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Abstract 

Plants produce a diversity of secondary metabolites crucial for their survival into 

specific ecological niches. Many of these compounds are glycosides generated by the 

action of family one UDP-dependant glycosyltransferases (UGTs). Glycosylated 

products of UGTs are known to be essential for reproductive fitness, defence against 

pathogens, and signalling; UGTs also have a role in the detoxification of xenobiotics. To 

date, little is known about monocot UGTs compare to their dicot counterparts, despite 

their potential role in defence and modification of health-promoting component of 

cereals essential to human diet. This thesis focuses on identification and functional 

investigation of UGTs expressed in in the diploid oat species Avena strigosa. 

Chapters 1 and 2 consist of the General Introduction and Material and Methods, 

respectively. In chapter 3, a systematic analysis of root-expressed UGTs was carried out 

using transcriptomic and proteomic approaches. A subset of UGTs was then selected for 

biochemical analysis. Of particular interest were candidates for glycosylation of 

avenacin, an antimicrobial triterpenoid glycoside that protects oat against fungi 

infection.  

In chapter 4, the sugar donor specificity of the recombinant UGTs and their 

activity towards different triterpenoid acceptors was investigated. In chapter 5, a 

transient expression system was established in Nicotiana benthamiana in order to 

investigate UGT activity. Heterologous co-expression of UGTs with early avenacin 

biosynthetic pathway enzymes leads to biosynthesis of new-to-nature triterpenoid 

glycosides, so providing a powerful system for functional analysis of terpene 

glycosylation in planta. 

In chapter 6, the catalytic properties of the UGT collection towards different 

plant natural products was investigated, leading to the production of glycosides of 

interest. The contribution of this study to the understanding of the evolution and function 

of monocot UGTs and to their potential commercial exploitation is discussed in the 

chapter 7. 
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Chapter 1 – General introduction 

1.1 Plant secondary metabolism 

1.1.1 Introduction to plant secondary metabolism 

Plants expend considerable energy and assimilated carbon on synthesis of 

secondary metabolites. In a few cases secondary metabolites have been shown to 

have functions in plant growth and development, for example flavonoids modulate 

auxin transport (Peer and Murphy 2007; Sonderby et al. 2010; Vetter 2000). 

However, the main function of these molecules is likely to be in mediating 

interactions between plants and the environment (Hartmann 2007; Wink 2003). 

Metabolic diversification in plants is likely to have occurred because the ability to 

synthesise specialised secondary metabolites provides selective advantages that 

enable plants to survive in different ecological niches. These molecules have been 

variously associated with abiotic stress resistance (Nuccio et al. 1999; Trossat et al. 

1998), defence against herbivores and pathogens (Howe and Jander 2008; Osbourn 

1996; Vetter 2000; Yang et al. 2013), establishment of symbiotic interactions 

(Oldroyd 2013), allelopathy (Weston and Mathesius 2013), and attraction of 

pollinators (Ogata et al. 2005; Theis and Raguso 2005; Yu and Utsumi 2009). 

Major classes of plant secondary metabolites include terpenes, 

phenylpropanoids and alkaloids. The remarkable diversity of plant secondary 

metabolites arises from a restricted number of carbon skeletons. For example, more 

than 20,000 reported triterpenoids are derived from 200 triterpene skeletons (Phillips 

et al. 2006; Xu et al. 2004) . Modification of these core skeletons has led to a unique 

metabolite profile specific to each plant species. Glycosyltransferases, 

methyltransferases, cytochrome P450s, acyltransferases and other tailoring enzymes 

are involved in the decoration of these skeletons (Bak et al. 2011; Bowles et al. 

2006; Mugford and Milkowski 2012). The importance of these enzyme families in 

secondary metabolite diversity is reflected by the marked amplification and 

diversification of the corresponding gene families within the genomes of higher 

plants (Caputi et al. 2011; Omura 2013). 
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Roots accumulate a wide variety of specialised metabolites, including 

flavonoids, terpenoids and cyanogenic compounds. These chemicals have important 

roles in defence against soil-borne pathogens, allelopathy, interaction with symbiotic 

organisms, nutrient uptake and also phytohormones-mediated signalling (D'Auria 

and Gershenzon 2005; Flores et al. 1999; Weston and Mathesius 2013). The 

Osbourn laboratory is particularly interested in avenacin, an antimicrobial terpenoid 

glycoside accumulated in oat root tips. 

1.1.2 A large part of secondary metabolites are glycosylated 

Glycosides form a large proportion of plant secondary metabolites. 

Glycosylated flavonoids, triterpenoids (saponins) or cyanogenic compounds are 

widespread in plant kingdom (Liu et al. 2013; Vetter 2000; Vincken et al. 2007). 

Glycosylation takes a great part in structural diversification of secondary 

metabolites. Glycosidic moieties may be composed of a single sugar residue (hexose 

or pentose) or sugar residues may assemble to form linear or branched sugar chains 

(Augustin et al. 2011; Heim et al. 2002). The great diversity of glycosylated patterns 

decorating secondary metabolites may be illustrated by the 300 glycosides reported 

for the single flavonol, quercetin (Harborne and Baxter 1999). Glycosylation 

modifies reactivity and solubility of the corresponding aglycones impacting cellular 

localization and bioactivity. The nature of the  glycosides may be storage form of 

bioactive compounds like benzoxazinoids, glucosinolates or cyanogenic glycosides 

(Sonderby et al. 2010; Vetter 2000; von Rad et al. 2001); glycosylation may be 

required for biological activity like membrane permeabilisation induced by saponins 

(Armah et al. 1999; Augustin et al. 2011) or UV-B protection provided by flavonols 

glycosides (Liu et al. 2013; Ono et al. 2010a). 
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1.2 Glycosylation of plant secondary metabolites 

1.2.1 Glycosylation is a common feature of plant secondary metabolites 

Glycosyltransferases (GTs) are required for the transfer of monosaccharide 

moieties onto a variety of molecules (e.g. proteins, lipids, and polysaccharides). GTs 

form a large enzyme superfamily and have considerable diversity in their primary 

structures (Hu and Walker 2002), they are classified into 94 different enzyme 

families (http://www.cazy.org/GlycosylTransferases.html) (Campbell et al. 1997; 

Cantarel et al. 2009). The majority of these enzymes use nucleoside diphosphate 

activated sugars as donors and are therefore uridine diphosphate-dependant 

glycosyltransferases (UGTs). Glycosyltransferases belonging to family 1 (GT1s) are 

UGTs involved in the glycosylation of natural products (Bowles et al. 2006; Vogt 

and Jones 2000). 

UGTs make major contributions to the diversity of plant natural products 

(Bowles et al. 2005; Bowles et al. 2006; Gachon et al. 2005b; Vogt and Jones 2000; 

Yonekura-Sakakibara and Hanada 2011). They have a variety of functions. For 

example, UGTs are considered to be important in regulating plant growth and 

development due to their activity towards phytohormones (Husar et al. 2011; Jin et 

al. 2013; Lim et al. 2005; Martin et al. 2001; Martin et al. 1999; Priest et al. 2006; 

Tognetti et al. 2010; Wang et al. 2013a), conjugated phytohormones are regarded as 

storage, transport or inactivated forms of their unconjugated counterparts and are 

essential to hormonal homeostasis (Bajguz and Piotrowska 2009; Piotrowska and 

Bajguz 2011). UGTs are also important players in detoxification metabolism 

(Brazier-Hicks et al. 2007a; Brazier-Hicks et al. 2007b; Meech et al. 2012; Messner 

et al. 2003). They are responsible for glucoconjugation of toxic compounds 

preceding their transfer and storage in the vacuole, rendering them inert; 

alternatively xenobiotic glycosides may also be exported outside of the cell (Brazier-

Hicks et al. 2007b; Cole and Edwards 2000). UGTs also participate to the 

elaboration of bioactive molecules important in defence mechanisms like terpenoid 

glycosides, glucosinolate, cyanogenic glycosides, or flavonoids glycposides (Agati et 

al. 2011; Grubb et al. 2004; Kannangara et al. 2011; Klee 2013; Sawai and Saito 

2011). Modification of solubility, stability and volatility through glycosylation will 

affect sequestration of plant compounds within the cell. The stability of pigments 

http://www.cazy.org/GlycosylTransferases.html
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(e.g. betalaines, anthocyanins), modification of the taste of fruit flesh (e.g. 

naringenin, saffron, steviosides) and retention of aromas in flowers or fruits (e.g. 

monoterpenes, phenyl alcohols) are all examples of the ways in which modification 

of the properties of molecules by UGTs can influence plant interactions with the 

environment (Frydman et al. 2013; Madhav et al. 2013; Moraga et al. 2009; Moraga 

et al. 2004; Nishihara and Nakatsuka 2011; Ono et al. 2006; Ono et al. 2010b; Sui et 

al. 2011). 

UGTs catalyse the transfer of a sugar from a sugar donor (a uridine 

diphospho (UDP)-sugar) to a sugar acceptor (usually a lipophilic molecule) (Fig. 

1.1). GT1 are inverting glycosyltransferases, those enzymes will invert the 

stereochemistry of the anomeric carbon at position C1 of the sugar residue (Lairson 

et al. 2008; Lairson and Withers 2004). UGTs generally show high specificity for 

their sugar donors and a single activated sugar (UDP-sugars) is efficiently 

recognised as the substrate (Bowles et al. 2006; Kubo et al. 2004; Noguchi et al. 

2009; Osmani et al. 2008). UGTs can be either very selective or promiscuous in term 

of the range of acceptors they recognise. The major principle governing acceptor 

recognition by UGTs seems to be regioselectivity (systematic glycosylation of the 

same position) rather than specificity over one or few structurally related compounds 

(Cartwright et al. 2008; Hansen et al. 2003; Vogt and Jones 2000). Most UGTs act 

on hydroxyl or carboxyl groups but N-glycosylation, S-glycosylation or C-

glycosylation can also occur (Brazier-Hicks et al. 2009; Brazier-Hicks et al. 2007b; 

Grubb et al. 2004; Hou et al. 2004; Jones and Vogt 2001; Wang et al. 2011). 

 

 

Figure 1.1: Simplified diagram of the glycosylation reaction catalysed by UGTs. Family 1 

glycosyltransferases (UGTs) catalyse the transfer of a sugar (shown here as glucose; Glc) from an 

activated sugar donor (uridine diphosphate glucose; UDP) onto a lipophilic acceptor to form a 

glycoside. UDP is released during the process. 
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1.2.2 Activity of plant UGTs 

Recent release of crystallographic data from several plant UGTs has 

enhanced our understanding of glycosylation machanism and enabled homology-

based 3D modelling of a number of UGTs (Osmani et al. 2008; Osmani et al. 2009; 

Wang 2009). UGT71G1 of Medicago truncatula was the first plant UGT structure to 

be solved (Shao et al. 2005). Four other crystal structures have subsequently been 

published (Brazier-Hicks et al. 2007b; Li et al. 2007; Modolo et al. 2009; Offen et al. 

2006). Despite the fact that those enzymes have relatively low amino acid sequence 

identity (e.g. 25-45%) they share very similar 3D structures (Osmani et al. 2009; 

Wang 2009). 

These studies have clarified the overall architecture of plant UGTs as a GT-B 

fold. GT-B is one of the two structural folds identified for sugar nucleotide 

dependent enzymes. The GT-B structure was first described in 1994 with the 

resolution of the structure of the bacteriophage T4 β-glucosyltransferase (Vrielink et 

al. 1994). The GT-B fold is formed of two Rossmann-like domains, each composed 

of central β-strands surrounding by several α-helices. The catalytic site is localized 

in a cleft between the two domains (Fig. 1.2.B). In plant UGTs, two highly 

conserved residues play a crucial part in the SN2-like mechanism similar to other 

inverting GTs (Lairson et al. 2008; Osmani et al. 2009; Wang 2009). A histidine 

positioned around the twentieth residue acts as a general base to deprotonate the 

acceptor (Fig. 1.2.C, His22). An aspartate residue linked by a hydrogen bond to the 

histidine allows the stabilisation of the entire complex after the deprotonation (Fig. 

1.2.C, Asp121). Nucleophilic attack of the C1 carbon of the UDP-sugar is achieved 

by the deprotonated acceptor (Brazier-Hicks et al. 2007b; Lairson et al. 2008; Shao 

et al. 2005; Wang 2009). The sugar donor binding site is formed by a highly 

conserved motif throughout the UGT family and is localized in the C-terminal 

domain of the enzyme (Fig 1.2.A). The acceptor binding site is opposite to the donor 

binding site in the N-terminal part of the protein (Shao et al. 2005; Wang 2009). 
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1.2.3 Recognition of the sugar donor 

Plant UGTs recognise their sugar donors via a motif localized on the C-

terminal part of the enzyme (Fig. 1.2.A). This Plant Secondary Product 

Glycosyltransferase (PSPG) motif is highly conserved throughout UGT families 

(Hughes and Hughes 1994; Mackenzie et al. 1997; Ross et al. 2001). UDP-glucose 

(UDP-Glc) is the most common donor, but UDP-galactose (UDP-Gal), UDP-

rhamnose (UDP-Rha), UDP-xylose (UDP-Xyl), UDP-glucuronate (UDP-GlcA), 

UDP-mannose (UDP-Man) or UDP-arabinose (UDP-Ara) are also recognised by 

plant UGTs (Bowles et al. 2006; Osmani et al. 2009). 

Figure 1.2: Structural basis of sugar recognition by UGTs. A. Consensus PSPG motif of A. 

thaliana. Sequences were retrieved from http://www.p450.kvl.dk/UGT.shtml. A graphical 

representation of residues constituting the PSPG motifs was made using http://weblogo.berkeley.edu/ 

software. The overall height the stack indicates the sequence conservation at that position, while the 

height of the symbols within the stack indicates the relative frequency of each amino acid at that 

position. Essential residues for UDP-sugar binding are labelled with an asterisk. B. SAD10 homology 

model generated using I-Tasser (Zhang et al. 2008). C. A view of the 3D structure of the PSPG motif 

of UGT71G1crystallised in complex with UDP-Glc. The PSPG motif is represented as a green ribbon 

and the essential residues are labeled as well as the two catalytic residues His22 and Asp121. The 

chemical structure of UDP-Glc appears in red. Hypothetical hydrogen bonds are shown as grey lines.  

http://www.p450.kvl.dk/UGT.shtml
http://weblogo.berkeley.edu/
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UGTs show a high specificity towards their sugar donor mainly due to slight 

differences in PSPG box sequences (Offen et al. 2006). Determination of donor 

specificity via the PSPG sequence has been studied and some essential amino acids 

that are required for donor specificity are now known (Kubo et al. 2004; Noguchi et 

al. 2009; Osmani et al. 2008). The essential residues of the donor binding pocket 

have been identified by crystallography and mutational analysis. Residues interacting 

with UDP are part of the highly conserved portion of the PSPG motif (Fig. 1.2.A and 

C). The first tryptophan of the PSPG motif (residues of PSPG motif numbered in 

figure 1.2.A) forms a hydrophobic platform stacking with the uracil ring of UDP 

(Fig. 1.2.C, W339). The fourth glutamine of the motif and the twenty-seventh 

glutamate (Fig. 1.2.C, E365) form hydrogen bonds with ribose hydroxyl groups. The 

nineteenth histidine and twenty-fourth serine interact with the oxygens of the two 

phosphates (Fig. 1.2.C, H357 and S362). The two last residues of the PSPG motif 

(Fig. 1.2.C, E381 and Q382) are implicated in sugar recognition by interacting with 

the hydroxyl groups on position C2, C3 and C4 of glucose (Shao et al. 2005; Wang 

2009). The presence of glutamine or histidine as a last residue has been shown to be 

essential to determine specificity toward UDP-Glc or UDP-Gal (Kubo et al. 2004). 

More recently, engineering of the flavonoid-7-O-glucuronosyltransferase UGT88D7 

by introducing only two point mutations changed the preferred sugar-donor from 

UDP-GlcA to UDP-Glc (Noguchi et al. 2009). These two mutations affected the 

twenty second tryptophan of the PSPG motif, which interacts with the 4-OH of Glc, 

and the Ser127. Residues outside of the PSPG motif are also involved in sugar donor 

binding (Osmani et al. 2009). The Arg25 in the N-terminus of UGT94B1 has been 

shown to determine the specificity between UDP-GlcA and UDP-Glc (Osmani et al. 

2008). Point mutation of this residue to Ser leads to a dramatic decrease of activity 

with UDP-GlcA and a small increase of the activity towards UDP-Glc. Several UGT 

rhamnosyltransferases have now been identified in various plant species, sequences 

analysis suggests a convergent evolution of rhamnosyltransferase activity across 

plant species and UGT groups. A. thaliana rhamnosyltransferases UGT89C1 and 

UGT78D1 do not possess the conserved glutamine at the end of the PSPG motif 

which is replaced by a histidine or an asparagine respectively (Jones et al. 2003; 

Yonekura-Sakakibara et al. 2007). The same asparagine is present in potato StGT3, 

but is absent in all of the four other rhamnosyltransferases bearing the conserved 

glutamine residue (Frydman et al. 2013; Itkin et al. 2011; Shibuya et al. 2010). 
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1.2.4 Acceptor recognition - Towards understanding regiospecificity of 

glycosylation by UGTs 

The mechanism of sugar acceptor recognition by UGTs is poorly understood 

(Osmani et al. 2009; Wang 2009). In vitro studies using recombinant enzymes from 

Arabidopsis thaliana have highlighted the promiscuity of many UGTs with regard to 

acceptor recognition (Caputi et al. 2008; Lim et al. 2002; Vogt and Jones 2000). 

Recent work on UGT85K4 and UGT85K5 from cassava suggests a role for these 

UGTs in cyanogenic glucoside biosynthesis. The linamarin and lotaustralin 

glycosylation activities of recombinant UGT85K4 and UGT85K5 as assessed in 

vitro are consistent with their role in planta; nevertheless, UGT85K4-5 recognises a 

wide range of other acceptors including flavonoids, isoflavonoids, simple alcohols 

and various hydroxynitriles (Kannangara et al. 2011). In contrast, some UGTs 

possess high specificity towards one or a few structurally related compounds. 

UGT85A24 from Gardenia jasminoides proved to be highly specific towards 7-

deoxyloganetin but did not recognise an unmethylated form of this compound 

(Nagatoshi et al. 2011). Modalities for acceptor recognition and binding onto the N-

terminal part of the protein remain elusive. Acceptor binding pockets of plant UGTs 

are generally surrounded by apolar residues (Modolo et al. 2009; Wang 2009). 

Residues within these acceptor pockets are located in regions that are poorly 

conserved through plant UGTs (Osmani et al. 2009). Little is known about the 

mechanisms underlying the correct orientation of the acceptor molecule and 

therefore the regiospecificity of glycosylation catalysed by UGTs. Steric constraints 

due to the nature of the surrounding amino acids and formation of H-bonds are 

believed to be involved in acceptor binding (He et al. 2006; Li et al. 2007; Modolo et 

al. 2009; van der Heide 1966). 
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1.2.5 Phylogeny of plant UGTs, evolution and function prediction 

The family 1 GTs are one of the largest groups of natural product-decorating 

enzymes in higher plants. The expansion of this family in higher plants reflects 

chemical diversification during the adaptation of plants to life on land (Caputi et al. 

2011; Yonekura-Sakakibara and Hanada 2011). UGTs sharing 40% or more amino 

acid identity have been classified into families, the plant UGT families extending 

from UGT71 to UGT100 (Mackenzie et al. 1997). Mining of the complete genome 

sequence of thale cress (Arabidopsis thaliana) has identified 107 predicted family 1 

GT genes. These GTs have been classified into 14 monophyletic groups (groups A to 

N; Fig. 1.3) (Ross et al. 2001). Recently two new phylogenetic groups (O and P) 

which are not present in A. thaliana but are represented in other plant species have 

also been reported (Caputi et al. 2011).  

Specificity for each sugar donor appears to have evolved multiple times and 

closely related enzymes may use different sugar donors. This is illustrated by the 

three A. thaliana flavonoid glycosyltransferase homologues UGT78D1, UGT78D2 

and UGT78D3, each of which use a different UDP-sugar as a donor. UGT78D1 has 

flavonoid-3-O-rhamnosyltransferase activity in planta (Jones et al. 2003), UGT78D2 

is a flavonoid-3-O-glucosytransferase (Yonekura-Sakakibara et al. 2007) and 

UGT78D3 is a flavonoid-3-O-arabinosyltransferase (Yonekura-Sakakibara et al. 

2008). 

UGTs acting on similar acceptors appear to be spread across the phylogenetic 

tree. UGTs belonging to the same monophylogenic group normally share the same 

regiospecificity for glycosylation of their acceptors (Lim et al. 2004; Vogt and Jones 

2000). A large dataset has been collected for flavonoid glycosyltransferases; these 

GTs are predominantly part of 4 discrete phylogenetic groups matching with the 

regiospecificity of these enzymes (Frydman et al. 2013; Noguchi et al. 2009; 

Yonekura-Sakakibara et al. 2012). Far less is known about triterpenoid 

glycosyltransferases. 
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Figure 1.3: Phylogenetic tree of amino acid sequences of A. thaliana UGTs, also 

including characterised triterpenoid glycosyltransferases from other plant species. The 

monophyletic groups defined by Li et al. (2001) are labelled on the tree. Triterpenoid 

glycosyltransferases are indicated in bold. The phylogenetic tree was drawn using the Neighbor-

Joining method. Selected family one glycosyltransferases from A. thaliana were retrieved from 

http://www.p450.kvl.dk/UGT.shtml. The accession numbers of the triterpenoid glycosyltransferases 

from other plant species are given in supplementary data (S.3). The scale bar represents 20% 

divergence.  

http://www.p450.kvl.dk/UGT.shtml
http://www.p450.kvl.dk/UGT.shtml
http://www.p450.kvl.dk/UGT.shtml
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1.3 Terpenoids and triterpenoid glycosides 

1.3.1 The plant terpenome 

Terpenoids are one of the largest groups of metabolites found in nature. More 

than 50,000 terpenoids have been reported, most of them in plants, fungi or bacteria 

(Cane and Ikeda 2012; Hemmerlin et al. 2012). Some plant terpenoids have essential 

physiological functions, for example in cell membrane structure and fluidity 

(sterols), hormone signalling (gibberellins, brassinosteroids) and photosynthesis 

(carotenoids) (Daviere and Achard 2013; Simons and Sampaio 2011; Sozer et al. 

2011; Zhu et al. 2013). However the majority of higher plant terpenes are likely to 

have ecological functions, including plant defence (diterpenoids, sesquiterpenoids, 

triterpene glycoside saponins), scents and aromas used as attractants 

(monoterpenoids, sesquiterpenoids), or allelopathy (diterpenoids, triterpenoids) 

(Augustin et al. 2011; Dixon 2001; Gonzalez-Lamothe et al. 2009; Hemmerlin et al. 

2012; Yu and Utsumi 2009). 

The vast structural diversity found in terpenoids originates from a common 

precursor isopentenyl diphosphate (IPP) and its isomer dimethylallyl diphosphate 

(DMAPP). These initial terpene building blocks can both be synthesised via two 

independent pathways, the mevalonate (MVA) pathway and the 2C-methyl-D-

erythritol 4-phosphate (MEP) pathway (Hemmerlin et al. 2012) (Fig. 1.4). The MVA 

pathway takes place in the cytosol and uses acetyl Co-A as a precursor. The MEP 

pathway by contrast is plastidial and uses pyruvate and D-glyceraldehyde 3-

phosphate as precursors, which originate indirectly from the Calvin cycle. Isoprenyl 

diphosphate synthases catalyse condensation of IPP and DMAPP to form the linear 

isoprene backbones of each terpene family (Wang and Ohnuma 2000). Isoprene 

diphosphate precursors are then processed by terpene synthases (Chen et al. 2011) to 

form mono- (C10), sesqui- (C15), di-(C20), tri- (C30) and tetraterpenoids 

(carotenoids) (C40). In the plastid, IPP and DMAPP derived from the MEP pathway 

are used to form geranyl diphosphate (GPP, C10), the precursor of monoterpenes, 

and geranygeranyl diphosphate (GGPP, C20), the precursor of diterpenes. 

Condensation of two GGPP molecules leads to formation of phytoene, the precursor 

of the carotenoids. In the cytosol, the MVA pathway generates farnesyl diphosphate 

(FPP, C15) via FPP synthase. FPP is the direct precursor of sesquiterpenes. 
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Alternatively, condensation of two FPP molecules and epoxidation of the resulting 

C30 molecule squalene leads to formation of 2-3-oxidosqualene, the precursor of 

sterols and triterpenes (Chung et al. 2013; Hemmerlin et al. 2012; Misawa 2011). 

Sterols are part of the primary metabolism and their three first rings A, B and C are 

in chair-boat-chair conformation. Triterpenes are considered as secondary 

metabolites and have a chair-chair-chair conformation (Thimmappa et al. 2014). 
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1.3.2 Glycosylated triterpenes (saponins) 

Saponins are secondary metabolites that are found in a wide range of plant 

species. They are glycosylated triterpenes or sterols that have surfactant properties 

due to their amphiphilic nature. They are likely to have functions in protection of 

plants against attack by pathogenic microbes, herbivores and competing plant 

species (Augustin et al. 2011; Osbourn 1996; Sawai and Saito 2011). 

The defensive role of saponins has been attributed to their ability to 

permeabilize plasma membranes. The amphipathic properties of these molecules 

allow them to penetrate the external monolayer of the cellular membrane. After 

integration into the membrane they then associate with sterols and form complexes. 

Complex formation results in deformation of the membrane and ultimately to 

membrane disruption through pore formation or vesiculation (Fig. 1.5), and so to the 

lysis of the cell (Armah et al. 1999; Augustin et al. 2011; Keukens et al. 1995; 

Nishikawa et al. 1984). 

Saponins have considerable commercial importance (table 1.1). Historically, 

they were used as soaps due to the surfactant properties of plant extracts with high 

saponin content. For example, leaf extracts of Saponaria officinalis were used a long 

time ago as detergent to wash linen (Osbourn 1996) and saponins from the bark of 

Quillaja saponaria were used as shampoo by South American tribes (Francis et al. 

2002). Saponins are also the major active components of many traditional medicines, 

including roots preparations from Panax spp (ginseng), Panax notoginseng, 

Symplocos chinensis … (Sparg et al. 2004; Yang et al. 2009). Many saponins have 

positive effects on human health, including anti-tumoral or anti-inflammatory 

activities (Dinda et al. 2010; Sparg et al. 2004; Vincken et al. 2007). Some saponins 

are also potent immunoadjuvant compounds, in particular QS-21 from Quillaja 

saponaria is a widely used saponin-based adjuvant (Sun et al. 2009). Saponins are 

also exploited by the cosmetic and food industries, and steroidal saponins from 

Yucca schidigera are used extensively as anti-food-deteriorating agents (Sparg et al. 

2004; Tanaka et al. 1996). 
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Triterpenes and steroidal saponins are derived from the MVA pathway and 

share a common precursor, 2,3-oxidosqualene. Cyclisation of 2,3-oxidosqualene is 

the first step in saponin biosynthesis, leading to formation of the carbon skeleton of 

the molecule. This core structure is then decorated by different tailoring enzymes. 

Cytochrome P450 (CYP450s) are involved in oxidation steps while 

glycosyltransferases (UGTs) catalyse the formation of sugar chains. These two 

classes of enzyme form a major part of saponin biosynthetic pathways but other 

tailoring enzymes (e.g. methyltransferases and acyltransferases) may also be 

involved (Augustin et al. 2011; Mugford et al. 2013; Sawai and Saito 2011). 

Figure 1.5: Schematic models of the molecular mechanisms of saponin activities 

towards membranes. Saponins integrate with their hydrophobic part (sapogenin) into the 

membrane. Within the membrane they form complexes with sterols, which subsequently, driven by 

interaction of their extra-membranous orientated saccharide residues, accumulate into plaques. Steric 

interference of these saccharide moieties causes membrane curvature subsequently leading to: (A) 

pore formation in the membrane, or (B) hemitubular protuberances resulting in sterol extraction via 

vesiculation. Alternatively, after membrane integration saponins may migrate towards 

sphingolipid/sterol enriched membrane domains (C) prior to complex formation with the incorporated 

sterols, thereby interfering with specific domain functionalities. Figure copied from Augustin et al. 

2011. 
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Table 1.1: Biological function and human use of plant saponins. 

Plant 

species 

Saponin Biological function, 

human use 

Sapindus 

mukorossi 

S.mukorossi saponin  

 Molluscicidal activity 

 

Detergent 

Avena 

strigosa 

 

Avenacin A-1 
Antifungal activity 

Medicago 

truncatula 

3-GlcA-28-Ara-Rha-Xyl-medicagenate 

Insecticidal activity 

 

Quillaja 

saponaria 

 

Quillaic acid 

Digestion improved in 

ruminants 

 

Allium 

sativa 

 

Eruboside-B Protection against 

cardiovascular disease 

Glycine 

max 

 

Soyasaponin βg 

Antitumor activity 

Panax 

ginseng 

 

 

Ginsenoside-Rg2 
Protection against 

memory impairment 

Acacia 

victoriae 
  Avicin-D 

Antioxidant activity 

 

 
References from: Sparg et al. 2004, Vincken et al. 2007, Guclu-Ustundag and Mazza 2007. 
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Cyclisation of 2,3-oxidosqualene is the branch-point between the sterol and 

triterpene pathways. This step is catalysed by oxidosqualene cyclases (OSCs). Most 

OSCs give rise to polycyclic triterpenes by cyclisation cascades involving various 

cationic intermediates (Xu et al. 2004). The initial cation formed by triterpene-

synthesising OSCs is the dammarenyl cation giving rise to the common chair-chair-

chair conformation of triterpenes. In contrast, the protosteryl cation of cycloartenol 

and lanosterol synthases gives rise to the chair-boat-chair conformation of sterols 

(Xue et al. 2012). Oleanane, also referred to as β-amyrin, is the most common plant 

triterpene skeleton, but saponins derived from other triterpene skeletons (e.g. lupeol 

and α-amyrin) are also found (Connolly and Hill 2010; Vincken et al. 2007). 

Various oxidation steps occurring during saponin biosynthesis are catalysed 

by CYP450s (Augustin et al. 2011; Sawai and Saito 2011). CYP450s are one of the 

most expansive gene families in higher plants (Bak et al. 2011; Nelson 2013; Omura 

2013). These enzymes are monooxygenases. Their catalytic centre is composed of 

heme, with iron involved in binding an oxygen molecule. Following activation via 

electron transfer (catalysed by NADPH-cytochrome P450 reductases), canonical 

CYP450s catalyse the oxidation of hydrocarbon molecules (Bak et al. 2011). In the 

case of saponin biosynthesis, nineteen P450s from three distinct clans (CYP71 

CYP72 and CYP85; clans are defined according to the percentage of identity 

between CYP450s, ≥40% in same clan) have been functionally characterised in dicot 

species. They catalyse the formation of hydroxyl, carbonyl and epoxy functional 

groups of the triterpene backbone of saponins (Kunii et al. 2012; Seki et al. 2008; 

Shibuya et al. 2006). Recently the first monocot triterpene P450 (CYP51H10) was 

characterised in our lab. This belongs to the CYP51 clan (Geisler et al. 2013). 

CYP51H10 is able to catalyse hydroxylation and epoxidation of β-amyrin. 

Oxidations catalysed by CYP450s will change the solubility of the triterpene 

skeleton, increasing its accessibility for other tailoring enzymes and providing 

functional groups (hydroxyl, carboxyl) likely to be targeted by glycosyltransferases. 
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Glycosylation is an essential characteristic of all saponins. The addition of a 

glycosidic moiety to the triterpenoid aglycone substantially modifies the properties 

of the molecule by adding a polar group onto the apolar backbone of the aglycone 

(sapogenin). The amphipathic nature of the resulting product is crucial for bioactivity 

(Armah et al. 1999; Augustin et al. 2011). The formation of oligosaccharide chains 

in the synthesis of triterpene glycosides and saponins in general is likely to occur by 

sequential addition of one monosaccharide residue at a time catalysed by family one 

glycosyltransferases (Augustin et al. 2011; Sawai and Saito 2011). The large action 

in the glycosylation of sapogenins is a source of considerable diversity in saponin 

structures. The number of sugar chains, their composition and their position on the 

triterpenoid backbone provides many possible combinations for a single aglycone 

(Vincken et al. 2007). 

Triterpenoid saponins sugar chains are usually composed of D-glucose, D-

galactose, L-arabinose, L-rhamnose, D-xylose, D-mannose and D-glucuronic acid; 

other rare monosaccharide residues such as D-apiose, L-fucose, ribose or D-

quinovose have also been found in some plant species (Vincken et al. 2007). These 

residues may be attached alone to the aglycone or they can form part of a sugar 

chain. The sugar chains of triterpenoid saponins can be composed of up to 8 residues 

but the norm is between 3 and 5 residues. These sugar chains may be linear or 

branched (table 1.1). Most of the monosaccharides are linked to carbon 3 or carbon 

28 of the triterpenoid backbone, although other sites of glycosylation exist (C4, C16, 

C20, C21, C22, C23).  Common patterns of glycosylation involve one or two sugar 

chains (giving monodesmosidic or bidesmosidic saponins, respectively). Rare 

examples of tridesmosidic saponins (possessing three sugar chains) have also been 

reported (Bedir et al. 1998; Yesilada et al. 2005). These sugar chains may be added 

onto hydroxyl groups or carboxyl groups and therefore form sugar acetals or sugar 

esters, respectively (Vincken et al. 2007). 
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1.3.3 Glycosylation of triterpenes by UGTs 

Despite the central role of glycosylation in structural diversification of 

saponins and the growing body of knowledge about the structural and functional 

properties of UGTs, only a handful of triterpenoid glycosyltransferases have been 

identified so far (table 1.2; Fig. 1.6). 

In Medicago truncatula, three triterpenoid glycosyltransferases have been 

identified based on their co-expression with the M. truncatula β-amyrin synthase 

gene in elicited cell cultures. Biochemical analysis of UGT73K1 and UGT71G1, 

revealed activity towards triterpenoid acceptors (Achnine et al. 2005). A third 

enzyme, UGT73F3, was shown to have hederagenin-28-O-glucosyltransferase 

activity (Fig. 1.6). M. truncatula insertion lines for the gene encoding this UGT had 

modified saponin content, confirming the role of this UGT in triterpene biosynthesis 

in planta (Naoumkina et al. 2010). 

The sequence encoding the Saponaria vaccaria UGT, Ugt74M1, was isolated 

from an expressed sequence tag (EST) collection generated from saponin-producing 

tissues. Recombinant UGT74M1 is an ester-forming glucosyltransferase of 

gypsogenic acid that carries out glucosylation  at position C-28 (Fig. 1.6) 

(Meesapyodsuk et al. 2007). 

Investigation of sequences that are homologous to known triterpenoid 

glycosyltransferases from M. truncatula have been identified in an EST database for 

soybean (Glycine max) and two glycosyltransferases involved in the biosynthesis of 

soyasaponin I in G. max have been identified (UGT73P2 and UGT91H4; Fig. 1.6). 

The two recombinant UGTs are involved in the sequential addition of D-galactose 

then L-rhamnose in the synthesis of soysaponin I C-3 linked sugar chains (Shibuya 

et al. 2010). Genetic analysis of a naturally occurring G. max accession that 

produced soyasaponin A lacking terminal sugar at position C-22 has led to 

identification of a locus that regulates the composition of the saponin sugar chain. 

This locus corresponds to a Ugt gene responsible for the addition of the terminal 

monosaccharide residue present on the C-22 sugar chain of soyasaponin A (Fig. 1.6). 

Two alleles of this gene, Ugt73f2 and Ugt73f4,are responsible for addition of D-

glucose and L-rhamnose, respectively (Fig. 1.6) (Sayama et al. 2012). 
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Augustin et al. (2012) reported the identification of four triterpenoid 

glycosyltransferases UGT73Cs from Barbarea vulgaris. An initial screening of a 

cDNA expression library led to the discovery of a UGT catalysing glucosylation of a 

mixture of B. vulgaris sapogenins. Homologues of this enzyme were found in 454 

pyrosequencing-generated transcriptomic database of B. vulgaris. UGT73C10, 

UGT73C11, UGT73C12 and UGT73C13 recombinant enzymes all catalysed 3-O-

glucosylation of oleanolic acid, hederagenin and betulinic acid (Fig. 1.6). In addition 

to monoglucosylated products, UGT73C12 and UGT73C13 also formed low 

amounts of bidesmosidic products. 
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Figure 1.6. Reactions catalysed by characterized triterpene glycosyltransferases. 
UGT73C10 from Barbarea vulgaris and UGT73F3 from Medicago truncatula glucosylate the C-3 

and C-28 positions of -amyrin-derived (oleanane) triterpenes, respectively (Augustin et al, 2012; 

Naoumkina et al, 2010).  The Saponaria vaccaria enzyme UGT74M1 glucosylates the C-28 position 

of another oleanane triterpene, gypsogenic acid (Meesapyodsuk et al, 2007).  Three 

glycosytransferases that add sugars to triterpene glycosides are also shown.  UGT73F2 from soybean 

(Glycine max) glucosylates the C-22-linked arabinose of soybean saponin AO-g (Sayama et al, 

2012); UGT73P2, also from soybean, adds a galactose to the C-3 linked glucuronic acid of 

soyasapogenol-B, and a second soybean enzyme UGT91H4 then adds a rhamnose to the galactose 

moiety (Shibuya et al, 2010).  
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Table 1.2. Triterpene glycosyltransferases 

Family 

 

Gene Name 

 

Species 

 

GenBank ID 

 

Substrate 

 

Reaction 

 

Reference 

 

       

71 UGT71G1 Medicago trunctula AAW56092 Hederagenin β-D-glucosylation 
He et al. 2006 ; Shao et al, 

2005 ; Achnine et al. 2005 

       

73 

UGT73C10 Barbarea vulgaris AFN26666 β-Amyrin, hederagenin C3- β-D-glucosylation  Augustin et al. 2012 

UGT73C11 Barbarea vulgaris AFN26667 β-Amyrin, hederagenin C3- β-D-glucosylation Augustin et al. 2012 

UGT73C12 Barbarea vulgaris AFN26668 β-Amyrin, hederagenin C3- β-D-glucosylation Augustin et al. 2012 

UGT73C13 Barbarea vulgaris AFN26669 β-Amyrin, hederagenin C3- β-D-glucosylation Augustin et al. 2012 

UGT73K1 Medicago trunctula AAW56091 Hederagenin, soyasapogenol B/E β-D-glucosylation Achnine et al. 2005 

UGT73F3 Medicago trunctula ACT34898 Hederagenin C28-β-D-glucosylation Naoumkina et al. 2010 

UGT73F2 Glycin max BAM29362 Saponin A0-αg C3’-β-D-glucosylation Sayama et al. 2012 

UGT73F4 Glycin max BAM29363 Saponin A0-αg C3’-β-D-xylosylation Sayama et al. 2012 

UGT73P2 Glycin max BAI99584 Soyasapogenol B 3-O-glucuronide C2’-β-D-galactosylation Shibuya et al, 2010 

       

74 UGT74M1 Medicago truncatula ABK76266 Medicagenic acid C28-β-D-glucosylation Meesapyodsuk et al, 2007 

       

91 UGT91H4 Glycin max BAI99585 Soyasaponin III C2” -β-D-rhamnosylation Shibuya et al, 2010 
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1.4 Avenacins 

1.4.1 Role in plant defence 

 Avenacins are monodesmosidic triterpene saponins found in oat roots.  The 

ability to synthesise these compounds is restricted to the genus Avena (Fig. 1.7.A).  

Avenacins are antimicrobial and have been shown to protect oats against attack by 

soil-borne fungal pathogens, including the causal agent of take-all disease of cereals, 

Gaeumannomyces graminis var. tritici (Papadopoulou et al. 1999). Take-all disease 

symptoms are caused by blockage of the vasculature of the root by fungal hyphae, 

which leads to blackening of the root, pronounced leaf yellowing, bleached seed 

heads and reduced yield . The infection is easily spread from plant to plant by fungal 

hyphae growing under the soil surface (Cook 2003). Resistance to take-all has not as 

yet been found in cultivated wheat accessions.  In the UK, 60% of wheat crops are 

estimated as being at risk to the disease with annual yield losses reaching £40-60 

million. The introduction of a source of effective genetic resistance to take-all into 

cultivated wheat is expected to increase wheat yields by 10-50% in affected crops 

(http://www.takeall.com). 

 

 

Figure 1.7: Avenacin structure and localization. A. Structures 

of the four avenacins: Avenacin A-1: R1 = OH, R2 = NHCH3; 

avenacin A-2: R1 = OH, R2 = H; avenacin B-1: R1 = H, R2 = 

NHCH3; avenacin B-2: R1 = H, R2 = H. The trisaccharide moiety of 

the avenacins consists of one L-arabinose linked to carbon 3 of β-

amyrin and two D-glucose molecules linked to L-arabinose (β-1-4 

and β-1-2 linkages). B. Localization of avenacin A-1 in oat root. 

Upper panel: Cross section of an oat root tip with nuclei stained with 

4',6-diamidino-2-phenylindole (DAPI) showing the different cell 

types (e, epidermis; s, subepidermis; c, cortex). Bar = 50 μm. Lower 

panel: Cross section under ultra-violet (UV) illumination showing 

blue fluorescence attributable primarily to avenacin A-1 (Wegel et al. 

2009).  

http://www.takeall.com/
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The antimicrobial properties of avenacins are likely to be due to the ability of 

these molecules to permeabilise fungal membranes (Fig. 1.5). Like other saponins, 

avenacins are able to integrate into the outer monolayer of cellular membranes prior 

to complexing with sterols to cause membrane disruption. Incompletely glycosylated 

forms of avenacins are unable to form complexes with sterols, suggesting an 

essential role  of the carbohydrate moiety of avenacin in avanacin-sterol interactions 

(Armah et al. 1999).  

1.4.2 Avenacin structure 

The major avenacin present in oat roots is avenacin A-1 but other variants 

exist, namely avenacins A-2, B-1 and B-2 (Fig. 1.7.A) (Crombie et al. 1984). 

Avenacins are oleanane-derived saponins, the apolar part of the molecule being 

composed of an oxidised form of β-amyrin (oleanane). One epoxide group, three 

hydroxyl groups and an aldehyde decorate β-amyrin to form 12,13-epoxy-16,21,23-

hydroxy-30-oxo-β-amyrin. The hydroxyl group at the C-23 position is specific to B-

type avenacins. The oleanane triterpene is acylated at C-21 with N-

methylanthranilate (A-1 or B-1) or benzoate (A-2 or B-2). The N-methylanthranilate 

part of the molecule is responsible for the bright-blue fluorescence of avenacins 

observed in epidermal cells of oat root tip under UV illumination (Fig. 1.7.B) 

(Haralampidis et al. 2001). 

The polar part of avenacin A-1 consists of a trisaccharide composed of one 

L-arabinose linked in the alpha configuration to C-3 of the β-amyrin skeleton, and 

two D-glucose (β-1-4 and β-1-2 linked) molecules linked to the triterpene via the L-

arabinose (Crombie et al. 1984). Glycosylation of avenacin A-1 is essential for its 

antimicrobial activity. Some avenacin-resistant fungi have evolved a strategy to 

detoxify avenacin by hydrolysis of the terminal sugars using glycosidases. The 

enzyme avenacinase, which is produced by an avenacin-resistant relative of the take-

all fungus, Gaeumannomyces graminis var. avenae, is able to remove the β-1,2- and 

β-1,4-linked terminal glucoses to give the less inhibitory bis-deglucosylated 

avenacin (Bowyer et al. 1995).   
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1.4.3 Biosynthesis of avenacins 

Accumulation of avenacin in epidermal cell layers of the root cause bright 

blue fluorescence of oat root tip under UV illumination (Fig. 1.7.B). This property 

has been exploited to screen sodium azide-generated mutants of diploid oat (Avena 

strigosa) for avenacin-deficient (saponin-deficient) mutants. A set of 10 independent 

saponin-deficient (sad) mutants with reduced root fluorescence was identified in an 

initial screen (Papadopoulou et al. 1999). Gene cloning has shown that most of the 

Sad genes originally defined by mutation are linked in the oat genome (Qi et al; 

2004) (Fig. 1.8.A). The avenacin gene cluster characterised to date contains the 

Sad1, Sad2, Sad7, Sad9 and Sad10 genes (Fig. 1.8.A) (Mugford et al. 2013).  The 

uncloned Sad3 locus is also physically linked to the gene cluster but further away on 

the oat genome (3.6 cM). The cloned Sad genes are all expressed in the epidermal 

cells of the root tips of A. strigosa seedlings (Fig. 1.8.B). Transcriptional regulators 

of avenacin biosynthesis have not yet been identified. Sad10 is the only UGT gene 

present within the characterised part of the gene cluster. 

 

 

 

 

Figure 1.8: The avenacin biosynthetic gene cluster. A. Organisation of 

the avenacin gene cluster in the A. strigosa genome B. In situ mRNA 

hybridization showing the distribution of the Sad1, Sad7 and Sad2 transcripts 

in the roots of A. strigosa seedlings (Mugford et al, 2009). 
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Significant progress has been made in cloning and characterising the Sad 

genes involved in avenacin pathway (Fig. 1.9). Most of these genes reside within an 

‘operon-like’ metabolic gene cluster in the oat genome (Qi et al. 2004). The first 

committed step in avenacin synthesis is catalysed by β-amyrin synthase (SAD1), an 

oxidosqualene cyclase that converts the ubiquitous precursor 2,3-oxidosqualene to β-

amyrin (Haralampidis et al. 2001). The second step is catalysed by SAD2, a CYP450 

that adds a hydroxyl group at C-16 of β-amyrin and also catalyses formation of a C-

12/C-13  epoxide (Geisler et al. 2013). Sad1 and Sad2 have both been recruited from 

sterol metabolism by gene duplication and neofunctionalisation (Qi et al. 2006). 

SAD1 is a divergent member of the OSC family that is likely to have been recruited 

directly or indirectly from oat cycloartenol synthase (CAS1), which catalyses the 

cyclisation of 2,3-oxidosqualene to the sterol precursor cycloartenol (Haralampidis et 

al. 2001; Qi et al. 2004). The evolution of OSCs from cycloartenol synthases is 

common phenomenon in higher plants (Xue et al. 2012). SAD2 (CYP51H10) is a 

divergent member of the CYP51 sterol demethylase family (Geisler et al. 2013).  

