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ABSTRACT

Recent sequencing studies have extensively explored the somatic alterations present in the
nuclear genomes of cancers. Although mitochondria control energy metabolism and apoptosis,
the origins and impact of cancer-associated mutations in mitochondrial DNA (mtDNA) are
unclear. Here, we analysed somatic alterations in mtDNA from 1,675 tumors across 31
histologies. We identified 1,907 somatic substitutions, which exhibited dramatic replicative
strand bias, predominantly C>T and A>G on the mitochondrial heavy strand. This strand-
asymmetric signature differs from those found in nuclear cancer genomes but matches the
inferred germline process shaping primate mtDNA sequence content. Numbers of mtDNA
mutations showed considerable heterogeneity across tumor types. Missense mutations were
selectively neutral and often gradually drifted towards homoplasmy over time. In contrast,
mutations resulting in protein truncation undergo negative selection and were almost exclusively
heteroplasmic. Our findings indicate that the endogenous mutational mechanism has far greater
impact than any other external mutagens in mitochondria, and is fundamentally linked to mtDNA

replication.
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INTRODUCTION

All cancers result from somatic mutations in their genomes. Beyond the ~3,200Mb of nuclear
genomic DNA, human cells have hundreds to thousands of mitochondria present in every cell,
each carrying one or a few copies of the 16,569bp circular mitochondrial genomes (Koppenol et
al., 2011; Legros et al., 2004; Smeitink et al., 2001). In addition to their role in cellular energy
balance through oxidative phosphorylation, mitochondria are involved in many essential cellular
functions including modulation of oxidation-reduction status, contribution to cytosolic
biosynthetic precursors and initiation of apoptosis. Mitochondria in eukaryotic cells evolved by
endosymbiosis from a free-living a-proteobacterium (Gray et al., 1999). Over two billion years
of co-evolution, many ancestral mitochondrial genes have transferred to the nucleus (Calvo and
Mootha, 2010; Falkenberg et al., 2007; Wallace, 2012). What remains in the mitochondrial
genome is distinctive for the striking asymmetry between the two complementary mtDNA
strands in terms of nucleotide content and gene distribution (Andrews et al., 1999). The heavy (H)
strand is guanine-rich (C/G=0.4) and is the template from which most mitochondrial proteins (12
out of 13) are transcribed, whereas only one protein-coding gene, MT-ND6, is transcribed from

the correspondingly cytosine-rich light (L) strand.

Mutations in the mitochondrial genome cause inherited disease (Chinnery, 1993), with a
maternal inheritance pattern because only eggs contribute mitochondria to the zygote. The
penetrance of inherited mitochondrial disease is determined stochastically by both the random
assortment of mutated versus wild-type mitochondrial genomes during meiosis and random drift
during the early cell divisions after fertilization. In cancer, the role of somatically acquired

mtDNA mutations is controversial. Although cancer-specific mutations have been previously
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reported (Brandon et al., 2006; Chatterjee et al., 2006; He et al., 2010; Larman et al., 2012;
Polyak et al., 1998), the limited sample size or poor sensitivity of capillary sequencing for
heteroplasmic mutations have not allowed a comprehensive analysis of the mutational signatures
of mitochondrial mutations nor their likely functional significance. It has long been proposed that
mitochondria might contribute to cancer development given their fundamental importance to
cellular biology (Wallace, 2012). Previous reports suggested mitochondrial somatic mutations
might be under positive selection and thus contribute to cancer development, but the small
numbers of reported mutations render this conclusion uncertain (Brandon et al., 2006; Chatterjee
et al., 2006; Larman et al., 2012; Schon et al., 2012). Nonetheless, the hypothesis of functionally
relevant mitochondrial mutations is an appealing one because cancer cells have greatly increased
energy demands over normal cells, and demonstrate a switch from aerobic glycolysis in
mitochondria to lactic acid fermentation in the cytosol (the Warburg effect) (Hanahan and

Weinberg, 2011; Koppenol et al., 2011).

In each cell cycle, the replicating genome is at risk of de novo mutations, which can promote the
development of cancer. These mutations may be generated by intrinsic cellular errors during
DNA replication or repair or through exposure to mutagens, such as reactive oxygen species,
tobacco smoke and ultraviolet light (Pleasance et al., 2010a; Pleasance et al., 2010b). Recently,
>20 mutational signatures operative in cancers have been identified in the nuclear genome
(Alexandrov et al.,, 2013). Whether any of these mutational processes also affect the
mitochondrial genome has not been studied. Furthermore, whether there are mtDNA-specific
mutational processes in somatic cells remains unclear, although the many unique features of

mtDNA replication and repair, coupled with the high concentration of reactive oxygen species
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generated by the electron transport chain, could be associated with distinctive mutation

signatures.

In this study, we compare 1,675 cancer and paired-normal mtDNA sequences across 31 tumor
types using massively parallel DNA sequencing technologies to obtain a systematic and unbiased
catalogue of somatic mitochondrial mutations. We find that mtDNA mutations are almost
exclusively the product of a mutational process that is specific to mitochondria and probably
linked to the unique mechanism of genome replication these organelles employ. We find no
evidence for positive selection of mitochondrial mutations during oncogenesis, suggesting that

they confer no clonal advantage on the nascent cancer cells.
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RESULTS

mtDNA Sequencing and Mutation Calling

We extracted the mtDNA sequences from 704 whole-genome and 971 whole-exome sequencing
data generated on primary cancers and compared them with mtDNA sequences from their
matched normal samples. Given the abundance of mtDNA per cancer cell, a standard coverage
of 30-40x in the nuclear genome provides significantly greater coverage of the mitochondrial
genome (average read-depth = 7901.0x), enabling accurate identification of somatic mutations
including rare heteroplasmic variants. We also assessed whether whole exome sequencing could
be used to identify mtDNA mutations from off-target reads derived from the mitochondrial
genome. We found an average read-depth of 92.1x across the mitochondrial genome in exome
studies. From 139 samples in which we had both exome and whole genome sequencing data, the
overall read depths correlated strongly (R*=0.59, Figure 1-figure supplement 1) as did variant
allele fractions for mtDNA somatic mutations (R*=0.97, Figure 1-figure supplement 2).
Validation experiments suggested the sensitivity of whole-exome sequencing for detection of
mtDNA somatic mutations to be 71.4% compared to whole-genome sequencing (Figure 1-figure
supplement 3 and Materials and Methods, “Off-target mtDNA reads in whole-exome sequencing”

and “DNA cross-contamination”).

To reduce potential false-positive calls of mtDNA somatic mutations, we only report variants
called with an allele fraction of >3%. This eliminates the risk of miscalls due to mtDNA-derived
pseudogenes in the nucleus (NuMTs) because mtDNA copy numbers are 100-1000 times higher
than nuclear genomes in human somatic cells and the sequence homology between mtDNA and

NuMTs presented in the human reference genome is generally <95% (in 96 out of 101 NuMTs
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with length greater than 300bp). Furthermore, pairwise comparison between cancer and matched
normal mtDNAs from the same individual further minimizes the contamination of NuMTs in the

mutation calling.

