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Abstract The magnitude of marine plankton net community production (NCP) is indicative of both the
biologically driven exchange of carbon dioxide between the atmosphere and the surface ocean and the
export of organic carbon from the surface ocean to the ocean interior. In this study the seasonal variability
in the NCP of five biogeochemical regions in the North Atlantic was determined from measurements of
surface water dissolved oxygen and dissolved inorganic carbon (DIC) sampled from a Volunteer Observing
Ship (VOS). The magnitude of NCP derived from dissolved oxygen measurements (NCPO2

) was consistent
with previous geochemical estimates of NCP in the North Atlantic, with an average annual NCPO2

of
9.5 ± 6.5 mmol O2 m−2 d−1. Annual NCPO2

did not vary significantly over 35◦ of latitude and was not
significantly different from NCP derived from DIC measurements (NCPDIC). The relatively simple method
described here is applicable to any VOS route on which surface water dissolved oxygen concentrations can
be accurately measured, thus providing estimates of NCP at higher spatial and temporal resolution than
currently achieved.

1. Introduction

The global cycling of oxygen and carbon is regulated by the interactions between oceanic physical and
biogeochemical processes including mixing and plankton respiration and photosynthesis. The solubilities
of oxygen (O2) and carbon dioxide (CO2) are inversely proportional to temperature, so the seasonality of the
saturation concentrations of these gases correlates with seasonal temperature changes [Boyer et al., 1999].
The concentrations of O2 and CO2 are further influenced by physical processes including bubble injection
[Woolf and Thorpe, 1991], and mixing of deep, often oxygen deplete and CO2 replete waters into the mixed
layer with associated increased nutrient concentrations stimulating biological production. Heterotrophic
oxidation (respiration) leads to the production of dissolved inorganic carbon (DIC), whereas autotrophy
(photosynthesis) leads to a reduction of DIC [Falkowski, 1998]. Improved measurements of respiration and
photosynthesis and the processes that determine their variability will aid our prediction of their responses
to natural and anthropogenic forcings [Najjar and Keeling, 2000; Lee, 2001].

Net community production (NCP) (in the sense of Williams [1993]) indicates the balance between
production of organic carbon by autotrophs (P) and production of CO2 by heterotrophs (R) at the time scale
and space scale of the measurement technique used [Serret et al., 2009]. The metabolic state of a system can
be defined by NCP (= P − R), with autotrophic systems occurring when gross primary production is greater
than respiration and heterotrophic systems occurring when respiration is greater than primary production
[Ducklow and Doney, 2013].

Our study region in the North Atlantic lies between 14◦N and 50◦N. It is an important sink for atmospheric
CO2, with the net air-sea flux of CO2 estimated at approximately −0.22 pg C yr−1 (negative value
representing marine uptake from the atmosphere), representing 13% of the global contemporary carbon
sink [Gruber et al., 2009; Takahashi, 2009; Schuster et al., 2013]. The CO2 sink in the North Atlantic is
maintained by year-round cooling and northward transport of waters to the Arctic. It is further accentuated
by phytoplankton blooms that primarily occur within the subpolar gyre during spring [Watson et al., 2009].
The North Atlantic Ocean includes regions associated with high uptake of CO2 and productivity [Schuster
et al., 2013], poleward of 40◦N [Takahashi and Sutherland, 2002], as well as oligotrophic regions associated
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with low productivity [Ducklow et al., 1995], such as the North Atlantic subtropical gyre. Determining the
metabolic state of such regions is of key importance to determine the temporal and spatial variability in the
uptake of carbon in the North Atlantic.

The North Atlantic has been sampled through repeat transects such as the Atlantic Meridional Transect and
mooring sites such as the Bermuda Atlantic Time-series Study (BATS) and the European Station for Time
Series in the Ocean (ESTOC) [Robinson et al., 2006; Emerson and Stump, 2010; Cianca et al., 2013]. However,
there continue to be biases in the spatial and temporal coverage of data, such that oligotrophic waters
are under sampled compared to shelf regions, particularly in the tropical southwestern side of the North
Atlantic, and full seasonal trends are rarely recorded [del Giorgio and Williams, 2005; Serret et al., 2006; Quay
et al., 2010]. Although there are a number of techniques available to derive NCP from in situ data, many
of the methods are expensive and time consuming and many of the processes involved, such as those
that influence gas exchange, are not yet fully constrained [Lefèvre and Merlivat, 2012; Emerson and Stump,
2010]. This has led to the continued debate surrounding the metabolic state of oligotrophic regions derived
from in situ and in vitro measurements, with in vitro estimates of NCP often suggesting heterotrophy while
in situ estimates consistently report autotrophy [Williams et al., 2013]. These challenges mean that there
are few regions in the global ocean where the current NCP rates are known [Quay et al., 2010]. The aim
of this study is to develop a method for estimating NCP using automated high-frequency measurements
of surface water oxygen concentration collected on a Volunteer Observing Ship (VOS). We present in situ
seasonal estimates of NCP between December 2011 and March 2013 within five biogeochemical regions
in the North Atlantic. Our calculation of NCP involves a simple quasi-1-D box model to estimate abiotic
processes that may influence oxygen concentration [Emerson and Stump, 2010; Emerson, 1987] in order to
determine the biologically driven oxygen change with time. These results are compared with published in
situ estimates of NCP derived from oxygen measurements and an alternative technique for the calculation
of NCP, which utilizes the seasonal change in dissolved inorganic carbon (DIC) [Bates et al., 2005]. This study
demonstrates that well-constrained NCP estimates can be achieved through VOS campaigns, opening the
way for expanded coverage of empirical NCP estimates for the global ocean.

