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ABSTRACT 
 

The introduction of the group IV semi-dwarf Rht alleles, Rht-B1b (formerly 
Rht1) and Rht-D1b (formerly Rht2) into bread wheat varieties from the donor 
line „Norin 10‟ that began in the 1960s was a major contributor to the „green 
revolution‟.  Rht-B1b and Rht-D1b were characterised and cloned over a 
decade ago (Gale and Youssefian 1985; Peng et al. 1999), however the Rht-
A1 locus has not been isolated and little is known regarding the genetic 
diversity of the group IV Rht loci or the genetic composition of the contiguous 
sequence surrounding Rht that was presumably introgressed into wheat 
varieties along with the dwarfing alleles. 
 
To investigate the contiguous region around Rht, a hexaploid wheat („Chinese 
Spring‟ (CS)) BAC library was screened using a PCR-based technique (Febrer 
et al. 2009).  This identified several Rht-containing BAC clones, three of which 
(representing the A, B, and D genomes) were sequenced and found to contain 
one to two genes upstream of Rht in conserved order.  Gene synteny was also 
highly conserved in rice, Brachypodium distachyon, sorghum, and maize.  The 
previously unidentified Rht-A1 homoeologue was physically mapped to the 
long arm of chromosome 4A using aneuploid lines and mapped relative to 
genetic markers. 
 
To estimate genetic diversity, the entire coding regions of Rht-A1, Rht-B1, and 
Rht-D1 and the flanking regions (approximately 1800 bp 5‟ and 450 bp 3‟) 
were sequenced in 40 diverse wheat accessions.  Little polymorphism and few 
haplotypes were identified on the A and D genomes, but on the B genome a 
relative abundance of haplotypes and polymorphism were present, including 
insertions (relative to CS) of 160 bp and 197 bp within 600 nucleotides of the 
ORF.  The Rht-B1 insertions did not have a pronounced effect on RNA 
transcript level when assessed in seedlings.  In an analysis of 368 lines from 
the INRA bread wheat core collection (BWCC) (Balfourier et al., 2007), lines 
with the Rht-B1 insertions were associated with reduced heights and reduced 
GA sensitivity relative to lines without an insertion, but only the height 
reductions associated with the 197 bp insertion were significant (p < 0.05).  GA 
sensitivity tests of the INRA BWCC did not reveal any novel GA insensitive 
mutants.  An investigation of the origin of the „Norin 10‟ alleles revealed 
potential discrepancies between the published pedigree and of „Norin 10‟ and 
the genotypes of seed stocks. 
 
Sequence, annotation, and comparative genomics of the Rht-containing BAC 
clones, the mapping of Rht-A1, and the discovery and investigation of novel 
genetic diversity provides greater insight into the Rht region and also provides 
tools for further analysis of this region and for the potential improvement of 
bread wheat. 
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1. GENERAL INTRODUCTION 

 

1.1. INTRODUCTION 

 

Global food shortages prevalent in the 1960s were greatly abated by the 

development of high-yielding wheat (Triticum aestivum) varieties, one of the 

world‟s most important crops.  The rapid and worldwide adoption of the new 

varieties overcame major food shortages and was termed the „green 

revolution‟.  The utilisation of semi-dwarf wheat varieties was key to producing 

high-yielding varieties that were more resistant to lodging, allowing for greater 

agricultural inputs and more intense farming practices.  The genetic basis of 

the semi-dwarf varieties are the Reduced height (Rht) alleles Rht-B1b and 

Rht-D1b, which are both derived from the Japanese variety „Norin 10‟.  It is 

estimated that over 70% of the wheat acreage planted in the developing world 

contains at least one of these two alleles (Evans, 1998) and that 90% of the 

semi-dwarf varieties contain Rht-B1b and/or Rht-D1b (Worland et al., 1998b).  

The Rht-B1b and Rht-D1b alleles encode altered forms of the DELLA protein, 

resulting in plants with reduced gibberellin (GA) sensitivity and reduced stalk 

length while maintaining high yield.  Although Rht-B1b and Rht-D1b have 

been characterised (Gale and Youssefian, 1985) and cloned (Peng et al., 

1999), little is known regarding the allelic diversity at these loci.  Less is 

known about Rht-A1, which has not been fully sequenced or genetically 

mapped and has not been associated with changes in plant height or GA 

sensitivity.  In addition, the genetic makeup of the surrounding region that was 

presumably introgressed into modern wheat varieties along with the Rht-B1b 

and Rht-D1b alleles is not known. 

 

1.2. DELLA PROTEINS IN PLANTS 

 

1.2.1. DELLA loci in dicots and monocots 

 

In Arabidopsis, there are five DELLA genes, GAI (gibberellic acid insensitive), 

RGA (repressor of ga1-3), RGL1 (RGA-like 1), RGL2, and RGL3.  These 

genes each encode proteins that have specific, but overlapping functions.  
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GAI and RGA reduce stem elongation (King et al., 2001), RGL2 inhibits seed 

germination (Lee et al., 2002; Tyler et al., 2004), and RGA, RGL1, and RGL2 

modulate floral development (Tyler et al., 2004).  The function of RGL3 is not 

specifically defined, although low temperature stress was found to increase 

expression of this gene (Achard et al., 2008a).  While Arabidopsis has five 

DELLA genes, other plant species have only one or two DELLA genes (Table 

1.1).  In the dicots, a single DELLA-encoding gene is found in tomato 

(Solanum lycopersicum), grape (Vitis vinifera), and Brassica rapa while two 

genes are found in soybean (Glycine max) and pea (Pisum sativum).   

 

Table 1.1 DELLA loci in dicot and monocot plant species 

 

 

Most monocots have only a single gene encoding a DELLA protein, these are 

SLN1 in barley, SLR1 in rice (Oryza sativa), SbD8 in sorghum bicolor, PgD8 

in Pearl Millet (Pennisetum glaucum), and Bradi1g11090 in Brachypodium 

distachyon.  Wheat is an allohexaploid (2n = 6x =42) containing A, B, and D 

genomes derived from three closely related ancestors (see section 1.6) and 

for this reason has three Rht-1 homoeoloci, which are Rht-A1, Rht-B1, and 

Type Common Name Latin Name DELLA loci Key Reference

GAI Pysh et al. (1999)

RGA Pysh et al. (1999)

RGL1 Dill and Sun (2001)

RGL2 Dill and Sun (2001)

RGL3 Dill and Sun (2001)

Grape Vitis vinifera VvGAI Boss and Thomas (2002)

Oilseed rape Brassica rapa BrRGA1 Muangprom et al ., 2005

GmGAI1 Bassel et al.  (2004)

GmGAI2 Bassel et al . (2004)

Tomato  Solanum lycopersicum LeGAI Bassel et al . (2004)

La Weston et al.  (2008)

Cry Weston et al . (2008)

Barley Hordeum vulgare SLN1 Chandler et al.  (2002)

Brachypodium Brachypodium distachyon Bradi1g11090

d8 Peng et al.  (1999)

d9 Lawit et al.  (2010)

Rice Oryza sativa SLR1 Ikeda et al.  (2001)

Sorghum Sorghum bicolor SbD8 Li et al . (2010)

Pearl Millet Pennisetum glaucum PgD8 Li et al.  (2010)

Rht-A1 Febrer et al.  (2009)

Rht-B1 Peng et al . (1999)

Rht-D1 Peng et al . (1999)

Pisum sativumPea

Dicot

Monocot

Wheat

Arabidopsis

Maize

Soybean Glycine max

Zea mays

Triticum aestivum

Arabidopsis thaliana
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Rht-D1.  Maize (Zea mays), due to a recent whole-genome duplication 

contains two DELLA genes, D8 (Dwarf8) and D9 (Dwarf9) (Lawit et al., 2010). 

 

In a rice database search, two additional genes, SLRL-1 (SLR-like1) and 

SLRL-2 (SLR-like2) that closely resembled SLR1 but lacked the DELLA motif 

were identified (Itoh et al., 2005).  The authors reported that plants over-

expressing SLRL-1 produced a dwarf phenotype and had other characteristics 

that suggested that SLRL-1 represses GA signalling in the over-expressed 

condition.  However, SLRL-1 growth repression in this study was found to be 

much weaker than in transgenic plants expressing a truncated SLR1 protein 

lacking the DELLA domain.  The role of the SLRL genes in rice is not clear, 

but Itoh et al. (2005) suggested that these genes might function as a safety 

mechanism preventing excessive GA-induced growth. 

 

1.2.2. Conserved DELLA domains 

 

DELLAs are members of the GRAS protein family, a diverse set of regulatory 

proteins affecting plant growth and regulation including hormone signalling, 

axillary meristem initiation, shoot meristem maintenance, root architecture, 

light signalling, and male gametogenesis (Tian et al., 2004).  The GRAS 

family is named for the GAI, RGA, and SCR (SCARECROW) proteins, which 

were the first members of this family to be characterised.  GRAS proteins 

contain several conserved domains including an LHR1 (leucine heptad repeat 

1), NLS (nuclear localisation signal), VHIID, LHR2 (leucine heptad repeat 2), 

PFYRE, and SAW domain (Pysh et al., 1999) (Figure 1.1).  The VHIID, 

PFYRE, and SAW domains (each named after conserved amino acids) act to 

repress plant growth (see section 1.2.3).  In the DELLA proteins, the GRAS 

domain comprises the C-terminus, while the N-terminus contains the highly 

conserved DELLA, TVHYNP, and poly S/T/V (rich in serine, threonine, and 

valine) domains that distinguish these proteins from other members of the 

GRAS family (Tian et al., 2004).  The DELLA and TVHYNP domains (named 

for highly conserved amino acid motifs) are important for GA signal perception 

(see section 1.2.3). 
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Figure 1.1.  Conserved regions of the DELLA protein.  Conserved domains are shown as 

blue rectangles.  The N-terminus is unique to DELLA proteins and consists of the DELLA and 

TVHYNP domains (both named after conserved amino acid motifs) that participate in GA 

signalling and a poly S/T/V (Ser/Thr/Val rich) domain thought to regulate DELLA repression 

activity.  The C-terminus, or GRAS domain, consists of LHR1 (leucine heptad repeat 1), NLS 

(nuclear localisation signal), LHR2, VHIID, PFYRE, and SAW domains (the latter three named 

after conserved amino acids), and functions as a growth repressor.   

 

1.2.3. DELLA protein characterisation 

 

Studies of DELLA mutants in Arabidopsis and in cereal species have shown 

how DELLA proteins affect plant phenotype and helped identify important 

regions in the DELLA protein.  The gai mutant in Arabidopsis is a semi-

dominant gain of function (GoF) mutant that encodes a DELLA protein lacking 

17 amino acids in the DELLA domain (Peng et al., 1997).  Plants with the gai 

allele are characterised by greater GA insensitivity (GAI), reduced plant 

height, and increased levels of endogenous GA (Koornneef et al., 1985).  

These are the same characteristics identified in Rht GoF mutants in other 

species, which also have N-terminal mutations.  These mutant alleles include 

Rht-B1b and Rht-D1b in wheat, which each have a predicted stop codon in 

the DELLA domain (Gale and Youssefian, 1985); D8-1 in maize, which 

contains a four amino acid deletion in the DELLA domain (Peng et al., 1999), 

and Sln1d in barley, which has a G to A amino acid substitution in the DELLA 

domain (Chandler et al., 2002).  The role of the DELLA protein N-terminal 

domains in GA signalling was further investigated by overexpression of rice 

SLR1 cDNA-GFP fusion proteins that contained large deletions in specific N-

terminal domains (Itoh et al., 2002).  Overexpression of DELLA proteins with 

deletions in the DELLA or TVHYNP domain resulted in dwarfed plants with 

DELLA TVHYNP poly 
S/T/V

LHR1 NLS VHIID LHR2 PFYRE SAW

N-terminus C-terminus
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decreased GA sensitivity.  GFP fluorescence in proteins with DELLA or 

TVHYNP deletions was present in the nuclei even with the application of GA3, 

indicating that these modified proteins are not degraded by GA whereas 

plants containing constructs of fully intact SLR1 fused to GFP were degraded 

in the presence of GA.  A large deletion in the poly S/T/V also resulted in 

dwarf plants, however plants remained responsive to GA and the DELLA 

protein was degraded by GA.  The Itoh et al. (2002) study indicates the 

importance of the DELLA and TVHYNP domains in GA signalling and 

suggests that the poly S/T/V domain serves a regulatory role in the repression 

activity of DELLA proteins. 

 

Recessive loss of function (LoF) mutants have also been identified in 

Arabidopsis; however, due to the overlapping functions of the DELLA 

proteins, this required LoF mutations in four of the five DELLA proteins (RGL3 

maintained a functional copy).  The “DELLA LoF quadruple mutant” (gai-

t6+rga-t2+rgl1-1+rgl2-1) has a phenotype closely resembling wild type plants 

treated with exogenous GA, having reduced seed dormancy and early 

flowering (Alvey and Harberd, 2008).  A similar constitutive GA response was 

found in LoF DELLA mutants in rice SLR1 and barley SLN1, which result in 

plants with tall, slender stems and slender leaves despite having reduced 

levels of GA.  The rice SLR1 LoF mutants include slr1-1, which has a 

frameshift in the NLS domain and slr1-2, slr1-3, and slr1-4, which each 

contain a premature stop codon in the C terminus (Ikeda et al., 2001).  The 

barley mutant sln1c also has a premature stop codon in the C terminus of the 

protein (Chandler et al., 2002).  While most LoF mutants are characterised by 

mutations in the C terminus of the DELLA protein, there are, as exceptions, C 

terminus mutants that lead to GoF mutants and a dwarf phentoype.  These 

have been reported for the Brassica rapa BrRGA1 (Muangprom et al., 2005) 

and maize D9 loci (Lawit et al., 2010).  Overall, the C-terminal mutants 

demonstrate the importance of this region in suppressing plant growth, 

although mutations in this region may also affect DELLA stability. 

 

1.2.4. Regulation of DELLA protein levels 
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There is clear evidence of regulation of DELLA via mechanisms that control 

protein stability and regulation is also thought to occur at the transcriptional 

level and by post-translational modifications.  In the absence of GA, DELLA 

proteins are stable and suppress GA responses and plant growth.  In the 

presence of high levels of GA, the DELLA protein is degraded by 

ubiquitination (Figure 1.2).  The process of ubiquitination begins with the 

binding of GA to GID1 (GA-Insensitive Dwarf 1), which was shown to occur in 

rice plants (Ueguchi-Tanaka et al., 2007).  The GID1-GA complex then 

associates with DELLA, which is targeted by an SCFSLY1/GID2 (Skp/Cullin/F-

box; SLY1 in Arabidopsis; GID2 in rice) E3 ligase that results in DELLA 

ubiquitination and subsequent degradation by the 26S proteasome (Fu et al., 

2004).  The GID1-GA complex can also be inactivated by a proteolysis-

independent pathway (Ueguchi-Tanaka et al., 2008). 

 

 

Figure 1.2.  GA signalling and DELLA protein stability.  DELLA inhibits GA responses in 

the absence of GA.  When GA is present, it can interact with GID1 inducing a conformational 

change that allows for an interaction with the N-terminal domain of the DELLA protein, 

resulting in a conformation change in the GRAS domain of DELLA and allowing for interaction 

with the SCF
SLY1/GID2

 complex.  This leads to ubiquitination of DELLA and subsequent 

degradation by the 26S proteasome, thereby removing DELLA growth suppression.  DELLA 

might be activated by SPY O-Glc-Nac modification or EL1 phosphorylation.  Figure adapted 

from Sun et al. (2010). 
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Post-translational modifications of DELLA include phosphorylation and O-

linked N-acetylglucosamine (O-Glc-Nac) modification.  Phosphorylated 

DELLA proteins have been identified in Arabidopsis (Fu et al., 2004) and rice 

(Sasaki et al., 2003) and phosphorylation of DELLA by EL1 (Earlier Flowering 

1) is thought to be needed for DELLA stability and activity (Sun et al., 2010) 

(Figure 1.2).  SPY (Spindly), an O-Glc-Nac transferase was also proposed to 

increase the activity of RGA in Arabidopsis via O-Glc-Nac modification 

(Silverstone et al., 2007) (Figure 1.2) 

 

Several studies also suggest that transcriptional control of DELLA is 

important.  Abundant levels of RGL1, RGL2, and RGL3 in Arabidopsis were 

found only in germinating seeds and/or flowers and siliques, suggesting a 

potential transcriptional control (Tyler et al., 2004).  In another study, GAI and 

RGA transcription in Arabidopsis was enhanced by direct binding of the 

transcription factor PIL5 (phytochrome-interacting factor3-like5) to the 

promoter regions of these genes (Oh et al., 2007).  In rice, Ogawa et al. 

(2000) found that SLR1 expression levels differed based on development 

stage and tissue type.  In wheat, transcriptional control of DELLA was found 

to be an important regulatory mechanism that affects seed germination 

(Saville, 2011), and DELLA expression levels were also found to vary 

between tissue types collected following ear emergence (Pearce et al., 2011). 

 

1.2.5. DELLA protein function 

 

While DELLA proteins are known to restrict plant growth in the absence of 

GA, the molecular mechanism is not well understood.  As members of the 

GRAS family, DELLAs are putative transcription factors and DELLA proteins 

have been localised to the nucleus (Ogawa et al., 2000; Lawit et al., 2010). 

However, the presence of a DNA binding domain on the DELLA protein has 

not been shown (Achard and Genschik, 2009).  In vivo association of DELLA 

with promoter regions of GA biosynthetic genes (including GA20ox2 and 

GA3ox1), GA receptor genes (including GID1), and other early GA-responsive 

genes was detected using chromatin immunoprecipitation (ChIP) (Zentella et 

al., 2007).  Based on the ChIP results, the authors proposed that DELLA 
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proteins repress GA signalling by activation of downstream genes thought to 

encode GA signalling repressors and that DELLA proteins modify GA 

homoeostasis by increasing expression levels of genes involved in GA 

biosynthesis and GA reception via a feedback mechanism (Zentella et al., 

2007).  In a more recent study, DELLA proteins were found to interact with 

PIF3 (phytochrome-interacting factor) (Feng et al., 2008) and PIF4 (De Lucas 

et al., 2008), members of the basic helix-loop-helix (bHLH) transcription factor 

family), reducing the ability of the PIFs to enhance expression of unidentified 

target genes involved in growth promotion.  DELLA proteins have been shown 

to interact with three additional bHLH transcription factors (PIL2, PIL5, and 

SPT) (Gallego-Bartoleme et al., 2010), indicating DELLAs likely can interact 

with a broad class of bHLH proteins in planta. 

 

1.2.6. Role of DELLAs in response to plant stress 

 

Several studies in Arabidopsis indicate that DELLA proteins play a key role in 

plant survival under abiotic and biotic stress.  The involvement of DELLA 

proteins in the regulation of salt-activated phytohormone signalling pathways 

was recently demonstrated (Achard et al., 2006). The GA insensitive/GoF 

Arabidopsis mutant, gai and the GA deficient mutant ga1-3 were both found to 

be more tolerant of high salt than plants carrying the wild type allele at these 

loci.  In a high salt environment, wild type Arabidopsis plants had a survival 

rate of 36% while the survival rate of the gai mutant was 82% and of ga1-3 

was 93% (Achard et al., 2006).  In contrast, the Arabidopsis “DELLA LoF 

quadruple mutant” was less salt tolerant than the wild type with a survival rate 

of 7% (Achard et al., 2006).  Similarly, barley GoF mutants at the SLN locus 

survive heat shock and salt stress better than wild type lines while LoF 

mutants have reduced survival rates relative to the wild type lines (T. Moore, 

JIC, pers. comm.).  Under cold stress, increased DELLA protein accumulation 

is also associated with higher freezing tolerance in Arabidopsis plants (Achard 

et al., 2008a).  Increased stress tolerance associated with DELLAs was 

hypothesised to be caused by an increase in the stability of the DELLA 

proteins, which restricts plant growth and thereby enhances plant survival 

(Achard and Genschik, 2008a).  One mechanism by which DELLAs may 
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restrain growth and increase survival is by reducing levels of reactive oxygen 

species (ROS) (Achard et al., 2008b).  ROS are small molecules created in 

response to stress that result in cell death as part of the plant defence 

response.  DELLAs were found to reduce ROS accumulation and cell death 

after biotic or abiotic stress by increasing expression of ROS detoxification 

enzymes, thereby improving stress tolerance (Achard et al., 2008b).   

 

In terms of biotic stress, DELLAs have been shown to promote increased 

resistance to necrotrophs, but increased susceptibility to biotrophs.  The GoF 

(stabilised) DELLA protein found in the Arabidopsis gai mutant was found to 

play a role in growth inhibition as part of a defence response when plants 

perceived flg-22, a peptide signal associated with necrotrophs (Navarro et al., 

2008).  The authors also found that the Arabidopsis “DELLA LoF quadruple 

mutant” resulted in increased resistance to the biotroph Pseudomonas 

syringae.   The mechanism is thought to be partially related to the balance of 

the jasmonic acid (JA)/salicylic acid (SA) defence pathways as high JA:SA 

generally results in enhanced resistance to necrotrophs and high SA:JA  in 

enhanced resistance to biotrophs.  Increased DELLA stability is thought to 

enhance JA signalling, possibly at the expense of SA signalling (Navarro et 

al., 2008).  The barley (cv. „Himalaya‟) Sln1d GoF DELLA mutant shows a 

significant increase in susceptibility to the biotroph Blumeria graminis (which 

causes powdery mildew) relative to the wild type while resistance of the LoF 

DELLA mutant sln1c was not significantly changed relative to the wild type 

(Saville, 2011).   In wheat (cv. „Mercia‟ and „Maris Huntsman‟) infected with B. 

graminis, no change in resistance was evident between wild type plants and 

near isogenic lines (NILs) containing a single GoF allele (Rht-B1c or Rht-D1c, 

which each cause severe dwarfing), however, NILs containing two dwarfing 

alleles (Rht-B1c+Rht-D1b) were more susceptible than wild type plants 

(Saville, 2011).  In addition, R. Saville also reported an increased resistance 

to necrotrophs Oculimacula yallundae and O. acuformis (which both cause 

eyespot disease) in wheat (cv. „Mercia‟) GoF Rht-B1c and Rht-D1c NILs 

relative to the wild type and in the barley (cv. „Himalaya‟) Sln1d GoF mutant 

relative to the wild type.  These studies demonstrate not only the role of 

DELLA in abiotic and biotic stress, but also its role as an integrator of 
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hormonal and environmental signals.  Plant responses to auxin and ethylene 

have also been attributed to DELLA function, suggesting that DELLA proteins 

may serve as important integrators of multiple phytohormone signalling inputs 

(Alvey and Harberd, 2005; Alvey and Boulton, 2008). 

 

1.3. GROUP IV RHT-1 LOCI AND DWARFING ALLELES IN WHEAT 

 

1.3.1. Rht-1 loci  

 

The nomenclature of the Group IV Rht loci in wheat follows that of McIntosh 

(1988) with Rht-1 serving as the generic locus name for the three homoeoloci.  

The loci on chromosomes 4A, 4B, and 4D are referred to as Rht-A1, Rht-B1, 

and Rht-D1, respectively.  Rht-B1 and Rht-D1 have been mapped to the short 

arms of chromosomes 4B and 4D, respectively (Gale and Youssefian, 1985).  

Rht-B1 has consistently been located near the centromere with estimates 

ranging from 10 to 22 cM distal (McVittie et al., 1978; Borner et al., 1997; Ellis 

et al., 2002, Somers et al., 2004).  The location of Rht-D1 is less clear with 

locations ranging from 15 cM distal of the centromere (McVittie et al., 1978) to 

having no linkage with the centromere (Izumi et al., 1983), and there is little 

consensus among mapping studies.  No attempt has been made to map the 

Rht-A1 locus owing to the absence of any detectable height variation 

associated with this locus and the lack of available sequence, which was only 

recently published (Febrer et al., 2009; Pearce et al., 2011).  The location of 

the Rht-A1 locus may not be colinear with either Rht-B1 or Rht-D1 because of 

multiple inversions and translocations on 4A that have resulted in the majority 

of the native short (S) arm of chromosome 4A being located on the “modern” 

long (L) arm of 4A (Miftahudin et al., 2004). 

 

Wild type alleles at each Rht-1 locus, designated by an “a” (Rht-A1a; Rht-B1a; 

Rht-D1a), confer plants with a “tall” height that are GA sensitive (Table 1.2).  

The Rht-B1a and Rht-D1a genes (cv. Chinese Spring (CS)) consist of a single 

exon approximately 1.87 kb in length containing the highly conserved N- and 

C- terminal domains that are characteristic of DELLA proteins (Peng et al., 

1999).  The Rht-D1a sequence shares 62% amino acid identity with 
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Arabidopsis GAI and 58% with RGA (Peng et al., 1999).  The CS Rht-B1a and 

CS Rht-D1a are the only Rht-1a alleles sequenced.  The Rht-B1a and Rht-

D1a allelic designations are not sequence-specific and other varieties having 

these designations may be polymorphic at these loci relative to CS.  On the A 

genome, the likely presence of an Rht-A1a allele was demonstrated by Peng 

et al. (1999) using gel-blot hybridisation of the CS group 4 nullisomic-

tetrasomic (NT) lines with wheat cDNA (C15-1) serving as the probe.  More 

recently, an approximately 525 bp read from a putative Rht-A1a BAC clone 

from CS was published that was similar to, yet distinct from, the CS Rht-B1a 

and Rht-D1a sequences (Febrer et al., 2009 and Chapter 3). 

 

Table 1.2. Summary of dwarfing alleles at the group IV Rht-1 homoeoloci  

 
a
 The -a allele represents the wild type or tall alleles. 

b
 Allelic source variety.  NA = not applicable. 

c
 Chromosomal location 

d
 Gibberellic acid sensitivity, sensitive (sen.) or insensitive (ins.) 

 

1.3.2. Rht-B1b and Rht-D1b  

 

The Rht-B1 and Rht-D1 loci each contain a series of GAI alleles (Table 1.2) 

that confer varying degrees of height reduction relative to the wild type alleles 

(Figure 1.3).  The five dwarfing alleles identified at the Rht-B1 locus are 

designated by the lowercase letters b, c, d, e, and f following the locus name 

and the three dwarfing alleles at the Rht-D1 locus are designated b, c, and d.  

By far the most economically important and most commonly used height 

reducing alleles in bread wheat are Rht-B1b and Rht-D1b, formerly known as 

Allelea

Prior 

Nomenclature Sourceb Phenotype

Chr. 

Locc

GA 

sens.d Key Reference

Rht-A1a NA tall 4A sen. Febrer et al . (2009)

Rht-B1a rht1 NA tall 4BS sen. Peng et a l. (1999)

Rht-B1b Rht1 Norin 10 semi-dwarf 4BS ins. Gale and Youssefian (1985)

Rht-B1c Rht3 Tom Thumb severe dwarf 4BS ins. Gale and Youssefian (1985)

Rht-B1d Rht1S Saitama 27 semi-dwarf 4BS ins. Worland and Petrovic (1988)

Rht-B1e Rht Krasnodari 1 Krasnodari 1

semi / severe 

dwarf 4BS ins. Worland (1986)

Rht-B1f

Rht 

T.aethiopicum

T. 

aethiopicum 4BS ins. Borner et al . (1995)

Rht-D1a rht2 NA tall 4DS sen. Peng et al . (1999)

Rht-D1b Rht2 Norin 10 semi-dwarf 4DS ins. Gale and Youssefian (1985)

Rht-D1c Rht10 Ai-bian 1 severe dwarf 4DS ins. Borner and Mettin (1988)

Rht-D1d Rht Ai-bian 1a Ai-bian 1a semi-dwarf 4DS ins. Borner et al.  (1991)
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Rht1 and Rht2, respectively.  These alleles are classified as semi-dwarf in 

that they confer moderate reductions in plant height (Figure 1.3).  In a series 

of trials using four sets of NILs, Rht-B1b and Rht-D1b were 86% and 83% the 

height of wild type plants (Flintham et al., 1997).  Sequences of the Rht-B1b 

and Rht-D1b semi-dwarf alleles reveal the presence of nucleotide 

substitutions that result in premature stop codons in the DELLA domain (Peng 

et al., 1999).  In Rht-B1b, a C to T change converts amino acid 64 from 

glutamine to a stop codon and in Rht-D1b, a G to T change converts amino 

acid 61 from glutamic acid to a stop codon.  The nucleotide sequences of the 

coding regions are otherwise identical to the respective Rht-1a alleles.  It is 

thought that translation is reinitiated following the premature stop codons in 

Rht-B1b and Rht-D1b, leading to the synthesis of functional truncated DELLA 

proteins lacking the DELLA domain (Peng et al., 1999).  The truncated protein 

is predicted to lack GA signal perception while maintaining the repressor 

function, which likely explains the reduced GA sensitivity of plants containing 

these proteins.  The similarity of the Rht-B1b and Rht-D1b mutations may 

explain why both alleles confer a similar dwarfing phenotype. 

 

 

Figure 1.3. Mature plants of near isogenic lines containing a single Rht-B1 or Rht-D1 

dwarfing alleles in the Mercia background. 

WT B1d B1b D1b D1d B1e B1c D1c
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Individual dwarfing alleles at the Rht-B1 and Rht-D1 loci were backcrossed into the Mercia 

wild type (WT).  From left to right (with alternative nomenclature shown in parenthesis) are: 

Mercia (WT); Rht-B1d (Saitama); Rht-B1b (Rht1); Rht-D1b (Rht2); Rht-D1d (Ai-bian 1a); Rht-

B1e (Bezostaya dwarf); Rht-B1c (Rht3); Rht-D1c (Rht10).  Picture adapted from Pearce et al. 

(2011). 

 

1.3.3. Alternative Rht-B1 dwarfing alleles 

 

Rht-B1c (previously Rht3) confers a greater degree of GA insensitivity than 

Rht-B1b or Rht-D1b and results in severe dwarfism (Figure 1.3; Table 1.2).  

The predominant source of the Rht-B1c allele is the American variety „Tom 

Thumb‟.  Flintham et al. (1997) reported that Rht-B1c NILs were 

approximately 50% the height of wild type lines when averaged across four 

genetic backgrounds tested in multiple trials. Along with extreme dwarfism 

that is agronomically unfavourable, the Rht-B1c allele is also associated with 

reduced male fertility (J Flintham, JIC, pers. comm.).  However, this allele was 

shown to reduce alpha-amylase activity in ripening grain (high alpha amylase 

activity is associated with pre-harvest sprouting and reduced grain quality) 

and may be of value to address this problem (Flintham and Gale, 1998).  

Recent work suggests that dwarfism caused by the Rht-B1c allele is likely due 

to a terminal repeat retro-transposons in miniature (TRIM) insertion of more 

than 2 kb in size that occurs in the DELLA domain (Wu et al., 2011). 

 

The Rht-B1d allele (previously Rht1S) reduces height to a lesser extent than 

the other mutant alleles at the Rht-1 locus (Figure 1.3; Table 1.2).  Based on 

varietal comparisons, Rht-B1d was estimated to have an average plant height 

that is 89% of varieties not containing this allele (Worland, 1986).  In addition, 

Rht-B1d is more sensitive to GA than Rht-B1b or Rht-D1b (GA-insensitivity of 

Rht-B1d was estimated to be approximately half that of the Rht-B1b or Rht-

D1b alleles (Worland, 1986).  Rht-B1d was first reported in the old Japanese 

variety „Saitama 27‟, being introduced into European bread wheats in 1947, 

and currently is present primarily in Southern European wheat lines (Worland 

and Petrovic, 1988).  The smaller decrease in height was suggested to have 

potential agronomic advantage under some conditions (Worland and Petrovic, 
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1988).  Rht-B1d carries the Rht-B1b point mutation that leads to the 

premature stop codon in the DELLA domain (Pestsova et al., 2008).  This 

result was confirmed by sequencing the entire open reading frame (ORF) of 

Rht-B1d, however no additional polymorphisms were found suggesting the 

presence of an undetected mutation that confers increased height relative to 

Rht-B1b (Pearce et al., 2011). 

 

The semi-dwarf allele Rht-B1e (previously Rht Krasnodari 1 or Rht1(B.dw)) 

results in plant heights intermediate between those of severe and semi-dwarfs 

(Figure 1.3; Table 1.2).  Introduction of the Rht-B1e allele into four varietal 

backgrounds resulted in plant heights that were approximately 75% of the wild 

type, which is thought to be of potential commercial value (Worland and 

Sayers, 1995).  The Rht-B1e allele resulted from a spontaneous mutation in 

the Russian line Bezostaya 1, with the mutant line named Krasnodari 1 

(Worland, 1986).  Sequencing of the ORF revealed the presence of a single 

nucleotide polymorphism (SNP) that introduces a premature stop codon in the 

DELLA domain (Pearce et al., 2011).  The stop codon occurs at amino acid 

61 (relative to Rht-B1a of CS), which is just three amino acids upstream of the 

Rht-B1b premature stop codon (Pearce et al., 2011).  

 

The allele Rht-B1f was identified in two tetraploid Ethiopian accessions 

belonging to the subspecies Triticum aethiopicum JAKUBZ (Borner et al., 

1995) (Table 1.2).  The relative GA sensitivity of the allele and its effect on 

height has not yet been classified, nor has the genetic cause of dwarfism 

been established. 

 

1.3.4. Alternative Rht-D1 dwarfing alleles 

 

The allele, Rht-D1c (previously Rht10) results in the greatest plant height 

reduction among the Rht-1 GAI alleles (Figure 1.3; Table 1.2), limiting its 

agronomic value.  The original source of dwarfism is the Chinese variety „Ai-

bian 1‟ (Izumi et al., 1981).  Rht-D1c was found to carry the Rht-D1b point 

mutation leading to a predicted premature stop codon (Pestsova et al., 2008).  

More recently, quantitative reverse transcriptase PCR (qRT-PCR) transcript 
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analysis revealed an approximately four-fold increase in Rht-D1c copy 

number relative to lines with the Rht-D1a allele (Pearce et al., 2011).  This 

was also confirmed by southern hybridisation using probes specific to Rht-D1 

and these results indicate that the severe dwarfism assocated with Rht-D1c is 

likely the result of increased accumulation of the GAI DELLA protein (Pearce 

et al., 2011). 

 

The allele, Rht-D1d (previously Rht Ai-bian 1a) results in plants with a semi-

dwarf stature with height intermediate between plants containing Rht-D1b or 

Rht-B1e (Figure 1.3; Table 1.2).  This allele was derived from a spontaneous 

mutation in Ai-bain 1, which carries the Rht-D1c allele (Borner et al., 1991).  

Like Rht-D1c, Rht-D1d contains the Rht-D1b point mutation that leads to a 

predicted premature stop codon (Pestsova et al., 2008).  However, unlike Rht-

D1c, there does not appear to be an increase in Rht-D1 copy number, which 

might explain the height relative Rht-D1c (Pearce et al., 2011).  Taken 

together, these data suggest that the spontaneous mutation in Rht-D1c that 

produced Rht-D1d involved a reduction in gene copy number. 

 

1.4. ADDITIONAL RHT LOCI AFFECTING PLANT HEIGHT IN WHEAT 

 

According to the Catalogue of Gene Symbols 

(http://www.shigen.nig.ac.jp/wheat/komugi/genes/symbolClassList.jsp), in 

addition to the Rht-1 homoeoloci, there are a further 18 loci (Rht4 to Rht21) 

that reduce height in wheat.  These 18 additional loci are all classified as GA 

sensitive and none have been cloned.  The semi-dwarf allele Rht8 (the wild 

type allele at this locus will be referred to as rht8, according to Gasperini, 

2010), located on chromosome 2D, is one of the few GA sensitive Rht alleles 

that reduce plant height without impacting grain yield (Worland and Law, 

1986). Rht8 is the predominant allele conferring reduced height in Italian 

wheat varieties and it is also commonly found in Southern and Eastern 

Europe, and in lower frequencies in other parts of the world (Borojevic and 

Borojevic, 2005).  Relative to Rht-B1b and Rht-D1b, plants containing Rht8 

have a longer coleoptile and greater seedling vigour (Rebetzke et al., 2001).  

For these reasons, Rht8 is being incorporated into wheat varieties in arid 
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regions as a replacement for Rht-B1b or Rht-D1b (Rebetzke et al., 2007).  

Rht8 and the photoperiod insensitive Ppd-D1a allele were both introduced into 

Italian wheat via the Japanese variety „Akakomugi‟ in the early 20th century by 

Nazareno Strampelli in an attempt to develop early maturing varieties with 

resistance to lodging (Giorgi et al., 1982; Worland, 1999).  The genetic 

distance between Ppd-D1 and Rht8 is estimated at 21.7 cM (Gasperini, 

2010).  The Ppd-D1a allele contains a 2,089 bp deletion in its promoter 

region, which is the likely cause of the insensitivity (Beales et al., 2007).  Ppd-

D1a reduces the time to flowering by an average of six to eight days when 

October sown in the UK (Norwich) and is also associated with a reduction in 

plant height (Worland et al., 1998a). 

 

To estimate the effects of Rht8 and Ppd-D1a on plant height, a substitution 

line using Mara 2D was created in Cappelle Desprez (Cappelle Desprez/Mara 

2D) by Korzun et al. (1998).  Cappelle Desprez has the genotype rht8+Ppd-

D1b (photoperiod sensitive) and owing to the substitution Cappelle 

Desprez/Mara 2D has the genotype Rht8+Ppd-D1a.  Trial results showed that 

Cappelle Desprez/Mara 2D was on average 18 cm shorter than Cappelle 

Desprez with an estimated 10 cm of the height reduction attributable to Ppd-

D1a and 8 cm to Rht8 (Worland et al., 1998).  Recently, Cappelle 

Desprez/Mara 2D recombinant inbred lines (RILs) were grown and scored at 

the Ppd-D1 and Rht8 loci (Gasperini, 2010).  The data obtained by Gasperini 

showed that Ppd-D1a+Rht8 RILs were 16 cm (15%) shorter than Cappelle 

Desprez, which was in agreement with those obtained by Worland et al. 

(1998b).   However, in the Gasperini study, most of the height reduction was 

associated with Rht8 as Rht8 RILs were 14 cm (13%) shorter and Ppd-D1a 

RILs were 4 cm (3%) shorter than Cappelle Desprez.  The reduced height in 

Rht8 lines is due to a decrease in internode length throughout the stalk that is 

likely caused by an altered sensitivity to brassinosteriods (Gasperini, 2010). 

 

The GA sensitive allele, Rht9, is also present in „Akakomugi‟ and therefore is 

likely present in many of the same varieties that carry Rht8 (Dalrymple, 1980; 

Gale and Youssefian, 1985).  Rht9 was originally thought to be located on 
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7BS (Worland et al., 1990), but more recently a quantitative trait locus (QTL) 

for height related to Rht9 was found on 5AL (Ellis et al., 2005). 

 

1.5. PHYSIOLOGICAL EFFECTS OF RHT-B1B AND RHT-D1B 

 

1.5.1. Rht-B1b and Rht-D1b effects on wheat morphology and yield 

 

In addition to reducing plant height, Rht-B1b and Rht-D1b have pleiotropic 

effects on plant morphology and grain yield.  The reduced height in lines with 

the Rht-B1b or Rht-D1b alleles results from a reduced internode cell length, 

while lines with the more severe Rht-B1c allele also have reduced cell number 

(Flintham et al, 1997).  Although stem length is reduced in Rht-B1b or Rht-

D1b semi-dwarf varieties, there is no change in spikelet number (Gale, 1979; 

Brooking and Kirby, 1981; Youssefian et al., 1992).  Rht-B1b and Rht-D1b 

alleles are associated with an increase in the number of fertile florets (in 

particular, distal florets) per ear, thereby increasing the total number of grains 

per ear relative to the wild type (Flintham and Gale, 1983; Miralles and Slafer, 

1995).  Although grain size is generally reduced in the lines with the Rht-B1b 

or Rht-D1b allele, the increase in grain number results in improved yield (Gale 

and Youssefian, 1985).  Reduced grain size is attributed to intra-floral 

competition for assimilate rather than a direct effect of Rht-1 gene expression 

in these tissues (Flintham et al., 1997).  Hence, grain yield of Rht-B1b and 

Rht-D1b semi dwarf plants is largely dependent on the supply of assimilates 

and, under favourable conditions, semi-dwarf alleles are associated with 

increased harvestable yield beyond that which can be accounted for by 

reduced stalk lodging (Gale and Youssefian, 1985; Flintham et al., 1997; 

Chapman et al., 2007).  There is no clear difference between the effects of 

Rht-B1b or Rht-D1b on yield (Gale and Youssefian, 1985), which may be due 

to the close similarity of these two mutations (described in section 1.3.2).  

Overall, for Rht-B1b or Rht-D1b semi-dwarf varieties, there is little or no 

change in total above ground biomass, but a larger proportion of this biomass 

is in the grain thereby increasing harvest index (Gale and Youssefian, 1985).   
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The effect of dwarfing alleles on root growth is not well understood.  In some 

studies, wheat plants with Rht-B1b or Rht-D1b have reduced root mass 

(Subbiah et al., 1968; McKey, 1973; Siddique et al., 1990), while other studies 

suggest an association with increased root mass (Bush and Evans, 1988; 

Miralles et al., 1997).  Several other studies showed no association between 

dwarfing alleles and root growth (Lupton et al., 1974; Cholick et al., 1977; 

Richards and Passioura, 1981; Wojciechowski et al., 2009; Saville, 2011).  

Root growth studies have differed in methodology and growth conditions, 

which have been shown to markedly affect the outcome (Wojciechowski et al., 

2009). 

 

1.5.2. Rht-B1b and Rht-D1b effects on wheat abiotic stress performance 

 

Under low production environments, the yield advantages normally associated 

with Rht-B1b and Rht-D1b are often diminished or absent (Gale and 

Youssefian, 1985).  This is particularly true of spring-type wheats containing 

semi-dwarfing alleles (Gale and Youssefian, 1985; Flintham et al., 1997).  

Chapman et al. (2007) grew 16 pairs of spring wheat NILs containing Rht-B1b 

or Rht-D1b and compared these to Rht-B1a+Rht-D1a NILs under differing 

irrigation regimes in Mexico.  Their results showed that in the high yield 

(irrigated) environments, short-strawed varieties were higher yielding, but in 

the lowest yielding (drought) environments, the benefit of the short-strawed 

varieties disappeared.  Loss of the yield benefit usually associated with Rht-

B1b and Rht-D1b under drought conditions was also reported by Sojka et al. 

(1981), Richards (1992a), and Innes and Blackwell (1984).  It was also 

reported that drought stress at various stages throughout the growing period 

reduces both grain number and grain weight to a greater extent in lines with 

semi-dwarfing alleles than in wild type lines, which is thought to result from 

decreased water use efficiency in the semi-dwarf lines (Nizam Uddin and 

Marshall, 1989; Richards 1992b).  Heat stress during various stages can also 

be more detrimental to yield in lines with the Rht-B1b or Rht-D1b alleles than 

wild type lines.  Heat stress during ear initiation reduces competent floret 

number, heat stress during meiosis reduces pollen viability, and post-anthesis 
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heat stress reduces grain size to a greater extent in semi-dwarfs than in wild 

type lines (Hoogendoorn and Gale, 1988). 

 

Rht-B1b and Rht-D1b alleles are associated with a shortened coleoptile and 

reduced early seedling vigour (less leaf area) relative to GA sensitive alleles 

(Rebetzke et al., 2001).  Poor stand establishment may occur when semi-

dwarfs are planted at greater than 5 cm depth (Allan, 1989).  This can be 

problematic when planting in dry soils that require a greater planting depth to 

reach moisture and can result in poor stand establishment if coleoptiles 

cannot bring the shoot to the soil surface (Schillinger et al., 1998).  In addition, 

seedlings may emerge later and lack vigour needed for early leaf 

development (Kirby, 1993).  In arid wheat regions, such as parts of Australia, 

wheat breeders have suggested that GA sensitive alleles such as Rht8 may 

be more suitable than Rht-B1b and Rht-D1b (Ellis et al., 2004). 

 

1.5.3. Rht-B1b and Rht-D1b associations with Fusarium Head Blight  

 

Fusarium Head Blight (FHB) is an important fungal disease caused by F. 

graminearum, which results in substantial wheat yield losses and reduced 

grain quality due to increased concentrations of the mycotoxin deoxynivalenol 

(DON).  Several studies have demonstrated a negative correlation between 

plant height and FHB severity (Mesterhazy, 1995; Miedaner 1997; Hilton et 

al., 1999; Buerstmayr et al., 2000; Somers et al., 2003; Gervais et al., 2003; 

Schmolke et al., 2005; McCartney et al., 2007; Miedaner & Voss, 2008; 

Haberle et al., 2009).  The cause of this correlation has either been attributed 

directly to the height of the inflorescence above the soil surface (Yan et al., 

2011) or to linkage associated with Rht-D1b or Rht-B1b (Srinivasachary et al., 

2009).   

 

Lines with the Rht-D1b allele are reported to have decreased Type 1 

resistance (resistance to initial infection) with no change in Type 2 resistance 

(resistance to spread in the ear) relative to lines containing Rht-D1a 

(Srinivasachary et al., 2008; Srinivasachary et al., 2009).  During initial 

infection, the fungus is thought to be in a biotrophic stage (Brown et al., 2010) 
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and during growth in the ear is in a necrotrophic stage (Boddu et al., 2006).  

Srinivasachary et al. (2008) showed that the greatest effect (51% increased 

FHB susceptibility) was attributed to a QTL encompassing Rht-D1b in the 

Spark (Rht-D1a, moderately FHB resistant) × Rialto (Rht-D1b, susceptible) 

doubled haploid wheat population.  Increased susceptibility to FHB associated 

with Rht-D1b was also reported by Hilton et al. (1999), Draeger et al. (2007), 

Holzapfel et al. (2008), Voss et al. (2008), and Meidaner and Voss (2008).  

This association is also suggested by the finding that UK winter wheat 

varieties, which predominantly carry the Rht-D1b allele, are generally 

susceptible to FHB (Gosman et al., 2007).  Lines containing Rht-B1b were 

also associated with decreased Type 1 resistance, but were associated with 

increased Type 2 resistance relative to lines containing Rht-B1a 

(Srinivasachary et al., 2009).  The association of Rht-B1b with the level of 

plant FHB resistance in studies other than Srinivasachary (2009) is less clear.  

Rht-B1b was associated with a 19% increased severity of FHB disease, but 

this was not statistically significant (Medianer and Voss, 2008).  Steiner et al. 

(2004) reported that a QTL thought to correspond to Rht-B1b accounted for 

just 7.4% of the phenotypic variance associated with FHB.  

 

It was previously suggested that increased FHB susceptibility of semi-dwarf 

wheat plants was related to increased humidity surrounding the ear (Klahr et 

al., 2007; Somers et al., 2003a) or due to other microclimate effects directly 

related to plant height.  However, height was not correlated to FHB resistance 

among plants when Draeger et al. (2007) compared Rht-D1a and Rht-D1b 

doubled haploid subpopulations separately (thereby removing the 

confounding effect of the Rht-D1b QTL).  Hilton et al. (1999) also found no 

difference in relative humidity between tall and short NILs and suggested that 

microclimate did not explain the difference in FHB susceptibility between 

semi-dwarf and wild type NILs.  In a recent study, however, Yan et al. (2011) 

attributed differences in FHB severity associated with Rht alleles to the direct 

or indirect effects of height per se.  In this study, ten Rht NIL pairs, each 

consisting of an Rht line and a wild type line in an isogenic background, were 

evaluated for FHB severity in a controlled environment facility.  A wide range 

of Rht alleles were evaluated that included alleles from Rht-B1 and Rht-D1 
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loci (Rht-B1b, Rht-D1b, and Rht-B1c) and alleles from GA sensitive Rht loci 

(Rht4, Rht5, Rht8, Rht8+9, Rht11, and Rht13).  In trial set 1, the wild type NIL 

resulted in significantly (p < 0.05) better FHB type 1 resistance than the Rht 

NIL in eight of the ten NIL pairs (Rht5 and Rht13 were not significantly better).  

Increased FHB susceptibility associated with Rht loci other than Rht-B1 or 

Rht-D1 indicates that susceptibility is not likely to be caused by genes linked 

to Rht-D1b or Rht-B1b.  In trial set 2, the pots containing Rht NIL plants were 

physically raised so that ear height was the same as that of the wild type NIL.  

With the difference in ear height removed, there was no longer a significant (p 

< 0.05) difference in type 1 resistance between Rht and wild type plants in 

nine of the ten NIL pairs (Rht8+9 was significantly different).  However, in trail 

set 2, while FHB infection levels in the Rht NILs were slightly reduced, 

infection levels of the wild type NILs were nearly double that reported for trial 

set 1.  The authors suggest that the possible cause of increased susceptibility 

in the Rht lines in sets 1 and 2 is related to microclimate differences (higher 

humidity or increased temperature) that may be present at lower ear heights 

or to morphological changes associated with ears of the Rht lines.  The 

increased wild type NIL susceptibility appears to be the primary reason that 

differences in FHB susceptibility disappear in trial set 2.  More work is 

required to resolve the effect of plant height on FHB susceptibility. 

 

1.6. EVOLUTIONARY HISTORY AND GENETIC DIVERSITY OF WHEAT 

AND POACEAE SPECIES 

 

The evolutionary history of wheat and related Poaceae (grass) species has 

implications on wheat genetic diversity and is the basis for comparative 

genomics.  Determining genetic diversity among species at the genomic and 

individual gene level is critical in searches for useful genetic variation.  

Several genetic bottlenecks have occurred during wheat‟s evolutionary history 

that resulted in the loss of diversity (Reif et al., 2005; Haudry et al., 2007) and 

these were among the largest losses seen in crop species (Haudry et al., 

2007).  Hence, ancestral wheat lines represent key sources of allelic variation 

that could be used in future wheat breeding efforts.  The radiation of the 

Poaceae from a common ancestor is revealed in the syntenic relationships 
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among grass species (Gale and Devos, 1998).  The large amount of 

colinearity between genes of wheat and sequenced Poaceae species makes 

comparative genomics possible, which is an important tool for understanding 

the molecular genetics of wheat especially with the lack of a fully assembled 

wheat genomic sequence. 

 

Wheat and the Poaceae have a complex evolutionary history that includes 

whole genome duplications and polyploidisation (Figure 1.4).  The common 

ancestor of the Poaceae is thought to have contained five chromosomes 

(Salse et al., 2008).  A whole genome duplication occurred in this ancestor 

approximately 70 million years ago (MYA), followed by several million years 

before divergence of the Panicoideae (sorghum and maize), Pooideae 

(wheat, barley, and Brachypodium), and Oryzeae (rice) lineages (Paterson et 

al., 2004).  The divergence dates of the Panicoideae and Oryzeae lineages 

from the Triticeae lineage are estimated at 60  MYA and 50 MYA, respectively 

(Chalupska et al., 2008).  Maize and sorghum did not diverge from each other 

until as recently as 12 MYA (Swigonova et al., 2004).  Following the split in 

the maize and sorghum lineages, a whole genome duplication occurred in 

maize at least 4.8 MYA (Swigonova et al., 2004).  Maize currently contains 

approximately 25% of its genes as duplicate homoeologues (Schnable et al., 

2009).  Divergence of Brachypodium from the wheat ancestor occurred 

approximately 32 to 40 MYA (Bossolini et al., 2007; Chalupska et al, 2008; 

The International Brachypodium Initiative, 2010).  Within the Triticeae, most 

estimates of the divergence times of barley and wheat range from 10 to 15 

MYA (Ramakrishna et al., 2002; Huang et al., 2002; Dvorak and Akhunov 

2005; Chalupska et al., 2008). 

 



 

23 
 

 

Figure 1.4.  Evolutionary history of wheat and selected Poaceae 

Estimated time of divergence is shown at branch points (MYA = millions of years ago).  Black 

dots represent whole genome duplications (WGD).  For wheat, genome designations are 

shown below species name.  BB/GG indicates that Aegilops speltoides gave rise to species 

with BB or GG genomes.  Dashed arrows indicate intermating and substantial gene flow 

between species.  The question mark indicates that the tetraploid progenitor of wheat is not 

known, but is hypothesised to be T. dicoccum.  Wheat divergences based on Charmet (2011). 

 

Following separation from barley, the ancestral genomes that now compose 

T. aestivum diverged from one another approximately 2-4 MYA to form the A, 

B, and D genome lineages (Huang et al., 2002; Dvorak and Akhunov, 2005; 

Chalupska et al., 2008).  The D genome lineage gave rise to Aegilops (Ae.) 

tauschii (DD genome), also known as Ae. squarrosa.  The A genome lineages 

further subdivided to include T. urartu (AA), T. boeoticum (AbAb genome; 

common name: wild einkorn), and T. monococcum (AmAm, common name: 

einkorn).  The B genome lineage of wheat is derived from the Sitopsis section 

of Aegilops, which have an SS genome designation.  Several species make 
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up the Sitopsis including, Ae. sharonensis (ShSh), Ae. longissima (SlSl), Ae. 

searsii (SsSs), Ae. bicornis (SbSb), and Ae. speltoides (SS).  The contributor of 

the T. aestivum B genome is not fully established, but a recent publication 

suggests that Ae speltoides is the likely progenitor (Kilian et al., 2007).  Ae. 

speltoides is a natural outcrosser and has the highest level of haplotype 

diversity among the Sitopsis group (Kilian et al., 2007), which could have 

implications regarding the B genome diversity of T. aestivum.  The polyploid 

T. dicoccoides (AABB genome, common name: wild emmer) is thought to 

have originated approximately 150,000 to 500,000 years ago (Levy and 

Feldman, 2002; Charmet, 2011) from the crossing and polyploidisation of T. 

urartu (AA) with Ae. speltoides (SS).  The domesticated form of T. 

dicoccoides is known as T. dicoccum (AABB, common name: domesticated 

emmer).  Domesticated emmer is the progenitor of modern durum wheat (T. 

durum, AABB).  T. aestivum (AABBDD) arose from the interspecific cross and 

subsequent polyploidisation of Ae. tauschii with either T. dicoccum as 

suggested by Zohary and Hopf (2000) or T. dicoccoides approximately 8-

10,000 years ago (Levy and Feldman, 2002). 

 

Sequence analysis has revealed genetic bottlenecks during the domestication 

of wheat.  A loss in genetic diversity was reported during the domestication of 

tetraploid wheat, with a 70% loss between T. dicoccoides and T. dicoccum 

and 69% loss between T. dicoccoides and T. aestivum when averaged across 

21 loci (Haudry et al., 2007).  An even greater loss (30-fold) in genetic 

diversity was reported between the D genome of T. aestivum varieties and 

Ae. tauschii at the GSS (Granule-bound Starch Synthase) locus (Caldwell et 

al., 2004).  This likely is the result of the origin of bread wheat from just a 

small number of hexaploidisation events with the D genome donor Ae. 

tauschii (Talbert et al., 1998; Caldwell et al., 2004) and little inter-mating 

between bread wheat and Ae. tauschii (Dvorak et al., 1998), whereas a 

substantial amount of inter-mating appears to have occurred between T. 

aestivum and tetraploid wheat (Dvorak et al., 2006; Dubocovsky and Dvorak 

2007; Luo et al., 2007).  This may also explain why variation among D 

genomes of bread wheat varieties tends to be less than that of the A and B 

genomes (Caldwell et al., 2004; Dubcovsky and Dvorak, 2007; White et al., 
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2008; Chao et al., 2009).  In addition, further reductions in genetic diversity 

are likely to have occurred during selection of beneficial agronomic traits 

during domestication (Tanksley and McCouch, 1997). 

 

1.7. ORIGIN AND DISTRIBUTION OF RHT-B1B AND RHT-D1B 

 

1.7.1. Origin and spread of ‘Norin 10’ 

 

The Rht-B1b and Rht-D1b alleles in modern wheat varieties are 

predominantly derived from the Japanese variety „Norin 10‟.  By pedigree 

history, the oldest known ancestor of „Norin 10‟ is the Japanese landrace 

„Daruma‟, which is thought to be the source of both semi-dwarfing alleles 

(Dalrymple, 1980; Kihara, 1983; Dalrymple, 1986). „Daruma‟ dates back to at 

least the turn of the 20th century with records showing that in 1894 it was used 

as a control in wheat trials in Japan (Kihara, 1983).  According to Kihara 

(1983), „Daruma‟ is short for „Bodhi Dharma‟, the founder of Zen Buddhism in 

China, who is known for “sitting on the floor and facing to the wall in a cave for 

nine years, which took away his ability to walk”.  „Daruma‟ has come to mean 

„no legs‟ and „do not tumble down‟ in Japan, which may be the reason 

lodging-resistant wheat and rice was given this name (Kihara, 1983).  It has 

also been suggested that „Daruma‟ may have originated in the Korean wheat 

population „Anzunbaengimil‟, which means “crippled wheat”, existing as early 

as the 3rd or 4th century AD (Cho et al., 1980).  The authors speculated that it 

may have been introduced to Japan during the 16th century Korean-Japanese 

War or by Japanese agronomists dispatched to Korea from 1901 to 1905, 

although this latter date is subsequent to the date (1894) that „Daruma‟ was 

used in Japanese wheat trials. 

 

The Rht-B1b and Rht-D1b dwarfing alleles were introduced to the Western 

World when S.C. Salmon, a United States Department of Agriculture (USDA) 

advisor to the army in Japan, brought „Norin 10‟ to the US in 1946 (Reitz and 

Salmon, 1968).  „Norin 10‟ was not suitable for cultivation in the USA, but it 

proved valuable in breeding.  Orville Vogel, a USDA scientist at Washington 

State University, was the first person to utilise „Norin 10‟ in the US, 
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incorporating it into his breeding programme beginning in 1949 (Reitz and 

Salmon, 1968).  In Vogel‟s breeding programme, the cross „Norin 10 x Brevor‟ 

was made and progeny of this cross became the predominant source of 

dwarfism in wheat in the US and worldwide.  Vogel‟s work on short-strawed 

wheat coincided with the work of Norman Borlaug, then working at CIMMYT 

(International Maize and Wheat Improvement Center) in Mexico to improve 

wheat yields by the use of high levels of nitrogen fertilisation.  Seed of a 

selection of „Norin 10/Brevor‟ was sent to Borlaug in 1953 and the first 

successful crosses made in 1955 (Dalrymple, 1986).  Beginning in 1962, a 

series of semi-dwarf bread wheat varieties was released from the CIMMYT 

programme and distributed to many regions around the world including 

Australia, the Middle East, Latin America, and Africa, representing the origin 

of the „green revolution‟ in wheat.  The end result was a rapid introgression of 

Rht-B1b and/or Rht-D1b into most of the world‟s hexaploid wheat varieties.  

For his contributions to the world food supply, Norman Borlaug was awarded 

the Nobel Peace Prize in 1970. 

 

1.7.2. Alternative sources of Rht-B1b and Rht-D1b 

 

There are several alternative, albeit relatively minor sources of the Rht-B1b 

and Rht-D1b alleles in addition to „Norin 10‟.  Two alternative sources used in 

US wheat varieties include „Suweon 92‟ (also referred to as „Suwon 92‟) and 

„Seu Seun 27‟, which were both derived from „Daruma‟ (the putative source of 

Rht-B1b and Rht-D1b) and developed in Korea (Dalrymple, 1986).  At least 

132 additional „Norin‟ lines exist in addition to „Norin 10‟ and 102 of these 

were shown to contain Rht-B1b and/or Rht-D1b by test-crossing to Rht-B1b 

and Rht-D1b and measuring and GA response in F2 seedlings (Yamada, 

1990).  The National Agricultural Experiment Stations in Japan used the 

„Norin‟ numbering system in the early part of the 20th century (Nakamura et 

al., 1999), hence the term „Norin‟ does not necessarily refer to plant height.  

„Daruma‟ is shown in the parentage of only a small number of the „Norin‟ lines 

examined by Yamada (1990), suggesting the possibility that non-„Daruma‟ 

sources of Rht-B1b and Rht-D1b may be present in the „Norin‟ lines.  The 

semi-dwarf lines „Norin 16‟, „Norin 26‟, and „Norin 33‟ have had limited use in 
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the US (Dalrymple, 1980).  „Norin 16‟ contains „Daruma‟ in its parentage while 

„Norin 26‟ and „Norin 33‟ have an unknown source of semi-dwarfism 

(Dalrymple 1980; Yamada 1990).  Yamada (1989) also identified four 

Japanese landraces that contained the Rht-D1b allele that had an unidentified 

source.  In China, „Suwon 86‟, a Korean variety derived from „Daruma‟, is a 

major souce of Rht-B1b and Rht-D1b (Zhang et al., 2006).  The authors also 

reported that two other major sources of Rht-D1b, accessions „Huixianhong‟, 

and „Yaobaomai‟ have unknown sources of semi-dwarfism.  „Huixianhong‟ is a 

landrace that was a leading cultivar in the 1930s and „Yaobaomai‟ is a variety 

released in 1964 (Zhang et al., 2006).  Along with „Norin 10‟, the Italian 

cultivar „St 2422/464‟ may be a major source of Rht-B1b in China (Zhang et 

al., 2006), however „St2422/464‟ showed moderate response to GA and may 

in fact contain the Rht-B1d allele (Jia et al., 1992).  These reports indicate that 

several sources of the Rht-B1b and Rht-D1b alleles not derived from „Norin 

10‟ are found in modern wheat varieties and in addition, some of these 

sources may not be derived from „Daruma‟. 

 

1.7.3. Rht-B1b and Rht-D1b prevalence in the world 

 

Several groups have estimated the prevalence of Rht-B1b and Rht-D1b in 

specific countries either by pedigree analysis, crossing to semi-dwarf tester 

lines and measuring GA response in F2 progeny, or more recently using the 

Rht-B1b and Rht-D1b perfect markers developed by Ellis et al., (2002).  As 

discussed in section 1.7.1, most US semi-dwarf varieties are derived from 

„Norin 10‟, but some are derived from other sources.  The first semi-dwarf 

variety released in the US was „Gaines‟ in 1961, which acquired its short 

stature from „Norin 10/Brevor 14‟.  In 1964, „Gaines‟ represented nearly all of 

the US semi-dwarf wheat acreage and 3% (1.6 million acres) of the total US 

wheat acreage (Dalrymple, 1980).  By 1969, semi-dwarfs represented 7% of 

the US wheat acreage with „Gaines‟ and its progeny „Nugaines‟ representing 

over 70% of the semi-dwarf acreage (Dalrymple, 1980).  By 1974 semi-dwarfs 

represented 22% of U.S acreage with 19 varieties planted to more than 

100,000 acres each (Dalrymple 1980).  Progeny of the Korean varieties „Seu 

Seun 27‟ and „Suweon 92‟, represented 3% (480,000 acres) and 12% (1.8 
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million acres), respectively, of the land planted to semi-dwarfs varieties in 

1974 (Dalrymple, 1980).  Most of the early US semi-dwarf lines are derived 

from breeding material created in the US and to a lesser extent from CIMMYT 

breeding lines (Dalrymple 1980). 

 

Semi-dwarf wheat varieties currently used in the United Kingdom (UK) are 

thought to be predominantly derived from „Vg9144‟ and „Vg8058‟, which are 

two semi-dwarf varieties from Orville Vogel‟s breeding programme which have 

a „Norin 10‟ ancestry (Gale and Youssefian, 1985).  These lines were sent to 

Chile where they were crossed with tall French varieties before being sent to 

the Plant Breeding Institute (PBI), Cambridge, UK, in 1964 (Gale and 

Youssefian, 1985).  This germplasm was not directly suitable for use in the 

UK, but was utilised as breeding material.  In 1974, the first UK semi-dwarf 

varieties „Fundin‟, „Bilbo‟, and „Durin‟ were released (Gale and Youssefian, 

1985).  Semi-dwarfs quickly dominated the market in the UK and by 1982 

varieties carrying a „Norin 10‟ dwarfing allele (later discovered to be Rht-D1b) 

represented over 75% of the winter wheat acreage (Gale and Youssefian, 

1985).  The PBI developed most of these varieties and eight of the nine semi-

dwarf varieties in the 1981 NIAB Recommended List came from this group 

(Gale et al., 1982).  The rapid adoption, limited sources of founding 

germplasm, and use of just the Rht-D1b allele represents a potential genetic 

bottleneck in UK wheat germplasm.  A genome-wide screen of Diversity Array 

Technology (DArT) markers applied to US, UK, and Australian commercial 

bread wheat cultivars released between 1930-2005 indicates that the UK had 

the least genetic diversity among these countries and that UK wheat diversity 

reached a low-point during the period (1975-1985) that semi-dwarfs were 

rapidly replacing tall varieties in the UK (White et al., 2008). 

 

In Australia, Rht-B1b or Rht-D1b are reported to be present in the majority of 

cultivars although a minority of other semi-dwarfing alleles exist (personal 

communication, Daryl Mares, School of Agriculture and Wine, University of 

Adelaide).  The first semi-dwarf varieties in Australia were derived from 

CIMMYT lines of „Norin 10‟ origin (Syme and Pugsley, 1974; Gale and King, 

1988) and several hundred lines were imported from the CIMMYT breeding 
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programme in 1963 (Syme and Pugsley, 1974).  In addition, Australian wheat 

breeders have repeatedly acquired additional semi-dwarf varieties from 

CIMMYT following the original introduction (Gale and King, 1988), which 

represents a greater donor base than seen in the UK.  The hard red spring 

wheat „WW15‟, which contains Rht-B1b derived from „Norin 10‟ has been a 

major source of semi-dwarfism in Australia giving rise to „Condor‟ and „Egret‟, 

both released in 1973 (Gale and King, 1988).  Rht-D1b was also present in 

the founding CIMMYT material used in Australia, but in 1985 was represented 

in only a minority of the varieties; however its prevalence is reported to be 

increasing over time (Gale and King, 1988). 

 

Two other studies to determine Rht-B1b and Rht-D1b prevalence were carried 

out in Germany and China.  In a survey of 94 German winter wheats, 6% 

carried Rht-B1b, 38% carried Rht-D1b, and none carried Rht8 (Knopf et al., 

2008).  The authors found that varieties with Rht-D1b were shorter and higher 

yielding than varieties not carrying the allele, but were more susceptible to 

FHB.  In a study of Chinese wheats, Rht-B1b and Rht-D1d were present in 

24.5% and 45.5% of the varieties, respectively (Zhang et al., 2006).   

 

1.8. LINKAGE DISEQUILIBRIUM AND SELECTIVE SWEEPS IN PLANTS 

 

The worldwide introgression of the semi-dwarfing alleles, Rht-B1b and Rht-

D1b, into most modern day wheat cultivars in less than 50 years represents 

an intense genetic selection on a global scale.  The intense selection pressure 

over a short time frame likely means that extensive linkage disequilibrium (LD) 

is associated with Rht-B1b and Rht-D1b.  The region of reduced variation 

associated with LD is often referred to as a “selective sweep” (Palaisa et al., 

2003).  Selective sweeps are associated with genes under selection, including 

crop domestication genes, and generally involve a loss in genetic diversity in 

these regions (Wang et al., 1999; Palaisa et al., 2003; Doebley et al., 2006).   

 

The size of the region in LD varies widely depending on factors such as 

reproductive mode (outcrossing versus inbreeding), selection intensity, pre-

existing levels of genetic diversity, and chromosomal location of the gene.  
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Several studies that have looked at average levels of LD in species indicate 

that self-pollinating or vegetatively propagated species tend to have a greater 

selective sweep than outcrossing species.  Nordberg et al. (2002) analyzed 

163 genome-wide SNPs in 76 Arabidopsis (an inbreeding species) 

accessions and found that average LD associated with the SNPs extended 

approximately 250 kb.  In contrast, LD decay is much more rapid in the 

natural outcrosser maize with LD decaying within an estimated 1.5 kb when 

six genes were examined in a diverse set of 102 maize inbred lines 

(Remington et al., 2001).  Genes under strong selection tend to have 

extended LD.  The selective sweep of the rice Waxy gene, selected for its 

quality characteristics during domestication, was 250 kb and included six 

other genes (Olsen et al., 2006).   Palaisa et al. (2004) examined Y1, a 

phytoene synthase gene that determines kernel colour in maize that was 

under strong selection in the 1930‟s in the US.  The region of LD around Y1 

was large, especially considering the outcrossing nature of maize, extending 

200 kb upstream and 700 kb downstream, and five linked genes in this region 

showed a pattern of reduced diversity.  Recombination rates vary across the 

chromosome, thereby affecting LD across the genome (Flint-Garcia et al., 

2003).  Maize, for instance, contains recombination hot spots within genes but 

reduced levels of recombination in intergenic regions (Fu et al., 2002).  Also, 

in wheat it was found that gene density and recombination rate increased with 

the relative distance from the centromere (Akhunov et al., 2003).  In the case 

of Rht-B1b, and Rht-D1b, these genes have only been selected recently and 

with a high selection pressure suggesting that the region of LD surrounding 

these loci is large, especially considering the inbreeding nature of wheat. 

 

1.9. PHD OBJECTIVES 

 

The Rht-B1b and Rht-D1b alleles were important contributors to the green 

revolution in wheat and are the predominant height-reducing alleles used in 

modern day bread wheat varieties.  Although these genes have been 

characterised and cloned, little is known regarding the genetic diversity of the 

Rht-1 homeoloci or the genetic composition of the contiguous sequence that 

was presumably introgressed along with the dwarfing alleles.  At the Rht-A1 
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locus, map location and full-length sequence is not currently available and 

genotypic and phenotypic variation at this locus has not been explored. 

 

The first objective of this project is to determine the nucleotide sequences of 

the three Rht-1 homoeologues along with that of the nearby genetic region in 

a common genetic background.  This will be accomplished by screening the 

CS wheat BAC library to identify Rht-1-containing clones, which will be fully 

sequenced and annotated.  The genetic information will be useful in 

identifying regions of high conservation, which will help identify key regulatory 

sequences. 

 

A second objective of the project is to determine the genetic location of the 

Rht-A1 homoeologue by deletion bin mapping and genetic mapping.  

Knowledge of the Rht-A1 genetic location and associated markers opens up 

the possibility of exploring useful genetic variation in and around this locus. 

 

A third objective is to explore the haplotype variation associated with the Rht-

1 homoeologues in ancestral wheat lines and in modern bread wheat varieties 

from the UK and from a world-wide collection.  This will be accomplished by 

sequencing the ORF and flanking regions of all three Rht-1 homoeologues.  

This information will be used to identify haplotypes and associated markers, 

which represent a potential resource for understanding phenotypic 

consequences of the genetic variation. 

 

Lastly, this project will explore the origins of the „Norin 10‟ alleles by 

determining the genotypes and phenotypes of „Norin 10‟ ancestors.  This will 

help identify the progenitor lines and should lead to a greater understanding of 

the genetic history of these alleles and potential sources for novel variation in 

and around the Rht-B1b and Rht-D1b alleles. 

 

Determining variation at the Rht-1 loci and developing genetic markers 

represents a key resource for identifying beneficial alleles at this locus and in 

surrounding genes.  This knowledge can aid in our understanding of DELLA 

function and provides resources that be used to improve wheat. 
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2. IDENTIFICATION AND GENETIC ANALYSIS OF BAC CLONES 

CONTAINING RHT-1 

 

Results from this chapter were part of a publication in the journal Genome 

(Febrer et al., 2009).  Attached as a pdf and as a hard copy in thesis jacket) 

 

2.1. INTRODUCTION 

 

Due to their agronomic importance, Rht-B1 and Rht-D1 were among the first 

loci to be mapped and cloned in wheat (Peng et al., 1999).  However, over a 

decade later, little is known regarding the immediate sequence surrounding 

the Rht-1 loci and the presence of Rht-1 on the A genome has not been 

established.  Although wheat is the most important food crop worldwide after 

rice and many cereal crop species have a fully assembled sequence (e.g. 

rice, maize, sorghum), wheat still lacks an assembled sequence making 

molecular studies difficult.  The absence of assembled wheat sequence is 

primarily due to the size and complexity of the genome.  Bread wheat is an 

allohexaploid that consists of three genomes (A, B, and D) that together 

comprise >16 000 MB of sequence, 80% of which is repetitive (Gupta et al., 

2008).  An effort is underway by the International Wheat Genome Sequencing 

Consortium (IWGSC; http://www.wheatgenome.org) to provide high quality 

reference sequence of Chinese Spring that is fully assembled into 

chromosomes and annotated.  As of March 2011, reference sequence from 

the IWGSC is available for 25% of 3BS and 25% of 3BL.  In addition, 5x 

„shotgun‟ coverage of the CS genome is currently available from a separate 

collaboration (http://www.cerealsdb.uk.net).  However, other than selected 

gene-rich regions this sequence is currently not assembled into contigs nor is 

the sequence physically mapped or annotated. 

 

To obtain wheat sequence for assembly of specific genes and genetic 

regions, bacterial artificial chromosome (BAC) large-insert libraries have been 

used (Shizuya et al, 1992).  BACs have become the favoured method to clone 

large genomic inserts (Xia et al., 2005) because of the high transformation 

efficiency of Escherichia coli and the stability of inserts, coupled with the ease 
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of BAC DNA purification and its compatibility with sequence determination 

protocols.  Several BAC libraries useful to bread wheat studies have been 

created including Aegilops tauschii (the D genome ancestor) (Moullet et al., 

1999; Xu et al., 2002, Akhunov et al., 2005), Triticum urartu (the A genome 

ancestor) (Akhunov et al., 2005), Triticum monoccum (diploid; A genome) 

(Lijavetzky et al., 1999), Aegilops speltoides (diploid; B genome) (Akhunov et 

al., 2005), and Triticum turgidium (AB) (Cenci et al., 2003).  For T. aestivum, a 

bulked library was reported for genotype „Hartog‟ (Ma et al., 2000) and 

gridded BAC libraries for genotypes „Renan‟ (Chalhoub et al., 2002), „Glenlea‟ 

(Nilmalgoda et al., 2003), „CS‟ (Allouis et al, 2003), and „Norstar‟ (Ratnayaka 

et al., 2005).   

 

A high redundancy of genome coverage in BAC libraries is important for 

recovering a desired sequence, but high coverage along with the immense 

size of the wheat genome results in large libraries that are laborious to 

screen.  Targeted BAC sequences can be identified by two methods: 

radioactive hybridisation and, more recently, PCR screening (Klein et al., 

2000: Yim et al., 2007).  Hybridisation relies on high-density filters that are 

screened with radioactive probes, however probes may lack specificity and 

the process can be cumbersome.  PCR screening is relatively simple, fast, 

and sensitive, but first relies on the pooling of BAC clones in three or more 

dimensions.  The 3-D pooling strategy was recently applied to a 

Brachypodium distachyon BAC library to facilitate PCR screening (Farrar and 

Donnison, 2007) and more recently to bread wheat (Febrer et al., 2009). 

 

This chapter describes the identification and characterisation of BAC clones 

containing Rht-1 from the CS wheat BAC library.  The „French‟ and „UK‟ 

components of the library were screened using hybridisation and PCR, 

respectively, to identify Rht-1-containing clones from the A, B, and D 

genomes. 

 

2.2. MATERIALS AND METHODS 

 

2.2.1. The Triticum aestivum (cv Chinese Spring) BAC library 
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The CS bread wheat BAC library constructed by Allouis et al. (2003) as part of 

a collaboration between the BBSRC (UK) and INRA (France) was used in this 

study.  The library coverage is 9.3 haploid genome equivalents and consists 

of 1,200,000 clones (3125 384-well microtitre plates) with an average insert 

size of 130 kb (ranging from 45 kb to 350 kb) (Allouis et al., 2003).  After 

construction of the library, it was subdivided into „French‟ and „UK‟ 

components.  The French component contains approximately 3 haploid 

equivalents of the hexaploid wheat genome and consists of 1332 384-well 

plates.  To facilitate screening, BAC clones were gridded onto high-density 

colony filters in two dimensions as described by Allouis et al. (2003).  A set of 

the colony filters from the French component is held at the John Innes Centre 

(JIC), Norwich, UK.  The UK component is also held at the JIC Genome 

Centre and contains 715,776 clones (1864 384-well microtitre plates) and 

represents 5 haploid equivalents of the bread wheat genome.  To facilitate 

rapid PCR screening of the UK component, clones were recently pooled to 

allow for a 3-D screening procedure (Febrer et al., 2009), although the pooled 

library had not been tested prior to the current study. 

 

2.2.2. Screening of the French component of the CS BAC library by 

radioactive hybridisation 

 

2.2.2.1. Screening strategy and probe construction 

 

Filters containing the entire French component of the CS library held at the 

JIC were screened using a 195 bp radiolabelled [32P] probe specific to Rht-1 

(probe 1).  Probe 1 is from the N-terminal region of Rht-1, which is specific to 

this gene.  Probe 1 was pooled with six additional probes from unrelated 

projects and the probe pool was used to screen the BAC library.  The probes 

were pooled to reduce wear on the colony filters.  BAC clones selected from 

the initial screen comprised a BAC sub-library.  The sub-library was screened 

with probe 1 and also screened with a 202 bp (probe 2) and a 503 bp probe 

(probe 3).  Probes 2 and 3 are also part of the N-terminal region of Rht-1. 

 



 

35 
 

All three probes are PCR amplification products from the CS D genome.  

Probe 1 (CS Rht-D1 bp 49 to 243) was amplified using primers Rht-16-F and 

Rht-11-R and spans the highly conserved DELLA domain (Figure 2.1).  Probe 

2 (CS Rht-D1 bp 264 to 465) was amplified using primers Rht-ABD-F1 and 

Rht-9-R and spans the highly conserved TVHYNP domain.  The primer pair 

Rht-22-F and Rht-9-R was used to amplify probe 3 (CS Rht-D1 bp -38 

(upstream) to 465), which spans the DELLA and TVHYNP domains.  Primer 

sequences are shown in Appendix I. 

 

 

Figure 2.1. Rht-D1a coding and upstream sequence in the CS background. Coding 

sequence is from Genbank accession no. AJ242531 and upstream sequence is from N. 

GRAS

N-terminus

-60  CAAAAGCTTC GCGCAATTAT TGGCCAGAGA TAGATAGAGA GGCGAGGTAG CTCGCGGATC 

1    ATGAAGCGGG AGTACCAGGA CGCCGGAGGG AGCGGCGGCG GCGGTGGCGG CATGGGCTCG 

61   TCCGAGGACA AGATGATGGT GTCGGCGGCG GCGGGGGAGG GGGAGGAGGT GGACGAGCTG 

121  CTGGCGGCGC TCGGGTACAA GGTGCGCGCC TCCGACATGG CGGACGTGGC GCAGAAGCTG 

181  GAGCAGCTCG AGATGGCCAT GGGGATGGGC GGCGTGGGCG CCGGCGCCGC CCCCGACGAC 

241  AGCTTCGCCA CCCACCTCGC CACGGACACC GTGCACTACA ACCCCACCGA CCTGTCGTCT 

301  TGGGTCGAGA GCATGCTGTC GGAGCTCAAC GCGCCGCCGC CGCCCCTCCC GCCCGCCCCG 

361  CAGCTCAACG CCTCCACCTC CTCCACCGTC ACGGGCAGCG GCGGCTACTT CGATCTCCCG 

421  CCCTCCGTCG ACTCCTCCAG CAGCATCTAC GCGCTGCGGC CGATCCCCTC CCCGGCCGGC 

481  GCGACGGCGC CGGCCGACCT GTCCGCCGAC TCCGTGCGGG ATCCCAAGCG GATGCGCACT 

541  GGCGGGAGCA GCACCTCGTC GTCATCCTCC TCCTCGTCGT CTCTCGGTGG GGGCGCCAGG 

601  AGCTCTGTGG TGGAGGCTGC CCCGCCGGTC GCGGCCGCGG CCAACGCGAC GCCCGCGCTG 

661  CCGGTCGTCG TGGTCGACAC GCAGGAGGCC GGGATTCGGC TGGTGCACGC GCTGCTGGCG 

721  TGCGCGGAGG CCGTGCAGCA GGAGAACCTC TCCGCCGCGG AGGCGCTGGT GAAGCAGATA 

781  CCCTTGCTGG CCGCGTCCCA GGGCGGCGCG ATGCGCAAGG TCGCCGCCTA CTTCGGCGAG 

841  GCCCTCGCCC GCCGCGTCTT CCGCTTCCGC CCGCAGCCGG ACAGCTCCCT CCTCGACGCC 

901  GCCTTCGCCG ACCTCCTCCA CGCGCACTTC TACGAGTCCT GCCCCTACCT CAAGTTCGCG 

961  CACTTCACCG CCAACCAGGC CATCCTGGAG GCGTTCGCCG GCTGCCGCCG CGTGCACGTC 

1021 GTCGACTTCG GCATCAAGCA GGGGATGCAG TGGCCCGCAC TTCTCCAGGC CCTCGCCCTC 

1081 CGTCCCGGCG GCCCTCCCTC GTTCCGCCTC ACCGGCGTCG GCCCCCCGCA GCCGGACGAG 

1141 ACCGACGCCC TGCAGCAGGT GGGCTGGAAG CTCGCCCAGT TCGCGCACAC CATCCGCGTC 

1201 GACTTCCAGT ACCGCGGCCT CGTCGCCGCC ACGCTCGCGG ACCTGGAGCC GTTCATGCTG 

1261 CAGCCGGAGG GCGAGGAGGA CCCGAACGAG GAGCCCGAGG TAATCGCCGT CAACTCAGTC 

1321 TTCGAGATGC ACCGGCTGCT CGCGCAGCCC GGCGCCCTGG AGAAGGTCCT GGGCACCGTG 

1381 CGCGCCGTGC GGCCCAGGAT CGTCACCGTG GTGGAGCAGG AGGCGAATCA CAACTCCGGC 

1441 ACATTCCTGG ACCGCTTCAC CGAGTCTCTG CACTACTACT CCACCATGTT CGATTCCCTC 

1501 GAGGGCGGCA GCTCCGGCGG CGGCCCATCC GAAGTCTCAT CGGGGGCTGC TGCTGCTCCT 

1561 GCCGCCGCCG GCACGGACCA GGTCATGTCC GAGGTGTACC TCGGCCGGCA GATCTGCAAC 

1621 GTGGTGGCCT GCGAGGGGGC GGAGCGCACA GAGCGCCACG AGACGCTGGG CCAGTGGCGG 

1681 AACCGGCTGG GCAACGCCGG GTTCGAGACC GTCCACCTGG GCTCCAATGC CTACAAGCAG 

1741 GCGAGCACGC TGCTGGCGCT CTTCGCCGGC GGCGACGGCT ACAAGGTGGA GGAGAAGGAA 

1801 GGCTGCCTGA CGCTGGGGTG GCACACGCGC CCGCTGATCG CCACCTCGGC ATGGCGCCTG 

1861 GCCGGGCCGT GA 
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Harberd, Oxford University, unpublished data.  Location (in basepairs (bp)) relative to the start 

of the Rht-D1a coding sequence is shown to the left of the first nucleotide in each row with 

negative numbers indicating 5‟ sequence.  The Rht-D1a start and end codons are underlined.  

Sequence encoding the N-terminus and the GRAS functional protein domains are indicated. 

Conserved domains of the N-terminus shown in bold are: DELLA (bp 112 to 198) and 

TVHYNP (bp 268 to 339). 

 

Probes were radiolabelled with the Rediprime II DNA labelling system (GE 

Healthcare Life Sciences).  Purified PCR-amplified DNA (20 ng in 45 µl sterile 

distilled water) was denatured by heating to 95°C for 5 min.  After cooling it 

was added to the Rediprime reaction tube, which contains dATP, dGTP, 

dTTP, Klenow enzyme and random primers.   A 3 µl quantity of [32P] dCTP 

was added to the tube and incubated at 37°C for 1 hr.  The reaction was 

stopped and DNA denatured by adding 2.5 µl of 4N NaOH. 

 

2.2.2.2. Screening of BAC library filters using radioactive probes 

 

Southern hybridisation was carried out essentially as described by Sambrook 

et al., 1989).  Colony filters were wetted in 2 × sodium chloride-sodium citrate 

(SSC) buffer in a 20 cm2 plastic box after which they were equilibrated in 

Church & Gilbert pre-hybridisation buffer (Church and Gilbert, 1984) for two 

hours at 65°C with gentle shaking.  Probe 1 was added and the hybridisation 

carried out for 16 hr at 65°C, with gentle agitation.  The filters were placed in a 

clean box before immersion in Wash 1 (2 × SSC, 0.5% sodium dodecyl 

sulfate (SDS)).  Next, filters were washed twice in 1 l of Wash 2 (0.5 × SSC, 

0.5% SDS) with gentle shaking at 65°C.  If filters still had high radioactivity, 

then Wash 2 was repeated.  Wet filters were then wrapped in plastic wrap and 

exposed on Phosphor Image screens overnight.  Exposed screens were 

visualised using a Typhoon phosphor imager (Amersham Biosciences). 

 

BAC clones selected for repeated screening were grown overnight with 

shaking in 96-well plates containing Luria broth (LB) media with 

chloramphenicol (CAM) (12.5 µg/ml).  A 5 µl quantity of culture was then 

spotted onto Hybond-N+ membrane (Amersham Biosciences), which was 

placed on LB agar and incubated overnight at 37°C.  The membrane was 
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dried and DNA bound to the membrane by transferring the membrane (cell-

side up) sequentially onto blotting paper soaked in 10% SDS (3 min); 0.5N 

NaOH, 1.5 mM NaCl (5 min), 0.5M Tris-Cl, 1.5M NaCl, pH 7.4 (5 min), and 2 

× SSC (5 min).  The membrane was air-dried for 30 min before washing in 0.5 

× SSC, 0.1% SDS until no longer sticky (generally 4 to 5 washes).  Replicate 

membranes were prepared for each probe.  Radioactive [32P] hybridisation 

was carried out with individual probes as described above except Wash 1 

solution was 0.5 × SSC, 0.1% SDS and Wash 2 solution was 0.2 × SSC, 

0.1% SDS. 

 

2.2.2.3. Extraction of plasmid DNA 

 

Selected BAC clones were streaked onto LB agar plates containing CAM 

(12.5 µg/ml) and incubated at 37°C for approximately 16 hr.  Single colonies 

were then used to inoculate 15 ml of LB containing 12.5 µg/ml CAM and 

grown overnight at 37°C with shaking at 200 rpm.  BAC plasmid DNA was 

extracted from bacterial pellets of BAC clones using the alkaline-lysis method 

(Sambrook et al., 1989) with buffers P1, P2, and P3 (QIAGEN Ltd) as follows.  

Cell cultures were centrifuged (3000 rpm, 20 min, 4°C) and the pellet 

resuspended in 200 µl P1 buffer.  After adding 400 µl P2 buffer, samples were 

mixed by inversion and incubated for 5 min at room temperature.  Buffer P3 

(300 µl) was added and samples mixed before centrifuging (13 000 rpm, 15 

min).  A 600 µl volume of cold absolute ethanol was added to the supernatant 

and the DNA pelleted by centrifugation at 13 000 rpm for 10 min.  After 

washing the pellet in 70% ethanol, it was air-dried, and the DNA resuspended 

in 50 µl 10mM Tris-HCl, pH 8.0. 

 

2.2.2.4. Gel analysis of BAC clones 

 

To determine if clones were unique and to estimate insert size and overlap 

between clones, DNA from each of the likely Rht-1-containing BAC clones 

was subjected to fingerprint analysis.  BAC DNA (5 µl) was digested with 6 U 

Hind III and 2 µg RNase (DNase-free, Promega) to release the insert.  A 16 µl 

volume of the digest was subjected to electrophoresis (100 V, 10 min then 
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75V, 27.5 hrs) on a 1% agarose gel at 4°C in 1 × TBE (Tris-Borate-EDTA) 

buffer.  The DNA was visualised with CyberGold (Molecular Probes).  Insert 

size was estimated by comparison with molecular weight markers 

HyperLadder IV (Bioline) and kb ladder (BRL). 

 

The sizes of the likely Rht-1-containing clones were also estimated using 

Pulsed Field Gel Electrophoresis (PFGE).  DNA (5 µl) was digested overnight 

with 6 U NotI (New England Biolabs) in the presence of RNase before 20 µl 

were loaded onto a 1% agarose gel.  Samples were sealed into wells using 

1% low melting point agarose and the gel immersed in 1 × TBE buffer.  

Electrophoresis was conducted at 165 V / 400mA / 40W with buffer kept at 

13°C by circulation to a cooling tank.  Pulsing consisted of alternating currents 

of North/South (5 s) and East/West (5 s) for 16 h followed by North/South (15 

s) and East/West (15 s) for 1 min.  DNA was stained with ethidium bromide 

and visualised under UV light.  Insert size was estimated by comparison with 

molecular weight markers (Midrange II PFG, NEB Biolabs). 

 

2.2.2.5. PCR amplification and sequencing of Rht-1 

 

Selected BAC clones were screened using PCR amplification with primers 

Rht-ABD-F1 and Rht-ABD-R1, which amplifies a 489 bp product from the N-

terminus of Rht-1 (bp 264 to 752 in reference to CS Rht-D1a, Figure 2.1).  

Both primers completely matched the CS Rht-D1a sequence.  Rht-ABD-F1 

also completely matched the CS Rht-B1a sequence (N. Harberd, unpublished 

data) while Rht-ABD-R1 contained one mismatch (G/T at bp 5) with CS Rht-

B1a.  DNA of BAC clones was PCR-amplified using a 20 µl PCR mix 

containing 1 × Green GoTaq Reaction Buffer (Promega), 3% glycerol, 0.2 mM 

of each dNTP, 2 mM MgCl2, 1 µM Rht-ABD-F1, 1 µM Rht-ABD-R1, 0.25 µl 

Taq polymerase, and approximately 100 ng BAC DNA.  Glycerol was added 

to facilitate amplification of the G-C rich Rht-1 sequence.  The PCR profile 

consisted of initial denaturation of 5 min at 95°C, followed by 30 cycles of 

95°C for 30 s, 50°C for 30 s, and 72°C for 45 s.  Amplification products were 

separated on a 1.5% agarose gel in 1 × Tris-acetic acid-EDTA (TAE) buffer 

and visualised under UV light with ethidium bromide. 
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To estimate the position of Rht-1 on BAC clones, sequence of a pre-existing 

Rht-D1-containing BAC (BAC 1J9, J. Jia, CAAS, unpublished data) was 

utilised to create five primer pairs (D-BAC_F1/R1; D-BAC_F2/R2;  D-

BAC_F3/R3;  D-BAC_F4/R4; D-BAC_F5/R5; Appendix I).  Primer pairs were 

created at wide intervals along the length of the 1J9 BAC sequence.  PCR 

reaction mixes and profiles were carried out as described above except 

substituting these primer pairs in the reaction mix. 

 

BAC DNA was amplified with the Rht-ABD-F1 / Rht-ABD-R1 primer pair as 

described above and 1 µl used in a 10 µl BigDye (Applied Biosystems) 

sequencing mix, which also contained 1 × BigDye Sequence Buffer, 1 µl 

BigDye (ver. 3.1), and 1 µM Rht-ABD-F1 or 1 µM Rht-ABD-R1 primer.  The 

PCR profile consisted of 96°C for 1 min, followed by 25 cycles of 96°C for 10 

s, 50°C for 5 s, and 60°C for 4 min.  A forward and reverse read of each 

amplified product was performed to minimise potential PCR-induced errors.  

