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Abstract The Yule-Harding-Kingman (YHK) model and the proportiotwatlistinguishable arrangements (PDA) model
are two binary tree generating models that are widely usedafutionary biology. Understanding the distributions of
clade sizes under these two models provides valuable itssigio macro-evolutionary processes, and is important in
hypothesis testing and Bayesian analyses in phylogenkElére we show that these distributions are log-convex, whic
implies that very large clades or very small clades are mkegylto occur under these two models. Moreover, we prove
that there exists a critical valugn) for eachn > 4 such that for a given clade with sikethe probability that this clade

is contained in a random tree withleaves generated under the YHK model is higher than thatrthédePDA model

if 1 <k < k(n), and lower ifk (n) < k < n. Finally, we extend our results to binary unrooted trees, @btain similar

results for the distributions of clan sizes.
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1 Introduction

Distributions of genealogical features such as shapesiers) and clades are of interest in phylogenetic and ptpula
genetics. By comparing biological data with these distidns, which can be derived from null models such as the Yule-
Harding-Kingman (YHK) model and proportional to distinghiable arrangements (PDA) model, we can obtain insights

into macro-evolutionary processes underlying the da&senstein2004 Mooers and Heardl 997 2002 Nordborg
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1998 200J). For instance, phylogenetic tree statistics were usedutdysvariation in speciation and extinction rates

(see, e.gAgapow and Purvi§2002; Mooers and Hear(lL997; Rogery1996).

As a basic concept in phylogenetic studies and systemaissification of species, a clade, also known as a mono-
phyletic group, is a subset of extant species containinthelldescendants of a common ancestor. In this paper, we
are interested in the distributions of clade size in a rantt@® generated under the null models. Such distributions
have been utilized in hypothesis testing as to whether afsextant taxa forms a cladéH(gdson and Coyne2002
Rosenberg2007), and are relevant to the Bayesian approach to phylogemetnstructionRickett and Rand|e2005
Steel and Picket20089.

Two well-studied and commonly used null models in evoludigrbiology are the Yule-Harding modefile, 1925
Harding 1971 and the PDA model (also known as the uniform modald6us 200]). Loosely speaking, under the
PDA model all rooted binary trees are chosen with equal gritibas, while under the Yule-Harding model each tree is
chosen with a probability proportion to the number of totaleys that can be assigned to internal nodes of the tree so
that the relative (partial) order is preserved (see, 8gmple and Steg2003. More precisely, the Yule-Harding model
assumes a speciation process with a constant pure-bighBltm et al 2006 Pinelis 2003, which generates the
same probability distributions of tree topologies as Kiragrs coalescent procedsiigman 1982. Therefore, we will
refer to it as the Yule-Harding-Kingman (YHK) mod&Iiflous 1996. Both the YHK model and PDA model are used
to generate prior probabilities of tree topologies in Bagephylogenetic analyseki(et al, 2000 Rannala and Yang
1996.

Comparison studies of various tree statistics between Hi¢ &nd PDA models have been reported in the literature.
For example McKenzie and Stee(2000 derive the asymptotic probability distributions of chesrin phylogenetic
trees;Steel(2012 discusses the root location in a random Yule or PDA tBiem et al(2006 obtain formulas for the
mean, variance, and covariance of the SacBiackin 1972 and CollessColless 1982 indices, two popular indices

used to measure the balance of phylogenetic trees.

Note that in Bayesian analyses, the output is often cladpa@tipalculated from the consensus of the approximated
posterior distribution of the topologies. However, thatielinships between topological priors and clade prioro&en
not straightforward. For instance, it is observed that thiéoum topological prior, which is induced by the PDA model,
leads to non-uniform clade priorRickett and Rand|€2005. Indeed, fom > 4, neither the PDA model nor the YHK
model gives rise to a uniform prior on clad&t¢el and PicketP00§. As an attempt to further elucidate these relation-
ships, in this paper we study the distributions of cladessimehe PDA model, and then conduct a comparison study of
these distributions with those in the YHK model. In additisre conduct a similar study on clans, the counterpart of

clades for unrooted trees.

The remainder of the paper is organized as follows. SecBoasd 3 contain necessary notation and background
used in the paper and a brief review of the YHK and PDA modekstign present in Section 4 the results concerning
clade probabilities under the two null models, and thosateelto clan probabilities in Section 5. Finally, we conéud

in Section 6 with discussions and remarks.
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Fig. 1 Example of a rooted phylogenetic tree (left) and an unroptgdogenetic tree (right).

2 Preliminaries

In this section, we present some basic notation and backdrooncerning phylogenetic trees and log-convexity that
will be used in this paper. From now oX,will be used to denote the leaf set, and we assumeXliga finite set of size

n=|X| > 3 unless stated otherwise.

2.1 Phylogenetic trees

A treeis a connected acyclic graph. A vertex will be referred to desadif its degree is one, and dnterior vertex
otherwise. An unrooted treelgnaryif all interior vertices have degree threer@dotedtree is a tree that has exactly one
distinguished node designated as thet, which is usually denoted by. A rooted tree is binary if the root has degree
two and all other interior vertices have degree three.

A phylogenetic treen X is a binary tree with leaves bijectively labeled by elemeritX. The set of rooted and
unrooted phylogenetic trees ofiare denoted by’ and .7, respectively. Two examples of phylogenetic trees on
X =1{1,...,7}, one rooted and the other unrooted, are presented in Flgure

Let T be a rooted phylogenetic tree &n Given two vertices andu in tree T, u is below vif v is contained in the
path betweem and the root ofl . In this case, we also sayis adescendandf v if v andu are distinct. Acladeof T is
a subset oKX that contains precisely all the leaves below a vertek.i\ cladeA is called trivial if A| = 1 or |A| = X
holds, and non-trivial otherwise. SinGehas 21— 1 vertices, it contains preciselyn2- 1 clades, including+ 1 trivial
ones. For example, the rooted phylogenetic treX en{1,...,7} depicted in Figurd has 13 clades: the five non-trivial
ones arg1,2},{3,4},{1,2,3,4},{6,7} and{5,6,7}.

