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Abstract. 
 

This doctoral thesis had as its aim the asymmetric synthesis of tetrathia[7]helicene 

derivatives using a newly developed multiple kinetic resolution (multi-KR) approach. The 

derivatives obtained (formyl- and diformylhelicene) should also be useful intermediates for 

the synthesis of chiral push-pull systems. 

The first part of the project was devoted to the synthesis of 7,8-dipropyltetrathia[7]helicene 

reported by Licandro and Maiorana. A key intermediate in this synthesis is the benzo[1,2-

b:4,3-b']thiophene building block, previously obtained via a photochemical reaction, and 

for which we developed an alternative chemical synthesis
1
. 

The second part of the project focused on the kinetic resolution, designed to obtain formyl- 

and diformylhelicene. Two strategies were identified to obtain the desired aldehydes: direct 

asymmetric formylation using novel chiral formamide reagents and/or asymmetric 

lithiation using (–)-sparteine followed by a DMF quench. The chiral auxiliaries were first 

examined in single kinetic resolution experiments in order to identify the most suitable 

conditions and auxiliaries. Asymmetric lithiation proceeded in up to 84% e.e. and the 

asymmetric formylation using a chiral formamide gave at best 42% e.e. The most 

successful examples were chosen to design several multi-KR approaches using a suitable 

combination of matched and/or mismatched steps. These strategies have allowed us to 

synthesise very highly enantioenriched helicene derivatives that can be recrystallized to 

enantiopurity. 

Finally, the synthesis of (electron donor)-(chiral-)-(electron acceptor) [D-(chiral-)-A] 

and (electron acceptor)-(chiral-)-(electron acceptor) [A-(chiral-)-A] chiral push-pull 

systems was examined. Racemic A-(chiral-)-A structures were readily obtained, and 

although one racemic D-(chiral-)-A target was synthesised; the synthesis of this latter 

class of compound has proved to be more challenging because of issues with the stability 

of the synthetic intermediates. Both D-(chiral-)-A and A-(chiral-)-A structures are to be 

examined in photophysics experiments by Pr. T. Verbiest at the University of Leuven. 

  

                                                            
1 G. R. Stephenson, S. Cauteruccio, J. Doulcet,

 
Synlett 2014, 25, 701. 
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I) Aims of the project 

Although there is a doubt on the exact date of the discovery, which varies depending on 

sources and gets older as more journals get available online, helicenes were first reported 

in the early years of the twentieth century.
1
 The first fifty years of helicene chemistry saw 

helicenes and heterohelicenes of different sizes being reported; however since helicenes 

are chiral, the first great advance in the field came with Newman‟s report, in 1955, of the 

isolation of [6]helicene (1) in enantiopure form (Figure 1).
2
 This triggered chemists‟ 

interests and the following years saw increasing numbers of reports concerning helicene 

chemistry.  

 

Figure 1: (–)-[6]helicene and (+)-[6]helicene reported by Newman  

 

However, helicene synthesis was still a long and tedious process, and the real change in 

helicene chemistry came with the report of the successful extension of the 

photodehydrocyclisation of stilbene derivatives to larger structures, thereby affording 

helicenes.
3
 In the following years, several groups (Martin, Wynberg, Kagan, Laarhoven) 

extensively studied and developed the photochemical methodology, producing [n]helicenes 

and hetero[n]helicenes in many different sizes (5 < n < 15) and in good yields. Also, these 

research groups participated in developing resolution techniques sufficiently efficient to 

allow the study of the chiro-optical properties of helicenes. The great interest in helicenes 

was at that time driven by wider interests in the understanding of the origin of chirality, for 

which studying the optical properties of the unique twisted pi-systems of helicenes could 

be expected to give novel results.
4
  

However, although the early access route gave sufficient quantities to establish their 

interesting properties, helicenes needed to be more easily obtained in large quantities and 

in enantiomerically pure form, in order to exploit their nonlinear optical properties and to 

assess their potential in organocatalysis. Towards this goal, several synthetic methods and 

routes (camphanate resolution,
5
 Diels-Alder,

6
 [2+2+2]cycloisomerisation

7
) that do not 
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involve the scale-limiting photocyclisation have since then been developed, allowing the 

study of the properties of helicenes with many different structural modifications and 

bearing a wide range of functionalities. Unfortunately, despite all these efforts deployed 

towards the synthesis of enantioenriched helicenes, remarkably little success has been 

gained since the first report of enantiopure [6]helicene in 1955. Indeed, while early 

techniques that mostly consisted in preferential crystallisation of one enantiomer did not 

provide sufficiently good results to be generalised to large scale preparation of 

enantiomerically pure substrates, most of efficient techniques developed since rely on the 

synthesis of a racemic helicene, its transformation into a diastereomeric mixture and 

subsequent separation of diastereoisomers using silica gel chromatography. Nonetheless, 

the past fifteen years saw major improvements, since good progress has been made in 

diastereoselective and enantioselective synthesis of helicenes, frequently obtaining 

products with high selectivities. A consequence of the larger number of available 

techniques for the preparation of enantiopure helicenes was a major increase in the 

quantity of reports concerning NLO studies
8
 and asymmetric catalysis using a helicene 

scaffold,
9
 in the past ten years. As a domino effect, this has generated an even larger 

demand for enantiopure helicenes; therefore the need for more efficient techniques 

affording enantiopure helicenes is more than ever a priority. 

In this context, our project finds its originality in an enantioselective approach based on the 

kinetic resolution of racemic tetrathia[7]helicene (Scheme 1). Indeed, rather than trying to 

achieve a completely novel asymmetric helicene synthesis, it was decided to use an already 

known helicene, whose properties would make it a good target for nonlinear optical studies 

as well for catalysis. Tetrathia[7]helicene meets perfectly all those requirement as it has 

been described
10

 as a very good candidate to observe Two Photon Circular Dichroism 

(TPCD: a nonlinear optical phenomenon arising from the conjunction of two photon 

absorption and circular dichroism) and similarly offers opportunities as a new scaffold in 

catalysis.
11

 Also, it belongs to the class of thiahelicenes which possess the attributes of 

being very easily functionalised at each end of the helix, at the C2 and C13 positions 

adjacent to the sulfur atom.  
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Scheme 1: Multiple kinetic resolution of tetrathia[7]helicene 

 

The aim of our project, would be to synthesise tetrathia[7]helicene derivatives (3), via a 

new approach based on the concept of multiple kinetic resolution being developed at UEA 

in the Stephenson group, affording enantiomerically pure products. This will much 

improve access to useful intermediates for both NLO studies and catalysis (further 

modification of functionalities could easily be achieved if required) by installing adequate 

functional groups at each end of the helix. For the NLO applications, our intention is to 

transform the functionalised tetrathia[7]helicenes into powerful push-pull systems 

[(electron donor)-(chiral pi system)-(electron acceptor) or (electron acceptor)-(chiral pi 

system)-(electron acceptor)],  based on the model of the ATOP dyes,
12

 in order to study the 

predicted good ability of thiahelicene towards second order nonlinear optical phenomena. 

Moreover, considering the potential use as catalysts, the use of racemic starting material 

can be justified, making both enantiomers readily accessible from one synthesis.  

 

II) Discovery and properties of helicenes 

1) Name and nomenclature 

Helicenes are molecules made of ortho-fused aromatic rings, forming an inherently regular 

helical shape, which arises from the steric hindrance between aromatic rings. The name 

helicene was introduced by Newman in 1956
2
 and although IUPAC rules A-21, A-22, B-3 

and B-4 define nomenclature concerning fused aromatics, there is no precise denomination 

for the naming of helicenes; therefore, in following paragraphs we will define the system 

used in this thesis. Geometrical properties define whether a molecule is a helicene or not, 

and also determine which class a helicene belongs to: carbohelicene, heterohelicene and 

helicenoid structure. The properties rising from the chiral fully delocalised pi-system, 

generally referred to as chiro-optical properties, have always brought a large interest from 

transversal disciplines such as molecular electronics and photonics. 
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2) Geometrical/structural properties of helicenes 

a) Size and nature of the rings 

According to IUPAC rules, the minimal number of rings necessary to obtain a helicene is 

five.
13

 However, many compounds constituted of four ortho-fused rings have shown a 

stable helical shape; therefore in this thesis, the term helicene will be used to describe 

molecules possessing as few as four ortho-fused aromatic rings. Since the early reports in 

1903,
1
 helicenes of many different compositions and sizes have been synthesised, up to 15 

rings,
14

 and including a range of heteroatoms, sulfur, nitrogen, oxygen being the most 

common ones. Unofficial nomenclature defines that the ring-count should be noted in the 

following way: [number of rings]helicene, so in the case of a n-ring system, the generated 

name would be [n]helicene. The nature of the rings also matters; strictly benzene-based 

helicenes are generally called carbohelicenes or more simply [n]helicenes, whereas 

helicenes including heteroaromatic rings are called heterohelicenes (Figure 2). Therefore, 

including the ringcount, we get the following name hetero[n]helicene. 

 

Figure 2: Helicene nomenclature 

 

The number of heterocycles can also be accounted for by a “prefix” derived from the 

number (di for 2, tri for 3, tetra for 4, etc) of heteroatom-containing rings; thus, four 

thiophene rings interspersed between three benzene rings gives the name: 

tetrathia[7]helicene (2). Our work concentrates on helicenes containing thiophene 

(thiahelicenes) but furan (oxahelicene), pyridine or pyrrole (azahelicene) and more exotic 

examples have also been reported. In this thesis I will also discuss the synthesis of a 

closely related type of compound: helicenoid structures. Just like helicenes, they present a 

helical structure, but do not possess a fully conjugated system of pi electrons. They do not 

have a particular nomenclature, and this thesis refers to them simply as helicenoids 

following the same naming description as helicenes, ie hetero[n]helicenoid (Figure 2, 6 for 

example). Concerning the numbering of substituents, the rules for [n]helicene will follow 

Newman‟s suggestion of numbering in order, starting at the first proton inside the helix 
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(Figure 3), whereas rules IUPAC B-3 will be followed for hetero[n]helicenes because the 

heteroatom takes priority.  

 

Figure 3: Numbering of the substituents 

 

b) Properties of the helix 

The structural characteristics of helicenes can be described in relation to the geometry of 

helixes, and particularly pitch is of significant importance. Helixes are defined this way: a 

helix is a type of smooth space curve, (i.e. a curve in three-dimensional space) which has 

the property that the tangent line at any point makes a constant angle with a fixed line 

called the axis. The axis of the helix, running through the centre, can be used as a ruler to 

measure the pitch. The pitch of the helix is defined by the width of a complete helix turn, 

measured on the axis or parallel to the axis (Figure 4).  

 

(http://www.ezcam.com/web/products/help/ezmill/curve_handling_mill/create_helical_curve.htm) 

Figure 4: Helical curve: defining helix properties 

 

The pitch of the helix is one of the key features of a helicene as it will influence its 

electronic, and spatial properties. Indeed, since electron transfers/movements could also 

occur through space instead of going through the helix, the spacing between each 

overlapping ring defined by the pitch will therefore establish differences in electronic 

http://www.ezcam.com/web/products/help/ezmill/curve_handling_mill/create_helical_curve.htm
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properties. The size of the pitch is influenced by the nature and the number of rings present 

in the helicene (every aromatic ring has got different bond length and bond angles); hence 

different helicenes, or helicenes with different substituents, should produce a change in the 

pitch value. The invaluable ability of tuning the pitch of the helix could be used in many 

different ways, for example, with helical catalysts by allowing screening of various bite 

angles. Also, symmetrically substituted helicenes possess a C2 symmetric core (Figure 5); 

this rotational symmetry feature indicates that the molecule unchanged by a rotation of 180 

degrees around the C2 axis, which also means that both ends of the helicene are equivalent. 

 

Figure 5: [6]-helicene, geometrical properties 

 

3) Chiro-optical properties 

a) Chiral properties 

The inherent chirality of helicenes arises from the helical structure which can either be left- 

or right-handed; it is a type of axial chirality. A helicene can have either M or P 

configuration (defined by the right hand rule), left-handed helixes will be assigned with M 

configuration and right-handed helixes with P configuration (Figure 6).  

 

Figure 6: Enantiomers of tetrathia[7]helicene 

 

As for any chirality, there is no direct link between sign of specific rotation and absolute 

configuration of the enantiomer. However, it has been shown that within a class of 

helicenes sharing the same core structure, all enantiomers of one configuration correspond 

to a sign of rotation and the other enantiomer to the opposite sign. Since the early years of 



Introduction 

8 
 

helicene chemistry, the question of absolute configuration has always been an issue. Early 

reports in the 1960s based their results on calculation using computing models, before 

progress in X-ray crystallography enabled correct assignment of helicene absolute 

configuration.
15

 However, this is still a problem for non-crystalline compounds, and for 

those, absolute configurations are determined using circular dichroism (CD) and 

correlation with CD curves calculated by computing models.  

 

b) Graphic representation of helicenes 

In an attempt to be as clear as possible, this section will display the graphic representation 

of helicenes, whether they are representing a racemic mixture or enantioenriched form. 

Racemic helicenes will be drawn flat when there is no overlap of the rings, and to improve 

the clarity, both mirror images will be drawn for larger structures when rings do overlap 

(Figure 7).  

 

Figure 7: Representation of racemic helicenes 

 

Enantioenriched or enantiomerically pure forms will only be drawn using the structure of 

the major enantiomer (Figure 8); subheadings might be added to indicate enantiomeric 

excesses of represented structures. 

 

Figure 8: Representation of non-racemic helicenes 
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c) Optical properties 

The surprising combination of exhibiting full delocalisation of pi electrons in a chiral non-

planar structure has fascinated chemists from the early years of helicene research because 

of the exceptional chiro-optical properties that arise from it.
16

 Indeed, helicenes exhibit 

very high specific rotations (Figure 9) because the chromophore itself is inherently 

dissymmetric or asymmetric. These observations made in the 1960s, showing high specific 

rotation values, increased helicene popularity as small asymmetric inductions would be 

easily quantifiable with accuracy which was seen as something that should help to 

understand better and to quantify chirality.  

 

Figure 9: Specific rotation of notable helicenes 

 

d) Nonlinear Optical experiments 

The study of the structure-chiro-optics relationship has always been important to provide a 

deeper understanding of chirality. Indeed, the understanding of small chiral systems has 

been made possible by the development of techniques like CD and ORD.
17

 However, these 

methods based on one photon absorption have several limitations, notably the inability of 

working at shorter wavelength (UV region).
18

 Despite the development of more modern 

techniques like vibrational circular dichroism (VCD) and vibrational Raman optical 

activity (VROA) spectroscopy, more powerful techniques need to be developed to access 

further details of chiral systems.
19

 For this purpose, new techniques based on two-photon 
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absorption (TPA) and second harmonic generation (SGH) (the emission from an irradiated 

sample of a photon at frequency 2resulting from two incoming photons at frequency ) 

are potentially important with biological samples to access the UV region at reduced 

wavelength with longer wavelength irradiation. Combining it with the excellent „molecular 

fingerprinting‟ abilities of circular dichroism that is already widely used to provide 

structural information, would make a powerful tool for biomolecular recognition.
20

 This 

unique combination can be described as Two Photon Circular Dichroism (TPCD), the 

combination of two photon absorption (TPA) and circular dichroism (CD), which was 

originally predicted in 1975.
21

 However, these higher order nonlinear optical effects suffer 

from low responses, making them hardly observable; TPCD although first predicted in 

1975 was only observed in 1995,
22

 in inorganic crystals. The calcualtions to estimate the 

TPCD properties of helicenes have established
10

 that, because of their exceptional chiro-

optical properties, TPCD emission should be above the known detection limits for direct 

observation of the TPCD phenomenon. Because of these predictions, helicenes are now 

accepted as an ideal class of organic molecules to develop into novel microscopy stains for 

TPCD imaging.
23

 

The synthetic chemistry described in this thesis has been aimed at producing (electron 

donor)-(chiral--system)-(electron acceptor) push-pull systems capable of displaying 

TPCD effects as well as other NLO effects such as SGH-CD. This doctoral project has 

been a synthetic chemistry research programme to develop new methods of 

enantioselective synthesis (multi-KR) and to apply them to prepare novel molecules for 

important photophysics measurements, and the discussion of TPCD and NLO properties in 

this introductory chapter aims only to put the objectives of the synthetic work into a wider 

context. No attempt has been made to present here an in-depth/mathematical discussion of 

these complex optical phenomena and the results and discussion chapters of the thesis will 

display synthetic chemistry results and eventually mention the use of final target molecules 

for NLO studies, but will not present in detail the photophysics data.  

 

4) Helicene synthesis 

As indicated at the start of this introductory chapter, the date of first reported helicene is 

difficult to find and frequently, in recent articles concerning helicenes, authors‟ views on 

the actual date of helicene discovery seem to differ. Indeed, the term “helicene” was only 
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introduced the 1950s. Older syntheses do not mention the name helicene at all, and 

structure data based searches of articles published before the 1930s are difficult. It was 

noted that the date of the first report seems to be “ageing”.  Therefore, the terms of “first” 

report and “discovery” will be used with caution in this thesis, and I have not attempted a 

comprehensive search of the early literature.  

 

a) Early syntheses 

i) Racemic helicene  

To the best of our knowledge, the first reported syntheses of helicenes were as early as the 

1900s, with Meisenheimer and Witte in 1903
1
  reporting aza[5]helicene (9) and 

diaza[5]helicene (18) (by the reductive cyclization of 2-nitronaphthalene) followed by Lieb 

et al. reporting
24

 [4]helicene-6-carboxylic acid (19) in 1912 (Figure 10). 

 

Figure 10: First historical helicenes 

 

Several other reports of helicenes appeared during the following decade,
25

 all having in 

common a methodology using the Pschorr reaction
26

 as the ring closing step. The full 

synthesis involves a Perkin reaction to form alkenes with both aromatic moieties in the cis 

configuration. Then, the nitro group in ortho position, is reduced and converted into a 

diazonium salt, and upon heating, ring closing occurs; the resulting helicene is formed 

bearing a carboxylic acid on the newly constructed ring (Scheme 2). The parent helicene 

can be obtained upon heating, by a decarboxylation reaction. 
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Scheme 2: Synthesis of [4]helicene 19 and [5]helicene 27 

 

The main issue with this technique was the lack of selectivity in the ring closing step, 

allowing competing formation of linear isomers. This problem was first encountered by 

Lieb,
24

 who thought he obtained pure [4]helicene, but instead obtained a mixture with the 

linear isomer. Another method was developed by Hewett et al. in 1938,
27

 where the ring 

closing step was performed using a potash fusion on 1,2-diarylethene (with aryl in cis 

conformation) substrates, bearing an ortho-bromo substituent (30 and 33, Scheme 3). 

 

Scheme 3: Hewett’s potash fusion mediated annelation 

 

Using a completely different approach, Fuchs prepared in 1927, diaza[6]helicene
28

 (38) by 

a double Bucherer carbazole synthesis from 2,7-dihydroxynaphthalene (37) and phenyl 

hydrazine (36) (Scheme 4).  
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Scheme 4: Fuchs’ diaza[6]helicene (38) synthesis 

 

ii) First report of non-racemic helicene 

The story of non-racemic helicenes started with Newman who reported, in 1948, the first 

partial resolution of a helicene, [4]helicene derivative 39 (Figure 11).
29

 He managed to 

obtain the optically active helicene after a kinetic resolution of its acid chloride derivative 

using l-menthol. However, due to the poor optical stability of [4]helicenes, no optical 

activity could be measured after one day. Then, Bell reported in 1949 the partial resolution 

of [5]helicene derivative 40
30

 (Figure 11) by treatment with morphine and preferential 

crystallisation of one diastereomeric morphine salt. Bell also mentioned that the partially 

resolved [5]helicene did not show any optical activity after a few hours in an acetone 

solution. 

 

Figure 11: First reported non-racemic helicenes, 39 and 40 



Introduction 

14 
 

 

Following these reports, Newman established a landmark when he reported in 1955 the 

complete resolution [6]helicene (1) (Scheme 5).
2,31

  

 

Scheme 5: Synthesis and resolution of [6]helicene 
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The synthesis, although novel, was still cumbersome, involving as many as ten steps for an 

overall yield of only 3.7%. Using α-(2,4,5,7-tetranitro-9-

fluorenylideneaminooxy)propionic acid (TAPA, 51)
32

 in the recrystallization step, they 

obtained partially resolved [6]helicene, and, after several recrystallizations (nine in total), 

they eventually obtained enantiomerically pure (+)- and (–)-[6]helicene. Interestingly, 

Newman reported in the same year the successful resolution of configurationally stable 2-

(1,12-dimethyl[4]helicen-5-yl)acetic acid (52) using l-cinchonidine (78) (Figure 12).
33

  

 

Figure 12: Enantiomerically pure 2-(1,12-dimethyl[4]helicen-5-yl)acetic acid (52) 
 

Newman‟s demonstration of the possibility to resolve helicenes had great impact and 

triggered the interest of many scientists in these elegant helically shaped molecules. From 

the early 1960s, onwards, intensification of the research in helicene chemistry occurred 

rapidly, giving rise to a large number of publications. However, from a synthetic point of 

view the strategy used to obtain helicenes was still too complicated, long and low yielding, 

and the final re-aromatisation using high temperature restricted the possible functionalities 

present on the helicene.  

 

b) Development of photochemical syntheses 

i) Photodehydrocyclisation  

The way to easier syntheses of helicenes was paved by the report of successful 

photocyclisation of stilbene derivatives in 1964 by Wood and Malory (Scheme 6).
34

 This 

reaction allows the formation of polycyclic aromatics under UV irradiation, from cis or 

trans 1,2-diarylethene, in the presence of a catalyst for the E/Z isomerisation and an 

oxidant for the rearomatisation. The addition of catalysts/reagents like iodine, propylene 

oxide or ethylene oxide to provide the trans/cis isomerisation is necessary to obtain an 

efficient photocyclisation reaction. Indeed, the trans double bond is first isomerised to the 

cis structure which then cyclises readily, driving the reaction forward. The usual oxidant 
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providing rearomatisation would be air, even though iodine in stoichiometric amounts has 

been shown to provide significant results in some examples (also the addition of propylene 

oxide can help to destroy some of the HI formed).
35

 It has to be noted that the reaction 

would be made much faster if alkenes with aryl groups in the cis configuration were used, 

however most of chemical reactions (Wittig, McMurry, etc) lead to the formation of 

alkenes with aryl groups in a trans-configuration. Exceptions to this are the Perkin reaction 

and the McMurry reaction of ketones which afford tetrasubstituted alkenes with both aryl 

groups cis to each other.  

 

Scheme 6: Photodehydrocyclisation of stilbene 
 

The reaction was originally carried out in benzene; however since the discovery of its 

carcinogenicity benzene has been replaced in most cases by toluene, which is not without 

its own disadvantages (reduced solubility of reactants and more difficult removal by 

evaporation). Indeed, helicene precursors are large conjugated flat structures which tend to 

be highly insoluble in most of solvents because of pi-stacking phenomenon, so the use of 

toluene does not generally allow for a successful cyclisation of those species. The use of 

tetrasubstituted alkenes bearing bulky groups (alkyl, carbonyl, CF3, NO2) generally 

reduces or prevents completely pi-stacking of the precursors, improving solubility. Also, 

benzene is considered as a photoinitiator, which might facilitate the isomerisation process.  

 

ii) Carbohelicenes 

Wood and Malory‟s report in 1964 unravelled the accessibility problems of helicenes and 

the relative convenience of the photochemical method triggered a considerable amount of 

research on helicene synthesis. The main concern for the photocyclisation of 1,2-

diarylethenes  bearing larger aryl groups than phenyl (ie, naphthyl see 57, phenanthrenyl) 

was that the two ortho-positions (4 and 8 or 10 and 14, Scheme 7) of the aromatic moeities 

are no longer chemically equivalent and can give rise to more than one possible 

regioisomer upon cyclisation (7, 58, 59, Scheme 7). However, Scholz showed that when 

transferred to larger structures, the regioselecvity of photodehydrocyclisation was not 
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unfavourable to the formation of specific helical structures, reporting the synthesis of 

[7]helicene in 1967.
36

  

 

Scheme 7: Possible regioisomers from photocyclisation of 1,2-diarylethylenes 

 

Subsequently, several research groups (Martin, Wynberg, Laarhoven, Kagan) tackled the 

photosynthesis of helicenes of various shapes and sizes, up to [14]helicene
37

 (63, Scheme 

8). However, the larger structures proved to be very challenging as the number of possible 

isomers arising from a one-step multi-cyclisation is far greater than for smaller structures.  

 

Scheme 8: Notable helicene obtained via photosynthesis 
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iii) Heterohelicenes 

Besides the early reports of aza[5]helicene in 1903 and aza[6]helicene in 1927, 

heterohelicenes had been under-studied before the era of photo-induced cyclisation. This 

was changed by photo-induced cyclisation methods, especially when it was confirmed that 

heterocyclic analogues of stilbene (for example 64, Scheme 9) cyclise in the same fashion 

affording corresponding heterophenanthrene analogues. Wynberg proved that using a 

benzene-thiophene scaffold was very successful as it does not allow the formation of 

isomers in the cyclisation step, only one ortho position being available (Scheme 9).
38

 

 

Scheme 9: Photocyclisation of thiophene analogues of stilbene 

 

His group reported several syntheses of thia[n]helicenes, of many sizes from 4 to 11 rings
39

 

(Figure 13), and using building blocks
38

 67, 68, 69 and 70 (Figure 14), pretty much any 

thia[n]helicene can be synthesised, within the acceptable limits of size. Moreover, 

considering that among heterocycles, thiophene is the closest to benzene concerning 

aromaticity,
40

 thiophene-derived helicenes exhibited similar properties to carbohelicenes.  

 

Figure 13: Tetrathia[11]helicene (66) 

 

 

Figure 14: Building blocks for thia[n]helicenes 
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Then, in 1981, Yamada et al. reported
14

 the synthesis of several thia[n]helicenes, in 

particular octathia[15]helicene. More recently, Licandro and Maiorana have improved the 

synthesis of thia[7]helicenes, using a McMurry coupling reaction to generate the 1,2-

diarylethene species directly from the aldehyde.
41

 

Besides thiahelicenes, not many other heterohelicenes have been synthesised using 

photochemical conditions. Martin in 1969
42

 and Wynberg in 1971
39

 respectively 

synthesised aza[6]helicene (71) and  mixed oxa-thia[6]helicene (72) (Figure 15), using the 

same methodology as for the photocyclisation of thiahelicenes. More importantly, this 

period (late „60s / early „70s) saw a rapid growth of the interest for obtaining 

enantioenriched helicenes.  

 

Figure 15: Hetero[n]helicene obtained via photosynthesis 

 

III) Heterochiral and homochiral helicenes 

1) Racemisation and inversion barrier 

The chirality displayed by helicenes arises directly from the conformation of their helix, 

therefore if the left- or right-handedness can be inverted/reversed this would in theory 

result in a racemisation process. Although it is hard to imagine a long helical shape, like a 

spring for example, switch from left- to right-handedness, as helicenes rarely display more 

than one or two turns of the helix, we should think of them more as a „key ring‟, and when 

enough energy is brought to the system racemisation can sometimes operate; the shorter 

the helix is, the faster it happens. This phenomenon was first observed by Newman, in 

1948,
29

 when the optical activity of partially resolved 2-(1-methyl[4]helicen-4-yl)acetic 

acid (39) disappeared after one day at room temperature. This is a reason why [4]helicenes 

have for a long time not been considered as true helicenes, as the equilibrium between 

configurations did not allow any lasting resolution, and no optical activity could be 

measured. Since then, it has been shown that helicenes can be stabilised by hindering the 

“bay area” (see Figure 16) when adding bulky groups on end rings. Also, some 
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phenanthrene structures bearing extremely large substituents have exhibited optical 

activity, so they could, in principle, be regarded as [3]helicenes.
43

 

 

 

Figure 16: Stabilisation by crowding the helicene bay area. 

 

Helicene racemisation has always been an issue for synthetic chemists from the time they 

first tried to obtain non-racemic material. Wynberg was the first to report in 1969 the 

racemisation rates of dithia[6]helicene and trithia[6]helicene.
39

 Since then, many reports on 

racemisation rates and energy of inversion barriers have flourished, especially more 

recently with more complete computational studies.
44

 The general idea being that stability 

of [n]helicene increases with n growing, that heterohelicene are in general less stable that 

carbohelicenes, that [n]helicenoids are also generally more likely to invert, and finally, 

addition of substituents in the inner side of the helix, crowding the bay area increases the 

stability. 

 

2) Resolution techniques 

a) Selective crystallisation 

The resolution of enantiomers via selective crystallisation usually relies on the preferential 

formation of a diastereomeric complex / ion pairs upon addition of an external chiral 

auxiliary, followed by the crystallisation (and filtration) of the complex. For that purpose 

many alkaloids have been, and still are, commonly used, such as quinine, quinidine, 

strychnine, brucine, cinchonine, cinchonidine (Figure 17).  
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Figure 17: Some alkaloids used for resolutions of racemic species 

 

In 1949, Bell even reports the partial resolution of [5]helicene dicarboxylic acid when 

treated with morphine (see paragraph II)4)a)ii) First report of non-racemic helicene).
31

 

Newman‟s 1955-1956 breakthroughs obtaining optically active [6]helicene (1, see above) 

by crystallisation with (+)- and (–)-TAPA
32

 relied for their success on the fact that TAPA 

(51), as a chiral pi acceptor, forms charge-transfer complexes preferentially with one 

helicene enantiomer. This was, in fact, the first report of a resolution using the preferential 

formation of diastereomeric charge transfer complexes. The same year, Newman, used 

more conventional l-cinchonidine to partially resolve 2-(1,12-dimethyl[4]helicen-5-

yl)acetic acid (52).
33

 In 1972, he also reported the selective recrystallisation of one 

diastereomeric salt of phosphonium[6]helicene 79 and silver (–)-hydrogendibenzoyltartrate 

(80) (Figure 18).
45

  

 

Figure 18: Resolution of a [6]helicene 



Introduction 

22 
 

 

In 1996, Yamagushi reported the resolution of 1,12-dimethyl[4]helicene-5,8-dicarboxylic 

acid (81) by selective crystallisation with quinine (73) (Figure 19),
46

 whereas   tar  used 

(+)-O,O‟-dibenzoyl-D-tartaric acid (84) to resolve 1-aza[6]helicene (82) and 2-

aza[6]helicene (83) in 2008 (Figure 20).
47

 One might add that the successful isolation of 

enantiopure material relies in those cases on recrystallization of partially enantioenriched 

material to further enantiopurity. 

 

Figure 19: Resolution of 1,2-dimethyl[4]helicene-7,8-dicarboxylic acid with quinine 

 

 

Figure 20: Resolution of aza[6]helicene with (+)-O,O’-dibenzoyl-D-tartaric 

 

Also, reports of resolutions of ionic helicenes or helicenoids have been made 

(diaza[4]helicenium, diaza[5]helquat)
48

 but will not be described in detail in this thesis. 
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In the 1960s Martin and coworkers reported several results affording enantioenriched and 

enantiopure helicenes.
49

 Their technique consisted of hand picking single crystals, 

followed by systematic analysis of every single crystal by measurement of their specific 

rotations. Their results were really precarious, affording material in a range of optical 

purities from its racemic to enantiopure form, despite all efforts to control better the 

crystallisations. Their major discovery was that most helicenes do not crystallise as 

enantioenriched crystals, putting an end to this particularly time-consuming technique. 

 

b) Separation of diastereoisomers 

i) Method 

Another way to obtain an enantiomerically pure helicene is to transform it into a 

diastereomeric mixture. As diastereoisomers exhibit different physical properties, it is 

possible to separate them using simple column chromatography (and in principle 

distillation, crystallisation, etc). The only limititation to this technique is the removal of the 

chiral auxiliary used for the transformation into diastereoisomers. However, helicene 

derivatives presenting carboxylic acid, hydroxyl or amine functional groups can easily be 

derivatised to form diastereomeric mixtures.  

 

ii) Menthol auxiliaries 

As early as 1948, Newman et al. attempted the resolution of menthyl ester derivatives of 

[4]helicene carboxylic acid 39, with little success (specific rotation of product +2.1°, and 

racemisation at room temperature).
29

 Then, Martin mentions in his review in 1974
50

 that 

Jespers and Libert had successfully resolved the menthyl ester of [6]helicene carboxylic 

acid. Although Wynberg, in his review in 1971,
38

 mentions good progress resolving 2-

formyltrithia[7]helicene following Woodward‟s technique for the resolution of camphor 

which uses l-menthydrazine,
51

 there is no other report of this in the literature until the end 

of the 1970s.
52

 In 1998, Fox reported the separation of the di-menthylester of [6]helicene-

2,15-dicarboxylic acid 86;
53

 he noted that menthyl ester groups could only be introduced 

from dibromide 85 in a stepwise sequence forming the diacid first, followed by 

esterification, as the quench of di-lithiated helicene with menthylchloroformate was not 

efficient/working (Scheme 10).  
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Scheme 10: Resolution of [6]helicene derivatives 

 

More recently, Rajca used l-menthol as a scaffold for a chiral chorosiloxane reagent that he 

used for the resolution of diastereoisomers of 3,11-dibromoheptathia[7]helicenes
54

 (88, 

Scheme 11). He successfully resolved both diastereoisomers bearing two menthyl 

auxiliaries, which were reconverted into the parent structure using TBAF. From the 

literature comments, it seems that two menthyl auxiliaries are necessary to obtain efficient 

separation of diastereoisomers on silica gel chromatography. 

 

Scheme 11: Resolution of heptathia[7]helicene using (–)-menthyl siloxane 
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iii)  Camphor derived auxiliaries 

Following their early work on the resolution of carboxylic acids, in 1996, Hirama used a 

camphor derivative to resolve helicenes
46

. They successfully employed camphorsultam 90 

to resolve 1,12-dimethyl[4]helicene-5,8-dicarboxylic acid (81) attaching the chiral 

auxiliary by a simple amide synthesis followed by silica gel chromatography affording 

enantiopure (M)- and (P)-91 (Figure 21).  

 

Figure 21: Resolution of 1,12-dimethyl[4]helicene-5,8-dicarboxylic acid (81) by 

chromatographic separation of its (–)-camphorsultam amide 91 

 

The generalisation of the camphor-based approach came with Thomas Katz‟s work on the 

separation of some of his helicene bisquinones -using a camphanate auxiliary, published in 

1998 (for example 92, Scheme 12). Indeed, in this work, he sets out the use of camphanoyl 

chloride (93) in single or multiple esterification reactions as a mean to introduce the 

auxiliary
55

.  

 

Scheme 12: Resolution of [7]helicenebisquinones using (S)-(–)-camphanoyl chloride 
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His method has been extensively detailed in his publications, establishing that the method 

can be generalised (Figure 22). He even published in 2000
5
 an extensive study that 

explained why camphanates are such good resolving agents for helicenols. The 

camphanate method has since then been used by several different groups
56

 (Carreño, 

Venkataraman, Aloui did not succeed) proving the wide adoption of the method (Figure 

23, Figure 24). 

 

Figure 22: Katz’s helicenes resolved using (S)-(–)-camphanoyl chloride 
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Figure 23: Carreño’s helicenes resolved with (S)-camphanoyl chloride 

 

 

Figure 24: Camphanate mediated resolution of bridged triarylamine helicenols 

 

iv)  Other auxiliaries 

Katz also attempted the resolution of helicenes using l-proline derivatives,
57

 prior to 

developing the camphanate methodology. Indeed, using N-tosyl-L-proline anhydride (110), 

[6]helicenebisquinone 109 was resolved after converting the quinones into hydroquinone 

esters thereby forming the two diastereoisomers of tetraester 111 (Scheme 13). However, 

this method was not further used, for unidentified reasons.  
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Scheme 13: Resolution of helicenebisquinone 109 using N-tosyl-l-proline anhydride 

(110) 

 

El Abed et al., reported in 2007 the successful resolution of 2-(diphenylphosphino)-

[7]helicene (112).
58

 The reaction with ortho-palladated (R)-1-(naphthyl)ethylamine 

complex 113 (a well-established technique for the resolution of chiral phosphines) afforded 

two diastereoisomers which were separated by silica gel chromatography. Reaction of the 

palladium complex 114 with bis(diphenylphosphino)ethane, afforded enantiopure helical 

phosphines (M)- and (P)-112. 
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Scheme 14: Resolution of 2-diphenylphosphino[7]helicene (112) 

 

Recently, Dehaen reported the resolution of dichloro-diaza[5]helicene
59

 using a double 

Buchwald-Hartwig coupling with (S)-(–)-1-phenylethylamine affording both 

diastereoisomers in a 1:1 ratio, and separating them on silica gel chromatography (Scheme 

15).  

 

Scheme 15: Resolution of 5,8-dichloro-4,9-diaza[5]helicene (115) 

 

c) Separation of enantiomers on chiral HPLC 

The end of the 1970s saw the development of analytical techniques, in particular high 

pressure liquid chromatography (HPLC). The use of chiral HPLC stationary phases is now 
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a well-established technique to analyse chiral compounds and amongst them helicenes. 

Although preparative scale chiral HPLC is still used in some cases to obtain enantiopure 

material, the columns are very expensive and enough progress in resolution techniques and 

asymmetric synthesis has been made to make chiral HPLC an obsolete method for 

isolation of enantiomers in a large scale. Therefore, this thesis will not discuss chiral HPLC 

methods, unless mentioning sample analysis. 

 

3) Asymmetric syntheses of helicenes 

a) Introduction 

In this section 3, we will discuss the asymmetric syntheses of helicenes and some 

helicenoid molecules. All results concerning the asymmetric synthesis of helicenes will be 

described whereas syntheses of helicenoids will be restricted to molecules with structures 

closely related to helicenes. The material is organised based on the origin of the 

asymmetric induction. Two categories can be described for asymmetric synthesis: 

enantioselective and diastereoselective synthesis. Also, methods where the helical chirality 

directly arises from the enantiodefined chirality of the non-helical substrates (e.g. 

atropoisomeric substrates) with retention of configuration will be treated separately.  

 

b) Diastereoselective syntheses 

As for traditional resolution, a number of chiral auxiliaries have been used to induce 

chirality in the formation of helicenes, however in this case auxiliaries are introduced 

before the helicene formation. 

 

i) Photocyclisation of precursors bearing chiral groups 

1. Paracyclophane 

The way was paved by Martin and coworkers, who attempted photocyclisations of 

diarylethenes bearing chiral substituents. In 1972, Martin and Wynberg published the 

synthesis of [6]helicene 122, structure that included (in place of one of the rings) a 

paracyclophane unit of known absolute configuration.
60

 This enantiopure paracyclophane 

auxiliary/unit was introduced at the first step of the synthesis, building the helicene 

precursor from [2,2]paracyclophane-4-carbadehyde (120). The final step, the 
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photocyclisation of (R)-diarylethene 121 afforded (–)-[2,2]paracyclophano-[6]helicene 

(122) in about 5% yield as a single diastereoisomer (Scheme 16). Wynberg, in 

collaboration with Martin, achieved a similar synthesis of (M)-(–)-[2,2]paracyclophano-

dithia[6]helicene (123, Scheme 16) (no specific rotation nor CD curve was recorded 

because 123 was not stable). This low yielding synthesis did not provide a true solution to 

the synthetic challenge, but was of great importance because it allowed the determination 

of the absolute configuration of [6]helicene. Considering the absolute configuration of 

paracylophane 120, the helix formed had to be left handed, therefore by comparison of 

specific rotation and ORD curves with the ones of [6]helicene, it was confirmed that (–)-

[6]helicene had the M configuration. 

 

Scheme 16: Diastereoselective synthesis of [2,2]paracyclophanohelicenes 122 and 123 

 

2. Menthol 

Following their results for the synthesis of the paracyclophano[6]helicene, in the 1970s 

Martin‟s group used a similar strategy in synthesis of a [6]helicene. The menthyl ester 

group was introduced to the helicene precursor before the photochemical step, which 

showed at first poor selectivities (about 5% d.e.).
61

  However, optimisation involving the 

introduction of the menthyl group at different positions on the end benzene ring helped to 

improve selectivities particularly when causing steric interactions in the hindered “bay 

area” of the helicene.  When using menthyloxycarbonyl substituted precursors in this way 

(124), great diastereoselectivities were obtained, reaching 96% d.e. for the synthesis of the 

(+)-[6]helicene derivative 125 when the cyclisation was performed at –78 °C, and 60% d.e. 

for the synthesis of the (–)-[6]helicene derivative 125 when the cyclisation was performed 

at 80 °C (Scheme 17).
62,52b
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Scheme 17: Diastereoselective photosynthesis of [6]helicene 125 using (–)-menthol 

auxiliary 

 

More recently, Carbery and coworkers attempted the photochemical synthesis of several 

bis-stilbenes with various degree of success. Surprisingly, no asymmetric induction was 

observed with [6]helicene precursors, whereas the photocyclisation of [5]helicene 

precursors 126 and 128 gave interesting diastereoselectivities; [5]helicene ester (M)-127 

was obtained with 10% d.e. and the photocyclisation of precursors bearing two menthyl 

ester groups 128 afforded [5]helicene diester (M)-129 with 40% d.e. (Scheme 18).
63

 Also, 

to link this with the previous paragraph concerning the separation of diastereoisomers, the 

authors noted that no separation on various chromatographic stationary phases was 

obtained. 

 

Scheme 18: Diastereoselective photosynthesis of [5]helicenes using menthol auxiliary 
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3. Bornane 

In the 1990‟s, Tanaka achieved the diastereoselective syntheses of various thiahelicenes 

with good success using bornane auxiliaries, as well as managing the separation of 

diastereoisomers.
64

 Indeed, using both endo and exo 3-amino-2-hydroxybornane 134 and 

135 (Scheme 19), they obtained divergent configurations of trithia[7]helicene-2-

carboxamide (140, 141, 142 and 143, Scheme 20) with selectivities reaching at best 50% 

d.e. The key factor that produced substantial selectivities was the incorporation of the 

bulky TIPS group on the bornane hydroxyl (137 and 139, Scheme 20). They also 

mentioned that despite the need of the TIPS group for diastereoselectivity, the free 

hydroxyl had to be used to achieve the chromatographic separation of diastereoisomers. 

Later, in 1995 and 1996,
65

 Tanaka used the same strategy for the synthesis of 

tetrathia[7]helicene 144 and azatrithia[7]helicene 145 (Figure 25) that were obtained 

respectively with 24% and 26% d.e.  

 

Scheme 19: Synthesis of bornane auxiliaries 

 

 

Scheme 20: Diastereoselective syntheses of trithia[7]helicene, 140, 141, 142 and 143 
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Figure 25: Helicenes obtained via a diastereoselective synthesis using bornane 

auxiliary 

 

4. Chiral substituent 

In 1986, following their report
66

 on helical ferrocene synthesis (in 1982), Katz‟s group 

developed a highly diastereoselective synthesis of [7]helicenoid 149 bearing two 

cyclopentane rings at each end of a [5]helicene core.
67

 Their strategy was to build a 

photochemical precursor (148) bearing an appropriate chiral auxiliary built on a 

cyclopentane terminal ring (Scheme 21). A TBDMS group on the hydroxyl of each of the 

cyclopentane rings was introduced, and upon cyclisation, the formation of the helix with 

the silyl ether pointing outwards was favoured. There was no attempt at the separation of 

diastereoisomers of 149, and removal of the silyl ether groups yielded helicene (M)-150 in 

over 90% e.e. (the e.e. of the starting material (R)-147 is directly taken through to the 

product). 

 

Scheme 21: Diastereoselective synthesis of [7]helicenoid (M)-150 
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Later, in 1993, they published the diastereoselective synthesis of [9]helicenoid 154 using 

the same strategy,
68

 the only difference being the use of two tert-butyldimethylsilylether 

groups at positions with defined absolute configuration (153), instead of one. In this case, 

after removal of silyl ether groups, they obtained 17,18-

dihydrodicyclopenta[a,k][7]helicene (155) as a single enantiomer (Scheme 22). They also 

note that if using a regioismer of starting material 151 where the silyl ethers would be in 

the bay area of the helicene, the photocyclisation does not proceed well. Also, they explain 

that, as it had already been shown in the literature,
69

 the role of the bromine atom is to 

orientate the cyclisation towards the formation of a helical structure. 

 

 

Scheme 22: Diastereoselective synthesis of [9]helicenoid (P)-154 

 

We can also note that for the purposes of a study of chiral helical cobaltocene
70

 they 

synthesised [8]helicenoids 158 and 159 using the methodology previously described in this 

paragraph with only one chiral directing cyclopentane silyl ether auxiliary (Scheme 23). 

They obtained (P)-158 with 21% d.e. and after separation of the diastereosomers by silica 

gel chromatography and subsequent transformations they obtained enantiopure (M)- and 

(P)-1H-cyclopenta[c][7]helicene (159). 
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Scheme 23: Diastereoselective synthesis of [8]helicenoid 158 

 

5. Locked cyclic conformation 

Another interestingly short strategy was used by El Abed and coworkers for their synthesis 

of [5]helicene.
71

 By locking the conformation of precursor 164 before the photochemical 

step, using a chiral cyclic diether functionality, they achieved the highly diastereoselective 

synthesis of cyclic [5]helicene diether (P)-165 which was formed as a single 

diastereoisomer. The chiral auxiliary was introduced from the first step by reacting 

enantiopure (R,R)-2,4-pentanediol (160) with 4-hydroxybenzaldehyde (161) in a double 

Mitsunobu reaction (Scheme 24); this was followed by an inter-intra molecular double 

Wittig reaction affording the bis-stilbene precursor for the cyclisation. As [5]helicenes are 

known to be somewhat configurationally unstable, there were considerations about the 

optical stability of the product; it was found, however, that the cyclic helical compound did 

not epimerise even at temperatures reaching 80 °C. Also no attempt was made to transform 

the cyclic product into a simpler non-cyclic helicene; especially as it would undoubtedly be 

subject to racemisation. 
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Scheme 24: Diastereoselective synthesis of cyclic [5]helicene diether 165 

 

ii) Diastereoselective [2+2+2]cycloisomeristion of alkynes 

 tary‟s group, who developed from 1998 the efficient powerful methodology for the 

synthesis of helicenes using a cobalt catalysed [2+2+2]cycloisomeristion of alkynes,
72

 also 

attempted a diastereoselective version for their synthesis of [5], [6] and [7]helicenoid 

molecules. Inspired by the central to axial chirality transfer observed in the literature,
73

 and 

using chiral triyne precursors, they hoped to achieve efficient diastereoselective syntheses. 

Previous studies had also shown good to excellent diastereoselectivities for the 

[2+2+2]cycloisomerisation of ene-diynes
74

 (up to 74% d.e.), using chiral substituents on 

one of the terminal alkynes. Based on these facts, Stary et al. decided to introduce a chiral 

centre adjacent to the alkyne (between the alkyne and the ether moiety, see Scheme 25).
75

 

Using unsubstituted alkynes (R, R2 = H, 166), and after optimisation of the reaction 

conditions (bringing yields over 60%), they obtained oxo[7]helicenoid (M)-171 in 84% d.e. 

(Scheme 25). However, it was found that the key factor for further increase of 

diastereoselectivities was the introduction of steric bulk at the terminal alkyne position, of 

the alkyne adjacent to the chiral centre. By introducing a tolyl group on the terminal alkyne 

position (168, and 169), they managed to perform a completely diastereoselective synthesis 

but, unexpectedly, discovered that it favoured the formation of the other diastereoisomer 

(see Scheme 25, 173 and 174 were obtained in 100% d.e. in the P configuration).  
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Scheme 25: Diastereoselective [2+2+2] cycloisomerisation 

 

Following the same strategy, they synthesised oxo[5]helicenoids (P)-176 and (P)-177 with 

high diastereoselectivities, around 80% d.e., oxo[6]helicenoids (P)-178 and (P)-179 at 

respectively 80% and 74% d.e. and oxo[7]helicenoids (P)-180, (P)-181 and (M)-182 at 

respectively 46%, 66% and 68% d.e., all in good to excellent cycloisomerisation yields 

(50% to 95% yield) (Figure 26).
76

  

 

Figure 26: Helicenoids synthesised via diastereoselective [2+2+2] cycloisomerisation 

 

The authors wondered if the cyclisation reaction proceeded via a thermodynamic or a 

kinetic control.
76

 They found that when performing the cyclisation of 183 at RT, 

[6]helicenoid 179 was obtained in 0% d.e. and more surprisingly heating the mixture at 77 
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°C epimerisation occured, and after 6 hours the diastereoselectivity of (P)-179 reached 

74% d.e. (Scheme 26). This level of selectivity is equivalent to what they obtained in the 

standard reaction (Figure 26), proving that the cyclisation is thermodynamically controlled. 

Experiments were made to calculate epimerisation barriers and it was found that they are 

lower than the racemisation barriers of the corresponding fully aromatic helicenes. Also, 

they successfully recrystallized the diastereomeric mixtures to obtain optically pure 

products.  

 

Scheme 26: Epimerisation experiment, thermodynamic control 

 

More recently, Carbery‟s group followed the same strategy for the synthesis of their 

helicenoid chiral DMAP analogue 191 (Scheme 27).
77

  

 

Scheme 27: Diastereoselective synthesis of helical DMAP 
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Indeed, using triyne precursor 190, bearing a phenyl group on the terminal alkyne next to 

the chiral centre, they obtained, after a highly diastereoselective rhodium catalysed 

[2+2+2]cycloisomerisation, their aza-oxo[6]helicenoid DMAP (P)-191 in 88% yield and 

90% d.e. (Scheme 27). Moreover, the authors add that their synthesis is scalable up to 

gram scale, and that the diastereoisomers were easily separated by column chromatography 

on silica gel, affording major product as a single diastereoisomer. 

 

c) Enantioselective syntheses 

i) Circularly polarised light 

At about the same time as the early diastereoselective syntheses of helicenes, the 

enantioselective synthesis of helicenes was first reported in the 1970‟s by Kagan‟s group. 

Indeed, in parallel to the efforts made with diastereoselective photocyclisation, they 

reported the first enantioselective synthesis of helicenes using circularly polarised light. 

Their early attempts, published in 1971, yielded [6]helicene in less than 1% e.e.
78

 

Following this report, efforts were made to improve these results, and shortly after, Kagan 

obtained similar results for the synthesis of [8] and [9]helicene.
79

 Later, in 1972 and 1973, 

Buchardt et al., published similar results for [6]helicene synthesis again with low optical 

yields of about 2%.
80

 In 1975, Kagan reported the asymmetric synthesis of [10]helicene in 

less than 1% e.e. but failed to see any asymmetric induction for higher helicenes.
81

 This 

method never showed any success despite the amount of work put into trying to develop 

it.
82

 Indeed, it was only because helicenes have such high specific rotations that these 

studies were possible at all, allowing valid conclusions to be drawn despite the low optical 

yields.  

 

ii) Use of chiral solvent/chiral media 

Again in the 1970s, other reports of asymmetric photochemical syntheses were made, this 

time using a chiral media/solvent. In 1978, Laarhoven reported the synthesis of [6]helicene 

performing photocyclisations in several chiral solvents, with little success, obtaining the 

products in a maximum of 2.1 % optical yield using (S)-(+)-ethyl mandelate (193).
83

 

Similarly, Nakazaki et al., reported low asymmetric inductions for photocyclisation 

reactions done in cholesteric liquid crystals 194, or mechanically right-handed twisted 
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nematic mesophases 196, achieving the syntheses of [6]helicene (1) and [8]helicene (14) 

with respectively a 1.1% and 0.22 % optical yield (Scheme 28).
84

 

 

Scheme 28: Enantioselective photochemical syntheses in chiral media 

 

iii) Asymmetric Diels-Alder reaction 

Following their work on enantioselective Diels-Alder cycloadditions using enantiopure 

sulfinylquinones,
85

 and inspired by Katz‟s reports on Diels-Alder mediated 

helicenebisquinone synthesis, Carreño et al. published in 1999 a striking three step 

asymmetric synthesis (overall yield 4.6%) of [5]helicenebisquinone (M)-201 obtained with 

excellent selectivity reaching 80% e.e.
86

 Starting with 3-bromostyrene (197), they used a 

sequential double Diels-Alder reaction to build the helicene skeleton, the key step residing 

in the second cycloaddition using enantiopure sulfinylquinone (S)-198 which installs the 

helicene chirality in an enantioselective fashion, as the chiral sulfoxide is concomitantly 

eliminated in the cycloaddition step (Scheme 29).  

 

Scheme 29:  Synthesis of [5]helicene-1,4,11,14-tetraone (M)-201 via enantioselective 

Diels Alder cycloaddition 
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Interestingly, the use of quinone 198 (that belongs to the family of benzoquinones which 

are known to favour dehydrogenation reactions) in excess does not only allow to build the 

helicene skeleton with high selectivities, it also rearomatises the final molecules, in situ. 

In the same study, as an attempt to improve the methodology, they tried to use two 

different divinyl dienes, p-divinylbenzene and 1,4-divinylnaphthalene (203), in a one-step 

double Diels-Alder cycloaddition. Despite the absence of reactivity shown by p-

divinylbenzene, 203 reacted to give the double cycloaddition product, 

[5]helicenebisquinone (M)-204 with increased enantioselectivity to 88% e.e., albeit at a 

low 12% yield. Despite these good selectivities, the cycloaddition reaction suffered from a 

few issues, as it still required high pressures and long reaction times (7 days for (M)-201 

and 4 days for (M)-204) and only afforded the desired products in low yields. With milder 

conditions, it is possible that the product e.e.s might be even higher. 

 

Scheme 30: Enantioselective one-step double Diels-Alder cycloaddition 

 

In an effort to overcome this problem, Carreño‟s group attempted the same chemistry using 

more reactive vinyl-dihydrophenanthrene dienes 205, 206 and 207, allowing the reaction to 

occur at room temperature or below, and at atmospheric pressure, in good conversions and 

good selectivities.
56a

 Indeed, using diene 207, with the usual chiral sulfoxide (S)-198 at –40 

°C (for 17 days), they obtained their best result for the synthesis of [5]helicenoid (P)-106 

with 75% yield and over 98% e.e. (Scheme 31).  
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Scheme 31: Enantioselective synthesis of [5]helicenoids, use of more reactive dienes 

 

Interestingly, they saw an increased reactivity combined to an increased selectivity, using 

the more reactive dienes and introducing steric bulk with a TBDMS group. Also it can be 

noted that they obtained the opposite absolute configuration for the helicene; their rationale 

was that of the possible endo approaches, the diene‟s approach from the lower face of 

quinone (S)-198 in the s-trans configuration is less sterically demanding than the approach 

from the upper face with quinone (S)-198 in favourite s-cis configuration (sulfinylquinones 

adopt preferentially a s-cis configuration
87

) (Figure 27).  

 

Figure 27: Rationale for P helicity: possible endo approaches 

 

Using a similar strategy, they achieved asymmetric syntheses of (P)-12-(t-butyl)-7,8-

dihydro[4]helicene-1,4-dione (103, Figure 23) in good 72% e.e. with the same rationale for 

the selectivity.
56b

 

In the following study,
88

 they showed that from a single [5]helicenoid precursor (i.e. 210 or 

211) they could obtain divergent asymmetric induction by changing the oxidant to form 

[5]helicenoids. Indeed, as noted above, the rearomatisation of the ring formed in the 

cycloaddition is performed in situ with excess sulfinylquinone (S)-198, however when the 

sulfinyl quinone is not used in excess, the use of a different oxidant can produce the 
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opposite enantiomer. For example, oxidation of 210 with the usual (+)-sulfinylquinone, 

gave [5]helicenoid (P)-208 in 84% e.e. whereas using ceric ammonium nitrate gave (M)-

208 in 90% e.e. Similar outcomes were observed for the oxidation of 211, when using 

sulfinylquinone (S)-198, [5]helicenoid (P)-106 was obtained over 98% e.e. whereas with 

ceric ammonium nitrate [5]helicenoid (M)-212 was preferentially obtained in 92% e.e. 

(Scheme 32). These results are extremely important allowing the use of only one 

enantiomer of the sulfinylquinone to access both enantiomers of the helicene structures. 

 

Scheme 32: Divergent enantioselective syntheses of dihydro[5]helicenes 

 

Later Carreño‟s group also tackled the asymmetric synthesis of [7]helicenebisquinones 

using a similar double Diels-Alder strategy
89

 and obtained (M)-219 at 96% e.e., (M)-220 at 

96% e.e., (M)-221 at 99% e.e. and (M)-222 at 96% e.e., the difference in selectivity again 

arising from the larger steric bulk of the TBDMS groups (Scheme 33). These examples are 

among the best available for the almost completely enantioselective synthesis of helicenes, 

but is specialised for helicenes with their end-rings present in the quinone oxidation state.  
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Scheme 33: [7]helicenes synthesis: enantioselective double Diels-Alder cycloaddition. 

 

The same research group has synthesised a large number of configurationally stable 12-

substituted dihydro[4]helicenequinones (for example, (P)-225, (P)-104, Scheme 34) with 

high enantioselectivities.
56c

 The stabilities of the [4]helicenequinone structure were 

increased but still depend largely on the substituent at the C12 position, only helicenes 

presenting large substituents showed decent optical stability (Scheme 34).  

 

Scheme 34: Enantioselective synthesis of stable 12-substituted[4]helicenes 

 

Her group also reported the highly enantioselective synthesis of [5]heliceneoids (P)-230, 

(P)-231, (P)-232 and [4]helicenoid (P)-234 bearing axially chiral biaryl moieties in the 
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inner part of the helix.
6
 These reactions could/should be classed as diastereoselective, 

however, for ease of reporting, and because the reaction gives exclusively the P helicity 

independently of the configuration of the atropoisomer, they are presented here, in the 

enantioselective synthesis section. These reactions afforded helicenes where the racemic 

biaryl moeity of the vinyl starting materials 226, 227, 228 and 233 was present in 

enantiomerically enriched form in the resulting helicenes, showing that a dynamic kinetic 

resolution of the biaryl moiety had occurred. 

 

Scheme 35: Diastereoselective synthesis of [4] and [5]helicene-1,4-diones bearing 

atropoisomeric bi-aryls 

 

iv) Asymmetric oxy-Cope rearrangement 

Following their early work on oxy-Cope rearrangements,
90

 Ogawa et al. used in 2003 an 

original strategy for their synthesis, forming the 5 ring-core of the helicene via an 

asymmetric stereoselective oxy-Cope rearrangement.
91

 In this case, the chiral auxiliary, 

enantiopure / stereochemically defined bicyclo[2.2.2]octanone (–)-236 (resolved using an 

enzymatic method) attached to a phenanthrene moiety (see 237), was transformed into two 

fused six-menbered rings, introducing the helical structure (238, (P)-helicenoid). 