Sequencing was performed by the JIC Genome Sequencing Facility.  

Sequences were aligned using ContigExpress software of VectorNTI. 

 

2.2.3. Screening of the UK component of the CS BAC library by PCR 

 

To facilitate screening of the library, 384-well plate pools (PPs) were formed 

and organised in three dimensions (X, Y, Z) to form superpools (SPs) so that 

each PP is represented in three different SPs (Febrer et al., 2009) (Figure 

2.2).  A total of four cubes (one 9 × 9 × 9, two 8 × 8 × 8, and one 4 × 4 × 4) 

were created covering 1817 plates of the library and giving a total of 675 SPs.  

SP DNA was screened with the PCR primer pair Rht-ABD-F1/ Rht-ABD-R1a, 

which perfectly matched the sequences of Rht-B1a and Rht-D1a in the CS 

background.  The primer pair was designed to the N-terminal region of Rht-1 

(bp 264 to 790 in reference to CS Rht-D1a, Figure 2.1).  SPs were screened 

using the reaction mix and conditions described in section 2.2.2.5 except Rht-

ABD-F1 and Rht-ABD-R1a were used as primers in a 10 µl volume mix with 

an annealing temperature of 58°C. 
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Figure 2.2.  Overview of the screening strategy to identify and characterise Rht-1-

containing BAC clones from the UK BAC library.  (a) Representation of the 3-D pooling 

strategy for PCR screening of the UK BAC library (adapted from Febrer et al., 2009).  A virtual 

4 × 4 × 4 cube is depicted, which is sufficient for assessing the contents of 64 384-well plates 

in the library.  Each plate was replicated and all 384 clones combined to form a plate pool 

(PP).  Each PP is pooled in each of three dimensions (X, Y, Z) so that for a 4 × 4 × 4 cube, 

four PPs are present in each superpool (SP).  For the 8 × 8 × 8 and 9 × 9 × 9 cubes, eight 

and nine PPs are present in each SP, respectively.  The red squares depict a plate that is 

represented in SPs X, Y, and Z.  (b) Summary of steps used to identify and characterise Rht-

1-containing BACs.   

 

To monitor the reliability of the PCR amplifications the following negative 

controls (NCs) and positive controls (PCs) were established in which BAC 

DNA was replaced with the following templates: NC1, water; NC2, DNA of 

BAC clones known not to contain Rht-1; PC1, DNA of BAC clones known to 

contain Rht-1; PC2, genomic DNA isolated from leaves of CS; PC3, a 1:3072 

(v/v) dilution of PC1:NC2.  The purpose of PC3 was to determine if a single 

BAC clone containing Rht-1 could be identified in a SP from an 8 × 8 × 8 

cube.  A DNA concentration of 90 ngs per reaction was used for NC2 and 

PC3 and 20 ngs per reaction for PC1 and PC2. 

B)A) 1. PCR screen superpooled (SP) DNA

- Use primer pair specific  to Rht-1

- Score amplified products

- Determine candidate 384-well plates

2. Rescreen selected SPs

- Rescreen the 3 SPs corresponding to 

candidate 384-well plates

- Select 384-well plates to screen

3. PCR screen 384-well plates

Regrow BAC colonies and PCR screen 

with Rht-1 primer pair

Select individual colonies

4. Confirm presence of Rht-1a in 

selected clones

Sequence PCR products obtained from 

clones

5. Characterise selected clones

Align BAC sequences to determine Rht-1 

homoeologue

Determine size and overlap of BACs using 

fingerprint analysis
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The SP DNA samples were scored for the presence and intensity (strong (++) 

or weak (+)) of the approximately 525 bp amplification product.  As DNA from 

each PP is represented in each of three SPs, identification of candidate plates 

likely to contain an Rht-1-containing clone was originally performed with a 

tabulated reference as described in Farrar and Donnison (2007).  Later, a 

custom Perl script was written (Jon Wright, JIC) to facilitate 384-well plate 

identification.  Once the candidate plates were selected, the corresponding 

SP DNAs were subjected to a second round of amplification to validate the 

original PCR screen.  Individual BAC colonies in the candidate 384-well plates 

were screened by colony PCR using primers Rht-ABD-F1 and Rht-ABD-R1a 

as described above except that 1 µl of cells was collected directly from the 

plates to serve as template and initial denaturation time was 10 min. 

 

For further characterisation, DNA was extracted from selected BAC clones 

using the method in section 2.2.2.3.  Extracted DNA was used for fingerprint 

analysis (see section 2.2.2.4) except Hyperladder IV was used in place of 

Hyperladder I as a molecular marker.  BAC DNA was also used in PCR 

reactions as specified above and sequenced as described in section 2.2.2.5 

except that primers used in sequencing were Rht-ABD-F1 or Rht-ABD-R1a. 

 

2.3. RESULTS 

 

2.3.1. Identification and characterisation of Rht-1-containing BAC clones 

from the French component of the CS library 

 

High-density colony filters containing the French component of the „Chinese 

Spring‟ BAC library were screened by hybridisation using the Rht-1-specific 

probe 1 (described in section 2.2.2.1).  A hybridisation signal was obtained for 

267 clones (data not shown). The hybridisation contained six probes 

unrelated to Rht-1 and therefore a BAC sub library, composed of the 267 

clones was screened with Rht-1-specific probes 1 and 2 (Section 2.2.2.2).  

Screening of the BAC sub library with probe 1 resulted in a total of 42 clones 

that produced a positive signal, six of which were visually scored as strong 
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(++) and 36 as weak (+) (Table 2.1).  The BAC sub library was then screened 

with probe 2, which hybridised with 46 clones (9 scored as ++ and 37 as +), 

15 of which had also hybridised with probe 1.  

 

DNA from 26 randomly selected positive BAC clones was extracted and 

digested with Hind III for fingerprinting.  In addition, four randomly selected 

clones from the BAC sub library that did not hybridise to probe 1 or 2 were 

included as negative controls.  In the fingerprint gel, none of the four negative 

control BAC clones produced a hybridisation signal.  Of the 26 candidate Rht-

1 containing BAC clones, 17 hybridised with probe 1, including eight that gave 

a strong signal, but there was relatively little overlap of bands between the 

DNA of the different BAC clones (Figure 2.2).  In several of the BAC clones, 

the probe also hybridised to more than one band.  Hybridisation to multiple 

bands also occurred using probe 3 (figure not shown).  
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Table 2.1.  Rht-1 screening summary of the BAC sub library. 

 
a
 Plate number_address of BAC clones that hybridised to a Rht-1 specific probe 

b 
The presence and intensity of the hybridisation was scored visually: ++, strong; +, weak; -, 

no hybridisation; NT, not tested.  26 clones that hybridised to probe 1 or probe 2 were 

randomly selected for fingerprint analysis along with the 4 negative control clones (marked 

with an *). 

c 
The 48 clones that were either ++ for probe 1, ++ for probe 2, or + for both probes were 

PCR-screened with a Rht-1 specific primer pair and visually scored for the presence of the 

corresponding 490 bp band (+, present; -, absent; NT, not tested).  

 

 

Clonea Probe 1 Probe 2 Fingerprint PCRc Clonea Probe 1 Probe 2 Fingerprint PCRc

0027_A23 + + NT - 0631_D08 + - NT NT

0035_J15 - + NT NT 0642_O12 - + + -

0043_F20 ++ - - - 0648_M12 - + NT NT

0153_M04 - ++ NT - 0651_A09 + - + -

0155_I24 ++ ++ ++ + 0651_J20 - + NT NT

0235_E17 + - - - 0661_F13 + - + -

0255_N19 ++ - + - 0661_P14 - + NT NT

0256_N08 - + NT - 0667_N04 - + NT NT

0273_G23 - + NT NT 0668_J16 + - NT -

0273_N11 * - - - - 0678_C21 - + NT -

0299_K18 + + NT - 0682_L19 + - - -

0308_F10 - + NT NT 0706_G15 - + NT -

0326_C07 + - - - 0706_H06 * - - - -

0330_K20 - ++ NT - 0731_N07 + + - -

0398_C20 + - ++ - 0735_I16 + + NT -

0402_E05 * - - - - 0833_B18 + - ++ -

0434_O09 - + NT NT 0852_O17 - + NT NT

0440_L09 - ++ NT - 0855_G01 ++ - ++ -

0445_E11 + + + - 0900_P10 - + NT NT

0445_I22 + + - - 0933_I04 ++ - + -

0449_C19 + - NT NT 0946_F05 - ++ NT -

0461_E17 + ++ NT - 0951_K01 + ++ NT -

0467_L13 - + NT NT 0959_D17 - + NT NT

0476_I01 ++ ++ NT + 0968_J11 - + NT NT

0477_J17 - + NT NT 0990_A10 - + NT NT

0477_K17 * - - - - 1023_E02 + - NT NT

0514_P03 - + - - 1028_C14 + + ++ -

0517_F21 - + NT NT 1083_O15 + + ++ -

0525_L01 + - + - 1153_H16 + - ++ -

0528_K10 + - + - 1202_I11 + - NT NT

0529_O05 + - - - 1221_H08 - + NT -

0537_P07 - ++ NT - 1223_O22 + + NT -

0563_P19 - + NT NT 1229_N11 + - NT -

0583_D03 + - NT NT 1233_N01 + - NT -

0583_F03 + + + - 1249_I15 - + NT NT

0609_F07 + + ++ - 1250_G16 + - NT NT

0616_M13 + - - - 1253_G17 - + NT NT

0625_L09 - + NT - 1253_P02 + - NT -

0628_H12 + - NT -

Hybridisation signalb Hybridisation signalb
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Figure 2.3.  Fingerprint gel analysis and hybridisation pattern of candidate Rht-1-

containing BAC clones and negative control clones.  (a) DNA from clones was digested 

with Hind III, separated by electrophoresis, and visualised by staining.  Molecular weight 
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marker M1 and M2 were Kb ladder (BRL) and Hyperladder IV (Bioline), respectively.  M1 and 

M2 band sizes shown to the left and right of the gel, respectively.  (b) DNA from (a) was 

transferred to a nylon membrane by Southern blotting and hybridised with the Rht-1-specific 

probe 1.  Hybridisation signals were scored (absent, weak (+), or strong (++)) as shown in 

Table 2.1 (Fingerprint hybridisation). Negative control clones are marked with an (*). 

 

Because the fingerprinting and hybridisation analysis did not clearly identify 

BAC clones that contained the Rht-1 gene, PCR was used for clarification. 

The Rht-1 specific primer pair Rht-ABD-F1 / Rht-ABD-R1 was used to assay 

the 30 BAC clones that had been fingerprinted.  Only one BAC clone, 

0155_I24, produced the approximately 490 bp product expected for Rht-1 

(Table 2.1).  The primer pair was then used to screen 18 additional BAC 

clones from the BAC sub library.  The total set of 48 included all 13 clones 

that produced a strong hybridisation signal with probe 1 or with probe 2 and 

the 11 clones that produced a signal (++ or +) with both probes.  The 

approximately 490 bp product was amplified in a second BAC clone, 

0476_I01 (Table 2.1). 

 

The two Rht-1-containing BAC clones identified in the library were further 

characterised to determine the contributing genome, estimate the size of the 

insert, and locate Rht-1 within the insert.  To determine the contributing 

genome, the sequence of the PCR products amplified from each BAC clone 

using the Rht-ABD-F1 / Rht-ABD-R1 primer pair (bp 264 to 752 in reference 

to CS Rht-D1a) were compared with the sequences of Rht-B1a and Rht-D1a.  

The sequences of the amplified products were identical to that of Rht-D1a 

(accession AJ242531) and had several mismatches with Rht-B1a, indicating 

that both BAC clones were from the D genome (data not shown).  The insert 

sizes of the Rht-1 containing clones were estimated by PFGE and summed to 

be at least 175 kb for 0155_I24 and 105 kb for 0476_I01 (Figure 2.4).  The 

location of Rht-D1a on the BAC clones was estimated using five PCR primer 

pairs designed at intervals based on sequence from BAC clone 1J9 (Table 

2.2).  Based on the absence or production of amplification products, the 5‟ 

end of insert of BAC 0155_I24 was predicted to be between 80 kb and 135 kb 

upstream of Rht-D1a and the 3‟ end was at least 8.5 kb downstream.  The 5‟ 
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end of the insert in BAC 0476_I01 was estimated to be between 40 kb and 80 

kb upstream and the 3‟ end was at least 8.5 kb downstream.  Based on these 

data and the estimated length of the BAC inserts, Rht-D1a is likely to be near 

the middle of each insert. 

 

 

Figure 2.4.  Sizing of the two Rht-1-containing BAC clones using pulsed field gel 

electrophoresis (PFGE).  BAC DNA was digested overnight with NotI, separated with PFGE, 

and stained with ethidium bromide.  BAC sizes were estimated by visual comparison with 

molecular marker Midrange II PFG (NEB Biolabs) denoted as „M‟. 

 

Table 2.2. Estimated locations of Rht-D1a on BAC clones 0155_I24 and 0476_I01. 

 
a
 Approximate location of primer pairs is shown relative to the start nucleotide of Rht-D1a of 

BAC 1J9.  Negative numbers refer to sequence 5‟ or Rht-D1a. 

b
 Presence of the expected PCR product is labelled as (√) and absence as (x) when using 

DNA of the indicated BAC clones as template. 
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No.
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Rht-D1  (kb)a
0155_I24 0476_I01
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2.3.2. Identification and characterisation of Rht-1-containing BAC clones 

from the UK component of the CS library 

 

As only two Rht-1-containing clones were obtained by Southern hybridisation 

screening, an alternative approach, based on PCR amplification of Rht-1, was 

taken.  Two primers, Rht-ABD-F1 and Rht-ABD-R1a, which both completely 

match Rht-B1a and Rht-D1a in the Rht-1-specific N-terminal region, were 

used to screen the library.  Prior to screening the BAC library, the specificity of 

the primer pair for Rht-1 was determined.  The expected approximately 525 

bp product was amplified from DNA extracted from leaf tissue of „CS‟ (PC2, 

Figure 2.5).  The primers were also shown to be capable of amplifying a 

single BAC clone containing Rht-1 in a SP from an 8 × 8 × 8 cube as product 

was amplified in PC3, which is a 1:3072 (v/v) dilution of BAC DNA containing 

Rht-1:BAC DNA not containing Rht-1 (PC3, Figure 2.5). The primers did not 

amplify a product from DNA of an Rht-1 negative clone (NC2, Figure 2.5). 

 

The initial PCR screen identified 49 SPs in which a single band of 

approximately 525 bp was amplified.  A representative gel showing the 

screening results from SPs 385 to 675 is shown in Figure 2.5.  Of the 49 SPs 

from which a PCR product was obtained, 26 were scored as strong 

amplifications and 23 as weak amplifications (Table 2.3).  The SP data was 

de-convoluted to determine the corresponding 384-well plates that potentially 

held an Rht-1-containing BAC clone.  Corresponding 384-well plates were 

selected for a second screening if two or three of the SPs resulted in a ~525 

bp amplification product (weak or strong).  A Perl script was used to identify 

the thirty-five 384-well plates in which at least two of the three corresponding 

SPs gave an amplification product (Table 2.4).  To reduce the number of false 

positives, all of the SPs (except five that were inadvertently missed) 

associated with the 35 plates were re-screened with the same primer pair and 

the presence and intensity of the ~525 bp band scored (Table 2.4). 
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Figure 2.5.  PCR screening results of BAC superpools (SPs) 385 to 675 using Rht-1 

specific primers.  The SP number is indicated above any lanes in which the Rht-1 (~525 bp) 

product was scored as present.  Controls used to confirm the specificity of the PCR 

amplification are listed above the respective lane: NC1, water used in place of BAC DNA; 

NC2, DNA of BAC clones known not to contain Rht-1; PC1, DNA of BAC clones known to 

contain Rht-1; PC2, genomic DNA of „Chinese Spring‟; PC3, a 1:3072 (v/v) dilution of 

PC1:NC2 designed to mimic a SP that contained one Rht-1-containing clone.  M, molecular 

weight marker (Bioline, Hyperladder I) 

 

 

 

 

 

 

 

 

600 bp 

400 bp

525 bp
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Table 2.3. Summary of superpools that amplified a Rht-1 specific band 

 
a 
The intensity of the approximately 525 bp product obtained from SPs was visually assessed 

as strong or weak. 

 

Table 2.4. Rht-1 screen summary 

 

18 141 332 533 657 96 245 317 505

21 237 393 559 665 155 258 329 507

28 242 427 587 177 269 353 580

39 305 480 598 184 272 357 622

87 308 487 606 187 301 406 652

97 325 525 641 192 310 499

WeakStrong

Rht-1  superpool screena

384-well 

plate no.b No.

Screen 

1

Screen 

2 No.

Screen 

1

Screen 

2 No.

Screen 

1

Screen 

2 Resultc

141 18 ++ ++ 85 - - 141 ++ + √

143 18 ++ ++ 87 ++ + 143 - - X

167 21 ++ ++ 87 ++ + 167 - + √

219 28 ++ + 91 - - 155 + - NT

224 28 ++ + 96 + + 160 - - √

248 31 - - 96 + + 184 + + NT

256 32 - - 96 + + 192 + + NT

305 39 ++ ++ 97 ++ ++ 177 + - √

312 39 ++ ++ 104 - NT 184 + + NT

679 201 ND ND 269 + + 325 ++ + √

711 205 ND ND 269 + + 357 + + NT

935 233 - - 301 + ++ 325 ++ + NT

963 237 ++ ++ 297 - - 353 + + NT

967 237 ++ ++ 301 + ++ 357 + + √

1003 242 ++ ++ 305 ++ + 329 + - X

1006 242 ++ ++ 308 ++ ++ 332 ++ ++ √

1008 242 ++ ++ 310 + - 334 - - NT

1027 245 + + 305 ++ + 353 + + NT

1030 245 + + 308 ++ ++ 356 - NT NT

1031 245 + + 309 - NT 357 + + NT

1032 245 + + 310 + - 358 - - NT

1063 249 - - 317 + - 325 ++ + NT

1095 253 - NT 317 + - 357 + + NT

1198 393 ++ + 469 - - 622 + - NT

1263 400 - - 480 ++ - 606 ++ ++ NT

1297 404 - + 487 ++ ++ 559 ++ - √

1315 406 + ++ 487 ++ ++ 577 - - X

1318 406 + ++ 490 - + 580 + ++ √

1360 411 - NT 487 ++ ++ 622 + - NT

1399 415 - - 499 + ++ 580 + ++ X

1417 417 - ++ 499 + ++ 598 ++ ++ √

1506 427 ++ - 507 + ++ 606 ++ ++ √

1668 445 - - 525 ++ + 606 ++ ++ X

1730 452 - + 533 ++ ++ 587 ++ ++ √

1905 641 ++ ++ 657 ++ ++ 665 ++ ++ √

SP 1 SP 2 SP 3

Rht-1a  superpool screena
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a 
The presence and intensity of the approximately 525 bp product obtained from SPs was 

scored visually: ++, strong band; +, weak band; -, no band; ND, no DNA available; NT, not 

tested. 

b
 384-well plates were selected for further screening in which at least two of the three SPs 

scored + or ++ in the initial screen (screen 1) or re-screen (screen 2). 

c
 The 384-well plates are marked as “positive” (√) if one or more clones amplified a Rht-1-

specific PCR product.  Plates in which no clones gave a product are designated (X) and 

plates that were not tested are marked NT. 

 

 

To reduce the number of 384-well plates to be screened, „best candidate‟ 

plates were chosen based on the following precepts: (1) At least two SPs 

were amplified in the original and repeat screens - with preference for those 

with strong amplifications, and (2) in cases where positive SPs were 

represented in more than one plate, the plate(s) most likely to have accounted 

for the positive SP result (based on amplification presence and intensity of the 

other two SPs) were chosen.  The intention of the second precept was to 

eliminate plates most likely to have two positive SP results by chance.  A total 

of 18 „best candidate‟ plates for containing an Rht-1 BAC clone were selected. 

 

PCR-screening of the BAC colonies from the 18 „best candidate‟ 384-well 

plates revealed that 13 BAC clones contained the Rht-1 gene (Table 2.4).  

Figure 2.6 illustrates the identification of BAC clone 305_B11 (plate 305, 

address B11) as containing Rht-1.  Sequence analysis of the amplified 

products of the 13 selected clones showed that seven were identical to Rht-

D1a and four were identical to Rht-B1a (Figure 2.7).  The remaining two 

sequences showed high homology to both Rht-1 homoeologues, but 

contained several polymorphisms and were most likely the Rht-A1a 

homoeologue.   
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Figure 2.6.  Colony PCR screening results of 384-well plate number 305 using Rht-1 

specific primers. The contents of each PCR were loaded into separate wells of an agarose 

gel and products identified by staining with ethidium bromide.  A single clone (plate address 

B11) amplified the approximately 525 bp product specific to Rht-1.  M, molecular weight 

marker (Bioline hyperladder I) with size in bp shown to the left. 

 

 

M
B11

600 bp 
400 bp
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Figure 2.7. Nucleotide sequence alignment of the region amplified by the Rht-1 specific 

primers in the 13 BAC clones.  Homoeologue designation was determined from sequence 

of Rht-D1a (GenBank accession No. AJ242531) and Rht-B1a (N. Harberd, Oxford University, 

unpublished data).  The designation of Rht-A1a is inferred.  Primer sequences are shown in 

red font and polymorphisms are highlighted in yellow.  Coordinates at the beginning and end 

of the sequence are relative to the start nucleotide of CS Rht-D1a. 

 

The BAC clones were subjected to fingerprint analysis to determine the 

uniqueness of clones and which overlapping bands were shared by clones, 

and to estimate the size of the insert. Fingerprint analysis of DNA from the 13 

BACs following Hind III digestion showed that although there was some 

overlap in the bands, the BACs were distinctive from each other (Figure 2.8).  

Estimates of the relative sizes of the BACs based on comparison of the 

fingerprint bands with the molecular marker ranged from 70 kb to 200 kb. 
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Figure 2.8. Fingerprint analysis of DNA extracted from BAC clones from which Rht-1 

sequence was obtained. DNA from clones was digested with HindIII and the gel stained with 

CyberGold. Molecular weight markers (M1 and M2) were Kb ladder (BRL) and Hyperladder I 

(Bioline), respectively.  The genome derivation (A, B, or D) of the clones is also shown above 

their designations. 

 

2.3.3. Summary of Rht-1-containing BAC clones identified in the French 

and UK components of the CS library 

 

In total, 15 clones containing Rht-1 were identified in the CS library with each 

of the three wheat genomes represented by at least two clones (Table 2.5).  
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Three clones were selected for full-length sequencing based on estimations of 

clone length and, where possible, Rht-1 location within the insert. 

 

Table 2.5. Rht-1-containing clones identified in the Chinese Spring (‘CS’) BAC library 

 
a 
Clones are named according to their position in the 384-well plate. 

b
 BAC clones were identified in either the UK or French component of the CS library. 

c 
BAC clones selected for full-length sequencing are marked with a (√) 

 

2.4. DISCUSSION 

 

A total of 13 clones were identified in the UK component before screening of 

the 384-well plates was discontinued.  Based on the estimated 5 × haploid 

coverage of the UK component of the library (Febrer et al., 2009), 15 Rht-1 

clones would be predicted to be represented therein.  Additional screening of 

the 384-well plates identified as candidates for containing Rht-1 based on SP 

screening results (Table 2.4) is likely to uncover additional Rht-1 containing 

clones.  For example, plate 1027, has three corresponding SPs that score + 

or ++ that are not matched with an Rht-1 containing clone.  Our identification 

of 13 BAC clones containing Rht-1 and the existence of additional 384-well 

plate candidates indicate that rigorous use of our screening procedure would 

identify all or most of the Rht-1 clones in the UK library. 

 

The French component of the CS BAC library consists of 3 haploid 

equivalents, yet only two Rht-1 containing clones were identified compared 

Clonea Libraryb Genome Sequencingc

0224_M10 'CS' (UK) A √

0167_D3 'CS' (UK) A

1318_C20 'CS' (UK) B

1417_F16 'CS' (UK) B √

1730_H1 'CS' (UK) B

0305_B11 'CS' (UK) B

0679_I12 'CS' (UK) D

1509_A15 'CS' (UK) D

0141_L6 'CS' (UK) D

0967_I6 'CS' (UK) D

1006_M22 'CS' (UK) D

1297_A8 'CS' (UK) D

1506_M17 'CS' (UK) D

0155_I24 'CS' (French) D √

0476_I01 'CS' (French) D
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with the expected nine clones.  Thus, it is likely that the Southern hybridisation 

screening method did not clearly identify all of the Rht-1-containing clones.  

The use of seven probes in the first screening could have decreased the 

efficiency of detection, especially if the hybridisation conditions were less 

favourable for the Rht-1-derived probe.  Additionally, the Rht-1 derived probes 

were not specific for Rht-1 sequences even under the hybridisation conditions 

used for screening of the sub-library.  This was made clear when Rht-1 

specific primers known to be suitable for amplification of all three Rht-1 

homoeologues identified only the two Rht-1 containing clones out of 48 

candidates identified by probes 1 and/or 2 (Table 2.1).  Non-specific 

hybridisation was also evident when Hind III digested DNA of clones from the 

BAC sub-library were hybridised with probe 1 (Figure 2.3) or probe 3.  In 

these cases, several BAC clones have multiple bands that hybridise to the 

probe even though there is no Hind III site within any of the Rht-1 

homoeologues and only a single band should be present.  The apparent non-

specificity of the hybridisation may be related to the high GC content (> 70%) 

of each the three probes used. 

 

Both BAC clones identified by hybridisation were derived from the D genome 

and seven of the 13 clones identified by PCR screening were also derived 

from this genome.  Since this bias was seen using two screening methods this 

may be a true representation of the composition of Rht-1-containing clones in 

the library.  However, additional clones may also have been present in the two 

parts of the library, and especially in the French component, making it difficult 

to accurately define the relative proportions of the three homoeologues in this 

library. 

 

This study shows that PCR-based screening was more efficient in discovering 

Rht-1-containing clones than Southern hybridisation but it depends upon the 

availability of appropriate primers, which ideally should be capable of 

amplifying all three homoeologues of the target gene.  Screening using PCR 

also has the advantage that it does not require the use of radioactivity.  

However, although the PCR screening technique was rapid, this is only true if 

the SPs are already available. 
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3. GENETIC COMPOSITION AND COMPARATIVE ANALYSIS OF THE 

RHT-1 LOCI AND ADJOINING SEQUENCE 

 

3.1. INTRODUCTION 

 

The Rht-1 semi-dwarf alleles, Rht-B1b and Rht-D1b, were introduced into 

wheat varieties in the Western world as part of the green revolution beginning 

in the 1960s. These alleles were rapidly incorporated into wheat varieties 

worldwide and within 40 years, an estimated 70% of planted wheat acreage 

thought to contain Rht-B1b or Rht-D1b (Evans, 1998).  While these two alleles 

along with the wild type alleles Rht-B1a and Rht-D1a in the CS background 

have been cloned and sequenced (Peng et al., 1999), little is known regarding 

the composition of the adjoining genetic region at these loci.  The genetic 

regions tightly linked to Rht-B1b and Rht-D1b presumably were integrated into 

most wheat varieties.  On the third homoeolocus, Rht-A1, the sequence of the 

open reading frame (ORF) and adjoining region remain unknown. 

 

Understanding the genetic composition of the Rht-1 homoeoloci and the 

surrounding region is critical because alleles at these loci are associated with 

changes in the level of resistance to biotic and abiotic stress.  Rht-B1b and 

Rht-D1b have both been associated with changes in the level of resistance to 

Fusarium Head Blight (FHB), a major disease in wheat.  A quantitative trait 

locus (QTL) containing Rht-D1b was associated with increased susceptibility 

to initial infection (Type I resistance) of FHB (Srinivasachary et al., 2008; 

Srinivasachary et al., 2009).  Increased susceptibility to FHB associated with 

Rht-D1b was also reported by Hilton et al. (1999) and Draeger et al. (2007).  

The association of Rht-D1b with increased FHB susceptibility is thought to 

result from a linked gene (Paul Nicholson, Project Leader, Disease and Stress 

Biology, JIC, personal communication).  Similarly, a QTL encompassing Rht-

B1b was associated with increased Type I susceptibility to FHB and, 

conversely, increased Type II resistance (resistance to fungal growth within 

the spike) to FHB was also associated with a QTL that contained Rht-B1b 

(Srinivasachary et al., 2009).  In Arabidopsis thaliana, the GA insensitive gai 

mutant in Arabidopsis and the GA deficient mutant ga1-3 were both found to 



 

57 
 

be more tolerant of salinity than plants carrying the wild type alleles (Achard et 

al., 2006).  When Arabidopsis is exposed to cold stress, increased DELLA 

protein accumulation is also associated with greater tolerance (Achard et al., 

2008a).  In relation to biotic stress in Arabidopsis, stabilised DELLA proteins 

have been shown to promote increased resistance to necrotrophs and 

increased susceptibility to biotrophs (Navarro et al., 2008).  A similar finding 

was also reported in wheat where the stabilised DELLA proteins encoded by 

Rht-B1b and Rht-D1b were more resistant to necrotrophs and more 

susceptible to biotrophs than plants with wild type DELLA proteins (R. Saville, 

2011).  Functionally, the DELLA proteins are thought to integrate hormonal 

and environmental signals and play a key role in plant growth and survival 

(Alvey and Boulton, 2008), hence knowledge of the Rht-1 loci and the 

surrounding region is important. 

 

It is well established that gene synteny of the three wheat genomes is well 

conserved and that this colinearity extends to other members of the grass 

(Poaceae) family (Moore et al., 1995; Gale and Devos, 1998; Kumar et al., 

2009), while transposable elements (TEs) are generally not conserved among 

Poaceae species (Devos et al., 2008).  Fully assembled and annotated 

sequences of the Poaceae family currently include rice (Oryza sativa), 

Brachypodium distachyon, maize (Zea mays), and sorghum (Sorghum 

bicolor).  For barley (Hordeum vulgare), one of wheat‟s closest relatives, 

assembled sequence is not yet available; however a large collection of barley 

expressed sequence tags (ESTs) exists.  These genomic resources enable 

comparative analysis between genomes, which facilitates identification of 

important functional and regulatory sequences associated with genes and 

aids in determining the genetic relatedness of species.  The majority 

(approximately 80%) of the wheat sequence, however, is made up of TEs 

(Gupta et al., 2008), which are rapidly evolving relative to genes (Devos et al., 

2008).  TEs can play an important role in plant genomes by reshaping overall 

genome structure and by altering gene function and regulation (Bennetzen 

2000). 

 



 

58 
 

The aim of this chapter is to determine the genetic composition of the Rht-1 

ORF and flanking regions of the wheat homoeologues within a common 

genetic background.  To accomplish this, three Rht-1-containing BAC clones 

(one from each homoeologue) identified in the CS BAC library (Chapter 2) 

were sequenced, assembled, and annotated.  Comparative analysis of the 

genic and TE composition among the three BAC sequences is performed.  In 

addition, the CS wheat BAC sequences are compared to Rht-1 containing 

BAC sequences derived from T. urartu (the A genome ancestor of wheat) and 

from the D genome of „Aibai/10*CS‟.  The level of sequence conservation and 

phylogenetic relationships of the genes found on the CS wheat BACs are 

determined in relation to orthologues in rice, Brachypodium, maize, sorghum, 

and barley. 

 

3.2. MATERIALS AND METHODS 

 

3.2.1. Sequencing of Rht-1-containing BAC clones 

 

Rht-1a containing clones 0224_M10 (A genome), 1417_F16 (B genome), and 

0155_I24 (D genome) identified in the CS BAC library (Chapter 3) were 

sequenced to 8 × coverage by shotgun sequencing at the Genome Center, 

Washington University, St. Louis, USA (Appendix II).  The CS-A, CS-B, and 

CS-D genome BACs were assembled into 3, 3, and 4 contigs, respectively, 

with estimated gaps between contigs of no more than 500 bp (personal 

communication, William Courtney, Washington University Genome Center).  

The Rht-1-containing BAC sequences derived from Triticum urartu and from 

the D genome of „Aibai/10*CS‟ (BAC 1J9; Wu et al., 2004) were provided by 

Jizeng Jia (Chinese Academy of Agricultural Sciences, P.R. China). 

 

3.2.2. Annotation of Rht-1 containing wheat BAC sequences 

 

Location and identity of repeat elements was determined by blastn and tblastx 

searches of the TREP cereal repeat database 

(http://wheat.pw.usda.gov/ITMI/Repeats).  Retrotransposon LTRs (long 

terminal repeats) and TSDs (target site duplications) were identified using the 

http://wheat.pw.usda.gov/ITMI/Repeats
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default settings of LTR Finder (http://tlife.fudan.edu.cn/ltr_finder; Zhao and 

Wang, 2007).  Gene predictions were made across entire BAC inserts using 

Softberry FgeneSH software (http://linux1.softberry.com/berry.phtml).  

Nucleotide sequences of predicted genes were queried against the TREP 

cereals repeated database, the NCBI nucleotide collection (nr/nt) 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi), the TIGR plant transcript assemblies 

(TAs) monocot collection (http://plantta.jcvi.org), and the KOME rice cDNA 

collection (http://cdna01.dna.affrc.go.jp/cDNA) to identify regions of homology.  

Predicted genes were considered true „genes‟ if a known orthologue was 

identified, not considered a gene if sequence overlapped a repeat element, or 

remained „predicted genes‟ if no significant similarity was found in the 

database searches.  Intron-exon boundaries of genes were determined by 

alignment with TIGR wheat and barley TAs, and annotated orthologues in 

rice, Brachypodium, sorghum, and maize (B73 inbred) where sequence was 

available.  The remaining BAC sequence that did not correspond to a TE, 

gene, or predicted gene was blast searched against the NCBI database 

nucleotide collection (nr/nt) to determine if any similarity existed.  Annotation 

of BAC sequences was facilitated with Invitrogen Vector NTI v10.1.1 software. 

 

3.2.3. Comparative analysis of BAC sequences 

 

Poaceae orthologues of genes identified on the wheat BAC clones were 

identified by querying the wheat ORF sequences in BLAST searches of the 

fully assembled genomes of rice (http://rice.plantbiology.msu.edu), 

Brachypodium (http://www.modelcrop.org), sorghum 

(http://www.phytozome.net/sorghum), and maize B73 inbred 

(http://www.maizegdb.org).  To identify orthologues in the barley genome, 

wheat gene ORFs were used in a BLAST search of the NCBI nucleotide 

(nr/nt) collection, the NCBI Hordeum vulgare EST collections, and the TIGR 

Hordeum vulgare TA collection.  For the Rht-1 orthologue in barley, the SLN1 

full-length coding sequence was utilised (GenBank accession no. AF460219; 

Chandler et al., 2002).  To construct the barley zinc finger (ZnF) and DUF6 

orthologous sequences, matching ESTs and TAs were identified and aligned 

with the ORFs of the wheat, rice, Brachypodium, sorghum, and maize 

http://tlife.fudan.edu.cn/ltr_finder
http://linux1.softberry.com/berry.phtml
http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://plantta.jcvi.org/
http://cdna01.dna.affrc.go.jp/cDNA
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orthologues. The barley ZnF orthologue ORF sequence was assembled by 

combining TA38367_4513 (bp 34-640), TA38365_4513 (bp 487-504), and 

TA38366_4513 (bp 11-807), which together cover the entire length of the 

wheat ORF.  The barley DUF6 orthologue was assembled using EST 

GH226632 (bp 71-428) (Close et al., 2008) and TA54310_4513 (1-785).  

Alignment with the Poaceae consensus DUF6 revealed that the barley TA and 

EST sequences did not cover an estimated 165 bp region in the middle of the 

gene presumably due to the unavailability of barley sequence.  To maximise 

alignment with the Poaceae consensus DUF6 sequence, the code „N‟ (IUPAC 

[International Union of Pure and Applied Chemistry; 

http://www.chem.qmul.ac.uk/iupac/] convention for „unknown nucleotide‟), is 

used to designate each of the estimated 165 missing nucleotides.  In the 

translated barley DUF6 amino acid sequence, the code „X‟ (IUPAC convention 

for „any amino acid‟) is used whenever a codon contained an „N‟ nucleotide 

designation. 

 

Nucleotide and amino acid identities were calculated with the AlignX 

application of VectorNTI (v10.1.1) following alignment of sequence pairs.  

Alignments of multiple orthologues were made using ClustalX v2.0.12 (Larkin 

et al., 2007) and manually adjusted where necessary to improve alignments 

using GeneDoc v2.6.002 software (Nicholas and Nicholas, 1997).  Locations 

of protein motifs in the Rht-1 genes were based on Tian et al. (2004).  

Locations of protein motifs on the DUF6 and ZnF amino acid sequences were 

determined using the European Bioinformatics Institute (EBI) InterPro scan 

(http://www.ebi.ac.uk/Tools/InterProScan/) with amino acid sequences serving 

as query.  Phylogenetic relationships among orthologous genes was 

determined using the following applications of PHYLIP v3.6 software 

(Felsenstein, 2004): „Seqboot‟ was used to calculated bootstrap values (1000 

replicates); genetic distance between species was calculated using „Dnadist‟ 

(1000 multiple data set values); „Neighbor‟, which employs the neighbor-

joining method, was used to construct trees; „Consense‟ was used to 

determine the consensus tree. 

 

http://www.chem.qmul.ac.uk/iupac/
http://www.ebi.ac.uk/Tools/InterProScan/
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Alignment of the 10 kb of sequence 5‟ and 3‟ of Rht-1 was performed using an 

on-line version of ACT: the Artemis Comparison Tool (Carver et al., 2005).  

Comparison files were created using Double ACT v2 (http://www.hpa-

bioinfotools.org.uk/pise/double_act.html).  Identification of homologous 

regions among wheat BACs, rice, and Brachypodium was performed with the 

NCBI multiple sequence alignment tool. 

 

3.3. RESULTS 

 

3.3.1. Genetic composition and comparative analysis of the Rht-1 

containing wheat BACs 

 

Sequence analysis revealed that the inserts in the three „CS‟ BAC clones 

ranged from 164 kb to 213 kb in length with Rht-1 located near the middle of 

each clone (Table 3.1; Appendix III).  The T. urartu BAC clone contains a 100 

kb insert in which Rht-1 is positioned near the middle.  The D genome-derived 

BAC from „Aibai/10*CS‟ contains a 207 kb insert in which Rht-1 is located 

near the 3‟ end.  Transposable elements (TEs) constitute 47% to 66% of each 

BAC insert while gene content accounts for 1.7% to 4.6% of any BAC 

sequence.  Between 32% and 48% of each BAC sequence did not have 

homology to annotated genes or to TEs. 

 

Table 3.1. Summary of Rht-1-containing wheat BAC sequences. 

 
a
 Ta 'CS' (A), Ta 'CS' (B), and Ta 'CS' (D) are the Triticum aestivum BAC sequences from the 

A, B, and D genomes, respectively, of Chinese Spring.  T.urartu (A genome) and Ta 

'Aibai/10*CS' (D genome) sequences were received from Jizeng Jia, CAAS. 

b
 NA = not available. 

c
 Location of the most 5' nucleotide of the Zinc finger family (ZnF), Domain of Unknown 

function family (DUF6), and Reduced height (Rht-1) genes relative to the first nucleotide of 

Insert compostiond

Genetic 

backgrounda Addressb

Length 

(bp) ZnF DUF6 Rht-1 TE ORF Other

Ta  'CS' (A) 0224-M10 164257 24659 48779 79748 56% 2.8% 41%

Ta 'CS' (B) 1417-F16 187310 NA 53952 77662 63% 1.7% 35%

Ta 'CS' (D) 0155-I24 213794 6381 40731 96445 66% 2.2% 32%

T. urartu (A) NA 100141 19834 42927 59411 47% 4.6% 48%

Ta  „Aibai/10*CS‟ (D) 1J9 207533 108486 142474 198722 59% 2.2% 39%

Gene coordinatesc

http://www.hpa-bioinfotools.org.uk/pise/double_act.html
http://www.hpa-bioinfotools.org.uk/pise/double_act.html


 

62 
 

the insert (coordinate 1).  DUF6 and Rht-1 are on the plus stand of each BAC and 

coordinates match the start nucleotide.  ZnF is not present of the B genome BAC and is on 

the minus strand of the remaining BACs with coordinates matching the end nucleotide. 

d
 TE = transposable element; ORF = open reading frame of genes. Other = sequence without 

homology to TEs or known genes. 

 

Along with Rht-1, each „CS‟ BAC sequence also contained one to two 

additional genes, which were in synteny among BAC clones (Table 3.1).  CS-

A and CS-D contain the same three genes in conserved order and orientation, 

which from 5‟ to 3‟ are: a zinc finger family protein (TIGR rice locus 

Loc_Os03g49900; herein referred to as ZnF), a domain of unknown function 

family protein (TIGR rice locus Loc_Os03g49940; herein referred to as 

DUF6), and Rht-1 (TIGR rice locus Loc_Os03g49990).  In this text, references 

to the A, B, and D genome homoeologues of the three genes will be indicated 

by attaching the suffixes -A1, -B1, and -D1, respectively, to the end of the 

gene names.  The ZnF gene is named for a C3HC4 type zinc-finger (RING 

finger) domain, which is a cysteine-rich domain of 40 to 60 residues that 

coordinates two zinc ions 

(http://www.ebi.ac.uk/interpro/IEntry?ac=IPR018957).  The DUF6 family, also 

known as the EamA-like transporter family are predicted integral membrane 

proteins that are part of the drug/metabolite transporter super-family, but have 

no known function (http://www.ebi.ac.uk/interpro/IEntry?ac=IPR000620).  

Each DUF6 gene contains two regions that encode for the DUF6-type 

domains.  The CS-B BAC contains DUF6 and Rht-1, but sufficient sequence 

is not available to determine if ZnF is present even though approximately 54 

kb of sequence exists upstream of DUF6.  In addition to these three genes, a 

predicted gene also exists 3‟ of Rht-A1 on the CS-A BAC and is described in 

section 3.3.3.  Although gene synteny is conserved among the CS BAC 

clones, the physical distance encompassing the three genes varies widely 

from 42 kb in CS-A to 92 kb in CS-D. 

 

Comparison of the three CS BACs containing Rht-1 revealed that although 

gene synteny is highly conserved, there is no apparent conservation of repeat 

elements or nesting structure in the intergenic regions (Figure 3.1b, c, d).  The 

http://www.ebi.ac.uk/interpro/)
http://www.ebi.ac.uk/interpro/IEntry?ac=IPR000620


 

63 
 

region between the ZnF and DUF6 genes contains a single LTR 

retrotransposon on CS-A (Figure 3.1b), whereas five LTR retrotransposons 

and a DNA transposon were identified on CS-D (Figure 3.1d).  In this region 

of the CS-B BAC (upstream of DUF6; Figure 3.1c), there are three insertions 

of the WHAM LTR retrotransposon (TREP no. 3269) comprising 23 kb of 

sequence that is distinct from the equivalent regions on the A and D 

genomes.  Analysis of the region between the DUF6 and Rht-1 genes shows 

no conservation of TE sequence among the CS homoeologues.  In this 

region, CS-D contains sequence of five TEs, including a 9.6 kb Romani LTR 

retrotransposon and an 8.6 kb WIS LTR retrotransposon while CS-A contains 

only three TE sequences and CS-B contains just two short TE sequences.  3‟ 

of Rht-1, each of the CS BAC sequences contain large numbers of 

transposons, with no similarity among BACs.  Similar to the other regions, the 

region upstream of ZnF (only available on the A and D genomes) has no 

conservation of TE sequence. 
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Figure 3.1.  Gene and transposable element (TE) nesting structure of the five Rht-1 

wheat BAC sequences.  (A) T. urartu, A genome BAC; (B) Chinese Spring (CS) A genome 

BAC 0224-M10; (C) CS B genome BAC 1417-F16; (D) CS D genome BAC 0155-I24, (E) BAC 

1J9, a D genome-derived BAC from Aibai/10*CS, and. In each figure, the thick black line 

denotes intergenic sequence that does not correspond to TEs or genes.  On this line, orange 

arrows indicate genes and blue arrows indicated predicted genes.  TEs are shown in boxes 

and identified by common name and Triticeae Repeat (TREP) number.  The lengths of the 

BACs, genes, repeat elements, and the position of the insertions, are approximately to scale.  
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Arrows indicate orientation of transcription.  LTR retrotransposons are shown in black font, 

DNA transposons are shown in red font, non-LTR retrotransposons are shown in blue font, 

and intergenic MITES (Miniature Inverted-repeat TEs) in green font. Intronic MITEs are shown 

in Figures 3.7 and 3.10. 

 

Approximately 35.6% (201 kb) of the sequences from the CS BACs have low 

homology (Expectation (E) < 1 × 10-10) to known genes or to TEs (Table 3.1).  

There are several blocks of low homology sequence greater than 5 kb in size.  

On all three CS BACs, the region between DUF6 and Rht-1 contains large 

stretches of low homology sequence and each homoeologue has at least 8 kb 

of low homology sequence that is upstream of and adjoining Rht-1 (Figure 

3.1b, c, d).  This low homology region is also present on the BACs derived 

from T. urartu and „Aibai/10*CS‟ (Figure 3.1a, e).  Other blocks of low 

homology include 14 kb of sequence located between 37.2 and 51.6 kb 

downstream of Rht-A1, which extends to and includes the predicted gene 

(Figure 3.1b) (Appendix IIIA, bp 117038 to 131305).  In addition, on the CS-A 

genome BAC (and on the T. urartu BAC) is a low homology region of nearly 

11 kb that is upstream of and adjoining DUF6-A1 (Figure 3.1b) (Appendix IIIA, 

bp 37820 to 48778). 

 

Gene order and orientation is very highly conserved between the CS-A and T. 

urartu BAC inserts whereas TE composition is only generally conserved and 

there are several large differences (Figure 3.1a, b).  In the region between 

ZnF-A1 and DUF6-A1, TE composition is nearly identical as both BACs each 

contain just 400 bp of the TE Gujog (TREP no. 3276), which has 98% 

nucleotide identity between the two sequences.  In the region between DUF6-

A1 and Rht-A1, the most striking difference in TE composition between the 

two A genome BACs exists as T. urartu is devoid of TEs in this region, but 

three TEs totaling 13 kb are present on CS-A.  Upstream of ZnF-A1, the 

overlapping regions of the two BACs have similar TE content with the 

exception of an 8.7 kb WIS LTR retrotransposon (TREP no. 3161) that is only 

present on CS-A.  Downstream of Rht-A1, the TE content is again similar in 

the overlapping regions of the BAC sequences, except for the presence of 
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sequences of WIS (TREP no. 3160) and Sabrina (TREP no. 3250) in T. 

urartu, but not CS-A. 

 

The CS-D and „Aibai/10*CS‟ BACs have 105 kb of overlapping sequence in 

common that is nearly identical, having 99.83% of the nucleotides conserved.  

The ZnF-D1, DUF6-D1, and Rht-D1 genes are contained in the overlapping 

regions and are conserved in synteny and orientation of transcription.  The 

ZnF-D1 and DUF-D1 ORFs are identical on the two BACs.  The Rht-D1 ORFs 

differ by a single base substitution as Aibai/10*CS contains the SNP 

associated with the Rht-D1b allele whereas CS contains the SNP associated 

with the Rht-D1a allele.  The intergenic sequences of the overlapping regions 

have the same TE composition and nesting structure is completely conserved. 

 

3.3.2. Comparative analyses of Rht-1 and the surrounding region in 

wheat and Poaceae 

 

Comparisons of the wheat BAC sequences to fully-assembled and annotated 

members of the Poaceae family (rice, Brachypodium, sorghum, and maize) 

resulted in identification of orthologous regions in each species.  A summary 

of the orthologous regions in the Poaceae is contained in Appendix IV and 

shown in Figure 3.2.  In maize, the region was found to be present in 

duplicate, on chromosomes 1 (Zm-1) and 5 (Zm-5), while only a single copy 

was present in the other Poaceae.  In the text, orthologues will be referenced 

by the wheat locus name preceded by the first letters of the genus and 

species they are derived from (e.g. OsRht-1 refers to the rice orthologue of 

Rht-1 and Zm-1ZnF refers to the maize orthologue of ZnF found on 

chromosome 1).  The ZnF-DUF6-Rht-1 synteny was retained in all 

orthologues, with the exception of Zm-1, in which DUF6 is absent.  In rice, an 

expressed hypothetical gene (TIGR rice locus LOC_Os03g49960) is located 

between OsDUF6 and OsRht-1 on the reverse strand.  The distance 

encompassing the ZnF-DUF6-Rht-1 linkage group varies widely among these 

species.  In Brachypodium, the genes are contained within 38 kb of sequence, 

while on Zm-1 the genes exist in a space of 191 kb, with most of this 
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difference due to a vast increase in the amount of intergenic sequence 

between Zm-1ZnF and Zm-1DUF6 relative to the other species. 

 

 

Figure 3.2. Summary of microsynteny in the Rht-1 region.  The five Rht-1-containing 

wheat BACs are shown in alignment with orthologous regions of four additional species of the 

Poaceae family.  The species and genome derivation are indicated to the left of the panel. For 

wheat, the entire BAC insert sequences are depicted.  For the remaining Poaceae species, 

the orthologous region is shown and extended to include the genes adjacent to the ZnF and 

Rht-1 orthologues.  The solid lines denote the sequence lengths, the presence of // within 

these lines denotes a foreshortened depiction of the sequence length relative to the scale in 

kb.  The length preceding (-kb) and following (+kb) Rht-1 is indicated at the beginning and 

end of each sequence.  Genes are depicted as solid arrows that are oriented according to 

DNA strand (forward or reverse).  Orthologous genes are colour-coded across species with 

the abbreviated wheat locus name beneath.  For rice orthologues, the locus names (LOC_Os) 

are shown in parentheses.  Loci without an orthologue in this region are named according to 

species convention.  Nucleotide coordinates (NCs) and additional details of the genes are 

provided in Appendix IV. 
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To determine which loci in wheat are most likely 5‟ of ZnF and 3‟ of Rht-1, co-

linear regions of the sequenced genomes of the Poaceae family were 

examined.  The next gene upstream of ZnF in all species is a Tb1 orthologue.  

The Tb1 orthologues are all a single exon consisting of 1080 to 1167 bp and 

are oriented in the same direction as Rht-1, except the Zm-1 orthologue, 

which is on the opposite strand.  The distance between Tb1 and Rht-1 is less 

than 90 kb in all orthologous regions, except for Zm-1, where the intergenic 

space in substantially expanded to 350 kb.  A Tb1 orthologue is not present 

on any of the wheat BAC inserts even though one of the sequences (BAC 

1J9) extends 198 kb upstream of Rht-1 and 108 kb upstream of ZnF. 

 

In rice and sorghum the nearest gene downstream from Rht-1 is a Toc64-like 

gene.  In Brachypodium, Toc64 also exists downstream of Rht-1, but the two 

genes are separated by a predicted gene, Bradi1g11100.  In maize, no 

similarity was found to Toc64 or to Bradi1g11000 in the region near Rht-1.  In 

rice, Brachypodium, and sorghum, Toc64 is composed of 13 exons with ORFs 

containing between 1761 and 1767 nucleotides.  In these three species, 

Toc64 is within 40 kb of Rht-1, but is located on the opposite strand.  The 

Toc64 and Bradi1g11000 genes are not present on the CS wheat BAC clones 

even though the BAC inserts each have at least 84 and up to 117 kb of 

sequence downstream of Rht-1. 

 

3.3.2.1. Comparative analysis of the Rht-1 ORF in wheat and Poaceae 

 

Rht-1 in CS is composed of a single exon with lengths of 1863 (620 residues) 

in Rht-A1, 1866 (621 residues) in Rht-B1, and 1872 bp (623 residues) in Rht-

D1 (Table 3.2).  The coding sequences of Rht-A1, Rht-B1, and Rht-D1 in the 

CS background are highly conserved with 94.1% of the nucleotide identities 

and 96.8% of the amino acid identities shared among the three 

homoeologues.  Of the three CS Rht-1 homoeologous nucleotide sequences, 

the Rht-A1a and Rht-D1a sequences are the most similar, having 96.4% 

identity (differing by 40 SNPs and the need to insert 27 gaps for alignment 

over 1875 sites), followed by Rht-A1a and Rht-B1a (96.0% identity; differing 

by 61 SNPs and 15 gaps over 1878 sites), and Rht-B1a and Rht-D1a are the 
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most dissimilar (95.6% identity; differing by 56 SNPs and 26 gaps over 1882 

sites).  Among the homoeologous peptide sequences, Rht-B1a and Rht-D1a 

have the most residue differences at 16 (8 amino acid changes and 8 gaps; 

97.4% identity) while Rht-B1a and Rht-A1a differ by 12 residues (5 amino acid 

changes and 7 gaps; 98.1% identity) and Rht-A1a and Rht-D1a differ by 12 

residues (7 amino acid changes and 5 gaps; 98.1% identity).  Only one amino 

acid substitution among the homoeologues (Figure 3.3, coord. 273) was found 

in the conserved domains described by Tian et al. (2004), with the substitution 

occurring in the Leucine Heptad Repeat I (LHR I) domain of the DELLA-

specific N-terminal region.  Of the remaining amino acid polymorphisms, 17 

occur outside of the defined domains of the N-terminal region and two occur 

outside of the defined domains of the GRAS C-terminal region.  Alignment of 

the Rht-A1 ORF nucleotide and amino acid sequences from CS and T. urartu 

revealed a total of five SNPs (99.7% similarity) and no predicted amino acid 

changes (Table 3.2). 

 

Table 3.2.  Relatedness of Rht-1 orthologues in wheat and Poaceae species.   

 
a
 Percentage of nucleotide and amino acid identities shared between orthologues is shown 

below and above the slash in the grid, respectively.  Background colour of cells in the grid is 

based on % identity: red (≥95%); blue (90-94.9%); yellow (85-89.9%); white (≤85%). 

b
 CS = Chinese Spring; Locus pseudonyms: Os03g49990 = SLR1; GRMZM2G144744 = D8; 

GRMZM2G024973 = D9. 

c
 Species names are shown below and to the right of the header.  Ta-A, Ta-B, and Ta-D = the 

A, B, and D genomes of Triticum aestivum, respectively; Tu = Triticum urartu; Hv = Hordeum 

vulgare; Bd = Brachypodium distachyon; Os = Oryza sativa; Sb = Sorghum bicolor; Zm-1 = 

Zea mays chromosome 1 (B73 inbred); Zm-5 = Zea mays chromosome 5 (B73 inbred). 

 

Locus Name
b

Species
c

Ta -A Ta -B Ta -D Tu Hv Bd Os Sb Zm- 1 Zm- 5

Rht-A1 (CS) Ta -A 98.1 98.1 100.0 94.9 89.1 85.1 83.5 84.9 83.7

Rht-B1 (CS) Ta -B 96.0 97.4 98.1 95.5 88.5 85.3 82.9 84.0 82.4

Rht-D1 (CS) Ta -D 96.4 95.6 98.1 93.9 88.5 84.7 82.7 84.2 82.9

Rht-A1 Tu 99.7 95.8 96.7 94.9 89.1 85.1 83.5 84.9 83.7

SLN1 Hv 93.2 93.4 92.6 93.1 88.1 85.6 82.7 84.5 83.6

Bradi1g11090 Bd 88.0 87.7 87.5 88.0 87.0 86.5 85.9 87.5 83.6

Os03g49990 Os 86.2 85.8 85.5 86.1 85.4 85.7 84.3 85.2 83.5

Sb01g010660 Sb 84.7 84.5 84.6 84.8 84.2 85.1 85.1 93.8 90.4

GRMZM2G144744 Zm- 1 84.9 84.5 84.6 85.0 84.1 85.2 85.2 93.6 92.2

GRMZM2G024973 Zm- 5 85.2 84.7 84.9 85.2 84.5 84.2 84.7 90.6 92.0

1863 1866 1872 1863 1857 1872 1878 1884 1893 1878

620 621 623 620 618 623 625 627 630 625

Nucleotides (no.)

Amino Acids (no.)

Nucleotide \ Amino acid identitities (%)
a
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Nucleotide and amino acid sequences of the Rht-1 orthologues from barley 

(HvRht-1), Brachypodium (BdRht-1), rice (OsRht-1), sorghum (SbRht-1), 

maize chromosome 1 (Zm-1Rht-1), and maize chromosome 5 (Zm-5Rht-1) 

were compared to the wheat Rht-1 loci from Chinese Spring and T. urartu 

(Table 3.2; Figure 3.3).  The ORFs of all Rht-1 orthologues are composed of a 

single exon with lengths ranging from 1857 to 1893 nucleotides (618 to 630 

amino acids).  Among the Rht-1 ORFs, 68.5% of the nucleotides and 70.9% 

of the amino acid residues are shared among all of the orthologues with 

greater conservation occurring in the GRAS carboxyl termini than in the 

DELLA-specific N-terminal regions.  There are no frameshifts or large indels 

in any of the Rht-1 proteins and the amino acids encoding the defined protein 

domains (Tian et al., 2004) are highly conserved.  The majority of the Rht-1 

amino acid sequence divergences occur in three locations: (1) a 32 bp region 

upstream of the DELLA domain (Figure 3.3, coords. 14-45), (2) a 112 bp 

region (coords. 129-240), in-between the TVHYNP and LHR I domains, and 

(3) a 25 bp region between the FY and RE domains (coords. 526-550).  

Relative to the three CS Rht-1 homoeologues, HvRht-1 was the most similar 

of the non-wheat sequences with 93.1% nucleotide and 94.8% amino acid 

identity when averaged over homoeologue comparisons (Table 3.2).  The 

rank of nucleotide similarity among Rht-1 orthologues when averaged over 

the three CS homoeologues is Hv > Bd > Os > Zm-5 > Zm-1 > Sb and amino 

acid similarity rank is Hv > Bd > Os > Zm-1 > Sb = Zm-5.  A phylogenetic 

comparison of nucleotide sequences depicts this ranking and also show that 

the wheat Rht-1 sequences are more closely related to HvRht-1 than any 

other orthologue (Figure 3.4). 
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Figure 3.3. Peptide sequences of Rht-1 from wheat and Poaceae orthologues.  Amino 

acid sequences of three Chinese Spring wheat homoelogues of Rht-1 (CS-D, CS-B, and CS-

A), and orthologues in T. urartu (Tu), Hordeum vulgare (Hv), Brachypodium distachyon (Bd), 

Oryza sativa (Os), Sorghum bicolor (Sb), chromosome 1 of Zea mays (Zm_1), and 

chromosome 5 of Zea mays (Zm_5) were aligned using ClustalX and adjusted manually to 

minimise mismatches.  Gaps inserted to allow for alignment are indicated by a (-).  Residue 

conservation levels among the 10 sequences is shown by the following shading and font 

colours:  Absolute sequence identity = white font with black background; Identity shared by 8 
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MKREYQDAGGSGGGGGG--MGSSEDKMMVS--AAAG--E-GEE-VDELLAALGYKVRASDMADVAQKLEQLEMAMGMGGV-GAGAAPDDSFATHLATDTVHYNPTDLSSW
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MKREYQDAGGSGGGGG---MGSSEDKMMVS--AAAG--E-GEE-VDELLAALGYKVRASDMADVAQKLEQLEMAMGMGGV-GAGAAPDDSFATHLATDTVHYNPTDLSSW

MKREYQDAGGSGGGGG---MGSSEDKMMVS--AAAG--E-GEE-VDELLAALGYKVRASDMADVAQKLEQLEMAMGMGGV-GAGAAPDDSFATHLATDTVHYNPTDLSSW
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MKREYQDAGGSGG-----DMGSSKDKMMV---AAAGAGEQEEE-LDEMLASLGYKVRSSDMADVAQKLEQLEMAMGMGGVGGAGATADDGFISHLATDTVHYNPSDLSSW

MKREYQDAGGSGG-----DMGSSKDKMMA---AAAGAGEQEEEDVDELLAALGYKVRSSDMADVAQKLEQLEMAMGMGGVGGAGATADDGFVSHLATDTVHYNPSDLSSW

MKREYQNAGGNDG-----YRGSSKDKSMA---AAAGAGEQEEE-VDELLAALGYKVRSSDMADVAQKLEQLEMAMGMGG---ACPTADDGFVSHLATDTVHYNPSDLSSW
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VESMLSELNAPPPPLPPA--P-QLNAST-SSTVTG-----GGYFD-LPPSVDSSCSTYALRPIPSPA--VAPADLSA-DSVVRDPKRMRTGGSSTSSSSSSSS-LGGGGA

VESMLSELNAPPPPLPPA--PQQLNAST-SSTVTG-----GGYFD-LPPSVDSSCSTYALRPIPSPAGAVGPADLSA-DS-VRDPKRMRTGGSSTSSSSSSSSSLGGG-A

VESMLSELNAPPPPLPPA--PQQLNAST-SSTVTG-----GGYFD-LPPSVDSSCSTYALRPIPSPAGAVGPADLSA-DS-VRDPKRMRTGGSSTSSSSSSSSSLGGG-A

VESMLSELNAPPPPLPPA--PPQLNAST-SSTVTGG----GGYFD-LPPSVDSSSSTYALRPIISPP--VAPADLSA-DS-VRDPKRMRTGGSSTSSSSSSSSSLGGGAA

VESMLSELNAPPPPLPPA--PQAPRLSSNSSTVTGGGGSGGGYFDGLPPSVDSSSSTYALRPIPSPV--VTPAEPSA-DP-AREPKRMRTGGGSTSSSSSSSSSLGGGGT

VESMLSELNAPLPPIPPA--PPAARHASTSSTVTGGGGS--GFFE-LPAAADSSSSTYALRPISLPV--VATADPSAADS-ARDTKRMRTGGGSTSSSSSSSSSLGGGAS

LESMLSELNAPPPPLPPATTPPAPRLASTSSTVTSGAAAGAGYFD-LPPAVDSSSSTYALKPIPSPV-AVASADPSSTDS-TREPKRMRTGGGSTSSSSSSSSSMDGGRT

VESMLSELNAPPAPLPPAT-P-APRLASTSSTVTSGAAAGAGYFD-LPPAVDSSSSTYALKPIPSPV-AAPSADPST-DS-AREPKRMRTGGGSTSSSSSSSSSMDGGRT

VESMLSELNAPPPPLPPAT-P-APRLASTSSTVTSGAAAGAGYFD-LPPAVDSSSSTYALKPIPSPV-AAASADPSP-DS-AREPKRMRTGGGSTSSSSSSSSSMDGGRT
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RGSVVEAAPPATQGAAAANAPAVPVVVVDTQEAGIRLVHALLACAEAVQQENFAAAEALVKQIPTLAASQGGAMRKVAAYFGEALARRVYRFRP-ADSTLLDAAFADLLH
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FMLQPEGEADANEEPEVIAVNSVFELHRLLAQPGALEKVLGTVHAVRPRIVTVVEQEANHNSGSFLDRFTESLHYYSTMFDSLEGGSSGQAELS----PPAA---GGGGG

FMLQPEGD-DKDEEPEVIAVNSVFELHRLLAQPGALEKVLGTVRAVRPRIVTVVEQEANHNSGTFLDRFTESLHYYSTMFDSLEGAGS--------GQSTDAS-PAAAGG

FMLQPEGD-DTDDEPEVIAVNSVFELHRLLAQPGALEKVLGTVRAVRPRIVTVVEQEANHNSGTFLDRFTESLHYYSTMFDSLEGAGAGS------GQSTDAS-PAAAGG

FMLRPEGGGDTDDEPEVIAVNSVCELHRLLAQPGTLDKVLGTVRAVRPRIVTVVEQEANHNSGTFLDRFTESLHYYSTMFDSLEGAGSGSGSGSGSGQPTDASPP---AG

                                                                                                              

      

      

 : 524

 : 522

 : 521

 : 521

 : 519

 : 524

 : 526

 : 528

 : 528

 : 526

      

             

             

CS-D       : 

CS-B       : 

CS-A       : 

T.urartu   : 

barley     : 

Brachypod. : 

rice       : 

sorghum    : 

maize_chr1 : 

maize_chr5 : 

             

                                                                                                       

       560       570       580       590       600       610       620       630       640       650   

TDQVMSEVYLGRQICNVVACEGAERTERHETLGQWRNRLGNAGFETVHLGSNAYKQASTLLALFAGGDGYKVEEKEGCLTLGWHTRPLIATSAWRLAG---P-

TDQVMSEVYLGRQICNVVACEGAERTERHETLGQWRNRLGNAGFETVHLGSNAYKQASTLLALFAGGDGYKVEEKEGCLTLGWHTRPLIATSAWRLAA---P-

TDQVMSEVYLGRQICNVVACEGAERTERHETLGQWRNRLGNAGFETVHLGSNAYKQASTLLALFAGGDGYKVEEKEGCLTLGWHTRPLIATSAWRLAA---P-

TDQVMSEVYLGRQICNVVACEGAERTERHETLGQWRNRLGNAGFETVHLGSNAYKQASTLLALFAGGDGYKVEEKEGCLTLGWHTRPLIATSAWRLAA---P-

TDQVMSEVYLGRQICNVVACEGTERTERHETLGQWRNRLGNAGFETVHLGSNAYKQASTLLALFAGGDGYKVEEKEGCLTLGWHTRPLIATSAWRLAA---P-

TDQVMSEVYLGRQICNVVACEGPERTERHETLGQWRGRLGQAGFETVHLGSNAYKQASTLLALFAGGDGYKVEEKDGCLTLGWHTRPLIATSAWRMAA---P-

TDQVMSEVYLGRQICNVVACEGAERTERHETLGQWRNRLGRAGFEPVHLGSNAYKQASTLLALFAGGDGYRVEEKEGCLTLGWHTRPLIATSAWRVAAA----

TDQVMSEVYLGRQICNVVACEGAERTERHETLSQWRGRLVGSGFEPVHLGSNAYKQASTLLALFNGGDGYRVEEKDGCLTLGWHTRPLIATSAWRLAA---P-

TDQVMSEVYLGRQICNVVACEGAERTERHETLGQWRSRLGGSGFAPVHLGSNAYKQASTLLALFAGGDGYRVEEKDGCLTLGWHTRPLIATSAWRVAAAAAP-

TDQVMSEVYLGRQICNIVACEGAERTERHETLVQWRGRLGGSGFEPVHLGSNAYKQASTLLALFAGGDGYRVEEKDGCLTLGWHTRPLIATSAWRVAA---P-

                                                                                                       

      

      

 : 623

 : 621

 : 620

 : 620

 : 618

 : 623

 : 625

 : 627

 : 630

 : 625

      

DELLA TVHYNP

TVHYNP

NLSLHR I

VHIID

VHIID

LHR II

LHR II P FY

RE RVER SAWL-WW-G

CS-D:
CS-B:
CS-A:
Tu:
Hv:
Bd:
Os:
Sb:

Zm_1:
Zm_5:

CS-D:
CS-B:
CS-A:
Tu:
Hv:
Bd:
Os:
Sb:

Zm_1:
Zm_5:

CS-D:
CS-B:
CS-A:
Tu:
Hv:
Bd:
Os:
Sb:

Zm_1:
Zm_5:

CS-D:
CS-B:
CS-A:
Tu:
Hv:
Bd:
Os:
Sb:

Zm_1:
Zm_5:

CS-D:
CS-B:
CS-A:
Tu:
Hv:
Bd:
Os:
Sb:

Zm_1:
Zm_5:

CS-D:
CS-B:
CS-A:
Tu:
Hv:
Bd:
Os:
Sb:

Zm_1:
Zm_5:



 

73 
 

to 9 orthologues = white font with dark grey background; Identity shared by 6 to 7 orthologues 

= black font with light grey background; Identity shared by 5 or less orthologues = black font 

with white background.  Coordinates are shown above the sequence for referral in the text, 

but because of the introduction of gaps to facilitate alignment they do not correspond to any 

one sequence.  Total peptide length is shown following the last residue in each sequence.  

Arrows indicate differences among the three CS homoeologues.  Previously established 

protein motifs (Tian et al., 2004) are underlined in blue and with names below.  The DELLA-

specific N-terminal region includes coords. 1 to 320 and the GRAS carboxyl terminus includes 

coords. 321 to 652. Accessions used for each Rht-1 orthologue are shown in Appendix IV. 

 

 

 

Figure 3.4.  Unrooted neighbor-joining tree of wheat Rht-1 and Poaceae orthologues.  

Nucleotide sequences of the Rht-1 ORFs were aligned with ClustalX and bootstrap values 

and genetic distances determined using the seqboot application and neighbour joining 

method of PHYLIP (v3.6).  Ta „CS‟ Rht-A1, Ta „CS‟ Rht-B1, and Ta „CS‟ Rht-D1 are, 

respectively, the A, B, and D homoeologues of the Rht-1 gene identified in the Chinese 

Spring wheat BAC library.  T. urartu Rht-A1 sequence is also from a BAC clone.  The 

remaining sequences are shown by species name with locus or genbank accession number 

below.  If a species-specific Rht-1 pseudonym exists, it is shown in parenthesis.  

Chromosome number containing the Rht-1 orthologue is also given for maize.  Branch 

lengths indicate relative genetic distance.  Bootstrap values per 100 trees are given at each 

node if available. 
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3.3.2.2. Comparative analysis of the Rht-1 flanking region (10 kb 5’ and 

10kb 3’) in wheat and Poaceae 

 

Sequence 5‟ and 3‟ of Rht-1 was examined to determine the degree of 

similarity among the three CS wheat genomes.  It was hypothesised that 

regions of high conservation close to the ORF could reflect regulatory regions 

for expression of Rht-1.  Comparison of the Rht-1 regions of the three CS 

genomes showed that the 5‟ region beyond approximately 10 kb upstream of 

the ORF (9.6 kb 5‟ of Rht-A1, 8 kb 5‟ of Rht-B1, and 11.1 kb 5‟ of Rht-D1) had 

high similarity to TEs.  TE sequences are unlikely to be regulatory regions for 

Rht-1 function, and therefore comparative analysis was restricted to the 

region from 0 to 10 kb upstream of the ORF.  CS BAC sequences from 0 to 

10 kb upstream of Rht-A1, Rht-B1, and Rht-D1 were compared using the 

NCBI BLAST alignment tool and regions of similarity were defined as those 

with hits ≥ 100 and nucleotide identity greater than 80% (Figure 3.5).  The CS-

A and CS-D regions 5‟ of Rht-1 were the most alike, with 61% of the 

sequences defined as similar in the 10 kb interval.  In contrast, the percentage 

of the 5‟ region defined as similar between CS-B and CS-D is 25% and 

between CS-B and CS-A is 22%.  Sequence similarity shared among all three 

CS genomes was 21% from ten hits ranging from 69 to 651 bp in length 

(Table 3.3).  Two-thirds of the sequence conserved among the three 

homoeologues is located between 793 and 2251 bp upstream of Rht-B1. 
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Figure 3.5. Sequence similarity 5’ of Rht-1 on the Chinese Spring (CS) A, B, and D 

genomes.  Sequences from 0 kb to 10 kb upstream of Rht-1 from each genome were 

compared using ACT (Artemis Comparison Tool) software (Carver et al., 2005) and 

comparison files created with Double ACT v2 (http://www.hpa-

bioinfotools.org.uk/pise/double_act.html).  Genomic regions from 10,000 bp upstream (-

10,000) up to the first nucleotide of the translational start codon (0) of Rht-1a are shown as 

grey bars.  Regions with BLAST scores ≥100 and similarity > 80% are connected by red 

rectangles; the width of the rectangle represents the length of the hit and colour intensity is 

correlated to percent sequence similarity, with darker red corresponding to higher percentage 

similarity. 

 

Table 3.3.  Summary of 5’ regions within 10 kb of Rht-1 that are conserved among the 

Chinese Spring (CS) A, B and D genomes. 

 
a 
Sequences from 0 kb to 10 kb upstream of Rht-1 from each genome were compared using 

the NCBI BLAST alignment tool to identify regions of similarity shared among the three 

homoeologues.  BLAST hits and lengths of conserved regions are listed from 5‟ to 3‟.  

-10000         -9200          -8400         -7600         -6800          -6000         -5200        -4400          -3600        -2800          -2000        -1200          -400       0

CS-B

CS-D

CS-A

CS-A

BLAST hita Length (bp) Start Finish Start Finish Start Finish

1 156 -6083 -5931 -4991 -4844 -6280 -6124

2 101 -5854 -5767 -4785 -4687 -6058 -5957

3 100 -4907 -4807 -4123 -4015 -5581 -5481

4 69 -4736 -4667 -3931 -3862 -5423 -5354

5 651 -3412 -2770 -2251 -1619 -4442 -3791

6 283 -2772 -2482 -1608 -1320 -3780 -3497

7 509 -1618 -1092 -1318 -793 -1592 -1083

8 70 -694 -623 -593 -524 -676 -607

9 152 -450 -298 -400 -249 -431 -279

CS-A CS-B CS-D

http://www.hpa-bioinfotools.org.uk/pise/double_act.html
http://www.hpa-bioinfotools.org.uk/pise/double_act.html
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Conserved regions were designated as having BLAST scores ≥100 and sequence similarity > 

80%. The coordinates of the hits are shown for each of the genomes relative to the start 

nucleotide of Rht-1.  Negative numbers refer to the distance upstream of Rht-1. 

 

Nucleotide sequence comparison of the region from 0 to 10 kb 3‟ of Rht-1 

among the three CS BACs (using the same BLAST score criteria as for the 5‟ 

region) revealed high sequence similarity up to 4.5 kb downstream of the stop 

codon of Rht-1 (Figure 3.6).  Beyond this, similarity breaks down between any 

two genomes, with the exception of approximately 500 bp of similarity 

between the A and D genomes.  Beyond roughly 6 kb 3‟ of Rht-1 (7.4 kb, 6.1 

kb, and 5.9 kb in the A, B, and D genomes, respectively), the majority of 

sequence has high similarity to known TEs.  Among the three genomes, 27% 

of the 0 to 10 kb downstream sequence is defined as similar and all this 

occurs with 4 kb of the end of Rht-1 (Table 3.4). 

 

 

Figure 3.6. Sequence similarity 3’ of Rht-1 on the Chinese Spring (CS) A, B, and D 

genomes.  Sequences from 0 kb to 10 kb downstream of Rht-1 from each genome were 

compared using ACT (Artemis Comparison Tool) software (Carver et al., 2005) and 

comparison files created with Double ACT v2 (http://www.hpa-

bioinfotools.org.uk/pise/double_act.html).  Genomic regions from the end nucleotide of the 

Rht-1 ORF (0) to 10,000 bp downstream (10,000) are shown as grey bars.  Regions with 

BLAST scores ≥100 and similarity > 80% are connected by red rectangles; the width of the 

RHT 3’ REGION BAC COMPARISONS
1 to 10 000 bp downstream Rht
Min BLAST score of 100
Min identity of 80% (darker red = higher % identity)

0               800            1600            2400          3200           4000           4800           5600          6400 7200          8000           8800          9600   10000

CS-A

CS-B

CS-D

CS-A

http://www.hpa-bioinfotools.org.uk/pise/double_act.html
http://www.hpa-bioinfotools.org.uk/pise/double_act.html
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rectangle represents the length of the hit and colour intensity is correlated to percent 

sequence similarity, with darker red corresponding to higher percentage similarity. 

 

Table 3.4.  Summary of 3’ regions within 10 kb of Rht-1 that are conserved among the 

Chinese Spring (CS) A, B and D genomes. 

 
a 
Sequences from within 10 kb downstream of Rht-1 from each genome were compared using 

the NCBI BLAST tool to identify regions of similarity shared among all three genomes. BLAST 

hits and lengths of conserved regions are listed from 5‟ to 3‟.  Conserved regions were 

designated as having BLAST scores ≥100 and sequence similarity >80%. Coordinates of the 

hits are shown for each of the genomes relative to the last nucleotide of Rht-1. 

 

To determine whether regions upstream or downstream of Rht-1 are 

conserved between the three CS wheat BAC sequences and the orthologous 

regions in rice and Brachypodium, comparisons were made using the NCBI 

BLAST alignment tool with conservation defined as BLAST hits ≥ 100 and 

nucleotide similarity ≥ 70.  For each sequence the regions up to 10 kb 

upstream and up to 10 kb downstream of Rht-1 (not including the ORF) were 

compared.  Upstream of Rht-1, only one conserved region (Region 1, table 

3.5) was identified among the five genomes.  This region is approximately 120 

bp in length and in each genome is located in the interval between 300 and 

500 bp upstream of Rht-1.  Using CS-D BAC sequence as a reference 

(arbitrarily chosen), nucleotide similarity of this upstream region with rice and 

Brachypodium was 84% and 92%, respectively.  Downstream, two conserved 

regions (Regions 2 and 3, table 3.5) were identified among the five genomes.  

Region 2, the nearest downstream region, was approximately 100 bp in length 

and located between 300 and 450 bp 3‟ of the Rht-1 stop codon in each 

sequence.  Nucleotide similarities of region 2 relative to the CS-D reference 

sequence were 81% with rice and 84% with Brachypodium.  Region 3 was 

BLAST hita Length (bp) Start Finish Start Finish Start Finish

1 481 1 483 2 483 3 484

2 289 623 895 515 789 616 905

3 298 1161 1455 1247 1538 1192 1490

4 135 1495 1631 1581 1717 1513 1648

5 416 1649 2057 1739 2165 1664 2080

6 120 2194 2314 2307 2424 2267 2387

7 174 2440 2620 2537 2712 2496 2670

8 492 2978 3468 2965 3451 2905 3397

9 293 3563 3856 3567 3861 3521 3814

CS-A CS-B CS-D
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approximately 250 bp in size and located between 1.5 and 2 kb downstream 

of Rht-1 in each genome.  Nucleotide similarities for this region relative to the 

CS-D reference sequence were 70% for rice and 75% for Brachypodium. 

 

Table 3.5.  Sequence similarities among the CS wheat genomes, rice, and 

Brachypodium for the 5’ and 3’ regions within 10 kb of Rht-1. 

 
a 
Sequences from 0 kb to 10 kb upstream of Rht-1 and from 0 to 10 kb downstream of Rht-1 

from each genome were compared using the NCBI BLAST tool to identify regions of similarity.  

Lengths of conserved regions are listed from 5‟ to 3‟.  Conserved regions were designated as 

having BLAST scores ≥100 and sequence similarity ≥70%.  

b
 Coordinates of 5‟ hits are shown for each of the genomes relative to the start nucleotide of 

Rht-1 with negative numbers referring to sequence upstream of Rht-1.  Coordinates of 3‟ hits 

are shown relative to the end nucleotide of Rht-1. 

c
 BLAST scores, expectation (E) values, and percentage of shared nucleotides (similarity) 

relative to CS-D are given.  BLASTs of CS-D to itself are included for comparative purposes. 

 

 

 

 

 

Region
a

Genome Start End Score E-value Similarity 

CS-D -435 -314 244 3 x 10
-63

100%

CS-A -452 -333 230 2 x 10
-57

98%

CS-B -400 -283 206 5 x 10
-51

94%

Brachypodium -430 -310 194 3 x 10
-47

92%

rice -474 -349 156 2 x 10
-36

84%

CS-D 328 428 202 5 x 10
-52

100%

CS-A 327 432 172 7 x 10
-42

92%

CS-B 327 427 176 6 x 10
-43

95%

Brachypodium 238 305 108 5 x 10
-24

84%

rice 256 353 100 3 x 10
-21

81%

CS-D 1627 1901 550 1 x 10
-145

100%

CS-A 1610 1879 432 6 x 10
-112

91%

CS-B 1696 1973 416 1 x 10
-107

89%

Brachypodium 1612 1885 202 5 x 10
-49

75%

rice 1456 1759 126 8 x 10
-28

70%

Coordinates
b

1

2

3

BLAST Comparison
c
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3.3.2.3. Comparative analysis of ZnF in wheat and Poaceae 

 

A comparison of the ZnF genes present on the CS-A, CS-D, and T. urartu (A 

genome) BAC inserts reveals that the intron-exon structure is highly 

conserved among all four BACs with each ZnF gene occurring on the minus 

strand and consisting of 14 exons and 13 introns (Figure 3.7). The CS and 

„Aibai/10*CS‟ ZnF-D1 exon sequences are identical and the intron sequences 

differ by only 4 polymorphisms (3 SNPs and 1 bp deletion), so only CS ZnF-

D1 will be used in comparisons.  The gene lengths (introns + exons) of the 

wheat ZnF genes vary widely with a 9032 bp size in T. urartu, a 9894 bp size 

in CS-A, and a 8298 bp size in CS-D,.  All of the ZnF indels occur in the 

introns and the four largest indels, which range from 85 to 800 bp, account for 

almost all of the size differences found among the ZnF loci.  The first indel 

(relative to the ZnF start codon) occurs in intron 4 and involves an 800 bp 

insertion on the two ZnF-A1 sequences relative to ZnF-D1. A BLAST search 

of the inserted sequence against the NCBI nucleotide collection (nr/nt) and 

the TREP cereals repeat database revealed no matches with significant 

similarity.  Also in intron 4 is a partial sequence (91 bp) of a Tantalos MITE 

(Miniature Inverted-repeat Transposable Element) on ZnF-D1.  The second 

indel is an 87 bp insertion on CS ZnF-A1 intron 5 of a Hades MITE (87 bp), 

which is degenerate.  The third ZnF indel occurs in intron 6 where a full-length 

copy of the Thalos MITE (165bp) is present on the two ZnF-A1 genes but 

absent on ZnF-D1.  In the same region of intron 6, the ZnF-D1 contains a full-

length copy of the Athos MITE (85 bp).  The fourth ZnF indel is a 770 bp 

insertion on ZnF-A1 of CS that occurs between the Thalos MITE and exon 7.  

No matches were found to the 770bp sequence in the NCBI nucleotide 

collection (nr/nt) or TREP cereals repeat database.  In contrast to the intronic 

Tantalos, Hades, and Thalos MITEs which differ between ZnF-A1 and ZnF-

D1, the Icarus MITE is conserved between these two homoeologues.  The 

conservation of the intronic Icarus MITE also contrasts with the transposon 

composition among the intergenic regions of the CS Rht-containing BACs, in 

which no transposons were discovered that were conserved between any two 

homoeologues. 
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Figure 3.7.  Diagrammatic representation of the wheat zinc-finger (ZnF) gene structure 

and intronic MITES.  The genes (outlined in orange) from T. urartu and the A and D 

genomes of Chinese Spring (CS) are each located on the minus strand and are shown 

oriented from 5‟ to 3‟ in scale to one another with total length shown in basepairs (bp) at the 

end of each gene.  Filled orange rectangles correspond to the 14 exons and unshaded 

regions represent the 13 introns present in each copy.  MITES (Miniature Inverted-repeat 

Transposable Elements) are indicated by green arrows pointing in the direction of 

transcription relative to ZnF with names shown above.  The locations of 770 bp and 800 bp 

insertions (ins) are also indicated. 

 

The nucleotide and amino acid sequences of the ORFs of the ZnF wheat 

genes found on the four BAC sequences are also highly conserved and all 

ORFs are 1422 nucleotides (473 amino acids) in length (Table 3.6).  The ZnF 

ORFs of the CS-A and CS-D homoeologues have 98.5% nucleotide identity 

(differing by only 21 SNPs) and 99.8% amino acid similarity (1 residue 

difference).  The only predicted amino acid change between the CS-A and 

CS-D ZnF ORFs is a valine (ZnF-A1) to leucine (ZnF-D1) change (Figure 3.8, 

coord. 315) that occurs outside of the C3HC4 (RING) zinc finger type domain.  

The CS-A and T. urartu ZnF-A1 sequences differ by 5 SNPs (99.6% identity) 

and the amino acid sequences are identical. 

 

 

 

 

 

 

T. urartu

ZnF-A1

CS  

ZnF-A1

CS  

ZnF-D1

AthosTantalos Icarus

8298 bp

ThalosIcarus

9032 bp

800 bp ins

ThalosIcarus
Hades

9894 bp

800 bp ins 770 bp ins
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Table 3.6.  Nucleotide and amino acid identities shared among Poaceae ZnF 

orthologues 

 
a
 Percentage of nucleotide and amino acid identities shared between orthologues is shown 

below and above the slash in the grid, respectively.  Background colour of cells in the grid is 

based on % identity: red (≥95%); blue (90-94.9%); yellow (85-89.9%). 

b
 Locus names corresponding to each species.  CS = Chinese Spring; HvZnF is the 

consensus sequence of expressed sequence tags (ESTs) TA38367_1353, TA38365_1353, 

and TA38366_1353. 

c
 Species abbreviations are shown below and to the right of the header.  Ta-A and Ta-D = the 

A and D genomes of Triticum aestivum, respectively; Tu = Triticum urartu; Hv = Hordeum 

vulgare; Bd = Brachypodium distachyon; Os = Oryza sativa; Sb = Sorghum bicolor; Zm-1 = 

Zea mays chromosome 1; Zm-5 = Zea mays chromosome 5. 

 

 

 

Locus Name
b

Species
c

Ta -A Ta -D Tu Hv Bd Os Sb Zm-1 Zm-5

ZnF-A1  (CS) Ta -A 99.8 100.0 99.4 95.1 90.9 92.4 92.4 92.0

ZnF-D1  (CS) Ta -D 98.5 99.8 99.2 94.9 90.7 92.2 92.2 91.8

ZnF-A1 Tu 99.6 98.6 99.4 95.1 90.9 92.4 92.4 92.0

HvZnF Hv 97.3 97.5 97.4 94.9 90.5 92.0 92.0 91.3

Bradi1g11070 Bd 92.5 92.3 92.3 92.5 90.5 92.6 93.0 91.8

Os03g49900 Os 88.5 88.4 88.5 88.5 88.8 94.9 94.1 93.2

Sb01g010680 Sb 88.5 88.4 88.5 88.1 89.5 89.1 98.3 96.8

GRMZM2G704032 Zm- 1 88.2 87.8 88.3 88.0 88.8 89.0 97.0 97.3

GRMZM2G024690 Zm- 5 88.0 88.0 88.0 87.9 88.3 88.6 96.0 96.1

1422 1422 1422 1422 1425 1422 1422 1422 1419

473 473 473 473 474 473 473 473 472

Nucleotide \ Amino acid identitities (%)
a

ORF nucleotides (no.)

Amino Acids (no.)
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Figure 3.8. Peptide sequences of ZnF from wheat and Poaceae orthologues.  Amino acid 

sequences of two Chinese Spring (CS) wheat homoelogues of ZnF (CS-D and CS-A) and 

orthologues in T. urartu (Tu), Hordeum vulgare (Hv), Brachypodium distachyon (Bd), Oryza 

sativa (Os), Sorghum bicolor (Sb), chromosome 1 of Zea mays (Zm_1), and chromosome 5 of 

Zea mays (Zm_5) were aligned using ClustalX and adjusted manually to minimise 

mismatches.  Gaps inserted to allow for alignment are indicated by a (-).  Residue 

conservation of the nine sequences is shown by the following shading and font colours:  

Absolute sequence identity = white font with black background; Identity shared by 7 to 8 

orthologues = white font with dark grey background; Identity shared by 5 to 6 orthologues = 

black font with light grey background; Identity shared by 4 or less orthologues = black font 

with white background.   Coordinates are shown above the sequence. Total peptide length is 

shown after each sequence. 
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ESLRVKNHPAVDMKIVFLPLLTFEVIILVDNFRMCKALMPGDEESMSDEAIWETLPHFWVAISMVFLIAATTFTLLKLSGDVGALGWWDLFINYGIAECF

ESLRVKNHPAVDMKIVFLPLLTFEVIILVDNFRMCKALMPGDEESMSDEAIWETLPHFWVAISMVFLIAATTFTLLKLSGDVGALGWWDLFINYGIAECF

ESLRVKNHPAVDMKIVFLPLLTFEVIILVDNFRMCKALMPGDEESMSDEAIWETLPHFWVAISMVFLIAATTFTLLKLSGDVGALGWWDLFINYGIAECF

ESLRVRNHPAVDLKIVFLPLLTFEVIILIDNFRMCKALMPGDEESMSDEAIWETLPHFWVAISMVFLIAATTFTLLKLSGDVGALGWWDLFINYGIAECF

ESLRVKSKPTVDLKIVFLPLLAFEVIILADNFRMCRALMPGDEESMSDEAIWETLPHFWVAISMVFLIAATTFTLLKLSGDVGALGWWDLFINYGIAECF

ESIRVRNHPSVDLKIVFLPLLAFEAIILIDNFRMCRALMPGDEESMSDEAIWETLPHFWVAISMVFLIAATTFTLLKLSGDVGALGWWDLFINYGIAECF

ESIRVRNHPSFDLKIVFLPLLAFEAIILIDNFRMCRALMPGDEESMSDEAIWETLPHFWVAISMVFLIAATTFTLLKLSGDVGALGWWDLFINYGIAECF
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AFLVCTRWFNPMIHRPPTHGEASSSSSAIRYRDWESGLVLPSLEDHEQERICGLPDIGGHLMKIPLVVFQVLLCMRLEGTPPSARYIPIFALFSPLFILQ

AFLVCTRWFNPMIHRPPTHGEASSSSSAIRYRDWESGLVLPSLEDHEQERICGLPDIGGHLMKIPLVVFQVLLCMRLEGTPPSARYIPIFALFSPLFILQ

AFLVCTTWFNPMIHRPPTHGEASSSSTAIRYRDWESGLVLPSLEDHEQERICGLPDIGGHLMKIPLVVFQVLLCMRLEGTPPSARYIPIFALFSPLFILQ

AFLVCTRWFNPMIHRPPTHGEASSSSTAIRYRDWDSGLVLPSLEDHEQEKLCGLPDIGGHVMKIPLVVFQVLLCMRLEGTPPSARYIPIFALFSPLFILQ

AFLVCTRWFNPMIHKSPNPGEASSSSAAIRYRDWESGLLLPSLEDHEQERLCGLPDIGGHVMKIPLVIFQVLLCMRLEGTPPSAQYIPIFALFSPLFILQ

AFLVCTRWFNPMIHKSPTHGEASSSSAAIRYRDWESGLVLPSLEDHEQERLCGLPDIGGHVMKIPLVAFQVLLCMRLEGTPASARYIPIFALFSPLFILQ

AFLVCTRWFNPMIHKSPTHGEASSSSAAIRYRDWESGLVLPSLEDHEQEKLCGLPDIGGHVMKIPLVAFQVLLCMRLEGTPPSARYIPIFALFSPLFILQ

AFLVCTRWFNPMIHKSPTHGEASSSS-AIRYRDWESGLVLPSLEDHEQERLCGLPDIGGHVMKIPLVAFQVLLCMRLEGTPPSARNIPIFALFSPLFILQ
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GAGVLFSIGRLVEKLVLLLRNGPVSPNYLTVSSKVRDCFAFLHHGSRLLGWWSIDEGSKEEQARLFYTESNGYNTFSGYPPEVVKKMPKKDLAEEVWRLQ

GAGVLFSIGRLVEKVVLLLRNGPVSPNYLTVSSKVRDCFAFLHHGSRLLGWWSIDEGSKEEQARLFYTESNGYNTFSGYPPEVVKKMPKKDLAEEVWRLQ

GAGVLFSIGRLVEKVVLLLRNGPVSPNYLTVSSKVRDCFAFLHHGSRLLGWWSIDEGSKEEQARLFYTESNGYNTFSGYPPEVVKKMPKKDLAEEVWRLQ

GAGVLFSIGRLVEKVVLLLRNGPVSPNYLTVSSKVRDCFAFLHHGSRLLGWWSIDEGSKEEQARLFYTESNGYNTFSGYPPEVVKKMPKKDLAEEVWRLQ

GAGVLFSLARLVEKVVLLLRNGPVSPNYLTASSKVRDCFAFLHHGSRLLGWWSIDEGSKEEQARLFYTEANGYNTFSGYPPEVVRKMPKKDLAEEVWRLQ

GAGVLFSLARLLEKVVLLLRNGPVSPNYLTISSKVRDCFAFLHRGSRLLGWWSIDEGSKEEQARLFYTESTGYNTFCGYPPEVVRKMPKRDLAEEVWRLQ

GAGVLFSLARLVEKVVLLLRNGPVSPNYLTASSKVRDCFAFLHRGSRLLGWWSIDEGSKEEQARLFYTESTGYNTFCGYPPEVVRKMPKKDLAEEVWRLQ

GAGVLFSLARLVEKVVLLLRNGPVSPNYLTASSKVRDCFAFLHHGSRLLGWWSIDEGSKEEQARLFYTESTGYNTFCGYPPEVVRKMPKKDLAEEVWRLQ

GAGAFFSLARLVEKVVLLLRNGPVSPNYLTVSSKVRDCFAFLHHGSRLLGWWSIDEGSKEEQARLFYTESTGYNTFCGYPPEVVRKMPKKDLAEEVWRLQ
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AALGEQSEITKCTKQEYERLQNEKVLCRICYEGEICMVLLPCRHRTLCKSCAEKCKKCPICRVPIEERMPVYDV-
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The blue line indicates amino acids that encode the C3HC4 (RING) zinc finger type domain 

based on an InterProScan (http://www.ebi.ac.uk/Tools/InterProScan/) of the amino acid 

sequences.  The red arrow at coordinate 315 indicates the lone amino acid substitution 

identified among the CS-A, CS-D, and T.urartu sequences.  Accessions used for each 

orthologue are shown in Appendix IV. 