2. Methods
2.1. Automated Sampling
Using a VOS as an oceanic measuring platform is highly efficient in terms of cost and spatial and temporal
coverage. However, VOSs that are commercial ships are limiting in terms of laboratory space and have no
scientific personnel on board, which means that they often depend on automated sampling systems. There
are a number of methods for measuring the oxygen budget, yet many of these methods are labor intensive
and costly, such as the use of Ar/O2 ratios. Although not globally applicable due to regional variability in
horizontal temperature gradients that can influence the solubility of oxygen, preliminary data collected
in the Western English Channel suggest little difference between estimates of NCP derived from
measurements of Ar/O2 and those derived from optode measurements of dissolved oxygen [Gloël, 2012].
Several VOS routes are equipped with optodes to continuously measure surface water dissolved oxygen,
but to our knowledge, these data have not yet been used to derive estimates of NCP. The VOS (MV Benguela
Stream) used in this study operates between Portsmouth (UK) and the Caribbean Islands completing one
return voyage every 28 days.

A dual oxygen/temperature sensor (Aanderaa optode, model 3835), a conductivity sensor (Aanderaa, model
3919), and a temperature sensor (Aanderaa, model 3210) are permanently installed on the MV Benguela
Stream using the setup described by Schuster and Watson [2007]. The optode measures dissolved oxygen
concentration based on the principle of dynamic luminescent quenching. Ambient oxygen acts as the
quenching agent, and depending on the intensity and duration of red luminescence emitted after being
excited by a blue-green light, the absolute oxygen concentration can be determined [Aanderaa Data
Instruments, 2007] (see Körtzinger et al. [2005] for further details). Data are recorded every minute onto
an instrument computer. After each voyage the raw data are returned to shore where they undergo
quality control.

The in situ temperature and conductivity sensors are calibrated annually by the manufacturer and
additionally monthly using a three-point temperature calibration and discrete seawater salinity samples.
Calibration of oxygen measurements are described below. All raw data are recorded with concurrent
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latitude, longitude, and UTC (Universal Time Coordinated) by a GPS (Global Positioning System) integrated
into the instrument.

2.2. Discrete Sampling
Water samples were collected by scientific personnel on voyages in April/May 2012, June/July 2012,
September/October 2012, and January/February 2013.

The ship’s seawater intake is at 3–5 m below the sea surface depending on cargo loading [Schuster and
Watson, 2007]. The seawater passes through a coarse strainer (1 mm) before entering the instruments and
a T-piece. Surface seawater for chemical analysis was collected from this T-piece at the ship’s sea chest using
hydrostatic flow, minimizing any temperature fluctuations from the surrounding environment [Cooper et al.,
1998]. TygonⓇ tubing is connected to the T-piece in order to carefully control the flow of water into the
sample bottle and check for bubbles within the tubing. Temperature (T) and conductivity of the seawater
were recorded at the time of sampling. Samples were collected for dissolved oxygen, total dissolved
inorganic carbon (DIC), total alkalinity (TA), salinity, nitrate, silicate, and phosphate. Dissolved oxygen,
DIC, and TA samples were collected every 2 h during daylight hours. Nutrient and salinity samples were
collected every 4 and 12 h, respectively. These latter samples were analyzed at the National Oceanography
Centre Southampton, using a SEAL AutoAnalyzer [Grasshoff et al., 1999] and a Guildline Autosal salinometer
(8400B), respectively.

2.3. Winkler Analysis and Sample Storage
Dissolved oxygen samples were fixed on board using standard procedures [Grasshoff et al., 1999] and
stored underwater until analysis onshore. This method of storage has been found to give 100% recovery of
dissolved oxygen concentration over a period of 4 months [Zhang et al., 2002]. Samples were only collected
on the return crossing of each voyage; therefore, the longest a sample was stored before being analyzed
was 12 days. A preliminary 36 day longevity experiment showed that this storage procedure had a minimal
effect on the measured oxygen concentration (< 0.01 mmol m−3). Dissolved oxygen concentration was
determined by Winkler titration [Williams and Jenkinson, 1982; Winkler, 1888]. Depending on sampling
technique and titration method, the typical precision of Winkler titrations during fieldwork is 0.015–0.7%
[del Giorgio and Williams, 2005]. The sodium thiosulphate titrant was calibrated with potassium iodate
(Wako Pure Chemical Industries, Ltd., Osaka, Japan) to a precision of < 0.1%.

2.4. DIC and TA Analysis
The DIC and TA samples were fixed on board following standard methodology outlined in Dickson et al.
[2007] and analyzed once back in the laboratory using the VINDTA 3C (Versatile INstrument for the
Determination of Total inorganic carbon and titration Alkalinity), which combines the titration of acid to
determine TA and a coulometric method for the measurement of DIC [Mintrop, 2011]. Routine calibration
using certified reference material (CRM) (provided by A. G. Dickson, Scripps Institution of Oceanography)
and corrections for silicate and phosphate enabled a precision of 1.46 mmol m−3 for TA and 2.55 mmol m−3

for DIC, calculated from the standard deviation between CRMs [Dickson et al., 2007].

2.5. Data Processing and Optode Calibration
The salinity measurements derived from the conductivity probe were calibrated with measurements of
salinity made with the salinometer on discrete seawater samples. The oxygen concentration derived from
the optode could then be corrected to in situ salinity using equations provided in the Aanderaa operating
manual [Aanderaa Data Instruments, 2007]. These optode-derived oxygen concentrations were calibrated
with the Winkler titration data.

Winkler oxygen data were plotted against colocated 1 min averaged optode values, and Chauvenet’s
criterion [Glover et al., 2005] was applied to remove outliers. Only one data point was removed using this
method. A standard model 1 linear regression was used to determine the calibration factors with an R2 value
of 0.94 (n = 99); see Figure 1 [Sokal and Rohlf, 1995].

