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ABSTRACT 
  

In the nanoscale structure of a wide variety of material systems, a close juxtaposition of optically responsive components 

can lead to the absorption of light by one species producing fluorescence that is clearly attributable to another.  The 

effect is generally evident in systems comprising two or more light-absorbing components (molecules, chromophores or 

quantum dots) with well-characterised fluorescence bands at similar, differentiable wavelengths.  This enables the 

fluorescence associated with transferred energy to be discriminated against fluorescence from an initially excited 

component.  The fundamental mechanism at the heart of the phenomenon, molecular (resonance) energy transfer, also 

operates in systems where the product of optical absorption is optical frequency up-conversion. 

 In contrast to random media, structurally organised materials offer the possibility of pre-configured control over the 

delocalization of energy, through molecular energy transfer following optical excitation.  The Förster mechanism that 

conveys energy between molecular-scale components is strongly sensitive to specific forms of correlation between the 

involved components, in terms of position, spectroscopic character, and orientation; one key factor is a spectroscopic 

gradient.  Suitably designed materials offer a broad scope for the widespread exploitation of such features, in 

applications ranging from chemical and biological sensing to the detection of nanoscale motion or molecular 

conformations.  

 Recently, attention has turned to the prospect of actively controlling the process of energy migration, for example by 

changing the relative efficiencies of fluorescence and molecular energy transfer.  On application of static electric fields 

or off-resonant laser light – just two of the possibilities – each represents a means for achieving active control with 

ultrafast response, in suitably configured systems.  As the principles are established and the theory is developed, a range 

of new possibilities for technical application is emerging.  For example, applications can be envisaged for new forms of 

all-optical switching and transistor action.   There is also interest in engaging with the interplay of optical excitation and 

local nanoscale force, exploiting local responses to changes in dispersion forces, accompanying molecular energy 

transfer. 
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1.  Introduction 

 

When ultraviolet or visible radiation of a suitably resonant frequency shines into a non-homogeneous material containing 

discrete atomic, molecular or other nanoscale constituents, absorption of the light primarily populates localized 

electronic excited states.  If there is no decay by fluorescent emission, a rapid degradation of the acquired energy 

typically ensues – largely a stochastic effect due to vibrational dissipation, with the released energy ultimately manifest 

in the form of heat.  However, even in the case of fluorescent materials, the initially excited species may not directly emit 

radiation as they decay.  In fact, a wide variety of complex materials exhibit a remarkable phenomenon: the absorption of 

light by one species produces fluorescence unambiguously attributable to another due to energy transfer (ET) between 

them.1,2  This effect has wide prevalence; it operates across a diverse and extensive range of systems – for example 

protein complexes, quantum dot arrays, doped crystals and solutions – and it has found numerous technical applications.  

It also occurs in systems where the end result of optical absorption is not the release of energy in the form of 

fluorescence, but optical frequency up-conversion.  For the observation of such phenomena the material should contain 

two or more light-absorbing components (chromophores) with well-characterized absorption and fluorescence bands at 

broadly similar, but experimentally differentiable wavelengths.  In all such materials, a localized electronic excited state 

will thus generally have two competing means of excited state decay – energy transfer and fluorescence.  In this paper, a 

survey of the photophysics is presented including newly discovered control mechanisms, and a number of prospective 

applications are examined. 



 

2.  Förster transfer 
 

 2.1 Photophysics of energy transfer 

 

Electronic energy transfer is a process which effects a transportation of electronic excitation between chromophores, 

based on transition dipole-dipole coupling.  To approach the subject in detail, we first establish the conditions for energy 

transfer to occur.  If any neighbouring chromophore in the vicinity of a directly photo-excited, electronically activated 

centre has a suitably disposed electronic state, of a similar or slightly lower energy, that neighbour may acquire the major 

part of the initial electronic excitation through energy transfer – a process that takes place well before any further thermal 

degradation of the excited state energy arises.  Occurrences of this mechanism are most commonly studied through 

spectrometric differentiation of fluorescence emerging from the initially excited energy donor and from the energy 

acceptor species, as illustrated in Figure 1.  As will be shown in the following, the propensity for energy to be transferred 

in this way between any two chromophores is severely restricted by distance, and if no suitable acceptor is within reach, 

the donor will generally shed its energy by fluorescence or local dissipation into vibrational modes.  
In energy transfer, the transitions of donor decay and acceptor excitation are generally electric-dipole allowed – other 

possibilities occasionally arise, but they are rare.  Accordingly the theory of energy transfer, for donor-acceptor 

displacements beyond the region of significant wavefunction overlap, is traditionally conceived in terms of electro-

dynamical coupling between transition dipoles.  Consider the pairwise transfer of excitation between two chromophores 