 

Nucleotide and amino acid sequences of the ZnF orthologues from barley 

(HvZnF), Brachypodium (BdZnF), rice (OsZnF), sorghum (SbZnF), maize 

chromosome 1 (Zm-1ZnF), and maize chromosome 5 (Zm-1ZnF) were 

compared to the CS ZnF-A1, CS ZnF-D1 and T. urartu ZnF-A1 sequences to 

determine the level of conservation (Table 3.6).  All nine of the ZnF genes 

have 14 exons and 13 introns and the nucleotide lengths are in a narrow 

range of 1419 to 1425 bp (472 to 474 amino acids).  The nine sequences 

share 78.0% nucleotide identity and 85.1% amino acid identity.  Seven of the 

amino acids contained in the C3HC4 (RING) zinc finger domain are not wholly 

conserved across the species including three amino acid changes that only 

occur in rice (Figure 3.8, coords. 450, 452, and 453).  Only the HvZnF amino 

acid sequence completely matches the three wheat sequences in the RING 

domain.  Over the entire ORF, the HvZnF sequence is the most similar to the 

T. aestivum sequences, having 97.4% nucleotide identity and 99.3% amino 

acid identity when percent identities are averaged across the CS ZnF 

sequences.  In relation to the wheat ZnF ORF nucleotide sequence, the order 

of similarity among the non-wheat species is Hv > Bd > Os = Sb > Zm-1 = 

Zm-5 and for the amino acid sequence the similarity to wheat ranking is Hv > 

Bd > Sb = Zm-1 > Zm-5 > Os.  Phylogenetic analyses of the ZnF sequences 

showed a similar ranking of similarity with the HvZnF sequence being closest 

to the wheat sequences (Figure 3.9). 

 

 

 

http://www.ebi.ac.uk/Tools/InterProScan/
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Figure 3.9.  Unrooted neighbor-joining tree of wheat ZnF and Poaceae orthologues.  

Nucleotide sequences of the ZnF ORFs were aligned with ClustalX and bootstrap values and 

genetic distances determined using the seqboot application and neighbour joining method of 

PHYLIP (v3.6).  Ta „CS‟ ZnF-A1 and Ta „CS‟ ZnF-D1 are, respectively, the A and D 

homoeologues of the ZnF gene identified from the wheat BAC library derived from Chinese 

Spring.  T. urartu ZnF-A1 is ZnF sequence from a BAC clone.  H. vulgare sequence was 

assembled from TA38367_4513, TA38365_4513, and TA38366_4513.  The remaining 

sequences are shown by species name with locus number below.  The chromosome carrying 

the ZnF orthologue is indicated for maize.  Branch lengths indicate relative genetic distance.  

Bootstrap values of 100 trees are given at each node if available.  

 

3.3.2.4. Comparative analysis of DUF6 among wheat BACs and Poaceae 

 

The DUF6 genes found upstream of Rht-1 are present on the CS-A, CS-B, 

CS-D, and T. urartu (A genome derived) BAC sequences.  On all the wheat 

BAC inserts, DUF6 is on the plus strand and has 8 exons and 7 introns 

(Figure 3.10).  The CS-D and „Aibai/10*CS‟ DUF6 intron and exon sequences 

are completely identical, so only CS-D is included in the comparative analysis.  

H. vulgare

B. distachyon
Bradi1g11070

S. bicolor
Sb01g010680

Z. mays chr.1
GRMZM2G704032

Z. mays chr.5
GRMZM2G024690

O. sativa
Os03g49900 

Ta 'CS‘ ZnF-A1
T. urartu ZnF-A1

Ta 'CS' ZnF-D1

99
98

62

100

100

100
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The gene length (exons + introns) of CS DUF6-B1 is 2382 bp, which is 192 bp 

shorter than both DUF6-A1 genes and 181 bp shorter than CS DUF6-D1.  

The difference is primarily due to the presence of a 162 bp Thalos MITE in the 

first intron of DUF6-A1 and DUF6-D1 that is not present in DUF6-B1.  Of the 

three CS homoeologues, DUF6-A1 and DUF6-D1 are the most similar having 

96.9% nucleotide identity (41 SNPs) and 96.8% amino acid identity (14 

substitutions) (Table 3.7).  DUF6-B1 and DUF6-A1 have 95.9% nucleotide 

identity (42 SNPs and a 12 bp indel) and 95.2% amino acid identity (17 

substitutions and a 4 amino acid indel).  DUF6-B1 and DUF6-D1 have 96.5% 

nucleotide identity (34 SNPs and a 12 bp indel) and 94.8% amino acid identity 

(19 substitutions and a 4 amino acid indel).  Among the three CS DUF6 

homoeologues, 94.7% of the nucleotide identities and 93.6% of the amino 

acid identities are conserved (Table 3.7).  The most striking polymorphism 

between the CS DUF6 ORFs is the 12 bp (4 amino acid) deletion that occurs 

in exon 1 of DUF6-B1 (Figure 3.11, coords. 19 to 22), which results in DUF6-

B1 having a reduced gene length (1311 bp; 436 residues) relative to DUF6-A1 

or DUF6-D1 (1323bp; 440 residues).  The DUF6-A1 genes from CS-A and T. 

urartu differ by 6 SNPs (99.5% nucleotide identity), which result in 3 amino 

acid substitutions (99.3% amino acid identity). 

 

 

CS 
DUF6-D1

CS 
DUF6-B1

Thalos

Thalos

Thalos

CS
DUF6-A1

T. urartu
DUF6-A1

2563 bp

2574 bp

2574 bp

2382 bp
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Figure 3.10.  Diagrammatic representation of the wheat DUF6 gene structure and 

intronic MITES.  The genes (outlined in orange) from T. urartu and the A, B, and D genomes 

of Chinese Spring (CS) are in scale to one another with total length shown in basepairs (bp) 

at the end of each gene.  Filled orange rectangles correspond to the 8 exons and unshaded 

regions represent the 7 introns present in each copy.  MITES are shown as green arrows 

depicting their orientation with names above. 

 

Table 3.7.  Nucleotide and amino acid identities shared among Poaceae DUF6 

orthologues. 

 
a
 Percentage of nucleotide and amino acid identities shared between orthologues is shown 

below and above the slash, respectively.  Background colour of cells in the grid is based on % 

identity: red (≥95%); blue (90-94.9%); yellow (85-89.9%); white (≤85%). 

b 
Locus names corresponding to each species.  CS = Chinese Spring.  The barley sequence 

is composed of two non-overlapping ESTs with an estimated gap of 165 bp.  The predicted 

length of the barley coding sequence and the peptide residue number include the envisaged 

165 bp, but these were excluded from identity calculations.  Z. mays sequence is from 

chromosome 1 of inbred B73. 

c
 Species abbreviations are shown below and to the right of the header.  Ta-A, Ta-B and Ta-D 

= the A, B, and D genomes of Triticum aestivum, respectively; Tu = Triticum urartu; Hv = 

Hordeum vulgare; Bd = Brachypodium distachyon; Os = Oryza sativa; Sb = Sorghum bicolor; 

Zm-1 = Zea mays chromosome 1 

 

The wheat BAC DUF6 exon and intron sequences were also compared with 

orthologues in barley (HvDUF6), Brachypodium (BdDUF6), rice (OsDUF6), 

sorghum (SbDUF6), and maize chromosome 1 (Zm-1DUF6) (Table 3.7).  

Unlike Rht-1 and ZnF, no DUF6 orthologue is present on maize chromosome 

5.  In barley, a consensus of EST sequences was made, but relative to the 

other alignments, there was a gap of an estimated 165 bp (approximately 

13% of the HvDUF6 sequence) that likely results from the absence of EST 

Locus Name
b

Species
c

Ta -A Ta -B Ta -D Tu Hv Bd Os Sb Zm-1

DUF6-A1  (CS) Ta -A 95.2 96.8 99.3 91.1 85.2 75.4 73.4 73.3

DUF6-B1  (CS) Ta -B 95.9 94.8 94.5 92.3 85.2 75.8 74.4 74.0

DUF6-D1  (CS) Ta -D 96.9 96.5 96.4 92.4 85.5 76.0 74.0 73.9

DUF6-A1 Tu 99.5 95.8 96.7 90.6 84.8 74.7 73.1 73.1

HvDUF6 Hv 92.5 94.0 93.6 92.4 83.8 74.2 73.6 71.9

Bradi1g11080 Bd 87.5 88.0 88.0 87.5 86.3 76.0 73.8 74.6

Os03g49940 Os 77.7 77.9 78.1 77.5 77.2 76.8 74.5 73.4

Sb01g010670 Sb 78.4 78.9 78.8 78.3 78.8 79.0 79.3 85.3

GRMZM2G093849 Zm- 1 77.1 77.8 77.6 77.0 77.6 77.5 78.3 90.2

1323 1311 1323 1323 1308 1320 1365 1326 1344

440 436 440 440 435 439 454 441 447

Nucleotide \ Amino acid identitities (%)
a

ORF nucleotides (no.)

Amino Acids (no.)
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sequence in the databases searched.  The missing 165 nucleotides, along 

with three other missing nucleotides, (one in exon 2 and two in exon 4) were 

designated „N‟ for „unknown nucleotide‟ (IUPAC nomenclature) and the 

corresponding 59 ambiguous amino acids were designated „X‟, for „any amino 

acid‟ according to IUPAC nomenclature (Figure 3.11, coords. 144-199, 205, 

256-257).  Regions containing nucleotides designated „N‟ or amino acids 

designated „X‟ were not used in identity comparisons that included HvDUF6.  

Identity analysis that excluded HvDUF6 showed that nucleotide and amino 

acid identities in this region are 4.6 and 7.8 percentage points higher, 

respectively, than in the overall sequence.  Each of the Poaceae DUF6 

orthologues has 8 exons and 7 introns.  The coding sequences range from 

1308 nucleotides (the estimated number in HvDUF6) to 1365 nucleotides in 

OsDUF6 (Table 3.7).  The nine Poaceae sequences have 58.4% of the 

nucleotides and 56.5% of the amino acid identities in common.  Among the 

non-wheat orthologues, HvDUF6 is the most similar to the CS wheat DUF6 

sequences having 93.4% nucleotide and 91.9% amino acid similarity when 

averaged across the barley-CS DUF6 homoeologue comparisons.  The 

nucleotide similarity ranking of the Poaceae DUF6 orthologues relative to the 

CS DUF6 homoeoloci is Hv > Bd > Sb > Os > Zm-1 and the amino acid 

ranking is Hv > Bd > Os > Sb > Zm-1.  The majority of the residue changes 

occur near the 5‟ end of the gene (Figure 3.11, coords. 10-100).  In this 

divergent region, among all the DUF6 sequences, nucleotide identity is only 

30% and residue identity is only 12.1% (11 of 91 amino acids conserved) 

relative to the remainder of the sequence in which nucleotide identity is 65.7% 

and amino acid identity is 67.4%.  A phylogenetic tree of the DUF6 

orthologues shows wheat to be most closely related to barley (Figure 3.12).  

The phylogenetic tree also indicates that BdDUF6 is the next closest 

sequence to wheat and barley. 
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MASSVAPSSCALPLHPRV----AAAAGPS-CRVLL-AFTAP--RSAASVRRAGILAP--LRCSPLEDPGATGREEGR---

MASSVAPASCALPLHPRVATAAAAAAGPS-CRVLL-AFTAP--RSAASVRRAGILAP--LRCSPLEDPGATGRDEGG---

MASSVAPASCALPLHPRVATAAAAAAGPS-CHVLL-AFTAP--RSAASVRRAGILAP--LRCSPLEDPGATGRDEGG---

MASSLAPASCALPLHPR----AAAAAGPS-CRVLLLAVAAP--RSAASVRRAGILAP--VRCSPLEDP---GREEGR---

MASSLASASCALPLHPRVATAAAAAAGPS-CRMLF-AVTPP--RSTASMRRVGILPP--LRCSALEDPG-AGGKEGR---

MASSLASASWVVLPPVQARVAAAVAVGPT-CRVLLAY-TPLLSGSARRRVVGRPLAP--PRCSALEDPGPSDGGEGNGRV

MASSLAPASWVLLL--QTGGAGAAAAGPSSCR-LMLAVAEPRCRWAASPRRARVLVA--PRCAALDWPGGS-GEEEA-KI

MASSLAPASWALPL--QMVGAGAAAAGPS-CRATLAVVTEP--RWAASLRRARVLVALAPRCVALDGPGAS-GEEEAPKI
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VEEGEEEVVRRKE-QPRRRQRRRPVWRRILFASKKTRSIIILNALTVIYASDIPVLKEVEALTDPAVFNMVRFVVSAIPF

EDE------RKK-----KPARGRPVWRRILFASKKTRSIIILNALTVIYASDIPVLKEVEALTEPAVFNMVRFVVAAIPF

EDE------RKKSGETKKPARGRPVWSRILFASKKTRSIIILNALTVIYASDIPVLKEVEALTEPAVFNMVRFVVAAIPF
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XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXAGRASXIAAFTVIVVPLIDGFFGASIPMLTWFGAIVSIIGV

LPFVIHSLGDHRIRNGGLELGFWVSLAYLAQAIGLITSDAGRASFITAFTVIVVPLIDGISGSSIPKLTWFGAIVSIIGV

IPFAIRAIGDRHVRNSGLELGLWVSLAYLCQAIGLISSDAGRASFLTAFTVIVVPLIDGIFGATIPKLTWFGAIVSLLGI

VPFAVRAFGDRRVRYAGLELGVWVSLGYLSQAIGLLSSDAGRASFITAITVIVVPLIDGLLGASIPKLTWFGAIMSLFGI

VPFALRSFGDRSVRYAGLELGVWVSLAYLSQAIGLLSSDAGRASFITAFTVVVVPLIDGLLGASIPRLTWFGAIMSLFGI
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GLLECGGSPPSVGDILNFFSAVFFGIHMLRTEQISRSTDKKKFLALLGFEVLVVAFSSVLWFMFKDGYVDTSGSSFESWT

                                                                                

      

      

 : 301

 : 297

 : 301

 : 301

 : 296

 : 300

 : 315

 : 302

 : 308

      

             

             

CS-D       : 

CS-B       : 

CS-A       : 

T.urartu   : 

barley     : 

Brachypod. : 

rice       : 

sorghum    : 

maize_chr1 : 

             

                                                                                

       330       340       350       360       370       380       390       400

FGTLWDSAASFPWIPALYTGVFSTGLCMWAEMVAMAHVSATETAIVYGLEPVWGATFAWFLLGERWDNAAWIGAALVLCG

FGALWDSAASFPWIPALYTGVFSTGLCMWAEMVAMAHVSATETAIVYGLEPVWGAAFAWFLLGERWDNAAWIGAALVLCG

FGTLWDSAASFPWIPALYTGVFSTGLCMWAEMVAMAHVSATETAIVYGLEPVWGAAFAWFLLGERWDNAAWIGAALVLCG

FGTLWDSAASFPWIPALYTGVFSTGLCMWAEMVAMAHVSATETAIVYGLEPVWGAAFAWFLLGERWDNAAWIGAALVLCG

FGTLWDSAASFPWIPALYTGVFSTGLCMWAEMVAMAHVSATETAIVYGLEPVWGAGFAWFLLGERWDNAAWIGAALVLCG

FGMLWDSAASFPWIPALYTGVFSTVLCMWAEMVAMTHVSATETAIVYGLEPVWGAALAWFLLGERWDTAAWIGAALVLCG

FGMFLDTATSFPWIPALYTGVFSTVLCMWAEMVAMGDVSATETAIVYGLEPVWGAAFAWFLLGERWDNAAWVGAALVLCG

FGMLWDTAASFPWIPALYTGVLSTVLCMWAELVAMGDVSATETAIVYGLEPVWGAAFAWFLLGERWDNTTCIGAALVLCG

FGMLWDTTVSFPWIPALYTGVLSTVLCMWAEMVAMGDVSATETAVVYGLEPVWGAAFAWFLLGERWDDAAWTGAALVLCG

                                                                                

      

      

 : 381

 : 377

 : 381

 : 381

 : 376

 : 380

 : 395

 : 382

 : 388

      

             

             

CS-D       : 

CS-B       : 

CS-A       : 

T.urartu   : 

barley     : 

Brachypod. : 

rice       : 

sorghum    : 

maize_chr1 : 

             

                                                            

       410       420       430       440       450       460

SLTVQLFGSAPEKSQKVESRSGNTFESPLKRQERLSLSAIPVDSRKNIGSQLERKDKTL-

SLTVQLFGSAPEKSQKVESCSGNTFESPLKRQDHLSLSAIPVDSSKNIGSQLERKDKTL-

SLTVQLFGSAPEKSQKVESRSGNTFESPLERQNRLSLSAIPVDSRKNIGSQLERKDKTL-

SLTVQLFGSAPEKSQKVESRSGNTFESPLERQNRLSLSAIPVDSRKNIGSQLERKDKTL-

SLTVQLFGTAPEKSQKVESHSRNTFESPLKRQERLSLSAIPVDSRKNIGSQLERKDKTL-

SLTVQLFGSSPEKSKNVEPSNRNTLDTQLKRQDNFSLSVIPVDSRKNLGSQFERKDKTL-

SLTVQLFGSAPEKSKKVKTRSCNTLETPLKRQDYLSLSAIPVDSRKNIGSRLERKDKTL-

SLTVQLFGSAPKKYKKVKKRSSNALETPVKQQDYLSLSPIPVDSGKFIGRQLERRNKTL-

SLTVQLFGSAPEKSKKVKKRSSNALETPVKRRDYLSLSPIPVDSGKIIGRQLERKNKAV-

                                                            

      

      

 : 440

 : 436

 : 440

 : 440

 : 435

 : 439

 : 454

 : 441

 : 447
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Figure 3.11. Alignment of predicted amino acid sequences of the CS DUF6 

homoeologues and Poaceae orthologues.  Amino acid sequences of the three Chinese 

Spring wheat homoelogues of DUF6 (CS-A, CS-B, and CS-D), and orthologues in T. urartu 

(Tu), Hordeum vulgare (Hv), Brachypodium distachyon (Bd), Oryza sativa (Os), Sorghum 

bicolor (Sb) and Zea mays from chromosome 1 (Zm_1) were aligned using ClustalX and 

adjusted manually to minimise mismatches.  Gaps inserted to allow for alignment are 

indicated by a (-), or in the case of undetermined sequence in Hv, by (X).  Residue 

conservation of the nine sequences is shown by the following shading and font colours:  

Absolute sequence identity = white font with black background; Identity shared by 7 to 8 

orthologues = white font with dark grey background; Identity shared by 5 to 6 orthologues = 

black font with light grey background; Identity shared by 4 or less orthologues = black font 

with white background.  However, this cannot be accurately assessed for coordinates 144-

199, 205, 256, and 257 because of a lack of sequence information.  Coordinates relative to 

the start of the ORF are shown above the sequence.  The total number of residues per 

sequence is shown following the last residue.  For Hv, residue number is estimated.  The blue 

lines represents the amino acids that encode for the two DUF6-type domains (I and II) found 

in the gene as identified in an InterProScan (http://www.ebi.ac.uk/Tools/InterProScan/) of the 

amino acid sequences.  Arrows above the sequences indicate residue differences between 

CS-A, CS-B, and CS-D homoeologues, Black dots show residue differences between CS-A 

and Tu.  Accessions used for each DUF6 orthologue are shown in Appendix IV. 

 

 

 

Ta 'CS' DUF6-B1
H. vulgare

O. sativa
Os03g49940

Z. mays chr.1
GRMZM2G093849

S. bicolor
Sb01g010670

B. distachyon
Bradi1g11080

T. urartu DUF6-A1

Ta 'CS' DUF6-A1

Ta 'CS' DUF6-D1

62
100

100

100

100

98

http://www.ebi.ac.uk/Tools/InterProScan/
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Figure 3.12.  Unrooted neighbor-joining tree of wheat DUF6 and Poaceae orthologues.    

Nucleotide sequences of the DUF6 ORFs were aligned with ClustalX and bootstrap values 

and genetic distances determined using the seqboot application and neighbour joining 

method of PHYLIP (v3.6).  Ta „CS‟ DUF6-A1, Ta „CS‟ DUF6-B1 and Ta „CS‟ DUF6-D1 are, 

respectively, the A, B and D homoeologues of the DUF6 gene identified from the wheat BAC 

library derived from Chinese Spring.  T. urartu DUF6-A1 sequence is from a BAC clone.  The 

H. vulgare sequence is composed of two non-overlapping ESTs with an estimated gap of 165 

bp, which were excluded when determining the genetic distance of H. vulgare.   The 

remaining sequences are shown by species name with locus number below.  The 

chromosome carrying the DUF6 orthologue is indicated for maize.  Branch lengths indicate 

relative genetic distance.  Bootstrap values of 100 trees are given at each node if available.  

 

 

3.3.3. Predicted genes on the CS wheat BAC sequences 

 

In additon to the ZnF, DUF6, and Rht-1 genes, one predicted gene was 

identified that could not be discounted due to homology with TEs.  The 

predicted gene (a single exon) is located only on the CS-A BAC on the plus 

strand near the 3‟ end of a 14 kb stretch of low homology sequence (Figure 

3.1b; Appendix IIIA, bp 129602 to 130183).  Two nucleotide matches with E 

values more significant than 1 × 10-10 were found when the predicted ORF 

was queried to the sequence databases.  The highest match (E = 5 × 10-26) is 

with wheat EST (wEST) CK209908 and the match extends over the full length 

of the predicted gene.  CK209908 is annotated as a homeobox protein DLX-2 

related cluster.  Another full-length match (E = 9 × 10-23) is with wEST 

CK209889, which is a predicted signal transduction protein containing EAL 

and modified HD-GYP domains.  No sequence with significant similarity to this 

predicted gene was found on any of the other BAC sequences. 

 

3.4. DISCUSSION 

 

Genetic analysis of Rht-1-containing wheat BAC sequences from the A, B, 

and D homoeologues of CS revealed a well-conserved gene synteny among 

the BAC inserts and little conservation of TEs (Figure 3.1b, c, d).  A similar 

pattern of conservation was reported for the bread wheat acetyl-CoA 

carboxylase (Acc) homoeoloci (Chalupska et al., 2008), the bread wheat 
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Hardness (Ha) homoeoloci (Ragupathy and Cloutier, 2008), and the high 

molecular weight glutenin (Glu-1) loci from Triticum durum (A and B genomes) 

and Ae tauschii (D genome) (Gu et al., 2004).  Combined, the Rht-1-

containing CS BAC sequences were composed of approximately 62.2% TE, 

2.2% ORF, and 35.6% unknown sequence (Table 3.1).  The percentage of 

sequence that encodes genes is similar to previous reports for bread wheat 

chromosome 3B (1.2%; Paux et al., 2006) and for Ae. tauschii (2.5%; Li et al., 

2004).  Over the three CS BAC sequences, there is an average of 1 gene per 

71 kb of sequence, which closely resembles the density of 1 gene per 75 kb 

estimated by Devos et al. (2005) in an analysis of four randomly chosen CS 

wheat BACs.  The percentage of TE sequence on the CS-B BAC (63%) is 

lower than was calculated for known TEs on chromosome 3B (76%) by Paux 

et al. (2006) while the TE percentage of the CS-D BAC (66%) is similar to that 

calculated for Ae. tauschii (68%) by Li et al. (2004).  

 

The CS-A and CS-D genome BAC inserts each contain (from 5‟ to 3‟) a zinc 

finger (ZnF) family gene, a domain of unknown function (DUF6) family gene, 

and Rht-1 (Figure 3.1b, d).  An additional predicted gene also exists on the 

CS-A genome, but no known Poaceae orthologues were found in the 

databases searched.  The CS-B BAC insert contains the DUF6-B1 and Rht-

B1 genes, but the ZnF-B1 homoeologue was not present in the 54 kb of 

sequence upstream of DUF6-B1 (Figure 3.1c).  In contrast, the ZnF-A1 gene 

is only 14 kb upstream of DUF6-A1 and ZnF-D1 gene is only 26 kb upstream 

of DUF6-D1 in CS.  The proliferation of TEs (most notably the WHAM LTR 

retrotransposon) in this region of the B genome relative to intergenic collinear 

regions on the A and D genomes appears to have expanded the region 

upstream of DUF6-B1, which provides the most likely explanation for the 

absence of ZnF-B1 on the BAC insert.  As an example of this expansion 

between genes, DUF6-D1 and Rht-D1 are separated by 53 kb while the A and 

B genome homoeologues of these two genes are only separated by 28 kb 

and 21 kb, respectively.  Alternatively, it is also possible that synteny breaks 

down among the wheat homoeologues and ZnF-B1 is not the next gene 

upstream on CS-B.  Synteny of the genes in the Rht-1 region is also 
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completely conserved in T. urartu and on the D genome of Aibai/10*CS 

(Figure 3.1a, e).   

 

The Rht-1 region is more conserved between the CS-A and T. urartu 

genomes than between CS-A and the CS-B or CS-D bread wheat 

homoeologues.  The CS-A and T. urartu amino acid sequences of Rht-A1 

(Figure 3.3) and ZnF-A1 (Figure 3.8) are identical while the DUF6-A1 

sequences (Figure 3.11) differ by only 3 residues.  Most of the TEs are 

conserved between the two wheat A genome BACs (Figure 3.1a, b), which is 

in contrast to the lack of conservation amongst A, B, and D genome 

homoeologues.  Similarly, Glu-1 was more highly conserved between bread 

wheat genomes and the corresponding ancestral lines than amongst the three 

bread wheat genomes (Gu et al., 2006).  These results reflect the closer 

relationship of the A genomes with divergence dated to less than 0.5 million 

years ago while the A, B, and D genomes of wheat diverged 2-4 million years 

ago (Huang et al., 2002; Dvorak and Akhunov, 2005; Chalupska et al., 2008). 

 

To determine if the micro-synteny of genes around Rht-1 is conserved in other 

Poaceae species, orthologous regions were identified in Brachypodium, rice, 

sorghum, and maize (Figure 3.2).  In maize, this region is in duplicate on 

chromosomes 1 and 5, and is in single copy in the other species.  Gene order 

and orientation is conserved in all orthologous regions except on maize chr. 5 

where DUF6 is absent, and in rice where an additional gene is present 

between DUF6 and Rht-1.  The next gene 5‟ of the ZnF gene in all five 

orthologous regions is Teosinte Branched 1 (Tb1), which in maize is an 

important domestication gene that controls branch number (Doebley et al., 

2004).  Downstream of Rht-1, synteny among the Poaceae is not as highly 

conserved.  Toc64 is the next gene 3‟ of Rht-1 in rice and sorghum while in 

Brachypodium, Toc64 is downstream of Rht-1, but proceeded by the 

predicted gene Bradi1g11100.  The Toc64 protein is a subunit of the pre-

protein translocon of the outer envelope of chloroplasts (Toc complex; Sohrt 

and Soll, 2000).  In maize, neither Toc64 nor Bradi1g11100 are in the vicinity 

of Rht-1 in either orthologous region from chromosome 1 or 5.  While synteny 

in general is well-conserved near Rht-1 in the Poaceae, gene densities vary 
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widely.  The region that includes the ZnF-DUF6-Rht-1 linkage group and the 

flanking intergenic sequences leading up to the nearest adjacent genes has a 

density of 1 gene / 28 kb in Brachypodium, 1 gene / 34 kb in rice and 

sorghum, 1 gene / 59 kb on maize chr.5, and 1 gene / 183 kb on maize chr. 1.  

In bread wheat, based on the BAC sequences, the density of this region is 

estimated at 1 gene / 55 kb on the A genome, 1 gene / 94 kb on the B 

genome, and 1 gene / 105 kb on the D genome; however, the BAC 

sequences almost certainly do not include all of the intergenic sequence 

adjacent to the ZnF-DUF6-Rht-1 block meaning that the wheat gene densities 

are likely to be lower than these estimates.  The low gene densities in this 

region of wheat and maize relative to Brachypodium, rice, and sorghum are 

the result of a higher TE content.  TE content of the Rht-1 region is reflective 

of the overall genome contents of these species as high TE content in wheat 

relative to Brachypodium, rice, and sorghum was previously reported when 

analyzing whole genomes (The International Brachypodium Initiative, 2010). 

 

A comparison of the ZnF, DUF6, and Rht-1 genes among the CS wheat and 

Poaceae species reveals no large indels, stop codons, or frame-shift 

mutations in any of the ORFs and no changes in the number of introns or 

exons.  For Rht-1, the CS wheat homoeologues share 94.1% of the 

nucleotide identities and 96.8% of the amino acid identities.  Most nucleotide 

differences between any two homoeologues are SNPs, but 30% of the 

polymorphisms are indels that translate into 1 to 2 amino residue indels 

causing overall peptide lengths among wheat homoeologues to vary from 620 

to 623 residues (most clearly depicted in Figure 5.3).  The amino acid 

sequences of Rht-1 were particularly well conserved in the protein motifs 

previously identified by Tian et al. (2004).  Of the three Rht-1 homoeologues, 

Rht-A1 and Rht-D1 have ORFs slightly more similar to each other than to Rht-

B1, and in the adjoining 10 kb upstream of Rht-1, the differences are very 

marked with the A and D genomes having 61% of the sequence defined as 

similar whereas less than 26% of the B genome sequence is defined as being 

similar to the A or D genomes.  Analysis of the flanking 5‟ and 3‟ regions 

within 10 kb of Rht-1 also revealed several regions conserved among the Rht-

1 homeologues (Figures 3.5 and 3.6; Tables 3.3 and 3.4) that may represent 
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important regulatory regions in wheat.  Three regions within 10 kb of Rht-1 

were conserved in the three CS homoeologues, Brachypodium, and rice 

(Table 3.5).   Among all the Poaceae Rht-1 ORF sequences (wheat included), 

amino acid lengths vary from 618 to 630 residues and 68.5% of nucleotide 

identities and 70.9% of amino acid residues are shared. 

 

The ZnF nucleotide and amino acid sequences are the most conserved of the 

three genes among the Poaceae species.  The two available CS orthologues 

(ZnF-A1 and ZnF-D1) do not vary in sequence length and share 98.5% 

nucleotide identity and 99.8% residue identity (caused by a single amino acid 

substitution).  Among all ZnF Poaceae sequences, the amino acids lengths 

vary by no more than 2 residues (472 to 474 residues) and 78.0% of 

nucleotide and 85.1% of amino acid identities are in common.  Between any 

two orthologues, at least 90.5% amino acid identity is maintained (Table 3.6) 

whereas in Rht-1 identities are frequently lower than 90% and as low as 

82.4% (Table 3.2).  The high level of conservation and the presence of a 

C3HC4 zinc finger domain normally associated with modulating protein levels 

via the ubiquitination pathway (Lorick et al., 1999) indicate this gene likely 

performs a critical function in the Poaceae family. 

 

Of the three genes, DUF6 has the least conserved ORFs among the CS 

wheat homoeologues (nucleotides shared = 94.7%; amino acids shared = 

93.6%; residue number ranging from 436 to 440) and among the Poaceae 

(nucleotides shared = 58.4%; amino acids shared = 54.2%; residue number 

ranging from 436 to 454).  Similar to Rht-1, the DUF6-A1 and DUF6-D1 ORF 

nucleotide and amino acid sequences are the most similar of the three 

homoeologues.  The most notable differences in DUF6-B1 relative to the A 

and D homoeologues are: (1) a 12 bp deletion in the first exon, which reduces 

overall protein length from 440 amino acids to 436 amino acids, and (2) the 

absence of a 162 bp MITE in intron 1.  Conservation of amino acids between 

orthologues was in most cases less than 80% and as low as 71.9%.  The 

least conserved region of DUF6 is in the 5‟ end of the gene (Figure 3.11, 

coords. 10 to 100, which are in the first exon). 
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The genetic relatedness of the Poaceae species is similar in the ZnF, DUF6 

and Rht-1 ORFs for each of the measures used: nucleotide identity and amino 

acid identity (Tables 3.2, 3.6, and 3.7) and phylogeny based on nucleotide 

sequence (Figures 3.4, 3.9, and 3.11).  In each gene comparison, the ORFs 

of the T. urartu and CS A genome sequences are the most similar (99.5% to 

99.7% nucleotide identity) and the CS A, B, and D ORF sequences also have 

high similarity, but are clearly distinct from each other having nucleotide 

identities ranging from 95.9% to 98.5% between any two homoeologues.  For 

each of the three genes, the barley orthologue is the most closely related to 

wheat among the Poaceae followed by Brachypodium.  For each gene, the 

rankings of relatedness based on the average number of shared nucleotides 

averaged across the three CS homoeologues (shown in parenthesis) are: 

Rht-1 = Hv (93.5%) > Bd (87.7%) > Os (85.8%) > Zm-5 (84.9%) > Zm-1 

(84.7%) > Sb (84.6%); ZnF = Hv (97.4%) > Bd (92.4%) > Sb (88.5%) = Os 

(88.5%) > Zm-1 (88.0%) = Zm-5 (88.0%); DUF6 = Hv (93.4%) > Bd (87.8%) > 

Sb (78.7%) > Os (77.9%) > Zm-1 (77.5%).  In all three locus comparisons, the 

wheat nucleotide identities shared with rice, sorghum, or maize never differ by 

more than 1.2 percentage points indicating these three species are 

approximately equally genetically distant to wheat.  The phylogenetic 

relationships among the Poaceae Rht-1 (Figure 3.4), ZnF (Figure 3.9), and 

DUF6 (Figure 3.12) closely resemble the phylogenetic relationships among 

Poaceae depicted by Paterson et al (2009) (Figure 3.13), which is based on 

morphological and DNA sequence data from the Angiosperm Phylogeny 

Website (v9) (http://www.mobot.org/MOBOT/Research/APweb) (Stevens 

2008).  Among the Poaceae species with a fully-assembled genome 

sequence, the three genes described here are most genetically similar to 

Brachypodium.  In addition, Brachypodium genes are syntenic with the 

Poaceae species examined here and Brachypodium has the highest gene 

density.  These features indicate that in this genetic region, Brachypodium is 

the best model species for wheat among the Poaceae that are fully 

sequenced and assembled. 

 

 

 

http://www.mobot.org/MOBOT/Research/APweb
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Figure 3.13.  Phylogenetic relationship between members of the Poaceae family and 

two outgroup species. Species used in the text for orthologous comparisons of Rht-1 (Fig. 

3.4), ZnF (Fig. 3.9), and DUF6 (Fig. 3.12) are indicated with a red star.  Branch lengths of 

outgroups have been shortened.  Figure adapted from Paterson et al. (2009) using data 

originally obtained from (http://www.mobot.org/MOBOT/Research/APweb). 
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4. PHYSICAL AND GENETIC MAPPING OF RHT-A1 

 

4.1. INTRODUCTION 

 

The Rht-B1b and Rht-D1b alleles located on wheat chromosomes 4B and 4D, 

respectively, are gibberellin (GA) insensitive.  These alleles were utilised in 

breeding programmes beginning in the 1960s to produce semi-dwarf wheat 

varieties that helped alleviate a major worldwide food shortage (Hedden, 

2003).  The Rht-B1 and Rht-D1 loci have been mapped (Gale et al., 1975; 

Gale and Marshall, 1976; McVittie et al, 1978) and cloned (Peng et al., 1999).  

Due to the hexaploid nature of wheat, a third Rht-1 homoeologue on 4A was 

long ago postulated to exist (McVittie et al., 1978).  Several years later, the 

presence of an Rht-1 locus on chromosome 4A in bread wheat was 

demonstrated by hybridisation of an Rht-B1a-containing clone (C15-1) in 

nullisomic lines (Peng et al., 1999).  Recently, an Rht-1 containing clone was 

isolated from a T. urartu (the A genome ancestor of bread and pasta wheat) 

BAC library (Jizeng Jia, unpublished data).  As described in chapter 2, an Rht-

containing clone (0224_M10) was identified in a CS hexaploid wheat BAC 

library with sequence similar to, but distinct from Rht-B1 and Rht-D1, 

indicating this is likely the Rht-A1 homoeologue.  The Rht ORF sequence of 

clone 0224_M10 was nearly identical to the T. urartu Rht-1 sequence 

(Chapter 3) further indicating that this clone contains Rht-A1. 

 

Loci in wheat can be physically mapped using CS aneuploid lines and CS 

deletion lines or genetically mapped relative to genetic markers.  Genetic 

markers are also useful for physical mapping if these have a known physical 

location or are linked to physically mapped markers.  A large collection of 

wheat genetic maps can be found on the Graingenes website 

(http://wheat.pw.usda.gov) and several marker types are available.  Of these, 

SSR (Simple Sequence Repeat) markers are widely used in wheat because 

they are publicly accessible, co-dominant, and often contain a large numbers 

of marker variants.  For physical mapping, publicly available aneuploid stocks 

(described in Sears, 1954) consist of nullisomics (2n - 2; entire chromosome 

pair is absent), monosomics (2n -1; a single chromosome is absent), and 
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ditelosomics (either both short or both long arms missing from a chromosome 

pair).  Deletion lines have terminal deletions of a particular chromosome arm 

from one or both chromosomes of a pair (described in Endo and Gill, 1996). 

 

The physical locations of Rht-B1 and Rht-D1 on 4BS and 4DS were 

established several decades ago using monosomic analyses (Morris et al., 

1972; Gale et al., 1975; Gale and Marshall, 1976).  In addition, several groups 

have genetically mapped Rht-B1 and/or Rht-D1 (Borner et al., 1997; Peng et 

al., 1999; Ellis et al., 2002; Somers et al., 2004; Quarrie et al., 2005; Draeger 

et al., 2007; Cuthbert et al., 2008; Srinivasachary et al., 2008; 2009; Cao et 

al., 2009; Raquin et al., 2009).  The Rht-B1 locus has been consistently 

mapped to a region near the centromere on 4BS.  Telocentric F2 mapping 

analysis by McVittie et al. (1978) placed Rht-B1b and Rht-B1c (both Rht-B1 

alleles) 13 cM from the centromere.  Using genetic markers, Borner et al. 

(1997) estimated the location of Rht-B1c to be 17 to 22 cM from the 

centromere.  This estimation was based on linkage to an RFLP previously 

mapped by Gale et al. (1995).  Ellis et al. (2002), developed diagnostic 

markers for Rht-B1b and Rht-D1b and placed Rht-B1b approximately 10 cM 

from the centromere based on linked SSR markers.  In a consensus map of 

SSR markers, Somers et al. (2004) placed Rht-B1 an estimated 11 cM from 

the centromere. 

 

Unlike Rht-B1, the position of Rht-D1 relative to the 4D centromere is less 

clear.  The Rht-D1b (semi-dwarf phenotype) and Rht-D1c (severe dwarf 

phenotype) alleles at the Rht-D1 locus have been used in mapping studies.  

Rht-D1b was estimated to be 15 cM from the centromere by McVittie et al. 

(1978) using telocentric F2 mapping.  In contrast, Izumi et al. (1983) found no 

linkage between Rht-D1c and the centromere using telocentric mapping.  

Borner et al. (1997) found Rht-D1c to be linked by less than 1 cM to an RFLP 

(Xpsr 921) that was mapped 45 cM from the centromere by Gale et al. (1995).  

Borner et al. (1997) also reported that Rht-D1c and Rht-D1b were 28.0 cM 

and 41.1 cM, respectively, distal to the SSR Xgwm165, which maps near the 

centromere.  Ellis et al. (2002) placed Rht-D1b approximately 30 cM distal of 

the centromere.  Somers et al (2004) mapped Rht-D1b approximately 18 cM 
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from the centromere and in a subsequent publication (Cao et al., 2009) found 

Rht-D1c to map near the Ms2 male sterility gene at approximately 31 cM from 

the centromere.  These studies indicate that the location of the Rht-D1 locus 

relative to the centromere is not precisely known. 

 

Chromosome 4A has a complex rearrangement history, having undergone at 

least two reciprocal translocations and three inversions (Figure 4.1).  A 4AS-

4AL pericentric inversion that likely occurred in tetraploid wheat (Devos et al., 

1995) resulted in the re-location of the majority of the native short arm of 4A to 

the long arm of 4A (Mickelson-Young et al., 1995; Devos et al., 1995; Nelson 

et al., 1995).  Only a small segment near the telomere of the native 4AS still 

appears to be present in the modern 4AS arm (Miftahudin et al., 2004).  

Hence, in hexaploid wheats, the majority of loci on 4AS are homologous to 

4BL and 4DL.  Following this inversion on 4A, a smaller pericentric inversion 

near the centromere is thought to have occurred within the initial pericentric 

inversion in tetraploid wheat (Miftahudin et al., 2004).  Reciprocal 

translocations have occurred between 4AL/5AL and 4AL/7BS and a 

paracentric inversion has occurred on 4AL (Naranjo et al., 1987; Mickelson-

Young et al., 1995; Devos et al., 1995; Nelson et al., 1995; Miftahudin et al., 

2004).  The 4AL/5AL translocation is thought to have occurred in diploid 

wheat while the paracentric inversion and the 4AL/7BS translocation is 

thought to have occurred in tetraploid wheat (Miftahudin et al., 2004).  Major 

chromosomal re-arrangements following the delineation of the A, B, and D 

genomes of wheat have not been detected on 4D while a pericentric inversion 

has been detected on 4B.  The 4B pericentric inversion likely involves a short 

region near the centromere as evidenced by the map locations of the 

genome-generic marker Xwg212 in the proximal 37% of 4BS and in the 

proximal 9% of 4DL, whereas markers outside of these boundaries had co-

linear positions on 4B and 4D (Mickelson-Young et al., 1995). 

 

For Rht-A1, the absence of sequence information or of any alleles that alter 

phenotype have precluded its identification.  However, with the identification 

(Chapter 2) and characterisation (Chapter 3) of a third homoeologue of Rht-1, 

mapping of this locus is now possible.  In this chapter, Rht-A1 is genetically 
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mapped alongside SSR markers and physically mapped with CS aneuploid 

and deletion stocks.  In addition, the bin map location of Rht-D1 is estimated 

using the CS aneuploid and deletion stocks. 

 

 

Figure 4.1.  Rearrangement history of wheat chromosome 4A.  Chromosomes segments 

native to chromosomes 4AL, 4AS, 5AL, and 7BS are colour-coded based on EST bin-

mapping as shown by Miftahudin et al. (2004).  On the left side of the rightmost chromosome, 

deletion line breakpoints are indicated by arrows labeled with the name of the breakpoint 

followed by the proportion of chromosome arm remaining.  On the right side of the rightmost 

chromosome, bin-map locations are shown for wheat ESTs.  Where greater than ten ESTs 

are mapped to a particular segment, the total number is shown with “+” referring to ESTs 

mapped to each bin in a segment when more than one deletion breakpoint is present. 

 

4.2. MATERIALS AND METHODS 

 

4.2.1. Plant Materials 

Adapted from Miftahudin et al. (2004)
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Aneuploid and deletion line stocks were all in the CS background.  Aneuploid 

stocks consisted of the nullisomic-tetrasomic (NT) lines N4AT4D and N4DT4B 

and the ditelosomic (Dt) lines Dt4AS (containing two 4AS arms and no 4AL 

arms), Dt4AL, Dt4BL, and Dt4DL.  These lines were supplied by S.Reader, 

JIC.  All aneuploid lines received were homozygous except Dt4BL, which due 

to the presence of a male sterility gene on 4BS is maintained in the 

heteromorphic condition with one complete 4B chromosome and one 

chromosome missing 4BS.  Deletion stocks used were obtained from the 

Wheat Genetics Resource Center (WGRC), Kansas State University, USA 

and shown in Figure 4.2.  Homozygous deletion stocks on 4BS were not 

available due to male sterility. 

 

 

Figure 4.2. Wheat group IV deletion lines.  Chromosomes are oriented with the short arm 

at the top and long arm at the bottom.  The centromere is designated by a constriction.  

Deletion line breakpoints are indicated by arrows with the proportion of arm remaining shown 

in parentheses.  Black and white rectangles show the C-banding pattern.  Figure adapted 

from http://www.k-state.edu/wgrc. 
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http://www.k-state.edu/wgrc
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The biparental F5 population „Sears Synthetic 7010073 × Paragon‟ 

(„SS7010073 × Paragon‟) was utilised for the genetic mapping of Rht-A1.  

This population was developed by the Department for Environment Food and 

Rural Affairs (DEFRA) and funded by the Wheat Genetic Improvement 

Network  (WGIN).  „SS7010073‟ is a synthetic hexaploid of T. dicoccum × Ae. 

tauschii created by Ernie Sears, University of Missouri, USA (S. Reader, JIC 

pers. comm.).  „Paragon‟ is an elite UK spring wheat.  Seed of „SS7010073‟ 

was received from the JIC and seed of „Paragon‟ was received from NIAB.  

 

4.2.2. DNA extraction 

 

Genomic DNA (gDNA) of aneuploid stocks, deletion lines, „SS7010073‟, and 

„Paragon‟ was extracted using a modification of the method described by 

Fulton et al. (1995) and described as follows.  gDNA was extracted from leaf 

tissue collected from 2-4 week old seedlings.  Leaf tissue was placed in 96-

well deep-well plates along with a steel ball bearing and frozen at -80°C.  

Frozen tissue was disrupted by shaking on a SPEX 2000 Geno Grinder ® mill 

until tissue was powdery (20 s at 500 strokes per min).  A 500 µl quantity of 

extraction buffer was added to each sample and tissue disrupted again (20 s, 

500 strokes per min).  The extraction buffer was made fresh and for a 96-well 

plate required 25 ml sorbitol extraction buffer (0.35 M sorbitol; 0.1 M Trizma 

base; 5 mM ethylenediaminetetraacetic acid (EDTA)); 25 ml nuclei lysis buffer 

(0.2 M Trizma base; 50 mM EDTA; 2 M NaCl; 2% Cetyl trimethylammonium 

bromide (CTAB); 10 ml 5% N-lauroylsarcosine sodium salt; 0.2 g sodium 

bisulfite; and 840 U RNAse A (Qiagen).  Following tissue disruption, samples 

were incubated 30-60 min at 65°C.  Samples were cooled to room 

temperature and 300 µl of 24:1 chloroform:isoamylalcohol added to each 

sample.  Samples were mixed and centrifuged at 1500 × g for 5 min.  The 

aqueous phase (approximately 400 µl) was recovered and an equal volume of 

ice cold isopropanol was mixed with the sample before centrifuging at 6000 × 

g for 5 min.  After tipping off the isopropanol, pellets were washed by adding 

500 µl of 70% ethanol, vortexing briefly, and centrifuging at 6000 × g for 5 

mins.  The ethanol was tipped off and pellets air dried.  DNA was eluted in a 

http://en.wikipedia.org/wiki/Cetyl_trimethylammonium_bromide
http://en.wikipedia.org/wiki/Cetyl_trimethylammonium_bromide
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final volume of 100 µl TE elution buffer (10 mM Tris-Cl, pH 7.5; 1 mM EDTA).  

gDNA of „SS7010073 × Paragon‟ was extracted using the DNeasy kit 

(Qiagen) and was supplied by M. Leverington-Waite (Crop Genetics, JIC).  

DNA from BAC clones was extracted as described in section 2.2.2.3. 

 

4.2.3. PCR amplification 

 

For the physical mapping of Rht-1, gDNA extracts from aneuploid and 

deletion lines were used as templates in PCR reactions containing two 

primers in which one primer was designed to be genome specific (Table 4.1).  

Primers were designed with primer3 software (http://frodo.wi.mit.edu/primer3).  

PCR reactions were performed in 10 µl volumes containing 1 × Green GoTaq 

Reaction Buffer (Promega), 3% glycerol, 0.2 mM of each dNTP, 2 mM MgCl2, 

1 µM forward primer, 1 µM reverse primer, 0.25 µl Taq polymerase, and 20 ng 

DNA.  The PCR profile consisted of 5 min at 95°C, followed by 40 cycles of 

[95°C for 30 s, a primer pair-dependent annealing temperature (shown in 

Table 4.1) for 30 s, and 72°C for 1:30 min], and concluded with 72°C for 5 

min.  Amplified products were separated in a 1.5% agarose gel in 1 × TBE 

buffer and visualised under UV light with ethidium bromide. 

 

Table 4.1.  Summary of primers used for physical mapping of Rht-1.   

 
a
 the (*) indicates genome specific primers. Primer sequences are provided in Appendix I. 

 

For mapping Rht-A1, a genetic marker was created based on a 3 bp 

nucleotide deletion (TTC) in SS7010073 relative to the intact Paragon allele.  

The indel occurs 156 bp upstream of the Rht-1 start codon in CS (Table 5.6, 

coord -156; Paragon is haplotype A2 and SS7010073 is haplotype A10) and 

Primer 

Pair

Genome 

Specificity Forward Primera Reverse Primer

Anneal 

Temp

Product 

(bp)

1 A Rht-A-F2* Rht-ABD-R5 60oC 674

2 A Rht-A-F3* Rht-ABD-R6 64oC 1304

3 A Rht-ABD-F3        Rht-A-R1* 64oC 1236

4 A Rht-ABD-F9 Rht-A-R2* 66oC 1041

5 B Rht-B-F2* Rht-ABD-R5 60oC 694

6 B Rht-B-F1* Rht-ABD-R6 64oC 1105

7 B Rht-ABD-F3        Rht-B-R1* 62oC 1472

8 D Rht-D-F1* Rht-ABD-R6 64oC 1118

9 D Rht-ABD-F3        Rht-D-R1* 60oC 1495
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reverse primers were designed based on this indel.  The reverse primer PS-

Rht-R2 (primer sequences shown in Appendix I) in conjunction with the 

genome-specific Rht-A-F3 primer was designed to amplify a 120 bp product in 

the Paragon sequence.  The reverse primer PS-Rht-R4 in conjunction with the 

genome-specific Rht-A-F3 primer was designed to amplify a 120 bp product in 

the SS7010073 sequence.  Both reverse primers match their target 

sequences except for the introduction of a „strong‟ (T/C) penultimate 

mismatch that was introduced into each primer according to Ye et al. (2001).  

Reaction mixtures and conditions were as described above with an annealing 

temperature of 60°C and a 30 s extension time for both primer pair mixes. 

 

4.2.4. SSR linkage mapping 

 

SSR primer sequences were acquired from the Graingenes database 

(http://wheat.pw.usda.gov).  Forward primers were labeled with the dyes FAM, 

VIC, NED, or PET (Applied Biosystems [ABI]) according to Schuelke (2000).  

PCR mixes were in 6.25 µl volumes that consisted of 3.125 µl HotstarTaq 

Master Mix (Qiagen), 0.75 µM of each primer, and 12.5 ng  gDNA.  The PCR 

profile consisted of 15 min at 95°C, followed by 35 cycles of [95°C for 1 min, a 

primer pair-dependent annealing temperature according to Graingenes for 

1min, and 72°C for 1 min], and concluded with 72°C for 10 min.  Products 

were measured on an ABI 3730 DNA Analyzer with a POP-7™ polymer 

column.  Linkage maps were created using JoinMap® with an LOD score of 5.  

SSR marker amplifications and linkage mapping was funded by WGIN and 

carried out by C. Baker and M. Leverington-Waite (JIC). 

 

4.3. RESULTS 

 

4.3.1 Physical mapping of Rht-1 loci using aneuploid lines 

 

Prior to determining the physical location of the Rht-1 loci, locus specificity of 

each of the nine primer pairs listed in Table 4.1 was tested using DNA 

extracted from CS BAC clones 0224-M10, 1417-F16, and 0155-I24, which 

contain Rht-A1, Rht-B1, and Rht-D1, respectively (Chapter 2).  Reactions 
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were carried out for all primer pair/BAC DNA combinations and each primer 

pair amplified a product only from the BAC DNA it was designed to amplify, 

thereby validating the specificity of the primers. 

 

To determine Rht-A1 chromosomal location, gDNA of CS and N4AT4D were 

used in separate PCR reaction mixes along with an Rht-A1 specific primer 

pair.  All four Rht-A1 specific primer pairs shown in Table 4.1 amplified the 

expected product in gCS, but not in N4AT4D or a water control, implying the 

location of Rht-A1 on chromosome 4A.  To determine which 4A chromosome 

arm contains Rht-A1, gDNA of Dt4AS and Dt4AL were used in PCR reactions 

containing primer pair 1.  The amplification of the Rht-A1 specific product in 

the reaction containing gDNA of Dt4AL and not in the reaction containing 

gDNA of Dt4AS indicated that Rht-A1 is located on chromosome 4AL.  

Amplification products obtained with the chromosome 4A aneuploid lines 

using primer pair 1 are shown in Figure 4.3. 

 

 
Figure 4.3.  Products obtained following PCR amplification of aneuploid and control 

lines using Rht-A-F2/Rht-ABD-R5 (primer pair 1).  Rht-A-F2/Rht-ABD-R5 was used in PCR 

reactions containing either water (reaction 1) or genomic DNA extracted from CS (2), 

N4AT4D (3), N4DT4B (4), Dt4AS (5), or Dt4AL (6).  Products were separated on an agarose 

gel and visualised under UV light with ethidium bromide.  M = molecular weight marker 

Hyperladder IV (Bioline) with size in basepairs (bp) as indicated. 

 

To further delineate the location of Rht-A1 on 4AL, gDNA extracts of the 

chromosome 4A deletion lines shown in Figure 4.2 were used in PCR mixes 

containing A-genome specific primer pairs 2, 3, or 4.  gDNA of three to five 

plants per deletion line was initially assayed with each primer pair.  The short 
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arm deletion lines 4AS-3 (0.76), 4AS-4 (0.63), and 4AS-1 (0.20) produced the 

Rht-A1 specific product with all primer pairs (Table 4.2, chromosome arm 

4AS).  This indicates that Rht-A1 is not between the telomere and breakpoint 

0.20 on 4AS, which partially supports the earlier finding that Rht-A1 is not on 

4AS.  When the long arm deletion lines 4AL-4 (0.80), 4AL-5 (0.66), 4AL-13 

(0.59), and 4AL-12 (0.43) were tested for the presence of Rht-A1 with the 

same primer pairs, a product was amplified from the 4AL-12, 4AL-5 and 4AL-

4 lines (Table 4.2, 4AL), but not from 4AL-13.  These results are seemingly 

contradictory because 4AL-12 has a larger deletion than line 4AL-13.  To help 

determine whether the 4AL results were due to a mislabeling, the four 4AL 

deletion lines were ordered a second time from WGRC and gDNA of 2-3 

plants per line was assayed with primer pair 1.  All plants gave results 

consistent with those previously obtained (Table 4.2, 4AL). 

 

Table 4.2.  Summary of deletion line PCR amplifications.   

 
a
 The values represent the proportion of the original chromosome arm remaining. 

b
 Amplification of the Rht-1 product pertaining to a particular chromosome is indicated by a (√) 

and absence of a product is marked (x). 

Chromosome 

Arm

Accession 

_Line Deletion

Deletion 

Breakpointa Productb

TA4528_3 4AS-3 0.76 √

TA4528_4 4AS-4 0.63 √

TA4528_1 4AS-1 0.20 √

TA4529_12 4AL-12 0.43 √

TA4529_13 4AL-13 0.59 x

TA4529_5 4AL-5 0.66 √

TA4529_4 4AL-4 0.80 √

TA4531_12 4BL-12 0.41 √

TA4531_2 4BL-2 0.47 √

TA4531_4 4BL-4 0.55 √

TA4531_8 4BL-8 0.78 √

TA4531_5 4BL-5 0.86 √

TA4531_10 4BL-10 0.95 √

TA4532_2 4DS-2 0.82 x

TA4532_3 4DS-3 0.67 x

TA4532_1 4DS-1 0.53 x

TA4533_5 4DL-5 0.09 √

TA4533_9 4DL-9 0.31 √

TA4533_6 4DL-6 0.38 √

TA4533_13 4DL-13 0.56 √

TA4533_11 4DL-11 0.61 √

TA4533_2 4DL-2 0.70 √

TA4533_14 4DL-14 0.86 √

4BL

4AS

4AL

4DS

4DL
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The physical locations of Rht-B1 and Rht-D1 were estimated using gDNA of 

CS aneuploid and deletion lines in PCR mixes with locus specific primer pairs.  

For Rht-B1, the lack of a homozygous nulli-4B line necessitated the use of the 

heteromorphic 4B/Dt4BL line.  gDNA extracts from ten selfed F2 progeny of 

the 4B/Dt4BL line were first tested with an Rht-1 genome-generic pair, which 

amplified a product in all 10 extracts, confirming the presence of sufficient 

gDNA for PCR amplifications.  The gDNA from the F2 progeny was then 

screened using primer pair 5 (Table 1), which is specific to Rht-B1.  A product 

was amplified in nine of the ten plants indicating that the remaining plant was 

homozygous for Dt4BL and the absence of product indicates that Rht-B1 is on 

4BS.  The reduced frequency of Dt4BL/Dt4BL plants (0.10 instead of 0.25) is 

not unexpected due to reduced viability of male gametes that carry the Dt4BL 

chromosome fragment (S. Reader, pers. comm.).  To partially confirm this 

finding, gDNA extracts of the six homozygous 4BL deletion lines (one plant 

per line) were used in separate PCR reactions containing an Rht-B1 specific 

primer pair.  Primer pairs 5, 6, and 7 were used for each 4BL deletion line 

(Table 4.1) and the expected product was amplified in each case, confirming 

that Rht-B1 is not located beyond breakpoint 0.41 on 4BL (Table 4.2).   

 

The chromosomal location of Rht-D1 was determined using Rht-D1 specific 

primer pairs 8 and 9 (Table 4.1) in PCR reactions with gDNA of CS, N4AT4D, 

and N4DT4B.  The predicted product was amplified from gCS and N4AT4D, 

but not from N4DT4B indicating Rht-D1 is located on chromosome 4D.  To 

determine chromosomal arm location, primer pair 9 was then used in a PCR 

reaction with Dt4DL and no amplification product resulted, indicating Rht-D1 is 

on 4DS.  In addition, gDNA of seven 4DL deletion lines (breakpoints 0.09 to 

0.86; Figure 4.2) were used in PCR mixes with the same primers and the Rht-

D1 specific product was amplified from all 4DL deletion lines, verifying that 

Rht-D1 is not on 4DL beyond breakpoint 0.09 (Table 4.2).  To further 

delineate the physical location of Rht-D1 on 4DS, gDNA of three 4DS deletion 

lines (breakpoints 0.53, 0.67, 0.82; Figure 4.2) were used in PCR reactions 

with primer pairs 8 and 9. No product was amplified in any of the 4DS deletion 

lines using either primer pair, which indicates Rht-D1 is distal to breakpoint 

0.82 on 4DS. 
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4.3.2 Rht-A1 mapping in the ‘SS7010073 × Paragon’ F5 population 

 

To clarify the physical location of Rht-A1 on chromosome 4A and to determine 

linked markers, Rht-A1 was mapped in the „SS7010073 × Paragon‟ F5 

population.  Markers based on DNA polymorphisms present between the 

parental lines were designed (see section 4.2.3.) and tested to determine if 

the SS7010073 and Paragon Rht-A1 sequences could be distinguished.  The 

Paragon Rht-A1 specific primer pair Rht-A-F3/PS-Rht-R2 amplified the 

expected ~120 bp product using gDNA from Paragon, CS-Dt4BL, and CS-

N4DT4A and did not amplify a product using water or gDNA from SS7010073 

or N4AT4B (Figure 4.4), demonstrating specificity for the Paragon Rht-A1 

sequence, which is also shared by CS.  The SS7010073 Rht-A1 specific Rht-

A-F3/PS-Rht-R4 primers amplified the expected ~120 bp product in reactions 

using SS7010073 gDNA as a template and did not amplify a product when 

water or gDNA of Paragon or CS-N4AT4D served as templates.  These 

results confirm that the primer pairs distinguish the Paragon and SS7010073 

Rht-A1 sequences and can be used for screening the bi-parental population. 

 

 
Figure 4.4.  Validation of Rht-A1 haplotype-specific primers used to screen the 

‘SS7010073 × Paragon’ F5 population. The primer pairs Rht-A-F3/PS-Rht-R2 and Rht-A-

F3/PS-Rht-R4, designed to specifically amplify the Rht-A1 sequences of Paragon and 

SS7010073, respectively, were used in PCR reactions containing the following templates: 

water (1) or gDNA extracted from Paragon (2), SS7010073 (3), CS-N4AT4D (4) CS-Dt4BL 

(5), and CS-N4DT4B (6).  Amplification products were run out on a 1% gel stained with 

ethidium bromide and visualised under UV light.  M = Molecular marker Hyperladder I 

(Bioline) with weights shown in basepairs (bp). 
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A total of 288 individuals from the „SS7010073 × Paragon‟ population were 

screened by PCR with the Paragon Rht-A1 specific primers and then 

separately with SS7010073 Rht-A1 specific primers.  Of the 278 individuals 

that amplified a product, 139 were homozygous for the Paragon allele, 126 

were homozygous for the SS7010073 allele, and 13 were heterozygous 

(Table 4.3).  The observed chi square value of the segregation classes fits the 

expected chi distribution for an F5 population (p =.40) (Table 4.3). 

 

Table 4.3.  Summary of the results for Rht-A1 genotyping of the ‘SS7010073 × Paragon’ 

F5 population 

 
a
 Expected values based for 278 F5 individuals in Hardy-Weinberg equilibrium. 

b
 Chi distribution p (1.82, 2 df) = 0.40 

 
 

Due to the absence of pre-existing markers on the „SS7010073 × Paragon‟ 

population, SSR markers mapped in other bi-parental populations were 

selected for screening.  A set of 28 SSR markers that spanned chromosome 

4A were genotyped in both parents (Table 4.4).  For ten of the markers, no 

polymorphism existed between the parental lines.  Of the 18 polymorphic 

markers, 12 markers that were the most easily scored and/or widely spaced 

across the chromosome were selected for screening a set of 94 individuals 

from the „SS7010073 × Paragon‟ population. 

 

 

 

 

 

 

 

 

Rht-A1  haplootype Observed Expecteda
Chi square 

Homozygous Paragon 139 130.3 0.58

Homozygous Synthetic 126 130.3 0.14

Heterozygous 13 17.4 1.10

No Product 10

Sum 288 278.0 1.82b

Individual Plants
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Table 4.4.  Summary of SSR markers considered for screening the ‘Paragon × 

SS7010073’ population and genetic locations taken from other maps. 

 
a
 DNA of the parental lines SS7010073 and Paragon were used in PCR reactions with each 

SSR marker pair and products for each marker scored as either monomorphic (no detectable 

difference) or as polymorphic (difference detected).  

b
 Markers used to screen the „SS7010073 × Paragon‟ population are marked with an (√). 

c
 Previously mapped SSR marker locations are indicated for the wheat SSR consensus map 

(Somers et al., 2004) and the „Synthetic × Opata‟ population using GPW (Wheat Genoplante) 

markers (Sourdille et al., 2005).  Unmapped markers are indicated by a (-). 

 

The SSR and Rht-A1 marker scores of the 94 individuals are shown in 

Appendix V and a summary is shown in Table 4.5.  The Chi square test based 

on two degrees of freedom for an F5 population under Hardy-Weinberg 

equilibrium indicates segregation distortion (p < 0.05) is present for eight of 

SSR marker

Parental    

screena

Scored on 

populationb

Consensus 

SSR

Synthetic × 

Opata

Xgpw4545-4A polymorphic √ - 10.5

Xgwm4-4A monomorphic 0 17.1

Xgpw2302-4A polymorphic - 18.3

Xgpw2140-4A monomorphic - 18.7

Xgpw2166-4A polymorphic - 18.7

Xgpw2283-4A monomorphic - 18.7

Xbarc206-4A polymorphic √ 4 -

Xbarc138-4A monomorphic 6 -

Xwmc89-4A polymorphic √ 7 -

Xwmc420-4A polymorphic √ 7 -

Xwmc48-4A polymorphic √ 8 -

Xwmc491-4A monomorphic 8 -

Xcfa2256-4A polymorphic 10 -

Xgwm44-4A polymorphic √ 10 -

Xgwm610-4A polymorphic √ 12 -

Xwmc617-4A polymorphic √ 13 -

Xgwm397-4A polymorphic √ 18 39.6

Xbarc170-4A monomorphic 27 -

Xwmc258-4A polymorphic 39 67.5

Xwmc161-4A polymorphic √ 46 -

Xcfd88-4A monomorphic 60 96.8

Xwmc232-4A monomorphic 68 110.3

Xbarc70-4A polymorphic √ 71 -

Xgwm160-4A polymorphic 79 120

Xwmc313-4A monomorphic 83 -

Xwmc497-4A polymorphic √ 85 -

Xwmc219-4A polymorphic 88 -

Xgwm350-4A monomorphic - -

Map Location (cM)c
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the 12 markers.  The segregation distortion in Xwmc161-4A and Xwmc89-4A 

is the result of a high number of heterozygotes, 22 and 16, respectively, when 

only six each are expected.  Five markers have a significantly (p < .05) 

disproportionate representation of the homozygous alleles, with three markers 

(Xbarc206-4A; Xwmc89-4A; Xbarc70-4A) favouring the Paragon allele and 

two markers (Xgwm397-4A; Xwmc161-4A) favouring the SS70100073 allele.  

For these five markers the number of unscored amplifications averaged 18, 

while the rest of the markers averaged five unscored amplifications.  

 

Table 4.5.  Summary of marker scores for 94 individuals from the ‘SS7010073 × 

Paragon’ population. 

 
a
 Number of individuals classified as Paragon homozygotes (P/P), SS7010073 homozygotes 

(S/S), heterozygotes (P/S), or unscored (U) are indicated. 

b
 Chi square test based on two degrees of freedom with probability (p) shown that the 

markers are in Hardy-Weinberg equilibrium. 

 
The SSR and Rht-A1 marker data was used to construct a linkage map that 

contained eight SSR markers in linkage with Rht-A1 and spanned 49 cM 

(Figure 4.5).  One marker, Xgwm610-4A was very tightly linked to Rht-A1, 

having the same marker score in 90 instances and two instances where a 

crossover was detected (Appendix V, Individuals 28 and 49).  The markers 

Xwmc48-4A and Xgpw4545-4A were also tightly linked, being separated from 

Rht-A1 by an estimated 3 and 2 cM, respectively.  Markers Xgwm610-4A and 

Marker P/P S/S P/S U X
2

p

Xbarc206-4A 58 21 3 12 18.7 8E-05*

Xgwm397-4A 23 46 1 24 10.8 0.004*

Xwmc617-4A 41 53 0 0 7.9 0.019*

Xwmc48-4A 47 42 0 5 6.2 0.044*

Xgwm610-4A 47 43 4 0 0.8 0.664

Rht-A1 43 43 6 2 0.0 0.994

Xgpw4545-4A 39 40 6 9 0.1 0.948

Xwmc161-4A 20 43 22 9 62.6 3E-14*

Xwmc89-4A 45 14 16 19 42.8 5E-10*

Xbarc70-4A 52 13 5 24 23.3 9E-06*

Xwmc420-4A 38 38 0 18 5.1 0.079

Xgwm44-4A 37 55 0 2 9.9 0.007*

Xwmc497-4A 50 40 2 2 3.8 0.152

Marker score
a

Chi square
b
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Xgpw4545-4A did not show statistically significant (p < .05) segregation 

distortion while segregation distortion of Xwmc48-4A was significant (p = .04). 

 

 
Figure 4.5.  Linkage map of chromosome 4A in the 'SS7010073 × Paragon' population 

aligned to previously mapped SSRs.  The „SS7010073 × Paragon‟ linkage map was 

constructed using JoinMap® with an LOD score of 5 and is based on 94 individual plants.  

Marker names are shown to the right of the linkage group with distance (in centimorgans) 

indicated to the left.  Previously bin-mapped SSR marker intervals (Sourdille et al., 2004) are 

shown by the red rectangles in the ideogram to the left with the centromere designated by a 

constriction and deletion line breakpoints indicated by arrows with the proportion of arm 

remaining shown in parentheses.  Black and white rectangles show the C-banding pattern. 

Dotted lines connect identical markers between maps.  The linkage group to the right is from 

the SSR consensus map (Somers et al., 2004) with the approximate location of the 

centromere indicated with a grey rectangle. 

 

The „SS7010073 × Paragon‟ SSR markers have some shared colinearity with 

the SSR consensus map (Somers et al., 2004) with the notable exception of 

Xwmc89-4A, which is located at nearly opposite ends of the two linkage 

groups.  The location of Xgwm397-4A relative to the other SSR markers also 
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differs slightly between the two maps.  Three of the SSR markers were 

previously mapped to bins using the CS deletion stocks (Sourdille et al., 

2004).  In the bin map, these markers are widely separated with Xbarc206-4A 

mapped distal to breakpoint 0.76 on 4AS, Xgwm610-4A mapped proximal to 

breakpoint 0.20 on 4AS, and Xgwm397-4A mapped between breakpoints 0.59 

and 0.66 on 4AL.  The order of Xgwm610-4A and Xgwm397-4A is reversed 

relative to the „SS7010073 × Paragon‟ linkage group. 

 

4.4. DISCUSSION 

 

The previously unmapped Rht-A1 locus in wheat has been identified and 

physically and genetically mapped.  Rht-A1 is located on chromosome 4AL 

between the centromere and breakpoint 0.66 based on mapping using CS 

aneuploid and deletion lines.  The location of Rht-A1 on 4AL differs relative to 

the homoeologous Rht-B1 and Rht-D1 loci, which are located on the short 

arms of 4BS and 4DS.  However, this is not surprising due to a pericentric 

inversion that resulted in the majority of the native 4AS being transferred to 

4AL (Figure 4.1).  The region of 4AL containing Rht-A1 could not be further 

narrowed using homozygous deletion lines because of the apparently 

contradictory result where 4AL-13 (breakpoint 0.59) did not amplify the Rht-

A1-specific product that the shorter 4AL-12 (breakpoint 0.43) did amplify.  

This result introduces the possibility that a previously unidentified interstitial 

deletion may exist in 4AL-13 between the centromere and 4AL-12, although a 

misidentification of seed stock cannot be fully ruled out despite having tested 

two separate sources ordered from the WGRC.  To determine if stock 

misclassification has occurred, genetic markers previously assigned to bins 

delineated by the 4AL-13 and 4AL-12 breakpoints could be screened or these 

deletion lines could be cytologically screened. 

 

Genetic mapping of Rht-A1 in the „SS7010073 × Paragon‟ population 

identified eight linked SSR markers (Figure 4.5), including three (Xwmc48-4A, 

Xgwm610-4A, and Xgpw454-4A) within 3 cM or less of Rht-A1.  The order 

between the seven markers in common between the „SS7010073 × Paragon‟ 

map and SSR consensus map (Somers et al., 2004) were in general 



 

114 
 

agreement, with the exceptions of Xwmc89-4A, which is considerably more 

distal in the „SS7010073 × Paragon‟ map and Xgwm397-4A, which differs 

slightly in order.  While the „SS7010073 × Paragon‟ SSR markers were in 

general agreement with the SSR consensus map, the three markers 

(Xbarc206-4A, Xgwm397-4A, and Xgwm610-4A) that were previously bin-

mapped (Sourdille et al., 2004) are assigned to bins that are physically 

separated by large distances even though these markers were contained 

within 21 cM in the „SS7010073 × Paragon‟ population (Figure 4.5).  

Xgwm610-4A, which is separated from Rht-A1 by 1 cM in „SS7010073 × 

Paragon‟, was previously mapped to the 4AS bin located between the 

centromere and breakpoint 0.20 (Sourdille et al., 2004).  This result seems to 

conflict with the 4AL map location of Rht-A1 in „SS7010073 × Paragon‟, 

however if Rht-A1 and Xgwm610-4A are close to the centromere, actual 

physical distance may be greater due to suppressed recombination 

associated with the centromere (Devos et al., 1995; Akhunov et al., 2003) 

making it possible that Rht-A1 and Xgwm610-4A are on different chromosome 

arms.  A close proximity of Rht-A1 and Xgwm610-4A to the centromere and a 

4AL location of Xgwm610-4A is also indicated by the SSR consensus map 

(Figure 4.5).  The previously mapped bin location of Xgwm397-4A (between 

breakpoints 0.59 and 0.66 on 4AL) clearly differs from its location in 

„SS7010073 × Paragon‟ and the SSR consensus map.  If an interstitial 

deletion in 4AL-13 exists, this could provide one possible explanation for the 

difference in location. 

 

The differences described above between the „SS7010073 × Paragon‟ linkage 

group, the SSR consensus map (Somers et al., 2004), and the bin-mapped 

SSRs (Sourdille et al., 2004) could also be related to actual genetic 

differences between the populations.  „SS7010073‟ is a synthetic line with the 

A genome derived from the tetraploid T. dicoccum (see section 5.3.4.4).  

Paragon is a bread wheat cultivar.  The bin-mapping of SSRs by Sourdille et 

al. (2004) was performed using deletion lines from the bread wheat cultivar 

CS and the SSR consensus map (Somers et al., 2004) is composed of data 

from four bi-parental populations, three of which are composed solely of bread 

wheat cultivars and the fourth is a cross between a bread wheat („Opata 85‟) 
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and a synthetic wheat containing the T. durum (4x) line „Altar84‟.  The timing 

of the 4A inversions shown in Figure 4.1 are not known, but are thought to 

have occurred during the tetraploid stage of wheat (Devos et al., 1995; 

Miftahudin et al., 2004).  It is not known whether SS7010073 contains the 4A 

inversion and therefore the locations of Rht-A1 and the SSR markers may 

differ greatly relative to Paragon.  This could provide a possible explanation 

for the difference in the mapping positions of Xwmc89-4A and Xgwm610-4A 

between „SS7010073 × Paragon‟ and the SSR consensus map or deletion 

line bin map location shown in Figure 4.5. 

 

Several SSR markers exhibited significant segregation distortion in the 

„SS7010073 × Paragon‟ population, although the two markers most closely 

flanking Rht-A1 (Xgwm610-4A and Xgpw454-4A) did not show segregation 

distortion (Table 4.5).  The pattern of distortion did not consistently favour one 

parent over the other and there was no clear distortion pattern associated with 

marker location.  The large number of unscored PCR amplifications 

associated with several of the distorted markers provides a likely explanation 

for much of the distortion seen, although segregation distortion of markers on 

4AL and 4AS was also previously reported by Quarrie et al. (2005).  The high 

level of segregation distortion for markers such as Xwmc89-4A also provides 

a possible explanation for the loss of colinearity of this or other markers as 

described above. 

 

While Rht-B1 and Rht-D1 are both located on the short arms of the respective 

chromosomes, the locations within the arms appear to differ.  For Rht-B1, the 

results from the Dt4BL aneuploid PCR amplification support earlier studies 

that showed that this locus is located on 4BS (Morris et al., 1972; Gale et al., 

1975; Gale and Marshall, 1976; McVittie et al., 1978; Izumi et al., 1983).  

Mapping to a specific 4BS bin was not attempted because of the lack of 

homozygous deletion lines on 4BS.  However, previous physical mapping 

using telocentric F2 mapping of either Rht-B1b or Rht-B1c has placed this 

locus within 13 cM of the centromere (McVittie et al., 1978) and genetic 

mapping of this locus indicates this locus is near the centromere (Borner et 

al., 1997; Ellis et al., 2002; Somers et al., 2004). 
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For Rht-D1, the physical mapping reported in this chapter places the locus on 

4DS between breakpoint 0.82 and the telomere.  The distal location agrees 

with the telocentric F2 mapping of Rht-D1c by Izumi et al. (1983), who found 

no linkage between Rht-D1 and the centromere, but differs from the 

telocentric F2 mapping of Rht-D1b by McVittie et al. (1978) who estimated a 

15 cM distance between Rht-D1 and the centromere.  The differences in 

telocentric mapping could result from the mapping of different alleles.  Rht-

D1c has stronger GA response than Rht-D1b and this may have aided in 

mapping precision as seedling length based on GA sensitivity was used to 

score for this locus.  In addition, ditelosomic lines may not have breakpoints 

that end precisely at the centromere (S. Reader, pers. comm.), which may 

affect telocentric mapping and could be misleading when assigning 

chromosomal arm location as performed herein.  The cause of the apparent 

difference in Rht-B1 and Rht-D1 map location is not clear.  A pericentric 

inversion was reported on 4B near the centromere (Mickelson-Young et al., 

1995).  However, the affected region appears to be confined to the proximal 

37% of 4BS, which does not provide an explanation for the distal location of 

Rht-D1 relative to Rht-B1.  Deletion-bin mapping of the Rht-B1 locus would be 

a useful step in more precisely determining if the physical locations of Rht-B1 

and Rht-D1 actually differ.  Genes located near the telomere have higher 

recombination rates and increased rates of duplicaton relative to proximal 

regions (Akhunov et al., 2003).  The distal location of Rht-D1 relative to the 

proximal Rht-A1 and Rht-B1 locations would be expected to increase 

recombination near this locus. 

 

In summary, the Rht-A1 homoeologue identified in Chapter 2 has been 

mapped to chromosome 4AL near the centromere, and SSR markers tightly 

linked to Rht-A1 have been identified.  The flanking markers represent a 

valuable tool for studying Rht-A1 and the nearby genetic regions, and could 

be useful in marker assisted breeding.  Rht-D1 has been mapped to the distal 

arm of 4DS, which suggests the possibility of an additional translocation in the 

group 4 chromosomes as Rht-B1 has previously been physically mapped 

near the centromere. 
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5. GENETIC DIVERSITY AT THE RHT-1 LOCI IN WHEAT 

 

5.1. INTRODUCTION 

 

In plants, DELLA proteins serve a key biological function by integrating 

hormonal and environmental signals that affect overall plant growth (Alvey 

and Harberd, 2005; Achard et al., 2006; Alvey and Boulton, 2008) and are 

associated with abiotic and biotic stress tolerance (Achard and Genschik, 

2009).  In wheat, DELLA proteins are encoded by the group IV homoeologous 

Rht-1 loci.  Two alleles at these loci, Rht-B1b and Rht-D1b are major 

adaptative alleles that reduce plant height and were key to the „green 

revolution‟ in wheat.  Both alleles confer a degree of gibberellic acid 

insensitivity (GAI) and were derived from a single cultivar, „Norin 10‟, which is 

the primary source of semi-dwarfism in wheat varieties in the Western world 

(Gale et al., 1981; Dalrymple, 1986).  An estimated 70% of wheat acreage in 

developing nations is planted to varieties that carry one of these two alleles 

(Evans, 1998).  Genetic diversity of the Rht-1 locus and the surrounding 

region is of particular concern not only due to the important biological and 

adaptative functions of this gene, but also because the Rht-B1b and Rht-D1b 

alleles have been associated with susceptibility to a major disease in wheat, 

Fusarium Head Blight (FHB) (Hilton et al., 1999; Draeger et al., 2007; 

Srinivasachary et al., 2008; Srinivasachary et al., 2009).  The recent 

introgression of both alleles from a single source would be expected to 

substantially decrease genetic diversity at the Rht-B1 and Rht-D1 loci as a 

reduction in diversity is characteristic of crop domestication genes and genes 

under selection relative to ancestral populations (Doebley et al., 2006; Palaisa 

et al., 2003; Wang et al., 1999).   

 

Wheat is an allohexaploid that arose from 8,000 to 10,000 years ago from a 

cross between tetraploid wheat (AB genomes) and Ae. tauschii (D genome) 

(Levy and Feldman, 2002).  T. dicoccum (domesticated emmer) has been 

suggested as the possible tetraploid donor (Zohary and Hopf, 2000) and T. 

dicoccoides (wild emmer) has been identified as the wild progenitor of 

domesticated wheat (Haudry et al., 2007).  The A genome ancestral line, T. 



 

118 
 

urartu, is estimated to have diverged from bread wheat approximately 0.5 

million years ago (Huang et al., 2002; Dvorak and Akhunov, 2005; Chalupska 

et al., 2008).  Previous studies have shown a great loss in genetic diversity 

between hexaploid wheat and tetraploid wheat (Haudry et al., 2007) and 

between hexaploid wheat and Ae. tauschii (Caldwell et al., 2004). 

 

At the wheat group IV Rht-1 loci, the sequences of Rht-B1a (CS background) 

and Rht-B1b (N. Harberd, University of Oxford, unpublished data) and Rht-

D1a (CS background) and Rht-D1b (Peng et al., 1999) are available.  The 

prevalence of Rht-B1b and Rht-D1b alleles in regional collections of bread 

wheat accessions has been estimated using the GA sensitivity tests (Worland 

1986; Yamada 1990; Chrpova et al., 2003) developed by Gale and Gregory 

(1977) and more recently using genetic markers (Zhang et al., 2006; Pestsova 

et al., 2008) that were developed by Ellis et al. (2002).  Additional GAI alleles 

that reduce height at the Rht-B1 and Rht-D1 loci have been identified, but the 

sequences are unknown.  Outside of the Rht-B1a, Rht-B1b, Rht-D1a, and 

Rht-D1b ORF sequences and genotyping of varieties for the presence of 

these alleles, little is known regarding the genetic variation in the Rht-1 ORF 

and the flanking region in wheat.  The absence of this information largely 

results from the lack of an available Rht-A1 sequence, which has prevented 

the creation of primers needed for locus-specific amplification.  The lack of a 

complete set of homoeologous sequences is the case for most genes in 

wheat, hence comparisons of genetic diversity across the three genomes is 

rare.  Determining existing genetic variation is an important first step toward 

finding useful variation that may affect Rht-1 expression, protein function, and 

plant phenotype, which may be key to tackling issues such as FHB 

susceptibility. 

 

The isolation and characterisation of wheat BAC clones containing Rht-A1, 

Rht-B1, and Rht-D1 along with flanking sequences (Chapters 2 and 3) 

enables the development of locus-specific primers  to assess natural variation 

within the Rht-1 region.  The objective for this chapter is to measure 

nucleotide diversity and to identify unique polymorphisms and haplotypes 

associated with the Rht-1 homoeoloci using three sets of wheat germplasm: 



 

119 
 

„Bread Wheat 1‟ (BW1), composed primarily of bread wheats that are either of 

agronomic significance in the UK or are closely related to „Norin 10‟; „Bread 

Wheat 2‟ (BW2), a subset of diverse accessions from the INRA worldwide 

bread wheat collection (Balfourier et al., 2007); „Tetraploid/ Diploid Wheat‟ 

(TDW), a small set of tetraploid and diploid wheat accessions.  For each 

homoeologue, sequence was obtained for the entire Rht-1 ORF along with the 

adjoining 1760 bp upstream and 439 bp downstream.  These flanking regions 

encompass the two most highly conserved non-coding regions shared among 

the wheat homoeologues, Brachypodium, and rice that were identified in 

Chapter 3.  The effect on Rht-1 expression of indels of 160 bp and 197 bp 

discovered upstream of Rht-B1 are investigated using quantitative RT-PCR 

(qRT-PCR).  

 

5.2. MATERIALS AND METHODS 

 

5.2.1. Sources of accessions used for sequencing the Rht-1 region 

 

Wheat germplasm used for sequencing Rht-1 and the flanking region (Rht-

1+flank) was received from the John Innes Centre (JIC) BBSRC cereals 

collection (http://www.jic.ac.uk/GERMPLAS/bbsrc_ce), the USDA-ARS 

National Plant Germplasm System (http://www.ars-grin.gov/npgs), the 

National Institute for Agricultural Research (INRA, France) worldwide core 

collection of bread wheats (INRA BWCC; Balfourier et al., 2007), or the 

National Institute of Agricultural Botany (NIAB) Distinct, Uniform, and Stable 

(DUS) collection (http://www.niab.com). Rht-1+flank sequences from the A, B, 

and D genomes of CS are from BAC clones 0224-M10, 1417-F16, and 0155-

I24, respectively (Chapter 2).  The sequence of T. urartu was received from 

Jizeng Jia (Chinese Academy of Agricultural Sciences (CAAS), P.R. China), 

and was derived from a BAC clone (described in Chapter 3).  Details of 

germplasm sources are shown in Table 5.1. 

 

 

 

 

http://www.ars-grin.gov/npgs
http://www.niab.com/
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Table 5.1. Sequenced accessions and haplotypes 

 

Set
a

Source and 

Reference No. Name

Geog. 

Origin

Growth 

Habit

Reg. 

Year Type Haplotype
c

BW1 CS BAC library Chinese Spring CHN S na L A1 B1 D1
BW1 JIC_W748 Fultz USA W 1871 F A2 B2 D2

BW1 JIC_W814 Gaines USA W 1961 F A2 B3 D3

BW1 JIC_W741 Kanred USA W 1917 F A2 B4 D1

BW1 JIC_W7208 Krasnodari 1 RUS W na F A2 B5 D1

BW1 USDA_PI156641 Norin 10 JPN W 1935 F A2 B6 D3

BW1 USDA_CItr13253 Norin 10/Brevor-14 USA W 1949 F A2 B6 D3

BW1 JIC_W614 Siete Cerros MEX S 1966 F A4 B6 D2

BW1 JIC_W613 Sonora 64 MEX S 1964 F A3 B7 D3

BW1(UK) NIAB DUS Alchemy GBR W 2005 F A2 B8 D3
BW1(UK) JIC_W2 April Bearded GBR S na L A2 B9 D4

BW1(UK) NIAB DUS Avalon GBR W 1979 F A2 B9 D3

BW1(UK) NIAB DUS Cadenza GBR S 1992 F A2 B3 D1

BW1(UK) NIAB DUS Cappelle Desprez FRA W 1946 F A2 B10 D4

BW1(UK) NIAB DUS Hobbit 'Sib' GBR W 1975 F A2 B10 D3

BW1(UK) JIC Mercia GBR W 1984 F A2 B9 D4

BW1(UK) NIAB DUS Paragon GBR S 1998 F A2 B11 D4

BW1(UK) NIAB DUS Robigus GBR W 2003 F A2 B6 D2

BW1(UK) NIAB DUS Soissons FRA W 1987 F A2 B6 D5

BW1(UK) JIC_W8551 Squarehead's Master GBR W 1911 F A2 B3 D1

BW1(UK) NIAB DUS Xi19 GBR W 2002 F A2 B3 D3

BW2 INRA_00537 CH62022 CHE W na F A2

BW2 INRA_00748 A.4 AFG W na F A5

BW2 INRA_00822 Aifeng-4 CHN W 1971 F A2

BW2 INRA_00957 Arawa NZL W 1955 F B10

BW2 INRA_01192 Balkan YUG W 1979 F D1

BW2 INRA_01697 Bung Epi Blanc NPL W na L D1

BW2 INRA_01974 CF4563-1-5-3-2-5 FRA W na F A2

BW2 INRA_02411 Daeraad ZAF S 1958 F A6

BW2 INRA_03170 Fronthatch USA S 1963 F B1

BW2 INRA_03220 G72300 GRC S na F D2

BW2 INRA_03485 H93-70 ESP W na F A2

BW2 INRA_03942 JO3045 FIN S na F D1

BW2 INRA_03970 Jufy II BEL S 1954 F B9

BW2 INRA_04645 Mars de Suede Rouge Barbu FRA S 1922 F D1

BW2 INRA_04796 Miche FRA W 1954 F A2

BW2 INRA_04901 Mocho de Espiga Bianca PRT S 1928 F A2

BW2 INRA_05096 N67M2 ISR S na F D3

BW2 INRA_05260 Norin 60 JPN S 1965 F A2

BW2 INRA_05816 Precoce a Barbe Blanche PRT S 1955 F A2

BW2 INRA_06047 Redman CAN S 1946 F D1

BW2 INRA_06318 Rouge de Marchissy FRA W 1929 F B1

BW2 INRA_06396 S975-A4-A1 ZWE S na F D1

BW2 INRA_06740 Strubes Dickkopf DEU W 1880 F A2

BW2 INRA_07040 Tremesino Meira ESP W na L B13

BW2 INRA_08194 Neelkant SYR W 1980 F D2
BW2 INRA_08287 DC147U FRA W na F D3

BW2 INRA_09077 Non Plus Extra AUT W 1919 F B9

BW2 INRA_13310 Fruh Weizen DEU W na F B11

BW2 INRA_13436 Fondard Crespin FRA W 1948 F D1

BW2 INRA_13445 Volt FRA W 1994 F D1

BW2 INRA_13471 Ornicar FRA W 1998 F A7

BW2 INRA_13812 W7984 (Synthetic) MEX S na F A6 B6 D6
BW2 INRA_13861 Auguste FRA W 1998 F B10

Accessionsb
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Table 5.1 (continued). Sequenced accessions and haplotypes 

 
a 
Set: These are as described in section 5.2.2. BW1 = Bread Wheat 1; BW1 (UK) denotes 

BW1 varieties with agronomic significance in the United Kingdom. BW2 = Bread Wheat 2; 

TDW = Tetraploid/ Diploid Wheats.  The Rht-D1 sequence of INRA_13812 was included as 

part of the BW2 and TDW sets.  All BW1 and BW2 accessions are natural hexaploids except: 

INRA_13812 (synthetic of T. durum × Ae. tauschii) and INRA_03485 (T. turgidum/Ae. 

ventricosa//T. aestivum altarnense). 

b
 T. urartu sequence was received from J. Jia (CAAS).  JIC = John Innes Centre; INRA = 

French National Institute for Agricultural Research; NIAB DUS = NIAB Distinct, Uniform, and 

Stable germplasm collection; USDA = US Dept. of Agriculture; Geographical (Geog.) origin is 

shown using three-letter nation abbreviations; na = not available; unk = unknown; Reg. Year 

= Year of Registration; S = spring; W = winter; I = indeterminate; L= landrace; F = fixed 

c
 Haplotypes were determined for the A (A1-A13), B (B1-B16), and/or D (D1-D8) genome of 

each accession based on Rht-1+flank sequence.  Polymorphisms associated with each 

haplotype are shown in Tables 5.6 (Rht-A1+flank), 5.7 (Rht-B1+flank), and 5.8 (Rht-

D1+flank). 

