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Abstract  

Silicon nanoparticles (SiNPs) hold prominent interest in various aspects of biomedical 

applications. For this purpose, surface functionalization of the NPs is essential to stabilize 

them. A facile method is reported here to synthesize highly stable and brightly luminescent 

amine-terminated SiNPs. The diameter of the crystal cores is 4.6 nm. The NPs emit strong 

blue-green photoluminescence (PL) at peak position 460 nm with quantum yield (QY) 22%. 

4ÈÅ .0Ó ÅØÈÉÂÉÔÅÄ ÁÎ ÅØÃÅÐÔÉÏÎÁÌ ÓÔÁÂÉÌÉÔÙ ÏÖÅÒ Á ×ÉÄÅ Ð( ÒÁÎÇÅ ɉτϺρτɊ ÁÎÄ ÁÒÅ ÒÅÓÉÓÔÁnt to 

aging over several weeks. 

 

For SiNPs to target specific disease area, and allow them to selectively bind to the cells or the 

bio-molecules present on the surface of the cells, carbohydrate capped SiNPs were 

synthesized. However, no such functionalization has been explored with SiNPs. In this study, 

we report the first synthesis of SiNPs functionalized with carbohydrates (Galactose, 

Mannose, Glucose and Lactose). The NPs show blue-green luminescence in water and orange 

luminescence in the dry state wit h emission of 600nm with the highest QY and exhibit an 

exceptional stability over weeks.  

 

Further study explores the possibility of using carbohydrate capped SiNPs to detect and 

outline various cell types on the basis of the more physiologically related carbohydrate-

receptor interactions. The NPs prove to be very stable in biological media. The toxicity, 

which was tested both in vitro and in vivo, proved that the NPs were non-toxic. The cellular 

uptake efficiency was quantified by flow cytometry and indicated that the NPs internalize in 

the cell within 24 hours. The fluorescence uptake was quantified by both cancer and non-

cancerous cell lines and the cancerous cells were shown to uptake more NPs than normal 

cell lines. The cellular uptake of these NPs, which was visualized by fluorescence and 

confocal microscopy, showed quick accumulation inside cancer cells within cytoplasm. 
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1 Introduction  

Nanotechnology will change the world. It will affect almost any aspect of our lives: 

medicines we use, power of our computers, the energy supplies we require, the food 

we eat, the cars we drive, the buildings we live in and the clothes we wear.ó 

P. Holister 

1.1 Nanotechnology  

Nanotechnology is the promising interdisciplinary field, which involves biological, 

chemical, physical and engineering studies of nano-sized objects (1-100 nm scale, Figure 

1.1).1 The recorded history of nanotechnology is generally understood to have begun in 

$ÅÃÅÍÂÅÒ ρωυω ×ÈÅÎ ÐÈÙÓÉÃÉÓÔ 2ÉÃÈÁÒÄ &ÅÙÎÍÁÎ ÇÁÖÅ Á ÓÐÅÅÃÈȟ Ȱ4ÈÅÒÅͻÓ 0ÌÅÎÔÙ ÏÆ 2ÏÏÍ ÁÔ 

ÔÈÅ "ÏÔÔÏÍȱ ɉ&ÅÙÎÍÁÎ ρωυωɊȟ ÁÔ ÁÎ !ÍÅÒÉÃÁÎ 0ÈÙÓÉÃÁÌ 3ÏÃÉÅÔÙ ÍÅÅÔÉÎÇ ÁÔ ÔÈÅ #ÁÌÉÆÏÒÎÉÁ 

Institute of Technology in which he identified the potential of nanotechnology.2  

 

Figure  1.1: The figure depicts the sizes of nanoparticles in relation to other biological objects.   

Nanotechnology is a revolutionary new approach towards the construction and use 

of functional structures designed from atomic or molecular scale with at least one 

characteristic dimension measured in nanometers. In other words it is concerned with the 

study of nano-meter sized objects (1-100 nm). As the size of a material decreases from bulk 

to the range of about 1 to 100 nanometers, the object displays physical attributes 

substantially different from those displayed by either atoms or bulk materials. One of the 

most exciting and challenging aspects of the nanomaterial is the role which quantum 

mechanics plays within it.3, 4 Quantum phenomena are, of course, the ultimate basis of atoms 
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and molecules, but are largely hidden behind classical macroscopic matter and structures. 

The real breakthrough in nanoscience was the invention of the Scanning Tunneling 

Microscope (STM).5 This invention allowed an entrance into the nano world by direct 

observation of nanostructures. Since then, this field is blossoming: knowledge, creativity and 

futuristic visions of scientists of different profiles gather to create and study new nano-

objects, of which many have already found applications in various fields of medicine6, 7 and 

technology.8 

1.1.1 Nanotechnology in Ancient H istory  

Evidence suggests that nanotechnology was present in ancient time. A definitive and 

remarkable piece of old Roman glasswork, dating to the fifth  century shows one of the 

grandest examples of nanotechnology in the ancient world. The magnificent cup present in 

the British museum represents King Lycurgus being dragged into the underworld by 

Ambrosia. When illuminated from outside the cup appears green (Figure 1.2). When 

illuminated from inside the cup appears crimson red except for the King who looks purple. 

The dichroic effect of the glass is achieved by making the glass with tiny proportions of 

nanoparticles of gold and silver dispersed in colloidal form throughout the glass material. 

The exact process used remains unclear, and it is likely that it was not well understood or 

controlled by the makers, and was probably discovered by accidental contamination with 

minutely ground gold and silver dust. 

 

Figure  1.2: The Lycurgus Cup in (a) reflected and (b) transmitted light , Department of 

Prehistory and Europe,  The Briti sh Museum. 
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1.2 Semiconductor N anoparticles  

Semiconductor nanoparticles (NPs), also referred to as Quantum dots (QDs), have 

attracted a lot of interest from interdisciplinary areas of science due to their unique optical, 

electronic and mechanical properties that differ from their bulk counterparts. QDs were first 

fabricated in the 1980s by Louis E. Brus9 and the unique properties of these special nano-

structures attracted interest from many fields.10-12 Nanoparticles with diameters in the 

range of 1 nm to 20 nm exhibit unique physical properties that give rise to many potential 

applications in fields such as nonlinear optics, luminescence, electronics, catalysis, solar 

energy conversion and optoelectronics. Two essential factors, related to the size of the 

individual nanocrystal, are responsible for these unique properties. The first is the large 

surface to volume ratio, and the second is the quantum confinement effect.3, 9 As the size of 

the semiconductor material decreases the ratio of the number of surface atoms to those 

contained within the NP volume increases, which leads to the surface taking a dominant role 

in the properties of the material.13 Concurrently the band gap gradually increases due to the 

quantum confinement effect. Thus the synthetic method, which controls the particle size, 

determines the physical and electronic properties of the semiconductor NP produced, which 

gives scientists the unique ability to change and control the electronic and chemical 

properties of a semiconductor material. 

1.2.1 Quantum Confinement Effect  

The most striking property of semiconductor NPs is the large change observed in 

their electronic and optical spectra as their sizes are reduced.  This size dependent property 

is generally called the quantum confinement effect.14 The word Ȱconfinementȱ refers to the 

motion of randomly moving electrons as their motion in specific energy levels (discreteness) 

is restrict ed ÁÎÄ ȰÑÕÁÎÔÕÍȱ reflects the atomic realm of particles. Therefore as the size of a 

particle decreases up to the nano scale, the decrease in confining dimension makes the 

energy levels discrete and this increases or widens up the band gap and ultimately  the band 

gap energy also increases. Since the band gap and wavelength are inversely related to each 

other the wavelength decreases with decrease in size and this gives rise to the blue emission 

by the particle. This is shown in figure 1.3, as the cluster size of a semiconductor decreases, 

the gap between valence and conduction band increases.15-17  
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Figure  1.3: Schematic energy diagrams illustrating the state of a NP, in between a molecule and 

a bulk semiconductor.  

This phenomenon can be explained by the relationship between the position and 

energy of an electron in both free and confined space. The energy or crystal momentum of 

an electron in a bulk semiconductor can be precisely defined, while the position cannot. 