Subsequent rearomatisation yielded optically stable [5]helicene (P)-241 in 98% e.e. 
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(Scheme 36). It can be noted that enantiomeric excesses from chiral octanone (–)-236 are 

completely transferred to the final [5]helicene. They also synthesised helicene (M)-241 

with 83% e.e., starting from the opposite enantiomer of the ketone, (+)-236 in 83% e.e. 

The authors also note that, unlike some unsubstituted [5]helicenes, their 2-acetoxy-11,14-

dimethyl[5]helicene (241), does not undergo any epimerisation, even when heated for 24 

hours at 120 °C.  

 

Scheme 36: Enantioselective synthesis of 2-acetoxy-11,14-dimethyl[5]helicenes 

 

Although the authors claim that they achieved an enantioselective synthesis, careful 

examination of the strategy is needed to rule out the possibility that it may be more 

properly classified as diastereoselective. Scheme 36 shows that step (ii) produces two 

stereogenic centres (see (P)-helicenoid 238) as well as controlling the twist of the helix. 

Relative to the configuration of the inducing chirality (the bicyclo[2.2.2]octanone, (–)-

236), the reaction is both diastereoselective and enantioselective. The aromatisation (step 

vi), however, leaves only a pair of enantiomers, which are formed in the same e.e. as the 

that of the inducing chirality. Thus, the overall asymmetric control of the helix is indeed 

enantioselective. 
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v) Asymmetric [2+2+2] cycloisomerisation 

1. Intramolecular 

Shortly after reporting the cobalt catalysed [2+2+2]cycloisomerisation of triynes, Star  

developed an enantioselective nickel catalysed version of the reaction.
92

 In this report they 

showed an increase of reactivity using Ni(cod)2 as the catalyst, and with the addition of the 

chiral phosphine (S)-MOP they obtained tetrahydro[6]helicene (P)-245 in 53% yield and 

48% e.e. In the same report, they show the possibility of oxidation to the parent helicene 

using DDQ, but no mention is made of this reaction in the enantioenriched series. 

 

Scheme 37: Nickel catalysed enantioselective [2+2+2]cycloiosmerisation 

 

Following Star ‟s early report on nickel catalysed enantioselective 

[2+2+2]cycloisomerisation of triynes and their own work on the rhodium catalysed 

[2+2+2]cycloaddition reactions,
93

 Tanaka and coworkers developed a rhodium catalysed 

enantioselective version of the cycloisomerisation (Scheme 38).
7
  

 

Scheme 38: Enantioselective [2+2+2]cyloisosmerisation: synthesis of 

dioxa[7]helicenoids 
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Starting with symmetrical trialkynes bearing different terminal groups (246, 247 and 248) 

and including an two ether bridges / functionalities, they reported the asymmetric synthesis 

of three analogues of dioxa[7]helicenoids (M)-249, (M)-250 and (M)-251 obtained in high 

yields and high enantioselectivities, catalysed by cationic [Rh(cod)2]BF4 and using (R,R)-

Me-Duphos as the chiral ligand. The best result was obtained for a dibutylsubstituted 

alkyne 248, obtaining [7]helicenoid (M)-251 in 71% yield and 85% e.e.  

 

2. Intermolecular 

There are also some examples of asymmetric intermolecular [2+2+2] cycloisomerisation, 

the first one reported by Guitián in 2006.
94

 Indeed, they show an interesting palladium 

catalysed cyclotrimerisation between in situ formed aryne 254 and commercially available 

DMAD, allowing for the synthesis of [5]helicene 255. They report the screening of several 

palladium catalysts in order to obtain efficient regioselectivity and to optimise the 

enantioselectivities. They rapidly found that BINAP was the best ligand, and when used 

with stoichiometric amounts of palladium (using 256) they obtained [5]helicene (M)-255 in 

4% yield and 90% e.e. (Scheme 39). However, in catalytic conditions they did not manage 

to reach the same selectivities despite having optimised every aspect of the reaction 

(fluoride source, solvent). Nonetheless they obtained reproducible results with a slow 

addition of TBAF in THF, 5 mol% of palladium catalyst and 10 mol% (R)-BINAP ligand, 

affording [5]helicene (M)-255 in 16% yield and 66% e.e. Also, they added that their 

racemisation studies gave (M)-255 a half-life of 9.7 days at 20 °C. 

 

Scheme 39: Intermolecular enantioselective [2+2+2]cycloisomerisation 
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Tanaka, who obtained high enantioselectivities in his intramolecular 

[2+2+2]cyloisomerisation,
7
 used the same catalyst [Rh(cod)2]BF4, for a double 

intermolecular [2+2+2]cycloisomerisation of a tetrayne and a diyne leading to the 

formation of [9]helicenoid structures.
95

 They obtained moderate enantioselectivities, using 

(R)-segphos, reaching 60% e.e. for the reaction of 257 and 259, and 47% e.e. for the 

reaction of 258 and 260 (Scheme 40) despite attempts of further optimisation. Nonetheless, 

these examples showed that a single reaction allows for the creation of five fused rings as 

well as installing asymmetrically the winding of the helix, which is quite an achievement 

in asymmetric helicene synthesis.
 

 

Scheme 40: Intermolecular enantioselective double [2+2+2]cycloisomerisation 

 

d) Use of axially chiral precursors: retention of chirality 

i) From small helicenes 

In the 1970‟s, the development of the photolysis method to provide helicenes, combined 

with their resolution using menthyl derivatives, gave assess to enantioenriched helicenes. 

These small helicenes with 5, 6 or 7 rings are a perfect scaffold to extend the chirality to 

build larger helicenes in an enantiodefined form as the configuration of the small helix 

should be retained when creating a larger one. Using partially resolved trithia[7]helicene,
96

 

Martin obtained the larger tetrathia[11]helicene with the same configuration. (M)-[8]-, (M)-

[9]-, (M)-[10]-, (M)-[11]-, and (M)-[13]helicenes were all synthesised using the same 

strategy.
97,52a

 

Katz used a similar strategy to build phenazine[8]helicene (M)-265 with complete retention 

of configuration reacting enantiopure [6]helicenetetraone (M)-109 with 1,2-

phenylenediamine, followed by subsequent condensation and aromatisation (Scheme 41).
98
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Scheme 41: Synthesis of phenazine[8]helicene (M)-265 from [6]helicenetetraone (M)-

109 

 

ii) From biaryl atropoisomers 

In this paragraph we will not detail how the optically pure / enriched bi-aryl starting 

materials were obtained. 

As early as 1955, enantiopure (S)-[1,1'-binaphthalene]-2,2'-dicarboxylic acid [(S)-266] was 

converted in a three step synthesis into optically active (specific rotation +1496°) 7,8-

dihydro[5]helicene [(P)-268].
99

 No rearomatisation was attempted (Scheme 42).  

 

Scheme 42: [5]helicenoid synthesis from enantiopure binaphthyl precursors 

 

In 1999, just like Hall and Turner in 1955, Gingras converted enantioenrinched (R)-2,2'-

bis(bromomethyl)-1,1'-binaphthalene [(R)-267] into (M)-7,8-dihydro[5]helicene [(M)-268] 
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by treating it with phenyllithium, achieving a 95% retention of configuration.
100

 It is 

possible that the 5% loss of optical purity is due to epimerisation of [5]helicenoid (M)-268 

which is far less optically stable that dibromo precursor (R)-267. Although he showed the 

transformation of the same racemic dibromo precursor 267 to [5]helicene (7) (treating it 

with LiHMDS), no attempt was made with the enantioenriched versions.  

In 1972, Both converted (S)-2,2'-bis(bromomethyl)-1,1'-binaphthalene into (P)-[5]helicene 

in a three step reaction with complete retention of configuration (Scheme 43).
101

 

 

Scheme 43: [5]helicene synthesis from enantiopure binaphthyl precursors 

 

Ohmori et al. showed that several enantiopure atropoisomeric biaryls can be transformed 

into the corresponding fused ring structures with complete retention of configuration, by 

performing a samarium iodide mediated pinacol coupling of dialdehydes.
102

 In particular, 

he synthesised enantiopure [5]helicenoid (P)-272 (complete retention of configuration) in 

94% yield, with trans configuration of the hydroxyls (Scheme 44). 

 

Scheme 44: 7,8-dihydro-7,8-dihydroxy[5] helicene synthesis via samarium iodide 

pinacol coupling of enantiopure atropoisomeric aldehydes 

 

In 1997, Tanaka reported an asymmetric synthesis of 2,13-dimethyltetrathia[7]helicene 

[(P)-275] using McMurry coupling of aldehydes.
103

 The final annelation step of 

enantiopure atropoisomer (S)-274 was achieved in 53% yield and with complete retention 

of configuration (Scheme 45). Similar results were obtained by Rajca for the ring closing 

step of the synthesis of heptathia[7]helicene (M)-277.
104

 The final McMurry reaction of the 

diketone afforded the helicene in 63% yield with 99% retention of configuration in the best 
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case (Scheme 45). However it seems that this result was not always repeatable, possibly 

due to a competing pinacol reaction. When the McMurry reaction was high yielding, good 

retention of configuration was possible, but when a high quantity of pinacol product (M)-

278 was encountered there was poor retention of configuration. 

 

Scheme 45: Synthesis of [7]helicenes via McMurry coupling with retention of 

configuration of atropoisomers 

 

In 2005, Nozaki reported the synthesis of aza[7]helicene (P)-281 and oxa[7]helicene (P)-

282 via a palladium catalysed double N-arylation or intramolecular O-arylation.
105

 He 

applied this method to previously resolved biphenanthryl precursors (S)-279 and (S)-280 

obtaining enantiopure N-phenylaza[7]helicene (P)-281 in excellent 94% yield and 99% e.e. 

with complete retention of configuration, and the oxa[7]helicene (P)-282 in 49% yield and 

94% e.e. with little loss of selectivity (Scheme 46).  

 

Scheme 46: Aza and oxa[7]helicene synthesis via N- and O-arylation reactions of 

enantiopure atropoisomers 
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They attributed the loss of enantiopurity to the reaction conditions and not to the 

mechanism, as under these conditions enantioenriched (92% e.e.) oxa[7]helicene (P)-282 

underwent epimerisation when heated for a long time (42% e.e. after 88 hours). 

Recently, Fuchter showed excellent retention of configuration for the synthesis of 

aza[6]helicene (M)- and (P)-82, from respectively axially chiral (R)- and (S)-283.
106

 

Indeed, the platinum catalysed (PtCl4) cycloisomerisation yielded the respective M and P 

enantiomers in good 65% yields, with only a 2% erosion of enantiopurity. It is noted the 

axially chiral starting material does not racemise in reaction conditions.  

 

Scheme 47: Aza[6]helicene synthesis: cycloisomerisation of ethynyl biaryls 

 

iii) Comments 

It can be added that these methods are far less attractive as they rely on resolution of 

atropoisomers to introduce chirality. Also, Rajca‟s example presented in the next section is 

at the border-line between retention of configuration / dynamic kinetic resolution / 

enantioselective synthesis depending on whether we consider that the biaryls he used are 

atropoisomers or not and whether they interconvert in reactions conditions or not. If they 

are not atropoisomers, it would purely be an enantioselective asymmetric synthesis; if they 

are atropoisomers that do not interconvert, it would be a kinetic resolution with retention of 

configuration (as is the case for the olefin metathesis described in the next section); if they 

interconvert, it would be a dynamic kinetic resolution. 

 

e) Kinetic resolution of helicenes 

i) Kinetic resolution, definition, characteristics 

1. Definition 

A kinetic resolution can be defined as a reaction/transformation where enantiomers of a 

racemic substrate / compound react with a third component (either a chiral molecule or an 
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achiral molecule and a chiral catalyst) at different rates (kfast and kslow) to form a chiral or 

achiral product. For a racemic mixture of M and P helicenes with kM and kP denoting the 

kinetic constants of the reaction of each enantiomer, a kinetic resolution could also be 

defined as a reaction where the conversion c is stopped between 0 and 100% ( 0 < c < 

100%) and where kM ≠ kP (Scheme 48).
107

  

 

Scheme 48: Kinetic resolution of M and P 

 

Considering the reaction shown in Scheme 48, we have the following equation:  
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and if kM > kP, enantiomeric excess e.e. and selectivity factor S of the kinetic resolution / 

reaction can be defined as: 

                                                                        
       

       
                                                                    

                                                                       
  

  
 

 

Combining 1 and 2, we can express [M] and [P] as a function of c and e.e: 

                                
(      )

(      )
                         

(      )

(      )
           

put into 1: 
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Considering that the reaction is of first order or pseudo-first order, the rate laws for M and 

P are the following: 
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Integration of these two rate laws gives: 
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Combining the two integrated rate laws and equation 3, 4 and 5, we can express S as a 

function of c and e.e.: 
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In some cases, kinetic resolutions (Scheme 49) also afford chiral products M' and P'.  

 

Scheme 49: Kinetic resolution of M and P affording chiral products M’ and P’ 

 

For this the following equations apply: 

                                                      
          

         
  

         

         
                                                      

and considering that kM > kP (like in Scheme 48), enantiomeric excess e.e.' can be defined: 

                                                                        
         

         
                                                                

Combining 7 and 8, we can express [M‟] and [P‟] as a function of c and e.e.': 
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put into 7: 
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Considering that                and that              , combining equation 3 

with the integrated laws 9 and 10 gives: 
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 Also, as using equation 6 and 11, the following relationship between c, e.e. and e.e.' can 

be found: 

                                                                      
    

          
                                                                  

However, the rate of the reaction towards M and P has to be of the first order or pseudo 

first order in order to use those equations correctly. Interestingly, Jacobsen reports that 

rates of reaction in kinetic resolutions are rarely determined; therefore it is safer / more 

correct to quote conversions, e.e. of starting materials and e.e. of products.
108

 

 

2. Historical kinetic resolutions 

Historically, Pasteur was the first to come across a kinetic resolution when he studied the 

fermentation of ammonium tartrate by a Penicillium glaucum mould. The remaining 

tartrate recovered from the reaction showed optical activity.
109

 Later in 1898, the first 

purely chemical kinetic resolution was reported by Marckwald, after esterifying mandelic 

acid with (–)-menthol and recovering optically active starting material.
110

 Many other 

examples followed, and the ones concerning helicenes are described in the following 

sections. 

 

ii) Results 

1. Enzymatic kinetic resolution 

a. Bovine pancreas acetone powder 

As for many areas of helicene chemistry, Tomas Katz was also a pioneer in enzymatic 

kinetic resolution of helicenes.
111

 After transforming racemic [5]helicenetetraone 201 into 

the acetylated cyclic hemiacetal 284, the enantioselective hydrolysis reaction using Bovine 

pancreas acetone powder and sodium taurocholate, gave hemiacetal (P)-285, in 33% yield. 

After subsequent transformation of recovered 284 and of 285 into parent helicene 201 (and 
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assuming no racemisation occurred), the enantiomer derived from 285 showed 62% e.e. 

and the other enantiomer showed 76% e.e. (Scheme 50).  

 

Scheme 50: Sodium taurocholate KR of [5]helicenoid 284 

 

b. Lipase catalysed transesterification 

In 1995, Tanaka reported two different kinetic resolutions of 2,13-

bis(hydroxymethyl)tetrathia[7]helicene (286) using lipase catalysed transesterifications 

with vinyl acetate, affording both enantiomers.
112

 Indeed, using Pseudomonas cepacia, 

(P)-286 was recovered in 45% yield and 98% e.e. after the transesterification. Mono ester 

287 and diester 288 were obtained in 38% and 13% yield, and after reduction with lithium 

aluminium hydride, (M)-286 was obtained respectively with 80% and 95% e.e. Whereas, 

when using Candida antarctica, (M)-286 was recovered after the transesterification 

reaction in 42% yield with 92% e.e. Mono ester and diester were obtained respectively in 

53% and 3% yield and after hydrolysis chiral analysis showed respectively 67% and 89% 

e.e.
113

 (Scheme 51). We have to note that in both cases, highly enantioenriched diester 288 

was obtained, respectively 95% e.e. and 89% e.e. which constitute the first reports of what 

can now be identified as a one-pot double kinetic resolution of helicenes.  
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Scheme 51: Kinetic resolution of tetrathia[7]helicene by lipase catalysed 

transesterification 

 

2. Asymmetric RCM 

After reporting in 2006 that olefin metathesis of divinyl biaryl atropoisimers successfully 

forms helicenes (using second the generation Grubbs and second generation Hoveyda-

Grubbs catalysts),
114

 Grandbois and Collins showed that the reaction could be performed in 

an asymmetric fashion.
115

 Switching their initial RCM catalyst for a more bulky one (291) 

and getting slower reactions, they obtained encouraging results, giving [7]helicene in 12% 

yield and 60% e.e. using methyl substituted divinyl starting material 290 (Scheme 52). The 

next step of their work involved the screening of various divinyl compounds (like 289 and 

290 but bearing different R groups) in order to evaluate the substrates‟ influence in the 

reaction; this proved unsuccessful as the original dimethyl precursor 290 remained the 

most suitable one. Addition of halides also failed to improve the selectivities, and it was 

concluded that the formation of the first metallacyclobutane intermediate 295 might be 

enantiodetermining. They decided that the addition of achiral olefins (294, see Scheme 53) 

could help controlling and stabilising the propagating carbene, which could help to 

improve selectivities by making reversible the binding of the substrate (289 for example, 

Scheme 53) onto the catalyst (293, Scheme 53). Using 1-hexene immediately demonstrated 

the viability of the approach, and after screening several olefins, and switching to a more 

efficient catalyst 292 (developed in the same lab), the product of the kinetic resolution, 

[7]helicene [(M)-13], was obtained in 56% yield and 56% e.e. using p-

trifluoromethylstyrene as the additive (Scheme 52). Careful screening of the solvent, 
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having in mind that solvent could interact both with the heterocyclic carbene ligand and 

with the divinyl substrate, showed that poor solubilisation of precursor 289 improved 

selectivities, and performing the reaction in hexafluorobenzene with vinylcyclohexane 

additive, they obtained [7]helicene [(M)-13] in 38% yield and 80% e.e. (Scheme 52). 

 

Scheme 52: RCM mediated asymmetric synthesis of [7]helicene: kinetic resolution of 

biaryl atropoisomers 

 

 

Scheme 53: Mechanistic insight for the increased selectivity when using olefin 

additives 
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3. (–)-Sparteine mediated asymmetric lithiation 

a. Results 

Using the well-established literature procedure for sulfur annelation reactions,
116

 Rajca 

synthesised all-thiophene thia[7]helicenes in good yields.
117

 He adapted the procedure to 

allow an asymmetric reaction, using the famous chiral diamine (–)-sparteine (297) to 

perform an asymmetric double lithiation reaction of racemic biaryl 296.
54

 Although, the 

reaction is not clearly presented as a kinetic resolution, it is noted that biaryl atropoisomers 

296 are stable in the conditions of the reaction (i.e. at least 1 hour at RT), therefore the 

enantioselective formation of one enantiomer arises from a double kinetic resolution in 

asymmetric lithiation conditions that (–)-sparteine provides. Subsequent quench of the 

dilithiated species 298 with bis(phenylsulfonyl)sulfide (299) gave heptathia[7]helicene 

(M)-(–)-300 in 20 to 37% yield and 19 to 47% e.e. (Scheme 54).  

 

Scheme 54: Synthesis of heptathia[7]helicene via the (–)-sparteine mediated kinetic 

resolution of bi-aryls atropoisomers 

 

In 2005, Rajca published the synthesis of all-thiophene thia[11]helicene 303 using the 

same strategy.
118

 He presented two routes. The first was a double kinetic resolution of 

racemic biaryl 301 by selective lithiation of one of the atropoisomers using (–)-sparteine 

and obtaining (after quenching with 299) thia[11]helicene (M)-303 in up to 59% yield and 

19% e.e. The second is a challenging tri-annelation, for which the multiple kinetic 

resolution gave thia[11]helicene (P)-303 only 3% yield and up to 17% e.e. (Scheme 55). 
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Scheme 55: Synthesis of undecathia[11]helicene via the (–)-sparteine mediated kinetic 

resolution of bi-aryls atropoisomers 

 

Recently, he reported the synthesis of all-thiophene thia[9]helicene (M)-306, using the 

same sparteine mediated asymmetric lithiation and subsequent di-annelation.
119

 

Thia[9]helicene (M)-306 was obtained in 15% yield and 14% e.e (Scheme 56).  

 

Scheme 56: Synthesis of nonathia[9]helicene via the (–)-sparteine mediated kinetic 

resolution of bi-aryls atropoisomers 

 

b. Multiple kinetic resolution 

In the case of di-annelation and tri-annelation, the precursors present more than one bi-aryl 

motif and therefore the enantio-enriched products are obtained via multiple kinetic 

resolutions processes. However considering the lower selectivities for di- and tri-

annelation reactions, it is unlikely that multiple stereodifferentiation effects added to each 

other to form products with greater selectivity. 
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IV) Conclusion 

The examples discussed in this introductory chapter demonstrate the wide variety of 

methods that have been employed in asymmetric helicene synthesis. Among them there are 

examples of highly efficient procedures in individual cases, particularly helicenes 

terminating in quinone rings, but truly generally applicable methodologies still await to be 

developed. Some reactions (performed for other reasons) have been interpreted in this 

discussion as early examples of double or multiple kinetic resolutions, although this was 

not pointed out by the original authors at the time. The work performed in this doctoral 

project has the objective of establishing the principles of double and multi-KR as a strategy 

for synthesis design, and to exemplify them in the context of tetrathia[7]helicene synthesis. 

This approach still has the potential to be developed into one of the best, and most widely-

applicable approaches for the preparation of enantiopure helicenes since the principle is not 

restricted to the thiahelicene case. Indeed, the double and multi-KR approach can be 

suitable in any situation where a sequence of two or more kinetic resolution steps are 

included in a single reaction sequence starting from racemic substrate, or from the 

enantioenriched product of an asymmetric induction that lacked high levels of 

stereocontrol. 
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I) Generalities on thia[7]helicenes 

1) First synthesis 

Tetrathia[7]helicenes were first synthesised in 1971 by Wynberg, using a technique in fast 

development at that time, photodehydrocyclisation (Scheme 1).
1
 This method was 

particularly popular at the time because of its tolerance to a wide range of substrates, 

allowing the synthesis of many helicenes of different lengths and compositions (see intro) 

in a limiting amount of time. 

 

Scheme 1: Original synthesis of tetrathia[7]helicene 

 

2) Method scope and limitations 

This method suffers from two main problems, the high dilution required for the photolysis 

and the low solubility of unsubstituted alkenes due to pi-stacking phenomena (pi stacking 

phenomena are caused by electrostatic interactions between aromatic systems that bring 

aromatic molecules together to form larger molecular assemblies preventing the 

solubilisation). Indeed, concentrations of alkene precursors for the cyclisation are always 

very low, ranging from 0.1 millimoles per litre to a few millimoles per litre, not allowing 

easy access to large scale synthesis. Also, the solubility of unsubstituted alkenes is pretty 

poor in benzene (generally the completion of the reaction is judged by the disappearance of 

insoluble starting material), and even worse in the modern substitute, toluene.  

While we do not claim to solve these issues by performing the synthesis of our 

tetrathia[7]helicenes entirely without using the photodehydrocyclisation method, the 

results discussed in this first chapter will detail adjustments made to simplify the 

photochemical synthesis (based on Maiorana and Licandro‟s work
2
) as well as our 
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development of an alternative non-photochemical synthesis of the key thiahelicene 

intermediate benzo[1,2-b:4,3-b']thiophene. 

 

II) Chemical synthesis of benzo[1,2-b:4,3-b']thiophene (BDT)  

1) BDT properties 

The combination of thiophenes and benzene rings in high-performance chromophores has 

proved to be a powerful strategy for functional materials in nonlinear optics (NLO)
3
 

because of the lower aromatic resonance energy of thiophene compared to benzene.
4
 

Linear structures of the type R(C4H2S)-(C6H4)-(C4H2S)R‟, and fused-ring structures of 

which the simplest are benzothiophenes, benzodithiophenes (310, 313, 314) and 

benzothienobenzothiophenes 316 (Figure 1), are widely studied and have found significant 

commercial applications in organic field effect transistors
5
 (OFETs), organic light-emitting 

diodes
6
 (OLEDs) and solar cells.

7
 In practice, 1,2-b:4,5-b' and 2,1-b:3,4-b' isomers are by 

far the most widely used, and are of growing importance,
8
 however, a recent paper 

describing benzodithiophene applications in dye-sensitized solar cells (DSCs) points out 

that the symmetrical benzo[1,2-b:4,3-b']dithiophene (BDT, 310) has been very little used 

in that field.
9
 For our own interests in tetrathia[7]helicenes [which are useful as D-(chiral-

pi)-A components in nonlinear optics,
10

 as novel chelating diphosphine ligands,
9b 

in 

organocatalysis
11

 and to bind DNA
12

], [1,2-b:4,3-b'] regioisomer 310 is a well-established 

key intermediate for which we have developed a new chemical synthesis.
13

 

 

Figure 1: Structures of thiophene-based cores of high-performance chromophores 

 

2) Previous syntheses 

Previously to our report,
13

 the synthesis of benzo[1,2-b:4,3-b']thiophene (BDT, 310) has 

almost exclusively relied on the photodehydrocyclisation of 1,2-di(thiophen-2-yl)ethene 

(309)
14

 (Scheme 1), which suffers from all the drawbacks presented in the previous 
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paragraph and in the discussion in the introduction. Indeed, the few other routes that 

provide BDT or its derivatives, whether by chemical syntheses
15

 or by pyrolysis
16

 (Scheme 

2), are only partially successful for substituted BDTs and cannot be efficiently applied to 

the non-substituted isomer even with the otherwise versatile pyrolysis reaction.  

 

Scheme 2: Synthesis of BDT via pyrolysis reaction 

 

3) Our approach 

a) Strategy 

The development of the three strategies shown in Scheme 3 requires 3-bromo-2-

formylthiophene (322). Several possibilities are available for the synthesis of bithiophenes 

relying on the homo-coupling of 3-substituted-thiophenes, but few are applicable when 

attempting the coupling of 3-substituted-2-formylthiophenes. Alternatively, palladium 

catalysed homo-coupling of o-halobenzaldehyde derivatives
17

 as well as several variations 

of the traditional Ullmann coupling,
18

 can all be transposed to thiophene-based substrates 

because examples of their application with other systems are available in the literature. 

 

Scheme 3: Retrosynthetic analysis for BDT synthesis 
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Concerning these strategies (Scheme 3), the most appealing to us was the direct, 

intramolecular McMurry coupling that would give BDT (310) directly from bis aldehyde 

320. Indeed, this method has given some encouraging results for the cyclisation of a 

similar bis-ketone derivative
15c

 (70% yield for the cyclisation), despite tricky reaction 

conditions which require the slow addition of reactants over several hours, and rigorously 

anhydrous solvents (the most successful reagents, TiCl3 or TiCl3.DME1.5, are particularly 

air and moisture sensitive). The other two methods require an additional step, olefination 

for the RCM route and hydrazone formation for the hydrazone coupling, but are expected 

to be efficient strategies because the final metathesis step is known to work well in the 

corresponding cyclisation of 2,2‟-divinylbiphenyl to form phenanthrene,
19

 and the coupling 

of bis-hydrazone
20

 has also been successful for the synthesis of phenanthrene, the carbon 

version of BDT. 

 

b) Synthesis of 2,2‟-diformyl-3,3‟-bithiophene 

i) Synthesis of coupling precursor 

Although 3-bromo-2-formylthiophene (322) is commercially available, it is cheaper and 

easy enough to prepare from 3-bromothiophene (323) by simple a lithiation reaction using 

LDA and quenching with any formylating compound (DMF, N-formylpiperidine, N-

formyl-N-methylaniline). 3-Bromo-2-formylthiophene (322) was prepared by this method 

on a large scale (87 g) in 97% yield using N-formylpiperidine (Scheme 4), improving the 

86% yield
21

 previously reported.  

 

Scheme 4: Synthesis of 3-bromo-2-formylthiophene 

 

ii) Palladium coupling 

Next, we examined the homo-coupling reaction initially using the palladium mediated 

homo-coupling procedure.
17

 Knowing that the standard dimerisation method uses (2-

formyl-3-thienyl)boronic acid but gives the product in only 36% yield
22

 (and 18% yield 

from from 3-bromo-2-formylthiophene (322), requiring three steps
23

) we preferred to avoid 
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the use of boronic acids by means of the alternative and more accessible 3-bromo 

derivative 322, because of the wider possibilities for the coupling reaction. Using 

Pd(PPh3)4 and copper powder in DMSO, despite several attempts, we obtained the desired 

dialdehyde 320 in a maximum 35% yield (Table 1, entry 1), which is comparable to the 

36% yield previously reported for the coupling of boronic acid derivative.
22a

 Although 

confirming the principle of our approach, this was a disappointing result, and taking in 

consideration the cost of palladium coupling chemistry, we switched to a study of the 

Ullmann coupling reaction.  

Entry Substrate Catalyst (eq) Solvent T (
o
C) Time (hrs) Yield [%] 

1 322 Cu (10)/ Pd(PPh3)4 (0.1) DMSO 100 15 35a 

2 324 CuTC (2.2) NMP RT 60 25b 

3 326 CuTC (3.0) NMP RT 60 29b 

4 326 CuI-P(OEt)3 (1.5) THF –78 to RT 60 15b 

5 327 CuTC (3.0) NMP RT 60 14b 
a isolated yield; b based on NMR of crude bis aldehyde 8a or 8b 

Table 1: Preliminary results of the coupling reactions 

 

iii) Ullmann coupling 

1. Preliminary results 

Rajca had previously reported the homo-coupling of 3,4-dibromothiophene affording a 

bithiophene moiety in a decent 40% yield
24

 despite using the classic high temperature 

conditions. Hence, we thought that a modern version of the Ullmann coupling allowing the 

reaction to proceed at room temperature should enable us to use our preferred 3-bromo-2-

formylthiophene 322 and provide improved yields.  

For our first attempt, it was decided to use Liebeskind‟s catalyst CuTC (330),
18a,b,c

 

especially as the coupling could be directly performed with 3-bromo-2-formylthiophene 

(322). The reaction at room temperature, with three equivalents of catalyst gave none of 

the desired product so we immediately looked into making a more reactive iodothiophene 

derivative. Instinct and literature would probably lead us to use the dioxolane acetal,
25

 but 

interestingly we came across a publication from Ziegler
18d,e

 about Ullmann coupling, 

where to access the iodo-compound they protected the aldehyde by transformation to its 
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cyclohexylimine. The imine 324 was easily made in quantitative yield by refluxing 

aldehyde 322 in toluene with cyclohexylamine using a Dean-Stark trap. 

The direct iodination of the imine 324 was unsuccessful, giving us an inseparable mixture 

the desired compound 328 and 3-bromo-2-formyl-5-iodothiophene (329), which suggested 

competing lithiation at C-5. To avoid this, we protected the 5-position with a trimethylsilyl 

group (325) by selective C-5 lithiation which is possible in the presence of the 3-bromo 

substituent by using LDA.
24

 This was then followed by bromine-lithium exchange using n-

BuLi and quenching with I2 which successfully gave us the iodothiophene derivative 326 

(Scheme 5). 

 

Scheme 5: Preparation of the iodothiophenes 326 and 327 

 

In contrast to our attempts using aldehyde 322 we were agreeably surprised to find that the 

Ullmann coupling (Scheme 6) of the iodoimine 326 with Liebeskind catalyst in NMP at 

room temperature afforded the desired product, however it was obtained in only 29% yield 

(Table 1, Entry 3). The C-5 silyl-protected aldehyde 327, was also examined in the 

Ullmann step and gave 14% yield (Table 1, Entry 5). An attempt at the Ullmann coupling 

of the bromo-cyclohexylimine 324 did not improve the results, giving a disappointing 25% 

yield (Table 1, Entry 2). We also examined the Ziegler method (Scheme 7) which was 

found to perform similarly (15% yield) (Table 1, Entry 4) with our substrate.  
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Scheme 6: Ullmann coupling of 3-bromo and 3-iodothiophenes 

 

 

Scheme 7: Ziegler’s method for Ullmann coupling 

 

2. Optimisation of the reaction 

Careful scrutiny of the NMR spectra of the products from these preliminary experiments 

showed two things: 1) in some cases the substrate is not reactive enough and mostly 

starting material is recovered, or 2) dehalogenated starting material (307 or 332, Scheme 6) 

is obtained in considerable conversion meaning the halothiophene undergoes oxidative 

addition with the copper but the coupling does not happen, perhaps because more 

vigourous conditions are needed or because impurities prevent the reaction from 

happening. 

For these reasons, the problem of low yields was initially addressed using a microwave 

reactor, the coupling of iodoimine 326 gave interesting results with a conversion improved 

to 48% (Table 2, Entry 4). However, it rapidly became apparent (Table 2) that careful 

purification of the CuTC was crucial to obtain good results, and after further examination 

of reaction conditions to control competing dehalogenation (Scheme 6), using the 

iodoimine 326 we obtained desired product 331 in 55% conversion (Table 2, Entry 6). In 

view of this slow progress with attempts to improve the yield of the coupling in the iodo 

series, and since it would save two steps, we turned instead to explore our new microwave 
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method with the original bromoimine 324. It turned out to give a surprisingly large 

improvement. Microwave irradiation at 90
 
°C gave dialdehyde 320 in a 67% conversion 

(but only 55% isolated yield, Table 2, Entry 8). Also, driven by our interest in a large scale 

synthesis, we found that simply heating bromoimine 324 at 90 °C using 2.2 equivalents of 

CuTC, for 17 hours gave dialdehyde 320 in an improved 68% isolated yield (e.g. Table 2, 

Entry 9). 

Entry Substrate Conditions 
Yield [%] of 

dialdehyde 

Yield [%] of 

dehalogenated SM 

1 326 (Y = I) RT, 48 hrs, CuTC (3.5 eq) 331 (20a) 332 (23a,c) 

2 326 (Y = I) 60 °C, 60 hrs , CuTC (3 eq), N2 
331 (29a) 332 (60a,c) 

3 326 (Y = I) RT, 60 hrs, CuTC (3 eq), N2 
331 (43b) 332 (37b) 

4 326 (Y = I) 60 °C, W, 20 min, CuTC (3 eq), N2 
331 (48b) 332 (26b) 

5 326 (Y = I) 90 °C, W, 15 min, CuTC (3 eq), Ar 
331 (51b) 332 (33b) 

6 326 (Y = I) 60 °C, W, 30 min, CuTC (3 eq), N2 
331 (55b) 332 (21b) 

7 324 (Y = Br) 90 °C, W, 15 min, CuTC (2.2 eq), Ar 
320 (62b,d) 307 (19a,b) 

8 324 (Y = Br) 90 °C, W, 25 min, CuTC (2.2 eq), Ar 
320 (67b,e) 307 (17b) 

9 324 (Y = Br) 90 °C, 17 hrs, CuTC (2.2 eq), Ar 320 (68f) - 

a based on NMR of crude bis aldehyde; b based on NMR of crude bis imine; c catalyst not pure enough; d 52% 

isolated yield; e 55% isolated yield; f isolated yield. 

Table 2: Control of dehalogenation in the coupling of halo-thiophenes. 

 

c) Ring closing 

i) McMurry coupling 

The intermolecular version of this reaction is widely used, transforming carbonyl 

compounds into alkenes via a low-valent titanium catalysed homo-coupling. There is no 

general rule for the formation of cis and trans alkenes (despite extended studies),
26

 

however experience has shown us that when using 2-carbonylthiophenes, aldehydes give 

(E)-alkenes whereas ketones give opposite (Z) configuration. In the case of 2,2‟-diformyl-

3,3‟-bithiophene 320, the situation is somewhat different as the reaction would be 

intramolecular, and can only give the (Z) product (the more unlikely intermolecular 

dimerisation arising from a double intermolecular coupling was not expected to compete).  

Being familiar with the general / most common conditions for the coupling, our first 

attempt was carried out using TiCl4 and Zn and refluxing in THF our di-aldehyde substrate 

with the preformed low-valent titanium species. Unfortunately, the reaction did not give 
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any product and starting material was recovered. Careful study of the literature suggested 

that the most reactive system for intramolecular cyclisation could be TiCl3.DME1.5 with 

Zn(Cu) couple as the reducing agent.
27,15c

 However, when 2,2‟-diformyl-3,3‟-bithiophene 

is submitted to these conditions, and despite several attempts, the yield did not exceed 5% 

(Scheme 8).  

 

Scheme 8: McMurry coupling using TiCl3.DME1.5 with Zn(Cu) 

 

One thing has to be added; the literature quoted earlier also mentions the benefits of 

running the reaction with a slow addition of the aldehyde substrate, however we made no 

attempt to verify this. Also, as stated in this paragraph, 2-formylthiophenes tend to give 

trans alkenes, which might disfavour the BDT formation and explain why Rajca 

successfully ring-closed the diketone equivalent in the conditions we used. 

 

ii) Bis-hydrazone route 

We moved on to examine the cyclisation of a bis-tosylhydrazone formed in the double 

condensation reaction of diadehydes 320 and 331. First, the condensation reaction 

affording bis-hydrazones was studied and after struggling slightly to separate the bis-

hydrazone products and remaining tosylhydrazide, we found that simply stirring at room 

temperature a mixture of one equivalent aldehyde and exactly two equivalents of 

tosylhydrazide gave the desired bis-hydrazones 321 and 334 with full conversion without 

any need for purification (Scheme 9). 

 

Scheme 9: Bis hydrazones synthesis 
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We then concentrated on the ring closing step which is an alternative to the McMurry 

coupling of aldehydes and has shown good potential for the synthesis of phenanthrene 

(80% yield).
20a

 Although the Jung et al. publication
20a

 does not really give clear details of 

the conditions used, our first attempts at the cyclisation of bis hydrazone 321 using sodium 

hydride as the base gave BDT in encouraging yields up to 37%. The reaction was also 

carried out with bis TMS-hydrazone 334, however now when using sodium hydride, partial 

desilylation was observed, therefore n-BuLi was used and di-TMS-BDT 335 was obtained 

in 32% yield.  

Several optimisations were attempted. Jung had commented
20a

 that the addition of CuI-

P(OEt)3 following the treatment of bis-hydrazones with n-BuLi helped to increase the yield 

of phenanthrene from 29% to 80%, however no such improvement was observed in our 

case. Changing the base to potassium t-butoxide was inefficient, and modification of the 

amount of usual bases used (2.5 eq NaH, 1.05 eq n-BuLi) did not improve the yields 

previously obtained. Nonetheless, one thing can be noted, performing the reaction with a 

bis hydrazone concentration over five grams per litre affects the yield negatively. We also 

tried different hydrazides (2,4,6-triisopropylbenzenesulfonylhydrazide and 2,4,6-

trimethylbenzenesulfonylhydrazide), as they have shown higher abilities to form 

diazoalkanes in Bamford-Stevens reaction,
28

 but results obtained with the classic 

tosylhydrazide were not improved. Moreover, we even tried the harsher Baker et al. 

conditions using hydrazine and acetic acid,
20b

 but without success.  

Thus the most favourable conditions that we have found so far for this reaction are the 

“one pot” process with the formation of the bis-hydrazone (321 and 334) in 

tetrahydrofuran in situ, subsequent drying over sodium sulfate, and addition of base at low 

temperature followed by heating at reflux for a few hours (Scheme 10). 

 

Scheme 10: One pot synthesis of BDT derivatives from bis aldehyde 
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The conditions used to form BDT resemble those for the Bamford–Stevens reaction,
29

 but 

the use of n-BuLi in the preparation of di-TMS-BDT (335) is more typical of a Shapiro 

reaction.
30

 Both the Bamford–Stevens and Shapiro procedures employ 

arylsulfonylhydrazones and are generally considered to begin by deprotonation of the NH-

SO2Ar,
31

 and exploit the chemistry of arylsulfinate (ArSO2
–
) leaving groups, and the 

elimination of N2 to provide a powerful driving force. Under aprotic conditions the 

Bamford–Stevens reaction is believed to proceed by formation of a carbene,
30c

 but with the 

bis-hydrazones (321 and 334) shown in Scheme 10 it seems probable that the initial 

dianion (336 and 337) cyclises as shown in Scheme 11 by intramolecular nucleophile 

addition to the hydrazone and elimination of an arylsulfinate (338 and 339).
20a

 Subsequent 

loss of two molecules of nitrogen and the second arylsulfinate (340 and 341) completes the 

benzo[1,2-b:4,3-b′]dithiophene ring (310 and 335).  

Alternatively we could suggest the formation of a monoanion intermediate (see Scheme 

11, box, 340 and 341) in the cyclisation reaction, when 1.05 equivalents of n-butyllithium 

is employed. However, it seems unlikely that the second deprotonation can be effected by 

the toluenesulfinate anion (pKa about 2), whether you deprotonate the diazene proton 

(Scheme 11, box, 342 and 343, Ha) or one of the proton alpha to one of the -N=N- group 

(Scheme 11, box, 342 and 343, Hb or Hc). Considering that the formation of the desired 

BDT has only been observed when heating the reaction to reflux after the initial 

deprotonation step, perhaps the reaction proceeds through an electrocyclic reaction of the 

mono- or dianion (342, 343 or 336, 337). 

 

Scheme 11: Possible mechanism for the ring closing of bis-hydrazones under basic 

conditions 
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iii) Alkene metathesis 

The persistent difficulties with low yields that were encountered in the two previous routes, 

lead us to turn next to the usually efficient ring-closing metathesis (RCM) approach. From 

dialdehyde 320, a simple Wittig reaction produced 2,2‟-divinyl-3,3‟-bithiophene (319) in 

77% yield. This compound had to be used immediately for the next step as it is fully 

decomposed after a week (polymerisation), even when stored in the dark at –18 °C. The 

RCM step using the Iuliano conditions
19a

 with the 1
st
 generation Grubbs catalyst 

Ru(PCy3)2(CHPh)Cl2 has been reported to give 100% yield in the preparation of 

phenanthrene in the divinylbiphenyl case.
 
This does indeed appear to be a very efficient 

and general RCM method, and in our case we achieved 90% yield at a 5 mol % catalyst 

loading, which can be improved to 96% yield using the catalyst at 10 mol % (Scheme 12). 

 

Scheme 12: Ring closing metathesis route. 

 

Also, since the highest yielding route to BDT (310) was achieved by the RCM reaction, we 

considered the possibility of coupling of 3-bromo-2-vinylthiophene (344) to make 2,2‟-

divinyl-3,3‟-bithiophene (319) more directly from 3-bromothiophene (323) in just three 

steps. Wittig methylenation of 322, however, proceeded in only 30% yield. It is possible 

that the ease of dimerisation and polymerisation of the reactive vinyl group in 3-bromo-2-

vinylthiophene limits the efficiency of this reaction. Thus Ullmann coupling prior to Wittig 

methylenation is the better approach. 

 

Scheme 13: Synthesis of 3-bromo-2-vinylthiophene 
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d) Conclusion 

In conclusion, we have shown that benzo[1,2-b:4,3-b']dithiophene (310) is accessible in 

48% overall yield in 5 steps from 3-bromothiophene (323) by Ullmann coupling of the 

cyclohexylimine 324, methylenation of dialdehyde 320 and ring-closing metathesis in a 

simple reaction sequence that avoids the use of photochemical conditions. Concerning the 

less costly alternatives, the bis-hydrazone route was found less effective affording BDT in 

only 24% yield for 4 steps whereas the McMurry route gave BDT in only 3% yield. 

However, the latter might be the route worthwhile improving by more careful use of 

reagents and slow addition of dialdehyde 320. Also, in the context of atom economy, 

developing the low temperature Ullmann coupling of the hydrazone of 3-bromo-2-

formylthiophene could ultimately provide a possible „greener‟ improvement to the present 

route. 

 

III) Tetrathia[7]helicene synthesis 

1) 7,8-Dipropyltetrathia[7]helicene (8) 

7,8-Dipropyltetrathia[7]helicene was initially chosen because the synthesis has already 

been reported,
2
 facilitating our access to helicene. Moreover, it has been published by a 

group friendly to ours, Licandro and Maiorana established in Milan, and funding was 

available in the grant supporting the project for a short study visit to their department to 

gain experience with the large scale photochemical procedure which uses a potentially 

hazardous 500 Watt UV lamp. An identical lamp and reaction vessel was purchased for use 

in Norwich. The Licandro and Maiorana approach to the synthesis of the 

tetrathia[7]helicenes is different to the one mentioned in earlier in the thesis. The overall 

synthesis includes two photochemical steps and the key intermediate is benzo[1,2-b:4,3-

b']thiophene (310) for which we reported the chemical synthesis.
13

 

 

a) BDT photochemical synthesis  

The first step of the synthesis is an intermolecular McMurry coupling of 2-

formylthiophene (307), simplifying previously reported Wittig reaction that requires the 

preparation of two different molecules. This first reaction afforded the trans alkene 309 in 

good 85% yield (a mixture of cis and trans 309 is observed in the crude NMR spectrum, 

however after recrystallization pure trans 309 is obtained). Photodehydrocyclisation of 309 

gave desired BDT (310) in 83% yield after long UV irradiation of 35 hours. This method 
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for the synthesis of BDT compares well with the chemical synthesis giving the product in 

just two steps and 71% yield (Scheme 14), however it requires highly specialised 

equipment and is limited in scale as the photochemical reaction is performed preferably 

with a concentration below 10 mmol L
-1

. Also when BDT (310) is isolated, even traces of 

starting material can have a negative effect on the following reaction if the batch is not 

used rapidly. Indeed, when the BDT obtained is not 100% pure, light seems to induce 

some decomposition (the white powder can become black after a few months) which will 

affect the next reaction. 

 

 

Scheme 14: Photochemical synthesis of BDT 

 

b) 7,8-Dipropyltetrathia[7]helicene synthesis 

i) McMurry 

In principle, the most simple and archetypal substrate to develop our proposed new 

methodology would be the „parent‟ unsubstituted tetrathia[7]helicene (2), which would be 

constructed from simple disubstituted alkenes. However, reports show that the 

disubstituted alkenes have a poor solubility in toluene (and even in benzene) due to pi-

stacking phenomena.
2b

 This problem can be overcome by the introduction of bulky groups 

on the thiophene rings (ideally TIPS groups) which helps to solubilise the alkene precursor 

for photocyclisation.
2b

 Nonetheless, the introduction and removal of silyl groups adds an 

extra two steps; therefore the alternative of using tetrasubstituted alkenes was chosen. For 

this, BDT (310) is transformed into the corresponding propylketone 345 in good 75% yield 

by quenching lithio-BDT with propyl Weinreb amide 347; the ketone was submitted to 

McMurry coupling conditions giving cis-tetrasubstituted alkene 346 in excellent 93% yield 

(Scheme 15). 
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Scheme 15: Synthesis of tetrasubstituted alkene precursor for photocyclisation 

 

ii) Photodehydrocyclisation 

The synthesis is completed with the crucial photodehydrocyclisation step. In fact, there are 

two advantages of using tetrasubstituted alkene precursors (i.e. 346), first their solubility is 

far greater than the solubility of disubstituted alkenes allowing for a faster reaction, and 

also the additional substituents cause the McMurry reaction to give mostly cis-alkenes 

which are in the right configuration for an easier cyclisation. Despite these advantages, one 

issue can still affect the final yield: the presence of trans-alkene (trans-346). Indeed, some 

trans-346 (about 7%) is also formed in the McMurry reaction and it is crucial to try to 

remove as much of it as possible because in the reaction conditions used for the final step, 

the trans-alkene does not have time to be fully isomerised to cis. This would not be a 

problem if it could easily be separated from helicene, however both silica gel 

chromatography and recrystallization failed to give efficient separation. With this 

information in mind, our preferred method is now to separate the cis and trans-alkenes and 

use only the cis isomer in the photcyclisation, which proceeds so rapidly that the far slower 

cis to trans photoisomerisation does not produce a noticeable amount of the unwanted 

trans alkene in the helicene product.  

 

Scheme 16: Maiorana’s condition for photocyclisation 
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The cyclisation reaction was then performed using Maiorana‟s conditions
2 

giving helicene 

8 in decent 40 to 60% yield (Scheme 16), however, despite several attempts (with 

concentrations as low as 5 × 10
-4

 M and up to 1 × 10
-2

 M) results could not match the 68% 

reported.  

We suspected that helicene 8 was not so stable in the reaction conditions and that once 

reaching a high conversion the kinetics were more favourable for a destruction of 8 than 

for ring closing of remaining cis-alkene 346; so if prolonged reaction times were used to 

attempt to achieve a higher conversion the result would be that the yield would start 

dropping towards the end of the reaction. Also, Maiorana
2
 reports that the cyclisation is 

just as efficient when using a less powerful UV lamp (i.e. 125W UV lamp successfully 

cyclises a solution of 2.56 × 10
–3

 M cis-alkene) indicating that the higher energy is not 

required. We addressed this situation by adding a catalytic amount of iodine which might 

shield some of the UV energy. Also, it was anticipated that the addition of iodine would 

facilitate the trans/cis isomerisation and therefore might allow the cyclisation of remaining 

traces of trans-alkene making the purification of helicene product easier. Agreeably, the 

reaction performed in those conditions gave reproducible results with yields reaching 68% 

and averaging 65%; also traces (when less than 2-3% of trans-346 is present in cis-346 

SM) of trans-alkene 346 were no more present in the helicene obtained (Scheme 17). 

Overall, 7,8-dipropyltetrathia[7]helicene (8) is obtained in 33% over 5 steps. 

 

Scheme 17: Improved method for photocyclisation reaction 

 

One might argue that the cis/trans equilibrium should be in favour of the more 

thermodynamically stable trans product, therefore the composition of the cis/trans mixture 

should not matter to obtain cyclisations with no remaining trans-alkene. However 

experiments showed no sign of this, indeed, when pure cis-alkene is submitted to the 

cyclisation conditions (catalytic iodine, Air, h) pure helicene is obtained, whereas in the 

same conditions pure trans-alkene gives a mixture of helicene and starting material. This 
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proves that the equilibrium between cis and trans-alkene is much slower than the actual 

photodehydrocyclisation otherwise trans-alkene would also be obtained in the experiment 

using pure cis-alkene. This might also explain why traces of trans-alkene (up to 1 or 2%) 

are fully transformed in those conditions whereas larger amounts (the McMurry reaction 

produces roughly 7% of trans-alkene) are not. 

 

2) Hexasubstituted tetrathia[7]helicenes 

I suggested earlier in this chapter that the difficulties encountered with the photocyclisation 

steps were mostly caused by the usage of trans-alkene. Knowing that the McMurry 

reaction of 2-ketylthiophenes gives the cis-alkene as the major product, it seemed 

advantagous to build helicenes using this feature. In order not to complicate the assignment 

of NMR signals it was decided to build helicenes bearing the same substitutent at all the 

positions around the core which gives hexaalkyltetrathia[7]helicenes. 

 

a) 4,5,7,8,10,11-Hexaethyltetrathia[7]helicene (360) 

We applied this strategy using 2-propionylthiophene (348); the McMurry coupling gave 

cis-alkene 349 in isolated 43% yield (a small quantity of trans-alkene was separated). This 

product was readily cyclised giving diethyl-BDT 350 in 69% yield (Scheme 18). The low 

yield of the first reaction is due to experimental errors and could easily be improved to the 

usual standards of the McMurry reaction (i.e. about 75% yield).  

 

Scheme 18: Synthesis of dipropyl-BDT 350 

 

Diethyl-BDT 350 was treated with n-BuLi and subsequent quench with ethyl Weinreb 

amide 351 gave ethyl ketone 352 in 43% yield and 19% recovered starting material. The 

low yield obtained was explained by possible decomposition of diethyl-BDT 350 (in the 

same fashion as the parent BDT 310) which would account for the almost 40% missing 

material (Scheme 19).  
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Scheme 19: Synthesis of ketone 352 

 

Also, it seems relevant to say that reacting lithiated diethyl-BDT 353 with commercially 

available propionic anhydride (354) was not successful, giving an unidentified mixture of 

products. This was quite likely due to deprotonation of propionic anhydride by the lithiated 

diethyl-BDT to produce enolate 355 which would undergo a condensation reaction with 

another molecule of propionic anhydride. The condensation product 356 could then either 

undergo further condensation reactions, or react with lithiated diethyl-BDT (357, Scheme 

20). There is some evidence for such compounds from the presence of doublets in the 1-2 

ppm region of the crude 
1
H NMR spectrum, characteristic of CH3-CHR2 groups. 

 

Scheme 20: Rationale for failed reaction using propionic anhydride 

 

An alternative reaction was attempted using propionic anhydride; the lithiated diethyl-BDT 

353 was converted into the Gilman cuprate 358 using CuI. Subsequent quench with 

propionic anhydride gave desired ketone 352 in 40% yield but no starting material was 

recovered (Scheme 21). 
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Scheme 21: Synthesis of ketone 352 via a Gilman cuprate reagent 358 

 

The synthesis was completed with usual McMurry coupling and photocyclisation, 

affording 4,5,7,8,10,11-hexaethyltetrathia[7]helicene (360) in 34% over two steps (Scheme 

22) but in a disappointing 4.4% over 5 steps. 

 

Scheme 22: Synthesis of 4,5,7,8,10,11-hexaethyltetrathia[7]helicene (360) 

 

b) 4,5,7,8,10,11-Hexahepthyltetrathia[7]helicenes (368) 

Using the same reaction sequence as for the previous helicene, we synthesised 

4,5,7,8,10,11-hexahepthyltetrathia[7]helicene. Starting with 2-octanoylthiophene (361), 

McMurry coupling gave the alkene 362 in 76% yield as a mixture of cis and trans isomers 

(85/15). In this case, we found that the mixture of cis and trans-alkenes could be used 

conveniently in the photodehydrocyclisation, giving pure dihepthyl-BDT 363 in 86% yield 

(Scheme 18).  

 

Scheme 23: Synthesis of dihepthyl-BDT 363 
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Dihepthyl-BDT 363 was treated with n-BuLi and subsequent quench with hepthyl Weinreb 

amide 367 to give the heptyl ketone 364 in 77% yield. Some bis ketone 365 was also 

formed in this reaction which turned out to be hard to separate despite repeated 

chromatographic efforts. It was decided to perform the next step without completely 

separating mono and bis ketones (12% of bis ketone 365), but unfortunately several by-

products were formed and the difficultly of the subsequent separation limited the yield of 

the McMurry coupling to 38% (Scheme 24).  

 

Scheme 24: Synthesis of dihepthylalkene 366 

 

The synthesis was now completed with usual photocyclisation, affording 4,5,7,8,10,11-

hexahepthyltetrathia[7]helicene 368 in 65% yield (Scheme 25) and 12.4% over 5 steps.  

 

Scheme 25: Synthesis of 4,5,7,8,10,11-hexahepthyltetrathia[7]helicene 368 

 

IV) Conclusion 

Herein are reported the syntheses of three different tetrathia[7]helicene. 7,8-

dipropyltetrathia[7]helicene (8) has been synthesised by two different routes which 

intersect at a common BDT (310) intermediate. The standard route follows Licandro and 
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Maiorana‟s work
2
 using two photodehydrocyclisation steps and gave helicene 8 in 33% 

over five steps. For the alternative route, we developed
13 

a fully chemical synthesis of the 

BDT (310) intermediate, obtained in 48% over five steps. Overall, helicene 8 is obtained in 

23% yield over 8 steps. 

For the synthesis of 4,5,7,8,10,11-hexaethyltetrathia[7]helicene 360 and 4,5,7,8,10,11-

hexaethyltetrathia[7]helicene 368, Licandro and Maiorana‟s method was adapted, 360 and 

368 were respectively obtained in 4.4% and 12.4% yield over five steps. The yields 

obtained for these hexasubstituted helicenes are low in comparison with the 33% yield 

obtained for 8. However, this can be easily explained, 7,8-dipropyltetrethia[7]helicene (8) 

being at the core of the project, every single step has been finely tuned from several runs, 

whereas yields obtained for helicenes 360 and 368 are unoptimised and could be easily 

improved if needed, by simple repetition of the reaction sequence. In addition we can also 

comment that the scale of the reaction sequence is only limited by the photochemical steps 

that can be carried out up to 5 g per batch, giving an easy access to large quantities of 

helicenes. 
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I) Introduction 

This chapter will describe the synthesis of chiral reagents used for the kinetic resolution of 

tetrathia[7]helicenes. As presented in the introduction, the products of the kinetic 

resolution should be suitable targets to be easily transformed into push-pull systems. For 

this, we are interested in preparing enantiomerically pure 2-formyl- and 2,13-diformyl- 

thiahelicenes which would be good intermediates for the synthesis of chiral push-pull 

systems. Therefore, it was necessary to develop methods that could achieve that, and two 

main strategies could be identified. In the first, asymmetric lithiation with a chiral auxiliary 

like (–)-sparteine or other chiral diamines followed by quench with a conventional achiral 

formyl donor like DMF or N-formylpiperidine seemed to be a good approach which is well 

precedented in the many chiral-diamine-mediated asymmetric transformations in the 

literature. On the other end, direct asymmetric formylation of aromatic systems was clearly 

an unexplored area, where the identification of a new strategy was necessary to design 

efficient chiral formylating compounds. 

 

II) Synthesis of chiral formamides 

1) Formylation of aromatic substrates: generalities 

Many procedures are available to introduce an aldehyde group onto aromatic structures 

based on two distinct strategies: electrophilic aromatic substitution reactions (Vilsmeier-

Haack,
1
 Reimer-Tieman,

2
 Duff,

3
 Casiraghi,

4
 Gattermann-Koch

5
 and Gattermann aldehyde 

synthesis
6
, Rieche formylation,

7
 Friedel Craft equivalent with formic acid derivatives), 

nucleophilic reactions with formyl donors such as DMF or N-formylpiperidine.  

 

a) Electrophilic aromatic substitution (SEAr) 

Of the available methods (see above) some are very substrate-dependent and would not be 

suitable for our purpose. This is the case for the Reimer-Tieman, Duff and Casiraghi 

reactions that work with phenolic substrates which direct the formylation in ortho or para 

positions (Scheme 1).  
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Scheme 1: Formylation of phenolic systems 

 

There are other methods of electrophilic aromatic substitution where the formic acid 

derivatives that were originally used have been replaced by alternative reagents improving 

the feasibility of the reaction. Indeed, the Gattermann Koch reaction reported in 1897 uses 

a CO/HCl mixture with CuCl (in situ formation of formyl chloride) in Friedel-Crafts 

conditions to introduce the aldehyde onto an aromatic ring. The Gattermann reaction when 

initially performed with an HCN/HCl mixture, requires conditions that are far too harsh for 

our purpose, but the Adams modification that uses of Zn(CN)2/HCl instead (Scheme 2) 

should be more suitable.
6
  

 

Scheme 2: Gattermann-Koch and Gattermann formylation 

 

Among all formylation techniques, the Vilsmeier-Haack formylation reported in 1927 is 

one of the most famous ones. The electrophile of this reaction, the Vilsmeier reagent 
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chloromethyliminium salt (378 or 382) can be prepared in situ from any N,N-disubstituted 

formamide by reacting it with an acid chloride, generally POCl3, SOCl2, oxalyl chloride. 

