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Abstract 

 
 
Cork oak woodlands are a keystone habitat for Mediterranean biodiversity but are 

currently undergoing a global decline and widespread management changes driven by 

social, economic and climatic factors. I examine the effects of both climate and land 

management changes on cork oak woodlands and their bird communities across the 

western Mediterranean Basin. Future climatic scenarios indicate that up to 60% of 

current cork oak woodlands may become unsuitable by 2080, especially in southern 

areas where they will be restricted to microclimatic refugia sites. Increasing aridity, 

particularly in drier microclimates, will potentiate a decline of cork oak tree condition 

resulting in impacts across the food web that ultimately have a negative effect on 

breeding bird abundance and diversity, particularly for tree-dependent forest species. 

Farmland and shrubland birds respond mainly to habitat features modified by land 

management and their abundances increase in areas with open and heterogeneous 

ground cover. Current abandonment, intensification and overexploitation trends are 

likely to have negative effects on their populations but climate change can also play an 

important role if it provides an additional stimulus for land management changes. The 

unique bird assemblages of North African cork oak woodlands seem particularly 

vulnerable to both factors and should therefore be considered a conservation priority. 

Nonetheless, climate change may benefit species of Mediterranean origin and seems to 

have enabled the establishment of resident populations of traditionally migratory bird 

species in the Iberian Peninsula. This may provide new conservation opportunities for 

declining migratory species as long as adequate winter habitat areas are available. 

Adaptation strategies should aim to incorporate biodiversity-friendly management 

practices, promote cork oak afforestation in areas that will become climatically suitable 

and evaluate alternatives to provide similar economic and environmental services in the 

regions where cork oak woodlands are likely to disappear. 
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Resumo 
 

Os montados de sobro (Quercus suber), também conhecidos como dehesas em Espanha, 

são um sistema agro-silvo-pastoril tradicional que tem origem na gestão humana das 

florestas Mediterrânicas originais. Distribuído sobretudo na região oeste da bacia 

Mediterrânica, este tipo de gestão multifuncional foi mantido durante vários séculos 

devido aos valores económicos, sociais, culturais e ecológicos que providencia às 

populações que dele dependem. Do ponto de vista ecológico, os montados de sobro são 

particularmente importantes devido à capacidade de conciliar a gestão e sustentabilidade 

económica com a manutenção de altos níveis de biodiversidade. Os montados de sobro 

apresentam comunidades bastante diversas de plantas e borboletas por exemplo, mas 

são particularmente importantes para as aves uma vez que para além de suportarem 

comunidades bastante diversas, albergam também espécies endémicas ou protegidas 

(e.g. Águia-imperial Aquila adalberti, Abutre-negro Aegypius monachus e Cegonha-

negra Ciconia nigra) e milhões de aves provenientes do norte da Europa que invernam 

na bacia do Mediterrâneo todos os anos. Por todas estas razões, os montados de sobro 

são protegidos a nível europeu pela Diretiva Habitats (92/43/CEE). 

 

Apesar deste facto, os montados de sobro têm sofrido uma regressão na sua área de 

distribuição nos últimos anos devido a diferentes fatores económicos, sociais e 

ambientais. Por um lado, a variação no preço de mercado da cortiça e de outros 

produtos tem levado ao abandono ou intensificação do sistema de gestão mais 

tradicional. Por outro lado, as alterações climáticas parecem já começar a afetar o 

sobreiro e o aumento dos eventos de seca tem levado a uma diminuição da condição 

física e fitossanitária das árvores, resultando em muitos casos na sua morte. Desta 

forma, tanto as alterações no clima como no sistema de gestão dos montados são 

passíveis de resultar em efeitos importantes nos montados de sobro e na sua 

biodiversidade mas ainda não existe uma avaliação desta situação que abranja a 

distribuição Mediterrânica deste sistema. Esta tese pretendeu examinar o papel das 

alterações climáticas e da gestão na conservação futura dos montados de sobro e nas 

suas comunidades de aves na região oeste da bacia do Mediterrâneo. Mais 

especificamente, esta tese abordou cinco questões principais: i) como irão as alterações 

climáticas afetar a futura distribuição dos montados de sobro, ii) como diferem as 
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comunidades de aves nidificantes dos montados de sobro do Norte de África das 

comunidades presentes nos montados de sobro da Europa e como é que isso afeta a 

relevância da sua conservação, iii) qual é a importância relativa de alterações climáticas 

e de gestão na conservação dos diferentes grupos de aves nidificantes dos montados de 

sobro, iv) como irão as características microclimáticas e topográficas de pequena escala 

influenciar a resposta da comunidade de aves nidificantes às alterações climáticas e v) 

qual é a influência das alterações climáticas no recente estabelecimento de populações 

invernantes de aves tradicionalmente migradoras na região da bacia Mediterrânica. 

 

As previsões obtidas no Capítulo 2 desta tese indicam que as alterações climáticas irão 

provocar um declínio de aproximadamente 40 a 60% da área atualmente ocupada pelos 

montados de sobro até 2080, sobretudo nas regiões mais a sul da sua distribuição como 

Marrocos, Tunísia, Argélia e o sul da Península Ibérica. Nestas regiões apenas deverão 

permanecer pequenos refúgios de clima adequado se os cenários de alteração climática 

mais drásticos se verificarem. A restante área de distribuição dos montados de sobro na 

zona central da Península Ibérica, em Itália e em muitas das ilhas Mediterrânicas deverá 

manter condições climáticas adequadas à sua manutenção. Novas áreas de clima 

adequado deverão a norte da distribuição atual no norte da Península Ibérica, ao longo 

da costa oeste de França e no sul do Reino Unido que poderão se considerada para ações 

de reflorestação se estas forem consideradas viáveis. Este trabalho foi o primeiro a 

avaliar os potenciais efeitos das alterações climáticas ao longo de toda a distribuição 

Mediterrânica dos montados de sobro e, desta forma, a incluir informação da sua 

distribuição no Norte de África. A importância de incluir esta informação foi também 

avaliada e os resultados confirmaram estudos anteriores que identificaram potenciais 

erro nas previsões futuras quando é omissa informação no processo de calibração de 

modelos correlativos de distribuição de espécies. 

 

No Capítulo 3 foram analisadas as diferenças entre as comunidades de aves nidificantes 

dos montados de sobro no Norte de África e no Sul da Península Ibérica uma vez que a 

existência de diferenças significativas poderia inviabilizar a generalização para ambas 

as regiões das respostas observadas nesta comunidade a fatores ambientais e humanos. 

Os resultados indicam que os padrões de diversidade e abundância de aves são 

semelhantes entre as duas regiões e que a maioria das espécies registadas está presente 

nos montados de sobro de ambas as regiões. Este facto corrobora estudos anteriores que 
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evidenciam a semelhança entre as comunidades de aves florestais da Europa e do Norte 

de África. Ainda assim, a composição da comunidade de aves em termos de espécies e 

guildas é diferente entre regiões. A presença do Mar Mediterrânico como barreira à 

dispersão impediu algumas espécies de colonizarem ambas as regiões e permitiu que 

outras evoluíssem de forma distinta entre elas, explicando parte das diferenças 

observadas. As restantes diferenças entre as comunidades de aves dos montados de 

sobro da Europa e do Norte de África deve-se ao aumento de espécies generalistas e à 

diminuição de espécies florestais no Norte de África, o que pode ser explicado com base 

nos padrões locais de sobre-exploração dos recursos deste sistema. Estes resultados 

permitem considerar que a composição da comunidade de aves dos montados de sobro 

do Norte de África é sobretudo fruto da resposta às condições ambientais e de 

intervenção humana observadas na região, que representam apenas um extremo do 

gradiente observado ao longo da distribuição Mediterrânica deste sistema. 

 

Esta ideia é explorada de forma mais detalhada no Capítulo 4 que analisa a resposta da 

comunidade de aves nidificante aos gradientes climáticos e de estrutura de habitat 

observados nos montados de sobro da Península Ibérica e do Norte de África. Tanto 

fatores climáticos como a estrutura do habitat são importantes na composição da 

comunidade de aves nidificante dos montados de sobro e em conjunto explicaram mais 

de um terço da variabilidade total observada nas áreas amostradas. A abundância de 

aves associadas a ambientes agrícolas e matos como o Trigueirão (Emberiza calandra), 

o Estorninho-preto (Sturnus unicolor) e a Cotovia-dos-bosques (Lullula arborea) 

responde sobretudo a alterações na estrutura do habitat ao passo que a abundância de 

aves florestais e generalistas como o Rouxinol (Luscinia megarhynchos), o Rabirruivo-

de-testa-branca (Phoenicurus phoenicurus) e a Carriça (Troglodytes troglodytes) está 

sobretudo associada a fatores climáticos. Apesar desta observação, a análise individual a 

cada uma das espécies registadas indica que a abundância da maioria destas espécies 

aumenta em áreas com uma estrutura mais aberta e heterogénea do sub-coberto e 

diminui em áreas onde se verificam temperaturas mais elevadas e maior sazonalidade 

climática. Finalmente, a análise dos padrões espaciais de fatores climáticos e da 

estrutura do habitat permite concluir que as comunidades de aves do Norte de África 

devem ser uma prioridade para medidas de conservação devido às alterações climáticas 

e sobre-exploração do habitat ao passo que no sul da Península Ibérica a principal 

ameaça são fatores climáticos. 
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O Capítulo 5 explora de forma mais detalhada como a comunidade de aves nidificante 

dos montados de sobro responde a condições microclimáticas ao longo de um gradiente 

de aridez no sul da Península Ibérica. Os dados obtidos com este trabalho evidenciam 

uma diminuição significativa da abundância e diversidade de aves em zonas mais 

áridas. Esta observação resulta de alterações na abundância de aves florestais em 

resposta às condições microclimáticas locais, particularmente evidente em encostas 

mais secas com orientadas a sul, e confirma o efeito das condições climáticas no na 

abundância de aves florestais. Em condições mais áridas, os sobreiros apresentam copas 

menos desenvolvidas pelo que, apesar de apresentarem densidades semelhantes, os 

montados de sobro nestas condições apresentam uma menor cobertura de copa total. 

Esta situação resulta numa diminuição dos recursos alimentares disponíveis para as aves 

florestais, indicando que os efeitos climáticos nas aves florestais se propagam através da 

cadeia trófica. Desta forma, o aumento das temperaturas e da aridez na região 

Mediterrânica previsto para as próximas décadas poderá representar um desafio para a 

manutenção das populações de aves florestais nos montados de sobro do sul da Europa. 

 

Contudo, o aumento da temperatura poderá também proporcionar novas oportunidades 

para a conservação de aves na Península Ibérica. O Capítulo 6 explora o papel das 

alterações climáticas no aumento do número de aves invernantes de espécies 

tradicionalmente migradores observado nos últimos anos na Península Ibérica. Os 

resultados demonstram que o aumento das temperaturas durante o inverno nas últimas 

três décadas é uma das potenciais causas para estas alterações do comportamento 

migratório de várias espécies de aves. Esta hipótese é suportada pelo aumento das 

temperaturas na Península Ibérica durante o Inverno que se têm tornado mais 

semelhantes às temperaturas encontradas por estas aves nas suas áreas tradicionais de 

invernada em África. De facto, a semelhança climática entre estas regiões tem 

aumentado nas últimas décadas, apesar da diminuição da precipitação observada na 

Península Ibérica. Adicionalmente, as aves que invernam na Península Ibérica parecem 

selecionar ativamente áreas que são climaticamente mais semelhantes às suas áreas de 

tradicionais de invernada em África em relação ao que seria esperado ao acaso. Este 

comportamento tem sido observado sobretudo em espécies mais generalistas como a 

Cegonha-branca (Ciconia ciconia), a Codorniz (Coturnix coturnix) e a Poupa (Upupa 

epops), o que se pode dever ao facto de estas espécies apresentarem requisitos 

ambientais mais alargados. 
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Tendo em conta os resultados obtidos no âmbito desta tese, é sugerido um conjunto de 

medidas de adaptação que possam favorecer a manutenção dos montados de sobro e da 

sua diversidade em face das alterações climáticas e de gestão que estão a decorrer. Nas 

áreas onde as alterações climáticas deverão tornar difícil a manutenção de áreas de 

montado de sobro, será importante proteger potenciais refúgios microclimáticos de 

forma a manter a conectividade da paisagem e investigar quais as melhores opções do 

ponto de vista económico e ambiental para a substituição deste sistema de exploração. 

Em áreas onde a manutenção de áreas extensas de montado de sobro será possível, a 

prioridade deverá ser a manutenção de medidas de gestão e exploração que possam 

aumentar a resiliência económica e ecológica deste sistema. Neste sentido, será 

importante explorar as vantagens de um sistema de gestão e exploração económica 

multifacetada, que permita a manutenção da heterogeneidade característica deste 

sistema e que possa promover a robustez económica deste sistema às variações de 

mercado através da exploração de diferentes recursos. Finalmente, novas áreas de clima 

adequado para o sobreiro devem surgir a norte da sua distribuição atual e nestas áreas 

poderá ser ponderada a plantação ativa de novos montados de sobro que possam 

minimizar as perdas de área previstas em outras regiões. 
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Chapter 1 

 

Introduction 
 

 
 

Photo: Cork oak woodlands in the Alentejo region, Portugal 

 

 

The remarkable biodiversity found across the Mediterranean Basin today has led to the 

classification of this region as a biodiversity hotspot (Myers et al. 2000). The complex 

biogeography of the Mediterranean region, characterized by a particular set of 

geophysical, climatic and ecological pressures and long-term history of human 

intervention, has helped to shape the biodiversity patterns that we observe nowadays 

(Blondel et al. 2010).  In fact, it has been argued that moderate disturbance regimes 

promoted by some traditional management systems are nowadays a key factor in the 

preservation of biological diversity (Blondel et al. 2010 and references therein). 

 

1.1. Mediterranean cork oak woodlands  

 

Examples of current traditional Mediterranean management systems include cereal 

pseudo-steppes, North African argan forests, and cork oak woodlands (e.g. 

Benchekroun and Buttoud 1989, Suárez et al. 1997, Blondel et al. 2010). The latter 

system is particularly important across much of the western Mediterranean Basin where 

it is still relatively widespread; it covers more than 1.5 million hectares in southern 

Europe and nearly 1 million hectares in North Africa (Pausas et al. 2009). Cork oak 
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woodlands are known to support Mediterranean endemic and endangered species (e.g. 

Cabrera’s Vole Microtus cabrerae, Spanish Imperial Eagle Aquila adalberti, Iberian 

Lynx Lynx pardinus and Cinereous Vulture Aegypius monachus) and host diverse 

communities of plants (rivalled only by the diversity found in tropical forests), 

butterflies and birds (Pineda and Montalvo 1995, Diáz et al. 1997). The importance of 

managed cork oak woodlands for biodiversity can only be understood in the light of the 

complex habitat structure that results from the mosaic of land uses characteristic of 

traditional management systems. 

 

Cork oak woodlands are a traditional agro-silvo-pastoral system common throughout 

the western Mediterranean Basin (Pinto-Correia and Mascarenhas 1999). The core area 

of distribution nowadays is located in the south-western corner of the Iberian Peninsula, 

but it is also present in other countries along the northern (France and Italy) and 

southern (Morocco, Algeria and Tunisia) margins of the Mediterranean Sea and even in 

some Mediterranean islands (Pausas et al. 2009). This type of land use system, 

generally known as montado in Portugal and dehesa in Spain, results from a gradual 

human intervention on the original Mediterranean forests dominated by cork oak 

(Quercus suber) and holm oak (Quercus rotundifolia) trees (Joffre et al. 1999). Cork 

oak woodlands are generally characterized by a savannah-like physiognomy that mimics 

natural systems and is shaped by local management actions and environmental 

conditions (Marañón 1988, Joffre et al. 1999, Pereira and Tomé 2004). For this reason, 

several forms of cork oak woodland management can be found throughout their range 

(Fig. 1.1). In areas where the landscape in relatively flat, tree density is usually 

relatively low allowing a better use of the ground layer for agricultural crops (usually in 

more productive soils) or pastures for cattle grazing (Marañón 1988, Diáz et al. 1997). 

Land managers in areas with a more complex topography usually favour denser stands 

for silvicultural practices and avoid more intensive agricultural uses (Pereira and Tomé 

2004). Other regular uses include hunting, mushroom collection and bee-keeping 

(Pereira and Tomé 2004, Bugalho et al. 2009). Common to all the different forms of 

Cork oak woodland uses is the importance of cork exploitation (Fig. 1.2), which 

represents in many cases the main source of revenue (Coelho and Campos 2009, 

Campos et al. 2009) and therefore guarantees the economic viability of this 

management system. 
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Figure 1.1. Different cork oak woodland management forms found throughout the 

Mediterranean Basin. Examples include (a) shrub-dominated woodland, b) open-

canopy woodland, (c) closed-canopy woodland and (d) grazed woodland. 

 

This diversity of uses and management activities has evolved over centuries, resulting in 

a complex mosaic of cork oak woodland structural and functional forms that favoured 

the maintenance of high biodiversity levels (Diáz et al. 1997, Telleria 2001). In fact, 

human intervention is actually required for cork oak woodlands to maintain part of their 

biodiversity and ecosystem services (Bugalho et al. 2011). This balance between human 

exploitation and biodiversity conservation has granted cork oak woodlands the status of 

High Nature Value Farmlands (Hoogeveen et al. 2004) and promoted their inclusion in 

the Habitats Directive (92/43/CEE). Still, the area of cork oak woodlands that is 

currently protected has been unable to maintain a favourable conservation status 

(Berrahmouni et al. 2009, Underwood et al. 2009, Santos and Thorne 2010). In most 

regions, the area occupied by Cork oak woodlands has decreased in recent years, mostly 

due to the interrelated effects of land use and climate changes, and fighting this trend 

will require a better knowledge of potential impacts in order to elaborate adequate 

conservation efforts (Berrahmouni et al. 2009). 

a) b) 

c) d) 
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Figure 1.2. Cork oak planks after extraction from the tree. 

 

1.2. Major threats to cork oak woodlands 

 

The last decades have seen an increase in cork oak woodland abandonment, 

intensification and overexploitation due to economic and socio-cultural pressures 

(Bugalho et al. 2009). Overexploitation occurs throughout the range of the cork oak but 

is more common in northern Africa, where cork oak woodlands are state-owned and 

have an open access. Together with a low economic condition of rural population this 

open access leads to overgrazing, excessive crop cultivation and over-collection of 

acorns and firewood (Bugalho et al. 2009, Berrahmouni et al. 2009). Abandonment and 

intensification trends are more common in European areas as a result of changes in 

market prices (particularly the devaluation of cork), rural exodus and European 

agricultural policies (Bugalho et al. 2009, Berrahmouni et al. 2009, Bugalho et al. 

2011). Land abandonment promotes shrub encroachment, which increases fire hazard 

and contributes to the lack of regeneration observed in this system (Acácio et al. 2007, 

Bugalho et al. 2009). The intensification of management activities has been mostly 

associated with the increase in grazing pressure, which affects oak regeneration, and the 

introduction of heavy machinery for ploughing, which can destroy young trees and 

damage superficial roots, essential for cork oaks to survive under drier conditions 

(Joffre et al. 1999, Bugalho et al. 2009).  

 

 

© João Fialho 
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Figure 1.3. Dead cork oak tree. 

 

In parallel with human-induced impacts, climate change has also increased the pressure 

on cork oak woodlands, mainly due to the higher frequency of extreme heat and drought 

events observed in the Mediterranean region over the last decades (Diffenbaugh et al. 

2007, Hoerling et al. 2012). Recent research shows that, during these periods of water 

stress, cork oak trees show higher leaf loss (Carnicer et al. 2011) and reduced tree 

growth (Besson et al. 2014). These responses to drought lead to an overall decline in 

tree crown condition and a higher susceptibility to diseases and pests (e.g. Phytophthora 

cinnamomi), which can ultimately result in tree mortality (Fig. 1.3; Brasier and Scott 

1994, Allen et al. 2010, Carnicer et al. 2011). This process, potentiated by recurring 

wildfire events, also made more frequent by climate change, is slowly promoting the 

conversion of more open cork oak woodlands into persistent shrublands (Acácio et al. 

2009) and their decline in many areas (Brasier and Scott 1994, Regato-Pajares et al. 

2004, Costa et al. 2011). In summary, both human and climate-induced effects are 

endangering the long term sustainability of cork oak woodlands and are, therefore, also 

likely to affect the future of the important biological diversity they support.  

 

1.3. Birds as biodiversity indicators in cork oak woodlands 

 

Cork oak woodlands are important for many biological groups but the abundance and 

diversity of birds they support is particularly remarkable (Diáz et al. 1997). The 

© António Ramalho 
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relatively open physiognomy of most cork oak woodlands allows the presence of 

species associated with both forest and open agricultural landscapes (Pulido and Diáz 

1992, Diáz et al. 1997, Telleria 2001). Furthermore, the moderate disturbance regime 

promoted by traditional land management techniques supports the maintenance of 

endangered species such as the Black Stork (Ciconia nigra), Common Crane (Grus 

grus) and Spanish Imperial Eagle (Aquila adalberti). The abundance of winter resources 

also allows millions of Wood Pigeons (Columba palumbus), Robins (Erithacus 

rubecula) and Mistle Thrushes (Turdus viscivorus) from northern Europe to overwinter 

in these woodlands. This situation is only possible in cork oak woodlands due to the 

delicate balance between human intervention and environmental conditions that 

maintain a heterogeneous habitat structure that favours diverse and abundant bird 

assemblages (Diáz et al 1997, Telleria 2001). At the same time, birds are generally very 

responsive to any change that affects this balance and are often used as biodiversity 

indicators for this reason (Hutto 1998, Gregory et al. 2003). 

 

Land use changes are currently a major threat to biodiversity across the Mediterranean 

Basin (Cuttelod et al. 2008) and severe impacts from climate change should also be 

expected (Alcamo et al. 2007). Several studies have highlighted the effects of land use 

change on birds (Donald et al. 2006, Sirami et al. 2008, Gil-Tena et al. 2009) and the 

loss of habitat heterogeneity seems particularly important (Atauri and de Lucio 2001, 

Benton et al. 2003). Birds have also been shown to be responding to climate change 

(Crick 2004, Devictor et al. 2012), inclusively in the Mediterranean region (Sanz 2002). 

However, much remains to be explored regarding the effects of changes in land use and 

climate on cork oak woodlands bird assemblages across the Mediterranean region. For 

example, the potential effects of different management activities have been highlighted 

(e.g. Camprodon and Brotons 2006, Godinho and Rabaça 2011, Santana et al. 2012, 

Leal et al. 2013) but the majority of studies that have addressed these issues were done 

in southwestern Europe, and their conclusions may not be applicable in regions with 

different ecological and sociological realities. The knowledge basis on the effects of 

climate change is even scarcer. The lack of long-term biodiversity monitoring, 

particularly in northern Africa, makes it difficult to evaluate the impacts of climate 

change on biodiversity and to disentangle them from those of other drivers of change. In 

order to promote the long term maintenance of the cork oak woodlands and their 
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biodiversity across the Mediterranean region, it is important to understand the impacts 

of potential threats across different spatial scales and temporal periods. 

