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Abstract  
 
Iron (Fe) and Zinc (Zn) deficiency remains a prevalent nutritional disorder worldwide, 

disproportionally affecting people of low and middle income countries due to the reliance on non-

meat sources in the diet. Cereals, a relatively poor Fe and Zn source, account for over 50% of the 

energy intake in developing countries, and are a potentially important target for biofortification 

strategies aimed at improving dietary Fe and Zn content and utilisation. 

  

The effectiveness of a crop in combating Fe and Zn deficiency is largely dependent on Fe and Zn 

speciation, as different forms vary in their bioavailability. Size exclusion chromatography, coupled 

with inductively coupled plasma-mass spectrometry is a valuable approach to identify and 

quantify different forms of Fe and Zn in the grain. Adaptations of the method to quantify and 

identify nutritionally relevant forms of Fe and Zn (ferritin, Fe-phytate, mono-ferric phytate and Fe-

nicotianamine, Zn-nicotainamine) are described, together with the assessment of bioavailability 

of Fe in wheat using an in vitro Caco-2 cell model system.  

 

Speciation of Fe and Zn varied between milling fractions with low molecular weight (LMW) 

complexes likely to be Fe-deoxymugenic acid/nicotianamine and Zn-nictainamine being the 

predominant extractable Fe and Zn species in the purest white flour fraction. 

 

During in vitro digestion the speciation of Fe differed between white and wholemeal bread. 

Overall, the bioavailability of Fe assessed using a Caco-2 cell model system appeared to be much 

higher in white bread than in wholemeal bread. Addition of ferrous sulphate was a more effective 

fortificant in white bread compared to wholemeal bread. The quantity of total or soluble Fe did 

not appear to be related to predicted bioavailability from the Caco-2 cell model, indicating that 

the effects of Fe speciation and the presence of absorption inhibitors are of greater importance 

than total or soluble iron when determining Fe bioavailability.        
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Chapter 1. Literature review  

1. Introduction 
 
The Green Revolution saw yields of certain cereals increase as much as 10-fold over the last half 

of the twentieth century and is often cited as one of the great achievements of plant science. 

Although its effect on providing food for an ever increasing population cannot be denied, it did 

not come without a cost. The introduction of high yielding varieties of crops such as rice, maize 

and wheat heralded a new age of agriculture, one which high micronutrient and protein crops 

such as legumes were largely ignored in favour of the new more profitable modern cereal 

varieties: this was most evident in the developing world (1, 2).  

 

This has had an effect on human micronutrient deficiency for two main reasons. First, by reducing 

the diversity of crops, the population in areas most at risk of micronutrient deficiency or “Hidden 

Hunger” began to get more of their calorie intake from cereals low in micronutrients (2, 3). 

Secondly, the bias towards high yielding varieties seems to have had a negative effect on the total 

amount of some micronutrients especially zinc (Zn) in the grain. This has been particularly evident 

in modern wheat varieties (3-8). Recently, organisations such as HarvestPlus have attempted to 

tackle the problem of Hidden Hunger by focusing on increasing the amount of Zn and iron (Fe) in 

edible tissues of cereals and legumes (9-11). One particular focus has been in wheat, as in some 

developing countries wheat products account for over 50% of the total calorie intake (3). 

 

The effectiveness of increasing total Fe and Zn has been questioned as the relevance of this to the 

Fe and Zn that is bioavailable is variable.  One recent HarvestPlus-funded project involved the 

breeding of high iron beans which showed an increase of Fe of 80% (11), however bioavailability 

studies involving stable isotopes on a target population showed no improvement in the amount of 

Fe absorbed compared to low Fe beans (12). This is probably the most conclusive study to date on 

the limitation of total Fe as an indicator of bioavailable Fe, but numerous studies in cereals have 

shown similar results previously (13-15). For Zn, the effectiveness of bio-fortification is more 

difficult to judge as to date, there are no universally established biomarkers for Zn nutrition (16, 

17). However, it is likely that total Zn is not an accurate indicator of ultimate bioavailability as it, 

like Fe, is also heavily affected by anti-nutrients which will be discussed in detail further in this 

chapter.   

 

One possible explanation for the disparity observed between total Fe and bioavailable Fe could be 

the forms in which Fe exists in planta. Not all forms of Fe and Zn have the same bioavailability (18-
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20). Therefore the form of sequestered Fe and Zn in the plant is of vital importance.  Work on 

speciation of Fe and Zn in cereal grain is still in its infancy and the little work done so far has 

concentrated on rice (21, 22), with one study on the barley embryo (23). To date there is no work 

on either wheat or maize. Although it is likely that micronutrient speciation in wheat will be 

similar to rice, there are some distinct differences which may affect mineral speciation within the 

grain, namely that rice does not have a crease and therefore transport route of minerals to the 

grain is likely to be different. Wheat also remobilises up to 77% of its Fe from leaves while in rice 

this is thought to be as low as 4% (24). As well as the speciation of these two minerals, one must 

also consider the interaction with anti-nutrients in the grain which have been shown to reduce 

bioavailability. Phytic acid has been known to be a major inhibitor of Fe bioavailability since the 

1950’s (25) but phytic acid also forms insoluble complexes with Zn as well (26-28). If we are to 

tackle Fe and Zn deficiency in cereal diets, it is essential that we understand the path that Fe and 

Zn take between being absorbed from the soil to the point of digestion.  

1.1 Mineral transport from root to grain. 
 

Fe and Zn are both essential for plant growth and reproduction and are therefore present in all 

tissues at all stages of plant development. Both Fe and Zn at high concentrations can be damaging 

to the cell (29-31). In the case of Fe this is due to the Fenton reaction which is catalysed by Fe(II) 

and produces the  hydroxyl radical OH· which puts the cell under oxidative stress (30). To prevent 

this, plants must  ensure minimal metals are in their free state and are instead either bound to 

other chemicals such as organic acids to form non-reactive compounds or stored away from the 

cytoplasm in the cell vacuole (31, 32). To maintain this, a complex transport and metal 

homeostasis system has evolved. The uptake, sequestration and translocation of these two 

important minerals is summarised below with particular relevance to wheat.  

1.1.1 Uptake from soil 
 

All graminaceous plants including cereals such as rice, wheat and maize, acquire Fe and Zn from 

the soil by a mechanism known as strategy II (33). One advantage of this strategy is it allows the 

plant to survive at higher soil pH compared to the less resilient plant groups’ dependant on 

strategy I (31, 34). 

  

The effect of pH on mineral uptake of plants is well documented;  alkaline soils have a much lower 

level of bioavailability of cationic metals than acidic soils due to precipitation of carbonates and 

stronger sorption on soil solids at high pH  and the increased solubility and competition with 
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protons for sorption at lower pH (31, 35). Strategy I plants are able to absorb insoluble Fe(III) first 

by solubilising Fe(III) by the release of protons and organic acid which reduces soil pH, then by the 

activation of ferric-chelate reductase which reduces Fe(III) to its more soluble and available form 

Fe(II).  

 

Graminaceous plants instead overcome the effects of high pH by releasing phytosiderophores (PS) 

when they are deficient in Fe or Zn. These PS contain mugineic acids which are non-protogenic 

amino acids synthesised from methionine (36)  These chelate Fe and Zn into more soluble forms 

for uptake by YS1 (yellow stripe 1) transporters (31, 37). In wheat, the principal mugineic acid is 

(DMA) (38); in some other cereals other types of mugineic acids may be secreted (36). DMA forms 

a complex with Fe (III) and is transported into the plant by the corresponding Yellow stripe 

transporters (YS1) (31, 37). 

 

Rice was previously thought to be a strategy II plant, but has recently been shown to use a 

combination of both strategies , as it synthesises and secrets PS as a strategy II plant but also can 

absorb Fe(II) by OsIRT1 which is expressed in the root tissue during Fe deficiency (39, 40).The IRT 

group of transporters which transports Fe(II) was previously thought to only be found in strategy 

one plants (34), this additional absorption mechanism is thought to allow rice to be better 

adapted to submerged conditions (39).  

 

Zn availability is also reduced in alkaline soils, especially under dry conditions (31, 41). Plants take 

up Zn in a similar way to Fe, as the free ionic form Zn2+ or as a Zn-PS complex (31). Zn2+ uptake is 

achieved by a zinc-regulated transporter, of the iron-regulated transporter-like protein (ZIP) 

family (42), while  in strategy II plants Zn bound to mugineic acids uptake is mediated by YS1(43). 

1.1.2 Xylem Transport  
 

Zinc and Fe are transported from the root to the shoot via the xylem (31, 44). The xylem sap 

transports minerals through the xylem system from sites of high water potential to sites of low 

water potential. Long-distance Fe transport in the xylem sap has long been thought to be 

facilitated by citrate, as plants deficient in citrate show signs of Fe deficiency in vegetative tissues 

and addition of citrate allowed iron to move through the plant (45). Other organic acids such as 

nicotianamine (NA) may also have a role in long-distance iron transport (44, 46). The pH of the 

xylem (~5.5) means that Fe will be chelated more readily by citrate than NA (47). How the iron is 

transported from the root to the xylem in wheat however is unknown (31); although in rice it has 
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been proposed that OsFRDL1 may transport ferric citrate into the xylem via the pericycle cells in 

Fe-deficient conditions (48) 

 

The transfer of Zn from the root tissue in Arabidopsis thaliana to the xylem is meditated by HMA2 

(heavy metal ATPase) and HMA4 (31), again the transporters in wheat are unknown. Once in the 

xylem, it too is chelated but the exact chelator is unknown although possible candidates include 

NA, (49), phytosiderophores (50), 2'-deoxymugineic acid (DMA) (51), malate and metallothionein 

(LMW cysteine-rich proteins) (52).  However, it is thought  that only a small proportion of minerals 

transported to the developing grains is supplied via the xylem vessels due to the lack of 

transpiration and therefore low water potential (10, 53). 

  

1.1.3 Phloem transport 
 

Minerals are remobilized from leaves upon senescence and transported via the phloem to the 

developing grain. The phloem pathway is primarily concerned with movement of carbohydrates, 

and also transports minerals from source tissues, such as leaves, to sink tissues, such as grain, 

along an osmotic pressure gradient, and is said to be undirected (10).  For both Fe and Zn, the YSL 

(yellow stripe-like transporters)  protein transport system has been shown to have a role in grain 

loading from the phloem as well as root uptake (31, 49). In the case of Fe, it is thought that it is 

transported by YSL proteins as a Fe(II)-NA complex (30, 54) (31). NA chelates both Fe(III) and Fe(II) 

in planta although Fe(II) is the more stable form (55). The proposed role of NA as the primary Fe 

chelator in the phloem was previously based on numerous reports on the effect of nicotianamine 

synthase (NAS) genes on Fe translocation in rice (56, 57), and on computer modelling of the 

binding capacity of various metal chelators at phloem pH (58). 

 

Recent work in rice using a combination of size exclusion chromatography coupled with 

inductively coupled plasma mass spectrometry (SEC-ICP-MS) and  electrospray ionization (ESI)  

have found Fe bound as Fe(III)-DMA to be the dominant complex in the phloem sap (59, 60). The 

corresponding Fe(III)-DMA transporters (OsYSL18 ,OsYSL15) have also been identified in the rice 

phloem (61, 62) providing strong circumstantial evidence of DMA’s role as a translocator of Fe.  

OsYSL18 has also been identified in the vascular bundle of the developing wheat grain (61) and in 

the embryo of the mature grain (62). This is the only evidence of DMA transport within the grain 

and no such DMA specific transporters have been found in either wheat or barley (52). Another 

candidate of Fe transporter in the phloem is the OPT (oligopeptide transport) proteins which have 
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been shown in Arabidopsis thaliana to affect seed Fe concentration; this may mean that Fe-

peptide complexes may also be transported through the phloem (31). 

 

Less is known about the translocation of Zn, although recent work has shown that NA is likely to 

be the major chelator for Zn in the phloem of rice (59), However it is unclear whether Zn2+ is 

transported to the phloem by OsZIP4 or whether it is transported as a Zn-NA complex as in 

Arabidopsis (30, 59). Like Fe, DMA may also have a role in Zn translocation as the expression of 

OsDMAS1 is increased in zinc deficient shoots in rice (51). 

 

1.1.4 Transport into the grain via the crease  
 

The crease functions as a route for nutrient supply to the grain and is responsible for grain filling 

(63). It consists of a complete phloem strand and a semi-complete xylem strand (46).  Minerals 

may enter the crease from both the xylem - from the roots and stem, or the phloem from 

senescing tissues (46). However, minerals from the soil and root system must first be transferred 

from the xylem to the phloem to enter the grain, which is again thought to be mediated by a YSL 

transporter (31).  

 

Within the crease is the pigment strand where minerals move through the symplast via 

plasmodesmata (46, 52, 64). The cell walls of the pigment strand are impermeable to nutrients 

from the apoplastic route meaning that nutrient entry to the grain is tightly regulated (52). At the 

end of the pigment strand is the nucellar projection or transfer cells (Fig. 1) (64). It is here that 

minerals are transferred into the apoplast or endosperm cavity. Transfer cells are characterised by 

numerous invaginations which create a much larger surface area (46). Minerals are then taken up 

from the endosperm cavity by influx cells, which are modified aleurone cells, and are then 

distributed in the symplast through the aleurone, endosperm and embryo (46, 52). 

 

In the case of Zn and Mn it has been proposed that there is a direct continuation of the phloem 

transport system from the crease to the embryo (63). This is supported by recent synchrotron 

imaging which appears to show high concentrations of Zn and Mn in the intermediate tissue 

indicating a likely route for directed transport (Fig.1). How, and in what form, minerals are 

transported from the transfer cells to the influx cells and on to the rest of the grain is currently 

unknown (49, 65), although laser capture micro dissection of barley grain into transfer cells of the 

maternal vascular bundle and other grain tissues followed by microarray analysis found 
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expression of YSL transporters with specificity for Fe(II)-NA and Zn-NA indicating a possible role of 

NA as a metal chaperone (46, 52). 

 

In rice, OsYSL18 has been identified in the vascular bundle of the developing grain (61) and in the 

embryo of the mature grain (62); this is the only evidence of DMA transport within the grain and 

no such DMA specific transporters have been found in wheat or barley (52). 

 

Interestingly, transport of Zn into the grain seems less regulated than for Fe (66), and high Zn 

supply to the plant appears to increase grain Zn (67, 68). However, transport of Zn to the 

endosperm is limited and appears almost independent of external supply as the majority of the 

additional Zn in high Zn wheat plant was accumulated in the crease (68).  Contrastingly, however, 

wheat treated with a foliar Zn as ZnSO4 combined with a high N application rate of 240 kg ha-1 

showed that Zn was not only freely transported to the grain but also to the endosperm as 

endosperm zinc concentrations were ~2-fold higher as non-treated grain (67). One possible 

reason for this is that the limiting factor is not transport through the crease, but that the 

endosperm protein acts as a sink for grain Zn and increases in sulphur and nitrogen (N) enhance 

this sink (67, 68), another possible explanation is that increased N affects production of mugineic 

acids and NA which facilitate uptake and translocation of Zn (67).  

 

 

Figure. 1. Mineral localisation in wheat. The left hand side shows a schematic representation of a 
cross-section of a wheat grain. The right hand side shows synchrotron X-ray fluorescence image of 
a cross-section of a wheat grain, and reveals zinc (blue), iron (green) and manganese (red) 
localizations. Image by Andrew Neal.   
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1.2 Fe and Zn storage in grain 
 

The cereal grain is divided into four tissue types: the embryo, the aleurone, the endosperm and 

the outer layers (testa and pericarp) (Fig. 2.).  Analyses of Fe and Zn show that both minerals 

appear to be localised predominantly in the aleurone and the embryo (in particular the scutellum) 

(Fig. 2.) with very low concentrations in the starchy endosperm (23, 67, 69, 70) (Fig. 1, 2.), this 

pattern is similar in other minerals including phosphorus (P), magnesium and calcium (70).  

 

Figure 2. Wheat grain, showing component tissues. Reprinted from (71) 

 

1.2.1 Phytate 
 
Phytate is the name given to any salt of phytic acid (C6H18O24P6), also known as myo-inositol 

hexakisphosphate (IP6). Phytic acid is the main storage form of P in cereal grains and is often 

referred to as organic P (72). The role of phytate in plants is thought to be as the major storage 

form of minerals particularly P for germination (73, 74). 

 

Phytic acid has a high density of negatively charged phosphate groups which allow it to form very 

stable insoluble complexes with Fe, Zn and various other minerals (75, 76). For the plant, this 

provides an advantage by reducing any potential toxicity effect of minerals in the grain until the 

minerals are needed for germination, at which point intrinsic phytase releases the minerals (Fig. 

3) (77) as well as allowing the minerals to be highly localised in phytate granules. However, for 
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humans phytate is a major problem as these stable insoluble salts are poorly digested in the 

intestine (14, 75, 78). Inhibition of mineral absorption only appears to occur with IP6 and IP5. 

Inositol phosphates with lower numbers of phosphate groups do not inhibit Fe absorption (79-

81).  

 

In wheat, phytate is heavily localised in phytate globoids in the protein storage vacuoles (PSV) in 

the aleurone layer of the grain where it has been shown to be localised with Fe, strongly 

suggesting in planta binding (69, 82). Imaging by nanoscale secondary ion mass spectrometry 

(NanoSIMS) has also shown clear localisation of Fe with P and C in the aleurone (69). There is also 

evidence of PSV containing phytate and Fe in the embryo (46, 77). Further evidence of the Fe 

bound to phytate in planta is the liberation of Fe by phytase in rice (83), barely (23) and wheat 

(84). Fe bound to phytate represents approximately 70% of total grain iron which is almost 

exclusively located in the aleurone (3). 

  

For Zn, the story is less clear, and although it seems likely Zn is stored in the PSV whether it too is 

bound to phytate is still unknown. Although a clear correlation between phytate and Zn has been 

shown within wheat grain (r=0.37) (85), this does not provide evidence of in planta binding. A 

recent speciation study using a combination of SEC-ICP-MS and phytase treatment in the barley 

embryo found strong evidence that Zn is not bound to phytate at all, but instead appears to be 

associated with protein (23). Treatment of rice bran however did show an effect of phytase at 

liberating Zn but this was not as clear as Fe (83). 

1.2.1.1 Phytic acid synthesis 
 

The synthesis of phytic acid or inositol hexakisphosphate (IP6) is summarised below (Fig. 3). The 

first step of IP6 synthesis is the conversion of Glucose-6-phosphate to Ins(3)P1IP1  mediated by 

Ins(3)P1 myo-inositol monophosphate synthase (MIPS). The remaining steps involve sequential 

ATP-dependent phosphorylation of the IPs mediated by Ins phosphate kinases, however this 

pathway is not yet completely understood (74, 77). 
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 Figure 3. Stepwise synthesis of phytic acid (IP6) 

 Due to the ATP-dependant nature of phytic acid synthesis, it is assumed that synthesis occurs in 

the cytoplasm (74) 

 

1.2.3 Nicotainamine and 2-deoxymugenic acid 
 
As previously discussed, the role of DMA as a phytosiderophore and NA as a metal transporter are 

well documented. However, they have only recently been thought to have a role in mineral 

storage. Fe bound to NA was first demonstrated in rice in 2009 by a study using SEC-ICP-MS (22). 

Further investigation with ESI-MS also showed the presence of Fe-DMA as well as Zn-NA and Zn-

DMA (21). 

 

In barley, YSL transporters with specificity for Fe (II)-NA (46) and Zn-NA (52) have been identified 

in the developing grain, although to date there is no evidence of any DMA specific YSL transporter 

there is evidence of genes involved in DMA synthesis in barely within the endosperm (52).  In wild 

type brown rice, DMA occurs at ~5-fold the concentration of NA (86), the amount of both DMA 

and NA are also increased by up to 3-fold in transgenic lines with more Fe and Zn translocated to 

the grain (86) indicating a role of DMA in either transport within the grain or storage. 

 

DMA and NA are both zwitterionic (having both a positive and negative charge). When mixed in 

solution the most abundant complexes formed are DMA-Fe(III) and NA-Fe(II), however both DMA-

Fe(II) and NA-Fe(III) are present but at a lower abundance (87) . It is likely therefore that the 

oxidation state of non-phytate bound Fe in the grain affects which of these it will be chelated to 

(88).  Both DMA and NA are thought to be present ubiquitously throughout the grain. 
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 1.2.4 Ferritin 
 
Ferritin is a name given to a large protein complex though to be able to complex 4500 Fe atoms 

per Ferritin molecule (89). What form Fe is in the ferritin core is an area of debate. Previously it 

was thought ferritin oxidised the highly toxic Fe(II) to Fe(III) and stored it in the core (89) however 

it is now thought to exist as a Fe(III)-O-Fe(III) complex and Fe(II) depending on location in the core 

(90). As well as containing Fe, ferritin is also thought to be able to store Zn under high levels of 

Zn2+ (91).  

 

In wheat ferritin is ubiquitous; but how much Fe is stored in this state in the grain is not known 

due in part to difficulties in accurately quantifying ferritin and bound iron (92). Ferritin was 

previously been thought to function as the main iron pool in cereals (93), however, data from 

previous studies (92, 94) indicate that only about 1-2% of the total iron in wheat is bound as 

ferritin.  

 

In Arabidopsis thaliana  and pea there is strong evidence that ferritin acts as a primary storage 

form of Fe for germination (34) however it has also been argued that its role is in protecting plant 

tissue from oxidative damage due to free hydroxyl radicals caused by excessive iron (44, 95-97).  

The most likely explanation on this difference in function is that exact nature of each ferritin 

molecule is likely to depend on its isoform as in plants numerous structures have been identified 

(34).  

 

1.2.5 Other forms of Fe and Zn 
 
Trace amounts of iron are also found in mitochondrial Fe-S metalloproteins such as frataxin (98, 

99). Less is known about the forms of Zn in plants; citrate, malate and metallothionein have all 

been identified as possible chelators (49, 52), and these low molecular weight (LMW) compounds 

may also act as storage forms (51, 52).  In bran of millet, it is also suggested that Zn may be bound 

to fibre and tannins (100). Zn also is an important component of many proteins in plants (101). 

 

In cereals there are high levels of metallothioneins (MTs), which are LMW cysteine rich metal-

binding proteins, and have been shown to be present in the embryo and aleurone during 

development 9-28 days post anthesis (102). The two main MTs in planta are MT3 and MT4 which 

seem to have different metal binding properties. MT3 is thought to have a temporary role in 

binding both Cd and Zn for transport, while it has been proposed MT4 has a role in Zn storage 

(102). The very high activity of MT2 in barley endosperm treated with Zn may also indicate that Zn 
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is sequestered by this particular MT protein in the endosperm (52). However, how much is Zn 

bound to MT at grain maturity, or whether this is the case in other species, has not been 

confirmed. However, metallothioneins provide a possible candidate for the protein Zn sink 

proposed in previous studies (67, 68). 

1.3 The importance of transport of minerals to the endosperm 
 

Although transport of minerals to the grain is important, arguably of for human nutrition of   more 

importance is the transport to the endosperm (3, 70). Most processed wheat products remove 

the outer layers and the embryo and are therefore made up almost entirely of the starchy 

endosperm. Mineral density in the endosperm of cereals is considerably lower than the outer 

layers (70, 103): in wheat, depending on the milling process, this removal of the outer layers can 

cause a loss of between 40-60% of the total Fe and 40-75% of the total Zn (70, 103, 104). However 

milling is likely to have some beneficial effects on bio-availability as the milling results in a similar 

reduction in the total phytic acid in the wheat flour as well (103, 104). 

1.4 Bioavailability of Fe and Zn in wheat  
 

Unfortunately, despite their wide use as a calorie source, cereals remain a very poor source of Fe 

and Zn with levels of bioavailability in wheat estimated to be 5% for Fe and 25% for Zn (3). Caco-2 

(described in 4.1) experiments looking at wheat products prepared using different baking 

techniques found bioavailability to be between 11-30% for Fe and only 3-4% for Zn (14). It should 

be noted though that flame atomic absorption spectrophotometry was used to measure total 

minerals absorbed by the cells in these experiments and one flaw of this method is that it will 

often over-report mineral absorption as a certain amount will stick to the cells without being 

absorbed (105). Also the effectiveness for Caco-2 cells being an accurate measure of Zn 

absorption has not yet been proven and therefore should not be used as a quantitative indictor 

(105). 

1.5 Current strategies for improving Fe and Zn nutrition 
 

Because of the low availability and low total Fe and Zn in cereals, various strategies have been 

proposed for increasing the bioavailability of mineral nutrients; for the most part this will 

concentrate on Fe as it is the primary area explored in chapter 5.    

The three main strategies for tackling micronutrient deficiency have been identified by WHO (106) 

as:   

1. Supplementation 
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2. Diet diversification 

3.  Fortification 

Supplementation refers to vitamins and minerals concentrated in a synthetic form in capsules, 

tablets or injections and administered as part of a government policy or individual nutritional 

interventions. In the case of iron, supplementation has had limited success (107).  A major 

problem with iron supplementation is the need for very regular doses, ideally once a day. This can 

become very expensive; the World Bank estimates such strategies for Fe at 0.5 to 3.17 USD per 

unit per person (106), and any such strategy tends to have low adherence (108). To date, the 

major supplementation strategies for iron has concentrated on pregnant women (107). 

 

Diet diversification refers to the education of population groups to cultivate and eat foods rich in 

micronutrients. As a long-term strategy it is often seen as ideal, however it is not without 

limitations (109). One problem is that countries most affected by mineral deficiency are those 

least likely to have the resources to cultivate high micronutrient sources which are often more 

expensive to produce (109). This is particularly true for Fe where the ideal foods would be leafy 

green vegetables and meat which require more resources than other crops commonly grown in 

these areas. 

1.6 Fortification  
 

Fortification has historically referred to the addition of synthetic micronutrients to a food source 

to improve the nutritional status of a population (109). In the west, fortification strategies have 

been employed since the 1940’s and in the case of iron, are mandatory in many countries 

including the UK and Sweden. In addition to this, many food companies such as those who make 

infant feed or cereals voluntarily fortify their products to make them more desirable to the 

consumer (110). 