 

CS and CS wheat group IV nullisomic-tetrasomic (NT) lines N4AT4B, 

N4AT4D, and N4DT4B and the CS group IV ditelosomic line Dt4BL, were 

supplied by S. Reader, JIC, Norwich, UK (these lines were described in 

section 4.2.1).  DNA of CS and CS aneuploid lines were used to validate 

locus specific primers.  CS was also used as a phenotypic and genotypic 

control and to verify BAC sequence. 

 

Seta
Source and 

Reference No. Name

Geog. 

Origin

Growth 

Habit

Reg. 

Year Type Haplotypec

BW2 INRA_15950 AS68VM4-3-2/TJB636 13 FRA W na F D3

BW2 INRA_23891 landrace ARM S na L B1

BW2 INRA_23896 landrace TUR S na L D7

BW2 INRA_23909 landrace MAR S na L A8

BW2 INRA_23964 Thori 212-Var.8/1 PAK S 1934 F A9

BW2 INRA_23989 landrace GEO S 1931 L D1

BW2 INRA_23995 landrace RUS S 1950 L B12

BW2 INRA_23996 Guisuiskaya Syao-Bai-Mai CHN S 1953 F A2 B1

BW2 INRA_24056 landrace TUR I na L B1

BW2 INRA_24180 Palestinskaya PAL S 1927 F B1

BW2 INRA_24184 landrace PAL S 1927 L B1

BW2 INRA_24185 landrace TKM S na L B1

TDW INRA_13812 W7984 (Synthetic) MEX S na F D6
TDW JIC_7010073 SS7010073 (Synthetic) na W na F A10 B14 D8

TDW USDA_PI428054 T. dicoccoides 57 TUR W na L A11 B15

TDW USDA_PI428097 T. dicoccoides 65 ISR W/S na L A12 B16

TDW BAC clone T. urartu unk unk na L A13

Accessionsb
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5.2.2. Diversity sets 

 

5.2.2.1. Bread Wheat 1 (BW1) set: Accessions and experimental design 

 

BW1 is composed of 21 natural hexaploid wheat varieties from a mixture of 

backgrounds in which all three Rht-1+flank homoeologous regions were 

sequenced in each accession (Table 5.1, BW1 set).  The BW1 accessions 

include a „UK‟ subset of 12 varieties that either originated, or have been 

widely grown, in the UK in the last 100 years (Table 5.1, BW1(UK) set); a 

„Norin 10‟-related subset of seven varieties associated with the origin or early 

spread of the „Norin 10‟-derived Rht-B1b and Rht-D1b alleles; one variety 

containing the Rht-B1e semi-dwarf allele (Krasnodari 1); and CS.  Seeds of 

each BW1 variety were stratified for three days at 4°C on wetted filter paper 

and then transferred to room temperature for one week.  Following 

vernalisation (6 weeks at 4°C) seedlings were transferred to 1-litre pots and 

placed in the JIC glasshouse (supplementary lighting, 16 h daylength, 22°C 

day / 15°C night) beginning Nov. 10, 2008.  Plants were visually assessed 

throughout the growth phase and off-types discarded.  At maturity, plant 

height was measured as the distance from the soil surface to the tip of the 

longest tiller, excluding awns.  DNA was extracted from individual seedlings 

as described in section 4.2.2 and individual plants were genotyped for the 

Rht-B1a/b and Rht-D1a/b alleles (section 5.2.3).  DNA of one to four plants 

from each accession was bulked and used to amplify PCR products used in 

sequencing. 

 

5.2.2.2. Bread Wheat 2 (BW2) set: Accessions and experimental design 

 

Accessions that composed the BW2 set were selected by examining 

chromosome 4 DArT and SSR marker scores received from F. Balfourier, 

combined with PCR analysis to detect the presence/absence of Rht-B1b and 

Rht-D1b and the presence/absence of the Rht-B1 indels identified in this 

Chapter.  In an effort to maximise the number of Rht-A1+flank haplotypes 

selected, the sixteen accessions chosen for sequencing of this region 

contained the greatest combined number of chromosome 4A alleles, which 
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was determined using the line selection feature, simulated annealing method 

(N = 1000) of Powermarker v2.5 (Liu and Muse, 2005).  This procedure was 

also used to choose accessions for sequencing of the Rht-B1+flank and Rht-

D1+flank regions using markers from 4B and 4D, respectively.  Two 

accessions that are part of the INRA BWCC, Cadenza and CS, were already 

sequenced in the BW1 set, so to maximise the likelihood of finding new 

haplotypes, alleles associated with these two lines were excluded from the 

selection criterion.  For 4B and 4D, markers appearing to be linked to Rht-1 

were given priority over apparently unlinked markers.  Unlike the BW1 set in 

which Rht-1+flank sequences of the A, B, and D genomes of each accession 

were sequenced, in the BW2 set only a single Rht-1+flank region from each 

accession was sequenced with the exceptions of INRA_23996 (Rht-A1+flank 

and Rht-B1+flank) and INRA_13812 (Rht-A1+flank, Rht-B1+flank, and Rht-

D1+flank) (Table 5.1, BW2 set).  The BW2 accessions are natural hexaploids 

with the following exceptions: (1) INRA_13812, which is the synthetic line 

„W7984‟ composed of T. durum (AABB genomes) „Altar 84‟ and Ae. tauschii 

(DD) and (2) INRA_03485 (A genome sequenced), which is a cross between 

T. turgidum (AABB) / Ae. ventricosa (DDNN) and T. aestivum.  The BW2 set 

was grown in pots in an outdoor experiment at NIAB along with the remainder 

of the INRA BWCC set to collect plant height (distance from the soil surface to 

the tip of the longest tiller, excluding awns) data (described in section 6.2.3).  

For GA sensitivity data, the BW2 set was grown in the JIC glasshouse along 

with the rest of the INRA BWCC set (described in section 6.2.4).  DNA was 

extracted as described in section 4.2.2 from both replicates of the INRA 

BWCC outdoor experiment and both replicates were genotyped for Rht-B1a/b 

and Rht-D1a/b (section 5.2.3) and for the Rht-B1 promoter insertions (section 

6.2.2).  One DNA replicate was used for sequencing with forward primers and 

the other for reverse primers to provide 2× coverage. 

 

5.2.2.3. Tetraploid/Diploid Wheat (TDW) set: Accessions and 

experimental design 

 

To gauge Rht-1 diversity in a wider pool of germplasm, Rht-1+flank regions 

that originated in tetraploid or diploid wheat accessions were sequenced.  The 
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TDW set consisted of nine accessions used for Rht-1+flank region 

sequencing (in total, four A genome, three B genome, and two D genome Rht-

1+flank sequences) (Table 5.1, TDW set).  The Rht-1+flank region of all 

genomes was sequenced in the following lines: T. urartu (A genome), T. 

dicoccoides 57 (A and B genomes), T. dicoccoides 65 (A and B genomes), 

and SS7010073 (A, B, and D genomes) (Table 5.1, TDW).  Ernie Sears, 

University of Missouri (Columbia, Missouri, USA) created SS7010073 from a 

cross between a T. dicoccum and an Ae. tauschii accession.  It is thought that 

the T. dicoccum accession used in SS7010073 corresponds to „JIC 1070026‟ 

and that the Ae. tauschii accession corresponds to „JIC 2220053‟ (S. Reader, 

JIC, pers. comm.).  The second Rht-D1+flank sequence used as part of the 

TDW set is from the synthetic INRA_13812, which was also part of the BW2 

set.  The D genome of this line is from Ae. tauschii.  SS7010073 and the two 

T. dicoccoides lines were grown alongside the BW1 set.  Plant phenotyping, 

DNA extraction, and genotyping was performed as described for the BW1 set 

(section 5.2.2.1). 

 

5.2.3. Rht-B1a/Rht-B1b and Rht-D1a/Rht-D1b PCR assays 

 

Accessions were genotyped for Rht-B1a/Rht-B1b and Rht-D1a/Rht-D1b 

alleles using four separate assays (Table 5.2).  Each assay utilised a forward 

primer that was locus-specific and a reverse primer designed to be specific to 

the semi-dwarf causative SNP.  The location of the 3‟ end of the reverse 

primers was the same as described by Ellis et al. (2002).  For each reverse 

primer, a mismatch was introduced at the 3rd nucleotide from the 3‟ end 

according to Ye et al. (2001).  PCR reactions were performed in 10 µl 

volumes containing 1 × Green GoTaq Reaction Buffer (Promega), 3% 

glycerol, 0.2 mM of each dNTP, 2 mM MgCl2, 1 µM forward primer, 1 µM 

reverse primer, 0.25 µl Taq polymerase, and 20 ng DNA. The PCR profiles 

consisted of an initial denaturation of 5 min at 95°C, followed by 40 cycles of 

[95°C for 30 s, 60°C for 30 s, and 72°C for 30 s], and concluded with 72°C for 

5 min.  Amplification products were separated on a 1.5% agarose gel in 1 × 

TBE buffer and visualised under UV light with ethidium bromide. 
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Table 5.2. PCR primers used to identify Rht-B1a/B1b and Rht-D1a/D1b 

 
a
 Primer sequences are shown in Appendix 1. 

b
 The product sizes expected for plants containing the specified Rht-1 allele. NP = no product 

 

5.2.4. PCR amplification and sequencing of Rht-1 and the flanking region 

 

Locus-specific primers were designed to amplify products of sufficient length 

for sequencing of the Rht-1 ORF and at least 1760 bp upstream and 439 bp 

downstream sequence in each genome.  Primers were designed using 

primer3 software (http://frodo.wi.mit.edu/primer3).  Primer pairs for amplifying 

PCR products are shown in Table 5.3 along with expected product sizes and 

coordinates.  PCR products were designed to overlap each other by a 

minimum of 85 bp.  Reaction mixtures, PCR profiles, and gel electrophoreses 

were as described in section 5.2.3 except annealing temperature and 

extension times are as shown in Table 5.3.  

 

PCR products were purified (primers and dNTPs removed) in 10 µl reaction 

mixes that contained 1 × Exonuclease I buffer, 0.75 U Exonuclease I (NEB 

Biolabs), 0.25 U shrimp alkaline phosphatase (Promega), and 7.5 µl of PCR 

product by incubating at 37°C for 30 min before heating to 80°C for 15 min to 

deactivate enzymes.  Sequencing reactions were performed in 10 µl Big Dye 

(Applied Biosystems (ABI) sequencing mixes that contained 1 × BigDye 

Sequence Buffer, 1 µl BigDye (ver. 3.1), 5% dimethyl sulfoxide (DMSO), 1 µM 

primer, and 2 µl purified PCR product.  Sequencing primers and PCR 

products used in the reactions are shown in Table 5.3.  PCR profiles 

consisted of 98°C for 1 min, followed by 25 cycles of 98°C for 10 s, 50°C for 5 

s, and 60°C for 4 min.  The DMSO and high denaturation temperature (98°C 

instead of 96°C) were used to facilitate sequencing of the G-C rich Rht-1 PCR 

products. 

 

Assay Forward Reverse Rht-B1a Rht-B1b Rht-D1a Rht-D1b

Rht-B1a Rht-B-F1 Rht-B1a-R2 265 NP NP NP

Rht-B1b Rht-B-F1 Rht-B1b-R2 NP 265 NP NP

Rht-D1a Rht-D-F5 Rht-D1a-R2 NP NP 385 NP

Rht-D1b Rht-D-F5 Rht-D1b-R2 NP NP NP 385

Primer namea Expected product size (bp)b
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Table 5.3 Primers used for Rht-1 locus specific amplification and sequencing 

 
a 
Primer sequences are shown in Appendix 1. 

b
 Annealing temperature in °C. 

c
 Extension time in minutes:seconds. 

d
 Product coordinates refer to nucleotide number relative to the start codon of Rht-1 of 

'Chinese Spring' (CS) in the respective genome with negative numbers indicating 5‟ 

sequence. 

e
 Expected product size in basepairs (bp) relative to CS. 

 

Genome

 F/R     

primersa

Ann. 

temp.b

Ext. 

timec

Product 

coordinatesd

Exp. prod. 

size (bp)e Forward Reverse

Rht-A-F4 Rht-ABD-R10

Rht-F04 Rht-R04

Rht-A-F5 /  

Rht-R01
63 00:45 -1088 to -386 702

Rht-A-F5 Rht-R01

Rht-A-F2 /  

Rht-ABD-R5
60 00:45 -593 to 81 674

Rht-A-F2 Rht-ABD-R5

Rht-ABD-F4 Rht-ABD-R9

Rht-ABD-F8 Rht-ABD-R1b

Rht-ABD-F6 Rht-ABD-R6

Rht-ABD-F2

Rht-ABD-F3 Rht-ABD-R7

Rht-ABD-F7 Rht-ABD-R8

Rht-ABD-F9 / 

Rht-A-R2
66 01:15 1783 to 2824 1041

Rht-ABD-F9 Rht-A-R3

Rht-B-F4 Rht-R02

Rht-F01 Rht-R03

Rht-ABD-R10

Rht-B-F5 Rht-R05

Rht-F06 Rht-B-R3

Rht-F03 /   

Rht-ABD-R5
60 00:45 -449 to 84 533

Rht-F03 Rht-ABD-R5

Rht-ABD-F4 Rht-ABD-R9

Rht-ABD-F8 Rht-ABD-R1b

Rht-ABD-F6 Rht-ABD-R6

Rht-ABD-F2

Rht-ABD-F3 Rht-ABD-R7

Rht-ABD-F7 Rht-ABD-R8

Rht-ABD-F9 Rht-B-R1

Rht-D-F3 Rht-R04

Rht-F04 Rht-R08

Rht-F07 Rht-R05

Rht-D-F2 Rht-R01

Rht-ABD-R5

Rht-ABD-F4 Rht-ABD-R9

Rht-ABD-F1 Rht-ABD-R1b

Rht-ABD-F2 Rht-ABD-R6

Rht-ABD-F3 Rht-ABD-R7

Rht-ABD-F7 Rht-ABD-R8

Rht-ABD-F9 Rht-D-R1

Sequencing primersDNA amplification

Rht-A-F4 /  

Rht-ABD-R10
63 01:00 -1823 to -943 880

Rht-A-F3 /  

Rht-ABD-R6
64

A

Rht-ABD-F3 / 

Rht-A-R1 
64 01:15 921 to 2157 1236

01:30 -261 to 1043 1304

Rht-B-F4 /  

Rht-ABD-R10
60 01:30 -1888 to -648 1240

1105

Rht-B-F5 /  

Rht-B-R3
60 01:15 -986 to -177 809

Rht-ABD-F3 / 

Rht-B-R1 
62 01:30 925 to 2397

Rht-B-F1 /   

Rht-ABD-R6
64 01:15 -58 to 1047

01:00 -1919 to -1049 870

Rht-D-F6 / 

Rht-ABD-R5
64 01:30 -1162 to 84

B

D

1246

Rht-D-F1 /  

Rht-ABD-R6
64 01:15 -70 to 1048 1118

Rht-ABD-F3 / 

Rht-D-R1  
60 01:30 927 to 2422 1495

1472

Rht-D-F3 / 

Rht-R08
63
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Sequenced products were precipitated in microtitre plates using the BigDye 

v3.1 Cycle Sequencing Kit ethanol/EDTA/sodium acetate method.  Using this 

method, 1 µl of 125 mM EDTA, 1 µl of 3 M sodium acetate, and 50 µl of 100% 

ethanol were added to 10 µl of sequenced product before mixing and 

centrifuging at 3000 × g (4°C) for 30 min.  To remove supernatant, microtitre 

plates were inverted and centrifuged up to a rate of 40 × g and then slowly 

stopped.  Precipitates were washed with 70 µl of 70% ethanol and re-pelleted 

by centrifugation at 3000 × g (4°C) for 15 min.  Ethanol was removed by 

inverting plates and centrifuging at 40 × g for 1 min.  Pellets were air dried in 

the dark and resuspended in 10 µl Hi-Di formamide (ABI).  Sequencing was 

performed using an ABI 3730 DNA Analyzer and bases called with ABI 

Sequencing Analysis Software, v5.1. 

 

5.2.5. Assembly of Rht-1 contigs and bioinformatic analyses 

 

Nucleotide contigs were assembled using the ContigExpress package of 

Vector NTI (Invitrogen) and assembled sequences aligned using ClustalX 

(Larkin et al., 2007).  Amino acid alignments were performed using GeneDoc 

v2.6.002 software (Nicholas and Nicholas, 1997).  Nucleotide diversity per site 

( ) (Tajima 1983) and Watterson‟s theta per site ( ) (Nei, 1987) were 

calculated using DnaSP v5 software (Librado and Rozas, 2009) on aligned 

sequences.  Haplotype diversity (h) was calculated using the following 

formula: h = n(1-Σf2)/(n-1), where n is the sample size and f is the frequency 

of each haplotype (Nei, 1987). Fisher‟s Exact Test was used to determine the 

probability value (two-tailed distribution) of the synonymous to non-

synonymous SNP ratios between diploid/tetraploid and natural hexaploid lines 

and calculated using http://www.graphpad.com/quickcalcs/contingency1.cfm. 

 

The 160 bp and 197 bp insertion sequences were queried against the TREP 

cereal repeat database (http://wheat.pw.usda.gov/ITMI/Repeats) and the 

NCBI nucleotide collection (nr/nt) (http://blast.ncbi.nlm.nih.gov/Blast.cgi).  The 

NCBI BLAST tool was used to determine homology between the insertion 
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sequences and orthologous regions on the Rht-1 BAC, Brachypodium, and 

rice sequences. 

 

5.2.6. Rht-1 Transcript analysis 

 

Seeds of CS, Cadenza, SS7010073, Mercia, Paragon, Kanred, and Cappelle 

Desprez (sources shown in Table 5.1) were surface sterilised and stratified 

(4°C, two days) on wetted filter paper.  Germinated seeds were transferred to 

petri dishes lined with filter paper and placed in a controlled environment room 

(22°C 16/8 hr light/dark) for five days.  Shoot tissues were collected into 

eppendorf tubes containing a stainless steel bead and immediately snap 

frozen in liquid nitrogen and stored at -80°C.  Three replicates, each 

consisting of ten seedlings, were collected for each accession; however one 

replicate of Cadenza and one replicate of SS7010073 were lost during the 

RNA extraction process. 

 

For RNA extraction, frozen tissue was ground to a fine powder with a 

TissueLyser LT (Qiagen) for 30 s and RNA extracted using the RNEasy plant 

mini kit method (Qiagen).  To remove contaminating DNA, the „rigorous 

DNAse treatment‟ protocol was performed as described in the TURBO DNA-

free procedure (Ambion).  Following DNAse treatment, the concentration and 

purity of RNA of each sample was determined using a Picodrop 

spectrophotometer (Picodrop Limited, Saffron Walden, UK).  Only samples 

with a 260/280 absorbance ratio (a measure of purity) between 1.6 and 2.0 

were used for cDNA synthesis.  A total of 1 µg of RNA was used to synthesise 

cDNA using the SuperScript III first strand synthesis reverse transcription kit 

(Invitrogen) following the manufacturer‟s instructions with a random nonamers 

(Invitrogen) concentration of 50 µM.  RNA was removed from the RNA-cDNA 

duplex using RNase-H (Invitrogen).  The resulting single-stranded cDNA was 

diluted 1:20 with nuclease-free water prior to quantitative real time PCR (qRT-

PCR). 

 

The qRT-PCR reactions were performed on a DNA engine Opticon2 

Contiguous Fluorescence Detector (MJ Research Inc., Alameda, CA, USA).  



 

129 
 

cDNA was amplified using SYBR Green JumpStart Taq ReadyMix (Sigma-

Aldrich) using an initial activation step of 95°C for 3 min, followed by 40 cycles 

of [94°C for 20 s, a primer-dependent annealing temperature for 20 s, and 

72°C for 30 s], and a final polymerisation of 72°C for 10 min.  Melt-curve 

analysis was performed from 65°C to 95°C and read every 0.5°C with a 1 s 

hold time.  For Rht-B1 specific amplification, a forward primer (5‟ – CAC TAC 

TAC TCC ACC ATG TTC GAT TCT CTG – 3‟) and reverse primer (5‟ – GCG 

GCA GGA GCA GCA GCC – 3‟) were used in reaction mixes with a 68.5°C 

annealing temperature.  For Rht-D1 specific amplification, a forward primer (5‟ 

– CCA CGA GAC GCT GGG C – 3‟) and reverse primer (5‟ – CCT TCC TTC 

TCC TCC ACC TTG TAG – 3‟) were used in reaction mixes with a 64°C 

annealing temperature.  Rht-B1b and Rht-D1b primers were designed and 

qRT-PCR reaction conditions developed by Robert Saville (Saville, 2011).  

The internal controls for normalisation of expression were GAPDH 

(Glyceraldehyde 3-phosphate dehydrogenase) and EF1a (Elongation factor 

1α) using the following primers: [GAPDH; forward: 5‟ – CCT TCC GTG TTC 

CCA CTG TTG – 3‟; reverse: 5‟ – ATG CCC TTG AGG TTT CCC TC – 3‟; 

60°C anneal temp (McGrann et al., 2009)] and [EF1a; forward: 5‟ – TGG TGT 

CAT CAA GCC TGG TAT GGT – 3‟; reverse: 5 –ACT CAT GGT GCA TCT 

CAA CGG ACT – 3‟; 60°C anneal temp (Coram et al., 2008)].  The 

normalisation factor was calculated as the geometric mean of the two 

normalisation genes.  Two technical replicates were analysed for each 

sample. 

 

The average threshold cycle (Ct) was calculated from the technical 

replications of each sample.  Data were analysed using Opticon Monitor 

analysis software (v 2.02; MJ Research Inc.).  Rht-B1 and Rht-D1 expression 

levels were calculated relative to the normalisation factor using the ΔCt 

method (Pfaffl, 2001) and corrected for primer efficiencies (ΔΔCt).  Normalised 

data is presented as the mean of the three biological replicates.   Statistical 

significance among Rht-B1 transcript levels and among Rht-D1 transcript 

levels was determined using analysis of variance (Genstat, 12th edition) by 

inputting normalised replicate values.  RNA extraction, qRT-PCR 
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amplification, and data calculations were performed with the guidance of R. 

Saville, JIC. 

 

5.3. RESULTS 

 

5.3.1. PCR amplification and sequencing 

 

Locus specificity of each primer pair used to amplify DNA of the Rht-1+flank 

region listed in Table 5.3 was confirmed using water and the following DNA 

templates: CS, CS-N4AT4B (or CS-N4AT4D), CS-Dt4BL, CS-N4DT4B, BAC 

clone 0224-M10 (CS-A), BAC clone 1417-F16 (CS-B), and BAC clone 0155-

I24 (CS-D).  For each primer pair, the expected product was amplified only 

from the specified genome.   An example of locus specific primer amplification 

for Rht-B1 is shown in Figure 5.1. 

 

 

Figure 5.1.  Example of Rht-1 locus-specific amplification. 

The primer pair Rht-B-F1/Rht-ABD-R6 was tested for locus-specificity using PCR. The 

following templates were used in PCR reactions and visualised following electrophoresis on a 

1.5% agarose gel stained with ethidium bromide: [1] water; [2] genomic DNA (gDNA) of 

Chinese Spring (CS); [3] BAC DNA from Rht-A1-containing clone 0224-M10; [4] BAC DNA 

from Rht-B1-containing clone 1417-F16; [5] BAC DNA from Rht-D1-containing clone 0155-

I24; [6] gDNA of CS nulli-tetra (NT) N4AT4D; [7] gDNA of CS ditelosomic 4BL; [8] gDNA of 

CS N4DT4B.  The expected product size was 1105 bp.  M = Invitrogen „1 Kb Plus‟ DNA 

marker with fragment sizes indicated to the left in basepairs (bp).  

 

Locus-specific products were used for sequencing of the ORF and the 

flanking 5‟ and 3‟ regions of Rht-A1, Rht-B1, and Rht-D1 in three sets of 
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wheat accessions.  All Rht-A1+flank and Rht-B1+flank sequences are 

contiguous with 2 × coverage from one forward and one reverse read.  To 

specify sequence locations in the text, nucleotide coordinates (NCs) are 

relative to the Rht-1 start codon of the respective CS genome with negative 

numbers referring to sequence 5‟ of the Rht-1 ORF.  The Rht-A1+flank 

sequences of each accession cover 4122 bases from NC -1760 to NC 2362 

(Figure 5.2).  The Rht-B1+flank sequences are 4137 bp in length, extending 

from NC -1815 to NC 2322.  The Rht-D1+flank sequence of each accession 

extends from NC -1809 to NC 2311, but there is a gap that corresponds to a 

29 bp length in CS (NCs -1062 to -1034) in all D genome sequences derived 

from genomic DNA (all sequences except CS-D).  This region contains a 19 

bp long poly-C chain in CS.  It was possible to amplify a PCR product that 

spanned this gap in each accession, but the sequencing reactions all 

terminated in the poly-C chain.  The D-genome PCR products spanning this 

region from each accession were subjected to electrophoresis alongside CS 

in an agarose gel and stained with ethidium bromide, which did not reveal any 

visual evidence of a size polymorphism among the accessions (data not 

shown).  Flanking the gap are regions (NC -1128 to -1063 and -1033 to -968) 

in each accession in which sequence was obtained in only one direction.  For 

the D-genome sequence of SS7010073, single coverage upstream of the gap 

extended from NC -1416 to NC -1063. 

 

 

Figure 5.2.  Rht-1 and flanking regions sequenced on the A, B, and D genomes in wheat 

accessions.  Regions of 2× coverage (one forward read and one reverse read) obtained in 

the accessions are indicated by the double line.  Rht-1 open reading frames (ORFs) are 

A genome

B genome

D genome

-1760

-1815

23621 1863

23221 1866

-1809 23111 1872
gap: -1062 
to -1034

-1128 -968

Rht-A1

Rht-B1

Rht-D1

Forward

Reverse
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indicated by orange rectangles.  Nucleotide coordinates (NCs) of each genome relative to the 

Rht-1 translational start codon of Chinese Spring (CS) are shown with negative numbers 

indicating sequence 5‟ of the ORF.  On the D genome, an arrow indicates the location of a 

sequencing gap of 29 bp relative to CS that is also surrounded by a region of single coverage 

with boundaries indicated.  The gap is present in all D genome sequences except the D 

genome BAC sequence from CS.  On the D genome of SS7010073, the single coverage 5‟ of 

the gap extends from NC -1416 to NC -1063. 

 

5.3.2. Genetic diversity of the Rht-1+flank region of the BW1 set 

 

5.3.2.1. BW1 set: Genotypes and phenotypes 

 

Prior to sequencing, all accessions were genotyped for Rht-B1a/b and Rht-

D1a/b (Table 5.4) and only homozygous plants with the expected genotype 

were used for sequencing.  Although Kransnodari 1 has an Rht-B1a genotype  

using this assay, it is known to contain the Rht-B1e allele (Worland, 1986).  A 

previous study that used the primers specific to the Rht-B1b SNP developed 

by Ellis et al., 2002 also showed that the Rht-B1a product is amplified in 

accessions carrying the Kransodari 1 Rht-B1e allele (Pestsova et al., 2008).  

Mean plant height varied widely among the BW1 accessions, ranging from 46 

cm to 115 cm (Table 5.4).  Rht-B1 insertion allele presence/absence was 

determined by sequencing as described later in the chapter. 
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Table 5.4. Phenotype and genotype scores of the BW1 and TDW accessions. 

 
a 
Set: These are as described in section 5.2.2. BW1 = Bread Wheat 1; BW1(UK) denotes 

BW1 varieties with agronomic significance in the United Kingdom. TDW = Tetraploid/ Diploid 

Wheats. 

Accession numbers are shown in Table 5.1. 

b
 160, 197 indicate the presence of 160 bp and 197 bp insertions 5' of Rht-B1; NP = 160 bp or 

197 bp insertions are not present.  Rht-B1a/B1b and Rht-D1a/D1b genotypes were 

determined using primers (shown in Table 5.2) specific to the Rht-B1b and Rht-D1b causative 

SNPs.  Semi-dwarf (Rht-B1b and Rht-D1b) alleles are shown in bold font.  Krasnodari 1 

contains the Rht-B1e allele, but the Rht-B1a/B1b primer pair does not distinguish Rht-B1a 

from Rht-B1e (Pestsova et al., 2008) 

c
 Plant height was measured from soil surface to the tip of the tallest tiller for the indicated 

number of plants.  CV = coefficient of variation.  na = not available. 

 

5.3.2.2. BW1 set: Rht-A1+flank diversity 

 

Over the 4122 bp of Rht-A1+flank sequence there were four haplotypes (A1-

A4) and 18 polymorphic sites (PS; 15 SNPs and three indels) among the 21 

BW1 varieties with a nucleotide diversity ( ) of 0.35 × 10-3 and haplotype 

diversity of 0.27 (Table 5.5, BW1 set).  All SNP changes discussed in the text 

Genotype
b

Set
a

Accession

Rht-B1 

ins.

Rht-

B1a/B1b

Rht-

D1a/D1b

f

i

l

Plants 

(no.)

Mean 

(cm)

Range 

(cm) CV

BW1 Chinese Spring NP B1a D1a 11 82 76-92 5%

BW1 Fultz NP B1a D1a 6 115 101-129 8%

BW1 Gaines NP B1a D1b 6 68 64-73 5%

BW1 Kanred 197 B1a D1a 5 95 85-109 10%

BW1 Krasnodari 1 NP B1a D1a 6 47 40-52 10%

BW1 Norin 10 NP B1b D1b fill 7 46 43-47 3%

BW1 Norin 10/Brevor-14 NP B1b D1b 7 51 48-57 6%

BW1 Siete Cerros NP B1b D1a 6 55 48-61 9%

BW1 Sonora 64 NP B1a D1b 6 60 54-64 6%

BW1(UK) Alchemy 160 B1a D1b na na na na

BW1(UK) April Bearded 160 B1a D1a 6 107 95-118 8%

BW1(UK) Avalon 160 B1a D1b 6 70 68-73 2%

BW1(UK) Cadenza NP B1a D1a 12 69 61-86 9%

BW1(UK) Cappelle Desprez 197 B1a D1a 5 90 81-93 5%

BW1(UK) Hobbit 'Sib' 197 B1a D1b 7 74 67-77 5%

BW1(UK) Mercia 160 B1a D1a 6 77 72-80 4%

BW1(UK) Paragon 160 B1a D1a 3 80 72-87 9%

BW1(UK) Robigus NP B1b D1a 5 64 63-67 2%

BW1(UK) Soissons NP B1b D1a 6 71 67-78 6%

BW1(UK) Squarehead's Master NP B1a D1a 5 86 76-93 8%

BW1(UK) Xi19 NP B1a D1b 5 57 54-58 3%

TDW SS7010073 197 B1a D1a 6 82 71-93 10%

TDW T. dicoccoides  57 197 B1a D1a 4 69 61-78 10%

TDW T. dicoccoides  65 197 B1a D1a 2 87 82-91 7%

Height
c
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will show the CS nucleotide preceding the slash “/” and the new nucleotide 

following the “/”.  CS is the only member of haplotype A1 in the BW1 set, 

which differs from all other BW1 haplotypes by the absence of a T nucleotide 

at NC -1046 (Table 5.6).  To rule out the possibility that the NC -1046 T indel 

was due to a sequencing error in the CS-A genome BAC 0224-M10, DNA 

from leaf tissue of CS seedlings was amplified from this region and 

sequenced.  A forward and reverse sequencing read of the genomic DNA 

confirmed the absence of the T base in CS (data not shown).  Haplotype A2 is 

the predominant BW1 haplotype, being present in 18 of the 21 accessions 

(Table 5.1), and all 12 accessions in the UK subset have this haplotype.  The 

only difference between haplotype A2 and CS is the T indel at NC -1046.  

Haplotype A3 is present in only one accession, Sonora 64, and differs from 

haplotype A2 by a single polymorphism (two polymorphisms relative to CS), a 

C/A SNP at NC 1430 in the ORF.  The SNP results in a predicted amino acid 

change from serine in residue 477 of Rht-A1 in CS to tyrosine in Sonora 64 

(S477Y; as shown here, nomenclature for amino acid changes in the text will 

show CS residue followed by CS amino acid number followed by new amino 

acid).  This residue is located between the conserved P and FY domains 

identified by Tian et al. (2004) (Figure 5.3, residue 477 of Rht-A1, coord. 483 

in the figure due to insertion of gaps during alignment).  The A4 haplotype is 

present only in Siete Cerros and contains 16 polymorphisms not found in any 

other BW1 haplotype and 17 polymorphisms relative to CS.  All 

polymorphisms in Siete Cerros occur upstream of the Rht-A1 ORF and 

consist of 14 SNPs and three single bp indels. 
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Table 5.5. Summary of diversity measurements of the sequence sets 

 
a
 Diversity measurements are for sequence lengths that cover the entire open reading frame 

and 5‟ and 3‟ flanking regions of Rht-A1 (Rht-A1+flank), Rht-B1 (Rht-B1+flank), and Rht-D1 

(Rht-D1+flank).  Total length in basepairs (bp) is shown in parentheses. 

b
 BW1 = Bread Wheat 1; BW1(UK) = subset of of BW1 lines relevant to UK wheat production; 

BW2 = Bread Wheat 2; TDW = Tetraploid/diploid wheats.  The D genome of the synthetic 

wheat INRA_13812 was analyzed as part of the BW2 set and the TDW set. 

c
  = nucleotide diversity per site; θ = Watterson's theta per site. 

d
 Indels = Insertion-deletions; SNPs = single nucleotide polymorphisms; AA changes = 

predicted amino acid changes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Region 

(seq. 

length)a Setb
Seqs. 

(no.)

π x 

10-3

θ x 

10-3

Indels 

(no.)

Indels 

(total 

bp)

SNPs 

(no.)

Total 

(no.)

AA 

chan

ges no. Designations

Div-

ersity

BW1 21 0.35 1.01 3 3 15 18 1 4 A1-A4 0.27

BW1 (UK) 12 0.00 0.00 0 0 0 0 0 1 A2 0.00

BW2 16 0.68 1.46 3 3 20 23 2 6 A2;A5-A9 0.62

BW1+BW2 37 0.49 1.22 4 4 21 25 3 9 A1-A9 0.43

TDW 4 5.94 6.35 16 39 48 64 0 4 A10-A13 1.00

Overall 41 1.24 3.17 18 41 56 74 3 13 A1-A13 0.54

BW1 21 0.96 0.99 6 368 16 22 5 11 B1-B11 0.90

BW1 (UK) 12 1.13 1.11 4 364 15 19 4 6 B3;B6;B8-B11 0.88

BW2 16 0.76 0.94 5 365 14 19 5 7 B1;B6;B9-B13 0.75

BW1+BW2 37 0.86 0.85 7 369 16 23 6 13 B1-B13 0.89

TDW 3 4.15 4.15 4 28 27 31 1 3 B14-B16 1.00

Overall 40 1.43 2.17 10 394 39 49 6 16 B1-B16 0.91

BW1 21 0.26 0.20 1 3 3 4 1 5 D1-D5 0.78

BW1 (UK) 12 0.29 0.24 1 3 3 4 1 5 D1-D5 0.80

BW2 16 0.20 0.29 1 1 4 5 2 5 D1-D3;D6;D7 0.67

BW1+BW2 37 0.24 0.29 2 4 5 7 2 7 D1-D7 0.76

TDW 2 5.59 5.59 7 11 23 30 3 2 D6-D8 1.00

Overall 38 0.52 1.56 9 17 27 36 4 8 D1-D8 0.77

Haplotypes

Rht-A1 

+flank   

(4122 

bp)

Rht-B1 

+flank    

(4137 

bp)

Rht-D1 

+flank    

(4092 

bp)

Polymorphic sitesdDiversityc
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Table 5.6.  Summary of polymorphisms and haplotypes in the Rht-A1+flank region 

 

 

Coord.a CS (A1)b A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13

-1741 A G G G

-1729 C T T T T T T

-1714 A T

-1671 C T

-1654 A -

-1635 G A A A A A

-1620 C T

-1610 A -

-1527 C G

-1413 G C C C

-1366 G A A A

-1329 T G

-1318 A G

-1303 G A

-1289 A C

-1286 G A

-1202 A G

-1193 A G G G

-1155 T C C C

-1139 C A A A A

-1088 A G G G G G G

-1087 T C C C C C C

-1065 T - -

-1064 - T

-1062 C G

-1057 C - - -

-1056 - CCCCCC

-1056 T C

-1050 T G G G G G

-1046 - T T T T T T T T T T T T

-1046 C T

-1037 T C

-1027 T A

-1013 G A A A A A

-998 T G G G G

-907 C G

-894 G A A

-877 A G

-835 - A

-820 - A A A

-817 T C

-808 A T

-749 C T

-741 T A

-738 G A

-732 C G

-639 GAAAAA -

-633 G A

-599 A T T

-497 A G

Haplotypesc
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Table 5.6 (continued). Summary of polymorphisms and haplotypes in the Rht-A1+flank 

region 

 
a
 Nucleotide coordinates that mark the locations of polymorphisms present amongst the 

accessions are shown relative to the start nucleotide of the Chinese Spring (CS) Rht-A1 

sequence with negative numbers referring to sequence 5‟ of the open reading frame (ORF).  

Nucleotide changes occurring in the ORF are indicated in orange background with predicted 

amino acid (aa) changes shown in bold font directly below with affected residue. 

b
 Nucleotides present in the reference sequence of CS are as shown with missing sequence 

relative to other haplotypes denoted by a “-“.  Where predicted amino acid changes occur, the 

amino acid present in CS is shown as a 1-letter code in bold font directly below the causative 

nucleotide change.  The (A1) denotes that CS is representative of haplotype A1.   

c
 For haplotypes A2-A13, nucleotides and amino acids are indicated in red background where 

haplotypes differ from CS. 

d
 The sets of accessions containing the haplotypes are indicated. bw1 = bread wheat 1; UK 

denotes bw1 varieties with agronomic significance in the United Kingdom. bw2 = bread wheat 

2; tdw = tetraploid/ diploid wheats.  Accessions and haplotypes of each set are shown in 

Table 5.1. 

Coord.a CS (A1)b A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13

-490 A -

-485 T C

-462 - CAGTA

-455 T -

-377 T C C C

-298 C A

-297 C T

-234 C T

-183 TCGC - -

-156 TTC -

-130 C -

-33 A G G G G G

291 C G

294 C G

297 C T

565 T A

aa189 S T

994 G A

aa332 G S

1245 A G G

1311 G A

1430 C A

aa477 S Y

2024 C T T

2219 ACTGT - -

2281 A T

2348 G -

Setsd: bw1 bw1 bw1 bw1 bw2 bw2 bw2 bw2 bw2 tdw tdw tdw tdw

UK

bw2

Haplotypesc
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Figure 5.3. Predicted amino acid changes in the Rht-1 ORF identified among the wheat 

diversity sets.  The open reading frame (ORF) sequences of Rht-A1a, Rht-B1a, and Rht-

D1a from the Chinese Spring (CS) background were aligned using ClustalX.  Amino acids in 

black, grey, and white background are present in 3, 2, and 1 homoeologue, respectively.  

Coordinates to the right of each row show the amino acid number of the preceding residue in 

each homoeologue.  Coordinates are also shown above the sequence for referral in the text, 

but because of the introduction of gaps (-) to facilitate alignment they do not correspond to 

any one sequence.  Conserved protein domain motifs (Tian et al., 2004) are underlined in 

blue with name indicated below.  Red arrows indicate the location of amino acid changes that 

occur in the diversity sets relative to CS.  The affected amino acids are underlined in red 

          

          

Rht-A1a : 

Rht-B1a : 

Rht-D1a : 

          

                                                                      

        10        20        30        40        50        60        70

MKREYQDAGGSGGGGG-MGSSEDKMMVS--AAAGEGEEVDELLAALGYKVRASDMADVAQKLEQLEMAMG

MKREYQDAGGSGGGGGGMGSSEDKMMVSGSAAAGEGEEVDELLAALGYKVRASDMADVAQKLEQLEMAMG

MKREYQDAGGSGGGGGGMGSSEDKMMVS--AAAGEGEEVDELLAALGYKVRASDMADVAQKLEQLEMAMG

                                                                      

      

      

 :  67

 :  70

 :  68

      

          

          

Rht-A1a : 

Rht-B1a : 

Rht-D1a : 

          

                                                                      

        80        90       100       110       120       130       140

MGGVGAGAAPDDSFATHLATDTVHYNPTDLSSWVESMLSELNAPPPPLPPAPQQLNASTSSTVTG-GGYF

MGGVGAGAAPDDSFATHLATDTVHYNPTDLSSWVESMLSELNAPPPPLPPAP-QLNASTSSTVTG-GGYF

MGGVGAGAAPDDSFATHLATDTVHYNPTDLSSWVESMLSELNAPPPPLPPAP-QLNASTSSTVTGSGGYF

                                                                      

      

      

 : 136

 : 138

 : 137

      

          

          

Rht-A1a : 

Rht-B1a : 

Rht-D1a : 

          

                                                                      

       150       160       170       180       190       200       210

DLPPSVDSSCSTYALRPIPSPAGAVGPADLSADS-VRDPKRMRTGGSSTSSSSSSSSSLGGGARSSVVEA

DLPPSVDSSCSTYALRPIPSPA--VAPADLSADSVVRDPKRMRTGGSSTSSSSSSSSLGGGGARSSVVEA

DLPPSVDSSSSIYALRPIPSPAGATAPADLSADS-VRDPKRMRTGGSSTSSSSSSSSSLGGGARSSVVEA

                                                                      

      

      

 : 205

 : 206

 : 206

      

          

          

Rht-A1a : 

Rht-B1a : 

Rht-D1a : 

          

                                                                      

       220       230       240       250       260       270       280

APPVAAGANA-PALPVVVVDTQEAGIRLVHALLACAEAVQQENFSAAEALVKQIPLLAASQGGAMRKVAA

APPVAAAAGA-PALPVVVVDTQEAGIRLVHALLACAEAVQQENFSAAEALVKQIPLLAASQGGAMRKVAA

APPVAAAANATPALPVVVVDTQEAGIRLVHALLACAEAVQQENLSAAEALVKQIPLLAASQGGAMRKVAA

                                                                      

      

      

 : 274

 : 275

 : 276

      

          

          

Rht-A1a : 

Rht-B1a : 

Rht-D1a : 

          

                                                                      

       290       300       310       320       330       340       350

YFGEALARRVFRFRPQPDSSLLDAAFADLLHAHFYESCPYLKFAHFTANQAILEAFAGCRRVHVVDFGIK

YFGEALARRVFRFRPQPDSSLLDAAFADLLHAHFYESCPYLKFAHFTANQAILEAFAGCRRVHVVDFGIK

YFGEALARRVFRFRPQPDSSLLDAAFADLLHAHFYESCPYLKFAHFTANQAILEAFAGCRRVHVVDFGIK

                                                                      

      

      

 : 344

 : 345

 : 346

      

          

          

Rht-A1a : 

Rht-B1a : 

Rht-D1a : 

          

                                                                      

       360       370       380       390       400       410       420

QGMQWPALLQALALRPGGPPSFRLTGVGPPQPDETDALQQVGWKLAQFAHTIRVDFQYRGLVAATLADLE

QGMQWPALLQALALRPGGPPSFRLTGVGPPQPDETDALQQVGWKLAQFAHTIRVDFQYRGLVAATLADLE

QGMQWPALLQALALRPGGPPSFRLTGVGPPQPDETDALQQVGWKLAQFAHTIRVDFQYRGLVAATLADLE

                                                                      

      

      

 : 414

 : 415

 : 416

      

          

          

Rht-A1a : 

Rht-B1a : 

Rht-D1a : 

          

                                                                      

       430       440       450       460       470       480       490

PFMLQPEGEEDPNEEPEVIAVNSVFEMHRLLAQPGALEKVLGTVRAVRPRIVTVVEQEANHNSGTFLDRF

PFMLQPEGEEDPNEEPEVIAVNSVFEMHRLLAQPGALEKVLGTVRAVRPRIVTVVEQEANHNSGTFLDRF

PFMLQPEGEEDPNEEPEVIAVNSVFEMHRLLAQPGALEKVLGTVRAVRPRIVTVVEQEANHNSGTFLDRF

                                                                      

      

      

 : 484

 : 485

 : 486

      

          

          

Rht-A1a : 

Rht-B1a : 

Rht-D1a : 

          

                                                                      

       500       510       520       530       540       550       560

TESLHYYSTMFDSLEGGSSGG-PSEVSSGAAAAPAAAGTDQVMSEVYLGRQICNVVACEGAERTERHETL

TESLHYYSTMFDSLEGGSSGG-PSEVSSGAAAAPAAAGTDQVMSEVYLGRQICNVVACEGAERTERHETL

TESLHYYSTMFDSLEGGSSGGGPSEVSSGAAAAPAAAGTDQVMSEVYLGRQICNVVACEGAERTERHETL

                                                                      

      

      

 : 553

 : 554

 : 556

      

          

          

Rht-A1a : 

Rht-B1a : 

Rht-D1a : 

          

                                                                   

       570       580       590       600       610       620       

GQWRNRLGNAGFETVHLGSNAYKQASTLLALFAGGDGYKVEEKEGCLTLGWHTRPLIATSAWRLAAP

GQWRNRLGNAGFETVHLGSNAYKQASTLLALFAGGDGYKVEEKEGCLTLGWHTRPLIATSAWRLAAP

GQWRNRLGNAGFETVHLGSNAYKQASTLLALFAGGDGYKVEEKEGCLTLGWHTRPLIATSAWRLAGP

                                                                   

      

      

 : 620

 : 621

 : 623

      

DELLA

TVHYNP

LHR I NLS

NLS VHIID

VHIID LHR II

LHR II P FY

FY RE RVER

W-G L-W SAW

E/*G/R M/I K/* Q/*

T/V S/T E/G

frameshift G/S

S/Y

G/A
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below the arrows and the amino acid change is indicated above the arrow.  „Frameshift‟ refers 

to a 1 bp nucleotide insertion that occurs at coordinate 333 in an Rht-B1 accession. 

 

5.3.2.3. BW1 set: Rht-B1+flank diversity 

 

The 4137 bp of Rht-B1+flank sequence from the 21 BW1 accessions revealed 

11 haplotypes (B1-B11) and haplotype diversity was 0.90 (Table 5.5, BW1 

set).  Nucleotide diversity was 0.96 × 10-3 and there were 22 PS (16 SNPs 

and 6 indels) among the accessions, which included a 160 bp and a 197 bp 

indel within the upstream region and five predicted amino acid changes in the 

Rht-B1 ORF.  Haplotype B1 consisted only of CS, which differed from the 

other BW1 haplotypes by one to 15 polymorphisms (Table 5.7).  There were 

four Rht-B1+flank haplotypes (B2, B3, B6, and B7) that each differed from CS 

by only one polymorphism.  Haplotype B2 differs from CS by a 3 bp deletion 

downstream of the ORF (NC 1982) and is only present in the line „Fultz‟.  The 

B3 haplotype is found in four BW1 varieties (Table 5.1) and has a G/T SNP 5 

bp downstream of the ORF (NC 1871).  The B6 haplotype contains Rht-B1b 

and all five lines with this allele have identical sequences in the Rht-B1+flank 

region.  As first reported by Peng et al. (1999), the semi-dwarf nature of Rht-

B1b results from a C/T SNP at NC 190 that converts Rht-B1 AA64 from a 

glutamine (Q) to a stop codon (*) (Figure 5.3, coord. 64).  The B7 haplotype is 

only present in Sonora 64 and differs from CS by a 3 bp deletion at NC 2191, 

which is part of a CTA repeat-rich region 3‟ of the ORF. 

 

The semi-dwarf line, Krasnodari 1 contains the Rht-B1e allele and is the only 

member of haplotype B5 in the BW1 set.  Relative to CS, Krasnodari 1 has 

three polymorphisms including an A/T SNP in the ORF at NC 181.  The ORF 

SNP is a nonsense mutation that converts residue 61 of Rht-B1 from lysine 

(K) to a stop codon (*) (Figure 5.3, coord. 61).  The stop codon occurs in the 

DELLA domain at a position that is only three amino acids upstream of the 

residue that is converted to a stop codon in Rht-B1b and only two amino acids 

upstream of the equivalent residue on the D genome that is converted to a 

stop codon in Rht-D1b. 
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Table 5.7.  Summary of polymorphisms and haplotypes in the Rht-B1+flank region 

 

 

 

 

Coord.a CS (B1)b B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15 B16

-1487 A T T T

-1210 T C

-1198 G T T T T T T

-1180 G A

-1177 T C

-1140 - C

-1053 A G

-1003 T C

-911 T C C C C

-907 G A

-867 TTTCT -

-738 G A A A A A

-694 intact -16

-638 C T

-634 T C C

-629 C T

-591 - +197 +197 +197 +197 +197

-591 - G G A G G

-591 - C C C G C

-591 - A A A G A

-591 - T T C T T

-460 A G

-391 G C

-356 - +160 +160 +160

-322 G T

-243 C -

-231 T G

-131 C T T T T T T

-68 C A

-39 T C

43 G C C C

aa15 G R R R

75 G A A A A

aa25 M I I I I

181 A T

aa61 K *

190 C T

aa64 Q *

614 A G G G

aa205 E G G G

618 T C

723 A G G G G G

984 - T

aa328 L FS

1584 C G

1734 G A

1761 A C C C C

1871 G T

1877 T - -

1931 G A

1982 AAG -

Haplotypesc
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Table 5.7 (continued). Summary of polymorphisms and haplotypes in the Rht-B1+flank 

region 

 
a
 Nucleotide coordinates that mark the locations of polymorphisms present amongst the 

accessions are shown relative to the start nucleotide of the Chinese Spring (CS) Rht-B1 

sequence with negative numbers referring to sequence 5‟ of the open reading frame (ORF).  

Nucleotide changes occurring in the ORF are indicated in orange background with predicted 

amino acid (aa) changes shown in bold font directly below with affected residue.  Coordinate -

591 marks a 197 bp insertion along with 4 SNPs that occur within the insertion. 

b
 Nucleotides present in the reference sequence of CS are as shown with missing sequence 

relative to other haplotypes denoted by a “-“.  Intact refers to the presence of sequence in CS 

that is deleted in another haplotype.  Where predicted amino acid changes occur, the amino 

acid present in CS is shown as a 1-letter code in bold font directly below the causative 

nucleotide change.  The (B1) denotes that CS is representative of haplotype B1.   

c
 For haplotypes B2-B16, nucleotide and amino acids are indicated in red background where 

haplotypes differ from CS.  “+197” indicates the presence of a 197 bp insertion; “+160” 

indicates the presence of a 160 bp insertion; “-16” indicates a 16 bp deletion; “*” = predicted 

stop codon; “FS” = amino acid frameshift. 

d
 Accession sets containing each haplotype are indicated. bw1 = bread wheat 1; UK denotes 

bw1 varieties with agronomic significance in the United Kingdom. bw2 = bread wheat 2; tdw = 

tetraploid/ diploid wheats.  Accessions and haplotypes of each set are shown in Table 5.1. 

e
 Previously identified GA insensitive alleles are indicated. 

 

Three of the remaining haplotypes (B8, B9, and B11) in the BW1 set contain a 

160 bp insertion relative to CS at NC -356.  No sequences with significant 

similarity were found when the 160 bp was queried against the TREP cereal 

repeat database, the NCBI nucleotide collection (nr/nt), or the CS Rht-1-

containing BAC sequences.  Each of the three haplotypes also contains an 

A/G SNP in the ORF (NC 614) that gives rise to a predicted E205G change 

(Figure 5.3, coord. 209).  The change occurs in the N-terminal region of Rht-

B1 and is outside of the conserved domains.  These two polymorphisms 

Coord.a CS (B1)b B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15 B16

2086 C G

2167 C T T T T T

2191 CTA CTA CTA CTA CTA CTA

CTA 

CTA 

CTA

CTA

CTA

CTA -

2221 A T T T T T

Setsd: bw1 bw1 bw1 bw1 bw1 bw1 bw1 bw1 bw1 bw1 bw1 bw2 bw2 tdw tdw tdw

bw2 UK UK UK UK UK UK

bw2 bw2 bw2 bw2

Allelese: B1e B1b

Haplotypesc
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constitute the only difference between CS and haplotype B9, which is present 

in three BW1 accessions (April Bearded, Avalon, and Mercia).   The 

accession Alchemy is the only member of haplotype B8, which contains two 

SNPs (NC -1487 and -1198) in addition to those found on haplotype B9.  

Haplotype B11 is only represented in Paragon among the BW1 set, differing 

from haplotype B9 by a CTA insertion in the repeat rich region 3‟ of the ORF 

(NC 2191). 

 

The remaining two haplotypes found in the BW1 set (B4 and B10) each 

contain a 197 bp insertion upstream of the Rht-B1 ORF relative to CS (NC -

591).  No sequences of significant similarity were found when the 197 bp 

insertion sequence (from Cappelle Desprez) was queried against the TREP 

cereal repeat database, the NCBI nucleotide collection (nr/nt).  However, 

homologous sequence is present in nearly equivalent regions on the Rht-1-

containing BAC sequences from the A and D genomes.  On the A genome, 

the region (NC -883 to -702) has significant similarity (2 × 10-55) and 86% 

identity to the 197 bp insertion.  On the D genome, significant homology (1 × 

10-57) and 86% identity to the insertion was found between NC -872 to -685.  

No homology was found when the 197 bp insertion was queried with the 

upstream regions (1 bp to 10 000 bp upstream) of rice or Brachypodium.  The 

B4 haplotype, in addition to the 197 bp insertion, contains 13 polymorphisms 

relative to CS (11 SNPs, indels of 1 and 3 bp) and is present only in the 

accession Kanred.  Four of the polymorphisms (all SNPs) occur in the Rht-B1 

ORF and two result in predicted amino acid changes (G15R (Figure 5.3, 

coord. 15) and M25I (Figure 5.3, coord. 25)) that occur upstream of the 

DELLA domain.  The B10 haplotype is composed of two accessions (Cappelle 

Desprez and Hobbit „Sib‟) and differs from the B4 haplotype by an A/T SNP at 

NC -1487.  The UK subset of Rht-B1+flank sequences contained six 

haplotypes (B3, B6, B8-B11) of the eleven present in the BW1 set and 19 of 

the 22 PS (Table 5.5).  The PS in the UK subset included both of the large 

indels and four of the five predicted amino acid changes present in the full 

BW1 set (the haplotype B5 stop codon is absent).  Among the UK lines, 

haplotype diversity was 0.88 and  = 1.13 × 10-3. 
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5.3.2.4. BW1 set: Rht-D1+flank diversity 

 

For the 4092 bp of Rht-D1+flank sequence, a total of four PS (3 SNPs; 1 

indel) and five haplotypes (D1-D5) exist among the 21 BW1 accessions with  

= 0.26 × 10-3 and haplotype diversity = 0.78 (Table 5.5, BW1 set).  CS and 

four other bread wheat accessions comprise the D1 haplotype, which differs 

from the other haplotypes by one to two polymorphisms (Table 5.8).  

 

Table 5.8.  Summary of polymorphisms and haplotypes in the Rht-D1+flank region 

 

Coord.a CS (D1)b D2 D3 D4 D5 D6 D7 D8

-1809 G A

-1795 - A AA

-1720 G A

-1567 G A

-1508 C G

-1501 - CTA

-1368 G A

-1367 T C

-1360 G -

-1326 A G

-1055 C A

-1053 A C

-970 A T

-740 - A

-680 A -

-630 G A

-479 A G G

-383 G T T

-322 G A

-304 C A

-137 T C

-106 C T

-32 GA -

181 G T

aa61 E *

483 GACG CGTC

aa162 T V

1000 G A

aa334 G S

1266 G A

1865 G  C

aa622 G A

1987 AAG -

2066 T C

2137 TTC -

2306 G T

Setsd: bw1 bw1 bw1 bw1 bw1 bw2 bw2 tdw

UK UK UK UK UK tdw

bw2 bw2 bw2

Allelese: D1b

Haplotypesc
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a
 Nucleotide coordinates that mark the locations of polymorphisms present amongst the 

accessions are shown relative to the start nucleotide of the Chinese Spring (CS) Rht-D1 

sequence with negative numbers referring to sequence 5‟ of the open reading frame (ORF).  

Nucleotide changes occurring in the ORF are indicated in orange background with predicted 

amino acid (aa) changes shown in bold font directly below with affected residue indicated. 

b
 Nucleotides present in the reference sequence of CS are as shown with missing sequence 

relative to other haplotypes denoted by a “-“.  Where predicted amino acid changes occur, the 

amino acid present in CS is shown as a 1-letter code in bold font directly below the causative 

nucleotide change.  The (D1) denotes that CS is representative of haplotype D1.   

c
 For haplotypes D2-D8, nucleotide and amino acids are indicated in red background where 

haplotypes differ from CS. 

d
 The sets of accessions containing the haplotypes are indicated. bw1 = bread wheat 1; UK 

denotes bw1 varieties with agronomic significance in the United Kingdom. bw2 = bread wheat 

2; tdw = tetraploid/diploid wheats.  Haplotype D6, which contains only INRA_13812 was used 

as part of the bw2 and tdw sets.  Accessions and haplotypes of each set shown in Table 5.1. 

e
 Previously identified GA insensitive alleles are indicated. 

 

Haplotype D2 of the BW2 set differs from CS by a single G/T SNP at NC -383.  

Haplotype D3 consists of the eight accessions that contain the Rht-D1b semi-

dwarf allele (Table 5.1).  The D3 sequence is identical to CS with the 

exception of the Rht-D1b causative SNP (G/T) at residue 61 of Rht-D1 (Peng 

et al., 1999), which converts a glutamic acid (E) residue in CS to a stop codon 

(*) (Figure 5.3, coord. 63).  Haplotype D4 is present in four BW1 accessions 

and contains the upstream SNP (NC -383) found in haplotype D2 and a 3 bp 

deletion downstream of the Rht-1 ORF (NC 2137).  Haplotype D5 is present in 

a single accession (Soissons) and differs from CS by only a T/C SNP (NC -

1367).  The UK subset of accessions contain all of the Rht-D1+flank BW1 

haplotypes and PS with  = 0.29 × 10-3 and haplotype diversity = 0.80. 

 

5.3.3. Genetic diversity of the Rht-1+flank region of the BW2 set 

 

5.3.3.1. BW2 set: Genotype and phenotype results 

 

Chromosome IV marker data was used in an attempt to select accessions 

with the most diverse 4A, 4B, and 4D chromosomes amongst the INRA 

BWCC for sequence analysis.  The lines selected for sequencing of the Rht-
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A1+flank region contained 116 of the 147 4A alleles found amongst the INRA 

BWCC, the lines selected for sequencing of Rht-B1+flank contained 72 of the 

93 4B alleles, and the lines selected for sequencing of Rht-D1+flank 

contained 39 of the 52 4D alleles (data not shown).  A wide range of plant 

heights (54-189 cm when grown in the UK) and GA treatment differences 

(difference in mean seed-to-first-ligule (STFL) lengths of seedlings in the GA+ 

treatment minus STFL lengths of seedlings in the GA- treatment, which is a 

measure of GA sensitivity; described in Chapter 6) of 1.5 to 50.3 mm occur 

among the sequenced accessions (Table 5.9).  The GA sensitivity and plant 

heights of the sequenced accessions cover the ranges found in the entire 

INRA BWCC as presented in Chapter 6.  Among the accessions selected for 

Rht-B1+flank sequencing, the alleles Rht-B1a, Rht-B1b, the 160 bp insertion, 

and the 197 bp insertion are each represented.  Among the Rht-D1+flank 

sequences, the Rht-D1a and Rht-D1b alleles are both represented.  

 

Table 5.9. Genotype and phenotype summary of the Bread Wheat 2 (BW2) set 

 

Code Name

Gen-

omes 

seq.d

Rht-

B1 

ins.

Rht-

B1a/

B1b

Rht-

D1a/ 

D1b

Plant ht. 

(cm)

GA trt. 

diff. 

(mm)

 INRA_00537 CH62022 A fill 160 B1a D1a fill 114 19.6

 INRA_00748 A.4 A NP B1a D1a 160 25.7

 INRA_00822 Aifeng-4 A 197 B1a D1b 86 13.9

 INRA_00957 Arawa B 197 B1a D1a 137 27.3

 INRA_01192 Balkan D NP B1a D1a 107 36.2

 INRA_01697 Bung Epi Blanc D NP B1a D1a 157 50.3

 INRA_01974 CF4563-1-5-3-2-5 A NP B1b D1a 94 2.2

 INRA_02135 Chinese Spring - NP B1a D1a 136 38.5

 INRA_02411 Daeraad A 197 B1a D1a 130 33.5

 INRA_03170 Fronthatch B NP B1a D1a 140 41.0

 INRA_03220 G72300 D NP B1a D1a 146 21.3

 INRA_03485 H93-70 A NP B1a D1a 172 24.3

 INRA_03942 JO3045 D NP B1a D1a 146 23.2

 INRA_03970 Jufy II B 160 B1a D1a 127 29.7

 INRA_04645 Mars De Suede Rouge Barbu D NP B1a D1a 183 33.3

 INRA_04796 Miche A 160 B1a D1a 121 22.8

 INRA_04901 Mocho De Espiga Bianca A 197 B1a D1a 135 38.3

 INRA_05096 N67M2 D NP B1b D1b 54 1.5

 INRA_05260 Norin 60 A NP B1a D1b 100 1.7

 INRA_05816 Precoce A Barbe Blanche A 197 B1a D1a 153 15.8

 INRA_06047 Redman D NP B1a D1a 137 17.7

 INRA_06318 Rouge De Marchissy B NP B1a D1a 189 23.8

 INRA_06396 S975-A4-A1 D NP B1a D1a 89 17.4

 INRA_06740 Strubes Dickkopf A 160 B1a D1a 146 20.0

GenotypebAccessionsa Phenotypec
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Table 5.9 (continued). Genotype and phenotype summary of the Bread Wheat 2 (BW2) 

set 

 
a
 The BW2 accessions are a subset of the INRA BWCC and the  genotype and phenotype 

data  for the whole collection are presented in Chapter 6. 

b
 160, 197 indicate the presence of a 160 or a 197 bp insertion 5' of Rht-B1; NP = 160 or 197 

bp insertion not present. Semi-dwarf (Rht-B1b and Rht-D1b) alleles are shown in bold font. 

c
 Plant heights were measured using plants grown outdoors in pots at NIAB (Cambridge, UK) 

as described in section 6.2.3.  GA treatment difference (GA trt. diff) refers to difference in 

mean seed-to-first-ligule (STFL) lengths of seedlings in the GA+ treatment minus STFL 

lengths of seedlings in the GA- treatment (described in section 6.2.4). 

d
 Cadenza and Chinese Spring (both listed as "-") were sequenced as part of the BW1 set 

using different seed sources and are included for genotypic and phenotypic comparisons. 

 

5.3.3.2. BW2 set: Rht-A1+flank diversity 

 

The 16 Rht-A1+flank sequences from the BW2 set contained 23 PS (20 SNPs 

and 3 indels) and six haplotypes (A2 and A5-A9) with  = 0.68 × 10-3 and 

haplotype diversity = 0.62 (Table 5.5, BW2 set).  Five of the haplotypes (A5-

Code Name

Gen-

omes 

seq.d

Rht-

B1 

ins.

Rht-

B1a/

B1b

Rht-

D1a/ 

D1b

Plant ht. 

(cm)

GA trt. 

diff. 

(mm)

 INRA_07040 Tremesino Meira B NP B1a D1a 155 36.3

 INRA_08194 Neelkant D NP B1b D1a 121 19.0

 INRA_08254 Cadenza - NP B1a D1a 105 31.0

 INRA_08287 DC147U D 197 B1a D1b 118 4.7

 INRA_09077 Non Plus Extra B 160 B1a D1a 149 28.7

 INRA_13310 Fruh Weizen B 160 B1a D1a 167 20.0

 INRA_13436 Fondard Crespin D NP B1a D1a 165 27.0

 INRA_13445 Volt D NP B1b D1a 91 11.3

 INRA_13471 Ornicar A NP B1b D1a 90 7.7

 INRA_13812 W7984 A B D NP B1b D1a 112 14.2

 INRA_13861 Auguste B 197 B1a D1b 80 8.4

 INRA_15950 AS68VM4-3-2/TJB636 13 D 197 B1a D1b 106 5.7

 INRA_23891 Landrace B NP B1a D1a 142 15.0

 INRA_23896 Landrace D NP B1a D1a 161 24.8

 INRA_23909 Landrace A NP B1a D1a 144 40.7

 INRA_23964 Thori 212-Var.8/1 A NP B1a D1a 129 32.5

 INRA_23989 Landrace D NP B1a D1a 171 21.3

 INRA_23995 Landrace B NP B1a D1a 150 21.8

 INRA_23996 Guisuiskaya Syao-Bai-Mai A B NP B1a D1a 126 34.2

 INRA_24056 Landrace B NP B1a D1a 176 36.3

 INRA_24180 Palestinskaya B NP B1a D1a 139 33.7

 INRA_24184 Landrace B NP B1a D1a 184 27.0

 INRA_24185 Landrace B NP B1a D1a 152 30.0

Accessionsa Genotypeb Phenotypec
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A9) and seven of the polymorphisms (Table 5.6), including two predicted 

amino acid changes were not present in the BW1 set.  Similar to the BW1 set, 

all accessions contained the NC -1046 T insertion, which was not present in 

CS.  Also similar to the BW1 set, the most common BW2 haplotype is A2, 

which is present in 10 of the 16 accessions. (Table 5.1).  The five novel 

haplotypes in BW2 differed from CS by 2 to 20 polymorphisms.  Haplotype A5 

is present in one BW2 line (INRA_00748) and differed from A2 by a single 

SNP in the ORF (NC 565, T/A) that leads to a S189T predicted amino acid 

change.  The change occurs outside of a conserved domain and in the middle 

of a 9-residue poly-serine string (Figure 5.3, coord. 194).  Haplotype A6 is 

contained in two BW2 lines and has two SNPs (NC -1046 and -599) not 

present in haplotype A2.  Haplotype A7 is represented by a single line 

(INRA_13471) and differs from haplotype A2 by a single SNP in the ORF (G/A 

at NC 994, G332S).  The predicted change occurs in the VHIID protein 

domain (Figure 5.3, coord. 338).  Haplotype A8 differs from haplotype A2 by a 

single SNP at NC -599 (also found in the A6 haplotype) and is present in only 

INRA_23909.  The last haplotype of the BW2 set, A9, is represented by a 

single accession, INRA_23964, and has 19 polymorphisms not found in any 

other BW2 line and differs from CS by a total of 20 polymorphisms, all of 

which are 5‟ of Rht-A1.  This haplotype is most closely related to the A4 

haplotype (from BW1), differing by only three PS (NC -998, -894, and -820). 

 

5.3.3.3. BW2 set: Rht-B1+flank diversity 

 

The 16 accessions of the BW2 set that were sequenced for Rht-B1+flank 

contained seven haplotypes (B1, B6, and B9-B13) and 19 PS (14 SNPs and 5 

indels) with  = 0.76 × 10-3 and haplotype diversity = 0.75 (Table 5.5, BW2 

set.  Only two haplotypes (B12 and B13) and one PS not present in the BW1 

set were discovered in this set (Table 5.7).  The novel PS is a 1 bp T insertion 

in the Rht-B1 ORF that leads to a predicted frameshift mutation in haplotype 

B12, which is present in only INRA_23995.  The Rht-B1+flank nucleotide 

sequence of haplotype B12 is otherwise identical to CS.  The T insertion 

precedes NC 984 and occurs near the beginning of the C terminus of the Rht-
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B1 protein (residue 328 of Rht-B1) in the VHIID protein motif (Figure 5.3, 

coord. 333).  The resulting protein is predicted to contain 633 amino acids 

with a stop codon encoded by NCs 1899 to 1901.  The other new haplotype in 

the BW2 set, haplotype B13, differs from CS by three polymorphisms 

previously identified in the BW1 set: a C/T SNP (NC -131), a G/C SNP (NC 

43) leading to a predicted G15R change, and a CTA insertion (NC 2191), 

which did not occur together in other haplotypes.  This haplotype is present 

only in the line INRA_07040.  The remaining 14 accessions have previously 

identified haplotypes (Table 5.1).  Eight of the accessions contained the B1 

haplotype, which was only found in CS among the BW1 set.  A single 

accession (INRA_13812) contained the Rht-B1b semi-dwarf allele and it has 

sequence identical to the BW1 lines carrying this allele (haplotype B6).  The 

remaining accessions belonged to haplotypes B9 (two accessions), B10 (two 

accessions), and B11 (one accession). 

 

5.3.3.4. BW2 set: Rht-D1+flank diversity 

 

Among the 16 BW2 Rht-D1+flank sequences there are 5 haplotypes (D1-D3, 

D6-D7) and 5 PS (4 SNPs and 1 indel) with  = 0.20 × 10-3 and haplotype 

diversity = 0.67 (Table 5.5, BW2 set).  Two of the haplotypes (D6 and D7) and 

three of the PS were not found in the BW1 set (Table 5.8).  Two of the novel 

PS are found in haplotype D6, which otherwise is identical to the CS 

haplotype.  One of these is a G/A SNP that occurs in the ORF at NC 1000 

leading to a predicted G334S change (Figure 5.3, coord. 338).  The residue 

change occurs in the VHIID conserved domain and at the equivalent residue 

where a glycine/serine substitution occurs on the A genome in haplotype A7.  

The second SNP (A/G) in this haplotype occurs upstream of the Rht-D1 ORF 

(NC -479).  The sole member of this haplotype is the synthetic hexaploid 

INRA_13812.  The second novel haplotype, D7, contains the third 

polymorphism not present in the BW1 set, a 1 bp insertion relative to CS at 

NC -1795.  This is the only polymorphism that distinguishes this haplotype 

(present only in INRA_23896) from CS.  Nine of the remaining 14 accessions 

have sequence identical to CS, belonging to haplotype D1 (Table 5.1).  Two 
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accessions belong to haplotype D2.  Lastly, three BW2 accessions contain 

the Rht-D1b allele and have sequence identical to the BW1 accessions 

carrying the Rht-D1b allele and belong to haplotype D3. 

 

5.3.4. Genetic diversity of the Rht-1+flank region of the TDW set 

 

5.3.4.1. TDW set: Genotype and phenotype results 

 

Three of the TDW lines (T. dicoccoides 57, T. dicoccoides 65, and 

SS7010073) were phenotyped and genotyped alongside the BW1 lines (Table 

5.4).  The D genome of INRA_13812 is derived from Ae. tauschii so the Rht-

D1+flank sequence was analysed as part of the TDW set in addition to being 

analysed as part of the BW2 set.  Phenotype and genotype data of 

INRA_13812 is shown in Table 5.9.  T. urartu was not grown.  Rht-B1b and 

Rht-D1b were not present among the TDW sequences. 

 

5.3.4.2. TDW set: Rht-A1+flank diversity 

 

There are 64 PS (16 indels and 48 SNPs) among the four A genome 

sequences of the TDW set and 49 of the PS are not present in the two BW 

(BW = combined BW1 and BW2) sets and  = 5.94 × 10-3 (Table 5.5).  The 

four Rht-A1+flank sequences from the TDW set each comprise unique 

haplotypes (A10-A13) not present among the BW sets (Table 5.6).  There are 

no Rht-A1+flank PS that distinguish all of the TDW sequences from all of the 

BW sequences.  Only five of the 64 PS found among the TDW sequences are 

located in the Rht-A1 ORF and none result in a predicted amino acid change. 

Of the 16 indels present in the TDW Rht-A1+flank sequences, the largest is 

six bp in length. The TDW Rht-A1+flank sequence most similar to CS is 

SS7010073 (haplotype A10), which has an A genome derived from 

domesticated emmer (T. dicoccum).  Haplotype A10 differs from CS by 8 PS 

(7 SNPs and a 3 bp indel), four of which were not present in any of the BW 

sequences.  The wild emmers T. dicoccoides 57 (haplotype A11) and T. 

dicoccoides 65 (haplotype A12) differ from CS by 19 polymorphisms (18 
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SNPs and 1 bp indel) and 16 polymorphisms (14 SNPs, a 4 bp indel, and a 5 

bp indel), respectively.  Haplotype A11 most closely resembles the BW 

haplotypes A9 (differing by only a single bp insertion at NC -1065) and A4 

(four polymorphisms).  Haplotype A12 contains six polymorphisms not found 

in the BW sets.  Of all the A genome sequences, T. urartu (haplotype A13) 

contained the largest number of PS (53) relative to CS and 39 of these, which 

is more than half of all the Rht-A1+flank PS found among all the accessions, 

are unique to T. urartu.  The TDW lines share several of the polymorphisms 

that separate them from CS and the other BW sequences, but also differ from 

one another by at least 15 polymorphisms. 

 

5.3.4.3. TDW set: Rht-B1+flank diversity 

 

The three TDW Rht-B1+flank sequences are each unique haplotypes (B14-

B16) that are not present in the BW sets (Table 5.7).  Among these 

sequences  = 4.15 × 10-3 and there are 31 PS (27 SNPs and 4 indels), 27 of 

which are not are not present among any of the BW sequences (Table 5.5).  

All three of the TDW haplotypes contain the 197 bp insertion and none 

contain the 160 bp insertion.  A 16 bp deletion also occurs in SS7010073 

(haplotype B14) relative to CS and this deletion is not found in any other 

accession.  Similar to the A genome, there are no B genome PS that 

distinguished all of the TDW accessions from all of the BW lines.  Among the 

31 PS in the Rht-B1+flank region of the TDW lines, there are five in the ORF 

and only one of these leads to a predicted amino acid change.  The PS 

leading to a predicted amino acid change (M25I) was previously identified in 

the BW accessions (Figure 5.3, coord. 25) and is present in haplotype B14 

and T. dicoccoides 65 (haplotype B16).  Haplotype B14 is the most dissimilar 

of the three TDW haplotypes relative to the CS haplotype, differing by 23 

polymorphisms while T. dicoccoides 57 (haplotype B15) and haplotype B16 

differed from CS by 13 and 15 polymorphisms, respectively.  The fewest PS 

found between a BW haplotype and a TDW haplotype is 11, which occurs 

between haplotypes B4 and B16. 
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5.3.4.4. TDW set: Rht-D1+flank diversity 

 

The two Ae. tauschii D genome Rht-D1+flank sequences analysed in the 

TDW set are derived from the synthetic hexaploids SS7010073 and 

INRA_13812 (W7984).  Each Ae. tauschii sequence represents a unique 

haplotype (SS7010073 = haplotype D8 and INRA_13812 = haplotype D6; 

Table 5.8).  There are 30 PS (23 SNPs and 7 indels) between the two Rht-

D1+flank haplotypes and  = 5.59 × 10-3 (Table 5.5, TDW set).  None of the 

PS found in haplotypes D6 and D8 were present among the BW accessions 

(haplotype D6 is considered only as part of the TDW set in this and the 

following comparison).  Unlike the A and B genome Rht-1+flank sequences, a 

polymorphism was identified (an A/G SNP at NC -479) that distinguishes the 

D genome haplotypes of the TDW set from the D genome haplotypes of the 

BW set.   

 

As described previously in the BW2 set, haplotype D6 differs from CS by only 

two PS (Table 5.8).  In contrast, haplotype D8 differs by 30 PS, which consist 

of 23 SNPs and seven indels that range in size from 1 to 3 bp.  Six of the D8 

haplotype SNPs occur in the Rht-D1 ORF and result in two predicted amino 

acid changes.  Four of the ORF SNPs are consecutive (NC 483 to 486) 

resulting in a GACG/CGTC change.  The SNPs at NC 484 to 486 result in a 

T162V change on Rht-D1 (Figure 5.3, coord. 165).  The second predicted 

amino acid change that occurs between CS and haplotype D8 involves a G/C 

SNP at NC 1865 that results in a G622A predicted amino acid change (Figure 

5.3, coord. 626).  Both of the amino acid changes occur outside of conserved 

protein domains.  The SS7010073 nucleotides and amino acids associated 

with the T162V and G622A changes on Rht-D1 match the Rht-A1 and Rht-B1 

sequences of CS (Figure 5.3), indicating that the SS7010073 Rht-D1 

sequence is more closely related to the ancestral Rht-1 sequence of wheat 

than are CS or the other BW Rht-D1 sequences. 

 

To determine the sources of the T. dicoccum and Ae. tauschii lines used to 

create the SS7010073 synthetic, the Rht-1 genes of T. dicoccum accession 
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„JIC 1070026‟ and Ae. tauschii accession „JIC 2220053‟, which are thought to 

be the SS7010073 parental lines (S. Reader, JIC), were sequenced.  For „JIC 

1070026‟, the sequence of the Rht-A1 and Rht-B1 ORFs and the flanking 500 

bp upstream and 439 bp downstream perfectly matched the colinear 

sequences in SS7010073.  Similarly, for „JIC 2220053‟, the Rht-D1 ORF and 

flanking 500 bp 5‟ and 439 bp 3‟ perfectly matched the colinear D genome 

sequence of SS7010073.  These results suggest that „JIC 1070026‟ and „JIC 

2220053‟ are likely the parents of SS7010073. 

 

5.3.5. Comparisons of the Rht-1+flank regions among the A, B, and D 

genomes of the bread wheat sets 

 

Among the three genomes of the two BW sets, the B genome contains the 

greatest level of nucleotide diversity (  = 0.86 x 10-3), followed by the A (  = 

0.49 x 10-3) and D (  = 0.24 x 10-3) genomes (Table 5.5, BW1+BW2).  

However, in terms of Watterson‟s theta, the genomes rank A > B > D.  The B 

genome contains the greatest number of haplotypes (13) relative to the A (9 

haplotypes) and D (7 haplotypes) genomes in BW1+BW2 and has the highest 

haplotype diversity (0.89) followed by the D (0.76) and A genomes (0.43).  

The low haplotype diversity among the A genome sequences results from the 

predominance of a single haplotype (A2) that accounts for 28 of the 37 (76%) 

of the Rht-A1+ flank sequences among the BW1+BW2 sets (Figure 5.4).  

Similarly, the D genome sequences belong mainly to two haplotypes (D1 and 

D3), which contain 25 of the 37 (68%) of the Rht-D1+ flank sequences.  

However, on the B genome, no haplotype accounts for more than nine (25%) 

of the Rht-B1+ flank sequences. 
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Figure 5.4.  Distribution of haplotypes among the (A) A genome, (B) B genome, and (C) 

D genome sequences of the bread wheat (BW1 and BW2) sets.  Haplotype designations 

are shown followed by the number of accessions (37 accessions per genome) containing that 

haplotype. 

 

In the bread wheat sequences, the largest number of Rht-1 PS occur on the A 

genome (25 PS; 0.61% of the sites polymorphic) followed by the B genome 

(23 PS; 0.56% of the sites polymorphic), and the D genome (7 PS; 0.17% of 

the sites polymorphic) (Figure 5.5).  The distribution of PS among the 5‟, ORF, 

and 3‟ regions varied greatly among the genomes of the bread wheats.  For 

the A genome, the frequency of PS in the 5‟ region was seven fold larger than 

in the ORF and no PS were found in the 3‟ region.  In the B genome, the 

frequency of PS was greatest in the 3‟ region.  For each genome, the 

frequency of PS in the ORF was less than that of the non-coding regions; 

however, this difference was less pronounced in the B genome.  The B 

genome contains eight of the 13 ORF PS and six of the 11 predicted amino 

acid changes among the bread wheats.  Averaged across the three genomes 
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of the BW accessions (Figure 5.5, Bread Wheat ABD), the frequency of PS in 

the Rht-1 ORF was less than half of that found in the 5‟ or 3‟ regions.  This 

trend was even more pronounced in the TDW lines, in which the frequency of 

PS in the 5‟ and 3‟ regions was 11 times and 3 times higher, respectively, 

than in the ORF (Figure 5.5; Tetraploid/Diploid wheat ABD). 

 

 

Figure 5.5.  Percentage of sites that are polymorphic in the Rht-1 open reading frame 

(ORF) and flanking 5’ and 3’ regions in the bread wheat and tetraploid/diploid 

accessions.  For the bread wheat accessions, the A, B, and D genomes are shown 

separately and then combined (ABD).  

 

5.3.6. Predicted amino acid changes in Rht-1  

 

Among the Rht-1+flank sequences of the natural hexaploids (all sequences 

from the BW sets excluding the D genome of INRA_13812), there are twelve 

ORF polymorphisms that result in ten predicted amino acid changes (Tables 

5.5 to 5.8).  Among the nine TDW sequences, there are 15 ORF 

polymorphisms and four predicted amino acid changes (Tables 5.5 to 5.8).  
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Excluding the frameshift mutation and the three PS from previously known 

semi-dwarfing alleles the non-synonymous: synonymous SNP ratios for the 

natural hexaploid wheats is 6:2 and for TDWs is 4:11 (Figure 5.6).  Using 

Fisher‟s exact test, the association between SNP type (non-synoymous 

versus synonymous) and wheat type (TDW versus BW) was found to be 

statistically significant at p = 0.04. 

 

 

Figure 5.6.  Number of Rht-1 ORF missense SNPs leading to predicted amino acid 

changes in the tetraploid/diploid (TDW) and natural hexaploids.  

 

5.3.7. Effect of the 160 bp and 197 bp Insertions on expression of Rht-B1 

 

To determine if the 160 bp and 197 bp Rht-B1 insertions affected Rht-B1 

expression, Rht-B1 and Rht-D1 transcript abundance was measured using 

qRT-PCR on three sets of lines: (1) lines with no insertion (CS and Cadenza); 

(2) lines with the 160 bp insertion (Mercia and Paragon); (3) lines with the 197 

bp insertion (Kanred, Cappelle Desprez, and SS7010073).  The SS7010073 

line also carries a 16 bp deletion relative to the other lines.  Transcript 

abundance was normalised relative to GAPDH and EF1a.   Of the five lines 

with the Rht-B1 insertions, only Kanred shows a statistically significant 

difference (p < .01) in normalised Rht-B1 transcript amount relative to CS or 

Cadenza (Figure 5.7).  Whilst normalised Kanred Rht-B1 transcript levels 

were less than 25% of those found in CS or Cadenza, the remaining four lines 

with Rht-B1 insertions have only a slight reduction in Rht-B1 transcript level 

relative to CS and Cadenza, which is not significant at p = .05.  To determine 

if the Rht-B1 insertions differentially affected the expression levels of Rht-B1 

relative to other Rht-1 homoeologues, Rht-D1 transcript levels were 

measured.  Similar to the Rht-B1 results, Kanred showed the lowest transcript 
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level after normalisation (less than 25% CS or Cadenza), which was 

significant at p < .01.  The Cappelle-Desprez Rht-D1 transcript level was also 

significantly reduced relative to CS and Cadenza (p < 0.05), but was still 64% 

and 75% of Cadenza and CS, respectively.  In Kanred, the expression levels 

of GAPDH and EF1a normalisation genes were unusually high relative to the 

other accessions, which accounts for most of the reduction in Rht-B1 and Rht-

D1 expression levels relative to the other accessions.  

 

 

Figure 5.7. Expression of Rht-B1 and Rht-D1 in accessions with the Rht-B1 160 bp 

insertion (160 bp ins.), Rht-B1 197 bp insertion (197 bp ins.), or neither insertion (No 

ins.).  Normalised data is presented as the mean of the three biological replicates and error 

bars denote the 95% confidence interval (2 × the standard error of the mean) of each sample.  

GAPDH = Glyceraldehyde 3-phosphate dehydrogenase, EF1a = Elongation factor 1α. 
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Over the combined distances of the A, B, and D genome Rht-1+flank regions 

(12,351 bp) from the Bread Wheat sets (BW1+ BW2; 37 sequences from each 

genome), the total number of polymorphic sites (PS) is 55 (42 SNP sites; 13 

indel sites) and nucleotide diversity ( ) is 0.54 × 10-3.  The frequency of Rht-1 
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SNP sites (1 SNP/294 bp) and PS (1 PS/225 bp) falls within the range 

reported in comparable bread wheat diversity studies while  values are 

relatively low.  The following values were reported in studies in which genes 

(coding and non-coding sequences) from the A, B, and D genomes were 

represented: 1 SNP/91 bp,  = 1.83 × 10-3 for the Spa1 homoeologues among 

42 accessions (Ravel et al., 2009); 1 SNP/212 bp,  = 0.9 × 10-3 for 21 genes 

among 27 accessions (Ravel et al., 2006); 1 SNP/441 bp for the GAMYB 

homoeologues from 42 accessions (Haseneyer et al., 2008); 1 SNP/540 bp of 

wheat EST sequence from 12 accessions (Somers et al., 2003).  In a study 

that examined only the A and B genomes of bread wheat, 1 PS/362 bp and  

= 0.83 × 10-3 existed among 41 accessions (Haudry et al., 2007).  The 

combined distance of the BW Rht-1 ORF homoeologous sequences (5601 

bp) contained a low frequency of polymorphic sites relative to non-coding 

regions, a pattern also seen in other bread wheat genes (Ravel et al., 2006; 

Haseneyer et al., 2008; Ravel et al., 2009). 

 

The nucleotide diversity (  = 0.41 × 10-3) of the BW Rht-1 ORF accessions is 

only a fraction of the values reported for the ORF of Rht-1 orthologues in 

maize, sorghum, or pearl millet (Pennisetum glaucum).  For maize, the nearly 

full-length D8 (an Rht-1 orthologue) sequences of 92 inbreds from three 

diverse gene pools had a  value of 1.8 × 10-3 (4 times that in wheat Rht-1) 

(Thornsberry et al., 2001).  For sorghum, the partial-length sequences of the 

Rht-1 orthologue analysed in 26 inbreds from West and Central Africa 

averaged had  = 1.63 × 10-3 (4 times that in wheat Rht-1) (Li et al., 2010).  In 

pearl millet, the partial-length sequences of the Rht-1 orthologue measured in 

20 inbreds from West and Central Africa had  = 7.04 × 10-3 (17 times more 

than wheat Rht-1) (Li et al., 2010).  The relatively low diversity observed in the 

bread wheat Rht-1 coding region relative to the Panicoideae species may be 

the result of an overall reduction in the diversity of bread wheat relative to 

these species and is in agreement with the findings of Wicker et al. (2009) 

that relative to maize, sequence diversity within wheat genes is minimal.  

Reduced Rht-1 diversity in wheat relative to maize, sorghum, and pearl millet 

may also have resulted from extremely strong selection for the semi-dwarfing 
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alleles Rht-B1b and Rht-D1b over the last 50 years that would be expected to 

increase the frequency of these two haplotypes at the expense of other 

haplotypes, although evidence of some selection at the D8 locus has also 

been reported in maize (Thornsberry et al., 2001).  Differences in 

experimental sets (e.g. unequal representations of the total diversity in each 

of the crops) between studies represents another factor that contributes to the 

interspecific differences reported here. 

 

The A genome of the BW sets contained an intermediate number of 

haplotypes (9), the lowest haplotype diversity (0.43), an intermediate 

nucleotide diversity value (  = 0.49 × 10-3), and the highest number (25) of 

polymorphic sites (Table 5.5, Rht-A1:BW1+BW2).  Although the bread wheat 

A genome sequences contain the largest number of PS among the genomes, 

80% result from only two haplotypes (A4 and A9) and 76% of all A genome 

sequences belong to a single haplotype (A2) (Figure 5.4). For the UK subset, 

all 12 Rht-A1+flank UK sequences were identical and belonged to single 

haplotype, A2 (Table 5.5).  The lack of Rht-A1+flank diversity in the UK subset 

relative to the other BW sequences is surprising because the UK bread 

wheats captured most of the Rht-B1+flank and Rht-D1+flank diversity and 

haplotypes.  In contrast, genetic diversity of the A genome of UK bread wheat 

varieties was previously found to be significantly higher than on the B and D 

genomes (White et al., 2008).  Also, while selection at Rht-B1 and Rht-D1 is 

known to have occurred, no known selection has occurred at the Rht-A1 

locus.  The lack of Rht-A1 diversity in UK wheats suggests the possibility that 

this locus may be linked to an additional trait that has been selected for in UK 

bread wheat varieties.  The A4 and A9 haplotypes, which contain 80% of the 

Rht-A1+flank PS in the BW sets differ by only three polymorphisms and are 

each present in only one accession.  Both haplotypes are closely related to 

the A11 haplotype from T. dicoccoides 57 with A9 differing by one 

polymorphism and A4 differing by four polymorphisms.  A4 is present in „Siete 

Cerros‟, a Mexican line released from the CIMMYT programme in the 1960s 

that also contains the Rht-B1b allele.  Of the Mexican varieties exported to 

developing nations, offspring of „Siete Cerros‟ (also known as „cross 8156‟ 
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and by several other designations) was the most widely planted as of 1974 

(Dalrymple, 1976) suggesting this haplotype may be fairly widespread.  

Haplotype A9 is present in INRA_23964 (Thori 212-Var.8/1), a fixed line that 

was released in Pakistan in 1934 (F. Balfourier, pers. comm.), which does not 

contain Rht-B1b or Rht-D1b (see Appendix VII).  A4 and A9 represent 

potentially useful sources of diversity in the Rht-A1 region, which could prove 

useful considering the overall lack of haplotype diversity around Rht-A1. 

 

Among the three genomes sequenced from the BW accessions, the Rht-

B1+flank sequences contained the greatest number of haplotypes (13), the 

highest haplotype diversity (0.89), the highest nucleotide diversity (  = 0.86 × 

10-3), and an intermediate number of polymorphic sites (23) (Table 5.5, Rht-

B1+flank:BW1+BW2).  Indels of 16 bp, 160 bp, and 197 bp exist among the 

BW Rht-B1+flank sequences whereas no indel greater than 3 bp exists 

among the equivalent Rht-A1+flank or Rht-D1+flank BW genome sequences.  

