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AbstraAbstraAbstraAbstractctctct    

Acquiring evidence to support decision making is expensive.  Collecting resource use data 

alongside a randomised controlled clinical trial is particularly so due to the multi-

dimensional nature of costs: different costs are incurred by different agencies with varying 

methods and systems to account for these. 

Trialists are faced with decisions over how to collect such data, in particular different ‘levels’ 

of detail are possible.  For example, hospitalisations can be costed (1) on a top-down, per 

admission basis multiplied by a representative unit cost, (2) a bottom-up basis measuring 

every component of care such as nursing and medic time, investigations and other 

procedures and drugs used which are each multiplied by relevant unit costs, or (3) some 

intermediate level of aggregation.  The top-down data will be less expensive to obtain but 

may be less accurate (biased and/or over- or under-estimation of uncertainty) compared 

with the bottom-up.  I refer to these alternative methods as ‘data collection processes’. 

Currently such decisions are based on the judgement of the trialist(s).  However, formal 

quantification of the added value of one data collection process versus another compared 

with the added cost would inform the efficient allocation of research resources. 

In this thesis I extend the use of value of information analysis to compare the incremental 

cost and benefit of one data process with another, further extending this to estimate the 

optimal mix of observations between two processes. 

Using an example dataset I find that the method is workable, requiring prior information on 

the relationship between the two processes which can be obtained from either a pilot or 

feasibility study or expert opinion. 

When incorporated with other concurrent developments in value of information analysis, 

the method has the potential to provide a decision analytic approach to the complete design 

of clinical trials. 
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1. Introduction and Background  

1.1.1.1.1.1.1.1.     OverviewOverviewOverviewOverview    

In an economic evaluation conducted alongside a clinical trial, analysts are faced with many 

design issues.  On the cost side of the equation, analysts must first determine the 

perspective of their analysis.  From this, a list of resource use items must be identified.  

Decisions must then be made as to how to measure, value and finally analyse them.   

This thesis focuses on informing decisions as to how best to measure, value and analyse 

resource use data.  Collecting resource use data alongside a clinical trial can be a complex, 

time-consuming and research intensive exercise.  Unlike many clinical outcome measures, 

costs are always a ‘compound’ outcome measure comprising many individual components.  

For example, the total cost of a particular treatment strategy to the NHS will include not only 

the cost of the treatment itself, but any associated primary, secondary and tertiary care 

activity and prescribed medication.  Furthermore, depending on the perspective of the 

analysis, total cost may also include costs borne by other public sector bodies (such as social 

services), patient out of pocket costs and the value of any productivity foregone to society 

due to morbidity or premature mortality.   

Data can be collected at different levels of detail/aggregation.  For example the cost of a 

hospitalisation could be estimated by measuring and valuing each separate component of 

care, such as nursing and medic time, individual diagnostics and procedures, pharmacy 

costs, ‘hotel’ costs and some allocation of overheads.  Alternatively it may simply be 

approximated with a unit cost for a particular admission.  The former (‘micro-costing’) would 

require considerable research expense to accurately measure the time spent on each 

activity, recording every diagnostic and exact quantities of drugs administered, whilst the 

latter (‘gross costing’) simply requires some record of the admission in the patient’s case 

record form (CRF).   

The appropriate level of detail may depend on the research question being asked.  However, 

a formal economics-based approach would be to consider whether the additional benefit of 

the more detailed research method is ‘worth’ the additional cost.  Mugford,2 in an analysis 

of the costs of perinatal care found that use of simple (top-down) approaches to costing did 

not lead to consistently biased estimates compared with more complex, micro-costing 
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approaches although estimates were sensitive to modelling techniques employed.   As a   

result, whilst simple costing approaches “would not bias policy decisions, more complex 

methods can reduce uncertainty about the limits of possible variation in different settings 

and are necessary for validation of simpler approaches”.2  

However, it is unclear at what point a more detailed approach to costing is required and 

where a simpler approach will suffice.  The appropriate choice would depend upon the 

added value of the information generated from a more detailed cost analysis compared with 

the additional cost (versus the simpler costing approach).   

Value of information analysis (VoI) is a decision analytic technique for comparing the added 

cost of a research project with its added value.3 4  The gain from additional information in 

assisting a decision can be valued in terms of the consequences of a ‘wrong’ decision 

multiplied by the reduction in probability of a ‘wrong’ decision.  The expected return in 

terms of reduced uncertainty of research can then be valued.5  VoI is warranted when: 

• The proposed research has the potential of changing current practice; 

• there is likely to be a large advantage over the new treatment compared with 

current practice; and 

• the cost of gathering new information is not too large compared with its value.6  

VoI is based firmly within a Bayesian statistical framework where probability represents 

degrees of belief about plausible values for a parameter rather than the long run relative 

frequency with which an event occurs.  The key concept in Bayesian analysis is the updating 

of a prior belief with data to form a posterior belief using Bayes theorem.7  For this reason 

Bayesian analysis is sometimes referred to as posterior analysis.4  Value of information 

analysis requires prediction of data conditional on the prior to generate an expected 

posterior distribution.  It is thus sometimes referred to as preposterior analysis.4 

The inclusion of value of information analyses as a part of economic evaluations is becoming 

increasingly common.8-19  This is useful to direct future research effort to where it can 

achieve the greatest return for finite research funding.  Its main use is to determine the 

optimal sample size for a future study based on the marginal gain from an additional trial 

enrolee versus the marginal cost.  The optimal point is where the marginal cost is equal to 

the (value of the) marginal gain, a concept directly analogous to the profit maximising 

condition in the theory of the firm.  However, it has potential for use in the planning stages 
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of a clinical trial to inform other trial design issues such as whether to conduct an RCT or 

observational study.20   

In this thesis I explore the use of VoI with a view to answering the following question:  

Is it worth conducting a micro-costing exercise as part of a proposed economic 

evaluation alongside a clinical trial, or will a less detailed approach offer better 

value for money for finite research funds? 

This can be thought of as a special case of the more general question: 

Is there an optimal mix of observations using both data collection methods within 

the same trial? 

The former question is a case where only one or the other process is considered.  The latter 

is a more useful question to address as the former can be thought of as a special case of the 

latter where the number of observations on one data process or the other is zero. 

The remainder of this thesis is structured as follows.   

The remainder of this chapter covers the background to economic evaluation, including its 

origins, purpose and theoretical basis in (and departure from) traditional welfarist 

economics.  I explain how economic evaluations are conducted, distinguishing between two 

implementations: either alongside a (randomised controlled) clinical trial or as a decision 

model.  I focus in particular on methods to identify, measure and value resource use 

alongside RCTs.   

Following this I introduce the concepts of VoI, defining two approaches: analytic and 

numeric (simulation).  The former is more commonly associated with trial-based analyses 

whilst the latter is commonly conducted alongside decision models (although it is technically 

possible to conduct either method on either implementation).  I then discuss the relative 

merits of decision models and RCT-based studies, concluding that they should be seen as 

complements rather than substitutes.  This leads into a view of evidence based medicine (or 

‘economics based medicine’), bringing together the concepts of economic evaluation and 

value of information centred on an iterative approach to decision making.  This comprises 

systematic review and synthesis of all relevant information to inform two decisions: firstly 

whether or not to adopt an intervention, and secondly whether further information should 

be sought to reduce decision uncertainty.  This cycle is fundamental to the analytic approach 

of this thesis.  I then review the use of components of the cycle of EBM to inform health 
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policy in the UK and elsewhere before concluding Chapter 1 with a restatement of the study 

question of this thesis. 

Chapter 2 reviews the literature to determine whether VoI or any similar economics-based 

prioritisation process has been used to inform the design of clinical trials other than for 

sample size calculation.  I also seek any studies examining the cost of collecting resource use 

data alongside clinical trials and comparisons of alternative approaches to collecting and 

measuring the same resource use data. 

Chapter 3 is a detailed investigation and critique of the concepts of VoI.  In order to adapt an 

existing process it is important to understand its current strengths and limitations.  In this 

chapter I firstly explore issues relating to value of information analysis as applied to the 

health care sector in general.  Briefly, these are defining the relevant beneficial patient 

population, the independence (or lack thereof) between the adoption and research 

decisions, and the existence of multiple jurisdictions and subsequent risk of free riding.  I 

then consider issues specific to each of the two major implementations of VoI (the analytic 

and numeric solutions).  Following this, I discuss one particular issue in more detail, that is, 

the assumption frequently made in decision modelling that input parameters are 

independent of one another.  Ignoring correlation between input parameters may lead to 

incorrect estimation of decision uncertainty.  As the VoI statistics are a function of decision 

uncertainty, ignoring correlation could potentially provide misleading research 

recommendations. 

After consideration of the strengths and weaknesses of VoI, I address the study question in 

Chapter 4.  I consider the case where there are two methods to measure a particular cost 

item such as drug costs: a micro-costing approach identifying, measuring and valuing every 

milligramme of every drug consumed by a patient in a trial (Process A), or a gross-costing 

approach where a prescription for a particular drug or drug class is noted on the records 

from which assumptions are made about dose and duration of treatment (Process B).  By 

specifying a prior bivariate relationship between the two processes, predicting the results of 

data gathered using process B can be used to revise belief about plausible values using 

process A.  As Process A is believed to be the superior process, the resulting preposterior 

distribution of process A can then be used to generate the preposterior distribution of 

incremental net benefit and thus predict the expected reduction in decision uncertainty 

from data gathered using process B, and hence the value of information using process B, or a 

mixture of observations using both processes. 
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Finally in Chapter 5 I discuss the findings and implications of this thesis in full detail and 

present a pathway for future research and new questions this research has raised. 
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1.2.1.2.1.2.1.2.     Background to Economic evaluationBackground to Economic evaluationBackground to Economic evaluationBackground to Economic evaluation    

In this section I outline the theoretical basis for economic evaluation.   

Firstly, I briefly define economic evaluation, introducing the four main types (Section  1.2.1).  

I then discuss the need for such analyses and explore the theoretical foundations of 

economic evaluation, specifically its ‘extra-welfarist’ (or 'non-welfarist') basis (Sections  1.2.2 

&  1.2.3).  

1.2.1.1.2.1.1.2.1.1.2.1. Four approaches to economic evaluationFour approaches to economic evaluationFour approaches to economic evaluationFour approaches to economic evaluation    

The purpose of much health services research is to assist in decisions as to whether or not to 

adopt a given technology (drug, device, programme or technique).  The formal definition of 

economic evaluation is a “comparative analysis of alternative courses of action in terms of 

both their costs and consequences”.21  Conventionally, four types of economic evaluation 

are defined:21 

• Cost benefit analysis (CBA) 

• Cost effectiveness analysis (CEA) 

• Cost utility analysis (CUA) 

• Cost minimisation analysis (CMA) 

 

The difference between each is in the outcome measure employed.  In CBA, outcomes are 

valued in the same metric as costs (i.e. money).  CEA measures outcomes in some ‘natural’ 

or clinical unit, for example mmHg change in blood pressure, deaths prevented, or life years 

gained.  CUA is a subset of CEA where outcomes are measured as utility, typically expressed 

in Quality Adjusted Life Years (QALYs) gained, where the ‘quality adjustment’ is based on 

some revealed or stated preference over different health states.  Preferences for particular 

health states are elicited either directly, using tools such as the standard gamble, or 

indirectly via completion of generic or disease specific quality of life scales, with scores 

matched to a previously elicited utility (e.g. the Measuring the Value of Health (MVH) 

project which used the time trade-off approach to value the EQ5D health states22). 

CMA is a specific type of evaluation where the outcomes from the comparator interventions 

have been demonstrated to be equivalent, and therefore the cost-effective intervention is 

simply the least costly (as it dominates its comparator).  However, due to uncertainty around 

the sample estimate of costs and effects from a trial, it has been argued that CMA is an 

inappropriate analytic technique except in analyses specifically powered to detect 

equivalence between comparators (the failure to detect a statistically significant difference 
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in effect does not mean there is no difference in effect).23  A recent review of the use of CMA 

built on this further, finding that it biases estimates of uncertainty and hence value of 

information analyses.24   

1.2.2.1.2.2.1.2.2.1.2.2. The need for economic evaluationThe need for economic evaluationThe need for economic evaluationThe need for economic evaluation    

In this section, I explain the principles of the market mechanism, why such a system may fail 

in the health care field, thus providing a necessary (but not sufficient) criterion for 

government intervention or planning to replace individual decision making.  Economic 

evaluation is then a mechanism for assembling all the necessary information to inform those 

planning decisions. 

Resources are finite.  Therefore individuals and organisations are faced with decisions as to 

how to allocate their finite resources to best meet their personal or organisational 

objectives, whether to maximise revenue, profit or some less tangible concept of happiness 

or welfare.  Making a decision to consume one good or service (or treatment) means the 

resources cannot be used to consume another good or service.  The foregone benefit from 

that ‘next best’ good or service is termed the opportunity cost.  Therefore making decisions 

in order to maximise some concept of welfare or happiness (or other maximand) is 

analogous to minimising the opportunity cost. 

In a perfectly competitive market for any good or service, individuals make their choices 

over what to demand and supply at what prices and market equilibria will exist at which 

supply and demand are equal.  Markets will therefore 'clear' and the outcome will be Pareto 

efficient (that is, it is not possible to make anyone else better off without another being 

worse off – see  1.2.3 below).25  Such an outcome is only realised when the assumptions of 

the perfectly competitive market are met.  These are:26 (i) many (infinite) buyers and sellers 

such that no one individual is able to influence the price of the good or service; (ii) 

homogeneity of product, thus buyers have no preference for the good of one supplier over 

another; (iii) freedom of entry and exit to the market, such that there are no barriers 

preventing new sellers setting up or quitting the market; and (iv) perfect information about 

the market including perfect knowledge of competitor's prices.  Where these assumptions 

are violated, market outcomes will not necessarily be Pareto efficient, therefore providing a 

necessary (but not sufficient) justification for government intervention to plan the allocation 

of those particular resources.   

The healthcare sector is characterised by violations of almost all these conditions.  For 

example, most health care systems have one or few major purchasers of health care 
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(insurance companies or state health care systems purchasing on behalf of their 

populations), thus operating in a monopsonistic market.  The supply side is characterised by 

a relatively small number of operators: hospitals and pharmaceutical companies, thus the 

market is also monopolistic.  Furthermore patents for pharmaceuticals deliberately grant 

monopoly power to a manufacturer for a period of time.i  Examples of product 

differentiation exist, intentional or otherwise, for example in published differences in 

outcomes from various procedures between centres.27  The barriers to entry to the health 

care market are substantial.  For example, in most countries individual medics must be a 

licensed member of their respective professional body before being legally allowed to 

practice, a license only being granted following extensive training (often involving 

considerable start-up costs to fund education which may themselves act as a barrier to 

entry) and proof of competence.  Potential entrants to the pharmaceutical industry are 

likewise faced with prohibitive start-up costs in proving to licensing bodies that their 

products are safe and effective and establishing manufacturing facilities to comply with 

relevant legislation.  Finally, consumers of health care products and services (i.e. patients) 

frequently have limited information about the services they need.  The particular nature of 

this informational issue is characterised in the Principal-Agent problem with asymmetry of 

information between the patient (principal) and their doctor (agent).  Where the doctor is 

also the supplier of the service there is the incentive for supplier induced demand leading to 

over-consumption of health care.28  Reimbursement mechanisms (such as fee-for-service) 

and the existence of third-party payers exacerbates this even further. 

Two further particular characteristics of the health care sector also lead to market failure.25  

The first of these is uncertainty.  Generally, people do not know when they will fall ill.  The 

insurance market provides a solution to this, but insurance leads to problems of its own with 

consequent impacts on the efficient allocation of resources.ii  The second characteristic is 

the existence of externalities (benefits or costs imposed on a third party for which no 

compensation is paid or received).25   

                                                           
i The reason for this being due to the public good nature of information (non-rival, non-excludable and non-
diminishable).  Without government intervention and protection in the form of a patent, anyone could make use of 
the research required to develop a new drug and undercut the original manufacturer as they have not incurred the 
cost of obtaining that research information.  The original developer would then never see a return on their 
investment.  Realising this, the manufacturer would not invest in the research and thus the drug would not be 
developed in the first place.  
ii Namely moral hazard (itself a consequence of informational asymmetry).  This is where knowledge that an 
individual is insured against a particular event affects their behaviour such that they increase their risk of 
experiencing the event.  For example, a driver may drive less carefully in the knowledge that he or she will be 
insured against a loss in the event of damaging their car.  The same may be true for health insurance, for example 
partaking in extreme sporting activities or failing to adopt a healthy lifestyle. 
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A classic example in the health care field is that of immunisation: as an increasing proportion 

of the population is immunised, the risk of contracting the disease in the un-immunised 

decreases due to the lower prevalence of disease in the population ('herd immunity').  Thus 

ultimately they can free-ride off those who have been immunised.  The rational action for 

each individual would therefore be to avoid the pain (and/or expense) of immunisation 

themselves and let the rest of the population be immunised.  Logically this would result in 

no individuals being immunised, or under-immunisation of the population with a 

consequent burden of disease.iii  Another example of externalities associated with health 

care is the 'caring externality'.29  This is explained in more detail in Section  1.2.3. 

Thus allowing the free market to operate throughout the health care sector is unlikely to 

lead to an efficient outcome, with over-consumption of healthcare by some groups and 

under-consumption in others: it is highly likely that resources could be reallocated away 

from over-consumers to under-consumers without deterioration in the welfare of the over-

consumers (i.e. Pareto improvements are possible).  This in itself does not provide a 

sufficient justification for government intervention: planned systems are costly to 

implement with heavy information requirements.  If this cost is greater than the efficiency 

loss observed in the market then society would be better off with the imperfect operation of 

markets.25  Despite this there may be other justifications for government intervention, 

namely concerns for equity (Pareto efficiency makes no comment on the 'fairness' of an 

allocation of resources - see below), or consideration of health as sufficiently important for it 

to merit being a maximand in its own right.25 

In the absence of a well-functioning market, economic evaluation provides a means to 

inform policy makers and planners as to the costs and consequences of different courses of 

action, and, given some socially accepted values placed on those consequences elicited by 

some legitimate process, to make recommendations as to which course of action best 

improves the welfare of society. 

1.2.3.1.2.3.1.2.3.1.2.3. Welfarism and the "extraWelfarism and the "extraWelfarism and the "extraWelfarism and the "extra----" or "non" or "non" or "non" or "non----welfarist" foundations of economic evaluation.welfarist" foundations of economic evaluation.welfarist" foundations of economic evaluation.welfarist" foundations of economic evaluation.    

Economics can be broadly divided into positive and normative methods.  Positive economics 

is concerned with measurement and prediction; the statement of facts and hypotheses 

which can be formally tested.  Normative economics is concerned with the relative 

                                                           
iii This may not actually be a stable equilibrium because as the prevalence of disease rises, individuals will assess 

their own risk and the expected consequence of not immunising against the individual expected consequence of 

immunising, resulting in some individuals desiring immunisation, thus lowering the risk in the population and hence 

altering individual decisions again. 
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desirability of alternative states of the world, and is thus intrinsically concerned with 

subjective valuations and relative preferences.30  The welfarist and extra-welfarist / 'non-

welfarist' approaches can be considered two branches of normative economics.30 

In this section I summarise the key principles of welfarism, followed by a criticism of the 

approach, focusing on the arguments of Sen and Culyer, introducing the ideas of ‘extra‘ or 

‘non’ –welfarism on which current principles of economic evaluation are based. 