 

In the developing world, fortification of staple foods has been seen as one of the most effective 

methods to tackle iron deficiency, as staple foods form a large percentage of the populations’ 

calorie intake. Wheat flour is currently the most Fe-fortified food product, with 78 different 

countries currently implementing or planning fortification programs (111). Fortification of wheat 

flour and other staples with Zn and other minerals has also been shown to be effective (112). Iron 

fortification strategies are expensive and require a well-developed infrastructure to be 

implemented. As well as benefiting the target group, normally children and menstruating and 
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pregnant women, they must also be designed so as not to negatively affect members of the 

population not at risk of Fe deficiency (110, 113).  

 

 

 

1.6.1 Fortification in the UK 
 

The UK has a mandatory fortification policy for wheat flour which has been in place since 1953. Fe 

is added exclusively to white flour products to restore the level to that of wholemeal products 

(114). Under current regulations, this means all flour under 16.5 mg kg-1 is brought up to at least 

16.5 mg kg-1 by a process known as recovery (115). This would mean most wholemeal flour 

products would be exempt, however, industry often voluntarily fortify wheat products with Fe 

(110). 

1.7 Bio-fortification 
 

Bio-fortification is the process of fortifying staple crops with micronutrients through conventional 

breeding, fertilization or biotechnology (3, 9). This approach has received widespread attention as 

it circumvents many of the problems of other previously mentioned methods. Adherence is not a 

problem as populations are able to continue with established dietary habits. Another advantage, 

in the case of high Fe and Zn cultivars, is once crops are developed there will be no additional cost 

issues (3). Bio-fortified crops are also easily accessible in rural areas as they simply replace 

established crops; these rural areas are often where Fe deficiency is most widespread (9).  

1.8 Bioavailability 
 

Bioavailability in nutritional science is defined as ‘the amount of an ingested nutrient that is 

absorbed and available for physiological function’ (18, 105). The ideal way to measure this is by 

human studies, however these are expensive, time consuming and very difficult to compare 

across laboratories (15). For Fe, the primary outcome measure for human studies is haemoglobin 

concentration (116, 117), however this is not always ideal in developing countries where other 

factors such as other nutritional disorders of inflammatory disease can affect haemoglobin levels 

(118). For Zn, it is recommended to measure Zn serum/plasma levels (16).  

 

Due to the expensive and difficult nature of human studies, various alternative models have been 

developed. Animal models provide an attractive alternative, and have been used extensively in Fe 
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bioavailability studies of edible plants using dogs (119), pigs (120), mice (121) and chickens (122). 

One disadvantage of animal studies is that they are again very expensive and not all labs will have 

the appropriate licences. Animal studies also rely on an assumption that the animal model digests 

the food stuff in a similar manner to humans, which is rarely the case. In the case of Fe nutrition, 

there are many factors which may have an effect including gastric pH, microflora and whether or 

not the organism in question synthesises ascorbic acid.  

 

1.8.1 Caco-2 Cell Model 
 

The Caco-2 cell model allows for the evaluation of single meal bioavailability studies in a 

physiological environment which is impossible in human studies (15), although it is not always 

accurate (123) and has been shown to compare unfavourably with human studies in studies with 

beans containing low iron levels (105). However, Caco-2 remains the recommended method for 

measuring Fe availability (105). The current preferred method is the use of a human ferritin-

specific ELISA assay. The Caco-2 cells are harvested after exposure to a sample which has 

undergone in vitro digestion. The cells are destructively sampled and the total protein and total 

ferritin are calculated to provide a ng mg-1 of protein as ferritn (15, 124). Human cells sequester 

cellular Fe as ferritin, therefore total ferritin expression is an accurate indicator of how much Fe 

has been absorbed.  

 

The final amount of minerals in the cells can also be measured by ICP-Atomic Emission 

Spectroscopy (14) or ICP-MS, however this method is not preferred as it cannot differentiate 

between intrinsic minerals and minerals  absorbed by the cells, as well as minerals which are 

adhered on the surface of the cells but not absorbed (105, 123). 

 

1.8.2 Absorption of Fe and Zn in the human gut 
 

Dietary Fe can be defined by two main categories haem and non-haem Fe (125). The absorption 

of haem Fe is relatively simple and will only be covered briefly here as is not important to cereals. 

Haem is freed from myoglobin and haemoglobin by pancreatic enzymes. The degradation 

products of this stay bound to the haem-Fe and are maintained in a depolymerized state as 

metalloporphyrin. In this state the Fe cannot interact with possible anti-nutrients such as phytate 

so is readily absorbed (126). Uptake of metalloporphyrin is not competitive with non-haem Fe and 

occurs at different transport sites (126).  
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Non-haem Fe, however, which makes up the entirety of Fe from plant sources, has a far more 

complex story. The majority of dietary non-haem Fe is thought to enter the gastrointestinal tract 

as Fe(III). However, Fe(III) is insoluble above pH 3 and therefore  non-bioavailable (125, 126). For 

absorption, it must first be converted to Fe(II). This occurs by the reduction of Fe(III) to Fe(II) by 

numerous dietary components including ascorbic acid and amino acids such as cysteine and 

histidine (125). This reduction is thought to take place during the initial gastric stages of digestion 

at acidic pH when the Fe(III) is soluble. Once in the Fe(II) form Fe is taken up by DMT1 (Divalent 

metal transporter 1) (125, 127).  

 

Fe bound to ferritin is also readily absorbed (19).  This is thought to be because Fe is encapsulated 

by ferritin - a large protein which protects the Fe from possible oxidation and/or interaction with 

anti-nutrients in the human digestive system so that it is readily available in the duodenum at the 

point of human digestion (128). However, it has been proposed that the ferritin shell breaks 

during the gastric stage of digestion and the Fe enters the common digestion pool (129). 

 

1.6.3 Factors effecting absorption of Fe 
 

1.6.3.1 Pro-nutrients or enhancers  
 
The absorption of non-haem Fe is therefore very dependent on the presence of pro-nutrients. As 

already mentioned, ascorbic acid and cysteine are capable of reducing Fe(III) to Fe(II) (124, 130) 

and it is thought that this is how they promote Fe absorption. However, ascorbic acid has also 

been shown to form an Fe-chelate which is soluble up to pH 11 (75). The complete effect of 

ascorbic acid on Fe absorption is not completely understood - although it clearly has a role in 

reducing Fe(III), it has also been shown to enhance absorption of Fe(II) (121). Some organic acids 

such as citric acid have also been shown to enhance Fe absorption, but at levels far higher than 

are likely to be found in the human diet (130, 131). 

 

Another pro-nutrient that has been identified which is likely to be of upmost importance in Fe 

absorption in cereals is nicotianamine (NA). Caco-2 studies have shown that NA is in fact a more 

potent enhancer of Fe than ascorbic acid, and is twice as effective at enhancing absorption of 

both Fe(II) and Fe(III) (121). The fact that it is able to enhance absorption of Fe(II) so much 

indicates its role is unlikely to be in reducing Fe. Therefore, it is likely to enhance absorption by 

another mechanism (121). It has been speculated that chemicals containing more hydroxyl groups 

are able to enhance Fe absorption by forming soluble Fe-chelate complexes (131), and also that 
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organic acids containing more hydroxyl groups were better promoters (131). Nicotianamine has 

three hydroxyl groups (Fig. 4) and therefore would be an ideal Fe chelator as should DMA with 

four (Fig. 4). 

 

                          

Figure 4. Chemical structure of nicotainmine(left) and 2’-Deoxymugineic Acid (right) 

 

1.6.3.2 Anti nutrients or inhibitors 
 

Anti-nutrients are chemicals which reduce the bioavailability of Fe and Zn. The most widely 

studied is phytate which has been shown to form insoluble complexes with both Fe and Zn (14, 

27, 132-135). In addition to being insoluble, at intestinal pH 6-7, phytic acid is highly negatively 

charged and therefore is thought to not be able to cross the lipid bilayer of the plasma membrane 

in the gut (135). When bound to multivalent cations such as Fe and Zn, phytate salts precipitate 

and are therefore not available for digestion (135).   

 

One exception to this appears to be the compound mono-ferric phytate, which is soluble at 

physiological pH (119, 136, 137). Mono-ferric phytate is composed of one phytate molecule 

bound ionically to Fe(III) rather than ferric phytate which contains 3-4 Fe molecules per phytic 

acid (136) .  Due to its solubility it is thought to have some degree of bioavailability. This has been 

shown in both dog (119) and Caco-2 models (137). However, it its unknown what the exact level 

of bioavailability is or even if mono-ferric phytate is able to survive the digestion process and if 

the Fe is not just added to the digestion pool. 

 

Many polyphenols have been shown to bind Fe (120, 138). This was first suggested with the 

observation that tea has an inhibitory effect on Fe absorption (139), but little is known about the 

interaction with polyphenols and other minerals. Caco-2 studies have shown a negative effect of 

some polyphenols such as procyanidins on Zn absorption (140). 

 

In cereals, the effect of polyphenols was most pronounced in a Caco-2 study on rice which 

showed that the polyphenol content of 15 different rice varieties, of variable colour (black 

through to white), was the primary factor in affecting Fe absorption, more so than phytate or 
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total Fe (141). This was also shown in beans where Fe absorption in red varieties (high in 

polyphenols) was compared to white beans (low in polyphenols) by using Caco-2, chicken (142) 

and pig models (120). However more recently, in human studies it has been shown that bean 

polyphenol content is not an important factor and it is in fact phytic acid that is the only 

nutritional relevant inhibitor (143, 144). The effect of polyphenols therefore remains unresolved 

and more studies in humans would need to confirm this effect and explain the disparity between 

human studies and Caco-2 and animal studies. Tannic acid is a polyphenol found in relatively high 

concentrations in the bran of wheat (145) and has been shown to be a more potent inhibitor of Fe 

than phytate in a Caco-2 system (137, 146). 

1.7. Biotechnological strategies to improve iron and zinc concentration and bioavailability 

 
It is clear by exploring the complexities involved in Fe and Zn in planta transport, and 

sequestration, that any bio-fortification strategy will need to take into account far more than just 

total mineral content and an understanding of both translocation mechanisms and of potential 

enhancers/ inhibitors is essential. One tool to understand this is the use of transgenic crops which 

can highlight the potential of a certain gene or, where acceptable, replace conventional crops. 

Below is a summary of some of the current research in biotech strategies aiming at biofortifying 

cereals.  

 

1.7.1 Ferritin increase  
 

Although representing only a very small percentage of iron in grain, ferritin complexes have been 

shown to be very bioavailable to humans due to the protein shell protecting the Fe contained 

inside from anti-nutrients such as phytate (96). Increasing the ferritin content of seeds should 

theoretically increase the amount of bio-available iron in wheat (19). 

 

Legumes store as much as 90% of their iron as ferritin (96) and therefore various studies have 

focused on expressing soybean ferritin in cereals (147-150). Initial work using the Maize Ubiquitin-

1 promoter caused an increase of both ferritin and iron in vegetative tissue but no increase in Fe 

within the seed of either rice or wheat (148). In rice, ferritin expressed using the rice seed-storage 

protein glutelin promoter, GluB-1 has been shown to increase total Fe content in seeds up to 

three-fold (150, 151). Similar success has been achieved in maize using seed specific vector 

pTO126, increasing Fe content in seeds by up to 70% (148). It is thought that increased ferritin in 

the endosperm, and specifically the amyloplasts, aids Fe accumulation by removing free Fe from 
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the cytoplasm, in turn causing the cell to respond as if it was Fe-deficient and influx more iron 

(149). There is evidence that this Fe is obtained exclusively through the phloem system, as soil 

iron levels have no effect on Fe levels in seeds of transgenic varieties; conversely, leaves of 

transgenic lines have less iron and show signs of chlorosis after grain filling; indicating the 

additional iron had been mobilized from the vegetative tissue (149). 

 

Although these studies show promise, no data has been yet generated on the location within the 

seeds of wheat for ferritin Fe, although it has been reported that some Fe in rice endosperm is in 

clusters which may be Fe-ferritin (152). Recently, synchrotron analysis of wheat expressing 

endosperm-specific ferritin has shown that the iron is in fact concentrated in the crease and not in 

the endosperm (153). Bioavailability of seed expressing ferritin has been tested, although only in 

combination with a different treatment such as phytase and cysteine peptides, so results are not 

conclusive (147, 150). 

 

1.7.2 Accelerated senescence 
 

During anthesis, proteins and minerals are remobilised from vegetative tissues to the grain. One 

strategy to improve the nutrient content of grain is to accelerate plant senescence early, thus 

beginning grain filling earlier. Land races lines have been shown to do this by a NAC transcription 

factor (NAM-B1) which is non-functional in modern lines (154) (155). How viable accelerating 

senescence is as a breeding strategy is yet to be tested. Currently, only RNAi has been used to 

reduce NAM expression and whilst accelerating senescence may increase mineral concentration, 

it may have a negative effect on grain yield due to reduced carbohydrate loading into the grain a 

consequence of early senescence (156). 

 

1.7.3 Phytate reduction  
 

As previously described, phytate has been identified as the major anti-nutrient in wheat: its 

reduction is one method which is being explored in stable crops (157-161). Viable low phytate 

mutants (lpa) have been isolated in maize, rice, barley and wheat (157-161). Low phytic acid 

mutants are found in two forms: lpa1 where IP6 is reduced and free P increased, and lpa2 in which 

IP6 is lower but there is an increase in less phosphorylated inositol phosphates (IP1-IP5) (157) (Fig. 

5.). In the case of maize, this is due to disruption in the embryo causing incomplete IP6 synthesis 

(162). Levels of phytic acid in both lpa1 and lpa2 lines have been shown to be notably lower than 

wild-type and as little as 5% of wild type in some lpa1 maize (163). However, reduction in phytate 
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has been shown to have negative effects on plants and only a few lpa mutants are suitable for 

breeding (163) as phytate is found ubiquitously throughout the plant and is thought to be 

involved in germination, emergence and stress tolerance as well as its ability to chelate potentially 

toxic metals (164). However it has also been argued that current commercial grain crops have 

much higher phytate levels due to high P levels used in fertilizer (165). 

 

Current phytate reduction strategies concentrate on tissue-specific reduction of phytate to 

maintain yield and viability (164). Recently an ATP-binding cassette (ABC) transporter has been 

identified in maize which when silenced blocks transport of phytate from its site of synthesis, 

creating a bottle-neck in phytate accumulation, producing an lpa1 phenotype (164). Using the Ole 

and Glb promoters, this gene suppression can be targeted to the embryo with no noticeable 

effect and produce an 85% reduction in total phytate in the grain (166). Greater understanding 

will allow for a more targeted approach in producing LPA wheat grain without detrimental 

complications (164). 

 

Another approach which has been explored is the introduction of an extrinsic phytase (147, 167, 

168) or over-expression of intrinsic phytase to reduce phytic acid complexes after synthesis (164). 

The increase of phytase has been shown to produce viable crops and reduce phytic acid by 

hydrolysing it back to its lower states of phosphorylation (Fig. 5.). Modern wheat lines have been 

shown to have lower phytase activity than some landraces (85). The effectiveness of crops with 

high phytase activity may be further increased depending on the preparation method of the grain 

according to optimum pH and temperature (169-171). Intrinsic wheat phytase has been shown to 

have optimum activity at ~50 ºC and ~pH 5.5 (169-171) with fungal phytase from Aspergillus. 

niger having optimum temperature of 55 ºC and two pH optima of ~2 and ~6 (172). Therefore any 

cereal crops which use high phytase as a phytate reduction strategy should try and match the 

phytase to a specific grain end use.   

 

Although low phytate wheat may seem an attractive alternative, there are considerations which 

have to be made. Phytic acid has been shown to have numerous health benefits in the diet (173, 

174) and it has even been argued that phytic acid should be included as an essential nutrient or 

even a vitamin (175). The decrease in phytate needed to have an adequate effect on mineral 

bioavailability is thought to be very high therefore this would have implications on other 
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nutritional aspects of any crop (147).

 

Figure 5. Low phytate cereals :Edited from Raboy, V.,(164)  

The benefits of low phytate stable crops on mineral bioavailability has been tested in various 

animal (176, 177) and human studies (178, 179) with positive results; a rise in mineral availability 

of ~50% for humans has been observed (180). The Caco-2 model has also been used to assess 

maize phytase lines with moderate success with iron absorption being slightly higher in lpa 

mutants compared to wild type varieties (147). 

 

1.7.4 Nicotianamine 
 

In the phloem, NA is the primary chelator of many metals including Fe and Zn. Therefore over-

expression of the nicotianamine synthase gene (NAS) is one possibility to increase grain metal 

nutrient content.  The role of NA and DMA in grain loading of Fe and Zn has been demonstrated in 

various plant studies (46, 51, 54) and over expression of HvNAS1 from barley was found to double 

both Fe and Zn within seeds of tobacco plants (54). In rice, increases in NA expression throughout 

the plant have shown a significant  increase in grain mineral content in both milled and non-milled 

fractions, for Zn and Fe there is a >2-fold increase in total amount in milled fraction (21, 22). 

Analysis also showed the increased Fe was of a LMW non-phytate form. The grains of these over-

expression lines have been tested on mice and results show that the increase in Fe and Zn is of 

bioavailable form (21, 22).  

 

In another similar study, NAS was over-expressed in the endosperm of rice. This also had a 

positive effect on both Fe and Zn, with increases of between 20-46% and 33-55% respectively in 

unpolished rice grain (121). In polished grain however there was only an increase in Zn and this 

was only about 15% (121).   Although the level of Fe in the polished grain was not significantly 

Phytase expression 

ipa2 

 
ipa1 

Transport and compartmentalization 
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higher, the amount of NA in the grain was 9-fold higher than wild-type. Caco-2 analyses showed 

that Fe in both cooked and uncooked NAS over-expressing samples was increased by 2-2.4-fold 

compared to wild-type (121) indicating that levels of NA may have more of an effect than total Fe.   

 

How viable this strategy would be for wheat however is yet to be proven. Rice and wheat 

transport Fe differently and NAS expression has been shown to be different under Fe-deficient 

conditions between barley (a closer relative of wheat) and rice (181).  In wheat, grain iron is 

transported from the leaf therefore the amount of available iron in the rhizosphere and leaf tissue 

will also be a limiting factor. 

 

1.7.5 Transporters 
  

Another strategy to increase the mineral content of grains is the manipulation of metal 

transporters through biotechnological interventions. Possible candidates are VIT1 which has been 

shown to have a role in Arabidopsis seed iron concentration (35), and HMA4 which may target Zn 

to the seed, again in Arabidopsis (49). However neither of these has been studied in cereals. In 

rice, ubiquitous over-expression of OsIRT1, a gene responsible for transport of Fe(II) has been 

shown to improve grain Fe and Zn (182),  however the plant was not agronomically viable as 

height and grain were altered.  Increasing expression of YSL transporters has long been thought to 

be a viable strategy for increasing phloem Fe translocation to the grain (70). In rice, successful 

over-expression of OsYSL2 under a phloem-specific promoter was able to increase Fe by 4.4-fold 

in the polished grain (183). 

 

1.7.6 Multi gene approach 
 
Due to the complexity of mineral homeostasis, multi-gene manipulation may be the best method 

for improving bio-available Fe and Zn (33). The first attempt at this was in rice where Phaseolus 

ferritin, rice metallothionenin and the Aspergillus phytase (phyA) were co- expressed resulting in 

rice grain with increased Fe, and decreased phytic acid content (150). A second example is 

transgenic maize over-expressing both soybean ferritin and phyA, which increased grain Fe by 20-

70% (147). This approach is likely also to have a positive effect on the bioavailability of the Fe 

(147) although this was not tested.  

 

Transgenic rice plants over-expressing the AtNAS1 gene and Phaseolus ferritin under the control 

of the endosperm-specific globulin promoter provided 6-fold enhancement of Fe accumulation in 
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grain (152). This approach of combining ferritin and nicotianamine has since been extended in rice 

with similar results. Masuda et al (86) expressed soybean ferritin in the endosperm of rice 

combined with enhanced Fe transportation by the over-expression of HvNAS1, they also over-

expressed OsYSL2 under the control of the OsSUT1 and OsGlb1 promoters theoretically allowing 

for more Fe-NA to be transported into the grain (86). Both of these plants are likely to have vastly 

improved Fe bioavailability but await human testing. 

1.8 Aims of thesis 
 
The aims of this thesis will focus on three main areas 1) To increase understanding of Fe and Zn 

localization within the white grain 2) To gain insight into the speciation of Fe and Zn within the 

wheat grain and finally 3) to assess the relevance of both localisation and speciation to 

bioavailability in a dietary relevant food source.  
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Chapter 2. Materials and methods 

2.1 Materials 
 

2.1.1 Healthgrain samples  
 
Analyses were initially performed on samples of six wheat cultivars (Table. 1.), selected based on 

previous analyses which showed that three contained high (Rialto, San Pastore, Tiger) and three 

low (Crousty, Valoris , Riband) concentrations of Fe and Zn (4). The samples were grown at three 

European sites (Martonvásár, Hungary; Saxham, UK; Choryn, Poland) in 2007, as described by 

Shewry et al. (184). Climate and soil conditions of all three sites are reported by Shewry et al. 

(184). A total of 18 grain samples (six cultivars grown at three sites) were obtained.  

Table. 1. Origin of Healthgrain wheat varieties 

Wheat line Origin Growth habit Year of registration 

Crousty France Winter 1994 

Rialto UK Winter 1993 

Riband UK Winter 1987 

San Pastore Italy Winter 1940 

Tiger Germany Winter 2001 

Valoris France Winter 1998 

 

2.1.2 Felid grown samples 
 
For the 2010 harvest, Rialto (high Fe and Zn) ,Riband (low Fe and Zn ) and Sparks (intermediate Fe 

and Zn) with and without foliar application of Fe and Zn  were grown in a field trial at Rothamsted 

Research in 2010, in three replicated plots (1.8 x 10 m) in a completely randomised block design 

(Fig. 6). Standard farm practices and fertilisation (176 kg N/ha split into two applications) were 

followed for untreated samples. Treated samples were sprayed with 1kg/ha (220 lts of water per 

hectare) of Fe-EDTA and Zn-EDTA on two separate occasions five days apart approximately seven 

months from planting at flowering stage.  
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For the 2012 harvest Rialto and Riband were grown without foliar Fe and Zn treatment. In four 

replicate plots (1.8 x 9 m) in a completely randomised block design. Standard farm practices and 

fertilisation (176 kg N/ha split into two applications) were followed. 

 

 

 

Figure 6. Field grown Rialto, Riband and Sparks 2010 harvest  

 

2.1.3 Low phytic acid wheat lines 
 
Initial analyses were performed on two lines (A95615-Js-12 333 Mu-4-6/IDO563 and A02568WSA-

12-10 GH0607 91-21) obtained from the USDA harvested in 2009. Later some related lines were 

also obtained for USDA (IDO488, Centennial, Kanto 107, Strelinskaja Mest) these related lines 

were determined from consulting previously published work on the lines (72, 157)  . All lines were 

then grown in the glasshouse at Rothamsted. Glasshouse conditions were 20 Cº day, 15 Cº night 

with 16 hr period of daylight. Winter wheat (Wheat A02568, Kanto 107, Strelinskaja Mest) were 

sown first into vermiculite.  They were then vernalized for 8 weeks at 4 Cº day and night.  The 

light level is low and is set to run for a period of 8 hr to simulate low light levels during the 

winter.  Spring wheat was sown two weeks before to provide seedlings at similar growth stage 
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when potted on.  Wheat was grown into 13 cm pots.  There were four pots of each line and one 

plant per pot, and treated with the fungicide “Talius” (active ingredient – Proquinazid) to prevent 

mildew.  The plants were watered by hand once a day and were staked and tied as 

appropriate.  Plants were de-leafed to decrease the risk of pests and disease.  Biological control 

amblyseius was applied to help control thrips presence.  Wheat was threshed using a handheld 

threshing block. 

 

2.1.4 High ferritin wheat line   
 
The transgenic high ferritin line (fer0509) and control was obtained from Henrik Brinch-Pedersen 

(Aurhus University, Denmark) and harvested in 2010.  

 

2.1.5 Nicotainamine over expressing rice 
 
Rice was obtained as bran and polished rice  flour fractions from Huajia campus, Zhejiang 

University, China ,where the rice was polished with a rice milling machine JNMJ3 (Taizhou Grain 

Instrument, Zhejiang, China) for 1 min, 3 times, to obtain polished grain. Samples were harvested 

from a paddy field on the farm of the Huajia campus, Zhejiang University, with a planting distance 

of 18×18 cm. The soil contained 10.92 g kg−1 total Fe and 87.8 mg/kg total Zn as determined by 

inductively coupled argon-plasma mass spectrometry (ICP-MS, Agilent 7500ce, CA, USA). 

Unpolished Wild type grain concentration 13.2 mg/kg Fe and 23.1 mg/kg Zn. EN1 and EN2 

unpolished grain concentration was 15.8 and 18.4 mg/kg Fe and 31.74 to 36.99 mg/Zn respectively. 

Polished Wild type grain concentration 6.1 mg/kg Fe and 22.1 mg/kg Zn. EN1 and EN2 polished 

grain concentration was 6.0 and 6.2 mg/kg Fe and 28.74 and 29.6 mg/Zn respectively (121).  

 

2.2 Chemicals and reagents 
 

All the chemicals used were of analytical grade or high purity. Acids (HNO3, HCL, acetic acid) were 

from Fischer chemicals, UK. Elemental Standards were made from stock solutions containing 1000 

mg/kg and were from Fisher chemicals, UK. All elemental standards were prepared daily. All water 

was de-ionized pure water from a Milli-Q Water Purification System (PUR1TE, ONDEO, UK) was 

used. Gases for ICP-MS (He2 and H2 and He202) were from (BOC, Surrey, UK). TRIS-base and EDTA 

were from Sigma-Aldrich, Austria. Quartz sand (SiO2) from Fluka (Sigma-Aldrich, Austria). Chelax 

100® resin was from Bio-Rad, (USA). Sodium phytate, tannic acid, citrate, ascorbic acid, NaCl, KCl, 

javascript:popupcomp('12','NaCl','b905688b')
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and Sodium dodecyl sulphate (SDS) were all form Sigma Aldrich, Austria. All glassware was acid 

washed in 10% HNO3. 

 

 

 

2.2.1 Buffers  
 

 

All buffers for mobile phase and extraction were degased and made up each day, pH was 

monitored by a pH meter (Jenway 3540). Buffer containing EDTA for rinsing column was made up 

every month. 

. 

