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Abstract

In this paper we prove the Bannai-Ito conjecture, namely that there are only finitely many
distance-regular graphs of fixed valency greater than two.
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1 Introduction

A finite, connected graph I" with vertex set V(I') and path-length distance d is said to be distance-
regular if, for any vertices z,y € V(I') and any integers 1 < 7,5 < max{d(z,w) : z,w € V(I')},
the number of vertices at distance i from x and distance j from y depends only on ¢, j and d(z,y),
independent of the choice of x and y. Many distance-regular graphs arise from classical objects, such
as the Hamming graphs, the Johnson graphs, the Grassmann graphs, the bilinear forms graphs,
and the dual polar graphs amongst others. In particular, distance-regular graphs give a framework
to study these classical objects from a combinatorial point of view. In addition, distance-regular
graphs and association schemes give an algebraic-combinatorial framework to study, for example,
codes and designs [12, 18].

In their 1984 book, E. Bannai and T. Ito conjectured that there are only finitely many distance-
regular graphs of fixed valency greater than two (cf. [5, p.237]). In this paper we prove that their
conjecture holds:

Theorem 1.1 There are only finitely many distance-regular graphs of fixed valency greater than
two.

History

A distance-transitive graph is a connected graph I' such that for every four (not necessarily distinct)
vertices x,y,u,v in V(T') with d(x,y) = d(u,v), there exists an automorphism 7 of I' such that
7(z) = w and 7(y) = v both hold. Tt is straight-forward to see that distance-transitive graphs are
distance-regular graphs. In [14, 15], P. J. Cameron, C. E. Praeger, J. Saxl and G. M. Seitz proved
that there are only finitely many finite distance-transitive graphs of fixed valency greater than two.
They did this by applying Sims’ conjecture [33] for finite permutation groups (i.e. that there exists
an integral function f such that |G,| < f(dg,) holds, where, for G a primitive permutation group
acting on a finite set (), G, denotes the stabilizer of z, z € €2, and dg, denotes the length of any
Gy -orbit in ©Q\ {z}), which they also showed to hold by using the classification of the finite simple
groups (in [15] they gave a proof without many details, and in [14] Cameron worked out a detailed
proof with an explicit diameter bound).

Note that for small diameter there are many distance-regular graphs which are not distance-
transitive. On the other hand there are only five families of distance-regular but not distance-
transitive graphs known with unbounded diameter, namely the Doob graphs [19] (see also [12,
p.262]), the quadratic forms graphs [20] (see also [12, p.290]), the Hemmeter graphs [13] and the
Ustimenko graphs [37] (for both, see also [12, p.279]) and the twisted Grassmann graphs [17]. Any
member of the first four families is vertex-transitive, whereas the twisted Grassmann graphs have
exactly two orbits under the full automorphism group [17].

The first class of distance-regular graphs for which the Bannai-Ito conjecture was shown is the class
of regular generalized n-gons. Feit and Higman [21] (cf. [12, Theorem 6.5.1]) showed that a regular
generalized n-gon has either valency 2 or n € {3,4,6,8,12}. In addition, R. M. Damerell, and
E. Bannai and T. Ito have independently shown that there are only finitely many Moore graphs
with valency at least three [4, 16].



In the series of papers [6, 7, 8, 9], E. Bannai and T. Ito showed that their conjecture holds for
valencies k = 3,4, as well as for the special class of bipartite distance-regular graphs. In [27] and
[28], J. H. Koolen and V. Moulton also showed that the conjecture holds for distance-regular graphs
of fixed valency k = 5,6 or 7, and for triangle-free distance-regular graphs of fixed valency k = 8,9
or 10. More recently, in [3], together with S. Bang, they showed that the Bannai-Ito conjecture
holds for regular near polygons and geodetic distance-regular graphs.

The proof for the Bannai-Ito conjecture that we present in this paper builds upon many of the
concepts and ideas developed in [2, 3, 27, 28].

Structure of the paper

In Section 2, we present some definitions and previous results concerning distance-regular graphs
and associated sequences and related structures, and in Section 3 we present some properties of
certain generalizations of these sequences. In Section 4, we state without proof the key result of
the paper (Theorem 4.2) and used this to prove Theorem 1.1. We also present an outline proof
of Theorem 4.2, before proving it in Sections 5 to 9. In Section 10, we will present an application
of Theorem 1.1 to distance-regular graphs of order (s,t). We conclude in Section 11 by discussing
some possible future directions.

2 Preliminaries

In this section, we review some of the well-known theory of Christoffel numbers for orthogonal
polynomials, interlacing and distance-regular graphs that will be used in this paper. We refer the
reader to [5], [12] and [36] for more details.

2.1 Christoffel Numbers

Let L; be the arbitrary tridiagonal matrix defined by

(a9 Do
v oo B

Y2 a2 [
I . . .
! Vi o B

V-1 On—1  Pn-1
Yn Op

where «; > 0, ;_1,7; > 0 are real numbers with ag = v =, =0and y1 = 1, and a; + 3;+v: = Go
holding for all 1 <i <n. Let v;(x) (0 <i<mn-+1) be the polynomials defined recursively by the
equations

vo(z) = 1, vi(z) ==, (2)
wvi(z) = Bicvici(z) + opui(x) + vigrvia(z) (1<i<n—1), (3)
vnt1(z) = (2 —an)on(x) = Bn-1vn-1(2), (4)



and F;(z) (0 <i¢<n) be the monic polynomials defined by setting Fy(z) := 1, Fi(z) ==+ 1 and
Fi(z) =2 vi(vo(z) +v1(2) + - +vi(2) (2<i<n).
Note that for each 2 < i < n, the polynomial F;(z) satisfies the recurrence relation
Fi(a) = (z = fo + Bi-1 + 7)) Fim1(z) = Bim1vi-1 Fi2(2). (5)

Moreover, by (2)—(5), for each 0 < i < n, the polynomials v;(z) and F;(x) have degree i and have
exactly 4 distinct real roots in the closed interval [—0y, Go] (cf. [36, Theorem 3.3.1]). Note that the
polynomial (x — fy)F,(x) is the minimal polynomial of the matrix L.

Now, let k := By and define

ki = wvi(k) (0<i<mn), and (6)
wiz) = ”iéf) (0<i<n). (7)

Put k := k1. Then the polynomials u;(x) (0 <i < n) satisfy

ui(k) =1 (0 <i<n); (8)
ug(z) =1, up(z) = %’ zui(x) = yui—1 () + aqui(x) + Biuie1(z) (1 <i<n). (9)

The sequence (u;(x));. is called the standard sequence of Ly, and if 6 is an eigenvalue of L1, then
the column vector (ug(),u1(),...,u,(0))T is a right eigenvector of L; associated to 6, by (9).

Note also that it follows by (7) that, for each eigenvalue 6 of the matrix L;, the equation

n 2 n

holds.

Now, let Bg =60y > 01 > 02 > --- > 0, be the eigenvalues of Ly and, for i =0,1,...,n, define

Z?:o Ky
v2(6;)
Z;'LZO JNjZ

as well as the symmetric bilinear form (-,-) on the polynomial ring R[z] by

(f,9) =Y mif(6:)g(6;).
=0

Then, (v;,v;) # 0 holds for all 0 < i < n, and (v;,v;) = (v4,v;)d; ; holds for all 0 <4, j < n, where
0;; is the Kronecker delta function on Ny x Ny, where Ny is the set of non-negative integers. In
particular, it follows that (v;)!", is a sequence of orthogonal polynomials with respect to (-,-). Note
that within the theory of orthogonal polynomials, the numbers m; are referred to as the Christoffel
numbers of the sequence (v;), ([36, Theorem 3.4.1], [5, p.201]). Analogously, we call the number
m; as defined in (11), the Christoffel number of Ly associated with 6;.



2.2 Interlacing

We now recall two results stated in [2] that provide us with some interrelationships between the
eigenvalues of the matrix L; as defined in (1). The first generalizes the well-known Interlacing
Theorem [12, Theorem 3.3.1], from which it immediately follows.

Lemma 2.1 Suppose that A is a real n X n matrix for which there exists a non-singular diagonal
matriz Q such that the matriz Q=1 AQ is real and symmetric. If g < ... < n, are the eigenvalues
of A and 01 < ... < 0,_1 are the eigenvalues of the matriz obtained by removing the ith row and
ith column of A, with i € {1,...,n}, then

771§91§772§‘--§77n—1Sgn—lgnn‘

Note that in [2, Lemma 3.1] the condition that @ has to be a diagonal matrix was omitted. Without
this condition the lemma is not true.

In particular, since F;yir1 > 0 (0 < i < n —1) and L, is tridiagonal, it follows that L; satisfies
the conditions on A given in Lemma 2.1, and therefore the eigenvalues of L; must satisfy the
inequalities given in this lemma.

The second result guarantees the existence of eigenvalues of Ly lying within certain limits.

Lemma 2.2 ([2, Theorem 3.2])

Let a;, Bi,vi (0 < i < n) be non-negative integers satisfying oy = v = Bn = 0, Bi—1,7% > 0,
o; + Bi + v = 0o, Bic1 > B and v; > vi—1 for all 1 < i < mn, and let Ly be the tridiagonal matrix
as defined in (1). For each 1 <i<mn—1, let (i) :=|{j : (4, 5,0;) = (7,4, 0i),1 <j <n—1}|.
Then the following statements hold.

(i) If £(i) > 2 then there is an eigenvalue 6§ of Ly with

27
i + 24/ Biyi | < .
o; + 57COS<£(Z)+1> 0 <k

(i) If £(i) > 3 then there is an eigenvalue 0 of Ly with

a; + 21/ Bii cos (€(i§11> <0 < a; + 2v/Bryi cos <(]2)”) ,

() + 1

forall j =3,...,0(7).

2.3 Distance-Regular Graphs

We now review some basic definitions and results concerning distance-regular graphs.

For I a finite, connected graph, denote by d(z, y) the path-length distance between any two vertices
x,y in the vertex set V(I') of T (i.e. the length of a shortest path), and by D = Dr the diameter



of ' (i.e. the maximum distance between any two vertices of I'). For any y € V(T'), let T';(y) be
the set of vertices in I' at distance precisely ¢ from y, where ¢ € Ny is a non-negative integer not
exceeding D. In addition, define T'_;(y) =T py1(y) := 0.

Following [12, p.126], a finite, connected graph I' is called a distance-regular graph if there are
integers b;,¢;, i = 0,1,..., D, such that, for any two vertices z,y € V(I') at distance i = d(z,y),
there are precisely ¢; neighbors of y in I';_1 (z) and b; neighbors of y in I';11(z). In particular, I" is
regular with valency k := bg. The numbers ¢;, b; and

ai::k:—bl-—ci (OglﬁD)

(i.e. the number of neighbors of y in I';(z) for d(x,y) = i) are called the intersection numbers of
I'. Note that bp = ¢p = ap := 0 and ¢; = 1. In addition, we define k; := |I';(y)| for any vertex
yeV({[I),i=0,1,...,D. This definition for distance-regular graphs is easily seen to be equivalent
to the one given in the introduction.

For I' a distance-regular graph as above, we define

D
Tr = ((Cz’»aiabi)>i:1 (12)

and we let 41
Or := (('Yivaiaﬁi)>i:1 (13)

denote the (necessarily unique) maximal length subsequence of 7t for which the i th term of Gr is
not equal to the (i + 1) th term of Gr for all 1 <¢ < D — 1. In addition, we define the numbers

h= hF = ‘{j . (cj,aj,bj) = (cl,al,bl), 1 S j S D — 1}’, and (14)
t=tr = ‘{] : (cj>aj7bj):(b11a1761)7h<j§D_1}| (15)

which are called the head and the tail of T', respectively. Note that by [2, Lemma 2.1], it follows
that tail t satisfies the following :

t <hand, if t > 1 then (¢cp_t,ap_t,bp_t) =--- = (cp-1,ap-1,bp-1) = (b1, a1,1). (16)

2.3.1 Intersection Numbers

For the rest of Section 2, we suppose that I is a distance-regular graph with valency k& > 3, diameter

g+1
D > 2, intersection numbers a;, b;,¢;, 0 <7< D and Gr = ((%,ai,ﬂi))

1=

In [12, Proposition 4.1.6] and [2, Lemma 2.1 (ii)], it is shown that the following inequalities always
hold :
k:b0>b1Zbgz---ZbD_1>bD:0and1:cl§02§-~§6D§k, (17)

a; > a1 +1—min{b;,¢;} (1<i<D-1). (18)

In particular, it follows that for every term (v;, a4, 8;) in Gr, B; > Biy1 and 7; < 741 hold. For
each 1 <17 < g, define

s(i) = sr(i) = min{j : (¢j,a5,b5) = (i, 04, 8:), 1 <j< D -1}, (19)
i) =to(@) = [{J: (¢ra5,bj) = (Vi B:), 1 <j < D—1}], (20)

7



and define s(g+ 1) = D. Note that s(1) =1 ¢(1) =hr, {(¢g+1) =1, and that s(i + 1) — s(7) = £(7)
holds for all 1 <i < g.

2.3.2 Diameter Bounds

The following result is originally due to A. A. Ivanov [26] (cf. [12, Theorem 5.9.8]). Note that N
denotes the set of positive integers.

Theorem 2.3 (A. A. Ivanov’s Diameter Bound)
Let k > 3 be an integer. Then there is a function F' : N — N so that, for all distance-regular graphs
' with valency k, diameter Dr, and head hr, the inequality

Dr < F(k:) hr
holds.

Note that it was also shown in [26] (cf. [12, Theorem 5.9.8]) that one can in fact take F(k) = 4% in
the last theorem.

Now, in order to show that there are only finitely many of distance-regular graphs I' with fixed
valency k > 3, it suffices to show that the diameter Dr of any such graph is bounded above by
some function f: N — N depending only on k, since |V(T')] < 1+ ZiD:FI (k — 1)1, Thus, in view
of Theorem 2.3, it also suffices to show that the head hr is bounded above by some function g in

k. In particular, the following result also holds (as we can take g(k) to be a constant function).

Corollary 2.4 Suppose that k > 3 and C > 1 are positive integers. Then there are only finitely
many distance-reqular graphs I' with valency k and head hyr < C.

2.3.3 Eigenvalues of Distance-Regular Graphs

The tridiagonal matrix L; = L;(I") associated to I' is defined by
(0 b

c1 ap by
c2 az by

e .
¢ a; b ’

¢p-1 ap—1 bp_1
CD ap

and @ € R is an eigenvalue of I' if # is an eigenvalue of L;(I') ([12, p.129]). Note that any
distance-regular graph I with diameter D = Dr has exactly D+ 1 distinct eigenvalues ([12, p.128]).



Moreover, if § is an eigenvalue of I', then (ug,u1,...,up)’ is called the standard sequence of T
associated with 0, which is a right eigenvector of L;(I") associated with eigenvalue 6, and the
multiplicity m(0) of 6 is given by
= VOl
> imo kiug (0)
This equation is known as Biggs’ formula ([10, Theorem 21.4]). Note that in view of Equations (10)
and (11) it follows by this last formula that the multiplicity of eigenvalue 6; of ' is equal to the
Christoffel number m; of Ly ().