However, in the case of a semiconductor NP, the momentum is no longer well defined as the 

uncertainty in the electron position decreases. In the bulk semiconductor, series of nearby 

transitions occur at slightly different energies, while in the NP, transitions will be 

compressed by quantum confinement into a single, intense transition.15 The electron-hole 

pair produced by the absorption of a photon is delocalized across the interior of the NP, and 

recombination of the electron and hole causes emission of the photon. The 

photoluminescence (PL) of the semiconductor NP is a result of such a phenomenon. Efficient 

PL is only possible when the size of semiconductor NP is smaller than the exciton Bohr 

radius of the bulk material.18 This radius controls how large a crystal must be before its 

energy bands can be treated as continuous. In general, semiconductor show large size-

dependent changes in their spectroscopy below a radius of a few nm; the precise radius is 

characteristic of the material: these quantum confinement effects set in for particle radii of 5 

nm for silicon (Si) and for cadmium selenide (CdSe), a widely employed luminescent label. 

Absorption of light in the bulk semiconductor promotes an electron to a higher energy 

LUMO

HOMO

Conduction
band

Valence
band

E
n

e
rg

y

QDs (1-10 nm)

3Å

ɲ9 ɲ9

BULK
SEMICONDUCTOR



5 

 

ÏÒÂÉÔÁÌ ÁÎÄ ÃÒÅÁÔÅÓ ÁÎ ÕÎÏÃÃÕÐÉÅÄ ÏÒÂÉÔÁÌ ÁÔ ÌÏ×ÅÒ ÅÎÅÒÇÙ ɉÁ ȰÈÏÌÅȱɊ ×ÈÉÃÈ ÂÅÈÁÖÅÓ ÁÓ Á 

mobile positive charge. The lowest excited state of the solid can be pictured as consisting of 

the electron orbiting the hole in a manner analogous to the hydrogen atom. However, 

compared with the hydrogen atom, there are two important differences: the effective mass 

of the hole is much less than that of the proton and the electrostatic interaction between the 

electron and hole is screened by the intervening atoms in the solid. The radius of the 

wavefunction describing the electron-hole pair (exciton) is therefore much larger (5 nm) 

than the Bohr radius of hydrogen (0.053 nm). Therefore, the exciton Bohr radius defines 

whether a crystal can be called a semiconductor quantum dot, or simply acts like a bulk 

semiconductor.19 

1.2.2 Core-shell Semiconductor Quantum Dots  

It took nearly 16 years for the QDs to enter their new role as fluorescent probes,20-23 

since the first directed synthesis of QDs.24 In order to achieve high stability and high-quality 

QDs, it was essential to develop an efficient synthesis procedure. Following the initial 

reports,3, 24 extensive research has been carried out in terms of developing a variety of Group 

II-VI QDs.25 The research finally progressed to an advanced and commercial stage, with  the 

development of CdSe/ZnS/silane (Core/shell/coat) QDs. Nowadays, these stable, 

multifunctional and highly bright QDs are used for a variety of in vitro and in vivo bioimaging 

purposes.26-28 These core shell NPs consist of three segments, the first centre core (heart) is 

CdSe, the second outer layer is the ZnS shell and the final coating is the silane layer. The 

CdSe core is responsible for the PL and can be tuned by controlling the size in order to 

achieve different colors across the visible region of the spectrum.29 The ZnS shell, is a high 

band gap material desirable to stabilize the PL of the core and to provide a physical barrier 

with the surrounding.30 The ultimate silane layer is necessary to reduce the toxicity of the 

semiconductor materials and also to provide a hydrophilic interface with aqueous solutions. 

It increases stability and can be subjected to subsequent functionalization.28 

Different materials can be used for building core/shell/coat complex structures to 

specifically adjust the emission wavelength of QDs from UV to IR, such as Group II-VI 

compounds (ZnSe and CdTe 25, 31-35 or SnTe) and Group II-V materials (InP and GaAs).36-38 
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Figure  1.4: Schematic representation  of core/shell /coat quantum dot.  

However, these core/shell/coat QDs have some limiting factors regarding their 

potential application range, such as large overall size and not least high elemental toxicity. 

These properties restrict their use in cellular application, because the internalization 

(cellular uptake) of small NPs is much more efficient. The intrinsic toxicity of Group II-VI 

semiconductors is a major concern for application in any biological system.39, 40 Silane 

coatings help to reduce this problem, but the porosity thereof is hard to control. Another 

often used method for the coating of core/shell QDs is the use of various polymers. In this 

case further specific functionalization is not important but  the required reaction conditions 

may interfere with the stability of the polymer coating. However such stabilized QDs are still 

highly useful for novel solar cell and light-emitting diode applications.41, 42 

In addition, long-term toxicity of waste materials after the use of such QDs is also a 

concern. Considering the above described limiting factors there is certainly a great 

opportunity (and huge commercial interest) for the development of a smaller, more 

versatile, and less toxic class of luminescent QDs for use in biological and many other 

applications. 

1.2.3 Silicon Nanoparticles  

Silicon (Si) nanoparticles  (SiNPs) hold prominent interest, due to their high 

chemical stability,43, 44 low inherent toxicity as compared to all Group II -VI nanoparticles,45 

and their potential to make future nano-electronic and nano-photonic devices.46, 47 Most of 

all Group II-VI QDs are known to have a direct band-gap transition, while bulk Si is an 

indirect band-gap semiconductor. In this case the transition from the bottom of the 
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Figure 1.2.  Sketch of core/shell/coat quantum dot and some possible functionalizations.  
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conduction band to the top of the valence band interrupts conservation of momentum and is 

electronically forbidden.48, 49 The transition does occur, but only with phonon (a quantum of 

lattice vibration) assistance,50-52 which is an indirect process with a low probability. Thus, 

SiNPs tend to have a long PL lifetime and low PL efficiencies when compared to direct band-

gap semiconductors.53 PL mechanism in SiNPs can be explained by quantum confinement 

effects, which was described in the previous section. Besides that, it is also dependent on 

surface reconstruction54, 55 and surface termination56 of SiNPs. The Si atoms on the surface of 

the NP adopt a significantly different geometry to the bulk lattice structure due to surface 

reconstruction. These alterations can have a major impact on NP properties, particularly in 

ultra -small SiNPs (i.e. 1-2 nm).54 The surface termination also has a big effect on the final 

photophysical properties of SiNPs. In the case of a monohydride termination, each surface 

atom has three Si-3É ȰÂÁÃË-ÂÏÎÄÓȱ ÁÎÄ ÏÎÅ 3É-H bond, which gives a different set of bonding 

constrains, as compared to dihydride termination.50, 57  

1.2.4 Surface Functionalization of SiNPs  

Due to the low stability of SiɀH and SiɀX (X = Cl, Br) bonds,58 H or X terminated-NPs 

are extremely prone to oxidation in air. Further stabilization is a necessity and is usually 

performed by reaction with alky l-lithium salts59 or terminal alkenes,60 to provide very stable 

Si-C linkages. In order to form the covalent bonding on planar or porous silicon surfaces 

hydrosilylation reactions are often employed, in which surface Si-H61-64 or Si-X 

(X=halogen)64,65 bonds add across terminal carbon-carbon double bonds. The reaction can 

be initiated thermally,63, 65, 66 photochemically (with UV67 or visible light62, 68, 69) or by a 

radical initiator ,67, 70 alkyl- or aryl-carbanions71 and a variety of platinum72 and 

triphenylcarbenium-based catalysts.73 Alkylation with Grignard or alkyl lithium reagents 

occurs through nucleophilic attack by a carbanion on an electron-deficient Si atom, cleaving 

Si-Si bonds to form Si-C bonds and silyl anion (Si-) species.74 The advantage of the 

hydrosily lation reaction is that it  occurs without breaking Si-Si bond which leads to an 

adverse effect on optical properties and also on particle solubility .63 A very broad range of 

compounds can be used to functionalize the surface and provide the desired stability by 

using hydrosilylation reactions. For example, it has been demonstrated that attaching 

terminating ɀCOOH63 or ɀNH2 groups72, 75, 76 (Chapter 3) makes the NPs water soluble, while 

using nonpolar groups at the end of the alkyl chain makes them soluble in nonpolar solvents. 
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1.3 Synthetic Strategies for Si NPs 

Since the first bottom-up synthesis in 1992 in which SiNPs were prepared via the 

reduction of SiCl4 and RSiCl3 with sodium,77 Several methods have been developed and 

reported that produce stable and monodisperse SiNPs, as well as reproducible surface 

chemistry, shape and size control, tunable optical properties, etc. Several reviews about the 

synthesis and optoelectronic properties of SiNPs have been published.60, 78  

These can be divided into two approaches:  

¶ Top-down, i.e. the reduction of bulk materials to nanometer-sized objects 

¶ Bottom-up, i.e. the assembly of Si atoms up to nanometer size.  