This optode calibration (see Figure 1) was applied to all of the optode measurements made during the
study period, as it was found to be consistent, and avoids any seasonal bias that may be introduced using
cruise-specific regressions. The error of this calibration was calculated as the RMSE (root-mean-square error)
of the difference between the measured Winkler oxygen and the oxygen predicted by the regression (RMSE
residuals = 4.3 mmol m−3, percentage error of the mean = 1.7%).
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Figure 1. Property-property plot of Winkler-derived oxygen concentration
against optode-derived oxygen concentration (filled black circles) showing
the standard model 1 linear regression line (red line), correction equation
for optode oxygen, and its R2. A single outlier was identified (filled red
circle) and excluded from the oxygen calibration.

During February 2012 there were
sporadic temperature shifts during
sections of the voyage that affected
the oxygen concentration recorded
by the optode. This was attributed
to a technical fault, and these data
were removed during the quality
control process.

The uncertainty of our oxygen
measurements was calculated using a
combination of the percentage error
from the RMSE of the residuals (1.7%),
an estimate of the error associated
with the underway sampling method
(1%), and the precision determined
with the standard iodate solution
(0.1%), which gives a total error of
±2.8%.

2.6. Biogeochemical Regions
The study area was divided into
biogeochemical regions in order
to assess the spatial variability in

NCP in the midlatitude North Atlantic under different biogeochemical regimes. The method used for the
division of these regions is similar to that of Hooker et al. [2000], whereby the second derivative of in situ T ,
in situ density, and satellite-derived natural logarithm of chlorophyll a (Chl a) (Moderate Resolution Imaging
Spectroradiometer (MODIS) Aqua level 3 standard chlorophyll product, http://oceandata.sci.gsfc.nasa.gov)
[Sharqawy, 2010] were calculated along the ship tracks. The second derivatives for each parameter were
normalized to ensure equal weighting and then averaged. Peaks in these averaged second derivatives iden-
tified the latitudinal boundaries between each biogeochemical region (see Figure 2). This method was
chosen in preference to using static ecologically defined provinces such as Longhurst [2006], because this
allows the dynamics of the boundaries to shift from year to year defined by in situ and satellite observations.

This method identified four peaks, thereby dividing the study area into five biogeochemical regions, labeled
1 to 5 from north to south (see Figure 2). These dynamic biogeochemical regions were used throughout

Figure 2. Map of the midlatitude North Atlantic, divided into five biogeochemical regions. The dynamic latitudinal
boundaries of which are defined by peaks in the second derivative of T , density, and Chl a. The overlapping ship tracks
of 16 voyages between December 2011 and March 2013 are shown.
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the study as they avoid calculating NCP across different water masses as the ship moved and biases associ-
ated with the changing latitude of the ships tracks. These biogeochemical regions are in broad agreement
with ecologically defined provinces within the North Atlantic [Longhurst, 2006; Hooker et al., 2000], with
regions 1 to 5 aligning approximately with the Longhurst [2006] biogeochemical provinces NECS (Northeast
Atlantic Coastal Shelves), NECS/NADR (North Atlantic Drift), NADR/NASE (North Atlantic Subtropical East),
NASW (North Atlantic Subtropical West), and NASW/NATR (North Atlantic Tropical), respectively.

2.7. Calculation of NCPO2

Net community production was derived from the change in the inventory of oxygen in the surface ocean
with time [Emerson, 1987; Emerson and Stump, 2010] (NCPO2

, mmol O2 m−2 d−1). The corrected con-
tinuous surface measurements collected between December 2011 and March 2013 were divided into
biogeochemical regions (see Figure 2), and monthly means for each region were calculated for calibrated
dissolved oxygen, temperature, and salinity.

NCPO2
was calculated as the biological component (ΔO2Bio, mmol m−3) of the total change in oxygen

concentration within the mixed layer (h, m) over the period between monthly observations (Δt, days).

NCPO2
= h

ΔO2Bio

Δt
(1)

ΔO2Bio was determined from the difference between the observed changes in dissolved oxygen (ΔO2Obs,
mmol m−3) and those predicted from abiotic (ΔO2Abio, mmol m−3) processes (i.e., solubility, gas exchange,
and changes in the mixed layer depth) on a monthly basis.

ΔO2Bio = ΔO2Obs − ΔO2Abio (2)

Where ΔO2Bio, ΔO2Obs, and ΔO2Abio are in units of mmol m−3.

ΔO2Abio is calculated using the ordinary differential equation solver 45 in MATLAB [Glover et al., 2005].
Temperature (T, ◦C) and mixed layer depth (MLD) (h, m) are assumed to vary linearly over the integration
period. Monthly mean MLD was calculated for each region using ECCO2 daily 0.25◦ MLD [Menemenlis
et al., 2008]. Wind speed (U, m s−1) was applied as a time-variable input obtained from European Cen-
tre for Medium-Range Weather Forecasts 6-hourly 0.75◦ 10 m wind speed [Uppala et al., 2005]. Monthly
below-thermocline oxygen concentrations (O2Deep, mmol m−3) were derived from the World Ocean Atlas
2009 climatology [Garcia et al., 2010] by taking the mean oxygen concentration from 0 to 25 m below the
MLD within each region. O2Deep remains constant within each NCP integration period. The predicted
abiotic oxygen concentration change was computed as the sum of entrainment (E) and the flux of oxygen
between the atmosphere and the ocean (FO2) over the mixed layer (h) on a daily time step within the
solver (dt).

