

vs. Control*
 

Xenobiotic metabolising enzymes 

3232979 AKR1C1 Aldo-keto reductase family 1, member C1 2.68
3 

3274758 AKR1C2 Aldo-keto reductase family 1, member C2 2.27
3 

3692701 CES1 Carboxylesterase 1 1.76
3 

2382970 EPHX1 Epoxide hydrolase 1, microsomal (xenobiotic) 1.72
3 

3233049 AKR1C3 Aldo-keto reductase family 1, member C3 1.53
2 

Phase 2 enzymes 

3894322 SRXN1 Sulfiredoxin 1 3.15
3 

3130161 GSR Glutathione reductase 2.58
3 

3696666 NQO1 NAD(P)H dehydrogenase, quinone 1 2.57
3 

2423625 GCLM Glutamate-cysteine ligase, modifier subunit 2.48
3 

3429460 TXNRD1 Thioredoxin reductase 1 2.42
3 

3944129 HMOX1 Hemeoxygenase (decycling) 1 2.08
3 

3406589 MGST1 Microsomal glutathione S-transferase 1 1.35
1 

2892277 NQO2 NAD(P)H dehydrogenase, quinone 2 1.31
1 

3220156 TXN Thioredoxin 1.29
1 

3917851 SOD1 Superoxide Dismutase 1, soluble 1.28
1 

Phase 3 enzymes 

3649890 ABCC1 
ATP-binding cassette, sub-family C (CFTR/MRP), 

member 1 
2.03

3 

3726691 ABCC3 
ATP-binding cassette, sub-family C (CFTR/MRP), 

member 3 
1.86

3 

Adjusted p values of fold change: 
1 
p<0.01; 

2
 p<0.001; 

3 
p<0.0001 

* Data taken from the list SF v CTRL p<0.01 
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All of the genes highlighted as being involved in carbohydrate metabolism encoded 

enzymes involved in important steps of glycolysis and the pentose phosphate pathway 

(Figure 4.2). Several genes did not reach a 1.5-fold change in expression in response to 

SF, nevertheless they remained statistically significant, and due to the fact that these 8 

genes were linked by function they were still included in Figure 4.2. 

 

Table 4.4. Genes differentially expressed in response to SF involved in carbohydrate 

cell metabolism 

Affymetrix 

Transcript 

Cluster ID 

Gene 

Symbol 

Gene SF Fold 

Change vs. 

Control* 

2962820 ME1 Malic enzyme 1, NADP(+)-dependent, cytosolic  2.11
3 

4027416 G6PD Glucose-6-phosphate dehydrogenase  1.81
3 

2319802 PGD Phosphogluconate Dehydrogenase  1.80
3 

3316208 TALDO1 Transaldolase 1   1.48
3 

2676671 TKT Transketolase  1.46
2 

3233605 PFKFB3 6-Phosphofructo-2-kinase/Fructose-2,6-biphosphatase 3  1.27
1 

3631964 PKM2 Pyruvate kinase, muscle  1.18
1 

3215570 FBP1 Fructose-1,6-bisphosphatase 1 -1.32
1 

Adjusted p values of fold change: 
1 
p<0.01; 

2
 p<0.001; 

3 
p<0.0001 

* Data taken from the list SF v CTRL p<0.01 
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Figure 4.2. Effect of SF on expression of genes encoding enzymes involved in glycolysis and the pentose phosphate pathway. Glycolysis is a 

fundamental process in aerobic respiration which is responsible for producing the necessary intermediate, pyruvate, for the TCA cycle in order to produce 

ATP. The pentose phosphate pathway behaves to produce the universal electron donor NADPH and ribose phosphates required for nucleic acid formation. 

These two pathways are linked by the glucose 6-phophate intermediate which is utilised by each pathway depending on the requirements of the cells. SF 

increased the expression of enzymes involved in the forward reactions, and decreased one of the enzymes involved in the reverse reactions.  
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As previously mentioned, THP-1 cells are a cancerous, leukaemic cell line. This means 

they are a suitable model for human monocytes in a chronic inflammatory state, but also 

can be considered as a cancer cell model. Of the 407 genes altered by SF in the THP-1 

monocytes (adjusted p < 0.01), a number of genes were found to be specifically 

associated with pathways involved in cancer and demonstrated more than 1.5-fold 

increase or decrease in expression (Table 4.5).  

 

 

 

 

There were also a number of genes differentially expressed in response to SF in THP-1 

monocytes that were found to be associated with inflammatory signalling pathways, in 

particular, a selection of chemokine ligands and receptors (Table 4.6).  

  

Table 4.5. Genes differentially expressed in response to SF involved in pathways in 

cancer 

Affymetrix 

Transcript 

Cluster ID 

Gene 

Symbol 

Gene SF Fold 

Change vs. 

Control* 

3464747 KITLG KIT ligand 1.92
2 

3790704 PMAIP1 Phorbol-12-myristate-13-acetate-induced protein 1 1.71
3 

2539821 ADAM17 ADAM metallopeptidase 17 1.65
2 

3389077 PDGFD Platelet derived growth factor D -1.52
2 

3059464 SEMA3A Sema domain, immunoglobulin domain (Ig), short 

basic domain, secreted, (semaphorin) 3A 

-1.64
1 

3058944 HGF Hepatocyte growth factor -1.75
1 

2720584 SLIT2 Slit homolog 2 (Drosophila) -1.92
2 

Adjusted p values of fold change: 
1 
p<0.01; 

2
 p<0.001; 

3 
p<0.0001 

* Data taken from the list SF v CTRL p<0.01 
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Table 4.6. Genes differentially expressed in response to SF involved in inflammatory 

signalling pathways 

Affymetrix 

Transcript 

Cluster ID 

Gene 

Symbol 

Gene SF Fold 

Change vs. 

Control*
 

Toll-like receptor and cytokine signalling molecules 

2766262 TLR6 Toll-like receptor 6 1.64
1
 

2853102 PRLR Prolactin receptor -1.56
2 

Chemokine signalling molecules 

2731332 IL-8 Interleukin-8 2.36
3 

2669979 CX3CR1 Chemokine (C-X3-C motif) receptor 1 -1.59
1 

4040063 CCL4 **Chemokine (C-C motif) ligand 4 -2.00
1 

2732508 CXCL13 Chemokine (C-X-C motif) ligand 13 -2.08
1 

3718977 CCL4 **Chemokine (C-C motif) ligand 4 -2.38
2 

3719020 CCL4 **Chemokine (C-C motif) ligand 4 -2.38
1 

2773972 CXCL11 Chemokine (C-X-C motif) ligand 11 -2.44
2 

2876608 CXCL14 Chemokine (C-X-C motif) ligand 14 -2.56
3 

2773958 CXCL10 Chemokine (C-X-C motif) ligand 10 -2.63
2 

Adjusted p values of fold change: 
1 
p<0.01; 

2
 p<0.001; 

3 
p<0.0001 

* Data taken from the list SF v CTRL p<0.01 

** Multiple transcript cluster IDs identify alternative transcripts of the same gene and cannot 

distinguish between them  

 

 

4.2.2. Effect of LPS on THP-1 monocytes 

For analysis of global gene expression changes induced by LPS, THP-1 monocytes were 

treated with 1ng/ml LPS for 12 hours. As with the data for the SF treatment (Table 4.1), 

pairwise comparison tests were carried out to identify the number of differentially 

expressed genes in response to LPS at varying adjusted p values (Table 4.7). 
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Compared to the 407 genes that were differentially expressed in response to SF (Table 

4.1), 1210 genes were differentially expressed in response to 1ng/ml LPS (adjusted p < 

0.01). Interestingly, of those that demonstrate more than a 1.5-fold increase, 84% of the 

genes were up-regulated by LPS (Table 4.7). Pathway analysis was carried out on the 

1210 genes altered in response to 1ng/ml LPS and 20 different pathways were identified 

as being affected, not all of which were significant (data not shown). Nevertheless, there 

was a statistically significant association of genes after the Benjamini-Hochberg 

multiple testing correction with inflammatory signalling pathways including cytokine-

cytokine receptor interaction, TLR signalling pathway, chemokine signalling pathway 

and NOD signalling pathways (Table 4.8).  

 

Table 4.7. Number of genes differentially expressed in response to LPS  

Fold change in Gene Expression 

 <1.5 1.5-2.0 2.0-4.0 >4 Total Gene Number 

CTRL v LPS*      

< 0.05 1695 (595,1100) 247 (179,68) 116 (109,7) 48 (48,0) 2106 

< 0.01 814 (343,471) 233 (174,59) 115 (109,6) 48 (48,0) 1210 

< 0.001 264 (153,111) 202 (154,48) 114 (108,6) 48 (48,0) 628 

The number in bold gives the total number of transcripts changed. In brackets, the number of up-

regulated transcripts is followed by the number of down-regulated transcripts. 

* P values are adjusted for false discovery rates using the Benjamini-Hochberg correction 

Table 4.8. Pathway analysis of genes differentially expressed in response to LPS 

Term Count % P-Value Fold 

Enrichment 

Benjamini  

p value* 

Cytokine-cytokine receptor 

interaction 

51 4.28 5.33 x 10
-8

 2.213 9.22 x 10
-6

 

TLR signalling pathway 25 2.10 4.8 x 10
-6

 2.779 4.21 x 10
-4

 

Chemokine signalling pathway 35 2.94 2.39 x 10
-5

 2.123 0.0013 

Cell adhesion molecules (CAMs) 24 2.02 4.42 x 10
-4

 2.179 0.0189 

RIG-I-like receptor signalling 

pathway 

16 1.34 8.35 x 10
-4

 2.601 0.0285 

NOD-like receptor signalling 

pathway 

15 1.26 9.53 x 10
-4

 2.679 0.0271 

Cytosolic DNA-sensing pathway 13 1.09 0.00144 2.832 0.0350 

The list of genes used for analysis was LPS v CTRL p<0.01. 

*The adjusted p-values for all of the pathways listed are significant p<0.05. 
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4.2.3. Effect of SF on LPS-treated THP-1 monocytes 

Following the findings that many genes were differentially expressed in response to 

1ng/ml LPS, the next major research question was whether 5µM SF was able to target 

all of the LPS-affected genes, or if the effect of SF was specific to particular genes. The 

combined treatment of 1ng/ml LPS and 5µM SF for 12 hours was found to significantly 

alter the expression of 1081 genes when a pairwise comparison was carried out with the 

co-treatment versus LPS alone (adjusted p < 0.01) (Table 4.9). In contrast to the LPS 

treatment alone where the majority of genes with a fold change of more than 1.5-fold 

were up-regulated (Table 4.7), 71% of genes changed by LPS and SF together 

demonstrate a down-regulation compared to the LPS alone (Table 4.9). 

 

Table 4.9. Number of differentially expressed genes in response to LPS and SF co-

treatment 

Fold change in Gene Expression 

 <1.5 1.5-2.0 2.0-4.0 >4 Total Gene Number 

LPS v LPS+SF*      

< 0.05 1502 (945,557) 241 (85,156) 141 (35,106) 25 (0,25) 1909 

< 0.01 688 (393,295) 227 (78,149) 141 (35,106) 25 (0,25) 1081 

< 0.001 200 (107,93) 191 (68,123) 138 (34,104) 25 (0,25) 554 

The number in bold gives the total number of transcripts changed. In brackets, the number of up-

regulated transcripts is followed by the number of down-regulated transcripts. 

* P values are adjusted for false discovery rates using the Benjamini-Hochberg correction 

 

 

While the majority of genes differentially expressed in response to LPS were up-

regulated (Table 4.7) and the genes changed in response to a co-treatment of LPS and 

SF compared to LPS alone were down-regulated, it was not known whether there was a 

commonality between the genes affected. A venn diagram was constructed to investigate 

the overlap between these two pairwise comparisons and 562 genes were found to be 

common to both gene lists (Figure 4.3). Furthermore, of these 562 genes that were 

significantly affected by SF in the presence of LPS, 467 of these genes were specifically 

affected only in the presence of LPS (105/562 genes were affected in CTRL v SF 

treatment, data not shown).   
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Figure 4.3. Effect of LPS in the presence or absence of SF on gene expression. 562 

genes were found to be affected by 1ng/ml LPS alone and in the presence of 5µM SF 

(Genes affected by LPS only = 1210; genes affected by LPS and SF co-treatment = 

1081).  

 

 

To get an idea of the relationship between the genes affected by LPS alone and in 

combination with SF, a regression analysis was conducted with all 1210 genes altered by 

LPS plotted against the effect of SF presence. 5µM SF was able to significantly oppose 

the effect of LPS on all genes differentially expressed in response to 1ng/ml LPS alone 

with a clear inverse relationship seen (Figure 4.3). The gradient of the line of regression 

was -1.068 meaning the overall change seen with LPS is almost identical to the extent 

the gene is oppositely affected by LPS and SF in combination. Because the effects of 

LPS and SF have already been characterised on IL-6, IL-1β and TNFα expression (see 

Chapter 3), these have been annotated on Figure 4.4 to demonstrate that the suppressive 

effect of SF was not selective to these genes alone and many genes were affected to a 

much larger extent than the three cytokines previously studied. 

Overlap of genes (p<0.01)

N unique: xy = 1729; x = 1210; y = 1081

562648 519

CTRL v LPS LPS v LPS&SF

Overlap of genes (p<0.01)

N unique: xy = 1729; x = 1210; y = 1081

562648 519

CTRL v LPS LPS v LPS&SF
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Figure 4.4. 5µM SF suppresses all changes induced by 1ng/ml LPS. 1210 genes 

differentially expressed in response to 1ng/ml LPS were plotted with the LPS effect 

relative to the control (y) against the effect of LPS+SF co-treatment compared to LPS 

alone (x). The regression analysis demonstrates a statistically significant association (p < 

0.0001) with a regression coefficient of -1.07 and an R
2
 value of 0.7. IL-6, IL-1β and 

TNFα are circled to highlight where these previously investigated genes lie within the 

regression (biomarkers chosen for targeted approach in Chapter 3). 

 

 

The genes altered by more than 2-fold in response to LPS alone were selected for further 

analysis to investigate the extent of the effect of SF on these LPS-affected genes. Genes 

were characterised into groups according to their associated inflammatory signalling 

pathways (Table 4.10). In addition, many genes identified had miscellaneous functions 

which were not associated with inflammatory pathways (Tables 4.11).  
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Table 4.10. Effect of SF on genes differentially expressed in response to LPS (with > 2-

fold change) with functions in inflammatory signalling pathways 

Affymetrix 

Transcript 

Cluster ID 

Gene 

Symbol 

Gene LPS Fold 

Change 

vs. 

Control† 

LPS + SF 

Fold Change 

vs. LPS 

alone†† 

Toll like receptor and cytokine signalling pathways 

3275690 IL15RA Interleukin 15 receptor, alpha 2.00
3 

-1.56
1 

3645626 IL32 Interleukin 32 2.01
3 

-1.50
1 

2617563 MYD88 Myeloid differentiation primary 

response gene (88) 

2.09
3 

-1.95
3 

3351166 IL10RA Interleukin 10 receptor, alpha 2.23
3
 -1.94

3 

2690900 CD80 CD80 molecule 2.25
3 

-1.89
3 

2905404 PIM1 Pim-1 oncogene 2.34
3
 -1.19* 

3887302 CD40 CD40 molecule, TNF receptor 

superfamily member 5 

2.35
3
 -1.36

1 

2902416 TNF Tumor necrosis factor 2.40
3
 > 0.01 

3500787 TNFSF13B Tumor necrosis factor (ligand) 

superfamily, member 13B 

2.44
3 

-2.21
3 

2992576 IL-6 Interleukin 6 (interferon, beta 2) 2.49
3 

-1.77
2 

2497161 IL18RAP Interleukin 18 receptor accessory 

protein 

2.59
3
 -2.28

3 

2884301 IL12B Interleukin 12B (natural killer cell 

stimulatory factor 2, cytotoxic 

lymphocyte maturation factor 2, p40) 

2.90
3 

-3.15
3 

2501204 IL1RN Interleukin 1 receptor antagonist 2.96
3 

-2.66
3 

2395146 TNFRSF9 Tumor necrosis factor receptor 

superfamily, member 9 

3.16
3
 -1.79

2 

2806468 IL7R Interleukin 7 receptor 3.90
3
 -2.95

3 

2510464 TNFAIP6 Tumor necrosis factor, alpha-induced 

protein 6 

4.11
3
 -1.51* 

2705706 TNFSF10 Tumor necrosis factor (ligand) 

superfamily, member 10 

4.28
3 

-4.45
3 

2571510 IL1B Interleukin 1, beta 4.45
3 

-1.38* 

2783916 TNIP3 TNFAIP3 interacting protein 3 5.35
3
 -1.89

1 

Chemokine signalling 

2731332 IL8 Interleukin-8 3.19
3
 2.04

2 

3457752 STAT2 Signal transducer and activator of 

transcription 2, 113kDa 

3.36
3 

-2.75
3 
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Chemokine signalling (continued) 

2732508 CXCL13 Chemokine (C-X-C motif) ligand 13 3.39
3 

-5.03
3 

2592268 STAT1 Signal transducer and activator of 

transcription 1, 91kDa 

3.41
3 

-2.41
3 

2773947 CXCL9 Chemokine (C-X-C motif) ligand 9 3.90
3 

-4.02
3 

3754133 CCL3L1 Chemokine (C-C motif) ligand 3-like 1 4.13
3 

-2.29
3 

3754070 CCL3L1 Chemokine (C-C motif) ligand 3-like 1 4.29
3 

-2.20
3 

4040932 CCL3L1 Chemokine (C-C motif) ligand 3-like 1 4.32
3 

-2.07
3 

3754009 CCL3 Chemokine (C-C motif) ligand 3 4.63
3 

-2.20
3 

3756319 CCR7 Chemokine (C-C motif) receptor 7 6.53
3 

-3.79
3 

7385547 CCL2 Chemokine (C-C motif) ligand 2 6.70
3
 -2.50

3 

4040063 CCL4L1 Chemokine (C-C motif) ligand 4-like 1 9.12
3 

-4.01
3 

3718930 CCL4 Chemokine (C-C motif) ligand 4 5.60
3 

-3.29
3 

3718977 CCL4 Chemokine (C-C motif) ligand 4 9.22
3 

-3.93
3 

3719020 CCL4 Chemokine (C-C motif) ligand 4 9.25
3 

-4.61
3
 

2773958 CXCL10 Chemokine (C-X-C motif) ligand 10 13.82
3 

-9.95
3 

2773972 CXCL11 Chemokine (C-X-C motif) ligand 11 18.83
3 

-13.53
3
 

3718191 CCL8 Chemokine (C-C motif) ligand 8 25.33
3 

-13.93
3 

Interferon-induced genes 

4053534 ISG15 ISG15 ubiquitin-like modifier 2.14
2 

-1.88
2 

3357840 IFITM3 Interferon induced transmembrane 

protein 3 (1-8U) 

2.15
3 

-1.86
3 

3579546 WARS Tryptophanyl-tRNA synthetase 2.17
3
 -2.55

3 

3774906 SECTM1 Secreted and transmembrane 1 2.19
3 

-2.75
3 

2421925 GBP7 Guanylate binding protein 7 2.36
3
 -2.27

3 

2403261 IFI6 Interferon, alpha-inducible protein 6 2.38
3
 -1.98

3 

2875348 IRF1 Interferon regulatory factor 1 2.68
3
 -1.89

3 

3722338 IFI35 Interferon-induced protein 35 2.82
3 

-2.29
3 

2584207 IFIH1 Interferon induced with helicase C 

domain 1 

3.29
3
 -2.99

3 

3315675 IFITM1 Interferon induced transmembrane 

protein 1 (9-27) 

3.39
3
 -2.56

3 

2439554 AIM2 Absent in melanoma 2 3.47
3 

-2.88
3 

3474831 OASL 2'-5'-oligoadenylate synthetase-like 3.81
3 

-2.99
3
 

2603051 SP110 SP110 nuclear body protein 3.91
3
 -3.46

3 

3432467 OAS3 2'-5'-oligoadenylate synthetase 3, 

100kDa 

4.01
3 

-2.71
3 

3432514 OAS2 2'-5'-oligoadenylate synthetase 2, 

69/71kDa 

4.12
3
 -2.82

3 
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Interferon-induced genes (continued) 

2362394 IFI16 Interferon, gamma-inducible protein 

16 

4.12
3
 -3.47

3 

2735409 HERC5 Hect domain and RLD 5 4.18
3
 -3.48

3
 

2468351 RSAD2 Radical S-adenosyl methionine 

domain containing 2 

4.28
3
 -3.85

3 

3922037 MX2 Myxovirus (influenza virus) resistance 

2 (mouse) 

4.40
3
 -3.38

3 

3432438 OAS1 2',5'-oligoadenylate synthetase 1, 

40/46kDa 

4.47
3 

-2.76
3
 

3257268 IFIT5 Interferon-induced protein with 

tetratricopeptide repeats 5 

5.59
3
 -3.78

3 

3257192 IFIT2 Interferon-induced protein with 

tetratricopeptide repeats 2 

5.65
3
 -4.06

3 

2421995 GBP4 Guanylate binding protein 4 5.92
3
 -6.30

3
 

3549575 IFI27 Interferon, alpha-inducible protein 27 6.25
3 

-5.63
3 

3318443 TRIM22 Tripartite motif-containing 22 6.26
3
 -4.50

3 

3922100 MX1 Myxovirus (influenza virus) resistance 

1, interferon-inducible protein p78 

(mouse) 

6.29
3 

-4.57
3 

3203086 DDX58 DEAD (Asp-Glu-Ala-Asp) box 

polypeptide 58 

6.49
3 

-4.54
3 

2421883 GBP1 Guanylate binding protein 1, 

interferon-inducible, 67kDa 

7.94
3 

-7.50
3
 

2343511 IFI44 Interferon-induced protein 44 9.53
3
 -6.10

3 

2343473 IFI44L Interferon-induced protein 44-like 11.86
3
 -10.18

3
 

3257246 IFIT1 Interferon-induced protein with 

tetratricopeptide repeats 1 

12.18
3 

-8.54
3 

3257204 IFIT3 Interferon-induced protein with 

tetratricopeptide repeats 3 

14.50
3
 -6.87

3 

Adjusted p values of fold change: 
1 
p<0.01

 2
 p<0.001; 

3 
p<0.0001. 

*These fold changes were not found to be significant at p<0.01 but remain significant at p<0.05. 

† The list of genes used for analysis was LPS v CTRL p<0.01. 

†† The list of genes used for analysis was LPS+SF v LPS p<0.01. 
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Table 4.11. Effect of SF on genes differentially expressed in response to LPS (with > 2-

fold change) with miscellaneous functions 

 Affymetrix 

Transcript 

Cluster ID 

Gene 

Symbol 

Gene LPS Fold 

Change vs. 