In general, the produced Si nanocrystals are hydrogen or halogen-terminated, but 

require a second surface passivation step to prevent the particle from oxidation and 

subsequent degradation. The oxidation has a large influence on the optical properties, since 

the initial luminescence originates from quantum confinements effects in non-oxidized 

SiNPs, which shifts to luminescence effects originating from surface-state effects in oxidized 

particles.53, 79, 80 Each of the individual methods has its own advantages and disadvantages 

with respect of control of monodispersity, reaction yield, surface chemistry, shape, stability 

and optical properties and are described below in more detail. 

1.3.1 Top Down/ Bulk R eduction method  

1.3.1.1 Electrochemical etching and sonication of silicon wafers  

Leigh Canham81 was first to demonstrate that porous Si materials can have large PL 

efficiency at room temperature. He used electrochemical and chemical dissolution methods 

to produce mesoporous Si layers of high porosity, which exhibited visible red PL at room 

temperature. Subsequently a few years later, Heinrich and co-workers82 electrochemically 

etched n-type or p-type silicon wafers to form porous silicon by applying an electric 

potential on a wafer upon soaking in a (1:1) HF:ethanol solution. After etching, the material 

was ultrasonically dispersed to form suspensions of SiNPs. The resulting material was a 

polydisperse colloidal solution of SiNPs with size 1 nm to mm and was irregularly shaped. 

Nayfeh and co-workers used this method to produce SiNPs with a very broad range of sizes 

that could not be well controlled.83  In 1999, Wolkin et al.53 produced hydrogen terminated 

SiNPs by electrochemical etching followed by photo-assisted stain etching of p-type Si 

wafers. They demonstrated that depending on the size of the SiNP the PL of such SiNP could 
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be tuned from the near infrared to the ultraviolet. In the same year, Sweryda-Krawiec et al.84 

produced colloidal solutions of SiNPs by sonicating porous Si wafers. During sonication, NPs 

leached out from the porous Si network and dissolved in toluene. The SiNPs were then 

modified by heating with 1-undecanol, 1-hexadecanol, and 1-octanol to obtain alcohol-

capped SiNPs of size 1-100 nm. In 2002, Belomoin and co-workers85 obtained H-capped 

SiNPs as a family of discrete sizes (1.0, 1.67, 2.15, 2.9, and 3.7nm in diameter) using 

electrochemical etching. The smallest four exhibited ultra-bright blue, green, yellow, and red 

luminescence. Lie et al. in 200286 also produced alkyl-terminated SiNP by refluxing porous Si 

in toluene solutions of alkenes. A hydrocarbon monolayer was formed at the SiNP surfaces 

by hydrosilylation of alkene, which protected the SiNPs and solubilized them in organic 

solvents. The size of the Si core of these particles was about 2.5 nm diameter and could 

easily be re-dispersed in organic solvents.87, 88 

1.3.1.2 Etching of Hydrosilsesquioxane/ Thermal decomposition  

A relatively new and a straightforward method described by Veinot and co-

workers89-92 for preparing small quantities (ca 0.25g) of nc-Si/SiO2 and Fs-nc-Si that shows 

luminescence in visible and near IR-regions of the electromagnetic spectrum. The bulk 

preparation of nanocrystalline Si-SiO2 (nc-Si/SiO2) was carried out via straightforward 

reductive thermal annealing of a well-defined molecular precursor, hydrogen silsesquioxane. 

The method provides high yield and excellent purity and optical properties. 

 

Figure  1.5: Thermal processing of hydrogen silsesquioxane (HSQ) for synthesizing silica NPs 

/SiO2-like (nc -Si/SiO2Ɋ ÎÁÎÏÃÏÍÐÏÓÉÔÅÓȢ 2ÅÐÒÏÄÕÃÅÄ ÆÒÏÍ 6ÅÉÎÏÔȭÓ ÅÔȢ ÁÌȢ89 

1.3.1.3 Annealing of SiO Powders 

A relatively new method described by Liu, Kimura and co-workers93, 94 involves 

annealing SiO powders at 1000°C under ambient atmosphere, etching the annealed powders 

with 10% HF and functionalizing the etched particles by common hydrosilylation. The 
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resulting SiNPs were polydisperse (5.1 ± 1.9 nm) but also had a significant amount of oxygen 

on their surface. The advantage of this method is its low cost. 

1.3.1.4 Laser ablation  

Niu and co-workers synthesized SiNPs with a diameter of 4 nm at high rate 400-500 

mg/h by using the pulsed laser ablation of a Si (100) wafer in an inert gas.95 Similarly, 

Umezu and co-workers prepared SiNPs by laser ablation in He/H2 gas by pulsing a laser on a 

Si single crystal. It was found that the higher the H2 gas pressures the higher the particle 

crystallinity. 96 Shiharata and co-workers performed a one-pot synthesis wi th Si wafer by 

laser ablation in the presence of 1-octene, which effectively capped the NPs resulting in 

octyl-terminated SiNPs. The diameter of the SiNPs ranged from 1 to 10 nm and the highest 

fluorescence emission was found around 375 nm.97 

1.3.1.5 High energy ball milling  

Heintz and co-workers synthesized alkyl-capped SiNPs by milling silicon pieces. The 

resulting particles were 5-10 nm in diameter and showed fluorescence emission around 450 

nm.98 Recently, they developed a method to functionalize SiNPs with acids, aldehydes, and 

alcohols.99 However, this functionalization is carried out via the oxygen atoms on the surface, 

which renders them unavailable for further use and affects both their optical properties and 

long-term stability. 

1.3.1.6 Reactive Sputtering 

In 1998 Furukawa and Miyasato100 successfully synthesized crystalline H-terminated 

SiNPs materials using a reactive sputtering technique with a low substrate temperature of 

~100K. The obtained SiNP had a wide optical band-gap of up to 2.4 eV. The structural 

analysis showed that the materials consisted of small crystalline Si particles surrounded by 

hydrogen atoms. 

1.3.2 Bottom -up Synthetic Methods / Assembly  Methods  

1.3.2.1 Laser-Driven Pyrolysis  

Swihart and co-workers modified a method in which silane is pyrolyzed (thermally 

dissociated) by a CO2 laser beam.101 A flow of H2/He gas and temperature is used to tune the 

reaction. By controlling the flow rate and the laser power the NP sizes can be controlled to a 
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certain extent and by employing higher temperatures (at least 850̄ C) helps particle 

nucleation. These particles required further etching with HF and HNO3 to remove the 

surface oxidation layer and to reduce the size. The obtained NPs (up to 20-200 mg/h) have 

an average diameter of 5 nm with a mixture of hydrogen- and oxygen-terminated Si atoms at 

the surface. However, the photophysical properties did not remain constant, mainly due to 

the significant degree of oxidation and the irregularity of the surface.101 The SiNPs were 

further etched with 5% HF and thermally hydrosilylated with a series of alkyl- and ester-

termination  which resulted in a much more stable photoluminescence.62, 102 

1.3.2.2 Synthesis in supercritical fluids  

Among others Korgel and co-workers have used the decomposition of organosilanes 

(e.g. diphenylsilane) in solvents heated and pressurized above their critical points to build 

SiNPs.103, 104 The reaction was performed in a continuous flow reactor, in octanol at 500̄C at 

approximately 250 bar. The obtained SiNPs were monodisperse with an average diameter of 

1.5 nm, but the surface coverage of alkoxy termination was only 50%.105 Adding hexane as a 

co-solvent, thereby reducing the Si/octanol ratio, could increase the size of the NPs. The 

same synthesis principle can be used to produce more polydisperse SiNPs with a diameter of 

4.7 ± 1.4 nm.104 The drawback of the decomposition method is the lack of control of the 

functionalization of the NPs. The same synthetic approach can be employed to produce Si 

nanowires.103, 106, 107 

1.3.2.3 Oxidation and Reduction in Solution  

Various solution phase oxidation-reduction reactions have been developed and 

extensively studied. Kauzlarich and co-workers made an extensive effort to synthesize SiNPs 

using various solution routes. The first solution synthesis method was developed in 1996 by 

Bley and Kauzlarich.108 They reacted Zintl compound KSi with silicon tetrachloride (SiCl4) to 

fabricate crystalline SiNPs at ambient temperature. Conversely in their next paper they 

reported several problems regarding the Zintle synthesis method, such as low yields and the 

lack of size control due to the heterogeneous nature of the reaction mixture. In 2002, Liu and 

Kauzlarich109 described a new synthetic route for the synthesis of hydrogen-terminated (H-

terminated) SiNPs by the initial reaction of the metal silicide with either SiCl4 or bromine 

and subsequently with lithium aluminium hydride. These reactions produced H-terminated 

SiNPs, which could be suspended in an organic solvent. A variety of other routes have been 

investigated: such as oxidation of Mg2Si with Br2,59, 109 reduction of SiCl4 with Na-

naphthalenide110 to give stable SiNPs. 
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Figure  1.6: Various solution methods to synthesize  SiNPs by oxidation and reduction reaction . 