1.4. Thesis structure and objectives 

 

The main aim of this thesis was to provide an insight on the potential effects of climate 

and land management changes on Mediterranean cork oak woodlands and their 

associated biological diversity. Specifically, I aimed to answer five main questions: i) 

how may the predicted changes in climate affect the future distribution of cork oak 

woodlands; ii) how do breeding bird assemblages in North African cork oak woodlands 

differ from those in Europe and how does this affect their conservation relevance; iii) 

what is the relative importance of climate and land use change effects for the 

conservation of different breeding bird groups of cork oak woodlands; iv) how will 

small-scale topographic and micro-climatic features influence breeding bird assemblage 

responses to climate change; and v) what is the influence of climate change on the 

recent establishment of wintering populations of traditionally migratory bird species in 

the Mediterranean region. 

 

This thesis contains five data chapters (Chapters 2 to 6), each aimed to answer one of 

the above main questions. These chapters are written in manuscript format with the 

objective to publish each one as individual papers in peer-reviewed journals. Because of 

this, each chapter includes a reference list which may facilitate the individual access to 

each chapter and relevant references. One chapter is currently under editorial 

consideration for publishing (Chapter 3) and the remaining chapters will all be 

submitted in due course to relevant journals. 

 

Concerning the overall thesis structure, Chapter 1 provides a general introduction and 

context to this thesis. Chapter 2 evaluates the future of cork oak woodlands under 

different climate change scenarios. In addition, it assesses the potential problems 

resulting from the use of predictive models trained with geographically incomplete data, 

particularly in the Mediterranean region. Chapter 3 compares the breeding bird 

assemblages of European and North African cork oak woodlands and assesses the 

relative importance of a geographical barrier and of local management factors in the 

structuring of those assemblages. Chapter 4 assesses the response of breeding bird 

assemblages to climatic and habitat structure gradients across European and North 
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African cork oak woodlands and their role for bird conservation. Chapter 5 analyses the 

response of cork oak trees and breeding bird assemblages to local topographic and 

micro-climatic features across an aridity gradient. Chapter 6 tests the hypothesis that 

climate change might be linked to the increase of wintering bird populations of 

traditionally migratory species, using a niche-based approach. Finally, Chapter 7 

compiles the key-findings of the thesis in a conservation perspective and provides 

suggestions for further research. 
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Abstract 

 

The cork oak (Quercus suber) is a keystone species across the Western Mediterranean 

region and protected at the European level that is predicted to decline due to climate 

change. To elaborate conservation and adaptation plans for this species, it is essential to 

spatially forecast how it may be affected by climate change across its range. SDMs 

(species distribution models) are an adequate tool for this purpose but are potentially 

constrained by the availability of suitable data for calibration of models. In this study I 

assessed the consequences of using European only and full Mediterranean range data to 

predict climatically suitable areas for the cork oak and the implications of using 

restricted range models for climate change adaptation planning in the Mediterranean 

Basin. I used maximum entropy modelling to identify present and future climatically 

suitable areas for the cork oak under the A2 and B2 emissions scenarios, using both 

restricted and full range models. The European only model predicted significantly 

greater range reductions than the full Mediterranean model. The best models indicated 

that about 40 to 60% of the current cork oak range will decline in climatic suitability, 

particularly in large areas of northern Africa and southern Iberian Peninsula. In these 

areas, cork oaks and their associated biodiversity will only persist in refugia sites. The 

areas that will remain suitable by 2080 are located in central Iberian Peninsula, Italy and 

the Mediterranean isles. To compensate losses in southern areas and maintain the 

economic and ecologic value of cork oak woodlands across the Mediterranean Basin 

afforestation efforts are urgently needed and should focus in the new climatic suitable 

areas along the Atlantic coasts of northern Iberia, France and southern United Kingdom. 
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2.1. Introduction 

 

The cork oak (Quercus suber) is a keystone species throughout much of the Western 

Mediterranean basin, which is part of a very important biodiversity hotspot (Myers et al. 

2000). This species forms the basis of cork oak woodlands, usually known as montados 

or dehesas in Portugal and Spain respectively. Cork oak woodlands are a traditional 

agro-silvo-pastoral system of high economical and ecological value resulting from the 

original Mediterranean forests (Diáz et al. 1997). Most of its economic value usually 

comes from cork production (e.g. cork generates approximately 900M€ per year just in 

Portugal and represents approximately 2.5% of all Portuguese exports) and this activity 

that is generally compatible with high biodiversity levels (Leal et al. 2011). This allows 

cork oak woodlands to sustain high numbers of species endemic of the Mediterranean 

Basin and also regionally and globally endangered species among the diverse 

communities it supports (Diáz et al. 1997). For this reason, cork oak woodlands are 

recognized as a High Nature Value Farmland (Hoogeveen et al. 2004) and their 

ecological value has been recognized even at the European level, with its inclusion on 

the Habitats Directive (92/43/CEE). Nonetheless, this system is under several threats. 

Increasing trends of abandonment and over-exploitation in traditionally managed areas 

are affecting tree health and regeneration (Acácio et al. 2007, Bugalho et al. 2009). 

Climate change is an important factor promoting cork oak defoliation and mortality 

through increasing drought events (Allen et al. 2010, Carnicer et al. 2011). Given that 

the Mediterranean basin is considered a hotspot for climate change (Giorgi 2006) and 

the generally low adaptive capacity of Mediterranean forests (Lindner et al. 2010), it is 

essential to predict changes in cork oak ranges and future climatic suitability areas to 

develop effective conservation strategies. 

 

Species Distribution Models (SDMs) are one of the few available tools to spatially 

predict the impacts of future climate change. This makes them potentially useful for the 

planning of conservation (Rodriguez et al. 2007) and afforestation (Hidalgo et al. 2008, 

Vessella and Schirone 2013), both important components of a strategy for adaptation to 

the consequences of climate change. Still, the application of SDMs is not without 

challenges as their predictions are subject to uncertainty (Diniz-Filho et al. 2009, 

Buisson et al. 2010). While the inherent uncertainty in predictions associated with 

future climatic scenarios is inevitable, other important sources of uncertainty related to 
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the modelling framework should be minimized. The importance of the extent of the 

distribution data used to train models has been suggested (Thuiller et al. 2004), as not 

covering the full range of a species may result in erroneous assessments of suitable 

areas (Barbet-Massin et al. 2010, Sánchez-Fernández et al. 2011). Despite this fact, 

many large scale studies have failed to incorporate data from the full range of species 

(Huntley et al. 2008, Setelle et al. 2008), presumably because of the difficulty to obtain 

detailed data from some parts of the species ranges. This difficulty may explain why 

previous estimates of climate change impacts on many species, including the cork oak 

(Benito Garzón et al. 2008, Atorre et al. 2011), did not include data from their whole 

distribution. There is a need to understand how the usage of restricted range data may 

affect model predictions and, therefore, future conservation and adaptation decisions in 

a climate change context. This may be particularly important in the Mediterranean 

region as it spans an important north-south gradient in climatic conditions, which 

encompasses both Europe and North Africa. Due to the severity of climatic changes 

predicted for this region (Giorgi 2006), many projects use SDMs to forecast the future 

suitable range for animal and plant species of conservation concern. However, data on 

the distribution of some species in North Africa is much scarcer than in Europe, and 

thus researchers are often forced to train SDMs solely using data from their European 

range. This practice assumes that the range of the species in Europe is sufficiently 

representative of the climatic niche occupied by species to model current and future 

ranges. 

 

In this manuscript I aim to (i) quantify differences in cork oak range change as predicted 

by European and full Mediterranean data models (ii) assess the consequences of using 

these two models for climate change adaptation planning in the Mediterranean Basin 

using the cork oak as a study species, and (iii) assess the potential of current 

afforestation efforts to compensate climate change impacts on the distribution of cork 

oak woodlands, using Portugal as a case study. 
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2.2. Material and methods 

 

2.2.1. Distribution data 

 

I obtained cork oak distribution data by geo-referencing or collecting geo-referenced 

distribution data resulting from national Forestry or Biodiversity Inventories for the 

Mediterranean countries where the species is present (Portugal – Autoridade Florestal 

Nacional 2009; Spain – Dirección General de Medio Natural y Política Forestal 2009; 

France – Institut National de l’Information Géographique et Forestière 2010, Italy – 

Atorre et al. 2011; Morocco – Haut Commissariat aux Eaux et Forêts et à la Lutte 

Contre la Désertification 2005; Algeria – Barry et al. 1974; Tunisia – Khaldi 2004). The 

spatial resolution of the data differed between countries, so the complete distribution 

data set was upscaled to a 10 arc-minutes resolution grid. This homogenised the spatial 

resolution of the distribution data and matched it to the resolution of the climate data 

used (Fig. 2.1). The location of recent cork oak plantations in Portugal was obtained 

from the same source as the distribution data (Autoridade Florestal Nacional 2009). 

 

 
Figure 2.1. Cork oak distribution (in black). Over 60% of the current distribution is in 

the Iberian Peninsula (Pausas et al. 2009). 
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2.2.2. Environmental data 

 

I obtained present climate data from the WorldClim database 

(http://www.worldclim.org/) at 10 arc-minutes resolution, for the time-period between 

1950 and 2000. Future climate predictions for 2080 (2070-2099) were obtained from the 

Consultative Group on International Agricultural Research (CGIAR)'s Research 

Program on Climate Change, Agriculture and Food Security (CCAFS) climate data 

archive (http://ccafs-climate.org), at the same resolution as the present climate data, for 

three Global Circulation Models (GCMs – CGCM2, CSIRO MK2 and HadCM3) and 

two Global Emission Scenarios (GESs – IPCC SRES A2 and SRES B2). These 

scenarios were chosen as they represent moderate (B2 scenario, average increase of 

2.4ºC by 2100) and high (A2 scenario, average increase of 3.4ºC by 2100) world-wide 

climate warming trends. 

 

The full climate dataset included 19 bioclimatic variables (Hutchinson et al. 2009) for 

both present and future scenarios. I assessed pairwise variable correlation using 

Pearson’s r, and only variables with r<|0.8| were retained for modelling purposes 

(Désamoré et al. 2012, Telleria et al. 2012). The final variables included in the models 

were Mean Annual Temperature, Isothermality, Temperature Seasonality, Precipitation 

of the Wettest Month and Precipitation Seasonality (Table 2.1). 

 

Table 2.1. List and description of the bioclimatic variables used for modelling 

purposes. 

Variable Description 

Mean Annual Temperature Mean of weekly mean temperatures 

Isothermality Ratio of mean diurnal temperature range and 

annual temperature range 

Temperature Seasonality Coefficient of variation of mean weekly 

temperatures 

Precipitation of the Wettest Month Precipitation occurred during the wettest month 

of the year 

Precipitation Seasonality Coefficient of variation of weekly precipitation 

estimates 
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2.2.3. Modelling framework 

 

In order to evaluate the consequences of using only part of the range of species in model 

calibration, I modelled suitable areas for the cork oak using its European only 

(restricted) range and Mediterranean (full) range. A maximum entropy modelling 

method (Phillips et al. 2004, Elith et al. 2011) was used to obtain predictions of present 

and future suitable areas for the cork oak. This modelling technique is known to 

perform well in comparison with other modelling algorithms (Elith et al. 2006), even 

with restricted data (Wisz et al. 2008), and is thus suitable for this study. 

 

Maximum entropy models were run in R software package v2.15 (R Development Core 

Team 2011) with package dismo. Models were fitted using only Linear and Quadratic 

features in order to make results more interpretable biologically (Syfert et al. 2013) and 

to obtain better estimates of current and future potential distributions, which are 

important for conservation purposes (Thuiller at al. 2004, Jiménez-Valverde et al. 

2008). Background points were selected from the whole study region, but excluded 

areas where the cork oak is known to be present. For each range extent, models were 

replicated 100 times by selecting 75% of data records for calibration and 25% for 

validation, using a sub-sampling approach. I obtained presence-absence maps of 

suitable areas for cork oak using a metohod that minimizes the absolute difference 

between model sensitivity and specificity (“Equal training sensitivity and specificity” 

threshold in MaxEnt), which has been recommended as a good threshold selection 

approach (Liu et al. 2005, Jiménez-Valverde and Lobo 2007). Consensus maps were 

calculated for the present and future climate scenarios analysed using an unweighted 

average of the predictions obtained from model replicates. These maps were ultimately 

used to identify intervention areas for conservation and adaptation measures based on 

the impacts predicted by the A2 scenario. Consensus and intervention maps were edited 

using the ‘raster’ package for R software package v2.15 (R Development Core Team 

2011) and map visualization and plotting was done using ArcGIS v10.0 (ESRI, 2010). 

 

2.2.4. Model assessment and statistical analysis 

 

Model predictive performance was assessed using AUC test scores. I obtained 

predictions of present and future suitable areas for two climate change scenarios in 
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order to quantify climate change effects on cork oak. These predictions were then used 

to obtain estimates of range change and range maintained for future scenarios. Range 

change was defined as the difference between the number of suitable pixels predicted in 

present and future scenarios; range maintained was the percentage of the pixels 

currently occupied that is likely to remain suitable in the future. The role of recent 

afforestations to compensate potential cork oak losses in Portugal was assessed by 

calculating the area of current cork oak range and new plantations likely to remain 

suitable in the future. Finally, I evaluated the consequences of using incomplete species 

ranges in model calibration by comparing predictions obtained with restricted and full 

distribution datasets using pairwise t-tests. All the calculations were computed with R 

software package v2.15 (R Core Team 2011). 

 

2.3. Results 

 

Average AUC test scores of both restricted and full range models were 0.97 and did not 

differ significantly (Table 2.2). Predictions of present suitable range were also similar 

between models, averaging 2419 suitable pixels for the restricted model and 2402 for 

the full model. However, I did find significant differences between future suitable range 

predictions, for both the A2 (pairwise t-test, t=17.64, df=299, P<0.001) and B2 

scenarios (pairwise t-test: t=18.59, df=299, P<0.001). The full range model always 

predicted a larger suitable area, averaging 2423 suitable pixels in the B2 scenario and 

2237 suitable pixels in the A2 scenario (Table 2.2). 

 

All models predict a major shift in the future range of the cork oak (Fig. 2.2), with a 

marked reduction of suitable areas in North Africa and southern Iberia, and a major 

increase in suitability to the north of the current core distribution (e.g. Atlantic Iberia, 

France and even England). However, the extent and geographic location of the predicted 

changes were quite different between the models trained with the restricted and full 

ranges (Fig. 2.2). For example, the restricted models predict substantially greater 

declines in the southern part of the current range. The full range models predict an area 

of the current range that will remain suitable in the future to be approximately 15% 

larger than what is estimated by the restricted range models in both scenarios (Fig. 

2.3A). Therefore, predictions are significantly different between the restricted and full 

range models for both the B2 (pairwise t-test, t=30.30, df=299, P<0.001) and A2 
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scenarios (pairwise t-test, t=30.30, df=299, P<0.001). As a result, and in spite of the 

predicted increase in the area suitable for cork oaks in Atlantic Europe, most models 

still predicted a global loss of suitable area. Estimates of range change obtained with 

restricted range models are approximately 10% higher than the figures predicted by the 

full range models. This difference was statistically significant for both the B2 (pairwise 

t-test, t=24.10, df=299, P<0.001) and A2 (pairwise t-test, t=26.74, df=299, P<0.001) 

emissions scenarios (Fig. 2.3B). 

 

Table 2.2. Summary of AUC scores and predicted number of suitable pixels for present 

and future scenarios obtained with the restricted and full range models. Indicated P-

values obtained with pairwise t-test. 

Descriptor Model P-value 

 Restricted range Full range 

AUC test scores (mean ± SD) 0.97 ± 0.01 0.97 ± 0.01 0.97 

No. suitable pixels (mean ± SD)    

Present 2419 ± 87 2402 ± 55 0.11 

B2 scenario 2154 ± 147 2423 ± 195 <0.001 

A2 scenario 2040 ± 224 2237 ± 232 <0.001 

 

Differences between models were also evident at the local scale when analysing 

estimates of range loss for Portugal and the future suitability of cork oak plantations 

(Fig. 2.4). I found significant differences between models for the estimates of future 

range loss in Portugal for both the A2 (pairwise t-test, t=58.08, df=299, P<0.001) and 

B2 scenarios (pairwise t-test, t=23.22, df=299, P<0.001). Even the more conservative 

full range model predicts average cork oak range losses in Portugal of approximately 

5% (~25000 ha) for the B2 scenario and 40% (~200000 ha) for A2 emissions scenario 

(Fig. 2.5A). In what concerns recent cork oak plantations, the same model predicts that 

approximately 98% and 66% (B2 and A2 scenarios respectively) of plantations are in 

areas that should remain suitable in the future (Fig. 2.5B). Again, these estimates were 

significantly greater than those obtained with the restricted range model for the B2 
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(pairwise t-test, t=24.02, df=299, P<0.001) and A2 scenarios (paired t-test, t=85.60, 

df=299, P<0.001). 

 

 

 
Figure 2.2. Climatically suitable areas for the cork oak as predicted by the restricted 

range (left) and full range (right) models. Images represent consensus maps of 

predicted suitability for the present (top row) and year 2080 according to different 

emission scenarios (centre and bottom rows). 
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Figure 2.3. Estimates of (A) present range likely to remain suitable in future scenarios, 

and (B) potential cork oak range change according to predictions made by the 

restricted and full range models. Significant differences between models were found for 

all estimates and emissions scenarios analysed (*** p<0.001, pairwise t-test). 

 

2.4. Discussion 

 

2.4.1. European only vs. full Mediterranean models: implications for conservation 

planning 

 

Predictions of future suitable areas obtained with the restricted range model, calibrated 

with the European distribution of the cork oak, differed significantly from the 

predictions obtained with the full range model that included both the European and 

North African range (Fig. 2.2). These differences can be explained by the influence of 

data extent on the calibration of model response curves (Thuiller et al. 2004).   
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Figure 2.4. Distribution of recent cork oak plantations in Portugal and predicted 

suitability for present (top row) and future emission scenarios (middle and bottom 

rows), as predicted by the restricted (left) and full range (right) models. 

 

Excluding data from regions with differing climatic conditions will likely prevent 

species distribution models to accurately identify all climatically suitable areas for the 

species. This is a particularly important drawback in a climate change context, because 

current climatic conditions may shift geographically or even disappear (Ohlemüller et 
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al. 2006), which may restrict model transferability and ultimately affect predictions 

(Barbet-Massin et al. 2010).   

 

 
Figure 2.5. Estimates of (A) cork oak woodland area predicted to become unsuitable 

and (B) area of cork oak plantations remaining suitable in Portugal, as predicted by the 

restricted and full range models for the B2 and A2 emissions scenarios. Significant 

differences were found between model predictions for each statistic and emissions 

scenario analyzed (*** p<0.001, pairwise t-test). 

 

These results have important implications for the use of SDMs for conservation 

planning: restricted models may fail to identify future suitable areas, hence providing 

inaccurate information for managers and policy-makers. Modelling techniques known 

to perform well with restricted data, such as maximum entropy models (Wisz et al. 

2008), may result in good models of the current distributions, as results show, but are 

likely to be inaccurate when applied to future scenarios. Using more complete 

information on species distributions to calibrate models is thus important (Lobo 2008). 

However, data availability is still a problem in many regions, and even when available, 

issues with data quality may prevent their inclusion in the high-resolution models that 

are usually required for conservation and policy decisions. The Mediterranean Basin is 

an example of the difficulties of making accurate predictions for future scenarios using 

SDMs. For many Mediterranean species, distribution data are more easily available for 

southern Europe than northern Africa. In spite of the ongoing progress of Natural 

history research in North African countries, distribution data is still usually sparse, 
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outdated, or of low resolution. The presence of the Mediterranean Sea separating these 

two regions provides additional geographical justification for excluding North Africa 

from modelling efforts. However, the omission of information from North Africa, 

where many Mediterranean species reach their warmest and driest range limits, will 

result in incorrect model calibration and, therefore, inaccurate future predictions. Efforts 

to tackle this issue should focus on increasing knowledge of species distributions 

through biodiversity mapping (for an example, see Jetz et al. 2012) and improving data 

sharing, which may also stimulate inter-regional collaborations required to tackle 

climate change (Brooker et al. 2010). 

 

 

 
Figure 2.6. Summary map of climate change impacts on suitable areas for the cork oak. 

Areas where the species is currently present but likely to become climatically unsuitable 

due to climate change are shown in red. In yellow are shown the areas where cork oak 

is currently present and climatic conditions are likely to remain suitable in the future. 

Green areas represent new suitable climatic space for the cork oak in areas where it is 

currently absent. 
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2.4.2. Cork oak conservation and adaptation priorities in light of future climate 

change 

 

Results show a clear message: Climate change will affect the cork oak distribution 

range, which will have important impacts on the future of the Montado system. Both its 

potential and occupied range are expected to decline, with predictions of only 40 to 60% 

of its current worldwide range likely to remain suitable in the future.  Impacts will not 

be homogenous across its range, and will affect mostly northern Africa and the south of 

the Iberian Peninsula (Fig. 2.2). In the particular case of Portugal, that currently holds 

approximately one third of the cork oak global range (Pausas et al. 2009), between 40 to 

80% of its current area may become unsuitable in higher warming scenarios (Fig. 2.5). 

Nonetheless, the results obtained with the full range models provide more favourable 

scenarios for the application of conservation and adaptation measures than previous 

estimates resulting from incomplete range efforts. The type intervention required varies 

between regions and is dependent on the presence or absence of cork oak areas and the 

changes in the climatic suitability predicted due to climate change (Fig. 2.6). 

 

Conservation priorities should focus primarily in areas of the current cork oak range that 

are expected to remain suitable. In more extreme scenarios, extensive losses of 

climatically suitable areas are predicted in northern Africa and southern Iberian 

Peninsula and only small pockets of suitable climate are likely to maintain viable cork 

oak populations (red areas in Fig. 2.6). These areas of potential refugia should be 

primary candidates for immediate protection in order to maintain landscape connectivity 

and should therefore be managed to increase their resilience and long term 

sustainability. They would be valuable to boost the current network of European and 

Mediterranean protected areas, deemed necessary to face future climate change 

(Klausmeyer and Shaw 2009, Araújo et al. 2011). 

 

Despite the likely reduction in suitable area for the cork oak, models still predict 

between 40 and 60% of the current range to remain suitable in the future. Areas likely to 

maintain their cork oak populations include the central Iberian Peninsula, Italy and the 

Mediterranean islands of Sicily, Sardinia and Corsica (yellow areas in Fig. 2.6). In these 

areas the conservation focus should shift to the promotion of long term sustainable 

management practices, required to maintain biodiversity and ecosystem services 
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(Bugalho et al. 2011). This should include a restriction on the usage of heavy 

machinery, introduced as a result of intensification trends and European policies, which 

usually results in root damage for the trees, management of grazing stock numbers and 

economic stimulus through subsidies or product certification that may buffer managers 

from fluctuating market prices of cork and other products thus slowing current land 

abandonment trends (Bugalho et al. 2009, Bugalho et al. 2011). 