Control† 

LPS + SF 

Fold Change 

vs. LPS 

alone†† 

Miscellaneous Function 

3791935 SERPINB2 Serpin peptidase inhibitor, clade B 

(ovalbumin), member 2 

-2.63
3 

1.13** 

3387259 SESN3 Sestrin 3 -2.40
3
 1.51

2 

2428796 PTPN22 Protein tyrosine phosphatase, non-

receptor type 22 (lymphoid) 

-2.22
3 

-1.06** 

3791958 SERPINB10 Serpin peptidase inhibitor, clade B 

(ovalbumin), member 10 

-2.20
3
 -1.48

1 

3466687 HAL Histidine ammonia-lyase -2.13
3 

1.22* 

3466687 VLDLR Very low density lipoprotein receptor -2.04
3 

1.65
3 

3068587 GPR85 G protein-coupled receptor 85 2.01
2 

-2.27
3
 

3489481 PHF11 PHD finger protein 11 2.01
3 

-1.67
2 

2777333 PPM1K Protein phosphatase, Mg2+/Mn2+ 

dependent, 1K 

2.01
3 

-1.98
3 

2698738 XRN1 5'-3' exoribonuclease 1 2.02
3
 -1.92

2 

2709778 BCL6 B-cell CLL/lymphoma 6 2.02
3
 -1.19** 

2951859 ETV7 Ets variant 7 2.04
3 

-2.21
3 

3464860 DUSP6 Dual specificity phosphatase 6 2.05
3
 1.23* 

3442854 SLC2A3 Solute carrier family 2 (facilitated 

glucose transporter), member 3 

2.06
3
 -1.90

3 

3581404 GPR132 G protein-coupled receptor 132 2.09
3
 -1.58

3 

2343231 NEXN Nexilin (F actin binding protein) 2.11
3 

-2.42
2 

3388807 MMP1 Matrix metallopeptidase 1 (interstitial 

collagenase) 

2.11
3
 -2.08

3 

2919669 PRDM1 PR domain containing 1, with ZNF 

domain 

2.14
3
 -1.15** 

3601387 PML Promyelocytic leukemia 2.17
3
 -2.14

3 

3346548 BIRC3 Baculoviral IAP repeat-containing 3 2.19
3
 -1.55

1 

2897172 RNF144B Ring finger protein 144B 2.19
3
 -1.88

3 

3806211 PSTPIP2 Proline-serine-threonine phosphatase 

interacting protein 2 

2.20
3
 -2.84

3 

3140213 MSC Musculin 2.20
3
 1.95

3 

2720145 LAP3 Leucine aminopeptidase 3 2.20
3
 -2.04

3 
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Miscellaneous Function (continued) 

3638188 HAPLN3 Hyaluronan and proteoglycan link 

protein 3 

2.21
3
 -2.12

3 

2362746 SLAMF8 SLAM family member 8 2.22
3
 -1.41

1 

2553970 PNPT1 Polyribonucleotide 

nucleotidyltransferase 1 

2.23
3
 -2.09

3 

3150579 ENPP2 Ectonucleotide 

pyrophosphatase/phosphodiesterase 2 

2.23
3
 -2.07

3 

3971806 SAT1 Spermidine/spermine N1-

acetyltransferase 1 

2.28
3
 -1.14** 

2720584 SLIT2 Slit homolog 2 (Drosophila) 2.30
3 

-3.12
3 

2955827 PLA2G7 Phospholipase A2, group VII (platelet-

activating factor acetylhydrolase, 

plasma) 

2.34
3
 -1.05** 

2729667 STAP1 Signal transducing adaptor family 

member 1 

2.36
1 

-1.89
1 

2796553 ACSL1 Acyl-CoA synthetase long-chain 

family member 1 

2.36
3
 -1.43

1 

3075932 PARP12 Poly (ADP-ribose) polymerase family, 

member 12 

2.36
3
 -2.03

3 

3066818 NAMPT Nicotinamide 

phosphoribosyltransferase 

2.37
3
 -1.94

2 

3049292 IGFBP3 Insulin-like growth factor binding 

protein 3 

2.38
3
 1.11** 

3299469 ANKRD22 Ankyrin repeat domain 22 2.41
3 

-1.85
2 

2677902 HESX1 HESX homeobox 1 2.42
3
 -2.50

3 

3944129 HMOX1 Hemeoxygenase (decycling) 1 2.42
3
 1.09** 

3087703 PDGFRL Platelet-derived growth factor receptor-

like 

2.44
3
 -2.65

3 

3618736 RASGRP1 RAS guanyl releasing protein 1 

(calcium and DAG-regulated) 

2.44
3
 -2.01

3 

3205293 PAX5 Paired box 5 2.44
3
 -2.27

3
 

3185498 SLC31A2 Solute carrier family 31 (copper 

transporters), member 2 

2.47
3
 -2.15

3 

2548402 EIF2AK2 Eukaryotic translation initiation factor 

2-alpha kinase 2 

2.53
3
 -1.97

2 

3818596 EMR1 EGF-like module containing, mucin-

like, hormone receptor-like 1 

2.56
3
 -2.99

3 

3944243 APOL6 Apolipoprotein L, 6 2.59
3
 -2.31

3 
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Miscellaneous Function (continued) 

3161082 CD274 CD274 molecule 2.64
2
 -2.53

2 

3835726 BCL3 B-cell CLL/lymphoma 3 2.66
3
 -1.43

3 

3757602 DHX58 DEXH (Asp-Glu-X-His) box 

polypeptide 58 

2.66
3
 -2.50

3 

2421843 GBP3 Guanylate binding protein 3 2.67
3
 -2.52

3 

2403446 PTAFR Platelet-activating factor receptor 2.68
3
 -2.57

3 

3403754 CLEC6A C-type lectin domain family 6, member 

A 

2.68
2
 -3.11

3 

2699726 PLSCR1 Phospholipid scramblase 1 2.72
3
 -2.08

3 

3331355 SERPING1 Serpin peptidase inhibitor, clade G (C1 

inhibitor), member 1 

2.76
3
 -2.51

3 

2638962 DTX3L Deltex 3-like (Drosophila) 2.77
3
 -2.29

3 

2950214 TAP1 Transporter 1, ATP-binding cassette, 

sub-family B (MDR/TAP) 

2.84
3
 -2.51

3 

2896545 GMPR Guanosine monophosphate reductase 2.85
3
 -2.62

3 

3895614 SIGLEC1 Sialic acid binding Ig-like lectin 1, 

sialoadhesin 

2.92
3 

-2.64
3 

3905875 MAFB v-maf musculoaponeurotic 

fibrosarcoma oncogene homolog B 

(avian) 

2.96
3
 -1.27

1 

2991860 ITGB8 Integrin, beta 8 2.98
3
 -2.29

3 

2539125 CMPK2 Cytidine monophosphate (UMP-CMP) 

kinase 2, mitochondrial 

3.01
3
 -2.50

3 

3360622 TRIM5 Tripartite motif-containing 5 3.02
3
 -3.06

3 

3737274 RNF213 Ring finger protein 213 3.11
3
 -2.22

3 

3737338 RNF213 Ring finger protein 213 3.19
3
 -2.45

3 

2975014 SGK1 Serum/glucocorticoid regulated kinase 

1 

3.15
3
 -1.40* 

2440354 CD48 CD48 molecule 3.20
3 

-2.80
3 

3442941 C3AR1 Complement component 3a receptor 1 3.21
3
 -3.46

3 

2945741 FAM65B Family with sequence similarity 65, 

member B 

3.30
3 

-3.16
3 

2792800 DDX60 DEAD (Asp-Glu-Ala-Asp) box 

polypeptide 60 

3.33
3
 -2.43

3 

3373962 UBE2L6 Ubiquitin-conjugating enzyme E2L 6 3.38
3
 -2.69

3 

3119339 LY6E Lymphocyte antigen 6 complex, locus 

E 

3.47
3
 -2.70

3 

3635198 BCL2A1 BCL2-related protein A1 3.52
3 

-2.25
3 
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Miscellaneous Function (continued) 

3820443 ICAM1 Intercellular adhesion molecule 1 3.55
3
 -1.45

2 

3817380 EBI3 Epstein-Barr virus induced 3 3.59
3
 -1.91

3 

2422035 GBP5 Guanylate binding protein 5 3.66
3
 -2.37

3 

3733275 KCNJ2 Potassium inwardly-rectifying channel, 

subfamily J, member 2 

3.80
3 

-1.62
1 

3061438 SAMD9 Sterile alpha motif domain containing 9 3.86
3 

-3.20
3 

2982319 SOD2 Superoxide dismutase 2, mitochondrial 3.89
3 

-1.44
1 

2639054 PARP14 Poly (ADP-ribose) polymerase family, 

member 14 

3.90
3
 -3.04

3 

2371346 RGL1 Ral guanine nucleotide dissociation 

stimulator-like 1 

4.08
3
 -1.51

2 

2692060 PARP9 Poly (ADP-ribose) polymerase family, 

member 9 

4.19
3
 -2.99

3 

3061456 SAMD9L Sterile alpha motif domain containing 

9-like 

4.19
3
 -3.46

3 

3060332 STEAP4 STEAP family member 4 4.81
3 

-2.39
3 

2735362 HERC6 Hect domain and RLD 6 4.88
3
 -2.91

3 

2707876 LAMP3 Lysosomal-associated membrane 

protein 3 

4.92
3 

-3.88
3 

2363202 SLAMF7 SLAM family member 7 5.68
3 

-4.37
3 

3511698 EPSTI1 Epithelial stromal interaction 1 (breast) 5.97
3
 -3.50

3 

2348992 VCAM1 Vascular cell adhesion molecule 1 6.89
3 

-7.16
3 

3095223 IDO1 Indoleamine 2,3-dioxygenase 1 7.18
3
 -5.78

3 

3936550 USP18 Ubiquitin specific peptidase 18 7.35
3 

-5.88
3 

2749011 TDO2 Tryptophan 2,3-dioxygenase 17.59
3 

-6.46
3 

Adjusted p values of fold change: 
1 
p<0.01; 

2
 p<0.001; 

3 
p<0.0001.

 

*These fold changes were not found to be significant at p<0.01 but remain significant at p<0.05. 

**These fold changes are not found to be statistically significant (p>0.05). 

† The list of genes used for analysis was LPS v CTRL p<0.01. 

†† The list of genes used for analysis was LPS+SF v LPS p<0.01. 

 

 

4.3. Discussion 

In order to expand on the research presented in Chapter 3, a systematic investigation was 

carried out to address the question of whether SF was able to significantly alter the 

expression of all LPS-affected genes, and in addition whether SF was able to induce 

significant changes in global gene expression constitutively.  
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407 gene expression patterns were found to be significantly changed in response to 5µM 

SF as compared to untreated controls. Of these genes, associations were identified with 

xenobiotic and carbohydrate metabolism, cancer and inflammatory signalling pathways. 

One mechanism which is consistently associated with SF is the induction of Nrf2. Under 

normal conditions, Nrf2 is sequestered in the cytoplasm by its negative regulator, Keap1, 

which behaves to target the transcription factor for proteasomal degradation [154]. In the 

presence of SF, the electrophilic nature of the ITC results in it binding to free cysteine 

residues to form thioacyl adducts with Keap1, providing a potential mechanism for the 

up-regulation of Nrf2-controlled gene expression [156-159]. 

 

Global gene expression changes in response to SF have been previously investigated in a 

number of different cell models. Caco-2 cells, a colon adenocarcinoma cell line, were 

exposed to 1, 5, 25 and 50µM SF for 24 hours and a number of significant gene changes 

were found [147]. When exposed to 5µM SF, only 4 gene changes were induced in 

Caco-2 cells with more than a 2-fold change as compared to 38 found in the microarray 

analysis in this study with the THP-1 monocytes. While the concentrations necessary to 

induce the changes were much higher in the Caco-2 study, the genes affected were 

comparable with the results in this chapter [147].  

 

In data from non-cancerous primary prostate epithelial and stromal cells treated with 

15µM SF for 24 hours, 196 genes were found to be altered by more than 1.5-fold in 

epithelial cells, while only 42 genes were altered by more than 1.5-fold in stromal cells 

(adjusted p value < 0.001) [146]. In cancerous LNCaP prostate cells, 2579 transcripts 

were altered in response to 25µM SF and 3061 transcripts were differentially expressed 

in response to 10µM SF compared to controls (p < 0.05) [231]. There are many more 

transcripts changed in the LNCaP cells compared to the previously described data, 

which may be as a result of different arrays and alternative methods of analysis. 

However, of the genes that were differentially expressed in LNCaP cells in response to 

SF, genes that encoded enzymes involved in xenobiotic metabolism and detoxification 

such as NQO1, TXNRD1, MGST1 and SOD1 were altered to the greatest extent [231]. 

Similar results were also recorded in human hepatocytes and normal breast epithelial 

cells [160, 232]. All of these genes were also significantly changed in this chapter with 

THP-1 monocytes (Table 4.3).   

 

When microarray analysis of the human lens epithelial cell line FHL124 was carried out 

following treatment with 1 and 2µM SF for 24 hours, both NQO1 and TXNDR1 were 
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up-regulated [145], consistent with previously reported findings. These results also 

demonstrate that concentrations of SF easily achievable from the diet (1 and 2µM) are 

able to induce phase 2 enzymes and cause differential gene expression. The 

effectiveness of lower concentrations in this cell line may reflect the likelihood that 

concentrations found in systemic circulation may be difficult to achieve within lens cells 

[145].  

 

In addition, a number of genes associated with carbohydrate metabolism in glycolysis 

and the pentose phosphate pathway were also identified. The pentose phosphate pathway 

consists of two distinct branches; an oxidative irreversible pathway that is responsible 

for the production of NADPH and a ribose 5-phosphate molecule, and a non-oxidative 

pathway made up of a number of reversible reactions that interconverts between ribose 

phosphates and glycolytic intermediates depending on the cell’s requirements for 

NADPH, ribose phosphates or ATP (Figure 4.2) [233]. The pentose phosphate pathway 

is able to provide an alternative pathway for glucose oxidation and contributes between 

10-20% of all glucose oxidation while glycolysis is responsible for the remaining 80-

90%. This pathway, unlike glycolysis does not require oxygen and does not produce 

ATP. The production of NADPH from the pentose phosphate pathway is of particular 

importance due to its function as the universal electron donor, behaving as a reducing 

agent in a number of biosynthetic pathways. Table 4.4 shows how SF was able to 

significantly induce the expression of the genes responsible for encoding a number of 

enzymes involved in both glycolysis and the pentose phosphate pathway while Figure 

4.2 depicts the linked pathways and those enzymes that were differentially expressed in 

response to 5µM SF. These results were supported by the previously mentioned results 

from non-cancerous human breast epithelial MCF10A cells [160]. After treatment with 

15µM SF for 24 hours, a significant increase of at least 1.2-fold in the expression of 

PGD, G6PD, TALDO1 and TKT was seen in response to SF [160]. 

 

The importance of potentially increasing NADPH production in response to SF is related 

to the involvement of NADPH in xenobiotic metabolism and the reduction of oxidative 

stress by behaving as a universal electron donor. SF behaves to increase GST activity, 

allowing conjugation of xenobiotics to GSH to allow detoxification enabling safe 

excretion. This is in addition to NADPH donating electrons to reactive oxygen species, 

alleviating oxidative stress. The increase seen in GST activity is likely due to an increase 

in the expression of the GCLM, an enzyme responsible for catalysing the rate-limiting 

step in GSH synthesis and this is supported by SF’s ability to increase intracellular GSH 
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[234]. Once safe excretion of xenobiotics is complete, in order for GSH and TXN to 

continue to conjugate to other xenobiotics they require reduction. This reduction 

reaction uses NADPH as an electron donor. While there are a number of logical 

hypotheses for the importance of increasing NADPH production, it is important not to 

over-interpret the data from the global gene expression analysis. In order to confirm that 

the glycolysis and pentose phosphate pathways are up-regulated, the activity of the 

differentially expressed enzymes should also be measured. 

 

In response to LPS, 1210 genes were found to be significantly differentially expressed, 

with 396 demonstrating more than a 1.5-fold change (adjusted p value < 0.01). The 

genes that were altered in expression were mainly involved inflammatory signalling 

pathways such as TLR signalling, cytokines and chemokines and many induced by 

IFNs. This work is completely novel as there are no previously documented microarray 

studies investigating the effect of physiologically relevant concentration of LPS 

(1ng/ml) on THP-1 monocytic cells. Concentrations in the range of 1ng/ml LPS have 

only been used in studies using bone marrow-derived macrophages from mice 

(Accession Numbers: E-GEOD-53810 and E-GEOD-19941, ArrayExpress) and in both 

of these studies a different strain of LPS (Salmonella minnesota) has been used to that 

used in my study (E.coli 055:B5). This Salmonella strain has been previously found to 

behave to an extent that was significantly different to that seen with LPS from the E.coli 

055:B5 strain in its ability to induce TNFα and MCP-1 [14], so it is likely the results 

from these studies would not be comparable to the present study with THP-1 monocytes.  

Ellertsen and colleagues used THP-1 monocytes and treated them with 10µg/ml LPS 

(E.coli 026:B6) for 24 hours only around 15% of their reported changes were consistent 

with the data presented in this chapter presumably due to the large difference in LPS 

concentration used [235]. 

 

SF was able to significantly affect 562 genes induced by LPS, with only 105 of those 

changes also being recorded in the absence of LPS. When exploring the effect of SF on a 

global scale including all 1210 genes induced by LPS the regression analysis 

demonstrated a significantly inverse linear relationship between the effect of LPS alone 

and the co-treatment of LPS and SF on gene expression with a gradient of the regression 

line calculated as -1.068. Annotated on Figure 4.3 are IL-6, IL-1β and TNFα, the three 

cytokines that were focused on in Chapter 3. While IL-6 is fairly close to the line of best 

fit, IL-1β and TNFα demonstrate a lesser change with the co-treatment of LPS and SF 

compared to LPS alone, as demonstrated with real-time RT-PCR (Figure 3.13 and 
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3.14). This highlights that there are many more genes that are particularly sensitive to 

LPS and to the presence of SF than the biomarkers previously used. It is important to 

note that while some gene expression changes demonstrate a 2-fold change in expression 

and others demonstrate 25-fold changes, the conclusion that should be made from these 

results is the magnitude of the number of changes seen. If SF is able to suppress low-

grade inflammation induced as a result of circulating endotoxin levels in individuals 

with chronic disease, the reduction in the production of pro-inflammatory biomarkers 

that are associated with increased risk of CVD and cancer for example, means there is 

potential to prevent adverse inflammatory effects by consuming 1-2 portions of high-

glucosinolate broccoli, which is achievable within a normal diet. 

  

The results in this chapter provide the first evidence that a physiologically relevant 

concentration of 5µM SF is able to affect the gene expression of all genes induced by 

1ng/ml LPS. Thus, evidence is provided that SF targets the TLR4 pathway as a whole 

and is not restricted to particular genes as investigated in Chapter 3. The next chapter 

will investigate a potential mechanism of direct interaction between SF and the TLR4 

receptor to provide potential insights into how SF, at a concentration of 5µM is able to 

significantly suppress LPS-induced expression on a global scale. 

 

 

4.4. Conclusions 

In summary, the physiologically relevant concentration of 5µM SF was able to exert 

profound effects on global gene expression in THP-1 monocytes. Constitutively, SF was 

able to induce enzymes involved in xenobiotic metabolism and phase 2 enzymes, as has 

been previously shown. 

 

LPS at a concentration of 1ng/ml, relevant to levels found in circulation of sufferers of 

chronic disease, significantly induced the expression of 1210 genes (adjusted p value < 

0.01) and in the presence of 5µM SF, all of these genes were significantly suppressed 

(regression analysis: p < 0.001, R
2
 = 0.7, Y = 0.19 - 1.068x). 

  

These results demonstrate that the anti-inflammatory effects seen with SF in Chapter 3 

can be extended to all genes affected by LPS. The next chapter will aim to address a 

potential mechanism of SF, by investigating direct interactions with the TLR4 receptor. 
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Chapter Five 

Investigations into the mechanism of SF on 

TLR4 signalling 
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5.0. Introduction 

The results presented in Chapter 4 demonstrate the ability of SF, at a physiologically 

relevant concentration of 5µM, to reverse the global effects of LPS at a low 

concentration achieved in vivo during a state of chronic inflammation, in THP-1 

monocytes. Based on these findings, it was hypothesised that SF was able to target the 

TLR4 signalling pathway at an early point within the cascade. Activation of the TLR4 

receptor by the binding of its ligand LPS, results in the downstream activation of not 

only NF-κB and AP-1 responsible for the transcription of pro-inflammatory cytokines, 

but also the IRF3 transcription factor which controls the expression of IFNs and IFN-

inducible genes  

 

A widely recognised function of SF is its inhibitory effects on the activity of the 

transcription factor NF-κB by either targeting its transcriptional activity directly or by 

promoting inhibition or degradation of the inhibitor of NF-κB, which maintains the 

transcription factor in its inactive form within the cytoplasm [184, 189, 191-194]. This 

mechanism of SF is thought to be responsible for the suppression of pro-inflammatory 

cytokine expression. However, in Chapter 4 the effect of SF was not restricted to LPS-

induced genes controlled by the NF-κB transcription factor, but also included many IFN-

induced genes, whose transcription is controlled by IRF3. This would suggest that the 

global effect of SF on LPS signalling is greater than the mechanism of targeting only 

NF-κB.  

 

A paper by Youn and colleagues suggested an alternative function for SF on LPS 

signalling which involved direct targeting of cysteine residues within the TLR4 receptor 

[195]. The publication describes the ability of SF to covalently bind to specific cysteine 

residues within the extracellular domain of the TLR4 and it hypothesised that this 

modification prevented the dimerisation of the receptor required for downstream 

signalling and subsequent activation of transcription factors to occur. However, 

limitations of this research include the use of a recombinant form of the protein, likely 

under reducing conditions and as a result the effects may not be representative of what 

happens with SF in vitro and in vivo. In addition, a concentration of 100µM SF was 

used, which is far in excess of the achievable concentrations following consumption of 

broccoli within the diet.  

 

The structure of SF means it is able to behave as an electrophile and where available, has 

the ability to covalently bind to free thiol groups of cysteine residues. This function has 
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been recognised previously with a number of different proteins including the Keap1 

protein, fundamental in the function of SF on Nrf2 signalling. The known protein targets 

of SF have been summarised by Melchini and colleagues [236].  

 

In order to progress from this previous research, the objectives of this chapter was to 

investigate whether SF was able to bind cysteine residues within a recombinant form of 

the TLR4 extracellular domain using physiologically relevant concentrations of SF 

under non-reducing conditions. In addition, this aim was extended by investigating 

whether these SF-thiol adducts were able to form in vitro using cells exposed to SF in 

the presence or absence of LPS to determine whether cysteine modification was a 

plausible mechanism for the effect of SF on global LPS-induced gene expression at 

physiologically relevant concentrations (Chapter 4).  

 

 

5.1. Materials and Methods 

Within this chapter, the recombinant TLR4 protein was treated with varying doses of SF 

and subjected to enzyme digestion to yield peptide fragments (section 2.8.1). In addition, 

proteins were extracted from HT-29 cells subjected to SF treatments (0-25µM) in the 

presence or absence 1ng/ml LPS for 1 hour, using an extraction kit designed to separate 

the soluble and the membrane fractions. To improve the specificity of the proteins 

present within the sample, IP was carried out on the whole protein extract from cells 

subjected to the same treatments. Both the soluble and membrane fraction samples and 

the IP samples were subjected to gel electrophoresis and immunoblotting with an anti-

TLR4 antibody to identify protein bands for gel digestion. All of the recombinant 

peptides and the gel digest products were subjected to LC-MS/MS analysis to identify 

potential cysteine modifications within the TLR4 (see sections 2.7 and 2.8 for more 

details of the methods used). 

 

  

5.2. Results  

5.2.1. Modification of TLR4 cysteine residues by SF under reducing and 

non-reducing conditions 

In the study by Youn and colleagues, 2µg of the purified extracellular domain of TLR4 

was incubated with SF at a concentration of 100µM for 1 hour. The protein was 
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subjected to in-solution digestion with chymotrypsin, followed by trypsin before being 

quenched by the addition of formic acid. 

 

A common step in proteomic analysis with enzymatic digestion is a step to reduce the 

protein of interest with DTT and alkylate the thiol groups the disulphide bonds to allow 

the enzymes to reach the interior of the protein structure and to prevent any disulphide 

bonds reforming. If the disulphide bridges of the TLR4 extracellular domain were 

reduced, the thiol groups of the cysteine residues would be free and able to be readily 

bound by SF, due to its electrophilic nature, and thus any binding could potentially be an 

artefact. In this experiment, 2µg of recombinant extracellular TLR4 was treated with 

100µM SF for 1 hour in the same way as in the study by Youn. This treatment was 

followed by the addition of 1mM DTT (or Tris-HCl buffer as the vehicle control) for 15 

minutes to compare the extent of SF-cysteine adducts formed under reducing or non-

reducing conditions.  

 

Table 5.1 presents the cysteine residues which were bound by SF with and without DTT 

treatment. A clear increase was found in the amount of cysteines bound by SF with the 

reducing agent treatment. In addition, most of the cysteines identified as SF bound with 

DTT treatment were consistent with those found in the article by Youn and colleagues 

[195].  

 

Table 5.1. Cysteine residues bound by SF with and without DTT treatment 

Non-reducing conditions Reducing conditions 

Cys246 

Cys609 

Cys192 

Cys246 

Cys390 

Cys391 

Cys506 

Cys542 

Cys583 

Cys585 

Cys609 

 

 

5.2.2. Effect of SF at lower concentrations on TLR4 modification 

The next step was to establish whether this SF-cysteine adduct formation was able to 

occur with concentrations of SF that were more relevant to that physiologically 
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achievable following consumption of broccoli, under non-reducing conditions. 

Concentrations were chosen ranging from 5µM, which was used in my previous in vitro 

experiments with THP-1 monocytes (Chapters 3 and 4), up to 50µM.  

 

As before, Cys609 and Cys246 were consistently found to be modified by SF (Figure 

5.1). For each peptide fragment identified, the amount of detected b and y ions of the 

fragment were recorded. The b ions contain the N-terminus of the amino acid, while the 

y ions contain the C-terminus. Identification of more b and y ions increased the 

confidence that this modification was not as a result of a false discovery. Interestingly, 

the abundance of the SF-modified peptides containing the Cys246 and Cys609 residues 

increased dose-dependently (Figure 5.2). A small amount of modified Cys609-

containing peptide was detected at 5µM, and while the abundance increased following a 

steady pattern until 25µM, a larger increase in abundance was observed when treated 

with 50µM SF (Figure 5.2A). For the modification of the peptide containing Cys246, 

the intensity of the peak was much lower than that measured for the peptide containing 

Cys609. There was also a level of modified peptide identified in the control-treated 

conditions suggesting that there was a higher level of background noise (Figure 5.2B). 

However, consistent with the pattern seen with the Cys609-containing peptide, there was 

a much larger level of SF modification of the Cys246 when subjected to 50µM SF 

(Figure 5.2B).  
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Figure 5.1. SF directly modifies Cys609 (A) and Cys246 (B) within the extracellular 

domain of TLR4 under non-reducing conditions. Recombinant extracellular domain 

of TLR4 (24-631 residues) was treated with SF (5-50µM; vehicle control for SF = < 

0.1% (v/v) DMSO) for 1 hour at 37°C prior to enzymatic digestion and micro-LC-

MS/MS analysis using the LTQ Orbitrap. Data was analysed using Mascot against the 

Uniprot protein database to identify cysteine-bound SF modifications and oxidised 

methionine. Following analysis of the fragments using Peaks software the modified 

fragments were analysed. Sequences Met607-Lys615 (A) and Thr245-Arg257 (B) were 

identified as containing a SF-modified cysteine and b (blue) and y (red) fragment ions 

were assigned. Lower case m indicates oxidised methionine modification and lower case 

c represents SF-modified cysteine residue. The b and y ions are annotated in the spectra.  