The electrophilic aromatic substitution gives an iminium salt that is hydrolysed producing 

the desired aldehyde (Scheme 3). 

 

Scheme 3: Vilsmeier-Haack formylation 

 

The Rieche formylation reported in 1960 uses dichloromethyl methyl ether (388) as 

electrophile activated by TiCl4, followed by an acidic work up giving the desired aromatic 

aldehydes (Scheme 4). 

 

Scheme 4: The Rieche formylation 

 

Since then, several different electrophiles have been developed to perform electrophilic 

aromatic substitutions under more friendly conditions.
8
 Indeed, triformamide (389), 

tris(diformylamino)methane (390), N,N,N’,N’-tetraformylhydrazine (391), 

tris(dichloromethyl)amine (392) have proved to be very efficient electrophiles, affording a 

large variety of aromatic aldehydes in good yields. 
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Figure 1: Efficient electrophiles for SEAr 

 

b) Nucleophilic additions  

The other alternative in general use is the nucleophilic addition of aryllithium, arylcuprates 

or aryl grignard reagents (393) onto formyl donors like DMF or N-formylpiperidine 

(Scheme 5). This strategy is particularly interesting when metallation of the aromatic 

moiety is selective to one position which is the case, for example, with aryl halides and 

several heterocycles. 

 

 

Scheme 5: Nucleophilic addition of metallated aryls on formyl donors 

 

2) Asymmetric formylation 

Asymmetric formylation of olefins largely relies on hydroformylation, where a wide range 

of catalysts and ligands can provide enantioenriched aliphatic aldehydes.
9
 Asymmetric 

formylation of aromatic substrates could seem pointless as you cannot directly introduce 

any chirality on an aromatic ring.  For this reason asymmetric formylation of aryl has not 

been studied, even though three classes of specialised aromatic compounds could be 

interesting substrates: biaryl structures (axial chirality), paracyclophanes and metallocenes 

(planar chirality), and helicenes (axial chirality). 

For the asymmetric synthesis of formylhelicenes, very few of the reactions presented in the 

first part of this chapter can be transposed in an asymmetric manner, namely Vilsmeier-

Haack and the reaction of metallated aryls with formyl donors. Of those, the latter seems 
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the more attractive especially as thiahelicenes are selectively lithiated at the position 

adjacent to the sulfur. Also, this method and the Vilsmeier-Haack reaction have in 

common the use of formamides, therefore the chiral reagents used for the asymmetric 

version of one reaction could also be used for the other. Thus, our approach to transform 

these reactions into asymmetric ones was the synthesis of chiral formamides, that would be 

used in the kinetic resolution of tetrathia[7]helicenes. 

 

3) Synthesis of chiral formamides 

a) Chiral secondary amines 

i) Commercially available secondary amines 

Our starting point was to use or synthesise chiral secondary amines and to introduce the 

formyl group onto the nitrogen via one of the reported methods.
16,17,18

 Conveniently, a 

range of chiral secondary amines is commercially available (Figure 2) in enantiopure form.  

 

Figure 2: A few relevant commercially available secondary amines 

 

ii) Reductive amination 

Although, several chiral secondary amines are available, it was decided to access a wider 

range of structures by simple reductive amination of aldehydes or ketones with chiral 

primary amines (399). Methods for reductive amination have largely been described, 

therefore allowing the synthesis of chemically varied examples.
10

 For the reductive 

amination of aldehydes (400), a single and widely applicable method has been chosen for 

all the target structures. For this, the amine, an aldehyde and sodium triacetoxyborohydride 

are stirred at room temperature in 1,2-dichloroethane (DCE) (Scheme 6); results are 

reported in Table 1. This is a nice and mild method where the borohydride reagent reduces 

the imine in situ, driving the equilibrium toward the formation of product (401). It should 
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be added that starting materials (amine and aldehydes) were directly used in the state that 

they were kept with no further purification, which sometime has altered the yields of the 

reductive amination step. 

 

 

Scheme 6: Reductive amination of aldehydes 

 

The reductive amination of aryl ketones is known to be more difficult because the imine is 

not readily formed for steric and electronic reasons. Using benzophenone, the same 

conditions used for aldehydes were tried and unsurprisingly, no product was observed. 

Harsher conditions had to be used.
11

 We found that using a stepwise procedure, where first 

amine and ketone are mixed in neat titanium(IV) isopropoxide to produce an intermediate 

that was then reduced with sodium cyanoborohydride in ethanol, gave the desired product 

in a low but acceptable 33% yield. It should be noted that Mattson et al.
11

 have reported 

that the intermediate formed in the first step is in fact a carbinol rather than an iminium 

ion. The reductive amination of dibenzosuberone was also attempted using this same 

method, but no secondary amine product was observed. 

 

Scheme 7: Reductive amination of benzophenone 

 

Entry Aldehyde amine Yield  Amine 

1 

  

71 

 

2 

  
50 
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3 

  

63 

 

4 

  
77 

 

5 

 
 

75
a
 

 

6 

 
 

45 

 

7 

 
 

52 

 

8 

  
33

 

 

9 

  

25
b
 

 

a
 95% pure product, difficulties to remove impurity; 

b
 impurities in naphthylamine. 

Table 1: Results of reductive aminations 

 

iii)  Other amines 

More specialised amines were also chosen for study. An amine presenting a binaphtyl core 

[(S)-425, Scheme 8] has been synthesised at the UEA by the Page group
12

 and was made 

available to us.  

 

Scheme 8: Chiral azepine (S)-425 
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Another convenient possibility, because it is an intermediate to the widely used ‘(+)-

sparteine surrogate’ (see Chapter III) is the natural product (–)-cytisine (396), which 

although commercially available, is expensive, but is easily extracted from cytisus seeds 

(Laburnum anagyroides) according to the reported procedure.
13

 Seeds were directly 

collected from a tree in the garden of my parents, powdered, and stirred in a 

DCM/MeOH/NH4OH mixture for 72 hours. After acidic aqueous extraction, the aqueous 

layer was basified and extracted with DCM. The crude product was then recrystallized 

from acetone yielding (–)-cytisine (396) in 1.4% of the initial mass (Scheme 9). 

        

 

Scheme 9: Extraction of (–)-cytisine 

 

b) Synthesis of chiral formamides 

i) Reported methods 

Some chiral formamides have already been reported (Figure 3),
14 

although they have not 

been used for asymmetric formylation. 

 

Figure 3: Some previously reported chiral formamides 

 

These reported formamides have all been obtained from the corresponding secondary 

amines. Several methods have been reported in the literature for the N-formylation of 

amines, the most common one being the use of acetic formic anhydride.
15

 Other methods 

using formamide/NaOMe,
14a 

ammonium formate in refluxing acetonitrile,
14c

 formic acid in 
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toluene with Dean Stark apparatus,
16

 or even formic acid and acetic anhydride to form in-

situ acetic formic anhydride
17

 have been described. 

 

ii) Results 

For our first attempt, commercially available (R)-397 and ammonium formate were 

refluxed in acetonitrile and gave formamide (R)-429 in 46% yield (Table 2, Entry 1). The 

same reaction was tried on amine (R,R)-398, but no product was observed.  

 

Scheme 10: N-formylation of (R)-397 using ammonium formate 

 

It was then decided to use acetic formic anhydride, and although in some methods it is 

generated in situ, it was decided to synthesise acetic formic anhydride (437) according to 

the Krimen preparation (Scheme 11)
15

 where acetyl chloride is added to a diethyl ether 

suspension of sodium formate while keeping the temperature below 27 °C. After 5.5 hours 

the solution is filtered and solvent is removed under reduced pressure, and acetic formic 

anhydride is distilled under reduced pressure, at low temperature. 

 

Scheme 11: Synthesis of acetic formic anhydride 

 

With the acetic formic anhydride now available on a substantial scale, we turned to the 

preparation of the chiral formamides, which were obtained in excellent yields from both 

the commercially available and synthesised chiral secondary amines by simple treatment 

with formic acetic anhydride, at room temperature in DCM (Scheme 12, Table 2).  

 

Scheme 12: Synthesis of chiral formamides 



Chapter 2: Synthesis of chiral auxiliaries for the KR of tetrathia[7]helicenes 

107 
 

iii)  Comments on the synthesis of chiral formamides 

In cases where the crude material obtained from the reductive amination seemed clean 

enough, the amine was not isolated, and the N-formylation was performed directly on the 

crude material.  

 

Entry Aldehyde amine 

Yield 

(%) of 

401 

Amine 

Yield 

(%) of 

438 

Formamide 

1    

 

46
 a
 

 

2    

 

100 

 

3    

 

99 

 

4    

 

90 

 

5    

 

89 

 

6 

  
- 

 

73
e
 

 

7 

  

71 

 

77 

 

8 

  
50 

 

77 

 

9 

  

-
b
 

 

26
b,e

 

 

10 

  

63 

 

79 

 



Chapter 2: Synthesis of chiral auxiliaries for the KR of tetrathia[7]helicenes 

108 
 

11 

  
77 

 

63 

 

12 

 
 

75
c
 

 

99
d
 

 

13 

 
 

45
 

 

71 

 

14 

 
 

52 

 

100 

 

15 

  
- 

 

65
e
 

 

16 

  
33 

 

89 

 

17 - - - 

 

79 

 

18 

  
- 

 

55
e
 

 

19 

 
 

25
f
 

 

74 

 

a formylation of amine using ammonium formate b good conversion to the amine but difficulties to purify so 

used semi-crude material for formylation step; c impure amine; d from pure amine; e over two steps (amine not 

isolated); f naphthylamine impure lower yield. 

Table 2: Synthesis of chiral secondary amines and chiral formamides 

 

An important advantage of using non-commercial starting materials for this part of the 

project is that a range of carefully selected chiral formamides could be built up during their 
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use in the kinetic resolution experiments. The rationale for their design will be discussed 

later in the kinetic resolution chapter (Chapter 3). 

 

III) Synthesis of chiral diamines 

1) Generalities 

Asymmetric lithiation largely relies on chiral auxiliaries that generally are chiral 

diamines,
18

 and amongst them (–)-sparteine is definitely the leader. This alkaloid occurs 

naturally in the (–)-enantiomer form, but although there is an alternative synthesis of the 

(+)-enantiomer,
19

 it requires a huge amount of work and resources. (–)-Sparteine is 

available to us in quantities large enough to fulfil the project aims, however, for reasons 

relevant to the kinetic resolutions we became interested in the (+)-sparteine surrogate (+)-

459 reported by O’Brien et al.
20

 

 

2) (+)-Sparteine surrogate synthesis. 

The starting material for this synthesis is (–)-cytisine (see above). Its extraction from 

Laburnum anagyroides seeds has been described earlier in this chapter. From this 

compound, a three-step synthesis affords the (+)-sparteine surrogate 459 in good yield. In 

the first step, (–)-cytisine (396) is converted into its N-methyl carboxylate 457 using 

methyl chloroformate. Then the pyridone ring is hydrogenated using catalytic platinum 

oxide under a hydrogen atmosphere before reducing the carbonyl groups with lithium 

aluminium hydride (Scheme 13). Finally, the surrogate (+)-459 is obtained after distillation 

under reduced pressure. 

 

Scheme 13: Synthesis of (+)-sparteine surrogate (+)-459 
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IV) Conclusion  

The synthesis of various chiral formamides has been achieved with good success. The N-

formylation gave products with full conversion of the secondary amine starting material 

and yields often greater than 90%. Secondary amine products were in most cases obtained 

by reductive amination of aldehydes, and gave products in good yields when starting 

materials used for the reaction were pure enough. The reductive amination of ketones 

proved to be more challenging, however we report the synthesis of one chiral formamide 

derived from benzophenone. Moreover, (+)-sparteine surrogate 459 was obtained in three 

steps from hand-picked Laburnum anagyroides seeds, in decent yields considering that 

these strongly basic amines are somewhat sensitive compounds and prone to degradation. 

This range of new formamides was synthesised with the aim of performing the kinetic 

resolutions of tetrathia[7]helicenes; moreover, a clear rationale behind the synthesis of 

these compounds will be presented in the following chapter presenting the kinetic 

resolution results. Although using conventional and well-established reaction procedures, 

the work described in this chapter has made available for the first time a library of simple 

chiral auxiliaries which have previously been overlooked because their typical applications 

do not directly introduce chirality into the product structures. Besides our intended use in 

helicene synthesis, however, the compounds should also be of value in desymmetrisation 

reactions of prochiral bis-arenes and in the kinetic resolution of other classes of chiral 

aromatics, for examples binapthyls. 
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I) Introduction 

1) Multiple kinetic resolution approach (multi-KR). 

The multi-KR approach aims at analysing a synthetic route to identify key points at which 

an asymmetric bias can be introduced, and selects those points most likely to be efficient 

for initial investigation. Because of the series of kinetic resolutions, the e.e. of the product 

is progressively improved as the route approaches its ultimate target (Scheme 1). The 

advantage of this novel approach is that no major effort is needed to take any one step to 

>90% efficiency, but, once practical access to an enantiopure product has been achieved 

(e.g. by recrystallization after the final KR step), further improvements in chiral 

recognition in each KR serve to improve the overall yield of the whole synthesis. 

 

Scheme 1: Illustration of multi-KR for a sequence of three asymmetric processes [i.e. 

n = 3 in this example]. 

 

2) Strategy for the multi-KR of tetrathia[7]helicenes 

In view of the well-established difficulty of approaches based on asymmetric induction in 

the general construction of helicene and heterohelicene cores, we have opted for a novel 

multi-kinetic resolution procedure starting from racemic tetrathia[7]helicene. To the best of 

our knowledge, the concept of di- and multi-KR strategies in synthesis design is elucidated 

here for the first time. Some related examples however amount to di-
1
 or multi-KR 

sequences, but do not define the concept. Because of the C2 symmetry of helicenes, this 

class of targets is especially suitable for the multi-KR method of synthesis because the 

stereochemical environment is the same at each end of the molecule. The matched chiral 

auxiliary at one end will also will also be matched if the same reaction is performed at the 

other end.  
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As explained in chapter 2, two strategies have been selected to perform enantioselective 

formylation of racemic tetrathia[7]helicene: direct asymmetric formylation and asymmetric 

lithiation. For this, a range of chiral auxiliaries (presented in chapter 2) will first be 

evaluated in the single kinetic resolution of tetrathia[7]helicene. This KR screening 

producing enantio-enriched products, should allow us to decide on the strategy for the 

synthesis of enantiopure tetrathia[7]helicene derivatives (2-formyl- and 2,13-

diformyltetrathia-[7]-helicene) via an optimised number of kinetic resolution steps by 

identifying the best points to apply KR in the synthetic route. 

 

3) Chiral analysis 

For the analysis of tetrathia[7]helicenes, a 25 cm ChiralPak IA column with 3 m particles 

was used. The attribution of HPLC signals to the M and P enantiomers of 7,8-

dipropyltetrathia[7]helicene (8) (Scheme 2) was made by correlation between HPLC data 

and signs of specific rotation, according to published literature (Maiorana and Licandro 

established in two of their publications that (P)-8 elutes first when using ChiralPak IA 

HPLC columns).
2
 Moreover, a generally accepted feature of helicenes (both from 

theoretical or experimental evidence) is that (+)-helicenes and (+)-heterohelicenes possess 

the absolute configuration of a right-handed helix (P configuration). A similar reasoning 

was used for the attribution of HPLC signals of products of the kinetic resolutions. First, 

knowing that there is no possible epimerisation of the helicene, the product of a KR should 

have an opposite sign of specific rotation to that of the recovered starting material. Once 

this was established, peaks in the chromatogram corresponding to the product of the KR 

were attributed accordingly. 

In practice, (P)-(+)-8 (SM) comes first in the chromatogram, therefore if a KR gives (P)-

(+)-8 (SM) as the major enantiomer, products of this KR would be mainly of the (M)-

configuration (with the second peak being the largest).  

 

 

Scheme 2: (M) and (P)-7,8-dipropyltetrathia[7]helicene 
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II) Single kinetic resolution: use of chiral formamides 

1) Introduction 

As explained in chapter 2, we opted for a method where lithiated helicene is quenched with 

a chiral formamide, especially being aware that the non-asymmetric equivalent using DMF 

gives good yields for the synthesis of racemic 7,8-dipropyl-2-formyltetrathia[7]helicene 

(460).
3
 Although we synthesised three different helicenes (8, 360 and 368), screening of 

chiral auxiliaries was performed using helicene 8 for two main reasons. First, both 

enantiomers of this particular helicene have been charaterised
2a,c

 which allows for an easy 

attribution of absolute configurations of the enantiomers obtained in kinetic resolution 

experiments, and also it facilitated our collaboration with Licandro’s group.  

The reactions needed to be carried out in a reproducible way. In our standard procedure, 

lithiation of the helicene is effected with n-BuLi at –78 °C at a set concentration in THF, 

the reaction mixture is allowed to warm up to 0 °C over 30 minutes, and after cooling back 

to –78 °C, a solution of 0.5 equivalents of the chiral formamide, in a set volume of THF, is 

added dropwise (Scheme 3). These parameters were not modified unless otherwise 

specified, and the reaction was then allowed to continue for a time and a temperature 

reported in the result tables. 

 

Scheme 3: Screening of chiral formamides 

 

2) Asymmetric formylation: results 

a) Preliminary results 

Our first was approach was based on screening some of the most accessible formamides 

[(R,R)-430, (S)-429, (R)-427, (S)-426], obtained from commercially available chiral amines 

(Figure 1). These first experiments allowed us to improve our knowledge of the reaction as 

well as our skills. It was promptly recognised that the conditions used for formamide (R,R)-

430 (Table 1, Entry 1) were not suitable to obtain a maximised selectivity. In fact, this first 

example showed that the reactivity was poorer than expected. Subsequently, we found out 
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that these chiral formamides were not particularly reactive when the reaction was 

performed at low temperatures. Indeed, at –78 °C, the reaction of (S)-429 and (R)-427 

(Table 1, Entries 2 and 3) used up only about half the amount of formamide giving the 

product in respectively 22% and 29% yields, despite leaving the reaction for extended time 

of 6 hours. Concerning the selectivities, no great result was obtained, the best result being 

achieved with (S)-429 (Table 1, Entry 2) affording product with only 14% e.e. Although we 

did not expect (S)-426 to improve the results (Table 1, Entry 4), we ensured that at 

moderately low temperatures, the reaction could go to completion. 

 

 

Figure 1: Most accessible formamides 

 

Entry Formamide 
Temp.  

[°C] 

Rxn time 

[hrs] 
Yield [%] 

e.e.
a
 [%] 

of 460 

e.e.
a
 [%] 

of 8 

1 (R,R)-430 –78 to RT 1 + 1 35 2.5 (M) 2 (P) 

2 (S)-429  –78 6 29 14 (M) 4 (P) 

3 (R)-427 –78 6 22 7 (P) 1 (M) 

4 (S)-426 –43 3 50 2 (P) rac  

a measured by HPLC 

Table 1: KR results with most accessible formamides 

 

b) Use of second generation formamides 

It was decided to synthesise more formamides based on the structure of (S)-429 that gave 

the best preliminary results (Figure 2, (R)-445 and (R)-446). As well as formamides 

bearing two aromatic moieties it was decided to synthesise some mixed ones bearing both 

a chiral aliphatic and an aromatic moiety (Figure 2, (R)-441, (R)-442, (R)-443 and (R)-

447). Moreover, we screened other non-related structures (Figure 2, (S)-439 and (–)-452), 

in order to show if a trend could be established for the most efficient auxiliaries. 



Chapter 3: Multiple KR of 7,8-dipropyltetrathia[7]helicene 

118 
 

 

Figure 2: Second generation formamides 

 

Entry Formamide 
Temp.  

[°C] 

Rxn time 

[hrs] 
Yield [%] 

e.e.
a
 [%] 

of 460 

e.e.
a
 [%] 

of 8 

1 (R)-446 –78 7 19 13 (M) 5.5 (P) 

2 (R)-445 –78 6 15 9 (M) 1 (P) 

3 (R)-441 –78 6 23 42 (M) 8 (P) 

4 (R)-442 –78 6 34 29 (M) 7 (P) 

5 (R)-443 –78 6 15 25 (M) 5 (P) 

6 (R)-447 –78 6 29 17 (M) 3 (P) 

7 (S)-439 –78 7 26 13 (M) 5 (P) 

8 (–)-452 –78 18 41 rac rac 

a measured by HPLC. 

Table 2: KR results with second generation formamides 

 

The attempts made with structures closely related to (R)-429 (Table 2, Entries 1 and 2) 

culminating at 13% e.e. did not improve on the results previously obtained. The 

breakthrough came with formamides bearing a chiral aliphatic moiety on one side and an 

aromatic moiety on the other side. Indeed, formamides (R)-441, (R)-442, (R)-443 and (R)-

447 afforded the desired formyl-helicene 460 in higher enantiomeric excesses than all 
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previously examined formamides (Table 2, Entries 3 to 6). Comparing formamides (R)-

441, (R)-442 and (R)-447 (Table 2, Entries 3, 4 and 6) allowed us to establish that of the 

aliphatic moieties represented (only these three are easily accessed from commercially 

available primary amines) the isopropyl derivatised (R)-441 is the most efficient one, 

giving the product in 42% e.e. Also, comparing Table 2, Entries 3 and 5 showed that the 1-

naphthyl moiety of (R)-441 that gave 42% e.e. is more suitable than the 2-methoxyphenyl 

of (R)-443 that only gave 25% e.e. In order to make sure that the trend observed with these 

formamides represented the most favourable opportunity for further tuning and 

optimisation of the structure, we also performed the KR using some formamides with very 

different structures, (S)-439 and (–)-452 (Figure 2). To our surprise, these compared very 

poorly with any of the chiral aliphatic series, giving 13% e.e. for binaphthyl azepine (S)-

439 and racemic material for (–)-cytisine derived (–)-452. 

It was therefore concluded that optimisations of formamide structures using the same chiral 

3-methylbutan-2-amine motif and varying the aromatic side held the key to further 

improvements of the KR results. However, there are a few limitations to the usage of these 

aliphatic/aromatic formamides. First, further optimisation of the chiral aliphatic moiety is 

restricted as it relies on the access to commercially available chiral primary amines. 

Secondly, the reaction of the successful chiral formamides in the kinetic resolution 

conditions still did not provide the product with full conversions (i.e. to 50% yield) despite 

long reaction times (initially ~ 6-7 hours; part way through the project, the availability of a 

chiller made overnight reactions possible).  

 

c) Third generation formamides 

In order to further improve the selectivity of the kinetic resolution, and additional series of 

formamides were synthesised based on the structure of (R)-441 (Figure 3). The idea behind 

the synthesis of these formamides was to introduce bulk at different positions on the 

aromatic moiety in order to study the effect on the selectivity of the KR. 

First, the kinetic resolution using formamide (R)-441 was repeated but left to react 

overnight. A similar result to that previously observed was obtained (Table 3, Entry 1) 

giving formylhelicene 460 in 41% e.e. but showing an increased yield of 30% (for a 6 

hour-reaction, product had been obtained in 23% yield and 42% e.e.; see Table 2, Entry 3).  
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Figure 3: Third generation formamides 

 

Entry Formamide 
Temp.  

[°C] 

Rxn time 

[hrs] 
Yield [%] 

e.e.
a
 [%] 

of 460 

e.e.
a
 [%] 

of 8 

1 (R)-441 –78 18 30 41 (M) 10 (P) 

2 (R)-448 –78 18 20 3 (P) 1 (M) 

3 (R)-450 –78 6 9 28 (M) 3 (P) 

4 (R)-449 –78 6 NR - - 

5 (R)-451 –78 18 NR - - 

6 (R)-455  –78 18 32 42 (M) 11 (P) 

7 (R)-456 –78 18 35 7 (P) 2.5 (M) 

a measured by HPLC. 

Table 3: KR results with third generation formamides 

 

Unfortunately, none of the third generation formamides improved the 42% e.e. mark 

achieved with (R)-441. The best result was obtained with (R)-456 bearing a pyrene moiety, 

and performed in the same way as (R)-441 giving product in 32% yield and 42% e.e. 

(Table 3, Entry 6). Interestingly, this example shows that the approach of the lithiated 

helicene towards the formamide is not influenced by the introduction of steric bulk on its 

outer side. Turning to trimethoxyformamide (R)-450 (Table 3, Entry 3), the reaction 

proceeded in similar fashion as with methoxyformamide (R)-443 (Table 2, Entry 5), giving 

desired product in 9% yield and 29% e.e. Surprisingly, anthracenoformamide (R)-448 

performed very poorly, giving expected aldehyde in only 3% e.e. Although no clear 

mechanistic insight could be gained from this experiment, the three dimensional structure 

of naphthyl formamide (R)-441 must be severely altered by the addition of the extra 
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benzene ring for the KR to proceed with such poor selectivity when using (R)-448. This 

could mean that the design of the aromatic side of the formamide must be dissymmetric to 

force the formamide in the correct conformation.  

Next, we found out that the use of formamides where steric hindrance is introduced 

directly in the vicinity of the reactive site ((R)-449and (R)-451, Figure 3) completely 

disabled the reaction and only starting material was recovered (Table 3, Entries 4 and 5).  

Finally, we thought it would be worth checking that a reversed structure with a naphthyl 

group next to the chiral centre and an achiral isopropyl moiety on the other side ((R)-456, 

Figure 3) would not out-perform formamide (R)-441; however when using (R)-456, 

formylhelicene was obtained in 35% yield with only 7% e.e. 

Although none of these results improved on the ones obtained at the outset, interesting 

information was gathered that should be helpful for further development and fine tuning of 

the chiral formamide approach. At the moment, more formamides are being developed in 

our labs based on the observations made with the second and third generation of chiral 

auxiliaries. 

 

3) Modification of reaction conditions 

Despite considerable efforts put into developing an improved structure of (R)-441, no 

success was obtained. Nonetheless, we thought that tuning the reaction conditions could 

provide some improvements. There were two clear targets: improving the conversion 

towards formylhelicene and improving the selectivity of the reaction. In the most 

favourable situation, we could hope for improvements of both aspects, although getting 

higher yields while retaining the selectivity or enhancing the enantiomeric excess of the 

product alone would still be considered as a success. 

 

a) Temperature, Lewis acid and formamide 

 

Scheme 4: KR using chiral formamides in modified conditions 
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Entry 
Formamide 

(eq) 

Lewis 

acid 

Temp.  

[°C] 

Rxn time 

[hrs] 

Yield 

[%] 

e.e.
a
 [%] 

of 460 

e.e.
a
 [%] 

of 8 

1 (R)-441 (0.5) - –78 18 30 41 (M) 10 (P) 

2 (R)-441  (0.5) - –63 2 9 34 (M) 7 (P) 

3 (R)-441  (0.35) - –40 2 29 25 (M) 9 (P) 

4 (R)-441  (1) - –78 6 29 17 (M) 5 (P) 

5 (S)-441  (0.5) BF3•Et2O –78 18 37 10 (P) 6 (M) 

6 (R)-451  (0.5) BF3•Et2O –78 18 20 4.5 (P) 1.5 (M) 

a measured by HPLC. 

Table 4: Kinetic resolution results using modified reaction conditions 

 

Unsurprisingly, all attempts made to improve the yield of the reaction by helping the 

reactivity of the lithiohelicene towards the formamide, resulted in decrease of selectivity. 

Increasing the temperature to –63 °C and –42 °C (Table 4, Entries 2 and 3), gave the 

desired product, 460, with 34% e.e. and 25% e.e., respectively. Having observed this drop 

of selectivity, no attempt was made to run these reactions for longer times. Using one 

equivalent of formamide gave an even more disappointing 17% e.e. (Table 4, Entry 4), and 

the Lewis acid mediated reaction (BF3•Et2O was stirred at 0 °C with chiral formamide 

before adding dropwise to lithiohelicene solution) gave even an poorer 10% e.e. and 37% 

yield (Table 4, Entry 5). However, the latter experiment did prove to be somewhat useful 

as it enabled the reaction to be performed with previously unreactive formamides allowing 

us to compare its efficiency with formamide (R)-441. It turned out that (R)-451 (Table 4, 

Entry 5) gave the desired product in only 20% yield and 4.5% e.e., showing not only that 

steric bulk slows down the reaction but also that it does not necessarily make it more 

selective. As it appeared unlikely that the use of BF3•Et2O would promote the reaction with 

a higher selectivity that had been already obtained (Table 4, Entry 1), the kinetic resolution 

with other unreactive formamides was not attempted under those conditions. 

 

b) Solvent 

Among the possible modifications that could be made to the reaction conditions, using 

different solvents was surely one of the most significant ones. First, we were hoping to 

improve the results previously obtained, and also, as the second part of the kinetic 

resolution study will rely on (–)-sparteine-mediated asymmetric lithiation, we needed a 



Chapter 3: Multiple KR of 7,8-dipropyltetrathia[7]helicene 

123 
 

solvent system compatible with both types of chiral auxiliaries [(–)-sparteine is famously 

known for not working efficiently in THF
4
], so this was a key objective. 

 

Scheme 5: Kinetic resolution: solvent screening 

 

Entry Formamide Solvent 
Rxn time 

[hrs] 
Yield [%] 

e.e.
a
 [%] 

of 460 

e.e.
a
 [%] 

of 8 

1 (R)-441 THF 18 30 41(M) 10 (P) 

2 (R)-441 Et2O/Toluene 18 35 3 (M) 1.5 (P) 

3 (R)-455 2-MeTHF 18 26 16 (M) 5 (P) 

4 (R)-441 DME/THF 18 28 30 (M) 7 (P) 

5 (R)-441 MTBE 18 32 1 (P) 0.15 (M) 

a measured by HPLC. 

Table 5: Kinetic resolution: solvent screening results 

 

Along with THF, Et2O is possibly the most common solvent used for reactions of 

organolithium reagents. However, due to the low solubility of 7,8-

dipropyltetrathia[7]helicene in Et2O, the reaction was not really feasible. Using a co-

solvent that would help the solubilisation but would not actively participate in the reaction 

seemed to be the best compromise. Knowing that toluene efficiently solubilises our 

helicene (the last step of its synthesis is carried out in toluene) and that it is generally a 

poor solvent for organolithium reagents, the KR was performed in a 1:4 mixture of Et2O 

and toluene at –78 °C but gave formyl-helicene 460 in 35% yield and disappointing 3% 

e.e. (Table 5, Entry 2). Although this was surprising, the discrepancy in selectivities was 

attributed to the differences in coordination abilities of the solvents. Indeed, Et2O is known 

for being weekly coordinating toward the lithium cation compared to other ethers (for the 

same exact reason Et2O is a good solvent for (–)-sparteine chemistry). Unsurprisingly, 

MTBE which is known to be a good substitute for Et2O (and also solubilised helicene 8), 

performed poorly and product was obtained in 1% e.e. (Table 5, Entry 5), whereas, when 
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using more coordinating 2-MeTHF, product was obtained in an improved 16% e.e. (Table 

5, Entry 3) verifying our hypothesis about the importance of the coordination ability.  

For this reason, the next objective was to use a solvent with even higher coordinating 

abilities than THF, and with a low enough freezing point. A publication from O’Brien et 

al.
5
 suggested that 1,2-dimethoxyethane (DME) is more coordinating than THF which 

itself is much more coordinating than 2-MeTHF. Considering that DME’s melting point is 

–58 °C, it could easily be brought down to –78 °C upon addition of toluene or THF as an 

additive. Since DME was more coordinating than THF, the KR was performed in a 2:1 

mixture of DME and THF affording formylhelicene 460 in 28% yield and 30% e.e. (Table 

5, Entry 4). No clear explanation for this was found, besides the possibility that the 

geometry of the THF solvate of lithiohelicene much favoured a higher selectivity than the 

corresponding DME solvate. 

 

4) Conclusion 

The screening of several formamides has allowed us to discover a preferred type of 

structure with a chiral 3-methylbutan-2-amine moiety on one side and a dissymmetric 

aromatic moiety on the other side of the formamide. Although considerable efforts have 

been put towards further optimisation of the structure, none of the latest generation of 

chiral formamides, nor the alternative conditions screened, improved the results obtained 

with (R)-441 in THF. Nonetheless, the insight gathered from these attempts to optimise the 

reaction should prove useful for further tuning of the conditions. Future work in this area 

should involve attempts of kinetic resolution at below –78 °C, the synthesis of new 

formamides closely related to (R)-441, and a deeper study of the role of solvation and the 

effect of the solvent.  

  

III) Single kinetic resolution: chiral diamine promoted asymmetric lithiation 

1) Introduction 

Two main strategies were accessible in order to perform asymmetric lithiations. The use of 

chiral diamines, in particular (–)-sparteine, clearly represented our best opportunity. 

However, an alternative consisting in using a type of chiral LDA reagent (i.e., mixing 

chiral secondary amines and n-BuLi) was also considered. Unfortunately, preliminary 

experiments showed that LDA does not deprotonate 7,8-dipropyltetrathia[7]helicene even 

at room temperature. This latter idea was then abandoned, and we concentrated on the use 
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of chiral diamines, and more particularly towards the archetypal chiral auxiliary (–)-

sparteine.  

Using s-BuLi in the presence of (–)-sparteine, then quenching with an electrophile, was 

chosen as a quick way to gain initial experience with the production of enantioenriched 2-

lithiotetrathia[7]helicene (461) (Scheme 6).  

Concerning solvents, diethylether, commonly used for (–)-sparteine chemistry, could not 

be used on its own for solubility reasons (as explained previously in this chapter) and so 

was mixed with toluene. 

 

 

Scheme 6: Asymmetric lithiation 

 

2) Preliminary results 

We started with formylhelicene 460 as the synthetic target and DMF was chosen as the 

first electrophile. The first attempts at this reaction were unsuccessful and only starting 

material was recovered. Following this initial struggle, more practical conditions were 

used, where s-BuLi/(–)-sparteine mixture was mixed at 0 °C and added dropwise using a 

syringe (Table 6, Entries 1, 2 and 3) giving formylhelicene (P)-460 at best in 11% e.e. 

(Table 6, Entries 3).  

Being assured that this method could proceed in an enantioselective manner, more efforts 

were put into developing a technique where the addition of s-BuLi/(–)-sparteine at –78 °C 

would give the desired formylhelicene 460. However, based on our experience with chiral 

formamides, we knew that formylation at –78 °C proceeds slowly; therefore we moved on 
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to a faster reaction, by quenching lithiated species with a more reactive electrophile, 

chlorotrimethylsilane. Premixing s-BuLi and (–)-sparteine at –78 °C for 30 minutes, 

followed by cannulating this mixture into a solution of helicene 8 that had been previously 

cooled to –78 °C afforded lithiohelicene 461 and subsequent quenching with TMSCl gave 

TMS-helicene (P)-463 (Scheme 7), albeit at a low 9% yield and 7% e.e. (Table 6, Entry 4). 

Also, traces of dilithiated helicene were identified from small amounts of the di-TMS-

helicene observed in the crude product, but not enough material was available to perform 

chiral analyses.  

 

Scheme 7: Kinetic resolution: preliminary reactions 

 

Entry 
s-BuLi 

[eq] 

(–)-sparteine /   

s-BuLi ratio 

Lithiation 

time [hrs] 

Rxn time
a 

[hrs]
 

Yield 

[%] 

e.e. [%] of 

product
c
 

e.e. [%] 

of 8
c
  

1 0.7 1:1 0.5 18 460, 25  7 (P) 2.5 (M) 

2 0.5 2:1 1 18 460, 20  5 (P) 0.4 (M) 

3 0.5 1:1 0.5 18 460, 10  11 (P) 1 (M) 

4b 0.5 1:1 0.5 2 463, 9 7 (P) 1.7 (M) 
a time for the reaction after addition of the electrophile; b SM and products were not separated on column 

chromatography, and conversion was measured by integration of HPLC signals (calibrations were done 

showing that 8 and 463 have similar enough UV responses to measure the conversion directly by integration 

of the HPLC signals) c measured by HPLC. 

 

Table 6: KR: preliminary results using (–)-sparteine 

 

Although we are particularly interested in formylhelicene 460 and diformylhelicene 468 

because they are intermediate in the synthesis of chiral push-pull systems, the synthesis of 
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TMS-helicene 463 or di-TMS-helicene 466 has also some advantages. The trimethylsilyl 

groups can easily be reomoved or transformed into the corresponding halo-helicenes by 

simple treatment with bromine or iodine monochloride
6
 which should allow for greater 

functionalization possibilities. 

 

3) Improved results 

a) Rationale for the low conversion and selectivities 

Preliminary results (Table 6) showed poor yields and selectivity, despite several attempts 

under various conditions. If asymmetric lithiation is efficient, for a KR experiment, the 

quantity of butyllithium should be chosen to convert about half the starting material into 2-

lithiotetrathiahelicene (461). In practice, it was difficult to distinguish whether the low 

overall conversion was a consequence of incomplete lithiation or inefficient reactivity 

towards the electrophile. Indeed, formylation proved to be quite a slow reaction at the low 

temperatures (–78 °C) required for good stereoselectivity, and therefore we modified our 

approach to exploit the convenience of using the more reactive chlorotrimethylsilane 

which ensures that all the lithiated material is used efficiently in the reaction.  

However, more so than the low yields, the lack of selectivity represented a greater 

challenge and further optimisation of the chiral recognition between the (–)-sparteine•s-

BuLi and helicene 8 was clearly still necessary. Literature reports several studies on the 

aggregation of (–)-sparteine with several organolithium reagents, either based on NMR 

spectroscopy
7
 or crystallisation experiments.

8
  

 

 

Figure 4: (–)-Sparteine aggregates formed with n-BuLi and i-PrLi
7ab,8b 
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However, no direct study of (–)-sparteine•s-BuLi aggregates can be found, because of the 

complication that the chirality of s-BuLi generates, as several diastereomeric complexes 

could be observed. Nonetheless, many reports detail the behaviour of n-BuLi and i-PrLi, 

and generally, it is accepted that i-PrLi is a good surrogate for s-BuLi. Crystal structure 

studies show that i-PrLi and (–)-sparteine form a (–)-sparteine•(i-PrLi)2 aggregate 464 as a 

1:2 heterodimer,
7a,8b

 whereas n-BuLi and (–)-sparteine form a [(–)-sparteine]2•(n-BuLi)2 

aggregate 465 as a tetrameric 1:1 complex (Figure 4), often referred to as a ‘1:1 

homodimer’ in the literature.
7b8b

 

In line with these suggestions that sparteine aggregates may play an important part in this 

chemistry, we postulated that whichever (–)-sparteine•s-BuLi complex is responsible for 

the asymmetric lithiation (the s-BuLi equivalent of 464 or 465), it may not be very reactive 

and also might not be formed efficiently in the conditions we had been using. Therefore 

increasing the ratio (–)-sparteine/s-BuLi should be an appropriate method to provide 

efficiently a complex [whether a 1:1 or 1:2 (–)-sparteine•s-BuLi aggregate] which should 

be expected to be more efficient at asymmetric lithiation. Using larger quantities of s-BuLi 

should also solve the problems encountered with low conversions.  

 

b) Results 

To make a direct comparison, we used the normal 0.5 equivalents of s-BuLi relative to the 

helicene 8 but substantially increased the (–)-sparteine/s-BuLi ratio, and ultimately, by 

using a 20:1 ratio (Table 7, Entry 1), we observed immediate improvement, obtaining 463 

in a promising 55% e.e., albeit at a low conversion. This supported our view that the (–)-

sparteine/s-BuLi ratio was important to control aggregation, so further experiments were 

performed in which we adjusted the proportions of (–)-sparteine/s-BuLi and the amounts of 

s-BuLi relative to 8 with a view to improving the overall formation of the product.  

 

Scheme 8: Kinetic resolution: synthesis of TMS-helicene derivatives 
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En

try 

s-BuLi 

[eq] 

(–)-Sparteine 

/s-BuLi ratio 

Lithiation 

time [hrs] 

Conversion 

466 [%]
a
 

e.e. [%] 

of 466
b
 

Conversion 

463 [%]
a
 

e.e. [%] 

of 463
b
 

e.e. [%] 

of  8
b
 

1 0.5 20:1 0.5 - - 6 55 (P) 3.3 (M) 

2 1.5 6.6:1 0.5 2 >90 (P) 22 60 (P) 17.5 (M) 

3 2 5:1 0.75 2.5 >90 (P) 27 72 (P) 28 (M) 

4 2 5:1 4 1 >90 (P) 23 74 (P) 21 (M) 

5 2 5:1 4 5 >90 (P) 35 84 (P) 58 (M) 

6 2 1:1 4 4 87 (P) 23 51 (P) 21.5 (M) 

7 4 5:1 0.75 2.6 >90 (P) 35 85 (P) 66 (M) 

8 4 5:1 2 36 81 (P) 33 62 (M)c 69 (M) 

9 1 5:1 4 1.5 >90 (P) 18 65 (P) 14 (M) 

10 1 3:1 4 0.3 >90 (P) 12 62 (P) 9.4 (M) 

11 3 5:1 4 9 >90 (P) 38 68 (P) 67 (M) 

12 3 5:1 4 14 >90 (P) 30 39 (P) 80 (M) 

13d 2 5:1 4 1.8 >90 (P) 21 84 (P) 33 (M) 

14d 2 5:1 4 1 >90 (P) 20 71 (P) 24 (M) 
a SM and products were not separated on column chromatography, and conversion was measured by 

integration of HPLC signals (calibrations were done showing that 8, 463 and 466 have similar enough UV 

responses to measure the conversion directly by integration of the HPLC signals) b measured by HPLC. c 

mono TMS is mostly the M enantiomer because all the P thiahelicene has been used up by forming the 

disilylated product.d MTBE was used as solvent. 

Table 7: KR results using s-BuLi/(–)-sparteine 

 

This produced some unexpected results (for kinetic resolutions), showing eventually that 

the use of three equivalents of s-BuLi was required to reach 50% conversion (Table 7, 

Entries 11 and 12) and that this was possible without significant losses of selectivity (Table 

7, compare Entries 1 and 11). The most favourable conditions to form the mono-silylated 

product 463 with high selectivity were found to be two equivalents of s-BuLi relative to 

helicene 8 and a 5:1 ratio of (–)-sparteine/s-BuLi, which gave our best result; 463 was 

formed in 84% e.e. at 35% conversion (Table 7, Entry 5). This result, however, proved 

hard to reproduce, and generally experiments using a 5:1 ratio and two equivalents of s-

BuLi, gave reproducibly TMS-helicene 463 with 70-75% e.e. (Table 7, Entries 3 and 4), 

independently of the lithiation time. Indeed, after 45 minutes of lithiation time (Table 7, 

Entry 3), both yield and enantioselectivity seem to plateau, as results obtained after 4 hours 

lithiation (Table 7, Entry 4) are almost equivalent to the 45 minute-result. Also, we found 

that similar selectivities could be accessed by performing the reaction solely in MTBE 

(Table 7, Entries 13 and 14), using two equivalents of s-BuLi, obtaining 463 with 84% e.e. 

and 71% e.e. However, the conversions obtained were lower compared to the equivalent 
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experiment in Et2O/toluene (for example compare Table 7, Entries 4 and 13), therefore 

using MTBE as solvent was not continued. 

 

c) Asymmetric lithiation: mechanistic insights 

Our original postulate that high ratios of (–)-sparteine/s-BuLi were necessary to form an 

efficient lithiating species was supported by these results, but it remained unclear whether     

(–)-sparteine•(s-BuLi)2 or [(–)-sparteine]2•(s-BuLi)2 complexes were responsible for 

efficient asymmetric recognition, or even, whether it was one of the many higher 

aggregates speculated on in the literature (no higher aggregates have been proposed for 

sparteine/s-BuLi systems, but many higher aggregates have been reported for other 

systems).
9
 

 

i) Higher aggregates 

It is possible that the explanation for the large amount of (–)-sparteine used in our more 

efficient examples may arise from the need to generate a particular highly reactive and 

very chirally discriminating aggregate which is present only as a relatively small 

proportion of the sparteine-modified organolithium species formed in solution under our 

reaction conditions. Indeed, since a three-fold (Table 7, Entries 11 and 12) or four-fold 

(Table 7, Entries 7 and 8) excess of s-BuLi fails to produce complete silylation (or 

disilylation), it is reasonable to conclude that only about 25% (allowing for partial 

disilylation) of the s-BuLi added to the reaction is actually present in the reactive form, 

perhaps even less if the reactive aggregate is replenished by equilibrium with other less 

reactive aggregates as the reaction progresses. However, if a constant supply of the 

reactive aggregate was made available by an equilibrium, longer lithiation times would 

give much higher yields, which is not the case as the conversion seems to plateau out 

between 45 minutes and 4 hours (compare Table 7, Entries 3 and 4, and Table 7, Entries 7 

and 8). 

 

ii) Dissociation of the standard/predicted aggregates 

Alternatively, if one of the aggregates 464 and 465 (Figure 4) is also the reactive aggregate 

when s-BuLi is used, additional (–)-sparteine is needed to ensure that the equilibrium 

controlling the dissociation of the aggregates remains in favour of the required aggregated 

species at all stages of the reaction. Otherwise, when lower amounts of (–)-sparteine are 



Chapter 3: Multiple KR of 7,8-dipropyltetrathia[7]helicene 

131 
 

used, partial dissociation of the aggregate would become possible, meaning that ‘free’ s-

BuLi is present in solution. Therefore, the low selectivities observed in those cases (e.g. 

below 11% e.e., Table 6) are probably caused by ‘free’ s-BuLi itself rather than by the 

poor chiral recognition by any other aggregate present in solution. Moreover, knowing that 

the aggregates are poorly reactive compared to s-BuLi, even little / slow dissociation of s-

BuLi can be responsible for the low enantioselectivities, which would also explain why, 

although low selectivities were observed in preliminary studies, the yields were poor too 

(which would not be the case if large amounts of ‘free’ s-BuLi were present in solution). 

The experiment reported in Table 7, Entry 6, using 2 equivalents of s-BuLi but only a 1:1 

ratio can easily be seen to support what is being explained here. Indeed, in theory / 

practically, a 1:1 ratio is sufficient to ensure to formation of aggregates 464 or 465 (Figure 

4), but the lack of extra (–)-sparteine which allows for partial dissociation of the aggregate 

is responsible for the lower selectivity observed in this experiment. 

 

d) KR: recovery of enantiopure starting material 

Results presented in Table 7 also suggest that in principle, the s-

BuLi/sparteine/chlorotrimethylsilane procedure could be used to obtain enantiomerically 

pure recovered helicene 8. Indeed, 8 could be recovered in reasonable yields if the 

conversion in the KR was taken over 50% by using larger excesses of the lithiating species, 

or in theory, if longer reaction times were employed (in fact, experience shows that 

conversion plateaus before four hours of lithiation). This, however, would be unlikely to be 

a practical procedure, and in fact since monolithiation is always accompanied by 

dilithiation in these reactions, optimisation of the production of di-TMS-helicene 466 and 

subsequent desilylation offers a better approach (vide infra). In view of these 

considerations, we have not pursued further attempts to use even greater excesses of s-

BuLi to obtain enantiopure SM 8, which was obtained in about 65-80 % e.e. by this 

approach (Table 7, entries 7, 8, 11 and 12).  

 

4) KR of TMS-helicene 463 

As noted above (see also Table 7) the initial monolithiated species 461 is capable of 

undergoing a second lithiation step, so when the reaction is quenched with 

chlorotrimethylsilane, a mixture of mono and disilylated products are formed, reducing the 

yield of the monosilylated helicene. An alternative, starting with racemic TMS-helicene 
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463 (Scheme 9), was also examined (in this case it would be the recovered starting material 

that would be the target to take onward in the reaction sequence). Using two equivalents of 

s-BuLi relative to the helicene and a 5:1 ratio of (–)-sparteine/s-BuLi, di-TMS-helicene 

(P)-466 was obtained in 15% conversion and 70% e.e. and the recovered SM 463 was 

obtained in 15% e.e. Desilylation (TBAF) of 466 (70% e.e.) gave (P)-8 (74% e.e.), 

confirming with accuracy the enantiomeric excess measured for (P)-466.  

 

Scheme 9: KR reaction using racemic TMS-helicene 463 

 

We have not reported values for the selectivity factor (S) (see the KR section of the 

introductory chapter), because these lithiation reactions do not always proceed with 

complete recovery of all the material introduced in the reaction, making S values imprecise 

because they rely on the accurate measurement of the conversion. Also, the standard 

lithiation of helicene 8 gives two products making the calculation of S even more 

meaningless. However this particular example, using TMS-helicene 463, only produces 

one product and the HPLC analysis of the mixture of product 466 and SM 8 gives a 

chromatogram where the integration of peaks corresponding to the (P)-enantiomers is 

equivalent to the one of the (M)-enantiomers, meaning that no material has been lost. In 

this case, S value can be calculated accurately. Using the Goodman applet,
10

 a selectivity 

factor of 12 was obtained for this last reaction, meaning that it should be possible to obtain 

enantiopure recovered (M)-463 by a single KR of racemic TMS-helicene 463 at over 65% 

conversion.  

 

5) Kinetic resolution using n-BuLi 

The choice of alkyllithium reagent is an important consideration in the optimisation of the 

KR process, since this should influence the reactivity of each aggregate and the proportions 

of the aggregates formed. Table 8 presents results obtained using n-BuLi. Despite its lower 

selectivity, conversions were considerably higher when using n-BuLi (two times higher 
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than with s-BuLi; compare Table 7, entries 4 and 5 with Table 8, entry 1, for example), and 

it proved possible to reduce the excess of (–)-sparteine needed for an efficient KR (table 2, 

entry 2). (P)-463 was obtained in 51% e.e. at 33% conversion and (P)-466 was formed in 

84% e.e. in this experiment. 

 

Scheme 10: Kinetic resolution using n-BuLi 

 

En

try 

n-BuLi 

[eq] 

(–)-Sparteine 

/n-BuLi ratio 

Lithiation 

time [hrs] 

Conversion 

466 [%]
a
 

e.e. [%] 

of 466
b
 

Conversion 

463 [%]
a
 

e.e. [%] 

of 463
b
 

e.e. [%] 

of  8
b
 

1 2 5:1 4 16 86 (P) 45 30 (P) 68 (M) 

2 2 1.1:1 4 7 84 (P) 33 51 (P) 40 (M) 

3 1 5:1 4 0.5 >90 (P) 13.5 53 (P) 12 (M) 

4 2 1:1 4 8 87 (P) 34 44 (P) 43 (M) 
a SM and products were not separated on column chromatography, and conversion was measured by 

integration of HPLC signals (calibrations were done showing that 8, 463 and 466 have similar enough UV 

responses to measure the conversion directly by integration of the HPLC signals) b measured by HPLC. 

Table 8: KR results using n-BuLi 

 

Interestingly, these results shed some light on the formation of aggregates, showing that 

the 1:1 homodimer 465 (see Figure 4) reported for n-BuLi, is probably formed efficiently 

when a only 1:1 ratio is used (compare Table 8, Entry 1 and Entry 4). On this basis, one 

would expect that using i-PrLi, the (–)-sparteine•(i-PrLi)2 1:2 heterodimer 464 (see Figure 

4) would be formed if a 1:2 ratio of (–)-sparteine / i-PrLi is employed. It is generally 

thought that i-PrLi and s-BuLi behave similarly, but in fact when using a 1:1 ratio with s-

BuLi (which is in theory twice as much as what is needed to form the 1:2 dimer), the 

selectivities were lower than when the ratio was 5:1. In contrast, when n-BuLi was used 

with a 1:1 ratio, it gave the same results as those observed for a 5:1 ratio. This means that 

with n-BuLi the aggregate is always 1:1 regardless of the excess of the (–)-sparteine, 

whereas with s-BuLi, the aggregation state varies when more (–)-sparteine is employed. 

This suggests that the 1:2 heterodimer, although probably formed in substantial amounts, 

may not necessarily be the important chiral base determining the stereocontrol of the 
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formation of the lithiohelicene. It could also be the case that s-BuLi, like n-BuLi, prefers to 

form a 1:1 dimer, but because of steric hinderance, more (–)-sparteine is needed to 

progress substantially from the 1:2 structure to the 1:1 form. 

 

6) Introduction to multiple kinetic resolution 

Of all of these asymmetric lithiation experiments, the second lithiation of the partially 

kinetically resolved 2-lithiotetrathia[7]helicene 461 is itself a kinetic resolution, so the 

production of di-TMS-helicene 466, reported in Table 7 and Table 8, corresponds to a 

double-KR process. In view of this, it is perhaps not surprising that in every case, far 

higher e.e.s (i.e. almost completely enantiomerically pure 466) were observed for 466 than 

for the monosilyl product 463 from the same experiment. Because of the C2 symmetry of 

the thiahelicene starting material 8, the preferred combination of (–)-sparteine•BuLi 

aggregate and (M)/(P) helicene for the initial lithiation step (e.g. at C-2) is also the 

stereochemically advantageous combination at C-13. The production of very highly 

enantioenriched di-TMS-helicene (P)-466 has provided us with our first example of a 

stereochemically efficient double-KR process. Desilylation of (P)-466 provides the most 

practical access to the enantiopure starting material (P)-8 as very highly enantioenriched 8 

can be recrystallized to optical purity (from e.e. > 90% to e.e. > 99%). Following on from 

this first example and proof of principle, this thesis will describe several other multi-KR 

strategies that can afford enantiopure helicene derivatives. 

 

IV) Multiple kinetic resolution: results 

1) Initial approach 

a) (–)-Sparteine / chiral formamide (R)-441 

At the outset of this research, our initial strategy for the multi-KR synthesis of 2-formyl- 

and 2,13-diformyltetrathia[7]helicenes (460 and 468) was to employ (–)-sparteine-

mediated asymmetric lithiation of racemic tetrathia[7]helicene, followed by a novel 

asymmetric formylation using chiral formamides in the matched configuration, in the same 

step (Scheme 11). 

However, finding a compatible solvent for both steps turned out to be problematic. As 

shown by the results of single kinetic resolutions, the formamides can only really be used 

in THF, and the lithiation with chiral auxiliary (–)-sparteine is known not to be efficient in 

THF (THF is a stronger ligand for organolithium reagents than Et2O and (–)-sparteine). 
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Considering that the better step by far is the lithiation step, improving significantly the 

enantioselectivity in a second step using formamides, could only be done in conditions 

most favourable to the asymmetric formylation.  

  

 

Scheme 11: Initial strategy for the multi-KR 

 

Consequently, for our first attempts at double KR in the formylhelicene 460 synthesis, we 

tried combining positive solvent effects for each step of the reaction. We generated the 

non-racemic lithiohelicene (P)-461 in Et2O/toluene before adding a solution of chiral 

formamide (R)-441 in THF. Unfortunately, the desired formylhelicene 460 was identified 

by HPLC in only 30% e.e. (some diformylhelicene 468 was observed in 73% e.e.) (Scheme 

12).  

 

Scheme 12: Attempt at double KR 

 

There were no big expectations for this strategy, and the poor results can simply be 

explained by the possibility that upon addition of THF, dissociation of the (–)-sparteine•s-

BuLi aggregates ‘frees’ s-BuLi generating more lithiohelicene 461 in a non-asymmetric 

manner. Consequently low enantioselectivity of lithiohelicene 461 can be expected, and 
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formylhelicene 460 cannot be formed in high enantioselectivities. Furthermore, 

considering that the reaction of lithiohelicene 461 with the chiral formamide is much 

slower that the lithiation of SM 8 by s-BuLi, this reaction could never be successful. 

This view can be supported by the following experiment. Using the standard efficient 

lithiation process promoted by a 5:1 ratio of (–)-sparteine/s-BuLi, a 2-lithiohelicene 461 

solution was prepared and after addition of THF, aliquots were taken at regular intervals 

and quenched by addition of excess chlorotrimethylsilane (Scheme 13). The enantiomeric 

excesses of the resulting samples of TMS-helicene 463 were measured by HPLC and the 

data is showed in Table 9.  

 

Scheme 13: KR of helicene 8 followed by addition of THF 

 

En

try 

Time
 
[hrs] after 

THF added
 

Conversion 

into 466 [%]
b
 

e.e. [%] 

of 466
c
 

Conversion 

into 463 [%]
b
 

e.e. [%] 

of 463
c
 

e.e. [%] 

of 8
c
 

1 0 3 82 (P) 28 53 (P) 30 (M) 

2a 0.5 3 6 (P) 23 9 (M) 1 (M) 

3 3 31 1 (M) 48 8 (M) 10 (P) 

4 17 20 10 (M) 61 5 (M) 5 (P) 
a same conditions but different reaction; bSM and products were not separated on column chromatography, 

and conversion was measured by integration of HPLC signals (calibrations were done showing that 8, 463 

and 466 have similar enough UV responses to measure the conversion directly by integration of the HPLC 

signals) c measured by HPLC. 

Table 9: KR results: influence of the addition of THF after the asymmetric lithiation  
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Although these results have to be taken cautiously because taking out the aliquots in a 

representative manner has proven to be quite challenging, the data collected in Table 9 

show that non-asymmetric lithiation is occurring readily after the addition of THF, proving 

that addition of a chiral formamide solution in THF cannot be successful in the same 

conditions as those for efficient asymmetric lithiation. 

 

b) Use of (+)-sparteine surrogate (+)-459 

O’Brien’s work
11

 has established a possible alternative to (–)-sparteine, the ‘(+)-sparteine 

surrogate’ (+)-459 (Figure 1) which forms aggregates with organolithium reagents even in 

THF.
12

 However, repeated asymmetric lithiation attempts performed with the (+)-459 in 

THF failed to afford enantioenriched material. This was surprising, and the most likeky 

explanation was that aggregates were formed but there was no chiral recognition of 

helicene 8. In order to explore this more fully, the surrogate was used in the exact same 

conditions that gave successful results with (–)-sparteine (i.e. in Et2O/toluene and the 5:1 

ratio), and despite repeated efforts, TMS-helicene 463 obtained showed no e.e.s greater 

than 5%. 