(21)

3 Graphical Sequences

In this section, we define graphical sequences and tridiagonal sequences. Note that these are similar
(but not identical) to the ones presented in [3]. The definition for these sequences is motivated by
the sequences Gr and 7t associated to I' a distance-regular graph that were presented in the last
section.

For integers k > 3 and A > 0 with A < k — 2, define
Vi == {(v,o, 8) ENg : B,y >1, y+a+B=rand a>max{A\+1—F,A+1—7}}

g+1
Definition 3.1 With k, X\ and V,, x as just defined above, a sequence G = ((%-,ai,ﬁi))'
K2

10f

distinct terms in N% is called a (K, \)-graphical sequence if it satisfies the following conditions:

(GO) (yi, i, Bi) € Vir (1<i<g),
(G1) (y,00,61) = (LA k=X —=1),
(G2) Bi > fBiv1 1 <i<g—1)andy <7y 1<i<yg),
(G3) Bg+1 =0 and yg41 + ag41 = k.

g+1
Let G = ((%, az‘,ﬁz‘)> - be a (k, \)-graphical sequence and let £ : {1,...,g+1} — N be a function
with £(g+ 1) = 1. For each 1 <1< g+1, define s4(i) = s(i) by

s(1) :=1,

i—1
s(i) =1+ L(j) 2<i<g+1). (22)
j=1

Definition 3.2 With G, ¢ and s as just defined above, the sequence of triples T = T(G,{) :=

s(g+1) ) .
((cm, A, bm)> given by putting, for each 1 <1i < g+ 1,

(Cs(i)—i-jv As(i) 45> bs(i)—i—j) = (7i7 Qs B’L) (O <j< ((2) - 1)

is called the (k, \)-tridiagonal sequence (associated with G and /).



Given 7 = 7 (G, /) as in this last definition, we define the head h = hy, the tail t = t7 and the
diameter D = D1 of T to be

hy = (1), (23)
tr = |H{hr<i<s(g+1): (c,ai,b)=(k—A=1,\1)}, and (24)
Dy = s(g+1), (25)

respectively. Note that h and t satisfy
h >t and, if t > 1 then (¢cp_¢,ap_t,bp_t) =+ = (cp-1,ap-1,bp-1) = (b1,a1,1)

(see (16)).

D
Note that if " is a distance-regular graph, with diameter D and 7p = ((cm, A, bm)> " X then,
e

referring to (13) and (20), it follows that the sequence Gr is a (by, a1 )-graphical sequence and that
Tr is the (bg, aq)-tridiagonal sequence 7 (Gr, fr).

Now, given a (k,\)-graphical sequence G, function ¢ and the (k,\)-tridiagonal sequence 7 =

D
T(G,0) = ((cm, A, bm)> as in Definitions 3.1 and 3.2, we define the tridiagonal matrix Li(7")

associated to 7 by

cr ar by

¢p-1 ap—1 bp_1
\ CD ap

It follows by the results in Section 2.1, that the tridiagonal matrix L;(7) has exactly D+ 1 distinct
eigenvalues, k = 0y > 01 > 03 > --- > 0p, say, which we call the eigenvalues of 7 and denote by

Er={0;, : 0<i< D}. (26)
Note that applying formulae (3) and (6) to the matrix L;(7) we obtain, for each 1 <i < g+ 1,

NJ izl £() Y S
HS@H:;(@YH(@) R T N ) (27)

Vi) i\ C1C2 "« * Cg(4)+j

We define the Christoffel numbers of 7 to be the Christoffel numbers associated with Li(7") (cf.
Section 2.1).

Now, in case L1 = Lq(7r) for a distance-regular graph T' then, for any 6,6 distinct algebraic
conjugate eigenvalues of I', the multiplicities of § and 6" are equal ([5, Proposition 111.1.5]). Hence
so are the corresponding Christoffel numbers, which implies that Zz]'):o kiut(0) = Zi.io Kkiuz(0')
holds.

Motivated by this fact, we will be interested in (k, A)-tridiagonal sequences 7 that satisfy the
following key property:

10



(AC) Any two eigenvalues of 7 which are algebraically conjugate (over Q) have the same Christoffel
numbers.

We conclude this section with a useful result concerning graphical sequences. Suppose that G =
g+1

<('yi,ai,ﬁi)). is a (k, A)-graphical sequence for some integers kK > 3 and 0 < A < Kk — 2, as in
1=

Definition 3.1. For each 1 <14 < g we define the ith right and ith left guide point by

Ri =Ri(G) = a; +2¢/Bivi and £ = £i(G) == —2¢/Fivi (1<i<g) (28)

respectively. In addition, we put Rpnax = Rmax(G) := max{R; : 1 <i < g}.
Moreover, for each 1 < i < g, we define the ith guide interval to be the open interval

I = L(G) := (£, %) (29)

The following lemma is a slight extension of Lemma 3.1 in [3]. We provide a proof of it for the sake
of completeness. Note that a sequence 71, ..., r, of real numbers is called unimodal if there exists
some 1 <t < nsatisfyingr; <rg <---<rpandr > 14010 > - 2> 7p.

g+1
Lemma 3.3 Suppose that k > 3 and A > 0 are integers with A < k—2, and that G = <(*y,-, g, ﬂz))

is a (k, \)-graphical sequence. Then the following hold.

i=

(i) The inequality R; > Ry holds for all1 < i < g, with equality holding if and only if (v, v, i) €
{(17)‘75_ A— 1)7(/1_)‘_ 17)‘71)}

(ii) For any 2 <1i < g, if B; > 7 then R;_1 < R;.

(iii) For any 2 <i<g—1, if B; <~ then Rip1 < R;.

In particular, by (ii) and (iii), it follows that the sequence (R;)7_; is unimodal.

Proof: First note that by (GO) and (G1) in Definition 3.1, for each 1 < i, j < g, we have

Ri—%; = (VB —v7)’— (VB — v3)? and (30)
B = v (31)

Now, to see that (i) holds, note that by (G0),(G2) and (31), /31 — 1 > |/B; — /7| holds. Hence
M; > M holds in view of (30) with j = 1. Moreover, equality holds if and only if (v;, vy, ;) =
(v, a1, B1) if B > v and (i, 04, 58i) = (B, a1,m) if v > ;.

To complete the proof of the lemma, note that (ii) and (iii) follow from (30) and (G2), since
Bi—1 > Bi > v = 7vi—1 and vi+1 > v > (i > Bi+1 hold for (ii) and (iii), respectively. |

11



4 A Key Result

In this section we will state without proof a key result (Theorem 4.2) that we will then use to prove
the main result of this paper (Theorem 1.1). We will then give a sketch a proof of this key result
which we will prove in Sections 5 to 9, inclusive.

For w = (w;)}_, any sequence, we put

w:={w;:1<i<n}, (32)

i.e. the set consisting of all distinct terms in W. To state Theorem 4.2, we will require the following
key definition:

Definition 4.1 Let k > 3 and A > 0 be integers with A < kK —2. A (k, A)-quadruple is a quadruple
(G,A; L, 0) such that

(i) G = (8 = (v, 51))
(i) A = (0i,),—1 is a subsequence of G in which (1,\,kx — A —1) € A (ie, i = 1) and
(Yg+1, 911, Bg+1) € A, and

(i) 0 :{1,...,9+1} > Nand L:{1,...,g+1}\{i1,...,i:} — N are functions with £(g+1) =1
and L(i) = £(3) for alli € {1,...,9+ 1} \ {i1,...,ir}.

g+1
- is a (K, A)-graphical sequence (cf. Definition 3.1),
7

g+1
Theorem 4.2 Let k > 3 and A > 0 be integers with A < k—2, and let G = <5i = (v, @i,ﬁi)) be

1=

a (K, A)-graphical sequence. Suppose that A = (8;,);_ is a subsequence of G with (1, A\, k—A—1) € A
and (Yg41, 0g+1,Bg+1) € A, and L : {1,...,g+ 1} \ {i1r,...,i;} — N is a function. Suppose € > 0
is a real number, C := C(k) > 0 is a constant, and £ : {1,...,g+1} — N is any function for which
(G,A; L,0) is a (k, \)-quadruple and the associated (k, \)-tridiagonal sequence T = T (G, L) satisfies
(i) Property (AC),

(ii) Dy < Chr, and

(ii) Dy — (hy + t7) > €hr,

where hr, t7 and D7 are as defined in (23)-(25), respectively.

Then, there exist positive constants F = F(k,G,A,L) and H := H(k,\ €,G,A, L) such that if
U(ip) > F holds for all 1 < p <7, then hy < H holds.

We will now use Theorem 4.2 to prove Theorem 1.1, the main theorem of this paper. To do this,
we will make use of the following result:

g+1
Proposition 4.3 Let k > 3 and A > 0 be integers with A < k—2, and let G = ((SZ- = (v, ai,ﬁi))' )
1=

be a (K, \)-graphical sequence. Suppose € > 0 is a real number, C := C(k) > 0 is a constant, and
:{1,...,9+ 1} — N is any function with {(g+ 1) =1, such that the associated (k, \)-tridiagonal
sequence T =T (G, ) satisfies

(i) Property (AC),

12



(ii) Dy < Chr, and
(i) DT — (hy + t7) > €ehr.
Then there exists a positive constant H := H(k, A\, €,G) such that hr < H holds.

Proof: Suppose that «, A\, G, €, C, £ are as in the statement of the proposition. First, we show that
the following statement holds:

(1) For each i = 0,...,g — 1, there exists a subsequence G; of G with precisely (i + 1)-terms
satisfying (1, A,k — X — 1) € G; and (7441, ®g+1,04+1) € Gi for which there is a positive
constant L; := L;(k, A, €,G, G;) such that

0j) <Ly

holds for all (v;, o, B;) € Gi.

Proof of (1): We use induction on i. In case i = 0, (f) holds for the subsequence Gy := ((’yg“, Qgit, ﬁg+1)>
and constant Lg := 1.

So, assume that (f) holds for all i = s, with 0 < s < g — 2, i.e. there is a subsequence Gs =
s+1

<(%p, aip,ﬁip)) ) of G with (1, A,k = A —1) € G5 and (7441, ®g+1,Bg+1) € Gs for which there is a
p:

positive constant Ly := Ly(k, A, €,G,Gs) > 0 such that £(i,) <L holds for all 1 <p < s+ 1.

Let L({i1,...,is4+1}) denote the set consisting of those functions L : {i1,...,is41} — N satisfying
L(i,) < Ls for all 1 < p < s+ 1. Note that the set £L({i1,...,%s4+1}) depends only on k,\,€,G
and G;. Let A; denote the subsequence of G obtained by removing the terms in G, from G. Put
m=m(G,Gs) :=min{2 <i < g : (v, 0) € Ast.

Define positive constants F, = ﬁs(/ﬁ}, A €,G,Gs) and H, = ﬁs(ﬁ, A €,G,Gs) by

Fy = max{F(k,G,As, L) : L € L({i1,...,0511})},
H, = maX{H(’%7)‘aeagyASaL) : Le E({ih"'?is-‘rl})}?

where F(k,G, A, L) and H(k, A\, €,G, Ag, L) are the constants given by applying Theorem 4.2 to
the (k,\)-quadruple (G,Ag; L, ¢).

Then, by Theorem 4.2, either (a) £(i) > F, holds for all (yi, i, ;) € A, in which case we can
let Gs11 be the sequence defined by adding the term (v, am, Bm) to the beginning of Gs and put
Lst1 :=max{L,, C(k) Hy}, or (b) there exists (v, an, Bn) € Ag such that £(n) < F holds, in which
case we can let Gg11 be the sequence defined by inserting the term (v;, o, 8;) with j := max{m,n}
into the sequence G5 (according to its place in G) and put Lsp1 := max{L, C(k) ﬁs} This
completes the proof that statement (1) holds. ]

To complete the proof of the proposition, we apply () for ¢ = g — 1. In particular, for this choice
gt+1

of i, Gg_1 = (('yi, ai,ﬁi)) . and constant L,_1 depends only on s, A, € and G, and hence the set
(2

13



L({i1,...,1ig}) = L({2,...,9 + 1}) of those functions L : {i1,...,i5} — N satisfying L(i,) < Ly
for all 1 < p < g depends only on k,\, e and G. Since (G,A;L,¢) is a (k, A)-quadruple for the
subsequence A = ((71, a1, B1) = (LA, k—A— 1)) of G and L any function in £({2,...,9+ 1}), it
follows by applying Theorem 4.2 to (G, A; L,¢) that there exists a constant

C=C(k,\¢€G) =max{F(k,G,A,L),H(k,\,,G,AL) : Le L({2,...,9+1})},
where F(k,G,A, L), H(k, A, €,G,A, L) are the constants given by Theorem 4.2 so that
hr <C

holds. This completes the proof of the proposition. |

In order to prove Theorem 1.1, we will also make use of the following result from [2], which
generalizes results of Bannai and Ito [8, 9] and Suzuki [35]:

Theorem 4.4 ([2, Theorem 1.2])

Suppose that k > 3 is a fized integer. Then there exists a positive number ey = €y(k), depending
only on k, so that there are only finitely many distance-reqular graphs with valency k, head hr, tail
tr, and diameter Dr that satisfy

Dr — (hr + tr) < € hr.

Proof of Theorem 1.1: Let k > 3 be a fixed integer. By Theorem 4.4, there exists a constant
€0 = €o(k) > 0 (which depends only on k) such that there are only finitely many distance-regular
graphs I' with valency k, head hr, tail tr and diameter Dr that satisfy

Dr — (hr + tr) < eohr.

Now, suppose that I' is any distance-regular graph with valency k that satisfies
Dr — (hr + tr) > eohr. (33)

Then, by Theorem 2.3 and (33), the (k, a1 )-tridiagonal sequence 7t = 7 (Gr, 1) (cf. (12)) satisfies
all of conditions (i)-(iii) in Proposition 4.3, where a; is an intersection number of I'.

Therefore, for any distance-regular graph T' with valency k that satisfies (33), it follows that
hr < C(k) := max{H(k,a1,€(k),G) : 0 < a1y <k —2, Gis a (k,ay)-graphical sequence}

where H(k,a1,€0(k),G) is the constant given by Proposition 4.3 (note that in the formula for C(k),
taking a maximum is appropriate since the number of integers a; with 0 < a; < k — 2 is finite, and
so is the number of (k, aj)-graphical sequences). Theorem 1.1 now follows by applying Corollary 2.4
with the constant C'(k). 1

The strategy that we use to prove Theorem 4.2 (whose proof will be presented in Section 9) is quite
involved, and so we will now provide a brief overview of the proof before continuing.