 



Investigations into the mechanism of SF on TLR4 signalling 

 

111 

 

Figure 5.2. Intensity of SF-modified peptides containing Cys609 (A) or Cys246 (B) 

in response to varying SF concentrations under non-reducing conditions. 

Recombinant extracellular domain of TLR4 (24-631 residues) was treated with SF (5-

50µM; vehicle control for SF = < 0.1% (v/v) DMSO) for 1 hour at 37°C prior to 

enzymatic digestion and micro-LC-MS/MS analysis using the LTQ Orbitrap. Data was 

analysed using Mascot against the Uniprot protein database to identify cysteine-bound 

SF modifications and oxidised methionine. Data was then subjected to analysis with 

Progenesis software to determine the intensity of the SF-modified peptides at each SF 

concentrations. Data shown = mean ± SD, data representative of three independent 

experiments. Data was statistically analysed using one-way ANOVA followed by the 

Bonferroni multiple comparison test. *p<0.05, **p<0.01 and ***p<0.001 vs. 0µM SF.  

 

 

5.2.3. Quantification of TLR4 protein in vitro 

To further progress with this research, the ability of SF to modify cysteine residues 

within the TLR4 was investigated as a plausible mechanism for the results seen with SF 

suppression of LPS-induced transcription on global scale and cytokine secretion in 

human monocyte cells (Chapters 3 and 4).  

 

In the initial stages of optimisation, a western blot analysis was completed with protein 

extracts from THP-1 monocytes, as this was the cell model used in the previous 

experiments in this thesis. However, even after a number of optimisation steps only a 

very faint band for TLR4 was detected from THP-1 monocyte protein extracts and this 

was not reproducible (data not shown). As a result of these difficulties, the HT-29 colon 

cancer cell line was chosen for use. Intestinal cells were used as the positive control for 

the TLR4 antibody utilised in these experiments, and therefore it was suggested that the 

HT-29 cells may be more appropriate. As only a very small band was achieved with the 

THP-1 monocytes using a whole protein extract, a kit was used which was able to 

separate the insoluble membrane fraction from the soluble cytosolic protein fractions. 

TLR4 is anchored at the membrane when it binds to LPS but is also present in the 

cytosol, so by using this more complex protein extraction method, the level of protein 
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expression in both locations can be compared, but also the isolated samples can be used 

for separate subsequent analysis steps. 

 

As with the THP-1 monocytes previously, it was initially difficult to achieve 

reproducible results. However, when the extracts were stored as a number of separate 

aliquots the data was consistently reproducible. For the TLR4 protein, it appeared more 

than one freeze-thaw cycle resulted in the denaturation of the structure so it was no 

longer recognised by the antibody, which explained the non-reproducibility.  

 

HT-29 cells were treated with 5, 10 and 25µM SF for 1 hour in the presence or absence 

of 1ng/ml LPS. These concentrations were chosen based on the results in Figure 5.2, 

where SF-modified TLR4 peptides were identified, and excluding 50µM due to being 

far in excess of physiologically relevant levels. Figure 5.3 displays the western blot 

analysis for TLR4 from both the cytosolic and the membrane protein fractions. A band 

at 93kDa was identified, which was the recommended molecular weight for TLR4 with 

this antibody. A number of additional bands were seen in the blots and were possibly 

due to fragmentation of the receptor during the protein extraction method.  
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Figure 5.3. TLR4 is expressed as a soluble and membrane bound protein. (A) HT-

29 cells were treated with SF (5, 10 and 25µM; vehicle control for SF = < 0.1% (v/v) 

DMSO) in the presence or absence of 1ng/ml LPS (vehicle control for LPS = PBS) for 1 

hour. Proteins were extracted using a two-step kit that involved isolating the soluble 

protein fractions from the insoluble membrane protein fraction. The proteins were then 

separated using gel electrophoresis on a NuPage® 10% Bis-tris gel with NuPage® 

MOPS running buffer under non-reducing conditions. The proteins were transferred to a 

nitrocellulose membrane before being probed with anti-TLR4 at 2µg/ml in 2% (w/v) 

BSA/TBST followed by anti-mouse HRP-linked secondary antibody. Following the 

addition of a chemiluminescent substrate the blots were visualised. Representative of 

four blots from three independent protein extractions. (B). The 93kDa bands from the 

blots in (A) are represented here against the appropriate loading controls for soluble 

proteins (GAPDH) and for membrane proteins (Na-K ATPase).  
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5.2.4. Investigations into SF modifications of TLR4 from HT-29 cells treated with 

SF in the presence or absence of LPS  

The next step was to carry out a gel digestion of the protein fragment around 93kDa 

(highlighted in Figure 5.3) followed by LC-MS/MS analysis to aim to identify potential 

SF modifications of cysteine residues within the TLR4, as with the cell-free recombinant 

protein studies.  

 

HT-29 cells were treated with SF (5, 10 and 25µM) for 1 hour in the presence or absence 

of 1ng/ml LPS before proteins were extracted in the same way as in section 5.2.3. A 

duplicate of each protein sample was run on a gel. A duplicate was used to maximise the 

total amount of protein yield and hence give an increased likelihood of identifying TLR4 

in both the membrane and the cytosolic fraction. The gels were stained with a coomassie 

blue stain to allow visualisation of all of the proteins present in the sample. As seen in 

Figure 5.3, the TLR4 band was identified at approximately 93kDa and so for enzymatic 

digestion, the area of the gel that was selected was between the 80 and 100kDa marker 

bands (Figure 5.4).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4. Densitometry blots of the gels for digestion. HT-29 cells were treated with 

SF (5, 10 and 25µM; vehicle control for SF = < 0.1% (v/v) DMSO) in the presence or 

absence of 1ng/ml LPS (vehicle control for LPS = PBS) for 1 hour. Proteins were 

extracted using a two-step kit that involves isolating the soluble protein fractions from 

the membrane protein fraction (section 2.7.2). The proteins were then separated using 

gel electrophoresis on a NuPage® 10% Bis-tris gel with NuPage® MOPS running buffer 

under non-reducing conditions and each sample was run in duplicate. The gels were 

stained and digested according to details in section 2.8.2. Data shown is representative 

of the four gels produced (two from the cytosolic samples and 2 from the membrane 

fractions). The red box surrounds the area of the gel excised for analysis via LC-

MS/MS. 



Investigations into the mechanism of SF on TLR4 signalling 

 

115 

 

Following enzymatic digestion of the peptides within the gel pieces, the samples were 

subjected to LC-MS/MS analysis to aim to identify TLR4 peptide fragments with or 

without SF modifications. When data was analysed using Mascot software, TLR4 was 

not identified. Table 5.2 lists the 12 most highly scored proteins identified within the 

membrane fraction from HT-29 cells treated with 10µM SF with 1ng/ml LPS. The 

results from this sample demonstrated the most representative results for all the 

membrane and cytosolic fraction samples. Across the different treatments, the findings 

were fairly consistent with the most highly scored proteins identified in all samples. 

Based on the majority of proteins identified being within the 80-110kDa molecular 

weight, this data confirms that the positioning of the gel digest for identifying a 93kDa 

TLR4 protein was correct.  
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Table 5.2. Proteins identified by LC-MS/MS from gel digestion samples* 

Family** Member Accession Name of Gene Score 
Mass 

(Da) 

# of 

peptide 

matches 

# of 

significant 

peptide 

matches 

# of 

sequences 

# of 

significant 

sequences 

1 1 O43707 Alpha-actinin-4 1309 105245 66 43 45 31 

1 2 B7Z565 
cDNA FLJ54739, highly similar to Alpha-

actinin-1 
515 95237 35 19 26 15 

1 3 B2RCS5 Alpha-actinin-2 319 104425 18 9 14 7 

2 1 P55072 Transitional endoplasmic reticulum ATPase 942 89950 38 25 29 21 

3 1 P08238 Heat Shock Protein 90-beta 909 83554 54 34 37 23 

3 2 K9JA46 Epididymis luminal secretory protein 52 694 85006 39 23 29 19 

3 3 P14625 Endoplasmin 169 92696 10 4 9 3 

4 1 Q1KLZ0 HCG15971, isoform CRA_a 861 42052 33 28 19 18 

4 2 A8K3K1 

cDNA FLJ78096, highly similar to Homo 

Sapiens actin,alpha, cardiac muscle (ACTC), 

mRNA 

525 42362 23 20 13 13 

5 1 P19338 Nucleolin 716 76625 41 25 27 18 

6 1 P13639 Elongation factor 2 665 96246 38 27 28 20 

7 1 Q14444 Caprin-1 518 78489 21 14 16 11 

*This list of proteins is from the samples of HT-29 membrane proteins subjected to 10µM SF and LPS treatment with a peptide mass tolerance of 5ppm. This is 

representative of all samples measured, both membrane and cytosolic fractions. 

**Proteins are categorised into families when a high level of shared peptide matches are identified. 
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5.2.5. Identification of potential SF-modified TLR4 using immunoprecipitation 

5.2.5.1. Immunoprecipitation and gel electrophoresis 

In an attempt to identify SF-modified TLR4 fragments, the work from the gel digest was 

followed with the use of an IP method prior to gel electrophoresis. This method was 

advantageous compared to the previous gel digest method due to the fact that with IP, the 

TLR4 will be isolated from the crude protein extract and therefore will not compete with the 

large amount of proteins present in the sample at the same molecular weight in terms of 

abundance.  

 

HT-29 cells were treated as before for 1 hour with SF (5, 10 and 25µM) in the presence or 

absence of 1ng/ml LPS. Total proteins were extracted using the lysis buffer provided in the 

Pierce Classic IP kit, therefore combining those proteins present within the membrane of the 

cells but also within the cytosol, unlike in previous experiments where these localised pools 

of protein were separated. It was deemed unnecessary to separate the membrane and 

cytosolic fractions due to the comparable findings of both fractions when analysed by LC-

MS/MS (Table 5.2). 

  

In order to isolate TLR4 from the total protein extract, an immune complex was prepared. 

This involved combining the protein lysate with the anti-TLR4 antibody, before adding this 

to the protein A/G agarose to capture the antibody-bound TLR4 protein. This antibody-

protein complex was then eluted into sample buffer under reducing conditions to subject 

directly to gel electrophoresis. Following gel electrophoresis, the gels were stained with a 

coomassie blue stain to identify proteins present within the samples. In addition, a western 

blot analysis was carried out to compare with the coomassie blue stained gel. The 

densitometry blot of the coomassie blue stained gel and the visualised western blot are 

presented in Figure 5.5. Five bands were annotated as being of interest in Figure 5.5 and 

were subjected to gel digestion. The reasons for this were that bands 2-5 appeared to vary 

with the treatment of the cells while band 1 appeared to be fairly consistently present in all 

the samples. In order to determine whether there was any indication of an effect of the 

treatments, the band volumes were quantified. To give some level of normalisation, the band 

at around 25kDa which is attributed to the anti-TLR4 antibody, was used.  
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Figure 5.5. Analysis of immunoprecipitation product by gel electrophoresis with 

coomassie blue stain (A) and western blot analysis (B) for TLR4. HT-29 cells were 

treated with SF (5, 10 and 25µM; vehicle control for SF = < 0.1% (v/v) DMSO) in the 

presence or absence of LPS (1ng/ml; vehicle control for LPS = PBS) for 1 hour. Proteins 

were extracted from the cells and immunoprecipitated using the Pierce Classic IP kit 

following manufacturer’s instructions. In order to immunoprecipitate the TLR4 protein, the 

mouse monoclonal anti-TLR4 antibody was used. The antigen-antibody complex was eluted 

in sample buffer under reducing conditions and subjected to gel electrophoresis. One gel was 

stained with GelCode Blue Stain overnight (A) and densitometry measured using the GS800 

Calibrated Densitometer. The other gel was subjected to western blot analysis with the same 

anti-TLR4 antibody and chemiluminescence was measured using anti-mouse HRP-linked 

secondary antibody and a chemiluminescent substrate (B). Annotations 1-5 are the bands 

that were identified for gel digestion and analysis via LC-MS/MS.   

 

 

The bands highlighted in Figure 5.5 were quantified using the Quantity One software to get 

some indications as to whether treatment effects were observed. 
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In Figure 5.6, the data presented demonstrates varying effects of SF and LPS on the 

highlighted bands. While band 1 appears to have no consistent pattern in response to SF or 

LPS, band 2 demonstrates a slight reduction in the levels with increasing doses of SF 

(Figure 5.6A-B). Of particular interest are bands 3 and 4 which demonstrate similar patterns 

with a reduction at higher concentrations of SF relative to the control, while both are 

induced by LPS. When subjected to a combined treatment of LPS and SF, 10 and 25µM SF 

treatment results in a large reduction of the levels of bands 3 and 4 (Figure 5.6C-D). Band 5 

follows a different pattern where SF reduces the levels in the absence of LPS and when 

treated with LPS alone, a reduction in the levels relative to the control was observed. When 

treated in combination with LPS and SF, there is a dose-dependent restoration of the level of 

the protein present to that measured in the control condition (Figure 5.6E).  

Figure 5.6. Quantification of the bands of interest from the IP product. Using the 

Quantity One software necessary to visualise both the coomassie blue stained gel and the 

western blot, the individual bands annotated in Figure 5.5 were quantified based on their 

volume and were normalised using the volume of the antibody band for each corresponding 

lane. 
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5.2.5.2. LC-MS/MS analysis of gel digestion fragments 

From the five digested protein bands subjected to gel digestion (Figure 5.5), TLR4 was not 

identified in any of the samples. High levels of keratin was found within the samples 

suggesting a technical contamination during the procedure for preparing samples from the 

stained gel through until the samples were ready for LC-MS/MS analysis. Following the 

staining of the gel, there was a period where the gel had semi-dried and it is possible it was 

at this point that keratins were able to penetrate the gel and following reconstitution the 

keratins remained present within the gel. In order to confirm the identity of the proteins 

present in the bands highlighted in Figures 5.5 and 5.6, this experiment would need to be 

repeated. 

 

 

5.3. Discussion 

In experiments with the recombinant TLR4 receptor, SF at 100µM was able to modify 

Cys246 and Cys609 of the TLR4 molecule under non-reducing conditions, and when carried 

out under reducing conditions, results were comparable with Youn and colleagues with 

many cysteine residues demonstration thiol modification [195]. The modification of Cys609 

was also detected with SF at low concentrations with a dose-dependent increase with 

concentrations of 5µM to 25µM, with a large increase when subjected to treatment with 

50µM SF (Figure 5.1A). With Cys246, there were slightly different findings however a 

significant increase was seen in the levels of modified protein at 50µM (Figure 5.1B). These 

results demonstrated that Cys609 was most sensitive to modification by SF even at the 

lower, physiologically relevant concentrations. These novel findings suggest that Cys246 

and Cys609 are potentially most important for the suppression of LPS-induced gene 

expression, but this hypothesis requires more investigation. 

 

Interestingly, when investigating the Cys609 residue, it was found that it is attributed to a 

disulphide bridge with Cys583 according to the Uniprot database (Accession Number: 

O00206) [8, 237, 238]. While Cys609 was found to be modified under both non-reducing 

and reducing conditions, the other reported cysteine within the disulphide bond, Cys583, 

was only modified by SF following a reduction step using DTT (Table 5.1). To investigate 

the existence of this particular disulphide bond, the literature that was referred to in the 

Uniprot database was reviewed and no evidence of support for the presence of this 

disulphide bridge was found in any of the articles cited [8, 237, 238]. The combination of the 

lack of literature findings with my observations that Cys609 was bound by SF in the absence 
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of a reduction treatment (Table 5.1 and Figure 5.1), does not corroborate the presence of the 

disulphide bonds in the experimental design presented in this chapter.  

 

The mechanism of cysteine modification by SF was not a novel concept [236]. With 

relevance to the ability of SF to significantly suppress LPS-induced gene expression, SF has 

also been identified as being able to modify the Cys133 residue within the mouse MD2 

protein, the co-receptor of TLR4 required for LPS-induced signalling. This modification 

prevents LPS binding to MD2 [196]. Cys133 is freely available while other cysteines present 

within the structure of MD2 are involved in disulphide bonds. Those involved in disulphide 

bonds were not modified by SF, suggesting that in order for SF to covalently modify 

cysteine residues, the thiol group must be free. In combination with the identified TLR4 

modification by SF, this evidence in a cell-free system may support the hypothesis that SF is 

able to significantly suppress LPS-induced gene expression on a global scale as a result of 

targeting the receptor and its interaction with its specific ligand, LPS. 

 

Additionally, modification of cysteine residues by SF has been described as a plausible 

explanation for additional functions of SF such as its role in Nrf2 activation. During a basal 

state, Nrf2 is sequestered within the cytoplasm of the cell via its inhibitory co-factor, Keap1, 

which behaves to target the Nrf2 transcription factor for proteosomal degradation [154]. 

When activated by the presence of an Nrf2 inducer for example SF, Keap1 is no longer able 

to sequester the Nrf2 to the cytoplasm, leaving Nrf2 free to translocate to the nucleus and 

activate the transcription of ARE-controlled genes [155]. SF was identified as being able to 

directly interact with the thiol group of the Cys151 residue within the Keap1 protein, a 

residue essential for the activity of the protein [156-159].  

 

All evidence of direct binding of SF to thiol groups of cysteine residues within target 

proteins has come from LC-MS/MS analysis utilising recombinant forms of the proteins and 

subjecting them to SF treatment, often at concentrations that cannot be achieved in vivo 

following the consumption of broccoli. While a lack of Nrf2 activation was seen in cells 

exposed to SF when Cys151 within the Keap1 protein was substituted with a serine residue, 

this experimental design has not been undertaken with TLR4 or MD2, making it difficult to 

justify the importance of the cysteine modification and the relevance to the anti-

inflammatory effects of SF in vitro and in vivo. For this reason, investigations were carried 

out into whether the modified cysteine residues could be identified within the TLR4 in a cell 

model following exposure to SF.  
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To investigate whether it was possible to demonstrate SF thiol modification of TLR4 in vitro 

HT-29 cells with SF (5, 10 and 25µM) in the presence or absence of 1ng/ml LPS for 1 hour 

prior to extracting the cytosolic and membrane protein pools. These samples were subjected 

to gel electrophoresis and following coomassie blue staining, a band was excised from gels 

covering the region between 80-100kDa, the area at which the TLR4 protein with a 

molecular weight of 93kDa should potentially be found. The proteins present within the 

band were subjected to a chymotrypsin/trypsin double enzyme digestion to yield peptides 

that were subjected to LC-MS/MS analysis. When analysed, the data did not identify the 

TLR4 protein as present within the band. Reasons for the lack of identifying TLR4 within 

these samples include the fact that the TLR4 is likely to be expressed at very low levels 

compared to actin proteins found within the samples (Table 5.2) and therefore the TLR4 

would have to compete for identification. When exposed to the enzymes during digestion, 

TLR4 would also have to contest with the other proteins present within the band to be 

digested and in addition, when analysed via LC-MS/MS there would be competition 

between the peptides for ionisation and subsequent identification. If the experiment was to 

be repeated, a band over a more narrow range could be excised to try and increase the 

probability of TLR4 identification. 

 

IP techniques were subsequently used with the cell lysate to try and improve the probability 

of identifying SF-modified TLR4 and when a western blot was carried out a number of 

interesting bands were discovered that appeared to change with LPS and SF treatment. 

However, whether these results were a true effect of SF and LPS remain to be determined as 

LC-MS/MS analysis did not identify the TLR4 protein within any of the samples analysed 

and instead the highest scoring proteins were keratins (data not shown). This was thought to 

be due to contamination following the drying of the gel which occurred after the staining 

procedure. While the gel remained intact following rehydration, it is possible keratins from 

the environment were able to penetrate the gel and hence were present within the digested 

peptides. However, due to the identification of protein bands within the IP product which 

were thought to be specific interactions with the TLR4 molecule, in combination with bands 

that demonstrated differing effects with SF and LPS treatments in some cases, it is important 

that this experiment be repeated in future work, ensuring stricter experimental procedures 

are used. 

 

While there were a fairly large number of treatments used with the IP experimental design 

which may result in difficulties when trying to further the work, it would be necessary to 

repeat these experiments with the same conditions as it is important to investigate the effect 
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of SF both with and without LPS. In the absence of LPS, the potential modifications 

between TLR4 and SF in a resting state can be investigated, while in the presence of LPS, 

investigation can be carried out into whether SF is able to modify the TLR4 and prevent LPS 

binding in addition to addressing the question of whether SF is able to bind to TLR4 and 

prevent downstream activation following ligand binding.  

 

Within Chapters 3 to 5, all the research focused on the TLR4 signalling pathway. In the next 

chapter, the scope of the research was broadened to investigate whether the effect of SF was 

restricted to TLR4 signalling or whether SF was also able to target TLR2 and NOD2 

pathways, which are also of fundamental importance in chronic inflammatory signalling.  

 

 

5.4 Conclusion 

To summarise, it was demonstrated that physiologically relevant concentrations of SF, as 

low as 5µM, were able to modify Cys609 and Cys246 present in the extracellular domain of 

recombinant TLR4. These residues remained modified under non-reducing conditions, 

suggesting these may be of larger importance to a potential mechanism.  

 

To investigate whether this was a plausible mechanism to explain the global effects on the 

TLR4 pathway seen in vitro, a gel digest was carried out from both a crude total protein 

sample and an IP product with the aim to enrich the presence of TLR4. In both experimental 

designs, there was no identification of TLR4. This is likely as a result of technical 

drawbacks and while indications of proteins dependent on both LPS and SF treatments were 

identified from the IP product, the lack of LC-MS/MS confirmation means this experiment 

would need to be repeated with an optimised protocol. 

 

Thus far, the TLR4 signalling pathway has been the sole focus of this thesis. The next 

chapter will aim to address whether SF has the ability to target other inflammatory signalling 

pathways, namely TLR2 and NOD2, and whether common polymorphisms in the TLR4 and 

NOD2 receptors implicated in Crohn’s disease, affect the response to their ligands or SF.  
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Chapter Six 

Effect of SF on NF-κB in PRR-expressing cell 

models 
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6.0. Introduction 

In the previous chapter, evidence was provided to demonstrate that SF at physiologically 

relevant concentrations could directly target and modify cysteine residues within the TLR4 

(Chapter 5). Furthermore, this mechanism may be able to explain the global effect SF can 

exert on LPS signalling (Chapter 4). However, until this point only the TLR4 pathway has 

been focused on. This chapter aimed to address whether the suppressive effect of SF was 

specific to TLR4 signalling, or whether SF was able to target other important signalling 

pathways involved in chronic inflammation. Additionally, investigations were carried out 

into whether any differences were observed in the effect of SF when comparing L-SF and 

DL-SF forms.  

 

 

6.0.1. L-SF versus DL-SF 

Both L-SF and DL-SF compounds have been widely investigated in vitro, and throughout 

this thesis, the DL-SF form was used. L-SF is isolated from broccoli and is known to be 

biologically active. SF is a chiral molecule meaning it has two non-superimposable mirror-

image compounds, L-SF and the stereoisomer D-SF. DL-SF is the racemic mixture and is 

available commercially as a synthetic analogue of the naturally occurring L-SF [239]. Its 

synthetic nature has advantages e.g. it is cheaper to produce and is potentially a more 

consistent product, whereas L-SF is derived from broccoli which is advantageous due to 

being the biologically active breakdown product found in circulation following broccoli 

consumption [239]. The stereoisomer of L-SF, D-SF is also commercially available, 

however due to the low natural abundance in broccoli, no research has been carried out 

investigating the biological activity of this form. The hypothesis was that no significant 

differences in the biological activity of the naturally occurring L-SF and the synthetic DL-SF 

will be observed. Support for this hypothesis includes a study by Zhang and colleagues who 

found equipotent levels of quinone reductase induction when comparing L-SF and DL-SF in 

vitro [239]. 

 

 

6.0.2. Chronic inflammatory signalling pathways 

In recent years it has become more widely accepted that a state of low-grade inflammation is 

a contributing common factor to many chronic diseases such as cancer, atherosclerosis and 

IBDs [205]. The importance in trying to prevent the development of these chronic diseases, 

the leading causes of mortality throughout the world, and improving potential treatment 
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options, is crucial. With chronic inflammation as a mutual factor in these diseases, this has 

become an increasingly attractive target for dietary and pharmaceutical interventions. 

 

Inflammatory signalling in chronic diseases is controlled by an array of PRRs which behave 

to recognise specific PAMPs, resulting in the activation of their associated signalling 

pathways [240]. The main classes of PRRs are the TLRs, NLRs and RLRs [241] and within 

this chapter TLR4, TLR2 and NOD2 have been investigated. The TLR4, TLR2 and NOD2 

pathways are individually activated in response to their specific ligands but ultimately, these 

pathways converge with NF-κB activation common to all (Figure 6.1). As mentioned in 

previous chapters, TLR4 responds specifically to LPS and can follow one of two different 

pathways: a MyD88-independent pathway which results in the activation of the transcription 

factor IRF3 followed by NF-κB, or a MyD88-dependent pathway that results in the 

activation of NF-κB and AP-1. This MyD88-dependent pathway is also common to the 

TLR2 signalling pathway, which is activated in response to lipopeptides. NOD2 signalling is 

triggered in response to MDP binding and also results in the activation of NF-κB and AP-1. 