WelfarismWelfarismWelfarismWelfarism    

Welfarism has been defined as "the systematic analysis of the social desirability of any set of 

arrangements, for example a state of the world or allocation of resources, solely in terms of 

the utility obtained by individuals".30  Utility is the satisfaction or pleasure an individual 

obtains from the consumption of goods and services.iv  It is entirely individualist and 

consequentialist: individuals (defined either as single consumers or households) are deemed 

the best judge of what is good for them, and will therefore make consumption decisions in 

order to maximise their own utility.  Furthermore the welfare of one individual is assumed 

not to depend on another individual's welfare.  It is consequentialist as utility is assumed 

derived only from the consumption of goods and services.  The method or process by which 

those goods and services are obtained is assumed to yield no utility (or disutility) in itself.v  

A key principle to judging whether a particular allocation of resources between members of 

society is 'optimal' or 'more desirable' compared with another was suggested by Pareto 

(1906).35  A Pareto improvement in the allocation of resources is one where either the utility 

of all individuals is increased (known as a 'weak Pareto improvement' due to the weaker 

value judgement implied), or increases the utility of at least one individual without 

decreasing the utility of anyone else (a strong Pareto improvement).  An allocation such that 

it is not possible to improve the utility of one individual without reducing another's is known 

as a Pareto efficient allocation. 

There are thus an infinitevi number of allocations which may be considered Pareto efficient.  

It is critical to note that Pareto's rule provides no information as to which of those 

allocations may be the most socially desirable (or specifically, distributionally equitable).  For 

example, a Pareto efficient allocation may be one with vast inequality.  Given a grossly 

                                                           
iv Utilitarianism may be considered to have its origins in the work of the Greek philosopher Epicurus, but Jeremy 
Bentham31 is most often credited with development of the classical utilitarian approach 
v This is termed process utility.32  Empirical evidence in the health sector would seem to indicate the assumption of 
zero process utility is false.32-34 
vi 'Infinite' if goods and services are perfectly divisible.  A 'large number' if resources are indivisible at some level. 



 11 

unequal starting point, a (strong) Pareto improvement would be one that makes the rich 

better off whilst leaving the poor unchanged.  This may be considered socially undesirable 

due to conflict with notions of equity. 

A strength of Pareto's rule is that it is unambiguous as it avoids interpersonal comparisons of 

utility: where one person experiences a gain in utility at the expense of another.  Arguably it 

achieves this simply by 'ducking the question': inter-personal utility comparisons are 

somewhat controversial36 but unavoidable in any meaningful decision making process where 

there is any regard for equity.  Therefore, extensions to Pareto's rule have been developed, 

most notably by Kaldor37 and Hicks38, based around compensation tests.vii 

Kaldor37 suggested that following a policy change, if the winners could compensate the 

losers financially such that the losers returned to their original utility level, and the winners 

were still better off than before, then the policy change represents a net gain to societal 

welfare.  Conversely, Hicks38 suggested that the potential losers from a policy change could 

'bribe' the winners into rejecting the change by an amount equivalent to their loss.  If the 

winners would be better off rejecting the bribe, then the policy change would represent a 

net gain to societal welfare.  The Kaldor-Hicks compensation tests thus allow for 

interpersonal comparisons of utility by equating utility to monetary trade-offs.   

It is important to note that the tests do not require compensation to be actually paid to the 

losers in any policy, and thus whilst the tests extend Pareto's work to allow interpersonal 

comparisons of utility, and thus extend the set of comparable resource allocations, they still 

have very little to offer regarding the social desirability (with respect to equity) of any 

particular allocation or impact of a policy change. 

In order to rank all the efficient allocations in terms of social desirability, a measure of the 

overall societal welfare from each allocation is required.  This is termed the social welfare 

function, the most general form of this (the Bergson or Bergson-Samuelson function) defines 

social welfare as some function of individual utilities.  Different authors have proposed 

different forms for the function.  For example a strict utilitarian function would define social 

welfare as the sum of individual utilities.  Alternatively a weighted utilitarian function allows 

for diminishing marginal returns to utility (society places less weight on gains to those with 

high utility).  Rawls39 and Nash (cited in30) also proposed specific functional forms, based on 

maximising the utility of the worst off and the product of individual utilities respectively. 

                                                           
vii Both published their ideas simultaneously in the same issue of The Economic Journal in 1939. 
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Criticism of WelfarismCriticism of WelfarismCriticism of WelfarismCriticism of Welfarism    

The utilitarian social welfare function and variants thereof have come under criticism most 

notably from Sen.40  He is critical of utility as an appropriate measure of well-being,41 

suggesting that the pleasure obtained from consumption of goods and services does not 

sufficiently capture all that is relevant in the social welfare function.  He distinguished 

'functionings' and 'capabilities' as relevant attributes on the basis that not all individuals 

have the same capacity to obtain pleasure from a given allocation of goods and services.  

Whilst on a superficial level this may be explained away by differences in taste and 

preferences, Sen was concerned with the equity implications of utilitarianism: he 

distinguishes 'physical condition neglect' and 'valuation neglect'.41  Physical condition neglect 

refers to a situation where one may be in a poor physical state yet be happy and content 

due to adjustment of expectations and "[taking] pleasure in small mercies".41  Valuation 

neglect refers to utilitarianism's taking 'at face value' what people 'manage to desire' and 

thus ignores (or overestimates) the welfare of those "who are too subdued or broken to 

have the courage to desire much" (Sen 198541 cited in Mooney & Russell42).  The 

consequence therefore would be that as people adjust their expectations to their current 

situation they may describe themselves as 'happy' and 'content', without realising their 

situation could be better, thus entrenching established social hierarchies and inequities.  On 

the other hand, this raises interesting questions for policy makers.  For example if those in 

poor health do not 'manage to desire' a better state of health,viii then is it 'right' or 

appropriate to 'adjust' for their 'inadequate expression of desire'?42 

So Sen's40 41 argument was that concepts other than utility (i.e. functionings and capabilities) 

should comprise the social welfare function, indeed going so far as rejecting the notion of 

utility completely.  His approach may therefore be termed 'non-welfarist'.42  Culyer43 was the 

first economist to challenge the appropriateness of the welfarist approach within 

healthcare, arguing too that welfare comprises more than a function of the utilities of 

individuals derived from consumption of goods and services.  He broadened out Sen's ideas 

on capabilitiesix to general 'characteristics of people', including their baseline health status 

(e.g. genetic inheritance), 'moral worth and deservingness', whether they are in pain or are 

stigmatised by society.44  In particular he introduced the notion of the 'caring externality' 

where a person's utility may be a function not only of their own consumption of goods and 

                                                           
viii For example, developing type 2 diabetes and its complications being seen as an inevitable part of aging in an 
area of high obesity (which tends to be associated with poverty and poorer socioeconomic status and education). 
ix Mooney and Russell42 dispute Culyer's claim to be building on Sen's ideas on the basis that whilst Culyer 
advocates including additional factors as well as utility into the social welfare function ("extra-welfarism"), Sen 
advocates omitting utility entirely in favour of capabilities and functionings ("non-welfarism"). 
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services, but the utility of another too (and therefore their consumption of goods and 

services).29  Brouwer and colleagues45 clarified the distinction between the welfarist and 

extra-welfarist schools of thought, suggesting key areas of difference were in the outcomes 

considered relevant in an evaluation, the source of valuation of the outcomes, the approach 

to weighting those outcomes and the necessity for interpersonal comparisons of utility. 

From a pragmatic or applied standpoint, inclusion of the 'extra-welfarist' elements (e.g. 

health) makes analysis somewhat complicated: health and utility are very unlikely to be 

independent as individuals may get utility from enjoying a particular state of health per se.  

Or perhaps (more specifically), health can be seen as an enabler of the consumption of 

utility-bearing goods and services.  Furthermore Brouwer & Coopmanschap46 argue that 

embedding CUA within a welfarist framework is impossible, due to the limited scope of 

QALYs and assumptions that they are comparable between persons and can be summed 

meaningfully.   

In practice, attempts at measuring utility in applied economic evaluation are completely 

abandoned in favour of attempts to measure and maximise health itself.  The development 

of economic evaluation (which should therefore perhaps be termed non-welfarist rather 

than extra-welfarist) is thus a pragmatic solution to applying the principles of economics to 

health care decision making, rather than being firmly rooted in a particular theoretical 

framework. 
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1.3.1.3.1.3.1.3.     Conducting an economic evaluationConducting an economic evaluationConducting an economic evaluationConducting an economic evaluation    

In Section  1.2.2 I argued that market failure, concern for equity and an intrinsic valuation of 

health for its own sake provide justification for government intervention in the health care 

sector.  Any planning mechanism has considerable informational requirements to substitute 

for the very large number of individual supply and demand decisions that collectively 

constitute Smith's 'invisible hand'.47  Economic evaluation is thus a means to structure this 

information in a form which can assist policy makers as to whether a new technology 

represents a net benefit or harm to society. 

In this section I introduce the general methods for economic evaluation.  There are two 

major ‘implementations’ of economic evaluation: those conducted alongside a clinical trial 

(often referred to as ‘piggy-backed’ studies), and decision models combining ‘all relevant 

evidence’ into a single framework.   

Drummond et al. define ten elements to a sound economic evaluation48 and these provide a 

structured approach to designing an analysis.   

The elements are: 

1. Define the study question in an answerable form 

2. Describe each comparator comprehensively 

3. Establish effectiveness of each comparator 

4. Identify all important costs and consequences from each comparator 

5. Measure all costs and consequences accurately in appropriate physical units 

6. Value all costs and consequences credibly 

7. Adjust costs and consequences for differential timing 

8. Undertake an incremental analysis 

9. Analysis of uncertainty 

10. Write-up and discussion, including all issues of concern to the target audience. 

These are considered in turn in sections  1.3.1- 1.3.10 below. 

1.3.1.1.3.1.1.3.1.1.3.1. Define the study questionDefine the study questionDefine the study questionDefine the study question    

Defining a study question in an answerable form is the critical first step.  This must specify 

what is being compared with what (i.e. statement of comparators – see Section  1.3.2 

below), in what population and from whose perspective the analysis is being conducted, for 

example society, the health care payer or individual hospital. 
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Cost-effectiveness is a subjective concept in the sense that it is dependent upon the 

perspective adopted; an intervention may be very cost-effective for one individual or 

organisation, but not from another simply because that individual or organisation’s budget is 

not faced with all the relevant costs.x  Because of this, the preferred perspective for an 

economic evaluation is that of all society. This is the broadest point of view and allows 

judgement as to whether there is a net improvement to the whole of society from a 

proposed change, rather than simply a reallocation of resources between budgets.49 

However, the broader the perspective, the more difficult it can be to obtain good quality 

estimates of resource use.  For example, relatively good data may be available for an 

analysis from the perspective of a single centre or the health care payer.  A broader 

perspective may require collection of data from multiple agencies with differing record 

systems, requiring additional research effort to collect and potentially straining research 

resources.  Finally methodological disagreements exist as to the appropriate approaches to 

valuing morbidity-related lost productivity (required for a true societal perspective, see 

Section  1.3.6).   

In the absence of a societal perspective, typical alternatives are the health sector or an 

individual hospital.  A different viewpoint of an analysis has the capacity to alter the results.  

For example, a recent trial of a befriending intervention for carers of people with dementia50 

suggested it was very unlikely to be cost-effective from a societal point of view.  However, 

when considering the voluntary sector perspective alone, there was a high probability of 

cost-effectiveness.  This was simply because the benefits of the intervention were the same 

(improvement in quality of life of carer), but the voluntary sector were only faced with a 

small proportion of the total costs.  In a further example, Weisbrod and colleagues51 (cited in 

Drummond et al. 200548) evaluated the cost-benefit of a community-orientated programme 

for mental illness patients.  From the perspective of the agency providing the service, the 

community-based programme was more expensive than conventional hospital-based care.  

However, when including broader costs such as those falling on other health care 

organisations and law enforcement, the increment was reduced substantially, and when a 

                                                           
x The extreme example is all NHS care from the perspective of the individual.  Generally speaking, an individual 

will pay the same (via tax contributions) for whatever treatment he or she receives (therefore the incremental cost 

of a treatment decision is zero), but receives the (incremental) benefit (of treatment over no treatment).  Therefore 

the most cost-effective treatment from the individual patient’s perspective is the most effective as a third party (the 

state) bears the cost differential.  Another example would be the case of a treatment appearing to be cost-effective 

from the perspective of the NHS, but ignoring additional costs placed on other public sector agencies (e.g. social 

services) or patient out of pocket costs. 
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societal perspective is adopted, specifically including provision of food and shelter and 

productivity losses, the community-based programme was less expensive than conventional 

hospital-based care. 

1.3.2.1.3.2.1.3.2.1.3.2. Describe each comparatorDescribe each comparatorDescribe each comparatorDescribe each comparator    

A clear description of the comparators is essential in order for decision makers to be able to 

implement the results of the analysis should they so wish.  This is especially the case with 

‘complex interventions’ (that is, where interventions are programmes of care rather than 

simple drugs or procedures).  There are several reasons for this.  Firstly, should a policy 

maker wish to adopt a particular intervention an adequate description is required in order to 

replicate it appropriately.  Secondly, in order to generalise the results to a particular setting, 

sufficient information must be provided about the control in order for decision makers to 

judge how different the described protocols are to standard practice in their setting, and 

thus whether the intervention is likely to yield the incremental benefits (and incur the 

incremental cost) in their own setting.  Thirdly, a full description of the intervention allows 

the decision maker to subjectively judge whether or not an adapted version suitable for their 

own setting would be more or less effective than the one described. 

1.3.3.1.3.3.1.3.3.1.3.3. Establish Establish Establish Establish the the the the effectiveness of each comparatoreffectiveness of each comparatoreffectiveness of each comparatoreffectiveness of each comparator    

Effectiveness evidence comprises either disease-specific or generic outcomes such as mmHg 

reduction in blood pressure and life expectancy / life years gained, or generic and disease 

specific health related quality of life scores.  By this definition, QALYs are not considered an 

effectiveness measure: they are generated from a summary valuation of the results of a 

health related quality of life tool. 

The method by which the effectiveness of the comparators is established depends on the 

implementation of the economic evaluation.  For example, if the analysis is conducted 

alongside a clinical trial, effectiveness evidence will be from that trial.  If the analysis is a 

decision model, ideally the effectiveness data will be obtained from a good quality 

systematic review of all relevant evidence.  In both cases, particular attention should be paid 

to the risk of bias in the estimate of the relative treatment effect: a well-designed double-

blind randomised controlled trial is considered less prone to bias than observational studies.  

In the case of a systematic review informing a decision model, reasons for inclusion or 

omission of particular source of evidence must be clearly stated, and appropriate techniques 

used to meta-analyse the results. 
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1.3.4.1.3.4.1.3.4.1.3.4. Identify all important costs and consequencesIdentify all important costs and consequencesIdentify all important costs and consequencesIdentify all important costs and consequences    

This and the following Sections  1.3.5 –  1.3.7 are relevant to both costs and outcomes in an 

economic evaluation.  However, my focus will be on the cost side as this is the focus of 

problem addressed in my thesis. 

Given a broadly technically efficient allocation of resources, the cost of a decision (and 

ultimately the only relevant concept of cost) is the opportunity cost.  As I stated in 

Section  1.2.2, this is defined as the value of the benefits foregone from the next best 

alternative use of the resources employed in a particular use.  In other words, given two 

alternative courses of action, A and B, the opportunity cost of choosing A is the value of the 

benefit foregone by not choosing B.  For example, the NHS may choose to fund a particular 

novel cancer therapy.  The opportunity cost is the benefit foregone from the other services 

which as a consequence are either withdrawn or could have been introduced or expanded 

instead. 

In a perfectly competitive market equilibrium, the opportunity cost of A will equal the value 

of the resources shifted from B in order to achieve it.xi  To quantify this it is necessary to 

identify, measure and value each type of resource to be shifted. 

Measurement and valuation are considered in Sections  1.3.5 and  1.3.6 respectively. 

The first step is to define the categories of cost to be included in an evaluation.  This will be 

dependent on the perspective chosen (see Section  1.3.1), and may include:48 52 

• health care resources directly relevant to the intervention or comparator(s); 

• non-health care resources directly relevant to the intervention or 

comparator(s); 

• patient and family out of pocket costs; 

• patient and informal caregivers time including productivity loss;xii 

 

After defining the categories, the individual items within them need to be specified.  For 

example health care resources would comprise inter alia all drugs (including study drug if 

applicable), surgical procedures, hospital ‘hotel’ costs and overheads, doctor, nurse and 

other specialist time. 

                                                           
xi As stated in section 1.2.2, the health care sector violates many of the assumptions required for the market 
solution to achieve an efficient outcome.  Where price is not equal to the opportunity cost of a good or service and 
the valuation of goods and services for which there is no market are considered in Section 1.3.6 
xii Traditionally, health economists divided costs into direct, indirect and intangible costs.  However, due to 
confusion with other professions, this was later re-classified into the four categories listed. 
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The process of identification of resource use items is essentially a question of specifying the 

production function for the intervention of interest.  However, it may be possible to exclude 

certain items, dependent on the purpose of the costing exercise: if the analysis is to be used 

solely to compare the interventions of interest in the economic evaluation, it is acceptable 

to exclude cost items common to all treatment arms. 

For example, a cost-utility modelling study of mycophenolate mofetil (MMF) versus 

intravenous cyclophosphamide (IVC) in the treatment of lupus nephritis specifically excluded 

a number of additional drugs and outpatient visits from the analysis as these were identical 

for patients in both arms of the model.53  This was acceptable for the comparison of the two 

alternatives considered due to the limited time horizon of the model,xiii but if the cost 

estimates for treating a patient with MMF were taken ‘as is’ and incorporated into a 

subsequent analysis of a third, substantially different treatment, the cost estimate will be 

biased.  Similarly, a finance department should not base budgeting decisions on the mean 

cost per MMF patient presented in the study, or percentage difference in cost: it would be 

necessary to include the cost of the additional items not included.  Essentially, the economic 

evaluation was designed to demonstrate the incremental costs and outcomes of transferring 

patients from existing cyclophosphamide therapy to the newer MMF therapy, and therefore 

should be used to answer that question alone.  Use beyond that purpose should be 

exercised with caution. 

A second reason for excluding cost items is on the grounds that they will have zero, or very 

little, impact on the results.  If they account for only a small proportion of the total cost (or 

rather, the cost increment between two interventions), then they will not impact on the 

study results, and it may be possible to safely exclude them.  The limitation of this is that it is 

often difficult to know a priori the impact a particular cost item will have on the results, and 

thus whether it is worth going to the effort (and expense) of collection.   

Finally, within the context of a clinical trial, it may be desirable to exclude ‘protocol driven 

costs’.  These are costs of activity incurred solely for the purpose of data collection for a 

clinical trial which would not be observed in routine practice (e.g. attendance at clinic for 

additional diagnostics or completion of case record forms).  However, caution should be 

exercised in this approach as where the trial mandates more intensive monitoring of 

                                                           
xiii The model was restricted to the management of an initial disease ‘flare’, rather than modelling a life time 

horizon.  If the model had considered a longer time horizon it may have been necessary to include these cost 

items as if different treatments were associated with different rates of ‘flare’, the incremental lifetime cost of these 

elements would not be zero. 
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patients than would otherwise be observed, additional clinical events and outcomes may be 

detected than would be seen in routine care.  This may then affect their subsequent care, 

incurring costs (and outcomes) that would differ from that seen in routine care.  It may 

therefore be impossible to truly disentangle protocol-driven costs and outcomes from 

treatment effects, and inclusion of all cost items may be a more conservative approach.54 

1.3.5.1.3.5.1.3.5.1.3.5. Measure all costs and consequencesMeasure all costs and consequencesMeasure all costs and consequencesMeasure all costs and consequences    

The next step is to define the approach to measuring resource use and outcomes.  In the 

case of a clinical trial, health care resource use measurement is frequently incorporated as a 

part of the case report form (CRF), either as a resource use questionnaire for the patient to 

fill in, or for completion by study nurses or researchers as appropriate.  Alternative 

approaches include retrospective database analysis, for example using primary records to 

measure primary or secondary care use,xiv or skipping the resource measurement step 

entirely and extracting cost estimates directly from hospital billing records to patients or 

their third party payers (more common in insurance based systems such as the USA and 

parts of Europe). 