 

The size of the SiNPs can be controlled by changing the balance between growth and 

nucleation speed through controlling several parameters such as temperature, 

concentration of precursors and the choice of functionalizing ligands. Similar synthetic 

methodology and principle can be used to synthesize GeNPs (2 nm size).111 The advantage of 

these methods is their versatility, as they can also be used to synthesize doped SiNPs (with 

Mn112 or P113) or mixed Si-Ge NPs.114 The obtained NPs initially terminated with halogen 

atoms (Cl or Br) give an access for further functionalization using alkyllithium (R-Li) 

compounds,59, 115 alkoxy groups (via reaction with alcohols)110, 116 or hydrogen atoms by 

reduction with LiAlH4.109 

Out of all these methods a few claim to provide partial control over the NP shape. 

Particularly sodium naphthalenide has been proven useful for preparing free standing SiNPs 

of various sizes and surface chemistry.117 The major drawbacks of this synthesis approach 

are: the polydispersity of the obtained material (1-20 nm, and in the best case 3-6 nm), time-

consuming reaction conditions (~72 h per reaction), and the requirement of an extensive 

purification  protocol. FTIR analysis of isolated NPs shows, besides the characteristic C-H 

bands, a significant degree of oxidation, which subsequently leads to red-tailed broad 

emission features. 
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1.3.2.4 Synthesis in reverse micelles 

In order to gain more control over the size and size distribution of SiNPs, Wilcoxon 

and group developed a method to synthesize SiNPs in reverse micelles.118 Performing the 

reaction in nanoreactors limi ts the size of the resulting SiNPs, and a narrower size 

distribution is achieved. In this approach, an anhydrous compound (e.g. SiX4; X = Cl, Br or I) 

is dissolved in the hydrophilic interior of a solution of micelles and nucleation and growth of 

SiNPs are restricted to the micelle interior. Control of cluster size can be achieved by 

variation of the micelles size, inter-micellar interactions and reaction chemistry. The 

reduction of SiCl4 with LiAlH 4 in nanoreactors, was carried out by Wilcoxon and 

coworkers,118 resulting in SiNPs with a broad size distribution of 2-10 nm which exhibit a 

highly structured optical absorption and photoluminescence across the visible range of the 

spectrum. It was assumed that the obtained NP surfaces were hydride terminated, however, 

no experimental evidence was provided. HRTEM and selected-area electron diffraction of 

small samples were consistent with diamond lattice Si. Tilley et al.119 later used a variation of 

such solution reduction to prepare very small quantities of small, relatively monodisperse, 

freestanding SiNPs (d = 1.8 ± 0.2 nm). Recently, Rosso-Vasic et al.75 synthesized amine-

functionalised SiNPs using inverse micelles. The obtained SiNPs were stable over a wide pH 

range (1ɀ13) and high temperatures (120°C), and were suitable for bioimaging studies as 

they were readily taken up by BV2 cells. 

1.3.2.5 Plasma Processing 

In 2005, Mangolini et al.120 presented a single-step continuous flow non-thermal 

plasma process that produced luminescent SiNPs on time scales of a few milliseconds. The 

luminescent SiNPs had diameters of 2-8 nm and process yields of 14ɀ52 mg/h. In the same 

year, Giesen et al.121 investigated the formation and growth of SiNPs by the addition of silane 

to plasma gases (i.e. argon/hydrogen) in a microwave reactor. The SiNPs formed by this 

approach were found to lie in the 5ɀ8 nm range and contained crystalline Si. 

1.4 Applications of Silicon Nanoparticles  

SiNPs have attracted tremendous interest from the scientific community because of 

their unique characteristics that differ from those of their bulk counterparts, such as novel 

optical, catalytic, electronic, and mechanical properties.15, 122 At nanometer scales, silicon 

exhibits visible photoluminescence because of the quantum confinement effect that can be 

exploited for uses in electronic and photonic devices.47, 123 Indeed, silicon has several 
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advantages to be an ideal nanoparticle material such as size-dependent tunable light 

emission,85, 104, 124 high brightness,125 and their great stability against photobleaching 

compared to organic dye molecules used for bioimaging.72, 126 Moreover, their core consists 

of non-toxic silicon, which has been further studied for SiNPs in particular,127, 128 whereas 

the conventional group II-VI or III-V QDs often consist of the inherently toxic Cd, CdTe 

ZnSe.40, 129 In general, group II-VI or III-V QDs are typically stabilized by attachment of non-

covalently bound organic molecules such as oleic acid, thiols or phosphine oxide 

derivatives.130 This leaves them intolerant to many solvents, since the stability of such a 

layer is highly dependent on the chemical environment, and these non-covalently attached 

molecules can thus dissociate from the QDs and thereby cause them to precipitate. 

Furthermore, a lot of effort has been invested in preventing leakage of the toxic Cd, Zn and 

Se ions from the core of the group II-VI or III-V QDs by applying organic polymeric coatings, 

since the small capping molecules are not sufficient.131 Next to the non-toxicity of the Si core, 

the covalently attached organic monolayer tolerates a wide range of solvents. So far, fewer 

applications with SiNPs have been developed than with group II-VI or III-V QDs, which is 

most likely due to the lack of a method to synthesize well defined, functional SiNPs in large 

amounts with relatively easy methods. Furthermore, in contrast to group II-VI or III-V QDs, 

the SiNPs have an indirect bandgap, which is characterized by relatively low luminescence 

efficiency. The combination of these properties opens a new avenue of applications of SiNPs 

for optoelectronic and bioimaging purposes. 

1.5 Biomedical Applications of Semiconductor  Nanoparticles  

Significant interest has arisen in the field of NPs during the last decade, in particular 

towards biomedical applications. The integration of nanotechnology into the field of medical 

science has opened new possibilities. Working with nanomaterials has allowed a better 

understanding of molecular biology. As a consequence, there is the potential for providing 

novel methods for the treatment of diseases which were previously difficult to target due to 

size restrictions. For biomedical applications, the synthesis of biofunctionalized NPs is very 

important, and it has recently drawn the attention of numerous research groups, making 

this area constantly grow. Silicon nanoparticles and structures hold prominent interest in 

various aspects of biomedical research. Their applications in drug delivery, cancer cell 

diagnostics and therapeutics have been active fields of research over recent years.11, 132, 133  
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1.5.1 Cytotoxicity   

In vitro  studies have become an essential component in assessing NP toxicity since 

they are a relatively rapid and cost-effective way of screening134; moreover, they restrict 

animal use, as required by ethical issues. Although a large number of studies have been 

performed with in vitro systems, yet there remain some serious obstacles as data on this 

topic obtained by several groups are often contradictory. Multiple factors are responsible for 

the differences found in toxicity studies; some might be related to particles sizes, shapes and 

physicochemical surface properties, while others may relate to the cell lines used, and finally 

one should consider differences in methodologies of the test itself. Cytotoxicity of the NPs 

inside the cells can be determined by different assay. 