The Catalog of mtDNA Somatic Mutations

In total, 1,675 tumor-normal pairs across 31 tumor types were analysed (Table 1 and
Supplementary file 1). For 61 of these patients, we had sequencing data available from multiple
sites of the primary cancer, several time-points or matched primary cancers and metastases (a
total of 73 such cancer samples), allowing us to study the timing of mtDNA mutations in cancer
evolution (Supplementary file 1). We identified 1,907 somatic mtDNA substitutions (Figure 1
and Supplementary file 2). In contrast to inherited polymorphisms (n=38,706, available at
Supplementary file 2), which were almost always homoplasmic in both the cancer and
counterpart normal, the variant allele fractions (VAFs) of these somatic substitutions were highly
variable in the cancer, ranging from our detection threshold (3%) to homoplasmy (100%). Of
these 1,907 somatic substitutions, 1,209 (63.4%) were not registered in the databases of mtDNA
common polymorphism (Ingman and Gyllensten, 2006; Levin et al., 2013). In comparison, when
we examined substitutions found in both the tumor and the normal samples from a patient, only
21 (0.05%) were not registered in the polymorphism databases, a significantly different fraction
from the tumor-only variants (p<10'10; chi-squared test). We found 595 (31.2%) recurrent
mutations that can be collapsed onto 246 mtDNA positions, which is a 6.9-fold higher level of
recurrence than expected by chance (p<10""). This suggests that the generation or fixation of
mtDNA mutations is not random, but influenced by factors such as the underlying mutational

process or positive selection.
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Of the 1,675 cancer samples, 976 (58.3%) harbored at least one somatic substitution and 521
(31.1%) had multiple substitutions, ranging from 2 to 7 (Figure 2A). In those with multiple
substitutions, 72 pairs of mutations were sufficiently close to phase (Nik-Zainal et al., 2012b)
such that we could determine whether they were linked on the same mtDNA genome or were on
different copies. We found that 45 (62.5%) pairs of mutations were linked on the same mtDNA
genome (Supplementary file 3 and Figure 2-figure supplement 1). Furthermore, of these linked
mutations, 33 showed a clear temporal order: that is, one mutation was demonstrably subclonal
to the other. This is rather unexpected, since each somatic cell has 100-1,000 copies of the
mitochondrial genome, and we might anticipate that random mutations would, on average, affect
different copies. That many pairs of mutations are phased on the same mtDNA genome and yet
show a clear subclonal relationship suggests that they occur sufficiently separated in time to
allow the mitochondrial genome carrying the earlier mutation to drift towards a substantial
fraction of all genomes in that cell before the second mutation occurs, consistent with a previous

report (De Alwis et al., 2009).

The number of somatic mtDNA substitutions varied significantly according to tumor type
(p=4.4x10"?) after correcting for confounding variables such as sequencing coverage: gastric,
hepatocellular, prostate and colorectal cancers had the highest numbers of mtDNA substitutions
(Figure 2B). In contrast, hematologic cancers (acute lymphoblastic leukaemia,
myeloproliferative disease and myelodysplastic syndrome) had fewer mutations. Several possible
explanations could underpin these differences across tumor types. It could be that the mutation

rates differ across cell lineages; it could be that selection pressures shape the number of
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mutations; or the number of mtDNA genome generations could differ across cell lineages. Of
these explanations, we believe that the second is unlikely because, as we shall see, positive
selection is not a major component of mitochondrial mutations. Interestingly, we find a positive
correlation between the number of mtDNA somatic mutations and age at diagnosis in breast
cancers (p=0.0004; Figure 2C), in keeping with the idea that the number of mitochondrial
generations is linked to mutation burden. The mutational burden of an established cancer
represents the accumulated variation acquired in the lineage of cell divisions from fertilized egg
to transformed cell, and will include events acquired in normal development and homeostasis as
well as those acquired during tumorigenesis (Stratton et al., 2009). Interestingly, mtDNA
mutations have been found at high rates in normal colonic crypt cells (Ericson et al., 2012;
Taylor et al., 2003). Given that we find high burdens of mutations in colonic tumors as well, the
differences we see across tumor types may arise from pre- or post-transformation differences in

mtDNA burden across tissues.

Extracting mtDNA Mutational Signatures

With respect to signatures of somatic substitutions, C>T and T>C transitions constituted 90.9%
of all the 1,907 substitutions (Figure 1) among the six classes of possible base substitutions. To
characterize this aggregated signature of mtDNA cancer specific mutations in more detail, we
looked for the presence of mtDNA strand bias between the complementary H and L strands of
mtDNA. The two main substitution classes showed an extreme level of mtDNA strand bias.
84.1% of the C>T transitions were on the H strand. This level of strand bias occurred despite the
fact that cytosine is 2.4-fold less common on the H than the L strand, so the C>T substitution

rate is 12.6-fold higher on the H strand. By contrast, 76.8% of the T>C transitions were on the L

10
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strand despite its lower thymine content (1.3-fold less than the H strand). This implies that the

T>C mutation rate on the L strand is 4.2-fold higher than on the H strand.

We then examined the sequence context in which these mutations occurred by examining the
bases immediately 5° and 3’ to the mutated bases. This generates 96 possible mutation classes
(the 6 substitution classes multiplied by the 16 combinations of immediate 5’ and 3’
nucleotides). Both C>T and T>C mutations showed highly distinctive sequence contexts. Cy>Ty
substitutions (i.e. C>T mutations on the H strand) were enriched for the NpCpG trinucleotide
context (8- to 15-fold more frequent than expected by chance; Figure 3A). By contrast, T >Cp
substitutions (i.e. T>C mutations on the L strand) showed 5- to 8-fold enrichment in NpTpC.
This strand-asymmetric mutational signature is not similar to any of the 21 cancer associated
mutational signatures recently identified from the nuclear DNA of 30 different cancer types

(Alexandrov et al., 2013).

Of the 18 tumor types that presented at least 25 mtDNA somatic substitutions in this study, the
mutational signatures were broadly consistent across tumor types (Figure 3B), with the exception
that multiple myeloma had a somewhat higher rate of Ty>Cy changes than other histologies
(p=8.1x10). Thus, in contrast to the mutational signatures found in nuclear genomes, where
there is striking heterogeneity both across tumor types and across individuals within a tumor type
(Alexandrov et al., 2013), the mutational profile in the mitochondrial genome of somatic cells is

remarkably homogeneous.

11
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Replication-coupled Mutational Process in Mitochondria

The major known cause of mutational strand bias in nuclear DNA is transcription-coupled
nucleotide excision repair, where DNA lesions on the transcribed (non-coding) strand are more
frequently repaired (Alexandrov et al., 2013). However, we find that the strand bias always
favors Cy>Ty and T >CL whether the gene is transcribed from the H strand or from the L strand
(Figure 3-figure supplement 1). This is not compatible with transcription-coupled repair, for

which the direction of strand bias is fundamentally dictated by which strand is transcribed.

Instead, the mtDNA mutational strand bias reported here appears to be driven by differences in
replication between the two strands. mtDNA replication harbors substantial strand asymmetry
between the H and L strands: mtDNA replication initiates from an origin of replication (Og) in
the D-Loop, with the nascent H and the L strand replicating as leading and lagging strand,
respectively (Clayton, 1982; Falkenberg et al., 2007; Holt and Reyes, 2012). We observed that
C>T substitutions were prevalent in the leading (heavy) strand, whereas T>C substitutions were
found in the lagging (light) strand (Figure 1). Remarkably, this strand bias was reversed in the D-
Loop itself (Figures 1 and 3C), further suggesting that the mtDNA somatic mutations are
replication-coupled: according to a recently proposed bidirectional model of mtDNA replication
(Holt and Reyes, 2012; Yasukawa et al., 2006; Yasukawa et al., 2005), mtDNA replication is
also able to initiate from the so-called Ori-b site, typically located around genomic position
16,197 and proceeds on both strands away from the origin (Figure 1). Replication of the nascent
H strand continues unimpeded like the traditional model, but the nascent L strand terminates at

the so-called Oy site, typically around mtDNA position 191bp. Under this model, then, the

12
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leading and lagging strand are reversed in the few hundred base-pairs of the D-Loop, which is

consistent with the reversed mutational signature in this region (Figures 1 and 3C).

Equivalent Mutational Signature during Human mtDNA Evolution

It is not entirely straightforward to infer the mutational signatures operating on the mitochondrial
genome in the germline. De novo mutations are generally rare and often discovered because they
cause disease; distinguishing the ancestral base and the derived base is challenging for single
nucleotide polymorphisms; and comparative mtDNA genomics across species extends over
considerable evolutionary time. In contrast, because ancestral and derived states are defined for
tumor-normal pairs, a much clearer picture emerges of the somatic mtDNA mutation signature.
We therefore assessed whether the signature that emerges for somatic mitochondrial mutations

could extend to explain sequence composition of the human mtDNA genome.