Adaptation efforts should take advantage of the predicted northward shift in climatically 

suitable areas along the Atlantic coasts of northern Iberian Peninsula, France and 

southern United Kingdom (green areas in Fig. 2.6) by promoting a northwards 

expansion of the species distribution. However, the low regenerative ability of cork 

oaks (Pons and Pausas 2006, Acácio et al. 2007, Caldeira et al. 2014) indicates that 

natural expansion is unlikely to occur at a speed compatible with the climatic changes 

expected for the Mediterranean region (Loarie et al. 2009). In this scenario, a proactive 

approach based on afforestation efforts will be required (Resco de Dios 2007). In 

Portugal, recent afforestation efforts may compensate potential range losses in a 

moderate climate change scenario, but will still fail to do so in more extreme scenarios 

(Fig. 2.4 and 2.5). Further afforestation efforts should be stimulated in order to 

compensate predicted losses in the current range and improve the long term ecologic 

and economic sustainability of this system. Species distribution models can contribute 

to identify areas climatically suitable for new plantations (Hidalgo et al. 2008, Vessella 

and Schirone 2013), although such models should also incorporate non-climatic factors, 

such as soil type and slope, which influence cork oak establishment and survival (Costa 

and Madeira 2011). 

 

2.5. Conclusions 

 

Restricted range models provide biased results of future scenarios and should be 

regarded with caution, as was clearly shown for the cork oak. Results illustrate how 

using a restricted range dataset to train models may result in predictions that exaggerate 

climate change impacts. In the Mediterranean region this problem is particularly serious 

when the driest and warmest parts of the range are excluded from the calibration. Biased 

models are likely to weaken the planning of minimization and adaptation measures and 

divert resources, so it is important to incorporate the most complete range data in 

models training. 
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Nonetheless, even when using the full cork oak distribution for calibration the models 

predicted a major reduction of the current cork oak distribution. Consequently, science 

based conservation and adaptation measures will be essential to provide a sustainable 

future for the species and for the agro-silvo-pastoral system that depends on it. The 

results point towards three major conservation and adaptation measures for the cork oak 

in light of climate change: protection and preservation of potential relict fragments in 

highly affected areas, adequate land management practices in areas of long term 

climatic suitability, and an active northward expansion of cork oak distribution 

promoted through afforestation efforts. 
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Abstract 

 

The Mediterranean Sea has separated the sclerophyllous forests of southern Europe and 

northern Africa for millions of years, but its role structuring forest bird assemblages 

remains unclear. To address this issue I sampled bird assemblages in cork oak 

woodlands located north and south of the Strait of Gibraltar and compared abundance, 

diversity, and species and guild assemblage structure. Abundance and diversity patterns 

were remarkably similar, but dissimilarity analyses of species and guild composition 

revealed differences in bird assemblage structure between regions. Differences are 

partly attributable to the effect of the Mediterranean as barrier to the dispersal of forest 

birds; a few species were unable to colonize North Africa, and many that colonized it 

remained in sufficient isolation to evolve into distinct taxa. In addition to this 

divergence of biogeographic genesis, assemblages also differ because in North African 

cork oaks woodlands forest specialists were less abundant, and generalists more 

abundant. This difference is parsimoniously explained by habitat overexploitation 

affecting tree cover. Managed cork oak woodlands are widespread in the Western 

Mediterranean, and are valuable because they conciliate economic exploitation with 

high biodiversity, mostly of the original Mediterranean forests. Those of North Africa 

are of greater conservation concern because they harbour endemic bird species that give 

its assemblage a distinct character, cover a smaller area, and are currently under greater 

pressure from overexploitation. These results highlight the importance to implement 

management and exploitation practices that increase system resilience and maintain 

biodiversity value throughout the range of cork oak woodlands.  
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3.1. Introduction 

 

The Mediterranean Basin is considered a hot-spot of biodiversity (Myers et al. 2000), 

which is to a great extent a consequence of the topo-geographical complexity of the 

region (Blondel et al. 2010). The Mediterranean Sea is its most evident geographic 

feature, physically separating the terrestrial ecosystems of southern Europe and northern 

Africa. The last time this separation was interrupted in the Western Mediterranean was 

over five million years ago, when geological forces temporarily closed the Strait of 

Gibraltar, causing a partial desiccation of the landlocked sea (Duggen et al. 2003).  

 

The role of the Mediterranean Sea as a barrier to gene flow within species is relatively 

well studied (e.g. Broderic et al. 2003, García-Mudarra et al. 2009, Pons et al. 2011, 

Husemann et al. 2014), but its effects on the structure of species assemblages across the 

region remain somewhat unexplored. Indeed, such an extensive barrier to dispersal of 

biota may cause the differentiation of assemblages by limiting colonization across the 

barrier, and by facilitating speciation of isolated populations. Several studies confirmed 

speciation processes across the Strait of Gibraltar in multiple taxa, although the 

frequency of this phenomenon is greatly dependent on the dispersal abilities of each 

taxa; flying species, and those that tolerate salt water, tend to show lower levels of 

differentiation across the Strait (Habel et al. 2009). Existing information is still 

insufficient to make broad generalizations about the level of permeability of the Strait 

for birds, but evidence indicates that it is comparatively low for forest-adapted birds 

(Pons et al. 2011). In fact, a number of them have highly differentiated populations in 

Iberia and North Africa, whereas arid-adapted species are involved in several recent 

colonization events across the Strait (Pons et al. 2011).  

 

The structure of species assemblages on the two sides of the Mediterranean may not 

differ solely due to its natural role as a barrier to dispersal, but also because it separates 

two highly contrasting socio-economic realities. These contrasts translate into different 

land use practices, which are known to have a marked influence on biological 

communities and ecological processes across the region (Blondel et al. 2010). 

 

Large areas of the Western Mediterranean basin are dominated by cork oak (Quercus 

suber) woodlands, usually managed as an agro-silvo-pastoral system known as montado 



50 
 

in Portugal and dehesa in Spain. This system resulted mostly from the transformation of 

original cork oak forests through a long history of low intensity management (Diáz et al. 

1997). In spite of its semi-natural character, it harbours some of the richest bird 

assemblages in the Mediterranean region, both in Europe and in North Africa. The 

overall structure of the habitat is similar in the cork oak woodlands of the two 

continents, but their bird assemblages may differ not only because of the separation by 

the Mediterranean but also due to contrasts in their levels of exploitation (Bugalho et al. 

2011). For these reasons, cork oak woodlands are particularly well suited to investigate 

the process of differentiation of bird assemblages, separating the role of the 

Mediterranean Sea as a barrier for forest birds and that of human induced factors.  

 

The general aim of this study is to contribute to the understanding of the barrier role of 

the Mediterranean Sea in the structuring of biological communities, by evaluating its 

relevance shaping woodland birds assemblages. In addition, I quantified the relative 

importance of this role and that of woodland exploitation and management. To achieve 

these objectives I compared the bird assemblages of North African and Iberian cork oak 

woodlands, testing for differences in (i) assemblage structure (species richness and 

abundance) and (ii) assemblage composition (both species and guild-assemblages). The 

results of these comparisons are discussed in the light of the complex bio-geographical 

history of the Mediterranean Basin (Blondel et al. 2010) and of the current threats to 

cork oak woodlands (Berrahmouni et al. 2009). 

 

3.2. Material and methods 

 

3.2.1. Study area 

 

All study sites are located within 100 km of the Strait of Gibraltar (Fig. 3.1). The region 

has a complex topography and a Mediterranean climate, with mild winters and dry 

warm summers. Annual temperatures average around 15ºC and annual precipitation is 

usually over 600mm (Ojeda et al. 1996). The indigenous vegetation is typically 

Mediterranean, and lowland woodlands are in general dominated by the evergreen cork 

oak (Quercus suber), although holm oak (Quercus rotundifolia), Algerian oak (Quercus 

canarensis) and Pyrenean oak (Quercus pyrenaica) are also locally abundant (Marañón 

et al. 1999; Ajbilou et al. 2006).  
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Figure 3.1. Location of the sampled areas (dots) and regional distribution of cork oak 

woodland (shaded areas). 

 

I sampled bird assemblages in a total of seven cork oak woodlands (Fig. 3.1), four in 

Iberia and three in North Africa (Appendix 3.1). The main source of revenue of all these 

exploited forests is cork, but hunting, grazing and collection of wood products are also 

important in some of them. Vegetation structure was roughly similar in all areas, with 

tree density averaging around 60 trees/ha and shrubs covering usually more than 60% of 

the ground surface. 

 

3.2.2. Bird sampling 

 

Bird assemblages were sampled using five-minute bird point counts (Sutherland et al. 

2004, Bibby et al. 2005) during the spring of 2011. The same observer sampled a total 

of fifteen stations in each of the seven sampled woodlands. Counting stations were 

separated by at least 200m and were located 100m or more from woodland edges. All 

stations were sampled twice, during the early and late halves of the breeding season (1 

April to 15 May; 16 May to 20 June), to account for the presence of migratory species. 

This resulted in a total of 210 point counts, which were carried out during periods of 

peak activity (one visit in the morning and one visit in the late afternoon at each station) 
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and avoiding rainy or windy days (Sutherland et al. 2004). All birds detected, visually 

or acoustically, within 100m from the observer were recorded and their distance was 

estimated. Over-flying birds and those detected more than 100m from the observer were 

recorded, but not included in the analysis.  

 

3.2.3. Data analysis 

 

Bird species were classified into four habitat specialization guilds: forest specialists, 

farmland specialists, shrub specialists and generalists (Godinho and Rabaça 2011). In 

the cases of North African endemic species, habitat specialization was considered to be 

the same as the phylogenetically and ecologically equivalent species found in European 

areas. I considered the abundance of a species in each of the seven sampling areas to be 

the maximum number of individuals detected in all fifteen counting stations on either of 

the two visits, as this represents the minimum number of birds present at the sampled 

location (Bibby et al. 2005). No compensation for detectability was used to estimate 

bird abundances as detectability biases between regions due to sampling different 

vegetation types are unlikely since the habitat sampled was the same and vegetation 

structure was generally similar between all the sampled areas. 

 

I estimated species richness with Coleman individual-based rarefaction curves 

computed using EstimateS v8.2 (Colwell 2009). These curves allow for richness 

estimation while controlling for confounding effects of bird densities and sampling 

effort (Gotelli and Graves 1996). I also calculated mean bird abundance and Shannon 

and Equitability indexes for each region, and compared them using Student’s t-tests. 

 

The structure of the assemblages was compared using abundance data, to obtain more 

meaningful estimates of similarity; incidence-based similarity comparisons treat rare 

and abundant species equally and thus tend to oversimplify relationships between 

assemblages (Gotelli and Chao 2013). Prior to the analyses, I applied the Hellinger 

transformation for abundance data (standardized per site and square-root transformed), 

and calculated a dissimilarity matrix with distances between the seven sampling areas 

(Borcard et al. 2011). Analysis of similarity (ANOSIM), a nonparametric permutations 

test analogous to ANOVA (Legendre and Legendre 1998), was then used to test for 

significant differences between the assemblages of the two regions, using the package 
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vegan implemented in R (R Development Core Team 2011). Due to recent criticism of 

distance-based multivariate analysis (Warton et al. 2012), this difference was also tested 

with multivariate generalized linear models (GLM), using the mvabund R package. This 

was done by fitting a multivariate GLM with negative binomial error distribution 

(following Warton et al. 2012) on the untransformed matrix of species abundances and 

by using a multivariate ANOVA with log-likelihood ratio to test for differences 

between the assemblages of the two regions and to assess the contribution of individual 

species to these differences. Finally, and based on the checklists of birds for Spain and 

Morocco (Lepage 2013a, 2013b), species were classified in two distribution groups: 

restricted (species restricted to either North Africa or Europe) or widespread (species 

present in both regions). I assessed the contribution of each of these groups to the total 

difference between assemblages (the sum of the contributions of all species in the 

group). Differences due to restricted species are likely to be a consequence of the barrier 

effect of the Mediterranean, whereas those due to widespread species are presumably 

the result of local factors, including human-induced factors. A list of the recorded 

species indicating their abundance, geographic distribution, and guild classification can 

be found in Appendix 3.2. 

 

3.3. Results 

 

3.3.1. Species richness and abundance 

 

The 210 bird point counts resulted in the detection of a total of 1412 individuals of 46 

species (Fig. 3.2). The five most abundant species (Erithacus rubecula, Fringilla 

coelebs, Parus major, Sylvia melanocephala and Turdus merula) represented 

approximately 45% of the individuals sampled, whereas 30% of the species sampled 

were represented by five or fewer birds. The majority of individuals belonged to forest 

specialist species (64%) followed by generalist species (23%). Species in the shrub and 

farmland guilds represented just eight and five percent of the total individuals, 

respectively. 

 

Average bird abundance (t=0.94, P=0.41) and number of species detected per site 

(t=0.51, P=0.64) did not differ significantly between regions (Table 3.1). The Shannon 

diversity index (t=0.98, P=0.38) and the Equitability index (t=0.02, P=0.99), were also 
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not distinct. Individual based rarefaction curves indicate that species richness is similar 

in both regions (Fig. 3.3). 

 

 

 

 
Figure 3.2. Mean abundance and 95% confidence intervals of each species registered 

in North African and Iberian cork oak woodlands. Species are ordered according to 

their maximum abundance observed in both regions. 
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3.3.2. Species composition 

 

The results of the point counts (Fig. 3.2) show that there much in common between the 

species assemblages of cork oak woodlands of southern Iberia and northern Africa. This 

is evident both in the species present and in their abundance. However, the dissimilarity 

analysis of species assemblages (Table 3.2) shows that the sampling sites were more 

dissimilar between regions (0.74) than within them (0.51 and 0.49 for African and 

Iberian areas, respectively). These results suggest a difference between regions, and this 

was confirmed by the significant results obtained with both distance measures 

(ANOSIM test; R=1, P=0.03) and multivariate analysis (ANOVA Log-likelihood ratio 

test; Dev=145.8, P=0.03).  

 

 

Table 3.1. Key parameters (mean and 95% confidence interval) of the bird assemblages 

of Iberian and North African cork oak woodlands. 

Region Na  Abundanceb Species richnessc Shannon index Equitability index 

Iberia 4 4.46±0.83 27.0±5.1 2.86±0.18 0.77±0.05 

North Africa 3 4.03±0.24 25.3±1.5 2.76±0.08 0.77±0.02 
a Number of sites sampled 
b Total number of birds per hectare 
c Number of species per sampled area 

 

 

In light of these results, I assessed the contribution of individual species to the 

difference between the studied assemblages in Iberia and northern Africa (Fig. 3.4). 

Only two species made a statistically significant contribution to this difference: 

Cyanistes caeruleus, in Europe, and Cyanistes teneriffae, in North Africa. Two other 

species, although common in both regions, had a nearly significant contribution: E. 

rubecula and Troglodytes troglodytes (Fig. 3.4). Species restricted to either Europe or 

North Africa were responsible for 33% of the total difference, while those present in 

both regions explained the remaining 67%.  
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3.3.3. Guild assemblage 

 

Dissimilarity analysis for guild assemblage also revealed that sampling sites were less 

dissimilar within regions (0.15 and 0.14 respectively for northern and southern areas) 

than between them (0.20). Differences in guild composition between regions were 

significant both when tested using distance based analysis (ANOSIM test; R=0.68, 

P=0.05) and multivariate analysis (ANOVA Log-likelihood ratio test; Dev=12.49, 

P=0.04).  

 

 
Figure 3.3. Individual based rarefaction curves of species richness for areas north and 

south of the Strait of Gibraltar. Dotted lines delimit the 95% confidence envelopes. 

 

The combined abundance of species in forest (t=2.96, P=0.04) and generalist (t=2.60, 

P=0.04) guilds differed significantly between regions, with the former more abundant in 

Iberia and the latter in northern Africa (Fig. 3.5). The total abundance of species in the 

shrub (t=0.88, P=0.42) and farmland (t=0.25, P=0.81) guilds did not differ between the 

two regions. 
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3.4. Discussion 

 

3.4.1. How different are the bird assemblages of European and African cork oak 

woodlands? 

 

This study found that bird assemblages of Iberian and North African cork oak 

woodlands are structurally quite similar. Overall bird abundance is similar, and so is the 

species richness of the assemblages (Table 3.1). Values for both parameters are in line 

with those described for other Mediterranean oak woodlands (Telleria 2001). The total 

number of species observed in the counts was higher in Iberia but the rarefaction 

analysis (Fig. 3.3) indicates that this is due to a greater sampling effort. In fact, most 

species observed only at Iberian sites are also present in the North African cork oak 

woodlands that were sampled (Cherkaoui et al. 2004 and personal observations), but are 

not abundant and were not detected during the point counts for stochastic reasons. 

 

Table 3.2. Average dissimilarity scores based on the Hellinger dissimilarity index for 

species and guild assemblages, within and between regions. 

Region Dissimilarity(%)  

 
Species Guilds 

Within Iberia 0.51 0.15 

Within North Africa 0.49 0.14 

Between Iberia-North Africa 0.74 0.2 

 

In spite of this similarity, the abundance-based analysis revealed a statistically 

significant difference between the assemblages of the two regions. However, the species 

that contribute most to that difference, Cyanistes caeruleus (Iberia) and Cyanistes 

teneriffae (North Africa) are phenotypically so similar that until recently were 

considered conspecific (Salzburger et al. 2002). They presumably occupy the same 

niche in both regions and are thus functionally equivalent. An analogous situation 

occurs with the pair Alectoris rufa (Iberia) and Alectoris barbara (North Africa). 

Differences due to such species pairs are biogeographically relevant, as discussed in the 

next section, but do not correspond to ecologic structural differences between the 

assemblages. 
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How can this similarity of assemblages persist, in spite of a five million year separation 

by the Mediterranean Sea? The bird fauna of cork oak woodlands essentially mirrors 

that of natural Mediterranean woodlands, which is known to harbour mostly the same 

species in Europe and North Africa (Blondel 1995). Palaeoecological evidence indicates 

that during the Pliocene and Pleistocene parts of southern Europe and North Africa had 

comparable climatic and ecological conditions, leading to similarities in the faunas of 

the two regions (Husemann et al. 2014). Comparable conditions persisted even during 

the Pleistocene glacial periods and in fact southern Iberia and the adjacent areas of 

North Africa have been classically merged in the same glacial refuge, the Atlantic-

Mediterranean centre (De Lattin 1949). In the case of birds, as in that of other flying 

organisms (Habel et al. 2009), the Mediterranean remained a relatively permeable 

barrier, which partly prevented local differentiation processes and facilitated the 

homogenisation of the assemblages. It is thus likely that the similarity of the two 

assemblages is explained by a combination of analogous ecological conditions, 

permeability of the Mediterranean to dispersal, and a long common history. 

 
Figure 3.4. Species making the highest contributions (>2.5%) to assemblage 

dissimilarities between regions. Significance level is indicated by asterisks (P<0.05) 

and dots (P<0.10). 
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The two assemblages also differed in their guild structure, mostly as a consequence of 

the greater abundance of forest specialist species in Iberia, and of a greater abundance 

of generalist species in northern Africa (Fig. 3.5). The differences observed between 

regions, both in the species and guild composition of the assemblages, may be explained 

either by historical or current local drivers, which are discussed in the next section. 

 

3.4.2. How important is the barrier role of the Mediterranean in the differentiation 

of the two assemblages? 

 

The Mediterranean has been a barrier for dispersal of terrestrial biota for over five 

million years, and its narrowest point is the strait of Gibraltar, which is presently 14.5 

km wide. Studies done with different animal groups found that for most of them this 

barrier has been of major biogeographic importance (Husemann et al. 2014). The 

comparison between bird assemblages of the same habitat on opposite sides of the 

Mediterranean contributes to the understanding of its potential role structuring forest 

bird communities. 

 

 

 
Figure 3.5. Mean abundance and 95% confidence intervals of each habitat 

specialization guild for both studied regions. Asterisks indicate significant differences 

between regions (P<0.05). 
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A major barrier to dispersal can differentiate assemblages by preventing the exchange of 

species through colonization, and by promoting speciation through the minimization of 

gene flow. There is evidence that both mechanisms contributed to some extent to the 

observed differentiation between North African and European cork oak woodland bird 

assemblages. Two of the species detected at the European study sites, Lophophanes 

cristatus and Aegithalos caudatus, are present all the way to the northern shores of the 

Strait of Gibraltar but are absent from North Africa. This indicates that the open ocean 

at the Strait has prevented them from colonizing suitable habitats in North Africa. 

However, this impediment of colonization was quite rare, and the forest breeding bird 

assemblages of North Africa are almost entirely dominated by species of Eurasian 

origin (Blondel et al. 2010).  

 

Although virtually all forest bird species were able to cross the Mediterranean and 

colonize North Africa, it constitutes a sufficient barrier to minimize gene flow and allow 

differentiation. In some cases this differentiation has been sufficiently strong to result in 

full speciation, and a relevant proportion of the difference between the studied 

assemblages is due to such differentiation. An example of this speciation due to the 

barrier effect of the Mediterranean is the pair C. caeruleus and C. teneriffae (Salzburger 

et al. 2002), two of the species most abundant in the European and North African study 

sites, respectively. There are several other Mediterranean forest birds that, having 

colonized North Africa from Eurasia, remained in sufficient isolation to evolve into 

separate species. This is the case of two North African endemics that inhabit cork oak 

woodlands, Picus vaillantii that evolved from Picus viridis (Pons et al. 2011), and 

Ficedula speculigera that evolved from Ficedula hypoleuca (Saetre et al. 2001). 

Differentiation also occurred in several other woodland birds, which are represented in 

North Africa by endemic subspecies, as in the case of Strix aluco mauritanica (Brito 

2005). 

 

It seems clear that the Mediterranean is more permeable to birds than to most other 

groups of animals so far studied (Husemann et al. 2014). However, this barrier could 

also have an indirect impact on bird assemblages by acting on the distribution of species 

that are important for birds, either as resources or predators. For example, tree diversity 

is lower on the southern side of the Strait, and part of that difference has been attributed 

to historical biogeographic processes (Rodríguez-Sánchez et al. 2008). Such ecological 
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differences between the north and south of the Strait could change the suitability of the 

habitat for some bird species, and thus influence their patterns of relative abundance. 

However, results indicate that this has not occurred, as the relative abundance of 

different species of birds in the studied cork oak woodlands is quite similar. This 

indicates that the resource base available for forest birds, as well as the predatory 

pressure that they suffer, is not very different in Europe and North Africa. 

 

Although relevant for woodland birds, the barrier effect of the Mediterranean does not 

explain most of the observed dissimilarity in species and guild assemblage at the study 

sites. In fact, restricted range species, i.e. those only present in either Iberia or North 

Africa, account for just a third of that dissimilarity. The remaining reflects differences 

in the abundance of species that are present in both regions, which are more likely due 

to local ecological factors than to historical regional processes. Human pressure is 

potentially one of those factors, because it is known to vary between European and 

North African cork oak woodlands. For example, overgrazing and over-collection of 

wood are more common in North African woodlands (Marañón et al. 1999, Bugalho et 

al. 2009, Bugalho et al. 2011). Some exploitation and management practices, such as 

grazing, shrub removal and tree pruning to obtain firewood, are known to alter the 

habitat structure and affect bird populations in cork oak woodlands (Cherkaoui et al. 

