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Chapter 1

General Introduction

1.1 Introduction

A major problem in developmental biology is to understand how the behaviour of
individual cells creates reproducible biological shapes. Moreover, the reproducibility of
form happens not only at the level of the organism, but patterns at the cellular level are
evident in the temporal as well as the spatial scales (Sachs, 1991). Understanding the
basic principles underlying these cellular patterns constitutes a fundamental question to
linking the individual cell (microscopic) dynamics to the collective (macroscopic) phe-
nomenon of morphogenesis.

The relative flat shape, accessibility and the absence of cell migration and apoptosis
makes the leaf of Arabidopsis thaliana an excellent system to study the process of morpho-
genesis at the cellular level. However, the information about the cellular dynamics that is

available has just been inferred indirectly or restricted to few cells.

The rigorous labour of dissecting many leaves to observe cellular characteristics over
time and space has generated an overall picture of different cellular patterns and a rough
idea of the scales at which these patterns happen. Yet, it has been impossible to follow in
vivo populations of cells during the morphogenesis of the organ. The studies undertaken
so far have followed either small groups of cells (tens) at late stages (Asl et al., 2011;
Zhang et al., 2011; Elsner et al., 2012) or analysed growth at the tissue-level without cellular
resolution (Avery, 1933; Schmundt et al., 1998; Remmler & Rolland-Lagan, 2012; Kuchen
et al., 2012).

One of the most characteristic patterns at the cellular level is that the cell divisions
are confined to particular regions in some plant organs. In roots, for instance, the meris-
tematic region is located at the tip of the root and the division is maintained over long
periods (often, refereed to as an indeterminate organ). In contrast, within the leaf, divi-
sions happen at the base and eventually disappear and the leaf reaches a particular size
(determinate organ). In the specific case of the leaf, the pattern that cell division follows

has been coined “cyclic arrest front”, because cells are “arresting” division from the tip
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1 General introduction

2o

Figure 1.1: Metamorphosis Il by Escher resembles the epidermis of the leaf of
Arabidopsis thaliana.

progressing towards the base of the leaf (Donnelly et al., 1999; Nath et al., 2003; Kazama
et al., 2010).

Complementary to the spatial pattern of cell divisions, cells acquire the characteristic
jigsaw puzzle-like shape in an opposite fashion: starting from the tip and continuing
extending over time until reaching the base of the leaf (Donnelly et al., 1999). This results
in a gradient of developmental cell stages and geometries: rectangular and square cells
are at the base of the leaf while jigsaw puzzle-like cells are recognized first at the tip of the
leaf. This situation resembles the famous drawing by the Dutch artist M.C. Escher called
Metamorphosis 1I (Figure 1.1). Here too, shapes develop gradually in a tessellated pattern
(space filling with no overlaps or gaps).

Another cellular pattern important for the morphogenesis of the leaf that has received
increased interest is the polarity. A prototypical example of polarity at the cellular level is
the expression of the proteins PIN-FORMED in particular side of a cell (for example see
Benkova et al., 2003). However, cell polarity also involves internal asymmetry that confers
changes in geometry (Nelson, 2003). The development of a jigsaw puzzle-like cell shape
involves alternate patterns of lobe and indentations in a multi-polar fashion (similarly to
Escher’s interdigitating lizards, see Figure1.1). Thus, the study of the shape dynamics
provides us with an extraordinary system to study how cell polarity is established and
coordinated among neighbours and how it relates to the overall tissue morphogenesis.

The cell shape change is accompanied by the increase in cell size. Unfortunately, a
study of the dynamics of cell growth during leaf development has not been carried out

directly to date. On one hand, cell growth has been extrapolated from a sample of re-
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Leaf development 1.2

gions within the leaf over time, resulting in information about the average at the organ
level, and hence, ignoring spatial differences. On the other hand, other studies analysing
growth have focused on tissue scale patterns. For instance, a long tradition of placing
marks in different leaf regions (i.e ink) and tracking those over time have reported a
strong basipetal gradient of the growth rates in diverse species (Avery, 1933; Granier &
Tardieu, 1998).

Nevertheless, using only tissue scale measurements, it is not possible to know whether
a gradient of growth occurs at the cellular level as well. In the root of Arabidopsis thaliana,
for instance, it is possible to distinguish regions at tissue scale with particular growth
characteristics (division zone, elongation zone and differentiation zone) at almost fixed
distances from the tip. The cells, however, are not fixed, but they are elongating and
transiting through the root (Beemster & Baskin, 1998). The difference in behaviour at the
tissue and cellular level in this system highlights also the importance of the analysis of
the cellular data to understand the macroscopic behaviour at the organ-level.

What regulates the characteristic cellular patterns, so that they can lead to repro-
ducible organ shapes is an exciting open question. Although, many genes have been
involved in different aspects of cellular behaviour, there is just a scattered picture of the
underlying mechanism. In parallel, theoretical considerations have proposed the exis-
tence of putative gradients at the tissue level that could control cellular behaviour at the
organ scale (Wolpert, 1994; Grieneisen et al., 2007; Kazama et al., 2010; Kennaway et al.,
2011; Remmler & Rolland-Lagan, 2012; Grieneisen et al., 2012). In my opinion, any of
those approaches by their own can lead to satisfactory answers in the absence of infor-
mation about the dynamics at the cellular level: mutant phenotypes could be explained
by different cellular dynamics and theoretical hypothesis if unconstrained by real data at
the cellular level can lead to wrong interpretations of a biological phenomenon.

In this thesis, I present some methods that allowed the characterisation of the cellular
dynamics (Chapter 2 and 3). In fact, the analysis of cell division, cell growth and cell
shape over relevant spatial and temporal scales required the synergy of experimental and
computational tools. Altogether, it was possible to capture cell dynamics with an unique
spatial and temporal resolution, permitting me to revisit and propose new hypothesis for

the regulation of cellular dynamics during leaf morphogenesis (Chapter 4, 5 and 6).

1.2 Leaf development

Multicellularity demands the coordinated activity of cellular processes over time and
space. The outgrowth of an appendage in plants and animals is not an exception. Dur-
ing the vertebrate limb development, a strong distal pattern of higher cell division rates
together with directed cell movement and oriented cell division promote its outgrowth
(Boehm et al., 2010). In the leaf, cells are restricted to move and it is easier to distinguish
a trend in cell divisions and cell growth. Cell proliferation is concentrated in the prox-

imal end of the leaf while the cell growth and the development of complex cell shapes

5



1 General introduction

(pavement cells) is strongly marked at the other end of the organ (Donnelly et al., 1999).
However, unlike limb development (Boehm et al., 2010), the dynamics of cell behaviour
has not been analysed in vivo during leaf development but it has been inferred from se-
ries of static pictures, and the role of cell polarity (if any) has not been investigated in the
context of leaf growth.

In contrast to the lack of dynamic data at cellular resolution, there has been an enor-
mous progress in disentangling the molecular and genetical basis of leaf development. I
start by summarizing the current molecular aspects attributed to the coordination of cell

division and cell growth during leaf morphogenesis.

Although leaf growth is often argued to result from the combined action of cell divi-
sion and cell growth, it is important to mention that cell division represents just a par-
tition of space and by itself cannot contribute to tissue growth (Su & O’Farrell, 1998).
This distinction is important because it allows us to study cell division separately from
cell growth, a conceptual separation that helps formulate hypothesis about its relation
and coordination. Nevertheless, it is obvious that cell growth accompanies cell division
because infinitely small cells have not been observed. Indeed, the cell growth follow a
very characteristic pattern after cell division and will be discussed further in Chapter 4.
Here, for simplicity, I refer as cell division or cell proliferation to the biological process
that involves cell division and its simultaneous cell growth.

1.2.1 Cell division and cell growth regulation during leaf development

The first phase of leaf development is marked by an auxin maxima in the L1 of the
meristem, created by a positive feedback loop between auxin and its transporter PIN-
FORMEDI1 (PIN1) (Jonsson et al., 2006; Smith et al., 2006). The leaf primordium emerge
from the flanks of the shoot apical meristem (SAM, Reinhardt et al., 2000) and the PIN1
transporters are identified along the structure that will give raise to the vasculature sys-
tem (Sawchuk et al., 2013). Based on clonal analysis, the number of cells that gives raise
to the leaf primordium has been estimated to be around 100 cells, but varies depending
on the plant species (Efroni et al., 2010; Gonzalez et al., 2012). Subsequently, the leaf is

partitioned into the adaxial and abaxial domains (Bowman et al., 2002).

After this phase of early patterning, the leaf is recognized as an outgrowth and con-
tinues growing to acquire its final shape. In this work, I focus on the analysis of the cel-
lular behaviour from the subsequent stages of leaf development but as early as when all
the cells are recognized as rectangular or hexagonal shapes (at 6 days after stratification,

when the first leaf is approximately 0.121 mm in width).

Leaves are determinate organs because the cell divisions are detected in a specific
temporal window and eventually they disappear; subsequently, all cells in the organ dif-
ferentiate (and saturate their growth) and the leaves acquire their final size and shape.
Cell proliferation within the leaf is detected mainly at its base and it is only transiently
maintained (Donnelly et al., 1999; Kazama et al., 2010; Lenhard, 2012). The reported dy-
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Leaf development 1.2

namics of cell division is proposed to follow a “cyclic arrest front”, that separates a cell
proliferative region from a region where cells exit the mitotic process and begin expan-
sion and differentiation (Donnelly et al., 1999; Nath et al., 2003). The “front” starts from
the proximal end and advances towards the distal part of the leaf, until divisions are
“arrested”. Recently, it was proposed that the cyclic arrest front is maintained in a fixed
location of about 100 um from the base of the leaf and that the exit of proliferation occurs
drastically in time (Kazama et al., 2010; Andriankaja et al., 2012; Lenhard, 2012). Stomata
differentiation seems to follow different dynamics and the arrest of division of stomata

lineage occurs later (White, 2006).

Conversely, cell elongation coincides with the development of jigsaw puzzle-like cells
and both of these cellular characteristics are detected first in the opposite extreme of the
leaf (i.e. tip, Donnelly et al., 1999). Regarding the dynamics of cell growth, it is known
that cell size increases over time (De Veylder et al., 2001; Andriankaja et al., 2012) but a

detailed analysis on the temporal and spatial dynamics has not been undertaken.

Although many regulators involved in the control of cell division and cell elongation
have been identified (reviewed in Powell & Lenhard, 2012), how cell division and cell

growth are coordinated remains unclear.

One theoretical proposal is that gradients could act as coordinators over the tissue
scale regulating different cellular outcomes, including cell division and cell growth (Anas-
tasiou et al., 2007; Grieneisen et al., 2007; Kazama et al., 2010; Wartlick et al., 2011; Kenn-
away et al., 2011). Despite the theoretical importance of gradients to modulate cell dynam-
ics, there has not been a single characterization of a gradient within the leaf (at least not
at the level of quantitation comparable to some gradients in animals such as Decapenta-
plegic and Bicoid, see Kicheva et al., 2007 and Gregor et al., 2007a, respectively). However,
I summarize some of the pathways that have been reported, emphasizing those that act
non-cell autonomously in the leaf and that potentially could be implied in the formation
of gradients. A detailed analysis of the molecular and genetic evidence available can be
found in recent reviews (Johnson & Lenhard, 2011; Powell & Lenhard, 2012; Tsukaya,
2013).

Interestingly, some pathways seem to converge in the regulation of the cyclin-D3
(CYCD3) involved in the transition of G1-S phase during the cell cycle (Dewitte et al.,
2003). Overexpression of CYCD3 leads to leaf overgrowth and buckling (Dewitte et al.,
2003) and its loss of function causes premature termination of cell division (Dewitte et al.,
2007). Cytokinin, for instance, activates the expression of CYCD3 (Riou-Khamlichi et al.,
1999) and the triple cycd3;1-3 showed impaired cytokinin response (Dewitte et al., 2007).
A link with other important phytohormone, auxin, was also established. Ectopic expres-
sion of AINTEGUMENTA (AN), regulated by auxin through ARGOS, led to extended
CYCD3 expression (Hu et al., 2003; Mizukami & Fischer, 2000).

Moreover, CYCDs participate in the well-conserved module that includes retinoblastoma-

related protein (RBR) and E2F transcription factors to regulate entry to the S phase in the

7



1 General introduction

cell cycle (Dewitte et al., 2003, 2007). Recently, a gene regulatory network including auxin
and SHORT ROOT (SHR), SCARECROW (SCR), RBR and its phosporilation by CYCD6
was shown to play an important role in the asymmetric divisions in the root stem cell
niche by using the interaction of two gradients (Cruz-Ramirez et al., 2012). A similar
network has been implied in the asymmetric division of stomata (Weimer et al., 2012); it
could be interesting to investigate whether similar components operate in the divisions
independent of the stomata lineage. This is a plausible possibility, given that mutants of
SHR and SCR also showed smaller leaves caused by a decrease in the overall cell division
and SHR is proposed to be expressed in a graded fashion within the leaf (Dhondt et al.,
2010).

Another important module in leaf size regulation is composed by TCP transcription
factors (Palatnik et al., 2003; Martin-Trillo & Cubas, 2010). Although there are not reports
of movement for TCPs, their downstream activity (i.e via cytokinin) and regulation (me-
diated by microRNA) might be non-cell autonomous (see below). There are two classes of
TCP factors based on the sequence (reviewed in Martin-Trillo & Cubas, 2010) with antag-
onistic activities. Class I TCP genes positively regulate proliferation, whereas class II TCP
genes, such as TCP2-4 in Arabidopsis thaliana and CINCINNATA (CIN) in Antirrhinum ma-
jus, negatively regulate proliferation (Kosugi & Ohashi, 1997; Palatnik et al., 2003; Nath
et al., 2003; Li et al., 2005).

The proliferative activity of TCPs might be mediated by their influence on cytokinin
response. Recently, it was shown that class Il TCPs transcriptors factors reduced cytokinin
response by the induction of its inhibitor ARR4 (Efroni et al., 2013) while the class I TCPs

was proposed to enhance the responses to cytokinin (Steiner et al., 2012).

Moreover, based on the analysis of binding promoter regions, TCP factors could cor-
regulate cell cycle factors and translational machinery; thus, linking cell division and cell
growth (Liet al., 2005). In agreement, transient expression of TCPs in early stages resulted
in small leaves and transient delay in their expression induced giant leaves with normal
morphology (Palatnik et al., 2003; Efroni et al., 2008). Furthermore, mutants such as cin,
resulted in crinkly and bended leaves because cell division was prolonged and ectopi-
cally maintained in the leaf margins of Antirrhinum majus (Nath et al., 2003). Therefore,
an interesting suggestion is that the antagonistic activities of class I and II TCP genes
regulate leaf growth and perhaps the boundary of expression of members of these fami-
lies coincides with the region where division takes place or is restricted, respectively (Li
et al., 2005; Efroni et al., 2008). However, to my knowledge there is no study where the
boundary of expression of the members of both classes have been analysed during leaf

development.

In Arabidopsis thaliana, some TCP factors are negatively regulated by a microRNA
(miR319), which guides the cleavage of their messenger RNA to maintain their domain
of activity (Palatnik et al., 2003). Overexpression of cleavage-resistant versions of TCPs

resulted in crinkly leaves (Palatnik et al., 2003), resembling cin mutants in Antirrhinum

8



Leaf development 1.2

majus (Nath et al., 2003). An interesting observation is that microRNA could act non-cell-
autonomously and potentially form gradients (Carlsbecker et al., 2010), but this has not
been shown in context of the leaf.

Another module regulated by microRNAs is constituted by the transcription factors
of the family GROWTH REGULATING FACTOR (GRF). In this case, the miR396, which
downregulates the GRF mRNA, is expressed in the distal part of leaf primordia initially,
and increases its expression level over time (Horiguchi et al., 2005; Rodriguez et al., 2010).
In contrast, GRF is expressed in the proximal side of the leaf, coinciding with cell divi-
sions, in a graded fashion (accordingly with the GRF2:wtGRF2-GUS expression pattern)
that depends on the correct activity of miR396 (Rodriguez et al., 2010). Similarly, other
member of the GRF family, GRF5 and its coactivator ANGUSTIFOLIA3 (ANB3) are ex-
pressed in the proximal proliferation zone of the leaf and its expression is also limited by
miR396 (Horiguchi et al., 2005; Tsukaya, 2013). Overexpression of miR396 leads to narrow
leaves, similarly to angustifolia mutant (Rodriguez et al., 2010; Bai et al., 2010). Recently,
it was shown that AN3 can diffuse across leaf layers, but it cannot cross the midvein
(Kawade et al., 2013). It could be interesting to quantify the AN3 diffusion (and produc-
tion, degradation, etc.) to explore the potential to form a gradient in relevant spatial and

temporal scales.

Despite the theoretical importance of gradients in coordinating and regulating cellular
behaviour, in leaves there are no reports of the dynamics of any gradient, as mentioned
before. Auxin, for example is able to form a stable gradient along the root (Grieneisen
et al., 2007; Petersson et al., 2009; Grieneisen et al., 2012). In the context of the leaf, the
auxin response marker (DR5, a synthetic promoter) shows a peak of expression at the tip
of the leaf (Aloni et al., 2003). Auxin transporters (PINs), however, are only detected at
very early stages of leaf development (Benkova et al., 2003; Guenot et al., 2012); thus, it
is not clear if a gradient of auxin is present in the leaf or if the maximum of DR5 is the
result of their transport through the vasculature. Other hormones such as gibberellin and
brasinosteroids have been also implied in the modulation of the organ size, and poten-
tially could act non-cell autonomously (see for example, Achard et al., 2009; Zhiponova
et al., 2013). In addition, other molecules reported as acting in a non-autonomous manner
include KLUH (Anastasiou et al., 2007; Eriksson et al., 2010), SHR (Dhondt et al., 2010),
peptides such as ERECTA (Shpak et al., 2004), microRNAs (Carlsbecker et al., 2010; Ro-
driguez et al., 2010) and AN3 (Kawade et al., 2013).

Leaf growth can also be transiently arrested in response to environmental stimuli
(Wolters & Jurgens, 2009). When plants are growing in overcrowded environments, the
growth of the leaf blade stops transiently while the petiole accelerates its growth, to over-
come the shade imposed by the neighbours (Carabelli ef al., 2007). This phenomenon is
called shade avoidance syndrome (SAS) and it involves auxin production by the trypto-
phan aminotransferase TAA1 (Tao et al., 2008). The increased auxin levels, in turn, trigger

the induction of the enzyme oxidase CKX6, which breakdowns cytokinin, resulting in
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1 General introduction

transient growth arrest (Carabelli et al., 2007). This suggests that the developmental pro-
grams that control cellular activity are flexible and might operate in different contexts.

How the final size of a leaf, or in fact any organ, is determined is poorly understood
(Day & Lawrence, 2000). An interesting feauture of leaf development is that when cell
proliferation is reduced, cells elongate over the wild type limits of cell size, such as the
overall leaf size is not dramatically altered (Tsukaya, 2013). This phenomenon is not
exclusive to plants but has been reported in other multicellular organisms, including
Drosophila (see some reviews of the topic, Day & Lawrence, 2000; Su & O’Farrell, 1998). In
plants, this phenomenon is called compensation (Tsukaya, 2002). Different mutants that
show this behaviour have reported (reviewed in Horiguchi & Tsukaya, 2011), but to date,
this phenomenon remains mysterious.

A complication in unravelling how cell growth and cell division are related and mod-
ulated during development (i.e regulation by a gradient) is that it has been impossible
to directly assess the dynamics of these processes at the cellular level at relevant spatial
(within the leaf) and temporal (from early stages to leaf maturation) scales.

1.2.2 Polarity and leaf shape regulation

Final leaf shape arises from a bud-like structure that over time, becomes flat. Final
leaf form is defined by interaction of orthogonal systems that regulate the shape along
the dorsiventral, mediolateral, and proximodistal axes (Tsuge et al., 1996; Efroni et al.,
2010; Kuchen et al., 2012). In accordance, there are several reported mutants that showed
alteration in these axes (long and narrow leaves or rounded leaves, for instance. See a
detailed review about mutants altered in leaf shape in Micol, 2009).

Almost ten years ago, it was proposed that the shape of an organ during development
could be described by four simple local growth parameters: growth rate, anisotropy, di-
rection and rotation (Coen et al., 2004). The variation of these parameters over time and

space in the context of a connected tissue could give rise to diverse biological forms (Coen
et al., 2004).

Recently, these ideas were linked to underlying factors to include the interplay of mod-
ulators of growth (growth rate regulatory network) and directions (polarizer regulatory
network) that interact with gene regulatory networks (GRN) to specify complex shapes
(Kennaway et al., 2011). This framework allows specifying a pattern of growth rates that
occur parallel or perpendicular to hypothetical gradients (specified growth). The resultant
growth, however, can diverge from the specified growth due to interactions between the
connected tissue regions and the direction of growth (polarity, in this context). A remark-
able feature of this framework is the possibility of establishing local feedbacks among the
growth parameters and the orientations of preferential growth (Kennaway et al., 2011)

Using this scheme, a computational model of the leaf showed that feedbacks between
early patterning of directed growth and tissue deformation might underlie leaf shape

development (Kuchen et al., 2012). This hypothesis for leaf morphogenesis proposes the
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existence of a PGRAD factor that promotes growth along the proximodistal axis (i.e. it
determines a growth rate constant k). The expression of this factor declines from the
proximal to distal ends of the leaf, such as the growth rates decline towards the tip of the
leaf, according to the in vivo confocal data. Another hypothetical factor, LAM, contributes
to the growth rate in the mediolateral axis.

Interestingly, this model proposes the existence of local polarity to specify directed
growth within the leaf (Kuchen et al., 2012), raising the questions of what substance un-
derlies the tissue polarity and if this system acts at the cellular level as well. Cell polarity

in a broader context is discussed next.

1.3 Cell polarity

Cell polarity or asymmetry in cell shape, protein distribution or cell functions (Nelson,
2003) is crucial in many biological processes such as asymmetric cell division, cell fate
determination, cell function, and cell morphology to name a few (Etienne-Manneville &
Hall, 2002; Yang, 2008).

In plants, for example the asymmetric distribution of BASL has been implied in cell
divisions within the stomatal lineage (Dong et al., 2009; Robinson et al., 2011); the polar
localization of the auxin-efflux transporters PIN has been involved in apical and basal
identity in embryos (Steinmann et al., 1999) and directional transport of auxin in the root
(Blilou et al., 2005; Grieneisen et al., 2007); and polar distribution of the small GTPases has
been involved in asymmetric elongation of cell surface as in the case of root hairs and
pavement cells (Fu & Yang, 2001; Fu et al., 2002, 2005, 2009).

Despite the fact that many of the underlying molecular determinants of these asymme-
tries have been identified in animals and plants, the mechanism(s) by which cell polarity
is established, maintained and coordinated in multicellular systems during development
remains unknown.

A theoretical possibility is that cell polarity or cell asymmetries can arise sponta-
neously. In 1952, Turing showed that diffusible chemical substances, which he called mor-
phogens (to convey the idea of “form producers”), could self-organize into spatial pat-
terns, starting from homogeneous distributions (Turing, 1952). Turing’s reaction—diffusion
model shows that two (or more) morphogens with different diffusion properties that react
by auto- and cross-catalyzing or inhibiting their production, can generate spatial patterns
of morphogen concentration (Turing, 1952). The reaction—diffusion formalism was used
to model diverse systems such as regeneration in hydra (Turing, 1952), pigmentation of
tish (Kondo & Miura, 2010), and patterns on the shells of snails (Meinhardt & Gierer,
1974).

Using a similar mechanism, a recent hypothesis involving an intracellular partitioning
system able to generate spontaneous cell polarity was proposed as a fundamental element
to account for tissue polarity (Abley et al., 2013). It was proposed that auxin acts as a

mediator in the coordination of cell polarity among neighbours in plants, where direct
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1 General introduction

protein-protein interactions are not possible due to the presence of cell walls (Abley et al.,
2013).

Candidates components for the intracellular partitioning are the well-conserved pro-
teins Rho-GTPases, in plants called ROPs (Rho-GTPases of Plants). The switch-behaviour
of the active-inactive small GTPases proteins and the spatial differences of these alterna-
tive forms make them ideal as candidates of molecular components underlying cell po-
larity (Marée et al., 2012; Grieneisen et al., 2013b). The active form or GTP-bound form
recognizes target proteins and generates a response until GTP hydrolysis returns it to the
inactive form or GDP-bound state. The cycling of inactive and active and vice versa is
mediated by Guanine Nucleotide Exchange factor (GEF) and GTPase-activating proteins
(GAPs), respectively. The active form is attached to the membrane while the inactive form
can be unattached to the cytosol by Guanosine Nucleotide Dissociation Inhibitors (GDI)
(Takai et al., 2001). Thus, the GEFs, GAPs and GDI proteins modulate the behaviour of
small GTPases that, in turn, could influence their dynamics in the generation of intracel-
lular patterning (i.e cell polarity) through Turing instabilities (Turing, 1952) or any other
pattern formation mechanism (see for example, the wave-pinning mechanism described
in Mori et al., 2008).

In animals, there are well-characterized GEF, GAP and GDI (review in Etienne-Manneville

& Hall, 2002). In contrast, in plants the effects and specific roles of GEF, GAP and GDI
are not widely documented but the available evidence suggests that their function is con-
served in plants (Berken et al., 2005; Yang, 2008). The only homolog of RhoGEF reported
so far is SPIKE, which in addition to binding to ROP2 has been involved in actin filament
assembly as part of SCAR/WAVE complex (Qiu et al., 2002; Uhrig et al., 2007; Basu et al.,
2008). In addition, the existence of a family of plant-RhoGEFs has been reported and the
RhoGEF activity was shown in vitro (Ben-Zvi et al., 2008). There is also evidence of the
functional role of GDI in plants. Knocking out RhoGDI1 induces multiple root hairs in a
single cell, most probably due to the sequestration of ROP2 in the cytosol, in agreement
with the role of GDI reported previously (Carol et al., 2005). Moreover, overexpression of
RhoGDI1 suppresses the defective growth caused by overexpression of ROP1 in tobacco
pollen tubes (Fu & Yang, 2001). Less is known about the function of GAPs in plants. But it
has been related with suppression of depolarization induced by overexpression of ROP1
in pollen tubes (Fu & Yang, 2001; Klahre & Kost, 2006).

Moreover, a link between auxin and ROPs required for the intracellular partitioning
that generates cell polarity (Abley et al., 2013) has been implied in the development of
the jigsaw puzzle-like cell shapes in the epidermis of leaves and PIN2 polarity in roots
(see a recent review in Grieneisen et al., 2013b). Importantly, ROPs also link a possible
intracellular patterning formation with the cytoskeleton, enabling for an additional level
of feedback between the polarity and mechanics (Asnacios & Hamant, 2012).

An interesting possibility is that a similar mechanism of intracellular partitioning cou-

pled by auxin could underlie asymmetries in cell shape (Grieneisen et al., 2013a) and per-
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haps also principal directions of growth and anisotropy at the cellular level. Due to their
multipolar pattern of lobes and indentations, the puzzle-like pavement cells in the epider-
mis of the leaf of Arabidopsis thaliana represent an ideal system to address this question.
Indeed, ROP proteins are asymmetrically expressed in lobes and indentations within
the pavement cells and there is experimental evidence supporting their influence to the
downstream cell cytoskeleton, which ultimately enables differential membrane elonga-
tion (Fu et al., 2005, 2009). Moreover, constitutive active (CA) and dominant negative
(DN) mutants of these proteins showed alterations in the characteristic pavement cell
shape, suggesting that an intracellular partitioning mediated by ROPs can be impor-
tant for the cell polarity that underlies their complex shape (Fu et al., 2002, 2005, 2009;
Grieneisen et al., 2013a). In addition, auxin also has been involved in modulating the
“waviness” of pavement cells shape in a concentration-dependent manner (Xu et al., 2010;
Grieneisen et al., 2013a). Thus, the study of the cell shape progression in individual cells
is likely to provide insights into the cell polarity mechanism that creates complex geome-

tries.

1.4 Quantification of cell behaviour

Cellular behaviour is constantly changing during development. Studies aimed to inves-
tigate the dynamics of cellular patterns have used different methods, ranging from track-
ing growth by placing ink dots on the leaf surface to using microscopes and fluorescent
marked cell outlines to study cell behaviour. Other studies have used the relation be-
tween cell size (or length), cell number, and overall tissue length to infer the cellular
growth and the division rates (Nelissen et al., 2013). In contrast, quantification of com-
plex cell shapes (and its dynamics) is very challenging to assess (Pincus & Theriot, 2007),
and will be discussed in detail in Chapter 2.

1.4.1 The kinematic analysis

Often in plants, the growth within a tissue is not homogeneous (Beemster & Baskin, 1998).
Due to differential growth, cells change their position and displace. When there are parts
of the tissue that grow at different speeds (different strain rates), the displacement each
cell experiences is also different. Early efforts to study the dynamics of plant cells rec-
ognized the difficulty to study a system in which elements are both “moving” and ex-
panding. To capture the dynamics of cellular behaviour, the kinematic analysis in plants
borrowed some terms from fluid dynamics: “Like a flame or the wake of a boat, the form
of a plant changes slowly but the components are in continual flux. The motion of the

components can therefore be analysed in terms of fluid flow”, Erickson & Silk,1980.
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In the root of Arabidopsis thaliana, it is possible to distinguish different regions de-
scribed in terms of the cellular characteristics as division zone, expansion zone and dif-
ferentiation zone (Beemster & Baskin, 1998; Perilli et al., 2012) that can be found at almost
fixed distances from the tip after 6 days (Eulerian system of reference, discussed in Chap-
ter 4). The cells, however, are continually being displaced and transiting through zones;
they can be said to flow through the growing region (Lagrangian system of reference, dis-
cussed in Chapter 4). Thus, the unchanging root geometry is made of elements (the cells)
that are constantly changing (Erickson & Silk, 1980).