Non-sterol-related genes have also undergone neofunctionalisation to form avenacin-

biosynthesising enzymes. Sad9, Sad10 and Sad7 genes are required for the acylation 

of the avenacin A-1 and B-1 at position C-21 by the fluorophore N-

methylanthranilate (Mugford et al. 2013). Anthranilate originated from the shikimate 

pathway is converted in N-methylanthranilate by the methyltransferases SAD9. N-

methylanthranilate is further processed in N-methylanthranilate-O-glucose by the 

glycosyltransferase SAD10 (UGT74H5) (Owatworakit et al. 2012). The related 

enzymes UGT74H6 and UGT74H7 have been proposed to be involved in 

glucosylation of benzoate to generate the acyl donor required for synthesis of 

avenacins A-2 and B-2 (Owatworakit et al. 2012). The Sad10 gene was first 

identified because it lies within the avenacin gene cluster. Sad10 mutants have not 

yet been identified. N-methylanthranilate-O-glucose is used as an acyl donor by 

SAD7, a serine carboxypeptidase-like acyltransferase (AsSCPL1). SAD7 catalyses 

the transfer of N-methylanthranilate or benzoate onto C-21 of β-amyrin (Mugford et 

al. 2009).  
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Figure 1.9: Current knowledge of the biosynthesis of avenacin A-1. Cyclisation of β-

amyrin from 2,3 oxidosqualene is catalysed by β-amyrin synthase (SAD1). β-Amyrin is then modified 

by the cytochrome P450 CYP51H10 (SAD2) by both epoxidation and hydroxylation. The steps in 

grey are not known, a proposed order is shown based on sad mutants phenotypes. The fluorophore N-

methyl anthranilate is generated from the shikimate pathway. Anthranilate is converted to N-

methylanthranilate by the methyltransferase SAD9. This product is then glucosylated by the 

glycosyltransferase UGT74H5 (SAD10) to give N-methyl anthranilate glucose, which serves as the 

activated acyl donor for the serine carboxypeptidase-like acyltransferase (SAD7) in the vacuolar 

compartment. Steps unknown to date are shown as hypothetical reactions with grey arrows. 
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Although substantial progress has been made in cloning and characterising 

the genes and enzymes for avenacin biosynthesis the part of the pathway that is 

concerned with the synthesis of the trisaccharide sugar chain remains poorly 

understood. Mutants that are affected at two as yet uncloned loci – Sad3 and Sad4 – 

have been shown to accumulate the same incompletely glycosylated avenacin 

intermediate, namely avenacin lacking the β-1-4 linked glucose (Fig. 1.10.A) 

(Mylona et al. 2008).  Unlike the other avenacin deficient mutants that have been 

isolated, these mutants have root morphology defects (Fig. 1.10.B-D). At the cellular 

level the sad3 and sad4 mutants appear to have membrane trafficking defects that 

lead to degeneration of the epidermal cell layer (Fig. 1.10.E-G). It is unclear whether 

the Sad3 and Sad4 gene products are directly involved in avenacin biosynthesis (for 

example, in glycosylation, transport or regulation) or whether they have a broader 

function (e.g. in vesicular trafficking). It is interesting to note that the sad1 mutation 

when introduced into a sad3 or a sad4 mutant background suppresses the root 

morphology phenotype. sad1 mutants are blocked in the first committed step in 

avenacin biosynthesis (the cyclisation of 2,3-oxidosqualene to β-amyrin) and so 

sad1/sad1 sad3/sad3 and sad1/sad1 sad4/sad4 lines do not accumulate the 

monodeglucosylated avenacin intermediate. Therefore the detrimental effect on root 

morphology seen in sad3 and sad4 mutants is likely to be due to accumulation of the 

monodeglucosylated avenacin intermediate inside or just outside the vacuole. The 

Sad3 locus is genetically linked to the avenacin cluster (Qi et al. 2004). In contrast, 

the Sad4 locus is not linked to the avenacin biosynthetic gene cluster and sad4 

mutants are also affected in glycosylation of the steroidal saponin avenacoside found 

in oat leaves, pointing towards a broader function for the Sad4 gene product. 

Supporting this, the accompanying root phenotype of sad4 mutants is less 

pronounced than sad3 mutants. 
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Apart from sad3 and sad4 mutants no other oat mutants affected in 

glycosylation of avenacin  have been identified (Papadopoulou et al. 1999). 

Avenacin glycosylation is likely to be mediated by UGTs. UGTs are the only 

enzymes reported in saponin glycosylation to date (Augustin et al. 2011). 

Considering the regiospecificity of UGTs, the sequential synthesis of the avenacin 

trisaccharide is likely to be performed by three different UGTs (Fig. 1.11). However, 

we cannot exclude the hypothesis of a single enzyme catalysing the two 

glucosylation reactions regarding the few examples of UGTs catalysing consecutive 

glycosylation of the same acceptor. Such activities have been reported for RhGT1 of 

Figure 1.10: Phenotypes of sad3 and sad4 mutants (Mylona et al. 2008). A. sad3 and sad4 

mutants accumulate avenacin A-1 lacking the β-1,4-linked glucose. B-D. Degeneration of the 

epidermal cell layer in sad3 and sad4 mutants. Bars = 25 μm. (C) Longitudinal optical sections of 

roots of 2 day old wild-type and mutant propidium iodide–stained seedlings, showing the epidermal 

cell layer in the meristematic zone. E-G. sad3 and sad4 mutants have membrane trafficking defects. 

Transmission electron micrographs of cross sections of the epidermal cells of roots of 2 days old 

wild-type (E) and sad3 mutant ([F] and [G]) seedlings in the meristematic zone. Bars = 2 μm (E), 6 

μm (F) and 1.8 μm (G). 
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Rosa hybrida synthetizing cyanidin-3,5-O-diglucoside from cyanidin (Ogata et al. 

2005) or UGT73C12 and UGT73C13 of B. vulgaris catalysing formation of 

bidesmosidic diglucosides of oleanane triterpenes in vitro (Augustin et al. 2012). 

  
Figure 1.11: Hypothetical model for the formation of the avenacin trisaccharide. 
Glycosyltransferases belonging to family 1 (UGTs) are known to be involved in saponin glycosylation 

in other plant species and are therefore obvious candidates for synthesis of the trisaccharide moiety of 

the avenacins. Two possible pathways are proposed here, involving either two or three  UGT enzymes. 

A specific UGT is likely to add arabinose onto the hydroxyl group of carbon 3 of β-amyrin. Following 

this first step, two glucosylation events onto carbons 2 and 4 of the arabinose molecule are required to 

complete the formation of the trisaccharide. These two glucose molecules may be added either by a 

single enzyme or by two regiospecific glucosyltransferases. 
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1.5 PhD project overview 

Glycosylation of plant natural products is essential for cellular homeostasis, 

defence against biotic and abiotic stresses, and xenobiotic detoxification. Despite the 

growing body of literature on glycosyltransferases of plant natural products, the 

features that determine sugar acceptor specificity and regioselective addition of 

sugars are still only poorly understood. In the past, considerable effort has been 

invested in characterising glycosyltransferases from the model plant A. thaliana and 

other dicot species (e.g. M. truncatula, Lamiales). Comparatively, only a few UGTs 

have been characterised from monocots, mainly from rice and maize. A systematic 

analysis of monocot family 1 glycosyltransferases will provide important insights 

into the function and evolution of natural product glycosyltransferases in higher 

plants. The roots of plants are rich sources of natural products. In oats these include 

the antimicrobial triterpene glycoside avenacins. Here a systematic analysis of UGTs 

that are expressed in the roots of diploid oat (A. strigosa) is undertaken to develop a 

better understanding of the enzymes that glycosylate small molecules, including  

avenacins, in monocots.  Investigation of these oat UGTs also has the potential to 

generate useful biocatalysts for the synthesis of glycoconjugates of biotechnological 

interest. The aims of this project were therefore to: 

 Take a systematic approach towards identification and analysis of UGTs 

expressed in oat roots. 

 Identify avenacin glycosyltransferases candidates and functionally 

characterised to determine their potential role in the avenacin pathway. 

 Develop E. coli and plant-based systems for expression and functional 

analysis of oat UGTs and establish an in planta synthetic biology platform 

for triterpene engineering. 

 Develop novel assays for UGT activity and  investigate the activity oat 

UGTs toward terpenoids and other potential acceptors of biotechnological 

interest. 
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Chapter 2 - Materials & methods 

2.1 Materials 

2.1.1 Biological materials 

Oat plants used in this study are Avena strigosa accession S75 (from the 

Institute of Grasslands and Environmental Research, Aberystwyth, Wales, United 

Kingdom). Conditions of growth are described in section 2.2.1. Saponin-deficient 

mutant lines of A. strigosa originate from sodium azide mutagenesis (Papadopoulou 

et al. 1999). In this thesis, mutant lines from M5 progeny #1139 (sad3 mutant line) 

and #9 (sad4 mutant line) (Mylona et al. 2008) were used. Nicotiana benthamiana 

plants were grown in green-houses maintained at 23°C to 25°C with 16 hours of 

supplementary light per day. 

2.1.2 Bacterial strains 

species strains Supplier/origin Use 

Agrobacterium 

tumefaciens 

LBA4404  Transient expression in N. 

benthamiana 

Escherichia coli DH5α Invitrogen Gateway cloning 

 BL21  Invitrogen Protein expression 

 BL21 Rosetta Invitrogen Protein expression 

 BL21 Lemo  Protein expression 
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2.1.3 Primers 

Race PCR primers:  

Name Sequence 
Annealing 

temperature 

GeneRacer™ 5′ 

Primer (Invitrogen) 
CGACTGGAGCACGAGGACACTGA 68.6 

GeneRacer™ 5′ 

Nested Primer 

(Invitrogen) 

GGACACTGACATGGACTGAAGGAGTA 56.9 

F-M13 GTTTTCCCAGTCACGAC 
51.5 

R-M13 CAGGAAACAGCTATGAC 
83.8 

R1-27f7 GGGAGAGGGTCTCCAGCGTGCCGTTCCA 
84.1 

R2-27f7 GCCCTGTCCTTGACCCGCGCCTCGAA 
83.3 

R1-3i21 GCCATCAGCGCCCGTGCCACAGCTT 
83.5 

R2-3i21 CGTCTCCAGCACCGAGTTCCACCCGCAGT 
85.2 

Rr-3i21 GCAGGCGGCCTGCGCCGCGTAGAA 
72.2 

Rn-3i21 CGTGGAGTAGTCCACCTCCTGCTTCT 
82.4 

R1-14h20 CCGGCATGCCTGGCACCTCCACGTA 
69.4 

R2-14h20 CACAGTGAGTAGAAGCAGGAGGCTACAT 
76 

Rn-25n16 CATTTCAGGGTAGCTGTGGGGCAGGTT 
84.1 

Rr-25n16 GCCTGGGAAGCGCACGAGCGCTTGGT 
81.3 

Rn-5d1 GGTGGGACGCCGAGAGCTCGTCCA 
88.5 

Rr-5d1 TCCCCCGCCGCGAACGCCGCCAT 
81.8 

R1-8i4 CGCCCCTCCGTCTCCGCCGAGAATT 
78.4 

Rn-8i24 GCACGTTCCAGAGGAAGGCGTAGCCTGT 
68.6 
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 Transcripts expression analysis primers for RT-PCR:  

Name Sequence 
Annealing 

temperature 

Fep-1a15 GCGCCCCACCTGCTACTGATAT  
70.3 

Rep-1a15 TTCCCGACGACGCAAGACACAG  
73.8 

Fp-3i21 CAGCCGAAAGCACCATCCC 
70.4 

Rp-3i21 TGGAGTAGTCCACCTCCTGCTTC 
68 

F-8i4 GAGCATGCTGTCCACGTGGT 
69.2 

R-8i4 CCGTTTTAGTCCATGCAAGC 
64.7 

Fp-11i11bis GATGATGATGATGCAGTGGTGGAG 
70 

Rp-11i11bis TGCTGCTAGATATTGGCGGC 
67.5 

F-14h20 AACTTCCTCCGGCTGTTCCT 
66.5 

R-14h20 CGCACGAAGCTATGCACTAG 
64 

F-14h21 ATATCAGTTGATTCACCGTTGTTT 
62.6 

R-14h21 AGAGCTGTCCGGTAGCACG 
66 

F-15a11 CTGACGGATTCAGCGAAAAA 
65.4 

R-15a11 AGACCGTAGTGCATGAAGAAAT 
61.9 

Fp-16f23 GGCTTCTGTGGCTTCTCGTCC 
69.7 

Rp-16f23 TGTGTTGCTGTCTCGGTGGCA 
72.9 

Fp-16h6 GGTGGTTGACGGAGAGGAGGA 
70.1 

Rp-16h6 CCGCCTTCCACGATAGCTGTTT 
70.3 

F-20e13 GTGTGGGTACCGCTGCATAT 
65.1 

R-20e13 CGCCTCTAGCTCATCCCCAT 
67.9 

Fep-21p16 ATGGGGTCGATGGAGCAGAA  
69.3 

Rep-21p16 TAGGCGAACGACATGCAGGC  
70.9 
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Fep-24a3 GAGCGCGTCGAATCAGGGC  
72.9 

Rep-24a3 CCGTGCGCCAGGATCTCCAG  
74.8 

Fp-24i2 ACGCCGCCGACCAGAAGAG 
72.4 

Rp-24i2 CCAAGCACCCACACGAAATTC 
68.9 

Fp-25n16 GCCCCACAGCTACCCTGAAATG 
70.8 

Rp-25n16 CTCTTTTCGCCGTAGCCGC 
69.3 

Fp-27a12 ATATTCATGGCGGAGGACGGCG 
74.5 

R-Nes27a12 GCTTTTGCTCGACGGGCCGC 
76.9 

Fep-27f7 GTTTCGAGGCGCGGGTCAAG  
73.3 

Rep-27f7 CATCAACTCGGCGACCGCCT  
74 

F-28b19 TCGACGACGGCACCAACGCT 
75.7 

R-28b19 ACGGCCGAGGACCCCATCAC 
74.9 

F-30a8 GACATCGTCGCGCAGCTCCT 
72.6 

R-30a8 GCGTCCCTTCCGTGCCATGG 
76.2 

Fp-00733 CAGTCCGTGATCTTCGTCGC 
68.6 

Rp-00733 CCCACTCTTAACCAACCCTCCAC 
68.7 

Fep-01989 GGCCACATCAACCCGATCCTG  
73.1 

Rep-01989 CCAGCCCAGGCGTGCTCG  
75.3 

Fp-02436 CTCTACAGGCAAGGGCGGCA 
72 

Rp-02436 CTCCTTGCCATCCAGCCAAG 
69.4 

Fp-03999 AGCGGGAGAGGGAAGCGGA 
72.9 

Rp-03999 GGCGATAAGGGCACTACGTGTC 
68.9 

Fp-05827 CGATGGACAGTAGTGTGGCGTT 
68.5 
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Rp-05827 GCGGTGGGTGGCCGAGAG 
74.2 

Fp-10319 GCGTGAAGATCCCTGCCAT 
67.9 

Rp-10319 GTCTTCAATCTTCCCGGTGTCC 
68.1 

Fp-11637 AGGACACGGGCTGTCTTCAGT 
67.7 

Rp-11637 TGACGAAGCACGCCACGG 
72.6 

Fep-16327 CGCAACAGGGCCACCGTC 
72.9 

Rep-16327 TGCATCACCAGCCTCGGG  
71.5 

Fep-16525 GCCCTACCGTCGTCCTCATT  
67.6 

Rep-16525 AAGAGATCCACGACGACCGC  
69.1 

Fep-23586A GGAAGACGAGATGTGCAAGATCC 
68.3 

Rep-23586A TCCAAGTATTTCTTGGCGTCCTG  
68.3 

Fep-23586B GAGGAGCTGTGCAAAGAAATCAC  
66.4 

Rep-23586B GTCCGCTCTAGGAAACCTTCTGG  
68.2 

Fp-24138 GTGGAAGAGGTAGGAGGACCG 
66.3 

Rp-24138 CAGGATCATTATTATTTTGTCGACG 
64.4 

Fp-23781 TGCTGACCCGAAACAGATCATG  
69.6 

Rp-23781 CCACCACGATCTCCTTCTTGTC 
67.3 

Fp-24525 AGGAGGAGGAGGAGGAGCGGC 
73.3 

Rp-24525 CAAGCGGAGCCAAATCCATACTGC 
73 

Fp-SGT1 CGGCGGCACTACCCACGG 
74.5 

Rp-SGT1 AGGATCATTATTCTGCCGGCG 
69.3 
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Gateway cloning primers:  

Name Sequence 
Annealing 

temperature 

attB1 adapter 

primer 
GGGGACAAGTTTGTACAAAAAAGCAGGCT 

72.9 

attB2 adapter 

primer 
GGGGACCACTTTGTACAAGAAAGCTGGGT 

74.7 

attL1 
 CAAATAATGATTTTATTTTGACTGATAGT 60 

attL2 
CTATCAGTCAAAATAAAATCATTATTTG 59.4 

Fgw-Sad10 AAAAAGCAGGCTTAATGGGGGCTGAGTGGGAGCA 
82.2 

Rgw-Sad10 AGAAAGCTGGGTATCATGCATCTAACCCCACCAGCA 
80.9 

Fgw-AsGT3i21 AAAAAGCAGGCTTAATGGCCTCTACCACCACCGCTA 
80 

RgwAsGT3i21 AGAAAGCTGGGTATCAGCCTTGAACTGACTTGGGCC 
80.7 

Fgw-11i11 
AAAAAGCAGGCTTAATGGCCTCTAACGATAATGTCCCC

ACGG 

82.1 

Rgw-11i11 AGAAAGCTGGGTATCAGGTCCGCGGCCTCTTTGCTG 
84.4 

Fgw-14h20 AAAAAGCAGGCTTAATGGCGCACACAGAGACGAC 
80.1 

Rgw-14h20 AGAAAGCTGGGTATCAACAATTCCGATCTTGGGTAG 
76.7 

Fgw-14h21 AAAAAGCAGGCTTAATGGCGCCCACGGAGACGGC 
85.3 

Rgw-14h21 AGAAAGCTGGGTATCACTGCTCCTTGCTGCCACTCCGC 
84.9 

Fgw-16f23 AAAAAGCAGGCTTAATGACCTTCGCCCGCGGC 
83.1 

Rgw-16f23 AGAAAGCTGGGTATCAGCCACATGCATTTGTG 
77.7 

Fgw-16h6 AAAAAGCAGGCTTAATGGCATCGAGGCAGTACCA 
79.2 

Rgw-16h6 AGAAAGCTGGGTATCACTTCCTCTGGGACGGGATCA 
81.3 

Fgw-21p16 AAAAAGCAGGCTTAATGGGGTCGATGGAGC 
77.4 

R2gw-21p16 AGAAAGCTGGGTATCAATTTCGGCCAGTAGAT 
74.1 

Fgw-24i2 AAAAAGCAGGCTTAATGGCTGTCAAAGATGAGCA 
77.1 
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Rgw-24i2 AGAAAGCTGGGTATCAAAGTCCGTCATTTGTCGGGA 
80.2 

Fgw-27a12 AAAAAGCAGGCTTAATGAAGGACGCGACGGCGAC 
82.3 

Rgw-27a12 AGAAAGCTGGGTATCACCTGCTGGTGATGTAAGCAA 
78.8 

Fgw-25n16 AAAAAGCAGGCTTAATGGCAGGCATGGCTCCGCT 
83 

Rgw-25n16 AGAAAGCTGGGTATCAAGTGCTTGTTGAATTCTCCA 
76.9 

Fgw-27f7 AAAAAGCAGGCTTAATGGGGACGTTGTCGGAGCT 
80.3 

Rgw-27f7 AGAAAGCTGGGTATCAAGACTGTACTGACAGTGCAG 
75.4 

Fgw-02436 AAAAAGCAGGCTTAATGGAGACCTCCGCAA 
76.6 

Rgw-02436 AGAAAGCTGGGTATCACGCACAAGAATCGATC 
76.4 

Fgw-03999 AAAAAGCAGGCTTAATGGGGTACAACGGCG 
77.5 

Rgw-03999 AGAAAGCTGGGTATCAAAAATTGAATGGGAGA 
73.3 

Fgw-05827 AAAAAGCAGGCTTAATGGGGATTGAGTCGATGGACA 
79.9 

Rgw-05827 AGAAAGCTGGGTATCAAATCCTTGTGATGTGAGCAA 
77.6 

Fgw-16525 AAAAAGCAGGCTTAATGGCGCCTCGCCCTACCGTCGT 
85.2 

Rgw-16525 AGAAAGCTGGGTATCACCTACCAACCGGCAAATCCA 
81 

Fgw-23586 AAAAAGCAGGCTTAATGAAGCAGACCGTCGTCCTGT 
79.6 

Rgw-23586 AGAAAGCTGGGTATCACTCGCGTACCTGCTCTCCGA 
81.9 

Fgw78D3 AAAAAGCAGGCTTAATGGCCAAACCCTCGCAG 
79.7 

Rgw78D3 AGAAAGCTGGGTATCATTATCCAAAGTTCACAACTT 
72.7 

Fgw73C10-12 AAAAAGCAGGCTTAATGGTTTCCGAAATCACC 
75.2 

Rgw73C10 AGAAAGCTGGGTATCATCAATTATTAGGTTGTGC 
71.9 

Rgw73C12 AGAAAGCTGGGTATCATCAATTATTGGATTGTGC 
73.9 
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RT-PCR primers for pEAQ transient expression:  

Name Sequence Annealing temperature 

F-5′ UTR pEAQ ACTTGTTTGATCGAATTTGG 
53.7 

F-pNos GAACTGACAGAACCGCAACG 
60.3 

R-Kan TCAGCAATATCACGGGTAGC 
57.2 

F-SAD1 ATGTGGAGGCTAACAATAGG 
58.1 

R-SAD1 TATCTCATGACGATGTTCCG 
61.1 

F-SAD2 ATGGACATGACAATTTGCGT 
57.3 

R-SAD2 CATTGGCACGGTGAACTCAT 
65.9 

Fep-UGT73C10 GTTTCCGAAATCACCCATAA 
55.9 

Rep-UGT73C10 AAGACAAAAGCAACACATGC 
54.9 
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2.1.4 Plasmids 

Plasmids name Supplier/origin Use 

pDONR207 Invitrogen Entry clones 

pCR4-TOPO Invitrogen Cloning of PCR product 

pH9-GW 
O’Maille laboratory, gateway-

compatible version of pET18 

Expression in E.coli with 

9xHis N-term tag 

pEAQ-HT-DEST1 Lomonossoff  laboratory 
Transient expression in 

N.benthamiana 

pEAQ-HT-DEST2 Lomonossoff  laboratory 

Transient expression in 

N.benthamiana with 6xHis N-

term tag 

Plasmid maps are presented in chapter 4, figures 4.2 and 4.3 

2.1.5 Chemicals 

Chemicals formula Supplier/origin Purity 

2,4,5-Trichlorophenol C6H3Cl3O Sigma-Aldrich 95% 

Uridine diphospho-β-D-

glucose 
C15H23N2O17P2 Sigma-Aldrich 98% 

Uridine diphospho-β-D-

galactose 
C15H23N2O17P2 Sigma-Aldrich 98% 

Uridine diphospho-α-L-

arabinose 
C14H21N2O16P2 Carbosynth Ltd 98% 

Uridine diphospho-β-D-

glucose [6-
3
H] 

C15H23N2O17P2 ARC Inc - 

Quercetin C15H10O6 Sigma-Aldrich ≥ 95% 

Kaempferol C15H10O6 Sigma-Aldrich ≥ 97% 

Tricin C17H14O7 SelectLab Chemicals 95% 

β-amyrin C30H50O Apin Chemicals Ltd - 

β-amyrin arabinoside C35H58O5 Field Lab, chemical synthesis - 

Avenacin A-1 C55H80NO21 Purified from A. strigosa - 

Hederagenin C30H48O4 Apin Chemicals Ltd - 

Lupeol C30H50O Apin Chemicals Ltd - 

Capsidiol C15H24O2 
O’Maille Lab, purified from 

Capsicum annuum 
99% 

α-bisabolol C16H28O2 Sigma-Aldrich ≥ 95% 
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2.2 Methods 

2.2.1 Growing conditions of A. strigosa and tissue collection 

Appropriate number and variety of seeds were dehusked manually, sterilised 

in 5% sodium hypochlorite solution and shaken for 5 min (Spiramix 5, Denley). 

Seeds were rinsed 5 times in sterile water. Dried seeds were placed onto Petri dishes 

containing distilled water agar (15 seeds per plate). Plates were stored in dark at 4°C 

for 12 hours for synchronisation of germination. Seeds were transferred to a growth 

cabinet (SANYO, Versatile Environmental Test Chamber) (22°C, 16 hours of light 

per day). After 3 days of growth, young tissues were harvested. A. strigosa root tips 

(last 0.5cm), elongation zone, whole root and/or whole leaves were harvested with a 

sterile razor blade and frozen directly in liquid nitrogen. A. strigosa mature tissues 

were harvested from flowering plants grown in green house conditions. Stalks, 

flowers, and/or mature leaves were harvested manually and frozen directly in liquid 

nitrogen. 

2.2.2 Genomic DNA isolation from A. strigosa 

A total of 250 mg of 3-day-old A. strigosa leaf tissues were ground and 

homogenised in liquid nitrogen using a pestle and mortar. Ground tissue was 

resuspended in 500 µL of DNA extraction buffer (50 mM Tris-HCl pH8, 100 mM 

NaCl, 50 mM ethylenediaminetetraacetic acid (EDTA), 10 mM dithiothreitol (DTT, 

Sigma-Aldrich), 1% Sodium dodecyl sulfate (SDS, Sigma-Aldrich)). The sample 

was vortexed and incubated 30 min at 50°C. DNA was extracted from the cell lysate 

twice using 500 µL of phenol/chloroform/isoamylalcohol (25:24:1, Sigma-Aldrich). 

DNA was precipitated from the aqueous phase by the addition of 50 µL of 3M 

sodium acetate and 1 mL of absolute ethanol. DNA was collected by centrifugation 

for 10 min at 14,000 g and the obtained DNA pellet was washed with 1 mL 70% 

ethanol before being resuspended in Milli-Q H2O. Final concentration of the DNA 

solution was measured by Nanodrop (NanoDrop 8000 spectrophotometer, Thermo 

Scientific). 
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2.2.3 RNA isolation 

Frozen tissues were ground in liquid nitrogen with an autoclaved mortar and 

pestle. 100mg of the tissue powder was homogenised in TRI reagent (Sigma-

Aldrich) for 10 minutes at room temperature. Chloroform (0.2 mL) was added to the 

sample. The sample was shaken and centrifuged (12,000 g, 15 min at 4°C) to allow 

separation of the three layers. The aqueous upper phase was isolated, the addition of 

0.5 mL of isopropanol and 50 µg/mL of glycogen allowed precipitation of RNA after 

centrifugation (12,000 g, 10 min  at 4°C). 

The dry pellet was resuspended in 43 µL of diethylpyrocarbonate (DEPC) 

treated water and DNA contaminants were digested by treatment with 2 µL DNase 

(Deoxyribonuclease I, Sigma-Aldrich) buffered with 5 µL of 10x reaction buffer. 

Treated RNA was extracted with 0.2 mL phenol:chloroform:isoamyl alcohol 

(25:24:1) (Sigma-Aldrich) then concentrated by addition of sodium acetate (20 µL at 

3 M, pH 5.2) with 50 µg/mL of glycogen and 520 µL of 95% ethanol. After 

centrifugation (14,000 g, 20 min at 4°C) and removal of supernatant, the RNA pellet 

was washed again with 75% ethanol. The RNA pellet was air-dried and resuspended 

in a suitable volume of DEPC-treated water and stored at -80°C. 

The RNA concentration was measured using a NanoDrop 8000 

spectrophotometer (Thermo Scientific) and the A260/A280 ratio was verified. RNA 

integrity was determined by separation of total RNA on denaturing agarose gel 

electrophoresis (see section 2.2.5) to check presence of 25S/18S RNA bands and 

distribution of mRNA. 

2.2.4 cDNA synthesis 

In an RNase-free tube 5 µg of RNA were mixed with 500 ng of poly-

thymidine (oligo(dT) 15 primer, Promega) and 1 µL of dNTP mix at 10 mM in a 

final volume of 13 µL of DEPC-treated water. To avoid formation of RNA 

secondary structures, the sample was incubated for 5 min at 65°C and placed on ice 

for 1 min. Superscript III® kit (Invitrogen) components were added as follows: 4 μl 

of RT First-Strand buffer, 1 μl DTT 0.1 M, 1 μl of RNaseOUT 40 U/μl and 1 μl of 

SuperScript III reverse transcriptase 200 U/μl. Samples were incubated at 50°C for 

45 min and the reaction was inactivated at 70°C for 15 min. RNA contaminants were 
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removed by RNase treatment at 37°C for 15 min. Concentration of single-strand 

cDNA was analysed by a Nanodrop 8000 spectrophotometer (Thermo Scientific). 

2.2.5 DNA electrophoresis 

The required quantity (1 g per 100 ml, for 1% agarose gel) of agarose powder 

was weighed out. The agarose powder was dissolved in TRIS-acetate EDTA (TAE) 

buffer (40mM Tris, 20mM acetic acid, and 1mM EDTA) using a microwave oven at 

full power until boiling. Ethidium bromide was added to cooled liquid agarose 

solution at a concentration of 500 µg/mL. The solution was poured onto the gel plate 

with combs used to form wells in the desired positions. After cooling, the gel was 

transferred to the electrophoresis tank and covered with TAE buffer. 

Wells were loaded with 5 µL samples (1x Green buffer as a dye (GoTaq 

buffer, Promega), 1-2 µL of PCR product). DNA ladder (2 μL) was added onto one 

well (1x Green buffer, 100 µg/mL 1 kb DNA Ladder (New England Biolabs)). A 

current of 100 volts was applied to the gel for 20-25 min. Migration of DNA 

fragments was analysed under UV light using a gel imager (Gel Doc XR+ system, 

Bio-Rad). PCR products < 800bp were analysed on a 1.5% agarose gel. 

2.2.6 Sequencing reaction of DNA fragment  

Sequencing reactions were set up as follows: 

Volumes Mix component Final concentration 

x µl DNA material  50-100 ng 

2 µl 5x Big Dye Terminator V3.1 sequencing buffer 

(Invitrogen) 

1x 

0.5 µl DMSO 100% 5% 

2 µl Big Dye V3.1 - 

1 µl Sequencing primer (10 mM) 1 µM 

Up to 10 µl sterile Milli-Q water  - 
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PCR program was performed as follows: 

PCR steps Duration Temperature Cycles 

Denaturation 1.5 min 95°C x1 

Denaturation 20 sec 95°C  

Annealing 20 sec 50°C X30 

Elongation 4 min* 60°C  

Annealing 30 sec 50°C x1 

Elongation 4 min 60°C x1 

Analysis of the reaction products was performed by TGAC (Norwich 

Research Park). The sequences were analysed using Vector NTI Advance 11 

software (Invitrogen). 

2.2.7 Transcript expression analysis 

cDNA library from A. strigosa tissues (see section 2.2.4) were diluted down 

to 100 ng/µL based on Nanodrop quantification (NanoDrop 8000 spectrophotometer, 

Thermo Scientific). Fragment amplification of constitutively expressed glucose-6-

phosphate dehydrogenase (G6PDH) was used in the normalisation strategy in order 

to obtain similar level of amplification of G6PDH from each tissue. PCR mixes were 

prepared as follows: 

Volumes Mix component Final concentration 

1 µl cDNA from A. strigosa tissue (100 ng/µL) 50 ng 

4 µl GoTaq 5x Green buffer (Promega) 1x 

0.5 µl dNTP mix (10 mM each dATP, dCTP, dGTP, 

dTTP) 

250 µM each 

2 µl MgCl2 (25 mM) 2.5 mM 

1 µl Forward primer (10 µM) 0.5 µM 

1 µl Reverse primer (10 µM) 0.5 µM 

0.2 µl GoTaq DNA polymerase (5 U/µl, Promega) 1 U 

9.5 µl sterile Milli-Q water  - 
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PCR program was performed as follows: 

PCR steps Duration Temperature Cycles 

Denaturation 2 min 95°C x1 

Denaturation 30 sec 95°C  

Annealing 30 sec Var* X30 

Elongation 2 min* 72°C  

Elongation 10 min 72°C x1 

*annealing temperature is variable depending on primers used (see section 2.1.3) 

PCR products were analysed by electrophoresis, 1.5% agarose gel (see 

section 2.2.5). 

To control the transient expression of transcripts in N. benthamiana using the 

pEAQ system, cDNA were generated using 5’UTR specific primers. The DNA 

contamination experiment consists in amplifiying untranslated region of the T-DNA 

using F-pNos and R-Kan primers. The primers used in this analysis are listed in 

section 2.1.3. 

2.2.8 Rapid amplification of cDNA 5’end (RACE PCR) 

Amplification of A. strigosa UGTs 5’end was performed by RACE-PCR 

using GeneRacer Kit (Invitrogen). 

Preparation of A. strigosa root tip cDNA with 5’end adapters 

Dephosphorylation of non-mRNA contaminants was performed at 50°C for 

1h. The reaction mix was composed of 10 units calf intestinal phosphatase (CIP), 1x 

CIP buffer, 40 units of RNaseOut and 5 µg of total RNA extracted from A. strigosa 

root tip (see section 2.2.3) diluted in DEPC-treated water. RNA was precipitated 

using the phenol:chloroform method (see section 2.2.3). Agarose gel electrophoresis 

was performed to assess RNA integrity (see section 2.2.5). 

Decapping reaction of dephosphorylated RNA was performed at 37°C for 1h. 

The reaction mix was composed of 0.5 units of tobacco acid pyrophosphatase (TAP), 

1x TAP buffer, 40 units of RNaseOut and 4.3 µg of dephosphorylated RNA diluted 

in DEPC H2O. RNA was precipitated into phenol:chloroform (see section 2.2.3). 

Agarose gel electrophoresis was done to control RNA integrity (see section 2.2.5). 
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RNA secondary structure was denatured by incubation at 65°C for 5 min 

using 3.7 µg decapped RNA and 0.25 µg GeneRacer RNA Oligo (confer 2.0). The 

following components were added to 10 µL of reaction mix: 5 units of T4 RNA 

ligase, 1x ligase buffer, 1 mM of adenosine triphosphate (ATP), 40 units of 

RNaseOut diluted in DEPC H2O. Ligation reaction was incubated 37°C for 1 h.  

RNA was precipitated into phenol:chloroform (see section 2.2.3). Agarose gel 

electrophoresis was done to control RNA integrity (see section 2.2.5). Reverse 

transcription of RNA was carried out as described in section 2.2.4. 

Amplification of 5’ends of A. strigosa UGT transcripts 

Race PCR mix: 

Volume Mix component concentrations 

1 µL cDNA with 5’ end adapters - 

1 µL dNTP mix (10 mM each dATP, dCTP, dGTP, dTTP) 200 µM each 

3 µL GeneRacer 5’ primer (10 µM) (see section 2.1.3) 0.6 µM 

1 µL Reverse gene specific primer (10 µM) (see section 2.1.3) 0.2 µM 

5 µL 10x ELT buffer 3 1x 

0.5 µL Expand Long Template DNA polymerase (5 U/µl, 

Roche) 

2.5 U 

38.5 µL steril Milli-Q water - 
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Touch down PCR program was done with GS1 thermocycler (G-Storm) as follows: 

PCR steps Duration Temperature Cycles 

Denaturation 2 min 94°C x1 

Denaturation 30 sec 94°C  

Annealing/elongation 2 min 70°C (-1°C/cycle)  

Denaturation 30 sec 94°C  

Annealing 30 sec 65°C x25 

Elongation 1.5min 68°C  

Elongation 10 min 68°C x1 

*annealing temperature is variable depending on primers used (confer primer table) 

 

Nested PCR was done using initial PCR reaction products as templates to 

increase amplification specificity. PCR mix was carried out as follows: 

Volume Mix component concentrations 

1 µL Initial PCR product - 

1 µL dNTP mix (10 mM each dATP, dCTP, dGTP, dTTP) 200 µM each 

3 µL GeneRacer 5′ Nested (10 µM) (see section 2.1.3) 0.6 µM 

1 µL 
Nested reverse gene-specific primer (10 µM) (see section 

2.1.3) 
0.2 µM 

5 µL 10x ELT buffer 3 1x 

0.5 µL 
Expand Long Template DNA polymerase (5 U/µl, 

Roche) 
2.5 U 

38.5 µL steril Milli-Q water - 

 

 

 

x5 
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Nested PCR program was performed with GS1 thermocycler (G-Storm) as 

follows: 

PCR steps Duration Temperature Cycles 

Denaturation 2 min 94°C x1 

Denaturation 30 sec 94°C  

Annealing 30 sec Var*            x25 

Elongation 1.5min 68°C  

Elongation 10 min 68°C x1 

*annealing temperature is variable depending on primers used (confer primer table) 

Nested PCR products were analysed by gel agarose electrophoresis (see 

section 2.2.5). DNA fragments of the expected size were purified from an agarose 

gel slice (QIAquick Gel Extraction Kit, Qiagen). 

Purified DNA fragments were cloned into pCR4-TOPO plasmid (see section 

2.1.4) using TOPO TA Cloning kit for sequencing (Invitrogen). TOPO cloning 

reaction was performed according to manufacturer instructions. 6µL of the reaction 

product were mixed with 50 µL of thawed E.coli DH5α cells for heat shock 

transformation (see section 2.2.10). E.coli transformants were selected on LB-G agar 

supplemented with 50 µg/mL of ampicillin and 10 colonies per gene were used for 

colony PCR (see section 2.2.12) with M13 primers (see section 2.1.3). Plasmids 

from colonies with inserts having expected length were purified (see section 2.2.11) 

and process for sequencing with M13 primers (see section 2.2.6). 

2.2.9 Cloning UGT transcripts using a gateway strategy 

Amplification of UGT transcripts 

A two-step PCR protocol was used, involving an initial amplification with 

specific primers followed by a second amplification using attB adapters. 

UGT transcripts were amplified from A. strigosa root tip cDNA templates 

using primers specific for UGT sequences containing 12 nucleotides of the attB sites 

at their 5’ end (see section 2.1.3). The PCR mix was prepared as follows: 
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Volumes Mix component Final concentration 

0.5 µl cDNA template (100 ng/µl) 50 ng 

4 µl 5x Phusion HF buffer 1x 

0.4 µl dNTP mix (10 mM each dATP, dCTP, dGTP, dTTP) 200 µM each 

1 µl FgwUGT specific primer (10 µM) 0.5 µM 

1 µl FgwUGT specific primer (10 µM) 0.5 µM 

0.2 µl DNA polymerase Phusion (2 U/µl) 0.02 U/µl 

12.9 µl sterile Milli-Q water  - 

PCR program was performed as follows: 

PCR steps Duration Temperature Cycles 

Denaturation 2 min 98°C x1 

Denaturation 10 sec 98°C  

Annealing 30 sec Var* x10 

Elongation 1 min 72°C  

Elongation 1 min 72°C x1 

*annealing temperature is variable depending on primers used (see section 2.1.3). 

Products from first PCR step were amplified using attB adapters (see section 

2.1.3). PCR mix was prepared as follows: 

Volumes Mix component Final concentration 

10 µl Product from first PCR - 

8 µl 5x Phusion HF buffer 1x 

0.8 µl dNTP mix (10 mM each dATP, dCTP, dGTP, 

dTTP) 

200 µM each 

2 µl Forward attB1 0.5 µM 

2 µl Reverse attB2 0.5 µM 

0.4 µl DNA polymerase Phusion (2 U/µl) 0.02 U/µl 

27 µl sterile Milli-Q water  - 
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PCR program was performed as follows: 

PCR steps Duration Temperature Cycles 

Denaturation 2 min 98°C x1 

Denaturation 10 sec 98°C  

Annealing 30 sec 45°C x5 

Elongation 1 min 72°C  

Denaturation 10 sec 98°C  

Annealing 30 sec 55°C x20 

Elongation 1 min 72°C  

Elongation 7 min 72°C x1 

PCR products were analysed by electrophoresis (see section 2.2.5) and length 

of DNA fragments was estimated by comparison with 1 kb DNA ladder (New 

England BioLabs). 

Cloning PCR products into pDONR vector 

Samples containing a single amplification product with the expected length 

were purified before the BP clonase reaction. PCR products were diluted 4 times into 

TRIS-EDTA buffer (TE buffer: 10 mM TRIS-HCl pH 7.5, 1 mM EDTA), ½ volume 

of polyethylene glycol (PEG) solution (30% PEG 8000, MgCl2 30 mM) was added 

to the sample. DNA fragments >300 pb were precipitated by centrifugation (15 min, 

14,000 g). 

Purified PCR products were cloned into a Gateway Donor vector. Reaction 

mix was prepared as follows:  

Volumes Mix component Final concentration 

x µl Purified attB PCR product 50 ng 

1 µl pDONR207 (Invitrogen) (100 ng/µl) 100 ng 

2.5 µl TE buffer (10mM) 5 mM 

1 µl BP clonase II (Invitrogen) - 
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Samples were mixed by vortexing and incubated for 12 hours at room 

temperature. The BP clonase protein was inactivated by proteinase K treatment for 

10 min at 37°C. Competent DH5α cells were transformed with 1 µl of the reaction 

product (see section 2.2.10). Transformed cells were selected onto LB-G agar 

supplemented with 25 µg/mL of gentamicin (Sigma-Aldrich). Presence of the insert 

into resistant bacteria was confirmed by PCR (see section 2.2.12). Bacterial colonies 

with the expected DNA fragment were grown for 12 h in 10 mL LB-G supplemented 

with 25 µg/mL of gentamicin. Plasmid purification was performed on harvested 

bacterial cultures (see section 2.2.11). Purified plasmids were sequenced (see section 

2.2.6) to validate insert identity and avoid mutations. 

Transfer of the insert into expression vectors 

UGT transcript sequences were transferred from pDONR to expression 

vectors via LR clonase reaction. Reaction mix was prepared as follows:  

Volumes Mix component Final concentration 

x µl Purified pDONR207-UGT plasmid 50 ng 

1 µl 
pH9-GW (100 ng/µL), pEAQ-HT-DEST1/2 (150 

ng/µL) 
100 ng, 150 ng 

2.5 µl TE buffer (10mM) 5 mM 

1 µl LR clonase II (Invitrogen) - 

 

Samples were mixed by vortexing and incubated for 12 hours at room 

temperature. Clonase protein was inactivated by proteinase K treatment for 10 min at 

37°C. Competent DH5α cells were transformed with 1 µl of the reaction product (see 

section 2.2.10). Transformed cells were selected on LB-G agar supplemented with 

50 µg/mL of kanamycin (Sigma-Aldrich). Presence of the insert into resistant 

bacteria was monitored by PCR (see section 2.2.12). Bacterial colonies with the 

expected DNA fragment were grown for 12 h in 10 mL LB-G supplemented with 50 

µg/mL of kanamycin. Plasmid purification was performed on harvested bacterial 

cultures (see section 2.2.11). Purified pH9-GW-UGT plasmids were cloned into 

E.coli BL21 (see section 2.2.10) then selected on LB-G agar supplemented with 50 

µg/mL of kanamycin. Purified pEAQ-HT-DEST1-UGT and pEAQ-HT-DEST2-UGT 
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plasmids were cloned into A. tumefasciens LBA4404 (see section 2.2.10), then 

selected to LB-G agar supplemented with 50 µg/mL of kanamycin, 50 µg/mL of 

rifampicin and 100 µg/mL of streptomycin. A selected colony was grown overnight 

in 10 mL selective LB-G media, then 20% glycerol stocks were made, votexed and 

frozen into liquid nitrogen. Glycerol stocks were stored at -80°C. 

2.2.10 Cell transformation 

E. coli DH5α/BL21 

Competent cells (10 µL aliquot) were thawed on ice and mixed with 1 µL of 

clonase reaction product or 10 ng purified plasmid. Samples were incubated 30 min 

on ice then heat-shocked for 45 sec at 42°C. Samples were placed on ice for 2 min 

before dilution in 90 µL of S.O.C medium. Cell culture was incubated for 1 h at 

37°C, 200 rpm. 50μl of the culture was spread onto LB-G agar supplemented with 50 

µg/mL of kanamycin. Solid cultures were incubated over night at 37°C. 

Agrobacterium tumefasciens LBA4404 

An aliquot of 20 µL of A. tumefasciens LBA4404 competent cells was 

carefully thawed at 4°C for approximately 1 h. The competent cells were mixed with 

10μl of pEAQ-HT-DEST1/2-UGT (10ng/µL). The sample was placed into liquid 

nitrogen for 5min, and then thawed at room temperature. After addition of 1ml LB 

medium, the sample was incubated for 4 h at 28°C. The culture was spread onto LB-

G agar supplemented with 50 µg/mL of kanamycin, 50 µg/mL of rifampicin and 100 

µg/mL of streptomycin. Solid cultures were incubated for 2-3 days at 28°C. 

2.2.11 Plasmid extraction and purification 

Plasmid extractions and purifications were performed using QIAprep Spin 

Miniprep Kit (Qiagen) following supplier instructions. DNA concentrations were 

measured by Nanodrop (NanoDrop 8000 spectrophotometer, Thermo Scientific). 
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2.2.12 Colony PCR 

Single colonies were diluted into respective 50 µL aliquots of sterile H2O and 

heated for 20 min at 95°C. Heated cell samples were centrifuged for 5 min at 14,000 

g. The supernatant from each sample was used as template in PCR reactions. PCR 

mix was prepared as follows: 

Volumes Mix component Final concentration 

2 µl Heated colony - 

4 µl GoTaq 5x Green buffer (Promega) 1x 

0.5 µl 
dNTP mix (10 mM each dATP, dCTP, dGTP, 

dTTP) 
250 µM each 

2 µl MgCl2 (25 mM) 2.5 mM 

1 µl Forward primer (10 µM) 0.5 µM 

1 µl Reverse primer (10 µM) 0.5 µM 

0.2 µl GoTaq DNA polymerase (5 U/µl, Promega) 1 U 

9.5 µl sterile Milli-Q water  - 

 

 

PCR program was performed as follows: 

PCR steps Duration Temperature Cycles 

Denaturation 2 min 95°C x1 

Denaturation 30 sec 95°C  

Annealing 30 sec 55°C x30 

Elongation 2 min* 72°C  

Elongation 10 min 72°C x1 

* All UGT transcripts are approximately 1.5kb (except UGT80s) 

PCR products were directly analysed by electrophoresis (see section 2.2.5). 
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2.2.13 Purification of recombinant enzymes 

Cell culture and protein production 

Transformed E. coli cells were grown overnight in 10 mL liquid LB-G plus 

appropriate antibiotic at 37°C under agitation 300rpm. The whole pre-culture was 

used to inoculate 5% glycerol liquid LB-G or liquid LB-G only plus appropriate 

antibiotic (table 4.1). The culture was grown at 37°C, 300 rpm until OD600nm reached 

0.6-0.8, and then the temperature was set to 18°C or 21°C at 200 rpm. After 

acclimation for one hour, expression was induced with 0.1 mM isopropyl-β-D-

thiogalactopyranoside (IPTG) (Sigma-Aldrich). After five hours or overnight 

expression the culture was harvested by centrifugation (7000g, 15min, 4°C). The 

supernatant was discarded and the pellet was frozen in liquid nitrogen then stored at -

80°C until cell lysis. 

Cell resuspension and lysis 

The frozen pellet was resuspended in 30ml of lysis buffer (300mM NaCl, 

50mM TRIS-HCl pH 7.8, 20mM Imidazol, 5% Glycerol, 1mg/ml lysozyme, protease 

inhibitor (EDTA free, Roche), 10mM -mercaptoethanol, 0.1% Tween 20 (Sigma-

Aldrich)) and shaken (Spiramix 5, Denley) at room temperature for 30 min. 

Digestion of DNA was achieved by addition of 250 µL of benzonase solution (850 

mM MgCl2, 3.8 u/l benzonase (Novagen)) and incubation at room temperature for 

15 min. The resulting cell lysate was centrifuged at 13,000 rpm for 15 min at 4C. 

The soluble fraction was filtered before purification (Minisart 0.2 µm, Sartorius). 

Purification on HiTrap chelating HP 1mL 

Purification of the recombinant enzyme was performed by liquid 

chromatography (ÄKTA purifier system, GE Healthcare) using an ion exchange 

column (1 mL HiTrap Chelating HP, GE Healthcare). The soluble fraction from the 

cell lysate was loaded onto a precooled column charged with Ni
2+

 solution then 

equilibrated with buffer A (300mM NaCl, 50mM TRIS-HCl pH 7.8, 20mM 

Imidazol, 5% Glycerol). After complete elution of the unbound fraction, elution of 

His-tagged recombinant protein was done with a linear gradient of imidazole 

generated by supplying of buffer B (300mM NaCl, 50mM TRIS-HCl pH 7.8, 

500mM Imidazol, 5% Glycerol). The gradient program was as follows: flow rate 0.5 
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mL/min; isocratic from 0 to 5 min, 0% buffer B; linear gradient from 5 to 15 min, 0-

65% buffer B; linear gradient from 15 to 17 min, 65-100% buffer B; isocratic from 

17 to 22 min, 100% buffer B; linear gradient from 22 to 23 min, 100-0% buffer B; 

isocratic from 23 to 28 min, 0% buffer B. Protein elution was monitored with a UV 

detector at 280nm. 