Specific issues in resource use measurement in clinical trials are the length of time for which 

costs (and indeed outcomes) should be tracked, the handling of overhead and capital costs 

and the measurement of productivity costs. 

FollowFollowFollowFollow----up lengthup lengthup lengthup length    

The guiding principle governing follow-up length in a clinical trial is that it should be of 

sufficient time to observe outcomes in order to reach conclusions as to the incremental 

efficacy or effectiveness of the comparators (whether that be survival, quality adjusted life 

years or some other interim outcome).  For an economic evaluation, this should be 

interpreted as sufficient time to observe outcomes in order to reach conclusions as to the 

incremental cost-effectiveness of the comparators, that is, consideration of both cost and 

outcomes.54 

Frequently, resources or logistics do not permit a long enough follow-up time to observe all 

impacts on final outcomes and cost, so an intermediate outcome is selected in place.  For 

example, the ideal outcome for an anti-osteoporosis drug is prevention of fractures (or 

indeed, ultimately the maximisation of quality and length of life through the prevention of 

fractures).  However, a very long follow-up period may be required in order to observe any 

                                                           
xiv Although the reliability of using primary care records to measure secondary care use in the English NHS has 

been questioned.55 
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difference in fracture rates.  Therefore an intermediate outcome of bone mineral density 

may be used as a primary endpoint in a clinical trial.xv 

Allocation of overheads and capital goodsAllocation of overheads and capital goodsAllocation of overheads and capital goodsAllocation of overheads and capital goods    

Overheads are costs such as buildings, administration, heating and power which are not 

readily allocated on a per-patient or per-procedure level.  The preferred approach to 

handling these is to allocate them directly to final costs,52 but this is a pragmatic solution due 

to lack of detailed data within typical accounting systems rather than being theoretically 

desirable.  Within the NHS, the national tariff (based on the national schedule of reference 

costs) incorporates overheads within an average cost set for a given procedure.56 

Measurement of productMeasurement of productMeasurement of productMeasurement of productivity costsivity costsivity costsivity costs    

Productivity costs are the value of lost economic output to society as a result of illness or 

premature mortality.  There is some disagreement as to whether it is appropriate to include 

productivity costs in a cost-effectiveness or cost-utility analysis.  On the grounds of 

efficiency, it is argued that in an evaluation with a societal perspective, it is proper to include 

all costs borne by all parties.  This would imply productivity costs should be included.  

However Gerard & Mooney57 argued that as the only outcome of interest in a cost-

effectiveness analysis is health related, it is logical to restrict the costs similarly.  

Koopmanschap & Rutten58 countered this by pointing out that budgets were somewhat 

arbitrary divisions in resource allocations, and therefore resource allocations in a non-health 

budget may have an impact on health (and vice versa). 

On the grounds of equity, an argument for excluding productivity costs is that they result in 

a bias towards those who are most economically productive (or who earn the highest 

salaries), which may be considered inequitable and therefore socially undesirable.  However, 

if those patients are brought back into the workforce as a priority, they will then be paying 

taxes which leads to increases in resources available for health (as well as other) budgets.  

Anecdotal evidence suggests society may be willing to prioritise some workers above others 

to receive health care (e.g. prioritising NHS employees over the elderly for bird ‘flu vaccines), 

and research evidence indicates that society as a whole may place greatest value on those of 

productive and child-bearing age, and least on the elderly (although not all empirical findings 

support this conclusion).59 60 

                                                           
xv This provides a justification for decision modelling to connect such intermediate outcomes to final outcomes and 

cost.  See Section 1.5.1 



 21 

Sculpher61 identified a number of questionnaires designed for use in economic evaluations 

conducted alongside clinical trials, including the Work Productivity and Activity Impairment 

questionnaire,62 and the Health and Labour Questionnaire.63  Both aimed to measure 

absenteeism and ‘presenteeism’ (reduced productivity whilst in the workplace) attributable 

to ill health, whilst the latter63 also included unpaid areas such as ability to do housework, 

shopping, childcare and general household maintenance. 

1.3.6.1.3.6.1.3.6.1.3.6. Value all costs and consequencesValue all costs and consequencesValue all costs and consequencesValue all costs and consequences    

The most obvious means of valuing resource use is to use price weights (i.e market prices).  

Total cost is then simply quantity of a resource multiplied by its unit price weight.64  

However, this assumes a constant marginal cost, and there remain questions as to whether 

national or centre specific weights should be applied.  Use of national price weights 

enhances the external validity of the study (that is, the results will reflect whether or not an 

intervention is cost-effective on average across all centres within a country), but at the 

expense of internal validity (the results may not reflect the true cost-effectiveness of an 

intervention in the centre(s) in which the study was carried out), whilst the reverse is true of 

centre specific weights.  The appropriate method is contingent on the perspective of the 

economic evaluation.  

Other issues around the valuation of resource use relate to the valuation of goods and 

services for which there is no market, the valuation of goods and services in the presence of 

imperfect markets / market failure and valuing productivity changes. 

Valuation of goods and services for which there is no marketValuation of goods and services for which there is no marketValuation of goods and services for which there is no marketValuation of goods and services for which there is no market    

In some cases, there may not be an appropriate market price to use to value a resource 

item.  This is particularly a problem in valuing informal care-giving and foregone leisure time.  

For economic evaluations in areas where informal care is of considerable importance in the 

overall care of the patient (for example in the care of Alzheimer’s patients), omitting 

informal care will result in underestimation of the total resource consequences.  However, 

there are complications in measuring and allocating the extra time input required as a result 

of e.g. Alzheimer’s over conventional household chores.  For example, general supervision 

and surveillance may be carried out alongside other household activities, or a partner may 

cook meals for his/her partner, irrespective of whether the other partner was able to 

perform these activities. 
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Brouwer and colleagues identify three major approaches to valuing informal care time.52  

These are the market price method,65 the reservation wage method66 and a method 

incorporating individual choice and societal costs of time.67 

The market price method65 attaches a shadow price to the time spent caring at the rate a 

private carer would charge for the same service.  However, there is a danger of 

overestimating the cost of this as an ‘amateur’ carer may take more time to do a specific 

task than a professional.  To correct for this, the time spent caring can be adjusted for the 

expected length of time it would take a professional to achieve a specific task.  Measuring 

this, however, increases the analytic burden of the study and does not equate to the 

opportunity cost of the carer’s time. 

The reservation wage method66 differs from the market price method in that time is valued 

at the wage rate the carer could have earned had he/she been in employment.  Arguably, 

this approach, focussing on the input rather than output more closely reflects the true 

opportunity cost of caring, and so is the more appropriate for a societal economic 

evaluation. 

The Brouwer approach67 uses valuation techniques which vary according to the type of time 

sacrificed (paid work, unpaid work and leisure time).  Paid work foregone should be valued 

using the friction cost approach (an approach which takes account that workers off sick 

temporarily may be able to catch up following return to work or for spare capacity 

elsewhere in the firm to cover the temporary absence; see “valuing productivity costs” 

below),68 unpaid work (e.g. housework) valued at the shadow price of a housekeeper, 

whereas leisure time should be valued in terms of reduced quality of life rather than 

increased costs.   

Valuation of goods and services for which there is an imperfect marketValuation of goods and services for which there is an imperfect marketValuation of goods and services for which there is an imperfect marketValuation of goods and services for which there is an imperfect market    

A perfectly competitive market results in prices for resources that represent the opportunity 

cost of those resources.  In health systems where hospital reimbursement is based on 

accurate records of activity, billing records are an attractive means of valuing resource use.  

However, depending upon the perspective of the analysis, it may be necessary to convert 

charges to costs using a price to charge ratio, removing any surplus added on top of cost to 

more accurately reflect the opportunity cost of the activity to society.  Although it should be 

noted that if the perspective of the analysis is the health insurance company, it is more 

appropriate to use charges rather than provider costs as these represent the opportunity 

cost to the insurance company. 
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Valuing productivity Valuing productivity Valuing productivity Valuing productivity costscostscostscosts    

Two main approaches are taken to the valuation of productivity costs, namely the human 

capital69 and friction cost68 approaches. 

The human capital (HC) approach values productivity loss at gross earnings rates.  A shadow 

price is usually assigned for those not in paid employment at either a market price65 or 

reservation wage rate66 (described in “valuation of goods and services for which there is no 

market”, above).  Koopmanschap and colleagues68 argued this approach was too crude and 

could grossly over-value lost productivity as for shorter term absences, colleagues may be 

able to cover absent employees, or they may themselves be able to recover their 

productivity on return to work.  The friction cost method takes these situations into account, 

defining four possible outcomes when an employee is absent from work: 

1. No change in productivity: the lost work can be made up by the employee on his/her 

return to work or covered by colleagues with no extra cost. 

2. Productivity is unaffected but costs increase: where the absence is covered by 

colleagues working overtime or hiring of a temporary worker. 

3. Productivity falls as a result of the absence 

4. Productivity falls and costs are higher due to replacement by less experienced 

temporary workers / workers who are less familiar with the job than the incumbent. 

Each of these situations has different implications for valuation of productivity loss: whereas 

the HC approach simply assumes situation (3), situations (1) and (2) may result in lower cost 

estimates than the HC approach, whilst situation (4) may lead to higher cost estimates. 

1.3.7.1.3.7.1.3.7.1.3.7. Adjust costs and consequences for differential timingAdjust costs and consequences for differential timingAdjust costs and consequences for differential timingAdjust costs and consequences for differential timing    

The concept of discounting allows for the differential timing of costs (and effects).  It is 

important to distinguish between inflation, interest rates and time preference.  Inflation is 

the rate at which nominal prices increase; interest is a return paid on capital; whilst time 

preference refers to the concept that generally speaking, even in a world with zero inflation 

and zero interest rate, people still prefer to receive a benefit today rather than the same 

benefit tomorrow. 

There are a number of reasons why an individual may have an intrinsic preference for 

benefits today rather than in the future, i.e. a positive rate of time preference.  These 

include a degree of ‘myopia’ where living for today is intrinsically preferred to planning for 
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an uncertain future.  Secondly, where wealth generally rises over time, the marginal value of 

a pound today is higher than a pound tomorrow as it represents a larger proportion of the 

individual’s wealth today.70  

1.3.8.1.3.8.1.3.8.1.3.8. UUUUndertake an incremental analysisndertake an incremental analysisndertake an incremental analysisndertake an incremental analysis    

The results of an economic evaluation, whether trial or model based, will be estimates of the 

mean (expected) cost of each strategy and mean outcome (e.g. QALYs gained).  These are 

combined into the Incremental Cost Effectiveness Ratio, defined as the difference in cost 

divided by the difference in outcome (Equation [  1-1 ]) and is an expression of how much it 

costs to ‘buy’ one additional unit of outcome by moving from the old treatment to the new.  

If this is less than some threshold, λ (representing the maximum value or willingness to pay 

of the decision maker for a unit of the outcome) then the new intervention is considered 

cost-effective and should be adopted.  For example, if the outcome is QALYs, the National 

Institute for Health and Care Excellence (NICE) recommends a threshold (λ) of £20,000 - 

£30,000 as a maximum willingness to pay for a QALY. 

�� − ���� − �� ≤ � 
[  1-1 ] 

 

From ICER to From ICER to From ICER to From ICER to Incremental Incremental Incremental Incremental Net BenefitNet BenefitNet BenefitNet Benefit    

Rearranging [  1-1 ], the ICER can be expressed as incremental net benefit (INB), which can be 

interpreted as “adopt the new technology if we value the extra health gain greater than the 

loss” (Equation [  1-2 ]).xvi  Note that the decision threshold, λ, is now incorporated within the 

equation.  As λ is subjective to the decision maker, and unknown to the analyst, INB is 

usually calculated and plotted for a range of values of λ.xvii  If the INB is greater than zero at 

the decision maker’s preferred threshold, then the decision maker should adopt the 

technology. 

                                                           
xvi This is the incremental net monetary benefit.  The equation can be rearranged into the incremental net health 
benefit by simply dividing both sides by λ, which makes the trade-offs in the health gain between different groups 
of patients particularly transparent, but the equation can cause divide by zero errors and thus net monetary benefit 
is preferable to work with. 
xvii A number of studies have been undertaken to elicit an empirical estimate of λ.  A retrospective analysis of 

previous NICE decisions in 200471 found that the revealed threshold may be higher than the stated £20,000-

£30,000 claimed in its guidance.72  More recently, the ‘Societal Value of a QALY’ (SVQ) project59 explored the 

feasibility of eliciting a valuation of a QALY using a number of willingness to pay methods.  They used several 

plausible methods which in some cases yielded values close to the value used by NICE.  However other methods 

yielded values of up to £250,000.  A report by the University of York focused on the opportunity cost of services 

displaced within the health sector by new interventions (rather than by any other good or service as is implied in 

the WTP approach), yielding a ‘best’ estimate for the threshold of just under £13,000 per QALY gained.73  Thus 

there is considerable variation in what constitutes an ‘appropriate’ threshold.   
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���� − ��	 − ��� − ��	 ≥ 0 [  1-2 ] 

Note that the incremental net benefit will be positive if the net benefit of the new 

technology is greater than the net benefit from the old.  Furthermore where there are more 

than two options, the incremental net benefit of the option with the highest net benefit will 

always be positive compared with any of the other options.  Therefore the decision rule can 

be generalised to comparisons of multiple options as simply adopting the technology with 

the highest net benefit (Equation [  1-3 ]). 

� = ����������� − ��	 [  1-3 ] 

Where D is technology i with the highest net benefit. 

1.3.9.1.3.9.1.3.9.1.3.9. Analysis of uncertaintyAnalysis of uncertaintyAnalysis of uncertaintyAnalysis of uncertainty    

The analysis of uncertainty is critical in order to assess the degree of confidence in the 

results of an economic evaluation and to test the robustness of conclusions, although the 

implications of this for the adoption decision are discussed in Section  1.5.2.  It is important 

to distinguish between individual variability, heterogeneity and uncertainty.74  Individual 

variability (also known as first order uncertainty) is the uncertainty of outcome associated 

with an individual.  The spread of individual observations around the central tendency (i.e. 

the mean) of a sample with the same characteristics (i.e. from the same population) is 

measured with the standard deviation.  This is a constant and a feature of the population 

itself and cannot be reduced with more information.  Heterogeneity relates to different 

characteristics between patients which can be explained such as age and gender. 

Variability and heterogeneity are not the subject of the analysis of uncertainty.  The 

uncertainty under consideration is that in estimates of means (second order uncertainty), 

measured by the standard error of the mean.  Parameter uncertainty should furthermore be 

distinguished from decision uncertainty: parameter uncertainty relates to the standard error 

of the input parameters of an economic evaluation, such as treatment effect, utility 

estimates and resource quantities.  Uncertainty in these parameters is propagated through a 

decision model or mathematical formula to estimate decision uncertainty, i.e. standard error 

of the output parameter, namely the incremental cost effectiveness ratio or incremental net 

benefit. 

In Bayesian statistics, the standard error around a parameter (or rather, the probability 

density function) can be interpreted as relative degrees of belief about different values of a 

parameter: a low standard error representing little uncertainty and thus a high degree of 
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belief that the parameter value is the ‘true’ value and vice versa.  Initial beliefs about likely 

values form the prior probability distribution of a parameter (that is, plausible values of the 

mean of some measurement such as health gain from an intervention).  Data can be 

gathered, which themselves will generate a sample mean and associated uncertainty 

expressed in the standard error of that mean (the distribution being termed the likelihood 

function).  Bayes’ rule then combines the prior and the likelihood together (that is, the prior 

is updated with the likelihood) to form the posterior probability distribution.  There are a 

number of approaches to analysis of uncertainty in an economic evaluation, determined to a 

certain extent by the implementation (i.e. whether alongside a clinical trial or in a decision 

model context). 

Economic evaluations alongside clinical trials can be analysed using traditional statistical 

hypothesis tests such as Student’s T-test, which quantifies the probability of observing two 

sample means differing by at least as much as that observed in an experiment given an 

assumption of no difference in the population means.  If this is sufficiently small then the 

assumption (termed the null hypothesis) is rejected.75 These are conducted on the output 

parameters of the experiment: typically cost or outcome per patient in each arm, or 

(preferably) cost-effectiveness (most easily measured and tested by the net benefit per 

patient).  However, there are sound methodological and practical reasons why this may be 

inappropriate.  The methodological reasons are discussed in Section  1.5.2.  The practical 

reasons are that studies are very rarely powered to detect a difference in cost-effectiveness, 

therefore there may be an unacceptably high likelihood of Type I error (or indeed, an 

unknown likelihood).  Given the skewed nature of cost data, the sample size required to 

adequately power on cost-effectiveness may be unfeasibly high (although this is an empirical 

question).  A review of the statistical analysis and interpretation of cost (rather than cost-

effectiveness) data reported in randomised controlled trials published up to 199876 found 

that 56% of 45 trials reported results of statistical tests or some measure of precision of the 

comparison between groups, and according to the authors, only 36% of papers supplied 

conclusions which were justified on the basis of the results presented.  Furthermore, none of 

the trials reported sample size calculations based on cost. 

Economic evaluations based on decision models can be analysed using one or multi-way 

sensitivity analysis.  Conceptually, the difference between the analysis of trial data and 

decision models is that the analysis of the latter focuses on the impact of uncertainty in 

model inputs (such as probabilities, health state utilities and resource quantities) on the 

outputs (i.e. the cost, outcome or net benefit per patient).  A one-way sensitivity analysis 
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varies one input parameter in a model at a time, recalculating the ICER or INB for each value 

of that parameter.  Likewise a multi-way sensitivity analysis varies two or more parameters 

simultaneously to explore their combined effect on the ICER.  Typically, the results can be 

presented as either a threshold analysis (a table stating the maximum and/or minimum 

tolerable values for the parameters for the conclusions to be valid), or as a tornado 

diagram77 (ordering parameters from most to least sensitive in terms of their impact on the 

ICER/INB). 

The advantage of one-way sensitivity analysis is that it is simple to implement and to 

interpret.  The disadvantages are that parameters are varied individually within arbitrary 

ranges: no account is taken of the true nature of uncertainty (that is, the probability 

distribution of the parameter where some values are more likely than others) and any 

interactions between parameters are not observed.  Whilst multi-way sensitivity analysis 

does accommodate the interactions to a certain extent, interpretation becomes increasingly 

difficult as the number of parameters increases.  For example, a two-way sensitivity analysis 

will define an ‘acceptable set’ of values for both parameters at which the ICER is within the 

decision threshold.  As this increases to three or more parameters, the acceptable set 

becomes more complex to define and interpret. 

The alternative is to analyse uncertainty in economic evaluations with probabilistic 

sensitivity analysis.  The technique applies equally to analysis of economic evaluations 

conducted alongside clinical trials and decision models, albeit with some minor differences.  

I first explain the technique with a decision model before outlining the differences with 

clinical trial data. 

Probabilistic sensitivity analysis of a decision model requires elicitation of a probability 

distribution for each input parameter.  A Monte Carlo simulation approach is usually 

adopted where a value for each parameter is drawn from its respective distribution and the 

set plugged into the model.  The resulting costs, outcomes, increments and ICER and/or INB 

are then recorded.  This process is repeated many times to build up an empirical distribution 

around the ICER or INB and propagates uncertainty in input parameters into uncertainty in 

the ICER / INB (decision uncertainty). 