 Bright  field microscopy can be used as a simple tool to visualize the cellular and 

nuclear morphological changes in the cells; the majority of the cytotoxicity assays measure 

the colorimetri c changes upon cell death. These colorimetric methods are divided into two 

categories including plasma membrane integrity measurements and mitochondrial activity 

tests.129 For example, Trypan blue dye exclusion assay provides information of cell death by 

showing dye staining on cells that were ruptured, while live cells remain colourless, and the 

amount of cell death can be determined via light microscopy.135  

Another method to determine the cytotoxicity is the MTT (3-(4,5- dimethylthiazol -2-

yl) -2,5-diphenyl tetrazolium bromide) assay, which measures the activity of the 

mitochondrial dehydrogenase enzyme.136, 137 This enzyme present in living cells cleaves the 

tetrazolium ring, which only occurs in living cells.138 MTT is pale yellow in solution but 

produces an insoluble purple formazan product within live cells.  

Another method to test the cytotoxicity of the cells uses the genotoxicity assay, 

which tests the toxicity of NPs exposure on the genome by means of the COMET system. This 

is the most widely used method able to detect both single- and double-stranded breaks of 

DNA chains. In fact, if any DNA is damaged, the cell would produce a comet tail whose length 

is proportional to the amount of damaged DNA. A DNA-specific dye such as propidium 

iodide and 4',6-diamidino-2-phenylindole (DAPI) is used to visualize the comet. The amount 

of DNA damage is indicated by the amount of DNA found in the tail.139 

Other factors responsible for toxicity in the cells are the physical and chemical 

properties of NPs. The overall size of the nanoparticles plays an important  role to induced 

toxicity. NPs sometimes show aggregation and morphological variation when dispersed in 

water, therefore it is important to check their stability in biological media first . For size 
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analysis, either dynamic light scattering (DLS) or transmission electron microscopy (TEM) is 

mostly used. For instance Lin et al.140 found that it is very important to control the 

aggregation state in the cell culture medium. They studied two different sizes (15 nm and 46 

nm) of NPs and found no difference, the reason being that both nanoparticles reached a 

similar size due to aggregation in the culture medium. Therefore, NP aggregation state is a 

critical parameter that needs to be controlled.  

Another source of nanoparticle-induced cytotoxicity occurs when the NP is 

composed of toxic materials that can be gradually released. Some examples of the 

fluorescent semiconductor NPs that gradually release heavy metal ions such as Cd2+ from 

CdSe or CdSe/ZnS quantum dots are well known.39, 40 Heavy metal ions are cytotoxic and 

often show several pathways of cytotoxicity. Indeed, Cd2+ may induce hepatotoxicity, 

immunotoxicity, and nephrotoxicity, apoptosis being a critical part of each toxicity type.141 

Studies concerning Cd-induced hepatotoxicity show, for example, the relevance of direct and 

indirect cytotoxic pathways.142 The direct pathway is caused by Cd2+ binding to sulfhydryl 

groups on key mitochondrial molecules, thus damaging the mitochondria. The indirect 

pathway, though, is assumed to occur via activation of Kupffer cells. Derfus and group 

reported that the cadmium selenide (CdSe) core causes acute toxicity under certain 

condition. However they also mention that CdSe NPs did not show cytotoxicity when 

functionalized with mercaptoacetic acid under standard synthesis condition. The 

cytotoxicity of green, yellow, and red light emitting mercapto-undecanoic acid-modified QDs 

was investigated by Shiohara et al., using three types of cells: Vero cell, HeLa cell and 

primary human hepatocyte. The results showed that the cell viability decreased with 

increasing concentration of NPs. They proposed that SiNPs could be the new safer QDs143 to 

eliminate cytotoxic effect. Kirchner and colleagues39 investigated the effect of different 

organic coatings (i.e. mercaptopropionic acid) on QD cytotoxicity. Their results showed that 

the zinc sulphide capping (ZnS) layer of a CdSe core-shell NP reduced the toxicity, which is 

in agreement with the work of Derfus et al.40 They also found that embedding the particles in 

a stable ligand shell dramatically reduces the release of Cd2+ ions. Thus, the cytotoxicity of 

semiconductor NPs can be reduced when their cores are protected from degradation given 

that the added coatings are biocompatible.  

The cytotoxicity of group II-VI semiconductor NPs (e.g CdSe, Cadmium telluride 

(CdTe), ZnS) is extensively studied as compared to SiNPs. The long-term cytotoxic effect of 

porous silicon material on primary hepatocytes was explored by Chin et. al.144 The 

attachment and spreading of primary hepatocyte on nanoporous silicon were compared 

across a variety of culture conditions. He demonstrated that cells in all conditions remained 
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viable at comparable levels, suggesting that there were no long-term cytotoxic effects of 

nanoporous silicon on primary hepatocytes. Alsharif  et al.145 investigated the intracellular 

internalization and toxicity of alkyl-capped silicon nanocrystals in human neoplastic and 

normal primary cells. Their findings suggested no evidence of in vitro cytotoxicity when the 

cells were exposed to the alkyl-capped nanocrystals. Thus, surface functionalized SiNPs 

exhibit insignificant cytotoxicity and show great potential over ordinary semiconductor NPs 

in biomedical research.  

One in vivo study carried out by Sailor's group demonstrated that porous SiNPs 

injected intravenously were accumulated mainly in mononuclear phagocytic system organs. 

Within a few days the SiNPs were degraded in vivo into non-toxic products and removed 

from the body through renal clearance.146 

Consequently, Si nanoparticles show very low cytotoxicity taking care that all 

potential sources of cytotoxicity are prevented efficiently. 

1.6 Biomedical A pplications of SiNPs  

In order to employ NPs in biological applications, the particles have to be water 

soluble, non-toxic, possess high luminescence quantum yield and should have the ability to 

be labeled with targeting agents to direct the particles to specific tissues or areas inside cells. 

SiNPs have substantial photoluminescence quantum yields, great stability against 

photobleaching and low toxicity compared with heavy metals. In order to stabilize SiNPs in 

water and in biological environment to prevent aggregation and precipitation, they require a 

desirable surface functionalization.72 Several methods have been developed to functionalize 

SiNPs to use them for biological applications. Perez et al.147 synthesized nanometric particles 

from porous silicon film to investigate the growth behavior of B. subtilis and K. pneumoniae 

bacterial strains. The different and particular behavior that each bacterium presents when 

grown in a medium containing nanometric silicon particles supports the idea that these 

particles can work well as a bacteriological sensor. Li and Ruckenstein87 synthesized poly-

acrylic acid terminated SiNPs for cell imaging. The SiNPs are water soluble, exhibited bright 

fluorescence images and provided higher resistance to photobleaching than the commonly 

used organic dyes. Warner et al.72 described a simple room-temperature synthesis for 

producing water-soluble SiNPs that exhibited strong blue photoluminescence with a rapid 

rate of recombination. They used these allylamine capped SiNPs to demonstrate bioimaging 

in HeLa cells. The bright blue fluorescence from the SiNPs is distributed uniformly inside the 
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cytosol of the HeLa cells and shows the possibility of using these hydrophilic SiNPs as 

chromophores in biological fluorescence imaging. 

1.7 Glyconanoparticles for Biomedical Applications  

Since the last decade, there has been an explosion in the synthesis, characterization 

and applications of nanomaterials, which can potentially revolutionize the diagnosis and 

treatment of diseases.148-151 The field is actively progressing towards using more specific and 

targeted nano-therapies by gaining the knowledge at cellular and molecular level.  

Tremendous advances have been made in recruiting sugar-functionalized nanocomposites 

for biological applications by recognizing the important multi -faceted roles that 

carbohydrates play in many biological systems (figure 1.6).149, 150, 152 Currently Glyco-

nanomaterials have attracted a great deal of attention owing to their multi -faceted 

carbohydrate functionality, small size, biocompatibility, as well as their unique optical, 

electronic and magnetic properties.   

 

Figure  1.7: The concept of prospective  uses of glyconanoparticles in b iomedical applications. 

Reproduced from Penadés et al. 1  
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1.7.1 The Ȱ',9#/ȱ Perspective  

Carbohydrates play a critical role in the process of cell recognition.11, 153, 154 Naturally 

occurring carbohydrates, glycoproteins and glycolipids present at the surface of cells play 

crucial roles in biological events, acting as recognition sites between cells. They can trigger 

various phenomena such as cell growth, inflammatory responses to viral infections. 