Concentration, storage of the purified recombinant protein 

Co-eluted fractions were pooled together and concentrated up to ten times 

using a concentrator device (Vivaspin 2 mL 10,000 MWCO PES, VIVA science). 

The purity of the concentrated sample was assessed by SDS-PAGE gel (see section 

2.2.18). Protein concentration was determined by the Bradford method (see section 

2.2.17). Protein samples were split in 10 µL aliquots at 4C then directly frozen in 

liquid nitrogen. Frozen purified protein samples were stored at -80C. 

2.2.14 Enzymatic assays 

Radioassays 

Reaction mixtures were composed of 100 mM TRIS-HCl pH 7.5, 50 µM 

UDP-Glc (592 Bq/50 µL) (UDP-Glucose [1-3H], American Radiolabelled 

Chemicals), 40 µg/mL of recombinant UGT. The reaction was started by addition of 

48 µL of reaction mix onto 2 µL of 5 mM acceptor diluted in ethanol. Samples were 

incubated 12 hours at 35°C, 900 rpm. Samples were transferred onto a 500 µL anion 

exchange resin (QAE sephadex A-25, Sigma-Aldrich) soaked in water. Reaction 

products were incubated for 5 min at room temperature with the resin; the tubes were 

inverted 3-4 times. Samples were diluted with 1 mL of water. Tubes were shortly 

centrifuged and 800 µL of the supernatant were transferred to a scintillation vial. An 

additional wash with 800 µL of H2O was done following the same protocol. The 

resin was eluted twice with 650 µL of 1M ammonium acetate. The entire remaining 

volume was transferred to a new scintillation tube with the resin. Radioactive level 

into unbound (H2O wash) and bound (ammonium acetate wash) fractions were 

counted separately with a scintillation counter (Tri-Carb 2910 TR, Perkin Elmer) 

after addition of 5 mL scintillation fluid (Quicksafe A, Zinsser Analytic) and 

homogenisation of the solution. 
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Results presented in section 6.2.1.2 referring to acceptor screening of UGTs 

were normalised. Two levels of normalisation were used to assess the crude 

scintillation readings of the bound and unbound fractions in order to take into 

account the background noise in the assays. Firstly, to remove potential variation in 

the total amount of radioactivity incorporated in each sample, the percentage of 

radioactivity in the unbound fraction (products) versus the total radioactivity of the 

sample (bound and unbound fraction) was estimated. A second level of 

normalisation was introduced to take into account the background levels of 

unincorporated radioactivity in each assay. This involved dividing the signal 

obtained without acceptor from the signal obtained for each acceptor, for each of the 

different enzymes assayed. Ultimately these values reflect the percentage of signal 

over the background noise. 

 

Figure 2.1:  Flowchart showing the layout of glycosyltransferase radioassay. The 

following sign:       is used for short centrifugation steps. 
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Glycosylation assay of trichlorophenol 

Reaction was made in 50 µl volume, the mix was composed of 100 mM 

TRIS-HCl pH 7.5, 500 µM of 2,4,5-trichlorophenol (TCP) and 1 mM uridine 

diphospho sugars (UDP-β-D-glucose, UDP-β-D-galactose or UDP-α-L-arabinose). 

Reaction was started with the addition of 2 µg of recombinant purified enzyme onto 

pre-warmed sample. Reaction mix was incubated for 1 hour at 30°C, 300 rpm. 

Reaction was stopped by the addition of 2 µl of 240 mg/ml trichloroacetic acid. 

Proteins were precipitated by centrifugation at 14,000 g for 5 min. Supernatant was 

kept at -20°C until analysis. 

Analysis of reaction products was done by reverse phase HPLC coupled with 

UV detector. The protocol used was derived from Messner et al. (2003). The HPLC 

system UltiMate 300 LC (Dionex) was used in combination with C18 column (Luna 

5 µm C18(2) 100 Å, 30 x 2 mm, Phenomenex). Buffer A was H2O with 0.1% 

H3PO4; buffer B was 100% acetonitrile. The gradient program was as follows: flow 

rate 1 mL/min; isocratic from 0 to 2 min, 8% buffer B; linear gradient from 2 to 16 

min 8-100% B, isocratic from 16 to 18 min, 100% buffer B; linear gradient from 18 

to 20 min 100-8% B; isocratic from 20 to 22 min, 8% buffer B. TCP and TCP 

glycosides were detected at 205 nm wavelength. 

Glycosylation assay of Triterpenoids 

Reactions were performed in 100 µl total volume. Each reaction mix was 

made in 10% ethanol and composed of 100 mM TRIS-HCl pH 7.5, 200 µM of 

triterpenoids, 1 mM uridine diphospho- sugars (UDP-β-D-glucose or UDP-α-L-

arabinose). Reactions were started with the addition of 2 µg of recombinant purified 

enzyme in pre-warmed samples. Reaction mixtures were incubated for 12 hours at 

35-37°C, 900 rpm. Reactions were stopped and products were extracted twice in 

500µL ethyl acetate after dilution into 400 µL Milli-Q H2O. The organic fraction of 

each reaction was entirely dried under nitrogen flux and resuspended into 50 µL 

methanol. 

For Thin Layer chromatography (TLC), plates were loaded with 20 µL of the 

methanolic extracts from samples as described above. Samples were pre-run 3 times 

in 100% methanol 0.5 cm above the loading line. The mobile phase was composed 

of dichloromethane:methanol:H2O (80:19:1; v:v:v). Plates were sprayed with 
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methanol: Sulfuric acid (9:1; v:v) then heated at 130°C for 2-3 min. Pictures of 

stained plates were taken under UV transilluminator. 

2.2.15 NMR analysis 

Proton NMR spectra were recorded in deuterated water on a Bruker Avance 

III spectrometer at 400 MHz. Chemical shifts are reported with respect to residual 

hydrogen deuterated oxide at δH 4.70 ppm, if not stated otherwise. 

2.2.16 Protein extraction 

Desired plant tissue was collected and grinded in liquid nitrogen (100 mg). 

The powdered tissue obtained was resuspended in 500 mL of protein extraction 

buffer (50 mM Tris-HCl pH 7, 150mM NaCl, 10% glycerol, 1% 

polyvinylpolypyrrolidone (PVPP, Sigma-Aldrich),1% triton x100 (Sigma-Aldrich), 

5µM DTT, Protease inhibitors (EDTA-free tablets, Roche)). The tissue was 

disrupted using pellet pestles then the sample was shaken at 300 rpm for 1 hour at 

4°C. Residual tissue particles were removed by centrifugation (14,000 rpm, 30 min 

at 4°C). Protein concentration was estimated by Bradford method (see section 

2.2.17). 

2.2.17 Protein quantification by Bradford method 

Multiple dilutions of Bovine Serum Albumin (BSA ≥ 96%, Sigma-Aldrich) 

were prepared (2, 1, 0.75, 0.5 and 0.25 mg/mL). Protein samples were diluted up to 

20 times and 10 µL of diluted protein samples and BSA dilutions were mixed with 

790 µL of H2O and 200 µL of Bradford reagent (Protein assay, Bio-Rad). Samples 

were left at room temperature for 15-30 min. Absorption of the samples was 

monitored at 495nm (UVmini 1240, Schimadzu) after blanking with 800 µL of H2O 

mixed with 200 µL of Bradford reagent. Standard linear regression curve was drawn 

with BSA absorbance values and the equation of the curve was used to estimate 

protein concentration in tested samples. 
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2.2.18 Protein electrophoresis 

Protein electrophoresis was done with mini-cell system (XCell SureLock 

Mini-Cell Electrophoresis System, Invitrogen). Protein samples were prepared as 

follows: 1x LDS loading buffer (NuPAGE LDS Sample Buffer, Invitrogen) and 30-

10 µg of protein. Samples were heated 15 min at 95°C. SDS-PAGE gel (NuPAGE 

4–12% Bis-Tris, Invitrogen) was loaded with 20 µL of samples (5 µL for the protein 

ladder (SeeBlue Pre-Stained Standard, Invitrogen)) A current of 200 volts was 

applied to the gel for 30-50 min. Gel was stained onto coomasie solution 

(InstantBlue, Expedeon) for 20-30 min. 

2.2.19 Western blot 

After separation of protein preparations by SDS-PAGE (see above) proteins 

were transferred to a 0.2 μm nitrocellulose membrane (Bio-Rad) using Novex mini-

cell (Invitrogen) according to manufacturer instructions. To control blotting, the 

membrane was stained by Ponceau S staining solution (Sigma-Aldrich) then washed 

several times with distilled water until complete disappearance of the signal. The 

membrane was washed twice in Tris-buffered saline solution (TBS; 150 mM NaCl, 

10mM TRIS pH7.5) before blocking in TBS buffer with 5% powdered milk for 1 

hour. The membrane was washed twice in TBS Tween/Triton (TBSTT; 500 mM 

NaCl, 20mM TRIS pH7.5, Tween 20 (Sigma-Aldrich), Triton X-100 (Sigma-

Aldrich)) then once in TBS for 10 minutes. The membrane was incubated for 1 hour 

with the primary antibody (Monoclonal Anti-polyHistidine, Sigma-Aldrich) diluted 

1:1000 in blocking solution. The membrane was washed twice in TBSTT then once 

in TBS. The membrane was incubated for 1 hour with the secondary antibody (Anti-

Mouse IgG Alkaline Phosphatase Conjugate, Sigma-Aldrich) diluted 1:5000 in 

blocking solution. The membrane was washed five times in TBSTT before staining 

with 5 mL of nitro-blue tetrazolium chloride (NBT) / 5-bromo-4-chloro-3-indolyl 

phosphate (BCIP) solution (100 mM TRIS-HCl pH9, 150 mM NaCl, 1mM MgCl2, 

NBT 330mg/ml (Promega), BCIP 165 mg/ml (Promega)) for 1 hour in the dark. 
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2.2.20 Proteomic analysis (from G.Saalbach) 

The gel slice was washed, reduced and alkylated, and treated with trypsin 

according to standard procedures adapted from Shevchenko et al. (1996). Peptides 

were extracted with 5% (v/v) formic acid/50% acetonitrile (v/v), dried down, and re-

dissolved in 0.1% (v/v) TFA. Nano-LC-MSMS experiments were performed on an 

LTQ-OrbitrapTM mass spectrometer (Thermo Fisher Scientific Inc., Hemel 

Hempstead, UK) coupled to an EASY-nLC HPLC via an ion source (Proxeon, 

Odense, Denmark). Aliquots of the extracted peptides were loaded onto a C18 

PepMapTM trap column (Dionex, Camberley, UK) which was then switched in-line 

to an analytical column (BEH C18, 1.7 µm, Waters, 75 µm x 120 mm, self-packed) 

for separation. The LC system was run at a flow rate of 250 nL/min with a gradient 

of 5-40% acetonitrile in water/0.1%formic acid at a rate of 1% min
-1

. 

The mass spectrometer was operated in positive ion mode. Raw files were 

processed with MaxQuant version 1.3.0.5 (Cox and Mann, 2008; 

http://maxquant.org) to generate re-calibrated peaklist-files which were used for a 

database search using an in-house Mascot® 2.4 Server (Matrix Science Limited, 

London, UK). Mascot searches were performed on a custom database containing all 

available UGT protein sequences from A. strigosa root tip in a background of 1000 

random A. thaliana sequences downloaded from Uniprot (www.uniprot.org). Mascot 

search results were imported and evaluated in Scaffold 3.6.3 (proteomsoftware.com, 

Portland, OR, USA).  

2.2.21 Phylogeny 

The Carbohydrate-Active enZymes, CAZy database (http://www.cazy.org/) 

was used to collect amino acids sequences from characterised plant GT1s. NCBI 

protein BLAST program (http://blast.ncbi.nlm.nih.gov/Blast.cgi) was used in parallel 

to find homologues of A. strigosa GT1s. A selected set of sequences was aligned 

using MAFFT (http://www.imtech.res.in/raghava/mafft/). The unrooted phylogenetic 

tree was constructed using MEGA 4 (http://www.megasoftware.net/) by the 

neighbor-joining method.  

http://www.uniprot.org/
http://www.cazy.org/
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2.2.22 Transient expression in Nicotiana benthamiana 

Transformed A. tumefaciens cells were grown under antibiotic selection 

(rifampicin + streptomycin + kanamycin) on LB-agar plates at 28°C for 3 days. Each 

isolated colony was inoculated in 50 mL liquid LB medium under antibiotic 

selection and grown for 24h at 28°C. Bacterial cultures were harvested by 

centrifugation at 4000 g for 15 min at 4°C. The resulting pellet was resuspended in 5 

mL of agromix (10 mM MES-KOH, 10 mM MgCl2, 150 μM acetosyringone) then 

incubated at room temperature in a dark place for 2h. Optical density of the culture 

was measured at 600nm (UV-Vis Spectrophotometer, Shimadzu). The culture was 

diluted down to 0.8 OD600nm. For co-infiltration the same volume of each bacterial 

dilution was mixed together. Sub-epidermal infiltration of the diluted agromix was 

performed into N.benthamiana leaves of 3 weeks old plants. Six days after 

infiltration, the infiltrated area of the leaves were collected and directly frozen in 

liquid nitrogen. Leaf tissue was stored at -80°C freezer until use. 

2.2.23 Analysis of metabolites from Nicotiana benthamiana leaves 

Frozen N.benthamiana leaves were ground with pre-cooled mortar and 

pestle. Extraction was performed with 100 mg of ground tissue into 1 mL 75 or 40% 

methanol for 12h under agitation at 4°C. Samples were filtered (minisart 0.2 µm, 

Sartorius) and freeze-dried. Dried material was resuspended into 30 μL methanol and 

the whole solution was loaded onto TLC plate. The TLC plate was pre-run 3 times in 

100% methanol 0.5 cm above the loading line. The mobile phase was composed as 

follows dichloromethane:methanol:H2O (80:19:1; v:v:v). Plates were sprayed with 

acetic acid:Sulfuric acid:p-anisaldehyde (48:1:1; v:v:v) then heated at 130°C for 2-3 

min until coloration appeared. 
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2.2.24 Purification of 12,13-epoxy-16-hydroxy-β-amyrin-3-O-glucoside from N. 

benthamiana leaves 

Grinded material was extracted at 35°C, 300 rpm for 1h in 40% methanol. The 

soluble fraction was recovered after centrifugation at 15,000g for 20 min and filtered 

(0.2 μm, minisart filters). The methanolic extract is then partitioned three times in 

hexane. The obtained aqueous phase is then partitioned three times in ethyl acetate. 

The resulting organic fraction was dried and resuspended in toluene for further 

separation by MPLC (Medium Pressure Liquid Chromatography) using the Biotage 

system (Biotage, Uppsala, Sweden). The material was loaded on a pre-packed silica 

gel column (12-S column, Biotage) and eluted by running a linear gradient of 

dichloromethane:methanol (A:B) with a flow rate of 6 mL/min; 0-6 min: 0% B; 6-48 

min: 0-100% B; 48-60 min: 100% B. Fractions (6mL) were collected and assayed by 

TLC using dichloromethane:methanol:H2O (80:19:1; v:v:v) as solvent; components 

were detected with p-anisaldehydey/sulfuric acid/acetic acid (1:1:48, v/v/v). All 

fractions containing the product were combined, dried and resuspended in 50% 

methanol for further purification using semi-preparative HPLC. The sample was 

applied on C18 semi-preparative HPLC column (Phenomenex, Luna 5µ C18(2) 

100A, 250 x 10 mm, 5 micron) coupled with Charged Aerosol detector (CAD, 

Corona Ultra RS from Dionex). Chromatography was performed with a flow rate of 

3 mL/min. solvent A: H2O, solvent B: CH3CN. A linear gradient was used: 0-5 min: 

0% B; 5-30 min: 0-100% B; 30-35 min: 100% B; 35-36 min: 100-0% B; 36-41 min 

0% B. The fractions containing the analyte (by TLC) were collected, pooled and 

evaporated to dryness. 

2.2.25 LC-MS analysis 

Method used in triterpenoid glycoside analysis 

Sample were run on a Surveyor hplc equipped with a DecaXPplus ion trap 

MS (Thermo). Analytes were separated on a 100×2mm 3µ Luna C18(2) 

(Phenomenex) column using a gradient of 0.1% formic acid in water (buffer A) 

versus acetonitrile (buffer B), run at 300 µL.min-1 and 30ºC. The gradient program 

was as follows: linear gradient from 0 to 3 min 20-25% B, linear gradient from 3 to 

20 min 25-60% B, linear gradient from 20 to 30 min 60-90% B, isocratic from 30 to 
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32 min, 90% buffer B; linear gradient from 32 to 33 min 90-20% B; isocratic from 

33 to 45 min, 20% buffer B. MS data was collected by electrospray from m/z 150-

1500, in positive and negative modes (in separate runs), with 50 units sheath gas, 5 

units aux gas, 350ºC capillary temperature, and 5.2kV spray voltage (positive) or 

5.0kV (negative). Full MS was collected and data dependent MS2 and MS3 data at 

35% collision energy and an isolation width of 3.0 amu. MS2 was at an isolation 

width of m/z 4.0 and 35% collision energy. Spectrometric Detection was by UV/vis 

absorbance collecting spectra from 200-600nm. 

Method used in flavonoid glycoside analysis 

Analytes were separated using a different HPLC program and column; 

separation with 100×2mm 3µ Luna C18(2) column (Phenomenex) using a gradient 

of 0.1% formic acid in water (buffer A) versus acetonitrile (buffer B), run at 300 

µL.min-1 and 30ºC. The gradient program was as follows: linear gradient from 0 to 

15 min 5-95% B, isocratic from 15 to 17 min, 95% buffer B; linear gradient from 17 

to 17.5 min 95-5% B; isocratic from 17.5 to 21 min, 5% buffer B. Detection was 

done by UV/visible absorbance collecting spectra from 200-600nm as well as 

electrospray MS. 

Method used in trichlorophenol glycoside analysis 

Analytes were separated using a different HPLC program and column; 

separation with 50×2.1mm 2.6μ Kinetex XB-C18 column (Phenomenex) using a 

gradient of 0.1% formic acid in water (buffer A) versus acetonitrile (buffer B), run at 

300 µL.min-1 and 30ºC. The gradient program was as follows: linear gradient from 0 

to 10 min 25-60% B, linear gradient from 10 to 20 min 60-95% B, isocratic from 20 

to 23 min, 95% buffer B; linear gradient from 23 to 24 min 95-25% B; isocratic from 

24 to 29min, 25% buffer B. Detection was done by UV/visible absorbance collecting 

spectra from 200-600nm as well as electrospray MS. 
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Chapter 3 - Identification of root-expressed A. strigosa UGTs 

3.1 Introduction 

The family one glycosyltransferases (UGTs) are involved in various essential 

processes in plants, including cellular homeostasis, defence and detoxification of 

xenobiotics (Bowles et al. 2005). Considerable progress has been made in functional 

characterization of UGTs from dicots, most notably in the model plant A. thaliana 

where systematic approaches have been taken to investigate the full UGT 

complement encoded by the A. thaliana genome (Caputi et al. 2008; Hou et al. 2004; 

Li et al. 2001; Lim et al. 2003; Lim et al. 2002; Weis et al. 2006). So far, very little 

is known about the function and evolution of UGTs in monocots despite their 

potential agronomical significance. Cereals are essential to human and livestock 

nutrition and many glycosides are known to be involved in defence and adaptation to 

environmental conditions (Fay and Duke 1977; Macias et al. 2006; Maier et al. 

1995). 

Roots accumulate a wide variety of specialised metabolites with important 

roles in defence against soil-borne pathogens, allelopathy, interaction with symbiotic 

organisms, nutrient uptake and also phytohormone-mediated signalling (D'Auria and 

Gershenzon 2005; Flores et al. 1999; Weston and Mathesius 2013). Glycosides 

represent a large proportion of the specialised metabolites found in roots. In cereals, 

the roots of rice have been reported to produce flavone O-glycosides as potential 

allelochemicals (Kong et al. 2007) and benzoxazinoids are found in the roots and 

other organs of the Poaceae where they are stored in glycosylated forms (Macias et 

al. 2006). Apart from seeds, little is known about the metabolite composition of A. 

strigosa tissues. Like other cereals (Brazier-Hicks et al. 2009), oats are known to 

synthesise flavone-C-glycosides that are implicated in protection against parasitic 

nematodes (Soriano et al. 2004) and avenacins, which protect oats against take-all 

disease (Papadopoulou et al. 1999). A comprehensive and systematic analysis of 

UGTs expressed in A. strigosa roots will therefore be an important step in 

investigating the glycosylation of small molecules in cereals, including those 

involved in plant defence. 
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3.1.1 Phylogeny of plant family one glycosyltransferases 

As mentioned previously (see Chapter 1), the classification of family one 

glycosyltransferases (or UGTs) is based on amino acid sequence similarity 

(Mackenzie et al. 1997). The plant UGTs described so far have been classified into 

families, from UGT70 to UGT100; those families have been split in 16 

monophyletic groups from A to P as described in section 1.2.5 and figure 1.3. 

(Caputi et al. 2011; Ross et al. 2001). 

Recent genome-wide approaches exploiting genome sequences from multiple 

plant species have provided insights into the evolution of UGTs in plants. Like other 

multigene families implicated in secondary metabolite biosynthesis, UGTs have 

expanded dramatically in higher plants (Caputi et al. 2011; Yonekura-Sakakibara 

and Hanada 2011). Extended analyses of UGT families in sequenced species from 

the plant kingdom reported 12 putative UGT sequences in Physcomitrella patens, 74 

sequences in Selaginella moellendorffii and more than a hundred sequences in most 

higher plants (Caputi et al. 2011). Large UGT families are also found in the genomes 

of monocot species, for example 168 UGT genes in Z. mays, 201 in S. bicolor, 143 

in Brachypodium distachyon and 213 in O. sativa (Yonekura-Sakakibara and Hanada 

2011). The lineage-specific evolution of UGTs makes prediction of activity based on 

sequence similarity alone a tricky task. In the case of oat, prediction is made even 

more difficult due to the low number of functionally characterised UGTs in monocot 

species. 

3.1.2 Relationship between phylogeny and function of plant UGTs 

Over the last decade considerable effort has been invested in the functional 

characterisation of multiple plant UGTs from various UGT families from a variety of 

plant species. Reconstruction of the UGT phylogeny helps to make sense of the 

functional evolution in this superfamily. Early functional studies on flavonoid 

glycosyltransferases have shed light on the regiospecificity displayed by a majority 

of UGTs. Three major clades of flavonoid glycosyltransferases have been identified 

based on UGT phylogeny: Clade I (UGT78s) is composed of flavonoid 3-O-

glycosyltransferases; Clade II (UGT75) contains flavonoid 5-O-glycosyltransferases; 

and Clade III (UGT73s, UGT88s, UGT89s) is composed of flavonoid 7-O-
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glycosyltransferases (Noguchi et al. 2009; Tohge et al. 2005; Yamazaki et al. 1999). 

Therefore, molecular structure of the sugar acceptor appears to have had a relatively 

low impact on UGT evolution, and a great diversity of compounds can be recognised 

by a single UGT family. The two divergent families UGT80 and UGT81 are the only 

families of plant UGTs that glycosylate restricted classes of compounds (sterols and 

lipids, respectively) (Grille et al. 2010; Jorasch et al. 2000). 

Little is known about regiospecific sugar transfer onto triterpenoids, 

compared to the more extensively studied flavonoids. Nevertheless, members of the 

UGT73 family appear to be major players in triterpenoid glycosylation (see section 

1.3.3). Acceptors that have structural similarities with triterpenes, such as 

brassinosteroids and steroidal compounds, are also known to be glycosylated by 

UGT73s (Husar et al. 2011; Itkin et al. 2013; Itkin et al. 2011; Kohara et al. 2005; 

Kohara et al. 2007; Moehs et al. 1997; Poppenberger et al. 2005). 

The identity of the functional group used as the acceptor of the sugar transfer 

might also play a role in functional evolution of plant UGTs. This is illustrated by 

the group L mainly composed of ester-forming UGTs, especially in families UGT84 

and UGT74 (Owatworakit et al. 2012; Yonekura-Sakakibara and Hanada 2011). 

UGTs from group A (UGT79s, UGT91s and UGT94s) are also predominantly 

involved in the transfer of sugars onto a glycosidic moiety of plant natural product 

glycosides, they were called GGTs by K. Saito and co-workers (Yonekura-

Sakakibara et al. 2012). Those enzymes may be key in the formation of sugar chains 

in the synthesis of plant secondary metabolites such as avenacins. 

3.1.3 Identification of components of metabolic pathways through transcript profile 

analysis 

Synthesis of specialised metabolites in plants is generally restricted to a 

specific tissue or triggered in response to particular biotic/abiotic stresses (Hartmann 

2007). For example, flowers synthetize aromatic compounds to attract pollinators 

and phytoalexins accumulate in tissues that have been challenged by pathogens. 

Therefore, a number of systems biology approaches to identify the genes of 

particular specialized metabolic pathways have been based on transcript profile 

analyses (Schilmiller et al. 2012). Analyses of transcript abundance in various tissues 

allows candidate genes implicated in the synthesis of particular metabolites to be 
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identified through comparison of their expression profiles with those of genes that 

are known to be part of the given metabolite pathway or by virtue of their co-

ordinate expression under the conditions where the metabolite of interest is 

synthesized (Yonekura-Sakakibara et al. 2008). 

Co-expression analysis was used successfully for identification of 

biosynthetic genes for saponins in Medicago truncatula (Naoumkina et al. 2010).  In 

A. strigosa, avenacin biosynthesis is restricted to the epidermal cell layer of the root 

tip. All of the cloned and characterised Sad genes have been shown to be tightly co-

expressed in avenacin accumulating tissues (Fig. 1.8). Consequently a co-expression 

analysis offers a potential route to uncover new genes and enzymes involved in 

avenacin biosynthesis. 

3.1.4 Aims 

To date very little is known about enzymes that catalyse glycosylation of root 

metabolites in monocots, and oats in particular. The aim of the work presented in this 

chapter is to collect and analyse a comprehensive collection of UGTs expressed in 

the root tips of A. strigosa. Mining of transcriptomic dataset from 454 sequencing of 

oat root tip was performed to identify UGT sequences. Phylogenetic analysis of the 

resulting collection was carried out to classify these UGTs and gain insights into 

their potential activities. Proteomic analysis was carried out in parallel as a 

complementary strategy to investigate those UGTs that were present preferentially in 

A. strigosa root tips compared to the older parts of the root. A subgroup of potential 

triterpene glycosyltransferases was identified. In order to evaluate the possible 

participation of these candidates in avenacin biosynthesis, the expression profiles of 

these UGT genes in different tissues were compared with those of characterized Sad 

genes. 
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3.2 Results and discussion 

3.2.1 Screening the oat root tip transcriptome for UGT candidates 

3.2.1.1 Identification of a collection of 26 UGT sequences expressed in A. strigosa 

root tips 

Prior to the start of this project a collection of more than 16,000 expressed 

sequence tags (ESTs) had been generated from root tips of diploid oat (A. strigosa), 

as described by Haralampidis et al. (2001). This A. strigosa EST collection was 

mined for UGT sequences.  TFASTA searches lead to the identification of 26 

putative UGT sequences. Rapid Amplification of cDNA Ends (RACE) PCR was 

conducted using primers specific to these partial UGT sequences. Full-length 

sequences were obtained for 19 UGT candidates (Townsend et al, unpublished data). 

Among those genes, Ugt74H5 (Sad10) was found to be part of the avenacin gene 

cluster. Biochemical characterisation and gene expression analysis suggest 

UGT74H5 catalyses the synthesis of the acyl glucose donor used in avenacin 

biosynthesis (Owatworakit et al. 2012). 

Completion of the collection of full-length coding sequences (CDSs) was 

achieved by RACE PCR. The 5’ ends of six of the remaining seven UGT sequences 

were obtained (GT27f7, GT3i21, GT25n16, GT14h20, GT5d1 and GT8i4). 

Conditions for the specific amplification of the 5’ end of the seventh sequence, 

AsGT14b16, were not found. 
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3.2.1.2 Mining of a new 454-based transcriptomic resource from A. strigosa to 

augment the UGT collection 

Recent developments in transcriptome pyrosequencing opened up 

opportunities for deep sequencing of the A. strigosa root tip transcriptome. A 

transcriptomic analysis was performed by TGAC genomics team (Norwich Research 

Park) using purified mRNA extracted from the terminal 0.5 cm of A. strigosa root 

tips to augment the transcriptome resource established earlier. Massively parallel 

pyrosequencing was undertaken using 454 titanium chemistery (Roche) to generate 

in excess of 600 Mpb of sequence reads. Individual reads were processed through 

Newbler to assemble the individual reads into transcripts. A total of 14,829 contigs 

were assembled. A BLAST tool was then developed by TGAC bioinformatics team 

enabling comparison of query sequences. 

Transcripts corresponding to previously characterised avenacin biosynthetic 

Sad genes were identified within this contig collection (table 3.1). Each of the five 

contigs identified contained the full-length coding sequence (CDS) plus flanking 5’ 

and 3’ UTR sequences. This demonstrates the usefulness of the pyrosequencing 

technique for assembly and identification of root-expressed A. strigosa genes, 

including the remaining uncharacterised genes in avenacin biosynthesis. 

 

Table 3.1: Sad gene contigs obtained from 454-based transcriptomic analysis. 

Sad gene Contig number Number 

of reads 

CDS size (bp) Contig size (bp) 

Sad1 09590 1132 2271 2619 

Sad2 17168 918 1470 1801 

Sad7 25523 170 1479 1602 

Sad9 16631 375 1062 1243 

Sad10 07600 71 1392 1667 
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The 454 contig collection was then mined for UGT sequences. These were 

identified through BLAST (tBLASTn) searches using the conserved 44 amino acid 

PSPG motif and also through searches using entire UGT sequences from A. thaliana 

representing each UGT family (Supp. S.1). A total of 110 unique UGT-like 

sequences were identified (Supp. S.2), 53 of which were predicted to correspond to 

entire CDSs (Table 3.2).  

Six of the 26 UGT sequences found previously (exploiting the ESTs 

collection) were not represented in the 454 contig collection. Variation in 

experimental conditions (growth conditions or handling) may explain these 

differences. Assembly errors can generate a single contig out of two homologous 

transcripts. Some incorrectly assembled transcripts were identified during the 

subsequent cloning of the UGT CDSs; contig23586 has been assembled with reads 

from two homologous transcripts GT23586A and GT23586B (see section 4.2.1). 

Some assembly errors are inevitable, particularly given the absence of a reference 

genome for oat. 

The number of UGT sequences found in this screen is consistent with the size 

and expansion of the UGT family in higher plants, and in monocot species in 

particular. The UGT-like contigs found in the A. strigosa root tip transcriptome 

represent 0.37% of the entire contig collection. This is in accordance with reports 

that UGT genes represent  0.18 - 0.67% of the total protein-coding genes in the 

genomes of sequenced higher plants (Yonekura-Sakakibara and Hanada 2011). It is 

worth to mention that oat genome (11,300 Mb) is much larger than rice genome (430 

Mb) and approximately equivalent to the wheat one (17,000bp). Clearly, the analysis 

described here is based on expressed genes rather than the complete genome 

sequence, and is restricted to those UGT genes that are expressed in roots. This 

comprehensive collection of UGT sequences now opens up the opportunity to take a 

systematic approach towards investigation of UGTs that are expressed in oat roots 

and, more specifically, to mine for UGTs implicated in avenacin glycosylation. 

However, working with such a large amount of sequences is challenging and 

appropriate tools to discriminate these GTs are essential. 
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3.2.2 Oat UGT phylogenetics 

The growing number of functional studies of UGTs have brought new 

insights into the relationship between amino acid sequences and functions of 

members of this large enzyme family (Yonekura-Sakakibara and Hanada 2011). 

Investigation of the phylogenetic relationships of the oat UGTs retrieved from 

transcriptomic analysis will enable these enzymes to be classified into families and 

subfamilies and may also yield insights into potential function. 

The Carbohydrate Active Enzyme (CAZY) database is a central resource of 

information for carbohydrate-modifying enzymes (http://www.cazy.org/). A 

comprehensive collection of functionally characterised plant UGTs was collected 

from the CAZY website and completed with recent reports on functional 

characterisations of plant UGTs. A phylogenetic analysis was conducted with these 

sequences and full-length A. strigosa UGT sequences obtained from the 

transcriptomic analysis (Fig. 3.1). Accession numbers and corresponding literature of 

UGTs included in phylogenetic tree are available on supplementary data (Supp. S.3). 

The A. strigosa sequences were named following there accession number from the 

original EST collection or the accession number of the corresponding contig from 

the 454 sequencing project; those accession numbers were precede by “AsGT” for A. 

strigosa glycosyltransferases. This nomenclature was adopted pending the 

submission of oat UGT sequences to the international nomenclature committee. 

  

http://www.cazy.org/
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3.2.2.1 Oat UGTs are spread through the plant glycosyltransferase phylogeny 

The overall tree topology is in accordance with previous plant UGT 

phylogeny reconstructions (Caputi et al. 2011; Li et al. 2001). The UGT families and 

monophyletic groups described by Li et al. (2001) were all identified within the tree. 

The oat UGTs are distributed across the UGT phylogeny. 

The majority of A. strigosa UGT sequences are clustered within the plant 

UGT phylogenetic tree (Fig. 3.1). This is likely to be a reflection of lineage-specific 

evolution of A. strigosa UGTs, in accordance with observations from other plant 

species (Caputi et al. 2011). A. strigosa UGT sequences are localised in monocot-

specific branches. Monocot/dicot separation into UGT families has previously been 

observed for phylogenetic trees of genome-wide collections of UGTs from multiple 

plant species (Caputi et al. 2011). Interestingly, despite the substantial evolutionary 

distances between dicot and monocot sequences, activity is generally retained 

between dicot and monocot enzymes of the same family. This phenomenon is 

particularly obvious for members of the UGT78 and UGT74 families, where 

activities from sufficient monocot and dicot enzymes have been described to each 

group to support this conclusion. This implies that these UGT enzymes have retained 

the activity of an ancestral enzyme that appeared before the monocot/dicot split.  

 

 

 

 

 

 

Figure 3.1:  Reconstruction of the plant UGT (family 1 glycosyltransferase) phylogeny. 

The deduced amino acid sequences from A. strigosa (in red) were aligned with those of functionally 

characterised UGTs form other plant species.  Triterpenoids glycosyltransferases are indicated by bold 

blue characters. Monocot specific branches are drawn in light grey. The phylogenetic tree was drawn 

using the Neighbor-Joining method.  The accuracy of the tree topology was estimated by bootstrap 

analysis (500 replicates). Accession numbers and references of the sequences used in this 

phylogenetic tree are given in supplementary data (Supp. S.3).  The scale bar represents 5% 

divergence. 
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3.2.2.2 Repartition of oat UGTs in GT1 families 

The UGT73, UGT85 and UGT88 families constitute the most common 

families represented in the transcriptomic data from A. strigosa root tips (Fig. 3.1), 

constitute 11%, 11% and 13% respectively of the entire collection of full-length 

UGTs. A number of UGT73s have previously been shown to glycosylate triterpenes 

and related compounds in other plant species.  The phylogeny of the A. strigosa 

UGT73 family is examined in further details in figure 3.3. Many UGT88s form part 

of clade IIIb of flavonoid glycosyltransferases, those enzymes are reported as 

flavonoid-7-O-glycosyltransferases (Noguchi et al. 2009; Ono et al. 2010b). The 

functions of UGT85s enzymes remain to be clarified. Nevertheless, several UGTs 

from this family catalyse the formation of cyanogenic glucosides (Hansen et al. 

2003; Kannangara et al. 2011; Takos et al. 2011).  

Substantial clusters of A. strigosa sequences are present in group L and group 

O.  The representatives of the UGT75 and UGT74 families from group L each 

comprise 7% of the total collection.  The majority of characterised group L enzymes 

are ester-forming glycosyltransferases. Group O enzymes are not represented in A. 

thaliana.  Consequently functional analysis of this group is limited and the functions 

of group O enzymes remain to be clarified. Group O enzymes are found in all other 

sequenced plant (monocot and dicot species) this group is also absent in 

Physcomitrella patens and Selaginella moellendorffi.   

Other A. strigosa sequences are isolated in the tree; many of these belong to 

small UGT families for which the biological significance is not understood due to a 

lack of functional analysis. Consequently, we have no indication of the likely activity 

of these A. strigosa UGTs with the exception of AsGT1a15, part of the UGT84 

family containing several phenylpropanoid ester-forming glycosyltransferases. 

AsGT01332 and AsGT18279 (family UGT91) may, like UGT94s and UGT79s, be 

involved in glycosylation of sugar moieties as suggested by Yonekura-Sakakibara et 

al. (2012). The β1-2 rhamnosyltransferase activity of UGT91H4 towards glycosidic 

moiety of soyasaponin precursor (Fig. 1.6) was not mentioned in this publication and 

reinforces this hypothesis. 
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AsGT3i21 and AsGT11i11 are related sequences that share 61% amino acid 

identity.  They have less than 40% identity with other characterised sequences and 

therefore may be part of a new UGT family. They share 53% and 60% identity 

repectively with the closest B. distachyon sequence. Their distant phylogenetic 

relationship to other UGTs suggests that these enzymes may have evolved new 

specific functions. 

Five UGT families are absent from A. strigosa root tip transcriptome (Fig. 

3.1): UGT78, UGT79, UGT89, UGT92 and UGT94. The absence of UGT78 

sequences in A. strigosa is in accordance with similar observations for the sequenced 

monocot species, Oryza sativa and Sorghum bicolor (Caputi et al. 2011). 

Interestingly, a total of four UGT78 monocot sequences have been functionally 

characterised from other monocots (Zea mays, Hordeum vulgare, Iris hollandica and 

Freesia hybrida). These form a monocot-specific clade within group F; 

unfortunately, gene expression analysis was not conducted in roots for any of these 

enzymes (Ford et al. 1998; Sui et al. 2011; Yoshihara et al. 2005).  The other four 

UGT families are represented in O. sativa and S. bicolor but have not expanded in 

these species to the extent that thye have in dicots. Little is known about the catalytic 

specificities of UGT92 and UGT89 UGTs. UGTs belonging to the UGT94 and 

UGT79 families are predominantly involved in glycosylation of sugar moieties. The 

absence of sequences representing these UGT families within the A. strigosa EST 

collection may reflect the absence of genes for these families from the genome.  

Alternatively such genes may be present within the genome but not expressed in the 

root tips.   

The metabolite composition of oat tissues is not well documented. 

Nevertheless, in addition to avenacin, few other glycosides have been reported in oat 

root. The presence of flavone C-glycosides in root and leaves has been reported 

(Soriano et al. 2004). Scopoletin-7-O-glucoside (or scopolin) is exuded from oat root 

(Fay and Duke 1977). Blumenin a diglycoside of the terpenoid blumenol C 

accumulates in response to arbuscular mycorrhizal colonisation (Maier et al. 1997; 

Maier et al. 1995). The diversity of UGT families represented in the collection 

suggests that oat UGTs are involved in a variety of processes in oat root tips. 
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3.2.3 Features of oat UGTs 

3.2.3.1 Essential catalytic residues are conserved in A. strigosa UGTs 

Several amino acid residues have been shown to be important for catalysis of 

sugar transfer following a SN2-like mechanism. A conserved histidine (His) at the 

N-terminal end of UGTs plays the role of a general base. An aspartate (Asp) residue 

is believed to form hydrogen bonds with this His residue to stabilize it (Lairson et al. 

2008; Osmani et al. 2009; Wang 2009). The catalytic His residue is conserved in all 

A. strigosa UGT sequences identified in this work (Fig. 3.2.B). Most of the A. 

strigosa UGTs possess the Asp residue; although it is absent from six of the UGT 

sequences. Five of these UGTs belong to either the UGT75 or UGT84 families (Fig. 

3.2.B). Functionally characterised enzymes from these families also lack this Asp. 

Therefore an alternative mechanism may exist in those families. Intriguingly, 

AsGT02436 possesses a glycine (Gly) instead of the Asp residue, in contrast to other 

active UGT73s (Fig. 3.2.B). Conservation of these catalytic residues within the A. 

strigosa UGT collection suggests that most of our collection is composed of 

potentially active enzymes. 

3.2.3.2 Analysis of the PSPG motif suggests that the majority of the  oat UGTs are 

glucosyltransferases 

Plant UGT phylogeny reconstruction can provide clues about potential 

acceptors of oat UGTs but offers very little information about sugar donor 

preferences. Phylogenetic analysis of active UGTs highlights the fact that the ability 

to specifically recognise a UDP-sugar has evolved independently multiple times 

(Fig. 3.1). Members of a single UGT subfamily can perform transfer of several 

different monosaccharides (see section 1.2.5). However, most plant UGTs have a 

strong preference for a single UDP-sugar, as revealed by comparative kinetic 

analysis performed on multiple sugar donors (Kubo et al. 2004; Noguchi et al. 2009; 

Sayama et al. 2012). Residues responsible for sugar donor recognition have been the 

centre of much interest in the past decade and the mechanisms underlying sugar 

donor specificity are beginning to be understood. 
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The PSPG motif shapes the sugar-donor binding site of UGTs and 

consequently is primarily involved in UDP-sugar specificity (Wang 2009). The 

PSPG motif was identified in all of A. strigosa UGT sequences after alignment with 

characterised UGT71G1 (Fig. 3.2.B). To investigate amino residue conservation 

within the PSPG motif of A. strigosa UGTs compared to those from the dicot species 

A. thaliana, a graphical representation of the consensus sequences were generated 

from the available UGT sequences for each species (Fig. 3.2.A). Crystal structures of 

plant UGTs and directed mutational approaches have helped to identify crucial 

residues involved in interaction with the UDP moiety of the sugar donor (Osmani et 

al. 2009).  These are marked with an asterisk on both consensus motifs. These 

residues are generally conserved between A. thaliana and A. strigosa (Fig. 3.2.A-B). 

The overall similarity between the two consensus motifs suggests that interactions 

between UGTs and sugar nucleotides are conserved between monocots and dicots, 

and that the sugar donor binding sites appear likely to be functional in the majority 

of the A. strigosa UGTs identified. 

Intriguingly, some of the residues known to interact with the nucleotide 

diphosphate moiety of the donor are not conserved in the PSPG sequences of 

AsGT11i11 (His19), AsGT27f7 (Ser24), AsGT02436 (Asn23) and AsGT01332 

(Asn23) (Fig. 3.2.B). None of the enzymes included in the phylogenetic tree (Fig. 

3.1) has His19 substituted by another residue. Interestingly, substitution of Asn23 

with glycine appears to be associated with rhamnosyltransferase activity in several 

cases: UGT89C1, CmRhaT and GmSGT3 (Frydman et al. 2013; Shibuya et al. 2010; 

Yonekura-Sakakibara et al. 2007); additionally Asn23 is generally not conserved in 

GGTs. The rare substitutions occurring for critical residues involved in uridine 

diphosphate binding may affect sugar donor recognition of the corresponding 

enzymes. 
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Figure 3.2: Amino acid sequence conservation of A. strigosa UGTs. A: Comparison of the 

PSPG consensus motifs derived from UGTs from Arabidopsis thaliana (top) and Avena strigosa 

(bottom). A. thaliana sequences were retrieved from http://www.p450.kvl.dk/UGT.shtml. A graphical 

representation of residues constituting the PSPG motifs was made using weblogo.berkeley.edu software. 

The overall height of the stack indicates the sequence conservation at that position, while the height of 

symbols within the stack indicates the relative frequency of each amino or nucleic acid at that position. 

Essential residues for UDP-sugar binding are labelled with an asterisk. B: Alignment of A. strigosa full-

lenght UGTs with the sequence of the crystallised UGT71G1 (Shao et al. 2005). The alignment shows 

highly conserved regions of UGTs; the PSPG motif and essential catalytic residues are highlighted in 

red. The consensus sequence of the alignment shows conserved residues identified in crystallographic 

studies. Key residues for activity or sugar specificity are labelled with an asterisk. 

http://www.p450.kvl.dk/UGT.shtml
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Some residues of the PSPG motif that are known to interact directly with the 

glycosidic moiety of the sugar donor UDP-Glc (Trp22, Asp/Glu43 and Gln44; refs) 

are conserved in A. strigosa UGTs (Fig. 3.2.A-B).  The absence of variation in these 

residues (especially PSPG terminal position 43
rd

 and 44
th

; see section 1.2.3) may 

indicate that the majority of the enzymes in our collection are glucosyltransferases. 

Residues This assumption has to be tempered by the fact that other regions in the C- 

and N-terminal domains of UGTs have also been suggested to interact with sugar 

donors (Osmani et al. 2009). The fact that targeted mutagenesis of some of the 

residues within the PSPG motif that are implicated in sugar binding has often failed 

to produce a change of sugar specificity also suggests that discrimination between 

UDP-sugars is not dependent solely on the PSPG motif (Kubo et al. 2004; Noguchi 

et al. 2009). 

3.2.4 The role of Group D enzymes in triterpenoid glycosylation and the expansion 

of group D in monocots   

As mentioned before, group D (which consists of members of family 

UGT73) is particularly rich in glycosyltransferases that are active towards triterpenes 

and related compounds in other plants (Fig. 3.3, blue accessions). A phylogenetic 

tree was then built that included all functionally characterised UGT73s plus the 

entire UGT73 family of the sequenced monocot species O. sativa and of the dicot 

species A. thaliana. This phylogenetic tree enabled comparison of the relatedness 

between monocot and dicot UGT73 sequences (Fig. 3.3). 

3.2.4.1 Relation between functions and phylogeny of group D glycosyltransferases 

As observed for other UGT families (Caputi et al. 2011), the members of the 

UGT73 family are divided into monocot- and dicot-specific branches (Fig. 3.3, black 

and grey branches). These have been designated D1 and D2 for the dicot sequences 

and M1, M2, M3, M4 and M5 for the monocot sequence (Fig. 3.3). All UGT73 

enzymes that have been functionally characterised so far are from dicot species 

except the flavonoid glucosyltransferase RUGT-5 (Ko et al. 2006). The dicot 

UGT73s are separated into two major clusters D1 (sub-families UGT73C, D, E and 

N) and D2 (sub-families UGT73A, B, F, K and P). There is no obvious functional 

segregation between those clusters. Triterpenoids, steroids and flavonoids are used as 

acceptors by enzymes from both the D1 and D2 groups. The group D is known to 
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form the cluster IIIa of flavonoid glycosyltransfersases and enzymes from this group 

are generally presented as catalysing regiospecific addition of glycoside onto C-7 

position of flavonoid acceptors (Frydman et al. 2013; Noguchi et al. 2009; 

Yonekura-Sakakibara and Hanada 2011). Triterpenoid glycosyltransferases 

repartition inside group D (Fig. 3.3, blue accessions) and over the whole plant UGT 

phylogeny suggests such phylogenetic clustering with conserved regiospecific 

glycosylation did not occur for triterpenoid glycosyltransferases. Sayama et al. 

(2012) suggested that the structural similarity displayed by a majority of triterpenoid 

glycosyltransferases (the one from group D) regardless of their regiospecificity 

might indicate a recent evolution of triterpenoid UGTs from an ancestral UGT and 

then evolution of current glycosylation positions. 

3.2.4.2 Oat glycosyltransferases from group D, potential triterpenoid 

glycosyltransferases 

Interestingly, AsGT16f23 is part of group M1 orthologous to group D1 

containing triterpenoid-3-O-glycosyltransferases from B. vulgaris and 

brasinosteroid-23-O-glycosyltransferases from A. thaliana (Augustin et al. 2012; 

Husar et al. 2011; Poppenberger et al. 2005). Common functions may therefore be 

conserved between M1 and D1. AsGT24i2 displays 72% identity with the flavonoid-

3-O-glucosyltransferase RUGT-5 from rice in group M5 (Ko et al. 2006). The 

absence of functionally characterised monocot UGT73 enzymes prevents speculation 

about the potential activities of the remaining A. strigosa UGT73 enzymes. 