It is important to note that each simulation represents a ‘possible state of the world’, but 

which state is ultimately realised is unknown.  The input parameters therefore represent 

beliefs about plausible values of the parameter of interest in the Bayesian statistical sense, 
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rather than the long-run relative frequency with which particular sampled value may be 

observed in the future (the frequentist statistical interpretation). 

Bootstrapping of clinical trial data simply requires resampling of the original data with 

replacement, and new mean costs and consequences (e.g. QALYs) calculated.  Repeating this 

many times builds up the empirical distribution of mean costs and QALYs, and hence 

incremental net benefit.  As the actual data points are resampled, no assumptions are 

required as to the distributional form of the data.  This approach is therefore known as a 

non-parametric bootstrap. 

1.3.10.1.3.10.1.3.10.1.3.10. WriteWriteWriteWrite----up and discussionup and discussionup and discussionup and discussion    

When interpreting the results of an economic evaluation it is important to evaluate whether 

the analysis has incorporated all relevant considerations, rather than unquestioningly 

accepting the results.  Decision making is a complex process requiring the weighing up of 

many competing objectives, thus whilst technical solutions can be very appealing it is 

important not to accept their results uncritically.78 79  Thus they must be considered inputs 

into the decision making process and not the decision in itself. 

If an economic evaluation is considered to be sufficiently well conducted and incorporate all 

relevant considerations, there is still the issue of how a decision should be made given the 

results.   

The interpretation of the results of clinical trials are usually judged on whether, given an 

assumption of no difference and the experiment were to be repeated many times, there 

would be a sufficiently low probability of observing a treatment difference at least as big as 

that observed in the trial, such that chance could be ruled out as an explanation.  This is 

hypothesis testing and is based on a frequentist interpretation of probability, although this is 

commonly (and erroneously) given a Bayesian statistical interpretation as the probability 

that an hypothesis is correct. 

There are a number of criticisms of this approach, not least that the choice of cut-off (p-

value) is arbitrary and does not take into account the costs and consequences of a wrong 

decision:3 it seems unlikely that one is willing to accept the same probability of being wrong 

about the effectiveness of an indigestion remedy as for an anti-cancer drug. 

Statistical decision theory provides a more logically consistent approach to decision making.4  

If an analysis represents the best estimate of the costs and consequences of different 
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courses of action, then the decision should be based solely on those expected costs and 

consequences, irrespective of uncertainty.  I discuss this further in Section  1.5.2. 
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1.4.1.4.1.4.1.4.     Value of Information AnalysisValue of Information AnalysisValue of Information AnalysisValue of Information Analysis    

In this section I introduce the concepts and purpose of value of information analysis and 

methods for calculating the relevant statistics. 

Information theory has its origins in the early 1960s in the work of Raiffa & Schlaifer,80 but 

recently interest has grown in its application to healthcare decision making to inform future 

research.  Value of information (VoI) analysis values the returns from investment in further 

research to reduce decision uncertainty and thus provides a justification for whether 

research should be conducted, and if so, on which uncertain parameters, and the 

appropriate sample size for such a study.81-83  It can therefore be used in place of 

conventional power calculations to estimate the appropriate sample size for future trials of 

the technology under consideration, based on a comparison of the return from the marginal 

trial enrolee and the associated marginal cost of including her/him in the research. 

Pilot studies have been undertaken to inform future research priorities in the NHS Health 

Technology Assessment programme84 and for the National Institute for Health and Care 

Excellence (NICE),85 and VoI analyses are increasingly appearing alongside published 

economic evaluations.8-19 

The value of information statistics are the expected value of perfect information (EVPI), the 

expected value of sample information (EVSI), and the expected net benefit of sampling 

(ENBS).  The sample size which maximises the ENBS is the optimal sample size for a new 

study which I denote n*. 

The expected value of 'perfect parameter' or 'partial perfect' information (EVPPI) is defined 

as the value of perfect knowledge about a particular input parameter, rather than the entire 

decision problem itself.  In other words it is the expected value of perfect information for 

that parameter, rather than for incremental net benefit. 

There are two approaches to estimating the value of additional information; an analytic 

solution requiring knowledge solely of the parameters of the distribution of incremental net 

benefit (and assumptions regarding the dispersion [standard deviation] of those parameters 

in each arm) and a numeric solution based on Monte Carlo simulation of a decision analytic 

model. 

The former is the approach favoured by economists such as Willan82 86  whilst the latter is 

associated with the work of Claxton.3 81 83-85 
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1.4.1.1.4.1.1.4.1.1.4.1. Analytic solutionAnalytic solutionAnalytic solutionAnalytic solution    

The analytic solution illustrated below assumes incremental net benefit (denoted b where 

the subscript ‘0’ indicates the prior) is a simple linear combination of incremental cost and 

outcomes (Equations [  1-4 ] and [  1-5 ]).  I assume outcomes are measured in QALYs 

throughout and a threshold of £30,000 is assumed unless otherwise stated.  I express the 

covariance between incremental cost and QALYs as the product of the standard errors and 

correlation coefficient.    

�� = �Δ�� − Δ�� [  1-4 ] 

�� = ����Δ�	� + ��Δ�	� − �2����Δ�, Δ�	� 
= ����Δ�	� + ��Δ�	�− �2���Δ�	����Δ�	���Δ�, Δ�	� 

[  1-5 ]  
Where:  

b0 = (prior) mean incremental net benefit 

ΔE = incremental outcome (e.g. QALYs) 

ΔC = incremental cost 

v0 = (prior) variance of mean incremental net benefit 

v(x)0 = (prior) variance of mean of x 

ρ(x,y)0 = (prior) correlation coefficient between mean of x and y. 

 

Expected Value of Perfect InformationExpected Value of Perfect InformationExpected Value of Perfect InformationExpected Value of Perfect Information    

Conceptually, the EVPI is the probability of making the 'wrong' decision multiplied by the 

associated loss (Equation [  1-6 ]).xviii  Graphically, this probability is the area under the 

probability density function, denoted f(b), on the opposite side of the y-axis to the mean 

(Figure  1-1, red shaded area).  The loss associated with every value of b is plotted as L(b).

      

�$%&� = ' (&)�� ≥ 0* + −�,���	-� +�
./ &)�� < 0* + �,���	-�/

� 1 [  1-6 ] 

' = 2 &3�1 + �	34
35�  [  1-7 ] 

Where: 

                                                           
xviii Note Willan & Briggs86 set the conditions within the indicator function such that when b is exactly zero, New 

would be rejected.  I have reversed this in Equation [  1-6 ], representing a 'benefit of the doubt'.  At this point the 

decision maker is indifferent between Old and New.  However, this makes no difference to the solution as the 

probability of observing a particular point value (e.g. exactly zero) with a continuously distributed variable is zero. 
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EVPI0 = (prior) expected value of perfect information 

b0 = (prior) mean incremental net benefit 

N = total population (present and future) who can benefit from one or the other treatment. 

It = Incident population at time t. 

r = discount rate. 

I{} is the indicator function which returns 1 if the condition {} is satisfied, otherwise 0. 

f0(b) = prior density function of b. 

 

If mean incremental net benefit (b) is positive then the indicator function in Equation [  1-6 ] 

means the second term in the equation is zero, and the EVPI is 6 −�,0��	-�0−∞ . 

The integral is from -∞ to zero because if the 'true' value of b is greater than zero then the 

correct decision has been made and there is thus no opportunity loss.   However, if the 'true' 

value of b is actually negative, then the wrong decision has been made, and the loss is -b.  

This is best explained by example:  

Suppose current evidence yields an estimate of mean incremental net benefit (b0) greater 

than zero.  The decision on this evidence would be to adopt New.  But due to uncertainty as 

to the true value, it could actually be -£10.  If this is the case the wrong decision will have 

been made.  The payoff would have been £10 higher had New been rejected, so the loss is 

£10, which is -b.  The probability that b=-10 is f0(-10).  Integrating across all values of b from -

∞ to zero yields the expected loss if b is negabve.  Similarly 6 �,0��	-�∞0  is the expected 

opportunity loss per patient from retaining Old and rejecting New.   

The per-patient EVPI is multiplied by N, the total present and (discounted) future population 

who could benefit from the information (Equation [  1-7 ]).  Depending on the disease, this 

may comprise the current prevalence, plus the net incidence over an 'appropriate' time 

horizon, discounted at an 'appropriate' rate. (The definition of an 'appropriate' time horizon 

is considered in Chapter 3). 
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Figure  1-1: Graphical Illustration of EVPI 

 

If incremental net benefit is assumed normally distributed, the EVPI can be estimated using 

the unit normal linear loss integral (UNLLI denoted LN*; Equation [  1-8 ]).4 86  The unit normal 

loss is calculated as the absolute normalised prior incremental net benefit (the absolute 

prior mean divided by its standard error), and then rescaled by multiplying back by the 

standard error. 

  

�$%&� = '���89∗ ;|��|���= 

= '��� ;> ;|��|���= − |��|��� (Φ ;− |��|���= − &)�� < 0*1= 

[  1-8 ] 

 

Where: 

N = the present value of the current and future beneficial population, as defined in Equation 

[  1-7 ] 
v0 = (prior) variance of mean incremental net benefit, b0 

ф(x) is the standard normal probability density function evaluated at x 

Φ(x) is the standard normal cumulative density function and is thus the probability of 

observing a value less than or equal to x. 

 
ф(x) and Φ(x) can be obtained from published tables, or most simply using the 'normdist' 

command in excel.xix  I present their formulae in Equations [  1-9 ] and [  1-10 ]. 

                                                           
xix The relevant excel command for the pdf at x is "=normdist(x,0,1,0)", and for the cdf at x "=normdist(x,0,1,1)" 
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>��	 = 1√2A B.CDE� F
 [  1-9 ] 

Φ��	 = 1√2A + B.CDE� FD
./  [  1-10 ] 

Example 

Suppose a trial based economic evaluation comparing 'Old' with 'New' yielded the following: 

Mean incremental net benefit (INB) b0 = £1,000 

Standard Error of Mean INB ��� = £1,000 

Further suppose that there are 10,000 patients who could benefit from the treatment.  This 

represents both present and future patient population over an 'appropriate' time horizon. 

Therefore the EVPI is: 

( ) ( )[ ]( )

000,833£

)1587.02420.0(*1000*10000

01*111000*100000

=
−=

−−Φ−= φEVPI

 

Expected Value of Perfect Parameter informationExpected Value of Perfect Parameter informationExpected Value of Perfect Parameter informationExpected Value of Perfect Parameter information    

The EVPPI is the expected loss resulting from uncertainty in a particular parameter or group 

of parameters that form a part of incremental net benefit (in the case of this example, 

simply incremental health gain and incremental cost, but in principle can be extended to any 

component of INB).  It can be estimated by assessing the impact of reducing the standard 

error of the target parameter to zero on the reduction in standard error of overall 

incremental net benefit.  In other words, the EVPPI is the (expected) reduction in expected 

loss from the reduction in decision uncertainty attributable to eliminating uncertainty in the 

target parameter. 

The variance of mean incremental net benefit, v is defined as the sum of the variances of ΔE 

and ΔC less twice the covariance (note λ2 converts the v(ΔE) into monetary units; Equation 

[  1-5 ], repeated here for convenience). 

�� = ����Δ�	� + ��Δ�	� − �2���Δ�	����Δ�	���Δ�, Δ�	� [  1-5 ] 

If ΔC were to be known with certainty, then the predicted posterior variance of ΔC, v(ΔC)1 

would equal 0.  Noting that v(ΔE)1 = v(ΔE)0 and ρ(ΔE, ΔC)1 = ρ(ΔE, ΔC)0, the predicted 

posterior variance of b, v1 reduces to the prior estimate of the variance of ΔE (expressed in 
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monetary terms by multiplying by λ2, Equation [  1-11 ]).  The (expected) reduction in 

variance of b is therefore as per Equation [  1-12 ].  Thus the expected value of perfect partial 

information is as per Equation [  1-13 ].  The equivalent is true for the value of eliminating 

uncertainty in ΔE, where the reduction in uncertainty is as per Equation [  1-14 ]. 

Thus the equations for EVPI and EVPPI can be thought of as the UNLLI evaluated at the 

normalised mean, where the prior mean incremental net benefit is divided by the expected 

reduction in uncertainty, multiplied by the expected reduction in decision uncertainty (then 

multiplied by the beneficial population).  In the case of EVPI, it is all decision uncertainty, i.e. 

the standard error of incremental net benefit.  In the case of EVPPI it is the parameter 

uncertainty, i.e. standard error of the relevant parameter adjusted for the covariance.xx  EVPI 

is therefore a special case of the EVPPI. 

 

�� = ����Δ�	� + ��Δ�	� − �2���Δ�	����Δ�	���Δ�, Δ�	�= ����Δ�	� + 0 − 0= ����Δ�	� 

[  1-11 ] 

�� − �� = ����Δ�	� + ��Δ�	� − �2���Δ�	����Δ�	���Δ�, Δ�	�− ����Δ�	�= ��Δ�	� − �2���Δ�	����Δ�	���Δ�, Δ�	� 

 

[  1-12 ] 

�$%%&GH = '��� − ��89∗ ; |��|��� − ��= [  1-13 ] 

�� − �� = ����Δ�	� + ��Δ�	� − �2���Δ�	����Δ�	���Δ�, Δ�	�− ��Δ�	�= ����Δ�	� − �2���Δ�	����Δ�	���Δ�, Δ�	� 

 

[  1-14 ] 

Expected Value of Sample InformationExpected Value of Sample InformationExpected Value of Sample InformationExpected Value of Sample Information    

The expected value of sample information is the difference between the expected posterior 

EVPI (that is, with the additional sample information and denoted EVPI1), and the prior EVPI 

                                                           
xx Note this is only true under assumptions of normally distributed parameters and linear relationships.  This is 

discussed in section 2.2.1 
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(denoted EVPI0).
86  In other words, it is the expected reduction in the expected value of 

perfect information from a trial of a given size.  As the posterior EVPI is predicted before 

data collection has actually taken place EVSI analysis can be termed 'preposterior analysis'.4  

Graphically it is the EVPI represented in Figure 1-2a (EVPI0) less the EVPI represented in 

Figure 1-2b (EVPI1).  Panel a represents current decision uncertainty (i.e. prior distribution of 

incremental net benefit).  Panel b represents the 'preposterior' distribution, that is, current 

information combined with the expected results of a new trial of sample size n.  The 

difference between the two is the expected reduction in EVPI from the trial, or expected 

value of sample information (EVSI).  Note that both the prior and preposterior distributions 

share the same mean as the expected sample mean, given the prior mean, is the prior mean 

itself. 

 

 

 

 

  

 

 

 

 

 

 

EVPI1 is uncertain as it is conditional on the trial information, which is unknown.  Therefore 

the expected EVPI1 is the EVPI1 associated with a particular sample result, b̂  , multiplied by 

the probability of observing that result (Equation [  1-15 ]).  The predictive distribution of b̂ , 

denoted )ˆ(ˆ bf , is simply the prior distribution of incremental net benefit.  The EVSI is thus 

the difference between prior EVPI and expected posterior EVPI, which is then multiplied by 

the patient population, N, as previously but less those enrolled in the study as they cannot 

benefit from the information (Equation [  1-16 ]). 

Figure 1-2: Prior (a) and (expected) posterior (b) distribution of incremental net benefit.  
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���$%&�	 = + �$%&�/
./ ,IJ�KL-�K [  1-15 ] 

�MK �$N&JO, �KL = �' − 2O	 (�$%&� − + �$%&�/
./ ,IJ�KL-�K1 [  1-16 ] 

 

Willan and Pinto82 provide a comprehensive but rather complex approach to calculating the 

EVSI.  Alternatively, a simpler notation can be derived based on Equation [  1-13 ] above 

where the reduction in standard error of incremental net benefit from a trial of sample size 

n is denoted ��P and the potentially beneficial population is the total population less those 

enrolled in the study [  1-17 ].4 Thus vs is the difference between prior and (expected) 

posterior variance of mean incremental net benefit and is calculated as per Equation [  1-18 ]. 

�$N& = �' − 2O	��P89∗ ;|��|��P= [  1-17 ] 

�P = �� Q OOR + OS = �� T OU��� + OV = �� − C 1�� + OU�F.�
 [  1-18 ] 

n' is the notional prior sample size which may be known where there are actual prior data or 

inferred by dividing the sample variance of incremental net benefit (σ2) by the variance of 

the mean (v0). 

Example 

Continuing the example above, suppose σ2 = £100,000,000.  This would be estimated from 

prior evidence as the sum of the sample variance of net benefit in each arm.  Such prior data 

may be obtained from existing studies into the same decision question or a pilot study.  

Alternatively where there are no data a literature search of studies in a similar field may 

yield plausible estimates.  Failing this, expert opinion may be sought.xxi  Where patient level 

data on cost and outcomes in a two arm trial comparing treatment (T) and control (C) are 

available (such as from a pilot study), this is calculated as per Equation [  1-19 ]. 

 

                                                           
xxi As is routinely undertaken for conventional sample size / power calculations 
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U� = W��XY,4� + XZ,4� − 2�����B4 , [4	\ + W��XY,]� + XZ,]� − 2�����B] , []	\
= �� ∑ JB�,4 − B̅4L�� �O4 − 1	 + ∑ J[�,4 − [4̅L�� �O4 − 1	
− 2� ∑ JB�,4 − B̅4LJ[�,4 − [4̅L� �O4 − 1	 + �� ∑ JB�,] − B̅]L�� �O] − 1	
+ ∑ J[�,] − []̅L�� �O] − 1	 − 2� ∑ JB�,] − B̅]LJ[�,4 − []̅L� �O] − 1	  

[  1-19 ] 

Where ei,j and ci,j are the QALYs and cost of patient i with treatment j (j = T, C for Treatment 

and Control), nj is the sample size in arm j, and λ is the value placed on a unit of outcome.  

For example, the outcome may be QALYs and the value per QALY, £30,000. 

Suppose a study of sample size n=100 per arm is proposed.  First calculate the (expected) 

reduction in variance of mean incremental net benefit (Equation [  1-18 ]): 

�P = 1,000,000 − Q ��,���,��� + ������,���,���S.� = £500,000    

The EVSI is then the unit normal loss multiplied by the reduction in standard error and by the 

beneficial population as previously (Equation [  1-17 ]): 

�$N& = �10,000 − 2 ∗ 100	�500,00089∗ Q |�,���|√a��,���S  
= �10,000 − 2 ∗ 100	�500,000 ;> ; 1,000�500,000= − 1,000�500,000 (Φ ;− 1,000�500,000= − 01= 

= 8000 ∗ �500,000 ∗ �0.1468 − 1.414 ∗ 0.079	 

= 8000 ∗ �500,000 ∗ 0.035094 

= £246,247    

Expected Net Benefit of SamplingExpected Net Benefit of SamplingExpected Net Benefit of SamplingExpected Net Benefit of Sampling    

The expected net benefit of sampling is the expected gain from the trial (i.e. EVSI) less the 

cost of sampling (Equations [  1-20 ] & [  1-21 ]).  The cost of sampling is usually simplified into 

a fixed and variable component.  Added to this is the opportunity cost for the patients 

randomised to the arm currently believed to be inferior.86 

i��O	 = �j + 2O�k + O|��| [  1-20 ] 

�'lN�O	 = �$N&�O	 − i��O	 [  1-21 ] 
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Note that both the EVSI and TC are functions of n.  The optimal n (denoted n*) is that which 

maximises the ENBS. 