2.2.2 Preparation of Fe-DMA and Fe-NA 
 

Both DMA and NA form 1:1 molar complexes with Fe. Fe (II)-NA was prepared from ferric chloride 

(Sigma Aldrich, Austria) and Fe (III)-DMA was prepared from ferrous sulphate (Sigma Aldrich, 

Austria). DMA/NA were dissolved and Fe was dissolved separately, appropriate solutions were 

then mixed immediately to avoid oxidation. Both NA and DMA were purchased from Toronto 

Research Chemicals Inc., except initial speciation analysis of NA which used NA was a gift from 

Professor Jian Feng Ma (Okayama University, Japan).  

 

2.2.3 Preparation of mono-ferric phytate  
 

A solution of 100 ml of 0.5 M acetic acid with 10 sodium phytate and l g FeCl3-6H2O was stirred for 

2 hrs until all the sodium phytate  was completely dissolved. The resultant solution was allowed to 

stand briefly, 100ml of 95% ethanol was added and the solution left overnight. The  precipitate 

was then collected by centrifugation (5000 g 10 mins) (Medowrose scientific LTD ,Oxford , UK), 

washed three times with acetone, allowed to air dry, and stored in a desiccator. The final product 

was a pinkish crystalline solid and ICP-AES analyses of the product gave a molar ration of 1 Fe to 6 

P which is consistent with the expected structure (136).  

2.2.4 Enzymes 
 
The enzymes protease XIV (bacterial; from Streptomyces griseus, pepsin (from porcine stomach 

mucosa) and phytase (from wheat), cellulase (Aspergillus niger) and xylanse (Thermomyces 

lanuginosus) were from Sigma Aldrich, Austria. All enzymes were demineralised according to 

Chelax      resin instruction (185). 
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2.3 Methods 
 

2.3.1 Moisture content 
 
The moisture content was determined by an electric moisture meter ( xtech Moisture Meters 

   ). Briefly, a small subsample was ground and compacted and electrical resistance was 

measured. 

 

 

2.3.2 Milling methods 
 

2.3.2.1 Brabender milling 
 

Milling and separation of flour and bran were performed on a Brabender Quadrumat Junior Mill 

(Duisburg, Germany) (Fig. 7). The grains moisture content was first adjusted to 15% by the 

addition of deionised water. Bran yields for all samples ranged between 25-30% (Appendix 1) and 

recovery was >95%. However initial results showed that mineral content of the white flour was 

higher than expected for pure starchy endosperm and there was visual evidence of bran, it 

therefore concluded the pure starchy endosperm contained some bran contamination, therefore 

samples were further purified by sieving stage Vortex gene-2 with 150µm sieve.  

 

 

Bran 

Flour 

Rollers 

Sieve 

http://www.google.co.uk/aclk?sa=l&ai=CjeSDHhD0UY2EBI6X0wXd44DACPS_wokCzIqVh1-Xmrf3RwgAEAEoA1Coofe0A2C79qaD0AqgAZTX-_0DyAEBqQJni6y88s65PqoEJ0_QYCJT-uBfkRXnmCLTpd0-5kCSDX9_oBPzQZVThjoe66yJ6o-9F4AH1KiEAg&sig=AOD64_3iEQwMHVPFcJmwPLpHG8wfRVYcVA&ved=0CDUQ0Qw&adurl=http://www.titechnical.co.uk/catalogsearch/result/%3Fq%3Dmoisture%2Bmeasure
http://www.google.co.uk/aclk?sa=l&ai=CjeSDHhD0UY2EBI6X0wXd44DACPS_wokCzIqVh1-Xmrf3RwgAEAEoA1Coofe0A2C79qaD0AqgAZTX-_0DyAEBqQJni6y88s65PqoEJ0_QYCJT-uBfkRXnmCLTpd0-5kCSDX9_oBPzQZVThjoe66yJ6o-9F4AH1KiEAg&sig=AOD64_3iEQwMHVPFcJmwPLpHG8wfRVYcVA&ved=0CDUQ0Qw&adurl=http://www.titechnical.co.uk/catalogsearch/result/%3Fq%3Dmoisture%2Bmeasure


 40 

Figure 7. Schematic of milling process in Brabender mill edited from the Brabender website 

(186). 

 

2.3.2.2 Buhler mill 
 
For field grown samples, 2.5 kgs of grain sample was brought to 16% moisture, left to condition 

for 16 hr, and milled in a Buhler mill (MLU-202) according to Approved Method 26-21.02 (187). 

Tempered wheat was fed at a rate of ≈175 g/min and milled to obtain 74-78% extraction of 

straight-grade flour. In the milling operation, three break flour streams (first break [B1]; second 

break [B2]; third break [B3]) and three reduction flour streams (first reduction [R1]; second 

reduction[R2]; third reduction [R3]), as well as two offal fractions (offal flour and course offal) and 

to bran fraction (bran flour and course bran) were obtained. All milling was performed at 

Campden BRI, Gloucestershire, UK. 

 

2.3.4 Harberg falling number  
 
Harberg Falling Number was performed by the sample processing facility at Rothamsted. A 7 g 

sample of wheat flour is weighed and combined with 25 ml of distilled water in a glass falling 

number tube with a stirrer and shaken to form a slurry. As the slurry is heated in a boiling water 

bath at 100 Cº and stirred constantly, the starch gelatinizes and forms a thick paste. The time it 

takes the stirrer to drop through the paste is recorded as the falling number value.  

 

2.3.5 Ash content 
 

Ash content was determined using AACC Approved Method 08-12(188). Briefly 1g of samples was 

disincarnated in a silica dish and total ash content weighed.   

 

2.3.6 Determining total micro-mineral concentration and soluble macro minerals  
 
Initial test where performed on the six cultivators grown in Hungary. Mineral concentration were 

analysed using both microwave digest and open-tube digest to determine which method was to 

be the most accurate 

 

2.3.6.1 Microwave digest. 
All digests were performed using MARS Xpress Microwave system in Teflon tubes.  0.4 g±0.05 of 

sample prepared as described was added to 8 mls of digest solution of (HNO3 37.5%/ 18MΩ H20 

37.5% /H2O2 25%). Samples were then microwaved using the following program. 
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 Power Max (W) Power  % Ramp (min) Temperature 

(C) 

Hold (min) 

Stage 1 400 100 8 55 3 

Stage 2 800 100 14 115 20 

Stage 3  800 100 5 140 15 

 

Samples were then diluted to 25ml volume with 18MΩ H20 for ICP-OES 

 

2.3.6.2 Open tube digest  
 

All digest were performed on digestion block (Eurotherm,UK). Samples were prepared as 

described and pre-digested in HNO3/HClO4 acid mixture for 4 hrs. The following heating regime 

was then carried out overnight. 

 

 

 

 

Programme Rise rate 

0C/hr 

Temp 

0C 

Dwell 

hrs 

1 60 60 3 

2 120 100 1 

3 120 120 1 

4 50 190 2.5 

5 STEP 50 END 

 

After evaporation 20% Aristar HNO3 was added, before concentrations made up to 20 ml with   

18MΩ H20 for ICP-OES. 
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Both methods were validated by the use of standards Bcr-189 (whole grain), NIST 8438 (wheat 

white flour) and NIST 1567a (wheat white flour). Replicated analyse (n = 3) of the standards gave 

mean values in good agreement with the certified values of all standards. Further analysis used 

only the open tube method which showed the highest agreement with standards in relation to Fe 

and Zn, the elements of interest, and BCR-189 was run with all samples to make sure results were 

comparable. The mean results for Bcr-189 after open tube digest were 67.1±1.7 mg/kg for Fe and 

59.1±1.6 mg/kg for Zn compared to certified values of 68.3±1.9 and 56.5±1.7 mg/kg, respectively. 

Wet digestion procedures in open vessels are at risk of sample contamination and loss of analytes 

by volatilization compared to the closed tube microwave method (189) Due to the nature of our 

analytes, Fe and Zn, the risk of volatilization was deemed considered to be minimal. 

 

 

2.3.7 Total minerals of dry mass 
 

Minerals concentrations were determined using inductively coupled plasma optical emission 

spectrometry (ICP-OES, Perkin Elmer optima 7500 DV, Waltham, USA).  500 mg (oven dried at 80 

ºC for 4 hrs) of each sample was digested in ultra-pure HNO3 and HClO4 (87:13 % v/v) in triplicate 

using digestion blocks (200 ºC, 12 hrs) (Eurotherm MBB151, Durrington, UK). Working conditions 

for ICP-OES were: RF Power 1.5 kW, auxiliary gas (Ar) flow rate 0.2 l/min, carrier gas (Ar) flow 0.85 

l/min. Blank and certified reference materials (CRM, BCR-189, wheat wholemeal flour and 

NIST1568a, rice flour) were included in each batch of analyses and the values for the CRM were 

within <5% of the certified values for Fe and Zn. Signal drift was corrected by measuring a 

standard solution every 10 - 20 samples. Possible Soil contamination was checked by analysing Ti 

and Al concentration of samples, all results were well below 10ppm indicating no soil 

contamination. 

 

2.3.8 Macro minerals of soluble fraction 
 

Due to the higher concentration of macro-minerals of interest (P, Ca, S) soluble macro minerals 

were determined by inductively coupled plasma optical emission spectrometry (ICP-OES, Perkin 

Elmer optima 7500 DV, Waltham, USA) as described above except solution were diluted with acid 

to make 10 ml of final concentration of 5% HNO3.  

 

2.3.9 Micro minerals in solution 
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Micro minerals in soluble fractions were determined by inductively coupled plasma mass 

spectrometry (ICP-MS; Agilent 7500ce, Agilent Technologies, Palo Alto, CA, USA) with the 

following conditions: RF power 1.5 kW, carrier gas 0.85 l/min, nebuliser pump speed 0.2 l/min, H2 

gas 6 ml/min. All samples were measured with three technical replicates and made up to 10 ml 

with final concentration of 5% HNO3. Standards of 10 µg/l Fe, Zn and Cu and a blank were used to 

monitor signal stability, in addition an internal standard containing 89Y which was added to all 

samples and monitored throughout.  

 

 

 

2.3.10 Determination of Nitrogen percentage 
 
Total grain N was determined by the analytical Unit of the Soil Science Department, Rothamsted 

Research, according to the Dumas digestion method, using a LECO CNS 2000 combustion analyser 

(Leco, Stockport, UK). Flour fractions were oven dried (overnight 80 Cº) and 0.5 g of samples was 

analysed, all samples were analysed in duplicate and results presented as means.     

 

2.3.11 Determination of phytate 
 
The phytate content of the samples were determined with a Megaenzyme assay kit (K-PHYT 

05/07; Megazyme Int., Wicklow, Ireland). Briefly, either 1 g or 0.5 g of samples with extracted 

with 10 ml of hydrochloric acid followed by enzymatic dephosphorylation step with phytase and 

alkaline phosphatase and precipitation using a colour reagent prepared from ascorbic acid in 

sulphuric and ammonium molybdate. The Absorbance (655 nm) of free phospurous and total 

phosphorous were then compared to phosphorus standards using a Varioskan spectrometer 

(Thermo, Finland). All runs included standards and controls and all samples were analysed in 

triplicate. 

 

 

2.3.12 Data analysis 
 
ANOVA, Correlation and regression analysis was performed using GenStat 13th edition (VSN, 

Hemel Hempstead, UK).  
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Chapter 3. Total Fe and Zn concentrations in different milling fractions of wheat grain 
 

3.1 Introduction 
 
The majority of wheat products consumed in the diet are produced after milling of the grain to 

give white flour. This consists almost entirely of the starchy endosperm, while the bran, which 

contains the aleurone layer, embryo and outer layers of the grain (pericarp and testa), is largely 

discarded (67). However, the concentrations of Fe and Zn in the endosperm are much lower than 

those in the bran (66, 103). The amount of white flour which is recovered during processing is 

referred to as the extraction rate.  It is therefore important that biofortification strategies also 

consider the localisation of minerals within the grain if the end products are to have increased 

nutritional benefits.  

 

Variation in the concentrations of total Fe and Zn in whole grain of wheat genotypes has been 

widely reported. For example, a recent study of 130 cultivars grown on the same site showed that 

the concentrations of Fe and Zn ranged from 28 to 51 mg/kg and from 13 to 35 mg/kg, 

respectively (4). Other studies have shown even greater variation; analyses of lines grown in 

France showed variation of 19-58 and 14-35 mg/kg for Fe and Zn, respectively (190), while in 

Asian wheat varieties the concentration of Fe ranged from 23 to 49 mg/kg (191) and of Zn from 

25-56 mg/kg (192). Variation from 4-16 mg/kg of Fe and from 5-16 mg/kg of Zn has also been 

reported for white flour of Chinese wheat cultivars (103). Although this range of genotypic 

variation is encouraging from a plant breeding perspective, it is not clear whether the variation is 

consistent between different fractions of the grain, and in particular whether the variation 

reported for whole grain is reflected in white flour from the same genotypes.  

 

Correlations between minerals in grain are also of interest; this is particularly so for the 

relationship between Fe and Zn as breeding for one mineral could theoretically simultaneously 

increase the concentration of the other (8, 193). Protein is also correlated with Fe and Zn 
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concentrations and high grain protein from a nutritional standpoint is a desirable trait (193). 

Correlations with other elements are also of interest, including with P, or more importantly phytic 

acid. 

 

For this chapter the total concentrations of primarily Fe and Zn were determined in a range of 

cultivars grown on a number of sites. Grain was milled to give white flour and bran (Chapter 2 

section 3.2.1). Two cultivars (Rialto, Riband) were also grown in a field trial so as to have 

biological replicates and to have enough material for laboratory milling to determine variation in 

the concentrations of minerals, protein and phytic acid across 10 milling fractions. A field 

experiment was also conducted to determine the effects of foliar application of Fe and Zn on the 

mineral concentrations of wheat grain of three cultivars (Rialto, Riband, Spark). 

 

Hypothesis: Cultivars of grain with higher Fe and Zn concentrations within the whole grain will 
also have higher Fe and Zn concentrations within the white flour fraction. 
 

3.2 Materials and methods  
 

The samples provided from Healthgrain projects were grown as described (chapter 2). The three 

cultivars used to determine the effects of foliar treatment were field grain harvested in 2010 

(chapter 2, 2.1). Further analysis on 10 milling fractions milled by the Buhler mill (chapter 2, 3.2.1) 

were from field grown grain of Rialto and Riband harvested in 2010 and 2012 (chapter 2, 2.2.) 

These two cultivars were chosen as they represented high and low Fe and Zn lines. The effects of 

foliar treatments were also determined on field grown cultivars Rialto, Riband and Spark 

harvested in 2010. All results are expressed as dry mass (dm). 

 

3.2.1 Data analysis 
 

 For the multiple environment trials of 6 wheat lines, each site (three in total) was taken as a 

replicate as each individual plot was not replicated (Chapter 2). For Rothamsted field grown lines 

(Rialto, Riband, Spark) (Chapter 2) analysis of variance (ANOVA) was used where appropriate. 

Correlation coefficients were calculated to determine relationships between minerals across 

genotype and location, and different milling fractions. 

 

 

 

 



 46 

3.3 Results 
 

3.3.1 Samples from the Healthgrain project  
 
Figure 7 shows the concentrations of Fe and Zn in flour and bran of samples of six wheat cultivars 

grown on three European sites (in Hungary, Poland, UK). Because cultivar differences were 

consistent across the three sites, only the mean data are presented. The cultivars Rialto, San 

Pastore and Tiger contained higher concentrations of Fe in the whole grain than Crousty, Valoris, 

and Riband. This cultivar difference was generally similar for the concentrations of Fe in both bran 

and white flour. Notably, the mean concentrations of Fe were 43% higher in the wholemeal 

samples and 43% higher in the white flour of the high Fe cultivars when compared to the low Fe 

cultivars. Similarly, the mean concentrations of Zn were 16% higher in the wholemeal samples 

and 58% higher in the white flour of the high Fe cultivars when compared to the low Fe cultivars. 

The cultivar-specific differences in Fe and Zn concentrations were consistent across the three 

sites. There were also significant correlations between the mineral concentrations in wholemeal 

and concentrations in the white flour, for both Fe (r=0.540, n=18, p<0.05) and Zn (r=0.489, n=18, 

p<0.05) among the different cultivars across the 3 sites.   
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Figure 8. The concentrations of Fe and Zn in wholemeal (A, B), white flour (C, D) and bran 
fractions (E, F) of six wheat cultivars. Data are means of materials grown in field trials at three 
sites in 2007 (Hungary, Poland, UK) (mg/kg dm ± SE).   
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Table 2 The concentrations of P and S in wholemeal, bran and white flour fractions of six wheat 
cultivars. Data are means of materials grown in field trials at three sites in 2007 (Hungary, Poland, 
UK) (mg/kg dm ± SE) 

Cultivar P (mg/kg) 

wholemeal 

Means ± SE 

S (mg/kg) 

Wholemeal 

Means ± SE 

P (mg/kg) 

Bran 

Means ± SE 

S (mg/kg) 

Bran 

means ± 

SE 

P (mg/kg) 

White 

Flour 

means ± 

SE 

S (mg/kg) 

White  

Flour  

means ± 

SE 

Crousty 3384±139 1584±20 10270±1099 2128±132 826±8 1163±30 

Valoris 3350±162 1493±70 8962±287 1877±22 819±17 1042±20 

Riband 3658±175 1614±77 9128±1003 1882±64 928±65 1174±140 

Rialto 3551±124 1640±29 8888±503 1862±15 1174±85 1199±100 

San-P 3880±165 1620±55 10829±794 1997±27 1068±103 1282±82 

Tiger 3525±111 1521±40 9864±393 1876±28 1161±17 1335±137 

 

Figure 8 Shows the concentrations of Fe, Zn and P in the white flour fractions in more detail and 

the effects of environment on grain concentration. The Fe concentration varies the most between 

the sites by >100% between some cultivars (Fig. 8a). The Zn concentration varied less with the 

highest variation being 50% between sites (Fig. 8b). The P concentration was relatively stable 

across all sites with only low variation, although the high Fe/Zn  cultivars (Rialto, San Pastore , 

Tiger) did appear to have more P than the low Fe/Zn cultivars (Crousty, Valoris, Riband). No 

statistics were performed as there was only one biological replicate for each site.   
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Figure 9. The concentrations of A) Fe B) Zn and C) P in white flour fraction of the six cultivars 
(Crousty, Valoris, Riband , Rialto, San Pastore [San-p], Tiger) fractions across 3 different sites, 
error bars represent SE of means of three technical replicates.  Rialto, San Pastore and Tiger are 
lines identified as being high Fe/Zn. 
 

Figure 9 shows the correlation between Fe and Zn in Healthgrain samples. In whole grain samples 

there was a positive correlation between Fe and Zn (r=0.419, n=18, p<0.05). This correlation was 

higher in bran (r=0.724 p>0.001), and highest in white flour (r=0.811, n=18, p>0.001). Figure 9 

shows the correlations between total S and Zn. Zn and S were correlated in the white flour 

fraction, however there was no significant correlation between S and Zn in the bran fraction. 

Figure 9 shows the correlations between total P and Fe. Fe and P were correlated in the white 

flour fraction, however there was no significant correlation between P and Fe in the bran fraction. 

Similar results were obtained for Fe and S and Zn and P (data not shown). 
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Figure 10. Correlation coefficients (r) between Fe and Zn concentrations in wholemeal (A), bran 
(B) and white flour fractions (C) of six wheat cultivars. Data are means of samples grown in field 
trials at three sites in 2007 (Hungary, Poland, UK) (mg/kg dm).  Level of significance: *p < 0.05, 
**p < 0.01, ***p < 0.001 (n = 18). 
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Figure 11. Correlation coefficients (r) between Zn and S concentrations in bran (A), and white 
flour fractions (B) of six wheat cultivars. Data are means of samples grown in field trials at three 
sites in 2007 (Hungary, Poland, UK) (mg/kg dm).  Level of significance: *p < 0.05, **p < 0.01, ***p 
< 0.001 (n = 18). 
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Figure 12. Correlation coefficients (r) between Fe and P concentration in A)bran and B)white 
flour fractions of six wheat cultivars. Data are means of samples grown in field trials at three sites 
in 2007 (Hungary, Poland, UK) (mg/kg dm).  Level of significance: *p < 0.05, **p < 0.01, ***p < 
0.001 (n = 18). 
 
 
 

Figure 13 shows the molar ratio of P:Fe. These figures show that  in wholegrain flour the cultivars 

high in Fe/Zn (Rialto, San-pastore, Tiger) had lower P:Fe ratios compared to cultivars low in Fe/ZN 

(Crousty, Valoris , Riband), with mean ratios of 79:1 compared to 93:1, however in the white flour 

this relationship was reversed, with high Fe/Zn cultivars having a P:Fe ratio of  80:1, compared to 

low Fe/Zn cultivars with a P:Fe ratio of 86:1.  
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Figure 13. The P:Fe ratio of Healthgrain samples. Data are means wholemeal (A) and white flours 
(B) samples grown in field trials at three sites in 2007 (Hungary, Poland, UK) . 
 
 
 
 
 

3.3.2 Field trial at Rothamsted in 2010 and 2012 

 
Figure 14 shows the effect of foliar treatment of Fe-EDTA and Zn-EDTA on Fe and Zn 

concentration in wholegrain of Rialto, Riband and Sparks. ANOVA showed that the foliar Fe 

application had no significant effect on Fe concentration in wholegrain, however; here was a 

slight effect (mean increase of 1.1 mg/kg) of Zn treatment (p=0.05)  
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Figure 14. The concentrations of Fe and Zn in whole meal of the cultivars Rialto, Riband and 
Spark grown at Rothamsted in 2010 with and without combined foliar treatment of Fe-EDTA 
and Zn-EDTA. Data are means ± SE of three biological replicates.  
 
 
 
 
 

 
Figure 15. The concentrations of Fe and Zn in (A) whole meal, (B) white flour and (C) bran 
fractions of the cultivars Rialto and Riband grown at Rothamsted in  2010. Data are means ± SE 
of three biological replicates, * represent significant differences between cultivars at p< 0.05 
according to ANOVA.  
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Figure 16 The concentrations of Fe and Zn in (A) whole meal, (B) white flour and (C) bran 
fractions of the cultivars Rialto and Riband grown at Rothamsted in 2012. Data are means ± SE 
of four biological replicates, * represent significant differences between cultivars at p< 0.05 
according to ANOVA.  
 

 

Figure 15 shows the concentrations of Fe and Zn in grain of Rialto and Riband grown at 

Rothamsted in 2010. Rialto had significantly (p<0.05) higher concentrations of Fe and Zn than 

Riband, in wholemeal (by 54% and 29%, respectively), bran (by 24% and 18%) and white flour (by 

80% and 26%). Figure 16 shows the same samples grown in a replicate trial in 2012. Rialto again 

had higher Fe and Zn in wholemeal (by 50% and 26%, respectively), and white flour (by 53% and 

40%). Rialto had higher Fe in bran (by 24%), but there was no significant difference between 

cultivars for Zn in bran. It is notable that the difference in the concentration of Fe was greatest in 

the white flour fraction in both years. These differences were broadly similar to the data from the 

multi-site trials (Fig. 8). 
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Figure 17. Percentage yields of Buhler milling fractions from Rialto and Riband grown at 
Rothamsted in 2010 and 2012. 
 
 
 
 
Table 3.  Ash content of the 10 milling fractions from the 2010 harvest. 

Fraction B1 B2 B3 R1 R2 R3 Offal 

flour 

Bran 

Flour 

Coarse 

offal 

Coarse 

Bran 

Ash(%)1           

Rialto 0.2 0.4 0.7 0.4 0.7 1.3 1.3 1.5 6.1 4.6 

Riband 0.3 0.5 1.8 0.4 0.7 1.1 1.3 1.7 6.3 4.9 

 `  
 
The yeilds of Buhler mill fractions are provided in Figure 17. Milling fraction yields for Rialto in 

2012 were atypical and therefore most analysis were performed on the fractions from 2010. For 

the 2012 harvest the R2 fraction of Rialto was abnormally high corresponding to 23% of the total 

grain, whereas expected yeild of this fraction is 13% (103). Considering the total Fe, Zn and P 

(Appendix 2) in this fraction it is clear there is some aleurone contamintion in this fraction as Fe, 

Zn and P are all much higher than expected. The cause of this is not kown but no further analyses 

were performed on their fractions due to this anomaly, which would have skewed any results. For 

the 2010 harvest the break fractions B1 - B3 and the reduction fractions R1 - R3 correspond to 
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white flour, with R1 accounting for 47.6% and 42.1% of the total grain in Rialto and Riband, 

respectively (Fig. 17). Riband, a soft wheat, had higher yield of the break fractions (B1-3). This has 

previously been reported as an effect of grain hardness (194).  

 

Ash content, an indicator of bran contamination(195), decreases closer to the center of the grain, 

with the first break (B1) and the first reduction (R1) having the lowest ash content in both 

cultivars. Coarse offal had the highest ash content which was 20-30 times that of the first break 

fraction (B1) (Table 3). The R1 fraction had the lowest ash content (Table 3) and is therefore 

considered to represent the purest starchy endosperm fraction derived from the central part of 

the grain (194). 

 

The total concentration of Fe (Fig. 18a) varied greatly between the six flour fractions (R1, R2, R3, 

B1, B2 and B3), from 9 to 32 mg/kg in Rialto and 5 to 35 mg/kg in Riband, respectively. The 

differences were even greater between the flour and shorts (offal flour, bran flour, coarse offal 

and coarse bran) fractions, with a 26 fold difference in Fe concentration between the R1 and 

coarse offal fractions from Riband.The total concentrations of Zn (Fig. 18b) also varied greatly 

between the six flour fractions (R1, R2, R3, B1, B2 and B3), 2 to 20 mg Zn/kg in Rialto and 2 to 16 

mg Zn/kg in Riband. The differences between R1 and coarse offal for Zn concentration was 44 

fold.  

 

There was a less dramatic difference in P concentration between the flour fractions and shorts 

fractions; however, there was still a clear difference between the flour and shorts in both cultivars 

, with the coarse bran fractions containing ~12 fold greater P then the B1 and R1 (Fig. 19a). The 

concentrations of sulphur were more consistent across all fractions with the greatest varation 

being only ~2 fold higher in course offal compared to B1 in Riband (Fig. 19b). 