 

Figure 5: (+)-Sparteine surrogate (+)-459 

 

2) Stepwise multi-KR 

a) Formation of enantiopure formylhelicene 460 

Our attention now turned towards performing the asymmetric lithiation and the asymmetric 

formylation in two separate chemical steps. In this way, the contribution of each 

asymmetric bias to the overall progress towards enantiomeric purity would be more easily 

studied than in the procedurally more rapid one-pot version of the double-KR process 

discussed above. First, the s-BuLi/(–)-sparteine/chlorotrimethylsilane procedure afforded 

(from two distinct experiments), after separation by column chromatography, highly 

enantioenriched recovered helicene (M)-8 and TMS-helicene (P)-463. (P)-463 was 

desylilated and then both (M)-8 and (P)-8 were examined in asymmetric formylation with 

chiral formamide 441 in the matched configuration. This two-step protocol (Scheme 14) 

allows a different solvent (THF in our case) to be used in the second step which proved to 
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be a considerable practical advantage as (M)-460 and (P)-460 were obtained respectively 

in 88% (Table 10, Entry 2) and 92% e.e. (Table 10, Entry 7). Another advantage of this 

approach is that using a single enantiomer of sparteine, both enantiomers of the 

formylhelicene 460 could be obtained as enantiopure products (in practice the highly 

enantioenriched samples from the double-KR would then be recrystallized to gain 

enantiopurity). 

 

Scheme 14: Double kinetic resolution 

 

b) Other double kinetic resolutions 

Clearly, even for this simple two-step process, many alternative multi-KR strategies are 

available, combining matched and mismatched asymmetric lithiation [using (–)-sparteine] 

and asymmetric formylation (using the appropriate enantiomer of the chiral formamides). 

The s-BuLi/(–)-sparteine/chlorotrimethylsilane procedure should always be used first as it 

allows regeneration of parent helicene (after desylilation) and is much more efficient. 

Based on this principle, Scheme 15 presents: 1) two mismatched-mismatched strategies; 2) 

one mismatched-matched strategy (already presented in the previous paragraph); 3) two 

matched-matched strategies (one is already presented in the previous paragraph); 4) one 

matched-mismatched strategy.  
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Scheme 15: Comparison of double KR strategies 

 

En

try 

Conditions
a
 for KR1 

Conversion 

of KR1 

KR1: 

e.e. of 

product  

Conditions
a
 for KR2 

Conversion 

of KR2 

KR2: 

e.e. of 

product 

Overall 

conversion 

KR1*KR2 

1 B 466, 14%b 93% (P) - - - 14% 

2 B 8, 56%b
 64% (M) B 

8, 83%b 

466, 5%b
 

93% (M) 

>90% (P) 

47%b 

3%b 

3 B 8, 56%c 78% (M) C 460, 10%b 88% (M) 5.6% 

4 B 8, 56%c 77% (M) E 8, 69% 84% (M) 39% 

5 B 8, 56%c 74% (M) A 8, 76% 88% (M) 43% 

6 A 463, 22% 67% (P) D 466, 11%d
 84% (P) 2.4% 

7 A 463, 23% 74% (P) C 460, 10%b 92% (P) 2.3% 

8 B 463, 30% 43% (P) A 
466, 15% 

463, 45% 

>90% (P) 

76% (P) 

4.5% 

14.5% 
a Conditions: A: 2 eq s-BuLi, 5:1 ratio (–)-sparteine/s-BuLi, 4 hrs lithiation, 2 hrs reaction time after 

electrophile addition; B: 3 eq s-BuLi, 5:1 ratio (–)-sparteine/s-BuLi, 4 hrs lithiation, 2 hrs reaction time after 

electrophile addition; C: 1 eq n-BuLi, no (–)-sparteine, 1 hr lithiation, 18 hrs reaction after matched chiral 

formamide addition; D: 6 eq s-BuLi to the mismatched helicene, 5:1 ratio (–)-sparteine/s-BuLi, 4 hrs 

lithiation, 2 hrs reaction time after electrophile addition; E: 1 eq n-BuLi, no (–)-sparteine, 1 hr lithiation, 18 

hrs reaction after mismatched chiral formamide addition; F: 2 eq n-BuLi, no (–)-sparteine, 1 hr lithiation, 18 

hrs reaction after mismatched chiral formamide addition; b isolated yields (in the other cases the overall 

conversion was calculated by integration of the HPLC signals); c Initially 8 came from the same reaction in 

56% conversion, however the e.e.s are different because the material with 78% e.e. was used for a KR and 

recovered SM showed 77% e.e, which was used again and recovered SM showed 74% e.e.; d asymmetric 

lithiation performed on enantioenriched 463 giving 466 as the product 

Table 10: Results of double KR 
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These results showed that in practice, the mismatched-mismatched strategy using twice the 

asymmetric lithiation method (with three equivalents of s-BuLi and a 5:1 (–)-sparteine/s-

BuLi ratio) is the most powerful, giving the parent helicene 8 in high 47% yield and 93% 

e.e. (Table 10, Entry 2, see also below Scheme 16). Alternatively, using a chiral formamide 

for the second mismatched step gave 8 in 39% conversion and 84% e.e. (Table 10, Entry 

4).  

Concerning the matched-matched strategies, yields obtained are lower, and although they 

could be improved, kinetic resolution by nature is limiting them. For example, when a 

second KR step is performed in the matched condition, if one wants to perform the reaction 

in conditions as similar as possible to the racemic case, the amount of resolving agent has 

to be added according to the amount of the minor enantiomer. Taking Table 10, Entry 7 as 

an example, in order to perform the second step with helicene 8 at 74% e.e. (equivalent to 

e.r. of 87:13), only 0.13 equivalents of the chiral formamide can be used when seeking a 

stereodifferentiation effect at the same level as that obtained when starting with racemic 

helicene 8. For this reason, matched-matched strategies will only proceed with a poor 

conversion of the initial starting material. Although the asymmetric lithiation is much more 

efficient than the asymmetric formylation, the use of two asymmetric lithiation steps, 

whether they are two distinct steps (Table 10, Entries 6 and 8) or one single dilithiation, 

(Table 10, Entry 1) will also give low conversions. Interestingly, the one-step dilithiation 

double KR (Table 10, Entry 1), although proceeding at a low conversion, it is in fact a 

much higher conversion (466, 14%) than the stepwise triple KR (Table 10, Entry 8) that 

converts only 4.5% the initial SM 8. 

 

3) Best example of a double KR 

In order to summarise results obtained, emphasis will be given to the sequence of KR steps 

that employs two distinct asymmetric lithiations. It allows the resolution of 52% of the 

racemic helicene 8, (46% of (M)-8 and 6% of (P)-466) at enantiomeric excesses greater 

than 90% in an only two-step process (Scheme 16). This adequately demonstrates the 

power of KR by (–)-sparteine-mediated chiral recognition of 7,8-

dipropyltetrathia[7]helicene (8), and establishes the principle of the multi-KR approach.   
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Scheme 16: Most efficient double KR sequence 

 

4) Double KR by asymmetric diformylation 

In view of our target, 2,13-diformyl-7,8-dipropyltetrathia[7]helicene (468), we examined 

the alternative of performing a double KR using asymmetric diformylation. Upon 

treatment of racemic parent helicene 8 with two equivalents of n-BuLi, racemic 2,13-

dilithiohelicene 467 was generated and a subsequent quench with formamide (R)-441 gave 

a mixture of formylhelicene (M)-460 and diformyl-helicene (M)-468 (Scheme 17). The 

latter was obtained in 13% yield and 68% e.e. This compares positively with the single KR 

of parent helicene 8 using formamide (R)-441, that gave formylhelicene (M)-460 in only 

42% e.e.  

 

Scheme 17: Double KR by asymmetric diformylation 

 

V) Conclusion  

The preliminary studies on the single KR whether using asymmetric lithiation or 

asymmetric formylation allowed us to get a deeper understanding of the helicene’s 
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behaviour under the conditions used. The examination of asymmetric formylation 

identified the most suitable type of target (i.e. a formamide with a secondary amine 

scaffold bearing an aliphatic chiral moiety and an aromatic moiety). Among this class of 

compounds, formamide (R)-441 bearing a naphthyl moeity, gave formylhelicene (M)-460 

in 30% yield and 41% e.e. The examination of asymmetric lithiation using a s-BuLi/(–)-

sparteine system gave surprising results for a kinetic resolution, as we found that the most 

favourable conditions required two or three equivalents of the organolithium reagent. The 

detailed study of the s-BuLi/(–)-sparteine system described in this chapter revealed that the 

control of aggregation was the key to promote efficient asymmetric inductions. Although 

the aggregation state of s-BuLi/(–)sparteine obtained in the case of the most successful 

examples is not clearly identified, either a 1:1 dimer (–)-sparteine•s-BuLi, or a slightly 

higher aggregation state, is most likely to be the reactive species. Ensuring the control of 

the aggregation state by using large excesses of (–)-sparteine (limiting the dissociation of 

s-BuLi or causing the formation of higher aggregates that are more chirally discriminating) 

was found to be essential to the success of the KR experiments. Using two equivalents of 

s-BuLi with a 5:1 ratio of (–)-sparteine/s-BuLi followed by the subsequent quench with 

chlorotrimethylsilane gave TMS-helicene 463, in 35% conversion and with 84% e.e.  

For our study of the multiple kinetic resolution, several strategies based on the combination 

of two matched or mismatched steps were developed. However, the stepwise sequence of 

two asymmetric lithiations was found to be the most effective technique allowing for the 

resolution of more than 50% of the initial stating material at over 90% e.e., as shown in 

Scheme 16. Since highly enantioenriched 7,8-dipropyltetrathia[7]helicene  can be 

recrystallized from hexane to the enantiopure form (from 90% e.e. to enantiopure), the 

levels of chiral discrimination achieved, even at this early stage, validate our methodology 

as a practical access to both enantiomers of enantiopure tetrathia[7]helicene. At this stage, 

we have demonstrated for the first time the principle of multi-KR methods in 

enantioselective synthesis, by the successful preparation of enantiomerically pure parent 

7,8-dipropyl-tetrathia[7]helicene (8). The techniques used are suitable for enantioselective 

preparation of formyl and diformylhelicenes 460 and 468 required for studies of nonlinear 

optics and TPCD effects with D-(chiral-)-A chromophores.  

Of course, in future work, more progress can be expected, whether it is via the 

development of more efficient chiral formamides, or by finer tuning / deeper understanding 

of the conditions used for the asymmetric lithiation (or both). This continued in-depth 
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study, and the extension of these methods to a range of helicenes, will prepare the way for 

a far broader application of the multi-KR method as a general synthetic procedure for 

targets that combine, for example, pharmacophores with stereogenic centres. This doctoral 

study has launched a new approach to the design of enantioselective synthetic routes, and 

the application of the methodology with other helicenes and related C2 symmetric starting 

materials (e.g. biaryls) would be decisive steps in illustrating the wider applicability of the 

procedures described here for the first time in this thesis.  

 

 

  



Chapter 3: Multiple KR of 7,8-dipropyltetrathia[7]helicene 

144 
 

List of References 

                                                            
1
 K. Tanaka, Y. Shogase, H. Osuga, H. Suzuki, Tetrahedron Lett. 1995, 36, 1675.  

2
 a) T. Kawasaki, K. Suzuki, E. Licandro, A. Bossi, S. Maiorana, K. Soai, Tetrahedron: 

Asym. 2006, 17, 2050. b) M. B. Groen, H. Wynberg, J. Am. Chem. Soc. 1971, 93, 2968. c) 

M. Monteforte, S. Cauteruccio, S. Maiorana, T. Benincori, A. Forni, L. Raimondi, C. 

Graiff, A. Tiripicchio, G. R. Stephenson, E. Licandro, Eur. J. Org. Chem. 2011, 5649. 

3
 E. Licandro, C. Rigamonti, M. T. Ticozzelli, M. Monteforte, C. Baldoli, C. Giannini, S. 

Maiorana, Synthesis 2006, 21, 3670.  

4
 a) I. Hoppe, M. Marsch, K. G. HarmsBoche, D. Hoppe, Angew. Chem., Int. Ed. 1995, 34, 

2158. b) S. Wu, S. Lee, P. Beak, J. Am. Chem. Soc. 1996, 118, 715. c) Y. S. Park, M. L. 

Boys, P. Beak, J. Am. Chem. Soc. 1996, 118, 3757. d) Bertini Gross, K. M.; Jun, Y. M.; 

Beak, P. J. Org. Chem. 1997, 62, 7679. e) Z. Pakulski, M. Koprowski, K. M. 

Pietrusiewicz, Tetrahedron 2003, 59, 8219. f) J. Huang, P. O’Brien, Chem. Commun. 

2005, 5696. f) S. V. Kessar, P. Singh, K. Nain Singh, P. Venugopalan, A. Kaur, P. V. 

Bharatam, A. K. Sharma, J. Am. Chem. Soc. 2007, 129, 4506. g) D. M. Hodgson, J. 

Kloesges, Angew. Chem., Int. Ed. 2010, 49, 2900. 

5
 D. H. O’Brien, C. R. Russell, A. J. Hart, J . Am. Chem. Soc. 1979, 101, 633. 

6
 A. Bossi, S. Maiorana, C. Graiff, A. Tiripicchio, E. Licandro, Eur. J. Org. Chem. 2007, 

4499.  

7
 a) D. J. Gallagher, S. T. Kerrick, P. Beak, J. Am. Chem. Soc. 1992, 114, 5872. b) J. L. 

Rutherford, D. Hoffmann, D. B. Collum, J. Am. Chem. Soc. 2002, 124, 264. c) R. Sott, M. 

Håkansson, G. Hilmersson, Organometallics 2006, 25, 6047. 

8
 a) C. Strohmann, T. Seibel, K. Strohfeldt, Angew. Chem., Int. Ed. 2003, 42, 4531. b) C. 

Strohmann, K. Strohfeldt, D. Schildbach, J. Am. Chem. Soc. 2003, 125, 13672. c) C. 

Strohmann, S. Dilsky, K. Strohfeldt Organometallics 2006, 25, 41. 

9
 H. J. Reich, Chem. Rev. 2013, 113, 7130 and references cited therein. 

10
 J. M. Goodman, A.-K. Köhler, S. C. M. Alderton, Tetrahedron Lett. 1999, 40, 8715. 

11
 G. Carbone, P. O’Brien, G. Hilmersson, J. Am. Chem. Soc. 2010, 132, 15445. 

 



Chapter 4: Synthesis of chiral push-pull systems 

145 
 

 

 

 

 

 

Chapter 4: 

Synthesis of chiral push-pull systems 
  



Chapter 4: Synthesis of chiral push-pull systems 

146 
 

I) Push-pull systems 

1) General characteristics 

‘Push-pull systems’ contain an electron donor (D), an electron acceptor (A) spaced out by 

a  system, constituting D--A molecules. These molecules exhibit strong nonlinear 

optical properties, which can be optimised either by increasing the length of the 

conjugation or by increasing the strength of the donor and acceptor groups. Thiophene-

based organic high performance chromophores
1
 are an important class of push-pull 

systems. Among these organic dyes based on a thiophene scaffold,
2
  ATOP dyes 

(aminothienyl-oxopyridine) (Figure 1) have shown important NLO properties,
3
 and it was 

decided at the outset of our research to build our thiahelicene push-pull systems based on 

the model of the ATOP-1 dye (470). 

 

Figure 1: ATOP dyes  

 

2) Our push-pull systems 

The strategy of ‘decorating’ our helicenes with substituents that have proved to be efficient 

in creating NLO effects was motivated by recent studies
4
 estimating that tetrathiahelicenes 

are interesting candidates for nonlinear optics especially for the direct observation of Two 

Photon Circular Dichroism (TPCD).
5
 For this, our aim was to synthesise push-pull systems 

with a stereochemically defined 7,8-dipropyltetrathia[7]helicene core bearing the ATOP 

dye end groups. Figure 2 presents two of our targets. (M)-471 is a D-(chiral--A example, 

whereas (M)-472 is an A-(chiral--A example, which could be regarded as an A-(chiral-

-D-(chiral--A structure if the helicene core with the two propyl chains on the central 

ring takes the role of the electron donor.  
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Figure 2: Push-pull systems targets (here in M configuration) 

 

Some intermediates in the synthesis of the targets presented in Figure 2, can also be 

interesting compounds to study the nonlinear optical effects described earlier. Indeed, di-

formylhelicene 468, or amino-formylhelicene 473 (Figure 3) are respectively decent A-

(chiral--A and D-(chiral--A systems. 

 

Figure 3: Alternative push-pull systems (here in the M configuration) 

 

When the project started, the thiahelicene core itself was potentially a good target to 

observe TPCD, however the technological status at the time lacked the sensitivity needed 

for the direct observation of TPCD phenomena. Since then, technological improvements 

have been made, and even enantiopure 7,8-dipropyltetrathia[7]helicene (8) itself, could 

possibly allow the observation of TPCD, and this is currently being examined by our 

collaborators in Leuven (Pr. Thierry Verbiest). 

Although in previous chapters we have presented strategies to obtain enantiopure helicene 

material, discussions with Pr. Verbiest made it clear that enantiopure material will not 

necessarily outperform simply enantioenriched helicene. Nonlinear optical experiments on 
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helicene at varying e.e.s from racemic to enantiopure forms will establish what level of 

enantiopurity is optimal for the NLO response. 

 

II) Synthesis of D-(chiral-)-A and A-(chiral-)-A systems 

1) Synthesis of the pyridone acceptor group 

Pyridone acceptor groups are found in ATOP dyes, but also in many other dyes. Pyridone 

476 was synthesised according to the published literature.
6
 Ethyl cyanoacetate (474) was 

added dropwise to N-butylamine forming a non-isolated intermediate 2-cyano-N-

butylacetamide (475), which was then reacted with ethyl acetoacetate forming desired 

pyridone 476 in 52% yield (Scheme 1). 

 

Scheme 1: Synthesis of pyridone 476 

 

2) A-(chiral-)-A systems 

a) Retrosynthetic analysis 

Of the two types of push-pull systems presented above, A-(chiral-)-A molecules are by 

far the easier ones to synthesise as only one type of functionality has to be installed. Our 

case requires introducing pyridine-dione moieties; they can be obtained by a 

straightforward double condensation reaction of dialdehyde 468 and pyridone 476, as 

shown on the retrosynthetic analysis (Scheme 2). The required aldehyde intermediate, 468, 

can be obtained in enantioenriched forms using one of the asymmetric strategies described 

in chapter 3.  

 

Scheme 2: Retrosynthetic strategy for the synthesis of A-(chiral-)-A system 472 
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Although the representation in Scheme 2 shows the helicene in the M configuration, both 

enantiomers are potential targets.  

 

b) Synthesis  

i) Racemic series 

In order to get familiar with the chemistry, all target molecules were first synthesised as 

racemic versions. After dilithiation of racemic helicene 8 using an excess of n-BuLi, 

subsequent quenching with DMF gave the known
7
 racemic dialdehyde 468 in 98% yield 

(Scheme 3). 

 

Scheme 3: Synthesis of racemic dialdehyde 468 

 

The double condensation reaction was then examined. The literature about the synthesis of 

ATOP dyes
3
 that we were following indicates that the condensation reaction is performed 

in the absence of solvent and simply using acetic anhydride (5.5 eq, 0.5 mL per mmol) as a 

drying agent that drives the equilibrium of the condensation reaction forward. However, 

this procedure was seen as unpractical in the case of our helicenes where the amount of 

product used is most likely to be below one millimole. Therefore, we decided to perform 

this reaction in toluene, in a reaction vessel equipped with a Dean-Stark trap in order to 

remove the water produced. One equivalent of dialdehyde 468 and 2.4 equivalents 

(although used in excess, no trace of 476 is observed in the crude NMR) of pyridone 476 

were refluxed in toluene for two hours giving the deep-red pyridine-dione 472 in 

quantitative yield (Scheme 4). Although many different solvents were tried for 

recrystallization of 472, the formation crystals was not observed. Unfortunately, these 

attempts resulted in the rearrangement of 472 into an unidentified product. NMR spectral 

data (
1
H and 

13
C NMR) seems to indicate that the product is still symmetrical 

(unsymmetrically substituted helicenes show more complex 
1
H NMR data), but possesses 

one extra proton signal and two extra carbon signals (one tertiary and one quaternary 
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carbon). The spectra for this product are included in this thesis in Appendix B, and since 

this experiment was performed in the final weeks of the research period, at the time of 

submission samples of this intriguing and puzzling product had be sent to the EPSRC Mass 

Spectrometry Service at Swansea to gain molecular ion data.  

 

Scheme 4: Synthesis of racemic A-(chiral-)-A 472 

 

ii) Enantioenriched series 

Before attempting the synthesis in the enantioenriched series, a careful study of the 

conditions used for recrystallization and storage of the novel racemic dye 472 needs to be 

done in order to assess the stability of the compound. When this is established, future work 

will focus on synthesising enantiopure 472.  

As stated previously in this chapter, dialdehyde 468 can also be an interesting target for the 

study of the TPCD phenomenon. Although its synthesis in an enantiopure version has not 

been described in this thesis, many different strategies presented in the multi-KR chapter 

would readily give the enantiopure dialdehyde 468. 

 

3) D-(chiral-)-A 

a) Retrosynthetic analysis 

The synthesis of D-(chiral-)-A systems, in particular aminohelicene-pyridine-dione 471, 

is more complex than the synthesis of previously described A-(chiral-)-A systems 

because it requires the introduction of two different groups in a stepwise sequence. The 

best combination remains to be established (Scheme 5). One thing is clear, however; the 

synthesis of amino-formyl intermediate 473 (Scheme 5) should be the focus of our 

attention in this retrosynthetic analysis, as it can easily be transformed into D-(chiral-)-A 

471 by a simple condensation reaction. 
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i) SNAr 

The strategy existing for the synthesis of ATOP dyes is based on the introduction of 

dialkylamines groups via a nucleophilic aromatic substitution reaction between 5-

bromothiophene-2-carboxaldehyde and dialkylamines.
3,6

 This reaction works because the 

C-5 position bearing the bromo substitutent is activated by the aldehyde which acts as an 

efficient electron withdrawing group that is essential for the reaction. However, in the case 

of helicenes, it was anticipated that the electron withdrawing effect of the aldehyde might 

be too low, in this extended aromatic structure, to influence the electrophilicity needed the 

carbon bearing the bromine substituent. For the further development of this strategy, the 

synthesis of fluoro- or chloro-477 by means presented in Scheme 5 would be preferable to 

the synthesis of bromo- or iododerivatives as the reactivity for nucleophilic aromatic 

substitution is well-known to go in the following order for aryl halides: F > Cl > Br > I. 

 

 

i) Buchwald-Hartwig coupling 

A possible alternative for the introduction of the tertiary amine group is the Buchwald-

Hartwig palladium mediated coupling of aryl halides and secondary amines. This would be 

a suitable strategy for the synthesis of aminohelicene 478, amino-halohelicene 479 and 

amino-formylhelicene 473 (Scheme 5). However, 2-substituted thiophenes are known for 

being relatively bad substrates for Buchwald-Hartwig
8
 coupling especially when using 

electron rich dialkylamines. 

 

 

ii)  Strategies for the synthesis of amination precursors 

Amination precursors halo-helicene 482, dihalohelicene 481 and halo-formylhelicene 477 

can be synthesised by asymmetric protocols, or in racemic form, as shown in Scheme 5. 

The asymmetric methods will not be described here, but TMS-helicene 463, di-TMS-

helicene 466 and TMS-formylhelicene 480 can be obtained in enantioenriched forms using 

strategies described in chapter 3, and could be subsequently transformed into the iodo- or 

bromo-equivalents by treatment respectively with iodine monochloride or bromine. 
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Scheme 5: Retrosynthetic strategy for the synthesis of D-(chiral-)-A system 471  

 

b) Synthesis 

Concerning the introduction of the tertiary amine group, the SNAr method was not selected 

for the reasons explained earlier, and the Buchwald-Hartwig reaction was instead chosen 

as it was thought to be more suitable (as well as being possibly transformed to an 

asymmetric reaction as a multi-KR option). 
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i) Optimisation of Buchwald-Hartwig conditions 

Before attempting the reaction with bromohelicene derivatives, we examined the reaction 

on 2-bromobenzo[b]thiophene (483) in order to find suitable conditions. Coupling 

precursor 483 was obtained in 91% yield by quenching 2-lithiobenzo[b]thiophene with 1,2-

dibromoethane (Scheme 6). 

 

Scheme 6: Synthesis of 2-bromobenzo[b]thiophene (483) 

 

Following the literature
8,9

 for Buchwald-Hartwig coupling reactions, we screened a range 

of possible conditions for the reaction of 2-bromobenzo[b]thiophene (483) and di-N-

butylamine. Different palladium sources were used, Pd(Pt-Bu3)2, Pd(dba)2 and Pd2(dba)3 as 

well as BINAP and Pcy3 ligands. Unfortunately, no desired product was observed; some 

reactions returned mostly starting material whereas others gave small amounts of the 

homocoupling product 2,2'-bibenzo[b]thiophene. Alternatively, we tried a copper mediated 

coupling which has been reported
10

 to work for the coupling of 2-iodothiophene and 

pyrolidine using copper powder in DEANOL, however the formation of the desired 

product was not observed. 

Subsequently, we turned towards more reactive aromatic secondary amines that would still 

be decent electron donors. N-methyl-p-anisidine 484 was chosen, and performing the 

coupling with what was described as the best reaction conditions,
8
 using Pd(dba)2 and Pt-

Bu3 in equimolar amounts (although Pd(dba)2 would accept two phosphine ligands, 

Buchwald comments that the catalytic species when using these conditions could be 

Pd
I
(Pt-Bu3)Br, therefore 1:1 ratio is preferred) gave the desired amino-benzo[b]thiophene 

485 in 60% yield (Scheme 7). Conscious that the improvements made to the method might 

generate positive results with the less reactive secondary amines too, the reaction was 

attempted again with di-N-butylamine (in dioxane and in toluene) but unfortunately no 

desired product was observed. It seems that the use of the more reactive aromatic 

secondary amines is essential. 
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Scheme 7: Buchwald-Hartwig coupling of 2-bromobenzo[b]thiophene (483) 

 

ii) Buchwald-Hartwig reaction with 2-bromohelicene 486 

Racemic helicene 8 was lithiated using n-BuLi and subsequent quench with 1,2-

dibromoethane gave racemic 2-bromohelicene 486 in 59% yield (41% of starting material 

was also recovered) (Scheme 8).  

 

Scheme 8: Synthesis of 2-bromohelicene 486 

 

Using the optimised conditions described in the previous paragraph, the Buchwald-

Hartwig coupling of 2-bromohelicene 486 with N-methyl-p-anisidine (484) gave desired 

product 487 but in only 36% yield (16% as a pure product, and 20% as a 90%-pure 

mixture). By using 0.5 equivalents of palladium catalyst, yields were improved to 47 % 

(14% as a pure product and 33% as a 70%-pure mixture) (Scheme 9).  

 

Scheme 9: Buchwald-Hartwig coupling of 2-bromohelicene 486 
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Although the outcome of this reaction could still be improved, the difficulties of 

purification, added to the fact that it was not our original target, convinced us to find an 

alternative amination method. 

 

iii)  Alternative amination technique 

Having in mind the ability of thiahelicenes to give selectively C-2 metallation products, we 

thought that finding amination method where the nitrogen of the secondary amine is 

electrophilic could be convenient. Extensive scrutiny of the literature drew our attention to 

a few methods where the reaction of aryl Grignard reagents
11

 or arylcuprates
12

 with amine 

derivatives achieve the formation of the desired C-N bond. After a few unsuccessful 

attempts, particular attention was paid to Knochel’s work. His seminal contribution is well-

established in the field of organo-cuprate and organo-magnesium chemistry. Indeed, he 

reported
13

 the modification of several standard Grignard-mediated or cuprate-mediated 

reactions using unusual reagents. In particular, he showed that arylcuprates could be 

coupled with lithium amides forming C-N bonds. 

First, we evaluated the potential of his approach using our test substrate, 2-

bromobenzo[b]thiophene with di-N-butylamine. The experimental procedure is quite tricky 

requiring the addition of a long list of chemicals. The first step is the formation of Grignard 

reagent 488 by reacting arylbromide 483 with ‘Turbo Grignard’ (i-PrMgCl•LiCl) at –50 

°C. Then, this Grignard intermediate is transformed into the corresponding arylcuprate 489 

by adding CuCl•(LiCl)2 at –50 °C. This is then followed by the addition of lithium di-N-

butylamide at –78 °C (forming arylcuprateamide 490) and finally an oxidant, chloranil, is 

added at –78 °C  (and stirred overnight at –50 °C) to form the C-N bond. Following this 

procedure the desired amino-benzo[b]thiophene 491 was obtained in 55% yield (Scheme 

10), with a small quantity of the homocoupling product. 

 

Scheme 10: Knochel amination method 
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The method was then used with 2-bromohelicene 486, and gave surprising results. Two 

products were obtained. The desired 2-aminohelicene 478 was isolated in 20% yield but 2-

bromo-13-aminohelicene 492 was also formed in 18% yield (Scheme 11). This result can 

easily be explained by the fact that the proton at the C-13 position is relatively acidic, 

therefore it can be deprotonated by i-PrMgCl•LiCl and subsequently transformed into the 

Grignard reagent.  

 

Scheme 11: Amination of 2-bromohelicene 486 

 

We immediately thought of using this to our advantage drawing on more results obtained 

by Knochel
14

 as our inspiration. Knochel reports that Grignard reagents can be formed 

directly from an aryl species when it possesses protons that are acidic enough, using 

TMPMgCl•LiCl (Scheme 12). When applying this strategy to the parent helicene 8, we 

were agreeably surprised to obtain the desired product in 40% yield. 

 

Scheme 12: Modified amination reaction using parent helicene 8 
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Unfortunately, despite several attempts, this result could not be improved, and when 

performed on a large scale the yield fell to only about 5%. Several biproducts were 

observed, and although they could not be clearly identified, they showed characteristic 
1
H 

NMR signals of thiahelicenes and more particularly of aminated thiahelicenes. Considering 

that the reaction with 2-bromobenzo[b]thiophene (483) did not produce any degraded 

biproducts, and since quinone oxidations (chloranil is tetrachloro-1,4-benzoquinone) are 

known to proceed via radical mechanisms, it seems likely that a radical source is 

responsible for the degradation of the aminohelicene product. Moreover, chloranil is 

possibly the most oxidising molecule of this class of compounds, therefore further 

improvements of the reaction might be possible by using alternatives of oxidising agents. 

There was not, at this stage, time remaining in the project to explore this further. 

 

iv)  D-(chiral-)-A systems 

Dibutylaminohelicene 478 was lithiated using n-BuLi and a subsequent quench with DMF 

gave aminoformylhelicene 473 in 64% yield (Scheme 13). However, the final 

condensation reaction has not yet been attempted. Also, it seems that dibutylaminohelicene 

473 is not very stable at room temperature if unprotected from UV light, which probably 

explains why the amination reaction is so low yielding. Nonetheless, when kept in the dark 

at –18 °C in a freezer, no sign of degradation is seen, even after three months. 

 

Scheme 13: Synthesis of D-(chiral-)-A 473 

 

c) Future work 

Once a reliable synthetic pathway for the synthesis of aminohelicene derivatives has been 

developed, it will be easier to establish a clear strategy for the synthesis of both racemic 

and enantioenriched D-(chiral-)-A systems (whether they are aminoformylhelicene 473 or 
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aminohelicene-pyridine dione 471). At the moment, on the basis that the Knochel 

amination technique will prove, in the near future, to be the most suitable, the preferred 

route now seems to be the racemic synthesis of aminohelicene 478, followed by either a 

double kinetic resolution with (–)-sparteine/s-BuLi and a chiral formyl donor or a 

conventional kinetic resolution, quenching with TMSCl to provide highly enantioenriched 

recovered aminohelicene starting material.  

 

III) General conclusions and future work 

Throughout these almost four years of doctoral research, three different 

tetrathia[7]helicenes (8, 360 and 368) have been synthesised. The kinetic resolution of 7,8-

dipropyltetrathia[7]helicene (8) has been performed using newly synthesised chiral 

formamides and by developing an efficient (–)-sparteine-mediated asymmetric lithiation 

protocol. Combining the asymmetric induction obtained from a single KR in a longer 

multi-KR sequence has allowed us to obtain enantiopure 7,8-dipropyltetrathia[7]helicene 

derivatives via several distinct routes. These derivatives will be useful intermediates in the 

synthesis of D-(chiral-)-A and A-(chiral-)-A push-pull systems, once a clear and 

efficient synthetic route in the racemic series has been established.  

The results presented in this thesis provide a firm foundation for the onward development 

of the wide range of prospective applications of enantiopure thiahelicenes. It is expected 

that the main focus at first, will be to develop efficient routes towards the push-pull 

systems that are described in this chapter, and, depending on the photo-physics results, 

other structures with different end groups (donor or acceptor) could also become of 

interest. 

The generalisation of the multi-KR strategy to other helicenes which we have synthesised 

(360 and 368 initially, and then perhaps more advanced targets), and later as a method for 

use with other substrates, will be important future steps. Additionally, the easy access to 

enantiopure helicene 8 developed in this doctoral study can be useful to gain similarly 

efficient access to chiral helical catalysts and ligands for application in asymmetric 

synthesis. The principles of double- and multi-KR that have been set out for the first time 

in this thesis have the potential to impact in the future on the fundamentals of synthesis 

design in much the same way as Masamune’s insight into double stereodifferentiation
15 

and Kagan’s discovery of nonlinear effects in asymmetric induction
16

 have done in 

previous decades.  
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General Methods. Chemicals of reagent grade were used as purchased unless stated 

otherwise. When mentioned as distilled, THF, Et2O, DME, 2-MeTHF, MTBE were freshly 

distilled from sodium benzophenone ketyl. DCM, (–)-sparteine, N,N-dibutylamine and 

acetonitrile were distilled from calcium hydride. Toluene and xylene were distilled from 

sodium. All non-aqueous reactions were carried out under oxygen-free nitrogen or argon 

using flame-dried glassware. Organolithium reagents were titrated according to the 

procedure reported by Burchat,
1
 using N-benzylbenzamide. Photochemical experiments 

were carried out using a 500 W high pressure Hg lamp (model UV-50F) powered by a 

GR.E 500W power unit from Helios Italquartz. Flash column chromatography was carried 

out using Davisil LC60A 40-63 micron silica (amorphous silicon dioxide). Thin layer 

chromatography was carried out using commercially available Macherey-Nagel pre-coated 

TLC-sheets (ALUGRAM
®
 SIL G/UV254 silica plates). Microwave experiments were run 

with a Biotage Initiator Robot Sixty. Proton and carbon NMR spectra were recorded on a 

Varian UNITYplus 400 MHz spectrometer with a 5 mm Inverse detect broad band z-

gradient probe, a Bruker Avance III nanobay 400 MHz spectrometer with a 5 mm broad 

band observe BBFO
plus

 probe fitted with an actively shielded z-gradient coil and Bruker 

Avance III 500 MHz spectrometer with a 5 mm broad band observe BBFO
plus

 smart 

probe
TM

 fitted with an actively shielded z-gradient coil (500 MHz). NMR signals were 

measured using the residual non-deuteriated NMR solvent signal as a reference (for 
1
H 

NMR, CHCl3 at 7.27 ppm and DMSO at 2.50 ppm). For 
13

C NMR, CDCl3 at 77.0 ppm and 

DMSO-d6 at 39.51 ppm were used. HPLC chromatograms were recorded with two 

different systems designated as A and B in the appendix. A is a Varian instrument 

comprising a VWR organizer, a VWR UV detector L-2400, a VWR column oven L-2300, 

a VWR autosampler L-2200 and a VWR pump L-2130. B is a Shimadzu instrument 

comprising a LC-20AB prominence liquid chromatograph, a SIL-20A prominence 

autosampler and a SDP-M20A prominence diode array detector; this was used with a 

Gilson CE4600 column oven. Melting points were measured on a Buchi melting point B-

545 apparatus. Infra-red spectra were recorded on a Perkin Elmer Spectrum 100 FT-IR 

spectrometer. The specific rotations were measured on a ADP 440 polarimeter from 

Bellingham + Stanley, and were measured in CHCl3 at 15 mg mL
–1

 unless otherwise 

stated. Specific rotations presented for formamides were measured on a mixture of 

rotamers. Chemical ionisation and high resolution mass spectra were measured at the 

EPSRC Mass Spectrometry Centre at the University of Wales, Swansea. 
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Experimental data of chapter 1 

 

7,8-Dipropyltetrathia[7]helicene
2
 (8): 

 

Chemical Formula: C28H22S4 

Molecular Weight: 486.7343 

A solution of (Z)-2,2'-(oct-4-ene-4,5-diyl)bis(benzo[1,2-b:4,3-b']dithiophene (346, 2.35 

g, 4.81 mmol, 1 eq) and iodine (50 mg) in toluene (3 L) was irradiated in a 3-L 

photochemical reaction vessel equipped with a quartz jacket using a 500 W UV lamp. The 

solution was irradiated for 7 hrs at RT with air bubbling into the solution. The solvent was 

then evaporated and the residue was dissolved in DCM (100 mL), washed with sat. aq. 

Na2SO3 (100 mL), dried over MgSO4 and evaporated. The crude material was then purified 

by column chromatography (25 g silica, hexanes) affording 7,8-

dipropyltetrathia[7]helicene (8, 1.6 g, 68%) as a pale (light yellow) solid.  

1
H NMR (CDCl3, 400 MHz): (ppm) 8.01 (d, 2H, 

3
J = 8.4 Hz), 7.96 (d, 2H, 

3
J = 8.4 Hz), 

6.89 (d, 2H,
 3

J = 5.5 Hz), 6.75 (d, 2H,
 3

J = 5.5 Hz), 3.07-3.20 (m, 4H), 1.82-1.95 (m, 4H,), 

1.18 (t, 6H, 
 3

J = 7.5 Hz). 

13
C NMR (CDCl3, 100 MHz): (ppm) 139.6 (2C, C), 136.5 (2C, C), 135.97 (2C, C), 

135.95 (2C, C), 132.2 (2C, C), 131.5 (2C, C), 128.2 (2C, C), 125.2 (2C, CH), 124.0 (2C, 

CH), 120.8 (2C, CH),  118.5 (2C, CH), 34.4 (2C, CH2), 23.3 (2C, CH2), 14.7 (2C, CH3). 

 

(E)-1,2-di(thiophen-2-yl)ethene
3
 (309): 

 

Chemical Formula: C10H8S2 

Molecular Weight: 192.30 

In a 1-L three-necked RBF flame dried under argon, to distilled THF (500 mL) stirred at 0 

°C, TiCl4 (60.93 g, 321.4 mmol, 35.22 mL, 1.2 eq) was added dropwise over 15 min and 

the resulting yellow mixture was stirred another 5 min. Zinc dust (40.83 g, 589.2 mmol, 
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2.2 eq) was then added in 5 portion under vigorous stirring, and resultant reaction mixture 

was refluxed for 2 hrs. Then, pyridine (21.21 g, 21.7 mL, 267.84 mmol, 1 eq) was added 

before refluxing for another 30 min. The reaction mixture was cooled to RT, and 

thiophene-2-carboxaldehyde (307, 24.96 mL, 30.3 g, 267.84 mmol, 1 eq) was added 

carefully before refluxing for 18 hrs. Reaction mixture was cooled down to RT, and then 

concentrated to 100 mL. H2O (500 mL) was added to the black sludge which was extracted 

with DCM (5 x 500 mL). The combined organic layers were dried over MgSO4 and 

evaporated affording 25 g crude product. The crude solid was recrystallized in hexanes 

(impurities insoluble in boiling hexane were separated) affording (E)-1,2-bis(thien-2-

yl)ethene (309, 21.8 g, 85%) as a yellow solid. 

1
H NMR (CDCl3, 400 MHz): (ppm) 7.19 (br. d, 2H, 

3
J = 5.0 Hz), 7.06 (s, 2H), 7.05 (dd, 

2H, 
3
J = 3.5 Hz, 

4
J = 1.1 Hz), 7.00 (dd, 2H, 

3
J = 5.0 Hz, 

3
J = 3.5 Hz). 

 

benzo[1,2-b:4,3-b']dithiophene
4
 (310): 

 

Chemical Formula : C10H6S2 

Molecular Weight: 190.28 

Method A 

In a 1-L RBF, [3,3'-bithiophene]-2,2'-dicarbaldehyde (320, 8.78 g, 39.5 mmol, 1 eq) and 

tosylhydrazide (14.71 g, 79 mmol, 2 eq) were dissolved in distilled THF (800 mL) and 

stirred at RT overnight. The THF solution was dried over Na2SO4, and transferred to a 2-L 

3-necked RBF flame dried under nitrogen, and distilled THF (1 L) was added. The reaction 

mixture was cooled to 0
 
°C and NaH (95%, 2.49 g, 98.8 mmol, 2.5 eq) was added in 

portions. The reaction mixture was then allowed to reach RT and was refluxed for 3 hrs. 

The reaction mixture was allowed to cool down and was concentrated to 300 mL, sat. aq 

NH4Cl (300 mL) was added and the mixture was extracted with EtOAc (2 x 400 mL). The 

combined organic layers were dried over MgSO4, and evaporated to obtain 10.5 g of brown 

solid. The crude material was purified by column chromatography (100 g silica, hexanes) 

affording benzo[1,2-b:4,3-b']dithiophene (310, 2.5 g, 33%) as a white solid. 

Method B 

In a 100-mL three-necked RBF, flame dried under nitrogen, was added N',N''-([3,3'-

bithiophene]-2,2'-diylbis(methanylylidene))bis(4-methylbenzenesulfonohydrazide)  
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(321, 325 mg, 0.58 mmol, 1 eq) in distilled THF (40 mL). Then, NaH (60% in mineral oil, 

46 mg, 1.16 mmol, 2 eq) was added in one portion, under nitrogen, and reaction mixture 

was refluxed for 2 hrs. The reaction mixture was allowed to cool down and a few drops of 

sat. aq NH4Cl were added, before being evaporated to obtain 0.42 g of brown solid. The 

crude material was purified by column chromatography (10 g silica, hexanes) affording 

benzo[1,2-b:4,3-b']dithiophene  (310, 42 mg, 37%) as a white solid. 

Method C (From the bis TMS-BDT) 

In a 250-mL three-necked RBF, to a solution of 2,7-bis(trimethylsilyl)benzo[1,2-b:4,3-

b']dithiophene (335, 1.36 g, 4.06 mmol, 1 eq) in distilled THF (150 mL) at RT, under 

nitrogen, was added dropwise TBAF (1M in THF, 8.12 mL, 8.12 mmol, 2 eq). After 

stirring 5 min at RT the reaction was complete. H2O (100 mL) was added and the mixture 

was extracted with EtOAc (2 x 100 mL), the combined organic layers were dried over 

MgSO4 and evaporated to give 1.4 g of crude material, which was then purified by column 

chromatography (10 g silica, hexanes) affording benzo[1,2-b:4,3-b']dithiophene (310, 

830 mg, 75%) as a white solid. 

Method D (photochemistry) 

A solution of (E)-1,2-bis(thien-2-yl)ethene (309, 5.1 g, 26.5 mmol, 1 eq) and I2 (50 mg) in 

toluene (3 L) was irradiated in a 3-L photochemical reaction vessel equipped with a quartz 

jacket using a 500 W UV lamp. The solution was irradiated for 35 hrs at RT with air 

bubbling into the solution. The solvent was then evaporated and the residue was dissolved 

in DCM (100 mL), washed with sat. aq. Na2SO3 (100mL), dried over MgSO4 and 

evaporated. The crude material was then purified by column chromatography (100 silica, 

hexanes) affording benzo[1,2-b:4,3-b']dithiophene (310, 4.2 g, 83%) as a white solid. 

Method E 

In a 100-mL RBF, flame dried under argon, Grubbs catalyst 1
st
 generation (30 mg, 0.036 

mmol, 0.1 eq) was added to a solution of 2,2'-divinyl-3,3'-bithiophene (80 mg, 0.36 

mmol, 1 eq) in dry DCM (25mL). The reaction mixture was stirred at RT for 8 hrs. After 

removing the solvent under reduced pressure, the crude product was purified by column 

chromatography (2 g silica, hexanes), affording benzo[1,2-b:4,3-b']dithiophene (310, 67 

mg, 96%) as a white solid. 

1
H NMR (CDCl3, 400 MHz): (ppm) 7.84 (s, 2H), 7.73 (d, 2H, 

3
J = 5.7 Hz), 7.58 (d, 2H, 

3
J = 5.7 Hz). 
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13
C NMR (CDCl3, 100 MHz): (ppm) 136.4 (2C, C), 134.6 (2C, C), 126.4 (2C, CH), 

121.9 (2C, CH), 118.7 (2C, CH). 

 

2,2′-Divinyl-3,3′-bithiophene (319): 

 

Chemical Formula: C12H10S2 

Molecular Weight: 218.3378 

To a suspension of methyltriphenylphosphonium bromide (1.7 g, 4.75 mmol, 2.2 eq) in 

distilled THF (50 mL), n-BuLi (1.6 M in hexanes, 2.96 mL, 4.75 mmol, 2.2 eq) was added 

dropwise at –10 °C under nitrogen. The deep-orange solution was stirred at RT for 30 min, 

then a solution of [3,3′-bithiophene]-2,2′-dicarbaldehyde (320, 460 mg, 2.16 mmol, 1 eq) 

in distilled THF (10 mL) was added dropwise. The mixture was stirred at RT under 

nitrogen for 17 hrs, then the reaction was quenched with sat. aq. NH4Cl (20 mL). The 

aqueous layer was extracted with CHCl3 (3 × 50 mL) and the combined organic layers 

were washed with brine (100 mL), dried over MgSO4, and evaporated. The crude product 

was purified by column chromatography (10 g silica, hexanes), to afford 2,2′-divinyl-3,3′-

bithiophene (319, 350 mg, 77%) as a viscous oil. The product was kept in the freezer in 

the dark, and used as soon as possible. 

IR (ATR):  (cm
–1

) 3103, 3066, 3005, 2957, 2925, 2869, 1800, 1616.  

1
H NMR (CDCl3, 400 MHz): (ppm) 7.19 (dd, 1H, 

3
J  = 5.3 Hz, 

5
J = 0.8 Hz), 6.94 (d, 1H, 

3
J = 5.3 Hz), 6.66 (ddd, 1H, 

3
J = 17.3 Hz, 

3
J = 11.0 Hz, 

5
J = 0.8 Hz), 5.58 (d, 1H, 

3
J = 17.3 

Hz), 5.13 (d, 1H, 
3
J  = 11.0 Hz). 

13
C NMR (CDCl3, 100 MHz): (ppm) 139.1 (1C, C), 134.2 (1C, C), 130.1 (1C, CH), 

129.2 (1C, CH), 123.1 (1C, CH), 113.7 (1C, CH2). 

HRMS (ESI): m/z [M + H]
+
 calcd for C12H11S2: 219.0299; found: 219.0297. 

 

[3,3'-bithiophene]-2,2'-dicarbaldehyde
5
 (320): 

        

Chemical Formula: C10H6O2S2 
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Molecular Weight: 222.2834 

Method A: palladium coupling 

Anhydrous DMSO (50 mL) was degassed under nitrogen for 30 min, then 3-

bromothiophene-2-carbaldehyde (322, 2 g, 10.5 mmol, 1 eq) was added and nitrogen gas 

was bubbled through the resulting solution for 10 min. Pd(PPh3)4 (1.21 g, 1.05 mmol, 0.1 

eq) and copper powder (2 g, 31.5 mmol, 3 eq) were added and the solution was stirred and 

heated to 100 °C, under nitrogen for 15 hrs and then at 120 °C for 8 hrs. The solution was 

cooled to RT before addition of EtOAc (200 mL) and filtration through a pad of 

kieselghur. The filtrate was washed with H2O (2 × 150 mL) and brine (150 mL), dried over 

MgSO4, filtered and evaporated to give a brown oil that was purified by chromatography 

(silica, hexanes/EtOAc gradient 95:5 to 3:1 v/v) to afford [3,3'-bithiophene]-2,2'-

dicarbaldehyde (320, 405 mg, 35%) as a yellow powder. 

 

Method B (large scale) 

In a 2-L three-necked RBF, N-((3-bromothiophen-2-yl)methylene)cyclohexanamine 

(324, 60.5 g, 222 mmol, 1 eq) was dissolved in dry NMP (1.5 L) under argon. CuTC (93 g, 

490 mmol, 2.2 eq) was added in several portions (in order to achieve a good mixing of the 

solution). The resultant mixture was stirred 14 hrs, under argon, at 90
 
°C. The reaction 

mixture was filtered on a pad of kiesielghur which washed with EtOAc (1 L) until the 

filtrate was colourless. The filtrate was washed with 15% aq. NH3 (1.5 L) producing a clear 

deep blue aqueous layer. The organic layer was separated, and the aqueous layer was then 

extracted with EtOAc (3 x 1 L). The combined organic layers were washed with brine (4 x 

3 L) (to remove as much NMP as possible), dried over MgSO4, and evaporated. Resultant 

brown oil was dissolved in DCM (1 L) and 15% aq. AcOH (700 mL) was added before the 

mixture was stirred overnight at RT. The organic layer was separated and the aqueous 

layer was extracted with DCM (300 mL). The combined organic layers were washed with 

brine (4 x 500 mL), filtered through a MgSO4 / neutral alumina pad, and evaporated to give 

a solution of crude product in NMP (despite the washing, the NMP was not removed 

completely). The resultant brown oil was taken in H2O (200 mL) and shaken until the 

product crushes out. The mixture was then filtered, resultant solid was then taken in DCM 

(100 mL), dried over MgSO4, and evaporated. The solid residue was washed with a 

mixture of hexanes and EtOAc (8:1 v/v, 3 x 250 mL) and dried under vacuum affording 

[3,3'-bithiophene]-2,2'-dicarbaldehyde (320, 16.8 g, 68%) as a yellow solid.  
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General method: microwave  

A dried 20-mL microwave vial was flushed with argon. To a solution N-[(3-

bromothiophen-2-yl)methylene]cyclohexylimine (324, 1 g, 3.67 mmol, 1 eq) in NMP 

(15 mL), CuTC (1.54 g, 8.1 mmol, 2.2 eq) was added with stirring. The microwave vial 

was then sealed, vacuum was applied, and then the vial was filled again with argon. The 

reaction mixture was irradiated (see Table 2, Chapter 1), then diluted with EtOAc and 15% 

aq. NH3 was added to produce a clear deep-blue aqueous layer. The organic layer was 

separated and retained and the aqueous layer was extracted with EtOAc. The organic layers 

were combined and evaporated and the resultant crude product (green oil) was dissolved in 

Et2O. This solution was washed with brine, dried over MgSO4, filtered, and evaporated to 

leave a brown oil, which was dissolved in DCM (50 mL), 15% aq. AcOH was added and 

mixture was stirred overnight at RT. The organic layer was separated and retained and the 

aqueous layer was extracted with DCM. The combined organic layers were washed with 

brine, dried over MgSO4, filtered and evaporated to give a brown oil. The oil was purified 

by column chromatography (silica; hexanes/EtOAc gradient 100:0 to 2:1 v/v) affording 

[3,3′-bithiophene]-2,2′-dicarbaldehyde (320) as a yellow solid (for yields, see Table 2, 

Chapter 1). 

1
H NMR (CDCl3, 400 MHz):  (ppm) 9.81 (d, 2H, 

5
J = 1.1 Hz), 7.85 (dd, 2H, 

3
J = 5.0 Hz,

 

5
J = 1.1 Hz), 7.26 (d, 2H, 

3
J = 5.0 Hz). 

 

N′,N′′-{[3,3′-bithiophene]-2,2′-diylbis(methanylylidene)}bis(4-

methylbenzenesulfonylhydrazone) (321):  

 

Chemical Formula: C24H22N4O4S4 

Molecular Weight: 558.7159 

[3,3′-Bithiophene]-2,2′-dicarbaldehyde (320, 1.05 g, 4.7 mmol, 1 eq) and tosylhydrazide 

(1.75 g, 9.4 mmol, 2 eq) were dissolved in distilled THF (300 mL) and stirred at RT 

overnight. The reaction mixture was dried over MgSO4, filtered and evaporated to give 

N′,N′′-{[3,3′-bithiophene]-2,2′-diylbis(methanylylidene)}bis(4-

methylbenzenesulfonylhydrazone (321, 2.62 g, 100%) as a bright orange solid foam.  
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Mp.: 128-131 °C.  

IR (ATR):  (cm
–1

) 3176, 2958, 2923, 2867, 1645, 1594.  

1
H NMR (DMSO-d6, 400 MHz): (ppm) 11.33 (s, 2H), 7.77 (d, 2H, 

5
J = 0.9 Hz), 7.69 

(dd, 2H, 
3
J = 5.1 Hz, 

5
J = 0.7 Hz), 7.67 (d, 4H, 

3
J = 8.4 Hz) 7.40 (dd, 4H, 

3
J = 8.1 Hz, 

4
J = 

0.6 Hz), 7.03 (d, 2H, 
3
J = 5.1 Hz), 2.36 (s, 6H). 

13
C NMR (DMSO-d6, 100 MHz): (ppm) 143.7 (2C, C), 140.7 (2C, CH), 136.4 (2C, C), 

136.0 (2C, C), 134.7 (2C, C), 130.3 (2C, CH), 129.8 (4C, CH), 128.7 (1C, CH), 127.2 (4C, 

CH), 21.1 (2C, CH3). 

HRMS (ESI): m/z [M + H]
+
 calcd for C24H23N4O4S4: 559.0597; found: 559.0587. 

 

3-bromothiophene-2-carbaldehyde
6
 (322): 

     

Chemical Formula: C5H3BrOS     

Molecular Weight: 191.05 

In a 2-L three-necked RBF, to a solution of diisopropylamine (49.7 g, 491 mmol, 1.05 eq) 

in dry THF (1 L), was added dropwise n-BuLi (1.6 M in hexanes, 307 mL, 491 mmol, 1.05 

eq) at –10 °C, with a pressure equalized dropping funnel, over 30 min. After stirring 45 

min at 0
 
°C, 3-bromothiophene (76.3 g, 468 mmol, 1 eq) was added dropwise. Then, the 

solution stirred another 1 hr at 0 °C before N-formylpiperidine (55.6 g, 491 mmol, 1.05 eq) 

was added dropwise and solution was stirred at RT for 2.5 hrs. Then, sat. aq. NH4Cl (700 

mL) was added, organic layer was separated, aqueous layer was extracted with Et2O (2 x 

500 mL). The separated THF solution was evaporated, and resulting oil was dissolved with 

Et2O layers, combined organic layers were concentrated to 500 mL, then washed with 

brine (400 mL), dried over MgSO4 and evaporated to get 113 g of dark orange oil. Crude 

material was then purified by column chromatography (700 g silica, hexanes/EtOAc 

gradient 100/0 to 1/1 v/v) affording 3-bromothiophene-2-carbaldehyde (322, 87 g, 97%) 

as an orange oil. 

1
H NMR (CDCl3, 400 MHz): (ppm) 9.99 (d, 1H, 

5
J = 1.4 Hz), 7.73 (dd, 1H, 

3
J = 5.1 Hz, 

5
J = 1.4 Hz), 7.16 (d, 1H, 

3
J = 5.1 Hz). 

13
C NMR (CDCl3, 100 MHz): (ppm) 182.9 (1C, C), 136.7 (1C, C), 134.8 (1C, CH), 

131.9 (1C, CH), 120.3 (1C, C). 
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N-[(3-bromothiophen-2-yl)methylene]cyclohexylimine (324):  

 

Chemical Formula: C11H14BrNS 

Molecular Weight: 272.20 

In a 1-L three-necked RBF, equipped with a Dean–Stark trap, a solution of 3-bromo-2-

formylthiophene (322, 84.15 g, 0.44 mol, 1 eq) and cyclohexylamine (54.6 g, 0.55 mol, 

1.25 eq) in toluene (700 mL) was refluxed under nitrogen for 16 hrs. The solution was then 

evaporated to afford N-[(3-bromothiophen-2-yl)methylene]cyclohexylimine (324, 120 g, 

100%) as an orange oil which was used directly in the next step.  

IR (ATR):  (cm
–1

) 3075, 2925, 2851, 1623.  

1
H NMR (CDCl3, 400 MHz): (ppm) 8.44 (s, 1H), 7.34 (dd, 1H,

 3
J = 5.3 Hz, 

5
J = 1.1 

Hz), 7.00 (d, 1H, 
 3

J = 5.3 Hz), 3.19-3.25 (m, 1H), 1.51–1.85 (m, 7H), 1.18–1.41 (m, 3H).  

13
C NMR (CDCl3, 100 MHz): (ppm) 151.0  (1C, C), 144.4 (1C, C), 140.5 (1C, C), 

136.5 (1C, CH), 114.5 (1C, C), 70.0 (1C, CH), 34.1 (2C, CH2), 25.5 (1C, CH2) 24.7 (2C, 

CH2), –0.6 (3C, CH3). 

HRMS (GC, CI
–
): m/z [M –

 
H]

–
 calcd for C11H13BrNS: 269.9947; found: 269.9947. 

 

N-{[3-bromo-5-(trimethylsilyl)thiophen-2-yl]methylene}cyclohexylimine (325):  

 

Chemical Formula = C14H22BrNSSi 

Molecular Weight = 344.39 

n-BuLi (1.6 M in hexanes, 53 mL, 84.5 mmol, 1.15 eq) was added dropwise to a solution 

of diisopropylamine (12 mL, 8.5 g, 84.5 mmol, 1.15 eq) in anhydrous THF (600 mL) at 0 

°C under nitrogen. After stirring for 45 min at 0 °C, N-[(3-bromothiophen-2-

yl)methylene]cyclohexylimine (324, 20 g, 73.5 mmol, 1 eq) in anhydrous THF (50 mL) 

was added dropwise over 10 min. After stirring for a further 45 min at 0 °C under nitrogen, 

the reaction mixture was cooled to –78 °C and TMSCl (10.7 mL, 9.2 g, 84.5 mmol, 1.15 
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eq) was added dropwise. After stirring for 1 hr at –78 °C, the reaction mixture was allowed 

to warm to RT, sat. aq. NH4Cl (700 mL) was added, and the organic layer was separated. 

The aqueous layer was extracted with EtOAc (2 × 400 mL) and the combined organic 

layers were washed with brine (500 mL), filtered through a MgSO4
 
/ basic alumina pad, 

and evaporated to give N-{[3-bromo-5-(trimethylsilyl)thiophen-2-

yl]methylene}cyclohexylimine (325, 25.2 g, 99%) as an orange oil.  

IR (ATR):  (cm
–1

) 2927, 2853, 1624. 

1
H NMR (CDCl3, 400 MHz): (ppm) 8.43 (s, 1H), 7.10 (s, 1H), 3.19-3.25 (m, 1H), 1.22–

1.87 (m, 10H), 0.31 (s, 9H).  