2009, Godinho and Rabaça 2011, Santana et al. 2012, Leal et al. 2013). In general they 

promote a more open habitat (Godinho and Rabaça 2011, Leal et al. 2011, Leal et al. 

2013), that favours non-forest species (Pulido and Diáz 1992, Tellería 2001). This may 

explain the conclusion that North African cork oak woodlands have a lower abundance 

of forest birds, but a greater abundance of generalist birds, than their European 

counterparts (Fig. 3.5). 

 

3.4.3. Implications for conservation 

 

The value of managed cork oak woodlands for bird diversity is widely acknowledged, 

and many have been classified as Important Bird Areas in both Europe and North Africa 

(Heath et al. 2000, Fishpool and Evans 2001). Their overall high importance for 

biodiversity resulted in the classification as High Nature Value Farmland (Hoogeveen et 

al. 2004) and in the inclusion on the list of habitats to protect under the European 

Habitats Directive (92/43/CEE). These woodlands represent a particularly good habitat 
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to protect birds and other wildlife because its economic exploitation, most often based 

on cork extraction and grazing, is usually compatible with the maintenance of high 

levels of biodiversity (Plieninger and Wildebrand 2001). 

 

Although North African cork oak woodlands harbour a bird assemblage that is quite 

similar to that of the same habitat in Europe, their isolation by the Mediterranean Sea 

resulted in a distinct character that should be preserved. The presence in these 

woodlands of several North African endemics with a small global range (Cyanistes 

teneriffae, Picus vaillantii, Ficedula speculigera, Sitta ledanti, Phoenicurus moussieri) 

is an important part of this distinctiveness and conservation value. In addition, several 

of those endemic species (and subspecies) have their closest relatives across the 

Mediterranean, which indicates that these woodlands are hosting ongoing historical-

evolutionary processes that should be maintained.  

 

In spite of its high natural value the area covered by oak woodlands in North Africa, 

including that of cork oak, is much smaller than that in Europe, and is under greater 

human pressure (Marañón et al. 1999, Bugalho et al. 2009). It has been shown that 

overexploitation of this habitat has affected birds (Cherkaoui et al. 2009) and plants 

(Marañón et al. 1999), and other taxa, like mammals (Rosalino et al. 2011) and insects 

(Silva et al. 2009), are also likely to be affected. Most of the difference in the bird cork 

oak assemblages of Europe and North Africa reflects the lower abundance of forest 

specialist species in the latter, which is also likely due to overexploitation. This lower 

abundance of forest specialists is of particular conservation concern because it indicates 

a reduction of the efficiency of this economically valuable habitat as a surrogate for the 

conservation of natural Mediterranean forests and the species assemblages that they 

hold. 

 

The range of the cork oak woodland is under increasing pressure by climate change, and 

there is evidence that this phenomenon is already affecting cork oaks and other 

Mediterranean trees (Carnicier et al 2010). While this is a major problem throughout the 

region, it is likely to be particularly serious in North Africa for two reasons. First, 

because North Africa is closer to the aridity limit of the cork oak, and woodlands in this 

region are thus presumably more vulnerable to further intensification of aridity. Second, 

because while in Europe the loss of climatically suitable range of the cork oak may be 
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partly compensated by a northward range migration, this is not a possibility in North 

Africa.  

 

In conclusion, I found that bird communities of cork oak woodlands on both sides of the 

Mediterranean are equally rich and share many similarities. However, there are species 

unique to either side, resulting in a differentiation due to natural historical processes that 

make the preservation of the two assemblages very important. Overexploitation, mostly 

due to levels of grazing that prevent tree regeneration, seems to be affecting the 

structure of cork oak woodland bird assemblages, especially in North Africa. In this 

region the situation is particularly worrisome because its cork oak woodlands are less 

extensive than in Europe and they harbour a bird assemblage rich in endemic species 

and subspecies. Throughout their range cork oak woodlands remain a valuable surrogate 

for the conservation of the birds and other biodiversity associated to the now very scarce 

natural Mediterranean woodlands, but conservation measures and better management 

are needed to increase resilience and maintain their value, especially in North Africa. 
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Abstract: 

 

Cork oak woodlands are a keystone habitat for Mediterranean biodiversity, and to birds 

in particular, which led to their protection under the EU Habitats Directive 

(92/43/CEE). However, the area of cork oak woodlands in Europe has declined in recent 

decades mainly due to land use change and overexploitation and, presently, climate 

change also represents a threat. It is important to understand how bird communities 

supported by Cork oak woodlands are likely to respond to changes in land use and 

climate to formulate management recommendations that may minimize predicted 

impacts. Bird assemblages were sampled in forty sites spread across the western 

Mediterranean basin to explore the effect of climate and habitat management regimes on 

bird assemblage composition and abundance. Habitat and climatic gradients explained 

over a third of the overall variance in Cork oak woodland bird assemblages. Forest and 

generalist species responded mostly to climatic factors whereas changes in farmland and 

shrubland species were best explained by habitat structure. Overall, species abundance 

was negatively affected by higher temperatures and climatic seasonality but responded 

positively to heterogeneous habitat structure, the latter being particularly true for species 

of conservation concern. These results indicate that the current trends of increasing 

temperatures and decreasing precipitation leading to increased aridity, together with 

land use changes, are likely to cause negative impacts on the diverse and abundant bird 

assemblages supported by cork oak woodlands. Conservation efforts should focus 

primarily on promoting long-term adequate management practices, in order to minimize 

land use change impacts and increase the resilience of this threatened habitat to climate 

change impacts. 
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4.1. Introduction 

 

Cork oak woodlands are an agro-silvo-pastoral system (Pinto-Correia and Mascarenhas 

1999) distributed across much of the western Mediterranean Basin. Cork oak woodlands 

cover approximately 1.5 million hectares in Europe and 1 million hectares in Africa, but 

the core of its distribution is currently found in the Iberian Peninsula (Pausas et al. 

2009). Resulting from the long term human intervention on original Mediterranean oak 

forests (Diáz et al. 1997), this system is economically sustainable mostly due to cork 

harvesting and is compatible with the maintenance of high biodiversity levels 

(Plieninger and Wildebrand 2001, Leal et al. 2011). Human intervention plays a key 

role in maintaining the biological communities of cork oak woodlands (Bugalho et al. 

2011), characterized by some of the most diverse assemblages of birds, butterflies and 

plants in the western Mediterranean (Pineda and Montalvo 1995, Diáz et al. 1997). In 

fact, cork oak woodlands are particularly important for birds where up to 40% of the 

total number of bird species in the Iberian Peninsula can be found (Pineda and 

Montalvo 1995). Furthermore, millions of birds from northern Europe come to winter or 

use cork oak woodlands during migration every year (Pineda and Montalvo 1995, Diáz 

et al. 1997). Cork oak woodlands are managed in a variety of forms, including dense 

woodlands, shrub dominated areas and more open areas exploited for cattle grazing or 

cereal crops (Maranõn 1988, Bugalho et al. 2009), and this leads to a characteristic 

patchiness that is a major driver of the biodiversity levels observed in this system 

(Pineda and Montalvo 1995, Tellería 2001). For these reasons, Cork oak woodlands are 

considered High Natural Value Farmlands (Hoogeveen et al. 2004) and have been 

included in the Annex I of the European Union Habitats Directive (92/43/CEE). 

 

Despite this fact, the area of cork oak woodlands is currently declining throughout its 

range, mainly due to land use conversion and overexploitation (Pausas et al. 2009). 

Changes in market prices of cork and other commodities have spurred the 

intensification of agriculture practices or abandonment, which has resulted in changes in 

the habitat structure (Eichhorn et al. 2006, Acácio et al. 2009, Costa et al. 2011). 

Climate change has also been identified as a major threat in recent decades, causing 

defoliation and reduced tree growth (Carnicer et al. 2011, Besson et al. 2014), which 

ultimately contribute to the ongoing decline of cork oak woodlands (Brasier and Scott 

1994). Understanding how biological communities respond to changes in habitat 
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structure and climatic conditions is important to formulate adequate management 

recommendations to minimize impacts on biodiversity. The diverse bird assemblages 

supported by Cork oak woodlands, which include many endangered and endemic 

species (Diáz et al. 1997), are a particularly suited study model to address this issue 

since birds are known to be good biodiversity indicators (e.g. Gregory et al. 2003, Hutto 

1998) and are likely to respond in similar ways to bird assemblages of other biodiverse 

Mediterranean systems under similar pressures, such as Holm oak woodlands and Olive 

groves (Potter 1997, Tucker 1997). 

 

Previous studies have addressed the response of bird assemblages along climatic and 

habitat gradients in the western Mediterranean Basin (e.g. Tellería and Santos 1994), 

and highlighted the importance of both factors for Mediterranean bird communities. 

This approach remains to be adopted for cork oak woodlands as, even though previous 

studies have addressed the role of management and climatic features on bird 

assemblages of Mediterranean cork oak woodlands (e.g. Pulido and Diaz 1992, 

Godinho and Rabaça 2011), most had a local or regional focus and did not address the 

joint effect of both climate and land management. This work pretends to fill this 

knowledge gap by aiming to (i) assess the relative importance of habitat and climatic 

gradients for birds of cork oak woodlands at the assemblage, guild and species level 

across the Mediterranean Basin and (ii) evaluate the role of specific habitat and climatic 

variables on species abundances. Hence, this study is to the first to compare the role of 

marked habitat and climatic gradients on Cork oak woodland bird assemblages across 

the Mediterranean Basin and the results obtained may provide important insights for the 

conservation of Cork oak woodlands and their biodiversity in the Mediterranean region. 

 

4.2. Material and methods 

 

4.2.1 Bird sampling 

 

Bird assemblages were sampled in 40 Cork oak woodlands spread across the Iberian 

Peninsula and northern Africa (17 in Portugal, 15 in Spain and 8 in Morocco) (Fig. 4.1 

and Appendix 4.1). All the woodlands selected for sampling had a minimum size of 

50ha and were at least 10 kilometres apart. Woodlands recently harvested for cork were 

avoided as some species are known to avoid recently debarked areas (Godinho and  
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Figure 4.1. Map of the study region. Grey areas represent the distributions of Cork oak 

woodlands and black dots show the location of Cork oak woodlands where bird 

assemblages were studied. 

 

Rabaça 2011, Leal et al. 2011). Birds were sampled using point counts (Sutherland et al. 

2004, Bibby et al. 2005). Sampling areas were visited twice, between the 1st of April 

and the 20th of June 2011, and a total of fifteen five-minute point counts were carried 

out in each area, always by the same observer. Point counts distanced at least 100m 

from woodland edges and 200m from each other. Counts were done during periods of 

peak bird activity (one visit in the morning and one visit in the late afternoon for each 

area) always in suitable weather conditions, avoiding rainy or windy days (Sutherland et 

al. 2004). All birds detected, either visually or acoustically, were recorded and their 

distance to the observer was estimated. Birds detected further than 100m from the 

observer and over-flying birds were later excluded from the analysis as they may not be 

associated with the forest patches being sampled. For any given species, total 

abundance in a sampling area was considered to be the maximum sum of individuals 

detected in the fifteen counting stations for any of the two visits, as this represents the 

minimum number of birds present in the sampling area (Bibby et al. 2005). All species 
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recorded were categorized into four habitat specialization guilds (generalist, forest, 

shrubland and farmland species) following Godinho and Rabaça (2011), and guild 

abundance is the total number of birds from species contained in each guild. I also 

categorized species according to their conservation status and highlighted results for 

Species of European Conservation Concern (SPEC, Burfield and van Bommel 2004). 

 

4.2.2 Environmental variables 

 

A range of environmental variables describing habitat structure and climatic conditions 

were used to characterize each sampling area. Six habitat variables were collected 

around a 100m radius of each of the fifteen counting stations sampled in each area and 

averaged between them to describe habitat structure in each sampling area. Four of 

these variables characterize the structure of ground cover and were visually estimated 

during fieldwork, always by the same observer. These include herb cover (% ground 

cover), herb height (in 5 cm classes), shrub cover (% ground cover) and shrub height (in 

25 cm classes). Additionally, tree density (no. trees/ha) and canopy cover (% ground 

cover) were calculated and used to describe the arboreal vegetation structure. Both 

variables were estimated visually using aereal images of the study area avalibale from 

Google Earth v7.1. The six habitat variables were then combined using Principal 

Components Analysis (PCA) performed on the correlation matrix, to reduce the number 

of variables included in the analysis and avoid correlation between variables (Legendre 

and Legendre 1998). The first two components resulting from the PCA represent ground 

vegetation and arboreal vegetation structure gradients and were kept for further analysis 

(Table 4.1). These six habitat variables were also combined to describe habitat 

heterogeneity in each sampling area using the data obtained from each of the fifteen 

counting stations. A heterogeneity index (Rotenberry and Wiens 1980) was calculated 

for each habitat variable as the range of each variable in each sampling area (maximum 

minus the minimum value sampled at each of the fifteen counting stations) divided by 

the mean value. The heterogeneity scores of each habitat variable were then summed 

and used to represent habitat heterogeneity index of each sampling area. 

 

Climatic variables included average temperature (ºC), temperature seasonality 

(coefficient of variation) and an aridity index (Zomer et al. 2008). Inclusion of the 

aridity index in the analysis was preferred to precipitation variables since it provides a 
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better representation of water availability in a given area and avoids multi-collinearity 

between precipitation and temperature variables. Temperature variables were obtained 

from the Worldclim database (http://www.worldclim.org/) and the aridity index from 

the Consultative Group on International Agricultural Research (CGIAR) spatial data 

base (http://www.cgiar-csi.org/) at a spatial resolution of 30 arc-seconds. 

 

Table 4.1. Principal components analysis (PCA) loadings of habitat variables 

representing habitat structure. Both axes were used for bird assemblage analysis, with 

the first axis describing ground cover structure and the second axis characterizing tree 

cover structure. 

Habitat variable Axis1 (Grd) Axis2 (Tree) 

Tree density -0.295 0.613 

Tree cover -0.239 0.645 

Herb cover  0.554 0.191 

Herb height  0.403 -0.012 

Shrub cover  -0.544 -0.244 

Shrub height  -0.302 -0.336 

Variance explained 48.3% 23.2% 

 

I analysed the correlation between environmental variables selected for analysis and all 

individual correlations between variables showed Spreaman’s r coefficients ≤|0.6|. A 

table describing maximum, mean and minimum values of all the variables sampled can 

be found in Appendix 4.2. 

 

4.2.3 Data analysis 

 

All environmental variables were centred and standardized for analyses in order to 

improve the interpretability of results (Schielzeth 2010). Also, five very rare species (<5 

individuals) were excluded from the bird assemblage data as they can often have a 

disproportionate effect on the analysis (Legendre and Legendre 1998). A Hellinger 

transformation was applied to the remaining data prior to analysis (Borcard et al. 2011). 

I assessed the relative importance of habitat and climatic variables structuring bird 

assemblages by partitioning the variance explained by each environmental factor using 

redundancy analysis (Borcard et al. 2011), calculated on the species by site matrix. The 
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variation explained by each component was summarized using adjusted R2, which 

provides unbiased estimates of the variation in the response data that is explained by the 

environmental variables (Peres-Neto et al. 2006).  

 

I also modelled species abundance responses to each environmental variable using 

generalized linear models (GLMs) with negative binomial error distribution on the 

untransformed abundance data. Species abundances were originally modelled with the 

full environmental dataset and I used a model selection procedure to identify the most 

parsimonious model using the AICc (Burnham and Anderson 2002). Spatial 

autocorrelation in species data was tested using Moran’s I and accounted for in the 

models using spatial eigenvector mapping (Dormann et al. 2007). A table with the 

resulting models is presented in Table 4.2. 

 

All analysis were carried out using R software v2.15 (R Development Core 2011) and 

the spatial plot of environmental variables across the study area was done using ArcGIS 

v10 (ESRI, 2011).  

 

4.3. Results 

 

The environmental variables considered for this study explain over one third (35%) of 

the total variance found in the structure of cork oak bird assemblages. Habitat structure 

accounts for 20% and climate 15% of the total variation explained, while the shared 

portion of variation explained was negligible (under 1%). The overall abundance of 

species of generalist and forest guilds is mostly explained by climatic factors 

(approximately 20% of variance explained for both groups). In contrast, for shrubland 

and farmland species abundance is mostly determined by habitat structure, which 

accounts for 25 and 70% of total variance of each guild respectively (Fig. 4.2). The  

species analysis shows that Luscinia megarhynchos, Troglodytes troglodytes and Passer 

hispaniolensis are the species that vary the most in response to climatic factors 

(approximately 40% of variance explained for each species), whereas habitat structure 

explains over 40% of variance in abundance for Emberiza calandra, Lullula arborea 

and Sturnus unicolor (Fig. 4.2).



 
 

Table 4.2. Parameter estimates of generalized linear models (GLMs) relating bird species abundance to environmental variables in model with 

lowest AICc. Variables with a significant effect are signalled (* - P<0.05, ** - P<0.01, *** - P<0.001). Species of European Conservation 

Concern are represented in bold. 
Species  Environmental variable 
Common name Scientific name Code  Ground 

Cover Tree Cover Habitat 
Heterogeneity 

Average 
Temperature 

Temperature 
Seasonality Aridity 

Generalist birds (11 species) 
Eurasian skylark Alauda arvensis Aa  1.58* -1.04*** 0.95*    
European Greenfinch Chloris chloris Ch  0.69***     -0.47* 
Common cuckoo Cuculus canorus Ca  0.50**  0.34* -0.41**   
Azure-winged Magpie Cyanopica cyanus Cy  3.26***  0.95*   -1.76** 
Common Wood Pigeon Columba palumbus Cp      0.62**  
European Robin Erithacus rubecula Er  -2.17*** -0.69*    0.84*** 
Woodlark Lullula arborea La  0.90***  0.38*** -0.53***   
House Sparrow Passer domesticus Pd  0.88**  0.43    
Eurasian Collared Dove Streptopelia decaocto Sd       -0.49* 
Common Blackbird Turdus merula Tm  -0.21***    0.18** 0.18** 
Mistle Thrush Turdus viscivorus Tv   0.27   0.42**  
          
Farmland birds (15 species) 
Red-legged Partridge Alectoris rufa Ar  0.98***  0.51* -0.60* -1.06***  
Eurasian Stone-curlew Burhinus oedicnemus Bo     2.48***   
European Goldfinch Carduelis carduelis Cr  0.33* -0.21    -0.28* 
Common Quail Coturnix coturnix Co       0.40* 
Zitting Cisticola Cisticola juncidis Cj  1.10**  -0.85*  -0.91*  
Corn Bunting Emberiza calandra Ec  1.06***  0.39    
Cirl Bunting Emberiza cirlus Ei   0.81*  -0.69* -0.72*  
Crested Lark Galerida cristata Gc  1.75**  0.97*    
Woodchat Shrike Lanius senator Ls  1.09***    0.76*** -0.71* 
Common Linnet Linaria cannabina Cn    1.04*    
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Table 4.2. cont. 

Species    Environmental variable 
Common name Scientific name Code  Ground 

Cover Tree Cover Habitat 
Heterogeneity 

Average 
Temperature 

Temperature 
Seasonality Aridity 

Spanish Sparrow Passer hispaniolensis Ph  3.10*** -1.46** -1.06* -1.62** 5.49***  
European Stonechat Saxicola rubicola Sr     -0.87*** -1.20***  
European Turtle Dove Streptopelia turtur St        
Spotless Starling Sturnus unicolor Su  0.88***  0.25* -0.32**   
Eurasian Hoopoe Upupa epops Ue  1.08**    0.77**  
          
Forest birds (24 species) 
Long-tailed Tit Aegithalos caudatus Ac        
Short-toed Treecreeper Certhia brachydactyla Cb  0.18 0.18* 0.26** -0.39***   
Eurasian Blue Tit Cyanistes caeruleus Ce        
Carrion Crow Corvus corone Cc  0.94*** 0.59**  -0.76** -0.53  
African Blue Tit Cyanistes teneriffae Ct  -3.82***      
Great Spotted Woodpecker Dendrocopos major Dm    -0.30***  -0.50***  
Common Chaffinch Fringilla coelebs Fc        
Eurasian Jay Garrulus glandarius Gg  -0.47**      
Eurasian Wryneck Jynx torquilla Jt   -1.04*     
European Crested Tit Lophophanes cristatus Lc  -0.46      
Common Nightingale Luscinia megarhynchos Lm  0.31*   -0.99*** -0.69***  
Spotted Flycatcher Muscicapa striata Ms       -0.90 
Eurasian Golden Oriole Oriolus oriolus Oo     -0.42*   
Rock Sparrow Petronia petronia Pe  2.35*      
Western Bonelli’s Warbler Phylloscopus bonelli Pb  -0.98*** 0.73***  -0.74*** -0.74***  
Iberian Chiffchaff Phylloscopus ibericus Pi      -0.99** 0.69* 
Great Tit Parus major Pm   0.17**     
Common Redstart Phoenicurus phoenicurus Pp   0.68*  -1.31*** -1.44*** -0.53* 
Common Firecrest Regulus ignicapilla Ri   1.45*    2.47** 
European Serin Serinus serinus Ss       -0.34** 
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Table 4.2. cont. 

Species    Environmental variable 
Common name Scientific name Code  Ground 

Cover Tree Cover Habitat 
Heterogeneity 

Average 
Temperature 

Temperature 
Seasonality Aridity 

Eurasian Nuthatch Sitta europaea Se  0.33** 0.43***  -0.70*** -0.35*  
Eurasian Blackcap  Sylvia atricapilla Sa  -0.80** -0.46    1.16*** 
Eurasian Wren Troglodytes troglodytes Tt  -0.60**  -0.32* -1.10*** -1.49*** 0.48** 
          
Shrubland birds (5 species) 
Melodious Warbler Hippolais polyglotta Hp     -0.70* -0.65  
Northern Wheatear Oenanthe oenanthe Oe        
Subalpine Warbler Sylvia cantillans Sc   -0.57** -0.78** -1.00***   
Sardinian Warbler Sylvia melanocéfala Sm  -0.76***   0.31**   
Dartford Warbler Sylvia undata Sn  -1.58***   -0.46   79 
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The results of the multivariate analysis of species abundance show that over 50% of all 

the species, and over 40% of species of conservation concern, are significantly affected 

by the structure of ground cover, the majority of species preferring herb over shrub 

dominated areas (Fig. 4.3). Roughly 30% of species are significantly affected by habitat 

heterogeneity, generally preferring more heterogeneous habitat structures. Tree 

abundance and cover were statistically important for approximately 20% of the species 

analysed but no clear directional preference was detected since a similar number of 

species either decrease or increase in abundance in response to tree abundance and 

cover. The results of the climatic analyses indicate that approximately30% of the 

species show a significant negative relationships with increasing temperature and  

 

 
Figure 4.2. Variance partitioning of Cork oak woodland bird species and guild 

responses to habitat and climatic factors. Axes represent the proportion of variance in 

species and guild abundance explained by climatic (vertical axis) and habitat variables 

(horizontal axis). Species and guilds to the left of the dashed line show a higher 

response to climatic variables and those to the right to habitat variables. Species 

abbreviations as in Table 4.2. 
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seasonality (Fig. 4.3). A high proportion of species of conservation concern also show 

significant responses to these variables, and the majority of these species increase their 

abundances in areas with lower temperatures and seasonality. Nearly 20% of total 

species, and a similar number of species of conservation concern, respond significantly 

to aridity but no clear trend towards a positive or negative response was observed. Only 

five of the studied species did not show a significant response to any of the climatic or 

habitat variables analysed: Aegithalos caudatus, Cyanistes caeruleus, Muscicapa 

striata, Oenanthe oenanthe and Streptopelia turtur (Table 4.2). This fact indicates that 

they are not limited by these factors in the areas sampled. 