 

There was a strong postive correlation between the concentrations of Fe and Zn in the ten milling 

fractions (r=0.929, n=20, p<0.001) (Fig. 20), the strongest correlation being observed between Fe 

and P (r=0.999, n=20, p<0.001) (Fig.20c). Intrestingly this was higher than the corrlation between 

Fe and phytic acid (r=0.956, n=20, p<0.001)  (Fig 20a). 
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Figure 18. The concentrations of Fe (A) and Zn (B) in 10 fractions obtained by Buhler milling of 
the cultivars Rialto and Riband, grown at Rothamsted in 2010. Data are means ± SE of three 
technical replicates. 
 
Phytic acid showed a similar distrubution pattern to Fe and Zn (Fig. 21), varation in the white flour 

fractions was however higher, with differences between B3 and R3 being >300 fold in Rialto. 

Rialto had higher phytic acid concentrations than Riband in all fractions except offal flour and B3. 

This was particularly evident for the white flour fractions where concentrations were over 2 fold 

higher in the reduction fractions (R1-R3) and the first 2 break fractions (B2, B3). Both Fe and Zn 

showed strong postive correlations with phytic acid across the milling fractions (Fig. 22).  
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Figure 19. The concentrations of P (A) and S (B) in 10 fractions obtained by Buhler milling of the 
cultivars Rialto, and Riband grown at Rothamsted in 2010. Data are means ± SE of three 
technical replicates. 
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Figure 20. The correlation coefficients (r) between Fe and Zn (A), Zn and S (B) and Fe and P (C) in 
the 10 milling fractions of Rialto and Riband grown at Rothamsted in 2010 (n = 20). Level of 
significance: *p < 0.05, **p < 0.01, ***p < 0.001. 
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Figure 21. The concentrations of phytic acid in 10 fractions obtained by Buhler milling of the 
cultivars Rialto, and Riband grown at Rothamsted in 2010. Data are means ± SE of three 
technical replicates. 
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Figure 22. The correlation coefficients (r) between Fe and phytic acid (A) and  Zn and phytic acid 
(B) of the 10 milling fractions of Rialto and Riband grown at Rothamsted 2010 (n = 20), Level of 
significance: *p < 0.05, **p < 0.01, ***p < 0.001. 
 
Figure 23 shows the nitrogen content of the 10 milling fractions, which is an indicator of protein 

content. N content, although higher in bran fractions, did not vary greatly between the bran and 

flour. Similar to minerals there appears to a radial protein concentration gradient in the flour 

fractions with B1 and R1 central endosperm fractions having the lowest protein levels. Rialto had 

higher protein content than Riband in all fractions, except coarse bran. Figure 24 shows that the 

concentrations of both Fe and Zn were highly correlated with %N with almost identical r values.    
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Figure 23. Protein content as %N of 10 fractions obtained by Buhler milling of the two cultivars 
Rialto and Riband grown at Rothamsted 2010, results are means of two technical replicates.  

 
Figure. 24. Correlation coefficients (r) between Fe and %N (A) and  Zn and %N (B) of the 10 
milling fractions of Rialto and Riband grown at Rothamsted in 2010 (n = 20), Level of 
significance: *p < 0.05, **p < 0.01, ***p < 0.001. 
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3.4. Discussion 
 

3.4.1 Total Fe and Zn 
 
The initial aim of this study was to determine if there was a relationship between the total 

concentrations of Fe and Zn in whole grain and in white flour of wheat. There is evidence that the 

loading of minerals, such as Fe and Zn, into the starchy endosperm is highly regulated and occurs 

independently of loading into the outer layers that constitute the bran (46, 68). Consequently, the 

concentrations of minerals in the white flour may not reflect those in the whole grain, which is 

dominated by the minerals stored in the outer layers (especially the aleurone) and the embryo. 

Analyses were therefore initially carried out on white flour fractions obtained with a Brabender 

Quadrumat Junior laboratory mill, followed by sieving to reduce contaminating bran, with a more 

detailed study of six flour and four bran/offal fractions obtained using a Bühler mill, which are 

more similar to fractions from commercial milling.  

 

The results for total Fe and Zn were largely in agreement with previous studies of wholegrain and 

various fractions (5, 103, 196). In the case of wholegrain, it has been argued that any breeding 

strategy for Fe and Zn should be targeted to a specific environment due to the high level of 

genotype x environment interaction (5, 196). Our results show that this is also the case for white 

flour, which showed variation of >100% between experimental sites.  

 

All three cultivars identified from the Healthgrain project which were high in Fe and Zn in 

wholegrain were also high in the white flour. This was demonstrated by a positive correlation 

between whole grain Fe and Zn and white flour Fe and Zn (r=0.589 p<0.01) and (r=0.485 p<0.05) 

respectively.  

 

The results of the field trial with Rialto and Riband at Rothamsted were in agreement with the 

multi site analysis with white flour of Rialto being significantly higher in Fe and Zn than that of 

Riband in both years. Analysis of the 10 milling fractions also showed that Rialto had higher 

concentrations of both Fe and Zn than Riband in most fractions. The increases in total Zn in the 

flour fractions from R1 (central endosperm) to R2, R3 derived from the outer endosperm (Fig. 

18b) are consistent with the localization of Zn in wheat grain determined using laser ablation-ICP-

MS (67), which showed that the concentration of Zn decreased with increasing distance from the 

aleurone layer. The comparison of white flour fractions suggests a similar pattern for the spatial 

distribution of Fe (Fig. 18a). The distributions patterns observed for Fe and Zn in milling fractions  

observed are in agreement with previous results on Chinese wheats (103). 
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3.4.2 Milling  
 
One factor which needs to be considered when comparing milling fractions is how each cultivar 

responds to shear forces during the milling process, as milling of hard (e.g. Rialto) and soft (e.g. 

Riband) wheats may result in different amounts of aleurone tissue being present in the white 

flour fractions, especially the late break and reduction fractions (i.e. B3, R3). In particular, white 

flour from hard wheat cultivars contains more aleurone material, especially in the break fractions 

(B1-3)(194). This is because the aleurone cells are more damaged in hard wheats and their 

contents contaiminate into the flour fractions (194). 

 

This is probably why considerably higher levels of phytic acid are present in the reduction and 

break fractions of Rialto (hard wheat,Fig. 21), which were >2 fold higher than in Riband in all 

white flour fractions except for B3 (which only accounts for 1% of total grain), and also for the 

higher concentrations of other minerals as well (Fig 18,19).  

 

3.4.3 Correlation between Zn and Fe 
 
Correlations between Fe and Zn in wheat have been widely reported (8, 193, 197, 198) with 

significant (p<0.05) correlation coefficients (r) of 0.659 (199) and 0.711 (198) in modern wheat. An 

extensive study of 42 winter wheat varieties grown in central Asia also showed a positive 

correlation with an r2 value of 0.63 (P<0.001)(193). A similar correlation has also been reported in 

wild emmer wheat with an a r2 value of 0.214 for 518 ascensions (P<0.01)(200) . 

 

Our data also showed a positive correlation between Fe and Zn in wholegrain. Interestingly this 

relationship was more pronounced in the bran fraction than the flour fraction (Fig. 10a). This is 

possibly due to differential loading of the endosperm with Zn and Fe which has been reported in 

wheat grain (63, 68) .  

 

3.4.4 Correlations between Zn and S 

Increasing S supply has been shown to have a positive effect on grain Zn (201). It has previously 

been argued that breeding for increased Zn can be achieved by increasing the concentration of S 

containing amino acids methionine which may act as a sink within the grain (193).  

 

Analysis of the 6 Heathgrain project cultivars showed a strong correlation between S and Zn in the 

white flour, but this correlation was not evident in the bran (Fig. 11). The correlation we observed 
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in flour was stronger than the previously observed correlation in whole grain (r=0.53) (202). It has 

been reported that Zn entering the endosperm is under tight control by the crease (63, 68). It is 

possible therefore that this influx of Zn into the endosperm may be influenced by S sink caused by 

proteins containing thiol groups. Research on barley has found that Zn appeared to be speciated 

with sulphur in the embryo and therefore is probably bound to thiol containing proteins (23). 

 

In grain milling fractions S and Zn are again highly correlated, and Rialto, known to be a high Zn 

line, has more Zn and more S in all milling fractions than Riband, indicating that this relationship is 

likely to occur in all tissues.  

 

3.4.5 Protein 
 

Differences in protein levels (determined by %N) between milling factions showed a similar trend 

to that in minerals and phytic acid but the differences between the flour and bran fractions were 

much less pronounced and were more in line with differences observed in S content. This is to be 

expected as proteins are the major form of S in plant cells and S can be used as a crude estimate 

of protein content. 

 

Correlations between protein and minerals including Fe and Zn have been widely reported (199, 

203) and shown in both endosperm and bran (67, 204, 205). One possible reason for this 

association is the Gpc-B1 allele, a quantitative trait locus associated with increased grain Fe/Zn 

and protein content in wild wheat cultivars (154, 206). This effect has been demonstrated by 

using grain with recombinant chromosome substitution lines (RSLs) with the Gpc-B1 allele of T. 

dicoccoides, which showed an increase in Fe, Zn and protein in grain of 18%, 12% and 29% 

respectively, compared to grain containing the allele from modern wheat (Triticum durum)(206). 

Our data shows a correlation between Fe/Zn and protein (Fig. 17b), indicating that the association 

of Fe/Zn and protein exists in all fractions.  

 

3.4.6 Phytic acid  
 

Phytic acid  is a strong anti-nutrient and a crude way therefore to estimate bioavailability of Fe is 

to measure the ratio of Fe and P (207) as phytic acid makes up over 80% of the total P in cereals 

(158). Our results are encouraging as the grains high in Fe/ZN had a lower P:Fe ratio (Fig. 11) than 

those low in Fe/Zn despite the high Fe/Zn cultivars containing more total P (Table. 2). More 

detailed analysis of both P and Fe in Rialto and Riband shows the two to be highly correlated (Figs. 
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12c, 20a). However it is not advisable to determine Fe:P ratio as an accurate indicator of Fe:phytic 

acid ratio, especially when examining white flour. In the samples Fe:P ratios in white flour were 

only slightly higher in Rialto, however in  the Buhler milling fractions (R1, R2, R3, B1, B2, B3) it is 

clear that Fe:phytic acid ratios are considerably higher. The phytic acid to Fe ratios of these two 

cultivars and the effect of this on bio-availability of Fe are discussed in more detail in Chapter 5. 

 

Phytic acid is thought to be highly localised in the aleurone layer and embryo as phytate granules 

in wheat (208), with no strong evidence for phytate granules in the endosperm (69). Our data are 

in agreement with previous studies which show higher concentrations in the bran milling fractions 

and lower concentrations in the flour fractions (72, 103). It is possible that all of the phytate found 

in our white flour milling fractions may be from contamination from the germ and aleurone which 

would explain the lower concentration in fractions derived from the centre of grain and would 

account for the previously discussed the large cultivar differences between the hard and soft 

wheat. The strong correlations between phytic acid and Fe and Zn may also be indicative of 

contamination of flour fractions with aleurone layer and germ being responsible for a large 

portion of the minerals present in the white flour fractions, as previously discussed.  

 

It should be noted that the strong correlation between phytic acid and Zn does not necessarily 

indicate in planta speciation as phytate granules are present in protein storage vacuoles (PSV) (69, 

208) and therefore any part of the grain containing traces of phytate granules will also contain 

some protein, another likely chelator of Zn. Interestingly the only flour fraction (B3) which was 

higher in phytic acid in Riband compared to Rialto was also higher in Fe but not in Zn (Figs. 14,21). 

 

3.4.7 Foliar treatment 
 
Our foliar combined treatment was shown to have a minor significant effect on Zn concentration. 

Foliar treatment of Zn as (ZnSO4) has been previously shown to increase grain Zn concentration by 

up to 3 fold (209-212) and  also increases Fe concentration in the grain (212, 213). One reason for 

this could be the timing of our application. It has previously been argued that the application 

should be in the later stages of wheat development (214). However, it has also been suggested 

that treatment at the booting stage will be most effective (210). Our application was during the 

flowering stage which may have been too late to have an adequate affect. The effect of our Zn 

treatment was also lesser than has previously been reported (209-212). 
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Our combined application of Fe-EDTA and Zn-EDTA had no effect on Fe concentration in grain 

whereas foliar application of Fe has been shown to be effective in previous studies (212), 

although not as effective as Zn (212). In one field trial, FeSO4 was applied at tilling and heading 

stages and Fe concentration in grain was increased 21 mg/kg (212). However in rice the 

application of FeSO4 had no effect on Fe in the grain but ZnSO4 increased both Fe and Zn (215).   

 

It is possible, therefore, that the sulphur in the previous foliar treatments affected transport to 

the grain. One possible reason is that sulphur may increase the content of methionine, which in 

turn may lead to increased production of DMA and NA, which are involved in the uptake and 

translation of Zn and Fe (201). 

 

Taking this into account, it is likely that the reason our foliar treatment was not as effective as 

previous studies was the chelator used, in this case EDTA. Previous studies in peaches (Prunus 

persica (L.) batsch) have shown EDTA to be an ineffective source of foliar Fe compared to FeS04 

(216). One study in wheat further confirms this as it showed that although the Fe-EDTA was taken 

up by the leaves the plants were able to translocate this Fe to the grain as the plant lacks the 

relevant transport mechanism (217).  Our results therefore suggest that EDTA is not an adequate 

chelating agent for either Fe of Zn. 

3.5 Summary 
 

Our data show that breeding of wheat for increased whole grain Fe and Zn is likely to be an 

effective strategy for improving Fe and Zn concentrations of white flour fractions. However the 

concentration of P may also be increased in the white flour which may impact on bio-availability. 

Strong correlations between Fe and Zn indicate that simultaneously targeted breeding for these 

two traits is likely to be an effective approach. 

 

There was an uneven distribution of minerals in the grain fractions with the bran fractions 

containing more of all the elements investigated than the white flour, and the milling fractions 

derived from central endosperm the least. This was least obvious for S and %N, an indicator of 

protein content, where variation between milling fractions was the lowest. 

3.6. Implications of results 
 

The extraction rate is likely to be the most important factor in determining the mineral 

concentration in the white flour. This is especially relevant when one considers the variation in 
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extraction rate of wheat products which range from 100% in wholemeal in some rural areas of 

developing counties to as low as 30% in highly processed products in the west (218). The link 

between phytic acid and Fe and Zn across milling fractions is also likely to affect the bio-availably 

of these milling fractions and is explored in more detail in chapter 5. The link between Zn and S in 

the white flour requires further study if the mechanisms of Zn storage in the endosperm are to be 

understood. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 



 70 

Chapter. 4. Speciation of Iron (Fe) and Zinc (Zn) in cereals  
 

4.1. Introduction 
 
The importance of metal and metalloid (elements which have both properties of metals and non-

metals) speciation has become an area of interest for analytical chemists over the last 30 years 

(219). This interest was prompted by the discovery that in both the environment and biological 

systems metals very rarely exist in a free form and are instead complexed by a plethora of 

different organic compounds, from organic acids, to large marco molecules, such as the protein 

ferritin (219, 220). This finding promoted research into a new field of speciation. Speciation can 

be defined as 1) the distribution of an element between its chemical forms or 2) the analytical 

efforts deployed to determine the chemical formulation of an element (219). 

  

The importance of speciation studies cannot be understated as the species of a metal has 

implications not only for its physical state but also for its function, potential toxicity, mobility, and 

bioavailability within a biological system (219, 220). Nevertheless, historically, the analytical 

chemistry of metals has concentrated on total metals due to the ease of analysis. The analysis of 

metals tends to revolve around the complete destruction of any ligands prior to analysis (219). 

Current metal speciation studies tend to still rely on using Inductively Coupled Plasma (ICP), either 

as Inductively Coupled Plasma Mass Spectrometry (ICP-MS) or Inductively Coupled Plasma Atomic 

Mission Spectroscopy AES-ICP. These methods allow for metal determination, but separation of 

complexes is first achieved by use of a less destructive system, often involving chromatography 

(220, 221). The first study which used this hybrid system was in 1966 where Kolb et al (1966) 

coupled a gas chromatograph and a flame atomic absorption spectrometer to determine alkyllead 

compounds in gasoline (222). One advantage of the combination of ICP-MS with chromatography 

techniques is that it allows the isolation of complexes which contain only the element of interest, 

in comparison to traditional UV detection methods, used in conjunction with HPLC, which detect 

all complexes. This is practical and relevant for food matrixes which contain many complexes, of 

wide molecular sizes (223). 

  

The combined use of chromatography and ICP-MS has allowed various species of metals and 

metalloids to be characterised and quantified in plants, with notable studies investigating 

selenium (224, 225) arsenic (226) mercury (227) cadmium (228) and zinc (229).Yet, despite its 

nutritional importance, Fe has received relatively little attention. 
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The speciation of both Fe and Zn in wheat grain is important considering the potential 

bioavailability of these minerals in a widespread food source. However, it is only recently that the 

forms of these two elements within the grain have begun to be understood. One barrier to this 

research is that both Fe and Zn in grain are largely insoluble; this is thought to be due largely to 

the binding of the metals with phytic acid to form insoluble phytate complexes (134, 230). One 

method which has been used to gain insight into the speciation of insoluble metals in grain 

employs the use of enzymes to liberate insoluble metals from potential chelators, indicating their 

possible binding. Studies have been performed in barley (23) millet (231) and rice (83) using 

different combinations of phytase, cellulase,  xylanase  and protease. 

 

The Identification of soluble Fe and Zn has been achieved by size exclusion chromatography linked 

to ICP-MS (SEC-ICP-MS) in barley (23) and in rice (21, 22), with confirmation of speciation also by 

Electro Spray Ionisation (ESI) (22). However, to date virtually nothing is known about Fe or Zn 

speciation in the wheat endosperm, in part due to their low abundances (46). 

 

In this chapter we will use enzymes to determine the forms of insoluble Fe and Zn in different 

fractions of wheat grain and also further develop the SEC-ICP-MS method to determine Fe and Zn 

binding in soluble fractions of wheat. We will also assess the effectiveness of the SEC-ICP-MS 

method by analysing transgenic crops with potentially different Fe and Zn speciation. 

 

Hypothesis. That Fe and Zn speciation differs between milling fractions of wheat grain. 

4.2 Methods 
 

4.2.1 Enzyme assay 

 
Enzyme assays were performed using demineralised enzymes as described in chapter 2. 250mg of 

the milling fractions were extracted in 10 ml of 50 mM Tris-HCl with the addition of dissolved 

demineralised enzyme were appropriate. Samples were incubated for 18 hrs at 55ºC at pH 5.5, 

with shaking at 120 rpm. Plastic sterilin vials were used for extraction to minimise any potential 

metal contamination. The temperature and pH was chosen as they were within the region of 

activity for all enzymes (protese XIV (pH 5.0-9.0, <80 ºC), wheat phytase (pH 4.0-5.5, 55 ºC), 

cellulase (pH 5.0-7.0 50-60 ºC), xylanase (pH 4.5-6, 30-60 ºC). By using the same conditions for all 

enzymes we were also able to discount any effects of temperature or pH on the samples. The 

milling fractions R1, offal flour and coarse bran (Chapter 2) were chosen for investigation as they 

were representative of different tissue fractions within the grain. 



 72 

 

Initially, the changes in speciation of soluble Fe and Zn with enzyme treatment were investigated, 

however, after demineralisation it was shown that the enzymes had strong chelation capacity to 

the intrinsic metals in the samples; this effect had also been reported in previous studies (231). 

Therefore it was deemed inappropriate to analyse samples in this way as any complexes, and 

therefore results, were likely to be heavily influenced by the presence of the enzymes rather than 

by the action of the enzymes alone.  

 

4.2.1.1 Choice of enzymes  
 

Enzyme type and concentration (Table 3) were selected based on previous similar experiments in 

rice, barley and millet (23, 83, 231). The phytase had 0.01-0.04 units of activity /mg, as advised on 

the packaging, which was lower than the phytase, also from Sigma, which Perrson et al used(23) 

(personal correspondence). To rectify this lower enzyme activity we used more phytase by mass 

than stated in their paper, however, we could not adjust the units of activity the level in their 

study without raising the background of Fe to above 10% of the total Fe in some of our samples. 

The amount of phytase as units of activity per gram of sample in the final experiment equated to 

~50% that of Perrson et al (23) but 4 times that of Lestienne et al (231). Cellulase was added to 

degrade dietary fibre and weaken its binding capacity to minerals; previously cellulase has been 

shown to increase soluble Zn and Fe in rice bran (83). Xylanse was added to the cellulase as wheat 

contains large amounts of arabinoxylan, another type of dietary fibre (231, 232). In this 

experiment both cellulase and xylanase were used at a concentration in excess of that used in 

previous studies (83, 231). It has also been reported that protein may form insoluble complexes 

with Fe and Zn as well, therefore a mix of bacterial proteases (protease XIV) was also used in this 

experiment, at a concentration in excess of, or approximating, that used in previous studies (23, 

83). Initially pepsin was tested instead of protease XIV but was shown to have insufficient activity 

at pH 5.5. 
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Table 3: Enzymes used in assays and their associated units of activity per gram of sample. 

Enzyme Units of activity per gram of sample 

Phytase (from wheat) 5.16-20.64 

Protease (protease XIV from Streptomyces 

griseus) 

40 

Cellulase  (Trichoderma reesei)   440 

Xylanase (Thermomyces lanuginosus) 280 

 

4.2.2 Data analysis 
All samples were analysed in duplicate which was insufficient to allow statistical analysis of each 

cultivar using ANOVA. Therefore, all ANOVA results represent pooled data from both cultivars 

(n=4) and only show the effects of enzyme and not cultivar differences. 

 

4.2.3 Development of extraction method 
 
The primary goal of the speciation analyses was to explore metal speciation in wheat endosperm, 

however, there is very little soluble Fe or Zn within these fractions, therefore sensitivity and 

extraction quality had to be maximised if any metal species were to be detected. Therefore, 

various methods were tested to improve extraction. Sonication is an established method for cell 

disruption and theoretically could make Fe and Zn more soluble by breaking down cell walls which 

may prevent their release. Sonication of wholegrain samples was performed for 3 minutes at 

maximium amplitude (300 ultra soniK, NEY, UK) and total Fe and Fe speciation  were compared 

using ICP-MS and SEC-ICP-MS in 3 samples, however no effects were observed (data not shown). 

 

Sodium dodecyl sulphate (SDS) has previously been used to improve selenium extraction in plants 

(233) therefore, this was tested on wholemeal wheat flour. The extraction of Fe was improved 3 

fold however there were unacceptable changes in Fe speciation when analysed by SEC-ICP-MS, 

indicating the presence of species were unlikely to represent species in planta  (Appendix 3). 

 

Persson et al (23) used SEC-ICP-MS to analyse barley embryo using quartz sand and a pestle 

and mortar to homogenise samples and improve extraction. Initially we used the same method, 

however, when we attempted to measure total soluble Fe in rice endosperm it was found that 

the soluble Fe was higher than total Fe within the rice endosperm, therefore indicating 

condemnation during the extraction. One possible cause of this was that metal chelators within 
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our samples were able to chelate Fe from either the pestle and mortar or quartz sand. To 

rectify this an agate pestle and mortar was used, as agate contains only trace amounts of Fe 

compared to porcelain, however there was no reduction in the elevated soluble Fe content. 

Therefore, it was determined that quartz sand was the likely source of the additional Fe. It has 

been reported that quartz sand contains Fe as Fe2O3 which makes up  0.02% of the total weight 

(234) although this Fe should be insoluble and therefore theoretically should not affect our 

samples. However, our samples contained chelators such as nicotainamine (NA) which would 

be able to solubilise this Fe. To test this theory we used a solution of EDTA (EDTA 10mM 

/50mM Tris HCl pH 7.5) which has a similar chelation capacity to NA, thought to be the 

strongest metal chelator in cereals (235) in place of the sample, to see if any Fe was 

incorporated into the solution. The solutions were then analysed for total Fe by ICP-MS as 

described in Chapter 2.  

  

  

Figure 25. Effect of sample extraction method on EDTA 10mM /50mM Tris HCl pH 7.5 (EDTA) and 
50mM Tris HCl pH 7.5 (Tris). Porcelain and agate denote porcelain and agate pestle and mortar 
and QS is quartz sand. SE± represents means of two technical replicates.  
 

The results (Fig. 25) showed conclusively that EDTA was able to chelate Fe from agate, porcelain 

and quartz sand and therefore all of these materials were excluded from further experiments.  

Attempts were made to acid wash the quartz sand but the amount of EDTA-extractable Fe was 

only reduced by ~60% which was still insufficient. 
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4.2.4 Extraction method 
 
Due to the problems with the extraction methods described above we decided to place the 

samples in plastic sterile vials and incubate at 36º for 18 hours with shaking at 120 rpm which was 

similar to the conditions used in the control samples for enzyme analysis, This increased 

incubation time and temperature increased the amount of extractable Fe and Zn without major 

alterations to speciation.  For all white flour fractions (wheat white flour, rice white flour, R1, R2, 

R3, B1, B2, B3) 140mg of sample was extracted in 7 ml 50 mM Tris HCl pH 7.5. For whole meal and 

bran fractions (rice bran, offal flour, bran flour, coarse bran, coarse offal), 70mg of sample was 

extracted in 7 ml 50 mM Tris HCl pH 7.5. 

 

Analysis of low phytic acid lines was only performed on whole grain, which is higher in Fe, 

therefore it was decided to reduce the extraction time to 1 hr and to reduce the temperature to 

room temperature. These changes were to try to reduce any potential phytase activity which may 

have occurred, to compensate for this, increased amounts of sample (500 mg) were extracted in 

10 ml Tris HCl pH 7.5. 

 

4.2.5 Size exclusion  
 
All analyses were performed on an HPLC (Agilent 1100 Series, Agilent Technologies, Waltham, 

USA) coupled to ICP-MS (Agilent 7500ce, Agilent Technologies, Waltham, USA) using the 

conditions in Chapter 2. A Superdex 75 10/300 GL size exclusion column (Glass, 10 × 300 mm, 13 

μm cross-linked agarose/dextran, Amersham Biosciences, USA) was used, with an optimum 

separation range between 0.7 and 70 kDa. The mobile phase was Tris-HCl buffer (50 mM, pH 7.5), 

pumped through the column isocratically at 0.47 ml/min, at a controlled temperature of 18 ºC. 