In addition, six of the eleven polymorphisms predicted to alter the Rht-1 amino 

acid sequence in the BW sets occur on the B genome.  In previous studies, 

higher genetic diversity on the B genome relative to the A and D wheat 

genomes was found based on nucleotide sequence (Ravel et al., 2006; 

Haseneyer et al., 2008; Li et al., 2010) and genetic marker (Huang et al., 

2002; Wang et al., 2007) comparisons.  The UK subset of 12 bread wheats 

represented much of the diversity found among the 37 bread wheats as six of 

the 13 B genome haplotypes and 19 of the 23 PS were found in the UK 

subset, including both large indels and five of the six predicted amino acid 

changes. 

 

The three large Rht-B1+flank indels (16 bp, 160bp, and 197 bp) are all located 

within 1 kb of the start codon (Table 5.7).  The furthest upstream indel (NCs -

694 to -679 relative CS) is a 16 bp deletion that occurs in only the synthetic 

line SS7010073, which has a B genome derived from T. dicoccum.  The 

largest indel is 197 bp (inserted between NC -592 and -591 of CS) and the 

insertion is present in five of the bread wheat lines (Kanred; Cappelle 

Desprez; Hobbit 'Sib'; INRA_00957 („Arawa‟); INRA_13861 („Auguste‟)) and 
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all three TDW accessions („SS7010073‟; T. diccocoides 57; T. dicoccoides 

65).  Presence of the 197 bp insertion in all of the sequenced ancestral lines 

and homologous sequence in colinear regions upstream of Rht-A1 and Rht-

D1 indicate that the intact sequence is the ancestral condition and that CS 

and the majority of the bread wheat accessions examined here have the 197 

bp sequence deleted.  Colinear regions in rice and Brachypodium do not have 

significant homology to the 197 bp sequence and no similarity to the 

sequence was found in BLAST searches of the TREP cereal repeat database 

or the NCBI nucleotide collection (nr/nt).  Of the three indels, the 160 bp indel 

occurs nearest to the Rht-B1 start codon (inserted between NCs -357 and -

356 of CS).  Eight bread wheat lines (Alchemy; April Bearded; Avalon; Mercia; 

Paragon; INRA_03970 („Jufy II‟); INRA_09077 („Non Plus Extra‟); 

INRA_13310 („Fruh Weizen‟)) and no TDW lines contain the insertion.  There 

is no significant homology to the 160 bp insertion on the Rht-A1- or Rht-D1- 

containing BAC clones indicating that the 160 bp indel is an insertion relative 

to the ancestral condition.  No similarity to the 160 bp insertion was found in 

BLAST searches of the TREP cereal repeat database or the NCBI nucleotide 

collection (nr/nt).  Interestingly, the 160 bp insertion falls in the middle of the 

only sequence 5‟ of Rht-1 that is highly conserved among the three CS Rht-1 

homoeologues, rice and Brachypodium (Table 4.4, BLAST hit 1), suggesting 

the possibility that a cis-regulatory region may be disrupted by the insertion.   

 

The Rht-B1 indels did not clearly affect Rht-B1 transcript levels using stem 

and leaf tissue collected from 5-day old seedlings (Figure 5.7).  A decrease in 

normalised expression levels was seen in accessions with the 16 bp, 160 bp, 

or 197 bp insertions relative to lines with the insertion; however, except for 

Kanred (197 bp insertion), these reductions were slight and not below the 

significance threshold of p = 0.05.  In Kanred, normalised Rht-B1 transcript 

levels were reduced 75%, however Kanred had unusually high transcript 

levels of the two normalisation genes (GAPDH and EF1a) while absolute Rht-

B1 and Rht-D1 expression levels were only slightly reduced relative to the 

other lines.  Hence, further experiments are required to confirm this reduction.  

While no clear effect of the Rht-B1 insertion alleles on Rht-B1 transcript level 

was evident in this experiment, this could relate to the age and tissue type 
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assayed.  Rht-1 expression patterns in wheat have previously been shown to 

differ based on tissue type and developmental stage (R. Saville, 2011) and 

expression of SLN1 and SLR1 (the Rht-1 orthologues in barley and rice, 

respectively) were also found to differ based on tissue type (Chandler et al., 

2002; Kaneko et al., 2003).  To more fully determine whether the Rht-B1 

upstream indels affect expression of this gene it will be necessary to analyze 

more tissues and to sample at multiple developmental stages.  The effect of 

the Rht-B1 indels on plant height is not easily determined with the limited set 

of data available and this will be investigated further in a larger accession set 

in Chapter 6. 

 

For the Rht-1+flank region of the bread wheat varieties, the D genome 

contained the least genetic variation, having the fewest haplotypes (7), an 

intermediate haplotype diversity value (0.76), the lowest nucleotide diversity 

(  = 0.24 × 10-3), and the lowest number of polymorphic sites (7) (Table 5.5, 

Rht-D1:BW1+BW2).  There were no large indels in the bread wheat 

sequences and no amino acid changes outside of the previously described 

Rht-D1b causative SNP.  No haplotypes on the D genome differed by more 

than four polymorphisms and two haplotypes represent 68% of the 

sequences.  Other studies of wheat have also found the D genome to be the 

least diverse based on nucleotide sequence (Chao et al., 2009) or marker 

variation (Bryan et al., 1997; Huang et al., 2002; Wang et al., 2007; White et 

al., 2008).  In the current study, reduced diversity in the D genome of the BW 

sets may be artificially enhanced by the inclusion of 11 lines containing Rht-

D1b whereas only six lines with Rht-B1b were included in the B genome set.  

The 12 UK bread wheats represented most of the Rht-D1+flank diversity 

found among the bread wheats, containing five of the six haplotypes and four 

of the five PS (excluding the INRA_13812 synthetic accession, which has a D 

genome derived from Ae. tauschii).  The paucity of polymorphisms in the Rht-

D1+flank area and the lack of predicted amino acid changes in the bread 

wheat D genomes relative to the tetraploid/diploid wheats suggest that 

ancestral lines will be important sources of diversity in this region. 
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The nine Rht-1+flank sequences derived from the TDW accessions 

represented haplotypes not present in the BW sets (Tables 5.6, 5.7, and 5.8).  

Although the TDW set consisted of only nine sequences (D genome 

sequence of INRA_13812 synthetic included), it contained a combined total of 

126 PS (2.4 times more than found among the 110 bread wheat sequences) 

and an average of 1 PS/98 bp.  Among the four A genome TDW sequences, 

there were 64 PS in the Rht+1 flank region (2.5 times more than among the 

37 bread wheat A genomes) and 49 were found only in the TDW accessions.  

Relative to the CS Rht-A1+flank sequence, T. urartu differed by 52 

polymorphisms while the T. dicoccoides lines differed by 16 to 19 

polymorphisms, which agrees with prior reports that the A genome of bread 

wheat is more closely related to T. dicoccoides than T. urartu (Dvorak and 

Akhunov, 2005).  Excluding the T. urartu sequence, the Rht-A1+flank 

nucleotide diversity among the remaining emmer wheats (  = 3.08 × 10-3) was 

still over six times greater than among the A genome sequences of the BW 

sets.  The Rht-A1+flank haplotypes of the TDW lines deviated from the bread 

wheat haplotypes (excluding A4 and A9, described above) by seven or more 

polymorphisms. The increased diversity of the three emmer sequences 

compared to the BW set was seen also in the Rht-B1+flank sequences, with 

nucleotide diversity (  = 4.17 × 10-3) of the B genomes of the T. dicoccoides 

and T. dicoccum accessions being over four times greater than among BW B 

genome sequences.  The most similar Rht-B1+flank sequences between the 

TDW and BW sets differed by 11 polymorphisms.  At the Rht-1+flank region 

over both the A and the B genomes, 78% of the nucleotide diversity of the T. 

dicoccoides lines (  = 3.20 × 10-3) is absent in the bread wheat lines (  = 0.7 

× 10-3), which is similar to the 69% loss found between T. dicoccoides and the 

A and B genomes of bread wheat (Haudry et al., 2007).  The two D genome 

TDW sequences are from SS7010073 and INRA_13812 (W7984), which are 

synthetics that both have D genomes derived from Ae. tauschii.  Between 

these two sequences there are 30 PS (over seven times more than found 

among the BW D genome sequences) and none of the PS are present among 

any other D genome sequences.  This reduced diversity in the D genome of 

bread wheat relative to Ae. tauschii is in agreement with the work of Caldwell 
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et al. (2004) who reported a 30-fold reduction in genetic diversity of bread 

wheat relative to Ae. tauschii based upon analysis of the diversity of granule-

bound starch synthase (GBSS).  The Rht-D1+flank sequences of 

INRA_13812 and CS differ by only two polymorphisms whereas the Rht-

D1+flank regions of SS7010073 and CS differ by 30 polymorphisms.  A high 

degree of similarity between the D genomes of INRA_13812 and bread wheat 

was also reported for GAMYB where two polymorphisms were present 

(Haseneyer et al., 2008) and for nine of ten D-genome derived genes from 

bread wheat that differed from the INRA_13812 by one or no polymorphisms 

(Ravel et al., 2006). 

 

A total of 13 polymorphisms (12 SNPs and a 1 bp indel) that occur in the Rht-

1 coding region resulted in amino acid changes.  Three of the SNPs occur in 

the DELLA motif and result in a stop codon (nonsense mutation) and these 

are associated with the Rht-B1b, Rht-D1b, and Rht-B1e semi-dwarfing alleles.  

No sequence variation occurred among the Rht-B1b haplotypes or among the 

Rht-D1b haplotypes, most likely due to the recent introduction (beginning in 

1960) of both alleles into Western wheat varieties from a single source, Norin 

10 (Gale and Youssefian, 1985; Dalrymple, 1986).  The Rht-B1b and Rht-D1b 

haplotypes each differ from CS by only the causative SNP, indicating that the 

semi-dwarf mutations may have arisen in a variety closely related to CS.  

Similar geographic origins of CS (a Chinese landrace) and Norin 10 (a 

Japanese line that may have been derived from Korea (Cho et al., 1980)) 

support this hypothesis.  The third nonsense mutation occurs on the B 

genome of the accession Krasnodari 1, which contains the Rht-B1e semi-

dwarfing allele (Worland, 1986).  The presence of the stop codon at Rht-1 

amino acid coordinate 61 (Figure 5.3) in the DELLA domain just three 

residues upstream of the Rht-B1b stop codon and two residues upstream of 

the respective position of the Rht-D1b stop codon on the D genome indicates 

that this polymorphism likely causes or contributes to the semi-dwarf stature 

of Rht-B1e.  The 1 bp insertion leading to a frameshift occurs on the B 

genome of INRA_23995 at Rht-1 amino acid coordinate 333 (Figure 5.3), 

which is in the conserved VHIID protein domain.  INRA_23995 is a Russian 

landrace that has a height near the median of the BW2 accessions that do not 
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contain the Rht-B1b or Rht-D1b semi-dwarf alleles (Table 5.9).  The nearest 

stop codon following the frameshift occurs at coordinates 1899-1901, resulting 

in a predicted protein length of 633 amino acids.  The VHIID domain is part of 

the C-terminus, which acts as the repression domain in SLR1 in barley (Itoh et 

al., 2002).  A frameshift mutation in this location would be expected to lead to 

a LoF, GA-constitutive growth response phenotype of elongated and slender 

stems and leaves (Ikeda et al., 2001; Gubler et al., 2002), although mutations 

in the C-terminus that reduce GA sensitivity and produce a dwarf phenotype 

have been reported in Brassica rapa (Muangprom et al., 2005) and maize 

(Lawit et al., 2010).  However, due to the buffering effects of Rht-A1 and Rht-

D1, only a dominant or semi-dominant mutation is likely to produce an 

observable phenotype.  However, the Rht-B1 LoF mutation in combination 

with the Rht-D1b GAI allele could reduce the buffering capacity at this locus (1 

GAI DELLA protein: 1 GA sensitive DELLA protein instead of 1 GAI: 2 GA 

sensitive), which may result in a stronger dwarfing phenotype. 

 

The remaining nine PS in the Rht-1 ORFs are missense changes, with only 

one of these (Figure 5.3 coord. 338 (G to S) occurring in a conserved domain.  

G338S occurs in the VHIID domain and occurs in the Rht-A1 ORF of 

INRA_13471 and in the Rht-D1 ORF of INRA_13812.  This amino acid is 

otherwise conserved in the CS wheat homoeologues, and in the 

Brachypodium, barley, rice, maize, and sorghum Rht-1 orthologues (Figure 

3.3, coord. 357) and the Arabidopsis GAI orthologue (Tian et al., 2004), 

suggesting this may be an important amino acid.  The remaining missense 

polymorphisms occur outside of the conserved domains, although three of 

these (Figure 5.3 coords. 194 (S to T), 209 (E to G), and 483 (S to Y)) are 

conserved in the Rht-1 orthologues found in Brachypodium, barley, rice, 

maize, and sorghum indicating these changes could be significant.  Overall, 

six of the missense PS occur in the natural hexaploids and four in the TDW 

lines, which is surprising considering that among the sequenced natural 

hexaploid ORFs, eight SNPs were identified whereas 15 SNPs were found in 

the TDW ORFs.  This is the result of a significantly higher (p = .04) proportion 

of non-synonymous to synonymous SNPs in the natural hexaploid ORFs 

relative to the TDW ORFs (Figure 5.6).  In rice, a nearly two-fold increase in 
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the ratio of non-synonymous to synonymous substitutions was found among 

domesticated rice cultivars than among wild relatives with 25% of these found 

to be deleterious and the result of genetic „hitchhiking‟ (Lu et al., 2006). 

 

In summary, diversity and haplotypes in the Rht-1 region was higher on the B 

genome than on the A and D genomes.  Knowledge of alternative Rht-1 

haplotypes is important when searching for novel sources of variation in this 

region.  This is directly applicable at the Rht-D1 locus where Rht-D1b is 

thought to be linked to increased FHB susceptibility (Srinivasachary et al., 

2009).  Also, on the A genome, the presence of only a single haplotype in UK 

bread wheats could be problematic if this haplotype is associated with 

detrimental agronomic issues.  For future wheat breeding programmes, a pre-

existing knowledge of genetic variation around the Rht-1 loci will aid in 

screening for useful alleles.  The novel haplotypes and polymorphisms 

discovered here require further characterisation to determine their usefulness 

in wheat breeding.  Characterisation of the two largest indels discovered here, 

the Rht-B1 160 bp and 197 bp insertions was carried out here by measuring 

Rht-B1 transcript levels and these alleles will be further characterised based 

on plant height, flowering date, and GA sensitivity in Chapter 6. 
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6. RHT-1 AND PPD-D1 ASSOCIATIONS WITH HEIGHT, GA SENSITIVITY, 

AND HEADING DATE IN A WORLDWIDE BREAD WHEAT COLLECTION. 

 

6.1. INTRODUCTION 

 

Alleles at the Rht-B1, Rht-D1, and Ppd-D1 loci have a major influence on the 

adaptability of wheat to climate and modern agricultural practices.  It is well 

established that the homoeologous group IV Rht-B1b and Rht-D1b semi-

dwarf alleles reduce plant height (Gale and Youssefian, 1985; Flintham et al., 

1997).  Plants carrying Rht-B1b, Rht-D1b, or additional alleles at these loci 

that reduce plant height (summarised in Table 1.2) have reduced GA 

sensitivity, which is associated with suppressed plant growth.  The GA 

insensitive (GAI) nature of plants containing a dwarf allele relative to the GA 

sensitive (GAS) wild type alleles was first determined by Allan et al. (1959).  

This finding led to the development of GA sensitivity tests to identify GAI 

alleles based on stem elongation response to GA (Gale and Gregory, 1977). 

GA insensitivity and semi-dwarfism in plants containing Rht-B1b and Rht-D1b 

are caused by SNPs that lead to premature stop codons in the DELLA 

domain, which is involved in GA signalling (Peng et al., 1999).  Based on 

these SNPs, perfect PCR primers were created to discriminate between 

accessions carrying Rht-B1a or Rht-B1b and between accessions carrying 

Rht-D1a or Rht-D1b (Ellis et al., 2002). 

 

Ppd-D1 is mapped to the short arm of chromosome 2D, where the 

photoperiod insensitive Ppd-D1a allele and the photoperiod sensitive allele 

Ppd-D1b reside (Worland et al., 1988).  The Ppd-D1a allele, which contains a 

2,089 bp deletion in the promoter region, is associated with early flowering 

under both short and long days, with the strongest effects occurring under 

short days (Beales et al., 2007).  Worland et al. (1988) reported that Ppd-D1a 

varieties had ear emergence accelerated by six to eight days when October-

sown in the UK (Norwich).  Perfect PCR markers have been developed to 

detect the presence/absence of the 2,089 bp deletion (Beales et al., 2007).  

The Ppd-D1a allele is also associated with a reduction in plant height, but the 

effect has been difficult to estimate because in most varieties the allele is 
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present with Rht8, a GA sensitive semi-dwarf allele.  The Ppd-D1 and Rht8 

loci are linked at estimated genetic distances of 20.9 cM by Worland et al., 

(1998) and 21.7 cM by Gasperini (2010).  Ppd-D1a and Rht8 were introduced 

together into European wheats through the Japanese variety Akakomugi in 

the early 20th century (Giorgi et al., 1982; Worland, 1999).  Worland et al. 

(1998) reported an 18 cm reduction in substitution lines containing Rht8+Ppd-

D1a with 10 cm of the height reduction contributed by Ppd-D1a and 8 cm by 

Rht8.  More recently, Gasperini (2010) genotyped the same substitution line 

population used by Worland et al. (1998) using the Ppd-D1a perfect markers 

to differentiate the effects of Rht8 and Ppd-D1a on height.  The author 

reported that the presence of Rht8 resulted in a 14 cm (13%) height reduction 

while Ppd-D1a only accounted for a 4 cm (3%) height reduction. 

 

In Chapter 5 of this thesis, sequencing of the Rht-B1 region in 37 diverse 

wheat accessions led to the discovery of varieties that contained insertions 

within 600 bp of the start codon.  One of the insertions was 160 bp in size, 

occurring 356 bp upstream of the Rht-B1 ORF (CS reference sequence) and 

was present in eight varieties.  The second insertion was 197 bp in size, 

occurred 591 bp upstream of the ORF and was found in six accessions 

including all three of the tetraploid wheats.  The locations of the insertions just 

upstream of Rht-B1 suggest that they could be within the promoter region.  

The 160 bp insertion occurs in the middle of a 120 bp stretch of sequence that 

is highly conserved in all three wheat Rht-1 homoeologues and in Rht-1 

orthologues in rice and Brachypodium (section 3.3.2.2., Table 3.5) and the 

insertion could thus affect regulation of Rht-B1 expression, although this could 

not be confirmed by analysis of one-week old seedlings (section 5.3.7). The 

effect of these alleles on plant phenotype, however, is yet to be investigated. 

 

The INRA core collection of 372 bread wheat accessions (INRA BWCC) is a 

subset that contains an estimated 98% of the genetic diversity of a larger set 

of 3,942 accessions that originated from 45 geographical areas (Balfourier et 

al., 2007).  The INRA BWCC has been genotyped with genome-wide sets of 

DArT (578 polymorphic) and SSR markers (approximately 100 polymorphic) 

allowing population structure to be estimated (F. Balfourier, INRA, pers. 
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comm.).  In addition, plant heights and ear emergence of the full set was 

recorded in Clermont-Ferrand, France (Bordes et al., 2008).  The collection 

represents a valuable resource for evaluating agronomic characteristics and 

allelic frequencies and for performing association analyses. 

 

The objectives of this Chapter are to (1) characterise the INRA BWCC for 

plant height, GA sensitivity, and heading date, (2) determine the prevalences 

of Rht-B1b, Rht-D1b, Ppd-D1a, and the Rht-B1 160 bp and 197 bp insertions 

in the collection, (3) determine associations that exist between phenotype and 

genotype, and (4) search for novel GAI alleles in the collection. 

 

6.2. MATERIALS AND METHODS 

 

6.2.1. Germplasm 

 

Seed of 368 bread wheat varieties from the INRA BWCC were provided by F. 

Balfourier, INRA, Clermont-Ferrand, France.  This represents the entire set of 

bread wheat lines in the INRA 372CC collection (four of the original 

accessions were later found to not be hexaploid (F. Balfourier, pers. comm.)).  

Several control lines were utilised in the experiments including Rht-1 NILs in 

the backgrounds of Cappelle Desprez (CD), Mercia, April Bearded (AB), and 

Bersee, which were provided by M. Ambrose (JIC).  The NILs with 

introgressed semi-dwarf alleles will be given the nomenclature „Variety 

name_Introgressed allele‟ in the text.   The controls also include the Ppd-D1a 

substitution lines (SLs) in the backgrounds of Mercia and CS, which were 

provided by D. Laurie (JIC).  The SLs were developed by C. Law and T. 

Worland at the JIC and contain a whole 2D chromosome substitution from 

Ciano 67 (D. Laurie, pers. comm.) and are referred to as „Mercia_C67 2D‟ and 

„CS_C67 2D‟ in the text.  Additional control lines included Norin 10 (Rht-

B1b+Rht-D1b; USDA-ARS PI156641) and Xi19 (Rht-B1a+Rht-D1b) and 

Robigus (Rht-B1b+Rht-D1a), obtained from the NIAB DUS collection. 
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6.2.2. DNA extraction and genotyping 

 

All DNA extractions were performed as described in section 4.2.2 using the 

CTAB method.  For the INRA BWCC lines, DNA of fixed lines was extracted 

from bulks of four plants and DNA of landraces was extracted from individual 

plants.  Both replicates of the INRA BWCC fixed lines and four plants of each 

landrace were genotyped for Rht-B1a/b, Rht-D1a/b, Ppd-D1a/b, and the Rht-

B1 160 bp and 197 bp insertions.  Each control replicate (four plants) was 

bulked and genotyped for Rht-B1a/b, Rht-D1a/b, and Ppd-D1a/b.   

 

The Rht-B1a/b and Rht-D1a/b PCR assays were performed as described in 

section 5.2.3.  The Ppd-D1a/b assay is slightly modified from Beales et al. 

(2007).  The multiplex PCR reaction was performed in a 10 µl volume 

containing 1 × Green GoTaq Reaction Buffer (Promega), 0.2 mM dNTPs, 1.5 

mM MgCl2, 0.5 µM each of primer 414F-F10 and primers 414F-R4 and DgR3 

(see Appendix I for sequences), 0.125 µl Taq Polymerase, and 2 ng of DNA 

template.  The PCR profile consisted of 95°C for 2 min, followed by 40 cycles 

of [95°C for 20 s; 55°C for 20 s, and 72°C for 40 s], and 5 min at 72°C.  

Amplified products were separated in a 1.5% agarose gel in 1 × TBE buffer 

and visualised under UV light with ethidium bromide.  A 297 bp product is 

amplified in accessions with Ppd-D1a and a 414 bp product is amplified in 

accessions with Ppd-D1b. 

 

A multiplex PCR assay was developed to detect the Rht-B1 160 bp and 197 

bp insertions.  PCR reactions utilised a 10 µl reaction mix that contained 1 × 

Green GoTaq Reaction Buffer (Promega), 3% glycerol, 0.2 mM dNTPs, 1.5 

mM MgCl2, 1 µM primer Rht-F11, 0.33 µM primers 160-R1, 197-R1 and Rht-

ABD-R9 (sequences shown in Appendix I), 0.125 µl Taq Polymerase, and 2 

ng of DNA template.  The PCR profile consisted of 95°C for 5 min, followed by 

40 cycles of [95°C for 30 s; 60°C for 30 s, and 72°C for 1 min], and 5 min at 

72°C. Amplified products were separated in a 1.5% agarose gel in 1 × TBE 

buffer and visualised under UV light with ethidium bromide.  Primers Rht-F11 

and Rht-ABD-R9 flank the two insertions.  In lines without an insertion these 

primers amplify a 1050 bp product.  Primer 160-R1 lies within the 160 bp 
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insertion and is designed to anneal only in lines with this insertion, thereby 

amplifying a 449 bp product.  Primer 197-R1 lies within the 197 bp insertion 

and is designed to amplify a 361 bp product only in lines with this insertion.  In 

lines with an insertion, the flanking Rht-F11/Rht-ABD-R9 primer pair could 

theoretically amplify products of 1210 bp (160 bp assay) or 1247 bp (197 bp 

assay), but under the stated amplification conditions this does not occur. 

 

6.2.3. INRA BWCC outdoor experiment 

 

The INRA BWCC was grown outdoors in 4l pots at NIAB, Cambridge, UK, and 

plants were sown 25 November 2008 or 18 February 2009.  The November 

sowing consisted primarily of winter wheat types and the February sowing 

consisted primarily of spring wheat types.  In each sowing, the experimental 

unit was a 4l pot containing four plants of a variety grown in coarse compost 

mixed with 1 tsp of 11-11-18 (N%-P%-K%) controlled-release fertiliser. 

 

The November sowing contained 249 INRA BWCC accessions representing 

235 winter, 8 facultative, and 6 spring growth habit types at two replicates 

each (inclusion of accessions with the spring growth habits was accidental).  

As controls, 22 winter/facultative lines were grown in the experiment, although 

only 15 were analyzed (see Table 6.1, section 6.3.1) because seven lines 

were discovered to be segregating at the Rht-B1 or Rht-D1 locus following 

sowing.  Seeds were planted in compost in 96-well trays in the glasshouse 

under natural lighting (21°C, 16 hr period that included all daylight; 17°C, 8 hr) 

to promote uniform germination.  Following emergence (5 December) 

seedlings were exposed to ambient air temperature and natural lighting in the 

glasshouse before healthy seedlings were transplanted to 4l pots (6 Jan. 

2009).  On 21 January, the pots were moved outside to “plunge beds” and 

positioned according to the experimental design (Figures 6.1 and 6.2).  The 

experimental design of the November sowing was an incomplete block design 

that consisted of two main blocks with 3 row blocks (plunge beds) per main 

block and 105 pots per row block (630 experimental units in total).  The 22 

controls were represented once in each plunge bed and the 249 INRA BWCC 

varieties were represented once in each main block.  Experimental units were 
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randomised to achieve maximum efficiency using: 

http://biometrics.hri.ac.uk/DesignOfExperiments/ 

UnstructuredTreatmentDesigns.html 

 

 

Figure 6.1.  Experimental layout of the November 2008 and February 2009 sowings of 

the INRA BWCC.  Plants were grown outside in 4l pots placed in plunge beds.  Blue 

rectangles indicate plunge beds from the November sowing and red rectangles represent 

plunge beds from the February sowing.  In the February sowing, one plunge bed was split 

between the two main blocks.  All plunge beds were capable of holding 161 4l pots (7 pots 

wide by 23 pots long).  In brown, are features that shaded a portion of the plunge beds for 

periods of the day with approximate height in feet („) shown in parentheses.  Spatial location 

and dimensions are show in approximate scale except glasshouse width and length, which 

are not to scale. 
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Figure 6.2. The INRA BWCC plants sown November 2008. The image was taken at 

midday, 16 April 2009. The six plunge beds of the November 2008 sowing are shown in the 

middle of the picture.  Pots in the bottom right corner are part of the February 2009 sowing. 

 

The February sowing consisted of 119 accessions (117 spring and two 

facultative types) at two replicates each and 15 spring/facultative wheat 

control lines at three replicates each, although only 13 controls were analyzed 

(Table 6.1) because two lines were discovered to be segregating at Rht-B1 or 

Rht-D1 following sowing.  Seeds were planted directly into pots and 

immediately positioned in the plunge beds according to the experimental 

design (Figures 6.1 and 6.3).  The experimental design for the February 

sowing consisted of two main blocks, each consisting of 1.5 plunge beds (one 

plunge bed was split between two main blocks).  The 15 control lines were 

represented once in each plunge bed and the 119 INRA BWCC varieties were 

represented once in each main block (238 experimental units total).  Controls 

and INRA BWCC varieties were assigned a random location within plunge 

beds and main plots using the Microsoft Excel random number function. 
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Figure 6.3.  The INRA BWCC plants sown February 2009. The image was taken late 

afternoon 1 April 2009.  The three plunge beds that composed the February 2009 sowing are 

in the foreground.  Plunge beds from the November 2008 sowing are in the background. 

 

For both sowings, 4l pots of Xi19 wheat (4 plants per pot) were placed along 

the perimeters of the plunge beds to reduce edge effects.  For all accessions, 

plant roots were allowed to grow through holes in the pot bottoms to obtain 

moisture and additional nutrients from the plunge beds, which were filled with 

peat and irrigated as needed.  To prevent lodging of plants, bamboo poles 

were erected and baling twine strung between poles to create a grid that kept 

plants erect.  To control powdery mildew, fungicides were applied as follows: 

3 April 2009 (Fortress at 1 ml l-1, November sowing); 15 April 2009 (Flexity at 

1 ml l-1, November sowing), 22 May 2009 (Fortress at 1 ml l-1, both sowings); 

6 June 2009 (Flexity at 1 ml l-1; both sowings).  Fungicides were selected that 

did not contain known growth regulators.  Both sowings were sprayed to 

control aphids as follows: 29 May (Decis at 0.7 ml l-1) and 3 July (Gazelle at 

0.5 g l-1).  Both sowings were covered with netting in July to prevent bird 

damage.  Plants were harvested and threshed in August 2009.  Heading date 

was recorded as the number of days from the 1st of January until the 

inflorescence of the primary tiller from each pot was 50% emerged from the 
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flag leaf.  Plant height was recorded as the distance from the soil surface to 

the tip of the tallest tiller in each pot (excluding awns) at harvest.  Obvious off-

types based on plant appearance or flowering date were excluded from height 

and flowering date measurements. 

 

6.2.4. GA sensitivity experiments 

 

Three experiments were conducted in the glasshouses at the JIC, Norwich, 

UK to examine the GA responsiveness of the INRA BWCC lines.  The first 

experiment contained all 368 INRA BWCC varieties, the second experiment 

contained 161 INRA BWCC varieties and the third contained 19 INRA BWCC 

varieties.  Seed used in the GA sensitivity experiments was collected from 

bagged ears of plants grown in the INRA BWCC outdoor experiment.  Seed 

sourced from plants homozygous at the Rht-B1 and Rht-D1 loci (based on the 

Rht-B1a/b and Rht-D1a/b PCR assays) was available for all but three 

accessions.  Each GA sensitivity experiment also contained the following 

control lines: AB, AB_Rht-D1b, AB_Rht-B1c, Bersee, Bersee_Rht-B1b, 

Mercia, and Mercia_Rht-D1b.  The control lines were all sourced from plants 

homozygous at the Rht-B1 and Rht-D1 loci, seeds were collected from 

bagged heads to ensure foreign pollen was excluded. 

 

The GA responsiveness tests were based on those described by Gale and 

Gregory (1977), but along with a GA+ treatment also consisted of a GA- 

treatment.  The GA+ treatment contained 10 ppm GA3 (Sigma product 

number G-7645) dissolved in 0.1% ethanol.  The GA- treatment consisted 

only of 0.1% ethanol.  GA treatments were assigned to whole trays and trays 

were watered with a GA+ or GA- treatment as plants needed moisture.  Each 

tray contained 60 wells filled with a peat/sand mixture that was wetted with the 

GA+ or GA- solution prior to transplanting of seedlings (one seedling per well) 

to begin the experiments.  The experimental unit consisted of an individual 

seedling.  Trays were placed in the glasshouse under artificial lighting (300 to 

400 µmol m-2 s-1) with day/night temperatures of 20°C/15°C, 16 h daylength. 
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In GA sensitivity experiment 1 (GA expt. 1), seeds were stratified at 4°C on 

wetted filter paper for two days beginning 3 October 2009 before transplanting 

to 60-well trays to begin the experiment.  GA expt. 1 consisted of three main 

blocks with seven trays designated as GA+ treatment and seven trays 

designated as GA- treatment per main block (42 trays total).  The locations of 

GA+ and GA- trays were randomly assigned within main blocks.  Each INRA 

BWCC accession was represented in each main block treatment (in total, 

three GA+ plants and three GA- plants per INRA BWCC accession).  Each 

control was represented once per tray (42 GA+ and 42 GA- plants per 

control).  On 21 October, plants were uprooted and the length from the seed-

to-first-ligule (STFL) was recorded as shown in Figure 6.4. 

 

 

Figure 6.4.  Seed-to-first-ligule (STFL) length measured in the GA sensitivity 

experiments.  The measured length (shown by arrows) extended from the seed (bottom 

white line) to the first ligule (top white line). 

 

In GA sensitivity experiment 2 (GA expt. 2), seeds were stratified for three 

days at 4°C on wetted filter paper beginning 3 December 2009 and 

transferred to room temperature for three days before transplanting to 60-well 

trays.  GA expt. 2 consisted of three main blocks with three GA+ trays and 
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three GA- trays per main block (18 trays total).  GA+ and GA- trays were 

randomly assigned a location within main blocks.  Each INRA BWCC 

accession was represented once per main block (three GA+ and three GA- 

plants per INRA BWCC accession) and each control was represented once 

per tray (nine GA+ and nine GA- plants per control).  STFL lengths were 

recorded on 21 December. 

 

In GA sensitivity experiment 3 (GA expt. 3), seeds were stratified at 4°C on 

wetted filter paper beginning 29 April 2010 and moved to room temperature 

on 2 May where they remained for four days but for a single day (4 May) 

when they were returned to 4°C to limit growth prior to transplanting.  GA 

expt. 3 consisted of six main blocks for the GA+ and GA- treatments with a 

main block consisting of 1/3 of a tray (four trays total were used).  Each INRA 

BWCC accession was represented once in each main block (six GA+ and six 

GA- plants per INRA BWCC accession) and each control was represented 

once on each tray (two GA+ and two GA- plants per control).  However, due 

to tray dimensions or poor seed germination, the following INRA BWCC 

accessions were not represented in all main blocks: INRA_03752 (two GA+ 

and two GA- plants), INRA_00347 and INRA_01065 (four GA+ and four GA- 

plants each).  STFL lengths were recorded on 19 May. 

 

6.2.5. Statistical analyses 

 

In GA expt. 1 and 2, the GA sensitivity classification of plants was determined 

using a mixed model (MM) and a least significant difference (LSD).  In GA 

expt. 3, only the LSD was used.  In the MM, a mixture model consisting of two 

independent normal distributions with different means and variances (George 

et al., 2000) was fitted with a probability (α) of an observation belonging to 

one distribution and a probability (1- α) of belonging to a second distribution.  

An observation consisted of the mean STFL length of an accession in the 

GA+ treatment in an experiment.  All five parameters (μ1, σ1
2, μ2, σ2

2, and α) 

were fitted using maximum log likelihood (MLL) in Microsoft Excel using the 

Solver function.  Posterior probabilities of any individual observation belonging 

to either of the two distributions were calculated from the probability density 
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functions of each using the estimated means and variances as: p(dist 1) / 

(p(dist 1) + p(dist 2)) and p(dist 2) / (p(dist 1) + p(dist 2)).  A threshold 

posterior probability greater than or equal to 0.95 was used to assign 

individual observations to one or the other of the two GA classes (GAI or 

GAS).  Individuals with posterior probabilities < 0.95 for either of the two 

distributions were classified as having an intermediate (INT) GA response.   

 

In the LSD test, a t-value was calculated for each accession by rearranging 

the LSD formula to solve for t: t = LSD/SED (Snedecor and Cochran, 1967), 

where SED (standard error of the difference between two means) = ((s2/na) + 

(s2/nb) )
1/2 where s2 = the estimated variance in a GA experiment;  na = the 

number of GA+ plants of an accession; nb = the number of GA- plants of an 

accession.  GA experimental variances and SEDs were determined using a 

REML (Restricted Maximum Likelihood) mixed model in Genstat, 12th edition 

(VSN International) with GA treatment, variety, and the interaction as fixed 

effects and replicate as a random effect.  The GA treatment difference of an 

accession (STFL length in the GA+ treatment minus STFL length in the GA- 

treatment) was substituted for LSD in the formula and t values calculated.  

The probability that a t-value fit a normal two-tailed t distribution with null 

hypothesis of treatment difference = 0 was calculated using the TDIST 

function in Excel.  For GA expts. 1 and 2, 100 degrees of freedom (d.f.) were 

used for the t-test and for GA expt. 3, 26 d.f. were used.  When the probability 

of the null hypothesis being true was ≤ 0.05, accessions were classified as 

GA sensitive and when the probability was > 0.05, accessions were classified 

as having no significant treatment difference (NSTD). 

 

For plant height, heading date, and GA treatment difference (GA expts. 1, 2, 

and 3), the effect of alleles at the Rht-B1, Rht-D1, and Ppd-D1 loci were 

estimated using these loci and all possible interactions as fixed effects and 

variety as a random effect in a REML mixed model (referred hereafter as Rht-

B1*Rht-D1*Ppd-D1 REML).  Only accessions homozygous at these three loci 

(352 accessions) were included in the analysis.  To separate mean 

differences among Rht-B1 alleles, Rht-B1 REML analyses were performed for 

each phenotype using the following fixed terms in each model: (1) Rht-B1, (2) 
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the locus (Rht-D1 or Ppd-D1) that accounted for most of the remaining 

variation in the Rht-B1*Rht-D1*Ppd-D1 REML, and (3) the interaction of (1) 

and (2).  To separate mean differences among Ppd-D1 alleles and among 

Rht-B1+Rht-D1 allelic combinations, Ppd-D1*RHT REML analyses were 

performed for each phenotype.  Three fixed terms were used in each model: 

(1) Ppd-D1, (2) RHT, which was composed of the Rht-B1a+Rht-D1a, Rht-

B1a+Rht-D1b, Rht-B1b+Rht-D1a, and Rht-B1b+Rht-D1b genotypes, and (3) 

the interaction of (1) and (2).  For the Rht-B1 REML and Ppd-D1*RHT REML 

analyses, the locus with the greatest effect in the Rht-B1*Rht-D1*Ppd-D1 

REML was placed first in the model and variety served as the random term.  

The LSD threshold for main effect means was 0.05 and no attempt was made 

to separate means of interactions.  All of the above statistical analyses were 

carried out with the guidance of Ian Mackay, Statistical Geneticist, NIAB. 

 

Genotype/phenotype association analysis was also performed using mean 

plant height, mean heading date, and mean GA treatment differences (data 

from expts. 1 and 2 only) along with presence/absence scores for the 160 bp 

insertion, the 197 bp insertion, Rht-B1b, Rht-D1b, and Ppd-D1a.  Associations 

were considered significant at a threshold of p < 0.001.  To control for 

population structure and kinship among varieties, a mixed model was fitted in 

which relationships among varieties were accounted for by the inclusion of a 

kinship matrix estimated from a genome-wide set of DArT and SSR markers 

(Yu et al., 2006).  Kinship was estimated using a simple matching coefficient.  

As this is proprietary information that was not made available to this project, 

these calculations were carried out by F. Balfourier, INRA.  This association 

analysis, which controls for population structure is termed AA-PS in the text. 

 

6.3. RESULTS 

 

6.3.1. Rht-1 and Ppd-D1 genotyping of control lines   

 

All controls used in the INRA BWCC outdoor experiment were genotyped for 

Rht-B1a/b, Rht-D1a/b, and Ppd-D1a/b to confirm the presence of these alleles 

(Table 6.1).  Nine accessions that were segregating at one of these loci or 
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that did not contain the expected allele were excluded from the phenotypic 

analysis.  Controls containing Rht-B1 and Rht-D1 dwarfing alleles other than 

Rht-B1b or Rht-D1b could not be clearly identified using the Rht-B1a/b and 

Rht-D1a/b PCR assays.  At the Rht-B1 locus, no product was obtained using 

the Rht-B1a/b primer pairs when gDNA from any of the four control lines with 

the Rht-B1c allele was used in PCR reactions.  Rht-B1a/b PCR reaction 

mixes containing gDNA of CD_Rht-B1d as template amplified the Rht-B1b 

product; hence the Rht-B1d control was indistinguishable from Rht-B1b 

controls using these assays.  Rht-B1a/b PCR reactions containing gDNA of 

CD_Rht-B1e as template amplified only the Rht-B1a product, and therefore 

the Rht-B1e control was indistinguishable from the Rht-B1a controls.  At the 

Rht-D1 locus, Rht-D1a/b reactions with gDNA of Mercia_Rht-D1c as template 

resulted in amplification of only the Rht-D1b product and therefore the Rht-

D1c control was indistinguishable from Rht-D1b controls using this assay.  At 

the Ppd-D1 locus, PCR assay results demonstrated the presence of Ppd-D1a 

in „Norin 10‟, CS_C67 2D, and Mercia_C67 2D, and the presence of Ppd-D1b 

in the remaining controls. 

 

Table 6.1.  Summary of genotypic and phenotypic data of control lines used in the 

INRA 368 BWCC outdoor experiment. 

 

 

 

Varietya

Sow-

ing Reps

Rht-

B1

Rht-

D1

Ppd-

D1 

Mean 

(cm)

% of 

WT

Range 

(cm) Mean

Rel 

WT Range

CD Nov08 1 B1a D1a D1b 114 114 148 148

CD_Rht-B1b Nov08 6 B1b D1a D1b 108 95% 104-122 148 -1 146-150

CD_Rht-D1b Nov08 5 B1a D1b D1b 97 85% 92-102 148 0 144-151

CD_Rht-B1c Nov08 4 NP D1a D1b 53 46% 38-88 153 +5 146-157

CD_Rht-B1d Nov08 4 B1b D1a D1b 106 93% 101-111 148 -1 146-149

CD_Rht-B1e Nov08 5 B1a D1a D1b 80 71% 70-89 149 1 144-150

Mercia Nov08 6 B1a D1a D1b 100 94-104 144 142-146

Mercia_Rht-B1b Nov08 2 B1b D1a D1b 96 96% 91-100 143 -1 142-144

Mercia_Rht-D1b Nov08 6 B1a D1b D1b 74 74% 65-81 146 +2 143-148

Mercia_Rht-B1c Nov08 6 NP D1a D1b 40 40% 35-45 150 +6 144-153

Mercia_Rht-D1c Nov08 6 B1a D1b D1b 76 76% 71-81 146 +1 143-148

Mercia_C67 2D Nov08 6 B1a D1a D1a 97 97% 86-102 138 -7 135-140

Norin 10 Nov08 4 B1b D1b D1a 87 75-112 134 131-135

Robigus Nov08 4 B1b D1a D1b 90 86-100 142 126-149

Xi19 Nov08 5 B1a D1b D1b 91 86-99 146 145-148

Heading date (days)dPlant ht.cGenotypingb
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Table 6.1 (continued).  Summary of genotypic and phenotypic data of control lines 

used in the INRA 368 BWCC outdoor experiment. 

 
a
 Introgressed Rht-1 alleles are shown following the underscore.  Mercia_C67 2D and 

CS_C67 2D refer to Mercia and Chinese Spring varieties with a 2D substitution from Ciano 

67.  CD = Cappelle Desprez; AB= April Bearded 

b
 Rht genotypes based on PCR with Rht-B1a/b and Rht-D1a/b primers; NP = no product; 

semi-dwarf (“-b”) alleles are shown in bold font.  Ppd-D1 genotype based on PCR with Ppd-

D1a/b primers with photoperiod insensitive (“-a”) alleles shown in bold font. 

c
 Plant heights of lines with a dwarf or photperiod insensitive allele are shown as a percentage 

of the wild type (% of WT) from the same genetic background. 

d
 Heading date is the number of calendar days after January 1.  „Rel WT‟ = Difference in days 

to heading relative to the WT line in the same genetic background (where appropriate). 

 

6.3.2. Multiplex PCR identifies Rht-B1 insertion types 

 

The multiplex PCR assayed designed to detect the upstream Rht-B1 

insertions was tested using varieties known (see Table 5.7) to have no 

insertion (CS), a 160 bp insertion (Mercia, AB, Paragon), or a 197 bp insertion 

(CD, Hobbit Sib, SS7010073).  A 1050 bp product was specifically amplified 

using gDNA of the line with no insertion (Figure 6.5, CS; lane 2), a 449 bp 

product was specifically amplified using gDNA of lines with the 160 bp 

insertion (Figure 6.5, Mercia, AB, or Paragon; lanes 3, 4, 5), and a 361 bp 

product was specifically amplified using gDNA of lines with the 197 bp 

insertion (Figure 6.5, CD or Hobbit Sib; lanes 6, 7).  SS7010073 contains the 

197 bp insertion and a 16 bp deletion in this region, and a 345 bp product is 

amplified when gDNA of this line serves as template (Figure 6.5, lane 8). 

Varietya

Sow-

ing Reps

Rht-

B1

Rht-

D1

Ppd-

D1 

Mean 

(cm)

% of 

WT

Range 

(cm) Mean

Rel 

WT Range

AB Feb09 3 B1a D1a D1b 175 170-181 155 153-157

AB_Rht-B1b Feb09 2 B1b D1a D1b 145 83% 145-145 153 -2 152-154

AB_Rht-D1b Feb09 3 B1a D1b D1b 142 81% 137-145 157 +2 155-158

AB_Rht-B1c Feb09 3 NP D1a D1b 53 30% 50-56 161 +6 161-162

Bersee Feb09 3 B1a D1a D1b 125 123-129 158 153-163

Bersee_Rht-B1b Feb09 3 B1b D1a D1b 91 73% 87-95 156 -3 153-159

Bersee_Rht-D1b Feb09 3 B1a D1b D1b 91 73% 85-96 160 +2 157-162

Bersee_Rht-B1c Feb09 2 NP D1a D1b 47 38% 42-52 168 +9 167-168

CD Feb09 2 B1a D1a D1b 108 106-110 164 162-166

CS Feb09 3 B1a D1a D1b 131 121-138 145 143-148

CS_C67 2D Feb09 3 B1a D1a D1a 133 102% 122-146 142 -4 141-143

Norin 10 Feb09 1 B1b D1b D1a 66 66 147 147

Xi19 Feb09 3 B1a D1b D1b 83 76-89 155 153-157

Genotypingb Plant ht.c Heading date (days)d
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Figure 6.5. Validation of the Rht-B1 160 bp and 197 bp insertion PCR assay. The PCR 

mix included the forward primer, Rht-F11, in combination with reverse primers 160-R1, 197-

R1, and Rht-ABD-R9.  Templates were: water (lane 1); gDNA of CS (no Rht-B1 insertion; 2); 

gDNA of Mercia, April Bearded, or Paragon (all have the 160 bp insertion; 3, 4, 5); gDNA of 

Cappelle Desprez or Hobbit Sib (both have the 197 bp insertion; 6, 7); gDNA of SS7010073 

(197bp insertion and a 16 bp deletion; 8).  Reaction mixtures were subject to electrophoresis 

on a 1.5% agarose gel stained with ethidium bromide and visualised under UV light.  M = 

molecular marker Hyperladder IV (Bioline) with size in bp indicated. 

 

6.3.3. Frequency of Rht-1 and Ppd-D1 alleles in the INRA BWCC 

 

Among the 368 INRA BWCC accessions, the 160 bp insertion was present in 

59 accessions (16%), and the 197 bp insertion was present in 44 accessions 

(12%) (Table 6.2A).  The two insertions never occurred together in the same 

accession.  The Rht-B1 insertion data was then correlated with the Rht-B1a/b, 

Rht-D1a/b, and Ppd-D1a/b genotype data.  With a single exception, the Rht-

B1 insertions always occurred in accessions containing the Rht-B1a allele 

(Table 6.2).  Rht-B1a_160 and Rht-B1a_197 will be used to refer to the 160 

bp and 197 bp insertions, respectively, in the Rht-B1a background.  The 

single exception was INRA_06986 („Tom Thumb‟), which amplified the 

product associated with the 197 bp insertion, but did not amplify a product 

with the Rht-B1a/b primer pairs.  „Tom Thumb‟ is known by pedigree to 

contain the Rht-B1c allele and this result is similar to that reported for the Rht-

B1c control lines (section 6.3.1).  Rht-B1a_0 (Rht-B1a with no insertion) was 

the most frequent Rht-B1 allele among the INRA BWCC lines, occurring in 

bp

500
400
300

1000

M 1 2    3     4    5    6    7    8 
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214 (58.2%) of the accessions while Rht-B1b was present in 45 (12.2%) of 

the accessions.  Rht-D1a occurred in 318 (86.4%) accessions and Rht-D1b 

occurred in 47 (12.8%) accessions (Table 6.2B).  Rht-B1b and Rht-D1b were 

present together in nine of the accessions.  Six of the lines were not 

homozygous at the Rht-B1 locus and three were not homozygous at the Rht-

D1 locus, including two lines that were not homozygous at either locus. 

 

Table 6.2.  Summary of INRA BWCC Rht-B1 (A), Rht-D1 (B), and Ppd-D1 (C) genotypes. 

 
a 
For all 368 accessions, genotypes were determined using DNA extracted from plants grown 

during the INRA BWCC outdoor experiment.  For fixed lines, two bulks of four plants were 

separately genotyped.  For landraces, four separate plants were genotyped.  
 

b
 Rht-B1a

 
and Rht-B1b designations based on the Rht-B1a/b PCR assays.  Rht-B1a_0, Rht-

B1a_160, and Rht-B1a_197 refer to accessions containing Rht-B1a with no insertion, a 160 

bp insertion, or a 197 bp insertion, respectively.  Rht-B1_197 refers to an accession („Tom 

Thumb‟) that contains the 197 bp insertion but did not amplify a product associated with Rht-

B1a or Rht-B1b.  „Not homozygous‟ refers to accessions in which the majority of samples 

were heterozygous or genotype scores for samples did not match. 

c
 Rht-D1 locus designations based on the Rht-D1a/b PCR assays. 

d
 Ppd-D1 locus designations based on the Ppd-D1a/b PCR assay (Beales et al., 2007).  The 

~450 bp product does not correspond to the Ppd-D1b (414 bp product) or Ppd-D1a (297 bp 

product) allele.  „No product‟ indicates that a product was not obtained in either replicate. 

A) Rht-B1 locusb No. % of total

Rht-B1a_0 214 58.2%

Rht-B1a_160 59 16.0%

Rht-B1a_197 43 11.7%

Rht-B1_197 1 0.3%

Rht-B1b 45 12.2%

Not homozygous 6 1.6%

B) Rht-D1  locusc No. % of total

Rht-D1a 318 86.4%

Rht-D1b 47 12.8%

Not homozygous 3 0.8%

C) Ppd-D1  locusd No. % of total

Ppd-D1a 95 25.8%

Ppd-D1b 265 72.0%

450bp product 1 0.3%

No product 6 1.6%

Not homozygous 1 0.3%

Accessionsa

Accessions

Accessions
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At the Ppd-D1 locus, the photoperiod sensitive Ppd-D1b allele was present in 

265 varieties (72.0%) while the insensitive Ppd-D1a allele was present in 95 

varieties (25.8%) (Table 6.2C).  An approximately 450 bp product was 

amplified when gDNA of the accession INRA_13812 served as template in the 

Ppd-D1a/b PCR assay. The ~450 bp product is larger than the expected Ppd-

D1b (414 bp) or Ppd-D1a (297 bp) products.  Using the Ppd-D1a/b primer 

pair, no product was amplified from gDNA of three fixed lines (two replicates 

of four bulked plants were tested separately) and from three landraces (four 

plants were tested separately). 

 

To determine the geographical prevalence of alleles, the 368 INRA BWCC 

accessions were classified according to geographical area as originally 

designated by Balfourier et al. (2007).  The accessions come from 44 

geographical regions with the largest proportion (28%) originating in France 

(Table 6.3).  Among the Rht-B1 alleles, Rht-B1a_160 is most prevalent in 

accessions from Europe, central Russia, and North America, absent in 

accessions from Africa, South America, and Australia-New Zealand, and in 

low frequency or absent in the remaining regions.  Rht-B1a_197 is most 

prevalent in accessions from France and the USA, which combined have 29 

of the 42 (69%) accessions containing this allele.  In the remaining 

geographical areas, Rht-B1a_197 is generally in low prevalence or not 

represented.  Rht-B1b is in highest frequency in accessions from Mexico-

Guatemala, Syria, and Israel-Lebanon-Palestine, in moderate frequency in 

several European countries, and absent or infrequent in the remaining 

geographical regions.  Rht-D1b is most prevalent in Mexico-Guatemala and 

Israel-Lebanon-Palestine, and occurs in moderate frequency in many regions, 

but is absent in the majority of the regions.  Ppd-D1a is most common in 

accessions from Japan, Mexico-Guatemala, China-Korea-Mongolia, Australia-

New Zealand, and countries bordering the Mediterranean.  For the accessions 

that did not amplify a product with the Ppd-D1a/b primers, the landraces were 

collected from the Black Sea region (one each from Azerbaijan, Georgia, and 

Turkey) and the three fixed lines were from Russia, Ethiopia, and France. 
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Table 6.3.  Distribution of Rht and Ppd alleles by geographical area in the INRA BWCC 

 
a
 Rht-B1a_0, Rht-B1a_160, and Rht-B1a_197 refer to accessions containing Rht-B1a with no 

insertion, a 160 bp insertion, or a 197 bp insertion, respectively.  Segregants (SEG) at each 

locus are shown with the number of accessions in parentheses.  The Rht-B1c (B1c) 

designation is based on pedigree.  Rht-B1c contains the 197 bp insertion. 

b
 NP = No product; 450 = 450 bp product amplified using the Ppd-D1a/b primers with number 

of accessions in parenthesis.
 

Geographical 

areac Total

B1a_

160

B1a_

197

B1a_

0 B1b Other D1a D1b Other D1a D1b Other

FRA 103 22 25 42 13 SEG(1) 86 17 25 77 NP(1)

NLD 4 1 3 3 1 4

DEU 6 3 1 2 6 6

GBR–IRL 5 2 2 SEG(1) 2 3 5

BEL 3 3 3 3

SWE 2 1 1 2 2

NOR–DNK 1 1 1 1

FIN 6 1 5 6 6

CHE 6 1 1 3 1 6 6

POL 6 4 1 1 6 1 5

CSK 6 3 1 2 6 3 3

AUT 6 1 3 2 6 6

ROM 3 2 1 3 2 1

BGR 5 3 2 5 5

UKR–BLR 4 4 2 2 2 2

YUG–HRV 2 1 1 2 2

HUN 6 3 1 2 6 1 5

ESP 11 1 1 7 1 SEG(1) 10 1 3 8

PRT 4 2 2 4 4

GRC–ALB–MAD 2 2 2 2

ITA 5 3 2 5 2 3

USA 12 2 4 3 2 B1c (1) 11 1 1 11

CAN 9 1 8 9 1 8

AUS–NZL 13 1 9 2 SEG(1) 11 2 4 9

RUS–Central 15 5 10 14 1 1 13 NP(1)

Caucasus 7 7 7 5 NP(2)

TUR 7 7 7 1 5 NP(1)

NPL 24 1 23 24 2 21 SEG(1)

CHN–KOR–MNG 16 1 14 1 14 2 5 11

JPN 12 1 8 2 SEG(1) 7 3 SEG(1) 9 3

PAK–KSM 5 5 4 1 1 4

SYR 4 1 3 4 3 1

ISR–LBN–PAL 7 4 3 4 3 3 4

AFG–IRN–IRQ 1 1 1 1

IND 5 1 4 5 1 4

DZA–MAR 2 2 2 2

EGY–TUN 4 3 SEG(1) 1 2 SEG(1) 3 1

ETH–NER 4 1 3 4 3 NP(1)

KEN 2 2 2 2

ZAF–ZWE 3 1 1 1 2 1 2 1

BRA 3 1 2 3 1 2

COL–PER 2 2 2 1 1

MEX–GTM 10 5 5 4 6 7 2 450(1)

ARG–URY 5 1 4 4 1 1 4

SUM 368 59 43 214 45 7 318 47 3 95 265 8

                    Rht-B1 a                             Rht-D1                Ppd-D1 b        
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c
 Geographic areas of accessions as shown by Balfourier et al. (2007). RUS–Central (Russia 

central) consists of TJK–TKM–KAZ–KIR–UZB and the Caucasus consist of ARM-GEO-AZE.  

AFG Afghanistan; ALB Albania; ARG Argentina; ARM Armenia; AUS Australia; AUT Austria; 

AZE Azerbaijan; BEL Belgium; BGR Bulgaria; BLR Belarus; BRA Brazil; CAN Canada; CHE 

Switzerland; CHN China; COL Colombia; CSK Czech and Slovak Republics; DEU Germany; 

DNK Denmark; DZA Algeria; EGY Egypt; ESP Spain; ETH Ethiopia; FIN Finland; FRA 

France; GEO Georgia; GBR Great Britain; GRC Greece; GTM Guatemala; HUN Hungary; 

HRV Croatia; IND India; IRL Ireland; IRN Iran; IRQ Iraq; ISR Israel; ITA Italy; JPN Japan; KAZ 

Kazakhstan; KEN Kenya; KIR Kyrgyzstan; KOR Korea; KSM Kashmir; LBN Lebanon; MAD 

Macedonia; MAR Morocco; MEX Mexico; MNG Mongolia; NER Niger; NLD Netherlands; NOR 

Norway; NPL Nepal; NZL New Zealand; PAL Palestine; PAK Pakistan; POL Poland; POR 

Portugal; PER Peru; ROM Romania; SYR Syria; SWE Sweden; TJK Tajikistan; TKM 

Turkmenistan; TUN Tunisia; TUR Turkey; URY Uruguay; UKR Ukraine; USA United States; 

UZB Uzbekistan; YUG Yugoslavia; ZAF South Africa; ZWE Zimbabwe. 

 

6.3.4. Plant heights and heading dates of INRA BWCC accessions and 

controls in relation to genotype 

 

The majority of control lines used in the INRA BWCC performed as expected 

with lines containing GAI alleles having reduced height and lines with the Ppd-

D1a allele having earlier heading dates than wild type lines in the same 

genetic background (Table 6.1).  Averaged over the CD, Mercia, AB, and 

Bersee genetic backgrounds, the Rht-B1b+Rht-D1a lines were 13% shorter 

and ear emergence 1.6 days earlier than wild type lines.  Averaged over the 

same four backgrounds, the Rht-B1a+Rht-D1b lines were 22% shorter and 

ears emerged 1.3 days later than wild type lines.  The Rht-B1c NILs were on 

average 62% shorter and had heading dates 6.4 days later than the wild type 

lines.  For the Ppd-D1a substitution lines, CS_C67 2D flowered four days 

earlier and was 102% the height of CS.  Mercia_C67 2D flowered seven days 

earlier and was 97% the height of Mercia.  Xi19 and Norin 10 were the only 

two controls present in both sowings.  Norin 10 from the February 2009 

sowing was 76% the height and flowered 13 days later than Norin 10 from the 

November 2008 sowing.  Similarly, the February 2009 sowing of Xi19 was 

91% the height and flowered 9 days later than the November 2008 sowing. 

 

Among the 368 INRA BWCC accessions, plant heights ranged from 54 to 
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200.5 cm with a mean of 133 cm (Appendix VI).  A histogram of plant heights 

appeared to have a bi-modal distribution (Figure. 6.6A), but accessions could 

not be easily split into two groups using the MM approach (see section 6.2.5), 

so this was not performed.  Nine accessions with the Rht-B1a+Rht-D1a 

genotype have plant heights less than the mean of accessions containing Rht-

B1b or Rht-D1b (100 cm) and INRA_13481 was the shortest Rht-B1a+Rht-

D1a accession with a plant height of 84.5 cm.  Conversely, there were no 

accessions containing a semi-dwarfing allele that were taller than the Rht-

B1a+Rht-D1a mean plant height (144 cm).  INRA_07092, which contains the 

Rht-B1b allele, was the tallest semi-dwarf accession at 135.5 cm. 

 

 

Figure 6.6. Distributions of heights (A) and heading dates (B) of the INRA BWCC lines.  
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Heading dates of the INRA BWCC lines ranged from 116 to 185 days with a 

mean of 141 days (Appendix VI).  Heading dates were normally distributed; 

however there was a skew toward early ear emergence and three accessions 

had very late heading dates (nine to 25 days later than the next latest line; 

Figure 6.6B). The three late accessions were from the February 2009 sowing, 

indicating these lines may be winter types that flowered late due to a lack of 

vernalisation.  Among all INRA BWCC lines, INRA_08227 (Ppd-D1a 

genotype) had the earliest ear emergence, three days earlier than any other 

line.  The Ppd-D1a accession with the latest heading date was INRA_03306 

with a heading date of 153 days.  The earliest flowering accession with the 

Ppd-D1b allele was INRA_08233 with a heading date of 121 days. 

 

6.3.5. GA sensitivities among INRA BWCC and control accessions 

 

6.3.5.1 GA sensitivities of accessions in GA experiment 1 

 

In GA expt. 1, the STFL lengths of the INRA BWCC and control lines from the 

GA+ treatment revealed an apparent bi-modal distribution (Appendix VII; 

Figure 6.7A).  Because the distribution was bi-modal, the MM approach was 

used to calculate the probability that controls and INRA BWCC lines were GAI 

(pGAI) or GAS (pGAS = 1 - pGAI) based on GA+ treatment STFL lengths as 

described in section 6.2.5.  For the controls, the MM procedure identified the 

three GAS Rht-B1a+Rht-D1a lines as GAS with pGAS = 1 in all three lines 

(Table 6.4).  Using the MM, three of the four accessions with dwarfing alleles 

had a response classified as GAI (AB_Rht-B1c, pGAI=1; Mercia_Rht-D1b, 

pGAI = 0.98; AB_Rht-D1b, pGAI = 0.93); however unexpectedly, Bersee_Rht-

B1b GA+ treatment values more closely resembled a GAS response (pGAS = 

0.91).  In a similar analysis of GA sensitivity, an LSD test was used to 

calculate the probability that an accession‟s GA treatment difference was 

equal to zero.  A low probability of no GA treatment difference is indicative of 

a GAS response.  The conclusions drawn from the LSD analysis were similar 

to those obtained using MM for all control lines, including Bersee_Rht-B1b, 

which had a 0.09 probability of no GA treatment difference.  The Rht-

B1a+Rht-D1a control lines all had large GA treatment differences, ranging 
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from 24.2 to 30.8 mm.  GA treatment differences also existed for the Rht-B1b, 

Rht-D1b, and Rht-B1c NILs, but were smaller, ranging from 2.3 to 9.0 mm. 

 

 

Figure 6.7. Distributions of seed to first ligule (STFL) lengths of the GA+ treatment of 

INRA BWCC and control lines in GA sensitivity experiment 1 (A), 2 (B), and 3 (C). 
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Table 6.4.  Summary of GA treatment effects on control lines 

 
a
 Mean seed to first ligule (STFL) lengths for the GA+ treatment, GA- treatment, and the GA 

treatment difference (trt diff; GA+ STFL length minus GA- STFL length). 

b
 pGAI is the probability that a line is classified as GA insensitive based on a mixed model 

(MM) approach using the GA+ treatment values.  pGAS = 1-pGAI.  N/A = not applicable. 

c
 An LSD test with a critical t value of p =.05 was used to determine the probability that the 

GA treatment difference is significantly greater than zero. 

d
 Introgressed alleles are shown following the underscore. 

e
 Rht genotype based on the Rht-B1a/b and Rht-D1a/b PCR assays.  Rht-B1c did not amplify 

a product in the Rht-B1a/b assays. 

 

For the INRA BWCC accessions in GA expt. 1, STFL lengths in the GA+ 

treatment ranged from 34 to 123 mm (mean of 79.8 mm) and GA treatment 

differences ranged from -15 mm to 69 mm (mean of 23.3 mm) (Table 6.5, GA 

expt. 1; Appendix VII).  Mean STFL lengths in the GA+ treatment and GA- 

treatment, and GA treatment differences all had the same ranking among Rht-

LSDc

GA 

Expt. Control Lined

Rht 

genotypee GA+ trt GA- trt

GA trt 

diff. pGAI pGAS

pGA trt 

diff =0

AB B1aD1a 88.1 57.3 30.8 0.00 1.00 0.00

AB_Rht-D1b B1aD1b 55.5 51.8 3.7 0.93 0.07 0.48

AB_Rht-B1c D1a 29.3 27.0 2.3 1.00 0.00 0.66

Bersee B1aD1a 94.1 64.6 29.4 0.00 1.00 0.00

Bersee_Rht-B1b B1bD1a 70.8 61.8 9.0 0.09 0.91 0.09

Mercia B1aD1a 81.6 57.4 24.2 0.00 1.00 0.00

Mercia_Rht-D1b B1aD1b 49.2 46.7 2.6 0.98 0.02 0.62

Mean 66.9 52.4 14.6

AB B1aD1a 93.9 63.7 30.2 0.00 1.00 0.00

AB_Rht-D1b B1aD1b 54.9 52.2 2.7 1.00 0.00 0.49

AB_Rht-B1c D1a 28.6 26.2 2.3 1.00 0.00 0.55

Bersee B1aD1a 95.6 69.8 25.8 0.00 1.00 0.00

Bersee_Rht-B1b B1bD1a 68.1 58.3 9.8 0.78 0.22 0.02

Mercia B1aD1a 90.4 60.7 29.8 0.00 1.00 0.00

Mercia_Rht-D1b B1aD1b 46.4 45.0 1.4 1.00 0.00 0.71

Mean 68.3 53.7 14.6

AB B1aD1a 61.0 36.5 24.5 N/A N/A 0.00

AB_Rht-D1b B1aD1b 45.5 37.5 8.0 N/A N/A 0.12

AB_Rht-B1c D1a 28.0 26.0 2.0 N/A N/A 0.69

Bersee B1aD1a 72.5 36.0 36.5 N/A N/A 0.00

Bersee_Rht-B1b B1bD1a 59.0 36.5 22.5 N/A N/A 0.00

Mercia B1aD1a 60.0 29.5 30.5 N/A N/A 0.00

Mercia_Rht-D1b B1aD1b 35.5 29.0 6.5 N/A N/A 0.20

Mean 51.6 33.0 18.6

MMb

1

2

3

Mean STFL length (mm)a
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1 genotypes with Rht-D1a+Rht-B1a > Rht-B1b+Rht-D1a > Rht-B1a+Rht-D1b 

> Rht-B1b+Rht-D1b.  GA- treatment differences were the least pronounced.  

Using the MM approach, 254 accessions were classified as GAS, 45 as GAI, 

and 60 as INT.  With the LSD approach, 253 accessions were classified as 

GAS (i.e. p no treatment difference ≤ 0.05) and 102 accessions were 

classified as NSTD (p of no treatment difference > 0.05), which is indicative of 

an insensitive or an intermediate GA response. 

 

Table 6.5. Summary GA responses of INRA BWCC lines in GA experiments 1, 2, and 3 

 

GA 

Expt

Rht 

Genotyped Statistice GA+ trt GA- trt

Trt Diff 

(mm) GAS GAI INT GAS NSTD

count 272 276 268 249 0 23 239 29

min;max 58;123 31;84 0;69

mean 87.8 59.4 28.2

count 36 36 36 2f 10 24 9g 27

min;max 45;75 27;60 -3;26

mean 59.3 47.5 11.8

count 38 38 38 1h 25 12 2i 36

min;max 40;76 36;60 -12;30

mean 51.9 46.6 5.3

count 9 9 9 0 9 0 0 9

min;max 42;54 37;59 -15;10

mean 45.6 43.6 2.0

count 359 363 355 254 45 60 253 102

min;max 34;123 27;84 -15;69

mean 79.8 56.3 23.3

count 91 91 91 76 1j 14 88 2

min;max 53;123 48;89 5;51

mean 92.0 63.4 28.6

count 33 33 33 0 26 7 4k 29

min;max 39;77 38;72 -3;20

mean 58.6 51.3 7.3

count 23 23 23 0 22 1 2l 21

min;max 44;65 40;59 -7;16

mean 53.2 49.0 4.1

count 3 3 3 0 3 0 0 3

min;max 38;50 36;47 -5;3

mean 42.8 42.6 0.2

count 154 154 154 77 54 23 95 59

min;max 27;123 48;89 -7;51

mean 77.1 57.9 19.3

count 19 19 19 NA NA NA 19 0

min;max 44;73 24;45 12;31

mean 56.9 31.7 19.7

1

B1aD1a

All 

genotypes

Mean STFL length (mm)a LSD class.c

B1aD1a

B1bD1a

B1aD1b

B1bD1b

MM class.b

B1aD1a3

B1bD1a

B1aD1b

B1bD1b

All 

genotypes

2



 

191 
 

a
 STFL = Length from seed to first ligule.  Treatment difference (Trt Diff) is GA+ treatment 

STFL length minus GA- treatment STFL length averaged across all accessions within an Rht-

genotype.  Trt diffs in GA expt. 3 were multiplied by 0.78 to allow for comparisons to be made 

with GA expts. 1 and 2 as described in section 6.3.5.3. 

b
 A mixed model (MM) approach was used to classify accessions based on GA+ STFL 

lengths in expts 1 and 2.  Accessions were classified as GA insensitive (GAI) if pGAI ≥ 0.95; 

GA sensitive (GAS) if pGAS ≥ 0.95, or intermediate (INT) if pGAI < 0.95 and pGAS < 0.95.   

c
 An LSD was used to determine the probability that an accession‟s treatment difference was 

equal to zero.  Accessions were classified as GAS if the probability of no treatment difference 

was ≤ 0.05 or as „no significant treatment difference‟ (NSTD) if p > 0.05.  NSTD is indicative 

of a GAI or INT response. 

d
 Rht genotype determined using Rht-B1a/b, and Rht-D1a/b primers.  Accessions 

heterozygous at these loci or that contained alternative alleles are only included under "All 

genotypes". 

e
 Count refers to the number of accessions belonging a specified genotype or classification 

group.  Min = minimum value; Max = maximum value. 

f
 INRA BWCC lines 13811 (Opata 85); 13812 (W7984) 

g
 INRA BWCC lines 01747 (114/62); 02424 (Danubia); 03050 (Flamura-85); 03176 (Fukuho-

komugi); 07092 (Tyler); 08194 (Neelkant); 13210 (Solaris); 13476 (Taldor); 13811 (Opata 85) 

h
 INRA BWCC line 20224 (Fantaziya-Odesskaya) 

i
 INRA BWCC lines 00822 (Aifeng-4); 20224 (Fantaziya-Odesskaya) 

j
 INRA BWCC line 03752 (IAR W83-2) 

k
 INRA BWCC lines 02345 (Corsodor); 06027 (Recital); 08194 (Neelkant); 13811 (Opata 85) 

l
 INRA BWCC lines 01647 (BT2281); 20276 (Equinox) 

 

MM and LSD GA response classifications were evaluated against the Rht-

B1+Rht-D1 genotype to determine if any unexpected GA responses occurred 

(Table 6.5, GA expt. 1).  Differences between Rht-1 genotype and GA 

response could be indicative of the presence of a novel allele affecting GA 

sensitivity at these or other loci.  Using the MM approach, 249 Rht-B1a+Rht-

D1a accessions were classified as GAS, 23 as INT, and none as GAI.  

Similarly, the LSD classified 239 of the Rht-B1a+Rht-D1a accessions as GAS 

and 29 as NSTD.  These results suggest the absence of any novel GAI 

alleles.  For the 36 accessions with the Rht-B1b+Rht-D1a genotype, only ten 

were classified as GAI using MM, 24 as INT, and two as GAS (INRA_13811; 

INRA_13812).  The LSD approach classified nine Rht-B1b+Rht-D1a 

accessions (listed in Table 6.6, footnote g) as GAS including INRA_13811 

and 27 as NSTD.  For the 38 accessions with the Rht-B1a+Rht-D1b 
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genotype, the MM approach classified 25 as GAI, 12 as INT, and one 

(INRA_20224) as GAS.  Using the LSD approach, two lines (INRA_20224; 

INRA_00822) with the Rht-B1a+Rht-D1b genotype were classified as GAS 

and 36 as NSTD.  All nine of the accessions with the Rht-B1b+Rht-D1b 

genotype were categorised as GAI in the MM approach and as NSTD in the 

LSD approach. 

 

6.3.5.2 GA sensitivities of accessions in GA experiment 2 

 

Based primarily on results from GA expt. 1, 154 INRA BWCC lines along with 

the same seven control lines used in GA expt. 1 were selected for a second 

GA sensitivity test.  The objective of GA expt. 2 was to increase the number of 

replicates of: (1) any Rht-B1a+Rht-D1a variety not classified as GAS in the 

MM or LSD analysis, (2) any variety with a semi-dwarf allele classified as INT 

in the MM procedure or with a probability of no treatment difference of 0.50 or 

less based on LSD, or (3) any variety in which zero or one replicate of either 

GA treatment was obtained (72 accessions). 

 

The STFL lengths from the GA+ treatment of the INRA BWCC and control 

lines in GA expt. 2, revealed an apparent bi-modal distribution similar to GA 

expt. 1 (Figure 6.7B).  As for GA expt. 1, the Rht-B1a+Rht-D1a controls were 

all identified as belonging to the GAS group using the MM and LSD tests 

(Table 6.4, GA expt. 2).  Three of the four lines with a dwarfing allele 

(AB_Rht-D1b, AB_Rht-D1c, and Mercia Rht-D1b) were classified as GAI (p = 

1) using MM, and GA treatment difference was not significantly greater than 

zero using LSD.  For Bersee_Rht-B1b, the MM placed the probability of this 

line being GAI as 0.78, whereas the LSD approach classified this control as 

GA sensitive (p = 0.02 of no GA treatment difference).  Similar to GA expt. 1, 

GA treatment differences of plants containing Rht-B1a+Rht-D1a ranged from 

25.8 to 30.2 mm and GA treatment differences for the Rht-B1b, Rht-D1b, and 

Rht-B1c NILs ranged from 2.3 to 9.8 mm. 

 

In GA expt. 2, when all INRA BWCC genotypes were assessed, the STFL 

lengths in the GA+ treatment ranged from 27 to 123 mm (mean of 77.1) and 
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GA treatment differences ranged from -7 to 51 mm (mean of 19.3) (Table 6.5, 

GA expt. 2; Appendix VII).  The mean STFL lengths of the GA+ treatment, 

GA- treatment and GA treatment difference all had the same Rht-1 genotype 

rankings as for GA expt. 1, with Rht-D1a+Rht-B1a > Rht-B1b+Rht-D1a > Rht-

B1a+Rht-D1b > Rht-B1b+Rht-D1b.  Using the MM approach, 77 accessions 

were classified as GAS, 54 as GAI, and 23 as INT.  With the LSD approach, 

95 accessions were classified as GAS and 59 were classified as NSTD. 

 

Analysis of GA classifications in light of Rht-1 genotypes in GA expt. 2 

revealed that of 91 accessions with the Rht-B1a+Rht-D1a alleles, 76 were 

categorised as GAS, 14 as INT, and one (INRA_03752) as GAI using the MM 

approach (Table 6.5, GA expt. 2).  LSD classifications of Rht-B1a+Rht-D1a 

accessions placed 88 in the GAS class and three into the NSTD class.  Of the 

33 accessions with the Rht-B1b+Rht-D1a genotype, 26 were classified as 

GAI, seven as INT, and none as GAS using the MM approach.  With the LSD 

test, four Rht-B1b+Rht-D1a accessions were classified as GAS (INRA lines 

02345, 06027, 08194, and 13811) and 29 as NSTD.  For the 23 accessions 

with the Rht-B1a+Rht-D1b genotype, the MM method classified 22 as GAI, 

one as INT, and none as GAS.  Using the LSD test on this same group, two of 

the 23 INRA BWCC lines (INRA_01647; INRA_20276) were classified as GAS 

and 21 as NSTD.  The three accessions with the Rht-B1b+Rht-D1b genotype 

were all categorised as GAI in the MM procedure and as NSTD by the LSD. 

 

6.3.5.3 GA sensitivities of accessions in GA experiment 3 

 

To more fully determine if any of the Rht-B1a+Rht-D1a INRA BWCC lines 

tested in GA expt. 1 or 2 potentially contained a novel GAI allele, a third GA 

sensitivity experiment was performed.  GA expt. 3 consisted of the same 

seven controls used in GA expts. 1 and 2, and 19 Rht-B1a+Rht-D1a INRA 

BWCC lines with a short height in the INRA BWCC outdoor experiment and a 

small GA treatment difference when averaged across GA expts. 1 and 2. 

 

A bi-modal distribution of STFL lengths of the INRA BWCC accessions and 

controls was not apparent in GA expt. 3 (Figure 6.7C); hence the MM 
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approach was not used to classify the GA response.  As in GA expts. 1 and 2, 

controls with the Rht-B1a+Rht-D1a genotype had probabilities of no GA 

treatment difference equal to zero (Table 6.4, GA expt. 3).  For the controls 

lines containing a dwarfing allele, the probability values of no GA treatment 

difference were reduced relative to GA expts. 1 and 2 (i.e. the dwarf control 

NILs appeared more GA sensitive in expt. 3).  The mean treatment difference 

among GA expt. 3 controls was 18.6 mm, which is four mm greater than in GA 

expts. 1 or 2.  Overall, the control results indicate that it will be more difficult to 

distinguish GAI accessions in GA expt. 3 than in GA expts. 1 or 2.  As mean 

treatment differences among controls in GA expts. 1 and 2 were 78% that of 

GA expt. 3, GA expt. 3 treatment differences were “adjusted” by multiplying by 

0.78 to facilitate comparisons with GA expts. 1. and 2. 

 

All INRA BWCC lines in GA expt. 3 had the Rht-B1a+Rht-D1a genotype and 

all 19 were classified as GAS based on the LSD (Table 6.5, GA expt. 3). The 

STFL lengths in the GA+ treatment ranged from 44 to 73 mm (mean of 56.9) 

and “adjusted” GA treatment differences ranged from 12 to 31 mm (mean of 

19.7; Appendix VII).  In GA expt. 3, INRA_03752 (the only accession 

classified as GAI in a previous GA experiment) had the longest STFL length 

of any accession in the GA+ treatment (72.5 mm), which was over double that 

of its GA- length (33.5 mm).  Mean GA treatment differences of each 

accession averaged across the three experiments are shown in Appendix VI. 

 

6.3.6. Phenotype-genotype associations of INRA BWCC accessions 

 

6.3.6.1. Rht-B1*Rht-D1*Ppd-D1 REML analysis 

 

A REML analysis was conducted to estimate the effects of the Rht-B1, Rht-

D1, and Ppd-D1 genotypes on heading date, plant height, and mean GA 

treatment difference.  For heading date, Ppd-D1 had a statistically significant 

effect (F probability (F pr) < 0.001 of no effect) and accounted for the majority 

of the genotype variance (Table 6.6A).  Rht-B1 was also significantly (F pr = 

0.023) associated with heading date while Rht-D1 and the genotype 

interactions were not significant at F pr ≤ 0.05.  For height, significant effects 



 

195 
 

(all with F pr < 0.001) were associated with Rht-B1, Rht-D1, Ppd-D1, and Rht-

B1.Ppd-D1 (Table 6.6B) with most of the genotype variation due to the main 

effects of Rht-B1 and Rht-D1.  The remaining interaction terms were not 

significant at F pr ≤ 0.05, although Rht-B1.Rht-D1 was nearly significant (F pr 

= 0.084).  For mean GA difference, Rht-B1, Rht-D1, and Rht-B1.Rht-D1 all 

had F pr values < 0.001 (Table 6.6C) while the remaining genotypic effects 

were not significant at F pr ≤ 0.05.  Rht-B1 and Rht-D1 main effects 

constituted nearly the entire variance component among genotype classes.  

 

Table 6.6.  Summary of Rht-B1*Rht-D1*Ppd-D1 REML mixed model analyses for 

heading date (A), plant height (B), and mean GA difference (C) in the INRA 368 BWCC. 

 

A) HEADING DATE

Effect Terma

Wald 

statisticb ndf c
F 

statistic ddf d F pr e

Fixed Ppd-D1 62.2 1 62.2 337 <0.001

Fixed Rht-B1 9.64 3 3.21 337 0.023

Fixed Rht-D1 0.47 1 0.47 337 0.496

Fixed Ppd-D1.Rht-B1 0.17 3 0.06 337 0.983

Fixed Ppd-D1.Rht-D1 0.5 1 0.5 337 0.478

Fixed Rht-B1.Rht-D1 0.52 3 0.17 337 0.914

Fixed Ppd-D1.Rht-B1.Rht-D1 4 2 2 337 0.137

Residual variance (variety)f  = 59.16 with SE = 4.56

B) PLANT HEIGHT

Effect Term

Wald 

statistic ndf

F 

statistic ddf F pr

Fixed Rht-B1 238.03 3 79.34 337 <0.001

Fixed Rht-D1 145.03 1 145.03 337 <0.001

Fixed Ppd-D1 57.6 1 57.6 337 <0.001

Fixed Rht-B1.Rht-D1 6.69 3 2.23 337 0.084

Fixed Rht-B1.Ppd-D1 19.07 3 6.36 337 <0.001

Fixed Rht-D1.Ppd-D1 1.37 1 1.37 337 0.243

Fixed Rht-B1.Rht-D1.Ppd-D1 1.31 2 0.65 337 0.52

Residual variance (variety) = 399.7 with SE = 30.8

C) MEAN GA TREATMENT DIFFERENCE

Effect Term

Wald 

statistic ndf

F 

statistic ddf F pr

Fixed Rht-B1 266.22 3 88.74 337 <0.001

Fixed Rht-D1 318.93 1 318.93 337 <0.001

Fixed Ppd-D1 0.48 1 0.48 337 0.488

Fixed Rht-B1.Rht-D1 27.45 3 9.15 337 <0.001

Fixed Rht-B1.Ppd-D1 1.06 3 0.35 337 0.788

Fixed Rht-D1.Ppd-D1 1.93 1 1.93 337 0.166

Fixed Rht-B1.Rht-D1.Ppd-D1 0.54 2 0.27 337 0.762

Residual variance (variety) = 53.58 with SE = 4.13
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a
 Rht-B1 consists of Rht-B1a_0 (no insertion), Rht-B1a_160 (160 bp insertion), Rht-B1a_197 

(197 bp insertion), and Rht-B1b alleles.  Rht-D1 consists of Rht-D1a and Rht-D1b alleles.  

Ppd-D1 consists of Ppd-D1a and Ppd-D1b alleles.  The (.) indicates an interaction term. 

b
 the Wald statistic is a measure of variation 

c
 ndf = numerator degrees of freedom 

d
 ddf = denominator degrees of freedom 

e
 F pr = F probability of no treatment difference. 

f
 Residual variance between varieties within genotypic terms was estimated using variance as 

the random term in the model.  SE = Estimated standard error of the residual variance. 

 

6.3.6.2. Rht-B1 genotype REML and means analysis 

 

Mean effects of the Rht-B1 alleles on heading date, plant height, and GA 

treatment difference were compared using the INRA BWCC accession data.  

As other loci were found to significantly influence these phenotypes (Table 

6.6), mean Rht-B1 allelic effects were estimated in relation to either Rht-D1 or 

Ppd-D1, depending on which locus accounted for the largest portion of the 

remaining genotype variation in the Rht-B1*Rht-D1*Ppd-D1 REML analysis.  

For each phenotype, a fitted mean was calculated for each Rht-B1 allele as 

the average value across both allelic classes of the second locus.  Fitted 

means were declared to be significantly different (SD) or not significantly 

different (NSD) using an LSD with a probability threshold of ≤ 0.05.   

 

For mean heading date, Rht-B1 alleles were compared across the Ppd-D1 

backgrounds as Ppd-D1 was previously shown (Table 6.6A) to account for 

most of the heading date variation.  The mean heading dates of Rht-B1a_160 

accessions and Rht-B1a_197 accessions were later than that of Rht-B1_0 or 

Rht-B1b accessions regardless of Ppd-D1 allele (Table 6.7A).  Comparing 

Rht-B1 fitted means, heading dates of Rht-B1a_160 accessions were 1.1 

days later than Rht-B1a_197 accessions (NSD), 2.9 days later than Rht-

B1a_0 accessions (SD), and 2.8 days later than the Rht-B1b accessions 

(NSD).  Rht-B1a_197 accessions also flowered later than Rht-B1a_0 

accessions (1.8 days, NSD) or Rht-B1b accessions (1.7 days, NSD) when 

comparing fitted means. 
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Table 6.7. Mean effects of Rht-B1 alleles on heading date (A), plant height (B), and GA 

treatment difference (C) among INRA BWCC accessions. 

 
a
 Days from January 1.  Rht-B1a_160, Rht-B1a_197, and Rht-B1a_0 refer to Rht-B1a alleles 

with a 160 bp, a 197 bp, or no insertion, respectively.  The numbers of accessions possessing 

each genotypic combination are indicated in parentheses. 

b
 Fitted mean refers to the average effect associated with an Rht-B1 allele across the Ppd-D1 

alleles (box A) or across the Rht-D1 alleles (boxes B and C). 

c
 Significant differences are based on an LSD with a probability threshold of 0.05.  Direction of 

significance is shown with by >. 

d
 Mean GA treatment difference (trt diff) refers to the increase in seed-to-first-ligule (STFL) 

length of the GA+ treatment minus the GA- treatment. 

 

For mean plant height, the effects of the Rht-B1 alleles were compared across 

Rht-D1 backgrounds (Table 6.7B).  Relative to the three Rht-B1a alleles, the 

Rht-B1b allele was associated with shorter plant heights in both Rht-D1 

backgrounds.  The reductions in fitted mean plant height associated with Rht-

B1b ranged from 24.3 to 39 cm relative to the Rht-B1a alleles, and all 

differences were significant at p ≤ 0.05.  Rht-B1a alleles with an insertion 

were associated with height reductions relative to Rht-B1a_0.  Comparing 

fitted means, Rht-B1a_197 accessions were 14.7 cm (12%) shorter (SD) than 

Rht-B1a_0 accessions and Rht-B1_160 accessions were 9.7 cm (8%) shorter 

A) MEAN DAYS TO HEADINGa

Ppd-D1a Ppd-D1b

Fitted 

meanb

Fitted means significantly different 

at p ≤ 0.05c

Rht-B1a_160 137 (11) 145.4 (47) 141.2 Rht-B1a_160 > Rht-B1a_0

Rht-B1a_197 136.5 (11) 143.7 (31) 140.1

Rht-B1a_0 134.8 (43) 141.7 (165) 138.3

Rht-B1b 134.6 (25) 142.2 (19) 138.4

B) MEAN PLANT HEIGHT (cm)

Rht-D1a Rht-D1b

Fitted 

mean

Fitted means significantly different 

at p ≤ 0.05

Rht-B1a_160 142.1 (54) 89.2 (4) 115.7 Rht-B1a_160 > Rht-B1b

Rht-B1a_197 126.4 (31) 94.9 (11) 110.7 Rht-B1a_197 > Rht-B1b

Rht-B1a_0 147.3 (187) 103.6 (21) 125.4 Rht-B1a_0> Rht-B1a_197,Rht-B1b

Rht-B1b 100.7 (35) 72.2 (9) 86.4

C) MEAN GA TRT DIFF (mm)d

Rht-D1a Rht-D1b

Fitted 

mean

Fitted means significantly different 

at p ≤ 0.05

Rht-B1a_160 28.3 (54) 0.6 (4) 14.4 Rht-B1a_160 > Rht-B1b

Rht-B1a_197 27.4 (31) 5.3 (11) 16.3 Rht-B1a_197 > Rht-B1b

Rht-B1a_0 29.4 (187) 5.1 (21) 17.3 Rht-B1a_0> Rht-B1b

Rht-B1b 9.4 (35) 0.7 (9) 5.0
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(NSD) than Rht-B1a_0 accessions.  Between the two insertion alleles, Rht-

B1_160 was associated with a 15.7 cm height increase over Rht-B1_197 in 

the Rht-D1a background, but also a 5.7 cm height decrease in the Rht-D1b 

background, indicative of an interaction.  However, Rht-B1a_160+Rht-D1b is 

present in only four lines and may be an unreliable estimate of the true mean.  

For the fitted means of the Rht-B1a insertion alleles, Rht-B1a_160 was 5 cm 

taller than Rht-B1a_197 (NSD). 

 

For GA sensitivity, the effects of Rht-B1 alleles were estimated across the 

Rht-D1 loci (Table 6.7C).  Similar to plant height, the GA treatment difference 

associated with Rht-B1b was significantly lower (p < 0.05) than each of the 

Rht-B1a alleles, with reductions ranging from 9.4 to 12.3 cm.  Comparing 

fitted means, a reduced GA treatment difference is associated with Rht-

B1a_160 (-2.9 mm; -17%) and Rht-B1a_197 (-1.0 mm; -6%) relative to Rht-

B1a_0; however these differences were NSD.  When comparing among the 

Rht-B1a alleles, Rht-B1a_197 has the smallest mean GA treatment difference 

in the Rht-D1a background and the largest mean GA treatment difference in 

the Rht-D1b background, which indicates an interaction. 

 

6.3.6.3. RHT*Ppd-D1 REML and means analysis 

 

A means analysis was performed to estimate the changes in heading date, 

plant height, and GA treatment difference associated with Rht-B1+Rht-D1 

semi-dwarf allele combinations in differing Ppd-D1 backgrounds (Table 6.8).  

In this analysis, Rht-B1a allelic classes were combined due to the small 

effects of the insertions relative to Rht-B1b.  Accessions with the Ppd-D1a 

allele had a fitted mean heading date that was 6.6 days earlier than 

accessions with the Ppd-D1b allele (SD, using an LSD threshold of p < 0.05).  

In contrast, there was only a 1.6 day range in heading dates among the Rht-1 

genotype classes when comparing fitted means.  The six accessions that did 

not amplify a PCR product using the Ppd-D1 primers had a mean heading 

date of 142.2 days and the accession (INRA_13812) that amplified a 450 bp 

product had a mean heading date of 142 days.  These heading dates are 

similar to the fitted mean heading date of Ppd-D1b (142.3 days). 
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Table 6.8.  Gentoypic effects of Rht-1 and Ppd-D1 alleles on heading date (A), plant 

height (B), and GA treatment difference (C) among INRA BWCC accessions. 

 
a
 Days from January 1. The numbers of accessions possessing each genotypic combination 

are indicated in parentheses. 

b
 Fitted mean refers to the average effect associated with an allele across genotypes. 

c
 Significant differences are based on an LSD with a probability threshold of 0.05.  Direction of 

significance is shown with by > or <. 

d
 Mean GA treatment difference (trt diff) refers to the increase in seed-to-first-ligule (STFL) 

length of the GA+ treatment minus the GA- treatment. 