The kinematic method allows quantifying production and expansion rates in an organ
as well as the rate of cell division and flux of cells in a particular region using the continu-
ity equation (see details in Silk & Erickson, 1979; Beemster & Baskin, 1998). This method
has been applied to leaves (Granier & Tardieu, 1998; Nelissen et al., 2013) and roots (see
an example in Beemster & Baskin, 1998).

Early efforts to measure leaf growth involved drawing ink dots or using the vein in-
tersections on the leaf surface to delineate a grid whose deformation over time could be
used to calculate regional growth rates (Avery, 1933; Granier & Tardieu, 1998; Schmundt
et al., 1998). Although, these studies were informative, they were limited to late stages of
development when the leaf has grown enough to place landmarks. Besides, the relatively
big size of the segments made it difficult to achieve good estimates for the behaviour of
the cells.

To access the cellular level, other studies proposed to measure the overall leaf area and
sample cells at two (or more) positions of the leaf (for instance, at about a quarter from
the tip and bottom of the leaf and halfway between the leaf margin and the mid-vein).
Then, the mean area and the number of cells in those regions were extrapolated to all the
leaf to infer cell division and cell expansion rates. In many occasions, it was necessary
to dissect many leaves at specific time intervals throughout development (Nelissen et al.,
2013); thus, it is not possible to follow the same regions over time using this approach.

Other studies have used the replica-method that involves making impressions of the
leaf surface for several days (see for example, see Elsner et al., 2012). This method per-
mits better cellular resolution; however, it is limited to a small sample size (hence, it is
not possible to study spatial differences within the leaf). Moreover, as it involves direct
manipulation of the leaf, it cannot be performed for long periods without damaging the
tissue, limiting the temporal resolution of the time-lapse (see for example, Zhang et al.,
2011; Asl et al., 2011; Elsner et al., 2012).

1.4.2 Live imaging

Recently, the use of confocal microscopy combined with fluorescent proteins to label
membranes or molecular activity has enabled the study of developmental processes in

an unprecedented manner (Megason & Fraser, 2007).
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In plants, sophisticated microscopes and fluorescent protein tags to track cellular be-
haviour have been developed (Reddy et al., 2007). Examples of quantitative extraction
of cellular features obtained using time-lapse include the imaging of the shoot apical
meristem (Grandjean et al., 2004; Uyttewaal et al., 2012; Kierzkowski et al., 2012), sepal
primordia (Schiessl et al., 2012), and sepals (Roeder et al., 2010), to mention just few recent
examples.

For the leaf, the perfusion chamber developed to track early leaf development has
been used to analyse patterns of cell divisions in the stomatal lineage (Robinson et al.,
2011), giberellin response in hypocotyl cells (Sauret-Gueto et al., 2012) and leaf growth
(Kuchen et al., 2012). Thus, live imaging is a powerful approach to study dynamical
aspects of development at the cellular level.

However with live imaging we face a trade-off between preserving the integrity of the
tissue and acquiring images at high resolution at relevant spatial (tissue level) and tem-
poral scales (in the order of days for leaves). Tracking leaf growth, for example, can be
achieved only for a couple of days because the leaves develop curvature and reach sizes
that make impossible to capture cells at good resolution in reasonable scanning times.
Thus, in vivo leaf tracking for long periods required the modification of the standard pro-
cedure of acquiring images.

Together with time-lapse techniques, it was necessary to develop computational tools
to extract cellular features (Roeder et al., 2012a). Many of the previous time lapse studies
were limited to tens of cells because they required manual intervention to track cellu-
lar behaviour. To overcome these limitations, automatic and semi-automatic tools were
developed and will be discussed in detail in Chapter 3.

1.5 About this work

Although much progress has been made in understanding the molecular basis that mod-
ify different aspects of the cellular behaviour, there is not a single study where the cellu-
lar dynamics have been followed for long periods of time together with the organ level.
The information about the cellular dynamics that is available has just been inferred indi-
rectly or restricted to few cells. This has limited our understanding on how the cellular
behaviour is regulated during development and how it relates with the overall organ
morphogenesis.

To evaluate cellular patterns during leaf development, first it was necessary to de-
velop quantitative tools to characterize the dynamics of cellular behaviour over time.
The complexity of pavement cell geometry rendered it impossible to use traditional met-
rics to capture the essence of the cell shape and their dynamics. In Chapter 2, I present
a new method, the Lobe Contribution Elliptical Fourier Analysis (LOCO-EFA), that was
developed with this purpose. Quantifiers obtained using this method permitted the char-
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acterization of the cell shape complexity and provide a shape profile for individual cells
that can be used to evaluate characteristics of populations of cells.

Remarkably, the shape profile of single cells changes only slightly from one time in-
terval to the next in a fashion unique to each cell. This characteristic was used to develop
a tracking algorithm that, integrated with an algorithm to identify cells within an image
(SPM), results in a powerful tool to recognize cells in a succession of images and extract
not only their cell shape, but also cell area, cell position and, importantly, cell lineages
(Chapter 3).

The synergy between in vivo imaging and computational tools to extract efficiently the
cell dynamics enabled the study of cellular patterns at temporal and spatial resolutions
that were not achieved before. The analysis of diverse spatial (Eulerian and Langranian)
and temporal scales (at the cellular and the leaf level) were needed to disentangle the
behaviour related with the position from the behaviour related with the age of the cell
(taking as a reference the moment of cell division) and it is presented in Chapter 4. The
cell dynamics of growth, shape and divisions using long time-lapse enabled to revisit
and propose new hypothesis about the regulation of the cellular behaviour during leaf
morphogenesis.

Long time-lapse also enabled to study the dynamics of complex cell geometries. In
Chapter 5, I focus on the development of the characteristic jigsaw puzzle-like shape of
pavement cells and speculate from the data about the intracellular patterning and possi-
ble feedbacks that might account for it.

Finally, in Chapter 6, I discuss some outstanding open questions that can be addressed
using the pipeline presented here. I also envision possible new directions, based on the
results obtained in this thesis, that can guide us closer to understanding the mechanisms

underlying morphogenesis.
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Chapter 2

Getting quantitative in cell shape
studies: Lobe Contribution Elliptical
Fourier Analysis

Abstract

Outstanding advances in microscopy techniques have allowed us to get access to con-
siderable amount of data on cell morphology. However, there are very few methods to
extract quantitative information of cell geometry, specially for complex cell shapes (such
as pavement cells). The lack of quantitative criteria to assess the cell geometry limits the
study of populations (i.e mutants, within an organ, cell shape over time) and make cell
morphogenesis studies a very time consuming activity. In this chapter, I present a new
method for the quantification of the cell shape, the Lobe Contribution Elliptical Fourier
Analysis (LOCO-EFA). It takes into account the information of the whole cell outline and
provides meaningful descriptors that are directly matched to morphological features of
a cell. To validate the proposed method, I applied it to geometrical shapes and in silico
tissues, where cells have a controlled specified shape that prevails when the simulated
cells are alone but diverges when they are allowed to interact in a tissue context. These
differences due to cell-to-cell interactions are fully quantified using the LOCO-EFA. Be-
sides providing a quantification of the cell geometry, the LOCO-EFA method was used to
identify the same cell over time (cell tracking algorithm, discussed in the next chapter).

17



2 Getting quantitative in cell shape studies: LOCO-EFA

2.1 Introduction

The geometry of a cell is a complex output of cell polarity (or asymmetries within a cell),
cytoskeleton and other downstream processes that altogether shape cells according to a
particular developmental context. For example, during the development of a root hair
cell, the shape changes are preceded by the formation of a polar domain of a small GT-
Pase ROP2, that leads to the reorganization of the cytoskeleton (ie. microtubules and actin
filaments). In turn, this triggers local growth at one particular extreme of a cell leading
to the formation of this specialized cell type (Jones et al., 2002). Thus, the cell shape itself
can be considered the read out of the patterning that underlies cell polarity and inter-
nal machinery that leads to the final cell shape. Importantly, this implies that studying
how the cell shape changes quantitatively during its development and in the context of a
growing tissue, can provide a mechanistic insight into how the cell polarity is established
and maintained.

The quantitative assessment of cell shape (and its dynamics) is, however, not a trivial
task. Especially difficult are cells with complex shapes, such as pavement cells (Figure 2.1).
Indeed, their intricate form makes them a paradigmatic example that illustrates the chal-
lenges of the quantitative characterization of any cell shape, such as 1) complex geometry
and, thus impossibility to describe their shape meaningfully with traditional metrics and
2) lack of recognizable landmarks, making it impossible to apply the myriad of shape
statistics (i.e principal component analysis and procrustes analysis) that have been devel-
oped in other fields.

In this chapter, I discuss how traditional metrics can be misleading when applied
to complex geometries. Then, I review previous work aimed to use the information of
the whole contour of the cell to quantify cell shape using the Elliptical Fourier Analysis,
pointing out the shortcomings of this method. Finally, I present a new method to quan-
tify the cell shape (Lobe Contribution Elliptical Fourier Analysis) that is validated using
simple geometrical shapes and in silico pavement-like shapes.

Interestingly, the analysis of computer-generated tissues where pavement-like cells
have a parametrized specified shape also permits to address the fundamental question
of how the resultant cell shape, when cells cannot move to accommodate or migrate,
is influenced by cell-to-cell interactions within a packed tissue. Specifically, I explore
the influence of cell neighbours on morphogenesis of individual cells by measuring the
divergence of a specified cell shape when it is alone as compared to when it is immersed
in the in silico tissue. This analysis, performed on in silico tissues allows to quantify such
differences for a generic situation. These results validate the proposed method and show
that local interactions at the level of individual cells could deviate the symmetric specified
shapes towards very asymmetrical forms, an attractive hypothesis that awaits to be tested
experimentally.

In the context of this work, LOCO-EFA provides a quantitative manner to evaluate

cell morphogenesis of pavement cells (that can be well-described in two-dimensions, see
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Figure 2.1: Pavement cells. These epidermal cells of the leaves of many plants are
characterized by jigsaw puzzle-like shapes consisting of multiple alternating protrusions
(also called lobes) and indentations. Due to the complexity of its shape, it is not trivial to
capture the relevant cell shape features in a quantitative and robust manner. A) Pave-
ment cells of Arabidopsis thaliana wild type pavement cells and B) speechless mutant
are shown. Scale bar corresponds to 50 um in both captions.

Figure 3.4) during leaf development (Chapter 4) and, it is used in the algorithm to track
individually cells over time (Chapter 3). Moreover, the the LOCO-EFA derived metrics
can be used as criteria to quantify populations of cells from different treatments or mu-

tants; thus, it also provides a quantitative manner to statistically assess populations.

2.2 Problems of traditional methods to quantify cell shape.

Some approaches classically used to quantify pavement cells are summarized in Table 1.1.
Traditional metrics such as cell area, perimeter, aspect ratio and form factor are useful as
general descriptors but the shape information that is possible to extract from them is
limited and redundant: very different shapes may have a very similar aspect ratio and
form factor (Figure 2.2). Thus, they are not unique and do not provide information about

the shape features that are biologically relevant.

Some algorithms are highly sensitive to noise in the image (i.e skeleton) and others
completely depend on human decisions to judge what is a lobe or indentation, such as
the average lobe length and neck width (Figure 2.3), making this measure highly variable
from cell to cell and from human to human. Thus, traditional metrics fail to quantitatively
characterize general aspects of cell shape or specific features of pavement cell form such
as quantity and quality of lobes.
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Measure Description Reference

Average lobe  Length of each lobe and the distance between opposite Fuet al., 2005
length and indentations within a cell (also called necks). The final
neck width ~ measures for a cell is the average of lobe lengths and the
average of all the neck widths. These measurements
depends on the human criteria to identify lobes and necks.

Form factor  Defined as: % Bai et al.
(or circularity) Where P is the perimeter and A is cell area. A circle will (2010); Russ
have a form factor 1, the lowest value possible. (2000);
Andriankaja

et al. (2012)

Skeleton This method constructs a skeleton representation of the Le et al. (2006);
cell shape by removing certain pixels of cell in an iterative =~ Russ (2000)
manner such that only an underlying branched
one-dimensional structure remains. There are different
variants of this algorithm to skeletonise cell shapes. This
method is highly dependent on the parameters used to
find the skeleton and it is very sensitive to the image

resolution.
Average Defined as: <£* Sorek et al.
polarity score  Where c is circularity and s is the number of skeleton end (2011)
points.

Table 2.1: Distinct shape descriptors have been used to quantify pavement cells.

2.3 Decomposing Shape: Lobe Contribution Elliptical Fourier
Analysis (LOCO-EFA)

To quantitatively capture cell shape is not a trivial task. Elliptical Fourier analysis (EFA)
provides a tool to simplify the contour of a cell through a set of coefficients that can
be used as shape descriptors. However, EFA by its own has two major problems that
compromise its use in cell shape studies: 1) it does not provide a manner to relate such
coefficients to features of a cell (for example, protrusions or lobes) and 2) it allows mul-
tiple descriptions for a given shape. In this section, I briefly summarize previous efforts
to make the EFA-coefficients biologically interpretable. Next, I discuss why the previous
attempt to match EFA-coefficients with shape features do not work for all shapes. Finally,
I present a new method, Lobe Contribution Elliptical Fourier Analysis (LOCO-EFA), that
produces quantitative measurements that are biologically interpretable and unique for a

given shape, overcoming the shortcomings of the previous methods.
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Descriptor A B C D

1.8

Average length of lobes 6.1uym 74um 68um 4.7 um

Average width of necks 7.5um 95um 143 uym 15.7 ym

Form factor 4.2 42 1.9 1.4
Aspect Ratio 0.8 0.6 0.53 0.52
Skeleton end points 4-5 6-8 5 4-7

Average polarity score 4.1-4.6 5.1-6.1 3.45 27-42

Figure 2.2: Traditional shape quantifiers can be misleading when applied to com-
plex shapes. (A-D) Pavement cells imaged using confocal microscopy (upper panel)
and its corresponding segmented images (lower panel). Traditional metrics to quantify
cell shape can lead to very similar values for very different shapes (form factor and as-
pect ratio) or can be very sensitive to the parameters (skeleton) and image conditions
chosen. Scale bars correspond to 10 um. See also Figure 2.3.

2.3.1 Elliptical Fourier Analysis

Fourier analysis has been widely used to analyse cell morphology when cells have a sim-
ple holomorphic shape, i.e when the radii emanating from the centroid of a cell intersect
the outline only once (Figure 2.4A and Pincus & Theriot, 2007). When the geometry of a
cell is more complex and the radii emanating from the centroid intersect the outline more
than once it ceases to be possible to use the Fourier expansion based on polar coordinates
(Figure 2.4B and Schmittbuhl et al., 2003).

A solution to this limitation was presented in 1982, when Kuhl & Giardina proposed
the Elliptical Fourier Analysis to describe the outline of any two-dimensional shape from
the coordinates of the points of its outline. However, in contrast to the Fourier analysis,
the EFA by its own cannot retrieve information that directly relates to morphological fea-
tures of a cell, making the biological interpretation of this analysis very difficult. Another
disadvantage is that EFA, in its current state, allows multiple descriptions for a given

shape, endangering the statistical study of populations of cells, as explained further on.

In short, EFA takes the displacements of both x and y coordinates of a closed contour
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Lobe length Neck width

%ﬁ
| [
T

Figure 2.3: Misleading measurements of lobe and neck length and skeleton. (A)
Neck width and lobe length depend on the human criteria for identifying such structures
and (B) skeleton-end-points depend on the parameters chosen to find the skeleton. One
parameter (p) was varied from 45 (left), 65 (middle) and 85 (right) could give as an output
8-6 lobes.

Figure 2.4: Holomorphic and nonholomorphic shape outlines. (A) The radii from the
centroid to the outline of an holomorphic shape intersect only once whereas in a (B) non-
holomorphic shape the same radii can intersect more than once. Few pavement cells (A)
have an holomorphic shape but the majority contains a very complex non-holomorphic
outline (B) that does not allow their outline to be represented in polar coordinates .
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independently and decomposes it into an infinite summation of related ellipses:

x(t) =Ao + nil {txn cos (ZnTnt) + By sin <2nT7'ct)} (2.1a)
y(t) =Co + né [')’n cos (ZnTnt) + 8, sin (Z"Tm” (2.1b)

where «,, , By, vn and J, are the EFA-coefficients and each four nth coefficients account
for an ellipse (also referred to as ‘mode” or "harmonic’) with a certain orientation and ro-
tation; Ag and Cy are the offsets of the initial contour. Note that x(¢) and y(t) are periodic
functions with period equal to T (more below on the interpretation of t and T).

The detailed derivation of the EFA coefficients can be found in Kuhl & Giardina,1982.
Briefly, the elliptic Fourier coefficients can be obtained as:

Xy = ZnZT(Z ii iil :cos 2”; i cos Zn?i_l} (2.2a)
Bn = Znan ii iz :sin Zn; b sin 2n7t—;1_1] (2.2b)
Yn ZZancz :1 i]: :COS 2n17:ct1- — Cos 21 mil} (2.2¢)
Oy = Znan :1 i{ : :sin Zn;( i sin Znn—;l_l} (2.2d)

where K is the total number of points x;, y; of the closed contour. The “time” passed
while “tracing” the contour or distance along the contour for each pair of x; and y; coor-
dinates is referred as t;, and T is the “total time” or perimeter length. Imagine drawing
the contour of the cell, then At; is the time spent drawing the segment of the contour that
links each x;_1 and y;_; pair to x; and y;; similarly, T is the total time spent to draw the
whole contour (Figure 2.5). Note that At; is not fixed but can be different for each inter-
val while T=YK | At;; and ty = 0; tx = T. Also note that x(0) = x(T) and y(0) = y(T);
accordingly, xo = xk, Yo = Yk, because it is an enclosed contour. Importantly, EFA does
not require equal spacing between the points, so it is easy to sample the K observation
points from a cell contour. The only requirements are that the contour is closed and the

xy-coordinates are presented in a sequential order.

The offsets of the contour are given by:
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2
|

[ZAAXZ (tz t2?11> + Ci(ti — ti—l)] + X0 (2.3a)

Q)
o
|

] Mx [ M”

[

Ayi 2 (bt
[Mt (- ti_1)+ez(tz—tz_1>]+yo (2.3b)

where &; = 2;;% Axj — Axl Zl 1 1088 = Zj;% Ay — Ay’ Z Atj and & =¢ =0
(see details in Kuhl & Giardma 1982).

The way by which the combination of progressive n-ellipses give rise to the final shape
is as follows: each nth elliptic harmonic traces n clockwise or counter-clockwise revolu-
tions while rotating around the previous harmonic ellipse (and so forth, see Figure 2.5 and
Appendix 2.A Movie 2.1). The direction of rotation of the nth harmonic ellipse is given by
the determinant of the EFA-coefficients matrix, det [a, By ; vn On], thus the direction of

rotation is given by the sign of

Tn = &poy ,Bn')/n (2.4)

If r, < 0, the elliptic harmonic is rotating clockwise; if r, > 0 the elliptic rotator is
rotating counter-clockwise.

An expected result (but not so obvious) of the approximation of the shape using EFA
is that, as the elliptical harmonics rotate around the others, each mode contribute to n +
1 or n — 1’th shape features (such as lobes) depending on their relative rotation to the
tirst harmonic (Diaz et al., 1990). As a result of this rotatory effect, there is no direct or
clear relation between EFA-coefficients and morphological features (such as protrusions,
lobes and filipodias) rendering the biological interpretation of the results unclear and
ambiguous.

To solve this problem and find a correspondence between EFA-coefficients and the
shape, Diaz et al. (1990) proposed a heuristic solution consisting of obtaining the contri-
bution of each harmonic to the shape through an approximation of the perimeter of each

ellipse multiplied by its harmonic number 1,

[A2 + A2
P, = n2m % (2.5)

where A1, and A, are the two semi-axes corresponding to the nth ellipse.

To align the contribution of each harmonic to its correspondent morphological feature
of “protrusions” (for example that a hexagon has its maximum EFA-contribution at Ps, see
Figure 2.6) they noted that when an elliptic harmonic was rotating in the same direction
as the first harmonic, its main contribution (in the hexagon example, the sixth mode) was
shifted backwards a position, resulting in a peak at the n — 1 mode (fifth mode, in this

case); inversely, when the rotatory direction of a given mode was opposite to the first
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Figure 2.5: Elliptical Fourier approximation to a cell contour. (A) Cell contour and
discretized displacements used to calculate the EFA-coefficients. (B) Sequential approx-
imation of the cell's contour is shown: the first harmonic is an ellipse shown in blue (1),
the second harmonic (2, red) rotates around the first and the summation of the them
is shown in green; the third harmonic (4, orange) rotates around the second and the
summation of the three is shown in a bold blue line (5-6). Also see Movie 1.1

harmonic, the main contribution was moved upwards one position (seventh mode, see
Figure 2.6 and Figure 2.7). Indeed, this effect of presenting contributions on either the n +
1’th or n — 1’th mode depending on the relative direction of rotation of the first harmonic

is a common phenomenon of objects that rotate around themselves while orbiting others
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Figure 2.6: Relative rotation effect on the frequency and harmonic number. To align
the frequency of the EFA-reconstruction and the real shape features, Diaz et al., 1990
proposed to move the contribution of each harmonic (P,) to the n + 1 or n — 1 positions
according with their rotatory direction . (A) Without alignment a sixth-sided shape (shown
as an inset) has its P, main contribution in the 5th and 7th harmonics (n — 1 and n + 1
sides). (B) Moving each P, contribution n + 1 or n — 1 positions according with their
rotatory direction aligns the 6th harmonic with the main frequency (this does not always
holds, see main text). (C) LOCO-EFA method also aligns the main contribution with the
corresponding harmonic number (for any shape, see main text).

(referred as rotatory effect hereafter). For example, the fact that our planet rotates around
its axis in the opposite direction it rotates around the Sun makes the number of days
we perceive in a year (from “sunrise to sunrise” , called sidereal days) not be the actual

number of rotations it performs 365 (observed from “star-rise to star-rise”), but instead,
366.

The solution proposed in Diaz et al. (1990) for this discrepancy between harmonic fre-
quency and morphological periodicities, was to displace each frequency by one position
according to their rotatory direction with respect to the first harmonic. Then, if the ro-
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Figure 2.7: The number of morphological protrusions (lobes) specified by a nth
harmonics of EFA is influenced by the direction of rotation. As an heuristic rule, it
has been suggested that if the first harmonic and the nth harmonic are rotating in the
same direction, they will generate a contour with n — 1 protrusions; if the direction of ro-
tation is opposite, a n + 1 sided shape is generated. (A-C) Final shape generated (blue)
from the sum of the first (green) and the third harmonic (orange). The third harmonic
generates a shape with either 2 (A) or 4 lobes (B), depending on its direction of rota-
tion in respect to the first mode. However, this heuristic rule of an nth-mode harmonic
contributing solely to n +1 or n — 1 (Diaz et al., 1990) does not apply when the har-
monic elliptic has a higher eccentricity: the final shape has n 4+ 1 protrusions (4 lobes)
although the direction of rotation of the first and third harmonics were opposite (C). See
also Movie 2.2-Movie 2.4.

tatory direction r, of the nth elliptic harmonic (for n > 1) coincides with the rotatory
direction of the first ellipse r; (i.e. when r;; and r; have the same sign), the corresponding
P, value was shifted to the n — 1’th position. Conversely, if the rotation r, of nth (for
n > 1) mode was opposite to rq, then P, was moved to the n 4 1’th position (Figure 2.6).
In other words, each EFA-coefficients («,,, By, Yn, 0n) Were contributing to either n + 1 or
n — 1 morphological periodical features (for example, 5 lobes).

However, this simple and heuristic solution is not satisfactory for interpreting shapes.
In fact, an elliptical harmonic only contributes in such a pure fashion to either one or
the other mode when the nth harmonic is a perfect circle (Figure2.7A,B and Movie 2.2-
Movie 2.4). However, when the aspect ratio of a harmonic (A1, /A2,) is large (i.e the ellip-
tical harmonic is very flat, deviating significantly from circular) the proposed rule fails to
apply. Figure 2.7c illustrates this for the situation when the first harmonic and the third
are rotating in the opposite direction (in relation to the first), yet instead of generating
a contour of n — 1 (2 protrusions as expected from the proposed rule), a 4-sided outline
is generated. Thus, the proposed solution of moving the contribution of the nth mode
(Pn), to the n 4 1 or n — 1 position, clearly does not work. This shortfall, threatens to ren-
der EFA unsuitable for biological shape interpretations, and as a consequence, renders its
coefficients unusable for further statistical analysis. Surprisingly, the rotatory effect has
never been taken into account in the standard normalization procedures when EFA was
used in population analysis (Yoshioka et al., 2005; Friess & Baylac, 2003; Neto et al., 2006;
Iwata et al., 1998, 2010).
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2.3.2 Contouring the Limitations: Lobe Contribution Elliptical Fourier
Analysis (LOCO-EFA)

To capture the biologically relevant cell shape features overcoming the limitations of us-
ing P, and the adjustments (1 + 1, n — 1) depending on the direction of rotation, an al-
ternative method coined Lobe Contribution Elliptical Fourier Analysis (LOCO-EFA) was
developed. As the name suggests, it correctly maps the contribution of each harmonic
to its morphological features. This is done by splitting each elliptic harmonic into two
circles rotating in opposite direction as described below. Indeed, the previous and only
available method (Diaz et al., 1990) results in an overestimation or underestimation of a
given harmonic contribution because it assumes that each harmonic is contributing solely
ton + 1 or n — 1 morphological periodicities. Given that they can contribute to both n 4- 1
and n — 1 simultaneously, it is necessary to evaluate the contribution of each elliptic har-
monic to these different modes to correctly assign it to the actual shape. Importantly,
the LOCO-EFA method also eliminates the rotatory effect that was not considered before,
ensuring an unique representation of a given shape.

For simplicity, it is useful to rewrite the EFA Eq. 2.1 in matrix form as

x(t) | _ | a0 Nola, B cos(2”T"t)]
[y(t)] [70 +n;1 Yn  On ] [Sin(@) ’ (2.6)

where the infinite sum is truncated to the Nth order harmonic.
Then, the EFA (2.6) can be expressed in matrix notation as

N
[X(£)] = [Ao] + ), [An] [Mn(t)] (2.7)

n=1

where: [X(t)] corresponds to the column { ;Eg },

[Ao] is the offset { %o ],
70

[A,] corresponds to the elliptical coefficients { ,0;" '?” ], and
n n

2n7t
cos ( =7+
[My,(t)] refers to the column [ sin gz”—;;”)) } :

In summary, the LOCO-EFA method consists of three steps: 1) eliminate multiple
representations of the same outline, 2) decompose each nth elliptic harmonic into two
circles rotating in opposite directions and 3) find the L, contribution for the N modes
(Figure 2.8). These steps are described in the following.
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(1) Eliminate multiple representations of a
given outline

(a) Displace the starting point of the first harmonic (t=0) to the extreme at t'=0 in
quadrant | or Il

(b) Fix the direction of rotation of the first harmonic

L

(2) Decompose each nth harmonic into two
circles rotating in opposite directions

(A4+n and 4-n)

(a) Perform spatial and temporal transformations

i

(3) Find Ln contribution as the distance of the
starting point of rotation of the circles
accounting for the n-1 and n+1 lobes

Figure 2.8: Schematic diagram summarizing the LOCO-EFA method.

(1) Eliminate multiple representations of the same outline

There are three important sources of degeneracy in the EFA-coefficients that are elim-
inated before splitting the contribution of the EFA-harmonics into the n +1 and n — 1
number of lobes. The first is that any contour can be drawn from any arbitrary starting
point; thus, the approximation to the shape from different starting points will produce
different sets of coefficients for the same shape because the elliptic harmonics will take
different orientations (Kluh & Giardina, 1982). Therefore, the EFA-coefficients are trans-
formed such that the starting point is aligned to one extreme of the semi-major axis (ex-
plained below). However, such normalization still renders two possible representations
of the outline depending on which of the extremes of the semi-major axis the starting
point is located at. The third source of degeneracy is that an outline can be drawn clock-
wise or counter-clockwise. Therefore, before decomposing the harmonics into its two
contributing circular orbits, first it is ensured that there is no source of degeneracy re-
maining.

The process starts by first adjusting the starting point of the first harmonic. The start-
ing point needs to be displaced by a certain temporal angle (1;) to coincide with t = 0 at
the extreme of one of the semi-axis of the first harmonic (Figure 2.9). This temporal angle
7y is determined from the point (x1,y1), determined by:

X1 =wa1cosT+ B1sinT (2.8)

Y1 = Y1€COST +d1sinT (2.9)
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Figure 2.9: Temporal and spatial transformations are performed to calculate the
precise contribution of each nth harmonic. The temporal angle (¢) moves the start-
ing point at + = 0 within the outline to one extreme of the semi-major axis at ' = 0.
The spatial angle (6) gives the inclination of the nth harmonic. The EFA equation can
be rewritten using the geometrical interpretation of the nth harmonics (semi-major and
semi-minor axis A; and A;) applying appropriate spatial and temporal transformations.
The starting point of the first harmonic is moved accordingly with a temporal angle ;.
In contrast to ¢, the temporal angle is fixed to the quadrants | and Il to avoid multiple
representations of the same outline (starting from one or the other extreme of the first
harmonic).