While NOD2 signalling doesn’t involve MyD88, adaptors common to the TLR4, TLR2 and 

NOD2 pathways prior to NF-κB transcription factor activation, including RIP1 and MAPKs, 

are necessary for signalling to occur [240]. 

  



Effect of SF on NF-κB in PRR-expressing cell models 

 

127 

 

Figure 6.1. Overview of the TLR4, TLR2 and NOD2 signalling pathways. In the TLR4 

signalling pathway, LPS binds to the TLR4-MD2 complex via the aid of LBP and CD14 

accessory proteins. The binding of LPS to the TLR4-MD2 complex results in 

homodimerisation and activation of an intracellular signalling cascade. This can be MyD88-

independent or dependent. The MyD88-independent pathway results in the activation of 

IRF3 followed later by NF-κB. This leads to the expression of type I IFNs and IFN-

inducible genes. The MyD88-dependent pathway stimulates NF-κB and AP-1 resulting in 

pro-inflammatory cytokine and chemokine expression [13, 14]. The MyD88-dependent 

pathway is also activated as a result of lipopeptides binding to TLR2. In addition, adaptor 

proteins downstream of MyD88 can be activated by MDP binding to the intracellular NOD2 

receptor, again resulting in the activation of NF-κB and AP-1 [240].  

 

 

The reason for focusing on the TLR4, TLR2 and NOD2 signalling pathways is due to 

identified associations with chronic inflammatory pathologies. Increased TLR4 and TLR2 

expression levels have been linked to chronic diseases including IBDs [48-50], cancer [30], 

metabolic syndrome [242, 243], atherosclerosis [36], obesity [44] and T2DM [44]. Identified 

polymorphisms within TLR4, namely D299G where an aspartate residue at position 299 has 

been substituted with a glycine and T399I where a threonine at position 399 has been 

replaced with an isoleucine residue, have also been investigated in patients with IBDs with 

contradictory results reported [54-62]. Conversely, these polymorphisms have been 

associated with a protective function against T2DM [244]. 
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NOD2 has been widely studied in Crohn’s disease and three SNPs have been commonly 

associated with IBDs. One SNP results in a frameshift mutation within the NOD2 receptor 

sequence, which leads to the introduction of an early stop codon. As a result, a truncated 

NOD2 protein is produced with the final 33 amino acids of the protein missing [53]. The 

other two commonly associated SNPs are missense mutations, G908R where a glycine 

residue at position 908 has been replaced with an arginine residue and R702W, where an 

arginine residue at position 702 is replaced with a tryptophan [245]. Approximately 15% of 

Crohn’s disease patients are found to have at least one of these mutations in the NOD2 

receptor and these three polymorphisms described account for 82% of the mutations in 

NOD2 found in patients suffering from Crohn’s disease or UC [51, 52]. These NOD2 

polymorphisms have also been found at higher prevalence in patients with coronary artery 

disease [246] and some cancers [247], however, further research needs to be carried out to 

firmly establish a link as seen with Crohn’s disease. 

 

Based on previously published data and the results from earlier chapters, the hypothesis 

within this chapter was that both the L-SF and DL-SF compounds would significantly 

suppress NF-κB activity induced in response to appropriate TLR4, TLR2 and NOD2 

ligands, with the same extent of suppression observed with each form, was tested. In 

addition, mutations within these receptors that are commonly associated with IBDs were 

studied to determine if they affected the response to either the ligand or SF treatments. 

 

 

6.1. Materials and Methods 

For the experiments within this chapter HEK-Blue
TM 

cells or HEK cells transfected in-house, 

either stably or transiently transfected, were used (section 2.2.2). These cell lines were 

subjected to various treatments with their appropriate ligands in the presence or absence of 

SF (2, 5 and 10µM) for 24 hours before the cell culture supernatant was used to determine 

the level of NF-κB activity indirectly via the use of a QUANTI-Blue
TM

 assay that measures 

the level of AP enzyme activity (section 2.9). To investigate the effect of SF on the viability 

of these HEK cells, a WST-1 cell viability assay was used (section 2.3).  
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6.2. Results 

6.2.1. Effect of SF on cell viability of HEK293 cells 

To determine which concentration of L-SF and DL-SF to use for the experiments to test the 

effect of SF on NF-κB activity, HEK-Blue
TM

 TLR4, TLR2, NOD2 (wildtype and G908R 

mutant) cells were treated with L-SF or DL-SF (0-200µM) for 24 hours and a WST-1 cell 

viability assay was carried out. The data was analysed collectively because HEK293 cells 

were used consistently, with only the receptor they were transfected with changing. L-SF 

caused a significant reduction in cell viability at concentrations of 15µM and above (Figure 

6.2A) while with DL-SF, concentrations of 10µM and above resulted in significant 

reductions in cell viability (Figure 6.2B). 

 

Figure 6.2. Effect of SF on viability of HEK293 cells. HEK-Blue
TM

 cells were treated with 

A) L-SF or B) DL-SF (0-200µM; vehicle control for L-SF and DL-SF = < 0.1% (v/v) 

DMSO) for 24 hours. After treatment was complete, 10µl WST-1 reagent was added to each 

well. The plates were incubated at 37°C and measured using a spectrophotometer at 450nm 

every 30 minutes for 3 hours. Data shown is from the 1.5 hour measurement at which the 

levels of absorbance were all measurable and consistent. Data shown = mean ± SEM, n = 4. 

Data was statistically analysed using one-way ANOVA followed by the Bonferroni multiple 

comparison test. **p<0.01 and ***p<0.001 vs. 0µM. 

 

 

To determine whether there were any differences in the level of cytotoxicity between the L-

SF and DL-SF compounds, the IC50 for each compound was calculated. Using a t-test, no 

significant difference was found in the levels of cytotoxicity with L-SF and DL-SF (Table 

6.1). 

  



Effect of SF on NF-κB in PRR-expressing cell models 

 

130 

 

 

 

 

 

 

 

 

 

 

6.2.2. Effect of SF on NF-κB activity in TLR4-expressing cells 

To determine whether 1ng/ml LPS (the concentration used in previous chapters) was 

sufficient to induce NF-κB activity in TLR4-expressing cells, HEK-Blue
TM

-hTLR4 cells 

were treated with 1, 5 and 10ng/ml LPS for 24 hours and level of SEAP was analysed as a 

measure of NF-κB activity. A significant induction of NF-κB activity was seen in response 

to 1, 5 and 10ng/ml LPS (Figure 6.3).  

 

 

 

 

 

 

 

 

 

 

Figure 6.3. LPS significantly induces NF-κB activity in HEK-Blue
TM

-hTLR4 cells. 

HEK-Blue
TM

-hTLR4 cells were treated with LPS (1, 5 and 10ng/ml; vehicle control for LPS 

= PBS) for 24 hours. Cell culture supernatant was added to QUANTI-Blue
TM

 solution until 

colour change was evident (pink to purple blue, caused by the activity of SEAP). The colour 

change induced by SEAP was analysed as a measure of NF-κB activity at 650nm using a 

spectrophotometer. Data shown = mean ± SEM, n = 4. Data was statistically analysed using 

one-way ANOVA followed by the Bonferroni multiple comparison test. ***p<0.001 vs. 

0ng/ml. 

 

 

Based on the findings in Figure 6.2, concentrations of both L-SF and DL-SF up to 10µM 

were chosen for use in further experiments, where cell viability would be maintained at 

above 80%. This was to ensure that any effects observed on NF-κB activity were not as a 

result of cytotoxic effects induced by SF. Both L-SF and DL-SF at concentrations of 5 and 

10µM were able to significantly suppress NF-κB induction seen in response to 1ng/ml LPS 

(Figure 6.4). 

Table 6.1. IC50 for L-SF and DL-SF on HEK293 cells 

 IC50 (µM) SEM P value 

L-SF 23.92 3.94 
0.148

 

DL-SF 17.01 1.35 

The IC50 values were compared using the Student’s T-test, p > 0.05 = non-

significant.  
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Figure 6.4. L-SF and DL-SF significantly suppress LPS-induced NF-κB activity in 

HEK-Blue
TM

-hTLR4 cells. HEK-Blue
TM

-hTLR4 cells were treated with A) L-SF or B) DL-

SF (0.5, 2, 5 or 10µM; vehicle control for L-SF and DL-SF = < 0.1% (v/v) DMSO) in the 

presence or absence of LPS (1ng/ml; vehicle control for LPS = PBS) for 24 hours. Cell 

culture supernatant was added to QUANTI-Blue
TM

 solution until colour change was evident 

(pink to purple blue, caused by the activity of SEAP). The colour change induced by SEAP 

was analysed as a measure of NF-κB activity at 650nm using a spectrophotometer. Data 

shown = mean ± SEM, n = 4. *p<0.05, **p<0.01 and ***p<0.001, comparison to 0µM + 

LPS. 

 

 

6.2.3. Effect of SF on NF-κB activity in transiently transfected TLR4 cells 

In Crohn’s disease, a higher prevalence of two SNPs within the TLR4 receptor, D299G and 

T399I, have been reported, though it is controversial [54-62]. These TLR4 variants were 

investigated to determine if the mutations resulted in a different response to either their 

ligand LPS, or to SF. HEK293 cells were transiently transfected with either the wildtype or 

mutant TLR4 receptors in addition to the NF-κB-controlled SEAP reporter gene. Cells were 

treated with LPS (1, 5 and 10ng/ml) for 24 hours before NF-κB activity was measured to 

determine whether the transiently transfected TLR4 cells responded to the same extent to 

LPS as the stably transfected cells previously used (section 6.2.2). A concentration of 

1ng/ml LPS was sufficient to significantly induce NF-κB activity in cells expressing the 

wildtype TLR4 receptor (Figure 6.5A) and the mutant receptors, D299G and T399I (Figure 

6.5B-C). The extent of the response to LPS was compared across cells expressing the 

wildtype and the mutant TLR4 receptors and no significant differences were seen in the 

level of NF-κB activity induced in response to LPS (Figure 6.5D).  



Effect of SF on NF-κB in PRR-expressing cell models 

 

132 

 

 

 

 

 

Figure 6.5. LPS significantly induces NF-κB activity in cells transiently transfected 

with wildtype or mutant TLR4. 293-hMD2-CD14 cells transiently transfected with either 

the wildtype or mutant TLR4 receptor (A. wildtype, B. D299G and C. T399I) were treated 

with LPS (1, 5 and 10ng/ml; vehicle control for LPS = PBS) for 24 hours. Cell culture 

supernatant was added to QUANTI-Blue
TM

 solution until colour change was evident (pink to 

purple blue, caused by the activity of SEAP). The colour change induced by SEAP was 

analysed as a measure of NF-κB activity at 650nm using a spectrophotometer. D) shows the 

response of wildtype, D299G and T399I cells collectively. Data shown = mean ± SEM, n = 

4. Data was statistically analysed using one-way ANOVA followed by the Bonferroni 

multiple comparison test. **p<0.01 and ***p<0.001 vs. 0ng/ml. 

 

 

The effect of L-SF and DL-SF on LPS induction of NF-κB activity was investigated. At 

concentrations of both 5 and 10µM, L-SF and DL-SF were able to demonstrate a significant 

suppression of LPS-induced NF-κB activity in cells expressing either the wildtype or mutant 

TLR4 receptors (Figure 6.6). 
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Figure 6.6. L-SF and DL-SF significantly suppress LPS-induced NF-κB activity in cells 

transiently transfected with wildtype or mutant TLR4. 293-hMD2-CD14 cells 

transiently transfected with either the wildtype or mutant TLR4 receptor (A + B. wildtype, C 

+ D. D299G and E + F. T399I) were treated with L-SF (A, C + E) or DL-SF (B, D + F) at 

concentrations of 0.5, 2, 5 and 10µM (vehicle control for L-SF and DL-SF = < 0.1% (v/v) 

DMSO) in the presence or absence of  LPS (1ng/ml; vehicle control for LPS = PBS) for 24 

hours. Cell culture supernatant was added to QUANTI-Blue
TM

 solution until colour change 

was evident (pink to purple blue, caused by the activity of SEAP). The colour change 

induced by SEAP was analysed as a measure of NF-κB activity at 650nm using a 

spectrophotometer. Data shown = mean ± SEM, n = 4. *p<0.05, **p<0.01 and ***p<0.001, 

comparison to 0µM + LPS. 

 

 

To determine whether the D299G or T399I mutations caused differential responses to SF, a 

comparison was carried out between the cells expressing the three TLR4 variants. No 

significant differences were seen in the level of suppression of NF-κB activity induced by 

LPS in response to either L-SF (Figure 6.7A) or DL-SF (Figure 6.7B). 
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Figure 6.7. No significant differences were seen in the response to L-SF (A) or DL-SF 

(B) by cells transiently transfected with either wildtype or mutant TLR4. 293-hMD2-

CD14 cells transiently transfected with either the wildtype or mutant TLR4 receptor (D299G 

and T399I) were compared in terms of their responses to LPS (1ng/ml; vehicle control for 

LPS = PBS) in the presence or absence of A) L-SF or B) DL-SF (0.5, 2, 5 and 10µM SF; 

vehicle control for L-SF and DL-SF = < 0.1% (v/v) DMSO) after 24 hours of treatment. Cell 

culture supernatant was added to QUANTI-Blue
TM

 solution until colour change was evident 

(pink to purple blue, caused by the activity of SEAP). The colour change induced by SEAP 

was analysed as a measure of NF-κB activity at 650nm using a spectrophotometer. Data 

shown = mean ± SEM, n = 4. Data was statistically analysed using two-way ANOVA 

followed by the Bonferroni multiple comparison test. 

 

 

6.2.4. Effect of SF on NF-κB in TLR2-expressing cells 

Until now, investigations had only been carried out with a focus on the effect of SF in 

response to LPS and thus, specifically, on the TLR4 pathway. As previously mentioned, 

TLR2 is fundamental in chronic inflammatory signalling where it can respond to bacterial or 

mycoplasmal lipopeptides [4, 5]. TLR2, unlike TLR4, undergoes heterodimerisation forming 

complexes with either TLR1 or TLR6. These dimers have different ligand specificities; the 

TLR2/TLR1 complex specifically binds triacylated lipopeptides and the TLR2/TLR6 

complex recognises diacylated lipopeptides [4, 5].  

 

In Chapter 5, TLR2 was also studied as a direct target for SF modification however practical 

implications meant that no direct interactions with thiol groups of cysteine residues were 

observed (data not shown). In this chapter, TLR2-expressing cells were utilised to address 

whether the effect of SF was specific to TLR4 signalling or whether SF was able to target 

additional receptors involved in chronic inflammatory signalling.  

 

In order to measure NF-κB activity in TLR2-expressing cells, activation of both the 

TLR2/TLR1 and TLR2/TLR6 dimeric complexes required investigation. Firstly, activation 
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of NF-κB via the TLR2/TLR1 pathway was explored using a synthetic ligand for the TLR2 

receptor complex, Pam3CSK4, a triacylated lipopeptide that behaves to mimic bacterial 

lipoproteins. To determine the necessary concentration to significantly induce NF-κB 

activity, TLR2-expressing cells were treated with concentrations of Pam3CSK4 (5, 15 and 

50pg/ml) for 24 hours and SEAP levels were analysed as a measure of NF-κB activity. A 

concentration of 50pg/ml Pam3CSK4 significantly induced NF-κB activity (Figure 6.8). 

 

 

 

 

 

 

 

 

 

 

Figure 6.8. Pam3CSK4 significantly induces NF-κB activity in HEK-Blue
TM

-hTLR2 

cells. HEK-Blue
TM

-hTLR2 cells were treated with Pam3CSK4 (5, 15 and 50pg/ml; vehicle 

control for Pam3CSK4 = endotoxin-free water) for 24 hours. Cell culture supernatant was 

added to QUANTI-Blue
TM

 solution until colour change was evident (pink to purple blue, 

caused by the activity of SEAP). The colour change induced by SEAP was analysed as a 

measure of NF-κB activity at 650nm using a spectrophotometer. Data shown = mean ± 

SEM, n = 3. Data was statistically analysed using one-way ANOVA followed by the 

Bonferroni multiple comparison test. **p<0.01 vs. 0pg/ml. 

 

 

To determine the effect of L-SF and DL-SF on Pam3CSK4-induced NF-κB activity, TLR2-

expressing cells were treated with L-SF and DL-SF (0.5, 2, 5 and 10µM) in the presence or 

absence of 50pg/ml Pam3CSK4 for 24 hours. Both L-SF and DL-SF were able to 

significantly suppress levels of NF-κB activity induced in response to Pam3CSK4 

consistently at concentrations of 5 and 10µM (Figure 6.9).  
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Figure 6.9. L-SF and DL-SF are able to significantly suppress Pam3CSK4-induced NF-

κB activity in HEK-Blue
TM

-hTLR2 cells. HEK-Blue
TM

-hTLR2 cells were treated with 

Pam3CSK4 (50pg/ml; vehicle control for Pam3CSK4 = endotoxin-free water) in the 

presence or absence of A) L-SF or B) DL-SF (0.5, 2, 5 or 10µM; vehicle control for L-SF 

and DL-SF = < 0.1% (v/v) DMSO) for 24 hours. Cell culture supernatant was added to 

QUANTI-Blue
TM

 solution until colour change was evident (pink to purple blue, caused by 

the activity of SEAP). The colour change induced by SEAP was analysed as a measure of 

NF-κB activity at 650nm using a spectrophotometer. Data shown = mean ± SEM, n = 3. 

*p<0.05, and ***p<0.001, comparison to 0pg/ml for –Pam3CSK4 and +Pam3CSK4 

conditions separately or as annotated. 

 

 

FSL-1, a diacylated lipopeptide derived from mycoplasma, is specifically recognised by the 

TLR2/TLR6 dimer. The same experimental design used with Pam3CSK4 was repeated with 

FSL-1 in the TLR2-expressing cells to investigate the levels of NF-κB activity as a result of 

activating the TLR2/TLR6 dimer. HEK-Blue
TM

-hTLR2 cells were treated with FSL-1 at 

concentrations of 5, 15 and 50pg/ml and the level of induction of NF-κB activity was 

measured. Levels of 15 and 50pg/ml FSL-1 significantly induced NF-κB activity in HEK-

Blue
TM

-hTLR2 cells (Figure 6.10).  
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Figure 6.10. FSL-1 significantly induces NF-κB activity in HEK-Blue
TM

-hTLR2 cells. 

HEK-Blue
TM

-hTLR2 cells were treated with FSL-1 (5, 15 and 50pg/ml; vehicle control for 

FSL-1 = endotoxin-free water) for 24 hours. Cell culture supernatant was added to 

QUANTI-Blue
TM

 solution until colour change was evident (pink to purple blue, caused by 

the activity of SEAP). The colour change induced by SEAP was analysed as a measure of 

NF-κB activity at 650nm using a spectrophotometer. Data shown = mean ± SEM, n = 3. 

Data was statistically analysed using one-way ANOVA followed by the Bonferroni multiple 

comparison test. ***p<0.001 vs. 0pg/ml. 

 

 

The effect of both L-SF and DL-SF on FSL-1-mediated NF-κB induction was investigated 

using 15pg/ml FSL-1, the minimum concentration sufficient to significantly induce NF-κB 

activity (Figure 6.10). TLR2-expressing cells were treated with L-SF and DL-SF (0.5, 2, 5 

and 10µM) in the presence or absence of 15pg/ml FSL-1 for 24 hours. Both 5 and 10µM L-

SF and DL-SF consistently demonstrated a significant suppression of NF-κB activity 

induced in response to 15pg/ml FSL-1 (Figure 6.11). 
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Figure 6.11. L-SF and DL-SF are able to significantly suppress FSL-1-induced NF-κB 

activity in HEK-Blue
TM

-hTLR2 cells. HEK-Blue
TM

-hTLR2 cells were treated with FSL-1 

(15pg/ml; vehicle control for FSL-1 = endotoxin-free water) in the presence or absence of 

A) L-SF or B) DL-SF (0.5, 2, 5 or 10µM; vehicle control for L-SF and DL-SF = < 0.1% 

(v/v) DMSO) for 24 hours. Cell culture supernatant was added to QUANTI-Blue
TM

 solution 

until colour change was evident (pink to purple blue, caused by the activity of SEAP). The 

colour change induced by SEAP was analysed as a measure of NF-κB activity at 650nm 

using a spectrophotometer. Data shown = mean ± SEM, n = 3. **p<0.01, and ***p<0.001, 

comparison to 0pg/ml for –FSL-1 and +FSL-1 conditions separately or as annotated. 

 

 

6.2.5. Effect of SF on NF-κB activity in NOD2 wildtype and mutant G908R cells 

As explained previously, NOD2 is another example of a PRR like TLR2 and TLR4, but 

differs in terms of its location. While the TLRs are anchored to the cell membrane and are 

bound by their specific ligands extracellularly, the NOD2 receptor is found intracellularly 

[19]. NOD2 has been commonly implicated in Crohn’s disease and one of the mutants 

commonly found in higher prevalence in patients suffering from the chronic inflammatory 

disease is characterised by the SNP, G908R [51, 53, 54]. 

 

The ligand for the NOD2 receptor is MDP, a breakdown product of PGN which is found in 

the cell walls of both Gram-positive and Gram-negative bacteria [19]. MDP is the minimum 

structure required to activate the NOD2 receptor [19].To determine the concentrations of 

MDP sufficient to induce NF-κB activity via NOD2 signalling, cells expressing either the 

wildtype NOD2 or mutant G908R NOD2 were treated with MDP (0.2, 1 and 4µg/ml) for 24 

hours before measuring NF-κB activity. A concentration of 0.2µg/ml MDP was sufficient to 

induce NF-κB activity in cells expressing the wildtype NOD2 receptor (Figure 6.12A) and 

in cells expressing the mutant G908R NOD2 receptor (Figure 6.12B). 
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Figure 6.12. MDP significantly induces NF-κB activity in cells expressing wildtype (A) 

and mutant G908R (B) NOD2. HEK-Blue
TM

-hNOD2 wildtype cells (A) or HEK293 cells 

stably transfected with NOD2 G908R (B) were treated with MDP (0.2, 1 and 4µg/ml; 

vehicle control for MDP = endotoxin-free water) for 24 hours. Cell culture supernatant was 

added to QUANTI-Blue
TM

 solution (until colour change was evident (pink to purple blue, 

caused by the activity of SEAP). The colour change induced by SEAP was analysed as a 

measure of NF-κB activity at 650nm using a spectrophotometer. Data shown = mean ± 

SEM, n = 3. Data was statistically analysed using one-way ANOVA followed by the 

Bonferroni multiple comparison test.  *p<0.05 and ***p<0.001 vs. 0µg/ml. 

 

 

To establish whether the G908R mutation within the NOD2 receptor had an effect on the 

extent of NF-κB activation in response to MDP, levels of NF-κB activity were compared 

between cells expressing the wildtype NOD2 receptor and the mutant G908R receptor. At 

concentrations of 1 and 4µg/ml, cells expressing the wildtype NOD2 receptor demonstrated 

significantly higher levels of NF-κB activity in response to MDP than in cells expressing the 

mutant G908R receptor (Figure 6.13). 
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Figure 6.13. Mutant G908R NOD2 cells are less responsive to MDP induction of NF-κB 

activity. HEK-Blue
TM

-hNOD2 wildtype cells or HEK293 cells stably transfected with 

NOD2 G908R were treated with MDP (0.2, 1 and 4µg/ml; vehicle control for MDP = 

endotoxin-free water) for 24 hours. Cell culture supernatant was added to QUANTI-Blue
TM

 

solution until colour change was evident (pink to purple blue, caused by the activity of 

SEAP). The colour change induced by SEAP was analysed as a measure of NF-κB activity 

at 650nm using a spectrophotometer. Data shown = mean ± SEM, n = 4. Data was 

statistically analysed using two-way ANOVA followed by the Bonferroni multiple 

comparison test. ****p<0.001 G908R vs. wildtype for 1 and 4µg/ml MDP 

 

 

To establish the effect of L-SF and DL-SF on NOD2 signalling, cells expressing the 

wildtype NOD2 receptor were treated with L-SF or DL-SF (0.5, 2, 5 and 10µM) in the 

presence or absence of 0.2µg/ml MDP for 24 hours. Concentrations of 5 and 10µM of both 

L-SF and DL-SF significantly suppressed MDP-induced NF-κB activity (Figure 6.14). In 

HEK-Blue
TM

-hNOD2 wildtype and G908R cells, 2 and 5µM SF consistently induced a 

significant increase in the constitutive levels of NF-κB activity in cells expressing the 

wildtype NOD2 receptor (Figure 6.14). The absolute change observed with these 

concentrations of SF in the absence of MDP is small and while these changes are statistically 

significant, they are unlikely to be biologically relevant.  
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Figure 6.14. L-SF and DL-SF are able to significantly suppress MDP-induced NF-κB 

activity in HEK-Blue
TM

-hNOD2 wildtype cells. HEK-Blue
TM

-hNOD2 wildtype cells were 

treated with MDP (0.2µg/ml; vehicle control for MDP: endotoxin-free water) in the presence 

or absence of A) L-SF or B) DL-SF (0.5, 2, 5 or 10µM; vehicle control for L-SF and DL-SF 

= < 0.1% (v/v) DMSO) for 24 hours. Cell culture supernatant was added to QUANTI-

Blue
TM

 solution until colour change was evident (pink to purple blue, caused by the activity 

of SEAP). The colour change induced by SEAP was analysed as a measure of NF-κB 

activity at 650nm using a spectrophotometer. Data shown = mean ± SD, representative of 

three independent experiments. Data was statistically analysed using one-way ANOVA 

followed by the Bonferroni multiple comparison test with –MDP and +MDP analysed 

separately. *p<0.05, ** p<0.01, ***p<0.001 comparison to 0µM for –MDP and +MDP 

conditions or as annotated. 