Carbohydrate-mediated interactions at the cell surface range from hormones, enzymes and 

antibodies to bacteria, viruses and toxins. Surface-exposed carbohydrate moieties that are 

characteristic of a given microbe may serve as key biomarkers for bacteria and pathogen 

identification, diagnosis and vaccine development. Carbohydrates, as a detection platform, 

have already demonstrated tremendous potential to achieve superior sensitivity and 

selectivity.155, 156 At present, carbohydrate-functionalized glyconanomaterials are finding 

many important applications in explaining carbohydrate protein interactions and cell-cell 

communication.154, 157-160 Identifying, quantifying and imaging the carbohydrates, 

glycoproteins and glycolipids are critical both for elucidating their biological function and 

for the evaluation and design of therapeutics.  

Despite all the developments, there are still several obstacles, which need to be 

overcome in order to use the carbohydrates in diagnosing and therapeutics applications. 

Carbohydrate-based molecular interactions have been shown to be generally weak and of 

low affini ty, but Nature seems to compensate these drawbacks with a multivalent receptor 

ligand presentation.160, 161 Thus, a suitable platform is required to display carbohydrates in a 

polyvalent system to increase the binding strength and selectivity. In the second challenge, 

unlike the specific receptor interaction, there can be several receptors recognizing the same 

carbohydrate ligand thus strategies need to be developed to differentiate these receptors. 

The third challenge is to obtain pure carbohydrates for biological studies. Due to the 

heterogeneity it is difficult to purify large quantit ies of oligosaccharides from natural 

sources. Therefore, to realize the full potential of carbohydrates in biomedical applications 

requires a multi-disciplinary approach. 

1.7.2 The ȰNANOȱ Perspective  

Nanomaterials can act as promising platforms for displaying carbohydrates for 

biological recognition. Owing to their small size and large surface to volume ratio NPs can 

enable higher capacity in receptor binding. Moreover functionalizing the NPs with multiple 

carbohydrate ligands can potentially enhance the binding affinities of individual ligands to 
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their binding partners. Glyco-conjugated / bioconjugated nanoparticles have been utilized in 

various fields of in vivo and in vitro work. 

Penadés and co-worker  provided excellent contribution s to the field where they 

investigated carbohydrate-carbohydrate interactions and carbohydrate-mediated cellɀcell 

adhesion processes. In their early report they demonstrated the synthesis of disaccharide 

lactose (Galb (1­4)Glcb1 - OR) and trisaccharide Lewisx (Lex-) Galb (1­4) [Fuca 

(1­3) ] GlcNAcb1-OR) to functionalize Gold NPs (AuNPs) as a multivalent ligand carrier for 

studying Ca2+ mediated carbohydrate-carbohydrate interactions.162 They used different 

hydrophobic and hydrophilic linker s to bind the carbohydrates to the gold core. Using TEM 

they revealed the specific binding between Ca2+ and Lex-AuNPs as it resulted in self-

aggregation, while Lacto-AuNPs did not show any clustering. The method proved the 

importance of the sugar structure in inducing aggregation. Later they studied the adhesion 

forces between Lex antigens self-assembled on gold surfaces. They verif ied this phenomenon 

using Atomic force microscopy (AFM).163 Furthermore they showed that Ca2+ mediated 

aggregation of Lex-AuNPs was a slow but highly exothermic process, while in the case of 

Lacto-AuNPs the heat evolved was very low and its thermal equilibrium was quickly 

achieved. They proved this phenomenon by using surface plasmon resonance (SPR) and 

isothermal titrat ion calorimetry (ITC).164, 165 El-Boubbou synthesized Mannose capped (Man-) 

Magnetic glyco-nanoparticles (MGNPs).166 They incubated Man-MGNPs with E. coli and 

reported that within five minut es 65% of the E. coli ORN178 cells were removed from the 

solution using a hand-held magnet (figure 1.7). Furthermore, in addition to Man-MGNPs, 

they also synthesized Gal-MGNPs in order to overcome the challenge that different types of 

bacteria may bind to the same carbohydrate with various affinities. Based on this they used 

three different E. coli strains (ORN178, ORN208 and an environmental strain) and showed 

that they were easily differentiated. Thus, they demonstrated that MGNPs present a unique 

approach, which can be used not only for rapid pathogen detection, but also for strain 

differentiation and efficient pathogen decontamination. 
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Figure  1.8: Schematic representation of E. coli strain ORN178 incubated with Man -MGNPs 

followed by magnet mediated separation of detected bacteria, showing up to 88% of the 

bacteria removed by this procedure.  

 

In addition Syková et al.167 showed that Mannose-modified iron oxide NPs were 

efficient probes for labeling stem cells. 

The Cho group prepared superparamagnetic NPs coated with a galactose polymer 

(Gal-SPIONs) (diameter ~ 25 nm)168 and applied them to target liver cells knowing that liver 

cells (hepatocyte) contain the galactoside binding asialoglycoprotein receptor (ASGP-R) 

which selectively binds to galactose.  Using confocal microscopy studies they validated the 

receptor-mediated endocytosis. Later they used these NPs in Vivo module by injecting into a 

rat tail vein; the experiment showed a 75% T2 signal drop for rat liver by MRI, which was 

more than twice the contrast change (36%) observed using control NPs without any 

galactose. 

Lin and co-workers169 synthesized polyvalent glyco-NPs (Man-, Glu- or Gal-AuNPs) 

and proved the high affinity and specificity of multivalent carbohydrate-protein interactions. 

They quantitatively analyzed the binding affinity with lectin Concanavalin A (Con A) using 

surface plasma resonance. Later they reported the separation of carbohydrate binding 

proteins from protein mixtures aided by the gold glyco-NPs as affinity probes. Furthermore, 

using this approach, they determined the identity and the carbohydrate binding epitopes of 

the proteins by mass spectrometry analysis.170 

For studying NP-cell interactions, the Penadés groups reported the preparation of 

gold and goldɀiron NPs171 (Size 1.5-2.5 nm) functionalized with maltose (Malto), Glc 

(Glucose) and Lactose (Lacto) and evaluated their biological effects.172  It was shown that 

Lacto-NPs were taken up by endocytosis in a human fibroblast cell line without provoking 
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apoptosis, while Malto-NP were endocytosed and promoted cell death. Glc-NPs were not 

endocytosed and did not affect cell viability either. The study demonstrated the possibility of 

using Lacto-NPs to image an experimental C6 glioma in mice for in vivo applications. 

Recently, the same group prepared a small library of multivalent Au-NPs 

functionalized with different structural fragments of the high mannose undecasaccharide of 

gp120 in various ligand densities and evaluated their effects on the inhibition of HIV 

glycoprotein gp120 binding to DC-SIGN expressing cells (figure 1.8).173 

 

Figure  1.9: Schematic representations of the glyco Au -NPs showing that it can reduce the 

binding between DC -SIGN and gp120, which have a significant inhibitory effect on HIV 

infection to cells expressing DC -SIGN.173  

 

A simple colorimetric bioassay for the detection and quantification of cholera toxin 

(CT) was developed by Russell and co-workers.174 They synthesized lactose-functionalized 

AuNPs and incubated with the cholera toxin, which formed aggregates within 10 minutes. 

For in vivo applications, the Penades group developed sugar-coated AuNPs combined 

with Gd(III) chelates as new paramagnetic probes for MRI.175 Besides imaging applications 

they reported the utilization of Lacto-AuNPs as potent inhibitors of tumor metastasis in mice 

and evaluated their potential as anti-adhesive tools against metastasis progression.176 The 

mouse melanoma B16F10 cells are known to bind with lactose due to the presence of 

galectins on the surface. Pre-incubation of the B16F10 cells with the Lacto-AuNPs prior to 

injections into mice substantially inhibited the lung metastasis of the tumor (up to 70%) 

shown in figure 1.9. 
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Figure  1.10: The incubation of Lacto -AuNPs with mouse melanoma B16F10 cells prior to 

intravenous inoculation in C57/Bl6 mice significantly reduced the lung metastasis of the 

tumour . In comparison, the Glc -AuNPs were ineffective in reducing metastasis. 176 

 

Later in 2009 Mousa and co-workers reported the synthesis of heparin coated 

AuNPs (HP-AuNPs).177 Heparin is a class of naturally occurring polysaccharide, which can 

inhibit basic fibroblast growth factor-2 induced angiogenesis.178 They studied HP-AuNPs in a 

mouse model where they demonstrated that HP-AuNPs have significantly higher anti-

angiogenesis efficiency compared with Glc-AuNPs, while control Au was lethal to the animal 

at the same concentration.  

