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Abstract

In this thesis we study wave stability in the context of three theories of thermoelas-

ticity: temperature-rate-dependent thermoelasticity TRDTE which was formulated

by Green and Lindsay [21]; temperature-rate-dependent thermoelasticity with gener-

alized thermoelasticity, which we label TRDTE + GTE (1), formulated by Chan-

drasekharaiah and Keshavan [23]; and an alternative theory of temperature-rate-

dependent thermoelasticity with generalized thermoelasticity, labelled TRDTE +

GTE (2), formulated by Ignaczak [25]. Both anisotropic and isotropic thermoelas-

tic materials are under consideration in this thesis. We are concerned with three

cases: unconstrained; the usual deformation-temperature constraint; and the alter-

native deformation-temperature constraint. We find that in all these cases wave sta-

bility/instability is affected by the occurrence of the relaxation times α0 and α1 in

TRDTE, and α0, α1 and τ in TRDTE + GTE (1) and TRDTE + GTE (2).
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Chapter 1

Introduction

Truesdell and Noll [1] placed the theory of purely mechanical constraints on a firm

theoretical basis by postulating that the stress is constitutively determined only to

within a reaction stress that does no work in any motion satisfying the constraint.

By contrast, there is still disagreement on the general theory of thermomechanical

constraints as a restriction on the allowable values of the deformation, temperature

and temperature gradient. In the thermomechanical case, Green et al. [2] supposed

that the stress, entropy and heat flux led to zero entropy production in any process

satisfying the thermomechanical constraint. Further work to extend this theory has

been undertaken by Gurtin and Podio Guidugli [3]. A similar method was investi-

gated by Andreussi and Podio Guidugli [4], differing only slightly from that of [2, 3],

by making the additional assumption of zero energy production by the constraint,

although this was criticised by Bertram and Haupt [5] as being very restrictive.

Casey and Krishanaswamy [6] developed an alternative type of theory for deformation-

temperature constraints. They obtained expressions for the stress and entropy in the

constrained material by considering a related family of unconstrained thermoelastic

materials, which itself was obtained by extending the domain of definition of the

Helmholtz free energy in a differentiable manner, away from the constraint manifold.

A linearized theory of plane wave propagation in thermoelastic materials was devel-

oped by Chadwick [7, 8], and he established that four wave modes are possible in
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each direction. Scott [9] proved that each of these modes is stable under quite mild

assumptions. We define a stable wave as a wave whose amplitude remains bounded in

the direction of propagation. For an isothermal or isentropic elastic material we recall

that three stable waves may propagate in each direction and that only two stable

waves propagate if a purely mechanical constraint operates , see Chadwick et al. [10].

Thus the presence of a constraint removes one mode of propagation but maintains the

stability of the system. On physical grounds, this result is to be expected. Consider an

initial value problem in an unbounded elastic material. The presence of a constraint

implies a connection amongst the initial data thus reducing by one the number of

the independent pieces of initial data that must be specified. This, in turn, means

that one less mode is required in a Fourier synthesis of the general solution of the

initial value problem in a constrained material. Since the solution of the initial value

problem is expected to be stable this implies all the modes should be stable as well.

Given theses outcomes it is at least plausible, therefore, to expect these features of

mode-suppression and stability-retention to carry over to the case of an elastic heat

conductor that is thermomechanically constrained.

A natural choice of thermomechanical constraint would be one that connects deforma-

tion to temperature. This would appear to be well motivated, as physically materials

as diverse as vulcanized rubbers and water are considered to be incompressible at uni-

form temperature, and theoretically there has been a lot of study in the deformation-

temperature case. For example, Trapp [11] has examined thermomechanical exten-

sions to inextensibility and incompressibility, whilst Amendola [12] has examined the

deformation-temperature constraint more generally. Manacorda [13,14], and indepen-

dently Beevers [15], have used an approach akin to that of Green et al. [2], to consider

the propagation of longitudinal waves in an isotropic thermoelastic material that is

thermomechanically constrained to be incompressible at uniform temperature. They

found, however, that one of the waves is necessarily unstable. More generally, Chad-

wick and Scott [16] confirmed this conclusion for a fully anisotropic material suffering

an arbitrary deformation-temperature constraint, showing that of the four waves that

propagate at least one is unstable. These results lead us to the conclusion that the

deformation-temperature constraint is unsatisfactory, as no modes are suppressed or
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stability maintained when we apply this condition. Scott [17] overcame this problem

by postulating a new kind of constraint, which links the deformation with the entropy

rather than with temperature. Alts [18] also examined the theory of deformation-

temperature constraints but suggested that the undesirable effects of instability may

be circumvented by assuming that the constraint only holds approximately.

Chandrasekharaiah [19] presented a broad review of the literature concerned with

generalized thermoelasticity theories, including a brief account of the theory of heat

conduction with second sound. Müller [20] was the first to introduce the idea of

formulating a thermoelasticity theory with second sound. Second sound in heat con-

duction results from any modification of classical thermoelasticity which renders it

hyperbolic rather than parabolic, so that a diffusive mode is changed into a propa-

gating wave mode; this is the same as hyperbolic heat conduction. By considering

general constitutive relations for the entropy flux and entropy source, and by making

use of a generalized entropy inequality, he developed a precise nonlinear theory of

thermoelasticity, which included temperature rate among the constitutive variables

and consequently accepted second sound.

Green and Lindsay [21] formulated their own theory of thermoelasticity with second

sound which was similar to Müller’s. Their theory was clearer and easier to work

with than Müller’s and is based on an entropy production inequality proposed by

Green and Laws [22]. A noteworthy feature of the Green and Lindsay theory is that

it retains the classical Fourier law if the material has a centre of symmetry at each

point. In the present work we follow Green and Lindsay theory, which we refer to as

temperature-rate-dependent-thermoelasticity theory (TRDTE).

Chandrasekharaiah and Keshavan [23] introduced their own theory by combining the

field equations of classical thermoelasticity (CTE) and the two models of generalized

thermoelasticity. These models are Lord and Shulman theory [24] (GTE) and Green

and Lindsay theory [21] (TRDTE). Their method was formed independently of an al-

ternative way to combine TRDTE and GTE which had been given by Ignaczak [25] ten

years earlier. Ignaczak formulated this theory in order to encourage further research

into this field as there were few exact solutions to the dynamical thermoelasticity

9



equations at the time.

The classical Fourier’s heat conduction law for anisotropic materials is

qi = −kijθ,j. (1.1)

and the symmetry of kij, i.e.

kij = kji, (1.2)

is part of the infrastructure of TRDTE theory. In generalized thermoelasticity the

heat flux vector q(x, t) satisfies the following equation, see [19, (4.1)]

qi + τ q̇i = −kijθ,j, (1.3)

in which qi(x, t) are the components of the heat flux vector q and θ(x, t) is the temper-

ature increment, both of which are functions of particle position x and time t. The

superposed dot denotes the time derivative and ( ),j denotes the spatial derivative

∂( )/∂xj. The quantities kij are the components of the thermal conductivity tensor

k. In this equation the constant τ > 0 is a relaxation time, which has been used in the

system of field equations of temperature-rate-dependent thermoelasticity (TRDTE)

combining the generalized thermoelasticity (GTE) theory of Chandrasakharaiah and

Keshavan [23] with that of Ignaczak [25]. It is clear that when τ = 0, equation (1.3)

reduces to equation (1.1). The theory derived from the hyperbolic heat conduction

equation (1.1) is referred to as Green and Lindsay theory [21]. Straughan [26] has

given an excellent account of many theories involving hyperbolic heat conduction; i.e.

the propagation of heat waves.

The present work compares the results of the three cases (i) unconstrained, (ii) usual

form of deformation-temperature constraint and (iii) alternative form of deformation-

temperature constraint, in the context of previous theories of thermoelasticity in sep-

arate chapters. Analysis for each theory is performed along the following lines. Solu-

tions of the linearized field equation are sought in the form of plane harmonic waves

and the secular equation is found. Low- and high frequency expansions are performed

and stability/instability established. In each chapter we considered anisotropic and

isotropic thermoelastic materials in two different sections. The linearized equations
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for the isotropic case are derived from those given for an anisotropic material [17] by

employing convenient isotropic forms and values for the various material constants

and tensor components that occur.

In Chapter 2 the theory of temperature-rate-dependent thermoelasticity TRDTE is

considered. An unconstrained isotropic thermoelastic material analysis shows that

two stable longitudinal waves may propagate in each direction. Through an isotropic

thermoelastic material, which is constrained by the usual form of the deformation

temperature constraint, one being stable and the other unstable. As frequency varies,

these modes occupy parts of a rectangular hyperbola in the complex plane of squared

wave speeds. We found mostly similar results when the isotropic thermoelastic mate-

rials were constrained by the alternative form of deformation-temperature constraint.

By contrast, when the material is anisotropic and unconstrained we found that four

finite stable waves propagated in each direction. We encountered difficulty when the

material was anisotropic and constrained by both constraints of the usual and alterna-

tive forms of deformation-temperature. This is because we could not determine what

signs various quantities had in the secular equation and so could not determine how

the various eigenvalues interlaced. This forced us to consider a special case which is

incompressibility at uniform temperature together with thermal isotropy.

In Chapters 3 and 4 the theories of combining temperature-rate-dependent thermoe-

lasticity TRDTE and generalized thermoelasticity GTE due to Chandrasekharaiah

and Keshavan (model 1) and Ignaczak (model 2), respectively, are employed. To do

this the field equations are linearized about a uniform equilibrium state and the form

of Fourier’s law (1.3) is employed which leads to hyperbolic field equations, which is

often referred to as the modified or generalized Fourier law, from which the standard

law (1.1) is recovered by putting τ = 0 (where τ is the relaxation time). Derivations

and analysis performed in Chapters 3 and 4 mirror those performed in Chapter 2.

For the unconstrained and isotropic cases in both theories we found that two finite

longitudinal waves propagate in each direction, one being stable and the other un-

stable in the context of TRDTE+GTE (1) and both being unstable in the context

of TRDTE+GTE (2). When the material is anisotropic there are up to four stable

waves in both theories, three waves being finite and their stability/instability depend-
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ing upon the values of the relaxation times τ, α0 and α1, with one mode tending

to infinity and being stable in model 1 and unstable in model 2. For an isotropic

thermoelastic material which is constrained by the usual or the alternative forms of

deformation-temperature constraints in TRDTE+GTE (1) we find that two longi-

tudinal waves may propagate, one being stable and the other unstable, and both

finite. But in TRDTE+GTE (2) two longitudinal waves may propagate which are

both unstable and finite in the high frequency limit. By contrast, when thermoelas-

tic materials are anisotropic we find that four finite waves may propagate with two

of them being unstable in the high frequency case. For the other two waves their

stability/instability depend on the values of the constants.

Throughout each of these chapters derivations and anlysis have been repeated to make

each chapter more self-contained and to improve readability. Many graphical results

are presented in each chapter to illustrate various points of the theory.
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Chapter 2

Temperature-rate-dependent

thermoelasticity (TRDTE)

Introduction

In this chapter we consider temperature-rate-dependent thermoelasticity, which was

formulated by Green and Lindsay [21]. The materials under consideration here are

anisotropic, and isotropic, which are either unconstrained or constrained by the usual,

or alternative, deformation-temperature constraints. The linearized field equations

have been given in each case. The stability and instability of waves is affected by the

presence of α0 and α1.

2.1 Unconstrained anisotropic TRDTE

2.1.1 Basic equations

We consider a thermoelastic body which possesses a spatially uniform, time-independent,

stress-free equilibrium state free of heat flux. For a body with such an equilibrium

state the equations of momentum and energy balance in the absence of body force

and heat supply, linearized about this equilibrium state, are

σij, j = ρ üi , − qi, i = ρT φ̇, (2.1)
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respectively, see [8]; where σij and qi are the components of the Cauchy stress tensor

and the heat flux vector, respectively. The particle displacement vector u(x, t), and

the entropy increment φ(x, t) are functions of particle position x and time t. The

constant equilibrium values of the density and absolute temperature are denoted by ρ

and T , respectively. The notation ( ),j denotes the spatial partial derivative ∂( )/∂xj

and the superposed dot denotes the time partial derivative.

The stress, entropy increment and heat flux system of equations is given by Chan-

drasekharaiah [19, (5.11)–(5.13)]

σij = c̃ijkluk, l − βij
(

1 + α1
∂

∂t

)
θ,

φ = ρ−1βijui, j + T−1c
(

1 + α0
∂

∂t

)
θ − (ρT )−1ciθ, i,

qi = −kijθ, j − ciθ̇,

 (2.2)

in which α1, α0 and ci are new material constants, where α1 ≥ α0 ≥ 0 are relaxation

parameters, the isothermal elasticity tensor components at constant equilibrium are

c̃ijkl, the temperature components of stress are βij, the specific heat at constant de-

formation is c, kij are the uniform equilibrium components of the conductivity tensor,

and θ(x, t) is the temperature excess above the equilibrium temperature T . Green

and Lindsay [21] show that α1 ≥ α0 ≥ 0 is a requirement of the second law of ther-

modynamics and they observe that if the body has a centre of symmetry at each

point then we may take ci ≡ 0; we now make this assumption in common with most

work on TRDTE. In order to deduce the field equations of TRDTE for an anisotropic

material we need to insert (2.1) into (2.2). In detail, firstly by differentiating (2.2)1

with respect to xj we get

σij, j = c̃ijkluk, lj − βij
(

1 + α1
∂

∂t

)
θ, j. (2.2a)

Differentiating (2.2)2 with respect to t we get

φ̇ = ρ−1βij u̇i, j + T−1c
(

1 + α0
∂

∂t

)
θ̇. (2.2b)

Multiplying both sides of (2.2b) by ρT we obtain

ρT φ̇ = Tβiju̇i, j + ρc
(

1 + α0
∂

∂t

)
θ̇, (2.2c)
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and differentiating (2.2)3 with respect to xi gives

qi, i = −kijθ, ij. (2.2d)

Inserting (2.1)1 into (2.2a), and from (2.2c) and (2.2d) with the aid of (2.1)2 we get

the field equations of TRDTE in the form

c̃ijkluk, jl − βij(θ + α1θ̇), j = ρüi,

kijθ, ij − Tβiju̇i, j = ρc(θ̇ + α0θ̈).

 (2.3)

These equations form a complete system of field equations for linear TRDTE for a

homogeneous and anisotropic material and provide four constant-coefficient, linear

partial differential equations for the four unknown functions ui and θ, see [19, (5.17)–

(5.18)]. By setting α1 = α0 = 0, we recover the field equations of linear classical

thermoelasticity (CTE) theory for homogeneous and anisotropic solids, see [30, (2.8a)–

(2.8b)].

2.1.2 The secular equation

We are concerned with solutions of equations (2.3) in the form of plane harmonic

waves

{ui, θ} = {Ui,Θ} exp {iω(sn · x− t)}, (2.4)

where ω is the angular frequency and n is the unit wave normal vector in the direction

of the propagation, both of which are real constants. The amplitudes {Ui,Θ} and

slowness s are in general complex constants. The wave slowness s is the reciprocal

of the (complex) wave speed v: s = 1/v. We can derive the propagation conditions

by inserting (2.4) into (2.3). Firstly, we note the derivatives

uk, lj = −(ωs)2nlnjUke
χ, (θ + α1θ̇), j = iωsnj(1− iωα1)Θe

χ, üi = −ω2Uie
χ,

θ, ij = −(ωs)2ninjΘe
χ, u̇i, j = ω2snjUie

χ, (θ̇ + α0 θ̈) = −iω(1− iωα0)Θe
χ, (2.4a)

where the phase factor χ is defined by

χ = iω(sn · x− t).
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Substitute the derivatives (2.4a) into (2.3) and cancel the exponential factor eχ to

give the linear algebraic equations

(c̃ijklninj − ρ s−2 δik)Uk + βijnjω
−1s−1i(1− iωα1)Θ = 0,

T s−1βijnjUi + (kijninj − iω−1(1− iωα0)cρs
−2)Θ = 0.

 (2.5)

We now introduce the isothermal and isentropic acoustic tensors and scalar thermal

conductivity, respectively,

Q̃ij = c̃ijklninj, Q̂ij = ĉijklninj, k = kijninj. (2.6)

The isentropic elastic modulus is connected to the isothermal elastic modulus by

ĉijkl := c̃ijkl +
T

ρc
βijβkl,

see [8, (14)]. We can rewrite (2.5) with aid of (2.6) as follows

(Q̃ij − ρs−2δik)Uk + βijnjω
−1s−1i(1− iωα1)Θ = 0,

T s−1βijnjUi + (k − iω−1(1− iωαo)cρs−2)Θ = 0.

 (2.7)

Rewrite this equation in matrix form to get
Q̃11 − ρs−2 Q̃12 Q̃13 i(1− iωα1)ω

−1s−1β1jnj

Q̃21 Q̃22 − ρs−2 Q̃23 i(1− iωα1)ω
−1s−1β2jnj

Q̃31 Q̃32 Q̃33 − ρs−2 i(1− iωα1)ω
−1s−1β3jnj

Ts−1β1jnj Ts−1β2jnj Ts−1β3jnj k − iω−1(1− iωαo)cρs−2

 ·

U1

U2

U3

Θ

 = 0.

These equations have non-zero solutions if and only if the determinant vanishes:∣∣∣∣∣∣∣∣∣∣∣

Q̃11 − ρs−2 Q̃12 Q̃13 i(1− iωα1)ω
−1s−1β1jnj

Q̃21 Q̃22 − ρs−2 Q̃23 i(1− iωα1)ω
−1s−1β2jnj

Q̃31 Q̃32 Q̃33 − ρs−2 i(1− iωα1)ω
−1s−1β3jnj

Ts−1β1jnj Ts−1β2jnj Ts−1β3jnj k − iω−1(1− iωαo)cρs−2

∣∣∣∣∣∣∣∣∣∣∣
= 0. (2.8)

This determinant may be written in the following form giving a version of the secular

equation ∣∣∣∣∣∣Q̃− w1 ᾱb

βbT γ1

∣∣∣∣∣∣ = 0, (2.9)
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where

w = ρs−2, bi = βijnj, ᾱ = i(1−iα1ω)ω−1s−1, β = Ts−1, and γ1 = k−iω−1(1−iωα0)cw.

(2.10)

We can rewrite (2.9) as

D ≡

∣∣∣∣∣∣Q̃− w1 ᾱb + 0

βbT −δ + (γ1 + δ)

∣∣∣∣∣∣ = 0, (2.11)

in which, so far, δ is an arbitrary quantity. Using properties of determinants to expand

by the fourth column we have

D ≡

∣∣∣∣∣∣Q̃− w1 ᾱb

βbT −δ

∣∣∣∣∣∣+

∣∣∣∣∣∣Q̃− w1 0

βbT γ1 + δ

∣∣∣∣∣∣ .
The first determinant written in full is

D1 =

∣∣∣∣∣∣∣∣∣∣∣

Q̃11 − w Q̃12 Q̃13 ᾱb1

Q̃21 Q̃22 − w Q̃23 ᾱb2

Q̃31 Q̃32 Q̃33 − w ᾱb3

βb1 βb2 βb3 −δ

∣∣∣∣∣∣∣∣∣∣∣
.

To simplify this determinant, remove ᾱb from the fourth column by taking

row 1−(
ᾱb1
−δ

) row 4,

row 2−(
ᾱb2
−δ

) row 4,

row 3−(
ᾱb3
−δ

) row 4.

We obtain

D1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣

(Q̃11 − w)− (
ᾱb1
−δ

)βb1 Q̃12 − (
ᾱb1
−δ

)βb2 Q̃13 − (
ᾱb1
−δ

)βb3 0

Q̃21 − (
ᾱb2
−δ

)βb1 (Q̃22 − w)− (
ᾱb2
−δ

)βb2 Q̃23 − (
ᾱb2
−δ

)βb3 0

Q̃31 − (
ᾱb3
−δ

)βb1 Q̃32 − (
ᾱb3
−δ

)βb2 (Q̃33 − w)− (
ᾱb3
−δ

)βb3 0

βb1 βb2 βb3 −δ

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Expanding D1 by the fourth column leads to

D1 = −δ det
{(

Q̃− w1
)

+
ᾱβ

δ
b⊗ b

}
. (2.12)

17



and we may determine a relationship between Q̃ and Q̂ from, see [27, (2.10)],

Q̂ = Q̃ +
T

ρc
b⊗ b. (2.13)

In order to force D1 to be defined in terms of Q̂ in equation (2.12) we compare with

equation (2.13) to obtain
T

ρc
=
ᾱβ

δ
, (2.14)

which fixes the value of δ. Substituting (2.10)3,4 into (2.14) we get

δ = i(1− iωα1)ω
−1cw. (2.15)

Thus, the first determinant is given by

D1 = −i(1− iωα1)ω
−1cw det{Q̂− w1}. (2.16)

The second determinant of (2.11) is

D2 =

∣∣∣∣∣∣∣∣∣∣∣

(Q̃11 − w) Q̃12 Q̃13 0

Q̃21 (Q̃22 − w) Q̃23 0

Q̃31 Q̃32 (Q̃33 − w) 0

βb1 βb2 βb3 γ1 + δ

∣∣∣∣∣∣∣∣∣∣∣
= (γ1 + δ) det{Q̃− w1}. (2.17)

So, after inserting (2.10)5 and (2.15) into (2.17), the second determinant may be

written as

D2 = [k − iω−1(1− iωα0)cw + i(1− iωα1)ω
−1cw] det{Q̃− w1}. (2.18)

Therefore, the determinant D = D1 +D2 becomes

D = −i(1− iωα1)ω
−1wc det{Q̂− w1}

+
(
k − iω−1(1− iωα0)cw + i(1− iωα1)ω

−1wc
)

det{Q̃− w1}. (2.19)

Dividing D by (−i(1− iωα1)ω
−1c), the secular equation (2.9) becomes

w det
{
Q̂− w1

}
+

iωc−1

(1− iωα1)

(
k − iω−1(1− iωα0)cw + i(1− iωα1)ω

−1cw
)

det
{
Q̃− w1

}
= 0.

(2.20)
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On simplifying this equation we get

w det
{
Q̂− w1

}
+

[
iω(α1 − α0)w + iωc−1k

1− iωα1

]
det
{
Q̃− w1

}
= 0. (2.21)

This is the secular equation for unconstrained anisotropic TRDTE and has not pre-

viously appeared in the literature.

Putting α1 = α0 = 0 we recover the secular equation of unconstrained anisotropic

material in classical thermoelasticity, see [30, (2.17)].

In terms of γ, a constant with the physical dimensions of stress, introduced in order

to non-dimensionalize the equations, we define the frequency ω∗ = γc/k. This leads

to the following non-dimensional forms for the frequency ω, relaxation times α0 and

α1, squared wave speed w, and the isentropic and isothermal acoustic tensors Q̂ and

Q̃, respectively:

ω′ = ω/ω∗, α′0 = α0ω
∗, α′1 = α1ω

∗, w′ = wγ−1, Q̂ ′ = Q̂γ−1, Q̃ ′ = Q̃γ−1. (2.22)

By inserting these non-dimensional quantities (2.22) into (2.21) we obtain the dimen-

sionless secular equation

w det
{
w1− Q̂

}
+

[
iω{1 + w(α1 − α0)}

1− iωα1

]
det
{
w1− Q̃

}
= 0, (2.23)

where we have dropped the dashes for convenience. Equation (2.23) is a quartic in the

squared wave speed w with coefficients depending on the frequency ω. The roots w(ω)

of (2.23) represent the possible modes of wave propagation which form four branches

in the complex w-plane as is shown later in the graphical results. For a wave mode

to be linearly stable requires the condition of stability for 0 ≤ ω <∞, which is

Im w(ω) ≤ 0, (2.24)

see [9, (18)]. So for positive ω, stable branches w(ω) are those which lie in the lower half

of the complex w-plane. Each branch of the secular equation is examined in detail,

with low and high frequency expansions being performed, and stability/instability

proved for the entire frequency range.
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2.1.3 Stability considerations

We recall that Q̂ and Q̃ are the isentropic and isothermal acoustic tensors, respec-

tively. The quantities q̂i, i = 1, 2, 3, denote the eigenvalues of Q̂, with q̃i, i = 1, 2, 3,

denoting the eigenvalues of Q̃. The interlacing property

0 < q̃1 ≤ q̂1 ≤ q̃2 ≤ q̂2 ≤ q̃3 ≤ q̂3, (2.25)

was demonstrated in [9]. The inequality q̃1 > 0 follows from the positive definiteness of

Q̃, see [9]. Now we can rewrite the secular equation (2.21) in terms of the eigenvalues,

q̂i and q̃i, i = 1, 2, 3 as follows

w(w−q̂1)(w−q̂2)(w−q̂3)+
(
iω{1 + w(α1 − α0)}

1− iωα1

)
(w−q̃1)(w−q̃2)(w−q̃3) = 0. (2.26)

The secular equation (2.26) can also be written as

F̂ (w) +

(
iω{1 + w(α1 − α0)}

1− iωα1

)
G̃(w) = 0. (2.27)

where

F̂ (w) = w
3∏
i=1

(w − q̂i), G̃(w) =
3∏
i=1

(w − q̃i). (2.28)

Low frequency expansions

When ω = 0, the roots of the secular equation (2.27) are the zeros of F̂ (w), namely,

w = q̂i, i = 0, 1, 2, 3, defining q̂0 ≡ 0.

Taylor expansions of the roots of the secular equation take the form

wi(ω) = q̂i +
∞∑
i=1

d(i)n (−iω)n, i = 0, 1, 2, 3. (2.29)

We can identify the first coefficient d
(i)
1 , i = 0, 1, 2, 3, by substituting (2.29) into (2.27),

to get

d
(i)
1 = {1 + q̂i(α1 − α0)}

G̃(q̂i)

F̂ ′(q̂i)
, i = 0, 1, 2, 3. (2.30)

When i = 1,

d
(1)
1 = {1 + q̂1(α1 − α0)}

(q̂1 − q̃1)(q̂1 − q̃2)(q̂1 − q̃3)
q̂1(q̂1 − q̂2)(q̂1 − q̂3)

> 0. (2.31)
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Thus,

w1 = q̂1 − iω{1 + q̂1(α1 − α0)}
G̃(q̂1)

F̂ ′(q̂1)
+O(ω2). (2.32)

Similarly, when i = 2, 3, we get

w2 = q̂2 − iω{1 + q̂2(α1 − α0)}
G̃(q̂2)

F̂ ′(q̂2)
+O(ω2),

w3 = q̂1 − iω{1 + q̂3(α1 − α0)}
G̃(q̂3)

F̂ ′(q̂3)
+O(ω2).

When i = 0,

d
(0)
1 =

q̃1q̃2q̃3
q̂1q̂2q̂3

> 0, (2.33)

so that,

w0 = −iω G̃(0)

F̂ ′(0)
+O(ω2). (2.34)

It is clear that the condition of stability (2.24), namely, Im wi < 0, i = 0, 1, 2, 3, is

confirmed for each branch. Therefore, there are four stable waves in the low frequency

limit.

High frequency expansions

When ω →∞, the roots of the secular equation (2.27) are given by the zeros of H(w)

where

H(w) := w(w−q̂1)(w−q̂2)(w−q̂3)−
1

α1

{1+w(α1−α0)}(w−q̃1)(w−q̃2)(w−q̃3). (2.35)

It is clear that H(w) is a quartic in w, so there are four zeros. The zeros of H(w)

are denoted by q̄1, q̄2, q̄3, q̄4. In order to find these zeros we need to examine the sign

changes of H(w). By using the inequalities (2.25) and the relationship (2.35) we find
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that

H(0) = −α−11 (−q̃1)(−q̃2)(−q̃3) > 0,

H(q̃1) = q̃1(q̃1 − q̂1)(q̃1 − q̂2)(q̃1 − q̂3) < 0,

H(q̂1) = −α−11 {1 + q̂1(α1 − α0)}(q̂1 − q̃1)(q̂1 − q̃2)(q̂1 − q̃3) < 0,

H(q̃2) = q̃2(q̃2 − q̂1)(q̃2 − q̂2)(q̃2 − q̂3) > 0,

H(q̂2) = −α−11 {1 + q̂2(α1 − α0)}(q̂2 − q̃1)(q̂2 − q̃2)(q̂2 − q̃3) > 0,

H(q̃3) = q̃3(q̃3 − q̂1)(q̃3 − q̂2)(q̃3 − q̂3) < 0,

H(q̂3) = −α−11 {1 + q̂3(α1 − α0)}(q̂3 − q̃1)(q̂3 − q̃2)(q̂3 − q̃3) < 0,

H(∞) =∞ > 0.

(2.36)

The inequalities (2.36) may be used to determine the positions of the zeros of H(w),

so that q̄1 is between 0 and q̃1, q̄2 is between q̂1 and q̃2, q̄3 is between q̂2 and q̃3 and q̄4

is between q̂3 and ∞. Therefore, they interlace according to

0 < q̄1 ≤ q̃1 ≤ q̂1 ≤ q̄2 ≤ q̃2 ≤ q̂2 ≤ q̄3 ≤ q̃3 ≤ q̂3 ≤ q̄4. (2.37)

Using (2.28) we rewrite the definition (2.35) as

F̂ (w) = H(w) +
1

α1

{1 + w(α1 − α0)}G̃(w). (2.38)

The secular equation (2.27) can be written as

F̂ (w) =
( −iω

1− iωα1

){
1 + w(α1 − α0)

}
G̃(w). (2.39)

By subtracting (2.38) from (2.39) in order to eliminate F̂ (w), we obtain the secular

equation in the form

H(w) +
( 1

α1

+
iω

1− iωα1

){
1 + w(α1 − α0)

}
G̃(w) = 0. (2.40)

Define a quartic polynomial

h̄(w) = (w − q̄1)(w − q̄2)(w − q̄3)(w − q̄4),

which must be a scalar multiple of H(w) because both have the same four zeros. By

comparing coefficients of w4 we see that

H(w) :=
α0

α1

h̄(w). (2.41)
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Inserting (2.41) into (2.40) we obtain the secular equation in the form

α0(1− iωα1)h̄(w) + {1 + w(α1 − α0)}G̃(w) = 0. (2.42)

Taylor expansions of the roots of the secular equation in the high frequency limit take

the form

wi(ω) = q̄i +
∞∑
i=1

d(i)n (iωα1)
(−n), i = 1, 2, 3, 4. (2.43)

By substituting (2.43) into (2.42), we get the coefficients of (iωα1)
−1:

d
(i)
1 = α−10 {1 + q̄i(α1 − α0)}G̃(q̄i)/h̄

′(q̄i), i = 0, 1, 2, 3.

When i = 1, for example,

d
(1)
1 = α−10 {1 + q̄1(α1 − α0)}

(q̄1 − q̃1)(q̄1 − q̃2)(q̄1 − q̃3)
(q̄1 − q̄2)(q̄1 − q̄3)(q̄1 − q̄4)

> 0. (2.44)

Positivity of d
(1)
1 is guaranteed by the interlacing properties (2.37). Thus,

w1(ω) = q̄1 − i(α1ω)−1α−10 {1 + q̄1(α1 − α0)}G̃(q̄1)/h̄
′(q̄1) +O(ω−2). (2.45)

Similarly, when i = 2, 3, 4, we obtain

w2(ω) = q̄2 − i(α1ω)−1α−10 {1 + q̄2(α1 − α0)}G̃(q̄2)/h̄
′(q̄2) +O(ω−2),

w3(ω) = q̄3 − i(α1ω)−1α−10 {1 + q̄3(α1 − α0)}G̃(q̄3)/h̄
′(q̄3) +O(ω−2),

w4(ω) = q̄4 − i(α1ω)−1α−10 {1 + q̄4(α1 − α0)}G̃(q̄4)/h̄
′(q̄4) +O(ω−2).

Since d
(i)
1 > 0, i = 1, 2, 3, 4, the stability condition (2.24) is satisfied, so that there

are four stable waves in the high frequency limit.

Stability for all frequencies

We have shown that all four branches are stable in the low and high frequency limits.

In order to prove the stability of each one throughout the entire frequency range

0 < ω < ∞, we must prove that a branch may cut the real axis only at the low and

high frequency limits. If this were not true we would be able to solve the secular

equation (2.27) for real w and some ω in the range 0 < ω <∞. Rearrange (2.27) into

the form
iω

1− iωα1

=
−F̂ (w)

{1 + w(α1 − α0)}G̃(w)
. (2.46)
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For real w the right-hand side of (2.46) is real and so cannot be equal to the (neces-

sarily) complex left-hand side for any ω in the range 0 < ω <∞. Thus, all branches

are stable for all frequencies 0 ≤ ω <∞.

Numerical results

Figure 2.1 shows an example for different values of α1 and α0 such that α1 ≥ α0 ≥ 0,

demonstrating the effect of α1 and α0 increasing. In each sub-figure we select the same

values of q̃i, i = 1, 2, 3, and q̂i, i = 1, 2, 3. The low frequency limits are marked with a

× and the high frequency limits with a ◦ in the first sub-figure, which corresponds to

classical thermoelasticity, and with • in the others which correspond to temperature-

rate-dependent-thermoelasticity (TRDTE). It is clear that all branches lie in the lower

complex w-plane and so satisfy the stability condition (2.24).

As we see in Figure 2.1, part (a) represents classical thermoelasticity (CTE) and all

branches are stable but three of them are finite and one an infinite branch of w(ω)

by which we mean a branch such that w → ∞ as ω → ∞. However, the other

parts (b)–(f) for temperature-rate-dependent-thermoelasticity (TRDTE), show that

the existence of relaxation times α0 and α1 maintains stability and makes all branches

finite.

In Figure 2.2, in which α0 = 0 and α1 > 0, we see that the four branches are always

stable, but three of them are finite and one is infinite, i.e. w →∞, as ω →∞. This is

because for α0 = 0, H(w) defined by (2.35) becomes cubic in w, rather than quartic,

so the the fourth root h̄4 changes character from a finite positive real value to a large

negative imaginary value.

Putting α1 = α0 > 0 in Figure 2.3, we get four stable finite branches for all frequencies.

The low frequency branch starting from the origin and the high frequency branch

ending at infinity in the w-plane are named diffusive modes. On the other hand,

other branches that begin and end close to the real axis, are named elastic modes, see

Chadwick [7].
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Figure 2.1: The four branches of the secular equation for unconstrained anisotropic

thermelastic material for temperature-rate-dependent thermoelasticity theory. For

each part, q̃1 = 0.75, q̃2 = 1.75, q̃3 = 2.75, q̂1 = 1, q̂2 = 2, q̂3 = 3.
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Figure 2.2: The four branches of the secular equation for unconstrained anisotropic

thermelastic material for temperature-rate-dependent thermoelasticity theory. For

each part, q̃1 = 0.75, q̃2 = 1.75, q̃3 = 2.75, q̂1 = 1, q̂2 = 2, q̂3 = 3.
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Figure 2.3: The four branches of the secular equation for unconstrained anisotropic

thermelastic material for temperature-rate-dependent thermoelasticity theory. For

each part, q̃1 = 0.75, q̃2 = 1.75, q̃3 = 2.75, q̂1 = 1, q̂2 = 2, q̂3 = 3.
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2.2 Unconstrained isotropic TRDTE

2.2.1 The field equations

The system of field equations of linear TRDTE for a homogeneous and anisotropic

materials is (2.3)

c̃ijkluk,jl − βij(θ + α1θ̇), j = ρüi,

kijθ,ij − Tβiju̇i,j = ρc(θ̇ + α0θ̈).

 (2.47)

We have defined all symbols earlier in Section 2.1.1. For an isotropic thermoelastic

body the components c̃ijkl, βij and kij take the simple forms

c̃ijkl = λ̃ δijδkl + µ̃ (δikδjl + δilδjk), βij = βδij, kij = kδij, (2.48)

in which λ̃ and µ̃ are the isothermal Lamé constants and δij denote the components

of the unit tensor, β is the scalar temperature coefficient of stress and k is the scalar

thermal conductivity. Inserting (2.48) into (2.47) gives the field equations for an

isotropic material:

(λ̃δijδkl + µ̃(δikδjl + δilδjk))uk, lj − βδij(θ + α1θ̇), j = ρüi,

kδijθ, ij − Tβδiju̇i, j = ρc(θ̇ + α0θ̈).

 (2.49)

Equations (2.49) may written as

(λ̃+ µ̃)uj, ij + µ̃ui, jj − β(θ + α1θ̇), i = ρüi,

kθ, ii − Tβu̇j, j = ρc(θ̇ + α0θ̈).

 (2.50)

2.2.2 The secular equation

Now we seek solutions of (2.50) in the form of harmonic plane waves

{ui, θ} = {Ui,Θ} exp {iω(sn · x− t)}, (2.51)

where ω is the angular frequency and n is the unit wave normal vector to the direction

of the propagation, both of which are real constants. The amplitudes {Ui,Θ} and
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slowness s are in general complex constants. Inserting (2.51) into (2.50) leads to the

propagation conditions. Firstly, the derivatives are

uj, ij = −(ωs)2ninjUje
χ, (θ + α1θ̇), i = iωsni(1− iωα1)Θe

χ, üi = −ω2Uie
χ,

θ, ii = −(ωs)2niniΘe
χ, u̇j, j = ω2snjUje

χ, (θ̇ + α0 θ̈) = −iω(1− iωα0)Θe
χ,

where

χ = iω(sn · x− t).

Now substitute these derivatives into (2.50) and cancel the exponential factor eχ to

get linear algebraic equations. Firstly, from (2.50)1 we find that

(λ̃+ µ̃)(−(ωs)2)ninjUj + µ̃(−(ωs)2njnjUi)− β(iωsni(1− iωα1)Θ) = ρ(−ω2)Ui.

Dividing this equation by (−(ωs)2) we get

[(λ̃+ µ̃)ninj + (µ̃− ρs−2)δij]Uj + iβ(ωs)−1ni(1− iωα1)Θ = 0. (2.52)

From (2.50)2, after inserting the derivatives, we find that

k(−(ωs)2niniΘ)− Tβω2snjUj = ρc(−iω(1− iωα0))Θ.

Dividing this equation by (−ω) we obtain

TβωsnjUj + (ωs2k − iρc(1− iωα0))Θ = 0. (2.53)

Eliminate Θ between equations (2.52) and (2.53) by writing equation (2.53) as

Θ =
−TβωsnjUj

ωs2k − iρc(1− iωα0)
. (2.54)

Inserting (2.54) into (2.52) we get

{
(λ̃+ µ̃)ninj + (µ̃− w)δij

}
Uj+iβ(ωs)−1ni(1−iωα1)

[
−TβωsnjUj

ωs2k − iρc(1− iωα0)

]
= 0,

(2.55)

where

w = ρs−2.
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On rearranging equation (2.55), we obtain{
(µ̃− w)δij + (λ̃+ µ̃)ninj +

wβ2T (1− iωα1)ninj
ρc(w(1− iωα0) + iω(k/c))

}
Uj = 0. (2.56)

So that there exist non-zero amplitudes Uj satisfying (2.52) and (2.53) if and only if

det

{
(µ̃− w)1 + (λ̃+ µ̃)n⊗ n +

wβ2T (1− iωα1)n⊗ n

ρc(w(1− iωα0) + iω(k/c))

}
= 0. (2.56a)

Non-dimensionalizing (2.56a), by inserting the following dimensionless quantities

w′ = wγ−1, λ̃′ = λ̃γ−1, µ̃′ = µ̃γ−1, ω′ =
ω

ω∗
, ε =

Tβ2

ρcγ
, α′1 = α1ω

∗, α′0 = α0ω
∗,

(2.57)

gives the following secular equation

det
{

(λ̃′γ+µ̃′γ)n⊗n+(µ̃′γ−w′γ)1+
Tw′γ(ερcγT−1)(1− iω′α′1)

ρc(w′γ(1− iω′α′0) + iω′ω∗(k/c))
n⊗n

}
= 0.

(2.58)

Simplifying this equation gives

det
{

(µ̃− w)1 + (λ̃+ µ̃+ ε
w(1− iωα1)

w(1− iωα0) + iω
)n⊗ n

}
= 0, (2.59)

where we have dropped the dashes for convenience. In direct notation 1 denotes the

unit tensor, n the wave normal vector and ⊗ the dyadic product of vectors. We quote

the standard identity

det(A + αa⊗ a) = det A + αa ·Aadja, (2.60)

in which α, a and A are arbitrary and adj denotes the adjugate. Equation (2.60) is

derived from the following property, see [30, p. 48],

det(ᾱA + β̄B) = ᾱ3 det A + ᾱ2β tr(AadjB) + ᾱβ̄2 tr(ABadj) + β̄3 det B. (2.61)

Putting ᾱ = 1, β̄ = α, B = a⊗ a, so that det B = 0 and Badj = 0, into this equation

gives

det(A + αa⊗ a) = det A + αtr(Aadja⊗ a)

= det A + αa ·Aadja.

30



Applying (2.60) to (2.59), we get the secular equation in the form

det
{

(µ̃− w)1
}

+
(
λ̃+ µ̃+ ε

w(1− iωα1)

w(1− iωα0) + iω

)
n ·
{

(µ̃− w)1
}adj · n = 0. (2.62)

In this equation we can write

det{(µ̃− w)1} = (µ̃− w)3, (2.63)

and

n · {(µ̃− w)1}adjn = (µ̃− w)2. (2.64)

So we can rewrite (2.62) in the following form:

(µ̃− w)3 +
[
(λ̃+ µ̃) + ε

w(1− iωα1)

w(1− iωα0) + iω

]
(µ̃− w)2 = 0. (2.65)

Factorising (2.65) we get

(µ̃− w)2
[
(µ̃− w) + (λ̃+ µ̃) + ε

w(1− iωα1)

w(1− iωα0) + iω

]
= 0. (2.66)

After expanding and rearranging the part within square brackets of equation (2.66)

we obtain

(µ̃−w)2
{
w2(1− iωα0)−w

[
(1− iωα0)(λ̃+ 2µ̃) + ε(1− iωα1)− iω

]
− iω(λ̃+ 2µ̃

)
} = 0.

