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ABSTRACT 

 
We report a study on the optical forces between a pair of dielectric particles, based on quantum electrodynamics.  At a 

fundamental level these forces result from a stimulated scattering process which entails a virtual photon relay between 

the two particles.  Results for a variety of systems are secured from a completely general analysis that accommodates a 

system with arbitrary dielectric properties (with regard to shape, frequency response etc.) in an optical field of arbitrary 

complexity.  Specific results are obtained and exhibited for: (a) optical forces between nanoparticles, and specifically 

between carbon nanotubes; (b) the effects of optical ordering, clustering and trapping associated with twisted (Laguerre-

Gaussian) laser beams. 
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1. INTRODUCTION 
 

The experimental detection of forces on neutral particles due to the radiation pressure of applied optical fields, first 

recognized by Ashkin in 1970, led to an avalanche of applications.1  In particular this discovery led in 1986 to the 

invention of optical tweezers2 – a technique that has become a mainstream tool for the optical trapping3,4 and 

manipulation5 of a diverse range of particles, principally in biological and nanotechnological disciplines and ranging 

from individual atoms to single living cells.  In a separate line of development,6 it was verified that significant 

optomechanical forces can be induced between particles through the application of an optical field.  Differing methods 

of analysis have been utilized to derive this force using classical theory7,8 and, recently, optical binding between a pair 

of dielectric particles has been observed.9  In this paper we use a molecular quantum electrodynamical (QED) approach 

to determine results for an optically-induced force between dielectric nanoparticles.  A general expression is first 

derived (section 2A), followed by a detailed analysis of two systems comprising single-walled carbon nanotubes 

(SWCNTs)10 – materials which are currently the subject of intense research due to their unique nanostructures and 

remarkable combination of conductive, steric and mechanical characteristics.11  The two systems that are analysed in 

detail differ in the angular disposition of the nanotubes with respect to the incoming laser light so that: (i) both 

SWCNTs are disposed at a variable angle to the electric field vector of the incident light (section 2B) and; (ii) the 

nanotubes have variable mutual orientation, isotropically distributed with respect to the field vector (section 2C).  

Employing results from other recently developed theory, which delineates a quantum electrodynamical (QED) 

formulation for the interaction of Laguerre-Gaussian or other ‘twisted’ optical beams with matter,12 an expression for 

the torque between a pair of molecules under this radiation type is determined (section 3).  The results of calculations 

are performed for chemically identical neutral molecules, and the paper concludes with a discussion. 

 

2. OPTICALLY-INDUCED FORCE EXPRESSIONS 

A. General result 

The framework of molecular QED13 – in which both radiation and matter are treated quantum mechanically – provides a 

highly satisfactory theory for the study of optically-induced interactions.  Using this approach in multipolar form, the 

full Hamiltonian, H , for a systems of material particles is given by; 
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where 
molH   is the Hamiltonian for particle   and 

radH  denotes the radiation field.  The Hamiltonian intH 
 represents the 

interaction of the field with   and, within the electric dipole, is given by;  
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with ( )  and R  as the electric-dipole moment operator and the position vector, respectively.  The operator ( )


d R  

represents the transverse electric displacement field and is often presented in a plane wave mode expansion involving 

summations over all wave-vectors, p, and polarisations,  – this is expressed as; 
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Here ( ) ( )
e p  is the polarisation unit vector ( ( ) ( )

e p  being its complex conjugate), V  is an arbitrary quantisation 

volume and ( ) ( )a 
p , †( ) ( )a 

p  are respectively the photon annihilation and creation operators for a mode (p, ).  A 

general result for a laser-induced force between a pair of neutral species A and B can be determined via an expression 

for the energy shift 
indΔE .  The latter can be obtained by the application of fourth-order perturbation theory;  
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where i  is the unperturbed state in which both A and B are in their electronic ground state; r , s  and t  are virtual 

states, and 
nE  is the energy of state n .  These states can be written in the form; 

 

 mol rad mol ;radn n n nn     , (5) 