It appears that the mutational mechanism which has generated the Cy>Ty and T >Cy signature in
cancer mtDNA is equivalent to the one that has been operating during evolution of human
germline mtDNA (Nikolaou and Almirantis, 2006). This manifests as the depletion of certain
codons in the reference human mtDNA sequence through the action of the Cy>Ty and Ti>Cp
mutational process over time (Figure 4A). For example, the GCG triplet codon (Alanine) appears
to have been replaced by its synonymous GCA codon (due to Cy>Ty (GL>Ay)), with the former
being 15.8-fold less frequently observed in the 12 mtDNA protein-coding genes that are
transcribed from the H strand (and encoded on the L strand). All 32 synonymous codon pairs

present the same tendency. Consistent with this interpretation, the gene transcribed from the L

13
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strand (MT-ND6) demonstrates the opposite direction of skew. Further analyses of mtDNA
codon usage from seven animal species suggest that the Cy>Ty and Tr>Cy mutational pressure

may be characteristic of vertebrates, and primates in particular (Figure 4-figure supplement 1).

To quantify whether the somatic mutational signature we have defined can fully explain the

trinucleotide frequency of human mtDNA, we performed evolutionary simulations. First, we

simulated the evolution of a random DNA sequence under the mutational signature described
here. By mutational pressure alone, the random sequence starts losing certain hyper-mutable
trinucleotides until eventually reaching a stationary sequence composition. The actual sequence
composition of the human mitochondrial genome strongly resembles this stationary distribution
(Pearson’s r=0.83; p<0.0001; Figure 4-figure supplement 2). In a second simulation, a random
sequence encoding the exact amino acid sequence of the reference mitochondrial genome was
evolved by synonymous mutations under the observed mtDNA signature until reaching a
stationary sequence composition (mutation-selection equilibrium). These simulations also
eventually approximate the observed human mitochondrial genome (Pearson’s r=0.96, p<0.0001;
Figure 4B). These analyses strongly suggest that the mitochondrial mutation signature observed
in cancer cells closely reflects the mutation signature active in the germline, which has

continuously shaped the mitochondrial genome during human evolution.

Negative Selection on Truncating mtDNA Mutations and tRNA Anticodons

Next, we assessed the functional impact of somatic mtDNA mutations. Of the 1,907

substitutions, 1,153 (60.5%) were in the 13 protein-coding genes. These include 63 nonsense, 4

14
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stop-lost, 878 missense and 208 silent substitutions (Supplementary file 2). In addition, out of
251 indels we observed, 110 occurred within protein-coding genes (Supplementary file 2). Of the
missense substitutions, 245 (27.9%) were recurrent, affecting 107 distinct mtDNA sites.
Although this very high level of mutation clustering could, at first sight, be interpreted as
evidence for positive selection, we found that silent substitutions were also frequently recurrent
(28 recurrent variants in 13 mtDNA sites), with no substantial difference in recurrence rates
between silent and missense mutations (p=0.19; Figure 5-figure supplement 1). We believe this
recurrence to be the consequence of a high mtDNA mutation rate with restricted mutational
signature (Ci>Ty and Tr>Cp). Independently recurring mutations in human germline mtDNA

are well described across human evolution (Levin et al., 2013).

The ratio of somatic missense to silent substitutions (Rms:s) is apparently higher (4.2, 878/208)
than that observed for cancer-associated somatic mutations in nuclear DNA (generally around
2:1 to 3:1 across tumor types (Greenman et al., 2007; Nik-Zainal et al., 2012a). At face value,
this again could be interpreted as evidence for positive selection. However, as described above,
the somatic mtDNA mutational signature shows extreme strand asymmetry and the same
mutational signature has been operative in the germline over evolutionary time. Thus, the
dominant mutational signature has already acted on potentially synonymous sites in the
mitochondrial genome (Figure 4A), meaning that any new somatic changes are much less likely
to be silent. In keeping with this, a dN/dS ratio (Materials and Methods) calculated taking into
account both the mutational signature and the mtDNA codon usage revealed that missense
mutations accumulate at a frequency very close to that expected under neutrality (dN/dS=1.21;

95% confidence interval, 1.015 - 1.434; p=0.031). This indicates that despite the apparent high
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ratio of missense to silent mutations, the vast majority of mtDNA mutations are passengers with
no convincing evidence suggesting the existence of driver mitochondrial DNA mutations.
Additional gene-by-gene analysis further revealed that no single gene had a higher than expected

rate of missense or nonsense mutations (Supplementary file 4).

For nonsense substitutions and frameshift indels, we observe a somewhat different picture.
Taking into account the mutation signature and amino acid composition of the mitochondrial
genome, the overall ratio of nonsense mutations to silent mutations is exactly that expected by
chance (dNonsense/dS=1.004; 95% confidence interval, 0.699-1.443; p=0.98). However, while
missense and silent substitutions exhibited equivalent variant allele fractions (average VAFs;
40.1% and 40.9%, respectively; p=0.8), nonsense substitutions presented significantly lower
VAFs (average 26.4%; p=6x107), as did frameshift indels (average 25.0%; p=2x10"; Figure
5A). Taken together, these data suggest that nonsense mutations occur at the expected rate given
the underlying mutational process. However, while silent and missense substitutions frequently
achieve high allele fractions in tumor cells due to the effects of random drift, there are
significantly greater constraints on mitochondrial genomes carrying protein-inactivating
mutations. The inference here is that cancer cells carrying such deleterious mutations at or near
homoplasmy are at a selective disadvantage, and hence do not contribute to clonal expansions,
underlining the importance of functional mitochondria to cancer cells. The extent of such
disadvantage may vary according to tumor type: for example colorectal cancers show less

negative selection compared to breast cancers (p=0.028; Figure 5-figure supplement 2).
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We found 171 mtDNA substitutions in mitochondrial tRNA sequences, which is very similar to
the expected number (168.2, p=0.82) from the mutational signature. Interestingly, none of the
substitutions was located in the trinucleotide anticodon site of the tRNA (expected number=7.6,
p=0.006). This suggests mutations in tRNA anticodons confer a similar selective disadvantage as
protein-truncating mutations, presumably because such mutations would lead to systematic

erroneous aminoacylation of nascent proteins during translation of the relevant codon.

Next, we assessed whether any specific somatic mutations showed evidence of positive selection.
Out of the 1,907 somatic substitutions, 16 (0.8%) overlapped with known disease-associated
mtDNA mutations, such as mutations frequently detected in MELAS (Mitochondrial
Encephalomyopathy, lactic acidosis, and stroke-like episodes) and LHON (Leber hereditary
optic neuropathy) (Supplementary file 2). In addition, ten mutations within mitochondrial
protein-coding, tRNA and rRNA genes showed significantly higher recurrent rate than expected
from background mutational signature (Supplementary file 5). However, it remains unclear
whether this high recurrence reflects positive selection, because any factors not included in our
background model of the mutational process, such as local mutation hotspots, could also explain

a mild excess of mutations at a given nucleotide.

mtDNA Mutations across Tumor Evolution

We investigated whether somatic mtDNA mutations are more likely to become homoplasmic
later in tumor evolution by assessing paired cancer samples, either primary and metastasis

(breast, colorectal and prostate) or primary and relapse (myeloma) (Figure 5B and
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Supplementary file 1). As mentioned earlier, 73 late (metastasis or relapse) cancer samples were
sequenced in addition to the primary tissues. Among the mtDNA mutations identified in either of
the paired cancer samples, a number of different patterns were observed. There were mutations at
high VAF in the primary not found in the metastasis (n=49); mutations in the metastasis not
found in the primary (n=49); and shared mutations (n=71) at high or low VAF, sometimes with
evidence for drift (VAF difference > 0.2) between the two samples (n=25). These data,
particularly the mutations found in the metastasis only, suggest that mitochondrial mutations can
occur throughout the time course of tumor evolution, and still drift to homoplasmy with
appreciable frequency, as suggested previously (Coller et al., 2001). To assess the plausibility of
this conclusion, we modeled the dynamics of mtDNA mutations based on a few simplifying
assumptions (Materials and Methods, Evolutionary dynamics of neutral mitochondrial
mutations). We find that the expected number of neutral mitochondrial mutations drifting to
homoplasmy increases linearly with mutation rate and number of cell divisions. Based on a
mutation rate of 10'7/base—pair/generation (Coller et al., 2001; Hudson and Chinnery, 2006), this

leads to an average ~1 homoplasmic mutation for every 1,000 cell generations.