D and A.  In the context of this elementary mechanism, D is designated the donor and A the acceptor.  Prior excitation of 

the donor generates an electronically excited species D*, and release of the energy is accompanied by donor decay to the 

ground electronic state.  Acquiring the energy, A undergoes a transition from its ground to its excited state, A*, which 

subsequently decays either in a further transfer event, or by another means such as fluorescence.  Since the D* and A* 

excited states are real, with measurable lifetimes, the core process of energy transfer itself is fundamentally separable 

from the initial electronic excitation of D and the eventual decay of A; the latter processes do not, therefore, enter into the 

theory of the pair transfer. 

To delve more deeply into the nature of the process, it needs to be recognized that in molecular systems, the 

excitation of upper electronic levels usually also engage local modes of vibration, especially so when the electronic 

excited state has a potential energy surface displaced to any significant extent from the ground state; accordingly, in the 

decay process some vibrational dissipation is also usually engaged.  In an inhomogeneous solid, the line-width of optical  

 

 

 

 

 

 

 

 

 

 
 

 

 
 

 

 

 

 

 

 

 

Figure 1.  Typical spectral discrimination between the fluorescence from donor and acceptor species (here notionally based on a cyan 

fluorescent protein donor and a yellow fluorescent protein acceptor): (a) the transmission characteristics of a short-wavelength filter 

ensure initial excitation of only the donor; a dichroic beam-splitter and another narrow emission filter ensuring that only the (Stokes-

shifted) fluorescence from the donor reaches a detector; (b) in the same system a longer-wavelength emission filter ensures capture of 

only the acceptor fluorescence, following energy transfer.  Adapted from ref. 2.  
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Figure 2.  Energetics and spectral overlap features (top) for energy transfer from D to A (and below, potentially backward transfer 

from A to D). For each chromophore F denotes the fluorescence spectrum and the absorption. Wavy downward lines denote 

vibrational dissipation.  The spectral overlap for forward-directed transfer S


 greatly exceeds the back-transfer counterpart S


.  

Adapted from ref. 4.  

 
 

transitions manifests the influence of local electronic environments; similar effects in solutions or disordered solids 

represent inhomogeneous interactions with a solvent or host, while the broad bands exhibited by chromophores in 

complex molecular systems signify extensively overlapped vibrational levels, including those associated with skeletal 

modes of the superstructure.  In each case, energy level broadening can allow pair transfer to occur at any point within 

the region of overlap between the donor emission and acceptor absorption bands, as illustrated in Figure 2. 

The Förster theory delivers an expression for the rate of pairwise energy transfer, wET, valid for any donor-acceptor 

separation, R, beyond wavefunction overlap, but (as is usually the case) substantially smaller than the wavelengths of 

visible radiation.  For systems where the common host material for the donor and acceptor has refractive index n, at the 

optical frequency corresponding to the mean transferred energy, the Förster result is as follows:3 
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In this expression, where c is the speed of light, FD() denotes the normalized fluorescence spectrum of the donor, A() 

represents the linear absorption cross-section of the acceptor, and  is an optical frequency in radians per unit time; the 

specific form of the integral within which they appear is known as the spectral overlap – one of the principal 

determinants of energy transfer efficiency.4  The second most important feature is the steep, inverse sixth power decline 

of rate with distance.  Also featured in Eq. (1) is FL, the radiative decay lifetime of the donor in the absence of transfer.  

This related to the measured decay lifetime   through the fluorescence quantum yield FL   , where 1  , expressible 

as
 

1 1 1

FL RET      , can also usefully be cast in the form; 
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The last term on the right-hand side of Eq. (2) is expressed with reference to the Förster radius R0 – the distance at which 

the rates of donor deactivation by energy transfer and by spontaneous fluorescence become equal.  As is evident from 

Figure 2, the propensity for forward transfer is usually significantly greater than that for backward transfer, due to a 

sizeable difference in the spectral overlaps for the two processes.   