14



+1
Let (G, A; L, ¢) be any (k, A)-quadruple as in the statement of Theorem 4.2, and put G := ((%, oy, ﬂﬁ)il
and 7 :=T7(G,0). ;

By Lemma 3.3 (i), for each 2 < ¢ < g satisfying (v, a4, 8;) € G\ {(L, A,k — A —1),(k — X —
1L, A1), (Vg41, @g+1, Bg+1) }, there exists a closed interval Z = [Zinin, Zmax] With Zmin < Zmax, which
we shall call a “well-placed interval” (see Section 7), such that

(W1) Z C (R, Rmax);

(W2) If ZNI; # 0 then Z C I; holds, 1 < i < g;

(W3) T C I

all hold (cf. (28), (29)).

In the first step of the proof of Theorem 4.2, we will approximate the Christoffel numbers of the
eigenvalues of 7 inside a well-placed interval Z. To do this, we define the quantities

=¢G,7) = min{{2§i§g : Imax<£i}U{g+1}};
=0(G,7) = max{{2§i§g:Imax<£i}u{c}};
() if <
Gap(Z) = Gapg ¢(Z) := {?cgysa () ;f E;z+1

(cf. (69), (70), (72)) and, for any eigenvalue § € 7 of 7, we approximate the sum Z?;To Kiu(0)
(see Theorem 8.1) by bounding the following three subsums (cf. (22), (25), (27), (74)):

(1) Head sum: Zs = uz (0);
(2) Gap sum: Z b+1 _q kiu Z(9)7
(3) Tail sum: Z (b41)+1 u?().

We can use the theory of three-term recurrence relations, to bound the Head sum and the Gap
sum (see Theorem 8.7 and Corollary 8.8). However, for the Tail sum, there may exist some real
numbers near to which we are unable to find good bounds for the Tail sum. Let B denote the set of
these real numbers (cf. (52)). In Theorem 6.2, we show that B is finite and depends only on G, A
and L. In particular, for each (v;, 4, 5;) € G\ {(1, A,k = A—=1), (k= A—=1,\, 1), (vg+1, ®g+1, Bg+1) },
there always exists a well-placed interval J C I; such that 7 N B = ) (cf. Corollary 7.3). Note
that such a well-placed interval J depends only on G, A and L. We strengthen the condition on
the interval Z by requiring that in addition to (W1)—(W3), it also satisfies ZN B = ). Then for any
such a well-placed interval, we can approximate the Tail sum as long as we require that £(i) > F
holds for all (v;, s, B;) € A, where F' is a positive constant depending only on k,G, A and L (cf.
Theorem 8.9).

Now, by Condition (iii) of Theorem 4.2, we can find an element (v;,;,3;) € G\ {(1,\,k — XA —
1), (k=X=1,\1), (Yg+1, ag+1, Bg+1) } satisfying €(i) > 627, and we can find a well-placed interval

Z C I; such that 7N B = () and Len(Z) > 2~ both hold (cf. (23), (71)).

By the approximation given in Theorem 8.1 and Property (AC), it follows that for any real number
d > 0, there exist two positive constants C; = Ci(k, A, €,0,G,A, L) and Co = Ca(k, A, ) such that
any two eigenvalues 6,1 € Z of 7 which are conjugate algebraic numbers must satisfy |6 —n| < ¢
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if hy > C; and Gap(Z) < Cshz all hold (c¢f. Theorem 9.1). In Claim 9.3, we show, by using
interlacing, that the number of eigenvalues in 7 is at least Cshy, where Cs is a positive constant
depending only on Zyax — Zmin, € and G.

Now, we have to consider two cases: either Gap(Z) < Cohy or Gap(Z) > Cohy. In the first case,
Gap(Z) < Cshy, we show by using Theorem 9.1, Claim 9.3 and Theorem 5.5, a result in number
theory, that
lim [{n : eigenvalues of 7 that have an algebraic conjugate in Z}| e
hr— hr

holds (cf. Proposition 9.2). Since the number of eigenvalues of 7 is exactly Dy + 1 (cf. (26)) and
D1 +1 < (C(k) + 1)h7 holds by condition (ii) of Theorem 4.2, there exists a constant H > 0
depending only on &, A\,€,G, A, L so that hy < H holds, as required.

In the second case, Gap(Z) > Coh7, by the unimodality of the sequence (R;)7_;, we can find another

well-placed interval 7' := [Z] ., Z}] . ] which depends only on G, A, L such that
( ) II/IHH > Imax§
(2) Z'n B = 0;

(3) Len(T') > “22&),
all hold (see Proposition 7.4). So we can repeat the same process with Z’ instead of Z. Using the
unimodality of the sequence (9R;)Y_,, the condition 7], > Zyax implies that ¢(G,Z) < ¢(G,7),

0(G,7") < 9(G,Z) and Gap(Z’) < Gap(Z) all hold. Hence, the second case can be repeated at most
g times so that, finally, the first case must be satisfied, from which Theorem 4.2 again follows.

5 Two Useful Results for Polynomials

In this section, we prove two useful results concerning roots of polynomials. The first one, Theorem
5.1, will be used in Theorem 6.2 to show that the set B (as we introduced in Section 4) is finite.
The second result, Theorem 5.5, analyzes the polynomials having all roots in an interval. It will be
used to bound the number of eigenvalues of a distance-regular graph in the proof of Proposition 9.2.

We denote the degree of any polynomial p(z) by deg(p(z)). The polynomial p(z) = 0 is called the
zero polynomial and, for technical reasons, we define the degree of this polynomial to be —1 (cf.
[25, p.158]). Two polynomials p;(x) and pa(z) are identical if their difference p;(x) — p2(z) is the
zero polynomial. Let R and C be the fields of real and complex numbers, respectively, and let R[z]
denote the ring of polynomials in one variable x with real coefficients.

Theorem 5.1 Let q1(z),q2(z) € Rlz] be two monic quadratic polynomials which are not squares
of linear polynomials, and let I C R be the largest (infinite) interval on which both q1(x) and g2(x)
are non-negative. Suppose Pj(z) € R[z] (1 < j < 4) are such that C := max{deg(P;(z)) : 1 <j <
4} > 0. Put

P(zx) :=

Then the equation P(x) =
Py(z)+ P3(x), Pi(z)+qi(z

)+ Pa(z)v qu(2) + P3(z)V/q2(x) + Palz) /@1 (2)ga().

Pi(z)
0 has at most 4(C + 2) roots in I, unless qi(x) is identical to g2(x) and
)Py(x) are the zero polynomials, in which case P(x) = 0 for every x € I.
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Proof: For each i,5 € {0,1}, we define

P (z) := Pi(x) + (=1)'Pa(2) Vo (2) + (=1) Py(2) V2 (@) + (= 1) Pa() VVau (@) g2()

and put
P*(z) := PO (z) x POV () x PUO(z) x POV (z). (34)

Note that

PO ) POV (w) = (Pi(2) + PV (@) o) (Pa(a) + Pate)Var@))
has the form U(x x)\/q1(x) with U(x),V(z) € R|x] satisfying deg(U(z)) < 2C + 4 and
deg(V(x)) <2C + 2 Slmllarly,

2

PO () P ) = (Pi() ~ o) y/n()) o) (Po(o) — Paa)Var (@) = Ue) =V (@)v/an (o).

Hence, by (34), P*(x) = U(x)? — V(x)?q1(x) is a real polynomial of degree at most 4C + 8. This
proves the theorem in the non-degenerate case when P*(x) is not the zero polynomial.

Assume now that P*(x) is the zero polynomial. We need to prove that this happens only if ¢;(z)
is identical to g2(x) and Py(x) 4+ Ps(z), Pi(z) + q1(z)Ps(z) are the zero polynomials. We first prove
the following.

Claim 5.2 If q1(z) — g2(x) is not the zero polynomial then P*(x) is also not the zero polynomial.

Proof of Claim 5.2 We first show that P?(z) — q1(z)ga(x)Py(z)? is not the zero polynomial if
at least one of the polynomials P;(z), Py(z) is not the zero polynomial. Take a root v € C of
q1(x) which is not a root of ga(x). By the condition of the theorem, v is the root of ¢ (z)ga(z)
of multiplicity 1. Assume that P2(z) — q1(2)gz2(x)Py(2)? is the zero polynomial. Then « is the
root of q(x)ga(x)Py(x)? of odd multiplicity but it is either not the root of Pj(z)? or it is its root
of even multiplicity, a contradiction. By the same argument, P(x)?q(x) — P3(x)%q2(z) is not the
zero polynomial if at least one of the polynomials Pa(x), P3(z) is not the zero polynomial. Since
C = max{deg(P;(z)) : 1 < j < 4} > 0, we always have either PZ(z) # qi(z)g2(z)Py(2)? (if
Py (z)Py(x) is not the zero polynomial) or Py(z)%q1(z) # Ps(x)3qa(x) (if Py(x)P3(z) is not the zero
polynomial) for infinitely many x € I.

Suppose P*(z) is the zero polynomial. Then one of the functions P (z), where i,j € {0,1}, must
be zero identically on x € I. Hence

Pi(z) + (=1)'Pa(2)Vau () + (=1) P3(2)V/q2(2) + (1) Pa(2)V/qu (x)g2(x) = 0. (35)

Our aim is to show that this is only possible if all Pj(x), j = 1,2,3,4, are the zero polynomials
which is not the case by the condition of the theorem.

We first claim that
Py (z)Pa(x) = qo2(x) P3(x) Py(x). (36)
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Indeed, putting first two terms of (35) into the right hand side and squaring we obtain

(A + ) PV @) = @) (1 Poe) + o) Var @) (37)

Since ¢1(x) is not the square of a linear polynomial, by the same argument for roots multiplicity
as above, the function S(x) + T'(x)+/qi1(x), where S(z),T(x) € R|x], is zero identically on I if and
only if S(x) and T'(x) are the zero polynomials. Therefore, collecting terms for y/qi(z) in (37) we
obtain (36).

Similarly, putting the first and the third term of (35) to the right hand side, squaring and then
using the same argument for the ring R[x] + R[x]\/q2(z), we deduce that

Py (z)P3(z) = q1(x) P2 () Py(). (38)

Suppose first that P;(z) is the zero polynomial. Then, by (36) and (38), P»(x), P3(x) or Py(x)
is zero identically. If either P»(x) or P3(x) is the zero polynomial then, by (35), all four P;(z)
must be the zero polynomials, a contradiction. If Py(x) is the zero polynomial then Py(x)+/q1(z) +
(=1)7P3(z)\/q2(z) = 0. But this yields Py(z)%qi(z) = P3(7)%q2(z), a contradiction again. By the
same argument, if any of the polynomials Ps(z), Ps(x), Py(z) is the zero polynomial, then by (36)
and (38) one more polynomial must be a zero polynomial. One then concludes as above that all
four polynomials are the zero polynomials.

Finally, if none of the polynomials P;(z) is the zero polynomial then multiplying (36) and (38)
gives Py (7)2Py(z)P3(z) = q1(2)q2(x) P2 (z) Ps(x) Py(z)?. Hence Py (7)? = q1(x)q2(z) Py(x)?, which is
a contradiction again. 1

Now, to complete the proof of the theorem, suppose that ¢ (z) is identical to ga(z). Then P(z) =
Pi(z) + q1(2) Py(z) + (Po(z) + P3(x))\/q1(x) for all x € I. If Pi(x)+ q1(z)Py(z) and Py(z) + Ps(x)
are the zero polynomials then P(x) is zero identically. Otherwise,

P(z)(Py(z) +qi(2) Pa(z) — (Pa(x) + Ps(2)) Va1 (2)) = (Pi(2) +q1(2) Pa())? — q1(2) (Pa () + Ps())?

is not the zero polynomial. So P has at most 2C' + 4 roots in I, which is better than required. 1

In the remainder of this section, we will show the second useful result, Theorem 5.5.

For any real number k > 2, we denote by Py the set of all irreducible monic polynomials p(z) € Z[x]
such that all of the roots of p(z) are contained in the closed interval [—k, k]. Note P, C P, if
k< K.

Lemma 5.3 Let k > 2 be a real number and let n be a positive integer. Then the following holds.
(i) The set consisting of all polynomials p(x) € Py of degree at most n is finite.
(ii) Py is an infinite set.

Proof: (i) Obviously, any coefficient of each p(z) € P, of degree at most n is in [—(2k)", (2k)"], so
P, contains at most (2(2x)™ + 1)"*! of such polynomials. See also [27, Lemma 7.1].
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(ii) Let P,(1,0,1)(z) be the characteristic polynomial of the tridiagonal (n x n)-matrix with zeroes
on the diagonal and ones on the subdiagonals and superdiagonals. Then P,(1,0,1)(x) is a polyno-
mial of degree n and has n distinct roots, 2 cos(n"jrrl), i=1,...,n ([10, p.11]). Thus, if we factorize
P,(1,0,1)(z) into irreducible factors, say qi(x),...,q/(z), then ¢;(x) # gj(z) if 1 <i < j <t and

gi(x) € Py for all 1 <i <. (ii) now follows immediately from (i). 1

In fact, an old result of R. M. Robinson [32] asserts that if J is an interval of length strictly
greater than 4 then there are infinitely many irreducible monic polynomials whose roots all lie in
J. Moreover, none of them has a root of the form 2 cos(7r) with r € Q as those lying in Ps.

Now, for any real number ¢ > 0, let I, be the set of all closed intervals of length ¢ which are
contained in the closed interval [—x, x]. For each p € P, and I € I, ¢, we define
{0 e : p(6) =0} 1
YTi(p, I) = , and 39
@ 1) deg(p(z)) (#9)
T ¢ = sup{Yep,I) : p€Pu, I €L, (}. (40)

Remark 5.4 Note that Y, ¢ is positive for all ( > 0 since by Lemma 5.8 (ii) there exists a

polynomial p(x) € Py with degree n > 8?"“ and so, by the pigeon hole principle, there exists an

interval I € 1, ¢ of length ( such that p(x) has at least % roots in I. Fven so, we now show that
the limit of Yy ¢ as ¢ tends to oo is zero.

Theorem 5.5 Let kK > 2 be a real number. Then

lim Yy = 0.
CL’I% K,C

Proof: Fix k > 2 and ¢ € (0,1). Let p(z) € P, be of degree n, say, and let I € I,; ¢. Since p(x) is
irreducible in Z[z], it has n distinct roots oy, ..., a, € [—k, k]. Consider the discriminant A(p) of
p given by

Ap) = [[ (ai—ap>

1<i<j<n

Since p(x) is a monic polynomial with integral coefficients, its discriminant A(p) is an integer.
Moreover, A(p) is not zero as the roots of p(x) are distinct and A(p) > 0, so A(p) > 1.

Without loss of generality, assume that {a,..., o} is the set of roots of p(z) contained in I, for
some 0 <t <n. Let 7 =7(p,I):= L.

n

Claim 5.6 Ift > 2 then 72 < -2,

n

Proof of Claim: We have
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1<i<j<t 1<i<j<n and j >t
< C‘rn(Tnfl) (QH)n(nfl)’

sincet =7 > 2, |y —aj| < (for 1 <i<j<tand |y —a; <2kforl<i<j<n. Using
TnT(n—1)

™m—1>7(n—1)/2and 0 < ¢ <1wefind that 1 < ¢~ 2z (26)"™ D, 50 1 < ¢7°/22k. The claim
follows by taking the logarithms of both sides of the last inequality. |

Now, let ¢(z) € P, and I € I,; ¢ be such that
1
Tn(q,I) Z §TH7C > 0.