Suppressing the root of a trfein J%, that is, removingp and replacing the two edges incident wighwith an
edge connecting the two vertices adjacent toesults in an unrooted tree i, which will be denote by ~1(T). For
instance, for the rooted trée and unrooted tre&* in Figurel, we haveT* = p~1(T). Note that for eacf * in 7%,
there are preciselyr2- 3 rooted treed in 7 such thafl * = p~1(T) holds.

Recall that asplit AIB on X is a bipartition ofX into two disjoint non-empty set& andB, that is,ANB =0 and
AUB = X. Let T* be an unrooted tree ify". Every edgee of T* induces a necessarily unique sp|B of X obtained
as the two sets of leaves separatectbiy other words, the path between a pair of leaveX itontainse if and only if

one of these two leaves is Aand the other one is iB. In this case, we saf|B is a split contained i *. A clan Aof
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T* is a subset oK such thatA|(X \ A) is a split contained iff *. SinceT* has 21— 3 edges and each edge induces two

distinct clans, it contains preciselyzh — 3) clans.

2.2 Log-convexity

A sequencdys,...,ym} of real numbers is callegositiveif each number contained in the sequence is greater than zero
It is calledlog-convexf yi_1yk.1 > Y2 holds for 2< k < m— 1. Clearly, a positive sequen¢g}1<k<m iS l0g-convex
if and only if the sequencéyk1/Yk}1<k<m-1 IS increasing. Therefore, a log-convex sequence of pesitumbers is

necessarilyinimodal that is, there exists an index<lk < msuch that

Y12Y22--2Y and Y <Ykr1 <0 <Ym 1)

hold. Recall that a sequené® }1<i<m is also called unimodal §1 < y2 < --- < yk andyi > Yk1 = -+ = Ym hold for
some 1< k < m. However, in this paper, unimodal is always referred to theation specified in Eq.1).

For later use, we end this section with the following rescitiscerning log-convex sequences (see,léugand Wang
(2007).

Lemmal If {yi}i<i<m and{y }1<i<m are two positive and log-convex sequences, then the seesigficr Y, } 1<i<m

and{yi -y, }1<i<m are positive and log-convex. O

3 The PDA and YHK models

In this section, we present a formal definition of the two mabdels investigated in this paper: theoportional to
distinguishable arrangement8DA) model andrule—Harding—KingmagYHK) model.
To begin with, recall that the number of rooted phylogeni&es with leaf seX with n= |X| is

o B _ (2n-2)!
Here we will use the convention thé{1) = 1. Under the PDA model, each tree has the same probabiliy geberated,

that is, we have
1

Pppa(T) = 3 )
for everyT in 9.

Under the Yule—Harding model, a rooted phylogenetic tre¥ @generated as follows. Beginning with a two leafed
tree, we “grow” it by repeatedly splitting a leaf into two néxaves. The splitting leaf is chosen randomly and uniformly
among all the present leaves in the current tree. After pistgian unlabeled tree with leaves, we label each of its
leaves with a label sampled randomly uniformly (withoutlegement) fromX. When branch lengths are ignored, the
Yule—Harding model is shown b4ddous(1996 to be equivalentto the trees generated by Kingman'’s coatgprocess,
and so we call it the YHK model. Under this model, the prolighif generating a tre& in %% is (Semple and Stegel
2003: - .

Pynk (T) = — (3)
n! ve\7|_|(T) )\V
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Where\7(T) is the set of interior nodes df, andAy is the number of interior nodes @fthat are below. For example,

the probability of the rooted tree in Figutds 2/~1/(7! x 3 x 2 x 6).

For an unrooted tre&* in .7, let p(T*) denote the set of rooted tre@sin F with T* = p~1(T). As noted
previously in Sectior?, T* can be obtained from each of tha 2 3 rooted tree§ in p(T*) by removing the root of
T. Using this correspondence scheme, a probability me&sareZ induces a probability measufg on the set7".

That is, we have

Py(T)= Y P(T) (4)
Tep(TH)

In particular, letP,ynk andPyppa denote the probability measures &g induced byPynk andPppa, respectively.

Note that this implies
1

Puppa(T") = dn-1) (5)
for everyT* in 5. Since the number of unrooted phylogenetic treeX | 7| = ¢ (n— 1) = (2n—5)!, each tree in
I has the same probability undBgppa.

We end this section with a property of the PDA and YHK modeét thill play an important role in obtaining our
results. Recall that a probability meastfr®n % has theexchangeability propertif P depends only on tree shapes,
that is, if two rooted tree$’ andT can be obtained from each other by permuting their leavesR{iIr ) = P(T”) holds.
Similarly, a probability measure offy’ has the exchangeability property if it depends only on ttespss. It is well-
known that botiPynk andPppa, the probability measures on the set of rooted tr@gsnduced by the YHK and PDA
models, have the exchangeability propedydous 1996, By Egs. 6) and @), we can conclude that the probability

measure® vqk andPyppa on the set of unrooted treeg;” also have the exchangeability property.

4 Clade probabilities

In this section, we shall present our main results on cladbatilities. To this end, we need some further notation and

definitions. Given a rooted binary trée let

1, if Aisaclade ofT,
Tt (A) = (6)
0, otherwise,

be the ‘indicator’ function that maps a subgedf X to 1 if Ais a clade ofT, and 0 otherwise. Now for a subs&bf X,

the probability ofX being a clade of a random tree sampled according to a pratyatidtribution on 7 is defined as
F(A)= 3 PTI(A). (7)
Te %
Sincey aocx It (A) = 2n— 1 for eachT € Fx andyr. » P(T) = 1, we have

Agx P(A) = Aé(TE;X]P’(T)HT (A) = TE;X]P(T)AEXHT (A)=2n-1.