The  factor in Eq. (1), which represents the third key rate-determining factor, depends on the orientations of the 

donor and acceptor with respect to each other, and with respect to their mutual displacement unit vector R̂ .  It is defined 

in terms of scalar products as follows: 
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. (3) 

 

For each chromophore, μ̂
 
designates a unit vector in the direction of the appropriate transition dipole moment.  The 

possible values of 2, as featured in Eq. (1), lie in the range (0, 4).  In the case of fixed chromophore positions and 

orientations the result of Eq. (3) is evidently a function of three independent angles, shown and defined in Figure 3: 

 

 cos 3cos cosT D A       
. (4) 

 

Unfavourable orientations can thus reduce the rate of energy transfer to zero; other configurations optimize the transfer 

rate.  It is important to note that transfer is not necessarily precluded when the transition moments lie in perpendicular 

directions – provided that neither is also disposed orthogonally to R̂ . 

 

 

2.2 Applications of energy transfer 

 

Towards the turn of the century, energy transfer underwent a period of significant redevelopment as a technique.5  This 

resurgence arose mainly due to the advent of new experimentation methods, for example single-pair energy transfer, 6 

and further advances in instrumentation.  One notable area of application is in the technology of light-harvesting 

materials.7,8  Important connections with photonics have been established in pioneering work on networks of quantum 

dots supported in a crystal lattice, where a spectroscopic gradient assists directionality in the flow of electronic 

excitation9 – see Figure 4.    In consequence, even when the centres are randomly distributed, such systems can lead to 

the production of much higher energy and more highly localised field densities, centred on the quantum dots of largest 

physical dimensions. 

Another major use of energy transfer, based on its strong distance-dependence, exploits its capacity to supply 

accurate spatial information about molecular structures.  This derives from a quantitative assessment of the inter-

chromophore separations, based on comparisons between the corresponding energy transfer efficiencies.10-13  Such a 

technique is popularly known as a ‘spectroscopic ruler’.  The elucidations of molecular structure by such means usually 

lack information on the relative orientations of the groups involved, and as an expedient the calculations usually ignore 

the parameter  of (4).  This approach appears more defensible on consideration that, even if it were to introduce a factor 

 

 

 

 
 

 

 

 

 

 

 

 

Figure 3.  Relative orientations and positions of the donor and acceptor and their transition moments: Here, angles D and A are 

subtended by the donor and acceptor transition moments (D and A, respectively) against the inter-chromophore displacement vector, 

R; the symbol T is the angle between the transition moments. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.  Scheme for an optical nanofountain comprised of 2-10 nm CuCl quantum dots, distributed in an NaCl matrix.  The variation 

in size of different quantum dots brings into effect a spectroscopic gradient directed towards the largest units.  Adapted from ref. 9. 

 

 

of two inaccuracy, the deduced group spacing would still be in error by only 12% (since 21/6 = 1.12).  Refinements to the 

theory to accommodate the effect of fluctuations in position or orientation of the participant groups introduce 

considerable complexity, although progress is being made in several areas.14-16    
Studies of energy transfer variation, with changes in the proximity of one chromophore with respect to another, have 

become important methods for the identification of nanoscale motions in systems with suitable chromophores either 

intrinsic, or designedly incorporated as tags.  A number of valuable energy transfer applications have arisen, notably in 

the sphere of molecular biology, including the detection of conformational changes and folding in proteins,11,17-19 and the 

inspection of intracellular protein-protein interactions.20,21  These and other such processes can be registered by 

selectively exciting one chromophore using laser light, monitoring either the decrease in fluorescence from that 

chromophore, or by a rise in the generally longer-wavelength fluorescence from the other chromophore as it adopts the 

role of acceptor.  The judicious use of optical dichroic filters can make this energy transfer technique perfectly 

straightforward – see Figure 1.  In cases where the two material components of interest do not have suitably overlapped 

absorption and fluorescence features in an optically accessible wavelength range, molecular tagging with site-specific 

‘extrinsic’ (i.e. artificially attached) chromophores can solve the problem.  Located at a molecular site of interest, and 

selected on the basis of a significant spectral overlap with the counterpart component, such tags can act either in the 

capacity of donor or acceptor.  Lanthanide ions, with their characteristically prominent and sharp absorption features, 

prove particularly valuable in this connection.22  Again, quantum dots are also useful in this respect, particularly in view 

of their readily size- and composition-tunable emission across a wide spectral range.23,24 