 

 
Figure 4.3. Percentage of total species (grey bars) and of species of conservation 

concern (white bars) that responded significantly to each environmental variable. Bars 

on the right and left respectively represent the percentage of species with a positive and 

negative response. 
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4.4. Discussion 

 

The environmental variables included in this study were able to explain over one third 

of the overall variability observed in the bird assemblages of cork oak woodlands. This 

figure is in line with other studies that have aimed to assess the role of habitat and 

climatic factors on changes in bird assemblages (e.g. Suárez-Seoane et al. 2002, 

Archaux and Bakkaus 2007, Nikolov 2010) and likely to reflect the different, and 

sometimes opposing, requirements of the species that depend on this system (Tellería 

2001). The absence of an important component of variation explained jointly by 

climatic and environmental variables is a result of the low correlation between the 

environmental variables of the two groups (Borcard et al. 2011). Therefore, in order to 

better understand this complex balance, the effects of climate and habitat structure need 

to be evaluated in detail for the different species and guilds that compose the bird 

assemblages of cork oak woodlands. 

 

4.4.1 The role of habitat structure for Cork oak woodland bird assemblages 

 

Results indicate that habitat structure is indeed an important factor structuring bird 

assemblages of Cork oak woodlands as found in previous studies done at smaller spatial 

scales (e.g. Pulido and Diaz 1992, Cherkaoui et al. 2009, Godinho and Rabaça 2011). 

The majority of species responded significantly to at least one of the habitat variables 

analysed but they were particularly important for shrubland and farmland guilds (Fig. 

4.2). Habitat features associated with vegetation structure and heterogeneity are known 

to affect farmland species such as Emberiza calandra, Lullula arborea and Sturnus 

unicolor (e.g. Donald and Aebischer 1997, Cramp and Simmons 2006, Sirami et al. 

2011) and in this study explained over 40% of the variability in their abundance. In 

addition, a large proportion of species responded positively to habitat heterogeneity and 

avoided shrub dominated areas (Fig. 4.3), including many species with declining 

populations such as Alauda arvensis, Alectoris rufa and Galerida cristata (Table 4.2). 

The main exception to this type of response was observed in Sylvia warblers, which are 

usually associated with taller and denser shrub vegetation (Cody 1985, Cramp and 

Simmons 2006). As expected, forest and non-forest guilds show opposite responses to 

tree cover, with the former benefiting from higher tree density and cover and the latter 

from more open areas. Indeed, it has been suggested that the great spatial variation in 
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tree density of Cork oak woodlands partly explains the remarkable bird diversity that 

they support (Tellería 2001) and the results corroborate this hypothesis. However, the 

majority of changes in the bird abundance of the different guilds were associated with 

habitat structure variables associated with local management. High shrub cover is 

usually associated with land abandonment (Bugalho et al. 2009), which may benefit 

most shrubland species (e.g. Sylvia cantillans, Sylvia melanocephala, Sylvia undata) but 

will likely have a negative effect on the abundance of many generalist and farmland 

species (e.g. Carduelis carduelis, Cisticola juncidis, Cyanopica cyanus, Passer 

domesticus). Habitat heterogeneity is a common feature of more traditionally managed 

woodlands but is usually absent in intensively managed or overexploited woodlands 

(Bugalho et al. 2009, Vickery and Arlettaz 2012). Examples of species likely to be 

affected by ongoing intensification and overexploitation trends include Galerida 

cristata, Linaria cannabina, Phylloscopus bonelli and Regulus ignicapilla. 

 

4.4.2 Bird assemblage responses to climatic conditions 

 

The climatic influence on bird populations is mostly indirect, by affecting resources and 

habitat structure (Newton 1998), although extreme events can also affect bird survival. 

This study shows that bird assemblages of Cork oak woodlands, and particularly forest 

specialist and generalist species, are significantly affected by climatic conditions (Fig. 

4.2). In particular, increasing temperatures and seasonality have important negative 

effects on Mediterranean birds (Fig. 4.3). Other studies have shown that observed 

increasing temperatures and seasonality promote phenological mismatches and decrease 

nestling and adult fitness (e.g. Thomas et al. 2001, Sanz et al. 2003, Greño et al. 2008, 

Catry et al. 2011). Many of the species analysed showed a negative response to these 

climatic factors (Fig. 4.3) and forest insectivorous cavity nesting birds, such as Certhia 

brachydactyla, Phoenicurus phoenicurus and Troglodytes troglodytes, seem particularly 

sensitive (Table 4.2). These species seem to benefit from warmer conditions in northern 

latitudes (Forsman and Mönkkönen 2003, Robinson et al. 2007), which may justify the 

observed northwards shift in populations of species associated with colder climates in 

recent decades (Devictor et al. 2008, Devictor et al. 2012). However, a few species do 

seem to benefit from warmer temperatures and increased seasonality, such as Burhinus 

oedicnemus, Sylvia melanocephala and Upupa epops. In contrast, no clear trend was 

observed in species responses to aridity (Fig. 4.3), which is likely a result from the 
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functional diversity and different geographical origins of species that compose Cork oak 

woodland bird assemblages. Increasing aridity result in sparser ground vegetation 

(Peñuelas et al. 2004, Gouveia et al. 2009, Prieto et al. 2009) and lower tree density and 

cover (Carnicer et al. 2011) which may benefit generalist species with southern 

distributions, such as Cyanopica cyanus, Serinus serinus and Streptopelia decaocto, but 

will have the opposite effect on northern forest species that prefer denser vegetation, 

like Regulus ignicapilla, Troglodytes troglodytes and Erithacus rubecula (Tellería and 

Santos 1994).  

 

4.4.3 Relevance for bird conservation in managed Cork oak woodlands 

 

The results provide important insights for the conservation of bird assemblages in Cork 

oak woodlands facing climate and land use change. Many species respond significantly 

to changes in ground cover structure, habitat heterogeneity and temperature. For most 

species, abundance increased in woodlands dominated by herbaceous vegetation with 

heterogeneous structure and decreased in warmer and more seasonal areas (Fig. 4.3). 

 

 The results suggest that temperature conditions are important for forest species such as 

Certhia brachydactyla, Luscinia megarhynchos and Trglodytes troglodytes (Fig. 4.2) 

and many species of conservation concern, such as Alectoris rufa, Lullula arborea, 

Phoenicurus phoenicurus and Phylloscopus bonelli (Fig. 4.3). These species are less 

abundant under warmer and more seasonal conditions (Table 4.2) and their population 

numbers are likely to decline as a result of additional temperature increases (Stocker et 

al. 2013). Current trends of land use change resulting from both climatic and economic 

factors (Acácio et al. 2009, Bugalho et al. 2009, Costa et al. 2011) are likely to be 

negative for many species due to changes in habitat structure. Farmland and shrubland 

bird populations are particularly associated with habitat characteristics (Fig. 4.2) but 

species from all guilds showed significant responses to habitat features depending on 

their requirements (e.g. Emberiza calandra, Lullula arborea, Phylloscopus bonneli and 

Sylvia melanochephala), particularly in terms of ground cover structure and habitat 

heterogeneity (Fig. 4.3). The majority of species responded positively to heterogeneous 

areas dominated by herb ground cover (Table 4.2), corroborating the idea that habitat 

heterogeneity is a key feature for biodiversity (e.g. Donald et al. 2001, Benton et al. 

2003, Kleijn et al. 2009). As the abandonment or intensification of farmland practices 
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usually results in lower habitat heterogeneity (Benton et al. 2003, Vickery and Arlettaz 

2012), Cork oak woodlands require a traditional management approach to maintain 

current biodiversity levels (Bugalho et al. 2011). Species with declining populations 

such as Alauda arvensis, Lullula arborea, Alectoris rufa, Galerida cristata and Sylvia 

hortensis may be particularly affected by the loss of more traditional management 

practices. Conservation efforts should aim to promote the long-term maintenance of 

sustainable management practices that focus on promoting woodland patchiness rather 

than fragmentation and take into account potential impacts of management practices 

when not properly considered and executed (e.g. Camprodon and Brotons 2006, 

Godinho and Rabaça 2011, Santana et al. 2012, Leal et al. 2013). 

 

 
Figure 4.4. Distribution across the study area of the three variables that proved most 

important to explain variations in bird abundance: (A) ground cover, (B) habitat 

heterogeneity and (C) average temperature. Size of dots is based on the measurements 

made at each sampling site 

 

Overall, results indicate that adaptation and conservation efforts aiming to increase the 

resilience of Cork oak woodland biodiversity to both climate change and land use 

change should focus on maintaining adequate habitat management. This will be 

particularly important to maintain population numbers of many species showing 

declining trends across Europe, as these species seem particularly sensitive to threats 

from climate change and land use change (Julliard et al. 2003, Crick 2004, Jiguet et al. 

2007). According to the observed species responses, the spatial distribution of 
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environmental conditions across the study area indicates that areas with more adequate 

habitat structure are generally located in south-western Iberian Peninsula (Fig. 4.4). 

Areas in northern Africa and in the northern half of the Iberian Peninsula tend to have 

lower habitat heterogeneity and show higher shrub dominance. In contrast, average 

temperatures tend to be higher across northern Africa and southern Iberian Peninsula 

restricting the areas likely to remain climatically suitable under future climate change to 

the central and northern areas of the Iberian Peninsula. Under this scenario, I propose 

that adaptation strategies should focus on two key actions: (i) promoting the 

maintenance of adequate land management practices on the southern half of the Iberian 

Peninsula and (ii) stimulating an expansion of Cork oak woodlands and their traditional 

management practices to northern areas of the Iberian Peninsula. These actions will 

increase the resilience of southern areas and provide new suitable habitat patches further 

north to facilitate ongoing species responses to climate change (Devictor et al. 2008, 

Devictor et al. 2012). The results presented in this manuscript can potentially be 

extrapolated to other similar Mediterranean traditional systems, such as Holm oak 

woodlands and traditional Olive groves; their biodiverse communities are currently 

undergoing similar pressures from land use and climate change (Potter 1997, Tucker 

1997) and the two-fold adaptation strategy is suggest for Cork oak woodlands should 

also be considered for these systems.  

 

4.5. Conclusions 

 

Habitat structure and climate are both important factors determining the structure of bird 

assemblages in Mediterranean Cork oak woodlands. These results show that climatic 

and habitat variables together were able to explain over one third of the overall 

variability found in Cork oak woodland bird assemblages. Forest and generalist guilds 

generally show a higher response to climatic variables whereas farmland and shrubland 

species abundance was determined mainly by habitat structure. Despite species specific 

responses, the abundance of the majority of species increases in areas with open and 

heterogeneous vegetation structure and decreases in areas with higher temperatures and 

seasonality.  

 

In light of these results, changes to the composition and abundance of cork oak 

woodlands should be expected. On one hand, ongoing land abandonment trends are 
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likely to benefit shrubland species but will result in a lower abundance of many species 

belonging to generalist, forest and farmland guilds. On the other hand, intensification 

and overexploitation trends are likely to also have negative effects on the abundance of 

many farmland and generalist species that depend on a more heterogeneous habitat 

structure. On top of this, increasing temperatures and climatic extremes are likely to 

promote a negative response on many species associated with colder environments, 

particularly forest birds. Still, a few farmland and generalist species of Mediterranean 

origin may benefit from this situation. Bird assemblages of cork oak woodlands in 

northern Africa and southern Iberian Peninsula may be particularly affected by land 

management and climate change whereas in northern Iberia, bird assemblages could 

potentially benefit from the expansion of woodland area and management activities that 

promote a more adequate habitat structure. 
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Abstract 

 

The increasing number of drought spells in southern Europe in recent decades is having 

negative impacts on tree species (e.g. increased defoliation, reduced growth, tree 

mortality), which may have consequences for other components of the trophic chain. 

However, local topographic features may buffer or intensify these effects through their 

influence on micro-climatic conditions. Existing evidence indicates that cork oak trees 

are already being affected by drought impacts and I aimed to understand the influence 

of micro-climatic conditions resulting from local topographic features on woodland 

structure, bird assemblages and their food resources. I characterized cork oak woodland 

structure and bird assemblages in three areas along an aridity gradient in Iberia, and 

compared caterpillar availability between north and south facing slopes in order to 

understand the influence of micro-climatic conditions on food resources for birds. 

Results show that canopy cover, bird richness and abundance can decrease by more than 

a third in response to arid local micro-climatic conditions when compared to more 

suitable areas. Predictions of future climate change indicate that southern slopes in more 

arid areas may be particularly under threat from increasingly arid conditions. Therefore, 

the characteristic topographic complexity of the Mediterranean Basin may shape 

woodland structure and bird communities by buffering or potentiating responses to 

climate change at local scales and conservation efforts should primarily be aimed at 

areas with potential to act as refugia in order to improve the long term maintenance of 

the high biodiversity levels characteristic of cork oak woodlands. 
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5.1. Introduction 

 

Climate change is already having widespread impacts on natural systems across the 

globe (Parmesan and Yohe 2003, Root et al. 2003, Parmesan 2006). However, these 

impacts are not distributed homogeneously in space. At large spatial scales, some 

regions of the globe are expected to show faster and more pronounced changes in 

climate (Giorgi 2006, Loarie et al. 2009). Furthermore, at smaller spatial scales, topo-

geographical features can have a very important role in determining micro-climatic 

conditions. For example, due to certain habitat and landscape features, local climatic 

conditions can change in relation to regional conditions, at similar levels to those 

expected from climate change (Suggitt et al. 2011). There is already ample evidence 

that the distribution of many species have shifted in response to climatic changes, either 

as a consequence of colonization of new areas (e.g. Thomas and Lennon 1999, 

Parmesan et al. 1999, Delzon et al. 2013) or local extinction in previously occupied 

areas (e.g. Lesica and McCune 2004, Wilson et al. 2005, Franco et al. 2006, Comte and 

Grenouillet 2013). There are also examples of species that have responded at a more 

local scale and have either shifted their habitat and resource use (Thomas et al. 2001), or 

their use of particular landscape features (Davies et al. 2006), but research on the 

influence of micro-climatic conditions on species responses to climate change is still 

rather scarce. In fact, the majority of predictions regarding climate change effects on 

biodiversity are usually obtained by modelling species distributions using large scale 

bioclimatic associations between species ranges and the climatic conditions therein 

observed (Elith and Leathwick 2009). These methods usually fail to incorporate more 

detailed spatial, ecological and physiological processes (Guisan and Thuiller 2005) that 

may buffer or even drive unexpected responses to climate change (e.g. Jiang and Morin 

2004, Kearney et al. 2009, Lenoir et al. 2010, Scherrer and Körner 2011). 

 

The Mediterranean Basin is considered both a biodiversity hotspot (Myers et al. 2010) 

and a climate change hotspot (Giorgi 2006), leading to predictions of severe 

biodiversity impacts across the region (Alcamo et al. 2007). The topo-geographic 

complexity of the Mediterranean Basin has had a defining role in current biodiversity 

patterns (Blondel et al. 2010) and is also likely to affect species responses to climate 

change. For example, there is evidence that Mediterranean tree species are increasingly 

being affected by frequent drought events resulting from recent climate change 
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(Carnicer et al. 2011), but the magnitude of such impacts is tempered by local 

topographic features (e.g. Lloret et al. 2004, Peñuelas et al. 2007). This also seems to be 

the case for the cork oak (Quercus suber), a keystone species in the western 

Mediterranean Basin. This is the key species in cork oak woodlands (locally known as 

montados or dehesas in Portugal and Spain respectively), a traditional agro-silvo-

pastoral system in which woodland exploitation and high biodiversity levels can be 

maintained (Diáz et al. 1997). Cork oak woodlands are relatively widespread in the 

western half of the Mediterranean Basin and occur in a variety of management forms 

and across different landscape features (Pereira and Tomé 2004). However, during 

recent decades, a declining trend in cork oak woodland areas has been observed in many 

regions of the Mediterranean Basin (e.g. Brasier and Scott 1994, Regato-Pajares et al. 

2004, Costa et al. 2011). This trend has been partly attributed to impacts from recent 

climate change (Brasier and Scott 1994, Carnicer et al. 2011) and has been shown in 

some regions to vary spatially according to local topographic and micro-climatic 

conditions (Costa et al. 2010). By affecting the trees that support the biological 

communities of this system, climate change impacts can potentially cause important 

disruptive effects on local biological communities due to bottom-up effects across the 

trophic chain, but these effects are still poorly explored (Carnicer et al. 2011), 

particularly at smaller spatial scales. 

 

Here, I aimed to understand the influence of micro-climatic conditions resulting from 

local topographic features on woodland structure, bird assemblages and their food 

resources. Specifically, I aim to (i) evaluate how woodland structure and bird 

assemblages change along an aridity gradient, (ii) assess the influence of small scale 

topographic features on local differences in woodland structure and bird assemblages 

and (iii) explore the role of local resource availability as a driver of observed bird 

community changes in cork oak woodlands. 

 

5.2. Material and methods 

 

5.2.1. Study area 

 

The Iberian Peninsula holds about 60% of the worldwide distribution of cork oak 

woodlands (Pausas et al. 2009). The study area, located in the south-western corner of 
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the Iberian Peninsula (Fig. 5.1), represents the current core area of distribution of this 

system. I aimed to sample a climatic gradient representative of high (Caldeirão), 

intermediate (Grândola) and low (Monfurado) aridity levels within the dry sub-humid 

conditions of this region (UNEP 1997). Current rainfall availability values used to 

characterize sampling areas were collected from a global aridity database available from 

the Consultative Group on International Agricultural Research (CGIAR) spatial data 

base (http://www.cgiar-csi.org/), at a spatial resolution of 30 arc-seconds. Future rainfall 

availability was calculated for the year 2050 using climate predictions from the 

HadCM3 climate model for the A2 emissions scenario, according to the methodology 

described by Zomer et al. (2008). 

 

 
Figure 5.1. Geographic distribution of the three sampling areas, located in the south-

west corner of the Iberian Peninsula. 

 

5.2.2. Bird sampling 

 

Breeding bird assemblages were studied in the three sampling areas by means of point 

counts (Sutherland et al. 2004, Bibby et al. 2005). Within each sampling area, forty 

sampling points were defined: twenty in north facing slopes and twenty in south facing 

slopes. Sampling points were selected in areas with a minimum inclination of 2.5º with 
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the help of a Digital Elevation Model (DEM), at a 90m spatial resolution, obtained from 

the Consultative Group on International Agricultural Research (CGIAR) spatial data 

base (http://www.cgiar-csi.org/). 

 

All bird counts were carried out between the 1st of April and the 31st of May 2012 and, 

at each sampling point, the number and species of all birds were recorded during five-

minute periods always by the same observer. Counts were undertaken during the early 

morning, a period of peak bird activity, always in suitable weather conditions and 

avoiding rainy or windy days (Sutherland et al. 2004). All birds detected, either visually 

or acoustically, were recorded and their distance to the observer was estimated. Birds 

detected further than 50 m from the observer and over-flying birds were excluded from 

the analysis as they may not be associated with the areas being sampled. Prior to 

analysis, all bird species recorded were categorized into forest or non-forest guilds 

following Godinho and Rabaça (2011), and guild abundance was considered as the total 

number of birds from species belonging to each guild. A list of species belonging to 

forest and non-forest guilds in presented in Appendix 5.1. 

 

5.2.3. Woodland structure 

 

Woodland structure was characterized for each bird sampling point in all three sampling 

areas. Variables used to characterize woodland structure included tree density, tree 

cover and mean tree canopy area and were estimated with the help of aerial images 

obtained from Google Earth v7.1. For each sampling point, I counted the number of 

trees and measured the percentage of canopy cover present in the aerial photograph in 

the area within a 50 m radius from the bird sampling point. Tree density represents the 

number of trees observed within the area of each sampling point extrapolated to the 

number of trees present per hectare, and all cork oak trees identifiable from the aerial 

photograph were considered. Tree cover corresponds to the percentage of total area of 

ground within each sampling point that is covered by tree canopy. Mean tree canopy 

area was considered as a measure of the average area of canopy displayed by each 

individual tree and was calculated as the ratio between the area of each sampling point 

covered by tree canopy and the number of trees recorded in each sampling point. 
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5.2.4. Caterpillar frass collection 

 

Caterpillars represent a prime food resource during the breeding season for many forest 

bird species (Cramp and Simmons 2006). A non-intrusive way to evaluate the 

abundance of caterpillars during this period can be achieved by sampling caterpillar 

frass droppings, which provides a measure of the caterpillar biomass present in a given 

area (Tinbergen and Dietz 1994, Visser et al. 2006, Burger et al. 2013). This 

methodology was used to characterize food resource availability for forest breeding 

birds at the Grândola sampling area only, due to logistical constraints. 

 

Seventy-six sampling plastic trays (0.25 m2) were equally deployed in the north and 

south facing slopes where bird counts were carried out, under trees of varying canopy 

size (canopy area ranged from 7 to 88 m2). Sampling trays were visited at 

approximately three day intervals during the same period considered for bird sampling 

purposes and all the material they contained was collected. Samples were inspected with 

the help of a magnifying glass (10x) and frass droppings were sorted from the 

remaining material. Frass droppings are easily identifiable as small, cylindrical pellets 

that are dark brown to grey in colour (Fischbacher et al. 1998), and verified by field 

observations. Caterpillar frass dry weight was measured to the nearest milligram using a 

digital scale after samples were dried at a minimum temperature of 70°C for at least 12 

hours.  

 

5.2.5. Data analysis 

 

Analysis of variance (ANOVA) was used to compare woodland structure variables and 

bird assemblages between the three sampling areas, different slopes and the interaction 

of these two factors. Where significant differences were found, multiple comparisons 

were carried out using Tukey HSD test (Zar 1999). Generalized linear mixed models 

(GLMMs) were used to test hypotheses regarding the role of woodland structure 

variables on the observed patterns of forest bird richness and abundance. These models 

considered tree density, tree cover and mean canopy size as fixed effects, sampling area 

as random effects and a Gaussian error distribution (after testing for normality and 

homogeneity of variance). The same modelling method was also used to test different 

hypothesis regarding the interaction between tree cover and topography (north versus 
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south facing slopes) in shaping forest bird responses. In this case, tree cover and aspect 

were used as covariates, sampling area was included as a random effect and the error 

structure followed a Gaussian distribution. All the models were evaluated according to 

the Akaike Information Criterion corrected for sample size (AICc), Akaike weights and 

overall deviance explained (Burnham and Anderson 2002). All statistical calculations 

and analyses were carried out using R software v2.15 (R Development Core 2011). 