Functional characterisation of these enzymes will shed light on the role of family 

UGT73 in monocots and in higher plants in general. This phylogenetic analysis and 

recent reports on genome-wide analysis of plant UGT families (Caputi et al. 2011; 

Yonekura-Sakakibara and Hanada 2011) suggests a larger expansion and 

diversification of UGT73 enzymes in monocot species compare to dicots. This might 

suggest the development of distinct functions in monocot UGT73 family. 
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Figure 3.3: Phylogenetic tree of plant UDP-glycosyltransferases belonging to group D.  
The deduced amino acid sequences of the A. strigosa UGTs (shown in red) were aligned with 

biochemically characterised UGT73 enzyme. All the UGT73 sequences from O. sativa and A. 

thaliana were included in the tree. Monocot specific branches are drawn in light grey. Tritepenoid 

UGTs are indicated in blue. The phylogenetic tree was drawn using the Neighbor-Joining method 

with 500 bootstrap replicates. Further information about the sequences in this phylogenetic tree are 

provided in supplement (Supp. S.3 and S.5).  The scale bar represents 5% divergence. 
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3.2.4.3 Triterpenoid glycosyltransferase candidates out of group D 

In addition to the UGT73 family, sterol glycosyltransferases may also be 

potential candidates for avenacin glycosylation considering the recruitment of SAD1 

and SAD2 enzymes from the primary sterol pathway to avenacin biosynthesis. The 

two glucosylation steps required for avenacin trisaccharide formation (β1-2 and β1-4 

glucosylation of arabinose) requires GGT activities. As mentioned before GGTs are 

generally belonging to a large branch of UGT phylogeny comprising families 

UGT79, UGT91 and UGT94; AsGT01332 and AsGT18279 belong to this branch 

and are potential candidates for avenacin glucosylation processes (Fig. 3.1). 

3.2.5 Analysis of the A. strigosa root proteome 

3.2.5.1 Proteomic analysis reveals differential representation of UGTs in the root 

tips and elongation zone  

Previously, immunoblot analysis has shown that the SAD proteins 

accumulate specifically in the root tips of A. strigosa seedlings (Mugford et al. 2013; 

Owatworakit et al. 2012). As a complementary strategy to investigate the UGTs 

present in the roots of A. strigosa seedlings, proteomic analysis was carried out using 

linear trap quadrupole (LTQ)-orbitrap. The LTQ-orbitrap offers exact masses of the 

orbitrap mass analyser - crucial for the rigorous identification of tryptic peptides - 

associated with efficiency and sensitivity of the linear ion trap. Recently orbitrap 

mass spectrometry has been used with complex protein mixtures extracted from 

plant tissues to great effect. In rice, large-scale proteomic analysis was used to 

generate a database representing the products of 3200 genes, so allowing refinement 

of rice genome annotation (Helmy et al. 2011). Proteomic analysis of Holm oak 

revealed qualitative and quantitative variation of the protein profiles of pollen from 

various origins (Valero Galvan et al. 2012). 

Proteins were extracted from the root tips and elongation zones of five-day 

old A. strigosa seedlings (Fig. 3.4.A). Protein quantification was carried out using 

Bradford reagent and the protein solutions were diluted to 0.32 mg/ml each. LTQ-

Orbitrap analysis was carried out by G. Saalbach (John Innes Centre Proteomics 

platform).  This included tryptic digestion of the protein samples and 

quantification/identification of detected proteins using MaxQuant and Mascot 

software. The search was performed on the TAIR protein database (A. thaliana) 
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augmented with the entire collection of UGT sequences obtained from A. strigosa 

transcriptomic analysis. 

Analysis of the total protein extract from the root tips resulted in 

identification of AsGT11i11 and AsGT16h6 only.  This poor coverage was likely to 

be due to saturation of the Orbitrap detector, resulting in the detection of only a few 

peptides. To simplify the sample mixture we therefore took advantage of the 

conserved length of UGTs; A. strigosa UGT molecular weights are between 48kDa 

and 55kDa. Proteins with molecular weights 45-57 kDa were extracted from gel 

slices and the mixture injected into the Orbitrap following tryptic digestion (Fig. 

3.4.B). Analysis of root protein extracts restricted to the targeted molecular weight 

window was more informative. SAD10 was unambiguously identified from root tip 

and root elongation zone based on Orbitrap analysis of four peptides (Fig. 3.4.C). 

Differences in the abundance of the SAD10 protein were observed when 

extracts from the root tip and elongation zone were compared, with higher SAD10 

protein levels in the root tips (Fig. 3.4.C). This is consistent with the role of SAD10 

in avenacin biosynthesis (Owatworakit et al. 2012). A similar pattern of protein 

accumulation was observed for the SAD10 homologue, AsGT15a11 (UGT74H6). 

This is consistent with the likely role of UGT74H6 in biosynthesis of the non-

fluorescent avenacins, A-2 and B-2 (Owatworakit et al. 2012). Several other UGTs 

have a similar distribution in oat root tissues, for example AsGT11i11, AsGT23586, 

AsGT23781, AsGT16525 and AsGT10326. AsGT1a15, AsGT20n10, AsGT05827 

and AsGT10326 were detected almost exclusively in the root tips (Fig. 3.4.C). The 

differential distribution of these UGTs in A. strigosa roots suggests that they are 

involved in processes that are specific to root tip. Interestingly, the only UGT73 

enzyme that showed a similar distribution to SAD10 is AsGT23781, part of the M2 

cluster from which function remains unknown (Fig. 3.4). AsGT16h6, AsGT17576 

and AsGT01989 have a different distribution in roots, with higher levels of protein 

detected in elongation zone. Similar levels of protein were detected in both parts of 

the root for AsGT21p16 (Fig 3.4.C). 

This proteomic analysis was done with one sample from each part of the root 

and so the analysis would need to be repeated in order to ensure that these findings 

are reproducible. Nevertheless this preliminary analysis provides a valuable 

complement to the transcriptomic analysis. 
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Figure 3.4: Proteomic analysis of A. strigosa UGTs. A. Proteins were extracted from 3-day-old 

seedlings of A. strigosa. A total of 50 mg of tissue was collected from the elongation zone (EZ) and 

root tips (RT). B. SDS-PAGE gel slices corresponding to the molecular weight of UGTs were used in 

LTQ-Orbitrap analysis. Lane L, SeeBlue® Plus2 Pre-Stained Standard; lane 1, RT protein extract 0.32 

mg/mL; lane 2, RT  protein extract 0.15 mg/mL, lane 3, EZ protein extract 0.32 mg/mL; Lane 4, EZ 

protein extract 0.15 mg/mL; Lane 5, recombinant SAD10. C. Comparison of relative abundance of A. 

strigosa UGTs between RT and EZ tissues. Orbitrap mass spectrometry was performed on trypsic 

products of proteins from gel slices shown above. Relative intensities of peptides from A. strigosa RT 

are in blue; relative intensity of peptides from the EZ are in red. SAD10 is part of the avenacin 

biosynthetic pathway.  
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3.2.5.2 Comparison of UGTs expressed in root tip of wild-type, sad3 and sad4 

mutants  

The sad3 and sad4 are affected in glycosylation of avenacin and accumulate 

mono deglucosylated avenacin. The sad3 and sad4 mutants display a severe 

phenotype affecting root development and vesicular trafficking in root cells (Mylona 

et al. 2008). In order to analyse the sad3 and sad4 mutant proteome without 

introducing a bias due to severe cellular defects we used oat lines with a sad1 mutant 

background. The sad1 mutant is affected in the first step of avenacin biosynthesis; it 

is unable to make cyclisation of 2,3-oxidosqualene leading to an early shut-down of 

the whole avenacin pathway. In a sad1 background sad3 and sad4 mutants have a 

wild-type phenotype (Mylona et al. 2008). Total protein extract from wild-type oat 

together with sad1 mutant and double mutant lines sad1/sad3 and sad1/sad4 mutant 

were processed for Orbitrap analysis of gel slices. No major differences in UGTs 

expression profile were observed in any of the mutant lines. No mutation was 

detected in UGT peptides sequences identified from this analysis. 

The resolution obtained from the mass-spectrometry analysis did not allow 

full coverage of UGTs of interest. Therefore only a complete loss of the protein or a 

mutation in one of the detected peptides may be identified using the Orbitarp 

analysis. Proteomic analysis of sad3 and sad4 mutant may suggest their phenotype is 

not directly linked to UGT but we cannot exclude a role of one of the detected UGT 

in phenotype of sad3 or sad4 mutants. 

A large scale analysis of all UGTs present in the oat collection was possible 

due to the Orbitrap proteomic analysis. SAD10 was unambiguously detected and its 

histological pattern was consistent with its role in avenacin biosynthesis. Detection 

of SAD10 and UGT74H7 suggests resolution of the Orbitrap is appropriate to 

identify proteins involved in the avenacin pathway. Several UGTs of the collection 

co-localised with SAD10 and might be considered as potential avenacin 

glycosyltransferase candidates. 
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3.2.6 Gene expression analysis reveals that some A. strigosa UGTs are co-

expressed with Sad genes 

Biosynthetic genes of secondary metabolites are generally expressed in a 

particular tissue (Schilmiller et al. 2012). Consequently, gene expression analysis is 

a powerful way to uncover enzymes involved in the biosynthetic pathways of a 

targeted secondary metabolite. Investigation of coordinated regulation of genes in 

tissues  accumulating a given metabolite have been used successfully to uncover 

biosynthetic genes of  a variety of compounds like flavonoids, indoles, 

phenylpropanoids (Gachon et al. 2005a; Pang et al. 2008; Yonekura-Sakakibara et al. 

2012; Yonekura-Sakakibara et al. 2008). Co-expression analysis of tailoring genes 

with OSCs was a successful approach to discover UGTs and P450s involved in 

saponin biosynthesis in Medicago truncatula (Achnine et al. 2005; Naoumkina et al. 

2010). The  Sad1, Sad2, Sad7 and Sad9 genes are all expressed preferentially in the 

root tips with little or no expression in other tissues (Fig 1.8) (Haralampidis et al. 

2001; Mugford et al. 2013; Qi et al. 2006). Genes encoding enzymes involved in 

glycosylation of the triterpene scaffold during avenacin biosynthesis may therefore 

be expected to have a similar expression pattern. 

Expression of Ugt genes were analysed by mRNA-reverse transcription-PCR 

(RT-PCR). cDNA was generated from the following parts of 3-day-old A. strigosa 

seedlings: root (R), root tip (RT), root elongation zone (EZ) and young leaf (YL) 

(Fig. 3.5.A),  and from the following parts of older plants: mature leaf (ML), flower 

(F) and stalk (S) (Fig. 3.5.A). The housekeeping gene encoding glyceraldehyde-3-

phosphate dehydrogenase (GAPDH) and the previously characterised avenacin 

biosynthetic gene Sad10 were used as controls. Amplification of the Sad10 transcript 

revealed a root tip-specific expression profile in accordance with previous 

publications (Fig. 3.5.B). Specific primers were designed for UGT genes presenting 

characteristics of avenacin glycosyltransferases candidates based mainly on 

phylogeny and protein levels in oat root (see table 3.3). Specifically, UGTs from 

phylogenetic groups of interest (group D and sterols UGTs) and UGTs showing high 

protein accumulation levels in root tips or higher accumulation in root tips than 

elongation zone were picked up for the present analysis. Optimised PCR conditions 

were established to amplify the desired fragment from each transcript. 
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Figure 3.5: Expression analysis of UGT genes in A. strigosa tissues. A. Expression analysis 

was conducted using mRNA-reverse transcription-PCR (RT-PCR) technique. A. strigosa tissues used 

were from 3-days-old seedlings (RT: root tip, RE: root elongation zone; R: entire young root, YL: 

young leaf) or tissues of flowering plants (ML: mature leaf, St: stalk and F: flower). B. Examples of 

expression profiles obtained from RT-PCR DNA over the seven tissues plus negative control (Ø). 

The negative control consists in PCR reaction mixture without cDNA. The Sad10 gene is part of the 

avenacin cluster from which all genes (Sad1, Sad2, Sad7, Sad9 and Sad10) have been shown to be 

tightly co-expressed. Positive control consists on amplification of glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH). 
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Similarly to other Sad genes Sad10 is tightly co-expressed with Sad1 (Supp. 

S.6). Two other genes that are closely related to Sad10 - AsGT29m5 and AsGT15a11 

(Ugt74H6 and UGT74H7) - are also expressed exclusively in the root tips. This gene 

expression analysis supported the idea that AsGT29m5 and AsGT15a11 may 

participate in the synthesis of avenacins by glucosylating acyl donors required as 

substrates for SAD7 activity (Fig. 3.6) (Owatworakit et al. 2012);  UGT01989 is part 

of the monophyletic branch containing SAD10, UGT29m5 and UGT15a11; its 

activity is unknown. In contrast to the other three Ugt genes AsGT01989 is expressed 

in the elongation zone but not in the root tips (table 3.3). 

 

 

 

 

As mentioned before UGTs from group D (or UGT73s) are of particular 

interest with regard to identifying triterpene glycosyltransferases (see section 3.2.4). 

The expression profiles of all UGT73s within the collection were determined by RT-

PCR. Interestingly, AsGT02436 and homologous genes AsGT14h20 and AsGT14h21 

display a Sad gene-like expression profile, their transcripts being detected 

exclusively in the root tips. Like SAD10, the AsGT23781 protein accumulates 

principally in the root tips. In agreement with the proteomic analysis, the 

corresponding transcript was detected in the root tips and also in flowers. AsGT24i2, 

AsGT16f23 and AsGT27f7 are expressed in various tissues (table 3.3). 

Figure 3.6. Predicted function of SAD10, AsGT29m5 (UGT74H6) and AsGT15a11 

(UGT74H7) in avenacin biosynthesis (Owatworakit et al. 2012). 
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Proteomic analysis identified several A. strigosa UGTs with a similar 

differential display than SAD10 in oat roots (Fig. 3.4; section 3.2.5.1). Such a feature 

is of interest for the finding of avenacin glycosyltransferases candidates. Beyond 

those genes only AsGT11i11 is strictly expressed in root tips. As mentioned 

previously AsGT23781 is expressed in root tip and flowers. Homologous genes 

AsGT23786A and AsGT23786B are predominantly expressed in root tip but low 

expression levels are also detected in elongation zone and leaf tissues. Expression 

profiles of the remaining genes are not correlated with the characterised Sad genes 

(table 3.3). The proteomic analysis also suggests a substantial accumulation of 

AsGT21p16 and AsGT16h6 proteins in A. strigosa roots. Interestingly, AsGT21p16 

gene is essentially expressed in root tip and AsGT16h6 is expressed only in roots 

(table 3.3). 

Sterol UGT80s may be of interest for avenacin biosynthesis considering the 

evolution of Sad1 and Sad2 from sterol metabolism. The three sterol UGTs 

identified in our collection (AsGT24525, AsGT03999 and AsGT24138) are all 

expressed in various tissues and therefore, are unlikely to contribute to avenacin 

synthesis (table 3.3). AsGT3i21 is closely related to AsGT11i11, both enzymes are 

distant from any other characterised UGTs (Fig. 3.1), functional investigation on 

those enzymes is therefore of particular interest. The expression of these two genes 

seems mutually exclusive as AsGT3i21 is expressed in elongation zone but not in 

root tip and AsGT11i11 expression is restricted to root tip. This may suggest both 

enzymes are involved in glycosylation of different acceptors or used different sugar 

donors to decorate the same acceptor. AsGT25n16 was reported to be expressed 

exclusively in root tip from preliminary experiment on oat UGTs (Osbourn lab 

unpublished data), the present gene expression profile analysis confirmed it.  

A majority of the UGT genes analysed above are expressed in oat root tips; 

this is proving the relevance of the initial transcriptomic approach for identification 

of tailoring enzymes potentially involved in root secondary metabolism. Several 

UGTs included in the analysis are co-expressed with the Sad genes and may be 

prioritised candidates for avenacin glycosylation. UGT genes not strictly expressed 

in root tip also need to be considered carefully; really some UGTs have been 

reported to have several functions in a single plant species. For example, two 

independent studies have shown evidence of a role of UGT73C6 in brassinosteroid 
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and flavonoid metabolism in A. thaliana (Husar et al. 2011; Jones et al. 2003). If 

avenacin glycosyltransferases are involved in other mechanisms they may be 

expressed in other tissues as well as in the root tips. The expression profiles 

generated during this study are summarized in (table 3.3).  

 

A. strigosa 

UGT genes 

Reason for selection 

as candidate gene  

Expression profiles 

RT EZ YR YL ML St F 

Sad10 control +++ - ++ - - - - 

AsGT15a11 Sad10 homologue +++ - ++ - - - - 

AsGT29m5 Sad10 homologue +++ - ++ - - - - 

AsGT01989 Sad10 homologue - + +++ - - - - 

AsGT14h20 Group D ++ - + - - - - 

AsGT14h21 Group D +++ - + + - - - 

AsGT02436 Group D +++ + ++ - - - - 

AsGT16f23 Group D +++ + ++ ++ + + + 

AsGT27f7 Group D +++ ++ ++ ++ + - + 

AsGT24i2 Group D +++ ++ ++ +++ ++ ++ +++ 

AsGT23781 Group D ++ - ++ - - - ++ 

AsGT23586A protein level in RT +++ ++ +++ - + - - 

AsGT23586B protein level in RT +++ + +++ + + - + 

AsGT05827 protein level in RT +++ + +++ +++ + - ++ 

AsGT11i11 protein level in RT +++ - ++ - - - - 

AsGT16525 protein level in RT +++ ++ +++ ++ ++ - ++ 

AsGT01a15 protein level in root ++ - ++ + +++ - ++ 

AsGT21p16 protein level in root +++ + ++ - - - - 

AsGT16h6 protein level in root +++ +++ +++ - - - - 

AsGT25n16 
 

+++ - ++ - - - - 

AsGT03i21 unclassified  - ++ ++ - - - - 

AsGT03999 UGT80 +++ + ++ ++ ++ + + 

AsGT24525 UGT80 +++ + ++ + + - + 

AsGT24138 UGT80 ++ + ++ ++ ++ - ++ 

Table 3.3: Summary table of A. strigosa UGTs expression profiles. Expression profile was 

obtained by semi-quantitative RT-PCR on various oat tissues: RT: root tip; EZ: elongation zone of the 

root, YR: entire root, YL: young leaf, ML: mature leaf, St: stalk and F: flower. Comparative 

expression scale: +++: maximal expression, ++: moderate expression, +: low expression, -: no 

expression detected. 
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3.3 Conclusion 

3.3.1 Glycosyltransferases from oat root tips – extent and features 

A large collection of UGTs was retrieved from transcriptomic analysis of oat 

root tips. A total of 53 full-length UGT sequences were part of the 110 UGT-like 

sequences identified by tBLASTn searches. Subsequent analysis of A. strigosa 

UGTs focused on full-length UGTs. An overview of the selection strategy is 

presented in figure 3.7.  

Analysis of deduced amino acid sequences of oat UGTs has revealed the 

conservation of essential residues of the active sites and sugar donor binding sites 

between dicot and monocot species. These data suggest that most of the sequences of 

the collection may encode active enzymes, and that the majority of them are likely to 

have glucosyltransferase activity based on the amino acid composition of their PSPG 

motif. The final residue of the PSPG motif has been shown to be involved in 

discrimination between glucose and galactose (Kubo et al. 2004). Plant UGT 

galactosyltransferases possess a conserved histidine residue at that position. This 

residue is conserved in the only plant UGT arabinosyltransferase so far functionally 

characterised in plants (Yonekura-Sakakibara et al. 2008). The authors suggest that 

the histidine residue has a similar role in recognition of UDP-Gal and UDP-Ara, 

considering the similar configurations of hydroxyl groups at C-2, C-3, and C-4 

positions in β-L-arabinose and α-D-galactose. An arabinose residue is directly 

attached at the C-3 position of avenacin triterpene backbone (Fig. 1.7.A); 

arabinosyltransferase activity is therefore of great interest within the scope of 

identifying the enzymes involved in avenacin trisaccharide formation. None of the 

full-length UGT sequences of the A. strigosa collection encode for this particular 

histidine.  This may suggest that this structural basis for recognition of UDP-Ara is 

not conserved throughout the whole plant UGT family. Mutational analysis 

focussing on sugar specificity alteration of plant UGTs combined with structural 

modelling suggests that recognition of a specific sugar donor is not attributable to a 

single residue (Kubo et al. 2004; Noguchi et al. 2009; Shao et al. 2005). In addition 

to the PSPG motif, Osmani et al. (2009) pointed out the role of the first loop in the 

C-terminal domain (C1-loop), the interdomain linker and the N-terminal domain in 

sugar donor recognition. 
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3.3.2 Phylogenetic analysis brings new insights into possible functional evolution 

of monocot species 

The phylogenetic analysis reveals a heterogeneous distribution of A. strigosa 

UGTs over the phylogenetic groups defined previously (Ross et al. 2001). The 

absence of several UGT families within the oat sequence collection may signify a 

complete absence of those genes within the oat genome or a non-expression of those 

genes in oat root tip. The absence of UGT78 (group F) is in accordance with 

genome-wide phylogenetic analysis conducted by Caputi et al. (2011) over 12 plant 

genomes comprising two monocot species (rice and sorghum). The vast majority of 

UGT78s are involved in flavonoid-3-O-glycosylation and constitute clade I of the 

flavonoid glycosyltransferases (Ford et al. 1998; Jones et al. 2003; Kim et al. 2012; 

Modolo et al. 2009; Sui et al. 2011; Yin et al. 2012; Yoshihara et al. 2005). Liu et al. 

(2013) reported the identification of several flavonoid-3-O-glycosides in cereal 

species, including rice and sorghum (there is no mention of such compounds in the 

literature for oat). This suggests that flavonoid 3-O-glycosylation activity evolved 

from different UGT families in these species. This may explain the unusual 

regiospecificities reported for rice flavonoid glycosyltransferases (Ko et al. 2006; Ko 

et al. 2008). None of the UGT sequences identified from the transcriptomic dataset 

belong to groups B and M of UGTs. Those groups are conserved in all sequenced 

higher plants but are comprised of only a few members in each species. The 

restricted diversification of these groups and their conservation through evolution 

might suggest central roles played by these enzymes in critical mechanisms 

(Yonekura-Sakakibara and Hanada 2011). The present study suggests that the 

mechanisms in which those enzymes are involved is not taking place in root tips or is 

only required in certain physiological conditions. 

The family UGT88 from group E is the most represented family in the oat 

root tip transcriptome; the other UGT families from group E both consist of a single 

member in oat, AsGT06751 (UGT72) and AsGT16525 (UGT71). Group E is 

generally the most populated group in sequenced species (Caputi et al. 2011), but in 

A. thaliana the distribution of UGTs is inverted; the UGT71 and UGT72 families are 

overrepresented (15 and 9 members respectively) compared to the UGT88 family 

(UGT88A1 being the only member of the latter). This may reflect a different 

functional evolution of these three families between dicot and monocot species. The 
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function of UGT from group E is still uncertain but dicot members of the UGT88 

family have been shown to be exclusively involved in flavonoid glycosylation (Ko et 

al. 2008; Noguchi et al. 2009; Noguchi et al. 2007; Ogata et al. 2005; Ono et al. 

2010b). The UGT72 and UGT71 families have been identified as abscisic acid and 

monolignol glycosyltransferases respectively in A. thaliana (Lanot et al. 2006; Lim 

et al. 2005; Priest et al. 2006; Priest et al. 2005). Very few enzymes have been 

characterised in group E from monocot species except an in vitro study with rice 

UGTs using flavonoid acceptors (Ko et al. 2008). Group O is particularly 

represented in A. strigosa root tips despite restricted expansion in sequenced species 

(Caputi et al. 2011). Functional analysis available to date suggests that UGTs from 

group O are involved in glycosylation of cytokinins prior to transport or storage 

(Martin et al. 2001; Martin et al. 1999). Expression of these enzymes in A. strigosa 

roots is in accordance with a potential role in cytokinin transport, considering that 

adenosine-type cytokinins like zeatin are generally synthesized in the roots (Bajguz 

and Piotrowska 2009); cis-zeatin-O-glucosyltransferase isolated from maize (Martin 

et al. 2001) is expressed primarily in roots, as AsGT05827 from oat (Fig. 3.5). A. 

strigosa roots contain two intriguing UGTs (AsGT11i11 and AsGT3i21) that have 

low similarities with characterised UGTs; the closest enzyme to these within the 

phylogenetic tree is the C-glycosyltransferase of flavonoids from rice (Brazier-Hicks 

et al. 2009). Flavonoid-C-glycosides have been reported from oat, and AsGT11i11 

and AsGT3i21 may be involved in their production (Soriano et al. 2004). 

Particular emphasis was placed on group D (UGT73) enzymes since 

functional studies suggest that several members of this group have evolved activities 

in saponin glycosylation in other species.  UGT73s have been reported to have 

activity towards triterpenoids (Achnine et al. 2005; Augustin et al. 2012; Naoumkina 

et al. 2010; Sayama et al. 2012; Shibuya et al. 2010) or related compounds (e.g. 

phytosterols, glycoalkaloids, brassinosteroids) (Husar et al. 2011; Itkin et al. 2013; 

Itkin et al. 2011; Kohara et al. 2005; Kohara et al. 2007; Moehs et al. 1997; 

Poppenberger et al. 2005); flavonoid glycosyltransferase activities are also 

preponderant in group D (Hirotani et al. 2000; Jones et al. 2003; Kim et al. 2006; Ko 

et al. 2006). Interestingly, group D of soybean has extended considerably compared 

to other dicot species (Caputi et al. 2011); this might be related to the large number 

of saponins produced by this species (37 saponins identified) (Huhman and Sumner 
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2002). Phylogenetic analysis comparing the entire UGT73 families of A. thaliana 

and O. sativa suggests differential evolution of monocots and dicot within this 

family. UGT73s from dicot species have expanded in two major branches (D1 and 

D2) while monocot UGT73s have diversified further and formed 5 monophyletic 

branches (M1 to M5, Fig. 3.3). UGT73s from monocots remain largely 

uncharacterised except for RUGT-5 a flavonoid-3-O-glucosyltransferase from rice 

(Ko et al. 2006). A. strigosa enzymes are distributed across four of the branches (M1, 

M2, M3 and M5) identified for monocot UGT73s. Functional analysis of A. strigosa 

enzymes should increase our understanding of the evolution of monocot UGT73s. 

3.3.3 Insights into synthesis of oat root glycosides  

To my knowledge, no extensive metabolomic analysis has been performed on 

oat roots other than our own work on triterpene analysis. Nevertheless several 

glycosides have been identified from oat root tissues. Flavonoid-C-glycosides have 

been reported from oat and may be involved in defence mechanism against 

nematodes (Soriano et al. 2004). A flavonoid-C-glycosyltransferase has been 

reported from rice (Brazier-Hicks et al. 2009). This enzyme has not been included in 

the phylogenetic tree because of the impact of its unusual primary structure on the 

alignment; it shows only low identity with the oat UGTs identified. The 

antimicrobial coumarin scopoletin-7-O-glucoside (scopolin) is exuded from oat root  

(Fay and Duke 1977). Scopoletin-7-O-glucosyltransferase activity was reported for 

N. tabacum enzyme NtGT1a (Taguchi et al. 2001); this enzyme has broad acceptor 

specificity in vitro but gives enhanced resistance against viral infection when over-

expressed in tobacco (Gachon et al. 2004; Matros and Mock 2004). NtGT1a is part 

of family UGT71 but displays only 38% identity with AsGT16525 from oat. 

Blumenin is a diglycoside of blumenol, a C-13 terpenoid that originates from the 

carotenoid pathway.  This compound accumulates in response to arbuscular 

mycorrhizal colonisation (Maier et al. 1995). No glycosyltransferases activities have 

been reported toward blumenol, and it is therefore difficult to speculate about 

potential UGT families involved in blumenin biosynthesis. 
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Unfortunately, there are no clear candidate glycosyltransferases for these 

three glycosides reported in oat roots. Considering the fact that those chemicals are 

part of defence mechanisms (e.g. flavonoid-C-glycosides or scopolin) or secreted 

during symbiosis (e.g. blumenin) it is not surprising that their biosynthetic genes are 

poorly expressed in artificial laboratory conditions. 

3.3.4 Selection of UGTs potentially involved in triterpenoid glycosylation 

The analysis of the oat UGT collection has identified several candidate 

avenacin glycosyltransferases that can now be subjected to functional analysis (Fig. 

3.7). On the basis of the phylogenetic analysis, the entire UGT73 family from oat 

was selected based on the known contribution of this family of enzymes to 

triterpenoid glycosylation in other plant species. Sterol glycosyltransferases from 

family UGT80 were also included in our selection due to the implication of sterol-

derived enzymes in avenacin biosynthesis (e.g. SAD1 and SAD2). AsGT3i21 and 

AsGT11i11 are potentially interesting due to their distant relationship to any 

characterised glycosyltransferase. Additionally, protein accumulation in root tips and 

gene expression profiling of AsGT11i11 corroborates with SAD10. AsGT21p16 and 

AsGT25n16 were selected due to their Sad gene-like expression profiles. UGTs that 

were abundant in the root tips compare to the root elongation zone based on orbitrap 

analysis were also selected for further functional analysis. These were AsGT16525, 

AsGT10326, AsGT05827, AsGT23586A and AsGT23586B. In total 19 UGTs were 

selected for cloning for functional analysis. A summary of these is given in table 3.4.  
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Figure 3.7. Summary of the strategy used to delineate a restricted number of avenacin 

glycosyltransferases candidates. 
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Chapter 4 - Establishing platforms for the functional analysis 

of oat UGTs  

4.1 Introduction 

The multiple potential acceptors employed by UGTs in planta and the 

promiscuity displayed by these enzymes in vitro tend to make functional analysis a 

complex task (Vogt and Jones 2000). The magnitude of the task is reinforced by the 

difficulty to predict likely function of plant UGTs based on sequence similarities 

only. This is due to lineage specific evolution of UGT substrate specificity (Caputi et 

al. 2011; Yonekura-Sakakibara and Hanada 2011) and the poor understanding of 

acceptor recognition and reaction mechanisms (Osmani et al. 2009). On the other 

hand, the structural basis of sugar specificity, which is beginning  to be understood, 

emphasises that UGT are generally very selective for their sugar donor (Kubo et al. 

2004; Noguchi et al. 2009; Osmani et al. 2009). Therefore, innovative approaches 

are required to address the essential question of donor and acceptor specificity, 

which is a prerequisite for performing functional enzymatic assays. 

The intrinsic nature of tailoring enzymes, such as UGTs, requires the use of 

complex modified chemicals scaffolds as substrates. Such molecules are generally 

not readily available (e.g. commercially) and synthetic chemistry is often unable to 

produce these structures in a straightforward manner. Therefore, alternative 

approaches are needed to investigate the mechanistic basis of the sophisticated 

glycosylation patterns achieved by UGTs with specialised plant metabolites. In this 

chapter, new platforms have been developed and used to investigate catalytic 

properties of A. strigosa UGTs.  
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4.1.1 Expression and purification of recombinant UGTs  

Numerous examples of functional characterisation of plant UGTs have relied 

on in vitro enzymatic analysis of recombinant enzymes (Kannangara et al. 2011; 

Mohamed et al. 2011; Nagatoshi et al. 2012). Escherichia coli has been used 

successfully for expression of many active recombinant UGTs from plants. For 

example, Lim et al. (2003) cloned 110 UGTs from A. thaliana;  expression of these 

UGTs in E. coli enabled a large-scale analysis of the catalytic properties of the 

recombinant enzymes towards hydroxycoumarins and benzoates (Lim et al. 2003; 

Lim et al. 2002). Various E. coli strains have been used to express plant enzymes. Of 

these the BL21 Rosetta strain is particularly useful for expression of eukaryotic 

proteins because it contains the pRARE plasmid, which supplies tRNAs for codons 

that are rarely encountered in prokaryotes (Novy et al. 2001). 

Soluble histidine-tagged enzymes are convenient to purify using immobilized 

metal ion affinity chromatography (IMAC). The properties of polyhistidine-tagged 

proteins are generally unaffected compared to their wild type counterparts (Terpe 

2003). Exceptionally, formation of dimers or alterations of catalytic properties can 

occur (Halliwell et al. 2001; Wu and Filutowicz 1999). N-Terminal tags are 

generally used for purification of plant UGTs, and no difficulties have been reported 

concerning functional analysis of recombinant N-terminal polyhistidine-tagged 

UGTs (Hansen et al. 2009; Itkin et al. 2011; Kannangara et al. 2011). Consistent 

with this, the synthesis of 6-deoxy-6-fluoro-β-D-glucosyl N-methylanthranilate from 

UDP-6-deoxy-6-fluoro-α-D-glucose and N-methylanthranilate was carried out using 

purified recombinant N-terminal 9xhistidine-tagged SAD10 (Caputi et al. 2013). 
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4.1.2 Functional analysis of recombinant UGTs 

Despite their importance in plant metabolism and the growing number of 

genes that are predicted to encode UGTs from large-scale genome and transcriptome 

sequencing projects, functional analysis of UGTs remains challenging (Caputi et al. 

2011). UGTs have functions in the later steps of many metabolic and biosynthetic 

pathways. The natural substrates of these enzymes are therefore often structurally 

complex molecules. In the case of avenacin A-1, the likely biosynthetic model 

implies the addition of three hydroxyl groups, an epoxide and an aldehyde group 

prior to glycosylation of triterpene scaffold β-amyrin. Consequently appropriate 

glycosyl acceptors for UGTs are difficult, if not impossible, to access commercially 

or through chemical synthesis. Enzymatic or acidic hydrolysis of the glycosylated 

natural product may offer an alternative route to generate the necessary acceptor 

molecule for use in functional assays (Ikeda et al. 1998; Osbourn et al. 1995), but 

again this is far from trivial. Indeed, the epoxide functional group of avenacin 

between C-12 and C-13 is unstable in acidic conditions used in deglycosylation 

reactions (Geisler et al. 2013; Ikeda et al. 1998). The enzymatic approach is 

complicated by the presence of two sugar units in the composition of the 

trissacharide, β-D-glucose and α-L-arabinose (Conchie et al. 1968; Crombie et al. 

1984). 

In vitro assays have previously been used successfully to identify likely 

saponin glycosyltransferases from various plant species. Available triterpene 

scaffolds, including β-amyrin and derivatives, oleanolic acid, hederagenin and 

medicagenic acid have been used for investigation of enzymes that generate 

monoglycosylated triterpenes (Achnine et al. 2005; Augustin et al. 2012; 

Meesapyodsuk et al. 2007; Naoumkina et al. 2010). A range of different strategies 

have been used to overcome the problems associated with the restricted number of 

triterpenoids acceptors available. For example, Sayama et al. (2012) exploited 

natural variation in the triterpene glycoside saponin content in soybean to extract an 

intermediate of soyasapogenol A lacking a sugar residue. They then used the purified 

compound as a glycosyl acceptor for enzymatic assays. Chemical deglycosylation of 

saponins has also been commonly used to generate the required glycosyl acceptors 

(Augustin et al. 2012; Ikeda et al. 1998; Shibuya et al. 2010). 
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4.1.3 Importance of triterpenoid glycosyltransferase characterisation 

The bioactivity of saponins is due to their amphiphilic properties, allowing 

them to complex with lipid bilayers of cell membranes whilst altering their integrity 

(Augustin et al. 2011). The glycosidic moiety forms the hydrophilic part of saponins, 

where a triterpenoid constitute the apolar part of the molecule. Therefore, the 

glycosidic moiety is essential to saponin bioactivity; Armah et al. (1999) showed that 

incomplete glycosylation abolished the permeabilization effect of avenacin towards 

lipid bilayers. Therefore enzymatic processes leading to the synthesis of avenacin 

trisaccharide need to be understood in order to engineer the anti-fungal properties 

attributable to avenacin into susceptible crops species. 

 Functional characterisation of saponin glycosyltransferases presents 

numerous challenges. The promiscuity shown by many plant UGTs toward their 

acceptors tends to complicate interpretation of in vitro studies. Indeed, activity 

displayed by a recombinant enzyme in vitro may be unrelated to its physiological 

function. For example, recombinant UGT71G1 shows a preference for flavonoid 

acceptors in vitro, despite a role in triterpenoid glycosylation in planta [corroborated 

by mutant plant lines affected in saponin content] (Achnine et al. 2005; He et al. 

2006; Shao et al. 2005). In vitro studies on saponin glycosylation are also 

challenging due to the limited availability of appropriate substrates. The only 

avenacin precursor available commercially is β-amyrin, but the physicochemical 

properties of this compound are dramatically different to those of deglycosylated 

desacyl avenacin (Fig. 1.11), the hypothetical natural acceptor substrate for avenacin 

glycosyltransferases. 

4.1.4 Aims 

In this chapter, the catalytic properties of selected glycosyltransferases were 

investigated using recombinant A. strigosa UGTs in vitro. Recombinant enzymes 

were expressed in E. coli and purified for in vitro assays of function.  Sugar donor 

specificity was investigated using an innovative enzymatic assay based on UGTs 

general acceptor 2,4,5-trichlorophenol and enzyme activity was tested toward 

potential triterpenoid acceptors.  
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Figure 4.1: Overview of the strategy for cloning A. strigosa UGT coding sequences into E. 

coli expression vectors. A two-step PCR protocol was used to amplify the UGT coding sequences and 

add terminal AttBs adapters (a). The UGT coding sequences were then inserted into the GATEWAY 

entry vector pDONR207 using the BP clonase reaction (b) (Hartley et al, 2000). Two expression vectors 

were constructed from each pDONR construct using LR clonase reactions (Hartley et al, 2000). The 

E.coli expression vector, pH9-GW, a GATEWAY-compatible variant of pET-28 with an N-terminal 

9xHis tag was used for expression of recombinant histidine-tagged enzymes for in vitro assays of 

function (c). 
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4.2 Results and discussion 

4.2.1 Cloning strategy for oat triterpene glycosyltransferase candidates 

Previous work (Chapter 3) led to the identification of a suite of A. strigosa 

UGTs for evaluation as avenacin glycosyltransferase candidates (table 3.4). The 

coding sequences of these UGTs were cloned into appropriate expression vectors to 

enable functional characterisation. 

A GATEWAY cloning strategy was developed to express the A. strigosa 

UGT candidate sequences in selected heterologous systems (Fig. 4.1). The 

GATEWAY recombination cloning technology allows easy transfer of the UGT 

coding DNA sequences (CDSs) from one expression vector to another via a site-

specific recombination process catalysed by clonases (Hartley et al. 2000). This 

system is particularly convenient for the propagation of an insert in various vectors 

to create constructs for multiple purposes. The strategy used here relies on the 

expression of recombinant A. strigosa UGTs in E. coli to perform in vitro assays and 

in N. benthamiana for co-expression with other triterpene biosynthetic enzymes in 

planta (Chapter 5). The selected UGT sequences were inserted into pDONR207 to 

obtain entry clones (Fig. 4.2). Recombination using LR clonase then enabled the 

insertion of the UGT CDSs into appropriate expression vectors (Fig. 4.3). The 

pEAQ-HT-Dest1 vector is a GATEWAY-compatible version of the pEAQ vector 

series (Sainsbury et al. 2009). The pH9-GW is an expression vector designed to 

produce N-terminal 9 histidine-tagged recombinant protein in E. coli. 
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Specific primers were designed for each UGT gene selected (Section 2.1.3) 

and amplification conditions were optimised to obtain a single product. A two-step 

amplification PCR protocol was used to attach AttB1 and AttB2 adapters to the 5’ 

and 3’ ends of the UGT CDSs respectively (method in section 2.2.9). An example of 

amplification is given in figure 4.2.A, under PCR condition tested (55°C of 

annealing temperature) amplification of the expected size (see table 4.1) was 

obtained for AsGT14h20, AsGT24i2, AsGT27f7 and AsGT25n16 (lanes 1-4).  

AsGT05827 transcript (lane 5) was not amplified under these conditions and 

additional PCR experiments were conducted in order to obtain the expected product 

(gradient PCR, nested PCR, modification buffer composition). Appropriate 

conditions for the amplification of the following UGT CDSs were not found: 

AsGT23781, AsGT16525, AsGT10326 AsGT24138 and AsGT24525. For each 

UGT sequence, colony PCR was carried out with five to eight isolated colonies that 

were resistant to gentamicin (method in section 2.2.12). In figure 4.2.B, two out of 

the five positives colonies selected for AsGT14h20 entry clones have the expected 

Figure 4.2: Cloning of AsGT14h20 coding sequence into pDonr207. A) DNA gel of AsUgt 

CDS amplified from A strigosa root tip cDNA with appropriate AttBs adapters. Lane 1, AsGT14h20; 

Lane 2, AsGT24i2; Lane 3, AsGT27f7; Lane 4, AsGT25n16; Lane 5, AsGT05827; Lane L, 1 kb DNA 

Ladder (New England Biolabs®). AsGT14h20, AsGT24i2 and AsGT27f7 were specifically amplified 

under the PCR conditions used. B). Amplification of five clones obtained following the BP clonase 

reaction for the amplification product of AsGT14h20 and pDONR207 (Lanes 1-5). Lane L, 1 kb 

DNA Ladder (New England Biolabs®). Clones 1 and 2 have the expected size of 1503 bp and were 

sequenced for confirmation (see section 2.2.6). C). Map of the resulting pDONR construct containing 

the AsGT14h20 coding sequence. 
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insert (lanes 1 and 2). The entry clones incorporating a DNA fragment of the 

expected size (approximately 1.5 kbp) were sequenced to verify the identity of the 

clone (method in section 2.2.10 and 2.2.6). Only pDonr207-UGTs without mutations 

in the inserted CDS were used for further work. Sequencing of the entry clones 

obtained after amplification of contig23586 revealed the insertion of two 

homologous UGT sequences, 23586A and 23586B.  It transpired that contig23586 

was the result of an incorrect assembly of reads. The first 530 bp at the 5’ end of 

contig23586 correspond to AsGT23586A, and the 3’ end corresponds to 

AsGT23586B. The difficulties encountered for the cloning of the 5 CDSs mentioned 

above may be due to similar assembly errors. The entry clones constructed are all 

listed in table 4.1. The structure of the pDONR207-AsGT14h20 construct is shown 

as an example (Fig. 4.2.C). The pDONR207 was used primarily due to its 

gentamycin resistance gene being compatible with the kanamycin resistance 

provided by each of the two expression vectors. Additionally the SAD10, UGT73C10 

and UGT78D3 coding sequences were cloned to serve as controls for functional 

analysis. As indicated in figure 1.9, SAD10 is an A. strigosa N-methyl anthranilate 

glucosyltransferase involved in avenacin biosynthesis (Owatworakit et al. 2012); to 

date, UGT78D3 is the only plant UGT with arabinosylation activity that has been 

characterised (Yonekura-Sakakibara et al. 2008); and UGT73C10 is a triterpene 3-O-

glucosyltransferase that is able to glucosylate oleanane-type triterpenes from 

Barbarea vulgaris (Augustin et al. 2012). 

The corresponding expression vectors (pH9-GW-UGT and pEAQ-HT-UGT) 

were obtained using the LR clonase reaction (Fig. 4.3). Cloned DNA fragments 

inserted within these expression vectors were amplified by PCR and a single colony 

incorporating an insert of the expected size was used for further studies. Expression 

vectors were initially replicated in E. coli DH5α and then transferred into either A. 

tumefaciens strain LBA4404 (for pEAQ-HT-UGT vectors) or E. coli strain BL21 

(for pH9-GW-UGT vectors). Transformation methods are described in section 

2.2.10. 
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4.2.2 Characterisation of recombinant oat UGTs following E. coli expression 

Production and purification of recombinant enzymes was a prerequisite for 

the functional analysis of A. strigosa UGTs in vitro. A series of experiments was 

performed in order to improve the expression of soluble enzymes in E. coli and to 

purify the recombinant UGTs. 

E. coli expression vectors (pH9-GW-UGTs), as described above, were used 

to transform E. coli strain BL21 (DE3) (method in section 2.2.10). Preliminary 

expression experiments were performed with the following induction conditions: 

addition of 0.1 mM IPTG to cells at O.D.600nm 0.6, and subsequent harvesting of the 

cells after overnight culture at 18°C. These are common conditions used for the 

expression of many plant UGTs from E. coli transformants (Frydman et al. 2013; 

Landmann et al. 2007; Owatworakit et al. 2012; Yoon et al. 2012). Separation and 

analysis of the cell lysate insoluble and soluble fractions suggested that most of the 

recombinant UGTs were expressed under the conditions tested (Fig. 4.4). 

Accumulation of new proteins with the expected size (50-55 kDa, details in table 

Figure 4.3: Maps of expression vectors containing the AsGT14h20 CDS insert with key 

features labelled and total sizes indicated. A). Map of pH9-GW-AsGT14h20. Expression of 

recombinant N-terminal tagged AsGT14h20 is under the control of the LacI promoter and is induced by 

isopropyl β-D-1-thiogalactopyranoside (IPTG). ROP, repressor of primer gene; Kan R, kanamycin 

resistance gene. B). Map of pEAQ-HT-Dest1:AsGT14h20. Heterologous expression of AsGT14h20 in 

N. benthamiana is under the control of the constitutive 35S promoter. P19 is a suppressor of silencing; 

LB and RB are the T-DNA left and right borders respectively; OriV is the origin of replication of 

pRK2; ColEI is the replication origin of pBR322; NPTII, neomycin phosphotransferase; TrfA is a 

replication-essential locus. 

A B 
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4.1) is seen in most of the insoluble fractions. Recombinant UGTs were not detected 

in the soluble fraction for most of the constructs tested here, suggesting a large 

portion of these enzymes has been expressed as inclusion bodies. Despite a 

substantial amount of protein accumulated in the insoluble fraction for AsGT16f23, 

AsGT16h6, AsGT24i2, AsGT25n16, AsGT23586A and AsGT23586B the protein is 

hardly visible in their respective soluble fractions. Lower levels of expression are 

detected exclusively in the insoluble fraction for SAD10, AsGT3i21, AsGT14h20, 

AsGT27a12 and AsGT005827. AsGT11i11 does not seem to be expressed under 

conditions tested. AsGT14h21, AsGT21p16, AsGT27f7, AsGT02436 and 

AsGT03999 were cloned after the UGT mentioned above and consequently were not 

included in these preliminary expression experiments. 

 

 

Insoluble recombinant proteins may be due to intrinsic insolubility of the 

enzyme (transmembrane e domain, hydrophobic regions, protein associated with 

membrane-bound proteins), or formation of inclusion bodies (Baneyx 1999; Baneyx 

and Mujacic 2004). Plant UGTs are known to be cytosolic enzymes (Bowles et al. 

2006) and none of the A. strigosa UGTs has been predicted to have a transmembrane 

domain (http://prosite.expasy.org/). This may suggest insolubility is due to inclusion 

body formation, possibly as a result of the aggregation of misfolded proteins 

overexpressed in the host cell (Baneyx and Mujacic 2004). 

