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Abstract

Experiments on intertemporal consumption typically show that

people have difficulties in optimally solving this kind of problems. Pre-

vious studies have focused on contexts in which agents are faced with

risk on future income and have to plan over long horizons. We present

an experiment comparing decision making under certainty, risk and

ambiguity, over a shorter life-cycle. Results show that planning in the

ambiguity treatment is markedly different than in the risk condition

and it is characterized by a significant pattern of under-consumption.
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1 Introduction

The question of how people cope with solving dynamic optimization problems

has been often tested in economics. Several contributions in the literature,

including experimental and empirical studies, have shown how people may

have difficulties in optimally solving intertemporal consumption/saving prob-

lems1. Results have generally shown that participants fail to optimise lifetime

utility, in some cases deviating significantly from the optimal consumption

strategy (Hey and Dardanoni (1988); Ballinger et al. (2003, 2011); Carbone

and Hey (2004) as well as Brown et al. (2009)). Other contributions have

found evidence of how learning and cognitive abilities may play an important

role in improving intertemporal planning2.

Experiments on intertemporal consumption/saving problems have typ-

ically involved making decisions under risk on the distribution of income

(over the life-cycle). In all these cases, participants have knowledge of the

stochastic process determining income, no matter the specific procedure (or

mechanism) employed. In other words, participants know in advance, or

are able to easily determine the probability of receiving a specific level of

income (or income shock). Alternatively, such stochastic process could be

completely unknown to participants, who would then have to plan under

1For a review see, among others, Hall (1978), Deaton (1992), Browning and Lusardi
(1996). This studies also contribute in underlining problems of misspecification and the
necessity for better specializations of the general model, e.g. taking better account of
precautionary motives (see also Carroll (1997)) or time non separable preferences (See,
among others, Dynan (2000); Guariglia and Rossi (2002); Carrasco et al. (2005))

2For an account see Fehr and Zych (1998); Ballinger et al. (2003); Carbone and Hey
(2004); Hey (2008); Brown et al. (2009); Ballinger et al. (2011)
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ambiguity. This would entail having some prior beliefs about probabilities

and a mechanism to update them. It would not be unreasonable to think

that many people everyday are faced with consumption/saving decisions un-

der ambiguity about future income. As far as we know, there are no studies

that test experimentally people’s ability to solve this kind of problems in this

specific context.

Other studies also report on people’s difficulties in planning ahead, possi-

bly due to the length of the planning horizon (see Carbone and Hey (2004);

Hey and Panaccione (2011) or Hey and Knoll (2007, 2011)). In particular,

Ballinger et al. (2003) and Carbone and Hey (2004) include a discussion on

the estimation of the planning horizon that participants seem to actually

use to solve the inter-temporal consumption problem. They find evidence of

myopic behaviour in both cases of life-cycles of 25 (Carbone and Hey, 2004)

and 60 periods (Ballinger et al., 2003). These authors conclude that not

only people may be short-sighted relative to the optimal planning horizon,

but that there seems to be a significant variability across subjects. For this

reason we decided to run this test with a relatively short horizon. Intuitively,

shorter planning horizons might allow agents to reach the optimal solution

more easily.

The aim of this experiment is to explore how subjects solve a stochastic

optimisation problem in three different decision-making contexts: certainty,

risk and ambiguity, in the specific case of a very short life-cycle. Results

show that planning in the ambiguity treatment is markedly different than
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in the risk condition. We also find that even in presence of an (unusually)

short planning horizon, participants still seem to have difficulties in finding

the optimal solution.

The theoretical background for this study is described in Section 2. Sec-

tion 3 presents the experimental design while results are analyzed in Section

4 and discussed in Section 5.

2 Theory

Consider an agent living for a discrete number of periods (T ) and having

intertemporal preferences represented by the Discounted Utility model with

a discount rate equal to zero. In each period, she receives utility from con-

sumption; utility is assumed to have a functional form of the CARA type:

U(c) =

(
k − e−ρc

ρ

)
α,

where ”c” is consumption, α and k are scaling factors.