The sample injection volume was 100 µl. Initially a pump speed of 1.0 ml/min was used but it was 

decided to decrease this to improve separation, however, some initial analyses were performed 

under these conditions and where these results are presented this is indicated in the figure 

legend. Molecular size calibration was achieved for both pump speeds using a UV detector 

(Agilent Technologies, Palo Alto, CA, USA) at 214 nm, using the following standards: apoprotein 

(6.6 kDa), cytochrome C (12.4 kDa), vitamin B12 (1.35 kDa), Tri-glycine (0.19 kDa) and glycine 

(0.075 kDa) (all from Sigma-Aldrich). A log-linear regression curve was derived from the plot of 

molecular size versus retention time. 100 µl 20 mM EDTA/50 mM Tris-HCl buffer (pH 7.5) was 

injected between flour samples to remove residual metals adsorbed to the column. This wash was 
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repeated twice after bran fractions due to the higher levels of Fe and Zn in the samples. A more 

thorough wash with 100 μl of pepsin (1 mg/ml), phytase (2 mg/ml), NaCl (0.5 M) and acetic acid 

(10%) (all from Sigma-Aldrich), at a flow rate of 0.2 ml/min at 36 ºC, was performed between 

batches of 30 samples. Finally, 10 mM EDTA/50 mM Tris-HCl buffer (pH 7.5) was run through the 

column for 40 min each day to remove any residual metals retained by the column, followed by 2 

hrs of 50 mM Tris-HCl buffer (pH 7.5) to recalibrate the column. 

 

 

4.2.6 Ion-pair chromatography. 

 

Ion-pair chromatography had been suggested as a method to confirm speciation results of SEC-

ICP-MS. We attempted to combine ion-pair chromatography with ICP-MS to determine at Fe and 

Zn separation in peaks isolated by SEC-ICP-MS. However we were unable to isolate peaks with 

adequate concentrations of Fe or Zn for analysis. Analysis of samples also showed unsatisfactory 

separation for Fe species in all the buffers tested.    

 

4.2.7 Elemental analysis 
 
Extracts separated by SEC were then analysed by ICP-MS. Initially, the conditions for the ICP-MS 

were similar to those used by Persson et al (23) who incorporated O2 into the reaction gas to 

allow for the measurement of 47PO+ and 48SO+ 72FeO. Therefore, some of the results in this 

chapter are reported in this mode, where it was deemed appropriate to look at 47PO+. However 

we found that the sensitivity for 72FeO and 57Fe, the only two forms of Fe analysable in this gas 

mode, was insufficient for endosperm fractions. Therefore, most of analyses in this chapter and 

the next were performed in H2/He mode with the following conditions: RF power of 1.5 kW, 

carrier gas supplied at 0.85 L/min, nebulizer pump speed of 0.2 l/min, collision/reaction gas used 

was H2 at 3 ml/min and He at 2 ml/min. One advantage of this method is that it allows for the 

analysis of 56Fe which is the most abundant isotope (91.8 %). H2 and He were used as the 

collision/reaction gases as they  prevented any polyatomic interference in the determination of 

this isotope, which is not preventable in He/O2 mode (23). 
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4.2.8 Identification of peaks  
 

SEC-ICP-MS allows for the size of peaks containing elements of interest to be identified. However 

this is not adequate on its own to confirm identification.  

 

4.2.8.1 High molecular weight peaks (HMW) 
 
Both the rice and wheat samples contained peaks of unknown complexes containing both Fe and 

Zn, one of them eluted at our void volume (70 kDa+), with another Fe peak which eluted close to 

the first (~20 kDa) in wheat. The two peaks in wheat appeared to be linked as samples would 

either contain neither of them or both at similar ratios. No previous information was available on 

the identification of these peaks. One possibility is that the peaks contained ferritin which 

theoretically would elute either as a whole molecule (480 kDa) (236), which would elute in the 

void volume, or as subunits (26-28 kDa) (237), which are similar in size to the 2nd high molecular 

weight peak found in wheat. 

 

We were unable to obtain standards of ferritin due to the expense and the difficulty in obtaining 

ferritin with Fe incorporated in it. It has been reported that legumes contain a much higher 

percentage of their Fe bound to ferritin (18-42%) (238) compared to wheat. Previous SEC-ICP-MS 

work on soybean found that the majority of the soluble Fe eluted at 70 kDa+ on the same column 

and accounted for 33% of total Fe (239). We therefore analysed a runner bean (Phaseolus 

coccineus) sample extracted under identical conditions to our other samples and found that the 

majority of soluble Fe eluted at this same HMW form (Fig. 26), and that this accounted for 40% of 

the total Fe. From this it was determined any ferritin in our samples was likely to be present in 

this peak. However, it is possible that this peak could contain other complexs and is unlikely to be 

pure ferritin due to the low abundance of Fe-ferritin in wheat (1-2%) (92, 94). High molecular 

peaks were also identified for Zn but we have no indication of possible speciation of these 

complexes although it is likily they are bound to large proteins due to their size. Therefore these 

peaks are labeled as unknown HMW peak throughout this study. 
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Figure 26. SEC-ICP-MS chromatogram for 56Fe of soluble fraction of Phaseolus coccineus. Sample 
was obtained by extraction for 18 hrs at 36º, in 50mM Tris HCl pH 7.5. The using initial pump 
speed of 1.0 ml/min total time 40mins.  

 

 

 

 

 

4.2.8.2 Medium molecular weight peak (MMW) 
 
A MMW peaks were also identified containing Fe. In rice this corresponded to a size of 12.4 kDa 

and in wheat 5.0 kDa. Based on previous studies and data presented we concluded that both 

these peaks represented Fe bound as soluble phytate. Persson et al (23) identified this MMW 

peak by demonstrating a co-elution of Fe with P in barley embryos. Additional confirmation was 

achieved by re injecting isolate samples and using ion pairing chromatography linked to He/O2 

mode ICP-MS. They concluded that the peak was an oligomer of Fe bound as different IP’s mainly 

as IP6 with smaller amounts of IP4 and IP5. 

 

In rice a peak was identified corresponding to a complex of 12.4 kDa, which is similar in size to the 

peak identified by Persson et al (12.5 kDa) (23). We also demonstrated using a similar extraction 

and He/O2 gas mode ICP-MS that it co-eluted with two P peaks. This indicates that the peak is 

likely to comprise Fe primarily bound to IP6 and IP5, or to two different oligomers of Fe-IP6. 

Comparison with mono-ferric phytate a soluble form of Fe phytate prepared as described in 

Chapter 2, also showed almost identical traces for both P and Fe (Fig. 26). 
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In wheat, however, the medium molecular weight Fe peak eluted at a later retention time and 

corresponded to a molecule of 5 kDa. However, simultaneous analysis of Fe and PO in He/O2 

mode showed that this peak also co-eluted with P. The difference in size is probably due to an 

effect of the food matrix on the oligomer. Wheat contains different phytases with much greater 

activity than rice or barely (240, 241) and it is likely that during the extraction the ratio of Fe-IP6 

and Fe-IP5 was changed by wheat phytase activity to a greater degree in wheat flour than in rice 

flour or barley embryo. As these peaks represent oligomers rather than the complexes themselves 

it is likely that even small changes in the ratio of IP5 or lower IPs and IP6 will likely have a large 

effect on the retention time of said oligomers and account for the changes in size. Interestingly, 

wheat samples which underwent simulated human digestion conditions had a phytate peak at 

12.4 kDa (Chapter 5), probably due to deactivation of the phytase enzyme at gastric pH (2.0). 

 

To test this theory, the same synthetic mono-ferric phytate was added to a wholemeal wheat 

sample to determine if the food matrix changed its retention time. It was found that when 

extracted in the presence of wheat the majority of the mono ferric phytate eluted as this MMW 

peak of 5 kDa (Fig. 27). Based on this observation and previous evidence of the occurrence of 

soluble phytate in cereals it was concluded that the MMW peak in wheat was Fe bound as soluble 

phytate (at an unknown ration  IP6 and its lower phosphaltion states). No Zn was identified bound 

as a MMW peak co-eluting with P.  
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.  

Figure 27. Comparison of rice bran extraction and mono-ferric phytate.  SEC-ICP-MS 
Chromatogram For 57Fe of soluble fraction of A) rice bran B) mono-ferric phytate. Samples 
obtained by extraction for 18 hrs at 36ºC in 50mM Tris HCl pH 7.5.Using initial pump speed of 1.0 
ml/min for a total time of 40mins.   
 

 

Figure 28. Comparison of wheat wholemeal extraction with and without mono-ferric phyate. 
SEC-ICP-MS Chromatogram For 57Fe of soluble fraction of A) wheat wholemeal flour B) wheat 
wholemeal with mono-ferric phytate (0.1/mg/ml) obtained by extraction for 18 hrs at 36 ºC in 
50mM Tris HCl pH7.5. Using initial pump speed of 1.0 ml/min total time 40mins.   
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4.2.8.3 Low molecular wheat peak (LMW) 
 

Extracts of both rice and wheat contained a LMW peak for both Fe and Zn. In rice these low 

molecular wheat peaks have been well characterised by both SEC-ICP-MS and ESI-ICP and are 

thought to be Fe and Zn bound to the nicotainamine (NA) and 2'-deoxymugineic acid (DMA) (21, 

22).  

 

The LMW peak for Fe and Zn in wheat eluted at an identical time to that present in rice (Fig. 29, 

30), with peaks  eluting at a time corresponding to 1.5 kDa which is similar to that reported by Lee 

et al of 1.3 kDa (21, 22) . Confirmation of our LMW peaks was provided by comparisons to 

standards (prepared as described in Chapter. 2) of both Fe and Zn bound to both NA and DMA.  

 

The Fe standards were in the oxidation states they are thought to exist at in planta (i.e. Fe(II)-NA 

and Fe(III)-DMA) (87) and the LMW peak was also compared to Fe-citrate, another potential LMW 

chelator of Fe in planta. This LMW peak eluted at the same time as a standard of Fe-DMA; 

however the retention time was also very similar to that of Fe-NA (Fig. 29). Therefore, due to this 

overlap, it was considered that the LMW peak may contain both Fe-DMA and Fe-NA. Similarly, 

previous studies (12, 18) with polished rice have shown that the LMW peak contains both Fe-DMA 

and Fe-NA. Based on this evidence we indentified our LMW Fe peak in wheat and rice as an 

oligmer of Fe-NA/DMA and it is referred to as such in the following text. Fe-citrate eluted at a 

much later time corresponding to a size of <0.1 kDa, therefore it was assumed that Fe-citrate was 

not present at suffcient concentration for detection in our samples.  

For Zn SEC-ICP-MS also identified a LMW complex of Zn (1.9 ± 0.2 kDa) in the extracts of 

white flour of both rice and wheat (Fig. 30), which was of a similar size to a peak identified in rice 

using SEC-ICP-MS (18). Based on this report and on comparison with Zn-NA and Zn-DMA 

standards, which eluted at 1.9 kDa and 2.5 kDa respectively (Fig. 30), we tentatively identified the 

LMW peak as Zn-NA, and it is referred to as such in the following text.  
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Figure 29. Comparisons of LMW Fe peaks by SEC-ICP-MS. All samples were extracted in 50 mM 
Tris HCl at pH 7.5 for 1 hr. Rice flour was polished rice and wheat white flour was the R1 milling 
fraction of Rialto.  
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. 

Figure 30. Comparisons of LMW Zn peaks by SEC-ICP-MS. All samples were extracted in 50 mM 
Tris HCl at pH 7.5 for 1 hr. Rice flour was polished rice and wheat white flour was from the R1 
milling fraction of Rialto. 
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4.3 Results  
 

4.3.1 Enzyme assays 
. 

 

Figure 31. Effect of different enzymes on soluble Fe and Zn in extracts of wholemeal flour, of 
Rialto (A, C) and Riband (B, D). All samples were extracted for 18 hours at 55ºC with shaking 
(120rpm). Enzyme combinations are as follows: Control, 50mM Tris HCl pH 5.5; Phytase, wheat 
phytase (5.16 units/g of sample) dissolved in 50mM Tris HCl pH 5.5; Protease, protease XIV from 
Streptomyces griseus (40 units/g of sample) dissolved in 50mMTris HCl pH 5.5; Xylanase+ 
cellulose, Xylanase from Thermomyces lanuginosus (440 units/g of sample) and cellulase from 
Trichoderma reesei (280 units/g of sample) dissolved in 50mM Tris HCl pH 5.5. SE± represents 
means of two replicates. 
 

 

Figure 31 shows the effect of enzymes on wholemeal flour of both Rialto and Riband. Very little 

Fe was soluble under our extraction conditions in either cultivar (5% for Rialto and 7.7% for 

Riband). Only the protease and cellulase+xylanase (Cl+Xy) treatments had positive effects on 

soluble Fe (p=0.05) in the order of: protease> Cl+Xy. Higher amounts of Zn were soluble under our 

extraction conditions (8.3% for Rialto and 16% for Riband).Both protease and Cl+Xy had effects 

(p=0.05), again in the order of protease> Cl+Xy.  

A B 

C D 
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Figure 32 shows the effect of the enzymes on soluble Fe in different milling fractions. In R1 the 

fraction most represented of endosperm, soluble Fe in our control extraction was 22% and 30% in 

Rialto and Riband, respectively. Only protease treatment had a significant effect (p= 0.05). In offal 

flour soluble Fe was 19% and 18% in Rialto and Riband, respectively. Only protease treatment had 

a positive effect on soluble Fe while, phytase and Cl+Xy had negative effects. In coarse bran 

soluble Fe in control extractions was 20% in both samples. Both Cl+Xy and protease had positive 

effects on Fe solubility in order of Cl+Xy>protease. Figure 33 shows the effects of the enzymes on 

soluble Zn in different milling fractions. For R1, soluble Zn in the control extraction was 60% and 

58%, respectively in Rialto and Riband. Only protease had a positive effect (p=0.05). In Riband all 

the Zn was made solubilised by treatment with protease. In offal flour, soluble Zn in the control 

extraction was 9% and 17% in Rialto and Riband, respectively. Only protease had a positive effect 

(p=0.05). In bran there was no apparent effect on Zn solubility by any enzyme In Rialto. However 

there was an increase in soluble Zn with treatment with both protease and Cl+Xy in Riband. 

ANOVA showed no significant effect of any treatment.  Figure 34 Shows the effect of a 

combination of enzymes. The combination of phytase and cellulase was shown to increase soluble 

Fe in coarse bran by >50% compared with the control or single enzyme treatments. However 

there was no observed effect for any treatment on R1. 
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Figure 32. Effect of enzymes on soluble Fe in milling fractions of wheat on the R1 (A,B) , offal 
flour (C,D) and coarse bran (E,F) of Rialto (A,C,E) and  Riband (B,D,F). All samples were extracted 
for 18 hours at 55 ºC with shaking (120rpm) in Control 50 mM Tris HCl pH 5.5 Phytase: wheat 
phytase (5.16 units/g of sample) dissolved  in 50 mM Tris HCl pH 5.5  Protease: protease XIV from 
Streptomyces griseus (40 units/g of sample) dissolved in 50 mM Trisl HCl pH 5.5 Xylnase+cellulase  
Xylanase from Thermomyces lanuginosus (440 units/g of sample) and cellulase from Trichoderma 
reesei  (280 units/g of sample) dissolved in 50mM Tris HCl pH 5.5. SE± represents means of two 
replicates. 
 
 

 

A B 

C D 

E F 
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Figure 33. Effect of enzymes on soluble Zn in milling fractions of wheat on the R1 (A, B) , offal 
flour(C, D) and coarse bran (E, F) of Rialto (A, C, E) and  Riband (B, D, F). All samples were 
extracted for 18 hours at 55 ºC with shaking (120 rpm). Bars represent different enzyme 
treatments: 50 mM Tris HCl, pH 5.5 with no enzyme addition (Control), Wheat phytase (5.16 
units/g of sample) dissolved in 50 mM Tris HCl, pH 5.5 (Phytase), Protease XIV from Streptomyces 
griseus (40 units/g of sample) dissolved in 50 mM Tris HCl pH 5.5 (Phytase), Xylanase from 
Thermomyces lanuginosus (440 units/g of sample) and cellulase from Trichoderma reesei  (280 
units/g of sample) dissolved in 50 mM Tris HCl pH 5.5 (Xylanase+cellulase). SE± represents means 
of two replicates. 
 

 

 

A B 

C D 

E F 
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Figure 34. Effect of combined enzymes on soluble Fe on R1 (A) and coarse bran (B), from Rialto. 
All samples were extracted for 18 hours at 55ºC with shaking (120 rpm).Control, 50 mMTris HCl 
pH 5.5; Phytase, wheat phytase (5.16 units/g of sample) dissolved in 50 mM Tris HCl pH 5.5; 
cellulase, cellulase from Trichoderma reesei  (280 units/g of sample) dissolved in 50 mM Tris HCl 
pH 5.5; Cellulase +Phytase cellulase from Trichoderma reesei (280 units/g of sample) and wheat 
phytase (5.16 units/g of sample) dissolved  in Tris HCl pH 5.5.   
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4.3.2 Speciation results 

 

Figure 35. SEC-ICP-MS chromatogram of the soluble extracts of polished rice. 56Fe (left)  
66Zn(right) of soluble fraction of polished wild type (Wt) (A,B)  and two transgenic OsNAS1 lines 
EN1, (C,D) EN2, (E,F) obtained by extraction for 18 hrs at 36ºC in 50mM Tris HCl 7.5.  
 
Figure 35 shows the speciation of Fe and Zn in polished grain of two transgenic NAS 

overexpressing lines (EN1, EN2) and wild type (Wt). Figure 36 shows total amounts of soluble 

0

1000

2000

3000

4000

5000

6000

7000

8000

0 5 10 15 20 25 30 35 40 45 50

5
6 F

e
 io

n
 in

st
e

n
si

ty
 

Time (mins) A 

0

2000

4000

6000

8000

10000

12000

14000

0 5 10 15 20 25 30 35 40 45 50

6
6 Z

n
 io

n
 in

st
e

n
si

ty
 

Time (mins) B 

0

1000

2000

3000

4000

5000

6000

7000

8000

0 5 10 15 20 25 30 35 40 45 50

5
6 F

e
 io

n
 in

st
e

n
si

ty
 

Time (mins) C 

0

2000

4000

6000

8000

10000

12000

14000

0 5 10 15 20 25 30 35 40 45 50

6
6 Z

n
 io

n
 in

st
e

n
si

ty
 

Time(mins) D 

0

1000

2000

3000

4000

5000

6000

7000

8000

0 5 10 15 20 25 30 35 40 45 50

5
6 F

e
 io

n
 in

te
n

si
ty

 

Time (mins) E 

0

2000

4000

6000

8000

10000

12000

14000

0 5 10 15 20 25 30 35 40 45 50

6
6 Z

n
 io

n
 in

st
e

n
si

ty
 

Time (mins) F 

Fe 
Zn  
 
 



 90 

minerals in polished grain of two transgenic NAS overexpressing lines (EN1, EN2) and the wild 

type (Wt) line. The NAS plants did not have higher concentrations of soluble Fe or Cu but did have 

more soluble Zn and Mn. 

All of the soluble Fe appeared in the LMW form identified as Fe-DMA/NA, with very little 

difference in Fe intensity indicating no difference in Fe concentration, this was confirmed by ICP-

MS (Fig. 36). All the soluble Zn was in the LMW form thought to be Zn-NA, and the level of ion 

intensity was greatly increased in the transgenic lines indicating more Zn was bound in this form. 

This was confirmed by ICP-MS (Fig. 36).  

 
Figure 36. Mineral concentration of polished rice extracts. Determined by soaking at (37º,  18hrs, 
120 rpm ) in Tris-HCl 50 mM pH 7.5  followed by ICP-MS. Error bars represent SE (n=2).Total Fe 
and Zn are shown in 2.1.5 
 
 

0

5

10

15

20

25

Mn Fe Cu Zn

So
lu

b
le

 m
in

ra
l c

o
n

c.
 m

g/
kg

 

wt

en1

en2

Wt 
EN1 
EN2 



 91 

 

 
Figure 37. SEC-ICP-MS chromatogram of soluble fractions from rice bran. 56Fe (left)  66Zn(right) of 
wild type (Wt)(A,B)  and two transgenic OsNAS1 lines EN1, (C,D) EN2, (E,F) obtained by extraction 
for 18 hrs at 36ºC in 50mM Tris HCl 7.5.  
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Figure 37 shows Speciation of Fe and Zn in bran of two transgenic NAS overexpressing lines (EN1, 

EN2) and wild type (Wt) rice. Must of the Fe is in the MMW form identified as Fe-soluble phytate 

and accounts for over 95% of the soluble Fe (Fig. 38b). There does appear to be slightly more Fe 

bound to Fe-DMA/NA in EN1 but this is not apparent in EN2 (Fig. 37).  There is also a HMW peak 

representing ~4% of the total soluble Fe but this did not differ between the genotypes. In rice 

bran approximately ~33 of the Fe is soluble and this does not vary between genotypes. For Zn 

there are clear differences between the transgenic and Wt lines, with Zn-NA accounting for 49% 

and 35% of soluble Zn in EN1 and EN2, respectively, and only 8% in Wt (Fig. 37, 38). This also had 

an effect on increasing soluble and total Zn (Fig. 38).    

 
Figure 38. Iron speciation in rice bran samples determined by a combination of SEC-ICP-MS, ICP-
MS and ICP-AES. A) Insoluble fraction is calculated by subtracting the soluble fraction determined 
by ICP-MS from the total dry weight mass determined by ICP-AES. The amounts of each fraction 
within the soluble fraction are determined by SEC-ICP-MS, by calculating area of each peak. B) 
Shows percentages of the soluble forms of Fe within the bran. 

 
Figure 39. Zinc speciation in rice bran samples determined by a combination of SEC-ICP-MS, ICP-
MS and ICP-AES. A) The insoluble fraction is calculated by subtracting soluble fraction demined by 
ICP-MS from total dry weight mass determined by ICP-AES, amounts of each fraction within 

A B 

A B 
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soluble fraction are determined by SEC-ICP-MS, by calculating area of each peak. B) Shows 
percentage of the soluble forms of Zn from within the bran.   
 

Figure 40. Increase in Fe concentration of polished OsNAS1 over expressing rice when incubated 
with quartz sand. Fe is determined by ICP-MS, 140 mg of the polished rice samples were either 
incubated in 7 ml of 50 mM Tris HCl pH 7.5 for 18 hours at 37ºC(No Fe) or under identical 
conditions with Fe as Fe2O3 in 500mg of quartz sand (Fe). Error bars represent SE of two technical 
replicates. 
 

Figure 40 shows that all lines had significantly more Fe when incubated in the presence of Fe. The 

increase in Fe was more evident in the two transgenic lines which appeared to recruit more Fe 

than the Wt line with the amount of soluble Fe in EN1 and EN2 increasing ~8 fold and ~13 fold 

respectively compare to Wt which only had a ~6 fold increase (Fig.40). SEC-ICP-MS of the same 

samples showed that the additional soluble Fe was mainly in the LMW Fe-NA/DMA form in the 

transgenic lines with the remainder being bound to soluble phytate (12.4 kDa) which was not 

present in rice extracted in an Fe free environment (Fig. 36)  
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Figure 41. Chromatograms of SEC analyse of 56Fe speciation in soluble fraction of polished rice 
extracted in the presence of Fe as quartz sand. Pump speed 1.0ml/min, total time 40mins. 
 
  

 
Figure 42. The proportions of soluble and insoluble Fe in wholemeal of low phytic acid lines 
(lpa) and related lines grown in glasshouse. Total Fe is determined by AES-ICP and soluble Fe by 
ICP-MS after extraction in 50mM Tris-HCl pH 7.5. Bars without a common letter (a−c) are 
significantly different, p< 0.05. Letters in bold (a-c) represent differences in soluble P. 
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Figure 43: Shows proportions of soluble and insoluble P in wholemeal of low phytic acid lines 
(lpa) and related lines grown in glasshouse. Total Fe is determined by AES-ICP and soluble Fe by 
AES-ICP after extraction in 50mM Tris-HCl pH 7.5. Bars without a common letter (a−c) are 
significantly different, p< 0.05. Letters in bold (a-c) represent differences in soluble P. 
  
 

Figures 42 and 43 show total and soluble Fe and P in wholemeal wheat flour of low phytic acid 

(LPA) lines and potential parents. Total Fe did not appear to be higher in LPA lines than parent 

lines, soluble Fe was between 10-15% in all lines. Total levels of Fe were not significantly higher 

than parent lines. Soluble P was higher in both low phytic acid lines compared to related lines 

except IDO488. Total P was not higher in lpa lines compared to related lines. Figure 40 shows a 

comparison between speciation of soluble Fe in wholemeal of the TaFER1 overexpressing line 

Fe0509 and Bobwhite (the control line). There was no apparent difference in any peak between 

lines. 
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Figure 44. SEC chromatograms showing 56Fe speciation in soluble fractions from wholemeal of 
the control line (Bobwhite) and TaFER1 over expressing wheat (fer0509); Pump speed 1.0ml/min 
total time 40mins. 
 

Figures 45 and 46 show SEC-ICP-MS analyses of the Fe and Zn species in the Tris-HCl extractable 

fraction of white flour from samples of Riband and Rialto grown at Rothamsted in 2010. The 

extracts of both cultivars contained two unidentified high molecular weight (HMW) forms of Fe 

(at 20 kDa ± 0.4 and >70 kDa, respectively).  A medium molecular weight (MMW, 5.0 ± 0.1 kDa) 

peak containing Fe was identified in the extracts of Rialto, but not of Riband. As previously 

discussed this peak has been identified as soluble Fe-phytate (possibly Fe-IP6 and/or Fe-IP5)  

 

The extracts of Riband and Rialto contained similar amounts of a low molecular weight (LMW, 1.5 

± 0.1 kDa) peak of Fe which was identified as Fe-NA/DMA (Fig. 44). SEC-ICP-MS also identified a 

LMW Zn complex (1.9 ± 0.2 kDa) in the extracts of white flour (Fig. 45) which had been previously 

identified as Zn-NA. 