Figure 4.4: Analysis of insoluble and soluble fractions of E. coli BL21 transformants 

expressing A. strigosa UGTs. Coomassie-stained SDS-PAGE gel of the cell lysate of E. coli 

BL21 transformed with pH9-GW-UGT plasmids. First lane is loaded with SeeBlue® Plus2 Pre-

Stained Standard, following lanes are loaded alternatively with the soluble fraction (SF) or the 

insoluble fraction (IF) obtained after centrifugation of the cell lysate at 13,000 rpm for 15 min. For 

each transformant: an equal volume of 15 µl of the soluble fraction was loaded; additionally, 2 µl of 

the insoluble fraction resuspended and boiled in 50 µl of dH2O was loaded. Expected migration zone 

of A. strigosa UGTs has been highlighted in grey (50-56 kDa).  

http://prosite.expasy.org/
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In order to evaluate the solubility of all of the enzymes, further expression 

experiments were carried out using two different induction conditions (21°C for 5h, 

or 18°C overnight). A non-ionic detergent was added to the lysis buffer to improve 

solubility the yield of soluble protein (0.1 % Tween 20). Western blot analysis was 

performed using anti-polyHistidine antibody to allow the detection of low quantities 

of recombinant UGTs in the soluble fraction of the cell lysate. While AsGT14h20, 

AsGT24i2, AsGT02436, AsGT05827, AsGT23586A and AsGT23586B were 

detectable using 21°C for 5h  (Fig. 4.5.A) more UGTs were detectable following 

induction at 18°C overnight (Fig. 4.5.B). Only AsGT24i2, AsGT05827, 

AsGT23586Aand AsGT23586B were readily detectable on Ponceau-stained 

membranes suggesting a higher expression of these recombinant proteins. All of the 

UGTs were detectable in the soluble fraction under at least one condition used 

except for AsGT27f7, AsGT27a12 and AsGT03999. All of the recombinant enzymes 

are not represented in figure 4.5 since some of them were cloned later and processed 

independently (e.g. AsGT27f7, AsGT03999, AsGT21p16 AsGT14h21 and 

AsGT02436; data not shown). A very low level of recombinant protein was detected 

for AsGT3i21, AsGT11i11 and AsGT25n16 (Fig. 4.5). 

 

 

 

 

 

 

Figure 4.5: Western blot of soluble recombinant UGTs from A. strigosa. Western blot 

analysis was carried out using the soluble fraction of cell lysates from E. coli BL21 transformants 

expressing A. strigosa recombinant UGTs. Colorimetric detection of recombinant His-tagged UGTs 

was performed using monoclonal anti-polyHistidine antibody (Sigma). Lane 1, AsGT3i21; lane 2, 

AsGT11i11, lane 3, AsGT14h20, lane 4, AsGT16f23, lane 5, AsGT16h6, lane 6, AsGT24i2, lane 7, 

AsGT25n16, lane 8, AsGT27a12, lane 9, AsGT05827, lane 10, AsGT23586A; lane 11, 

AsGT23586B and lane L, SeeBlue® Plus2 Pre-Stained Standard. A. Analysis after 5 hours of 

induction at 21°C.  B. Analysis after overnight induction at 18°C. Ponceau-stained membranes are 

displayed in the lower panel. 
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To improve the yield of our soluble recombinant UGTs, a suite of different E. 

coli strains and induction conditions was evaluated. The expression vectors (pH9-

GW-UGT) were used to transform E. coli strains BL21 Rosetta (Rosetta 2 (DE3); 

Novagen) and Lemo21 (Lemo21 (DE3); NewEngland BioLabs). These bacterial 

strains are expected to aid the expression of eukaryotic proteins (Rosetta) and 

modulate protein expression to increase solubility (Lemo21) (Novy et al. 2001; 

Wagner et al. 2008). Addition of glycerol (5%) into the media and induction at 21°C 

or 18°C were also tested. Lower temperature of induction might help reducing the 

formation of inclusion bodies and favour correct protein folding (Baneyx 1999). 

Culture media supplemented by glycerol have been used by previous lab members to 

increase recombinant protein solubility. Each of the UGT clones that had been 

shown to produce a low amount of soluble recombinant UGT protein previously 

were included in experiments to systematically compare the eight possible conditions 

(two E. coli strains, two induction temperatures, +/- glycerol). Following cell lysis 

and isolation of the soluble fraction, histidine-tagged proteins were enriched using 

immobilised nickel affinity resin (method in section 2.2.13). Eluted fractions (250 

mM imidazole) were analysed using Coomasie-stained SDS-PAGE. 

The different conditions tested had substantial effects on the amount of 

recombinant enzyme in solution (Fig. 4.6, showing AsGT14h20 as an example). 

AsGT14h20 (54.4 kDa) is labelled on the figure, the three larger bands stained on the 

gel have been observed for all UGTs and empty vector controls and might be 

attributable to E. coli endogenous enzymes rich in histidine and retained by the 

IMAC column. Optimal expression conditions for AsGT14h20 were obtained at 

18ºC after overnight culture of E. coli Rosetta transformant. Recombinant protein of 

the expected size was detected for most of the UGT clones except AsGT03999. 

AsGT03999 belongs to sub-family UGT80, a family that is involved in sterol 

glycosylation. This family of enzymes are known to be poorly soluble due to their 

apolar N-terminus, which is involved in membrane anchorage (Chaturvedi et al. 

2011; Grille et al. 2010). Generally E. coli Rosetta strain was the best suited for 

expression of the recombinant UGTs, except for AsGT3i21. A higher production 

level of soluble AsGT3i21 in Lemo21 cells suggests that this protein might be 

insoluble or toxic to E. coli. The presence of the protein in the insoluble fraction of 

cell extracts and the normal growth rate of the transformant bacteria is an indication 



 Chapter 4 – Establishing platforms for the functional analysis of oat UGTs 

 

Page 112 

 

of AsGT3i21 insolubility. The majority of the UGTs are slightly better expressed 

overnight at 18ºC than at 21 ºC for 5 hours, which correlates with the higher biomass 

produced under these conditions (data not shown). 

 

 

 

 

 

 

 

The optimal expression conditions established from these screens were then 

used to purify larger quantities of each recombinant UGT (Table 4.1). Histidine-

tagged proteins from cell lysate of 500 mL cultures were purified by immobilized-

metal affinity chromatography (IMAC) using an AKTA purifier system. Fractions 

containing the eluted recombinant enzyme were concentrated and analysed by SDS-

PAGE (Fig. 4.7). Concentrations of the purified enzymes were estimated using the 

Bradford method (Method in section 2.2.17; table 4.1). Some of the recombinant 

UGTs were weakly expressed and consequently difficult to purify; in those cases the 

concentration of the recombinant UGT was estimated based on intensity comparison 

of the bands observed on Coomasie-stained gels. 

 

 

Figure 4.6: Comparison of different expression conditions for recombinant 

AsGT14h20. Coomassie-stained SDS-PAGE gel of the enriched fraction for recombinant 

AsGT14h20. Eight different expression conditions were compared: induction at 21°C for 5 hours 

(5h), or at 18°C overnight (ON); cell culture in LB medium (Ø) or in LB medium supplemented with 

5% glycerol (Gly); Rosetta (Novagen) or Lemo21 (New England Biolabs) E.coli BL21 (DE3) strains 

were transformed with pH9-GW-AsGT14h20. Optimal expression of recombinant AsGT14h20 was 

obtained for overnight induction of Rosetta strain. 



 Chapter 4 – Establishing platforms for the functional analysis of oat UGTs 

 

Page 113 

 

 

 

 

 

 

Table 4.1: Expression of A. strigosa recombinant UGTs in E. coli. 

UGT 
CDS 

length 

Protein 

MW• 
E.coli strain Induction* Glycerol† pProtein yield‡ 

SAD10 1392 pb 50.7 kDa BL21 21°C - 3.2 mg/L 

AsGT3i21 1530 pb 54.9 kDa BL21 Lemo21 18°C Yes n.d 

AsGT11i11 1530 pb 55.0 kDa BL21 Rosetta 18°C No n.d 

AsGT14h20 1503 pb 54.4 kDa BL21 Rosetta 21°C No 1.0 mg/L 

AsGT14h21 1488 pb 53.3 kDa BL21 Rosetta 18°C No n.d 

AsGT16f23 1488 pb 55.0 kDa BL21 Rosetta 21°C No 0.27 mg/L 

AsGT16h6 1425 pb 51.3 kDa BL21 18°C No n.d 

AsGT21p16 1470 pb 53.7 kDa BL21 Rosetta 18°C No n.d 

AsGT24i2 1575 pb 56.2 kDa BL21 21°C No 4.1 mg/L 

AsGT25n16 1416 pb 51.1 kDa BL21 Lemo21 18°C Yes n.d 

AsGT27f7 1575 pb 56.2 kDa BL21 Rosetta 18°C No n.d 

AsGT02436 1467 pb 52.0 kDa BL21 Rosetta 18°C Yes 0.66 mg/L 

AsGT05827 1404 pb 51.0 kDa BL21 21°C No 0.18 mg/L 

AsGT23586A 1446 pb 52.7 kDa BL21 21°C No 3.5 mg/mL 

AsGT23586B 1446 pb 52.8 kDa BL21 21°C No 1.4 mg/mL 

AsGT03999 1863 pb 68.4 kDa ND ND ND n.d 

UGT78D3 1377 pb 50.0 kDa BL21 Star 24°C No n.d 

UGT73C10 1485 pb 55.5 kDa BL21 21°C No 1.2 mg/mL 

• MW: molecular weight of the protein in kDa. 

* Induction was performed with 0.1 mM IPTG at 21/24°C for 5 hours or 18°C overnight. 

† 5% of glycerol was added to the culture. 

‡ The protein yields (shown as mg/L or mg/ml) were estimated using the Bradford method after 

purification and concentration of recombinant UGTs. n.d., protein concentrations not determined due to 

low levels.  

 

Figure 4.7: Coomassie blue-stained SDS-PAGE gel of crude soluble fractions and 

IMAC-purified recombinant A. strigosa UGTs. Lanes 1, 4, 6, 8 and 10, soluble cell lysates of 

induced pH9GW-UGTs transformants; lanes 3, 5, 7, 9 and 11, immobilized metal ion affinity 

chromatography (IMAC)-purified recombinant UGTs;  L, SeeBlue® Plus2 Pre-Stained Standard. 

Lanes 1-3, expression and purification of AsGT23586A (lane 2 is the fraction of the soluble cell 

lysate unbound to the IMAC column); lanes 4-5, expression and purification of AsGT23586B, 

AsGT05827 (lanes 6-7), AsGT24i2 (lanes 8-9), UGT73C10 (lanes 10-11). 
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4.2.3 Investigation of UGT sugar specificity 

Plant UGTs use UDP-sugars as sugar donors. UDP-glucose, UDP-galactose, 

UDP-rhamnose, UDP-xylose, UDP-glucuronic acid and UDP-arabinose have all 

been reported to be used by plant UGTs of family GT1 (Bowles et al. 2006; Osmani 

et al. 2009). UGTs generally show a preference for a single UDP-sugar. This is 

clearly illustrated in the sugar specificity analysis conducted on Lamiales UGTs by 

Noguchi et al. (2009). In this study, which involved investigation of 12 UGTs using 

three sugar donors, the activity measured for a secondary sugar donor never 

exceeded 7% of that of the preferred donor (table 4.2). Therefore, it is essential to 

understand the sugar donor specificity of the A. strigosa UGTs prior to testing their 

activity towards potential acceptor molecules. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Table 4.2. Sugar Donor Specificity of Lamiales UGTs (Noguchi et al. 2009) 

UGT  
Relative Activity (%) 

UDP-Glc UDP-Gal UDP-GlcA 

UGT88D7 0 0 100 

UGT88A7 100 0 0 

UGT88D4 0 0 100 

UGT88D5 0 0 100 

UGT88D6 1 0 100 

UGT88A1 100 3 2 

UGT73A9 100 7 2 

UGT73E2 100 0 0 

UGT73N1 100 2 0 

UGT73A7 100 6 2 

UGT73A13 100 6 0 

The glycosylating activity of each enzyme on three types of sugar donor 

(UDP-α-D-glucose, UDP-α-D-galactose, and UDP-α-D-glucuronic acid) 

was tested. Apigenin was used as sugar acceptor for evaluating the sugar 

donor specificity. Products were quantified based on peak area at A350. 

The highest activity in the three sugar donors is set as 100%. 
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4.2.3.1 2,4,5-Trichlorophenol (TCP) - A  general acceptor for most UGTs 

2,4,5-Trichlorophenol (TCP) is a chlorinated molecule that is used for 

synthesis of herbicides (Su et al. 2012). UGTs have the ability to conjugate TCP as 

part of the process of detoxification of this xenobiotic (Brazier-Hicks et al. 2007b). It 

has been shown that many recombinant UGTs are able to glucosylate TCP as well as 

their natural acceptor (Messner et al. 2003). For example, in A. thaliana nearly 50% 

of GT1 UGTs are active towards TCP (Brazier-Hicks et al. 2007b), in particular 

UGTs from groups D, E and L (Messner et al. 2003). The broad recognition of TCP 

as acceptor by UGTs may be attributable to its weak acidity (with leaving group pKa 

7.4) driving the reaction towards TCP-sugar formation, as demonstrated by Gantt et 

al. (2011) using a subset of aryl glucosides. Here, the acceptor promiscuity of UGTs 

was exploited in order to carry out a comprehensive screen of potential sugar donors. 

The activity of each recombinant A. strigosa UGT was systematically tested with 

UDP-Glc, UDP-Gal and UDP-Ara. This analysis gave new insights into the sugar 

donor specificity of the A. strigosa UGT collection. 

4.2.3.2 Characterisation of products formed during TCP reactions 

Preliminary experiments were carried out to evaluate the feasibility of 

generating TCP-O-β-D-glucose (TCP-Glc) and TCP-O-α-L-arabinose (TCP-Ara) 

using functionally characterised glucosyltransferase SAD10 and 

arabinosyltransferase UGT78D3, respectively (Fig. 4.9). Preliminary experiments 

demonstrate that UGT78D3 used exclusively UDP-Ara as a sugar donor while 

SAD10 used UDP-Glc as its favoured donor and UDP-Ara to a lesser extent (Fig. 

4.8; method in section 2.2.14). Formation of a product (Rt 10.0 min) was detected by 

HPLC after enzymatic assays in which SAD10 was incubated with UDP-α-D-

glucose (UDP-Glc) and TCP (Fig. 4.8.A, green spectrum). The same product was 

found to accumulate when UGT73C10, a hederagenin 3-O-glucosyltransferase, was 

incubated with UDP-Glc and TCP (data not shown). Under similar conditions, no 

product was detected in the presence of UGT78D3 (Fig. 4.8.A, turquoise spectrum). 

A new product was formed (Rt 10.9 min) when UGT78D3 was incubated with UDP-

β-L-arabinose (UDP-Ara) and TCP (Fig. 4.8.B, red spectrum). Incubation of SAD10 

with UDP-Ara and TCP generate a small amount of product with Rt 10.9 min 

representing only 0.7% of the peak area obtained with UDP-Glc (Fig. 4.8.B, pink 

spectrum). These results suggest that the sugar specificity of SAD10 and UGT78D3 
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are conserved with TCP compare to their respective natural acceptors (e.g. N-

methylanthranilate and flavonol, respectively). 

 

 

 

 

 

 

Figure 4.8: Sugar specificity of SAD10 and UGT78D3 is conserved towards TCP. A. 

Incubation of SAD10 and UGT78D3 with TCP and UDP-Glc. Black, blue, pink and red spectrum are 

controls; blank, acceptor (TCP), sugar donor (UDP-Glc) and reaction conditions without enzyme 

respectively. Reaction with SAD10 (green spectra) produces TCP-Glc (Rt 10.05 min), no products are 

detected with UGT78D3 (pale blue spectra) in similar conditions. B. Incubation of SAD10 and 

UGT78D3 with TCP and UDP-Ara. TCP-Ara (Rt 10.95 min) is produced by SAD10 and UGT78D3. 

Compound labelled: a, TCP; b, TCP-Glc and c, TCP-Ara 
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To confirm the accumulation of TCP-O-glycosides in these 

glycosyltransferase assays determination of the structures of the product was needed. 

A large-scale reaction was set up with SAD10 recombinant enzyme in the presence 

of UDP-Glc and TCP. The HPLC method was scaled up to isolate the product using 

a preparative HPLC column (method in section 2.2.14). Collection of the fraction 

containing the product led to isolation of 0.23 mg of white amorphous powder. The 

proton NMR spectrum was consistent with the identity of this compound as TCP-O-

Glc. The spectrum is similar to that of dichlorophenol (DCP)-O-Glc published by 

Day and Saunders (2004), except for position C-5 of the phenol ring were the 

chlorine atom is attached on TCP (Supp. S.8). Resonances corresponding to a 

glucosidic moiety are visible in the 3.1 to 3.7 ppm range. The anomeric proton 

attached to carbon 1 of glucose (δ = 4.83 ppm) has a coupling constant (J = 7.34 Hz) 

characteristic of a β anomer. The protons of trichlorophenol (C-3 and C-6) appear as 

two singlets (δ = 7.13 ppm and δ = 7.37 ppm) instead of the doublets of HC-3 and 

HC-6 and the doublet of a doublet of HC-5 detected for DCP-Glc. It is consistent 

with the chlorine in C-5 position of TCP-Glc; consequently hydrogens of HC-3 and 

HC-6 are not coupling with the other hydrogen. 

 

 

 

 

 

  

Figure 4.9: 2,4,5-Trichlorophenol glycosylation reactions catalysed by UGTs. 
Recombinant SAD10 catalyses the formation of 2,4,5trichlorophenol (TCP)-O-β-D-glucose by transfer 

of D-glucose from UDP-α-D-glucose onto the hydroxyl group of TCP. Recombinant UGT78D3 

catalyses the formation of 2,4,5trichlorophenol (TCP)-O-α-L-arabinose by transfer of L-arabinose 

from UDP-β-L-arabinose onto the hydroxyl group of TCP. 
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The mass spectrometry results were in agreement with the proton NMR. A 

single peak was detected in full MS chromatogram (Rt 4.63 min, Fig. 4.10.A, top), 

confirming the purity of the product obtained by preparative HPLC. The MS 

spectrum extracted from the peak consists of two main ions (m/z 403, m/z 393) 

corresponding to the formate and chloride adducts of the TCP-O-glucoside (MW: 

359.6 Da) (Fig. 4.10.A, middle), isotopic ions are visible for each adduct. The ion 

(m/z 195) is presumably TCP released as an in-source fragment. The MS2 of the 

formate adduct consists of a single ion (m/z 195) corresponding to a loss of formate 

and hexose (Fig. 4.10.A, bottom). Collectively, the proton NMR and MS data 

confirm the identity of the product as 2,4,5-trichlorophenol-O-β-D-glucopyranoside 

(Fig. 4.9). 

Purification of TCP-O-Ara and TCP-O-Gal was not undertaken due to the 

significantly lower amounts of product formed for the arabinosylation and 

galactosylation assays. However, mass spectrometry analysis of the reaction 

products yielded data consistent with accumulation of TCP-O-Ara. The product that 

accumulated in the arabinosylation assays was identified as the peak eluted at 5.83 

min (Fig. 4.10.B, top). It has a similar absorption spectrum to that of TCP-Glc (Fig. 

4.11). The MS spectrum of the product generated by UGT78D3 in the TCP/UDP-

Ara assay was composed of two major ions (m/z 375, m/z 365), which were 

identified as the formate and chloride adducts of TCP-O-Ara as they are 30 mass 

units lighter than TCP-O-Glc (Fig. 4.10.B, middle). An in-source fragmentation is 

also observed with release of TCP (m/z 195). The MS2 spectrum showed the 

expected loss of the adduct and pentose groups compared to the full ion spectrum, 

leading to similar MS2 spectrum than TCP-Glc (Fig. 4.10.B, bottom). Considering 

the similar fragmentation patterns obtained in mass spectrometry, the identical 

absorption spectra and the similar retention times observed for the two products in 

HPLC (RtTCP-Glc 10.0 min and RtTCP-Ara 10.9 min) we can confidently assume that 

this product is 2,4,5-trichlorophenol-O-α-L-arabinopyranoside (Fig. 4.9). 
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Sugar specificity analysis was primarily conducted to search for 

glucosyltransferase and arabinosyltransferase activities in the UGT collection in the 

scope of identify avenacin glycosyltransferases. Consequently mass spectrometry 

analysis has not been undertaken for TCP-Gal so far. 

Figure 4.10: LC-MS analysis of TCP glycosides. A) LC-MS spectrum of purified 2,4,5-

trichlorophenol-O-β-D-glucoside (TCP-Glc). Top; the EIC [M + Cl]- (m/z 393) peak at Rt 4.63 min is 

TCP-Glc. Middle;  The extracted MS1 (middle) spectrum of the TCP-Glc peak shows chloride adduct 

isotopes (m/z 393 & 395), the MS2 spectrum (bottom) shows the release of TCP negative isotopic ions 

(m/z 195 & 197) after  loss of the chloride (m/z 36) and hexose residues (m/z 162). B). LC-MS spectrum 

of the reaction products of TCP and UDP-Ara catalysed by UGT78D3. Top, the EIC [M + Cl]- (m/z 363) 

peak at Rt 5.83 min is TCP-Ara. The extracted MS1 spectrum (middle) of the TCP-Ara peak 

showscChloride adduct isotopes (m/z 363 & 365).  The the MS2 spectrum (bottom) shows the release of 

TCP negative isotopic ions (m/z 195 & 197) after a loss of chloride (m/z 36) and pentose residue (m/z 

132).  
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4.2.3.3 Investigation of the activity of the oat UGT collection towards TCP 

Optimal conditions for TCP arabinosylation by recombinant UGT78D3 were 

obtained with substrate concentration of 0.5 mM UDP-Ara and 0.1 mM of TCP at 

pH 7.5 with 2 µg of recombinant UGT. TCP glycosylation reactions were performed 

under these conditions for each recombinant UGT with UDP-Glc, UDP-Gal and 

UDP-Ara (method in section 2.2.14). We based our analysis on the reasonable 

supposition that TCP glycosides have similar absorbances. The similar UV spectrum 

obtained by photodiode arrays (PDA) detector in LC-MS analysis of TCP-sugars 

strengthen this idea (Fig. 4.11). 

In figure 4.12 the HPLC spectrum of each TCP-glycosylation reactions using 

UDP-Glc or UDP-Ara as sugar donors are presented. As mentioned previously, TCP 

elutes at Rt: 15 min. Under the conditions tested 14 out of the 16 oat recombinant 

UGTs were able to form TCP-O-Glc (Rt 10.0 min). Only AsGT3i21 and AsGT11i11 

did not catalyse the formation of this product (Fig. 4.12.A). The conversion of the 

TCP substrate into TCP-Glc is nearly complete for SAD10, AsGT16f23, AsGT24i2, 

AsGT23586A and AsGT23586B under the conditions used (Fig. 4.12.A). 

AsGT02436 also converts more than 50% of TCP (Fig. 4.12.A, top red spectrum). 

Under the conditions used AsGT14h20, AsGT14h21, AsGT25n16, AsGT27a12, 

AsGT27f7 and AsGT05827 produced TCP-Glc to a smaller extent, from 2 to 25% 

conversion; Fig. 4.12.A, table 4.3). Only traces of TCP-Glc were detected for 

AsGT21p16 and AsGT16h6 (Fig. 4.12.A, bottom blue and grey spectrums).  

Figure 4.11: UV spectrum of TCP (left), TCP-Glc (middle) or TCP-Ara (right). TCP 

glycosides have similar absorbtion profiles in UV light with a maximum of absorption at 232-235nm 

identical to TCP (peak a). Peak b is reduced and shifted from 291 nm to 286 nm for the glycosides. 
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Figure 4.12: Comparison of TCP glycosylation following incubation with UDP-Glc (A) 

or UDP-Ara (B). Accumulation of TCP-glycosides was monitored by HPLC analyses at 205 nm 

after incubation for 1h at 30°C with 1 mM of UDP-sugar and 0.5 mM of TCP. Labelled peaks 

correspond to: a, TCP Rt 15.0 min; b, TCP-Glc Rt 10.1 min; c, TCP-Ara Rt 10.9 min; contaminant 

peaks are observed between peaks a and c.  

 

 

 

Im
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Arabinosylation of TCP was catalysed by SAD10, AsGT14h20, AsGT14h21, 

AsGT24i2, AsGT25n16, AsGT02436 and AsGT23586B (Fig. 4.12.B). Most of these 

enzymes produce only traces of TCP-Ara - less than 1% conversion, except for 

AsGT24i2, which converted approximately 5% of TCP (Fig. 4.12.B, top pink 

spectrum). This can be compared with the positive control; UGT78D3 converts 7% 

of the TCP under these conditions (Fig. 4.12.A, bottom black spectrum).  

Galactosylation of TCP was catalysed by SAD10, AsGT16f23, AsGT24i2, 

AsGT25n16, AsGT02436, AsGT05827, AsGT23586A and AsGT23586B (Fig. 

4.13). Multiple peak products were detected in the galactosylation assays with the 

following retention times: Rt1: 9.75min, Rt2: 9.90 and Rt3: 10.05 (labelled as d1, d2 

and d3 in figure 4.13). Depending on the recombinant enzyme used, the predominant 

peak varied (Fig. 4.13); AsGT24i2 produces predominantly compound d3 (Rt3: 

10.05min), and AsGT23586B produces compound d2 as a major product (Rt2: 

10.05min); both of these enzymes are also producing the two other products in 

smaller quantities. The purity of substrates used has been assessed by proton NMR 

(UDP-Gal) and LC-MS (TCP) analysis (data not shown). No impurities or 

degradation products were detected. Additionally, proton NMR of UDP-Gal 

incubated with the enzyme preparation suggests that these odd product peaks are not 

due to sugar nucleotide epimerase activity present in the enzyme mix (data not 

shown). TCP degradation or modification in reaction conditions is unlikely due to 

absence of such multiple products with other UDP-sugars. Similar retention times 

suggest that the products have similar polarities, which conflicts with the notion that 

other sugar units have been added onto the acceptor. Formation and identity of these 

products remain elusive, consequently comparison with glucosylation and 

arabinosylation experiments is difficult. In subsequent figures only the highest peak 

produced by each enzyme was taken in consideration. Follow-up LC-MS analysis 

should bring new insight determining if the reaction products are structural isomers. 

The highest conversion is observed for AsGT23586B (approx. 12% conversion; Fig. 

4.13). Approximately 4% conversion was observed for SAD10, AsGT16f23, 

AsGT24i2 and 23586A and 2.5% conversion for AsGT02436. Traces of d3 were 

observed for AsGT25n16 and AsGT05827. 
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Figure 4.13: UGTs activity using TCP and UDP-Gal as substrates. SAD10 and AsGT16f23 

(blue and grey spectrum) are active when incubated with TCP (Rt: 15 min) and UDP-Gal. SAD10 

accumulates three products (Rt: 10.0, 9.9 and 9.8 min); AsGT16f23 accumulates a single product (Rt: 

10.0). 

 

 

The area under the product curve for the TCP-Ara and TCP-Gal reactions 

was compared to the area under the curve for the TCP-Glc reaction for each UGT.  

These results are summarised in table 4.3 and figure 4.14. None of the recombinant 

oat UGTs showed more activity with arabinose or galactose than they did with 

glucose. AsGT21p16, AsGT14h20 and AsGT14h21 had the highest arabinosylation 

activity towards TCP as compared to glucose, the area under the TCP-O-Ara curve 

representing 26%, 19% and 24% of that for TCP-O-Glc, respectively. None of the 

recombinant oat UGTs showed more than 5% galactosyltransferase activity 

compared to TCP glucosylation. The highest ratio of TCP-O-Gal to TCP-O-Glc 

formed was obtained with AsGT16f23. 
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Significantly, the TCP glycosylation experiments demonstrate that most of 

the recombinant UGTs have glucosyltransferase activity. Most of the UGTs tested 

also show a clear preference for UDP-Glc over UDP-Gal and UDP-Ara, using these 

latter UDP-sugars to only a limited extent, as observed in previous work on lamiales 

UGTs (Noguchi et al. 2009). Comparison between these two studies has to be made 

cautiously because Noguchi and co-workers studied sugar specificity onto two set of 

flavonoid UGT homologues in lamiales species, five flavonoid-7-O-

glucosyltransferase homologues and five flavonoid-7-O-glucuronosyltransferase 

homologues. Their approach suggests that most of the glycosyltransferases tested 

used flavonoids as natural acceptors and consequently apigenin was used as 

substrate. In this study A. strigosa functions are unknown and TCP is potentially a 

poor substrate for the enzyme tested. Consequently, to push the system toward 

product formation and maximise our chance to detect glycosides, a 1:10 molar ratio 

of TCP to sugar donor was used. Under these conditions complete reaction is 

obviously reached for some enzymes (approx. 100% conversion with UDP-Glc for 

SAD10, AsGT16f23, AsGT24i2, AsGT23586A and AsGT23586B) introducing a 

bias in activity comparison between sugar donors (Fig. 4.14).  

  

 

 

 

 

Figure 4.14: Comparison of TCP glycosylation catalysed by A. strigosa UGTs with three 

sugar donors. Yellow bars represent area under the curve of TCP-Glc; red bars represent area under 

the curve of TCP-Ara; blue bars represent area under the curve of TCP-Gal. Area under the curve is 

the integration of product peaks obtained at 205 nm. 
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Interestingly, some of the A. strigosa UGTs were able to use donors other 

than UDP-glucose. The arabinosylation activity of AsGT14h20 and AsGT14h21 

towards TCP represents nearly a quarter of their glucosylation activity under the 

conditions used. Such a ratio is unusual when compared to other work (Kubo et al. 

2004; Noguchi et al. 2009; Osmani et al. 2008) and might have significant 

implications for the catalytic capabilities of this enzyme in vivo. Activity testing with 

additional sugar donors, competition assays and kinetic analyses may help to 

improve our understanding of AsGT14h20 and AsGT14h21 sugar specificity.  

Incubation of AsGT21p16 with UDP-Ara and UDP-Glc resulted in only 

traces of TCP-sugar formation. It is quite likely that the natural sugar donor has not 

been tested in the current study, or alternatively that TCP might be a very poor 

acceptor for AsGT21p16. 

The inactivity of AsGT3i21 and AsGT11i11 under all conditions tested could 

be due to various factors: they may require sugar donors not tested in these 

experiments (e.g. UDP-xylose, UDP-rhamnose or UDP-glucuronic acid). AsGT3i21 

and AsGT11i11 may be inactive due to misfolding or structural alterations occurring 

during the purification process; the Histidine tag may result in loss of activity; or 

they may be active but unable to use TCP as an acceptor substrate.  

Overall, these results have to be considered cautiously because TCP is not the 

natural acceptor of the UGTs under investigation. Nevertheless, they provide insight 

into the abilities of the member of the A. strigosa UGT collection to utilise different 

sugar donors. From these experiments we can conclude that most of the UGTs tested 

are active glycosyltransferases and use UDP-Glc as their favoured sugar donor. Of 

note, arabinosylation activity was detected for six of the oat UGTs, in addition to the 

previously characterised SAD10 (Owatworakit et al. 2012). These enzymes are 

therefore candidates for triterpene arabinosylation.  
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Table 4.3: Summary table of recombinant UGTs activity toward TCP using various 

sugar donors. 

UGTs 

TCP-sugars formed (in µM) Product ratio† 

TCP-Glc TCP-Ara TCP-Gal   
TCP-Ara/ 

TCP-Glc 

TCP-Gal/ 

TCP-Glc 

SAD10 96.8 0.65 3.60 

 

0.7% 3.7% 

AsGT3i21 - - - 
 

n.d n.d 

AsGT11i11 - - - 
 

n.d n.d 

AsGT14h20 2.32 0.45 - 
 

20% n.d 

AsGT14h21 5.80 1.44 - 
 

25% n.d 

AsGT16f23 93.4 - 4.40 
 

n.d 4.7% 

AsGT16h6 0.35 - - 
 

n.d n.d 

AsGT21p16 0.34 0.09 - 
 

27% n.d 

AsGT24i2 93.3 4.98 3.88 
 

5.4% 4.2% 

AsGT25n16 26.3 1.16 0.30 
 

4.4% 1.1% 

AsGT27f7 3.73 0.05 - 
 

1.2% n.d 

AsGT02436 68.6 0.18 2.55 
 

0.3% 3.7% 

AsGT05827 27.2 - 0.26 
 

n.d 1.0% 

AsGT23586A 95.8 - 3.73 
 

n.d 3.9% 

AsGT23586B 97.5 1.20 1.69 
 

1.2% 1.7% 

AsGT03999 - - -  n.d n.d 

* Area under the curve obtained at 205 nm was converted in concentration of products (in µM). 

† The product ratio is the percentage of product formed with UDP-Ara or UDP-Gal compared to 

UDP-Glc 

n.d value not determined  

- No product detected 
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4.2.4 Glycosylation of triterpenes  

4.2.4.1 Assays for triterpene glucosylation  

Glucosylation assays were performed with all of the recombinant A. strigosa 

UGTs detailed above. UGT73C10, a B. vulgaris UGT with regiospecific 3-O-

glucosylation activity onto oleanane-type triterpenoid acceptors, was used as a 

positive control for the formation of triterpenoid glucosides. Glucosylation assays 

were performed using β-amyrin, hederagenin and oleanolic acid as potential 

oleanane-type triterpene acceptors (Fig. 4.15). Due to the hydrophobicity of oleanane 

type triterpenes 10-20% of ethanol was systematically used as a co-solvent to 

solubilise those chemicals in following enzymatic assays (20% for β-amyrin, 10% 

for hederagenin and oleanolic acid). 

 

 

 

 

 

 

 

 

Figure 4.15: Structure of triterpenoids used as acceptors. β-Amyrin (1), oleanolic acid (2), 

hederagenin (3), β-Amyrin-3-O-α-L-arabinose (4), The expected natural substrate of avenacin 

glycosyltransferases is shown for information (5). 
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Under the conditions used for these assays, the positive control, UGT73C10 

catalysed the formation of products with each of the oleanane-type triterpenes tested, 

as already reported by Augustin et al. (2012) (method in section 2.2.14). According 

to Augustin et al. (2012) these products are 3-O-glucosides of their relative 

acceptors. Under identical conditions, thin layer chromatography analysis led to 

detection of a new compound with recombinant AsGT02436 in the presence of 

hederagenin (Fig. 4.16.A). Similar separation profiles suggest that the AsGT02436 

product might be hederagenin monoglucoside. Three positions on hederagenin could 

in principle be glucosylated by an O-glucosyltransferase, namely C-3, C-28 or C-23 

(Figure 4.16.B).Glycosylation at the C-3 position is the most common for saponins 

(Vincken et al. 2007). 

This compound could not be detected by mass spectrometry in conditions 

used in JIC metabolic services (see section 2.2.25); therefore, the formation of 

monoglucosylated hederagenin could not be confirmed. Simple sterols and related 

compounds are known to ionised poorly, therefore those compounds are generally 

derivatised prior GC-MS analysis (Geisler et al. 2013; Lagarda et al. 2006). In the 

case of steryl glycosides, analysis usually relies on acidic hydrolysis then 

derivatisation of the aglycone (Nystrom et al. 2012). Alternatively silylation of the 

intact compound can be performed for GC-MS analysis (Phillips K.M et al. 2004; 

White et al. 2010). In the present study, hydrolysis of the product to remove the 

glycosidic moiety before analysis was not suited for the confirmation of 

glycosylation activity; consequently, this approach was not intended. Silylation of 

the reaction product results in detection of the aglycone alone after potential sugar 

loss imputable to the process. Alternatively, assessment of glucose ester formation 

(glucosylation on C-28 position) may be investigated with basic hydrolysis; this 

treatment would leave glycosidic bounds intact but hydrolysed ester bounds. No 

other triterpene glucosyltransferase activity was detected under the conditions used 

for any of the other A. strigosa UGTs (in vitro assays results summary in table 4.4). 
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Chemical synthesis of β-amyrin-3-O-α-L-arabinose (β-AA) was carried out 

by the Field laboratory at JIC. This compound was used as an acceptor for 

glucosylation assays in order to identify avenacin glucosyltransferases that are able 

to add β-14 and β-16 linked D-glucose molecules onto the L-arabinose residue. 

In the scope of identifying UGTs involved in avenacin biosynthesis. TLC analysis 

suggests that none of the A. strigosa UGTs recognised β-AA as a substrate. Only β-

AA was detected on stained TLCs; an example of TLC analysis is presented in figure 

4.17. 

 

 

Figure 4.16: Comparison of glucosyltransferase activities of UGT73C10 and 

AsGT02436 towards hederagenin. A) Thin layer chromatography of hederagenin glucosylation 

assays with purified recombinant UGTs. Reaction products were extracted with ethyl acetate. The 

TLC was stained with methanol:sulfuric acid (9:1), after heating the image was taken under UV 

illumination. Lane 1, hederagenin standard; lane 2, generation of glucosylated hederagenin catalysed 

by UGT73C10; lane 3, generation of a UDP-Glc + hederagenin reaction product by AsGT02436; lane 

4, reaction control with boiled AsGT02436. The arrows “a” and “b” show the products of each 

reaction. B. Chemical structures of hederagenin (top) and hederagenin-3-O-glucose (bottom). 
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4.2.4.2 Assays for arabinosylation activity towards triterpenoids 

Arabinosylation assays were performed with SAD10, AsGT14h20, 

AsGT14h21, AsGT24i2, AsGT25n16, AsGT02436 and AsGT23586B, since these A. 

strigosa UGTs had previously been shown to catalyse formation of TCP-Ara (table 

4.3; method in 2.2.14). AsGT3i21 and AsGT11i11 were also included in this 

experiment considering the absence of information regarding their sugar specificity 

(e.g. absence of activity toward TCP). Enzymatic assays were performed using 

similar conditions to those used for glucosylation assays (Fig. 4.18). Various 

conditions were tested for these enzymes, but from the entire UGT collection 

(temperature, substrate concentration, solvent to help solubilised the acceptor) none 

of these conditions led to detection of a product.  

The limited number of acceptors available and the difficulties encountered 

with mass spectrometry analysis of the reaction products were limiting factors for the 

investigation of triterpenoid glycosyltransferase activity. The systematic use of 10-

20% of ethanol in our assays to solubilise β-amyrin or hederagenin may also be 

detrimental for the activity of some of our UGTs despite the activities detected in 

control reactions (UGT73C10) and AsGT02436. Enzymatic assays with dimethyl 

sulfoxide or cyclodextrin did not show more activity; glycosyltransferase enzymatic 

assays have been reported with both co-solvents (Moraga et al. 2004; Nagatoshi et 

al. 2012; Wang et al. 2013b). 

 

β-AA 

Figure 4.17: Glucosylation assay of β-amyrin-Ara. Thin layer chromatography of β-amyrin-

3-O-β-L-arabinose glucosylation assays with purified recombinant UGTs. Reaction products were 

extracted with ethyl acetate. The TLC was stained with methanol:sulfuric acid (9:1) and compounds 

visualised under UV illumination. Substrates were incubated without enzyme (lane 1), AsGT24i2 

(lane 2), AsGT05827 (lane 3), AsGT23586A (lane 4), AsGT23586B (lane 5), AsGT14h20 (lane 6) 

and AsGT16f23 (lane 7). 
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Figure 4.18: Arabinosylation assay of hederagenin. Thin layer chromatography of hederagenin 

arabinosylation assays with purified recombinant UGTs. Reaction products were extracted with ethyl 

acetate. The TLC was stained with methanol:sulfuric acid (9:1) and compounds visualised under UV 

illumination. Reactions products are loaded from lane 1 to 9, hederagenin standard is in lane 10. 

Reactions were performed with AsGT3i21 (1), AsGT11i11 (2), AsGT14h20 (3), AsGT14h21 (4), 

AsGT21p16 (5), AsGT24i2 (6), AsGT25n16 (7), AsGT23586B (8), UGT73C10 (9). 

hederagenin 

Table 4.4: Table summarising the results obtained from in vitro 

assay of A. strigosa UGTs over triterpenoids. All 14 recombinant UGTs 

have been used in glucosylation assays (see table 4.1). Enzymes capable to 

utilised UDP-Ara in TCP assays (see section 4.2.3) were used in arbinosylation 

assays (e.g. AsGT14h20, AsGT14h21, AsGT21p16, AsGT24i2, AsGT25n16, 

AsGT23586B), AsGT3i21 and AsGT11i11 have been added to those test 

considering the absence of activity observed with TCP and their distant 

phylogenetic relationship to group D (Fig. 3.1). All glucosylation assays have 

been tested with UGT73C10 and were all positives except for β-amyrin 

arabinoside as expected. 
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The absence of candidates showing a preference for UDP-Ara over UDP-Glc 

in the TCP experiment (see section 4.2.3.3), combined with the lack of 

arabinosyltransferase activity towards triterpene acceptors, suggests that avenacin 

arabinosyltransferases have not been cloned in this study. However it is possible that 

the substrates used were not appropriate for the identification of avenacin 

glycosyltransferases. Accumulation of β-amyrin in sad2 mutants suggests the 

addition of L-arabinose to the triterpene scaffold during avenacin biosynthesis occurs 

after modification of β-amyrin by the CYP450 SAD2 (Qi et al. 2004). Additional 

oxidations (C-21, C-23 and C30) might take place before the sequential addition of 

the sugar units to form the avenacin trisaccharide (hypothetical avenacin pathway, 

Fig. 1.11). Accumulation of desacyl avenacin in sad7 mutant suggests completion of 

trisaccharide formation is a prerequisite to the acylation catalysed by SAD7 

(Mugford et al. 2009). Consequently, modified β-amyrin backbone may be required 

for recognition of the triterpene acceptor by triterpene-modifying UGTs. 
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4.3 Conclusion 

In this chapter, I report the cloning of 14 oat UGTs into expression constructs 

for expression in E. coli and N. benthamiana leaves. Three functionally characterised 

enzymes were included as positive controls. These were the oat UGT SAD10, which 

had previously been shown to glucosylate N-methyl anthranilate, the acyl donor used 

by the acyltransferase SAD7 (Owatworakit et al 2013); the flavonol-3-O-

arabinosyltransferase UGT78D3 from A. thaliana (Yonekura-Sakakibara et al. 

2008); and UGT73C10 from B. vulgaris, which has previously been shown to 

glucosylate oleanane-type triterpenes (Augustin et al. 2012). Expression and 

purification of recombinant oat UGTs resulted in active enzymes in most cases, as 

demonstrated by the activities detected towards the generic substrate TCP. Soluble 

expression of AsGT03999 was not achieved. AsGT03999 is one of the UGT80 plant 

sterol glycosyltransferases, which are known to have an N-terminal anchor to the 

membrane generally responsible for insolubility of recombinant proteins. Some 

reports have mentioned the solubility and activation of sterol glycosyltransferases by 

non-ionic detergents; this approach has not been attempted here (Grille et al. 2010; 

Warnecke et al. 1997). Only small quantities of soluble enzymes were obtained for 

AsGT3i21 and AsGT11i11. Those enzymes present some similarities (61% identity) 

and did not belong to any phylogenetic group characterised so far (Fig. 3.1). The 

apparent insolubility of these enzymes may explain the complete absence of activity 

observed towards acceptors tested using soluble E. coli protein fractions enriched 

with ion immobilized affinity chromatography. 
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4.3.1 Glucosyltransferase activity is predominant in A. strigosa UGT collection 

A method was designed to determine sugar specificity for UGTs of unknown 

function using TCP as an acceptor. This method had the advantage that it did not rely 

on radiolabelled sugar donors. Assays with the glucosyltransferase SAD10 and the 

arabinosyltransferase UGT78D3 validated the method by showing that sugar 

specificity was retained with TCP when compared to the reactions for the natural 

acceptors of these two enzymes. This method was then applied to the oat UGT 

collection. All of the A. strigosa UGTs able to use TCP as an acceptor showed a 

preference for UDP-Glc over UDP-Ara and UDP-Gal. This is in accordance with the 

vast majority of plant UGTs (Bowles et al. 2006; Osmani et al. 2009; Wang 2009). 

This is illustrated by the subset of functionally characterised plant 

glycosyltransferases included in the phylogenetic analysis in section 3.2.2, 

containing 85% of glucosyltransferases (Fig. 3.1). None of the A. strigosa UGTs 

shows a preference for UDP-Ara over UDP-Glc; however 6 of these enzymes were 

able to use UDP-Ara as a substrate and were tested as potential triterpenoid 

arabinosyltransferases. The majority of recombinant A. strigosa UGTs tested 

catalyse glucoconjugation of TCP, supporting the idea that UGTs are able to 

catalysed glycosylation of both endogenous and xenobiotic substrates. Messner et al. 

(2003) performed competition studies using both natural substrate and TCP over 

recombinant UGTs and demonstrated that glycosyltransferase activity over 

endogenous native substrates of some enzyme was inhibited in the presence of the 

xenobiotic TCP. Messner and co-workers suggested that xenobiotics are not 

conjugated by specialised detoxifying glycosyltransferases but processed by UGTs 

active on endogenous substrates expressed in the contaminated tissue. 
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4.3.2 Implication of in vitro assays for avenacin biosynthesis 

Attempts to validate in vitro assays with triterpene acceptors (e.g. β-amyrin, 

hederagenin, oleanolic acid) using UGT73C10, a hederagenin-3-O-

glucosyltransferase from B. vulgaris gave results in accordance with those of 

Augustin et al. (2012), confirming that the conditions used were suitable for assaying 

triterpene glycosylation. Recombinant AsGT02436 formed a product when 

hederagenin was used as a substrate. The retention time of this compound suggests 

that the AsGT02436 product is likely to be a hederagenin monoglucoside. Scale up 

and NMR analysis is required to formally identify this compound and hence to shed 

light on the regioselectivity of AsGT02436 towards triterpenoids. 

Arabinosylation is the proposed first step toward the sequential synthesis of 

avenacin sugar moiety. Arabinosyltransferase activity was not detected using 

oleanane type triterpenoids as acceptors (table 4.4). Nevertheless, the structure and 

physical properties of acceptors used are divergent from potential natural acceptor 

(e.g. deglycosylated desacylavenacin). Production of optimal substrate requires 

chemical or enzymatic approaches to deglycosylated avenacin (Augustin et al. 2012; 

Osbourn et al. 1995; Shibuya et al. 2010) or desacyl avenacin accumulated in sad7 

mutant lines (Mugford et al. 2009). Synthesis of such a compound will also help 

solubilisation issues encountered with triterpene acceptors. The absence of enzyme 

showing preference for UDP-Ara in TCP assays together with the inability to form 

triterpene arabinoside with β-amyrin or hederagenin, might suggests avenacin 

arabinosyltransferase has not been cloned in the present study. Avenacin 

glycosyltransferases may be part of the few candidate genes remaining to be 

amplified (see section 4.2.1). Alternatively, the strategy developed in chapter 3 

might have been inefficient to uncover avenacin glycosyltransferase candidates. The 

absence of reference genome to improve the quality of 454 reads assembly, or the 

lack of transcriptomic data from avenacin non-synthesising oat tissue allowing 

transcript abundance comparison are detrimental for the optimal use of the 454 

generated data. Additionally, extension of the oat genome sequencing around the 

avenacin core cluster may help delineate essential UGT candidates. 
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The absence of enzyme favouring UDP-Ara over UDP-Glc as sugar donor is 

preoccupying. As mentioned above the hypothetical model of avenacin trissacharide 

formation consist of sequential addition of the sugar units catalysed by members of 

the UGT family. Such a scenario has been observed for the assembly of all of the 

saponin glycosidic moieties reported in literature (Achnine et al. 2005; Augustin et 

al. 2012; Itkin et al. 2013; Kohara et al. 2005; Kohara et al. 2007; Meesapyodsuk et 

al. 2007; Naoumkina et al. 2010; Sayama et al. 2012; Shibuya et al. 2010). 

Alternative glycosylation mechanism may occur in avenacin biosynthesis involving 

other enzyme families. A recent report mentioned a transglucosidase from the 

glycoside hydrolase family one (GH1) catalysing glucose transfer from phenolic acid 

esters to various natural compound and targeted to vacuoles in rice (Luang et al. 

2013). Authors suggest this enzyme may be involved in homeostasis of plant 

metabolites. Blockwise addition of a preformed activated trisaccharide may be an 

alternative route toward avenacin biosynthesis; such a hypothesis may be address by 

investigation of catalytic properties of oat protein extract over suitable substrates. 

4.3.3 General conclusion 

In this chapter, new approaches were used to decipher plant 

glycosyltransferase activities. The generic substrate of plant UGTs, TCP, was used 

as an acceptor to determine sugar donor specificities of glycosyltransferases for 

which natural acceptors are unknown. Comparative analysis of activity with three 

sugar donors was conducted to determine the sugar donor preference of each 

recombinant UGT. In vitro assays with recombinant A. strigosa UGTs led to the 

identification of hederagenin glucosyltransferase activity catalysed by AsGT02436. 