By the last equation, we note that each probability meaBue Z% induces a measure on the set of all subsets,of

which can be normalized to a probability measure by a fadtay @n— 1).
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The above definitions on a subsebotan be extended to a collection of subsetX oT hat is, given a collection of
subsetq Ay, ..., A} of X, we have

It (Ag,...,Am) = I1 (A1) - I1 (Am), (8)
and

P(Ag,...,Am) = ; P(T)(Ir (A1) - -~ T7 (Am) ). 9)
TeI%

Note thatlt (Aq1,...,An) = 1 if and only if eachA; is a clade off for 1 < i< m. On the other hand, it is well known (see,
e.g. Semple and StegR003) that given a collection of subse{g\;,...,A¢} of X, there exists a tre& € J% with
It (Aq,...,An) =1ifand only if {Aq, ..., A} forms ahierarchy, that is,AiNAj € {0,A;,Aj} holds for 1<i < j<m

The following result shows that if a probability measure elegis only on tree shapes, then the clade probabilities

derived from it are also independent of the ‘labeling’ of éements.

Lemma 2 LetP be a probability measure offx that has the exchangeability property. Then for each pagulifsets A
and A of X with|A| = |A’|, we have

P(A) =P(A) and P(AX\A) =PA X\A). (10)

Proof Suppose thah andA’ are two subsets of that have the same size. Then there exists a permutatiorX such
thatA’' = A™:= {m(x) | x € A}. Now for each tred in 9%, let T™ be the tree obtained fro by relabeling the leaves of

T according to permutatior. ThenAis a clade ofT if and only if A" is a clade off . Together with Eq.7), we have

P(A) = TE%XP(T)HT (A) = T;XP(T)HTH(AT[)

= 3 BIn(A = 5 B(T)lkrn(AT) = B(AT)

where the third equality follows from the exchangeabilitpgerty of P. This showsP(A) = P(A’), and a similar argu-
ment leads t@®(A, X\ A) = P(A", X\ A'). O

SincePynk has the exchangeability property, by Leméheve know thatPynk (A) is determined by the size &

only. Therefore, we denote
Pn(@) = Pyhk (A),

as the probability that a random tree 4%, wheren = |X|, induces a specific clad®of sizea under the YHK model.

Similarly, we let
0n(@) = Ppoa(A),

be the probability that a random tree.irx induces a specific clad® of sizea under the PDA model. In addition, we

also denote

pn(a, n-— a) = PYHK (A7 X \A)a and Qn(aa n-— a) = ]P)PDA(Aa X \A)7

the probabilities that bothA andX \ A are clades of a tree if’x generated under the YHK and PDA models, respectively.
Note that if bothA andX \ A are clades of a tre€, then they are precisely the clades consisting of the Idasiesv the

two children of the root of .
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Corollary 1 Let P be a probability measure ok that has the exchangeability property. For eatks a < n, the

expected number of clades with size a contained in a randegrseimpled according ®is
n
P(A
WE

Proof Denote the collection of subsets Xfwith sizea by 25 and fix a subseA € 25. LetZr (@) 1= Syeq, IT(Y) be

where A is an arbitrary subset of X witA| = a.

the number of clades with sizecontained in a tre@. Then the expected number of clades with sizmntained in a

random tree sampled accordingias given by

PRULCED S R LEIED I UL RIS (2)1P’(A>,

where the last equality holds because by Len2Zmee haveP(Y) = P(A) forall Y € Z5. O

4.1 Clade probabilities under the YHK model

In this subsection we study the clade probabilities undeMHK model. First, we have the following theorem concern-
ing the computation opn(a) and ps(a,n— a), which was discovered and rediscovered several times ifitérature

(see, e.g.Blum and Francoi$2005; Brown (1994; Heard(1992; Rosenberg2003 20089).

Theorem 1 For a positive integer & n— 1 we have:

(i) pn(a) = a+1 (a)i
(ii) pn(an a) (a)*

By the above results, we show below that clade probabilitreger the YHK model form a log-convex sequence.

This implies that the clades with small or large size are ntigedy to be generated than those with middle size under

the model.

Theorem 2 For n > 3, the sequencépn(a) }1<a<n @and{pn(a,n— a) }1<a<n are log-convex. Moreover, let
n—-3y2 n-3
A =yn+ (A7) + 55

then we have

(i) pn(a@) = pn(a+1)fora< A(n), and p(a) < pn(a+1) fora> A(n), and
(i) pn(a,n—a)>pn(a+1,n—a—1)fora<n/2and ;m(a,n—a) < pp(a+1,n—a—1)fora>n/2.

Proof Lety, = for1<a<n—1andy, =1, andy, = (2)7l for 1 <a< n. Since{ya}i<a<n and{y,}1<a<n are

a+1)
both log-convex, by Lemmaand Theoreni we can conclude that the sequef@a(a) }1<a<n iS log-convex. A similar

argument shows thdtpn(a,n— a) }1<a<n is also log-convex.

By Theoreml, we have
P+l  a@+1)Q a(a+1)
Mm@  (a+D@+r2)(]) @+r2nh-a)
for 1 <a< n-—2.The last equation is less than or equal to 1 if and only if

a(a+1) < (a+2)(n—a) <= 2a’— (n—3)a—2n<0.

Thereforepn(a+ 1) < pn(a) if and only ifa < A(n). This establishes Part (i) of the theorem.
Part (i) of the theorem follows from the fact th@}) < (,,) fora<n/2and(}) > (,,) fora>n/2. O
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4.2 Clade probabilities under the PDA model

Parallel to those in the Sectidnl, in this subsection we derive results on clade probatslitieder the PDA model.

Theorem 3 For a positive integer & n— 1 we have:

() gn(a) = p@¢(n—a+l) _ (n—l) (Zn—Z)*l_

¢(n) a-1/\2a-2
. - ~1y 2n-2y 1
(i) on(an—a)= ¢<a2p¢<53 2 — sy (a1 a2

Proof To derive the formula fogn(a), it suffices to show that there agéa)¢ (n—a+ 1) trees ine7, the subset of trees
in % containingA as a clade, because the probability of each tre&ins 1/¢ (n). Without loss of generality, we can
assume thaX ={1,2,--- ,n} andA={n—a+1,---,n}. Let

X' =X-Au{n-a+1}={1,2--- ,n—an—a+1};

then each tree ig7 can be generated by the following two steps: picking up aitre&: and replacing the leaf with
labeln—a+ 1 by a tree fromZ,. In addition, a different choice of trees in the first steptar $econd step will result in
a different tree inzZ. Since there arg (n—a-+ 1) possible choices in the first step afita) ones in second step, we can
conclude that the number of treesis ¢ (a)¢ (n—a+1). In addition, using the fact that
(2m-2)n
= N =
¢ (m) = (2m—3)!! I I(m_1)!

holds form > 1, we have

-1
() = 2@P(—atD) _ (a-2)@n-2a)l(n-1) <n1) (2n2) .