13
C NMR (CDCl3, 100 MHz): (ppm) 151.0 (1C, CH), 144.4 (1C, C), 140.5 (1C, C), 

136.5 (1C, CH), 114.5 (1C, C), 70.0, 34.1, 25.5, 24.7 (, –0.6 (3C, CH3).  

HRMS (ESI): m/z [M + H]
+
 calcd for C14H23BrNSSi: 344.0498; found: 344.0503. 

 

N-{[3-iodo-5-(trimethylsilyl)thiophen-2-yl]methylene}cyclohexanamine (326): 

 

Chemical Formula = C14H22INSSi 

Molecular Weight = 391.39 

A solution of N-{[3-bromo-5-(trimethylsilyl)thiophen-2-yl]methylene}cyclohexylimine 

(325, 6.94 g, 20.2 mmol, 1 eq) in anhydrous THF (350 mL) was cooled to –78 °C, under 

nitrogen. n-BuLi (1.6 M in hexanes, 13.9 mL, 22.2 mmol, 1.1 eq) was added dropwise. The 

mixture was stirred for 30 min at –78 °C and a solution of iodine (7.7 g, 30.3 mmol, 1.5 

eq) in anhydrous THF (25 mL) was added dropwise until the red iodine colour persisted. 

After 15 min at –78 °C, the reaction mixture was allowed to warm to RT, H2O (350 mL) 

was added and the mixture was extracted with DCM (3 × 250 mL). The combined organic 

layers were concentrated to 300 mL, washed with sat. aq. Na2SO3 (2 × 300 mL), dried over 

MgSO4, filtered, and evaporated to give N-{[3-iodo-5-(trimethylsilyl)thiophen-2-

yl]methylene}cyclohexanamine (10, 7.12 g, 90%) as a brown oil, that crystallised upon 

standing.  

Mp.: 59 °C.  

IR (ATR):  (cm
–1

) 2928, 2851, 1618.  
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1
H NMR (CDCl3, 400 MHz):  (ppm) 8.34 (s, 1H), 7.20 (s, 1H), 3.20-3.26 (m, 1H), 1.57-

1.85 (m, 7H), 1.38–1.23 (m, 3H), 0.31 (s, 9H).  

13
C NMR (CDCl3, 100 MHz):  (ppm) 153.2 (1C, CH), 145.4 (1C, C), 143.7 (1C, C), 

141.4 (1C, CH), 85.1 (1C, C), 69.9 (1C, CH), 34.2 (2C, CH2), 25.5 (1C, CH2) 24.7 (2C, 

CH2), –0.5 (3C, CH3). 

HRMS (ESI): m/z [M – H]
–
 calcd for C14H21NISSi: 390.0203; found: 390.0203. 

 

3-Iodo-5-(trimethylsilyl)thiophene-2-carbaldehyde (327): 

 

Chemical Formula: C8H11IOSSi 

Molecular Weight: 310.2273 

To a solution of N-{[3-iodo-5-(trimethylsilyl)thiophen-2-

yl]methylene}cyclohexanamine (326, 3 g, 7.7 mmol, 1 eq) in DCM (200 mL), was added 

a 30% v/v solution of acetic acid and H2O (200 mL), and was vigorously stirred overnight. 

The organic layer was separated, and washed with brine (5 x 200 mL), dried over MgSO4 

and evaporated. The crude material was then purified by column chromatography (35 g 

silica, hexanes/EtOAc gradient 100/0 to 95/5 v/v) affording 3-iodo-5-

(trimethylsilyl)thiophene-2-carbaldehyde (327, 2.09 g, 88%) as a yellow solid. 

Mp.: 47-49 °C. 

IR (ATR):  (cm
–1

) 2955, 2896, 2844, 1649. 

1
H NMR (CDCl3, 400 MHz): (ppm) 9.81 (s, 1H), 7.34 (s, 1H), 0.36 (s, 9H) 

13
C NMR (CDCl3, 100 MHz): (ppm) 184.8 (1C, CH), 153.2 (1C, C), 142.78 (1C, C), 

142.75 (1C, CH), 90.9 (1C, C), –0.7 (3C, CH3) 

HRMS (ESI): m/z [M]
+
 calcd. for C8H11IOSSi: 309.9335, found: 309.9336. 

 

Copper(I) thiophene-2-caboxylate
7
 (CuTC, 330) 

 

Chemical Formula: C5H3CuO2S 

Molecular Weight: 190.6871 
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In a 250-mL three-necked RBF, equipped with a Dean-Stark trap and a condenser, was 

added thiophene-2-carboxylic acid (40 g, 0.31 mol, 4 eq), Cu2O (11g, 78 mmol, 1eq), and 

toluene (150 mL). The mixture was refluxed overnight, under nitrogen. Then, the red-

brown sludge was filtered on a sinter, under a flow of nitrogen, and then washed with 

deoxygenated MeOH (200 mL), and then with diethyl ether, and a small amount of 

hexanes, until filtrate was colour free (it is important to ensure that eluent is colour free 

and not light green prior to any use). The brown powder was then dried under vacuum, 

affording CuTC (330, 23g, 77%). The powder when dry is stable in air, but it is 

recommended to repeat the washing process before any use, in order to maximise the yield. 

 

5,5'-Bis(trimethylsilyl)-[3,3'-bithiophene]-2,2'-dicarbaldehyde (331): 

 

Chemical Formula: C16H22O2S2Si2 

Molecular Weight: 366.6457 

Method A (Ziegler method) 

A solution of N-{[3-bromo-5-(trimethylsilyl)thiophen-2-yl]methylene}cyclohexylimine 

(325, 1 g, 2.9 mmol, 1 eq) in distilled THF (100 mL) was cooled to –78 °C, under nitrogen. 

n-BuLi (1.6 M in hexanes, 1.93 mL, 3.1 mmol, 1.05 eq) was added dropwise and stirred at 

–78 °C for 30 min. Then CuI-P(OEt)3 (1.55g, 4.4 mmol, 1.5 eq) was added in one portion 

and was stirred another 30 min at –78
 

°C before a solution of N-{[3-iodo-5-

(trimethylsilyl)thiophen-2-yl]methylene}cyclohexanamine (326, 1.13 g, 2.9 mmol, 1 eq) 

in distilled THF (5 mL) was added dropwise. The reaction mixture was then allowed to 

warm up, and was stirred 60 hrs at RT. The reaction mixture was then diluted with DCM 

(150 mL) and 15% aq. AcOH (700 mL) was added and the resulting mixture was at stirred 

RT overnight. The organic layer was separated and the aqueous layer was extracted with 

DCM (150 mL). The combined organic layers were washed with brine (2 x 200 mL), dried 

over a pad of MgSO4 and neutral alumina, filtered and evaporated. The crude material was 

purified by column chromatography (35 g silica, hexanes/EtOAc gradient 100/0 to 2/1), 

affording 5,5'-bis(trimethylsilyl)-[3,3'-bithiophene]-2,2'-dicarbaldehyde (331, 80 mg, 

15%) as a yellow solid (see Table 1, entry 4; Chapter 1). 
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General method: microwave  

A dried 20-mL microwave vial was flushed with argon. To a solution N-[(3-

bromothiophen-2-yl)methylene]cyclohexylimine (326; 1 g, 2.7 mmol, 1 eq) in NMP (15 

mL), CuTC (1.54 g, 8.1 mmol, 3 eq) was added with stirring. The microwave vial was then 

sealed, vacuum was applied, and then the vial was filled with argon. The reaction mixture 

was irradiated (see Table 2, Chapter 1), then diluted with EtOAc and 15% aq. NH3 was 

added to produce a clear deep-blue aqueous layer. The organic layer was separated and the 

aqueous layer was extracted with EtOAc. The organic layers were combined, evaporated, 

and the resultant crude product (green oil) was dissolved in Et2O. This solution was 

washed with brine, dried over MgSO4, filtered, and evaporated to leave a brown oil, which 

was dissolved in DCM (50 mL), 15% aq. AcOH (50 mL) was added and mixture was 

stirred overnight at RT. The organic layer was separated and retained and the aqueous 

layer was extracted with DCM. The combined organic layers were washed with brine, 

dried over MgSO4, filtered and evaporated to give a brown oil. The oil was purified by 

column chromatography (15 silica; hexanes/EtOAc gradient 100:0 to 2:1 v/v) affording 

5,5'-bis(trimethylsilyl)-[3,3'-bithiophene]-2,2'-dicarbaldehyde (331) as a yellow solid 

(for yields, see Table 2, Chapter 1). 

Mp.: 185-187 
o
C. 

IR (ATR):  (cm
–1

) 3071, 2959, 2875, 1644. 

1
H NMR (CDCl3, 400 MHz): (ppm) 9.78 (s, 2H), 7.30 (s, 2H), 0.40 (s, 18H). 

13
C NMR (CDCl3, 100 MHz): (ppm) 182.5 (2C, C), 152.2 (2C, C), 144.7 (2C, C), 142.6 

(2C, C), 137.5 (2C, CH), –0.5 (6C, CH3). 

HRMS (ESI): m/z [M + H]
+
 calcd. for C12H11S2: 366.0594, found: 366.0597. 

 

5-(Trimethylsilyl)thiophene-2-carbaldehyde (332):  

 

Chemical Formula: C8H12OSSi 

Molecular Weight: 184.3308 

Under some reaction conditions for coupling reactions of 331 (see Table 2, Chapter 1), a 

competing dehalogenation process formed significant amounts of the side product 5-

(trimethylsilyl)thiophene-2-carbaldehyde (332) which was also eluted during 

chromatography. 
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Mp.: 35-36°C. 

IR (ATR):  (cm
–1

) 2960, 2896, 2855, 2801, 1657. 

1
H NMR (CDCl3, 400 MHz): (ppm) 9.95 (s, 1H), 7.80 (d, 1H, , 

3
J  = 3.8 Hz), 7.32 (d, 

1H, 
3
J  = 3.8 Hz), 0.37 (s, 9H). 

13
C NMR (CDCl3, 100 MHz): (ppm) 182.5 (1C, C), 152.7 (1C, C), 148.2 (1C, C), 136.7 

(1C, CH), 134.5 (1C, CH), –0.4 (3C, CH3). 

HRMS (ESI): m/z [M + H]
+
 calcd. for C8H13OSSi: 185.0451, found: 185.0451. 

 

N′,N′′-{[5,5′-bis(trimethylsilyl)-(3,3′-bithiophene)-2,2′-diyl]bis(methanylylidene)} 

bis(4-methylbenzenesulfonylhydrazone) (334): 

 

Chemical Formula: C30H38N4O4S4Si2 

Molecular Weight: 703.0781 

5,5′-Bis(trimethylsilyl)-(3,3′-bithiophene)-2,2′-dicarbaldehyde (331; 2 g, 5.45 mmol, 1 

eq) and tosylhydrazide (2.03 g, 10.9 mmol, 2 eq) were dissolved in distilled THF (250 mL) 

and the mixture was stirred at RT overnight, dried over MgSO4, and evaporated to afford 

N′,N′′-{[5,5′-bis(trimethylsilyl)-(3,3′-bithiophene)-2,2′-diyl]bis(methanylylidene)}bis 

(4-methylbenzenesulfonylhydrazone) (334, 3.83 g, 100%) as a bright orange solid foam.  

Mp.: 155-157 °C.  

IR (ATR):  (cm
–1

) 3190, 3065, 2955, 2926, 2898, 2856, 1597. 

1
H NMR (DMSO-d6, 400 MHz): (ppm) 11.38 (s, 2H), 7.74 (s, 2H), 7.67 (d, 4H, 

3
J = 8.2 

Hz), 7.40 (dd, 4H, 
3
J = 8.2 Hz, 

4
J  = 0.7 Hz), 7.16 (s, 2H), 2.36 (s, 6H), 0.30 (s, 18H). 

13
C NMR (DMSO-d6, 100 MHz): (ppm) 143.5 (2C, C), 142.5 (2C, C), 140.2 (2C, C), 

139.2 (2C, C), 137.3 (2C, C), 137.0 (2C, C), 136.1 (2C, C), 129.7 (4C, CH), 127.0 (4C, 

CH), 20.99 (2C, CH3), –0.46 (6C, CH3). 

HRMS (ESI): m/z [M + H]
+
 calcd for C30H39N4O4S4Si2: 703.1387; found: 703.1387. 
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2,7-Bis(trimethylsilyl)benzo[1,2-b:4,3-b′]dithiophene (335):   

 

Chemical Formula: C16H22S2Si2 

Molecular Weight: 334.6469 

5,5′-Bis(trimethylsilyl)-[3,3′-bithiophene]-2,2′-dicarbaldehyde (331; 2.62 g, 7.15 mmol, 

1 eq) and tosylhydrazide (2.66 g, 15.30 mmol, 2 eq) were dissolved in distilled THF (450 

mL) and stirred at RT overnight. The THF solution was dried over Na2SO4, and transferred 

to a 500-mL three-necked RBF that had been flame-dried under nitrogen. The reaction 

mixture was cooled to –78 °C, n-BuLi (1.6 M in hexanes, 4.7 mL, 7.5 mmol, 1.05 eq) was 

added dropwise and the mixture was stirred for 5 min at –78 °C. The reaction mixture was 

allowed to warm to RT, then heated at reflux for 5 hrs. After cooling, sat. aq. NH4Cl (200 

mL) was added and the mixture was extracted with EtOAc (200 mL). The organic layer 

was concentrated under reduced pressure to 100 mL, diluted with Et2O (200 mL), washed 

with brine (2 × 250 mL), dried over MgSO4, filtered, and evaporated to leave a brown solid 

(5.1 g). The crude material was purified by column chromatography (50 g silica, hexanes) 

affording 2,7-Bis(trimethylsilyl)benzo[1,2-b:4,3-b′]dithiophene (335, 770 mg, 32%) as a 

white solid.  

Mp.: 127-130 °C. 

IR (ATR):  (cm
–1

) 3053, 2985, 2959, 2897.  

1
H NMR (CDCl3, 400 MHz): (ppm) 7.88 (s, 2H), 7.80 (s, 2H), 0.44 (s, 18H). 

13
C NMR (CDCl3, 100 MHz): (ppm) 142.3 (2C, C), 140.4 (2C, C), 135.9 (2C, C), 128.7 

(2C, CH), 118.4 (2C, CH), –0.2 (6C, CH3). 

HRMS (ESI): m/z [M]
+
 calcd. for C16H22S2Si2: 334.0696; found: 334.0696. 

 

3-Bromo-2-vinylthiophene
8
 (344): 

 

Chemical Formula: C6H5BrS 

Molecular Weight: 189.0729 

To a suspension of methyltriphenylphosphonium bromide (4.1 g, 11.4 mmol, 1.1 eq) in 

distilled THF (60 mL), n-BuLi (1.6 M in hexane, 7.2 mL, 11.4 mmol, 1.1 eq) was added 
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dropwise at –10 °C, under nitrogen. Then, the deep orange solution was stirred at RT for 

30 min before a solution of 3-bromothiophene-2-carbaldehyde (322, 2 g, 10.4 mmol, 1 

eq) in distilled THF (10 ml) was added dropwise. The mixture was stirred at RT for 24 hrs 

under nitrogen, and was then quenched with sat. aq. NH4Cl (50 mL). The organic layer 

was separated and the aqueous layer was extracted with CHCl3. The combined organic 

layers were washed with brine, dried over MgSO4, and evaporated. The crude product was 

purified by column chromatography (15 g silica, Hexanes) affording 3-bromo-2-

vinylthiophene (344, 600 mg, 30%) as a colourless oil. (not stable at RT) 

1
H NMR (CDCl3, 400 MHz): (ppm) 7.15 (dd, 1H, 

3
J = 5.2 Hz, 

5
J = 1.0 Hz), 6.95 (d, 1H, 

3
J = 5.2 Hz), 6.88 (ddd, 1H, 

3
J = 17.1 Hz,  

3
J = 11.0 Hz, 

5
J = 1.0 Hz), 5.64 (d, 1H, 

3
J = 17.1 

Hz), 5.28 (d, 1H, 
3
J = 11.0 Hz). 

13
C NMR (CDCl3, 100 MHz): (ppm) 137.2 (1C, C), 130.7 (1C, C), 128.3 (1C, CH), 

124.1 (1C, CH), 115.3 (1C, CH), 110.5 (1C, CH2). 

 

1-(Benzo[1,2-b:4,3-b']dithiophen-2-yl)butan-1-one
2
 (345): 

 

Chemical Formula: C14H12OS2 

Molecular Weight: 260.37 

In a three-necked RBF, flame dried under nitrogen, to a solution of benzo[1,2-b:4,3-

b']dithiophene (310, 7 g, 37.4 mmol, 1 eq) in distilled THF (400 mL) cooled at –78
 
°C, 

was added dropwise n-BuLi (1.6 M in hexanes, 25.7 mL, 41.1 mmol, 1.1 eq) under 

nitrogen. After stirring 45 min at –78
 
°C and 10 min at –10

 
°C, the reaction mixture was 

cooled –78
 
°C and N-methoxy-N-methylbutanamide (347, 5.39 g, 41.1 mmol, 1.1 eq) 

was added dropwise. The solution was stirred at –78
 
°C for 30 min and then was allowed to 

warm to RT and the solution was stirred at RT for another 2.5 hrs. Then sat. aq. NH4Cl 

(300 mL) was added, the organic layer was separated and the aqueous layer extracted with 

EtOAc (3 x 150 mL). The combined organic layers were dried and evaporated to give 8.5 g 

of crude material which was then purified by column chromatography (100 g silica, 

hexanes/DCM gradient 20/1 to 5/1 v/v) affording 1-(benzo[1,2-b:4,3-b']dithiophen-2-

yl)butan-1-one (345, 7.3 g, 75%) as a pale yellow solid and benzo[1,2-b:4,3-

b']dithiophene (310, 0.7 g, 10%). 
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1
H NMR (CDCl3, 500 MHz): (ppm) 8.32 (s, 1H), 7.94 (dd, 1H, 

3
J = 8.8 Hz,

 5
J = 0.8 Hz), 

7.81 (d, 1H, 
3
J = 8.8 Hz), 7.77 (d, 1H,

 3
J = 5.5 Hz), 7.67 (d, 1H,

 3
J = 5.5 Hz), 3.05 (t, 2H, 

3
J 

= 7.5 Hz), 1.83-1.92 (m, 2H), 1.08 (t, 3H,
 3

J = 7.5 Hz). 

13
C NMR (CDCl3, 100 MHz):  (ppm) 194.6 (1C, C), 143.6 (1C, C), 139.9 (1C, C), 136.8 

(1C, C), 135.8 (1C, C), 134.2 (1C, C), 127.8 (1C, CH), 126.3 (1C, CH), 122.0 (1C, CH),  

121.6 (1C, CH), 118.8 (1C, CH), 41.3 (1C, CH2), 18.2 (1C, CH2), 13.9 (1C, CH3). 

 

(Z)-2,2'-(oct-4-ene-4,5-diyl)bis(benzo[1,2-b:4,3-b']dithiophene
2
 (346):  

 

Chemical Formula: C28H24S4 

Molecular Weight: 488.75 

In a 500-mL three-necked RBF, flame dried under nitrogen, to a solution of 1-(benzo[1,2-

b:4,3-b']dithiophen-2-yl)butan-1-one (345, 6.89g, 26.5mmol, 1eq) in distilled THF (300 

mL) cooled at 0 °C under argon, TiCl4 (3.74 mL, 34.4 mmol, 1.3 eq) was added dropwise. 

After stirring 5 min at 0
 
°C, zinc powder (3.98 g, 60.9 mmol, 2.3 eq) was added in 5 

portions over 15 min, and the reaction mixture was refluxed for 3 hrs under argon. After 

cooling the mixture at RT, ice-water (400 mL) was added and then the mixture was diluted 

with DCM (300 mL). The organic layer was separated and the aqueous layer was extracted 

with DCM (3 x 300 mL). The combined organic layers were dried over MgSO4, filtered 

and the solvent was evaporated. The residue was purified by column chromatography (100 

g silica, cyclohexane until no more trans then hexanes/EtOAc 50/1 v/v) affording (Z)-2,2'-

(oct-4-ene-4,5-diyl)bis(benzo[1,2-b:4,3-b']dithiophene [(Z)-346, 6.0 g, 93%] as a bright 

yellow foam, and (E)-2,2'-(oct-4-ene-4,5-diyl)bis(benzo[1,2-b:4,3-b']dithiophene [(E)-

346, 320 mg, 5%) as a white solid. 

Cis 

1
H NMR (CDCl3, 400 MHz):  (ppm) 7.68 (dd, 2H, 

3
J = 8.8 Hz, 

5
J = 0.8 Hz), 7.58 (d, 2H, 

3
J = 8.8 Hz), 7.56 (dd, 2H,

 3
J = 5.5 Hz, 

5
J = 0.8 Hz), 7.49 (d, 2H, 

5
J = 0.8 Hz), 7.48 (d, 2H,

 

3
J = 5.5 Hz),  2.70-2.75 (m, 4H), 1.53-1.59 (m, 4H), 1.02 (t, 6H, 

3
J = 7.5 Hz) 
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13
C NMR (CDCl3, 100 MHz):  (ppm) 145.5 (2C, C), 136.9 (2C, C), 136.2 (2C, C), 134.5 

(2C, C), 134.4 (2C, C), 134.2 (2C, C), 126.1 (2C, CH), 121.9 (2C, CH), 121.5 (2C, CH),  

118.4 (2C, CH), 118.3 (2C, CH), 37.8 (2C, CH2), 21.9 (2C, CH2), 14.1 (2C, CH3). 

Trans 

1
H NMR (CDCl3, 400 MHz):  (ppm) 7.83 (dd, 2H, 

3
J = 8.6 Hz, 

5
J = 0.7 Hz), 7.80 (d, 2H, 

3
J = 8.6 Hz), 7.73 (dd, 2H,

 3
J = 5.5 Hz, 

5
J  = 0.7 Hz), 7.60 (d, 2H,

 3
J = 5.5 Hz),  7.55 (s, 

2H), 2.53-2.58 (m, 4H), 1.46-1.53 (m, 4H), 0.85 (t, 6H,
 3

J = 7.5 Hz). 

 

N-methoxy-N-methylbutanamide
9
 (347): 

 

Chemical Formula: C6H13NO2 

Molecular Weight: 131.17 

In a 1-L RBF, butyryl chloride (10.65 g, 100 mmol, 1 eq) and N,O-dimethylhydroxylamine 

hydrochloride (10.73 g, 110 mmol, 1.1 eq) were dissolved in DCM (600 mL), and stirred at 

RT for 20 min. Then, the solution was cooled to 0 °C, pyridine (17.4 g, 220 mmol, 2.2 eq) 

was added and the solution was stirred at RT for 1 hr and then evaporated. The residue is 

taken in a 1:1 mixture of Et2O and DCM (200 mL) and brine (200 mL). The organic layer 

was separated, dried with MgSO4 and evaporated, affording 13 g of crude material which 

was purified by distillation (45 mbar, 90 °C) affording N-methoxy-N-methylbutanamide 

(347, 10.5g, 80%) as a pale liquid. 

1
H NMR (CDCl3, 400MHz): (ppm) 3.68 (s, 3H), 3.18 (s, 3H), 2.40 (t, 2H, 

3
J = 7.5 Hz), 

1.63-1.68 (m, 2H), 0.97 (t, 3H, 
3
J = 7.2 Hz). 

 

(Z)-2,2'-(hex-3-ene-3,4-diyl)dithiophene (349): 

 

Chemical Formula: C14H16S2 

Molecular Weight: 248.4068 

In a 1-L RBF, flame dried under argon, to a solution of 2-propionylthiophene (12.5 g, 89.2 

mmol, 1 eq) in distilled THF (500 mL) cooled at 0 °C under argon, TiCl4 (12.7 mL, 21.6 g, 

115.9 mmol, 1.3 eq) was added dropwise. After stirring 5 min at 0 °C zinc powder (13.4 g, 
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205.1 mmol, 2.3 eq) was added in 10 portions over 15min, and reaction mixture was 

refluxed for 5 hrs under argon. After cooling the mixture at RT, ice-water (500 mL) was 

added and then the mixture was diluted with DCM (150 mL). The organic layer was 

separated and the aqueous layer was extracted with DCM (6 x 200 mL). The combined 

organic layers were dried over MgSO4, and the solvent was evaporated. Crude material 

was then purified by column chromatography (150 g silica, hexanes) affording [(Z)-349, 

4.96 g, 45%) as a colourless oil. 

IR (ATR):  (cm
–1

) 3104, 3070, 2965, 2930, 2871. 

1
H NMR (CDCl3, 400 MHz):  (ppm) 7.16 (dd, 2H, 

3
J = 5.1 Hz, 

4
J = 1.2 Hz), 6.87 (dd, 

2H, 
3
J = 5.1 Hz, 

3
J = 3.5 Hz), 6.75 (dd, 2H, 

3
J = 3.5 Hz, 

4
J = 1.2 Hz), 2.58 (q, 4H, 

3
J = 7.5 

Hz), 1.09 (t, 6H, 
3
J = 7.5 Hz). 

13
C NMR (CDCl3, 100 MHz):  (ppm) 144.6 (2C, C), 133.7 (2C, C), 126.5 (2C, C), 126.3 

(2C, C), 125.0 (2C, C), 28.6 (2C, CH2), 13.3 (2C, CH3). 

HRMS (ESI): m/z [M + H]
+
 calcd. for C14H16S2: 249.0766; found: 249.0763. 

 

4,5-Diethylbenzo[1,2-b:4,3-b']dithiophene (350): 

 

Chemical Formula: C14H14S2 

Molecular Weight: 246.3910 

A solution of 2,2'-(hex-3-ene-3,4-diyl)dithiophene [(Z)-349 96:4, 4.7 g, 18.9 mmol, 1 eq] 

and I2 (50 mg) in toluene (3 L) was irradiated in a 3-L photochemical reaction vessel 

equipped with a quartz jacket using a 500 W UV lamp. The solution was irradiated for 6 

hrs at RT with air bubbling into the solution. The solvent was then evaporated and the 

residue was dissolved in DCM (100 mL), washed with sat. aq. Na2SO3 (100mL), dried over 

MgSO4 and evaporated. The crude material was then purified by column chromatography 

(55 g silica, hexanes) affording 4,5-diethylbenzo[1,2-b:4,3-b']dithiophene (350, 3.23 g, 

69%) as a white powder.  

Mp.: 131-133 °C. 

IR (ATR):  (cm
–1

) 3100, 3074, 2970, 2931, 2869. 

1
H NMR (CDCl3, 500 MHz):  (ppm) 7.71 (d, 2H, 

3
J = 5.4 Hz), 7.50 (d, 2H, 

3
J = 5.4 Hz), 

3.08 (q, 4H,
 3

J = 7.5 Hz), 1.40 (t, 6H, 
3
J = 7.5 Hz) 



Chapter 5: Experimental section  

181 

 

13
C NMR (CDCl3, 125 MHz):  (ppm) 138.3 (2C, C), 132.8 (2C, C), 131.2 (2C, C), 125.0 

(2C, CH), 122.5 (2C, CH), 25.2 (2C, CH2), 14.3 (2C, CH3). 

HRMS (ESI): m/z [M + H]
+
 calcd. for C14H14S2: 247.0611; found: 247.0610. 

 

N-methoxy-N-methylpropionamide
9
 (351): 

 

Chemical Formula: C5H11NO2 

Molecular Weight: 117.1463 

In a 1-L RBF, propionyl chloride (1.39 g, 15 mmol, 1 eq) and N,O-dimethylhydroxylamine 

hydrochloride (1.61 g, 16.5 mmol, 1.1 eq) were dissolved in DCM (100 mL), and stirred at 

RT for 20 min. Then, the solution was cooled to 0 °C, pyridine (2.61 g, 33 mmol, 2.2 eq) 

was added and the solution was stirred at RT for 1 hr and then evaporated. The residue is 

taken in a 1:1 mixture of Et2O and DCM (50 mL) and brine (50 mL). The organic layer 

was separated, dried with MgSO4 and evaporated, affording N-methoxy-N-

methylpropionamide (351, 1.76 g, 100%) as a pale liquid. 

1
H NMR (CDCl3, 500 MHz): (ppm) 3.68 (s, 3H), 3.18 (s, 3H), 2.45 (t, 2H, 

3
J = 7.5 Hz), 

0.97 (t, 3H, 
3
J = 7.5 Hz). 

 

1-(4,5-diethylbenzo[1,2-b:4,3-b']dithiophen-2-yl)propan-1-one (352): 

 

Chemical Formula: C17H18OS2 

Molecular Weight: 302.4542 

Method A 

In a 100-mL three-necked RBF, flame dried under nitrogen, to a solution of 4,5-

diethylbenzo[1,2-b:4,3-b']dithiophene (350, 1.6 g, 5.48 mmol, 1 eq) in distilled THF (50 

mL) cooled at –78 °C, was added dropwise n-BuLi (2.2 M in hexanes, 2.6 mL, 5.75 mmol, 

1.05 eq) under nitrogen. After stirring 45 min at –78 °C and 10 min at –10 °C, reaction 

mixture was cooled –78 °C and a solution of N-methoxy-N-methylpropionamide (351, 
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0.7 g, 6.03 mmol, 1.1 eq) was added dropwise. The solution was stirred at –78 °C for 1 hr 

and was then allowed to reach RT and was stirred at RT for another 2.5 hrs. Then sat. aq. 

NH4Cl (50 mL) was added, the organic layer was separated and the aqueous layer was 

extracted with EtOAc (2 x 60mL), dried over MgSO4 and evaporated. The crude material 

was then purified by column chromatography (30 g silica, hexanes/EtOAc gradient 100/0 

to 50/1 v/v) affording 1-(4,5-diethylbenzo[1,2-b:4,3-b']dithiophen-2-yl)propan-1-one 

(352, 720 mg, 43%) as a yellow solid, 19% of starting material was recovered as well. 

Method B: 

In a 250-mL three-necked RBF, flame dried under nitrogen, to a solution of 4,5-

diethylbenzo[1,2-b:4,3-b']dithiophene (350, 530 mg, 2.15 mmol, 1 eq) in distilled THF 

(100 mL) cooled at –78 °C, was added dropwise n-BuLi (1.4 M in hexanes, 1.7 mL, 2.3 

mmol, 1.05 eq) under nitrogen. After stirring 10 min at –78 °C the temperature was 

brought to –10 °C for 10 min, and the reaction mixture was cooled again at –78 °C. Then 

CuI (204 mg, 1.07 mmol, 0.5 eq) was added, the temperature was raised to –60 °C for 2 hrs 

and propionic anhydride (0.3 mL, 2.3 mmol, 1.05 eq) was added dropwise and the solution 

was warmed up to –20 °C and stirred for 2 hrs. Then sat. aq. NH4Cl (50 mL) was added, 

the mixture was extracted with EtOAc (2 x 150mL) and the combined organic layers were 

dried over MgSO4 and evaporated. The crude material was then purified by column 

chromatography (30 g silica, hexanes/EtOAc gradient 100/0 to 50/1 v/v) affording 1-(4,5-

diethylbenzo[1,2-b:4,3-b']dithiophen-2-yl)propan-1-one (352, 250 mg, 40%) as a 

yellow solid. 

1
H NMR (CDCl3, 500 MHz): (ppm) 8.30 (s, 1H), 7.72 (d, 1H, 

3
J = 5.4 Hz), 7.57 (d, 1H, 

3
J = 5.4 Hz),  3.11 (q, 2H, 

3
J = 7.3 Hz), 3.02-3.13 (m, 4H), 1.36-1.41 (m, 6H), 1.32 (t, 3H, 

3
J = 7.3 Hz). 

13
C NMR (CDCl3, 125 MHz): (ppm) 195.1 (1C, C), 141.9 (1C, C), 141.8 (1C, C), 138.8 

(1C, C), 134.9 (1C, C), 134.0 (1C, C), 132.5 (1C, C), 131.3 (1C, C), 127.0 (1C, CH), 126.2 

(1C, CH), 122.2 (1C, CH), 32.5 (1C, CH2), 25.5 (1C, CH2), 24.9 (1C, CH2), 14.1 (1C, 

CH3), 14.0 (1C, CH3), 8.7 (1C, CH3). 

HRMS (ESI): m/z [M + H]
+
 calcd. for C17H18OS2: 303.0872; found: 303.0871. 
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(Z)-2,2'-(hex-3-ene-3,4-diyl)bis(4,5-diethylbenzo[1,2-b:4,3-b']dithiophene) (359): 

 

Chemical Formula: C34H36S4 

Molecular Weight: 572.9096 

In a 100-mL three-necked RBF, flame dried under nitrogen, to a solution of 1-(4,5-

diethylbenzo[1,2-b:4,3-b']dithiophen-2-yl)propan-1-one (352, 1.2 g, 3.98 mmol, 1 eq) 

in distilled THF (60 mL) cooled at 0 °C under nitrogen, TiCl4 (30.57 mL, 0.98 g, 5.16 

mmol, 1.3 eq) was added dropwise. After stirring 5 min at 0 °C zinc powder (0.6 g, 9.14 

mmol, 2.3 eq) was added in 5 portions over 15min, and the reaction mixture was refluxed 

for 3 hrs under nitrogen. After cooling the mixture at RT, ice-water (50 mL) was added and 

then the mixture was diluted with DCM (100mL). The organic layer was separated and the 

aqueous layer was extracted with DCM (3 x 100mL). The combined organic layers were 

dried over MgSO4, filtered and the solvent was evaporated. The residue was purified by 

column chromatography (10 g silica, hexanes/EtOAc gradient 100/0 to 95/5 v/v) affording 

(Z)-2,2'-(hex-3-ene-3,4-diyl)bis(4,5-diethylbenzo[1,2-b:4,3-b']dithiophene) (359, 580 

mg, 51%) as a bright yellow oil. 

IR (ATR):  (cm
–1

) 3100, 3074, 2967, 2931, 2871. 

1
H NMR (CDCl3, 500 MHz):  (ppm) 7.50 (d, 2H,

 3
J = 5.4 Hz), 7.43 (s, 2H), 7.38 (d, 2H,

 

3
J = 5.4 Hz), 2.98 (q, 4H, 

3
J = 7.6 Hz), 2.87 (q, 4H, 

3
J = 7.6 Hz), 2.75 (q, 4H, 

3
J = 7.6 Hz), 

1.33 (t, 6H, 
3
J = 7.6 Hz), 1.15-1.22 (m, 12H). 

13
C NMR (CDCl3, 125 MHz):  (ppm) 143.7 (2C, C), 138.5 (2C, C), 138.0 (2C, C), 135.2 

(2C, C), 132.8 (2C, C), 132.5 (2C, C), 130.9 (2C, C), 130.7 (2C, C), 124.5 (2C, CH), 122.6 

(2C, CH), 122.2 (2C, CH), 28.7 (2C, CH2), 25.2 (2C, CH2), 25.0 (2C, CH2), 14.2 (2C, 

CH3), 14.0 (2C, CH3), 13.5 (2C, CH3). 

HRMS (ESI): m/z [M]
+
 calcd. for C34H36S4: 572.1694; found: 572.1684. 
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3,4,7,8,11,12-Hexaethyltetrathia[7]helicene (360): 

 

Chemical Formula: C34H34S4 

Molecular Weight: 570.8938 

A solution of (Z)-2,2'-(hex-3-ene-3,4-diyl)bis(4,5-diethylbenzo[1,2-b:4,3-

b']dithiophene) (359, 580 mg, 1.01 mmol, 1 eq) and I2 (50 mg) in toluene (3 L) was 

irradiated in a 3-L photochemical reaction vessel equipped with a quartz jacket using a 500 

W UV lamp. The solution was irradiated for 2 hrs at RT with air bubbling into the solution. 

The solvent was then evaporated and the residue was dissolved in DCM (100 mL), washed 

with sat. aq. Na2SO3 (100 mL), dried over MgSO4 and evaporated. The crude material was 

then purified by column chromatography (15 g silica, hexanes) affording 3,4,7,8,11,12-

hexaethyltetrathia[7]helicene (360, 395 mg, 68%) as a white foam. 

Mp.: 201-202 °C. 

IR (ATR):  (cm
–1

) 3091, 2966, 2931, 2871. 

1
H NMR (CDCl3, 500 MHz):  (ppm) 6.80 (d, 2H,

 3
J = 5.7 Hz), 6.77 (d, 2H,

 3
J = 5.7 Hz), 

3.12-3.26 (m, 12H), 1.54 (t, 6H, 
3
J = 7.9 Hz), 1.44-1.49 (m, 12H). 

13
C NMR (CDCl3, 125 MHz):  (ppm) 138.4 (2C, C), 138.1 (2C, C), 137.5 (2C, C), 134.2 

(2C, C), 133.3 (2C, C), 132.6 (2C, C), 130.8 (2C, C), 130.0 (2C, C), 129.0 (2C, C), 126.1 

(2C, CH),  122.2 (2C, CH), 25.5 (2C, CH2), 25.3 (2C, CH2), 25.2 (2C, CH2), 14.5 (2C, 

CH3) 14.40 (2C, CH3), 14.39 (2C, CH3). 

HRMS (ESI): m/z [M]
+
 calcd. for C34H34S4: 570.1538; found: 570.1535. 

 

2,2'-(Hexadec-8-ene-8,9-diyl)dithiophene (362): 

 

Chemical Formula: C24H36S2 

Molecular Weight: 388.6726 
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In a 250-mL three-necked RBF, flame dried under nitrogen, to a solution of 2-

octanoyllthiophene (5.44 g, 25.8 mmol, 1 eq) in distilled THF (150 mL) cooled at 0 °C 

under argon, TiCl4 (3.69 mL, 6.37 g, 33.5 mmol, 1.3 eq) was added dropwise. After 

stirring 5 min at 0 °C zinc powder (3.88 g, 59.3 mmol, 2.3 eq) was added in 5 portions 

over 15 min, and reaction mixture was refluxed for 3 hrs under argon. After cooling the 

mixture at RT, ice-water (150 mL) was added and then the mixture was diluted with DCM 

(150mL). The organic layer was separated and the aqueous layer was extracted with DCM 

(3 x 150mL). The combined organic layers were dried over MgSO4, and the solvent was 

evaporated. The crude material was then purified by column chromatography (50 g silica, 

hexanes) affording 2,2'-(hexadec-8-ene-8,9-diyl)dithiophene (362, 3.8 g, 76%) in a 

mixture of cis and trans isomers (cis/trans, 78:22) as a colourless oil. 

IR (ATR):  (cm
–1

) 2955, 2925, 2855. 

Cis isomer 

1
H NMR (CDCl3, 500 MHz):  (ppm) 7.14 (dd, 2H, 

3
J = 5.1 Hz, 

4
J = 1.1 Hz), 6.85(dd, 

2H,  
3
J = 5.1 Hz, 

3
J = 3.5 Hz), 6.72 (dd, 2H, 

3
J = 3.5 Hz, 

4
J = 1.1 Hz), 2.51-2.54 (m, 4H), 

1.41-1.46 (m, 4H), 1.30-1.35 (m, 16H), 0.89 (t, 6H, 
3
J = 6.9 Hz). 

13
C NMR (CDCl3, 125 MHz): (ppm) 144.0 (2C, C), 134.2 (2C, C), 126.6 (2C, C), 125.6 

(2C, C), 124.3 (2C, C), 37.0 (2C, CH2), 31.7 (2C, CH2), 29.4 (2C, CH2), 29.1 (2C, CH2), 

29.0 (2C, CH2), 22.6 (2C, CH2), 14.1 (2C, CH3). 

Trans isomer 

1
H NMR (CDCl3, 500 MHz):  (ppm) 7.28 (dd, 2H, 

3
J  = 5.1 Hz, 

4
J = 1.3 Hz), 7.03 (dd, 

2H, 
3
J = 5.1 Hz, 

3
J = 3.5 Hz), 6.88 (dd, 2H, 

3
J = 3.5 Hz, 

4
J = 1.3 Hz), 2.34-2.38 (m, 4H), 

1.31-1.35 (m, 4H), 1.20-1.25 (m, 4H), 1.16-1.19 (m, 12H), 0.85 (t, 6H, 
3
J = 7.0 Hz). 

13
C NMR (CDCl3, 125 MHz):  (ppm) 145.1 (2C, C), 132.9 (2C, C), 126.4 (2C, C), 126.3 

(2C, C), 124.9 (2C, C), 35.7 (2C, CH2), 31.8 (2C, CH2), 29.6 (2C, CH2), 29.2 (2C, CH2), 

28.6 (2C, CH2), 22.6 (2C, CH2), 14.1 (2C, CH3). 

HRMS (ESI): m/z [M + H]
+
 calcd. for C24H36S2: 389.2331; found: 389.2322. 

 

4,5-Diheptylbenzo[1,2-b:4,3-b']dithiophene (363): 

 

Chemical Formula: C24H34S2 
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Molecular Weight: 386.6568 

A solution of 2,2'-(hexadec-8-ene-8,9-diyl)dithiophene (362, cis/trans 85:15) (4.26 g, 

11.0 mmol, 1 eq) and I2 (50 mg) in toluene (3 L) was irradiated in a 3-L photochemical 

reaction vessel equipped with a quartz jacket using a 500 W UV lamp. The solution was 

irradiated for 5 hrs at RT with air bubbling into the solution. The solvent was then 

evaporated and the residue was dissolved in DCM (100 mL), washed with sat. aq. Na2SO3 

(100 mL), dried over MgSO4 and evaporated. The crude material was then purified by 

column chromatography (70 g silica, hexanes) affording 4,5-diheptylbenzo[1,2-b:4,3-

b']dithiophene (363, 3.65 g, 86%) as a white viscous oil.  

IR (ATR):  (cm
–1

) 2955, 2925, 2855. 

1
H NMR (CDCl3, 500 MHz):  (ppm) 7.69 (d, 2H, 

3
J = 5.3 Hz), 7.49 (d, 2H, 

3
J = 5.3 Hz), 

2.98-3.02 (m, 4H), 1.73-1.78 (m, 4H), 1.49-1.53 (m, 4H), 1.39-1.43 (m, 4H), 1.30-1.35 (m, 

8H), 0.92 (t, 6H, 
3
J = 6.9 Hz). 

13
C NMR (CDCl3, 125 MHz):  (ppm) 138.7 (2C, C), 132.7 (2C, C), 130.3 (2C, C), 124.9 

(2C, CH), 122.4 (2C, CH), 32.3 (2C, CH2), 31.8 (2C, CH2), 30.1 (2C, CH2), 29.8 (2C, 

CH2), 29.1 (2C, CH2), 22.7 (2C, CH2), 14.1 (2C, CH3). 

HRMS (ESI): m/z [M + H]
+
 calcd. for C24H34S2: 387.2175; found: 387.2172. 

  

1-(4,5-Diheptylbenzo[1,2-b:4,3-b']dithiophen-2-yl)octan-1-one (364): 

 

Chemical Formula: C32H48OS2 

Molecular Weight: 512.8529 

In a 250-mL three-necked RBF, flame dried under nitrogen, to a solution of 4,5-

diheptylbenzo[1,2-b:4,3-b']dithiophene (363, 3.6 g, 9.3 mmol, 1 eq) in distilled THF 

(150 mL) cooled at –78 °C, was added dropwise n-BuLi (2.2 M in hexanes, 4.4 mL, 9.7 

mmol, 1.05 eq) under nitrogen. After stirring 45 min at –78 °C and 10 min at –10 °C, the 

reaction mixture was cooled –78 °C and N-methoxy-N-methyloctanamide (367, 1.92 g, 

10.2 mmol, 1.1 eq) was added dropwise. The solution was stirred at –78 °C for 1 hr, then 

was allowed to reach RT and the solution was stirred at RT for another 2.5 hrs. Then sat. 

aq. NH4Cl (100mL) was added, organic layer separated, aqueous layer extracted with 
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EtOAc (2 x 100 mL), dried and evaporated. The crude material was then purified by 

column chromatography (90 g silica, hexanes/EtOAc gradient 100/0 to 50/1 v/v) affording 

1-(4,5-diheptylbenzo[1,2-b:4,3-b']dithiophen-2-yl)octan-1-one (364, 4.22 g, 77%) as a 

yellow oil which solidifies containing 12% of bisketone 365. (12% of 365 from NMR), 7% 

of starting material 363 was recovered as well. 

IR (ATR):  (cm
–1

) 2955, 2926, 2855, 1662. 

1
H NMR (CDCl3, 500 MHz): (ppm) 8.28 (s, 1H), 7.72 (d, 1H, 

3
J = 5.4 Hz), 7.56 (d, 1H,

 

3
J = 5.4 Hz),  3.05 (t, 2H, 

3
J = 7.3 Hz), 2.95-3.03 (m, 4H), 1.80-1.85 (m, 2H), 1.72-1.76 

(m, 4H), 1.31-1.50 (m, 24H), 0.89-0.93 (m, 9H). 

13
C NMR (CDCl3, 125 MHz):  (ppm) 194.9 (1C, C), 142.4 (1C, C), 142.1 (1C, C), 139.4 

(1C, C), 134.0 (1C, C), 133.9 (1C, C), 132.4 (1C, C), 130.5 (1C, C), 127.0 (1C, CH), 126.2 

(1C, CH), 122.2 (1C, CH), 39.3 (1C, CH2), 32.6 (1C, CH2), 32.1 (1C, CH2), 31.81 (1C, 

CH2), 31.77 (1C, CH2), 31.7 (1C, CH2), 30.1 (2C, CH2), 29.8 (1C, CH2), 29.7 (1C, CH2), 

29.3 (1C, CH2), 29.11 (2C, CH2), 29.06 (1C, CH2), 25.0 (1C, CH2), 22.7 (3C, CH2), 14.1 

(3C, CH3). 

HRMS (ESI): m/z [M + H]
+
 calcd. for C32H48OS2: 513.3219; found: 513.3205. 

 

(Z)-2,2'-(hexadec-8-ene-8,9-diyl)bis(4,5-diheptylbenzo[1,2-b:4,3-b']dithiophene) (366): 

 

Chemical Formula: C64H96S4 

Molecular Weight: 993.7070 

In a 250-mL RBF, flame dried under nitrogen, to a solution of 1-(4,5-diheptylbenzo[1,2-

b:4,3-b']dithiophen-2-yl)octan-1-one (364, 3.67 g, 7.17 mmol, 1 eq) in distilled THF 

(200 mL) cooled at 0 °C under argon, TiCl4 (1.02 mL, 1.75 g, 9.3 mmol, 1.3 eq) was added 

dropwise. After stirring 5 min at 0 °C zinc powder (2.03 g, 18.9 mmol, 2.3 eq) was added 

in 5 portions over 15 min, and the reaction mixture was refluxed for 6 hrs under argon. 

After cooling the mixture at RT, ice-water (150 mL) was added and then the mixture was 

diluted with DCM (300 mL). The organic layer was separated and the aqueous layer was 
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extracted with DCM (3 x 150 mL). The combined organic layers were dried over MgSO4, 

filtered and the solvent was evaporated. The residue was purified by column 

chromatography (70 g silica, hexanes/EtOAc gradient 100/0 to 95/5 v/v) affording (Z)-

2,2'-(hexadec-8-ene-8,9-diyl)bis(4,5-diheptylbenzo[1,2-b:4,3-b']dithiophene) (366, 1.35 

g, 38%) as a bright yellow oil. 

IR (ATR):  (cm
–1

) 2955, 2925, 2855. 

1
H NMR (CDCl3, 500 MHz):  (ppm) 7.48 (d, 2H,

 3
J = 5.4 Hz), 7.40 (s, 2H), 7.36 (d, 2H,

 

3
J = 5.4 Hz), 2.88-3.03 (m, 4H), 2.75-2.80 (m, 4H), 2.68-2.72 (m, 4H), 1.66-1.71 (m, 4H) 

1.16-1.56 (m, 60H), 0.86-0.90 (m, 18H). 

13
C NMR (CDCl3, 125 MHz): (ppm) 144.1 (2C, C), 138.9 (2C, C), 138.3 (2C, C), 134.3 

(2C, C), 132.7 (2C, C), 132.4 (2C, C), 130.0 (2C, C), 129.7 (2C, C), 124.4 (2C, CH), 122.5 

(2C, CH), 122.0 (2C, CH), 35.7 (2C, CH2), 32.3 (2C, CH2), 32.0 (2C, CH2), 31.83 (2C, 

CH2), 31.79 (4C, CH2), 30.1 (2C, CH2), 30.0 (2C, CH2), 29.8 (2C, CH2), 29.7 (2C, CH2), 

29.6 (2C, CH2), 29.2 (2C, CH2), 29.1 (2C, CH2), 28.9 (2C, CH2), 28.7 (2C, CH2), 22.7 (4C, 

CH2), 22.6 (2C, CH3), 14.13 (2C, CH3), 14.09 (4C, CH3). 

HRMS (ESI): m/z [M]
+
 calcd. for C64H96S4: 992.6389; found: 992.6372. 

 

N-methoxy-N-methyloctanamide
10

 (367): 

 

Chemical Formula: C10H21NO2 

Molecular Weight: 187.2792 

In a 500-mL RBF, octanoyl chloride (3 g, 18.4 mmol, 1 eq) and N,O-

dimethylhydroxylamine hydrochloride (1.98 g, 20.3 mmol, 1.1 eq) were dissolved in DCM 

(300 mL) and stirred at RT for 20 min. Then, the solution was cooled to 0 °C, pyridine (3.2 

g, 40.5 mmol, 2.2 eq) was added and the solution was stirred at RT for 1 hr and then 

evaporated. The residue is taken in a 1:1 mixture of Et2O and DCM (100 mL) and brine 

(100 mL). The organic layer was separated, dried with MgSO4 and evaporated, affording 

N-methoxy-N-methyloctanamide (367, 3.29 g, 95%) as a pale liquid. 

1
H NMR (CDCl3, 500 MHz): (ppm) 3.69 (s, 3H), 3.19 (s, 3H), 2.42 (t, 2H, 

3
J = 7.5 Hz 

1.60-1.65 (m, 2H), 1.29-1.34 (m, 8H), 0.89 (t, 3H, 
3
J = 6.9 Hz). 
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3,4,7,8,11,12-Hexaheptyltetrathia[7]helicene (368): 

 

Chemical Formula: C64H94S4 

Molecular Weight: 991.6912 

A solution of (Z)-2,2'-(hexadec-8-ene-8,9-diyl)bis(4,5-diheptylbenzo[1,2-b:4,3-

b']dithiophene) (366, 1.35 g, 1.36 mmol, 1 eq) and I2 (50 mg) in toluene (3 L) was 

irradiated in a 3-L photochemical reaction vessel equipped with a quartz jacket using a 500 

W UV lamp. The solution was irradiated for 3 hrs at RT with air bubbling into the solution. 

The solvent was then evaporated and the residue was dissolved in DCM (100 mL), washed 

with sat. aq. Na2SO3 (100 mL), dried over MgSO4 and evaporated. The crude material was 

then purified by column chromatography (25 g silica, hexanes) affording 3,4,7,8,11,12-

hexaheptyltetrathia[7]helicene (368, 865 mg, 65%) as an orange wax. 

Mp.: 85-87 °C. 

IR (ATR):  (cm
–1

) 2955, 2925, 2855. 

1
H NMR (CDCl3, 500 MHz): (ppm) 6.77 (d, 2H,

 3
J = 5.7 Hz), 6.73 (d, 2H,

 3
J = 5.7 Hz), 

3.06-3.20 (m, 12H), 1.78-1.94 (m, 12H), 1.32-1.63 (m, 48H), 0.91-0.96 (m, 18H). 

13
C NMR (CDCl3, 125 MHz): (ppm) 138.7 (2C, C), 138.5 (2C, C), 137.8 (2C, C), 134.1 

(2C, C), 132.4 (2C, C), 131.7 (2C, C), 129.88 (2C, C), 129.86 (2C, C), 128.8 (2C, C), 

126.0 (2C, CH),  122.0 (2C, CH), 32.6 (2C,CH2), 32.4 (2C, CH2), 32.2 (2C, CH2), 31.88 

(2C, CH2), 31.87 (2C, CH2), 31.84 (2C, CH2), 30.3 (2C, CH2), 30.2 (2C, CH2), 30.1 (2C, 

CH2), 30.0 (4C, CH2), 29.9 (2C, CH2), 29.2 (2C, CH2), 29.14 (2C, CH2), 29.13 (2C, CH2), 

22.74 (2C, CH2), 22.72 (2C, CH2), 22.70 (2C, CH2), 14.2 (2C, CH3), 14.1 (4C, CH3). 

HRMS (ESI): m/z [M]
+
 calcd. for C64H94S4: 990.6233; found: 990.6221. 

 

 

  



Chapter 5: Experimental section  

190 

 

Experimental section for chapter 2 

(–)-cytisine
11

 [(–)-396]: 

 

Chemical Formula: C11H14N2O 

Molecular Weight: 190.2417 

Ground Laburnum anagyroides seeds (1.2 kg), DCM (2 L), MeOH (600 mL) and NH4OH 

(200 mL) were stirred in a 5-L reaction vessel for 72 hrs. The reaction mixture was filtered, 

and the solids were washed with DCM (1 L). The filtrate was acidified with HCl (3N) until 

pH 1. The aqueous layer was separated, basified with NH4OH (28%) until pH 11-12 and 

extracted with DCM (10 x 1 L). The combined organic layers were dried over MgSO4 and 

evaporated. The crude solid obtained was triturated in acetone, and after filtration the 

resulting solid was dried under vacuum affording (–)-cytisine [(–)-396, 16.55 g, 1.4%] as a 

yellow solid.  

Mp.: 153-155°C. 

[]D
 
= –55°. 

1
H NMR (CDCl3, 500 MHz): (ppm) 7.29 (dd, 1H,

 3
J = 9.1 Hz, 

3
J = 7.0 Hz), 6.44 (dd, 

1H,
 3

J = 9.1 Hz, 
4
J = 1.6 Hz), 5.99 (dd, 1H,

 3
J = 7.0 Hz, 

4
J = 1.6 Hz), 4.1 (d, 1H,

 2
J = 15.7 

Hz), 3.89 (ddd, 1H,
 2

J = 15.7 Hz, 
3
J = 6.6 Hz, 

5
J = 1.0 Hz), 3.08 (br. d, 1H, 

2
J = 12.6 Hz), 

3.04 (dd, 1H, 
2
J = 12.6 Hz, J = 2.5 Hz),  2.98 (br. d, 2H, 

2
J = 12.6 Hz), 2.89 (br. s, 1H), 

2.31 (br. s, 1H), 1.92-1.97 (m, 4H). 

 

General procedure for reductive amination of aldehydes: 

Amine (1 eq) and aldehyde (1 eq) were mixed in 1,2-dichloroethane (about 5 mL/mmol of 

amine) before sodium triacetoxyborohydride (1.4 eq) was added. The mixture was stirred 

at RT under nitrogen overnight. Then, sat. aq. NaHCO3, was added and the mixture was 

extracted with DCM. The combined organic layers were washed with brine and dried over 

MgSO4. The solvent was evaporated to give the crude material which was generally 

purified by silica gel column chromatography. In cases where the crude was pure enough, 

it was treated directly with formic acetic anhydride affording the corresponding 

formamide. 
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 (R)-1-cyclohexyl-N-(naphthalen-1-ylmethyl)ethanamine [(R)-407]: 

  

Chemical Formula: C19H25N 

Molecular Weight: 267.4085 

The product was obtained as a light yellow oil. 

[]D
 
= –21.3°. 

IR (ATR):  (cm
–1

) 3046, 2920, 2849. 

1
H NMR (CDCl3, 400 MHz): (ppm) 8.14 (d, 1H, 

3
J = 8.2 Hz), 7.86 (d, 1H 

3
J = 8.0 Hz), 

7.76 (d, 1H, 
3
J = 8.0 Hz), 7.35-7.56 (m, 4H), 4.28 (d, 1H, 

 2
J = 12.8 Hz), 4.15 (d, 1H,

 2
J = 

12.8 Hz), 2.62-2.66 (m, 1H), 1.69-1.73 (m, 5H), 1.40-1.44 (m, 2H), 0.99-1.30 (m, 8H). 

13
C NMR (CDCl3, 100 MHz): (ppm) 136.6 (1C, C), 133.8 (1C, C), 131.9 (1C, C), 128.7 

(1C, CH), 127.6 (1C, CH), 126.03 (1C, CH), 125.97 (1C, CH), 125.5 (1C, CH), 125.4 (1C, 

CH), 123.8 (1C, CH), 58.2 (1C, CH), 49.6 (1C, CH2),  43.0 (1C, CH), 29.9 (1C, CH2), 28.2 

(1C, CH2), 26.8 (1C, CH2), 26.7 (1C, CH2), 26.5 (1C, CH2), 16.9 (1C, CH3). 

HRMS (ESI): m/z [M + H]
+
 calcd. for C19H25N: 268.2053; found: 268.2060. 

 

(R)-N-(2-methoxybenzyl)-3-methylbutan-2-amine [(R)-409]: 

  

Chemical Formula: C13H21NO 

Molecular Weight: 207.3119 

The product was obtained as a colourless oil. 

[]D
 
= –39°. 

IR (ATR):  (cm
–1

) 2956, 2870, 2834. 

1
H NMR (CDCl3, 400 MHz): (ppm) 7.21-7.27 (m, 2H), 6.91 (td, 1H,

 3
J = 7.4 Hz, 

4
J = 

0.9 Hz), 6.86 (br. d, 1H, 
3
J = 7.9 Hz), 3.85 (s, 3H), 3.84 (d, 1H,

 2
J = 13.2 Hz), 3.73 (d, 1H, 

2
J = 13.2 Hz), 2.40-2.45 (m, 1H), 1.68-1.72 (m, 2H), 1.00 (d, 3H, 

3
J = 6.4 Hz), 0.89 (d, 3H, 

3
J = 6.8 Hz), 0.87 (d, 3H, 

3
J = 6.8 Hz). 
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13
C NMR (CDCl3, 100 MHz): (ppm) 157.7 (1C, C), 129.8 (1C, CH), 128.8 (1C, C), 

128.0 (1C, CH), 120.3 (1C, CH), 110.1 (1C, CH), 57.2 (1C, CH), 55.2 (1C, CH3), 47.0 

(1C, CH2),  32.2 (1C, CH), 19.3 (1C, CH3), 17.4 (1C, CH3), 16.0 (1C, CH3). 

HRMS (ESI): m/z [M + H]
+
 calcd. for C13H21NO: 208.1696; found: 208.1695. 

 

(R)-N-(naphthalen-1-ylmethyl)-1-phenylpropan-1-amine [(R)-411]: 

 

 

Chemical Formula: C20H21N 

Molecular Weight: 275.3874 

The product was obtained as a colourless oil. 

[]D
 
= +55°. 

IR (ATR):  (cm
–1

) 3058, 2959, 2927, 2872. 