 

 

The effect of L-SF and DL-SF was further investigated in cells expressing the mutant 

G908R NOD2 receptor. G908R-expressing cells were treated with either L-SF or DL-SF 

(0.5, 2, 5 and 10µM) in the presence or absence of 0.2µg/ml MDP for 24 hours. 

Concentrations from 2µM of both L-SF and DL-SF demonstrate consistent significant 

suppressions of MDP-induced NF-κB activity (Figure 6.15). 10µM of L-SF and DL-SF also 

induced a significant decrease in the constitutive levels of NF-κB activity in cells expressing 

the mutant G908R NOD2 receptor (Figure 6.15). 
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Figure 6.15. L-SF and DL-SF are able to significantly suppress MDP-induced NF-κB 

activity in NOD2 G908R cells. HEK293 cells stably transfected with NOD2 G908R were 

treated with MDP (0.2µg/ml; vehicle control for MDP: endotoxin-free water) in the presence 

or absence of A) L-SF or B) DL-SF (0.5, 2, 5 or 10µM; vehicle control for L-SF and DL-SF 

= < 0.1% (v/v) DMSO) for 24 hours. Cell culture supernatant was added to QUANTI-

Blue
TM

 solution until colour change was evident (pink to purple blue, caused by the activity 

of SEAP). The colour change induced by SEAP was analysed as a measure of NF-κB 

activity at 650nm using a spectrophotometer. Data shown = mean ± SD, representative of 

three independent experiments. Data was statistically analysed using one-way ANOVA 

followed by the Bonferroni multiple comparison test with –MDP and +MDP analysed 

separately. ***p<0.001 comparison to 0µM for –MDP and +MDP conditions separately or 

as annotated. 

 

 

Finally, the level of NF-κB activity suppression seen with L-SF and DL-SF was compared in 

cells expressing the wildtype and mutant G908R NOD2 receptor. The comparison identified 

a greater suppression of NF-κB activity in cells expressing the G908R NOD2 receptor with 

both L-SF and DL-SF, compared to the levels of suppression observed in cells expressing 

the NOD2 wildtype receptor (Figure 6.16).  
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Figure 6.16. Significant differences were seen in the response L-SF (A) and DL-SF (B) 

by cells expressing either the wildtype or mutant G908R NOD2 receptor. HEK-Blue
TM

-

hNOD2 wildtype cells or HEK293 cells stably transfected with NOD2 G908R were 

compared in terms of their responses to A) L-SF or B) DL-SF (0.5, 2, 5 and 10µM SF; 

vehicle control for L-SF and DL-SF = < 0.1% (v/v) DMSO) in the presence of 0.2µg/ml 

MDP (vehicle control for MDP = endotoxin-free receptor) for 24 hours. Cell culture 

supernatant was added to QUANTI-Blue
TM

 solution until colour change was evident (pink to 

purple blue, caused by the presence of SEAP). The colour change induced by SEAP was 

analysed as a measure of NF-κB activity at 650nm using a spectrophotometer. Data shown = 

mean ± SD, representative of three independent experiments. Data was statistically analysed 

using two-way ANOVA followed by the Bonferroni multiple comparison test. *p<0.05, 

**p<0.01 and ***p<0.001 as annotated.  

 

 

6.2.6. Comparison of the effects of L-SF and DL-SF on NF-κB activity 

An additional aim for this chapter was to determine whether there were any significant 

differences in the extent of effects seen with the naturally occurring L-SF isomer from 

broccoli and the synthetic analogue, DL-SF. For each of the cell lines, both the L-SF and 

DL-SF forms were able to suppress NF-κB activity induced as a result of ligand treatment. 

When L-SF and DL-SF were compared for all experiments, no significant differences were 

seen in the level of suppression. Figure 6.17 shows a representative example of the 

comparative analysis.  
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Figure 6.17. L-SF and DL-SF show no significant differences between their effects on 

ligand-induced NF-κB activity. Cells were treated with the appropriate ligand in the 

presence or absence of L-SF or DL-SF (0.5, 2, 5 or 10µM; vehicle control for L-SF and DL-

SF = < 0.1% (v/v) DMSO) for 24 hours. Cell culture supernatant was added to QUANTI-

Blue
TM

 solution until colour change was evident (pink to purple blue, caused by the activity 

of SEAP). The colour change induced by SEAP was analysed as a measure of NF-κB 

activity at 650nm using a spectrophotometer. Data shown = mean ± SEM, n = 3. Data is 

from an experiment with HEK-Blue
TM

-hTLR2 cells treated with FSL-1 and is representative 

of all comparative analyses in all cell types. Data was statistically analysed using two-way 

ANOVA followed by the Bonferroni multiple comparison test. 

 

 

6.3. Discussion 

Within this chapter, the effect of L-SF and DL-SF was investigated on the TLR4, TLR2 and 

NOD2 signalling pathways (Figure 6.1). The reason for focusing on the TLR4, TLR2 and 

NOD2 signalling pathways is due to identified associations with chronic inflammatory 

pathologies such as the IBDs Crohn’s disease and UC, CVD, obesity, T2DM, metabolic 

syndrome and cancer [36, 44, 48-50, 54-62, 242-244, 246-249].  

 

With the use of a cell model that specifically expressed the TLR4 receptor, more information 

about the effect of SF on TLR4 signalling can be obtained. In Chapters 3 and 4, the effect of 

SF on LPS-induced cytokine production and global gene expression was investigated. In the 

previous chapters, the physiologically relevant concentration of 1ng/ml LPS was used to 

induce cytokine secretion and expression. However, in Chapters 3 and 4, the human 

monocytic THP-1 cell model was used and as this cell type is fundamentally important in the 

rapid response to an inflammatory attack, it was expected that there would be a high level of 

sensitivity to PAMPs such as LPS. Less was known about the HEK293 cells and their ability 

to respond to LPS.  

 

Both L-SF and DL-SF were able to significantly suppress LPS-induced NF-κB activity in 

TLR4-expressing cells. In Chapter 3, SF suppressed LPS-induced cytokine production in 
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THP-1 monocytes to a much greater extent, by almost 100% in some cases. This variability 

in the level of suppression seen with SF may be due to the measurements that were taken 

e.g. NF-κB activity versus ELISA for specific cytokines, the different cell types e.g. HEK-

Blue
TM

 transfected cells versus THP-1 monocytes which endogenously express the PRRs, as 

well as the associated sensitivity levels of the cells. The production of cytokines is controlled 

by NF-κB and AP-1 activity. In this chapter, the activity of NF-κB has been studied alone, 

thus the lesser suppression seen with SF on NF-κB activity compared to in Chapters 3 and 4 

on cytokine expression and secretion, is potentially due to the lack of consideration for 

potential suppression of AP-1 activity. The results from this chapter do however provide 

further support for the hypothesis that SF is able to directly target the TLR4 signalling 

pathway.  

 

As previously mentioned, TLR4 polymorphisms, D299G and T399I have been associated 

with IBDs [54-62], but conversely, there is an indication that these polymorphisms may 

confer protection against T2DM [244]. In HEK293 cells transiently transfected with the 

wildtype or mutant (D299G and T399I) TLR4 receptors, NF-κB activity was significantly 

induced by 1.5-fold in response to 1ng/ml LPS (Figure 6.5). When HEK293 cells were 

stably transfected with TLR4, the response to LPS was greater with around a 3.5-fold 

increase in NF-κB activity (Figure 6.3). This large difference in LPS response is likely a 

result of lower transfection efficiency with the transient transfection method as opposed to 

stable transfection. During transient transfection, the foreign DNA is not integrated into the 

host genome and after several days, expression of the foreign DNA is eliminated from the 

cells through cell division. When cells are stably transfected, the foreign DNA is integrated 

into the host genome meaning the cells can be sub-cultured over time with the transfected 

gene being expressed as an endogenous gene [250]. Thus, cells that are stably transfected 

with TLR4 will demonstrate higher levels of TLR4 expression than the transiently 

transfected TLR4 cells and thus demonstrate a larger induction of NF-κB activity in 

response to LPS (Figures 6.3 and 6.5). 

 

No significant differences were observed in the level of NF-κB induction in response to LPS 

in cells transiently transfected with the D299G and T399I mutants compared to the wildtype 

TLR4 receptor. This disagrees with previous data by Arbour and colleagues who 

demonstrated hypo-responsiveness to LPS inhalation in subjects carrying the D299G and 

T399I mutations and the same was seen with a significantly lower LPS response in THP-1 

cells transfected with the D299G mutant [248]. However, the inconsistency between the 

results in those two experiments and the results presented in this chapter may be due to using 
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a concentration of LPS 100 times lower than in the study by Arbour [248]. In addition, no 

differences were observed in the level of suppression induced by L-SF or DL-SF in cells 

expressing the D299G and T399I TLR4 mutants. This is in support of data shown in Chapter 

5. When a recombinant form of the TLR4 receptor was subjected to SF treatment under non-

reducing conditions, SF was able to target cysteine residues within the receptor at positions 

246 and 609. The D299G and T399I mutations do not involve these cysteine residues and 

the positions of these mutations within the TLR4 receptor are not in close proximity to the 

specific cysteine targets of SF. 

 

To extend the findings from the investigations of SF with the TLR4 signalling pathway, the 

hypothesis that SF was able to additionally exert anti-inflammatory effects on the TLR2 

signalling pathway was tested. As with the TLR4-expressing cells, L-SF and DL-SF were 

able to significantly suppress NF-κB activity induced by Pam3CSK4 (the ligand for 

TLR2/TLR1) and FSL-1 (the ligand for TLR2/TLR6). While in Chapter 5, some evidence 

that SF was able to modify cysteine residues within the extracellular domain of TLR4 was 

produced, similar findings with TLR2 were not observed, likely due to practical 

implications. When the peptide coverage was analysed following LC-MS/MS analysis of the 

enzyme digested TLR2, no cysteines were found within the identified fragments. However, 

based on the data within this chapter, there may be reason for further exploring potential 

interactions between SF and TLR2, which is also supported by previous research [195]. It is 

nevertheless important to note that while the data in this chapter demonstrates a significant 

reduction in NF-κB activity following ligand induction, the suppression could be as a result 

not only of direct interaction of SF with the receptor, but also by SF targeting NF-κB as 

previously reported [184, 189, 191-194], to produce the level of suppression observed. 

 

Finally, the PRR NOD2 was also investigated. In previously published data, HEK293 cells 

transfected with G908R NOD2 receptors have demonstrated a significantly reduced 

response to ligands when compared to cells expressing the wildtype NOD2 receptor [251, 

252]. However, the reduced response to MDP in G908R cells seen in this study is more 

modest than the large reductions seen previously [251, 253]. Another study that monitored 

the NF-κB activity in response to MDP treatment in cells expressing the wildtype or G908R 

mutant receptor by Lecine and colleagues presented more comparable data to the results 

shown in this chapter. Only a small reduction was observed in the response to MDP at a 

concentration of 50ng/ml, a concentration four times smaller than the lowest concentration 

used in the studies presented in this chapter [254]. 
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As reported with TLR4 and TLR2-expressing cells, L-SF and DL-SF were also able to 

suppress MDP-induced NF-κB activity in the wildtype and G908R mutant NOD2 cells, with 

a larger suppression observed in the G908R cells. These differences in the level of 

suppression may be due to the positions of the SNP G908R mutation reducing the affinity of 

a potentially direct interaction with the SF as a result of the large difference in the properties 

of the amino acids involved in the substitution if the mechanism seen with the TLR4 is 

consistent with NOD2 (Chapter 5, [195]). 

 

From a practical standpoint, the results within this chapter have confirmed that it is not 

necessary to use the natural L-SF from broccoli in preference to the synthetic analogue DL-

SF. In all cell models studied, no significant differences were seen in the level of 

suppression of ligand-induced NF-κB activity with the two SF forms tested (Figure 6.17). 

While these results confirm they behave in the same way functionally, there are advantages 

for using each form. While the L-SF is directly relevant to the form found in human 

systemic circulation following the consumption of broccoli, the synthetic DL-SF is 

substantially less expensive to use. 

 

Based on the results presented in this chapter, it can be concluded that SF has the ability to 

target a number of different inflammatory signalling pathways. This chapter has confirmed 

that SF’s ability to significantly suppress the effect of ligand induction on cytokine 

production, global gene expression or NF-κB activity is not restricted to the TLR4 pathway. 

These findings are of critical importance to provide support for the use of SF as a suppressor 

of chronic inflammation due to its breadth of targets which are able to respond to many 

different stimuli.  

 

 

6.4. Conclusions 

In summary, the use of physiologically relevant concentrations of either L-SF or DL-SF was 

able to cause significant suppression of ligand-induced NF-κB activity. This function of SF 

was not restricted to TLR4 signalling, but was also observed with TLR2 and NOD2 

signalling, two additional pathways that are associated with chronic inflammatory 

pathologies such as IBDs, CVD and T2DM. Common TLR4 variants, D299G and T399I, 

which have been identified at a higher prevalence in patients with IBD were not found to 

vary in their response to LPS or SF as compared to cells expressing the wildtype form of 

TLR4. 
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SF was also able to suppress NF-κB activity induced in response to the specific ligands in 

TLR2-expressing cells and NOD2 wildtype or G908R-expressing cells. In cells expressing 

the G908R NOD2 receptor, lower levels of NF-κB activity induction was observed in 

response to higher concentrations of MDP and these cells were significantly more sensitive 

to SF as compared to cells expressing the wildtype NOD2. These results suggest that SF 

would be able to target the inflammatory signalling important in subjects with and without 

mutations within their PRRs, but may be able to selectively target patients with the G908R 

mutation to a greater extent to act as a suppressor of pro-inflammatory signalling associated 

with Crohn’s disease.  

 

In order to further this work, the next chapter investigates the effect of SF in a translational 

in vitro model involving human SGBS adipocyte cells, firstly in terms of the effects SF can 

exert on lipid metabolism in adipocytes (Chapter 7) followed by investigations into the 

effect of SF in response to MaCM treatment of these human adipocytes, a model which 

provides a good representation of the chronic adipose tissue inflammation in individuals 

suffering from obesity (Chapter 8). 

.  
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Chapter Seven 

Effect of SF on human SGBS adipocyte lipid 

metabolism  
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7.0. Introduction 

In the research presented so far, it has been demonstrated that SF can behave as an anti-

inflammatory agent by targeting a number of inflammatory signalling pathways e.g. TLR4, 

TLR2 and NOD2 in order to suppress NF-κB activity, pro-inflammatory gene expression 

and cytokine secretion. In the final two chapters, this research was translated into a more 

complex model of chronic inflammation with relevance to obesity.  

 

Obesity is characterised by an increase in fat mass as a result of the enlargement and 

hyperplasia of adipocytes within the adipose tissue. In particular, an increase in abdominal 

obesity and visceral fat is significantly associated with an increased risk of developing 

chronic disorders [255, 256]. The enlargement of adipocytes is as a result of an elevation in 

the levels of accumulated triglycerides following increased dietary consumption. In the 

adipose tissue of a lean individual, triglyceride stores within the adipocytes are released into 

circulation where they are transported to organs with increased energy demands. 

Triglycerides are utilised as an energy source, with breakdown resulting in metabolism 

through β-oxidation to produce intermediates for the TCA cycle and electron transport chain 

[84]. In an obese individual, the large increase in accumulation of triglycerides outweighs 

the rate of β-oxidation, which results in the lipolysis of triglycerides and an increase in FFAs 

in circulation [88]. Elevated levels of FFAs have been consistently identified in patients 

suffering from obesity and insulin resistance [85, 86, 257].  

 

To date, there is no commercially available human adipocyte cell line and in much of the 

literature investigating adipose tissue biology, the murine 3T3-L1 cell line is used. In this 

thesis so far, only cell lines of human origin have been studied and thus the aim was to 

continue with the use of human adipocytes, due to the known inconsistencies in the 

behaviours of cells from murine and human origin [258]. Primary human preadipocytes are 

either commercially available or obtained from human subjects if ethical approval is given, 

however there are disadvantages associated: high levels of variability between individuals 

would potentially be observed; primary human preadipocytes have a low differentiation 

capacity after sub-culturing several times; there may be a limited supply of material and 

large costs would be incurred.  

 

In recent studies into adipocyte biology, a human preadipocyte cell line developed by 

Wabitsch and colleagues has become more commonly used [200]. The cells were isolated 

from an infant suffering from Simpson-Golabi-Behmel Syndrome, a condition characterised 

by increased levels of pre- and postnatal growth, and patients often demonstrate large 
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adipose tissue depots [200]. When preadipocytes were isolated, these cells were able to be 

sub-cultured many times and maintained their capacity to differentiate up to generation 50. 

Once fully differentiated, via an insulin-dependent process, (see section 2.2.4), mature fat 

cells that were biochemically and functionally similar to primary human adipocytes were 

obtained [200]. 

 

One particular research question investigated in this chapter was the effect of SF on the 

differentiation of human SGBS preadipocytes. During the differentiation process of 

preadipocytes, there is a distinct increase in the levels of accumulated lipids within the cells. 

SF has been previously shown to reduce the level of lipid accumulation within murine 3T3-

L1 cells at concentrations of 10µM SF and above [162, 164, 259-261]. As yet, no studies 

have been carried out investigating the effect of SF on adipocytes of human origin. One 

study hypothesised that the reduction in lipid accumulation with SF in 3T3-L1 cells was as a 

result of inducing lipolysis [163] and thus in this chapter the aim was to investigate whether 

SF was able to suppress lipid accumulation within adipocytes by inducing lipolysis. It was 

thought that this research question could provide potential support for how supplementation 

with high concentrations of SF was able to suppress weight gain, adipogenesis and liver 

triglyceride accumulation in mice subjected to a high-fat diet [161], but with the use of more 

physiologically relevant concentrations of SF. 

 

 

7.1. Materials and Methods 

The human SGBS adipocyte cells were used throughout this chapter (section 2.2.4). SGBS 

preadipocytes were differentiated in the presence of SF (2, 5 and 10µM) and Oil Red O 

staining and an assay to determine the glycerol concentration within the media was carried 

out to investigate effects on lipid accumulation and lipolysis within the cells (section 2.10). 

Additionally, RNA was extracted at days 10 and 14 of the differentiation process to monitor 

the expression level of CPT1A to investigate if SF had any effects on the metabolism of 

lipids (section 2.5).  
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7.2. Results 

7.2.1. Effect of SF on human SGBS cells 

7.2.1.1. Effect of SF on SGBS preadipocyte and adipocyte cell viability 

To determine the concentrations of SF that were appropriate for use with the SGBS cell line 

as preadipocytes and differentiated adipocytes, a WST-1 cell viability assay was carried out. 

SGBS cells were subjected to SF treatment over a wide range of concentrations (0-200µM) 

for 24 hours before determining the level of cell viability. Concentrations of SF from 15µM 

significantly reduced SGBS preadipocyte cell viability (Figure 7.1A). SGBS adipocytes 

behaved very differently in response to SF with concentrations up to 10µM dramatically 

increasing cell viability in adipocytes relative to the untreated cells. A significant decrease in 

cell viability was not seen until concentrations of SF reached 125µM and above (Figure 

7.1B). The IC50 for the preadipocytes was calculated at 24.4 ± 5.4µM while for the mature 

adipocytes this was much higher at 92.8 ± 15.4µM.  

Figure 7.1. Effect of SF on SGBS cell viability. A) SGBS preadipocytes were treated with 

SF (0-200µM; vehicle control for SF = < 0.1% (v/v) DMSO) for 24 hours. B) SGBS 

preadipocytes were chemically differentiated over 14 days resulting in mature adipocytes 

(see section 2.2.4). On day 14, mature SGBS adipocytes were treated with SF (0-200µM; 

vehicle control for SF = < 0.1% (v/v) DMSO) for 24 hours. Once treatment was complete, 

10µl WST-1 reagent was added to each well (see section 2.3). The plates were incubated at 

37°C and measured using a spectrophotometer every 15 minutes. Data shown is from the 1.5 

hour measurement at which the levels of absorbance were all measurable and consistent. 

Data shown = mean ± SD and is representative of two independent experiments. Data was 

statistically analysed using one-way ANOVA followed by Bonferroni multiple comparison 

tests. *p<0.05, **p<0.01 and ***p<0.001 vs. 0µM SF. 

 

 

7.2.1.2.  Effect of SF on lipid accumulation in SGBS cells  

When SGBS preadipocytes were chemically differentiated, the cells gradually accumulated 

intracellular lipid droplets. This level of lipid accumulation was measured using Oil Red O, 

a dye which is able to enter the cells and stain the intracellular lipids (Figure 7.2). The 
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advantage with using Oil Red O staining is not only that lipid accumulation can be clearly 

seen visually as shown in Figure 7.2, but the stain can be eluted from inside the cells and 

quantified using an absorbance-based assay. Throughout the 14 day differentiation period, 

there was a significant increase in the level of lipid accumulation, demonstrated by an 

increasing level of Oil Red O staining, an observation that is indicative of successful 

differentiation (Figure 7.3).  

 

Figure 7.2. Intracellular lipids accumulate within SGBS cells during differentiation. 

SGBS preadipocytes were chemically differentiated as described in section 2.2.4 and on 

days 0, 4, 7, 11 and 14, cells were fixed with 10% formalin and stained with Oil Red O. 

Photographs were taken using a light microscope following staining at a magnification of 

10X.  
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Figure 7.3. Intracellular lipid accumulation increased over the differentiation process 

of SGBS cells. SGBS preadipocytes were chemically differentiated as described in section 

2.2.4 and on days 0, 4, 8, 11 and 15, cells were fixed with 10% formalin and stained with Oil 

Red O. After excess dye was removed, the stain was eluted from the cells with 100% 

isopropanol and absorbance was measured at 500nm. Absorbance was corrected against 

100% isopropanol from an unstained well. Data shown = mean ± SEM; n = 2. Data was 

statistically analysed using a one-way ANOVA followed by Bonferroni multiple comparison 

tests. **p<0.01 and ***p<0.001 vs. Day 0. 

 

 

 

During the differentiation process, SGBS preadipocytes were treated with SF (2, 5 and 

10µM) and the level of lipid accumulation was measured at day 0, 4, 7, 11 and 14, to 

investigate whether SF could affect adipogenesis. 10µM SF significantly suppressed the 

level of lipid accumulation in SGBS cells from day 11 onwards (Figure 7.4). This 

significant reduction could be seen visually from microscope photographs at days 11 and 14 

(Figure 7.5).  
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Figure 7.4. 10µM SF significantly suppresses lipid accumulation of SGBS cells. SGBS 

preadipocytes were chemically differentiated in the presence or absence of SF (2, 5 and 

10µM; vehicle control for SF = < 0.1% (v/v) DMSO). At days 0, 4, 7, 11 and 14, cells were 

fixed with 10% formalin and stained with Oil Red O. After excess dye was removed, the 

stain was eluted from the cells with 100% isopropanol and absorbance was measured at 

500nm. Absorbance was corrected against 100% isopropanol from an unstained well. Data 

shown = mean ± SD and is representative of two independent experiments. Data was 

statistically analysed using a two way ANOVA followed by Bonferroni multiple comparison 

tests. **** p<0.0001 for 10µM SF compared to the control on each day as annotated. 
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Figure 7.5. Lipid accumulation was reduced in SGBS adipocytes differentiated in the 

presence of 10µM SF. SGBS preadipocytes were chemically differentiated in the presence 

or absence of SF (2, 5 and 10µM; vehicle control for SF = < 0.1% (v/v) DMSO). At days 0, 

4, 7, 11 and 14, cells were fixed with 10% formalin and stained with Oil Red O. Photographs 

were taken using a light microscope following staining at a magnification of 10X. Data 

shown from Control and 10µM SF only at days 11 and 14. 

 

 

7.2.1.3. Effect of SF on CPT1A expression 

The decrease in lipid accumulation induced by 10µM SF at days 11 and 14 of differentiation 

(Figure 7.4 and 7.5) could be due to an increase in lipolysis of the fat droplets that increase 

within the adipocytes during the differentiation process (Figure 7.2 and 7.3). Lipolysis has 

previously been highlighted as a potential mechanism for SF, and if so this would result in 

an increase in the levels of FFAs within the cells [163]. It was hypothesised that in order to 

prevent the FFAs behaving as a pro-inflammatory stimulus within the cells, the SGBS cells 

would metabolise them and use as an energy source. An enzyme fundamental to the fatty 

acid β-oxidation process is CPT1A, which behaves to transfer the long-chain fatty acyl 

group to carnitine allowing the fatty acids to be shuttled into the mitochondria [88, 89]. 