In analytical applications, the key advantage of energy transfer techniques over many others is that fluorescence 

measurements are highly sensitive, being made against a zero background; moreover the ultraviolet or visible signals are 

relatively easy to detect; they are component-specific and the required instrumentation is non-invasive.  The fabrication 

of ET-based, analyte-specific sensors has enabled detection of a variety of species, well-established examples including 

dimers of functionalized calixarenes in organic solutions,25 copper(II) in aqueous solution,26 hydrogen peroxide,27 and 

phosgene.28  These chemical sensors generally work on the principle of a donor-acceptor system designed such that the 

presence of the analyte causes the acceptor chromophore to move within closer proximity to a donor, bringing into effect 

an energy transfer process that would not be observed in the analyte’s absence.  The principle is simple: on irradiation of 

the system with the relevant chemical present, a strong emission from the acceptor unequivocally signals the presence of 

the analyte.  
 

2.3 Frequency up-conversion 

 

In a variety of structured materials the principles of electronic energy transfer extend to three-centre mechanisms, in 

which two distinct centres will typically act as co-donors; the acceptor gains the sum energy and then fluoresces at a 

shorter wavelength than the input.29  This effect has earned applications in non-parametric frequency up-conversion, 

often deployed as a basis for laser emission.  In its necessary involvement of three chromophores rather than two, the 



 

process shares common ground with other photonic processes such as sensitisation, where a dopant assists the 

conveyance of excitation between donor and acceptor, and also quantum cutting (degenerate down-conversion), formally 

the time-inverse of up-conversion.  Such mechanisms provide the basis for a variety of processes that have been 

identified in materials such as crystals, glasses and vitroceramics doped with rare earths. 

 

 

3.  Active control of energy transfer 
 

Beyond the sphere of fluorescence and energy transfer used as tools for speciation, structure determination, molecular 

dynamics and optical frequency conversion, research has revealed a variety of means by which it is possible to effect 

experimental control over each of these fundamental photonic processes, opening up possibilities for a new realm of 

applications.  It is well-known that a strong local field – often associated with a metallic surface – may significantly 

modify fluorescent decay,30,31 and some progress has been made on the theoretical engagement of a static electric field in 

modifying energy transfer rates.32  When the static field engages with an electronic transition, it is associated with 

changed selection rules – which can generally be identified with those of a two-quantum transition.  The amenability of 

the static field-induced mechanism to controlling energy transfer is primarily based on chromophores exhibiting a 

(single-photon) dipole-forbidden but two-quantum allowed transition; ET does not occur to or from such a species 

without the presence of a static field, allowing a switchable electric field to control the delivery of energy to the acceptor.   

Although there are some useful features in such static field schemes, the most attractive possibilities are undoubtedly 

those associated with all-optical control, where there is far greater scope for selectivity and ultrafast action.  The essential 

elements of such schemes are illustrated in Figure 5; this section reviews some of the most recent progress. 

 

3.1 Optical control of fluorescence 

 

Passive laser control represents a catalogue of novel phenomena in which a beam of off-resonant light can engage, 

through a form of nonlinear optical interaction, in other, more fundamental processes.  As has been discussed, the 

actively emitting chromophores in many materials will often have two competing means of excited state decay – energy 

transfer and fluorescence.  Whether only one or both decay pathways are significant, the passage of a moderately intense 

passive laser beam may enable the optical control of the decay lifetimes, as the excited-state lifetime, , is then 

expressible as follows: 
1 1 1

FL RET KI       . The first two terms on the right are as given earlier; they correspond to 

excited-state lifetimes due to fluorescence and spontaneous energy transfer, respectively.  The newly discovered third 

term exhibits proportionality to I, the intensity of the passive beam.  Our research show that the proportionality constant 

K subsumes a passive beam dependence in both laser-controlled fluorescence and laser-assisted energy transfer; full 

details of the electrodynamical theory have been presented in a series of recent publications.33-37 
 

Consider a material in which an optically excited chromophore of a specific type has no suitable acceptor to capture 

its energy, so that fluorescence is the principal means of excited state decay.  Transmission of a passive beam through the 

 

 

 

 

 
 

 

 

 

 

 

 

 

Figure 5.  (a) Optically controlled fluorescence is brought into effect by engaging the emission process with forward scattering of 

photons in the passive laser beam.  Optically controlled energy transfer is mediated by two sub-mechanisms, static and dynamic; (b) in 

the static mechanism the transfer of energy from donor to acceptor engages with forward scattering of the passive beam by the donor, 

as shown, or by the acceptor; (c) in the case of dynamic coupling the transfer of energy engages with forward scattering through both 

donor and acceptor. 