 

Table 5.1. Mean and confidence intervals (95%) of woodland structure variables and 

bird species richness and abundance for each of the three areas. Significant differences 

(Tukey HSD test, P<0.05) between sampling areas are highlighted by different 

characters (a, b and c). 

Descriptor Sampling Area 

Caldeirão Grândola Monfurado 

Aridity level High Intermediate Low 

Mean rainfall availability (mm/day) 0.53 0.55 0.59 

Woodland structure    

Tree density (No. trees/ha) 57.1 (±6.6)a 69.9 (±8.4)b 61.6 (±4.1)ab 

Tree cover (% ground cover/ha) 30.4 (±5.3)a 41.1 (±6.7)b 48.3 (±4.8)b 

Mean tree canopy area  (m2/tree) 50.3 (±4.8)a 56.8 (±6.1)a 77.2 (±5.0)b 

Species richness (No. species/ha)    

Total species  5.51 (±0.7)a 6.50 (±0.5)b 7.87 (±0.5)c 

Forest species 3.76 (±0.5)a 4.49 (±0.6)a 5.80 (±0.5)b 

Non-forest species 1.75 (±0.4)a 2.01 (±0.4)a 2.07 (±0.4)a 

Bird abundance (No. birds/ha)    

Total species 5.76 (±0.7)a 7.07 (±0.6)b 8.69 (±0.5)c 

Forest species 3.98 (±0.6)a 4.93 (±0.7)b 6.46 (±0.5)c 

Non-forest species 1.82 (±0.5)a 2.20 (±0.5)a 2.23 (±0.4)a 

 

5.3. Results 

 

Woodland structure differed significantly between the Caldeirão, Grândola and 

Monfurado areas for the descriptors analysed: tree density (ANOVA, F(2,117)=3.7, 

P<0.05), tree cover (ANOVA, F(2,117)=9.7, P<0.001) and tree canopy area (ANOVA, 

F(2,117)=26.8, P<0.001). The most arid study area, Caldeirão, had the lowest mean 
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values of tree density, tree cover and tree canopy area, whereas the area with least arid 

conditions, Monfurado, had significantly higher mean values of tree cover and tree 

canopy area than the remaining areas (Table 5.1). Grândola showed the highest mean 

tree density of the three study areas but this value was only significantly higher than tree 

density observed in the driest area (Table 5.1). Bird assemblage analysis shows that 

total bird species richness (ANOVA, F(2,117)=17.4, P<0.001) and abundance 

(ANOVA, F(2,117)=23.0, P<0.001) also differ significantly between areas. These 

differences are mainly driven by changes in forest bird richness (ANOVA, 

F(2,117)=13.6, P<0.001) and abundance (ANOVA, F(2,117)=16.0, P<0.001) as there 

were no significant differences in non-forest species richness (ANOVA, F(2,117)=0.68, 

P=0.51) and abundance (ANOVA, F(2,117)=1.00, P=0.37) between study areas. 

Overall, the least arid study area (Monfurado) had significantly higher mean total 

species richness, forest species richness, total bird abundance  and forest bird abundance  

than the remaining two study areas (Table 5.1). While all woodland variables showed 

significant positive relationships with forest bird richness and abundance (model 

estimates ranged from 0.029 to 0.078), the analyses show that total tree cover was the 

variable that was most strongly associated with observed changes in both forest bird 

richness and abundance observed in the study areas, followed by mean tree canopy size 

and, to a lesser extent, tree density (Table 5.2). 

 

Table 5.2. Comparison of generalized linear mixed models (GLMM) assessing the 

relationships between each individual woodland structure variable and forest bird 

species richness and abundance. All models included sampling area as a random effect. 

Model Estimate P-value AICc ωi Deviance 

Forest species richness      

Tree density 0.029 <0.001 475.4 0 467.1 

Tree cover 0.057 <0.001 450.8 0.93 442.4 

Mean tree canopy area 0.076 <0.001 456.1 0.07 447.7 

Forest bird abundance      

Tree density 0.031 <0.001 503.8 0 495.5 

Tree cover 0.060 <0.001 484.3 0.96 476.0 

Mean tree canopy area 0.078 <0.001 490.5 0.04 482.2 
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Table 5.3. Comparison of generalized linear mixed models (GLMM) assessing the 

relationships between forest bird abundance, tree cover and aspect at sites across three 

sampling areas (see Fig. 5.1). All models included sampling area as a random effect. 

Model AICc ωi Deviance 

Null model 534.89 0 585.70 

Tree cover 483.90 0.03 475.55 

Aspect 488.77 0 480.43 

Tree cover + Aspect 477.08 0.83 466.56 

Tree cover + Tree cover * Aspect 490.15 0 479.63 

Tree cover + Aspect + Tree cover * Aspect 480.74 0.13 467.99 

 

 

Testing the response of tree cover in response to the interaction between sampling area 

and aspect showed that the existence of significant differences in tree cover between 

north and south facing slopes is not common to all areas (ANOVA, F(2,114)=4.33, 

P<0.02) and a post-hoc test revealed that this difference is only present in the two driest 

study areas, Caldeirão and Grândola  (Fig. 5.2A). The same interaction was observed 

for forest bird abundance (ANOVA, F(2,114)=9.07, P<0.001), where a significant 

reduction in the abundance of forest bird species was only observed in the south-facing 

slopes of the Caldeirão and Grândola sampling areas. No significant difference was 

found in the abundance of non-forest bird species, either within (ANOVA, 

F(1,114)=0.42, P=0.52) or between (ANOVA, F(2,114)=1.02, P=0.36) areas (Fig. 

5.2B). The changes observed in forest bird abundance between and within areas are best 

explained by a model that includes total tree cover and aspect as independent predictors 

(Table 5.3). The hypothesis for the relationship between forest bird abundance, tree 

cover and aspect that is best supported by the data is that forest bird abundance responds 

positively to an increase in total tree cover within an area but the total forest bird 

abundance is on average 1.07 birds/ha lower in drier south facing slopes (Fig. 5.3A). 

These differences may be partly explained by the significantly lower caterpillar frass 

fall (t-test, t=2.66, d.f.=74, P<0.01), in south facing than north facing slopes (Fig. 5.3B). 

Daily caterpillar frass fall in the Grândola sampling area averaged 29.0 mg/m2 day-1 in 

north facing slopes, whereas the average observed value for south facing slopes was 

22.0 mg/m2 day-1. 
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Future climatic predictions indicate that all three study areas will become increasingly 

arid and, by the year 2050, south facing slopes in the two driest areas, Caldeirão and 

Grândola, are likely to drop to aridity levels of semi-arid regions (Fig. 5.4). 

Furthermore, only north facing slopes in the least arid study area (Monfurado) are likely 

to maintain significantly higher moisture levels than those observed at present in the 

driest area. 

 

 
Figure 5.2. Comparison between north and south facing slopes in the three sampling 

areas in terms of tree cover (A), forest and non-forest bird abundance (B). Points 

represent mean values and 95% confidence intervals for each sampled region and 

aspect. 

 

5.4. Discussion 

 

5.4.1. Woodland structure and bird assemblage changes along an aridity gradient 

 

Results indicate a significant response of woodland structure and bird assemblages to 

aridity. Both tree cover and mean tree canopy size decrease by over a third in more arid 

areas, even though there is no clear trend in tree density response to aridity (Table 5.1). 

Climate change has caused a significant increase in extreme heat and drought events 

during the last decades in the Mediterranean region (Diffenbaugh et al. 2007, Hoerling 
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et al. 2012), resulting in higher leaf loss, reduced radial growth and increased mortality 

trends (e.g. Andreu et al. 2007, Allen et al. 2010, Carnicer et al. 2011, Besson et al. 

2014). In drier areas, cork oak trees are likely to be more susceptible to such events and 

recovery periods may be longer, potentially justifying the observed differences in 

woodland structure between sampling areas. The lack of a significant tree density trend 

along this aridity gradient is somewhat surprising but is likely to change in the future 

considering the current mortality (Besson et al. 2014) and low regeneration trends 

currently observed in cork oak woodlands (Acácio et al. 2007), and the beneficial 

influence of nursing tree canopy protection on seedling recruitment success (Caldeira et 

al. 2014). 

 

 
Figure 5.3. Predicted relationship between forest bird abundance in relation to tree 

cover and aspect (A) and comparison of daily frass fall between north and south facing 

slopes. In A, lines represent predictions from the generalized linear mixed model 

providing the best hypothesis to explain the addressed relationships (see Table 5.3). In 

B, boxes represent median caterpillar daily frass fall in north and south facing slopes 

respectively. Significant differences for daily frass fall were found between north and 

south facing aspects (t-test, P<0.01). 

 

Bird assemblages respond in a similar fashion to woodland structure along the aridity 

gradient. I observed an average loss of over one species and two birds per hectare in 

drier areas, but this trend is mainly driven by forest bird species, as no significant 

differences were found between the study areas for non-forest birds (Table 5.1). In areas 
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of rugged topography, the management of cork oak woodlands tends to favour the 

silvicultural component of this system, usually promoting higher tree densities (Pereira 

and Tomé 2004). This situation does not favour the presence of non-forest bird species 

(Telleria 2001) and may explain the low overall abundance of this group and the 

absence of a clear trend in non-forest bird abundance along the aridity gradient. On the 

other hand, higher tree densities generally increase the probability of presence of forest 

bird populations, but their local abundance is still highly dependent on local woodland 

structure (Telleria 2001, Godinho and Rabaça 2011). 

 

At smaller spatial scales, the analyses revealed south facing slopes show nearly half the 

tree cover and forest bird abundance that was registered in north facing slopes, but only 

within the two driest areas sampled. Tree cover patterns between and within areas (Fig. 

5.2A) agree with previous studies showing that patterns of cork oak growth and 

mortality are negatively affected by drier landscape and microclimatic features (Costa et 

al. 2008, Costa et al. 2010). The observed decrease in the abundance of local forest bird 

assemblages within drier areas (Fig. 5.2B) is most likely a response to both 

microclimatic and woodland features (Table 5.3). Forest birds were less abundant in 

areas with reduced tree cover, usually observed in drier south facing slopes. However, 

even when south-facing slopes showed similar tree cover conditions to north-facing 

slopes, forest birds were generally more abundant in the latter (Fig. 5.3A). This 

response is probably related to the lower resource abundance present in south facing 

slopes (Fig. 5.3B). Caterpillars are less abundant in lower quality canopies (Hunter 

1987, Murakami et al. 2005) and higher temperatures may lead to changes in phenology 

(Stefanescu et al. 2003) and increased temperature related diapause (Held and Spieth 

1999), reducing the time-frame when they are available for birds during the breeding 

season and potentially resulting in resource mismatches (Kerby et al. 2012). Other 

arthropod groups may also be negatively affected by these factors (e.g. Trotter et al. 

2008, Stone et al. 2010), which could result in a significant reduction of food resources 

in warmer south-facing slopes for birds. Overall, results indicate that local woodland 

structure responses to microclimatic conditions can potentially translate into bottom-up 

up effects across the food-web that ultimately affect forest bird populations as well. 

Many bird species are already shifting their distributions in response to climate change 

(Thomas and Lennon 1999, Devictor et al. 2008, Devictor et al. 2012) and local 

processes like the one here describe may be the driving force behind such changes. 
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Figure 5.4. Mean (± 95% confidence intervals) values of rainfall availability for 

present (circles) and predicted future (triangles) conditions at the three sampling areas. 

Future rainfall availability represents predictions for the year 2050 according to the 

HadCM3 climate model and A2 emissions scenario. The dashed line represents the 

transition between semi-arid and dry sub-humid conditions according to global aridity 

values (UNEP 1997). 

 

5.4.2. Implications for conservation in the face of climate change 

 

Results indicate that future climate change is likely to have important consequences for 

cork oak woodlands and their biodiversity. According to future predictions, cork oak 

woodlands will be under higher pressure from increasing aridity, and south facing 

slopes in southern and drier areas seem particularly at risk (Fig. 5.4). The majority of 

forest bird species in the Mediterranean Basin have their southern distribution limits in 

the region (Cramp and Simmons 2006) and further climate change may drive the local 

extinction of these species. In managed systems like cork oak woodlands, adequate 

consideration of potential human impacts on biodiversity from activities such as cork 

removal, tree pruning and shrub removal (e.g. Leal et al. 2011, Santana et al. 2012, Leal 

et al. 2013) will be important to increase the resilience of these systems to climate 
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change impacts. Still, the conservation of forest bird populations in this region, that for 

many species represents the rear edge of their distributions, is no simple task under 

climate change and requires innovative and more specific efforts (Hampe and Petit 

2005). 

 

For example, focusing on preserving different key landscape features may promote the 

maintenance of ecosystem functionality which may be more effective in a climate 

change scenario than just the protection of individual species (Beier and Brost 2010). 

The fact is that local climatic refugia have been important for many groups in past 

periods of global environmental change (e.g. Médail and Diadema 2009, Stewart et al. 

2010) and can also play an important role under the current scenario of change. In this 

respect, maintaining cork oak woodlands on north facing slopes may be particularly 

important to buffer the effects of climate change in drier areas. While the ability of these 

areas to maintain the high biodiversity levels that usually characterize more open and 

extensive cork oak woodlands (Diáz et al. 1997) remains uncertain, results indicate that 

north facing slopes may have an important role in conserving local cork oak populations 

and their associated forest bird species. However, in order for this to be possible, current 

trends of land abandonment, management intensification and the lack of tree 

recruitment (Acácio et al. 2007, Bugalho et al. 2009) need to be tackled in order to 

facilitate the long term maintenance of cork oak woodlands in these areas. 

 

5.5. Conclusions 

 

Results show that forest bird communities of cork oak woodlands in drier conditions are 

already being impacted by climate change, losing about one species and two birds per 

hectare when compared with less arid areas. Cork oak woodlands in drier microclimates 

generally comprised trees with narrower canopies and a lower overall canopy cover, 

which is likely to be a result of increased defoliation and tree mortality trends due to 

recent climate change. This, in turn, seems to affect resource availability for bird species 

that depend on this tree species, which may ultimately drive the observed patterns of 

forest bird abundance. 

 

In this scenario, the characteristic topographic complexity of the Mediterranean Basin, 

with the presence of diverse microclimatic conditions, seems to play an important role 
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in shaping woodland and bird community responses to climate change. Cork oak 

woodlands located in drier climatic conditions, and their biodiversity, seem particularly 

under threat from future climate change but the presence of microclimatic refuges may 

provide a spatial and temporal buffer to climate change impacts. Conservation efforts 

should primarily be aimed at areas with potential to act as refugia and future research 

should focus on understanding the potential ability of these areas to conserve the high 

biodiversity levels characteristic of cork oak woodlands and how to maximize this 

potential in the long term. 
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Abstract 

 

There is increasing evidence that climate change is associated to changes in bird 

migratory behaviour.  In recent decades several wholly migratory trans-Saharan migrant 

species have established overwintering populations in southern Europe. This is the first 

study to assess if changes in migratory behaviour of birds are linked to climate change, 

by comparing the European and the African climatic niche of species with 

overwintering populations in Iberia.  Our results indicate that rising winter temperatures 

have increased the similarity between the climatic conditions in Iberia and the African 

wintering grounds, in spite of decreasing precipitation trends. This was observed for all 

partially migratory species that were previously wholly migratory. Birds overwintering 

in the Iberian Peninsula select areas that are more similar in temperature to their African 

wintering grounds than expected by chance, indicating that temperature is the limiting 

factor. Species that established overwintering populations in southern Europe in recent 

decades have higher climatic overlap between Iberian and African wintering grounds 

than similar (control) species that have not changed their migratory behaviour. These 

results suggest that climate change may have provided the opportunity for wholly 

migratory species to establish regular overwintering populations in southern Europe.   
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6.1. Introduction 

 

Migratory behaviour is common in birds as a response to seasonality (Newton 2008), 

and is an extremely adaptable behaviour (Fiedler 2003). Recent changes in climate are 

causing adaptation responses across natural systems (Parmesan & Yohe 2003, Root et 

al. 2003), including birds (Crick 2004). For migratory birds, the most commonly 

observed responses have been adaptations to migratory phenology (e.g. Cotton 2003, 

Jenni and Kéry 2003, Saino et al. 2011) and migratory distances (e.g. La Sorte and 

Thompson 2007, Visser et al. 2009, Heath et al. 2012). 

 

In the last few decades there have been more radical changes in bird migratory 

behaviour with individuals from migratory species completely abandoning migration 

(Newton 2008). In fact, particularly in southern Europe, several wholly migratory 

species now have overwintering populations (Berthold 2001, SEO/BirdLife 2012). This 

behaviour has been observed regularly in recent decades and some of these species are 

now considered to have established wintering populations in some regions, such as the 

Iberian Peninsula (SEO/BirdLife 2012). The Mediterranean Basin is considered a 

climate change hot-spot (Giorgi 2006) and the recent climatic changes observed the 

region (Peréz and Boscolo 2010) are likely associated with changes in migratory 

behaviour. While some authors have claimed that climate change may ultimately drive 

residency in bird populations (Wilcove and Wikelski 2008, Pulido and Berthold 2010), 

the role of climate change on the suitability of breeding sites during the winter season 

remains poorly explored. 

 

Here, I explore the hypothesis that climate change may be linked to the increasing 

number of overwintering populations of previously wholly migratory bird species in the 

Iberian Peninsula, by quantifying the climatic similarity between the new (Iberian) and 

traditional (African) wintering grounds. I test a set of predictions linked to this 

hypothesis assuming that recent changes in climatic conditions during the winter in the 

Iberian Peninsula have provided the opportunity for the establishment of overwintering 

populations of previously wholly migratory species. Thus, I predict that:  
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(i) In recent decades the winter climatic conditions in the Iberian Peninsula became 

more similar to conditions in the African wintering grounds due to recent climate 

change; 

 

(ii) Species that have recently started overwintering in Iberia select areas that are 

significantly more similar to their African wintering grounds than expected by chance; 

 

(iii) Climatic conditions during the winter in the Iberian Peninsula have become more 

similar to the conditions in African wintering grounds for overwintering species than for 

similar species that have not yet established regular wintering populations. 

 

Results are discussed in light of the role of climate change as a driver of migratory 

behaviour changes and the conservation implications of partial migration for declining 

long-distance migratory species (Sanderson et al. 2006). 

 

6.2. Materials and methods 

 

6.2.1. Distribution data 

 

Until recently, there was a lack of organized information regarding the distribution and 

status of traditionally migratory species overwintering in southern Europe. I took 

advantage of the latest efforts to systematically map the distribution of wintering bird 

species in the Iberian Peninsula and collected distribution data on the wintering areas of 

a set of six traditionally migratory species that are now showing regular wintering 

populations in the Iberian Peninsula (SEO/Birdlife 2012). The selected species were: 

White Stork (Ciconia ciconia – Ccic), Common Quail (Coturnix coturnix – Ccot), 

Common House Martin (Delichon urbicum – Durb), Barn Swallow (Hirundo rustica – 

Hrus), Black Kite (Milvus migrans – Mmig) and Hoopoe (Upupa epops – Uepo). 

Iberian winter distribution records were collected from the Wintering Bird Atlas of 

Spain (SEO/BirdLife 2012) and Portugal (SPEA/BirdLife, in press). Additional 

observations in the Iberian Peninsula were obtained from the WorldBirds online 

database (www.worldbirds.org) for the wintering period considered for Wintering Bird 

Atlas purposes (SEO/BirdLife 2012), which spanned from the 15 of November to the 15 

of February. A summary map of Iberian wintering areas used by the six species can be 
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seen on Fig. 6.1. African wintering areas also were characterized using BirdLife 

distribution maps (BirdLife International and NatureServe 2014). This approach was 

preferred to observation or atlas data as the number of records in many countries where 

species potentially occur is low or inexistent. The African distribution of wintering 

areas only considered latitudes under 20ºN, in order to exclude zones of passage during 

migration. Species distribution data from both regions were then converted to a 0.5º 

resolution presence-absence grid in order to match the climate data used for the analysis 

(see below). 

 
Figure 6.1. Iberian distribution map of the six species overwintering in Iberia in recent 

decades. Grid squares are coloured according to the number of species registered 

during the winter. 

 

In addition, I collected distribution data for a set migratory species that show breeding 

distributions and requirements as similar as possible to the set of newly established 

wintering species but that have not yet established regular wintering populations in the 

Iberian Peninsula. This group included the following species: Common Swift (Apus 

apus, Aapu), Purple Heron (Ardea purpurea, Apur), Red-rumped Swallow (Cecropis 

daurica, Cdau), European Bee-eater (Merops apiaster, Mapi), European Honey Buzzard 

(Pernis apivorus, Papi) and Turtle Dove (Streptopelia turtur, Stur). The African 

wintering distributions were collected using the same procedure described for migratory 

species. Furthermore, I defined a set of potential wintering areas in the Iberian 

Peninsula for migratory species, in order to evaluate the climatic overlap between 

potential Iberian and African wintering grounds. Potential wintering areas for migratory 



126 
 

species were classified as any grid cells where all recently established overwintering 

species were recorded (black cells in Fig. 6.1). This selection was based on the 

assumption that the areas occupied by all recently established wintering species in Iberia 

are also the areas more likely to be suitable for the establishment of overwintering 

populations of other migratory species. 

 

6.2.2. Ecological trait data 

 

I built an ecological traits dataset to compare species ability to establish wintering 

populations in the Iberian Peninsula between groups. The ecological traits analysed 

included climatic tolerance (winter climatic niche extent), habitat requirements 

(wintering distribution extent), winter diet (winter insectivorous diet), flight ability 

(wing loading), breeding strategy (clutch size) and social behaviour. Winter climatic 

niche extent was expressed as the percentage of available climatic niche space (see 

below) occupied by the species across its African wintering range. Wintering 

distribution extent was calculated as the area potentially occupied by each species in 

sub-Saharan Africa (latitudes under 20ºN), measured in millions of square kilometres. 

Winter diet classified species as insectivorous or not according to the winter dependence 

on arthropods as food resource. Wing loading was calculated for each species as the 

ratio between mean body weight (kg) and mean wing area (m2). Clutch size was defined 

as the mean number of eggs in a clutch and social behaviour classified species as social 

(gregarious) or non-social (solitary). BirdLife distribution data (BirdLife International 

and NatureServe 2014) was used to calculate winter distribution extent and mean wing 

area was obtained from the Bird of Switzerland database (http://www.vogelwarte.ch). 

The remaining information was obtained from Birds of the Western Palearctic (BWPi 

2006). The complete data table can be found in Appendix 6.1. 