¢(n) ~ (2n-2)!(a—1)!(n—a)! a-1)\2a-2

The proof of the formula fogn(a,n—a) is similar to the one fogp(a). Let «* be the collection of the trees in
Jx containing bothA and X — A as clades. Then a tree o™ is uniquely determined by choosing a treed, and

subsequently another tree froffx_a. This implies the number of trees i is ¢ (a)¢$ (n— a). Hence

_¢@¢(n-a) 1
h(@n-a)=——4 0 — = Gna_p*®

e N[ (A I

O

Recall that in Theorer2 we show that clade probabilities under the YHK model formgdonvex sequence. Here
we establish a similar result for the PDA model, which implieat the sequencégn(a) } 1<a<n and{gn(a,n—a)}1<a<n

are also unimodal.

Theorem 4 For n > 3, the sequencégn(a) }1<a<n @and{on(a,n— a) }1<a<n are log-convex. Moreover, we have

() an(a+1) > agn(a) when a>n/2, and gy(a+ 1) < gn(a) when a< n/2.
(i) gn(@a+1l,n—a—1)>agn(a,n—a)whena> (n—1)/2,and q(a+1,n—a—1)>qgn(a,n—a) whena< (n—1)/2.
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Proof By Theorem3 andgn(n) = 1, for 1< a< nwe have
On(a+1) 2a—1

(@  2n—2a-1’

which is greater than or equal to 1 whea-21 > 2n—2a— 1, or equivalently whem > n/2. Thus Part (i) follows.

Moreover, we have

gn(a+1)gn(a—1) 2a—1\/2n—2a+1
= >
g3(a) (2a73)(2n72a71) >1,

for 2<a<n, and hencdgn(a) }1<a<n is log-convex.

Similarly, we have

~ 2n—-2a-3

h(@a+1ln—-a—1) (Zn—2a—1)(qn(a+l)) 2a—1
gn(a,n—a) 2n—2a—3 On(a)

which is greater than or equal to 1 whem21 > 2n— 2a— 3, or equivalently whea > (n— 1) /2. Moreover, we have

on(a+1,n—a—1l)gw(a—1,n—a+1) (Za—l)(Zn—Za—l)
= > 17
gé(a,n—a) 2a—3/\2n—2a-3

and henc€qn(@) }1<a<n is log-convex. O

4.3 A comparison between the PDA and YHK models

Using the formulae for computing clade probabilities unither PDA and YHK models presented in the previous two
subsections, here we investigate the differences betvaese two models. Let’s begin with comparipga) andgn(a),

the probabilities of a specific (and fixed) clade of slaender the YHK and PDA models, respectively. As an example,
consider the ratio opy(a)/qgn(a) with n= 30 as depicted in Figur2 Then it is clear that, except far= 1 for which
bothpn(a) = gn(a) = 1, the ratio is strictly decreasing and is less than 1 waisrgreater than certain value. This ‘phase

transition’ type phenomenon holds for all> 3, as the following theorem shows.

Theorem 5 For n > 3, there exists a number(n) in [2,n— 1], such that p(a) > gn(a) for 2 < a< k(n), and p(a) <

gn(a) for k(n) <a< n—1.

Proof Let

(a) = p(@  2n /2n—2\/n\ */n-1\"
Oni) = (@) ala+1)\2a-2/\a a-1,
Using the identity(,T,) = =% (%), we obtain

on(a+1) ala+1)(2n—2a-1)

On(a) (a+2)(2a-1)(n—-a)
We have

a@+1)(2n-2a-1)< (a+2)(2a-1)(n-a) < a> n%

and hence@p(a) > gn(a+1) for 2n/(n+3) <a< n—2. Since 2/(n+3) < 2, we havegy(2) > gn(3) > -+ > gn(n—1).

Itis easy to see that for > 3,
2(2n—-3)

On(2) = m >1
and
On(n—1) = % <1

This and the fact than(a) is strictly decreasing of2,n— 1] imply the existence of the numbgtn) in the theoremJ
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. ; ; ; ; ;

0 5 10 15 20 25 30

Fig. 2 Plots of the ratiopn(a)/0qn(a) andpn(a,n—a)/qn(a,n—a), withn=30 anda=1,...,29.

Next, we considepn(a,n—a) andgn(a,n— a). Note that by definition, botlp,(a) andgn(a,n — a) are symmetric
aboutn/2, as demonstrated by the plot of the rapida,n— a)/gn(a,n —a) with n =30 in Figure2. In addition, the
figure shows that the ratio is strictly increasing on therive€[1, |[n/2]] (and by the symmetry of the ratio, it is strictly

decreasing on the intervglin/2],n— 1]). This observation is made precise and rigorous in thevidtig theorem.

Theorem 6 For n > 3, there exists a number(n) in [1,|n/2]], such that p(a,n—a) < gn(a,n—a) for1<a< A(n),

and p(a,n—a) > gn(a,n—a) for A(n) <a< |n/2].

g0 ()

hh(a+1) (a+1)(2n—2a-3) 1
hh(@d ~  (2a—1)(n—a) >

where the last inequality follows from the observation that

Proof Let

Then

(a+1)(2n—-2a—3)—(n—a)(2a—1)=3(n—2a—1)>0

holds for 1< a< [n/2] — 1. This implies that the functiol,(a) is strictly increasing on the intervél, [n/2|].
Thus, it now suffices to show thhg(1) < 1 andhn(|n/2]) > 1 in order to demonstrate the existenceAdh). We

have

_ pa(Ln—1) 2(2n-3)
~ gn(,n—1) n(n-1)
if n> 3. Letk=|n/2].If nis even (i.e.k=n/2), then fork > 2

-2 2200 )

[(8k—2\ (2k-1 *2>1
" \x-2)\ k-1 '

<1

hn(1)

?
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0.7 ; ; ; ; ;

Pn(a,n = a)/pn(a) = gn(a,n — a)/gn(a)

o | i i i i
0 5 10 15 20 25 30

Fig. 3 Plot of functionup(a) with n= 30.