1
H NMR (CDCl3, 400MHz): (ppm) 8.00-8.03 (m, 1H), 7.84-7.86 (m, 1H), 7.76-7.78 (m, 

1H), 7.48-7.50 (m, 2H), 7.40-7.44 (m, 6H), 7.30-7.32 (m, 1H), 4.10 (d, 1H,
 2

J = 13 Hz), 

3.98 (d, 1H,
 2

J = 13 Hz), 3.66 (dd, 1H, 
3
J = 7.7 Hz, 

3
J = 6.0 Hz), 1.66-1.82 (m, 3H), 0.83 (t, 

3H, 
3
J = 7.3 Hz). 

13
C NMR (CDCl3, 100MHz): (ppm) 144.3 (1C, C), 136.5 (1C, C), 134.1 (1C, C), 132.1 

(1C, C),  128.8 (1C, CH), 128.6 (2C, CH), 127.9 (1C, CH), 127.8 (2C, CH), 127.3 (1C, 

CH), 126.4 (1C, CH), 126.2 (1C, CH), 125.8 (1C, CH), 125.6 (1C, CH), 124.1 (1C, CH), 

65.4 (1C, CH), 49.8 (1C, CH2),  31.4 (1C, CH2), 11.1 (1C, CH3). 

HRMS (ESI): m/z [M + H]
+
 calcd. for C20H21N: 276.1747; found: 276.1750. 

 

(R)-3,3-dimethyl-N-(naphthalen-1-ylmethyl)butan-2-amine [(R)-413]: 

  

Chemical Formula: C17H23N 

Molecular Weight: 241.3712 

The product was obtained as a colourless oil. 

[]D
 
= –60°.
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IR (ATR):  (cm
–1

) 3045, 2954, 2847. 

1
H NMR (CDCl3, 400 MHz): (ppm) 8.19 (d, 1H, 

3
J = 8.4 Hz), 7.86 (br. d, 1H, 

3
J = 7.7 

Hz), 7.77 (d, 1H, 
3
J = 8.0 Hz), 7.42-7.57 (m, 4H),  4.37  (d, 1H,

 2
J = 12.8 Hz), 4.08 (d, 1H, 

2
J = 12.8 Hz), 2.44 (q, 1H,

 3
J = 6.4 Hz), 1.33 (br. s, 1H), 1.13 (d, 3H, 

3
J = 6.4 Hz), 0.89 (s, 

9H). 

13
C NMR (CDCl3, 100 MHz): (ppm) 136.8 (1C, C), 133.8 (1C, C), 132.0 (1C, C), 128.6 

(1C, CH), 127.6 (1C, CH), 126.2 (1C, CH), 125.8 (1C, CH), 125.5 (1C, CH), 125.3 (1C, 

CH), 124.2 (1C, CH), 62.3 (1C, CH), 50.9 (1C, CH2),  34.5 (1C, C), 26.5 (3C, CH3), 14.8 

(1C, CH3). 

HRMS (ESI): m/z [M + H]
+
 calcd. for C17H23N: 242.1903; found: 242.1904. 

 

(R)-N-(anthracen-9-ylmethyl)-3-methylbutan-2-amine [(R)-415]: 

 

Chemical Formula: C20H23N 

Molecular Weight: 277.4033 

The product was obtained as a yellow oil. 

[]D
 
= –14°. 

IR (ATR):  (cm
–1

) 3056, 2958, 2926, 2873. 

1
H NMR (CDCl3, 500 MHz): (ppm) 8.42 (s, 1H), 8.38 (dd, 2H, 

3
J = 8.8 Hz, 

4
J = 1.0 Hz), 

8.03 (dd, 2H, 
3
J = 8.5 Hz, 

4
J = 0.6 Hz), 7.57 (ddd, 2H,

 3
J = 9.1 Hz, 

3
J = 6.6 Hz, 

4
J = 1.6 

Hz), 7.49 (ddd, 2H,
 3

J = 8.2 Hz, 
3
J = 6.3 Hz, 

4
J = 1.0 Hz), 4.77 (d, 1H, 

 2
J = 11.9 Hz), 4.65 

(d, 1H, 
 2

J = 11.9 Hz), 2.81-2.86 (m, 1H), 1.89-1.93 (m, 1H), 1.31 (br. s, 1H), 1.22 (d, 3H, 

3
J = 6.3 Hz), 0.99 (d, 6H, 

3
J = 6.9 Hz). 

13
C NMR (CDCl3, 125 MHz): (ppm) 132.3 (1C, C), 131.6 (2C, C), 130.3 (2C, C), 129.1 

(2C, CH), 127.0 (1C, CH), 126.0 (2C, CH), 124.9 (2C, CH), 124.3 (2C, CH), 59.8 (1C, 

CH2), 44.2 (1C, CH), 32.3 (1C, CH), 19.5 (1C, CH3), 17.5 (1C, CH3), 16.5 (1C, CH3). 

HRMS (ESI): m/z [M + H]
+
 calcd. for C20H23N: 278.1903; found: 278.1905. 
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(R)-N-(2,6-dimethoxybenzyl)-3-methylbutan-2-amine [(R)-417]: 

  

Chemical Formula: C14H23NO2 

Molecular Weight: 237.3379 

The product was obtained as a colourless oil. 

[]D
 
= –35°. 

IR (ATR):  (cm
–1

) 2956, 2870, 2835. 

1
H NMR (CDCl3, 400 MHz): (ppm) 7.17 (t, 1H, 

3
J = 8.4 Hz), 6.54 (d, 2H, 

3
J = 8.4Hz), 

3.86 (d, 2H, 
5
J = 1.3Hz), 3.82 (s, 6H), 2.31-2.36 (m, 1H), 2.05 (br. s, 1H), 1.68-1.73 (m, 

1H), 1.0 (d, 3H, 
3
J = 6.4 Hz), 0.86 (d, 3H, 

3
J = 6.8 Hz), 0.84 (d, 3H, 

3
J = 6.8 Hz). 

13
C NMR (CDCl3, 100 MHz): (ppm) 158.7 (2C, C), 128.1 (1C, CH), 116.2 (1C, C), 

103.5 (2C, CH), 57.0 (1C, CH), 55.6 (2C, CH3), 39.0 (1C, CH2), 32.0 (1C, CH), 19.2 (1C, 

CH3), 17.6 (1C, CH3), 15.9 (1C, CH3). 

HRMS (ESI): m/z [M + H]
+
 calcd. for C14H23NO2: 238.1802; found: 238.1805. 

 

(R)-3-methyl-N-(3,4,5-trimethoxybenzyl)butan-2-amine [(R)-419]: 

  

Chemical Formula: C15H25NO3 

Molecular Weight: 267.3639 

The product was obtained as a colourless oil. 

[]D
 
= –29°. 

IR (ATR):  (cm
–1

) 2956, 2835. 

1
H NMR (CDCl3, 400 MHz): (ppm) 6.60 (s, 2H), 3.87 (s, 6H), 3.84 (s, 3H), 3.83 (d, 1H,

 

2
J = 13.2 Hz), 3.68 (d, 1H,

 2
J = 13.2 Hz), 2.50-2.55 (m, 1H), 1.72-1.76 (m, 1H), 1.48 (br. s, 

1H), 1.02 (d, 3H, 
3
J = 6.4 Hz), 0.92 (d, 3H, 

3
J = 7.0 Hz), 0.90 (d, 3H, 

3
JH-H = 7.0 Hz). 
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13
C NMR (CDCl3, 125 MHz): (ppm) 153.4 (2C, CH), 136.9 (1C, C), 136.6 (1C, C), 

104.7 (2C, CH), 60.8 (1C, CH), 57.3 (1C, CH2), 56.0 (2C, CH3), 51.7 (1C, CH3), 32.2 (1C, 

CH), 19.3 (1C, CH3), 17.3 (1C, CH3), 15.9 (1C, CH3). 

HRMS (ESI): m/z [M + H]
+
 calcd. for C15H25NO3: 268.1907; found: 268.1913. 

 

(R)-N-benzhydryl-3-methylbutan-2-amine [(R)-420]: 

  

Chemical Formula: C18H23N 

Molecular Weight: 253.3819 

The product was obtained as a colourless oil. 

[]D
 
= –38° 

IR (ATR):  (cm
–1

) 3085, 3063, 3027, 2959, 2927, 2871. 

1
H NMR (CDCl3, 500MHz): (ppm) 7.41 (br. d, 4H), 7.28-7.31 (m, 4H), 7.19-7.21 (m, 

2H), 4.98 (s, 1H), 2.40-2.45 (m, 1H), 1.71-1.76 (m, 1H), 1.28 (br. s, 1H), 0.99 (d, 3H, 
3
J = 

6.3 Hz), 0.89 (d, 3H, 
3
J = 6.9 Hz), 0.89 (d, 3H, 

3
J = 6.9 Hz). 

13
C NMR (CDCl3, 120MHz): (ppm) 145.1 (1C, C), 144.5 (1C, C), 128.4 (2C, CH), 

128.3 (2C, CH), 127.6 (2C, CH), 127.3 (2C, CH), 126.8 (2C, CH), 64.1 (1C, CH), 54.9 

(1C, CH), 35.5 (1C, CH), 19.2 (1C, CH3), 17.5 (1C, CH3), 16.0 (1C, CH3). 

HRMS (ESI): m/z [M + H]
+
 calcd. for C18H23N: 268.1907; found: 268.1913. 

 

(R)-2-methyl-N-(1-(naphthalen-1-yl)ethyl)propan-1-amine [(R)-423]: 

 

Chemical Formula: C16H21N 

Molecular Weight: 227.3446 

The product was obtained as a yellow oil. 

[]D
 
= don’t have the compound anymore.

 

IR (ATR):  (cm
–1

) 3053, 2963, 2924, 2854. 
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1
H NMR (CDCl3, 500 MHz): (ppm) 8.18 (d, 1H, 

3
J = 8.5 Hz), 7.89 (dd, 1H, 

3
J = 8.2 Hz, 

4
J = 1.6 Hz), 7.77 (d, 1H, 

3
J = 8.5 Hz), 7.69 (d, 1H, 

3
J = 7.3 Hz), 7.47-7.54 (m, 3H), 4.69 

(q, 1H, 
3
J = 6.6 Hz), 2.48 (ddd, 1H, 

2
J = 11.3 Hz, 

3
J = 6.3 Hz, 

4
J = 2.2 Hz), 2.35 (ddd, 1H, 

2
J = 11.3 Hz, 

3
J = 6.3 Hz, 

4
J = 2.2 Hz), 1.87 (s, 1H), 1.78-1.83 (m, 1H), 1.54 (dd, 3H, 

3
J = 

6.6 Hz, 
4
J = 1.9 Hz), 0.92 (dd, 3H, 

3
J = 6.6 Hz, 

4
J = 1.9 Hz), 0.89 (dd, 3H, 

3
J = 6.9 Hz, 

4
J = 

1.9 Hz). 

13
C NMR (CDCl3, 125 MHz): (ppm) 141.4 (1C, C), 134.0 (1C, C), 131.4 (1C, C), 128.9 

(1C, CH), 127.0 (1C, CH), 125.71 (1C, CH), 125.67 (1C, CH), 125.2 (1C, CH), 123.0 (1C, 

CH), 122.7 (1C, CH), 56.1 (1C, CH), 53.8 (1C, CH), 28.7 (1C, CH2), 23.6 (1C, CH3), 20.8 

(1C, CH3), 20.7 (1C, CH3). 

HRMS (ESI): m/z [M + H]
+
 calcd. for C16H21N: 228.1747; found: 228.1744. 

 

(S)-N-benzyl-N-(1-phenylethyl)formamide
12

 [(S)-429]: 

 

Chemical Formula: C16H17NO 

Molecular Weight: 239.3123 

In a flame dried 50-mL RBF, (S)-N-benzyl-N-(1-phenylethyl)amine (2.5g, 11.8 mmol, 1 

eq), and NH4CO2H (1.12 g, 17.7 mmol, 1.5 eq) were refluxed in distilled acetonitrile (20 

mL) for 15 hrs. After cooling down to RT, the solution was evaporated, the residue was 

dissolved in EtOAc (40 mL) and washed with H2O (50 mL), the organic layer was 

separated, dried over MgSO4, and evaporated. The crude material was purified by column 

chromatography (50 g silica, hexanes/EtOAc 6:1, v/v) affording (S)-N-benzyl-N-(1-

phenylethyl)formamide [(S)-429, 1.31 mg, 46%] as a colourless oil.  

[]D
 
= +48°. 

IR (ATR):  (cm
–1

) 3061, 3029, 2977, 2935.  

Major rotamer: 70%  

1
H NMR (CDCl3, 400 MHz): (ppm) 8.53 (s, 1H), 7.15-7.35 (m, 10H), 4.62 (q, 1H, 

3
J = 

7.1 Hz), 4.45 (d, 1H, 
2
J = 15.2 Hz), 4.28 (d, 1H, 

2
J = 15.2 Hz), 1.51 (d, 3H, 

3
J = 7.1 Hz). 

13
C NMR (CDCl3, 100 MHz): (ppm) 162.5 (1C, CH), 140.4 (1C, C), 137.4 (1C, C), 

128.8 (2C, CH), 128.5 (2C, CH), 128.0 (2C, CH), 127.3 (2C, CH), 126.8 (2C, CH), 56.7 

(1C, CH), 45.3 (1C, CH2),  20.2 (1C, CH3). 
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Minor rotamer: 30% 

1
H NMR (CDCl3, 400 MHz): (ppm) 8.31 (s, 1H),  7.15-7.35 (m, 8H), 7.04 (br. d, 2H, 

3
J 

= 7.5 Hz), 5.74 (q, 1H, 
3
J = 7.1 Hz), 4.25 (d, 1H,

 2
J = 15.2 Hz), 4.02 (d, 1H,

 2
J = 15.2 Hz), 

1.35 (d, 3H, 
3
J = 7.1 Hz). 

13
C NMR (CDCl3, 100 MHz): (ppm) 163.5 (1C, CH), 139.7 (1C, C), 137.6 (1C, C), 

128.6 (2C, CH), 128.5 (2C, CH), 127.9 (2C, CH), 127.8 (2C, CH), 127.70 (1C, CH), 

127.65 (1C, CH), 50.6 (1C, CH), 48.3 (1C, CH2),  17.0 (1C, CH3). 

 

General procedure for the N-formylation of secondary amines: 

To a solution of secondary amine in DCM under nitrogen, was added formic acetic 

anhydride (2.5 eq). The resulting solution was stirred overnight at RT. Then sat. aq. 

NaHCO3 was added and the organic layer was then separated. The aqueous layer was 

extracted with DCM and the combined organic layers were dried over MgSO4 and 

evaporated. Crude material was then purified by silica gel column chromatography 

affording the desired formamide.  

 

N,N-bis((R)-1-phenylethyl)formamide
13

 [(R,R)-398]: 

  

Chemical Formula: C17H19NO 

Molecular Weight: 253.3389 

The product was obtained as a white solid. 

[]D
 
= +167°. 

1
H NMR (CDCl3, 400 MHz): (ppm) 8.33 (s, 1H), 7.26-7.29 (m, 5H), 7.13-7.17 (m, 3H), 

6.78-6.82 (m, 2H),  5.71 (q, 1H, 
3
J = 7.1 Hz), 4.49 (q, 1H, 

3
J = 7.1 Hz), 1.71 (d, 3H, 

3
J = 

7.1 Hz), 1.68 (d, 3H, 
3
J = 7.1 Hz). 

13
C NMR (CDCl3, 100 MHz): (ppm) 162.6 (1C, CH), 141.0 (1C, C), 139.8 (1C, C), 

128.31 (2C, CH), 128.28 (2C, CH), 128.1 (2C, CH), 127.6 (1C, CH), 127.4 (1C, CH), 

126.7 (2C, CH), 52.9 (1C, CH), 50.7 (1C, CH), 22.4 (1C, CH3), 17.0 (1C, CH3). 
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(S)-N-methyl-N-(1-phenylethyl)formamide
14

 [(S)-426]: 

  

Chemical Formula: C10H13NO 

Molecular Weight: 163.2163 

The product was obtained as a colourless oil. 

[]D
 
= –123°. 

Major rotamer 66% 

1
H NMR (CDCl3, 400 MHz): (ppm) 8.39 (s, 1H), 7.25-7.40 (m, 5H), 4.80 (q, 1H, 

3
J = 

7.1 Hz), 2.66 (s, 3H), 1.65 (d, 3H, 
3
J = 7.1 Hz). 

13
C NMR (CDCl3, 100 MHz): (ppm) 162.4 (1C, CH), 139.5 (1C, C), 128.7 (2C, CH), 

127.9 (1C, CH), 126.7 (2C, CH), 56.6 (1C, CH), 26.1 (1C, CH3),  17.9 (1C, CH3). 

Minor rotamer 34% 

1
H NMR (CDCl3, 400 MHz): (ppm) 8.13 (s, 1H),  7.25-7.40 (m, 5H), 5.82 (q, 1H, 

3
J = 

7.1 Hz), 2.66 (s, 3H, CH3), 1.54 (d, 3H, 
3
J = 7.1 Hz). 

13
C NMR (CDCl3, 100 MHz): (ppm) 162.6 (1C, CH), 139.4 (1C, C), 128.5 (2C, CH), 

127.5 (1C, CH), 127.3 (2C, CH), 48.8 (1C, CH), 29.5 (1C, CH3),  15.3 (1C, CH3). 

 

(R)-2-benzhydrylpyrrolidine-1-carbaldehyde [(R)-427]: 

 

Chemical Formula: C18H19NO 

Molecular Weight: 265.3496 

The product was obtained as a white solid. 

Major rotamer 87% 

[]D= –178°. 

Mp.: 124-126 °C. 

IR (ATR):  (cm
–1

) 3061, 3041, 3022, 2949, 2890, 1654. 



Chapter 5: Experimental section  

199 

 

1
H NMR (CDCl3, 400 MHz): (ppm) 7.19-7.36 (m, 11H), 4.50-4.55  (m, 1H), 3.87 (d, 

1H,
 3

J = 10.5 Hz), 3.64-3.68 (m, 1H),  3.37-3.41 (m, 1H), 1.89-2.07 (m, 3H), 1.81-1.86 (m, 

1H). 

13
C NMR (CDCl3, 100 MHz): (ppm) 161.6 (1C, CH), 141.5 (1C, C), 141.4 (1C, C), 

128.9 (2C, CH), 128.8 (2C, CH), 128.6 (2C, CH), 128.3 (2C, CH), 127.2 (1C, CH), 126.9 

(1C, CH), 61.8 (1C, CH), 56.1 (1C, CH), 43.1 (1C, CH2),  29.8 (1C, CH2), 22.1 (1C, CH2). 

Minor rotamer 13% 

1
H NMR (CDCl3, 400 MHz): (ppm) 8.18 (s, 1H), 7.19-7.36 (m, 10H), 4.98-5.03 (m, 

1H), 4.51-4.55 (m, 1H), 3.45-3.49 (m, 1H),  3.07-3.11 (m, 1H), 1.89-2.07 (m, 2H), 1.70-

1.75 (m, 1H), 1.50-1.55 (m, 1H). 

13
C NMR* (CDCl3, 100 MHz): (ppm) 161.3 (1C, CH), 129.5 (2C, CH), 128.7 (2C, CH), 

128.1 (2C, CH), 126.7 (1C, CH), 126.4 (1C, CH), 57.6 (1C, CH), 52.4 (1C, CH), 46.2 (1C, 

CH2),  28.0 (1C, CH2), 23.1 (1C, CH2). 

*
13

C NMR: 2 CH aromatic missing, no quaternary carbons 

HRMS (ESI): m/z [M + H]
+
 calcd. for C18H19NO: 266.1539; found: 266.1542. 

 

Acetic formic anhydride
15

 (437): 

 

Chemical Formula: C3H4O3 

Molecular Weight: 88.0621 

To a solution of sodium formate (25 g, 0.37 mol, 1.2 eq) in dry Et2O (80 mL) acetyl 

chloride (24.5 g, 0.31 mol, 1 eq) was added, keeping the temperature below 27 °C and was 

stirred overnight under nitrogen. The solids were filtered and the solvent was removed 

under reduced pressure at low temperature. Then, the liquid obtained was distilled (15 

mbar, 35 °C) affording acetic formic anhydride (437, 15.7 g, 57%). 

1
H NMR (CDCl3, 400 MHz): (ppm) 9.11 (s, 1H), 2.28 (s, 3H). 
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(S)-3H-dinaphtho[2,1-c:1',2'-e]azepine-4(5H)-carbaldehyde [(S)-439]: 

 

Chemical Formula: C23H17NO 

Molecular Weight: 323.3872 

The product was obtained as a light yellow waxy solid. 

[]D = +9°. 

IR (ATR):  (cm
–1

) 3050, 2957, 2923, 2863, 1657. 

1
H NMR (CDCl3, 400 MHz): (ppm) 8.27 (s, 1H), 8.00-8.02 (m, 2H), 7.97 (d, 2H, 

3
J = 

8.2 Hz), 7.63 (d, 1H, 
3
J = 8.2 Hz), 7.56 (d, 1H, 

3
J = 8.2 Hz), 7.50-7.52 (m, 2H),  7.43 (d, 

1H, 
3
J = 8.4 Hz), 7.40 (d, 1H, 

3
J = 8.6 Hz), 7.29-7.31 (m, 2H),  5.24 (d, 1H,

 2
J = 13.6 Hz), 

4.44 (d, 1H, 
2
J = 13.0 Hz), 4.06 (d, 1H, 

2
J = 13.0 Hz), 3.59 (d, 1H, 

2
J = 13.6 Hz). 

13
C NMR (CDCl3, 100 MHz): (ppm) 160.4 (1C, CH), 135.4 (1C, C), 134.9 (1C, C), 

133.44 (1C, C), 133.38 (1C, C), 131.7 (1C, C), 131.44 (2C, C), 131.37 (1C, C), 129.6 (1C, 

CH), 129.5 (1C, CH), 128.4 (2C, CH), 127.6 (1C, CH), 127.5 (1C, CH), 127.3 (1C, CH), 

126.4 (1C, CH), 126.3 (1C, CH), 126.21 (1C, CH), 126.16 (1C, CH), 126.0 (1C, CH), 50.0 

(1C, CH2), 45.0 (1C, CH2). 

HRMS (ESI): m/z [M + H]
+
 calcd. for C23H17NO: 324.1383; found: 324.1378. 

 

(R)-N-(3-methylbutan-2-yl)-N-(naphthalen-1-ylmethyl)formamide [(R)-441]: 

 

Chemical Formula: C17H21NO 

Molecular Weight: 255.35 

The product was obtained as a light yellow oil. 

[]D= –10°. 

IR (ATR):  (cm
–1

) 3048, 2963, 2872, 1659. 

Major rotamer: 82% 
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1
H NMR (CDCl3, 400 MHz): (ppm) 8.38 (s, 1H), 8.10 (br. d, 1H, 

3
J = 8.0 Hz), 7.87 (br. 

d, 1H, 
3
J = 8.0 Hz), 7.81 (d, 1H, 

3
J = 8.0 Hz), 7.37-7.60 (m, 4H), 5.09  (d, 1H, 

2
J = 15.0 

Hz), 4.92 (d, 1H, 
2
J = 15.0 Hz), 3.08-3.13 (m, 1H), 1.80-1.85 (m, 1H), 1.06 (d, 3H, 

3
J = 6.8 

Hz), 0.89 (d, 3H, 
3
J = 6.5 Hz), 0.78 (d, 3H, 

3
J = 6.5 Hz). 

13
C NMR (CDCl3, 100 MHz): (ppm) 162.6 (1C, CH), 133.8 (1C, C), 132.4 (1C, C), 

131.5 (1C, C), 128.7 (1C, CH), 128.4 (1C, CH), 126.9 (1C, CH), 126.5 (1C, CH), 125.9 

(1C, CH), 125.1 (1C, CH), 123.7 (1C, CH), 59.9 (1C, CH), 43.8 (1C, CH),  32.6 (1C, CH), 

20.0 (1C, CH3), 19.5 (1C, CH3), 18.0 (1C, CH3). 

Minor rotamer 18%* 

1
H NMR (CDCl3, 400 MHz): (ppm) 8.28 (s, 1H), 7.96 (br. d, 1H, 

3
J = 8.0 Hz), 7.91 (br. 

d, 1H, 
3
J = 8.0 Hz), 7.83-7.85 (m, 1H), 7.37-7.60 (m, 4H), 4.86  (d, 1H, 

2
J = 15.8 Hz), 4.79 

(d, 1H, 
2
J = 15.8 Hz), 3.98-4.03 (m, 1H), 1.99-2.04 (m, 1H), 1.12 (d, 3H, 

3
J = 7.0 Hz), 0.94 

(d, 3H, 
3
J = 6.8 Hz), 0.91 (d, 3H, 

3
J = 6.8 Hz). 

13
C NMR (CDCl3, 100 MHz): (ppm) 164.1 (1C, CH), 129.1 (1C, CH), 126.7 (1C, CH), 

126.3 (1C, CH), 126.1 (1C, CH), 125.3 (1C, CH), 122.4 (1C, CH), 55.7 (1C, CH),  46.7 

(1C, CH), 31.2 (1C, CH), 20.2 (1C, CH3), 19.9 (1C, CH3), 16.1 (1C, CH3). 

* Carbon data not complete all 3 quaternary carbons missing, 1 aromatic CH missing. 

HRMS (ESI): m/z [M + H]
+
 calcd. for C17H21NO: 256.1696; found: 256.1691. 

 

(S)-N-(3-methylbutan-2-yl)-N-(naphthalen-1-ylmethyl)formamide [(S)-441]: 

 

The product was obtained as a light yellow oil. 

[]D 
 
= +10.5

o 

Same spectral data as (R)-441 

 

(R)-N-(1-cyclohexylethyl)-N-(nphthalen-1-ylmethyl)formamide [(R)-442]: 
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Chemical Formula: C20H25NO 

Molecular Weight: 295.42 

The product was obtained as a light yellow oil. 

[]D= –18.4°. 

IR (ATR):  (cm
–1

) 3048, 2922, 2860, 1660. 

Major rotamer 82% 

1
H NMR (CDCl3, 400 MHz): (ppm) 8.34 (s, 1H), 8.10 (d, 1H, 

3
J = 8.6 Hz), 7.86 (br. d, 

1H 
3
J = 8.0 Hz), 7.80 (d, 1H, 

3
J = 7.9 Hz), 7.31-7.60 (m, 4H), 5.12 (d, 1H, 

 2
J = 15.2 Hz), 

4.85 (d, 1H,
 2

J = 15.2 Hz), 3.12-3.17 (m, 1H), 1.62-1.71 (m, 5H), 1.36-1.40 (m, 1H), 1.04 

(d, 3H, 
3
J = 6.9 Hz), 0.67-1.20 (m, 5H). 

13
C NMR (CDCl3, 100 MHz): (ppm) 162.7 (1C, CH), 133.7 (1C, C), 132.5 (1C, C), 

131.5 (1C, C), 128.7 (1C, CH), 128.4 (1C, CH), 126.9 (1C, CH), 126.4 (1C, CH), 125.9 

(1C, CH), 125.1 (1C, CH), 123.7 (1C, CH), 58.9 (1C, CH), 43.9 (1C, CH2),  42.1 (1C, 

CH), 30.3 (1C, CH2), 29.9 (1C, CH2), 26.1 (1C, CH2), 26.0 (1C, CH2), 25.8 (1C, CH2), 

17.9 (1C, CH3). 

Minor rotamer 18%* 

1
H NMR (CDCl3, 400 MHz): (ppm) 8.28 (s, 1H), 7.96 (br. d, 1H, 

3
J = 8.0 Hz), 7.91 (br. 

d, 1H, 
3
J = 8.0 Hz), 7.83-7.85 (m, 1H), 7.37-7.60 (m, 4H), 4.85  (d, 1H,

 2
J = 15.8 Hz), 4.76 

(d, 1H, 
2
J = 15.8 Hz), 4.03-4.07 (m, 1H), 1.62-1.71 (m, 5H, cyclohexyl), 1.36-1.40 (m, 

1H), 1.11 (d, 3H, 
3
J = 7.0 Hz), 0.67-1.20 (m, 5H). 

13
C NMR (CDCl3, 100 MHz): (ppm) 164.1 (1C, CH), 129.1 (1C, CH), 128.7 (1C, CH), 

126.7 (1C, CH), 126.4 (1C, CH), 126.1 (1C, CH), 125.3 (1C, CH), 122.5 (1C, CH), 53.4 

(1C, CH), 46.9 (1C, CH2),  40.4 (1C, CH), 30.2 (1C, CH2), 26.2 (1C, CH2), 15.8 (1C, CH3) 

*3 Cyclohexyl CH2 missing, all 3 quaternary carbons missing 

HRMS (ESI): m/z [M + H]
+
 calcd. for C20H25NO: 296.2003; found: 296.2009. 

 

(R)-N-(2-methoxybenzyl)-N-(3-methylbutan-2-yl)formamide [(R)-443]: 

  

Chemical Formula: C14H21NO2 

Molecular Weight: 235.3220 
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The product was obtained as a colourless oil. 

[]D = –2.4°. 

IR (ATR):  (cm
–1

) 2962, 2872, 1663. 

Major rotamer 60% 

1
H NMR (CDCl3, 400 MHz): (ppm) 8.31 (s, 1H), 7.19-7.32 (m, 2H), 6.81-6.96 (m, 2H), 

4.57 (d, 1H,
 2

J = 15.8 Hz), 4.48 (d, 1H, 
2
J = 15.8 Hz), 3.85 (s, 3H), 3.11-3.16 (m, 1H), 

1.80-1.85 (m, 1H), 1.15 (d, 3H, 
3
J = 7.0 Hz), 0.93 (d, 3H, 

3
J = 6.8 Hz), 0.84 (d, 3H, 

3
J = 

6.8 Hz). 

13
C NMR (CDCl3, 100 MHz): (ppm) 163.2 (1C, CH), 156.7 (1C, C), 129.2 (1C, CH), 

128.2 (1C, CH), 125.6 (1C, C), 120.6 (1C, CH), 110.1 (1C, CH), 61.0 (1C, CH), 55.2 (1C, 

CH3), 39.4 (1C, CH2),  32.3 (1C, CH), 20.1 (1C, CH3), 19.6 (1C, CH3), 17.8 (1C, CH3). 

Minor rotamer 40% 

1
H NMR (CDCl3, 400 MHz): (ppm) 8.26 (s, 1H), 7.19-7.32 (m, 2H), 6.81-6.96 (m, 2H), 

4.35 (d, 1H, 
2
J = 15.4 Hz), 4.30 (d, 1H,

 2
J = 15.4 Hz), 3.85 (s, 3H), 3.76-3.80 (m, 1H), 

1.90-1.94 (m, 1H), 1.06 (d, 3H, 
3
J = 6.8 Hz), 0.89 (d, 3H, 

3
J = 6.6 Hz), 0.79 (d, 3H, 

3
J = 

6.6 Hz). 

13
C NMR (CDCl3, 100 MHz): (ppm) 164.4 (1C, CH), 157.7 (1C, C), 129.9 (1C, CH), 

129.4 (1C, CH), 125.2 (1C, C), 120.4 (1C, CH), 110.4 (1C, CH), 56.1 (1C, CH), 55.2 (1C, 

CH3), 45.5 (1C, CH2), 30.9 (1C, CH), 20.1 (1C, CH3), 20.0 (1C, CH3), 16.42 (1C, CH3) 

HRMS (ESI): m/z [M + H]
+
 calcd. for C14H21NO2: 236.1645; found: 236.1640. 

 

(R)-N-(anthracen-9-ylmethyl)-N-(1-phenylpropyl)formamide [(R)-445]: 

  

Chemical Formula: C25H23NO 

Molecular Weight: 353.46 

The product was obtained as an orange solid. 

[]D = –23°. 

Mp.: 135-137 °C. 

IR (ATR):  (cm
–1

) 3061, 3023, 2963, 2931, 1655. 
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Major rotamer: 66% 

1
H NMR (CDCl3, 400 MHz): (ppm) 8.63 (s, 1H), 8.47 (s, 1H), 8.10-8.13 (m, 2H), 7.97-

8.01 (m, 3H),  7.45-7.49 (m, 3H), 7.19-7.23 (m, 3H), 6.80-6.83 (m, 2H), 5.97 (d, 1H, 
2
J = 

15.1 Hz), 5.18 (d, 1H, 
2
J = 15.1 Hz), 3.80 (t, 1H, 

3
J = 8.4 Hz), 1.72-1.77 (m, 2H), 0.44 (t, 

3H, 
3
J = 7.3 Hz). 

Minor rotamer: 34% 

1
H NMR (CDCl3, 400 MHz): (ppm) 8.46 (s, 1H), 7.35-7.60 (m, 14H), 5.90 (dd, 1H, 

3
J = 

8.8 Hz,
 3

J = 7.0 Hz), 5.15 (d, 1H,
 2

J = 13.3 Hz), 4.80 (d, 1H, 
2
J = 13.3 Hz), 2.33-2.37 (m, 

2H), 1.21 (t, 3H, 
3
J = 7.3 Hz). 

13
C NMR (CDCl3, 100 MHz)*: (ppm) 162.4 (1C, CH minor rotamer = b), 161.9 (1C, 

CH major rotamer = a), 140.1 (1C, a), 138.9 (1C, b), 131.4 (2C, a), 131.3 (2C, a), 131.3 

(1C, C), 131.2 (1C, C), 130.0 (1C, CH), 129.12 (2C, CH, a), 129.09 (1C, CH), 128.78 (1C, 

CH), 128.75 (1C, CH), 128.53 (1C, CH), 128.48 (2C, CH, a), 128.2 (1C, CH), 127.6 (1C, 

CH), 127.05 (1C, CH), 126.9 (1C, CH), 126.7 (2C, CH, a), 126.4 (2C, CH, a), 125.2 (1C, 

CH), 125.1 (2C, CH, a), 124.3 (2C, CH, a), 123.0 (1C, CH), 61.8 (1C, CH, a), 56.1 (1C, 

CH, b), 53.4 (1C, CH2, b), 39.6 (1C, CH2, b) 38.3 (1C, CH2, a),  27.8 (1C, CH2, a), 22.1 

(1C, CH2, b), 11.4 (1C, CH3, b), 10.9 (1C, CH3, a). 

* Data from both rotamers, some quaternary carbons might be missing. Because the ratio is 

close to 2:1 and that many of the anthracene carbon signals account for 2 protons it was 

difficult to distinguish whether the signal could be attributed to a carbon of the major 

rotamer integrating for 1 or to a carbon of the minor rotamer integrating for 2.  

HRMS (ESI): m/z [M + H]
+
 calcd. for C25H23NO: 354.1852; found: 354.1856. 

 

 (R)-N-(naphthalen-1-ylmethyl)-N-(1-phenylpropyl)formamide [(R)-446]: 

  

Chemical Formula: C21H21NO 

Molecular Weight: 303.40 

The product was obtained as a light yellow oil. 

[]D = –5°. 

IR (ATR):  (cm
–1

) 3048, 2966, 2932, 2876, 1656. 
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Major rotamer 79% 

1
H NMR (CDCl3, 400 MHz): (ppm) 8.60 (s, 1H), 7.99-8.01 (m, 1H), 7.76-7.79 (m, 2H), 

7.20-7.50 (m, 7H), 7.06-7.09 (m, 2H), 5.26 (d, 1H, 
2
J = 14.8 Hz), 4.41 (d, 1H, 

2
J = 14.8 

Hz), 4.09 (t, 1H, 
3
J = 7.9 Hz), 1.80-1.84 (m, 2H), 0.62 (t, 3H, 

3
J = 7.3 Hz). 

13
C NMR (CDCl3, 100 MHz): (ppm) 161.9 (1C, CH), 139.4 (1C, C), 133.7 (1C, C), 

132.0 (1C, C), 131.6 (1C, C), 128.7 (2C, CH), 128.62 (1C, CH), 128.57 (1C, CH), 127.9 

(1C, CH), 127.6 (1C, CH), 127.1 (2C, CH), 126.5 (1C, CH), 126.0 (1C, CH), 125.0 (1C, 

CH), 123.9 (1C, CH), 62.9 (1C, CH), 43.7 (1C, CH2),  26.7 (1C, CH2), 11.2 (1C, CH3). 

Minor rotamer 21%* 

1
H NMR (CDCl3, 400 MHz): (ppm) 8.15 (s, 1H), 7.76-7.80 (m, 2H), 7.20-7.50 (m, 

10H), 5.53 (t, 1H, CH, 
3
J = 7.9 Hz), 4.62 (d, 1H,

 2
J = 15.2 Hz), 4.55 (d, 1H, 

2
J = 15.2 Hz), 

1.94-1.98 (m, 2H), 0.87 (t, 3H, 
3
J = 7.3 Hz). 

13
C NMR (CDCl3, 100 MHz): (ppm) 163.7 (1C, CH), 128.9 (1C, CH), 128.54 (2C, CH), 

128.49 (2C, CH), 127.8 (1C, CH), 127.0 (1C, CH), 126.5 (1C, CH), 125.1 (1C, CH), 122.6 

(1C, CH), 57.1 (1C, CH), 45.7 (1C, CH2),  23.2 (1C, CH2), 13.8 (1C, CH3). 

* Carbon data not complete all 4 quaternary carbons missing, 2 aromatic CH missing 

HRMS (ESI): m/z [M + H]
+
 calcd. for C21H21NO: 304.1696; found: 304.1695. 

 

(R)-N-(3,3-dimethylbutan-2-yl)-N-(naphthalen-1-ylmethyl)formamide [(R)-447]: 

 

Chemical Formula: C18H23NO 

Molecular Weight: 269.3813 

The product was obtained as a yellow solid. 

[]D= –46.5°. 

Mp.: 87-89 °C. 

IR (ATR):  (cm
–1

) 3050, 2962, 2870, 1658. 

Major rotamer: 90% 

1
H NMR (CDCl3, 400 MHz): (ppm) 8.46 (s, 1H), 8.02 (d, 1H, 

3
J = 8.0 Hz), 7.88 (br. d, 

1H, 
3
J = 8.0 Hz), 7.81 (d, 1H, 

3
J = 8.3 Hz), 7.42-7.57 (m, 3H), 7.34 (d, 1H, 

3
J = 7.0 Hz),  
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5.60  (br. d, 1H,
 2

J = 14.5 Hz), 4.60 (d, 1H, 
2
J = 14.5 Hz), 3.21 (q, 1H, 

3
J = 7.3 Hz), 1.05 

(d, 3H, 
3
J = 7.3 Hz), 0.99 (s, 9H). 

13
C NMR (CDCl3, 100 MHz): (ppm) 163.2 (1C, CH), 133.8 (1C, C), 132.1 (1C, C), 

131.4 (1C, C), 128.7 (1C, CH), 128.3 (1C, CH), 126.6 (1C, CH), 126.4 (1C, CH), 125.9 

(1C, CH), 125.1 (1C, CH), 123.4 (1C, CH), 61.2 (1C, CH), 46.2 (1C, CH2),  36.3 (1C, C), 

27.3 (3C, CH3), 15.7 (1C, CH3). 

Minor rotamer 10%* 

1
H NMR (CDCl3, 400 MHz): (ppm) 8.25 (s, 1H), 7.91-7.95 (m, 3H), 7.40-7.60 (m, 4H), 

4.98  (d, 1H,
 2

J = 15.5 Hz), 4.91 (d, 1H,
 2

J = 15.5 Hz), 1.05 (d, 3H, 
3
J = 6.5 Hz), 1.06 (s, 

9H). 

13
C NMR (CDCl3, 100 MHz): (ppm) 129.1 (1C, CH), 128.2 (1C, CH), 126.0 (1C, CH), 

125.4 (1C, CH), 122.0 (1C, CH), 27.6 (3C, CH3). 

* 
1
H NMR CH-NRCHO missing, 

13
C NMR: most of carbons missing 

HRMS (ESI): m/z [M + H]
+
 calcd. for C18H23NO: 270.1852; found: 270.1854. 

 

(R)-N-(anthracen-9-ylmethyl)-N-(3-methylbutan-2-yl)formamide [(R)-448]: 

  

Chemical Formula: C21H23NO  

Molecular Weight: 305.4134 

The product was obtained as an orange solid. 

[]D = –22°. 

IR (ATR):  (cm
–1

) 3048, 2965, 2932, 2871, 1666.  

Mp.: 133-135°C. 

Major rotamer: 77% 

1
H NMR (CDCl3, 500 MHz): (ppm) 8.49 (s, 1H), 8.40 (s, 1H), 8.32 (dd, 1H, 

3
J = 8.8 

Hz, 
4
J = 0.8 Hz), 8.04 (br. d, 1H, 

3
J = 8.3 Hz), 7.57 (ddd, 2H,

 3
J = 8.8 Hz, 

3
J = 6.6 Hz, 

4
J = 

1.6 Hz), 7.50-7.53 (m, 2H), 5.84 (d, 1H, 
2
J = 15.1 Hz), 5.47 (d, 1H, 

2
J = 15.1 Hz), 2.64-

2.69 (m, 1H), 1.74-1.79 (m, 1H), 0.83 (d, 3H, 
3
J = 7.2 Hz), 0.70 (d, 3H, 

3
J = 6.6 Hz), 0.64 

(d, 3H, 
3
J = 6.6 Hz). 
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13
C NMR (CDCl3, 125 MHz): (ppm) 161.8 (1C, CH), 134.1 (1C, C), 131.4 (2C, C), 

131.3 (2C, C), 129.3 (2C, CH), 128.5 (1C, CH), 126.6 (2C, CH), 125.1 (2C, CH), 124.0 

(2C, CH), 58.1 (1C, CH), 38.6 (1C, CH2),  33.4 (1C, CH), 19.8 (1C, CH3), 19.3 (1C, CH3), 

18.7 (1C, CH3). 

Minor rotamer 23% 

1
H NMR (CDCl3, 500 MHz): (ppm) 8.54 (s, 1H), 8.14 (dd, 1H, 

3
J = 8.8 Hz, 

4
J = 0.8 

Hz), 8.06 (br. d, 1H),  7.70 (s, 1H), 7.48-7.61 (m, 4H), 5.26  (d, 1H, 
2
J = 13.8 Hz), 5.21 (d, 

1H, 
2
J = 13.8 Hz), 4.06-4.08 (m, 1H), 2.24-2.29 (m, 1H), 1.46 (d, 3H, 

3
J = 6.9 Hz), 1.08 (d, 

3H, 
3
J = 6.6 Hz), 1.04 (d, 3H, 

3
J = 6.6 Hz). 

13
C NMR (CDCl3, 125 MHz): (ppm) 162.4 (1C, CH), 133.5 (1C, C), 131.4 (2C, C), 

131.2 (2C, C), 129.5 (1C, CH), 129.2 (1C, CH), 127.2 (2C, CH), 125.2 (2C, CH), 123.1 

(2C, CH), 55.6 (1C, CH),  41.2 (1C, CH2), 30.6 (1C, CH), 20.5 (1C, CH3), 20.2 (1C, CH3), 

16.3 (1C, CH3). 

HRMS (ESI): m/z [M + H]
+
 calcd. for C21H23NO: 306.1852; found: 306.1854. 

 

(R)-N-(2,6-dimethoxybenzyl)-N-(3-methylbutan-2-yl)formamide [(R)-449]: 

  

Chemical Formula: C15H23NO3 

Molecular Weight: 265.3480 

The product was obtained as a colourless oil. 

[]D = –8°. 

IR (ATR):  (cm
–1

) 2960, 2941, 2879, 2838, 1659. 

Major rotamer 80% 

1
H NMR (CDCl3, 400 MHz): (ppm) 8.21 (s, 1H), 7.25 (t, 1H, 

3
J = 8.4 Hz), 6.54 (d, 2H, 

3
J = 8.4Hz), 4.37 (s, 2H), 3.83 (s, 6H), 3.65-3.69 (m, 1H), 1.95-2.00 (m, 1H), 1.12 (d, 3H, 

3
J = 7.0 Hz), 0.86 (d, 3H, 

3
J = 6.8 Hz), 0.73 (d, 3H, 

3
J = 6.8 Hz). 

13
C NMR (CDCl3, 100 MHz): (ppm) 164.4 (1C, CH), 158.9 (2C, C), 129.6 (1C, CH), 

112.6 (1C, C), 103.6 (2C, CH), 56.2 (1C, CH), 55.6 (2C, CH3), 38.7 (1C, CH2), 30.5 (1C, 

CH), 20.3 (1C, CH3), 19.9 (1C, CH3), 16.3 (1C, CH3). 
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Minor rotamer 20*% 

1
H NMR (CDCl3, 400 MHz): (ppm) 8.22 (s, 1H), 7.23 (t, 1H, 

3
J = 8.4 Hz), 6.54 (d, 2H, 

3
J = 8.4 Hz), 4.84 (d, 1H,

 2
J = 13.7 Hz), 4.54 (d, 1H, 

2
J = 13.7 Hz), 3.82 (s, 6H), 2.77-2.81 

(m, 1H), 1.75-1.80 (m, 1H), 1.07 (d, 3H, 
3
J = 7.0 Hz), 0.83 (d, 3H, 

3
J = 6.8 Hz), 0.76 (d, 

3H, 
3
J = 6.8 Hz). 

13
C NMR (CDCl3, 100 MHz): (ppm) 161.7 (1C, CH), 159.3 (2C, C), 129.2 (1C, CH), 

103.5 (2C, CH), 59.0 (1C, CH), 55.6 (2C, CH3), 34.9 (1C, CH2), 33.0 (1C, CH), 19.68 

(1C, CH3), 19.66 (1C, CH3), 18.3 (1C, CH3). 

*
13

C NMR data, 1 quaternary carbon missing. 

HRMS (ESI): m/z [M + H]
+
 calcd. for C15H23NO3: 266.1751; found: 266.1744. 

  

(R)-N-(3-methylbutan-2-yl)-N-(3,4,5-trimethoxybenzyl)formamide [(R)-450]: 

  

Chemical Formula: C16H25NO4 

Molecular Weight: 295.3740 

The product was obtained as a white solid. 

[]D = –4°. 

IR (ATR):  (cm
–1

) 2996, 2966, 2937, 2838, 1650. 

Mp.: 80-82°C. 

Major rotamer 78% 

1
H NMR (CDCl3, 400 MHz): (ppm) 8.29 (s, 1H), 6.53 (s, 2H), 4.48 (d, 1H,

 2
J = 15.0 

Hz), 4.40 (d, 1H,
 2

J = 15.0 Hz), 3.85 (s, 6H), 3.83 (s, 3H), 3.09-3.13 (m, 1H), 1.80-1.85 (m, 

1H), 1.20 (d, 3H, 
3
J = 6.8 Hz), 0.94 (d, 3H, 

3
J = 6.6 Hz), 0.84 (d, 3H, 

3
J = 6.6Hz). 

13
C NMR (CDCl3, 100 MHz): (ppm) 163.1 (1C, CH), 153.2 (2C, C), 137.2 (1C, C), 

133.6 (1C, C), 105.1 (2C, CH), 61.0 (1C, CH or CH3), 60.8 (1C, CH or CH3), 56.1 (2C, 

CH3), 45.5 (1C, CH2), 32.4 (1C, CH, iPr), 20.2 (1C, CH3), 19.6 (1C, CH3), 18.5 (1C, CH3). 

Minor rotamer* 22% 
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1
H NMR (CDCl3, 400 MHz): (ppm) 8.29 (s, 1H), 6.45 (s, 2H), 4.29 (s, 2H), 3.86 (s, 6H), 

3.85 (s, 3H), 1.88-1.93 (m, 1H), 1.12 (d, 3H, 
3
J = 6.8 Hz), 0.93 (d, 3H, 

3
J = 6.6 Hz), 0.89 

(d, 3H, 
3
J = 6.6 Hz). 

13
C NMR (CDCl3, 100 MHz): (ppm) 163.7 (1C, CH), 153.5 (2C, C), 137.6 (1C, C), 

133.2 (1C, C), 104.5 (2C, CH), 60.9 (1C, CH or CH3), 56.2 (2C, CH3), 56.0 (1C, CH or 

CH3), 49.9 (1C, CH2), 31.1 (1C, CH), 20.2 (1C, CH3), 19.9 (1C, CH3), 16.9 (1C, CH3). 

*
1
H NMR CH-NRCHO missing  

13
C NMR data, 1 quaternary carbon missing 

HRMS (ESI): m/z [M + H]
+
 calcd. for C16H25NO4: 296.1856; found: 296.1859. 

 

(R)-N-benzhydryl-N-(3-methylbutan-2-yl)formamide [(R)-451]: 

  

Chemical Formula: C19H23NO 

Molecular Weight: 281.3920 

The product was obtained as a white solid. 

[]D = +34°. 

Mp.: 62-64 °C. 

IR (ATR):  (cm
–1

) 3087, 3062, 3029, 2974, 2875, 1663. 

Major rotamer: 82% 

1
H NMR (CDCl3, 500 MHz): (ppm) 8.31 (s, 1H), 7.29-7.38 (m, 6H), 7.18-7.22 (m, 4H), 

5.68 (s, 1H), 4.12-4.16 (m, 1H), 2.00-2.05 (m, 1H), 1.14 (d, 3H, 
3
J = 7.2 Hz), 0.96 (d, 3H, 

3
J = 6.6 Hz), 0.90 (d, 3H, 

3
J = 6.6 Hz). 

13
C NMR (CDCl3, 125 MHz): (ppm) 164.4 (1C, CH), 140.7 (1C, C), 140.1 (1C, C), 

128.9 (2C, CH), 128.74 (2C, CH), 128.71 (2C, CH), 128.0 (2C, CH), 127.9 (1C, CH), 

127.7 (1C, CH), 63.0 (1C, CH), 56.4 (1C, CH), 31.7 (1C, CH), 20.7 (1C, CH3), 20.0 (1C, 

CH3), 16.6 (1C, CH3). 

Minor rotamer 18% 
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1
H NMR (CDCl3, 500 MHz): (ppm) 8.40 (s, 1H), 7.25-7.38 (m, 10H), 6.25 (s, 1H), 

3.30-3.34 (m, 1H), 1.49-1.53 (m, 1H), 1.35 (d, 3H, 
3
J = 6.9 Hz), 0.86 (d, 3H, 

3
J = 6.6 Hz), 

0.64 (d, 3H, 
3
J = 6.6 Hz). 

13
C NMR (CDCl3, 125 MHz): (ppm) 162.7 (1C, CH), 139.5 (1C, C), 139.4 (1C, C), 

130.1 (2C, CH), 128.3 (2C, CH), 128.2 (2C, CH), 128.0 (2C, CH), 127.7 (1C, CH), 127.0 

(1C, CH), 61.7 (1C, CH), 59.1 (1C, CH), 32.4 (1C, CH), 20.4 (1C, CH3), 17.87 (1C, CH3), 

17.07 (1C, CH3). 

HRMS (ESI): m/z [M + H]
+
 calcd. for C19H23NO: 282.1852; found: 282.1850. 

 

(1R,5S)-8-oxo-4,5,6,8-tetrahydro-1H-1,5-methanopyrido[1,2-a][1,5]diazocine-3(2H)-

carbaldehyde [(–)-452]: 

 

Chemical Formula: C12H14N2O2 

Molecular Weight: 218.2518 

The product was obtained as a pale solid. 

[]D = –127°. 

Mp.: 164-166 °C. 

IR (ATR):  (cm
–1

) 2938, 2867, 1652. 

Major rotamer: 57% 

1
H NMR (CDCl3, 500MHz): (ppm) 7.91 (s, 1H), 7.29 (dd, 1H, 

3
J = 6.9 Hz, 

4
J = 1.0 Hz), 

6.46 (br t, 1H, 
3
J = 6.6 Hz), 6.08 (dd, 1H, 

3
J = 6.9 Hz, 

4
J = 1.0 Hz),  4.44-4.46 (m, 1H), 

4.08 (d, 1H, 
3
J = 6.0 Hz), 3.90 (ddd, 1H, 

2
J = 17.0 Hz, 

3
J = 6.6 Hz, 

4
J = 1.3 Hz), 3.64-3.69 

(m, 1H), 3.46 (dd, 1H, 
2
J = 12.9 Hz, 

3
J = 2.2 Hz), 3.11 (br. s, 1H), 2.95 (dd, 1H, 

2
J = 12.9 

Hz, 
3
J = 2.5 Hz), 2.55 (broad s, 1H), 2.07-2.11 (m, 2H). 

13
C NMR (CDCl3, 125 MHz): (ppm) 163.4 (1C, C), 161.1 (1C, CH), 147.8 (1C, C), 

139.0 (1C, CH), 117.7 (1C, CH), 105.9 (1C, CH), 52.1 (1C), 48.6 (1C), 47.1 (1C), 33.9 

(1C), 27.1 (1C), 26.4 (1C) . 

Minor rotamer 43% 

1
H NMR (CDCl3, 500MHz): (ppm) 7.68 (s, 1H), 7.28 (dd, 1H, 

3
J = 6.9 Hz, 

4
J = 1.0 Hz), 

6.44 (broad t, 1H, 
3
J = 6.9 Hz,), 6.02 (dd, 1H, 

3
J = 6.9 Hz, 

4
J = 1.0 Hz),  4.54-4.56 (m, 1H), 
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4.11 (d, 1H, 
3
J = 6.0 Hz), 3.87 (ddd, 1H, 

2
J = 17.0 Hz, 

3
J = 6.6 Hz, 

4
J = 1.3 Hz), 3.53-3.57 

(m, 1H), 3.41-3.45 (m, 1H), 3.11 (br. s, 1H), 2.89-2.93 (m, 1H), 2.55 (br. s, 1H), 2.11-2.15 

(m, 2H). 

13
C NMR (CDCl3, 120MHz): (ppm) 163.2 (1C, C), 161.2 (1C, CH), 148.0 (1C, C), 

138.6 (1C, CH), 118.1 (1C, CH), 105.0 (1C, CH), 53.4 (1C), 48.8 (1C), 46.1 (1C), 34.6 

(1C), 26.7 (1C), 26.4 (1C). 

HRMS (ESI): m/z [M + H]
+
 calcd. for C12H14N2O2: 219.1128; found: 219.1124. 

 

(R)-N-(3-methylbutan-2-yl)-N-(pyren-1-ylmethyl)formamide [(R)-455]: 

 

Chemical Formula: C23H23NO 

Molecular Weight: 329.4348 

The product was obtained as a pale solid. 

[]D = –23°. 

Mp.: 129-131 °C. 

IR (ATR):  (cm
–1

) 3041, 2967, 2872, 1664. 

Major rotamer: 85% 

1
H NMR (CDCl3, 500 MHz): (ppm) 8.44 (s, 1H), 8.37 (d, 1H, 

3
J = 9.1 Hz), 8.14-8.24 

(m, 4H), 8.01-8.11 (m, 3H), 7.95 (d, 1H, 
3
J = 7.6 Hz), 5.39 (d, 1H, 

2
J = 15.1 Hz), 5.20 (d, 

1H, 
2
J = 15.1 Hz), 3.09-3.13 (m, 1H), 1.80-1.84 (m, 1H), 1.02 (d, 3H, 

3
J = 7.2 Hz), 0.86 (d, 

3H, 
3
J = 6.6 Hz), 0.77 (d, 3H, 

3
J = 6.6 Hz). 

13
C NMR (CDCl3, 125 MHz): (ppm) 162.6 (1C, CH), 131.3 (1C, C), 131.0 (1C, C), 

130.8 (1C, C), 130.4 (1C, C), 129.8 (1C, C), 128.1 (1C, CH), 127.5 (1C, CH), 127.4 (1C, 

CH), 127.3 (1C, CH), 126.0 (1C, CH), 125.3 (2C, CH), 124.9 (1C, C), 124.7 (1C, C), 

124.6 (1C, CH), 123.1 (1C, CH), 60.1 (1C, CH), 43.7 (1C, CH2),  32.6 (1C, CH), 20.1 (1C, 

CH3), 19.5 (1C, CH3), 18.2 (1C, CH3). 

Minor rotamer 15% 

1
H NMR (CDCl3, 500 MHz): (ppm) 8.42 (s, 1H), 8.24-8.14 (m, 5H), 7.96-8.11 (m, 4H), 

5.12 (d, 1H, 
2
J = 15.7 Hz), 5.05 (d, 1H, 

2
J = 15.7 Hz), 3.96-4.00 (m, 1H), 2.03-2.07 (m, 

1H), 1.10 (d, 3H, 
3
J = 6.9 Hz), 0.93 (d, 3H, 

3
J = 5.3 Hz), 0.92 (d, 3H, 

3
J = 5.3 Hz). 
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13
C NMR (CDCl3, 125 MHz): (ppm) 163.9 (1C, CH), 131.3 (1C, C), 131.2 (1C, C), 

130.6 (1C, C), 129.7 (1C, C), 128.7 (1C, C), 128.5 (1C, CH), 127.7 (1C, CH), 127.3 (1C, 

CH), 126.6 (1C, CH), 126.2 (1C, CH), 125.7 (1C, CH), 125.4 (1C, CH), 124.9 (1C, C), 

124.8 (1C, CH), 124.7 (1C, C), 121.7 (1C, CH), 56.0 (1C, CH),  47.0 (1C, CH2), 31.1 (1C, 

CH), 20.3 (1C, CH3), 20.0 (1C, CH3), 16.3 (1C, CH3). 

HRMS (ESI): m/z [M + H]
+
 calcd. for C23H23NO: 330.1852; found: 330.1853. 

 

(R)-N-isobutyl-N-(1-(naphthalen-1-yl)ethyl)formamide [(R)-456]: 

 

Chemical Formula: C17H21NO 

Exact Mass: 255.1623 

The product was obtained as a light yellow oil. 

[]D= +169°. 

IR (ATR):  (cm
–1

) 3050, 2960, 2870, 1663. 

Major rotamer: 79% 

1
H NMR (CDCl3, 500 MHz): (ppm) 8.14 (s, 1H), 7.99 (d, 1H, 

3
J = 8.5 Hz), 7.85-7.87 

(m, 1H), 7.84 (d, 1H, 
3
J = 8.5 Hz), 7.59 (d, 1H, 

3
J = 7.2 Hz), 7.45-7.56 (m, 3H), 6.44 (q, 

1H, 
3
J = 7.2 Hz), 2.70 (dd, 1H, 

2
J = 14.8 Hz, 

3
J = 7.2 Hz), 2.49 (dd, 1H, 

2
J = 14.8 Hz, 

3
J = 

7.2 Hz), 1.70 (d, 3H, 
3
J = 6.9 Hz), 1.01-1.05 (m, 1H), 0.60 (d, 3H, 

3
J = 6.6 Hz), 0.48 (d, 

3H, 
3
J = 6.6 Hz). 