Example 

Suppose the fixed costs of a trial totalled £50,000 and a variable cost of £250 per patient 

enrolled.  A trial of size n=100 per arm would therefore cost (Equation [  1-20 ]): 

000,200£1000*100250*200000,50)100( =++=TC  

The ENBS of a trial of 100 patients in each arm is thus £246,247 - £200,000 = £46,247.  As 

this is greater than zero, this trial would be worthwhile, however the calculations should be 

repeated for a range of values of n to identify the ENBS maximising n (denoted n*).  This 

occurs at a sample size of approximately 165 patients per arm (Figure 1.3). 

 

Figure 1.3: Population EVSI (pEVSI), total cost of sampling (TC) and ENBS. 
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1.4.2.1.4.2.1.4.2.1.4.2. Numeric Numeric Numeric Numeric solutionsolutionsolutionsolution    

The numeric solution is based around a decision model, e.g. decision tree or Markov chain, 

which combines together a vector of input parameters, θ to estimate the net benefit from 

each treatment.  The decision rule is to choose option j which maximises the expected net 

benefit, based on the input parameter set, θ (Equation [  1-3 ], expressed as a function of θ in 

Equation [  1-22 ]). 

� = ������m�n'l�o, n	 [  1-22 ] 

       

Expected Value of Perfect InformationExpected Value of Perfect InformationExpected Value of Perfect InformationExpected Value of Perfect Information    

The expected value of perfect information is the difference between the maximum net 

benefit with perfect information and that with current information (Equation [  1-23 ]).  The 

maximum expected net benefit with current information is simply the outcome of the model 

(Equation [  1-22 ]).  The maximum net benefit with perfect information is unknown, 

therefore the expectation is taken over θ. 

Equation [  1-23 ] is the EVPI per patient.  As in Equation [  1-6 ], this should be scaled up to 

the current and future population to provide an upper limit for the budget for future 

research in to the technology in question (Equation [  1-24 ]), where N is defined as per 

Equation [  1-7 ]. 

�$%& = �n���m'l�o, n	 − ���m�n'l�o, n	 [  1-23 ] 

%�pO�$%& = �$%&. ' [  1-24 ] 

Where: 

j = intervention (e.g. 1= current treatment, 2=new treatment) 

θ = input parameters to model 

NB(j,θ) = net benefit of intervention j with parameter set θ. 

Example 

Suppose the current treatment for disease X is called ‘Old’, and patients currently treated 

have an annual risk of death of P0.  A new treatment ‘New’ is developed which reduces the 

relative risk of death by RRN, but is also more expensive.  The decision question is whether to 

adopt ‘New’ in place of ‘Old’.  A systematic review and meta-analysis have yielded point 

estimates and distributions around P0 and RRN: assume current data comprises just one 

study of 200 patients randomised  to Old and New, and that this estimated a 20% annual 

probability of death with ‘Old’, and a relative risk of death with ‘New’ of 0.75.  Based on this 

information, the baseline probability of death (with ‘Old’) is characterised as a beta 
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distribution and relative risk as lognormal with parameters as per Equations [  1-25 ] and 

[  1-26 ]. 

%�~lBr��20,80	 [  1-25 ] 

8'�ss9	~'����t − �0.29,0.097	 [  1-26 ] 

 

A simple economic model based on a two state Markov chain has been developed 

incorporating these as well as other data (such as the ‘up front’ cost of ‘Old’ and ‘New’, 

changes in subsequent resource use and costs associated with ‘Old’ and ‘New’ and quality of 

life estimates), over an 'appropriate' time horizon (Figure 1-4).  The model combines these 

input parameters into estimates of the net benefit from each treatment (NBO and NBN) and a 

Monte Carlo simulation (probabilistic sensitivity analysis) is used to derive an expected net 

benefit with ‘Old’, E(NBo) and expected net benefit with ‘New’, E(NBN). 

 

Table  1-1 shows the results of the PSA.  (Note only five iterations are shown in this 

illustrative example: several thousand would typically be necessary, depending on the 

complexity of the model).  The expected net benefit of ‘Old’ is £84,178 and of ‘New’, 

£92,153.  The maximum expected net benefit (Equation [  1-22 ]) is thus £92,153 and ‘New’ 

should be adopted.  However, for iterations 2, 3 and 5, ‘Old’ had the highest net benefit, and 

therefore as ‘New’ is the one that is chosen, there would be an opportunity loss equal to the 

difference in net benefit (£16,677, £15,026 and £315 in each case respectively).  The 

expected loss over all five iterations is £6,403, which is the expected gain from eliminating 

all uncertainty, i.e. the expected value of perfect information.   

Alive 

C ; U  

Dead 

0; 0 

Alive 

C ; U  

Dead 

0; 0 

Po 

Po*RRn 

1-Po 

1-Po*RRn 

Treat with Old 

Treat with New 

Figure 1-4: Structure of Decision Model 
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Table  1-1: EVPI Illustration 

Iteration NBO NBN  D Max Loss 

1 £67,913 £119,013  N £119,013 £0 
2 £110,199 £93,522  O £110,199 £16,677 
3 £77,624 £62,598  O £77,624 £15,026 
4 £68,291 £89,083  N £89,083 £0 
5 £96,863 £96,548  O £96,863 £315 

E(.) £84,178 £92,153  N £98,556 £6,403 
 

The sum of £6,403 is the per-patient EVPI.  This should be scaled up to the current and 

future population to provide an upper limit for the budget for future research in to the 

technology in question (Equation [  1-24 ]).  Thus if the incidence of disease X is 10,000 per 

annum, over a 10 year time horizon and discount rate of 3.5%, the population EVPI is: 

 

 

The maximum budget for research into the cost-effectiveness of ‘Old’ versus ‘New’ should 

therefore be set at £551m.  If a particular research project will cost more than the EVPI, then 

it will definitely not be cost-effective and the funds should be spent elsewhere (e.g. direct 

patient care or in an alternative research area). 

Expected Value of Perfect Parameter InformationExpected Value of Perfect Parameter InformationExpected Value of Perfect Parameter InformationExpected Value of Perfect Parameter Information    

The EVPI is the overall maximum gain from eliminating all uncertainty within a decision 

model.  As the numeric approach is based on a decision model incorporating many individual 

input parameters, it is natural to investigate the value of eliminating uncertainty in those 

individual parameters.  The expected value of perfect information for a parameter (EVPPI) 

provides an upper bound to research expenditure in a particular parameter (Equation [  1-27 

]). 

The two expectations in the first term require nested iterations of the Monte Carlo 

simulation.  This proceeds as follows: 

1. Draw a value from the distribution of ϕ.  This is a possible realisation of the 'true' 

value of ϕ. 

2. Run the Monte Carlo simulation k times, drawing values from ψ (i.e. all other 

parameters in the model) for each simulation, whilst holding ϕ at the value drawn in 

step 1.  

m
t

t
551£
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*403,6£
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3. Record the expected net benefit from each treatment as the mean over the k 

simulations. 

4. Repeat steps 1-3 n times. 

5. Calculate the EVPPI as per Table  1-1 above, i.e. the difference between the 

expected maximum expected net benefit and the maximum expected net benefit. 

Again, this should be multiplied by the incident population over an ‘appropriate’ time 

horizon to calculate the population EVPPI (Equation [  1-28 ]).  Note the sum of EVPPIs across 

all parameters will not generally equal the EVPI due to interactions between parameters. 

�$%%&u = �u���m�v|u'l�o, w, x	 − ���m�y'l�o, z	 [  1-27 ] 

%�pO�$%%& = �$%%&. ' [  1-28 ] 

Where: w⋃x = z 

 (φ is a parameter or subset of parameters of interest, ψ is all the others in set θ). 

Expected Expected Expected Expected VVVValue of alue of alue of alue of SSSSample ample ample ample IIIInformationnformationnformationnformation    

The expected value of sample information (EVSI) provides the sufficient condition as to 

whether undertake a particular trial by estimating the return from the trial given a sample 

size n.  As per the explanations of the equations for EVPI and EVPPI, this can be expressed as 

the difference between the expected maximum expected net benefit with the new 

information and the maximum expected net benefit with current information (Equation 

[  1-29 ]).  Equation [  1-30 ] shows the equation for groups of parameters within a decision 

problem.  As before, the per patient EVSI then needs multiplying by the beneficial 

population, defined as N less those enrolled in the study. 

�|���m�y||'l�o, z	 − ���m�y'l�o, z	 [  1-29 ] 

�|���m�v,u||'l�o, w, x	− ���m�y'l�o, z	 

[  1-30 ] 

Where: 

θ = uncertain parameter 

D = sampled value of θ from trial of size n 
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Example 

Figures 1-5 and 1-6 show the steps in calculating the EVSI and ENBS for the parameter Po.  

The Figures each show three tables labelled a-c.  Table ‘b’ contains the output of the 

standard economic model PSA.  Table ‘a’ contains the summaries of each of these, and Table 

‘c’ will contain the EVSI estimated for each sample size. 

With current information, the meta-analysis determined the prior distribution of Po as 

Po~Beta(20,80).  The EVPPI associated with this parameter is greater than zero (£339m) 

suggesting there is potential for additional information to be useful.  Calculating the EVSI 

and ENBS of trials of different sizes will provide the sufficient condition for proceeding:  the 

sample size that maximises ENBS (subject to ENBS>0) is the efficient sample size. 

First set a sample size for the proposed study, e.g. n=10.  A value is then sampled from the 

prior distribution of Po.  This represents one possible realisation of the world.  Suppose the 

value drawn is 0.24.  So this is a world where the true population baseline mortality rate is 

24%.  This is filled in in cell (2,3) of Figure 1-5, table a.  The results of the study (call this Pos) 

therefore must be a binomial random variable with mean 0.24 and sample size 10.  I.e. 

Pos~Bin(0.24,10). 

A value is drawn from this distribution as a possible realisation of the study results.  Suppose 

the result was 3.  That is, one possible result is that 3 patients died and 7 survived to one 

year.  The next step is to use Bayes’ theorem to combine the prior distribution and the ‘new’ 

data to a (pre)posterior distribution.7  Call this Po'.  For the beta distribution this is simply: 

Po'~Beta(A+Pos,B+n-Pos)  

=> Po'~Beta(20+3,80+10-3)  

=> Po'~Beta(23,87)   

This equation is entered in cell (2,1) of Figure 1-5, table b.  The Monte Carlo simulation is 

then run on the model for a large number of iterations, each time sampling from the 

distributions of Po' as well as the other model inputs, and the net benefit obtained from each 

treatment recorded in Figure 1-5, table b, cells (3,3) to (4,7). 

After all the iterations, the expected net benefit from ‘Old’ is estimated at £98,453, and from 

‘New’, £85,395 (Figure 1-5, table b, cells (3,2) and (4,2)).  These figures are transferred to 

cells (3,3) and (4,3) of table a. 
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The next step is to sample from the prior distribution of Po again.  Suppose the value this 

time is 0.18.  This is recorded in Table a (Figure 1-6, Table a, cell (2,4)).  The results of the 

hypothesised study are now a binomial random variable with a Binomial(0.18,10) 

distribution.  Sampling from this distribution, suppose a possible study result is 1, that is 1 

death and 9 survivors.  Adding this new data to the prior yields Po'~Beta(21,89), which is the 

new (pre)posterior distribution.  The model is then run a large number of times sampling 

from this new distribution, along with the remaining model inputs, and the expected net 

benefit from each treatment recorded.  In this case the results are £72,814 and £84,599 

respectively (Figure 1-6, Table a cells (3,4) and (4,4)).  This process is repeated a ‘large’ 

number of times.  
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After running the iterations, the maximum expected net benefit from each run is recorded in 

the final column of Figure 1-5, Table a, and the mean of each column taken (recorded in the 

top row of Table a: £81,324, £88,396 and £91,008).  The EVSI is the expected maximum net 

benefit with improved information about Po less the maximum expected net benefit with 

current information.  The former is simply the expectation of the final column of Table a 
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Figure 1-6: EVSI Example (continued) 
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(£91,008).  The latter is approximated by the maximum of the expectations of columns 3 and 

4 (=max(£81,324, £88,396)).  Thus the expected value of sample information on parameter 

Po from a study of size n=10 is: 

£91,008 – max(£81,324, £88,396) = £2,612. 

The exercise is now repeated for a range of sample sizes.  Table  1-2 shows the results for 

calculating EVSI for sample sizes of between 0-500 patients.  As with EVPI and EVPPI, this is 

the per-patient EVSI, so this needs multiplying by the present and (discounted) future 

population of patients (column 3 of Table  1-2).   

Expected Net Benefit of SamplingExpected Net Benefit of SamplingExpected Net Benefit of SamplingExpected Net Benefit of Sampling    

This is estimated in exactly the same way as for the analytic solution.  The costs of 

conducting the study are split into a fixed and variable component (Table  1-2, columns 4-6).  

The difference between EVSI and TC is the expected net benefit of sampling (Table  1-2, final 

column).  The sample size at which this is maximised is the optimum sample size for the 

study, in this case one of approximately 195 patients (Figure  1-7). 

Table  1-2: EVSI & ENBS illustration 

n Per patient 
EVSI 

Population 
EVSI (£ms) 

Cost of 
sampling 
(fixed 
costs, £ms) 

Cost of 
sampling 
(variable 
costs, £ms) 

£ 
sampling 
(£ms) 

ENBS 
(£ms) 

0 0 £0.00 £0.00 £0.00 £0.00 £0.00 

10 £2,612 £224.83 £0.15 £0.15 £0.30 £224.53 

20 £3,400 £292.66 £0.15 £0.30 £0.45 £292.21 

30 £3,654 £314.52 £0.15 £0.45 £0.60 £313.92 

40 £3,765 £324.08 £0.15 £0.60 £0.75 £323.33 

50 £3,820 £328.81 £0.15 £0.75 £0.90 £327.91 

100 £3,880 £333.98 £0.15 £1.50 £1.65 £332.33 

150 £3,930 £338.28 £0.15 £2.25 £2.40 £335.88 

200 £3,945 £339.57 £0.15 £3.00 £3.15 £336.42 

250 £3,947 £339.75 £0.15 £3.75 £3.90 £335.85 

500 £3,949 £339.92 £0.15 £7.50 £7.65 £332.27 
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Figure  1-7: EVSI, Cost of sampling and ENBS 

 

  

£0.00

£50.00

£100.00

£150.00

£200.00

£250.00

£300.00

£350.00

£400.00

0 50 100 150 200 250 300 350 400 450 500

Sample size

£m popn EVSI (£ms)

£ sampling

ENBS



 50 

1.5.1.5.1.5.1.5.     Decision models vs Clinical Trials and the Cycle of Evidence Based Decision models vs Clinical Trials and the Cycle of Evidence Based Decision models vs Clinical Trials and the Cycle of Evidence Based Decision models vs Clinical Trials and the Cycle of Evidence Based 

MedicineMedicineMedicineMedicine    

In Section  1.3, I described the general approach to economic evaluation, differentiating 

between the two implementations, namely piggybacked studies alongside clinical trials and 

decision models.  I then introduced value of information analysis as a means to estimate the 

efficient sample size for a future study (Section  1.4).  In this section I link these three 

approaches (decision modelling, clinical trials and value of information analysis) together 

into a comprehensive framework for decision making and research.   

Firstly I discuss the relative advantages and disadvantages of trial-based and model-based 

economic evaluations.  Whilst sometimes seen as mutually exclusive alternatives, I conclude 

that this is not the case, and that they form part of a cyclical, or iterative approach 

encompassing not only decisions as to whether to adopt a particular technology but 

research decisions too.  Thus two distinct decision questions are posed: firstly, whether to 

adopt the new technology in question, and secondly, whether further research is required to 

reduce uncertainty.   

1.5.1.1.5.1.1.5.1.1.5.1. Trials vs Models for economic evaluationsTrials vs Models for economic evaluationsTrials vs Models for economic evaluationsTrials vs Models for economic evaluations    

There is some debate as to the relevance and appropriateness of clinical trials as a tool for 

decision making.  One of the key objections is that RCTs conducted as Phase III studies are 

typically designed to measure efficacy, not effectiveness.  Phase III studies provide the bulk 

of evidence of effect in marketing authorisation applications and are intended to control for 

as many factors as is possible to establish whether the treatment itself is the reason for any 

difference observed between treatment groups.  They therefore establish whether a 

treatment can work under ideal circumstances, known as efficacy.  However, the controlled 

environment, strict inclusion/exclusion criteria and requirement to adhere to a strict 

protocol may result in a treatment situation and patient population very different from 

routine practice.  The transferability of the results to ‘real life’ and thus suitability to inform 

decision making may therefore be brought into question.87  An alternative trial design is a 

‘pragmatic’ trial, designed with minimal exclusion criteria and treatment pathways that 

match routine care as closely as possible.  These studies thus attempt to measure 

effectiveness, or whether the treatment does work under realistic conditions.  They thus 

enhance the external validity (generalisability) of the results, but at the expense of internal 

validity (bias) due to the relatively uncontrolledxxii nature of the study. 

                                                           
xxii Uncontrolled in the lay sense rather than in terms of comparators. 
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The key advantage of RCT-based economic evaluations is that they generate evidence using 

well established best-practice principles: randomised controlled trials are generally 

considered the least-biased study design and so most likely to give the ‘correct’ answer 

(notwithstanding my comments about pragmatic trials above).  However, one of the main 

drawbacks is that they do not necessarily ask the ‘right’ question.  The information 

requirements from an economic evaluation for decision making include a statement and 

appropriate measurement of the objective function, an appropriate time horizon, and 

consideration of all relevant evidence.88,xxiii 

Cost utility analysis with outcomes measured in Quality Adjusted Life Years (QALYs) is 

considered the preferable form of economic evaluation by some agencies.89 90  This is 

because QALYs are a generic measure of overall quantity and quality of life, thus allowing 

comparisons of diverse interventions across broad disease areas in the same metric.  The 

use of QALYs also presupposes the health system is interested in maximising the generation 

of ‘health’ with the resources at its disposal, which is not an unreasonable assumption.xxiv  

Therefore the desirable objective function would be maximisation of net benefit as 

described in Section  1.3.8.  However, the time frame of a clinical trial may not allow 

observance of the ultimate benefit of a treatment on a person’s quality and/or quantity of 

life.  Therefore clinical trials frequently choose an interim or surrogate measure as the 

primary outcome for a trial. 

For example, the hoped-for benefits of an anti-osteoporosis drug are ultimately an increase 

in quantity and/or quality of life (QALYs), mediated through a reduced incidence of fracture.  

A clinical trial measuring changes in QALYs would require a life-time follow-up period, 

possibly 30-40 years or more.  This would be a highly impractical and expensive trial.  

Furthermore there is a desire to know whether the drug is likely to be (cost-)effective 

immediately (or as soon as is practical).  Even a follow-up period sufficient to observe 

changing incidence of fracture may be unfeasible, and a surrogate marker, such as bone 

mineral density, used as the primary outcome.  An economic evaluation conducted 

alongside this trial would not be estimating the desired objective function, nor would it be 

considering an appropriate time horizon. 

                                                           
xxiii Sculpher et al.88 include other requirements, in particular appropriate characterisation of uncertainty.  I consider 
this later when incorporating VoI analysis into the overall framework. 
xxiv The distribution of the health gain (equity) will also be of concern to public health systems. 
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Critically, it is reasonable to propose that decisions should be based on ‘all relevant 

evidence’.91  This includes appropriate comparisons between all relevant treatment options, 

as well as taking into account current (prior) knowledge on the effects and costs of each: the 

results of a clinical trial do not exist in a vacuum, and setting it within the context of existing 

work is essential for interpretation.  Indeed, it could be argued that it is impossible for a 

single clinical trial to collect all relevant cost and outcomes data required for decision 

making.88  It is essential to compare ‘all relevant treatment options’ in order to avoid 

misleading conclusions.  For example, treatment A may be cost-effective compared with B, 

but not with C.  Thus C should be the preferred option, but this will not be known if C is 

excluded from analysis. 