ΔO2Abio = ∫
Δt

0

(E + FO2)
h

× dt (3)

Therefore, ΔO2Abio is the predicted physical change in oxygen concentration over the period between
monthly observations, due to E and FO2. This method can be described as a quasi-1-D (vertical) box model
applied over monthly integrations in each of the biogeochemical regions.
2.7.1. Entrainment
When the mixed layer deepens over time, the oxygen concentration will change due to mixing between
surface and deep waters. When the mixed layer shoaled, we assumed that this did not cause a change in
oxygen concentration. E is calculated as described in equation (4).

if
dh
dt

> 0; E = dh
dt

× (O2Deep − O2) (4)

Where O2 is the oxygen concentration at the beginning of each solver time step.
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2.7.2. O2 Exchange With the Atmosphere
FO2 is calculated following Woolf and Thorpe [1991], where the standard thin film model of gas exchange
is combined with a term to account for the transient supersaturation due to bubble injection. The transfer
velocity, kO2, and the concentration terms are expressed in terms of a concentration gradient on the water
side of the interface:

FO2 = kO2 × ((O2Sol × BO2) − O2) (5)

Where O2Sol, mmol m−3 is the oxygen solubility (or saturation) concentration (i.e., the seawater
concentration that would be in equilibrium with an assumed atmospheric concentration of 0.2095
atmospheres of oxygen) calculated using the MATLAB function O2sol.m (Copyright©2010, eMarine
Information Infrastructure (eMII) and Integrated Marine Observing System (IMOS). All rights reserved.). This
function utilizes the equations outlined in Garćıa and Gordon [1992], which are based on values obtained
from Benson and Krause [1984]. O2Sol was determined using in situ temperature and salinity measured at
the same time, geographic location, and depth as the optode measurement. BO2 is the functional increase
in saturation due to bubble injection [Woolf and Thorpe, 1991]. More recent bubble parameterizations
based on models and observations exist but deviate from one another at high wind speeds (> 10 m s−1)
[Stanley et al., 2009; Liang et al., 2013]. The NCP estimates were found to be relatively insensitive to the
supersaturation bubble term, so the empirically derived model of Woolf and Thorpe [1991] was deemed
most appropriate.

BO2 = 1 + 0.01 × ( U
UO

)2 (6)

Where UO is the wind speed at which the oxygen saturation is supersaturated at 101%; this is a constant
given as 9 m s−1 [Woolf and Thorpe, 1991]. The wind speeds used for equation (6) were the average wind
speed within each biogeochemical region for the 6 h period preceding each solver time step to account for
the instantaneous effect of varied wind speeds on bubbles.

Waterside transfer velocity, kO2, was calculated using Wanninkhof et al. [2009] which represents the different
wind speed regimes as polynomial equations, from purely diffusive flux through linear (smooth surface),
quadratic (rough surface), and cubic (bubble-mediated) regimes.

kO2 = 0.24 × ((3 + 0.1U + 0.064U2 + 0.011U3) × (
ScO2

660
)−0.5) (7)

Where kO2 is in m d−1, U is the daily averaged wind speed in m s−1, and ScO2 is the temperature-dependent
Schmidt number of oxygen [Keeling and Stephens, 1998]:

ScO2 = 1638 − 81.83T + 1.483T 2 − 0.008004T 3 (8)

Due to variable 6-hourly winds within the solver time steps, square and cubic means were calculated prior
to daily averaging to avoid issues with nonlinearity [Wanninkhof et al., 2009].

2.8. Calculation of NCPDIC

Net community production can also be derived from seasonal changes in the concentration of DIC (NCPDIC,
mmol C m−2 d−1) within the surface layer [Williams, 1993; Bates et al., 2005; Mathis et al., 2010]. This method
assumes that changes in DIC caused by processes other than NCP (e.g., air-sea CO2 gas exchange, advection,
precipitation, evaporation, formation and dissolution of calcium carbonate, riverine inputs, vertical diffusion,
and entrainment) can either be accounted for or are assumed to be negligible [Bates et al., 2005].

The influence of advection was estimated from the regional change in TA between seasons. TA is not
affected significantly by photosynthesis and respiration; therefore, a change in TA is likely caused by
advection and/or entrainment. As there were only small changes in observed TA between seasons
(mean change < 0.1 mmol m−3 d−1), we assumed that the effect of advection on the seasonal change in DIC
was negligible [Lefèvre and Merlivat, 2012].

To remove the impact of changes in local precipitation and evaporation [Bates et al., 2005], DIC was
normalized to a salinity of 35 (nDIC), resulting in a mean decrease in DIC of 69 mmol m−3.
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Table 1. Error Associated With Each Input Variable Used to Calculate NCPO2 and NCPDIC

Variable Error Reference/Method

O2Obs ±2.8% Combination of RMSE of residuals (1.7%), underway sampling

method (1%), and method accuracy from the iodate standard (0.1%)

O2Deep ±4.4661 (mmol m−3) 0.1 (mL L−1) Standard error of the mean [Garcia et al., 2010]

Salinity (S) ±0.05 Calculated from temperature and conductivity, calibrated

using discrete salinity samples

Temperature (T) ±0.03 (◦C) Aanderaa 3210 sensor accuracy

MLD (h) ±30% von Allmen et al. [2009]

Wind Speed (u) ±1.1 (m s−1) Stoffelen [1996]

kO2 ±30% M. Johnson [2010]

DIC ±2.55 (mmol m−3) Mean standard deviation of CRM DIC

TA ±1.46 (mmol m−3) Mean standard deviation of CRM TA

NO3 ±0.1 (mmol m−3) SEAL Auto Analyzer accuracy from international standards

Riverine input is likely to only affect those regions that are closest to the coast, i.e., region 1; insufficient data
were available to calculate NCPDIC in this region, and riverine input can be assumed to be negligible for the
other regions.