13
C NMR (CDCl3, 125 MHz): (ppm) 163.0 (1C, CH), 134.7 (1C, C), 133.5 (1C, C), 

132.0 (1C, C), 128.9 (1C, CH), 128.6 (1C, CH), 126.8 (1C, CH), 126.0 (1C, CH), 124.8 

(1C, CH), 124.6 (1C, CH), 123.5 (1C, CH), 52.3 (1C, CH), 46.5 (1C, CH), 27.9 (1C, CH2), 

19.8 (1C, CH3), 19.5 (1C, CH3), 17.2 (1C, CH3).  

Minor rotamer: 21% 

1
H NMR (CDCl3, 500 MHz): (ppm) 8.67 (s, 1H), 7.95 (d, 1H, 

3
J = 8.5 Hz), 7.91 (dd, 

1H, 
3
J = 7.9 Hz, 

4
J = 1.6 Hz), 7.84 (d, 1H, 

3
J = 8.5 Hz), 7.46-7.59 (m, 4H), 5.49 (q, 1H, 

3
J 

= 7.2 Hz), 3.31 (dd, 1H, 
2
J = 13.5 Hz, 

3
J = 7.9 Hz), 2.70 (dd, 1H, 

2
J = 13.5 Hz, 

3
J = 7.9 

Hz), 1.82 (d, 3H, 
3
J = 6.9 Hz), 1.61-1.66 (m, 1H), 0.74 (d, 3H, 

3
J = 6.6 Hz), 0.69 (d, 3H, 

3
J 

= 6.9 Hz). 
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13
C NMR (CDCl3, 125 MHz): (ppm) 163.1 (1C, CH), 135.7 (1C, C), 133.9 (1C, C), 

131.1 (1C, C), 129.2 (1C, CH), 128.8 (1C, CH), 126.7 (1C, CH), 125.9 (1C, CH), 125.3 

(1C, CH), 123.6 (1C, CH), 122.2 (1C, CH), 53.7 (1C, CH), 49.6 (1C, CH), 27.2 (1C, CH2), 

20.8 (1C, CH3), 20.1 (1C, CH3), 20.0 (1C, CH3).  

HRMS (ESI): m/z [M + H]
+
 calcd. for C17H21NO: 256.1696; found: 256.1697. 

 

(1R,5R)-methyl 8-oxo-4,5,6,8-tetrahydro-1H-1,5-methanopyrido[1,2-a][1,5]diazocine-

3(2H)-carboxylate
11

 (457) : 

 

Chemical Formula: C13H16N2O3 

Molecular Weight: 248.2777 

Methyl chloroformate (4.0 mL, 51.7 mmol, 10.3 eq) was added dropwise over 10 min to a 

stirred solution of (–)-cytisine [(–)-396, 960 mg, 5.0 mmol, 1 eq] and Et3N (7.1 mL, 51.7 

mmol, 10.3 eq) in distilled DCM (40 mL) at 0 °C under nitrogen. The resulting mixture 

was stirred at RT for 3.5 hrs, then the solvent was evaporated under reduced pressure. 

EtOAc (15 mL) was added to the residue and the solids were removed by filtration. The 

filtrate was evaporated under reduced pressure and the residue was then purified by 

column chromatography (4 g silica, DCM/MeOH  9:1 v/v) affording  (1R,5R)-methyl 8-

oxo-4,5,6,8-tetrahydro-1H-1,5-methanopyrido[1,2-a][1,5]diazocine-3(2H)-carboxylate 

(457, 1.14 g, 88%) as a colourless gum. 

1
H NMR (CDCl3, 400 MHz):  (ppm) 7.29-7.31 (m, 1H), 6.47-6.49 (m, 1H), 6.07 (br. s, 

1H), 4.21 (br. s, 2H), 4.15 (d, 1H, 
2
J = 15.8 Hz), 3.87 (dd, 1H, 

2
J = 15.8 Hz, 

3
J = 6.8 Hz), 

3.57 (br. s, 3H), 3.05 (br. s, 3H), 2.47 (br. s, 1H), 2.01 (d, 1H, 
2
J = 13.2 Hz), 1.93 (d, 1H, 

2
J 

= 13.2 Hz).   

13
C NMR (CDCl3, 100 MHz):  (ppm) 163.4 (1C), 156.1 (1C), 148.8 (1C), 139.0 (1C), 

111.3 (1C), 105.8 (1C), 52.8 (1C), 51.1 (1C), 50.2 (1C), 49.0 (1C), 34.5 (1C), 27.2 (1C), 

25.8 (1C). 
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(1R,5S,11aS)-3-methyldecahydro-1H-1,5-methanopyrido[1,2-a][1,5]diazocine
16

 [(+)-

459] : 

 

Chemical Formula: C12H22N2 

Molecular Weight: 194.3165 

A suspension of pyridone 457 (3.53 g, 14.2 mmol, 1 eq) and platinum (IV) oxide (322 mg, 

0.42mmol, 0.1 eq) in dry EtOH (50 mL) was stirred at RT under a H2 atmosphere (H2 

balloon) for 5 hrs. The solids were removed by filtration through kiesielghur and the filter 

cake was washed with 9:1 DCM/MeOH (200 mL). The filtrate was evaporated under 

reduced pressure to give the crude product 458 as a white solid. To a solution of 458 in 

THF (85 mL) stirred at 0 °C under nitrogen was added LiAlH4 (3.2 g, 85.2 mmol, 6 eq) in 

one portion. The resulting suspension was refluxed for 16 hrs. After cooling to 0 °C, Et2O 

(10 mL) was added followed by the dropwise addition of sat. aq. Na2SO4 until 

effervescence ceased. The solids were removed by filtration through kiesielghur and the 

filter cake was washed with 9:1 DCM/MeOH (100 mL). The filtrate was dried over 

MgSO4 and evaporated under reduced pressure to give the crude product as a brown oil. 

Purification by Kugelrohr distillation gave (+)-sparteine surrogate (+)-459 (1.52 g, 55%) as 

a colourless oil. 

[]D = +23° (0.13 g mL
–1 

in EtOH, litt. []D = +26°, c 0.1 in EtOH). 

1
H NMR (CDCl3, 400 MHz):  (ppm) 3.01 (br. t, 2H, 

2
J = 11.0 Hz), 2.87-2.91 (m, 2H), 

2.25 (br. d, 1H, 
2
J = 10.1 Hz), 2.17 (br. s, 4H), 1.98 (br. d, 1H, 

2
J = 9.4 Hz), 1.90 (br. d, 

1H, 
2
J = 10.6 Hz), 1.48-1.84 (m, 9H), 1.29-1.33 (m, 2H). 

13
C NMR (CDCl3, 100 MHz):  (ppm) 66.5 (1C), 60.54 (1C), 60.48 (1C), 57.7 (1C), 56.4 

(1C), 47.5 (1C), 35.3 (1C), 34.0 (1C), 30.9 (1C), 25.7 (1C), 25.2 (1C). 
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Experimental section for chapter 3 

General procedure for the asymmetric formylation of 7,8-

dipropyltetrathia[7]helicene (8), using chiral formamides: 

In a 10-mL RBF, flame dried under argon, to a solution of 7,8-

dipropyltetrathia[7]helicene (8, 70 mg, 0.143 mmol, 1 eq) in distilled solvent (5 mL) 

cooled at –78
 
°C, was added dropwise n-BuLi ( 0.143 mmol, 1 eq). After stirring 5 min at –

78
 
°C, the yellow solution was allowed to reach 0

 
°C over 30 min, and then was cooled 

again at –78
 
°C. Then, a solution of chiral formamide (0.71 mmol, 0.5 eq) in distilled 

solvent (1 mL) was added dropwise (when using Lewis acid, BF3•Et2O is added dropwise 

to the formamide solution at 0 °C and stirred for 15 min at 0 °C before adding dropwise to 

the lithiohelicene) before stirring at the temperature and for the time reported in chapter 3, 

table 1, 2, 3, 4 and 5. Then sat. aq. NH4Cl (1 mL) was added, and the resulting mixture was 

extracted with EtOAc (2 x 20 mL), dried over MgSO4 and evaporated. The crude material 

was then purified by column chromatography (4 g silica, hexanes/EtOAc gradient 100/0 to 

50/1 v/v) affording 7,8-dipropyl-2-formyltetrathia[7]helicene,  (460, yields and e.e.s are 

reported in chapter 3, tables 1, 2, 3, 4 and 5). 

 

General procedure for the asymmetric lithiation of 7,8-dipropyltetrathia[7]helicene 

(8): 

In a 10-mL RBF, flame dried under argon (flame dried first and then a sequence of vacuum 

and flushing with argon is applied 3 times), a solution of 7,8-dipropyltetrathia[7]helicene 

(8, 70 mg, 0.143 mmol, 1 eq) in distilled toluene (5 mL) was cooled at –78
 
°C. In a 2-mL 

vial, flame dried under Ar (flame dried first and then a sequence of vacuum and flushing 

with argon is applied 3 times), was prepared a solution of (–)-sparteine in Et2O (0.8 mL), 

and s-BuLi was added at –78
 
°C under Ar (the amounts are specified in chapter 3, tables 6, 

7, 8 and 10 as well as in schemes 9, 12,
17

 13 and 16). After stirring 30 min at –78
 
°C, the 

content of the vial was cannulated over to the solution of helicene 8 kept at –78
 
°C, and 

was stirred at temperatures and for times reported in chapter 3 (tables 6, 7, 8 and 10 as well 

as in schemes 9, 12,
18

 13 and 16) (the solution starts yellow, and goes greener and greener 

up to almost brown as lithiation is happening). Then, TMSCl (90 L, 0.72 mmol, 5 eq) was 

added, and the reaction mixture was stirred for another 2 hrs at –78
 
°C. Then the reaction 

mixture was quenched with sat. aq. NH4Cl (1 mL) at –78
 
°C and let to warm up to RT. 

Then HCl (1N, 15 mL) was added and the mixture was extracted with DCM (2 x 30 mL), 
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dried over MgSO4 and evaporated. The crude material was purified by column 

chromatography (4 g silica, hexanes) affording a mixture of 7,8-

dipropyltetrathia[7]helicene (8), 7,8-dipropyl-2-trimethylsilyltetrathia[7]helicene 

(463)  and 2,13-Bis(trimethylsilyl)-7,8-dipropyltetrathia[7]helicene (466), that was not 

separated and was analysed by chiral HPLC. 

Alternatively the quench was done with DMF (110 L, 1.43 mmol, 10 eq) and the reaction 

mixture was stirred at –78
 
°C for 18 hrs. Then the reaction mixture was quenched with sat. 

aq. NH4Cl (1 mL) at –78
 
°C and let to warm up to RT. Then HCl (1N, 15 mL) was added 

and the mixture was extracted with DCM (2 x 30 mL), dried over MgSO4 and evaporated. 

The crude material was purified by column chromatography (4 g silica, hexanes) affording 

separately 7,8-dipropyltetrathia[7]helicene (8), 7,8-dipropyl-2-

formyltetrathia[7]helicene (460) and 2,13-Bis(formyl)-7,8-dipropyltetrathia[7]helicene 

(468), that were analysed by chiral HPLC.  

The acidic aqueous layer is kept for recovery of (–)-sparteine, when enough has been 

gathered. 

 

7,8-dipropyl-2-formyltetrathia[7]helicene
2
 (460): 

 

Chemical Formula: C29H22OS4 

Molecular Weight: 514.7444 

1
H NMR (CDCl3, 400 MHz): (ppm) 9.25 (s, 1H), 8.13 (d, 1H, 

3
J = 8.6 Hz), 8.05 (dd, 

1H, 
3
J = 8.4 Hz, 

5
J = 0.8 Hz), 8.01 (d, 1H, 

3
J = 8.4 Hz), 8.00 (dd, 1H, 

3
J = 8.6 Hz, 

5
J = 0.7 

Hz), 7.33 (d, 1H, 
5
J = 0.8 Hz), 6.94 (d, 1H, 

3
J = 5.5 Hz), 6.65 (dd, 1H,

 3
J = 5.5 Hz, 

5
J = 

0.7Hz), 3.09-3.23 (m, 4H), 1.88-1.99 (m, 4H), 1.18 (t, 6H, 
3
J = 7.2 Hz). 
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7,8-dipropyl-2-trimethylsilyltetrathia[7]helicene (463): 

 

Chemical Formula: C31H30S4Si 

Molecular Weight: 558.9154 

The product was obtained as a white solid. 

1
H NMR (CDCl3, 500 MHz): (ppm) 8.00 (dd, 2H, 

3
J = 8.5 Hz, 

5
J = 0.9 Hz), 7.97 (d, 1H, 

3
J = 8.5 Hz), 7.93 (d, 1H, 

3
J = 8.5 Hz), 6.88 (d, 1H,

 5
J = 0.9 Hz), 6.87 (d, 1H, 

3
J = 5.6 Hz), 

6.73 (dd, 1H, 
3
J = 5.6 Hz, 

5 
J = 0.6 Hz), 3.10-3.15 (m, 4H), 1.86-1.90 (m, 4H), 1.14-1.17 

(m, 6H), –0.05 (s, 9H). 

13
C NMR (CDCl3, 125 MHz): (ppm) 140.7 (1C, C), 140.1 (1C, C), 139.7 (1C, C), 139.6 

(1C, C), 137.1 (1C, C), 136.6 (1C, C), 136.1 (1C, C), 135.9 (1C, C), 135.7 (1C, C), 132.2 

(1C, C), 132.09 (1CH), 132.08 (1C, C), 131.6 (1C, C), 131.3 (1C, C), 128.3 (1C, C), 128.2 

(1C, C), 125.4 (1C, CH), 123.8 (1C, CH), 120.6 (1C, CH), 120.5 (1C, CH), 118.7 (1C, 

CH),  118.4 (1C, CH), 34.38 (1C, CH2), 34.37 (1C, CH2), 23.29 (1C, CH2), 23.27 (1C, 

CH2), 14.70 (1C, CH3), 14.69 (1C, CH3), –0.7 (3C, CH3). 

HRMS (ESI): m/z [M + H]
+
 calcd. for C31H30S4Si: 559.1072; found: 559.1062. 

 

2,13-Bis(trimethylsilyl)-7,8-dipropyltetrathia[7]helicene
19

 (466): 

 

Chemical Formula: C34H38S4Si2 

Molecular Weight: 631.0965   

The product was obtained as a white solid. 
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1
H NMR (CDCl3, 400 MHz): (ppm) 8.00 (dd, 2H, 

3
J = 8.5 Hz, 

5
J = 0.9 Hz), 7.94 (d, 2H, 

3
J = 8.5 Hz), 6.85 (d, 2H,

 5
J = 0.9 Hz), 3.10-3.15 (m, 4H), 1.86-1.91 (m, 4H), 1.14-1.17 (m, 

6H), –0.06 (s, 18H). 

13
C NMR (CDCl3, 100 MHz): (ppm) 140.8 (2C, C), 139.7 (2C, C), 139.6 (2C, C), 137.1 

(2C, C), 135.7 (2C, C), 132.3 (2C, CH), 132.1 (2C, C), 131.4 (2C, C), 128.3 (2C, C), 120.4 

(2C, CH), 118.5 (2C, CH), 34.4 (2C, CH2), 23.3 (2C, CH2), 14.7 (2C, CH3), -0.6 (3C, 

TMS). 

HRMS (ESI): m/z [M]
+
 calcd. for C34H38S4Si2: 630.1389; found: 630.1376. 

 

2,13-Bis(formyl)-7,8-dipropyltetrathia[7]helicene
2
 (468): 

 

Chemical Formula: C30H22O2S4 

Molecular Weight: 542.7545 

In a 50-mL RBF, flame dried under argon, to a solution of 7,8-

dipropyltetrathia[7]helicene (8, 300 mg, 0.62 mmol, 1 eq) in distilled THF (12 mL) 

cooled at –78
 
°C, was added dropwise n-BuLi (2.5 M in hexanes, 0.52 mL, 1.29 mmol, 2.1 

eq). After stirring 5 min at –78
 
°C, the yellow solution was allowed to reach 0

 
°C over 30 

min, and then was cooled again at –78
 
°C. Then, DMF (0.48 mL, 6.2 mmol, 10 eq) was 

added dropwise and the temperature was allowed to reach RT over 1.5 hrs. Then sat. aq. 

NH4Cl (10 mL) was added, and the resulting mixture was extracted with EtOAc (2 x 50 

mL), dried over MgSO4 and evaporated. The crude material was then purified by column 

chromatography (10 g silica, hexanes/EtOAc gradient 100/0 to 3/1 v/v) affording 2,13-

bis(formyl)-7,8-dipropyltetrathia[7]helicene (468, 330, 98%) as a bright yellow solid. 

1
H NMR (CDCl3, 500 MHz): (ppm) 9.22 (d, 1H, 

4
J = 3 Hz), 8.12 (dd, 2H, 

3
J = 8.5 Hz, 

5
J = 2.2 Hz), 7.99 (dd, 2H, 

3
J = 8.5 Hz, 

5
J = 2.2 Hz), 7.15 (d, 2H,

 
J = 4.4 Hz), 3.11-3.23 

(m, 4H), 1.88-1.93 (m, 4H), 1.16 (t, 6H, 
3
J = 7.4 Hz). 

13
C NMR (CDCl3, 125 MHz): (ppm) 183.4, (2C, CH), 141.1 (2C, C), 140.8 (2C, C), 

140.1 (2C, C), 137.0 (2C, C), 134.7 (2C, CH), 134.1 (2C, C), 133.3 (2C, C), 131.8 (2C, C), 
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127.3 (2C, C), 122.9 (2C, CH), 121.2 (2C, CH), 34.4 (2C, CH2), 23.3 (2C, CH2), 14.7 (2C, 

CH3). 

 

5,5'-[7,8-Dipropyltetrathia[7]helicene-2,13-diylbis(methanylylidene)]bis(1-butyl-4-

methyl-2,6-dioxo-1,2,5,6-tetrahydropyridine-3-carbonitrile) (472): 

 

Chemical Formula: C52H46N4O4S4 

Molecular Weight: 919.2060  

In a 25-mL RBF equipped with a Dean-Stark trap, 7,8-dipropyl-2,13-

diformyltetrathia[7]helicene (8, 54 mg, 0.1 mmol, 1 eq) and 1-butyl-6-hydroxy-4-

methyl-2-oxo-1,2-dihydropyridine-3-carbonitrile (476, 50 mg, 0.24 mmol, 2.4 eq) were 

dissolved in toluene (20 mL). The suspension was refluxed for 1.5 hrs and the resulting 

dark red solution was evaporated under reduced pressure affording bis-pyridine-dione 472 

(100 mg, 99%), as a red/black solid.  

Mp.: 254-256 °C.  

IR (ATR):  (cm
–1

) 2959, 2931, 2870, 2223, 1693, 1649. 

1
H NMR (CDCl3, 500 MHz): (ppm) 8.23 (d, 2H, 

3
J = 8.5 Hz), 8.07  (dd, 2H, 

3
J = 8.5 Hz, 

5
J = 0.9 Hz), 7.21 (s, 2H), 7.07 (s, 2H), 3.84-3.88 (m, 4H), 3.18-3.23 (m, 4H), 2.37 (s, 6H), 

1.88-1.93 (m, 4H), 1.48-1.53 (m, 4H), 1.34-1.38 (m, 4H), 1.20 (t, 6H, 
3
J = 7.2 Hz), 0.94 (t, 

6H, 
3
J = 7.3 Hz). 

13
C NMR (CDCl3, 125 MHz): (ppm) 162.3, (2C, C), 159.9 (2C, C), 157.6 (2C, C), 

144.9 (2C, C), 144.4 (2C, CH), 143.8 (2C, CH), 141.4 (2C, C), 137.2 (2C, C), 135.3 (2C, 

C), 133.7 (2C, C), 133.3 (2C, C), 130.7 (2C, C), 127.4 (2C, C), 124.4 (2C, CH), 120.0 (2C, 

CH), 118.6 (2C, C), 114.4 (2C, C), 105.1 (2C, C), 40.1 (2C, CH2), 34.5 (2C, CH2), 29.7 

(2C, CH2), 23.3 (2C, CH2), 20.1 (2C, CH2), 18.7 (2C, CH3), 14.7 (2C, CH3), 13.7 (2C, 

CH3). 
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N,N-dibutyl-7,8-dipropyl-13-formyltetrathia[7]helicen-2-amine (473): 

 

Chemical Formula: C37H39NOS4 

Molecular Weight: 641.9717 

In a 10-mL RBF, flamed dried under vacuum and flushed with argon (cycle repeated 3 

times), to a solution of N,N-dibutyl-7,8-dipropyltetrathia[7]helicen-2-amine (478, 24 

mg, 39 mol, 1 eq) in distilled THF (3 mL), cooled at –78 °C was added n-BuLi (2.5 M in 

hexanes, 19 L, 1.2 eq) under argon. After stirring 15 min at –78 °C, the solution was 

allowed to warm up to 0 °C over 15 min. The solution was then cooled back down to –78 

°C, DMF (25 L, 0.39 mmol, 10 eq) was added and the solution was allowed to reach RT 

over 1.5 hrs. Then, sat. aq. NH4Cl (5 mL) was added, and the resulting mixture was 

extracted with DCM (2 x 25mL). The combined organic layers were dried over MgSO4 

and evaporated. The crude material was then purified by column chromatography (5 g 

silica, hexanes/EtOAc gradient 100:0 to 50:1, v/v) affording N,N-dibutyl-7,8-dipropyl-

13-formyltetrathia[7]helicen-2-amine (473, 16 mg, 64%) as an orange solid. 

1
H NMR (CDCl3, 500 MHz): (ppm) 9.42 (s, 1H), 8.09 (d, 1H, 

3
J  = 8.5 Hz), 7.93 (dd, 

1H, 
3
J = 8.5 Hz, 

5
J = 0.9 Hz), 7.71 (dd, 1H, 

3
J = 8.5Hz, 

5
J = 0.7 Hz), 7.65 (d, 1H, 

3
J = 

8.5Hz), 7.60 (d, 1H,
 5

J = 0.7 Hz), 5.32 (s, 1H), 3.10-3.15 (m, 4H), 2.80-2.85 (m, 2H), 2.64-

2.68 (m, 2H), 1.86-1.91 (m, 4H), 1.20-1.24 (m, 4H), 1.16-1.19 (m, 6H), 1.05-1.09 (m, 4H), 

0.80 (t, 6H, 
3
J = 7.5 Hz). 

13
C NMR (CDCl3, 125 MHz): (ppm) 184.4 (1C, CH), 155.7 (1C, C), 140.2 (1C, C), 

140.0 (1C, C), 139.9 (1C, C), 139.3 (1C, C), 137.5 (1C, C), 136.9 (1C, CH), 136.7 (1C, C), 

136.5 (1C, C), 135.6 (1C, C), 133.0 (1C, C), 132.9 (1C, C), 131.5 (1C, C), 128.7 (1C, C), 

127.9 (1C, C), 127.3 (1C, C), 127.2 (1C, C), 122.7 (1C, CH), 120.5 (1C, CH), 120.2 (1C, 

CH),  113.8 (1C, CH), 100.3 (1C, CH), 53.1 (2C, CH2), 34.43 (1C, CH2), 34.36 (1C, CH2), 

28.6 (2C, CH2), 23.2 (2C, CH2), 20.0 (2C, CH2), 14.7 (2C, CH3), 13.6 (2C, CH3). 

HRMS (ESI): m/z [M + H]
+
 calcd. for C37H39NOS4: 642.1987; found: 642.1971. 
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1-Butyl-6-hydroxy-4-methyl-2-oxo-1,2-dihydropyridine-3-carbonitrile
20

 (476): 

 

Chemical Formula: C11H14N2O2 

Molecular Weight: 206.2411 

Ethyl cyanoacetate (3.33 g, 29.4 mmol, 1.eq) was added dropwise (over 15 min) to the 

respective N-butylamine (5.38 g, 73.6 mmol, 2.5 eq), and the reaction mixture was stirred 

at RT for 60 hrs, affording 2-cyano-N-butylacetamide (475). Then ethyl acetoacetate 

(3.82g, 29.4 mmol, 1 eq) and piperidine (3 mL) were added, and the mixture was stirred at 

100 °C for 20 hrs. The solvent was evaporated, and the pH was adjusted to 1 with 32% 

aqueous HCl. After precipitation at room temperature, the product was filtered and washed 

with H2O (100 mL) and Et2O (50 mL) affording 1-butyl-6-hydroxy-4-methyl-2-oxo-1,2-

dihydropyridine-3-carbonitrile (476, 3.15g, 52%) as a beige solid. 

1
H NMR (DMSO-d6, 500 MHz): (ppm) 5.6 (s, 1H), 3.86-3.90 (m, 2H), 2.20 (s, 3H), 

1.47-1.53 (m, 2H), 1.23-1.30 (m, 2H), 0.88 (t, 3H, 
3
J = 7.6 Hz). 

 

N,N-dibutyl-7,8-dipropyltetrathia[7]helicen-2-amine (478): 

 

Chemical Formula: C36H39NS4 

Molecular Weight: 613.9616 

A 25-mL RBF, flame dried under vacuum flushed with argon (3 times) was charged with 

2-bromo-7,8-dipropyltetrathia[7]helicene (486, 187 mg, 0.33 mmol, 1 eq) and distilled 

THF (2 mL) was added. The solution was cooled to 0
 
°C and  i-PrMgCl·LiCl (1.3 M in 

THF; 0.28 mL, 0.37 mmol, 1.1 eq) was added dropwise and the mixture was stirred at 0
 
°C 

for 2 hrs to afford the Grignard reagent. This solution was cooled to –50 °C before 

CuCl•2LiCl (1.0 M in THF; 0.4 mL, 0.40 mmol, 1.2 eq) and bis[2-(N,N-

dimethylamino)ethyl] ether (77 L, 0.4 mmol, 1.2 eq) were added dropwise and the 

mixture was stirred for 45 min. A solution of lithium dibutylamide was prepared by adding 
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dropwise n-BuLi (2.5 M in hexanes, 0.26 mL, 0.66 mmol, 2 eq) to di-N-butylamine (113 

L, 2 mmol, 2 eq) in distilled THF (1 mL), at –78
 
°C under argon; the solution was stirred 

15 min at –78
 
°C and 15 min at 0

 
°C. To the so formed aryl cuprate, was added dropwise 

the solution of lithium dibutylamide and the mixture was further stirred for 45 min at –50 

°C. The reaction mixture was cooled to –78
 
°C, then a solution of chloranil (98 mg, 0.4 

mmol, 1.2 eq), in THF (3.5 mL), was added slowly over a period of 45 min. The reaction 

mixture was then allowed to reach –50 °C and stirred for 18 hrs. Then Et2O (10 mL) was 

added to the crude reaction mixture which was filtered through kiesielghur and washed 

with Et2O thoroughly. The combined filtrates were washed with aq. NH4OH (28%, 2 x 10 

mL), the organic layer was separated, the aqueous layer was extracted with Et2O (2 x 10 

mL), combined organic layers were dried over MgSO4 and evaporated. The crude material 

was purified by column chromatography (10 g silica, hexanes) affording N,N-dibutyl-7,8-

dipropyltetrathia[7]helicen-2-amine (478, 41 mg, 20%) as a bright yellow oil and 13-

bromo-N,N-dibutyl-7,8-dipropyltetrathia[7]helicen-2-amine (493, 40 mg, 21%) as a 

yellow oil. 

 

Alternatively the Grignard reagent can be formed by adding TMPMgCl•LiCl
21

 (1.2 M in 

THF, 132 L, 1.1 eq) to a solution of 7,8-dipropyltetrathia[7]helicene (8, 0.143 mmol, 1 

eq) in distilled THF (2 mL) at RT, and stirring overnight. Using this method, and following 

the rest of the procedure, N,N-dibutyl-7,8-dipropyltetrathia[7]helicen-2-amine (478, 28 

mg, 32%) was obtained as a bright yellow oil and some SM 8 (26 mg, 37%) was 

recovered. 

IR (ATR):  (cm
–1

) 2956, 2928, 2868, 1548, 1526. 

1
H NMR (CDCl3, 500 MHz): (ppm) 7.94 (s, 2H), 7.68 (d, 1H, 

3
J  = 8.2 Hz), 7.62 (d, 1H, 

3
J = 8.2 Hz), 7.02 (d, 1H, 

3
J = 5.6 Hz), 7.00 (d, 1H, 

3
J = 5.6 Hz), 5.42 (s, 1H), 3.04-3.17 

(m, 4H), 2.78-2.83 (m, 2H), 2.62-2.67 (m, 2H), 1.83-1.92 (m, 4H), 1.20-1.26 (m, 4H), 

1.13-1.19 (m, 6H), 1.04-1.12 (m, 4H), 0.80 (t, 6H, 
3
J = 7.6 Hz). 

13
C NMR (CDCl3, 125 MHz): (ppm) 155.8 (1C, C), 139.2 (1C, C), 139.0 (1C, C), 138.2 

(1C, C), 136.7 (1C, C), 136.34 (1C, C), 136.31 (1C, C), 135.8 (1C, C), 132.0 (1C, C), 

131.9 (1C, C), 131.2 (1C, C), 129.0 (1C, C), 128.6 (1C, C), 127.9 (1C, C), 127.1 (1C, C), 

125.8 (1C, CH), 123.3 (1C, CH), 120.3 (1C, CH), 119.9 (1C, CH), 118.5 (1C, CH),  113.4 

(1C, CH), 99.5 (1C, CH), 52.7 (2C, CH2), 34.36 (1C, CH2), 34.33 (1C, CH2), 28.9 (2C, 

CH2), 23.24 (1C, CH2), 23.22 (1C, CH2), 20.0 (2C, CH2), 14.7 (2C, CH3), 13.8 (2C, CH3). 
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HRMS (ESI): m/z [M + H]
+
 calcd. for C36H39NS4: 614.2038; found: 614.2031. 

 

2-Bromobenzo[b]thiophene
22

 (483): 

 

Chemical Formula: C8H5BrS 

Molecular Weight: 213.0943 

In a 250-mL RBF, flame dried under nitrogen, to a solution of benzo[b]thiophene (5 g, 37 

mmol, 1 eq) in distilled THF (200 mL), cooled at –78
 
°C was added dropwise n-BuLi (2.2 

M in hexanes, 18.6 mL, 1.1 eq). The reaction mixture was stirred at –78
 
°C for 30 min and 

was then allowed to warm to 0
 
°C over 1 hour. It was then cooled back down to –78

 
°C, 

1,2-dibromoethane (4.8 mL, 55.5 mmol, 1.5 eq) was added dropwise and reaction mixture 

was allowed to warm up to RT over 1 hr. Then, sat. aq. NH4Cl (2 mL) was added and the 

crude mixture was evaporated under reduced pressure. The crude product was taken in 

DCM (50 mL), washed with brine (2 x 50 mL), dried over MgSO4 and evaporated 

affording 7.9 g of a brown oil which solidifies. The crude material was then purified by 

column chromatography (80 g silica, hexanes) affording 2-bromobenzo[b]thiophene 

(483, 4.76 g, 60%) as a white solid and (2.97 g, 31%) as an impure white solid containing 

16% of SM. 

1
H NMR (CDCl3, 500 MHz): (ppm) 7.73-7.75 (m, 1H), 7.69-7.71 (m, 1H), 7.30-7.35 

(m, 3H). 

13
C NMR (CDCl3, 125 MHz): (ppm) 140.9 (1C, C), 139.5 (1C, C), 126.5 (1C, CH), 

124.7 (1C, CH),  124.4 (1C, CH), 122.7 (1C, CH),  121.6 (1C, CH), 115.4 (1C, C). 

 

N-(4-methoxyphenyl)-N-methylbenzo[b]thiophen-2-amine (485): 

 

Chemical Formula: C16H15NOS 

Molecular Weight: 269.3614 

2-Bromobenzo[b]thiophene (483, 100 mg, 0.47 mmol, 1 eq), N-methyl-p-anisidine (65 

mg, 0.47 mmol, 1 eq), NaOt-Bu (51 mg, 0.52 mmol, 1.1 eq), Pd(dba)2 (27 mg, 0.047 
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mmol, 0.1 eq), and P(t-Bu)3 (1 M in toluene, 47 L, 0.047 mmol, 0.1 eq) were charged to a 

5-mL vial flame dried under argon. Toluene (4 mL) was added and the suspension was 

heated at 100 °C for 4 hrs. The reaction mixture was cooled to RT, H2O (2 mL) was added, 

the mixture was extracted with DCM (2 x 15 mL), and the combined organic layers were 

dried over MgSO4 and evaporated under reduced pressure. The crude product was then 

purified by column chromatography (3 g silica, hexanes/EtOAc gradient 100/0 to 50/1 v/v) 

affording N-(4-methoxyphenyl)-N-methylbenzo[b]thiophen-2-amine (385, 76 mg, 60%) 

as pale orange crystals. 

Mp.: 100-102 °C. 

IR (ATR):  (cm
–1

) 3060, 2948, 2932, 2897, 2832, 2815, 1529, 1507. 

1
H NMR (CDCl3, 500MHz): (ppm) 7.54 (d, 1H, 

3
J =7.9 Hz), 7.45 (d, 1H, 

3
J = 7.9 Hz), 

7.26-7.28 (m, 2H), 7.23-7.25 (m, 1H), 7.07-7.09 (m, 1H), 6.93-6.95 (m, 2H), 6.24 (br. s, 

1H), 3.85 (s, 3H), 3.39 (s, 3H). 

13
C NMR (CDCl3, 125 MHz): (ppm) 157.1 (1C, C), 156.0 (1C, C), 141.7 (1C, C), 140.7 

(1C, C), 133.0 (1C, C), 125.4 (2C, CH), 124.4 (1C, CH), 121.4 (1C, CH), 121.1 (1C, CH),  

120.5 (1C, CH), 114.6 (2C, CH), 100.6 (1C, CH), 55.5 (1C, CH3), 42.3 (1C, CH3). 

HRMS (ESI): m/z [M + H]
+
 calcd. for C16H15NOS: 270.0947; found: 270.0950. 

 

2-Bromo-7,8-dipropyltetrathia[7]helicene (486): 

 

Chemical Formula: C28H21BrS4 

Molecular Weight: 565.6303 

To a solution of 7,8-dipropyltetrathia[7]helicene (8, 290g, 0.60 mmol, 1 eq) in distilled 

THF (15 mL), cooled at –78 °C under a nitrogen atmosphere was added dropwise n-BuLi 

(2.5 M in hexanes, 250 L, 0.63 mmol, 1.05 eq). The reaction mixture was stirred at –78
 

°C for 30 min and was then allowed to warm to 0
 
°C over 1 hr. It was then cooled back 

down to –78 °C, 1,2-dibromoethane (0.52 mL, 5.95 mmol, 10 eq) was added dropwise and 

the reaction mixture was allowed to warm up to RT over 2 hrs. Then, sat. aq. NH4Cl (10 

mL) was added and the mixture was extracted with DCM (3 x 40 mL), dried over MgSO4, 
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evaporated, and purified by column chromatography (10 g silica, hexanes) affording 2-

bromo-7,8-dipropyltetrathia[7]helicene (486, 200 mg, 59 %) as a white solid. Some 

starting material 8 was also recovered (120 mg, 41%). 

1
H NMR (CDCl3, 500MHz): (ppm) 8.06 (dd, 1H, 

3
J = 8.5 Hz, 

5
J = 0.7Hz), 7.98 (d, 1H, 

3
J = 8.5 Hz), 7.94 (d, 1H, 

3
J = 8.5 Hz), 7.83 (dd, 1H, 

3
J = 8.5 Hz, 

5
J = 0.7 Hz), 7.04 (d, 1H, 

3
J = 5.5 Hz), 6.76  (dd, 1H,

 3
J = 5.6 Hz, 

5
J = 0.7 Hz), 6.75 (d, 1H,

 5
J = 0.7 Hz), 3.10-3.17 

(m, 4H), 1.85-1.91 (m, 4H), 1.14-1.18 (m, 6H). 

13
C NMR (CDCl3, 125 MHz): (ppm) 139.7 (1C, C), 139.6 (1C, C), 137.5 (1C, C), 136.8 

(1C, C), 136.4 (1C, C), 136.0 (1C, C), 135.7 (1C, C), 135.6 (1C, C), 132.5 (1C, C), 132.2 

(1C, C), 131.1 (1CH), 130.4 (1C, C), 128.6 (1C, CH), 128.0 (1C, C), 127.8 (1C, C), 124.7 

(1C, CH), 124.5 (1C, CH), 121.1 (1C, CH), 119.6 (1C, CH), 118.8 (1C, CH),  118.6 (1C, 

CH), 113.2 (1C, C), 34.39 (1C, CH2), 34.36 (1C, CH2), 23.3 (2C, CH2), 14.70 (2C, CH3). 

HRMS (ESI): m/z [M]
+
 calcd. for C28H21BrS4: 563.9704; found: 563.9699.  

 

N-(4-methoxyphenyl)-N-methyl-7,8-dipropyltetrathia[7]helicen-2-amine (487): 

 

Chemical Formula: C36H31NOS4 

Molecular Weight: 621.8974 

2-Bromo-7,8-dipropyltetrathia[7]helicene (57 mg, 0.1 mmol, 1 eq), N-methyl-p-

anisidine (13.7 mg, 0.1 mmol, 1 eq), NaOt-Bu (10 mg, 0.11 mmol, 1.1 eq), Pd(dba)2 (27.5 

mg, 0.05 mmol, 0.5 eq), and P(t-Bu)3 (1 M in toluene, 50 L, 0.05 mmol, 0.5eq) were 

charged to a 5-mL vial flame dried under argon. Toluene (4 mL) was added and the 

suspension was heated at 100 °C for 4 hrs. The reaction mixture was cooled to RT, H2O (2 

mL) was added, the mixture was extracted with DCM (2 x 15 mL), and the combined 

organic layers were dried over MgSO4 and evaporated under reduced pressure. The crude 

product was then purified by column chromatography (3 g silica, hexanes/EtOAc gradient 

100/0 to 50/1 v/v) affording N-(4-methoxyphenyl)-N-methyl-7,8-

dipropyltetrathia[7]helicen-2-amine (9 mg, 14%) as pale orange solid and (29 mg  as a 

70% pure mixture, 33%). 

Mp.: 76-78 °C. 
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IR (ATR):  (cm
–1

) 2956, 2927, 2867, 1547, 1523, 1507. 

1
H NMR (CDCl3, 500 MHz): (ppm) 7.95 (dd, 1H, 

3
J = 8.5 Hz, 

5
J = 0.7 Hz), 7.92 (d, 1H, 

3
J = 8.5 Hz), 7.70 (d, 1H, 

3
J = 8.5 Hz), 7.64 (d, 1H, 

3
J = 8.5 Hz), 7.05 (d, 1H, 

3
J = 5.4 Hz), 

6.99 (dd, 1H,
 3

J = 5.4 Hz, 
5
J = 0.7 Hz), 6.90-6.92 (m, 2H), 6.77-6.79 (m, 2H), 5.72 (s, 1H), 

3.80 (s, 3H),  3.06-3.14 (m, 4H), 2.63 (s, 3H), 1.83-1.89 (m, 4H), 1.16 (t, 3H, 
3
J = 7.2 Hz), 

1.15 (t, 3H, 
3
J = 7.2 Hz). 

13
C NMR (CDCl3, 125 MHz): (ppm) 156.8 (1C, C), 155.1 (1C, C), 141.5 (1C, C), 139.3 

(1C, C), 139.2 (1C, C), 137.1 (1C, C), 136.6 (1C, C), 136.3 (1C, C), 136.2 (1C, C), 135.9 

(1C, C), 132.1 (1C, C), 131.8 (1C, C), 131.5 (1C, C), 129.3 (1C, C), 128.8 (1C, C), 128.7 

(1C, C), 127.9 (1C, C), 126.0 (1C, CH), 124.9 (2C, CH), 123.4 (1C, CH), 120.4 (1C, CH), 

120.1 (1C, CH),  118.5 (1C, CH), 115.0 (1C, CH), 114.4 (2C, CH), 104.7 (1C, CH), 55.4 

(1C, CH3), 41.7 (1C, CH3), 34.4 (1C, CH2), 34.3 (1C, CH2), 23.2 (2C, CH2), 14.70 (2C, 

CH3). 

HRMS (ESI): m/z [M + H]
+
 calcd. for C36H31NOS4: 622.1361; found: 622.1356. 

 

N,N-dibutylbenzo[b]thiophen-2-amine (491): 

 

Chemical Formula: C16H23NS 

Molecular Weight: 261.4255 

A 25-mL RBF, flame dried under vacuum flushed with argon (3 times) was charged with 

2-bromobenzo[b]thiophene (483, 213 mg, 1 mmol, 1 eq) and distilled THF (2 mL) was 

added. The solution was cooled to 0
 
°C and i-PrMgCl·LiCl (1.3 M in THF; 0.85 mL, 1.1 

mmol, 1.1 eq) was added dropwise and the mixture was stirred at 0
 
°C for 2 hrs to afford 

the Grignard reagent. This solution was cooled to –50 °C before CuCl•2LiCl (1.0 M in 

THF; 1.2 mL, 1.2 mmol, 1.2 eq) and bis[2-(N,N-dimethylamino)ethyl] ether (192 mg, 1.2 

mmol, 1.2 eq) were added dropwise and the mixture was stirred for 45 min. A solution of 

lithium dibutylamide was prepared by adding dropwise n-BuLi (2.5 M in hexanes, 0.8 mL, 

2 mmol, 2 eq) to di-N-butylamine (0.34 mL, 2 mmol, 2 eq) in distilled THF (1 mL), at –78
 

°C under argon; the solution was stirred 15 min at –78
 
°C and 15 min at 0

 
°C. To the so 

formed aryl cuprate, was added dropwise the solution of lithium dibutylamide and the 

mixture was further stirred for 45 min at –50 °C. The reaction mixture was cooled to –78
 

°C, then a solution of chloranil (295 mg, 1.2 mmol, 1.2 eq), in THF (7 mL), was added 
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slowly over a period of 45 min. The reaction mixture was then allowed to reach –50 °C and 

stirred for 18 hrs. Then Et2O (10 mL) was added to the crude reaction mixture which was 

filtered through kiesielghur and washed with Et2O thoroughly. The combined filtrates were 

washed with aq. NH4OH (28%, 2 x 10 mL), the organic layer was separated, the aqueous 

layer was extracted with Et2O (2 x 10 mL), combined organic layers were dried over 

MgSO4 and evaporated. The crude material was purified by column chromatography (10 g 

silica, hexanes) affording N,N-dibutylbenzo[b]thiophen-2-amine (491, 144 mg, 55%) as 

a colourless oil. 

IR (ATR):  (cm
–1

) 3061, 2957, 2931, 2870, 1563, 1542. 

1
H NMR (CDCl3, 500 MHz): (ppm) 7.55 (dm, 1H, 

3
J = 7.9 Hz), 7.39 (dm, 

3
J = 7.9 Hz), 

7.20-7.22 (m, 1H), 6.99-7.01 (m, 1H), 5.92 (br s, 1H), 3.31 (br t, 4H, 
3
J = 7.5 Hz), 1.65-

1.69 (m, 4H), 1.38-1.42 (m, 4H), 0.99 (t, 6H, 
3
J = 7.5 Hz). 

13
C NMR (CDCl3, 125 MHz): (ppm) 156.1 (1C, C), 141.7 (1C, C), 131.5 (1C, C), 124.4 

(1C, CH), 121.2 (1C, CH), 119.7 (1C, CH),  119.5 (1C, CH), 94.8 (1C, CH), 53.1 (2C, 

CH2), 29.3 (2C, CH2), 20.3 (2C, CH2), 13.9 (2C, CH3). 

HRMS (ESI): m/z [M + H]
+
 calcd. for C16H23NS: 262.1624; found: 262.1626. 

 

13-Bromo-N,N-dibutyl-7,8-dipropyltetrathia[7]helicen-2-amine (493): 

 

Chemical Formula: C36H38BrNS4 

Molecular Weight: 692.8576 

1
H NMR (CDCl3, 500 MHz): (ppm) 7.90 (d, 1H, 

3
J  = 8.5 Hz), 7.76 (d, 1H, 

3
J = 8.5 Hz), 

7.73 (d, 1H, 
3
J  = 8.5 Hz), 7.63 (d, 1H, 

3
J = 8.5 Hz), 7.01 (s, 1H), 5.41 (s, 1H), 3.08-3.16 

(m, 4H), 2.84-2.90 (m, 2H), 2.70-2.76 (m, 2H), 1.83-1.89 (m, 4H), 1.28-1.33 (m, 4H), 1.15 

(m, 6H), 1.08-1.12 (m, 4H), 0.80 (t, 6H, 
3
J = 7.6 Hz). 

13
C NMR (CDCl3, 125 MHz): (ppm) 155.9 (1C, C), 139.2 (1C, C), 139.0 (1C, C), 137.9 

1C, C), 137.3 (1C, C), 136.5 (1C, C), 136.34 (1C, C), 136.30 (1C, C), 132.4 (1C, C), 132.3 

(1C, C), 131.2 (1C, C), 130.9 (1C, C), 129.2 (1C, CH), 128.84 (1C, C), 128.78 (1C, C), 
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127.5 (1C, C), 120.1 (1C, CH), 119.0 (1C, CH), 118.7 (1C, CH), 113.5 (1C, CH),  112.3 

(1C, C), 98.9 (1C, CH), 52.9 (2C, CH2), 34.38 (1C, CH2), 34.33 (1C, CH2), 28.7 (2C, 

CH2), 23.2 (2C, CH2), 20.0 (2C, CH2), 14.7 (2C, CH3), 13.8 (2C, CH3). 

HRMS (ESI): m/z [M + H]
+
 calcd. for C36H38BrNS4: 692.1143; found: 692.1141. 
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Entry Formamide 
Temp.  

[°C] 

Rxn time 

[hrs] 
Yield [%] 

e.e. [%] of 

460 

e.e. [%] 

of 8 

1 (R,R)-430 –78 to RT 1 + 1 35 2.5 (M) 2 (P) 

2 (S)-429  –78 6 29 14 (M) 4 (P) 

3 (R)-427 –78 6 22 7 (P) 1 (M) 

4 (S)-426 –43 3 50 2 (P) rac  

Chapter 3: Table 1 

 

Entry Formamide 
Temp.  

[°C] 

Rxn time 

[hrs] 
Yield [%] 

e.e. [%] of 

460 

e.e. 

[%] of 

8 

1 (R)-446 –78 7 19 13 (M) 5.5 (P) 

2 (R)-445 –78 6 15 9 (M) 1 (P) 

3 (R)-441 –78 6 23 42 (M) 8 (P) 

4 (R)-442 –78 6 34 29 (M) 7 (P) 

5 (R)-443 –78 6 15 25 (M) 5 (P) 

6 (R)-447 –78 6 29 17 (M) 3 (P) 

7 (S)-439 –78 7 26 13 (M) 5 (P) 

8 (–)-452 –78 18 41 rac rac 

Chapter 3: Table 2 

 

Entry Formamide 
Temp.  

[°C] 

Rxn time 

[hrs] 
Yield [%] 

e.e. [%] of 

460 

e.e. [%] 

of 8 

1 (R)-441 –78 18 30 41 (M) 10 (P) 

2 (R)-448 –78 18 20 3 (P) 1 (M) 

3 (R)-450 –78 6 9 28 (M) 3 (P) 

4 (R)-449 –78 6 NR - - 

5 (R)-451 –78 18 NR - - 

6 (R)-455  –78 18 32 42 (M) 11 (P) 

7 (R)-456 –78 18 35 7 (P) 2.5 (M) 

Chapter 3: Table 3 
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Entr

y 

Formamide 

(eq) 

Lewis 

acid 

Temp.  

[°C] 

Rxn time 

[hrs] 

Yield 

[%] 

e.e. [%] 

of 460 

e.e. [%] 

of 8 

1 (R)-441 (0.5) - –78 18 30 41 (M) 10 (P) 

2 (R)-441  (0.5) - –63 2 9 34 (M) 7 (P) 

3 (R)-441  (0.35) - –40 2 29 25 (M) 9 (P) 

4 (R)-441  (1) - –78 6 29 17 (M) 5 (P) 

5 (S)-441  (0.5) BF3•Et2O –78 18 37 10 (P) 6 (M) 

6 (R)-451  (0.5) BF3•Et2O –78 18 20 4.5 (P) 
1.5 

(M) 

Chapter 3: Table 4 

 

Entry Formamide Solvent 
Rxn time 

[hrs] 
Yield [%] 

e.e. [%] of 

460 

e.e. [%] 

of 8 

1 (R)-441 THF 18 30 41(M) 10 (P) 

2* (R)-441 Et2O/Toluene 6 9 5 (M) 1 (P) 

3 (R)-455 2-MeTHF 18 26 16 (M) 5 (P) 

4 (R)-441 DME/THF 18 28 30 (M) 7 (P) 

5 (R)-441 MTBE 18 32 1 (P) 0.15 (M) 

Chapter 3: Table 5 

 

Entr

y 

s-BuLi 

[eq] 

(–)-sparteine /   

s-BuLi ratio 

Lithiation 

time [hrs] 

Rxn time
a 

[hrs]
 Yield [%] 

e.e. [%] of 

product
c
 

e.e. 

[%] 

of 8
c
  

1 0.7 1:1 0.5 18 460, 25
 
 7 (P) 2.5 (M) 

2 0.5 2:1 1 18 460, 20
 
 5 (P) 0.4 (M) 

3 0.5 1:1 0.5 18 460, 10
 
 11 (P) 1 (M) 

4
b
 0.5 1:1 0.5 2 463, 9 7 (P) 1.7 (M) 

Chapter 3: Table 6 

 

Ent

ry 

s-

BuLi 

[eq] 

(–)-Sparteine / 

s-BuLi ratio 

Lithiation 

time [hrs] 

Conversion 

into 466 [%]a 

e.e. [%] 

of 466b 

Conversion 

into 463 [%]a 

e.e. [%] 

of 463b 

e.e. [%] 

of  8b 

1 0.5 20:1 0.5 - - 6 55 (P) 3.3 (M) 

2 1.5 6.6:1 0.5 2 >90 (P) 22 60 (P) 17.5 (M) 

3 2 5:1 0.75 2.5 >90 (P) 27 72 (P) 28 (M) 

4 2 5:1 4 1 >90 (P) 23 74 (P) 21 (M) 

5 2 5:1 4 5 >90 (P) 35 84 (P) 58 (M) 
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6 2 1:1 4 4 87 (P) 23 51 (P) 21.5 (M) 

7 4 5:1 0.75 2.6 >90 (P) 35 85 (P) 66 (M) 

8 4 5:1 2 36 81 (P) 33 62 (M)c 69 (M) 

9 1 5:1 4 1.5 >90 (P) 18 65 (P) 14 (M) 

10 1 3:1 4 0.3 >90 (P) 12 62 (P) 9.4 (M) 

11 3 5:1 4 9 >90 (P) 38 68 (P) 67 (M) 

12 3 5:1 4 14 >90 (P) 30 39 (P) 80 (M) 

13d 2 5:1 4 1.8 >90 (P) 21 84 (P) 33 (M) 

14d 2 5:1 4 1 >90 (P) 20 71 (P) 24 (M) 

Chapter 3: Table 7 

 

 

Chapter 3: Scheme 9 

 

E

nt

r

y 

n-BuLi 

[eq] 

(–)-Sparteine / n-

BuLi ratio 

Lithiation 

time [hrs] 

Conversion into 

466 [%]a 

e.e. [%] 

of 466b 

Conversion into 

463 [%]a 

e.e. [%] 

of 463b 

e.e. [%] 

of  8b 

1 2 5:1 4 16 86 (P) 45 30 (P) 68 (M) 

2 2 1.1:1 4 7 >90 (P) 33 51 (P) 40 (M) 

3 1 5:1 4 0.5 >90 (P) 13.5 53 (P) 12 (M) 

4 2 1:1 4 8 >90 (P) 31 44 (P) 39 (M) 

Chapter 3: Table 8 
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Ent

ry 

Time
 
[hrs] after 

THF added
 

Conversion into 

466 [%]
b
 

e.e. [%] 

of 466
c
 

Conversion into 

463 [%]
b
 

e.e. [%] of 

463
c
 

e.e. [%] 

of 8
c
 

1 0 3 82 (P) 28 53 (P) 30 (M) 

2a 0.5 3 6 (P) 23 9 (M) 1 (M) 

3 3 31 1 (M) 48 8 (M) 10 (P) 

4 17 20 10 (M) 61 5 (M) 5 (P) 

Chapter 3: Table 9 

 

 
Chapter 3: Figure 5 

 

Ent

ry 

Conditionsa 

for KR1 

Conversion of 

KR1, product 

KR1: 

e.e. of 

product  

Conditionsa 

for KR2 

Conversion of 

KR2, product 

KR2: 

e.e. of 

product 

Overall 

conversion 

KR1*KR2 

1 B 466, 14%b 93% (P) - - - 14% 

2 B 8, 56%b 64% (M) B 
8, 83%b 

466, 5%b 

93% (M) 

>90% (P) 

47%b 

3%b 

3 B 8, 56%c 78% (M) C 460, 10%b 88% (M) 5.6% 

4 B 8, 56%c 77% (M) E 8, 69% 84% (M) 39% 

5 B 8, 56%c 74% (M) A 8, 76% 88% (M) 43% 

6 A 463, 22% 67% (P) D 463, 11% 84% (P) 2.4% 

7 A 463, 23% 74% (P) C 460, 10%b 92% (P) 2.3% 

8 B 463, 30% 43% (P) A 
466, 15% 

463, 45% 

>90% (P) 

76% (P) 

4.5% 

14.5% 

Chapter 3: Table 10 
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Chapter 3: Scheme 16 

 

 

Chapter 3: Scheme 17 

 

HPLC conditions: 

A: Varian HPLC, hexane/IPA 99.5:0.5, 0.5 mL min
–1

 20 °C. 

B: Shimadzu HPLC, hexane/IPA 99.5:0.5, 0.5 mL min
–1

 20 °C. 

C: Shimadzu HPLC, hexane/IPA 99.7:0.3, 0.5 mL min
–1

 20 °C. 

D: Shimadzu HPLC, hexane/IPA 93:7, 0.5 mL min
–1

 20 °C. 

E: Shimadzu HPLC, hexane/IPA 97:3, 0.5 mL min
–1

 20 °C. 