(2.67)

This is the secular equation for unconstrained isotropic TRDTE and has not previ-

ously appeared in the literature.

The repeated root w = µ̃ of (2.67) corresponds to two transverse elastic waves that

are not affected by thermal effects and are neither dispersive nor attenuated. We need

not discuss these any further. The remaining quadratic factor of (2.67) is

w2(1− iωα0)− w[(1− iωα0)(λ̃+ 2µ̃) + ε(1− iωα1)− iω]− iω(λ̃+ 2µ̃) = 0. (2.68)

This equation gives two roots that correspond to two attenuating and dispersive lon-

gitudinal waves. They can be scaled by using

γ = 2µ̃+ λ̃.
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But we already know that

λ̃′ = λ̃/γ, µ̃′ = µ̃/γ.

So from the last two relations we find that

2µ̃+ λ̃ = 1. (2.69)

Substituting (2.69) into (2.68) we get the final form of the secular equation for un-

constrained isotropic TRDTE:

w2(1− iωα0)− w
[
(1− iωα0) + ε(1− iωα1)− iω

]
− iω = 0. (2.70)

The roots of the quadratic equation (2.70) are given by

w1,2 =
1

2(1− iωα0)

[
z1 ± [z1

2 + 4iω(1− iωα0)]
1
2

]
, (2.71)

where

z1 = (1− iωα0) + ε(1− iωα1)− iω. (2.72)

If we put α0 = α1 = 0, we recover the case of the classical thermoelasticity of an

unconstrained isotropic material, see [29, (2.15)].

The roots (2.71) can be plotted for varying values of ε, the measure of the degree of

thermoelastic coupling, as shown in Figures 2.4 and 2.5. In the uncoupled case, when

ε = 0, the roots of (2.70) reduce to

w1 = 1, w2 =
−iω

(1− iωα0)
, (2.73)

where w1 represents an unattenuated, non-dispersive longitudinal wave (a purely elas-

tic mode) and w2 represents a diffusive mode. In all the plots of Figures 2.4 and 2.5,

Im w ≤ 0, which is the condition for linear stability. So in the unconstrained isotropic

TRDTE theory case both longitudinal modes are stable.

For ε > 0, we investigate the nature of the modes at high and low frequencies.

Low frequency expansions

From (2.71) with small ω, we find that

w1 =
1

2(1− iωα0)

[
z1 + [z1

2 + 4iω(1− iωα0)]
1
2

]
, (2.74)
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where

z21 =
[
(1− iωα0) + ε(1− iωα1)

]2 − 2iω
[
(1− iωα0) + ε(1− iωα1)

]
− ω2.

After expanding (2.74) and rearranging we get

w1 =
1

2(1− iωα0)

{[
(1− iωα0) + ε(1− iωα1)− iω

]
+[(

(1− iωα0) + ε(1− iωα1)
)2

+ 2iω
(
(1− iωα0)− ε(1− iωα1)

)
− ω2

] 1
2

}
.

Now factorising the terms within the second square brackets by(
(1− iωα0) + ε(1− iωα1)

)2
we obtain,

w1 =
1

2(1− iωα0)

{[
(1− iωα0) + ε(1− iωα1)− iω

]
+
[
(1− iωα0) + ε(1− iωα1)

]
[
1 +

2iω((1− iωα0)− ε(1− iωα1))

((1− iωα0) + ε(1− iωα1))2

]1/2
+O(ω2)

}
.

Using the binomial expansion we get

w1 =
1

2(1− iωα0)

{[
(1− iωα0) + ε(1− iωα1)− iω

]
+
[
(1− iωα0) + ε(1− iωα1)

]
[
1 +

iω((1− iωα0)− ε(1− iωα1))

((1− iωα0) + ε(1− iωα1))2

]
+O(ω2)

}
.

Expanding the equation we obtain

w1 =
1

2(1− iωα0)

{
2
[
(1−iωα0)+ε(1−iωα1)

]
−iω

[
1−(1− iωα0)− ε(1− iωα1)

(1− iωα0) + ε(1− iωα1)

]}
+O(ω2).

Rearranging the last equation to get

w1 = 1 + ε
(1− iωα1

1− iωα0

)
−
[ iωε(1− iωα1)

(1− iωα0)2 + ε(1− iωα1)(1− iωα0)

]
+O(ω2),

which may be expanded further for small ω to obtain

w1 = 1 + ε− iωε
{
α1 − α0 +

1

1 + ε

}
+O(ω2). (2.75)

Similarly, we can get w2 to be

w2 =
1

2(1− iωα0)

[
z1 − [z1

2 + 4iω(1− iωα0)]
1
2

]
, (2.76)
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and expanding for small ω gives

w2 =
−iω
1 + ε

+O(ω2). (2.77)

Equation (2.75) is an elastic mode and equation (2.77) a diffusive mode (marked ×
on Figures 2.4 and 2.5 for ω = 0).

High frequency expansions

The roots of the secular equation (2.70) in the high frequency limit, as ω →∞, may

obtained by dividing (2.70) by iω:

w2
( 1

iω
− α0

)
− w

[ 1

iω
− α0 + ε(

1

iω
− α1)− 1

]
− 1 = 0.

Now let iω →∞, i.e.
1

iω
→ 0. The above secular equation becomes, for large ω,

α0w
2 −

[
1 + α0 + α1ε

]
w + 1 = 0.

Define

H(w) ≡ α0w
2 −

[
1 + α0 + α1ε

]
w + 1.

Now we need to determine the position of the zeros of H(w)

H(0) = 1 > 0,

H(1) = −α1ε < 0,

H(1 + ε) = −ε− (α1 − α0)ε− (α1 − α0)ε
2 < 0,

H(∞) =∞ > 0.

(2.77a)

So we have in the high frequency limit, real roots h̄1 and h̄2 of H(w) = 0 satisfying

0 < h̄1 < 1 < 1 + ε < h̄2. (2.77b)

They satisfy the following quadratic polynomial

h̄(w) = (w − h̄1)(w − h̄2),

and we must have

H(w) = α0h̄(w).
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Collect terms in iω in (2.70) together:

w2 − w(1 + ε)− iω
[
α0w

2 − (1 + α0 + α1ε)w + 1
]

= 0.

The above secular equation may be written as

w2 − w(1 + ε)− iωα0(w − h̄1)(w − h̄2) = 0. (2.77c)

For ω sufficiently large the roots of (2.77c) may written as

w1 = h̄1 +
A

iω
and w2 = h̄2 +

B

iω
. (2.78)

Substituting (2.78) into (2.77c) gives

A =
h̄1
(
h̄1 − (1 + ε)

)
α0

(
h̄1 − h̄2

) > 0 and B =
h̄2
(
h̄2 − (1 + ε)

)
α0

(
h̄2 − h̄1

) > 0, (2.79)

the fact that A and B are positive coming from the inequalities (2.77b). It follows

that both branches are stable in the high frequency limit.

Both branches are stable at both low and high frequencies and so an argument sim-

ilar to the one involving equation (2.46) shows that both branches are stable for all

frequencies.

Numerical results

In each of Figures 2.4 and 2.5 there is a × at zero and 1+ε, marking the low frequency

limits and the high frequency limits are marked with a ◦.

In Figure 2.4 there are two finite branches. For low frequencies the branch beginning

at the origin is diffusive for all values of ε and both branches are elastic for high

frequencies. It can be seen that the two branches intersect for ε = 0.63, approximately.

In Figure 2.5 we see one finite branch and one infinite branch. This is because α0 = 0

which leads to H(w) being linear in w rather than quadratic so that the second high

frequency root becomes infinite. The situation is similar to that in Figure 2.2 for the

anisotropic case. We see that for ε = 0 the left hand branch is diffusive for both low

and high frequencies and the right hand branch is elastic for all frequencies; for ε > 0

the left hand branch is diffusive for low frequencies but elastic for high frequencies and

the right hand branch is elastic for low frequencies but diffusive for high frequencies.

The cross over point is at ε = 1 in part (d). This is described by Chadwick [7].
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Figure 2.4: The longitudinal squared wave speeds of unconstrained isotropic TRDTE

theory. For each part, α0 = 0.1, α1 = 0.2.
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Figure 2.5: The longitudinal squared wave speeds of unconstrained isotropic classical

thermoelasticity theory. For each part, α0 = 0, α1 = 0.
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2.3 Constrained anisotropic TRDTE

2.3.1 Usual deformation-temperature constraints

We suppose that an elastic heat conductor B possesses an equilibrium configuration

Be and is subject to a thermomechanical constraint connecting the deformation and

temperature of the form

f(F, T + θ) = 0, with f(Fe, T ) = 0, (2.80)

where f is a dimensionless scalar function and Fe and θ denote the deformation

gradient and the temperature increment in Be with uniform absolute temperature T ,

respectively. The following equation is obtained by linearising the constraint (2.80),

see [16]

Ñqpup,q − αθ = 0, (2.81)

where Ñ is a dimensionless symmetric constraint tensor.

Basic equations

We might assume that the stress, entropy increment and heat flux, are given by

analogy with the constrained classical case; see [30, (3.4)],

σij = c̃ijkl uk, l − βij
(

1 + α1
∂

∂t

)
θ + Ñij η̃,

φ = ρ−1βij ui, j + T−1c
(

1 + α0
∂

∂t

)
θ + ρ−1αη̃,

qi = −kij θ, j.

 (2.82)

Most of the quantities appearing in (2.82) have been defined earlier; the new func-

tion η̃(x, t) is such that η̃Ñ is a reaction stress and ρ−1αη̃ is a reaction entropy, see

Chadwick and Scott [16]. We shall now derive the secular equation. From (2.82)1 and

(2.1)1 we see that

c̃ijkluk, lj − βij(θ,j + α1θ̇,j) + Ñij η̃,j = ρüi. (2.83)

From (2.82)3 and (2.1)2 we obtain

kijθ, ij = ρT φ̇. (2.84)
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Differentiating (2.82)2 with respect to time after multiplying by ρT , and then inserting

into (2.84), gives

Tβqpu̇p,q + ρc(θ̇ + α0θ̈) + Tα ˙̃η − kijθ,ij = 0. (2.85)

The secular equation

Now we seek to find the solutions of (2.81), (2.83) and (2.85) in the form of plane

harmonic waves

{ui, θ, η̃} = {Ui,Θ, H̃} exp {iω(sn · x− t)}, (2.86)

similarly to (2.4) in the unconstrained case. We insert (2.86) into (2.83), (2.84) and

(2.85). We found all the derivatives uk,lj, θ,j, üi, θ,ij and u̇i,j previously and now just

observe that

θ̇,j = ω2snjΘe
χ, η̃,j = (iωsnj)H̃e

χ, θ̇ = −iωΘeχ,

θ̈ = −ω2Θeχ, ˙̃η = −iωH̃eχ, up,q = iωsnqUpe
χ,

where the phase factor is given once more by

χ = iω(sn · x− t).

Substituting all these derivatives into (2.83),(2.84) and (2.85). Firstly, (2.83) becomes

c̃ijkl(−ω2s2nlnj)Uk − βij(iωsnj + α1ω
2snj)Θ + Ñij(iωsnj)H̃ = ρ(−ω2)Ui. (2.87)

Dividing all terms by (−ω2s2) we get

c̃ijklnlnjUk + βijnji(ωs)
−1(1− iωα1)Θ− Ñijnji(ωs)

−1H̃ = ρs−2Ui. (2.88)

This equation can be rewritten as

(Q̃ik − ρs−2δik)Uk + i(ωs)−1
[
bi(1− iωα1)Θ− c̃iH̃

]
= 0, (2.89)

in which we define Q̃ik = c̃ijklnjnl, bi = βijnj, c̃i = Ñijnj. This equation is different

from Chadwick and Scott [16, (4.2)1] because of the presence of α1. When α1 = 0 this

equation reverts to [16, (4.2)1], the equation of the constrained anisotropic classical

case. Equation (2.85) becomes

Tβqp(ω
2snq)Up + ρc(−iω + α0(−ω2))Θ + Tα(−iωH̃)− kij(−ω2s2ninj)Θ = 0. (2.90)
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After dividing by ω and rearranging the equation we get

ωsTbpUp − iαTH̃ + (ωs2k − iρc(1− iωα0))Θ = 0, (2.91)

where we define k = kijninj. The above equation reduces to [16, (4.2)2] when α0 = 0,

the classical case. Finally, equation (2.81) becomes

iωsc̃pUp − αΘ = 0, (2.92)

which is similar to its classical counterpart [16, (4.2)3]. We must eliminate Θ and H̃

between equations (2.89), (2.91) and (2.92). So, we need to rewrite (2.92) as

Θ = α−1iωsc̃pUp. (2.93)

Substituting (2.93) into (2.91) gives

H̃ = −iα−1ωsbpUp + (α2T )−1ωsc̃pUp
(
ωs2k − iρc(1− iωα0)

)
. (2.94)

Inserting (2.93) and (2.94) into (2.89), then rearranging the equation, gives

{
Q̃ip − α−1(bic̃p(1− iωα1) + c̃ibp)− (α2T )−1(ρc(1− iωα0) + iωs2k)c̃ic̃p

− ρs−2δip
}
Up = 0. (2.95)

Rearranging this equation we get

{
Q̃ip−α−1(bic̃p+ c̃ibp)− (α2T )−1(ρc+ iωs2k)c̃ic̃p+(α2T )−1ρciωα0c̃ic̃p+α−1iωα1bic̃p

− ρs−2δip
}
Up = 0.

The non-zero amplitudes satisfy (2.89), (2.91) and (2.92) if and only if

det
{
Q̃− α−1(b⊗ c̃ + c̃⊗ b)− (α2T )−1(ρc+ iωs2k)c̃⊗ c̃ + (α2T )−1ρciωα0c̃⊗ c̃

+ α−1iωα1b⊗ c̃− ρs−21
}

= 0. (2.96)

By defining

P̃ := Q̃− α−1(b⊗ c̃ + c̃⊗ b)− ρc

α2T
c̃⊗ c̃, (2.97)

we may rewrite (2.96) as

det
{

(P̃− w1) +
iωα1

α
b⊗ c̃− iω

α2T
(s2k − ρcα0)c̃⊗ c̃

}
= 0, (2.98)
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where

w = ρs−2.

Equation (2.98) may be rewritten as

det
{

(P̃− w1) +
[iωα1

α
b− iω

α2T
(s2k − ρcα0)c̃

]
⊗ c̃
}

= 0. (2.99)

Using the standard identity (2.60)

det{A + αā⊗ a} = det A + αā ·Aadja, (2.100)

and taking

ā ≡ iωα1

α
b− iω

α2T
(s2k − ρcα0)c̃ and a ≡ c̃,

equation (2.99) may be rewritten as

det(P̃− w1) +
[iωα1

α
b− iω

α2T

(ρk
w
− ρcα0

)
c̃
]
· (P̃− w1)adjc̃ = 0. (2.101)

This is the secular equation for anisotropic TRDTE which is constrained by the uasual

deformation temperature constraint and has not previously appeared in the literature.

We can rewrite (2.97) in terms of the isentropic acoustic tensor by using the definition

(2.13)

P̃ := Q̂− T

ρc

(
b +

ρc

αT
c̃
)
⊗
(
b +

ρc

αT
c̃
)
. (2.102)

To rewrite (2.101) in a more clear form, we non-dimensionalize by introducing γ,

which has the dimensions of stress, and the frequency ω∗ = γc/k. We define the

non-dimensional quantities, see [27, (2.12)],

w′ = γ−1w, ω′ =
ω

ω∗
, P̃′ = γ−1P̃, α′ = αT, c′ =

ρcT

γ
, c̃′ = (c̃ · c̃)−

1
2 c̃, β2 = b · b,

α′0 = α0ω
∗, α′1 = α1ω

∗, ε =
T (b · b)

ρcγ
, b′ = (b ·b)−

1
2 b, Q̃′ = γ−1Q̃, Q̂′ = γ−1Q̂.

(2.103)

In terms of these non-dimensionalizations we can rewrite (2.13) as, see [26, (2.14)],

Q̂′ = Q̃′ + εb′ ⊗ b′. (2.103a)
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The dimensionless form of (2.102) is

P̃′ := Q̂′ −
(
ε

1
2 b′ + σ̃c̃′

)
⊗
(
ε

1
2 b′ + σ̃c̃′

)
, (2.104)

in which for α 6= 0 we have defined

σ̃ :=
c′

1
2 (c̃ · c̃)

1
2

α′
. (2.105)

This is the ratio of the relative importance of the mechanical and thermal parts of the

constraint because σ̃ → 0 provides a purely thermal constraint (c̃→ 0) and σ̃ → ∞
provides a purely mechanical constraint (α′ → 0). Now the secular equation (2.101)

can be written in terms of non-dimensional quantities as

det
(
w′1− P̃′

)
− iω′

[
α′1ε

1
2 σ̃b′ −

(
1/w′ − α′0

)
σ̃2c̃′

]
·
(
w′1− P̃′

)adj
c̃′ = 0. (2.106)

Rearranging this equation and dropping the dashes for convenience

w det
(
w1− P̃

)
− iωσ̃

[
wα1ε

1
2 b− (1− α0w)σ̃c̃

]
·
(
w1− P̃

)adj
c̃ = 0. (2.107)

This equation is quartic in w.

Stability

P̃ is a symmetric tensor and so has real eigenvalues which can be ordered so as

p̃1 ≤ p̃2 ≤ p̃3. (2.107a)

In terms of Q̂ with aid of the definition (2.104) for P̃ we get the inequalities, see [27,

(2.19)],

p̃1 < q̂1 < p̃2 < q̂2 < p̃3 < q̂3, (2.107b)

where q̂i, i = 1, 2, 3, denote the eigenvalues of Q̂ defined by (2.13). With q̃i denoting

the eigenvalues of Q̃, the interlacing property

q̃1 < q̂1 < q̃2 < q̂2 < q̃3 < q̂3 (2.107c)

was proved in [9]. From (2.107a) and (2.107b) we can deduce that the signs of p̃2 and

p̃3 are positive because q̂1 > 0 but p̃1 could be positive or negative. Equation (2.107)

may be rewritten as

w det
(
w1−P̃

)
−iωσ̃

{
wα1ε

1
2

[
b·
(
w1−P̃

)adj
c̃
]
−σ̃(1−α0w)

[
c̃·
(
w1−P̃

)adj
c̃
]}

= 0.

(2.108)
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In equation (2.108) we need to group the terms in w together:

w det
(
w1− P̃

)
− iωσ̃

{
w
[
α1ε

1
2 b +α0σ̃c̃

]
·
(
w1− P̃

)adj
c̃− σ̃c̃ ·

(
w1− P̃

)adj
c̃
}

= 0.

(2.109)

Now from (2.109) we see that the zeros of

c̃ ·
(
w1− P̃

)adj
c̃ (2.109a)

are important. This expression is quadratic in w and has zeros w = W̃1, W̃2, satisfying

the following inequalities, see [27, (2.23)],

p̃1 < W̃1 < p̃2 < W̃2 < p̃3. (2.109b)

But consider the following expression in (2.109)

[
α1ε

1
2 b + α0σ̃c̃

]
·
(
w1− P̃

)adj
c̃.

In the coordinate system based on P̃, in which

P̃ =


p̃1 0 0

0 p̃2 0

0 0 p̃3

 ,

we have

J(w) ≡
[
α1ε

1
2 b + α0σ̃c̃

]
·
(
w1− P̃

)adj
c̃ =

[
α1ε

1
2 b1 + α0σ̃c̃1

]
c̃1(w − p̃2)(w − p̃3)+[

α1ε
1
2 b2 + α0σ̃c̃2

]
c̃2(w − p̃1)(w − p̃3) +

[
α1ε

1
2 b3 + α0σ̃c̃3

]
c̃3(w − p̃1)(w − p̃2).

Now, in order to examine the sign changes of J(w), we must look at, for example, the

sign of

J(p̃1) = (α1ε
1
2 b1 + α0σ̃c̃1)c̃1(p̃1 − p̃2)(p̃1 − p̃3).

We do not know the signs of b1 and c̃1; they might have opposite signs. Due to the

occurrence of b with c in J(w), the sign changes would be difficult to determine. So

we need to deal with a special case and choose the constraint of incompressibility

at uniform temperature because for this constraint we shall see that both b and c
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are parallel to n. For incompressibility at uniform temperature the deformation-

temperature constraint is, see [16, (3.3)],

uj,j − αθ = 0. (2.110)

In this special case Ñ is defined as

Ñij = δij.

So c̃ might be written as

c̃i = δijnj = ni

and so

c̃ = In = n. (2.110a)

Consider the special case when βββ is isotropic (even if the material is otherwise anisotropic),

so that

βij = βδij,

which we shall call thermal isotropy. Then

b = βββn = βIn = βn (2.110b)

and in component notation b might be written as

bi = βni.

From the dimensionless quantities (2.103) we find that

b′ = (b · b)−
1
2 b,

so that

b · b = bi · bi = βni · βni = β2.

Then

b′ = (β2)−
1
2 b = β−1βn = n.

Dropping dashes for convenience leads to

b = n.
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Then

J(w) =
[
α1ε

1
2 b + α0σ̃c̃

]
·
(
w1− P̃

)adj
c̃,

=
[
α1ε

1
2 n + α0σ̃n

]
·
(
w1− P̃

)adj
n,

=
[
α1ε

1
2 + α0σ̃

]
n ·
(
w1− P̃

)adj
n.

Thus, (2.103a) may be written in a more simplified form as

Q̂ = Q̃ + εn⊗ n, (2.110c)

where we have dropped the dashes for convenience. This will simplify P̃ to a more

clear form; from equation (2.97)

P̃ = Q̃− α−1(βn⊗ n + βn⊗ n)− ρc

α2T
n⊗ n,

⇒ P̃ = Q̃− (2α−1β +
ρc

α2T
) n⊗ n. (2.111)

The dimensionless form of (2.111) may be written as

P̃′ = Q̃′ − σ̃
(
2ε

1
2 + σ̃

)
n⊗ n or P̃ = Q̃−

{
(ε

1
2 + σ̃)2 − ε

}
n⊗ n, (2.112)

dropping the dashes, where σ̃ here is defined by

σ̃ =
c′

1
2 (ñ · ñ)

1
2

α′
=
c′

1
2

α′
.

Now the secular equation (2.109) might be written in non-dimensionlised form as

w det(w1− P̃)− iωσ̃
{
w(α1ε

1
2 + α0σ̃)n · (w1− P̃

)adj
n− σ̃n · (w1− P̃

)adj
n
}

= 0.

Rearranging this equation gives another version of the secular equation:

w det(w1− P̃)− iωσ̃
[
w(α1ε

1
2 + α0σ̃)− σ̃

]
n · (w1− P̃

)adj
n = 0. (2.113)

P̃adj has eigenvalues p̃2p̃3, p̃3p̃1, p̃1p̃2, enabling us to rewrite the secular equation (2.113)

in terms of p̃1, p̃2, p̃3 as

w(w − p̃1)(w − p̃2)(w − p̃3)− iωσ̃
[
w(α1ε

1
2 + α0σ̃)− σ̃

]
{
n2
1(w − p̃2)(w − p̃3) + n2

2(w − p̃1)(w − p̃3) + n2
3(w − p̃1)(w − p̃2)

}
= 0. (2.114)
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The quadratic part within braces has the same zeros as the expression (2.109a),

namely, W̃i, i = 1, 2. Let us define the quadratic part to be

h(w) ≡ n2
1(w − p̃2)(w − p̃3) + n2

2(w − p̃1)(w − p̃3) + n2
3(w − p̃1)(w − p̃2).

Now we need to examine the sign changes of h(w):

h(0) = n2
1p̃2p̃3 + n2

2p̃1p̃3 + n2
3p̃1p̃2 > 0,

h(p̃1) = n2
1(p̃1 − p̃2)(p̃1 − p̃3) > 0,

h(p̃2) = n2
2(p̃2 − p̃3)(p̃2 − p̃1) < 0,

h(p̃3) = n2
3(p̃3 − p̃1)(p̃3 − p̃2) > 0,

h(∞) =∞ > 0.

From these inequalities we may determine the positions of the zeros of h(w), so that

W̃1 is between p̃1 and p̃2 and W̃2 is between p̃2 and p̃3. Therefore, we get the same

inequalities as (2.109b):

p̃1 < W̃1 < p̃2 < W̃2 < p̃3.

Then the secular equation (2.114) can be rewritten as

F̃ (w)− iωσ̃
[
w(α1ε

1
2 + α0σ̃)− σ̃

]
G̃(w) = 0, (2.115)

where

F̃ (w) = w
3∏
i=1

(
w − p̃i

)
, G̃(w) =

2∏
i=1

(
w − W̃i

)
. (2.116)

Putting α1 = α0 = 0 in the secular equation (2.115) we will get the secular equation

of anisotropic material that is constrained by deformation temperature constraint in

classical thermoelasticity, see [30, (3.6)].

Low frequency expansions

When ω = 0, the roots of the secular equation (2.115) wi, i = 0, 1, 2, 3, are the zeros

of F̃ (w) : w = p̃i, i = 0, 1, 2, 3, defining p̃0 = 0. Taylor expansions of the roots of the

secular equation (2.115) take the form

wi(ω) = p̃i +
∞∑
i=1

d(i)n (−iω)n, i = 0, 1, 2, 3. (2.117)
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We can get the branches wi, i = 0, 1, 2, 3, by inserting (2.117) into (2.115). Firstly,

when i = 0, n = 1

w0(ω) = p̃0 + d
(0)
1 (−iω) +O(ω2). (2.118)

Substituting (2.118) into (2.115) we get

d
(0)
1 = −σ̃2 W̃1W̃2

p̃1p̃2p̃3
. (2.119)

The sign of d
(0)
1 depends on the sign of p̃1. Now by inserting (2.119) into (2.118) we

get

w0(ω) = iωσ̃
G̃(0)

F̃ (0)
+O(ω2). (2.120)

It is clear that from (2.119) that if p̃1 > 0 then d
(0)
1 < 0, thus Im w0(ω) > 0, and so

w0(ω) is unstable. But if p̃1 < 0 then d
(0)
1 > 0 and w0(ω) is stable.

The exceptional case p̃1 = 0 will be dealt with later. It represents a cross over for the

branch w0(ω) between instability for p̃1 > 0 and stability for p̃1 < 0.

When i = 1, n = 1, we get

w1(ω) = p̃1 + d
(1)
1 (−iω) +O(ω2). (2.121)

By inserting (2.121) into the secular equation (2.115) we get

d
(1)
1 = −σ̃

[
p̃1(α1ε

1
2 + α0σ̃)− σ̃

](p̃1 − W̃1)(p̃1 − W̃2)

p̃1(p̃1 − p̃2)(p̃1 − p̃3)
. (2.122)

The sign of d
(1)
1 depends on the signs of

[
p̃1(α1ε

1
2 + α0σ̃)− σ̃

]
and p̃1.

So, if p̃1 < 0 then d
(1)
1 < 0, thus w1(ω) is unstable.

Stability is satisfied if d
(1)
1 > 0, and d

(1)
1 is positive if

0 < p̃1 <
σ̃

(α1ε
1
2 + α0σ̃)

.

Substituting (2.122) into (2.121) we get, for all values of p̃1,

w1(ω) = p̃1 + iωσ̃
[
p̃1(α1ε

1
2 + α0σ̃)− σ̃

] G̃(p̃1)

F̃ ′(p̃1)
+O(ω2). (2.123)

The exceptional case p̃1 = 0 is considered later.
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Similarly, when i = 2, 3 and n = 1, we find that

w2(ω) = p̃2 + d
(2)
1 (−iω) +O(ω2). (2.123a)

w3(ω) = p̃3 + d
(3)
1 (−iω) +O(ω2). (2.123b)

By substituting (2.123a) and (2.123b) into (2.115) we get, respectively,

d
(2)
1 = −σ̃

[
p̃2(α1ε

1
2 + α0σ̃)− σ̃

](p̃2 − W̃1)(p̃2 − W̃2)

p̃2(p̃2 − p̃1)(p̃2 − p̃3)
, (2.124)

d
(3)
1 = −σ̃

[
p̃3(α1ε

1
2 + α0σ̃)− σ̃

](p̃3 − W̃1)(p̃3 − W̃2)

p̃3(p̃3 − p̃1)(p̃3 − p̃2)
. (2.125)

Again, stability is satisfied when d
(2)
1 and d

(3)
1 are positive, so that means when[

p̃2(α1ε
1
2 + α0σ̃)− σ̃

]
and

[
p̃3(α1ε

1
2 + α0σ̃)− σ̃

]
are negative, respectively. It is clear

that these signs are unaffected by p̃1 being positive, negative or zero. Substituting

(2.124) and (2.125) into (2.123a) and (2.123b), respectively, we get

w2(ω) = p̃2 + iωσ̃
[
p̃2(α1ε

1
2 + α0σ̃)− σ̃

] G̃(p̃2)

F̃ ′(p̃2)
+O(ω2).

w3(ω) = p̃3 + iωσ̃
[
p̃3(α1ε

1
2 + α0σ̃)− σ̃

] G̃(p̃3)

F̃ ′(p̃3)
+O(ω2).

If
[
p̃1(α1ε

1
2 + α0σ̃) − σ̃

]
> 0 then it follows that

[
p̃i(α1ε

1
2 + α0σ̃) − σ̃

]
> 0, for

i = 2, 3, and so the instability of w1 forces the instability of w2 and w3. Conversely, if[
p̃3(α1ε

1
2 + α0σ̃)− σ̃

]
< 0 then it follows that

[
p̃i(α1ε

1
2 + α0σ̃)− σ̃

]
< 0, for i = 1, 2,

and so the stability of w3 forces the stability of w1 and w2. This is illustrated in

Figures 2.6 and 2.7.

High frequency expansions

The roots of the secular equation (2.115) when ω →∞ are given by three finite roots

w1 = W̃1, w2 = W̃2 and w3 = W̃3 ≡
σ̃

α1ε
1
2 + α0σ̃

, and one infinite root. Now for ω

sufficiently large power series expansions take the following form

wi(ω) = W̃i +
∞∑
i=1

d(i)n (−iω)(−n), i = 1, 2, 3. (2.126)

For stability we require d
(i)
n < 0, i = 1, 2, 3.
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When i = 1, n = 1 we get

w1(ω) = W̃1 + d
(1)
1 (−iω)(−1) +O(ω−2). (2.127)

Substituting (2.127) into (2.115) we get

d
(1)
1 =

−W̃1(W̃1 − p̃1)(W̃1 − p̃2)(W̃1 − p̃3)
σ̃(W̃1 − W̃2)

[
W̃1(α1ε

1
2 + α0σ̃)− σ̃

] . (2.128)

The sign of d
(1)
1 depends on the sign of

[
W̃1(α1ε

1
2 + α0σ̃)− σ̃

]
and it is unaffected by

the sign of p̃1. Stability is satisfied when[
W̃1(α1ε

1
2 + α0σ̃)− σ̃

]
< 0.

Therefore, if
[
W̃1(α1ε

1
2 + α0σ̃) − σ̃

]
> 0 then d

(1)
1 > 0 and w1(ω) is unstable. Insert

(2.128) into (2.127) to obtain

w1(ω) = W̃1 + i
{
ωσ̃
[
W̃1(α1ε

1
2 + α0σ̃)− σ̃

]}−1 F̃ (W̃1)

G̃′(W̃1)
+O(ω−2). (2.129)

When i = 2, n = 1 we get

w2(ω) = W̃2 + d
(2)
1 (−iω)(−1) +O(ω−2). (2.130)

Substituting (2.130) into (2.115) we get

d
(2)
1 =

−W̃2(W̃2 − p̃1)(W̃2 − p̃2)(W̃2 − p̃3)
σ̃(W̃2 − W̃1)

[
W̃2(α1ε

1
2 + α0σ̃)− σ̃

] . (2.131)

Again, d
(2)
1 is negative when W̃2(α1ε

1
2 +α0σ̃)− σ̃ is negative and either p̃1 is negative

or positive. Insert (2.131) into (2.130) to get

w2(ω) = W̃2 + i
{
ωσ̃
[
W̃2(α1ε

1
2 + α0σ̃)− σ̃

]}−1 F̃ (W̃2)

G̃′(W̃2)
+O(ω−2). (2.132)

w2(ω) is stable when

W̃2(α1ε
1
2 + α0σ̃)− σ̃ < 0 ⇒ W̃2 <

σ̃

(α1ε
1
2 + α0σ̃)

.

When i = 3, n = 1

w3(ω) = W̃3 + d
(3)
1 (−iω)(−1) +O(ω−2), (2.133)
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in which, as before,

W̃3 =
σ̃

(α1ε
1
2 + α0σ̃)

. (2.133a)

Substituting (2.133) into the secular equation (2.115) we obtain

d
(3)
1 =

−F̃ (W̃3)

σ̃(α1ε
1
2 + α0σ̃)G̃(W̃3)

,

the sign of which is not easy to determine. We can determine the sign of d
(3)
1 in two

special cases, firstly, as σ̃ → 0, a purely thermal constraint, and secondly, as σ̃ →∞,

a purely mechanical constraint. When σ̃ → 0, then d
(3)
1 →∞, so

d
(3)
1 =

−W̃3(W̃3 − p̃1)(W̃3 − p̃2)(W̃3 − p̃3)
σ̃(α1ε

1
2 + α0σ̃)(W̃3 − W̃1)(W̃3 − W̃2)

. (2.134)

Simplifying (2.134) with aid of (2.133a) leads to

d
(3)
1 =

−(W̃3 − p̃1)(W̃3 − p̃2)(W̃3 − p̃3)
(α1ε

1
2 + α0σ̃)2(W̃3 − W̃1)(W̃3 − W̃2)

.

As σ̃ → 0, W̃3 → 0, so

d
(3)
1 =

p̃1p̃2p̃3

(α1ε
1
2 )2W̃1W̃2

.

It is clear that if p̃1 > 0, w3 is unstable. But if p̃1 < 0, w3 becomes stable.

As σ̃ →∞, W̃3 → α−10 , then d
(3)
1 → 0 and higher powers of (−iω)−1 are needed in the

expansion (2.133).

The fourth root, which is large if ω is large, may be written as

w4(ω) = (iω)A+B +O(ω−1). (2.135)

Inserting (2.135) into the secular equation (2.115) we get

(iωA+B)(iωA+B−p̃1)(iωA+B−p̃2)(iωA+B−p̃3)−iωσ̃
{[

(iωA+B)(α1ε
1
2 +α0σ̃)−σ̃

]
(iωA+B − W̃1)(iωA+B − W̃2)

}
= 0. (2.136)

Multiplying this equation by (iω)−4 we get(
A+B(iω)−1

)(
A+ (B − p̃1)(iω)−1

)(
A+ (B − p̃2)(iω)−1

)(
A+ (B − p̃3)(iω)−1

)
−σ̃
{[

(A+B(iω)−1)(α1ε
1
2 +α0σ̃)−σ̃(iω)−1

](
A+(B−W̃1)(iω)−1

)(
A+(B−W̃2)(iω)−1

)}
= 0.

(2.137)
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For large ω we obtain

A4 − σ̃A3(α1ε
1
2 + α0σ̃) = 0,

so that

A = 0, 0, 0, σ̃(α1ε
1
2 + α0σ̃). (2.138)

The three zero roots correspond to the roots already found. Expand (2.137):

A3
{
A+
[
(B−p̃3)(iω)−1+(B−p̃2)(iω)−1+(B−p̃1)(iω)−1+B(iω)−1

]}
−A2σ̃

{
(A+B(iω)−1

(α1ε
1
2 +α0σ̃)−σ̃(iω)−1+(B−W̃2)(α1ε

1
2 +α0σ̃)(iω)−1+(B−W̃1)(α1ε

1
2 +α0σ̃)(iω)−1

}
= 0

(2.139)

Cancel A2, A 6= 0, to give

A
{
A+
[
(B−p̃3)(iω)−1+(B−p̃2)(iω)−1+(B−p̃1)(iω)−1+B(iω)−1

]}
−σ̃
{

(A+B(iω)−1

(α1ε
1
2 +α0σ̃)−σ̃(iω)−1+(B−W̃2)(α1ε

1
2 +α0σ̃)(iω)−1+(B−W̃1)(α1ε

1
2 +α0σ̃)(iω)−1

}
= 0.

(2.140)

The coefficient of (iω)−1 must vanish:

A
[
4B − (p̃1 + p̃2 + p̃3)

]
− σ̃(α1ε

1
2 + α0σ̃)

{
3B − (W̃1 + W̃2)

}
+ σ̃2 = 0. (2.141)

Using (2.138)4 to give A we can find B:

B = p̃1 + p̃2 + p̃3 − (W̃1 + W̃2)−
σ̃

(α1ε
1
2 + α0σ̃)

. (2.142)

Thus,

w4(ω) = iωσ̃(α1ε
1
2 + α0σ̃) + p̃1 + p̃2 + p̃3 − (W̃1 + W̃2)−

σ̃

(α1ε
1
2 + α0σ̃)

+O(ω−1).

(2.143)

The stability condition is not satisfied here: Im w4(ω) > 0, so w4(ω) is unstable.

From the secular equation (2.115), and previous arguments, we see that a branch

cannot change from stable to unstable, or vice versa, for intermediate frequencies

0 < ω <∞. This is borne out by Figures 2.6–2.8.

51



The exceptional case p̃1 = 0.

When p̃1 = 0 the secular equation (2.115), with the aid of (2.116), becomes

w2(w − p̃2)(w − p̃3)− iωσ̃
[
w(α1ε

1
2 + α0σ̃)− σ̃

]
(w − W̃1)(w − W̃2) = 0.

For low frequencies we try the balance w = A(−iω)n and substitute into this secular

equation in order to determine n. We find that n = 1/2 and then w is given by

w = ±

(
−iωσ̃2 W̃1W̃2

p̃2p̃3

) 1
2

.

These two branches begin at the origin and have arguments −π/4 and 3π/4 in the

complex w plane. This can be seen in Figure 2.8.

Numerical results

In Figure 2.6 we have taken p̃1 > 0. The branch w0(ω) beginning at the origin is

unstable in each part of the Figure. All the other branches begin to the right of this

branch. If α0 and α1 are small enough then

p̃i(α1ε
1
2 + α0σ̃)− σ̃ < 0, for i = 1, 2, 3,

and

W̃i(α1ε
1/2 + α0σ̃)− σ̃ < 0, for i = 1, 2

and so all the branches wi(ω), i = 1, 2, 3, are stable. This can be seen in the first

subfigures of Figure 2.6 where α0 and α1 are small. As α0 and α1 increase, first w3(ω)

becomes unstable, see part (d), and as they increase further other branches become

unstable.

In Figure 2.7 we have taken p̃1 < 0. The branch w1(ω) beginning at w = p̃1 is unstable

in each part of the Figure. All the other branches begin to the right of this branch.

The branch w0(ω) begins at the origin and is stable in each part of the Figure. As in

Figure 2.6, increasing α0 and α1 leads to increasing instability.

In Figure 2.8 we illustrate the exceptional case p̃1 = 0. Now two branches emanate

from the origin, namely, w0(ω) and w1(ω), one stable and the other unstable, one with

argument −π/4 and the other with argument 3π/4. The same increasing instability

with increasing α0 and α1 is observed.
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Figure 2.6: The longitudinal squared wave speeds of constrained anisotropic TRDTE

theory. For each part, p̃1 = 1, p̃2 = 2, p̃3 = 3, W̃1 = 1.5, W̃2 = 2.5, σ̃ = 1, ε = 1.
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Figure 2.7: The longitudinal squared wave speeds of constrained anisotropic TRDTE

theory. For each part, p̃1 = −1, p̃2 = 2, p̃3 = 3, W̃1 = 1.5, W̃2 = 2.5, σ̃ = 1, ε = 1.

54



−4 −2 0 2 4

−4

−2

0

2

4

Re w

Im
 w

−4 −2 0 2 4

−4

−2

0

2

4

Re w

Im
 w

−4 −2 0 2 4

−4

−2

0

2

4

Re w

Im
 w

−4 −2 0 2 4

−4

−2

0

2

4

Re w

Im
 w

−4 −2 0 2 4

−4

−2

0

2

4

Re w

Im
 w

−4 −2 0 2 4

−4

−2

0

2

4

Re w

Im
 w

(c)α
0
=0.1, α

1
=0.2 (d)α

0
=0.15, α

1
=0.3

(b)α
0
=0.05, α

1
=0.1(a)α

0
=0, α

1
=0

(e)α
0
=0.25, α

1
=0.5 (f)α

0
=0.5, α

1
=0.7

Figure 2.8: The longitudinal squared wave speeds of constrained anisotropic TRDTE

theory. For each part, p̃1 = 0, p̃2 = 2, p̃3 = 3, W̃1 = 1.5, W̃2 = 2.5, σ̃ = 1, ε = 1.
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2.3.2 Alternative form of deformation-temperature constraint

In this section we are concerned with using an alternative thermomechanical constraint

relating deformation to temperature as shown in the following formula

Ñpqup,q − α(θ + α0θ̇) = 0. (2.144)

To explain the choice of the new form (2.144) of the deformation-temperature con-

straint we follow Scott [31]. We must first consider the justification of the form of con-

straint (2.81) in classical thermoelasticity. In classical thermoelasticity the Helmholtz

free energy ψ(eij, θ) acts as a potential for the stress and entropy:

σij = ρ
∂ψ

∂eij
, φ = −∂ψ

∂θ
, (2.144a)

see, for example, [30, (2.6)]. To account for the constraint, a quantity

ρ−1η̃(Ñpqup,q − αθ),

see [8], where η̃ is a Lagrange multiplier, is added to ψ and then the differentiations

in (2.144a) give the additional constraint stress η̃Ñ and the additional constraint

entropy ρ−1αη̃ occurring in (2.82). In their theory of temperature rate dependent

thermoelasticity Green and Lindsay [21] introduce a second temperature function

θ1(θ, θ̇) which plays an important role in entropy production (and is denoted by φ

in [21]). They show that (2.144a) must be replaced by

σij = ρ
∂ψ

∂eij
, φ = −∂ψ

∂θ̇

/∂θ1
∂θ̇

, (2.144b)

see [21, Equations (3.15)1 and (3.6), respectively]. We shall replace the constraint

(2.81) of the classical theory by

Ñpqup,q − αθ1 = 0, (2.144c)

in which the usual temperature θ has been replaced by the second temperature θ1.