 

6.2.3. Climate data 

 

The CRU TS 3.10.01 data-set (Harris et al. 2013) was used for extracting the climate 

variables in the Iberian Peninsula and sub-Saharan Africa (latitudes under 20ºN). To test 

the first hypothesis, I determined the climate trend in the Iberian wintering areas 

between pre and post-residency periods, in agreement with the increasing number of 

wintering birds since the 1980s (e.g. Ciconia ciconia and Coturnix coturnix, BWPi 

http://www.vogelwarte.ch/�
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2006) . Climatic conditions in Iberia during pre and post-residency periods were 

compared to current conditions in the African wintering grounds. I chose to compare pre 

and post-residency periods in Iberia with climatic conditions that correspond to current 

distributions in Africa due to the fact that little distribution data is available for past 

African wintering areas and, therefore, could not consider potential impacts of climate 

change on African species distributions (Barbet-Massin et al. 2009). Iberian Peninsula 

climate data was collected for pre (1950-1979) and post residency (1980-2009) periods, 

whereas climate data for African wintering grounds was collected for the time period 

between 1980 and 2009. Data for both regions was collected at 0.5º resolution, for the 

months between November and February, period considered as the wintering season for 

atlas purposes (SEO/BirdLife 2012).  

 

This data was used to calculate eight bioclimatic variables for the winter season: Mean 

Temperature, Total Precipitation, Maximum and Minimum Temperature, Maximum and 

Minimum Precipitation, Temperature Seasonality and Precipitation Seasonality. These 

variables were chosen for the analysis in order to represent the average winter 

conditions but also their variability and extremes that often condition the populations 

and migratory behaviour of birds (Saether et al. 2006, Newton 2008). A table defining 

each climatic variable considered for analysis is provided in Appendix 6.2. 

 

6.2.4. Prediction testing 

 

I tested the set of predictions regarding the role of climate change on the establishment 

of overwintering populations in Iberia by performing climatic niche overlap analysis 

and niche similarity tests between the wintering grounds in the Iberian Peninsula and 

Africa using the framework proposed by Broennimman et al. (2012). This methodology 

allows for niche comparisons between and within species in space and time, making it 

ideal for this study. Niche analyses were carried using the PCA-ENV approach, an 

ordination technique that uses species occurrences and climate data to characterize the 

species niche in a transformed two-dimensional environmental space (for further details, 

see Broennimann et al. 2012), and Schoener’s D metric was used as the measure for 

niche overlap. Climatic variable loadings in relations to environmental axis can be 

found in Appendix 6.3. Niche overlap estimates were tested for potential biases that 

may arise due to records of late migrants and early arrivals being classified as 
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overwintering birds. I tested the results by comparing niche overlap estimates obtained 

with the all Iberian wintering records with results from one hounded subsamples of 90% 

of the Iberian dataset and found no significant differences (P>0.05) between niche 

overlap estimates. Finally, I also performed a multivariate ordination analysis of 

migratory and overwintering species groups in relation to ecological traits to identify 

which factors are associated with the ability to establish regular wintering populations 

in the Iberian Peninsula. Species traits loadings are presented in Appendix 6.4. All 

calculations were computed using R software v.2.15 (R Development Core Team 2011). 

 

 
Figure 6.2. Climatic niche overlap between Iberian and African wintering areas during 

pre and post-residency periods for six species with overwintering populations in Iberia. 

Comparisons were done for the overall climatic niche and for each climatic variable 

separately. Boxes represent first and third quartiles of niche overlap values, bold bar 

represents median value, whiskers represent the values within 1.5 times the inter 

quartile range and points represent values over 1.5 times the inter quartile range. 

Significant differences in niche overlap obtained with paired t-tests between the two 

time periods are identified (*, P<0.05; **, P<0.01; ***, P<0.001). 

 

6.3. Results 

 

The average estimate of current climatic niche overlap between African and Iberian 

wintering grounds for overwintering species was 0.13, with a maximum value of 0.16 

(Ciconia ciconia) and minimum of 0.09 (Delichon urbicum). There was a significant 
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increase (paired t-test, t=4.01, d.f. = 5, p-value = 0.01) in the climatic niche overlap of 

Iberian and African wintering grounds between pre and post-residency periods (Fig. 

6.2). This increase in overall climatic niche overlap between regions during the last 

decades is due to a significant increase in the overlap of average and maximum 

temperatures (paired t-test, d.f. =5, p<0.05) and is explained by rising winter 

temperatures. The overall increase in climatic niche overlap between regions was 

observed even when the opposite trend was found for minimum and total precipitation 

(paired t-test, d.f. = 5, p<0.05), as a result of the recent decline in winter precipitation 

values in the Iberian Peninsula (Fig. 6.3). All six overwintering bird species select areas 

in the Iberian Peninsula with temperature conditions more similar to their wintering 

grounds in Africa than expected by chance (Table 6.1). Four out of six species also 

selected areas with more seasonal precipitation conditions than expected by chance. 

 

 
Figure 6.3. Change in the Iberian climatic niche between pre (1950-1979) and post-

residency (1980-2009) periods in relation to African overwintering climatic niche. 

Points represent the location of each species niche centroid in relation to both African 

(black line) and Iberian (grey line) available niche space. Arrows show how the climate 

of the Iberian range of each species changed between pre and post-residency periods. 

Axis loadings can be found on Appendix 6.3.



 
 

Table 6.1. Results of climatic niche similarity tests between Iberian overwintering areas and African wintering grounds. Comparisons for which 

Iberian conditions were significantly more similar to Africa than expected by chance (P<0.05) are represented by +. 

Species  Climatic niche 

Common name Scientific name  Total 

niche 

Avg. 

Temp. 

Max. 

Temp. 

Min. 

Temp. 

Temp. 

Seas. 

Total 

Prec. 

Max. 

Prec. 

Min. 

Prec. 

Prec. 

Seas. 

White Stork Ciconia ciconia  n.s. + + + n.s. n.s. n.s. n.s. n.s. 

Common Quail Coturnix coturnix  + + + + + n.s. n.s. n.s. + 

Common House Martin Delichon urbicum  n.s. + + + n.s. n.s. n.s. n.s. + 

Barn Swallow Hirundo rustica  + + n.s. + n.s. n.s. n.s. + n.s. 

Black Kite Milvus migrans  + + + + n.s. n.s. n.s. n.s. + 

Eurasian Hoopoe Upupa epops  n.s. + n.s. + n.s. n.s. n.s. n.s. + 
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Species with overwintering populations in Iberia show significantly higher climatic 

niche overlap between overwintering areas in Africa and Iberia than the control 

group with similar migratory species (t-test, t=3.76, df=9.966, p<0.005) (Fig. 6.4). 

Multivariate ordination analysis of species traits showed it is possible to separate the 

two groups of species (Fig. 6.5). The first two axes accounted for just over 60% of 

the variability in traits, with overwintering and migratory species groups clearly 

organized along the first axis (Appendix 6.4). Overall, overwintering species show 

larger climatic niches, wider distribution extent insectivorous diet and larger clutch 

sizes than similar migratory species. 

  

 

 
Figure 6.4. Climatic niche overlap between the African and Iberian wintering 

grounds for overwintering species and a control set of similar migratory species. The 

climatic niche overlap for migratory species was analysed for potential wintering 

areas (see Methods section).  There was a significant difference in average climatic 

niche overlap between the two groups of species (**, P<0.01). 
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6.4. Discussion 

 

6.4.1. The establishment of Iberian overwintering populations in light of climate 

change 

 

Results confirmed the initial predictions that climate change is linked to the recent 

changes in migratory behaviour of birds. Consistently, for all species with 

established overwintering populations in Iberia, the climatic conditions in the Iberian 

Peninsula, in recent decades, have become more similar to the African wintering 

grounds (Fig. 6.2). Increased similarity between regions is driven by increasing 

temperatures, and occurred in spite of decreasing precipitation trends across the 

Iberian Peninsula (Fig. 6.3). The Mediterranean climate of the Iberian Peninsula is 

characterized by dry and warm summers and rainy winters with relatively mild 

temperatures (AEMET and IM 2011). Results indicate that all overwintering species 

selected wintering areas in Iberia that are warmer and more similar to the African 

wintering grounds than expected by chance (Table 6.1), supporting the idea that 

temperature is still likely to represent the main limiting factor during winter months, 

especially as rainfall is usually abundant during this period. Therefore, increasing 

winter temperatures in Iberia, driven by climate change (Peréz and Boscolo 2010), 

may have provided the opportunity for migratory species to establish wintering 

populations in the Iberian Peninsula, regardless of decreasing precipitation trends 

(Fig. 6.3). However, not all species may be able to exploit this opportunity. Climatic 

conditions in the Iberian Peninsula are generally more similar to conditions 

experienced at the African wintering grounds for species that recently established 

overwintering populations than for similar species that still regularly migrate to 

Africa (Fig. 6.4). Trait analyses also indicate that the recently established 

overwintering species are more generalist in their ecological requirements and have 

wider climatic niches and distributions (Fig. 6.5). These results help to explain why 

only a relatively small fraction of European migratory species now regularly 

overwinter in the Iberian Peninsula even though individuals of several species have 

been registered during the winter in the region (SEO/BirdLife 2012). 
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6.4.2. The role of climate change on mechanisms controlling migratory 

behaviour 

 

Increasing temperatures seem to be the main ecological factor driving migrants to 

establish overwintering populations in the Iberian Peninsula. At low temperatures, 

birds show higher metabolic requirements (Anderson and Jetz 2005) but food 

resources tend to be a limiting factor, prompting them to migrate (Newton 2008). 

Recent evidence demonstrates that increasing temperatures have caused improved 

winter survival and earlier emergence of arthropods (e.g. Bale et al. 2002, Stefanescu 

et al. 2003), which is likely to result in higher food abundance for insectivorous and 

generalist species. Year-round food availability, as a result of increasing 

temperatures and other recent anthropogenic changes such as landfill sites, 

introduced species and supplementary feeding (Massemin-Challet et al. 2006, Robb 

et al. 2008, Tablado et al. 2010), is likely to provide the opportunity for the 

establishment of overwintering populations in the Iberian Peninsula. Still, only more 

generalist species exploring large climatic and ecological niches have established 

overwintering populations in the region, suggesting that diet is not the only 

determinant factor. Despite relatively mild, winter temperatures in the Iberian 

Peninsula may still be a limiting factor for species with higher energetic 

requirements or depending on more seasonal habitats. 

 

Climate change may provide the opportunity for birds to winter in the Iberian 

Peninsula, but the establishment of new wintering areas will ultimately require 

changes in the genetic and/or phenotypic structure of migratory bird populations. It 

has been argued that climate change pressures may change migratory activity 

through microevolutionary responses (Pulido and Berthold 2010), but there is still 

lack of evidence in the literature that this has occurred (Gienapp et al. 2008, 

Charmantier and Gienapp 2013). The expression of migratory behaviour is in many 

cases dependent on biological constraints, such as length or timing of the breeding 

season (e.g. Jenny and Kéry 2003, Gill et al. 2013), and environmental cues (e.g. 

Studs and Marra 2011, Newton 2012), all of which potentially affected by climate 

change. In the Iberian Peninsula, the establishment of overwintering populations for 

the majority of species analysed is probably a consequence of the expected decrease 

in the migratory activity of northern European populations due to climate change 



134 
 

(Schaefer et al. 2008). Other possible justifications are the expansion of existing 

resident populations in North Africa or the evolution of residency in Iberian breeding 

populations. Regardless, these events do require either genetic or phenotypic changes 

that may be driven by climate change, which makes this study system an exciting 

prospect for the (still) poorly understood evolutionary and ecological mechanisms 

controlling changes in migratory behaviour as a response to climate change 

(Knudsen et al. 2011). 

 

 
Figure 6.5. Multivariate analysis of ecological factors differentiating overwintering 

and migratory species. Overwintering species are highlighted in bold font. 

Overwintering species are positively associated with wider wintering distributions 

and winter niche space occupied and, to a lesser extent larger clutches and an 

insectivorous diet. Axis loadings can be found in Appendix 6.4. 

 

6.4.3. New wintering areas provide conservation opportunities for migratory 

birds 

 

The establishment of overwintering populations in Iberia may also provide new 

opportunities for the conservation of traditionally migratory species. It is well known 

that long-distance migrants are among the species showing higher population 

declines across Europe (Sanderson et al. 2006). This fact has been partly attributed to 
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pressures en-route and at the wintering grounds, including effects from climate 

change (e.g. Sanderson et al. 2006, Barbet-Massin et al. 2009, Vickery et al. 2014). 

Monitoring population trends of overwintering and migratory populations will 

provide a better evaluation of the factors driving population declines in migratory 

species. Wintering populations in the Iberian Peninsula may also enable new 

conservation opportunities that may reduce the impacts of previously mentioned 

threats but this will require important wintering habitats for birds, such as cork oak 

woodlands (Diaz et al. 1997), to be maintained and adequately managed.  

 

6.5. Conclusions 

 

Recent climatic changes in the Iberian Peninsula seem to have provided the 

opportunity for traditionally migratory species to establish overwintering populations 

in the region. Rising winter temperatures have promoted an overall increase in 

climatic similarity between the Iberian Peninsula and Africa, in spite of declining 

precipitation trends. The majority of newly established overwintering species tend to 

show broad climatic niches but are nevertheless selecting wintering areas within the 

Iberian Peninsula that are warmer and thus significantly more similar to their 

traditional wintering grounds in Africa. This fact suggests that declining precipitation 

trends during the winter are not affecting the establishment of overwintering bird 

populations in Europe, probably due to the high rainfall during the season. Rather, 

low winter temperatures are likely to be the major constraint to the establishment of 

wintering populations. Physiological thermal limitation and resource availability are 

likely to be among the mechanisms limiting the establishment of overwintering 

populations in Europe. Future research should focus on further exploring the 

ecological drivers by which climate change may facilitate the establishment of 

wintering populations and the evolutionary mechanisms associated with these 

changes in migratory behaviour. Such knowledge will ultimately provide important 

new opportunities for the management and conservation of declining long-distance 

migratory bird species. 
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Chapter 7 
 

Conclusion 
 

 
 

Photo: Extensive cork oak woodlands in the Alentejo region, Portugal 

 

 

Historically, the traditional multipurpose management of cork oak woodlands was 

greatly valued and cherished by many Mediterranean cultures for its economic, 

cultural, aesthetic and natural value, and provided an example of a mutually 

beneficial relationship between humans and the natural environment (Diáz et al. 

1997, Vallejo et al. 2009). Decades of management adaptation to local and regional 

contexts have increased the resilience of cork oak woodlands and allowed the 

maintenance of a variety of management forms that are still observed nowadays 

(Vallejo et al. 2009). However, the remarkable balance between human activities and 

natural value that is characteristic of cork oak woodlands is currently under threat 

from the rapid ongoing global environmental, economical and societal changes 

(Bugalho et al. 2009). Habitat loss and degradation, due to inappropriate or absent 

management, and climate change effects are undoubtedly among the major threats to 

cork oak woodlands (Bugalho et al. 2009, Pereira et al. 2009) and Mediterranean 

biodiversity in general (Alcamo et al. 2007, Cuttelod et al. 2008). The rapid and 

global character of these changes requires a global and comprehensive assessment of 

their potential effects on Mediterranean cork oak woodland and its biodiversity at 

global, regional and local scales. 

 

© Nuno Morão 
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Therefore, the aim of this thesis was to contribute to this task by analysing the effects 

of land management changes and climatic changes on cork oak woodlands and their 

biodiversity, under different scenarios and at multiple spatial scales, in order to 

identify potential challenges and opportunities for the long term maintenance of this 

valuable system. 

 

7.1. Key findings 

 

7.1.1. Global and local climate effects on cork oak woodlands 

 

The findings of this thesis indicate that climate change is likely to have an important 

role in the future global distribution of cork oak woodlands. Predictions obtained in 

Chapter 2 point towards a marked decline of approximately 40 and 60% of the 

currently occupied area up to 2080, mainly in the southern regions of its current 

range such as Morocco, Tunisia, Algeria and southern Iberia. In these areas, only 

some pockets of suitable climate are likely to remain in the more extreme scenarios 

of climate change. The remaining regions are likely to maintain their suitability, such 

as the case of Italy, many Mediterranean islands and some areas within the central 

Iberian Peninsula. New suitable areas are likely to emerge to the north of the current 

range and may provide grounds for future afforestation efforts if these are deemed 

economically and politically viable. This thesis includes the first attempt to predict 

the impacts of climate change on the distribution of suitable areas for the cork oak 

across their whole range. It includes information from the complete range of the 

species, so the results obtained are likely to be more robust than previous regional 

estimates (Garzón et al. 2007, Atorre et al. 2011). In fact, the role of incomplete 

species distribution data on model outputs was also assessed, and the results confirm 

previous reports of potential biases in predictions when information of the complete 

range of species is not included in model calibration (Thuiller et al. 2004, Barbet-

Massin et al. 2010). Still, due to the large scale nature of this study, it did not address 

how climatic conditions at smaller spatial scales may affect the response of cork oaks 

to climate change. Chapter 5 aimed to fill this knowledge gap through a better 

understanding of how micro-climatic conditions might already be affecting cork oak 

trees and their associated biodiversity at local spatial scales. 
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The results obtained in Chapter 5 indicate that cork oak trees located in drier areas 

have smaller canopies than cork oaks located in areas with milder climatic 

conditions. Even under similar levels of tree density, total canopy cover is lower in 

woodlands located in drier areas as a result of individual trees having smaller 

canopies. Drier conditions at smaller spatial scales had a similar effect on tree 

canopy cover, which was observed to be significantly lower in south facing slopes 

when compared to north facing slopes within the same study areas. This is an 

indication that local microclimatic conditions may buffer or potentiate the negative 

effects that extreme heat and drought spells have on cork oak trees. The increasing 

frequency of such events around the Mediterranean Basin (Diffenbaugh et al. 2007, 

Hoerling et al. 2012) will promote more arid conditions across the region and a set of 

recommendations is suggested to manage this scenario. In regions like northern 

Africa and southern Iberia, where the suitability of climatic conditions for the cork 

oak is likely to decrease dramatically, the priority should be the protection of any 

areas where microclimatic conditions are likely to allow the maintenance of cork oak 

woodlands. These areas may have an important role in maintaining landscape 

connectivity in more affected regions and will be important for the conservation of 

the endangered species that partly depend on cork oak woodlands, particularly in 

northern Africa where the Mediterranean Sea may prevent these species to shift their 

distributions northwards. In areas where climatic conditions are likely to remain 

suitable and where cork oak woodlands are currently present, the conservation focus 

should be the promotion of sustainable management practices, in order to guarantee 

their long term sustainability and maintain their biodiversity and ecosystem services 

(Bugalho et al. 2011a). Finally, adaptation efforts can potentially take advantage of 

the predicted northward shift in climatically suitable areas to promote a northwards 

expansion of the species through a proactive approach based on new afforestations 

(Resco de Dios et al. 2007).  

 

7.1.2. Bird assemblage responses to climatic and management gradients 

 

This thesis also focused on understanding the role of ongoing climatic and 

management changes on the biodiversity of cork oak woodlands. By using birds as a 

study group, chosen for their ability to act as biodiversity indicators (e.g. Hutto 1998, 

Gregory et al. 2003), the results obtained are also able to shed some light on the 
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potential responses of the biodiversity of cork oak woodlands to climate and land 

management changes across the Mediterranean basin. 

 

Chapter 3 starts by analyzing the differences between the breeding bird assemblages 

of cork oak woodlands in northern Africa and southern Iberia. The existence of 

significant differences in bird assemblages between regions can potentially prevent 

the generalization of local bird responses observed to either human or environmental 

factors to both regions. Observed species diversity and abundance patterns were 

similar between regions and the majority of species recorded were common to both 

European and North African cork oak woodlands, corroborating studies that have 

highlighted the remarkable similarity of Mediterranean forest bird assemblages 

(Blondel 1995). Nonetheless, bird assemblage structure differed significantly 

between regions in terms of species and guild composition. The presence of a 

geographical barrier, the Mediterranean Sea, prevented some species of colonizing 

both regions and allowed other to evolve distinctly, which partly explains the 

differences observed. The remaining differences in bird assemblages between 

European and North African cork oak woodlands are explained by an increase in 

generalist birds and a decrease in forest specialists in northern Africa, which can be 

explained by a local overexploitation of woodland resources (Bugalho et al. 2009). 

Overall, these results indicate that the composition of North African cork oak 

woodland bird assemblages represents a response to regional conditions within the 

gradient of environmental and habitat conditions found across Mediterranean cork 

oak woodlands.  

 

This idea is further explored in Chapter 4, which analyses the response of breeding 

bird assemblages to climatic and habitat gradients throughout Iberian and North 

African cork oak woodlands. Both climatic and habitat structure were important 

factors determining the composition of breeding bird assemblages of cork oak 

woodlands, and were able to explain over one third of the variability found in bird 

abundance among all sampled areas. Results also indicate that the relevance of 

habitat variables was higher for farmland and shrubland species, such as the Corn 

Bunting (Emberiza calandra), Spotless Starling (Sturnus unicolor) and Woodlark 

(Lullula arborea). The abundance of forest and generalist species such as the 

Common Nightingale (Luscinia megarhynchos), Common Redstart (Phoenicurus 
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phoenicurus) and Eurasian Wren (Troglodytes troglodytes) was generally more 

associated to climatic variables. Nonetheless, the analysis of individual species 

responses shows that the majority of species decreased their abundance in areas with 

higher temperatures and seasonality and increased it in areas with more open and 

heterogeneous ground vegetation structure. The analysis of the spatial distribution of 

climatic and habitat variables demonstrates that bird communities in northern Africa 

are of greater conservation concern due to both climatic and management factors (in 

agreement with the results of Chapter 3). 

 

With these results in mind, Chapter 5 aimed to obtain a better understanding of how 

local microclimatic conditions along an aridity gradient in the south of the Iberian 

Peninsula may already be affecting local breeding bird assemblages. The data 

obtained with this chapter indicates a significant decrease in species diversity and 

abundance in drier areas. This is a result of local changes in the abundance of forest 

specialist species, which decreased in drier south facing slopes, and confirms the 

association between forest bird species and climatic conditions observed in the 

previous chapter. In such dry conditions, cork oak woodlands have a depleted canopy 

cover and a reduction in resource availability for forest birds, indicating that the 

relationship between forest birds and climatic conditions is most likely driven by 

bottom-up effects across the food-web. Furthermore, the increasing aridity expected 

during the coming decades is likely to provide a further challenge for the 

conservation of cork oak woodland bird populations, and maintaining woodlands 

with suitable habitat structure within adequate local microclimatic conditions may be 

an essential step in this task. 