 

Table or 

Scheme 

Ent

ry 

HPLC 

conditio

ns 

Compound 
Retention time 

for P [min] 

Retention 

time for M 

[min] 

Ratio M/P e.e. [%] 

- rac B 8 11.75 13.66 50/50 0 

- rac C 8 15.35 18.57 50/50 0 
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- rac A 460 16.82 19.72 50/50 0 

- rac E 460 16.20 19.83 50/50 0 

- rac C 463 10.25 12.19 50/50 0 

- rac C 466 8.15 8.60 50/50 0 

- rac D 468 24.99 28.98 50/50 0 

1 1 B 8 12.39 14.20 50.98/49.02 2 (P) 

1 1 A 460 17.56 20.81 48.79/51.21 2.5 (M) 

1 2 B 8 11.95 13.58 47.24/52.76 5 (M) 

1 2 A 460 17.84 21.29 52.13/42.87 14 (P) 

1 3 B 8 12.33 14.13 49.59/50.41 1 (M) 

1 3 A 460 18.47 23.37 53.32/46.68 7 (P) 

1 4 B 8 11.44 13.98 49.75/50.24 0.5 (M) 

1 4 A 460 17.57 21.58 51.31/48.69 3 (P) 

2 1 B 8 12.42 14.05 52.85/47.15 5.5 (P) 

2 1 A 460 19.52 24.15 43.28/56.72 13 (M) 

2 2 B 8 12.55 14.27 49.60/50.4 1 (M) 

2 2 A 460 20.10 24.50 52.45/47.55 5 (P) 

2 3 B 8 12.71 14.64 52.63/47.37 8 (P) 

2 3 A 460 17.85 20.94 29.18/70.82 42 (M) 

2 4 B 8 12.09 13.60 53.52/46.48 7 (P) 

2 4 A 460 18.02 21.99 35.35/63.65 27 (M) 

2 5 B 8 12.30 13.97 52.47/47.53 5 (P) 

2 5 A 460 17.74 21.84 37.41/62.59 25 (M) 

2 6 B 8 12.39 14.21 51.36/48.64 3 (P) 

2 6 A 460 17.46 20.93 41.40/58.60 17 (M) 

2 7 B 8 12.33 14.15 52.67/47.33 5 (P) 

2 7 A 460 17.11 19.98 43.64/56.36 13 (M) 

2 8 B 8 11.71 13.76 49.99/50.01 rac 

2 8 E 460 14.11 16.35 49.85/50.15 rac 

3 1 B 8 11.81 13.29 54.96/45.04 10 (P) 

3 1 E 460 14.91 17.56 29.76/70.24 41 (M) 

3 2 B 8 11.60 13.87 49.3/50.7 1 (M) 

3 2 E 460 14.20 16.40 51.11/48.89 3 (P) 

3 3 B 8 12.43 14.14 51.62/48.38 3 (P) 

3 3 A 460 19.26 23.41 35.98/64.02 28 (M) 

3 6 B 8 10.70 12.44 55.37/44.63 11 (P) 

3 6 E 460 14.11 16.34 28.89/71.11 42 (M) 

3 7 B 8 10.04 11.48 48.71/51.28 2.5 (M) 

3 7 E 460 14.57 16.73 53.45/46.55 7 (P) 

4 1 Same as  Table 3  Entry 1    

4 2 B 8 13.01 14.93 53.53/46.47 7 (P) 
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4 2 A 460 16.06 19.73 32.82/67.18 34 (M) 

4 3 B 8 12.30 13.87 54.91/45.09 9 (P) 

4 3 A 460 17.34 21.42 37.37/62.63 25 (M) 

4 4 B 8 12.49 14.29 55.03/44.97 10 (P) 

4 4 A 460 15.17 16.98 41.43/58.57 17 (P) 

4 5 B 8 11.02 12.83 46.88/53.12 6 (M) 

4 5 E 460 15.38 17.98 54.80/45.20 10 (P) 

4 6 B 8 11.69 13.79 49.14/50.86 2 (M) 

4 6 E 460 15.77 18.70 52.22/47.78 5 (P) 

5 1 Same as  Table 3  Entry 1    

5 2 B 8 11.60 13.90 49.23/50.77 1 (M) 

5 2 E 460 14.32 16.33 51.52/48.48 3 (P) 

5 3 B 8 13.67 15.83 52.55/47.45 5 (P) 

5 3 E 460 14.26 16.44 41.92/58.08 16 (M) 

5 4 B 8 10.76 12.51 53.50/46.5 7 (P) 

5 4 E 460 14.39 16.70 35.1/64.9 30 (M) 

5 5 B 8 11.73 13.68 49.89.50.10 rac 

5 5 E 460 16.22 19.84 50.48/49.52 1 (P) 

6 1 B 8 11.56 13.46 51.28/48.72 2.5 (P) 

6 1 E 460 15.01 17.78 46.50/53.50 7 (M) 

6 2 B 8 12.81 14.69 50.21/49.79 0.4 (P) 

6 2 E 460 14.96 17.63 47.64/52.35 5 (P) 

6 3 B 8 11.31 12.95 50.21/49.79 0.4 (P) 

6 3 E 460 15.03 17.88 44.70/55.30 11 (M) 

6 4 B 8 12.86 15.00 45.21/45.64 1.7 (M) 

6 4 C 463 9.04 10.18 4.93/4.22 7 (P) 

7 1 B 8 10.9 12.81 45.04/48.26 3 (M) 

7 1 C 463 8.24 9.09 5.06/1.46 55 (P) 

7 2 C 8 14.31 17.88 30.97/44.10 17 (M) 

7 2 C 463 9.54 11.15 18.12/4.42 60 (P) 

7 2 C 466 7.72 - 2.18 > 90 (P) 

7 3 C 8 14.20 17.71 25.25/44.68 28 (M) 

7 3 C 463 9.50 10.99 23.66/3.94 72 (P) 

7 3 C 466 7.73 - 2.48 > 90 (P) 

7 4 C 8 12.93 15.48 29.90/46.19 21 (M) 

7 4 C 463 9.25 10.34 19.74/2.90 74 (P) 

7 4 C 466 7.73 - 1.26 > 90 (P) 

7 5 C 8 17.03  20.06 12.94/48.20 58 (M) 

7 5 C 463 10.91 12.83 31.43/2.82 84 (P) 

7 5 C 466 8.63 - 4.40 > 90 (P) 

7 6 C 8 17.77 21.93 28.44/44.01 21.5 (M) 
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7 6 C 463 10.86 13.34 17.65/5.84 51(P) 

7 6 C 466 8.38 8.79 3.78/0.26 87 (P) 

7 7 C 8 16.34 19.63 10.35/50.75 66 (M) 

7 7 C 463 10.62 12.53 33.96/2.77 85(P) 

7 7 C 466 8.42 - 2.17 > 90 (P) 

7 8 C 8 16.26 20.73 4.27/23.58 69 (M) 

7 8 C 463 10.39 12.44 5.79/24.68 66 (M) 

7 8 C 466 8.21 8.53 37.79/3.89 81 (P) 

7 9 C 8 15.22 18.18 34.63/46.14 14 (M) 

7 9 C 463 10.25 11.47 14.66/3.10 65 (P) 

7 9 C 466 8.30 - 1.46 > 90 (P) 

7 10 C 8 15.12 18.68 39.86/48.12 9 (M) 

7 10 C 463 10.30 11.88 9.60/2.06 62 (P) 

7 10 C 466 8.33 - 0.35 > 90 (P) 

7 11 C 8 13.41 15.86 8.59/44/10 67 (M) 

7 11 C 463 9.49 10.69 32.22/6.08 68 (P) 

7 11 C 466 7.85 - 9.01 > 90 (P) 

7 12 C 8 16.47 20.64 5.57/50.26 80 (M) 

7 12 C 463 10.43 12.59 21.72/8.85 39 (P) 

7 12 C 466 8.20 8.58 12.93/0.39 93 (P) 

7 13 C 8 17.20 20.43 25.73/50.96 33 (M) 

7 13 C 463 11.00 12.99 19.84/1.68 84 (P) 

7 13 C 466 8.67 - 1.78 > 90 (P) 

7 14 C 8 16.89 20.37 30.66/48.90 24 (M) 

7 14 C 463 10.86 13.06 17.17/2.90 71 (P) 

7 14 C 466 8.46 - 0.86 > 90 (P) 

Scheme 

9 
- C 463 9.53 11.08 36.04/48.88 15 (M) 

Scheme 

9 
- C 466 7.74 7.99 12.85/2.23 70 (P) 

Scheme 

9 
- B 8 11.43 12.87 87.13/12.87 74 (P) 

8 1 C 8 15.66 19.26 6.24/32.79 68 (M) 

8 1 C 463 10.13 11.99 28.99/15.55 30 (P) 

8 1 C 466 8.07 8.39 15.23/1.19 86 (P) 

8 2 C 8 17.18 21.82 18.29/42.28 40 (M) 

8 2 C 463 10.55 12.83 25.6/8.13 51 (P) 

8 2 C 466 8.24 8.59 5.23/0.47 84 (P) 

8 3 C 8 16.27 20.9 37.75/48.02 12 (M) 

8 3 C 463 10.28 12.33 10.57/3.23 53 (P) 

8 3 C 466 8.08 - 0.43 > 90 (P) 

8 4 C 8 16.91 20.61 16.07/39/90 43 (M) 
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8 4 C 463 10.66 12.90 25.48/9.91 44 (P) 

8 4 C 466 8.29 8.72 8.12/0.52 86 (P) 

Scheme 

12 
- B 8 10.89 12.50 44.55/55.45 10 (M) 

Scheme 

12 
- B 460 15.63 18.10 63.63/33.37 30 (P) 

Scheme 

12 
- D 468 27.12 32.17 86.57/13.42 86 (P) 

9 1 C 8 15.33 17.67 23.24/43.50 30 (M) 

9 1 C 463 10.20 11.71 23.09/7.0 53 (P) 

9 1 C 466 8.20 8.44 2.81/0.28 82 (P) 

9 2 C 8 15.77 18.31 36.44/36.94 1 (M) 

9 2 C 463 10.37 11.96 10.56/12.58 9 (M) 

9 2 C 466 8.29 8.62 1.84/1.62 6 (P) 

9 3 C 8 15.01 17.34 9.80/8.17 10 (P) 

9 3 C 463 10.04 11.44 23.67/27.42 8 (M) 

9 3 C 466 8.11 8.40 15.32/15.60 1 (M) 

9 4 C 8 13.72 15.7 8.68/7.79 5 (P) 

9 4 C 463 9.59 10.69 29.86/32.74 5 (M) 

9 4 C 466 7.93 8.13 9.62/11.09 10 (M) 

Figure 5  - C 8 16.97 21.33 39.43/39.54 rac 

Figure 5 - C 463 10.65 12.92 10.65/9.56 5 (P) 

Figure 5 - C 466 8.33 8.82 0.44/0.41 rac 

10 1 C 466 8.20 8.58 12.93/0.39 93 (P) 

10 2 C 8 12.90 15.63 12.17/57.17 64 (M) 

10 2 C 8 18.23 22.32 1.44/78.36 93 (M) 

10 2 C 466 8.59 - 3.99 > 90 (P) 

10 3 C 8 17.15 21.04 10.79/89.21 78 (M) 

10 3 B 460 13.93 16.14 5.95/94/05 88 (M) 

10 4 B 8 10.66 12.71 11.5/88.5 77 (M) 

10 4 B 8 11.05 12.98 8.13/91.87 84 (M) 

10 5 B 8  11.74 14.09 13.13/86.87 74 (M) 

10 5 C 8 14.48 17.25 4.67/77.20 88 (P) 

10 6 C 463 9.53 11.08 83.61/16.39 67 (P) 

10 6 C 466 7.94 8.29 10.05/0.87 84 (P) 

10 7 B 8 11.34 13.23 87.67/12.32 74 (P) 

10 7 B 460 14.38 16.82 96.11/3.89 92 (P) 

10 8 B 8 11.03 12.90 71.11/28.89 43 (P) 

10 8 C 463 9.70 10.72 39.99/5.53 76 (P) 

10 8 C 466 8.23 - 15.13 > 90 (P) 

Scheme 

16  
- C 8 12.90 15.63 12.17/57.17 64 (M) 

Scheme 

16 
 C 463 9.40 10.39 23.18/3.46 74 (P) 
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Scheme 

16 
- C 466 7.96 - 4.00 > 90 (P) 

Scheme 

16 
 C 8 18.23 22.32 1.44/78.36 93 (M) 

Scheme 

16 
- C 463 11.21 13.81 11.44/4.76 43 (P) 

Scheme 

16 
 C 466 8.59 - 3.99 > 90 (P) 

Scheme 

17   
- B 8 10.73 12.77 63.61/36.39 27 (P) 

Scheme 

17 
- B 460 14.47 17.02 36.68/61.31 25 (M) 

Scheme 

17 
- D 468 25.70 30.69 16.20/83.80 68 (M) 
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Structure of the non-degraded compound 476 

 

Chemical Formula: C52H46N4O4S4 

Molecular Weight: 919.2060 

Mp.: 246-248 °C (for the degraded compound) 
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letterComparison of Ullmann/RCM and Ullmann/Bis-hydrazone Coupling Reac-
tions; New Access to Benzodithiophenes for Dye-Sensitized Solar Cell and 
Thiahelicene Applications
Ullmann/RCM and Ullmann/Bis-hydrazone Coupling ReactionsG. Richard Stephenson,*a Silvia Cauteruccio,b Julien Doulceta

a School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
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Abstract: The use of CuTC (Liebeskind’s catalyst), followed by
methylenation and ring-closing metathesis, or bis-hydrazone cou-
pling reactions is described. This approach establishes an alterna-
tive non-photochemical synthesis of the strategically important 1,2-
b:4,3-b′ BDT regioisomer, which has previously been underused in
applications such as dye-sensitized solar cells and nonlinear optics
because of the difficulty of synthesis on a large scale.

Key words: benzodithiophene, Liebeskind’s catalyst, bis-hydra-
zone coupling, alkene metathesis, non-photochemical synthesis

The combination of thiophenes and benzene rings in high-
performance chromophores has proved to be a powerful
strategy1 because of the lower aromatic resonance energy
of thiophene compared to benzene.2 Linear and fused-ring
structures, of which the simplest (examples are shown in
Figure 1) are benzothiophenes (BTs), benzodithiophenes
(BDTs, e.g. 1,2,3) and benzothienobenzothiophenes (BT-
BTs, e.g. 4). These have found significant commercial ap-
plications in organic field-effect transistors3 (OFETs),
organic light-emitting diodes4 (OLEDs) and solar cells.5

In practice, isomers 2 and 3 are by far the most widely
studied, and are of growing importance,6 however, recent
papers describing applications in dye-sensitized solar
cells (DSCs) point out that the symmetrical isomer 1 is un-
derused.7 For our own interests in tetrathia[7]helicenes as
components in nonlinear optics 8,9 and in novel chelating
diphosphine ligands,10 regioisomer 1 is a well-established
key intermediate which, of the available BTDs, has a
unique role because its extension (by incorporating addi-
tional fused rings) is ideal for helix formation.11 The most
efficient access12 to tetrathia[7]helicenes employs a pho-
tochemical electrocyclic reaction of 5 combined with ox-
idative rearomatisation as the final step. Currently, this
type of photochemical cyclisation is also used for the
preparation of regioisomer 1, but this approach is slow
and inconvenient in the unsubstituted series because the
Z-isomer of the alkene is required for photocyclisation. In
most cases, applications have involved substituted exam-
ples, which are easier to prepare.13

Figure 1  Structures of thiophene-based cores of high-performance
chromophores 1–4 and the tetrathia[7]helicene precursor 5

We describe here chemical syntheses14 of benzo[1,2-
b:4,3-b′]dithiophenes that will not only make 1 more eas-
ily available for tetrathia[7]helicene synthesis, but will
also open up opportunities for more rapid development for
commercial applications, where previous reliance on pho-
tochemical steps cause complications in production
chemistry that has held back evaluation of the 1,2-b:4,3-b′
isomer series.

Development of the two strategies shown in Scheme 1
both required diformyl bithiophene 12a (Scheme 2),
which we approached by using the Liebeskind
modification15 of Ullmann coupling or the mild copper(I)
iodide triethylphosphite method of Ziegler.16 The stan-
dard dimerisation method involving (2-formyl-3-thie-
nyl)boronic acid gave the product in only 18% yield17 and
required three steps from 3-bromo-2-formylthiophene (9).
From 12a, formation of the bis-hydrazone18 or dimethyl-
enation should give easy access to precursors for the cy-
clisation step. The novel intermediate 2,2′-divinyl-3,3′-
bithiophene (6) was also expected to be important for the
formation of BDT by alkene metathesis, which should be
an efficient strategy because the corresponding metathesis
reaction of 2,2′-divinylbiphenyl to form phenanthrene is
known to work well.19

5S

S

S

S

S

S

SS

S

S

S S

1
benzo[1,2-b:4,3-b']dithiophene

2
benzo[1,2-b:4,5-b']dithiophene

3
benzo[2,1-b:4,3-b']dithiophene

4
benzothienobenzothiophene
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Scheme 1  Strategies for the non-photochemical preparation of ben-
zo[1,2-b:4,3-b′]dithiophene 1

Scheme 2  Ullmann coupling of 3-bromo- and 3-iodothiophenes

To gain access to the bis-formyl derivatives 12, we ex-
plored coupling chemistry using compounds 7, 9, 10, and
11 (Scheme 2). The N-formylpiperidine method could be
used to convert 3-bromothiophene into 9, improving the
yield from 72–86%20 to 97%, which is also an improved
yield over more common alternatives that use DMF21 or
N-formyl-N-methylaniline,22 or the Vilsmeier–Haack pro-
cess.23 The required imine 7 was easily made in quantita-
tive yield by heating 9 to reflux in toluene with
cyclohexylamine using a Dean–Stark trap.24

Our first attempt at the Ullmann coupling (Scheme 2) of
cyclohexylimine 7 with Liebeskind catalyst in N-methyl-
2-pyrrolidinone (NMP) at room temperature25 gave a dis-
appointing 25% yield (Table 1, entry 2). To prepare the
more reactive 3-iodothiophene analogue (Scheme 3), we
first protected the 5-position of 7 with a trimethylsilyl
group to give 1426 through selective C-5 lithiation, which
proceeded in the presence of the 3-bromo substituent by
using LDA.27 This was followed by bromine–lithium ex-

change and quenching with I2 to form 10.28 Unfortunately,
the Ullmann coupling was not significantly improved by
using iodoimine derivative 10, and the required product
was obtained in only 29% yield (Table 1, entry 3). The si-
lyl-protected aldehyde intermediate 11 was also examined
in the Ullmann step (14% yield; Table 1, entry 5). This
was compared with the Ziegler method,16 which was
found to perform similarly (15% yield; Table 1, entry 4)
with our substrate.29 The direct palladium-catalyzed
coupling30 of the 3-bromo-2-formylthiophene starting
material 9 was also investigated because it would save a
step, and this gave the required product in 35% yield (Ta-
ble 1, entry 1).31

Scheme 3  Preparation of iodothiophenes 10 and 11. Reagents and
conditions: (a) LDA, Me3SiCl, THF, N2, 99%; (b) n-BuLi, I2, THF,
N2, 90%; (c) AcOH, CH2Cl2, H2O, 88%.

The problem of low yields was initially addressed by us-
ing a microwave reactor32 (using 7 and 10), and it soon be-
came apparent that careful purification of the CuTC was
crucial for obtaining good results (Table 2). Further exam-
ination of reaction conditions to control competing deha-
logenation allowed 12a to be obtained in a satisfactory
67% isolated yield (Table 2, entry 8). On a large scale,
however, we found that simply heating 7 at 90 °C for
17 hours gave 12a in 68% isolated yield (e.g., Table 2, en-
try 9).

The BDT synthesis was completed by a simple Wittig re-
action to produce 2,2′-divinyl-3,3′-bithiophene (6),33 fol-
lowed by a ring-closing metathesis (RCM) step. For the
RCM step, we chose to use Iuliano conditions19 with the
1st generation Grubbs catalyst [Ru(Pcy3)2(CHPh)Cl2],
which has been reported19a to give 100% yield in the prep-
aration of phenanthrene in the case of divinylbiphenyl.
Gratifyingly, this does indeed appear to be a very efficient
and general RCM method, and in our case we achieved
90% yield of 1 at 5 mol% catalyst loading, which was im-

then olefination
or hydrazone

formation Br

S

NUllmann coupling

hydrazone
coupling

alkene
metathesis

NHTs NHTs

NN

SS

SS

8

7

6

1

SS

see Tables
1 and 2

O

R

S
X

R
Y

S

OO

SS

 7 (R = H, X = N-Cy, Y = Br)
 9 (R = H, X = O, Y = Br)

10 (R = SiMe3, X = N-Cy, Y = I)
11 (R = SiMe3, X = O, Y = I)

13a (R = H)
13b (R = SiMe3)

12a (R = H)
12b (R = SiMe3)

R R 14

O

Me3Si
I

S
c

Cy N

Me3Si
I

S

b

Cy N

Me3Si
Br

S

a

Cy N

Br

S

11107

Table 1 Coupling Reactions to 2,2′-Diformyl-3,3′-bithiophenes 12a and 12b

Entry Substrate Catalyst (equiv) Solvent Temp (°C) Time (h) Yield (%)

1 9 Cu (10) / Pd(PPh3)4 (0.1) DMSO 100 15 35a

2 7 CuTC (2.2) NMP r.t. 60 25b

3 10 CuTC (3.0) NMP r.t. 60 29b

4 10 CuI-P(OEt)3 (1.5) THF –78 to r.t. 60 15b

5 11 CuTC (3.0) NMP r.t. 60 14b

a Isolated yield.
b Based on NMR analysis of the crude bis-aldehyde 12a or 12b.
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proved to 96% yield by using 10 mol% catalyst (Scheme
4).34

Scheme 4  Cyclisation reactions to form benzo[1,2-b:4,3-b′]dithio-
phenes. Reagents and conditions: (a) n-BuLi, MePPh3Br, THF, N2,
77%; (b) CH2Cl2, [Ru(Pcy3)2(CHPh)Cl2] (0.1 equiv), r.t., 8 h, Ar,
96%; (c) TiCl3(DME)1.5/Zn(Cu), DME, 5%; (d) tosylhydrazide
(2 equiv), THF, 8: 100%, 16: 100%; (e) 8, NaH, N2, THF, 37% or 16,
n-BuLi, N2, THF, 32%.

We also examined the formation of a bis-tosylhydrazone
in the double condensation reaction of 2,2′-diformyl-3,3′-
bithiophene (12a).35 This alternative18 to the McMurry
coupling36 of aldehydes gives direct access to the ben-
zo[1,2-b:4,3-b′]dithiophene ring system in 32–37% yield
and was successful both for 1 itself37 and the 2,7-di(tri-

methylsilyl)-protected derivative 15,38 which was ob-
tained from 16 by bis-hydrazone coupling of 12b.39 The
conditions used to form 1 resemble those for the Bam-
ford–Stevens reaction,40 but the use of n-butyllithium in
the preparation of 11 is more typical of a Shapiro reac-
tion.41 Both the Bamford–Stevens and Shapiro procedures
employ arylsulfonylhydrazones and are generally consid-
ered to begin by deprotonation of the NH-SO2Ar,42 and
exploit the chemistry of arylsulfinate (ArSO2

–) leaving
groups, and the elimination of N2 to provide a powerful
driving force. Under aprotic conditions the Bamford–Ste-
vens reaction is believed to proceed by formation of a car-
bene,43,44 but with the bis-hydrazones shown in Scheme 4
it seems probable that the initial anion45 cyclises as shown
in Scheme 5 by intramolecular nucleophile addition to the
hydrazone and elimination of an arylsulfinate.46 Subse-
quent loss of two molecules of N2 and the second arylsul-
finate completes the benzo[1,2-b:4,3-b′]dithiophene ring.
The bis-hydrazone coupling reaction is useful, but re-
quires further optimisation, perhaps by the use of more
modern bases47 which have become popular in the Shap-
iro reaction.

Finally, because the highest yielding route to BDT 1 was
achieved by the application of the RCM reaction, we con-
sidered the possibility of coupling of 3-bromo-2-vinyl-
thiophene to make 2,2′-divinyl-3,3′-bithiophene (6) more
directly from 9 in just two steps. Wittig methylenation of
9, however, proceeded in only 30% yield. It is possible
that the ease of dimerisation and polymerisation of the re-
active vinyl group in 3-bromo-2-vinylthiophene limits the
efficiency of this reaction. Thus, Ullmann coupling prior
to Wittig methylenation is the better approach.

Table 2 Control of Dehalogenation in the Coupling of Halothiophenes

Entry Substrate Conditions Yield (%)

12 13

1 10 r.t., 48 h, CuTC (3.5 equiv) 12b (20a) 13b (23a,c)

2 10 60 °C, 60 h, CuTC (3 equiv), N2 12b (29a) 13b (60a,c)

3 10 r.t., 60 h, CuTC (3 equiv), N2 12b (43b) 13b (37b)

4 10 60 °C, MW, 20 min, CuTC (3 equiv), N2 12b (48b) 13b (26b)

5 10 90 °C, MW, 15 min, CuTC (3 equiv), Ar 12b (51b) 13b (33b)

6 10 60 °C, MW, 30 min, CuTC (3 equiv), N2 12b (55b) 13b (21b)

7 7 90 °C, MW, 15 min, CuTC (2.2 equiv), Ar 12a (62b,d) 13a (19a,b)

8 7 90 °C, MW, 25 min, CuTC (2.2 equiv), Ar 12a (67b,e) 13a (17b)

9 7 90 °C, 17 h, CuTC (2.2 equiv), Ar 12a (68f) –

a Based on NMR analysis of crude bis-aldehyde.
b Based on NMR analysis of crude bis-imine.
c Catalyst not pure.
d 52% isolated yield.
e 55% isolated yield.
f Isolated yield.

R = H, SiMe3

R = H
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SS

R R
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12a (R = H)
12b (R = SiMe3)

  8 (R = H)
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In conclusion, we have shown that benzo[1,2-b:4,3-b′]di-
thiophene (1) is accessible in 50% overall yield in four
steps from 3-bromo-2-formylthiophene by Ullmann cou-
pling of the cyclohexylimine, methylenation, and ring-
closing metathesis in a simple reaction sequence that
avoids the use of photochemical conditions. The less cost-
ly alternative, bis-hydrazone route was found to be less ef-
fective than the metathesis route.
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Scheme 5  Possible mechanism for the bis-hydrazone cyclisation. The monoanion formed by the first deprotonation step will be in equilibrium
with the dianion (see box) when one equivalent of base is used,38 but with an excess of base37 the dianion is likely to be formed before loss of
the first p-toluenesulfinate.45
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nitrogen for 16 h. The solution was then evaporated to afford 
an orange oil (120 g, 100%) which was used directly in the 
next step. IR (ATR): 3075, 2925, 2851, 1623 cm–1. 1H NMR 
(CDCl3, 400 MHz): δ = 8.44 (s, 1 H), 7.34 (dd, J = 5.3, 
1.1 Hz, 1 H), 7.00 (d, J = 5.2 Hz, 1 H), 3.22 (m, 1 H), 1.51–
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colour was released from the filter cake. The filtrate was 
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resultant brown oil was taken up in H2O and shaken until the 
product precipitated. The mixture was then filtered and the 
residue was washed with H2O and dissolved in CH2Cl2, dried 
over MgSO4, filtered and evaporated. The solid residue was 
washed with a mixture of hexanes and EtOAc (8:1 v/v) and 
dried under vacuum to give [3,3′-bithiophene]-2,2′-
dicarboxaldehyde 12a; for yields, see Table 1 and Table 2.

(26) Preparation of N-{[3-Bromo-5-(trimethylsilyl)thiophen-
2-yl]methylene}cyclohexylimine (14): A solution of n-
BuLi (1.6 M in hexanes, 53 mL, 84.5 mmol, 1.15 equiv) was 
added dropwise to diisopropylamine (12 mL, 8.5 g, 84.5 
mmol, 1.15 equiv) in anhydrous THF (600 mL) at 0 °C under 
nitrogen. After stirring for 45 min at 0 °C, N-[(3-
bromothiophen-2-yl)methylene]cyclohexylimine (7; 20 g, 
73.5 mmol, 1 equiv) in anhydrous THF (50 mL) was added 
dropwise over 10 min. After stirring for a further 45 min at 
0 °C under nitrogen, the reaction mixture was cooled to 
–78 °C and trimethylsilyl chloride (10.7 mL, 9.2 g, 84.5 
mmol, 1.15 equiv) was added dropwise. After stirring for 1 h 
at –78 °C, the reaction mixture was allowed to warm to r.t., 
sat. aq NH4Cl (700 mL) was added, and the organic layer 
was separated and retained. The aqueous layer was extracted 
with EtOAc (2 × 400 mL) and the combined organic layers 
were washed with brine (500 mL), filtered through a 
MgSO4/basic alumina pad, and evaporated to give 14 (25.2 
g, 99%) as an orange oil. IR (ATR): 2927, 2853, 1624 cm–1. 
1H NMR (CDCl3, 400 MHz): δ = 8.43 (s, 1 H), 7.10 (s, 1 H), 
3.22 (m, 1 H), 1.22–1.87 (m, 10 H), 0.31 (s, 9 H). 13C NMR 
(CDCl3, 100 MHz): δ = 151.0, 144.4, 140.5, 136.5, 114.5, 
70.0, 34.1, 25.5, 24.7, –0.6. HRMS (ESI): m/z [M+H]+ calcd 
for C14H23BrNSSi: 344.0498; found: 344.0503.

(27) Rajca, A.; Wang, H.; Rajca, S. Angew. Chem. Int. Ed. 2000, 
39, 4481.

(28) Preparation of N-{[3-Iodo-5-(trimethylsilyl)thiophen-2-
yl]methylene}cyclohexylimine (10): A solution of N-{[3-
bromo-5-(trimethylsilyl)thiophen-2-
yl]methylene}cyclohexylimine (14; 6.94 g, 20.2 mmol, 1 
equiv) in anhydrous THF (350 mL) was cooled to –78 °C, 
under nitrogen. n-BuLi (1.6 M in hexanes, 13.9 mL, 22.2 
mmol, 1.1 equiv) was added dropwise. The mixture was 
stirred for 30 min at –78 °C and a solution of iodine (7.7 g, 
30.3 mmol, 1.5 equiv) in anhydrous THF (25 mL) was added 
dropwise until the red iodine colour persisted. After 15 min 
at –78 °C, the reaction mixture was allowed to warm to r.t., 
H2O (350 mL) was added and the mixture was extracted with 
CH2Cl2 (3 × 250 mL). The combined organic layers were 
concentrated to 300 mL, washed with sat. aq sodium sulfite 
(2 × 300 mL), dried over MgSO4, filtered, and evaporated to 
give 10 (7.12 g, 90%) as a brown oil, that crystallised upon 
standing. Mp 59 °C. IR (ATR): 2928, 2851, 1618 cm–1. 1H 
NMR (CDCl3, 400 MHz): δ = 8.34 (s, 1 H), 7.20 (s, 1 H), 
3.24 (br. m, 1 H), 1.85–1.57 (m, 7 H), 1.38–1.23 (m, 3 H), 
0.31 (s, 9 H). 13C NMR (CDCl3, 100 MHz): δ = 153.2, 145.4, 
143.7, 141.4, 85.1, 69.9, 34.2, 25.5, 24.7, –0.5. HRMS (ESI): 
m/z [M–H]– calcd for C14H21NISSi: 390.0203; found: 
390.0203.

(29) General Procedure: A solution of N-{[3-bromo-5-
(trimethylsilyl)thiophen-2-yl]methylene}cyclohexylimine 
14 (1 equiv) in anhydrous THF was cooled to –78 °C under 
nitrogen. n-BuLi (1.05 equiv) was added dropwise and the 
mixture was stirred at –78 °C for 30 min. Then CuI-P(OEt)3 
(1.5 equiv) was added in one portion and the mixture was 
stirred for a further 30 min at –78 °C before a solution of N-
{[3-iodo-5-(trimethylsilyl)thiophen-2-
yl]methylene}cyclohexylimine 10 in anhydrous THF was 
added dropwise. The reaction mixture was allowed to warm 
to r.t. and stirred at r.t. for 60 h. The reaction was quenched 

with H2O and the reaction mixture was diluted with CH2Cl2, 
and 15% aqueous AcOH was added. The mixture was at 
stirred r.t. overnight, then the organic layer was separated 
and retained and the aqueous layer was extracted with 
CH2Cl2. The combined organic layers were washed with 
brine, filtered through a MgSO4/neutral alumina pad and 
evaporated under reduced pressure. Crude material was 
purified by column chromatography (silica; hexanes–
EtOAc, 100:0 to 2:1 v/v) to give 5,5′-bis(trimethylsilyl)-
[3,3′-bithiophene]-2,2′-dicarbaldehyde (12b); for yields, see 
Table 1.

(30) Some, S.; Dutta, B.; Ray, J. K. Tetrahedron Lett. 2006, 47, 
1221.

(31) Preparation of [3,3′-Bithiophene]-2,2′-dicarboxaldehyde 
(12a): Anhydrous DMSO (50 mL) was degassed under 
nitrogen for 30 min, then 3-bromo-2-formylthiophene (9; 1 
equiv) was added and nitrogen gas was bubbled through the 
resulting solution for 10 min. Pd(PPh3)4 (0.1 equiv) and 
copper powder (3 equiv) were added and the solution was 
stirred and heated to 100 °C, under nitrogen for 15 h and 
then at 120 °C for 8 h. The progress of the reaction was 
monitored by TLC (hexanes–EtOAc, 3:1 v/v). The solution 
was cooled to r.t. before adding EtOAc (200 mL) and 
filtration through a pad of kieselghur. The filtrate was 
washed with H2O (2 × 150 mL) and brine (150 mL), dried 
over MgSO4, filtered and evaporated under reduced pressure 
to give a brown oil that was purified by chromatography 
(silica; hexanes–EtOAc, 95:5 to 3:1 v/v) to afford 12a (405 
mg, 35%) as a yellow powder.

(32) General Procedure: A dried 20-mL microwave vial was 
flushed with argon. To a solution N-[(3-bromothiophen-2-
yl)methylene]cyclohexylimine (7; 1 equiv) in NMP (15 
mL), CuTC (2.2 equiv) was added with stirring. The 
microwave vial was then sealed, vacuum was applied, and 
then the vial was filled with argon. The reaction mixture was 
irradiated (see Table 2), then diluted with EtOAc and 15% 
aqueous ammonia was added to produce a clear deep-blue 
aqueous layer. The organic layer was separated and retained 
and the aqueous layer was extracted with EtOAc. The 
organic layers were combined and evaporated and the 
resultant crude product (green oil) was dissolved in Et2O. 
This solution was washed with brine, dried over MgSO4, 
filtered, and evaporated to leave a brown oil, which was 
dissolved in CH2Cl2 (50 mL), 15% aqueous AcOH (50 mL) 
was added and mixture was stirred overnight at r.t. The 
organic layer was separated and retained and the aqueous 
layer was extracted with CH2Cl2. The combined organic 
layers were washed with brine, dried over MgSO4, filtered 
and evaporated (first under reduced pressure on a rotary 
evaporator and then under high vacuum using a vacuum line) 
to give a brown oil. The oil was purified by column 
chromatography (silica; hexanes–EtOAc, 100:0 to 2:1 v/v) 
to afford [3,3′-bithiophene]-2,2′-dicarbaldehyde 12a as a 
yellow solid (for yields, see Table 2).

(33) Preparation of 2,2′-Divinyl-3,3′-bithiophene (6): To a 
suspension of methyltriphenylphosphonium bromide (1.7 g, 
4.75 mmol, 2.2 equiv) in distilled THF (50 mL), n-BuLi (1.6 
M in hexanes, 2.96 mL, 4.75 mmol, 2.2 equiv) was added 
dropwise at –10 °C under nitrogen. The deep-orange 
solution was stirred at r.t. for 30 min, then a solution of [3,3′-
bithiophene]-2,2′-dicarbaldehyde (12a; 460 mg, 2.16 mmol, 
1 equiv) in distilled THF (10 mL) was added dropwise. The 
mixture was stirred at r.t. under nitrogen for 17 h, then the 
reaction was quenched with sat. aq NH4Cl (20 mL). The 
aqueous layer was extracted with CHCl3 (3 × 50 mL) and the 
combined organic layers were washed with brine (100 mL), 
dried over MgSO4, and evaporated. The crude product was 

D
ow

nl
oa

de
d 

by
: I

P
-P

ro
xy

 U
ni

_E
as

t_
A

ng
lia

, U
ni

ve
rs

ity
 o

f E
as

t A
ng

lia
. C

op
yr

ig
ht

ed
 m

at
er

ia
l.



LETTER Ullmann/RCM and Ullmann/Bis-hydrazone Coupling Reactions 707

© Georg Thieme Verlag  Stuttgart · New York Synlett 2014, 25, 701–707

purified by column chromatography (silica; hexanes), to 
afford 6 (350 mg, 77%) as a viscous oil. The product was 
kept in the freezer in the dark, and used as soon as possible. 
IR (ATR): 3103, 3066, 3005, 2957, 2925, 2869, 1800, 
1616 cm–1. 1H NMR (CDCl3, 400 MHz): δ = 7.19 (dd, J = 
5.3, 0.8 Hz, 1 H), 6.94 (d, J = 5.3 Hz, 1 H), 6.66 (ddd, J 
=17.3, 11.0, 0.8 Hz, 1 H), 5.58 (d, J = 17.3 Hz, 1 H), 5.13 (d, 
J = 11.0 Hz, 1 H). 13C NMR (CDCl3, 100 MHz): δ = 139.1, 
134.2, 130.1, 129.2, 123.1, 113.7. HRMS (ESI): m/z [M+H]+ 
calcd for C12H11S2: 219.0299; found: 219.0297.

(34) Preparation of Benzo[1,2-b:4,3-b′]dithiophene (1) by 
RCM: Under argon, Grubbs’ 1st generation catalyst 
[Ru(Pcy3)2(CHPh)Cl2] (30 mg, 0.1 equiv) was added to a 
solution of 2,2′-divinyl-3,3′-bithiophene (6; 80 mg, 0.36 
mmol, 1 equiv) in anhydrous CH2Cl2 (25 mL). The reaction 
mixture was stirred at r.t. for 8 h, then the solvent was 
removed under reduced pressure and the crude product was 
purified by column chromatography (silica; hexanes), to 
afford 1 (67 mg, 96%).

(35) Preparation of N′,N′′-{[3,3′-Bithiophene]-2,2′-
diylbis(methanylylidene)}bis(4-
methylbenzenesulfonylhydrazone) (8): [3,3′-
Bithiophene]-2,2′-dicarbaldehyde 12a (1.05 g, 4.7 mmol, 1 
equiv) and tosylhydrazide (1.75 g, 9.4 mmol, 2 equiv) were 
dissolved in distilled THF (300 mL) and stirred at r.t. 
overnight. The reaction mixture was dried over MgSO4, 
filtered and evaporated to give 8 (2.62 g, 100%) as a bright-
yellow-orange solid foam. Mp 129 °C. IR (ATR): 3176, 
2958, 2923, 2867, 1645, 1594 cm–1. 1H NMR (400 MHz, 
DMSO-d6): δ = 11.33 (s, 2 H), 7.77 (d, J = 0.9 Hz, 2 H), 7.69 
(dd, J = 5.1, 0.7 Hz, 2 H), 7.67 (d, J = 8.4 Hz, 4 H), 7.40 (dd, 
J = 8.1, 0.6 Hz, 4 H), 7.03 (d, J = 5.1 Hz, 2 H), 2.36 (s, 6 H). 
13C NMR (100 MHz, DMSO-d6): δ = 143.7, 140.7, 136.4, 
136.0, 134.7, 130.3, 129.8, 128.7, 127.2, 21.1. HRMS (ESI): 
m/z [M+H]+ calcd for C24H23N4O4S4: 559.0597; found: 
559.0587.

(36) The intramolecular McMurry cyclisation of 12a was 
unsuccessful under a variety of conditions [e.g., TiCl4/Zn 
and TiCl3(DME)1.5/Zn(Cu)], despite its use as an 
intermolecular coupling reaction to obtain the 1,2-
dithiophenylethene starting material for the photochemical 
route. For typical reaction conditions, see: (a) Yoshida, S.; 
Fujii, M.; Aso, Y.; Otsubo, T.; Ogura, F. J. Org. Chem. 1994, 
59, 3077. (b) See also ref. 15c.

(37) Preparation of Benzo[1,2-b:4,3-b′]dithiophene (1) by Bis-
hydrazone Coupling: [3,3′-Bithiophene]-2,2′-
dicarbaldehyde (12a; 4 g, 18 mmol, 1 equiv) and 
tosylhydrazide (6.59 g, 36 mmol, 2 equiv) were dissolved in 
distilled THF (850 mL), and the mixture was stirred at r.t. 
overnight, dried over Na2SO4, and transferred to a 1 L three-
necked round-bottom flask that has been flame-dried under 
nitrogen. The reaction mixture was cooled to 0 °C and NaH 
(95%; 1.08 g, 45 mmol, 2.5 equiv) was added in portions. 
The reaction mixture was allowed to warm to r.t. and then 
heated at reflux for 3 h under nitrogen. After cooling, the 
solution was concentrated under reduced pressure to 100 
mL, and sat. aq NH4Cl (300 mL) was added. The mixture 
was extracted with EtOAc (2 × 400 mL) and the combined 
organic layers were dried over MgSO4, filtered, and 
evaporated to leave a brown solid (4 g). The crude product 
was purified by column chromatography (silica; hexanes) to 
afford 1 (1.21 g, 37%) as colourless crystals.

(38) Preparation of 2,7-Bis(trimethylsilyl)benzo[1,2-b:4,3-
b′]dithiophene (15) by Bis-hydrazone Coupling: 5,5′-
Bis(trimethylsilyl)-[3,3′-bithiophene]-2,2′-dicarbaldehyde 
(12b; 2.62 g, 7.15 mmol, 1 equiv) and tosylhydrazide (2.66 
g, 15.30 mmol, 2 equiv) were dissolved in distilled THF (450 

mL) and stirred at r.t. overnight. The THF solution was dried 
over Na2SO4, and transferred to a 500-mL three-necked 
round-bottom flask that had been flame-dried under 
nitrogen. The reaction mixture was cooled to –78 °C, n-BuLi 
(1.6 M in hexanes, 4.7 mL, 7.5 mmol, 1.05 equiv) was added 
dropwise and the mixture was stirred for 5 min at –78 °C. 
The reaction mixture was allowed to warm to r.t., then 
heated at reflux for 5 h. After cooling, sat. aq NH4Cl (200 
mL) was added and the mixture was extracted with EtOAc 
(200 mL). The organic layer was concentrated under reduced 
pressure to 100 mL, diluted with Et2O (200 mL), washed 
with brine (2 × 250 mL), dried over MgSO4, filtered, and 
evaporated to leave a brown solid (5.1 g). Crude material 
was purified by column chromatography (silica; hexanes) to 
afford 15 (770 mg, 32%) as colourless crystals. Mp 128 °C. 
IR (ATR): 3053, 2985, 2959, 2897 cm–1. 1H NMR (CDCl3, 
400 MHz): δ = 7.88 (s, 2 H), 7.80 (s, 2 H), 0.44 (s, 18 H). 
13C NMR (CDCl3, 100 MHz): δ = 142.3, 140.4, 135.9, 128.7, 
118.4, –0.2. HRMS (ESI): m/z [M]+ calcd. for C16H22S2Si2: 
334.0696; found: 334.0696.

(39) Preparation of N′,N′′-{[5,5′-Bis(trimethylsilyl)-(3,3′-
bithiophene)-2,2′-diyl]bis(methanylylidene)}bis(4-
methylbenzenesulfonylhydrazone) (16): Using the method 
employed for the synthesis of 8 (see ref. 35) 5,5′-
bis(trimethylsilyl)-(3,3′-bithiophene)-2,2′-dicarbaldehyde 
(12b; 2 g, 5.45 mmol, 1 equiv) and tosylhydrazide (2.03 g, 
10.9 mmol, 2 equiv) were dissolved in distilled THF (250 
mL) and the mixture was stirred at r.t. overnight, dried over 
MgSO4, and evaporated to afford 16 (3.83 g, 100%) as a 
bright-yellow-orange solid foam. Mp 156 °C. IR (ATR): 
3190, 3065, 2955, 2926, 2898, 2856, 1597 cm–1. 1H NMR 
(DMSO-d6, 400 MHz): δ = 11.38 (s, 2 H), 7.74 (s, 2 H), 7.67 
(d, J = 8.2 Hz, 4 H), 7.40 (dd, J = 8.2, 0.7 Hz, 4 H), 7.16 (s, 
2 H), 2.36 (s, 6 H), 0.30 (s, 18 H). 13C NMR (DMSO-d6, 100 
MHz): δ = 143.5, 142.5, 140.2, 139.2, 137.3, 137.0, 136.1, 
129.7, 127.0, 21.0, –0.5. HRMS (ESI): m/z [M+H]+ calcd for 
C30H39N4O4S4Si2: 703.1387; found: 703.1387.

(40) (a) Bamford, W. R.; Stevens, T. S. M. J. Chem. Soc. 1952, 
4735. (b) Chamberlain, A. R.; Bloom, S. H. Org. React. 
1990, 39, 1.

(41) (a) Shapiro, R. H.; Duncan, J. H.; Clopton, J. C. J. Am. 
Chem. Soc. 1967, 89, 471. (b) Shapiro, R. H. Org. React. 
1976, 23, 405. (c) Aldington, R. M.; Barrett, A. G. M. Acc. 
Chem. Res. 1983, 16, 55.

(42) (a) Chamberlin, A. R.; Stemke, J. E.; Bond, F. T. J. Org. 
Chem. 1978, 43, 147. (b) Miranda, R.; Hernandez, A.; 
Angeles, E.; Cabrera, A.; Salmon, M.; Joseph-Nathan, P. 
Analyst 1990, 115, 1483.

(43) Chamberlin, A. R.; Bond, F. T. J. Org. Chem. 1978, 43, 154.
(44) Carbene intermediates have also been proposed for the 

Shapiro reaction, see ref. 41c.
(45) A referee has suggested that the dianion (see Scheme 5, box) 

is the intermediate in the cyclisation reaction, which is 
entirely reasonable, especially in the sodium hydride 
procedure (see ref. 37) in which the base was used in excess, 
but when 1.05 equiv butyllithium is employed (see ref. 38), 
the second deprotonation is probably effected by the 
toluenesulfinate anion in a reversible step that is driven, 
ultimately, by the irreversible loss of nitrogen, and the 
reaction then probably follows the mechanism drawn in 
Scheme 5.

(46) Jung tentatively proposes (see ref. 18a) that when the base is 
sodium hydride, both tosylhydrazones deprotonate and 
eliminate the tosylsulphinate, before ring closure occurs.

(47) Kerr, W. J.; Morrison, A. J.; Pazicky, M.; Weber, T. Org. 
Lett. 2012, 14, 2250.
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A non-photochemical route to synthesize simple
benzo[1,2-b:4,3-b0]dithiophenes: FeCl3-mediated
cyclization of dithienyl ethenes†

Silvia Cauteruccio,a Davide Dova,a Claudia Graiff,b Claudio Carrara,a

Julien Doulcet,c G. Richard Stephensonc and Emanuela Licandro*a

The FeCl3-mediated cyclization of a,a0-disubstituted Z-alkenes 1 is

reported as a general and non-photochemical route to synthesize

benzo[1,2-b:4,3-b0]dithiophene (BDT) derivatives 2, achievable in

good yields starting from cheap and easily available materials. The

influence of the temperature and the nature of the substituents on

the scope and limitations of this methodology is also reported.

Thiophene-containing fused, aromatic compounds represent an
interesting class of p-conjugated systems in functional organic
materials.1 Among them, five isomeric tricyclic b-fused benzo-
dithiophenes have stimulated a lot of interest thanks to their use
as monomers or co-monomers for the synthesis of conductive
materials used in electronic devices.2 A role of increasing impor-
tance is going to be acquired by one of these isomers, namely
benzo[1,2-b:4,3-b0]dithiophene (BDT) and its derivatives, which
have been studied as repeating units of mono- and polydisperse
oligomers in the field of materials science,3 and, more recently,
as p-spacers in push–pull organic chromophores for photovoltaic
applications.4 Moreover, BDT represents a key intermediate
in the synthesis of inherently chiral helical systems such as
tetrathia[7]helicenes (7-TH),5 which are an extremely attractive
class of conjugated molecules, with unique physicochemical
properties provided by their helix-like structure.6 On the basis
of the above considerations, BDT can be identified as a key
starting molecule that, through a judicious functionalization of
the a-positions of the thiophene rings, can allow access to more
complex and interesting systems.3,4,7 Despite all these potential
advantages, convenient synthetic methodologies to prepare

BDT are still scarce,8 and normally involve the oxidative photo-
chemical cyclization of dithienyl ethenes as the key step.9

However, this reaction requires specific photochemical equipment
and highly dilute solutions, takes several hours, and, to a signifi-
cant extent, can limit the scale-up of the synthesis of BDT.

Within this context, and in view of potential wider and
industrial applications, a simple, reliable, reproducible and
economic synthesis of BDT which avoids the use of photo-
chemical pathways is highly desirable. In the course of our
research projects in which we use BDT as a relevant precursor
for the construction of both thiahelicenes5a,b,10 and push–pull
chromophores,4b we faced this synthetic problem and we focused
our attention on the FeCl3-mediated oxidative intramolecular
cyclization of dithienyl ethenes via C–C bond formation between
the b-positions of thiophene rings. In fact, iron(III) chloride is
an economical and commercially available salt that has found
widespread application as a Lewis acid11 but also as a mild and
selective oxidising agent, and is therefore particularly useful for
C–C coupling reactions involving arenes and heteroarenes.12

In this way, complex polycyclic aromatic compounds, containing
the BDT framework as part of an ortho-condensed aromatic
system, have been prepared.13 In contrast, no synthesis of the
simple tricyclic BDT scaffold has so far been reported using the
FeCl3 mediated oxidative coupling.

Herein, we report the first results of our investigations
on the FeCl3-mediated oxidative intramolecular cyclization of
a,a0-disubstituted (Z)-dithienyl ethenes 1 to afford benzodithio-
phene derivatives 2.14 In this study we focused our attention on
(Z)-dithienyl ethenes 1 bearing two n-propyl chains on the double
bond, which improve the solubility of the BDT derivatives 2 in
organic solvents.4b (Z)-Alkene 1a, obtained as the major isomer
from the corresponding n-propyl thienyl ketone by means of a
McMurry coupling, was the starting compound for the synthesis
of new a,a0-disubstituted (Z)-dithienyl ethenes 1b–f, prepared
according to Scheme 1. It is interesting to underline that, under
the McMurry reaction conditions, we isolated 1a as a 9 : 1 mixture
of the Z and E isomers.15 This is a fundamental stereochemical
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Viale delle Scienze 17/A, 43100, Parma, Italy
c School of Chemistry, University of East Anglia, Norwich Research Park, Norwich,

NR4 7TJ, UK

† Electronic supplementary information (ESI) available: Experimental details of
1a–f, 2a–f, 3 and 4. Crystal data for 3. CCDC 967135. For ESI and crystallographic
data in CIF or other electronic format see DOI: 10.1039/c3nj01567j

Received (in Montpellier, France)
12th December 2013,
Accepted 21st February 2014

DOI: 10.1039/c3nj01567j

www.rsc.org/njc

NJC

LETTER

Pu
bl

is
he

d 
on

 2
1 

Fe
br

ua
ry

 2
01

4.
 D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ity
 o

f 
E

as
t A

ng
lia

 L
ib

ra
ry

 o
n 

01
/0

6/
20

14
 0

8:
31

:0
1.

 

View Article Online
View Journal  | View Issue

http://dx.doi.org/10.1039/c3nj01567j
http://pubs.rsc.org/en/journals/journal/NJ
http://pubs.rsc.org/en/journals/journal/NJ?issueid=NJ038006


2242 | New J. Chem., 2014, 38, 2241--2244 This journal is©The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2014

prerequisite for the further FeCl3-mediated cyclization, which
proceeds only with the Z isomer.13b Dibromo alkene 1b was
obtained in 64% yield by means of regioselective bromination of
1a with NBS in DMF at 0 1C, whereas all of other a,a0-disubstituted
(Z)-dithienyl ethenes 1c–f were prepared in 50–87% yield, by
deprotonation of the two alpha positions of the thiophene rings
of 1a with BuLi at�78 1C, followed by reaction with an appropriate
electrophile (Scheme 1). The oxidative cyclization of 1a–f was then
investigated using FeCl3 as an oxidant.

In order to assess the best conditions for the oxidative
cyclization of 1a–f to the corresponding BDT derivatives 2a–f,
preliminary screening has been performed to evaluate the
influence of the amount of FeCl3 on the cyclization of the
a,a0-dibromo ethene 1b, used as a model alkene, in CH2Cl2 at
room temperature (Table 1).

In particular, the addition of a stoichiometric amount of FeCl3
(2 equiv.)16 to a solution of 1b in CH2Cl2 at room temperature gave
the expected product 2b in 60% yield after 30 minutes (entry 1,
Table 1). The use of twice the stoichiometric amount of FeCl3

(4 equiv.) resulted in the formation of 2b in higher yield (76%,
entry 2, Table 1). This result is in accordance with the literature.
In fact, even if the stoichiometric ratio of FeCl3–alkene to
perform the cyclization is 2 : 1, quite often the use of a higher
ratio is necessary to obtain higher reaction yield.13c,m,17 However, in
our case, the use of a much larger excess of FeCl3 (12 equiv.) did not
result in an improvement of the reaction yield (72%, entry 3,
Table 1). Moreover, an experiment performed with a catalytic
amount of FeCl3 (10 mol%) in combination with a stoichiometric
amount of m-CPBA (1 equiv.)18 as an oxidant resulted in a significant
decrease of the yield, and compound 2b was isolated in only

13% yield (entry 4, Table 1). Although FeCl3-mediated cyclo-
dehydrogenations are often carried out employing CH2Cl2

in combination with nitromethane as co-solvent,12 in our case
the use of a mixture of CH2Cl2 and MeNO2 as solvent in the
reaction of 1b with 4 equiv. of FeCl3 did not improve the efficiency,
affording 2b in lower yield (60%, entry 5, Table 1). Finally, the same
reaction run in acetonitrile as solvent gave a complex mixture in
which the expected 2b was present in low amounts. Based on these
results, we then ran the cyclization reactions of 1a–f with 4 equiv. of
FeCl3 in CH2Cl2, evaluating the influence of the temperature on the
outcome of these reactions (Table 2).

As expected, when a solution of 1a in CH2Cl2 was treated
with FeCl3 at room temperature or 0 1C, a complex mixture of
polymerization products was obtained after a few minutes
(entry 1, Table 2). In this case, the known higher spin density
of the thiophene radical cation at the 2-position favours the
formation of polymers13b,c instead of the required benzodithio-
phene 2a. In contrast, when alkenes 1b–f with substituents on
the alpha positions of the thiophenes were used, the polymer-
ization was prevented and the corresponding disubstituted
BDT derivatives 2b–f were obtained. As reported in entry 2 of
Table 1, while the cyclization of 1b at room temperature gave 2b
in 76% yield, a slightly higher yield (79%) of 2b was obtained at
0 1C (entry 2, Table 2). In contrast, increasing the temperature
(up to 40 or 80 1C) was found to produce 2b in lower yields,
together with tribromo derivative 3 (Fig. 1a), which was isolated
in 10% yield at 80 1C. The structure of tribromide 3 was confirmed
by the X-ray analysis. The ORTEP view of 3 shows that the
molecule is essentially planar neglecting the two n-propyl chains,
which extend on two opposite sites of the mean plane of the
benzodithiophene unit (Fig. 1b). The formation of 3 could be
rationalized by taking into account that thiophenes brominated
in the a-positions readily undergo debromination and/or
rearrangement reactions through heating in the presence of
catalytic amounts of strong acids.19

Scheme 1 Synthesis of (Z)-dithienyl ethenes 1b–f.

Table 1 FeCl3-mediated cyclization of 1b: the effect of the FeCl3–1b ratio

Entrya FeCl3 (equiv.) Yield of 2b (%)

1 2 60
2 4 76
3 12 72
4 0.1b 13
5c 4 60

a Unless otherwise noted, an appropriate amount of FeCl3 was added to
a solution of 1b (0.25 mmol) in dry CH2Cl2 (20 mL), and stirred for
30 minutes under a nitrogen atmosphere. b meta-Chloroperbenzoic
acid (m-CPBA, 1 equiv.) was used as an oxidant. c A mixture of
CH2Cl2–MeNO2 (9/1) was used as solvent.

Table 2 FeCl3-mediated intramolecular cyclization of 1a–f

Entrya

Reagent Products Isolated yield (%)

1 X 2 r.t. 0 1C 40 1C 80 1Cb

1 1a H 2a —c —c

2 1b Br 2b 76 79 57 60d

3 1c I 2c 10 32 74e f

4 1d C7H15 2d —c 66 f f

5 1e COOEt 2e 66 f 87 89
6 1f CHO 2f o10 f o10 40

a Unless otherwise noted, FeCl3 (4 equiv.) was added to a solution of 1
(0.25 mmol) in CH2Cl2 (20 mL), and stirred for 30 min under
nitrogen. b Solvent: ClCH2CH2Cl (DCE). c The starting alkene decom-
posed completely after a few minutes. d Tribromo derivative 3 was
isolated in 10% yield. e A solution of 1c (0.25 mmol) in CH2Cl2 (5 mL)
was added to a slurry of FeCl3 (4 equiv.) in CH2Cl2 (20 mL) at 40 1C.
f Not performed.
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These processes, which generally involve the loss of brominating
species, could also occur in the FeCl3-mediated cyclization of 1b at
80 1C. In fact, the hydrogen chloride generated during the cycliza-
tion of 1b could catalyze the loss, from 2b, of a ‘‘brominating’’
species, which then could be able to brominate 2b to furnish the
tribromo BDT 3. The fate of the resulting debrominated 2b is not
known because, as already stated above, a-unsubstituted BDTs
decompose under these conditions. We found that heating the
dibromo BDT 2b, in the presence of 4 equiv. of FeCl3 in DCE at
80 1C, resulted in the formation of 3 in 40% yield after 1 hour,
besides the recovery of 5% of 2b. In this case, it could be that
catalytic amounts of HCl arising from FeCl3 partially decompose 2b
thus generating the brominating species which affords 3. In
contrast to bromide 1b, the iodide 1c gave the cyclized product
2c in only 10% and 32% yields at room temperature and at 0 1C,
respectively (entry 3, Table 2). Moreover, 2c decomposed completely
and very quickly when the reaction mixture was warmed to 40 1C,
with evident loss of iodine, presumably due to the carbon–iodine
bond lability.13b We found, however, that the order of addition of
the reagents played a crucial role in the cyclization of 1c. In fact,
when a solution of 1c in DCM was dropped into a slurry of FeCl3
(4 equiv.) in DCM at reflux, 2c was isolated in 74% yield. This
could be the consequence of a faster cyclization of 1c in the
presence of excess of FeCl3 at 40 1C relative to its decomposition.
In addition, we found that the substrate 1d, bearing two alkyl
chains in the a-positions, underwent fast degradation at room
temperature, while a lower reaction temperature (0 1C) allowed
us to obtain the required product 2d in 66% yield (entry 4,
Table 2). Different results were obtained with (Z)-dithienyl
ethenes 1e and 1f, substituted in the a-positions with the
electron-withdrawing groups COOEt and CHO, respectively. In
particular, the oxidative coupling of 1e efficiently occurred at
room temperature, 40 1C and 80 1C, providing 2e in 66%, 87%
and 89% yields, respectively (entry 5, Table 2). These results
indicate that 2e is stable under these oxidative conditions, and
that higher temperatures favour its cyclization. On the other
hand, the more electron-poor substrate 1f remained practically
unreactive, affording only traces of 2f, both at room tempera-
ture and 40 1C (entry 6, Table 2). However, by increasing the
temperature from 40 1C to 80 1C, 2f could be isolated in 40%
yield along with 10% 1f. Most likely, the presence of the
electron-withdrawing formyl substituents on the thiophene
rings of 1f makes it difficult to generate the supposed radical
cation intermediate,13m and, in this case, the temperature plays
a crucial role in promoting the intramolecular cyclization. The
synthesis of functionalized benzodithiophene derivatives 2b–f
has important implications for the development of new and

more complex molecular architectures. In fact, further modifica-
tions exploiting the reactivity of the substituents in the a-positions
of the thiophene rings appear just as useful. Among these, the
possibility of the debromination of BDT 2b was explored by
treating it with BuLi–MeOH at 0 1C (Scheme 2).

From this reaction we isolated, in 89% yield, unsubstituted
2a, which as already stated above, cannot be obtained by means
of the FeCl3-mediated cyclization of 1a. More interestingly, the
analogous regioselective debromination of the two a-positions
of 3 also occurred using two equivalents of BuLi–MeOH at
�78 1C, providing the b-bromo substituted BDT derivative 4 in
70% yield. The latter compound represents a potential new
key intermediate for the synthesis of an interesting class of
chiral atropoisomeric molecules, from which enantiomerically
pure thiahelicenes could be prepared.8a In summary, a non-
photochemical methodology for the synthesis of BDT scaffolds
through the FeCl3-mediated oxidative cyclization of 1,2-dithienyl-
ethenes 1b–f has been set up. This work has demonstrated the
feasibility of achieving a,a0-disubstituted BDT without the need
to be inserted into more complex polyaromatic systems. The
presence of two functional groups in the a,a0 positions of
alkenes 1b–f efficiently prevents polymerization under the
oxidative conditions of cyclization, and allows further function-
alization of the final BDTs. For these reasons, we believe that
the establishment of this methodology can promote renewed
and increased interest in the [1,2-b:4,3-b0] BDT scaffold and
consequently the development of new applications, for example
in conductive organic polymers and DSSCs. In addition, new
investigations aimed at exploring the synthesis of enantiopure
thiahelicenes from 3-bromo BDT derivative 4 are currently in
progress in our laboratory.

Experimental
General procedure for the FeCl3-mediated cyclization of
alkenes 1b–f

To a solution of alkenes 1b–f (0.25 mmol) in dry DCM (20 mL),
constantly sparged with nitrogen at an appropriate temperature
(0, rt, 40 or 80 1C), FeCl3 (1 mmol, 4 eq.) was added. The
resulting mixture was stirred under a nitrogen purge for 300,
and then treated with methanol (ca. 50 mL) for 1 h. The solvents
were removed under reduced pressure, and the residue was
purified by flash chromatography on silica gel. The chromato-
graphic fractions containing the required compound were
collected and concentrated to give the corresponding 2b–f as
pale yellow solids in 40–89% yield (entries 2–6, Table 2).

Fig. 1 (a) Chemical structure of 3. (b) ORTEP view of the crystal structure
of 3 (ellipsoids are drawn at their 30% probability level).

Scheme 2 Debromination of bromo BDT derivatives 2b and 3.
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