Such a g(z) exists, since, as remarked before the statement of the theorem, Y, ( is positive. Since
Y(q,I) > 0, the polynomial ¢(x) has at least 2 roots in I. Hence, by Claim 5.6 and (39), we have

2In(2k) _ {z el :q(x)=0}  [{zel:qx)=0}-1_ 1
WC 0 del@) 0 dega)  @DEgTeez0

from which the theorem immediately follows. 1

6 Preliminary Results for the Christoffel Numbers

In this section, we will prove some results which we will use later in Section 8 for the approximation
of Christoffel numbers.

g+1
Suppose that G := ((%,ai,ﬁi)) . is a (k,\)-graphical sequence, that (G,A;L,¢) is a (k, \)-
1=

quadruple as in Definition 4.1, and that A = (‘%’);:1-

Fix ¢ with 0 < ¢ <7 —1. Let 0 < j; < g be the integer for which

6r—i = (Yg—ji» Qg—ji» Bg—j) (41)

holds. We put j_; := —1, and note that j; — j;—1) > 1 necessarily holds.

Suppose j; — jii—1) = 2. Then, for n; := j; — ji;_1) — 1, we define the sequence 20 = (zgi))f:;l by

putting A
ZS) = (’79*3'(2'—1)*5’ Oég*j(i—l)*s7 ﬁg*j(i—1)*5)7 §= 17 oo N

In addition, for N := 3 _ o L(z), we let w® = (w,(f))fﬂvzl be the sequence whose kth term w,(:) is

defined to be z](-i) for the necessarily unique j for which

j—1 J
ZL(zgi)) <k< ZL(ng) (42)
s=1 s=1
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holds.

Now, suppose that € is a real number, and that vy and vy are real numbers satisfying (vg,v1) # (0,0).

In addition, let (vj)jy;gl be the sequence that is defined by the recurrence relations

Bjvi1 + (a5 — 0)v; +Fjvj1 =0 (j=1,2,...,N), (43)
where (%, &;, B]) denotes the jth term wj(-i) of the sequence w®, and N is as above if j; —J(i-1) =2

and N := 0 else. Then, in view of (43), for j; — j;—1) > 2 there are polynomials ft(i) (z), gf@ (x) in

Qlx] (of degree s —1 and s —2, respectively) that, for § € [R,_j,, k|, satisfy vs = ft(i)(ﬁ)vl +g§i)(0)vo
for each s > 1,

(4) () e
oy = 4 F O+ g0 (0o i Gi = Gy = 2 (14)
Vo if ji — ju-1 =1,
and (
i) 0) e
(%1} if Ji — .7(2'—1) =1.

In addition, in case j; — j;—1) = 1, we let ft(i) (x) and gt(i)(:c) (t = 1,2) be the polynomials in Q[x]
for which both ft(i) (r) —t+1 and glgi) (x) +t — 2 are the zero polynomials for t = 1,2. Note that

the degrees of the polynomials ft(i) () and ggi) (z) are as follows:

deg(f(wy) = { T TRemn i R aTIen 2T (16)
) (1) P .
deg(of () = { o= g ey 22 (47)
0 it j; —JGE-1) = 1
deg(f;"(x) = dea(f{" (@) +1; (48)
deg(gy)(x)) = deg(fi" (). (49)

Note also that ft(z) () and gt(i) () (t=1,2,0<i<7—1) depend only on the triple (G, A, L) (and
not on the function /).

We now present the second key definition of this section. For the (k, A)-graphical sequence G =

+1
<(%,ai,ﬁi))j:1, let z; = z;(0) and y; = y;(0) (where |z;| > |y;|) be the roots of the equation

Yg—it® + (ag—i — 0)x + By—i =0 (0 < i < g). (50)

Definition 6.1 For any integers k > 3 and X > 0 with A\ < k — 2, let (G,A; L, ¢) be a (K, \)-
+1

quadruple with G = ((%,ai,ﬂi))? ) and A = (6;)7_,. With reference to (28), (44), (45) and (50),

for 0 <i <7 —1and 6:—; = (Vg—ji» g—ji> Bg—j;) € A satisfying Bg—j, < vg—j;, and for any real

numbers vy, v1 satisfying (v, v1) # (0,0) we define the set B; = B;(G,A, L) by

Bi(G, A, L) = {0 € [Ry—,(9), Rmax(9)] : Fi(#) = O}, (51)
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where Fi(x) is the polynomial in R[z] given by
Heete, (@ = age) U@ = @) + 39016 @ = o @)))  ifi=0
[ soetos i bcton, s (@6 = B @Dx+ 0 @) =8 (@) ifi 0.
With reference to (51), we also define the set B = B(G,A, L) by
B(G,A, L) := U Bi(G, A, L). (52)

0<i<r—1 and By—j, <vg—j,

Fi(zx) :=

Note that since the polynomials ft(i) () and g,gi) () (t =1,2,0<i <7 —1) depend only on the
triple (G, A, L), the polynomial F;(z) and the sets B; and B in the last definition all also depend
only on (G,A,L). Note that, if Ryax(G) = K, then Fj(k) = 0 for all i, 0 < i < 7 —1 (as the
standard eigenvector for « is the all-one vector and z; = 1 for all 0 < i < 7 — 1), and hence in this
case k € B.

Theorem 6.2 Let k > 3 and X\ > 0 be integers with A < k — 2. Suppose that (G,A;L,{) is a
(k, A)-quadruple. Then there ezists a constant C' = C(G, A, L) > 0 such that

Bl < C
holds, for B = B(G,A, L) as defined in Definition 6.1.

+1
Proof: Let (G,A;L,¢) be a (k,\)-quadruple, put G = <(%’O‘i’ﬂi))il and let 7 = 7(G,¢)

be the associated (k,\)-tridiagonal sequence. In addition, put A = (5j);:1 and let 6,_; =
(Vg—ji> Qg—ji» Bg—j;) € A with By, < 74—, be as defined in (41).

To prove the theorem, we will use Theorem 5.1 to bound |B;| by some constant depending only on
G, A and L for each 0 < ¢ < 7 — 1. To do this, we first define polynomials ¢s(x), s = 1,2, and
Pj(z), 1 < j <4 as in the statement of that theorem, breaking this definition into cases depending
on i:

(a) i =0: Let gs(z) = (x — ag—j,)* — 4By—jiVg—j; (s =1,2). For each & € {zj,,y;,}, put

(@ — agj,) (@ — age)) f +751101)

Pi(z) = o — (= — Ongrl)fQ(i) - 'Ynglgéi)’
Vg~
_ (4) (4)
Pia) = (~1)%m <<~’“ . ) ,
Vg—Ji
Pg(:U) = P4(.CE) = 0,

where ¢, is the Kronecker delta function, and let P(z) = P2£ (z). Then, for this specific choice
of polynomials, the polynomial P(x) = P%(z) in Theorem 5.1 becomes

P(x) = (& — agr) (P @)€ — £57(@)) + 7941 (61 ()€ — g5 (2)),
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which is precisely the factor that appears in the definition of the polynomial Fy(z) in Definition 6.1.
Note that if Pj(x) and Py(z) are the zero polynomials, then (z — ag+1)f£i) + 7g+1g§i) are also the
zero polynomials for s = 1,2. This contradicts (46)—(49). Hence max{deg(P;(z)) : 1 <j <4} > 0.

(b) i > 1: Let q1(x) = (z — O‘g—ji)2 — 4Bg—j,vg—j; and ga(z) = (z — ag—j(if1))2 - 4/89—j<¢71)79—j(i71)'
Note that as Bg—j,_ ) < By—ji < Vg—ji < Vg—ju_1y bOlds, q1(y) # qo(y) for some y € R. For
each (&, X) € {zj,, v} X {zj,_,) iy }» let Ps(z) € Q[z], 1 < s < 4, be polynomials such that
P(z) := (fl(i) ()€ — f2(i) (x))x + gy) (x)€ — géi) (x), i.e. the factor appearing in the definition of the
polynomial F;(z) in Definition 6.1, ¢ > 1. Note that if Ps(x) = 0 (1 < s < 4) are all the zero polyno-
mials, then so are the polynomials ft(i) (x) and gt(i) (x), t =1,2. Thus vx(f) = vy+1(0) = 0 hold for
any real number 0, which is impossible as (vg, v1) # (0,0). Hence max{deg(Ps(z)) : 1 <s <4} > 0.

With these definitions in hand we can now apply Theorem 5.1 simultaneously to cases (a) and (b).
(Clearly, q1(x) and ga2(z) are not squares of linear polynomials.) In particular, in view of (46)—(49),

8 (4 + deg(fl(i)(a:))> if i=0
16 (4 + deg(f1? (z))) if i 40
holds, from which the proof of the theorem now follows by taking

|Bi| <

C(G,AL):=16/G] {3+ > L(i)

(7v4,04,8:) EG\A

Now, for the (k,\)-quadruple (G, A; L, ¢), let T = T (G, ) be the associated tridiagonal sequence.
Let 6 be a real number. Then, for each 0 <@ < g satisfying 6 > R,_;, there exist complex numbers

(i) i) . Dr .
vy’ (0) and v5’ (0) such that the terms in the standard sequence (uj = uj(9)>j:0 satisfy

ts(yi1)—(8) = 1 O)(0) + 15" O] () (0<j<tlg—i)+1), (53)
where s(g—i+1), z;(0) and y;(0) are as defined in (22) and (50). Note that z;(6) —y;(#) # 0 holds,
and that (1/51)(0), Vél)(e)) # (0,0) holds as (ug,u1) # (0,0). Taking j = 0,1 in (53) we obtain:

(i) —yi(0) ) ( 1 >
v (0) = | ——= | Usg—it1)(0) + | ——= ) us(g—it1)-1(0); 54
0 = (@) o0+ () o0 60

@ gy _ i ()
20 = <mi<e>—yi<9>)“s<g””(9”(xiw)—yi(e))“s(g””1(9)‘ (55)

In particular, in view of (44), (45) and (53), for each 0-—; = (Vg—j;» Qg—js> Bg—j;) € A, there exist
polynomials ft(z) = ft(z) (x), ggz) = gt(z) () (t =1,2) in Q[z] such that

() .
Ee)us(g_j(il))_lw) 9 (e)us(g_j(ifl))(e) iti#0 (56)

i 0 { O)un-1(60) + g1 (0)un(6) ifi=0
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and

@) . (@) , o
Us(g—jit1)—1(0) = { 2 (O usg—ji,_1)-100) + 92" (Ousig—j,_,)(0) ifi#0

fg(z) (O)up—1(0) + géi)(G)uD(H) ifi=0 (57)

hold, where ft(i) (r) —t+1 and ggi) (z) +t — 2 are the zero polynomials if j; — j;_1) = 1.

The last theorem of this section will play an important role later on in obtaining an upper bound
for the Christoffel numbers of any eigenvalue of 7 (G, ¢) within some closed interval not intersecting
B. For any non-empty closed real interval I, we define I, and I.x to be the real numbers for
which I = [Iiin, Imax| holds.

Theorem 6.3 Let k > 3 and X\ > 0 be integers with A < k — 2. Suppose that (G,A;L,{) is a
+1

(K, A)-quadruple and let G = ((’yi, ai,ﬂi))il. Suppose that I is a non-empty, closed subinterval of

(R1, Rmax) such that a

In(BU{R :1<i<g})=0and2<b<yg (5

co
=

both hold, where b = b(G,I) :=max{2 <i < g : Imax < R;i}. Then for each (Vg—i, ag—i, Bg—i) € A
with b +1 < g —1i < g, there exist positive constants C; = Ci(k,G,A,L,I) > 1 and M; =
M;(k,G,A,L,I) > 1 such that, if £(g — j) > C; hold for all j < i with (yg—j, ag—j, Bg—j) € A, then

()

holds for any real number 6 € I, where R;, A, x;(0), yi(0), B=B(G,A,L) and VJ(-i) ) (j =1,2)
are as defined in (28), (32), (50), (52) and (53), respectively.

v(6)
v(0)

Proof: Let T = T(G, ) be the (k, \)-tridiagonal sequence associated to (G, A; L, ), let D := Dy

and let A = (6;)7_,. Note that for each 0 < j <g—b,0 < iigzg < 1 holds for any 6 € I, and also

that zf Egg is a non-zero continuous function (in #) on the closed interval I. Hence, there exists a
J
constant 0 < P = P(G,I) < 1 such that
yi(0) _ 00—y = V(0 —0g)* ~40p-Yei _ p (60)

zi(0) 0 —ag_j+ /(0 — ag—j)* — 4Bg—jVg—;

holds for any 0 < j < g — b and for any § € I. Note also that for each 0 < j < g —b, By—; < 74—
holds by Lemma 3.3.

Now, for each d,_5 € A, let
Or—s 1= (’Yg—jsaag—jsaﬂg—js)

for some 0 < js; < g. We prove the theorem by induction on 0 < s < s, where

s:=max{i : 0r—; € A and Ry_j; < Imin}-
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First, suppose s = 0. Let 0 = (7Yg—jo» Qg—jo» Bg—jo) € A for some 0 < jo < g—b—1.
By (9), Yg+1up—1(0) + (og+1 — 0)up(0) = 0 and up(8) # 0 for any 6 € I. By (54)—(57), there exist
polynomials ft(o) (x), gt(o) (x) € Q[z] (t =1,2) such that

g (0= ag) 7O 0) + S70) + 01 (01" Oin 0) + 65" O o
s ( wg+1<xm<e> 4o ©) plf) and

)
g — (0= ag) (7 O2i0(0) = £57(0) +7541(61” ()i (0) — 95" (0) |
0 ( ERE O 0) o)

both hold for all § € I. Tt follows by (58) and up(8) # 0 that v’ () £ 0 (¢t = 1,2) for all 6 € 1.
(Jo)
(9)
7 0)
exist constants Nj, := Nj,(k,G,A,L,I) > 0 and Cj, := Cj,(k,G,A, L, I) > 1 so that

. 1 [ y5(6) )
2N~>P03012<j° > 61
70 P $j0(0) ( )

holds for any 6 € I. Hence there exist constants Cj, = Cj,(k,G,A,L,I) > 1 and M;, =
M;,(k,G,A,L,I) :== 1/P such that (59) holds for all # € I. This completes the proof of the
base case.