In the case of decision making under risk, the objective of our agent is

then to maximize the expected lifetime utility, that is3

maxEt

[
T∑
t=1

βU(ct)

]
(1)

subject to

3Having set the discount rate equal to zero, β equals 1, so the same can be expressed
by: E(U(ct) + U(ct+1) + · · ·+ U(T )).
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wt+1 = at+1 + y = (1 + r)(wt − ct) + y

where w is available wealth, a represents available assets or savings at

the beginning of period t + 1 and y is income. In each period of her life-

cycle, the agent receives either a high or a low income, with probabilities

p = q = 0.5. The rate of return is known and held fixed during the lifecycle.

Also, borrowing is not allowed, that is, wealth must always be greater or

at most equal to zero. Finally, the agent has no bequest motives, that is,

any savings are lost after the last period (T ). The problem is then to choose

the sequence of consumption (from period 1 to period T ) that maximizes (1).

The optimal strategy under risk assumes Expected Utility (EU) decision-

makers who work with the true objective probabilities. Under ambiguity,

as we have implemented it, subjects do not know the true probabilities and

therefore EU cannot be applied. There are many models of behavior under

ambiguity and we choose the simplest - that is, Subjective Expected Utility

(SEU) theory, assuming that subjective probabilities are 0.5.

The standard procedure to solve this kind of problems is to use Dynamic

Programming4. The Bellman Equation of the problem has been determined

as

Vt(wt) = U(c∗t ) + E
[
Vt+1(w

∗
t+1)
]

(2)

4See among others Deaton (1992) and Stokey et al. (1989)
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where Vt is the value function, wt represents available wealth and E is

the expectation operator5. The value function establishes a recursive rela-

tion between current and future decisions. The expectation is resolved by

considering the two possible events: low income and high income. Wealth in

period t + 1 is optimal because it is determined by the (optimal) consump-

tion choice in t. Using backward induction, the agent starts from the last

period (T ), where the optimal solution is obviously to consume all wealth,

then moves backwards period by period, choosing the optimal level of con-

sumption which maximizes the value function of that period, until the first

period is reached. This allows the determination of optimal consumption as

a function of wealth (wt) and time (t).

Some restrictions have been imposed on variables. In particular, as an-

ticipated, borrowing is not allowed (wt ≥ 0) and all variables are rounded to

the second decimal figure. For this reason, while in the case of certainty it

was possible to determine the exact solution of the problem, in the case of

risk and ambiguity a numerical solution (also using interpolation) had to be

used6.

3 Experimental Design

The experiment is composed of three treatments, denominated ”certainty”,

”risk” and ”ambiguity”. Participants were randomly assigned to each treat-

ment. The rate of interest (r) was fixed at 0.4, while income was set equal to

5Starred variables indicate optimal choices
6The optimization programs were written using Maple
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10 tokens in the certainty case and to 5 and 15 tokens in the cases of risk and

ambiguity. The probability of high or low income was equal to 0.5. The pa-

rameters of the utility function, presented in the experiment as a ”conversion

function” from tokens to money, were set as follows: ρ = 0.1; α = 0.45 and

k = 10. The experiment was run at LABSI at the University of Siena. Thirty

undergraduate students took part in three sessions, one for each treatment.

The experiment was programmed and conducted with the software z-Tree

(Fischbacher, 2007). Each session involved playing five sequences, each one

composed of five periods. In each period of a sequence subjects were asked

to decide how much to convert out of their available tokens (the sum of in-

come, previous savings and interest) knowing that any tokens not converted

would yield interest. In the risk and ambiguity treatments, in each period

income was determined by a random draw from an opaque bag containing

equal numbers of two coloured balls. In the case of risk, at the beginning

of the experiment, one participant was asked to publicly open the bag and

count the balls7. After each draw, the ball was placed back into the bag so as

to not alter the probability of future draws. Instructions also clarified that

any savings left at the end of the last period would be worthless. In order to

allow participants to check the consequences of their decisions, a calculator

was made available in each period8. At the beginning of each period and

at the end of a sequence, participants were shown a table summarizing the

consequences of their decisions reporting income, available wealth, conver-

sion, savings, interest gained and earnings (in the previous period or in the

7This was omitted in the case of ambiguity
8Participants were also provided with tables showing some examples of conversions and

of the interest mechanism.
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whole sequence, period by period). Participants could enter numbers with

up to two decimal digits for conversion. At the end of the experiment one of

the five sequences played was randomly selected for payment using a public

procedure.