We adopt the linearised form [21, (4.4)] of θ1:

θ1 = θ + α0θ̇, (2.144d)
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so that (2.144) is obtained immediately. To account for the new constraint, a quantity

ρ−1η̃(Ñpqup,q−αθ1), where η̃ is again a Lagrange multiplier, is added to ψ and then the

differentiations (2.144b), together with the linearisation (2.144d), give the additional

constraint stress η̃Ñ and the additional constraint entropy ρ−1αη̃ exactly as occurred

in (2.82).

It follows that the other field equations of the anisotropic case (2.83) and (2.85) also

hold in the present case:

c̃ijkluk, jl − βij(θ, j + α1θ̇, j) + Ñij η̃,j = ρüi,

Tβpqu̇p,q + ρc(θ̇ + α0θ̈) + Tα ˙̃η − kijθ,ij = 0.

 (2.145)

The secular equation

Now we follow the same steps as in Section 2.3.1 to get the secular equation. Firstly,

we look for solutions of equations (2.144) and (2.145) in the form of the plane harmonic

waves (2.86) by inserting (2.86) into (2.144) and (2.145) to get

(Q̃ik − ρs−2δik)Uk + i(ωs)−1
[
bi(1− iωα1)Θ− c̃iH̃

]
= 0,

ωsTbpUp − iαTH̃ + (ωs2k − iρc(1− iωα0))Θ = 0,

iωsc̃pUp − α(1− iωα0)Θ = 0,

 (2.146)

where Ñpqnq = c̃p, βijnj = bi, kijnj = k. We note that equations (2.146)1,2 are similar

to (2.89) and (2.91). We must now eliminate Θ and H̃ between (2.146). Firstly, we

write equation (2.146)3 with Θ as subject:

Θ =
iωsc̃pUp

α(1− iωα0)
. (2.147)

Substituting (2.147) into (2.146)2 we get

H̃ = −iα−1ωsbpUp + (α2T )−1(1− iωα0)
−1ωsc̃pUp

(
ωs2k − iρc(1− iωα0)

)
. (2.148)

Inserting (2.147) and (2.148) into (2.146)1 we obtain{
(Q̃ip − ρs−2δip)− α−1(1− iωα0)

−1
(
bic̃p(1− iωα1) + c̃ibp(1− iωα0)

)
− i(α2T )−1(1− iωα0)

−1(ωs2k − iρc(1− iωα0))c̃ic̃p

}
Up = 0. (2.149)
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Expanding this equation we get{
Q̃ip−α−1(1− iωα0)

−1(bic̃p+ c̃ibp)−(α2T )−1(1− iωα0)
−1
(
ρc(1− iωα0)+ iωs2k

)
c̃ic̃p

+ iωα−1(1− iωα0)
−1(α1bic̃p + α0c̃ibp)− ρs−2δip

}
Up = 0. (2.150)

Rearranging this equation we get{
Q̃ip − ρs−2δip − (1− iωα0)

−1
[
α−1(bic̃p + c̃ibp) + (α2T )−1ρcc̃ic̃p

]
+ iω(1− iωα0)

−1
[
α−1(α1bic̃p + α0c̃ibp)− (α2T )−1(s2k − ρcα0)c̃pc̃i

]}
Up = 0.

The non-zero amplitudes Up satisfy (2.146) if and only if

det
{

Q̃− w1− (1− iωα0)
−1
[
α−1(b⊗ c̃ + c̃⊗ b) + (α2T )−1ρcc̃⊗ c̃

]
+ iω(1− iωα0)

−1
[
α−1(α1b⊗ c̃ + α0c̃⊗ b)− (α2T )−1(s2k − ρcα0)c̃⊗ c̃

]}
= 0.

(2.151)

On defining

S̃ := Q̃− (1− iωα0)
−1
[
α−1(b⊗ c̃ + c̃⊗ b) +

ρc

α2T
c̃⊗ c̃

]
, (2.152)

with aid of (2.152) equation (2.151) may be written as

det
{

(S̃−w1) +
iω

(1− iωα0)

[α0

α
c̃⊗b +

α1

α
b⊗ c̃− (s2k − ρcα0)

α2T
c̃⊗ c̃

]}
= 0. (2.153)

From definitions (2.110a) and (2.110b) we can rewrite equation (2.152) as

S̃ = Q̃− (1− iωα0)
−1
[
2α−1β + ρc/α2T

]
n⊗ n. (2.154)

To non-dimensionlise (2.154) we need to use the dimensionless quantities (2.103), so

equation (2.154) becomes after dropping dashes for convenience

S̃ = Q̃− (1− iωα0)
−1σ̃
[
2ε

1
2 + σ̃

]
n⊗ n, (2.155)

where

σ̃ = c
1
2/α. (2.155a)

The dimensionless form of the secular equation (2.153), after dropping dashes, is

det
{

(S̃−w1)+
iω

1− iωα0

[
σ̃ε

1
2 (α0c̃⊗b+α1b⊗ c̃)− σ̃2(w−1−α0)c̃⊗ c̃

]}
= 0. (2.156)
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By using the definition (2.155), and the fact that for incompressibility at uniform

temperature with thermal isotropy we have

b = c̃ = n, (2.157)

equation (2.156) may be rewritten as

det
{

(S̃−w1)+
iω

1− iωα0

[
σ̃ε1/2(α0n⊗n+α1n⊗n)−σ̃2(w−1−α0)n⊗n

]}
= 0. (2.158)

On simplification the secular equation becomes

det
{

(S̃− w1) +
iω

1− iωα0

[
σ̃ε1/2(α0 + α1)− σ̃2(w−1 − α0)

]
n⊗ n

}
= 0. (2.159)

By using the standard identity (2.60), equation (2.159) can be written as

det(S̃−w1) +
iω

1− iωα0

[
σ̃ε1/2(α0 +α1)− σ̃2(w−1−α0)

]
n · (S̃−w1

)adj
n = 0. (2.160)

Multiplying by w, equation (2.160) becomes

w det(w1− S̃)− iωσ̃

1− iωα0

[
wε

1
2 (α0 +α1)− σ̃(1−wα0)

]
n · (w1− S̃

)adj
n = 0. (2.161)

We need to group the terms in w together to obtain

w det(w1− S̃)− iωσ̃

1− iωα0

[
w
(
ε

1
2 (α0 + α1) + σ̃α0

)
− σ̃
]
n · (w1− S̃

)adj
n = 0. (2.162)

Now we need the secular equation (2.162) written in terms of P̃ defined by (2.112)2.

The first term of (2.162) is

L1 ≡ w det(w1− S̃). (2.162a)

With aid of the definition (2.155), we may rewrite (2.162a) as

L1 = w det
{
w1− Q̃ + (2σ̃ε

1
2 + σ̃2)n⊗ n +

(
− 1 +

1

1− iωα0

)(
2σ̃ε

1
2 + σ̃2

)
n⊗ n

}
.

By simplifying L1 becomes

L1 = w det
{
w1− P̃ +

iωα0

1− iωα0

(
2σ̃ε

1
2 + σ̃2

)
n⊗ n

}
. (2.162b)

By using the standard identity (2.60), (2.162b) may written as

L1 = w det(w1− P̃) +
iωα0w

1− iωα0

(2σ̃ε
1
2 + σ̃2)n · (w1− P̃

)adj
n. (2.162c)
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The last factor of the secular equation (2.162) is termed

L2 ≡ n ·
(
w1− S̃

)adj
n. (2.162d)

The expression (2.162d) may be written in terms of P̃ similarly to (2.162a) as

L2 = n ·
(
w1− P̃ +

( iωα0

1− iωα0

)(
2σ̃ε

1
2 + σ̃2

)
n⊗ n

)adj
n. (2.162e)

By using [30, (A2)], we may rewrite (2.162e) as

L2 = n ·
(
w1− P̃

)adj
n. (2.162f)

By substituting (2.162c) and (2.162f) into the secular equation (2.162) we obtain

w det(w1− P̃) +
iωα0w

1− iωα0

(2σ̃ε
1
2 + σ̃2)n · (w1− P̃

)adj
n

− iωσ̃

1− iωα0

[
w
(
ε

1
2 (α0 + α1) + σ̃α0

)
− σ̃

]
n · (w1− P̃

)adj
n = 0. (2.163)

Rearranging (2.163) gives

w det(w1−P̃)+
iωσ̃

1− iωα0

[
wα0(2ε

1
2 +σ̃)−w(ε

1
2α0+ε

1
2α1+σ̃α0)+σ̃

]
n·(w1−P̃

)adj
n = 0.

(2.164)

Simplifying (2.164) we get

w det(w1− P̃) +
iωσ̃

1− iωα0

[
wε

1
2 (α0 − α1) + σ̃

]
n · (w1− P̃

)adj
n = 0. (2.165)

Since α1 > α0, it is better to rewrite (2.165) as

w det(w1− P̃)− iωσ̃

1− iωα0

[
wε

1
2 (α1 − α0)− σ̃

]
n · (w1− P̃

)adj
n = 0. (2.166)

This is the secular equation for anisotropic TRDTE which is constrained by the al-

ternative deformation temperature constraint and has not previously appeared in the

literature.

We already know that P̃ has three real eigenvalues p̃i, i = 1, 2, 3. Equation (2.166)

written in terms of these eigenvalues is

w(w − p̃1)(w − p̃2)(w − p̃3)−
iωσ̃

1− iωα0

[
wε

1
2 (α1 − α0)− σ̃

]
{n2

1(w − p̃2)(w − p̃3) + n2
2(w − p̃1)(w − p̃3) + n2

3(w − p̃1)(w − p̃2)} = 0. (2.167)
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Similarly to (2.114), the quadratic part within braces has two zeros W̃1 and W̃2 which

satisfy

p̃1 < W̃1 < p̃2 < W̃2 < p̃3. (2.167a)

In a more simplified form the secular equation (2.167) is written as

F̃ (w)− iωσ̃

1− iωα0

[
wε

1
2 (α1 − α0)− σ̃

]
G̃(w) = 0, (2.168)

in which F̃ (w) and G̃(w) are defined earlier in (2.116).

Similar to equation (2.115), by putting α1 = α0 = 0 we will recover the secular

equation of anisotropic material which is constrained by deformation temperature

constraint in classical thermoelasticity, see [30, (3.6)].

Low frequency expansions

When ω = 0, the roots of the secular equation (2.168) are the zeros of F̃ (w), namely,

p̃i, i = 0, 1, 2, 3, defining p̃0 ≡ 0. When ω → 0, the roots of the secular equation may

obtained by using Taylor expansions

wi(ω) = p̃i +
∞∑
i=1

d(i)n (−iω)(n), i = 1, 2, 3. (2.169)

When i = 0, n = 1, we get

w0(ω) = p̃0 + d
(0)
1 (−iω) +O(ω2). (2.170)

Inserting (2.170) into (2.168) we get

d
(0)
1 = −σ̃2 W̃1W̃2

p̃1p̃2p̃3
. (2.171)

The sign of d
(0)
1 depends on the sign of p̃1.

If p̃1 < 0 then d
(0)
1 > 0 and so w0(ω) is stable. But if p̃1 > 0 then d

(0)
1 < 0 and w0(ω)

is unstable. The exceptional case p̃1 = 0 is considered later.

Substituting (2.171) into (2.170) we obtain

w0(ω) = iωσ̃2 W̃1W̃2

p̃1p̃2p̃3
+O(ω2).
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When i = 1, n = 1, we get

w1(ω) = p̃1 + d
(1)
1 (−iω) +O(ω2) (2.172)

and inserting (2.172) into (2.168) gives

d
(1)
1 = −σ̃

(
p̃1ε

1
2 (α1 − α0)− σ̃

)(p̃1 − W̃1)(p̃1 − W̃2)

p̃1(p̃1 − p̃2)(p̃1 − p̃3)
. (2.173)

The sign of d
(1)
1 depends on the sign of

[
p̃1ε

1
2 (α1 − α0) − σ̃] and p̃1. If p̃1 < 0 then

d
(1)
1 < 0, so that w1(ω) is unstable. On the other hand, w1(ω) is stable when d

(1)
1 > 0,

and d
(1)
1 is positive only if

0 < p̃1 <
σ̃

ε
1
2 (α1 − α0)

.

The exceptional case p̃1 = 0 is considered later.

Substituting (2.173) into (2.172) we get

w1(ω) = p̃1 + iωσ̃
(
p̃1ε

1
2 (α1 − α0)− σ̃

) G̃(p̃1)

F̃ ′(p̃1)
+O(ω2).

Similarly, when i = 2, 3, n = 1, we get

w2(ω) = p̃2 + d
(2)
1 (−iω) +O(ω2), (2.174)

w3(ω) = p̃3 + d
(3)
1 (−iω) +O(ω2). (2.175)

Insert (2.174) and (2.175) into (2.168) to get

d
(2)
1 = −σ̃

(
p̃2ε

1
2 (α1 − α0)− σ̃

)(p̃2 − W̃1)(p̃2 − W̃2)

p̃2(p̃2 − p̃1)(p̃2 − p̃3)
, (2.176)

d
(3)
1 = −σ̃

(
p̃3ε

1
2 (α1 − α0)− σ̃

)(p̃3 − W̃1)(p̃3 − W̃2)

p̃3(p̃3 − p̃1)(p̃3 − p̃2)
. (2.177)

The signs of d
(2)
1 and d

(3)
1 depend on the signs of [p̃2ε

1
2 (α1 − α0)− σ̃] and

[p̃3ε
1
2 (α1 − α0) − σ̃], respectively, and are not affected by the sign of p̃1. Stability is

satisfied if d
(2)
1 and d

(3)
1 are positive, and they are positive when

p̃2 <
σ̃

ε
1
2 (α1 − α0)

,
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and

p̃3 <
σ̃

ε
1
2 (α1 − α0)

,

respectively. However, if d
(2)
1 and d

(3)
1 are negative, then w2(ω) and w3(ω) are unstable.

Inserting (2.176) and (2.177) into (2.174) and (2.175), respectively, we get

w2(ω) = p̃2 + iωσ̃
(
p̃2ε

1
2 (α1 − α0)− σ̃

) G̃(p̃2)

F̃ ′(p̃2)
+O(ω2),

w3(ω) = p̃3 + iωσ̃
(
p̃3ε

1
2 (α1 − α0)− σ̃

) G̃(p̃3)

F̃ ′(p̃3)
+O(ω2).

Summarising, if p̃iε
1
2 (α1 − α0) − σ̃ < 0 for any i = 1, 2, 3 then the corresponding

branch wi(ω) is stable. Conversely, if this quantity is positive the corresponding

branch is unstable. The situation is like that described at the end of the low-frequency

subsection of Section 2.3.1 involving instead the quantity p̃i(α1ε
1
2 + α0σ̃)− σ̃.

High frequency expansions

When ω →∞, the secular equation (2.168) becomes

H(w) := F̃ (w) +
σ̃

α0

(
wε1/2(α1 − α0)− σ̃

)
G̃(w) = 0. (2.178)

H(w) is a quartic in w, so there are four roots. The zeros of H(w) are denoted by

h̄1, h̄2, h̄3, h̄4. In order to find these zeros we need to examine the sign changes of H(w).

By using equation (2.178) and inequalties (2.167a) we find that

H(−∞) =∞ > 0,

H(0) = −α−10 σ̃2W̃1W̃2 < 0,

H(p̃1) = α−10 σ̃
(
p̃1ε

1/2(α1 − α0)− σ̃
)
(p̃1 − W̃1)(p̃1 − W̃2),

H(W̃1) = W̃1(W̃1 − p̃1)(W̃1 − p̃2)(W̃1 − p̃3) > 0,

H(p̃2) = α−10 σ̃
(
p̃2ε

1/2(α1 − α0)− σ̃
)
(p̃2 − W̃1)(p̃2 − W̃2),

H(W̃2) = W̃2(W̃2 − p̃1)(W̃2 − p̃2)(W̃2 − p̃3) < 0,

H(p̃3) = α−10 σ̃
(
p̃3ε

1/2(α1 − α0)− σ̃
)
(p̃3 − W̃1)(p̃3 − W̃2),

H(∞) =∞ > 0.

(2.179)
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From the inequalities (2.179), the zeros h̄i, i = 1, 2, 3, 4, of H(w) interlace according

to

h̄1 < 0 < h̄2 < W̃1 < h̄3 < W̃2 < h̄4. (2.180)

Equation (2.178) may be written as

F̃ (w) = H(w)− α−10 σ̃
(
wε1/2(α1 − α0)− σ̃

)
G̃(w). (2.181)

The secular equation (2.168) can be written as

F̃ (w) =
iωσ̃

1− iωα0

(
wε1/2(α1 − α0)− σ̃

)
G̃(w). (2.182)

By subtracting (2.182) from (2.181) we get the secular equation in the form

H(w)−
( 1

α0

+
iω

1− iωα0

)
σ̃
(
wε1/2(α1 − α0)− σ̃

)
G̃(w) = 0. (2.183)

Define a quartic polynomial

h̄(w) = (w − h̄1)(w − h̄2)(w − h̄3)(w − h̄4), (2.184)

which must be a scalar multiple of H(w) because both have the same four roots. By

comparing coefficients of w4 we find that

H(w) = h̄(w). (2.185)

Insert (2.185) into (2.183) we get

α0(1− iωα0)h̄(w)− σ̃
(
wε1/2(α1 − α0)− σ̃

)
G̃(w) = 0, (2.186)

an alternative form of the secular equation. Now, Taylor expansions of the roots of

the secular equation (2.186) in the high frequency limit take the form

wi(ω) = h̄i +
∞∑
n=1

d(i)n (−iωα0)
−n, i = 1, 2, 3, 4, (2.187)

so that d
(i)
n < 0 implies stability. When i = 1, n = 1, it may be shown that

w1(ω) = h̄1 + d
(1)
1 (−iωα0)

−1 +O(ω−2). (2.188)
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Substituting (2.188) into (2.186), and with aid of (2.180), we get

d
(1)
1 = α−10 σ̃

(
h̄1ε

1/2(α1 − α0)− σ̃
) (h̄1 − W̃1)(h̄1 − W̃2)

(h̄1 − h̄2)(h̄1 − h̄3)(h̄1 − h̄4)
> 0,

as h̄1 < 0. So, the first branch is

w1(ω) = h̄1 + iω−1
σ̃

α2
0

(
h̄1ε

1/2(α1 − α0)− σ̃
)G̃(h̄1)

h̄′(h̄1)
+O(ω−2), (2.189)

which is clearly unstable because Im w1(ω) > 0.

Similarly, when i = 2, n = 1 we obtain

d
(2)
1 = α−10 σ̃

(
h̄2ε

1/2(α1 − α0)− σ̃
) (h̄2 − W̃1)(h̄2 − W̃2)

(h̄2 − h̄1)(h̄2 − h̄3)(h̄2 − h̄4)
.

We see that sign of d
(2)
1 depends on the sign of [h̄2ε

1/2(α1 − α0)− σ̃]. If d
(2)
1 > 0 then

w2(ω) is unstable, it is stable if d
(2)
1 < 0, and d

(2)
1 is negative if

h̄2ε
1/2(α1 − α0)− σ̃ < 0,

i.e.

h̄2 <
σ̃

ε1/2(α1 − α0)
.

Thus, we note that

w2(ω) = h̄2 + iω−1
σ̃

α2
0

(
h̄2ε

1/2(α1 − α0)− σ̃
)G̃(h̄2)

h̄′(h̄2)
+O(ω−2).

Similarly, when i = 3, 4 and n = 1

w3(ω) = h̄3 + iω−1
σ̃

α2
0

(
h̄3ε

1/2(α1 − α1)− σ̃
)G̃(h̄3)

h̄′(h̄3)
+O(ω−2)

and w3(ω) is stable when

h̄3 <
σ̃

ε1/2(α1 − α0)
.

Also,

w4(ω) = h̄4 + iω−1
σ̃

α2
0

(
h̄4ε

1/2(α1 − α0)− σ̃
)G̃(h̄4)

h̄′(h̄4)
+O(ω−2)

and so w4(ω) is stable when

h̄4 <
σ̃

ε1/2(α1 − α1)
.
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Summarising, the stability of each branch is determined by the sign of

h̄iε
1/2(α1 − α0)− σ̃, i = 1, 2, 3, 4,

stable if negative, unstable if positive.

As before, the branches cannot change their stability for intermediate frequencies.

The exceptional case p̃1 = 0.

When p̃1 = 0 the situation is as at the end of Section 2.3.1 and we have two branches

beginning at the origin with arguments −π/4 and 3π/4 in the complex w plane, see

Figure 2.10.

Numerical results

Figure 2.9 illustrates the case p̃1 > 0. The branch w0(ω) beginning at the origin is

always unstable in each part of the Figure. If α0 and α1 are small enough then

p̃iε
1/2(α1 − α0)− σ̃ < 0, for i = 1, 2, 3,

h̄iε
1/2(α1 − α0)− σ̃ < 0, for i = 1, 2, 3,

and so all the branches wi(ω), i = 1, 2, 3, are stable. This is clear in the first subfigures

(a)–(c) of Figure 2.9 where α0 and α1 are small. As α0 and α1 increase, first w3(ω)

becomes unstable, see part (d), and as they increase further other branches become

unstable.

Figure 2.10 illustrates the exceptional case p̃1 = 0 and we see two branches beginning

at the origin, one stable with argument −π/4, the other unstable with argument

−3π/4. As with Figure 2.9, more branches become unstable as α0 and α1 increase.

The branch w0(ω) begins at the origin and is stable in each part of the Figures.

Figure 2.11 illustrates the case p̃1 < 0. The left hand branch is always unstable and,

as with Figures 2.9 and 2.10, more branches become unstable as α0 and α1 increase.

As with Figure 2.10, the branch w0(ω) begins at the origin and is stable in each part

of the Figure.
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Figure 2.9: The longitudinal squared wave speeds of constrained anisotropic TRDTE

theory. For each part, p̃1 = 1, p̃2 = 2, p̃3 = 3, W̃1 = 1.5, W̃2 = 2.5, σ̃ = 1, ε = 1.
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Figure 2.10: The longitudinal squared wave speeds of constrained anisotropic TRDTE

theory. For each part, p̃1 = 0, p̃2 = 2, p̃3 = 3, W̃1 = 1.5, W̃2 = 2.5, σ̃ = 1, ε = 1.
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Figure 2.11: The longitudinal squared wave speeds of constrained anisotropic TRDTE

theory. For each part, p̃1 = −1, p̃2 = 2, p̃3 = 3, W̃1 = 1.5, W̃2 = 2.5, σ̃ = 1, ε = 1.
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2.4 Constrained isotropic TRDTE

2.4.1 Usual form of deformation-temperature constraints

The field equations for TRDTE of constrained anisotropic thermoelastic materials are

(2.83) and (2.85) with the form of deformation-temperature constraint (2.81)

c̃ijkluk, lj − βij(θ,j + α1θ̇,j) + Ñij η̃,j = ρüi,

Tβqpu̇p,q + ρc(θ̇ + α0θ̈) + Tα ˙̃η − kijθ,ij = 0,

Ñijui,j − αθ = 0.

 (2.190)

For a material which is isotropic and incompressible at uniform temperature we use

the following forms, see [27, (2.2)],

c̃ijkl = λ̃δijδkl + µ̃(δikδjl + δilδjk), βij = βδij, kij = kδij, Ñij = Ñδij. (2.191)

With aid of (2.191) equations (2.190) may be written as

(λ̃+ µ̃)uj,ij + µ̃ui,jj − β(θ + α1θ̇),i + Ñ η̃,i = ρüi,

kθ,ii − Tβu̇j,j − αT ˙̃η = ρc(θ̇ + α0θ̈),

Ñui,i − αθ = 0.

 (2.192)

The secular equation

Now we are looking for solutions of (2.192) in the form of plane harmonic waves (2.86).

Similarly to Section 2.2.1, by substituting (2.86) into (2.192) to get the following

system of algebraic equations

[(µ̃− ρs−2)δij + (λ̃+ µ̃)ninj]Uj + iβ(ωs)−1ni(1− iωα1)Θ− iÑni(ωs)−1H̃ = 0,

TβωsnjUj + (ωs2k − iρc(1− iωα0))Θ− iαTH̃ = 0,

ÑniiωsUi − αΘ = 0.


(2.193)

Eliminate Θ and H̃ between equations (2.193). Firstly, from (2.193)3 we can write Θ

as follows

Θ =
iωsÑniUi

α
. (2.194)
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Substituting (2.194) into (2.193)2, we get

H̃ = −iα−1βωsnjUj +
(ωsÑni
α2T

)
(ωs2k − iρc(1− iωα0))Ui. (2.195)

Inserting (2.194) and (2.195) into (2.193)1, we get

[
(µ̃− w)δij + (λ̃+ µ̃)ninj

]
Uj + iβ(ωs)−1ni(1− iωα1)

(iωsÑniUi
α

)
− iÑ(ωs)−1ni

[
− iα−1βωsnjUj +

ωsÑni
α2T

(ωs2k − iρc(1− iωα0))Ui

]
= 0.

After simplifying and rearranging the equation we obtain{
(µ̃− w)δij +

[(
λ̃+ µ̃− α−1βÑ

(
1 + (1− iωα1)

))
−
(ρcÑ2

α2T

)(
(1− iωα0) +

iωk

wc

)]
ninj

}
Uj = 0, (2.196)

which gives in direct notation the secular equation

det
{

(µ̃− w)1 +
[(
λ̃+ µ̃− α−1βÑ(2− iωα1)

)
−
(ρcÑ2

α2T

)(
(1− iωα0) +

iωk

wc

)]
n⊗ n

}
= 0. (2.197)

Non-dimensionalize this equation by applying the dimensionless quantities (2.57) and

further dimensionless quantities

α′ = αT, c′ = ρcT/γ, ω∗ = γc/k,

to get

det
{

(µ̃′ − w′)1 +
[(
λ̃′ + µ̃′ − (εc′)1/2Ñ

α′
(2− iω′α′1)

)
−
(c′Ñ2

α′2

)(
(1− iω′α′0)−

iω′

w′

)]
n⊗ n

}
= 0. (2.198)

Now by using the standard identity (2.60), and dropping the dashes for convenience,

we get the secular equation as follows

(w−µ̃)2
[
w2−w

(
1+(εc)1/2Ñα−1(2−iωα1)−cÑ2α−2(1−iωα0)

)
+iωcÑ2α−2

]
= 0.

(2.199)
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This is the secular equation for isotropic TRDTE which is constrained by the uasual

deformation temperature constraint and has not previously appeared in the literature.

The repeated root w = µ̃ represents two purely elastic transverse waves, and longitu-

dinal waves are represented by the two roots of the following quadratic equation

α2w2 − w
(
α2 − (εc)1/2αÑ(2− iωα1)− cÑ2(1− iωα0)

)
+ iωcÑ2 = 0. (2.200)

Equation (2.200) may be written as

w2 − w
(

1− ε1/2σ̃(2− iωα1)− σ̃2(1− iωα0)
)

+ iωσ̃2 = 0, (2.201)

where

σ̃ =
c1/2Ñ

α
, (2.202)

which satisfies 0 < σ̃ <∞ because Ñ 6= 0 and α 6= 0. The ratio σ̃ is a measure of the

relative importance of the mechanical and thermal parts of the constraint (2.193)3

because σ̃ → 0 represents a purely isothermal constraint and σ̃ → ∞ represents a

purely mechanical constraint. Equation (2.201) is the final form which represents

the squared wave speeds of purely longitudinal waves propagating in an isotropic

thermoelastic material that is incompressible at uniform temperature. In this equation

there are two parameters ε and σ̃ which affect the behaviour of the roots of this

equation. Now we want to examine stability in the special cases σ̃ = 0 and σ̃ →∞.

Case 1: The isothermal constraint (Ñ = 0, α 6= 0)

Putting Ñ = 0 into equation (2.200) gives the quadratic equation with roots

w1 = 0, w2 = 1 (2.203)

in which (2.203)1 is a spurious root and (2.203)2 is the elastic equation. Both roots

satisfy Im w(ω) ≤ 0 and are therefore stable. With Ñ = 0, (2.193)3 implies θ = 0, so

that (2.193)1 gives the equation for isotropic isothermal elasticity and (2.193)2 solves

for η̃.

Case 2: The purely mechanical constraint (Ñ 6= 0, α = 0)

Inserting α = 0 into equation (2.200) reduces it to the single branch

w =
−iω

1− iωα0

. (2.204)
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Equation (2.204) is purely diffusive for small ω and, although a purely mechanical

constraint is not physically realistic, also satisfies the stability criterion Im w(ω) ≤ 0.

In this case putting α = 0 into (2.193)3 leads to absolute incompressibility, a purely

mechanical constraint where no volume changes are possible.

In the general case, in which neither Ñ nor α is equal to zero, it is convenient to go

back to equation (2.201). The roots of (2.201) are

w1,2 = Ā±
[
Ā2 − iωσ̃2

] 1
2
, (2.205)

where

Ā =
1

2

[
1− ε1/2σ̃(2− iωα1)− σ̃2(1− iωα0)

]
,

=
1

2

[
1 + ε− (ε1/2 + σ̃)2 + iωσ̃(α0σ̃ + α1ε

1/2)
]
. (2.206)

For fixed ε ≥ 0, as σ̃ increases from 0 to ∞, Re Ā decreases from 1
2

to −∞. Re Ā

becomes 0 for a critical value of σ̃ given by

σ̃c = (1 + ε)1/2 − ε1/2. (2.207)

In the special case where σ̃ = σ̃c, so Re Ā = 0 in (2.205), we get

w = ±(−iωσ̃2
c )

1
2 +O(ω),

= ±(e−i
π
2 σ̃c

2ω)
1
2 +O(ω),

So,

w = ±e−i
π
4ω

1
2 σ̃c +O(ω). (2.208)

This equation (2.208) is similar to its counterpart in the classical thermoelasticity,

see [29, (3.19)].

Low frequency expansions

When ω = 0, the roots of the secular equation (2.201) are

w1 = 1− 2ε1/2σ̃ − σ̃2, w2 = 0. (2.208a)

Now we are looking for the roots of the secular equation (2.201) as ω → 0.
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The first root is

w1 = 1− 2ε1/2σ̃ − σ̃2 + A(iω) +O(ω2), (2.208b)

inserting (2.208b) into the secular equation (2.201) to find A, we get

A = σ̃(α1ε
1/2 + α0σ̃)− σ̃2

1− 2ε1/2σ̃ − σ̃2
.

Then,

w1 = 1− 2ε1/2σ̃ − σ̃2 + iωσ̃
[
(α1ε

1/2 + α0σ̃)− σ̃

1− 2ε1/2σ̃ − σ̃2

]
+O(ω2).

The second roots may be written as

w2 = B(iω) +O(ω2), (2.208c)

inserting (2.202c) into the secular equation (2.201) to find B, we obtain

B =
σ̃2

1− 2ε1/2σ̃ − σ̃2
.

Thus,

w2 =
iωσ̃2

1− 2ε1/2σ̃ − σ̃2
+O(ω2).

If σ̃ > σ̃c we find that Im w1(ω) > 0 then w1 is unstable, and Im w2(ω) < 0, so w2 is

stable, but if σ̃ < σ̃c we cannot tell the sign of Im w1(ω) because it depends on the

relative values of the quantities occurring, but it is clear Im w2(ω) > 0, thus w2(ω) is

unstable. If σ̃ = σ̃c the analysis is not valid because the denominator will be zero, so

the roots of the secular equation in this case are (2.208).

High frequency expansions

In the high frequency as ω → ∞, so
1

ω
→ 0. The secular equation (2.201) may be

written as

( 1

iω

)
w2 − w

{( 1

iω

)
− ε1/2σ̃

[( 2

iω

)
− α1

]
− σ̃2

[( 1

iω

)
− α0

]}
+ σ̃2 = 0. (2.208d)

The secular equation (2.208d) at
1

iω
= 0 becomes

−wσ̃(ε1/2α1 + σ̃α0) + σ̃2 = 0.
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The roots now are

w1 =
σ̃

ε1/2α1 + σ̃α0

, w2 →∞.

Now we are looking at the roots as
1

ω
→ 0. The roots in this case may be written as

w1 =
σ̃

ε1/2α1 + σ̃α0

+ A(iω)−1 +O(ω−2), (2.208e)

and

w2 = B(iω) + C +O(ω−1). (2.208f)

Firstly, inserting (2.208e) into the secular equation (2.208d) to find A we get

A =
1

(ε1/2α1 + σ̃α0)2

{ σ̃

ε1/2α1 + σ̃α0

− (1− 2ε1/2σ̃ − σ̃2)
}
.

So, the first root becomes

w1 =
σ̃

ε1/2α1 + σ̃α0

− iω−1

(ε1/2α1 + σ̃α0)2

[ σ̃

ε1/2α1 + σ̃α0

− (1− 2ε1/2σ̃ − σ̃2)
]

+O(ω−2).

If σ̃ < σ̃c, we cannot tell about the sign of Im w1(ω), and if σ̃ > σ̃c we find that Im

w1(ω) < 0 so w1 is stable. But if σ̃ = σ̃c, the analysis is not valid and we can get the

roots of this special case as (2.208).

Similarly, substituting (2.208f) into (2.208d) to find B and C we get

B = σ̃(ε1/2α1 + σ̃α0),

and

C = (1− 2ε1/2σ̃ − σ̃2)− σ̃

ε1/2α1 + σ̃α0

.

Thus, the second root may be written as

w2 = iωσ̃(ε1/2α1 + σ̃α0) + (1− 2ε1/2σ̃ − σ̃2)− σ̃

ε1/2α1 + σ̃α0

+O(ω−2).

It is clear that Im w2(ω) > 0, thus w2 is unstable in the high frequency limit.

Now we consider the two former special cases.

Case 1: The isothermal constraint viewed as the limit σ̃ → 0

From (2.205)

w1,2 =
1

2

(
1−ε1/2σ̃(2−iωα1)−σ̃2(1−iωα0)

)
±1

2

{(
1−ε1/2σ̃(2−iωα1)−σ̃2(1−iωα0)

)2
−4iωσ̃2

}1/2

.
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After expanding and using the binomial expansion we obtain the first root

w1 = 1− ε1/2σ̃(2− iωα1)− σ̃2(1− iωα0)− iωσ̃2 +O(σ̃3). (2.209)

Rewrite (2.209) as

w1 = 1− 2ε1/2σ̃ − σ̃2 + iωσ̃(α1ε
1/2 + α0σ̃ − σ̃) +O(σ̃3), (2.209a)

and the second root as

w2 = iωσ̃2 +O(σ̃3). (2.210)

Equation (2.209a) represents an unstable branch, for σ̃ small enough, starting from

the point (putting ω = 0 in equation (2.209) )

w = 1− 2ε
1
2 σ̃ − σ̃2,

and equation (2.210) describes an unstable branch starting from the origin. Also

equation (2.209) is similar to its counterpart in classical thermoelasticity [29, (3.21)].

Case 2: The purely mechanical constraint viewed as the limit σ̃ →∞
When σ̃ → ∞, meaning

1

σ̃
is small, from (2.205) after expanding and using the

binomial expansion, we obtain

w1 =
−iω

(1− iωα0)

[
1− ε1/2σ̃−1 (2− iωα1)

(1− iωα0)

]
+O(σ̃−2). (2.211)

w2 = 1−ε1/2σ̃(2−iωα1)−σ̃2(1−iωα0)+
iω

(1− iωα0)

[
1−ε1/2σ̃−1 (2− iωα1)

(1− iωα0)

]
+O(σ̃−2).

(2.212)

Putting α0 = α1 = 0 in equations (2.211) and (2.212) we will return to classical

thermoelasticity [29, (3.22)].

Numerical results

In Figure 2.12 we use ε = 1, α0 = 0.1 and α1 = 0.2, and w is plotted for a range

of values of σ̃. We have two longitudinal waves one is finite and the other tends to

infinity. There is × at zero and 1− 2ε1/2σ̃− σ̃2 marking the low frequency limits, and

◦ indicating the high frequency limits. If σ̃ < σ̃c both branches are unstable one of

them starting from the origin and the other starting from the point 1−2ε1/2σ̃− σ̃2, see

subfigures (a)–(c). If σ̃ > σ̃c one branch only maintains the instability and starting
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from 1 − 2ε1/2σ̃ − σ̃2, and the other becomes stable and emanating from the origin,

see subfigures (e) and (f). In the special case when σ̃ = σ̃c the branches become

a connected line passing through the origin at angle −π/4 to the real axis, see the

subfigure (d).

Varying the parameters α1, α0 and ε while changing the magnitude of ω does not

have any substantive influence on the stability.
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Figure 2.12: The longitudinal squared wave speeds of isotropic thermelastic mate-

rial for Temperature-rate-dependent thermoelasticity theory with incompressibility

at uniform temperature. For each part (ε = 1, α0 = 0.1, α1 = 0.2), (a)σ̃ = 0.1σ̃c,

(b)σ̃ = 0.2σ̃c, (c)σ̃ = 0.3σ̃c, (d)σ̃ = σ̃c, (e)σ̃ = 3σ̃c, (f)σ̃ = 5σ̃c.
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2.4.2 Alternative form of deformation-temperature constraints

In this section we will use equations (2.192)1,2 and the alternative form of defor-

mation temperature constraint (2.144), to get the field equations for the alternative

deformation-temperature constraint TRDTE theory for the isotropic case:

(λ̃+ µ̃)uj,ij + µ̃ui,jj − β(θ + α1θ̇),i + Ñ η̃,i = ρüi,

kθ,ii − Tβu̇j,j − αT ˙̃η = ρc(θ̇ + α0θ̈),

Ñui,i − α(θ + α0θ̇) = 0.

 (2.213)

The secular equation

Now we are looking for solutions in the form of plane harmonic waves (2.86), by

inserting (2.86) into (2.213) to get the system of algebraic equations

[(µ̃− ρs−2)δij + (λ̃+ µ̃)ninj]Uj + iβ(ωs)−1ni(1− iωα1)Θ− iÑni(ωs)−1H̃ = 0,

TβωsnjUj + (ωs2k − iρc(1− iωα0))Θ− iαTH̃ = 0,

ÑniiωsUi − α(1− iωα0)Θ = 0.


(2.214)

Eliminate Θ and H̃ between (2.214), similarly to the previous sections. From (2.214)3

we can rewrite Θ as follows

Θ =
iωsÑniUi
α(1− iωα0)

. (2.215)

Substituting (2.215) into (2.214)2, we get

H̃ = −iα−1βωsnjUj +
( ωsÑnj
α2T (1− iωα0)

)
(ωs2k − iρc(1− iωα0))Ui. (2.216)

Inserting (2.215) and (2.216) into (2.214)1, we get[
(µ̃− w)δij + (λ̃+ µ̃)ninj

]
Uj + iβ(ωs)−1ni(1− iωα1)

( iωsÑniUi
α(1− iωα0)

)
−

iÑ(ωs)−1nj

[
− iα−1βωsnjUj +

ωsÑni
α2T (1− iωα0)

(ωs2k − iρc(1− iωα0))Ui

]
= 0.

(2.217)

After simplifying and rearranging the equation we obtain{
(µ̃− w)δij +

[
λ̃+ µ̃− α−1βÑ

(
1 +

1− iωα1

1− iωα0

)
−( ρcÑ2

α2T (1− iωα0)

)(
(1− iωα0) +

iωk

wc

)]
ninj

}
Uj = 0, (2.218)
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which gives in direct notation the secular equation

det
{

(µ̃− w)1 +
[
λ̃+ µ̃− α−1βÑ

(
1 +

1− iωα1

1− iωα0

)
−( ρcÑ2

α2T (1− iωα0)

)(
(1− iωα0) +

iωk

wc

)]
n⊗ n

}
= 0. (2.219)

Non-dimensionalize this equation by applying the dimensionless quantities (2.57) to

get

det
{

(µ̃′ − w′)1 +
[(
λ̃′ + µ̃′ − (εc′)1/2Ñ

α′

(
1 +

1− iω′α′1
1− iω′α′0

))
−
( c′Ñ2

α′2(1− iω′α′0)

)
(

(1− iω′α′0) +
iω′

w′

)]
n⊗ n

}
= 0. (2.220)

Now by using the standard identity (2.60), dropping the dashes for convenience, we

get the secular equation as follows

(w − µ̃)2
[
α2w2 − w

(
α2 − (εc)1/2αÑ

(
1 +

1− iωα1

1− iωα0

)
− cÑ2

)
+

iωcÑ2

1− iωα0

]
= 0.

(2.221)

This is the secular equation for isotropic TRDTE which is constrained by the alter-

native deformation temperature constraint and has not previously appeared in the

literature.

The repeated root w = µ̃ represents two purely elastic transverse waves, and longitu-

dinal waves are represented by the roots of the following quadratic equation

α2w2 − w
(
α2 − (εc)1/2αÑ

(
1 +

1− iωα1

1− iωα0

)
− cÑ2

)
+

iωcÑ2

1− iωα0

= 0. (2.222)

By dividing by α2 we get

w2 − w
(

1− (εc)1/2Ñ

α

(
1 +

1− iωα1

1− iωα0

)
− cÑ2

α2

)
+

iωcÑ2

α2(1− iωα0)
= 0. (2.223)

We can rewrite equation (2.223) as

w2 + w
(
σ̃2 + ε1/2σ̃

(
1 +

1− iωα1

1− iωα0

)
− 1
)

+
iωσ̃2

(1− iωα0)
= 0, (2.224)

This equation may be written as

w2(1− iωα0)− w
[
(1− iωα0)− ε1/2σ̃

(
2− iω(α1 + α0)

)
− σ̃2(1− iωα0)

]
+ iωσ̃2 = 0.