Thus there are limitations to the use of RCTs as a sole basis for decision making.  There will 

always be diverse sources of evidence comprising randomised trials, observational studies, 

routine databases and expert opinion that individually are insufficient, but together may 

provide a sufficient estimate of the overall costs and consequences of the different options.  

These could be combined together informally by decision makers in a narrative manner.  

However, it may be desirable to formally assemble and structure the evidence sources to 

assist this process.  In essence, a structured assembly and synthesis of the evidence is 

precisely the definition of a decision model, and so models may be seen as an essential 

component of the decision making process.92   

Thus whilst RCT-based analyses may be the best source of unbiased information about 

incremental outcomes and costs informing some parameters, the principles of evidence 

based medicine require that all relevant evidence be brought to bear on a particular decision 

question.  This implies not only combining together the results of multiple RCTs, but, due to 

the limitations of trials (e.g. failure to compare all relevant treatment options, insufficient 

time horizon), incorporation of other evidence from diverse sources too.  A structured 

combination of these evidence sources is the definition of a decision model.  Thus the two 

implementations of economic evaluation should be seen as complements rather than 

substitutes, with trials providing estimates of parameters to incorporate into decision 

models. 

1.5.2.1.5.2.1.5.2.1.5.2. Economic evaluation, Value of Information Analysis and the Iterative Approach to Economic evaluation, Value of Information Analysis and the Iterative Approach to Economic evaluation, Value of Information Analysis and the Iterative Approach to Economic evaluation, Value of Information Analysis and the Iterative Approach to 

Decision MakingDecision MakingDecision MakingDecision Making    

As I demonstrated in Section  1.4, value of information analysis uses the results of an 

economic evaluation to determine the optimal sample size for a new study on a particular 

parameter or group of parameters, whilst the results of those studies (not only clinical trials 
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but epidemiological studies, database analyses etc) inform the development of a decision 

model.  Thus we can define an iterative approach to evidence (or economics) based 

medicine, incorporating not only the adoption decision, but the research decision too 

(Figure 1-8).1 6 93-95 

Figure 1-8 begins with a definition of the decision question.  This must clearly specify the 

question as stated in Section  1.3.1, defining (all) the different comparator treatments in a 

specific population, as well as the perspective of the analysis (e.g. health service or society).  

Following this, there should be a systematic review of all the relevant input parameters, 

critically including appropriate characterisation of uncertainty around those parameters.  A 

decision model should then be developed combining these parameters into the objective 

function (net benefit).  Probabilistic sensitivity analysis should be employed to propagate 

parameter uncertainty through to decision uncertainty.  To inform the adoption decision, 

the most cost effective treatment option is then the option with the highest expected net 

benefit.xxv 

Following the adoption decision, value of information analysis should be conducted to 

estimate whether further primary research (whether a clinical trial, epidemiological study, 

database analysis or other study) would be worthwhile, and if so the efficient number of 

observations on which to collect the data.  If the (expected) cost of a particular research 

project exceeds the expected benefit, then the project should not go ahead, and decisions 

should be based on the current level of uncertainty.  However if the expected benefit 

exceeds the expected cost, then the project should proceed.  The results of this study should 

then be combined with the prior information, updating the systematic review and economic 

evaluation, and the adoption decision revisited.  Thus the cycle continues. 

 

 

 

 

 

                                                           
xxv Decision uncertainty can be represented by a multivariate distribution of n-dimensions, where n is the number 

of comparators.  Where there are only two comparators this simplifies into choosing the new treatment if the 

incremental net benefit (INB) is greater than zero, and the standard error around mean INB is the measure of the 

decision uncertainty.  
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Source: Wilson & Abrams 2010
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The iterative approach raises some interesting methodological points.  The first and most 

important is that the adoption decision is based solely on expected values.  This contrasts 

with the method by which clinical trial results are normally assessed: the purpose of such 

trials is usually to establish whether a treatment has any real effect ceteris paribus, and to 

rule out chance as the explanation of any observed difference in response rates.  Hypothesis 

testing usually assigns a p-value of 0.05 as the cut-off for statistical significance.  The full 

interpretation of a p-value is that if the experiment were repeated many times in the future, 

the p-value is the long-run relative frequency with which a difference at least as big as that 

observed in the original trial would be observed if there really was no difference between 

the two treatments.  If this is sufficiently small, then chance may be excluded and a real 

treatment effect declared. 

The first criticism of this approach is that the critical p-value of 0.05 is arbitrary and takes no 

account of the costs or consequences of drawing the wrong conclusions: the same value is 

usually adopted irrespective of the decision question.  The second criticism is that basing 

decisions on statistical inference will not lead to maximisation of expected outcomes subject 

Figure 1-8: The Cycle of ‘Economics’ Based Medicine 
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to the budget in the long run.  If a decision is based on a synthesis of all relevant evidence, 

then the conclusion of that evidence must be the best possible course of action given 

current knowledge, irrespective of the uncertainty around that.  To take any other course of 

action is therefore perverse.  Such an approach is consistent with the principles of statistical 

decision theory4 in which decision makers should be risk neutral.96  Inference should 

therefore be seen as irrelevant to the adoption decision:3 the desire to establish whether a 

treatment effect is real or not is a separate activity from, and should not be confused with, 

making a decision based on the best evidence available. 

The second methodological point is that the decision framework is based solidly within a 

Bayesian rather than frequentist statistical perspective.  As stated above, in the traditional 

frequentist approach, probability is defined as the long run relative frequency with which an 

event is predicted to occur.  The target parameter (e.g. relative treatment effect) is unknown 

(and unknowable) but certain, and sample information can be obtained as an estimate of 

the parameter.   

In the Bayesian framework, probability is defined as a subjective belief about plausible 

values of the parameter.  The parameter itself is uncertain and thus it is possible to speak of 

‘parameter uncertainty’.  Formal Bayesian analysis always begins with a prior belief (which 

may be uninformative if starting from a position of ignorance).  Prior belief is then combined 

with the data using Bayes theorem to form the posterior belief.  The posterior belief is 

simply a weighted average of the prior and the data (likelihood).7  As the distribution around 

a parameter represents an individual’s belief about likely values, Bayesian hypothesis tests 

can be used to make direct probability statements (i.e. the probability that the hypothesis is 

correct).  This approach provides an elegant statistical technique capturing the learning 

process. 

Decision models are described in terms of parameter uncertainty and are based within a 

Bayesian framework.xxvi  Value of information analysis is also intrinsically Bayesian, with its 

reliance on predicted posterior distributions (such that it is sometimes termed ‘preposterior 

analysis’). 

The third methodological point is that value of information analysis is utterly dependent on 

the ‘appropriate characterisation of uncertainty’.  There are well established methods for 

pooling together odds ratios of treatment effects and appropriately estimating standard 

                                                           
xxvi It is noteworthy that decision models developed as economic evaluations in the health care sector almost never 

elicit their parameters with a formal Bayesian analysis, stating priors, likelihood and resulting posterior. 
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errors (e.g.97), but methods where there is no prior evidence whatsoever are less well 

developed.  In these situations a decision model is reliant on eliciting beliefs about plausible 

values for the parameter from a panel of representative experts.  Such techniques do exist,98 

but care must be taken to ensure the standard errors elicited in this way are ‘appropriate’ 

and fully represent current knowledge. 

Finally, value of information analysis is not the only means by which research projects can be 

prioritised.  Other techniques which are commonly used include subjective judgement, 

burden of disease, the degree of variation in clinical practice and ‘payback’ (a method with 

some features in common with value of information analysis, where the results of a 

proposed trial are categorised into positive, negative and uncertain with the costs and 

benefits from changes in policy under each of the three scenarios are calculated.  Assigning 

probabilities to the likelihood of each scenario then allows computation of the expected net 

benefit of the trial).99  Subjective judgement, burden of disease and the degree of variation 

in clinical practice do not take into account the opportunity cost of research and therefore 

are incomplete analyses.  Whilst the payback method does take this into account, it divides 

the results of a trial into the three categories, presumably based on hypothesis testing.  This 

runs counter to the principles of statistical decision theory and so will not necessarily lead to 

maximisation of expected net benefits.  These issues are discussed further in Chapter 5. 



 57 

1.6.1.6.1.6.1.6.     Incorporation of EE & VoI / EBM into health policy in the UK and Incorporation of EE & VoI / EBM into health policy in the UK and Incorporation of EE & VoI / EBM into health policy in the UK and Incorporation of EE & VoI / EBM into health policy in the UK and 

internationallyinternationallyinternationallyinternationally    

1.6.1.1.6.1.1.6.1.1.6.1. Economic evaluation in the UK, EuropEconomic evaluation in the UK, EuropEconomic evaluation in the UK, EuropEconomic evaluation in the UK, Europe and Globallye and Globallye and Globallye and Globally    

Within the UK, the principles of economic evaluation are incorporated most strongly within 

the work of the National Institute for Health and Care Excellence (NICE),100 with a remit to 

provide advice on the clinical and cost-effectiveness of certain interventions to the NHS in 

England and Wales.xxvii  Its technology appraisals programme places a formal economic 

evaluation at the heart of its decision making process, conducted along the lines of that 

described in Section  1.3.  The primary analytic perspective of any economic evaluation 

conducted by or for NICE is the NHS and personal social services (i.e. public sector).72 

Founded in 1999 as the National Institute for Clinical Excellence, a special health authority of 

the NHS, it faced criticism at first that far from preventing the adoption of cost-ineffective 

treatments, it was too reluctant to say ‘no’.101  The first time that NICE rejected a treatment 

on the grounds of cost-effectiveness was in its 2002 appraisal of beta interferon and 

glatiramer acetate, two treatments for multiple sclerosis.102  The guidance stated that those 

patients who were currently receiving treatment should continue until such time as their 

clinician felt they should stop, but no new patients would receive the drug.  However, there 

was an attempt to explore how the treatment could be provided on the NHS in a cost-

effective manner.  This was through the development of a risk sharing scheme.  Despite 

running from 2002-2005, the results of the prospective cohort study were not published 

until 2009,103 104  and failed to show any beneficial effect of beta interferon.  This finding was 

confirmed by a 2010 Cochrane review,105 but then contradicted by another review the 

following year.106  The explanation for the difference is that the Cochrane review was limited 

to the two pivotal RCTs for the drugs, whilst Oliver et al.106 included a number of non-

randomised observational studies and therefore may be at higher risk of bias.  Despite 

criticism as a ‘costly failure’,107 variants on the risk sharing scheme became the model for a 

number of other new and expensive therapies. 

Most member states of the European Union have a public sector agency charged with 

providing health technology assessments for their respective health systems.108  EUnetHTA 

acts as an association of national HTA agencies to develop methods for HTA across the 

members with particular regard to the generalisability of studies and adaptations to the 

                                                           
xxvii Similar bodies exist within Scotland (the Scottish Medicines Consortium) and Wales (the All Wales Medicines 

Strategy Group).  Note there is overlap in the remits of NICE and AWMSG.  Northern Ireland does not have a 

specific HTA body, but tends to adopt the decisions of NICE. 
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different national health systems.109  Collaborative work so far has resulted in development 

of a ‘core’ HTA model110 111 and a toolkit for adapting HTA reports to other settings,112-114 a 

handbook on HTA capacity building, and a database of studies for additional data collection 

on new technologies.108 

The equivalent global body, the International Network of Agencies for Health Technology 

Assessment (INAHTA) comprises 53 member organisations from 29 countries (as at 2013).  It 

aims to minimise duplication of effort by disseminating summaries of technology 

assessments amongst its members and developing checklists of key HTA elements.  

Members also collaborate on a number of research projects investigating the impact of HTA, 

variations in findings, quality assurance for rapid reviews and education and training.115 116 

Approaches to health technology assessment and economic evaluation vary from country to 

country.  The German health care system is based on a Bismarckian compulsory social 

insurance scheme.  Two bodies are involved in the HTA process.  The Institut für Qualität 

und Wirtschaftlichkeit im Gesundheitzwesen (IQWiG) is the body that produces technology 

assessments which are then appraised by the Gemeinsame Bundesausschuss (G-BA). 

Prior to 2007, IQWiG had a remit to consider only the effectiveness of interventions.  

Following a change in the law that year the remit was broadened to cost-effectiveness too.  

The methods by which economic evaluations are to be conducted are broadly comparable to 

those undertaken by NICE except for some key differences.117  The primary analytic 

perspective is required to be statutory health insurees.  Thus the costs of treatments to the 

insurer plus any co-payments must be taken into account in any analysis.  On the outcomes 

side, IQWiG rejects the use of QALYs to make comparisons between broad disease areas on 

the basis of ethical and methodological concerns with utility elicitation techniques (namely 

the standard gamble and time trade off approaches).xxviii  They therefore limit all analyses to 

within-disease area comparisons.  Furthermore an economic evaluation is only undertaken 

following establishment of an additional benefit on at least one outcome measure.  Where 

an economic evaluation is conducted, IQWiG adopts an efficiency frontier approach where 

all treatment options are plotted on the cost-effectiveness plane.xxix  A new treatment must 

lie either on or beyond the efficient frontier in order to be approved at the manufacturer’s 

desired price. 

                                                           
xxviii IQWiG does not preclude the use of QALYs to make comparisons within a single disease area however. 

xxix By convention, IQWiG plots an effectiveness-cost plane, with costs on the X-axis and benefit on the Y, the 

reverse to convention in the UK. 
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The French health care system is, like the German system, based on social insurance.  One of 

two committees of the Haute Autorité de Santé (HAS) advises the ministry of health on 

whether a particular drug or device should be funded by the public system.  If approved, the 

Comité Économique des Produits de Santé (CEPS) negotiates the price with the 

manufacturers.  Finally, the Union Nationale des Caisses d’Assurance Maladie (UNCAM – the 

representative body of insurance companies) determines the level of reimbursement 

offered under their insurance schemes. 

HAS was given the remit to consider the cost-effectiveness of health care interventions 

under the Social Security Financing Act 2008.  The required form of analysis is either cost-

effectiveness or cost-utility analysis, with a preference for the latter with outcomes 

measured in QALYs based on results of the EQ5D or HUI3 instruments.90  Where a cost-

effectiveness analysis is conducted, outcomes are preferred to be reported in life years 

gained.  HAS is less prescriptive than NICE or IQWiG about the analytic perspective, requiring 

‘a collective perspective that is sufficiently broad to take into account all stakeholders 

concerned by the treatments studied, in the French health system’.90 

In Australia, the state healthcare system is known as Medicare, and based around a 

Beveridge-style system funded out of general taxation along the lines of the NHS.  The 

majority of healthcare costs are covered but patients are required to make co-payments for 

some services and pharmaceuticals.    The Pharmaceutical Benefits Advisory Committee was 

set up in 1954 to make recommendations to the Minister for Health and Ageing about which 

drugs should be available to Medicare patients through the Pharmaceutical Benefits Scheme 

(PBS).  Its remit has included assessing the cost-effectiveness of drugs since 1993, and was 

therefore probably the first state agency to do so.118 

As in the UK and France, the preferred form of analysis for PBAC submissions is a cost-utility 

analysis except where the proposed drug is demonstrated to be therapeutically equivalent 

to its comparator, in which case a cost-minimisation analysis is acceptable.119  Cost-

effectiveness, cost-consequences and cost-benefit analysis are also acceptable under certain 

conditions.  The preferred perspective of the analysis is societal, including costs borne “by 

patients, government, health insurance agencies and any other part of society”.119 
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In the USA, cost-effectiveness analysis is encompassed within the term ‘comparative 

effectiveness research’ (CER).xxx  There is no federal body in the US with the equivalent 

appraisal role of NICE, HAS, G-BA or PBAC, although insurance companies may consider the 

cost-effectiveness of treatments when deciding whether to include cover for them in their 

policies. 

1.6.2.1.6.2.1.6.2.1.6.2. Value of information analysis in health policyValue of information analysis in health policyValue of information analysis in health policyValue of information analysis in health policy    

I am not aware of any systematic uses of value of information to formally determine 

research priorities within the UK health sector.  However, NICE (and some other HTA bodies 

globally) have the option of ‘coverage with evidence development’123 where a treatment is 

awarded a provisional acceptance subject to further research commissioned specifically to 

reduce decision uncertainty.  Claxton and colleagues124 sought to establish what 

assessments are required to inform an ‘only in research’ (OIR) or ‘approval with research’ 

(AWR) decision.  They suggest an algorithm incorporating issues such as whether current 

evidence predicts an intervention to be cost-effective, whether there are significant 

irrecoverable costs associated with adoption, whether more research is worthwhile and if 

so, whether it is possible post-approval, whether other sources of uncertainty will resolve 

over time without formal research, whether the benefits of research outweigh the costs, and 

whether the benefits of approval outweigh the costs. 

VoI is an obvious analytic tool which can be used to answer the majority of those questions, 

but more informal, narrative techniques are usually used.  The potential use of VoI by NICE 

was previously examined in a pilot study in 2005.85  The same research group also explored 

its feasibility within the HTA programme in the UK.84 

The pilot on behalf of NICE85 examined the use of the technique with six case studies 

covering screening programmes and diagnostics, and drugs for both acute and chronic 

conditions.  The scenario was that VoI analyses would be conducted following submission of 

technology assessment reports.  As each technology assessment was already based on a 

probabilistic decision model, adapting them for use in VoI was relatively straightforward, 

and the authors were well able to conduct the analyses within the required timeframe (four 

weeks). 

                                                           
xxx Precise definitions of CER vary: the American Institute of Medicine120 definition makes no mention of cost whilst 

the American College of Physician’s121 includes relative effectiveness, safety and cost in its definition (both cited in 
122). 
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The key limitations were not with the principles of VoI themselves, but rather the framing of 

the initial decision question, particularly the inclusion of all relevant alternatives.  The 

authors point out that whilst in the cases considered exclusion of relevant alternatives may 

not affect the adoption decision,xxxi it has the potential to bias substantially the value of 

information and research recommendations.  Other issues the authors highlighted included 

appropriate handling of bias from incorporation of evidence from non-randomised study 

designs, inclusion of ‘unrelated events’, appropriate specification of priors in the absence of 

evidence (requiring elicitation from experts), exploring uncertainty associated with 

alternative decision model structures and resource constraints limiting the ability to 

systematically search and synthesise evidence on all model parameters, not just the 

treatment effect. 

Notwithstanding the comments above, the authors did raise some issues with Value of 

Information analysis.  They identified issues over estimating the appropriate population who 

will benefit from the information, estimating the value of information for correlated 

parameters, for patient subgroups and incorporating a ‘value of implementation’ into the 

analysis too.  These limitations are discussed in detail in Chapter 3.xxxii 

The second pilot explored the use of VoI as part of the NHS Health Technology Assessment 

research programme.84  Three case studies were considered: a screening topic (also 

considered in the report for NICE85), and treatments for one chronic and one acute 

condition.  Three core tasks were required for each: 1) construction of a decision model, 2) 

probabilistic sensitivity analysis and 3) value of information analysis.  The authors reported 

that they were able to complete the analyses within the required timeframe (six person-

weeks of work spread over 10-12 weeks of time) such that recommendations could be made 

to the HTA Board as to where the best returns from research in those disease areas were 

likely to be. 

The authors recommended a need for clear definition of the research problem at the outset, 

the need to ‘down-weight’ evidence of an inferior quality within a model (an issue raised in 

the NICE analysis too),85 and suggested the VoI approach could be considered alongside the 

‘vignette’ approach currently used. 