To account for the formation and dissolution of calcium carbonate, a correction factor was used, of half the
temporal change in TA, after adjusting this for the temporal change in NO3 [Lee, 2001; Mathis et al., 2010]:

Corr = (TAt1 − TAt2)
Δt

+
(NOt1

3 − NOt2
3 )

Δt
× 0.5 (9)

Where (TAt1 − TAt2∕Δt) is the seasonal change of TA between time 1 (t1) and time 2 (t2), (NOt1
3 − NOt2

3 ∕Δt) is
the seasonal change in NO3 for the same time period, and Δt is the number of days between t1 and t2.

NCPDIC was determined for each of the five biogeochemical regions as the change in nDIC over time across
the mixed layer (h, m), corrected for the formation and dissolution of calcium carbonate:

NCPDIC = h
(nDICt1 − nDICt2)

Δt
− Corr (10)

Where (nDICt1 − nDICt2∕Δt) is the seasonal change in nDIC. We chose the spring for t1 and the autumn for
t2; the autumn values were chosen rather than the summer values because there was little to no change in
nDIC between the spring and the summer.

2.9. Photosynthetic Quotient
The photosynthetic quotient (PQ) was calculated as the ratio between the two independent estimations
of NCP:

PQ =
NCPO2

NCPDIC
(11)

2.10. Uncertainty
The RMSE was calculated for each of the input variables in each of the regions using a Monte Carlo approach
(see Table 1 for individual errors) [Quay et al., 2010].

The RMSE was first calculated separately for errors above and below the mean NCP as variables contributed
differently and then combined using the root sum square error to give the variance from the mean NCP
over a period of time (i.e., seasonal error and annual error). The errors are different in each region due to the
varying geographical impacts of the input variables. For example, region 3 had the largest error
associated with its seasonal and annual NCPO2

values due to the sharp change in oxygen saturation
that occurred between January and February in 2012 (see Figure 3).

To account for the error and potential bias of excluding CO2 exchange in our NCPDIC calculation, we have
estimated the likely CO2 flux between spring and autumn for each region using a neural network-based

OSTLE ET AL. ©2014. The Authors. 7
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Figure 3. Monthly mean NCPO2
, Chl a, and oxygen saturation over time in each of the five biogeochemical regions (see Figure 2). Monthly NCPO2

data were
calculated using equations (1)–(8) and are shown as colored bars with error bars indicating the uncertainty ((mmol O2 m−3 d−1), left axis); monthly Chl a data are
shown as green filled circles and dashed line ((mg m−3), left axis); and oxygen saturation are represented by the black closed circles and line ((%), right axis). The
grey area is the period from which the summer mean NCPO2

was estimated.
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Table 2. Error Associated With the Air-Sea Flux of CO2
a

CO2 Flux IAV CO2 Fluxb MLD Error From Carbon Uptake Error From IAV

Region (mmol m−2 d−1) (mmol m−2 d−1) (m) (%) (%)

1 4.66 0.88 25.16 NAc NAc

2 4.96 0.77 50.80 30.72 4.83

3 3.75 0.36 49.19 21.50 1.98

4 0.79 0.66 64.30 4.01 3.33

5 0.03 0.36 44.01 0.39 6.08

aAverage CO2 flux estimates from April to October are derived from Landschützer et al. [2014], and
mixed layer depths are derived from Menemenlis et al. [2008].

bCalculated as 1 standard deviation of the interannual variability (IAV) in CO2 flux.
cInsufficient DIC and TA data were available in spring 2012 within this region; therefore, a NCPDIC esti-

mate was not calculated; hence, no error estimate. NA = not available.

monthly climatology (from the years 1998–2011) of the ocean carbon sink [Landschützer et al., 2014]. We
cannot assume the same fast equilibration times for carbon as we do for oxygen; hence, we account for
the exchange of CO2 as a result of the disequilibrium between the atmosphere and surface ocean CO2

partial pressures by incorporating the CO2 flux into our uncertainty. Ocean carbon uptake was calculated
per unit volume by dividing the air-sea CO2 flux by the mean summer ECCO2 MLD [Menemenlis et al., 2008]
within each region. As these regions are normally sinks for CO2 during this time of year, this introduces a
negative bias into our NCPDIC estimates (i.e., unaccounted for CO2 influx to the surface ocean leads to an
underestimation in biological CO2 uptake; see Table 2). As there are no estimates of CO2 flux from
Landschützer et al. [2014] for the study year, to estimate the possible effect of 2012 being an atypical year,
we considered the interannual variability (IAV) in annual CO2 flux in the climatology (taken as 1 standard
deviation) for each region (Table 2) and included this in our error estimation. Negative error bars are thus the
sum of measurement uncertainty and any net negative excursion of the uncertainty from the climatological
mean CO2 flux (i.e., representing a possible net release of CO2 into the atmosphere over the period of
NCPDIC calculation. Negative uncertainty from the climatological mean only exceeds measurement uncer-
tainty in region 5 where the percentage error from interannual variability is greater than the climatological
CO2 flux; see Table 2.). Positive error bars are the sum of measurement uncertainty and any net positive
flux, i.e., a net sink of CO2 from the atmosphere into the surface mixed layer over the period of
NCPDIC calculation.

2.11. Assumptions and Limitations
Due to lack of DIC measurements and the different residence times of oxygen and carbon dioxide
[Sarmiento and Gruber, 2006], the calculation of NCPDIC is more simplistic than that of NCPO2

and the
uncertainties associated with the calculation are therefore less easy to estimate; see section 2.10. Our
calculation of NCPDIC does not take into account the additions of DIC through gas exchange, vertical
diffusion, and entrainment. These generally increase as the season progresses, which can lead to an
underestimation in NCPDIC [Mathis et al., 2010]. This was suggested by our estimations of the carbon uptake,
as all five regions were found to be net sinks of CO2 over the summer period, thus increasing the positive
error on our NCPDIC estimates (Table 2).