The inequality in the last equation can be seen as followsAlasdB be two sets, each havirigk — 1) elements. The
number of subsets &U B that havek — 1 elements from each #fandB is (Zkkjll)z. On the other hand, the total number
of (2k— 2)-subsets OAUB s (5 3).

If nis odd (i.e.k= (n—1)/2), then

2(2k+1) [ 4k \ [2k+1\ "t/ 2k \7*
Maca(l) = =7 = {a—2) | & k—1
2kl 4k k[ 272
Tk \2k-2)2k+1\k-1

[ 4k 2 \ 2
- \2k—-2/\k—-1)
Using the same argument as in provimg(k) > 1, we also havéy1(k) > 1 fork > 1. O

Let A be a fixed subset of with sizea, where 1< a < n— 1. In the previous two theorems, we present comparison
results forP(A) andP(A, X \ A) under the YHK and PDA models. We end this subsection with apasison study of
P(A, X\ A)/P(A), that is, the probability that a trée € 7% sampled according to probability measlreontains both
AandX\ A as its clades (which means thland X \ A are the clades below the two children of the rooTf given
thatAis a clade off . To this end, let

ph(a,n—a) dgn(a,n—a) a(a+1) 1
@  on@  nn—-1) 2n-2a—1

un(a) =

be the difference between the two conditional probabditiader the two models. We are interested in the sign changes
of up(a) as it indicates a ‘phase transitions’ between these two faoBer instance, considering the valuesupfa)
for n = 30 as depicted in Figurg then there exists a unique change of sign. Indeed, the\@ig®r that there exists a

unique change of sign af,(a) holds for generah, as the following theorem shows.
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Theorem 7 For n > 3, there existg(n) € [1,n—1] such that y(a) < O0ifa < 7(n) and w(a) > 0ifa > t(n).

Proof Consider the function

~ X(x+1) 1
fn(x) = nn-1 2n-2x—1 € R
Clearly fy(x) agrees withu,(a) whenx = a. Then
g XL 2 _t(2n—t)2—2n(n—-1)

= D T @ ox—12 . nn—D@n-02

wheret = 2x+ 1. The sign off/(x) thus depends on the sign of
On(t) =t(2n—t)>—2n(n—1).

We see thagn(t) is a polynomial oft of degree 3, and hence it can have at most three (real) rontthédother hand,

for n> 3, we have:

On(0) =—-2n(n—1) < 0O,
n(1) =n?+(n—1)>>0,

On(2n—1)=-2n(n—2)—-1< 0,

and
tlmg”(t) = 0o,

Therefore,gn(t) has exactly three roots € (0,1), t, € (1,2n— 1), andtz > 2n— 1. Note further thagn(n) = n® —
2n(n—1) =n((n—1)?+1) > 0, and hencé, > n. Denotingx; = (t — 1)/2 for 1 < i < 3, then we have,(x) = 0 for
X € {x1,%2,%3}, fA(x) < O forx e (—o0,x1) U (X2,%3), @and f(x) > 0 forx € (xq,X2) U (X3, ). Sincex; = (1 —1)/2<0
and fn(a) = un(a), the sign off}(x) implies thatun(1) < un(2) < -+ < un(|*2]). Similarly, we also haven([xz]) >
-+ > Up(n—2) > up(n—1). Itis easy to see that far> 3

2 1 (n=2)(n-3)
nn-1) 2n-3 nn—1)(2n-3) =

n(n—1) 1
nn—1) 2n—2(n—1)—1

un(1) =

=0.

up(n—1) =

Sincex; = (tp—1)/2<n—1andxg = (3—1)/2>n—1, [x2] < n—1< x3. This implies thatu,([xz]) > --- >
un(n—2) > up(n—1) = 0. Therefore, there exists a positive numbgr) € [1,x,] such thau,(a) < 0if a< 1(n) and

un(a) = 0ifa> 1(n). O

4.4 Correlation results on the PDA model

In this section, we generalize results in Secdofor a collection of disjoint subsets &f, and then show that the two

indicator variabledr (A) andlt (B) are positively correlated.

Theorem 8 Let Ay, ..., A« be k disjoint (nonempty) subsets of X. Denofixd + - - - + |A«| by m, then we have

B(n—m+K) [ 10 (A

IPPDA(Ala---7Ak) = ¢(n)
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Proof We first compute the number of trees that h&ye. .., A¢ as clades. To this end, note that such a tree can be

constructed in two steps:

1. Build a tree or(X \ U!‘:1Ai) U{Xs,..., %}, wherex],...,x are leaves not iX serving as “placeholders” used in
the second step.

2. Replace eacK with a tree inZ,.

There arep (n—m+ k) different choices for a tree in the first step, gnfl, ¢ (|A|) different ways to replac,,...,x,
by trees inZa,,..., 7, in the second step. Therefore the number of trees that Aave., A, as clades i (n—m+
K) MK, ¢ (|A]). Together with the fact that each treed is chosen with probability Ap (n) under the PDA model, this

implies the theorem. O

Note that|/A|+ - - + |A] = nwhenAq, ..., A, form a partition ofX. Therefore, we obtain the following result as a

simple consequence of Theor&(see Theorem 5.1 ihu et al(2017) for a parallel result on the YHK model).

Corollary 2 If Aq,...,A form a partition of X, then

9 (k) Ms 0 (Al
¢(n)

Theorem8 is a general result concerning a collection of clades. Wheretare only two clades, the below theorem

Pppa(At,...,Ax) =

provides a more detailed analysis.

Theorem 9 Let A and B be two subsets of X witlke, where a= |A| and b= |B|. Then we have

$(@)¢(n—b+1)¢(b—atl)
10 , IfFACB,

Pppa(A,B) = W, if A and B are disjoint,

0, otherwise.