 

For plant height, the Rht-B1a+Rht-D1a combination was taller than all other 

Rht-1 genotype classes in both Ppd-D1 backgrounds (Table 6.8B).  The fitted 

means of Rht-B1a+Rht-D1a accessions were 34.9 (SD), 33.3 (SD), and 61.1 

(SD) cm taller than the fitted means of Rht-B1a+Rht-D1b, Rht-B1b+Rht-D1a, 

and Rht-B1b+Rht-D1b, respectively.  Similarly, accessions with the Rht-

B1b+Rht-D1b alleles were shorter than all other Rht-1 genotype classes 

regardless of Ppd-D1 background.  The fitted means of Rht-B1b+Rht-D1b 

accessions were 27.8 cm (SD) and 26.2 cm (SD) shorter than Rht-B1a+Rht-

A) MEAN DAYS TO HEADINGa

Ppd-D1a Ppd-D1b

Fitted 

meanb

Fitted means significantly different at p 

≤ 0.05c

Rht-B1a+Rht-D1a 135.6 (46) 142.6 (226) 139.1

Rht-B1a+Rht-D1b 135.2 (19) 143.8 (17) 139.5

Rht-B1b+Rht-D1a 133.4 (19) 142.5 (16) 137.9

Rht-B1b+Rht-D1b 138.7 (6) 140.3 (3) 139.5

Fitted mean 135.7 142.3 Ppd-D1b >Ppd-D1a

B) MEAN PLANT HEIGHT (cm)

Ppd-D1a Ppd-D1b

Fitted 

mean

Fitted means significantly different at p 

≤ 0.05

Rht-B1a+Rht-D1a 119.6 (46) 148.8 (226) 134.2 Rht-B1a+Rht-D1a >all Rht-1  genotypes

Rht-B1a+Rht-D1b 100.7 (19) 97.8 (17) 99.3 Rht-B1a+Rht-D1b > Rht-B1b+Rht-D1b

Rht-B1b+Rht-D1a 98.8 (19) 103 (16) 100.9 Rht-B1b+Rht-D1a > Rht-B1b+Rht-D1b

Rht-B1b+Rht-D1b 70.3 (6) 75.8 (3) 73.1

Fitted mean 97.4 106.4 Ppd-D1b >Ppd-D1a

C) MEAN GA TRT DIFF (mm)d

Ppd-D1a Ppd-D1b

Fitted 

mean

Fitted means significantly different at p 

≤ 0.05

Rht-B1a+Rht-D1a 27.8 (46) 29.2 (226) 28.5 Rht-B1a+Rht-D1a >all Rht-1  genotypes

Rht-B1a+Rht-D1b 5.7 (19) 3.4 (17) 4.6 Rht-B1a+Rht-D1b < Rht-B1b+Rht-D1a

Rht-B1b+Rht-D1a 9.6 (19) 9.1 (16) 9.3 Rht-B1b+Rht-D1a > Rht-B1b+Rht-D1b

Rht-B1b+Rht-D1b 2.4 (6) -2.6 (3) -0.1

Fitted mean 11.4 9.8
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D1b and Rht-B1b+Rht-D1a accessions, respectively.  Comparing accessions 

with a single Rht-1b allele, the fitted mean plant height of Rht-B1b+Rht-D1a 

accessions was 1.6 cm (NSD) greater than that of Rht-B1a+Rht-D1b 

accessions.  Accessions with the Ppd-D1a allele showed a 9 cm reduction in 

plant height relative to Ppd-D1b accessions when comparing fitted means 

(SD).  However, a clear interaction with Rht-1 is evident as Ppd-D1a 

accessions are 29.2 cm shorter than Ppd-D1b accessions in the Rht-

B1a+Rht-D1a background, but in genetic backgrounds containing Rht-B1b 

and/or Rht-D1b, Ppd-D1a mean plant heights are from 5.5 cm shorter to 2.9 

cm taller than Ppd-D1b mean plant heights.   

 

For mean GA treatment difference, significant differences were found among 

Rht-1 genotypes but not between Ppd-D1 genotypes (Table 6.8C).  Rht-

B1a+Rht-D1a accessions were associated with an increased mean GA 

treatment difference in both Ppd-D1 backgrounds.  Comparing fitted means, 

Rht-B1a+Rht-D1a lines had increases in mean GA treatment difference of 

23.9 (SD), 19.2 (SD), and 28.6 (SD) mm relative to Rht-B1a+Rht-D1b, Rht-

B1b+Rht-D1a, and Rht-B1b+Rht-D1b, respectively.  The Rht-B1b+Rht-D1b 

accessions had lower mean GA treatment differences than all other Rht-1 

genotype classes in both Ppd-D1 backgrounds.  Comparing fitted means, GA 

treatment differences of Rht-B1b+Rht-D1b lines were 4.7 mm (NSD) less than 

Rht-B1a+Rht-D1b lines and 9.4 mm (SD) less than Rht-B1b+Rht-D1a lines.  

The fitted means of the Rht-B1b+Rht-D1a accessions were 4.7 (SD) mm 

greater than the fitted means of the Rht-B1a+Rht-D1b accessions. 

 

6.3.6.4. Rht-B1 and Ppd-D1 association analysis with adjustment for 

population structure (AA-PS) 

 

An association analysis that accounts for the effects of population structure 

(AA-PS) was performed using a kinship matrix based on genome-wide DArT 

and SSR markers (Table 6.9).  In the AA-PS, the primary effect of the 

presence / absence of each allele (Rht-B1b; Rht-B1a_160; Rht-B1a_197; Rht-

D1b; Ppd-D1a) on mean heading date, plant height, and GA treatment 

difference (GA expts. 1 and 2 only) was determined with a significance 
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threshold set at p = 0.001.  For heading date, only Ppd-D1a was significantly 

associated.  Plant height was found to be significantly associated with Rht-

B1b, Rht-D1b, and Ppd-D1a, but not with Rht-B1a_160 or Rht-B1a_197.  

Similarly, GA treatment difference was found to be associated with Rht-B1b, 

Rht-D1b, and Ppd-D1a, but not with Rht-B1a_160 or Rht-B1a_197. 

 

Table 6.9. Summary of the INRA BWCC association analysis with adjustment for 

population structure (AA-PS) 

 
a
 Heading date and plant heights recorded in Cambridge, UK.  GA treatment differences (GA 

trt. diff.) represent combined data from GA sensitivity expts 1 and 2. 

b
 Association is based on presence/absence of the indicated allele 

c
 NS = not significant at p < 0.001 

d
 R

2
 values are indicated only for associations with p < 0.001 

 

6.3.7. Phenotype and genotype analyses of INRA BWCC accession types 

 

To determine the effect of growth habit, varietal type (fixed or landrace), and 

year of registration of accessions on plant phenotype an additional REML 

analysis was performed and means separated using an LSD (probability 

threshold of 0.05) when more than two means were compared.  Growth habit 

did not significantly affect height or GA treatment difference, but did have a 

significant effect on heading date (Table 6.10A).  Accessions with a spring 

growth habit were associated with a 4.5 day delay (SD) relative to winter habit 

Traita Alleleb P valuec R²d

Rht-B1b 5.69E-22 0.228

Rht-B1a_160 NS

Rht-B1a_197 NS

Rht-D1b 1.2E-23 0.234

Ppd-D1a 1.1E-22 0.219

Rht-B1b 6.5E-27 0.274

Rht-B1a_160 NS

Rht-B1a_197 NS

Rht-D1b 2.5E-40 0.389

Ppd-D1a 1.8E-10 0.108

Rht-B1b NS

Rht-B1a_160 NS

Rht-B1a_197 NS

Rht-D1b NS

Ppd-D1a 1.1E-14 0.154

Heading 

date

GA trt. 

diff.

Plant 

height



 

202 
 

accessions and an 8.5 day delay (SD) relative to facultative habit accessions.  

However, these differences may relate to the later planting date (February 

2009) of the spring types relative to the winter and most facultative types 

(November 2008).  Delays in heading date were reported for controls from the 

February 2009 sowing relative to the November 2008 sowing (section 6.3.4.)  

The frequencies of Rht-B1b, Rht-D1b, and Ppd-D1a do not differ largely 

between the spring and winter accessions while the Rht-B1 insertion alleles 

are several-fold more frequent in the winter lines than in the spring lines. 

 

Table 6.10. Allelic composition, plant heights, and heading dates of INRA BWCC 

accessions by growth habit (A), varietal type (B) and year of registration (C) 

 
a
 Days from January 1.  sem = standard error of the mean 

A) Growth Habit

Habit No. mean sem mean sem mean sem

160bp 

ins

197bp 

ins

Rht-

B1b

Rht-

D1b

Ppd-

D1a

Facultative 10 135.4 1.4 134.7 9.9 22.1 4.5 0.00 0.20 0.30 0.00 0.40

Spring 115 143.9 1.6 130.3 7.9 24.7 1.1 0.04 0.05 0.10 0.14 0.23

Winter 227 139.4 1.4 134.6 9.1 23.4 0.8 0.23 0.15 0.13 0.13 0.26

B) Varietal Type

Type No. mean sem mean sem mean sem

160bp 

ins

197bp 

ins

Rht-

B1b

Rht-

D1b

Ppd-

D1a

Fixed 322 140.4 1.6 129.3 8.4 22.9 0.7 0.17 0.13 0.14 0.14 0.28

Landrace 46 143.2 1.6 161.5 6.9 30.5 1.2 0.09 0.00 0.00 0.00 0.00

C) Year of Registration

Period No. mean sem mean sem mean sem

160bp 

ins

197bp 

ins

Rht-

B1b

Rht-

D1b

Ppd-

D1a

1) 1800-99 9 145.6 2.8 154.6 7.1 28.0 1.6 0.56 0.11 0.00 0.00 0.11

2) 1900-19 10 145.8 2.2 161.0 5.0 33.2 2.0 0.20 0.00 0.00 0.00 0.00

3) 1920-39 37 144.9 1.9 154.8 4.1 28.6 1.1 0.14 0.03 0.00 0.00 0.08

4) 1940-59 32 142.8 0.9 135.1 3.6 27.8 1.9 0.19 0.13 0.03 0.03 0.09

5) 1960-79 55 140.4 1.1 121.1 3.5 20.5 1.9 0.16 0.20 0.11 0.25 0.36

6) 1980-99 49 139.4 1.0 107.7 3.1 17.4 1.8 0.16 0.14 0.37 0.22 0.43

3>5,6

4>5,6

Sig. Diff. (p<.05)d

Sig.Diff. (p<.05)

Sig.Diff. (p<.05)

3>5,6

1>4,5,6

2>4,5,6

3>4,5,6

4>5,6

5>6

L>F L>F L>F

GA trt diff 

(mm)

1>6

2>6

1>6

2>5,6

Days to 

heading Allele Frequency

Accessions Height (cm)

Days to 

headinga Allele Frequencyc

Accessions Height (cm)

Days to 

heading Allele Frequency

Accessions Height (cm)

GA trt diff 

(mm)b

NSNSS>I,W

GA trt diff 

(mm)
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b
 GA trt diff = Difference in STFL length between the GA+ and GA- treatments among 

accessions averaged across all three GA experiments. 

c
 Allele frequency indicates proportion of lines that are homozygous for the allele shown.   

d
 Any significant differences (Sig. Diff. p ≤ 0.05) are shown for each phenotype or NS is 

indicated if no significant difference exists.  In box A, S = Spring, I = Indeterminate, W= 

Winter.  In box B, L = landrace and F = fixed.  In box 3, the registration period is indicated by 

a number from 1 to 6 as assigned above. 

 

The effects of varietal type were statistically significant for heading date, plant 

height, and GA treatment difference (Table 6.10B).  The average days to 

heading were 143.2 for landraces and 140.4 days for fixed varieties.  The 

reduction in days to heading in the fixed varieties relative to landraces 

coincides with an increased prevalence of the early-flowering Ppd-D1a allele, 

which occurs in 28% of the fixed lines, but none of the landraces.  The mean 

height of the landraces was 161.5 cm while the fixed lines averaged only 

129.3 cm.  Reduced height in the fixed lines relative to landraces coincides 

with greater prevalence of Rht-B1b (0.14) and Rht-D1b (0.14) in fixed lines 

than in landraces where neither allele was detected.  Rht-B1a_197 bp was 

present in 13% of the fixed lines and was not detected in the landraces.  Rht-

B1a_160 was present in 17% of the fixed lines and is the only allele among 

this group of five that was also detected in the landraces (freq. = 0.09). 

 

For the 200 INRA BWCC accessions for which the year of varietal registration 

was available, REML analysis indicated that the period in which a variety was 

released had a significant effect on heading date, plant height, and GA 

treatment difference (Table 6.10C).  A trend over time towards reduced days 

to heading, reduced plant height and reduced GA treatment difference was 

evident, along with an increased prevalence of Rht-B1b, Rht-D1b, and Ppd-

D1a (Table 6.10).  Mean heading dates of accessions released from 1980-

1999 were 5.5 to 6.4 days earlier (SD) than those released in the time periods 

prior to 1940 (1800-99, 1900-19, and 1920-39).  Mean heading date of the 

period 1960-1979 was also significantly earlier than 1920-39.  Associated with 

time periods that have earlier heading dates is an increased prevalence of 

Ppd-D1a.  In the periods 1960-79 and 1980-99, Ppd-D1a frequencies were 

0.36 and 0.43, respectively, while in the time periods before 1940 Ppd-D1a 
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frequency ranged from 0 to 0.11.  Mean plant height in the period 1980-1999 

(107.7 cm) was significantly shorter than in any other time period.  Similarly, 

mean plant height from 1960-79 (121.1 cm) was significantly shorter than in 

the preceding time periods, and mean plant height from 1940-1959 (135.1 

cm) was also significantly reduced relative to preceding periods.  GA 

treatment difference was significantly less in the periods 1960-1979 and 1980-

99 relative to 1900-19, 1920-39, and 1940-59 and significantly less in 1980-99 

relative to 1800-99.  Reduced plant height and reduced GA treatment 

differences are associated with increased usage of the Rht-B1b and Rht-D1b 

alleles, which were not present in any variety released before 1940 and had 

increasing prevalence in the time periods following 1940.  However, in the 

time frame 1940-59, only two of 32 accessions contained one of these alleles, 

yet plant heights were significantly shorter than in the preceding time periods.  

For the Rht-B1 insertions, no clear trend in prevalence with time period of 

registration is apparent.  The 160 bp insertion was most prevalent in the 

1800‟s (five of nine lines, 0.56 frequency) and following that time frame, the 

frequency of lines containing this allele in any 20-year time span ranged from 

0.14 to 0.20.  The 197 bp insertion was most frequent (0.20) in accessions 

registered between 1960 and 1979 and least frequent (0.0) from 1900-1919. 

 

6.3.8. Correlations among height, GA sensitivity, and ear emergences of 

the INRA BWCC 

 

Correlation analyses among plant height, GA treatment difference, and 

heading date of accessions revealed the highest correlation among these 

three phenotypes is between plant height and GA treatment difference (R2 = 

0.338 (Figure 6.8).  Short heights and small GA treatment differences are 

most frequently represented in accessions with the Rht-B1b or Rht-D1b allele 

(Figure 6.8A).  In comparison, the correlations between heading date and GA 

treatment difference (R2 = 0.010) (Figure 6.8B) and between heading date 

and plant height (R2 = 0.033) (Figure 6.8C) were much lower. 
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Figure 6.8.  Correlations between plant phenotypes among INRA BWCC accessions.  

Correlations were made between plant height and GA treatment difference (A), days to 

heading and GA treatment difference (B), and plant height and days to heading (C) for the 

INRA BWCC accessions.  Each point represents the mean of an accession.  Rht WT = 

Accessions with the Rht-B1a+Rht-D1a genotype; Rht SD = accessions with a semi-dwarfing 

allele (Rht-B1b and/or Rht-D1b); Ppd-D1b = accessions containing the Ppd-D1b allele; Ppd-

D1a = accessions containing the Ppd-D1a allele. 
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6.4. DISCUSSION 

 

6.4.1. Rht-1 and Ppd-D1 allelic prevalence in the INRA BWCC 

 

Approximately 23% of the 368 INRA BWCC accessions contained either Rht-

B1b and/or Rht-D1b with Rht-B1b occurring in 12.2% and Rht-D1b occurring 

in 12.8% of the accessions (2.4% contained both alleles) (Table 6.2).  In 67 

wheat varieties from 20 countries held in the Institute of Field and Vegetable 

Crops, Novi Sad, core collection, Rht-B1b occurred in 58% of the accessions 

and Rht-D1b in 22% of the accessions (Tosovic-Maric, 2008).  Other studies 

have examined prevalence of these alleles in geographically restricted sets of 

accessions, which vary widely in the occurrence of these alleles: in 220 

autumn-sown Chinese wheats, Rht-B1b and Rht-D1b were present in 25% 

and 46% of the varieties, respectively (Zhang et al. 2006); in 57 Czech 

varieties, Rht-B1b and Rht-D1b were present in 11% and 25% of the varieties, 

respectively (Chrpova et al., 2003); in 105 Serbian wheats, Rht-B1b and Rht-

D1b were present in 29% and 22% of the germplasm, respectively (Tosovic-

Maric, 2008); in 95 winter wheat varieties registered in Germany in 2004, Rht-

B1b and Rht-D1b were present in 6% and 38% of varieties, respectively 

(Knopf et al., 2008); in 216 CIMMYT wheats, Rht-B1b and Rht-D1b were 

present in 82% and 14% of the accessions, respectively (Dan et al., 2009).  

The relatively low occurrence of Rht-B1b and Rht-D1b in the INRA BWCC is 

likely due to a high proportion of accessions that pre-date the widespread use 

of the Rht-1 semi-dwarfing alleles (beginning in the 1960s).  The increased 

usage of semi-dwarf alleles over time is evident in the collection as Rht-B1b 

and Rht-D1b were not present in any fixed line released before 1947 or in any 

landrace while nearly 60% of the INRA BWCC varieties released between 

1980 and 1999 contained one of these alleles (Table 6.10).  Although Rht-B1b 

and Rht-D1b were not present in INRA BWCC fixed lines released prior to 

1947 or lNRA BWCC landraces, both alleles are present in Japanese 

landraces (Yamada 1990) and are supposedly derived from the Japanese 

landrace „Daruma‟, which was present as early as 1894 (Kihara, 1983). 

 

Among the INRA BWCC accessions, the frequencies of Rht-B1a_160 (16.0%) 
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and Rht-B1a_197 (11.7%) are similar to the frequencies of the Rht-B1b and 

Rht-D1b (Table 6.2).  Both insertions are found in several geographical 

regions (Table 6.3) and can be found in wheat accessions registered prior to 

1900 (Table 6.10).  The 160 bp insertion is present in five of the nine fixed 

lines released prior to 1900 (the earliest being released in 1830) and in four 

landraces (three from France and one from Nepal).  The 197 bp allele was 

found in a single fixed line released prior to 1900 and was not present in any 

landraces.  However, as reported in Chapter 5, this insertion was present in 

accessions of T. dicoccoides and T. dicoccum and the sequence has high 

homology to collinear regions on the A and D genomes of bread wheat 

indicating that the presence of the 197 bp sequence is the ancestral condition. 

 

The primer pairs used to screen for the Rht-B1 and Rht-D1 alleles did not 

clearly identify any alternative alleles in the 368 INRA BWCC accessions.  

However, a polymorphism would not be easily recognised unless it prevented 

primer annealing or was a large indel that could be visualised on an agarose 

gel.  In the case of lines containing Rht-B1c, no product was amplified with 

either the Rht-B1a or Rht-B1b primer pair (Table 6.1).  The Rht-B1c allele has 

recently been sequenced and a > 2 kb insertion is thought to exist in the 

DELLA domain (Wu et al., 2011), which is in the region that would be 

amplified by the Rht-B1a or Rht-B1b primer pair.  The increased product size 

is the likely cause of the PCR amplification failure as the 30 s extension time 

used may be insufficient to amplify a > 2 kb product.  Not surprisingly, the 

dwarf alleles Rht-B1d, Rht-B1e, and Rht-D1c from the control set were not 

identified using the Rht-B1a/b or Rht-D1a/b primer pairs.  The inability of 

primers designed to the Rht-B1a/b or Rht-D1a/b SNPs to identify these alleles 

was also reported by Pestsova et al. (2008) when using Rht-B1a/b and Rht-

D1a/b primers from Ellis et al. (2002). 

 

The photoperiod insensitive Ppd-D1a allele was present in 25.8% of the 

accessions (Table 6.2) and was found in geographical regions worldwide 

except for Northern European nations (Table 6.3).  In an examination of 485 

lines from the GEDIFLUX collection of European bread wheats released 

between 1940 and 2000, the Ppd-D1a allele was present in only 5% of the 
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accessions and was rarely found in Northern European wheats (Wilhelm, 

2007).  The Ppd-D1a allele is most suited to growing seasons that are shorter 

than those found in Northern Europe (Worland et al., 1998), which explains its 

absence in this region.  Looking only at accessions originating from France (a 

central / southern European nation), Ppd-D1a occurred in 24% of the INRA 

BWCC accessions, which is similar to the percentage (30%) reported for 

French accessions in the GEDIFLUX collection (Wilhelm, 2007).  In the INRA 

BWCC, Ppd-D1a was most prevalent in the period 1980-1999 (43% of the 

varieties) (Table 6.10), but was also present in a variety (INRA_14011) 

registered as early as 1899.   

 

In addition to the Ppd-D1a and Ppd-D1b alleles, which result in 297 bp and 

414 bp products, respectively, with the Ppd-D1 primers designed by Beales et 

al. (2007), an approximately 450 bp product was amplified from the synthetic 

line „W7984‟ (INRA_13812).  Guo et al. (2010) amplified a 453 bp product with 

the same Ppd-D1 primers using DNA extracted from synthetic wheat and Ae. 

tauschii accessions.  The similar product sizes, and Ae. tauschii origins of the 

two alleles, indicate that these are likely the same allele.  The larger size of 

the 453 bp product relative to the 414 bp Ppd-D1b product results from 24 bp 

and 15 bp insertions that are separated by 105 bp (Guo et al., 2010).  For 

three fixed lines and three landraces from the INRA BWCC, no product was 

amplified using the Ppd-D1 primers even though multiple DNA replicates 

known to amplify products with other primers were used. The data suggest a 

previously unidentified polymorphism upstream of Ppd-D1, which may have 

originated near the Black Sea as the landraces carrying this apparent allele 

were from Azerbaijan, Georgia, and Turkey. 

 

6.4.2. Genotype-Phenotype associations in the INRA BWCC 

 

For heading date, the Ppd-D1 locus accounts for the majority of the genotype 

variation in the Rht-B1.Rht-D1.Ppd-D1 REML analysis, but the effect of Rht-

B1 is also significant (p = 0.023).  In the AA-PS, only Ppd-D1 was associated 

with heading date (Table 6.9).  Ear emergence of Ppd-D1a plants was an 

average of 6.6 days earlier than Ppd-D1b plants (Table 6.8).  Similarly, 
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Worland et al (1988) reported that Ppd-D1a generally accelerates ear 

emergence by six to eight days in the UK.  In the GEDIFLUX bread wheat 

collection, Wilhelm (2007) reported that heading date of Ppd-D1a accessions 

was an average of eight days earlier than lines containing Ppd-D1b when 

grown in the UK.  At the Rht-B1 locus, Rht-B1a_160 accessions in the INRA 

BWCC had significantly later heading dates (2.9 days) than Rht-B1a_0 

accessions.  The cause of this association is not clear, but may be related to 

population structure, which was not accounted for in the means comparisons.  

A lack of association of Rht-B1b and Rht-D1b with heading date agrees with 

previous observations (J. Flintham, pers. comm.). 

 

Changes in plant height in the Rht-B1.Rht-D1.Ppd-D1 REML mixed model 

were associated with the Rht-B1, Rht-D1, and Ppd-D1 loci (F pr values for all 

loci < 0.001) with most of the variation associated with the Rht-1 loci (Table 

6.6B).  All three loci were also found to be highly associated (p values both 

less than 5.7 x 10-22) with changes in plant height in the AA-PS (Table 6.9).  

The greatest changes in mean plant height were associated with the Rht-B1b 

and Rht-D1b alleles (Table 6.8B).  The mean plant heights of Rht-B1a+Rht-

D1b, Rht-B1b+Rht-D1a, and Rht-B1b+Rht-D1b accessions were 74% (34.9 

cm shorter), 75% (33.3 cm shorter), and 54% (61.1 cm shorter), respectively, 

that of the Rht-B1a+Rht-D1a accessions (Table 6.8B).  The reductions in 

height due to the Rht-1 semi-dwarf alleles is slightly greater than reported by 

Flintham et al. (1997) using NIL comparisons (% heights of Rht-B1a+Rht-D1a: 

Rht-B1a+Rht-D1b, 83%; Rht-B1b+Rht-D1a, 86%; Rht-B1b+Rht-D1b, 58%), 

but with the same rank.  The larger effect of the semi-dwarf alleles in the 

INRA BWCC collection may be partially due to the inclusion of germplasm that 

pre-dates the widespread use of Rht-B1b and Rht-D1b.  This older 

germplasm would be expected to contain fewer secondary height-reducing 

alleles than modern germplasm, thereby exaggerating the effects of these 

alleles.  The presence of additional alleles affecting height in the more 

recently released INRA BWCC lines is suggested by the significantly shorter 

mean plant height in the years 1940-59 relative to preceding time periods 

even though only two of the 32 accessions released between 1940-59 

contained Rht-B1b or Rht-D1b.  Changes in plant height associated with the 
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Rht-B1 insertion alleles were less pronounced, but still present in the Rht-B1 

means analysis.  Mean plant heights of Rht-B1a_160 and Rht-B1a_197 

accessions were 92% (9.7 cm shorter) and 88% (14.7 cm shorter) the height 

of Rht-B1a_0 accessions.  The Rht-B1a_197 height reduction was significant 

at p < 0.05 (Table 6.7B).  In the AA-PS, the effects of these alleles were not 

significant (Table 6.9), although the probability threshold (p < 0.001) was 

greater.  Also, the AA-PS did not include Rht-B1b, Rht-D1b, or Ppd-D1 

genotype information and the strong effects of these alleles may have masked 

weaker effects on plant height. 

 

Accessions containing Ppd-D1a have plant heights that are 92% (9 cm 

shorter) that of Ppd-D1b accessions when averaged over the four Rht-

B1+Rht-D1 genotype groups (Table 6.8B).  However, the Rht-B1*Rht-

D1*Ppd-D1 REML analysis indicates that a significant interaction of Ppd-D1 

with Rht-B1 (F pr < 0.001) and a nearly significant interaction with Rht-D1 (F 

pr = 0.084) are present (Table 6.6).  Height changes associated with Ppd-D1 

are by far the greatest in the Rht-B1a+Rht-D1a background, where Ppd-D1a 

accessions are on average 80% the height (29.2 cm shorter) of Ppd-D1b 

accessions.  In backgrounds containing Rht-B1b and/or Rht-D1b, Ppd-D1a 

accessions have mean plant heights that are 93% (5.5 cm reduction) to 103% 

(2.9 cm increase) the mean plant heights of Ppd-D1b accessions.  The cause 

of the interaction is not clear and is further complicated by a close linkage of 

Ppd-D1a with the semi-dwarf allele Rht8 (approximate 21-22 cM separation 

(Worland et al., 1998; Gasperini, 2010)) and a shared ancestry, at least in 

European varieties, that is traced back to the Japanese variety Akakomugi 

(Giorgi et al., 1982; Worland, 1999).  Accessions with the Ppd-D1a allele (and 

therefore also likely to contain Rht8) in the Rht-B1a+Rht-D1a background had 

a greater height reduction here than in Cappelle-Desprez (Rht-B1a+Rht-D1a 

background)/Mara 2D substitution RILs where height reductions of 18 cm 

(Worland et al., 1998) and 16 cm (15%) (Gasperini, 2010) were reported.  The 

greater height reduction associated with Ppd-D1a in the Rht-B1a+Rht-D1a 

background reported here may, as described above, be caused by additional 

height genes present among INRA BWCC accessions or may result from 

population structure. 
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Changes in GA treatment difference (a measure of GA sensitivity) in the Rht-

B1*Rht-D1*Ppd-D1 REML were associated with Rht-B1 and Rht-D1, but not 

with Ppd-D1 (Table 6.6C).  As with plant height, the greatest changes in GA 

treatment difference were associated with the Rht-B1b and Rht-D1b 

genotypes (Tables 6.7C; 6.8C).  Both alleles were also associated with GA 

treatment difference in the AA-PS (Table 6.9).  INRA BWCC accessions with 

the Rht-B1a+Rht-D1a alleles had a significantly (p < 0.05) greater mean GA 

treatment difference (28.5 mm) than accessions with the Rht-B1b+Rht-D1a 

(9.6 mm), Rht-B1a+Rht-D1b (4.7 mm), or Rht-B1b+Rht-D1b (-0.1 mm) 

genotype.  The slight response to GA present in the Rht-B1b+Rht-D1a and 

Rht-B1a+Rht-D1b accessions was also reported by Yamada (1990) and 

indicates that varieties containing a single Rht-1 semi-dwarf allele are partially 

sensitive to GA.  Interestingly, the Rht-B1b+Rht-D1a mean GA treatment 

difference was significantly greater (p < 0.05) than that of Rht-B1a+Rht-D1b in 

the means analysis.  A greater GA response in Rht-B1b+Rht-D1a wheat 

accessions relative to Rht-B1a+Rht-D1b accessions was also reported by 

Yamada (1990) in Japanese fixed lines and landraces.  The increased GA 

sensitivity and plant height associated with Rht-D1b relative to Rht-B1b 

suggests that the effect associated with Rht-B1b may be slightly less potent 

than that associated with Rht-D1b.  Rht-B1a_160 and Rht-B1a_197 were 

associated with a slight reduction (2.9 mm and 1.0 mm, respectively) in GA 

treatment difference relative to Rht-B1a_0.  However, none of these 

differences were significant at p < 0.05 (Table 6.7C).  Neither insertion allele 

was associated at p < 0.001 with GA treatment difference in the AA-PS (Table 

6.9).   

 

Although the variation in GA treatment difference associated with Ppd-D1 was 

very small and not statistically significant in the REML analysis (Table 6.6), 

the effect was found to be highly significant (1.8 x 10-10) in the AA-PS.   This is 

surprising because accounting for population structure generally reduces the 

statistical significance of associations (I Mackay, NIAB, pers. comm.) and the 

Ppd-D1 and Rht8 loci are generally not associated with GA insensitivity.  The 

direction (increase or decrease) of the effect of the Ppd-D1a allele on GA 
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sensitivity is not clear.  In the Rht-B1a+Rht-D1a background, the mean GA 

treatment difference associated with Ppd-D1a is 1.4 mm less than that 

associated with Ppd-D1b while in backgrounds containing Rht-B1b and/or 

Rht-D1b, Ppd-D1a is associated with an increased GA treatment difference 

(0.5 to 5.0 mm) relative to Ppd-D1b (Table 6.8C).  As discussed above, the 

AA-PS does not directly account for the Rht-B1 or Rht-D1 loci.  This is likely to 

be an important consideration as 49% (44 of 90) of the Ppd-D1a accessions 

contain Rht-B1b and/or Rht-D1b whereas only 14% (36 of 262) of the Ppd-

D1b accessions contain Rht-B1b and/or Rht-D1b. 

 

In summary of the association analyses, Rht-B1b and Rht-D1b were 

significantly associated with reduced plant height, reduced GA sensitivity, and 

not associated with significant changes in heading date in either the Rht-

B1*Rht-D1*Ppd-D1 REML analysis or the AA-PS analysis.  Rht-B1a_160 and 

Rht-B1a_197 were not associated with changes in height, GA sensitivity or 

heading date in the AA-PS.  In the Rht-B1*Rht-D1*Ppd-D1 REML analysis, 

however, Rht-B1a_160 and Rht-B1a_197 were associated with reduced plant 

height, reduced GA sensitivity, and later ear emergence relative to Rht-B1a_0 

when comparing fitted means.  These effects were not significant at a 

probability threshold of 0.05 except for plant height (Rht-B1a_197 > Rht-

B1a_0) and heading date (Rht-B1a_160 was later than Rht-B1a_0), 

suggesting that if a real effect exists, it may be small.  Ppd-D1a was 

significantly associated with earlier ear emergence and reduced height in the 

Rht-B1*Rht-D1*Ppd-D1 REML and AA-PS analyses.  An association of Ppd-

D1a with GA sensitivity did not occur in the Rht-B1*Rht-D1*Ppd-D1 REML 

analysis, but was present in the AA-PS analysis, although it is not clear if Ppd-

D1a increased or decreased GA sensitivity. 

 

6.4.3. Correlations among phenotypes in the INRA BWCC 

 

The plant heights of the individual accessions ranged from 54 to 200.5 cm 

(mean of 133 cm) and heading dates ranged from 116 to 185 days (mean of 

141 days).  When the INRA BWCC accessions were grown in Clermont-

Ferrand by Bordes et al. (2008), plant heights ranged from 49 to 150 cm 
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(mean of 94 cm) and ear emergence dates ranged from 127 to 160 days 

(mean of 140 days).  UK heading dates were likely measured at an earlier 

stage than in France as ear emergence in France was recorded as the date 

(from January 1) when spikes had emerged from 50% of the tillers (Bordes et 

al., 2008) and UK heading dates were recorded as the date when 50% of the 

primary spike was visible above the flag leaf.  Nonetheless, the mean heading 

dates are fairly similar, while mean plant heights between the two locations 

are very different.  Height difference could be attributed to differences in 

growth conditions as plants in the UK were grown in pots and irrigated while 

being grown in the soil without irrigation in France. 

 

When correlations between plant phenotypes recorded in this study were 

estimated, not surprisingly the strongest correlation was between GA 

treatment difference and plant height (R2 = 0.338; Figure 6.8).  Correlations 

between plant height and heading date were low (R2 = 0.033).  In contrast, 

Bordes et al (2008) reported R2 values of 0.33 between ear emergence and 

plant height when the INRA BWCC was grown in France.  The differences 

may relate to the different growing conditions used as described above.  In 

another study that looked at the correlation between plant height and 

flowering date in European winter wheat landraces and obsolete cultivars 

grown in Prague-Ruzyně, Czech Republic, Dotlacil et al. (2003) estimated an 

R2 value of 0.036, similar to that reported here.  UK heading date and GA 

treatment difference were only weakly correlated (R2 = 0.010), suggesting that 

GA sensitivity has little effect on heading date in the UK. 

 

6.4.4. GA sensitivities among INRA BWCC accessions 

 

The MM procedure, which was based solely on the GA+ treatment, is similar 

to the scoring methods employed by Gale and Gregory (1977), which were 

used to classify GA-treated seedlings based on length distribution.  For the 

Rht-B1a+Rht-D1a accessions, the MM procedure only identified one 

accession (INRA_03752, „IAR W83-2‟) as GA insensitive (Table 6.5).  This 

accession was classified as GA insensitive in GA expt. 2 due to a non-

significant (p < 0.05) treatment difference, but in GA expt. 1 and 3, this line 



 

214 
 

was classified as GA sensitive as the treatment differences were much 

greater.  It is not clear why the treatment differences varied between 

experiments for this accession.  The LSD test, based on GA treatment 

differences, identified 29 Rht-B1a+Rht-D1a as NSTD (no significant treatment 

difference, an indicator of GA insensitivity) in GA expt. 1.  However, GA expts. 

2 and 3 showed 28 of these accessions to be GA sensitive based on the LSD 

test and the 29th accession was not re-tested due to poor germination.   

 

Among INRA BWCC accessions containing Rht-B1b or Rht-D1b, the MM 

procedure correctly identified these as GA insensitive in the majority of cases 

(64% of the time across GA experiments) and more importantly, in only three 

instances of 142 (2%) incorrectly identified these accessions as GA sensitive 

(Table 6.5).  For the LSD test, INRA BWCC accessions containing Rht-B1b or 

Rht-D1b were incorrectly identified as GA sensitive in 17 instances of 142 

(12%) and classification of accessions as GA insensitive was not possible.  

These results indicate that the MM procedure had a greater success rate in 

correctly classifying GAI accessions than the LSD procedure.  In addition, the 

MM procedure only requires the use of a GA+ treatment whereas the LSD 

requires a GA+ and GA- treatment.  However, GAI accessions that have long 

STFL lengths in the GA+ treatment (due to genetic background) would be 

more difficult to detect with the MM. 

 

These results indicate that there may not be additional GA insensitive alleles 

in the INRA BWCC, or if present they are more responsive to GA than Rht-

B1b, Rht-D1b, or Rht-B1c. An example of a more responsive GAI allele is 

Rht-B1d, which when treated with GA has seedling lengths shorter than wild 

type and longer than Rht-B1b or Rht-D1b seedlings (Worland, 1986).  

Intermediate GA responders might be difficult to detect in this collection due to 

the heterogeneity of genetic backgrounds or due to experimental conditions.  

Based on mean values from the three GA expts., 42 Rht-B1a+Rht-D1a 

accessions fall within the range of GA treatment differences found among 

accessions with the Rht-B1b or Rht-D1b allele (20.8 mm or less; Appendix 

VI), suggesting that intermediate GA sensitivity alleles may exist at the Rht-1 

loci. 
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Part of the objective of the GA screen was to identify a GAI allele at the Rht-

A1 locus, at which no alleles affecting height are as of yet known.  In contrast, 

several spontaneous GAI mutants exist at the Rht-B1 and Rht-D1 loci (listed 

in Table 1.2).  The absence of GAI alleles at the Rht-A1 locus in the BWCC 

and the low level of Rht-A1 genetic diversity among the bread wheat 

accessions studied in Chapter 5, suggest that alterations at this locus may be 

detrimental to wheat survival.   

 

6.4.5. Conclusions 

 

Overall, although no novel GAI alleles were clearly detected in the INRA 

BWCC, valuable information was gained regarding GA sensitivity testing and 

analyses, which can be employed in searches of other germplasm sets for 

GAI alleles.  Association analyses of the Rht-B1 insertions indicates these 

alleles may have a minor effect on GA sensitivity and plant height, suggesting 

the need for further study of the insertion haplotypes.  In addition, genotyping 

of the INRA BWCC accessions for the Rht-B1 insertions, Ppd-D1, Rht-B1, 

and Rht-D1 along with phenotyping for plant height, GA response, and 

flowering date increases knowledge of the INRA BWCC set, which may help 

identify intermediate GAI alleles and will be useful for utilising this collection in 

other genetic studies. 
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7. ORIGINS OF THE RHT-B1B AND RHT-D1B ALLELES 

 

7.1 INTRODUCTION 

 

The predominant sources of semi-dwarfism in modern wheat varieties are the 

Rht-B1b and Rht-D1b alleles with an estimated 70% of the wheat acreage 

planted with varieties carrying one of these alleles (Evans, 1998).  The 

primary source of both of these mutant alleles is the line „Norin 10‟ (Gale and 

Youssefian, 1985; Dalrymple, 1986), which originated in Southeast Asia.  

„Norin 10‟ was introduced to the Western world by S.C. Salmon, a USDA 

advisor to the army in Japan, who noticed the stiff, short-stemmed variety and 

sent it to the USA (Reitz and Salmon, 1968).  Orville Vogel, a breeder at 

Washington State University, crossed „Norin 10‟ to a U.S. adapted variety 

„Brevor‟.  Progeny of the „Norin 10‟ × „Brevor‟ cross, particularly selection 14, 

became the primary donors of semi-dwarf alleles in U.S. wheat varieties 

(Dalyrmple, 1986).  Norman Borlaug at the International Maize and Wheat 

Improvement Centre (CIMMYT) in Mexico received selections of „Norin 

10/Brevor‟ and incorporated the semi-dwarf trait into Mexican wheat varieties, 

which were soon utilised globally as part of the „green revolution‟.  In addition 

to „Norin 10‟, relatively minor sources of semi-dwarfism have also been used, 

including „Suweon (also referred to as „Suwon‟) 92‟ and „Seu Seun 27‟ (Allan 

et al., 1968).  „Seu Seun 27‟, was the apparent semi-dwarf donor for several 

U.S. varieties in the 1960s and 1970s and 'Suweon 92‟ had more limited use 

(Dalrymple 1980). 

 

„Norin 10‟, „Seu Seun 27‟, and „Suweon 92‟ are thought to have in common 

the ancestor „Daruma‟, believed to have been the donor of Rht-B1b and Rht-

D1b (Dalrymple, 1980; Kihara, 1983; Dalrymple, 1986).  The history of 

„Daruma‟, a landrace (Worland, 1986; Yamada, 1990), dates back to as early 

1894 where it was recorded as a control variety in wheat performance trials in 

Japan (Kihara, 1983).  The origin of semi-dwarfism in „Daruma‟ is not clear 

and may have arisen by spontaneous mutation in Japanese wheat 

populations or may have arisen in China or Korea (Kihara, 1983).  It was 

suggested by Cho et al. (1980), that „Daruma‟ is derived from the native 
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Korean wheat „Anzunbaengimil‟ or ‟Nanjangmil‟ “crippled wheat”, existing in 

the 3rd or 4th century AD before being introduced to Japan during the 16th 

century Korean-Japanese War.   

 

The lineage from „Daruma‟ to „Norin 10‟ as reported by Dalrymple (1980), 

Kihara (1983), and Dalrymple (1986) is shown in Figure 7.1.  „Daruma‟ or a 

white variant called „Shiro-Daruma‟ was crossed with „Glassy Fultz‟ (a variant 

of the American variety „Fultz‟) in 1917 in Japan to produce „Fultz-Daruma‟.  In 

1925, „Fultz Daruma‟ was crossed with „Turkey Red‟ (which was widely grown 

in the USA in the early 20th century and often referred to as „Turkey‟) to 

produce „Tohuku‟ selection number 34, better known as „Norin 10‟, which was 

registered and released in 1935 in Japan.  Figure 7.1 also shows the lineage 

from „Daruma‟ to „Suweon 92‟ and „Seu Seun 27‟ as described by Dalrymple 

(1980), Kihara (1983), and Dalrymple (1986).  A red variant of „Daruma‟ („Aka-

Daruma‟) was crossed to „Glassy Fultz‟ to produce the line „Aka-

Daruma/Glassy Fultz‟ in Japan with year unknown. This line was crossed to 

„Kanred‟ (a line originally selected from „Crimean‟, a strain of „Turkey Red‟) in 

Japan and F3 seeds exported to Korea where „Suweon 85‟ was released in 

1932.  „Suweon 85‟ was then crossed to „Suweon 13‟ to produce „Suweon 92‟ 

and „Suweon 90‟, which were both released in 1934 in Korea.  „Shiroboro‟, a 

Japanese variety, was crossed to „Suweon 90‟ to produce „Seu Seun 27‟, 

which was used as a breeding line. 
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Figure 7.1.  Origins of Rht-B1b and Rht-D1b. The genealogy from „Daruma‟ to „Norin 

10/Brevor-14‟, „Suweon 92‟, and „Seu Seun 27‟ are shown according to Dalrymple (1986) and 

Kihara (1983).  The dashed line (x?) indicates that „Daruma‟, instead of „Shiro-Daruma‟ may 

be a parent of „Fultz Daruma‟.  The country where breeding was performed is shown in italics 

above that section of the chart.  The year crosses were performed is shown in parenthesis 

and year of varietal release is shown in bold font if known.   

 

The objective of this chapter is to use molecular techniques to confirm the 

donors of the Rht-B1b and Rht-D1b alleles present in „Norin 10/Brevor-14‟ 

and to determine the Rht-1 alleles present in „Seu Seun 27‟ and „Suweon 92‟ 

and the donors of these alleles.  To accomplish this, the available accessions 

shown in the ancestral genealogy of these lines (Figure 7.1.) were grown and 

genotyped with markers specific to the Rht-B1b and Rht-D1b causative SNPs.  

Determining the ancestral lineage of the semi-dwarf alleles will aid in 

determining the origin of the alleles, which may also be useful for identifying 

alternative Rht-B1b and Rht-D1b sources. 
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7.2. MATERIALS AND METHODS 

 

7.2.1. Germplasm sources 

 

Seed of accessions used for Rht-1 genotyping and plant phenotyping were 

provided by: M. Ambrose, JIC BBSRC cereals collection; H. Bockelman, 

USDA-ARS National Plant Germplasm System (NPGS); the NIAB DUS 

collection; T.Sasanuma, Kihara Institute of Biological Research (KIBR), 

Yokohama City University, Yokohama, Japan; Kyoto University, Kyoto, Japan; 

and CIMMYT.  Accessions from Kyoto University and CIMMYT were obtained 

through M. Ambrose. Accessions from KIBR were ordered through the 

KOMUGI Wheat Genetics Resources Database 

(http://www.shigen.nig.ac.jp/wheat/komugi) (Table 7.1).  Accession numbers 

in the text will be enclosed in square brackets [ ].  All germplasm was grown 

from original source material except [PI157599-1], which is a self-pollinated 

progenitor from an Rht-B1b+Rht-D1b homozygous [PI157599] individual. 

 

Table 7.1. Summary of seed accessions and Rht-B1 and Rht-D1 genotype results 

  

Varietyb

Accession 

Numberc Seed Sourced

No. plants 

assayed Rht-B1  and Rht-D1  alleles

Aka-Daruma PI325843 USDA-ARS 12
B1a D1b  (8); B1a/ b  D1b  (2); 

B1a D1a/ b  (1); B1- D1b  (1)

Aka-Daruma KT020-009 KIBR 8
B1a D1b  (6); B1a/ b  D1b  (1); 

B1a/ b  D1a/ b  (1)

Aka-Daruma KU-1206 Kyoto University 6 B1a D1b  (5); B1a D1a/ b  (1)

Aka-Daruma CWI24999 CIMMYT did not germinate

Brevor CItr12385 USDA-ARS 8 B1a D1a

Daruma KT020-110 KIBR 6 B1b  D1a  (5), B1b D1-  (1)

Daruma CWI25102 CIMMYT did not germinate

Fultz W748 JIC 4 B1a D1a

Fultz PI5493 USDA-ARS 8 B1a D1a

Fultz-Daruma PI325844 USDA-ARS 4 B1a D1a

Kanred CItr5146 USDA-ARS 8 B1a D1a

Kanred PI90832 USDA-ARS 7 B1a D1a

Kanred W741 JIC 4 B1a D1a

Norin 10 W204 JIC 4 B1b D1b  (3); B1a/ b D1b  (1)

Norin 10 PI156641 USDA-ARS 7 B1b D1b  (6); B1b  D1a/ b  (1)

Norin 10/Brevor-14 W9743 JIC 4 B1b D1b  (3); B1a/ b  D1a (1)

Norin 10/Brevor-14 CItr13253 USDA-ARS 22
B1b D1b  (18); B1b  D1a/ b  (2); 

B1a/ b  D1a/ b  (1); B1- D1b  (1)

Genotype Resultsa

http://www.shigen.nig.ac.jp/wheat/komugi
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Table 7.1 continued. Summary of seed accessions and Rht-B1 and Rht-D1 genotype 

results 

  
a
 B1 and D1 denote the genome; suffix „a‟ denotes wild type alleles; suffix ‘b’ denotes the Rht-

B1b or Rht-D1b alleles, which are shown in bold font.  Where there is segregation at a locus, 

this is shown by a (/) between the genotypes.  The numbers of plants of each genotype are 

indicated in parenthesis when segregants are present.  A (-) represents no amplified product. 

b
 „Suweon‟ has also been described as „Suwon‟; „Turkey Red‟ has also been described as 

„Turkey‟. 

c
 PI5493 is also recorded as Cltr1923; PI157603 also is recorded as Cltr12666. PI157599-1 

refers to progeny of a PI157599 (Rht-B1b+Rht-D1b) individual. 

d
 USDA-ARS = United States Dept. of Agriculture - Agricultural Research Service, National 

Plant Germplasm System; KIBR = Kihara Institute of Biological Research; CIMMYT = 

International Maize and Wheat Improvement Center; JIC = John Innes Centre. 

 

7.2.2. Growth conditions of accessions 

 

Plants were grown in one of three glasshouse sowings: JIC 2008, NIAB 2010, 

or JIC 2010 (Table 7.2).  Each sowing contained the lines Mercia (Rht-

B1a+Rht-D1a) and „Norin10/Brevor-14‟ (N10/B14) [Cltr-13253] (Rht-B1b+Rht-

D1b) for comparative purposes across sowings.  Mercia is included only as a 

control whereas N10/B14 [Cltr-13253] is also part of the „Daruma‟ progeny 

tree.  Seeds of all varieties were stratified for 3-5 days at 4°C on filter paper, 

and then placed at room temperature for 5-7 days before transplanting to 96-

well trays containing compost.  Following transplanting, all plants were 

vernalised at 4°C for 8-9 weeks and a minimum of six seedlings per accession 

Varietyb

Accession 

Numberc Seed Sourced

No. plants 

assayed Rht-B1  and Rht-D1  alleles

Seu Seun 27 PI157584 USDA-ARS 5 B1a D1a

Shiro-Daruma PI191345 USDA-ARS 14 B1a D1a  (13); B1a/ b  D1a  (1)

Shiro-Daruma KT020-016 KIBR 8 B1a D1b

Shiro-Daruma CWI25422 CIMMYT 8 B1a D1a  (7); B1a/ b  D1a  (1)

Shiro-Daruma PI325845 USDA-ARS 8 B1a D1b

Shiroboro 1 KT020-015 KIBR 8 B1a D1a

Suweon 85 PI157599 USDA-ARS 6 B1b D1b  (3); B1a/ b D1b  (3)

Suweon 85 PI157599-1 USDA-ARS 8 B1b D1b

Suweon 85 BW6431 CIMMYT 8 B1b D1b

Suweon 85 PI157600 USDA-ARS 8 B1b  D1a

Suweon 92 CItr13132 USDA-ARS 8 B1b D1b

Suweon 92 PI157603 USDA-ARS 8 B1a D1a  (7); B1a/ b  D1a  (1)

Turkey Red PI565351 USDA-ARS 8 B1a D1a

Turkey Red PI565343 USDA-ARS 4 B1a D1a

Genotype Resultsa
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were transferred to 1 litre pots and grown in the glasshouse until maturity.  

Plants were treated with fungicide to control powdery mildew with care take to 

use fungicides that did not contain known plant growth regulators. 

 

Table 7.2. Summary of plant phenotype scores 

 
a
 Control varieties included in each sowing are shown in grey background. 

b
 PI157599-1 refers to progeny of a PI157599 Rht-B1b+Rht-D1b individual. 

c
 Rht-1 genotype of plants that were phenotyped.  „a’ = wild type allele; „b’ = Rht-B1b or Rht-

D1b (dwarfing alleles shown in bold font). 

d
 Number of individual plants phenotyped for awn presence, height, and 50% heading date. 

e
 Seg indicates accessions segregating for awn presence/absence 

Sow-

inga Variety

Accession 

numberb

Rht-1 

genotypec Ind.d Awnse Mean Range CV Mean Range CV

Aka-Daruma PI325843 B1a D1b 3 Yes 59 55-61 6% 95 94-97 2%

Fultz W748 B1a D1a 4 No 110 101-115 6% 125 118-129 4%

Fultz Daruma PI325844 B1a D1a 4 Yes 93 90-98 4% 109 108-111 1%

Kanred W741 B1a D1a 4 Seg 95 85-109 12% 116 103-124 8%

Mercia W3685 B1a D1a 4 No 77 72-80 5% 121 120-122 1%

Norin 10 W204 B1b D1b 3 Yes 43 40-49 12% 106 105-108 2%

Norin 10 PI156641 B1b D1b 4 Yes 47 45-47 2% 107 106-107 0%

N10/B14 W9743 B1b D1b 1 Yes 42 - - 125 - -

N10/B14 CItr13253 B1b D1b 4 Yes 52 50-57 6% 119 118-120 1%

Seu Seun 27 PI157584 B1a D1a 4 Yes 82 78-87 4% 104 102-106 2%

Shiro-Daruma PI191345 B1a D1a 5 Yes 88 62-112 21% 104 102-109 3%

Suweon 85 PI157599 B1b D1b 2 Yes 47 45-50 8% 96 95-97 1%

Turkey Red PI565343 B1a D1a 4 Yes 88 81-100 10% 116 115-118 1%

Aka-Daruma PI325843 B1a D1b 5 Yes 74 55-85 16% 118 115-123 3%

Aka-Daruma KU-1206 B1a D1b 5 Yes 75 61-84 13% 117 113-121 3%

Aka-Daruma KT020-009 B1a D1b 6 Yes 83 61-93 14% 118 115-121 2%

Daruma KT020-110 B1b  D1a 5 Yes 92 85-102 7% 124 123-125 1%

Mercia W3685 B1a D1a 8 No 86 70-97 12% 138 135-141 1%

N10/B14 CItr13253 B1b D1b 8 Yes 56 45-61 10% 139 137-141 1%

Shiro-Daruma KT020-016 B1a D1b 8 Yes 65 50-79 16% 118 116-121 2%

Shiro-Daruma CWI25422 B1a D1a 7 Yes 146 114-166 11% 137 136-139 1%

Shiro-Daruma PI191345 B1a D1a 7 Yes 148 117-174 12% 138 134-141 2%

Shiroboro 1 KT020-015 B1a D1a 8 Yes 97 80-113 13% 122 121-124 1%

Suweon 85 PI157599-1 B1b D1b 8 Yes 71 62-78 7% 129 126-130 1%

Suweon 85 BW6431 B1b D1b 8 Seg 72 64-81 8% 133 129-136 2%

Suweon 92 CItr13132 B1b D1b 8 Yes 71 55-86 16% 129 127-132 1%

Brevor CItr12385 B1a D1a 7 No 76 72-81 5% 122 121-123 1%

Fultz PI5493 B1a D1a 8 No 112 103-122 6% 119 117-123 2%

Kanred PI90832 B1a D1a 7 No 98 92-105 5% 118 117-120 1%

Kanred CItr5146 B1a D1a 8 Yes 120 113-127 4% 126 121-136 4%

Mercia W3685 B1a D1a 8 No 68 64-76 6% 124 122-127 1%

N10/B14 CItr13253 B1b D1b 6 Yes 48 43-56 9% 128 124-136 4%

Shiro-Daruma PI325845 B1a D1b 8 Yes 59 56-62 5% 102 99-105 2%

Suweon 85 PI157600 B1b  D1a 7 Yes 66 63-73 6% 111 108-113 2%

Suweon 92 PI157603 B1a D1a 8 No 110 97-117 6% 119 117-122 2%

Turkey  Red PI565351 B1a D1a 8 Yes 107 98-119 7% 127 124-132 2%

50% heading (DAS)gPlant height (cm)f

JIC 

2008

NIAB 

2010

JIC 

2010
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f
 Height of the primary tiller from soil surface to the tip of the inflorescence, not including 

awns; CV = coefficient of variation. 

g
 Days after sowing (DAS) until the primary tiller was 50% emerged from the flag leaf. 

 

Seeds of the JIC 2008 planting were stratified beginning 29 July 2008.  A total 

of 13 accessions were included (Table 7.2, JIC 2008).  Plants were removed 

from vernalisation, transplanted, and placed in the JIC glasshouse with 

supplementary lighting (16 hr photoperiod; 22/20°C day/night) on 8 October.  

The NIAB 2010 planting consisted of 13 accessions (Table 7.2, NIAB 2010) 

that were stratified beginning 7 Jan 2010.  Plants were transplanted on 19 

March, and placed in the NIAB glasshouse under natural temperature and 

light conditions.   The third planting, JIC 2010, consisted of 10 accessions 

(Table 7.2, JIC 2010) and stratification began 6 July 2010.  Plants were 

transplanted and placed in the JIC glasshouse under supplementary artificial 

lighting (16 hr photoperiod; 22/15°C day/night) on 20 Sep 2010. 

 

7.2.3. Genotyping and phenotyping of accessions 

 

For genotyping, leaf tissue of individual seedlings was collected and DNA 

extracted using the method described in section 4.2.2.  Accessions were 

genotyped for Rht-B1a, Rht-B1b, Rht-D1a, and Rht-D1b as described in 

section 5.2.3.  Heading date was recorded as the number of days after sowing 

(DAS) until the inflorescence of the primary tiller was 50% emerged above the 

flag leaf.  Plant height was measured at maturity as the distance from the soil 

surface to the tip of the inflorescence (not including awns) of the primary tiller.  

Awns were visually scored as absent or present following flowering.  Rht-1 

segregants and phenotypic off-types were not included in the phenotypic 

analysis. 

 

7.3. RESULTS 

 

All but four varieties that comprise the 'Daruma' progeny tree (Figure 7.1) 

were obtained.  The missing varieties were „Aka-Daruma/Glassy Fultz‟, 

„Suweon 13‟, „Suweon 90‟, and „Glassy Fultz‟.  „Fultz‟ was obtained as a near 
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substitute for „Glassy Fultz‟.  For each variety, from one to four different 

accessions were obtained.  A minimum of four plants per accession were 

scored with the Rht-B1a/b and Rht-D1a/b markers with the exceptions of [CWI 

24999] from variety „Daruma‟, and [CWI-25102] from variety „Aka-Daruma‟, 

which did not germinate (Table 7.1).  Several accessions were not 

homozygous at the Rht-B1 and Rht-D1 loci and accessions within a variety in 

some cases did not have the same genotypes.  Of the 29 accessions that 

were genotyped, nine segregated at the Rht-B1 locus and five segregated at 

the Rht-D1 locus, which includes four lines that segregated at both loci.  The 

segregants represented 25% or less of the plants of any accession with the 

exception of „Suweon 85‟ [PI157599] in which three individuals were Rht-

B1b/b and three individuals were Rht-B1a/b.  Multiple accessions were 

genotyped for nine of the varieties, the genotypes of the respective 

accessions were in agreement for six of the varieties, but this was not the 

case for „Shiro-Daruma‟, „Suweon 85‟, and „Suweon 92‟ (described below). 

 

The heading dates, flowering dates, and awn presence scores of each 

accession are shown in Table 7.2.  The Table 7.2 phenotypes were only 

recorded on plants homozygous at the Rht-B1 and Rht-D1 loci.  Among the 

three sowings, the „Mercia‟ and „N10/B14‟ [Cltr 13253] controls both have their 

greatest plant height in NIAB 2010 (mean = 71 cm) compared with JIC 2008 

(mean = 65 cm) and JIC 2010 (mean = 58 cm).  Similarly, among the two 

controls, the 50% heading date occurred latest in NIAB 2010 (mean = 139 

DAS) compared with JIC 2010 (mean = 126 DAS) and JIC 2008 (mean = 120 

DAS).  The coefficient of variation (CV) for height across all accessions was 

greatest in the NIAB 2010 sowing (mean CV = 12%) compared with JIC 2008 

(mean CV = 8%) and JIC 2010 (mean CV = 6%).  The 50% heading date in 

each sowing had a mean CV of 2%. 

 

In each sowing (with „Mercia‟ excluded because it is not part of the „Daruma‟ 

progeny tree), the plant heights of the double semi-dwarfs (Rht-B1b+Rht-D1b) 

were lowest, followed by plants carrying a single dwarfing allele (Rht-

B1b+Rht-D1a or Rht-B1a+Rht-D1b), and the tallest lines were those carrying 

both wild type alleles (Rht-B1a+Rht-D1a).  The only exception to this is „Shiro-
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Daruma‟ [KT020-016] (Rht-B1a+Rht-D1b), which was only tested in the NIAB 

2010 sowing and was shorter than three Rht-B1b+Rht-D1b accessions.  The 

largest CV for height in any sowing date is within 4 percentage points of the 

mean of the CVs for that sowing date with the exception of „Shiro-Daruma‟ 

[PI191345] in the JIC 2008 sowing, which is 13 percentage points higher than 

the mean sowing CV with plant heights ranging widely from 62 to 112 cm.  

Variation in flowering date was greatest in „Kanred‟ [W741] from the JIC 2008 

sowing, which had a CV of 8% and a 22-day spread in heading date whereas 

among all sowings, the next highest CV was 4% (three accessions) and the 

next highest range in heading date was 16 days („Kanred‟ [Cltr5146], JIC 

2010 sowing).  „Kanred‟ [W741] and „Suweon 85‟ [BW6431] are the only two 

accessions that segregated for presence/absence of awns. 

 

The „N10/B14‟ pedigree tree is shown in Table 7.3 along with a summary of 

the results from the Rht-1 genotyping and the plant phenotyping (from Tables 

7.1 and 7.2, respectively).  For comparative purposes among sowings, plant 

heights and heading dates are shown relative to the mean of the „N10/B14‟ 

[Cltr 13253] plants grown in that sowing.  In the „N10/B14‟ pedigree tree, the 

only accessions with the Rht-B1b+Rht-D1b genotype are „Norin 10‟ and 

„N10/B14‟.  In contrast, the „Norin 10‟ parental lines „Fultz Daruma‟ and 

„Turkey Red‟ do not contain Rht-B1b or Rht-D1b and plant heights are double 

that of „Norin 10‟.  The „Fultz Daruma‟ parental lines are „Glassy Fultz‟, which 

could not be obtained, and „Shiro-Daruma‟.  „Fultz‟ was instead acquired as a 

near substitute for „Glassy Fultz‟ and neither accession of this line contained 

Rht-B1b or Rht-D1b.  Of the four „Shiro-Daruma‟ accessions, two ([KT020-

016] and [PI325845]) have an Rht-B1a+Rht-D1b genotype and two 

([PI191345] and [CWI 25422]) have Rht-B1a+Rht-D1a as the predominant 

genotype.  However, in [PI191345] one plant out of 14 and in [CWI 25422] 

one plant out of 8 was an Rht-B1a/b heterozygote (Table 7.1).  The 

accessions of „Shiro-Daruma‟ also differ greatly for days to heading with mean 

heading date ranging from 1 to 26 days before „N10/B14‟.  Accession 

[PI191354] of „Shiro-Daruma‟ was grown twice (JIC 2008 = flowering in the 

autumn under artificial lighting and NIAB 2010 = flowering in the spring under 

natural lighting) and found to differ by two weeks relative to the „N10/B14‟ 
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control.  „Daruma‟, the progenitor of „Shiro-Daruma‟, did not contain the Rht-

D1b allele, but was homozygous for Rht-B1b+Rht-D1a (six seedlings tested). 

 

Table 7.3.  Rht-1 genotypes and plant phenotypes of the ‘Norin 10’ ancestors. 

 
a
 „Norin 10‟ ancestry is duplicated from Fig. 7.1 except for the addition of „Fultz‟, which was 

investigated due to the unavailability of „Glassy Fultz‟.  An (×) indicates a genetic cross and 

arrows point to the resulting progeny.  „Daruma‟ instead of „Shiro-Daruma‟ may have been 

crossed to „Glassy Fultz‟ (Dalrymple, 1986). 

b
 The predominant Rht-B1 and Rht-D1 genotypes are indicated with Rht-B1b or Rht-D1b 

alleles indicated by a (-b) and shown in bold font.  Wild type (-a) alleles are in plain font.  An 

(*) indicates that segregants at a particular locus were detected. 

c
 Plant heights are given as a percentage of the height of „Norin 10/Brevor-14‟ (N10/B14) 

plants grown in the same sowing.  

Varietya

Accession 

Number Rht-B1 b Rht-D1 Sowing Awns

Plant ht. 

(% of 

N10/B14)c 

Days to 

heading     

(diff vs. 

N10/B14)d

Daruma KT020-110 B1b D1a NIAB '10 awned 166% -15

JIC '08 awned 168% -15

NIAB '10 awned 267% -1

KT020-016 B1a D1b NIAB '10 awned 117% -21

CWI25422 B1a* D1a NIAB '10 awned 263% -2

PI325845 B1a D1b JIC '10 awned 123% -26

×

Glassy Fultz (not available)

W748 B1a D1a JIC '08 no awns 211% 6

PI5493 B1a D1a JIC '10 no awns 234% -9

Fultz Daruma PI325844 B1a D1a JIC '08 awned 179% -10

×
PI565343 B1a D1a JIC '08 awned 169% -4

PI565351 B1a D1a JIC '10 awned 224% -1

W204 B1b * D1b JIC '08 awned 83% -13

PI156641 B1b D1b * JIC '08 awned 89% -13

×
Brevor CItr12385 B1a D1a JIC '10 no awns 159% -6

W9743 B1b D1b * JIC '08 awned 80% 6

JIC '08 awned 100% 0

NIAB '10 awned 100% 0

JIC '10 awned 100% 0

PI191345 B1a* D1a

CItr13253 B1b * D1b *
Norin 10/Brevor-14

Shiro-Daruma

Fultz

Turkey Red

Norin 10
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d 
Days to heading are given as the difference in days relative to N10/B14 from the same 

sowing, with (-) indicating earlier heading. 

 

The pedigree tree of „Suweon 92‟ and „Seu Seun 27‟ is shown in Table 7.4 

along with a summary of the Rht-B1 and Rht-D1 genotypes identified and 

plant phenotypes (height and heading date relative to „N10/B14‟ [Cltr13253]) 

obtained from Tables 7.1 and 7.2.  The single accession of „Seu Seun 27‟ did 

not contain a semi-dwarfing allele and was 158% the height of the „N10/B14‟ 

control.  The available parental line of „Seu Seun 27‟ („Shiroboro 1‟) also did 

not carry Rht-B1b or Rht-D1b.  The two accessions of „Suweon 92‟ differed in 

genotype and phenotype.  [Cltr13132] was homozygous for Rht-B1b+Rht-D1b 

and was awned, whereas in [PI157603] Rht-B1a+Rht-D1a predominated, 

plants were awnless, and mean plant height was nearly double that of 

[Cltr13132].  Three original sources of „Suweon 85‟, the only available parent 

of „Suweon 92‟, were genotyped.  One of these, [BW6431], was homozygous 

Rht-B1b+Rht-D1b.  A second source, [PI157599], was homozygous Rht-D1b 

and segregated at the Rht-B1 locus.  The third „Suweon 85‟ source 

[PI157600] had the genotype Rht-B1b+Rht-D1a.  Three accessions of 

„Kanred‟, a parent of „Suweon 85‟ were tested and all three sources were 

homozygous for Rht-B1a+Rht-D1a and plants were relatively tall, but the 

accessions differed in awn phenotype: [PI 90832] had no awns, [Cltr 5146] 

was awned, and [W741] segregated for awn presence.  Germplasm of the 

other parent of Suweon 85, „Aka-Daruma/Glassy Fultz‟, was not available.  Of 

the parents of „Aka-Daruma/Glassy Fultz‟, „Glassy Fultz‟ was not available 

and (as described above) the progenitor line „Fultz‟ was homozygous Rht-

B1a+Rht-D1a.  Three accessions of „Aka-Daruma‟ were tested and all three 

had the predominate genotype of Rht-B1a+Rht-D1b.  Two of these 

accessions, [PI325843] and [KT020-009], had Rht-B1a/b segregants in 2 of 

12 seeds and 2 of 8 seeds, respectively.  „Daruma‟, as described before, was 

homozygous for Rht-B1b+Rht-D1a. 
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Table 7.4. Rht-1 genotypes and phenotypes of varieties in the ‘Suweon 92’ and ‘Seu 

Seun 27’ genealogy.   

 
a
 „Norin 10‟ ancestry is duplicated from Fig. 7.1 except for the addition of „Fultz‟, which was 

investigated due to the unavailability of „Glassy Fultz‟.  An (×) indicates a genetic cross and 

arrows point to the resulting progeny. 

b
 PI157599-1 represents progeny of an Rht-B1b+Rht-D1b individual from PI157599. 

c
 The predominant Rht-B1 and Rht-D1 genotypes are indicated with Rht-B1b or Rht-D1b 

alleles indicated by a (-b) and shown in bold font.  Wild type (-a) alleles are in plain font.  An 

(*) indicates that segregants at a particular locus were detected. 

Varietya

Accession 

Numberb Rht-B1 c Rht-D1 Sowing Awns

Plant ht. 

(% of 

N10/B14)d

Days to 

heading     

(diff vs. 

N10/B14)e

Daruma KT020-110 B1b D1a NIAB '10 awned 166% -15

JIC '08 awned 113% -24

NIAB '10 awned 134% -21

KT020-009 B1a* D1b * NIAB '10 awned 149% -21

KU-1206 B1a D1b * NIAB '10 awned 134% -22

×

Glassy Fultz (not available)

W748 B1a D1a JIC '08 no awns 211% 6

PI5493 B1a D1a JIC '10 no awns 234% -9

Aka Daruma x     

Glassy Fultz
  (not available)

×
W741 B1a D1a JIC '08 seg 181% -4

CItr5146 B1a D1a JIC '10 awned 251% -3

PI90832 B1a D1a JIC '10 no awns 205% -10

PI157599 B1b * D1b JIC '08 awned 90% -23

PI157599-1 B1b D1b NIAB '10 awned 129% -10

BW6431 B1b D1b NIAB '10 seg 129% -6

PI157600 B1b D1a JIC '10 awned 138% -17

×
Suweon 13   (not available)

Cltr13132 B1b D1b NIAB '10 awned 129% -10

PI157603 B1a* D1a JIC '10 no awns 231% -9

Suweon 90   (not available)

×
Shiroboro 1 KT020-015 B1a D1a NIAB '10 awned 174% -17

Seu Seun 27 PI157584 B1a D1a JIC '08 awned 158% -16

PI325843 B1a* D1b *

Suweon 92

Aka-Daruma

Fultz

Kanred

Suweon 85
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d
 Plant heights are given as a percentage of the height of „Norin 10/Brevor-14‟ (N10/B14) 

plants grown in the same sowing.  

e 
Days to heading are given as the difference in days relative to N10/B14 from the same 

sowing, with (-) indicating earlier heading. 

 

7.4. DISCUSSION 

 

In this chapter, the origins of the Rht-B1b and Rht-D1b alleles utilised in 

wheat breeding in the Western world were investigated by assaying the semi-

dwarf donor varieties „Norin 10‟, „Suweon 92‟, and „Seu Seun 27‟ along with 

their progenitors (Figure 7.1) using allele-specific molecular markers and by 

measuring plant phenotypes.  Two accessions of „Norin 10‟ were examined 

and both had a primary genotype of Rht-B1b+Rht-D1b (Table 7.1) and were 

short statured (43 and 47 cm mean height; Table 7.2).  The presence of Rht-

B1b and Rht-D1b in „Norin 10‟ was previously demonstrated by Gale et al. 

(1981) and Yamada (1989) by test crossing with Rht-1 alleles and measuring 

GA response in F2 plants and by Ellis et al. (2002) using genetic markers.  

The Rht-B1b+Rht-D1b genotype was also the predominant genotype of 

„N10/B14‟ (the progeny of „Norin 10‟ × „Brevor‟) as previously reported by Gale 

et al. (1981) using Rht-1 test-crosses and GA sensitivity testing.  The absence 

of semi-dwarfing alleles in „Brevor‟ demonstrates that „Norin 10‟ is the source 

of both semi-dwarfing alleles in „N10/B14‟, which was the primary semi-dwarf 

donor used in Orville Vogel‟s and Norman Borlaug‟s breeding programmes 

(Dalrymple, 1986).  An accession of „Suweon 92‟, [Cltr 13132], also was 

shown to have the Rht-B1b+Rht-D1b genotype and was short statured (129% 

of „N10/B14‟).  The increase in height over „N10/B14‟ may be the result of 

additional genes for tall culm height that are reported to exist in this variety 

(Allan et al., 1968).  The second source of „Suweon 92‟ tested, [PI 157603], 

carries neither Rht-B1b nor Rht-D1b and is much taller (231% of „N10/B14) 

than the first source and, unlike the first source, has no awns.  The second 

accession of „Suweon 92‟ likely represents a seed misclassification because 

„Suweon 92‟ is reported to be semi-dwarf and to carry both Rht-1 mutant 

alleles based on Rht-1 testcrosses and GA sensitivity testing (Allan et al., 

1968).  A single accession, [PI 157584], of „Seu Seun 27‟ was acquired; 
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however, neither Rht-B1b nor Rht-D1b was detected.  Most likely, this also 

represents a seed misclassification as the presence of a semi-dwarf allele had 

been previously reported for „Seu Seun 27‟ [PI 157584] (Allan et al., 1968). 

 

Although Rht-B1b+Rht-D1b is the predominant genotype of „Norin 10‟, it is not 

clear where these alleles arose based on genotyping results (Table 7.3).  The 

parental lines of „Norin 10‟ are reported as „Turkey Red‟ and „Fultz-Daruma‟, 

however, none of the accessions of these varieties contained Rht-B1b or Rht-

D1b (Table 7.1) and all were tall.  The two „Turkey Red‟ accessions were 

169% and 224% the height of „N10/B14‟ (Table 7.3).  In agreement, Yamada 

(1990) reported that „Turkey Red‟ was GA responsive (an indicator that the 

GA insensitive Rht-B1b and Rht-D1b alleles are absent) and tall with a culm 

length of 139 cm.  U.S. historical records for „Turkey Red‟ show that this 

variety was widely sown and “midtall” (short = 30 to 90 cm, midtall = 60 to 120 

cm; tall = 90 to 150 cm under conditions in California) (Clark et al., 1922), 

giving further evidence that „Turkey Red‟ is unlikely to contain Rht-B1b or Rht-

D1b.  The other „Norin 10‟ parent, „Fultz Daruma‟ is descended from the 

„Daruma‟ lineage thought to be the source of semi-dwarfism in „Norin 10‟ 

(Kihara, 1983; Dalrymple, 1986).  However, the „Fultz Daruma‟ accession that 

was assayed, [PI 325844], did not contain Rht-B1b or Rht-D1b and was tall 

(179% the height of N10/B14).  In agreement, „Fultz Daruma‟ was reported to 

be GA responsive and tall by Yamada (1990).  In contrast, a photograph 

taken of „Fultz Daruma‟ by Matsumoto (1968) showed the culm of „Fultz 

Daruma‟ to be shorter than that of „Norin 10‟.  This photograph suggests that 

the accession of „Fultz Daruma‟ used to produce „Norin 10‟ is not the same as 

the accession stored in the USDA-ARS NPGS collection and may contain 

Rht-B1b and Rht-D1b.  Further, the USDA received seed of „Fultz Daruma‟ in 

1968, well after it would have been crossed to „Turkey Red‟ (1925) and „Fultz‟ 

is listed in the database (http://www.ars-grin.gov/npgs) as the parent of this 

accession instead of „Glassy-Fultz‟, raising more doubt as to whether this 

accession is representative of the „Fultz Daruma‟ that gave rise to „Norin 10‟.  

 

On the Suweon side of the pedigree chart (Table 7.4), assay results show that 

the Rht-B1b+Rht-D1b alleles present in „Suweon 92‟ are also the predominant 

http://www.ars-grin.gov/npgs
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alleles present in its parental line, „Suweon 85‟.  The Rht-B1b+Rht-D1b 

homozygous „Suweon 85‟ plants were 129% the height of „N10/B14‟.  The 

additional height may be the result of additional alleles for tall culm length that 

were detected in „Suweon 92‟ by Allan et al. (1968).  „Suweon 85‟ is likely the 

source of both alleles in „Suweon 92‟, but it is also possible that „Suweon 13‟, 

which was not assayed, is a donor.  Similar to „Norin 10‟, the immediate 

source of the semi-dwarfing alleles in „Suweon 85‟ is not clear.  The parental 

line „Kanred‟ is an unlikely donor because none of the accessions contained 

Rht-B1b or Rht-D1b and plant heights were 1.8 to 2.5 times the height of 

„N10/B14‟.  In addition, „Kanred‟ is a selection from a strain of „Turkey Red‟, 

which (as shown above) does not contain Rht-B1b or Rht-D1b, and „Kanred‟ 

is described as “midtall” in height (Clark et al., 1922).  The more likely 

immediate donor of Rht-B1b and Rht-D1b to „Suweon 85‟ is „Aka-

Daruma/Glassy Fultz‟, but no accessions were available. 

 

„Daruma‟ is thought to be the common ancestor of „Norin 10‟, „Suweon 92‟, 

and „Seu Suen 27‟ and the source of semi-dwarfism in these lines (Kihara 

1983; Dalrymple, 1986); however, „Daruma‟ [KT020-110] had an Rht-

B1b+Rht-D1a genotype with no segregants detected and a mean height (92 

cm) that was 166% of „N10/B14‟.  Similarly, Yamada (1990) reported that 

„Daruma‟ had an Rht-B1b+Rht-D1a genotype (based on test crosses and GA 

responsiveness of the F2) and was 91 cm in height.  Surprisingly, the two 

variants of „Daruma‟, „Shiro-Daruma‟ and „Aka-Daruma‟, were shown to have 

predominant genotypes of Rht-B1a+Rht-D1b.  Four sources of „Shiro-Daruma‟ 

were assayed and two were homozygous Rht-B1a+Rht-D1b while the other 

two accessions were predominately Rht-B1a+Rht-D1a; however, importantly, 

an individual in each of the Rht-B1a+Rht-D1a sources was found to be 

heterozygous Rht-B1a/b (Table 7.1).  Similarly, for „Aka-Daruma‟, while Rht-

B1a+Rht-D1b was the predominant genotype, two of the three sources 

assayed contained two seeds each that were heterozygous Rht-B1a/b.  The 

presence of these alleles in low frequency could be the result of 

contamination of the original seed sources or the alleles may not have been 

fixed in the original populations.  „Daruma‟, „Aka-Daruma‟, and „Shiro-Daruma‟ 

are landraces according to Yamada (1990).  „Daruma‟ is also described as a 
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landrace by Worland (1986) and as a “native variety” by Kihara (1983).  The 

Rht-B1a/b segregants found in „Shiro-Daruma‟ and „Aka-Daruma‟ may 

represent alleles that were segregating in low frequency in the original 

populations.  Another possibility is that the alleles were not in low frequency, 

but were simply under-represented in the sample taken for curation.  If these 

accessions were segregating at the Rht-1 locus in curated stocks, the Rht-

B1b+Rht-D1b plants may have been inadvertently selected against during 

seed grow-outs as the double-dwarf would appear to be an off-type.  The 

presence of Rht-B1b in the parental line „Daruma‟ also suggests that Rht-B1b 

was likely present in the original „Aka-Daruma‟ and „Shiro-Daruma‟ 

populations.  In a similar manner, the accessions of „Daruma‟ in seed banks 

may not be representative of native „Daruma‟ populations.  For „Daruma‟, only 

six seeds were tested from a single source, so segregants in low frequency 

may not have been detected. 

 

„Shiro-Daruma‟ and „Glassy Fultz‟ are historically thought to be the parents of 

„Fultz-Daruma‟.  Dalrymple (1986), however, noted that the official records list 

„Daruma‟ as the parent of „Fultz-Daruma‟ and that the use of the white variant 

„Shiro-Daruma‟ is suggested by Inazuka (1971) and Matsumoto (1968).  „Aka-

Daruma‟ and „Glassy Fultz‟ are thought to be the parents of „Aka-

Daruma/Glassy Fultz‟.  Seed of „Glassy-Fultz‟ could not be found in the 

germplasm banks that were searched, so its parent „Fultz‟ was acquired 

instead.  Neither of the „Fultz‟ accessions contained a semi-dwarfing allele 

and both were over twice the height of „N10/B14‟.  Historically, „Fultz‟ was 

widely grown in the USA and considered mid-tall (Clark et al., 1922), giving 

further evidence that „Fultz‟ is unlikely to contain Rht-B1b or Rht-D1b.  

Because „Glassy Fultz‟ is a variant of „Fultz‟, these results reduce the 

likelihood that it would carry an Rht-B1b or Rht-D1b.  Yamada (1990), 

however, identified an accession called „Shou Fultz‟, and explained that 

“shou” corresponds to “glassy” in English.  Yamada went on to report that 

„Shou Fultz‟ contained the Rht-B1b allele (based on test crosses and F2 GA 

responsiveness) and speculated that the Rht-B1b allele in this line may have 

resulted from a spontaneous mutation in „Fultz‟.  If „Shou Fultz‟ does 
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correspond to the „Glassy Fultz‟ used in these crosses, it raises the possibility 

of an alternative source of the Rht-B1b allele. 

 

In summary, the Rht-B1b and Rht-D1b alleles are present in „Norin 10‟, 

„Suweon 85, and „Suweon 92‟, which are all descendants of „Daruma‟.  The 

source of these alleles is unclear as the parental lines do not have an Rht-

B1b+Rht-D1b genotype.  One explanation for this discrepancy is that the 

parentage of these lines (Figure 7.1) is in some way incorrect and/or that seed 

has been misclassified.  A second explanation is that „Glassy Fultz‟ (perhaps 

known in collections as „Shou Fultz‟) contributed the Rht-B1b allele to these 

varieties and the Rht-D1b allele was contributed by „Shiro-Daruma‟ or „Aka-

Daruma‟.  However, the existence of Rht-B1b in „Daruma‟ and the presence of 

Rht-B1b segregants in „Aka-Daruma‟ and „Shiro-Daruma‟ also suggest a third 

explanation.  This explanation, which is not exclusive of the others, is that 

both semi-dwarfing alleles originally came from „Daruma‟ as shown in Figure 

7.1, but the seed bank accessions of „Daruma‟, „Aka-Daruma‟ and „Shiro-

Daruma‟, which are all landraces, is not representative of the populations 

used to make the original crosses. 
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8. GENERAL DISCUSSION 

 

The introduction of the group IV semi-dwarf alleles Rht-B1b (formerly Rht1) 

and Rht-D1b (formerly Rht2) into bread wheat varieties beginning in the 

1960s was a major contributor to the green revolution.  These alleles are 

estimated to be present in 90% of modern semi-dwarf wheat varieties 

(Worland et al., 1998b) with a single variety, „Norin 10‟, serving as the primary 

source of both alleles.  Rht-B1b and Rht-D1b, along with the GA sensitive 

Rht-B1a and Rht-D1a alleles in CS, were cloned and sequenced over a 

decade ago (Peng et al., 1999).  However, prior to this project, outside of the 

ORF sequences of these four alleles, little was known regarding the sequence 

diversity of the group IV Rht loci or the genetic composition of the contiguous 

sequence that was presumably introgressed into wheat varieties along with 

the semi-dwarfing alleles.  Furthermore, while there were indications that the 

Rht-A1 homoeologue existed (Peng et al., 1999), there was no published 

sequence and the locus had not been mapped. 

 

Whilst Rht-B1b and Rht-D1b generally benefit wheat production, deleterious 

effects are also associated with these alleles.  In several studies, Rht-D1b has 

been associated with increased susceptibility to Fusarium Head Blight (FHB), 

a major wheat disease (Hilton et al., 1999; Draeger et al., 2007; Holzapfel et 

al., 2008; Voss et al., 2008; Meidaner and Voss, 2008; Srinivasachary et al., 

2008; 2009), and it has been suggested this is due to linkage (Srinivasachary 

et al., 2009).  Rht-B1b in some studies has also been associated with 

changes in the level of resistance / susceptibility to FHB, although the effects 

were minor relative to Rht-D1b (Steiner et al., 2004; Medianer and Voss, 

2008; Srinivasachary et al., 2009).  In addition, the yield advantage normally 

associated with Rht-B1b or Rht-D1b diminishes or disappears in low wheat 

production environments (Gale and Youssefian, 1985; Flintham et al., 1997; 

Chapman et al., 2007), and both alleles have a reduced coleoptile length and 

seedling vigour, which in dry soils can result in poor stand establishment 

(Rebetzke et al., 2001).  In light of the agronomic issues associated with Rht-

B1b and Rht-D1b, the primary objectives of this project were to gain a better 

understanding of the pre-existing genetic variation that exists at the Rht-B1, 
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Rht-D1, and Rht-A1 loci, and to determine the genetic makeup of the 

contiguous region immediately surrounding these loci. 

 

Screening of the CS BAC library (Chapter 2) was a necessary first step in 

order to obtain the homoeologous Rht-1 sequences in a common genetic 

background.  The screening process contained challenges in itself as the 

attempt to screen the French component of the library using probes designed 

to be Rht-1 specific resulted in the identification of only two Rht-1 containing 

clones although the probes had hybridised to several BAC clones.  Screening 

of the UK component of the library using PCR with Rht-1-specific primers was 

much more effective.  The screening was facilitated by the 3-D pooling of the 

BAC library (Febrer et al, 2009), which greatly reduced the number of PCR 

reactions required to identify Rht-1 containing clones.  The PCR screen 

identified 13 Rht-1 containing BAC clones, of which three (one each from the 

A, B, and D genomes) were selected for full-length sequencing and assembly.  

From this PhD project, which was the first to use the pooled BAC library, it is 

clear that it represents a valuable resource to the wheat breeding community 

in the absence of a fully assembled genomic sequence.  In addition, 

sequence of all three Rht-1 homoeologues allows for primers to be designed 

for locus-specific amplification and for examining Rht-1 homoeologue gene 

expression. 

 

Analysis of the Rht-1 containing BAC sequences (Chapter 3) revealed that 

most of the contiguous region was composed of transposable elements, but 

also revealed the existence of Rht-1 on each BAC along with a DUF6 

(Domain of Unknown Function 6) family gene immediately upstream.  The A 

and D genome BACs also contained a ZnF (zinc finger) family gene, which 

was not present on the B genome BAC, but may still be present upstream of 

the BAC sequence.  The proportion of genic sequence comprised less than 

3% of any CS BAC clone, similar to the findings of other studies of the wheat 

genome (Li et al., 2004; Devos et al, 2005; Paux et al., 2006), indicating this 

region is not particularly gene-rich or gene-poor.  The conserved gene 

synteny among the three wheat homoeologues, rice, Brachypodium, 

sorghum, and maize is a positive indicator that synteny may extend further 5‟ 
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and 3‟.  Until a large number of ordered markers on the group IV 

chromosomes of wheat become available it will be difficult to understand how 

far this synteny extends.  Currently available sequences of rice, 

Brachypodium, and the ongoing physical mapping and sequencing of the 

barley gene space by the International Barley Genome Sequencing 

Consortium (IBSC;http://barleygenome.org) will be useful for determining the 

extent of synteny and identifying genes linked to Rht-B1b or Rht-D1b that may 

be important in FHB resistance or other wheat agronomic characteristics.  The 

region immediately 5‟ of the sequenced region proves to be interesting as tb1 

is the next gene upstream of the ZnF gene.  Tb1 is an important 

domestication gene in maize that controls branch number (Doebley et al., 

2004) and the barley orthologue  Intermedium-C (Int-C) is associated with 

lateral spikelet fertility and plant tillering (Ramsay et al., 2011).  In contrast to 

the high level of gene synteny, transposable elements were not conserved 

amongst even the wheat homoeologues, similar to previous studies of 

homoeologues wheat regions (Gu et al., 2004; Chalupska et al., 2008; 

Ragupathy and Cloutier, 2008).  This demonstrates how rapidly transposon 

sequences evolve relative to genes as the A, B, and D genome progenitors of 

wheat diverged only 2-4 MYA (Huang et al., 2002; Dvorak and Akhunov, 

2005; Chalupska et al., 2008), whereas the Poaceae species analysed here 

diverged up to 60 MYA. 

 

Analysis of the three genes discovered on the wheat BACs revealed a pattern 

of conservation among the Poaceae that mirrored previously established 

phylogenetic relationships (Paterson et al., 2009).  In all cases, the barley 

ORF sequences were the most similar to wheat suggesting the potential 

usefulness of a fully-assembled barley sequence.  After barley, Brachypodium 

sequences of the three genes were the most similar to wheat, suggesting a 

greater value of Brachypodium sequence for wheat genomics relative to rice, 

maize, and sorghum.  Genetic comparisons amongst the Poaceae of the 

ORFs of the three genes revealed the ZnF gene was the most highly 

conserved and DUF6 the least conserved.  The high level of conservation 

among the Poaceae ZnF orthologues suggests that alterations to the amino 

acid sequence of the ZnF may be deleterious to the plant, thereby suggesting 

http://barleygenome.org/
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an essential role of this gene.  The ZnF gene is a specialised type of zinc 

finger known as a RING (Really Interesting New Gene) type protein.  RING-

type proteins are involved in protein:protein interactions including assembly of 

large protein complexes and the ubiqitination of proteins (Joazeiro and 

Weissman, 2000; Mathews and Sunde, 2002).  The Rht-1 gene was largely 

conserved amongst the three CS wheat homoeologues and there were no 

evident predicted stop codons or frameshift mutations.  However, there was 

still variation amongst the homoeologues in the ORF and surrounding 

sequence that could potentially affect RNA expression or protein function.  In 

the ORF, the predicted peptide lengths vary from 620 to 623 and non-

conserved amino acids resulting from SNPs or indels occur at 1.9% to 2.6% 

of the sites when comparing any two homoeologues.  Rht-A1 and Rht-D1 

were the most similar homeologues.  As expected, larger differences between 

Rht-1 homoeologues are present just upstream and downstream of the coding 

region.  The 3‟ region and 5‟ regions are still both highly conserved among the 

wheat homoeologues, suggesting that both regions could play important 

regulatory roles.  Comparative analyses of the 5‟ and 3‟ wheat homoeologue 

sequences with the same regions in rice and Brachypodium revealed three 

areas of high conservation amongst the sequences. The most conserved 

sequence (~ 120 bp in length) occurred between 300 and 500 bp 5‟ of the 

ORF of Rht-1 or its orthologue and two regions were identified 3‟ of the ORF, 

a ~100 bp sequence between 200 and 450 bp downstream and a ~300 bp 

sequence between1.6 and 2 kb downstream.  Currently, little is known 

regarding the regulatory regions that affect Rht-1 expression and the high 

level of conservation in these regions suggest these regions may be involved 

in cis-regulation of Rht-1.  Sequence analysis of diverse wheat accessions 

revealed the presence of two 5‟ insertions (relative to CS) of 160 and 197 bp.  

The 160 bp insertion occurs 356 bp 5‟ of the ORF and in the middle of the 

most highly conserved region among wheat, rice and Brachypodium whilst the 

197 bp insertion occurs 591 bp upstream.  Homology to the 197 bp sequence 

was not present in region immediately upstream (1 to 10 000 bp) of the Rht 

orthologues in rice and Brachypodium.   These insertions were investigated 

further and may affect plant height, GA sensitivity, and flowering time in 
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wheat, although no effect on RNA transcript abundance was detected in the 

stems and leaves of seedlings (discussed below). 

 

In this project, the Rht-A1 locus has been clearly identified based on a 

chromosome 4A location (Chapter 4), high nucleotide similarity to Rht-B1 and 

Rht-D1, and a high degree of gene synteny in the Rht-A1 region relative to the 

Rht-B1 and Rht-D1 homoeologous regions (Chapter 3).  However, unlike Rht-

B1 and Rht-D1, which are on 4BS and 4DS, respectively, Rht-A1 is located on 

4AL.  The location of Rht-A1 on the long arm of 4A is not unexpected because 

the majority of the native short arm of 4A is located on the long arm of 

chromsome 4A in modern bread wheat cultivars due to a pericentric inversion 

thought to have occurred in tetraploid wheat (Miftahudin et al., 2004).  Rht-A1 

appears to be near the centromere based on physical and genetic mapping; 

however this requires further investigation due to conflicting results between 

4AL Kansas deletion lines, which precluded determining a more precise 

location on 4AL.  Nonetheless, the molecular tools associated with Rht-A1 

developed as part of this project (an Rht-A1 marker, Rht-A1 sequences, and 

identification of linked SSR markers linked to Rht-A1) provides a resource to 

further investigation of this locus and the surrounding region and should be a 

useful resource for marker-based selection.   

 

Interestingly, while Rht-B1 appears to be located near the centromere based 

on previous physical telocentric F2 mapping (McVittie et al., 1978) and genetic 

mapping (Borner et al., 1997; Ellis et al. 2002; Somers et al., 2004), Rht-D1 

was mapped between breakpoint 0.82 and the telomere with the Kansas 

deletion lines in this project.  The telomeric location agrees with telocentric F2 

mapping performed by Izumi et al. (1983), but differs from the more proximal 

location (15 cM from the centromere) reported by McVittie et al. (1978).  