Horizontal advection and vertical diffusion (diapycnal and isopycnal) were necessarily neglected in our
calculations due to the lack of available measurements. However, as these have been shown to have
a relatively small influence on oxygen concentration due to the rapid equilibration of oxygen with the
atmosphere, this is unlikely to be a significant omission [Emerson et al., 2008; Lefèvre and Merlivat, 2012].
Entrainment was not incorporated into the NCPDIC calculation as no observational depth distribution DIC
data were found within 1◦ latitude × 1◦ longitude during the same month (independent of the sample year)
of the sampling routes. Until more data of DIC depth distributions become available (such as in the updated
Global Ocean Data Analysis Project [Key et al., 2004] data set, whose release is imminent), such analysis will
be difficult or impossible in many regions of the global ocean. Lee [2001] estimates that in the North Atlantic
(between 40◦N and 70◦N) and the mid-Atlantic (40◦N and 40◦S) about 2.8% and 11.9% (respectively) of
the estimate of NCP from the summer change in DIC are accounted for by diffusive carbon flux. However,
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Figure 4. Summer mean NCPO2
, and NCPDIC, in each of the five biogeochemical regions (see Figure 2) between spring

and autumn 2012. The darker-colored striped bars represent the NCPDIC, and the lighter-colored solid bars represent
the NCPO2

, and the error bars indicate uncertainties identified for each. Note that in region 1, insufficient data could be
collected for NCPDIC in spring 2012 and that there is a negative bias in the NCPDIC estimates associated with CO2 flux
(see section 2.10).

as there was no significant change in TA throughout the summer sampling period, this suggests that DIC
had not been entrained from below the mixed layer [Lefèvre and Merlivat, 2012], and vertical diffusion and
horizontal transport are likely to have only contributed in a minor way [Gruber et al., 2002].

Entrainment was incorporated into the NCPO2
calculations by using climatological oxygen depth

distributions and a mixed layer reanalysis. The large error associated with these products (see Table 1)
significantly influences the error on our NCPO2

estimates. This influence is increased when calculating NCP
per unit area rather than per unit volume due to the high error associated with the multiplication across
the mixed layer depth (equations (1) and (10)). We estimate that the average error on our annual estimate
of NCPO2

(mmol m−2 d−1) is increased by 15.75% due to the uncertainty on the entrainment terms. As we
only have surface measurements, we cannot constrain potential systematic bias in the data products and
climatology used; however, we assume that any possible bias is incorporated in the large uncertainty
associated with these products.

3. Results
3.1. Seasonal Cycle of NCPO2

Monthly mean NCPO2
was calculated for each month between December 2011 and March 2013 for each

biogeochemical region shown in Figure 2, from the daily time step quasi-1-D model and the calculations
described above (see equations (1)–(8)), and is shown in Figure 3 together with mean monthly Chl a data
(obtained from Aqua-MODIS at a resolution of 9 km and frequency of 1 month, http://oceandata.sci.gsfc.
nasa.gov) and oxygen saturation.

Surface dissolved oxygen remains supersaturated for most of the sampling period. A distinct decrease in
oxygen saturation occurs in February 2012 in regions 3 and 4, followed by supersaturation in March 2012.
This change in saturation state occurs at the time of rapid shoaling of the mixed layer depth, which is often
associated with the onset of primary production [Sverdrup, 1953]. Unfortunately, during this time there were
sporadic electrical faults within the sampling setup. As a result, data are missing from regions 1, 2, and 5 for
these months; however, the same trend can be seen in all five regions between February and March 2013,
with the saturation state becoming undersaturated in March. This suggests that a similar trend may have
been present in the months where data are missing. Throughout the rest of the time series, the oxygen
saturation is mostly supersaturated within each region, except for times of undersaturation that occur within
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Table 3. Comparison of NCP and PQ Estimates

NCPDIC NCPO2
(Summer) Annual NCPO2

Annual NCPO2

Region (mmol C m−3 d−1) (mmol O2 m−3 d−1) PQ Value (mmol O2 m−3 d−1)a (mmol O2 m−2 d−1)a

1 NAb 0.15 ± 0.075c NAb 0.18 ± 0.010c 7.1 ± 5.5c

2 0.32 ± 0.12c 0.25 ± 0.076c 0.80 ± 0.39d 0.26 ± 0.094c 12 ± 6.9c

3 0.36 ± 0.091c 0.31 ± 0.077c 0.85 ± 0.35d 0.27 ± 0.10c 9.5 ± 9.4c

4 0.31 ± 0.029c 0.24 ± 0.079c 0.78 ± 0.31d 0.22 ± 0.10c 10 ± 6.8c

5 0.13 ± 0.012c 0.18 ± 0.071c 1.4 ± 0.62d 0.21 ± 0.083c 8.7 ± 3.9c

aEstimating NCP per unit area introduces increased error associated with the MLD (section 2.11); both units have
been presented here for ease of comparison with previous studies.

bInsufficient DIC and TA data were available in spring 2012 within this region, so neither NCPDIC nor a PQ could be
calculated. NA = not available.

cAlthough an error for above and below the mean NCPDIC and NCPO2
was calculated, the largest of these two errors

is shown here.
dThe PQ uncertainty was calculated using the minimum and maximum values within the error distribution of both

NCPDIC and NCPO2
, and the largest of these two errors is shown here.

region 1 in May and October 2012 and in region 2 in May 2012 and January 2013. As expected, the seasonal
cycle of NCPO2 generally follows the seasonal cycle of oxygen saturation.