Proof The first case follows by applying Theorem 2 twice. The seaas is a special case of Theor8nThe third
case holds becauseAn B ¢ {A, B, 0}, then there exists no tree that contains bd#ndB as its clades. O

To establish the last result of this subsection, we needdlt@fing technical lemma.
Lemma 3 Let mn,m’,n’ be positive numbers wittm— m')(n—n’) > 0, then
o (M +n)p(m+n) > d(m+n)d(m +n). (11)
In particular, if a< b < b’ < & are positive numbers with-aa’ = b+ b/, then we have
p(@)¢(@) = ¢ (b)p(b). (12)

Proof To establish the first claim, we may assume: m' andn > ', as the proof of the other case,< m’ andn <,
is similar. Now Eqgn. {1) holds because we have

¢(m+n)  (2(m+n)—3)-(2(m+4n)—5)---3-1
p(m+r)  (2(m+n)—3)-(2(m+n)—5)---3-1

= (2m+2n—-3)(2m+2n—5)---(2m+2n'+1)(2m+2n'— 1) (13)
> (2m +2n—3)(2m +2n—5)---(2m +2n' + 1)(2m +2n" — 1) (14)
¢(m +n)

dp(m +n')’
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Here Eq. L3) follows fromn > n’ and Eq. {4) fromm> .

The second assertion follows from the first one by settihg- "' =a/2,m=b—a/2andn="b'—a/2. O

We end this section with the following result, which says tie random variablel: (A) andlt (B) are positively

correlated wher\ andB are compatible, that i®yn B € {0,A,B}.
Theorem 10 Let A and B be two compatible non-empty subsets of X; then
Pppa(A, B) = Pppa(A)Pppa(B).

Proof Seta= |A| andb = |B|. By symmetry we may assume without loss of generality éhatb holds. SinceA andB
are compatible, we have eithamnB=0 orA C B.

Sincen—a—b+2<n—-b+1<n—a+1<n, by Lemma3we have
¢(n¢(n—a—b+2)>¢p(n—b+1)p(n—a+1),

and hence
¢@¢b)¢pn—a-b+2) ¢b)¢Mn-—b+l)d@¢n—a+tl)
¢(n) - ¢(n) ¢(n) '
Together with Theorer8, this shows that the theorem holds for the caseB = 0.

On the other hand, noting that-a+ 1< b <nandb—a+1<n—a+ 1< nholds, by Lemm& we have

¢(np(b—a+1)>¢(b)p(n—a+1),

and hence
¢p@¢b-a+tl)pb)¢p(n—b+1l) ¢b)¢n-—b+l)¢@¢(n—a+tl)
¢ (b) ¢(n) g ¢(n) ¢(n) '
Together with Theorerf, this shows that the theorem holds for the cAseB, as required. O

5 Clan probabilities

In this section, we study clan probabilities, the countdrpiclade probabilities for unrooted trees. To this endegia

subsefA C X and an unrooted treE* € .75, letIt«(A) be the indicator function defined as

1, if AisaclanofT*,

)

I+ (A) =

0, otherwise.

)

Then the probability that claA is contained in a random unrooted tree sampled accordifig i®
FuA)= 3 Pu(T)Ir(A).
T*e T
Note that the the clan probability defined as above can baégteto a collection of subsets in a natural way, that is, we
have
PuA....Am) = S Pu(T*)(Ir(Ag) I+ (Am).

T eI
As a generalization of Lemma 6.1 ithu et al(2011), the following technical result relates clan probalshtito

clade probabilities.
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Lemma4 Suppose thdk is a probability measure o andPy is the probability measure offy induced byP. Then

for a nonempty subset® X, we have
Py(A) = P(A) + P(X\ A) — P(A X\ A).

Proof It is well-known (see, e.g., Lemma 6.1 #hu et al(2011) that for a rooted binary tre€, a setA is a clan of
p~1(T) if and only if eitherA is a clade ofT or X\ Ais a clade off . Now the lemma follows from the definitions and

the inclusion-exclusion principle. O

Now we proceed to studying the clan probabilities under thKYand PDA models. To begin with, recall that the
probabilities of an unrooted tréle’ € .7 under the YHK and PDA models are
Puvbk (T7) = 5 Py (T) and Puppa(T*) = ) Pppa(T),
Tep(T") Tep(T)
wherep(T*) denotes the set of rooted treBsn % with T* = p~(T).
By the definition of clan probabilities, we have
Puvhk (A) = 5 Puynk (T")Ir-(A), and

T*e 7

Puppa(A) = Z Puppa(T*)IT+(A).
T*e 7

It can be verified, as with the case of clade probabilities, the exchangeability property Bfyux andPyppa implies
that bothPyynk (A) andPyppa(A) depend only on the size= |A|, not on the particular elements A Therefore, we
will denote them ap;,(a) andq;,(a), respectively.

By Lemma4, we can derive the following formulae to calculate clan @ioibties under the two models, the first of
which is established iZhu et al(201]). Note that the second formula reveals an interestingioglstiip between clan
probability and clade probability under the PDA model. Itively, it is related to the observation that there exists a
bijective mapping from to & with Y = X U {y} for somey ¢ X that maps each rooted tr@ein .7 to the unique
tree in. %" obtained fromrl by adding the leay to the root ofT.

Theorem 11 For 1< a< n, we have

* 1 1 1 n 71.
Dn(a)=2n[a(a+ 1) + (n—a)(n—a+1) (n—1)n} (a) ; (15)
(o) = $OO- LA RO D @002 16)
_ % — ns(a).

Proof Since the first equation is establishedZinu et al(2011), it remains to show the second one. The first equality

follows from Lemma4 and Theoren3. To establish the second equality, it suffices to see that
¢(n—1p(@)p(n—a+1)+¢(n—ajp(a+1)]
p(n—1)¢p(a)¢p(n—a)[(2n—2a—1)+ (2a—1)]
¢(n—1)(2n—2)¢(a)¢(n—a)
=(¢(M+¢(n-1))¢(a)p(n—a).
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(a)/q;(a)

28

o5 | | 1 | |

0 5 10 15 20 25 30

Fig. 4 Plot of the ratiop;,(a)/q5(a) withn=30 anda=1,...,29.