Origins of mtDNA somatic mutations

We also explored whether the mutational forces that are so critical to shaping the nuclear
genome during tumor evolution could affect the mitochondrial genome. In cancers associated
with exogenous mutagens, such as tobacco-associated lung cancer and ultraviolet light-
associated melanomas, we found no evidence of the mutational signatures characteristic of these
carcinogens among the mtDNA mutations (Figure 5C, Figure 5-figure supplement 3). Moreover,

BRCAI and BRCA2 mutations showed no evident influence on mitochondrial genomes in breast
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cancer (Figure 5C), in contrast to their effects on nuclear genomes exhibiting an even
distribution of mutations across all trinucleotide contexts (Alexandrov et al., 2013; Nik-Zainal et
al., 2012a). Taken together, it appears that the primary mtDNA mutational process is endogenous
to mitochondria and is very different to those operating in nuclear DNA. It is surprising that the
endogenous mutational process has far greater impact than any external forces, as the
physicochemical interactions of ultraviolet light or the chemicals in cigarette smoke with DNA
should be similar in both genomes. The simulations described above suggest the major
explanation to be that the endogenous mutation rate is several orders of magnitude greater than

that expected for exogenous carcinogens, thus swamping any signal.
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DISCUSSION

In theory, there are two potential sources of the mtDNA variants we observed in cancer tissues:
(1) somatically acquired, or de novo, mutations accumulated during the cancer clone’s lineage of
cell divisions from the fertilized egg or (2) low-level heteroplasmic mtDNA present in the oocyte
(therefore maternally inherited) amplified in cancer but lost from normal tissue by random drift
(Freyer et al., 2012; He et al., 2010; Payne et al., 2013). We believe the majority of the variants
we find are genuinely acquired somatically. First, of the 45 pairs of somatic mutations phased
together on the same copy of the mtDNA genome, at least 33 (73.3%) showed a clear subclonal
relationship and therefore their occurrence is separated in time, or apparently somatic. Secondly,
63.4% of our substitutions were not previously reported as germline polymorphisms. This is a
much higher rate than reported for equivalent analyses on heteroplasmic variants in non-cancer
samples (8/37; 21.6%) (Li et al., 2010), although methodological differences may somewhat
contribute to this apparent difference (Avital et al., 2012; Goto et al., 2011). Thirdly, if the
variants were due to inherited, low-level heteroplasmy, we would not expect to see such
variation across tissue types, since all tissue types derive from the fertilized egg. It is difficult to
distinguish whether the variants we observe occur before or after the initiating driver mutations
that herald tumorigenesis, but our analysis of paired samples does suggest that they can occur
both early and late. Given the homogeneity of the mutational signature across tumor types and its
inferred resemblance to the germline mtDNA mutational process, we would hypothesise that
new mutations occur at a fairly constant and high rate per mitochondrial genome replication

throughout all cell divisions.
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On the basis of the mutational signature observed here, somatic substitutions are unlikely to be
attributable to reactive oxygen species (ROS), as previous reports have suggested (Larman et al.,
2012; Polyak et al., 1998). Guanine oxidation by ROS predominantly causes G:C>T:A
transversion (Delaney et al., 2012; Thilly, 2003), which constitute only 4.0% of the mutations in
our data (Figure 5C). Instead, we propose three replication-coupled mechanisms that can explain
the strand asymmetric Cyz>Ty and T>Cy mutational signature and define a model of the mtDNA
mutational process (Figure 5D). First, the parent H strand, displaced and single-stranded during
mtDNA replication (Holt and Reyes, 2012), could be more prone to cytosine deamination
(generating C>Ty) and/or adenine deamination (Faith and Pollock, 2003; Lindahl, 1993;
Saccone et al., 1999) (generating Ty >Cp). Secondly, endogenous mtDNA polymerase (POLG)
replication errors (Zheng et al., 2006) (which show the pattern of C>T and A>G substitutions)
could be preferentially generated on the leading strand (Pavlov et al., 2002). Thirdly, there may
be differences between the efficiency of repair between the leading and lagging strand (Pavlov et
al., 2003). Further, the mutation pattern reported here is consistent with the hypothesized
bidirectional initiation of mtDNA genome replication (Holt and Reyes, 2012; Yasukawa et al.,

2006; Yasukawa et al., 2005).

It appears that most of the mtDNA missense mutations we observe become fixed in tumor
progenitor cells without distinct physiological advantage. All the statistical testing performed in
this study — variant allele fraction comparison across different categories of somatic mutations,
number of recurrent mutations and dN/dS ratio — suggest that mtDNA somatic substitutions
accumulate largely neutrally. This is not different from previous observations in nuclear

genomes: of the thousands of somatic mutations found in a cancer genome, many fewer than a
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hundred are believed to confer a selective advantage to the cancer cell (Stratton et al., 2009). In
contrast, protein-truncating mutations showed evidence of negative selection, at the level of
constraints on the allele fraction achieved. The implication of this is that the inactivating
mutations occur at an appreciable rate, but the fraction of mitochondrial genomes per cell
carrying these variants cannot increase beyond a certain limit without impairing the selective
fitness of that cell. Having a sizable number of mitochondria with fully intact proteome remains

critical to the fitness of a cancer cell.
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MATERIALS AND METHODS

Sequencing data

All the sequences were generated by Illumina platforms (either Genome Analyzer or HiSeq 2000). With respect to
TCGA data, we downloaded aligned bam files through UCSC CGHub (http://cghub.ucsc.edu). Sequencing reads
were aligned on the human reference genome build 37 (GRCh37) and human reference mtDNA sequence (revised
Cambridge reference sequence, TCRS (Andrews et al., 1999)), mainly by BWA alignment tool. Samtools (Li and
Durbin, 2009) and Varscan2 (Koboldt et al., 2012) were used for manipulating sequence reads and for calling
somatic mutations, respectively. Sequence data have been deposited in the European Genome-phenome Archive
(EGA; https://www.ebi.ac.uk/ega/home ; study accession # EGAS00001000968; dataset accession numbers
EGADO00001001014 for primary samples and EGAD00001001015 for metastatic samples). Sample accession

numbers are available in the Supplementary file 6.

Off-target mtDNA reads in whole-exome sequencing

Most of the currently available whole-exome capture kits, including Agilent Technologies SureSelect Human All
Exon 50Mb (Agilent Technologies Inc.) used mostly in this study, do not target mtDNA genes (Falk et al., 2012).
However, because of the abundance of mtDNA in human cells (100-100,000 copies per cell), it is expected that a
number of mtDNA fragments could be off-target captured. We checked whether the amount of off-target mtDNA
reads was sufficient for mtDNA variant detection. Whole-exome sequencing (normal samples) generated by CGP
(n=855), WUGSC (Washington University Genome Sequencing Center; n=140) and BCM (Baylor College of
Medicine; n=85) contained ~100 off-target mtDNA reads per 1M autosomal reads (Figure 1-figure supplement 4).
We concluded these could be sufficient for the downstream analyses, because ordinary 10Gb whole-exome data
would provide ~60x read-depth for mtDNA here. However, whole-exome data sequenced by BI (Broad Institute;
n=436) included far less, ~3 off-target mtDNA per 1M autosomal reads, which would show ~2x mtDNA read-depth
per 10Gb exome sequencing (Figure 1-figure supplement 4). It may be due to “improved” exome-capture protocols
by BI to increase the DNA-capture efficiency and on-target rate (Fisher et al., 2011). Therefore, we did not include
whole-exome data sequenced from BI for further analysis.