                                                           
xxxi In general, exclusion of relevant alternatives can lead to erroneous adoption decisions (see Section 1.3.2) 
xxxii I do not consider the Value of Implementation in this thesis.  This is a technique for valuing the return on efforts 
to fully implement current best practice, rather than the return on research efforts: it may be more efficient simply 
to disseminate current information and encourage uptake of best practice rather than reduce decision uncertainty.  
Both can be considered simultaneously.125 
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Despite these pilots, neither NICE nor the HTA commissioning board formally adopted VoI to 

assist their research prioritisation, both describing it as ‘interesting and potentially useful’.126  

A major barrier to implementation appears to have been lack of comprehension of the 

technique: most of the respective board members were unfamiliar with the principles of 

cost-effectiveness, probabilistic analysis and evidence synthesis, let alone value of 

information.  Board members were thus understandably reluctant to adopt a technique with 

which they were unfamiliar.  A further problem however may be the separation of the 

research and adoption decisions:126 methods for the adoption decision have developed 

considerably whilst those for the research decision still lack transparency.  Whilst 

conceptually separate decisions, they are intrinsically linked (see Section  1.5.2), and should 

be made simultaneously.  This would require a considerable reorganisation of the current 

R&D management structure in the NHS: If NICE makes the adoption decisions, it should also 

be the principle decision maker for allocation of research funds too. 
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1.7.1.7.1.7.1.7.     Statement of study problemStatement of study problemStatement of study problemStatement of study problem    

In Sections  1.2 to  1.5 I outlined the entire decision making framework within which this 

thesis is set.  Briefly, the entire approach to research into, and adoption of, new 

technologies should be seen as an iterative process whereby all existing evidence relevant to 

the decision question is identified and synthesised via systematic review into a decision 

model.  The adoption decision should be based on the point estimate expected incremental 

net benefit, irrespective of uncertainty, and the uncertainty used to estimate the expected 

return from further research via VoI analysis.  Once new evidence is gathered, the 

systematic review and decision model should be updated and the adoption and research 

decisions revisited.  

Section  1.6 provided a brief overview of how elements of the framework have been 

incorporated into decision making processes in a number of countries.   

The purpose of this section is to return to the original question of the thesis and to outline a 

number of pertinent issues to be explored in the following chapters. 

The question of this thesis is to consider how much detail is required in economic 

evaluations alongside clinical trials to optimise evidence for decision making. 

By ‘level of detail’ I refer to the different approaches to costing from ‘top-down’ gross 

costing to ‘bottom-up’ micro costing.  These are explained in detail below.  By ‘optimising 

evidence for decision making’ I mean the level of detail that will maximise the expected 

return on investment in research.  Value of information analysis is a technique compatible 

with this objective (Section  1.4). 

1.7.1.1.7.1.1.7.1.1.7.1. Level of detail in costing in an economic evaluation.Level of detail in costing in an economic evaluation.Level of detail in costing in an economic evaluation.Level of detail in costing in an economic evaluation.    

Unlike most clinical outcome measures, total cost per patient is a composite outcome 

measure of a number of different components.  Section  1.3.4 described some approaches to 

deciding which components should be included.  The general approach is to include all those 

items thought relevant to the decision question.  Items common to both arms of a study can 

be safely excluded as they will cancel out in the incremental analysis, thus collecting and 

including those data is a wasted effort.  I also mentioned issues relating to protocol driven 

costs and the merits of inclusion and exclusion. 

However, each component can typically be disaggregated into a number of smaller and 

smaller sub-components.  At one extreme, a micro-costing (or ‘bottom-up’) approach is 

possible, where every activity and consumable is measured and recorded.  For example, the 
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cost of a hospital admission for a surgical procedure can be estimated by recording staff 

time, units of blood, anaesthetics and other drugs, swabs and other consumables, time 

spent in theatre, ICU and ward, nurse and medic time attending to the patient prior to 

discharge, plus appropriate allocation of overheads and capital costs.  At the opposite 

extreme, the cost for the entire episode can be approximated based on national average 

costs, such as the NHS Reference Costs127 (top-down or gross-costing). 

The appropriate level of detail is driven by two key issues, firstly the study question itself70 

but also the cost of data collection.  A comparison of two surgical techniques will require 

micro-costing of the relevant procedures, whereas hospital admissions due to side effects 

from drug treatments may be sufficiently approximated with a per-diem or per-admission 

unit cost.  A recent review of the methodological issues in costing health services128 

observed that a costing exercise should itself be cost-effective, based on detailed, 

comprehensive and representative resource use and unit cost data, be accurate and precise, 

and be at minimal risk of potential errors and biases (such as measurement and valuation 

bias, case-mix and service mix bias and site selection bias).129-132  Critically, the authors128 

point out that these objectives may compete against one another: a cost analysis needs to 

be provided subject to the research resources available.  A micro-costing approach may be 

the most theoretically robust method, but it may not be practical or feasible in all cases, and 

a less precise costing method may be substituted.  However, this ‘inferior’ costing method 

may lead to a biased estimate of cost and thus incremental net benefit, therefore increasing 

the risk of drawing the wrong conclusion.  For pragmatic reasons, most economic 

evaluations employ a mixture of the two approaches.52   

Thus this thesis aims to explore whether, given two (or more) different approaches to 

estimating (some component of) cost per patient in an economic evaluation alongside a 

clinical trial, it is possible to estimate the incremental value of the ‘superior’ process and 

compare this with the incremental cost to judge whether it is worth collecting data using the 

superior process.  Extending this idea a stage further, it may be more efficient to collect a 

proportion of the data using one process and the remainder with the other. 

In the next chapter, I review the existing literature on efficiency of data collection 

approaches.  I firstly explore whether value of information analysis or any other economics 

based methodxxxiii has been used to help inform the design of clinical trials (beyond sample 

                                                           
xxxiii Defined as any approach that takes into account both the expected cost and benefits of different design 

choices. 
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size estimation).  Secondly I review the literature on the cost of data collection (where 

possible focusing on the cost of resource use data collection).  Finally I review the data 

comparing different approaches to gathering the same resource use data. 

In Chapter 3 I explore the methods of Value of Information further, exploring recent 

theoretical developments in the area and criticising the different approaches to calculation.  

I then focus on a particular practical limitation of such analyses where correlations between 

input parameters in a decision model are unknown, and frequently assumed zero.  This may 

lead to a biased estimate of the variance of incremental net benefit and thus biased 

estimates of the value of information. 

In Chapter 4 I build on the current applications of value of information by extending the 

principles to the comparison of different data collection processes in order to answer the 

question of this thesis.  This has been explored theoretically4 but I am not aware of any 

applications of this technique in the health care field to inform the design of clinical trialsxxxiv 

or indeed in any other field.  Using an example dataset, I show how the technique can be 

used to assist decisions as to whether it is preferable to collect exact drug cost data on every 

patient (including brand, dose and duration of every prescription item), or whether an 

aggregate cost per patient based on class of medications will suffice. 

Finally, in Chapter 5 I discuss the strengths and weaknesses of the entire approach, 

implications for practice and potential avenues for future research. 

                                                           
xxxiv Although Shavit and colleagues20 explored a related technique with similarities to the payback approach (see 

Chapter 2). 
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2. Literature review 

2.1.2.1.2.1.2.1.     IntroductionIntroductionIntroductionIntroduction    

Chapter one provided an introduction and background to this thesis, in particular explaining the 

principles of economic evaluation and value of information analysis.  Before exploring the suitability 

of value of information analysis to address the study question in more detail, I firstly review the 

literature to answer the following questions: 

1. Have value of information analysis or similar economics-based prioritisation processes been 

used to inform the design of clinical trials other than for sample size estimation? 

2. What evidence is there concerning the cost of collecting resource use data alongside clinical 

trials and/or the cost of conducting clinical trials themselves? 

3. What evidence is there comparing alternative approaches to collecting and/or measuring 

the same resource use data? 

The methods section explains the approach to each of the three reviews.  The results of each are 

then presented, followed by a discussion of the issues raised.     
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2.2.2.2.2.2.2.2.     MethodMethodMethodMethod    

Literature searches based on key terms for methodological studies can be of very low specificity, 

returning many thousands of irrelevant hits.  An alternative approach is a ‘citation pearl growing’ 

method133 (cited in Dolan et al. 200560) where key ‘core’ manuscripts are identified.  Searching then 

continues by review of title and then abstract of articles in reference lists.  The reference lists of any 

subsequently identified articles are also searched and so on until no further references are 

identified.  The search then proceeds in the opposite direction where manuscripts citing the 

manuscripts so far identified are reviewed by title and abstract.  This is possible using the forward 

citation feature of Web of Knowledge.134  Citations of those citations are reviewed and so on until no 

further manuscripts are identified.  The search is then repeated in the backwards direction (i.e. 

search of reference lists) on the newly identified manuscripts, then forwards on any further papers 

identified and so on until no new manuscripts are identified. 

For a methodological review it is difficult to define tight inclusion and exclusion criteria a priori.  The 

general inclusion criteria for each review are defined in each subsection below.  Citations of articles 

not indexed by Web of Knowledge (WoK) could not be determined therefore linkage was limited to 

backwards searches of these articles. 

2.2.1.2.2.1.2.2.1.2.2.1. Use of VoI or similar techniques to inform study design.Use of VoI or similar techniques to inform study design.Use of VoI or similar techniques to inform study design.Use of VoI or similar techniques to inform study design.    

Inclusion criteria: Any study reporting the use of some concept of efficiency or cost-effectiveness in 

the design of a clinical trial. 

Exclusion criteria: Any study reporting some concept of efficiency or cost-effectiveness exclusively to 

inform sample size at the outset of a study.xxxv 

Core manuscripts: At time of writing I was aware of one article (Shavit et al. 200720) employing an 

economics-based approach to informing the design of a study.  In order to broaden the base for the 

core articles, I conducted a scoping search using key terms from this paper and words from the title 

and abstract.  This yielded a further four potentially relevant articles.   

The pearl growing technique yielded an additional five potentially relevant studies.  Following review 

of the full text, seven of these ten articles were considered suitable for inclusion in the review.  After 

conclusion of the review, a new systematic review of the methods and applications of value of 

information analysis was subsequently identified and included in this section, thus eight studies 

were included (Figure  2-1). 

 

                                                           
xxxv Studies using economics to inform sequential designs are included 
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Figure  2-1: Flowchart, review 1 

 

 

 

     

Core refs 

1 

Pearl growing 

5 

Pubmed 

Keyword search 

4 

Excluded 

3 

Included 

8 

Additional 

review 

1 



 

 69 

2.2.2.2.2.2.2.2.2.2.2.2. The Cost of collecting resource use data alongside The Cost of collecting resource use data alongside The Cost of collecting resource use data alongside The Cost of collecting resource use data alongside clinical trials and/or the cost of clinical trials clinical trials and/or the cost of clinical trials clinical trials and/or the cost of clinical trials clinical trials and/or the cost of clinical trials 

themselves.themselves.themselves.themselves.    

Inclusion criteria:  any study reporting or commenting on costs of research within the context of a 

clinical trial. 

Exclusion criteria: None 

Core manuscripts: I identified seven potentially relevant studies from my own sources.   

The pearl growing technique identified a further 29 studies for inclusion.  Review of full text led to a 

total of 18 studies considered suitable for inclusion in this review (Figure  2-2). 

Figure  2-2: Flowchart, review 2 
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2.2.3.2.2.3.2.2.3.2.2.3. Comparisons of alternative data collection techniquesComparisons of alternative data collection techniquesComparisons of alternative data collection techniquesComparisons of alternative data collection techniques    

Inclusion criteria: Any study comparing two or more approaches to collecting the same resource use 

data or data from which resource use could be estimated or inferred, for example self-report of 

acute events such as MI or fracture.  Studies could be RCTs, sub-analyses conducted within RCTs or 

free standing prospective or retrospective analyses. 

Exclusion criteria: Studies not reporting comparisons of alternative data collection techniques.  

Studies published prior to 1990. 

Core manuscripts: I identified 21 source studies from my library which potentially fulfilled the 

inclusion criteria.   

During searching using the ‘pearl growing’ technique, it became apparent that there were a very 

large number of potentially valid studies.  Therefore searches were limited to a time period of 1990- 

present (2013).  Even then the search yielded 142 potentially relevant manuscripts.  A full appraisal 

and meta-analysis of each of these is beyond the scope of this thesis, thus the titles and abstracts 

were reviewed and those chosen for inclusion were a) systematic reviews of comparisons of data 

collection techniques and b) representative examples of comparisons of data collection methods in 

specific areas and of particular interest.  Seventeen studies were therefore included in the review 

(Figure 2-3). 
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2.3.2.3.2.3.2.3.     ResultsResultsResultsResults    

2.3.1.2.3.1.2.3.1.2.3.1. Use of VoI or similar techniques to inform study design.Use of VoI or similar techniques to inform study design.Use of VoI or similar techniques to inform study design.Use of VoI or similar techniques to inform study design.    

A total of eight manuscripts were identified.  These included one systematic review of methods and 

applications,135 and nine reporting to use some concept of economics to assist in the design of a 

clinical trial (other than sample size determination) including approaches to reducing the cost of 

enrolling patients into the trial,136 structural decisions around trial design20 137 (e.g. sequential trial 

designs,138 139 and nested case control vs full cohort analysis140), and using routine versus de novo 

data.141  

Steuten et al.135 undertook a systematic review of methods and applications of value of information 

analysis, grouping the methodological literature into four categories: (1) rationale and basic 

principles of Bayesian decision analysis, (2) the potential role of VoI in the regulatory process for 

health technologies, (3) development or optimisation of mathematical methods and (4) additional 

uses and adaptations to the core VoI methods.  The latter category is of particular interest to this 

thesis.  However, of the twelve studies they identify, only one uses VoI to specifically inform the 

design of a clinical trial (other than sample size), and is reviewed below (Griffin et al.139).xxxvi 

Moons et al.136 describe an approach to reduce the cost of recruiting patients into a clinical trial.  

Depending on the nature of a trial, it may be more appropriate to spread required diagnostic 

assessments over several visits.  For example some measures such as blood pressure or cholesterol 

levels may require repeat testing due to day to day variability within a particular patient to minimise 

confounding by regression to the mean.  Furthermore, beginning with simple non-invasive tests 

before following up with more expensive and invasive diagnostics at a later date may ‘weed out’ 

those not eligible for the study prior to exposure to invasive testing, hence reducing exposure to 

these tests and also reducing cost.  Moons et al. describe their approach to obtaining the maximum 

number of patients randomised with the minimum number of screening examinations, illustrated 

with the example of a large trial for a cholesterol lowering drug.   

The assessment for inclusion in the trial comprised up to five visits spaced one month apart at which 

cholesterol was measured as well as a battery of questionnaires ranging from a short screening 

questionnaire at visit 1 to a more detailed one including informed consent at visit 4.  Using data on 

2200 out of a cohort of 6544 men who had completed the selection period, the authors generated a 

multivariable logistic model to predict inclusion at each screening visit.  Cut-off probabilities were 

                                                           
xxxvi The others concern the value of implementation,125 142 143 (a concept not addressed in this thesis: see discussion of 

Chapter 5), option value of delaying a decision,144  allocation of research funds,145 industry perspectives,146-148 calculation of 

EVPPI / EVPSI,149 criticism of CEACs in relation to VoI,150 and analysis using the ‘cost-disutility’ plane.151 
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assigned according to the values which maximised the area under the ROC curve.  Using knowledge 

of the cost of each screening visit, they then estimated the cost per patient successfully randomised 

in the remaining 4344 potential enrolees and compared this with the predicted cost per patient 

successfully randomised using the prediction model to exclude potential enrolees earlier in the 

screening process.  In this case, the model was predicted to reduce trial recruitment costs by $52 per 

patient randomised (3.6%). 

The authors discussed whether their approach was likely to compromise either the internal or 

external validity of the resulting study.  As the selection is conducted prior to randomisation, there 

should be no threat to the internal validity.  However it is conceivable for the prediction model to 

change the resulting population that finally gets entered into the trial.  The authors tested for this in 

their own application but found no evidence of a shift in baseline characteristics.  In conclusion, 

using data from the first patients screened for inclusion to a clinical trial to predict factors associated 

with subsequent dropout, which are then used as a further screening tool for subsequent patients 

has the potential to reduce the cost per patient successfully enrolled in a trial. 

An editorial by Falagas and Bliziotis in 2007137 made the case that whilst some research questions 

require specific study designs, other questions can be answered by a number of different 

approaches.  Whilst there have been comparisons of the outcomes of different designs addressing 

the same question, at the time of writing only two (Hak et al.140 and Shavit et al.20; see below) 

explicitly considered the cost-effectiveness of one design compared with another.  Falagas & 

Bliziotis137 argue that a well-designed study may fail to answer its question due to being under-

powered as a result of resource limitations.  Therefore consideration of the cost-effectiveness of 

alternative designs is essential.  Failure to do so risks inappropriate allocation of research resources 

ultimately slowing down clinical progress. 

As mentioned by Falagas and Bliziotis,137 Hak et al. in 2004140 considered the cost-effectiveness of 

two alternative study designs to estimate the risk of hospitalisation due to influenza or pneumonia 

or death in an elderly population receiving influenza vaccination.  They did not explicitly estimate the 

costs and benefits of the two study designs.  Instead their a priori position was that a nested case-

control study was less expensive than a full cohort study.  Their purpose therefore was to determine 

whether a case-control study nested within the full cohort study would provide similar estimates of 

the effectiveness of vaccination.  The probability of an outcome (hospitalisation or death) was 

estimated from the data (either an entire cohort of 20,000 elderly persons followed up over six ‘flu 

seasons or subset comprising the nested case-control).  The coefficient against vaccination status on 

a logistic regression of outcomes (hospitalisation or death) was taken as the treatment effect. 



 

 73 

The authors found that the predicted results did not differ substantially and therefore concluded 

that a nested case-control study may be a cost-effective alternative to an entire cohort analysis. 

Publishing three years after Hak et al.140, Shavit and colleagues20 developed a process to choose 

between alternative study designs (namely prospective RCT vs retrospective cohort study) to collect 

additional evidence to reduce decision uncertainty.  The authors argue that the key difference 

between different study designs is the degree of bias inherent in their approach.  By quantifying the 

bias, the estimated treatment effect yielded from different studies can be estimated.  The expected 

opportunity loss of the adoption decision plus the cost of the trial itself allows the total cost of the 

different study designs to be estimated.  The ‘net information benefit’ is calculated by subtracting 

the net benefit of the retrospective study design from that of an RCT. 

In an hypothetical example, the authors present a situation where value of information analysis has 

been used to determine the optimal sample size of an RCT to reduce decision uncertainty around 

whether a new treatment is preferred (i.e. is cost-effective / yields a positive incremental net 

benefit) compared with current treatment.  An alternative to the RCT is a retrospective database 

analysis of a national disease registry.  Five potential sources of ‘inherent bias’ are identified 

(representativeness of the sample, selection bias, follow-up period, ‘real-life reflection’, and 

accuracy of records) and their likely impact on the observed treatment effect expressed as a normal 

distribution representing the percentage deviation of the sampled estimate from the true value.  

Monte Carlo simulation was used to generate an overall mean and distribution of bias from each 

study type. 

The next steps appear to comprise predicting the results of the two study designs, then subtracting 

the predicted effectiveness of the superior intervention yielded from the RCT by the predicted 

effectiveness estimate of the superior intervention yielded from the retrospective study.  This yields 

the expected incremental health gain of one study design over the other.   