 

SGBS preadipocytes were treated with SF (2, 5 and 10µM) over the 14 day differentiation 

period and RNA was extracted from the cells at days 10 and 14 in order to quantify the 
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levels of CPT1A expression by real-time RT-PCR. 10µM SF significantly induced CPT1A 

expression at both days 10 and 14 (Figure 7.6).  

 

Figure 7.6. 10µM SF significantly induces CPT1A expression in SGBS cells. SGBS 

preadipocytes were chemically differentiated in the presence or absence of SF (2, 5 and 

10µM; vehicle control for SF = < 0.1% (v/v) DMSO). At days 10 (A) and 14 (B), RNA was 

extracted, quantified and analysed by real time RT-PCR. Data shown = mean ± SD. Data 

was statistically analysed using one-way ANOVA followed by Bonferroni multiple 

comparison tests. *** p<0.001 as annotated. 

 

 

7.2.1.4. Effect of SF on glycerol release 

As a result of lipolysis, the glycerol backbone of a triglyceride molecule is secreted by the 

cells and can be measured free in cell culture supernatants [163]. The hypothesis was that 

glycerol would be found at increased levels in the cell culture supernatant from cells treated 

with 10µM SF at days 10 and 14, consistent with SF inducing lipolysis. However, when the 

levels of glycerol were measured, no significant differences were seen with SF treatment at 

days 10 or 14 (Figure 7.7).  

  



Effect of SF on human SGBS adipocyte lipid metabolism 

 

158 

 

Figure 7.7. SF caused no significant changes in the levels of glycerol released by SGBS 

cells. SGBS preadipocytes were chemically differentiated in the presence or absence of SF 

(2, 5 and 10µM; vehicle control for SF = < 0.1% (v/v) DMSO). At days 10 (A) and 14 (B), 

cell culture supernatant was collected and cleared by centrifugation before analysis with a 

Glycerol Assay Kit (Cambridge Bioscience Limited, Cat. # 10010755). Data shown = mean 

± SD and is representative of two independent experiments. Data was analysed using one-

way ANOVA followed by Bonferroni multiple comparison tests.  

 

 

7.3. Discussion 

In order to translate results observed in the previous chapters into a translational model of 

chronic inflammation, human SGBS adipocytes were investigated. In this chapter, the effect 

of SF alone on differentiation of the preadipocytes was investigated with measurements 

involved in lipid accumulation.  

 

When the mature SGBS adipocytes were monitored in terms of their response to SF, there 

were very different results. Concentrations up to 10µM were able to induce large significant 

increases in cell viability, with concentrations of 5 and 10µM SF demonstrating a 50% 

increase. Potential reasons for this could be due to the high level of accumulated lipids 

within these cells, which could potentially interfere with absorbance readings. Visually, it 

did not appear that low concentrations of SF led to a larger population of cells relative to the 

control which could increase the cell viability reading, however, absolute cell numbers were 

not measured. It is important to note that the WST-1 assay is not a direct measurement of 

viability even though it is widely used as a representation. It behaves to measure the 

conversion of a tetrazolium salt to a coloured formazan compound (Figure 2.1, see section 

2.3 for more details). This is controlled by mitochondrial dehydrogenase enzymes and 

results in the formation of NADPH. SF has been previously shown to have roles in NADPH 

flux (Chapter 4, Figure 4.2), and therefore, the mature SGBS adipocyte cells may be highly 

sensitive to SF altering NADPH production resulting in an inaccurate reading of metabolic 
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activity. For these reasons it may be more appropriate to use a different assay or method e.g. 

flow cytometry in order to determine the cell viability of the mature adipocyte SGBS 

population in response to SF. 

 

When the SGBS preadipocytes were exposed to SF (2, 5 and 10µM) throughout the 

differentiation period, there was a significant reduction in intracellular lipid accumulation by 

over 40% with 10µM SF at days 11 and 14 (Figure 7.4) and no significant effect on glycerol 

release, a measure of lipolysis (Figure 7.7), but a significant increase in CPT1A expression 

was observed in response to 10µM SF (Figure 7.5). A decrease in Oil Red O staining was 

previously found in research using the mouse fibroblast 3T3-L1 cell line, where 

concentrations of 10µM SF and above are able to significantly suppress differentiation of the 

cells [162, 164, 259-261]. The findings of no effect on glycerol release was in contrast to 

findings in murine 3T3-L1 cells in which an increase in glycerol levels in response to SF at 

concentrations of 5µM and above was demonstrated, however this previous study did 

demonstrate a significant induction in CPT1A expression [163]. These results provide 

support for utilisation of lipids in order to prevent the induction of an inflammatory 

response.  

 

In order to continue investigations into the mechanism of SF an additional method that could 

be used is the measure of intracellular triglycerides, not via Oil Red O staining but with a 

more direct and quantitative method by extracting the intracellular lipids from the cells. SF 

was found to significantly reduce the levels of triglyceride accumulation in murine 3T3-L1 

cells [162, 164, 259-261]. Additionally, similar findings were observed in vivo within the 

livers of CYP2E1 knock-in mice [262] and C57BL/6N mice subjected to a high-fat diet in 

the presence or absence of SF [161].  

 

The subsequent hypothesis was that 10µM SF reduced the level of adipocyte differentiation 

as a result of suppressing lipid accumulation. Previous literature supports this hypothesis, for 

example in the study by Choi and colleagues, there was little effect of SF on lipid 

accumulation if cells were exposed to SF at later stages of adipogenesis, whereas at earlier 

stages, SF completely blocked the differentiation process [164]. The group expanded this 

work with a more recent in vivo study in mice, in which they investigated the effect of SF in 

combination with a high-fat diet over 6 weeks. SF (1g/kg body weight) significantly 

suppressed body weight gain, decreased perirenal and epididymal adipose tissue weight, 

liver weight and fat accumulation in the liver, in addition to total cholesterol, serum glucose 

and leptin when compared to the mice subjected to the high-fat diet alone [161]. While this 
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study provides a convincing argument for the use of SF as an anti-obesity agent, the 

concentration of SF used here is far higher than could be achieved following the 

consumption of broccoli. A previous study by Souza and colleagues used a concentration of 

SF at 1mg/kg body weight, 1000 times lower than the study by Choi and colleagues, and 

found that SF accentuated blood glucose impairments induced by a highly palatable diets in 

Wistar rats [263]. Nevertheless, it is important to remember that it is very difficult to directly 

compare the concentrations of SF administered in rodent models with relevance to broccoli 

consumption in humans. While Souza and colleagues found no significant changes in 

adipogenesis in rats [263], there is a distinct lack of similar studies for comparison, and there 

is no evidence to suggest that lower concentrations could not achieve comparable results to 

those seen in the study by Choi and colleagues. However, it is thought that these findings 

may be largely under-reported, with the hypothesis that the large reductions seen in the study 

by Choi and colleagues may be due to potential toxicity effects.  

 

In terms of the mechanism for how SF may affect adipogenesis, previous research indicated 

a link with the Nrf2 pathway [259-262, 264, 265]. The results in this chapter suggest that 

Nrf2 is an inhibitor of adipogenesis. The discussion of the role of Nrf2 was based on a 

number of studies with largely contradictory arguments [264]. In a study by Pi and 

colleagues, knockdown of Nrf2 in mice fed a high-fat diet resulted in a decrease in adipose 

tissue depots and protected against obesity. With an overexpression of Nrf2 by knockdown 

of Keap1, there was an accelerated response to hormone-induced adipocyte differentiation, 

suggesting that Nrf2 augmented adipocyte differentiation [266]. Conversely, in a study by 

Shin and colleagues there was a significantly accelerated rate of differentiation in 

immortalised mouse embryonic fibroblasts (MEFs) isolated from mice with a knockdown of 

Nrf2. Additionally, a significantly slower rate of differentiation was observed in MEFs 

isolated from mice with a knockdown of Keap1 and hence an increased level of Nrf2 activity 

[267]. The differing findings in this area of research may be as a result of using variations in 

the study models, e.g. primary cultures as opposed to immortalised cells, murine versus 

human cultures, and different methods of activating or inactivating Nrf2 activity. 

 

While the evidence is contradictory, several studies have been discovered to support the 

findings within this chapter however, little of the previous research carried out investigated 

the effect of SF on adipogenesis in cell models of human origin. Based on the research 

published until now, no previous studies have been carried out monitoring the effect of SF 

on lipid accumulation in human adipocytes as presented in this chapter, either with a cell 

line or primary cells. More research should be carried out in this area to determine whether 
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species differences play a role in determining the effect of Nrf2 activation in response to SF 

on adipogenesis and more endpoints studied to try and ascertain the mechanistic details 

involved. 

 

In the final chapter, the ability of SF to target the increased pro-inflammatory state observed 

in obese individuals, was investigated. The effect of SF was investigated on cytokine 

production induced in a model of human adipose tissue inflammation. 

 

 

7.4. Conclusion 

It is apparent from the results in this chapter that 10µM SF was able to suppress 

adipogenesis by reducing the level of lipid accumulation within the SGBS cells during 

differentiation. An elevation in the levels of CPT1A expression, an important enzyme in β-

oxidation was observed and it was hypothesised to be as a result of increased levels of FFA 

release due to an induction of lipolysis. Measurements of free glycerol demonstrated no 

changes in response to SF, suggesting that SF is not inducing lipolysis. A potential 

mechanism for this function of SF is the activation of Nrf2, which in turn controls a number 

of enzymes involved in lipid metabolism.  

 

In the next chapter, the effect of SF will be investigated on cytokine production in a model 

of human adipose tissue inflammation, a condition commonly observed in individuals that 

are obese, using the human SGBS adipocytes exposed to MaCM from the human THP-1 

macrophages.  
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Chapter Eight 

Effect of SF on adipose tissue inflammation  
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8.0. Introduction 

In the previous chapter, the suppression of lipid accumulation by SF at the concentration of 

10µM in SGBS adipocytes has been described. This effect could be potentially related to the 

up-regulation of Nrf2 signalling and subsequent increase in expression of genes encoding 

enzymes involved in lipid metabolism, such as CPT1A. Obesity is characterised by an 

increased level of lipid accumulation and an elevated pro-inflammatory status. In this 

chapter, the research question investigated was whether SF could exert anti-inflammatory 

effects to target cytokine production in SGBS adipocytes in response to MaCM from human 

THP-1 macrophages, an in vitro model described as the closest representation of human 

adipose tissue inflammation [258, 268-271]. 

 

The low-grade inflammatory state observed in obese individuals is likely as a result of a 

number of factors. There is a large body of scientific evidence reporting that obese subjects 

present with circulating monocytes in a pro-inflammatory status, higher levels of circulating 

pro-inflammatory cytokines and an increased level of macrophage infiltration within the 

adipose tissue [83, 100-102, 272, 273]. As a results of these factors, it is unsurprising that 

obesity is described as an independent risk factor for a number of chronic diseases such as 

cancer [63-65], CVD [66-70] and T2DM [71]. With the incidence of obesity increasing 

worldwide, its association with the listed chronic pathologies provides support for the strong 

need to prevent or treat obesity and its associated comorbidities. Evidence supporting the 

hypothesis that preventing or treating obesity can reduce the risks of developing more severe 

consequences such as cancer and CVD, comes from studies where the inflammatory status 

of obese individuals has been significantly suppressed in response to weight loss [104-108, 

272]. With these findings and the widely accepted notion that a state of low-grade 

inflammation is the common soil to these chronic diseases, chronic inflammatory signalling 

has become a crucial target for dietary, lifestyle and pharmaceutical interventions [205].  

 

The effects of SF on chronic inflammatory diseases has been previously investigated in vivo 

using mouse models of osteoarthritis [179], cancer [274, 275] and obesity induced in 

response to a high-fat diet [161]. SF demonstrated significant suppressions of a low-grade 

inflammatory state and a reduction in the progression of these conditions. When SF was 

administered in mice following exposure to LPS to mimic an inflammatory response, it was 

able to reduce the level of circulating pro-inflammatory cytokines [195]. These studies do 

however have disadvantages. Firstly, the very high concentrations of SF that were 

administered were not relevant to the potential levels of SF that could be achieved through 

diet [161, 195, 274, 275]. Secondly, several studies administer SF via intraperitoneal 
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injection instead of supplementing diets with pure SF or broccoli as a source, which is a poor 

representation of how SF would be encountered following broccoli consumption within the 

diet [195, 275]. This literature demonstrates the necessity for further in vivo studies, utilising 

physiologically relevant concentrations of SF, both in mouse models and human studies.  

Following a review of the current literature it was ascertained that the effect of 

physiologically relevant concentrations of SF on a model of human adipose tissue 

inflammation had not been previously investigated in vivo or in vitro. The effect of SF on 

adipocyte biology has been primarily investigated using concentrations of 10µM and above 

in murine cell models [162, 164, 259-261]. Therefore, the aim of this chapter was to 

investigate the effect of physiologically relevant concentrations of SF on adipocyte pro-

inflammatory gene expression in a model of human adipose tissue inflammation and SF’s 

potential mechanistic targets. The dietary bioactives investigated on adipose tissue 

inflammation to date are only grape seed extracts and other polyphenol compounds [269-

271, 276]. Thus, investigating the effect of SF at physiologically relevant concentrations on 

human SGBS adipocytes pro-inflammatory gene expression induced by human THP-1 

MaCM is a novel concept.  

 

 

8.1. Materials and Methods 

For the experiments within these chapters the differentiated THP-1 macrophages and the 

human SGBS cells were used (sections 2.2.1 and 2.2.4). For measurement of cytokine 

secretion, an ELISA was carried out for the specific cytokine (section 2.4) and for the 

expression level, real-time RT-PCR was used with the specific primers and probes for each 

target gene (section 2.5). For assessment of cell viability in response to SF or the MaCM, a 

WST-1 cell viability assay was used (section 2.3). To determine the effect of MaCM on lipid 

accumulation with SGBS cells, Oil Red O staining was used (section 2.10). Determination 

of the TCA intermediates within the MaCM was carried out using LC-MS/MS (section 

2.11).  

 

 

8.2. Results 

8.2.1. Characterisation of THP-1 macrophages 

8.2.1.1. Effect of SF on LPS-induced cytokine secretion  

Before beginning experiments using MaCM, the THP-1 macrophages themselves were 

characterised due to potential differences in the behaviours of macrophages compared to the 
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previously used monocytes (Chapters 3 and 4). To induce differentiation, THP-1 monocytes 

were treated with 125ng/ml PMA for 48 hours in serum-free conditions. Differentiation was 

confirmed by monitoring the change in characteristics of the cells; the monocytes are a 

suspension cell line, while the differentiated macrophages are able to adhere to the plastic of 

the culture vessel (Figure 8.1). 

 

 

 

 

 

 

 

 

 

 

Figure 8.1. THP-1 cell morphology. When cultured in the monocytic form, THP-1 cells 

exist as a suspension. When differentiated with 125ng/ml PMA for 48 hours in serum-free 

conditions, the monocytes differentiate into macrophages and they become adherent to the 

culture vessel.  

 

 

To determine whether THP-1 macrophages were able to respond to LPS in the same way as 

THP-1 monocytes (Chapter 3), macrophages were treated with 1ng/ml LPS in the presence 

or absence of 5µM SF. The cell culture supernatant was collected for measuring cytokine 

secretion. 5µM SF significantly suppressed LPS induction of IL-6, IL-1β and TNFα 

secretion with 12 or 24 hours of exposure (Figure 8.2).  
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Figure 8.2. SF significantly suppresses LPS-induced IL-6 (A + B), IL-1β (C + D) and 

TNFα (E + F) secretion in THP-1 macrophages. THP-1 monocytes were treated with 

125ng/ml PMA for 48 hours to allow differentiation to macrophages. THP-1 macrophages 

were treated with 1ng/ml LPS (vehicle control for LPS = PBS) for 12 hours (A, C and E) or 

24 hours (B, D and F) in the presence or absence of 5µM SF (vehicle control for SF = < 

0.1% (v/v) DMSO). The cell culture supernatant was collected and cytokines were measured 

by ELISA. Data shown = mean ± SD. Data was statistically analysed using one-way 

ANOVA followed by Bonferroni multiple comparisons tests. ** p<0.01 and ***p<0.001 as 

annotated; n.d. not detected. 
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8.2.1.2. Effect of SF on THP-1 macrophage cell viability 

To ensure that the significant suppression observed with SF on LPS-induced cytokine 

secretion was not due to cytotoxic effects, THP-1 macrophages were treated with 

concentrations of SF from 0-200µM for 24 hours before determining cell viability using a 

WST-1 assay. SF was found to significantly reduce cell viability at concentrations of 10µM 

and above (Figure 8.3). The IC50 was calculated at 26.9 ± 5.5µM.  

 

 

 

 

 

 

 

 
 

 

 

Figure 8.3. Effect of SF on cell viability of THP-1 macrophages. THP-1 macrophages 

were treated SF (0-200µM; vehicle control for SF = < 0.1% (v/v) DMSO) for 24 hours. 

After treatment was complete, 10µl WST-1 reagent was added to each well (see section 2.3). 

The plates were incubated at 37°C and measured using a spectrophotometer every 15 

minutes. Data shown is from the 45 minute measurement at which levels of absorbance were 

all measurable and consistent. Data shown = mean ± SD and is representative of two 

independent experiments. Data was statistically analysed using one-way ANOVA followed 

by Bonferroni multiple comparison tests. ***p<0.001 vs. 0µM SF. 

 

 

8.2.1.3. Effect of SF on LPS-induced cytokine expression  

In order to determine whether SF was able to act at a transcriptional level, cytokine 

expression was measured. THP-1 macrophages were treated with 1ng/ml LPS in the 

presence or absence of 5µM SF for 12 or 24 hours before IL-6, IL-1β and TNFα expression 

levels were determined. SF significantly suppressed LPS induction of IL-6, IL-1β and TNFα 

expression (Figure 8.4).  
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Figure 8.4. SF significantly suppresses LPS-induced IL-6 (A + B), IL-1β (C + D) and 

TNFα (E + F) expression in THP-1 macrophages. THP-1 macrophages were treated with 

1ng/ml LPS (vehicle control for LPS = PBS) for 12 hours (A, C and E) or 24 hours (B, D 

and F) in the presence or absence of 5µM SF (vehicle control for SF = < 0.1% (v/v) DMSO). 

RNA was extracted, quantified and analysed by real-time RT-PCR. Data shown = mean ± 

SD. Data was statistically analysed using one-way ANOVA followed by Bonferroni 

multiple comparison tests. **p<0.01 and *** p<0.001 as annotated; n.d. not detected. 
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8.2.2. Effect of MaCM in the presence or absence of SF on SGBS cells  

8.2.2.1. Effect of MaCM on SGBS adipocyte cell viability 

To ensure that treating the SGBS adipocytes with MaCM would not result in any cytotoxic 

effects, a WST-1 cell viability assay was carried out. THP-1 monocytes were differentiated 

with 125ng/ml PMA treatment for 48 hours. The medium was replaced after 48 hours with 

serum-free RPMI medium supplemented with 0.5% (w/v) BSA, in order to stabilise 

macrophage-secreted factors and cells were incubated for a further 48 hours. The cell culture 

supernatant was collected and cleared from cell debris with centrifugation and this is the 

MaCM used for subsequent experiments. When SGBS adipocytes were treated with MaCM 

from the THP-1 macrophages, concentrations of 10 and 20% did not induce any significant 

reduction in cell viability, whereas 50% caused a significant reduction with the percentage 

of viable cells remaining at approximately 70% (Figure 8.5).  

 

 

 

 

 

 

 

 

 

 

Figure 8.5. 50% MaCM significantly reduces cell viability of SGBS adipocytes. SGBS 

preadipocytes were chemically differentiated over 14 days (see section 2.2.4) to produce 

mature adipocytes. On day 14 after complete differentiation, SGBS adipocytes were treated 

with MaCM (10, 20 and 50%; vehicle control for MaCM = serum-free RPMI + 0.5% (w/v) 

BSA) for 24 hours. Once treatment was complete, 10µl WST-1 reagent was added to each 

well. The plates were incubated at 37°C and measured using a spectrophotometer every 15 

minutes. Data shown is from the 1.5 hour measurement at which levels of absorbance were 

all measurable and consistent. Data shown = mean ± SEM, n = 2. Data was statistically 

analysed using one-way ANOVA followed by Bonferroni multiple comparison tests. 

*p<0.05 compared to 0% MaCM.  

 

 

8.2.2.2 Effect of MaCM on differentiation of SGBS cells 

In previous literature, MaCM has been found to prevent differentiation of preadipocytes to 

mature adipocytes in a number of murine and human adipocyte cells with MaCM from 

various murine and human macrophages cells [258, 268, 277-281]. To confirm that during 

the differentiation process my experimental model is behaving in the same way as 

previously used models, SGBS preadipocytes were treated with doses of MaCM (10, 20 and 
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50%) and the level of lipid accumulation was measured. At all doses of MaCM, after day 7 

there was a significant reduction in the level of lipid accumulation and this is maintained up 

to day 14 (Figure 8.6).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.6. MaCM significantly suppresses differentiation of SGBS cells. SGBS 

preadipocytes were chemically differentiated in the presence or absence of MaCM (10, 20 

and 50%; vehicle control for MaCM = serum-free RPMI + 0.5% (w/v) BSA). At days 0, 4, 

7, 11 and 14, cells were fixed with 10% formalin and stained with Oil Red O. After the 

excess dye was removed, the stain was eluted and absorbance was measured at 500nm. Data 

shown = mean ± SD and is representative of two independent experiments. 10%, 20% and 

50% MaCM at days 7, 11 and 14 are all significantly different compared to their appropriate 

control for each day (*** p<0.001). 

 

 

8.2.2.3. Effect of MaCM in the presence or absence of SF on SGBS cytokine expression 

In obese subjects, there is a higher level of macrophage infiltration within the adipose tissue 

[83, 100, 101, 272, 282]. In a recent article, THP-1 macrophages and SGBS cells were 

described as the optimum model of human adipose tissue inflammation observed in obesity 

[258]. Using these cell models, the hypothesis was that MaCM from THP-1 macrophages 

was able to significantly induce the expression of pro-inflammatory cytokines e.g. IL-6, IL-

1β and TNFα, and additionally, that SF could target this induction and cause a significant 

suppression. Firstly, when SGBS adipocytes were treated with MaCM (10, 20 and 50%) for 

24 hours, a significant induction in IL-1β expression was observed. SF was able to 

significantly suppress the induction in IL-1β seen with MaCM in a dose-dependent manner 

(Figure 8.7). The same response to MaCM and SF was not seen with SGBS adipocyte IL-6 

expression (Figure 8.8). While an induction in IL-6 expression was seen in response to 

MaCM, in the presence of SF, there was an additional significant increase in IL-6 expression 

when compared to MaCM alone in SGBS adipocytes (Figure 8.8). In addition, TNFα 

expression was measured and found to be below the detection capability in all samples (data 

not shown). 
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Figure 8.7. SF significantly suppresses MaCM-induced IL-1β expression in SGBS 

adipocytes. SGBS preadipocytes were chemically differentiated over 14 days (section 2.2.4) 

to produce mature adipocytes. SGBS adipocytes were treated with MaCM (10, 20 and 50%; 

vehicle control for MaCM = serum-free RPMI + 0.5% (w/v) BSA) for 24 hours in the 

presence or absence of SF (2, 5 and 10µM; vehicle control for SF = < 0.1% (v/v) DMSO). 

Following treatment, RNA was extracted and IL-1β expression was analysed using real-time 

RT-PCR. Data shown = mean ± SD. Data was analysed using one-way ANOVA followed 

by Bonferroni multiple comparison tests. *p<0.05, **p<0.01 and ***p<0.001 compared 

against 0% MaCM (A), MaCM alone or as annotated (B-D). 
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Figure 8.8. SF significantly suppresses MaCM-induced IL-6 expression in SGBS 

adipocytes. SGBS preadipocytes were chemically differentiated over 14 days (section 2.2.4) 

to produce mature adipocytes. SGBS adipocytes were treated with MaCM (10, 20 and 50%; 

vehicle control for MaCM = serum-free RPMI + 0.5% (w/v) BSA) for 24 hours in the 

presence or absence of SF (2, 5 and 10µM; vehicle control for SF = < 0.1% (v/v) DMSO). 

Following treatment, RNA was extracted and IL-6 expression was analysed using real-time 

RT-PCR. Data shown = mean ± SD. Data was analysed using one-way ANOVA followed 

by Bonferroni multiple comparison tests. *p<0.05, **p<0.01 and ***p<0.001 compared 

against 0% MaCM (A), MaCM alone or as annotated (B-D). 

 

 

8.2.3. Analysis of MaCM  

8.2.3.1. LC-MS/MS for TCA intermediate analysis 

Due to a lack of TNFα expression by SGBS adipocytes, it was hypothesised that the 

production of IL-1β and IL-6 expression was controlled by the IL-1β signalling pathway. 

Several of the TCA cycle intermediates have been associated with enhancing the IL-1β 

signalling pathway [283]. It has been hypothesised that the TCA intermediates are able to 

influence pro-inflammatory biomarker production as a result of the activation of the hypoxia 

inducible factor (HIF)-1α pathway [283]. When macrophages are in an inflammatory state, 
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they switch their core metabolism to glycolysis and as a result a number of TCA 

intermediates may be induced which behave to stabilise the HIF-1α, resulting in activation 

of its target genes of which IL-1β is an example [283]. Based on this research, MaCM was 

analysed for a number of TCA cycle intermediates to determine whether these were the 

components of the MaCM were responsible for the effect on IL-1β and IL-6 gene 

expression. 