 

Still, increasing temperatures may also provide new opportunities for the 

conservation of bird populations within the Iberian Peninsula. Chapter 6 addressed 

the role of climate change on the increasing number of overwintering populations of 

traditionally migratory species in the Iberian Peninsula (Berthold 2001, 

SEO/BirdLife 2012). Results indicate that the increase in winter temperatures during 

the last three decades is one of the potential drivers of the observed changes in 

migratory behaviour. This hypothesis is supported by the fact that winter 

temperatures in the Iberian Peninsula are generally becoming more similar to the 

temperatures usually experienced by birds in their African wintering grounds. Even 
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accounting for a decrease in precipitation, the overall winter climatic niche is 

becoming more similar between regions due to the increase in temperatures. This 

hypothesis is also supported by the fact that birds are selecting the most similar areas 

to Africa within the Iberian Peninsula to overwinter. While this change in migratory 

behaviour has so far been observed regularly in more generalist species like the 

White Stork (Ciconia ciconia), Common Quail (Coturnix coturnix) and Eurasian 

Hoopoe (Upupa epops), it may nonetheless provide new opportunities for the 

conservation of long-distance migrants, which are among the bird with highest 

population declines across Europe (Sanderson et al. 2006). Overwintering species in 

the Iberian Peninsula have a higher overlap between the climatic conditions they 

experience in the wintering grounds in Africa and the Iberian Peninsula but some 

migratory species, like the Egyptian Vulture (Neophron percnopterus), Eurasian 

Reed Warbler (Acrocephalus scirpaceus), Lesser Kestrel (Falco naumanni) and 

Yellow Wagtail (Motacilla flava), already have individuals overwintering in the 

Iberian Peninsula occasionally (SEO/BirdLife 2012). Consequently, it seems likely 

that further climate change may drive them to establish wintering populations in 

Iberia as well. In this scenario, important wintering habitats for birds such as cork 

oak woodlands (Diaz et al. 1997) will need to be maintained and adequately 

managed to support the establishment and conservation of these species. 

 

Overall, these findings highlight that if Mediterranean cork oak woodlands and their 

associated biodiversity are to be maintained, efforts should focus on promoting 

sustainable land management practices required for biodiversity and ecosystem 

services (Bugalho et al. 2011a). Current land abandonment and intensification trends 

(Bugalho et al. 2009) need to be addressed in parallel with promoting the long-term 

sustainability of more traditional and biodiversity friendly management practices, 

especially in areas under higher pressure from increasing temperatures and aridity. 

This should involve reducing the potential effects of management practices, such as 

grazing, shrub removal and tree pruning (e.g. Camprodon and Brotons 2006, 

Godinho and Rabaça 2011, Santana et al. 2012, Leal et al. 2013) that can have 

negative impacts if not properly executed. Furthermore, promoting the habitat 

mosaic typical of more heterogeneous traditional management practices (Diáz et al. 

1997, Vickery and Arlettaz 2012) will also be important to maintain functional 

diversity. Finally, promoting the presence of small patches of other habitats may 
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provide additional economic income and increase biodiversity levels within cork oak 

woodlands (Leal et al. 2011). These recommendations could be better implemented 

in the scope a multi-purpose land use system rather than in more intensive mono-

exploitation systems. The former may be more resilient in the long-run to market 

price fluctuations and impacts from climate change on productivity, as its successful 

implementation in some local communities indicates (Behrramouni et al. 2007). 

 

7.2. Future research directions 

 

7.2.1. Climate change effects on cork oak woodlands and their biodiversity 

 

This thesis is a contribution to the understanding of how climatic conditions 

influence natural systems in the Mediterranean Basin, particularly for cork oak 

woodlands and their biodiversity. However, many issues remain unexplored and 

further research should be stimulated in order to expand the knowledge required to 

assess the effects of climate change on this system. 

 

In many areas the subsistence of cork oak woodlands under climate change is likely 

to require active human intervention (Pereira et al. 2009). This happens because 

natural regeneration is very low (Acácio et al. 2007), trees are already affected by 

extreme climatic events (Carnicer et al. 2011, Besson et al. 2014), and in fact 

woodland decline has started in many areas (e.g. Brasier and Scott 1994, Regato-

Pajares et al. 2004, Costa et al. 2011). A better understanding of the role of 

microclimatic conditions (Caldeira et al. 2014), extreme events, and seed dispersers 

on seedling recruitment (Pons and Pausas 2007) and establishment are required. The 

prediction of climatically suitable areas for afforestation efforts (Hidalgo et al. 2008, 

Vessella and Schirone 2013) may also be important to prioritize and maximize the 

efficacy of these actions. Ultimately, the future of current cork oak woodlands and 

the decision to establish new plantations will be associated with their long-term 

economic sustainability. Therefore, evaluating the role of climate change and 

particularly of extreme events on cork growth and quality should also be a priority. 

Finally, it is important to understand which land uses may replace cork oak 

woodlands in the areas where they are likely to disappear. Holm oak (Quercus 

rotundifolia) is known to be more resistant to drought than the cork oak (Caldeira et 
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al. 2014) and may be a suitable option to maintain a similar land use system. Olive 

trees (Olea europaea) may also be a suitable alternative given that their exploitation 

is likely to benefit from climate change (Ponti et al. 2014). Further efforts to predict 

which species and land uses may be economically and climatically suitable for these 

areas should be stimulated. 

 

In respect to the potential effects of climate change on the biodiversity of cork oak 

woodlands, these findings may provide general insights, given that birds are 

generally regarded as good biodiversity indicators (Hutto 1998, Gregory et al. 2003). 

Still, they fail to cover in detail the possible responses of other groups with highly 

diverse communities in cork oak woodlands, such as plants and butterflies (Diáz et 

al. 1997). For example, many butterfly species have changed their distribution and 

phenology in the Mediterranean Basin as a response to climate change (e.g. 

Stefanescu et al. 2003, Wilson et al. 2005), in parallel with what has been observed 

in more northern latitudes (e.g. Parmesan et al. 1999, Roy and Sparks 2000), but the 

implications of these responses for communities in cork oak woodlands remains 

underexplored. Similar responses may be expected in other biological groups, such 

as plants, amphibians and mammals, but information on the effects of climate change 

for these groups is even scarcer, which makes them a research priority. Particular 

focus should be given to the unique biological communities of cork oak woodlands 

in northern Africa, where direct human impacts are also more evident (Marañon et al. 

1999, Bugalho et al. 2009). The presence of the Mediterranean Sea and the Sahara 

desert isolate the rear edge populations of less mobile species in this region, and their 

future protection may require the designation of specific conservation actions 

(Hampe and Petit 2005). 

 

7.2.2. Promoting nature-friendly cork oak woodland management practices 

 

Overall information on the potential consequences of different management practices 

for cork oak woodlands is increasing but is still somewhat scarce for some activities 

(Marañón et al. 1999, Gil-Tena et al. 2007). For example, grazing pressure on cork 

oak woodlands has increased markedly in recent decades (Bugalho et al. 2009) which 

can have important consequences for woodland regeneration and biodiversity levels 

in this system (Plieninger 2007, Bugalho et al. 2011b). However, science based 
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recommendations regarding the carrying capacity for different livestock types are 

still lacking. Pruning of cork oak trees is sometimes required for management or 

sanitary reasons, but this kind of intervention simplifies the canopy structure which 

can have negative implications for biodiversity (Leal et al. 2013, Regnery et al. 

2013). Further research on the minimal adequate canopy structure necessary to 

sustain the requirements of the different groups that depend on this resource can 

provide important recommendations to minimize the effects of this practice. 

Deadwood can be beneficial for biodiversity (Lassauce et al. 2011) and the 

importance of maintaining standing dead trees in cork oak woodlands should be 

evaluated (Brasier and Scott 1994), as the common practice is to remove them soon 

after death for economic and sanitary reasons.  

 

7.3 Final considerations about the future of cork oak woodlands 

 

The above suggestions highlight the importance of acknowledging that cork oak 

woodlands are a socio-cultural system where human intervention is required to 

maintain natural values and services (Bugalho et al. 2011a). Therefore, the long term 

maintenance of cork oak woodlands and their biodiversity will only be possible as 

the products and services they provide remain valuable to society (Aronson et al. 

2009). 

 

Cork production and livestock rearing represent the main sources of revenue 

nowadays (Berrahmouni et al. 2009). The market value of cork is usually around 2€ 

per kilo (Coelho and Campos 2009, Cork Information Bureau 2010) in countries 

where the cork industry is well developed, like Portugal and Spain, but prices have 

dropped in recent years (Mendes and Graça 2009, Cork Information Bureau 2010). 

This situation is mostly due to competition from synthetic materials for the 

production of bottle stoppers (Vallejo et al. 2009) and can result in the replacement 

of cork oak woodlands by other more profitable land uses (Berrahmouni et al. 2009). 

In countries where the industry is not as well developed, the revenue generated by 

cork can be much lower (Campos et al. 2009) and may not be sufficient to guarantee 

by itself the economic sustainability of this system. Livestock rearing becomes more 

important than cork production in such countries, particularly in northern Africa, and 

this has resulted in an increase of overgrazing during the last decades (Bugalho et al. 
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2009). In Europe, direct support to farmers by means of subsidies has been attempted 

under the Common Agricultural Policy to counter overexploitation and abandonment 

trends, but such measures alone have not been enough to revert the situation 

(Bugalho et al. 2009). 

 

These examples show how changes in the economic value of cork oak woodlands 

can affect their long-term viability and biological value, but the reverse situation is 

also true. Undergoing cork oak declines (Brasier and Scott 1994) will result in a 

reduced production of cork and other timber products as tree density and sanitary 

conditions decrease. Cork oak trees also provide an important barrier for 

desertification in more arid areas (Vallejo et al. 2009, Marinelli 2010), thus 

maintaining soil quality and its potential for different uses. Birds and bats 

(Şekercioğlu et al. 2004, Boyles et al. 2011) feed on numerous pest species and can 

act as important agents of biological control. Maintaining diverse and abundant 

communities of birds, mammals and other groups is essential to guarantee the 

revenue from hunting and natural recreation activities (Berrahmouni et al. 2009). 

Therefore, an effective approach to increase the sustainability of cork oak woodlands 

may be to encourage managers to diversify their income sources by recognizing the 

diverse range of products (e.g. mushrooms, beekeeping, timber, acorns) and services 

(e.g. recreation, tourism, hunting) that cork oak woodlands and their biodiversity can 

provide (Berrahmouni et al. 2009). In the case of cork, increasing consumer 

awareness of the environmental advantages of cork as a renewable and biodegradable 

material that is compatible with biodiversity (Leal et al. 2011), promoting product 

certification, and developing new applications for cork may help maintaining 

commercial value (Berrahmouni et al. 2009). This kind of multi-purpose approach 

has been implemented with economic success in some local communities 

(Behrramouni et al. 2007) and counters the trends of abandonment, intensification 

and overexploitation (Bugalho et al. 2009, Bugalho et al. 2011a). 

 

In the end, the future of cork oak woodlands requires careful planning and the results 

obtained during the course of this thesis may hopefully contribute to this process 

from an ecological point of view. However, the complexity of this system, and the 

multiple stakeholders involved in management, imply that its future cannot be 

addressed solely from and ecological perspective. Ultimately, land owners, 
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governments, industries, consumers and conservation scientists need to come 

together to develop a strategy for the future of cork oaks woodlands that makes them 

more resilient and capable of supporting both economic activities and natural values, 

across the western Mediterranean. 
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Appendices 

 

Appendix 3.1. Central point coordinates of the seven cork oak woodlands where 

bird assemblages were sampled. 

Iberia  North Africa 

Area Latitude Longitude  Area Latitude Longitude 

IB1 36.228ºN 5.604ºW  NA1 35.261ºN 5.412ºW 

IB2 36.771ºN 5.284ºW  NA2 35.178ºN 5.345ºW 

IB3 36.591ºN 5.383ºW  NA3 35.125ºN 5.283ºW 

IB4 36.300ºN 5.438ºW  
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Appendix 3.2. Summary table of the species detected in each area and their 

abundances in Iberian and North African cork oak woodlands. 

Species  Habitat guild Distribution 

Common name Scientific name   

Long-tailed Tit Aegithalos caudatus Forest Restricted 

Barbary Partridge Alectoris barbara  Farmland Widespread 

Red-legged Partridge Alectoris rufa Farmland Restricted 

Eurasian Stone-curlew Burhinus oedicnemus Farmland Widespread 

European Goldfinch Carduelis carduelis Farmland Widespread 

Short-toed Treecreeper Certhia brachydactyla Forest Widespread 

European Greenfinch Chloris chloris Generalist Widespread 

Zitting Cisticola Cisticola juncidis Farmland Widespread 

Common Wood Pigeon Columba palumbus Generalist Widespread 

Carrion Crow Corvus corone Forest Widespread 

Common Quail Coturnix coturnix Farmland Widespread 

Common Cuckoo Cuculus canorus Generalist Widespread 

Eurasian Blue Tit Cyanistes caeruleus Forest Restricted 

African Blue Tit Cyanistes teneriffae Forest Restricted 

Greater Spotted Woodpecker Dendrocopus major Forest Widespread 

Corn Bunting Emberiza calandra Farmland Widespread 

Cirl Bunting Emberiza cirlus Farmland Widespread 

European Robin Erithacus rubecula Generalist Widespread 

Common Chaffinch Fringilla coelebs Forest  Widespread 

Eurasian Jay Garrulus glandarius Forest Widespread 

Melodious Warbler Hippolais polyglotta Shrub Widespread 

Eurasian Wryneck Jynx torquilla Forest Widespread 

Eurasian Linnet Linaria cannabina Farmland Widespread 

European Crested Tit Lophophanes cristatus Forest Restricted 

Woodlark Lullula arborea Generalist Widespread 

Common Nightingale Luscinia megarhynchos Forest Widespread 

Spotted Flycatcher Muscicapa striata Forest Widespread 

Eurasian Golden Oriole Oriolus oriolus Forest Widespread 

Great Tit Parus major  Forest Widespread 
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Appendix 3.2. cont. 

Species  Habitat guild Distribution 

Common name Scientific name   

House Sparrow Passer domesticus Generalist Widespread 

Western Bonelli’s Warbler Phylloscopus bonelli Forest Widespread 

Iberian Chiffchaff Phylloscopus ibericus  Forest Widespread 

Common Firecrest Regulus ignicapilla Forest Widespread 

European Stonechat Saxicola rubicola Farmland Widespread 

European Serin Serinus serinus Forest Widespread 

Eurasian Nuthatch Sitta europaea  Forest Widespread 

Eurasian Collared Dove Streptopelia decaocto Generalist Widespread 

Eurasian Turtle Dove Streptopelia turtur Farmland Widespread 

Spotless Starling Sturnus unicolor Farmland Widespread 

Eurasian Blackcap Sylvia atricapilla Forest Widespread 

Subalpine Warbler Sylvia cantillans Shrub Widespread 

Sardinian Warbler Sylvia melanocephala  Shrub Widespread 

Dartford Warbler Sylvia undata Shrub Widespread 

Eurasian Wren Troglodytes troglodytes Forest Widespread 

Common Blackbird Turdus merula Generalist Widespread 

Mistle Thrush Turdus viscivorus Generalist Widespread 
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Appendix 4.1. Geographical coordinates of the central point of each sampling area. 

Sampling area Latitude Longitude 

1 41.50872 -7.07414 
2 41.18415 -5.80492 
3 41.17614 -5.74195 
4 40.25066 -6.21399 
5 40.19319 -6.24297 
6 40.08948 -6.5715 
7 39.622 -7.40766 
8 39.50069 -7.14604 
9 39.22826 -6.56217 
10 39.55685 -5.38128 
11 39.33717 -7.59073 
12 39.22419 -7.45079 
13 39.25958 -8.28124 
14 39.01462 -8.13397 
15 38.82376 -8.82368 
16 38.68892 -8.33482 
17 38.58572 -8.09225 
18 38.38064 -7.8978 
19 38.44052 -8.5779 
20 38.34107 -8.42914 
21 38.10149 -8.58572 
22 37.76855 -8.59344 
23 37.71144 -8.3687 
24 37.41838 -8.08052 
25 37.30638 -8.08284 
26 37.24968 -7.86414 
27 37.3366 -6.51521 
28 37.26132 -6.47627 
29 36.77316 -5.2837 
30 36.59106 -5.3828 
31 36.30048 -5.43845 
32 36.22796 -5.6043 
33 35.26148 -5.41232 
34 35.17759 -5.34517 
35 35.1247 -5.2828 
36 34.05619 -4.2629 
37 34.18166 -6.57416 
38 34.14664 -6.66846 
39 34.04243 -6.537 
40 33.9868 -6.50113 
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Appendix 4.2. Summary table of minimum, mean and maximum values registered 

for the environmental variables analysed. 

Environmental variable Minimum Mean Maximum 

Habitat    

Herb cover (% Ground cover) 5 49 99 

Herb height (5cm Height classes) 2 4 5 

Shrub cover (% Ground cover) 1 46 88 

Shrub height (25cm Height classes) 1 4 5 

Tree density (No. trees/ha) 19 49 68 

Tree cover (% Ground cover) 11 41 68 

Heterogeneity (Coef. of variation) 0.7 2.1 3.2 

    

Climate    

Average Temperature (ºC) 11.3 15.9 18.2 

Temperature Seasonality (Coef. of var./1000) 4.1 5.2 6.7 

Aridity (mm) 0.4 0.6 0.9 
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Appendix 5.1. List of bird species recorded in the three sampling areas and their 

guild classification. 

Species Habitat specialization 

Common name Scientific name  

Long-tailed Tit Aegithalos caudatus Forest 

Eurasian Skylark Alauda arvensis Non-forest 

Red-legged Partridge Alectoris rufa Non-forest 

European Goldfinch Carduelis carduelis Non-forest 

Short-toed Treecreeper Certhia brachydactyla Forest 

European Greenfinch Chloris chloris Non-forest 

Zitting Cisticola Cisticola juncidis Non-forest 

Common Wood Pigeon Columba palumbus Non-forest 

Common Cuckoo Cuculus canorus Non-forest 

Eurasian Blue Tit Cyanistes caeruleus Forest 

Azure-winged Magpie Cyanopica cyanus Non-forest 

Great Spotted Woodpecker Dendrocopus major Forest 

Lesser Spotted Woodpecker Dendrocopus minor Forest 

Corn Bunting Emberiza calandra Non-forest 

Rock Bunting Emberiza cia Non-forest 

Cirl Bunting Emberiza cirlus Non-forest 

European Robin Erithacus rubecula Forest 

Common Chaffinch Fringilla coelebs Forest 

Eurasian Jay Garrulus glandarius Forest 

Melodious Warbler Hippolais polyglotta  Non-forest 

Woodchat Shrike Lanius senator Non-forest 

Common Linnet Linaria cannabina Non-forest 

European Crested Tit Lophophanes cristatus Forest 

Woodlark Lullula arborea Non-forest 

Common Nightingale Luscinia megarhynchos Forest 

Eurasian Golden Oriole Oriolus oriolus Non-forest 

Great Tit Parus major Forest 

Rock Sparrow Petronia petronia Forest 

Common Redstart Phoenicurus phoenicurus Forest 
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Appendix 5.1. cont. 

Species Habitat specialization 

Common name Scientific name  

Western Bonelli’s Warbler Phylloscopus bonelli Forest 

Iberian Chiffchaff Phylloscopus ibericus Forest 

Common Firecrest Regulus ignicapillus Forest 

European Stonechat Saxicola rubicola Non-forest 

European Serin Serinus serinus Non-forest 

Eurasian Nuthatch Sitta europaea Forest 

Eurasian Collared Dove Streptopelia decaocto Non-forest 

Europan Turtle Dove Streptopelia turtur Non-forest 

Spotless Starling Sturnus unicolor Non-forest 

Eurasian Blackcap Sylvia atricapilla Forest 

Subalpine Warbler Sylvia cantillans Non-forest 

Sardinian Warbler Sylvia melanocephala Non-forest 

Dartford Warbler Sylvia undata Non-forest 

Eurasian Wren Troglodytes troglodytes Forest 

Common Blackbird Turdus merula Non-forest 

Mistle Thrush Turdus viscivorus Non-forest 

Eurasian Hoopoe Upupa epops Non-forest 

 

 

 

 

 

 

 

 

 

 



 
 

Appendix 6.1. Summary of ecological trait data collected for overwintering and migratory species. Traits analysed included winter climatic 

niche extent (% of available climatic space), African winter distribution extent (106 km2), Insectivorous winter diet (insectivorous or not), wing 

loading (kg/m2), mean clutch size and social behaviour (solitary or gregarious). 

Species 

 

Migratory status in 

Iberian Peninsula 

Traits 

 

Common name Scientific name Niche 

extent 

Distribution 

extent 

Insectivorous 

winter diet 

Wing 

loading 

Clutch 

size 

Social 

behaviour 

White Stork Ciconia ciconia Overwintering 72.1 13.2 Yes 5.0 4 Gregarious 

Common Quail Coturnix coturnix Overwintering 68.9 11.0 No 5.0 10 Solitary 

Common House Martin Delichon urbicum Overwintering 61.0 16.3 Yes 1.8 4 Gregarious 

Barn Swallow Hirundo rustica Overwintering 67.9 14.1 Yes 1.4 4 Gregarious 

Black Kite Milvus migrans Overwintering 73.6 20.4 Yes 2.9 3 Gregarious 

Eurasian Hoopoe Upupa epops Overwintering 72.9 18.9 Yes 1.6 7 Solitary 

Common Swift Apus apus Migratory 52.9 9.6 Yes 2.9 3 Gregarious 

Purple Heron Ardea purpurea Migratory 71.7 18.3 No 3.6 4 Gregarious 

Red-rumped Swallow Cecropis daurica Migratory 67.2 4.2 Yes 1.7 4 Gregarious 

European Bee-eater Merops apiaster Migratory 39.0 2.6 Yes 2.2 6 Gregarious 

European Honey Buzzard Pernis apivorus Migratory 72.7 17.6 Yes 3.3 2 Solitary 

European Turtle Dove Streptopelia turtur Migratory 32.4 4.5 No 3.5 2 Solitary 
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Appendix 6.2. List and description of the climatic variables used to characterize winter 

climatic niches. 

Variable Description 

Mean Temperature Mean temperature for the months between 

November and February 

Minimum Temperature Lowest minimum temperature for the months 

between November and February 

Maximum Temperature Highest maximum temperature for the months 

between November and February 

Temperature Seasonality Coefficient of variation of mean weekly 

temperatures for the months between 

November and February 

Total Precipitation Total precipitation occurred during the months 

between November and February 

Minimum Precipitation Precipitation of the driest month between 

November and February 

Maximum Precipitation Precipitation of the wettest month between 

November and February 

Precipitation Seasonality Coefficient of variation of weekly precipitation 

estimates for the months between November 

and February 
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Appendix 6.3. Axis loadings of climate variables used to define Iberian and African 

niche space.  

Species trait Axis 1 Axis 2 

Average winter temperature 0.06 0.60 

Maximum winter temperature -0.20 0.52 

Minimum winter temperature 0.30 0.47 

Winter temperature seasonality -0.43 -0.10 

Total winter precipitation 0.48 -0.11 

Maximum winter precipitation 0.48 -0.06 

Minimum winter precipitation 0.45 -0.18 

Winter precipitation seasonality 0.15 0.31 

Variance explained 49.9% 32.0% 
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Appendix 6.4. Axis loadings of species traits used to characterize overwintering and 

migratory species. 

Species trait Axis 1 Axis 2 

Winter niche extent 0.68 0.01 

Winter distribution extent 0.62 0.13 

Insectivorous diet 0.33 -0.55 

Social behaviour -0.08 -0.66 

Wing loading 0.06 0.49 

Clutch size 0.23 0.09 

Variance explained 31.8% 29.7% 

 

 