Since the function “ is a non-zero continuous function on the closed interval I, by (60) there

v(0)
v (6)

Now, suppose 0 < s < 5, and assume that the theorem holds for all 6,_; € A with 0 < j < s. Let
z =5, (0), y = yj,_,,(0), v = Vt(]<571))(9) (t=1,2) and £ := £(g — j(s—1))- In view of (53) and
(56) and (57), there exist polynomials ft(s) () and gts) (z) (t = 1,2) such that, putting f; := fl(s)(e),
fo=157(0), 1 =" (0) and g> := g5 (0),

Us(g—jot) = Fils(g—jiu_iy)—1 T G1Us(g—j,_py) = (i + gnz’ + (fiy+ )y’ (62)

Us(gjor)—1 = fatlsgji, -1+ G2tsg—j, ) = (for +g2)ma’ + (fay + g2)vay”  (63)

both hold for all § € I. Let x' := x;, () and y := y;,(#), and define M;, = M;_(x,G,A, L, I) by

(fiz' — )y + 917 — g2
2‘(f1$—f2)$+91$—92 96[}‘

(fy —Ry+ay —g
(fiy' — f)r + g1y — go|’

M;, (k,G,A,L,I) := max {Mj(sl), 2

(64)
By the induction hypothesis, if £(g — ji:) > Cj,_,) holds for all 0 < ¢ < s — 1, then (59) holds for
the case i = j(,_1). Moreover, there exists an integer Ej, := E; (k,G,A,L,I)>1 so that

v | [z Ej,
2(5) " >, (65)

V2 Yy

holds for any 6 € I. Now take C;s(/i,g,A,L,I) = max{F;_, Cjon)

Jt) > C']/-S holds for all 0 < t < s. If ijs)(n) = 0 holds for some 1 € I, then uyy_; +1)-1(1n) =
U(g—.+1) (M5, (n) holds and so, as n ¢ B,

} and suppose that (g —

nzt ((ﬁgj' — )+ §y —§2> = Y <( 7 + F2)i— 617 +gz) and

)i =i +52) #0

~
~~
=
<
|
ey
Kl
+
QI
Py
<
|
QI
(V)
~—
—
|
=k
—
<
+



both hOld, where 7, = Vt(](s_l))(n)7 ft = ft(S)(T/)a gt = g158)("7) (t = 1?2)’ T = ='L'j(s_1)(77)a T = m]s(ﬁ)?
Y= Yji,_, (1), and y = Yice_1) (). This contradicts (64) and (65) as

0" <RI e
v y (1o
Similarly, it follows that ut] °

() # 0 (t = 1,2) must hold for all § € I. Moreover, by (53), (62) and
(64), there exists a constant Nj, := Nj (k,G, A, L,I) > 0 such that

@l @\

ufj‘“)(e) B lez<(—f1y/ + fa)x — g1y/ + 92) + V2yz<(—f1y/ + fa)y — gly/ + gg)
)] leé((flfﬂ/ — f)z+ gz’ — 92) + sz“<(f193' — f2)y+ g1z’ — gz)
o M (f1y — f)e+ g1y — g2 — |(f1y — )y + g1y —gz‘
M |(h2 — f)r+ g — go| +|(iz’ — f2)y + g2 —92‘
. ’(fly/ — Ry + a1y —92‘
- M |(fiz’ — fo)x + g1z’ — go| + |(frz" — f2)y + 12’ —gg‘
> Nj (66)

holds for any 6 € I. This implies that there exists a positive constant CJI.; = CJ/.;(/@ G,ALI)>1
such that N; > MjSPCJ's holds. Hence by taking C;, = Cj,(k,G,A,L,I) := max{C;-s,C’;;}, it
follows that Go) .
Js . Js
V](_A )(9) Z N]S > MjsPst Z ]\4"76 (yjs (9>>
() ;. (0)

holds for all 8 € I. By applying the induction hypothesis, it follows that the desired result holds for
each (Vg—j,, Qg—j,, Bg—j,) € A satisfying 0 < j; < g —b. This completes the proof of the theorem. &

7 Well-Placed Intervals

In this section, we define the concept of a well-placed interval with respect to a graphical sequence,
and derive some simple properties of such intervals that will be used later on. Note that our
definition of a well-placed interval is similar (but not identical) to the one presented in [3].

g+1
Suppose that G = ((%,ai,ﬁi))‘ is a (k, A)-graphical sequence, where K > 3 and 0 < A\ < k — 2

are integers.

For any closed subinterval I = [Iyin, Imax] of (R1,Rmax) with positive length, define integers
a=a(G,I),b=06(G,I),c=c¢(G,I)and 2 =0(G,I) (that depend only on G and I) by

a(G,I) = min{2 <i<g: I < Ri}, (67)
b(G,I) = max{2<i<g: Inax < Ri}, (68)
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(G, 1) = min{{? <i< g Inae < £} U {g+1}}, (69)
0(G,I) = max{{2§i§g : Imax<£i}u{c}}. (70)

The interval I is called a well-placed interval with respect to G if it satisfies the following conditions:

(W1) I is a closed subinterval of the open interval (1, Rmax) With positive length;
(W2) If IN1; #0 then I C I; holds, 1 < j <g;
(W3) I C I, where a:=a(G,I).

From now on, we will denote well-placed intervals using calligraphic script (e.g. Z instead of I) to
help the reader follow the text.

In the rest of the section, we will derive some properties of well-placed intervals. We start with
recording some simple properties of the numbers a, b, ¢, 0.

Lemma 7.1 Let k > 3 and A > 0 be integers with A\ < k — 2, and let G = ((%,ai,ﬂi))frj be a
(ky A)-graphical sequence. Let T = [Iin, Zmax] be a well-placed interval with respect to g.Z_FOT the
numbers a,b,c,0 as defined in (67)-(70), the following hold:

(i)2<a<b<g.

(ii) ¢ < 0.

(iii) If ¢ < g, then 2 < a <c¢ <0< b <g holds.
(w){1<i<g:1<i<aorb<i<g}C{l<i<g: MR <Znn}

(v) Ifc<g,then{l1<i<g:a<i<cord<i<b}C{l<i<g:ZCI} holds.

(vi) Ifc=g+1,then{1<i<g:a<i<b}={1<i<g:ZCI} holds.

Proof: (i)—(iii) are simple consequences of the definitions of well-placed intervals and the numbers
a, b, c and 0.

(iv)—(vi) are direct consequences of the following inequalities, which follow in view of the fact that
the sequence (R;)7_; is unimodal by Lemma 3.3:

max{R; : 1 <i<aorb<i<g}<Znmn<ZZnax <min{R; : a <i<b}

and
max{£; : 1 <i<min{c, g+ 1} or min{d, g+ 1} <i < g} < Zin.

We now present a result that ensures the existence of well-placed intervals.

g+1

Proposition 7.2 Let k > 3 and X\ > 0 be integers with A\ < k — 2, and let G = ((%, ai,ﬁi))' , be
1=

a (K, \)-graphical sequence.
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(i) For each (vi, i, 3;) € G\ {(1, A,k =X —1),(k — A= 1, A\, 1), (Vg41, Qg+1, Bg+1) } and for any
closed subinterval I C (Ry,R;) with positive length, there exists a well-placed interval J; C I
with respect to G (cf. (28)).

(i) Let T be a well-placed interval with respect to G. Then any closed interval J C T with
positive length is also a well-placed interval with respect to G. In particular, a(G,J) = a(G,T),

b(G,J) =b(G,7), ¢(G,T) =¢(G,Z), 2(G,T) =0(G,Z) must all hold (cf. (67)-(70)).

PTOOf.’ (1) Let ('Yia O"L’aﬁi) € g\ {(17 >\7 K—A— 1)a (’{ — A= 17 >\7 1)7 (’79+1a O‘nglaﬁngl)} and Suppose
that I = [Imin, Imax] € (PR1,R;) is a subinterval with positive length. Define

M; = maX{Iminy Yy:rye {mj’ Sj 1< < g} and Iyin <y < Imax}-
Then Lyin < 9M; < Ihax, and the closed interval

Imax + 2mz 2 Imax + mz
Ji = 3 ; 3

is a well-placed interval with respect to G satisfying J; C I.
(ii): This follows immediately from the definition of well-placed intervals. 1

Now, suppose that ¢ : {1,...,¢g+1} — Nis a function with ¢(g+1) = 1. For Z a well-placed interval
with respect to G, we define C = Cg 7, Len(Z) = Leng ¢(Z) and Gap(Z) = Gapg ,(Z) as follows:

c o {1<i<g:a<i<cor 0<i<b} if ¢<yg
9T T \{1<i<g:a<i<b} if c=g+1
Leng((Z) = Y ((j), (71)
jec
v it ¢c<yg
Gapg,(Z) = {OZcSJSa () fe—gil (72)

Using Proposition 7.2, we now show that for any (k,\)-graphical sequence G, there is a certain
family of well-placed intervals with respect to G each of whose members avoid the set B(G, A, L)
as defined in Definition 6.1.

Corollary 7.3 Let k > 3 and X\ > 0 be integers with A < k — 2. Suppose that (G,A; L, 1) is a
+1
(K, A)-quadruple and let G = <5i = ('yi,ai,ﬂi)y_l. Then for any closed subinterval I C (R1,R;)

with positive length, there exists a well-placed ith_erval Ji in I such that J; "B =0 holds (cf. (28),
(32) and (52)).
In particular, Len(J;) > £(i) also holds.

Proof: Suppose that (v;, a;, ;) and I are as in the statement of the corollary. By Proposition 7.2
(i), there exists a well-placed interval Z C I with respect to G. By Theorem 6.2, the set B is finite.

28



Hence, by Proposition 7.2 (ii), we may take any closed subinterval J; of Z \ B with positive length
to give the desired well-placed interval. |

We conclude this section by showing that, in addition, well-placed intervals satisfying certain other
properties also exist.

g+1
Proposition 7.4 Let k > 3 and A > 0 be integers with A < Kk — 2. Let G = <(*yi,ozi,ﬁi)). . be

a (K, A)-graphical sequence and £ : {1,...,9 + 1} — N is a function with {(g + 1) = 1. S?prose
that Z is a well-placed interval with respect to G such that Gap(Z) # 0 holds. Then there exists a
well-placed interval J such that

(Z) jmin > Imax;

(ii) Gap(J) < Gap(Z) and

(iii) Len(J) > %220

all hold, where Len(J) := Leng(J) and Gap(Z) := Gapg ,(Z) are as defined in (71) and (72),
respectively.

Proof: As the sequence (9R;)?_; is unimodal by Lemma 3.3 and since Gap(Z) # 0, there exists an

integer j with ¢ < j < 9 such that £(j) > Gap@) ;4 R; > Tmax both hold, where ¢ = ¢(G,7)
and 0 = 0(G,Z) are as defined in (69) and (70). Hence, by Proposition 7.2, there exists such a

well-placed interval J C (Zmax, Rj) € I; as Len(J) > £(j) > %. The result now follows. 1

8 Christoffel Numbers

In this section, we prove a result that will allow us to bound the Christoffel numbers of the (k, A)-
tridiagonal sequence associated to a (k, A)-quadruple. We will begin by stating the main theorem
of this section, whose proof will be split into several steps. To state this result, we require some
further definitions.

+
Let G = ((%,az, ﬁz)) be a (k,\)-graphical sequence for some integers x > 3 and A\ > 0 with

A <k—2. Let z be a real number. For each (i, a4, 3;) € G\ {(Vg+1, ag+1, Bg+1)}, define p; = p;(x)
and o; = 0;(z) to be the roots of the (auxiliary) equation

Biz? + (s —x)z +7 =0, (73)

which, without loss of generality, we assume to satisfy |p;| > |o;| for all 1 <i < g.

Theorem 8.1 Let k > 3 and X > 0 be integers with A < k — 2. Suppose that (G,A;L,{) is a

(K, A)-quadruple and let G = <(%,az,ﬂz)) . Suppose that T is a well-placed interval with respect

to G satisfying TN B(G, A, L) = 0, with B(g A, L) as defined in Definition 6.1. Then there exist
positive constants F := F(k,G,A,L,T) , C1 := C1(k,G,T) and Cy := Cao(k,G,A,L,T) so that if
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0(i) > F holds for all (v, i, 3;) € A then, for any 6 € I, the following holds :

1 \ Gap(@) a—1 B\ £(3) D )
- M 2 < .
Cy (9%@4) Len(Z) 11 <<%) pz> < ;muz

) ol /5 £(i)
cxw#ﬁwﬂhemz>[[(<%)ﬁ> |

i=1 i

—

IN

where k; and u; == u;(0) are as defined in (6) and (7) for the matriz L1(7(G,¢)), and D := Dy(g p,
a:=a(G,Z), Len(Z) := Leng ((Z), Gap(Z) := Gapg ((Z) and p; := p;(0) are as defined in (25), (67),
(71), (72) and (73), respectively.

To prove Theorem 8.1, we Will divide the sum ZD o Kiu? into three parts: The Head sum Zs(a)ﬂ Kiu?,

the Gap sum Zz—hj(Li Kil , and the Tail sum Zl s(b41)41 Fill . In particular, in Section 8.1 we
will prove a prehmmary result concerning three-term recurrence relations and, for completeness,
recall some additional results on such recursions from previous papers. We will then use these
results in Section 8.2 to derive bounds for the Head and the Gap sums (as well as to prove some
results in Section 9). Then, in Section 8.3, we will derive an upper bound for the Tail sum which,

together with the previous bounds, will be used to prove Theorem 8.1.

8.1 Three-Term Recurrence Relations

Let £ > 3 and A > 0 be integers with A < x — 2. Suppose that 7 = 7 (G, /) is a (k, \)-tridiagonal
+1

sequence and let G = (('yi, o, ﬁi))?,l . Let  be a real number, and let p; := p;(z) and o; := o;(z)

be as defined in (73), noting that without loss of generality we are assuming |p;| > |o;| for all

1<i<g Ifzxdgd{R, £ : 1<i<g}, withR; and £; as defined in (28), then the roots p; and o;
are distinct, and so, by standard theory of recurrence relations, it follows that

g1y = ol F ol (0 < j < (i) + 1) (74)

holds for some complex numbers wgi) = wgi)(l‘) and wg) = wéi) (), where u; = u;(z) are the
numbers associated to the matrix Lq(7) given by (7) and s() is defined in (22). In this situation,

note also that (1) if |x — «a;| > 2v/B;y; holds then the roots p; and o; are real numbers with

|pi| > ,/gz > |o;|, and wg ),wg) are real, and (2) if |z — o;| < 2v/F;y; holds then the roots p; and o;

are complex numbers with o; = p; and |p;| = o3[ = | /3¢, and w& ), wé) are complex numbers with

o)~ oD,
We now prove a result that is analogous with the result [1, Proposition 3.1] that was proven to
hold for distance-regular graphs.

Proposition 8.2

g+1
Let k > 3 and X > 0 be integers with A < k — 2. Let G = (('yi,ai,ﬁi)) ) be a (K, \)-graphical
1
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sequence, £ : {1,...,9+ 1} — N be a function with £(g+ 1) =1, and T = T(G, ) be the (k,\)-
tridiagonal sequence associated to G and £. Suppose that T is a well-placed interval with respect to
G. Then, for all 0 € I the following hold (cf. (67), (74)):

(i) 0 < 0;(0) < pi(0) <1, forall1 <i<a-—1.

(i1) wyiy—1(0) > T15= pi(0)°D, for all 2 < i < a.

(ii1) —wy)(ﬁ) < wéi)(ﬁ) <0< wgi)(O), foralll<i<a.