The concentrations of soluble Fe differed significantly between the two cultivars (p<0.05), 

with Rialto having 23% more soluble Fe than Riband, but the total concentrations of soluble Zn 

(sum of both LMW Zn and Zn associated with HMW compounds)  were not significantly different 

(Fig. 37.). Most of the soluble Fe and Zn were bound in LMW complexes and the total amounts of 

LMW Fe and LMW Zn did not differ significantly between the cultivars (Fig. 44, 45). 
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Figure 45. Determination of Fe speciation in white flour fractions of Rialto and Riband.  
(A) SEC-ICP-MS chromatograms (averages of 3 biological replicates). All samples were extracted in 
50 mM Tris-HCl pH 7.5. (B) Soluble and insoluble Fe determined by a combination of ICP-MS and 
ICP-AES. (C) Quantification of molecular species of Fe from relative peak areas on SEC-ICP-MS data 
and ICP-MS of soluble fractions. Data (B, C) represent means ± SE of three biological replicates, 
*represents significant difference (p<0.05). 
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Figure 46. Determination of Zn speciation in white flour fractions of Rialto and Riband. (A) SEC-
ICP-MS chromatograms (averages of three biological replicates). All samples were extracted in 50 
mM Tris-HCl pH 7.5; (B) insoluble Zn determined by ICP-AES. (C) Quantification of molecular 
species of Zn from relative peak areas on SEC-ICP-MS and ICP-MS of soluble fractions.  Data (B) 
represents means ± SD of three biological replicates (p<0.05). 

 
Figure 47.  Quantification of the forms of Fe in milling fractions of Rialto and Riband. The SD of 
the method was shown to be less than 0.5% by analysis of five replicate samples of bran flour 
from Rialto. C and D show the concentrations of total soluble and insoluble Fe in the same milling 
fractions as shown in (A) and (B). Results are means of two technical replicates.  
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Table 4. Quantification of forms of Fe in grain Rialto and Riband, based on analyses of milling 
fractions and whole grain 

 Fe species in whole grain1 

 Total Fe 

determined 

by ICP-AES2 

 Fe-

HMW1 

Fe-

HMW2 

Soluble 

Fe-

phytate 

Fe-

NA/DMA 

Insoluble 

Fe 

Total 

calculated 

Rialto 

(mg/kg) 

4.1 2.9 0.7 2.3 33 43.1 46.7 

% 9.6 6.7 1.6 5.3 76.7   

Riband 

(mg/kg) 

3.8 3.3 0.12 2.5 24.2 33.8 30.3 

% 11.2 9.6 0.38 7.3 71.4   

Technical 

error (%)3 

0.5 0.5 0.2 0.4    

1The total concentrations and percentages of each form of Fe were calculated based on the peak 
relative area on SEC-ICP-MS and total soluble Fe determined by ICP-MS for each milling fraction 
and the proportions of the milling fractions (Fig 17). 
2Total Fe determined by ICP-OES of whole grain. 
3Technical error was determined by analyzing five replicate samples of Rialto bran. 

 

Figure 47 shows the speciation of Fe in soluble extracts of 10 fractions from Bühler milling of both 

Riband and Rialto. The break fractions B1 - B3 and the reduction fractions R1 - R3 correspond to 

white flour, with R1 accounting for 47.6% and 42.1% of the total mass in Rialto and Riband, 

respectively (Table 4). The R1 fraction has the lowest ash content (Chapter 3, Table 3) and is 

therefore considered to represent the purest starchy endosperm fraction derived from the central 

part of the grain (26). Ash content, an indicator of bran contamination, decreases closer to the 

center of the grain (Chapter 3, Table 3). A similar effect is observed with phytic acid content 

(Chapter 3, Fig 19).   

 

The main difference observed between the milling fractions from the two cultivars was the 

amount of soluble Fe-phytate (Figures 47c, d). These results agree with the data in Figure 45, 

showing that soluble Fe-phytate was present in the white flour extracts of Rialto but not of 

Riband. In addition, more soluble Fe-phytate was present in the bran fractions, especially the offal 

fractions, of Rialto compared to Riband.  
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The calculated amounts of soluble Fe species in whole grains of Rialto and Riband are given in 

Table 4, based on the yields of the milling fractions and the SEC-ICP-MS analyses. This shows that 

the concentration of soluble Fe-phytate was over five-fold higher in Rialto than in Riband, 

although this form still represents only a small percentage of the total grain Fe (1.6%). The 

contents of LMW Fe (likely to be Fe-NA and/or Fe-DMA) were similar in the two cultivars but it 

represented a higher percentage of the total Fe in Riband. A higher proportion of the total Fe was 

insoluble in Rialto (by 36%) than in Riband.  

4.4 Discussion 
 
Our initial hypothesis was proved correct in that variation in Fe and Zn speciation exists between 

tissue factions in wheat in both insoluble and soluble fractions. Distinct variations between 

polished rice and bran faction in soluble Fe and Zn speciation was also observed. 

 

4.4.1 Enzyme results  
 
It is clear that the majority of Fe and Zn in wheat is insoluble (Fig .31). We show for the first time 

that the forms of this insoluble Fe and Zn are likely to vary between tissue fractions in wheat. In 

R1 which is the purest endosperm fraction only protease had an effect on solubility. This effect 

was most pronounced in Riband, with 100% of the Zn and 53% of the Fe being solubilised 

compared to 81% of the Zn and 22% of Fe in Rialto (Fig 32, 33). These differences between 

cultivars soluble Zn and Fe after treatment of protease are likely to be explained by the presence 

of Fe and Zn from the aleurone layer in the R1 fraction of Rialto which was not affected by 

protease activity. As previously discussed in Chapter 3 Rialto, a hard wheat, contains more 

aleurone and bran in its white flour fraction. 

  

Offal flour contains both white flour and some aleurone and germ (242) and behaved similarly to 

R1 for both Fe and Zn, with protease having the greatest effect, However, this was not as 

pronounced as for R1 (Fig. 32, 33), this again is likely to be due to a large proportion of the Fe in 

tissues originating from the aleurone layer and outer tissues of the grain. The major differences 

observed were between R1 and coarse bran. Coarse bran is made up of the outer and 

intermediate pericarp layers, with some aleurone layer and a very small amount of endosperm 

(242).  

  

Phytase was shown to have no significant effect on the release of either Fe or Zn (Fig. 31-38.), 

which contradicts previous studies on barley embryos (23), However, it should be noted their 
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enzyme extractions were only performed on embryo tissue. It would be expected that phytase 

would have no effect on R1 as pure endosperm should have no phytate.  In the milling process the 

embryo is most likely spread across all fractions but concentrated in the offal flour and bran flour 

(195), however wheat embryo only accounts for 3-3.2% of the total grain (243). It would be 

expected that phytase would have no effect on R1 as pure endosperm should have  no phytate 

The lack of an effect of phytase on other tissues does not necessarily indicate a lack of phytate 

binding; phytate is stored in insoluble phytate granules within the protein storage vacuoles (PSV). 

It is therefore possible that phytate granules may be protected in planta from extrinsic phytate by 

hydrolysis resistant protein complexes (83) or that they are inaccessible for the enzyme due to  

fibre (100).  

 

In millet, exogenous phytase was only able to liberate Fe in conjunction with xylanase and it was 

concluded that Fe is bound as phytate-fibre complexes which are resistant to hydrolysis by 

phytase alone (100). A separate experiment was performed to investigate this effect in coarse 

bran and R1 milling fractions of Rialto (Fig. 34). Phytase was shown to release more soluble Fe 

compared with cellulase alone. It is therefore likely that Fe is bound to insoluble phytate in the 

outer factions but is protected of the grain by dietary fibre. This is in agreement with Wang et al 

who showed phytase improves both Fe and Zn solubility most effectively in rice bran when 

combined with cellulase (83).   

  

From our data we are able to conclude that insoluble Zn is likely to mainly be bound to protein 

within the endosperm and a proportion of Fe is also bound to protein. The link between protein 

and Zn in the endosperm of wheat has been identified previously (67) and has been shown in rice 

using a similar method (244) However, there has been no information for Fe speciation until now. 

The lack of effects of both the phytase and combined phytase and cellulase treatments indicates 

that neither Fe nor Zn are bound to phytate in the endosperm.  

  

A reduction in soluble Fe with the addition of phytase was also observed in millet (231). One 

reason for this maybe that exogenous phytases, in this case crude wheat phytase, may form 

insoluble complexes with Fe (231). This is likely to be greater in our study as we demineralised our 

enzymes prior to extractions, thereby increasing the chelation capacity of the proteins or other 

complexes in the enzyme preparations.  

 

 
 



 102 

 

 

 

4.4.2 Speciation in transgenic OsNAS rice 
 

We analysed an elite rice line transformed with rice the nicotianamine synthase gene (OsNAS1) 

fused to a rice glutelin promoter. Previous studies had shown that the transgenic lines (EN1, EN2) 

had increased expression of OsNAS1 in the endosperm and increased concentrations of NA in 

polished (8 fold) and unpolished (7 fold) rice grain (121). The effect on total Fe and Zn 

concentration had been reported previously, with increases of Zn in unpolished rice (33.4% to 

55.4%), and polished (22.7% to 31.9) grain, but no increase in Fe (121). Our data showed no 

differences in either soluble Fe (Fig. 37) or Fe speciation between the transgenic and Wt polished 

(Fig. 35) rice but did show effects on both soluble Zn and Zn speciation (Fig. 36, 39) 

  

This does not agree with a another study using SEC-ICP-MS on NAS overexpressing rice which 

found the Fe-Na peak was significantly increased in transgenic lines (7 fold) and total Fe was 

increased in the polished rice (2.6 fold). The reason for the differences in Fe concentration  in 

polished grain of Lee et al (22) compare to Zheung et al (121) maybe due to the overexpression of 

a different form of NAS , in this case OsNAS3, which is normally only expressed in the roots (22). It 

is therefore likely that the expression of this gene in the shoots and grain enhanced iron transport 

which would not normally exists within these plant tissues. This also may have contributed to the 

reported speciation change of Fe. However, it should be noted that the study by Lee et (22) used 

quartz sand in their extraction which, as we have shown, is likely to have contributed to the 

differences in Fe speciation between their wild type and transgenic lines (discussed below). In 

addition, in the study by Lee et al the OsNAS3 gene was expressed ubiquitously throughout the 

plant whereas in Zheung et al the expression was endosperm specific, therefore overexpression of 

NA throughout the plant may have had an effect on increasing uptake and transport to the grain.  

  

The effect on Zn speciation in the polished rice lines overexpressing OsNAS1 was shown in our 

SEC-ICP-MS data and was shown to increase Zn as Zn-NAS by 4 fold (Fig. 35, 37). Another study by 

Lee et al it was showed that Zn concentration in polished rice increased (2.9 fold) when OsNAS2 

was overexpressed (22). This increase is considerably greater than that seen by Zheng et al (22.7% 

to 31.9%) (121). Lee et al also showed a greater increase in LMW peaks (16.4 fold) in transgenic 

lines which also showed the presence of DMA as well as NA in transgenic lines (245). Our data on 

the OsNAS1 lines strongly suggests that the additional extractable Zn is Zn-NA (Fig. 35). These 

differences are again likely to be due to the expression of different genes. The difference in 
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targeting of gene expression is also likely to account for the differences in Zn sequestration within 

the two rice constructs. 

  

Overexpressing OsNAS1 in the rice endosperm has previously been shown to increase Fe 

bioavailability 2 fold in polished rice (121). However, our SEC-ICP-MS data show no difference in in 

planta Fe speciation. Therefore, this effect is likely to have been caused by an 8 fold increase in 

unbound NA within the plant, which possible re-associates with Fe during the digestion.  This 

effect of NA during digestion is explored further in Chapter 5. 

  

Despite the endosperm specific expression of OsNAS1 we also observed an effect on Zn speciation 

within the bran fraction with an increase in Zn-NA (Fig. 35). The resons for this is not understood 

but it is unlikely to be due to endosperm contamination. One possible explanation is that Zn-NA, a 

highly soluble small compound, was transported throughout the grain from the endosperm as the 

concentration within the endosperm increased.  

  

4.4.3 Effect of increased NA in presence of Fe  
 
Our initial data and the study of Lee et al (22), used the method described by Persson et al (23) 

advocating the use of quartz sand (~0.03% Fe2O3) and porcelain (0.52% Fe2O3) pestle and mortars 

in the extraction stage. This showed much greater differences between the amounts of Fe-NA in 

Wt and transgenic lines (Fig. 41) and higher total Fe (Fig. 40). This may have some relevance for 

human nutrition, as cooking and preparation of rice will nearly almost always happen in the 

presence of Fe due to its abundance in most cookware (246). The effect due to cooking using 

stainless steel or iron cookware on Fe concentration in rice  is well reported (246, 247). 

  

We showed that NAS rice was able to recruit Fe from quartz sand (used as a proxy for Fe2O3 

containing cookware) to a greater degree than Wt rice (Fig. 40). Although there was no difference 

in Fe speciation between the lines when extracted without Fe, in the presence of Fe (originating 

from quartz sand) the increased unbound NA in the transgenic lines affected the speciation profile 

with an increase in Fe bound to the LMW Fe-NA. The implications of this for human nutrition and 

the end use potential of NAS rice should not be understated as it clearly shows that if cooked in 

the presence of Fe, NAS rice will not only contain considerable more Fe than its Wt counterpart 

but that this Fe will also be in a highly bioavailable form (121). 
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4.4.4 Low phytate wheat lines 
 
It has been argued that low phytic acid lines should have higher soluble P and higher soluble Fe 

which would be bioavailable to humans. However our results showed that this was not the case 

for Fe (Fig. 18.). IDO563 (a lpa spring wheat) did not have higher soluble Fe than one of its related 

lines IDO488 and AO2568 (lpa winter wheat) did not have significantly higher Fe to any lines and 

significantly lower soluble Fe than Kanto and Centenarial. Soluble P was significantly higher in 

both lpa mutants compared to controls, apart from IDO488 (Fig. 43). 

 

SEC-ICP-MS showed no effect on Fe speciation compared to its controls (data not shown), 

however the AO2568 mutant did appear to have a higher percentage of soluble P as inorganic P 

compared to all controls, which is indicative of the lpa phenotype (157)  (data not shown).  

 

Why the effect of the low phytic mutants did not have more noticeable impacts on Fe speciation 

is unknown and needs further investigation. But from this data we can conclude that these 

particular lpa mutants would not have improved bioavailability, and this was demonstrated with a 

dialyzability assay discussed in Chapter 5. 

 

4.4.5 Ferritin overexpressing lines 

 
Theoretically, an increase in ferritin would increase the amount of Fe bound to ferritin within the 

grain. It would therefore affect the speciation profile of the grain, creating a larger HMW peak, 

which is likely to be ferritin Fe. However, we saw no change in Fe speciation between transgenic 

and control lines, indicating that the increase in TaFer1 gene expression in the endosperm did not 

affect Fe speciation. One possible reason for this is that although the ferritin was increased in the 

endosperm, additional Fe was not able to be transported to the endosperm (153) in sufficiently 

increased amounts to alter speciation and therefore the ferritin remained without bound Fe in 

the endosperm. 

 

 

 

 

4.4.6 Speciation in wheat white flour   
 
The data from SEC-ICP-MS show the presence of HMW, MMW and LMW peaks of Fe and HMW 

and LMW peaks of Zn in white wheat flour (Fig. 45-47). Based on matching of retention time (Fig. 

29, 30) and on previous studies of rice (18), the LMW Fe in wheat is likely to be a mixture of Fe-NA 



 105 

and Fe-DMA. Interestingly, it would appear from our comparisons with standards that Zn-NA is 

the only form of soluble Zn in the endosperm in both rice and wheat. This is in agreement with 

other studies which have shown that Zn binds more favorably with NA (55) and Zn-NA was the 

only Zn-chelate in the phloem sap of rice (59). However, it was found that Zn was bound to both 

NA and DMA in transgenic rice overexpressing the OsNAS2 gene (21, 245). 

 

The most notable difference between the two cultivars of wheat was the presence of Fe bound to 

soluble phytate, which appeared as MMW complexes, in white flour of Rialto but not of Riband. 

The effect of this on the nutritional value of white flour of Rialto is not known but soluble Fe 

bound to phytate has been shown to be partly available for absorption (119) and the bio-availbilty 

of this complex is explored further in Chapter 5. One explanation for the difference between the 

two cultivars in soluble Fe-phytate (Fig. 45, 46.) could be premature sprouting of Rialto, which is 

known to be prone to pre-maturity amylase production. This is supported by the determination of 

the Hagberg Falling Number (HFN), which was lower for Rialto than for Riband (112.3 ± 10.0 

compared to 217.0 ± 23.3, p<0.05). Although HFN measures the activity of amylase on starch, the 

synthesis of phytase also occurs during germination (248). Increased phytase activity and other 

enzymes produced during germination could therefore be responsible for the higher soluble 

phytate in Rialto, as it is possible they would cause the insoluble phytate granules to degrade and 

release soluble forms of phytate.  Another reason could be contamination of the white flour 

fraction with aleurone tissues which is greatest in hard wheat such as Rialto. This was discussed in 

more detail in Chapter 2. We found no evidence of soluble forms of phytate-Zn in white flour 

(Figure. 46) or other milling fractions (Appendix 5), which is in agreement with previous analysis 

of barley embryos (21). 

 

Analysis of the 10 milling fractions showed that like soluble Fe and Zn were present in different 

forms in white flour fractions and outer fractions. The endosperm is an unusual tissue in that it is 

made up almost entirely of starch and has comparatively low amounts of protein when compared 

to other tissues (249). It was no surprise, therefore, that the fractions which contained the highest 

portion of endosperm (R1, B1) contain little or no Fe bound as either the HMW peak or soluble 

phytate peak. Instead all of the Fe and Zn was bound as the highly soluble Fe-DMA/NA or Zn-NA 

form.  

 

The milling fractions corresponding to the outer layers of the grain (offal and bran flour, coarse 

offal and coarse bran) contain most of the aleurone layer, the embryo and pericarp/testa tissues 
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(194). However, it is not possible to derive precise information on individual tissues from these 

analyses as each fraction is likely to contain varying proportions of aleurone, embryo and outer 

layers (194). Soluble phytate-Fe was highest in the offal and bran flour fractions (Fig. 47). It has 

previously been shown that a proportion of the Fe remains as soluble mono-ferric phytate, 

however this varies depending on the phytic acid: Fe ratio (137). This is in agreement with our 

data which show that the concentrations of soluble Fe-phytate appear to be related to total 

phytate except in the coarse bran and coarse offal, where, although total phytate levels were 

high, soluble phytate remained low, possibly due to phytic acid : Fe ratios favoring insoluble 

complexes (137) (Fig 47, Chapter 3, Fig 21).  

 

In addition to soluble phytate and DMA/NA, Fe is also bound to at least two HMW compounds 

(Fig. 45, Table 4). The identification of these peaks is challenging. HMW1 is excluded from the size 

exclusion column, suggesting that it is in excess of 70 kDa. HMW2 also elutes very close to HMW1. 

These high molecular weight peaks seem to be much more abundant in outer layers of the wheat 

grain. As previously discussed the iron storage protein ferritin may contribute to these peaks due 

to their large size (92). Our own analysis of data on the expression from the Affymetrix GeneChip 

Wheat Genome Array (250) also showed that expression of TaFER1 and TaFER2, the genes 

responsible for ferritin synthesis, is very low in the endosperm, compared to that of whole grain 

(Appendix 4). However, ferritin is present in low abundance in cereals (1-3% of total Fe) (94, 251) 

and it is therefore likely that the HMW peaks are a combination of Fe and Zn containing 

macromolecules, most likely proteins. Therefore, their abundance in the outer fractions would be 

consistent with protein levels being low in the endosperm and higher in the germ and aleurone 

(249).  

 

Polyphenols may also account for part of the HMW peak as they have been shown to bind both Fe 

(138, 252, 253) and Zn (252, 253) and tend to have higher abundances in the outer layers of grain. 

However polyphenols have been analysed by SEC and have been reported to be of a much smaller 

size ~1kda (254), although the size of potential metal containing oligomers is unknown.  

 

Speciation of Zn in bran fractions of Zn is not presented due to difficulties in quantifying the 

separate peaks. Like Fe the HMW peak was higher in the bran fractions, however there was also 

another LMW peak in bran fractions which eluted before and overlapped the Zn-NA peak making 

exact quantification impossible. (Appendix 5)    
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4.4.7 Differences in wheat and rice 
 
The speciation of Fe and in wheat and rice white flour appeared to be very similar (Fig 29, 45, 46.), 

with LMW forms accounting for the majority of the soluble Fe and Zn. However the bran fractions 

of wheat and of rice appeared to showed obvious differences, soluble Fe being much higher in 

rice largely due to the higher abundance of soluble Fe-phytate (Fig. 35). The unknown HMW peak 

also formed a greater percentage of soluble Fe in wheat when compared to Wt rice.  

 

4.4.8 Limitation of methods  
 

Enzyme assays can only provide an indication of metal binding in insoluble fractions. As previously 

discussed metals may be bound to a particular chelator but the appropriate enzyme may not be 

able to physically reach the complex, due to another macromolecule forming a physical barrier. 

  

SEC-ICP-MS is an effective method for separating potential metal containing complexes but there 

are limitations in its ability to distinguish metal species of similar size. The range of our column 

also only allowed for accurate size determination between 70 kDa-and 1 kDa. 

  

Extracting metal species from plants in their in planta form is difficult as small chemical or 

physical changes may have impacts on metal speciation. A major criticism of in vitro analysis of 

metal speciation is that decompartmentalisation of metal chelators occurs during extraction and 

may result in unavoidable artefacts; in situ analysis such as NANO-SIMS (69) or Laser ablation (LA)-

ICP-MS (67) reduces this problem but provides limited information on speciation. Although SEC-

ICP-MS offers a relatively fast and accurate way to measure metal species in cereals the results 

should only be used as an indication of in planta speciation rather than as an absolute 

determination. 

 

 

 

4.5 Summary 
 
Insoluble Fe and Zn appear to be bound by phytate, protein and dietary fibre in wheat. However, 

the degree of binding varies depending on the milling fraction, which is indicative of differential 

metal binding throughout different tissue fractions of the grain.  
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 Soluble Fe and Zn metal complexes were identified in both wheat and rice. In the white 

flour (endosperm) of rice and wheat, Fe was bound to DMA and NA, whereas Zn was bound to 

NA. Fe speciation varied histologically throughout the grain, with soluble phytate and a HMW 

peak being present in considerably higher amounts in the outer grain fractions.  

 

 

4.6. Implications of results 
 

The results from this study have increased our understanding of the distribution and forms of Fe 

and Zn in wheat and rice grain. They also show that DMA and NA are likely to play a role in Fe and 

ZN storage within the grain of wheat, as has been shown in rice. The results also demonstrate the 

usefulness of SEC-ICP-MS for the speciation of these minerals within cereals which, combined 

with detailed bioavailability studies, will allow for more targeted breeding strategies for increased 

mineral content in wheat grain.  

 

SEC-ICP-MS is useful for assessing transgenic crops which have been bio-fortified as it provides a 

way to determine the speciation and hence potential bioavailability of the target metal. Our 

results showed that the transgenic Tafer1 and the lpa mutants were unlikely to have improved 

bioavailability compared to wild type plants. However OsNAS1 rice had clear changes in Zn 

speciation and potential for improved Zn availability. Although the transformation did not affect 

Fe speciation, the elevated levels of NA are likely to improve Fe availability once in the digestion 

pool. However, it is necessary to understand the behavior of the compounds in the GI track to 

conclude whether the differences may affect bioavailability. This is explored in chapter 5. 
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Chapter 5. Bioavailability of Fe in unleavened bread 
 

5.1 Introduction 
 

As discussed in Chapter 1 bioavailability is the most important factor with regard to Fe nutrition 

and, although data describing total Fe levels, the location of Fe and speciation of Fe in wheat are 

useful, the effects on bioavailability can never be more than a crude estimate unless changes 

introduced by the digestion process are understood. Due to the widespread prevalence of Fe 

deficiency in humans, Fe is one of the most widely studied minerals with regards to bioavailability 

but little information is available concerning changes in non-haem Fe speciation during digestion. 

One previous study did examine Fe speciation changes in meat using a rat digestion model 

however as previously stated rats are not a suitable model for Fe metabolism in humans (255). 

 

The initial aim of this project was to determine the differences between Fe bioavailability in 

wholegrain of different wheat cultivars. However preliminary experiments with Caco-2 cells 

(Appendix 6) showed that the sensitivity of the model was not sufficient to detect any differences 

between the samples. In fact, we were not able to detect any differences between the control 

and wholemeal samples. No previous studies had reported any results on unmodified whole meal 

flour indicating that the low level of Fe bioavailability was not suitable for the Caco-2 cell system. 

  

However, concurrent speciation work (Chapter 4) identified marked differences in Fe speciation 

between wholemeal and white flour that could theoretically lead to white flour having a higher 

level of bioavailability than whole meal flour. There is some evidence that this may be the case 

from human studies (256-258). Our own preliminary experiments (Fig. 48) also showed that Fe in 

white flour was significantly more dialyzable than Fe in wholemeal, 2.2% compared to 5.4%, 

respectively (P<0.05). The aim of the experiments in this chapter was to explore the differences 

between the Fe bioavailability after simulated digestion of whole meal and white flour using the 

two contrasting cultivars discussed in chapter 2. 

  

It was decided to study unleavened bread rather than raw or leavened samples for two reasons: 

1) Many countries where Fe deficiency is most prevalent eat more unleavened than leavened 

wheat products. For example, it is estimated that 80% of wheat flour in Pakistan is ultimately 

made into unleavened bread such as chapattis; 2) The addition of yeast to make leavened bread 
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may complicate any analysis of speciation and make differences between the wheat cultivars 

harder to determine. 

  

We first determined the Fe bioavailability of our bread samples using the Caco-2 system to test 

whether if our initial hypothesis was correct. We then measured the amount and speciation of 

soluble Fe at two stages of digestion. Phytic acid was also measured in all samples. Finally the 

same samples were fortified with inorganic Fe and again assessed for their bioavailability, soluble 

Fe and speciation. 

 

To date there is no accurate in vitro method of measuring Zn bioavailability (105) and therefore Fe 

availability was the focus of this study.  

 

Hypothesis : That white flour may be a more available source of Fe than whole grain due to the 
removal of anti-nutrients from the bran layer and more favourable Fe speciation in the 
endosperm. 
 

5.2 Materials and methods  
 

5.2.1 Preparation of unleavened bread  
 
Bread samples were made from wheat cultivars Rialto and Riband grown in the field at 

Rothamsted in 2010 (see Chapter 2). As the samples were to be analysed using the Caco-2 cell 

system, pooled samples of all three biological replicates were used, as it was not practical to 

analyse all three replicates individually due to the number of experiments that this would require.  