Kuhl & Giardina, 1982 calculated 71 by differentiating the magnitude of the first har-

)0.5

monic ellipse E :(x% +y2)%° and setting its derivative to zero, giving

2(a1B1 + 7161)
i (2.10)
a1 +97 — BT — 97

1
T = 5 arctan (

for —m < 71 < 7. An important remark is that in order to guarantee that this ex-
pression corresponds to an extreme of the semi-major axis (and not the semi-minor axis),
it is necessary to permit different representations depending on the quadrant of the an-
gle 7. The function arctan is limited to the interval [—71/2, 71/2] and cannot uniquely
define any possible angle. For this reason, it is necessary to implement the function four-
quadrant inverse tangent (atan2) used in a variety of computer languages (i.e, such that
atan2(1,1) = 7t/4 is different from atan2(-1,-1) = —37t/4). This ensures that the tem-
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poral angle 7 is located at the extreme of the semi-major axis, unambiguously.

However, there are still two ways to locate T = 0 (one at each of the extremes of the
semi-major axis of the first harmonic, at t = 0 and t = 7r) and therefore two distinct
representations of the same outline. To avoid this dual representation that leads to de-
generacy of the coefficients, the t'=0 is always located in the first or second quadrant (I,
II, Figure2.9). This is achieved by adding 7= whenever the starting point 7; is located in
the quadrants III and IV. To assess if the starting point is in those quadrants, the angle ¢
going from x-axis to T is calculated. This angle depends on the point x1,y; and can be
calculated as

0 = arctan (ﬁ) , (2.11)

X1

for —7r < ¢ < 7. The starting point 7y is in the III or IV quadrant when (73 +0) > 7
or0 > (74 + ¢) > —. In this case, the starting point angle becomes
T =mn+T, (2.12)

otherwise, 77 = 71 (When the starting point is already located in the quadrants I or II).

Thus, the new EFA coefficients corrected for the starting point become

[ ay B ] _ ltxn B ] [COS (ntf) —sin(nty) . (2.13)
Tn

o Yn  On sin (nty)  cos (nty)

S ot

Finally, the direction of rotation of the first harmonic is fixed to rotate counter-clockwise
(r1 > 0). Besides removing redundancy by restricting the freedom of the choice of the
overall rotation of the contour, this transformation likewise guarantees a unique corre-
spondence between the contribution of each subsequent harmonic and the morphological
features. When the direction of the first harmonic is clockwise (r; < 0), we thus invert the
direction of rotation of all the ellipses in order to maintain their inter-relationships. This
can be done by running “time” backwards,

x(=t) | _ | B cos (ZMT(%» _ | B cos (2AL) _ | W B cos (Zt)
y(=t) 7 o || sin (20 7m0 ] [ —sin () v =6 | [ sin(3) |
(2.14)

Note that, as the proposed method uses information of the semi-axis of each harmonic,
it is invariant to the orientation of the elliptic harmonic and offset of the contour. How-
ever, if desired, it is possible to rotate the contour to be parallel to the x-axis as described
in the appendix.

For simplicity of notation in the rest of the manuscript I refer to the [A,] matrix, which
elements have been normalized for starting point and direction of rotation of the first

harmonic as follows:
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ay B
oo |

The corrections for the starting point and direction of rotation of the first harmonic

= [Ad]. (2.15)

I
1
RN

S
QU
s =

discussed in this first step are aimed to eliminate multiple representations of the same
outline. After all possible sources of redundancy have been eliminated, the next step of
the LOCO-EFA method is aimed to decompose each elliptic harmonic into two circles

rotating in opposite directions.

(2) Decompose each nth elliptic harmonic into two circles rotating in opposite di-
rections

In order to explain how the contribution of nth harmonic to a given morphological
mode was achieved, it is useful to rewrite the EFA matrix (Eq. 2.6) substituting the nor-
malized coefficients (a,,b,,cn, dn) by the axes of the nth ellipse (A1, and Ay,). This corre-
sponds to the diagonalization of the [A,] matrix, explained below.

For this purpose, it is necessary to introduce spatial and temporal transformations

given by the operators [s] and [ip7], respectively. The temporal operator is defined as

cos¢ —sin

[¥r] = [ . ¢ ? ] , (2.16)
sing  cos¢

and correspondingly, the spatial operator is

cosf —sinf®

[ps] = | . : (2.17)
sinf cosf

where ¢ is the temporal angle and 6 corresponds to the spatial angle (Figure 2.9).

The temporal angle, ¢, (similarly to Eq.2.10), corresponds to:

2(@nbn + cuddn) ) . (2.18)

1
¢ :—arctan(
) az +c2 — b2 —d2

The spatial angle 8, (see Figure 2.9) can be calculated only after the temporal modifi-
cation as:

/

0, = arctan C—f’, (2.19)

n

! ! . . b
where ¢, and g,, are the coefficients after temporal transformation, see below.

Continuing with the diagonalization procedure, Eq.2.7 can also be rewritten as:

N
X(0) = o]+ X [vs.] |95, ] (A ly] [97] (M) (2.20)

where [¢s, | [QDEH and [y, ] [170;”1} correspond to the identity matrix. For simplicity, as
the term [A] represent just the offset of the initial contour, it will be omitted in the rest of
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the description.

Likewise, Eq. 2.20 can be rewritten as:

N

X(1)] = Y [9s,) [Aa] [97)] Ma(8)]; (221)

n=1
from where we can identify the diagonal matrix which its non-zero entries correspond

to the semi-axes of the nth ellipse as:

[An] = [4)5,,1} [An] [¥1,] = [ AS” A(zn ] ,. (2.22)

The temporal transformation (given by r,) displaces the starting point of each har-
monic at f = 0 (a,,b,,c,,d,) to coincide with the extreme of the semi-major axis of each
elliptic harmonic while the spatial transformation (l[)s_nl) yields the length of the semi-
major A1 and semi-minor axis Ay, (Eq. 2.22).

The diagonalization rewrites the EFA Eq.2.7 in a manner that the contribution of each
harmonic can be easily separated to correctly map to morphological features as shown
below. Eq.2.21 corresponds to:

x(t) | N | cos® —sind AMn O cos¢p sing Cos(z'””)
SR Y e | -

y(t) =1 | sin® cos@ —sin¢g cos¢ sin (47

The diagonal matrix containing the length of the semi-axes of each nth mode, can
be decomposed into two diagonal matrices that correspond to circular orbits of opposite
direction of rotation that, in turn, account for the contribution of n 4+ 1 and n — 1 morpho-

logical features :

[ x(t) ] N [ cos® —sin6 ] <[ Ay, O ] [ A, 0 ]) [ cos¢ sing ] [ cos (
_y | + . |

y(t) =1 | sin® cosf 0 Ay, 0 —A, —sing cos¢ sin (

(2.24)

where A and A_ are the radii of each circle (Figure2.11).
Summing up the diagonal matrices in Eq. 2.24, yields

x(t) | N | cos@ —sinf
[y(t) ] _,12:21 [ sinf cosf ]

Ap, +A_, 0 ] [ cos ¢ sin(l)] lcos (21T ]

0 Ay, — A, —sin¢g cos¢ sin (2427)
(2.25)
in which the major and minor axes of each elliptic harmonic are:
M, =Aq, +A, (2.26a)
Ay, =A4, — A, (2.26b)
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and hence, the radii of each opposite-rotating circle is given by

Ay, =(A1, +Ag,)/2 (2.27)
A, =(Ay, — Ag,)/2. (2.28)

To find the radii of each rotating circle A, (counter-clockwise) and A_, (clockwise), a new
set of coefficients (a4, b+,, ¢+, d+,anda_ ,b_ ,c_, ,d_,, respectively) is calculated. As
they are circles, the length of the radii are the same:

aj, =d;, = Aj,, forj =+, — (2.29)

and

b]'n = C]'n =0, (2.30)

where j = +, — accounts for the two rotating circles (counter-clockwise and clockwise,

respectively).

To find the contribution of each circle to a given shape, it is necessary to approximate
the original outline, x(t),y(t), using the circles A,,, and A,,_. For this purpose, it is required
to complete the transformations using the spatial (6,,) and temporal angle (¢,) calculated

before. Such transformations are clearly seen when Eq.2.24 is rewritten in matrix form

N
X1 = X (s} (A, + 2] 97 (M0 231)
and
N N
X(0) = X (9] (A [07]] Mu(0) + X s 18] |97 | Ma(6)), - @32)

where the first term on the right side refers to the contribution of the shape approximation
coming from n 4 1 “lobes” and the second term is the contribution of n — 1 “lobes”.

Then, the next steps in the LOCO-EFA method corresponds to the operations [¢s, | [A+, ] [w”fn 1}
and [ys, | [A—,] [tpfnl] , that for clarity are done in two steps.
First, rotate 6, to get back the original spatial angle,

[af” b]/'n ] _ [COSQn —sin 6, ] [ aj, bjn ] forj =+, —. (2.33)

¢, djn sinf, cos@, Ci, d]-n

Secondly, to complete the rotational operations, rotate by ¢, original temporal angle,
that is:
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a// b// a/ b/ (P . 4)
; ; ; ; cos sin ,
meml=1 M o " lforj=+, —. (2.34)
¢, d in ¢, d i —sin¢g, cos¢y
Thus, a new set of coefficients (a;;,b;;,c;;,d;;) that account for two circles rotating in op-

posite directions are obtained (these coefficients can be used to approximate the original
contour, as shown below).

(3) Find the L, contribution as the distance of the starting point of then —1and n +1
rotating circles

Finally, we can obtain the nth morphological contribution of each mode, L,, which orig-
inate from the two circles rotating in opposite directions, one from the nth + 1 mode
(A4,.,) and the other from the nth — 1 mode (A, ,)(see Figure2.11).

Obviously, there are three exceptions to this: 1) L;, whose contribution comes solely
from A, 2) the last Ly, that comes solely from A_,; | and 3) Ly that comes from A_,,
where N accounts for the total number of harmonics considered.

The exact contribution of each circle to L,-th morphological features is related to the
starting position of both circles, which is calculated as,

c;

¢;, = arctan < {,’”“) forj =+, (2.35)
jrn+1

and

’

¢;, = arctan | 5" | forj = —, (2.36)
a.
Jm-1

The contribution of the two counter-rotating circles to the reconstruction of the outline
will depend on their starting points. Figure 2.10 illustrates the effect of the starting point
of rotation of the pair of circles in polar coordinates. For example, if the starting point
of each circle is 180° opposite they strengthen each other (Figure2.10A). Conversely, if
they start rotating at the same place, as their rotation is opposite, they cancel each other
(Figure 2.10B).

Therefore, L, is given by the distance of A, , and A_ | starting points of rotation,
illustrated in Figure 2.11 (yellow line).

The expression of this relation is given from the Law of Cosines:

Ly= M, + A2 +20 (A, cos(pe, —¢-,). (2.37)
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Figure 2.10: Effect of the rotation-starting point of each pair of circles for shape
reconstruction. Polar coordinates are shown (in the x-axis is the arc-length and in the
y-axis is the radius) for a pair of circles rotating in opposite directions. A) If the starting
point of rotation of each circle is 180 degree opposite, they enhance each other. B)
Conversely, if they start rotating at the same place they cancel each other.

In summary, the LOCO-EFA method consists in: 1) eliminating any source of de-
generacy in the EFA-coefficients, 2) decomposing each elliptic harmonic into two circles
rotating in opposite directions (A1, and A_,), and therefore contributing to n 4+ 1 and
n — 1 number of lobes (i.e. morphological features), and 3) calculating the offset between
starting points of these two circles derived from each ellipse to estimate the L,th lobe-
contribution. To eliminate the effect of cell area (for example, to compare populations of
cells), it is desirable to normalize by the cell size by dividing each L, value by the square
root of the real cell area. In addition, it is possible to quantify not only the number of
protrusions of a shape, and how significant they are for the shape, but also qualitative
aspects, such as how “roundy” or “pointy” a protrusion is using the LOCO-EFA circles
(see description in appendix).

Importantly, while the LOCO-EFA method continues to approximate the original shape
by its coefficients, unlike the traditional EFA, it can also precisely indicate the correct
shape contribution of each harmonic. This is exemplified in Figure 2.12, where an hexagon
is approximated using both EFA and LOCO-EFA. Note that whereas EFA recovers an spu-

rious shape using the first 5 modes and it is only when the 7th harmonic is added that
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Figure 2.11: Each EFA-harmonic is decomposed into two circles to obtain the
contribution of the L, mode. (A) Each elliptic harmonic is decomposed into two circles
rotating in opposite directions. (B) Each L, is composed from the contribution of a n + 1
circle rotating counter-clockwise and n — 1 circle rotating clockwise. (C) The combined
contribution of the two rotating circles with diameter A, and A_ to L, (yellow line),
is given by the offset of their starting points (green dots).

it reconstructs the original hexagonal shape (Figure 2.12A), LOCO-EFA retrieve the cor-
rect shape at the 6th term (Figure2.12B). The correct approximation of a shape outline
achieved by the LOCO-EFA is calculated as:

[x(w: (@py) @) | [ eos(27)
y(t) (CI+2) (@) Sir‘(znTm)

" " n " o . . . . . . .
where a_ ,b. ,c; djn are the coefficients specifying j = +, — opposite-rotating circles

In” " In”" In’

after appropriate temporal and spatial transformations that I will refer as LOCO-EFA

coefficients or L,-mode for short.

Importantly, the LOCO-EFA method permits to distinguish the contribution of each
harmonic to n + 1 and n — 1 shape features (i.e. lobes) correctly. This provides a complete
description of both the number of lobes and the degree of “waviness” (or amplitude)
that can be used to fully characterize and quantify the intrinsic cell shape properties, ir-
respective of cell area, spacing between sampling points, different rotations of the cell
(Figure 2.13A,B) or direction of the EFA approximation. However, it is important to con-
sider that changes in the resolution of the image could lead to differences in the LOCO-
EFA metrics (Figure 2.13C,D).

2.4 Quantitative characterization of cell shape using LOCO-
EFA

In this section, I illustrate the characterization of the shape using L, coefficients and intro-
duce additional metrics derived from the LOCO-EFA method to help quantify different
aspects of “cell shape complexity” (a notion that I will define more precisely below). First,
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A
Reconstruction using EFA Original
1 2 3 4 5 6 7
B
Reconstruction using LOCO-EFA Original
1 2 3 4 5 6 7

Figure 2.12: Comparison of approximation of closed contour using EFA and
LOCO-EFA. Although both approximations converge to the original hexagonal shape,
the reconstruction using EFA harmonics (A) recovers an spurious shape after adding
the 5th harmonic and it is only when the 7th harmonic is summed that the original shape
is recovered, whereas the reconstruction using LOCO-EFA modes (B) recalls the orig-
inal shape precisely at the 6th mode, matching with the number of protusions (lobes).
The number of modes used in the reconstruction are indicated by the number below
each shape (both reconstructions were truncated at N = 15 modes, data not shown).

I apply the method to well characterized geometrical shapes. This illustrate how the co-
efficients relate to the shape. Next, I generate geometrical shapes of differing degrees of
asymmetry, to gain an intuition on how the LOCO-EFA coefficients (L,;) match those less
well-defined shapes. Finally, I apply the LOCO-EFA method and its measures to confocal
image outlines of real biological cells, which present much less symmetric and stereotyp-
ical geometrical shapes.

2.4.1 Interpreting geometrical shapes with L,

The L, coefficients provide information about the composition of each morphological
periodicity contributing to the shape: for example, an hexagon will have the highest am-
plitude of L, exactly at n = 6, i.e. Lg. Thus, L, profiles reflect the geometrical nature of
the shape being considered (Figure 2.14A-]).

Moreover, the L, numbers provide information regarding the “degree of waviness”
(or amplitude). Cells of similar shapes (in terms of number of lobes) but presenting differ-
ent amplitudes in the extent of their protrusions, will also present different values in the
main mode L, corresponding to that nth-morphological periodicity. Figure2.15 shows
how different 6-sided shapes (A-F) present different Lg values (G), in accordance with the
amplitude of its protrusions. Note that if the shapes are not symmetrical (Figure 2.15E-

F), new peaks in the L, profile appear. Real cells (such as pavement cells of Arabidopsis
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Figure 2.13: LOCO-EFA is invariant to different rotations of the image, but it is
sensitive to the image resolution. A) An image of a real cell was rotated in different
manners and the LOCO-EFA method was applied to each image separately. B) The L,
numbers and other derived metrics (see main text) showed invariance regarding these
rotations. C) The resolution of the original image was modified, such that the number
of points decreased from 1104 to 253,108 and 27 (from left to right, respectively). D)
The L,, numbers and the associate metrics can vary depending on the resolution. Note,
however, that the coefficients differ more as the original shape gets more distorted (in
accordance with the “new” shape).

thaliana, Figure 2.15F) more closely resemble this situation: their L, landscape is typi-
cally characterized by multiple peaks (Figure2.15G). This is because non-symmetrical
cells with a given number of protrusions placed non-periodically can also be interpreted
as different protrusion frequencies superimposed (i.e. one might count nine total biologi-
cal lobes on a cell, which should correspond to a peak at Lo , if the lobes are distributed in
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Figure 2.14: Interpreting LOCO-EFA derived measures for geometrical shapes.
(A-1) Geometrical shapes with symmetrical and well defined shapes. Lower panel: the
L,, XOR, and Marginal difference profiles (J, K and L respectively) are shown. For each
geometric shape, a clear peak appears in the Lobe-number (L, ) and marginal difference
profile (J and L) corresponding to the main contributor to the shape, which in the LOCO-
EFA, coincides with the number of protrusions (sides or lobes). The rightmost panel (M)
shows the cumulative difference (cd) and entropy of the circle and other shapes.

pentagonal clustered fashion, this would lead to an additional peak at L5, whilst super-

imposed on a triangular shaped basis of a cell, leading to a L3 contribution, and so forth).

From the L, profiles, a series of other informative measurements regarding shape can
be derived (Figure 2.16) and are described next.

Complementary to the magnitude of each individual L, number, the cell shape com-
plexity can be estimated using the information of the approximation to the original shape
using N LOCO-EFA modes. This can be done by addressing the question: how relevant is
each higher order L,-mode for explaining the shape? This can be answered by calculating
the difference of the original shape with the reconstruction after N LOCO-EFA harmon-
ics (XOR original and reconstructed, see Figure2.16). Importantly, this measure is just
meaningful when the reconstruction is performed using the L,-modes, and not with the
EFA alone (see discrepancy in the reconstruction in Figure 2.12). In this context, the more
“complex” shape is the one in which higher order LOCO-EFA modes are needed to ob-
tain a good match between the reconstitution and the real shape (i.e. XOR = 0). Using
this criteria, a circular cell, perfectly reconstituted with only the contribution of n = 1
becomes the least complex shape (Figure 2.14A). While those presenting higher number
of heterogeneous lobes, yield increasingly higher numbers for the XOR = 0 measure

(Figure 2.14B-1, K and Figure 2.15A-F, H).

Moreover, the area under the curve of the XOR in function of L,-mode number, also
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Figure 2.15: Interpreting LOCO-EFA derived measures for similar shapes of dif-
ferent protrusion amplitudes and asymmetrical shapes. Symmetrical shapes of
increasing protrusion amplitude (A-D) also present an increasing L,-amplitude value
(here at Lg, G), XOR value (H) and marginal difference value (l) in the dominant mode.
Non-symmetrical shapes (E,F) will have more than one peak in the L, landscape and
Marginal Difference profile and more modes will be needed to recapitulate the original
shape, i.e XOR profiles are altered (G,H and ). Moreover, shapes presenting higher pro-
trusion amplitudes and asymmetries will also present increased values in the cumulative
difference (cd) and entropy measures (J).

called cumulative difference (cd), will be larger for more complex cells. Hence, the closer
to a circle a shape is (described with the first mode), the lower the value of cumulative
difference (Figure 2.14A, M and Figure 2.15A, J). Conversely, as the morphological protru-
sions increase in number (Figure 2.14B-I, M) or become higher in amplitude (Figure 2.15A-
E J), the cumulative difference also increases because higher order modes are required to
approximate the shape.

Note that the XOR profile typically does not change smoothly, but there are some
modes that contribute more in capturing the main features of the shape. Thus, the rate of

change of XOR in relation to the addition of a new mode, d(fi(f:’ R) , coined marginal dif-

ference, gives information about the dominant modes (Figure 2.14L and Figure 2.15I). As
mentioned before, cell shapes may consist of a combination of different modes (Figure 2.15E-
F). This is directly reflected in the multiple peaks within the L, landscape, and clearly seen
in the marginal difference profiles (Figure 2.15I). The marginal difference helps identify
which modes are the most relevant for the shape.

However, one can argue that the complexity of the shape should not be regarded as
only proportional to the number of protrusions. For example, for two cells each present-
ing 5 lobes, the one which is most symmetric and star-shaped, would seem less complex,
than a distorted cell with different amplitudes and distributions of its 5 lobes. Thus, we

could define cell shape complexity as the tendency of a cell to deviate from geometric
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Figure 2.16: Other measures extracted from the LOCO-EFA coefficients can pro-
vide additional information about the complexity of the cell shape. A) Original cell
contour to be analysed and B) LOCO-EFA reconstruction after the sum of nth L—modes
(indicated by the number below each shape). C) By subtracting the area overlap of the
original cell (A) and reconstructed shape after N number of L-modes (B, indicated by
the number below), a measure of the mismatch between the truncated approximation of
nth order to the actual shape (XOR) is obtained. For this measure, the more “complex”
the shape, the more number of L-modes will be required to obtain the same XOR.

well-defined polygons. A useful measure for this second definition of “cell shape com-
plexity”, now uses information about the distribution of L, landscape calculating the

entropy of the L, spectrum, defined as:

N
E=)_ falnfy, (2.39)
n=1

where f, refers to the relative proportion of each L, for a given N number of modes
analysed. In most cases, the entropy yields very similar results as the cumulative differ-
ence. However, they tend to diverge for those cases, in which there is a strong contribu-
tion of the lower harmonics, for which entropy values give more meaningful results. The
reason for this is that lower modes (i.e high contribution for L, as when a cell is very
elongated) will have a high value of cumulative difference (integral or area under the
curve of the XOR original and reconstructed profile) that can be very similar to another

cell where the XOR profile (and its integral) is more distributed among modes.

2.4.2 L, in real Pavement Cells

To validate the method on actual biological samples, and to further increase the under-
standing of the above introduced measures, I next analysed populations of real pavement
cells by applying the LOCO-EFA method. To visualize the shape characteristics of a pop-
ulation of only pavement cells, I applied the analysis to an image of a mutant that does

not generate other cell types of very divergent shapes, such as meristemoids or stomata
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Figure 2.17: LOCO-EFA on pavement cells of Arabidopsis thaliana reveals that
very few cell shapes can be well captured through a single L, mode. L, values
are differentially contributing to the cell shapes within a piece of tissue of a speechless
mutant (A) and a wild type (B) leaves. It is noteworthy that only few cells have a very
high component in a particular mode, the majority are composed by a combination of
different modes indicating the complexity (non-symmetry of the shapes).

(speechless mutant, MacAlister et al., 2007, Figure 2.17A) as well as an image of wild type
population of epidermal cells consisting of both pavement cells together with stomata
and other cells from the stomatal lineage (Figure 2.1, Figure 2.17B).

Using LOCO-EFA, it is quickly possible to dissect the precise contribution of each
mode for each cell in the population. Figure 2.17A-B shows color-coded populations ac-
cording with a specific L, mode. Interestingly, very few shapes show a high component
for a single L, but the majority of the shapes are composed of high contributions stem-
ming from different modes. In other words, very few cells can be characterized as a sym-
metrical shape. This indicates that for these biological cells, simply counting the number
of lobes manually would lead to very incomplete information regarding the shape (it
would be difficult to compare mutants for example, and the final result will be depen-
dent on the human criterion of what is a lobe, as discussed before). Moreover, the data
shows that when the contribution of a given mode is significant to the shape, there is not
a preferential L, where this occurs (Figure 2.17). Other LOCO-EFA shape measurements
(Figure 2.18) also supports this observation.

Clearly, the heterogeneity of modes that composes real populations of pavement cells
cannot be explained solely by the proposed molecular mechanisms underlying lobe and

indentation. The existence of two counteracting pathways (one for lobe and other for
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Figure 2.18: LOCO-EFA quantifiers in real populations of pavement cells. (A)
Pavement cells from wild type populations (Columbia ecotype) were identified as cells
with area bigger than 400um? and (B) pavement cells from speechless. Pavement
cell shapes are very heterogeneous and the mean LOCO-EFA measurements appears
without a predominant mode. For cumulative difference and entropy 50 L,-harmonics
were taken into consideration. Each population comes from different leaves from a
comparable developmental stage and region within the leaf. Error bars correspond
to 1+/- standard error, N=18,40 for wild type populations and speechless populations
N=42,93,69,74.

indentation, see details in Xu et al., 2010), in the more coarse of the cases, will give raise
to a very symmetrical shapes (assuming that the cell shape results from the upstream
distribution of initial alternate ROPs peaks) through Turing-like instabilities (Grieneisen
et al., 2013a). To gain insights in how this asymmetry could appear within a tissue, and
to further validate the LOCO-EFA method on population of cells, I performed cell-based

simulations of interacting cells using in silico cell shapes.

2.5 Applying the LOCO-EFA to in silico populations and
the effect of cell interactions on single cell shapes

The in silico cells were created using the Cellular Potts model, an energy-based framework
that enables the represention of cells and their dynamics through membrane extensions
(see Methods section). While in its basic form, CPM cell shapes emerge due to surface
tension (that can change according to their contacts) as well as internal pressure, here
I use an extension of the CPM that allows more complex shapes to be generated. This
extension consists in attributing to each cell a specified parametrized shape, in which
differential effective surface tension along the cell changes its equilibrium shape (scripts
to generate complex shapes were provided by Jop van Rooij and they are described in

van Rooij et al., 2013b). Specified individual cells were allowed to interact with each
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single cell shapes 2.5

other within a tissue-context, in a similar manner as in real tissues. In this way, I could
analyse separately the shape of a single cell and the effect of cell-cell interactions within
the population on the shape distributions using the LOCO-EFA.

Three distinct specified shapes (Figure 2.19A, see Table 1.2 for the specific parameters
used), each consisting of 6-lobes and its population within the constrained tissue-context
were evaluated (Figure2.19B,C). It is noteworthy that although the cell shape specified
is the same for each member within the population, cells acquire different shapes due
to their interactions (Figure 2.19C). This divergence can be fully quantified using LOCO-
EFA. For example, as a manner to assess the influence of neighbours in the final cell
shapes within a population, one can retrieve and compare the contribution of a given L,
for the single specified cells and the resultant shapes on the cells within the population
(Figure 2.19- Figure 2.21).

This divergence between a single specified cell and the resultant of the population
when they interact is shown in Figure 2.19-Figure 2.20. To summarize this effect, the dif-
ference of the LOCO-EFA descriptors between the mean of the three populations of the
same specified shape and the isolated in silico pavement cell can be calculated and it is
shown in Figure 2.19D-G. To interpret the graphs note that, if the resultant single cell and
the resultant mean population shapes were the same (or very similar) the difference will
be very close to zero (and it would be straight line in these plots); conversely, any diver-
gence of the single cell shape to the population mean shape will be shown as a positive
(if the L, mode and the other metrics are larger in the population than in the single cell)
or negative values (when the single cell quantifiers are larger than the mean of the popu-

lation).

Due to cell-cell interactions new peaks arise, as can be seen by the positive values of
the amplitude differences (Figure 2.19D). Within the population, cells also become more
complex, as is reflected by the increase of the average cumulative difference and entropy
of the population (Figure 2.19F-G, last panel). Interestingly, the predominant specified
peak (n = 6 in this example) decreases in amplitude as other modes acquire more im-
portance for the shape. Thus, while an individual isolated cell would be able to generate
protrusions of a certain amplitudes, in the packed environment of a tissue, the period-
ical lobe formation is inhibited, and other symmetries and shape distortions appear as
a consequence of tissue packing. This tendency was observed over all simulations per-
formed irrespective of the initial specified shape, number of lobes and over a wide-range
of parameter values defining cell-cell interactions (Appendix 2.C Figure 2.23- Figure 2.25
include the data for specified shapes and its populations with different number of pro-

trusions).

Given that in real epidermal tissues of leaves several cell types coexist, I also evaluate
if the difference between the specified shape and its population could be further influ-
enced by the introduction of another cell type, smaller and round (for example, stomata;

Figure 2.22A-G). Qualitatively, the results present similar behaviour: the main specified
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Figure 2.19: Cell shape modifications due to tissue interactions. A) Three in sil-
ico cells generated within the Cellular Potts Formalism, of different specified shapes
(specified shape or ssp 1,2 and 3, respectively) and B) their corresponding in silico
populations are shown. C) Note that the specified shape of each cell within a given
population is the same, but the resultant cell shapes may be dramatically different due
to cell-cell interactions and constraints within a tessellating tissue. D-G) To estimate the
divergence between the single specified cells and their populations, the difference of the
mean LOCO-EFA measurements between the individuals and population are shown. If
the single cell and the mean of the population were the same, the difference will be zero.
It is noteworthy that new peaks in addition of the specified (L6) appear and the specified
peak decreases as shown by the negative values of the difference at the L6 (D,F). The
difference of the average was calculated using 3 populations of same specified shape
(different runs of the same model).The error bars show the standard error. The popula-
tions size for ssp1 were N=67,63,67; spp2, N=48,44,45 and spp3, N=47,46,47. See an
example of a simulation in Movie 2.5.
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Figure 2.20: Cell shape analysis on cell-cell interactions in in silico tissues using
LOCO-EFA. (A-C) One cell and 3 different populations for three different combinations
of parameters (specified shapes or ssp) are shown. In the three cases, different peaks to
the specified can appear in the L,, and Marginal difference profiles, and the contribution
of different modes than the specified acquires more importance in the final cell shape
approximation. In the same way, the cumulative difference decreases whereas the en-
tropy tends to increase in the populations. Importantly, the variation of a multiple runs of
the model for single cells (red) is generally smaller than the variation in the population
and often it does not overlap. Error bars represent +/- 1 standard deviation. Specified
shape 1, N=67,63,67 ; Specified shape 2, N=48,44,45; Specified shape 3, populations of
N=47,46,47. Single cells of 5 different simulations were used for each specified shape.

peak tends to decrease and new peaks form as a result of interactions within a population.
Similar results were found when the round cell was allowed to vary in size (Figure 2.22H-
N).