139 samples were sequenced by both whole-genome and whole-exome sequencing. From these, we compared the
amount of off-target mtDNA reads from whole-exome sequencing with that of whole-genome sequencing. It showed

clear positive linear correlation (Figure 1-figure supplement 1).

DNA cross-contamination

Given the abundance of mtDNA in the cancer cells, 1-214x coverage cancer whole nuclear genome sequencing
provides extensive coverage of mtDNA (average read-depth = 7901.0x; table S2) enabling accurate identification of
somatic mutations, even if heteroplasmic. Whole exome sequencing data were also included because off-target reads

provided sufficient coverage (average read-depth = 92.1x) to analyze mtDNA mutations.
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This high coverage of mtDNA, especially from whole-genome sequencing, permitted us to identify heteroplasmic
variants (our detection threshold was 3%; see “Variant calling” for more details). However, because sample-swaps
and/or DNA cross-contaminations would definitely generate false-positive somatic variants, we filtered out

suspicious DNA samples as described below.

1) Major sample-swaps

A subset of tumor and normal sequencing pairs, of which the nuclear genotypes were not matching with each other,
were removed from further analyses. We randomly selected 320 common single-nucleotide polymorphism sites on
the 22 human autosomes, of which the minor allele frequency is ~50% (45-55%) according to The 1000 Genomes
Project (Genomes Project et al., 2010). Of the 320 sites, homozygous positions in normal tissues (where showed >90%

variant allele fraction (VAF) with bases Q score>20) were compared with the corresponding genotypes in the

. . . Nhet+Nwt
counterpart cancer. Sample pairs were removed if the genotype mismatch rate was greater than 0.1 (m,

Ny, number of heterozygote positions; Nyom, number of homozygote positions; Ny, number of wildtype
positions)(Figure 1-figure supplement 5A). We note 0 is expected for the rate when genotyping is perfect and
sample pairs are from the same individual. By contrast, 0.5 is expected when samples were from different

individuals.

2) Minor cross-contamination

We estimated DNA cross-contamination levels with the VAF of autosomal homozygous SNPs genotyped from the
common (population minor allele frequency ~50%) SNP sites. Theoretically, if there is no sequencing (and mapping)
error, all the homozygote SNP sites in pure samples should present 100% VAFs. However, when samples are
contaminated, corresponding VAFs are reduced because the contaminant has only a ~25% of chance of having
homozygote SNPs on the same site. Therefore, minor contamination levels (C) of each cancer sequencing data were

estimated as below:

B Y. (RCwt) — Ne
C=2x Y (RDhom) — Ne

, where RDy,, is sequencing read-depth, RC,, is readcount of wildtype alleles and Ne is number of sequencing
errors on each autosomal homozygote SNP site. For high accuracy, we only counted base with sufficient quality
score (Q>20). In order to estimate Ne, we assumed a conservative rate (sequencing error rate = 0.001). We
considered sites covered by at least 10 reads and 90% VAF (Figure 1-figure supplement 5B). 95% confidence
intervals of cross-contamination levels were calculated using binomial distribution.

In order to clear somatic variants, here we made the very conservative assumption that somatic variants present in
excess of 5-times of the 95% upper limit of C levels were true somatic rather than false positives by low-level of

cross-contamination.
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3) Germline polymorphisms and back mutations

We further checked samples for contamination using known mtDNA polymorphisms. Because human mtDNA is
small (16,569 bp) and extensively explored previously, most of germline mtDNA polymorphisms are already known.
For example, 97.7% of the 39,036 inherited substitutions were known polymorphisms in the mtDB database
(Ingman and Gyllensten, 2006). Therefore, when a tumor sample is contaminated by other samples, many somatic-
like mtDNA substitutions by contaminants are likely to be overlapped with known mtDNA polymorphisms.

At the same time, low-level contamination would generate excessive back mutations, which appeared to reverse
germline common polymorphisms into wildtype alleles. Taken together, both the number of somatic substitutions
known in mtDB and number of back mutations can be good indicators for mtDNA cross-contamination. Therefore,
we filtered out tumor tissues with > 3 known potentially somatic mutations or with > 2 back mutations from the

further analyses (Figure 1-figure supplement 5A and B).

Variant calling

We extracted mtDNA reads using Samtools (Li and Durbin, 2009). We used VarScan2 (Koboldt et al., 2012) for
initial variant calling with a few options (--strand-filter 1 (mismatches should be reported by both forward and
reverse reads), --min-var-freq 0.03 (minimum VAF 3%), --min-avg-qual 20 (minimum base quality 20), min-
coverage 3 and --min-reads2 2). With respect to the --strand-filter, it generally removes variant when >90% of
mismatches are reported from either of the H or the L mtDNA strand. However, where only reads with a specific
orientation are could be aligned dominantly (i.e. in both extreme region of mitochondrial reference genome; only L
strand reads could be aligned on the 5° extreme of mtDNA), we compared strand bias between “perfect matches” (#
perfect matches from L strand reads / total # perfect matches) and mismatches (# mismatches from L strand reads /
total # mismatches). If the difference between those two bias < 0.1, the mutations were rescued. Of the 1,907

mutations, 54 (2.8%) were rescued accordingly.

Putative somatic variants called by VarScan2 were further filtered using criteria shown below.

(1) At least 4 unique reads supporting variants AND all variant reads at least 20 phred-scale sequencing quality
score (Q 20 = 1% sequencing error rate) AND at least 3% variant allele fractions (VAFs).

a. Regardless of in WGS and in WES, the 24 mismatches and the 23% VAF criteria must be
satisfied simultaneously.

b. However, in WGS, the minimum number of reads (n=4) criterion is not essential, because the
23% VAF criterion is much more stringent (3% VAF request at least 240 mismatches (>>4)
given mtDNA coverage is ~8,000 for WGS).

c. In WES, the 23% VAF criterion is relatively less important than in WGS, because the =4

mismatches criterion is more stringent. For example, 4 mismatches in 90x (WXS average)
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coverage region (VAF=4.4%) automatically fulfill the 23% VAF criterion. For less covered
regions (i.e. <40x coverage; n=285 out of total 1,907 substitutions), the VAF criterion
becomes less important, because 4 mismatches would generate 210% VAF, much higher
than the minimum threshold (i.e. 3%). As results, we are missing lower heteroplasmic
variants (i.e. variants with 3%-10% heteroplasmic levels) from low coverage samples
(mostly by WXS). The lower sensitivity of WXS is also confirmed in our validation study (See
“Validation of somatic variants” below).

(2) There is no minimum threshold for total coverage (# perfect matches + # mismatches).

(3) To increase sensitivity for detecting mutations, we rescued mutations with 3 unique variant reads (with at
least 20 phred-scale sequencing quality score) when VAFs is >20%. Of 1,907 somatic substitutions, 32
(1.7%) were rescued accordingly.

(4) All somatic variants presenting with VAFs lower than our very conservative threshold for minor cross-
contamination (5-times 95% upper limit of contamination levels for each tumor sample, see above “Minor
cross-contamination of DNA samples”) were removed. When we could not estimate cross-contamination
levels because of low sequencing depth of coverage (for nuclear genome), a conservative criterion (10%
contamination level threshold) was explicitly used.

(5) Substitutions were further visually inspected using IGV (Thorvaldsdottir et al., 2013). Thirteen frequent
false positive variants (shown below) by misalignment due to extensive level of homopolymers in rCRS
and due to sequencing error in the reference mtDNA genome (3107N, see Mitomap
(http://www.mitomap.org/bin/view.pl/MITOMAP/CambridgeReanalysis) for more information) were

explicitly removed:

1) misalignment due to ACCCCCCCTCCCCC (rCRS 302-315)
A302C, C309T, C311T, C312T, C313T, G316C

2) misalignment due to GCACACACACACC (rCRS 513-525)
C514A, AS15G, A523C, C524G

3) misalignment due to 3107N in rCRS (ACNTT, rCRS 3105-3109)
C3106A, T3109C, C3110A

We compared our variant calls with common inherited mtDNA polymorphisms deposited in the mtDB database as
of 24. Jul. 2013 (Ingman and Gyllensten, 2006). Gene annotation of somatic variants was done using custom script

based on human mtDNA gene information (Ruiz-Pesini et al., 2007).