In 2003 the Rosenzweig group reported the QDs protected with polysaccharide.179 

They synthesized carboxymethyldextran and polylysine coated CdSe-ZnS QDs through 

electrostatic interaction and demonstrated Con A had binding affinities with glycol-QDs.  

Subsequently Fang and coworkers prepared CdSe-ZnS QDs terminated with ɼ-N-

acetylglucosamine (GlcNAc) and Mannose through an in situ reduction and coating 

procedure. They incubated these glycol-NPs with live sperm from mice, pigs and sea-

urchin.180 Interestingly, their results showed that GlcNAc captured QDs were found to be 

concentrated at the sea-urchin sperm heads, while Man-coated QDs tended to spread over 

the whole body of mouse sperm (figure 1.10). This was presumably due to the different 

distribution of the GlcNAc and Man receptors on the sperm surface. Their work suggested 

that glycol-NPs could be useful as fluorescent tags for monitoring cellular events. 

Lungs from animals treated
With B16F10 tumour cells No B16F10

No NP
treatment

Glc-AuNP
(90 µM)

Lac-AuNP
(90 µM)
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Figure  1.11: Confocal image of glyconanoparti cles upon incubation with sperm . (a) GlcNAc-

QDs was mainly found on the heads of sea-ÕÒÃÈÉÎ ÓÐÅÒÍ ɉÓÃÁÌÅ ÂÁÒЀςπ ʈÍɊȟ ÁÎÄ ÂɊ -ÁÎ-QD 

labelled the tail of mouse sperm. 180  

 

Furthermore the glyco- QDs are also used in in vivo detection. Kim and co-worker 

reported the synthesis of hyaluronic acid coated QDs (HA-QDs).181 They demonstrated that 

HA-QDs were able to selectively endocytose by lymphatic vessel endothelial receptor 1 

(LYVE-1) over-expressing lymphatic endothelial cells (LEC) and HeLa cells, but not by LYVE-

1 negative human dermal fibroblasts. The binding between LYVE-1 and HA-QDs in mice was 

confirmed by immunohistochemistry, where LYVE-1 and HA-QDs were found to co-localize 

in mouse tissues. Additionally HA-QDs were also used to image liver in cirrhotic mice.182 

Through in vitro assay the authors demonstrated that the HA-QDs were taken up more by 

chronic liver diseased cells such as hepatic stellate cells (HSC-T6) and hepatoma cells 

(HepG2), than normal hepatocytes (FL83B). They then administrated HA-QDs in cirrhotic 

mice and observed the enhanced fluorescence from the liver. The clearance of the 

fluorescence from the cirrhotic mouse liver was much slower than that from the normal 

mice, allowing detection of the cirrhotic liver.  

Later the Seeberger group reported the synthesis of Man, Gal, GalN (Galactosamine) -

capped PEGylated QDs to study in vivo liver imaging.153 They demonstrated that Gal- and 

GalN-capped QDs were selectively taken up by hepatocellular carcinoma HepG2 cells via the 

ASGP-R receptor. 

By looking at the extensive work done on glyco-NPs it is clear that the affinity  

between carbohydrates and receptors can be greatly improved through the multivalent 

display of carbohydrates on nanomaterials. In order to fully appreciate the potential of 
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glyco-nanotechnology, especially for future clinical applications, better fundamental 

knowledge of how NPs interact with biological systems is required. This can be achieved by 

changing the parameters such as size, shape, surface charge, ligand type and ligand density. 

Moreover, bio-distribution, clearance and long-term side effect/toxicity of 

glyconanocomposites need to be established. 

Silicon nanoparticles and structures hold prominent interest in various aspects of 

biomedical research. Current fields of interest range from imaging, detection and sensing to 

drug delivery and new therapeutic uses. This is in addition to the intrinsic electronic and 

optical properties of the nanostructures. Their fluorescence signatures, high quantum 

efficiency, size-dependent tunable light emission, high brightness and great stability against 

photobleaching compared to organic dye molecules make them ideal tools for fluorescence 

imaging. These properties have helped to establish silicon based nanoparticles in a swathe 

of diagnostic and assay roles as fluorescent cellular markers.45, 183 Furthermore, silicon 

exhibits a low inherent toxicity when compared with the heavy elements of several other 

types of semiconductor quantum dots, which can pose significant risks to human health. The 

overall combination of these properties of SiNPs opens up new avenues of applications in 

optoelectronics and bioimaging.  

When considering biomedical applications, surface functionalization of SiNPs is 

essential in order to target them to specific disease areas and to allow them to selectively 

interact with cells or biomolecules.184, 185 When capped with organic molecules SiNPs can 

take their functionality and display a number of interesting additional properties, such as 

increasing overall stability of NPs, increased solubility and preventing aggregation and 

precipitation in a biological environment, all of which are important in biomedical 

applications. The properties of nanoparticles can be controlled as a result of variation in 

chemical synthesis methods. The organic shell located on the external part of the SiNPs 

provides chemical functionality to the nanostructure and is thus responsible for solubility, 

stability, charge effects and interactions with other molecules. By looking at the potential 

application and development of SiNPs in biomedical fields, it is worth synthesizing 

carbohydrate capped SiNPs. However, no such functionalization has been explored with 

SiNPs. 
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1.8 Scope of This Thesis 

This thesis consists of five chapters; a brief summary of each is given below. 

This thesis deals with the development and optimization of a method for the 

preparation of stable and monodisperse SiNPs, and their photophysical characterization. In 

addition, it displays possible applications of SiNPs as well as the investigations into their 

toxicity, specifically in the realm of bioimaging.  

Chapter 1 gives a general introduction about semiconductor quantum dots and Si NPs, in 

particular. It gives an overview about the variety of methods published so far that are used 

for the production of SiNPs and the description of the origin of Si NPs luminescence. It also 

gives an overview about the cytotoxicity and applications of the NPs in biomedical field. 

Chapter 2 describes the methods for producing and functionalizing SiNPs such as amine-

terminated SiNPs and carbohydrate capped SiNPs. Also discussed are various physical and 

chemical characterization techniques. In addition, the methods and materials used in the 

biomedical studies of the particles are described. 

In Chapter 3, the preparation of water-soluble amine functionalized silicon nanoparticles is 

described. A facile method to synthesize highly stable amine-terminated SiNPs including 

their photophysical characterization such as ultra violet-visible (UV-vis) spectroscopy 

measurements are outlined and discussed. The surface chemical composition of amine-

terminated SiNPs was confirmed by Fourier Transform Infrared Spectroscopy (FTIR), 

Nuclear Magnetic Resonance Spectroscopy (NMR) and X-ray Photoelectron Spectroscopy 

(XPS). The size of amine-terminated SiNPs was examined using Transmission Electron 

Microscope (TEM) and Dynamic Light Scattering (DLS) techniques. Moreover 

photoluminescence (PL) and pH stability of the obtained SiNPs were studied. 

The work described in this chapter has led to the following publication: 

Ahire, J. H.; Wang, Q.; Coxon, P. R.; Malhotra, G.; Brydson, R.; Chen, R.; Chao, Y., Highly 

Luminescent and Nontoxic Amine-Capped Nanoparticles from Porous Silicon: Synthesis and 

Their Use in Biomedical Imaging. ACS Applied Materials & Interfaces 2012, 4 (6), 3285-3292. 

Coxon, P. R.; Ahire, J. H.; Ashby, S., P.; Frogley, M., D.; Chao, Y.; Amine-terminated Nanoparticle 

films: Pattern Deposition by a Simple Nanostencilling Technique and Stability Studies under X-

ray Irradiation. Physical Chemistry Chemical Physics 2014, 16, 5817-5823 
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#ÈÁÐÔÅÒ ψ demonstrates the synthesis of highly stable and water-soluble carbohydrate 

capped SiNPs. A simplified method is described to functionalize SiNPs with various 

monosaccharide and disaccharide sugar moiety. The surface functionalization of 

carbohydrate capped SiNPs is confirmed by FTIR, NMR, and energy dispersive X-ray 

spectroscopy (EDX) studies. The photophysical and optical properties were measured by UV 

and PL spectroscopy. The size of all NPs was measured by TEM, while the hydrodynamic 

diameter and Zeta-potential were obtained by DLS. The biochemical activity of carbohydrate 

capped SiNPs was tested with ConA as a target protein.  

