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Abstract 

Immobilisation for patients undergoing brain or head and neck radiotherapy is achieved using perspex or 

thermoplastic devices that require direct moulding to patient anatomy. The mould room visit can be 

distressing for patients and the shells do not always fit perfectly. In addition the mould room process can 

be time consuming. With recent developments in 3D printing technologies comes the potential to 

generate a treatment shell directly from a computer model of a patient. Typically, a patient requiring 

radiotherapy treatment will have had a CT scan and if a computer model of a shell could be obtained 

directly from the CT data it would reduce patient distress, reduce visits, obtain a close fitting shell and 

possibly enable the patient to start their radiotherapy treatment more quickly. This paper focusses on the 

first stage of generating the front part of the shell and investigates the dosimetric properties of the 

materials to show the feasibility of 3D printer materials for the production of a radiotherapy treatment 

shell. The majority of the possible candidate 3D printing materials tested result in very similar attenuation 

of a therapeutic RT beam as the Orfit soft-drape masks currently in use in many UK radiotherapy centres. 

The costs involved in 3d printing are reducing and the applications to medicine are becoming more widely 

adopted. In this paper we show that 3D printing of bespoke radiotherapy masks is feasible and warrants 

further investigation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Introduction 

Typical methods for constructing radiotherapy treatment shells include high-temperature thermoplastics 

(e.g. cellulose acetate butyrate) moulded onto a plaster positive of the patient’s face and low-

temperature soft-drape thermoplastic devices that require direct moulding to the patient’s face [1, 2-4]. 

Both of these methods involve procedures that can be distressing for patients and the resulting shells do 

not always fit perfectly. Sharp et al. state that the mask making process, coupled with the ongoing stress 

of cancer diagnosis can lead to an acute anxiety or state of panic [5]. In this paper the feasibility of using 

3D printers to directly construct either a “positive” face or a treatment (“negative”) shell from CT or MRI 

data is investigated. Techniques to construct three dimensional geometric models which can be 

interpreted by 3D printers are developed and the suitability of a range of 3D printer materials is 

determined by testing their dosimetric properties in comparison to existing immobilisation shell 

materials. Creating masks directly from the CT or MRI data will alleviate the need for moulding of the 

mask to the patients’ face. Helen Bulbeck of the BrainsTrust recently conducted a survey on the impact of 

having a radiotherapy shell made and 50% of the respondents found the experience horrific.  Additionally 

the Macmillan website describes the plaster process as potentially uncomfortable [6].  

 

Previously, the authors have used techniques to utilise CT and MRI datasets for medical [7] and cultural 

heritage [8] applications. A recent review article [9] highlighted some of the possible clinical applications 

of using physical 3D models derived from CT data created by rapid prototyping. There has been work on 

the use of 3D surface scanning techniques in combination with 3D printing to generate radiotherapy (RT) 

treatment shells [10, 11], however, the authors are not aware of other published research using Digital 

Communications in Medicine (DICOM) data derived from either CT or MRI scans to generate such shells. 

Since CT and MRI technology is readily available it seems logical to investigate the potential of using this 

type of data to aid in the construction of anatomically accurate radiotherapy treatment shells. In light of 

preliminary findings [12] and an earlier study [1] methods are presented for working with both CT and 

MRI datasets. The suitability of a variety of 3D printer materials for use during radiotherapy treatment is 

also investigated and discussed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Materials and Methods 

The head and neck of a whole body CT scan was reconstructed at a slice thickness of 3.75mm and the 

DICOM data set was then processed using Tomomask software (www.tomomask.com ) with the following 

stages:  

1. Masking - removal of any extraneous items/features from the images which would cause 

problems during the automatic segmentation process (e.g. support materials or image distortions 

caused by metal fillings/teeth etc). 

2. Segmentation - identification of the flesh/air boundary by straightforward thresholding of the 

pixel intensity values. 

3. Binarisation - conversion of the images to black and white (white areas will subsequently be 

printed) where the interior of the head and neck (from the flesh boundary) is solid white and the 

exterior, 'air', is black. This step was performed using an automatic flood fill operation.  

4. Conversion to a hollowed out “positive” head (to save on printer material) - a reduced size version 

of the head and neck was created by 3D erosion using a spherical structuring element of 6mm 

radius. A ‘positive’ head was then created by setting the pixels of the eroded head and neck to 

black.  

5. Creation of a ‘negative’ shell - firstly, a positive is created around which the negative shell can be 

wrapped. The head and neck are dilated slightly (1px) to give a small tolerance for fitting. As the 

shell must be pulled over the head, there can be no parts of the shell which wrap behind the 

head. This is achieved by applying a 1×∞ pixel linear dilation directed towards the plane at the 

rear of the head (i.e. each white pixel is converted into a line of white pixels running towards the 

image lower edge). A negative shell was then created by 3D dilation of the white pixels (using a 

spherical structuring element) before setting the original white pixels to black. 