Whole meal bread was made from the milled whole grain (see 3.2) and none of it was discarded 

(100% extraction rate). Although this is unlike most bread that is commercially available in the UK 

it is representative of the breads eaten in poor rural parts of many developing countries where 

iron deficiency is most prevalent. White flour chapattis were made from the white flour fraction 

(Riband 38±2.1%, Rialto 41±3.4% extraction) described in 3.2. The white flour fractions were 

obtained at a much lower extraction rate than would be found commercially. This was done in 

part to achieve a greater contrast with wholemeal, as preliminary Caco-2 experiments (Appendix 

6) had found the sensitivity for determining differences between similar wheat samples to be 

insufficient. Additionally to our knowledge no studies have ever been conducted on such a low 

extraction rate. The process by which the unleavened breads were made is summarised below.  
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First 20 g of flour was placed in a silica crucible. Glass was not used as there is a small amount of 

Fe within glass which could react with intrinsic chelators during the baking process. Then 5.76 ml 

of deionised water, and 0.4 g of salt was added to the flour, which was then kneaded into a 

flattened dough ball. The breads were then left to prove at 30º for 30 mins, before being baked at 

200º for 15 mins. The breads were then broken up by hand into smaller pieces, approximately 0.5 

cm3, before undergoing flash freezing in liquid nitrogen and then they were freeze dried for 72 

hours. Samples were then homogenised and ground to a fine flour in an agate ball mill (Retsch 

PM400, Düsseldorf, Germany). 

 

Fortification was achieved by adding FeSO4 (30 mg Fe/kg) in solution to the flour with the 

deionised water before cooking. The process, although not a complete replication of the process 

of making chapattis, mimicked all the important steps which may affect bioavailability. 

 

5.2.2 In vitro digestion  
 

Initially 1 g of sample was used, however due to the very low sensitivity of the Caco-2 system 

(Appendix 6) the samples size was increased to 3 g per digest, which would theoretically triple the 

Fe presented in the post-digestion solution to the cells. The samples were added to 10 ml 120 

mmol/L NaCl and 5 mmol/L KCl at pH 2 and ascorbic acid was added (see below, 5.3.3). The pH 

was then further adjusted to pH 2 using HCl. For Fe fortified samples the process was identical 

except that 1 g of sample was used as there was sufficient Fe. 

 

For the gastric digestion 0.5 ml of a pre-prepared porcine pepsin solution was added to each 

sample. This solution contained 0.2 g pepsin in 5 mL of 0.1 mol/L HCl, which was  added to 2.5 g of 

Chelex-100 (Bio-Rad Laboratories, Hercules, CA) and mixed for 30 mins. The slurry was then 

poured into a 1.6 cm FlexColumn (Fisher Scientific, UK) and left to settle for 20 mins before the 

eluent was filtered (Whatman Ashless filter paper 40 125nm) and collected. The column was 

further eluted with 0.1 mol/L HCl. Samples were then placed on rolling bars (Stuart, UK) for 1 hr at 

37ºC. The filter paper step was added after concerns that some Chelex was contaminating the 

sample rendering some of the soluble Fe insoluble. 

  

For the full simulated digestion experiment, samples were treated as per the gastric digestion 

procedure but with an additional intestinal digestion stage. First 0.05 g porcine pancreatin and 0.3 

g bile extract were dissolved in 25 mL of 0.1 M/l NaHCO3, and Chelex-100 (12.5 g) was added.  The 

mix was then  prepared as described above except that the column was further eluted with  10 ml 
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of NaHCO3 and 2.5 ml added to each sample after which the pH of each sample was adjusted to 

5.5-6.0 with 1.0 M NaHCO3. The sample pH was then adjusted to 6.9-7 and the volume made up 

to 15 ml using 140 mM NaCl, 5 mM KCl pH6.9 solution, before being placed on roller bars for 2 hr 

at 37ºC.  

 

Samples were centrifuged (21,000 g, 10 mins) and the solid phase discarded. The supernatant was 

then flash frozen in liquid nitrogen and stored ready for the Caco-2 cell analysis. 

 

5.2.3 Addition of ascorbic acid  
 

It is a conventional practice to add ascorbic acid (AA) during Caco-2 experiments. The amount of 

ascorbic acid is set at a molar ratio (normal 10-20:1 AA:Fe) determined by the amount of  Fe in 

the samples (141, 259-261). However, because of the large variations in total Fe in our samples 

(6.5-77mg/g) an identical amount of AA was added to each sample. The quantity of ascorbic acid 

added to each digest was 66 μl (200 mM solution) per 1 g of sample, an amount equivalent to one 

medium glass of orange juice (330ml) with a 45 g serving of bread.  Although this meant that  

some samples would have a higher AA:Fe ratio than the others, the amount of AA chosen was 

sufficiently high to ensure that it achieved maximal effect as observed in previous studies (124). 

Also the study was designed to compare samples under identical dietary conditions, therefore it 

was not appropriate to adjust the ascorbic acid levels by over 10 fold between our highest and 

lowest Fe samples.  

   

5.2.4 Dialyzability analysis  
 

All samples were digested as described in the in vitro digestion and placed on 6 well plates as 

described in 5.3.7, except that no cells were present and the bottom chamber contained 140 mM 

NaCl, 5 mM KCL pH 6.9 rather than medium. After 2 hours the membranes were removed and the 

Fe concentration of the solution measured using a colorimetric method. This method was found 

to be unsuitable because the samples had a slight absorbance at 562 nm and this absorbance 

varied between each sample. Therefore ICP-MS was used instead (2.3.9), which is suitable for 

solutions with low concentrations of Fe as previously stated.   

 

5.2.5 Amylase digest 
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Samples (1 g) were shaken (60 rpm) for 5 min at 37º in 5 ml of pH 7 buffer (120 mmol/L NaCl and 

5 mmol/L KCl.) with 1 mg of salivary amylase (Sigma) at a concentration approximately  5 times 

that of human saliva   (262). A higher concentration was used as it was a proof-of-principle 

experiment looking for potential effect rather than physiologically relevant results.  

 

5.2.6 Caco-2 Cell Culture Procedures  
 

Unless otherwise stated, all reagents were from Sigma-Aldrich. Caco-2 cells (HTB-37) were from 

the American Type Culture Collection (Manassas, VA, USA) at passage 20 and stored in liquid 

nitrogen until seeding. Cells to be seeded were then transferred in Dulbecco’s modified  agle’s 

medium (DMEM, Invitrogen UK; supplemented with 10% fetal bovine serum, 25 mM HEPES 

solution, 4 mM L-glutamine, and 5 mL 5000 u/mL penicillin/streptomycillin solution) and were 

maintained at 37 °C in an incubator with humidified atmosphere consisting of 5% carbon dioxide 

and 95% air.Caco-2 cells were seeded onto collagen-coated 6-well plates (Greiner, UK) at a 

density of 4.75 × 104 and suspended in 2 mL of supplemented DMEM, which was replaced every 2 

days. Cells between passages 32 and 38 were used for experiments at 13 days post seeding, and 

24 h prior to experimentation, they were switched to serum-free medium (DMEM supplemented 

as above with the exception of fetal bovine serum). This caused the cells to be starved of Fe to 

maximise Fe uptake from samples and increase the sensitivity of the assay. 

 

5.2.7 Caco-2 ferritin assay  

A sterilized insert ring, fitted with a dialysis membrane (15 kDa MWCO), was inserted into each 6 

well plate, thus creating a two-chamber system. 1.5-mL aliquot of the intestinal digest (defrosted 

and warmed to 37º) was pipetted into the upper chamber. The plate was covered and incubated 

on a rocking shaker at 6 oscillations/min for 2 hrs. 

When the intestinal digestion was terminated, the insert ring and digest were removed. The 

solution in the bottom chamber was allowed to remain on the cell monolayer and an additional 1 

mL of MEM was added to each well. The cell culture plate was then returned to the incubator for 

an additional 22 h, after which the cells were harvested for analysis. 

Cells were then sonicated (3 X 5 seconds) and stored at -20, before being defrosted at room 

temperature and kept on ice, and a spectroferritin ELISA assay (Ramco, USA) was carried out 

following the manufacturer’s instructions. Total protein was quantified using a BCA protein assay 
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(Pierce, USA) according to the manufacturer’s instructions and a value for ferritin content (ng/mg 

total protein) was obtained. 

 

5.2.8 Phytic acid   
 

Analysis of phytic acid was performed using a commercially available kit (K-PHYT 12/12 Megazyme 

, Ireland), as per the manufacturer’s instructions. Perhaps a brief explanation of the principle 

involved for the assay. 

 

5.2.9 ICP-MS 
 

Total Fe was determined by ICP-MS as described in more details in Chapter 2. All samples were 

diluted to a final concentration of 5% HNO3 and fortified samples were diluted 5 fold to the same 

final concentration, such that the final concentration of Fe in the samples was within a standard 

(curve 0-200 ug/l). 

 

 

 

 

5.2.10 Speciation of Fe 
 

Speciation results were obtained as described in Chapter 3 except that rather than a Tris HCl 

extraction, samples were run through an in vitro digestion. Samples were then mixed with an 

equal amount of Tris 20 mM HCl pH 7 prior to injection. This was done to improve the clarity of 

the peak as undiluted peaks have very wide peaks, which is often the case when the sample 

solvent (120 mM/l NaCl and 5 mmol/L KCl pH 7) differs from the mobile phase (Tris-HCl 20 mM pH 

7).  

 

5.3 Results  
 

5.3.1 Preliminary experiment 
 
Caco-2 assays are expensive and time consuming. An alternative predicative method for Fe 

availability is to measure dialyzability which, although not providing an accurate measure of 

bioavailability, can provide an indication of the potential bioaccessibility and therefore 
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bioavailability of a sample (14, 105). Therefore a dialyzability assay was performed on a variety of 

samples. The experiment was designed to assess four factors to help design further experiments: 

1. whether the addition of a pre-digestion amylase stage would improve Fe 

bioaccessibility; 

2. whether Fe in white flour was more dialyzable than wholemeal bread;  

3. whether low phytic acid wheat would be a more bioaccessible source of Fe; 

4. what effect, if any ,was obtained by the addition of an iron fortificant  to wholemeal and 

white bread samples.  

 

Figure 48. A) Dialyzability Fe after in vitro digestion .Data is total dialyzable Fe of 1 g of white or 

wholemeal bread made from cv. Rialto or cv. IDO5633 (low phytic acid ) (see 2.1.3),  either with 

no treatment or treated with ferric chloride, 24 µg of Fe/g  of sample (+Fe) or amylase. Data 
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represent the mean ± SE (n= 3). Bars without a common letter (a−e) are significantly different, p< 

0.05.B) Percentage of total Fe dialyzable. 

 

The preliminary results (Fig. 48) indicated that the addition of amylase had no effect on Fe 

dialyzability and therefore this step was omitted from future investigations. The dialyzablity of Fe 

from breads made from Rialto showed that there was a significant difference between whole 

meal breads and white breads. Fe dialyzablity was very low and represented only 2.2% of total Fe 

for wholemeal bread, as opposed to 5.4% (Fig. 48b) for breads made from white flour. Therefore 

it was decided to further explore the differences in bioavailability of wholemeal and white flour. 

 

 White bread samples with additional Fe (FeCl3 24 µg of Fe/g) were found to have significantly 

more dialyzable Fe than wholemeal bread. Fortified samples, however, were lower in dialyzable 

Fe than the positive control which contained the same amount of Fe as fortified samples but with 

no bread. Therefore it was also decided to explore this further. 

 

Low phytic acid (LPA) wholemeal bread was also found to have significantly less dialyzable Fe than 

Rialto wholemeal, which is opposite to what we had predicted. Because of these results and 

earlier Caco-2 experiments on LPA breads (Appendix 6) it was decided not to look at low phytic 

acid breads further. 

 

Both controls (control, control +amylase) had higher dialyzable Fe than expected however and 

were higher than some samples, which showed that the use of the colorimetric method (5.2.4) 

was probably not suitable for our samples and therefore all subsequent Fe quantification was 

done using ICP-MS.   
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5.5.2 Fe bioavailability in bread assayed using Caco-2 cell model

 

Figure 49. Caco-2 results for bread samples shows ferritin response of Caco-2 cells to 3 g of bread 

sample with ascorbic acid (132 µM). Results are from two independent experiments, Values ( ± se; 

n = 12) with no letters in common (a-c) are significantly different (LSD 5%) 

 

Results from the Caco-2 analysis showed that neither wholemeal sample was able to initiate a 

response above that of the control (Fig. 2). Both samples of white flour however had a ferritin 

response significantly different from the control, with Riband significantly higher than Rialto 

(P<0.01).    
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5.3.2 Phytic acid concentrations  
 

 

 

 

 

Figure 50 shows Results for phytic acid showed that Rialto wholemeal contained more phytic acid 

than Riband, this was most pronounced in the white bread, where Rialto had three times the total 

phytic acid. 
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Figure 50. Amount of phytic acid in different breads.  Data represent the mean ± SD (n= 3). Bars 
without a common letter (a−d) are significantly different, p< 0.05. 



 119 

5.3.3 Soluble Fe and macro minerals 

  

 

 

 

 

 

During the gastric digestion, more than 50% of the total Fe became soluble in all samples (Fig. 51).  

This was reduced considerably with soluble Fe accounting for ~10% of the total Fe after full 

digestion in all samples.  After gastric digestion, both wholemeal samples had more total soluble 

Fe than white bread samples (P<0.05) and there was no significant difference between the soluble 

Fe in the wholemeal samples, Rialto white bread was significantly higher in soluble Fe than Riband 

(P<0.01). After full digestion both wholemeal samples had more soluble Fe than white bread 

samples (P<0.01) but there was no significant difference between the two varieties in soluble Fe 

in wholemeal samples. In contrast, Rialto white bread was significantly higher in soluble Fe than 

Riband (P<0.05). 
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Table 5. Soluble minerals in full digestion, results were determined by ICP-AES analysis of 
digested samples. ± represents mean of 2 technical replicates. Values without common letter 
(a−d) are significantly different, p< 0.05 for that mineral. 

mg/kg dw Ca Mg P S 

Rialto 

wholemeal  

47±5 a 574±10  a 2117±1 a 399±23 a 

Riband  

whole meal  

38±2 b 438±31 b 1811±41 b 481±35 b 

Rialto white 

flour  

47±13 a 113±4 c 314±16 c 386±13 c 

Riband white 

flour  

57±20 a 46±17 d 122±28 d 278±14 d 

 

Table 5 shows the results for minerals where P and Mg were significantly different between all 

samples. Soluble phosphorus was much higher in wholemeal samples than white bread samples 

and Rialto had more soluble P and Mg than Riband in both breads. Soluble calcium was 

approximately ~ 15% of total Ca in all samples, and sulphur was ~50% of totals. 

 

5.3.4 Iron speciation 
  

Results for Fe speciation are shown as chromatograms, which are fully explained in chapter 4.  

Briefly, each peak represents a complex containing the target element, with the assumed 

molecular size of each complex decreasing from left to right. The higher the peak the greater the 

amount of complex in the soluble fraction. 

 

The three major Fe peaks are summarised below (Table 2), following which the results of Fe 

speciation at different stages of a simulated digestion are illustrated. P speciation is also shown 

to, with the LMW peak representing inorganic P. The other peaks in the P chromatograms are 

assumed to be soluble forms of phytic acid (IP6) and its lower phosphorylation states (IP5-IP1). 

The organic P shown in these chromatograms will not exclusively be bound to Fe however as 

phytic acid also binds to magnesium, calcium, copper, Zinc and other minerals.  However we were 

not able to look at these elements simultaneously as this would have reduced Fe sensitivity. It is 

also likely that some of the smaller organic P peaks are lower IPs not bound to any minerals. 
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Table 6. Identification of peaks in digested samples 

Peak 

 

Size (kDa) Time Assumed 

identification  

Evidence for identification  

High molecular 

weight (HMW) 

 75+ 16-18 Likely to be Fe-bound 
to proteins, probably 
contains ferritin 
although unlikely to 
be exclusively ferritin  

See (chapter 4) 

Medium 

molecular weight 

(MMW) 

12.4 25  
Fe bound to soluble 
phytate (possibly 
bound as an 
oligomer containing 
both  mono ferric 
phytate  and Fe-IP-5) 

Similar size to peak 

identified in Persson et al 

(23). Co-elutes with P peak 

indicating complexion. Elutes 

at the same time as mono-

ferric phytate 

standard(Appendix 7)  

Low molecular 

weight  (LMW) 

1.5  36  

Fe bound as 

nicotainamine (Fe- 

NA) or 2’-

Deoxymugineic Acid 

(Fe-DMA) 

Elutes at similar time to 

standard of Fe-NA, is of 

similar size to a LMW 

identified in rice as FE-

DMA/NA (263) . Elutes at the 

same time as a LMW 

complex in rice (Fig. 29) 

which was identified as a 

ligand of Fe-NA/DMA 

(21).(Chapter4) 
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Figure 52. Iron speciation of white bread during digestion.  Chromatograms for 56Fe speciation of 
soluble fraction of 3g of white bread samples after gastric digestion or simulated full digestion, 
Results are means of 2 replicates. 
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Figure 53. Phosphorous speciation in white bread during digestion. Chromatograms for 31P 
speciation in the soluble fraction of 3 g of white bread samples after gastric digestion or simulated 
full digestion.  Results are means of 2 replicates.   
 
Speciation analysis showed that Rialto white flour contained soluble Fe-phytate, and the 

corresponding organic phosphorous during the gastric stages of digestion, while Riband did not 

(Figs. 52, 53). After full digestion it is less clear whether soluble Fe-phytate is still present at a 

detectable level in either Riband or Rialto. Iron bound to the LMW peak is present at all stages of 

digestion but makes up a larger portion of the total soluble Fe in Riband at both stages of 

digestion (Figs. 52, 53). 
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Figure 54. Iron speciation of wholemeal bread during digestion. Chromatograms for 56Fe 
speciation of soluble fraction of 3 g of bread wholemeal samples after gastric digestion or full 
digestion, results are means of 2 replicates.   
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Figure 55. Phosphorous speciation of wholemeal bread during digestion .Chromatograms for 31P 
speciation of soluble fraction of 3 g of wholemeal bread samples after gastric digestion or 
simulated full digestion, results are means of 2 replicates.   
 
 
 
Speciation of Fe in wholemeal flour samples showed that during gastric digestion nearly all the Fe 

was bound to soluble phytate (MMW) (Figs. 54, 55), whereas after full digestion the Fe MMW 

peak is almost undetectable from the HMW which makes up the majority of soluble Fe (Fig. 55). 

Similar to white flour the intensity of all peaks is reduced at the later stage of digestion (Figs. 54, 

55). Following the stomach digestion most P is in the organic form, whereas after the full 

digestion P is mainly in the inorganic form in both cultivars.  There are no notable differences 

between cultivars for Fe or P speciation.  
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5.3.5 Iron bioavailability and speciation in fortified samples assayed using Caco-2  
 

 
Figure 56.  Bioavailability results for fortified bread samples. Shows ferritin response of Caco-2 
cells to 1 g of bread sample with ascorbic acid (132 µM). FeSO4 was added to all samples at 
30µg/g with the far right bar representing FeSO4 (30 µg) in solution without bread sample. Results 
are means from two independent experiments. Values (± se; n = 12) with no letters in common (a-
e) are significantly different (LSD 5%). 
 

Results for Caco-2 analysis showed that both Rialto and Riband wholemeal samples were able to 

initiate a response in Caco-2 cells significantly greater than the control (Fig. 56, P<0.01).  Both 

white flour samples produced a ferritin response greater than the control and considerably higher 

than wholemeal, with Riband being significantly higher than Rialto (P<0.01) (Fig. 56). However all 

wheat samples produced a lower response than FeSO4 on its own. 
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Figure 57. Iron speciation of fortified white bread after full simulated digestion. Chromatograms 
showing 56Fe speciation in the soluble fraction resulting from 1 g of wholemeal bread samples 
after gastric digestion or full digestion. Results are means of 2 replicates. 

 
Figure 58. Iron speciation of wholemeal bread after full simulated digestion .Chromatograms for 
56Fe speciation of soluble fraction of 1 g of wholemeal bread samples after gastric digestion or full 
digestion, results are means of 2 replicates. 
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Figure 59. Phosphorus speciation of white bread after full simulated digestion. Shows 
chromatograms for 31P speciation of soluble fraction of 1 g of wholemeal bread samples after 
gastric digest or full digestion, results are means of 2 replicates. 
 

 
Figure 60. Phosphorus speciation of wholemeal bread after full simulated digestion. 
Chromatograms for 31P speciation of soluble fraction of 1 g of wholemeal bread samples after 
gastric digest or full digestion. Data are means of 2 replicates. 
 

Speciation analysis of fortified white bread showed that a much larger percentage of soluble Fe 

was bound to the low molecular weight form than in wholemeal, where nearly all the additional 

soluble Fe was bound to soluble phytate (Figs. 57, 58, 59, 60). White bread made from Riband had 

less Fe bound to soluble phytate compared to that from Rialto. Interestingly, organic P appeared 

to remain higher in fortified breads than in unfortified samples in wholemeal samples although 

this effect was not noticeable in white bread samples. 
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Figure 61.  Bioavailability of synthetic Fe compounds. Shows ferritin response of Caco-2 cells to 8 
ug of Fe. All compounds where made at a 1:1 molar ratio of nicotainamine (NA), 2’-deoxymugineic 
acid (DMA) and mono ferric phytate (MFP)  .Values (± se; n = 12) with no letters in common (a-c) 
are significantly different (LSD 5%). 
 

 

Figure 62.  Bioavailability of synthetic Fe compounds with and without ascorbic acid. Shows 
ferritin response of Caco-2 cells to 1.6ug of Fe with or without  ascorbic acid (AA) (132 µM).All 
compounds where made at a 1:1 molar ratio of nicotainamine (NA), 2’-deoxymugineic acid (DMA) 
and mono ferric phytate (MFP)  .Values (± se; n = 6) with no letters in common (a-e) are 
significantly different (LSD 5%). 
 
Figure 61 shows that in the absence of ascorbic acid Fe-NA was significantly more bioavailability 

then both Fe-DMA and mono ferric phytate. There was no significant difference between Fe-DMA 

and mono-ferric phytate. All forms of Fe were more bioavailable than control. Figure 62 shows 
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the effect of ascorbic acid on the same synthetic compounds, Fe with NA and AA was again higher 

than both DMA and mono ferric phytate. It should be noted that concentrations of Fe used were 

lower in second experiment therefore direct comparisons cannot be made between Figures 61 

and 62.  

5.4 Discussion 
 
Results from experiments conducted in a Caco-2 model system (Fig. 49) showed that white flour 

was a better source of available Fe than wholemeal flour, which supported our hypothesis. One 

recent study by Lei et al (264) reported similar results; however this was for uncooked flour of 

different extraction rates. The results also showed that Fe in Riband white flour, despite having 

less total Fe and less soluble Fe after simulated digestion (Fig. 50), was significantly more 

bioavailable than that in Rialto white flour. This finding is in agreement with published findings in 

cereals (13-15) that total Fe and soluble Fe are not accurate indicators of Fe availability. The next 

challenge was therefore to determine why this was the case and why wholemeal bread despite 

containing ~3-5 fold the Fe content of our low extraction white flour (~40%) contained a great 

deal of unavailable Fe. 

 

The link between phytic acid and Fe availability is well known (116, 134, 135). Phytic acid levels 

were as expected; higher in wholemeal bread samples. It has been reported before that white 

flour is much lower in phytic acid than wholemeal flour due to the fact that coarse bran and offal 

containing the highest amount of phytic acid (265, 266). Interestingly, the phytic acid content in 

the white bread samples was ~3 times higher in Rialto than in Riband. As discussed in chapter 1, 

phytate is almost exclusively located in the aleurone layer and therefore any phytate in white 

flour fractions is likely to be indicative of aleuronic contamination. This was also evident from 

Rialto’s increased ash content (chapter 3), another marker for aleuronic contamination. Rialto, a 

hard wheat (hardness index 79), tends to respond differently to Riband, a soft wheat (hardness 

index 37), with respect to milling, with more aleurone layer ending up in the white flour fraction 

(194). Therefore it is likely that the differences in white flour observed here are due to this 

contamination rather than in planta cultivar differences in phytate localisation. 

 

However, although from our limited data it is clear there is a link between Fe availability and 

phytate (Figs. 49, 50), it has previously been reported that phytate and Fe availability do not 

correlate well in larger samples of both wheat and rice and other factors also effect Fe availability. 
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(13, 261, 264, 267). Therefore we decided to try and explore in more detail how phytate was 

affecting Fe absorption and to what degree it was responsible for differences in Fe availability. 

5.4.1. Effect of digestion and phytate on soluble Fe  
 

During the gastric digestion (pH 2) it was observed that ~50% of the Fe was soluble in all samples 

(Fig. 51) and appeared to be mainly bound to soluble phytate (Figs. 52-55).  However the amount 

of soluble Fe was greatly reduced during the intestinal digestion (pH 7). This is as expected as 

previous studies have shown that mineral-phytic acid salts are more soluble at acidic pH (75, 135). 

Schelmmer et al. (2009) found that two thirds of phytate was soluble in the stomach of pigs but 

this was reduced dramatically as the phytate entered the intestinal stage where the phytate salts 

precipitate (135), however no such studies have been performed in humans.   

 

Speciation analysis allowed us to visualise this interaction more clearly. During the gastric stage of 

digestion most soluble Fe and P in wholegrain and Rialto white flour elutes at around 12.3 kDa, 

consistent with a soluble phytate oligomer (23). However this peak, and consequently the amount 

of total soluble Fe, is reduced during full intestinal digestion (Figs. 51, 52, 54). Notably Riband 

white flour, which contained considerable less total phytate (Fig. 50), did not have a detectable 

peak of either Fe or P during gastric digestion (Fig. 50) and all of the  Fe and the majority of P was 

in the LMW form or inorganic P  form respectively. 

 

Results for soluble Fe in wholemeal bread after full digestion were comparable to similar work 

done on wheat products by Frontela et al. (14). Interestingly though results were more 

comparable with the uncooked samples than the cooked samples, this is likely due to the fact 

they used leavened bread (sour dough), in which fermentation  is well known to reduce phytic 

acid (258, 268, 269), whereas the  unleavened baking process would not have had much phytate 

reducing effect compared to the uncooked samples. 