(2.224a)
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where σ̃ is defined earlier in (2.202). Returning to the special cases that were discussed

in Section 2.4.1 (Ñ = 0, α 6= 0) and (Ñ 6= 0, α = 0), we will get the same equations

(2.203) and (2.204) respectively. In examining the more general case in which neither

Ñ nor α is equal to zero, it is convenient to go back to equation (2.224). The roots

of (2.224) are

w1,2 = Ā±
[
Ā2 − iωσ̃2

1− iωα0

] 1
2
, (2.225)

where

Ā =
1

2

[
1− ε1/2σ̃

(
1 +

1− iωα1

1− iωα0

)
− σ̃2

]
. (2.226)

Similarly to Section 2.4.1 for fixed ε ≥ 0 and fixed ω = 0, as σ̃ increases from 0 to∞,

Re Ā decreases from 1
2

to −∞,

Re Ā =
1

2

[
1− ε1/2σ̃

(
1 +

1 + ω2α0α1

1 + ω2α2
0

)
− σ̃2

]
.

Putting ω = 0, we get

Re Ā =
1

2

[
1− 2ε1/2σ̃ − σ̃2

]
.

Re Ā becomes 0 at ω = 0 for a critical value of σ̃ given by

σ̃c = (1 + ε)1/2 − ε1/2. (2.227)

In the special case where σ̃ = σ̃c, (2.225) gives

w = ±(−iωσ̃2
c )

1
2 +O(ω),

= ±(e−i
π
2 σ̃c

2ω)
1
2 +O(ω),

So,

w = ±e−i
π
4ω

1
2 σ̃c +O(ω). (2.228)

Equation (2.228) is similar to its counterpart (2.208) in Section 2.4.1.

Low frequency expansions

In the low frequency at ω = 0 the secular equation (2.224) becomes

w2 − w(1− 2ε1/2σ̃ − σ̃2) = 0,
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so the roots of this equation are

w1 = 1− 2ε1/2σ̃ − σ̃2, w2 = 0.

Now the roots of the secular equation (2.224) when ω → 0 may be written as

w1 = 1− 2ε1/2σ̃ − σ̃2 + A(iω) +O(ω2). (2.228a)

w2 = B(iω) + C +O(ω2). (2.228b)

In order to get A we need to insert (2.228a) into (2.224), so we get

A = σ̃
[
ε1/2(α1 − α0)−

σ̃

1− 2ε1/2σ̃ − σ̃2

]
.

Thus, the first root is

w1 = 1− 2ε1/2σ̃ − σ̃2 + iωσ̃
[
ε1/2(α1 − α0)−

σ̃

1− 2ε1/2σ̃ − σ̃2

]
+O(ω2).

To get the second root we need firstly to find B, by substituting (2.228b) into (2.224),

so

B =
σ̃2

1− 2ε1/2σ̃ − σ̃2
,

thus,

w2 =
iωσ̃2

1− 2ε1/2σ̃ − σ̃2
+O(ω2).

It is clear that if σ̃ > σ̃c we find that w1 is unstable and w2 is stable, if σ̃ < σ̃c we

cannot tell about the sign of Im w1(ω) because it depends on the relative values of

the quantities occurring, while Im w2(ω) > 0 thus w2 is unstable. But if σ̃ = σ̃c the

analysis is not valid and we can get the roots of the secular equation in the special

case as (2.228).

High frequency expansions

The secular equation (2.224a) after dividing by iω may written as

w2(
1

iω
−α0)−w

{
(

1

iω
−α0)− ε1/2σ̃

[ 2

iω
− (α1 +α0)

]
− σ̃

2

iω
+α0σ̃

2
}

+ σ̃2 = 0. (2.228c)

In the high frequency limits as ω → ∞ we find that
1

ω
→ 0, so the secular equation

(2.228c) becomes

α0w
2 − w

[
α0 − ε1/2σ̃(α1 + α0)− α0σ̃

2
]
− σ̃2 = 0.
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Define

H(w) ≡ α0w
2 − w

[
α0 − ε1/2σ̃(α1 + α0)− α0σ̃

2
]
− σ̃2.

To determine the positions of zeros of H(w) we need to examine the sign changes

H(−∞) =∞ > 0,

H(0) = −σ̃2 < 0,

H(∞) =∞ > 0.

(2.228d)

So we have in the high frequency limit, real roots h̄1 and h̄2 of H(w) = 0 satisfying

−∞ < h̄1 < 0 < h̄2 <∞. (2.228e)

They satisfy the following quadratic polynomial

h̄(w) = (w − h̄1)(w − h̄2), (2.228f)

and we must have

H(w) = α0h̄(w).

Collect terms in iω in (2.224a) together:

w2−w(1−2ε1/2σ̃−σ̃2)−iω
[
α0w

2−w(α0−ε1/2σ̃(α1+α0)−α0σ̃
2)−σ̃2

]
= 0. (2.228g)

With aid of(2.228f) equation (2.228g) may be written as

w2 − w(1− 2ε1/2σ̃ − σ̃2)− iωα0(w − h̄1)(w − h̄2) = 0. (2.228h)

When ω →∞ the roots written as

w1 = h̄1 + A(iω)−1 +O(ω−2), w2 = h̄2 +B(iω)−1 +O(ω−2). (2.228i)

To get A and B we need to insert (2.228i) into (2.228h), we find that

A =
h̄1(h̄1 −

(
1− 2ε1/2σ̃ − σ̃2)

)
α0(h̄1 − h̄2)

,

and

B =
h̄2(h̄2 −

(
1− 2ε1/2σ̃ − σ̃2)

)
α0(h̄2 − h̄1)

.
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Thus, the roots are

w1 = h̄1 − iω−1
{ h̄1(h̄1 − (1− 2ε1/2σ̃ − σ̃2)

)
α0(h̄1 − h̄2)

}
+O(ω−2),

and

w2 = h̄2 − iω−1
{ h̄2(h̄2 − (1− 2ε1/2σ̃ − σ̃2)

)
α0(h̄2 − h̄1)

}
+O(ω−2).

If σ̃ < σ̃c, we find that Im w1(ω) > 0 thus w1 is unstable but we cannot tell about the

sign of Im w2(ω) because it depends on the sign of the relative values of the quantities

occurring. If σ̃ > σ̃c we cannot tell about the sign of Im w1(ω) but Im w2(ω) < 0 thus

w2 is stable . If σ̃ = σ̃c, the analysis is not valid and we get the roots of the secular

equation in the special case as (2.228).

Now we consider the two former special cases.

Case 1: The isothermal constraint viewed as the limit σ̃ → 0

Equation (2.225) may be written as

w1,2 =
1

2

(
1− ε1/2σ̃

(
1 +

1− iωα1

1− iωα0

)
− σ̃2

)
± 1

2

{(
1− ε1/2σ̃

(
1 +

1− iωα1

1− iωα0

)
− σ̃2

)2
− 4iωσ̃2

1− iωα0

}1/2

.

After expanding and using the binomial expansion we get

w1 = 1− ε1/2σ̃
(

1 +
1− iωα1

1− iωα0

)
− σ̃2 − iωσ̃2

1− iωα0

+O(σ̃3), (2.229)

w2 =
iωσ̃2

1− iωα0

+O(ω3). (2.230)

Equation (2.229) represents a stable branch starting from the point (putting ω = 0 in

equation (2.229) )

w = 1− ε
1
2 σ̃ − σ̃2,

and equation (2.230) describes an unstable branch starting from the origin.

Case 2: The purely mechanical constraint viewed as the limit σ̃ →∞
When σ̃ →∞ means

1

σ̃
is small, from (2.224), after expanding and using the binomial

expansion, we obtain

w1 =
−iω

1− iωα0

(
1− ε1/2σ̃−1

(
1 +

1− iωα1

1− iωα0

))
+O(σ̃−2). (2.231)
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w2 = 1−ε1/2σ̃
(

1+
1− iωα1

1− iωα0

)
− σ̃2 +

iω

1− iωα0

(
1−ε1/2σ̃−1

(
1+

1− iωα1

1− iωα0

))
+O(σ̃−2).

(2.232)

Putting α0 = α1 = 0 in equations (2.231) and (2.232) we will recover the roots of

the secular equation in the low and high frequencies in the classical thermoelastcity,

see [29, (3.21)–(3.22)].

Numerical results

In each of Figures 2.14 and 2.15 we use α0 = 0.01 and α1 = 0.02 and we choose ε = 0

in Figure 2.14 and ε = 1 in Figure 2.15. In both of them we have two longitudinal

waves one stable and the other unstable and both finite. The low frequency limits

are indicated by a × and the high frequency limits are indicated by a ◦. If σ̃ < σ̃c

the stable branch starting from the point 1 − 2ε1/2σ̃ − σ̃2, and the unstable branch

begining at the origin, see sub-figures (a) and (b). But this situation is reversed if

σ̃ > σ̃c as shown in sub-figures (d)–(f). In the special case when σ̃ = σ̃c the branches

become a connected line passing through the origin at angle −π/4 to the real axis,

see sub-figure (c).

Varying the parameters α1, α0 while changing the magnitude of ω does not have any

substantive influence on the stability.
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Figure 2.13: The longitudinal squared wave speeds of isotropic thermelastic mate-

rial for temperature-rate-dependent thermoelasticity theory with incompressibility at

uniform temperature (alternative form). For each part (ε = 0, α0 = 0.01, α1 = 0.02),

(a)σ̃ = 0.1σ̃c, (b)σ̃ = 0.6σ̃c, (c)σ̃ = σ̃c, (d)σ̃ = 1.3σ̃c, (e)σ̃ = 2σ̃c, (f)σ̃ = 10σ̃c.
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Figure 2.14: The longitudinal squared wave speeds of isotropic thermelastic mate-

rial for temperature-rate-dependent thermoelasticity theory with incompressibility at

uniform temperature. For each part (ε = 1, α0 = 0.01, α1 = 0.02), (a)σ̃ = 0.1σ̃c,

(b)σ̃ = 0.6σ̃c, (c)σ̃ = σ̃c, (d)σ̃ = 1.3σ̃c, (e)σ̃ = 2σ̃c, (f)σ̃ = 10σ̃c.
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Chapter 3

Temperature-rate-dependent

thermoelasticity with generalized

thermoelasticity: model 1.

Introduction

Chandrasekharaiah and Keshavan [23] combined the field equations of classical ther-

moelasticity (CTE) and two alternative models of non-classical thermoelasticity, one

of the models being Lord and Shulman’s theory (GTE), see [24], and the other being

Green and Lindsay’s theory (TRDTE), see [21]. We shall indicate their theory by the

abbreviation TRDTE+GTE (1). In this chapter we consider the anisotropic material

and isotropic material separately. Each is either unconstrained or subject to the usual,

or an alternative, deformation-temperature constraint. The linearized field equations

have been given in each case. We run parallel to Chapter 2 although the analysis

here has to include the relaxation time τ . We find that wave stability/instability is

affected by the presence of the relaxation times, namely, α0, α1 and τ .
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3.1 Unconstrained anisotropic TRDTE+GTE (1)

3.1.1 The secular equation

The systems of equations for TRDTE and GTE can be written as follows [23, (2.3)]

c̃ijkluk, jl − βij
(

1 + α1
∂

∂t

)
θ, j = ρüi,

kijθ, ij −
(

1 + τ0
∂

∂t

)
Tβiju̇i, j = ρc

(
1 + α0

∂

∂t

)
θ̇.

 (3.1)

Putting τ0 = 0 with α1 ≥ α0 ≥ 0 gives TRDTE, and putting α1 = 0 with α0 = τ0 > 0,

gives GTE. We need to use the form of plane harmonic waves,

{ui, θ} = {Ui,Θ} exp {iω(sn · x− t)}, (3.2)

similarly to Section 2.1 in the previous chapter. Substitute (3.2) into (3.1), by inserting

the following derivatives into (3.1),

uk, jl = −(ωs)2njnlUke
χ,

(θ + α1θ̇), j = iωsnj(1− iωα1)Θe
χ, üi = Ui(−ω2)eχ,

θ, ij = −(ωs)2ninjΘe
χ, u̇i, j = ω2snjUie

χ,

üi, j = −iω3snjUie
χ, θ̇ = −iωΘeχ, θ̈ = −ω2Θeχ,


(3.3)

where

χ = iω(sn · x− t).

Then cancelling all exponential factors, we obtain the propagation conditions. Firstly

(3.1)1 becomes

c̃ijkl(−ω2s2)njnlUk − βij(i(1− iωα1)ωsnj)Θ = −ρω2Ui. (3.4)

Rearranging the equation after dividing by (−ω2s2) we get

(c̃ijklnjnl − ρs−2δik)Uk + βijnj(ωs)
−1i(1− iωα1)Θ = 0. (3.5)

This equation is the same as (2.5)1 of TRDTE. Now equation (3.1)2, becomes

kij(−ω2s2)ninjΘ− Tβij(ω2snjUi + τ0(−iω3)snjUi) = ρc(−iωΘ + α0(−ω2)Θ). (3.6)
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Rearranging the equation after dividing by (−ω2s2), we obtain

Ts−1βijnj(1− iωτ0)Ui + (kijninj − iω−1(1− iωα0)cρs
−2)Θ = 0. (3.7)

We have defined earlier that the isothermal acoustic tensor and thermal conductivity

scalar are given by

Q̃ij = c̃ijklninj, k = kijninj.

So, equations (3.5) and (3.7) can be written as

(Q̃ij − ρs−2δik)Uk + βijnj(ωs)
−1i(1− iα1ω)Θ = 0,

T s−1βijnj(1− iωτ0)Ui + (k − iω−1(1− iα0ω)cρs−2)Θ = 0.

 (3.8)

In matrix form, similarly to equations (2.7), on taking

βijnj = bi, and β = Ts−1(1− iωτ0),

equations (3.8) may be written as
Q̃11 − ρs−2 Q̃12 Q̃13 i(1− iωα1)ω

−1s−1b1

Q̃21 Q̃22 − ρs−2 Q̃23 i(1− iωα1)ω
−1s−1b2

Q̃31 Q̃32 Q̃33 − ρs−2 i(1− iωα1)ω
−1s−1b3

βb1 βb2 βb3 k − iω−1(1− iωα0)cρs
−2

 ·

U1

U2

U3

Θ

 = 0.

These equations have non-zero solutions if and only if∣∣∣∣∣∣∣∣∣∣∣

Q̃11 − ρs−2 Q̃12 Q̃13 i(1− iωα1)ω
−1s−1b1

Q̃21 Q̃22 − ρs−2 Q̃23 i(1− iωα1)ω
−1s−1b2

Q̃31 Q̃32 Q̃33 − ρs−2 i(1− iωα1)ω
−1s−1b3

βb1 βb2 βb3 k − iω−1(1− iωα0)cρs
−2

∣∣∣∣∣∣∣∣∣∣∣
= 0.

This determinant may be written as

D ≡

∣∣∣∣∣∣Q̃− w1 ᾱb

βbT γ1

∣∣∣∣∣∣ , (3.9)

where

w = ρs−2, ᾱ = i(1− iα1ω)ω−1s−1, γ1 = k − iω−1(1− iωα0)cw, β = Ts−1(1− iωτ0).
(3.10)
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We can rewrite this determinant as

D ≡

∣∣∣∣∣∣Q̃− w1 ᾱb + 0

βbT −δ + (γ1 + δ)

∣∣∣∣∣∣ = 0,

in which so far δ is an arbitrary quantity. Using properties of determinants to expand

by the fourth column we have

D ≡

∣∣∣∣∣∣Q̃− w1 ᾱb

βbT −δ

∣∣∣∣∣∣+

∣∣∣∣∣∣Q̃− w1 0

βbT γ1 + δ

∣∣∣∣∣∣ . (3.11)

The first determinant is

D1 =

∣∣∣∣∣∣∣∣∣∣∣

Q̃11 − w Q̃12 Q̃13 ᾱb1

Q̃21 Q̃22 − w Q̃23 ᾱb2

Q̃31 Q̃32 Q̃33 − w ᾱb3

βb1 βb2 βb3 −δ

∣∣∣∣∣∣∣∣∣∣∣
.

Remove ᾱb from the fourth column by taking

row 1−
( ᾱb1
−δ

)
row 4,

row 2−
( ᾱb2
−δ

)
row 4,

row 3−
( ᾱb3
−δ

)
row 4.

So, we obtain

D1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣

(Q̃11 − w)− (
ᾱb1
−δ

)βb1 Q̃12 − (
ᾱb1
−δ

)βb2 Q̃13 − (
ᾱb1
−δ

)βb3 0

Q̃21 − (
ᾱb2
−δ

)βb1 (Q̃22 − w)− (
ᾱb2
−δ

)βb2 Q̃23 − (
ᾱb2
−δ

)βb3 0

Q̃31 − (
ᾱb3
−δ

)βb1 Q̃32 − (
ᾱb3
−δ

)βb2 (Q̃33 − w)− (
ᾱb3
−δ

)βb3 0

βb1 βb2 βb3 −δ

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Expanding D1 by the fourth column gives

D1 = −δ det{(Q̃− w1) +
ᾱβ

δ
b⊗ b}, (3.12)

now we may use the relationship between Q̃ and Q̂, (2.13) and (2.14), to define D1

in terms of Q̂, with the aid of (3.10)2,4 we get the value of δ

δ = i(1− iωα1)(1− iωτ0)ω−1cw. (3.13)
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Inserting (3.13) into (3.12), shows that the first determinant is given by

D1 = −i(1− iωα1)(1− iωτ0)ω−1cw det{Q̂− w1}. (3.14)

The second determinant of (3.11) is

D2 =

∣∣∣∣∣∣∣∣∣∣∣

(Q̃11 − w) Q̃12 Q̃13 0

Q̃21 (Q̃22 − w) Q̃23 0

Q̃31 Q̃32 (Q̃33 − w) 0

βb1 βb2 βb3 γ1 + δ

∣∣∣∣∣∣∣∣∣∣∣
= (γ1 + δ) det{Q̃− w1}. (3.15)

So, after inserting (3.10)3 and (3.13) into (3.15) the second determinant may be written

as

D2 = [(k − iω−1(1− iωα0)cw) + i(1− iωα1)(1− iωτ0)ω−1cw] det{Q̃− w1}. (3.16)

Simplifying this equation we get

D2 = [k + cw((α1 − α0) + τ0(1− iωα1))] det{Q̃− w1}. (3.17)

Thus

D ≡ −i(1− iωα1)(1− iωτ0)ω−1cw det{Q̂− w1}

+ [k + cw((α1 − α0) + τ0(1− iωα1))] det{Q̃− w1}. (3.18)

Dividing D by [−i(1− iωα1)(1− iωτ0)ω−1c] we get the secular equation

w det{Q̂− w1}+

{
iωc−1[k + cw((α1 − α0) + τ0(1− iωα1))]

(1− iωα1)(1− iωτ0)

}
det{Q̃− w1} = 0.

(3.19)

This is the secular equation for unconstrained anisotropic TRDTE+GTE (1) and has

not previously appeared in the literature.

To non-dimensionlize this equation, we have to use the dimensionless quantities (2.103)

with the further non-dimensional quantity

τ = τ0ω
∗. (3.20)
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For a more convenient form we drop the dashes, so the secular equation may be written

as

w det{w1− Q̂}+

{
iω[1 + w((α1 − α0) + τ(1− iωα1))]

(1− iωα1)(1− iωτ)

}
det{w1− Q̃} = 0. (3.21)

The secular equation can be written in terms of q̃i the eigenvalues of Q̃, and q̂i, the

eigenvalues of Q̂, where i = 1, 2, 3 as

w(w − q̂1)(w − q̂2)(w − q̂3) +

{
iω{1 + w[(α1 − α0) + τ(1− iωα1)]}

(1− iωα1)(1− iωτ)

}
(w − q̃1)(w − q̃2)(w − q̃3) = 0. (3.22)

Rewrite equation (3.22) in a simple form

F̂ (w) +

[
iω{1 + w[(α1 − α0) + τ(1− iωα1)]}

(1− iωα1)(1− iωτ)

]
G̃(w) = 0. (3.23)

We have defined F̂ (w) and G̃(w) earlier in (2.28).

For τ = 0 (3.23) reduces at (2.27), as expected. In the GTE limit, where α1 = 0

and α0 = τ > 0, the secular equation (3.23) reduces to the anisotropic GTE secular

equation, see Scott [32, (4)].

Low frequency expansions

When ω = 0, the roots of the secular equation (3.23) are the zeros of F̂ (w) : w =

q̂i, i = 0, 1, 2, 3, defining, q̂0 ≡ 0. Taylor expansions of the roots of the secular

equation (3.23) take the form

wi(ω) = q̂i +
∞∑
i=1

d(i)n (−iω)n, i = 0, 1, 2, 3. (3.24)

The first branch, when i = 0, is

w0(ω) = q̂0 + d1
(0)(−iω) +O(ω2). (3.25)

By substituting (3.25) into (3.23), we obtain

d
(0)
1 =

q̃1q̃2q̃3
q̂1q̂2q̂3

> 0. (3.26)

Insert (3.26) into (3.25), we get

w0(ω) = −iω G̃(0)

F̂ ′(0)
+O(ω2). (3.27)
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This wave is stable according to the stability criterion (2.24). When i = 1, equation

(3.24) becomes

w1(ω) = q̂1 + d
(1)
1 (−iω) +O(ω2). (3.28)

Insert (3.28) into (3.23) we get

d
(1)
1 = {1 + q̂1(α1 − α0 + τ)}(q̂1 − q̃1)(q̂1 − q̃2)(q̂1 − q̃3)

q̂1(q̂1 − q̂2)(q̂1 − q̂3)
> 0, (3.29)

because of the interlacing (2.25) and the fact that α1 ≥ α0. Thus,

w1 = q̂1 − iω {1 + q̂1(α1 − α0 + τ)} G̃(q̂1)

F̂ ′(q̂1)
+O(ω2). (3.30)

It is clear that Im w1(ω) < 0, which means the condition of stability (2.24) is satisfied,

so this mode is stable. Similarly, when i = 2, 3 we find that

w2 = q̂2 − iω{1 + q̂2(α1 − α0 + τ)}G̃(q̂2)/F̂
′(q̂2) +O(ω2). (3.31)

w3 = q̂3 − iω{1 + q̂3(α1 − α0 + τ)}G̃(q̂3)/F̂
′(q̂3) +O(ω2). (3.32)

These two equations also represent stable waves. So there are four stable waves in the

low frequency limit.

High frequency expansions

The roots of the secular equation (3.23) in the high frequency limit ω →∞, may be

obtained by taking (iω)−1 → 0. By putting ω =
1

ζ
, so iω =

−1

iζ
. The secular equation

(3.23) becomes

F̂ (w)− (iζ)−1{1 + w[(α1 − α0) + τ(1 + (iζ)−1α1)]}
(1 + (iζ)−1α1)(1 + (iζ)−1τ)

G̃(w) = 0. (3.33)

We can write (3.33) in the following form

F̂ (w) +KG̃(w) = 0, (3.34)

where

K ≡ −(iζ)−1{1 + w[(α1 − α0) + τ(1 + (iζ)−1α1)]}
(1 + (iζ)−1α1)(1 + (iζ)−1τ)

.

Multiplying numerator and denominator of K by (iζ)2 we get

K =
−{iζ + wiζ[α1 − α0 + τ(1 + (iζ)−1α1)]}

(iζ + α1)(iζ + τ)
. (3.35)
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Simplifying,

K =
−{iζ + w[iζ(α1 − α0 + τ) + α1τ ]}

α1τ(1 + iζ/α1)(1 + iζ/τ)
. (3.36)

At ζ = 0, (3.36) becomes,

K = −w. (3.37)

So with aid of (3.37) the secular equation (3.34) evaluated at ζ = 0, is

H(w) ≡ w(w − q̂1)(w − q̂2)(w − q̂3)− w(w − q̃1)(w − q̃2)(w − q̃3) = 0. (3.38)

This equation is not a quartic in w as the w4 terms cancel out. It is a cubic equation

in w with one root w = 0 denoted by q̄1 = 0 and the other roots denoted by q̄2 and

q̄3 with q̄2 < q̄3. Now we want to examine the sign changes of H(w). By using (3.38)

and the interlacing (2.25) we find that

H(0) = 0,

H(q̃1) = q̃1(q̃1 − q̂1)(q̃1 − q̂2)(q̃1 − q̂3) < 0,

H(q̂1) = −q̂1(q̂1 − q̃1)(q̂1 − q̃2)(q̂1 − q̃3) < 0,

H(q̃2) = q̃2(q̃2 − q̂1)(q̃2 − q̂2)(q̃2 − q̂3) > 0,

H(q̂2) = −q̂2(q̂2 − q̃1)(q̂2 − q̃2)(q̂2 − q̃3) > 0,

H(q̃3) = q̃3(q̃3 − q̂1)(q̃3 − q̂2)(q̃3 − q̂3) < 0,

H(q̂3) = −q̂3(q̂3 − q̃1)(q̂3 − q̃2)(q̂3 − q̃3) < 0,

H(∞) = −∞ < 0,

(3.39)

the last following because the coefficient of w3 in H(w) is

−(q̂1 + q̂2 + q̂3 − q̃1 − q̃2 − q̃3) < 0.

From (3.39), it is easy to see that the zeros of H(w), are such that the root q̄2 is

between q̂1 and q̃2 and q̄3 is between q̂2 and q̃3. It is clear that the zeros q̄2 < q̄3 of

H(w) are real and interlace according to

0 < q̃1 ≤ q̂1 ≤ q̄2 ≤ q̃2 ≤ q̂2 ≤ q̄3 ≤ q̃3 ≤ q̂3. (3.40)

Define a cubic polynomial

h̄(w) = w(w − q̄2)(w − q̄3), (3.41)
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which must be a scalar multiple of H(w) because both have same three roots:

H(w) ≡ −(q̂1 + q̂2 + q̂3 − q̃1 − q̃2 − q̃3)h̄(w). (3.42)

Now looking for roots when ζ → 0, so we can rewrite (3.35) as follows

K = −
{
w +

iζ

α1τ

[
1 + w(α1 − α0 + τ)

]}(
1− iζ

α1

)(
1− iζ

τ

)
+O(ζ2). (3.43)

After expanding and simplifying we obtain

K = −
{
w + iζ

( 1

α1τ
− wα0

α1τ

)}
+O(ζ2). (3.44)

The secular equation (3.34) might written as

F̂ (w)−
(
w +

iζ

α1τ
(1− α0w)

)
G̃(w) = 0. (3.45)

By using (3.38) and (3.42) with (3.45) we get

h̄(w) +
iζ

dα1τ
(1− α0w)G̃(w) = 0, (3.46)

in which

d = q̂1 + q̂2 + q̂3 − q̃1 − q̃2 − q̃3.

Based on (2.25) we find that d > 0. It is clear that equation (3.46) is a quartic

equation in w provided that ζ > 0, so there are four roots wi, where i = 1, 2, 3, 4.

Power series expansions of the roots of the secular equation in the high frequency

limit take the form

wi(ζ) = q̄i +
∞∑
n=1

d(i)n (iζ)n, i = 1, 2, 3, 4. (3.47)

The first coefficient, when i = 1, is

w1(ζ) = q̄1 + d
(1)
1 (iζ) +O(ζ2). (3.48)

Substituting (3.48) into (3.46), with q̄1 ≡ 0 and ζ → 0, we get

d
(1)
1 =

( 1

dα1τ

) q̃1q̃2q̃3
q̄2q̄3

> 0. (3.49)
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Inserting (3.49) into (3.48) we get

w1(ζ) =
( iζ

dα1τ

)G̃(0)

h̄′(0)
+O(ζ2). (3.50)

In order to write (3.50) in terms of ω, substituting ζ by (ω)−1, we obtain

w1(ω) =
( iω−1
dα1τ

)G̃(0)

h̄′(0)
+O(ω−2). (3.51)

Clearly, Im w1(ω) > 0, thus w1 is unstable.

When i = 2, (3.47) becomes

w2(ζ) = q̄2 + d
(2)
1 (iζ) +O(ζ2). (3.52)

Inserting (3.52) into (3.46) we get

d
(2)
1 =

−(1− α0q̄2)(q̄2 − q̃1)(q̄2 − q̃2)(q̄2 − q̃3)
dα1τ q̄2(q̄2 − q̄3)

. (3.53)

Substituting (3.53) into (3.52) we get

w2(ζ) = q̄2 −
(iζ(1− α0q̄2)

dα1τ

)G̃(q̄2)

h̄′(q̄2)
+O(ζ2). (3.54)

The sign of d
(2)
1 depends on the sign of (1 − α0q̄2). If (1 − α0q̄2) is negative, which

means

1− α0q̄2 < 0, ⇒ 1 < α0q̄2, ⇒ q̄2 > 1/α0,

or

α0 > 1/q̄2,

then d
(2)
1 < 0, so that w2(ζ) is stable.

Rewrite (3.54) in terms of ω

w2(ω) = q̄2 −
(iω−1(1− α0q̄2)

dα1τ

)G̃(q̄2)

h̄′(q̄2)
+O(ω−2). (3.55)

So the stability of w2(ω) is satisfied when α0 > 1/q̄2 or q̄2 > 1/α0.

Similarly when i = 3, we find that

d
(3)
1 =

−(1− α0q̄3)(q̄3 − q̃1)(q̄3 − q̃2)(q̄3 − q̃3)
dα1τ q̄3(q̄3 − q̄2)

, (3.56)
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So,

w3(ω) = q̄3 −
(iω−1(1− α0q̄3)

dα1τ

)G̃(q̄3)

h̄′(q̄3)
+O(ω−2). (3.57)

Again, the stability of w3(ω) is satisfied when α0 > 1/q̄3 or q̄3 > 1/α0 .

The fourth root, which is large when ζ is small, can be written as

w4 = B(iζ)−1 + A+O(ζ), (3.58)

where A and B are constants. By substituting (3.58) into (3.46) we get

{A+B(iζ)−1}{A− q̄2 +B(iζ)−1}{A− q̄3 +B(iζ)−1}+
iζ

dα1τ
{1−α0A−α0B(iζ)−1}

{A− q̃1 +B(iζ)−1}{A− q̃2 +B(iζ)−1}{A− q̃3 +B(iζ)−1} = 0. (3.59)

Multiply by (iζ)3 to obtain

{A(iζ) +B}{(A− q̄2)(iζ) +B}{(A− q̄3)(iζ) +B}+
1

dα1τ
{(1− α0A)(iζ)− α0B}

{(A− q̃1)(iζ) +B}{(A− q̃2)(iζ) +B}{(A− q̃3)(iζ) +B} = 0. (3.60)

Putting ζ = 0, we get

B3 +
1

dα1τ
(−α0)B

4 = 0,

⇒ B3(1− α0

dα1τ
B) = 0.

Then we obtain

B = 0, 0, 0,
dα1τ

α0

. (3.61)

Expanding and simplifying (3.60), ignoring high powers of (iζ),

A(iζ)B2 + (A− q̄2)(iζ)B2 + (A− q̄3)(iζ)B2 +B3 +
1

dα1τ

[
(1− α0A)(iζ)B3

+(A−q̃1)(iζ)(−α0B)B2+(A−q̃2)(iζ)(−α0B)B2+(A−q̃3)(iζ)(−α0B)B2−α0B
4
]

= 0.

(3.62)

Coefficients of iζ are

AB2+(A−q̄2)B2+(A−q̄3)B2+
1

dα1τ
[1−α0A−α0(A−q̃1)−α0(A−q̃2)−α0(A−q̃3)]B3 = 0.
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Cancel B2 as B 6= 0 to get

3A− q̄2 − q̄3 +
1

dα1τ
[1− α0(4A− q̃1 − q̃2 − q̃3)]B = 0.

By using (3.61)4, we obtain

A =
1

α0

+ q̃1 + q̃2 + q̃3 − q̄2 − q̄3. (3.63)

Substituting A and B into (3.58) and write it in terms of ω we obtain

w4(ω) =
[ 1

α0

+ q̃1 + q̃2 + q̃3 − q̄2 − q̄3
]
− iω

(dα1τ

α0

)
+O(ω−1). (3.64)

Im w4(ω) < 0, thus w4 is stable.

We note that now branches can change their stability nature for intermediate frequen-

cies, as is illustrated in Figures 3.1–3.4. This is because (3.23) cannot be rearranged

to have w on one side and iω on the other, as in (2.46).

Numerical results

In each of Figures 3.1–3.4 we used the same values of q̂i and q̃i, i = 1, 2, 3, and various

choices for τ , except that in Figure 3.4 we made τ a constant. In Figures 3.1 and

3.2, where α1 > α0 > 0 and α1 > α0 = 0, respectively, we have three unstable waves

and one stable. In Figure 3.3, α1 = α0 > 0, which gives three stable waves and one

unstable. In Figure 3.4 we fixed τ and α1 and made different choices for α0 and we

found that: in sub-figures (a) and (b), with α0 = 0.1 and 0.3, respectively, there are

three unstable waves and one stable; in sub-figure (c), with α0 = 0.5, there are two

stable waves and two unstable; in sub-figures (d)–(f), with α0 = 1, 1.5, 2, sequentially,

there are three stable waves and one unstable. Therefore, increasing α0 affects wave

stability.
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Figure 3.1: The four branches of the secular equation for unconstrained anisotropic

thermelastic material for Chandrasakharaiah and Keshavan’s theory. For each part,

α0 = 0.1, α1 = 0.2, q̃1 = 0.75, q̃2 = 1.75, q̃3 = 2.75, q̂1 = 1, q̂2 = 2, q̂3 = 3.
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Figure 3.2: The four branches of the secular equation for unconstrained anisotropic

thermelastic material for Chandrasekharaiah and Keshavan’s theory. For each part,

α0 = 0, α1 = 2, q̃1 = 0.75, q̃2 = 1.75, q̃3 = 2.75, q̂1 = 1, q̂2 = 2, q̂3 = 3.
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Figure 3.3: The four branches of the secular equation for unconstrained anisotropic

thermelastic material for Chandrasekharaiah and Keshavan’s theory. For each part,

α0 = α1 = 1, q̃1 = 0.75, q̃2 = 1.75, q̃3 = 2.75, q̂1 = 1, q̂2 = 2, q̂3 = 3.
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Figure 3.4: The four branches of the secular equation for unconstrained anisotropic

thermelastic material for Chandrasekharaiah and Keshavan’s theory. For each part,

τ = 1, α1 = 3, q̃1 = 0.75, q̃2 = 1.75, q̃3 = 2.75, q̂1 = 1, q̂2 = 2, q̂3 = 3.
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3.2 Unconstrained isotropic TRDTE+GTE (1)

Applying equation (2.48) to (3.1) gives the field equations of isotropic unconstrained

thermoelasticity:

(λ̃+ µ̃)uj,ij + µ̃ui,jj − β(θ + α1θ̇),i = ρüi,

kθ,ii −
(

1 + τ
∂

∂t

)
Tβu̇j,j = ρc(θ̇ + α0θ̈).

 (3.65)

3.2.1 The secular equation

Similarly to Section 2.2 we seek solutions of (3.65) in the form of plane harmonic

waves (3.2). Insert (3.2) into (3.65) and cancel the exponential factors. From (3.65)1,

we find that

[(λ̃+ µ̃)ninj + (µ̃− ρs−2)δij]Uj + iβ(ωs)−1ni(1− iωα1)Θ = 0. (3.66)

It is similar to (2.52). From (3.65)2 we find that

k(−(ωs)2niniΘ)− Tβω2snj(1− iωτ)Uj = ρc(−iω)(1− iωα0)Θ.

Dividing this equation by (−ω) then rearranging we get

Tβωs(1− iωτ)njUj + (kωs2 − iρc(1− iωα0))Θ = 0. (3.67)

To eliminate Θ between (3.66) and (3.67), we need to rewrite (3.67) as

Θ =
−Tωs(1− iωτ)βnjUj
ωs2k − iρc(1− iωα0)

. (3.68)

Inserting (3.68) into (3.66) we obtain(
(λ̃+ µ̃)ninj + (µ̃− ρs−2)δij

)
Uj −

(
iβ2T (1− iωα1)(1− iωτ)ninj

ωs2k − iρc(1− iωα0)

)
Uj = 0.

Rearranging the equation we get{
(µ̃− w)δij + (λ̃+ µ̃)ninj +

wTβ2(1− iωα1)(1− iωτ)ninj
ρc(w(1− iωα0) + iωk/c)

}
Uj = 0, (3.69)
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where w = ρs−2. Using the dimensionless quantities (2.57) we get the non-dimensional

form of (3.69) as follows

det

{
(µ̃′ − w′)1 +

[
λ̃′ + µ̃′ +

εw′(1− iω′α′1)(1− iω′τ ′)
w′(1− iω′α′0) + iω′

]
n⊗ n

}
= 0. (3.70)

Again, using the standard identity (2.60), dropping the dashes for convenience, we

get

(w−µ̃)2{w2(1−iωα0)−w[(1−iωα0)(λ̃+2µ̃)+ε(1−iωα1)(1−iωτ)−iω]−iω(2µ̃+λ̃)} = 0.

(3.71)

This is the secular equation for unconstrained isotropic TRDTE+GTE (1) and has

not previously appeared in the literature.

The repeated root w = µ̃ of (3.71) corresponds to two transverse waves. The quadratic

factor of (3.71) is

w2(1− iωα0)− w[(1− iωα0) + ε(1− iωα1)(1− iωτ)− iω]− iω = 0. (3.72)

where

λ̃+ 2µ̃ = 1.

In the GTE limit, where α1 = 0 and α0 = τ > 0, the secular equation (3.72) reduces

to the isotropic GTE secular equation, see Leslie and Scott [33, (2.14)]. For τ = 0

(3.72) reduces to (2.70), as expected.

The roots of this quadratic equation (3.72) are given by

w1,2 =
1

2(1− iωα0)
[z2 ± (z2

2 + 4iω(1− iωα0))
1
2 ]. (3.73)

in which,

z2 = (1− iωα0) + ε(1− iωα1)(1− iωτ)− iω. (3.74)

This first root is

w1 =
1

2(1− iωα0)
[z2 + (z22 + 4iω(1− iωα0))

1
2 ], (3.75)

where

z22 = ((1−iωα0)+ε(1−iωα1)(1−iωτ))2−2iωε(1−iωα1)(1−iωτ)−2iω(1−iωα0)−ω2.
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The roots (3.73) can be plotted for varying values of ε, the measure of the degree of

thermoelastic coupling, as shown in Figure 3.5. In the uncoupled case, when ε = 0,

the roots of (3.73) reduce to

w1 = 1, w2 =
−iω

(1− iωα0)
, (3.75a)

where w1 represents an unattenuated, non-dispersive longitudinal wave (a purely elas-

tic mode) and w2 represents a diffusive mode.

Now we investigate the nature of the modes at high and low frequencies for ε > 0.

Low frequency expansions

For ω = 0 the roots of (3.73) are

w1 = 1 + ε, w2 = 0.

The roots of the secular equation (3.72) as ω → 0 may written as

w1 = (1 + ε) + A(iω) +O(ω2), w2 = B(iω) +O(ω2). (3.76)

By inserting (3.76) into (3.72) we get

A = −ε[α1 − α0 + τ +
1

1 + ε
],

and

B =
−1

1 + ε
.

Now the roots are

w1 = (1 + ε)− iωε[α1 − α0 + τ +
1

1 + ε
] +O(ω2).

and

w2 =
−iω
1 + ε

+O(ω2).

It is clear that Im w1 < 0, and Im w2 < 0, so w1 and w2 are stable in the low frequency

limits.

High frequency expansions

In the high frequency ω →∞, i.e.
1

ω
→ 0. So to get the roots of the secular equation

(3.72) in the high frequency we need first to divide (3.72) by (iω)2 as

w2
( 1

(iω2)
−α0

iω

)
−w
[ 1

(iω)2
−α0

iω
+ε
( 1

(iω2)
− 1

iω
(α1+τ)−α1τ

)
− 1

iω

]
− 1

iω
= 0. (3.77)
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Putting
1

iω
= 0, equation (3.77) becomes

wα1τε = 0.

The roots are

w1 = 0, w2 →∞. (3.78)

Now we are looking for the roots as
1

iω
→ 0, so the roots may be written as

w1 = A(iω)−1 +O(ω−2), w2 = B(iω) + C +O(ω−1). (3.79)

After Substituting (3.79) into (3.77) we obtain

A =
1

εα1τ
, B =

α1τε

α0

, and C =
1

α0

[α1τε

α0

+ ε(α1 + τ) + (α0 + 1)
]
. (3.80)

Now roots become

w1 =
−iω−1

εα1τ
+O(ω−2), w2 =

iωα1τε

α0

+
1

α0

[α1τε

α0

+ ε(α1 + τ) + (α0 + 1)
]

+O(ω−1).

It can be seen that Im w1(ω) < 0, so w1 is stable in the high frequency and Im

w2(ω) > 0 thus w2 is unstable in the high frequency.

Numerical results

We can plot the roots (3.73) for different values of ε, the measure of the degree of

thermoelastic coupling. When ε = 0, the uncoupled case, as shown in Figure 3.5(a),

equation (3.75a) is satisfied, and one branch is stable and the other degenerates to

single point. When ε > 0 there is always one stable branch tending to infinity and an

unstable branch ending at the origin as illustrated in the other sub-figures. It is clear

from Figure 3.5 that w1 is elastic and w2 is diffusive in character when ε = 0 as we

see in (a), but in the other parts (b)–(f) w1 remains elastic and is accordingly marked

with both × in the low frequency and ◦ in the high frequency. But w2 propagates

with the dimensionless squared wave speed 1 + ε which marked × when ω → 0 in

each part of Figure 3.5, but as ω → ∞, w2 is diffusive. Both branches are stable in

the low frequency but in the high frequency one remains stable but the other becomes

unstable.