 

system, during the excited state lifetime, can characteristically modify the intensity of fluorescent emission, as well as its 

associated optical polarization and temporal behaviour.  The mechanistic conditions are entirely different from those that 

would operate under the delivery of resonant radiation, which would promote stimulated emission.  Here, no net 

absorption or stimulated emission occurs since the throughput beam is off-resonance and therefore emerges unchanged.  

Specifically, elastic forward-scattering of the off-resonant light couples with the fluorescence emission; the probe laser 

confers optical nonlinearity on the emission process.  According to our calculations, fluorescence lifetimes will typically 

be reduced by about 20 percent for an input laser irradiance of 2  1011 W cm-2, and proportionately more for higher 

intensities; a maximum is imposed by the pumping rate of the laser that initially excites the system.  Even at 1010 W cm-2, 

such changes in fluorescence lifetime are readily measurable with modulation detection techniques.  One of the most 

commonly measured structural parameters, the degree of fluorescence anisotropy, which measures the difference in 

fluorescence intensities through polarisers parallel and perpendicular to the polarization of an excitation beam, also 

undergoes a characteristic change due to the interaction with the passive beam.  

We can envisage optically controlled fluorescence as an analytical tool.  Using a tunable laser source, wavelength 

variation of the passive radiation will offer an additional dimension to sample interrogation, helping to differentiate 

samples that appear indistinguishable by conventional optical methods.  In addition, such non-intrusive methods might 

be used to improve spatial resolution in fluorescence imaging applications, allowing the characterization of high-grade 

materials such as microcrystalline polymorphs. 

 

3.2 Optical transistors 

 

There is a particularly attractive prospect associated with laser-controlled fluorescence.  Our research has recently shown 

that the output of a three-level laser, optically pumped just below threshold, may be strongly enhanced on an ultrafast 

timescale through laser-controlled fluorescence.38  Analysis demonstrates that pulses of light from a passive laser, acting 

as an off-resonant input, will modify the amplification kinetics of the active medium and can thereby trigger laser action.  

The results of calculations for a representative three-level system highlight a significant potential for all-optical transistor 

action.  For a constant pumping rate, at a level indicated by the dotted vertical line (see Figure 6), the system operates 

below threshold when there is no input laser beam.  Introducing a passive beam with an irradiance approaching 2  1011 

W cm-2, the output climbs by approximately 14 orders of magnitude (rising to 16 orders if the input intensity is doubled) 

– a rise that is absolutely typical of a laser operating around threshold.  Transistor action with respect to the passive beam 

is clearly exhibited.  The beauty of this scheme is that it is not limited in principle to an operation with any specific 

material; the challenge is now to find three-level systems optimizing the necessary nonlinear optical characteristics.  

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.  Log n, where n is the number of cavity photons, plotted against pumping rate, Rp, in the absence (right-hand plot) and 

presence of a passive beam, the latter with irradiance 2  1011 W  cm-2 (middle plot) and 4  1011 W cm-2 (left-hand plot).  The lasing 

threshold reduces with increasing intensity of the passive beam.  With suitable pumping, the passive beam produces a shift to above-

threshold operation (upper dotted lines).  Inset: Corresponding energy level scheme: the k’ and k waves denote the emission and 

passive input, respectively; electronic states are signified by rectangular boxes. 



 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.  Depiction of a two-dimensional square-lattice configuration for an all-optical switching device: (a) side-view (not showing 

spacer layer between the two arrays); the initial excitation (dark grey dot) is transferred only to its partner directly underneath: (b) with 

the passive beam yet to enter there is no transfer of excitation, (c) with the beam passing though the system transfer does occur. 