 

with moln
 and radn

 defining the status of all particle and radiation states, respectively.  The laser-induced interaction 

involves the absorption of a ‘real’ input photon at one molecule and the stimulated emission of a ‘real’ photon at the 

other, with one virtual photon acting as mediator between them (fig. 1), and also through the photon creation and 

annihilation events occurring at one molecule with coupling to the other by a virtual mediator (fig. 2).  The molecules 

and throughput radiation suffers no overall change in state.  To determine a result for 
indΔE  requires the insertion of 

equations (2) and (3) into (4).  Using the fact that ( )  and ( )


d R  operate on matn  and radn , respectively, the latter 

through the relations  ( ) ( ) ( , ) 1 ( , )a n n n   p p p  and †( ) ( ) ( , ) 1 1( , )a n n n    p p p , we arrive at; 
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using the implied summation convention for repeated Cartesian tensor indices and with the assumption that the 

polarisabilities are index-symmetric.  Furthermore, k and ck  denote the input wave-vector and photon energy, 

respectively, jkV  signifies the fully retarded resonance electric dipole - electric dipole interaction tensor14 which is 

dependent on the intermolecular displacement vector, B AR R - R , also k

 , ij  and ijk  are the static (permanent) 

dipole moment, generalised molecular polarisability and generalised hyperpolarisability, respectively.  From equation 

(6) the laser-induced force 
ind indE  F R  emerges as follows; 
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Fig. 1.  Two typical Feynman diagrams (each with twenty-three further permutations) for calculation of the laser-induced interaction 

energy: 0 denotes the ground state level,  and  are excited levels for the nanoparticles A and B, respectively. 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 
Fig. 2.  Two further Feynman diagrams (each with twenty-three further permutations) for calculation of the laser-induced interaction 

energy:  and ’ are two excited levels for nanoparticle A, and ’ represent excited levels for nanoparticle B. 
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where 2I n c k V  is the input irradiance.  On reducing equation (7) into components and setting 0k R  and 

0ijl

  , the resulting expression is equivalent to the result determined classically.7 
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B. Parallel SWCNTs 

The first system to be examined in detail is a pair of SWCNTs aligned in parallel along the X-axis of a system frame, 

both perpendicular to R – the latter identified with the Z-axis – and with polarized throughput radiation having its e 

vector defined by the angles   and   with R in the XZ-plane, and with the nanotube axis in the XY-plane, respectively 

as shown in fig. 3.   Defining the whole system in terms of this Cartesian frame, employing the explicit form of  the  
JKV   

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Fig. 3. Geometry of a parallel nanotube system irradiated in a fixed direction. 

 

tensor and recognizing that15 for each nanotube 
YY ZZ     and XX  , equation (6) becomes; 
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where the superscripts A and B are suppressed due to the chemical equivalence of the nanotube pair.  Using the earlier 

differential expression, the laser-induced force is determined from equation (8) as; 
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The leading term of equation (9), 0

zF , in the short-range region ( 1kR ), is found by taking the leading terms in the 

Taylor series expansions of sin kR , coskR ,  sin k R  and  cos k R  to give; 
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On the assumption that the 
 and   values are consistent with the static polarisabilities given in reference 16, for R = 

2 nm and I  1×1016 W m-2, then for SWCNTs 200 nm in length and 0.4 nm in radius, equation (10) gives a force 0

zF  

of magnitude: (i) 10 N  for 0    (independent of  ); (ii) 0

zF 1 pN  for 90   , 0   ; (iii) 0

zF 0.5 pN  

for 90   , 90   .  

C. Tumbling nanotube pair 

The second case is where the SWCNTs have arbitrary mutual orientation but the pair can freely tumble in the field of 

the input radiation.   Here the angle between the long axis of each nanotube  and the R-vector (the Z-direction of the 

system frame) is defined as 
ξ  – see fig. 4.  Furthermore,     is  the  angle  between  the  long axis  projections  of  both 

 

 

 

 
Fig. 4.  Geometry of a nanotube pair with fixed, arbitrary mutual orientation. 

 
nanotubes A and B on the plane perpendicular to R, and the X-direction of the system frame is chosen such that the long 

axis of nanotube A resides in the XZ-plane.  Assuming that the SWCNTs are isotropically averaged with respect to the 

incoming light a phased average method17 is required to account for the phase factor  exp ik R  in equation (6) – a 

feature that reflects the creation and annihilation of a ‘real’ photon at differing positions, i.e. one at A and the other at  B.  

Hence we first obtain; 
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Here  nj kR  are spherical Bessel functions defined by; 
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Next, 

A

ij  and B

ki  are contracted with the jkV  tensor and cast in terms of 
 and  .  Finally, the laser-induced force is 

determined, giving the following result;  
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where       .  Again 0

zF , the short-range asymptote of equation (13), is found by taking the leading terms 

in the Taylor series expansion of sin kR  and coskR , giving; 
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With the same specifications as earlier, we find that if parallel nanotubes are: (i) also parallel to R, the force has a 

magnitude of 8 N , independent of  ; (ii) orthogonal to R, then at 0    or 90   , equation (14) gives 8 N  

or 3 nN , respectively.   