Proof: Suppose 6 € Z, and put p; := p;(0), 0; := 0;(0), (1 <i < g), uj :==wu;j(0) (1 <j < Dr) and

W' = W (0) (j =1,2) as in (74).

J J

(i): Since § > MR; holds for all 1 < i < a by (67), 0 < 0; < p; holds for all 1 < i < a. By (GO0) in
Definition 3.1 and by Lemma 3.3, 0 < 6 < Ryax = max{x — (v — \/%)2 :1<i<g}<kand
Bi > i (1 <i < a) both hold. Hence

26i— (0 —a;)) =(k—60)+ (Bi —v) >0 and
(26 = (0 = 4))* = (0 = @)” = 4B;3) = 4B;(x = 0) > 0

follow. Thus, (i) holds by (73) and the fact that p; = frait (925? A8 61,

To prove that (ii) and (iii) hold, we will use the following claim.

Claim 8.3 (a) pit1 <p; (1<i<a—1).
(b) usiy > pitsiy—1 (1 <@ <a).
(c) wgl) > ugy—1 (1<i<a).

Proof of Claim 8.3: In view of Proposition 8.2 (i) and @-p? +(oj—=0)pj+7=0(1<j5<yg),it
follows that

(Bi —Dp?+ (a; +1—0)p;i +v = pi(1 — p;) >0 and
Bipi + (i =1 —=0)pi+ (v +1) =1—p; >0

for all 1 <i < a— 1. Hence, by (G2) in Definition 3.1, statement (a) in the claim holds.

We now prove statements (b) and (c) by using induction on i. Suppose i = 1. By

(O o (D)= (10 (reaen (%)) o
0 (

prug = p1 < = = uy hold. Thus, by Proposition 8.2 (i) and pjug = pl(wgl) + wél)) < wll)pl +
wél)al = uq, (b) and (c¢) hold for ¢ = 1.

Now let 2 < i < a, and suppose that (b) and (c) hold for all 2 < j < 4. By the induction

hypothesis, it follows ug;y1) — pitig(iy1)—1 = wg)am) (oi — pi) > 0 by (i) of the proposition, and

(2
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Ug(ig1) > Pills(it1)—1 > Pi+1Us(i+1)—1 DY statement (a) of the claim. Thus, by (74), (b) and (c) hold
for all 1 <7 < a, which completes the proof of the claim. |

(ii): We prove this using induction on i. Suppose i = 2. Then by applying (b) and (c) of Claim 8.3
and statement (i) (with i = 1),

(1) (1) (1) _£(1)

/ 1 1 /(1)—1 /(1)—1
g1 — A1 = PV = 1) F oMol s prl 1) - a7 > 0.

Therefore (ii) holds for ¢ = 2.

Now let 2 < i < a, and suppose that (ii) holds for all 2 < 57 < 4. Using (i) and Claim 8.3 (c), it
follows that » o i

Us(i4+1)—1 — us(i)—lpi(l) = Wél) (Ui(l) - Pi(l)) >0
holds. Hence, by induction, uy1)—1 > H§:1 pﬁ(j).
(iii): Using (ii) and Claim 8.3 (c), it follows 0 < u(;y_1 = wgi) + wéi) < wgi) for all 1 <14 < a. Now,
(iii) follows immediately. 1

We now recall a result that was originally stated using different terminology in [2] and [8].

Lemma 8.4 (c¢f. [2, Lemma 5.1], [8, Proposition 7])
Let kK > 3 and A > 0 be integers with A < k — 2. Let G = ((%,ai,ﬁi))

sequence, £ : {1,...,9g+ 1} — N be a function with (g +1) =1, and T = T(G,0) be the (k,\)-
tridiagonal sequence associated to G and ¢ with diameter Dy (cf. (25)). Let 6 be any real number
with |0| < k. Then for eachi=1,..., Dy —1,

()

g+1
~ be a (K, \)-graphical

o mac{us(6)] i1 ()]} < max{ 1 O)], Jus(@)]} < 3w mactus(O), [us1(6)])

and

(i)
1 2 2 2 2 4 2 2
o ) max{ri-1ui_y(9), kiui (0)} < max{wiu; (0), wiv1uip (0)} < Ox" max{ri—1ui_y(9), kiui (9)}
hold, where k; and u;(0) are as defined in (6) and (7) for the matriz Li(T).

Proof: (i): Since |0| < k and 0 < §;, 7 < k (1 <7 < g) hold, it follows by (9) that

H—CMZ‘

Bi

@ =| (P52 w0) = (5 ) w1 0)] < 20 @) i1 0)] < 30 max(usca (9], )

and

jui1(6)] = '(9 —um - (2) Uz’+1(9)‘ < 2.5 ug(0) - i1 (6)] < 3 masc{[us(0)], 4 (6]}

7 )

all hold. Statement (i) now follows immediately.

32



(ii): Since Lki41 < K < Kki—1, ©=1,...,Dr—1, holds by (27), statement (ii) follows immediately
from (i). 1

For completeness, we now recall two results from [2].

Corollary 8.5 (/2, Corollary 4.2])

Suppose N > 2 is an integer, and o > 0, 8 > 0, v > 0, xg and x1 are real numbers satisfying
(xo,21) # (0,0). Let € be a real number with 0 < € < 2y/B~y. Then there exist positive real numbers
Cs := Cs(B,7,€), s =1,2,3,4 such that for every real number 6 with |0 — | < 2v/Bv — €, and for
all real numbers xa, ..., xN satisfying yri—1 + (« — 0)z; + friz1 =0 (i=1,...,N — 1), we have

i1 i
C1 max {x%, (5) x%} < max { (f) 7, (f) a:?} < Cymax {x%, (f) x%}

fori=1,2,...,N, and
8 (8 8
C3N max {x%, <7> x%} < Z <7> z? < CyN max {:r%, <7> w%} .
i=0

Proposition 8.6 (/2, Proposition 4.3])

Suppose N > 2 is an integer, and o« > 0, 8 > 0, v > 0, x9 and x1 are real numbers sat-
isfying (xo,x1) # (0,0). Let k, € and € be positive real numbers. Then there exist constants
Cy = Ci(k,a,8,7,¢) > 0 and Cy = Co(B,7v,€) > 1 such that, for every real number 0 with
10 — | > 2By +e, 0| <k, and

|w1 — 200| > € max{\a:0| \/>|x1\}

(with p = p(0) and o = o(0) the roots of Bx? + (o — O)x +~v = 0 with |p| > |o|), and for all real
numbers xa, ..., rN satisfying yri—1 + (o — 0)z; + friz1 =0 (i=1,...,N — 1), we have

N i N
> (5)#=a((5)r) meien (5)4)
2 < 0y p?" max {x%, (5) x%} .

8.2 Bounding Head and Gap Sums

=N

and, for alln < N,

s(a)— b+1) 2

In this subsection, we obtain bounds for Head sum ) ;" _q kiug. In

more detail, we prove the following:

/{Zu and Gap sum » ;"
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g+1
Theorem 8.7 Let k > 3 and A > 0 be integers with A < k — 2. Let G = ((%,az,ﬁz)> be a

(k, A)-graphical sequence, £ :{1,...,9+ 1} — N be a function with £(g+1) =1, and T := ’T(g ?)
be the (K, \)-tridiagonal sequence associated to G and (. Suppose that T is a well-placed interval
with respect to G. Then there exist positive constants C; := Ci(k,G,Z) (1 < i < 11) such that for
any element 0 in I, the following all hold:

(i) Zs(a ka2 < Oy T (( )P@)M

20(i o —1 20(¢
(it) TI%Z] p; @ < max {ug(a)_l, (%) uz(a)} < Oy 1] p; @,

(iii) Let ¢ :=min{c,b+ 1}. Then

(B2 = § miea (B H(2)0)”

Jj=1 i

(iv) Letc¢:= min{c,b+1}. Then

2 =0\ 2 17T Bi ) o)

c—1

(v) If ¢ < g, then Z ) (c /@iuf < Cy (9K4)Gap(I) Hf;ll ((ﬁ) p?)m) :

(vi) If ¢ < g and < b both hold, then
1 Gap(7) a1l O\ £(7)
a(a) (20 TT((2)7)
i=0+1 = J

=1
s(b+1) b a—1 3 £(4)
< > ki < Cy(9*)GaP(D) ( > 5@)) ((‘7) p?) .

i=s(04+1)—1

(vii) If ¢ < g, then

Gap(z) a-1 70
1 5@ 2
cofae) () #)

INA
=
I
=
8
Q
"
—
=
I
=
-
7N
Q‘Q
< |
N———
<
» b
=
+
=
——

A
Q
‘S

N
S~—

&
ol
—
_
N
7 N\
ISy
~_

SN
"
=

where k; and u; = u;(0) are as defined in (6) and (7) relative to the matriz L1(T), and s(i),
a, b, ¢, 0, Gap(Z) := Gapg ((Z) and p; := pi(0) are as defined in (22), (67)-(70), (72) and (73),
respectively.
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Proof: Suppose that G, ¢, 7, 7 and 6 are as in the statement of the theorem.

(i) and (ii): In order to apply Proposition 8.6, we first prove that there are positive constants
€1 :=€1(G,7) and €3 := €2(G,7Z) such that, forall 1 <i<a-—1,
(a) |6 = ai| = 2v/Biyi + €1, and

(b) lug@y — oitg@)—1] > € maX{!us(i)—ﬂ, \/ %Ius(i)l}

both hold.

For statement (a), we can take € = €1(G,Z) := min{Zmin — (& +2v/Fiyi) : 1 <i<a—1},in view
of (67) and (W2).

By (67) and (73), inequalities M; > p; > 0 and \p/ﬁ > My > 0 all hold for any 6 € 7 and for

any 1 <i < a—1, where

- S
My = M(G,I) = max{( max +\/ ﬁmax @) Biri 1§2‘§a—1} and
7
—a;)? -4
My = M>(G,Z) := min Yy min — 0:) P ci<a1)
Biv/Bi
By (i) and (iii) of Proposition 8.2,
|ts(iy — Oitts(i)—1| wg) \pi — o3 L |pi —ai > M, 0

max { uo) 1, \f\ s }

> >
/Bi lpil /B T My
Vi Vi
holds, and hence (b) holds for €2 = €2(G,Z) = M1

Now by Proposition 8.6, there exist constants M3 = Ms(k,G,Z) > 1 and My = My(k,G,Z) > 0
such that for all 1 <i<a—1,

ﬁi 1 20(1 ﬁz
max {“3@'“)17 (711) “ium} < My p;"" max {ui(m, <7> ui(i)} (75)
and 0
7)+1 ;
< M Bi o 2 Bi\ o 76
Z ﬁs(l) 1+5U s(z) 1+75 4 K/s(z) o Pl max us(i)_l, ’y— us(z) ( )
j=0 ? )

both hold. By applying (75) inductively and also using (76), it follows that, for each 1 <i <a—1,

(o (22) B = e ()} s

j=1

£(i)+1 , , - i 5, 2(4) ) L a—1 Bi\ £(7)
Z Rs(o)-14+5Us() 145 < K Ma My H<<ryj> 9) < 7 My My H((%) pj>

7=0 7j=1 7j=1

IN

N

all hold. Statements (i) and (ii) now follow by taking

Cr:=(a—1)KEMy; M2, Cyi=rMI
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and noting that u? , | > [T5= %p?e holds by Proposition 8.2 (ii).

(iii): By Lemma 7.1, Z C [; holds for each a < i <c¢—1. Let € = €(G,Z) := min{|a; + 2v/Bivi —
Tmax|, [Zmin — (0 —2¢/Biv:)| : a <i <c—1}. Then |0 — a;| < 2¢/Bivi — € and 0 < € < 24/F;; both
hold for all @ <4 <'¢— 1. Hence by Corollary 8.5, there exist constants M; := M;(G,Z) >0 (5 <
j < 8) such that, for any a <7 <7¢—1,

| \ 460) |
M5 max {“g(i)—l’ (5;) “g(i)} < <§Z) max {ug(i—i-l)—l’ <fz> “§(i+1)} < Mg max {ui(i)—l <§:>

(77)
and
i & i
M7 ¢(i) max {ug(i)_l, (f;) ug(i)} < Z <’YZ) s(l) 145 < Mg (i) max {ug(i)_l, (J) ug(i)}
7 ]:0 7 1
(78)

both hold. Note that for each 1 <i < g, the following hold for all 0 < j < £(z) + 1

W7 A=) i izl t(m)
00 R 0 1 I

m=1

Hence, by applying (79) to (78) and by using (77) and statement (ii) of the theorem, it follows
that, for each a < i <¢ — 1, there exists a constant Mg := My(x,G,Z) > 0 such that

£(i)+1 1 /3 £(5) B;
2 2 i 2
D F1etin ey S8 Ms (i) H( j) max{“s(i)l’ (v) US(“}

j=0 =1

K)MSMZ Clg H < ) max {ug(a)l, <i€z) Ug(a)}

cowstaanon o T ((2),7)

IN

IN

holds and, similarly,

£(i)+1 , My a— ()
Z Ks(i)—1+5Us(0)— 145 =~ mm{l Mg} (i) H (( ) ) :

§=0 j=1

Hence (iii) follows by taking

M - -
C3(k,G,T) := 3—7min{1,M5c}7 Cu(k,G,T) := kmax{1, Mg} Mg My,
K

£(3)+1

)

in light of that fact that each element "és(i)71+jug(i)_1+j appears in the sum Z Lyl K i) 1+mu§(i)—1+m

at most three times.
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(iv): This follows from (77) and statement (ii) of the theorem.

(v): By Lemma 8.4 (ii), statement (iv) of the theorem, (72) and (79), there exists a constant
C7 = C7(k,G,Z) > 0 so that

s(0+1)
Z Kiu; < 2(9/{4)3(%1)78(C)Jrl maX{Ns 1U s(e)—11 Fs()U c)}

el /g 0
o L ((5) )

=1

IN

holds. (v) follows immediately.