6. Conversion to a Surface-Tessellation-Language (STL) file format prior to 3D printing - the white 

areas of the images, forming the positive and negative shells (created in steps 4 & 5 above), were 

then converted to STL files using the Tomomask 'Export to STL' feature based upon a marching 

cubes algorithm. 

 

The two STL files produced (i.e. both the ‘positive head and neck’ and the ‘negative’ shell) were printed 

using a Z-Corps 650 printer. The full size positive head and neck was used to test the production of a soft-

drape shell.  A 50% of full size ‘positive’ head and neck was also printed to test the production of a 

traditional high temperature beam direction shell (BDS).  

 
A head and neck MRI was also performed on a volunteer (co-author: M. D. Tam), using a 1.5T GE magnet 

(Fig 1(a)). A 3D volume scan was acquired axially using a 3D fast spoiled gradient echo (FSPGR) sequence, 

TR 12.2ms, TE 5.0ms, TI 450ms, with a FOV of 44x44cm, and a matrix size of 256 x 224 with 1 NEX 

(number of excitations).  182 images with a slice thickness of 2.0 mm and 0.55 mm slice gap were 

obtained with a scan time of less than 12 minutes. The DICOM data set from the MRI scan was then 

processed using Osirix software (www.osirix-viewer.com) using threshold segmentation, where the user 

controls the threshold levels for the segmentation, to convert the image into a binary dataset of black and 

white pixels. These were then further processed using Tomomask as above to produce a hollowed-out 

‘positive’ of the head and neck (Fig 1(b)) and a ‘negative’ STL shell to fit the ‘positive’ head and neck of the 

volunteer (Fig 1(c)). The STL files were then printed at 50% size for a 3D print of the ‘positive’ hollowed-

out head and neck model (Fig 1(d)) and at 50% size for a 3D print of the ‘negative’ head shell, both of 

which were printed out using the Z-Corps 450 3D printer. In addition, using just the face part of the 

‘negative’ shell’s STL file, a ‘negative’ shell was printed at full scale by Objet Printer Solutions UK Ltd using 

an Eden250 system with Objet’s ‘VeroWhitePlus’ material (Fig 1(e)).  

 



     
(a) (b) (c) (d) (e) 

Fig 1: Constructing the masks from MRI data. (a) Image of a slice of the MRI data which has been 

segmented using Osirix, (b) 3D computer model of the head derived from the segmented MRI data set, 

(c) Edited ‘negative’ shell (holes were subsequently formed in the shell to demonstrate the possibility 

of further reducing material cost), (d) 3D print of the model of the head and (e) 3D print of an example 

‘negative’ shell.   

 

 

Dosimetric Properties of 3D Printing Materials 

  

In our experiment we measured the change in dose produced by three materials suitable for 3D printing. 

These were compared with a 2.4 mm thick ‘unstretched’ thermoplastic ‘soft drape’ radiotherapy shell 

produced by Orfit (http://www.orfit.com/en/radiation-oncology-patient-immobilization-and-

positioning/), which represents a standard material.  

 

Measurements were made in a water equivalent material irradiated with a 10 x10 cm2 beam of energy 

6MV.  The dose was measured at two points.   

(i) 5 cm deep in water using a 0.6 cm3 Farmer chamber.  

(ii) 1 mm deep in water using a Roos chamber. 

In both cases the radiation source to chamber distance was 100 cm. The dose was measured with and 

without the test materials placed on top of the water equivalent material. For each setup, three repeat 

readings were acquired with a standard deviation of less than 0.1%. For point (i), the change in dose 

produced by the material (∆D5cm) assesses its effect on the dose to the tumour.  For point (ii), the change 

in the dose (∆D1mm) represents its effect on the dose to the skin. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Results 

The dosimetric properties of the 3D printing materials are summarised in Fig 2. Fig 2(a) shows that all the 

materials produce a small decrease (up to 1%) in the dose to the tumour due to attenuation of the beam.  

The 2mm materials produce lower attenuation than the Orfit mask. Fig 2(b) shows that all of the materials 

produce an increase in skin dose between 54% to 80%.  This can be minimised by using the thinner 

materials.  The skin dose for the 2 mm materials is similar or lower than the Orfit mask.   

 

 
(a) 

 

 
(b) 

 

Fig 2: (a)  The change in dose at 5 cm depth, ∆D5cm for the Orfit thermoplastic mask in comparison to 

three different 3D printer materials. (b) The change in dose at 1mm depth for the Orfit thermoplastic 

mask in comparison to three different 3D printer materials.  

 

 

 

 

 

 

 

 

 

 

 

 

 



Discussion 

The initial stage in the process for constructing the mask is to first perform a CT scan of the patient in the 

intended treatment position without an immobilisation shell. This represents a change in the standard 

practice although can be achieved with reference to standard set up instructions as would be used in 

conventional mask production, provided that the patient is comfortable and stable during the CT scan. 