4 Results and discussion

Table 1 presents a summary of the experiment showing, for each treatment,

three different types of information. In the top part of the table there is a

comparison between the theoretical maximum utility (labeled ”Opt. Ut.”)

and the average total utility achieved by participants in that treatment (along

with its standard deviation)9. Results show that all deviations are negative.

More interestingly, the second part of Table 1 shows that they are also all sta-

tistically significant, according to one–sample parametric and non-parametric

tests (t-test and signed rank test), which suggests that participants, on aver-

age, did not maximize utility. Also, deviations in the case of decision making

under ambiguity are generally slightly greater than those in other treatments.

Moreover, deviations show a similar pattern of variability across treatments:

usually higher in the first and second sequences and lower in the following

repetitions. Finally, the third part of Table 1 shows the root mean squared

deviation (RMSD) for each sequence and each treatment, in the cases of un-

conditional and conditional optimum. The main difference here is the point

of reference: while unconditional optimum represents the solution to the in-

tertemporal problem and is calculated on optimal wealth (hence assuming

9Here we refer to the ”ex–post” optimum, i.e. the optimal solution calculated after
income realizations
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optimal behaviour throughout the lifecycle), conditional optimum is com-

puted based on actual wealth, and is traditionally assumed to incorporate a

measure of improvement of behaviour10. As Table 1 shows, this index tends

to decrease across sequences, suggesting an improvement in strategy during

the experiment.

In general the presence of significant deviations from unconditional opti-

mum suggests that participants did not use the optimal strategy. Moreover

this analysis shows that subjects in the ambiguity treatment deviate more

from optimum.

4.1 Estimated planning horizon

Following Ballinger et al. (2003) and Carbone and Hey (2004) the apparent

planning horizon used by participants has been estimated, sequence by se-

quence for each treatment. Planning horizons have been estimated in two

stages. First, the optimal path for each possible planning horizon has been

calculated using the optimal consumption functions. The apparent planning

horizon was then identified as the one minimizing the mean squared deviation

from optimal consumption (both unconditional and conditional optima were

considered). The Null Hypothesis that the average actual and optimal plan-

ning horizons are the same has then been tested using both the Signed Rank

test and the t-test11 (one–sample tests). Results show that in the cases of cer-

10Further discussions on the concepts of conditional and unconditional optima can be
found in Ballinger et al. (2003); Carbone and Hey (2004).

11Tables ??, ?? and ??, relative to the three treatments are reported in Appendix ??.
The results of the statistical tests are available on request
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tainty and risk the average apparent horizon is always significantly shorter

than optimal. In the ambiguity case, the average actual planning horizon

seems to be longer than the one used in other treatments. Indeed, statistical

tests confirm that there is no statistical difference with the optimal horizon

in the first three sequences, when considering unconditional optimum and in

two cases when considering the conditional optimum.

This result is somewhat at odds with initial findings, suggesting that

in the case of decision making under ambiguity participants deviated more

from maximum utility. A possible explanation for this could be that given the

very short length of the lifecycle, some (possibly extreme) strategies might

cause biased estimations. An ”informal” analysis of this hypothesis has high-

lighted that saving ”aggressively” (i.e. most or all of available wealth) in

the first/second periods seems to result in an estimated planning horizon of

four/five periods. This phenomenon seems to be more evident when looking

at data from the risk and ambiguity treatments. For this reason and in order

to investigate the existence of regularities that influenced the estimation of

actual planning horizons, the distribution of the fraction of consumption over

available wealth, for all treatments has been analyzed.

4.2 Consumption-to-wealth ratios

For each treatment and each sequence, the comparison between the optimal

consumption-to-wealth ratio (c∗/w∗) and the average of actual ratios has
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been computed12. Graphs in Figure 1 compare treatments with respect to

deviations from optimal ratios. The ”x-axis” represents a deviation equal to

zero, while positive and negative values can be interpreted as instances of

over– and under–consumption. An interesting finding, immediately visible

from the graphs, is that in the case of ambiguity, ratios are consistently

below zero (implying an average under-spending with respect to optimum)

and consistently below the other two treatments. This finding, together

with the pattern described at the end of the previous subsection, might help

explain the apparent contradiction between deviations from optimum and

estimated planning horizons.

4.3 Comparing risk and ambiguity

Table 2 and table 3 show the comparison between risk and ambiguity in

each period of each sequence and when pooling data together, respectively.