Varying the parameters α1, α0 and τ while changing the magnitude of ω does not

have any substantive influence on the stability.
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Figure 3.5: The longitudinal squared wave speeds of unconstrained isotropic TRDTE

+ GTE (1). For each part, α0 = 0.1, α1 = 0.2, τ = 0.1.
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3.3 Constrained anisotropic TRDTE+GTE (1)

3.3.1 Usual form of deformation-temperature constraint

The field equations of combined temperature-rate-dependent thermoelasticity and

generalized thermoelasticity for a deformation-temperature constrained anisotropic

material are

c̃ijkluk,lj − βij
(

1 + α1
∂

∂t

)
θ,j + η̃,jÑij = ρüi,

kijθ,ij −
(

1 + τ
∂

∂t

)
Tβiju̇i,j = ρc

(
1 + α0

∂

∂t

)
θ̇ + Tα ˙̃η,

Ñqpup,q − αθ = 0.

 (3.81)

Equation (3.81)1 is similar to (2.83), equation (3.81)2 by analogy to (2.85) and (3.81)3

is the same constraint (2.81).

The secular equation

Similarly to Section 2.3.1 we find solutions for (3.81) in the form of plane harmonic

waves of equation (2.86). We have already found most of the derivatives in (3.81),

now we just need to find the rest as in the following

üi,j = −iω3snjUi, ˙̃η = −iωH̃.

Substituting all derivatives into (3.81)1 we get

(Q̃ik − ρs−2δik)Uk + i(ωs)−1[bi(1− iωα1)Θ− c̃iH̃] = 0. (3.82)

This equation is similar to (2.89). From (3.81)2, after inserting derivatives, we find

that

kij(−(ωs)2ninj)Θ−Tβij(ω2snjUi+τ(−iω3snj)Ui) = ρc(−iωΘ+α0(−ω2)Θ)+Tα(−iωH̃).

Rearranging the equation after dividing by (−ω) we obtain

ωsTbp(1− iωτ)Up − iαTH̃ + (ωs2k − iρc(1− iωα0))Θ = 0. (3.83)

After substituting the derivatives into (3.81)3 we will have the same equation (2.92)

iωsc̃pUp − αΘ = 0. (3.84)
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In order to eliminate Θ and H̃ between equations (3.82), (3.83) and (3.84), we have

to rewrite (3.84) as

Θ = α−1iωsc̃pUp. (3.85)

On substituting (3.85) into (3.83) it is readily established that

H̃ = (α2T )−1ωs(ωs2k − iρec(1− iωα0))c̃pUp − iωsα−1bp(1− iωτ)Up. (3.86)

Inserting (3.85) and (3.86) into (3.82) we obtain

{Q̃ip − α−1(bic̃p(1− iωα1) + c̃ibp(1− iωτ))− (α2T )−1(iωs2k + ρc(1− iωα0))c̃ic̃p

− ρs−2δip}Up = 0. (3.87)

By expanding this equation, we get

{Q̃ip−α−1(bic̃p + c̃ibp)− (α2T )−1(iωs2k+ ρc(1− iωα0))c̃ic̃p +α−1iω(α1bic̃p + τ c̃ibp)

− ρs−2δip}Up = 0.

The non-zero amplitudes Up satisfy (3.82), (3.83) and (3.84) if and only if

det{Q̃− α−1(b⊗ c̃ + c̃⊗ b)− (α2T )−1(ρc)c̃⊗ c̃− (α2T )−1(iωs2k − iωα0ρc)c̃⊗ c̃

+ α−1iω[α1b⊗ c̃ + τ c̃⊗ b]− ρs−21} = 0. (3.88)

By defining

P̃ := Q̃− α−1(b⊗ c̃ + c̃⊗ b)− (α2T )−1(ρc)c̃⊗ c̃, (3.89)

we may rewrite (3.88) in terms of P̃ as

det{(P̃− w1) +
iω

α
(α1b⊗ c̃ + τ c̃⊗ b)− (α2T )−1iω(s2k − α0ρc)c̃⊗ c̃} = 0. (3.90)

Similarly to as seen Section 2.3.1, the secular equation (3.90) may be written in terms

of definitions (2.110a) and (2.110b) as

det{(P̃−w1) +
iω

α
(α1βn⊗n+ τβn⊗n)− (α2T )−1iω(s2k−α0ρc)n⊗n} = 0. (3.91)

By simplification this equation becomes

det{(P̃− w1) +
iω

α
β(α1 + τ)− (α2T )−1iω(s2k − α0ρc)}n⊗ n = 0. (3.92)
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By using the standard identity (2.60) we get

det(P̃−w1) + iω
[
α−1β(α1 + τ)− (α2T )−1(s2k− α0ρc)

]
n · (P̃−w1)adjn = 0. (3.93)

This is the secular equation for anisotropic TRDTE+GTE (1) which is constrained

by the uasual deformation temperature constraint and has not previously appeared

in the literature.

The tensor P̃ might be written in terms of the isentropic tensor as follows

P̃ := Q̂− T

ρc
(b +

ρc

αT
c̃)⊗ (b +

ρc

αT
c̃). (3.94)

To non-dimensionalise (3.94) using the dimensionless quantities (2.103), we will get

the same equation as (2.104). Now the secular equation (3.93) can be written in terms

of non-dimensional quantities as

det(P̃′ − w′1) + iω′σ̃
[
ε

1
2 (α′1 + τ ′)− σ̃(

1

w′
− α′0)

]
n · (P̃′ − w′1)adjn = 0. (3.95)

This equation may be written in a clearer form as

w det(w1− P̃)− iωσ̃
[
wε

1
2 (α1 + τ)− σ̃(1− wα0)

]
n · (w1− P̃)adjn = 0. (3.96)

Now we need to group terms in w together

w det(w1− P̃)− iωσ̃
[
w
(
ε

1
2 (α1 + τ) + α0σ̃

)
− σ̃

]
n · (w1− P̃)adjn = 0. (3.97)

This equation may be written in more simplified form as

F̃ (w)− iωσ̃
[
w
(
ε

1
2 (α1 + τ) + α0σ̃

)
− σ̃

]
G̃(w) = 0, (3.98)

where F̃ (w) and G̃(w) are defined earlier in (2.116). On putting τ = 0 in (3.98) we

get the corresponding secular equation (2.115) of TRDTE, as expected.

Low frequency expansions

Again, similar to the previous sections when ω = 0 the roots of the secular equation

are the zeros of F̃ (w) : p̃i, i = 0, 1, 2, 3, defining p̃0 ≡ 0. Taylor expansions take the

form

wi(ω) = p̃i +
∞∑
n=1

d(i)n (−iω)n, i = 0, 1, 2, 3. (3.99)
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When i = 0, n = 1,

w0(ω) = p̃0 + d
(0)
1 (−iω) +O(ω2). (3.100)

By substituting (3.100) into (3.98) we get

d
(0)
1 = −σ̃2 W̃1W̃2

p̃1p̃2p̃3
. (3.101)

The sign of d
(0)
1 depends on the sign of p̃1. Stability is satisfied when d

(0)
1 > 0 and

d
(0)
1 is positive if p̃1 is negative. But if p̃1 > 0 then d

(0)
1 < 0 thus w0(ω) is unstable.

Inserting (3.101) into (3.100) we obtain

w0(ω) = iωσ̃2 G̃(0)

F̃ ′(0)
+O(ω2). (3.102)

The exceptional case p̃1 = 0 will be dealt with later. It represents a cross over for the

branch w0(ω) between instability for p̃1 > 0 and stability for p̃1 < 0.

When i = 1, n = 1

w1(ω) = p̃1 + d
(1)
1 (−iω) +O(ω2). (3.103)

By substituting (3.103) into (3.98) we get

d
(1)
1 = −σ̃

[
p̃1
(
ε

1
2 (α1 + τ) + α0σ̃

)
− σ̃

](p̃1 − W̃1)(p̃1 − W̃2)

p̃1(p̃1 − p̃2)(p̃1 − p̃3)
. (3.104)

The sign of d
(1)
1 depends on the sign of

[
p̃1
(
ε

1
2 (α1 + τ) + α0σ̃

)
− σ̃

]
and p̃1, stability

being satisfied if d
(1)
1 > 0, and d

(1)
1 is positive if

0 < p̃1 <
σ̃

ε
1
2 (α1 + τ) + α0σ̃

.

If p̃1 < 0 then d
(1)
1 < 0, thus w1(ω) is unstable. Thus,

w1(ω) = p̃1 + iωσ̃
[
p̃1
(
ε

1
2 (α1 + τ) + α0σ̃

)
− σ̃

] G̃(p̃1)

F̃ ′(p̃1)
+O(ω2). (3.105)

Similarly, when i = 2, 3, n = 1, we obtain

w2(ω) = p̃2 + d
(2)
1 (−iω) +O(ω2), (3.105a)

w3(ω) = p̃3 + d
(3)
1 (−iω) +O(ω2). (3.105b)
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Substituting (3.105a) and (3.105b) into (3.98) we get

d
(2)
1 = −σ̃

[
p̃2
(
ε

1
2 (α1 + τ) + α0σ̃

)
− σ̃

](p̃2 − W̃1)(p̃2 − W̃2)

p̃2(p̃2 − p̃1)(p̃2 − p̃3)
, (3.105c)

d
(3)
1 = −σ̃

[
p̃3
(
ε

1
2 (α1 + τ) + α0σ̃

)
− σ̃

](p̃3 − W̃1)(p̃3 − W̃2)

p̃3(p̃3 − p̃1)(p̃3 − p̃2)
. (3.105d)

The signs of d
(2)
1 and d

(3)
1 depend only on the sign of p̃2

(
ε

1
2 (α1 + τ) + α0σ̃

)
− σ̃ and

p̃3
(
ε

1
2 (α1 + τ) + α0σ̃

)
− σ̃, respectively; the sign of p̃1 does not affect things here.

Stability is satisfied if d
(2)
1 and d

(3)
1 are positive. So that is obtained if

p̃2 <
σ̃

ε
1
2 (α1 + τ) + α0σ̃

,

and

p̃3 <
σ̃

ε
1
2 (α1 + τ) + α0σ̃

,

respectively. Insert (3.105c) and (3.105d) into (3.105a) and (3.105b) we get

w2(ω) = p̃2 + iωσ̃
[
p̃2
(
ε

1
2 (α1 + τ) + α0σ̃

)
− σ̃

] G̃(p̃2)

F̃ ′(p̃2)
+O(ω2), (3.106)

w3(ω) = p̃3 + iωσ̃
[
p̃3
(
ε

1
2 (α1 + τ) + α0σ̃

)
− σ̃

] G̃(p̃3)

F̃ ′(p̃3)
+O(ω2). (3.107)

Summarising, if the quantity p̃i[ε
1
2 (α1 + τ) + α0σ̃] − σ̃ is negative for any i = 1, 2, 3,

then the corresponding branch wi(ω) is stable. Conversely, if this quantity is positive

the corresponding branch is unstable.

High frequency expansions

The roots of the secular equation (3.98) in the high frequency case are given by the

zeros of [
w
(
ε

1
2 (α1 + τ) + α0σ̃

)
− σ̃

]
G̃(w) = 0.

So there are four roots, three of them are finite

w1 = W̃1, w2 = W̃2 and w3 = W̃3 ≡
σ̃

ε
1
2 (α1 + τ) + α0σ̃

,

and one is infinite. Power series expansions take the form

wi(ω) = W̃i +
∞∑
n=1

d(i)n (−iω)−n, i = 1, 2, 3. (3.108)
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When i = 1, n = 1, we obtain

w1(ω) = W̃1 + d
(1)
1 (−iω)−1 +O(ω−2). (3.109)

Substituting (3.109) into (3.98) we obtain

d
(1)
1 =

W̃1(W̃1 − p̃1)(W̃1 − p̃2)(W̃1 − p̃3)
σ̃
[
W̃1

(
ε

1
2 (α1 + τ) + α0σ̃

)
− σ̃

]
(W̃1 − W̃2)

. (3.110)

The sign of d
(1)
1 depends only on the sign of W̃1

(
ε

1
2 (α1 + τ) +α0σ̃

)
− σ̃; the sign of p̃1

does not affect things here. Stability is satisfied if d
(1)
1 < 0, and d

(1)
1 is negative if

W̃1 >
σ̃

ε
1
2 (α1 + τ) + α0σ̃

.

Thus,

w1(ω) = W̃1 +
iω−1F̃ (W̃1)

σ̃
[
W̃1(ε

1
2 (α1 + τ) + α0σ̃)− σ̃

]
G̃′(W̃1)

+O(ω−2). (3.111)

Similarly, when i = 2, n = 1, we get

w2(ω) = W̃2 +
iω−1F̃ (W̃2)

σ̃
[
W̃2(ε

1
2 (α1 + τ) + α0σ̃)− σ̃

]
G̃′(W̃2)

+O(ω−2). (3.112)

w2(ω) is stable if

W̃2 >
σ̃

ε
1
2 (α1 + τ) + α0σ̃

.

When i = 3, n = 1

w3(ω) = W̃3 + d
(3)
1 (−iω)−1 +O(ω−2), (3.113)

where

W̃3 =
σ̃

ε
1
2 (α1 + τ) + α0σ̃

.

By substituting (3.113) into (3.98) we get

d
(3)
1 =

−F̃ (W̃3)

σ̃
(
ε

1
2 (α1 + τ) + α0σ̃

)
G̃(W̃3)

, (3.114)

then,

d
(3)
1 =

−W̃3(W̃3 − p̃1)(W̃3 − p̃2)(W̃3 − p̃3)
σ̃
(
ε

1
2 (α1 + τ) + α0σ̃

)
(W̃3 − W̃1)(W̃3 − W̃2)

. (3.115)
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By simplifying we get

d
(3)
1 =

−(W̃3 − p̃1)(W̃3 − p̃2)(W̃3 − p̃3)(
ε

1
2 (α1 + τ) + α0σ̃

)2
(W̃3 − W̃1)(W̃3 − W̃2)

. (3.116)

The sign of d
(3)
1 may be determined in two special cases; one as σ̃ → 0, a purely

thermal constraint, and the other as σ̃ → ∞, a purely mechanical constraint. So, as

σ̃ → 0, W̃3 → 0, then

d
(3)
1 =

p̃1p̃2p̃3(
ε

1
2 (α1 + τ)

)2
W̃1W̃2

.

Thus, it is clear that w3(ω) is stable if p̃1 < 0, but if p̃1 > 0 we find that w3(ω) is

unstable. On the other hand, as σ̃ → ∞ we find that W̃3 → α−10 and d
(3)
1 → 0, and

high powers are needed in the expansion (3.113).

The fourth root may be written as

w4(ω) = iωA1 +B1 +O(ω−1). (3.117)

Substituting (3.117) into (3.98) we get

(iωA1 +B1)(iωA1 +B1 − p̃1)(iωA1 +B1 − p̃2)(iωA1 +B1 − p̃3)

−iωσ̃
{[

(iωA1+B1)(ε
1
2 (α1+τ)+α0σ̃)− σ̃

]
(iωA1+B1−W̃1)(iωA1+B1−W̃2)

}
= 0.

(3.118)

Multiplying this equation by (iω)−4 we get

(
A1 +B1(iω)−1

)(
A1 +(B1− p̃1)(iω)−1

)(
A1 +(B1− p̃2)(iω)−1

)(
A1 +(B1− p̃3)(iω)−1

)
− σ̃

{[
(A1 +B1(iω)−1)(ε

1
2 (α1 + τ) + α0σ̃)− σ̃(iω)−1

](
A1 + (B1 − W̃1)(iω)−1

)
(
A1 + (B1 − W̃2)(iω)−1

)}
= 0. (3.119)

For large ω we obtain

A4
1 − σ̃A3

1(ε
1
2 (α1 + τ) + α0σ̃) = 0.

So

A1 = 0, 0, 0, σ̃(ε
1
2 (α1 + τ) + α0σ̃). (3.120)
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The three zero roots correspond to the roots already found. Expanding (3.119):

A3
1

{
A1 +

[
(B1 − p̃3)(iω)−1 + (B1 − p̃2)(iω)−1 + (B1 − p̃1)(iω)−1 +B1(iω)−1

]}
−A2

1σ̃
{

(A1 +B1(iω)−1)(ε
1
2 (α1 + τ) +α0σ̃)− σ̃(iω)−1 + (B1− W̃2)(α1ε

1
2 +α0σ̃)(iω)−1

+ (B1 − W̃1)(α1ε
1
2 + α0σ̃)(iω)−1

}
= 0. (3.121)

Cancel A2
1, A1 6= 0,

A1

{
A1 +

[
(B1 − p̃3)(iω)−1 + (B1 − p̃2)(iω)−1 + (B1 − p̃1(iω)−1 +B1(iω)−1

]}
+ σ̃
{

(A1 +B1(iω)−1(ε
1
2 (α1 + τ) + α0σ̃)− σ̃(iω)−1 + (B1 − W̃2)(α1ε

1
2 + α0σ̃)(iω)−1

+ (B1 − W̃1)(α1ε
1
2 + α0σ̃)(iω)−1

}
= 0 (3.122)

Coefficients of (iω)−1 are

A1

[
4B1 − (p̃1 + p̃2 + p̃3)

]
+ σ̃(ε

1
2 (α1 + τ) + α0σ̃)

{
3B1 − (W̃1 + W̃2)

}
− σ̃2 = 0.

(3.123)

Using (3.116) we get B1:

B1 = (p̃1 + p̃2 + p̃3)− (W̃1 + W̃2)−
σ̃

ε
1
2 (α1 + τ) + α0σ̃

.

Inserting A1 and B1 into (3.117), thus

w4(ω) = iωσ̃
(
ε

1
2 (α1+τ)+α0σ̃

)
+(p̃1+p̃2+p̃3)−(W̃1+W̃2)−

σ̃

ε
1
2 (α1 + τ) + α0σ̃

+O(ω−1).

(3.124)

It is clear that w4(ω) is unstable because Im w4(ω) > 0.

Summarising, if the quantity W̃i[ε
1
2 (α1 +τ)+α0σ̃]− σ̃ is positive for any i = 1, 2, then

the corresponding branch wi(ω), i = 1, 2, is stable in the high frequency. Conversely,

if this quantity is negative the corresponding branch is unstable. The branch w3(ω) is

stable if p̃1 < 0, unstable if p̃1 > 0 when σ̃ → 0. The branch w4(ω) always unstable.

From the secular equation (3.98), and previous arguments, we see that a branch cannot

change from stable to unstable, or vice versa, for intermediate frequencies 0 < ω <∞.

This is borne out by Figures 3.6–3.8.
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The exceptional case p̃1 = 0.

When p̃1 = 0 the secular equation (3.98), with the aid of (2.116), becomes

w2(w − p̃2)(w − p̃3)− iωσ̃
[
w(ε

1
2 (α1 + τ) + α0σ̃)− σ̃

]
(w − W̃1)(w − W̃2) = 0.

For low frequencies we try the balance w = A(−iω)n and substitute into this secular

equation in order to determine n. We find that n = 1/2 and then w is given by

w = ±

(
−iωσ̃2 W̃1W̃2

p̃2p̃3

) 1
2

.

These two branches begin at the origin and have arguments −π/4 and 3π/4 in the

complex w plane. This can be seen in Figure 3.8.

Numerical results

In Figure 3.6 we have taken p̃1 > 0. The branch w0(ω) beginning at the origin is

unstable in each part of the Figure. All the other branches begin to the right of this

branch. If α0 and α1 are small enough then

p̃i(ε
1
2 (α1 + τ) + α0σ̃)− σ̃ < 0, for i = 1, 2, 3,

and so all the branches wi(ω), i = 1, 2, 3, are stable in the low frequency. This can

be seen in the first subfigure (a) of Figure 3.6 where α0 and α1 are small. As α0 and

α1 increase, first w3(ω) becomes unstable, see part (b), and as they increase further

other branches become unstable.

In Figure 3.7 we have taken p̃1 < 0. The branch w1(ω) beginning at w = p̃1 is unstable

in each part of the Figure. All the other branches begin to the right of this branch. As

in Figure 3.6, increasing α0 and α1 leads to increasing instability but w0(ω) maintains

the stability in each part of the Figure.

In Figure 3.8 we illustrate the exceptional case p̃1 = 0. Now two branches emanate

from the origin, namely, w0(ω) and w1(ω), one stable and the other unstable, one with

argument −π/4 and the other with argument 3π/4. The same increasing instability

with increasing α0 and α1 is observed. As in the Figure 3.7 the branch w0(ω) maintains

the stability in each part of the Figure.
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Figure 3.6: The longitudinal squared wave speeds of constrained anisotropic

TRDTE+GTE (1). For each part, p̃1 = 1, p̃2 = 2, p̃3 = 3, W̃1 = 1.5, W̃2 = 2.5, σ̃ =

1, ε = 1.τ = 0.1
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Figure 3.7: The longitudinal squared wave speeds of constrained anisotropic

TRDTE+GTE (1). For each part, p̃1 = −1, p̃2 = 2, p̃3 = 3, W̃1 = 1.5, W̃2 = 2.5, σ̃ =

1, ε = 1.τ = 0.1
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Figure 3.8: The longitudinal squared wave speeds of constrained anisotropic

TRDTE+GTE (1). For each part, p̃1 = 0, p̃2 = 2, p̃3 = 3, W̃1 = 1.5, W̃2 = 2.5, σ̃ =

1, ε = 1.τ = 0.1
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3.3.2 Alternative form of deformation-temperature constraints

In this section we will use equations (3.81)1,2 and (2.144),

c̃ijkluk, jl − βij(θ, j + α1θ̇, j) + Ñij η̃,j = ρüi,

kijθ,ij − Tβpq
(

1 + τ
∂

∂t

)
u̇p,q − ρc(θ̇ + α0θ̈)− Tα ˙̃η = 0,

Ñpqup,q − α(θ + α0θ̇) = 0.

 (3.125)

The secular equation

Now we follow the same steps as Section 2.3.2 to get the secular equation. Firstly,

looking for solution for equations (3.125) in the form of the plane harmonic waves

(2.86) by inserting (2.86) into (3.125), we get the same equations we had before:

(3.82), (3.83) and (2.146)3,

(Q̃ip − ρs−2δip)Up + i(ωs)−1
[
bi(1− iωα1)Θ− c̃iH̃

]
= 0,

ωsTbp(1− iωτ)Up − iαTH̃ + (ωs2k − iρc(1− iωα0))Θ = 0,

iωsc̃pUp − α(1− iωα0)Θ = 0,

 (3.126)

where Ñpqnq = c̃p, βijnj = bi, kijnj = k. Eliminate Θ and H̃ between (3.126). From

(3.126)3 we find that

Θ =
iωsc̃pUp

α(1− iωα0)
. (3.127)

By substituting (3.127) into (3.126)2 we get

H̃ = −iα−1ωsbp(1− iωτ)Up + (α2T )−1(1− iωα0)
−1ωsc̃pUp

(
ωs2k − iρc(1− iωα0)

)
.

(3.128)

Insert (3.127) and (3.128) into (3.126)1 we obtain{
(Q̃ip−ρs−2δip)−α−1(1−iωα0)

−1
(
bic̃p(1−iωα1)+c̃ibp(1−iωα0)(1−iωτ)

)
−i(α2T )−1

(1− iωα0)
−1(ωs2k − iρc(1− iωα0))c̃ic̃p

}
Up = 0. (3.129)

Expanding this equation we get{
Q̃ip − α−1(1− iωα0)

−1
[
(bic̃p + c̃ibp)− iω(α1bic̃p + (α0 + τ)c̃ibp − iωα0τ c̃ibp)

]
− i(α2T )−1(1− iωα0)

−1(ωs2k − iρc− ρcωα0)c̃ic̃p − ρs−2δip
}
Up = 0. (3.130)
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Rearranging this equation we get{
Q̃ip − (1− iωα0)

−1
[
α−1(bic̃p + c̃ibp) + (α2T )−1ρcc̃ic̃p

]
+ iω(1− iωα0)

−1[
α−1
(
α1bic̃p+(α0+τ)c̃ibp−iωα0τ c̃ibp

)
−(α2T )−1(s2k−ρcα0)c̃pc̃i

]
−ρs−2δip

}
Up = 0.

The non-zero amplitudes Up satisfy (3.126) if and only if

det
{

Q̃− (1− iωα0)
−1
[
α−1(b⊗ c̃ + c̃⊗ b) + (α2T )−1ρcc̃⊗ c̃

]
+

iω(1−iωα0)
−1
[
α−1(α1b⊗c̃+(α0+τ−iωα0τ)c̃⊗b)−(α2T )−1(s2k−ρcα0)c̃⊗c̃

]
−w1

}
= 0.

(3.131)

By defining

S̃ := Q̃ − (1 − iωα0)
−1
[
α−1(b ⊗ c̃ + c̃ ⊗ b) +

ρc

α2T
c̃ ⊗ c̃

]
(3.132)

equation (3.131) may be written as

det
{

(S̃−w1)+
iω

(1− iωα0)

[α1

α
b⊗c̃+

(α0 + τ − iωα0τ

α

)
c̃⊗b−(s2k − ρcα0)

α2T
c̃⊗c̃

]}
= 0.

(3.133)

Now we need to rewrite (3.132) in terms of the definitions (2.110a) and (2.110b) we

will get the same equation as (2.154). The dimensionless form of (3.132) will be similar

to (2.155). Also in terms of the definitions (2.110a) and (2.110b) the secular equation

(3.133) may be written as

det
{

(S̃−w1)+
iω

(1− iωα0)

[
α−1β

(
α1+α0+τ(1−iωα0)

)
−(s2k − ρcα0)

α2T

]
n⊗n

}
= 0.

(3.134)

By using the standard identity (2.60), equation (3.134) may be rewritten as

det(S̃−w1)+
iω

(1− iωα0)

[
α−1β

(
α1+α0+τ(1−iωα0)

)
−(s2k − ρcα0)

α2T

]
n·(S̃−w1)adjn = 0.

(3.135)

To non-dimensionalise this equation we use the dimensionless quantities (2.103), to

get

det(S̃−w1)+
iωσ̃

(1− iωα0)

[
ε

1
2

(
α1+α0+τ(1−iωα0)

)
−σ̃(w−1−α0)

]
n·(S̃−w1)adjn = 0.

(3.136)
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This equation may be written as

w det(w1− S̃)− iωσ̃

(1− iωα0)

[
w
(
ε

1
2

(
α1 + α0 + τ(1− iωα0)

)
+ α0σ̃

)
− σ̃

]
n · (w1− S̃)adjn = 0. (3.137)

Now we want to rewrite the secular equation in terms of P̃, defined by (2.112). We

can see that the first term and the last term of equation (3.137) are similar to those

of (2.162). Thus the secular equation (3.137) is now written as

w det(w1− P̃) +
iωα0σ̃w

(1− iωα0)
(2ε

1
2 + σ̃)n · (w1− P̃)adjn

− iωσ̃

(1− iωα0)

[
w
(
ε

1
2

(
α1 + α0 + τ(1− iωα0)

)
+ α0σ̃

)
− σ̃

]
n · (w1− P̃)adjn = 0.

(3.138)

Simplifying this equation we get

w det(w1−P̃)− iωσ̃

(1− iωα0)

[
wε

1
2

(
(α1−α0)+τ(1−iωα0)

)
−σ̃
]
n·(w1−P̃)adjn = 0.

(3.139)

This is the secular equation for anisotropic TRDTE+GTE (1) which is constrained by

the alternative deformation temperature constraint and has not previously appeared

in the literature.

We want to write equation (3.139) in terms of the eigenvalues p̃1, p̃2, p̃3 as

w(w − p̃1)(w − p̃2)(w − p̃3)−
iωσ̃

(1− iωα0)

[
wε

1
2

(
(α1 − α0) + τ(1− iωα0)

)
− σ̃

]
[
n2
1(w − p̃2)(w − p̃3) + n2

2(w − p̃1)(w − p̃3) + n2
3(w − p̃1)(w − p̃2)

]
= 0. (3.140)

Similarly to (2.167), the quadratic part within square brackets has zeros at w = W̃i,

where i = 1, 2, for which

p̃1 < W̃1 < p̃2 < W̃2 < p̃3, (3.140a)

so that equation (3.140) may be written as

F̃ (w)− iωσ̃

(1− iωα0)

[
wε

1
2

(
(α1 − α0) + τ(1− iωα0)

)
− σ̃

]
G̃(w) = 0, (3.141)
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where F̃ (w) and G̃(w) are defined earlier in (2.116).

Low frequency expansions

When ω → 0 the roots of the secular equation (3.141) are the zeros of F̃ (w) : p̃i, i =

0, 1, 2, 3, defining p̃0 ≡ 0. Taylor expansions in this case take the form

wi(ω) = p̃i +
∞∑
n=1

d(i)n (−iω)n, i = 0, 1, 2, 3. (3.142)

When i = 0, n = 1 we get

w0(ω) = p̃0 + d
(0)
1 (−iω) +O(ω2). (3.143)

Substituting (3.143) into (3.141) we obtain

d
(0)
1 = −σ̃2 W̃1W̃2

p̃1p̃2p̃3
. (3.144)

The sign of d
(0)
1 depends on the sign of p̃1. Stability is satisfied when d

(0)
1 > 0, and

d
(0)
1 is positive if p̃1 is negative, so if p̃1 > 0 then w0(ω) is unstable.

Substituting (3.144) into (3.143) to get

w0(ω) = iωσ̃
G̃(0)

F̃ ′(0)
+O(ω2). (3.145)

The exceptional case p̃0 will be dealt with later.

When i = 1, n = 1 we get

w1(ω) = p̃1 + d
(1)
1 (−iω) +O(ω2). (3.146)

Substituting (3.146) into (3.141) we obtain

d
(1)
1 = −σ̃

[
p̃1ε

1
2

(
α1 − α0 + τ

)
− σ̃

](p̃1 − W̃1)(p̃1 − W̃2)

p̃1(p̃1 − p̃2)(p̃1 − p̃3)
. (3.147)

The sign of d
(1)
1 depends on the sign of

[
p̃1ε

1
2

(
α1−α0 + τ

)
− σ̃
]

and p̃1. From (3.146)

it is clear that stability is satisfied if d
(1)
1 > 0, and d

(1)
1 is positive if p̃1 > 0 and

p̃1ε
1
2

(
α1 − α0 + τ

)
− σ̃ < 0,

⇒ p̃1 <
σ̃

ε
1
2 (α1 − α0 + τ)

.
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Again, from (3.147) if p̃1 < 0, we find that d
(1)
1 < 0 then w1(ω) is unstable. The

exceptional case p̃0 is considered later.

Substituting (3.147) into (3.146) we get

w1(ω) = p̃1 + iωσ̃
[
p̃1ε

1
2

(
α1 − α0 + τ

)
− σ̃

] G̃(p̃1)

F̃ ′(p̃1)
+O(ω2). (3.148)

Similarly, when i = 2, 3 we obtain

w2(ω) = p̃2 + d
(2)
1 (−iω) +O(ω2), (3.149)

w3(ω) = p̃3 + d
(3)
1 (−iω) +O(ω2). (3.150)

Substituting (3.149) and (3.150) into (3.141) we obtain

d
(2)
1 = −σ̃

[
p̃2ε

1
2

(
α1 − α0 + τ

)
− σ̃

](p̃2 − W̃1)(p̃2 − W̃2)

p̃2(p̃2 − p̃1)(p̃2 − p̃3)
, (3.151)

d
(3)
1 = −σ̃

[
p̃3ε

1
2

(
α1 − α0 + τ

)
− σ̃

](p̃3 − W̃1)(p̃3 − W̃2)

p̃3(p̃3 − p̃1)(p̃3 − p̃2)
. (3.152)

The sign of d
(2)
1 and d

(3)
1 depend only on the sign of

[
p̃2ε

1
2

(
α1 − α0 + τ

)
− σ̃

]
and[

p̃3ε
1
2

(
α1 − α0 + τ

)
− σ̃

]
; respectively, and the sign of p̃1 here does not affect things.

It is clear that stability is satisfied if d
(2)
1 and d

(3)
1 are positive and this obtained by

p̃2 <
σ̃

ε
1
2 (α1 − α0 + τ)

,

and

p̃3 <
σ̃

ε
1
2 (α1 − α0 + τ)

,

respectively.

By inserting (3.151) and (3.152) into (3.149) and (3.150) respectively, to get

w2(ω) = p̃2 + iωσ̃
[
p̃2ε

1
2

(
α1 − α0 + τ

)
− σ̃

] G̃(p̃2)

F̃ ′(p̃2)
+O(ω2), (3.153)

w3(ω) = p̃3 + iωσ̃
[
p̃3ε

1
2

(
α1 − α0 + τ

)
− σ̃

] G̃(p̃3)

F̃ ′(p̃3)
+O(ω2). (3.154)

Summarising, branches wi(ω), i = 1, 2, 3 are stable if the quantity p̃iε
1
2 (α1−α0+τ)−σ̃

is negative. Conversely, these branches become unstable if this quantity is positive.
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High frequency expansions

In order to get the roots of the secular equation (3.141) in the high frequency limits

ω → ∞, we need to take ω−1 → 0. By putting ω =
1

ζ
, the secular equation (3.141)

becomes

F̃ (w) +
σ̃

(iζ + α0)

[
wε

1
2

(
(α1 − α0) + τ(1− iζ−1α0)

)
− σ̃

]
G̃(w) = 0, (3.155)

Multiplying equation (3.155) by ζ we get

ζF̃ (w) +
σ̃

(iζ + α0)

[
wε

1
2

(
(α1 − α0 + τ)ζ − iwε

1
2α0τ)

)
− σ̃

]
G̃(w) = 0. (3.156)

Rearranging this equation as

ζF̃ (w) +
σ̃

(iζ + α0)

[
ζ
(
wε

1
2 (α1 − α0 + τ)− σ̃

)
− iα0wε

1
2 τ
]
G̃(w) = 0. (3.157)

Put ζ = 0 to obtain

−iσ̃wε
1
2 τG̃(w) = 0. (3.158)

So if σ̃ 6= 0, the roots are w1 = W̃1, w2 = W̃2, w3 = 0 and the last one w4 →∞.

Now look at ζ → 0, so the roots of the secular equation (3.141) become

w1 = W̃1 + Aζ +O(ζ2), (3.158a)

w2 = W̃2 +Bζ +O(ζ2). (3.158b)

w3 = Cζ +O(ζ2). (3.158c)

w4 = Dζ−1 + E +O(ζ). (3.158d)

In order to get these roots we need to find A,B,C,D,E.

Firstly by substituting (3.158a) into (3.157), we get

A =
W̃1(W̃1 − p̃1)(W̃1 − p̃2)(W̃1 − p̃3)

iσ̃W̃1ε
1
2 τ(W̃1 − W̃2)

,

thus, the first root is

w1 = W̃1 −
( iζ

σ̃W̃1ε
1
2 τ

) F̃ (W̃1)

G̃′(W̃1)
+O(ζ2).
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Similarly, we can find that

B =
W̃2(W̃2 − p̃1)(W̃2 − p̃2)(W̃2 − p̃3)

iσ̃W̃2ε
1
2 τ(W̃2 − W̃1)

,

so the second root becomes

w2 = W̃2 −
( iζ

σ̃W̃2ε
1
2 τ

) F̃ (W̃2)

G̃′(W̃2)
+O(ζ2).

Baced on the inequalities (3.140a) we find that A < 0 and B < 0, and are not affected

by the sign of p̃1, so Im w1(ζ) > 0 and Im w2(ζ) > 0, thus w1(ζ) and w2(ζ) are

unstable in the high frequency.

Now inserting (3.158c) into (3.157) we get

C = 0, 0, 0, iσ̃ε1/2α−20 (α1 − α0 + τ).

So, the third root may be written as

w3 = iζσ̃ε1/2α−20 (α1 − α0 + τ) +O(ζ2).

The sign of imaginary part is positive, so w3 is unstable in the high frequency.

Finally, substituting (3.158d) into (3.157) gives

D = 0, 0, 0, iσ̃ε1/2τ,

and

E = (p̃1 + p̃2 + p̃3)− (W̃1 + W̃2)− σ̃α−10 ε1/2(α1 − α0).

Thus, the fourth root becomes

w4 = iζ−1σ̃ε1/2τ + (p̃1 + p̃2 + p̃3)− (W̃1 + W̃2)− σ̃α−10 ε1/2(α1 − α0) +O(ζ).

The stability condition is not satisfied here because Im w4(ζ) > 0, so w4 is unstable

in the high frequency.

It is clear that from Figures 3.9–3.11 branches can change their stability nature for

intermediate frequencies. This is because we cannot rearrange (3.141) to have the

real part in one side and the imaginary part on the other, as in equations (2.46) and

(3.22).
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The exceptional case p̃0 = 0.

When p̃1 = 0 the situation is as at the end of Section 3.3.1 and we have two branches

beginning at the origin with arguments −π/4 and 3π/4 in the complex w plane, see

Figure 3.10.

Numerical results

In Figure 3.9 we have taken p̃1 > 0. The branch w0(ω) beginning at the origin is

unstable in each part of the Figure. All the other branches begin to the right of this

branch. If α0 and α1 are small enough then

p̃iε
1
2 (α1 − α0 + τ)− σ̃ < 0, for i = 1, 2, 3,

and so all the branches wi(ω), i = 1, 2, 3, are stable in the low frequency. This can be

seen in the first subfigures (a)–(c) of Figure 3.9 where α0 and α1 are small. As α0 and

α1 increase, first w3(ω) becomes unstable, see part (d), and as they increase further

other branches become unstable.

In Figure 3.10 we illustrate the exceptional case p̃1 = 0. Now two branches emanate

from the origin, namely, w0(ω) and w1(ω), one stable and the other unstable, one with

argument −π/4 and the other with argument 3π/4. The same increasing instability

with increasing α0 and α1 is observed except w0(ω) retains its stability throughout

the entire frequency range in each part of the Figure.

In Figure 3.11 we have taken p̃1 < 0. The branch w1(ω) beginning at w = p̃1 is

unstable in each part of the Figure. All the other branches begin to the right of

this branch. The branch w0(ω) begins at the origin and is stable in each part of the

Figure. As in Figures 3.9 and 3.10, increasing α0 and α1 leads to increasing instability.

As in the Figure 3.10 th e branch w0(ω) maintains its stability in the low and high

frequencies in each part of the Figure.
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Figure 3.9: The longitudinal squared wave speeds of constrained anisotropic

TRDTE+GTE (1). For each part, p̃1 = 1, p̃2 = 2, p̃3 = 3, W̃1 = 1.5, W̃2 = 2.5, σ̃ =

1, ε = 1.τ = 0.1
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Figure 3.10: The longitudinal squared wave speeds of constrained anisotropic

TRDTE+GTE (1). For each part, p̃1 = 0, p̃2 = 2, p̃3 = 3, W̃1 = 1.5, W̃2 = 2.5, σ̃ =

1, ε = 1.τ = 0.1
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Figure 3.11: The longitudinal squared wave speeds of constrained anisotropic

TRDTE+GTE (1). For each part, p̃1 = −1, p̃2 = 2, p̃3 = 3, W̃1 = 1.5, W̃2 = 2.5, σ̃ =

1, ε = 1.τ = 0.1
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3.4 Constrained isotropic TRDTE+GTE (1)

3.4.1 Usual form of deformation-temperature constraint

The field equations for TRDTE+GTE (1) of constrained anisotropic thermoelastic

materials are (3.81). Then applying (2.191) to (3.81) we will get the field equations

of constrained isotropic TRDTE+GTE (1) as

(λ̃+ µ̃)uj,ij + µ̃ui,jj − β(θ + α1θ̇),i + Ñ η̃,i = ρüi,

kθ,ii − Tβ(u̇i,i + τ üi,i)− αT ˙̃η = ρc(θ̇ + α0θ̈),

Ñui,i − αθ = 0.

 (3.159)

Ñ = ÑI. (3.159a)

The secular equation

Similarly to Section 2.4.1 we are seeking for solutions of (3.159) in the form of plane

harmonic waves (2.86). Insert (2.86) into (3.159) with aid of (3.159a) to get the

following system of algebraic equations

[(µ̃− ρs−2)δij + (λ̃+ µ̃)ninj]Uj + iβ(ωs)−1ni(1− iωα1)Θ− iÑni(ωs)−1H̃ = 0,

Tβωsni(1− iωτ)Ui + (ωs2k − iρc(1− iωα0))Θ− iαTH̃ = 0,

ÑniiωsUi − αΘ = 0.