Validation of somatic variants
To validate the sensitivity and specificity of variant calling in this study, 19 tumor and normal pairs (which were
originally whole-genome sequenced) were whole-exome sequenced and mtDNA variants were assessed

independently. Among the 28 somatic substitutions originally detected from the 19 tumor-normal whole-genome
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sequencing pairs, 20 (71.4%) were called as somatic (Figure 1-figure supplement 3). In addition, 5 (17.9%)
presented evidence of variant reads in the validation set, although it was filtered out because of its low read-depth of
coverage in exome sequencings (showed 2-5 variant reads). Moreover, because 3 remaining sites were not
sufficiently covered in the validation set to call somatic variants, these could not be evidence of the inaccuracy of
whole-genome sequencing data, therefore not considered in the accuracy validation. Taken together, all the 25
somatic substitutions by whole-genome sequencing were highly likely to be true positives, therefore we concluded it
provided ~100% accuracy in the mtDNA somatic substitution assessment. Actually, the high accuracy of whole-
genome sequencing is very likely and what we expect, because it provides extensive coverage of mtDNA (average
read-depth > 7,500x), ~3% heteroplasmic variants would present >200 variant reads.

By contrast, the validation set (whole-exome sequencing) called 21 somatic substitutions. Of these, 20 were
common with whole-genome sequencing, and one was incorrectly called as somatic though it was actually germline
substitutions in the whole-genome sequencing data. In addition, as mentioned above, the validation set missed 8
somatic substitutions called by whole-genome sequencing. Six out of eight undercalls (75%) were low
heteroplasmic substitutions in whole-genome sequencing, ranging from 3.36% to 8.68%. Based on these data, we
suggest 71.4% sensitivity (20/28) and 95.2% specificity (20/21) for exome-sequencing in detecting upto 3%
heteroplasmic somatic mtDNA substitutions in cancer.

We further checked the correlation of heteroplasmy level between the 20 mtDNA somatic mutations called both
whole-genome and whole-exome sequencing. It showed great linear relationship (R’=0.97, Figure I-figure
supplement 2), further suggesting whole-exome sequencing data is appropriate for accurate detection of mtDNA

somatic mutations.

Substitution phasing

We phased 72 somatic substitution pairs, which arose in a single cancer sample and which located sufficiently close
(from 10bp to ~500bp) therefore both sites could be sequenced by same sequence fragments (Supplementary file 3
and Figure 2-figure supplement 1). We classified them as ‘different strand’, ‘co-clonal’ and ‘sub-clonal’ using

criteria as follow:

Different strand: the two somatic substitutions are obligate on different strands. Reads that report
wildtype1(wt)-substitution2(subs) and subs1-wt2, but subs1-subs2, are observed.

Co-clonal: reads reporting wtl-wt2 and subs1-subs2 are only observed.

Subclonal: One substitution is subclonal to the other, but the two are definitely phased. Reads subs1-subs2

and either subs1-wt2 or wtl-subs2 are observed.
Tumor type and mtDNA somatic substitutions

To understand the relationship between tumor types and number of mtDNA mutations, Poisson regression and

ANOVA was applied to our dataset using R software (http://www.r-project.org).
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Fitl <- glm(Ngy, ~ Covr + Covy, family=poisson())
Fit2 <- glm(Ng,, ~ Covr+ Covy + t, family=poisson())
anova(Fitl, Fit2, test="Chisq”)

, where N, is number of mtDNA substitutions of each sample, Covr and Covy are coverage of tumor and normal

mtDNA, respectively, (if Cov is >200, we replaced it by 200), t is tumor types.

Age and mtDNA somatic substitutions

Poisson regression was applied to our breast cancer dataset.

Fitl <- glm(Ng,, ~ Covr + Covy + a, family=poisson())

, where N, is number of mtDNA substitutions of each sample, Covr and Covy are coverage of tumor and normal
mtDNA, respectively, (if Cov is >200, we replaced it by 200), a is age at diagnosis. P-value in estimation of a was

shown in the manuscript.

Mutational signature and strand bias

Different mutational processes generate different combinations of mutation types, termed “signatures” (Nik-Zainal
et al., 2012a). For example, ultraviolet (UV) light and tobacco smoking (polycyclic aromatic hydrocarbons)
frequently generate C>T transitions and G>T transversions on non-transcribed (coding) strands in melanoma and
lung cancers, respectively (Pleasance et al., 2010a; Pleasance et al., 2010b). To understand the mutational processes
influencing cancer mtDNA, we correlated the 1,907 mtDNA substitutions with 21 cancer specific mutational
signatures in the nuclear DNA recently identified (Alexandrov et al., 2013). However, none of the signature could

explain the highly unique mtDNA substitutions.

Mutational signature and strand bias was assessed as described in our previous reports (Alexandrov et al., 2013).

Briefly, The immediate 5’ and 3’ sequence context was extracted from rCRS. Substitution rate for each trinucleotide

context was calculated with the number of substitution normalized by the frequency of the trinucleotide context
observed in the rCRS, in the L and H strand, respectively. For analyses of substitutions falling in the mtDNA genes
(13 protein-coding and 22 tRNA genes), transcribed/non-transcribed strand was also considered for comparison.

In order to prove the strand bias is not transcription but replication-coupled, we checked strand biases of
polymorphisms in the 12 L strand protein-coding genes, 1 H strand protein-coding gene (M7-ND6) and/or 22 tRNAs
(Figure 3 — supplementl). For this specific purpose, we did not consider the sequence context (immediate 5’ and 3’
bases) because it over-classifies mutations (i.e. the number of mutation classes (n=96) is larger than that of
mutations). In other words, 12 classes of substitutions (six classes of possible base substitutions (C>A, C>G, C>T,
T>A, T>C, T>QG) x two strands (L and H strands)) were considered. Substitution rates are ratio between observed

and expected numbers (Hy=same mutation rate for all substitution classes) for each substitution class. In order to
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understand which model (replicative or transcriptional strand) is appropriate to explain the strand-bias, chi-square
tests were used between numbers of observed mutations for each class and expected ones under the background

signature.

mtDNA codon usage

We counted the codon frequencies in 13 mtDNA protein-coding genes. Because 12 L strand protein-coding genes
and 1 H strand gene (MT-ND6) are under opposite mutational pressure (T>C and G>A for L strand genes; A>G and
C>T for MT-ND6), we separated L and H strand genes for this analysis. T>C skew and G>A skew were calculated
as shown below, to understand the T;>Cy and Ci;>Ty (equivalent to Gy >A;) substitutions during the evolution of

human mtDNA:

T>C = u and G>A = u

SkeW ™ N, + Ny SKEW T N, + Ng
, where N, N¢, Ng and Ny are number of A, C, G, and T base in the 3™ position of triplet codons in mtDNA genes,
respectively.
For the assessment of mtDNA codon usage of other animal species, we analyzed the mtDNA sequence of C. elegans
(accession# NC_001328), D. melanogaster (accession# NC_001709), D. rerio (accession# NC_002333), X. laevis
(accession# NC_001573), M. musculus (accession# EU450583), G. Domesticus (accession # NC_235570), and P.
troglodytes (NC_001643). We considered only L strand mtDNA genes in the cross-species analysis.