Once the CT or MRI scan has been obtained the head must be segmented from the background. There is a 

clear edge between the data set and surrounding air which aids the segmentation step but further 

evaluation to ensure this segmentation is accurate for skin is required. Furthermore, motion during the 

MRI sequence can blur the edges. This was seen particularly at the orbits, which can lead to artefacts 

causing errors up to 1mm that can be detrimental in some cases.  

 

When constructing radiotherapy shells on a 3D printer the material used is fundamental as an ideal 

material should not affect the radiation dose delivered to the patient. Ideally the 3D printer material 

chosen should perform at least as well as the materials used in conventional methods.  We found that 

2mm samples of Visijet clear and EOS PA 3200 produced changes in beam attenuation ( < 0.6%) and 

increases in skin dose (up to 55%) that were comparable to an unstretched Orfit head mask.  During the 

experiments solid sections of the printing materials were used.  In practice holes can be created within 

the masks to help to reduce skin dose.  This can be further minimised by using as thin a material as 

possible, while still maintaining the rigidity of the shell.  Compared to standard techniques it is not 

expected that the dosimetric changes introduced by these new materials will have a significant clinical 

impact on the treatment.   

 

Initial pre-clinical trials of such shells will need to decide on the type of 3D printer and the material used. 

These decisions will depend on such factors as the ‘build size’ of the 3D printer, the size of the shell 

required, patient acceptability and cost. It is likely that ‘negative’ shells will be produced directly as 

printing ‘positive’ heads first seems unnecessary and it is significantly more expensive. Current soft drape 

masks cost approximately £30  - £65 depending on the size whilst printing just one shell using a 

commercial printer currently costs £80 (although mould room time is avoided). However, the printing 

costs are significantly reduced if multiple masks or other objects such as bolus can be printed within the 

same build chamber [13]. In the last five years we have seen the 3D printing and rapid prototyping 

industries really push the boundaries in technology and materials. Mid-range devices have become 

available at significantly cheaper prices bringing down the costs of printing and the authors believe that as 

the technology develops and the applications in medicine become more numerous that it will become 

viable for a large hospital or perhaps a cluster of smaller hospitals to have access to their own high end 3D 

printer for medical applications. Some 3D printing materials are already certified for use within surgical 

applications. In terms of time print jobs could be initiated at the end of the working day enabling the 

completed models to be extracted with limited post-processing the next morning.  

 

It is of paramount importance that any radiotherapy shell employed using 3D printing technology must be 

at least as efficient (and hopefully even more efficient) than a standard soft drape or BDS shell produced 

in the standard way in terms of immobilising the patient. Studies have suggested that both soft drape and 

BDS radiotherapy shells produced in a standard way do allow a certain amount of movement and hence 

the recommendation to employ some method of checking patient position prior to commencing each 

treatment [1,2-4,10,14, 15,16]. Rotondo et al. present an approach to calculate errors between 

immobilisation techniques by determining displacement errors between co-registered data sets of 

patients undergoing different immobilisation techniques [15]. Recently Kang et al. have investigated 

accuracy in positioning and immobilisation for head and neck cancer treatment and determine 

translational intrafractional errors by six DoF registration of less than 2mm, although they did find that 

there was substantial motion during treatment in some cases [16]. Future work to that discussed in this 

paper will be to conduct immobilisation studies of the proposed 3D printed radiotherapy masks along 

similar lines to those used by Sanghera and colleagues [10]. Provided these are satisfactory an application 



will be made for ethical approval to carry out a prospective clinical comparison with radiotherapy shells 

produced in the standard way with patient-related but also treatment-related endpoints.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Conclusions 

Techniques have been shown which create 3D printed immobilisation shells produced from patient data 

using CT or MRI. The majority of the possible candidate 3D printing materials tested result in very similar 

attenuation of a therapeutic RT beam as the Orfit soft-drape masks currently in use in many UK 

radiotherapy centres. The thickness of the shell should obviously be kept to a minimum to prevent large 

increases in skin dose. In terms of imaging, it is clear that standard image acquisitions can be used. The 

prototype CT used was created using thicker slices than typically used for radiotherapy planning. The MRI 

sequence was created with 2 mm slices covering from the vertex of the skull to the upper shoulders which 

took less than 12 minutes. Image acquisition would in practice need to be in the intended treatment 

position according to the site to be irradiated.  

 

In summary, 3D printed shells can be produced from CT and MRI datasets which will potentially avoid the 

moulding of shells directly to the patients’ face. New shells could also be produced using the volumetric 

datasets acquired as part of an image-guided and adaptive radiotherapy programme. Associated cost is 

likely to be driven down by the emerging technology that is rapid prototyping.  
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