Are microseismic ground displacements a significant geomorphic agent?

Brain, Matthew J., Rosser, Nicholas J., Norman, Emma C. and Petley, David N. (2014) Are microseismic ground displacements a significant geomorphic agent? Geomorphology, 207. pp. 161-173. ISSN 0169-555X

Full text not available from this repository.

Abstract

This paper considers the role that microseismic ground displacements may play in fracturing rock via cyclic loading and subcritical crack growth. Using a coastal rock cliff as a case study, we firstly undertake a literature review to define the spatial locations that may be prone to microseismic damage. It is suggested that microseismic weakening of rock can only occur in ‘damage accumulation zones’ of limited spatial extent. Stress concentrations resulting from cliff height, slope angle and surface morphology may nucleate and propagate a sufficiently dense population of microcracks that can then be exploited by microseismic cyclic loading. We subsequently examine a 32-day microseismic dataset obtained from a coastal cliff-top location at Staithes, UK. The dataset demonstrates that microseismic ground displacements display low peak amplitudes that are punctuated by periods of greater displacement during storm conditions. Microseismic displacements generally display limited preferential directivity, though we observe rarely occurring sustained ground motions with a cliff-normal component during storm events. High magnitude displacements and infrequently experienced ground motion directions may be more damaging than the more frequently occurring, reduced magnitude displacements characteristic of periods of relative quiescence. As high magnitude, low frequency events exceed and then increase the damage threshold, these extremes may also render intervening, reduced magnitude microseismic displacements ineffective in terms of damage accumulation as a result of crack tip blunting and the generation of residual compressive stresses that close microcracks. We contend that damage resulting from microseismic ground motion may be episodic, rather than being continuous and in (quasi-)proportional and cumulative response to environmental forcing. A conceptual model is proposed that describes when and where microseismic ground motions can operate effectively. We hypothesise that there are significant spatial and temporal limitations on effective microseismic damage accumulation, such that the net efficacy of microseismic ground motions in preparing rock for fracture, and hence in enhancing erosion, may be considerably lower than previously suggested in locations where high magnitude displacements punctuate ‘standard’ displacement conditions. Determining and measuring the exact effects of microseismic ground displacement on damage accumulation and as a trigger to macro-scale fracture in the field is not currently possible, though our model remains consistent with field observations and conceptual models of controls on rockfall activity.

Item Type: Article
Uncontrolled Keywords: rock slope,microseismicity,displacement,strain,stress,damage,rockfall
Faculty \ School:
Faculty of Science > School of Environmental Sciences
Depositing User: Pure Connector
Date Deposited: 11 Sep 2014 14:54
Last Modified: 29 Jul 2020 23:35
URI: https://ueaeprints.uea.ac.uk/id/eprint/50026
DOI: 10.1016/j.geomorph.2013.11.002

Actions (login required)

View Item View Item