Recall that in Theoren2 and4 we show that the sequené@n(a) }1<a<n and{agn(a)}1<a<n are log-convex. The

theorem below establishes a similar result for clan prdiisi

Theorem 12 For n > 3, the sequencép;,(a) } 1<a<n @and{g;(a) }1<a<n are log-convex. Moreover, we have

() pp(@ =pp(n—a)andd(a)=0gh(n—a)forl<a<n.
(i) gi(a+1) <qgi(a)whena>[(n—1)/2| —1,and g (a+1) > qg;(a) whena< [(n—1)/2].

Proof Part (i) follows from Theoremil Sinceqj(a) = gn-1(a) by Theoremll, Part (ii) and that{qy(a) }1<a<n IS
log-convex follow from Theorem.
1

It remains to show thafp;;(a) }1<a<n is log-convex. To this end, fix a number> 3, and lety, = BT for 1 <

a < n. Then clearly{ya}1<a<n is log-convex. This impliegy, }1<a<n With Yy, = yn_a is also log-convex. In addition,
since ¥a > Yai1+ Va1 for2<a<<n—2, {y;} icacn With Y5 = ya — n(n—{n is log-convex as well. By Lemma, we
know {Y, + Y& }1<a<n is log-convex. As{ (g)fl}Kam is log-convex, by Lemma and Theorenil we conclude that

{pi(a) }1<a<n is log-convex, as required. O

Next, we consider the relationships between clan proliegsiluinder the two models. For instance, consider the ratio
of pyy(a)/q;(a) with n= 30 (see Figurd. Then the ratios are symmetric abaut 15, which is consistent with Part(i) in
Theoreml2. In addition, by the figure it is clear that, except &£ 1 for which pj,(a) = g;;(a) = 1, the ratio is strictly
decreasing ofi2, |n/2|] and is less than 1 whemis greater than a critical value. We shall show this obsermdtolds

for generah. To this end, we need the following technical lemma.
Lemma5 For n> 5, we have j(|n/2]) < g;([n/2]).

Proof For simplicity, letk = |n/2|. To establish the lemma, we consider the following two cases
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The first case is whenis even, that isn = 2k. Then we have

-1
Pox(K) = 4k(k(k3— 1) 2k(2|1— 1)) <2kk)

e () wnan(l)

Bk P(P(K) (2K (k+1)(2k—1)
(k) 2|< 1) (k) 2(7k—5)
2k 2)1(2k—2)1(2k— 2)1(2K)! (k+1)(2k— 1)
(ak— 4 (k— )(k DKk 2(7k—5)

and

ak) =

Note thata (3) = £ > 1, anda (k) is increasing fok > 3, because

ak+1)  2(2k—1)(2k+1)4(k+2)(7k—5)
ak)  (4k—1)(4k—3)(k+ 147K+ 2)
11254 200k* — 1163 — 130k% + 22k + 20
112K5 4 1444 — 59%3 — 96k2 + K+ 6

> 1,

holds fork > 3. In other words, fok > 3, we havex (k) > 1 and hence alsgg, (k) > p5 (K).

The second case is whens odd, that isn = 2k+ 1. Then we have

. B 1 1 1 2k+1
p2k+l(k)_(4k+2)(k(k+1)+(k+1)(k+2)_2k(2k+1))( k )

k42 [2k+1\ 7
~kk+2)\ Kk ’

and

plg:- Bealld _ B9sD) 2y idesd

Pk 9(2K) k ) 7kt2
(k= 2)1(2k— 1)1 (2K)! (2k+ 1)l (K+ 2)
T (4k—2)1(k—1)! (k— 1)!KI (k+ 1)1 (7k+2)°

Now we haveB(3) = 25/23> 1. In addition (k) is increasing fok > 3 by noting that

B(k+1)  (2k—1)(2k+1)(2k+2)(2k+ 3)(k+3)(7k+2)
Bk (K+2)2(4k+ 1) (4k — 1)k(7k+9)
1125+ 648¢ + 1156 + 630 — 15K — 198 — 36
1126+ 595+ 1017 + 53%3 — 64k? — 36k

>1

holds fork > 3. In other words, fok > 3 andn being odd, we also hayé(k) > 1 and hence alsg, , (k) > p5, 1 (K).

This completes the proof. O

Parallel to TheorerB which comparegn(a) andgn(a), the following theorem provides a comparison betwpga)

andq,(a).

Theorem 13 For n > 5, there exists a numbes*(n) in (1,|n/2]), such that p(a) > q;(a) for 2 < a < k*(n), and
Ph(a) < g(a) for k*(n) < a< [n/2].
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Proof For simplicity, letb := n—a. Since we have

A(3+ mts)
wron (n—1)(n—2) 2 1
Pn(2) = n—-1 ” 3(n—1) > 2n—57q”(2)’
andp;([n/2]) < gn(|n/2]) by Lemmab, it suffices to prove that
Pa(a)
a)=-—"—=
0= @

is strictly decreasing of2, |n/2]]. To this end, let
1 1 1
&= 2arD Thpr D =D
From the definition ofj,(a) and Theorenil, we have
gn(@a+1) fh(a+1)(a+1)(2b—-3)

gn(a) fn(a) b(2a—1) ’
which is less than 1 for & a< |n/2| — 1if and only if

Bn(a) := fa(a)b(2a—1) — fy(a+1)(a+1)(2b—-3)>0 for2<a<|n/2| -1 (17)

In the rest of the proof, we shall establish E4j7)( To begin with, note that
3 3(2a+1) 2a°+an+t5a—2n

A@ =1 WnoD T a@rDEt2) (18)
N 2a—3n n a+2n+3
(b—1)(b+1) " (b—1)b(b+1)’
This implies
4 3 2 —
B2 = T T g

4n(n—1)(n—2)(n—3)
~ 3n?(n>—6n—13) + (3420 —360)
B 4n(n—1)(n—2)(n—3)

for n> 6 becaus@s(2) = 1/5, B7(2) = 24/70 andn® — 6n — 13> 0 for n > 8. In addition, we have

Baat) 424202 LTME2 5
Y Tt D)t +2) | tt+2) | tt+2)

>0

fort >3 and

oo 3 3 424 3t—4 4t+6 (5t+7)
Paia(t) = 5— = 2t+2+t(t+1)(t+2) B (t+1)(t+3)+ (t+1)(t+2)(t+3)
B 9 6t2 — 12
@-D@+2) (t+E+2)(t+3)
>0

fort > 2. Therefore, we havg,(|n/2] —1) > 0forn> 6.

