Size-dependent wet removal of black carbon in Canadian biomass burning plumes

Taylor, J.W., Allan, J.D., Allen, G., Coe, H., Williams, P.I., Flynn, M.J., Le Breton, M., Muller, J.B.A., Percival, C.J., Oram, D., Forster, G., Lee, J.D., Rickard, A.R., Parrington, M. and Palmer, P.I. (2014) Size-dependent wet removal of black carbon in Canadian biomass burning plumes. Atmospheric Chemistry and Physics, 14 (24). pp. 13755-13771. ISSN 1680-7316

Full text not available from this repository. (Request a copy)

Abstract

Wet deposition is the dominant mechanism for removing black carbon (BC) from the atmosphere and is key in determining its atmospheric lifetime, vertical gradient and global transport. Despite the importance of BC in the climate system, especially in terms of its ability to modulate the radiative energy budget, there are few quantitative case studies of wet removal in ambient environments. We present a case study of BC wet removal by examining aerosol size distributions and BC coating properties sampled in three Canadian boreal biomass burning plumes, one of which passed through a precipitating cloud. This depleted the majority of the plume's BC mass, and the largest and most coated BC-containing particles were found to be preferentially removed, suggesting that nucleation scavenging was likely the dominant mechanism. Calculated single-scattering albedo (SSA) showed little variation, as a large number of non-BC particles were also present in the precipitation-affected plume. The remaining BC cores were smaller than those observed in previous studies of BC in post-precipitation outflow over Asia, possibly due to the thick coating by hydrophilic compounds associated with the Canadian biomass burning particles. This study provides measurements of BC size, mixing state and removal efficiency to constrain model parameterisations of BC wet removal in biomass burning regions, which will help to reduce uncertainty in radiative forcing calculations.

Item Type: Article
Additional Information: © Author(s) 2014. This work is distributed under the Creative Commons Attribution 3.0 License.
Faculty \ School: Faculty of Science > School of Environmental Sciences
Related URLs:
Depositing User: Pure Connector
Date Deposited: 28 Jan 2015 12:40
Last Modified: 14 May 2020 23:58
URI: https://ueaeprints.uea.ac.uk/id/eprint/51951
DOI: 10.5194/acp-14-13755-2014

Actions (login required)

View Item View Item