(3.160)

It is required to eliminate Θ and H between (3.160). Firstly, from (3.160)3 we can

write it with subject Θ as follows

Θ =
iωsÑniUi

α
. (3.161)

Substituting (3.161) into (3.160)2, we get

H̃ = −iα−1βωsni(1− iωτ)Ui +
(ωsÑni
α2T

)
(ωs2k − iρc(1− iωα0))Ui. (3.162)

Inserting (3.161) and (3.162) into (3.160)1, we get[
(µ̃− w)δij + (λ̃+ µ̃)ninj

]
Uj + iβ(ωs)−1ni(1− iωα1)

(iωsÑnjUj
α

)
−

iÑ(ωs)−1ni

[
− iα−1βωsnj(1− iωτ)Uj +

ωsÑnj
α2T

(ωs2k − iρc(1− iωα0))Uj

]
= 0.
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After simplifying and rearranging the equation we obtain{
(µ̃− w)δij +

[(
λ̃+ µ̃− α−1βÑ

[
(1− iωα1) + (1− iωτ)

])
−(ρcÑ2

α2T

)(
(1− iωα0) +

iωk

wc

)]
ninj

}
Uj = 0, (3.163)

which gives in direct notation the secular equation

det
{

(µ̃− w)1 +
[(
λ̃+ µ̃− α−1βÑ

[
(1− iωα1) + (1− iωτ)

])
−(ρcÑ2

α2T

)(
(1− iωα0) +

iωk

wc

)]
n⊗ n

}
= 0. (3.164)

Non-dimensionalize this equation by applying the dimensionless quantities (2.57) and

further dimensionless quantities

α′ = αT, c′ = ρcT/γ, ω∗ = γc/k,

to get

det
{

(µ̃′ − w′)1 +
[(
λ̃′ + µ̃′ − (εc′)1/2Ñ

α′
[
(1− iω′α′1) + (1− iωτ)

])
−
(c′Ñ2

α′2

)
(

(1− iω′α′0) +
iω′

w′

)]
n⊗ n

}
= 0. (3.165)

Now by using the standard identity (2.60), and dropping dashes for convenience, we

get the secular equation as follows

(w − µ̃)2
[
w2 − w

(
1− (εc)1/2Ñα−1

[
(1− iωα1) + (1− iωτ)

]
− cÑ2α−2(1− iωα0)

)
+ iωcÑ2α−2

]
= 0. (3.166)

This is the secular equation for isotropic TRDTE+GTE (1) which is constrained by

the uasual deformation temperature constraint and has not previously appeared in

the literature.

The repeated root w = µ̃ represents two purely elastic transverse waves, and longitu-

dinal waves are represented by roots of the following quadratic equation

α2w2−w
(
α2−(εc)1/2αÑ

[
(1−iωα1)+(1−iωτ)

]
−cÑ2(1−iωα0)

)
+iωcÑ2 = 0. (3.167)
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Equation (3.167) may be written as

w2 − w
(

1− ε1/2σ̃
[
(1− iωα1) + (1− iωτ)

]
− σ̃2(1− iωα0)

)
+ iωσ̃2 = 0. (3.168)

The secular equation (3.168) may be written as

w2 − w
{

1− ε1/2σ̃
[
2− iω(α1 + τ)

]
− σ̃2(1− iωα0)

}
+ iωσ̃2 = 0. (3.168a)

where σ̃ is defined earlier in (2.202). In this equation there are two parameters,

ε and σ, which affect the behaviour of the roots of this equation. Returning to

the special cases that are discussed in Section 2.4.1, namely, (Ñ = 0, α 6= 0) and

(Ñ 6= 0, α = 0), we find that the solutions of (3.168a) reduces to equations (2.204)

and (2.205), respectively. But in general, with neither Ñ nor α is equal to zero, it is

convenient to go back to equation (3.168). The roots of (3.168) are

w1,2 = Ā±
[
Ā2 − iωσ̃2

] 1
2
, (3.169)

where

Ā =
1

2

[
1− ε1/2σ̃

[
(1− iωα1) + (1− iωτ)

]
− σ̃2(1− iωα0)

]
. (3.170)

This equation may be written as

Ā =
1

2

[
1− 2ε1/2σ̃ − σ̃2 + iωσ̃

(
ε1/2(α1 + τ) + α0σ̃

2
)]
.

For fixed ε ≥ 0, as σ̃ increases from 0 to ∞, Re Ā decreases from 1
2

to −∞. Re Ā

becomes 0 at ω = 0 for a critical value of σ̃ given by

σ̃c = (1 + ε)1/2 − ε1/2. (3.171)

In the special case where σ̃ = σ̃c, so Re Ā = 0 in (3.169), we get

w = ±ei
π
4ω1/2σ̃c +O(ω), (3.171a)

and this is similar to its counterpart (2.208) in TRDTE.

Low frequency expansions

The roots of the secular equation (3.168a) in the low frequency limit when ω = 0 are

w1 = 1− 2ε1/2 − σ̃2, w2 = 0.
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But as ω → 0 the roots of the secular equation take the form

w1 = 1− 2ε1/2 − σ̃2 + A(iω) +O(ω2), w2 = B(iω) +O(ω2). (3.171b)

Inserting (3.171b) into (3.168a) we get

A = σ̃
[
α0σ̃ + ε1/2(α1 + τ)

]
− σ̃2

1− 2ε1/2σ̃ − σ̃2
and B =

σ̃2

1− 2ε1/2σ̃ − σ̃2
.

Thus the roots become

w1 = 1− 2ε1/2σ̃ − σ̃2 + iωσ̃
{
α0σ̃ + ε1/2(α1 + τ)− σ̃

1− 2ε1/2σ̃ − σ̃2

}
+O(ω2),

and

w2 =
iωσ̃2

1− 2ε1/2σ̃ − σ̃2
+O(ω2).

If σ̃ < σ̃c, we cannot tell about the sign of Im w1(ω) because it depends on the relative

values of the quantities occurring but it is clear that Im w2(ω) > 0 so w2 is unstable.

If σ̃ > σ̃c, Im w1(ω) > 0 so w1 is unstable and Im w2(ω) < 0 so w2 is stable. If σ̃ = σ̃c

the analysis is not valid and will return to the roots of the secular equation in the

special case (3.171a).

High frequency expansions

In the high frequency limits as ω → ∞, (iω)−1 → 0. The secular equation (3.168a)

after dividing by iω becomes

w2(iω)−1 − w
{

(iω)−1 − 2ε1/2σ̃(iω)−1 + ε1/2σ̃(α1 + τ)− σ̃2(iω)−1 + σ̃2α0

}
+ σ̃2 = 0.

(3.171c)

The roots of the secular equation (3.168a) in the high frequency may obtained by

putting (iω)−1 = 0 and we get

w1 =
σ̃

ε1/2(α1 + τ) + α0σ̃
, and w2 →∞.

Now the roots of the secular equation (3.171c) as (iω)−1 → 0 are given by

w1 =
σ̃

ε1/2(α1 + τ) + α0σ̃
+ A(iω)−1 +O(ω−2), and w2 = B(iω) + C +O(ω−1).

(3.171d)

By substituting (3.171d) into (3.171c) we obtain

A =
1

(ε1/2(α1 + τ) + α0σ̃)2

[ σ̃

ε1/2(α1 + τ) + α0σ̃
− (1− 2ε1/2σ̃ − σ̃2)

]
,
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B = σ̃(ε1/2(α1 + τ) + σ̃α0), and C = 1− 2ε1/2σ̃ − σ̃2 − σ̃

(ε1/2(α1 + τ) + σ̃α0)
.

Thus the roots become

w1 =
σ̃

ε1/2(α1 + τ) + α0σ̃
− iω−1

(ε1/2(α1 + τ) + α0σ̃)2[ σ̃

ε1/2(α1 + τ) + α0σ̃
− (1− 2ε1/2σ̃ − σ̃2)

]
+O(ω−2). (3.171e)

If σ̃ < σ̃c, we cannot tell about the sign of Im w1(ω) because it depends on the relative

values of the quantities occurring, but if σ̃ > σ̃c, Im w1(ω) < 0 so w1 is stable. If

σ̃ = σ̃c we find that Im w1(ω) < 0, thus w1 is stable.

w2 = iωσ̃(ε1/2(α1 + τ) + σ̃α0) + 1− 2ε1/2σ̃ − σ̃2 − σ̃

(ε1/2(α1 + τ) + σ̃α0)
+O(ω−1)

(3.171f)

It is clear that Im w2(ω) > 0, so w2 is unstable in the high frequency.

Now we consider the two previous special cases.

Case 1: The isothermal constraint viewed as the limit σ̃ → 0

Expanding (3.169) we obtain

w1,2 =
1

2

(
1− ε1/2σ̃((1− iωα1) + (1− iωτ))− σ̃2(1− iωα0)

)
±

1

2

{(
1− ε1/2σ̃((1− iωα1) + (1− iωτ))− σ̃2(1− iωα0)

)2
− 4iωσ̃2

}1/2

.

After expanding and using the binomial expansion we get

w1 = 1− ε1/2σ̃((1− iωα1) + (1− iωτ))− σ̃2(1− iωα0)− iωσ̃2 +O(σ̃3). (3.172)

Rearrange this equation as

w1 = 1− 2ε1/2σ̃ − σ̃2 + iωσ̃
[
ε1/2(α1 + τ) + α0σ̃ − σ̃

]
+O(σ̃3),

w2 = iωσ̃2 +O(σ̃3). (3.173)

Equation (3.173) is similar to its counterpart (2.210) in Section 2.4.1.

Case 2: The purely mechanical constraint viewed as the limit σ̃ →∞
When σ̃ → ∞ means

1

σ̃
is small, from (3.169), after expanding and factorising by
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σ̃4(1− iωα0), then using the binomial expansion, we obtain

w1 =
−iω

(1− iωα0)

[
1− ε1/2σ̃−1 ((1− iωα1) + (1− iωτ))

(1− iωα0)

]
+O(σ̃−2). (3.174)

w2 = 1− ε1/2σ̃((1− iωα1) + (1− iωτ))− σ̃2(1− iωα0) +
iω

(1− iωα0)[
1− ε1/2σ̃−1 ((1− iωα1) + (1− iωτ))

(1− iωα0)

]
+O(σ̃−2). (3.175)

Putting α0 = α1 = 0 and τ = 0 in equations (3.119)–(3.175) returns us to classical

thermoelasticity.

Numerical results

In each of Figures 3.12 and 3.13 we use ε = 1, but in Figure 3.12 we choose α0 = 0.01

and α1 = 0.02, and in Figure 3.13 α0 = 0.1 and α1 = 0.2 , and w is plotted for a range

of values of σ̃. We have two longitudinal waves one is stable and finite and the other

is unstable and tends to infinity. The low frequency limits are marked by a × and

the high frequency limits are marked by a ◦. The unstable branch starting from the

origin and the stable branch starting from 1−2ε1/2σ̃− σ̃2, when σ̃ < σ̃c see subfigures

(a)–(c). But as σ̃ > σ̃c the situation is reversed, see subfigures (e) and (f). In the

special case when σ̃ = σ̃c the branches become a connected line passing through the

origin at angle −π/4 to the real axis, see the subfigure (d). It is clear that increasing

of α0 and α1 does not change branches stability nature.

Varying the parameters τ and ε while changing the magnitude of ω does not have any

substantive influence on the stability.
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Figure 3.12: The longitudinal squared wave speeds of isotropic thermelastic material

for TRDTE+GTE(1) theory with incompressibility at uniform temperature. For each

part (ε = 1, α0 = 0.01, α1 = 0.02, τ = 0.1), (a)σ̃ = 0.1σ̃c, (b)σ̃ = 0.5σ̃c, (c)σ̃ = σ̃c,

(d)σ̃ = 2σ̃c, (e)σ̃ = 3σ̃c, (f)σ̃ = 5σ̃c.
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Figure 3.13: The longitudinal squared wave speeds of isotropic thermelastic material

for TRDTE+GTE theory with incompressibility at uniform temperature. For each

part (ε = 1, α0 = 0.1, α1 = 0.2, τ = 0.1), (a)σ̃ = 0.3σ̃c, (b)σ̃ = 0.7σ̃c, (c)σ̃ = σ̃c,

(d)σ̃ = 2σ̃c, (e)σ̃ = 3σ̃c, (f)σ̃ = 10σ̃c.
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3.4.2 Alternative form of deformation-temperature constraint

In this section we will use equations (3.159)1,2 and the alternative form of deformation

temperature constraint (2.144), to get the field equations of TRDTE + GTE (1) for

an isotropic material incompressible at fixed temperature

(λ̃+ µ̃)uj,ij + µ̃ui,jj − β
(

1 + α1
∂

∂t

)
θ,i + Ñ η̃,i = ρüi,

kθ,ii − Tβ
(

1 + τ
∂

∂t

)
u̇i,i − αT ˙̃η = ρc

(
1 + α0

∂

∂t

)
θ̇,

Ñui,i − α(θ + α0θ̇) = 0.

 (3.176)

The secular equation

Now we are looking for solutions in the form of plane harmonic waves (2.86), by

inserting (2.86) into (3.176) with aid (3.159a) we get the system of algebraic equations

[(µ̃− ρs−2)δij + (λ̃+ µ̃)ninj]Ui + iβ(ωs)−1ni(1− iωα1)Θ− iÑnj(ωs)−1H̃ = 0,

Tβωsni(1− iωτ)Ui +
[
ωs2k − iρc(1− iωα0)

]
Θ− iαTH̃ = 0,

ÑniiωsUi − α(1− iωα0)Θ = 0.


(3.177)

Eliminate Θ and H̃ between (3.177), similarly to (3.160). From (3.177)3 we can write

Θ as follows

Θ =
iωsÑniUi
α(1− iωα0)

(3.178)

Substituting (3.178) into (3.177)2, we get

H̃ = −iα−1β(1− iωτ)ωsniUi +
[
ωs2k − iρc(1− iωα0)

]( ωsÑniUi
α2T (1− iωα0)

)
. (3.179)

Inserting Θ and H̃ into (3.177)1 we get after simplifying{
(µ̃− w)δij +

[
λ̃+ µ̃− α−1βÑ

(
(1− iωτ) +

1− iωα1

1− iωα0

)]
−

ρcÑ2

α2T (1− iωα0)

[
(1− iωα0) +

iωk

wc

]
ninj

}
Ui = 0. (3.180)

This gives in direct notation the secular equation

det
{

(µ̃− w)1 +
[
λ̃+ µ̃− α−1βÑ

(
(1− iωτ) +

1− iωα1

1− iωα0

)
−

ρcÑ2

α2T (1− iωα0)

[
(1− iωα0) +

iωk

wc

]
n⊗ n

}
= 0. (3.181)
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Non-dimensionalize this equation by applying the dimensionless quantities (2.57) to

get

det
{

(µ̃′ − w′)1 +
[
λ̃′ + µ̃′ − (εc′)1/2

α′
Ñ
(

(1− iω′τ ′) +
1− iω′α′1
1− iω′α′0

)
− c′Ñ2

α′2(1− iω′α′0)

[
(1− iω′α′0) +

iω′

w′

]
n′ ⊗ n′

}
= 0. (3.182)

Now by using the standard identity (2.60), dropping the dashes for convenience, we

get the secular equation as follows

(w−µ̃)2
{
α2w2−w

[
α2−(εc)1/2αN

[
(1−iωτ)+

1− iωα1

1− iωα0

]
+cÑ2

]
− iωcÑ2

1− iωα0

}
= 0.

(3.183)

This is the secular equation for isotropic TRDTE+GTE (1) which is constrained by

the alternative deformation temperature constraint and has not previously appeared

in the literature.

The repeated root w = µ̃ represents two purely elastic transverse waves. The longi-

tudinal waves are roots of the following quadratic equation

α2w2 − w
{
α2 − (εc)1/2αÑ

[
(1− iωτ) +

1− iωα1

1− iωα0

]
− cÑ2

}
+

iωcÑ2

1− iωα0

= 0. (3.184)

By dividing by α2 we get

w2 − w
{

1− (εc)1/2

α
Ñ
[
(1− iωτ) +

1− iωα1

1− iωα0

]
− cÑ2

α2

}
+

iωcÑ2

α2(1− iωα0)
= 0. (3.185)

We can rewrite equation (3.185) as

w2 − w
{

1− ε1/2σ̃
[
(1− iωτ) +

1− iωα1

1− iωα0

]
− σ̃2

}
+

iωσ̃2

1− iωα0

= 0, (3.186)

where σ̃ is defined earlier in (2.202). Equation (3.186) is the final form which represents

the squared wave speeds of purely longitudinal waves propagating in an isotropic

thermoelastic material that is incompressible at uniform temperature. Again going

back to the special cases that are discussed in Section 2.4.1, (Ñ = 0, α 6= 0) and

(Ñ 6= 0, α = 0), we will get the same results and analysis. In examining the more
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general case in which neither Ñ nor α is equal to zero, it is convenient to go back to

equation (3.186). The roots of (3.186) are

w1,2 = Ā±
[
Ā2 − iωσ̃2

1− iωα0

] 1
2
, (3.187)

where

Ā =
1

2

{
1− ε1/2σ̃

[
(1− iωτ) +

1− iωα1

1− iωα0

]
− σ̃2

}
. (3.188)

Equation (3.188) may be written as

Ā =
1

2

{
1− ε1/2σ̃ − σ̃2 − ε1/2σ̃

1 + ω2α2
0

(
1 + α1α0ω

2
)

+ iωε1/2σ̃
[
τ +

α1 + α0

1 + ω2α2
0

]}
.

For fixed ε ≥ 0, as σ̃ increases from 0 to ∞, Re Ā at ω = 0 decreases from 1
2

to −∞.

Re Ā becomes 0 at ω = 0 for a critical value of σ̃ given by

σ̃c = (1 + ε)1/2 − ε1/2. (3.189)

In the special case where σ̃ = σ̃c, so Re Ā = 0 at ω = 0 in (3.187), we get

w = ±
(
− iωσ̃2

c

) 1
2

+O(ω),

= ±
(
e−i

π
2 σ̃2

cω
) 1

2
+O(ω),

So,

w = ±e−i
π
4ω

1
2 σ̃c +O(ω). (3.190)

Low frequency expansions

The roots of the secular equation (3.186) in the low frequency limits at ω = 0 are

w1 = 1− 2ε1/2σ̃ − σ̃2, and w2 = 0.

While the roots at ω → 0 may be written as

w1 = 1− 2ε1/2σ̃ − σ̃2 + A(iω) +O(ω2), and w2 = B(iω) +O(ω2). (3.190a)

Substituting (3.190a) into (3.186) we get

A = ε1/2σ̃(α1 − α0 + τ)− σ̃2

1− 2ε1/2σ̃ − σ̃2
, and B =

σ̃2

1− 2ε1/2σ̃ − σ̃2
.
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Thus, the roots become

w1 = 1− 2ε1/2σ̃ − σ̃2 + iωσ̃
{
ε1/2σ̃(α1 − α0 + τ)− σ̃

1− 2ε1/2σ̃ − σ̃2

}
+O(ω2),

and

w2 =
iωσ̃2

1− 2ε1/2σ̃ − σ̃2
+O(ω2).

If σ̃ < σ̃c we cannot tell about the sign of Im w1(ω) because it depends on the relative

values of the quantities occurring, but it is clear that Im w2(ω) > 0, so w2 is unstable.

If σ̃ > σ̃c the sign of Im w1(ω) is positive so w1 is unstable and the sign of Im w2(ω)

is negative, so w2 is stable. If σ̃ = σ̃c the analysis is not valid and we can return in

this case to (3.190).

High frequency expansions

In the high frequency as ω → ∞, (ω)−1 → 0. The secular equation (3.186) may be

written as

w2(1− iωα0)−

w
{

(1− iωα0)−ε1/2σ̃
[
(1−iωτ)(1− iωα0)+(1− iωα1)

]
− σ̃2(1− iωα0)

}
+iωσ̃2 = 0.

(3.190b)

After dividing by (iω)2 we get

w2
[
(iω)−2 − (iω)−1α0

]
− w

{[
(iω)−2 − (iω)−1α0

]
−

ε1/2σ̃
[
2(iω)−2− (iω)−1(α1 +α0 +τ)+τα0

]
− σ̃2

[
(iω)−2− (iω)−1α0

]}
+(iω)−1σ̃2 = 0.

(3.190c)

Putting (iω)−1 = 0 into (3.190c) to get the roots of the secular equation as

w1 = 0, and w2 →∞.

As (iω)−1 → 0 the roots may written as

w1 = A(iω)−1 +O(ω−2), and w2 = B(iω) + C +O(ω−1). (3.190d)

Inserting (3.190d) into (3.190c) we obtain

A =
−σ̃

ε1/2α0τ
, B = ε1/2σ̃τ, and C =

−1

α0

[
ε1/2σ̃(α0 + α1)− α0(σ̃

2 − 1)
]
,
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so the roots become

w1 =
iω−1σ̃

ε1/2α0τ
+O(ω−2),

w2 = iωε1/2σ̃τ − 1

α0

[
ε1/2σ̃(α0 + α1) + α0(σ̃

2 − 1)
]

+O(ω−1).

It is clear that Im w1(ω) > 0 and Im w2(ω) > 0, so w1 and w2 are unstable in the

high frequency limits.

Now we consider the two special cases.

Case 1: The isothermal constraint viewed as the limit σ̃ → 0

From (3.187)

w1,2 =
1

2

{
1− ε1/2σ̃

[
(1− iωτ) +

1− iωα1

1− iωα0

]
− σ̃2

}
±

1

2

{[
1− ε1/2σ̃

(
(1− iωτ) +

1− iωα1

1− iωα0

)
− σ̃2

]2
− 4iωσ̃2

1− iωα0

}1/2

.

After expanding and using the binomial expansion we get

w1 = 1− ε1/2σ̃
[
(1− iωτ) +

1− iωα1

1− iωα0

]
− σ̃2 − iωσ̃2

1− iωα0

+O(σ̃3), (3.191)

w2 =
iωσ̃2

1− iωα0

+O(σ3). (3.192)

Equation (3.191) at ω = 0 represents a stable branch starting from the point

w = 1− 2ε
1
2 σ̃ − σ̃2,

and equation (3.192) describes an unstable branch starting from the origin.

Case 2: The purely mechanical constraint viewed as the limit σ̃ →∞
When σ̃ →∞ means

1

σ̃
is small, from (3.187), after expanding and using the binomial

expansion, we obtain

w1 =
−iω

1− iωα0

{
1− ε1/2σ̃−1

[
(1− iωτ) +

1− iωα1

1− iωα0

]}
+O(σ̃−2). (3.193)

w2 = 1−ε1/2σ̃
[
(1−iωτ)+

1− iωα1

1− iωα0

]
−σ̃2+

iω

1− iωα0

{
1−ε1/2σ̃−1

[
(1−iωτ)+

1− iωα1

1− iωα0

]}
+O(σ̃−2). (3.194)
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Putting α0 = α1 = 0 in equations (3.193) and (3.194) we will recover roots of the

secular equation in the low and high frequencies in the classical thermoelastcity, see

[27, (3.21)-(3.22)].

Numerical results

Figure 3.14 illustrates two longitudinal waves both beginning at the origin one ending

at the origin and the other tending to infinity. One of them is stable in the low

frequency and unstable in the high frequency and the other branch maintains the

instability in the low and high frequency.

Varying the parameters α0, α1, τ and ε while changing the magnitude of ω does not

have any substantive influence on the stability.
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Figure 3.14: The longitudinal squared wave speeds of isotropic thermelastic material

for TRDTE+GTE(1) theory with incompressibility at uniform temperature. All plots

with same frequencies. For each part (ε = 1, α0 = 0.01, α1 = 0.02, τ = 0.1), (a)σ̃ =

0.1σ̃c, (b)σ̃ = 0.3σ̃c, (c)σ̃ = σ̃c, (d)σ̃ = 2σ̃c, (e)σ̃ = 3σ̃c, (f)σ̃ = 5σ̃c.
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Chapter 4

Temperature-rate-dependent

thermoelasticity with generalized

thermoelasticity: model 2.

Introduction

We are concerned in this chapter with the theory of temperature-rate-dependent ther-

moelasticity combined with generalized thermoelasticity, due to Ignaczak [25]. We

shall indicate this theory by the abbreviation TRDTE+GTE (2). Anisotropic and

isotropic thermoelastic materials are considered separately, which are either uncon-

strained, or constrained by the usual, or the alternative, deformation-temperature

constraint. The linearized field equations are given in each case. We will follow the

same structure and analysis as we did in the previous chapters. Again, the stability

and instability of waves are affected by the values of the relaxation times α0, α1 and τ .
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4.1 Unconstrained anisotropic TRDTE+GTE (2)

4.1.1 Basic equations

The basic equations for a homogeneous anisotropic linear thermelastic solids can be

described by the following field equations, in the context of Ignaczak’s theory, see [25],

σij = c̃ijkluk,l − βij
(

1 + α1
∂

∂t

)
θ,

φ = ρ−1βijni,j + T−1c
(

1 + α0
∂

∂t

)
θ,(

1 + τ
∂

∂t

)
qi = −kijθ,j,


(4.1)

in which qi is heat flux and φ is entropy. The balance laws are

σij,j = ρüi, − qi,i = ρT φ̇. (4.2)

4.1.2 The secular equation

In order to get the field equations we have to insert (4.2) into (4.1), similarly to (2.2).

Firstly, from (4.1)1 and (4.2)1 we get

ρüi = c̃ijkluk,lj − βij
(

1 + α1
∂

∂t

)
θ,j. (4.3)

Differentiating (4.1)2 with respect to time we find that

φ̇ = ρ−1βiju̇i,j + T−1c
(

1 + α0
∂

∂t

)
θ̇. (4.4)

Multiplying all terms of (4.4) by ρT , we obtain

ρT φ̇ = Tβiju̇i,j + ρc
(

1 + α0
∂

∂t

)
θ̇.

Substituting this equation into the balance law (4.2)2, we get

−qi,i = Tβiju̇i,j + ρc
(

1 + α0
∂

∂t

)
θ̇. (4.5)

Differentiating (4.1)3 with respect to xi we get(
1 + τ

∂

∂t

)
qi,i = −kijθ,ij. (4.6)
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Multiplying (4.5) by
(
−
(

1 + τ
∂

∂t

))
, we obtain(

1 + τ
∂

∂t

)
qi,i = −

(
1 + τ

∂

∂t

)
Tβiju̇i,j − ρc

(
1 + τ

∂

∂t

)(
1 + α0

∂

∂t

)
θ̇. (4.7)

After expanding the right hand side of (4.7) and inserting (4.6) into (4.7) we obtain

kijθ,ij = Tβij(u̇i,j + τ üi,j) + ρc(θ̇ + (α0 + τ)θ̈ + α0τ
...
θ ). (4.8)

Hence equations (4.3) and (4.8) represent the field equations of TRDTE and GTE,

model 2. Now to get the propagation condition we need to obtain the solution of

(4.3) and (4.8) in the form of plane harmonic waves, similar to (2.3). Then all expo-

nential factors are dropped to obtain the propagation conditions. By using the same

derivatives as in (2.4a) and the further derivative

...
θ = (−iω)3Θ.

Inserting the derivatives into (4.3) we get

c̃ijkl(−ω2s2nlnjUk)− iωsβijnj(1− iωα1)Θ = ρ(−ω2Ui).

Let us write Ui = δikUk, βijnj = bi, for convenience, to get

c̃ijkl(−ω2s2nlnj + ρω2δik)Uk − iωsbi(1− iωα1)Θ = 0.

Dividing by (−ω2s2) we obtain

(c̃ijklnlnj − ρs−2δik)Uk + i(ωs)−1bi(1− iωα1)Θ = 0. (4.9)

Now substituting the derivatives into (4.8) we get

kij(−ω2s2)ninjΘ = Tβij[ω
2snjUi+τ(−iω3snj)Ui)+ρc[−iω+(−ω2)(α0+τ)+τα0iω

3]Θ.

Rearranging the equation after dividing by (−ω2s2), we get

Tβijnjs
−1(1− iωτ)Ui − (iω−1wc(1− iωτ)(1− iωα0)− kijninj)Θ = 0. (4.10)

Equations (4.9) and (4.10) may be written as

(Q̃ij − w1) + bi(ωs)
−1i(1− iωα1)Θ = 0,

T bis
−1(1− iωτ)Ui + (k − iω−1(1− iωτ)(1− iωα0)wc)Θ = 0,

 (4.11)
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where

Q̃ij = c̃ijklninj, bi = βijnj, k = kijninj.

Similar to previous sections, equations (4.11) may be written in matrix form as
Q̃11 − w Q̃12 Q̃13 ᾱb1

Q̃21 Q̃22 − w Q̃23 ᾱb2

Q̃31 Q̃32 Q̃33 − w ᾱb3

βb1 βb2 βb3 γ2

 ·

U1

U2

U3

Θ

 = 0,

where

β = Ts−1(1− iωτ), γ2 = k − iω−1(1− iωτ)(1− iωαo)cw, ᾱ = i(ωs)−1(1− iωα1).

(4.12)

The determinant of this equation is∣∣∣∣∣∣∣∣∣∣∣

Q̃11 − w Q̃12 Q̃13 ᾱb1

Q̃21 Q̃22 − w Q̃23 ᾱb2

Q̃31 Q̃32 Q̃33 − w ᾱb3

βb1 βb2 βb3 γ2

∣∣∣∣∣∣∣∣∣∣∣
= 0.

Similarly to (2.7), this determinant may be written as follows

D ≡

∣∣∣∣∣∣Q̃− w1 ᾱb + 0

βbT −δ + (γ2 + δ)

∣∣∣∣∣∣
in which so far δ is an arbitrary quantity. Using properties of determinants to expand

by the fourth column we have

D ≡

∣∣∣∣∣∣Q̃− w1 ᾱb

βbT −δ

∣∣∣∣∣∣+

∣∣∣∣∣∣Q̃− w1 0

βbT γ + δ

∣∣∣∣∣∣ .
The first determinant is

D1 =

∣∣∣∣∣∣∣∣∣∣∣

Q̃11 − w Q̃12 Q̃13 ᾱb1

Q̃21 Q̃22 − w Q̃23 ᾱb2

Q̃31 Q̃32 Q̃33 − w ᾱb3

βb1 βb2 βb3 −δ

∣∣∣∣∣∣∣∣∣∣∣
.
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Similarly to the previous sections, remove ᾱb from the fourth column by taking

row 1−(
ᾱb1
−δ

) row 4

row 2−(
ᾱb2
−δ

) row 4

row 3−(
ᾱb3
−δ

) row 4

to obtain

D1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣

(Q̃11 − w)− (
ᾱb1
−δ

)βb1 Q̃12 − (
ᾱb1
−δ

)βb2 Q̃13 − (
ᾱb1
−δ

)βb3 0

Q̃21 − (
ᾱb2
−δ

)βb1 (Q̃22 − w)− (
ᾱb2
−δ

)βb2 Q̃23 − (
ᾱb2
−δ

)βb3 0

Q̃31 − (
ᾱb3
−δ

)βb1 Q̃32 − (
ᾱb3
−δ

)βb2 (Q̃33 − w)− (
ᾱb3
−δ

)βb3 0

βb1 βb2 βb3 −δ

∣∣∣∣∣∣∣∣∣∣∣∣∣
and so

D1 = −δ det{(Q̃− w1) +
ᾱβ

δ
(b⊗ b)}.

From the definitions (2.13) and (4.12) we can get the value of δ as follows

δ = icwω−1(1− iωα1)(1− iωτ). (4.13)

Thus, the first determinant becomes

D1 = −iω−1cw(1− iωα1)(1− iωτ) det{Q̂− w1}. (4.14)

The second determinant is

D2 =

∣∣∣∣∣∣∣∣∣∣∣

(Q̃11 − w) Q̃12 Q̃13 0

Q̃21 (Q̃22 − w) Q̃23 0

Q̃31 Q̃32 (Q̃33 − w) 0

βb1 βb2 βb3 γ2 + δ

∣∣∣∣∣∣∣∣∣∣∣
= (γ2 + δ) det{Q̃− w1}. (4.15)

Since γ2 is given in (4.12), the second determinant becomes

D2 = [(k − iω−1cw(1− iωα0)(1− iωτ) + iω−1cw(1− iωα1)(1− iωτ)] det{Q̃− w1}.

After simplifying we get

D2 = [k + wc(1− iωτ)(α1 − α0)] det{Q̃− w1},
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and so,

D ≡ −iω−1cw(1−iωα1)(1−iωτ) det{Q̂−w1}+(k+cw(1−iωτ)(α1−α0)) det{Q̃−w1}.
(4.16)

Dividing by (−iω−1c(1− iωα1)(1− iωτ)), we get the secular equation

w det{Q̂− w1}+

[
iωkc−1 + iωw(1− iωτ)(α1 − α0)

(1− iωα1)(1− iωτ)

]
det{Q̃− w1} = 0. (4.17)

This is the secular equation for unconstrained anisotropic TRDTE+GTE (2) and has

not previously appeared in the literature.

To non-dimensionlize this equation we need to use the dimensionless quantities (2.103)

and (3.20), then we find that

w det{Q̂− w1}+

[
iω(1 + w(1− iωτ)(α1 − α0))

(1− iωα1)(1− iωτ)

]
det{Q̃− w1} = 0. (4.18)

The notations Q̂′, Q̃′, w′, ω′, α1
′, α0

′, τ ′ have been replaced by Q̂, Q̃, w, ω, α1, α0, τ for

convenience. Equation (4.18) may be written as

w(w−q̂1)(w−q̂2)(w−q̂3)+

[
iω(1 + w(1− iωτ)(α1 − α0))

(1− iωα1)(1− iωτ)

]
(w−q̃1)(w−q̃2)(w−q̃3) = 0,

(4.19)

in which

0 ≤ q̃1 ≤ q̂1 ≤ q̃2 ≤ q̂2 ≤ q̃3 ≤ q̂3, and α1 ≥ α0. (4.20)

We can rewrite (4.19) as follows

F̂ (w) +

[
iω(1 + w(1− iωτ)(α1 − α0))

(1− iωα1)(1− iωτ)

]
G̃(w) = 0, (4.21)

in which,

F̂ (w) = w
3∏
i=1

(w − q̂i), G̃(w) =
3∏
i=1

(w − q̃i).

On putting τ = 0 in (4.21) we get the corresponding secular equation (2.27) of

TRDTE, as expected.

Low frequency expansions

When ω = 0, the roots of the secular equation (4.21) are the zeros of F̂ (w) : w =
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q̂i, i = 0, 1, 2, 3. Defining q̂0 ≡ 0, Taylor expansions of the roots of equation (4.21)

take the form

wi(ω) = q̂i +
∞∑
i=1

d(i)n (−iω)n, i = 0, 1, 2, 3. (4.22)

The first coefficient, when i = 0, is

w0 = q̂0 + d
(0)
1 (−iω) +O(ω2). (4.23)

Inserting (4.23) into (4.21) we obtain

d
(0)
1 =

q̃1q̃2q̃3
q̂1q̂2q̂3

> 0, (4.24)

so

w0 = −iω G̃(0)

F̂ ′(0)
+O(ω2). (4.25)

It is clear that Im w0 < 0, so w0 is stable.

Now, when i = 1,

w1 = q̂1 + d
(1)
1 (−iω) +O(ω2). (4.26)

Inserting (4.26) into (4.21), and using (4.20) we get

d
(1)
1 = {1 + q̂1(α1 − α0)}

(q̂1 − q̃1)(q̂1 − q̃2)(q̂1 − q̃3)
q̂1(q̂1 − q̂2)(q̂1 − q̂3)

> 0. (4.27)

Thus,

w1 = q̂1 − iω{1 + q̂1(α1 − α0)}
G̃(q̂1)

F̂ ′(q̂1)
+O(ω2). (4.28)

Obviously the stability condition is satisfied because Im w1 < 0, so it is stable. Simi-

larly, when i = 2, 3 we find that

w2 = q̂2 − iω{1 + q̂2(α1 − α0)}
G̃(q̂2)

F̂ ′(q̂2)
+O(ω2), (4.29)

w3 = q̂3 − iω{1 + q̂3(α1 − α0)}
G̃(q̂3)

F̂ ′(q̂3)
+O(ω2). (4.30)

These two equations represent two stable waves as well. So there are four stable waves

in the low frequency limit.
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High frequency expansions

When iω →∞, then (iω)−1 → 0. From the secular equation (4.21) we find that

w(w − q̂1)(w − q̂2)(w − q̂3) + κ(w − q̃1)(w − q̃2)(w − q̃3) = 0, (4.31)

where

κ =

[
iω(1 + w(1− iωτ)(α1 − α0))

(1− iωα1)(1− iωτ)

]
. (4.32)

We can rewrite κ as

κ =

[
(iω)−1 + w((iω)−1 − τ)(α1 − α0))

((iω)−1 − α1)((iω)−1 − τ)

]
.

Put ζ = 1/ω, so (−iζ) = 1/iω. Now rewrite κ in terms of ζ,

κ =

[
(−iζ) + w((−iζ)− τ)(α1 − α0)

((−iζ)− α1)((−iζ)− τ)

]
.

As ω →∞, ζ → 0, so κ becomes

κ =
−(α1 − α0)

α1

w. (4.33)

Inserting (4.33) into (4.31), we obtain

w(w − q̂1)(w − q̂2)(w − q̂3)−
(α1 − α0)

α1

w(w − q̃1)(w − q̃2)(w − q̃3) = 0. (4.34)

The roots of the secular equation (4.31), when ω →∞, are given by the zeros of H(w)

H(w) = F̂ (w)− w (α1 − α0)

α1

G̃(w), (4.35)

where F̂ (w) and G̃(w) are defined earlier in (2.28) . Equation (4.35) is a quartic in

w, so there are four roots. So that q̄i, i = 0, 1, 2, 3. q̄0 ≡ w = 0 is a root, the other

roots are q̄1 < q̄2 < q̄3. Now, we have to examine the sign changes of H(w), using the
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inequalities (4.20), and equation (4.31), we obtain

H(0) = 0,

H(q̃1) = q̃1(q̃1 − q̂1)(q̃1 − q̂2)(q̃1 − q̂3) < 0,

H(q̂1) = −(α1 − α0)

α1

q̂1(q̂1 − q̃1)(q̂1 − q̃2)(q̂1 − q̃3) < 0,

H(q̃2) = q̃2(q̃2 − q̂1)(q̃2 − q̂2)(q̃2 − q̂3) > 0,

H(q̂2) = −(α1 − α0)

α1

q̂2(q̂2 − q̃1)(q̂2 − q̃2)(q̂2 − q̃3) > 0,

H(q̃3) = q̃3(q̃3 − q̂1)(q̃3 − q̂2)(q̃3 − q̂3) < 0,

H(q̂3) = −(α1 − α0)

α1

q̂3(q̂3 − q̃1)(q̂3 − q̃2)(q̂3 − q̃3) < 0,

H(∞) =∞ > 0.

(4.36)

It is obvious from (4.36), that the locations of zeros of H(w) satisfy: q̄1 is between q̂1

and q̃2, q̄2 is between q̂2 and q̃3 and q̄3 is between q̂3 and ∞. The roots q̄i, i = 1, 2, 3,

therefore satisfy the following inequalities

0 < q̃1 ≤ q̂1 ≤ q̄1 ≤ q̃2 ≤ q̂2 ≤ q̄2 ≤ q̃3 ≤ q̂3 ≤ q̄3. (4.37)

On defining the real quartic polynomial

h̄(w) = w(w − q̄1)(w − q̄2)(w − q̄3),

h̄(w) must be a scalar multiple of H(w) because both have the same four roots, thus

H(w) :=
(α0

α1

)
h̄(w). (4.38)

Now look for roots when ω →∞, from (4.32), putting ω =
1

ζ
⇒ iω = −(iζ)−1, so,

κ =
−(iζ)−1(1 + w(1 + (iζ)−1τ)(α1 − α0)

(iζ)−2((iζ) + α1)((iζ) + τ)
.

Multiplying numerator and denominator of κ by (iζ)2 we get

κ =
−(iζ)(1 + w(1 + (iζ)−1τ)(α1 − α0)

α1τ(1 +
iζ

α1

)(1 +
iζ

τ
)

.
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After expanding and simplifying we get

κ = −w(1− α0

α1

)− iζ

α1τ
{1− wτ(1− α0/α1)} (4.39)

and so (4.21) may be written as

F̂ (w) + κ(ω,w)G̃(w) = 0. (4.40)

Inserting (4.39) into (4.40) we get(
F̂ (w)− w(1− α0

α1

)G̃(w)
)
− iζ

α1τ
{1− wτ(1− α0/α1)}G̃(w) = 0. (4.41)

But from (4.35) and (4.38), equation (4.41) may be written as

h̄(w)− iζ

α0τ
{1− wτ(1− α0/α1)}G̃(w) = 0. (4.42)

Taylor expansions of the roots of (4.42) take the form

wi(ζ) = q̄i +
∞∑
n=1

d(i)n (iζ)n, i = 1, 2, 3, 4. (4.43)

The first coefficient, when i = 0, is

w0(ζ) = q̄0 + d
(0)
1 (iζ) +O(ζ2). (4.44)

Substituting (4.44) into (4.42), taking q̄0 ≡ 0 and ζ → 0, we get

d
(0)
1 =

( 1

α0τ

) q̃1q̃2q̃3
q̄1q̄2q̄3

> 0. (4.45)

Inserting (4.45) into (4.44) we get

w0(ζ) =
( iζ

α0τ

)G̃(0)

h̄′(0)
+O(ζ2). (4.46)

As we see here, Im w0 > 0, so w0 is unstable. Now when i = 1, n = 1, (4.43) becomes

w1(ζ) = q̄1 + d
(1)
1 (iζ) +O(ζ2). (4.47)

Again, inserting (4.47) into (4.44) we get

d
(1)
1 =

1

α0τ

(
1− q̄1τ(1− α0/α1)

)(q̄1 − q̃1)(q̄1 − q̃2)(q̄1 − q̃3)
q̄1(q̄1 − q̄2)(q̄1 − q̄3)

> 0. (4.48)
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Substituting (4.48) into (4.47) we get

w1(ζ) = q̄1 +
iζ

α0τ

(
1− q̄1τ(1− α0/α1)

)G̃(q̄1)

h̄′(q̄1)
+O(ζ2). (4.49)

The stability condition depends on τ ; if τ is very large then the condition is satisfied

here, so w1 is stable, but if τ is very small then w1 is unstable.

Similarly, when i = 2 and 3, we find that

w2(ζ) = q̄2 +
iζ

α0τ

(
1− q̄2τ(1− α0/α1)

)G̃(q̄2)

h̄′(q̄2)
+O(ζ2), (4.50)

w3(ζ) = q̄3 +
iζ

α0τ

(
1− q̄3τ(1− α0/α1)

)G̃(q̄3)

h̄′(q̄3)
+O(ζ2). (4.51)

Again, these branches could be stable when τ is very large, and unstable if τ is very

small. We conclude that

wi, is stable for 1− q̄iτ(1− α0/α1) < 0, for i = 1, 2, 3.