 

 

3.3 Optical control of energy transfer 

 

In the case of energy transfer, a passive laser beam may enhance (or diminish) the process through a conferred optical 

response known as laser-assisted resonance energy transfer.  This involves elastic forward-scattering of the passive 

beam, again without any net absorption or stimulated emission, and again the efficiency of this process scales linearly 

with laser intensity.  Having the ability to exert optical control over the migration of energy provides a basis for 

all-optical switching in an adapted form of laser-assisted energy transfer, where the spontaneous process is completely 

disabled.  This can be achieved in an arrangement where the vector displacement of the acceptor from the donor – and 

each of their transition dipoles – are all mutually perpendicular; spontaneous energy transfer is then excluded by 

geometry (Figure 7).  Alternatively, spontaneous transfer will be inhibited when the electronic transition in either the 

donor or acceptor is one-photon forbidden but two-photon allowed.  In either case, the switching action induced by the 

transport of energy is activated only when the passive beam is “on”.  

Modelling has indicated that an efficient, all-optical heterostructure device built on a two-dimensional square-lattice 

configuration can operate with readily achievable laser irradiances in the range 1010–1012 W cm–2.  The parallel-

processing capability of such a device introduces a variety of possible applications.  For example, pixel-based images, 

written by donor excitation, might be controllably transferred with high fidelity to an acceptor film.  To build such a 

switching device, researchers could exploit recent advances in the construction of quantum dot arrays, with juxtaposed 

arrays sandwiching an optically transparent spacer layer.  Technical realizations will determine the most suitable 

nanofabrication method, such as dip-pen nanolithography.  In the realm of optical communications, further possibilities 

arise for the system to act as an ultrafast information buffer; “slow-light” methods have also been considered for similar 

aims, but with limited success.  Optically controlled ET has the positive characteristics of viable operation at short 

visible/ultraviolet wavelengths without expensive, non-standard optical elements; above all, it offers a high-information 

density and ultrafast response with high repetition rate and high efficiency. 

 

3.4 Energy transfer-driven dispersion interactions 

 

Surprisingly little attention seems to have been given to the fact that each act of energy transfer produces secondary 

changes in the local electronic environment of the donor and acceptor, shifting the electromagnetic interactions between 

participant chromophores and producing modified intermolecular forces.  From recent theory it emerges that energy 

transfer, especially when it occurs between chromophores with electronically dissimilar properties (such as differences in 

polarizability), can generate significant changes in the intermolecular potentials.39  

Since the form of the dispersion interaction depends on the electronic states of the molecular participants, the 

dispersion force between neutral molecules is clearly subject to change during the course of absorption and energy 

transfer.  The local electronic environments will first experience change upon optical excitation of any donor, the 

associated modification of electromagnetic interactions producing modified intermolecular forces.  In general, a degree 

of local movement can be expected as the system accommodates to a modified potential energy surface.  If the absorbed  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.  Simplest case of dispersion-driven response to optical excitation, without incurring energy transfer. 

 

 

energy then transfers to a neighbouring acceptor unit of another species, the local electronic environment will suffer 

further change, and a further compensating motion can be expected to occur.  In particular, in a solid-state environment 

where intermolecular forces are balanced in an equilibrium configuration, any changes associated with the migration of 

local electronic excitation should effectively act as a small perturbation to the equilibrium of intrinsic forces, producing 

measurable displacements – see Figure 8 as an example. 

 

 

4.  Discussion 
 

It is remarkable that widely varying control phenomena owe their origin to a fundamentally similar form of 

electromagnetic interaction, namely the stimulated re-emission of passive, off-resonant transmitted light – indeed, 

interactions of a similar form are known to be responsible for the phenomenon known as “optical binding”.  Amongst the 

numerous, very different applications that are beginning to emerge we anticipate that the work on optical transistor 

action, based on the passive control of fluorescence, may break new ground for the broader development of all-optical 

methods to control photon absorption and emission.  Such opportunities are not limited to device applications; since 

operation does not require atomic motion, and switching times are comparable to an excited state decay, there are clear 

advantages over the current generation of molecular switches – devices based on laser-activated emission will be much 

faster in operation and cycle time.  In the ongoing progress of optoelectronics, a new generation of molecular devices 

will emerge, tailored for use in optical communications and IT.  Finally, there is plenty of scope to explore potential 

sensor applications of the novel nano-optomechanical effects associated with energy transfer.  It seems not too much of a 

exaggeration to consider that a whole new field of photonic applications is on the horizon. 
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