It remains to show tha,(a) is strictly decreasing, that i§n(a) — Ba(a+1) > 0 for 3< a< |n/2]| — 1. Indeed, by
Eqgn. (L8) we have

6 2a2 4 2an+8a— 6n N 2a2 —6an+4n?—10n—8

(n—1) a(a+1)(a+2)(a+3) (b—2)(b—1)b(b+1)
- n?—7n— 8+ 2a®

(b—2)(b—1)b(b+1)
> 0.

B(@) — Bo(a+1) = -
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Here the first inequality follows froma > 3 anda < |n/2| — 1 < (n—1)/2 implying 3? — 6an > 3n, and the second

one froma > 3 andn > 6. This completes the proof. O
We end this section with some correlation results aboutgtababilities under the PDA model.

Theorem 14 Let A, ..., A« be k disjoint (nonempty) subsets of X, and leti#\| + - - - + |Ax|. Then we have

p(n—m+k—1) 1<, (1Al
¢(n—1) '

Proof SincePuppa(T*) = 1/¢(n— 1) for each treeT* in %, it remains to compute the number of trees that have

Puppa(Ar, ..., Ax) =

Ag,...,Acas clansigh(n—m+k— 1)1 ; ¢ (|A]). To this end, note that such a tree can be constructed in &ps:st

1. Build an unrooted tree o(1>< \ U!llAi) U{X1,..., X}, wherexy,..., X are leaves not iX serving as “placeholders”
used in the second step.

2. Replace eack with a tree in.7,.

There argp(n—m+k— 1) different choices for a tree in the first step, and therg3tg ¢ (a) different ways to replace

X1,...,% by trees inZ,, ..., 7a.. The claim then follows. (|

Theorem 15 Let A and B be two subsets of X witkéb, where a= |A| and b= |B|. Then we have

()¢(n-bj¢p()p(b-a)
sn-Deb-1 TACB,
Puppa(A B) = W, if A and B are disjoint,
0, otherwise.
Proof The first case follows by applying Theorelt twice; the second case follows from Theorés O

Corollary 3 Let A and B be two compatible subsets of X. Then we have
Puppa(A,B) = Puppa(A)Puppa(B).

Proof Seta= |A| andb = |B|. By symmetry we may assume without loss of generality éhatb holds. SinceA andB
are compatible, we have eithanB=0 orA C B.

To establish the theorem for the first case, note firstthat—b+1 < n—b < n—a< n—1 holds. Therefore by
Lemma3, we have

¢(n—a—b+1)¢(n—-1)>¢(n—ajp(n—a),

and hence

¢@¢b)¢p(n—a-b+1) (¢(b)¢(n— b)) (¢(a)¢(n—a))
¢(n—1) 4 ¢(n-1) ¢(n-1) /°
Together with Theorer5, this shows that the theorem holds for the caseB = 0.

For the second case, note thata<n—a<n—1landb—a<b—-1<n-1hold. Therefore by by Lemm2 we

have
p(n—1)p(b—a)>¢(b—-1)p(n—a).

and hence

¢(b)¢(n—b)¢@)¢b-—ay¢(n—b) (¢(b)¢(n—b)) (¢(a)¢(n—a))
¢(n—1)¢(b—1) T\ (-1 ¢(n—1) /
Together withTheorerh5, this shows that the theorem holds for the cAseB, as required. O
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6 Discussion and concluding remarks

Clade sizes are an important genealogical feature in tliy stiphylogenetic and population genetics. In this paper we
present a comparison study between the clade probabilitigsr the YHK and PDA models, two null models which are
commonly used in evolutionary biology.

Our first main result reveals a common feature, that is, thdecprobability sequences are log-convex under both
models. This implies that compared with ‘mid-sized’ cladesy ‘large’ clades and very ‘small’ clades are more likely
to occur under these two models, and hence provides a tiedtplanation for the empirical result on the PDA model
observed byPickett and Randl€2005. One implication of this result is that in Bayesian anadywhere the two null
models are used as prior distribution, the distributionlades is not uninformative as bias is given to those whosssiz
are extreme. Therefore, further considerations or adjeistnsuch as introducing a Bayes factor to account for the bia
on prior clade probabilities, is important to interpret {or Bayesian clade supports.

The second result reveals a ‘phase transition’ type feathes comparing the sequences of clade probabilities under
the two null models. That is, we prove that there exists éatfitaluek (n) such that the probability that a given clade
with sizek is contained in a random tree withleaves generated under the YHK model is smaller than thagnhe
PDA model for 1< k < k(n), and higher for alk (n) < k < n. This implies that typically the trees generated under the
YHK model contains relatively more ‘small’ clades than thasder the PDA model.

The above two results are also extended to unrooted treesisydering the probabilities of ‘clans’, the sets of taxa
that are all on one side of an edge in an unrooted phylogetreic This extension is relevant because in many tree
reconstruction approaches, the problem of finding the either ignored or left as the last step. Here we study the
sequences formed by clan probabilities for unrooted treegigated by the two null models, and obtain several results
similar to those for rooted trees.

Note that the two models studied here are special instari¢ks B-splitting model introduced bjldous(1999, a
critical branching process in which the YHK model correspto 8 = 0 and the PDA model t = —1.5. Therefore,
it would be of interest to study clade and clan probabilitisder this more general model. In particular, it is intdregst

to see whether the relationships between two models reVeathis paper also hold for genei@l
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