(vi) and (vii): Using the same proof as for statement (iii), it can be seen that if 9 < b then (77)
and (78) both hold for all 9+ 1 <i <b.
By (77)-(79), Lemma 8.4 (ii) and statement (iv) of the theorem, there exist constants M; =

M;(k,G,7) > 0 (10 < j < 15) such that
Mio Rs(ot1) max{ (0+1)— ( > s(o+1) }

B
Ks(b4-1) INAX {uz(b—i-l)—lv <% U?(bﬂ)
< M kg (95 )Gapmmax{ u >1’<Bc 1) §<c>}

Ye—1
4)Gap(@) :
s on 528 T ((2).7)
I ((

holds, and moreover, if 0 < b then for each 0 +1 <i < b,

IN

IN

Z -rtig sy < M) OO T (2) T a1 ()|
j=1 NI v
ol 4 €(j)
< a1 0xh%®O T ((2) 2)
=1 M\

and
£(i)+1

1 Gap(z) a-—1 Bj ) ;)
ST A (8

J=0 J=1

all hold. By taking Cgs(k,G,7) = %, Cy(k,G,ZI) := My and C11(k,G,Z) := M2, it can be
seen that the inequalities in (vi) and (vii) involving these constants all hold. It can also be seen
in a similar fashion that there exists a constant Ci9 = Cio(k,G,Z) > 0 such that the left-hand
inequality in (vii) holds. 1

By using the previous theorem, we now obtain bounds for Gap sum Zs(b+1)) 1 Kiu?.
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g+1
Corollary 8.8 Let kK > 3 and A > 0 be integers with A < k — 2. Let G = ((%7@175@)> i1 be a

(K, A)-graphical sequence, £ :{1,...,9+ 1} — N be a function with {(g+ 1) =1, and T := T (G,¥)
be the (K, \)-tridiagonal sequence associated to G and (. Suppose that T is a well-placed interval
with respect to G. Then there exist positive constants C := C(k,G,T) and C' := C'(k,G,T) such
that for any element 0 in Z,

1 Gap(2) a—1 B £(1)
“(5a) @ I((5)4)

s(b+1)

S

i=s(a)—1

< C'(9x")%3PD Len(T f[(( > )M,

IN

where k; and u; = u;(0) are as defined in (6) and (7) for the matriz L1(7(G,f)), and s(i),
a:=a(G,Z), b:=b(G,Z), Len(Z) := Leng ¢(Z), Gap(Z) := Gapg ((Z) and p; := p;(0) are as defined
in (22), (67), (68), (71)-(73), respectively.

Proof: Constants C; (i = 3,4,7,8,9) in this proof are the constants in Theorem 8.7. Note that
Len(Z) > 1 and (9/&4)Gap(1) > 1. We break the proof into three cases:

(1) ¢ = g+1: By (71) and (72), Len(Z) = S.°__£(i) > 1 and Gap(Z) = 0. By applying Theorem 8.7

1=a

(iii) with © = b+ 1, Corollary 8.8 holds for C' := C5 and C’ := Cj.

(2) ¢ < g and d = b: Then Len(Z) = Y-} 4(i) > 1, and by applying Theorem 8.7 (iii) and (v) for
¢ = ¢, the result follows for C' := C5 and C' := Cy + C7 as

(VAN AN
0
5 =M
o
=}
&
=1
—
N
N
~
~
2
Q
=
X
N
S~—
Q
)
el
\s!
=
o
2
s
= a
=t
7N
7 N\
2=
S~
=N
~_
a3

=1
and
s(b+1) a—1 £(i) a1l (i)
3w < otont o8 T (2 1) < cotont o0 emit T ((2) )
i=5(c) i=1 i=1
all hold.

(3) ¢ < g and < b: In this case, Len(Z) = Zf;if(z) + Z?:D—H £(i) and by Theorem 8.7 (iii), (v)
and (vi), the following all hold:

i (@)™ Sl (2)4)” oS0 (2))°
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IA
I
M=
|
&
N
=N

o) o a—1 5; £(3)
p?) < max{Cy, Cr, Co}(9x") PP Len(Z) H(( Z)”3> |

i1 Vi

IA
Q
7
|":]
N
N
2|®
N—————

5(041) a—1 3 170 a—1 B £(3)
> wiuf < Cr(9xh) 5P H(( )p) < max{Cy, Cr, Co} (9x") %P Len(T H(( %2)

i=s(c) i=1 i i—1 Yi
and
1 \Gap@) b a—1 3 0] s(b+1)
. ? 2 2
i 0} (ger) S TI((5) ) = 3w
=041 =1 i=s(0+1)—1
b a—1 3 o(i) a—1 £(i)
< 09(9/{4)Gap(z) Z £(7) H <(Z> pf) < max{Cy, C7, Cy}(9x) Gap(I)Len H << > > .
ior1 =1 S\ =1
Hence, the result now follows by taking
C = m‘{(’;’%} ¢’ =3 max{Cy, C7,Cy},
in light of the fact s(¢) < s(d0+ 1) — 1. The corollary now follows. 1

8.3 Bounding Tail Sum

In this section, we obtain an upper bound for the Tail sum ZZ s(b41)41 Fill 2. Namely:

Theorem 8.9 Let k > 3 and X\ > 0 be integers with A < k — 2. Suppose that (G,A;L,{) is a
+1
(K, A)-quadruple and let G = <(%,ai,ﬁi))? . Suppose that T is a well-placed interval with respect

to G satisfying TNB =0 and b < g (67 (52) and (68)). Then there exist positive constants
F := F(k,G,A,L,T) and C := C(k,G,A,L,T) so that if £(i) > F holds for all (v;,a;,3;) € A
with b < i < g then, for any 0 € 7,

D

B; £(3)
£ cemmni((2)9)

i=s(b+1)+

holds, where k; and u; := u;(0) are as defined in (6) and (7) for the matriz Li(7(G,¥)), and s(7),
D := Dz, a:=a(G,T), Gap(Z) := Gapg (L) and p; := p;(0) are as defined in (22), (25), (67),
(72) and (713), respectively.
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Proof: Suppose (G,A; L,¢) and Z are as in the statement of the theorem. By Theorem 6.3, for each
0 <i < g—b—1 satisfying (y4—i, g—s, Bg—i) € A there exist constants C; = Cj(k,G, A, L,T) > 1
and M; = M;(k,G, A, L,Z) > 1 such that if £(g — j) > C; holds for all (v4—j, g—j, By—j) € A with
j < i, then (59) holds for all # € Z. Now put

F = F(k,G A LT):=max{Ci(k,G,A,LT) : 0<i<g—b—1and (yg—i,ag—i, Bg—i) € A};

M = M(k,G,A,LT):=min{M;(k,G,A,L,Z) : 0<i<g—b—1and (yg—i, g, Fg—i) € A}.

(1) Suppose that if {(vg—s, g—i, Bg—i) € A : 0<i< g—b—1} # 0 then ¢(g — i) > F holds for
all (vg—i,0g—i, Bg—i) € Awith0<i<g—b—1.

Let 6 € Z. We will use the following:

Claim 8.10 There ezist constants C1 = C1(G,Z) > 0 and Cy, = Cpo(K,G,A,L,T) >0 (m = 2,3)
such that, for all 0 <i < g—b—1, the following hold:

(a) ‘
|us(g—it1)—j| < Crmax{|ugg_iy1y—1l; [usg—irn)l} 2] (0 <5 <L(g—1i)+1).
(b) ot
max{|g(g—i)1]; [Usg—i)|} > Comax{|us(g_ip1)1l; [usgirnl} ;77"
(c)

—b—
H tg—7) max{uD 1,uD} <C3max{u (b+1)—1> g(b+1)}

where x; is defined in (50).

Proof of Claim 8.10: Let 0 < ¢ < g—b—1. By (50) and Lemma 7.1 (iv), z; > y; > 0. Let

y](-i) = y](.i)(H) (j = 1,2) be as defined in (53).

(a): First suppose that uf )Vé ) > 0 holds. Then for all 0 < j<t(g—1)+1, (a) follows since
ag-ivny-g| = 14”1 ad 4 1571 < (21 + 147D ] = fusgg-igy| 2]

Now suppose V%i)uéi) < 0. By (54) and (55),

w0 < 2w { L I a1 i)
< Cymax{|ugg_it1)—1l; [Us(g—it1)|} (80)
holds, where
ClzCl(g,Z)::2maX{ Imax_am Jm :0§m§g—b—1}.
vV Tonins — — 4By v/ Tnin — am)? — 4B ym

Since |ug(g—i+1)—j] < max{]yfi)\, |1/§Z)]} acf holds by I/%i)l/éi) < 0 and z; > y; > 0, (a) follows by (80).
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(b): Suppose (Vg—i,g—i,Bg—i) € G\ A. Then ¢(g — i) = L(g — i) and, by Lemma 8.4 (i) and
0<x < % it follows that

. Y
g—

1\ tlg—)
maX{|us(g—i)—1|7 |us(g—i)|} > 3 2 maX{|us(g—i+l)—1|v |us(g—i+l)|}$i

L(g—1)
Yg—i o
- <3K( . )> max{|u5(g*’i+1)fl‘7 |us(gfi+1)|} .I'i(g )’

Imax — Qg4

and thus (b) follows by taking Cy = Cy(k,G, A, L,T), where

L(g—m)
Cz::min{<3 ( Jg—m )> :0<m<g—b—-1and (79—m;ag—m7/89—m)€g\A}.
K

Imax - ag—m
Now suppose (Vg—i, tg—i, Bg—i) € A. By Theorem 6.3 with (),

max{[tg(g_is1)1], ts(goicn|} < max{lz} (] + [p57))

1 (z\F (i)

<
1 z-max - —1 2\ " z-maux - —1 7
< (14 ((‘“9)) <1+ “9) Ws1)
M ﬁg—i'}/g—i Yg—i
and
i) _b(g—i i) L(g—i
RS (O N A | = e B 7 T
F L(g—1)
i), (g—i 1 [ Yi
> | (1— i <yz) <xz> )
1 i), Lg—i
> (1= 37 1 (52)
all hold. By (81) and (82), statement (b) now follows by taking Co = Ca(k,G, A, L,T), where
1— L
Cy = 7 M .
max{(l + 4 (Sl ) (14 Zoxmtomn) 0 <m < g — b= 1 and (g, gy By-m) eA}
(c): This follows by applying (b) inductively on i for 0 <i < g—b— 1. 1

Let 0 <i<g—b—1. By (a) and (c) of the claim, (gz:z) z? > 1 and Theorem 8.7 (vii), there exist

constants M; = M;(x,G,Z) >0 (j =1,2) and M; = M;(k,G,A,L,Z) >0 (j = 3,4) such that

L(g—i)—1
2
Z Rs(g—i+1)—jUs(g—it1)—j
=0
i—1 o\ o) t(g—i)—1 o \™
— —1 2
<o I[(32) 7 X (2) i
j=0 9—J m=0 g—1
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L(g—1)—1

i-1 £(g—7) m
Yog—3i Vg—i m

< M&kp H (#) maX{Uz(gfiH)fp“g(g4+1)} Z (59 ) 7}

=0 \Pg=i m=0 gt

i Yoo i £(g—7)
< Mskp maX{UZD—1>u2D} H <<69J> 1’?)
g—b-1 Yo £(g—7)

< Mskp max{u%—h UQD} H <<69j> :E?)
< M3Hs(b+1)maX{ug(bH)—pug(bH)}

4 Gap(z)ci:[1 Bi 2 )
< My(9x%) <<> p-) (83)

o1 W/

holds. From (83) and

D g—b—1 {(g—i)—1
2 2
DR =D D Rl
j=s(ot1)+1 =0 j=0
Theorem 8.9 now follows by taking C(k,G,A,L,T) := (g — b)M,. 1

With these results in hand, we can now prove the main theorem of this section:

Proof of Theorem 8.1: Theorem 8.1 follows immediately by Theorem 8.7 (i), Corollary 8.8 and
Theorem 8.9. 1

9 Distribution of Eigenvalues and Proof of Theorem 4.2

In this section we prove Theorem 4.2 and thus complete the proof of the Bannai-Ito conjecture. To
do this we will first prove two results concerning the distribution of the eigenvalues of a graphical
sequence in a well-placed interval with respect to this sequence, using the results from the last four
sections.

Theorem 9.1 Let k > 3 and A > 0 be integers with A < k—2, and let G = (52- = (v, ai,ﬂi))?f be
a (K, X)-graphical sequence. Suppose that A = (5ip);:1 is a subsequence of G with (1, A, ﬁ—A—lZ) SAN
and (Yg+1, 0941, Bg+1) € A, L {1,...,g+ 1} \ {i1,...,ir} — N is a function, and T is a well-
placed interval with respect to G satisfying T N B(G,A, L) =0 (cf. (52)). Suppose that € > 0 is a
real number, C := C(k) > 0 is a constant, and ¢ : {1,...,9g+ 1} — N is any function for which
(G,A; L,0) is a (k, \)-quadruple and the associated (k, \)-tridiagonal sequence T = T (G, () satisfies
(i) Property (AC),

(ii) Dy < Chr, and

(iii) Len(Z) > ehr,

where hr, D7 and Len(Z) := Leng ¢(Z) are as defined in (23), (25) and (71), respectively.

Then for any real number § > 0, there exist positive constants F = F(k,G,A,L,T), Cy =
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Ci(k,\€,0,G,A,L,T) and Cy := Ca(k, A, 6) such that if £(ip) > F holds for all 1 < p < 1 and if
there exist two conjugate algebraic numbers 6 and n in Er NI satisfying |0 — n| > § then

either hy < Cp or Gap(Z) > Cohr

holds, where Er and Gap(Z) := Gapg ,(Z) are as defined in (26) and (72), respectively.

Proof: Suppose that x, A\, €, C, G, A, L, Z, £ and T are as in the statement of the theorem, and
put h :=hy and D := D7. Let § be any positive real number, and let § and n be two conjugate
algebraic numbers in £ N7 satisfying |# —n| > §. Without loss of generality, we assume n— 6 > 4.

By applying Theorem 8.1 and the conditions eh < Len(Z) < D < Ch given by (ii) and (iii) in
the statement of the theorem, it follows that there exist positive constants F' := F'(k,G,A,L,T),
M, := M;(k,G,T) and My := Ms(k,G, A, L,T) so that if £(i,) > F holds for all 1 < p < 7 then

1\ %ap@) el G\ o £(d) D ) Can(T a—1 B\ £(3)
eh M, <9/<;4> H <<> 05 (w)) < Zmui (z) < h MoC(9x*)53P( )H ((’Y) p; (x))
i=1 i=0 i=1 !

Vi
(34)
holds for any =z € Z, where k; and u; := u;(x) are as defined in (6) and (7) for the matrix L,(7),
and a, p;(x) are as defined in (67) and (73), respectively.
By Proposition 8.2 (i) and n > 6, it follows that

0<pi(d) <pi(n) <1 (i=1,...,a—1), (85)
and moreover, by (85) and n —6 > 4,

By applying (85) and (86) to (84), it follows that

D 1 Gap(z) a—1 3; £(4)
> kaul(n) > enM <9ﬂ4> 11 <<7> p?(n))
i=0 v

=1
GaP(I) 2h a—1 £(3)
1 0 ﬁz 2
Gap(7) oh
eM, 1 \2#@p 5 )
MyC (w) <1+ M) Z;nu (0). (87)

Since ¢ and 7 are algebraic conjugates, Zi’;o kiut(n) = Zi’;o rk;u?(0) > 0 holds by Property (AC).
Hence, by (87),
MeC

In <1 e _i - 1)>2 < v (;Ml ) + Gai(z) In(9x1)2. (88)

Now, put

Cy:= " (15\24?) and Cy:=
In (1 - 2(,-;—(&—1))

21n(9x4)
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Gap(r) (L sty) ()
h

If 0 < 22¢ < 1 then Gap(Z) > Chh holds as (") o)

by (88).