2.6 Discussion and concluding remarks

Quantitative analysis of pavement cells morphogenesis and how it relates with other cel-
lular processes is important to gain understanding of the cellular basis of leaf develop-
ment. Besides, a quantitative description of cell geometry also allows to compare and
contrast the influence of mutations that affect the cell shape (and the cell polarity). De-

spite their importance, available methods to quantify pavement cell shape can be mis-
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Figure 2.21: LOCO-EFA analysis of in silico Pavement cells reveal the degree of
divergence that interacting cells within a tissue experience from their specified
shape. (A-C) Different L,,-modes (n=4-7) and their L-contributions (colour-coded) are
shown for the three different specified shape populations. Single cells interacting within
the tissue can present deviations of the contribution of a given L,, from the situation of
them being isolated cells (shown at the top of each panel), as is shown by the diver-
gences in their colour.

leading, very sensitive to specific parameters or depend on arbitrary criteria of what is a
lobe and indentation. These shortcomings limit the scope of any conclusion based on cell

shape and make cell shape phenotyping a very time-consuming activity.

A useful method to quantify cell shape must fulfil the following characteristics: 1) it
should not discard meaningful shape features at the same time that 2) it simplifies the
complexity of the cell shape, 3) it is biologically interpretable and 4) it provides a quan-
tifiable manner to distinguish and compare shape traits among populations. I presented
here a new method that collects these characteristics and overcomes the problems stated

before. It takes the information of the whole contour of the cell and provides a measure
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that directly relates to morphological features (L,) and the amplitude of them. It is not
sensitive to cell orientation or cell size, providing a robust and meaningful way to extract
quantitative information of cell shapes. Importantly, L, and XOR profiles are unique for
a particular geometry, providing not just with a quantitative assessment of cell shape but
also with an identifier that can be seen as the “fingerprint” of a cell. This attribute is used
as a pattern recognition tool for tracking cells in a temporal sequence of images (discussed
in the next chapter).

To illustrate the interpretation of the different measurements obtained with LOCO-
EFA, simple shapes (geometrical or symmetrical forms) were analysed. To assess the
performance of the proposed method in realistic cell shapes, I extended the method to
analyse populations of real pavement cells. It is noteworthy that very few cells have a
symmetrical shape and, when the contribution of the shape is high in a particular mode,
there is not a preferential L,. Importantly, the composition of L, in real cells cannot be
explained just by the existence of two counteracting pathways specifying lobe and inden-
tation identities (Xu et al., 2010, Grieneisen et al., 2013a), that in the more coarse of the
cases will give rise to a very symmetrical cell form (assuming that they counteract each
other with the same strength to generate an alternate patterning of ROPs, upstream the
cytoskeleton activity that underlies the final cell shape).

To further test the LOCO-EFA method as a statistical tool and gain insights in pos-
sible mechanisms of the heterogeneity on the L, profiles of real pavement cells, I used
synthetically generated data, in which the output can be varied systematically because
the specified, parametrized individual cell shape is controlled. I measure by the LOCO-
EFA how cells diverge from their specified shape when they are allowed to interact with
their neighbours. As a result of their interactions, the main specified mode decreases and
new modes become important, altogether leading to asymmetrical resultant shapes even
when a very symmetrical individual cell shape was initially specified. Interestingly, the
divergence between specified and resultant shapes in populations was not dependent on
the introduction of another cell type (circular, stomata-like) or when this cell type was
allowed to vary in area.

Although synthetic data is just a phenomenological reconstruction of the real shapes,
the results presented here suggest that the local influence of neighbours during pavement
cell development is important for the acquisition of their final shape. Sectors of wild type
and mutants cells defective in cell shape will be crucial for assessing this hypothesis.
Further analysis of the the angle of divergence (spatial angle) can be extended in in silico
tissues and compared with a time-lapse data of real pavement cells to study other aspects

of tissue packing.

In short, I presented a new method to extract relevant quantitative cell shape infor-
mation that was validated using in silico tissues. The LOCO-EFA can be applied to other
cell types or organs in different species, as it is a reproducible and quantitative method

to phenotype efficiently and objectively large 2D data sets. I also showed that syntheti-
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cally generated shapes in addition to provide “grounds truths” to evaluate the proposed
method, can be used to gain insights into real populations of pavement cells.

2.7 Materials and Methods

1. Confocal Images and Image Processing

Columbia wild type or speechless mutant leaves expressing pmCherry-aquaporin (Nelson
et al., 2007) were imaged using a confocal microscope Leica SP5 at comparable stages and
at comparable regions. Further image processing was done using Fiji and images were

segmented using the Segmentation Potts Model (see Chapter3 and van Rooij et al., 2013a).

2. Shape descriptors

Average lobe length and neck width were calculated using Image J (Analyse->Measure).
The skeleton was calculated using a MATLAB file exchange files (Better Skeletonization
by Nicholas Howe).

3. Geometrical shapes.

Geometrical shapes were generated using the superformula (described in Gielis, 2003)

and the images were analysed as mentioned before for confocal images.

4. XOR and other measurements

The total number of pixels belonging to each real or synthetic pavement cell was com-
pared successively with the total number of pixels of the reconstruction after N number
of L,-modes. The scripts to calculate the XOR and colour-code the real and synthetic cells
were written in C, using the Excalib2d library of Stan Marée. The cumulative difference
and entropy as well as the appoximation to shapes were calculated using 50 L,, modes.

5. Cellular Potts Model shape generator

The Cellular Potts Model is an energy-based formalism that represents cells within a lat-
tice. Here, it is used to generate single cells with a specific shape that are allowed to
interact. In short, at each step of the simulation a random sampling of the lattice (pixels

in this case) is evaluated to change its state. To evaluate if such change of state (also called
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“copying”) will occur, the Hamiltonian is calculated. It is defined by summing the energy

contribution of each pixel over the entire field and over cells:

H=) Jem+ Y} vala—AP+7) (p—P)> (2.40)
1] c Cc

Jcum refers to the coupling energy per boundary site (per ij pixels), a and p are the
actual cell area and cell perimeter of each cell (c), respectively. Similarly, A and P are the
target cell area and target cell perimeter. The parameters -y, and <y, describe resistance to
deviate from the target area or perimeter, respectively. The total change in the Hamilto-
nian due to a “copying” event before and after AH = H,fter — Hpefore is calculated, and

the event is accepted with probability

(2.41)

_AH+Y

o 1 if AH < —Y,
) ) i AH > -,

where Y corresponds to the yield or the ability of the membrane to resist a force and
T introduce stochastic fluctuations. Copying events that decrease H by at least Y will be
always accepted, other changes will be accepted with Boltzmann probability (Eq.2.41).

To generate cells with a particular number of protrusions, we modify the increase in
the Hamiltonian (van Rooijj et al., 2013b) as a short-cut of the intracellular polarity of the
cell. Simulated cells have a specified number of lobes, amplitude of lobes, overall elonga-
tion and roundness. Importantly, these characteristics are not fixed but are dynamically
updated and they are allowed to vary to “accommodate” a favourable position.

This was implemented by modifying the increase of the Hamiltonian (for a copy

event) as follows:

AH' = ANH — veos(nd) — xcos(2a) — u(V A/ —v) (2.42)

where v is the “propensity” to extend (amplitude or pointiness) and 6 is the angle be-
tween the target direction of growth and the vector determined by the coordinates of the
position that is evaluated and the mean position of the cell (hereafter called copy vector).
To create cells with a given number of lobes the angle § = arctan(y, x) is expanded as
many times as number of lobes. Afterwards, the mean angle corresponds to 6 = 360/,
where 1 is the number of lobes specified. To update the number of points or lobes, the
preferred direction of extension is where they were most extended in.

Elongation is implemented in a similar way (third term in Eq.2.42). x corresponds

to the strength of elongation and « is the angle between the elongation vector and copy
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SSP1  SSP2  SSP3  Round Cell
Target Area 868 1167 1197 600*

Pointiness 6912 5328 5207 0
Number of lobes 2-10 2-10 2-10 2

Roundness 382 518 434 4000

Elongation 4 28 5927 0

Table 2.2: Three combinations of different specified shapes of single and population
cells.*200-600 when it was allowed to vary in size. The population density of the circular
cell was always 20%.

vector (as calculated by the cross product). Others alternatives for elongation such as
X (—|sina|) and x|cosa| showed similar results.

The strength of the roundness was implemented by u (fourth term in Eq. 2.42), and can
be interpreted as the resistance for a cell to deviate from a circle (v, refers to the length of
the copy vector). For a detail explanation see van Rooijj et al., 2013b .

Cell position within the field was randomly chosen. The elongation and position of the
lobes were updated every 100 time steps from a total of 10000 time steps. The parameters

used for each specified shape (ssp) are shown in Table 1.2.
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2.A  Appendix: Movies

Movie 2.1: Approximation of a closed contour by Elliptic Fourier Analysis.

A given 2-dimensional shape can be approximated using EFA by summing n-ellipses as
follows: each nth elliptic harmonic traces n clockwise or counter-clockwise revolutions
while rotating around the previous harmonic ellipse.

Movie 2.2: Direction of rotation opposite to the first harmonic ellipse.
A given mode n will generate an n + 1 shape if its direction of rotation is opposite to the
rotation of the first harmonic (for some special cases).

Movie 2.3: Direction of rotation same as the first elliptic harmonic.
Conversely, a given mode n will generate an n — 1 shape if its direction of rotation is in
the same direction than the rotation of the first harmonic (for some special cases).

Movie 2.4: Exception of the rule of direction of rotation.
If the eccentricity of an elliptical mode is very high (i.e an ellipse is very flat), it is not
possible to predict the number of lobes according to the direction of rotation as before.

Movie 2.5: Example of an in silico simulation for a population of specified shapes.
CPM pavement-like cells for a given specified shape when they are allowed to interact
with neighbours within a simulation.
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2.B Appendix: Other LOCO-EFA features

Adjustment the semi-major axis to be parallel to the x-plane

If desired to approximate the shape contour with its long axis parallel to, for example,
the x-axis (i.e if the orientation respect to an organ landmark coinciding with the x-axis
is important such as the midvein or, if it is important to have a similar cell orientation),
another matrix transformation involving its spatial angle can be applied. The spatial
angle p; , is found after adjusting the starting point at ¢’ = 0.

1 (0
©£1 = arctan ,1( )

X1 (0)

<

*
= arctan 7—1 (2.43)
!
1

for 0 < p; < 2m.
In this case, the first harmonic is rotated such that its semi-major axis is parallel to the

x-axis by setting the spatial angle p; = 0

[zx;* ﬁﬁ*] :[ cos (p1) sin<m>] [“’2 ] (2.44)

Yo —sin (p1) cos (p01) T On

Note that at difference of the EFA (Kuhl & Giardina, 1982) where the spatial angle
transformation is always needed as a normalization step, for the calculation of the contri-
bution of each harmonic L;, this transformation is not mandatory. However, the spatial
angle p; can be informative for determined the preferred elongation of a cell in a tissue
taking as a reference a particular landmark (for instance, the midvein in the leaf as illus-
trated in Chapter 6, Figure 6.4).

Other features of LOCO-EFA

1) Pointiness and Roundiness

Notably, A, will generate protrusions with roundy shape, whereas A;,_ will generate
pointy lobes.
The amount of ‘roundiness” or “pointiness’ of each shape is given by the proportion:

Wy = (/\+n+1)/ (A+n+1+ A,) (SD)

and,
w—:(/\—nfl)/()\+n+1+ A—n71) (82)1

respectively.

54



Appendix: Supplementary Figures 2.C

2.C Appendix: Supplementary Figures
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A B C

Specified shape 3 * + .

> - Marginal difference
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Figure 2.22: Cell-cell interactions diverge the specified shape of single pavement-
like cells and do not depend on interactions with a second cell type. in silico individ-
ual pavement cells together with a sub-population of circular cell type stomata-like when
fixed(A-C) and when it is allowed to vary in size (H-J) for three combinations (ssp) and
an example of their populations. (D-G, K-N) Difference of the LOCO-EFA descriptors
between the isolated in silico cell pavement cell and the mean of the population (ex-
cluding the circular cells) summarizes the effect of interactions of two cell types and the
shape divergence between the specified and resultant geometries. In a similar way to
showed in Figure 2.19, different peaks to the specified main protrusion can appear in the
L,(D,K) and Marginal difference profiles (F,M), and the contribution of different modes
acquire more importance. Finally, the cumulative difference decreases whereas the en-
tropy tends to increase in the populations (G,N). The specified density of the second type
was 20% in all the cases. The error bars show the standard error. Pavement cell pop-
ulations were: ssp1 N=56/74,58/71,59/72; ssp2 N=41/54,41/50,45/53 ; ssp3 N=37/50,
44/54, 43/52. When the second cell type (“stomata”) was allowed to vary in size the
Pavement cells taken from spp1: N=56/74, 57/74, 64/77; ssp2 N=41/52, 46/57, 46/54
and ssp3, N=40/54,43/55,45/55.
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Figure 2.23: The divergence between single specified cell and their populations
do not depend on the specific humber of lobes specified (Lobe 2-4). Single and
examples of their population for three specified shapes (spp) together with the LOCO-
EFA quantifiers are shown for lobe number 2-4.
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Figure 2.24: The divergence between single specified cell and their populations
do not depend on the specific number of lobes specified (Lobe 5-7). Single and
examples of their population for three specified shapes (spp) together with the LOCO-
EFA quantifiers are shown for lobe number 5-7.
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Figure 2.25: The divergence between single specified cell and their populations
do not depend on the specific number of lobes specified (Lobe 8-10). Single and
examples of their population for three specified shapes (spp) together with the LOCO-
EFA quantifiers are shown for lobe number 8-10.
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Chapter 3

Long time lapse and image analysis on in
vivo leaf development at the cellular

scale

Abstract

Monitoring the changes in the tissue at the cell scale as growth progresses through live
imaging provides us with an unprecedented resource to gain insights into the dynamic
nature of development. In vivo imaging, however, needs to be combined with appropri-
ate computational tools that enable extraction of meaningful quantitative data from the
images. To capture cell growth, cell shape and cell divisions in relevant spatial and tem-
poral scales during leaf development required development of new tools and protocols
in both confocal imaging and imaging processing. In this chapter, I describe the pipeline
that allowed the analysis of long time-lapse images at the cellular scale, highlighting the

powerful combination of live imaging and computational image analysis techniques.
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3 Long time lapse and image analysis on in vivo leaf development at cellular scale

3.1 Introduction

Plant morphogenesis is a dynamic process during which cells divide, grow, and acquire
a specific shape. Although static images of plant development have been very valuable
as a first approximation to untangle the spatio-temporal dynamics of these processes, the
dynamic information that is possible to extract from a static analysis is limited (Reddy
et al., 2007; Cunha et al., 2012; Sappl & Heisler, 2013).

In contrast, recent developments of mesoscopic live-imaging at tissue and organ level
allow direct observation of division and expansion at cellular resolution over time. This
represents an invaluable resource to capture dynamic and quantitative data at single
cell level, offering insights that cannot be achieved with any static analysis (Megason
& Fraser, 2007; Cunha et al., 2012; Sappl & Heisler, 2013).

In plants, recent examples of time-lapse imaging combined with computational al-
gorithms have proved to be essential to gain insights into the dynamic nature of plant
development (Roeder et al., 2012a; Robinson et al., 2011; Kuchen et al., 2012; Uyttewaal
et al., 2012; Schiessl et al., 2012). However, when the study involved cellular resolution,
individual cells were identified manually in different time frames, limiting the extension
of this approach to tens of cells. Another major problem is that live-imaging is limited to a
couple of days because of photobleaching, phototoxicity or just because the tissue reaches
a critical size to be imaged. Altogether, this makes it impossible to capture the tissue dy-
namics at cellular scale with appropriate temporal and spatial resolution. Thus, during
the course of this project, in order for me to study events of plant morphogenesis that
occur in the time scale of several days, such as the dynamics of cell growth, cell morpho-
genesis and cell division along the leaf, it was necessary to adjust existing methodologies

and develop new ones.

In this chapter, I present a pipeline that allows us to overcome the limitations men-
tioned above and provides us with an automatic way to identify cells over long periods of
time. The development of such a tracking algorithm required the synergy of live-imaging
and the development of diverse computational algorithms. On one hand, the bright and
uniform expression of a fluorescent membrane marker in the speechless background com-
bined with optimized confocal microscope parameters enabled long time-lapse experi-
ments and the acquisition of very good quality images. On the other hand, image analysis
combined with the possibility to segment automatically complex cell shapes (Segmenta-
tion Potts Model) together with a parametrized way to capture cell shape (LOCO-EFA
chapter 2) allowed the development of an automatic tracking algorithm. In this chapter,
I detail the procedure of live imaging, image processing, and automatic tracking in the
leaf. This procedure was used to analyse the dynamics of cell growth, cell division and
cell morphogenesis during leaf development. Importantly, although this pipeline was de-

signed for cells in the epidermis of the leaf, in principle, it can be applied to other tissues.
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Time-lapse Imaging 3.2

‘A N B )

Time-lapse Imaging processing

Automatic cell tracking

Figure 3.1: General pipeline to capture dynamic shape and size changes during
leaf development at cellular level. A) Time-lapse imaging using confocal microscopy
and a custom-made perfusion chamber. B) Imaging processing includes the 2D projec-
tions of the Z-stack and denoising activity. C) Cells are automatically identified from the
confocal images using the Segmentation Potts Model algorithm. Finally, D) cell lineages
are automatically recognized using an algorithm for cell tracking.

3.2 Time-lapse Imaging

As mentioned above, capturing cell dynamics during leaf development in vivo for long
periods of time is a powerful approach to gain understanding of how the combined ac-
tion of cell growth and cell morphogenesis contributes to the overall organ shape. Live-
imaging required the synergy of appropriate confocal microscope settings, a custom-
made perfusion chamber, long-lasting membrane markers and a simplification of imag-
ing. In this section, I describe the protocol I followed for imaging the cell dynamics. I start
with the plant preparation prior to imaging, and follow up with a general description and

considerations for confocal imaging acquisition during a time-lapse experiment.

3.2.1 Plant preparation prior to imaging

Confocal image acquisition requires a careful selection of transgenic lines expressing a
fluorescent plasma membrane marker that 1) provides a good signal, 2) is resistant to
photobleaching and 3) is expressed over long periods of time during the leaf development

(Cunha et al., 2012). After an initial screening of different fluorescent markers, a wild type
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3 Long time lapse and image analysis on in vivo leaf development at cellular scale

ecotype Columbia line containing aquaporin-pmCherry as a membrane marker (Nelson

et al., 2007) was selected for the analysis.

To capture growth and shape dynamics of pavement cells” development from the start-
ing point of their morphogenesis at the tip of the leaf to the point when they are first
recognized at the bottom of the leaf requires approximately 7 days (from 5 days after
stratification to 12 days after stratification, although cell shape saturation occurs later, see
Chapter 4). During this period, the width of the first leaf ranges from 300 pum to 3 mm, the
leaf acquires 3D curvature and multiple stomata divisions still occur, altogether making
it impossible to continue imaging with cellular resolution at the tissue-scale in feasible
time periods without irreversible damage to the tissue. In order to overcome these diffi-
culties, a “simplified” leaf of the speechless mutant (MacAlister et al., 2007) was chosen for
the analysis.

The plasma membrane mCherry line was crossed with speechless (T-DNA SALK_078595
or spch4 in MacAlister et al., 2007) to generate a heterozygous line containing the mem-
brane marker suitable for confocal imaging (referred to hereafter as spch4-pmCherry).
The SPEECHLESS (SPCH) protein is a basic helix-loop-helix (bHLH) transcription factor
involved in the asymmetrical cell divisions that produce the stomata lineage in Arabidop-
sis thaliana (MacAlister et al., 2007). Thus, the homozygous speechless mutants plants do
not contain stomata or any other intermediate members of the stomatal lineage.

Notably, the spch4-pmCherry line grows with a similar speed as wild type plants in
the tracking chamber (Figure 3.3 and Robinson et al., 2011) and the overall organ shape
of their leaves is very well conserved. Thus, the use of spch4-pmCherry provides a sys-
tem to simplify the problem of whole-tissue imaging over long time periods and allows
acquisition of quantitative morphogenesis data at cellular resolution representing leaf de-
velopment. Importantly, it provides a system to study the dynamics of cell growth, cell
shape and cell divisions that are independent of the stomatal lineage, thus simplifying
the elucidation of the cell behaviour that is relevant for the correct leaf morphogenesis
(further discussed in Chapter 4). Thus, the analysis of speechless morphogenesis simpli-
fies the complexity of imaging and the characterization of cell dynamics. Of course, it
will complement the analysis of wild type development when the technical difficulties

are overcome.

Heterozygous spch4-pmCherry plants were genotyped by PCR (details of primers
used and PCR conditions in the appendix section) and selected for further analysis. Seeds
were sterilized using 0.05% sodium dodecyl sulphate and 70% ethanol for 10 minutes.
Then, seeds were rinsed twice with 100% ethanol and sown in plates containing 25 ml
of MS agar (0.8% (w/v) agar, 1x Murashige and Skoog salt mixture, 1% (w/v) sucrose,
100 ug/ml inositol, 1 ug/ml thiamine, 0.5 ug/ml pyridoxine, 0.5 ug/ml nicotinic acid, 0.5
ug/ml MES, pH 5.7).

After sterilization, seeds were stratified in the dark at 4°C for 4 days. Next, they were

transferred to the growth room under long-day conditions (20°C and 16 hours light) in
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Figure 3.2: Custom-made perfusion chamber allows live-imaging of leaf develop-
ment for long time periods. A) Inner chamber, where seedlings are placed over a
mesh and then covered by a cover-slip under sterile conditions. B) The inner chamber
and the outer base are set up under the confocal microscope for imaging. At the same
time, the medium is fluxing through the chamber.

the Controlled Environment Conditions (CEC) facility.

Homozygous plants spch4 (i.e containing no stomata) showing good expression of
the membrane marker were placed inside the perfusion growth chamber (Figure3.2)
when they were 6-7 days after stratification (DAS) corresponding to 140-170 hours af-
ter stratification (HAS, indicated for each experiment in the appendix section). The typ-
ical width of these plants at this developmental stage is 0.125-0.179 mm, as quantified
from the Z-stack in 3D (because the leaf acquires 3D curvature, see section below) by
independent measurements using VolViewer (developed by Jerome Avondo, details in:
http:/ /cmpdartsvrl.cmp.uea.ac.uk/wiki/BanghamLab/index.php/VolViewer) and an al-
gorithm created by Matthew Hartley, described below.

The perfusion tracking chamber is a custom-made device used for time lapse imaging
at the John Innes Centre. In this case, it was adjusted to a confocal microscope (details on
confocal microscopy below). The chamber has two main parts: an outer containment tray
used to attach the chamber to the microscope and an inner imaging chamber (Figure 3.2).
The imaging chamber is made of stainless steel so that it is possible to sterilize it. It
allows the flux of liquid medium that enters at one extreme and exits at the other, using
an electrical pump (Sauret-Gueto et al. 2012 and Calder et al., in preparation). Inside the
imaging chamber, the seedling is placed on a mesh that positions the tissue close to the
cover glass.

Plants were grown in the perfusion tracking chamber under constant flow of liquid
medium (1/4 strength Murashige and Skoog, 0.75% sucrose, 1.1 ug/ml MES, pH 5.8) at 1
ul/s. The details and considerations of confocal time-lapse imaging are discussed next.
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Figure 3.3: 3D width over time of wild type and spch4-pmCherry is similar. A)
To rule out an effect on leaf growth due to the experimental conditions, the width of
dissected wild type leaves growing outside the chamber (yellow circles and a logistic
fit curve, in pink; provided by Samantha Fox, see details in Kuchen et al., 2012) was
compared with the width of wild type leaves growing inside the chamber (dark red) and
with the width of leaves of spch4-pmCherry growing inside the chamber as well. Time-
lapse experiments are identified by a number (ExplD3002, ExplD3078 and ExplD3148)
and different plants within the experiment are identified with a letter (for example, PA
refers to plant A, etc.). Wild type 3D width and spch4-pmCherry 3D width during time-
lapse experiments show a similar slope, that is better appreciated in B) showing a zoom
of the rectangular area of the plot in A. As the leaf curves during its development, the 3D
width (see main text) was compared. It was measured using VolViewer and a custom
algorithm developed by Matthew Hartley, giving similar results.

3.2.2 Confocal microscope live-imaging

Confocal microscopy has proved to be a very good tool for live-imaging of leaf devel-

opment (Robinson et al., 2011; Kuchen et al., 2012). In vivo imaging, however, requires a
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Table 3.1: Strategy for live-imaging intervals.

Time (DAS) Imaging interval
6-8 Every 5-6 h (three times during the day)
9-11 Every 10-12 hours (twice per day)
12-13 Once per day
14-23 Once every two days.

careful balance of parameters that allows a good spatio-temporal resolution without com-
promising normal development. In this section, I present the combination of parameters
that I found works the best for spch4-pmCherry, such as image interval, as well as some
considerations during imaging.

The abaxial epidermis of the first true leaf was imaged using a Leica TCS SP5 II con-
focal microscope. Specifically, the 561 nm Diode laser and pinhole size of 1 airy unit were
used. Emitted light of pmCherry was set to 570-630nm, and a hybrid detector was used to
provide increased sensitivity under the 20X multi-immersion objective using water. Time-
lapse experiments were identified by a number (ExpID3002, ExpID3078 and ExpID3148)
and different plants within the experiment were identified with a letter (for example, PA
refers to plant A, etc.).

The temporal spacing between time points was chosen to optimize the time of imag-
ing with the spatial resolution of cellular events so that cell divisions and changes in mor-
phology could still be detected using the automatic tracking algorithm described below
(Table 3.1). Moreover, the resolution of all the images was kept to no less than 1.321 pixels
per micron (a comparable resolution is important for calculating growth and shape pa-
rameters). The exact interval between time points for individual experiments is detailed
in the appendix.

The total time of scanning per time point needs to be optimized because tissue grows
and pushes the desired region of interest outside the specified imaging distance in the
z-plane or xy-plane. When the overall size of the leaf is impossible to fit in one image
(keeping the resolution), it is important to subdivide the field in tiles that need to overlap
(so, they can be stitched together without problems afterwards). However, more tiles also
imply that the time of scanning will increase. At the same time, a slow scanning results in
a good image quality that will minimize manual intervention in the subsequent steps of
image analysis. In general, a distance of 1 micron between the sections in the Z-plane is a
good compromise between the time of scan and the quality of the image (the maximum
is 1.5 microns). The acquisition of a 172 um image stack using bidirectional scanning
with a frame size of 1024 and 2 line averages, will take approximately 15 minutes at the
beginning of the time lapse. Later on, when it is needed to subdivide the tissue into tiles
in order to have a complete image in its full spatial context, the scanning can take up to

3 hours. These parameters provided excellent image quality for the downstream image
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3 Long time lapse and image analysis on in vivo leaf development at cellular scale

processing applications.
The mounted chamber was moved to the CEC growth room when no imaging was

performed.

3.3 Image processing

The confocal microscope imaging process produces a set of optical sections of the leaf (a
Z-stack). This raw data needs to be transformed into meaningful representations to allow
extracting quantitative data from the Z-stacks. The heterogeneous image quality during a
time-lapse and the intrinsic properties of the leaf epidermis (curvature) and cells (complex
shapes), make the image analysis face as many challenges as the image capture. In this
section, I describe the protocol for image analysis that was used during the course of this

work.

3.3.1 2D projection

The analysis of cell dynamics in the epidermis of the Arabidopsis thaliana leaf can be fur-
ther simplified if a 2D projection is considered. Although a 3D reconstruction is possible,
epidermal cells are very flat and the resolution of top and bottom membranes will re-
quire a very fine Z-stack that compromises the exposure of live tissue to phototoxicity
and increase enormously the time required for scanning. Besides overcoming technical
difficulties, 2D projections are also favoured given that pavement cell morphogenesis in-
volves preferential extension in the xy direction (Figure 3.4A). Indeed, the thickness in the
z-axis during leaf development is almost constant even under water stress (Wuyts et al.,
2012) and during time-lapse experiments performed in this work (Figure 3.4B average
thickness is 13.2 +/- 3.6 microns).

The imaging processing starts by converting the microscope optical sections (Z-stack)
into individual images in Portable Network Graphics (PNG) format using Bioformats con-
verter (http://www.bioimage.ucsb.edu).