Mapping Rht-B1 with the Kansas deletion lines is possible, but complicated by 

the presence of a male sterility gene near the centromere, which precludes 

the production of homozygous 4BS deletion lines.  Although a translocation 

near the centromere of 4B has been reported (Mickelson-Young et al., 1995), 

there are no reports of a translocation involving the telomeric region of 4BS or 

4DS.  The telomeric location of Rht-D1 would suggest potentially greater 
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recombination at and near this locus relative to the more proximal Rht-A1 or 

Rht-B1, as recombination is generally greater towards the telomere (Devos et 

al., 1995; Akhunov et al., 2003). 

 

In this project, sequence diversity was present among bread wheat and 

tetraploid/diploid wheats at the Rht-A1, Rht-B1, and Rht-D1 ORFs and in the 

flanking 5‟ (~1750 bp) and 3‟ (~450 bp) regions (Chapter 5).  A large amount 

of genetic diversity at the Rht-1 loci was shown to be lost between 

tetraploid/diploid wheat and bread wheat, similar to other reports of reduced 

genetic diversity in bread wheat relative to ancestral lines (Caldwell et al., 

2004; Haudry et al., 2007).  Focusing on bread wheat only, among the three 

homoeologous Rht-1 regions, diversity was the greatest on the B genome and 

least on the D genome.  Lack of diversity in the D genome relative to the A 

and B genomes has been reported in several previous studies of bread wheat 

(Bryan et al., 1997; Huang et al., 2002; Wang et al., 2007; White et al., 2008; 

Chao et al., 2009).  This likely is the result of the origin of bread wheat from 

just a small number of hexaploidisation events with the D genome donor Ae. 

tauschii (Talbert et al., 1998; Caldwell et al., 2004) along with little inter-

mating between bread wheat and Ae. tauschii (Dvorak et al., 1998), whereas 

a substantial amount of inter-mating appears to have occurred between T. 

aestivum and tetraploid wheat (Dvorak et al., 2006; Dubocovsky and Dvorak 

2007; Luo et al., 2007).  The Rht-B1 locus and flanking region of the 

accessions sequenced in this project had the greatest nucleotide and 

haplotype diversity.  The polymorphisms included the three largest indels 

(197, 160, and 16 bp) and the largest number of predicted amino acid 

changes found among the Rht-1 homoeoloci, including a previously unknown 

frameshift mutation.  Several other studies have reported greater genetic 

diversity on the B genome relative to the A and D genomes (Huang et al., 

2002; Ravel et al., 2006; Wang et al., 2007; Haseneyer et al., 2008; Li et al., 

2010).  The closest known wild relative to the B genome is Ae. speltoides 

(Kilian et al., 2007) and its out-crossing nature may attribute to the higher 

level of genetic diversity often reported for the B genome.  The Rht-A1 locus, 

while containing more nucleotide diversity and more haplotypes than Rht-D1 

had the lowest haplotype diversity among the three genomes.  This results 
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from the high proportion (~75%) of accessions that belong to a single 

haplotype, which includes all 12 “UK” accessions.  The low haplotype diversity 

suggests there may have been selection at Rht-A1 or a linked locus.  If Rht-

A1 is centromeric, this may also reduce recombination at this locus. 

 

There was no sequence variation amongst the Rht-B1b alleles or amongst the 

Rht-D1b alleles.  This is not surprising considering the recent introgression of 

these alleles into bread wheat with the Japanese line Norin 10 serving as the 

primary source for both alleles (Dalrymple, 1986).  Strong selection for Rht-

B1b and Rht-D1b almost certainly has resulted in reduced haplotype diversity 

at these loci and at linked loci.  The size of the linkage block, also known as a 

“selective sweep” is likely to be large for the reasons given above and likely 

affects a large number of genes.  This is one reason why it is important to 

understand haplotype diversity at these loci.  The haplotypes discovered in 

this project represent potentially useful sources of genetic variation for further 

research of important regulatory regions associated with Rht or for identifying 

beneficial variants of linked genes, such as genes potentially affecting FHB 

resistance, which could greatly benefit wheat breeding efforts. 

 

Among the novel Rht-1 alleles discovered in this project, the Rht-B1 160 bp 

and 197 bp indels were analysed further due to their large sizes and location 

in a potentially important regulatory region (discussed above).  Sequencing of 

wheat tetraploid lines revealed the absence of the 160 bp insertion, indicating 

this is likely an insertion relative to the ancestral condition.  This insertion 

dates back to at least 1830 as it was present in an accession released in that 

year (Line 03070 from the INRA BWCC; Balfourier et al., 2007).  In contrast, 

the 197 bp sequence was present in the tetraploid lines and regions of high 

homology exist on the A and D genomes, indicating that the absence of the 

197 bp sequence is representative of a deletion relative to the ancestral 

condition.  Bioinformatic analysis revealed that neither insertion sequence has 

high homology to sequences in the NCBI (nr/nt) database or the TREP cereal 

repeat database. The insertions were then studied using qRT-PCR to 

estimate transcript abundance in stem and leaf tissue collected from two-

week old wheat seedlings of accessions that contained no insertion, the 160 
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bp insertion, or the 197 bp insertion (Chapter 5).  Significant (p < 0.05) 

changes in Rht-B1 transcript levels were not consistently related to either of 

the insertions indicating that the insertions do not have a major effect on Rht-

B1 transcript level in leaf and stem tissues at this developmental stage.  It is 

possible that changes in RNA transcript occur at a later developmental stage 

or in tissue types that were not measured in this study.  To determine if the 

Rht-B1 insertions affected plant height, GA sensitivity, or heading date in 

wheat, association analyses were performed that utilised genotypic and 

phenotypic data collected on the INRA BWCC as part of this project (Chapter 

6).  This revealed that accessions containing the 160 bp or 197 bp allele (Rht-

B1a_160 and Rht-B1a_197, respectively) had mean reductions in plant height 

and GA sensitivity, and a delay in mean ear emergence relative to Rht-B1a 

accessions with no insertion (Rht-B1a_0).  However, the height reductions 

were minor relative to the effects of Rht-B1b and only the height difference 

between Rht-B1a_197 bp and Rht-B1a_0 and heading date between Rht-

B1a_160 and Rht-B1a_0 were significant at a probability threshold of 0.05.  

The use of bi-parental populations (one with an insertion and one without) or 

examination of the insertions in a common background would be powerful 

tools to determine the effects of these alleles.  Integration of these alleles into 

a common genetic background has now been initiated at NIAB. 

 

In an attempt to discover novel GAI alleles at the Rht-1 loci (particularly at 

Rht-A1 where alleles affecting plant height or GA sensitivity are yet to be 

found), the INRA BWCC was screened by measuring response of seedlings 

to GA application.  However, the experimental method and statistical analyses 

(mixed model or LSD analyses) employed did not clearly reveal the presence 

of any GAI alleles in the collection outside of Rht-B1b, Rht-D1b, or Rht-B1c, 

indicating that novel GAI alleles either do not exist in the collection or 

experimental conditions were insufficient to detect them.  While the methods 

using in this study rarely incorrectly classified accessions containing Rht-B1b 

or Rht-D1b (both were genotyped in the collection as part of the PhD project) 

as GA sensitive, these alleles were only classified as GAI 64% of the time.  

The difficulty in classifying GAI alleles as GAI may be due to the effect of 

genetic background differences between the diverse accessions, 
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experimental design (for instance, too few plants screened per accession), 

and the slight GA response detected in accessions containing Rht-B1b or Rht-

D1b, all of which would make detection of differences in seedling length 

between GA sensitive and insensitive lines more difficult.  Rht-1 alleles that 

have a GA response that is intermediate the Rht-1b and Rht-1a alleles would 

be even more difficult to detect.  Intermediate GAI alleles (potentially including 

Rht-B1a_160 and Rht-B1a_197) may exist in the collection as indicated by 

the large number Rht-B1a+Rht-D1a accessions (42) that fall within the range 

of GA treatment differences found among accessions with the Rht-B1b or Rht-

D1b allele (20.8 mm or less; Appendix VI).  The absence of a GAI allele at the 

Rht-A1 locus, which is known to be expressed (Saville, 2011), relative to the 

Rht-B1 and Rht-D1 loci where several GAI alleles are known to exist, suggest 

that insensitivity at this locus may be detrimental to wheat.  Even though no 

additional GAI alleles were discovered, knowledge was gained regarding the 

use of experimental and statistical methods and it appears that the mixed 

model method was more efficient at correctly classifying previously known 

Rht-B1b and Rht-D1b alleles than the LSD method, although this method 

would appear to be more likely to incorrectly classify GAI accessions that may 

have long seedling lengths due to other genes. 

 

The origin of the Rht-B1b and Rht-D1b alleles in „Norin 10‟ (the major donor of 

these alleles) and „Suweon 85‟ (a minor donor) was investigated by 

genotyping accessions that make up the historical pedigree (Chapter 7) of 

these two lines (Figure 7.1).  Historically, Rht-B1b and Rht-D1b are thought to 

be derived from „Daruma‟, a landrace present in Japan as early as 1894 

(Kihara, 1983).  However, the genotyping of several accessions from the 

historical pedigree revealed that none of the progenitors of „Norin 10‟ or 

„Suweon 85‟ were homozygous for both alleles, including „Daruma‟, which was 

homozygous for only Rht-B1b.  However, the homozygous Rht-D1b genotype 

in the „Daruma‟ variants „Shiro-Daruma‟ and „Aka-Daruma‟ and the presence 

of Rht-B1a/Rht-B1b heterozygotes in a small percentage of plants from these 

accessions suggests that the curated seed used in this study may not be 

representative of the original landraces, which may have been segregating at 

these loci.  Hence, there is no clear evidence that contradicts the historical 
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pedigree, suggesting that „Daruma‟ is still the most likely donor of Rht-B1b 

and Rht-D1b for „Norin 10‟ and „Suweon 85‟.  Genotyping in this instance 

identified potential off-types in the accessions contained in seed banks, but 

has also strengthened confidence of the genotype of other accessions.  For 

instance, the matching Rht-1 sequences of SS7010073 and the putative T. 

dicoccum and Ae. tauschii donors supports the claim that these are the 

donors.  In addition, genotyping for Rht-B1b and Rht-D1b was critical in the 

GAI and plant height screening.  Hence, this project also emphasises the 

value of genotyping for quality assurance. 

 

The Rht-1 loci are agronomically important loci and in this project, I have 

increased knowledge of these loci and developed tools that can be further 

used for targeted breeding of improved wheat varieties.  My PhD project is the 

first to determine all three Rht-1 homoeologous sequences (including Rht-A1, 

previously unpublished) and the genetic makeup of the nearby surrounding 

region in a common genetic background in wheat.  With the sequences, I 

developed locus-specific primers and for each homoeologue sequenced the 

entire Rht-1 ORF and over two kb of flanking region in approximately 40 

diverse wheat accessions to estimate genetic diversity.  Included among the 

novel polymorphisms discovered were 160 bp and 197 bp insertions within 

600 nucleotides of Rht-B1 that I further characterised using Rht-1 

homoeologue specific expression analysis and by performing association 

analysis in a worldwide collection of bread wheat accessions.  The Rht-B1 

haplotypes and other haplotypes discovered in this project require further 

characterisation, but represent potentially useful sources of Rht-1 variation for 

wheat breeding efforts.  Specifically, the discovery of novel haplotypes and 

the development of genetic tools associated with the Rht-1 loci in this project 

represent a necessary starting point in characterising the Rht-B1b and Rht-

D1b selective sweeps, which may be useful for identify linked genes with 

improved resistance to the disease Fusarium Head Blight.  Overall, 

approaches similar to the one taken here could be applied for creation of tools 

for knowledge-based breeding at other wheat loci to improve wheat 

performance, which is especially critical in the face of climate change and 

current food insecurity. 
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Designation Dirb Sequence (5' to 3')

160-R1 R CGG CCA GTT AAA TAT CGT CTG

197-R1 R AAT TAA TTC TAG CGT CCA CTC G

414F-F10 F ACG CCT CCC ACT ACA CTG

414F-R4 R GTT GGT TCA AAC AGA GAG C

D-BAC_F1 F CCG CTG TGC TCT GAA AAG AT

D-BAC_F2 F AAT TCG TTA TCG GCG AAA AGT

D-BAC_F3 F TCT GCC AAA TTG TCC TTG GT

D-BAC_F4 F TGA CGG ATC CTA CTC CAA GG

D-BAC_F5 F TTT TCG AGT GGC ATT TCC TC

D-BAC_R1 R ATC GGT CAG TTT TGG TTG AA

D-BAC_R2 R CTG ATG CGA TAG GCA AAC CT

D-BAC_R3 R CCG GAT AAA TTA CGC TGG AA

D-BAC_R4 R GTG AGA GGA CGA GGG ACA AG

D-BAC_R5 R CGC CCA CCT GAG GTA TAA CT

DgR3 R CAC TGG TGG TAG CTG AGA TT

PS-Rht-R2 R GGA GGA AGA AGG AGG AAG AAT A

PS-Rht-R4 R GGA GGA AGA AGG AGG AAG AAT G

Rht-11-R R CCT GTC GTC AGG GGC GGC GCC AGC

Rht-16-F F GGC ATG GGC TCG TCC GAG GAC AAG

Rht-22-F F GCC AGA GAT AGA TAG AGA GGC G

Rht-9-R R GAT CGG CCG CAG CGC GTA GAT GC

Rht-A-F2 F CCC TCA ACA GTG CAA TAC CTT C

Rht-A-F3 F GAT GCC GTC TCG CAA TCT

Rht-A-F4 F TCC CAC AAA ATT GAG CCA AC

Rht-A-F5 F TTG ACT TGT GCC TAC CTC TTT TT

Rht-A-R1 R TTA CGG GTG ATC ATG GAG GT

Rht-A-R2 R GGT TGG TGC AGT GTA AAG CTG

Rht-A-R3 R TGC AAA GCC ATC ATG TTC ATA

Rht-ABD-F1 F GGA CAC CGT GCA CTA CAA CC

Rht-ABD-F2 F CAG GAG CTC TGT GGT GGA G

Rht-ABD-F3 F TTC TAC GAG TCC TGC CCC TA

Rht-ABD-F4 F GAA CCG AGG CAA GCA AAA G

Rht-ABD-F6 F ACT CCT CCT GCA GCA CCT AC

Rht-ABD-F7 F GCC CTG GAG AAG GTC CTG

Rht-ABD-F8 F AGA AGC TGG AGC AGC TGG A

Rht-ABD-F9 F AGA AGG AGG GCT GCC TGA C

Rht-ABD-R1 R GAG AGG TTC TCC TGC TGC AC

Rht-ABD-R1a R CCA GCA AGG GTA TCT GCT TC

Rht-ABD-R1b R CAG CCT CCA CCA CAG AGC

Rht-ABD-R5 R CGA CAC CAT CAT CTT GTC CT

Rht-ABD-R6 R TGC ATC CCC TGC TTG ATG

Rht-ABD-R7 R CAG GAA TGT GCC GGA GTT

Rht-ABD-R8 R CCG GGG TTG TGT TGT CCT
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b Direction (Dir) of primers were forward (F) or reverse (R) 
 
 
 
 
 
 
 
 
 
 
 
 

Designation Dirb Sequence (5' to 3')

Rht-ABD-R9 R GAG GTC GGT GGG GTT GTA GT

Rht-ABD-R10 R CAT AGC TAA TGC GAC ACA CG

Rht-B-F1 F AGG CAA GCA AAA GCT TGA GA

Rht-B-F2 F GAA ATG TTG GTT GTT ATA TCC TTG G

Rht-B-F4 F CAC CAC CGA TCT CGA ACA A

Rht-B-F5 F CAA TGA CAA AAT AAT AGC CAT TCT C

Rht-B-R1 R CGG CAA AGG AAG CTA AGT TG

Rht-B-R3 R AGC GGC AGC GTA GTA GTT GT

Rht-B1a-R2 R CCA TGG CCA TCT CCA GAT G

Rht-B1b-R2 R CCC ATG GCC ATC TCC AGA TA

Rht-D-F1 F CGA GGC AAG CAA AAG CTT C 

Rht-D-F2 F CAG TGC AAT ACA CAG ATG CTT CA

Rht-D-F3 F ATG GTC GCC TTT GTT TCT TG

Rht-D-F5 F GCT CGT TCT CCT CCC AGT TC

Rht-D-F6 F GGG TAC TTA TGT TAT TTG CTT GTT GG

Rht-D-R1 R AAT TGC AAA GCC ACC ATT G

Rht-D1a-R2 R ATG GCC ATC TCG AGC TGT TC

Rht-D1b-R2 R CAT GGC CAT CTC GAG CTG TTA 

Rht-F03 F GAG TCT GAC GCA GCA GAG AG

Rht-F04 F TTC AAT ATT AAT TTT AAT CAT CCC ACA

Rht-F06 F AAC CGT GTG TCG CAT TAG C

Rht-F07 F CCC GCT TTT CCC CTT TTG

Rht-F11 F TTG TGA TTC CCA CCG GTT C

Rht-R01 R ACC AGA CAA ACT TCG CCA TC

Rht-R02 R CCC CGA CTC CCA CTT TAT TT

Rht-R03 R ATC GGA GCT CTT ACG TTT TTC C

Rht-R04 R CAA GTC TTT TAG ATC ATG TAC TTA TGC

Rht-R05 R CCA GCA CGA ATA TTT ACC AAG G

Rht-R08 R GGG GTG GCA CAA GAG GTG
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(A) DEFINITION:  Triticum aestivum clone BAC 0224_M10 genomic sequence 
(164257 bp); ACCESSION:  Chinese Spring Rht-A1a 
  

 
mobile element  126..1937 

/note=“TREP3198 Retrotransposon, LTR, Gypsy, RLG_Fatima_B_consensus-1” 
 

mobile element complement(2189..3175) 
/note=“TREP3160 Retrotransposon, LTR, Copia, RLC_WIS_A_consensus-1” 
 

TSD     3605..3609 
/note=“ target site duplication of TREP3250 Retrotransposon, LTR, Gypsy, 
RLG_Sabrina_D_115G1-2” 

 
LTR     3610..5184 

/note=“ long terminal repeat of TREP3250 Retrotransposon, LTR, Gypsy, 
RLG_Sabrina_D_115G1-2” 
 

mobile element  5185..10278 
/note=“TREP3250 Retrotransposon, LTR, Gypsy, RLG_Sabrina_D_115G1-2” 

 
LTR  10279..11842 

/note=“ long terminal repeat of TREP3250 Retrotransposon, LTR, Gypsy, 
RLG_Sabrina_D_115G1-2” 

 
TSD  11843..11847 

/note=“ target site duplication of TREP3250 Retrotransposon, LTR, Gypsy, 
RLG_Sabrina_D_115G1-2” 
 

mobile element complement(12107..13426) 
/note=“TREP3456 Retrotransposon, LTR, Copia, RLC_Barbara_consensus-1” 
 

TSD  13442..13446 
/note=“ target site duplication of RLC_WIS_B_consensus-1, Retrotransposon, 
LTR, Copia, TREP3161" 

 
LTR  13447..15175 

/note=“long terminal repeat of RLC_WIS_B_consensus-1, Retrotransposon, LTR, 
Copia, TREP3161” 

 
mobile element 15175..20467 

/note=RLC_WIS_B_consensus-1, Retrotransposon, LTR, Copia, TREP3161” 
 
LTR  20468..22189 

/note=“long terminal repeat of RLC_WIS_B_consensus-1, Retrotransposon, LTR, 
Copia, TREP3161" 
 

TSD   22190..22194 
/note=“ target site duplication of RLC_WIS_B_consensus-1, Retrotransposon, 
LTR, Copia, TREP3161" 
 

mobile element complement(22208..22409) 
/note=“TREP3456 Retrotransposon, LTR, Copia, RLC_Barbara_consensus-1" 

 
CDS complement(24659..24737, 24835..24914, 25031..25111, 25242..25311, 

25440..25514, 26833..27038, 27377..27626, 27704..27749, 29214..29283, 
31686..31755, 33343..33427, 33551..33635, 33746..33836, 34419..34552) 

 /gene 
/product = “putative zinc-finger protein gene” 
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/translation=MQRRRAQTWAGVGKTAQAAAAHAALFCFTLLLALRVDGRTDSSW
WIIFIPLWLFHGVAARGRFSMPAPSLPHGRHWAPCHSVVAAPLLIAFELLLCIYLE
SLRVKNHPAVDMKIVFLPLLTFEVIILVDNFRMCKALMPGDEESMSDEAIWETLPH
FWVAISMVFLIAATTFTLLKLSGDVGALGWWDLFINYGIAECFAFLVCTRWFNPMI
HRPPTHGEASSSSSAIRYRDWESGLVLPSLEDHEQERICGLPDIGGHLMKIPLVV
FQVLLCMRLEGTPPSARYIPIFALFSPLFILQGAGVLFSIGRLVEKVVLLLRNGPVS
PNYLTVSSKVRDCFAFLHHGSRLLGWWSIDEGSKEEQARLFYTESNGYNTFSG
YPPEVVKKMPKKDLAEEVWRLQAALGEQSEITKSTQQEYERLQNEKVLCRICYE
GEICMVILPCRHRTLCKSCAEKCKRCPICRNPIEERMAVYDV 

 
mobile element 28819..28983 

/note=“TREP3107 DNA transposon, TIR, Mariner, DTT_Thalos_consensus-1; 
Stowaway MITE, consensus sequence, Length = 162” 
 

mobile element complement(29666..29730) 
/note=“TREP3092 DNA transposon, TIR, Mariner, DTT_Icarus_consensus-1; 
Stowaway MITE, consensus sequence" 
 

mobile element 30134..30220 
/note=“TREP3528 DNA transposon, TIR, Mariner, DTT_Hades_consensus-1; 
Stowaway MITE" 

 
mobile element join(37422..37473,37575..37819) 

/note=“TREP3276 Retrotransposon, LTR, unknown, RLX_Gujog_10k23-3" 
 
misc feature     40074..40430 

/note=“Similar to 'Triticum aestivum clone wmc(20h12) anchored-SSR primer 
sequence” 

 
CDS             join(48779..49109, 49487..49728, 49826..49948, 50259..50375, 50479..50661, 

50755..50896, 51049..51214, 51334..51352) 
/gene 
/product = “putative integral membrane protein DUF6 containing protein" 
/translation=MASSVAPASCALPLHPRVATAAAAAAGPSCRVLLAFTAPRSAASVR
RAGILAPLRCSPLEDPGATGRDEGGKEKGGVSKRVRGRPMWRRILFASKKTRSI
MILNALTVIYASDIPVLKEVEALTEPAVFNMVRFVIAAIPFLPFVIRAFGDRRTRNG
GLELGVWVSLAYLAQAIGLITSEAGRASFIAAFTVIVVPLIDGIFGASIPMLTWFGAI
VSIIGVGLLECGGSPPCIGDVLNFLSAVFFGIHMLRTEQISRSTDKKKFMALLSFEV
LVVAFTSIVWFLLKDVFAEVHDSSFESLTFGTLWDSAASFPWIPALYTGVFSTGL
CMWAEMVAMAHVSATETAIVYGLEPVWGAAFAWFLLGERWDNAAWIGAALVLC
GSLTVQLFGSAPEKSQKVESRSGNTFESPLERQNRLSLSAIPVDSRKNIGSQLER
KDKTL 

 
mobile element complement(49256..49419) 

/note=“TREP3107 DNA transposon, TIR, Mariner, DTT_Thalos_consensus-1; 
Stowaway MITE, consensus sequence; Length = 162" 
 

mobile element 55498..55730 
/note=“TREP240 unknown, unknown, unknown, XXX_XC_AF326781-2” 
 

mobile element complement(56566..58068,58830..>60115,60435..60992) 
/note=“TREP3154 Retrotransposon, LTR, Copia, RLC_Olivia_42j2-1” 
 

TSD     complement(61415..61419) 
/note=“ target site duplication of Retrotransposon, LTR, Copia, 
RLC_WIS_B_consensus-1_TREP3161” 

 
LTR     complement(61420..63133) 

/note=“long terminal repeat of Retrotransposon, LTR, Copia, 
RLC_WIS_B_consensus-1_TREP3161” 
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mobile element complement(63134..68437) 
/note=“Retrotransposon, LTR, Copia, RLC_WIS_B_consensus-1_TREP3161” 

 
LTR  complement(68438..70153) 

/note=“long terminal repeat of Retrotransposon, LTR, Copia, 
RLC_WIS_B_consensus-1_TREP3161” 
 

TSD  complement(70154..70158) 
/note=“ target site duplication of Retrotransposon, LTR, Copia, 
RLC_WIS_B_consensus-1_TREP3161” 
 

gap             74152..74153 
/note: “estimated sequence gap of 500 bp or less” 

 
CDS  79748..81610 

/gene = “Rht-A1a” 
/codon_start=1 
/product = “DELLA protein” 
/translation=MKREYQDAGGSGGGGGMGSSEDKMMVSAAAGEGEEVDELLAAL
GYKVRASDMADVAQKLEQLEMAMGMGGVGAGAAPDDSFATHLATDTVHYNPT
DLSSWVESMLSELNAPPPPLPPAPQQLNASTSSTVTGGGYFDLPPSVDSSCSTY
ALRPIPSPAGAVGPADLSADSVRDPKRMRTGGSSTSSSSSSSSSLGGGARSSV
VEAAPPVAAGANAPALPVVVVDTQEAGIRLVHALLACAEAVQQENFSAAEALVK
QIPLLAASQGGAMRKVAAYFGEALARRVFRFRPQPDSSLLDAAFADLLHAHFYE
SCPYLKFAHFTANQAILEAFAGCRRVHVVDFGIKQGMQWPALLQALALRPGGPP
SFRLTGVGPPQPDETDALQQVGWKLAQFAHTIRVDFQYRGLVAATLADLEPFML
QPEGEEDPNEEPEVIAVNSVFEMHRLLAQPGALEKVLGTVRAVRPRIVTVVEQE
ANHNSGTFLDRFTESLHYYSTMFDSLEGGSSGGPSEVSSGAAAAPAAAGTDQV
MSEVYLGRQICNVVACEGAERTERHETLGQWRNRLGNAGFETVHLGSNAYKQA
STLLALFAGGDGYKVEEKEGCLTLGWHTRPLIATSAWRLAAP 

 
misc feature     complement(84344..84464) 

/note=“Triticum aestivum TAA1b gene promoter region (partial part of promoter) 
AJ488930.1" 

 
mobile element join(87177..87259,87365..87569,87870..87972,88010..88854) 

/note=“TREP3530 Retrotransposon, LTR, Copia, RLC_Angela_B_consensus-1” 
 

mobile element 90816..94499 
/note=“TREP2376 Retrotransposon, LTR, Copia, RLC_Bianca_509D2-1” 
 

TSD     94500..94504 
/note=“ target site duplication of Retrotransposon, LTR, Gypsy, 
RLG_Carmilla_consensus-1", TREP3169" 
 

LTR  complement(94505..94996) 
/note=“ long terminal repeat of Retrotransposon, LTR, Gypsy, 
RLG_Carmilla_consensus-1", TREP3169" 
 

mobile element complement(94997..107090) 
/note=“Retrotransposon, LTR, Gypsy, RLG_Carmilla_consensus-1", TREP3169" 
 

LTR  complement(107091..107576) 
/note=“ long terminal repeat of Retrotransposon, LTR, Gypsy, 
RLG_Carmilla_consensus-1", TREP3169" 
 

TSD     107577..107581 
/note=“ target site duplication of Retrotransposon, LTR, Gypsy, 
RLG_Carmilla_consensus-1", TREP3169" 
 

TSD     107838..107842 
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/note=“ target site duplication of Retrotransposon, LTR, Copia, 
RLC_WIS_A_consensus-1” 
 

LTR  107843..109620 
/note=“ long terminal repeat of Retrotransposon, LTR, Copia, 
RLC_WIS_A_consensus-1” 

 
mobile element 109621..114681 

/note=“Retrotransposon, LTR, Copia, RLC_WIS_A_consensus-1” 
 

LTR  114682..116456 
/note=“ long terminal repeat of Retrotransposon, LTR, Copia, 
RLC_WIS_A_consensus-1” 
 

TSD     116457..116461 
/note=“ target site duplication of Retrotransposon, LTR, Copia, 
RLC_WIS_A_consensus-1” 
 

mobile element 116462..117037 
/note=“TREP2376 Retrotransposon, LTR, Copia, RLC_Bianca_509D2-1” 
 

misc feature     129602..130183 
  /predicted gene 

//note=“homology with wEST CK209908 (homeobox protein DLX-2 related cluster) 
and CK209889 (Cluster related to UPI000037F185; COG3434: Predicted signal 
transduction protein containing EAL and modified HD-GYP domains)” 
 

mobile element complement(131306..136997,138462..144668) 
/note=“TREP3414 DNA transposon, TIR, CACTA, "DTC_Clifford_consensus-1" 
 

gap              137254..137255 
/note: “estimated sequence gap of 500 bp or less” 

 
mobile element complement(145672..149405) 

/note=“TREP3458 Retrotransposon, LTR, Gypsy, RLG_Jeli_consensus-1” 
 

mobile element 149796..152280 
/note=“TREP3529 Retrotransposon, LTR, Copia, RLC_Angela_A_consensus-1” 

 
gap  150952..150953 

/note: “estimated sequence gap of 500 bp or less” 
 

mobile element 152282..153987 
/note=“TREP3251 Retrotransposon, LTR, Gypsy, RLG_Sabrina_D_AY146588-2” 
 

mobile element 154120..154372 
/note=“TREP3245 Retrotransposon, LTR, Gypsy, RLG_Sabrina_B_AY368673-1” 
 

TSD  154388..154392 
/note=“target site duplication of TREP3529 Retrotransposon, LTR, Copia, 
RLC_Angela_A_consensus-1” 

 
LTR  154393..156111 

/note=“ long terminal repeat of "TREP3529 Retrotransposon, LTR, Copia, 
RLC_Angela_A_consensus-1” 
 

mobile element 156112..161363 
/note=“TREP3529 Retrotransposon, LTR, Copia, RLC_Angela_A_consensus-1" 
 

LTR  161364..163084 
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/note=“ long terminal repeat of TREP3529 Retrotransposon, LTR, Copia, 
RLC_Angela_A_consensus-1" 
 

TSD  163085..163089 
/note=“target site duplication of TREP3529 Retrotransposon, LTR, Copia, 
RLC_Angela_A_consensus-1" 
 

mobile element 163090..163481 
/note=“TREP3245 Retrotransposon, LTR, Gypsy, RLG_Sabrina_B_AY368673-1" 
 

mobile element 163573..164257 
/note=“TREP3251 Retrotransposon, LTR, Gypsy, RLG_Sabrina_D_AY146588-2" 
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(B) DEFINITION:  Triticum aestivum clone BAC 1417_F16 genomic sequence 
(187310 bp); ACCESSION:  Chinese Spring Rht-B1a 
 
 
repeat region    1..1327 

/note="TREP3529 Retrotransposon, LTR, Copia, RLC_Angela_A_consensus-1" 
 
LTR     1328..2396 

/note="long terminal repeat of TREP3269 Retrotransposon, LTR, Gypsy, 
RLG_WHAM_consensus-1" 

 
misc feature     4056..4057 

/note: “estimated sequence gap of 500 bp or less” 
 
mobile element  4130..4383 

/note="TREP3269 Retrotransposon, LTR, Gypsy, RLG_WHAM_consensus-1" 
 
repeat region    complement(4410..6026) 

/note="TREP3189 Retrotransposon, LTR, Gypsy, RLG_Fatima_consensus-1” 
 
LTR     6401..7823 

/note="long terminal repeat of TREP3269 Retrotransposon, LTR, Gypsy, 
RLG_WHAM_consensus-1" 

 
LTR     6416..14539 

/note="TREP3269 Retrotransposon, LTR, Gypsy, RLG_WHAM_consensus-1" 
 
mobile element  8027..9008 

/note="TREP3269 Retrotransposon, LTR, Gypsy, RLG_WHAM_consensus-1" 
 
LTR  14540..15605 

/note="TREP3269 Retrotransposon, LTR, Gypsy, RLG_WHAM_consensus-1" 
 
mobile element  complement(15949..17397) 

/note="TREP3276 Retrotransposon, LTR, unknown, RLX_Gujog_10k23-3" 
 
mobile element  complement(17399..19953, 22509..22749) 

/note="TREP1241 DNA transposon, TIR, CACTA, DTC_TAT2_231A16-1" 
 
mobile element  complement(22751..23280) 

/note="TREP3276 Retrotransposon, LTR, unknown, RLX_Gujog_10k23-3" 
 
LTR     23294..24251 

/note="long terminal repeat of TREP3269 Retrotransposon, LTR, Gypsy, 
"RLG_WHAM_consensus-1" 

 
mobile element  24252..32500 

/note="TREP3269 Retrotransposon, LTR, Gypsy, RLG_WHAM_consensus-1" 
 
LTR     29050..30121 

/note="long terminal repeat of TREP3269 Retrotransposon, LTR, Gypsy, 
"RLG_WHAM_consensus-1" 
 

 
mobile element  32545..32701 

/note="TREP3173 Retrotransposon, LTR, Gypsy, RLG_Derami_AY368673-1" 
 
TSD     33520..33524 

/note=”target site duplication of TREP1527 Retrotransposon, LTR, Copia, 
"RLC_Inga_AY661558-2” 
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LTR     33525..35222 

/note="long terminal repeat of TREP1527 Retrotransposon, LTR, Copia, 
RLC_Inga_AY661558-2” 

 
mobile element  35223..44433 

/note="TREP1527 Retrotransposon, LTR, Copia, "RLC_Inga_AY661558-2” 
 
LTR  44434..46132 

/note="long terminal repeat of TREP1527 Retrotransposon, LTR, Copia, 
RLC_Inga_AY661558-2” 

 
TSD  46133..46137 

/note=”target site duplication of TREP1527 Retrotransposon, LTR, Copia, 
RLC_Inga_AY661558-2” 

 
mobile element  48715..50445 

/note="TREP3173 Retrotransposon, LTR, Gypsy, RLG_Derami_AY368673-1" 
 
 
CDS join(53952..54270, 54483..54724, 54815..54937, 55240..55356, 55461..55643, 

55736..55877, 56030..56195, 56315..56333) 
/gene 
/product = “putative integral membrane protein DUF6 containing protein" 
/translation=MASSVAPSSCALPLHPRVAAAAGPSCRVLLAFTAPRSAASVRRAGI
LAPLRCSPLEDPGATGREEGRKEEGDASKRVRGRPMWRRILFASKKTRSIMILN
ALTVIYASDIPVLKEVEALTEPAVFNMVRFVIAAIPFIPFVIRAFGDRRTRNGGLELG
LWVSLAYLAQAIGLITSEAGRASFIAAFTVIVVPLIDGIFGASIPMLTWFGAIVSIIGV
GLLECGGSPPCVGDVLNFLSAVFFGIHMLRTEQISRSTDKKKFMALLSFEVLVVA
FTSILWFLLKDVFAEVHDSSFESWTFGALWDSAASFPWIPALYTGVFSTGLCMW
AEMVAMAHVSATETAIVYGLEPVWGAAFAWFLLGERWDNAAWIGAALVLCGSL
TVQLFGSAPEKSQKVESCSGNTFESPLKRQDHLSLSAIPVDSSKNIGSQLERKDK
TL 

 
mobile element  join(64978..65210,65238..65413,65460..65511) 

/note="TREP3189 Retrotransposon, LTR, Gypsy, RLG_Fatima_consensus-1" 
 
mobile element  complement(67476..69695) 

/note="TREP1169 DNA transposon, TIR, HAT, DXX_George_AF521177-1" 
 
CDS  77662..79527 

/gene = “Rht-B1a” 
/product = “DELLA protein” 
/translation=MKREYQDAGGSGGGGGGMGSSEDKMMVSGSAAAGEGEEVDELL
AALGYKVRASDMADVAQKLEQLEMAMGMGGVGAGAAPDDSFATHLATDTVHY
NPTDLSSWVESMLSELNAPPPPLPPAPQLNASTSSTVTGGGYFDLPPSVDSSCS
TYALRPIPSPAVAPADLSADSVVRDPKRMRTGGSSTSSSSSSSSLGGGGARSSV
VEAAPPVAAAAGAPALPVVVVDTQEAGIRLVHALLACAEAVQQENFSAAEALVK
QIPLLAASQGGAMRKVAAYFGEALARRVFRFRPQPDSSLLDAAFADLLHAHFYE
SCPYLKFAHFTANQAILEAFAGCRRVHVVDFGIKQGMQWPALLQALALRPGGPP
SFRLTGVGPPQPDETDALQQVGWKLAQFAHTIRVDFQYRGLVAATLADLEPFML
QPEGEEDPNEEPEVIAVNSVFEMHRLLAQPGALEKVLGTVRAVRPRIVTVVEQE
ANHNSGTFLDRFTESLHYYSTMFDSLEGGSSGGPSEVSSGAAAAPAAAGTDQV
MSEVYLGRQICNVVACEGAERTERHETLGQWRNRLGNAGFETVHLGSNAYKQA
STLLALFAGGDGYKVEEKEGCLTLGWHTRPLIATSAWRLAAP 

 
mobile element  complement(83778..86302) 

/note="TREP3162 Retrotransposon, LTR, Gypsy, RLG_BAGY2_consensus-1" 
 
TSD     complement(86302..86306) 
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/note=”target site duplication of TREP3198 Retrotransposon, LTR, Gypsy, 
RLG_Fatima_B_consensus-1" 

 
LTR     complement(86307..86776) 

/note=”long terminal repeat of TREP3198 Retrotransposon, LTR, Gypsy, 
RLG_Fatima_B_consensus-1" 

 
mobile element  complement(86777..94987) 

/note="TREP3198 Retrotransposon, LTR, Gypsy, RLG_Fatima_B_consensus-1" 
 
LTR     complement(94988..95457) 

/note=”long terminal repeat of TREP3198 Retrotransposon, LTR, Gypsy, 
RLG_Fatima_B_consensus-1" 

 
TSD     complement(95458..95462) 

/note=”target site duplication of TREP3198 Retrotransposon, LTR, Gypsy, 
RLG_Fatima_B_consensus-1" 

   
mobile element  complement(96203..101007) 

/note="TREP3162 Retrotransposon, LTR, Gypsy, RLG_BAGY2_consensus-1”  
 
mobile element  101008..105203 

/note="TREP3174 Retrotransposon, LTR, Gypsy, RLG_Egug_EF067844-16" 
 
TSD     105204..105208 

/note=target site duplication of TREP3198 Retrotransposon, LTR, Gypsy, 
RLG_Fatima_B_consensus-1" 

 
LTR     105209..105681 

/note=long terminal repeat of TREP3198 Retrotransposon, LTR, Gypsy, 
RLG_Fatima_B_consensus-1" 

 
mobile element  105682..113822 

/note="TREP3198 Retrotransposon, LTR, Gypsy, RLG_Fatima_B_consensus-1" 
 
LTR     113823..114295 

/note=long terminal repeat of TREP3198 Retrotransposon, LTR, Gypsy, 
RLG_Fatima_B_consensus-1" 

 
TSD     114296..114300 

/note=target site duplication of TREP3198 Retrotransposon, LTR, Gypsy, 
RLG_Fatima_B_consensus-1" 

 
mobile element  complement(114924..116763) 

/note="TREP3530 Retrotransposon, LTR, Copia, RLC_Angela_B_consensus-1" 
 
mobile element  116802..117559 

/note="TREP3239 Retrotransposon, LTR, Gypsy, RLG_Sabrina_consensus-1" 
 
mobile element  complement(117572..121727) 

/note="TREP3530 Retrotransposon, LTR, Copia, RLC_Angela_B_consensus-1" 
 
mobile element  complement(122513..124825) 

/note="TREP3202 Retrotransposon, LTR, Gypsy, RLG_Ifis_59e04-1" 
 
mobile element  125058..128027 

/note="TREP3026 DNA transposon, TIR, CACTA, DTC_Jorge_59e04-1" 
 
misc feature     complement(130587..130961) 

/note= “similarity to EF396184.1: Triticum aestivum clone MML-002 HMW glutenin 
seed storage protein gene, promoter region" 
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mobile element  complement(132413..133098) 

/note="TREP2092 Retrotransposon, LTR, Copia, "RLC_TAR2_AY853252-1" 
 

mobile element  complement(134460..134642) 
/note="TREP3445 DNA transposon, TIR, Harbinger, DTH_Kerberos_consensus-

1" 
 
mobile element  complement(140571..141797) 

/note="TREP3254 Retrotransposon, LTR, Gypsy, RLG_Sakura_10k23-4" 
 
misc feature     141823..141824 

/note: “estimated sequence gap of 500 bp or less” 
 
mobile element  144536..148325 

/note="TREP3026 DNA transposon, TIR, CACTA, DTC_Jorge_59e04-1" 
 
LTR     148329..150041 

/note="long terminal repeat ofTREP3161 Retrotransposon, LTR, Copia, 
"RLC_WIS_B_consensus-1" 

 
mobile element  150042..155357 

/note="TREP3161 Retrotransposon, LTR, Copia, RLC_WIS_B_consensus-1" 
 
LTR     155358..157073 

/note="long terminal repeat ofTREP3161 Retrotransposon, LTR, Copia, 
RLC_WIS_B_consensus-1" 

 
mobile element  158258..160454 

/note="TREP3026 DNA transposon, TIR, CACTA, DTC_Jorge_59e04-1" 
 
mobile element  complement(160627..161634) 

/note="TREP1418 Retrotransposon, LTR, Gypsy, RLG_Ifis_AY368673-1" 
 
mobile element  complement(162142..163087) 

/note="TREP3169 Retrotransposon, LTR, Gypsy, RLG_Carmilla_consensus-1” 
 
mobile element  complement(164294..164994) 

/note="TREP1418 Retrotransposon, LTR, Gypsy, RLG_Ifis_AY368673-1" 
 
mobile element  165214..166778 

/note="TREP3254 Retrotransposon, LTR, Gypsy, RLG_Sakura_10k23-4" 
 
mobile element  complement(166779..171095) 

/note="TREP3202 Retrotransposon, LTR, Gypsy, RLG_Ifis_59e04-1" 
 
mobile element  complement(179640..181027) 

/note="TREP3202 Retrotransposon, LTR, Gypsy, RLG_Ifis_59e04-1" 
 
mobile element  complement(181409..183300) 

/note="TREP3529 Retrotransposon, LTR, Copia, RLC_Angela_A_consensus-1" 
 
mobile element  183301..184837 

/note="TREP1438 Retrotransposon, LTR, Gypsy, RLG_Wilma_AY494981-2" 
 
mobile element  complement(184838..187310) 

/note="TREP3529 Retrotransposon, LTR, Copia, RLC_Angela_A_consensus-1. 
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(D) DEFINITION:  Triticum aestivum clone BAC 0155_I24 genomic sequence 
(213794 bp); ACCESSION:  Chinese Spring Rht-D1a 
 
mobile element 1..1989 

/note="TREP3530 Retrotransposon, LTR, Copia, RLC_Angela_B_consensus-1" 
 
misc_feature    3378..3490 

/note="similarity to wEST CB307615 (HFIG600 Hessian fly infested cDNA library 
Triticum aestivum cDNA, mRNA sequence). Partial hit" 

 
mobile element  complement(4094..4810) 

/note="TREP3067 DNA transposon, TIR, Mutator, DTM_Remus_consensus-1" 
 
mobile element   complement(5527..5681) 

/note="TREP99 Retrotransposon, LTR, Gypsy, RLG_Cereba_AY040832-2" 
 

CDS complement(6381..6459, 6557..6636, 6753..6833, 6944..7013, 7142..7216, 
8483..8688, 9027..9276, 9354..9399, 9998..10067, 12454..12523, 13468..13552, 
13643..13727, 13836..13926, 14545..14678) 
/gene 
/product = “putative zinc-finger protein gene” 

 /translation=MQRRRAQTWAGVGKTAQAAAAHAALFCFTLLLALRVDGRTDSSW
WIIFIPLWLFHGVAARGRFSMPAPSLPHGRHWAPCHSVVAAPLLIAFELLLCIYLE
SLRVKNHPAVDMKIVFLPLLTFEVIILVDNFRMCKALMPGDEESMSDEAIWETLPH
FWVAISMVFLIAATTFTLLKLSGDVGALGWWDLFINYGIAECFAFLVCTRWFNPMI
HRPPTHGEASSSSSAIRYRDWESGLVLPSLEDHEQERICGLPDIGGHLMKIPLVV
FQVLLCMRLEGTPPSARYIPIFALFSPLFILQGAGVLFSIGRLVEKLVLLLRNGPVS
PNYLTVSSKVRDCFAFLHHGSRLLGWWSIDEGSKEEQARLFYTESNGYNTFSG
YPPEVVKKMPKKDLAEEVWRLQAALGEQSEITKSTQQEYERLQNEKVLCRICYE
GEICMVILPCRHRTLCKSCAEKCKRCPICRNPIEERMAVYDV 

 
mobile element   complement(9595..9679) 

/note="TREP3081 DNA transposon, TIR, Mariner, DTT_Athos_consensus-1" 
 
mobile element   complement(10410..10509) 

/note="TREP3092 DNA transposon, TIR, Mariner, DTT_Icarus_consensus-1" 
 
mobile element   complement(12901..12991) 

/note="TREP3100 DNA transposon, TIR, Mariner, DTT_Tantalos_42j2-1" 
 
mobile element   16775..17025 

/note="TREP1318 DNA transposon, TIR, CACTA, DTC_TAT1_AF459088-1" 
 
mobile element   complement(17197..18714) 

/note="TREP3246 Retrotransposon, LTR, Gypsy, RLG_Sabrina_C_210J24-2 
 
mobile element   18879..19283 

/note="TREP3178 Retrotransposon, LTR, Gypsy, RLG_Erika_consensus-1" 
 
gap   19776..19777 

/note: “estimated sequence gap of 500 bp or less” 
 
mobile element   20095..23277 

/note="TREP3178 Retrotransposon, LTR, Gypsy, RLG_Erika_consensus-1." 
 
mobile element   complement(23283..23763) 

/note="TREP3254 Retrotransposon, LTR, Gypsy, RLG_Sakura_10k23-4" 
 
mobile element   complement(23979..24584) 
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/note="TREP3269 Retrotransposon, LTR, Gypsy, RLG_WHAM_consensus-1" 
 
mobile element   complement(24744..25118) 

/note="TREP3254 Retrotransposon, LTR, Gypsy, RLG_Sakura_10k23-4" 
 
mobile element   complement(25144..29355) 

/note="TREP3246 Retrotransposon, LTR, Gypsy, RLG_Sabrina_C_210J24-2" 
 
mobile element   complement(29356..34389) 

/note="TREP3530 Retrotransposon, LTR, Copia, RLC_Angela_B_consensus-1" 
 
CDS             join(40731..41061, 41431..41672, 41762..41884, 42195..42311, 42415..42597, 

42693..42834, 42987..43152, 43275..43293) 
/gene 
/product = “putative integral membrane protein DUF6 containing protein" 

 /translation=MASSLAPASCALPLHPRVATAAAAAAGPSCRVLLAFTAPRSAASVR
RAGILAPLRCSPLEDPGATGREEGGKEKGGVSKRVHGRPMWRRILFASKKTRSI
MILNALTVIYASDIPVLKEVEALTEPAVFNMVRFVIAAIPFIPFVIRAFGDRRTRNGG
LELGVWVSLAYLAQAIGLITSEAGRASFIAAFTVIVVPLIDGIFGASIPMLTWFGAIV
SVIGVGLLECGGSPPCVGDVLNFLSAVFFGIHMLRTEQISRSTDKKKFMALLSFE
VLVVALTSIIWFLLKDAFVEVHDSSFESWTFGTLWDSAASFPWIPALYTGVFSTGL
CMWAEMVAMAHVSATETAIVYGLEPVWGATFAWFLLGERWDNAAWIGAALVLC
GSLTVQLFGSAPEKSQKVESRSGNTFESPLKRQERLSLSAIPVDSRKNIGSQLER
KDKTL 

 
mobile element   complement(41201..41363) 

/note="TREP3107 DNA transposon, TIR, Mariner, DTT_Thalos_consensus-1; 
Stowaway" 

 
mobile element   46153..49507 

/note="TREP3322 Retrotransposon, LINE, unknown, RIX_Reina_EF540321-1" 
 
mobile element   complement(56211..57797) 

/note="TREP3454 Retrotransposon, LINE, unknown, RIX_Karin_consensus-1" 
 
mobile element   complement(57798..60125) 

/note="TREP1241 DNA transposon, TIR, CACTA, DTC_TAT2_231A16-1" 
 
gap   61082..61083 

/note: “estimated sequence gap of 500 bp or less” 
 
mobile element   complement(61496..63562) 

/note="TREP3454 Retrotransposon, LINE, unknown, RIX_Karin_consensus-1" 
 
TSD    complement(64339..64343) 

/note="target site duplication of TREP3160 Retrotransposon, LTR, Copia, 
RLC_WIS_A_consensus-1" 

 
LTR    complement(64344..66150) 

/note="long terminal repeat of TREP3160 Retrotransposon, LTR, Copia, 
RLC_WIS_A_consensus-1" 

 
mobile element   complement(66151..67924) 

/note="TREP3160 Retrotransposon, LTR, Copia, RLC_WIS_A_consensus-1" 
 
LTR     complement(67925..69464) 

/note="long terminal repeat of TREP3223 Retrotransposon, LTR, Gypsy, 
RLG_Romani_10k23-3" 

 
mobile element   complement(69629..70930) 

/note="TREP238 Retrotransposon, LINE, unknown, RIX_Isabelle_AF326781-1" 
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mobile element   complement(70931..77539) 

/note="TREP3223 Retrotransposon, LTR, Gypsy, RLG_Romani_10k23-3" 
 
LTR     complement(77540..79080) 

/note="long terminal repeat of TREP3223 Retrotransposon, LTR, Gypsy, 
RLG_Romani_10k23-3" 

 
mobile element   complement(80254..83498) 

/note="TREP3160 Retrotransposon, LTR, Copia, RLC_WIS_A_consensus-1" 
 
LTR     complement(83499..85284) 

/note="long terminal repeat of TREP3160 Retrotransposon, LTR, Copia, 
RLC_WIS_A_consensus-1" 

 
TSD    complement(85285..85289) 

/note="target site duplication of TREP3160 Retrotransposon, LTR, Copia, 
RLC_WIS_A_consensus-1" 

 
mobile element   86879..86963 

/note="TREP3081 DNA transposon, TIR, Mariner, DTT_Athos_consensus-1; 
Stowaway MITE " 

 
mobile element complement(89479..89590) 

/note="TREP3107 DNA transposon, TIR, Mariner, DTT_Thalos_consensus-1; 
Stowaway (162 total length)" 

 
CDS  96445..98316 

/gene = “Rht-D1a” 
/product = “DELLA protein” 
/translation=MKREYQDAGGSGGGGGGMGSSEDKMMVSAAAGEGEEVDELLAA
LGYKVRASDMADVAQKLEQLEMAMGMGGVGAGAAPDDSFATHLATDTVHYNP
TDLSSWVESMLSELNAPPPPLPPAPQLNASTSSTVTGSGGYFDLPPSVDSSSSI
YALRPIPSPAGATAPADLSADSVRDPKRMRTGGSSTSSSSSSSSSLGGGARSSV
VEAAPPVAAAANATPALPVVVVDTQEAGIRLVHALLACAEAVQQENLSAAEALVK
QIPLLAASQGGAMRKVAAYFGEALARRVFRFRPQPDSSLLDAAFADLLHAHFYE
SCPYLKFAHFTANQAILEAFAGCRRVHVVDFGIKQGMQWPALLQALALRPGGPP
SFRLTGVGPPQPDETDALQQVGWKLAQFAHTIRVDFQYRGLVAATLADLEPFML
QPEGEEDPNEEPEVIAVNSVFEMHRLLAQPGALEKVLGTVRAVRPRIVTVVEQE
ANHNSGTFLDRFTESLHYYSTMFDSLEGGSSGGGPSEVSSGAAAAPAAAGTDQ
VMSEVYLGRQICNVVACEGAERTERHETLGQWRNRLGNAGFETVHLGSNAYKQ
ASTLLALFAGGDGYKVEEKEGCLTLGWHTRPLIATSAWRLAGP 

 
mobile element   102395..103931 

/note="TREP3173 Retrotransposon, LTR, Gypsy, RLG_Derami_AY368673-1" 
 
mobile element   complement(104930..108017) 

/note="TREP3254 Retrotransposon, LTR, Gypsy, RLG_Sakura_10k23-4" 
 
mobile element   108892..109755 

/note="TREP3530 Retrotransposon, LTR, Copia, RLC_Angela_B_consensus-1" 
 
mobile element   109820..112445 

/note="TREP3026 DNA transposon, TIR, CACTA, DTC_Jorge_59e04-1" 
 
mobile element   117082..118304 

/note="TREP3245 Retrotransposon, LTR, Gypsy, RLG_Sabrina_B_AY368673-1" 
 
gap  117199..117200 

/note: “estimated sequence gap of 500 bp or less” 
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mobile element   120007..125187 
/note="TREP766 DNA transposon, TIR, CACTA, DTC_Jorge_231A16-1" 

 
mobile element   128763..142057 

/note="TREP3169 Retrotransposon, LTR, Gypsy, RLG_Carmilla_consensus-1" 
 
mobile element   complement(143540..143957) 

/note="TREP232 DNA transposon, TIR, Mutator, "DTM_Deimos_AF326781-1" 
 
TSD   144835..144839 

/note="target site duplication of TREP3254 Retrotransposon, LTR, Gypsy, 
RLG_Sakura_10k23-4" 

 
LTR     144840..146387 

/note="long terminal repeat of TREP3254 Retrotransposon, LTR, Gypsy, 
RLG_Sakura_10k23-4" 

 
mobile element   146388..150379 

/note="TREP3254 Retrotransposon, LTR, Gypsy, RLG_Sakura_10k23-4" 
 
LTR   150380..151924 

/note="long terminal repeat of TREP3254 Retrotransposon, LTR, Gypsy, 
RLG_Sakura_10k23-4" 

 
TSD   151925..151929 

/note="target site duplication of TREP3254 Retrotransposon, LTR, Gypsy, 
RLG_Sakura_10k23-4" 

 
mobile element   152199..154346 

/note="TREP766 DNA transposon, TIR, CACTA, DTC_Jorge_231A16-1" 
 
mobile element   154347..164446 

/note="TREP3529 Retrotransposon, LTR, Copia, RLC_Angela_A_consensus-1" 
 
TSD   complement(164447..164451) 

/note="target site duplication of TREP2318 Retrotransposon, LTR, Gypsy, 
RLG_Nusif_AY494981-1" 

 
LTR    complement(164452..165358) 

/note="long terminal repeat of TREP2318 Retrotransposon, LTR, Gypsy, 
RLG_Nusif_AY494981-1" 

 
mobile element   complement(165359..170921) 

/note="TREP2318 Retrotransposon, LTR, Gypsy, RLG_Nusif_AY494981-1" 
 
LTR    complement(170922..171828) 

/note="long terminal repeat of TREP2318 Retrotransposon, LTR, Gypsy, 
RLG_Nusif_AY494981-1" 

 
TSD   complement(171829..171833) 

/note="target site duplication of TREP2318 Retrotransposon, LTR, Gypsy, 
RLG_Nusif_AY494981-1" 

 
mobile element   172111..182151 

/note="TREP3189 Retrotransposon, LTR, Gypsy, RLG_Fatima_consensus-1" 
 
mobile element   182152..183849 

/note="TREP3530 Retrotransposon, LTR, Copia, RLC_Angela_B_consensus-1" 
 
mobile element   184035..185556 

/note="TREP3250 Retrotransposon, LTR, Gypsy, RLG_Sabrina_D_115G1-2" 
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mobile element   185578..186361 

/note="TREP3530 Retrotransposon, LTR, Copia, RLC_Angela_B_consensus-1" 
 
mobile element   186885..191025 

/note="TREP3250 Retrotransposon, LTR, Gypsy, RLG_Sabrina_D_115G1-2" 
 
mobile element   191026..192740 

/note="TREP3530 Retrotransposon, LTR, Copia, RLC_Angela_B_consensus-1" 
 
mobile element   192907..194501 

/note="TREP3250 Retrotransposon, LTR, Gypsy, RLG_Sabrina_D_115G1-2" 
 
mobile element   complement(194520..197112) 

/note="TREP3269 Retrotransposon, LTR, Gypsy, RLG_WHAM_consensus-1" 
 
mobile element   198781..200347 

/note="TREP3250 Retrotransposon, LTR, Gypsy, RLG_Sabrina_D_115G1-2" 
 
LTR     200367..200848 

/note="long terminal repeat of TREP3254 Retrotransposon, LTR, Gypsy, 
RLG_Sakura_10k23-4" 

 
mobile element   200849..206357 

/note="TREP3254 Retrotransposon, LTR, Gypsy, RLG_Sakura_10k23-4" 
 
LTR     206358..206839 

/note="long terminal repeat of TREP3254 Retrotransposon, LTR, Gypsy, 
RLG_Sakura_10k23-4" 

 
mobile element   207589..213064 

/note="TREP3456 Retrotransposon, LTR, Copia, RLC_Barbara_consensus-1" 
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Genea Genomeb Strand Locus Name/Numberc Sequence locationd

Start 

coord. 

relative 

Rht-1 e

End 

coord. 

relative 

Rht-1

Exons 

(no.)

ORF 

(nt)f

ORF + 

Introns 

(nt)

Amino 

acids 

(no.)

Tb1 B. distachyon plus Bradi1g11060 Chr1:8129288..8130445 -56466 -55309 1 1158 1158 385

ZnF B. distachyon minus Bradi1g11070 Chr1:8149832..8164731 -35921 -21022 14 1425 14900 474

DUF6 B. distachyon plus Bradi1g11080 Chr1:8168243..8171632 -17510 -14121 8 1320 3390 439

Rht-1 B. distachyon plus Bradi1g11090 Chr1:8185754..8187625 1 1872 1 1872 1872 623

Bradi1g11100 B. distachyon plus Bradi1g11100 Chr1:8201693..8203891 15939 18137 2 423 2199 140

Toc64 B. distachyon minus Bradi1g11110 Chr1:8215229..8225462 29475 39708 13 1767 10234 588

DUF6 H. vulgare EST derived NA n/a n/a 8 1308 n/a 435

Rht-1 H. vulgare AF460219 (SLN1) NA n/a n/a 1 1857 1857 618

ZnF H. vulgare EST derived NA n/a n/a 14 1422 n/a 473

Tb1 O. sativa plus Os03g49880 Chr3:28422062..28423228 -83862 -82696 1 1167 1167 388

ZnF O. sativa minus Os03g49900 Chr3:28449229..28442280 -63643 -56694 14 1422 6950 473

DUF6 O. sativa plus Os03g49940 Chr3:28463889..28466335 -42034 -39588 8 1365 2447 454

LOC_Os03g49960 O. sativa minus Os03g49960 Chr3:28475938..28467680 -29986 -38244 19 1620 8259 539

Rht-1 O. sativa plus Os03g49990 (SLR1) Chr3:28505924..28507801 1 1878 1 1878 1878 625

Toc64 O. sativa minus Os03g50010 Chr3:28534130..28526495 20571 28206 13 1761 7636 586

Toc64 S. bicolor plus Sb01g010650 Chr1:9389669..9402483 -30546 -17732 13 1767 12815 588

Rht-1 S. bicolor minus Sb01g010660 Chr1:9420215..9422098 1 1884 1 1884 1884 627

DUF6 S. bicolor minus Sb01g010670 Chr1:9454427..9457360 34213 37146 8 1326 2934 441

ZnF S. bicolor plus Sb01g010680 Chr1:9471685..9478938 51471 58724 14 1422 7254 473

Tb1 S. bicolor minus Sb01g010690 Chr1:9506057..9507199 85842 86984 1 1143 1143 380

ZnF T. urartu  A minus ZnF BAC_T.urartu:19834..28865 -39576 -30545 14 1422 9032 473

DUF6 T. urartu  A plus DUF6 BAC_T.urartu:42927..45500 -16483 -13910 8 1323 2574 440

Rht-1 T. urartu  A plus Rht-A1 BAC_T.urartu:59411..61273 1 1863 1 1863 1863 620

ZnF T. aestivum A (CS) minus ZnF BAC_0224_M10:24659..34552 -55088 -45195 14 1422 9894 473

DUF6 T. aestivum A (CS) plus DUF6 BAC_0224_M10:48779..51352 -30968 -28395 8 1323 2574 440

Rht-1 T. aestivum A (CS) plus Rht-A1 BAC_0224_M10:79748..81610 1 1863 1 1863 1863 620

DUF6 T. aestivum B (CS) plus DUF6 BAC_1417_F16:53952..56333 -23709 -21328 8 1311 2382 436

Rht-1 T. aestivum B (CS) plus Rht-B1 BAC_1417_F16:77662..79527 1 1866 1 1866 1866 621
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a
 Orthologues of a given gene are grouped under a common gene name. Rht = Reduced height; DUF6 = Domain of Unknown Function 6 family gene ZnF = 

Zinc finger family gene; Tb1 = Teosinte branched 1; Toc64 is a subunit of the pre-protein translocon of the outer envelope of chloroplasts.  Other loci are 
named according to species’ convention.  
b
 For wheat species, genome from which the BAC sequence is derived is given after species name.  For T. aestivum, clones were derived from Chinese 

Spring (CS) or Aibai/10*CS.  Z. mays sequences are from the B73 inbred with chromosome number indicated 
c
 H. vulgare Rht-1 is from Genbank accession AF460219.  H. vulgare DUF6 is from the combined sequences of TA54310_4513 and GH226632, which do not 

cover the full length of the gene (~165 bp shortcoming).  ORF, ORF+Introns, and amino acid numbers are estimated. H. vulgare ZnF is from combined 
sequences of TA38367_4513, TA38365_4513, and TA38366_4513. Orthologous gene names are given in parenthesis if available. 
d
 Sequence location for BAC clones are relative to the beginning of the BAC sequence, otherwise chromosomal location is given if available 

e
 Start and end coordinates are relative to the Rht-1 orthologue. 

f
 ORF - open reading frame 

Genea Genomeb Strand Locus Name/Numberc Sequence locationd

Start 

coord. 

relative 

Rht-1 e

End 

coord. 

relative 

Rht-1

Exons 

(no.)

ORF 

(nt)f

ORF + 

Introns 

(nt)

Amino 

acids 

(no.)

ZnF T. aestivum D (CS) minus ZnF BAC_0155_I24:6381..14678 -90063 -81766 14 1422 8298 473

DUF6 T. aestivum D (CS) plus DUF6 BAC_0155_I24:40731..43293 -55713 -53151 8 1323 2563 440

Rht-1 T. aestivum D (CS) plus Rht-D1 BAC_0155_I24:96445..98316 1 1872 1 1872 1872 623

ZnF T. aestivum D (Aibai/10*CS) minus ZnF BAC_1J9:108486..116784 -90235 -81937 14 1422 8299 473

DUF6 T. aestivum D (Aibai/10*CS) plus DUF6 BAC_1J9:142474..145036 -56247 -53685 8 1323 2563 440

Rht-1 T. aestivum D (Aibai/10*CS) plus Rht-D1 BAC_1J9:198722..200593 1 1872 1 1872 1872 623

Tb1 Z. mays  (B73)_chr1 minus AC233950.1_FG002 Chr1:264847670..264848770 -351204 -350104 1 1101 1101 366

ZnF Z. mays  (B73)_chr1 minus GRMZM2G704032 Chr1:265009869..265017820 -189004 -181053 14 1422 7952 473

DUF6 Z. mays  (B73)_chr1 plus GRMZM2G093849 Chr1:265182866..265186162 -16007 -12711 8 1344 3297 447

Rht-1 Z. mays  (B73)_chr1 plus GRMZM2G144744 (D8) Chr1:265198874..265200766 1 1893 1 1893 1893 630

GRMZM2G086003 Z. mays  (B73)_chr1 minus GRMZM2G086003 Chr1:265398712..265402061 199838 203187 9 849 3350 282

GRMZM2G063355 Z. mays  (B73)_chr5 minus GRMZM2G063355 Chr5:11681303..11683108 -55634 -53829 5 702 1804 233

Rht-1 Z. mays  (B73)_chr5 minus GRMZM2G024973 (D9) Chr5:11736937..11738814 1 1878 1 1878 1878 625

ZnF Z. mays  (B73)_chr5 plus GRMZM2G024690 Chr5:11773272..11782144 36336 45208 14 1419 8873 472

Tb1 Z. mays  (B73)_chr5 minus AC190734.2_FG003 Chr5:11801898..11802977 64961 66040 1 1080 1080 359
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Indivi

dual

Xbarc 

206-

4A

Xgwm 

397-

4A

Xwmc 

617-

4A

Xwmc 

48-  

4A

Xgwm 

610-

4A

Rht-

A1

Xgpw 

4545-

4A

Xwmc 

161-

4A

Xwmc 

89 - 

4A

Xbarc 

70 - 

4A

Xwmc 

420-

4A

Xwmc 

617-

4A

Xgwm 

44 - 

4A

Xwmc 

497-

4A

1 P - P P P P P P/S - S S P S S

2 P - P P P P P P/S - - - P S P

3 S S S S S S S S P P - S P P

4 S S S S S S S S S P P P P S

5 P S S S S S S S P P S S P S

6 P/S S S S S S S S P P P S S P

7 P - S S S S S S P - P S P P

8 P - P P P - - P P P S P P P

9 P S S S S S - S P P P S S S

10 P S S S S S S S S P P S S S

11 P P P P P P S P/S P S S P P P

12 P P P P P P P P P P S P S S

13 P S S S S S S S P P S S P S

14 S S S S S S S S S P P S P P

15 P P P P P P P P/S P/S P S P P P

16 P/S S S P P/S P/S P/S - P/S S P S S P

17 - - P P P P - P/S P P S P P P

18 - S S P P P P P P P S S S P

19 - S S S S S S S P - P S S S

20 - S S S S S S S P - P S P P

21 - P P P P P P P/S P/S P S P S P

22 - S S S S S S S S P P S S S

23 - - P P P P P P P S S P S P

24 - S S P P P P P/S P/S P S S S P

25 P S S S S S S S - P - S S P

26 P S P P P P P P - - P P P P

27 P P P P P P P P P/S - P P S P

28 P - S P P P/S P/S S P P P S P S

29 P P P P P P P P P - P P S P

30 P P P P P P P P P/S - P P S S

31 P S S S S S S S S - S S P P

32 P P P P P P P P/S P/S P/S S P S S

33 S S S S S S S S P P S S S P

34 S S S P S S P P/S P/S S P S P P

35 P P P P P P P - P - S P S S

36 P - P P P P P P P - - P S S

37 P P/S S S S S - S S P P S S S

38 S S S S S S S S P - P S S P

39 P S P P P P P P P/S P P P S P

40 P - P P P P P P/S P/S P - P P P

41 P P P P P P P/S P - P P P S P

42 S S S S S S S S P P S S S S

43 P S S S S S S S P P P S S P

44 P S S S S S S S P P S S P S

45 - P P P P P P - P P S P P S

46 P P P P P P P P/S P/S - P P P P

47 S - S P P P S S P P - S S P

48 P P P - P P P P/S P P S P P S

49 P - P P P P/S P P/S - - - S S P

50 P S S S S S S S S - S S P P

51 P - P P P P P P/S P/S P P P S P
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a
 P = Paragon allele (yellow background); S = SS7010073 allele (blue background); P/S = 

Paragon/SS7010073 heterozygote (grey background); the (-) in white background represents 
a result that was not scored.  A count summary is shown in bold font at the bottom. 
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Xbarc 

206-
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Xgwm 
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Xwmc 

48-  

4A

Xgwm 
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4A

Rht-

A1

Xgpw 

4545-

4A

Xwmc 

161-

4A

Xwmc 

89 - 

4A

Xbarc 

70 - 

4A

Xwmc 

420-

4A

Xwmc 

617-

4A

Xgwm 

44 - 

4A

Xwmc 

497-

4A

52 P S S - S S S S P S S S P S

53 - - P P P P P/S P/S P/S - P P P P

54 P S S S S S S S P P S S S S

55 S S S S S S S S S P/S S S S S

56 P - P P P P P P/S P/S P S P P P

57 S S S S S S S S S S P S - S

58 P P P P P/S P/S P/S P/S P/S P S P S P

59 P P P P P P P P P - - P S P

60 S S S S S S S S S S P S S S

61 S S S S S S S S S - P S P S

62 S S S S S S S S P P P S S S

63 P P P P P P P P/S P P P P P P

64 - S P S P P S - P - - P - -

65 S - S S S S S S - S S S S S

66 S P S S S S S S P S S S P S

67 P - S P P P P P P P S S S S

68 P S S S S S S S S P P S P S

69 S S S S S S S S S P S S P P

70 S S S S S S S S P P - S S P

71 S S S S S S S S P S P S S S

72 P - P P P P P P P P S P P S

73 P S S P P/S P/S P - - P P S S P

74 S S S S S S S S - P S S P P

75 P P P P P P P - P - P P S P

76 S S S S S S - - P P S S S S

77 P P P P P P - - P/S - - P P P/S

78 P S S S S S S S S - P S P S

79 P P P P P P P P/S P P - P P P

80 P S S S S S S S - P - S S P/S

81 P - S S S S P S - P/S - S S S

82 P - S P P/S P/S P P/S - P P S P P

83 P - P - P P P P/S - P/S - P P P

84 P - P P P P P P - P P P S P

85 P S S - P P - P - P/S - S S S

86 P/S - P P P P P P - P - P P S

87 P - P P P P P P - P P P S P

88 S - S S S S S S - S S S S S

89 - S S S S S - S - - S S S -

90 P S S S S S S S P S P S S S

91 P S S P P - - P P P S S S P

92 P P P P P P P P/S P P S P S P

93 P P P P P P P - P - S P S S

94 P P P - P P P/S P P P - P S P

P 58 23 41 47 47 43 39 20 45 52 38 41 37 50

S 21 46 53 42 43 43 40 43 14 13 38 53 55 40

P/S 3 1 0 0 4 6 6 22 16 5 0 0 0 2

- 12 24 0 5 0 2 9 9 19 24 18 0 2 2

Markera
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gap

INRA BWCC 

number Accession name Origin
d

Growth 

habite

Year of 

reg.f Type

Sowing 

Date Rht-B1g Rht-D1h Ppd-D1i gap

Plant 

height (cm)

Days to 

headingj

GA trt 

diff (mm)

 INRA_00007 (95-13*BEZOSTAIA)3-3 FRA W NA fixed Nov-08 B1a_197 D1a D1a 104.5 139 18.1

 INRA_00019 CH01193 CHE W NA fixed Nov-08 B1b D1a D1b 127 143 3.8

 INRA_00092 11IWSWSN14 USA W NA fixed Nov-08 B1a_197 D1a D1b 134 140 33.7

 INRA_00177 DI15 FRA W NA fixed Nov-08 B1a_0 D1a D1b 162 146 28.7

 INRA_00234 DI182-9 FRA W NA fixed Nov-08 B1a_160 D1a D1b 137.5 144 35.2

 INRA_00236 DI185 FRA W NA fixed Nov-08 B1a_0 D1a D1a 127.5 133 32.3

 INRA_00338 DI276 FRA W NA fixed Nov-08 B1a_0 D1a D1a 120 123 16.2

 INRA_00347 2838-39 BGR W NA fixed Nov-08 B1a_0 D1a D1a 118 132 16.3

 INRA_00386 DI330 FRA W NA fixed Nov-08 B1a_0 D1a D1a 129 134 22.0

 INRA_00419 DI37-12-2 FRA W NA fixed Nov-08 B1a_160 D1a D1b 127 141 25.0

 INRA_00421 3716-1 BGR W NA fixed Nov-08 B1a_0 D1a D1a 114.5 136 30.5

 INRA_00477 DI50-12 FRA W NA fixed Nov-08 B1a_160 D1a D1a 130.5 141 24.3

 INRA_00514 6-1-3 EGY S NA fixed Feb-09 B1a_0 D1a D1b 135 138 19.8

 INRA_00524 60293 NLD W NA fixed Nov-08 B1a_0 D1a D1b 123 140 32.3

 INRA_00537 CH62022 CHE W NA fixed Nov-08 B1a_160 D1a D1b 113.5 144 19.6

 INRA_00546 664-258-18 BGR W NA fixed Nov-08 B1b D1a D1a 102 126 12.2

 INRA_00748 A.4 AFG W NA fixed Nov-08 B1a_0 D1a D1b 160 131 25.7

 INRA_00776 ACADEMIE DE PEKIN CHN F NA fixed Feb-09 B1b D1a D1a 93 135 4.9

 INRA_00794 ADMONTER AUT W after 1934 fixed Nov-08 B1a_0 D1a D1b 172 144 33.5

 INRA_00797 ADULAR DEU W 1986 fixed Nov-08 B1a_197 D1a D1b 118.5 144 25.3

 INRA_00800 AFRICA MAYO KEN S 1960 fixed Feb-09 B1a_0 D1a D1b 123 140 24.3

 INRA_00822 AIFENG-4 CHN W 1971 fixed Nov-08 B1a_197 D1b D1a 86 119 13.9

 INRA_00833 AKADARUMA JPN W 1924 fixed Nov-08 B1a_0 D1a D1a 125 133 47.5

 INRA_00871 ALMA FRA W 1942 fixed Nov-08 B1a_0 D1a D1b 137.5 144 21.7

 INRA_00901 AMIFORT FRA W 1991 fixed Nov-08 B1a_160/197 het D1b D1a 89.5 134 0.6

 INRA_00912 ANDES-56 COL S 1956 fixed Feb-09 B1a_0 D1a D1a 121 139 40.5

Genotype Resultsb         Phenotype Resultsc     INRA BWCC accessionsa
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gap

INRA BWCC 

number Accession name Origin
d

Growth 

habite

Year of 

reg.f Type

Sowing 

Date Rht-B1g Rht-D1h Ppd-D1i gap

Plant 

height (cm)

Days to 

headingj

GA trt 

diff (mm)

 INRA_00933 APEX GBR S 1972 fixed Feb-09 B1a_160 D1a D1b 91.5 169 36.4

 INRA_00957 ARAWA NZL W 1955 fixed Nov-08 B1a_197 D1a D1b 137 138 27.3

 INRA_00964 ARCHE FRA W 1989 fixed Nov-08 B1a_197 D1a D1b 97.5 138 18.1

 INRA_00983 ARGENT GBR W 1979 fixed Nov-08 B1a_197 D1b D1b 92 149 0.7

 INRA_01005 ARKAS DEU S 1976 fixed Nov-08 B1a_0 D1a D1b 112 135 29.7

 INRA_01032 ARROMANCHES FRA W 1962 fixed Nov-08 B1a_197 D1a D1b 119 144 36.0

 INRA_01044 ARTOIS-DESPREZ FRA W 1957 fixed Nov-08 B1a_0 D1a D1b 121 145 29.2

 INRA_01065 ATAKEDA-KOMUGI JPN W NA fixed Nov-08 B1a_0 D1a D1a 130 120 21.6

 INRA_01080 ATUT-II AUT W 1974 fixed Nov-08 B1a_0 D1a D1b 119.5 146 23.0

 INRA_01110 AURORE AUS S 1914 fixed Feb-09 B1a_0 D1a D1b 147 150 33.3

 INRA_01113 AUSTRO BANKUT AUT S 1919 fixed Feb-09 B1a_0 D1a D1b 163 156 40.7

 INRA_01177 BAHATANE-87 DZA S NA fixed Feb-09 B1a_0 D1a D1b 148 147 16.2

 INRA_01182 BAIONETTE I ITA W after 1900 fixed Nov-08 B1a_0 D1a D1b 188.5 143 28.0

 INRA_01192 BALKAN YUG W 1979 fixed Nov-08 B1a_0 D1a D1a 107 134 36.2

 INRA_01217 BARANI-70 PAK S 1970 fixed Feb-09 B1a_0 D1b D1a 97.5 141 4.0

 INRA_01232 BARBU DU FINISTERE FRA W NA landrace Nov-08 B1a_160 D1a D1b 171.5 142 24.7

 INRA_01236 BARBU DU TRONCHET CHE W NA landrace Nov-08 B1a_0 D1a D1b 200.5 148 31.5

 INRA_01244 BASS AUS S 1983 fixed Feb-09 B1b D1a D1a 90.5 140 6.5

 INRA_01249 BAULMES CHE W NA fixed Nov-08 B1a_0 D1a D1b 181 149 37.5

 INRA_01281 BEL ET BON FRA W NA fixed Nov-08 B1a_197 D1a D1b 114 149 23.0

 INRA_01288 BELLYEI-590 HUN W NA fixed Nov-08 B1a_160 D1a D1b 179 139 17.5

 INRA_01313 BENCHUNG NPL W NA fixed Nov-08 B1a_0 D1a D1b 153 124 36.3

 INRA_01321 BENNI USA W 1980 fixed Nov-08 B1a_197 D1a D1a 136 130 29.3

 INRA_01332 BERZATACA FIN W NA fixed Nov-08 B1a_160 D1a D1b 169.5 141 43.7

 INRA_01357 BIRGITTA SWE W 1960 fixed Nov-08 B1a_160 D1a D1b 160.5 148 19.7

 INRA_01400 BLANC PRECOCE FRA W NA fixed Nov-08 B1a_0 D1a D1b 162 145 34.2

INRA BWCC accessionsa Genotype Resultsb         Phenotype Resultsc     
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INRA BWCC 

number Accession name Origin
d

Growth 

habite

Year of 

reg.f Type

Sowing 

Date Rht-B1g Rht-D1h Ppd-D1i gap

Plant 

height (cm)

Days to 

headingj

GA trt 

diff (mm)

 INRA_01402 BLASON FRA W 1976 fixed Nov-08 B1a_160 D1a D1a 105 142 31.3

 INRA_01417 BLE D'OR FRA W NA landrace Nov-08 B1a_160 D1a D1b 124 146 20.3

 INRA_01422 BLE DE CRETE FRA W NA landrace Nov-08 B1a_0 D1a D1b 171 144 39.0

 INRA_01429 BLE DE HAIE FRA W NA landrace Nov-08 B1a_160 D1a D1b 165 151 20.0

 INRA_01446 BLE DE MARAT BARBU FRA W NA landrace Nov-08 B1a_0 D1a D1b 176 147 24.3

 INRA_01498 BLE DU ROUSSILLON FRA W NA landrace Nov-08 B1a_0 D1a D1b 176 137 24.3

 INRA_01529 BLONDYNKA POL W 1920 fixed Nov-08 B1a_0 D1a D1b 180 153 29.3

 INRA_01531 BLUEBOY USA W 1964 fixed Nov-08 B1b D1a D1b 110 141 5.8

 INRA_01542 BODELLIN AUS S NA fixed Feb-09 B1a_0/197 het D1a D1a 105 141 29.2

 INRA_01643 BT2277 TUN S after 1962 fixed Feb-09 B1a/b het D1a/b het D1a 118 139 27.3

 INRA_01647 BT2281 TUN S after 1963 fixed Feb-09 B1a_0 D1b D1a 99.5 139 10.2

 INRA_01655 BT2296 TUN W after 1964 fixed Nov-08 B1a_0 D1b D1a 110 120 -1.7

 INRA_01660 BUCK ATLANTICO ARG S 1952 fixed Feb-09 B1a_0 D1a D1b 130 145 46.3

 INRA_01676 BUCKBUCK'S' MEX S 1980 fixed Feb-09 B1a_0 D1b D1a 94 142 5.0

 INRA_01696 BUNG EPI BARIOLE NPL W NA landrace Nov-08 B1a_0 D1a D1b 157 129 41.0

 INRA_01697 BUNG EPI BLANC NPL W NA landrace Nov-08 B1a_0 D1a D1b 157 136 50.3

 INRA_01747 114/62 AUT W NA fixed Nov-08 B1b D1a D1b 106.5 145 10.2

 INRA_01768 CANDEAL DE AREVALO ESP W NA landrace Nov-08 B1a_0 D1a D1b 161.5 142 28.0

 INRA_01774 CANUCK CAN S 1974 fixed Feb-09 B1a_0 D1a D1b 148.5 144 32.1

 INRA_01885 CENAD 512 ROM W 1958 fixed Nov-08 B1a_0 D1a D1b 156 137 27.0

 INRA_01899 CEREALOR FRA W 1964 fixed Nov-08 B1a_197 D1a D1b 109 138 24.3

 INRA_01957 CF3003-2-7-4-4-3 FRA W NA fixed Nov-08 B1a_197 D1b D1b 113.5 141 -1.3

 INRA_01974 CF4563-1-5-3-2-5 FRA W NA fixed Nov-08 B1b D1a D1b 94 135 2.2

 INRA_02025 CH73052 CHE W NA fixed Nov-08 B1a_197 D1a D1b 123 145 28.7

 INRA_02072 CHANATE MEX S 1971 fixed Feb-09 B1a_0 D1b D1a 99 138 0.7

 INRA_02135 CHINESE SPRING CHN S NA landrace Feb-09 B1a_0 D1a D1b 136 145 38.5
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 INRA_02141 CHIRKUNG NPL W NA fixed Nov-08 B1a_0 D1a D1b 156 128 32.5

 INRA_02145 CHITLANG NPL W NA fixed Nov-08 B1a_0 D1a D1b/b het 148.5 127 47.0

 INRA_02153 CHORTANDINKA RUS W NA fixed Nov-08 B1a_160 D1a D1b 145 150 22.8

 INRA_02169

CHYAKSILA EPI NON 

VELU NPL W NA landrace Nov-08 B1a_160 D1a D1b 139.5 137 39.8

 INRA_02171 CHYAMTANG NPL W NA fixed Nov-08 B1a_0 D1a D1b 154 130 38.2

 INRA_02289 COLLEGE ECLIPSE AUS S 1906 fixed Feb-09 B1a_0 D1a D1b 140 135 29.7

 INRA_02301 COMET AUS S 1986 fixed Feb-09 B1b D1a D1b 96 142 8.3

 INRA_02308 COMPTON USA W 1983 fixed Nov-08 B1a_0 D1b D1b 122 138 2.4

 INRA_02330 COPPADRA TUR S NA fixed Feb-09 B1a_0 D1a D1b 156.5 137 28.3

 INRA_02337 CORIN FRA W 1976 fixed Nov-08 B1a_197 D1a D1a 94.5 136 29.3

 INRA_02345 CORSODOR FRA W 1987 fixed Nov-08 B1b D1a D1b 102 146 14.6

 INRA_02353 COTIPORA BRA S 1965 fixed Feb-09 B1a_197 D1a D1a 164.5 150 34.7

 INRA_02358 COURTOT FRA W 1974 fixed Nov-08 B1b D1b D1b 75 137 -14.7

 INRA_02364 CP4 FRA W NA fixed Nov-08 B1a_197 D1a D1b 131 145 41.3

 INRA_02399 D130-63 POL W NA fixed Nov-08 B1a_160 D1a D1b 175 149 23.7

 INRA_02411 DAERAAD ZAF S 1958 fixed Feb-09 B1a_197 D1a D1b 130 142 33.5

 INRA_02424 DANUBIA CZE W 1984 fixed Nov-08 B1b D1a D1a 95.5 145 15.5

 INRA_02438 DAVIDOC FRA W 1986 fixed Nov-08 B1a_160 D1a D1a 111.5 137 42.0

 INRA_02444 DAYKU NPL W NA fixed Nov-08 B1a_0 D1a D1b 155.5 131 28.0

 INRA_02475 DETENICKA CERVENA CZE W 1937 fixed Nov-08 B1a_160 D1a D1b 188.5 146 28.0

 INRA_02481 DH8701 FRA W NA fixed Nov-08 B1a_160 D1a D1a 101 138 27.2

 INRA_02485 DHOJE NPL W NA fixed Nov-08 B1a_0 D1a D1b 141 125 32.8

 INRA_02489 DI6402-34-2-4 FRA W NA fixed Nov-08 B1a_0 D1a D1b 107.5 149 29.3

 INRA_02491 DI6404-19-15 FRA W NA fixed Nov-08 B1a_197 D1a D1a 112.5 137 21.3

 INRA_02507 DI7003-1-12 FRA W NA fixed Nov-08 B1a_160 D1a D1a 112 139 22.3

 INRA_02508 DI7005-113-3 FRA W NA fixed Nov-08 B1b D1b D1b 81.5 141 6.3
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 INRA_02526 DI7202-103 FRA W NA fixed Nov-08 B1b D1b D1b 71 144 0.7

 INRA_02534 DI7210-15-11 FRA W NA fixed Nov-08 B1b D1a D1b 78.5 152 4.3

 INRA_02536 DI7215-100 FRA W NA fixed Nov-08 B1a_0 D1a D1a 118.5 140 34.3

 INRA_02573 DIANA POL W 1966 fixed Nov-08 B1a_160 D1a D1b 146.5 151 27.7

 INRA_02574 DIANA II CZE W 1967 fixed Nov-08 B1a_197 D1a D1b 123 145 21.0

 INRA_02606 DNEPROVSKAIA ? UKR W 1980 fixed Nov-08 B1a_0 D1a D1a 129 135 40.2

 INRA_02626 DONG FANG HONG NO.3 CHN W 1979 fixed Nov-08 B1a_0 D1a D1b 130.5 127 35.3

 INRA_02644 DRAGON FRA F 1967 fixed Nov-08 B1a_197 D1a D1b 123 146 17.8

 INRA_02650 DRAVA HRV W 1980 fixed Nov-08 B1a_160 D1a D1a 96.5 134 39.5

 INRA_02683 E108 FRA W NA fixed Nov-08 B1a_0 D1a D1b 166.5 142 54.3

 INRA_02698 EBRO ESP W 1966 fixed Nov-08 B1a_0 D1a D1b 172 142 25.0

 INRA_02709 EGYPCIO 208 ARG S NA fixed Feb-09 B1a_160 D1a D1b 146.5 148 32.3

 INRA_02759 EMU'S' MEX S 1979 fixed Feb-09 B1a_0 D1b D1a 97.5 141 3.0

 INRA_02802 ESPOIR FRA W 1950 fixed Nov-08 B1a_160 D1a D1b 125 150 32.3

 INRA_02810 ESTANZUELA-DORADO URY S 1981 fixed Feb-09 B1a_0 D1a D1b 136.5 144 34.5

 INRA_02991 FERRUGINEUM RUS W NA fixed Nov-08 B1a_160 D1a D1b 178 149 28.2

 INRA_03050 FLAMURA-85 ROM W 1984 fixed Nov-08 B1b D1a D1a 113.5 130 13.6

 INRA_03070 FLINT USA W 1830 fixed Nov-08 B1a_160 D1a D1b 153 140 28.3

 INRA_03165 FRONTANA 3671 BRA S NA fixed Feb-09 B1a_0 D1a D1b 131.5 137 24.5

 INRA_03170 FRONTHATCH USA S 1963 fixed Feb-09 B1a_0 D1a D1b 139.5 151 41.0

 INRA_03176 FUKUHOKOMUGI JPN S 1979 fixed Feb-09 B1b D1a D1a 91.5 134 14.8

 INRA_03213 G66257 GRC S NA fixed Feb-09 B1a_0 D1a D1a 153.5 139 29.7

 INRA_03218 G7 NPL W NA fixed Nov-08 B1a_0 D1a D1b 170 138 32.3

 INRA_03220 G72300 GRC S NA fixed Feb-09 B1a_0 D1a D1a 146 141 21.3

 INRA_03256 GAMENYA AUS S 1958 fixed Feb-09 B1a_0 D1a D1b 112.5 139 37.3

 INRA_03267 GAU NPL W NA fixed Nov-08 B1a_0 D1a D1b 157.5 133 43.5
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 INRA_03278 GELPA FRA W 1967 fixed Nov-08 B1a_0 D1a D1b 104.5 148 18.6

 INRA_03299 GH126 FRA W NA fixed Nov-08 B1a_0 D1a D1a 118 137 17.7

 INRA_03306 GHURKA AUS S 1924 fixed Feb-09 B1a_0 D1a D1a 113.5 153 22.7

 INRA_03342 GK-SZÖKE HUN W 1985 fixed Nov-08 B1b D1a D1a 108 138 3.3

 INRA_03358 GLENLEA CAN S 1972 fixed Feb-09 B1a_0 D1a D1b 140 142 25.3

 INRA_03366 GODOLLOI 15 HUN W 1957 fixed Nov-08 B1a_160 D1a D1b 146.5 126 35.3

 INRA_03402 GRANAROLO ITA F 1973 fixed Nov-08 B1b D1a D1a 88 125 3.5

 INRA_03406 GRANIT RUS W 1978 fixed Nov-08 B1a_0 D1a D1b 119 142 23.5

 INRA_03414 GRENIER FRA W 1992 fixed Nov-08 B1b D1a D1b 98.5 141 8.3

 INRA_03437 GUDEL NPL W NA fixed Nov-08 B1a_0 D1a D1b 153 128 28.7

 INRA_03442 GULAR AUS S 1927 fixed Feb-09 B1a_0 D1a D1b 126.5 138 30.4

 INRA_03463 H742A ISR S NA fixed Feb-09 B1b D1b D1a 59 140 1.7

 INRA_03485 H93-70 ESP W NA fixed Nov-08 B1a_0 D1a D1b 171.5 138 24.3

 INRA_03617 HIVERNAL FRA W 1961 fixed Nov-08 B1a_197 D1a D1b 108 148 17.8

 INRA_03645 HONGGAOAN NPL W NA fixed Nov-08 B1a_0 D1a D1b 149.5 128 29.0

 INRA_03665 HOROSHIRI KOMUGI JPN W 1974 fixed Nov-08 B1a_0 D1b D1a 110 136 10.0

 INRA_03696 HYBRIDE 56 VILMORIN FRA S 1956 fixed Feb-09 B1a_0 D1a D1b 152 145 37.3

 INRA_03752 IAR W83-2 ETH W NA fixed Nov-08 B1a_0 D1a NP 143 134 34.7

 INRA_03753 IAS 1 BRA S 1955 fixed Feb-09 B1a_0 D1a D1b 145.5 145 39.2

 INRA_03804 ICARDA 079 SYR W NA fixed Nov-08 B1b D1a D1a 95 133 4.4

 INRA_03857 INIA-19 MEX S NA fixed Feb-09 B1b D1b D1a 66 146 4.3

 INRA_03896 JANGO FRA W NA fixed Nov-08 B1a_197 D1a D1a 100.5 131 27.2

 INRA_03912 JASZAJI TF HUN W 1973 fixed Nov-08 B1a_160 D1a D1b 175 142 36.3

 INRA_03942 JO3045 FIN S NA fixed Feb-09 B1a_0 D1a D1b 145.5 146 23.2

 INRA_03965 JUBING NPL W NA fixed Nov-08 B1a_0 D1a D1a 151.5 133 25.3

 INRA_03970 JUFY II BEL S 1954 fixed Feb-09 B1a_160 D1a D1b 127 151 29.7
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 INRA_03975 JUNBESI NPL W NA fixed Nov-08 B1a_0 D1a D1b 162 133 20.0