Recurrent substitutions

To compare the number of recurrent substitutions between silent and missense substitutions, we randomly selected
100 substitutions each from 198 silent substitutions in the 3™ base of triplet codons, 440 missense substitutions in
the 1% base of triplet codons, and 405 missense substitutions in the 2™ base of triplet codons. We counted numbers
of recurrent substitutions in each group. This was iterated 300 times independently. ANOVA testing was applied to

determine the difference between the three groups (Figure 5-figure supplement 1).

dN/dS ratio

To estimate dN/dS values for missense mutations (W), we used an adaptation of the method described previously
(Greenman et al., 2006). Briefly, the rate of mutations is modeled as a Poisson process, with a rate given by a
product of the mutation rate and the impact of selection. To obtain accurate estimates of dN/dS we used two separate
models, one using 12 single-nucleotide substitution rates and a more complex one accounting for any context-
dependence effect by 1-nucleotide upstream and downstream using 192 substitution rates. For example in the 12-

rate model, the expected number of A>C mutations (As-c) would is modeled as

= *
)\'syn,A>C =Ta>C Lsyn,A>C

= * k
)\'mis,A>C_rA>C Whis Lmis,A>C
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, being Lgna-c and Lyisa-c the number of sites that can suffer a synonymous and missense A>C mutation,
respectively, which are calculated for any particular sequence. The likelihood of observing the number of missense

A>C mutations (Npis a>c) given the expected Ayis a-c is then calculated as:

Lik = Poisson(Npis a>c | Ta>CsWnis)

and the likelihood of the entire model is the product of all individual likelihoods. W ;s is fixed to be equal in all 12
(or 192) equations describing each substitution type and a hill-climbing algorithm is used to find the maximum-
likelihood estimates for all rate and selection parameters. Likelihood Ratio Tests are then used to test deviations
from neutrality (W, = 1). The dN/dS ratio reported in the main text corresponds to the full context-dependent model
with 192 substitution rates. This method allows quantifying the strength of selection avoiding the confounding effect

of gene length, sequence composition, different rates of each substitution type and context-dependent mutagenesis.

Short indels
Along with the 1,907 somatic mtDNA substitutions, we identified 109 and 142 somatic short insertions and

deletions, respectively, from the 1,675 cancer mtDNA sequences using Varscan2 (Supplementary file 2).

Evolutionary dynamics of neutral mitochondrial mutations

We model the evolutionary dynamics of mitochondrial mutations under random drift and derive a simple equation
for the expected number of homoplasmic mutations. There exist multiple levels at which mitochondrial mutations
evolve: within mitochondria, in the cytoplasm and on the cellular level (Rand, 2011). Here we focus on the
dynamics in a single cell, which represents the founder of the last clonal expansion in the tumor cell population. The
cellular dynamics during a clonal expansion are difficult to describe analytically, but it is important to realize that
mutations a clonal expansion preserves the allele frequencies of neutral variants and that mutations that occur after

the expansion are unlikely to contribute to measurable allele frequencies, as the population becomes large.

We model the evolutionary dynamics of mitochondrial mutations in the cytoplasm of a single cell by a Wright-
Fisher process (Wright, 1931), in which the number of mitochondria in a subsequent generation is a binomial sample
of the mitochondria in the previous generation. The number of mitochondria M is kept fixed. The marginal allele
frequency X of a single site has two absorbing boundaries X=0 and X=M (homoplasmy) and the probability of
fixation of an allele at frequency X by neutral drift is p = X/M (Wright, 1931). Note that this process leads, on the
population level, to a dichotomization of heteroplasmic variants to either go extinct or become homoplasmic and

fixate in a cell.

Mutations on any of L (=16,569nt) sites in the mitochondrial genome are assumed to occur at a uniform rate u per

nucleotide per cell division, which is of order 107, based on a human inter-generational comparison (Coller et al.,
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2001). Hence the rate of neutral evolution is simply uLM / M = uL (Kimura, 1984). Lastly, the expected time to
fixation in the Wright-Fisher process is t = 2M. Putting these things together, the expected number of mutant

alleles N in a cell initially without any mitochondrial mutations after T generation is

E[N]=u L (T~2M)

This equation predicts a linear accumulation of neutral mutations over time, with a delay imposed by number
of mitochondrial copies. A similar behavior has been reported using numerical simulations (Coller et al,,
2001). When also considering heteroplasmic mutations, the expected number of alterations may be slightly

higher.

To check whether our model yields the correct behaviour, we use the following numbers: The observed order
of magnitude of mitochondrial mutations per patient was N=1. The sequencing coverage on the mitochondrial
genome indicates that there we of order M=100 mitochondrial genome copies present per cancer cell. The
expected number of mutations per cell division is uL = 1.6 x 1073, it therefore requires around 1000 cell
generations T to accumulate on average one homoplasmic mutation. This number of generations appears
realistic for regenerating tissues. As expected, epithelial cancers had among the highest observed number of

mitochondrial mutations, while hematopoietic cancers typically had lower numbers.
Statistical testing

Statistical testing was performed using R software. All p-values were calculated by two-tailed testing. Figures were

generated using R and Microsoft Excel software.
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FIGURE LEGENDS AND TABLES

Figure 1. Mitochondrial somatic substitutions identified from 1,675 Tumor-Normal pairs.
mtDNA genes and intergenic regions are shown. The strand of genes is shown based on mtDNA
strand containing equivalent sequences of transcribed RNA. Substitution categories (silent, non-
silent (missense and nonsense), non-coding (tRNA and rRNA) and intergenic) are shown by
shapes of each substitution. Six classes of substitutions are presented color-coded. The
substitutions on the H, and L strand (when six substitutional class were considered) are shown
outside and inside of mtDNA genes, respectively. Vertical axes for H and L strand substitutions

represent the VAF of each variant.

Figure 2. mtDNA somatic substitutions of human cancer. (A) Number of somatic
substitutions in a tumor sample. (B) Average number of somatic substitutions per sample across
31 tumor types. (C) Age of diagnosis and number of mtDNA somatic substitutions in breast

cancers.

Figure 3. Replicative strand bias for mtDNA somatic substitutions. (A) Replicative strand-
specific substitution rate (# of observed / # of expected) by 96 trinucleotide context.
Substitutions in a specific mtDNA segment (from Ori-b to Og) are not included, because they
present a different substitutional signature. (B) Mutational signature across tumor types.
Eighteen tumor types, which include at least 25 mtDNA mutations, were shown. (C) Inverted

substitution signature in the Ori-b - Oy

Figure 4. Mutational signature similar to processes shaping human mtDNA sequence over
evolutionary time (A) triplet codon depletion in human mtDNA by equivalent (Cy>Ty and
T >Cp) mutational pressure. Relative frequency of each triplet codon within synonymous pairs
(NNT-NNC or NNA-NNG) is shown by color. The arrows beside the box highlight the T>C (red)
and G>A (blue) substitutional pressures on the L strand in germline mtDNA (B) Correlation of
triplet codon frequencies between from observed and from simulated evolutions of a random
sequence mtDNA by the mtDNA somatic mutational signature with constraining mitochondrial

protein sequences.
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Figure 5. Selection and mutational process for mtDNA somatic substitutions. (A) Truncating
mutations (nonsense substitutions and frame-shifting (FS) coding indels) present significantly
lower VAF. (B) Change of VAF of mtDNA somatic mutation between primary and metastatic
(or late) cancer tissues. (C) Mutational signature for mtDNA across various tumor types. None of
the three highlighted mechanisms or nuclear DNA double-strand breaks repair mechanism
(BRCA) match with the mtDNA mutational signature. * Only substitutions in protein-coding

genes considered. (D) A proposed model of mtDNA mutational process.

Figure Supplements Legends

Figure 1-figure supplement 1. Correlation in amount of mtDNA reads between whole-
genome and whole-exome sequencing. 139 DNA samples, either from tumors or bloods,
sequenced by whole-genome sequencing were additionally sequenced by whole-exome
sequencing. We compared the amount of mtDNA reads between whole-genome and whole-
exome sequencing. As shown in this figure, we found strong positive correlation. ¥ CGP; Cancer
Genome Project, Wellcome Trust Sanger Institute, WUGSC; Washington University Genome

Sequencing Center

Figure 1-figure supplement 2. Correlation of heteroplasmy levels between whole-genome
and whole-exome sequencing. To validate the sensitivity and specificity of variant calling in
this study, 19 tumor and normal pairs (which were originally whole-genome sequenced) were
whole-exome sequenced and mtDNA variants were assessed independently. We correlated the

heteroplasmic levels of 20 mutations detected in common.