 

5.5.2. Phytic acid and Iron ratio effect on bioavailability 
 
Chemical interactions between phytic acid and Fe, and consequently Fe bioavailability appear to 

be affected by the ratio of phytic acid to Fe (14, 137, 146, 270). Gahln et al. (2001) predicted that 

Fe:phytic acid ratios would have to be below 1:10 for Fe to avoid maximum inhibition of phytate. 

In our own samples Fe:phytic acid  molar ratios were 1:5 and 1:8 for Riband and Rialto white 

bread samples respectively, and 1:13 and 1:12 for Riband and Rialto wholemeal bread 

respectively. This agrees with Gahln (2001), as we observe a dramatic increase in bioavailability of 
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the white bread samples (below 1:10 Fe:phyate ratio) despite the fact that they contained less 

total Fe, and no difference in Fe availability in our wholemeal samples. In our Fe fortified samples 

the ratios of Fe: phytate were obviously much higher with white bread samples and wholemeal 

samples, having ratios of 1:1 and 1:2 for Riband and Rialto and 1:6 and 1:7 respectively. 

 

5.6.3. Effect of NA and DMA on Fe bioavailability 
 

The LMW peak identified in Chapter 4 as an oligomer of nicotainamine (NA) and 2’-deoxymugineic 

acid (DMA) is also likely to have an effect on Fe bioavailability. NA, a precursor of DMA, has been 

shown to form strong chelates with Fe. It has been shown to act as a promoter to Fe availability 

using both synthetic Fe compounds and rice in a Caco-2 model (121). The mechanism for this 

observation was not explored by Zheng et al. (2010) although they found evidence that the 

mechanism is not the reduction of ferric Fe to its ferrous state as is the case with AA. Both NA and 

DMA are strong metal chelators and form stable complexes with Fe2+ and Fe3+ although the 

stability of these complexs is reduced at lower pH (235). 

 

Studies in rice have shown that an elevated level of NA has been shown to improve bio-availability 

in mice (22). Lee et al. (22) also reported an increased LMW peak in their transgenic rice which 

they identified as Fe-NA. 

  

The data on uncooked flour (Chapter 4) show that the low molecular weight peak containing 

NA/DMA as identified in rice is also present in wheat, and it remains present during digestion. The 

quantity of Fe bound to this peak also appears to correlate with bioavailability. In Riband white 

flour, for example, a considerably larger amount of Fe remains bound to Fe-DMA/NA, and 

consequently Riband is found to be more bioavailable. Both white flour peaks also have more Fe 

bound to LMW than wholemeal samples which were not bioavailable. The same is true for our Fe 

fortified samples where both white bread samples had a much higher amount of Fe bound as Fe-

DMA/NA compared to the less bioavailable wholemeal samples. 

 

Our data on the synthetic compounds showed NA to be a strong promoter of Fe bioavailability, 

this effect was further complemented by the addition of ascorbic acid (Fig. 61), indicating 

different mechanism of promoting Fe availability, as the amount of ascorbic acid used 

theoretically would have had a maximum effect of reducing Fe(III). Fe-DMA although shown to be 

available was not shown to be as available as Fe-NA (Fig). Further analysis of NA showed that NA 
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was a much greater enhancer of Fe bioavailability when compare to ascorbic acid and had 

maximum affect at a molar ration of 1:1 (Appendix 9) 

 

5.6.4. Competitive binding of phytic acid and DMA and NA 
  

During the second stage (intestinal) of digestion it is likely that considerable re-association of Fe 

occurs and the three main chelators, DMA/NA and phytate will compete for Fe. Initially it had 

been predicted that any Fe bound to NA and DMA would remain stable during digestion, as NA 

and DMA form very stable complexes with both Fe2+ and Fe3+, more so than phytate (55, 271, 

272). However analysis of Fe speciation during digestion appears to show a reduction in Fe-

Na/DMA during digestion (Figs. 53, 55), indicating that phytic acid may be able to remove Fe from 

this complex, rendering it insoluble during the rise in pH in the later stages of digestion.  A likely 

cause of this is that at gastric acidity (pH 2), the chelation capacity for Fe of NA and DMA is very 

low (55). Also this is the stage when most iron is soluble, therefore phytic acid, which is at a much 

higher concentration than NA or DMA, is probably able to compete and scavenge a large 

percentage of the Fe. However analysis of the synthetic compound of monoferic phytate with 

addition of an equal molar ratio of NA in the presence of ascorbic acid at pH 7, showed improved 

bioavailability compared to mono ferric phytate and ascorbic acid alone, indicating NA is able to 

compete with soluble phytate if the molar ratios are sufficient. The exact nature of this 

interaction needs further study if we are to quantify the effects of these chemicals on Fe 

bioavailability.  

 

 5.6.5. Effect of Fe Speciation on bio-availability 
 
As shown in figure 61 Fe-NA is very bioavailable and Fe-DMA has some degree of bioavailability, 

therefore one can assume that all the Fe in the LMW peak is bioavailable. Fe bound to phytate, 

which is insoluble at higher pH, will be completely unavailable. However in previous studies Fe 

bound as soluble phytate has been shown to have some degree of availability (119, 136, 137).  

Caco-2 analysis of a synthetic mono ferric phytate, made as described in Morris and Ellis et al. 

(136) which eluted at the same time for both Fe and P as the Fe-soluble phytate peak in SEC-ICP-

MS (Figs. 53, 55, 57, 59) (Appendix 7), was shown to have some degree of bioavailability, 

approximately 1/3 of FeCl3 (Appendix 8) and considerably less than Fe-NA (Fig. 60). Therefore the 

bioavailability of wheat is likely to be determined by the amount of both the MMW and the LMW 

peak, with the LMW peak having more weighting with regards to Fe availability. 
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5.6.6. Calcium  
Calcium can act as inhibitor of Fe absorption. In all samples soluble Ca (Table 5) was similar and 

therefore unlikely to have been a factor in explaining differences in bioavailability. 

 

5.6.7. Fortification  
 
Fortification with Ferrous sulphate increased the amount of bioavailable Fe in all samples. Ferrous 

sulphate has been shown to be an effective fortificant of wheat products in many studies (273, 

274), however concerns have been expressed about its effectiveness to fortify wholemeal bread 

(111, 180, 275) due to its inability to improve Fe status of people consuming it with wholemeal 

products. Low extraction flour was shown to be a much better vehicle for Fe fortification than 

high extraction flour. These results are similar to previous data from Caco-2 cells and wheat bread 

which showed a similar effect with elemental Fe powders (274). Although in Yeung et al. (274) the 

differences were less pronounced; this is likely to be due to the fact that in this study leavened 

bread was used and yeast fermentation has been shown to significantly reduce phytate (268). 

Consequently the phytate Fe ratios were not as different between low and high extraction flour as 

in unleavened samples. 

 

One interesting result was that Riband responded better to fortification than Rialto for wholemeal 

flour (Fig. 56). It is not usual for manufacturers to consider the effect of genotype, as it is thought 

the level of fortification would negate any intrinsic Fe or matrix effect (273). However it was 

shown that this is not the case and cultivar genotype can actually have a considerable effect on 

the eventual bioavailability of fortified bread. 

 

The relatively small increase in bioavailable Fe when compared to white bread of FeSO4 on 

wholemeal bread (Fig. 56) is almost certainly due to the chelation of the additional Fe during the 

gastric stage by phytic acid. This would also explain why NaFeEDTA is a much better fortificant of 

wholemeal bread compared to FeSO4, as Fe-EDTA complexes are still relatively stable at pH 2 and 

would protect the Fe from phytic acid.  

 

Interestingly, the addition of Fe as FeSO4 seemed to have an effect on the amount of organic and 

inorganic P after digestion; the organic P remained much higher. This is likely due to the effect of 

adding Fe making the phytate complexes more stable during digestion, although further studies 

are needed to fully understand this effect. 

 



 135 

5.7 Limitations of study 
 

Despite Caco-2 cells being the best in vitro model for estimating human Fe bioavailability, it can 

never be a substitute for human studies. One weakness of the Caco-2 cell model which is rarely 

considered and is almost certainly relevant is the pH of the duodenum at the site of Fe absorption 

can vary from 5.5 to 7 (276, 277) while in Caco-2 experiments the pH is fixed at 7. The data on Fe 

speciation clearly shows a strong effect of pH, therefore it is likely that in wholemeal bread much 

more Fe would remain soluble and therefore be available for digestion within duodenum.  Lower 

pH has also been shown to improve availability of haem Fe and FeCl3 (277). 

 

Also the Caco-2 digestion is free of any microbial activity which is not the case within the human 

digestive system, and there is some evidence that human microflora may be able to produce 

phytase which would affect Fe bioavailability (278). Therefore, human studies should ideally be 

undertaken to confirm in vitro findings. 

 

Although there are some clear patterns in the data described above, the limited number of 

samples means further studies should be performed with more cultivars to confirm our results. 

Also although it is clear that extraction rate is a contributing factor to Fe bio-availability only two 

extraction rates were examined.  It would therefore be beneficial to look at more extraction rates 

and to find an optimum extraction rate for Fe bioavailability.  

 

5.8 Implications of results  
 

The initial hypothesis was proven to be correct; white flour was a better source of Fe than whole 

meal despite containing ~3 times the total iron. White flour was also shown to be a better vehicle 

for fortification with FeSO4. 

 

From the data it is clear that bioavailability of Fe is affected by a variety of factors and complex 

chemical interactions. However a simplistic approach to increasing bioavailability of fortified and 

unfortified samples may be to simply decrease the extraction rate of flour for bread making.   

Unfortunately this is unlikely to be commercially viable and would likely have other health 

implications. Currently, many public health agency advocate the consumption of whole grain 

products for their perceived health benefit. One of the health benefits often listed is the higher 

amount of minerals, specifically iron. This chapter and other work by Yeung et al. (2012) show 
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that in the case of unleavened bread this is probably not an accurate message and should be re-

evaluated. 

 

Recent epidemiological studies have shown a stark differences between the response of 

fortification of white flour and wholemeal wheat products to non-NaFeEDTA fortification (111). 

This study provides further evidence to this effect and offers some explanation on a chemical level 

as to why this is the case. 

 

Despite numerous studies exploring fortification in cereal products (107, 111, 118, 273, 275), 

current UK fortification requirements still demand mandatory fortification of white flour and no 

fortification of wholemeal.  This chapter provides some evidence that this too should be re-

evaluated as it can be argued that the focus of fortification should be on all types of flour because 

of the issues with bioavailability and the desire to improve the Fe status of consumers of 

wholemeal as well as white flour product.   
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Chapter 6. General Discussion 
 

6.1 Introduction 
 

Prevalence of both Fe and Zn deficiency remain high with estimates of up to 60% of the world 

population being at risk of one or both deficiencies (279).  Current recommended daily intake 

(RDI) in the US, and dietary reference values (DRV) in the UK, are used to determine how much Fe 

and Zn should be consumed for 98% of the population to avoid deficiency (280). These values 

however do not take into account the difference in bioavailability of Fe or Zn from different food 

sources and instead are based on an assumed bioavailability, which for Fe is 10% (281). This 

approach also forms the basis for fortification strategies across the world which in the case of Fe 

in wheat products means that white flour products are often mandatory fortified, but higher Fe 

containing wholemeal products are exempt (114, 115).    

 

This relatively simplistic approach has in the past also been the basis for many biofortification 

strategies in which the end goal has been to increase the total amount of Fe and Zn within the 

grain.  The initial aims of this thesis were concentrated not only on total Fe and Zn, but on three 

other factors which also need to be considered. The three factors which we initially aimed to 

explore are; 

 Location 

 Speciation 

 Bioavailability 

It is the authors belief from our results and previous studies that all these factors are each as 

important if not more important than total Fe and Zn concentration, when considering 

biofortification strategies. Bioavailability is also particularly relevant when one considers nutrition 

labelling of cereal based food products which is currently based on the assumed availably 

discussed above.  

6.2 Location 
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The data on total concentrations of Fe and Zn in different milling fractions (Chapter 3) are in 

agreement with previous studies (72, 103, 210) showing that the white flour (made 

predominantly of starchy endosperm) is relatively low in Fe and Zn. 

 

Although low in Fe and Zn, the endosperm is an ideal target for biofortification due to its 

widespread consumption (3, 46, 67), it is also an ideal tissue for Fe and Zn biofortification due to 

the food matrix. We demonstrated in Chapter 4 that any Fe or Zn which is sequestered in the 

endosperm of wheat is speciated differently in the bran. In the endosperm SEC-ICP-MS and 

enzyme analysis demonstrated that the majority of Fe and Zn is bound either to insoluble protein 

or some combination of nicotainmine or 2'-deoxymugineic acid (Fig 32, 45, 46, 47). This Fe and Zn 

is likely to be more bioavailable than that in the outer fractions of wheat, where insoluble 

phytate-fibre complexes, soluble proteins and soluble phytate complexes form the majority of Fe 

species. Less was determined about Zn speciation but it is clear that similarly to Fe, there are 

marked differences in the speciation between these milling fractions (Fig 32, 33).   

 

The endosperm and bran fractions also contain different amounts of anti-nutrients particularly 

phytate which is much higher in the outer fractions of the grain (Fig 21, 50). Therefore, in addition 

to having a more favourable speciation in the endosperm, Fe and Zn from this tissue are likely to 

be exposed to less anti-nutrients during digestion. 

 

The bioavailability study in Chapter 5 demonstrated that these differences have a much larger 

effect on bioavailability than would be predicted. The general consensus for public health 

professionals has historically been that although Fe in the endosperm is probably more available, 

the much lower concentration would mean that whole grain products are still a better source of 

Fe and Zn (282, 283). However we showed that Fe in white bread (made predominantly from 

endosperm) was considerable more bioavailable than in wholegrain, despite it containing ~4 

times less total Fe (Fig. 49, 51). This is in agreement with a similar Caco-2 study recently 

performed on raw flour (264). Although we were unable to assess Zn, it is probable that a similar 

result would be obtained as Zn bioavailability is also thought be effected by speciation (21) and 

the presence of phytate (284) in a similar way to Fe. 

 

Most cereals which form part of a modern diet undergo some degree of processing before 

consumption. This processing can involve polishing, milling, or pearling, all of which remove outer 

layers of the grain (46, 285). This practice is becoming more widespread, and processed or white 
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flour now accounts for the majority of cereal products consumed, both in the developed and 

developing world (286). However, as previously discussed in Chapter 3, the loss of the outer 

layers also accounts for a loss of the majority of the minerals present in the grain.  Nevertheless, 

all flour including even the most highly processed ‘patent flour’ contains endosperm, therefore, 

the breeding of cereals with increased Fe and Zn within the endosperm is ideal for modern diets 

in the emerging world. 

 

It should be noted that improving Fe and Zn concentration in the endosperm is likely to have 

limitations, unless the presence of adequate chelating mechanisms can also be enhanced (46, 52, 

153). As the natural chelating capacity of the endosperm is likely to be very low, additional Fe and 

Zn may cause toxicity, unless they can be sequestered sufficiently (88, 153). This has been 

demonstrated in genetically modified crops with only crops with increased expression of a 

chelator such as nicotainamine (NA), or ferritin (21, 33, 86, 147, 245) showing dramatically 

improved Fe and Zn content within the endosperm. 

 

6.3 Speciation  
 

We have shown the speciation of Fe and Zn in planta to vary between wheat cultivars and milling 

fractions (Chapter 4). We have also shown that during digestion of wheat products Fe speciation 

is altered (Chapter 5); this is the first study to date to look at speciation of soluble Fe in cereals 

during digestion. Previous studies have used the amount of soluble Fe and Zn remaining after an 

in vitro digest to estimate the level of bioavailability (14, 26, 100), however these studies do not 

take into account the speciation of the Fe and Zn which are soluble after digestion. 

 

The relevance of in planta speciation for determining potential bioavailability is dependent on 

understanding the relationship between in planta speciation and post digestion speciation. 

However, we have shown this relationship be very complex; one must consider the effect of any 

preparation, the effect of gastric pH and enzyme interactions, as well as the enzymes and pH shift 

in the intestinal stage of digestion. In addition to this, in plant metals are sequestered largely in 

the cell vacuoles (208), but during milling, baking, and digestion, de-compartmentalisation will 

occur and interaction with other intrinsic chemicals is likely to occur.  

 

It is clear from our results that Fe, and probably also Zn, bound to DMA/NA does seem in part to 

survive the digestion process, therefore, flour samples with higher percentages of Fe or Zn in 
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these forms in planta are likely to still have some amount in this form, depending on the food 

matrix after digestion.  

 

 

6.4 Bioavailability 
 

As previously discussed, bioavailability is the amount of an ingested nutrient that is absorbed and 

is available for physiological function (18).  Analysis of the synthetic compounds of three major 

soluble forms of Fe identified in digested wheat showed marked variation in bioavailability (Fig. 

60). This highlights the importance of speciation after digestion as a determinant of potential 

bioavailability.   Fe-NA was shown to be far more bioavailable then both mono-ferric phytate and 

Fe-DMA. The lack of bioavailability of DMA was unexpected due to its previously discussed 

carboxyl groups (Chapter 1), which have been shown to promote bioavailability, it is the authors 

belief that DMA’s preferential binding to Fe (III) is responsible for this difference as Fe in this 

oxidation state is less bioavailable and the DMA is likely to protect the Fe (III) from reduction to its 

more available form Fe (II) during digestion. 

 

The amount of soluble Fe and Zn leftover after in vitro digestion have often been used in the 

literature to predict bioavailability (287), However this relies on the assumption that all soluble Fe 

and Zn has the same bioavailability. Our combined study using SEC-ICP-MS and Caco-2 has proven 

this is not the case for Fe in unleavened bread. Large differences were observed in speciation, and 

consequently bioavailability of Fe, between white and wholemeal bread, demonstrating the 

importance of speciation studies post digestion when assessing breads without a proven means of 

assessing bioavailability. 

 

Although the data on bioavailability is in reference to Fe, similar assumptions can be made about 

Zn availability; like Fe, NA has been shown to improve Zn availability and phytate has been shown 

to reduce Zn bioavailability. Therefore, tissue with a higher ratio of NA to phytic acid, such as that 

used in white flour, are likely to contain more bioavailable Zn than wholemeal products.  

 

6.5.Rialto vs Riband: a case study 
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Throughout this study we have concentrated on two different cultivars of wheat in the hope of 

better understanding the genotypic differences in wheat. It is the comparison between the 

changes in Fe in these two cultivars which have formed the backbone of this study. 

 

From our initial study on total Fe and Zn (Chapter 3), Rialto would appear to be the most 

nutritionally beneficial cultivar, as it contained more Fe and Zn. This was true for both white flour 

and wholegrain fractions. However, it should also be noted that Rialto had higher amounts of 

phytic acid and this was especially true in the white flour fraction.  

 

Further speciation analysis in Chapter 4 of white flour also showed that Rialto would be likely to 

be a better source of Fe as it contained 23% more soluble Fe than Riband. Speciation of this 

soluble fraction did however show that some of this additional Fe was bound as soluble phytate in 

Rialto, indicating that this portion of the soluble Fe may not be as available as the rest. 

Differences in soluble Zn were not significant and there were no notable differences in Zn 

speciation, indicating that despite Rialto’s higher total Zn this may not have any effect on final 

bioavailability. 

 

As previously mentioned bioavailability was not assessed for Zn, however our results for Fe 

highlight the need for further understanding of the journey Fe takes during the digestion system if 

we are to try and predict bioavailability. Analysis of soluble Fe during an in vitro digestion showed 

that in white flour Rialto had higher concentrations of soluble Fe at both stages of digestion; 

however there were no significant differences in wholegrain. Therefore, it would again be 

reasonable to predict that Rialto white flour is a better source of Fe than Riband. 

 

It is not until one considers speciation during digestion in Chapter 5 that we start to see the effect 

of Rialtos higher phytic acid concentration, this is especially true in bread made from white flour. 

During the gastric stage of digestion for Rialto white flour, large amounts of Fe are bound as 

soluble phytate, this is not the case for Riband. This appears to have an effect on the final 

speciation after full intestinal digestion, where it was shown that Riband has a much higher 

percentage of its final Fe bound as the LMW form, DMA/NA.  

 

The consequence of this on bioavailability as measured by Caco-2 is clear and we see that despite 

the indications from total Fe, soluble Fe and speciation of raw white flour, it is Riband white bread 

which contains significantly more bioavailable Fe than Rialto. These results highlight the weakness 
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in using total Fe, or any speciation of raw and undigested samples, to predict bioavailability. The 

results for Fe highlight the need for further understanding of the journey Fe takes through the 

digestive system if we are to try and predict bioavailability in genotypes without expensive and 

complex in vitro speciation and/or bioavailability analysis. 

 

 

6.6 Implications of results on strategies for improving Fe and Zn global status 
 

6.6.1 Importance of nicotainamine 
 
From our data and previous similar studies, it is clear that NA is very important in determining Fe 

availability in cereals. Previous studies have shown that NA not only enhances transport to the 

cereal grain of both Fe and Zn (22, 40, 86, 121, 152), but also increases bioavailability of both Fe 

(22, 121) and Zn (245).  

We have further shown that:  

 NA may also act to protect Fe during digestion by forming a stable complex, and reduce 

the negative effects of phytic acid. (Chapter 5) 

 NA enhances Fe absorption with optimum effect at 1:1, which is the proposed structure 

for Fe (II)-NA (288)(Chapter 5). 

 NA increases the capacity of a food to recruit Fe from its surroundings (Chapter 4). 

6.6.2 Conventional Breeding 
 

Our results show that there is variation in the germplasm for total Fe and Zn, within both 

wholegrain and white flour (Chapter 3). This indicates potential to carry out focused breeding for 

cultivars with higher endosperm Fe and Zn. However, more investigation is required if we are to 

breed for crops with more bioavailable Fe and Zn. One possible strategy may be to select cultivars 

with low phytate and high Fe and Zn, however variation in phytic acid among wheat cultivars is 

small (103, 265). Another possibility is breeding crops with increased concentrations of NA. Our 

results showed that the percentage of Fe as Fe-NA was 5.2% and 7.3% in Rialto and Riband 

respectively. To date there are no reports of total nicotainamine levels in the germplasm of 

wheat, however if sufficient variation can be found it would be an ideal target for breeding 

strategies.   
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6.6.3 Agronomic fortification 
 

Although our foliar application did not enrich total Fe and Zn, previous studies have shown 

agronomic fortification to be an effective strategy for increasing total Fe and Zn (3, 289), one 

study has also looked in detail at the final location of both Fe and Zn in grain demonstrating that it 

is an effective strategy for endosperm enrichment (67). However, to date, there are limited 

studies on speciation and bioavailability of additional minerals in cereals due to fertilisation; this is 

an area for further research if the use of agronomic fertilisation is to be validated.   

 

6.6.4 Biotechnological approaches. 
 
Although many biotechnical approaches report increased Fe and Zn in grain, and in some cases in 

the endosperm, more work should be done to asses potential bioavailability and post digestion 

speciation, if we are to understand if and how various modifications could improve Fe and Zn 

availability. The most promising method to date appears to be enhancing NA in rice, which is in 

agreement with our results demonstrating the importance of NA, however at time of writing 

there has been no published attempts to overexpress nicotianamine synthase (NAS) in wheat or 

other staple cereal crops. 

 

6.6.5 Fortification 
 

Although biofortification shows promise, in the short-term scientists are unlikely to achieve the 

levels of improvement which can be achieved by fortification (110). Therefore, fortification 

remains the major strategy employed to tackle Fe deficiency (111). Our results show that white 

and wholemeal flour fortified with ferrous sulphate have very different levels of bioavailability, 

with fortified white flour being considerably more available, this is in agreement with recent 

epidemiological studies looking at the effectiveness of various fortification strategies (111). We 

have also shown for the first time why wholemeal flour does not respond as well to fortification 

with ferrous sulphate, by monitoring speciation changes of fortified flour.  

 

Historically the effect of the food matrix on potential forticants has been ignored; however we 

have shown that the chemical properties of the target food can drastically affect bioavailability, 

providing more evidence that current fortification strategies need to be reassessed to take this 

into account. The effect of the food matrix also implies that crops genetically modified to have 

lower anti-nutrients such as phytate and more pro nutrients, for instance NA, will be much better 

vehicles for fortification.  
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6.6.6 Nutrition Information food labelling 
Cereal products (both fortified and unfortified) such as bread and breakfast cereals in the UK will 

often include information about their mineral content and how they relate to RDI or DRV. 

However this information is entirely based on total Fe based on an assumption of 10% availability. 

From our results and previous studies it is clear that different milling fractions of wheat, and 

probably other cereals have vastly different level of bioavailability and therefore it is the authors’ 

belief that this should be considered if the information provided is to be used to help the 

consumer    
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Appendices  

 
Appendix 1. Bran yields of 6 cultivars from Brabender mill  
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Appendix 2. Total minerals in 2012 10 milling fractions. R2 is highlighted in black to show 
abnormally high mineral concentration.  
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Appendix 3. Effect of SDS on extraction. Chromatogram of Fe57+ signal of San-Pastore whole 
grain under a) Tris-HCl treatment b)Tris-HCl with 3% SDS.  
 

 
 

 
Appendix 4. Normalised expression of taFer1 and tafer2 in endosperm and whole grain of 
cadenza 
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Appendix 5. SEC chromatograms showing 66Zn speciation in soluble fractions of offal flour in 
Rialto 

 
 
Appendix 6  Comparsion of low phytic acid wheat and rialto whole grain Shows ferritin response 

of Caco-2 cells to 1 g of bread sample with ascorbic acid (132 µM). Results are from two 

independent experiments, Values (± se; n = 12)  
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Appendix 7: Chromatogram of mono-ferric phytate after in vitro digestion. Shows Fe and P 
speciation for synthetic mono-ferric phytate after in vitro digestion. The co-elution indicates two 
oligomers both containing P and Fe. The two peaks are likely to be two isomers of mono-ferric 
phytate, or one will be Fe-IP5 
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Appendix 8. Comparisons of mono-ferric phytate to FeCl3. SE ± values are mean (n=6) 
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Appendix  9.  Bioavailability of Fe in presence of NA and ascorbic acid. Shows ferritin response of 
Caco-2 cells to 3.11 ug of Fe (FeCl) in different molar ratios of ascorbic acid (AA) or nicotainamine 
(NA) .Values (± se; n = 6)  
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