3.2. Summer Mean and Annual Mean NCP
The summer mean NCPO2

for each region were calculated as the mean NCPO2
between spring and autumn

2012 and are presented in Figure 4 together with the NCPDIC (calculated between spring and autumn 2012;
see section 2.8). There are insufficient DIC and TA data for region 1 during spring of 2012, so NCPDIC for
region 1 could not be calculated. The photosynthetic quotient (see equation (11)) was calculated for each
region where both NCPDIC and NCPO2

were available. These data are presented in Table 3.

The summer means of NCPO2
and NCPDIC are not significantly different in all four regions where both esti-

mates were calculated (Figure 4) and follow the same regional trend with region 3 having the highest NCP
and regions 1 and 5 the lowest. As the error bars on the NCP estimates do not account for all of the assump-
tions of the calculations (see section 2.10 and 2.11), we can assume that the NCP estimates using the two
different techniques in all four regions are not significantly different.

The annual NCPO2
for each region was determined as the mean NCPO2

of all 12 months in 2012. These data
are compared with annual NCPO2

estimates from similar geochemical studies in Figure 6.

4. Discussion
4.1. Seasonality of NCPO2

Our results show that autotrophy dominates our study area, including the western tropical and subtropical
regions, with only 5 months between December 2011 and March 2013 showing negative NCPO2. This is in
line with published NCP rates derived from in situ measurements, such as the study of Neuer et al. [2007]
which found that at ESTOC between 1994 and 2000 monthly NCP values were always autotrophic. However,
this contrasts with NCP estimates derived from in vitro measurements within tropical regions of the North
Atlantic which are generally heterotrophic [Williams et al., 2013].

Region 1 has the highest concentration of Chl a with peaks occurring in March, May, August, and Decem-
ber 2012. This seasonal cycle of Chl a in region 1 is observable in the oxygen saturation and in NCPO2, with
NCPO2 peaking between May and June as well as between November and December of 2012. The monthly
range in magnitude of NCPO2 decreases from region 1 to region 5 in line with a decrease in Chl a concen-
trations. Regions 4 and 5 are oligotrophic, associated with low nutrient conditions and the dominance of
smaller-sized phytoplankton [Ducklow et al., 1995].

Figure 5 shows for each of our five biogeochemical regions the relative contributions of various processes
involved in the calculation of NCPO2 (specifically, equations (2) and (3)) and how this contribution varies
between regions. The seasonal pattern in gas exchange is shown in Figure 5b with sea surface outgassing
of oxygen during the summer months when the mixed layer is supersaturated with oxygen and influx of
oxygen into the mixed layer when it is undersaturated with oxygen in the winter months. This change
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Figure 5. (a) The month-to-month change in the observed oxygen concentration (ΔO2Obs, dark blue bars) along with the modeled abiotic and biotic
contributions (ΔO2Abio (red bars) and ΔO2Bio (green bars), all in mmol m−3, left axis) and the monthly oxygen concentration (O2Obs, (mmol m−3), turquoise
circles, right axis) from December 2011 to March 2013 in each of the five biogeographical regions. (b) The oxygen flux ((mmol m−3 d−1), left axis) associated
with entrainment (E/h, pink bars), gas exchange (FO2/h, cyan bars), and ΔO2Abio/Δt (blue bars) between months, and the monthly negative MLD (−h, (m),
black circles, right axis) from December 2011 to March 2013 in each of the five biogeographical regions.

from outflux to influx of oxygen occurs after July when the wind speed starts to increase and the oxygen
saturation decreases. The gas exchange term generally varies in the opposite sense to the entrainment
term, as the increased deepening of the mixed layer depth during the winter months causes the decrease in
oxygen concentration within the mixed layer as oxygen depleted waters are entrained, while the gas
exchange causes an increased oxygen concentration as the undersaturated waters are taking up oxygen
from the atmosphere (Figure 5b). During most of the sampling period the oxygen concentration below the
thermocline is lower than that within the mixed layer. However, during May in region 1 and briefly in July
in region 4, the oxygen concentration is higher below the thermocline than within the mixed layer. These
subthermocline higher concentrations of oxygen are likely due to production of O2 by phytoplankton below
the mixed layer which cannot then escape to the atmosphere [Emerson et al., 2008]. The entrainment term
has the largest influence in region 2 (see Figure 5b) and less of an impact in regions 1 and 5 where the mixed
layer depth is shallower and there is less of a change in the mixed layer depth during the sampling period.
The oxygen concentration (O2Obs) increases from region 5 to region 1 (Figure 5a), a geographical pattern
that is strongly linked to decreased solubility with increasing temperatures toward the tropics [Garcia and
Keeling, 2001]. The latitudinal pattern in the biological oxygen flux (ΔO2Bio) shows highest values in region
3, decreasing toward regions 1 and 5.

4.2. Comparison of Two Independent NCP Estimates
The PQs for each region are given in Table 3 along with the regional mean annual NCPO2

for 2012. The
Redfield ratio of O2:DIC (138:106) is 1.3 [Redfield, 1963]; however, Laws [1991] suggests using PQ values of
1.4 and 1.1 for new and recycled production, respectively. Our PQ values range from 0.78 ± 0.31 in region
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Figure 6. Mean annual NCP and their uncertainties in different biogeochemical regions in the midlatitude North
Atlantic. Shown are annual mean NCPO2

in each of the five biogeochemical regions obtained in this study (colored
bars; see Figure 2), along with previously published mean annual NCP estimates from the North Atlantic (grey bars)
[Longhurst, 2006].