In (M€
Moreover, if ]5\24? > 1 and Gap(Z) < Cqh, then h < <5M1)) holds by (88). Therefore

5
1“(“‘2(,@471)

Theorem 9.1 now follows for this choice of C; and Cs. ]

Proposition 9.2 Let k > 3 and A > 0 be integers with A < k—2, and let G = <6Z- = (v, ai,ﬂi)>
be a (k, \)-graphical sequence. Suppose that A = (8;,);_ is a subsequence of G with (1, A\, k—A—1) €
A and (yg11, 0941, 0g+1) € A, L:{1,...,g+ 1} \{i1,...,ir} — N is a function, and T is a well-
placed interval with respect to G satisfying T N B(G,A, L) =0 (¢f. (52)). Suppose that € > 0 is a
real number, C' := C(k) > 0 is a constant, and £ : {1,...,9+ 1} — N is any function for which
(G,A; L, ¢) is a (k, \)-quadruple and the associated (K, \)-tridiagonal sequence T = T (G, L) satisfies
(i) Property (AC),

(ii) Dy < Chr, and

(11i) Len(Z) > ehr,

where hr, D7 and Len(Z) := Leng ¢(Z) are as defined in (23), (25) and (71), respectively.

Then for any real number p > 0, there exist positive constants F = F(k,G,A,L,I), G :=
G(k, N\ e, 11,G,T) and H := H(k, X\, €,11,G,A,L,T) such that if £(i,) > F holds for all 1 < p <1,
and hr > H and Gap(Z) < Ghy also hold, then the number of eigenvalues of T that have an
algebraic conjugate in T is at least ph, where Gap(Z) := Gapg ,(Z) is as defined in (72).

g+1
%

Proof: Suppose that k, A\, e, C, G, A, L, Z, £ and 7 are as in the statement of the proposition, and
put h:=h7 and D := D7. Let i be any positive real number.

In view of Theorem 5.5, there exists a constant M; := M;j(k,€,u,G,Z) > 0 such that for any
positive real number ( satisfying ¢ < M7,

Ty < 2+4181|w (89)
holds (cf. (40)). Put
Co = Co(k, €, 14,G,7) := min {|I|, ]\gl} and T =T, ¢ . (90)
Then by (89) and (90),
T< 2+418“I|“9 < % (91)

By Lemma 5.3 (i) and Remark 5.4, there exists a constant My := Ms(k, €, 1, G,Z) > 0 such that

{pte) e P qentolon < ¢ f| <

holds, and therefore

T T’ (92)

where deg(z) is the degree of the minimal polynomial of an algebraic number = (cf. (26)).

erfﬁé’f : deg(m)gl}’ §%
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Now, let F':= F(k,G,A,L,T), Ci := Ci(k, A\, €, 4,G, A, L,T) and Cy := Ca(k, A\, €, 4,G,7) be the
positive constants given by Theorem 9.1 by taking ¢ := C , and put

—m 6kmg 24kmgMy
N elZ| ’  €Y|Z|

, Cl} and G = (Cs.

We now show that for this choice of F', H and G, the proposition holds. To this end, let 8 be any
element in &7 N7 satisfying deg(6) > %, and let py(x) € Py be a minimal polynomial of . Then

by Theorem 9.1, all roots of pp(z) must lie in the closed interval [0 — 3, 6 + CO} Hence, by (39),
(40) and deg(6) = deg(ps) > 7,

e €T : polw) =0} < er[ 0+ :p9<x>:o}]srdeg<pa>+1<2r de(po).

2
(93)
Now, we prove the following claim.

Claim 9.3 The number of eigenvalues of T in T is at least (1;51"_9) h.

Proof of Claim 9.3 : Ash > H and |Z| < k (by (W1)),h > G’T;rlg > 1 holds. Hence, as Len(Z) >

eh > 1 (by statement (iii) of the proposition), there exists m € {2,...,g} so that ¢(m) > % and
Z C I, hold, where I, is the mth guide interval. Put (v,, ) := (Ym, Qm, Bm), £ := €(m) and

= ‘{] e{l,...,0} : a+2y/Bycos <€+1) GI}‘ Note that Z C I,,, and a+2+/3v cos <£+1> € I,
for all 1 < 57 < /. Since

ot (G2 o ()< 2005

holds for all 2 < j < ¢, it follows by £ > & and h > G’Tg‘g that e > L(Hl mj > Lil;g'j > ifgl > 3.

Hence by Lemma 2.2 (ii), there exists an elgenvalue 0 € £ N T and, moreover,

e  €eh|Z]
6 12kmg

Er NZ| > LgJ >

holds. Claim 9.3 now follows immediately. |

By applying Claim 9.3, (92) and h > 24579V (1o 1 > [1) it follows that

eY|Z|
emh e\Ilh

Now, for each integer i > %, let A; be the set of those elements in &7 N ([—k, k] \ Z) of degree i
that have an algebraic conjugate which is contained in Z, and let ©; be the set of those elements in
Er N T that have degree i. Then by (91) and (93), each element in ©; has an algebraic conjugate
in [—k, k] \ Z. This implies that A; is a non-empty set if and only if ©; is a non-empty set. Hence,
for each integer ¢ > % satisfying ©; # (), the number of elements in the set

A :={(0,n) € ©; x A; : 0 and n are conjugate algebraic numbers}
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is bounded above and below as follows:
(1—2T)i |®z| <‘Ai’<2iT |Az‘ (95)
Hence, by (91), (94) and (95), the inequality

(1-27)e[Z|n

< _ . .
G <@-27) > e <2 ) A (96)

P>, 070 i>2, A0
holds, and therefore by (91) and (96), it follows that

(1-27)elZ|n
A; -~ >uh 97
12 Al > 48kmg T = H (97)
i>TvAi7£@

holds. Since the number of eigenvalues of 7 which have an algebraic conjugate in 7 is at least
i 1 A0 |A;], the proposition now follows immediately by (97). 1

Proof of Theorem 4.2: Suppose that k, A, €, C, G, A, L, £ and 7 are as in the statement of the
theorem, and put h :=hr, t := t7, D := D7, Len := Leng and Gap := Gapg , (cf. (71), (72)).
By statement (iii) of the theorem and Lemma 3.3 (i), there exists an integer sop € {2,..., g} such

that Rs, > Ry and l(sg) > (;) h (cf. (28)). On the other hand, by Corollary 7.3, there exists a
well-placed interval Jy in the so th guide interval Iy, = (£5,,Rs,) (relative to G) such that JoNB = 0
and Len(Jp) > (5) h both hold as Len(Jy) > £(sp) (cf. (29), (52)). It follows by Proposition 9.2 for
(e, ) == (;, C(r)+ 2) that there exist positive constants Fy := Fy(k,G, A, L), G := Go(k, A\, €,G)
and Hy := Hy(k, A\, €,G, A, L) such that if £(i) > Fj holds for all (v;, a;, 8;) € A then

either h < Hy or Gap(Jy) > Goh holds,

as 7T has exactly D + 1 distinct eigenvalues (cf. (26)) and D < C'h holds by statement (ii) of the
theorem.

Now, if h < Hp, then the theorem follows by taking H := Hy and F := Fy.

Otherwise, h > Hy and Gap(Jy) > Goh both hold, so by Corollary 7.3 and Proposition 7.4 for
7 := Jo, there exists an integer s1, ¢(G, Jo) < s1 < 0(G,Jo), and a well-placed interval J; in the
51 th guide interval I, such that

Gap(jo) G()
Len(J1) > p > (g) h.

By applying Proposition 9.2 again for (e, 1) := (%2, C'(k) + 2), there exist positive constants Fy :=
Fi(k,G,A,L), G1 := Gi(k, \,€6,G) and H; := Hl(q/i A, €,G, A, L) such that if £(i) > F holds for all
(74, i, 3i) € A then

either h < H; or Gap(Ji) > Gih holds.

Since (R;)?_; is a finite unimodal sequence by Lemma 3.3, it follows by iteratively repeating this
argument (if necessary) that there exist an integer m, 1 < m < g, and positive constants F; :=
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Fi(k,G,A,L) and H; := Hj(rk,\,€,G,A,L) (0 < j < m) given by Proposition 9.2 such that if
0(i) > max{F; : 0 <j < m} holds for all (v;, o, 3;) € A then

max{H; : 0<j<m-1} <h< Hp
holds. Theorem 4.2 now follows by taking

H:=max{H; : 0<j<m} and F:=max{F; : 0<j<m}.

10 Distance-Regular Graphs of Order (s, 1)

In this section, we shall use our main result to show that, for fixed integer ¢ > 1, there are only
finitely many distance-regular graphs of order (s,t) whose smallest eigenvalue is different from
—t — 1. We begin by recalling the relevant definitions and some previous results.

Let I' be a distance-regular graph. For any vertex x, the local graph of a vertex z is the subgraph
of I induced by I';(x). For an integer s > 1, a clique of size s (or, s-clique) is a set of s vertices
which are pairwise adjacent. Following H. Suzuki (see [34]), we say that a distance-regular graph I
is of order (s,t) for some positive integers s, ¢, if the local graph of any vertex is the disjoint union
of t + 1 cliques of size s. In particular, a non-complete distance-regular graph with valency k& > 3

and co = 1 is of order (s,t) with s =a; + 1 and ¢t = aﬁH'

Note that the Hamming graph H(n, ) is a distance-regular graph of order (n—1,¢—1). Hence, for
fixed positive integer ¢, there are infinitely many distance-regular graphs of order (s,t) where s is
a positive integer. In addition, B. Mohar and J. Shawe-Taylor [30] (see also [12, Theorem 4.2.16])
showed that any distance-regular graph of order (s, 1) with s > 1 is isomorphic to the line graph of
a Moore graph or the point graph of some generalized 2D-gon of order (s,1), where D € {3,4,6}.
Since the point graph of a generalized 2D-gon of order (s, 1) is exactly the same as the flag graph
of a regular generalized D-gon of order (s, s), there are infinitely many distance-regular graphs of
order (s,1) with s > 1.

The following proposition is well-known; we include its proof for completeness.

Proposition 10.1 For s,t positive integers, let T' be a distance-reqular graph of order (s,t) with
diameter D > 2. Then the smallest eigenvalue Op of I' satisfies 0p > —t — 1. Moreover, if s > t,
then 6p = —t — 1 holds.

Proof: Let C be the set of (s + 1)-cliques in I'. Let M be the vertex-clique of size s + 1 incidence
matrix, that is, M is the (|V/(I')| x |C|)-matrix such that the (z,C)-entry of M is 1 if x € C
and 0 otherwise. Then MM?T = A + (t + 1)I, where M7 is the transpose of M. As MM7T
is positive semidefinite, it follows that all the eigenvalues of I are at least —t — 1. Note that
IC|(s + 1) = |V(I')|(t + 1) so that if s > ¢ then |C| < |V(T')|, and, as the rank of M is at most |C|,
it follows that A + (¢ + 1)1 is singular. This shows that A has —t — 1 as its smallest eigenvalue. 1
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Corollary 10.2 Lett > 1 be an integer. Then there are only finitely many distance-regular graphs
of order (s,t) with s > 1 and st # 1 which have smallest eigenvalue not equal to —t — 1.

Proof: Let t > 1. If T is a distance-regular graph of order (s,t) such that its smallest eigenvalue is
different from —t — 1, then s < ¢ holds by Proposition 10.1. As the valency of ' equals s(t + 1) <
t(t + 1), the corollary follows by Theorem 1.1 as long as s(t + 1) # 2. 1

Remark 10.3 Not much is known concerning distance-regular graphs of order (s,t) with t > 2.
The distance-regular graphs of order (1,2) and (2,2) were classified by N. L. Biggs, A. G. Boshier
and J. Shawe-Taylor [11] and by A. Hiraki, K. Nomura and H. Suzuki [23], respectively. In [38],
N. Yamazaki presented some strong results concerning distance-reqular graphs of order (s,2) with
s > 2. However, it is not known whether there are infinitely distance-regular graphs of order (s,2)
with s > 2 and co = 1.

11 Concluding Remarks

In Section 1, we mentioned that Sims’ conjecture on permutation groups could be used to prove
that there are only finitely many finite, connected distance-transitive graphs of fixed valency greater
than two. We conclude by recalling and discussing a combinatorial version of Sims’ conjecture that
is related to the Bannai-Ito conjecture.

To state this conjecture, we first recall the definition of association schemes (as defined by E. Ban-
nai and T. Ito [5]). An association scheme (X, R) is a finite set X together with a collection
R ={Ry, Ry, ..., R} of non-empty binary relations on X satisfying the following conditions:

(i) R is a partition of X x X;

(ii) Rp = {(z,z) : z € X};

(iii) for each R; € R, there exists i’ such that Ry = {(y,z) : (z,y) € R;};

(iv) for any 0 < 4, j, h < r and for any (z,y) € Ry, thenumber [{z € X : (z,2) € R; and (2,y) € R;}|
is a constant p?j which depends only on i, j, h not on the choice of (x,y).

Note that an association scheme in this sense is also called a homogeneous coherent configuration
(see [22]). Also, an association scheme (X, R) is called primitive if any non-trivial relation R; (i # 0)
induces a directed connected graph on the vertex set X.

Let (X, R) be a primitive association scheme. Then each non-trivial relation R; € R (i # 0) induces
a directed, connected, regular graph of valency k; := p{,. L. Pyber [31, p.207] and M. Hirasaka [24,
p.105] attribute the following conjecture to L. Babai.

Conjecture 11.1 (Babai’s Conjecture)
There exists an integral function f such that for any primitive association scheme (X, {Ro, R1, ..., R.}),

kmax S f(k;min)

holds, where kmax := max{k; : 1 <i <r} and kpjn := min{k; : 1 <i <r}.
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For a primitive permutation group G on a finite set €2, the orbits R; of the induced action of G on
Q x Q determine a primitive association scheme, denoted by AS(G). Sims’ conjecture follows from
Conjecture 11.1 by considering the association scheme AS(G) for a primitive permutation group
G. Note also that the cyclotomic schemes (for a definition see [24, p.106]) provide examples of
primitive association schemes with fixed smallest non-trivial valency and an unbounded number of
classes. Therefore, in Conjecture 11.1 we cannot expect to provide a bound for r in terms of kpyiy.

The main theorem of this paper, Theorem 1.1, implies that Conjecture 11.1 is true for primitive
distance-regular graphs with diameter D as the sequence (k;), ;- is unimodal by [12, Proposition

5.1.1 (i)] and k; > vk holds for all i > 1 by [12, Proposition 5.6.1].

One could also ask whether there exists an integral function f such that for any primitive commu-
tative association scheme (X, {Ry, R1, ..., R,}) with multiplicities m; (i = 0,1,...,r) with mo = 1,

Mmax < f(mmin)

holds, where mpayx := max{m; : 1 <i <r} and mpyy := min{m; : 1 <i <r}. Such a function is
not known to exist even for the class of @-polynomial association schemes (for a definition see [12,
p.58]), although the dual statement of Theorem 1.1 has been shown to be true by W. J. Martin and
J. S. Williford [29]. In particular, they showed that for any m; > 2, there are only finitely many
@-polynomial association schemes with the property that the first idempotent in a @-polynomial
ordering has rank mj.
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