 

Citrate, succinate, lactate and malate were all identified at measurable concentrations in 

MaCM while the other intermediates described in Table 2.2 were below the limit of 

detection. The levels of citrate, succinate, lactate and malate increased dose-dependently as 

would be expected (Figure 8.9).  

Figure 8.9. TCA intermediate levels increase dose-dependently in MaCM from THP-1 

macrophages. THP-1 monocytes were differentiated to macrophages with a 48 hour 

treatment of 125ng/ml PMA. The macrophage-secreted factors were stabilised by culturing 

the cells with serum-free media + 0.5% (w/v) BSA for a further 48 hours. The MaCM doses 

were produced by diluting in DMEM/F12 + 10% (v/v) FCS (the control media of SGBS 

cells). The 0% MaCM condition is RPMI + 0.5% (w/v) BSA. The samples were measured 

for TCA intermediates using LC-MS/MS and data was analysed using Masshunter software 

(see section 2.11 for more details). Data shown = mean ± SD and is representative of 2 

independent experiments. **p<0.01 and ***p<0.001 compared to 0% MaCM.  
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8.2.3.2. Effect of TCA intermediates on SGBS cytokine expression in the presence or 

absence of SF 

Based on the high levels of several TCA intermediates measured in the MaCM, SGBS 

adipocytes were treated with the average levels (from two independent experiments) of the 

pure TCA intermediates found in 50% MaCM, to investigate whether these were responsible 

for the induction in IL-1β and IL-6 expression.  

 

Differentiated SGBS adipocytes were treated with citrate, succinate, lactate and malate alone 

and in combination, however no significant changes were seen in IL-6 except for in response 

to lactate alone and the combination, as a result of the lactate presence (Figure 8.10). This 

significant reduction is likely due to the high millimolar concentration of lactate used and 

visually it could be seen to cause a high level cell death, as determined by detachment of 

cells from the culture vessel and changes in morphology. IL-1β expression was very low in 

the samples, resulting in poor amplification efficiency, preventing extrapolation of the 

relative amounts of IL-1β expression (data not shown). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.10. TCA intermediates are not responsible for the induction in IL-6 

expression seen in response to MaCM. SGBS preadipocytes were chemically 

differentiated into mature adipocytes (see section 2.2.4). Once differentiation was complete, 

cells were treated with 20µM citrate, 15µM succinate, 5mM lactate and 10µM malate alone 

or in combination (all solubilised in DMEM/F12 medium) for 24 hours. RNA was extracted 

and IL-6 expression was analysed using real-time RT-PCR. Data shown = mean ± SD. Data 

was analysed using one-way ANOVA followed by Bonferroni multiple comparison tests. 

***p<0.001 vs. control.  

 

 

8.2.3.3. Quantification of cytokines in MaCM 

During the differentiation process, the morphological changes from monocytes to 

macrophages are accompanied by a number of functional changes such as the level of 

cytokine expression, which would affect the level available for secretion [268]. A number of 
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independent THP-1 monocyte differentiation experiments were carried out and MaCM from 

four independent experiments were analysed. Levels of IL-6, IL-1β and TNFα were 

quantified by ELISA. TNFα was present at levels almost three times higher than either IL-6 

or IL-1β (Table 8.1). 

 

 

 

 

 

 

 

 

 

 

 

8.2.3.4. Effect of TNFα on SGBS cytokine expression in the presence or absence of SF 

Prior to the analysis of MaCM described in Table 8.1, an individual batch of MaCM was 

analysed to give an indication as to the levels of TNFα. A level of around 1ng/ml was found 

which was significantly lower than the levels calculated in Table 8.1 with the larger sample 

group. However, this lower concentration was used to establish an experimental design 

where SGBS adipocytes were treated with pure TNFα (0.1, 0.2 and 0.5ng/ml) which was 

thought to be representative for 10, 20 and 50% MaCM in the presence or absence of SF (2, 

5 and 10µM) prior to measuring IL-1β and IL-6 gene expression. TNFα treatment 

significantly induced IL-1β gene expression in a dose-dependent manner (Figure 8.11A). SF 

however was unable to suppress this induction with no effect seen at 2 and 5µM, but a 

further significant induction was seen when the SGBS adipocytes were co-treated with 

10µM SF and TNFα (Figure 8.11B-D). The same response to TNFα and SF treatment was 

not observed with IL-6 expression. While TNFα treatment significantly induced IL-6 

expression in a dose-dependent manner, there were no significant effects seen with SF 

treatment (Figure 8.12).  

 

Table 8.1. Levels of cytokines quantified in MaCM 

Cytokine Concentration  

(ng/ml; mean ± SEM*) 

IL-6 8.2 ± 0.6 

IL-1β 6.7 ± 1.7 

TNFα 21.3 ± 1.7 

*Data from four independent experiments 
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Figure 8.11. TNFα induces IL-1β expression in SGBS adipocytes and when co-treated 

with 10µM SF, there is an additional induction. SGBS preadipocytes were differentiated 

for 14 days (section 2.2.4) to produce mature adipocytes. SGBS adipocytes were treated for 

24 hours with TNFα (0.1, 0.2 and 0.5ng/ml; vehicle control for TNFα = PBS) in the 

presence or absence of SF (2, 5 and 10µM; vehicle control for SF = < 0.1% (v/v) DMSO). 

Following treatment, RNA was extracted and IL-1β expression was analysed using real-time 

RT-PCR. Data shown = mean ± SD. Data was analysed using one-way ANOVA followed 

by Bonferroni multiple comparison tests. **p<0.01 and ***p<0.001 compared against 

0ng/ml TNFα (A), TNFα alone or as annotated (B-D). 
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Figure 8.12. TNFα induces IL-6 expression in SGBS adipocytes while SF has no 

significant effect. SGBS preadipocytes were differentiated for 14 days (section 2.2.4) to 

produce mature adipocytes. SGBS adipocytes were treated for 24 hours with TNFα (0.1, 0.2 

and 0.5ng/ml; vehicle control for TNFα = PBS) in the presence or absence of SF (2, 5 and 

10µM; vehicle control for SF = < 0.1% (v/v) DMSO). Following treatment, RNA was 

extracted and IL-6 expression was analysed using real-time RT-PCR. Data shown = mean ± 

SD. Data was analysed using one-way ANOVA followed by Bonferroni multiple 

comparison tests. ***p<0.001 compared against 0ng/ml TNFα (A) or as annotated (B-D). 

 

 

8.2.4. Effect of pre-treating SGBS adipocytes with SF on MaCM-induced 

cytokine expression 

To further characterise the main targets by which SF could exert its anti-inflammatory 

effects, SGBS adipocytes were pre-treated with SF (2, 5 and 10µM) for 24 hours prior to 

being exposed to MaCM. The aim was to investigate whether a different effect was seen 

with IL-1β and IL-6 gene expression using a SF pre-treatment as compared to the previous 

experimental design based on SF co-treatment with MaCM (Figures 8.7 and 8.8). MaCM 

significantly induced IL-1β expression and SF significantly suppressed MaCM induction of 

IL-1β expression seen with 20 and 50% MaCM (Figure 8.13). 
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Figure 8.13. SF significantly suppresses MaCM-induced IL-1β expression in SGBS 

adipocytes when used as a pre-treatment. SGBS preadipocytes were differentiated for 14 

days (section 2.2.4) to produce mature adipocytes. SGBS adipocytes were treated for 24 

hours with SF (2, 5 and 10µM; vehicle control for SF = < 0.1% (v/v) DMSO) before being 

exposed to MaCM (10, 20 and 50%; vehicle control for MaCM = serum-free RPMI + 0.5% 

(w/v) BSA) for a further 24 hours. Following treatment, RNA was extracted and IL-1β 

expression was analysed using real-time RT-PCR. Data shown = mean ± SD. Data was 

analysed using one-way ANOVA followed by Bonferroni multiple comparison tests. 

*p<0.05, **p<0.01 and ***p<0.001 compared against 0% MaCM (A), MaCM alone or as 

annotated (B-D). 

 

 

A significant induction in IL-6 gene expression with MaCM treatment was observed. 

However, SF at 10µM was able to further increase IL-6 expression with 10% MaCM 

(Figure 8.14).  
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Figure 8.14. SF had no consistent significant effects on MaCM-induced IL-6 expression 

in SGBS adipocytes when used as a pre-treatment. SGBS preadipocytes were 

differentiated for 14 days (section 2.2.4) to produce mature adipocytes. SGBS adipocytes 

were treated for 24 hours with SF (2, 5 and 10µM; vehicle control for SF = < 0.1% (v/v) 

DMSO) before being exposed to MaCM (10, 20 and 50%; vehicle control for MaCM = 

serum-free RPMI + 0.5% (w/v) BSA) for a further 24 hours. Following treatment, RNA was 

extracted and IL-6 expression was analysed using real-time RT-PCR. Data shown = mean ± 

SD. Data was analysed using one-way ANOVA followed by Bonferroni multiple 

comparison tests. *p<0.05, **p<0.01 and ***p<0.001 compared against 0% MaCM (A), 

MaCM alone or as annotated (B-D). 

 

 

8.2.5. Effect of targeting macrophages with SF prior to challenging SGBS 

adipocytes with MaCM  

8.2.5.1. Effect of MaCM from SF pre-treated macrophages on cytokine expression in 

SGBS adipocytes 

To establish whether SF was able to target the macrophages with anti-inflammatory effects, 

THP-1 macrophages were treated with SF (2, 5 and 10µM) for 48 hours when medium was 

replaced with RPMI supplemented with 0.5% (w/v) BSA. MaCM from SF-treated and 
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untreated macrophages was collected and SGBS adipocytes were exposed to MaCM for 24 

hours before IL-1β and IL-6 gene expression was measured.  

 

Treatment with MaCM from SF-treated macrophages resulted in a significantly reduced 

level of IL-1β and IL-6 gene expression induction compared to the levels seen in response to 

MaCM from untreated macrophages (Figure 8.15 and 8.16).  

Figure 8.15. MaCM from SF-treated macrophages demonstrates significantly reduced 

levels of IL-1β gene expression induction. THP-1 monocytes were differentiated into 

macrophages with 125ng/ml PMA treatment for 48 hours. The macrophages were then 

incubated with RPMI + 0.5% (w/v) BSA in the presence or absence of SF (2, 5 and 10µM; 

vehicle control for SF = < 0.1% (v/v) DMSO) for a further 48 hours. SGBS preadipocytes 

were chemically differentiated for 14 days (section 2.2.4) to produce mature adipocytes. 

SGBS adipocytes were treated for 24 hours with MaCM (10, 20 and 50%; vehicle control 

for MaCM = serum-free RPMI + 0.5% (w/v) BSA) from either SF-treated or control-treated 

macrophages. RNA was extracted and IL-1β expression was analysed using real-time RT-

PCR. Data shown = mean ± SD. Data was analysed using one-way ANOVA followed by 

Bonferroni multiple comparison tests. *p<0.05, **p<0.01 and ***p<0.001 compared against 

0% MaCM (A), MaCM alone or as annotated (B-D). 
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Figure 8.16. MaCM from SF-treated macrophages demonstrates significantly reduced 

levels of IL-6 gene expression induction. THP-1 monocytes were differentiated into 

macrophages with 125ng/ml PMA treatment for 48 hours. The macrophages were then 

incubated with RPMI + 0.5% (w/v) BSA in the presence or absence of SF (2, 5 and 10µM; 

vehicle control for SF = < 0.1% (v/v) DMSO) for a further 48 hours. SGBS preadipocytes 

were chemically differentiated for 14 days (section 2.2.4) to produce mature adipocytes. 

SGBS adipocytes were treated for 24 hours with MaCM (10, 20 and 50%; vehicle control 

for MaCM = serum-free RPMI + 0.5% (w/v) BSA) from either SF-treated or control-treated 

macrophages. RNA was extracted and IL-6 expression was analysed using real-time RT-

PCR. Data shown = mean ± SD. Data was analysed using one-way ANOVA followed by 

Bonferroni multiple comparison tests. *p<0.05 and ***p<0.001 compared against 0% 

MaCM (A), MaCM alone or as annotated (B-D). 

 

 

8.2.5.2. Quantification of cytokine levels in MaCM from SF-treated macrophages  

To gain more information about how the pre-treatment of macrophages with SF resulted in a 

significant reduction of both IL-1β and IL-6 gene expression in SGBS adipocytes, the levels 

of IL-1β, IL-6 and TNFα were quantified in the MaCM from SF-treated or control-treated 

macrophages in the same way as described for Table 8.1. SF treatment significantly reduced 

the levels of IL-1β, IL-6 and TNFα secreted by the macrophages dose-dependently (Figure 

8.17). 
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Figure 8.17. SF significantly suppresses cytokine secretion of macrophages. THP-1 

monocytes were treated with 125ng/ml PMA for 48 hours to allow differentiation to 

macrophages. THP-1 macrophages were then treated with SF (2, 5 and 10µM; vehicle 

control for SF = < 0.1% (v/v) DMSO) in RPMI + 0.5% (w/v) BSA to stabilise macrophage-

secreted factors for a further 48 hours. The MaCM was collected and cytokines were 

measured by ELISA. Data shown = mean ± SD. Data was statistically analysed using one-

way ANOVA followed by Bonferroni multiple comparisons tests. * p<0.05 and ***p<0.001 

compared to 0µM SF. 

 

 

8.3. Discussion 

In the previous chapters, it was reported that SF was able to exert anti-inflammatory effects 

at physiologically relevant concentrations by targeting not only the TLR4 signalling 

pathway, but also TLR2 and NOD2 inflammatory signalling pathways. This led to the 

conclusion that SF was able to exert its anti-inflammatory effects as a result of a multi-

targeted approach. Obesity is often characterised by a state of chronic inflammation and is 

an independent risk factor for cancers at several sites [63-65], CVD [66-70] and T2DM [71]. 

Adipose tissue inflammation is common in obese subjects and contributes to the increased 

risk of morbidities associated with obesity. For this reason, the hypothesis of whether SF 

was able to suppress pro-inflammatory cytokine expression in response to macrophage-

secreted factors was explored.  
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SF at a concentration of 5µM was able to suppress LPS-induced cytokine expression and 

secretion in differentiated THP-1 macrophages in a similar way to the results seen in 

Chapter 3 with THP-1 monocytes and previous results from Lin and colleagues [185]. These 

findings support the use of THP-1 macrophages for treatment of SGBS cells with MaCM as 

a highly reproducible and inexpensive in vitro model of adipose tissue inflammation based 

on the research by Keuper and colleagues [258].  

 

The MaCM from THP-1 macrophages was found to significantly prevent preadipocyte 

differentiation at concentrations as low as 10% MaCM. These findings were found to be 

specific to this in vitro model of adipose tissue inflammation [268]. A number of alternative 

models have been used and the most commonly described combination was murine 3T3-L1 

cells and the murine RAW 264.7 macrophages. These murine cell lines have been observed 

to behave differently to similar cell types of human origin [258]. This was demonstrated 

when murine 3T3-L1 cells were subjected to treatment with MaCM from murine J774 

macrophages, where differentiation was only completely suppressed in the presence of 80-

100% MaCM [277-280].  

 

Based on previous findings [258, 281, 284, 285], the hypothesis that SF was able to suppress 

pro-inflammatory gene expression potentially increased in response to THP-1 MaCM in 

human SGBS adipocytes was investigated. Mature SGBS adipocytes that were exposed to a 

co-treatment of SF (2, 5 and 10µM) and MaCM (10, 20 and 50%) demonstrate a significant 

suppression of MaCM-induced IL-1β expression with concentrations from 5µM SF, but a 

further increase in IL-6 expression at the highest SF concentration (Figure 8.7 and 8.8). 

Unlike IL-1β which is widely accepted as a pro-inflammatory cytokine, IL-6 is more 

controversial with reports demonstrating its pleiotropic nature. For example, in reference to 

obesity, which is often associated with insulin resistance, IL-6 can have beneficial effects in 

some cases [286, 287]. Therefore, the additional increase in response to SF may be 

beneficial to consequences of adipose tissue inflammation. Furthermore, this experimental 

design is focusing on the effect SF exerts directly on the SGBS adipocytes due to SF being 

administered as a co-treatment with MaCM.  

 

In addition to IL-1β and IL-6, the levels of TNFα expression was also measured as had been 

carried out in previous chapters. However, no detectable expression was found. In previous 

reports with SGBS cells, a significant increase in IL-6 and IL-1β in response to MaCM has 

been observed, however in the same studies there was no mention of the effect on TNFα 

expression [258, 281, 284, 285]. In this in vitro context where the expression of the 
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adipocytes alone is measured, there may be little relevance in measuring TNFα and this may 

support findings that that the majority of TNFα expression within adipose tissue is as a result 

of the SVF and in particular, ATMs [83, 96, 100, 281, 288] as opposed to the adipocytes 

themselves.  

 

It was hypothesised that the induction in IL-1β and IL-6 in response to MaCM could be 

through the IL-1β pathway. This pathway has been recently investigated in terms of its link 

with TCA intermediates, succinate and malonate which can behave to accentuate the 

inflammatory signalling through this pathway [283]. While levels of citrate, succinate, 

lactate and malate were detected in the MaCM, these compounds were not found to be 

responsible for the induction. This led to the investigations of the cytokines produced by the 

macrophages [281, 284, 285, 289-291]. Non-fat cells within the adipose tissue are described 

as being predominantly responsible for production of these pro-inflammatory mediators [83, 

96, 100, 281, 288]. TNFα was found at the highest level with between 2.5 and 3-fold higher 

than the levels of IL-6 and IL-1β within the MaCM. Gagnon and colleagues presented data 

that measured IL-1β in MaCM also from THP-1 macrophages at a level of 500pg/ml, 

significantly lower than the levels reported in this chapter [289]. This could be as a result of 

Gagnon and colleagues collecting the media after only 24 hours culture (48 hours after 

differentiation in the present study), a lack of BSA presence to stabilise the macrophage-

secreted factors (0.5% (w/v) BSA added to serum-free RPMI in this chapter) and also could 

be affected by the passage number of the THP-1 monocytes used for differentiation  

 

Both IL-1β and IL-6 expression levels were significantly induced in response to all TNFα 

concentrations (Figure 8.11A and 8.12A). This is consistent with previous findings where 

TNFα was able to significantly induce pro-inflammatory gene expression, of which IL-6 was 

consistently an example, in human adipocytes [100, 292, 293]. IL-1β expression was further 

induced when exposed to TNFα in combination with 10µM SF (Figure 8.11B-D), while IL-

6 expression induced by TNFα was unaffected by SF presence (Figure 8.12B-D). 

Surprisingly, these results are completely the opposite to those observed in SGBS adipocytes 

exposed to the co-treatment of MaCM and SF, where IL-1β expression induced in response 

to MaCM was significantly reduced by SF and the IL-6 expression was further induced in 

response to SF (Figure 8.7 and Figure 8.8). Based on these contradictory findings, it was 

concluded that while TNFα present within the MaCM may be partly responsible for the 

significant induction of IL-1β and IL-6 expression levels seen in response to MaCM 

treatment, SF was unable to suppress IL-1β expression and further induce IL-6 expression in 

response to MaCM via targeting of the TNFα signalling pathway.  
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Following these results, the experimental design that was used to answer the research 

question of whether SF was able to target adipose tissue inflammation was re-evaluated. As 

previously stated, the ATMs are derived from circulating monocytes [83, 281, 282], which 

would be in a pro-inflammatory state [273]. Following the consumption of broccoli, these 

pro-inflammatory circulating monocytes would be subjected to free SF at a similar 

concentration to that used in the experiments within this chapter, and would be able to 

significantly reduce the levels of pro-inflammatory gene expression of the circulating 

monocytes. These SF-suppressed monocytes would then extravasate from circulation and 

enter the tissue resulting in differentiation into ATMs. Due to their suppressed inflammatory 

status, the ATMs have the potential to be unable to express or secrete such high levels of 

pro-inflammatory mediators as seen without broccoli consumption and therefore reduce the 

level of adipose tissue inflammation. In further support, SF has been shown to accumulate in 

cells and tissues [294-298] and thus may be able to target the macrophages directly.  

 

Induction of both IL-1β and IL-6 expression was suppressed when SGBS adipocytes were 

exposed to MaCM from SF-treated macrophages compared to MaCM from control-treated 

macrophages (Figure 8.15A and 8.16B). This was presumably as a result of the observed 

significant suppression of IL-6, IL-1β and TNFα when subjected to SF treatment prior to 

collection of MaCM. This provides evidence that the response of adipocytes to MaCM is not 

as a result of individual compounds, but instead is as a result of a collection of molecules, a 

concept that has been previously suggested [279, 299]. To further address the research 

question that SF would primarily target the inflammatory cells rather than the adipocytes to 

suppress adipose tissue inflammation, an additional experimental design could be used. Prior 

to differentiation, the THP-1 monocytes could be exposed to SF at 2, 5 and 10µM before 

continuing with differentiation to macrophages. The SGBS adipocytes would then be 

exposed to MaCM from SF-treated monocytes and it could be investigated whether this is 

sufficient to suppress SGBS pro-inflammatory gene expression as a representation of 

exposure to SF following the consumption of broccoli. 

 

Following a review of relevant literature, only one published study was identified where this 

experimental design of pre-treating macrophages prior to collection of MaCM for human 

adipocyte treatment was used in order to test a grape powder extract, known to be high in the 

polyphenol quercetin [270]. Quercetin was able to suppress pro-inflammatory basal gene 

expression in the macrophages and when human adipocytes were treated with MaCM from 

quercetin-treated macrophages, there was a significantly lower capacity for inducing 

inflammation in the adipocytes [270]. The disadvantage of this study is that quercetin in 



Effect of SF on adipose tissue inflammation 

 

186 

 

humans is not readily biologically available unlike SF, but nevertheless these results 

demonstrate an additional dietary factor that may target adipose tissue inflammation. 

Another study carried out investigating the effect of polyphenols on adipose tissue 

inflammation investigated the effect of resveratrol on plasminogen activator inhibitor-1, a 

protein involved in obesity [269]. In that study, they used the same experimental design as 

seen with the results shown in Figures 8.7 and 8.8, where the SGBS adipocytes were co-

treated with THP-1 MaCM (prepared in the same way as in the experiments within this 

chapter) and resveratrol, with the only difference being a 48 hour treatment [269].  

 

From an experimental viewpoint, there was an inconsistency in the method used for the 

production of MaCM in this chapter compared to many other studies. Within this chapter, 

MaCM from human THP-1 cells was prepared by differentiating monocytes with PMA 

(125ng/ml) for 48 hours, followed by replacement of the media with serum-free RPMI 

supplemented with 0.5% (w/v) BSA in order to stabilise the macrophage-secreted factors for 

a further 48 hours, before collecting and using as MaCM. This is in accordance to the 

method used in previous studies [258, 268, 269]. In the study by Bassols and colleagues, 

MaCM was derived from THP-1 cells in a different way by differentiating the monocytes for 

only 24 hours followed by replacement of the medium, without BSA addition, before 

collecting the supernatant as MaCM after a further 24 hours. In addition, this study used LPS 

treatment at a low concentration of 10ng/ml to activate the macrophages and following 

monocyte differentiation, the next 24 hour treatment was supplemented with LPS and 

medium was collected and known as activated MaCM (AcMaCM) [284]. MaCM alone was 

able to induce pro-inflammatory gene expression in primary human adipocytes e.g. IL-6, and 

AcMaCM was able to induce the gene expression at comparable levels [284]. This was in 

disagreement with the study findings from Lacasa and colleagues, who employed the use of 

human primary adipocytes and human primary monocytes that were differentiated to yield 

MaCM. In the same way as Bassols and colleagues, there was a comparison with MaCM 

with no activation of the macrophages and MaCM from macrophages activated with LPS 

(100ng/ml) for 24 hours. Lacasa and colleagues found no induction in IL-6 and IL-1β 

expression in preadipocytes that were treated with MaCM from unactivated macrophages, 

and only saw an induction when cultured with AcMaCM [284]. This study does however 

make use of a very different experimental design in which the preadipocytes are 

differentiated in the presence of MaCM before measuring the inflammatory gene expression 

signature, whereas in the experiments presented in this chapter and previously reported 

studies, it was carried out in mature differentiated adipocytes. Nevertheless, comparable 

results to those found in this study were seen with a significant induction in IL-6 expression 
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in preadipocytes cultured in the presence of MaCM from ATMs [284]. This may further 

support the use of the SGBS adipocytes and THP-1 macrophages as the most advantageous 

in vitro model of adipose tissue inflammation as suggested by [258]. 