We can say that

w1 stable for, τ > τ1 ≡
1

q̄1(1− α0/α1)
,

w2 stable for, τ > τ2 ≡
1

q̄2(1− α0/α1)
,

w3 stable for, τ > τ3 ≡
1

q̄3(1− α0/α1)
.

Now

τ > τ1 > τ2 > τ3, all three branches are stable.

τ1 > τ > τ2 > τ3, q̄1 is unstable but, q̄2, q̄3 are stable.

τ1 > τ2 > τ > τ3, q̄1, q̄2, are unstable but, q̄3 is stable.

τ1 > τ2 > τ3 > τ, all three branches are unstable.

Numerical results

Figure 4.1 illustrates that, the stability condition depends on values of τ , α1 and

α0, demonstrating the effect of τ increasing. When τ is very small but not zero the

branches become unstable. If τ is very big there are three stable waves but one mode

be always unstable in high frequncy limit.

In each sub-figure we select the same values of q̃i, i = 1, 2, 3, and q̂i, i = 1, 2, 3. Low

frequency limits are marked with a × and high frequency limits with •. It is clear

that all branches lie in the lower complex w-plane and only the first subfigure (a)
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shows that all branches satisfy the stability condition (2.24) and it is corresponding

to subfigure (b) of Figure 2.1 inTRDTE. .
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Figure 4.1: The four branches of the secular equation for unconstrained anisotropic

thermelastic material for TRDTE + GTE (2). For each part, α0 = 0.1, α1 = 0.2,

q̃1 = 1, q̃2 = 2, q̃3 = 3, q̂1 = 0.75, q̂2 = 1.75, q̂3 = 2.75.
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4.2 Unconstrained isotropic TRDTE+GTE (2)

In order to get the field equations of an isotropic unconstrained thermoelastic material

in the context of Ignaczak’s theory we should follow the same steps as in Sections 2.2

and 3.2. Thus, the field equations are

(λ̃+ µ̃)uj,ij + µ̃ui,jj − β(θ + α1θ̇),i = ρüi,

kθ,ii − Tβ
(

1 + τ
∂

∂t

)
u̇j,j − ρc

(
1 + (α0 + τ)

∂

∂t
+ α0τ

∂2

∂t2
)
θ̇ = 0.

 (4.52)

4.2.1 The secular equation

Now we are seeking the solutions of (4.52) in the form of plane harmonic waves (3.2)

and follow the same steps in the previous chapters to obtain

((λ̃+ µ̃)ninj + (µ̃− ρs−2)δij)Uj + iβ(ωs)−1ni(1− iωα1)Θ = 0,

Tβωsnj(1− iωτ)Uj +
(
kωs2 − iρc(1− iωα0)(1− iωτ)

)
Θ = 0.

 (4.53)

Eliminating Θ between (4.53) we get{
(µ̃− w)δij + (λ̃+ µ̃)ninj +

wTβ2(1− iωα1)(1− iωτ)ninj
ρc(w(1− iω(α0 + τ)− ω2α0τ) + iωk/c)

}
Uj = 0,

(4.54)

so that there exist non-zero amplitudes satisfying (4.54) if and only if

det

{
(µ̃− w)1 +

[
(λ̃+ µ̃) +

wTβ2(1− iωα1)(1− iωτ)

ρc(w(1− iω(α0 + τ)− ω2α0τ) + iωk/c)

]
n⊗ n

}
= 0.

(4.55)

Using the dimensionless quantities (2.57) to non-dimensionlize (4.55) we get

det

{
(µ̃′ − w′)1 +

(
λ̃′ + µ̃′ +

εw′(1− iω′α′1)(1− iω′τ ′)
w′(1− iω′(α′0 + τ ′)− ω′2α′0τ ′) + iω′

)
n⊗ n

}
= 0.

(4.56)

Using again the standard identity (2.60), dropping the dashes for convenience, we get

(w − µ̃)2[w2(1− iωα0)(1− iωτ)− w(1− iωα0)(1− iωτ)(λ̃+ 2µ̃)+

ε(1− iωα1)(1− iωτ)− iω]− (λ̃+ 2µ̃)iω = 0. (4.57)

This is the secular equation for unconstrained isotropic TRDTE+GTE (2) and has

not previously appeared in the literature.
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Since (λ̃+ 2µ̃) = 1, the longitudinal waves are represented by the following quadratic

equation,

w2(1− iωα0)(1− iωτ)− w[(1− iωα0)(1− iωτ)+

ε(1− iωα1)(1− iωτ)− iω]− iω = 0. (4.58)

On putting τ = 0 in (4.58) we get the corresponding secular equation (2.70) of

TRDTE, as expected. This equation may be written as

w2 − w
[
1 + ε

(1− iωα1

1− iωα0

)
− iω

(1− iωα0)(1− iωτ)

]
− iω

(1− iωα0)(1− iωτ)
= 0,

with roots

w1,2 =
1

2

{
z3 ±

(
(z3)

2 +
4iω

(1− iωα0)(1− iωτ)

) 1
2
}
, (4.59)

where

z3 = 1 + ε
(1− iωα1

1− iωα0

)
− iω

κ1
,

and

κ1 = (1− iωα0)(1− iωτ).

In Figure 4.2 the roots (4.59) are plotted in the complex w−plane for various values

of ε ≥ 0. In the uncoupled case, when ε = 0, the roots become

w1 = 1, w2 =
−iω
κ1

, (4.60)

see sub-figure 4.2 (a). Equation (4.60)1 corresponds to the unattenuated, non-dispersive

longitudinal wave and is called an elastic mode. Equation (4.60)2 corresponds to the

pure diffusion equation and is called a diffusive mode.

Low frequency expansions

Now returning to the general case when ε ≥ 0 for low frequencies at ω = 0 the roots

(4.59) become

w1 = 1 + ε, w2 = 0. (4.60a)

But as ω → 0, the roots may be written as

w1 = (1 + ε) + A(iω) +O(ω2), w2 = B(iω) +O(ω2). (4.60b)
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Inserting (4.60b) into (4.58) we get

A = −ε[α1 − α0 +
1

1 + ε
], and B =

−1

1 + ε
.

Thus, the roots become

w1 = 1 + ε− iωε[α1 − α0 +
1

1 + ε
] +O(ω2), (4.61)

w2 =
−iω
1 + ε

+O(ω2). (4.62)

Both branches are stable in the low frequency limits.

High frequency expansions

In the high frequencies as ω → ∞, ω−1 → 0 The secular equation (4.58) may be

written as

w2
[
1− iω(α0 + τ) + (iω)2α0τ

]
− w

[
(1− iω(α0 + τ) + (iω)2α0τ) + ε(1− iω(α0 + τ) + (iω)2α1τ)− iω

]
− iω = 0.

(4.60c)

After dividing by (iω)2 equation (4.60c) becomes

w2[(iω)−2 − (iω)−1(α0 + τ) + α0τ ]

−w
{

[
(
iω)−2−(iω)−1(α0+τ)+α0τ

]
+ε
[
(iω)−2−iω(α0+τ)+α1τ

]
−(iω)−1

}
−(iω)−1 = 0.

(4.60d)

Putting (iω)−1 = 0 into (4.60d) we get

w2(α0τ)− w(α0τ + εα1τ) = 0,

and the roots are

w1 = 1 + ε
α1

α0

, and w2 = 0. (4.60e)

Now we need to get the roots of the secular equation as (iω)−1 → 0. The roots may

be written in the following forms

w1 = 1 + ε
α1

α0

+ A(iω)−1 +O(ω−2), and w2 = B(iω)−1 +O(ω−2). (4.60f)
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Substituting (4.60f) into (4.60d) we obtain

A =
ε

α2
0

[
α1 − α0 −

α0

ετ

]
+

1

τ(α0 + εα1)
,

and

B =
−1

τ(α0 + εα1)
.

Thus, the roots are

w1 = 1 + ε
α1

α0

− iω−1
{ ε

α2
0

[
α1 − α0 −

α0

ετ

]
+

1

τ(α0 + εα1)

}
+O(ω−2), (4.63)

and

w2 =
iω−1

τ(α0 + εα1)
+O(ω−1). (4.64)

We cannot tell about the sign of Im w1(ω) because it depends on the relative values

of the quantities occurring. But it is clear that Im w2(ω) > 0, so w2 is unstable.

Numerical results

It can be seen that in each part of Figure 4.2 for ε ≥ 0 the roots (4.60a) are elastic in

character and stable for low frequency and are marked × in each part of the figure.

In the high frequency limit, (4.60e) are also elastic but unstable and are marked ◦ in

each part of the figure .

Varying the parameters α1, α0 and τ while changing the magnitude of ω does not have

any substantive influence on the stability.
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Figure 4.2: The longitudinal squared wave speeds of unconstrained isotropic TRDTE

+ GTE (2). For each part, α0 = 0.1, α1 = 0.2, τ = 0.5.
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4.3 Constrained anisotropic TRDTE+GTE (2)

4.3.1 Usual form of deformation-temperature constraint

Similarly to Sections 2.3.1 and 3.3.1, the linearized form of the constraint connecting

the deformation and the temperature takes the form

Ñqpup,q − αθ = 0. (4.65)

The constitutive equations for a deformation-temperature constrained material are

σij = c̃ijkluk,l − βij
(

1 + α1
∂

∂t

)
θ + η̃Ñij,

φ = ρ−1βijui,j + T−1c
(

1 + α0
∂

∂t

)
θ + ρ−1αη̃.

 (4.66)

In order to get the field equations, arguing similarly to (2.82), we find that on inserting

(4.66)1 into the balance equations (4.2)1, we get

c̃ijkluk,lj − βij
(

1 + α1
∂

∂t

)
θ,j + Ñij η̃,j = ρüi. (4.67)

Equation (4.67) is similar to (2.83). From the modified Fourier law (4.1)3 and (4.2)2,

we obtain (
1 + τ

∂

∂t

)
qi,i = −kijθ,ij. (4.68)

Differentiate (4.66)2 with respect to time after multiplying by ρT to get

ρT φ̇ = Tβiju̇i,j + ρc
(

1 + α0
∂

∂t

)
θ̇ + Tα ˙̃η.

Inserting into (4.2)2 after multiplying by
(

1 + τ
∂

∂t

)
, we get

(
1 + τ

∂

∂t

)
qi,i = −[Tβij(u̇i,j + τ üi,j) +ρc(θ̇+ (α0 + τ)θ̈+α0τ

...
θ ) +Tα( ˙̃η+ τ ¨̃η)]. (4.69)

Substituting (4.68) into (4.69) we obtain

Tβpq(u̇p,q + τ üp,q) + ρc(θ̇ + (α0 + τ)θ̈ + α0τ
...
θ ) + Tα( ˙̃η + τ ¨̃η)− kpqθ,pq = 0. (4.70)

The secular equation

Now we are looking for the solutions of (4.65), (4.67) and (4.70) by substituting them
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in the same form of plane harmonic waves (2.86). We already have most of derivatives

in (2.4a), and now just observe that

u̇p,q = ω2snqUpe
χ, üp,q = −iω3snqUpe

χ,
...
θ = iω3Θeχ, ¨̃η = −ω2H̃eχ,

where

χ = iω(sn · x− t).

Inserting all the derivatives into (4.65), (4.67) and (4.70) we get

c̃ijkl(−(ωs)2)nlnjUk − βij(iωsnj(1− iωα1)Θ) + Ñij(iωsnjH̃) = ρ(−ω2)Ui. (4.71)

Dividing by (−(ωs)2), we get

c̃ijklnlnjUk + βijnji(ωs)
−1(1− iωα1)Θ− i(ωs)−1ÑijnjH̃ = ρs−2Ui. (4.72)

Rearranging the equation we obtain

(Q̃ik − ρs−2δik)Uk + i(ωs)−1[bi(1− iωα1)Θ− c̃iH̃] = 0. (4.73)

This equation is similar to (2.89) in TRDTE and (3.82) in TRDTE + GTE, model 1.

Equation (4.70), after inserting the derivatives, becomes

Tβpq[(ω
2snqUp) + τ(−iω3snqUp)] + ρc(−iω + (α0 + τ)(−ω2) + α0τ(iω3))Θ+

Tα(−iω + τ(−ω2))H̃ − kij(iωs)2ninjΘ = 0.

Rearranging the equation after dividing by ω we obtain

ωsTbp(1−iωτ)Up−iTα(1−iωτ)H̃+(ωs2k−iρc(1−i(α0+τ)ω−α0τω
2))Θ = 0, (4.74)

where k and bp have been mentioned earlier in the previous theories. By putting τ = 0

in this equation we will get the same equation (2.91) as in TRDTE. Equation (4.65),

after inserting derivatives, becomes

iωsc̃pUp − αΘ = 0, (4.75)

where c̃p is defined formerly in TRDTE (for the anisotropic constrained case). We

now eliminate Θ and H̃ between equations (4.73), (4.74) and (4.75). Equation (4.75)

may be rewritten as

Θ = α−1iωsc̃pUp. (4.76)
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Inserting (4.76) into (4.74), we get

H̃ = −iωsα−1bpUp + (ωs2k− iρc(1− i(α0 + τ)ω−α0τω
2))(α2T )−1(1− iωτ)−1ωsc̃pUp.

(4.77)

Substituting (4.76) and (4.77) into (4.73) gives

(Q̃ik − ρs−2δik)Uk + i(ωs)−1[bi(1− iωα1)(α
−1iωsc̃pUp)− c̃i[−iωsα−1bpUp+

(ωs2k − iρec(1− i(α0 + τ)ω − α0τω
2)(α2T )−1(1− iωτ)−1ωsc̃pUp] = 0.

Rearranging this equation, we get

{Q̃ip−α−1(bic̃p(1− iωα1) + c̃ibp)− (α2T )−1(iωs2k+ ρc(1− i(α0 + τ)ω−α0τω
2))c̃ic̃p

− ρs−2δip)}Up = 0. (4.78)

The non-zero amplitudes satisfy (4.73), (4.74) and (4.75) if and only if

det{Q̃− α−1(b⊗ c̃ + c̃⊗ b)− (α2T )−1(ρc+ iωs2k)c̃⊗ c̃+

α−1iωα1b⊗ c̃ + i(α2T )−1ρcω((α0 + τ)− iωα0τ)c̃⊗ c̃− ρs−21} = 0. (4.79)

Defining

P̃ := Q̃− α−1(b⊗ c̃ + c̃⊗ b)− (α2T )−1(ρc)c̃⊗ c̃, (4.80)

we can rewrite (4.79) in terms of the tensor P̃ as

det
{

(P̃−w1) +α−1iωα1b⊗ c̃− iω

α2T
(s2k− ρc((α0 + τ)− iωα0τ))c̃⊗ c̃

}
= 0. (4.81)

Equation (4.81) may be rewritten as

det{(P̃− w1) + [α−1iωα1b−
iω

α2T
(s2k − ρc((α0 + τ)− iωα0τ))]c̃⊗ c̃} = 0. (4.82)

Using the standard identity (2.60), we get

det(P̃−w1)+[α−1iωα1b−
iω

α2T
(s2k−ρc((α0+τ)−iωα0τ))]c̃·(P̃−w1)adjc̃ = 0. (4.83)

Now we need to rewrite P̃ in terms of definitions (2.110a) and (2.110b) to get the

same equation (2.111) as before. In dimensionless form, if we use the dimensionless

quantities (2.103) and (3.20) then we will obtain the same equation (2.112) as before.
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Also, the secular equation (4.83) may be written in terms of definitions (2.110a) and

(2.110b) as

det(P̃−w1) +
[
α−1iωα1β −

iω

α2T

(
s2k− ρc

(
(α0 + τ)− iωα0τ

))]
n · (P̃−w1)adjn = 0.

(4.84)

This is the secular equation for anisotropic TRDTE+GTE (2) which is constrained

by the usual deformation temperature constraint and has not previously appeared in

the literature.

Now, the dimensionless form of the secular equation (4.84) is

w det(w1−P̃)−iωσ̃
[
w
(
ε

1
2α1+ σ̃

(
α0+τ(1−iωα0)

))
− σ̃
]
n ·(w1−P̃)adjn = 0, (4.85)

dropping the dashes for convenience. We will follow exactly the same steps as in

Sections 2.3.1 and 3.3.1 of the usual deformation temperature constraint, to get the

final form of the secular equation here as

F̃ (w)− iωσ̃
[
w
(
ε

1
2α1 + σ̃

(
α0 + τ(1− iωα0)

))
− σ̃

]
G̃(w) = 0, (4.86)

where F̃ (w) and G̃(w) are defined earlier in (2.116). On putting τ = 0 in (4.86) we

get the corresponding secular equation (2.115) of TRDTE, as expected.

Low frequency expansions

This is similar to the previous sections concerning the low frequency limits. When

ω → 0, the roots of the secular equation (4.86) are the zeros of F̃ (w) ≡ p̃i, where

i = 0, 1, 2, 3, defining p̃0 ≡ 0. Taylor expansions take the form

wi(ω) = p̃i +
∞∑
n=1

d(i)n (−iω)n, i = 0, 1, 2, 3. (4.87)

When i = 0, n = 1

w0(ω) = p̃0 + d
(0)
1 (−iω) +O(ω2). (4.88)

Substituting (4.88) into (4.86) we get

d
(0)
1 = −σ̃2 W̃1W̃2

p̃1p̃2p̃3
. (4.89)
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The sign of d
(0)
1 depends on the sign of p̃1. If p̃1 > 0 then d

(0)
1 < 0, thus w0(ω) is

unstable. But stability is satisfied if d
(0)
1 > 0 and this obtained if p̃1 < 0. As before,

p̃1 = 0 is a special case.

Substituting (4.89) into (4.88) gives

w0(ω) = iωσ̃2 G̃(0)

F̃ ′(0)
+O(ω2). (4.90)

When i = 1, n = 1 we obtain

w1(ω) = p̃1 + d
(1)
1 (−iω) +O(ω2). (4.91)

Substituting (4.91) into (4.86) we get

d
(1)
1 = −σ̃

[
p̃1

(
ε

1
2α1 + σ̃

(
α0 + τ

))
− σ̃

](p̃1 − W̃1)(p̃1 − W̃2)

p̃1(p̃1 − p̃2)(p̃1 − p̃3)
. (4.92)

The sign of d
(1)
1 depends on the signs of

[
p̃1
(
ε

1
2α1 + σ̃(α0 + τ)

)
− σ̃
]

and p̃1. Stability

is satisfied if d
(1)
1 > 0, and d

(1)
1 is positive if

0 < p̃1 <
σ̃

ε
1
2α1 + σ̃

(
α0 + τ

) .
Inserting (4.92) into (4.91) gives

w1(ω) = p̃1 + iωσ̃
[
p̃1

(
ε

1
2α1 + σ̃

(
α0 + τ

))
− σ̃

] G̃(p̃1)

F̃ ′(p̃1)
+O(ω2). (4.93)

Similarly, when i = 2, 3, n = 1, we obtain

w2(ω) = p̃1 + d
(2)
1 (−iω) +O(ω2), (4.94)

w3(ω) = p̃1 + d
(3)
1 (−iω) +O(ω2). (4.95)

Substituting (4.94) and (4.95) into (4.86) respectively we get

d
(2)
1 = −σ̃

[
p̃2

(
ε

1
2α1 + σ̃

(
α0 + τ

))
− σ̃

](p̃2 − W̃1)(p̃2 − W̃2)

p̃2(p̃2 − p̃1)(p̃2 − p̃3)
, (4.96)

d
(3)
1 = −σ̃

[
p̃3

(
ε

1
2α1 + σ̃

(
α0 + τ

))
− σ̃

](p̃3 − W̃1)(p̃3 − W̃2)

p̃3(p̃3 − p̃1)(p̃3 − p̃1)
. (4.97)
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The signs of d
(2)
1 and d

(3)
1 depend on the signs of[

p̃2
(
ε

1
2α1 + σ̃(α0 + τ)

)
− σ̃

]
and

[
p̃3
(
ε

1
2α1 + σ̃(α0 + τ)

)
− σ̃

]
,

respectively. The sign of p̃1 does not matter here. Stability is satisfied if d
(2)
1 and d

(3)
1

are positive and this is obtained if

p̃2 <
σ̃

ε
1
2α1 + σ̃

(
α0 + τ

) ,
and

p̃3 <
σ̃

ε
1
2α1 + σ̃

(
α0 + τ

) ,
respectively. However, if d

(2)
1 and d

(3)
1 are negative, then w2(ω) and w3(ω) are unstable.

w2(ω) = p̃2 + iωσ̃
[
p̃1

(
ε

1
2α1 + σ̃

(
α0 + τ

))
− σ̃

] G̃(p̃2)

F̃ ′(p̃2)
+O(ω2). (4.98)

It is clear that, w2(ω) is stable if,

p̃2 <
σ̃

ε
1
2α1 + σ̃

(
α0 + τ

) .
We have

w3(ω) = p̃3 + iωσ̃
[
p̃3

(
ε

1
2α1 + σ̃

(
α0 + τ

))
− σ̃

] G̃(p̃3)

F̃ ′(p̃3)
+O(ω2). (4.99)

Clearly, w3(ω) is stable if,

p̃3 <
σ̃

ε
1
2α1 + σ̃

(
α0 + τ

) .
Summarising, branches wi(ω), i = 1, 2, 3, are stable if the quantity

p̃i[ε
1
2α1 + σ̃(α0 + τ)]− σ̃

is negative. Conversely, these branches become unstable if this quantity is positive.

High frequency expansions

When ω → ∞, the roots of the secular equation in the high frequency limit are

obtained by putting ω = ζ−1 and taking ζ → 0. So, the secular equation may be

written in terms of ζ as

F̃ (w)− iζ−1σ̃
[
w
(
ε

1
2α1 + σ̃

(
α0 + τ(1− iζ−1α0)

))
− σ̃

]
G̃(w) = 0. (4.100)
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Multiplying by ζ2 we get

ζ2F̃ (w)− iζσ̃
[
w
(
ε

1
2α1 + σ̃(α0 + τ)− iζ−1α0σ̃τ

)
− σ̃

]
G̃(w) = 0. (4.101)

Rearranging this equation gives

ζ2F̃ (w)− σ̃
[
iζ
(
w
(
ε

1
2α1 + σ̃

(
α0 + τ)

)
− σ̃

)
+ wσ̃α0τ

]
G̃(w) = 0. (4.102)

Putting ζ = 0 we obtain

wσ̃α0τG̃(w) = 0.

For σ̃ > 0, α0 > 0 and τ > 0 then the roots are

w = 0, W̃1, W̃2,

and the fourth one tends to infinity. Now look for the roots of the secular equation

as ζ → 0, so the roots may be written as

w1(ζ) = A3ζ, (4.102a)

w2(ζ) = W̃1 +B3ζ, (4.102b)

w3(ζ) = W̃2 +D2ζ, (4.102c)

w4(ζ) = D3ζ
−1 + E2 + Fζ. (4.102d)

We may get the roots of the secular equation in the high frequency limit, as ζ → 0, by

finding the constants A3, B3, C2, D2, E2, by substituting into (4.102). Firstly, inserting

(4.102a) into (4.102) we get

ζ2(A3ζ − p̃1)(A3ζ − p̃2)(A3ζ − p̃3)− σ̃
[
iζ
(
A3ζ

(
ε

1
2α1 + σ̃

(
α0 + τ)

)
− σ̃

)
+ A3ζσ̃α0τ

]
(A3ζ − W̃1)(A3ζ − W̃2) = 0.

The coefficients of ζ are

−σ̃2(−i+ A3α0τ)W̃1W̃2 = 0.

Thus, for σ̃ > 0, W̃1 > 0 and W̃2 > 0, find that

A3 =
i

α0τ
.
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Substituting A3 into (4.102a) to get

w1(ζ) =
iζ

α0τ
+O(ζ2).

It is clear that the stability condition is not satisfied because Im w1(ζ) > 0.

Inserting (4.102b) into (4.102) we get

ζ2(W̃1 +B3ζ)(W̃1 − p̃1 +B3ζ)(W̃1 − p̃2 +B3ζ)(W̃1 − p̃3 +B3ζ)

−σ̃
[
iζ
(

(W̃1+B3ζ)
(
ε

1
2α1+σ̃

(
α0+τ)

)
−σ̃
)

+(W̃1+B3ζ)σ̃α0τ
]
B3ζ(W̃1+B3ζ−W̃2) = 0.

Cancelling ζ, this equation becomes

ζ(W̃1 +B3ζ)(W̃1 − p̃1 +B3ζ)(W̃1 − p̃2 +B3ζ)(W̃1 − p̃3 +B3ζ)

−σ̃
[
iζ
(

(W̃1+B3ζ)
(
ε

1
2α1+σ̃

(
α0+τ)

)
−σ̃
)

+(W̃1+B3ζ)σ̃α0τ
]
B3(W̃1+B3ζ−W̃2) = 0.

Now putting ζ = 0 we get

−iσ̃
[
− W̃1σ̃τα0i

]
B3(W̃1 − W̃2) = 0.

We find that

B3 = 0.

So we need to rewrite to (4.102b) as

w2(ζ) = W̃1 +B3ζ + C2ζ
2,

and B3 = 0, so w2 becomes

w2(ζ) = W̃1 + C2ζ
2. (4.102e)

Now we want to find C2 by substituting (4.102e) into (4.102) to get

ζ2(W̃1 + C2ζ
2)(W̃1 − p̃1 + C2ζ

2)(W̃1 − p̃2 + C2ζ
2)(W̃1 − p̃3 + C2ζ

2)

−σ̃
[
iζ
(

(W̃1+C2ζ
2)
(
ε

1
2α1+σ̃

(
α0+τ)

)
−σ̃
)

+(W̃1+C2ζ
2)σ̃α0τ

]
C2ζ

2(W̃1+C2ζ
2−W̃2) = 0.

Cancel ζ2 to get

(W̃1 + C2ζ
2)(W̃1 − p̃1 + C2ζ

2)(W̃1 − p̃2 + C2ζ
2)(W̃1 − p̃3 + C2ζ

2)

−σ̃
[
iζ
(

(W̃1+C2ζ
2)
(
ε

1
2α1+σ̃

(
α0+τ)

)
−σ̃
)

+(W̃1+C2ζ
2)σ̃α0τ

]
C2(W̃1+C2ζ

2−W̃2) = 0.

(4.102f)
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Putting ζ = 0 we obtain

C2 =
W̃1(W̃1 − p̃1)(W̃1 − p̃2)(W̃1 − p̃3)

σ̃2τα0W̃1(W̃1 − W̃2)
. (4.102g)

It is clear that C2 is real so we need to extend (4.102e) to include a term in ζ3:

w2(ζ) = W̃1 + C2ζ
2 + C3ζ

3. (4.102h)

Now we need to find C3 by inserting (4.102h) into (4.102), and obtain

C3 =
−iC2

[
W̃1(ε

1/2α1 + σ̃(α0 + τ))− σ̃
]

W̃1σ̃α0τ
.

With the aid of (4.102g) the second root becomes

w2(ζ) = W̃1 +
ζ2F̃ (W̃1)

σ̃2τα0G̃′(W̃1)

{
1− iζ

(W̃1

[
ε1/2α1 + σ̃(α0 + τ)

]
− σ̃

W̃1σ̃α0τ

)}
+O(ζ4).

Similarly for w3, by inserting (4.102c) into (4.102) we obtain

D2 =
W̃2(W̃2 − p̃1)(W̃2 − p̃2)(W̃2 − p̃3)

σ̃2τα0W̃2(W̃2 − W̃1)
. (4.102i)

It is clear that D2 is real, so we need to rewrite (4.102c) as

w3(ζ) = W̃2 +D2ζ
2 +D3ζ

3. (4.102j)

Again, substituting (4.102j) into (4.102) we get

D3 =
−iD2

[
W̃2(ε

1/2α1 + σ̃(α0 + τ))− σ̃
]

W̃2σ̃α0τ
.

With the aid of (4.102i) the third root is written as

w3(ζ) = W̃2 +
ζ2F̃ (W̃2)

σ̃2τα0G̃′(W̃2)

{
1− iζ

(W̃2

[
ε1/2α1 + σ̃(α0 + τ)

]
− σ̃

W̃2σ̃α0τ

)}
+O(ζ4).

Finally, the fourth root may obtained by substituting (4.102d) into (4.102) to get

ζ2(D3ζ
−1 + E2)(D3ζ

−1 + E2 − p̃1)(D3ζ
−1 + E2 − p̃2)(D3ζ

−1 + E2 − p̃3)

− σ̃
[
iζ
(

(D3ζ
−1 + E2)

(
ε

1
2α1 + σ̃

(
α0 + τ)

)
− σ̃

)
+ (D3ζ

−1 + E2)σ̃α0τ
]

(D3ζ
−1 + E2 − W̃1)(D3ζ

−1 + E2 − W̃2) = 0.
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Multiplying by ζ3 we obtain

ζ(D3 + E2ζ)
[
D3 + (E2 − p̃1)ζ

][
D3 + (E2 − p̃2)ζ

][
D3 + (E2 − p̃3)ζ

]
− σ̃

[
i
(

(D3ζ + E2ζ
2)
(
ε

1
2α1 + σ̃

(
α0 + τ)

)
− σ̃ζ2

)
+ (D3 + E2ζ)σ̃α0τ

]
[
D3 + (E2 − W̃1)ζ

][
D3 + (E2 − W̃2)ζ

]
= 0.

Putting ζ = 0 we get

−σ̃2α0τD
3
3 = 0.

Since σ̃ > 0, α0 > 0 and for τ > 0 we find that

D3 = 0.

So, now we need to find E2 and F in equation (4.102d). Substituting

w4 = E2 + Fζ

into (4.102) we get

ζ2(E2 + Fζ)(E2 + Fζ − p̃1)(E2 + Fζ − p̃2)(E2 + Fζ − p̃3)

− σ̃
[
iζ
(

(E2 + Fζ)
(
ε

1
2α1 + σ̃

(
α0 + τ)

)
− σ̃

)
+ (E2 + Fζ)σ̃α0τ

]
(E2 + Fζ − W̃1)(E2 + Fζ − W̃2) = 0.

The constants terms must vanish to find E2, thus

−σ̃2E2α0τ(E2 − W̃1)(E2 − W̃2) = 0,

so

E2 = 0, W̃1, W̃2.

The last two values correspond to the first two branches we already found. If we

substitute E2 = 0 into the secular equation (4.102) to get F we will find that F = A3

similar to the first branch. However, there must be a root tending to infinity as

ω →∞, i.e. ζ → 0. Therefore, suppose that the fourth root may be written as

w4 = D3ζ
−n, some n > 0. (4.102k)
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Substituting (4.102k) into (4.102) gives

D4
3ζ

2−4n −D2
3

[
i
(
σ̃(ε1/2α1 + σ̃(α0 + τ))D3ζ

1−3n − σ̃2ζ1−2n
)

+D3σ̃
2α0τζ

−3n
]

= 0.

Multiplying by ζ4n:

D4
3ζ

2 −D2
3

[
i
(
σ̃(ε1/2α1 + σ̃(α0 + τ))D3ζ

1+n − σ̃2ζ1+2n
)

+D3σ̃
2α0τζ

n
]

= 0. (4.102l)

If we take n = 1 we get D3 = 0, exactly as before. The only meaningful balance of

terms seems to be between the first and last terms:

D4
3ζ

2 −D3
3σ̃

2α0τζ
n = 0. (4.102m)

So we must take n = 2, leading to roots

D3 = 0, 0, 0, σ̃2α0τ.

With n = 2, (4.102l) becomes

D4
3ζ

2 −D2
3

[
i
(
σ̃(ε1/2α1 + σ̃(α0 + τ))D3ζ

3 − σ̃2ζ5
)

+D3σ̃
2α0τζ

2
]

= 0.

We can ignore the ζ3 and ζ5 terms as they are smaller than ζ2 as ζ → 0. This then

gives (4.102m) with n = 2. There might now be a non-zero term proportional to ζ−1,

so to get this term we need to rewrite the fourth root as

w4 = D3ζ
−2 +D4ζ

−1, where D3 = σ̃2α0τ. (4.102n)

Insert (4.102n) into (4.102) to get

D4 = iσ̃
[
ε1/2α1 + σ̃(α0 + τ)

]
.

Now the fourth branch becomes

w4 = σ̃2α0τζ
−2 + iσ̃

[
ε1/2α1 + σ̃(α0 + τ)

]
ζ−1 +O(1),

with Im w4 > 0, corresponding to instability.

Numerical results

In Figure 4.3 we have taken p̃1 > 0. The branch w0(ω) beginning at the origin is
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unstable in the low and high frequencies in each part of the Figure. All the other

branches begin to the right of this branch. If α0 and α1 are small enough then

p̃i
[
ε

1
2α1 + σ̃(α0 + τ)

]
− σ̃ < 0, for i = 1, 2, 3,

and

W̃i[ε
1/2α1 + σ̃(α0 + τ)]− σ̃ > 0, for i = 1, 2.

and so all the branches wi(ω), i = 1, 2, 3, are stable in the low and high frequencies

except w3(ω) is unstable in the high frequency. This can be seen in the first subfigure

(a) of Figure 4.3 where α0 and α1 are small. As α0 and α1 increase, first w2(ω)

becomes unstable, see part (c), and as they increase further w1(ω) becomes unstable.

In Figure 4.4 we have taken p̃1 < 0. The branch w1(ω) beginning at w = p̃1 is unstable

in each part of the Figure. All the other branches begin to the right of this branch.

The branch w0(ω) begins at the origin and is stable in each part of the Figure in the

low frequency but is unstable in the high frequency with increasing of α0 and α1. As

in Figure 4.3, increasing α0 and α1 leads to increasing instability for other branches.

In Figure 4.5 we illustrate the exceptional case p̃1 = 0. Now two branches emanate

from the origin, namely, w0(ω) and w1(ω), one unstable and the other stable in the

low frequency but in the high frequency w0(ω) maintains the instability and w1(ω)

becomes also unstable, one with argument −π/4 and the other with argument 3π/4.

The same increasing instability with increasing α0 and α1 is observed.
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Figure 4.3: The longitudinal squared wave speeds of constrained anisotropic

TRDTE+GTE(2) theory. For each part, p̃1 = 1, p̃2 = 2, p̃3 = 3, W̃1 = 1.5, W̃2 =

2.5, σ̃ = 1, ε = 1.
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Figure 4.4: The longitudinal squared wave speeds of constrained anisotropic

TRDTE+GTE(2) theory. For each part, p̃1 = −1, p̃2 = 2, p̃3 = 3, W̃1 = 1.5, W̃2 =

2.5, σ̃ = 1, ε = 1.
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Figure 4.5: The longitudinal squared wave speeds of constrained anisotropic

TRDTE+GTE(2) theory. For each part, p̃1 = 0, p̃2 = 2, p̃3 = 3, W̃1 = 1.5, W̃2 =

2.5, σ̃ = 1, ε = 1.
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4.3.2 Alternative form of deformation temperature constraint

In this section we will use equations (4.67), (4.70) and (2.144),

c̃ijkluk, jl − βij(θ, j + α1θ̇, j) + Ñij η̃,j = ρüi,

kpqθ,pq − Tβpq
(

1 + τ
∂

∂t

)
u̇p,q − ρc(θ̇ + (α0 + τ)θ̈ + α0τ

...
θ )− Tα( ˙̃η + τ̈̃ η) = 0,

Ñpqup,q − α(θ + α0θ̇) = 0.


(4.103)

Now we follow the same steps of Section 2.3.2 and 3.3.2 to get the secular equation.

Firstly, looking for solution for equations (4.103) in the form of the plane harmonic

waves (2.86) by inserting (2.86) into (4.103) and we will get the same equations we

had before (4.73), (4.74) and (2.146)3

(Q̃ik − ρs−2δik)Uk + i(ωs)−1
[
bi(1− iωα1)Θ− c̃iH̃

]
= 0,

ωsTbp(1− iωτ)Up − iαT (1− iωτ)H̃ + (ωs2k − iρc(1− i(α0 + τ)ω − α0τω
2)Θ = 0,

iωsc̃pUp − α(1− iωα0)Θ = 0,


(4.104)

where Ñpqnq = c̃p, βijnj = bi, kpqnpnq = k. Eliminate Θ and H̃ between (4.104).

From (4.104)3 we find that

Θ =
iωsc̃pUp

α(1− iωα0)
. (4.105)

Substituting (4.105) into (4.104)2 we get

H̃ = −iα−1ωsbpUp +
ωsc̃pUp

(α2T )(1− iωα0)(1− iωτ)

(
ωs2k− iρc(1− i(α0 + τ)ω−α0τω

2)
)
.

(4.106)

Inserting (4.105) and (4.106) into (4.104)1 we obtain{
(Q̃ip − ρs−2δip)− α−1(1− iωα0)

−1(bic̃p(1− iωα1) + c̃ibp(1− iωα0))

− i(α2T )−1(1− iωα0)
−1(1− iωτ)−1(ωs2k− iρc(1− i(α0 +τ)ω−α0τω

2))c̃ic̃p

}
Up = 0.

(4.107)

Expanding this equation we get{
Q̃ip − α−1(1− iωα0)

−1
[
(bic̃p + c̃ibp)− iω(α1bic̃p + α0c̃ibp)

]
−i(α2T )−1(1−iωα0)

−1(1−iωτ)−1(ωs2k−iρc−ρc(α0+τ)ω+iα0ω
2τρc)c̃ic̃p−ρs−2δip

}
Up = 0.

(4.108)
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Rearranging this equation we get{
Q̃ip−α−1(1−iωα0)

−1(bic̃p+c̃ibp)−(α2T )−1(1−iωα0)
−1(1−iωτ)−1ρcc̃ic̃p+iω(1−iωα0)

−1[
α−1(α1bic̃p+α0c̃ibp−(α2T )−1(1−iωτ)−1(s2k−ρc(α0+τ)+iωτα0ρc)c̃pc̃i

]
−wδip

}
Up = 0.

The non-zero amplitudes satisfy (4.104) if and only if

det
{

Q̃−α−1(1− iωα0)
−1(b⊗ c̃+ c̃⊗b)− (α2T )−1(1− iωα0)

−1(1− iωτ)−1ρcc̃⊗ c̃+

iω(1−iωα0)
−1
[
α−1(α1b⊗c̃+α0c̃⊗b−(α2T )−1(1−iωτ)−1(s2k−ρc(α0+τ)+iωα0τρc)c̃⊗c̃

]
− w1

}
= 0. (4.109)

By defining

S̃1 := Q̃− (1− iωα0)
−1
[
α−1(b⊗ c̃ + c̃⊗ b) +

ρc

α2T (1− iωτ)
c̃⊗ c̃

]
(4.110)

equation (4.109) may be written as

det
{

(S̃1−w1)+
iω

(1− iωα0)

[α1

α
b⊗c̃+

α0

α
c̃⊗b−(s2k − ρc(α0 + τ) + iωα0τρc)

α2T (1− iωτ)
c̃⊗c̃

]}
= 0.

(4.111)

In terms of definitions (2.110a) and (2.110b) S̃1 may be written as

S̃1 := Q̃− (1− iωα0)
−1
[
2α−1β +

ρc

α2T (1− iωτ)

]
n⊗ n. (4.112)

In dimensionless form S̃1 becomes

S̃1 := Q̃− (1− iωα0)
−1σ̃
[
2ε

1
2 + σ̃(1− iωτ)−1

]
n⊗ n. (4.113)

Rewrite this definition as

S̃1 := Q̃− (1− iωα0)
−1(1− iωτ)−1σ̃

[
2ε

1
2 (1− iωτ) + σ̃

]
n⊗ n. (4.114)

The secular equation (4.111) can be written in terms of definitions (2.110a) and

(2.110b) as

det
{

(S̃1−w1)+
iω

(1− iωα0)

[
α−1β(α1+α0)−

(s2k − ρc(α0 + τ) + iωα0τρc)

α2T (1− iωτ)

]
n⊗n

}
= 0.

(4.115)
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By using the standard identity (2.60), the secular equation becomes

det(S̃1 − w1) +
iω

(1− iωα0)

[
α−1β(α1 + α0)−

(s2k − ρc(α0 + τ) + iωα0τρc)

α2T (1− iωτ)

]
n · (S̃1 − w1)adjn = 0. (4.116)

The non-dimensional form of the secular equation (4.116) is

w det(w1−S̃1)− iωσ̃

(1− iωα0)

[
wε

1
2 (α1+α0)−σ̃(1−iωτ)−1

(
1−w

(
α0+τ(1−iωα0)

))]
n · (w1− S̃1)adjn = 0. (4.117)

Now the first term of (4.117) may be written as

M1 ≡ w det(w1− S̃1) = w det
{
w1− Q̃ + σ̃(2ε

1
2 + σ̃)n⊗ n

+
(
− 1 +

1

(1− iωα0)(1− iωτ)

)
σ̃(2ε

1
2 + σ̃)n⊗ n− 2iωσ̃τε

1
2

(1− iωα0)(1− iωτ)
n⊗ n

}
.

After simplifying we get

M1 = w det
{

(w1− P̃) +
iωσ̃

(1− iωα0)(1− iωτ)

[
α0(1− iωτ)(2ε

1
2 + σ̃) + σ̃τ

]
n⊗ n

}
.

Using the standard identity (2.60) we obtain

M1 = w det(w1−P̃)+
iωσ̃w

(1− iωα0)(1− iωτ)

[
α0(1−iωτ)(2ε

1
2 +σ̃)+σ̃τ

]
n·(w1−P̃)adjn.

The last term of (4.117) may be written as

M2 ≡ n · (w1− S̃1)adjn = n ·
(

(w1− P̃) +
iωσ̃

(1− iωα0)(1− iωτ)[
α0(1− iωτ)(2ε

1
2 + σ̃) + σ̃τ

]
n⊗ n

)adj
n.