4 to 1.4 ± 0.62 in region 5. Lefèvre and Merlivat [2012] measured NCP using carbon and oxygen at the
Prediction and Research Moored Array in the Tropical Atlantic site and also found that NCP derived from
dissolved oxygen concentrations was lower than that predicted from NCPDIC and a PQ of 1.4. Published PQ
values range from 0.77 ± 0.28 to 1.26 ± 0.66 [Lefèvre and Merlivat, 2012; Lefèvre et al., 2008; K. Johnson, 2010]
confirming that a constant value of 1.4 is not always applicable.

The calculation of NCPDIC using the seasonal carbon mass balance approach makes several assumptions in
that it does not take into account additions of DIC through gas exchange, vertical diffusion and entrainment,
and the influence of riverine inputs (section 2.11). Although these limitations are likely to have caused an
underestimation in NCPDIC, our relatively low PQ values suggest that this underestimation is small.

4.3. Annual Net Community Production
The summer mean NCPO2 for the months between spring and autumn is highest in region 3 and lowest
in regions 1 and 5 (see Figure 4). However, the annual mean NCPO2 is highest for region 2 and lowest for
regions 1 and 5, (see Table 3) highlighting the intraannual variability in NCPO2 within regions. It is also
important to note that our annual NCPO2 estimates integrate to the winter mixed layer depth, which varies
considerably between regions from <100 m in regions 1 and 5 to ∼150 m in regions 2, 3, and 4 (Figure 5).
Körtzinger et al. [2008] demonstrate that at the Porcupine Abyssal Plain site, which lies within region 2,
one third of the organic matter that is exported during the summer is returned to the mixed layer the
following winter due to entrainment. This could explain why the regional variability seen in the summer
mean NCP (higher NCP in regions 2, 3, and 4 than in 1 and 5 (Figure 4)) is not seen in the annual mean
NCPO2 (Figure 6).

Our estimates of annual NCPO2 range from 7.1 ± 5.5 to 12 ± 6.9 (mmol O2 m−2 d−1) and are not significantly
different from published estimates of NCP derived from geochemical oxygen budgets made in the
midlatitude North Atlantic that range from 4.4 ± 1.1 to 11 ± 10 (mmol O2 m−2 d−1) [Spitzer and Jenkins,
1989; Luz and Barkan, 2009; Quay et al., 2012]. Our study estimated an annual NCP of 12 ± 6.9 (mmol O2

m−2 d−1) for region 2, which falls within the Longhurst [2006] provinces NECS and NADR, and 9.5 ± 9.4 for
region 3, which falls within the Longhurst [2006] provinces NADR and NASE. The geographically closest
annual NCP estimate of 11 ± 10 (mmol O2 m−2 d−1) was derived from the CARINA (CARbon dioxide IN the
Atlantic Ocean) surface O2 data by Quay et al. [2012] using Ar/O2 ratios in the Longhurst [2006] provinces

OSTLE ET AL. ©2014. The Authors. 13



Global Biogeochemical Cycles 10.1002/2014GB004868

NADR/ARCT and SARC. Luz and Barkan [2009] calculated annual NCP at BATS in 2000 to 2001 using Ar/O2

ratios, and Spitzer and Jenkins [1989] derived NCP at BATS in 1985 to 1986 from surface ocean O2 mass
balance. These estimates of 4.4 ± 1.1 and 11 ± 3 (mmol O2 m−2 d−1) respectively fall within the NASW
Longhurst [2006] province. Our estimate of annual NCP in the NASW of 10 ± 6.8 (mmol O2 m−2 d−1) is
similar to that of Spitzer and Jenkins [1989], despite the suggestion of significant interannual variability in
the air-sea oxygen flux in the North Atlantic [McKinley, 2000]. Interestingly, our estimates of annual NCPO2 in
the midlatitude North Atlantic are not significantly different from geochemical estimates of NCP in the North
Pacific [Emerson et al., 1997, 2008; Quay et al., 2010].

The lack of latitudinal variability in our data agrees with the conclusions of Emerson [2014] and Emerson and
Bushinsky [2014], who showed that the latitudinal variability in in situ-derived NCP estimates is often less
than that in model-derived estimates of annual NCP. Global circulation models and satellite-derived models
(vertically generalized productivity model) [Behrenfeld and Falkowski, 1997; Najjar et al., 2007] give zonally
averaged estimates of annual NCP in the subtropics (equivalent to our region 5) that are about half of the
annual NCP in transition regions (equivalent to our regions 3 and 4) [Emerson, 2014]. Further in situ measure-
ments are therefore required to determine the latitudinal and interannual variability in NCP and investigate
the processes or assumptions that may cause in situ and model estimates of NCP to differ. Emerson and
Bushinsky [2014] and Körtzinger et al. [2005] propose a technique using atmospheric pO2 to correct the drift
of optodes installed on Argo and other profiling floats. The next step is to design an automated and accu-
rate way of correcting for optode drift on VOSs potentially by using measurements of atmospheric pO2. This
would enable accurate automated surface oxygen measurements and hence NCP on a global scale.

5. Summary

We present the first estimates of mean annual NCP for five biogeochemical regions within the midlatitude
North Atlantic, covering approximately 4,300,000 km2. We developed a simple and cost-effective method
(in terms of personnel time and shipboard space requirements) which is therefore applicable for use on
VOSs. The method was validated through comparison with estimates of annual NCP derived from more
complex labor-intensive methods such as Ar/O2 ratios [Quay et al., 2012; Luz and Barkan, 2009] and an
independent method using measurements of DIC concentrations. We found no trend in the magnitude of
the mean annual NCP over a 35◦ range in latitude. The contrast in the latitudinal variation of NCP derived
from global circulation models and some satellite-derived models on the one hand, and NCP derived from
in situ measurements on the other hand, highlights the need for improved global coverage of in situ data
and an improved mechanistic understanding of why the two approaches differ. The method developed here
is ideally suited to provide the required global coverage of in situ NCP data.
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