 

The data within this chapter has provided some evidence for how SF, at a physiological 

concentration, could exert beneficial effects on an in vitro model of adipose tissue 

inflammation with a multi-targeted approach. At a physiologically relevant concentration, 

SF was able to significantly suppress adipogenesis and the adipocyte inflammatory response 

by targeting the adipocytes directly and also macrophages prior to SGBS adipocytes being 

exposed to the macrophage-secreted factors. While the recent in vivo study with a rodent 

model by Choi and colleagues was able to demonstrate a significant reduction in weight gain 

with SF, as a result of a reduction in the amount of epididymal tissue depots via specifically 

targeting the important PPARγ and C/EBPα transcription factors and adipokines, the 

concentration used was supraphysiological. For this reason and based on the promising 

results seen with the in vitro work in this chapter, this hypothesis could be further 

investigated by designing in vivo studies in rodents using a concentration that is 

physiologically relevant to the consumption of broccoli. To further translate the results, a 

human dietary intervention study could be designed to monitor the effect of broccoli 

consumption on the low-grade inflammatory status commonly found in obese subjects.  

 

 

8.4. Conclusions 

It is apparent from the results in this chapter that SF was able to exert its anti-inflammatory 

effects via a multi-targeted approach, not limited to individually activated signalling 

pathways (Chapters 3-6). Human SGBS adipocytes were subjected to treatment with THP-1 

MaCM in combination with SF. SF was able to significantly suppress the pro-inflammatory 

IL-1β cytokine expression but increase the pleiotropic IL-6 expression. It was discovered 

that although macrophages are responsible for large levels of TNFα production, TNFα alone 

was not solely responsible for the induction seen in IL-1β and IL-6 in response to MaCM 

and in addition, SF does not target the TNFα signalling pathway. It is likely that the 

induction seen with MaCM and the suppression with SF is due to a combination of 

molecules produced by the macrophages.  

 

By targeting the macrophages directly in an improved experimental design representing a 

model of adipose tissue inflammation following consumption of broccoli, there was a 

significant reduction in the levels of IL-1β and IL-6 expression by the SGBS adipocytes 
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presumably as a result of a reduction in the levels of IL-1β, IL-6 and TNFα present within 

the MaCM.  

 

This provides support for continuing this work in vivo, first in a rodent model using a 

physiologically relevant amount of SF which could be further translated into a human 

intervention study where obese subjects with a state of low-grade inflammation could 

consume a diet supplemented with broccoli, before measuring whether this dietary 

intervention resulted in an improvement in their systemic inflammatory status.  
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9.1. Summary of findings 

The overall aim of this study was to establish whether SF, the dietary ITC from broccoli, 

was able to significantly suppress pro-inflammatory signalling in an in vitro model of 

chronic inflammation at a physiologically relevant concentration. It has been well-

documented that SF can behave to induce phase 2 enzymes, halt the cell cycle, alter cell 

metabolism and also affect inflammation [300]. The work in this thesis aimed to shed light 

on whether the effect of SF was targeted to several pro-inflammatory mediators or whether it 

was able to target signalling pathways on a global scale, in addition to investigating potential 

mechanistic explanations before translating the findings into an in vitro model of adipose 

tissue inflammation.  

 

In Chapter 3, the aim was to develop an in vitro model of chronic inflammation. Human 

monocytes (PBMCs and THP-1 monocytes) were the cell models of choice due to their 

importance in the inflammatory response. It was established that very low concentrations of 

LPS could be used with these sensitive cell types, with 1ng/ml being sufficient to induce the 

production of commonly studied pro-inflammatory cytokines IL-6, IL-1β and TNFα. While 

the ex vivo model of PBMCs have their advantages, the THP-1 monocyte cell line was able 

to mimic their response to LPS. At physiological concentrations of SF, a significant 

reduction was seen in the levels of cytokine secretion and expression in both PBMCs and 

THP-1 monocytes induced in response to LPS. 

 

Chapter 4 aimed to determine whether the results seen in Chapter 3 were a specific response 

or whether SF was able to affect the global expression pattern of THP-1 monocytes exposed 

to LPS using Affymetrix GeneChip® Human Exon 1.0ST arrays. In the absence of LPS, SF 

at only 5µM was able to demonstrate a significant induction in genes encoding phase 2 

enzymes and enzymes involved in cell metabolism, findings which were comparable to 

previously published data. A concentration of 5µM SF was able to significantly oppose all 

gene expression changes induced in response to LPS, allowing the conclusion that SF can 

target the TLR4-LPS signalling pathway on a global scale.  

 

As a result of SF demonstrating the ability to target all genes induced by LPS, it was 

hypothesised in Chapter 5 that SF was able to target the TLR4 receptor directly, which had 

also been suggested by previously published research [195]. Experiments were initially 

carried out using a recombinant form of the extracellular domain of TLR4 with varying 

concentrations of SF. Concentrations as low as 5µM were able to modify thiol groups of 

cysteine residues within the TLR4 receptor. While investigations were carried out into 
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whether SF was able to modify the TLR4 in vitro, technical difficulties resulted in this not 

being ascertained.  

 

With all of the experiments thus far being dependent on TLR4 signalling, in Chapter 6 the 

aim was to establish whether the anti-inflammatory effects seen were limited to this 

particular pathway, or if the same suppression could be seen when other important pro-

inflammatory signalling pathways were activated. With the use of HEK293 cells that were 

stably transfected with the TLR4, TLR2 and NOD2 PRRs, in combination with an SEAP 

reporter gene under the control of NF-κB, the effect of SF was investigated with both the L-

SF form derived from broccoli and DL-SF, the synthetic analogue. SF was able to 

significantly suppress ligand-induced NF-κB activity at physiologically relevant 

concentrations in response to the TLR4, TLR2 and NOD2 agonists. In addition, 

polymorphisms within the TLR4 and the NOD2 receptors were investigated which have 

been implicated in the IBD, Crohn’s disease. While the SNPs in TLR4 had no impact on the 

level of response to either LPS or SF, the G908R NOD2 mutant demonstrated a significantly 

lower response to the NOD2 agonist MDP, at higher concentrations. The G908R-expressing 

cells also demonstrated a significantly larger reduction in NF-κB activity in response to SF, 

compared to the response seen in cells expressing the NOD2 wildtype receptor. This 

provides some evidence that SF may be able to have anti-inflammatory effects, to varying 

extents, depending on the genotype, displayed in Crohn’s disease sufferers.  

 

Based on the compiled results thus far, the next step was to translate these findings into a 

more complex in vitro model designed to mimic human adipose tissue inflammation. 

Initially, the effects of SF alone on adipogenesis were explored in human SGBS cells 

(Chapter 7). SF was able to significantly suppress the level of lipid accumulation at a 

concentration of 10µM and concomitantly, induce the level of CPT1A gene expression, a 

fundamental enzyme in fatty acid β-oxidation. With no change seen in glycerol release, it 

was suggested that the reduced level of lipid accumulation was not as a result of an 

induction in lipolysis. 

 

In the final chapter, the ability of SF to suppress cytokine production by human SGBS 

adipocytes in response to MaCM from THP-1 macrophages was tested in an in vitro model, 

aimed to simulate adipose tissue inflammation in humans. While SF was able to 

significantly suppress the levels of IL-1β expression induced in response to MaCM in an 

experimental design where SF was targeting the adipocytes directly, IL-6 expression was 

further increased in response to MaCM and 10µM SF. Following optimisation of the 
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experimental design, both IL-1β and IL-6 expression was significantly suppressed following 

treatment with MaCM from SF-treated macrophages. Investigations were carried out to try 

and conclude the particular targets of SF in the MaCM response, and while the TNFα 

pathway was ruled out, no definitive evidence was determined, with the hypothesis being 

that SF was exerting anti-inflammatory effects in a multi-targeted fashion to suppress 

chronic inflammation.  

 

Much of the work described in this thesis is summarised in Figure 9.1.  

 

Figure 9.1. Targets of SF for suppression of chronic inflammation. SF is able to target 

circulating monocytes that may be exposed to levels of LPS at around 1ng/ml and suppress 

the levels of pro-inflammatory cytokines produced by interacting with the TLR4 directly or 

by suppressing NF-κB activity. Monocytes differentiate into macrophages and infiltrate the 

adipose tissue. SF can target the macrophages directly and lower their inflammatory 

potential, subsequently preventing induction of pro-inflammatory cytokine expression in the 

adipocytes. SF is able to suppress lipid accumulation within adipocytes, a process that 

occurs during obesity and increase triglyceride metabolism. 

 



General discussion 

 

193 

 

9.2. How do these results compare with previous literature? 

The effect of SF on inflammatory signalling has been investigated previously with variations 

in the experimental designs. In Chapter 3, the experiments initially began with the use of an 

ex vivo model of PBMCs from healthy donors to optimise the appropriate concentration of 

LPS to use in order to simulate an inflammatory response. While the ex vivo models have 

distinct advantages due to their increased relevance to in vivo conditions, experimentally 

they have disadvantages. For this reason, the use of an in vitro monocytic cell line was used 

namely the THP-1 cell line, which had been previously described as a good model for 

human monocytes [229]. Both cell models were able to significantly respond to 

concentrations of 1ng/ml LPS, in terms of cytokine expression and secretion, and these 

levels were significantly suppressed with physiologically relevant concentrations of SF. In 

comparison to other studies, the importance of this data comes from the use of a very low 

concentration of LPS. A concentration approaching 1ng/ml is physiologically relevant to the 

levels of endotoxin that can be achieved in circulation in individuals that are suffering from 

a chronic inflammatory disorder [37, 45, 46], and even when the concentrations of LPS were 

further increased, there was little difference in the level of induction. In many studies, 

concentrations in the µg/ml range have been used which is not representative of the levels 

achieved in circulation following an acute inflammatory attack such as septic shock [197]. 

An additional finding in the comparison with other studies is that many are carried out with 

cell lines of murine origin or with cells from different locations within the body e.g. 

microglial cells and mouse macrophages. This therefore makes comparisons of the results 

difficult due to potential species differences and variations in response to LPS.  

 

When investigated on a global scale (Chapter 4), SF alone was able to significantly affect 

expression of THP-1 monocytes, with a number of phase 2 enzymes being up-regulated in 

addition to a number of genes encoding enzymes involved in carbohydrate cell metabolism. 

The effect of SF on phase 2 enzyme expression has been widely documented at varying 

concentrations. The expression of genes such as NQO1 and TXNRD1 were commonly up-

regulated in cells from a wide range of locations with concentrations as low as 1-2µM 

demonstrating an induction in both global scale microarray analyses and RT-PCR, however 

in some studies concentration as high as 50µM SF were used [140-153, 160, 231, 232, 301].  

 

The investigations with SF and LPS, found that SF was able to oppose the effects of LPS on 

a global scale as demonstrated by a significant linear regression analysis (p < 0.001). To the 

best of my knowledge, the global effect of SF on LPS signalling has not been previously 

investigated. These results demonstrate the importance of untargeted approaches to gain 
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more information about the extent of the effect rather than targeting a selection of specific 

biomarkers.  

 

Based on previous literature and the findings describing the ability of SF to target the whole 

TLR4 pathway, Chapter 5 aimed to investigate potential mechanisms of SF. Youn and 

colleagues demonstrated that SF at a concentration of 100µM was able to directly modify 

cysteine residues within the extracellular domain of the TLR4 [195]. Similar changes were 

found in the investigations in Chapter 5 when the recombinant receptor was exposed to SF at 

the same concentration under reducing conditions. However, to make it more comparable to 

the in vitro and in vivo environment, the experiments were carried out under non-reducing 

conditions and found that Cys609 and Cys246 were modified by much lower concentrations 

of SF. The concept of direct binding of SF to proteins has been previously described with SF 

being able to bind directly to cysteine residues in proteins such as the Keap1 and MD2. This 

function has also been described with other ITC compounds due to the common electrophilic 

nature and was reviewed by Brown and colleagues [302]. In order to determine whether thiol 

modification by SF was a plausible mechanism for the results seen in Chapters 3 and 4, it 

was important to try and model these findings in vitro. While investigations were carried 

out, due to technical difficulties, conclusions could not be made. This is a general difficulty 

in the area of investigating the thiol adduct mechanism, as to the best of my knowledge, 

direct interactions with any proteins by SF via thiol modification has not been demonstrated 

in vitro.  

 

The findings in Chapter 6 which demonstrated that SF was able to target additional 

inflammatory signalling pathways namely TLR2 and NOD2, led to the hypothesis that SF 

was able to suppress inflammatory signalling via multiple targets. In these experiments, 

levels of NF-κB activity were determined by measuring the levels of reporter gene SEAP 

activity. Both L-SF and DL-SF, at physiologically relevant concentrations, were able to 

significantly suppress NF-κB activity in response to agonists specific to the TLR4, TLR2 

and NOD2 receptors. While polymorphisms within the TLR4 receptor had no effect on the 

response to either LPS or SF, the G908R polymorphism resulted in a significantly lower 

response to higher concentrations of MDP and also demonstrated a larger reduction in 

response to SF. This was possibly as a result of the change in amino acid properties, where a 

small aliphatic glycine was replaced with a longer chain, positively charged arginine residue, 

which could potentially alter interactions. In comparison with other studies that have 

investigated the effect of the G908R mutant, there were contrasting views. Much larger 

reductions in the response to MDP have been observed previously [251, 253], however the 
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results in the present study were more comparable to those presented by Lecine and 

colleagues [254].  

 

SF has previously been shown to exert an inhibitory effect on NF-κB activity targeting the 

DNA binding activity of NF-κB or by directly targeting the inhibitor and subsequently 

affecting the translocation of the transcription factor to the nucleus, where it can actively 

affect the transcription of its associated genes. In terms of aiming to suppress chronic 

inflammation, this may be a favoured target due to the fact that a large number of other 

phytochemicals have demonstrated significant suppression on the activity including 

curcumin and resveratrol [240]. 

 

In Chapters 7 and 8, the aim was to translate the findings of the previous chapters into a 

more complex model of chronic inflammation via the use of human SGBS adipocytes, to 

model adipose tissue inflammation. In Chapter 7, it was established that SF at a 

concentration of 10µM was able to significantly reduce the levels of lipid accumulation 

within the cells. During obesity, the levels of lipid accumulation within adipocytes are 

elevated and due to an imbalance between the rate of accumulation and the rate of β-

oxidation, FFAs are released in to systemic circulation. When triglycerides are metabolised, 

the glycerol backbone is released and can be measured as a marker of lipolysis. In the 

present study, no change in the level of glycerol released was observed but a significant 

increase in the level of CPT1A expression was demonstrated. The hypothesis was that there 

would be a reduction in the levels of lipids with SF as a result of an induction in lipolysis as 

previously suggested, but this was not the case [163]. The increase in the level of CPT1A 

expression was however in accordance with the suggestion that SF has an effect on β-

oxidation, a hypothesis also suggested based on findings from a human intervention study 

with high-GSL broccoli [166]. While the effect of lipid accumulation has been previously 

published, the effect has only been determined in 3T3-L1 cells, a mouse fibroblast cell line 

that demonstrates behaviours similar to adipocytes [162, 164, 259]. Therefore, these results 

confirm the importance of investigating the effect of SF on human adipocytes at 

concentrations in a physiologically achievable range.  

 

Finally, the level of pro-inflammatory cytokine production by SGBS adipocytes was 

monitored following treatment with MaCM from THP-1 macrophages. This combination of 

cell models has been previously described as the most representative model for human 

adipose tissue inflammation [258]. When treating the SGBS cells with the MaCM and SF as 

a co-treatment, contrasting results were seen in terms of the effect on IL-1β expression 
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compared to IL-6 expression. Optimisation of the experimental design led to the treatment of 

macrophages with SF prior to collection of the MaCM, in order to produce a more relevant 

in vitro model representing the effect of consuming broccoli on adipose tissue inflammation. 

When SGBS adipocytes were then exposed to MaCM from SF-treated macrophages, there 

was a dose-dependent decrease in the levels of both IL-1β and IL-6 expression.  

 

While these cell models have been used in other studies, only  polyphenol compounds have 

been investigated in terms of their effects on inflammatory cytokine production. In 

particular, only one article that used the same experimental design was identified, where 

macrophages were pre-treated with quercetin [270]. Treatment of SGBS adipocytes with 

MaCM from quercetin-treated macrophages demonstrated a significant reduction in the 

expression of pro-inflammatory mediators. However, quercetin is considerably less bioactive 

than SF and therefore the results seen in the present study with SF may be of increased 

biological relevance for investigating the effects of phytochemicals on pro-inflammatory 

signalling.  

 

 

9.3. Limitations of the research 

The major limitation of this research is that all experiments presented are from in vitro cell 

models or cell-free systems. Results from in vitro studies are difficult to translate to in vivo 

situations for a number of reasons. These include the fact that the cells are isolated in culture 

and do not experience the same conditions as encountered in vivo such as the hypoxic nature 

and without existing in circulation a number of growth factors may not be experienced. 

However, when investigating mechanistic details of the effects of SF, it would be more 

difficult to investigate in an in vivo model. Hence, without these in vitro studies there would 

be less basis for subsequent animal and human studies.  

  

A limitation of Chapter 3 was the varying levels of cytokine production in response to LPS. 

While the LPS used was from the same batch for all experiments in Chapters 3 and 4, the 

cells varied in passage number, which could have affected the response. For this reason, it 

would be more appropriate to carry out experiments using narrower passage number ranges. 

In Chapter 4, a large amount of information from the untargeted approach of a microarray 

analysis was presented. In this chapter, the main conclusion drawn was that SF at a 

physiologically relevant concentration was able to oppose global LPS-induced gene 

expression changes in THP-1 monocytes. However, a great deal of information may have 

been over-looked. For example, in Table 4.10, several genes involved in chemokine 
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signalling were up-regulated in response to LPS with up to a 25-fold induction, which was 

reduced by up to 70% in the presence of SF. Also, the genes differentially expressed in 

response to LPS were only presented when a minimum of 2-fold change in expression due to 

the vast amount of genes altered. This could however result in important collections of genes 

being disregarded that may have had significant functional effects following only small 

changes in their expression level. The potential functional importance of small expression 

changes was hypothesised with SF treatment on carbohydrate cell metabolism, where the 

fold change observed was as low as 1.2-fold, yet due to the fact that a collection of genes 

were linked by pathway interactions, these genes were still included. It may also be 

important to follow up these gene expression differences at a protein level to ensure that 

there are functional consequences.  

 

In Chapter 5, the main limitation was that the research was carried out in a cell-free system 

with the use of a recombinant form of the TLR4 protein. While concentrations of SF were 

used at 5µM and above, the amount of protein used would have been far higher than the 

ratio of SF to TLR4 in vitro and in vivo. It is very difficult to translate the results to the 

potential effects demonstrated in vitro (Chapters 3 and 4) due to the crude experimental 

design. While the modification of the TLR4 by SF was investigated in vitro, no conclusion 

was able to be established as a result of technical difficulties. These experiments would need 

to be repeated, however, it may be difficult to identify potential SF-TLR4 adducts using the 

IP technique due to the reversible nature of SF binding.  

 

 

9.4. Future research  

The data presented in this thesis provides evidence that SF is able to target pro-inflammatory 

signalling at physiologically relevant concentrations by targeting monocytes in circulation 

and also macrophages, which in turn impacted on the inflammatory status of adipocytes 

(Figure 9.1). In terms of furthering this project, a number of extensions could be made to the 

experimental design. Firstly, the in vitro model of adipose tissue inflammation could be 

further improved to increase the level of relevance to in vivo situations by co-culturing the 

SGBS adipocytes with macrophages, either THP-1 or primary human macrophages. This 

experimental design has been previously used in several studies [258, 268]. To further the 

hypothesis that SF is able to significantly suppress adipose tissue inflammation, the SGBS 

adipocytes could be co-cultured with THP-1 macrophages that had been pre-treated with SF 

and measure whether there was a reduction in pro-inflammatory cytokine production by 

adipocytes. However, as previously discussed a limitation of the in vitro work is that it is 
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difficult to translate into an in vivo situation. For this reason, the findings within this thesis 

could be translated into an in vivo study design. An animal study could be carried out using a 

diet-induced obese (DIO) mouse model in which the effect of broccoli as a means of 

providing SF could be investigated. Collection of plasma and PBMCs would establish 

whether SF has any effect on levels of pro-inflammatory cytokines and in addition, 

collection of adipose tissue could allow comparison of the levels of macrophage infiltration 

and the expression levels of pro-inflammatory mediators.  

 

One issue however with animal studies is the concentration of SF hoped to be achieved as 

well as the delivery method of choice. Table 9.1 presents several animal studies that have 

involved SF supplementation, with a delivery method of either diet supplementation or oral 

gavage, to ensure SF is still subjected to the digestive tract. 

 

Table 9.1. Animal studies using SF supplementation 

Study 
SF dose 

(µmols/day)* 

Duration of 

supplementation 

Broccoli 

consumption 

(g/day)** 

Choi et al. 2014 [161] 28.2 6 weeks 22.6 

Davidson et al. 2013 [179] 3 12 weeks 2.4 

Abbaoui et al. 2012 [274] 7.4 2 weeks 5.6 

Traka et al. 2010 [303] 0.5 or 5 4 or 8 weeks 0.4 or 4 

Myzak et al. 2006 [304] 2500 16 weeks 2000 

*In order to calculate µmols/day two assumptions were made; the body weight of a mouse is 

approximately 25g and each mouse consumes around 5g of food per day. 

**Using the assumption that there is 0.8µmol of glucoraphanin per g of broccoli fresh weight with 

100% conversion to SF (according to method used within the research group). 

 

Table 9.1 demonstrates that there is a large amount of variation in the levels of SF used in 

animal studies and when put into perspective of the amount of broccoli that would need to 

be consumed to achieve the levels, it is clear that there is a need for more studies utilising 

physiologically relevant concentrations. Previous studies that have employed more 

physiologically relevant levels of SF such as that by Davidson and colleagues, found 

significant effects on inflammation and the expression of key metalloproteinases implicated 

in osteoarthritis, another example of a chronic inflammatory disease [179]. However, Myzak 

and colleagues investigated the effects of SF on histone deacetylase in vivo using a 

concentration far out of the range of physiological relevance and almost 100 times higher 

than used within the study by Choi and colleagues, who found significant attenuation of 

weight gain and insulin resistance in obese models [161, 304]. 
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The disadvantages of mouse models include the difficulty of translating the dose of SF used 

in the animal to the levels needed for human consumption and also the potential for species 

differences. As discussed by Keuper and colleagues, there are a number of different 

combinations of adipocytes and macrophages used either from mouse or human in order to 

study the effects of adipose tissue inflammation and large differences were seen, suggesting 

it may be difficult to achieve representative effects of human adipose tissue inflammation 

using studies in a mouse model [258]. 

 

Alternatively, a human intervention study could be carried out in which the effect of 

physiologically relevant concentrations of SF could be investigated in a targeted population 

for example, obese individuals compared to lean individuals. This would allow a comparison 

of the effect obesity on the pro-inflammatory state, in addition to any beneficial effects 

following an intervention with broccoli or SF supplements. It may be advantageous to use a 

more elderly population, based on the findings of elevated pro-inflammatory cytokines 

compared to that recorded in younger populations [21]. Study endpoints could include 

collection of plasma to monitor the levels of pro-inflammatory mediators, isolation of 

PBMCS to measure their inflammatory potential ex vivo, plus collection of adipose tissue 

samples to monitor the varying levels of macrophage infiltration between the lean and obese 

subjects and also in response to the supplementation of SF. While the collection of blood 

and PBMCs are less invasive procedures, the collection of adipose tissue from both obese 

and lean subjects would still be possible practically. Obese subjects that were undergoing a 

gastric band procedure, abdominoplasty and breast reductions could be prime candidates and 

similarly, individuals with a normal BMI could also be considered if undergoing routine 

abdominal surgery or indeed cosmetic procedures.  

 

When determining the experimental design for potential human intervention studies, it is 

important to decide upon the method of SF delivery. SF itself is unstable and therefore the 

precursor of SF, glucoraphanin would be the appropriate source. Glucoraphanin could 

potentially be delivered as either a supplement or via the use of broccoli. In the US, a 

number of broccoli extracts are available which are designed to deliver a dose of 

glucoraphanin, and by relying on the myrosinase-like behaviour of the gut microbiota, SF 

could be delivered. By using a supplement it may be possible to potentially deliver higher 

concentrations of SF as opposed to that achieved using broccoli.  

 

Nonetheless, the concentrations of 2-10µM SF used within this thesis would be achievable 

via consumption of broccoli within the diet. With standard broccoli, 2µM SF was achieved 
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in circulation after 2 hours of consuming broccoli [129]. However, with the development of 

a high-GSL broccoli, the possibility to achieve three times the amount of SF at a level of 

7.4µM was achieved with the same portion size as that of standard broccoli [129]. This high-

GSL broccoli, commercially known as Beneforté®, was produced as a result of a selective 

breeding process which results in the expression of a Myb-related protein-28 (Myb28) 

transcription factor from Brassica villosa, enabling increased production of glucoraphanin 

[305]. This provides the ability to deliver higher concentrations of glucoraphanin within the 

same portion size as that usually consumed with standard broccoli.  

 

In conclusion, this thesis provides evidence that physiologically relevant concentrations of 

SF are able to suppress pro-inflammatory signalling in models of a low-grade state of 

inflammation, a condition linked to chronic disease. For this reason, it is logical to progress 

these studies into in vivo models and determine whether a suppression of pro-inflammatory 

signalling can be achieved in humans suffering from chronic inflammation. While a health 

claim is yet to be established for broccoli, these results could provide support for increasing 

the levels of standard broccoli consumption or the commercially available high-GSL 

Beneforté® broccoli within the diet.  
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