By using [28, (A2)] we get

M2 = n · (w1− P̃)adjn.

By substituting M1 and M2 into the secular equation (4.116) we get

w det(w1− P̃) +
iωσ̃w

(1− iωα0)(1− iωτ)

[
α0(1− iωτ)(2ε

1
2 + σ̃) + σ̃τ

]
n · (w1− P̃)adjn

− iωσ̃

(1− iωα0)

[
wε

1
2 (α1+α0)−σ̃(1−iωτ)−1

(
1−w

(
α0+τ(1−iωα0)

))]
n·(w1−P̃)adjn = 0.
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By simplifying and rearranging we obtain

w det(w1− P̃)− iωσ̃

(1− iωα0)(1− iωτ)

[
wε

1
2 (1− iωτ)(α1−α0)− σ̃

]
n · (w1− P̃)adjn = 0.

(4.118)

This is the secular equation for anisotropic TRDTE+GTE (2) which is constrained by

the alternative deformation temperature constraint and has not previously appeared

in the literature.

Now we need to rewrite equation (4.118) in terms of the eigenvalues p̃i, i = 1, 2, 3, as

w(w − p̃1)(w − p̃2)(w − p̃3)−
iωσ̃

(1− iωα0)(1− iωτ)

[
wε

1
2 (1− iωτ)(α1 − α0)− σ̃

]
{n2

1(w − p̃2)(w − p̃3) + n2
2(w − p̃1)(w − p̃3) + n2

3(w − p̃1)(w − p̃2)} = 0. (4.119)

Similarly to (3.140) the quadratic part in w within braces has zeros at w = W̃1, W̃2,

which satisfy

p̃1 < W̃1 < p̃2 < W̃2 < p̃3. (4.118a)

Equation (4.119) may written as

F̃ (w)− iωσ̃

(1− iωα0)(1− iωτ)

[
wε

1
2 (1− iωτ)(α1 − α0)− σ̃

]
G̃(w) = 0, (4.120)

where F̃ (w) and G̃(w) are defined earlier in (2.28). Putting τ = 0 we get the similar

equation (2.168) in the TRDTE case.

Low frequency expansions

This is similar to the previous sections for the low-frequency limits. When ω → 0 the

roots of the secular equation (4.120) are the zeros of F̃ (w) ≡ p̃i, i = 0, 1, 2, 3, defining

p̃0 ≡ 0. Taylor expansions take the form

wi(ω) = p̃i +
∞∑
n=1

d(i)n (−iω)n, i = 0, 1, 2, 3. (4.121)

When i = 0, n = 1, the above equation may be putinto the form

w0(ω) = p̃0 + d
(0)
1 (−iω) +O(ω2). (4.122)

Substituting (4.122) into (4.120) we get

d
(0)
1 = −σ̃2 W̃1W̃2

p̃1p̃2p̃3
. (4.123)
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The sign of d
(0)
1 depends on p̃1. Stability is satisfied if d

(0)
1 > 0, and d

(0)
1 is positive if

p̃1 is negative. But if p̃1 > 0 then w0(ω) is unstable.

Inserting (4.123) into (4.122) to get

w0(ω) = iωσ̃2 G̃(0)

F̃ ′(0)
+O(ω2). (4.124)

It is clear that Im w0(ω) > 0, thus w0(ω) is unstable in the low frequency region.

When i = 1, n = 1 we obtain

w1(ω) = p̃1 + d
(1)
1 (−iω) +O(ω2). (4.125)

Substituting (4.125) into (4.120) we get

d
(1)
1 = −σ̃

[
p̃1ε

1
2 (α1 − α0)− σ̃

](p̃1 − W̃1)(p̃1 − W̃2)

p̃1(p̃1 − p̃2)(p̃1 − p̃3)
. (4.126)

The sign of d
(1)
1 depends on

[
p̃1
(
ε

1
2 (α1 + α0) + σ̃(α0 + τ)

)
− σ̃

]
and p̃1. The stability

condition is satisfied if d
(1)
1 > 0 and d

(1)
1 is positive if

0 < p̃1 <
σ̃

ε
1
2 (α1 − α0)

.

Inserting (4.126) into (4.125) we get

w1(ω) = p̃1 + iωσ̃
[
p̃1ε

1
2 (α1 − α0)− σ̃

] G̃(p̃1)

F̃ ′(p̃1)
+O(ω2). (4.127)

Similarly, when i = 2, 3

w2(ω) = p̃2 + iωσ̃
[
p̃2ε

1
2 (α1 − α0)− σ̃

] G̃(p̃2)

F̃ ′(p̃2)
+O(ω2). (4.128)

It is clear that w2 is stable if

p̃2 <
σ̃

ε
1
2 (α1 − α0)

.

We have similarly

w3(ω) = p̃3 + iωσ̃
[
p̃3ε

1
2 (α1 − α0)− σ̃

] G̃(p̃3)

F̃ ′(p̃3)
+O(ω2). (4.129)

Also, w3 is stable if

p̃3 <
σ̃

ε
1
2 (α1 − α0)

.
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The sign of p̃1 does not have any effect here.

Summarising, branches wi(ω), i = 1, 2, 3 are stable in the low frequency regimes if

the quantity

p̃iε
1
2 (α1 − α0)− σ̃

is negative. Conversely, these branches become unstable if this quantity is positive.

High frequency expansions

The roots of the secular equation in the high frequency limit ω →∞, may be obtained

by putting ω = ζ−1, so the secular equation (4.120) is written as

F̃ (w)− iζ−1σ̃w

(1− iζ−1α0)(1− iζ−1τ)

[
wε

1
2 (1− iζ−1τ)(α1 − α0)− σ̃

]
G̃(w) = 0. (4.130)

Multiplying the denominator and numerator of the second term by ζ2 we get

F̃ (w)− iσ̃

(ζ − iα0)(ζ − iτ)

[
wε

1
2 (α1 − α0)(ζ − iτ)− σ̃ζ

]
G̃(w) = 0, (4.131)

and expanding this equation gives

F̃ (w)− iσ̃w

(ζ − iα0)
wε

1
2 (α1 − α0)G̃(w) +

iζσ̃2

(ζ − iα0)(ζ − iτ)
G̃(w) = 0. (4.132)

Putting ζ = 0, we obtain

H̃ ≡ F̃ (w) +
σ̃

α0

wε
1
2 (α1 − α0)G̃(w) = 0. (4.133)

H̃ is a quartic in w so there are four roots with one root w = 0 denoted by h̄1 = 0,

and the other roots h̄2, h̄3 and h̄4 with h̄2 < h̄3 < h̄4. Now we want to examine the

sign changes around these roots by using equation (4.133) and inequalities (4.118a)
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we get, taking p̃1 > 0 here,

H̃(−∞) = −∞ < 0,

H̃(0) = −p̃1p̃2p̃3 + σ̃α−10 (α1 − α0)W̃1W̃2,

H̃(p̃1) = σ̃α−10 p̃1ε
1
2 (α1 − α0)(p̃1 − W̃1)(p̃1 − W̃2) > 0,

H̃(W̃1) = W̃1(W̃1 − p̃1)(W̃1 − p̃2)(W̃1 − p̃3) > 0,

H̃(p̃2) = σ̃α−10 p̃2ε
1
2 (α1 − α0)(p̃2 − W̃1)(p̃2 − W̃2) < 0,

H̃(W̃2) = W̃2(W̃2 − p̃1)(W̃2 − p̃2)(W̃2 − p̃3) < 0,

H̃(p̃3) = σ̃α−10 p̃3ε
1
2 (α1 − α0)(p̃3 − W̃1)(p̃3 − W̃2) > 0,

H̃(∞) =∞ > 0.

From these inequalities we may determine the positions of the zeros of H̃, so that

h̄2 is between zero and p̃1, h̄3 is between W̃1 and p̃2 and h̄4 is between W̃2 and p̃3.

Therefore, we get the same inequalities as (2.109b):

h̄2 < p̃1 < W̃1 < h̄3 < p̃2 < W̃2 < h̄4 < p̃3.

Define a quartic polynomial

h̄(w) = w(w − h̄2)(w − h̄3)(w − h̄4), (4.134)

which must be a scalar multiple of H̃ because both have the same four roots, so

rewrite (4.134) as

H̃(w) = h̄(w). (4.135)

Now looking for roots when ζ → 0, let us rewrite (4.131) as

F̃ (w) + K̄G̃(w) = 0, (4.136)

where

K̄ =
−iσ̃

(ζ − iα0)(ζ − iτ)

[
wε

1
2 (α1 − α0)(ζ − iτ)− σ̃ζ

]
. (4.137)

Rewrite (4.137) as

K̄ =
iσ̃

α0τ

[
ζ
(
wε

1
2 (α1 − α0)− σ̃

)
− iτwε

1
2 (α1 − α0)

](
1 +

iζ

α0

)−1(
1 +

iζ

τ

)−1
.
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By using the binomial expansion we get

K̄ =
iσ̃

α0τ

[
ζ
(
wε

1
2 (α1 − α0)− σ̃

)
− iτwε

1
2 (α1 − α0)

](
1− iζ

α0

)(
1− iζ

τ

)
.

Expanding and ignoring high powers of ζ we obtain

K̄ =
iσ̃

α0τ

[
ζ
(
wε

1
2 (α1−α0)−σ̃

)
−iτwε

1
2 (α1−α0)−

(τζ
α0

)
wε

1
2 (α1−α0)−ζwε

1
2 (α1−α0)

]
.

By simplifying we get

K̄ =
−iσ̃
α0τ

[
ζ
(
wε

1
2 τα−10 (α1 − α0) + σ̃

)
+ iτwε

1
2 (α1 − α0)

]
. (4.138)

Inserting (4.138) into (4.136), the secular equation becomes

F̃ (w)− iσ̃

α0τ

[
ζ
(
wε

1
2 τα−10 (α1 − α0) + σ̃

)
+ iτwε

1
2 (α1 − α0)

]
G̃(w) = 0. (4.139)

By using (4.133) and (4.135), equation (4.139) may written as

h̄(w)− iζσ̃

α0τ

(
wε

1
2 τα−10 (α1 − α0) + σ̃

)
G̃(w) = 0. (4.140)

This equation is a quartic in w provided that ζ > 0, so there are four roots wi, i =

1, 2, 3, 4. Power series expansion of the roots of the secular equation in the high fre-

quency limit take the form

wi(ζ) = h̄i +
∞∑
n=1

d(i)n (−iζ)n, i = 1, 2, 3, 4. (4.141)

When i = 1, n = 1 we get

w1(ζ) = h̄1 + d
(1)
1 (−iζ) +O(ζ2). (4.142)

Substituting (4.142) into (4.140) we get

d
(1)
1 =

( σ̃2

α0τ

) W̃1W̃2

h̄2h̄3h̄4
> 0. (4.143)

Inserting (4.143) into (4.142) we get

w1(ζ) = −iζ
( σ̃2

α0τ

)G̃(0)

h̄′(0)
+O(ζ2), (4.144)

in which h̄1 = 0, so it is clear that Im w1(ζ) < 0, w1(ζ) is stable.
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When i = 2, n = 1 we get

w2(ζ) = h̄2 + d
(2)
1 (−iζ) +O(ζ2). (4.145)

Substituting (4.145) into (4.140) we obtain

d
(2)
1 =

(−σ̃
α0τ

)(
h̄2ε

1
2 τα−10 (α1 − α0) + σ̃

) (h̄2 − W̃1)(h̄2 − W̃2)

h̄2(h̄2 − h̄3)(h̄2 − h̄4)
. (4.146)

The stability condition is satisfied if d
(2)
1 > 0, and d

(2)
1 is positive if

0 < h̄2 <
σ̃

ε
1
2 τα−10 (α1 − α0)

,

and
σ̃

ε
1
2 τα−10 (α1 − α0)

< h̄2 < 0.

Insert (4.146) into (4.145) to get

w2(ζ) = h̄2 + iζ
( σ̃

α0τ

)(
h̄2ε

1
2 τα−10 (α1 − α0) + σ̃

)G̃(h̄2)

h̄′(h̄2)
+O(ζ2). (4.147)

Similarly when i = 3, 4, n = 1 we obtain

w3(ζ) = h̄3 + iζ
( σ̃

α0τ

)(
h̄3ε

1
2 τα−10 (α1 − α0) + σ̃

)G̃(h̄3)

h̄′(h̄3)
+O(ζ2), (4.148)

w4(ζ) = h̄4 + iζ
( σ̃

α0τ

)(
h̄4ε

1
2 τα−10 (α1 − α0) + σ̃

)G̃(h̄4)

h̄′(h̄4)
+O(ζ2). (4.149)

Also, w3(ζ) and w4(ζ) are stable if

h̄3 <
σ̃

ε
1
2 τα−10 (α1 − α0)

,

and

h̄4 <
σ̃

ε
1
2 τα−10 (α1 − α0)

,

respectively.

Summarising, the stability of each branch is determined by the sign of

h̄iε
1
2 τα−10 (α1 − α0)− σ̃, i = 2, 3, 4,

stable if negative, unstable if positive.
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Numerical results

In Figure 4.6 we have taken p̃1 > 0. The branch w0(ω) beginning at the origin is

unstable for low frequency and stable for high frequency in each part of the Figure.

All the other branches begin to the right of this branch. If α0 and α1 are small enough

all the branches wi(ω), i = 1, 2, 3, are stable for the low frequency and unstable for

high frequency. This can be seen in the first subfigures of Figure 4.6 where α0 and α1

are small. As α0 and α1 increase, all branches wi(ω), i = 1, 2, 3, become unstable in

the low and high frequencies, see subfigure (f). It is clear that w0(ω) retains instability

in the low frequency and stability in the high frequency.

In Figure 4.7 we have taken p̃1 < 0. The branch w1(ω) beginning at w = p̃1 is

unstable in the low frequency and stable in the high frequency in each part of the

Figure. All the other branches begin to the right of this branch are stable in the low

frequency and unstable in the high frequency. Although, increasing of α0 and α1 all

the branches wi, i = 0, 2, 3 maintains stability in the low frequency and instability in

the high frequency. Conversely, w1(ω) maintains instability in the low frequency and

stability in the high frequency.

In Figure 4.8 we illustrate the exceptional case p̃1 = 0. Now two branches emanate

from the origin, namely, w0(ω) and w1(ω), one unstable and the other stable in the

low frequency but in the high frequency the situation is reversed, one with argument

−π/4 and the other with argument 3π/4. The other branches have similar situation

as in Figure 4.7.
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Figure 4.6: The longitudinal squared wave speeds of constrained anisotropic

TRDTE+GTE (2). For each part, p̃1 = 1, p̃2 = 2, p̃3 = 3, W̃1 = 1.5, W̃2 = 2.5, σ̃ =

1, ε = 1.
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Figure 4.7: The longitudinal squared wave speeds of constrained anisotropic

TRDTE+GTE (2). For each part, p̃1 = −1, p̃2 = 2, p̃3 = 3, W̃1 = 1.5, W̃2 = 2.5, σ̃ =

1, ε = 1.
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Figure 4.8: The longitudinal squared wave speeds of constrained anisotropic

TRDTE+GTE (2). For each part, p̃1 = 0, p̃2 = 2, p̃3 = 3, W̃1 = 1.5, W̃2 = 2.5, σ̃ =

1, ε = 1.
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4.4 Constrained isotropic TRDTE+GTE (2)

4.4.1 Usual form of deformation-temperature constraint

In this section we apply (2.191) to equations (4.67), (4.70) and the linearised form

of the deformation temperature constraint (4.65) to get the field equations of Ig-

naczak’s theory for an isotropic material incompressible with the usual deformation-

temperature constraint.

(λ̃+ µ̃)uj,ij + µ̃ui,jj − β(θ + α1θ̇),i + Ñ η̃,i = ρüi,

kθ,ii − Tβ(u̇i,i + τ üi,i)− ρc(θ̇ + (α0 + τ)θ̈ + α0τ
...
θ )− αT ( ˙̃η + τ ¨̃η) = 0,

Ñui,i − αθ = 0.

 (4.150)

The secular equation

Now we are seeking solutions of (4.150) in the form of plane harmonic waves (2.86)

with aid (3.159a), exactly similar to previous sections. So, we get the following system

of algebraic equations

[(µ̃− ρs−2)δij + (λ̃+ µ̃)ninj]Ui + iβ(ωs)−1ni(1− iωα1)Θ− iÑnj(ωs)−1H̃ = 0,

Tβωs(1− iωτ)niUi + (ωs2k − iρc(1− iωα0)(1− iωτ))Θ− iαT (1− iωτ)H̃ = 0,

ÑnjiωsUi − αΘ = 0.


(4.151)

We will now eliminate Θ and H̃ between (4.151). From (4.151)3 we can write Θ as

follows

Θ =
iωsÑnjUj

α
. (4.152)

Substituting (4.152) into (4.151)2, we get

H̃ = −iα−1βωsniUi +
( ωsÑnj
α2T (1− iωτ)

)
(ωs2k − iρc(1− iωα0)(1− iωτ))Ui. (4.153)

Inserting (4.152) and (4.153) into (4.151)1, we get

[
(µ̃− w)δij + (λ̃+ µ̃)ninj

]
Uj + iβ(ωs)−1ni(1− iωα1)

(iωsÑnjUj
α

)
− iÑ(ωs)−1ni[

− iα−1βωsnjUj +
ωsÑnj

α2T (1− iωτ)
(ωs2k − iρc(1− iωα0)(1− iωτ))Uj

]
= 0.
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After simplifying and rearranging this equation we obtain{
(µ̃− w)δij +

[
λ̃+ µ̃− α−1βÑ(2− iωα1)−

( ρcÑ2

α2T (1− iωτ)

)
(

(1− iωα0)(1− iωτ) +
iωk

wc

)]
ninj

}
Uj = 0, (4.154)

which gives in direct notation the secular equation

det
{

(µ̃− w)1 +
[
λ̃+ µ̃− α−1βÑ(2− iωα1)−

( ρcÑ2

α2T (1− iωτ)

)
(

(1− iωα0)(1− iωτ) +
iωk

wc

)]
n⊗ n

}
= 0. (4.155)

Non-dimensionalize this equation by applying the dimensionless quantities (2.57) and

further dimensionless quantities

α′ = αT, c′ = ρcT/γ, ω∗ = γc/k

to get

det
{

(µ̃′ − w′)1 +
[
λ̃′ + µ̃′ − (εc′)1/2Ñ

α′
(2− iω′α′1)−

( c′Ñ2

α′2(1− iω′τ ′)

)
(

(1− iω′α′0)(1− iω′τ ′) +
iω′

w′

)]
n⊗ n

}
= 0. (4.156)

Now by using the standard identity (2.60), dropping the dashes for convenience, we

get the secular equation as follows

(w − µ̃)2
{
w2 − w

[
1− (εc)1/2Ñα−1(2− iωα1)− cÑ2α−2(1− iωα0)

]
+

iωcÑ2

α2(1− iωτ)

}
= 0. (4.157)

This is the secular equation for isotropic TRDTE+GTE (2) which is constrained by

the usual deformation temperature constraint and has not previously appeared in the

literature.

The repeated root w = µ̃ represents two purely elastic transverse waves, and longitu-

dinal waves are represented by roots of the following quadratic equation

α2w2 − w
{
α2 − (εc)1/2αÑ(2 − iωα1) − cÑ2(1 − iωα0)

}
+

iωcÑ2

(1− iωτ)
= 0. (4.158)
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Equation (4.158) may be written in dimensionless form as

w2 − w
{

1− ε1/2σ̃(2− iωα1)− σ̃2(1− iωα0)
}

+
iωσ̃2

(1− iωτ)
= 0. (4.159)

This equation is rewritten as

w2(1−iωτ)−w
{

(1−iωτ)−ε1/2σ̃(2−iωα1)(1−iωτ)−σ̃2(1−iωα0)(1−iωτ)
}

+iωσ̃2 = 0,

(4.159a)

where σ̃ is defined earlier in (2.202). On putting τ = 0 in (4.159a) we get the

corresponding secular equation (2.201) of TRDTE, as expected.

Recall the special cases that were discussed in Section 2.4.1.

Case 1: The isothermal constraint (Ñ = 0, α 6= 0)

Putting Ñ = 0 in equation (4.158) gives the quadratic equation with the same results

as (2.195):

w1 = 0, w2 = 1.

Case 2: The purely mechanical constraint (Ñ 6= 0, α = 0)

Inserting α = 0 into equation (4.158) gives the single branch

w =
−iω

(1− iωα0)(1− iωτ)
. (4.160)

Equation (4.160) is purely diffusive and also satisfies the stability condition Im w ≤ 0.

But in the general case, in which neither Ñ nor α is equal to zero, it is convenient to

go back to equation (4.159). The roots of this equation are

w1,2 = Ā±
[
Ā2 − iωσ̃2

(1− iωτ)

] 1
2
, (4.161)

where

Ā =
1

2

[
1− ε1/2σ̃(2− iωα1)− σ̃2(1− iωα0)

]
. (4.162)

This equation may be written as

Ā =
1

2

[
1− ε1/2σ̃ − σ̃2 + iωσ̃(ε1/2α1 + α0σ̃)

]
.

For fixed ε ≥ 0, as σ̃ increases from 0 to ∞, Re Ā at ω = 0 decreases from 1
2

to −∞.

Re Ā becomes 0 at ω = 0 for a critical value of σ̃ given by

σ̃c = (1 + ε)1/2 − ε1/2. (4.163)
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In the special case where σ̃ = σ̃c, so Re Ā = 0 at ω = 0 in (4.161), we get the following

form

w = ±ei
π
4ω

1
2 σ̃c +O(ω). (4.164)

Low frequency expansions

The roots of the secular equation (4.159a) at ω = 0 are

w1 = 1− 2ε1/2σ̃ − σ̃2, and w2 = 0.

But the roots as ω → 0 take the form

w1 = 1− 2ε1/2σ̃ − σ̃2 + A(iω) +O(ω2), and w2 = B(iω) +O(ω2). (4.164a)

Inserting (4.164a) into (4.159a) we obtain the roots as

w1 = 1− 2ε1/2σ̃ − σ̃2 + iωσ̃
{
ε1/2α1 + α0σ̃ −

σ̃

1− 2ε1/2σ̃ − σ̃2

}
+O(ω2),

and

w2 =
iωσ̃2

1− 2ε1/2σ̃ − σ̃2
+O(ω2).

If σ̃ > σ̃c then Im w1 > 0, then w1 is unstable, if σ̃ < σ̃c we cannot tell the sign of Im

w1(ω) because it depends on the relative values of the quantities occurring. But it is

clear that if σ̃ > σ̃c, Im w2(ω) < 0, so w2 is stable and if σ̃ < σ̃c, Im w2(ω) > 0, thus

w2 is unstable. If σ̃ = σ̃c the analysis is not valid and we return to the roots in the

special case (4.164).

High frequency expansions

In the high frequency limit as ω →∞, i.e. (ω)−1 → 0, the secular equation (4.159a),

after dividing by (iω)2, becomes

w2
[
(iω)−2 − (iω)−1τ

]
−

w
{

(iω)−2−(iω)−1τ−ε1/2σ̃
[
2(iω)−2−(iω)−1(α1+2τ)+α1τ

]
−σ̃2

[
(iω)−2−(iω)−1(α0+τ)+α0τ

]}
+ (iω)−1σ̃2 = 0. (4.164b)

Putting (iω)−1 = 0 we get the roots of the secular equation as

w1 = 0, and w2 →∞.
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Now look for the roots as (iω)−1 → 0; the roots take the form

w1 = A(iω)−1 +O(ω−2), and w2 = B(iω) + C +O(ω−1). (4.164c)

Inserting (4.164c) into (4.164b) we obtain

w1 =
iω−1σ̃

τ(ε1/2α1 + σ̃α0)
+O(ω−2),

and

w2 = iωσ̃(ε1/2α1 + σ̃α0) + (1− ε1/2σ̃ − σ̃2) +O(ω−1).

It is clear that Im w1(ω) > 0 and Im w2(ω) > 0, so w1 and w2 are unstable in the

high frequency limit.

Now we consider the two previous special cases.

Case 1: The isothermal constraint viewed as the limit σ̃ → 0

The roots of equation (4.161) are

w1,2 =
1

2

[
1− ε1/2σ̃(2− iωα1)− σ̃2(1− iωα0)

]
±

1

2

{[
1− ε1/2σ̃(2− iωα1)− σ̃2(1− iωα0)

]2
− 4iωσ̃2

(1− iωτ)

}1/2

. (4.164d)

After expanding and using the binomial expansion we get

w1 = 1− ε1/2σ̃(2− iωα1)− σ̃2(1− iωα0)−
iωσ̃2

(1− iωτ)
+O(σ̃3), (4.165)

w2 =
iωσ̃2

(1− iωτ)
+O(σ̃3). (4.166)

Case 2: The purely mechanical constraint viewed as the limit σ̃ →∞
When σ̃ → ∞,

1

σ̃
is small, and from (4.164d), after expanding and factorising by

σ̃4(1− iωα0)
2, then using the binomial expansion, we obtain

w1 =
−iω

(1− iωα0)(1− iωτ)

[
1− ε1/2σ̃−1 (2− iωα1)

(1− iωα0)

]
+O(σ̃−2), (4.167)

w2 = 1− ε1/2σ̃(2− iωα1)− σ̃2(1− iωα0) +
iω

(1− iωα0)(1− iωτ)[
1− ε1/2σ̃−1 (2− iωα1)

(1− iωα0)

]
+O(σ̃−2). (4.168)
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Numerical results

Figure 4.9 illustrates two longitudinal waves one branch starting and ending at origin

and is stable in the low frequency and unstable in the high frequency. The other

branch starting from the point 1 − ε1/2σ̃ − σ̃2 and tending to infinity and it retains

the instability in the low and high frequencies.
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Figure 4.9: The longitudinal squared wave speeds of isotropic thermelastic material

for Ignaczak’s theory with incompressibility at uniform temperature. For each part

(ε = 1, α0 = 0.01, α1 = 0.02, τ = 0.1), (a)σ̃ = 0.5σ̃c, (b)σ̃ = 0.8σ̃c, (c)σ̃ = σ̃c,

(d)σ̃ = 2σ̃c, (e)σ̃ = 3σ̃c, (f)σ̃ = 5σ̃c.
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4.4.2 Alternative form of deformation-temperature constraints

The field equations for Ignaczak’s theory, see [25], of constrained isotropic thermoe-

lastic materials are (4.150)1,2 with the linearised alternative form of deformation-

temperature constraint (2.144)

(λ̃+ µ̃)uj,ij + µ̃ui,jj − β(θ + α1θ̇),i + Ñ η̃,i = ρüi,

kθ,ii − Tβ(u̇j,j + τ üj,j)− ρc(θ̇ + (α0 + τ)θ̈ + α0τ
...
θ )− αT ( ˙̃η + τ η̈) = 0,

Ñui,i − α(θ + α0θ̇) = 0.

 (4.169)

Now we are looking for solutions in the form of plane harmonic waves (2.86), and by

inserting (2.86) into (4.169) we get the system of algebraic equations

[(µ̃− ρs−2)δij + (λ̃+ µ̃)ninj]Ui + iβ(ωs)−1ni(1− iωα1)Θ− iÑnj(ωs)−1H̃ = 0,

Tβωs(1− iωτ)niUi + (ωs2k − iρc(1− iωα0)(1− iωτ))Θ− iαT (1− iωτ)H̃ = 0,

ÑniiωsUi − α(1− iωα0)Θ = 0.


(4.170)

We will now eliminate Θ and H̃ between (4.170). From (4.170)3 we can rewrite Θ as

follows

Θ =
iωsÑnjUj
α(1− iωα0)

. (4.171)

Substituting (4.171) into (4.170)3, we get

H̃ = −iα−1βωsniUi +
( ωsÑnj
α2T (1− iωτ)(1− iωα0)

)[
ωs2k − iρc(1− iωα0)(1− iωτ)

]
Uj.

(4.172)

Inserting (4.171) and (4.172) into (4.170)1, we get[
(µ̃− w)δij + (λ̃+ µ̃)ninj

]
Uj + iβ(ωs)−1ni(1− iωα1)

( iωsÑnjUj
α(1− iωα0)

)
− iÑ(ωs)−1ni[

−iα−1βωsnjUj+
( ωsÑnj
α2T (1− iωτ)(1− iωα0)

)(
ωs2k−iρc(1−iωα0)(1−iωτ)

)
Uj

]
= 0.

(4.173)

After simplifying and rearranging the equation we obtain{
(µ̃− w)δij +

[
λ̃+ µ̃− α−1βÑ

(
1 +

1− iωα1

1− iωα0

)
−
( ρcÑ2

α2T (1− iωτ)(1− iωα0)

)
[
(1− iωα0)(1− iωτ) +

iωk

wc

]]
ninj

}
Uj = 0, (4.174)
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which gives in direct notation the secular equation

det
{

(µ̃− w)1 +
[
λ̃+ µ̃− α−1βÑ

(
1 +

1− iωα1

1− iωα0

)
−
( ρcÑ2

α2T (1− iωτ)(1− iωα0)

)
[
(1− iωα0)(1− iωτ) +

iωk

wc

]]
n⊗ n

}
= 0. (4.175)

Non-dimensionalising this equation by applying the dimensionless quantities (2.57)

we get

det
{

(µ̃′−w′)1+
[
λ̃′+ µ̃′− Ñ(εc′)1/2

α′

(
1+

1− iω′α′1
1− iω′α′0

)]
−
( c′Ñ2

α′2(1− iω′τ ′)(1− iω′α′0)

)
[
(1− iω′α′0)(1− iω′τ ′) +

iω′

w′

]
n⊗ n

}
= 0. (4.176)

Now by using the standard identity (2.60), dropping the dashes for convenience, we

get the secular equation as follows

(w−µ̃)2
{
w2−w

[
1−(εc)1/2α−1Ñ

(
1+

1− iωα1

1− iωα0

)
−cÑ

2

α2

]
+
( iωcÑ2

α2(1− iωτ)(1− iωα0)

)}
= 0.

(4.177)

This is the secular equation for isotropic TRDTE+GTE (2) which is constrained by

the alternative deformation temperature constraint and has not previously appeared

in the literature.

The repeated root w = µ̃ represents two purely elastic transverse waves and the

longitudinal waves are represented by the following quadratic equation

w2−w
[
1− (εc)1/2α−1Ñ

(
1 +

1− iωα1

1− iωα0

)
− cÑ2

α2

]
+
( iωcÑ2

α2(1− iωτ)(1− iωα0)

)
= 0.

(4.178)

We can rewrite equation (4.178) as

w2 + w(σ̃2 + ε1/2σ̃(1 +
1− iωα1

1− iωα0

)− 1) + iωσ̃2[(1− iωτ)(1− iωα0)]
−1 = 0, (4.179)

where σ̃ is defined in (2.202).

The roots of this quadratic equation we can get similarly to previous constrained

isotropic sections.

w1,2 = Ā±
[
Ā2 − iωσ̃2

(1− iωτ)(1− iωα0)

] 1
2
, (4.180)
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where

Ā =
1

2

[
1− ε1/2σ̃(1 +

1− iωα1

1− iωα0

)− σ̃2
]
. (4.181)

Equation (4.181) may be rewritten as

Ā =
1

2

{
1− ε1/2σ̃

1 + ω2α2
0

[
2 + ω2α0(α1 + α0)

]
− σ̃2 +

iωε1/2σ̃

1 + ω2α2
0

(α1 − α0)
}
.

For fixed ε ≥ 0, as σ̃ increases from 0 to ∞, Re Ā at ω = 0 decreases from 1
2

to −∞.

Re Ā at ω = 0 becomes 0 for a critical value of σ̃ given by

σ̃c = (1 + ε)1/2 − ε1/2. (4.182)

In the special case where σ̃ = σ̃c, so Re Ā = 0 at ω = 0 in (4.180), we get the following

form

w = ±ei
π
4ω

1
2 σ̃c +O(ω). (4.183)

Low frequency expansions

The secular equation (4.179) after expanding may be written as

w2
[
1− iω(τ + α0) + (iω)2τα0

]
−

w
{[

1− iω(τ + α0) + (iω)2τα0

]
− ε1/2σ̃

[
2− iω(α1 + α0 + 2τ) + (iω)2τ(α1 + α0)

]
− σ̃2

[
1− iω(τ + α0) + (iω)2τα0

]}
+ iωσ̃2 = 0. (4.182a)

In the low frequency expansions at ω = 0 the roots of the secular equation (4.182a)

are

w1 = 1− 2ε1/2σ̃ − σ̃2, and w2 = 0.

As ω → 0 the roots take the form

w1 = 1− 2ε1/2σ̃ − σ̃2 + A(iω) +O(ω2), and w2 = B(iω) +O(ω2). (4.182b)

Inserting (4.182b) into (4.182a) we get

w1 = 1− 2ε1/2σ̃ − σ̃2 + iωσ̃
{
ε1/2(α1 − α0)−

σ̃

1− 2ε1/2σ̃ − σ̃2

}
+O(ω2),

and

w2 =
iωσ̃2

1− 2ε1/2σ̃ − σ̃2
+O(ω2).
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If σ̃ > σ̃c Im w1(ω) > 0 so w1 is unstable and if σ̃ < σ̃c we cannot tell the sign of Im

w1(ω). If σ̃ > σ̃c, Im w2(ω) < 0, thus w2 is stable and if σ̃ < σ̃c, Im w2(ω) > 0, thus

w2 is unstable. If σ̃ = σ̃c the analysis is not valid and we return to roots in the special

case (4.183).

High frequency expansions

In the high frequency limits ω →∞, i.e. (ω)−1 → 0. Equation (4.182a), after dividing

by (iω)2, becomes

w2
[
(iω)−2 − (iω)−1(τ + α0)− τα0

]
−

w
{[

(iω)−2−(iω)−1(τ+α0)−τα0

]
−ε1/2σ̃

[
2(iω)−2−(iω)−1(α1+α0+2τ)−τ(α1+α0)

]
− σ̃2

[
(iω)−2 − (iω)−1(τ + α0)− τα0

]}
+ (iω)−1σ2 = 0. (4.182c)

Putting (iω)−1 = 0 we get

w1 = 1− ε1/2σ̃(1 +
α1

α0

)− σ̃2, and w2 = 0.

As (iω)→ 0 the roots take the form

w1 = 1−ε1/2σ̃(1+
α1

α0

)−σ̃2+A(iω)−1+O(ω−2), and w2 = B(iω)+O(ω−1). (4.182d)

Substituting (4.182d) into (4.182c) we obtain

w1 = 1−ε1/2σ̃(1+
α1

α0

)−σ̃2−iω−1σ̃
{ε1/2
α2
0

(
α1−α0

)
− σ̃

α0τ
[
1− ε1/2σ̃(1 +

α1

α0

)− σ̃2
]}+O(ω−2),

and

w2 =
−iωα0τ

(α0 + τ)

{
1− ε1/2σ̃(1 +

α1

α0

)− σ̃2
}

+O(ω−1).

If σ̃ > σ̃c Im w1(ω) < 0 and Im w2(ω) > 0 so w1 is stable and w2 is unstable and if

σ̃ < σ̃c we cannot tell the sign of Im w1(ω) but it is clear that Im w2(ω) < 0 so w2 is

stable. If σ̃ = σ̃c the analysis is not valid and we return to the special case (4.183).

Recall the special cases.

Case 1: The purely thermal constraint viewed as the limit σ̃ → 0

We obtain

w1 = iωσ̃2[(1− iωτ)(1− iωα0)]
−1 +O(σ̃3), (4.184)
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w2 = 1− ε1/2σ̃(1 +
1− iωα1

1− iωα0

)− σ̃2 − iωσ̃2[(1− iωτ)(1− iωα0)]
−1 +O(σ̃3). (4.185)

Case 2: The purely mechanical constraint viewed as the limit σ̃ →∞

We obtain

w1 = 1−ε1/2σ̃(1+
1− iωα1

1− iωα0

)−σ̃2+iω[(1−iωτ)(1−iωα0)]
−1
(

1−ε1/2σ̃−1(1+
1− iωα1

1− iωα0

)
)

+O(σ̃−2),

(4.186)

w2 = −iω[(1− iωτ)(1− iωα0)]
−1
(

1− ε1/2σ̃−1(1 +
1− iωα1

1− iωα0

)
)

+O(σ̃−2). (4.187)

Numerical results

In Figure 4.10 illustrates two longitudinal waves are plotted for various values of σ̃.

The branch w1(ω) starting from the point 1 − 2ε1/2σ̃ − σ̃2 and ending at the point

1 − ε1/2σ̃(1 + α1/α0) − σ̃2 and w2(ω) starting and ending at the origin. In the low

frequency w1(ω) is stable and w2(ω) is unstable and the situation reversed in the high

frequency.

Varying the parameters α1, α0, ε and τ while changing the magnitude of ω does not

have any substantive influence on the stability.
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Figure 4.10: The longitudinal squared wave speeds of isotropic thermelastic material

for TRDTE+GTE (2) with incompressibility at uniform temperature. For each part

(ε = 1, α0 = 0.01, α1 = 0.02, τ = 0.01), (a)σ̃ = 0.3σ̃c, (b)σ̃ = 0.5σ̃c, (c)σ̃ = σ̃c,

(d)σ̃ = 3σ̃c, (e)σ̃ = 5σ̃c, (f)σ̃ = 10σ̃c.
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Chapter 5

Concluding Remarks

We have shown that on taking into account the conditions α1 > α0 > 0 and τ > 0

in unconstrained anisotropic thermoelastic materials, there are four waves which may

propagate in each direction and all of them are stable in the context of TRDTE. How-

ever, in the context of TRDTE+GTE (1), the ad hoc theory of Chandrasekharaiah

and Keshevan [23], one mode is infinite and stable in low and high frequencies limits

but the other branches are finite, stable in the low frequency limits but unstable in

the high frequency limits, increasing τ in this case does not affect the stability. In

the context of TRDTE+GTE (2), Ignaczak’s [25] more rational theory, all waves are

finite, stable in the low frequency limits and unstable in the high frequency limits but

three of them become stable in low and high frequencies by increasing τ .

When either the usual or the alternative deformation temperature constraint operates

in the context of any of these theories, there is always one unstable wave and one which

tends to infinity and the other branches are stable but by increasing α1 and α0 all of

them become unstable.

In unconstrained isotropic materials there are two longitudinal waves propagating in

each direction. Both of them are finite and stable in the context of TRDTE, but in

the context of TRDTE+GTE (1) one mode is stable and the other is stable in the

low frequency limit but unstable in the high frequency limits, increasing ε in this case

does not affect the stability. In the context of TRDTE+GTE (2) both modes are
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stable in the low frequency limit and unstable in the high frequency limit but with

increasing ε one become stable in low and high frequencies and the other maintains

the stability in the low frequency limit and instability in the high frequency limit.

If the usual deformation temperature constraint operates there are two longitudinal

waves travelling in each direction; one is finite and the other tends to infinity. Both

modes are unstable but with increasing σ̃ one mode maintains instability and the

other becomes stable in the context of TRDTE and TRDTE+GTE (1). But in the

context of TRDTE+GTE (2) one mode is unstable and the other is stable in the low

frequency limits and the other is unstable in the high frequency limits, increasing σ̃

in this case does not affect the stability.

If the alternative deformation temperature constraint operates there are two longitu-

dinal waves propagating in each direction; both of them are finite but one is stable

and the other is unstable in the context of TRDTE and TRDTE+GTE (2). But in

the context of TRDTE+GTE (1) one mode is unstable and tends to infinity and the

other is finite, stable in the low frequency and unstable in the high frequency limits.

The results obtained for an anisotropic thermoelastic material of TRDTE and TRDTE

+ GTE(1) type which is constrained by the usual deformation temperature constraint

when α1 and α0 are small enough, see Figures 2.6 and 3.6, are quite similar to those

for an anisotropic thermoelastic GTE material which is constrained by the usual

deformation temperature constraint, see Leslie and Scott [27, Figure 1].

The results obtained for an isotropic thermoelastic TRDTE material which is uncon-

strained, see Figure 2.4, are quite similar to those for an isotropic thermoelastic GTE

material which is unconstrained, see Leslie and Scott [29, Figure 1].

Similarly, the results obtained for an anisotropic thermoelastic TRDTE material which

is constrained by the usual deformation temperature constraint, see Figure 2.6, are

similar to those for an anisotropic thermoelastic material TRDTE+GTE (1) which is

also constrained by the usual deformation temperature constraint, see Figure 3.6.

The results obtained for an anisotropic thermoelastic material of TRDTE+GTE (1)

type which is constrained by the alternative deformation temperature constraint, see
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Figure 3.9, are similar to those for an anisotropic thermoelastic material of TRDTE+GTE

(2) type which is constrained by the usual deformation temperature constraint, see

Figure 4.3.

We have found that the results obtained for isotropic thermoelastic TRDTE materials

which are constrained by the usual deformation temperature constraint, see Figure

2.12, are exactly the same as those for isotropic thermoelastic TRDTE+GTE (1)

materials which are constrained by the usual deformation temperature constraint, see

Figure 3.12 as σ̃ ≥ σ̃c.

The results obtained for isotropic thermoelastic materials of TRDTE+GTE (1) type

which are constrained by the alternative deformation temperature constraint, see

Figure 3.14, are exactly the same as those for isotropic thermoelastic materials of

TRDTE+GTE (2) type which are constrained by the usual deformation temperature

constraint, see Figure 4.9 as σ̃ ≥ σ̃c.

In conclusion, we have seen that instabilities are associated with the occurrence of

the three relaxation times α0, α1 and τ even when the materials are unconstrained,

except that in the TRDTE case there is no instability. There is another reason for

these instabilities and that is the presence of a constraint of deformation-temperature

type, either the usual or the alternative form.

The undesirable effects of instabilities may possibly be circumvented by assuming

the constraints to hold only approximately or by using a new theory of deformation-

entropy constraints.
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