The simplest approach for creating a 2D-projection from the Z-stacks is to take the
maximum projection (implemented into the software of many confocal microscopes). In
this projection, each pixel at position (x’,y’) is given by the highest value of all pixels
at position (x,, y,) for n optical slices at different Z positions. This approach works very
well when the surface to project is in a single plane. However, the leaf is curved and some
optical sections contain parts of the epidermis and subepidermis tissue (Figure 3.4A-B);
50, a maximum projection image contains cell outlines of both tissues overlapped. Thus,
to create a 2D-projection that correspond just to the epidermis, the leaf curvature needs

to be taken into account.
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The 2D-projections of a convex surface such as the leaf epidermis were achieved using
an in-house script written by Matthew Hartley (epidermis) and Jop van Rooij (subepider-
mis).

The first step in the algorithm is to find the curved surface. This is achieved by ap-
plying a strong Gaussian filter in 3D (Z-stack). In simple terms, a Gaussian filter acts on
each pixel, setting its value to the weighted-average of all pixel values for a given radius.
Typically, the setting 8 6 6 10, corresponding to a Gaussian filter of kernel size of 8 in the x
and y directions and 6 in the z direction followed by a blur of the whole surface of radius
10 gives very good results (usually using settings between 6 6 58 and 9 9 6 10 works with
the confocal data of the leaf). Next, a vector normal to the plane of projection at each
point in the plane is calculated and the coordinates of the point of maximum intensity
along that vector (these points describe a 2D surface embedded in the 3D space of the
image) is used to create the final 2D-projection.

The algorithm has the advantage of recovering both the projection (Figure 3.4D) and
the surface of the top layer of the epidermis (Figure 3.4E), which represent a height map
that can then be used to measure the dimensions of the leaf (width or length) accurately.
Indeed, the width of the leaf was calculated using the surface and projection. This was
done by manually setting two points that correspond to the transversal plane using a
script and interface provided by Mathew Hartley. The width of the leaf, chosen as approx-
imation of leaf dimension, follows a very similar trend to that of the leaf length (Kuchen
et al., 2012).

An extra feature of the algorithm is that by adjusting the distance between the detected
surface and projection, it permits to take a projection of the next layer below the epidermis
by stripping off the upper most layer (Figure 3.4F, although the resolution is lower than
the projection of the epidermis).

In situations when the confocal imaging required tiling (for example, to capture the
whole tissue, when the leaf size is too big, required to divide the scanning field in several
parts), the individual 2D-images (PNG format) were later stitched. All the images were
rotated so that the midvein of the leaf is perpendicular to the x-axis, and then the image
was cropped to cover only the area of the leaf. Finally, to reduce noise, the background
was extracted and brightness and contrast were adjusted when needed. All the above
was done using the functions implemented in Fiji (http://fiji.sc/Fiji).

The next step in the pipeline is to find individual cells in the images, a process referred

to as segmentation.

3.4 Segmentation

In a 2D projection, cells are represented by pixels within a confocal image. Segmentation

is the process of going from a pixel-based representation of data to an object-based repre-
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sentation, such that quantitative properties and characteristics of the objects, for example
cell shape and cell area, can be extracted from the images (Roeder et al., 2012a). Because
of the complexity of pavement cell shape, it has been very challenging to automatically
segment these cells, leading to an intensive manual intervention (see for example Andri-
ankaja et al., 2012). This is, of course, time consuming and limits the amount of cell data
(and images) that can be analysed.

In this work, collaboration with Jop van Rooij (Marée’s group) made it possible to
extend a computer algorithm to automatically segment pavement cells that overcomes
such difficulties. The algorithm, called Segmentation Potts Model, is detailed in van Rooij

et al., 2013a and is briefly described in the next section.

3.4.1 Segmentation Potts Model (SPM)

The SPM is based on the Cellular Potts Model (CPM), an energy-based modelling formal-
ism, in which cells are represented within a lattice and their dynamics are governed by
an energy function (Graner & Glazier, 1992; Glazier & Graner, 1993, also see Chapter 2,
where the CPM was used to create in silico cells to test the LOCO-EFA method). Briefly,
cell dynamics in the CPM come about by considering a random change within the neigh-
bouring lattice points each time step (small retraction or contraction, also called “copy
event”). The changes are accepted or rejected with a certain probability depending on the
total energy contribution (Hamiltonian). Copy events that are energetically expensive are
accepted with a probability that drops exponentially with the change in energy (i.e. a
very expensive copy event has very low probability to occur).

The SPM uses the same principles as the CPM but it includes two important modifi-
cations in the energy function that make it possible to use it as a segmentation tool. The
tirst added term allows interaction with the image by adding an energy cost according
to the normalized signal intensity of a pixel (given by the fluorescence of the membrane
marker in this case). Thus, the copy events that extend into a high intensity pixel are
less favoured; as a consequence the SPM-cells are “trapped” by the contouring plasma
membrane signal. The second term, the total target area (rather than a single target area),
controls the fraction of the image that will be occupied by cells. This term avoids the need
to assume a priori the area and number of real cells.

In very simple terms, the algorithm takes as an input the 2D projection of the leaf
(Figure3.5A) and starts by normalizing the intensity of the plasma membrane marker
(rescaling it between -1 and 1, with a defined threshold; shown in Figure 3.5B); then, it
proceeds by allocating SPM-cells within the confocal image automatically (manual seed-
ing or nucleous staining is not requiered). Over time, those SPM-cells expand and interact
between each other and with the image, giving as a result a match of one SPM-cell to one
epidermal cell (Figure 3.5C). Finally, the cell outline is smoothed recursively by assigning

each unsegmented (unoccupied) pixel to the SPM-cell that is within its neighbourhood
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(see details in van Rooij et al., 2013a).

Although the SPM algorithm gives very good results for epidermal cells at early stages
of development (when cells are rectangular or hexagonal), the segmentation of pavement
cells with complex shapes introduces an extra complication. Because of the puzzle-like
shape, with lobes and narrow necks, the extensions of SPM-cells located inside real cells
are less favourable (because in order to extend, they need to overcome a large local en-
ergy barrier). This results in that a single biological cell is often represented by multiple
SPM-cells (Figure 3.5D). The solution to this problem was to introduce persistence in the
SPM dynamics when two neighbouring SPM-cells interact. This simply implies that when
there are two SPM-cells separated by a normalized signal the intensity of which is below
zero (for example, indicating that the interface is not a high intensity membrane marker
signal), the likelihood of extension in a certain direction (i.e accepting copy events) in-
creases. In this way, SPM-cells will continue expanding with a persistence strength that
depends on the signal value of the interface between SPM-cells, the persistence vector of
each SPM-cell and the vector of the place that is being copied to. In other words, when
two SPM-cells are in contact in a region of low intensity, the incorporation of persistence
makes the boundary between two cells more likely to continue moving into the direction
it has been recently following making it easier to overcome the energy maxima caused
by a jigsaw puzzle-like shape. Of course, persistence levels need to be optimal to avoid
the risk of causing SPM-cells to occupy the space of two real biological cells. Thus, the
incorporation of balanced levels of persistence improves the segmentation of complex
pavement cells (Figure 3.5E).

Rather than test all the possible combinations of relevant SPM parameters (at least
6), all the confocal images were segmented using the same settings for the algorithm

(appendix section).

However, the complexity of cell shapes, variation within the image and big size (up
to 4900 x 4000 pixels) of the time-lapse images required manual verification of the seg-
mentation (approximately, 5% to 30% of false positives or false negatives depending on
the image). In this way, cells that were over-segmented (one SPM-cell for two or more
real cells) and SPM-cells that do not represent any real cell (for example, the edges of the
image) were eliminated manually. In addition, SPM-cells that represent one single bio-
logical cell were fused. Manual correction was performed using a custom-made program

with a user interface that was provided by Jop van Rooij.

The final segmented image permits extraction of cell area, cell perimeter, cell contour
(used for shape quantification as described in Chapter 2), and was used as an input for
the tracking algorithm described in the following section. Moreover, using the SPM it is
possible to extract features about the topology such as number of neighbours and their
characteristics.
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3.5 Automatic cell tracking

Cell growth rates and cell shape change can be calculated only when the same cell (and
its properties) is identified in consecutive time points. Cell tracking or the identifica-
tion of single cells in different time frames can be done manually (Robinson et al., 2011).
However, this approach limits the scope of spatio-temporal analysis. To overcome these
difficulties and take advantage of other methods developed to analyse images and cell
morphogenesis (SPM and LOCO-EFA), we developed an automatic tracking algorithm
that permits cell lineage identification in time series of images.

Automatic cell tracking requires both establishing a common coordinate system be-
tween two successive images (also called image registration) and identification of the
same cells between images. Although, there is no cell movement, no cell fusion and no
cell death in epidermal plant tissue, the coordinate system is changing constantly due
to overall growth and local anisotropy during leaf development (Kuchen et al., 2012). In
addition, at the cellular level, cells are dividing, expanding and increasing their shape
complexity (Chapter 4). Moreover, during imaging, the tiling, movement of the leaf in-
side the chamber due to grow, or variance in the position between imaging moments
could modify the coordinate system. Thus, these global and local changes needed to be
taken into consideration to develop the tracking algorithm.

In brief, as a starting point for estimating both the common coordinate system and the
tissue growth, some cells are matched in successive images using the quantitative mea-
sures of the cell shape described previously (Figure 3.6A-B and LOCO-EFA, described in
Chapter 2). The rationale is similar to comparing unique “finger prints” between individ-
ual cells at consecutive moments, on the assumption that at a subsequent time point, the
same cell should still show the most similar profile to itself. Initially, tissue growth and
the change in the common coordinate system are modelled as a purely affine transforma-
tion (that is the same as assuming that growth is uniform or that successive images are
just an translation, uniform expansion or contraction). Then, the centroids of the matched
cells are used to calculate local growth deviations from the global growth estimation, re-
fining the growth vector. Next, cells with similar shape and within the same neighbour-
hood (displaced just by the local growth) in different time points are recognized as the
same cell. Iteration of this simple algorithm performs very well to track pavement cells

(Figure 3.6E, in general about 80-92% of cells present in consecutive time frames).

The steps of the algorithm are as follows:

1. Calculate shape parameters (LOCO-EFA), real areas (rather than in pixel / voxel unit)
and centroid positions for all cells. Cell area was corrected automatically using the

resolution of the confocal image included in the raw confocal data.
2. Select cells with a distinctive shape, based on their shape parameters (we can re-
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fer to these cells as landmark cells). The selection of these cells can be specified
algorithmically (L,-mode profile) or manually. Between 4-8 landmark cells selected

gave good results (Figure 3.6B).

3. Compare shape parameters between successive images, using a weighted sum of
squares to find the closest matches for the selected cells. As the L,-mode and XOR
profile (Chapter 2) of one cell is very similar over time (Figure 3.6A), we compare
the L,-mode profile of the landmark cells against the profile of the rest of the cells
and find the candidate cells in the next time point which profile is the most similar.

4. Given the list of suggested matches, estimate global growth parameters between
successive images. The global growth parameters scale together with the displace-

ments of the image. Only an affine transformation is considered at this stage.

5. Use these parameters to attempt to match cells, searching for centroids in a region
around the point predicted by applying the expected growth and determining suit-
ability of the match using real areas and shape parameters (Figure 3.6C).

6. Given the selected matches, refine the growth parameters, also including estima-
tions of local growth that deviate from global growth.

7. Repeat steps 5) and 6), refining parameters and matching a greater proportion of
cells, until the proportion matched stops increasing with further iterations (Figure 3.6D-
E).

8. Look for cell divisions by determining whether pairs of cells in the later time point
together give a suitable real area and centroid to be considered a match for cells in

the previous time point.

9. Finally, there are two possible kinds of match: one to one and one to two corre-
sponding to the same cell expanding and cell division. There is also mismatches
because of error in the image, leading to one cell to none (for example, it happens
that some cells are absent in a particular image because of an error during image
acquisition or segmentation). Incorrect matches also can happen when cells have a

very similar shape and they are very close to each other (i.e. base of the leaf).

Because of the variations in the quality and size of images, a final human inspection of
the matches and manual correction of the errors ensured that cell lineages obtained using
the cell tracking algorithm were correct.

The output of the cell tracking algorithm (Figure 3.7) includes information that per-
mits the study of the spatio-temporal dynamics at the cellular level such as cell division,
cell position, cell growth, cell shape as well as tissue information such as local growth
displacements (growth anisotropy) and topological characteristics over time. The bound-

aries of the leaf (tip, starting of petiole and left and right border) were set manually.
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The algorithm was implemented, refined and integrated into the previous image pro-
cessing analysis by Matthew Hartley in the Python programming language, using Numpy
and Scipy libraries (dsnra.jpl.nasa.gov/software/Python/numpydoc/ and www.scipy.org/), with Pygame
(pygame.org/) for display purposes.

3.6 Discussion and concluding remarks

Diverse studies of leaf development have aimed to capture cell dynamics over time (see
for example, Andriankaja et al., 2012). However, static images are not as powerful as
time-lapse imaging, where cell data is captured in its full and intact spatial context. In
toto imaging, or the imaging and tracking of every single cell that forms a tissue or organ
is a powerful approach to understand how cell growth, cell morphogenesis and cell di-
vision occur in a developing tissue or organ (Megason & Fraser, 2007). In this chapter, I
described the pipeline that involved the synergy between confocal imaging optimization
and new image analysis techniques that allowed in toto imaging of leaf development.

The motivation to develop such an integrative pipeline was that current imaging pro-
tocols aimed at the extraction of quantitative cell information from time-lapse imaging
were inconvenient for the analysis of epidermal cell dynamics during leaf development.
For example, De Reuille ef al. (2005) reported a pipeline that creates 2D projections of the
dome-like meristem and proposed a tracking algorithm that was adapted to analyse leaf
development (Kuchen et al., 2012). However, this approach requires extensive manual in-
tervention (marking cell vertices in consecutive images). Another related method for cell
tracking was proposed by Liu et al. (2010) with focus on meristematic cells in the shoot
apex. This method is based on graph matching and local geometry (i.e the vertices of cell
neighbours), a feature that is fairly conserved over time for cells in the meristem. In case
of pavement cells, a graph matching algorithm will be complicated because the cell shape
experiences a very dramatic transition from a geometrical simple shape to a jigsaw-like
shape (Chapter 4 and 5). The tracking method presented in this chapter does not rely on
the conservation of the vertices of a cell, but uses the shape as a feature for finding cells
in the tracking procedure. Moreover, other proposed methods for segmenting cells with
complex shape rely on very high resolution images, perhaps only achieved with fixed
material (Federici ef al., 2012).

Improvement of current imaging techniques and development of new tools made it
possible to capture the dynamics of cell growth and cell shape change until it is very close
to saturation in different parts of the leaf, and cell divisions finish (Chapter 4). First, the
use of bright and long-lasting membrane markers, combined with the simplified leaf of
the spch mutant and an optimal imaging strategy during time-lapse to minimize the ex-
posure of the leaf, made it possible to track cell dynamics over long periods of time. In

addition, the complexity of the time-lapse data required the development of new tech-
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niques for imaging processing that allowed us to extract relevant information from the
raw confocal images. These imaging processing tools included 2D projections of curved
surfaces, segmentation of complex shapes and a cell tracking algorithm.

Therefore, to exploit the full potential of live-imaging and microscopy methods, they
must be combined with computational approaches and models that help to convert the re-
sulting, highly complex image data sets into biological insights. Indeed, a robust pipeline
for analysing in toto leaf development is able to quantify the behaviour of a system at the
cellular level because it permits a detailed description of morphogenetic and develop-
mental processes at cellular resolution, such as spatio-temporal dynamics of cell division,
cell position, cell growth and cell shape dynamics throughout development (Chapter 4).

Currently, the output of the SPM is used as an input for the cell tracking algorithm.
In the future, the pipeline can be improved by allowing the SPM and the cell tracking
algorithm to feedback into each other: conflicts in the segmentation (one biological cell to
two SPM-cells or vice versa) could be resolved by looking at the future and/or the past
time-points of the cell tracking (for instance, cell division happen in only one direction;
hence, once a cell division is detected, it is expected that the future time points show two
different cells). This possible extension is likely to decrease the manual intervention.
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3 Long time lapse and image analysis on in vivo leaf development at cellular scale

Table 3.2: DNA extraction buffers

Extraction Solution* Stock 100 ml

Water 63 ml

100 mM (1.57%) Tris-HCl pH=8 1M 10 ml

250 mM (1.86%) KC1 M 25ml

10 mM (0.37%) EDTA 05M 2ml
(@

Dilution Solution™  stock 100 ml

Water 100 ml

3% BSA powder 3g

(b)
*Adjust to pH 9.3 with 1IN KOH.

+ Adjust pH to 7.6 with 1 N KOH

3.A Appendix

3.A.1 DNA extraction protocol**

1.
2.

5.

Cut a young piece of leaf with a pair of tweezers and place in a PCR tube.

Add 50ul of Extraction Solution to the collection tube. Close the tube, vortex and
spin briefly to make sure the tissue is covered by the solution (Table 3.2a).

. Incubate at 95 °C for 10 minutes (the leaf tissue usually do not appear to be degraded

after this treatment).

. Add 50u! of Dilution Solution, mix with the pipette and transfer 50l genomic

DNA solution to a new tube (Table 3.2b).

Store the diluted leaf extract at 2-8 °C.

**This protocol was provided by Vladimir Nekrasov.
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Table 3.3: Genotyping of the spch4-pmCherry line

Line Left primer Right primer Expected size PCR amplification
conditions
spch4 (SALK_078595) TATGAGGGACTCGCATTCATC AAAACAAATTCGTTTGCTCCC Wild type:1047; 94 C for 2 min;

Mutant: BP+RP:

~700bp

(94 C for 20s; 54 C
forlmin;72 C for 1min)
for 35 cycles;

72 C for 5 min;

Table 3.4: Parameters used for the segmentation using the SPM.

Parameter Value Brief description
hamiltonianneigh 0 Neighbourhood over which
surface tension is calculated
imageinteraction 350 Constant that is multiplied
with the normalized signal at
each pixel in the Hamiltonian
function.
estimationoffset -2 Offset for target coverage
estimation algorithm
temperaturescale 350 Percentage of the highest
possible contribution of the
interfacial tension with the
medium.
persistencestrength 3 Percentage of persistence.
persistencelength 100 Number of Monte Carlo steps
(mcs) between updating
persistence vectors
runtime

10000 Mcs used for segmentation
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3 Long time lapse and image analysis on in vivo leaf development at cellular scale

Figure 3.4: Projections of the leaf epidermis using confocal optical sections re-
quire a special algorithm because the surface is curved. A) Optical slice obtained
using a confocal microscope. Although, the maximum resolution is achieved in the xy
direction, the slices are not in the same plane. B) Optical transversal section through
the horizontal line denoted in A in the z plane. Note the curvature of the surface and the
constant thickness of the epidermal layer (average thickness in this example is 10.2 +/
1.2um). C) The algorithm to create 2D-projections of a curved surface involves a strong
3D Gaussian filter and maximum intensity approach that is used to create a smoothed
height map of the surface. D) The final projection takes the maximum intensity along
the normal to the surface (similar to a top view of the leaf). E) By changing the distance
between the detected surface and projection, it is possible to project inner surfaces. In
this example, the planes of the Z-stack are spaced each 1 um and overall thickness of
the Z-stack is 150 um.
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A original image B Normalized signal C Snapshots of SPM dynamics

Time

D SPM, no persistence E SPM, persistance 3% F Final version

Figure 3.5: Segmentation Potts Model is used to find cells in the confocal image.
A) Original image after image processing (ie. 2D projection). B) The SPM algorithm
normalizes the signal given by the pmCherry marker. SPM-cell extension is unfavoured
if it implies crossing a high level of intensity given by the membrane marker (pink). C)
Snapshots of SPM dynamics in a section of the leaf (denoted by the square in A-B).
A single SPM-cell is identified with a colour. Over time, the SPM-cells compete and
exclude each other, giving as a result that each biological cell is represented by a single
SPM-cell. The number on the rigth of each inset is the simulation time (see details in
van Rooij et al., 2013a). D) Final result of the SPM simulation without persistence. E)
By incorporating reasonable amounts of persistence, more pavement cells are correctly
resolved. F) Manual correction ensures that each real cell is correctly identified.
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3 Long time lapse and image analysis on in vivo leaf development at cellular scale

A Cell shape is highly correlated over time
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Figure 3.6: Cell tracking algorithm. A) The cell shape over time is characterized using
LOCO-EFA parameters (XOR, or the difference between the original and reconstructed
shape using N number of L,, modes is shown for two cells changing over time, see also
Chapter 2). Note that the cell shape profile is changing in a very similar fashion over
time (each colour is a time point, green colours are early time points and red colours
correspond to late time points). This property is used to locate some initial cells based on
the change on their shape. B) The cell tracking algorithm takes as input the segmented
image (each cell is identified with a unique RGB number) and uses the information of
the shape to locate some initial matches (landmarks) among two time points (in this
case, four landmarks initiate the algorithm). C) Assuming homogeneous growth, the
algorithm continues finding matched cells taking the cell shape and relative displacement
into account. D-E) lteration of this process refines the growth parameters and locates
more cells automatically.
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A Cell lineages B Cell divisions
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Figure 3.7: Cell tracking algorithm enables the extraction of quantitative and dy-
namic data at the cell and tissue level. A) The output of the tracking algorithm includes
cell lineages (not to scale), B) cell divisions and C-E) growth vector and anisotropy within
a tissue. The growth vector is calculated using the displacements of centre of mass in
two consecutive time-points. C) The overall displacement of the centroids of two cells.
D) After removing the average of all the vectors results in a map of overall displace-
ments. E) Finally, the anisotropic growth is calculated by subtracting a proportion of the
displacement relative to the vectors in the centre (or relative to any other point of refer-
ence). This corresponds to removing the proportion of isotropic growth, leaving just the
component that correspond to the anisotropic growth.
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3 Long time lapse and image analysis on in vivo leaf development at cellular scale

Series Name Date Moved to CER__ | Time moved to CER |Date Imaged| Time imaged | age at imaging (DAS) [Age (HAS) 3D Leaf Width PA (mm)

TLO1_plantA 4:30:00 PM 11:16:00 P 7 174.80 0.132

TLOZ planta 4:30:00 PM 10:02:00 AM il 185.53 0.148

TLO3 plantA 4:30:00 PM 5:32:00 PM g 193.03 0.202

TLO4 plantA 4:30:00 PM 11:38:00 PM g 199.13 0.22

TLOS plantA 4:30:00 PM 10:12:00 AM 9 209.70 0.293

TLOG_plantA 4:30:00 PM 5:39:00 PM 9 220.15 0.306

TLO7 plantA 4:30:00 PM 5:48:00 AM 10 232.30 0.385

TLOG plantA 4:30:00 PM 4:24:00 PM 10 243.90 0.48

TLOY plantA /26 4:30:00 PM 11:32:00 AM 1 259.03 0.652

TLOAO plantA 6/26/2012 4:30:00 PM 13:52 PM 12 285.37 no

Series Name Date Moved to CER__ | Time moved to CER |Date Imaged| Time imaged | age at imaging {(DAS) [Age (HAS) 3D Leaf Width PD (mm)

TLO1 plantD 6/26/2012 4:30:00 PM 71312012 11:40:00 PM 7 17517 0179

TLOZ plantD 6/26/2012 4:30:00 PM ) 10:02:00 AM il 185.53 0.185

TLO3 plantD ] 4:30:00 PM 5:45:00 PM il 193.25 0.23

TLO4 plantD 4:30:00 PM 11:53:00 PM g 199.38 0.268

TLOS plantD 4:30:00 PM 10:27:00 AM 9 209.95 0.315

TLOGE plantD 4:30:00 PM 3:55:00 PM 9 22042 0.377

TLO7 _plantD 4:30:00 PM 9:07:00 AM 10 232.62 0.438

TLOS plantD 4:30:00 PM §:05:00 PM 10 243.58 0.457

TLO9 plantD 6/26/2012 4:30:00 PM 11:52:00 AM 1 25937 0.557

TLO10 plantD 6/26/2012 4:30:00 PM 15:00 12 286.50 0.781
TLO11_plantD 6/26/2012 4:30:00 PM 7191 10:40 13 30617 no
TLO1Z_plantD 6/26/2012 4:30:00 PM 7102012 11:00:00 AM 14 330.50 no
TLO13_plantD 6/26/2012 4:30:00 PM 712012 11:26:00 AM 15 354.93 no

TL014 plantD 6/26/2012 4:30:00 PM 7122012 4:37:00 PM 16 38812 1.464043
TLO1S plantD 6/26/2012 4:30:00 PM 7132012 20:35 17 412.08 no

TLO16 plantD 6/26/2012 4:30:00 PM 71442012 17:32 15 433.03 181

TLO17 _plantD 6/26/2012 4:30:00 PM 7M156/2012 2338 19 463.13 1.903
TLO1E_plantD 6/26/2012 4:30:00 PM 772012 19:56 21 50743 no
TLO19_plantD 6/26/2012 4:30:00 PM 719/2012 17:18 23 552.80 2.258
EXPID3078_PA

Series Name Date Moved to CER Time moved to CER |Date Imaged| Time imaged | age at imaging (DAS)|Age (HAS) 3D Leaf Width PA (mm)

TLOO plantA 9/27/2012 6:30:00 PM 13:38:00 6 139.13 no accurate

TLO1 plantA 2012 6:30:00 PM 18:06:00 6 143.60 0.125

TLOZ plantA 2012 6:30:00 PM 23:36:00 6 149.10 0.14

TLO3 plantA 2012 6:30:00 PM 10:43 7 160.22 0.153

TLO4 plantA ] 6:30:00 PM 16:33:00 7 166.05 0.166

TLOS plantA 6:30:00 PM 23:03:00 7 172.55 0.197

TLOE plantA 6:30:00 PM 10:36 g 184.10 0.277

TLO7 plantA 6:30:00 PM 16:23 8 189.38 0.305

TLOB_plantA 6:30:00 PM 22:34:00 g 196.07 0.365

TLO9 plantA 6:30:00 PM 12:29:00 9 209.98 0.47
TLO10_plantA 6:30:00 PM 0:36:00 10 22210 0.523

TLO11 plantA 6:30:00 PM 13:27:00 10 234.95 0.592

TLO1Z plantA 6:30:00 PM 0:30 1 246.00 0.709
TLO13_plantA 6:30:00 PM 14:07 1 259 62 0752

TLO14 plantA 65:30:00 PM 19:04:00 11 264.57 no accurate
TLO15_plantA 6:30:00 PM 10:59:00 12 28048 no accurate
TLO1E plantA 6:30:00 PM / 20:30:00 12 290.00 1.096896291
TLOA7 plantA 6:30:00 PM 10/10/2012 2367 13 31745 1310370931
TLO1S plantA 6:30:00 PM 10/11/2012 19:50 14 33733 no accurate
TLO19 plantA ] 65:30:00 PM 10/12/2012 20:58 15 362.47 no accurate
TLOZ0 plantA 9/27/2012 6:30:00 PM 10/13/2012 2151 16 387.35 no accurate
TLO21 plantA 9/27/2012 6:30:00 PM 10/14/2012 19:49 17 409.32 no accurate
Series Name Time moved to CER | Date Imaged | Time imaged | age at imaging (DAS) | Age (HAS) 3D Leaf Width PC (mm) elapsed time (h)
TLOO_plantC 6:30:00 P 10/3/2012 14:02:00 6 139.53 no accurate 0.00
TLO1 plantC 6:30:00 PM 15:45°00 3 144 25 0121 44300
TLOZ plantC 6:30:00 PM 0:04:00 7 148 57 0.138 10:02:00
TLO3 plantC 6:30:00 PM 1112 7 160.70 0151 11:08:00
TLO4 plantC 6:30:00 PM 16:56:00 7 166.43 0.186 16:52:00
TLO5 plantC 6:30:00 PM 23:27-00 7 172 95 0.233 6:31:00
TLOG_plantC 6:30:00 PM 11:04 il 184 67 0.268 18:08:00
TLO7 plantC 6:30:00 PM 16:39 g 19015 0238 53500
TLOG plantC 6:30:00 PM 22:51:00 il 196.35 0.311 11:47:00
TLOS plantC 6:30:00 PM 12:28:00 ] 20995 0.3405 13:38:00
TLO10_plantC 6:30:00 PM 1:00:00 10 22250 0.419 26:09:00
TLO11 plantC 6:30:00 PM 12:53:00 10 23438 052 11:563:00
TL012_plantC 6:30:00 PM 10/7/2012 23:42 10 24520 0.607 22:42:00
TLO13_plantC 6:30:00 P 10/8/2012 141 11 27118 07 25:59:00
TLO014_plantC 9/27/2012 6:30:00 PM 10/8/2012 7:52:00 11 277.37 079 32:10:00
TLO15_plantC 9/27/2012 6:30:00 P 10/9/2012 no taken no no taken no taken no taken
TLO16_plantC 9/27/2012 6:30:00 PM 10/9/2012 22:06:00 12 291.60 1.064345193 14:14:00
TLO17_plantC 9/27/2012 6:30:00 P 10/10/2012 1:27 13 294 95 no accurate 3:21:00
TLO16_plantC 9/27/2012 6:30:00 PM 10/11/2012 21:22 14 338.87 no accurate 47:16:00
TLO19 plantC 9/27/2012 6:30:00 P 10/12/2012 no taken no no taken no taken no taken
TLOZ0_plantC 9/27/2012 6:30:00 PM 10/13/2012 19:38 16 38515 no accurate 46:17:00