 

3.  OPTICAL VORTEX CONDITIONS 

A. General result 

In this section attention is focused on the laser-induced interaction associated with an optical vortex, due to irradiation 

of the A-B pair with a Laguerre-Gaussian (LG) or other ‘twisted’ optical beam.  Under these conditions, it is interesting 

to determine an expression for the torque between the nanoparticles; a means of achieving this is by again finding 

indΔE .  The latter can be accomplished by defining a system with the positions of A and B set in cylindrical coordinates 

and, for simplicity, fixing the distance of the nanoparticles from the beam centre, r , confining them to a particular   

value – the Greek letter denoting the radiation frame and the propagation direction of the LG beam (–Y in the Cartesian 

frame) – and permitting the azimuthal displacement angle, B A     , to vary (fig. 5).  Following the same 

procedure as in section 2, the fourth-order perturbation method is applied to give; 
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Here, p accounts for all possible modes with the same angular momentum l, 
lpA  are normalisation constants and  lpf r  

is given by; 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5.  Geometry of nanoparticle pair in a Laguerre-Gaussian beam. 
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where 
l

pC  is a normalisation constant, 
0  defines the Gaussian beam-waist at 0z   and 

l

pL  is the generalised 

Laguerre polynomial.  From (15) the laser-induced torque   ˆ
indE    R  emerges as; 

 

 

    
    

 

 
  

 
    

   
 

1 2
3 2

1 2

2

0

1 2

3 2

ˆ ˆˆ sin 2 1 cos sin
2Re

2 1 cos8

cos 2 1 cos
ˆ ˆcos sin 1 cos

2 1 cos

ˆ ˆ3 sin 2 1 cos
ˆ ˆ2 sin cos

jk j klp A B

i l ij kl

lp

jk j k

jk j k

jk j k

R R krIk f

cA

kr
l R R l l

kr

R R kr
R R l

  
   




   




  

               

 
      

 

  
    

R


  
 

    
 

  

      
 

 

1 2

22 2

1 2

5 23 3

1 2 A B B A

5 23

2 1 cos

ˆ ˆ3 cos 2 1 cos 3
sin 1 cos sin

22 2 1 cos

ˆ ˆ3 sin
cos 3Re ,

2 2 1 cos

jk j k

jk j k

i l ijl k ijl k

k r

R R kr
l l

k r

R R
l

r





 
  



 
      





  


  
       


 
       


 

(17)

 

 

using  
1 2

2 1 cosR r  =  by the cosine rule and, here and henceforth, suppressing the lpf  and 
ij  dependence.   



B. Spherical nanoparticles 

A system that is interesting to examine in detail is based on the scheme defined by section 2B and illustrated by fig. 3, 

but with the nanotubes replaced by a spherical nanoparticle pair.  Under an irradiating LG beam, the laser-induced 

energy shift for this system is determined by expressing the polarisation unit vector in simplified cylindrical coordinates, 

i.e. as 0 =  due to the fixed direction of the LG beam, and defining the system in terms of the Cartesian frame.  Hence, 

in cognisance of the fact 0k

   for spherical particles, equation (15) becomes; 
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Taking the explicit form of the 
JKV  tensor and recognizing that only 

XX ZZ     exist for a spherical pair, equation 

(18) is rewritten as; 
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The laser-induced torque is again determined from the differential expression of the previous sub-section to give; 
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In the short-range region  1kr  equation (20) becomes; 
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By inspection of (20) and (21) it is determined that an additional contribution to the torque will be observed for an 

irradiating LG beam  0l   in comparison to conventional Gaussian laser light  0l  , for example, due to the 

presence of the first term of (21). 

 



4.  DISCUSSION 
 

When irradiated by intense laser light, dielectric nanoparticles experience distinctive inter-particle forces and torques 

that prove to scale linearly with the applied irradiance.  By a quantum electrodynamical analysis we have identified the 

detailed form of these forces and shown that they originate in pairwise processes of stimulated scattering.  Calculations 

have been performed for a pair of carbon nanotubes and the results, based on static polarizability data, give indicative 

values.  It has been shown that these forces can be either positive or negative, according to conditions; the descriptor 

‘binding force’ found in various papers7,8 is evidently an over-simplification of the physics and could be misleading.  

Further highly distinctive optomechanical features have been identified in specific connection with nanoparticles within 

an optical vortex (a ‘twisted’ beam such as a Laguerre-Gaussian mode).  It has been demonstrated that these additional 

contributions can strongly dominate the torque exerted between nanoparticles.  It is as yet unknown how such effects 

may be manifest in collective molecular motion or property modifications, but preliminary studies suggest such features 

such as optical ordering, clustering and trapping.  These are issues that are currently the subject of further research in the 

group.   
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