Two-sample tests (Wilcoxon–Mann–Whitney and t-test) have been carried

out on the average deviations from conditional optimum. Results reported

in table 2 show that, in periods 1 to 413, the behaviour under ambiguity is

different from the behaviour under risk. More specifically, in the ambiguity

treatment we observe a trend of under-consumption, with a bigger average

deviation from conditional optimum (in absolute value) compared to the risk

case. In the risk treatment behaviour seems to be more ”unstable”: in some

cases actual consumption is above conditional optimum, in others it falls

12A table reporting optimal and average actual ratios (with their standard deviations)
and deviations, is available on request.

13Period 5 is not relevant because participants were clearly instructed that ”leftovers”
after the last periods would be lost
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below it. Table 2 shows that risk and ambiguity treatments are significantly

different in sequence 2 (periods 3 and 4) and sequence 3 (periods 2 and 3).

However, when looking at the general picture, average deviations in cases of

risk and ambiguity are generally very far apart (different). Table 3, where

data from all sequences are pooled together, shows that aside from period

one, the ambiguity treatment is always significantly different from the risk

treatment. While the behaviour under risk exhibits over-consumption at

the beginning of the horizon (and under-consumption in the second half,

as typically reported in the literature), the ambiguity treatment exhibits a

persistent pattern of (average) under-consumption. Also, in the ambiguity

case, average deviations are almost always negative in sequences 1 to 3, while

in sequences 4 and 5 they become positive in the first period and negative

elsewhere. This ”learning” effect in the last two sequences, can be interpreted

in the following way: in Subjective Expected Utility (SEU) theory, subjects

have subjective probabilities which may or may not be the true probabilities.

As they get more information about the possible states of the world14, they

update their beliefs. By the time they got to the last round of the last

sequence, they had observed 25 draws from the bag. By then, they would

have a pretty good idea of the true probabilities. Obviously, we cannot get

inside the subjects minds and observe their subjective probabilities at each

stage, but we can make two guesses at what they might be thinking. One

guess is that, in the absence of information to the contrary, they would start

by assuming that each state was equally likely; evidence from the draws

14Which was the case in this experiment as there was a fresh draw from the ambiguous
bag after each round of each sequence
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would conform that. The second guess is that the probability of the good

state was low, and this would steadily be revised upwards in the light of the

observations, this seems to be the case of our experimental subjects. We

should note that if we use SEU to explain the behavior of our subjects, then

it is all to do with their subjective probabilities; there is no parameter of

ambiguity aversion.

5 Conclusions

We have presented an experiment designed to study intertemporal consump-

tion choices, in the cases of certainty, risk, and ambiguity about future in-

come, over a short planning horizon. Results show that even when faced

with an unusual short life-cycle participants failed to plan optimally, in all

treatments.

More interestingly, results show that subjects behaviour in the ambiguity

treatment was markedly different from that in the case of risk. Not having

information about the distribution of future income seems to have triggered

significant savings across most of the sequences. In particular, in the first

three sequences of the experiment participants have (on average ) under-

consumed (with respect to conditional optimum) throughout the lifecycle.

This result is strikingly different from what has been typically reported in

the literature. However, by the last two sequences the pattern of deviations

has shifted to average over-consumption, in the early periods of the lifecycle,

followed by under-consumption in later ones. We believe that this result is
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directly connected to the learning process about the (unknown) probabili-

ties which seem to have induced more precautionary savings out of wealth

available for consumption.
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Tables

Table 1: Summary of Treatments

Certainty

Seq 1 Seq 2 Seq 3 Seq 4 Seq 5
Opt. UT 15.0512 15.0512 15.0512 15.0512 15.0512
AVG UT 13.0315 13.4179 14.0075 14.6501 14.3830

s.d. 2.8566 1.9157 1.5755 0.2788 0.7570
Deviation -2.0197 -1.6333 -1.0437 -0.4011 -0.6682

H0: AVG UT=Opt.UT
t-test (t=) -2.2359 -2.6962 -2.0949 -4.5500 -2.7913

signed rank (z=) -2.8030 -2.8030 -2.8030 -2.8030 -2.8030
RMSD

unc.opt. 10.62 10.66 9.22 3.85 4.64
cond.opt. 9.11 6.45 5.19 2.32 2.97

Risk
Seq 1 Seq 2 Seq 3 Seq 4 Seq 5

Opt. UT 16.2700 16.0500 15.5800 15.2300 14.4200
AVG UT 13.0700 14.7528 15.0037 14.5218 13.1952

s.d. 3.0791 0.8527 0.8205 0.7353 0.7713
Deviation -3.2000 -1.2972 -0.5763 -0.7082 -1.2248