Figure 3.8: Details of the tracking experiments.
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EXPID3148 PA
Series Name Date Moved to CER | Time moved to CER | Date Imaged | Time imaged | age at imaging (DAS) | Age (HAS) 3D Leaf Width PA (mm) elapsed time (h)
TLOO_plantA 1/10/2013 6:00:00 P 1/16/2013 15:06:00 [ 141.10 no accurate 0.00
TLO1_plantA 6:00:00 P 1/16/2013 19:10:00 [ 14517 0.116 4:04:00
TLO02 plantA 6:00:00 PV 22:24:00 [ 148.40 0.125 7:18:00
TLO3_plantA 6:00:00 P 10:32 7 160.53 0.133 12:08:00
TLO04 plantA 6:00:00 PV 15:51:00 7 16585 0.14 17:27:00
TLO5_plantA 6:00:00 P 22:09:00 7 172.15 0.163 6:18:00
TLOG_plantA 6:00:00 P 10:18 i 184.30 0.202 18:27:00
TLO7_plantA 6:00:00 P 1/18/2013 16:32 ] 190.53 0.248 6:14:00
TLO8_plantA 6:00:00 P 1/18/2013 22:08:00 i 196.13 0.284 11:50:00
TLO9_plantA 6:00:00 P 1/19/2013 10:57:00 9 208.95 0.362 12:49:00
TLO10_plantA 6:00:00 P 1/119/2013 22:33:00 9 22055 0435 24:25:00
TLO11_plantA 6:00:00 P 1/20/2013 11:54:00 10 233.90 0.48 13:21:00
TLO12 plantA 6:00:00 PI 1/20/2013 2221 10 244 35 054 23.48:00
TLO13_plantA 6:00:00 P 1/21/2013 11:04 1 257.07 0.62 1.00
TLO14 plantA 6:00:00 PI 1/21/2013 21:51:00 11 26785 0.723 10:47:00
TLO15_plantA 6:00:00 P 1/22/2013 11:17:00 12 281.28 0.847 24:13:00
TLO16_plantA 6:00:00 P 1/22/2013 20:35:00 12 290 58 0973 9:15:00
TLO17_plantA 6:00:00 P 1/23/2013 1942 13 313.70 1.242 32:25:00
TLO18_plantA 6:00:00 P 1/24/2013 16:06 14 334.10 1455 20:24:00
TLO19_plantA 6:00:00 P 112572013 19:11 15 361.18 1.723694171 47:29:00
TLO20_plantA 6:00:00 P 1/26/2013 20:40 16 386.67 2025738077 25:29:00
TLO21_plantA 6:00:00 P 1/27/2013 16:09 17 406.15 2.143830431 44:58:00
TL022 plantA 1/10/2013 6:00:00 P 1/28/2013 1584 18 42990 2312 23:45:00
TLO23 plantA 1/10/2013 6:00:00 P 1/29/2013 22:01 19 460.02 2.587 53:52:00
TLO024 plantA 1/10/2013 6:00:00 P 1/30/2013 15:87 20 477 95 2 656 17:56:00
TLO25_plantA 1/10/2013 6:00:00 P 1/31/2013 13:47 2 499.78 28 39:46:00
TLO26_plantA 6:00:00 P 14:16 22 52427 2917 2.00
TLO27_plantA 1/10/2013 6:00:00 P 16:34 23 550.57 3.106 26:18:00
EXPID3148_PD
Series Name Date Moved to CER | Time moved to CER | Date Imaged | Time imaged | age at imaging (DAS) |Age (HAS) 3D Leaf Width PD{rm) elapsed time (h)
TLO-1_plantD / 6:00:00 P 1/16/2013 1:10:00 P 6 139.17 0.11 0.00
TLOO_plantD 6:00:00 P 1/16/2013 3:33:00 P [ 141.55 0.119 2:23:00
TLO1_plantD 6:00:00 P 1/16/2013 7:27:00 P 6 145.45 no accurate 6:17:00
TLO02 plantD 6:00:00 P 10:38:00 PM [ 148.63 0.122 9:25:00
TLO3_plantD 6:00:00 P 10:47:00 AM 7 160.78 21:37:00
TLO04 plantD 6:00:00 P 4:04:00 P 7 166.07 26:54:00
TLO5_plantD 6:00:00 P 10:26:00 P 7 172.43 33:16:00
TLOG_plantD 6:00:00 P 10:33:00 AM 3 184 .55 45:23:00
TLO7_plantD 1/10/2013 6:00:00 P 1/18/2013 4:51:00 PM i 190.85 51:41:00
TLO8_plantD 1/10/2013 6:00:00 P 1/18/2013 2222 3 196.37 57.12.00
TLO0S_plantD 1/10/2013 6:00:00 P 1/19/2013 11:15 9 209.25 0.292 1.00
TLO10_plantD 1/10/2013 6:00:00 P 1/19/2013 22:45 9 220.75 0326829268 11:30:00
TLO11_plantD 6:00:00 P 1/20/2013 12:09 10 23415 0.38001514 24:54:00
TL012 plantD 6:00:00 P 1/20/2013 2241 10 244 68 0426949281 35.26:00
TLO13_plantD 6:00:00 P 1/21/2013 11:26 11 257.43 0.479409538 48:11:00
TLO14_plantD 6:00:00 PM 1/21/2013 20:56 11 266.93 0 565450696 57:41:00
TLO15_plantD 6:00:00 P 1/22/2013 11:53 12 281.68 0.647993944 72:38:00
TLO16_plantD 6:00:00 PM 1/22/2013 2111 12 291.18 0.74337623 81:56:00
TLO17_plantD 6:00:00 P 1/23/2013 17:52 13 311.87 0.935654807 102:37:00
TLO18_plantD 6:00:00 PM 1/2412013 17:31 14 335.52 1108251325 126:16:00
TLO19_plantD 6:00:00 P 125/2013 21:09 15 363.15 1.367146101 2.00
TLO20 plantD 6:00:00 PM 1/26/2013 20:40 16 386.67 to process 23:31:00
TLO21_plantD 1/10/2013 6:00:00 P 1/27/2013 16:09 17 406.15 to process 43:00:00
TL022 plantD 1/10/2013 6:00:00 PM 1/28/2013 1545 18 42975 18143 66:36:00
TLO23 plantD 1/10/2013 6:00:00 P 1/29/2013 15:51 19 453.85 2.131 90:42:00
TLO024 plantD 1/10/2013 6:00:00 PM 1/30/2013 1441 20 476.68 2146 113:32:00
TLO25 plantD 1/10/2013 6:00:00 P 1/31/2013 13:54 2 499.90 2.233 136:45:00
TLO26_plantD 1/10/2013 6:00:00 PM 21172013 14:22 22 52437 2339 161:13:00
TLO27_plantD 1/10/2013 6:00:00 P 2/2/2013 19:57 23 553.95 2.491 190:48:00

Figure 3.9: Details of the tracking experiments.
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Chapter 4

Dissecting spatial and temporal scales
during leaf development at the cellular
level

Abstract

Position-dependant cellular outcomes are considered very important during morphogen-
esis. However, the role of position in the dynamics of the cell’s behaviour during devel-
opment has not been explored in plants. This is in part because the study of positional-
dependant outcomes in plants presents several major problems: 1) the cell’s relative posi-
tion is also changing during organ growth, 2) often, the spatial and the temporal patterns
overlap (i.e. cells at one extreme of the organ are also the oldest) and 3) it is technically
challenging to capture cell dynamics at relevant spatial and temporal scales. Using a
combined pipeline of long time-lapse imaging and computer algorithms to extract cellu-
lar dynamics it is possible to overcome the last difficulties. Here, I present the analysis
of the cell’s dynamics (growth, cell shape and division) at different spatial and temporal
scales of leaf growth. Interestingly, the dynamics of the cell growth and the cell shape
change are highly influenced by the developmental time of the cell and in minor extend,
by their position. However, the position is important in the dynamics of cell divisions,
that are restricted towards the base of the leaf. Importantly, direct measurement of cell
division, shows that the division zone is not constant in length and that the frequency of
divisions is decreasing over time in a rather gradual-fashion. The results presented in this
chapter permit re-evaluate the role of position and developmental cell age and highlights
the importance of separating different spatial and temporal scales during the analysis of
plant development.
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4 Cell dynamics during leaf development

4.1 Introduction

How the dynamics of cellular behaviour (i.e, cell growth, cell morphogenesis) is regulated
in time and space to produce organs with a defined shape and size remains poorly under-
stood. One hypothesis is that the cell response depends on the cell’s position with respect
to the organ boundaries conferred by “morphogens”, diffusible molecules that distribute
in a graded fashion (Wolpert, 1969, 1994; note, however, that gradient formation is not
limited to pure diffusion, see Muller & Schier, 2011; Grieneisen et al., 2012). In fact, it has
been extensively proposed in diverse contexts that “morphogen gradients” regulate and
coordinate the growth, change in shape and fate acquisition in a position-depend manner
during development (Wolpert, 2002; Anastasiou et al., 2007; Grieneisen et al., 2007; Jaeger
et al., 2008; Kazama et al., 2010; Schwank & Basler, 2010; Wartlick et al., 2011; Kennaway
et al., 2011; Kuchen et al., 2012).

The positional information conferred by a gradient is presumably very important for
cell types that, like plant cells, cannot move freely to adjust their position to a specific
cellular environment. Indeed, in plants these mobile signals have been proposed (for
example see a discussion for auxin in Grieneisen et al., 2012 or more general diffusible
substances in Kennaway et al., 2011). However, in contrast to animals where some mor-
phogen gradients have been identified, measured and successfully characterized (Gregor
et al., 2007a; Wartlick et al., 2011), in plants there are scarce examples of gradients that
have been directly measured and characterized (perhaps the only example is the auxin
gradient in roots, see Grieneisen et al., 2007; Petersson et al., 2009).

A prototypical system to study the role of position on the dynamics of cellular be-
haviour during plant morphogenesis is the leaf. Strikingly, during leaf development there
is a strong longitudinal spatial gradient in the cell size and cell shape: small polygonal
cells are at the leaf base and enlarged jigsaw puzzle-like pavement cells are at the tip
(Donnelly et al., 1999; Andriankaja et al., 2012). At the same time, cell divisions are re-
stricted mainly at the base of the leaf until they disappear (Donnelly et al., 1999; Kazama
et al., 2010; Andriankaja et al., 2012). Besides showing this characteristic cellular be-
haviour, the nature of leaves as organs that reach a final predetermined size, allow us
to use them as a model to understand the long-standing question of how an organ deter-
minates its final size by regulating behaviour at the the cellular level.

However, evaluating the role of the position in the cellular dynamics in plants presents
several difficulties. First, the cell’s relative position within the leaf is changing. Even
though plant cells are restricted to move in relation to their neighbours, cells are con-
stantly being displaced from the base of the leaf towards the tip. Therefore, the notion
of position acquire different meanings, depending on the frame of reference (i.e. position
from a fixed location such as the tip of the leaf versus the position of the cells with respect
to other cells).

Another complication in addressing the influence of the position in a tissue-context

is that often spatial patterns overlap with temporal patterns, making it cumbersome to
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identify causal relationships; for instance, bigger and more “jigsaw puzzle-like” cells at
one extreme in the organ (i.e pavement cells at the tip of the leaf) are also the oldest cells.
Then, it is not easy to differentiate if the cellular behaviour is due to position or due to a
specific developmental stage (i.e cell age).

A third problem is that quantify a particular cellular outcome in relation with its po-
sition or differentiation status in an organ requires quantitative criteria, which is often
lacking (for example see discussion regarding the cell shape in Chapter 2). Moreover,
such quantification also requires overcoming the constraints of accessing the dynamic

cellular behaviour at relevant temporal and spatial scales without destroying the plant.

To overcome these obstacles, I use a combination of live imaging, automatic segmenta-
tion, automatic cell tracking algorithm (Chapter 3) and quantitative analysis of cell shape
(Chapter 2) to follow the dynamics on cell growth and cell morphogenesis of populations
of cells from early stages until the overall organ begins to reach its growth limit (Figure
3.3 in Chapter 3). This framework permitted me to correlate cell position with cellular
behaviour extracted from the in vivo context of plant development. These correlations led
to several hypothesis of the underlying mechanism regulating the cellular response that
can be explored in the future.

I begin by presenting the analysis of the cell growth and the cell shape at different
spatial and temporal scales. These two aspects have been reported as strongly correlated
(Donnelly et al., 1999). Thus, it is easy to compare and appreciate the subtle differences on
their behaviour when one looks at them together. Interestingly, the dynamics of growth
and shape is highly influenced by the age of the cell (taking as t = 0, the time after cell
division).

These results, led to the analysis of how cell divisions are organized within the leaf and
are discussed in the second part of the chapter. The results presented here supports that
cell divisions happen in a restricted spatial domain at the base of the leaf, but contrary
to previous reports (Kazama et al., 2010; Andriankaja et al., 2012; Lenhard, 2012), it does
not remain constant in length. Temporal analysis of cell divisions also reveals that at the
same time they are progressively restricted in space, the proportion of dividing cells is

also decreasing over time.

Once correlations between spatial and temporal scales and cellular dynamics have
been established, it is important to probe the system through perturbations in order to
gain further insights about the underlying mechanism controlling these correlations. An
obvious candidate to test is the plant hormone auxin involved (directly or indirectly) in
gradient formation that could confer positional information (Galinha et al., 2007; Grieneisen
et al., 2007, 2012). In the context of the leaf, auxin is distributed non-homogeneously, and
a peak of activity is present at the tip of the leaf from early leaf developmental stages,
according to the auxin marker DR5 expression pattern (Aloni et al., 2003). In addition,
auxin has been suggested to promote the development of pavement cells by increasing

their shape complexity in a concentration-dependent manner (Xu et al., 2010; Li et al.,
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2011), in the modulation of cell division (Lincoln et al., 1990; Hu et al., 2003; Guo et al.,
2013) and in the transient arrest of leaf growth during shade avoidance (Carabelli et al.,
2007). Surprisingly, I found that under the experimental conditions used and the concen-
tration of auxin previously reported as optimum (20nM of NAA), cell shape complexity
is lower than the counterpart control experiment. Rather, auxin experiments increased
the length of the cell cycle, without affecting the zone where division takes place.
Finally, I discuss the importance of the results obtained from the analysis of cellular
dynamics for the overall organ size regulation. Although the identification of the specific
“morphogens” underlying differential cellular behaviour (depending or not on the posi-
tion) are beyond the scope of this work, the analysis of the dynamics of cell growth, cell
shape and cell divisions extracted from time lapse experiments discard previous hypoth-
esis and open new ones about the regulation of cellular dynamics during leaf morpho-

genesis.

4.2 Are cells growing and changing shape according to their
position?

Cell size and shape show a strong proximo-distal gradient within the leaf (Donnelly et al.,
1999; Andriankaja et al., 2012). Pavement cells with a bigger area and showing a jigsaw-
like shape are first identified at the tip of the leaf. Over time, they are also located at the
base of the leaf. However, there is scarce dynamic information at the cellular level on how
cells are growing and acquiring their shape to account for this pattern. The few reports
published (Asl et al., 2011; Zhang et al., 2011; Elsner et al., 2012) do not provide enough
spatial and temporal resolution to separate the effects due to position from the effects due
to developmental stage.

In this section, the cell growth and the cell shape change are evaluated at different
spatial and temporal scales. However, before to pursue the analysis of the cell growth
and the cell shape dynamics, I would like to introduce different notions of position and
the motivation to analyse different spatial scales (Figure 4.1).

4.2.1 Different spatial scales

Under the assumption that a morphogen gradient underlies the regulation of the cellular
behaviour, the analysis of the cell dynamics taking different spatial scales into account
could help to infer some characteristics of such hypothetical gradient (diffusion rate, pro-
duction, degradation, etc.,) and how those relate to the specific developmental context
(such as organ growth, effect of the boundaries, etc. See Box1). Therefore, the analysis

of different spatial scales is important because of the different implications regarding the
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characteristics of the morphogen and its relation with the overall organ growth and shape
(see below). There are reports of two kinds of scales where the position is relevant:

1. Absolute position (Figure4.1A),
2. Relative position (Figure 4.1B).

The first refers to a fixed distance from a reference point (i.e. tip of the root, petiole of
the leaf, etc.). This scale was suggested to be important for specifying the region where
cell proliferation takes place within the leaf (Kazama et al., 2010; Andriankaja et al., 2012;
Lenhard, 2012). It was proposed that regardless of the overall leaf growth, the position
at which cell division takes place (also called cell cycle arrest front) stays at a constant
distance from the leaf base for several days (Figure4.1A), until it suddenly disappears (I
will come back to this affirmation later). This behaviour was attributed to a morphogen
produced at the base of the leaf that diffuses through the leaf blade and decays in each
position. Then, the precise position of the boundary of cells that divide and cells that
just expand was given by a concentration threshold Cy,(t) of this putative morphogen
(Kazama et al., 2010). This implies that in order to keep the division zone within a fixed
distance (100 um), the morphogen needs to diffuse and renew itself faster than the overall
organ growth (for example, to avoid dilution of the morphogen because of growth; see a
discussion of the effect of growth in Wartlick et al., 2011). Therefore, under this scenario
the absolute position is important.

In contrast, a relative position is important when the concentration of the underly-
ing morphogen “scales” with the tissue size during development. The scaling gradient
of Decapentaplegic (Dpp), important during Drosophila wing disc growth is one of the
best characterized gradients that scales (Wartlick ef al., 2011 and references therein). The
scaling phenomenon refers to the fact that although the gradient amplitude Cy and the
decay length A increase over time (see Box1), the ratio C(r,t)/Co(t) (Where r = x/L is
the relative distance to the source) is invariant during development. Then, when the pro-
portion of Dpp concentration is plotted according to the relative position, all the curves
will coincide regardless of the specific time point measured. Moreover, in this case the
decay length A is proportional to the tissue length L (and the ratio A /L is constant). This
phenomenon of gradient scaling has also reported in the gradient of bicoid in Drosophila
embryo (Gregor et al., 2005, 2007a) and other closely related dipteran species (Gregor et al.,
2005). To evaluate the hypothesis of a scaling gradient within the leaf, requires the anal-
ysis of the cell dynamics according to the relative position (Figure 4.1B). The scaling is
interpreted as an adaptation of variations on the patterning due to growth and there are
several hypothesis about how the scaling could operate (see for example Ben-Zvi et al.,
2008, 2011; Wartlick et al., 2011), but the discussion of these are beyond the scope of this
chapter.

The importance of the absolute and the relative position in the examples discussed

above assumes that the position relevant for the cell dynamics is fixed. This is the case of
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A  Eulerian absolute position

Www g Ww g Ww g

B Eulerian relative position
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Figure 4.1: Schematic representation of different spatial scales. A) An absolute
position was reported to be important for the specification of the zone where cell division
takes place within the leaf. Taking as a reference the base of the leaf, some regions
(red) will be available just at later stages of development (right). B) A relative position
is important when the concentration of the morphogen scales, as suggested for Dpp
signalling in Drosophila (see main text and Box1). In this case, there is always a region
corresponding to a proportion of the tissue, regardless the time point considered. C) A
Lagrangian position accounts for the fact that a cell is transiting through the tissue over
time. In this case, because division is mainly localized at the base of the leaf, cells are
being “pushed” forwards towards the tip. Then, the region in blue (left) will expand over
time (right).

Drosophila wing disc, where the position of the cell is almost constant because the cell divi-
sion and organ growth is homogeneous (Wartlick et al., 2011), and in the case of Drosophila
embryo where there is no growth (Gregor et al., 2005). However, within the leaf, cell divi-
sion happens within a restricted space (base of the leaf) that causes cells being “pushed”
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forwards (new cells occupy the relative space of the others causing an overall displace-
ment). This introduces an extra complication to analyse the effect of position because
the position of a cell (absolute or relative) is also changing. Therefore, to evaluate if a
fixed position of the tissue or the moving position of the cell is important, it is useful to
introduce different frames of reference (Silk & Erickson, 1979):

1. Eulerian position is a fixed position within the leaf, such as the absolute and relative
position, discussed previously (Figure 4.1A-B). The analysis of this scale answers the
question on how a tissue fragment changes behaviour over time irrespective to the
cells that transit it.

2. Lagrangian position is the position followed by the cells over time (Figure4.1C).
The analysis of this scale answers the question on how cells change behaviour over

time possible because the influence of their “moving” position through the tissue.

A useful analogy to explain the difference between these two frames of reference is that
cells can be considered fluxing through the leaf (from the base towards the tip, for in-
stance) such as droplets of water are fluxing in a river. If one considers a fixed position in
the river and measures the water flow at that position (for example, the water that a static
rock “sees”), it will correspond to an Eulerian frame of reference. In contrast, if one could
follow the droplets of water (for example, as a fish could do), then it will correspond to a

Lagrangian frame of reference.

Importantly, the Lagrangian frame of reference takes into account the displacement
due to local growth of the tissue. A Lagrangian frame of reference is relevant, for exam-
ple, if the important aspect influencing cell dynamics is the fact that cells are changing
position or under the assumption that cells are “carrying” information with them.

Therefore, there are diverse ways of analysing the data taking into account different
spatial scales and frames of reference, each with different biological implications. As the
putative diffusible signals underlying differences in cell behaviour are unknown in the
leaf, the analysis of the cell dynamics in different spatial scales is very important and is
discussed in the following section.

91



4 Cell dynamics during leaf development

Box1. Morphogen Gradients using diffusion and linear degradation

In this box, I briefly summarize some aspects of gradient formation using diffusion (non-directional move-
ment) and linear degradation. The gradients of Decapentaplegic (Dpp) and Wingless (Wg) in Drosophila
imaginal discs, and Bicoid in the embryo have been analysed considering this kind of mechanism (Kicheva
et al., 2007; Gregor et al., 2007a; Wartlick et al., 2011).

Considering a single line of cells (one dimensional case), the spatial and temporal changes in morphogen
concentration C due to production, spreading, and degradation can be formally expressed using the diffu-
sion equation with linear degradation:

oC e
T Dﬁ —kC (4.1)
where C is the concentration of the diffusible signal, D is the diffusion coefficient (with units[um?/s]), x is
the distance from the source (in ym) and k is the degradation rate constant (units [1/s]). The distance, x, is
considered from the source boundary at x = 0 (where the morphogen is produced) to the boundary that
corresponds to the total length of the tissue x = L. Because the molecules of morphogen are constantly
produced at the source at x = 0, there is a constant flux (jo[molecules/um? - s]) of molecules coming from
the source. The spatial difference in concentration will cause the molecules of the morphogen to spread.
Over sufficient time, when the gradient does not change anymore, it is said to have reached a steady state.
Assuming that C(L) ~ C(o0) = 0, the steady state solution for gradients formed by diffusion and linear
degradation (Eq. 4.1) is:

Clx) = Co VB = e 4.2)

where A is the the decay length (or characteristic length) defined as the distance from the source at which the
gradient decays to a fraction of 1/e of Cy. The concentration at the source boundary Cy, is also known as
the gradient amplitude and depends on the flux of molecules across the source boundary jy, the diffusion D
and the degradation k over the tissue:

jo
Cy = ; 43
= bk (43)

in turn, the decay length A is related to the morphogen diffusion and degradation as follows:

D
A=y 7 (4.4)

In some cases, the ratio C(r,t)/C,(t) (where r = x/L is the relative distance to the source) is invariant
during development and the A is proportional to the tissue length L; then, it is said that the gradients
scales. The scaling phenomenon is said to occur as an adaptation of patterning to changes in organ size and
there are different hypothesis on how this might operate (Ben-Zvi et al., 2011; Wartlick et al., 2011)

Other gradient formation mechanisms for example, not including degradation, non-linear degradation, and
cell lineage transport are very comprehensively discussed in Wartlick et al., 2009.

In plants, active transport has been reported as very important aspect in the formation of gradients due to
time scales and spatial distances involved (Grieneisen et al., 2012).
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Box 2. Calculating the growth rate and shape change
This box explains how growth rates and shape change were calculated as a function of time. I will refer to
growth rates, but the same principles were applied to the analysis of shape complexity.

Growth is simply the change in area over time:

dA
E; (4.5)
while growth rate is defined as the proportion of growth over time:
1 dA
A ar (4.6)

Within sufficiently short time intervals growth can be estimated as linear or exponential, or by any other
function regardless of the underlying complexity of the real growth function (Tzur et al., 2009).

As the real model of growth or change in shape is unknown, two general possibilities were tested: area-
dependent (exponential) and area-independent (linear) cellular growth, given by the following equations:

1) Exponential growth:

Aia(t) = At 4.7)
2) Linear growth:

Ai(t) = A+ BAt (4.8)

where  and & are the linear or exponential growth constants respectively, A; is the cell area at ¢; and
At = t; 1 — t; is the time interval between two consecutive time-points. Different growth constants, «;, or
Bn, are assumed for every time interval (for example, ag or By for (o, t1) and aq or 1 for (¢, t2), etc).

Area-dependent growth
The change in area over time or growth can be expressed using the following differential equation:

dA
2 aA 4.
Tt (4.9)
From the solution of such equation (Eq.4.7), the growth constant assuming an area-dependent model
(Eq.4.9) is:

In(“)

To get the proportion of growth, one can divide the growth in Eq.4.9 by A. Thus, in this case, the growth
constant & coincides with the growth rate.

Area-independent growth

Under this model, the change in area over time is simply given by a constant:

dA
=5 (4.11)

2
Note that the growth constant B carries units[7-]; so, strictly speaking is not a rate [%] . Similarly, from the
solution of such equation shown in Eq. 4.8, the growth constant is calculated as:

_ A — A

p=""% 4.12)

The results obtained were independent on the model assumed.
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4.2.2 Cells grow and change shape differently according to their posi-
tion

The rate of growth and cell shape were calculated along the leaf taking into account differ-
ent spatial locations (absolute and relative) to assess if cells are changing size and shape
in a position-dependant manner. Because of the specific mode of cell growth and cell
shape change are unknown, two models (exponential and linear, see Box 2) were used to
calculate the growth rate and cell shape change, without qualitative differences.

The results are shown in Figure4.3 and Figure4.4 for the cell growth and the cell
shape, respectively (the number of cells considered are shown in Figure 4.5). The mean of
the growth rate and the cell shape change are shown colour-coded according to their abso-
lute (Figure 4.3A-C and Figure 4.4A-C) and relative position (Figure 4.3D-F and Figure 4.4D-
F). Note that when an absolute position is considered, the upper regions of the leaf are
present only at later stages of development (for example, the tip region corresponding to
949 - 1422 um is present only after 300 - 350 Hours After Stratification or HAS).

The cell area and the cell shape are higher at the tip than at the base of the leaf
(Figure 4.2,Figure 4.3A,D and Figure 4.4A,D) regardless of the spatial scale taken into con-
sideration, in accordance with the observation that cells are bigger and “more puzzle-like
shaped” at the tip of the leaf (Donnelly et al., 1999).

The growth and the shape change in early stages (up to 230 hours) taking a relative
position were very similar along the leaf (Figure4.3B,E and Figure4.4B,E). Later in de-
velopment, the cell growth and the cell shape change showed a clear separation of tip,
middle and bottom regions regardless of the spatial scale (absolute or relative) taken into
consideration. Interestingly, Figure 4.3 and Figure 4.4 show that the change happens in a
graded-fashion within the leaf, with cells at the tip growing and changing shape faster
than cells at the base of the leaf.

However, when the growth rate or the relative shape change is considered, it is evident
that in proportion cells at the tip are growing and changing shape slower than cells at the
bottom (Figure 4.2,Figure 4.3C-F and Figure 4.4C-F). This graded behaviour of cell growth
and shape taking the proportion of change is more evident but not dependant on the
relative position and this tendency is stronger for the cell growth than for the cell shape
change (see for example, Figure 4.3F and Figure 4 4F).

In the analysis of cell shape similar results were obtained using the cumulative differ-
ence (see Chapter 2) and entropy (see appendix Figure 4.25).

Importantly, the graded behaviour in growth and growth rates (and shape and rela-
tive shape change) is independent of the specific length of the region taken into account
(regions from 100, 200, 300 and 400um and different proportions of the leaf were eval-
uated giving the same result, not shown), suggesting that the graded behaviour is not
dependent of a gradient that has a specific range of action in absolute or relative scales
(i.e 100 um was suggested for the division zone).

Altogether, the results presented in this section suggest that cells are changing dif-
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A Areal growth rate 0 5%/h
TO1=143.6h T03 =160 h TO6 = 184 T09 =209 h T11=235h T12 =246 h
B Relative shape complexity change 0 6.5 %/h

T01=143.6 h T03 =160 h TO6 = 184 T09 =209 h T11=235h T12 =246 h

Figure 4.2: Cell growth rate and relative cell shape complexity. A) Growth rate is
similar across the leaf at early time points. Over time, however, cells at the tip of the
leaf are growing slower than cells at the base of the leaf. B) The change in cell shape
complexity (cumulative difference) is also similar across the leaf. Over time cells at the
base of the leaf show higher rates of cell shape change. The tip and base of each leaf
are aligned with one another. The colour gradient is the percentage of change in cell
area (A) and cumulative difference (B). Not to scale.

ferently according to their position: cells at the tip are growing and changing shape in
proportion slower than cells at bottom. However, to discard the possibility that cells
behave differentially not because of their position (absolute or relative) but because the
position they are transiting is different or because an intrinsic property of the cells (such
as their developmental age), a Lagrangian frame of reference was also evaluated and it is

presented next.
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Cell growth and Eulerian frame of reference
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Figure 4.3: Cell area varies in a graded-fashion from the base to the tip of the leaf.
A, D) Average cell area in absolute and relative scales, respectively. Taking the base of
the leaf as a reference, the cell area is on average larger at the tip of the leaf than at the
bottom. B) The change in area taking an absolute position is also larger at the tip and
decreases towards the base of the leaf. E) Considering a relative scale, the growth is
very similar at early stages of development but, over time it is possible to distinguish a
similar tendency as before: cells at the tip have higher areal growth. C, F) The growth
rate, however, shows that in proportion cells are growing slower at the tip of the leaf than
at the base. The cell growth and growth rate showed in B-C and E-F, were calculated
using using Eq.4.12 and Eqg.4.10 (see Box2), respectively. Error bars represent 1+/-
standard error. The time in the x-axis is measured in hours after stratification (HAS).