Figure 1-figure supplement 3. Validation of mtDNA somatic substitutions.

Figure 1-figure supplement 4. Amount of off-target mtDNA reads across four sequencing

centers. * CGP; Cancer Genome Project, Wellcome Trust Sanger Institute (n = 855), WUGSC;
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Washington University Genome Sequencing Center (n=140), BCM; Baylor College of Medicine
(n=85), BI; Broad Institute (n=435)

Figure 1-figure supplement 5. Filtering samples of potential DNA contaminations. (A) A
histogram presenting potential sample-swaps in tumor-sample pairs. (B) A histogram presenting
potential minor DNA cross-contamination in tumor samples. Cross-contamination levels were
considered in filtering substitutions (see “Minor cross-contamination of DNA samples” section
in Materials and Methods). (C) Histograms showing number of somatic substitutions

overlapping with known inherited polymorphisms and (D) number of back mutations.

Figure 2-figure supplement 1. VAF's of phased somatic mtDNA substitutions.
This figure presents VAF pairs between co-clonal, subclonal and different strand mtDNA
substitutions. We expect similar VAFs for co-clonal pairs; lower VAF in sub-clonal mutations

compared to clonal ones; and sum of a VAF pair is equal or less than 1.0.

Figure 3-figure supplement 1. Replicative strand bias observed in mtDNA substitutions. (A)
Mutational signature of mtDNA somatic substitutions on the 12 L strand genes by replicative
strand (L/H strand). It agrees very well with the background mutational signature. (Chi-square
p=0.99999) (B) Mutational signature of mtDNA somatic substitutions on the H strand gene (M7-
ND6) by replicative strand. It is very close to the background very close to the expected
background signature (Chi-square p=0.027). If we consider signature by transcriptional strand,
the signature difference is very clear (Chi-square p=1x10"). These suggest the strand bias not to
be transcription-coupled, but replication coupled. (C) Mutational spectrum of mtDNA somatic
substitutions on the 22 tRNA genes by replicative strand. Again, it agrees very well with the
background mutational signature. (Chi-square p=0.71) (D) Mutational spectrum of mtDNA
somatic substitutions on the 22 tRNA genes by non-transcribed (coding) and transcribed (non-
coding) strand. Strand bias was greatly subsided because somatic substitutions on 14 L strand
and 8 H strand tRNAs neutralize the strand bias (Cy>Ty and T >C}) each other. As a result, this
signature of tRNA mutations by transcriptional strand is significantly different from the
background one (Chi-square p=3.3x10"%). Taken all together, we concluded that the cause of

strand bias is not transcription-coupled but is replicative.
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Figure 4-figure supplement 1. TC and GA skew for L strand mtDNA genes across 8 animal
species. C.elegans (a nematode) and D. melanogaster (fruit fly) mtDNA appears to have
GL<<A[ (due to Cy>Ty mutational pressure) and C;>>Ty (due to C;>T| mutational pressure) in
the 3" base of triplet codon in L strand genes. Therefore they seem to have predominant C>T
mutational pressure without strand bias. D. rerio (zebrafish), X. laevis (frog) and M. musculus
(mouse) presents Gy <<Ap (due to Cp>Ty mutational pressure), but similar number of Cp and Ty.
Therefore, mtDNA of these sequences is thought to have Cy>Ty, with strand bias. The existence
of Tr>Cp is not clear. Finally, mtDNA of H. sapiens, P. troglodytes (Chimpanzee) and G.
domesticus (Chicken) shows clear Cy>Ty and T >Cp as mentioned in the main manuscript.
Interestingly, T>CL seems to be slightly stronger in the mitochondria of Chicken than that of
human (or Chimp). We suggest there would be some differences in the mechanism of mtDNA

replication across the evolution tree.

Figure 4-figure supplement 2. Correlation of triplet codon frequencies between from

observed and from simulated evolutions under the mtDNA somatic mutational signature.

Figure S5-figure supplement 1. Number of recurrent substitutions between silent and
missense substitutions. 100 sites were randomly selected from silent substitutions (at 3 base of
triplet codon) and missense substitutions (at 1% and 2™ base of triplet codon). No significant

difference was observed among these three groups.

Figure S5-figure supplement 2. Comparison of VAF of protein-truncating mutations
(nonsense substitution and indels) across tumor types. Four tumor types with more than 10
protein-truncating mutations are shown. Fisher’s exact were applied between breast and other

tissue types.

Figure 5-figure supplement 3. Negligible impacts of external mutagens (UV and tobacco
smoking) to the somatic mtDNA mutations. No evidence of UV and tobacco smoking was
identified even in melanoma and lung cancers, respectively. (Left) We compared the proportion
of C>T (and G>A) substitutions in the CpC (GpG) context (mutational signature for

UV(Alexandrov et al., 2013)) between melanomas and breast cancers (controls). Because UV
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shows trivial impact to the nuclear DNA somatic mutations of breast cancers (Alexandrov et al.,
2013), the vast majority of mtDNA C>T substitutions in the CpC context from breast cancers
were not generated by UV. (Right) We compared the proportion of C>A (G>T) substitutions
between lung and breast (control) cancers. C>A (G>T) substitutions are dominantly generated by
tobacco smoking. Like UV, the impact of tobacco smoking to the somatic mutations of breast

cancers is trivial (Alexandrov et al., 2013).
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Legends of Supplementary Files

Supplementary file 1. Sequencing information of 1,675 tumor-normal pairs.

Supplementary file 2. Catalogues of somatic mutations (substitutions and indels) and

inherited polymorphisms identified in this study.

Supplementary file 3. List of phased somatic substitutions.

Supplementary file 4. dN/dS for 13 protein-coding genes in mitochondria.

Supplementary file 5. List of somatic substitution with higher recurrent rate than expected.
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1081  Table 1. Summary statistics of mtDNA sequence data

1082
1083
Average Average Average Average
WGS WXS mtRD mtRD  Total WGS WXS mtRD mt RD Total
(WGS) (WXS) (WGS) (WXS)

Breast 284 98 11,5943 52.7 382 Meningioma 0 12 - 42.5 12
Colorectal 1 75 34,9169 276.6 76 Ependymoma 1 9 10,323.7 52.7 10
Lung 60 0 2,798.1 - 60
Prostate 80 0 17,810.6 - 80 MPD 12 138 1,517.0 109 150
Hepatocellular 0 47 - 205.8 47 MDS 3 75 5,648.7 445 78
Melanoma 13 13 513.9 353.5 26 ALL 64 6 886.6 35.9 70
Gastric 0 13 - 184.1 13 CLL 6 0 5,002.2 -
Cholangiocarcinoma 0 8 - 143.9 8 AML 1 6 6,783.6 27.4
Mesothelioma 0 6 - 106.3 Multiple myeloma 0 69 - 43.2 69
Bladder 54 0 646.2 - 54 AMKL 0 9 - 242 9
Renal 0 23 - 354 23 Lymphoma 0 4 - 99.5
Ovarian 0 38 - 58.9 38
Uterine 27 23 736.0 149.5 50 Osteosarcoma 38 90 9,525.5 119.2 128
Cervical 0 52 - 85.2 52 Chondrosarcoma 0 47 - 99.1 47
Adenoid cystic ca. 1 60 714.7 75.6 61 Ewing sarcoma 0 27 - 69.5 27
Head&Neck 43 3 1,369.1 18.8 46 Kaposi sarcoma 0 9 - 181.0 9

Chordoma 16 11 1,240.0 82.1 27
Total; 31 cancer types 704 971 1,675

1084

1085 WGS, whole-genome sequencing; WXS, whole-exome sequencing; mt RD, mitochondrial read-depth; MPD,

1086 myeloproliferative disease; MDS, myelodysplastic syndrome; ALL, acute lymphoblastic leukaemia; CLL, chronic

1087 lymphoblastic leukaemia; AML, acute myeloid leukaemia; AMKL, acute megakaryoblastic leukaemia.

43



Figure 1
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