Kinetic analysis of this enzyme over hederagenin and other potential acceptors has to 

be done to understand substrate preference and possible biological function. 
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Chapter 5 - A combinatorial approach to synthesised new-to-

nature triterpenoids in Nicotiana benthamiana 

5.1 Introduction 

The strategy developed in the previous chapter for the characterisation of 

triterpenoid glycosyltransferase activity presents some limitations. The limited 

number of oleanane-type triterpenoids readily available and the complexity of 

accessing the avenacin aglycone (e.g. epoxide group unstable in acidic conditions) 

make in vitro approach delicate. The low solubility of triterpenoid acceptors and the 

promiscuity of plant UGTs are also limiting factors when it comes to evaluation of 

the biological significance of experimental data. The development of the pEAQ 

vector system allows transient co-expression of multiple proteins in Nicotiana 

benthamiana leaf tissue. Osbourn and co-workers have shown the value of this 

system for heterologous synthesis of secondary metabolites (Geisler et al. 2013; 

Mugford et al. 2013). 

5.1.1 Origin and development of the pEAQ vector series 

The development of the pEAQ vector system by the Lomonossoff laboratory at 

the John Innes Centre has opened up new opportunities for rapid tests of function of 

uncharacterised enzymes in N. benthamiana using transient expression methods 

(Sainsbury et al. 2009). The pEAQ vectors are based on cowpea mosaic virus 

(CPMV), a bipartite RNA virus comprising RNA-1, which encodes the viral 

replication machinery, and RNA-2 which encodes the viral coat proteins and 

movement proteins. The expression system developed by Lomonossoff and co-

workers does not rely on viral replication but uses a deleted version of RNA-2 to 

achieve high expression yield of heterologous proteins. The gene of interest is 

inserted between the 5’ and 3’ UTRs of the CPMV RNA-2. The modified 5’ UTR 

sequence and the co-expression of the suppressor of RNA silencing P19 provide 

high stability and enhance translation of the sequence flanked by UTRs, allowing 

high expression level without RNA-1 (Sainsbury and Lomonossoff 2008). The 

insertion of P19 and CPMV UTR cassette into Agrobacterium T-DNA leads to the 
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development of pEAQ vectors. These vectors allow the transient expression of the 

desired protein in N. benthamiana agroinfiltrated tissues. The advantages of the 

pEAQ system are that a high protein yield is reached in only a few days, combined 

with the simplicity of the Agrobacterium-mediated transformation system. 

5.1.2 The pEAQ vector series: A convenient system for heterologous expression of 

proteins 

The pEAQ system has been used successfully for a variety of purposes. The 

production of virus-like particles has been particularly well developed due to 

applications in immunology or for other biotechnological purposes (Peyret and 

Lomonossoff 2013). The pEAQ vectors have also been used to produce active 

enzymes; human gastric lipase was produce with a high expression level of 0.5 g/kg 

fresh weight of N. benthamiana leaves. Functional analysis of chitinase from rice 

and sesquiterpene synthases from Artemisia annua has also been achieved using this 

expression system (Kanagarajan et al. 2012; Miyamoto et al. 2012). Yields of ca 100 

mg/kg were obtained for the heterologous expression of the two sesquiterpene 

synthases.  

The Osbourn lab has previously shown the utility of the pEAQ system to 

reconstitute metabolic pathways in a heterologous plant system. Transient co-

expression of SAD9 and SAD10 led to the accumulation of the acyl glucose donor 

N-methylanthraniloyl glucose (Mugford et al. 2013). SAD7, the acyltransferase that 

uses this activated acyl donor to acylate the triterpene scaffold during avenacin 

synthesis has also been expressed in functional form in N. benthamiana (Mugford et 

al. 2009). Co-expression of oat β-amyrin synthase (SAD1) and the CYP450 that 

modifies the β-amryin scaffold (SAD2) using the pEAQ expression system resulted 

in the accumulation of a new product that could be purified from N. benthamiana 

leaves in milligram quantities, enabling the structure of this modified product to be 

determined by NMR spectroscopy (Geisler et al. 2013).  
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5.1.3 Aims 

In this chapter, heterologous co-expression of UGTs with SAD1 and SAD2 

in N. benthamiana using the pEAQ system was achieved. Extraction and purification 

of the first glycosylated triterpenoid produced in N. benthamiana may be regarded as 

a proof of principle of the relevance of this system for the production of new-to-

nature triterpenoids. The present system offers us a powerful tool for the discovery 

of uncharacterised triterpenoid glycosyltransferases. 
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Figure 5.1: Overview of the strategy for cloning A. strigosa UGT coding sequences into 

PEAQ vector for transient expression in N. benthamiana. A two-step PCR protocol was used to 

amplify the UGT coding sequences and add terminal AttBs adapters (a). The UGT coding sequences 

were then inserted into the GATEWAY entry vector pDONR207 using the BP clonase reaction (b) 

(Hartley et al, 2000). Two expression vectors were constructed from each pDONR construct using LR 

clonase reactions (Hartley et al, 2000). The expression vector pEAQ-HT-Dest1 was used for expression 

of UGTs in N. benthamiana leaf tissues by Agrobacterium–mediated transient expression (Sainsbury et 

al, 2009) (d).  
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5.2 Results and discussion 

5.2.1 Expression of SAD1 and SAD2 in leaves of N. benthamiana using pEAQ 

system 

In previous work to elucidate SAD2 activity, SAD1 was either expressed 

alone or with SAD2 in transient expression experiments in N. benthamiana leaves 

(Geisler et al. 2013). The constructs used are shown in figure 5.2.A.  GC-MS 

analysis confirmed the accumulation of β-amyrin in SAD1-expressing tissues (Fig. 

5.2.B). When SAD2 was co-expressed with SAD1, β-amyrin level decreases in 

agroinfiltrated tissues and a new compound was produced (Fig. 5.2.B). This 

compound was identified as 12,13β-epoxy-16-β-hydroxy-β-amyrin, indicating that 

SAD2 is able to perform C16 hydroxylation and C12,13 epoxidation of β-amyrin. 

These experiments demonstrated that endogenous 2,3-oxydosqualene can be 

efficiently converted into β-amyrin in N. benthamiana leaves, so providing a basis 

for bioengineering of triterpenoid pathways using this system. Co-expression of 

SAD1 and SAD2 led to accumulation of approximately 1.2 mg/g of SAD2 product 

from dry leaf material.  Since this system enables the early triterpene pathway 

intermediates to be generated by co-expression of pathway enzymes it was used, in 

this study, as a basis for developing an in planta platform for functional 

characterisation of A. strigosa UGTs. 

Accumulation of SAD1 and SAD2 proteins in N. benthamiana leaves 

following agroinfiltration is optimal 6 days after infiltration (Geisler et al. 2013). In 

the present study, Western blot analysis showed that SAD10 was also expressed after 

6 days (Fig. 5.3; methods in section 2.2.19) through detection using a specific anti-

SAD10 antibody (Owatoworakit et al 2013). Co-expression of the three saponin 

biosynthetic enzymes (oxidosqualene cyclase (SAD1), P450 (SAD2) and 

glycosyltransferase (A. strigosa UGT collection) in the same tissues at the same time 

is a prerequisite to analyse modification of the triterpene backbone by oat UGTs.  
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Figure 5.2: Co-expression of multiple enzymes in N. benthamiana for the creation of a 

saponin pathway. A. The pEAQ-HT based constructs for the transient expression of SAD1, 

SAD1+ SAD2 or A. strigosa UGTs. Red arrow, promoter 35S; red box, Nos terminator; thick green 

lines, CPMV RNA2 UTR; green arrow, CDS. pEAQ-HT-SAD1 and pEAQ-HT-SAD1-SAD2 were 

constructed previously (Geisler et al 2013) B. GC-MS analysis performed by K. Geisler showing the 

accumulation of triterpenoids in N. benthamiana tissues infiltrated with empty vector (black); pEAQ-

HT-SAD1 (red) and pEAQ-HT-SAD1-SAD2 (blue). Accumulation of β-amyrin (a) is detected in 

tissues expressing SAD1. Accumulation of 12,13-epoxy-16-hydroxy-β-amyrin (b) is detected in 

tissues expressing SAD1 and SAD2. The identification of this compound is detailed in 

supplementary data S.11. C. Co-expression of triterpene glycosyltransferases with SAD1 and SAD2 

is expected to lead to the accumulation of 12,13-epoxy-16-hydroxy-β-amyrin-3-O-α-L-arabinose (c).  
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5.2.2 Co-expression of UGT73C10 with SAD1 and SAD2 leads to the 

accumulation of glycosylated triterpenoid 

5.2.2.1 Co-expression of the three proteins in N. benthamiana leaves 

In order to evaluate the feasibility of glycosylating SAD1 and SAD2 

triterpenoid products, we co-expressed SAD1, SAD2 and the hederagenin 3-O-

glucosyltransferase UGT73C10 in N. benthamiana leaves using the corresponding 

pEAQ vectors for agroinfiltration (e.g. pEAQ-HT-SAD1-SAD2/pEAQ-HT-SAD1 

and pEAQ-HT-UGT73C10; see Fig. 5.1). In addition to hederagenin, UGT73C10 is 

able to catalyse 3-O-glucosylation of β-amyrin, oleanolic acid and betulinic acid in 

vitro (Augustin et al. 2012). Transcript analysis of non-infiltrated and agroinfiltrated 

N. benthamiana leaves revealed the co-expression of UGT73C10 with SAD1 and 

SAD2 (Fig. 5.4) in the tissues infiltrated with pEAQ-HT-SAD1-SAD2 and pEAQ-

HT-UGT73C10. Kanamycin and UTR specific primers were used to control the 

presence of DNA contamination (T-DNA) in the experiment (see section 2.2.7). 

  

Figure 5.3: Comparative analysis of SAD1 and SAD10 expression in N. benthamiana 

leaf tissues 6 days after agroinfiltration. Western blot was performed with SAD1 antibody 

(Lanes 1-3) and SAD10 antibody (Lanes 4-6). SDS-PAGE was loaded with approximately 20µg of 

protein extracted from tissues infiltrated with the following constructs: lane 1, pEAQ-HT-SAD1; lane 

2, pEAQ-HT-SAD1-SAD2; lane 3, non-infiltrated plant; lane 4, purified recombinant SAD10; lane 5, 

pEAQ-HT-SAD10; lane 6, non-infiltrated plant; lanes L, SeeBlue® Plus2 Pre-Stained Standard. A. 

Ponceau stained blotted membrane. B. Film exposed for 1 min reveals peroxidase activity from 

secondary antibody. 
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5.2.2.2 UGT73C10 expression leads to the accumulation of new compounds 

TLC analysis of methanolic extracts of agroinfiltrated tissues is consistent 

with the results of Geisler et al. (2013) (Fig. 5.5). The accumulation of β-amyrin (a) 

is observed in tissues expressing SAD1 compare to uninfiltrated control (lanes 1-3, 

Fig. 5.5.A). In tissues co-expressing SAD1 and SAD2 the β-amyrin is not detected 

anymore and the SAD 2 product (12,13-epoxy-16-hydroxy-β-amyrin, b) is detected 

as a purple spot, consistent with K. Geisler (Osbourn lab) TLC analysis (lane 4, Fig. 

5.5.A,), this compound is more polar than β-amyrin. Accumulation of β-amyrin 

decreases in SAD1/UGT73C10 expressing tissues compare to SAD1 (Fig. 5.5.A, 

lane 5). The same phenomenon was observed for SAD1/SAD2 product (b) in tissues 

co-expressing SAD1/SAD2/UGT73C10 compare to SAD1/SAD2 (Fig. 5.5.A, lane 

6). Those results are supported by GC-MS analysis of extracts from 

SAD1/SAD2/GFP and SAD1/SAD2/UGT73C10 expressing tissues (Supp. S.8). The 

absence of SAD2 product in tissues expressing SAD1/SAD2/UGT73C10 even 

suggest that UGT73C10 entirely consumed 12,13-epoxy-16-hydroxy-β-amyrin. In 

the meantime, the formation of a new compound (d) is detected when co-expressing 

UGT73C10 with SAD1 alone or with SAD1 plus SAD2, none of these products (c 

and d) are detected when expressing UGT73C10 alone (lanes 1 to 3; Fig. 5.5.B). The 

Figure 5.4: Transcript accumulation of UGT73C10, SAD1 and SAD2 in N. 

benthamiana agroinfiltrated tissues. Expression analysis was conducted using mRNA-reverse 

transcription-PCR (RT-PCR) technique. Total RNA was extracted from N. benthamiana 

agroinfiltrated tissues, 6-days after infiltration. A cDNA was synthesised using primer specific for 

RNA-2 5’ untransformed region (UTR, specific of the pEAQ transcripts, see Sainsbury et al. 2008). 



Chapter 5 – A combinatorial approach to synthesised new-to-nature triterpenoids in 

N. benthamiana 

  

Page 145 

 

compound c has the same retardation factor than purified β-amyrin-3-O-glucoside 

synthetized using recombinant UGT73C10 (Fig. 5.5.B, lanes 2 and 5), suggesting 

UGT73C10 expressed in N. benthamiana is able to use β-amyrin produced by SAD1 

to form β-amyrin-3-O-glucoside detected in vitro. The compound d is slightly more 

polar than c, it is likely to be the gluco-conjugated product of SAD2 (Fig. 5.5.B, lane 

3). In summary, TLC together with GC-MS analysis suggests that UGT73C10 is 

able to glucosylate β-amyrin and 12,13-epoxy-16-hydroxy-β-amyrin when 

transiently co-expressed with appropriate SAD proteins. 

 

  

Figure 5.5: Formation and modification of triterpenoids in N. benthamina. Thin layer 

chromatography of N.benthamina extracts stained with acetic acid : sulphuric acid : p-anisaldehyde 

(96:2:2). Methanolic extractions were done with 100mg of agroinfiltrated leaf material from 

N.benthamina, using 75% methanol (A) or 40% methanol (B) as solvents. A. Pure β-amyrin is in lane 

1, uninfiltrated tissue is in lane 2,  SAD1 only and SAD1/SAD2 expressing tissues in lanes 3 and 4. 

Tissues co-expressing SAD1and UGT73C10 in lane 5 and SAD1, SAD2 and UGT73C10 in lane 6. B. 

Tissues expressing UGT73C10 alone (lane 1), with SAD1 (lane2), or with SAD1 and SAD2 (lane3). 

Pure β-amyrin (lane 4) and reaction product of recombinant UGT73C10 incubated with β-amyrin and 

UDP-Glc (lane 5). Identified compounds: a- β-amyrin standard, b-12,13-epoxy-16-hydroxy-β-amyrin 

(glycosylated triterpene standard), c- β-amyrin-3-O-glucose, d- new glucosylated triterpenoid, e1 and 

e2 unknown new products. 
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It is interesting to notice that additional products (e1 and e2) accumulate in 

tissues agroinfiltrated with UGT73C10 (figure 5.5.A, lanes 5, 6). These compounds 

are stained orange by para-anisaldehyde and their accumulation is independent of 

SAD1 or SAD2 expression. Para-anisaldehyde is a multipurpose staining reagent 

reacting with nucleophilic chemical groups (van der Heide 1966). Attempt to 

ascertain which functional groups are present in a molecule based on staining 

coloration is delicate especially for complex molecules. This compound may be a 

glucoconjugate of an endogenous compound of N. benthamiana. 

5.2.2.3 UGT73C10 attenuates the necrosis observed in SAD1 expressing tissues 

In parallel to accumulation of the triterpenoid compounds a and b, tissues 

expressing SAD1 or SAD1/SAD2 developed a yellowing phenotype 6-days after 

infiltration (pictures 1 and 3, Fig. 5.6). This phenotype quickly evolved to necrosis of 

the agroinfiltrated tissue. The molecular mechanisms underlying this phenotype are 

not clearly understood so far and are being investigated by J. Reed (Osbourn lab). 

The negative effect of β-amyrin accumulation on the intracuticular water barrier may 

be the cause (Buschhaus and Jetter 2012). Co-expression of SAD1 with UGT73C10 

did not lead to leaf yellowing and agroinfiltrated tissues display a wild-type 

phenotype (picture 2, Fig. 5.6).  A similar suppression of the yellowing phenotype is 

observed in leaves co-infiltrated with SAD1/SAD2 and UGT73C10 expression 

vectors (picture 4, Fig. 5.6). This observation suggests that the compound 

responsible for the leaf yellowing (presumably β-amyrin) is detoxified by the activity 

of UGT73C10. This is consistent with vacuolar storage of many harmful compounds 

and xenobiotics in plant cells (Bowles et al. 2006; Gachon et al. 2005b; Loutre et al. 

2003). 
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Figure 5.6: Effect of UGT73C10 expression on leaf phenotype 

related to SAD1 and SAD2 expression. Pictures of N. benthamiana leaves 

co-agroinfiltrated with SAD1/GFP (1), SAD1/UGT73C10 (2), 

SAD1/SAD2/GFP (3), SAD1/SAD2/UGT73C10 (4) expression vectors (pEAQ-

HT-CDSs). Controls are non-agroinfiltrated leave (5) and GFP-expressing leave 

(6). GFP was used as a control in co-expression analysis. These pictures have 

been taken 4 days after agroinfiltration. 
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5.2.2.4 Identification of SAD1-SAD2-UGT73C10 co-expression product 

In order to confirm the accumulation of a glycosylated 12,13-epoxy-16-

hydroxy-β-amyrin in N. benthamiana agroinfiltrated tissues we develop a bulk 

purification method (see section 2.2.24) of the compound d (Fig. 5.5). Three plants 

were agroinfiltrated with pEAQ-HT-UGT73C10 and pEAQ-HT-SAD1-SAD2, 565 

mg of dry material was harvested six days after infiltration. Plant material was 

extracted and enriched in the targeted compound d prior to component separation by 

silica gel column chromatography followed by semi-preparative HPLC monitored by 

a charged aerosol detector (see section 2.2.24). The total weight of the purified 

compound was estimated at 250 μg, yielding approx. 0.5 mg/g of dry material (Supp. 

S.9). 

A direct injection of the purified compound was performed using a LTQ-

OrbitrapTM mass spectrometer (Thermo Fisher Scientific Inc. see section 2.2.25). 

The exact masses calculated for the suggested product (12,13-epoxy-16-hydroxy-β-

amyrin glucoside; C36H60O8) was m/z 621.4361 [M+H]
+
 and m/z 643.4186 for the 

sodium adduct [M+Na]
+
; these ions were present in the HR-MS spectrum [M+H]

+
 

m/z 621.4364  and [M+Na]
+
 m/z 643.4179 (respective errors 0.05% and 0.1%; Fig. 

5.7.A). The fragment m/z 603.4255 corresponds to the exact calculated mass of the 

dehydrated compound [M-H2O+H]
+
. High resolution MS, together with GC-MS 

analysis suggests the product of SAD2 is used by UGT73C10 as an acceptor leading 

to the accumulation of a glucoconjugate of 12,13-epoxy-16-hydroxy-β-amyrin in N. 

benthamiana leaves.  

The purified compound was analysed by proton NMR to confirm the overall 

structure of the predicted product (Fig. 5.7.B). Signals from HC-3, HC-12 and HC-

16 are visible in addition to the 6 protons (CH-OH) of the hexose between 2.4 to 4 

ppm range. The signal of CH-1’ (4.3 ppm, 1H, d, J1’,2’=7.76 Hz) is characteristic 

from a beta anomer of a sugar. Signals from the 8 methyl groups of the triterpene 

backbone integrating three protons as singlets are localised between 0.5 to 1.4 ppm 

range. The presence of the eight methyl groups of the β-amyrin backbone is 

confirmed by HSQC analysis (Supp. S.10). 
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  Figure 5.7: Identification of SAD1-SAD2-UGT73C10 co-expression product extracted 

and purified from agroiniltrated N. benthamiana. A. High resolution mass analysis of the 

purified compound using direct injection onto LTQ-OrbitrapTM mass spectrometer (Thermo Fisher 

Scientific Inc.). The exact masses of [M+H]
+ 

m/z 621.436, [M+Na]
+

 m/z 643.418 and [M-H
2
O+H]

+

 m/z 

603.425 are indicated on the spectrum. B. NMR analysis of the purified SAD1-SAD2-UGT73C10 co-

expression product. The anomeric proton at position C1’ is characteristic of a β anomer (4.3 ppm, 1H, 

d, 7.76 Hz). In the range of 2.5 to 4 ppm the 6 CH-OH  protons of  the sugar ring are detected (HC-2’, 

HC -3’, HC-4’, HC-5’, HC-6’a and HC-6’b), plus HC-3, HC-16 and HC-12 from the terpenoid 

backbone. Protons from the 8 methyl groups of β-amyrin are detected in 0.5 to 1.4 ppm (HC-23, HC-

24, HC-25, HC-26, HC-27, HC-28, HC-29 and HC-30). 
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Altogether, TLC, HR-MS, GC-MS and H1-NMR all indicates the 

accumulation of a new compound dependant of UGT73C10, SAD1 and SAD2 co-

expression in parallel with consumption of the SAD2 product. In the light of 

Augustin et al. (2012) our data suggest the production of 12,13-epoxy-16-hydroxy-β-

amyrin-3-O-β-D-glucose. 

3.1.1 Co-expression of oat UGT collection with SAD1 or SAD2 

pEAQ-HT-UGTs constructs were agroinfiltrated in N. benthamiana leaf 

tissue. UGTs expression vectors were agroinfiltrated alone or with SAD1, or with 

SAD1 plus SAD2 expression vectors (pEAQ-HT-SAD1 and pEAQ-HT-SAD1-

SAD2). Methanolic extracts from the various co-expression combinations were 

analysed by TLC. ρ-Anisaldehyde-stained TLC plates loaded with methanolic 

extracts (40% methanol) are presented in figure 5.8. TLC analysis suggests that none 

of the UGTs from our collection was able to form compounds with similar 

retardation factors to hypothetical 12,13-epoxy-16-hydroxy-β-amyrin 

glycoconjugate (Fig. 5.8, compound d). Additionally, β-amyrin 3-O-glucoside, β-

amyrin 3-O-arabinoside or compounds dependent on co-expression of the various 

UGTs with SAD1 or SAD1 and SAD2 were not detected by TLC analysis.  

Interestingly agroinfiltrated leaves expressing some of the A. strigosa UGTs 

were able to produce orange stained compounds similar to the one produced by 

UGT73C10-expressing tissues (Fig. 5.5, compound e). As observed for UGT73C10 

the production of these compounds is independent of SAD1 or SAD2 expression. 

Tissues expressing AsGT23586B accumulates two distinct orange-stained 

compounds while AsGT16f23, AsGT24i2, AsGT25n16 and AsGT23586B 

accumulates a single compound (black arrows on figure 5.8). The orange compounds 

are therefore likely to be due to glycosylation of endogenous N. benthamiana 

metabolites. Isolation and identification of this compound is under investigation. 

Comparison of methanolic extracts from N. benthamiana tissues 

agroinfiltrated with GFP (control) or AsGT16f23 expression constructs reveals the 

accumulation of four new products dependent on AsGT16f23 expression (Fig. 

5.9.A). Three of these compounds have a fragmentation pattern consistent with 

glycosides with a fragment loss of 162 daltons corresponding to a hexose residue 

(Fig. 5.9.B). None of these compounds were identified; the molecular weights of the 



Chapter 5 – A combinatorial approach to synthesised new-to-nature triterpenoids in 

N. benthamiana 

  

Page 151 

 

hypothetical agycons are 562 Da (peak Rt 5.5 min), 421 Da (peak Rt 13.9 min) and 

405 Da (peak Rt 9.8 min). Those compounds may be large terpenes; the first one 

(MW 562 Da) may be a modified triterpene or steroid, the two last ones are too small 

to be triterpenoids but may be modified diterpenes. The higher peak (Rt 12.2 min) is 

not likely to be a glycoconjugated metabolite and may be due to an indirect effect of 

glycosyltransferase expression. 
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Figure 5.8: Metabolic analysis of N. benthamina tissues expressing heterologous A. 

strigosa UGTs alone or with SAD1 and SAD2. Thin layer chromatography of N. benthamina 

extracts stained with acetic acid : sulphuric acid : p-anisaldehyde (96:2:2). Methanolic extractions 

were done on 100mg of agroinfiltrated leaf material from N. benthamina, using 40% methanol as 

solvent. Controls refer to sample detailed in figure 5.5. Each UGT was expressed alone (GT), in 

combination with SAD1 (S1/GT) and in combination with SAD1 and SAD2 (S1/S2/GT) and loaded 

in the order mentioned in the figure. Compounds have been labelled as in figure 5.5: d- 12,13-epoxy-

16-hydroxy-β-amyrin-3-O-β-D-glucose, e- unknown orange-stained product. 
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Figure 5.9: LC-MS metabolic profiling of N. benthamiana tissues 

agroinfiltrated with AsGT16f23 expression construct reveals accumulation of 

potential glucosides. A. Full MS spectrum comparison of methanolic extracts from leaf 

tissues agroinfiltrated with GFP or AsGT16f23 expression constructs. Peak products 

dependent of AsGT16f23 expression are highlighted with an arrow; biological replication 

suggests this result is replicable. B. MS2 spectrums extracted from three of the four peak 

products accumulated in AsGT16f23 expressing tissues. Losses of 162 daltons 

(corresponding to a hexose residue) are labelled on the spectrums. 
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5.3 Conclusion 

In this chapter, de novo synthesis of simple triterpenoid saponins in N. 

benthamiana was reported using a combinatorial approach for the co-expression of a 

member from each enzyme family essential to saponin biosynthesis (OSCs, P450s 

and UGTs). The structure of the product dependent on co-expression of SAD1, 

SAD2 and UGT73C10 has been solved as 12,13-epoxy-16-hydroxy-β-amyrin-3-O-

β-D-glucose. 

5.3.1 Nicotiana benthamiana, a relevant organism for production of saponins de 

novo 

Co-expression of SAD1, SAD2 and UGT73C10 in N. benthamiana leaf 

tissue is a proof of principle that endogenous 2,3-oxidosqualene can be sequentially 

processed through cyclisation, hydroxylation/epoxidation and glucosylation to create 

a simple saponin pathway in N. benthamiana. Mass spectrometry and proton NMR 

analysis supported the proposed structure of SAD1/SAD2/UGT73C10 co-expression 

product as 12,13-epoxy-16-hydroxy-β-amyrin-3-O-β-D-glucose. Glycosylation of 

SAD1 and SAD2 products is also supported by the reduction of the phenotype 

associated with triterpenoid accumulation in tissues co-expressing 

SAD1/UGT73C10 or SAD1/SAD2/UGT73C10 (Fig. 5.6); the consumption of the 

SAD2 in SAD1/SAD2/UGT73C10 expressing tissues was also monitored by GC-

MS (Supp. S.8). 

Triterpenoids extraction and purification from natural sources is generally a 

complex task due to low accumulation, often in complex mixtures, of these 

compounds in planta. Synthetic biology approaches constitute a promising way to 

enhance and diversify the production of triterpenoid saponins for industry (Moses et 

al. 2013; Sawai and Saito 2011). Very few works have been performed on 

bioengineering of triterpenoid saponins pathway. OSCs and P450s have been 

expressed in Saccharomyces cerevisiae (Moses et al. 2014; Moses et al. 2013), and 

metabolic engineering have been done upstream of oxidosqualene in Nicotiana 

tabacum (Chappell et al. 1995; Enfissi et al. 2005; Holmberg et al. 2003; Wu et al. 

2012). Here is the first report of de novo synthesis of a simple triterpenoid saponin 
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following heterologous expression of each of the three major enzyme families 

responsible for cyclisation (OSCs), oxidation (P450s) and glycosylation (UGTs) of 

saponins. van Herpen et al. (2010) conducted a similar combinatorial biosynthesis 

approaches on the sesquiterpenoid artemisinic acid (precursor of the antimalarial 

drug artemisin). LC-MS analysis reveals the accumulation of glycoconjugated 

artemisinic acid apparently due to endogenous glycosyltransferases of N. 

benthamiana, the resulting glycoside was accumulated to 39.5 mg/kg of fresh weight 

(Approx. equivalent to 0.4 mg/g according to our measurements). Together with 

Geisler et al. (2013) report, this work suggests N. benthamiana is an excellent 

platform for saponin triterpenoid engineering. This is suggested by the accumulation 

of SAD2 product over 1 mg/g of dry weight (dwt) and its entire consumption when 

UGT73C10 is co-expressed with SAD1 and SAD2. From the small scale purification 

mentioned in this chapter a yield of 0.5 mg/g dwt have been estimated. The 

efficiency of the system is likely to be improved significantly considering the impact 

of upstream MVA pathway engineering on accumulation of β-amyrin, up to 5 folds 

(J. Reed work, Osbourn lab unpublished data). 

5.3.2 A promising system for the discovery of biosynthetic enzymes 

pEAQ-HT-UGTs constructs were agroinfiltrated in N. benthamiana leaf 

tissue to determine their A. strigosa UGTs activity against 12,13-epoxy-16-hydroxy-

β-amyrin in planta and evaluate their potential implication in avenacin biosynthesis. 

This approach relies on co-infiltration of SAD1, SAD2 and UGTs expression vectors 

in order to form glycoconjugates of SAD1/SAD2 product. No potential triterpenoid 

glucoconjugates were detected in N. benthamiana leaf tissue co-infiltrated with A. 

strigosa UGTs and SAD1 or SAD1 and SAD2. Western blot analysis performed 

with SAD10 suggests active UGT enzymes are spatially and temporally co-

expressed with SAD1 and/or SAD2 in harvested tissues. The accumulation of new 

products related to agroinfiltration of some of the pEAQ-HT-UGTs constructs 

designates the present heterologous system as a valuable tool for investigation of 

glycosyltransferases activities. Detection methods have to be improved in order to 

fully exploit this promising heterologous co-expression system. Preliminary LC-MS 

analysis on tissues expressing AsGT16f23 has shown the accumulation of four new 

products when compare to control GFP-expressing tissues (Fig. 5.9). Three of these 
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products have a fragmentation pattern corresponding to glycosylated products (e.g. 

loss of 162 Da corresponding to hexose residues). These results suggest heterologous 

expression of UGTs in N. benthamiana leads to glycosylation of endogenous 

compounds and might be used to investigate UGT functions. 

5.3.3 General conclusion 

In this chapter, the co-expression of members of the three major enzyme 

families involved in saponin biosynthesis (OSCs, P450s and UGTs) leads to the 

production of a novel saponin scaffold in N. benthamiana leaves. This work is 

paving the way for future design and engineering of more complex saponins 

structures by synthetic biology approaches. This system has been used to explore A. 

strigosa UGT activity against an intermediate of the avenacin pathway.
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Chapter 6 – Preliminary study of the catalytic activities of A. 

strigosa UGTs towards a subset of potential acceptors 

6.1 Introduction 

Plant UGTs are promiscuous enzymes that catalyse the formation of 

glycoconjugates with a wide range of acceptors in vitro. UGTs generally show 

regiospecific activity, catalysing sugar transfer to the same position of related 

substrates (Bowles et al. 2006; Vogt and Jones 2000). The promiscuity of plant 

UGTs makes them attractive candidates in the search for biocatalysts that are able to 

form specific isomers of a given glycoside for biotechnology applications, including 

a health promoting agent for the food industry, or pharmaceuticals with enhanced 

solubility and stability. This approach is particularly attractive when compared to 

chemical synthesis of glycosides of complex natural products, a procedure that 

depends on availability of the required aglycone, synthesis of the saccharide, and 

addition and removal of protecting groups (Yu et al. 2012). 

Bowles and co-workers have reported the expression and systematic 

functional analysis of recombinant UGTs from A. thaliana (Caputi et al. 2008; Lim 

et al. 2003; Lim et al. 2002; Weis et al. 2006). Their work greatly contributes to the 

general understanding of functional evolution of plant UGTs. Some of the A. 

thaliana UGTs were used as whole-cell regioselective biocatalysts for the formation 

of glycoconjugates of biotechnological interest, like the pharmaceuticals daidzein or 

trans-resveratrol glucosides (Lim et al. 2004; Lim and Bowles 2004; Weis et al. 

2006). The collection of active recombinant UGTs obtained from A. strigosa roots 

therefore has considerable potential for the generation of novel glycosides with 

potential applications in the food, cosmetics and pharmaceutical industry. 

6.1.1 The roles of flavonoids and their glycosides 

Flavonoids represent a large class of secondary metabolites with more than 

10.000 structures reported to date (Buer et al. 2010; Liu et al. 2013). These 

molecules, which are produced from the phenylpropanoid pathway, are ubiquitous in 

the plant kingdom. Flavonoids have been reported to have essential functions in 

defence against various pathogens, including nematodes, fungi and bacteria (Treutter 
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2005). They also provide protection again UV radiation and have important roles in 

attracting pollinators by serving as pigments in flowers (Nishihara and Nakatsuka 

2011; Tohge et al. 2011). In addition to these ecological roles, flavonoids have also 

been shown to be involved in regulation of auxin transport and levels of reactive 

oxygen species (Buer et al. 2010; Weston and Mathesius 2013). 

Flavonoids are of particular importance in roots and are often found in root 

exudates in the rhizosphere, where they may protect the plant against soil-borne 

pathogens (Buer et al. 2010; Weston and Mathesius 2013). They are also essential 

players in symbiotic interactions, where they act as chemo-attractants for symbionts 

such as nodule-forming rhizobial bacteria and arbuscular mycorrhizal fungi (Oldroyd 

2013). Some flavonoids also have roles in allelopathy; flavonoids from rice and 

barley have been associated with the allelopathic properties of these species, along 

with other chemicals (Weston and Mathesius 2013). 

Flavonoids have also attracted considerable interest due to their health 

promoting effects in humans. Various studies have clearly established a relationship 

between flavonoid intake and reduced risk of heart disease (Heim et al. 2002). Food 

containing high levels of flavonoids, in particular antioxidant anthocyanins (such as 

found in blackcurrants or bioengineered purple tomatoes), has been shown to protect 

against heart diseases or cancer, (Gopalan et al. 2012; Klee 2013).  

Within the plant cell, flavonoid glycosides are normally stored in the vacuole 

(Weston and Mathesius 2013). Glycosylated flavonoids are believed to have little 

biological activity and are regarded as storage forms of these natural products. 

Glycosylation of flavonoids may affect their activity and also their absorption by the 

human body. Generally, aglycones are only absorbed after hydrolysis of the sugar 

moiety in the small intestine by human β-glucosidases or in the colon by the 

bacterial flora. Nevertheless, flavonoid glycosides may be absorbed intact in some 

cases (Cao and Prior 1999; Heim et al. 2002). Consequently the major effect of 

glycosylation is to delay the absorbtion of the flavonoid until it reaches the intestine. 

Therefore understanding glycosylation of flavonoids in cereals is of great interest for 

engineering health-promoting foods and for the generation of enhanced 

pharmaceuticals.  
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UGT73 enzymes (group D) constitute the majority of our collection of 

recombinant enzymes from oat. This family also contains the clade IIIa group of 

flavonoid glycosyltransferases that have been reported from other plant species (Fig. 

2.2).  

6.1.2 Sesquiterpenoids: natural products of interest to industry 

Sesquiterpenoids are natural products that occur in many plant species and 

also in other organisms (Cao and Prior 1999; Hemmerlin et al. 2012). They are C15 

terpenoids that are produced primarily by the MVA pathway (see section 1.3.1), 

although the MEP pathway may also contribute to the synthesis of some 

sesquiterpenes (Yu and Utsumi 2009). Sesquiterpenoids participate in many 

biological functions in plants. The phytohormone abscisic acid (ABA) is a 

sesquiterpenoid that is involved in essential processes such as seed dormancy, 

stomatal closure, vegetative growth and environmental stress responses (Piotrowska 

and Bajguz 2011). Some sesquiterpenoids have roles in plant defence - for example 

capsidiol, a phytoalexin produced by Solanaceaous plants in response to oomycete 

pathogens (De Marino et al. 2006; Threlfall and Whitehead 1988; Yu 1995). Volatile 

triterpenoids contribute to floral scents (Baez et al. 2012; Custodio et al. 2006; Theis 

and Raguso 2005) and are also emitted to attract predators of herbivores that feed on 

plants (Turlings and Tumlinson 1992; Turlings et al. 1990). In cereals, very little is 

known about occurrence and functions of sequiterpenoids, although a family of 

antifungal sesquiterpenoid phytoalexins known as zealexins has recently been 

identified in maize (Huffaker et al. 2011).  

Sesquiterpenoids are bioactive compounds that have been used by humans 

since ancient times for various applications. Many of these compounds have 

pharmaceutical properties. Artemisinin, from Artemisia annua, is one of the most 

famous examples, due to its antimalarial activity (Lee 2007). Artemisinin is also a 

potent antitumor agent, as are other sequiterpene lactones (Ghantous et al. 2010).  

Zerumbone and farnesol are also very promising chemicals for cancer treatment 

(Kuete and Efferth 2013; Prasannan et al. 2012). Sesquiterpenes are generally apolar 

compounds and may be volatiles, those properties are limiting when it comes to 

potential pharmaceutical applications. Derivatization and particularly glycosylation 

might modify those properties. 
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Sesquiterpenoid glycosides have been identified from diverse plant species, 

and there are many reports of the detection of these compounds in roots (Kitajima et 

al. 2003; Wang et al. 2013c; Zhuang et al. 2013). From these reports it transpires that 

if glycosylated, sesquiterpenes usually have a simplistic glycosylation pattern 

consisting of monosaccharides or short sugar chains. Interestingly, the analysis of 

root metabolites composition through the Poaceae family revealed the accumulation 

of two sesquiterpene diglycosides in Avena sativa induced by an arbuscular 

mycorrhizal fungus (Maier et al. 1997). The sugar moities of both of these 

compounds are similar and consists of a β-D-glucose-2-β-D-glucuronate; the 

sesquiterpene moiety consists of blumenol A or B. To my knowledge, with the 

exception of ABA, very little is known about sesquiterpenoid glycosylation in vivo. 

Glucosylated ABA is known to be an inactivated form of the phytohormone, and 

may also be used for transport (Piotrowska and Bajguz 2011). Efforts have been 

made to identify ABA glycosyltransferases (Lim et al. 2005; Suzuki et al. 2007; Xu 

et al. 2002) and the enzyme UGT71B6 has been shown to increase ABA-Glc levels 

when overexpressed in A. thaliana (Priest et al. 2006; Priest et al. 2005). A number 

of sequiterpenoids have been tested as potential acceptor for the suite of recombinant 

A. thaliana UGTs cloned and expressed by Bowles and co-workers (Caputi et al. 

2008). Glucosylation of farnesol was performed by UGTs from group E, D and G; 

ester-forming enzymes from group L were exclusively involved in glycosylation of 

artemisinic acid and retinoic acid (Fig. 6.1). 

 

 
Figure 6.1: Glucosylation of sesquiterpenoids by A. thaliana UGTs from various 

groups (Caputi et al. 2008).  
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6.1.3 Aims 

The large collection of recombinant UGTs that we have assembled for A. 

strigosa is unprecedented for monocot species, to our knowledge. In order to 

investigate the functions of monocot UGTs and to put these functions into a 

phylogenetic framework, this preliminary study evaluated the ability of these 

enzymes to glycosylate a suite of terpenoids and flavonoids. These compounds were 

chosen firstly because they were potential acceptors for UGT73 enzymes, which 

represent the majority of the recombinant A. strigosa UGT enzymes within our 

collection, and secondly due to interest in the glycoconjugates of these compounds 

for food and medical applications. 
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6.2 Result and discussion 

6.2.1 Identification of acceptors of A. strigosa UGTs using radioassays 

6.2.1.1 Development of a rapid radioassay to screen for glycosyltransferase 

activity  

Radioassays are commonly used for enzymatic studies of 

glycosyltransferases (Augustin et al. 2012; Caputi et al. 2008; Shibuya et al. 2010). 

Radioactive sugar donors have been used to enhance the sensitivity of 

glycosyltransferase assays with chemical species that are not detectable by 

spectroscopic methods. Radioassay experiments with UGTs normally involve 

detection of the incorporation of radioactive sugar molecules into glycosylated 

products after TLC separation of the chemical species within the assay. This 

approach involves a time-consuming protocol unfitted for acceptors screening over a 

large collection of glycosyltransferases. Here I used a simplified protocol that 

allowed rapid screening of the glucosylation activity of multiple A. strigosa enzymes 

towards a set of potential acceptors. 

Previously I. Ivanova in the laboratory of Rob Field at the John Innes Centre 

had developed a streamlined radioassay to detect galactosyltransferase activity 

towards different potential acceptors. This protocol utilises UDP-[1-
3
H]Gal and 

relies on the fact that negatively charged sugar nucleotide is retained by ion 

exchange resin, so allowing chromatographic separation of the unreacted radioactive 

sugar donor from the glycosylated products. In these assays, detection of 

radioactivity in the unbound fraction indicates transfer of the radioactive sugar from 

the donor to the acceptor. 

This radioassay protocol was adapted and simplified for use as a screening 

method for identification of acceptors that are glucosylated by recombinant A. 

strigosa UGTs. In my experiments radioactive UDP-α-D-[6-
3
H]glucose was used as 

sugar donor because the experiments with the generic acceptor TCP indicated that 

the A. strigosa UGTs used UDP-α-D-glucose as their preferred sugar donor (see 

section 4.2.3.3). Assays were carried out as described in section 2.2.14. The ion-

exchange resin was placed directly in the tube containing the incubated reaction 

mixture. The radioactivity remaining in solution after adding the resin was measured 
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by scintillation counting in order to evaluate transfer of the radioactive glucose onto 

the potential acceptor molecules (Fig. 6.2). 

 

 

 

The absence of column chromatography resulted in high background in the 

preliminary analysis performed with SAD10 and TCP (see section 0). The signal 

detected in the negative controls (no enzyme, no acceptor) was approximately 25% 

of the total radioactivity of the assay (Fig. 6.3.A). This background was reduced to 

less than 5% after optimization of the radioassay (Fig. 6.3.B). The signal to noise 

ratio was greatly improved when using UDP-Glc as the limiting substrate (50 µM 

UDP-Glc and 100 µM acceptor). In those conditions, the proportion of UDP-Glc 

substrate converted in UDP is enhanced; consequently, the radioactive signal in 

solution due to glucosyl transfer increased compare to the entire radioactivity of the 

assay. Details of the protocol were also modified to optimize binding of the 

unreacted sugar donor to the resin and washing steps. Binding of reaction products 

was done with a larger volume of resin (500 µl instead of 100 µl) and a smaller 

volume of sample (dilution of reaction products was done after five minutes of 

incubation with the resin) to improve binding capacity and increase interaction 

between unreacted substrate and resin.  Larger volumes were used in washing steps 

(1 ml instead of 500 µl) to optimize the amount of unbound material collected and 

avoid their contamination by resin particles. 

Figure 6.2: Illustration of the basic principles behind the screening method developed 

based on the protocol of I. Ivanova.  
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Figure 6.3: Optimisation of a rapid radioassay for the analysis of glucosyltransferase 

activity. SAD10 glucosylation reaction of TCP was used to assess the optimisation of radioassay 

conditions. The red bars show the amount of radioactivity in solution after reactions performed with 

UDP-Glc [6-
3

H] and 100 μM TCP. The blue bars show the amount of radioactivity in solution after 

the reaction. Blank and control are scintillation readings with water and with the entire radioactive 

material used in each assay. A. The initial activity assay of SAD10 shows a background noise of 

approximately 40000 dpm over 170000 dpm (approx. 25% of the total radioactivity of the assay). B. 

Following optimisation of the radioassay protocol the background noise was reduced to 300dpm (less 

than 5% of the total radioactivity of the assay). 
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To test the efficacy of the radioassay method for detection of 

glycosyltransferase activity, reactions with each of the recombinant UGTs were 

performed using UDP-[
3
H]-Glc and TCP as substrates (Fig. 6.4). The results of these 

radioassays are consistent with previous HPLC analysis of the glucosylation 

reactions performed with TCP (see section 4.2.3). This analysis was duplicated and 

similar results were obtained, demonstrating the reproducibility of the implemented 

method (note the error bars reported on figure 6.4). The highest activities were 

observed for SAD10, AsGT16f23, AsGT24i2, AsGT05827, AsGT23586A and 

AsGT23586B, with radioactivity in solution from 8500 to 15300 dpm (representing 

28.5% to 51% conversion of TCP). This is consistent with the results obtained in 

section 4.2.3, those 6 enzymes being the more active towards TCP. The radioactivity 

detected in solution was extremely high for AsGT21p16 both in the presence and 

absence of acceptor (66% and 49% of the total radioactivity respectively). The 

reason for this is unclear, although it could be due to hydrolysis of UDP-Glc by a 

component from the enzyme solution leading to release of free glucose in solution. 

Control TLC was not explored due to limited amount of time. It is known that 

misfolded proteins may have modified activities, and misfolding of 

glycosyltransferases might lead to hydrolysis activity. Therefore potential misfolding 

of AsGT21p16 may result in hydrolysis of the glycosidic bond of the sugar donor. 

Another explanation might be that a component of the system is used as an acceptor 

by AsGT21p16 (e.g. ethanol, included to solubilise acceptor, or traces of imidazole). 

Release of neutral radioactivity in the absence of an acceptor was also detectable to a 

lesser degree for AsGT27f7 and AsGT05827 (9% and 16% of the total radioactivity, 

respectively). 
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6.2.1.2 Activity of selected A. strigosa UGTs towards a suite of potential flavonoid 

and terpenoid acceptors 

Radioassays were performed with a suite of flavonoid and terpenoid 

acceptors that may represent potential acceptors for enzymes from UGT73 family 

(see section 3.2.4). As described before, the functions of UGT73 enzymes in dicots 

appear to be primarily glycosylation of triterpenoids and related compounds (such as 

sterols or steroidal alkaloids), and flavonoids. 

The flavonols kaempferol (1) and quercetin (2) were included as potential 

acceptors in these assays (Fig. 6.5).  These compounds are widely represented in 

nature and have hydroxyl groups at positions C-3, C-5 and C-7, which are known to 

be the most common sites of glycosylation for flavonols (Heim et al. 2002). The 

flavone, tricin (5,7,4'-trihydroxy-3',5'-dimethoxyflavone) (3) is found in various 

cereals such as oat, rice, barley, wheat and maize (Moheb et al. 2013). Recent reports 

have shown anticancer activities of tricin (Cai et al. 2009; Oyama et al. 2009). Tricin 

Figure 6.4: Monitoring glucosylation using the radioassay: proof-of-principle using 

trichlorophenol as the acceptor. The radioassay protocol was tested with the collection of 

recombinant A. strigosa UGTs with TCP as an acceptor. The red bars show the concentration of 

product formed after reactions performed with 50 μM UDP-Glc [6-
3

H] and 100 μM TCP obtained 

from two independent experimental sets. The blue bars show negative control in the absence of 

potential acceptor. Product concentration was deduced from the radioactivity measured in solution 

after reactions. Asterisks show values inconsistent with results of section 4.2.3 (discussed in text). 
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possesses hydroxyl groups in position C-7, C-5 and C-4’, which are therefore 

potential sites of glycosylation (Fig. 6.5). 

 

 

 

The sesquiterpenes used included α-bisabolol (5), a volatile sesquiterpene 

that is produced by several plant species and that has been shown to have various 

pharmaceutical properties (Darra et al. 2008), including apoptotic effects on glioma 

cells (Cavalieri et al. 2004). Capsidiol (4) was also included. In addition to its 

phytoalexin properties (Literakova et al. 2010), capsidiol has been shown to have 

bacteriostatic properties against Helicobacter pylori, a gastrointestinal bacterium 

linked to the development of stomach ulcers and cancer (De Marino et al. 2006). 