The work described in this chapter has led to the following publication: 

Ahire, J. H.; Chambrier, I.; Mueller, A.; Bao, Y.; Chao, Y., Synthesis of d-Mannose Capped Silicon 

Nanoparticles and Their Interactions with MCF-7 Human Breast Cancerous Cells. ACS Applied 

Materials & Interfaces 2013, 5 (15), 7384-7391. 

Chapter 5 deals with the application of carbohydrate capped SiNPs for selectively targeting 

cancerous cells as well as for bioimaging purposes. All carbohydrate capped SiNPs are 

studied by using several mammalian cell lines. All carbohydrate capped SiNPs proved to be 

non-toxic inside normal mammalian cells and cancer cells, moreover they were found to be 

highly stable in biological media. It was shown that carbohydrate capped SiNPs are taken up 

selectively by cancerous cells rather than normal cells. All the SiNPs can be successfully used 

for staining several cancer cell lines, as well as demonstrated receptor mediate endocytosis, 

which could favor the development of nanomedicine in cancer treatment. 
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2 Silicon Nanoparticle Synthesis and Characterization 

Techniques  

The following chapter describes the synthesis, methods to functionalize the 

nanoparticles, experimental apparatus, and chemicals used in the work presented in this 

thesis. An overview of the preparation methods used in the synthesis of amine terminated 

silicon nanoparticles, different types of carbohydrates capped silicon nanoparticles, and the 

biological methods and materials used to implicate the NPs inside the cells. All chemical 

analyses of the compounds, optical measurements, size determinations for the entire 

samples are also described in detail, followed by the techniques used in the biomedical 

applications.  

All chemicals used were purchased from Sigma-Aldrich or Fisher Scientific and 

employed without further purification unless specified differently. 

2.1 Synthesis of Hydrogen t erminated Porous Silicon NPs  

2.1.1   Porous Silicon  

As mentioned in the introductory chapter 1, there are two major strategies to 

synthesize silicon nanoparticles: bulk reduction (top down) and self-assembly (bottom up). 

The silicon nanoparticles studied and synthesized throughout this work are derived from 

the nanostructures found within the surface layers of porous silicon by bulk reduction (top 

down) method. The formation of porous silicon can be carried out in several ways. In this 

work porous silicon was obtained by electrochemical etching (anodisation) of crystalline 

silicon. Many nanoparticle production methods involve elaborate and expensive techniques 

with relatively low yields and low purity. Fabrication of porous silicon is, by contrast, a 

cheap and simple procedure based upon the electrochemical dissolution of crystalline 

silicon. 

2.1.2 Brief History of Porous Silicon  

Porous Silicon (p-Si) was accidentally discovered in 1956 by the husband and wife 

team Arthur and Ingeborg Uhlir working at Bell Laboratories in the United States.1 They 

were trying to develop an electrochemical method to machine silicon wafers for use in 
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microelectronic circuits. They observed that under appropriate electrochemical conditions, 

the silicon wafer did not dissolve uniformly as expected, but instead the surfaces appeared 

to be covered in dark red-brown stains. These deposits were dismissed as a suboxide of 

silicon and no further research was carried out on it for over a decade. However, in the 

1970s and 1980s a significant level of interest in this obscure material grew because its 

large internal surface area offered a model of the crystalline silicon surface in IR 

spectroscopic studies2, 3, as a precursor to generate thick oxide layers on silicon, and as a 

dielectric layer in capacitance-based chemical sensors4. In 1990, Leigh Canham5 discovered 

its visible luminescence properties. Researchers started studying its nonlinear optical, 

electric and mechanical properties. These academic and technological efforts have enabled 

the fabrication of uniform porous layers with size as small as one nanometer, permitting an 

enormous inner surface area, which is useful for biosensing applications. 

2.1.3 Synthesis of Porous Silicon  

Porous silicon samples were made by anodisation ɉÅÌÅÃÔÒÏÃÈÅÍÉÃÁÌ ȬÅÔÃÈÉÎÇȭɊ ÏÆ ÂÕÌË 

silicon in a hydrofluoric acid (HF) based electrolyte (1:1 98 wt.% ethanol: 48 wt.% HF 

volumetric rati o). HF is typically used since it is known to dissolve bulk silicon in an efficient 

manner.6 The addition of ethanol is useful for several reasons; owing to the hydrophobic 

nature of the clean silicon surface, access to the fine pores by the pure electrolyte is severely 

restricted. Ethanol increases the surface wettability, aiding pore penetration, which 

improves the lateral homogeneity and leads to a more uniform porous layer. In addition to 

this, the presence of ethanol helps with the removal of hydrogen gas (see equation 2.1), 

which form during the dissolution reaction from the surface of silicon and allows a more 

uniform current density to be maintained. The dissolution process is based upon the 

presence of holes (h+) at the Si:HF solution interface 

                                ╢░ ╗╕ ╗ ᴼ╢░╕ ╗╕ ╗                               Equation :  2.1 

In the dissolution process, a vacancy is formed in the silicon valence band. A vacancy 

is also called a hole. In other words, an electron is removed from near one of the SiɀH bonds. 

This activates the previously passivated SiɀH bond, making it susceptible to attack by the 

fluoride solution. After initiation, the etching of one silicon atom proceeds very rapidly 

according to the mechanism outlined in Scheme 2.1. 
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Scheme  2.1: Reaction mechanism of H -terminated po rous SiNPs formed by electrochemical 

etching reproduced from Lehmann & Gösele (1991). 7 

 

The anodisation was carried out in a PTFE (Teflon) cell where the silicon wafer acts 

as anode and HF-resistant electrode (Tungsten wire) serves as the cathode. The PTFE 

(Teflon) cell is used in order to withstand the aggressive nature of hydrofluoric acid used 

during the etching process. The cell chamber consists of an upper and lower plate, and the 

silicon chip is positioned between two plates. The upper plate contains an open cavity in the 

center to hold the etchant or electrolyte solution and is fitted with a VitonTM O-ring 

(Polymax LT) to prevent the etching solution from leaking. The p-Si (100) wafer (10 cm 

1. In the absence of electron holes, a hydrogen saturated 
silicon surface is virtually free from attack by flouride ions 
in the HF based electrolyte. The induced polarisation
between the hydrogen and silicon atoms is low because 
the electron affinity of hydrogen is about that of silicon. 

2. Whena hole reaches the surface, nucleophilicattack 
on an Si-H bond by a fluoride ion can occur and a Si-F 
bond is formed

3. The Si-F bond causes a polarisationeffect allowing a 
second fluorine ion to attack and replace the remaining 
hydrogen bond. Two hydrogen atoms can then combine, 
injecting an electron into the substrate.

4. The polarisationinduced by the Si-F bonds reduces the 
electron density of the remaining Si-Si backbondsmaking 
them susceptible to attack by the HF in a manner such 
that the remaining silicon surface atoms are bonded to 
the hydrogen atoms.

5. The silicon tetrafluoridemolecule reacts with the HF to 
form the highlystable SiF6

2- fluoroanion.
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resistivity, Compart Technology, Peterborough, UK) was first cut into 1.25cm x1.25cm 

square chips to fit  the anodisation cell (circular in cross-section). The wafers were cut into 

the chips by using a diamond-tipped scribe. After cutting, the chips were rinsed in absolute 

ethanol (EtOH, 98 wt.% Sigma-Aldrich) and distilled water, in order to eliminate impurities 

from the surface, and dried under nitrogen flow.  

 

Figure  2.1: Schematic diagram of formation of porous silicon - Top left shows a two -electrode 

electrochemical cell used to make porous silicon. Lower left, enlarged cross -section of the Psi -

Si interface. Top right, silicon wall iso lated by two pores with possible routes for a hole to 

cross the silicon highlighted (blue and purple arrows). Lower righ t, energy barriers for the 

hole penetrating into a wall (blue arrow) and a pore base (purple arrow). Reproduced from 

Lehmann et al. (199 3). 

 

Prior to the etching process, the chip was dipped rapidly (approximately 30 sec) in 

48 wt.% HF (VWR International Ltd.) then rinsed gently with distilled water and dried under 

nitrogen flow. After drying the chip was placed into the cell in such a way that only the 

polished side of the chip is exposed to the electrolyte solution. The upper plate of the cell 
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