Resonance Energy Transfer

Andrews, David, Bradshaw, David ORCID:, Dinshaw, Rayomond and Scholes, Gregory (2015) Resonance Energy Transfer. In: Photonics Volume 4. Wiley, Hoboken, NJ, pp. 101-128. ISBN 978-1-118-22552-3

[thumbnail of Book chapter proofs]
PDF (Book chapter proofs) - Draft Version
Download (1MB) | Preview


Resonance energy transfer, also known as Förster- or fluorescence- resonance energy transfer, or electronic energy transfer, is a photonic process whose relevance in many major areas of science is reflected both by a wide prevalence of the effect and through numerous technical applications. The process, operating through an optical near-field mechanism, effects a transport of electronic excitation between physically distinct atomic or molecular components, based on transition dipole-dipole coupling. In this chapter a comprehensive survey of the process is presented, beginning with an outline of the history and highlighting the early contributions of Perrin and Förster. A review of the photophysics behind resonance energy transfer follows, and then a discussion of some prominent applications of resonance energy transfer. Particular emphasis is given to analysis and sensing techniques used in molecular biology, ranging from the ‘spectroscopic ruler’ measurements of functional group separation, to fluorescence lifetime microscopy. The chapter ends with a description of the role of energy transfer in photosynthetic light harvesting.

Item Type: Book Section
Faculty \ School: Faculty of Science > School of Chemistry
UEA Research Groups: Faculty of Science > Research Groups > Physical and Analytical Chemistry (former - to 2017)
Faculty of Science > Research Groups > Chemistry of Light and Energy
Faculty of Science > Research Groups > Centre for Photonics and Quantum Science
Depositing User: Pure Connector
Date Deposited: 21 Nov 2014 12:40
Last Modified: 05 Jul 2024 23:47
DOI: isbn:978-1-118-22552-3


Downloads per month over past year

Actions (login required)

View Item View Item