Capsidiol and α-bisabolol have two and one hydroxyl groups, respectively, and are 

potential acceptors for O-glycosyltransferases (Fig. 6.5). The absence of blumenol A 

or B from commercial sources prevents the corresponding activity assays. 

Triterpenoid acceptors were used to complement the results obtained with 

cold substrates. Acceptors included were the non-acidic triterpenes available to us: 

β-amyrin (6), lupeol (7) and β-amyrin 3-O-α-arabinopyranoside (8) (Fig. 6.5). 

Hederagenin (pKa 4.63) and oleanolic acid (pKa 2.52) are negatively charged in 

conditions used (pH 7.5) and will be retained by the ion exchange resin. 

 

Figure 6.5: Flavonoid and terpenoid used as acceptors in radioassays. Flavonoids: 

kaempferol (1), quercetin (2) and tricin (3). Sesquiterpenoids: capsidiol (4) and α-(-)-bisabolol (5). 

Triterpenoids: lupeol (6), β-amyrin (7) and β-amyrin-3-O-arabinose. 
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Eight A. strigosa UGT enzymes were selected for evaluation against different 

acceptors based on their higher glucosylation activity over TCP (sections 4.2.3 and 

5.1.1.1). This selection included one member of each phylogenetic cluster of UGT73 

represented in A. strigosa (M1, M2, M3 and M5; section 3.2.4). These were SAD10, 

AsGT14h20, AsGT16f23, AsGT24i2, AsGT02436, AsGT05827, AsGT23586A and 

AsGT23586B. 

 

Table 6.1: Relative activity observed in radioassays 

Acceptors 
Relative activity (%)* 

AsGT24i2 AsGT02436 AsGT05827 

TCP 100 100 100 

Quercetin 62 n.d n.d 

Kaempferol 85 350 84 

Tricin 37 86 95 

Capsidiol 4 n.d n.d 

α-Bisabolol n.d n.d 29 

Lupeol n.d n.d n.d 

β-Amyrin n.d n.d n.d 

β-Amyrin-Ara 9 21 n.d 

* Relative activity has been deduced from radioassays, the experimental 

conditions are detailed in section 2.2.14. 
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Figure 6.6: Radioassays of 8 selected A. strigosa UGTs over a set of acceptors. Glucosylation radioassays were performed with recombinant UGTs using UDP-β-

D-[
3

H]. glucose. Reaction mixtures were composed of 100 mM TRIS-HCl pH 7.5, 50 µM UDP-Glc, 200 µM acceptor and 2 µg of recombinant UGT. Flavonoids and 

terpenoids were used as potential acceptors. Samples were incubated 12 hours at 35°C. Bars represent the concentration of product formed after reactions for each sample. 

Product concentration was deduced from the radioactivity measured in solution after subtraction of the background noise (radioactivity detected without acceptor). These 

results were obtained from a single experiment. Further details about calculations used to generate this figure are presented in section 2.2.14. 
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The radioactivity in solution detected for each reaction is presented as a 

diagram in figure 6.6 (after subtraction of the background noise); these results were 

obtained from a single experiment. The major activities detected in radioassays have 

been converted into relative activities shown in table 6.1. The highest activities were 

obtained with flavonoids, in particular with AsGT24i2, AsGT02436 and 

AsGT05827. AsGT24i2 was able to convert efficiently the three flavonoids tested 

under the experimental conditions used; conversion of TCP and kaempferol are very 

similar for this enzyme (Kaempferol conversion represents 85% of TCP conversion), 

slightly lower conversions were observed for quercetin and tricin (62% and 37% of 

TCP conversion, respectively). AsGT02436 and AsGT05827 did not show any 

activity with kaempferol, suggesting the presence of 3’-OH and/or 3-OH affects the 

activity of these enzymes (Fig. 6.5). Under the conditions used, AsGT02436 shows a 

clear preference for kaempferol compared to tricin and TCP (kaempferol conversion 

represents 350% of TCP conversion). AsGT05827 converts kaempferol, tricin and 

TCP to a similar extent (conversions of kaempferol and tricin represent 84% and 

95% of TCP conversion); nevertheless, these results have to be considered carefully 

due to the activity observed in the absence of acceptor substrate (see the previous 

section 6.2.1.2). Assays with potential terpenoid acceptors generally resulted in 

weaker radioactive signals that were only just above background levels. 

Nevertheless, the activity of AsGT05827 towards α-bisabolol represents 29% of its 

activity towards TCP. Additionally, the activity displayed by AsGT24i2 towards β-

amyrin-3-O-Ara represents 21% of the one detected with TCP. 

As mentioned earlier, these preliminary results have been obtained from a 

single experiment and glycoside formation needs to be confirmed to support 

activities detected using the radioassay. 

6.2.2 Further investigation by TLC analysis 

The above radioassays are indicative of glucosyltransferase activities towards 

several acceptors. TLC analysis was then carried out in order to support the 

formation of flavonoid or terpenoid glucosides. 
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Figure 6.7: Activities of A. strigosa recombinant UGTs over terpenoids. Glucosylation assays were performed with recombinant UGTs using UDP-Glc and a 

set of terpenoid acceptors. Reaction were performed at 35°C for 12 hours using 1mM of UDP-Glc and 200 μM of acceptor. Glucosylated products were extracted in ethyl 

acetate. Lane 1, β-amyrin standard; ;lane 2; reaction UGT73C10 with  β-amyrin; lane 3, β-amyrin-3-O-arabinose standard; lane 4, control β-amyrin-3-O-arabinose in 

reaction conditions; lane 5, reaction AsGT14h20 with β-amyrin-3-O-arabinose; lane 6, reaction AsGT16f23 with β-amyrin-3-O-arabinose; lane 7, reaction AsGT24i2 with 

β-amyrin-3-O-arabinose; lane 8, reaction AsGT02436 with β-amyrin-3-O-arabinose; lane 9, reaction AsGT05827 with β-amyrin-3-O-arabinose; lane 10, capsidiol 

standard; lane 11, control capsidiol in reaction conditions; lane 12, reaction SAD10 with capsidiol; lane 13, reaction AsGT24i2 with capsidiol; ; lane 14, reaction 

AsGT05827 with capsidiol; lane 15, reaction AsGT02436A with capsidiol; lane 16, α-bisabolol standard; lane 17, control α-bisabolol in reaction conditions; lane 18, 

reaction AsGT05827 with α-bisabolol. Arrows are pointing toward the reaction products detected. It is important to notice that α-bisabolol is  a volatile compound and has 

been lost during  TLC processing (TLC plate heater is used to warm the plate at 45°C when loading), only the likely glycoconjugated form is detected here. 
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Figure 6.8: Activities of A. strigosa recombinant UGTs over flavonoids. Glucosylation assays were performed with recombinant UGTs using UDP-Glc and a 

set of flavonoid acceptors. Reaction were performed at 35°C for 12 hours using 1mM of UDP-Glc and 200 μM of flavonoid. . Glucosylated products were extracted in 

ethyl acetate. Lane 1, kaempferol standard; ;lane 2; control kaempferol in reaction conditions; lane 3, reaction SAD10 with kaempferol; lane 4, reaction AsGT24i2 with 

kaempferol; lane 5, reaction AsGT02436 with kaempferol; lane 6, reaction AsGT05827 with kaempferol; lane 7, reaction AsGT23586A with kaempferol; lane 8, reaction 

AsGT23586B with kaempferol; lane 9, quercetin standard; lane 10; control quercetin in reaction conditions; lane 11, reaction AsGT24i2 with quercetin; lane 12, tricin 

standard; lane 13; control tricin in reaction conditions; lane 14, reaction SAD10 with tricin; lane 15, reaction AsGT24i2 with tricin; lane 16, reaction AsGT02436 with 

tricin; lane 17, reaction AsGT05827 with tricin. 
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The reactions from which highest activities have been detected in radioassays 

were repeated using non-radioactive UDP-Glc under the following conditions: 

acceptor 200 µM; UDP-Glc 1 mM; UGT 2 µg; pH 7.5 (see section 2.2.14). 

Reactions were carried out at 30ºC overnight. UGT73C10 was used as a positive 

control here for glucosylation of triterpenoids (Augustin et al. 2012). Under the 

experimental conditions used in this assay, UGT73C10 catalysed the formation of β-

amyrin glucoside, as expected (Fig. 6.8, lane 2). None of the three UGTs 

(AsGT14h20, AsGT24i2 and AsGT02436) for which a weak activity was measured 

in the presence of β-amyrin-3-O-Ara (table 6.1 compound 8, Fig. 6.6) accumulate a 

detectable product under the conditions used (Fig. 6.8, lanes 6, 8 and 9). These 

results may indicate that the radioassay results were likely to be attributable to 

background it is also possible that glucosylation of β-amyrin-3-O-Ara did not occur 

in conditions used in the present assay or TLC analysis may be not sensitive enough 

to detect product formation. Further investigations on optimal enzymatic conditions 

in addition to repetition of radioassay analysis are required here to confirm or refute 

activities of these enzymes toward of β-amyrin-3-O-Ara. Surprisingly, AsGT24i2 

and AsGT05827 both catalysed the formation of products using capsidiol as 

acceptor, despite the weak signal displayed in the radioassay (Fig. 6.8, lanes 13 and 

14); AsGT24i2 shows a small conversion of capsidiol and no activity was detected 

for AsGT05827 (Fig. 6.6). As suggested by the radioassay, AsGT05827 was also 

able to form a product with α-bisabolol (Fig. 6.8, lane 18). α-(-)-Bisabolol was not 

visualised on the TLC (Fig. 6.8, lanes 16-18), and appears to have been lost over 

processing of the samples. Repetition of the reaction confirms the formation of a new 

product more polar than bisabolol, consistent with bisabolol glucoconjugate (Fig. 

6.9). Once again, bisabolol was not detected in control and reaction samples (Fig. 

6.9, lanes 2-3). It is unclear why bisabolol is lost through the present experimental 

process; α-bisabolol boiling point is 153°C (at 10mm Hg) and it is unlikely that this 

substrate evaporates under the reaction conditions used. 
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TLC analysis using non-radioactive UDP-Glc was also carried out with 

different potential flavonoid acceptors. These assays confirmed the activity of 

AsGT24i2 towards the three flavonoids used in this study. Complete conversion of 

kaempferol and quercetin was observed with AsGT24i2 (Fig. 6.8, lanes 4 and 11); 

tricin was partially converted under the same reaction conditions (Fig. 6.8, lane 15). 

AsGT02436 was able to catalyse substantial conversion of kaempferol to a product, 

while tricin was converted to a lesser extent (Fig. 6.6, lanes 5 and 16). Under the 

conditions tested, AsGT05827 converted only a small fraction of kaempferol and no 

activity was detected towards tricin (Fig. 6.8, lanes 6 and 17).  Minor conversion of 

kaempferol was also observed for the homologous enzymes UGT23586A and 

UGT23586B (Fig. 6.8, lanes 7, 8). 

These results generally confirmed activities measured by the radioassay 

experiments except for AsGT05827. Radioassays suggested AsGT05827 was the 

most active enzyme toward tricin, and activity towards kaempferol was similar to 

AsGT24i2 and AsGT02436 (Fig. 6.6, table 6.1); on the contrary, no product was 

detected by TLC analysis when using tricin as an acceptor for AsGT05827 and only 

traces of product were detected for kaempferol. These results tend to show that 

radioassays of AsGT05827 are misleading; this is certainly related to the signal 

obtained in the absence of acceptor (Fig. 6.6). 

 

 

Figure 6.9: Activity of AsGT05827 towards α-(-)-

bisabolol. Glucosylation reaction were performed at 35°C 

for 12 hours using 1mM of UDP-Glc, 200 μM of bisabolol 

and 2 µg of recombinant AsGT05827. Glucosylated products 

were extracted in ethyl acetate. Lane 1, bisabolol standard; 

lane 2; reaction control without enzyme; lane 3, bisabolol 

glucosylation reaction catalysed by AsGT0582. 



Chapter 6 – Preliminary study of the catalytic activities of A. strigosa UGTs towards 

a subset of potential acceptors 

  

175 

 

Identification of the products was conducted via LC-MS analysis (Fig. 6.10; 

method described in section 2.2.25). Further evidence of the accumulation of 

monoglucosylated flavonoids catalysed by AsGT24i2, AsGT02436 and 

AsGT23586B was obtained. In the case of the kaempferol glucosides, a predicted 

parental ion was detected (m/z 449) with a major fragment (m/z 287) corresponding 

to kaempferol produced by a loss of a glucose residue (162 Da) (Fig. 6.10.B). A 

similar fragmentation pattern was observed for tricin glucoside, the major fragment 

(m/z 331) corresponds to a glucose loss of the parental ion (m/z 493). For all of the 

samples analysed, more than one peak corresponding to monoglucosylated products 

was detected, suggesting the formation of several isomers (Fig. 6.10. B). In the case 

of kaempferol, multiple products were formed by AsGT23586B with a major peak 

(Rt 5.39 min) and several other products (Rt 5.58 min, Rt 5.28 min, Rt 5.24 min) 

plus a few other minor peaks. AsGT24i2 and AsGT02436 reaction products gave 

simpler and similar patterns with one major peak (Rt 5.36 min and Rt 5.44 min 

respectively) and a smaller peak eluting slightly later (Rt 5.25 min and Rt 5.30 min 

respectively) plus a few minor products. In the case of tricin, AsGT02436 catalyses 

the formation of three monoglucosylated isomers (Rt 5.53 min > Rt 5.45 min ≈ Rt 

5.39 min). These results may reflect a higher regioselectivity of AsGT24i2 and 

AsGT02436 compared to AsGT23586B. Mass spectrometry analysis of 

sesquiterpenoid products remain to be done, initial attempt results in absence of 

signal as described for triterpenoid glycoside (see section 4.2.4). 

Taken together, these data indicate that several of the A. strigosa UGTs 

within the collection are able to catalyse the formation of multiple isomers of 

monoglucosylated flavonoids; glucosylation of sesquiterpenoids were also observed. 

Full structural determination of the products generated by these enzymes will require 

improved methods for separation of the glucosylated products, coupled with the use 

of flavonoid glucoside standards and proton NMR analysis. The identification of the 

glycosylated sesquiterpenoids generated in these experiments remains to be 

performed. TLC analysis did not support the glucoconjugation of arabinosylated β-

amyrin suggested by radioassay for AsGT24i2 and AsGT02436 (21% and 9% of 

their activity towards TCP respectively). None of the enzymes included in these 

experiments were able to glucosylate lupeol or β-amyrin under the reaction 

conditions used. 
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Figure 6.10: LC-MS analysis of reaction products with A. strigosa UGTs and flavonoid 

acceptors. A. UV spectrum of reaction products of AsGT02436 with kaempferol; detection at 380 

nm. Several monoglucosylated products (Rt 5.17 min and 5.33 min) are formed; unreacted 

kaempferol (Rt 7.15 min) is detected. B. Fragmentation of the parental ion (m/z 449) released 

kaempferol (m/z 287) after the loss of a hexose residue (m/z 162). C. Zoom in total ion 

chromatogram of monoglucosylated products of flavonoids reveals multiple peaks. 

A 

B 

C 
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6.3 Conclusion 

In this chapter the evaluation of a rapid and simple method for detecting 

UGT activity was reported. The procedure was developed initially using the generic 

acceptor TCP and proved to be reproducible. The radioassay was then applied to 

assess the activity of A. strigosa UGTs towards terpenoids and flavonoids. 

Enzymatic activities detected in the radioassay were generally supported by 

enzymatic assay with cold substrates and mass spectrometry analysis. This 

preliminary study suggests A. strigosa UGTs catalyse the formation of 

sesquiterpenoid glucosides, activities which have not been reported previously. The 

highest activities were reported towards flavonoids and TCP and indicate differential 

promiscuity and regioselectivity of glucosyl transfers catalysed by A. strigosa 

enzymes. 

6.3.1 A radioassay for rapid glycosyltransferase acceptor screening 

The radioassay used in this study to assess the activities of UGTs towards 

potential acceptors presents some advantages and some disadvantages. The protocol 

as optimised and applied to recombinant A. strigosa UGTs is rapid and requires only 

simple laboratory equipment (benchtop centrifuge, ion exchange resin, tubes and 

pipettes, and a scintillation counter) and handling. Importantly, it produces only 

scintillation waste and a small amount of solid radioactive waste, making it easy to 

handle when it comes to waste disposal. The protocol used here involves detection of 

the radioactivity in solution after the binding of the unreacted sugar donor to the 

resin. Consequently product formation is not directly monitored and this is the 

source of the major drawbacks of this radioassay. This analysis requires alternative 

enzymatic assays to support product formation. Also, the detection of radioactivity in 

the absence of an acceptor for some enzyme preparations (e.g. AsGT21p16, 

AsGT27f7 and AsGT05827) may be due to glucoconjugation of a component of the 

reaction mixture (e.g. imidazole or ethanol traces) or hydrolysis of the sugar donor 

by the enzyme itself (misfolded glycosyltransferases might be responsible for 

hydrolytic activity). Additionally, the use of ion exchange resin limits the application 

of this approach to only neutral or cationic acceptors, ruling out the use of acidic 

acceptors. 
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The radioassay strategy proved to be effective for some UGT/substrate 

combinations where there was a high level of activity towards the substrate in 

question, i.e. the activity of AsGT24i2, AsGT02436 and AsGT05827 towards 

flavonoids. The sensitivity of the radioassay was not sufficient to detect lower 

activities shown by AsGT23586A and AsGT23586B towards flavonoids, certainly 

due to the background noise remaining after optimisation. Weaker activities were 

detected only with TLC analysis of enzymatic reactions with cold substrates assays. 

This include AsGT23586A and AsGT23586B activities over quercetin. In case of 

weaker activities traditional analysis of radioassays with TLC separation and 

detection by phosphorimager may be more informative (Augustin et al. 2012; Caputi 

et al. 2008). 

6.3.2 Flavonoid glycosyltransferase activities of A. strigosa UGTs and 

regioselectivity 

The highest conversions of flavonoid substrates under the condition tested 

were observed for A. strigosa UGTs of family UGT73, AsGT24i2 and AsGT02436. 

Flavonoid glycosyltransferases belonging to the UGT73 constitute the clade IIIa of 

flavonoid glycosyltransferases (Fig. 3.1) (Noguchi et al. 2009). They are generally 

regarded as flavonoids-7-O-glycosyltransferases, catalysing regiospecific 

glycosylation at the C-7 position of flavonoids (Yonekura-Sakakibara and Hanada 

2011). This is supported by several studies reported the characterisation of 

flavonoid-7-O-glycosyltransferases belonging to the UGT73 family (Fig. 6.11) 

(Hirotani et al. 2000; Kim et al. 2006). 

 

 

Figure 6.11: Activity of flavonoid 7-O-glucosyltransferase over quercetin. 
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Closer examination of the functional studies performed with UGT73s 

suggests the regiospecificity over flavonoids is not strictly conserved throughout the 

whole UGT73 family. Lim et al. (2004) performed glucoconjugation of quercetin 

with a collection of A. thaliana UGTs and only two out of the seven UGT73s tested 

displayed a preference for the C-7 position of quercetin. UGT73B4 and UGT73B5 

show the highest activity (12.14 and 11.58 nkat/mg protein respectively) toward 

quercetin with regiospecificity for the C-3 position of the acceptor. The only 

functional analysis that has been carried out so far for a monocot UGT73 was on a 

glycosyltransferase from rice (RUGT-5). The RUGT-5 recombinant enzyme was 

able to form multiple monoglucosylated products over flavonoids. Proton NMR 

analysis suggested that RUGT-5 is able to add glucose onto positions C-3, C-7 or C-

4’ of flavonoids (Ko et al. 2006). More functional analyses are required to fully 

understand the regioselectivity of UGT73s over flavonoids acceptors and evolution 

of this mechanism.  

The large collection of A. strigosa recombinant UGT73s generated in this 

thesis is a valuable basis to further understand the regiospecific glycosylation of 

flavonoids. Preliminary biochemical studies performed with A. strigosa AsGT14h20, 

AsGT16f23, AsGT24i2 and AsGT02436 suggest that their aptitude to glucosylate 

flavonoids is conserved at least in two of the five phylogenetic clusters identified 

previously (e.g clusters M3 and M5; see section 3.2.4). Authentic kaempferol 

glucosides standards are required to help determine regiospecificity of these 

enzymes, those compounds are commercially available. Structure determination will 

be confirmed by high field NMR and MS-MS approaches. 

It is unclear whether the major products of AsGT24i2 and AsGT02436 are 

identical or correspond to independent structural isomers: the similarity of LC-MS 

peak patterns might reflect similar regiospecificities of these enzymes. Both of these 

enzymes show activity over tricin, the absence of an hydroxyl group in position C-3 

of tricin may suggest AsGT24i2 and AsGT02436 are not showing preference for C-3 

position of flavonoids. In contradiction, RUGT-5 is part of the cluster M3 sharing 

72% identity with AsGT24i2 (Fig. 3.3);  RUGT-5 generates kaempferol-3-O-

glucoside as a major product when incubated with kaempferol (Ko et al. 2006). 

Interestingly, RUGT-5 has a quercetin-4’-O-glucosyltransferase activity and uses the 

C-3 position only in the absence of 3’ hydroxyl group (e.g. kaempferol) (Fig. 6.12). 
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It shows that hydroxyl position on flavonoids influence the sugar specificity, 

therefore glycosylated positions on tricin and kaempferol may be different with A. 

strigosa UGT73s. Radioassays suggest AsGT02436 is not active with quercetin; its 

activity may be affected by the presence of the hydroxyl group in position C-3’ of 

flavonols. On the contrary, AsGT24i2 uses quercetin as an acceptor and appears to 

convert the entire pool of acceptor (kaempferol or quercetin) under the conditions 

used (e.g. cold assays). 

 

 

Quercetin is known to have multiple beneficial effects on human health, 

including anti-inflammatory, anti-oxidative, anti-mutagenic and neuroprotective 

activities (Leiherer et al. 2013; Ossola et al. 2009). Glucosylation has been shown to 

enhance absorption of quercetin by humans (Hollman et al. 1999). Also the nature 

and position of glycosylation are important factors for their absorption (Heim et al. 

2002), making regioselective biocatalysts from cereals biotechnological tools of 

great interest to modify dietary flavonoids profiles. AsGT14h20 and AsGT16f23 are 

unable to glycosylate the flavonoids tested under the conditions used. Taken 

together, these results may suggest functional divergence between the monocot 

phylogenetic branches defined in section 3.2.4. More flavonoid acceptors need to be 

tested in order to answer this question. 

Figure 6.12: The regioselectivity of RUGT-5 is affected by the presence of 4’ hydroxyl 

group (Ko et al. 2006). 
). 
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AsGT23586A and AsGT23586B convert kaempferol to a limited extent 

under the conditions used. These enzymes are part of UGT88 family, included in 

clade IIIb of the flavonoid glycosyltransferases. UGT88s are also regarded as 

flavonoids-7-O-glycosyltransferases (Frydman et al. 2013; Noguchi et al. 2009). LC-

MS results suggest that AsGT23586B produces multiple isomers of kaempferol 

monoglucoside. Further work had to be done to separate those isomers and identified 

the products to decipher A. strigosa UGTs regiospecificity. 

6.3.3 Sesquiterpene glycosyltransferase activities - implications and perspectives 

Among the A. thaliana UGTs that are active on sequiterpenoids, ester-

forming enzymes from families UGT74, UGT75 and UGT84 are able to catalyse the 

formation of glucoconjugates using the acidic sesquiterpenes artemisic acid and 

retinoic acid as substrates. Farnesol is glucosylated by enzymes from families 

UGT71, UGT73, UGT85 and UGT88 (Caputi et al. 2008). Here we have shown that 

AsGT05827 from the newly characterised group O (Caputi et al. 2011) is able to 

catalyse glucosylation of both non-acidic sesquiterpenes used in this study (Fig. 6.7, 

lanes 14, 18). AsGT05827 shows promiscuity, with activity towards structurally 

dissimilar α-bisabolol and capsidiol, which are monocyclic and dicyclic 

sesquiterpenes, respectively. A single site for O-glucosylation is available for α-

bisabolol, therefore it is quite likely that the product formed is α-bisabolol 7-O-

glucoside (Fig. 6.13). Nonetheless, a proper elucidation of the product structure is 

needed to exclude C-glucosylation or formation of a diglucosidic chain. However, 

since AsGT05827 has been shown to have TCP O-glucosyltransferase activity 

(section 4.2.3.3), we can speculate that sesquiterpenes O-glucosides are likely to be 

formed in these assays.  
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α-Bisabolol has a cytotoxic effect on glioma cells, a cancer cell type 

responsible for 80% of brain tumours (Cavalieri et al. 2004). Monoglycosylated 

forms of α-bisabolol have been prepared by chemical synthesis and tested against 

various cancerous cell lines (Piochon et al. 2009). In most cases, glycoconjugates of 

α-bisabolol exhibit a higher cytotoxicity than the aglycone. α-Bisabolol-O-β-D-

glucoside shows higher cytotoxicity against several cell lines; LD50 was up to 36% 

smaller (LD50 130 µM of α-bisabolol and 96 µM of α-bisabolol-Glc over human 

primary glioblastoma cell line U-87). In this study,  α-bisabolol rhamoside was the 

most active compound overall (LD50 46 µM of α-bisabolol-Rha) (Piochon et al. 

2009). Additionally, the modification of the physicochemical parameters of α-

bisabolol induced by glycosylation are likely to improve the capacity of the 

compound to cross the blood-brain barrier and access the cancer cells, this is 

supported by in silico predictions (Piochon et al. 2009). Consequently, AsGT05827 

might be an excellent candidate for a synthetic biology approach to produce α-

bisabolol O-β-D-glucoside. A kinetic analysis is required to determine the affinity 

and activity of the AsGT05827 towards α-bisabolol. 

 

 

 

Figure 6.13: Suggested activity of AsGT05827 with bisabolol as acceptor. 
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6.3.4 General conclusion 

Screening of a subset of potential acceptors with the collection of A. strigosa 

recombinant UGTs led to the discovery of new catalytic activities with potential 

biotechnological applications. These preliminary biochemical studies, together with 

phylogenetic analysis, suggest a complex evolution of substrate recognition and 

regioselectivity displayed by monocot UGTs. The biological significance of the 

observed activities remains to be addressed. Heterologous expression of AsGT24i2 

and AsGT02436 in A. thaliana or N. benthamiana and analysis of flavonoid profiles 

might give clues about the potential involvement in flavonoids biosynthesis of these 

enzymes. Their respective expression profiles suggest divergent functions in planta 

AsGT02436 is expressed only in roots while AsGT24i2 is ubiquitous. The nature of 

the flavonoid content present in A. strigosa tissues expressing those enzymes is also 

essential in elucidating the in vivo functions of this class of A. strigosa UGTs. 
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Chapter 7 – General conclusion and future work 

Plants family one UDP-dependant glycosyltransferases (UGTs) are 

responsible for the glycosylation of a multitude of endogenous or exogenous small 

molecules. Depending on the nature of their acceptors, UGTs may be involved in 

cellular homeostasis, synthesis of bioactive compounds or detoxification 

mechanisms. This thesis describes the identification and functional investigation of 

UGTs expressed in oat root tips. 

7.1 Identification and sequence analysis of UGTs expressed in oat root 

tips 

In chapter 3 a comprehensive collection of UGTs that are expressed in oat 

root tips was unveiled after mining of a transcriptomic dataset. A total of 110 unique 

UGT-like transcripts were identified by tBLASTn searches, 53 of which correspond 

to full-length sequences. The number of UGT-like sequences detected in oat root tips 

is in accordance with recent genome-wide analyses of plant UGTs in other species 

(Caputi et al. 2011; Yonekura-Sakakibara and Hanada 2011). 

Further analyses were carried out on UGT transcripts that had been 

assembled as full-length sequences. A phylogenetic tree was constructed with a 

collection of functionally characterised UGTs from other plant species in which the 

oat full-length UGT amino acid sequences were included.  The oat UGTs were 

heterogeneously distributed across the UGT phylogeny, the occurrence of clusters of 

oat UGT sequences illustrating the lineage-specific expansion of UGTs as has been 

observed in other plant species (Caputi et al. 2011). The number of UGTs contained 

in each of the 16 phylogenetic groups reported by Ross et al. (2001) and Caputi et al. 

(2011) differs across species as a result of the lineage-specific expansion of UGTs. 

In oat, groups L, E and D were particularly overrepresented in root tips, suggesting a 

specific requirement for functional diversification of the corresponding enzymes 

(those groups are particularly involved in glycoconjugation of 

triterpenoids/flavonoids [D], flavonoids/monolignols [E] and carboxylic acids [L]). 

In contrast, no sequences from groups B, F and M were discovered in the oat root tip 

transcriptome. This is suggesting these enzymes are not involved in root physiology 
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in laboratory conditions or that a gene loss event lead to the disappearance of these 

groups in oat. 

Avenacin A-1 is a triterpenoid saponin with antifungal properties that 

accumulates in oat root tips. Characterisation of the complete biosynthetic pathway 

of avenacin A-1 including the steps required for glycosylation will enable 

engineering of the anti-fungal properties attributable to avenacin into susceptible 

crop species. The enzymatic processes required for the synthesis of the avenacin 

trisaccharide are not unknown. The majority of UGTs that are active towards 

triterpenoids or related compounds (e.g. phytosterols, glycoalkaloids, 

brassinosteroids) belong to phylogenetic group D (equivalent to family UGT73). In 

order to gain knowledge of potential avenacin glycosyltransferase candidates a 

phylogenetic reconstruction of group D was performed with entire UGT73 families 

from rice and thale cress enriched with functionally characterised enzymes from 

other plant species and containing all oat UGT73s discovered in this work. The tree 

topology indicates divergent evolution of UGT73s in monocots and dicots; dicot 

UGT73s are split into two monophyletic branches, while monocot UGT73s are 

spread over  several branches. Considering this and the low number of functional 

studies performed on monocot species it is not clear whether the monocots and 

dicots from group D have evolved similar functions. Additional functional studies of 

monocot UGT73s are required to understand the evolution of this phylogenetic 

group across lineages. The functional analysis in chapters 4 and 5 suggests that 

triterpenoids and flavonoids are glycosylated by oat UGT73s, supporting the idea 

that similar functions are performed by monocot and dicot UGTs from group D. 

AsGT16f23 was part of a cluster (M1) orthologous to the dicot cluster containing 

triterpenoid-3-O-glucosyltransferases from B. vulgaris (D1), making it a candidate 

for avenacin glycosylation.  However, functional analysis suggests that AsGT16f23 

is not active towards triterpenoids. A subset of 17 UGTs - candidates for avenacin 

glycosylation – was selected based on phylogenetic analysis complemented with 

gene expression profile and proteomic analyses. The differential distribution of 

UGTs in oat root tips and elongation zones and the expression of Ugt genes were 

compared to characterised avenacin biosynthetic genes. Which are known to be 

tightly co-expressed in epidermal cells of oat root tip. From the 17 UGTs selected 13 
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were cloned from oat root tip cDNA and inserted into expression vectors for 

functional analysis. 

7.2 Functional investigation of A. strigosa UGTs - results and 

perspectives 

Plant UGTs are generally very selective towards their sugar donors, and their 

activity dramatically decreases in the presence of non-natural UDP-sugar substrates. 

Consequently, the understanding of sugar donor specificity is an essential 

prerequisite for the functional analysis of UGTs. In chapter 4, a method was 

designed to investigate sugar specificity for UGTs of unknown functions. This 

method takes advantage of the promiscuity shown by plant UGTs towards their 

acceptor substrates and the broad proportion of plant UGTs able to use TCP as an 

acceptor. TCP-β-D-glucopyranose and TCP-α-L-arabinopyranose were respectively 

produced by the N-methylanthranilate-O-glucosyltransferase (SAD10) and the 

flavonol-3-O-arabinosyltransferase (UGT78D3). This procedure was applied to the 

oat UGTs; all of the recombinant glycosyltransferases that were active towards TCP 

preferentially used UDP-Glc as sugar donor. Nevertheless, TCP 

arabinosyltransferase activity was detected for 9 of the 15 enzymes tested; among 

them AsGT14h20, AsGT14h21, AsGT24i2 and AsGT25n16 possess a substantial 

secondary activity with UDP-Ara compare to UDP-Glc. The present analysis may be 

completed using more sugar donors, including UDP-Rha, UDP-Man, UDP-GlcA, 

commonly used by plant UGTs (Bowles et al. 2005; Osmani et al. 2009). Based on 

this procedure, a competition assay will also be interesting to develop using a mix of 

UDP-sugars as substrates. Catalytic behaviour of plant UGTs in the presence of 

multiple sugar donors has not been investigated so far and may shed new light on 

sugar selectivity of UGTs in planta. 

In chapter 5, a radioassay was developed for the rapid screening of 

glycosyltransferase acceptors. TCP was used as an acceptor for the initial 

development of the method, confirming the results obtained in section 4.2.3. A 

preliminary functional analysis was then conducted onto a subset of eight A. strigosa 

glycosyltransferases selected based on their TCP glucosyltransferase activity; 

flavonoids, sesquiterpenoids and triterpenoids were used as potential acceptors. 

Substantial activities were detected -particularly towards flavonoids - with three of 
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these recombinant enzymes. Most of the activities detected using the radioassay were 

supported by the detection of reaction products using TLC analysis, and generation 

of monoglucosylated flavonoids was confirmed by mass spectrometry. These 

preliminary results suggest a broad promiscuity of AsGT24i2 toward its acceptors; 

AsGT24i2 glucosylates quercetin, kaempferol, tricin and TCP to a similar extent 

under the conditions used and traces of glucosylated capsidiol were also detected. 

Higher substrate specificity was observed for AsGT02436 using kaempferol as 

preferential acceptor despite activities towards TCP, tricin and hederagenin. As 

described in section 6.2.1 radioassays performed with AsGT05827 were misleading; 

nevertheless, product formation was detected by TLC towards kaempferol and 

sesquiterpenoid acceptors. Kinetic analysis remains to be done to assess the 

specificity of these enzymes towards their acceptors. Kinetic analysis combined with 

metabolic profiling of N. benthamiana leaves expressing these enzymes may prove 

to be a powerful approach to investigate the biological significance of the activities 

detected in this study. 

The α-bisabolol glucosyltransferase activity displayed by AsGT05827 is of 

great interest in the scope of developing enhanced drugs for brain cancer treatment 

(Cavalieri et al. 2004; Darra et al. 2008). Full identification of the reaction product as 

well as kinetic analysis remains to be done in order to estimate the true potential of 

this enzyme. Nevertheless, AsGT05827 may be an excellent template for the 

development of synthetic biology approaches for the generation of bisabolol 

glycoconjugates. Protein engineering may be used to alter sugar specificity of 

AsGT05827 (Hansen et al. 2009; Kubo et al. 2004; Noguchi et al. 2009; Osmani et 

al. 2008) considering that α-bisabolol rhamnoside has the most cytotoxic activities 

against cancer cell lines (Piochon et al. 2009).  
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7.3 N. benthamiana  as a platform for the production of synthetic 

saponins 

The results presented in chapter 5 confirm the accumulation of 12,13-epoxy-

16-hydroxy-β-amyrin-3-O-β-D-glucopyranoside in N. benthamiana leaves that have 

been co-infiltrated with SAD1, SAD2 and UGT73C10 expression vectors. This is the 

first report of the production of a simple triterpenoid saponin in a heterologous 

expression system via co-expression of an OSC, a P450 and an UGT, three multi-

gene families that all have central roles in triterpenoid biosynthesis (Augustin et al. 

2011; Sawai and Saito 2011). This work is therefore a proof-of-principle that 

transient co-expression in N. benthamiana using the pEAQ-HT system is a valuable 

platform for the production of oleanane-based triterpenoid saponins. The results 

presented in chapter 5 together with the work of Geisler et al. (2013) also suggest the 

absence of endogenous activities towards the various triterpenoid compounds 

produced: β-amyrin, 12,13-epoxy-16-hydroxy-β-amyrin, β-amyrin-3-O-β-D-

glucopyranoside and the likely 12,13-epoxy-16-hydroxy-β-amyrin-3-O-β-D-

glucopyranoside. Activity of endogenous enzymes remains a major issue in synthetic 

biology approaches (Moses et al. 2013; van Herpen et al. 2010); the absence of 

endogenous modification of the triterpenoids produced so far constitute an excellent 

basis for the development of a saponin production platform in N. benthamiana. 

Development of the present platform may be extremely rewarding 

considering the various industrial applications of saponins (e.g. food sweeteners, 

surfactants, adjuvents, antimicrobial agents). Triterpenoid-modifying enzymes 

reported in the literature (see chapter 1) may be used for combinatorial biosynthesis 

of complex and diverse new-to-nature saponin structures (Moses et al. 2013). The 

productivity of the system remains to be precisely evaluated but the initial 

production of 12,13-epoxy-16-hydroxy-β-amyrin was more than 1 mg/g dry weight 

(Geisler et al. 2013). Higher yields may be obtained considering the “detoxification” 

effect of glucosylation on the triterpenoid products of SAD1 alone or SAD1 plus 

SAD2 suggested by the phenotypes observed in leaves. Metabolic engineering of the 

MVA and MEP pathway has been used successfully to enhance production of 

carotenoids in tomato (Enfissi et al. 2005); a similar approach might be developed to 

increase the flux of triterpenoid precursors. 
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7.4 Implications of the present work for avenacin glycosylation 

One of the initial aims of this work was to increase our understanding of 

avenacin trisaccharide formation. To do so avenacin glycosyltransferase candidates 

were identified based on phylogenetic, root proteomic and gene expression analysis 

in chapter 3. Triterpenoid-3-O-arabinosylation or triterpenoid-3-O-arabinoside 

glucosylation activities were not detected by TLC analysis of in vitro assays using 

multiple experimental conditions in chapter 4. Weak radioactive signals were 

detected in solution when incubating β-amyrin-3-O-α-arabinopyranoside with 

radiolabelled UDP-Glc in chapter 5; it is unclear whether the radioactive signal is 

due to enzymatic activity or background noise in these assays. Potential glucosylated 

products remain to be detected and identified in order to establish if these enzymes 

(AsGT24i2 and AsGT02436) may be involved in glucosylation of avenacin; this will 

be achieved by chromatographic separation of the reaction products from the 

radioassays and by structural analysis (H
1
 NMR, mass spectrometry). 

Identification of triterpenoid glycosyltransferases involved in saponin 

biosynthesis is challenging due to several factors: the unavailability of suitable 

acceptors, the hydrophobic nature of triterpenes and the problems of detection of the 

potential products encountered with mass spectrometry. Obtaining the hypothetical 

natural acceptor of the glycosyltransferases (deglycosylated desacyl avenacin) will 

improve our chances of discovering avenacin glycosyltransferases. This compound 

can be obtained by hydrolysis of the trisaccharide of desacyl avenacin accumulated 

by sad7 mutant (Mugford et al. 2009). Obtaining such a compound is not trivial. The 

avenacin epoxide is labile under acidic conditions and 0.1% trifluoroacetic acid has 

been used to form carbonyl-avenacin after conversion of the epoxide (Geisler et al. 

2013); consequently acidic hydrolysis is a poor option. Therefore enzymatic 

hydrolysis might be regarded as the best option; the specific glycosidase avenacinase 

may use desacyl avenacin as a substrate (Osbourn et al. 1995). The promiscuous β-

glucosidase from almonds is another alternative and may conceivably release α-L-

arabinose as well as β-D-glucose (Gachon et al. 2004).  
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The absence of an enzyme showing a preference for UDP-Ara over UDP-Glc 

raises the question of the presence of avenacin arabinosyltransferase in our collection 

of recombinant enzymes. The absence of specific arabinosyltransferase activity may 

indicate that the candidate screening for avenacin glycosyltransferase performed in 

chapter 3 failed to identify avenacin arabinosyltransferase or that this enzyme was 

part of the subset of potential candidates that were not cloned in section 4.2.1. 

Alternatively, the hypothetical model of trisaccharide formation could be incorrect. 

A peculiar mechanism of glycosylation may occur in avenacin mechanism. Recently 

a vacuolar transglucosidase has been identified from rice (Luang et al. 2013). This 

enzyme transfer sugars from phenolic acid esters (leaving group pKa 4.6-5.8) to a 

variety of acceptors (flavonoids and phytohormones). Such a mechanism could occur 

in oat vacuoles where the presence of the acyl glucose donors benzoyl-β-D-glucose 

and N-methyl-anthranyloyl-β-D-glucose (leaving group pKas 4.2 and 2.1, 

respectively) is known to be required for SAD7 activity. Other alternative routes are 

also possible including blockwise addition of activated preformed trisaccharide. In 

order to confirm the initial hypothetical pathway, activity assays may be performed 

on protein crude extract from oat root tips to know if any arabinosyltransferase 

activity towards suitable triterpenoids acceptor can be detected. 

The recent gain of knowledge in glycosyltransferases involved in glycosyl 

transfer to a sugar moiety of a glycoside (GGTs) is of great interest for identification 

of avenacin glucosyltransferases and for understanding the synthesis of natural 

product oligosaccharide chains more widely. Indeed, only a few GGTs were 

characterised from the family UGT94 at the time that I started my PhD (Masada et 

al. 2009; Noguchi et al. 2008; Osmani et al. 2008). Over the last three years many 

new GGTs have been discovered in group A, not only in the UGT94 family (Itkin et 

al. 2013; Nagatoshi et al. 2012; Ono et al. 2010b) but also in the UGT79 family 

(Frydman et al. 2013; Yonekura-Sakakibara et al. 2012) and UGT91 family (Shibuya 

et al. 2010), suggesting that GGT activity appeared before the split between UGT79, 

UGT91 and UG94 (Yonekura-Sakakibara et al. 2012). These families are therefore 

obvious targets for discovery of glucosyltransferases involved in triterpene glycoside 

biosynthesis. The expression profile analysis of AsGT01332 and AsGT18279 – 

belonging to the group A (Fig. 3.1) – will bring new light on the potential role of 

these enzymes in avenacin biosynthesis. Of note, AsGT01332 has been detected in 
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the proteomic analysis and data suggests this protein is more abundant in root tips 

(Fig.3.5). 

The identification of enzymes involved in avenacin trisaccharide formation is 

of importance in the scope of engineering take-all resistant crops. Also, antimicrobial 

activity is common for saponins and alternative glycosylation pattern is also of 

interest to improve resistance of susceptible crop species. An alternative approach to 

the enzymatic synthesis of avenacin trisaccharide may be the engineering of 

glycosyltransferases with required catalytic properties. In the past, domain swapping 

approaches have taken advantage of the conserved three dimensional structures of 

UGTs to generate new activities (Cartwright et al. 2008; Hansen et al. 2009). A 

combination of approaches – point mutation of crucial residues for sugar donor 

recognition, domain swapping, PSPG motif exchange/modification – may be 

applicable to UGT73C10 (triterpene-3-O-glucosyltransferase from B. vulgaris) to 

modify its sugar specificity. 

7.5 Concluding remarks 

The present work suggests that functional evolution of UGTs in monocots 

and dicots has taken rather different routes reflected by discrete expansion of UGT 

families.  Further functional characterisation of monocot UGTs is required in order 

to understand the primary structure-activity relationships of monocot UGTs. 

Functional investigation of A. strigosa UGTs has uncovered catalytic activities of 

potential biotechnological interest. The development of a powerful N. benthamiana-

based production platform for synthetic saponins offers great perspectives for the 

generation of improved/new-to-nature compounds with valuable properties. 
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Supplementary data S.1: Table of Arabidopsis thaliana UGTs used as query in tBLASTn 

searches for mining of 454-based transcriptomic resource from A. strigosa root tips 

UGTs GenBank accession Group

UGT71B1 AB025634 E

UGT72B1 AF360262 E

UGT73B1 AL021961 D

UGT74B1 AC002396 L

UGT75B1 AV790637 L

UGT76B1  AC073395 H

UGT78D1 AC009917 F

UGT79B1 AB018115 A

UGT80A2 AC016827 n.d

UGT80B1 AC007203 n.d

UGT81A1 AL031004 n.d

UGT82A1 AP002046 N

UGT83A1 AC011664 I

UGT84A1 CP002687 L

UGT85A1 AC006551 G

UGT86A1 AC006922 K

UGT87A1 AC004165 J

UGT88A1 AP000373 E

UGT89A1 AC006085 B

UGT90A1 AC005167 C

UGT92A1 AL353013 M
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Name used full length candidates Contig name Contig length (nt) Number of reads

AsGT1a115 00180 953 47

AsGT3i21 02980 - -

AsGT4h2 17583 524 5	

AsGT8i4 08947 1708 76	

AsGT11i11 02362 1725 79	

AsGT12o13 10086 799 20

AsGT14h16 00260 1678 102

AsGT14h21 13141 1672 31

AsGT15a11 01799 1660 139

AsGT16f23 01781 1709 126

AsGT16h6 09778 1614 620

AsGT18p9 01799 1660 139

AsGT20n10 00101 1684 270

AsGT21p16 00260 1678 102

AsGT24i2 26925 915 11

AsGT25n16 10190 1375 39

AsGT27a12 22121 1562 61

AsGT27f7 16327 1690 94

AsGT28b19 10762 840 20

AsGT260 00260 1678 102

AsGT678 00678 1945 85

AsGT733 00733 1562 76

AsGT1092 01092 1594 116

AsGT1332 01332 1581 95

AsGT1670 01670 1611 61

AsGT1989 01989 1651 575

AsGT2436 02436 1552 85

AsGT3158 03158 1785 67

AsGT3999 03999 2338 81

AsGT5827 05827 1577 65

AsGT6492 06492 1619 44

AsGT6751 06751 1693 77

AsGT8947 08947 1708 76	

AsGT10326 10326 1791 91

AsGT16525 16525 1838 117

AsGT17576 17576 1785 136
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AsGT18279 18279 1673 98

AsGT18535 18535 1616 55

AsGT23586A/B 23586 2152 205

AsGT23781 23781 1814 44

AsGT23818 23818 1629 147

AsGT24525 24525 2297 840

AsGT26962 26962 1548 116

00030 474 12

00243 1136 16

00931 923 32

01194 1280 22

01315 704 12

01341 1363 19

01461 451 4

01577 890 45

01599 795 8	

02132 712 16

02699 588 9

03295 644 10

03883 780 10

04347 790 15

04598 737 7

05602 1073 14

05740 1712 38

06218 690 9

07600 1667 71

07784 1426 24

07903 1625 50

08700 937 19

10086 799 20

10188 523 7

10189 552 7

10433 778 7

10763 885 20

10772 1466 87

10811 349 56

11099 822 14

11140 496 3

11637 1360 82

12842 745 166
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Supplementary data S.2: Table of UGT-like retrieved from 454-based transcriptomic 

resource from A. strigosa root tips.  