 INRA_03991 K1898-9/L200-6 BGR W NA fixed Nov-08 B1a_0 D1a D1a 125.5 142 37.0

 INRA_04036 KATYIL AUS S 1982 fixed Nov-08 B1a_0 D1a D1b 128.5 137 19.3

 INRA_04055 KE HAN NO.8 CHN S NA fixed Feb-09 B1a_0 D1a D1b 141 147 26.3

 INRA_04067 KENYA 350 KEN S 1951 fixed Feb-09 B1a_0 D1a D1b 130 138 15.2

 INRA_04105 KID FRA W after 1946 fixed Nov-08 B1a_160 D1a D1b 97.5 144 23.5

 INRA_04111 KIRAC 66 TUR W 1970 fixed Nov-08 B1a_0 D1a D1b 139.5 131 40.7

 INRA_04157 KOLBEN 3 SWE W 1929 fixed Nov-08 B1a_0 D1a D1b 151 128 34.5

 INRA_04187 KRAKA DNK W 1981 fixed Nov-08 B1a_0 D1a D1b 125 149 22.3

 INRA_04194 KRELOF 3 FRA W NA fixed Nov-08 B1a_160 D1a D1b 174.5 150 24.3

 INRA_04207 KULUNG NPL W NA fixed Nov-08 B1a_0 D1a D1b 157.5 128 21.0

 INRA_04300 LESCZYNSKA WEZESNA POL W 1937 fixed Nov-08 B1a_160 D1a D1b 171 147 33.5

 INRA_04324 LITTLE CLUB USA S 1878 fixed Nov-08 B1a_197 D1a D1b 158 141 31.0

 INRA_04343 LONTOI FIN W 1971 fixed Nov-08 B1a_0 D1a D1b 171 139 34.0

 INRA_04477 M45/66 ARG S NA fixed Feb-09 B1a_0 D1a D1b 112.5 144 24.5

 INRA_04482 M708//G25/N163 ISR S NA fixed Feb-09 B1a_0 D1a D1b 139 134 22.4

 INRA_04487 MACHA JPN S NA fixed Feb-09 B1a_0 D1a D1b 164 158 49.7

 INRA_04492 MADIN PATEGA BARBU NPL W NA landrace Nov-08 B1a_0 D1a D1b 146 129 28.5

 INRA_04525 MALGORZATKA UDYCKA POL W 1958 fixed Nov-08 B1a_160 D1a D1b 169.5 147 21.8

 INRA_04645

MARS DE SUEDE ROUGE 

BARBU FRA S 1922 fixed Feb-09 B1a_0 D1a D1b 183 154 33.3

 INRA_04664 MASTER GBR W 1983 fixed Nov-08 B1a_0/160 het D1b D1b 109 143 -2.9

 INRA_04670 MATRADERECSKEI TF HUN W 1973 fixed Nov-08 B1a_0 D1a D1b 182.5 145 14.5

 INRA_04698

MEDRA/AURORA//HOHEN

TURM/DINA POL W NA fixed Nov-08 B1a_197 D1a D1a 122.5 144 14.2

 INRA_04702 MEIRA ESP S NA fixed Feb-09 B1a_0/197 het D1a D1b 154.5 153 33.0
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 INRA_04706 MELCHIOR NLD S 1974 fixed Feb-09 B1a_0 D1a D1b 103.5 151 25.5

 INRA_04712 MENFLO ITA S 1955 fixed Feb-09 B1a_0 D1a D1b 139.5 145 21.2

 INRA_04776 MEXIQUE 58 MEX S 1974 fixed Feb-09 B1a_0 D1b D1a 104 139 -1.2

 INRA_04784 MEXIQUE 9 MEX S NA fixed Feb-09 B1b D1a D1b 109 141 12.0

 INRA_04796 MICHE FRA W 1954 fixed Nov-08 B1a_160 D1a D1b 121 145 22.8

 INRA_04838 MINTURK USA W 1919 fixed Nov-08 B1a_0 D1a D1b 164.5 144 38.3

 INRA_04874 MISKAAGANI LBN S NA fixed Feb-09 B1a_0 D1a D1b 140.5 144 23.7

 INRA_04901

MOCHO DE ESPIGA 

BIANCA PRT S 1928 fixed Feb-09 B1a_197 D1a D1b 135 140 38.3

 INRA_04925 MONJO NPL W NA fixed Nov-08 B1a_0 D1a D1a 138 120 26.8

 INRA_04947 MOTTIN FRA W NA landrace Nov-08 B1a_0 D1a D1b 173 142 37.8

 INRA_04991 MV-MA HUN W 1982 fixed Nov-08 B1b D1a D1b 81 143 4.0

 INRA_05088 N46 ISR S NA fixed Feb-09 B1b D1b D1a 66 141 1.2

 INRA_05096 N67M2 ISR S NA fixed Feb-09 B1b D1b D1a 54 140 1.5

 INRA_05102 NABU EPI BLANC NPL W NA landrace Nov-08 B1a_0 D1a D1b 157 132 20.5

 INRA_05108 NACHIPUNDO NPL S NA fixed Feb-09 B1a_0 D1a D1b 146 157 24.3

 INRA_05115 NANG NANO 140 ESP W NA fixed Nov-08 B1a_0 D1a D1a 125.5 122 36.7

 INRA_05116 NANKING NO.25 CHN S NA fixed Feb-09 B1a_0 D1a D1b 142.5 144 41.8

 INRA_05120 NAPHAL IND W 1978 fixed Nov-08 B1a_160 D1a D1a 117.5 133 27.3

 INRA_05166 NEPAL 84 NPL W NA fixed Nov-08 B1a_0 D1a D1b 159.5 132 25.3

 INRA_05167 NEPAL 89 NPL W NA fixed Nov-08 B1a_0 D1a D1b 168 135 22.0

 INRA_05219 NONG DA NO.141 CHN F 1982 fixed Nov-08 B1a_0 D1a D1a 117 124 15.7

 INRA_05250 NORIN 29 JPN S 1949 fixed Feb-09 B1a_160 D1a/b het D1a 132.5 137 12.3

 INRA_05260 NORIN 60 JPN S 1965 fixed Feb-09 B1a_0 D1b D1a 100 141 1.7

 INRA_05266 NORIN 64 JPN S after 1983 fixed Feb-09 B1a/b het D1a/b het D1a 99 134 11.2

 INRA_05293 NOUGAT FRA W 1985 fixed Nov-08 B1a_160 D1a D1b 98.5 133 32.2
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 INRA_05308 NP120 IND S NA fixed Feb-09 B1a_0 D1a D1b 127.5 137 30.7

 INRA_05399 NYU BAY JPN S 1985 fixed Feb-09 B1a_0 D1a D1b 131.5 141 18.2

 INRA_05401 NZ(81)P43 NZL W NA fixed Nov-08 B1a_0 D1b D1a 102.5 123 8.7

 INRA_05415 ODESSA EXP.STA.17413 SYR S NA fixed Feb-09 B1a_0 D1a D1b 144 142 27.7

 INRA_05419 ODESSA EXP.STA.19565 ETH S NA fixed Feb-09 B1a_197 D1a D1b 158 148 23.0

 INRA_05421 ODESSA EXP.STA.20722 PRT W NA fixed Nov-08 B1a_0 D1a D1b 162.5 135 14.8

 INRA_05425 ODESSA EXP.STA.21821 PRT S NA fixed Feb-09 B1a_0 D1a D1b 147.5 146 34.8

 INRA_05438 ODESSKAIA-16 RUS W 1953 fixed Nov-08 B1a_0 D1b D1a 113.5 144 2.0

 INRA_05448 OGOSTA BGR F 1978 fixed Nov-08 B1b D1a D1a 96.5 134 9.3

 INRA_05486 OPAL DEU S 1959 fixed Feb-09 B1a_0 D1a D1b 128.5 145 34.3

 INRA_05501 ORLANDI ITA W 1947 fixed Nov-08 B1b D1a D1a 77.5 139 -2.8

 INRA_05536 OULIANOWSKA RUS W 1974 fixed Nov-08 B1a_0 D1a D1b 152.5 149 39.3

 INRA_05552 P. DE BROLLON ESP W NA fixed Nov-08 B1a_0 D1a D1b 157 140 15.3

 INRA_05558 P4523-80 AUT W NA fixed Nov-08 B1b D1a D1b 106.5 146 10.7

 INRA_05636 PATO ARG S 1968 fixed Feb-09 B1a_0 D1b D1a 98.5 139 12.2

 INRA_05702

PEYKRU INERME NON 

VELU NPL W NA landrace Nov-08 B1a_0 D1a D1b 156 126 39.7

 INRA_05748 PITIC 62 MEX S 1962 fixed Feb-09 B1a_0 D1b D1a 105.5 141 -0.5

 INRA_05773 POILU DU TARN FRA W 1986 fixed Nov-08 B1a_0 D1a D1b 165 144 32.1

 INRA_05816

PRECOCE A BARBE 

BLANCHE PRT S 1955 fixed Feb-09 B1a_197 D1a D1b 153 143 15.8

 INRA_05821 PRECOCE DU JAPON JPN S 1868 fixed Feb-09 B1a_0 D1a D1b 148 143 23.6

 INRA_05897 PROMESSA FRA S 1991 fixed Feb-09 B1a_0 D1b D1b 94 150 7.8

 INRA_06027 RECITAL FRA W 1986 fixed Nov-08 B1b D1a D1a 93 131 16.3

 INRA_06047 REDMAN CAN S 1946 fixed Feb-09 B1a_0 D1a D1b 136.5 144 17.7

 INRA_06086 RENAN FRA W 1989 fixed Nov-08 B1b D1a D1b 103.5 140 8.9

 INRA_06170 RICHELLE FRA S 1926 fixed Feb-09 B1a_0 D1a D1b 165 156 20.6
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 INRA_06191 RINGOT 2 FRA W NA fixed Nov-08 B1a_197 D1a D1b 104 148 47.0

 INRA_06198 RITAK NPL W NA fixed Nov-08 B1a_0 D1a D1b 149 129 14.3

 INRA_06308 ROUGE D'ALTKIRCH FRA W NA landrace Nov-08 B1a_0 D1a D1b 180.5 150 29.7

 INRA_06318 ROUGE DE MARCHISSY FRA W 1929 fixed Nov-08 B1a_0 D1a D1b 189 148 23.8

 INRA_06396 S975-A4-A1 ZWE S NA fixed Feb-09 B1a_0 D1a D1a 88.5 135 17.4

 INRA_06522 SENTUNG CHN W NA fixed Nov-08 B1a_0 D1b D1a 117 125 3.3

 INRA_06529 SEU SEUN 27 KOR W 1936 fixed Nov-08 B1a_0 D1a D1b 144.5 126 18.3

 INRA_06575 SIRAZAIAIBARIGI 2 JPN S NA fixed Feb-09 B1a_0 D1b D1a 87 135 4.5

 INRA_06605 SOANDRES LARACHA ESP W NA fixed Nov-08 B1a_197 D1a D1b 181.5 142 23.7

 INRA_06740 STRUBES DICKKOPF DEU W 1880 fixed Nov-08 B1a_160 D1a D1b 145.5 149 20.0

 INRA_06843 TAFERSTAT FRA S NA landrace Feb-09 B1a_0 D1a D1b 96.5 142 22.3

 INRA_06846 TAHTI FIN S 1949 fixed Feb-09 B1a_0 D1a D1b 127 148 42.0

 INRA_06922 TF6 FRA W NA fixed Nov-08 B1a_197 D1a D1a 101 136 21.1

 INRA_06986 TOM THUMB USA W 1972 fixed Nov-08 B1a_197 D1a D1b 55.5 150 -2.3

 INRA_07011

TOUZELLE BLANCHE 

BARBUE FRA W 1936 fixed Nov-08 B1a_0 D1a D1b 178 141 25.5

 INRA_07026 TRAMI~PUY DE DOME FRA S 1921 fixed Feb-09 B1a_0 D1a D1b 124 143 19.1

 INRA_07040 TREMESINO MEIRA ESP W NA landrace Nov-08 B1a_0 D1a D1b 155 131 36.3

 INRA_07048 TRIGO DE MONTE ESP W NA fixed Nov-08 B1a_0 D1a D1b 168 147 32.0

 INRA_07085 TURDA 81-77 ROM W 1984 fixed Nov-08 B1a_0 D1a D1a 114.5 135 20.3

 INRA_07092 TYLER USA W 1980 fixed Nov-08 B1b D1a D1b 135.5 135 15.9

 INRA_07117 US(59)34 USA F 1970 fixed Nov-08 B1a_197 D1a D1b 164 139 25.5

 INRA_07166 US(62)P66 COL S NA fixed Nov-08 B1a_0 D1a D1b 146.5 124 37.9

 INRA_07276 VAKKA FIN W 1953 fixed Nov-08 B1a_0 D1a D1b 150 149 29.7

 INRA_07279 VALD'OR FRA W 1956 fixed Nov-08 B1a_197 D1a D1b 136 146 27.5

 INRA_07490 VPM V1-1-2-4R2-3-8-3-2 FRA W NA fixed Nov-08 B1a_0 D1a D1b 144 143 21.5
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 INRA_07585 WATTINES FRA W 1974 fixed Nov-08 B1a_197 D1a D1b 113 144 40.3

 INRA_07848 RONGOTEA NZL W 1979 fixed Nov-08 B1a_0 D1b D1b 111.5 137 2.3

 INRA_07965 BLANC DE CHENAN FRA W NA landrace Nov-08 B1a_0 D1a D1b 154 150 35.0

 INRA_07968 BLE DANOIS FRA W NA landrace Nov-08 B1a_0 D1a D1b 168.5 141 32.0

 INRA_07973 BORDEAUX 113 FRA W 1936 fixed Nov-08 B1a_0 D1a D1a 168.5 147 34.0

 INRA_07988 CREPIN A FRA W NA fixed Nov-08 B1a_160 D1a D1b 173 138 38.3

 INRA_08011 INSTITUT 1802 FRA W NA fixed Nov-08 B1a_160 D1a D1b 124.5 145 11.0

 INRA_08048 RALET FRA W NA landrace Nov-08 B1a_0 D1a D1b 190 145 29.3

 INRA_08051 BLE BARBU DE MUROL FRA W NA landrace Nov-08 B1a_0 D1a D1b 156 138 45.3

 INRA_08058 ZANDA BEL W 1939 fixed Nov-08 B1a_160 D1a D1b 162 151 24.2

 INRA_08073 CORONATION CAN W 1938 fixed Nov-08 B1a_0 D1a D1b 153 135 17.1

 INRA_08079 KITCHENER CAN W 1911 fixed Nov-08 B1a_0 D1a D1b 175.5 140 29.5

 INRA_08097 STANLEY CAN W 1890 fixed Nov-08 B1a_0 D1a D1b 171 136 30.3

 INRA_08113 GP260 CAN S 1983 fixed Feb-09 B1a_0 D1a D1a 129.5 137 36.5

 INRA_08165 NAVARRO 150 ESP W NA fixed Nov-08 B1a_160 D1a D1a 117.5 134 24.8

 INRA_08170 WS-13 CARDENO 34/45 ESP W NA fixed Nov-08 B1b D1b D1a 111 130 5.0

 INRA_08194 NEELKANT SYR W 1980 fixed Nov-08 B1b D1a D1a 121 127 19.0

 INRA_08197 SANUNU SYR W NA fixed Nov-08 B1b D1a D1a 115.5 127 8.7

 INRA_08227 NISHIKAZE KOMUGI JPN W 1986 fixed Nov-08 B1b D1a D1a 96 116 5.9

 INRA_08233 HOUMANA NER S NA fixed Nov-08 B1a_0 D1a D1b 117.5 121 22.1

 INRA_08254 CADENZA FRA S 1993 fixed Nov-08 B1a_0 D1a D1b 105 141 31.0

 INRA_08276 CARIBO DEU W 1968 fixed Nov-08 B1a_160 D1a D1b 118.5 148 14.6

 INRA_08280 (V*C)5-3 FRA W NA fixed Nov-08 B1a_197 D1a NP 115.5 150 35.3

 INRA_08287 DC147U FRA W NA fixed Nov-08 B1a_197 D1b D1b 118 142 4.7

 INRA_08289 TM7MB1-1 FRA W NA fixed Nov-08 B1a_160 D1b D1b 109.5 140 3.0

 INRA_08513 LIMPOPO ZWE S 1981 fixed Feb-09 B1b D1b D1a 66 137 0.7

 INRA_08578 GH 'S' MEX S NA fixed Feb-09 B1b D1a D1a 105 145 8.4
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 INRA_09024 GENESIS FRA W 1992 fixed Nov-08 B1a_160 D1b D1b 86 147 -2.0

 INRA_09048 HOPEA FIN S 1936 fixed Feb-09 B1a_0 D1a D1b 108 185 28.3

 INRA_09077 NON PLUS EXTRA AUT W 1919 fixed Nov-08 B1a_160 D1a D1b 148.5 157 28.7

 INRA_09087 PRINCE-LEOPOLD BEL W 1936 fixed Nov-08 B1a_160 D1a D1b 191 151 29.8

 INRA_13210 SOLARIS CZE W 1976 fixed Nov-08 B1b D1a D1a 117.5 134 12.9

 INRA_13282 ANATOLIE2 FRA W NA fixed Nov-08 B1a_197 D1a D1a 114 142 23.3

 INRA_13286 BAROOTA-WONDER AUS S 1895 fixed Feb-09 B1a_0 D1a D1b 162 160 30.3

 INRA_13292 CONCURRENT FRA W 1905 fixed Nov-08 B1a_0 D1a D1b 151 143 27.7

 INRA_13310 FRUH WEIZEN DEU W NA fixed Nov-08 B1a_160 D1a D1b 167 140 20.0

 INRA_13436 FONDARD CRESPIN FRA W 1948 fixed Nov-08 B1a_0 D1a D1b 164.5 138 27.0

 INRA_13440 PROVINS FRA W 1949 fixed Nov-08 B1a_0 D1a D1b 134 142 32.5

 INRA_13445 VOLT FRA W 1994 fixed Nov-08 B1b D1a D1a 91 140 11.3

 INRA_13454 SPONSOR FRA W 1994 fixed Nov-08 B1a_197 D1b D1b 93 146 3.3

 INRA_13461 BEHERT FRA W 1994 fixed Nov-08 B1a_160 D1b D1b 89.5 144 2.0

 INRA_13471 ORNICAR FRA W 1998 fixed Nov-08 B1b D1a D1b 90 139 7.7

 INRA_13476 TALDOR FRA W 1998 fixed Nov-08 B1b D1a D1a 86.5 140 14.4

 INRA_13481 APACHE FRA W 1998 fixed Nov-08 B1a_160 D1a D1a 84.5 134 16.5

 INRA_13494 BELLOVAC FRA W NA fixed Nov-08 B1a_197 D1b D1a 85.5 141 4.6

 INRA_13500 ORFIELD FRA W NA fixed Nov-08 B1a_197 D1b D1b 95.5 149 4.7

 INRA_13502 PALIO FRA W NA fixed Nov-08 B1a_0 D1b D1a 86 135 7.5

 INRA_13642 AGATHA CAN S 1970 fixed Feb-09 B1a_0 D1a D1b 131 143 25.7

 INRA_13781 TAI 911 CHN W NA fixed Nov-08 B1a_0 D1a D1a 100.5 121 28.3

 INRA_13792 CENTURK USA W 1971 fixed Nov-08 B1a_160 D1a D1b 137.5 135 41.8

 INRA_13799 PAMUKALE TUR S 1997 fixed Feb-09 B1a_0 D1a D1a 134.5 148 24.7

 INRA_13800 ZILVE TUR S NA fixed Feb-09 B1a_0 D1a D1b 157 148 32.3

 INRA_13811 OPATA 85 MEX S 1985 fixed Feb-09 B1b D1a D1b 123.5 154 20.8

 INRA_13812 W7984 MEX S NA fixed Feb-09 B1b D1a 450bp 112 142 14.2

 INRA_13861 AUGUSTE FRA W 1998 fixed Nov-08 B1a_197 D1b D1b 80 149 8.4
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 INRA_13870 TALISMAN~SER FRA W 1998 fixed Nov-08 B1a_197 D1b D1b 97 143 6.8

 INRA_13978 AXONA NLD S 1983 fixed Feb-09 B1a_0 D1a D1b 109 148 38.3

 INRA_14000 ROKYCANSKA SAMETKA CZE W 1899 fixed Nov-08 B1a_160 D1a D1b 167.5 153 37.0

 INRA_14011 HANA CZE W 1899 fixed Nov-08 B1a_160 D1a D1a 106 137 25.3

 INRA_15606

BLE DE REDON BLANC 

BARBU 1 1 FRA W NA landrace Nov-08 B1a_0 D1a D1b 170.5 144 24.0

 INRA_15652

BLE DE REDON BLANC 

COMPACT I 1 FRA W NA landrace Nov-08 B1a_0 D1a D1b 176.5 148 20.0

 INRA_15658

BLE DE REDON BLANC 

1/2 LACHE 1 1 FRA W NA landrace Nov-08 B1a_0 D1a D1b 177.5 152 38.7

 INRA_15710

BLE DE REDON GLUMES 

VELUES 1 FRA W NA landrace Nov-08 B1a_0 D1a D1b 191.5 149 33.3

 INRA_15809

BLE DE REDON ST-JUST 

Q21 FRA W NA landrace Nov-08 B1a_0 D1a D1b 176.5 151 30.7

 INRA_15950 AS68VM4-3-2/TJB636 13 FRA W NA fixed Nov-08 B1a_197 D1b D1b 105.5 144 5.7

 INRA_15954

ASVM4/BEAUCHAMP 

81B13 FRA W 1994 fixed Nov-08 B1a_160 D1a D1a 107 138 33.3

 INRA_20074 MIRLEBEN UKR W 1993 fixed Nov-08 B1a_0 D1b D1b 106 139 3.7

 INRA_20224 FANTAZIYA-ODESSKAYA UKR W NA fixed Nov-08 B1a_0 D1b D1a 120.5 136 20.4

 INRA_20276 EQUINOX GBR W 1995 fixed Nov-08 B1a_197 D1b D1b 78 145 6.7

 INRA_20384 DI9234-11-15 FRA W NA fixed Nov-08 B1b D1a D1b 87 141 7.6

 INRA_20417 HAMAC NLD W NA fixed Nov-08 B1a_160 D1b D1b 72 145 -0.7

 INRA_23891 LANDRACE ARM S NA landrace Feb-09 B1a_0 D1a D1b 141.5 138 15.0

 INRA_23896 LANDRACE TUR S NA landrace Feb-09 B1a_0 D1a D1b 160.5 147 24.8

 INRA_23902 LANDRACE TUR S NA landrace Feb-09 B1a_0 D1a NP 155.5 148 21.7

 INRA_23909 LANDRACE MAR S NA landrace Feb-09 B1a_0 D1a D1b 144 143 40.7

 INRA_23923 LANDRACE ETH S 1927 landrace Feb-09 B1a_0 D1a D1b 157.5 152 34.3

 INRA_23933 PUNJAB TIPE 24 IND S 1928 fixed Feb-09 B1a_0 D1a D1b 123 137 41.0

 INRA_23934 PUNJAB TIPE 18 IND S 1928 fixed Feb-09 B1a_0 D1a D1b 127 139 20.0
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 INRA_23937 PUNJAB TIPE 15 IND S 1928 fixed Feb-09 B1a_0 D1a D1b 122 138 22.0

 INRA_23944 LANDRACE CHN S NA landrace Feb-09 B1a_0 D1a D1b 170 152 35.5

 INRA_23945 LANDRACE CHN S NA landrace Feb-09 B1a_0 D1a D1b 169 150 29.8

 INRA_23950 SARRUBRA RUS S 1931 fixed Feb-09 B1a_160 D1a D1b 160 143 24.4

 INRA_23957 R 1 CHN S 1932 fixed Feb-09 B1a_0 D1a D1b 132 178 22.3

 INRA_23960 117-VAR.12/564 PAK S 1934 fixed Feb-09 B1a_0 D1a D1b 143 141 26.8

 INRA_23964 THORI 212-VAR.8/1 PAK S 1934 fixed Feb-09 B1a_0 D1a D1b 128.5 138 32.5

 INRA_23970 LANDRACE TJK S NA landrace Feb-09 B1a_0 D1a D1b 159.5 150 35.2

 INRA_23971 LANDRACE TJK S NA landrace Feb-09 B1a_0 D1a D1b 175 147 29.7

 INRA_23974 LANDRACE TJK S NA landrace Feb-09 B1a_0 D1a D1b 157.5 147 19.3

 INRA_23977 LANDRACE GEO S 1931 landrace Feb-09 B1a_0 D1a D1b 167 149 17.9

 INRA_23981 SOOR GHANUM PAK S NA landrace Feb-09 B1a_0 D1a D1b 122 138 29.8

 INRA_23989 LANDRACE GEO S 1931 landrace Feb-09 B1a_0 D1a NP 171 150 21.3

 INRA_23995 LANDRACE RUS S 1950 landrace Feb-09 B1a_0 D1a D1b 150 151 21.8

 INRA_23996

GUISUISKAYA SYAO-BAI-

MAI CHN S 1953 fixed Feb-09 B1a_0 D1a D1b 126 134 34.2

 INRA_24003 KULDZHINSKAYA CHN S 1959 fixed Feb-09 B1a_0 D1a D1b 176 149 25.0

 INRA_24006 U-MAN-SYAO-MAI CHN S 1954 fixed Feb-09 B1a_0 D1a D1b 152 142 43.0

 INRA_24019 DALNEVOSTOCHNAYA 10 RUS S 1978 fixed Feb-09 B1a_160 D1a D1b 144 143 34.7

 INRA_24031 KRASNAYA CAN W 1914 fixed Nov-08 B1a_160 D1a D1b 179 144 30.0

 INRA_24054 STEPNYACHKA UKR W 1969 fixed Nov-08 B1a_0 D1a D1b 163 140 26.7

 INRA_24056 LANDRACE TUR F NA landrace Nov-08 B1a_0 D1a D1b 175.5 138 36.3

 INRA_24058 SARY-BUGDA GULGERI RUS W 1928 fixed Nov-08 B1a_0 D1a D1b 174 140 27.7

 INRA_24066 CROISEMENT 268 CHE W 1929 fixed Nov-08 B1a_0 D1a D1b 156 153 26.3

 INRA_24075 SPIN 121-VAR.12/536 PAK F 1933 fixed Nov-08 B1a_0 D1a D1b 141 126 33.2

 INRA_24080 DOLIS PURI GEO W 1933 fixed Nov-08 B1a_0 D1a D1b 176.5 139 29.3

 INRA_24089 TAU-BUGDA RUS W 1955 fixed Nov-08 B1a_0 D1a NP 195.5 141 30.3

 INRA_24108 ALBIDUM 12 RUS W 1980 fixed Nov-08 B1a_160 D1a D1b 171.5 146 38.0
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a
 Accession information on the INRA BWCC (Bread wheat core collection) received from F. Balfourier, INRA. 

b
 Genotyping was performed using DNA from the INRA BWCC outdoor experiment, which consisted of two separate bulks of four plants for fixed lines and 

four individual plants for landraces.  Heterozygotes (het) are shown with segregating alleles separated by a "/". 
c
 Plant heights and days to heading were recorded in the INRA BWCC outdoor experiment, Cambridge (UK) and values represent the mean of two replicates.  

GA treatment differences (GA trt diffs) represent the average of GA exps. 1, 2, and 3 (Norwich, UK).  GA trt diff = GA+ treatment seed-to-first-ligule (STFL) 
length minus GA- treatment STFL length. d Countries of origin are: (AFG Afghanistan; ALB Albania; ARG Argentina; ARM Armenia; AUS Australia; AUT 
Austria; AZE Azerbaijan; BEL Belgium; BGR Bulgaria; BLR Belarus; BRA Brazil; CAN Canada; CHE Switzerland; CHN China; COL Colombia; CSK Czech 
and Slovak Republics; DEU Germany; DNK Denmark; DZA Algeria; EGY Egypt; ESP Spain; ETH Ethiopia; FIN Finland; FRA France; GEO Georgia; GBR 
Great Britain; GRC Greece; GTM Guatemala; HUN Hungary; HRV Croatia; IND India; IRL Ireland; IRN Iran; IRQ Iraq; ISR Israel; ITA Italy; JPN Japan; KAZ 
Kazakhstan; KEN Kenya; KIR Kyrgyzstan; KOR Korea; KSM Kashmir; LBN Lebanon; MAD Macedonia; MAR Morocco; MEX Mexico; MNG Mongolia; NER 
Niger; NLD Netherlands; NOR Norway; NPL Nepal; NZL New Zealand; PAL Palestine; PAK Pakistan; POL Poland; POR Portugal; PER Peru; ROM Romania; 
RUS Russia; SYR Syria; SWE Sweden; TJK Tajikistan; TKM Turkenistan; TUN Tunisia; TUR Turkey; URY Uruguay; UKR Ukraine; USA United States; UZB 
Uzbekistan; YUG Yugoslavia; ZAF South Africa; ZWE Zimbabwe) 
e
 S=spring, W=winter, F=facultative 

f
 Year of reg = Year of registration; NA = not available 
g
 Rht-B1a and Rht-B1b designations based on the Rht-B1a/b PCR assays.  Rht-B1a_0, Rht-B1a_160, and Rht-B1a_197 refer to accessions containing Rht-

B1a with no insertion, a 160 bp insertion, or a 197 bp insertion, respectively.  Rht-B1_197 contains the 197 bp insertion but did not amplify a product 
associated with Rht-B1a or Rht-B1b. 
h
 Rht-D1 locus designations based on the Rht-D1a/b PCR assays.   

i
 Ppd-D1 locus designations based on the Ppd-D1a/b PCR assay (Beales et al., 2007).  The ~450 bp does not correspond to the Ppd-D1b (414 bp product) or 
Ppd-D1a (297 bp product) allele.  ‘No product’ indicates that a product was not obtained in either replicate. 
j
 Days from January 1. 
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 INRA_24180 PALESTINSKAYA PAL S 1927 fixed Feb-09 B1a_0 D1a D1b 139 140 33.7

 INRA_24184 LANDRACE PAL S 1927 landrace Feb-09 B1a_0 D1a D1b 183.5 155 27.0

 INRA_24185 LANDRACE TKM S NA landrace Feb-09 B1a_0 D1a D1b 151.5 139 30.0

 INRA_24186 SARY-BUGDA AZE F 1928 fixed Nov-08 B1a_0 D1a D1b 196 141 29.2

 INRA_24193 LANDRACE AZE W NA landrace Nov-08 B1a_0 D1a NP 165.5 132 26.5

 INRA_24196 ARAZBUGDASI AZE W 1934 fixed Nov-08 B1a_0 D1a D1b 173.5 144 35.8

 INRA_24209 ARDITO ITA F 1916 fixed Feb-09 B1a_0 D1a D1b 153 149 45.7

 INRA_24210 LAMMAS GBR W 1850 fixed Nov-08 B1a_160 D1a D1b 180.5 153 26.5
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INRA_00007 B1a_197 D1a D1a 61.0 54.5 6.5 0.73 0.45 82.3 56.0 26.3 0.02 0.00 54.2 26.8 21.4 8.80 0.00 18.1

INRA_00019 B1b D1a D1b 51.3 51.3 0.0 0.97 1.00 60.3 52.7 7.7 0.98 0.19 3.8

INRA_00092 B1a_197 D1a D1b 88.0 54.3 33.7 0.00 0.00 33.7

INRA_00177 B1a_0 D1a D1b 79.7 51.0 28.7 0.00 0.00 28.7

INRA_00234 B1a_160 D1a D1b 81.0 51.0 30.0 0.00 0.00 92.7 52.3 40.3 0.00 0.00 35.2

INRA_00236 B1a_0 D1a D1a 82.7 50.3 32.3 0.00 0.00 32.3

INRA_00338 B1a_0 D1a D1a 77.5 61.3 16.2 0.01 0.04 16.2

INRA_00347 B1a_0 D1a D1a 66.5 59.0 7.5 0.31 0.38 84.0 61.7 22.3 0.01 0.00 57.7 33.3 19.1 6.28 0.00 16.3

INRA_00386 B1a_0 D1a D1a 65.3 50.0 15.3 0.40 0.05 81.7 53.0 28.7 0.03 0.00 22.0

INRA_00419 B1a_160 D1a D1b 75.3 50.3 25.0 0.02 0.00 25.0

INRA_00421 B1a_0 D1a D1a 80.0 49.5 30.5 0.00 0.00 30.5

INRA_00477 B1a_160 D1a D1a 75.3 51.0 24.3 0.02 0.00 24.3

INRA_00514 B1a_0 D1a D1b 77.5 63.5 14.0 0.01 0.10 91.3 65.7 25.7 0.00 0.00 19.8

INRA_00524 B1a_0 D1a D1b 91.7 59.3 32.3 0.00 0.00 32.3

INRA_00537 B1a_160 D1a D1b 76.5 59.7 16.8 0.01 0.03 63.5 35.0 22.3 9.60 0.00 19.6

INRA_00546 B1b D1a D1a 59.3 46.3 13.0 0.82 0.06 55.0 43.7 11.3 1.00 0.05 12.2

INRA_00748 B1a_0 D1a D1b 96.0 70.3 25.7 0.00 0.00 25.7

INRA_00776 B1b D1a D1a 45.5 36.7 8.8 0.99 0.26 39.3 38.3 1.0 1.00 0.86 4.9

INRA_00794 B1a_0 D1a D1b 100.0 58.0 42.0 0.00 0.00 96.0 71.0 25.0 0.00 0.00 33.5

INRA_00797 B1a_197 D1a D1b 77.3 52.0 25.3 0.01 0.00 25.3

INRA_00800 B1a_0 D1a D1b 76.7 52.3 24.3 0.01 0.00 24.3

INRA_00822 B1a_197 D1b D1a 65.0 40.5 24.5 0.43 0.00 44.3 41.0 3.3 1.00 0.56 13.9

INRA_00833 B1a_0 D1a D1a 95.5 48.0 47.5 0.00 0.00 47.5

INRA_00871 B1a_0 D1a D1b 90.0 68.3 21.7 0.00 0.00 21.7

INRA_00901

B1a_160/

197 het D1b D1a 48.0 49.5 -1.5 0.99 1.00 50.0 47.3 2.7 1.00 0.64 0.6

Genotypeb GA exp. 1 GA exp. 2 GA exp. 3h
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INRA_00912 B1a_0 D1a D1a 81.0 40.5 40.5 0.00 0.00 40.5

INRA_00933 B1a_160 D1a D1b 91.3 54.3 37.0 0.00 0.00 92.5 56.7 35.8 0.00 0.00 36.4

INRA_00957 B1a_197 D1a D1b 78.0 50.7 27.3 0.00 0.00 27.3

INRA_00964 B1a_197 D1a D1b 59.5 51.0 8.5 0.81 0.41 75.3 49.7 25.7 0.24 0.00 55.5 29.6 20.2 8.33 0.00 18.1

INRA_00983 B1a_197 D1b D1b 54.7 54.0 0.7 0.94 0.93 52.7 52.0 0.7 1.00 0.91 0.7

INRA_01005 B1a_0 D1a D1b 88.0 58.3 29.7 0.00 0.00 29.7

INRA_01032 B1a_197 D1a D1b 90.3 54.3 36.0 0.00 0.00 36.0

INRA_01044 B1a_0 D1a D1b 81.5 52.3 29.2 0.00 0.00 29.2

INRA_01065 B1a_0 D1a D1a 71.0 50.0 21.0 0.08 0.05 73.3 54.3 19.0 0.39 0.00 62.0 30.3 24.8 8.80 0.00 21.6

INRA_01080 B1a_0 D1a D1b 82.7 59.7 23.0 0.00 0.00 23.0

INRA_01110 B1a_0 D1a D1b 109.0 70.0 39.0 0.00 0.00 103.3 75.7 27.7 0.00 0.00 33.3

INRA_01113 B1a_0 D1a D1b 104.7 64.0 40.7 0.00 0.00 40.7

INRA_01177 B1a_0 D1a D1b 78.7 62.5 16.2 0.00 0.04 16.2

INRA_01182 B1a_0 D1a D1b 99.0 71.0 28.0 0.00 0.00 28.0

INRA_01192 B1a_0 D1a D1a 87.5 51.3 36.2 0.00 0.00 36.2

INRA_01217 B1a_0 D1b D1a 53.5 49.5 4.0 0.95 0.64 4.0

INRA_01232 B1a_160 D1a D1b 83.0 58.3 24.7 0.00 0.00 24.7

INRA_01236 B1a_0 D1a D1b 89.5 58.0 31.5 0.00 0.00 31.5

INRA_01244 B1b D1a D1a 47.7 41.7 6.0 0.99 0.39 48.7 41.7 7.0 1.00 0.23 6.5

INRA_01249 B1a_0 D1a D1b 103.5 66.0 37.5 0.00 0.00 37.5

INRA_01281 B1a_197 D1a D1b 76.7 53.7 23.0 0.01 0.00 23.0

INRA_01288 B1a_160 D1a D1b 85.0 67.5 17.5 0.00 0.03 17.5

INRA_01313 B1a_0 D1a D1b 110.0 73.7 36.3 0.00 0.00 36.3

INRA_01321 B1a_197 D1a D1a 78.7 49.3 29.3 0.00 0.00 29.3

INRA_01332 B1a_160 D1a D1b 99.3 55.7 43.7 0.00 0.00 43.7

INRA_01357 B1a_160 D1a D1b 76.5 64.5 12.0 0.01 0.16 87.7 60.3 27.3 0.00 0.00 19.7

Genotypeb GA exp. 1 GA exp. 2 GA exp. 3h
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INRA BWCC 

number / control 

line gapRht-B1 Rht-D1 Ppd-D1 gap

GA+ 

length 

(mm)c

GA- 

length 

(mm)d

Trt Diff 

(mm)e

MM 

pGAIf

LSD 

pGA trt 

diff = 0ggap

GA+ 

length 

(mm)

GA- 

length 

(mm)

Trt 

Diff 

(mm)

MM 

pGAI

LSD 

pGA trt 

diff = 0gap

GA+ 

length 

(mm)

GA- 

length 

(mm)

Trt Diff 

(corr'd) 

mmi

Trt Diff 

t value 

(calc.)

LSD 

pGA trt 

diff = 0gap

Trt    

diff j

INRA_01400 B1a_0 D1a D1b 98.7 64.5 34.2 0.00 0.00 34.2

INRA_01402 B1a_160 D1a D1a 81.3 50.0 31.3 0.00 0.00 31.3

INRA_01417 B1a_160 D1a D1b 52.5 75.0 54.7 20.3 0.26 0.00 20.3

INRA_01422 B1a_0 D1a D1b 113.3 74.3 39.0 0.00 0.00 39.0

INRA_01429 B1a_160 D1a D1b 87.3 67.3 20.0 0.00 0.00 20.0

INRA_01446 B1a_0 D1a D1b 90.3 66.0 24.3 0.00 0.00 24.3

INRA_01498 B1a_0 D1a D1b 80.0 62.3 17.7 0.00 0.07 95.3 64.3 31.0 0.00 0.00 24.3

INRA_01529 B1a_0 D1a D1b 75.3 46.0 29.3 0.02 0.00 29.3

INRA_01531 B1b D1a D1b 49.0 40.5 8.5 0.98 0.32 50.3 47.3 3.0 1.00 0.60 5.8

INRA_01542

B1a_0/ 

197 het D1a D1a 91.0 60.0 31.0 0.00 0.00 97.0 69.7 27.3 0.00 0.00 29.2

INRA_01643 B1a/b het

D1a/b 

het D1a 84.0 60.5 23.5 0.00 0.00 89.3 58.3 31.0 0.00 0.00 27.3

INRA_01647 B1a_0 D1b D1a 56.7 52.7 4.0 0.90 0.57 65.3 49.0 16.3 0.90 0.01 10.2

INRA_01655 B1a_0 D1b D1a 46.7 48.3 -1.7 0.99 1.00 -1.7

INRA_01660 B1a_0 D1a D1b 92.3 46.0 46.3 0.00 0.00 46.3

INRA_01676 B1a_0 D1b D1a 47.0 42.0 5.0 0.99 0.56 5.0

INRA_01696 B1a_0 D1a D1b 114.3 73.3 41.0 0.00 0.00 41.0

INRA_01697 B1a_0 D1a D1b 107.3 57.0 50.3 0.00 0.00 50.3

INRA_01747 B1b D1a D1b 62.3 45.0 17.3 0.64 0.03 55.0 52.0 3.0 1.00 0.60 10.2

INRA_01768 B1a_0 D1a D1b 105.5 77.5 28.0 0.00 0.00 28.0

INRA_01774 B1a_0 D1a D1b 96.5 70.0 26.5 0.00 0.01 110.7 73.0 37.7 0.00 0.00 32.1

INRA_01885 B1a_0 D1a D1b 85.0 58.0 27.0 0.00 0.00 27.0

INRA_01899 B1a_197 D1a D1b 78.3 54.0 24.3 0.00 0.00 24.3

INRA_01957 B1a_197 D1b D1b 55.3 60.0 -4.7 0.93 1.00 51.3 49.3 2.0 1.00 0.73 -1.3

INRA_01974 B1b D1a D1b 54.3 48.0 6.3 0.94 0.42 54.3 56.3 -2.0 1.00 1.00 2.2

Genotypeb GA exp. 1 GA exp. 2 GA exp. 3h
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Accessiona gap gap gap gap gapOverall

INRA BWCC 

number / control 

line gapRht-B1 Rht-D1 Ppd-D1 gap

GA+ 

length 

(mm)c

GA- 

length 

(mm)d

Trt Diff 

(mm)e

MM 

pGAIf

LSD 

pGA trt 

diff = 0ggap

GA+ 

length 

(mm)

GA- 

length 

(mm)

Trt 

Diff 

(mm)

MM 

pGAI

LSD 

pGA trt 

diff = 0gap

GA+ 

length 

(mm)

GA- 

length 

(mm)

Trt Diff 

(corr'd) 

mmi

Trt Diff 

t value 

(calc.)

LSD 

pGA trt 

diff = 0gap

Trt    

diff j

INRA_02025 B1a_197 D1a D1b 76.0 47.3 28.7 0.01 0.00 28.7

INRA_02072 B1a_0 D1b D1a 53.3 52.7 0.7 0.96 0.92 0.7

INRA_02135 B1a_0 D1a D1b 87.5 49.0 38.5 0.00 0.00 38.5

INRA_02141 B1a_0 D1a D1b 103.0 70.5 32.5 0.00 0.00 32.5

INRA_02145 B1a_0 D1a

D1b/b 

het 105.3 58.3 47.0 0.00 0.00 47.0

INRA_02153 B1a_160 D1a D1b 75.5 52.7 22.8 0.01 0.00 22.8

INRA_02169 B1a_160 D1a D1b 102.0 61.0 41.0 0.00 0.00 107.0 68.3 38.7 0.00 0.00 39.8

INRA_02171 B1a_0 D1a D1b 104.0 60.0 44.0 0.00 0.00 100.3 68.0 32.3 0.00 0.00 38.2

INRA_02289 B1a_0 D1a D1b 56.3 93.7 64.0 29.7 0.00 0.00 29.7

INRA_02301 B1b D1a D1b 54.5 48.7 5.8 0.94 0.45 54.0 43.3 10.7 1.00 0.07 8.3

INRA_02308 B1a_0 D1b D1b 43.7 40.5 3.2 0.99 0.68 48.7 47.0 1.7 1.00 0.77 2.4

INRA_02330 B1a_0 D1a D1b 79.0 50.7 28.3 0.00 0.00 28.3

INRA_02337 B1a_197 D1a D1a 77.3 48.0 29.3 0.01 0.00 29.3

INRA_02345 B1b D1a D1b 64.3 49.5 14.8 0.49 0.06 58.0 43.7 14.3 0.99 0.01 14.6

INRA_02353 B1a_197 D1a D1a 114.7 80.0 34.7 0.00 0.00 34.7

INRA_02358 B1b D1b D1b 44.3 59.0 -14.7 0.99 1.00 -14.7

INRA_02364 B1a_197 D1a D1b 96.0 54.7 41.3 0.00 0.00 41.3

INRA_02399 B1a_160 D1a D1b 91.7 68.0 23.7 0.00 0.02 23.7

INRA_02411 B1a_197 D1a D1b 97.0 57.0 40.0 0.00 0.00 98.7 71.7 27.0 0.00 0.00 33.5

INRA_02424 B1b D1a D1a 64.7 43.0 21.7 0.46 0.01 61.7 52.3 9.3 0.97 0.11 15.5

INRA_02438 B1a_160 D1a D1a 89.7 47.7 42.0 0.00 0.00 42.0

INRA_02444 B1a_0 D1a D1b 106.5 78.5 28.0 0.00 0.00 28.0

INRA_02475 B1a_160 D1a D1b 77.0 49.0 28.0 0.01 0.00 28.0

INRA_02481 B1a_160 D1a D1a 72.3 47.0 25.3 0.05 0.00 80.7 51.7 29.0 0.04 0.00 27.2

INRA_02485 B1a_0 D1a D1b 104.3 71.5 32.8 0.00 0.00 32.8

Genotypeb GA exp. 1 GA exp. 2 GA exp. 3h
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Accessiona gap gap gap gap gapOverall

INRA BWCC 

number / control 

line gapRht-B1 Rht-D1 Ppd-D1 gap

GA+ 

length 

(mm)c

GA- 

length 

(mm)d

Trt Diff 

(mm)e

MM 

pGAIf

LSD 

pGA trt 

diff = 0ggap

GA+ 

length 

(mm)

GA- 

length 

(mm)

Trt 

Diff 

(mm)

MM 

pGAI

LSD 

pGA trt 

diff = 0gap

GA+ 

length 

(mm)

GA- 

length 

(mm)

Trt Diff 

(corr'd) 

mmi

Trt Diff 

t value 

(calc.)

LSD 

pGA trt 

diff = 0gap

Trt    

diff j

INRA_02489 B1a_0 D1a D1b 75.3 46.0 29.3 0.02 0.00 29.3

INRA_02491 B1a_197 D1a D1a 76.7 55.3 21.3 0.01 0.00 21.3

INRA_02507 B1a_160 D1a D1a 73.0 50.7 22.3 0.04 0.00 22.3

INRA_02508 B1b D1b D1b 47.5 37.3 10.2 0.99 0.19 38.0 35.7 2.3 1.00 0.69 6.3

INRA_02526 B1b D1b D1b 49.5 43.3 6.2 0.98 0.43 40.7 45.3 -4.7 1.00 1.00 0.7

INRA_02534 B1b D1a D1b 53.3 49.0 4.3 0.96 0.53 4.3

INRA_02536 B1a_0 D1a D1a 86.0 51.7 34.3 0.00 0.00 34.3

INRA_02573 B1a_160 D1a D1b 80.7 53.0 27.7 0.00 0.00 27.7

INRA_02574 B1a_197 D1a D1b 78.0 57.0 21.0 0.00 0.01 21.0

INRA_02606 B1a_0 D1a D1a 93.7 53.5 40.2 0.00 0.00 40.2

INRA_02626 B1a_0 D1a D1b 83.3 48.0 35.3 0.00 0.00 35.3

INRA_02644 B1a_197 D1a D1b 61.0 52.3 8.7 0.73 0.22 90.7 63.7 27.0 0.00 0.00 17.8

INRA_02650 B1a_160 D1a D1a 87.0 38.0 49.0 0.00 0.00 81.7 51.7 30.0 0.03 0.00 39.5

INRA_02683 B1a_0 D1a D1b 103.3 49.0 54.3 0.00 0.00 54.3

INRA_02698 B1a_0 D1a D1b 93.0 68.0 25.0 0.00 0.00 25.0

INRA_02709 B1a_160 D1a D1b 92.0 59.7 32.3 0.00 0.00 32.3

INRA_02759 B1a_0 D1b D1a 59.7 55.0 4.7 0.80 0.55 60.0 58.7 1.3 0.98 0.82 3.0

INRA_02802 B1a_160 D1a D1b 89.0 56.7 32.3 0.00 0.00 32.3

INRA_02810 B1a_0 D1a D1b 89.0 54.5 34.5 0.00 0.00 34.5

INRA_02991 B1a_160 D1a D1b 92.5 64.3 28.2 0.00 0.00 28.2

INRA_03050 B1b D1a D1a 70.3 53.5 16.8 0.10 0.03 66.0 55.7 10.3 0.88 0.08 13.6

INRA_03070 B1a_160 D1a D1b 79.0 50.7 28.3 0.00 0.00 28.3

INRA_03165 B1a_0 D1a D1b 88.5 64.0 24.5 0.00 0.00 24.5

INRA_03170 B1a_0 D1a D1b 41.0 95.3 54.3 41.0 0.00 0.00 41.0

INRA_03176 B1b D1a D1a 53.0 27.5 25.5 0.96 0.00 49.5 45.3 4.2 1.00 0.52 14.8

INRA_03213 B1a_0 D1a D1a 82.7 53.0 29.7 0.00 0.00 29.7

Genotypeb GA exp. 1 GA exp. 2 GA exp. 3h
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Accessiona gap gap gap gap gapOverall

INRA BWCC 

number / control 

line gapRht-B1 Rht-D1 Ppd-D1 gap

GA+ 

length 

(mm)c

GA- 

length 

(mm)d

Trt Diff 

(mm)e

MM 

pGAIf

LSD 

pGA trt 

diff = 0ggap

GA+ 

length 

(mm)

GA- 

length 

(mm)

Trt 

Diff 

(mm)

MM 

pGAI

LSD 

pGA trt 

diff = 0gap

GA+ 

length 

(mm)

GA- 

length 

(mm)

Trt Diff 

(corr'd) 

mmi

Trt Diff 

t value 

(calc.)

LSD 

pGA trt 

diff = 0gap

Trt    

diff j

INRA_03218 B1a_0 D1a D1b 95.7 63.3 32.3 0.00 0.00 32.3

INRA_03220 B1a_0 D1a D1a 92.0 70.7 21.3 0.00 0.00 21.3

INRA_03256 B1a_0 D1a D1b 87.3 51.0 36.3 0.00 0.00 99.0 60.7 38.3 0.00 0.00 37.3

INRA_03267 B1a_0 D1a D1b 100.5 57.0 43.5 0.00 0.00 43.5

INRA_03278 B1a_0 D1a D1b 68.0 44.3 23.7 0.21 0.00 73.0 58.0 15.0 0.41 0.01 50.8 29.0 17.1 7.35 0.00 18.6

INRA_03299 B1a_0 D1a D1a 57.7 39.3 18.3 0.88 0.01 67.0 50.3 16.7 0.84 0.00 48.0 25.0 18.0 7.74 0.00 17.7

INRA_03306 B1a_0 D1a D1a 83.7 61.0 22.7 0.00 0.00 22.7

INRA_03342 B1b D1a D1a 55.3 50.0 5.3 0.93 0.49 56.3 55.0 1.3 0.99 0.82 3.3

INRA_03358 B1a_0 D1a D1b 77.0 0.01 99.0 73.7 25.3 0.00 0.00 25.3

INRA_03366 B1a_160 D1a D1b 82.3 47.0 35.3 0.00 0.00 35.3

INRA_03402 B1b D1a D1a 51.3 46.3 5.0 0.97 0.47 48.0 46.0 2.0 1.00 0.73 3.5

INRA_03406 B1a_0 D1a D1b 71.7 60.0 11.7 0.06 0.24 86.0 50.7 35.3 0.01 0.00 23.5

INRA_03414 B1b D1a D1b 59.7 47.5 12.2 0.80 0.12 60.3 56.0 4.3 0.98 0.45 8.3

INRA_03437 B1a_0 D1a D1b 100.7 72.0 28.7 0.00 0.00 28.7

INRA_03442 B1a_0 D1a D1b 70.3 60.5 9.8 0.10 0.21 101.0 50.0 51.0 0.00 0.00 30.4

INRA_03463 B1b D1b D1a 43.7 42.0 1.7 0.99 0.83 1.7

INRA_03485 B1a_0 D1a D1b 74.3 113.3 89.0 24.3 0.00 0.00 24.3

INRA_03617 B1a_197 D1a D1b 65.7 49.0 16.7 0.38 0.02 75.5 59.7 15.8 0.23 0.02 60.0 33.2 21.0 8.63 0.00 17.8

INRA_03645 B1a_0 D1a D1b 93.3 64.3 29.0 0.00 0.00 29.0

INRA_03665 B1a_0 D1b D1a 57.7 45.3 12.3 0.88 0.08 56.0 48.3 7.7 0.99 0.19 10.0

INRA_03696 B1a_0 D1a D1b 99.0 61.7 37.3 0.00 0.00 37.3

INRA_03752 B1a_0 D1a NP 110.0 41.0 69.0 0.00 0.00 53.0 48.3 4.7 1.00 0.42 72.5 33.5 30.5 7.71 0.00 34.7

INRA_03753 B1a_0 D1a D1b 99.5 60.3 39.2 0.00 0.00 39.2

INRA_03804 B1b D1a D1a 65.0 58.3 6.7 0.43 0.39 63.7 61.5 2.2 0.94 0.74 4.4

INRA_03857 B1b D1b D1a 42.3 38.0 4.3 0.99 0.53 4.3

INRA_03896 B1a_197 D1a D1a 77.0 49.0 28.0 0.01 0.00 78.3 52.0 26.3 0.10 0.00 27.2

Genotypeb GA exp. 1 GA exp. 2 GA exp. 3h
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Accessiona gap gap gap gap gapOverall

INRA BWCC 

number / control 

line gapRht-B1 Rht-D1 Ppd-D1 gap

GA+ 

length 

(mm)c

GA- 

length 

(mm)d

Trt Diff 

(mm)e

MM 

pGAIf

LSD 

pGA trt 

diff = 0ggap

GA+ 

length 

(mm)

GA- 

length 

(mm)

Trt 

Diff 

(mm)

MM 

pGAI

LSD 

pGA trt 

diff = 0gap

GA+ 

length 

(mm)

GA- 

length 

(mm)

Trt Diff 

(corr'd) 

mmi

Trt Diff 

t value 

(calc.)

LSD 

pGA trt 

diff = 0gap

Trt    

diff j

INRA_03912 B1a_160 D1a D1b 96.7 60.3 36.3 0.00 0.00 36.3

INRA_03942 B1a_0 D1a D1b 88.0 66.0 22.0 0.00 0.03 94.0 69.7 24.3 0.00 0.00 23.2

INRA_03965 B1a_0 D1a D1a 86.3 58.0 28.3 0.00 0.00 89.7 67.3 22.3 0.00 0.00 25.3

INRA_03970 B1a_160 D1a D1b 85.7 0.00 95.2 65.5 29.7 0.00 0.00 29.7

INRA_03975 B1a_0 D1a D1b 93.0 73.0 20.0 0.00 0.02 20.0

INRA_03991 B1a_0 D1a D1a 82.0 45.0 37.0 0.00 0.00 37.0

INRA_04036 B1a_0 D1a D1b 43.0 80.7 61.3 19.3 0.04 0.00 19.3

INRA_04055 B1a_0 D1a D1b 94.3 68.0 26.3 0.00 0.00 26.3

INRA_04067 B1a_0 D1a D1b 62.0 62.0 0.0 0.67 1.00 97.7 67.3 30.3 0.00 0.00 15.2

INRA_04105 B1a_160 D1a D1b 85.0 70.0 15.0 0.00 0.15 90.3 58.3 32.0 0.00 0.00 23.5

INRA_04111 B1a_0 D1a D1b 86.0 45.3 40.7 0.00 0.00 40.7

INRA_04157 B1a_0 D1a D1b 96.5 62.0 34.5 0.00 0.00 34.5

INRA_04187 B1a_0 D1a D1b 77.0 54.7 22.3 0.01 0.00 22.3

INRA_04194 B1a_160 D1a D1b 92.3 68.0 24.3 0.00 0.00 24.3

INRA_04207 B1a_0 D1a D1b 83.5 62.5 21.0 0.00 0.01 21.0

INRA_04300 B1a_160 D1a D1b 94.0 60.5 33.5 0.00 0.00 33.5

INRA_04324 B1a_197 D1a D1b 96.0 65.0 31.0 0.00 0.00 31.0

INRA_04343 B1a_0 D1a D1b 104.0 70.0 34.0 0.00 0.00 34.0

INRA_04477 B1a_0 D1a D1b 79.0 54.5 24.5 0.00 0.00 24.5

INRA_04482 B1a_0 D1a D1b 90.5 61.0 29.5 0.00 0.01 92.3 77.0 15.3 0.00 0.01 22.4

INRA_04487 B1a_0 D1a D1b 123.3 73.7 49.7 0.00 0.00 49.7

INRA_04492 B1a_0 D1a D1b 84.0 55.5 28.5 0.00 0.00 28.5

INRA_04525 B1a_160 D1a D1b 76.0 67.0 9.0 0.01 0.36 88.3 53.7 34.7 0.00 0.00 21.8

INRA_04645 B1a_0 D1a D1b 111.0 77.7 33.3 0.00 0.00 33.3

INRA_04664

B1a_0/16

0 het D1b D1b 47.5 59.0 -11.5 0.99 1.00 58.0 52.3 5.7 0.99 0.38 -2.9

Genotypeb GA exp. 1 GA exp. 2 GA exp. 3h
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Accessiona gap gap gap gap gapOverall

INRA BWCC 

number / control 

line gapRht-B1 Rht-D1 Ppd-D1 gap

GA+ 

length 

(mm)c

GA- 

length 

(mm)d

Trt Diff 

(mm)e

MM 

pGAIf

LSD 

pGA trt 

diff = 0ggap

GA+ 

length 

(mm)

GA- 

length 

(mm)

Trt 

Diff 

(mm)

MM 

pGAI

LSD 

pGA trt 

diff = 0gap

GA+ 

length 

(mm)

GA- 

length 

(mm)

Trt Diff 

(corr'd) 

mmi

Trt Diff 

t value 

(calc.)

LSD 

pGA trt 

diff = 0gap

Trt    

diff j

INRA_04670 B1a_0 D1a D1b 77.5 63.0 14.5 0.01 0.09 14.5

INRA_04698 B1a_197 D1a D1a 68.0 62.0 6.0 0.21 0.44 77.3 55.7 21.7 0.13 0.00 53.5 34.5 14.9 6.40 0.00 14.2

INRA_04702

B1a_0/19

7 het D1a D1b 91.7 58.7 33.0 0.00 0.00 33.0

INRA_04706 B1a_0 D1a D1b 81.3 57.7 23.7 0.00 0.00 83.3 56.0 27.3 0.02 0.00 25.5

INRA_04712 B1a_0 D1a D1b 86.5 65.3 21.2 0.00 0.01 21.2

INRA_04776 B1a_0 D1b D1a 54.0 52.3 1.7 0.95 0.83 53.3 57.3 -4.0 1.00 1.00 -1.2

INRA_04784 B1b D1a D1b 60.0 47.0 13.0 0.78 0.10 57.3 46.3 11.0 0.99 0.06 12.0

INRA_04796 B1a_160 D1a D1b 76.5 61.3 15.2 0.01 0.05 88.7 58.3 30.3 0.00 0.00 22.8

INRA_04838 B1a_0 D1a D1b 99.0 60.7 38.3 0.00 0.00 38.3

INRA_04874 B1a_0 D1a D1b 95.7 72.0 23.7 0.00 0.00 23.7

INRA_04901 B1a_197 D1a D1b 108.0 69.7 38.3 0.00 0.00 38.3

INRA_04925 B1a_0 D1a D1a 80.5 53.7 26.8 0.00 0.00 26.8

INRA_04947 B1a_0 D1a D1b 101.3 63.5 37.8 0.00 0.00 37.8

INRA_04991 B1b D1a D1b 51.3 47.3 4.0 0.97 0.57 4.0

INRA_05088 B1b D1b D1a 44.5 43.3 1.2 0.99 0.88 1.2

INRA_05096 B1b D1b D1a 42.5 41.0 1.5 0.99 0.86 1.5

INRA_05102 B1a_0 D1a D1b 92.5 72.0 20.5 0.00 0.01 20.5

INRA_05108 B1a_0 D1a D1b 95.0 70.7 24.3 0.00 0.00 24.3

INRA_05115 B1a_0 D1a D1a 79.0 42.3 36.7 0.00 0.00 36.7

INRA_05116 B1a_0 D1a D1b 97.0 56.0 41.0 0.00 0.00 98.0 55.3 42.7 0.00 0.00 41.8

INRA_05120 B1a_160 D1a D1a 75.0 47.7 27.3 0.02 0.00 27.3

INRA_05166 B1a_0 D1a D1b 86.3 61.0 25.3 0.00 0.01 25.3

INRA_05167 B1a_0 D1a D1b 92.3 70.3 22.0 0.00 0.00 22.0

INRA_05219 B1a_0 D1a D1a 33.5 66.7 48.3 18.3 0.85 0.00 44.0 27.2 13.2 5.41 0.00 15.7

Genotypeb GA exp. 1 GA exp. 2 GA exp. 3h
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Accessiona gap gap gap gap gapOverall

INRA BWCC 

number / control 

line gapRht-B1 Rht-D1 Ppd-D1 gap

GA+ 

length 

(mm)c

GA- 

length 

(mm)d

Trt Diff 

(mm)e

MM 

pGAIf

LSD 

pGA trt 

diff = 0ggap

GA+ 

length 

(mm)

GA- 

length 

(mm)

Trt 

Diff 

(mm)

MM 

pGAI

LSD 

pGA trt 

diff = 0gap

GA+ 

length 

(mm)

GA- 

length 

(mm)

Trt Diff 

(corr'd) 

mmi

Trt Diff 

t value 

(calc.)

LSD 

pGA trt 

diff = 0gap

Trt    

diff j

INRA_05250 B1a_160

D1a/b 

het D1a 77.7 55.0 22.7 0.01 0.00 66.0 64.0 2.0 0.88 0.76 12.3

INRA_05260 B1a_0 D1b D1a 40.0 38.3 1.7 1.00 0.81 1.7

INRA_05266 B1a/b het

D1a/b 

het D1a 61.0 38.3 22.7 0.73 0.00 40.7 41.0 -0.3 1.00 1.00 11.2

INRA_05293 B1a_160 D1a D1b 80.0 51.0 29.0 0.00 0.00 85.0 49.7 35.3 0.01 0.00 32.2

INRA_05308 B1a_0 D1a D1b 91.0 0.00 103.7 73.0 30.7 0.00 0.00 30.7

INRA_05399 B1a_0 D1a D1b 73.0 56.0 17.0 0.04 0.03 83.3 64.0 19.3 0.02 0.00 18.2

INRA_05401 B1a_0 D1b D1a 49.3 39.7 9.7 0.98 0.17 52.0 44.3 7.7 1.00 0.19 8.7

INRA_05415 B1a_0 D1a D1b 98.7 71.0 27.7 0.00 0.00 27.7

INRA_05419 B1a_197 D1a D1b 91.0 68.0 23.0 0.00 0.01 23.0

INRA_05421 B1a_0 D1a D1b 93.0 80.7 12.3 0.00 0.08 99.7 82.3 17.3 0.00 0.00 14.8

INRA_05425 B1a_0 D1a D1b 95.5 60.7 34.8 0.00 0.00 34.8

INRA_05438 B1a_0 D1b D1a 51.0 49.0 2.0 0.97 0.80 2.0

INRA_05448 B1b D1a D1a 55.0 47.0 8.0 0.93 0.44 65.3 54.7 10.7 0.90 0.07 9.3

INRA_05486 B1a_0 D1a D1b 90.0 61.0 29.0 0.00 0.00 103.5 64.0 39.5 0.00 0.00 34.3

INRA_05501 B1b D1a D1a 52.0 54.5 -2.5 0.97 1.00 59.7 62.7 -3.0 0.98 1.00 -2.8

INRA_05536 B1a_0 D1a D1b 98.7 59.3 39.3 0.00 0.00 39.3

INRA_05552 B1a_0 D1a D1b 77.0 68.7 8.3 0.01 0.29 87.7 65.3 22.3 0.00 0.00 15.3

INRA_05558 B1b D1a D1b 63.0 52.7 10.3 0.59 0.14 62.3 51.3 11.0 0.96 0.06 10.7

INRA_05636 B1a_0 D1b D1a 63.3 50.3 13.0 0.57 0.06 60.3 49.0 11.3 0.98 0.05 12.2

INRA_05702 B1a_0 D1a D1b 99.7 60.0 39.7 0.00 0.00 39.7

INRA_05748 B1a_0 D1b D1a 52.0 52.5 -0.5 0.97 1.00 -0.5

INRA_05773 B1a_0 D1a D1b 96.5 66.0 30.5 0.00 0.00 107.3 73.7 33.7 0.00 0.00 32.1

INRA_05816 B1a_197 D1a D1b 87.5 71.7 15.8 0.00 0.04 15.8

INRA_05821 B1a_0 D1a D1b 78.5 60.0 18.5 0.00 0.08 84.3 55.7 28.7 0.01 0.00 23.6

Genotypeb GA exp. 1 GA exp. 2 GA exp. 3h
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Accessiona gap gap gap gap gapOverall

INRA BWCC 

number / control 

line gapRht-B1 Rht-D1 Ppd-D1 gap

GA+ 

length 

(mm)c

GA- 

length 

(mm)d

Trt Diff 

(mm)e

MM 

pGAIf

LSD 

pGA trt 

diff = 0ggap

GA+ 

length 

(mm)

GA- 

length 

(mm)

Trt 

Diff 

(mm)

MM 

pGAI

LSD 

pGA trt 

diff = 0gap

GA+ 

length 

(mm)

GA- 

length 

(mm)

Trt Diff 

(corr'd) 

mmi

Trt Diff 

t value 

(calc.)

LSD 

pGA trt 

diff = 0gap

Trt    

diff j

INRA_05897 B1a_0 D1b D1b 60.7 50.0 10.7 0.75 0.13 60.7 55.7 5.0 0.97 0.39 7.8

INRA_06027 B1b D1a D1a 60.0 41.0 19.0 0.78 0.07 61.7 48.0 13.7 0.97 0.02 16.3

INRA_06047 B1a_0 D1a D1b 84.7 67.0 17.7 0.00 0.01 17.7

INRA_06086 B1b D1a D1b 60.7 48.5 12.2 0.75 0.12 53.0 47.3 5.7 1.00 0.33 8.9

INRA_06170 B1a_0 D1a D1b 63.0 55.5 7.5 0.59 0.47 96.3 62.7 33.7 0.00 0.00 20.6

INRA_06191 B1a_197 D1a D1b 92.0 45.0 47.0 0.00 0.00 47.0

INRA_06198 B1a_0 D1a D1b 84.7 72.0 12.7 0.00 0.20 104.0 86.0 18.0 0.00 0.00 61.0 45.3 12.2 5.27 0.00 14.3

INRA_06308 B1a_0 D1a D1b 89.3 59.7 29.7 0.00 0.00 29.7

INRA_06318 B1a_0 D1a D1b 91.3 67.5 23.8 0.00 0.00 23.8

INRA_06396 B1a_0 D1a D1a 65.0 0.43 77.7 57.0 20.7 0.12 0.00 54.3 36.2 14.2 5.83 0.00 17.4

INRA_06522 B1a_0 D1b D1a 57.7 44.0 13.7 0.88 0.08 47.7 54.7 -7.0 1.00 1.00 3.3

INRA_06529 B1a_0 D1a D1b 74.7 57.0 17.7 0.02 0.07 79.0 67.0 12.0 0.08 0.17 62.0 29.8 25.1 10.83 0.00 18.3

INRA_06575 B1a_0 D1b D1a 41.0 36.5 4.5 1.00 0.56 4.5

INRA_06605 B1a_197 D1a D1b 84.3 60.7 23.7 0.00 0.00 23.7

INRA_06740 B1a_160 D1a D1b 70.7 55.7 15.0 0.09 0.03 88.0 63.0 25.0 0.00 0.00 20.0

INRA_06843 B1a_0 D1a D1b 65.5 54.0 11.5 0.39 0.27 88.3 55.3 33.0 0.00 0.00 22.3

INRA_06846 B1a_0 D1a D1b 105.0 63.0 42.0 0.00 0.00 42.0

INRA_06922 B1a_197 D1a D1a 77.3 61.0 16.3 0.01 0.04 57.5 24.3 25.9 11.17 0.00 21.1

INRA_06986 B1_197 D1a D1b 34.0 35.0 -1.0 1.00 1.00 27.3 31.0 -3.7 1.00 1.00 -2.3

INRA_07011 B1a_0 D1a D1b 85.5 60.0 25.5 0.00 0.00 25.5

INRA_07026 B1a_0 D1a D1b 66.3 55.5 10.8 0.33 0.17 90.7 63.3 27.3 0.00 0.00 19.1

INRA_07040 B1a_0 D1a D1b 104.0 67.7 36.3 0.00 0.00 36.3

INRA_07048 B1a_0 D1a D1b 89.0 57.0 32.0 0.00 0.00 32.0

INRA_07085 B1a_0 D1a D1a 72.5 51.0 21.5 0.05 0.04 75.0 57.3 17.7 0.26 0.00 55.8 28.0 21.8 9.37 0.00 20.3

INRA_07092 B1b D1a D1b 64.5 41.7 22.8 0.47 0.00 62.7 53.7 9.0 0.95 0.12 15.9

INRA_07117 B1a_197 D1a D1b 89.5 64.0 25.5 0.00 0.00 25.5

Genotypeb GA exp. 1 GA exp. 2 GA exp. 3h
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Accessiona gap gap gap gap gapOverall

INRA BWCC 

number / control 

line gapRht-B1 Rht-D1 Ppd-D1 gap

GA+ 

length 

(mm)c

GA- 

length 

(mm)d

Trt Diff 

(mm)e

MM 

pGAIf

LSD 

pGA trt 

diff = 0ggap

GA+ 

length 

(mm)

GA- 

length 

(mm)

Trt 

Diff 

(mm)

MM 

pGAI

LSD 

pGA trt 

diff = 0gap

GA+ 

length 

(mm)

GA- 

length 

(mm)

Trt Diff 

(corr'd) 

mmi

Trt Diff 

t value 

(calc.)

LSD 

pGA trt 

diff = 0gap

Trt    

diff j

INRA_07166 B1a_0 D1a D1b 102.0 62.5 39.5 0.00 0.00 99.3 63.0 36.3 0.00 0.00 37.9

INRA_07276 B1a_0 D1a D1b 92.0 62.3 29.7 0.00 0.00 29.7

INRA_07279 B1a_197 D1a D1b 82.5 55.0 27.5 0.00 0.00 27.5

INRA_07490 B1a_0 D1a D1b 76.5 55.0 21.5 0.01 0.01 21.5

INRA_07585 B1a_197 D1a D1b 96.0 55.7 40.3 0.00 0.00 40.3

INRA_07848 B1a_0 D1b D1b 53.3 47.0 6.3 0.96 0.52 53.3 55.0 -1.7 1.00 1.00 2.3

INRA_07965 B1a_0 D1a D1b 89.0 54.0 35.0 0.00 0.00 35.0

INRA_07968 B1a_0 D1a D1b 101.0 69.0 32.0 0.00 0.00 32.0

INRA_07973 B1a_0 D1a D1a 111.3 77.3 34.0 0.00 0.00 34.0

INRA_07988 B1a_160 D1a D1b 97.0 61.0 36.0 0.00 0.00 110.0 69.3 40.7 0.00 0.00 38.3

INRA_08011 B1a_160 D1a D1b 75.3 73.0 2.3 0.02 0.81 60.8 35.8 19.6 8.05 0.00 11.0

INRA_08048 B1a_0 D1a D1b 89.7 60.3 29.3 0.00 0.00 29.3

INRA_08051 B1a_0 D1a D1b 114.3 69.0 45.3 0.00 0.00 45.3

INRA_08058 B1a_160 D1a D1b 92.0 60.0 32.0 0.00 0.00 82.7 66.3 16.3 0.02 0.01 24.2

INRA_08073 B1a_0 D1a D1b 66.7 62.5 4.2 0.30 0.59 86.7 56.7 30.0 0.00 0.00 17.1

INRA_08079 B1a_0 D1a D1b 84.0 54.5 29.5 0.00 0.00 29.5

INRA_08097 B1a_0 D1a D1b 95.0 64.7 30.3 0.00 0.00 30.3

INRA_08113 B1a_0 D1a D1a 100.5 64.0 36.5 0.00 0.00 36.5

INRA_08165 B1a_160 D1a D1a 77.3 52.5 24.8 0.01 0.00 24.8

INRA_08170 B1b D1b D1a 53.7 46.7 7.0 0.95 0.32 49.7 46.7 3.0 1.00 0.60 5.0

INRA_08194 B1b D1a D1a 65.3 47.0 18.3 0.40 0.01 60.0 40.3 19.7 0.98 0.00 19.0

INRA_08197 B1b D1a D1a 70.3 57.7 12.7 0.10 0.07 67.7 63.0 4.7 0.81 0.42 8.7

INRA_08227 B1b D1a D1a 45.3 34.5 10.8 0.99 0.17 45.7 44.7 1.0 1.00 0.86 5.9

INRA_08233 B1a_0 D1a D1b 71.7 55.7 16.0 0.06 0.02 87.5 59.3 28.2 0.00 0.00 22.1

INRA_08254 B1a_0 D1a D1b 95.7 64.7 31.0 0.00 0.00 31.0

INRA_08276 B1a_160 D1a D1b 76.3 62.3 14.0 0.01 0.05 54.8 35.5 15.1 6.51 0.00 14.6

Genotypeb GA exp. 1 GA exp. 2 GA exp. 3h
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Accessiona gap gap gap gap gapOverall

INRA BWCC 

number / control 

line gapRht-B1 Rht-D1 Ppd-D1 gap

GA+ 

length 

(mm)c

GA- 

length 

(mm)d

Trt Diff 

(mm)e

MM 

pGAIf

LSD 

pGA trt 

diff = 0ggap

GA+ 

length 

(mm)

GA- 

length 

(mm)

Trt 

Diff 

(mm)

MM 

pGAI

LSD 

pGA trt 

diff = 0gap

GA+ 

length 

(mm)

GA- 

length 

(mm)

Trt Diff 

(corr'd) 

mmi

Trt Diff 

t value 

(calc.)

LSD 

pGA trt 

diff = 0gap

Trt    

diff j

INRA_08280 B1a_197 D1a NP 92.3 57.0 35.3 0.00 0.00 35.3

INRA_08287 B1a_197 D1b D1b 53.7 49.0 4.7 0.95 0.55 4.7

INRA_08289 B1a_160 D1b D1b 49.7 46.7 3.0 0.98 0.67 3.0

INRA_08513 B1b D1b D1a 42.7 42.0 0.7 0.99 0.92 0.7

INRA_08578 B1b D1a D1a 71.5 59.7 11.8 0.07 0.13 77.0 72.0 5.0 0.15 0.56 8.4

INRA_09024 B1a_160 D1b D1b 41.7 43.7 -2.0 0.99 1.00 -2.0

INRA_09048 B1a_0 D1a D1b 82.0 61.5 20.5 0.00 0.05 90.0 54.0 36.0 0.00 0.00 28.3

INRA_09077 B1a_160 D1a D1b 31.0 87.7 59.0 28.7 0.00 0.00 28.7

INRA_09087 B1a_160 D1a D1b 87.3 57.5 29.8 0.00 0.00 29.8

INRA_13210 B1b D1a D1a 63.7 48.7 15.0 0.54 0.03 59.3 48.5 10.8 0.98 0.10 12.9

INRA_13282 B1a_197 D1a D1a 70.3 53.7 16.7 0.10 0.02 82.7 52.7 30.0 0.02 0.00 23.3

INRA_13286 B1a_0 D1a D1b 102.0 71.5 30.5 0.00 0.00 112.0 82.0 30.0 0.00 0.00 30.3

INRA_13292 B1a_0 D1a D1b 94.0 69.0 25.0 0.00 0.02 103.3 73.0 30.3 0.00 0.00 27.7

INRA_13310 B1a_160 D1a D1b 90.3 70.3 20.0 0.00 0.00 20.0

INRA_13436 B1a_0 D1a D1b 90.7 63.7 27.0 0.00 0.00 27.0

INRA_13440 B1a_0 D1a D1b 86.0 53.5 32.5 0.00 0.00 32.5

INRA_13445 B1b D1a D1a 60.0 48.7 11.3 0.78 0.11 11.3

INRA_13454 B1a_197 D1b D1b 46.3 43.0 3.3 0.99 0.63 3.3

INRA_13461 B1a_160 D1b D1b 52.0 50.0 2.0 0.97 0.80 2.0

INRA_13471 B1b D1a D1b 62.3 52.0 10.3 0.64 0.19 54.7 49.7 5.0 1.00 0.39 7.7

INRA_13476 B1b D1a D1a 64.5 45.0 19.5 0.47 0.01 58.3 49.0 9.3 0.99 0.11 14.4

INRA_13481 B1a_160 D1a D1a 70.7 50.0 20.7 0.09 0.00 64.0 52.7 11.3 0.93 0.05 52.3 30.0 17.5 7.52 0.00 16.5

INRA_13494 B1a_197 D1b D1a 43.5 37.3 6.2 0.99 0.43 44.3 41.3 3.0 1.00 0.60 4.6

INRA_13500 B1a_197 D1b D1b 50.0 45.3 4.7 0.98 0.55 4.7

INRA_13502 B1a_0 D1b D1a 45.7 37.0 8.7 0.99 0.27 53.0 46.7 6.3 1.00 0.27 7.5

INRA_13642 B1a_0 D1a D1b 77.0 51.3 25.7 0.01 0.00 25.7

Genotypeb GA exp. 1 GA exp. 2 GA exp. 3h
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Accessiona gap gap gap gap gapOverall

INRA BWCC 

number / control 

line gapRht-B1 Rht-D1 Ppd-D1 gap

GA+ 

length 

(mm)c

GA- 

length 

(mm)d

Trt Diff 

(mm)e

MM 

pGAIf

LSD 

pGA trt 

diff = 0ggap

GA+ 

length 

(mm)

GA- 

length 

(mm)

Trt 

Diff 

(mm)

MM 

pGAI

LSD 

pGA trt 

diff = 0gap

GA+ 

length 

(mm)

GA- 

length 

(mm)

Trt Diff 

(corr'd) 

mmi

Trt Diff 

t value 

(calc.)

LSD 

pGA trt 

diff = 0gap

Trt    

diff j

INRA_13781 B1a_0 D1a D1a 89.0 60.0 29.0 0.00 0.00 88.3 60.7 27.7 0.00 0.00 28.3

INRA_13792 B1a_160 D1a D1b 96.3 54.5 41.8 0.00 0.00 41.8

INRA_13799 B1a_0 D1a D1a 72.7 48.0 24.7 0.04 0.00 24.7

INRA_13800 B1a_0 D1a D1b 96.0 61.5 34.5 0.00 0.00 93.3 63.3 30.0 0.00 0.00 32.3

INRA_13811 B1b D1a D1b 72.5 48.0 24.5 0.05 0.00 71.3 54.3 17.0 0.55 0.00 20.8

INRA_13812 B1b D1a 450bp 75.0 58.0 17.0 0.02 0.09 77.3 66.0 11.3 0.13 0.05 14.2

INRA_13861 B1a_197 D1b D1b 45.7 37.5 8.2 0.99 0.29 48.7 40.0 8.7 1.00 0.13 8.4

INRA_13870 B1a_197 D1b D1b 52.7 47.3 5.3 0.96 0.44 57.0 48.7 8.3 0.99 0.15 6.8

INRA_13978 B1a_0 D1a D1b 82.3 31.0 51.3 0.00 0.00 97.5 72.3 25.2 0.00 0.00 38.3

INRA_14000 B1a_160 D1a D1b 84.3 47.3 37.0 0.00 0.00 37.0

INRA_14011 B1a_160 D1a D1a 69.7 42.0 27.7 0.13 0.00 78.3 55.3 23.0 0.10 0.00 25.3

INRA_15606 B1a_0 D1a D1b 89.3 65.3 24.0 0.00 0.00 24.0

INRA_15652 B1a_0 D1a D1b 84.7 64.7 20.0 0.00 0.00 20.0

INRA_15658 B1a_0 D1a D1b 105.0 66.3 38.7 0.00 0.00 38.7

INRA_15710 B1a_0 D1a D1b 91.7 58.3 33.3 0.00 0.00 33.3

INRA_15809 B1a_0 D1a D1b 88.7 58.0 30.7 0.00 0.00 30.7

INRA_15950 B1a_197 D1b D1b 44.3 37.7 6.7 0.99 0.34 44.7 40.0 4.7 1.00 0.42 5.7

INRA_15954 B1a_160 D1a D1a 74.3 41.0 33.3 0.02 0.00 33.3

INRA_20074 B1a_0 D1b D1b 54.3 48.7 5.7 0.94 0.42 51.0 49.3 1.7 1.00 0.77 3.7

INRA_20224 B1a_0 D1b D1a 76.0 46.5 29.5 0.01 0.00 61.3 50.0 11.3 0.97 0.05 20.4

INRA_20276 B1a_197 D1b D1b 59.0 44.0 15.0 0.83 0.06 49.0 50.7 -1.7 1.00 0.00 6.7

INRA_20384 B1b D1a D1b 55.7 48.5 7.2 0.92 0.36 58.3 50.3 8.0 0.99 0.17 7.6

INRA_20417 B1a_160 D1b D1b 48.3 49.0 -0.7 0.98 1.00 -0.7

INRA_23891 B1a_0 D1a D1b 78.0 63.0 15.0 0.00 0.03 15.0

INRA_23896 B1a_0 D1a D1b 97.5 72.7 24.8 0.00 0.00 24.8

INRA_23902 B1a_0 D1a NP 97.0 75.3 21.7 0.00 0.00 21.7

Genotypeb GA exp. 1 GA exp. 2 GA exp. 3h
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Accessiona gap gap gap gap gapOverall

INRA BWCC 

number / control 

line gapRht-B1 Rht-D1 Ppd-D1 gap

GA+ 

length 

(mm)c

GA- 

length 

(mm)d

Trt Diff 

(mm)e

MM 

pGAIf

LSD 

pGA trt 

diff = 0ggap

GA+ 

length 

(mm)

GA- 

length 

(mm)

Trt 

Diff 

(mm)

MM 

pGAI

LSD 

pGA trt 

diff = 0gap

GA+ 

length 

(mm)

GA- 

length 

(mm)

Trt Diff 

(corr'd) 

mmi

Trt Diff 

t value 

(calc.)

LSD 

pGA trt 

diff = 0gap

Trt    

diff j

INRA_23909 B1a_0 D1a D1b 97.0 56.3 40.7 0.00 0.00 40.7

INRA_23923 B1a_0 D1a D1b 89.0 54.7 34.3 0.00 0.00 34.3

INRA_23933 B1a_0 D1a D1b 114.0 81.0 33.0 0.00 0.01 113.8 64.8 49.0 0.00 0.00 41.0

INRA_23934 B1a_0 D1a D1b 86.0 66.0 20.0 0.00 0.02 20.0

INRA_23937 B1a_0 D1a D1b 98.5 76.5 22.0 0.00 0.01 22.0

INRA_23944 B1a_0 D1a D1b 89.7 57.0 32.7 0.00 0.00 105.7 67.3 38.3 0.00 0.00 35.5

INRA_23945 B1a_0 D1a D1b 95.3 65.5 29.8 0.00 0.00 29.8

INRA_23950 B1a_160 D1a D1b 77.5 54.0 23.5 0.01 0.03 91.7 66.3 25.3 0.00 0.00 24.4

INRA_23957 B1a_0 D1a D1b 87.3 65.0 22.3 0.00 0.00 22.3

INRA_23960 B1a_0 D1a D1b 88.0 70.0 18.0 0.00 0.09 113.3 77.7 35.7 0.00 0.00 26.8

INRA_23964 B1a_0 D1a D1b 97.5 65.0 32.5 0.00 0.00 32.5

INRA_23970 B1a_0 D1a D1b 59.0 102.0 66.8 35.2 0.00 0.00 35.2

INRA_23971 B1a_0 D1a D1b 113.3 83.7 29.7 0.00 0.00 29.7

INRA_23974 B1a_0 D1a D1b 96.3 77.0 19.3 0.00 0.01 19.3

INRA_23977 B1a_0 D1a D1b 84.0 71.5 12.5 0.00 0.14 94.7 71.3 23.3 0.00 0.00 17.9

INRA_23981 B1a_0 D1a D1b 89.0 60.0 29.0 0.00 0.02 100.3 69.7 30.7 0.00 0.00 29.8

INRA_23989 B1a_0 D1a NP 72.7 58.3 14.3 0.04 0.04 94.7 66.3 28.3 0.00 0.00 21.3

INRA_23995 B1a_0 D1a D1b 94.5 72.7 21.8 0.00 0.01 21.8

INRA_23996 B1a_0 D1a D1b 94.5 56.5 38.0 0.00 0.00 105.7 75.3 30.3 0.00 0.00 34.2

INRA_24003 B1a_0 D1a D1b 88.0 63.0 25.0 0.00 0.00 25.0

INRA_24006 B1a_0 D1a D1b 85.0 42.0 43.0 0.00 0.00 43.0

INRA_24019 B1a_160 D1a D1b 103.3 68.0 35.3 0.00 0.00 107.7 73.7 34.0 0.00 0.00 34.7

INRA_24031 B1a_160 D1a D1b 84.7 54.7 30.0 0.00 0.00 30.0

INRA_24054 B1a_0 D1a D1b 80.0 53.3 26.7 0.00 0.00 26.7

INRA_24056 B1a_0 D1a D1b 108.0 63.0 45.0 0.00 0.00 103.7 76.0 27.7 0.00 0.00 36.3

INRA_24058 B1a_0 D1a D1b 85.3 57.7 27.7 0.00 0.00 27.7

Genotypeb GA exp. 1 GA exp. 2 GA exp. 3h
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a
 Accession information on the INRA BWCC (Bread wheat core collection) received from F. Balfourier, INRA.  Control lines are also included. 

b
 Genotyping was performed using DNA from the INRA BWCC outdoor experiment, which consisted of two separate bulks of four plants for fixed lines and four 

individual plants for landraces.  Heterozygotes (het) are shown with segregating alleles separated by a "/".  NP = no product. 
c
 GA+ length = Seed-to-first-ligule (STFL) length in the GA+ treatment 

d
 GA- length = STFL length in the GA- treatment 

e
 Treatment difference (Trt Diff) = GA+ length minus GA- length. 

Accessiona gap gap gap gap gapOverall

INRA BWCC 

number / control 

line gapRht-B1 Rht-D1 Ppd-D1 gap

GA+ 

length 

(mm)c

GA- 

length 

(mm)d

Trt Diff 

(mm)e

MM 

pGAIf

LSD 

pGA trt 

diff = 0ggap

GA+ 

length 

(mm)

GA- 

length 

(mm)

Trt 

Diff 

(mm)

MM 

pGAI

LSD 

pGA trt 

diff = 0gap

GA+ 

length 

(mm)

GA- 

length 

(mm)

Trt Diff 

(corr'd) 

mmi

Trt Diff 

t value 

(calc.)

LSD 

pGA trt 

diff = 0gap

Trt    

diff j

INRA_24066 B1a_0 D1a D1b 88.0 61.7 26.3 0.00 0.00 26.3

INRA_24075 B1a_0 D1a D1b 89.7 67.0 22.7 0.00 0.02 112.7 69.0 43.7 0.00 0.00 33.2

INRA_24080 B1a_0 D1a D1b 92.3 63.0 29.3 0.00 0.00 29.3

INRA_24089 B1a_0 D1a NP 94.7 64.3 30.3 0.00 0.00 30.3

INRA_24108 B1a_160 D1a D1b 81.0 43.0 38.0 0.00 0.00 38.0

INRA_24180 B1a_0 D1a D1b 98.0 67.0 31.0 0.00 0.00 108.0 71.7 36.3 0.00 0.00 33.7

INRA_24184 B1a_0 D1a D1b 88.0 61.0 27.0 0.00 0.00 27.0

INRA_24185 B1a_0 D1a D1b 97.0 67.0 30.0 0.00 0.00 30.0

INRA_24186 B1a_0 D1a D1b 90.5 61.3 29.2 0.00 0.00 29.2

INRA_24193 B1a_0 D1a NP 78.0 51.5 26.5 0.00 0.00 26.5

INRA_24196 B1a_0 D1a D1b 105.3 69.5 35.8 0.00 0.00 35.8

INRA_24209 B1a_0 D1a D1b 122.7 77.0 45.7 0.00 0.00 45.7

INRA_24210 B1a_160 D1a D1b 83.5 57.0 26.5 0.00 0.00 26.5

AB B1a D1a D1b 88.1 57.3 30.8 0.00 0.00 93.9 63.7 30.2 0.00 0.00 61.0 36.5 19.2 4.84 0.00 26.7

AB_Rht-D1b B1a D1b D1b 55.5 51.8 3.7 0.93 0.48 54.9 52.2 2.7 1.00 0.49 45.5 37.5 6.3 1.58 0.13 4.2

AB_Rht-B1c B1_197 D1a D1b 29.3 27.0 2.3 1.00 0.66 28.6 26.2 2.3 1.00 0.55 28.0 26.0 1.6 0.40 0.70 2.1

Bersee B1a D1a D1b 94.1 64.6 29.4 0.00 0.00 95.6 69.8 25.8 0.00 0.00 72.5 36.0 28.5 7.21 0.00 27.9

Bersee_Rht-B1b B1b D1a D1b 70.8 61.8 9.0 0.09 0.09 68.1 58.3 9.8 0.78 0.02 59.0 36.5 17.6 4.45 0.00 12.1

Mercia B1a D1a D1b 81.6 57.4 24.2 0.00 0.00 90.4 60.7 29.8 0.00 0.00 60.0 29.5 23.8 6.03 0.00 26.0

Mercia_Rht-D1b B1a D1b D1b 49.2 46.7 2.6 0.98 0.62 46.4 45.0 1.4 1.00 0.71 35.5 29.0 5.1 1.28 0.21 3.0

Genotypeb GA exp. 1 GA exp. 2 GA exp. 3h
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f
 Mixed model (MM) probability of accessions belonging to the GA insensitive (pGAI) are shown with pGAI ≥ 0.95 shown in blue background and pGAI ≤ 0.05 is shown 
in orange background. Probability GAI ≤ 0.05 is equivalent to a probability of ≥ 0.95 of a GA sensitive classification. 
g
 the probability of no treatment difference (p GA trt diff = 0) is shown for each accession.  Probabilities ≤ 0.05 are shown in orange background, which is indicative of a 

GA sensitive accession. 
h
 MM probabilities were not calculated for GA exp. 3 due to the lack of a bi-modal distribution of the GA+ STFL lengths. 

i
 For GA exp 3, the mean GA treatment difference among controls was greater than in GA exp. 1 and 2.  The GA trt diff value of each accession was multiplied by 
0.7818 to allow for comparisons to GA exp. 1 and 2. 
j
 Overall trt diffs are taken as the average of GA exp. 1 trt diff, GA exp. 2 trt diff, and GA exp. 3 trt diff (corr'd).   

 

 