4.2.3 Cell growth and cell shape taking a Lagrangian frame of refer-
ence: following groups of cells.

Since growth within the leaf is spatially inhomogeneous, the absolute and relative po-
sition of cells changes during development (Figure 4.6). Indeed, if the position of a cell
is followed over time keeping the region of the petiole fixed (at absolute or relative dis-
tance of x = 0 or r = 0, respectively), it can be appreciated that cells are being displaced
(Figure 4.6B,C). This implies that a cell located nearby the base of the leaf, over time will
be localized further away from the base. For instance, a cell which centroid was located
at x = 95 um or r = 0.45 (starting position) will have a final position at x = 1044.7 um
and r = 0.67, after 155 hours of time lapse.

Because the position of cells is changing, perhaps the “information” that cells experi-
ence (or are exposed to) is also different. Then, to evaluate if the gradient of cell dynamics
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Cell shape and Eulerian position
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Figure 4.4: Cell shape is changing in a graded-fashion from the base to the tip of
the leaf. A, D) Cell shape complexity measured using the cumulative difference (see
Chapter 2), show a graded increase from the base to the tip of the leaf, in a very similar
fashion than cell area (compare Figure 4.3A,D). B, E) The absolute shape change is
higher towards the tip of the leaf than at the bottom. Cells located in the relative tip and
in the region [475-1422 um] changed shape rapidly compared with other regions. C-F)
The relative shape change shows that in proportion, cells are changing shape faster at
the bottom of the leaf. F) When the relative position is considered, there is not visible
difference in the relative shape change before 250 hours. Error bars represent 1 +/-
standard errors. The time in the x-axis is measured in hours after stratification (HAS).

is preserved when cells are changing their position, groups of cells (Lagrangian approach)
were followed and their cell growth and cell shape change were calculated.

To track groups of cells over time, one can assume that the final position of a group of
cells will also reflect its initial position. This is a reasonable assumption considering that
cells are displaced as a whole in only one direction (cells are “moving” away from the base
of the leaf) and they cannot change their neighbours. Thus, groups of cells were followed
taking as a reference their position at the last image of the time lapse and then, they were
tracked backwards in time. A fixed position along the leaf of 300 um will contain about
8-10 cells in length (total number of cells analysed are shown in Figure 4.8). This accounts
for the fact that cells are displaced differentially within the tissue due to inhomogeneous

divisions and internal tissue deformation.

The results of this approach can be seen in Figure 4.7. Strikingly, when groups of cells

are followed, they are still changing in a graded-fashion conforming to their position.
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Cell growth
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Figure 4.5: Number of cells analysed taking an Eulerian frame of reference in
absolute and relative position. A-B) Number of cells used to analyse the cell area and
dynamics of cell growth (relate with Figure 4.3). C-D) Number of cells used to analyse
the dynamics of cell shape change (relate with Figure 4.4). In the x-axis, the time points
(from 1-12) correspond to intervals between185.53 to 354.9 HAS (details are showed in
appendix of Chapter 3).

This tendency is more strongly apparent when the growth rate or relative shape change
is considered (Figure4.7C-F) and it is more evident for the cell growth than for the cell
shape.

However, these results can still be interpreted in two ways: 1) cells are changing ac-
cording to their (also changing) position or, 2) cells are changing differently due to dif-
ferences in their developmental stage. The last possibility is plausible because the spatial
gradient of cell dynamics overlaps with the spatial gradient of cell age (i.e differentiate
cells are at the tip whereas cells that just divided are at the base of the leaf). An additional
temporal scale, the cell age, was evaluated to distinguish between these options, and it
will be described in the next subsection.

4.2.4 Different temporal scales

To address the influence of the cell’s developmental stage on the dynamics of cell be-
haviour, it is also very important to separate the different temporal scales involved in the
dynamics of the cell growth and the cell shape. These different temporal scales can be
distinguished as:
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Figure 4.6: Cells in the leaf are changing position during development. A) The cell
marked with a red dot on the right will change its relative position (shifting upwards) at
later time points (left). B-C) Taking the position of the petiole as a reference (set to 0)
and tracking groups of cells (each indicated with a different colour) is possible to observe
how the position of a cell is changing in absolute (B) and relative scales (C).

1. Time of the plant. This is the time in which the plant has been developing from
its approximate germination (t, = 0, Figure4.9A) to the moment of imaging. It is
measured in hours after stratification (HAS, see Chapter 3).

2. Time of the cell. This refers to the time taking as a reference the cell division (i.e

time at division is f, = 0, see Figure 4.9B). It is also measured in hours and will be
refereed to as the cell age hereafter.

Once a cell division is identified (this is, when two cells in a given time point are recog-
nized as a single cell in the previous time point), the time of the daughters cells is set to 0
hours (Figure 4.9B, and corresponds to the “birth” time of the cell). Then, the cell age over
time is calculated as the difference between the subsequent time-points (in HAS) and the

time of birth of the cell. In this sense, aligning cells according to the time after division
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Cell growth and Lagrangian frame of reference
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Figure 4.7: Cell growth and cell shape dynamics taking Lagrangian frame of ref-
erence still show a gradient according to the position. The colour code indicates
groups of cells that shared the last position (at t=354.9 hours). A,D) The cell area and
cell shape showed a strong proximodistal gradient, where cells at the tip are bigger and
more complex than cells at the base of the leaf. B) The growth shows some small dif-
ferences among cells coming from different regions. E) The absolute change in shape,
however, shows that cells at the tip changed shape faster that cells that ended at the
base of the leaf. C,F) The growth rate and relative shape change shows that cells that
were located at the base of the leaf were growing and changing shape faster than cells
that ended up closer to the tip. Regions of 300 um in length contain 8-10 cells; the actual
number of cells is shown in Figure4.8. Averages with 1 +/- standard error are shown.
The time in the x-axis is measured in hours after stratification (HAS).

is comparable to analysing a “synchronized population” that otherwise is impossible to
analyse in plant development.

Next, to evaluate if cells are behaving in a position-dependant manner independently
of their cell age, I colour-coded the synchronized population (aligned by the time of
cell division) according to their cell position. Two extreme scenarios arise, depicted in
Figure 4.10. First, after aligning cells with their time, the position is not playing an impor-
tant role and therefore, the cell growth rates (colour-coded) are well-mixed (Figure 4.10A).
The other possibility is when considering the cell age, cells still behave differently de-
pending on their position (Figure 4.10B).

The results are shown in Figure4.11, Figure4.12 and Figure4.14 (and the number of
cells analysed are shown in Figure4.13 and Figure 4.15). The absolute cell area and cell
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Figure 4.8: Number of cells considering a Lagrangian frame of reference. The
colour code indicates groups of cells that shared their last position (every 300um). A
fixed position of 300um along the leaf will contain about 8-10 cells in length. In the x-
axis, the time points (from 1-12) corresponding to 185.53 to 354.9 HAS and are showed.

growth rates do not show any obvious separation depending on the position in Eulerian
coordinates (Figure4.11). In contrast, the absolute value of cumulative difference (as an
approximation for shape complexity) revealed a subtle separation depending on the posi-
tion (Figure 4.12A,D), meaning that cells located at the tip (absolute or relative) are wavier
and more complex than cells at the base of the leaf of the same age. However, when the
rates of shape change where evaluated, there was not an visible separation according with
the position (Figure 4.12B-C, E-F).

When a Lagrangian frame of reference is considered, cells do not present difference
in neither the absolute values nor rates of change of cell growth and cell shape, meaning
that the cohort of cells followed over time behave similarly when their age is taken into
account (Figure 4.14).

These results suggest that the developmental stage of the cell is strongly influencing
the dynamics of the cell growth and the cell shape, regardless of the position. Moreover,
the absolute values and rates of change in cell area and cell shape follow a very similar
tendency when cells are aligned considering its time after cell division. This can be appre-
ciated better in Figure 4.16, showing the dynamics in cell area and cell shape for several
experiments (without considering the position). Interestingly, cell area and the relative
growth rate follow a very clear trend, the first increasing and the latter decreasing over
time (Figure 4.16A,C).

Although cell shape complexity is also increasing over time in a similar manner to
cell area (Figure4.16A,D), the absolute and relative change in shape showed a differ-
ent tendency compared to the growth and the growth rate. This is in agreement with
the fact that, although cell area and cell shape complexity showed a strong correlation
(Figure 4.17A), the absolute change and relative change were not strongly correlated (Figure 4.17B-
O).

Despite of the strong tendency of cells to change depending on their age, some experi-

ments showed bigger variation than others (for example see ExpID3078-PA in Figure 4.16).
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Figure 4.9: Schematic representation of different temporal scales. Distinction of
different temporal scales allows to explore further the role of position and the predomi-
nant factor influencing the dynamics of the cells during leaf development. A) Schematic
representation of the time of the leaf, measured in hours after stratification (HAS). B)
The time of the cell or cell age, starting after its division (¢, = 0, highlighted in red).

To discard the possibility that this variation is explained because the synchronized pop-
ulation is formed by sub-populations of cells dividing once, twice, or n more times until
they commit to differentiation, cells were further separated according to the number of
divisions that were detected during the time lapse. The results are shown in Figure 4.18,
suggesting that there is not an obvious difference of cells after their first, second, third or
fourth division (see appendix Figure 4.26 and Figure 4.27 for other experiments).
Altogether, the results presented until now suggest that cells grow and change shape
strongly depending on their cell age, despite their position and regardless of the number
of divisions that they have pursued. Thus, the next question to gain insights in how
cell dynamics is regulated in a growing organ is to find out what determines the spatio-
temporal dynamics of cell division in a determinate organ. This topic will be briefly

discussed in the next section.
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Cell growth and Eulerian frame of reference

A Cell area B Growth C Growth rate
3500 40 0.08
©19-474
o 19-474 ©19-474 iy
S 3000 o 475-948 % *-476-948 7 } . 312—?322
j(‘% 2500 «949-1422) { = 30 ©949-1422) " 0.06
— . 3 <
o & M : = [ 2005 § !
Q. 22000 o £% f}' . © $ ¥
o 1 B ] N
E 21500 ii i . g » { . gooa ﬁ %;ii }
8 © 1000 L] ; [ " i }g. i -{ ° ‘;¥.‘f o is
Q !gé x 10 gj E (] §! ; { oot } i ? 5 ; 'i:‘;
< 500 Lig ii.&l s . .g‘ ; } ] . 0.01 } } L4 : ? ﬂ-g (]
o 50 100 150 200 0 50 100 150 % 50 100 150 200
Cell age (h) Cell age (h) Cell age (h)
D Cell area E Growth F Growth rate
3500 70 0.1
* ‘Bottom . s;:;m 0.09 < Botiom
- * ‘Middle i * Middle
S s000 « Middle =" * Tip — o008 . Tip
= 00 * Tip N§_ 50 o007
8 NE * ? E [ e q)006
a 2200 ° £40 . s
) 3 . v I I g . £ 008 ﬁ 1.
2 gkl & : B Ayt L
S o 3 i iﬂji} of . ,i.;i #iﬁ E D & 003 ﬁ{'{i ¥ T
& - :% o0z § g T
500 [ 10 Ry ¢ 3 %
&a 1 i : . 0.01 B F s g ooy
! * Cell fgfe (h) 0 20 o 50 Cell 'aogﬂe ) BEE) 200 % 50 Ce”1aogoe " 150 200

Figure 4.11: Cell growth and Eulerian frame of reference when cells are aligned
by their age does not show strong differences depending on the position. A D)
Regardless of the absolute or relative scales considered, cell area is independent of
cell’s position and follows a strong trend to increase over time. B,E) The cell growth
also shows that there are not visible differences depending on the position (absolute or
relative). C, F) This is further suggested when the growth rate is considered. Averages
with 1 +/- standard error are shown. Number of cells are shown in Figure 4.13.
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Figure 4.12: Cell shape dynamics and Eulerian frame of reference when cells are
aligned by age does not show strong differences depending on the position. A-D)
Cell shape complexity shows a slight difference depending on the position. Cells are on
average more complex towards the tip region taking an absolute and relative positions.
B,E) However, when the absolute change of shape is evaluated, there is not visible
differences. C,F) The relative shape change also show that the differences depending
on the position are minimal. Averages with standard errors are shown. Number of cells

are shown in Figure 4.13.

4.3 Dynamics of cell divisions within the leaf

Cell division occurs in a restricted spatial pattern, mainly localized at the base of the leaf
(Donnelly et al., 1999; Kazama et al., 2010; Andriankaja et al., 2012). In contrast with other
plant organs (i.e roots), the divisions disappear over time. Recently, it was reported that

cell divisions within the leaf are contained within a fix-domain of about 100 um from

the base of the leaf for several days until it abruptly disappears (Kazama et al., 2010;
Andriankaja et al., 2012; Lenhard, 2012).

Using in vivo time lapse data, I revisit this spatial and temporal pattern. In addition, I

explore some other characteristics of dividing cells such as the rate of division over time

and the length of the cell cycle.
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Figure 4.13: Number of cells considering a Eulerian frame of reference when cells
are aligned by age. A-B) Number of cells taken into account for the analysis of cell
area dynamics. C-D) Number of cells taken into account for the analysis of cell shape
dynamics. In the x-axis, the age categories (from 1-66) are showed. See also the
Methods section in this chapter.

4.3.1 Spatial and temporal dynamics of cell division: revisiting the cell

cycle arrest front

The cell cycle arrest front (or, division zone) was identified as the length from the base of
the leaf where the majority of cell divisions were detected (Kazama et al., 2010). Figure 4.19
shows the spatio-temporal dynamics of the division zone, taking 80% of the detected
divisions for three independent experiments (taking 90% showed a similar tendency).
Although these leaves correspond to different experimental conditions (see next section),
the behaviour of the overall leaf length and the division zone is very similar (Figure 4.19A).

Throughout leaf development, the proportion of the leaf that contains dividing cells
gradually decreases (Figure 4.19C). However, the absolute size of the division zone first
increased until approximately 350 um at about 220 hours and then, it decreases until cell

divisions were not detected by 330 hours (this was corroborated by manual inspection
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Figure 4.14: Cell area and cell shape dynamics taking a Lagrangian frame of ref-
erence when cells are aligned by their age does not show strong differences de-
pending on the position. The colour-code indicates the end position of groups of cells
(in this case 340 HAS). A,D) Cell area and cell shape are increasing over time without
a visible effect depending on the cell’s position. B,E) The absolute growth and absolute
shape change does not show any difference depending on the position. C,F) Similarly,
the relative growth and relative shape change does not show separation when posi-
tion was considered. Averages with 1+/- standard errors are shown (dots without error
bar represent single values data points). The number of cells considered are shown in
Figure 4.15.

of individual images for ExpID3002-PD and ExpID3078-PA). This behaviour was very
consistent among layers of the leaf, as is shown in Figure 4.19D, where the divisions in
the mesophyll were tracked manually (see also Figure4.28 in the appendix). This is in
agreement with the uniform expression throughout all cell layers of the B-type cyclin
gene CYCBI1:1, and further supports the use of the epidermis as a marker for tracking cell
proliferation in the leaf (Andriankaja et al., 2012).

Together with the spatial restriction of the region where divisions are detected, the
division rate (proportion of dividing cells per hour) is decreasing (Figure 4.20). There are
at least two possible explanations to account for the observed decrease in the division rate:
1) cells are increasing the duration of their cell cycle or 2) cells are leaving the cell cycle.

The results showed here support the second option (an exception is the leaf ExplD3148-
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Figure 4.15: Number of cells considering a Lagrangian frame of reference when
cells are aligned by age. A) Number of cells taken into account for the analysis of
cell area dynamics. B) Number of cells taken into account for the analysis of cell shape
dynamics. In the x-axis, the age categories (from 1-66) are showed. See also the
Methods section.

PA that was treated with auxin). Therefore, over time cells are dividing less frequently
and in a more restricted spatial domain.

These results support that the cell divisions are contained in a spatially restricted do-
main. However, in contrast of what was previously reported, the length of cell cycle arrest
front does not stay constant. Moreover, according to high spatio-temporal resolution in
vivo data, it does not decrease drastically either.

An outstanding question is how this spatio-temporal dynamics of cell division is reg-
ulated. Although the answer to this question is beyond the scope of this work, in the final

Chapter, I speculate about some possibilities.

4.4 Perturbation of the system: auxin treatments

In order to gain further insights into the regulation of the cell dynamics during leaf devel-
opment, additional time-lapse experiments adding auxin and its control were performed.

The motivation to test auxin as a first candidate is that it has been involved in the
transient arrest of growth during shade-avoidance syndrome (Carabelli et al., 2007), de-
velopment of the puzzle-like cell shape (Xu et al., 2010, 2011; Li et al., 2011) and regulation
of the cell divisions within the leaf (Lincoln et al., 1990; Hu et al., 2003; Guo et al., 2013).
When plants are exposed to shade, for example because neighbouring plants have over-
grown them, they arrest transiently leaf growth and redirect the growing machinery to
the stem in an attempt to overcome the shade. Interestingly, this temporal arrest of growth
depends on auxin-induced cytokinin breakdown (Carabelli et al., 2007). Auxin has also
been involved in the development of pavement cell shape during leaf development (Xu
et al., 2010, 2011; Li et al., 2011) and in the regulation of cell divisions within the leaf (Lin-
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Figure 4.16: The overall growth and shape dynamics follows a very similar trend
when the cell age is taken into account. A) Cell area increases over time in a very
similar manner. B) Growth has also the tendency to increase over time but the variability
is higher. C) The growth rate also shows a strong tendency, but it is decreasing over
time. D) Cell shape complexity is also increasing over time, but it shows higher variation
than cell area (A, specially ExplD3078-PA). E) Absolute shape change increases very
slowly and shows high variability in the three experiments analysed. F) The relative
shape change increases until approximately 50 h, and then decreases. Averages with
standard errors are shown. Each colour indicates an independent experiment. The three
leaves analysed correspond to ExplD3002-PD (no treatment), ExplD3078-PA (DMSO
added) and ExpID3148-PA (NAA added, see section 4.4) and are plotted separately to
appreciate the variation within experiments.

coln et al., 1990; Hu et al., 2003; Guo et al., 2013). In addition, auxin response (quantified
by DRY5) is not distributed homogeneously in the leaf during development (Figure4.21,
Aloni et al., 2003), but it presents a maximum towards the tip of the leaf, possibly leading
to different auxin concentration exposures. Then, the logic behind the experiment was
that if auxin is indeed involved in the mechanism that regulates the dynamics of the cell
growth, cell shape and/or cell division, these (or some of them) will be altered when the
plants are exposed to exogenous sources of auxin or in mutants where hormone signalling

or transport is impaired.
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experiments were used to calculate coefficient of correlation (r).

Mutants in auxin production and auxin transport (segregating triple yucca mutants
and pinl mutants, see appendix Figure 4.35) were prepared with a membrane marker.
However, these mutants show a significant alteration in the overall plant development
(yucca, pinl) and in leaf morphology (pinl), that the analysis of those could obscure the
results obtained and were not further analysed.

An analysis of different spatio-temporal scales of the auxin treatment (ExpID3148-PA)
and its control (ExpID3078-PA) was performed in the same way as described before. The
results are shown in the appendix Figure 4.29-Figure4.34. Similarly to previously dis-
cussed results, the rates of cell growth and shape change under auxin treatments showed
a gradient-like behaviour taking an Eulerian (Figure 4.29-Figure 4.30) and Lagrangian co-
ordinates (Figure 4.33) that dissapears after alignment by cell age (Figure 4.31, Figure 4.32,
Figure 4.34). Thus, there were no qualitative differences in the cell behaviour under auxin
treatment and its control. However, when the overall values and rates of change are com-
pared with other experiments, it is evident that the exogenous auxin treatment (20 nM)
decreases on average the cell complexity (Figure 4.22, see discussion).

Moreover, there was no a dramatic difference in the overall leaf length, the length
of the division zone or the relative division rate (Figure4.19A-C and Figure 4.20A). The
only alteration observed is that the average length of the cell cycle was increased under
auxin treatments (Figure 4.20B). However, this behaviour is observed just in one of the
two leaves analysed and repetition of this experiment and different auxin concentrations
will be needed to draw a conclusion.

4.5 Discussion and concluding remarks

The aim of this chapter was to gain understanding on the regulation of cellular dynamics

during leaf morphogenesis through the dissection of different spatial and temporal scales
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Figure 4.18: Cell area and cell shape dynamics change independently of the num-
ber of cell divisions pursued. The number in the legend indicates the number of
divisions detected within the time-lapse (the fourth division is likely to correspond to the
last division). A-C) In general, the overall tendency in cell area does not depend on the
number of divisions that a cell will perform. D) Cell shape shows a slight separation, that
should be analysed statistically. E-F) The absolute and relative shape change does not
show differences. Averages with standard errors for ExpID3002-PD are shown. Other

experiments are shown in the appendix Figure 4.26 and Figure 4.27.

involved in leaf development. This was achieved using a combined pipeline of long time-
lapse imaging and computer algorithms to extract cellular dynamics (described in Chap-
ters 2 and 3). This analysis allowed separating the role of position and developmental
cell age in the dynamics of cell growth and cell shape to re-evaluate the spatio-temporal

pattern of cell divisions during leaf development.

In addition to the overall gradient in cell area and cell shape complexity, the analy-
sis of their dynamics showed that there are also gradients of growth and shape rates at
the cellular level. This is consistent with previous studies that tracked growth focused
on regions of the leaf of Arabidopsis thaliana (Kuchen et al., 2012; Remmler & Rolland-

Lagan, 2012) or focused on late stages of development in other leaf species (Avery, 1933;

Schmundt et al., 1998; Granier & Tardieu, 1998).
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Figure 4.19: The zone where division takes place is not within a fixed distance. A)
Length of the cell cycle arrest front and total leaf length for different leaves (three inde-
pendent experiments) show a very similar tendency. B) Absolute length of the division
zone shows that the place where divisions occurs increases over time up to approxi-
mately 220 HAS, and then decreases. C) The proportion of the leaf where cells are
dividing is decreasing over time. D) The dynamics of the division zone follows a very
similar trend in internal layers (mesophyll). Importantly, neither of the relative nor the ab-
solute distance is constant as suggested in Kazama et al., 2010. The length of the cell
cycle arrest front showed here, considers the place from the base of the leaf where the
80% of the cell divisions took place (similar results were found when the 90% of divisions
were considered, no shown). The three leaves analysed correspond to ExplD3002-PD
(no treatment), ExpID3078-PA (DMSO added) and ExplD3148-PA (NAA added) and are
plotted separately to appreciate the variation within experiments.

Indeed, the growth rate and the relative shape change are smaller at the tip than at
the bottom of the leaf. This pattern reflects the fact that, when cell division arrests, cells
are saturating and slowing down their cell growth and shape change towards the tip re-
gion. These gradients prevailed when an absolute and relative Eulerian coordinates were
analysed, independently of the size of the region. Moreover, this graded behaviour also
persisted when groups of cells were followed taking into account their displacement due
to inhomogeneous division (and growth) and internal tissue deformation (Lagrangian
approach). Then, to distinguish between the possibility that the graded cell behaviour

111



4 Cell dynamics during leaf development

A Cell division rate over time
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Figure 4.20: Division rate decreases over time. A) The division rate is decreasing
over time. This indicates that at the same time as the division zone is becoming spa-
tially restricted, there is also a decrease in the frequency of cell division over time. The
division rate was calculate as the ratio between the number of cells that divide to the
total number of cells, divided by the time interval between time points (see methods
section). B) Length of cell cycle over time (time interval between two consecutive di-
visions) shows increasing and decreasing phases. Averages and standard errors are
shown. ExplD3148-PA (treatment with 20 nM of NAA) shows an increase in the cell
cycle length. However, this increase was not detected in the other leaf from the same
experiment (ExplD3148-PD)

Figure 4.21: Auxin response is localized at the tip of the leaf. Wild type Columbia
plant 7 days after stratification (DAS) expressing pmCherry membrane marker (red) and
DR5-Venus expressed in the nucleolus (green signal) shows that there is strong auxin-
response towards the tip of the leaf. Scale bar correspond to 30 pm.

was due to a “changing” position or, due to differences in developmental stage, an extra
temporal scale (the time of the cell) was included in the analysis. This was achieved by
aligning cells with respect to the time at their cell division, that is easily performed once
cell lineages have been identified (see Chapter 3).

Importantly, when the cell age is considered, the gradients of growth and shape rates
depending on the cell’s position disappear. This suggests that cells behave differently be-
cause of their age and not because the position and highlights the importance of dissect-
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Figure 4.22: Cell growth and cell shape under auxin treatments. A-C) Cell growth
shows a very similar trend among experiments. D) Cell shape complexity, in contrast,
decreased under auxin treatments. E-F) The absolute and relative shape is slightly
decrease under auxin experiments and follows a very similar trend than the growth rate.

ing not only the spatial but also the temporal scales in the analysis of the cell dynamics.

An important remark is that cells are behaving differently according to the position,
but not because of the position. On the contrary, the results presented here strongly sug-
gest that cell position is playing a minor role in determined the dynamics of cell growth
and shape. This is a challenging affirmation because cells at the tip of the leaf are rarely
dividing, so it is always a very limited sample size (number of cells considered are shown
in Figure4.13 and Figure4.15) and a statistical approach will be required to evaluate if
this difference is significant. However, if there is still an influence of the position, this is
minimal.

Thus, differences in developmental cell age provide an explanation for the long-standing
observed gradients of growth rates within the leaf and shows that it is not necessary to
attribute this behaviour to gradients in concentration of growth regulating substances, as
proposed before (Remmler & Rolland-Lagan, 2012).

Surprisingly, once the cell age is taken into account and a “synchronized population”
is evaluated, it is possible to distinguish a strong tendency of the growth rate and relative

shape change to decrease over time in all the experiments evaluated. This observation im-

113



4 Cell dynamics during leaf development

plies that the dynamics of cell growth and cell shape follow a very similar trend after cell
division, suggesting that division “resets” the dynamics of cell growth and shape. This
is a plausible possibility because during the cell cycle many proteins undergo synthesis
and degradation, that might reset the state of the cell. For instance, recently it was shown
that protein degradation during division “resets” the concentration of the members of the
network involved in the asymmetric cell division in the root stem region (Cruz-Ramirez
et al., 2012).

The strikingly similar trend on the growth rate and the relative shape change followed
by cells aligned with their cell age leads to the question on how cell growth and cell shape
dynamics are regulated after cell division. I could argue that cell shape complexity is
increasing because the combined action of an internal patterning mechanism (i.e Turing

instability) in a growing domain, which I will discuss briefly in the next chapter.

There are different proposals about what regulates the cell growth. One hypothesis
is that cells change their cell growth dynamics as they progress towards commitment to
differentiation. Under this scenario, cell growth rate could be modified by the number
of divisions performed (or, only by the last division before differentiation). However,
there was no noticeable different behaviour when cells were further separated depend-
ing on the number of cell divisions they underwent during the experiment (Figure 4.18;
the fourth division is likely to correspond to the last division because the tracking exper-

iments extended until divisions dissapeared from the leaf).

Other possibility is that cell growth regulation occurs by means of a size-sensing
mechanism. This implies that cells are growing depending on their size, topic that has

been widely discussed in unicellular organisms and in culture of animal cells (Jorgensen
& Tyers, 2004; Tzur et al., 2009; Turner et al., 2012).

A size control mechanism could be inferred by plotting the growth rate after cell di-
vision versus the area at the time of cell division and analysing their correlation (Turner
et al., 2012; Kafri et al., 2013). In the hypothetical situation in which there is a mechanism
that measure size (“sizer”), smaller cells grow faster in proportion than bigger cells and
the correlation is -1. On the contrary, no correlation (i.e the slope is zero) could suggest
that there is no size-dependence. In the case of the leaf, Figure4.23 shows that the cor-
relation for the cell growth is the intermediate value of -0.51 (compare with the relative
change in cell shape of -0.2). Note, however, that this approach is merely about assessing
a correlation, that not necessarily reflects causality. Thus, further analysis need to be done
to determine if cell growth is size-dependent in the leaf.

Another possibility is that instead of a “sizer”, the cell growth could be controlled by
means of a “timer” (Turner et al., 2012). Thus, cells slow down their growth over time.
Time averaging has been suggested in different contexts (Gregor et al., 2007b; Tostevin
et al., 2007; Wartlick et al., 2011; Saunders et al., 2012), but how cells could measure time
remains unknown.

Perhaps, as pointed out by Tzur et al., 2009, the underlying regulation of cell growth
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Figure 4.23: Cell growth and cell shape after cell division. In the hypothetical case
in which the growth regulation depends on the cell size, smaller cells grow proportionally
more than larger cells and the coefficient of correlation is -1. On the contrary, if the cell
growth is independent of the cell area, the correlation is zero. A) In the leaf, the growth
rate and the cell area at birth show a correlation of -0.51, indicating that the cell growth
might be influenced by the cell area at birth time (see main text). B) The proportion
of shape change is poorly correlated with the cell area (r= -0.213). The time (in HAS)
where the divisions were detected is colour-coded. Further statistical analysis will be
required to test if the putative area-dependence in also modulated over time.

could be more complex than just a “sizer” or a “timer” and might involve both compo-
nents. For instance, it could be that cell growth is regulated by the cell size but this regula-
tion is different over time (early and late stages during leaf development, see Figure 4.23),
or different during the cell cycle (variation depending on the cell cycle phase, see Turner
etal.,2012; Tzur et al., 2009; Kafri et al., 2013) or in different moments during development

(as in the shoot apical meristem and sepal, reported in Schiessl et al., 2012).