H0: AVG UT=Opt.UT
t-test (t=) -3.2829 -4.8105 -2.2213 -3.0457 -5.0212

signed rank (z=) -2.8050 -2.8030 -1.7840 -2.8050 -2.8050
RMSD

unc.opt. 18.01 7.29 6.87 6.58 5.51
cond.opt. 10.14 4.20 3.95 3.76 3.45

Ambiguity
Seq 1 Seq 2 Seq 3 Seq 4 Seq 5

Opt. UT 16.0501 16.0974 12.2909 13.9571 15.2293
AVG UT 12.6472 12.9356 10.2075 12.8590 13.8737

s.d. 3.1820 1.6900 0.8572 0.9386 0.8564
Deviation -3.4029 -3.1618 -2.0834 -1.0981 -1.3555

H0: AVG UT=Opt.UT
t-test (t=) -3.3819 -5.9162 -7.6862 -3.6998 -5.0053

signed rank (z=) -2.8030 -2.8030 -2.8030 -2.4970 -2.8030
RMSD

unc.opt. 20.41 8.97 5.00 7.64 6.30
cond.opt. 13.36 6.98 3.90 4.59 3.70

Significant results reported in bold
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Table 2: Comparing Risk and Ambiguity Sequence by Sequence

Periods

Sequence 1 2 3 4 5

1

AVG (risk) 0.58 -0.44 -3.892 -9.011 -0.001
AVG (amb) -2.942 -4.844 -8.90527 -11.51 -0.004

WMW z=1.33 z=1.36 z=1.51 z=1.44 z=2.01
p=0.18 p=0.17 p=0.13 p=0.15 p=0.045

2

AVG (risk) 1.53 -1.5 1.524 0.586981 -0.001
AVG (amb) -1.228 0.74 -2.784 -7.534 -0.016

WMW z=1.56 z=-1.13 z=2.00 z=2.57 z=2.37
p=0.12 p=0.26 p=0.045 p=0.01 p=0.18

3

AVG (risk) -0.62 1.68 2.478 0.326731 -0.001
AVG (amb) -1.528 -1.64127 -1.024 -2.84627 -0.011

WMW z=0.85 z=2.27 z=2.12 z=1.82 z=1.63
p=0.4 p=0.02 p=0.03 p=0.07 p=0.1

4

AVG (risk) -0.37 2.475 0.805269 -0.43507 -0.002
AVG (amb) 1.48 -1.08 -2.242 -3.78073 -0.069

WMW z=-1.18 z=1.89 z=1.74 z=1.36 z=1.72
p=0.24 p=0.06 p=0.08 p=0.17 p=0.09

5

AVG (risk) 2.83 -0.056 -1.74646 -0.593 -0.002
AVG (amb) 2.336 -0.844 -1.49702 -2.65327 -0.009

WMW z=0.53 z=0.53 z=0.57 z=0.3 z=1.91
p=0.59 p=0.6 p=0.57 p=0.76 p=0.06

AVG(risk) and AVG(amb) indicate average deviations from conditional

optimum (expressed in tokens). WMW: Wilcoxon-Mann-Whitney test
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Table 3: Comparing Risk and Ambiguity - Pooled Data

Periods

1 2 3 4 5
AVG (risk) 0.79 0.43 -0.17 -1.83 -0.001
AVG (amb) -0.376 -1.53 -3.29 -5.66 -0.021

WMW
z=1.39 z=2.68 z=3.42 z=3.22 z=4.35
p=0.16 p=0.007 p=0.0006 p=0.001 p=0.000

t-test
t=1.524 t=1.957 t=2.636 t=2.026 t=1.651
p=0.065 p=0.026 p=0.005 p=0.023 p=0.051

AVG(risk) and AVG(amb) indicate average deviations from conditional

optimum (expressed in tokens). WMW: Wilcoxon-Mann-Whitney test
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Figures

(a) (b)

(c) (d)

(e)

Figure 1: Deviations from optimal ”c-to-w” ratio
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