13541 549 23

14612 787 16

15275 509 4	

15351 1186 41

16496 1318 33

17328 556 6

17424 843 14

17594 264 4	

17673 692 18

17930 891 10

18035 966 12

18257 1541 59

18280 637 91

21401 1311 22

21862 1184 11

22027 648 8

22388 1435 93

22538 1554 118

23002 1061 23

23141 274 116

23340 1050 18

23453 466 7

24249 741 22

25504 573 7

26167 1494 23

26778 546 10

27009 1115 92

28651 1622 223

28947 804 21

29169 2453 414
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Name Acc Numb Plant Species Group UGT familyActivity Publication

UGT79B1 BAA19127 Arabidopsis thaliana A UGT79 Flavonol glucosyltranferase Tohge et al, 2005

UGT91A1 Q940V3 Arabidopsis thaliana A UGT91 n.d Ross et al., 2001

UGT94B1 Q5NTH0 Bellis perennis A UGT94 Cyanidin-O-glucoside 2-O-glucuronosyltransferase Osmani et al., 2008

CaUGT3 BAH80312 Catharanthus roseus A UGT94 Flavonoid glucoside 1,6-glucosyltransferase Masada et al., 2009

Cm1,2RhaT1 AY048882 Citrus maxima A UGT94 Flavanone-7-O-glucose 1,2-rhamnosytransferase Frydman et al., 2012

Cs1,6RhaT DQ119035 Citrus sinensis A UGT91 Flavanone rutinoside 1,6-rhamnosyltransferase Frydman et al., 2012

UGT94E5 BAM28984 Gardenia jasminoides A UGT94 iridoid-O-glucoside 6-glucosyltransferase Nagatoshi et al., 2012

UGT91H4 BAI99585 Glycin max A UGT91 Triterpenoid-O -glucosyltransferase Shibuya et al, 2010

RT Q43716 Petunia hybrida A UGT81 Anthocyanidin-3-O rhamnosyltransferase Brugliera et al., 1994

In3GGT Q53UH4 pomoea nil A UGT91 Anthocyanidin-3-O-glucoside 1,2-glucosyltransferase Morita et al., 2005

UGT94D1 BAF99027 Sesamum indicum A UGT94 Sesaminol 2'-O-glucoside-O-glucosyltransferase Noguchi et al., 2008

UGT94F1 BAI44133 Veronica persica A UGT94 Anthocyanin-3-O-glucoside 1,2-glucosyltransferase Ono et al., 2010

UGT89B1 NP_177529 Arabidopsis thaliana B UGT89 Benzoic acid glucosyltransferase Lim and Bowles, 2004

UGT89C1 AAF80123 Arabidopsis thaliana B UGT89 Flavonol-7-O-rhamnosyltransferase Yonekura-Sakakibara et al., 2007

UGT90A1 Q9ZVX4 Arabidopsis thaliana C UGT90 n.d Ross et al., 2001

UGT90A7 ACB56926 Hieracium pilosella C UGT90 Flavonoid 7-O-glucosyltransferase Witte et al., 2009

UGT73G1 AAP88406 Allium cepa D UGT73 Flavonoid glucosyltransferase Kramer et al, 2003

UGT73J1 AAP88407 Allium cepa D UGT73 Flavonoid glucosyltransferase Kramer et al., 2003

UGT73B3 AAM47999 Arabidopsis thaliana D UGT73 Flavonoid glucosyltranferase Kim et al, 2006a

UGT73C6 AAD20151 Arabidopsis thaliana D UGT73 Flavonol 3-O -glucoside-7-O -glucosyltransferase Jones et al., 2003

UGT73C5 AEC09299 Arabidopsis thaliana D UGT73 Brassinosteroid-23-O-glucosyltransferase Poppenberger et al., 2005

UGT73C1 AEC09294 Arabidopsis thaliana D UGT73 Zeatin-O-glucosyltransferase Hou et al., 2004

UGT73C10 AFN26666 Barbarea vulgaris D UGT73 Triterpenoid-3-O -glucosyltransferase Augustin et al. 2012

UGT73C11 AFN26667 Barbarea vulgaris D UGT73 Triterpenoid-3-O -glucosyltransferase Augustin et al. 2012

UGT73C12 AFN26668 Barbarea vulgaris D UGT73 Triterpenoid-3-O -glucosyltransferase Augustin et al. 2012

UGT73C13 AFN26669 Barbarea vulgaris D UGT73 Triterpenoid-3-O -glucosyltransferase Augustin et al. 2012

BvGT2 AAS94329 Beta vulgaris D UGT73 Flavonoid-7,4'-O-glucosyltransferase Isayenkova et al., 2006

CaUGT2 BAD29722 Catharanthus roseus D UGT73 Curcumin glucosyltransferase Kaminaga et al., 2004

Bet5OGT CAB56231 Cleretum bellidiforme D UGT73 Betanidin-5-O-glucosyltransferase Vogt et al., 1999
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DicGT4 BAD52006 Dianthus caryophyllus D UGT73 Chalcononaringenin 2'-O-glucosyltransferase Ogata et al., 2004

UGT73A5 CAB56231 Dorotheanthus bellidiformisD UGT73 Betanidin 5-O-glucosyltransferase Vogt et al., 2002

ant3OGT Q8H0F2 Gentiana triflora D UGT73 Anthocyanin 3'-O-glucosyltransferase Fukuchi-Mizutani et al., 2003

UGT73F2 BAM29362 Glycin max D UGT73 Triterpenoid-O -glucosyltransferase Sayama et al. 2012

UGT73F4 BAM29363 Glycin max D UGT73 Triterpenoid-O -glucosyltransferase Sayama et al. 2012

UGT73P2 BAI99584 Glycin max D UGT73 Triterpenoid-O -glucosyltransferase Shibuya et al, 2010

UGT73F1 BAC78438 Glycyrhiza echinata D UGT73 Isoflavonoid, glucosyltransferase Nagashima  et al., 2004

UGT73A10 BAG80536 Lycium barbarum D UGT73 catechin glucosyltansferase Noguchi et al., 2008

UGT73K1 AAW56091 Medicago trunctula D UGT73 Triterpenoid-O -glucosyltransferase Achnine et al. 2005

UGT73F3 ACT34898 Medicago trunctula D UGT73 Triterpenoid-28-O -glucosyltransferase Naoumkina et al. 2010

Togt1 AAK28303 Nicotiana tabacum D UGT73 hydroxycoumarin glucosyltransferase Fraissinet-Tachet et al., 1998

RUGT-5 XM_463383 Oryza sativa D UGT73 Flavonol-3,4'-O-glucosyltransferase Ko et al., 2006

UGT73B6 AAS55083 Rhodiola sachalinensis D UGT73 tyrosol glucosyltransferase Ma et al., 2007

UBGT BAA83484 Scutellaria baicalensis D UGT73 Flavonoid-7-O-glucosyltransferase Hirotani et al., 2000

GAME1 ADQ37964 Solanum lycopersicum D UGT73 Tomatidine-O-galactosyltransferase Itkin et al., 2011

GAME2 ADQ37966 Solanum lycopersicum D UGT73 β1-Tomatidine-O-xylosyltransferase Itkin et al., 2013

SGT1 AAB48444 Solanum tuberosum D UGT73 Solanidine/sterol alkaloid glucosyltransferase Moehs et al., 1997

SGT2.1 ABB29873 Solanum tuberosum D UGT73 Solanidine glucosyltransferase McCue et al., 2006

SGT3 ABB84472 Solanum tuberosum D UGT73 Solanine/chaconine rhamnosyltransferase McCue et al., 2007

VaAOG Q8W3P8 Vigna angularis D UGT73 Abscisic acid-O-glucosyltransferase Xu et al., 2002

UGT88D3 ABR57234 Antirrhinum majus E UGT88 Chalcone 4'-O-glucosyltransferase Ono et al., 2006

UGT71B6 BAB02837 Arabidopsis thaliana E UGT71 Abscisic acid glucosyltransferase Priest et al., 2005

UGT71C1 AAC53226 Arabidopsis thaliana E UGT71 Benzoic acid glucosyltransferase Lim and Bowles, 2002

UGT72B1 CAB80916 Arabidopsis thaliana E UGT72 Chlorinated  phenol N-/ O-glucosyltransferase Brazeir-Hicks et al, 2007

UGT88A1 AEE75831 Arabidopsis thaliana E UGT88 n.d Ross et al., 2001

UGT72E2 AED98252 Arabidopsis thaliana E UGT72 Monolignol 4-O-glucosyltransferase Lanot et al.,2006

UGT72D1 Q9ZU72 Arabidopsis thaliana E UGT72 n.d Ross et al., 2001

BvGT1 AAS94330 Barbarea vulgaris E UGT71 Flavonoid-O-glucosyltransferase Isayenkova et al., 2006

GmIF7GT NP_001235161Glycine max E UGT88 Isoflavone-7-O-glucosyltransferase Noguchi et al., 2007

UGT72B11 ACB56923 Hieracium pilosella E UGT72 Flavonol-O-glucosyltransferase  Witte et al., 2009
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GTase1 BAF75917 Ipomoea nil E UGT71 Phytohormones-O-glucosyltransfersase Suzuki et al., 2007

4CGT BAE48240 Linaria vulgaris E UGT88 Chalcone glucosyltransferase Ono et al., 2006

UGT88A4 ABL85471 Maclura pomifera E UGT88 Coumarins glucosyltransferase Tian et al., 2006

UGT72L1 ACC38470 Medicago truncatula E UGT72 Epicatechin 3'-O-glucoside Pang et al., 2008

UGT71G1 AAW56092 Medicago trunctula E UGT71 triterpenoid-O -glucosyltransferase Achnine et al. 2005

NtGT1b BAB60721 Nicotiana tabacum E UGT71 Flavonoids and coumarins glucosyltransferase Taguchi et al., 2001 

UGT706C1 BAB868090 Oryza sativa E UGT88 Kaempferol and quercetin glycosyltransferase Ko et al., 2007b

UGT706D1 BAB868093 Oryza sativa E UGT88 Flavone and flavanone  glycosyltransferase Ko et al., 2007b

UGT707A3 BAC83989 Oryza sativa E UGT71 Kaempferol and quercetin glycosyltransferase Ko et al., 2007b

UGT88D7 BAG31948 Perilla frutescens E UGT88 Flavonoid 7-O-glucuronosyltransferase Noguchi et al., 2009

AS Q9AR73 Rauvolfia serpentina E UGT72 Hydroquinone glucosyltransferase (Arbutin synthase) Hefner et al., 2002

UGT72B14 ACD87062 Rhodiola sachalinensis E UGT72 Tyrosol  glucosyltransferase Yu et al., 2011

RhGT1 BAD99560 Rosa hybrida E UGT88 Anthocyanidin 5,3-O-glucosyltransferase Ogata et al., 2005

ScUGT5 BAJ11653 Sinningia cardinalis E UGT88 3-Deoxyanthocyanidin glucosyltransferase Nakatsuka & Nishihara., 2010

SlUGT5 HM209439 Solanum lycopersicum E UGT72 Phenols glucosyltransferase Louveau et al., 2011

F7GT2 BAH14962 Torenia hybrid cultivar E UGT88 flavonoid 7-O-glycosyltransferase Noguchi et al, 2009

F7GT1 BAH14961 Torenia hybrid cultivar E UGT88 Flavonoid 7-O-glucuronosyltransferase Noguchi et al., 2009

UGT88D8 BAH47552 Veronica persica E UGT88 Apigenin-7-O-glucuronosyltransferase Ono et al., 2010

UGT78D1 AAF19756 Arabidopsis thaliana F UGT78 Flavonol 5-O-rhamnosyltransferase Jones et al., 2003

UGT78D3 AED92375 Arabidopsis thaliana F UGT78 Flavonol 5-O-arabinosyltransferase Yonekura- et al., 2003

AcGaT BAD06514 Aralia cordata F UGT78 Anthocyanin 3-O -galactosyltransferase Kubo et al. 2004

F3OGT AAS00612 Citrus sinensis F UGT78 Flavonoid 3-O-glucosyltransferase Lo Piero et al., 2005

an35GT BAF49289 Clitoria ternatea F UGT78 Anthocyanin 3',5'-O-glucosyltransferase Noda et al., 2003

Ct3GT-A BAF49297 Clitoria ternatea F UGT78 Anthocyanin 3-O-glucosyltransferase Noda et al., 2004

DicGT1 BAD52003 Dianthus caryophyllus F UGT78 Flavonoid-3-O-glucosyltransferase Ogata et al., 2004

DicGT3 BAD52005 Dianthus caryophyllus F UGT78 Flavonol 3-O-glucosyltransferase Ogata et al., 2004

F3galtase BAI40148 Diospyros kaki F UGT78 Flavonoid 3-O-galactosyltransferase Ikegami et al., 2009

3GalT BAF49284 Eustoma exaltatum F UGT78 Flavonoid 3-O-galactosyltransferase Noda et al., 2002

Ufgt AAU09443 Fragariax ananasas F UGT78 Flavonoid 3-O-glucosyltransferase Almeida et al., 2007

ant3OGT ADK75021 Freesia hybrid cultivar F UGT78 Anthocyanidin-3-O-glucosyltransferase Sui et al., 2011
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Fla3OGT Q96493 Gentiana triflora F UGT78 Flavonoid 3-O-glucosyltransferase Tanaka et al., 1996

Fla3GT ACH56523 Gossypium hirsutum F UGT78 Flavonoid 3-O-glucosyltransferase Yang et al., 2010

BRONZE-1 CAA33729 Hordeum vulgare F UGT78 Flavonol 3-O-glucosyltransferase  Wise et al., 1990

ant3GT BAD83701 Iris hollandica F UGT78 Anthocyanidin-3-O-glucosyltransferase Yoshihara et al., 2005

Le3GT-A BAF49310 Lobelia erinus F UGT78 Anthocyanidin 3-O-glucosyltransferase Noda., 2005

Fla3OGT BAB93000 Malus domestica F UGT78 Flavonoid 3-O-glucosyltransferase Honda et al., 2002

UGT78G1 ABI94025 Medicago truncatula F UGT78 (Iso) Flavonoid glycosyltransferase Modolo et al., 2007

F3GalTase Q9SBQ8 Petunia hybrida F UGT78 Kaempferol-3-O-galactosyltransferase Miller et al., 1999

SaGT4A BAD89042 Solanum culeatissimum F UGT73 Saponin glucosyltransferase Kohara et al., 2005

UF3GaT BAA36972 Vigna mungo F UGT78 Flavonoid 3-O-galactosyltransferase Mato et al., 1998

F3OGT ABR24135 Vitis labrusca F UGT78 Flavonoid 3-O-glucosyltransferase Hall et al., 2007

VvGT1 AAB81683 Vitis vinifera F UGT78 Flavonoid 3-O-glucosyltransferase Ford et al., 1998, Offen et al, 2006

UFGT P51094 Vitis vinifera F UGT78 Flavonoid 3-O-glucosyltransferase Kobayashi et al., 2001

BRONZE-1 CAA31856 Zea mays F UGT78 Flavonoid 3-O-glucosyltransferase Furtek et al., 1988

UGT85H2 A6XNC5  Medicago truncatula G UGT85 (Iso) flavonoid glycosyltransferase Modolo et al., 2007

UGT85A1 AAF18537 Arabidopsis thaliana G UGT85 Cytokinin glucosyltransferase Hou et al, 2004

UGT85A24 AB555732 Gardenia jasminoides G UGT85 Iridoid-O-glucosyltransferase Nagatoshi., 2011

UGT85K4 AEO45781 Manihot esculenta G UGT85 Acetone cyanohydrin-O-glucosyltransferase Kannangara et al., 2011

UGT85K5 AEO45782 Manihot esculenta G UGT85 2-hydroxy-2-methylbutyronitrile-O-glucosyltransferase Kannangara et al., 2011

UGT85A19 ABV68925 Prunus dulcis G UGT85 Mandelonitrile glucosyltransferase Franks et al., 2008

UGT85B1 AAF17077 Sorghum bicolor G UGT85 p-Hydroxymandelonitrile-O-glucosyltransferase Hansen et al., 2003

UGT85C2 AAR06916 Stevia rebaudiana G UGT85 Steviol glucosyltransferase Richman et al., 2005

UGT76C1 BAB10792 Arabidopsis thaliana H UGT76 Cytokinin glucosyltransferase Hou et al., 2004

UGT76B1 BAC43564 Arabidopsis thaliana H UGT76 Isoleucic acid-O-glucosyltransferase von Saint Paul et al., 2011

UGT76C2 AED90933 Arabidopsis thaliana H UGT76 Cytokinin-N-glucosyltransferase Hou et al., 2004

UGT76D1 AEC07843 Arabidopsis thaliana H UGT76 n.d Ross et al., 2001

UGT76E1 AED97208 Arabidopsis thaliana H UGT76 n.d Ross et al., 2001

DicGT5 BAD52007 Dianthus caryophyllus H UGT76 Chalcononaringenin 2'-O-glucosyltransferase Ogata et al., 2004

UGT709A4 BAC80066 Oryza sativa H UGT76 Isoflavonoid glucosyltransferase Ko et al., 2007b

UGT76G1 AAR06912 Stevia rebaudiana H UGT76 Steviol glucosyltransferase Richman et al., 2005
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Bx8 AAL57037 Zea mays H UGT76 Benzoxazinoid glucosyltransferase von Rad et al., 2001

Bx9 AAL57038 Zea mays H UGT76 Benzoxazinoid glucosyltransferase von Rad et al., 2001

UGT83A1 Q9SGA8 Arabidopsis thaliana I UGT83 n.d Ross et al., 2001

UGT87A1 O64732 Arabidopsis thaliana J UGT87 n.d Ross et al., 2001

UGT86A1 Q9SJL0 Arabidopsis thaliana K UGT86 n.d Ross et al., 2001

UGT74E2 AEE27876 Arabidopsis thaliana L UGT74 Indole-3-butyric acid glucosyltransferase Tognetti et al., 2010

UGT74B1 AAC00570 Arabidopsis thaliana  L UGT74 thiohydroximate  glucosyltransferase Grubb et al, 2004

UGT74D1 AEC08580 Arabidopsis thaliana  L UGT74 Jasmonate glucosyltransferase Jin et al, 2013

UGT74F2 AAB64024 Arabidopsis thaliana  L UGT74 Salicylic acid and anthranilic acid glucosyltransferase Quiel et al, 2003, Dean et al, 2008

UGT75B1 AEE27854 Arabidopsis thaliana  L UGT75 Indole-3-acetic acid glucosyltransferase  Jackson et al, 2001

UGT75C1 CAB10189 Arabidopsis thaliana  L UGT75 Anthocyanin-5-O -glucosyltransferase  Gachon et al, 2005

UGT75D1 CAB10333 Arabidopsis thaliana  L UGT75 Flavonoid glucosyltransferase Tohge et al, 2005

UGT84A1 AEE83609 Arabidopsis thaliana  L UGT84 Hydroxybenzoate glucosyltransferase Meissner et al, 2008

UGT84B1 AAB87119 Arabidopsis thaliana  L UGT84 Auxine glucosyltransferase Jackson et al, 2001

SAD10 ACD03250 Avena strigosa L UGT74 N -methylanthranilate-O -glucosyltransferase Owatworakit et al, 2012

UGT74H6 ACD03261 Avena strigosa L UGT74 Benzoic acid glucosyltransferase Owatworakit et al, 2012

UGT84A9a CAS03354 Brassica napus L UGT84 Sinapate glucosyltransferase Mittasch et al, 2010

CsGT45 ACM66950 Crocus sativus L UGT75 Flavonoid glucosyltransferase Moraga et al, 2009

CaUGT2 Q6X1C0 Crocus sativus L UGT74 Crocetin-O-glucosyltransferase Moraga et al., 2004

UGTCs2 AAP94878 Crocus sativus L UGT74 Crocetin glucosyltransferase Moraga et al., 2004

EpGT-1 BAD90934 Eucalyptus perriniana L UGT75 Monoterpene glucosyltransferase Nagashima et al., 2005

EpGT-2 BAD90935 Eucalyptus perriniana L UGT75 Monoterpene glucosyltransferase Nagashima et al., 2005

5GT-A BAF49285 Eustoma grandiflorum L UGT75 Anthocyanin 5-O -glucosyltransferase Noda et al., 2002

FaGT2 Q66PF4 Fragaria ananassa L UGT84 Cinnamate glucosyltransferase Landmann et al., 2007

UGT75L6 BAM28984 Gardenia jasminoides L UGT75 Crocetin glucosyltransferase Nagatoshi et al., 2012

5GT7 BAG32255 Gentiana triflora L UGT75 Anthocyanin 5-O -glucosyltransferase Nakatsuka et al., 2008

HGT8 BAA36423 Glandularia x hybrida L UGT75 Anthocyanin 5-O -glucosyltransferase Yamazaki et al., 1999

GgSGT BAG14302 Gomphrena globosa L UGT84 Sinapate glucosyltransferase Matsuba et al., 2008

UGT13248 ADC92550 Hordeum vulgare L UGT84 Deoxynivalenol-3-O-glucosyltransferase Schweiger et al., 2010

ant5GT BAD06874 Iris hollandica L UGT75 Anthocyanin 5-O -glucosyltransferase Imayama et al., 2004
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Supplementary data S.3: Table of UGTs used in Fig. 3.1. Accession numbers refers to GenBank or UniProt (in case of sequences not referenced in GenBank). 

Literature is referring to publication of functional analysis of UGTs. 

 

 

UGT75L4 ABL85474 Maclura pomifera L UGT75 Dihydrokaempferol glucosyltransferase Tian et al., 2006

UGT74M1 ABK76266 Medicago truncatula L UGT74 Triterpenoid-28-O -glucosyltransferase Meesapyodsuk et al, 2007

ToGT2 AAB36652 Nicotiana tabacum L UGT75 Coumarins glucosyltransferase Fraissinet-Tachet, et al., 1998

SAGTase AAF61647 Nicotiana tabacum L UGT74 Salicylic acid glucosyltransferase Lee & Raskin., 1999

PF3R4 BAA36421 Perilla frutescens L UGT75 Anthocyanin 5-O-glucosyltransferase Yamazaki et al., 1999

F7GT AAY27090 Pyrus communis L UGT75 Flavonoid 7-O-glucosyltransferase Fischer et al., 2005

Gtsatom CAI62049 Solanum lycopersicum L UGT74 Salicylic acid xylosyltransferase Tarraga et al., 2005

UGT74G1 AAR6920 Stevia rebaudiana L UGT74 Steviol glucosyltransferase Richman et al., 2005

ResOGT ABH03018 Vitis labrusca L UGT84 Resveratrol-O-glucosyltransferase Hall & De Luca., 2007

ZmIAGT AAA59054 Zea mays L UGT74 Indole-3-acetic acid glucosyltransferase Szerzen et al., 1994

UGT92A1 Q9LXV0 Arabidopsis thaliana M UGT92 n.d Ross et al., 2001

DOPA5GT BAD91804 Celosia cristata M UGT92 Cyclo-DOPA-5-O-glucronyltransferase Sasaki et al., 2005

cDOPA5GT BAD91803 Mirabilis jalapa M UGT92 Cyclo-DOPA-5-O-glucosyltransferase Sasaki et al., 2004

UGT82A1 Q9LHJ2 Arabidopsis thaliana N UGT82 n.d Ross et al., 2001

ZOG1 AAD04166 Phaseolus lunatus O UGT93 Zeatin-O-glucosyltransferase Martin et al, 1999

ZOX1 AAD51778 Phaseolus vulgaris O UGT93 Zeatin-O-xylosyltransferase Martin et al, 1999

cisZog1 AAK53551 Zea mays O UGT93 cis-Zeatin O-glucosyltransferase Martin et al., 2001a

cisZog2 AAL92460 Zea mays O UGT93 cis-Zeatin O-glucosyltransferase Veach et al., 2003
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Supplementary data S.4: Protein sequences of selected UGTs. PSPG motifs are highlighted 

in yellow and catalytic residues in green. 

 

SAD10 

MGAEWEHVSDIHVLLLPYPVQGHINPMLQFGKRLAHIGGVGVRCTLAITP 

YLLRQCQDPCPGAVHLVEISDGFDSAGFEEVGDVAAYLAGMESAGSRTLD 

ELLRSEAEKGRPIHAVVYDAFLQPWVPRVARLHGAACVSFFTQAAAVNVA 

YSRRVGKIEEGLPAGFEAEDLPTFLTLPLPYQDMLLSQFVGLDAVDHVLV 

NSFHELQPQESAYMESTWGAKTVGPTVPSAYLDKRITDDVSYGFHLYTPM 

TATTKAWLDAQPPRSVTYVSFGSMATPGPTEMAEMAEGLHSSGKAFLWVV 

RASEASKIPDGFQERVGGRGLVVTWVAQLEVLAHGAIGCFVTHCGWNSTM 

EALGAGVPMVAVPQWSDQPTNAKFVEDVWCVGVRARRDPEGVVRREELER 

CIREVTGDDKYACNALDWKEKSKRAMSQGGSSDMNITEFLQALRRSRKSY 

EAKPIEPLLVGLDA 

 

AsGT3i21 

MASTTTATRSSSSSSRSKKLRVLLIPFFATSHIEPFTDLAIRLAAAGSPSVAVEA

TVAVTPANVSIVQSLLERHYGRQHDAAAESTIPVKIATYPFPAVDGLPRGVEN

LGRAAAADSWRIDVAAFSDTLMRPVQEALVREQAPDALVTDVHFVWNVRV

AAELGVPCVTFKVVGAFSSLAMRHLALVADVASSDPDVAVVPRFPGLPVRIP

RTELPEFLRKKQEVDYSTTNTFYAAQAACFGLAVNTSSDLEQEYCELHMREG

YVKRAYFIGPVSLRPSPSLDAVGDSQHCVDWLDSKPARSVVYLCFGSFAPVS

EAQLQELALGLEASGESFLWVVRSQEWTPPEGWEERVGDRGMVVTAWAPQ

TAILGHPAVGAFVTHCGWNSVLETVAAGVPVLTWPMVFEQFITERLVTDVLG

IGQRLWPHGAGIRSTRHIENEIVPAEAVARALMAFMCPGGPGDSARNRVMRL

AAKAHAAMAEGGSSHRDLRRLVDDLLEARGAAVAGGPKSVQG 

 

AsGT11i11 

MASNDNVPTAVTSSINKKLRVLLIPILATSHIGPFTELAISLAATNDAVE 

ATVAVTPANVSIVQSMLEHRGGHSVKVATYPFPAVDGLPEGVENFGSAAT 

PEQSMCIMVATKSEALTRPVHETLIRSQSPDAVVTDMTFLWNSGIAAELG 

VPCVVFSVMGAFSMLAMHHLEDAGVDRDDQDDDDDDDAVVEVPGFPGPPI 

RIPRTELPGFLRRPDYSITNLFISLKAANCFGLAMNTSSELEKQYCELYT 

TPPEEGGGGLRRAYFLGPLALALPPPISSSSSSSSDCCSIMAWLDSKPSR 

SVVYVSFGSMAHVKDVQLDELALGLETSGISFLWVVRGREEWSPPKGWEA 

RVQDRGFIIRAWAPQISILGHHAAGAFVTQCGWNSVLETVAAAVPMLTWP 

LAFEQFITERLVTDVLGIGVRLWPDGAGLRSESYQEHEVIPRQDVARALV 

EFMRPAAGGPSSIRDMARTKLMDLSAKLHAAVAQGGSSHRDLHRLVDDLL 

MEAAAKRPRT 
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AsGT14h20 

MAHTETTEKSMILMSSAAPPPPPHFVLIPLIGQGHTIPMVDLAYLLVERG 

ARVSLVTTPVNAARLQGVADRARRAMQPLEIVELPFPPADDGLSPGSANV 

DNFLRLFLDLYRLAGPLEAYLRALPRRPSCIISDSCNPWTAGVARSVGVP 

RLFFHVASCFYSLCKLKAATHGLLLHDGNKDDAYVEVPGMPVRVEVTKDS 

WSSSYTTPEWEAFVEDARDGMRTADGAVLNTFLGLEGQFVKCFEAALGKP 

VWALGPFFLNNRDEDAVATRGDKDKPSAVDQDAVTAWLDAMDESAVTYVS 

FGSLVRMPPEQLYEVGHGLVDSGKPFVWVVKESETASPEAREWLQALEAR 

TAGRGLVVRGWVSQLAILSHRAIGGFVTHCGWNSLLESVAHGVPVVTWPH 

FGDQFLNEQLVVEVLGVGVPVRGAAGPVVPVVREHIERAVSELMGGGAVA 

QERRRKCKEFGERAHTAVAKGGSSHENLTQLVHSFVRSGSTEQQTTQDRN 

C 

 

AsGT14h21 

MAPTETAAPPPPPPHFVLVPLIGQGHTIPMGDLACLLAERGARVSLVTTP 

VNAARLQGVADRARRARLPLEIVELPLPPADDGLPPGGENSDSIIRLLLA 

LYRLAGPLEAYVRALPWRPSCIISDSCNPWMAGVARSVGVPRLFFNGPSC 

FYSLCSHNVARHGLLHDGEGEGERDAYVVTGVPVRVEMTKDTWSAALLTC 

MPKWEAFLQDVREGMRTADGAVVNTFLDLEEQFVACYRTALGKPVWALGP 

FFLGNRDEEAVAARGGKDKPSAVAQSAVTAWLETMDQSTVTYVCFGSFAR 

MLPKQLYEVGHGLEDSGKPFLLALKESETALPEAQEWLQALEARTAGKGL 

VVRGWAPQLAILSHRAVGGFVTHCGWNSLLESVAHGVPVVTWPHSGDQFL 

NERLAIEVLGVGAPVRGAVVPVTPFDESKAVAPVLRGHIAEAVSELMGGG 

AVARERRRKCKEYGERAHAAIAKGGSSHENLTQLLQSFMRSGSKEQ 

 

AsGT16f23 

MTFARGNVHSGSASAHFVLVPMMAQGHTIPMTDMARLLAEHGAQVSFVTT 

PVNASRLAGFIADVEAAGLAIRFVELHFPTTEFGLPDGCENLDLIQAKGL 

FLNFMEACAALREPLMAHLREQHQLSPPSCIISDMMHWWTGDIARELGIP 

RLTFIGFCGFSSLVRYIISQNNLLENMTDENELITIPGFPTHLELTKAKC 

PGSLCVPGMEKIREKMIEEELRSDGEVINSFQELETVYIESFEQVAKKKA 

WTVGPMCLCHRDSNTMAARGSKASMDEAQCLQWLDSMKPGSVIFVSFGSL 

AATTPQQLVELGLGLEASKKPFIWVIKAGPKFPEVEEWLADGFEERVKDR 

GMIIRGWAPQMMILWHQAIGGFMTHCGWNSTVEGICAGVPMITWPHFAEQ 

FLNEKLVVDVLKTGLEVGVKGVTQWGNTEQEVMVTRDAVETAVYTLMGEG 

KAAEELRMRAKHYAIKARRAFDEEGSSYNNVRLLIQEMGNNTNACG 

 

AsGT16h6 

MASRQYHVVMVPYPAQSHVAPLMQLARLLHARGAHVTFVHTQFNYRRLVD 

AKGEAAVRPSSSTGFCVEVIDDGLSLSVQQHDVAAVVDALRRNCQGPFRA 

LLRKLSSAMPPVTTVVADTVMTFAATEAREAGIPDVGFFTASACGLMGYF 

QFGELIKRGLVPLQDASCLATPLHWVPGMNHMRLKDMPSFCHTTDPDDTM 

VAATLEQMNTALGAKAIVLNTFYELEKDVVDGLAAFFPPLYTVGPLAEVD 

SGGSDSLLGAIDISIWQEDAQCLAWLDDKKASSVVYVNFGSIHVMTAAQL 

REFALGLASCGFPFLWIKRPDVVVDGEEDAVLPEEFLAAVARGAGLVVPW 

CAQPAVLKHPAVGLFVTHCGWNSLLEAAAAGMPLLCWPLFAEQTTNCRQV 

CECWGNGAEIPKEVEHGAVSALVREMMEGELGREKRAKAAEWKAAAQTAI 

VEGGSSCRSVDRLVEDILLIPSQRK 
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AsGT21p16 

MGSMEQKPHAVCVPFPAQGHITPMLKVAKLLHARGFHVTFVLTDYNYSRL 

LRSRGAAAFDGCPGFDFTSIPDGLPPSDAEATQDIPALCRSTMTSCLPHV 

RALLARLNGPASAVPPVTCLLCDACMSFAYDAAKEIGLPCAGLWTASGCG 

FMAYNYYKNLVEQGIVPLKDQAQLTDGYLDTVVHGVPGVCDGFQLRDFPD 

FIRTTDPDDIMLNFLIRETARAASLPDAVIINSFDDLEQRELHAMRAILP 

PVCALGPLLLHVRRLVHKGSPLDVAVQSNLWKEQDGLLDWLDGRPPRSVV 

YVNYGSITVMTNEQMLEFAWGLANSGYPFLWNVRPDLVKGDAAVLPPEFS 

AAIEGRGLLTTWCPQEKVIVHEAVGVFLTHSGWNSTLESLCAGVPMLSWP 

FFAEQQTNCRYKRTEWGVGMEIGGEVRRAEVAAKIQEAMEGEKGKEMRRR 

AAEWKEKAARATLPGGAAEANLDKLIHVLHGKTGQALKRV 

 

AsGT24i2 

MAVKDEQQSPLHILLFPFLAPGHLIPIADMAALFASRGVRCTILTTPVNA 

AIIRSAVDRANDAFRGSDCPAIDISVVPFPDVGLPPGVENGNALTSPADR 

LKFFQAVAELREPFDRFLADNHPDAVVSDSFFHWSTDAAAEHGVPRLGFLGS

SMFAGSCNESTLHNNPLETAADDPDALVSLPGLPHRVELRRSQTMDPKKRPD

HWALLESVNAADQKSFGEVFNSFHELEPDYVEHYQTTLGRRTWLVGPVALA

SKDMAGRGSTSARSPDADSCLRWLDTKQPGSVVYVSFGTLIRFSPAELHELA

RGLDLSGKNFVWVLGRAGPDSSEWMPQGFADLITPRGDRGFIIRGWAPQMLI

LNHRALGGFVTHCGWNSTLESVSAGVPMVTWPRFADQFQNEKLIVEVLKVG

VSIGAKDYGSGIENHDVIRGEVIAESIGKLMGSSEESDAIQRKAKDLGAEARS

AVENGGSSYNDVGRLMDELMARRSSVKVGEDIIPTNDGL 

 

AsGT25n16 

MAGMAPLAKTFVLYPSLGVGHLNPMVELAKFLVRQGHNVIVAVADPPDSD 

AVSADAVARLSAANPCIDFRRLPAPPNPDPAAHPLQRILDTLRLCNPVLR 

DFLRSLPGPGAHALLLDMFCVHALDVAAELALPAYFFFVSPAGALAVLLN 

LPHSYPEMPSFKDMGHQALVRFPGMPPFRAVDMPQGMHDKDSDLTKGLLY 

QFSRIPEGRGVLVNTLDWLEPTALRALGDGVCVPGRPTPPVFCIGLLVDG 

GYGEKSRPDGGANKCLAWLDKQPHRSVVFLCFGSQGAFSAAQLKEIALGL 

ESSGHRFLWAVRSPPEQQGEPDLEGLLPAGFLERTRDRGMVLADWVPQAQ 

VLRHEAVGAFVTHGGWNSAMEAIMSGLPMICWPLYAEQALNKVFMVDEMK 

IAVEVAGYEEGMVKAEEVEAKVRLLMETEEGRKLREMLVVARKMALDANA 

KGGSSQVAFAKFLCDLENSTST 

 

AsGT27f7 

MGTLSELHFVLVPLAAQGHIIPMVDVARLIAARGPRVTVVTTPVNAARNR 

ATVDGARRAGLPLELVELPFSGPEHGLPEGMEAVDQLTAGAHELGMFLKF 

FQAIWNLAGPLEEYIRALPRPPICLVADSCNPWVAAVCERLGIPRLVMHC 

PSAYFQLTVNCLITHGVYDRVEEMEPFEVPGFPVRAVGMKATMRGFFQYP 

GAEKEYRDTLDAEATADGLLFNTFRGIEGTFLDAYAAALGKPTWAVGPTC 

ASSTMADDADSKAGRGNTADVDAGHIVSWLDARPPASVLYVSFGSIAQLT 

AKQLANLARGLEASGRPFVWAIKEAKGDAAVRALLDEEGFEARVKDRALL 

VRGWAPQVTILSHPAVGGFLTHCGWNGTLETLSLGVPTLTWPTIADQFCS 

EQLLVDVLGVGVRSGAKLPAWYLPTEAEGVQVESGDVEKAVAELMGDTPE 

AAARRSRAKELAAKARTAMEEGGSSYSDLTDMIRYVSELSRKRSLEIDAM 

PFAAAELGSNKGEKIEADAALSVQS 
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AsGT16525 

MAPRPTVVLIPSWGSGHFMSALEAGKRLLAASGGAFSLTVLVMHAPTQAKA

SEVEGHVRREAASGLDIRFLQLPAVEHPIDCVDPVEFASRYTQLHGPHVKAAI

ASLAPSFRAAAVVVDLFLTALFDVAHELAVPAYVYFASPAAFLALMLRLPAL

REDLTGPGFEEMEGTVDVPGLPPVPPSYMPDCLVRRKIQSYDWFEYHGRRFM

EARGLIVNTTIELEASVLAAIADGRCVPGCPVPALHAIGPVIWFDPKDDDQRR

HECMRWLDDQPPASVVFLCFGSMGSLDAAQVREVAAGLERSGHRFLWVLR

GPPVAGTRFPTDANLDELLPEGFLDATAGRGLVWPAWAPQREILSHAAVGGF

VTHCGWNSVLESLWFGVPLVPWPLYGEQHLNAFELVAGVGVAVALEMDR 

KKGFFVEAAELERVVRSLMNGGSEEGRKARTKASETSAEFRRAIGEGGSSCA

ALQRLVGEILDLPVGR 

 

 

AsGT02436 

METSAKPHFVLVPWIGSISHIVPMTDIGCLLASHGASVAIITTPANAPLVQSRV

DRVTPRGAVIGVTTIPFPTAEAGLPDGCERLDLVRSPAMVPSFFKANKKFGEA

VAQYCRREDAPRRPSCIIAGMCNTWTLPVARDLGVPCYIFHGFGAFALLCIDH

LYRQGRHEAIASAEELVDISVLQQFECKILGRQLPPHFLPSTSMGGGLMQEVR

DFDVAVDGVVVNSFDELEHGSAALLAAASGRKVLAVGPVSLCCAPSLDPQG

DDARRCMAWLDGKEANSVVYVSFGSAGSLPPAQLIQLGMALVSCRWPVMW

VIRGADSLPDDVNAWLGENTDPDGVADGKCLVVRGWAPQVAILAHPAVGG

FMTHCGWGSTLESVAAGVPMLTWPLFAEQFVNEKLIVDVLAIGVSVGVTKPT

ENVLTASKLGSGEAKAEVGAERVEKALERLMDGAGEGEDIRRRAAELKRKA

NAALEKGGSSYNNLENLIDSCA 

 

AsGT05827 

MGIESMDSSVALVAVPFPAQGHLNQLMHLSLLVASRGLSVHYAAPAAHVRQ

AKSRVHGWDAKALASIHFHDLDVPTFKSPDPDPAAASPFPSHLLPMWETYSA

AARVPLASLLERLSATHRRVVVVYDHMNSFAAAEAARVDGEAYGLVCVAIS

NHLAWMPDGHQLLRDRGLRSVPMDACMSKEFVEYMARVTTEAEGAGFLM

NTCRALEGEFLDAVAEIPDIKRQKRFAVGPLNPLLPLATEPDVVTTATARHDC

MRWLDAQPPASVLYVSFGTTSSFLPEQIAELAAAIKGSRQRFIWVLRDADRA

DIFAGNSGGDSRPRYEKLLSEEQAQGTGLVITGWAPQLEILAHGATAAFMSH

CGWNSTMESLSHGKPILAWPMHSDQPWDAELLCNYLRVAMLVRPWEKHGE

VVAAGAIQEVIEKAMLSEKGTALRQRAKLLGEAVRAAVADNGSSTKDLHDF

VAHITRI 

 

AsGT23586A 

MKQTVVLYPGAGGSHVAAMTELANVFLKHGYDVTMVLVEPPFKSSDSGAT

AIERIAASNPSISFHVLPPLPPPDFAAAGNKNPFVLMFQLLLEYNELLEAFLRSI

PRKRLHSVVLDMFCIHALDVCVKLGVPVYTFFASGASCLSVLTQFPALIAGRQ

TGLKEIGDTPLDFLGVPPMLASHIIKELLEHPEDEMCKILTNMWKRNTETMGV

LVNTFESLESRAVQSLRDPLCVPGRILPPIYCVGPLVGEGAKDGDGAERNECL

AWLDSQPDRSVVFLCFGSKGTVSAEQLKEIAVGLERSGQRFLWSVRTPAGSQ

DAKKYLEVRAEPDLDELMPEGFLERTKDKGLVIKSWAPQVDVLRHRATGAF

VTHCGWNSVLEAVSAGVPMLCWPLEAEQKMNKVCMTEDMGVAVELDGY

MAGFVKADEVEAKVRLVIEGEDGRQLRARVAARKEEAEAALEEGGASRAAF

VQFLLDVENIGEQVRE 
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AsGT23586B 

MKQTVVLYPGAGVSHVGPMTELANVFLKHGYDVTMVLVEPPFKSSDSGATA

IERIAASNPSISFHVLPPLPPPDFAAAGNKNPFVLMFQLLLEYNELLEAFLRSIP

RKRLHSVVLDMFCIHALDVCVKLGVPVYTFFASGASCLSVLTQFPALIAGRQT

GLKEIGDTPLDFLGVPPMPASHLIKEMLEHPEEELCKEITNIWKRNTETMGVL

VNTFESLESRAVQSLRDPLCVPGRTLPPIYCVGPLVGEGAKDGGGTERNKCLA

WLDSQPDRSVVFLCFGSKGTLSAEQLKEIAVGLERSGQRFLWSVRTPAGSDD

AMKYLEVRPEPDLDALMPEGFLERTKDRGLVVKSWAPQVDVLRHRATGAF

VTHCGWNSVLEAVSAGVPMLCWPLEAEQKMNKVCMTEDMGVAVELDGYR

TGFVKADEVEAKVRLVLESEEGRQLRARVAARKEEAEAALEEGGASRAAFV

QFLLDVDSIGEQVRE 

 

 

 

AsGT23781 

MEAPHFVFVPLMAQGHIIPAVDTALLLATHGALCTVVATPSTAARVRPTIDSA

RRSGLQVSLVDFPLDYAAVGLPDGVPGGADNMDNVPPEYMLAYYSAIALLC

GPIETYLRAHAPRPPTCVVSDFCHPWTTKLAASLGVPRLSFFSMCAFCVLCQH

NVERFNAYDGVLDPNQPVVVPGLEKRFEVTMAQAPGFFRGWPGWEKFADD

VERARVDADGVVMNTFEEMEPEYVAGYAAARGMKVWTVGPVSLYHQHAR

TLAARGATASIDTDDCVRWLDGKDPGSVVYVSFGSIVHADPKQIMELGLGLE

ASGYPFVWVVKGAERHDEAALAFLRGLEERVAGRGLLVWGWAPQALILSH

RAAGAFVTHCGWNSTLEAVAAGLPVVTWPHFTDQFLNEKLAVEVLGIGVSV

GVKEPVMYQVDKKEIVVGRSAVEAAVRSAMDGGEDGQERRRRARELAVKA

RAAVSEGGSSHTNIRDLVKCFGVGASTQDAAE 
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Name Reference sequence

RUGT-5 NP_001043481

Os01g0175700 NP_001172201

Os01g0176000 NP_001042177

Os01g0176100 NP_001042178

Os01g0176200 NP_001042179

Os01g0638000 NP_001043671

Os01g0638600 NP_001043672

Os02g0206100 NP_001046251

Os02g0206400 NP_001046252

Os02g0206700 NP_001046253

Os03g0212000 NP_001173311

Os03g0358800 NP_001050148

Os03g0666600 NP_001050847

Os03g0745100 NP_001051242

Os03g0808200 NP_001051649

Os04g0305700 NP_001052417

Os04g0523600 NP_001053346

Os04g0523700 NP_001053347

Os05g0177500 NP_001054797

Os05g0499600 NP_001055958

Os05g0499800 NP_001055959

Os05g0500000 NP_001055960

Os06g0187500 NP_001057016

Os06g0590700 NP_001057969

Os09g0329200 NP_001062897

Os09g0329700 NP_001062898

Os09g0379300 NP_001175809

Os10g0178500 NP_001064247

Name GenBank

UGT73B1 AL021961

UGT73B2 AY035164

UGT73B2 AL021961

UGT73B3 AL021961

UGT73B4 AC006248

UGT73B5 AC006248

UGT73C1 AC006282

UGT73C2 AC006282

UGT73C3 AC006282

UGT73C4 AC006282

UGT73C5 AC006282

UGT73C6 AC006282

UGT73C7 AL132958

UGT73D1 AL132958

 

 

Arabidopsis thaliana                                                 Oryza sativa  

       Group D                                                               Group D 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary data S.5: Complete collections of group D (UGT73) sequences from 

Arabidopsis thaliana and Oryza sativa. 
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Supplementary data S.6: Expression analysis of UGT genes in A. strigosa tissues. 
Expression analysis was conducted using mRNA-reverse transcription-PCR (RT-PCR) technique. A. 

strigosa tissues used were from 3-days-old seedlings (RT: root tip, RE: root elongation zone; R: entire 

young root, YL: young leaf) or tissues of flowering plants (ML: mature leaf, St: stalk and F: flower).   
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Supplementary data S.7: H
1
 NMR spectrum of TCP-Glc. 
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Supplementary data S.8: Consumption of 12,13-epoxy-16-hydroxy-β-amyrin in the 

presence of UGT73C10. GC-MS analysis of leaf extracts from N. benthamiana tissues expressing 

SAD1 and SAD2 with UGT73C10 (A) or with the GFP control (B). Total ion chromatogram and 

selected m/z 218 (base peak at m/z 218 is typical for triterpenes that contain a C-12/C-13 double 

following a retro-Diels-Alder fragmentation) are displayed in panels A and B. and. The peak of 12,13-

epoxy-16-hydroxy-β-amyrin eluting at Rt: 21.0 min is absent in tissues expressing UGT73C10 (β-

amyrin elutes at Rt: 16.0 min) suggesting the glycosyltransferase is able to use the SAD2 product as 

acceptor and consumes the entire SAD2 product. C. The extracted ion chromatogram from 12,13-epoxy-

16-hydroxy-β-amyrin peak is consistent with Geisler et al. (2013), notably the fragment m/z 219 is 

prominent over m/z 218 due to modification of retro-Diels-Alder fragmentation imputable to the epoxide 

group. 
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  Supplementary data S.9: purification of SAD1-SAD2-UGT73C10 co-expression 

product from N. benthamiana agroinfiltrated tissues. A. Analytical thin layer 

chromatography was prepared as detailed in section 2.2.23. Lanes 1-19 are loaded with liquid 

chromatography fractions containing biological material. Lane 20 is loaded with the organic phase 

from ethyl acetate partitioning of N. benthamiana extracts (sample applied to the chromatographic 

silica column). Lane 21 and 22 are loaded with crude methanolic extract of SAD1-SAD2-

UGT73C10 and SAD1-SAD2-GFP expressing tissues respectively. The targeted compound is 

indicated by an arrow. B. Fractions 7, 8 and 9 were pooled and purified using a reverse phase 

semi-preparative HPLC coupled with a universal charged aerosol detector. The blue spectrum is 

from blank injection, the black spectrum is from pooled sample of the three fractions containing 

the targeted compound (see panel A). The targeted peak indicated by an arrow has been collected. 
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Supplementary data S.10: HSQC analysis of the purified SAD1-SAD2-UGT73C10 co-expression product extracted and purified 

from agroiniltrated N. benthamiana. 
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  Supplementary data S.11: Identification of the product generated by coexpression of 

SAD1 and SAD2. (A) Automated mass spectral deconvolution and identification system-extracted 

ion component spectra of the trimethylsilyated compound at the indicated retention time (RT). The 

compound has a predicted molecular ion at m/z = 602 that is consistent with the molecular equation 

C36H66O3Si2. The signal at m/z = 512 is consistent with the loss of C3H9OSi, resulting in the 

molecular equation C30H56O2Si. (B) Calculated m/z values for β-amyrin derivates, considering 

trimethylsilyl (TMS) derivatization (+72) and introduction of oxygen atoms (+16). (C) Structure, 

chemical formula, and molecular mass of 12,13β-epoxy-3β,16β-dihydroxy-oleanane (12,13β-epoxy-

16β-hydroxy-β-amyrin). TMS-derivatized 12,13β-epoxy-16β-hydroxy-β-amyrin has a predicted 

molecular ion at m/z = 602. Potential intermediates in the synthesis of 12,13β-epoxy-16β-hydroxy-β-

amyrin from β-amyrin are shown also. This is a copy of the figure 2 from Geisler et al. 2013. 
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