Another important implication after the analysis of the cell growth and the cell shape
in a synchronized population is that cell division goes from being just a subdivision of the
space (Su & O’Farrell, 1998), to have a role in influencing the dynamics of cell growth and
shape in a tissue. Therefore, the analysis of the spatial and the temporal patterns of cell

divisions within the leaf is also very important for understanding organ morphogenesis.

With this in mind, I revisited the previously published dynamics of the region where
cell divisions take place, also called “the cell cycle arrest front”. In my opinion, the name
“cell cycle arrest front” is misleading because cells could continue “cycling”, through
endoreduplication, so I refer to it as division zone or proliferation zone. Importantly,
using speechless simplifies the analysis of the cell divisions that are independent of the
stomatal lineage and that potentially follow a different dynamics (White, 2006).
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4 Cell dynamics during leaf development

The results presented here supports the existence of a region within the leaf where the
cell division occurs more frequently (Donnelly et al., 1999; Nath et al., 2003; White, 2006);
however, there were important differences regarding the spatial and temporal dynamics
previously suggested.

First, it was proposed that the division zone is contained within a constant distance
region of 100 ym +/- 14 ym (mean and standard deviation) from the base of the leaf
(Kazama et al., 2010; Lenhard, 2012; Tsukaya, 2013). However, tracking of cell divisions
obtained through in vivo imaging showed that the division zone is not staying at fixed
distance. Rather, it is increasing approximately 350 um at 220 HAS and then, it decreases
until disappears (at around 330 HAS, see Figure4.19). This discrepancy in the results
could be explained because in previous studies, cell divisions were indirectly inferred
rather than directly tracked. Indeed, Kazama et al., 2010 based the measurement of the
position of the division zone on the PCYB1,1::CYB1,1::GUS expression pattern. While An-
driankaja et al. (2012) defined the proliferation zone very indirectly using as a criteria the
relation between cell circularity (score greater than 0.389, see Chapter 2 for a discussion

on the shortcomings of this measure) and small cell area (smaller than 261 um?).

Secondly, it was proposed that the cell division did not dissapear gradually down the
leaf, but rather, was established and abolished abruptly within a day (Kazama et al., 2010;
Andriankaja et al., 2012). Nevertheless, the data presented here shows that the decrease on
cell division is rather gradual. This discrepancy in the results obtained could be explained
because using solely the criteria of cell circularity and cell size to define the proliferative
zone make impossible to detect low frequency cell divisions. For instance, sometimes
cells with high cell shape complexity could still divide (although less frequently), leading
to miscalculations when cell shape is taken strictly as cell differentiation. In addition, the
interval between the time of imaging of previous reports is more coarse than the achieved
in this study. Thus, measuring the cell division zone indirectly or without enough spatial
and temporal resolution, could give the false impression that cell division “abruptly”

disappears.

Importantly, over time the relative frequency of cell division is also decreasing. Thus,
cell division is more confined in space at the same time as fewer cells divide. A decrease
in the relative frequency of cell division could be attributed to a prolongation of the cell
cycle. However, this is not supported by the experimental data (Figure 4.20B) and it is
more likely that an increasing proportion of cells are leaving the cell cycle, in agreement

to previous proposals (Asl et al., 2011).

An outstanding question is what regulates the dynamics of the division zone until it
disappears. The analysis of the spatial pattern of cell division shows that the possibility
of a gradient determining its spatial dynamics could be considered and some speculative
options will be discussed in the general discussion at the end of this work (Chapter 6,

section 6.3).

As a first attempt to gain further insights into the regulation of cell dynamics (cell
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growth, cell shape and cell division), I performed some tracking experiments under auxin
treatments. This hormone has been involved in the transient arrest of growth during
shade-avoidance (Carabelli et al., 2007), in the development of pavement cell shape (Xu
et al., 2010, 2011; Li et al., 2011) and in the regulation of cell divisions within the leaf
(Lincoln et al., 1990; Hu et al., 2003; Guo et al., 2013). Therefore, it was expected that the
dynamics of the cell growth, the cell shape and/or the cell division (or some of them)
would be modified when the plants are exposed to exogenous sources of auxin.

As mentioned before, the auxin treatment (using 20 nM NAA) decreased the cell
shape complexity of pavement cells without altering the overall length /width of the leaf.
This is consistent with the previous reports (Xu et al., 2010, Grieneisen et al., 2013a), that
suggested that the influence of auxin in cell shape morphogenesis is a concentration-
dependent feature acting on the patterning that underlies the jigsaw puzzle-like cell shape
and that higher concentrations of auxin could inhibit the formation of new lobes (and
therefore, decrease the shape complexity). However, some other shorter time-lapse ex-
periments showed increased cell shape complexity using the same concentration of 20
nM NAA (not shown here).

Besides the cell shape complexity, the only variable that showed alteration under
auxin treatment was the length of the cell cycle. However, analysis of other leaf within
the same experiment (ExpID3148-PD) did not show this increase (Figure 4.24). Therefore,
further tracking experiments under different auxin concentration and the analysis of mu-
tants altered specifically in cell division through the influence of auxin (such as ARGOS
and AXR1) will be needed to corroborate this effect.

Thus, the results of auxin treatments suggest that the influence of auxin in the intra-
cellular patterning that underlies complex shapes could be separated from the effect of
the hormone in cell divisions and/or leaf growth (see also Chapter 6, section 6.6).

Importantly, the pipeline presented here and the dissection of spatial and temporal
scales at the cellular level will facilitate the analysis of the regulation of the cell dynam-
ics. Although the distinctions between Eulerian and Lagrangian frames of references is
important for the evaluation of cell dynamics, an analysis taking these two coordinate
system into account has scarcely been addressed in plant morphogenesis (Silk & Erick-
son, 1979).

Remarkably, this is the first time that the dynamics of cell shape is evaluated in such
a quantitative way. Although the cell shape and the cell area follow a very similar trend
and the overall qualitative behaviour was similar (i.e. both showed a graded behaviour
over space), the rates of change in these two aspects differ slightly. Further work will
focus on the analysis of the specific shape of the curves quantitatively (for example, fit-
ting curves under different models and statistical analysis) and will be very important to
further characterize the cell behaviour.

Although the precise regulation of the cell dynamics that underlie the leaf morpho-

genesis is beyond the scope of this work, the analysis of cell growth, cell shape and cell
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division in relevant spatio-temporal scales enables the re-evaluation of previous concep-

tions and opens new hypothesis (see Chapter 6).

4.6 Materials and Methods

Cell growth was calculated using the real cell area extracted from 2D projections (see de-
tails in Chapter 3). Similarly, the change on cell shape complexity was calculated using
the cumulative difference and entropy (Chapter 2). Cumulative difference was calculat-
ing using 2-50 L, modes. Entropy followed a similar trend (for example, Figure 4.25 in
the appendix)

Negative values in the rate of cell growth and cell shape change were eliminated be-
cause they are considered errors of the image, segmentation or tracking procedure. More-
over, pavement cells on the leaf margins were excluded from the analysis because it is not
possible to take a complete representation of these cells in the 2D projections.

The rate of change in cell area and cell shape showed in the main text, were calculated
using Eq.4.12 and Eq. 4.10 (see Box2, see Figure 4.24 in the appendix).

Mesophyll division zone was set manually, looking at two consecutive images of the
time lapse and assigning a blue dot to cells that will not divide in the next time point and
green dot to cells that will divide (see appendix Figure 4.28).

For auxin treatments, the medium was supplemented with the synthetic auxin NAA
(1-naphthaleneacetic acid) from an stock solution of 20 mM to produce a final concen-
tration of 20 nM NAA while the control experiment was supplemented with the same
volume of DMSO (dimethyl sulfoxide), the solvent of NAA.

The age of the cells was calculated as:

birth_time = cell.snapshots[cell.born_at].has
has = cell.snapshots[k[i+1]].has

cell_age = has - birth_time

where cell.snapshots is the k number of time points within the time-lapse experiment
and 1 <i <k . has is the time in hours after stratification (see details in appendix of Chapter
3). The age categories correspond to the number of each element of the “cell age” array.

The relative division rate was calculated as:

relative_division= (Number of dividing cells/ Total number of cells)/ time_interval

Plots were generated using python and MATLAB scripts. Correlation coefficients
were calculated using MATLAB.
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Figure 4.24: Gradients in cell growth are independent on the underlying model
assumed. A,C) Cell growth assuming a linear model and taking and absolute position
(A) strongly resemble the cell growth assuming an exponential mode of growth (C). In
the same way, when considering the relative position, B) the cell growth under a linear
model shows a very similar behaviour than D) the cell growth assuming an exponential
model. The same behaviour occur when the cell shape is analysed (not shown). See

also Box2.

4.A Appendix:
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Figure 4.25: Entropy follows a similar trend than cumulative difference. The time
of the leaf and Eulerian frame of reference are considered. Compare with Figure 4.4.
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Figure 4.26: Cell area and cell shape dynamics change independently of the num-
ber of cell divisions pursued (ExpID3078-PA). Related to Figure 4.18 and Figure 4.27.
A-F) No differences are detected when the number of divisions performed are taken into

consideration.
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Figure 4.27: Cell area and cell shape dynamics change independently of the num-
ber of cell divisions pursued (ExplD3148-PA). Related to Figure 4.18 and Figure 4.26.
A-F) No differences are detected when the number of divisions performed are taken into

consideration.
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A HAS=199.25 HAS=209.95 HAS=220.42 HAS=232.62

Figure 4.28: Mesophyll divisions were tracked manually. A) 2D-projections varying
the threshold between surface (see Chapter 3), make possible to visualize internal layers
(mesophyll). B) Cells that will divide in a consecutive time point (towards the right) were
identified visually and marked with a green dot. The rest of the cells were marked with a
blue dot.
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Figure 4.29: Time of the leaf (HAS) and Eulerian frame of reference showing the
growth for auxin and its control (+DMSO). No obvious difference is found when com-
paring the cell area, growth and growth rate in the control and auxin treatment.
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Figure 4.30: Time of the leaf (HAS) and Eulerian frame of reference showing the
cell shape for auxin and its control (+DMSO). There is not obvious difference between
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Figure 4.31: Time of the cell (cell age) and Eulerian coordinates of reference
analysing the cell growth under auxin and its control (+DMSO). No differences are
appreciated between these two experiments.
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Figure 4.32: Time of the cell (cell age) and Eulerian coordinates of reference
analysing the cell shape for auxin and its control (+DMSO). No differences are ap-
preciated in the experiment with auxin and the control experiment.
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Cell growth and Lagrangian frame of reference
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Figure 4.33: Time of the leaf (HAS) and Lagrangian frame of reference for the anal-
ysis of the cell growth and the cell shape for auxin and its control (+DMSO). The
last time point in the analysis of cell growth corresponds to t=15 for both experiments,
corresponding to 280 HAS (DMSO) and 281 HAS (+NAA). The last position for the anal-
ysis of cell shape was the time point 13 and 14 corresponding to 264.57 HAS (DMSO)
and 267.85 HAS (NAA), respectively. No differences are obviously appreciated.
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Figure 4.34: Time of the cell (cell age) and Lagrangian frame of reference for the

analysis of the cell growth and the cell shape for auxin and its control (+DMSO).
The time point that was taken as a reference to group cells correspond to 280 HAS

(DMSO) and 281 HAS (+NAA). No difference is appreciated between the experiment

under auxin and its control.
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4 Cell dynamics during leaf development

A Wild type (10 days) Doble heterozigous yuc12-1/-oyéjac;;-)/- and homozygous yucé.

B Wild type (8 days) pin1 (8 days)

Figure 4.35: Mutants involved in auxin biosynthesis and auxin transport present
strong developmental defects. A) Wild type (right) and yucca mutant (left) on the same
stage and growing in the same conditions showed dramatic differences in organ size. B)
Wild type (right) and pin1 mutant (left) on the same stage. The mutant show fusion of
leaves, defects in phyllotaxis and were smaller that the counterpart wild type control.
The days refers to days after stratification.
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Chapter 5

Cell shape influence on intracellular
dynamics

Abstract

One of the most characteristic features of pavement cells is their geometry. Although the
molecular and genetic basis of cell morphogenesis is invaluable for the understanding of
cell morphogenesis, a less explored topic is the effect that cell shape could impose in the
intracellular dynamics that underlies cell shape acquisition. In this chapter, [ review some
relevant literature suggesting that cell shape is not just the result of molecular interactions
but, at the same time, it could have an active role for intracellular patterning. I also
discuss some hypothesis on how the cell shape could influence the intracellular dynamics.
Finally, I speculate about the role of pavement cell geometry in the polarity that underlies
the lobe-indentation patterning, emphazing the potential role of the dynamics of growth

and shape obtained through long time-lapse experiments and image processing tools.
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5 Cell shape influence on intracelluar dynamics

5.1 Introduction

Cells are shaped in accordance with their developmental context and their final shape is
highly correlated with their function. A lot of effort has been invested in dissecting the
molecular basis of cell morphogenesis, identifying small GTPases and the cytoskeleton
as very important players in plant and animal cell morphogenesis (Etienne-Manneville
& Hall, 2002; Yang, 2008). Strikingly, these conserved proteins regulate a multitude of
cellular functions including cell adhesion, cytoskeletal remodelling (hence, mechanical
stresses), spreading, motility, cell morphogenesis and polarization (Etienne-Manneville
& Hall, 2002).

Although the molecular basis of cell morphogenesis is by no means complete, another
aspect that has been less discussed is the potential influence of cell geometry in diverse
intracellular processes. Consider, for example, that the cell shape represents the space
in which all intracellular reactions take place; thus it imposes certain constrainst in the
molecular dynamics within the cell. Specially interesting is the possible feedback on the
molecular players involved in cell morphogenesis as well, a feedback of cell shape that
has not considered before.

In this chapter I discuss the possible effect of cell shape in intracellular dynamics.
I start by providing some experimental examples where cell shape has been suggested
to play an active role in the dynamics that underlie some key developmental processes
at the cellular level. Then, I discuss some theoretical hypothesis on how cell geometry
could influence intracellular dynamics during development, pointing out some of the
key assumptions. Finally, in light of the shape and growth dynamics of pavement cells
obtained using long time-lapse experiments and image processing tools (Chapter 3), I

discuss the potential role of the cell geometry during pavement cell morphogenesis.

5.2 Influence of cell shape changes during development

In this section I review some examples that suggest that cell shape is an important fac-
tor influencing development. The best documented examples can be classified into two
groups: 1) cell differentiation and 2) cell division. In these studies, cell shape has been
physically or genetically manipulated to adopt a particular geometry (round, star, branched
etc.) from which, the effects of such distortion are measured. In other studies when shape
manipulations were not possible, the importance of cell geometry was suggested through

the use of multilevel computational models.
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Influence of cell shape changes during development 5.2

5.2.1 Role of cell shape in cell differentiation

While differentiation may cause changes in the cell shape, several studies have suggested
that changes in the cell shape themselves can alter cell differentiation. Experiments where
the cell shape was manipulated from round to spread, by changing the area of contact
with the substratum in tissue culture (Figure5.1), showed that cell spreading was often
a prerequisite for proliferation while cell rounding was associated with maintenance of a
differentiate state in animal epithelial cells (Chen et al., 1997; Watt et al., 1988; Roskelley
et al., 1994; Ingber, 1993a). Keratinocytes that were manipulated to be round, expressed
higher levels of proteins related with cell differentiation (for example, involucrin) com-
pared with spread cells (Watt et al., 1988). Similarly, in mammary epithelial cells, round-
ing was necessary for the expression of proteins such as casein, characteristic of these cells
when they differentiate (Roskelley et al., 1994).

Cell shape changes from round to spread were also related with cell survival. When
capillary endothelial cells were manipulated to be flattened and spread, cell survival was
significantly favoured compared with cells that were restricted to be round, regardless
of the area of contact with the substrate (that will control how spread the cell is) or the
specific combination of adhesion receptors in the substratum (Chen et al., 1997). These ex-
amples suggest that cell shape changes themselves (i.e rounding) could influence certain
cell types to undergo differentiation or entry to apoptosis (Figure5.1).

Cell shape can also influence the commitment towards a specific cell fate, as suggested
in the case of human Mesenchymal Stem Cells (MSC). Those multipotent cells are de-
rived from bone marrow and can differentiate into bone cells (osteoblast), cartilage cells
(chondrocytes) and fat cells (adipocytes). Manipulation of MSC shape using patterned
substratum (Figure5.1A,B) showed that changes on their shape from round to spread
were enough to favour a specific cell fate pathway: flattened and spread cells became
osteocytes whereas round cells underwent adipogenesis (McBeath et al., 2004). Differ-
ential commitment dependant on cell shape was also suggested by experiments using
microcontact printing techniques to manipulate the cell shape to acquire diverse geome-
tries with different curvatures and aspect ratios (rectangles, star, etc.). Osteogenesis was
tavoured when the imposed shape had high aspect ratio (such as rectangular shapes) and
shapes with high curvature; conversely, adipogenesis was preferred in circular shapes,
and shapes with convex sides (Kilian et al., 2010).

The effect of cell shape in fate acquisition was also shown by culturing MSC cells
on top of nanotubular structures with different diameters; cells were forced to elongate
and protrude lamelipodium according to the diameter of the nanotube. Interestingly,
osteogenesis was favoured just by modifying the dimensions of the nanotubes (that in
turn, modified the elongation of MSC cells) without the influence of any osteogenesis
inducing media (Oh et al., 2009). This reinforces the hypothesis that the change on the cell

shape itself is important for the cell fate specification on these cells.

The molecular basis of the influence of cell shape in differentiation of MSC cells has
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Differentiation Cell cycle progression
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Figure 5.1: Cell shape manipulation by changing the size of the substratum. A,
B) Cell shape in culture can be manipulated by changing the size of the micropatterned
substratum because cells can spread differently depending on the available adhesive
area. B1) If the substratum is small, the contact area of the cell and substratum is also
small and cells tend to round up. B2) Conversely, if the substratum area is big, cells are
allowed to spread and as a consequence, cells become flat. B3) However, if the area of
substratum is small but distributed in a spaced pattern, cells can still spread and acquire
a flattened shape. C) When cells were forced to be round, they tended to differentiate
or entry into apoptosis while cells that could spread, continued growing and progressed
through cell cycle. These shape effects do not depend on the area of contact or the
specific composition of substratum, suggesting that cell shape itself is actively involved
in regulating these processes.

been correlated with small GTPases and cytoskeleton (Figure5.2). Spread cells showed
enhanced activity of RhoA GTPase compared with round cells. Interestingly, increasing
RhoA activity by itself could switch MSC commitment to osteoblast and, conversely, inhi-
bition of RhoA results in adipogenic differentiation. However, when the shape was fixed
to be round or spread, neither constitutive active nor dominant negative RhoA could
drive osteogenesis or adypogenesis, respectively. Only overexpression of a RhoA effec-
tor, Rho kinase (ROCK) lead to osteogenesis independently of the shape (McBeath et al.,
2004). This molecule, ROCK kinase, mediates actin cytoskeletal tension and stress fiber
formation by activation of the myosin light chain kinase, which in turn, activates the mo-

tor protein myosin IL
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Influence of cell shape changes during development 5.2

Independent experiments reaffirmed the importance of the cytoskeleton for differen-
tial commitment upon MSC shape manipulation. Cell shapes with high curvature (i.e
pointy star) that favoured an osteogenetic fate showed higher expression of myosin Il and
vinculin compared with shapes with concave sides (like a flower-shape) that favoured
an adipocyte commitment. Furthermore, disruptions of cytoskeleton using cytochalasin
D (inhibits F-actin polymerization), blebbistatin (inhibits myosin II) and Y-27632 (which
inhibits ROCK kinase, involved in actin-myosin tension) caused a decrease in osteoge-
nesis with the corresponding increase of cells adopting an adipogenic fate regardless of
the imposed shape (Kilian ef al., 2010). In addition, cells manipulated to become highly
elongated also induced high cytoskeletal stresses that led to osteoblast differentiation (Oh
etal., 2009). Then, a contractile cytoskeleton promoted an osteogenic fate whereas disrup-
tions of contractility (by certain shapes or chemical treatments) favoured an adipogenic
outcome, suggesting a requirement for cytoskeletal contractility in the shape-dependent
influence of differentiation (McBeath et al., 2004; Oh et al., 2009; Arnsdorf et al., 2009; Kil-
ian et al., 2010 and Figure 5.2). This correlation of high stresses conferred by cytoskeleton
and osteogenetic fate acquisition may be related with the native environment of bone
cells, namely, bone tissue is stiff (then, cells elongate) and the fluid flows inside the voids
(where bone cells develop) might confer an extrinsic source of stress within the bone
(Arnsdorf et al., 2009; Kilian et al., 2010).

5.2.2 Role of cell shape in cell division

The role of the cell geometry in cell division is perhaps one of the most studied cases
where the cell shape influences the position of the plane of division.

For example, the division plane specification of the rod-shaped bacterium E. coli is
determined by the complex MinCDE that is influenced by the cell shape. The MinCDE
complex is a well characterized system that oscillate at the extremes of the bacterium and
inhibits the formation of tubulin-like FIsZ, ensuring the formation of the division plane
at the centre of the cell (Moseley & Nurse, 2010). When the shape was genetically ma-
nipulated to be round or branched, the oscillations still occurred along the longest axis,
with the subsequent change on the plane of division. When there was not a clear long
axis (in round cells), the direction of the MinD oscillations were modified randomly, as
well as the plane of division (Corbin et al., 2002; Varma et al., 2008). These experiments
suggested that cell shape per se, and not the extremes of a rod-shape, influences MinCDE
movement. Recently, this observation was confirmed by the analysis of the dynamics of
this complex when the purified proteins were allowed to interact in chambers of diverse
shapes, corroborating that the geometry imposes constraints on where MinCDE assem-
bles and moves (Schweizer et al., 2012).

In eucariotes, the short axis rule, namely the plane of division lies in the shortest axis

of the cells, is a shape-dependent feature of cell division that has been reported in am-
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Figure 5.2: Cell fate acquisition in human mesenchymal stem cells (MSC) is influ-
enced by the cell shape and mediated by Small GTPases and cytoskeleton. Spread
cells showed enhanced activity of RhoA GTPase compared with round cells. Further-
more, increasing of RhoA activity by itself could switch MSC commitment to osteoblast
and, conversely, inhibition of RhoA results in adipogenic differentiation. RhoA, in turn,
activates the Rho-kinase (ROCK) that is involved in regulation of actin-myosin contrac-
tility.

phibian, sea urchin eggs, mammals and plants (Gray et al., 2004; Thery & Bornens, 2006;
O’Connell & Wang, 2000; Minc et al., 2011; Besson & Dumais, 2011). Shape manipulations
of mouse eggs showed that their spindle and cleavage plane can be redirected such that
their division plane lay along the experimentally imposed short axis (Gray et al., 2004;
O’Connell & Wang, 2000). This observation was confirmed by an elegant experimental
setting where the shape of sea urchin zygotes is systematically manipulated to adopt cer-
tain shapes by placing those cells inside microfabricated chambers of diverse geometries
(Minc et al., 2011). These results suggest that cell shape could override other signals when
changes in shape are externally imposed.

Furthermore, recent experiments also showed that cell rounding at the onset of mitosis
is a normal and necessary event for the correct formation of the spindle, and subsequent
cell division. For example, an abnormal chromosome segregation occurs when HelLa
cells were mechanically prevented to change shape (Matthews et al., 2012; Lancaster et al.,
2013). Strikingly, this behaviour depends on Ect2 localization, a Rho guanine exchange
factor (RhoGEF) protein, that participates in the activation of RhoA (Matthews et al., 2012;
Lancaster et al., 2013), similarly to the players involved in cell fate decision discussed in

the previous section.
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How cell shape could influence spindle orientation has been discussed recently. Cor-
rect division in experimentally manipulated shapes was dependant on microtubule (MT)
integrity (Minc et al., 2011; Lancaster ef al., 2013). This observation led to the suggestion
that cell shape could be sensed by MT, which exert pulling forces that centre the nucleus
and spindle underlying the site of cell division (Minc et al., 2011). In addition, cell shape
changes (i.e. rounding) could be important for keeping the chromosomes in the range of
MT and thus, a critical length of microtubules that 'reaches’ chromosomes is needed; this
was supported by the rescue of the defects on chromosome segregation in manipulated

cell shapes by allowing the increase on MT length (Lancaster et al., 2013).

Other possible mechanism by which MT could be regulating the division plane is that
MT could transport and deliver regulatory signals. For example a complex of microtubule-
binding motor protein MKLP1 and a Rho GTPase activating protein (RhoGAP) binds to
a Rho guanine nucleotide exchange factor (RhoGEF) to activate Rho protein at the site of
furrow formation. Then, stable microtubules could deliver the activator RhoGEF at the

places of furrow formation (Howard, 2009).

Another possibility is that there is something else regulating MT dynamics, and thus
the effect of cell shape through MT is an indirect consequence of an upstream process
such as forces (mentioned later in this chapter) or intracellular gradients. In the context
of cell division, it was proposed that intracellular gradients involved in mitotic spindle
localization could feedback on MT nucleation and stabilization. The Ran-GTP shows a
nucleo-cytosplasm gradient during interphase (Kalab et al., 2002). This protein, alternates
from a guanosine triphosphate GTP-bound active form (Ran-GTP) close to chromosomes
to a guanosine diphosphate (GDP)-bound inactive form (Ran-GDP) in the cytoplasm, and
participates in the delivery of cargoes during the assembly of the mitotic spindle and nu-
clear envelope. It has suggested that this intracellular gradient could provide a positional
marker for spindle formation by liberating cargoes required for MT polymerization and
organization, in a gradient-dependent manner (Kalab et al., 2002; Caudron et al., 2005).
Thus, an intracellular gradient could modulate MT assembly and stability (Howard, 2009;
Kalab et al., 2002; Niethammer et al., 2004). Cell geometry, however, could also influence

such a putative intracellular gradient as will be discussed in the next section.

Finally, another suggested possibility in which cell shape influences cell division, that
does not depend directly on MT, is that geometric cues act together with polarity deter-
minants. The second cell division in C. elegans requires the correct expression of PAR
proteins. The spindle failed to locate in the correct place just when both the distortions
on cell shape (to be round instead of elongate) and the mutation par3 were present but
not when they were separate (Tsou et al., 2003). This suggests that geometrical constraints
imposed by the cell shape could provide a default guiding cue in the absence of cell po-
larity (Thery & Bornens, 2006). An unexplored question is the influence of the cell shape
in the mechanism involved in the localization of the polarity cues (i.e PAR proteins) in

the appropriate place.
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5.2.3 Examples of the influence of cell shape in intracellular patterning
in plants

Cell shape acting as an active rather than a passive player on plant development has
rarely being discussed. The only example of the influence of cell shape changes in cell pat-
terning was proposed in lateral root initiation using computational modelling. Laskowski
and collaborators showed that the cell shape changes (elongation) due to root curvature
in the differentiation zone influences auxin accumulation on the outside of that curve.
This local auxin accumulation caused by cell elongation also enhances AUX1 (auxin im-
porter) localization, that in turn, positively feedbacks to increase the auxin concentration
even more. They suggested that the feedback between the influence of cell shape, auxin
and its transporters lead to stable patterning underlying lateral root initiation (Laskowski
et al., 2008).

Until now, I have discussed some experimental examples where the cell geometry,
rather than being just the resultant of molecular interactions could play an active role in
different aspects of development. This leads to the question on how the cell shape could
by itself influence intracellular dynamics. Some hypothesis will be discussed in the next

section.

5.3 How the cell shape could influence intracellular pat-
terning?

Experimental settings where the cell is forced to acquire a particular shape and modelling
experiments have suggested that cell shape could influence actively the intracellular dy-
namics that lead to differentiation, position of the plane of division, or lateral root initi-
ation, to mention just some examples. The mechanistic ground in which cell geometry
could influence those aspects has scarcely being discussed. Broadly, there are two alter-
natives on how cell shape could affect the intracellular dynamics: mechanical influence
and biochemical influence. The former involves the role of forces and stresses and the

second refers to role of biochemical interactions in signalling pathways.

5.3.1 Mechanical influence

Cell shape affects the pattern of stresses that a cell experiences; in turn, a change in
cell shape could induce a specific cellular response according to the mechanical stimuli.
Mechanotransduction or the ability of a cell to respond to mechanical stimuli has been
reported in some animal cells. In this section, I will mention briefly some examples and
some suggested possibilities on how mechanical cues could be transduced by the cell.

Perhaps the most studied examples of molecules that respond to mechanical perturba-
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tion are stress-sensitive ion channels (reviewed in Sukharev & Sachs, 2012). In plants there
are several putative mechanosensitive channels (Monshausen & Gilroy, 2009; Hamant
et al., 2010). An example of mechanical-induced channels are the plant proteins homol-
ogous to bacteria mechanosensitive channels, whose mutant affect CI~ changes in root
cells (Haswell et al., 2008). However, to my knowledge, none of these have been con-
tirmed.

Recently, an increase amount of examples of transcriptors factors able to transduce a
mechanical input have been reported (see a review in Mendez & Janmey, 2012). An in-
teresting example is the transcriptional regulators YAP /TAZ that have suggested as part
of the signal transduction pathway of mechanical cues exerted by the extracellular ma-
trix (ECM) rigidity and the cell shape. Upon shape manipulation, spread cells showed
nuclear expression of these proteins while small and round cells showed cytoplasmic ex-
pression. Interestingly, YAP/TAZ nuclear local