The incremental cost of one study design compared with the other is estimated likewise: the total 

cost of each is the expected loss due to uncertainty (estimated via the loss function on the prior: see 

Figure 1-1 in Section 1.4.1) plus the cost of the relevant study itself.  Dividing the incremental cost by 

the incremental effect of one study design over the other estimates the extra cost for every extra 

unit of outcome, or rearranged into an incremental net ‘information benefit’ (directly analogous to 

calculating an ICER and incremental net benefit as described in Section 1.3.8).  If this is positive the 

RCT should be preferred, if negative the retrospective study is preferred. 
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A sequential trial design is one where the data are analysed after the results of every patient are 

measured (or after every group of n patients, in which case it is known as a group sequential 

design).152  As such it offers the opportunity to assess stopping rules thus minimising unnecessary 

exposure of patients to the inferior treatment and reducing the total cost of the trial.  They 

therefore provide an obvious means for improving the efficiency of clinical trials.   

Thatch & Fisher138 describe an approach to estimation of the optimal sample size for a two-stage 

group sequential trial with a focus on minimising the cost.  Importantly, they define the cost of 

different sample sizes as not only the direct cost of the trial but also “the gain or loss associated with 

the outcome”.  Their approach begins with a standard power calculation based around prior belief of 

the treatment effect.  After completion of each stage of the trial the prior belief is updated with the 

data from the trial to form the posterior belief.  This then becomes the new prior to estimate the 

optimal sample size for the next stage. 

The authors provide a conceptual and worked example from the perspective of a drug company, 

where the relevant costs are the cost of sampling and the financial gain or loss to company profits as 

a consequence of a positive or negative result.  The approach is to find the optimal sample size for 

each stage of the sequential trial that maximises the probability of reaching a statistically significant 

result for the minimal cost.     

Griffin et al.139 explore the implications of sequential trial designs within a formal value of 

information analytic framework.  They observe that some input parameters within a decision 

analysis may have a low EVPPI when analysed individually, but have a higher EVPPI when considered 

as part of a sequential trial design.  Furthermore, collecting information about one or a group of 

parameters will change the EVPPI of the remaining parameter(s).  Therefore the overall expected 

value of a sequence of research studies should be considered as an alternative strategy which may 

be more efficient than considering individual parameters in isolation. 

Given two parameters of interest, Griffin et al.139 state that there are four possible research 

strategies: no research, parameter 1 alone, parameter 2 alone or parameter 1 and 2.  With a 

sequential design, a further two options arise: research parameter 1 then 2 or 2 then 1.  As the 

number of parameters increases the number of possible strategies increases exponentially, thus 

making for a potentially very computationally expensive procedure if the analysis is conducted by 

simulation.  Indeed the authors do not present a worked example in their manuscript.  However, an 

efficient solution may be calculable by assuming (normal) parametric distributions for the 

parameters as described in Chapter 1.  The value of information of the four strategies comparing 

simultaneous collection of data can be analysed in one equation determining the optimal sample 
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sizes for each parameter within a single study: where the optimal sample size is zero, then no 

research should be conducted on that parameter.  Whilst complicated analytically, estimation of the 

optimal sample sizes for varying sequential designs should be calculable with minimal computer 

processing time. 

Cohen and colleagues141 undertook an analysis of the marginal valuation a mock grants committee 

placed on de novo data collected alongside an RCT compared with data extracted from routine 

sources.  Whilst Shavit et al.20 focused on eliciting the expected bias associated with different study 

designs, Cohen and colleagues attempted to elicit the intrinsic valuation of data from alternative 

sources using two methods (willingness to pay [WTP] and implied values [IV]) from a mock grants 

committee.  The authors began with an exercise in which four clinical questions were addressed with 

four RCTs.  They then devised approaches to estimate the outcome measures used in the RCTs with 

routine data.  In each case the RCTs were substantially more expensive than the analyses conducted 

using routinely available data, but the results were inferior (for example some outcome measures 

observed in the trials could not be estimated from routine data, data completeness varied from site 

to site and some cost summaries comprised different components compared with their RCT-based 

counterparts). 

Thus the incremental cost and ‘quality’ of RCTs are in the NE quadrant of the cost-effectiveness 

plane when compared with analyses based on routine data.  The authors therefore set about 

determining the mock grant committee’s value of the ‘better quality’ RCT data over the routine 

using the two methods (WTP and IV).  The committee was able to generate results using both 

methods, with higher values measured for the studies using the ‘designed’ rather than ‘routine’ data 

sources. 

2.3.2.2.3.2.2.3.2.2.3.2. The Cost of The Cost of The Cost of The Cost of collecting resource use data alongside clinical trials and/or the cost of clinical trials collecting resource use data alongside clinical trials and/or the cost of clinical trials collecting resource use data alongside clinical trials and/or the cost of clinical trials collecting resource use data alongside clinical trials and/or the cost of clinical trials 

themselves.themselves.themselves.themselves.    

I was not able to identify any studies exploring the cost of resource use data collection per se.  

Within the 18 included studies, nine reported some aspect of the cost of conducting research, 

particularly with a view to comparing the treatment costs of trial enrolees with non-trial enrolees,153-

161 whilst the remaining nine explored methods of reducing the cost of a trial with minimal impact on 

quality of the outcomes. 162-170 

Descriptions of the cost of conducting resDescriptions of the cost of conducting resDescriptions of the cost of conducting resDescriptions of the cost of conducting researchearchearchearch    

In the US, there is evidence that insurers are reluctant to permit their policy holders to take part in 

clinical trials due a perception that such patients are more expensive to treat.  A number of studies 
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have explored whether patients enrolled in clinical trials are more costly than those receiving 

routine care.   

For example, Evans et al.153 compared the cost of two cancer drug trials with the routine treatment 

patients would receive. Patients in one of the trials cost more than routine treatment, but this was 

due to increased survival and hence administration of more cycles of treatment, whilst in the other 

the cost per patient was lower. Kilgore and Goldman154 found that participation in US cancer clinical 

trials was associated with “a modest increase in prescription drug utilisation and costs” but did not 

find evidence to suggest an increase in out of pocket expenditures.  Bennett et al.155 in a small (n=70) 

pilot study observed similar 6-month treatment costs for cancer patients enrolled in the treatment 

arm of a trial compared with controls, whilst a 5-year follow-up of 61 patients enrolled in phase II or 

III cancer trials compared with 61 matched controls156 suggested a modest increase in costs 

(maximum 10%) in trial enrolees, concluding that “clinical protocols may add relatively little to [the 

already high cost of treating cancer].”156  A larger study of 264 patients enrolled in a trial of an acute 

MI treatment protocol compared with 335 matched controls did not find any significant difference in 

initial hospitalisation cost.157  Finally, in HIV medicine, an examination of drug costs prior to, during 

and following enrolment in clinical trials found that drug costs were lower during the trial, but rose 

on conclusion of the study.158   

In conclusion, there is little evidence to suggest that patients enrolled in clinical trials systematically 

incur higher treatment costs than those undergoing routine care, although the generalizability of 

these results is unclear and costs will vary on a case by case basis.  However, these studies only 

consider any additional treatment costs of patients (e.g. additional monitoring or more intensive 

drug regimens).  They do not include any research protocol driven costs, specifically researcher time 

to collect, record and analyse data.  Writing in 2003, Emanuel et al.159 sought to estimate the cost to 

a centre of enrolling and following up a patient according to a mock trial protocol.  They estimated 

the cost of a trial involving 20 subjects with 17 office visits each would cost approximately $6,000 

per patient, excluding overhead costs, of which one third is non-clinical costs (although an 

accompanying editorial suspected this $2000 was an underestimate160).  A contemporaneous 

Canadian study (Roche et al. 2002161) collected timing data from 83 clinical research associates 

(CRAs) on 41 distinct research-related tasks.  Significant predictors of time input included phase of 

the clinical study and sponsor, with early phase and industry sponsorship associated with higher 

time input from CRAs. 
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Methods to reduce the cost of clinical trialsMethods to reduce the cost of clinical trialsMethods to reduce the cost of clinical trialsMethods to reduce the cost of clinical trials    

There is some concern in the literature about the cost of clinical trials and the need to explore 

options for minimising cost.  In a 2010 editorial, Sargent et al.162 point out that cancer trials are 

increasing in complexity and hence cost, and there is thus a need to “distinguish between necessary 

complexity… [and] unnecessary complexity [such as] excessive adverse event reporting, on site 

monitoring and eligibility criteria”.  Multinational trials add another dimension of complexity and 

cost to the mix.  Demol & Weihrauch163 argue that due to differences in health care systems, medical 

cultures and treatment strategies, enrolling centres in different countries is more costly than 

enrolling the equivalent number of centres in just one country.  For such a trial to succeed requires 

“a well-coordinated multidisciplinary team and an effective project management.”163 

Urban et al.164 describe how the predicted cost of a very large randomised controlled trial (the 

women’s health trial; WHT) examining the impact of reduced fat intake on the risk of breast cancer 

with 10 year follow-up was reduced from $200m to $95m by estimating research cost as a function 

of various features of trial design.  Approaches to reducing cost were then explored. 

Five design parameters were identified: a) the sample size, b) proportion of the sample allocated to 

intervention, the number of women c) initially contacted and d) subsequently screened, and e) the 

number of clinical centres involved in recruitment and follow-up of patients.  Five components of 

cost were also identified, broadly relating to the five parameters, comprising a) establishing and 

maintaining each centre, b) recruiting participants, c) screening d) administering the intervention 

and e) follow-up of participants.  Overall costs were estimated based on a consensus approach 

(adapted Delphi), and divided into fixed costs, recruitment costs, screening costs, variable 

intervention costs and variable research costs. 

From these estimates, the authors searched for the most efficient trial design that minimised 

research cost whilst maintaining 80% power for the trial.  Examples of changes that were made 

following the cost analysis included seeking out bulk contracts for printing and mailing of invitation 

letters, use of less expensive staff grades for routine operations such as telephone calls to follow up 

contacts, conducting initial follow-ups as a group session, eliminating two follow-up visits, and 

analysing only a sample of rather than all dietary records provided by participants.  They conclude by 

stating that their analysis cost less than 1% of the total direct costs of the trial, yet halved the overall 

cost. 

Thornquist et al.165 adopted the same approach to minimise the cost of another large scale 

prevention trial (Carotene and Retinol Efficacy Trial; CARET), measuring the effect of these two 

compounds on incidence of lung cancer in two high risk populations (asbestos-exposed workers and 
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heavy smokers).  The design was a placebo-controlled RCT of six years follow-up in approximately 

18,000 individuals. 

Three issues arose whilst the trial was underway.  Firstly, in order to achieve the target person-years 

of exposure, the researchers discussed whether to increase the follow-up time with the currently 

recruited patients or to open a new trial centre and enrol more patients.  Secondly, given a decision 

to open a new centre, the timing of its opening needed to be determined, and finally, throughout 

the trial, there was a need to improve adherence of patients to the comparator treatments. 

A cost function was devised using the same methods as Urban et al.164  Four alternative designs, a 

base case and three alternatives incorporating the three issues were then costed, and the predicted 

outcomes estimated.  The authors estimated both the total costs of each of the options and also the 

expected outcomes (in terms of person-years of follow-up and (expected) number of outcomes (lung 

cancer cases and death) observed).  They report that extending the follow-up of existing patients 

instead of opening up a new study centre would be less expensive, but according to the data 

reported, would lead to a lower overall person-years exposure.  Due to the make-up of the 

population though, a higher number of cases of lung cancer and deaths would be expected.  In their 

report however, the authors concentrate solely on cost without mentioning the difference in 

outcomes observed (the data themselves are reported in a table).  They state that ultimately, whilst 

“the cost analysis was informative[, it] did not drive the decision”.  Interestingly the difference in 

outcomes did not drive the decision either, instead the authors explain that extending the study was 

considered to be too much to ask participants, and that opening a new study centre would act as an 

‘insurance policy’ reducing the risk of failure to recruit sufficient participants. 

The decisions analysed in the Urban164 and Thornquist165 articles are picked up by Allison et al.169 

who describe methods of study design that consider statistical power and cost simultaneously, 

principally by introducing a budget constraint and maximising the power subject to the constraint 

and vice versa (minimising the cost subject to a given power).  Approaches they consider include 

selecting optimal cut-points in screening tests; optimal allocation between different treatment arms; 

choosing between increasing the sample size and replicating measurements on existing subjects and 

using covariates as explanatory factors. 

They conclude that the approaches may have application in a variety of settings, depending on the 

research questions.  An area they briefly mention is ‘measurement quality’, the example they cite 

being the use of more highly trained raters or observers (e.g. interviewers to elicit data).  They 
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suggest that ‘better quality’ (and more expensive) data may lead to an increase in statistical power 

for a given sample size (and thus be cost-neutralxxxvii).  

More recently in 2005 Eisenstein et al.166 managed to reduce total predicted costs of two 

cardiovascular trials by over 40% by modelling costs under a number of assumptions and performing 

sensitivity analysis (or ‘stress testing’), principally focusing on reducing management complexities.  

Similarly in 2008, the same lead author167 sought to review current practices in clinical trials and to 

identify areas where costs could be reduced without compromising scientific validity.  The authors 

applied the principles to a proposed ‘mega-trial’ with a predicted cost of $427m comprising 20,000 

patients at 1,000 sites.  Introduction of electronic data capture and changes to proposed site 

management structure led to a 59% reduction in predicted trial cost, potentially rising to 90% if ”an 

even more streamlined trial design than has typically been considered for regulatory submissions in 

the past” was adopted. 

Where trials are struggling to recruit, increasing the number of subjects allocated to the treatment 

arm of a trial may increase interest in a study and hence recruitment due to a prior perception 

amongst the public that the treatment arm will be more beneficial.  However, such a tactic requires 

a larger overall sample size to maintain the same statistical power with consequent impacts on 

recruitment time and trial cost.  Vozdolska et al.168 explored the impact of alternative allocation 

ratios on statistical power and cost of recruitment: the unequal allocation between arms requires a 

greater overall number of participants, which of course may take longer and cost more to enrol.  

Investigating a number of example scenarios, they find that if allocation between arms is on a 1.5:1 

ratio, recruitment is time neutral only if the recruitment rate increases by at least 4%.  Where 

patients are allocated to arms on a 2:1 ratio, the recruitment rate needs to rise by 12% in order not 

to extend the recruitment period.  However the requirements for cost-neutrality are much higher, 

where a 13% and 47% increase in recruitment rate are needed under each scenario respectively.  

The authors recommend that such a tactic should only be considered where there is clear evidence 

that unequal allocation will increase recruitment rates. 

Finally, an alternative approach to conducting clinical trials is presented by Vickers & Scardino.170  

Their proposal is to integrate randomised trials into routine clinical care, based on the principle that 

“the clinical experience of the patient and doctor should be indistinguishable from routine care, 

whether or not the patient is randomised.”170  They give a number of examples of where their 

technique could be applied, which may well reduce the cost of recruiting patients to a study, 

                                                           
xxxvii The authors use the phrase ‘situations in which power and costs can be optimised’. 
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although the main drivers of this appear to be the use of electronic data capture and integration of 

medical records databases with research databases. 

2.3.3.2.3.3.2.3.3.2.3.3. ComComComComparisons of alternative data collection techniquesparisons of alternative data collection techniquesparisons of alternative data collection techniquesparisons of alternative data collection techniques    

As stated in the methods, over 100 potentially relevant manuscripts were identified comparing 

alternative data collection techniques.  The included sample comprises six systematic and other 

reviews171-176 and 11 primary studies considered to be of specific interest and relevance to this 

thesis.55 177-186 

Systematic reviewsSystematic reviewsSystematic reviewsSystematic reviews    

A total of six reviews were identified including two on the accuracy of self-reported history of cancer 

screening tests,172 173 three of self-reported health service use in general,171 174 176 and one studying 

the effect of questionnaire design on recall of pharmacological treatments.175  It is notable that none 

of these reviews explicitly considered the costs of the alternative methods, most simply stating as 

fact that data collection is an expensive process and self-report may be a convenient alternative to 

other more systematic approaches. 

Rauscher and colleagues173 undertook a meta-analysis of the accuracy of self-reported cancer 

screening histories, calculating the sensitivity and specificity for self-reported history of 

mammography, clinical breast exam (CBE), Pap smear, prostate specific antigen (PSA), digital rectal 

exam (DRE), faecal occult blood test (FOBT) and colorectal endoscopy compared with ‘documented 

screening history’.  The literature search covered the period 1966 to 2005, identifying 55 potentially 

relevant articles.  Ten were excluded on the basis of their being conducted outside the USA and 16 

were excluded as accuracy measures were not (fully) calculable.  Thus analysis was conducted on 29 

studies. 

The authors’ results suggested highest sensitivity for recall of mammogram, CBE and Pap smear 

(0.95 to 0.93) and lowest for PSA and DRE (0.71 & 0.75).  Specificity was highest in endoscopy, FOBT 

and PSA (0.9 to 0.73) and lowest for CBE, Pap smear and mammogram (0.26 to 0.61).  Amongst 

different population groups, the authors report that studies enrolling mostly Black and Hispanic 

respondents tended to report lower accuracy of recall (both sensitivity and specificity) than studies 

enrolling mostly White respondents.  With regard to the US context, the authors conclude that when 

the results of their meta-analysis are applied to screening rates estimated from the National Health 
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Interview Survey, raw results may overestimate the overall prevalence of screening across the USA, 

and underestimate the disparities between different ethnic groups.xxxviii 

Howard et al.172 also report a meta-analysis of the accuracy of recall for cancer screening tests 

compared with medical record data, focusing on Pap smear and mammograms only.  Thirty-seven 

studies were included in the meta-analysis.  Most were US-based, but six were from other countries 

(Australia, Canada & Sweden).  Studies included age ranges from 18 upwards (Pap smear) and 40 

upwards (mammography), different ethnic backgrounds (mostly White, African-American or 

Hispanic) and different socioeconomic status.   

Point estimate sensitivity and specificity of recall of Pap smears was 0.947 and 0.474, and for 

mammography 0.949 and 0.618.  The authors were not able to account for between study 

heterogeneity when adjusting for population characteristics (ethnicity and socioeconomic status), 

length of recall and quality of medical record, thus they were not able to infer any differences in 

recall amongst different population groups.  However, overall results are consistent with 

Rauscher,173 suggesting that women tend to over-report their history of Pap smear and 

mammography screening.xxxix   

Gama et al.175 explored the impact of questionnaire design in more detail, focusing on recall of 

pharmacological treatments.  Searching Pubmed, EMBASE and the Cochrane Library from inception 

to 2007, eight studies of drug use comparing different questionnaires or means of questionnaire 

administration were identified.   

                                                           
xxxviii Rauscher et al.’s173 analysis excluded studies conducted outside the USA to answer a US-specific question, i.e. 

whether a national health survey based on self-report is likely to provide accurate data on cancer screening rates.  This 

limits the generalisability to other settings; in particular, it would be of interest to explore whether there were any systematic 

differences by country.  It is interesting to note that the sensitivity was highest and specificity lowest for female screening 

tests (mammogram, CBE, Pap smear), whilst sensitivity was lowest and specificity highest for male screening tests (PSA & 

DRE).  The higher sensitivity in females suggests females are better able (or willing) to recall screening tests, yet the lower 

specificity suggests females are also more likely to over-report screening.  This raises interesting hypotheses as to the 

differences in attitudes towards screening between males and females, a discussion of which is beyond the scope of this 

thesis.  The authors suggest that known underreporting amongst men is a likely explanation, but found no evidence of this in 

their analyses.  They also suggest a lower specificity (over-reporting) for Pap smears could be due to women mistaking a 

routine gynaecological examination without a test for one that includes one.  An alternative explanation the authors consider 

for the observed low specificity of CBE and DRE is poor reporting for these exams in clinical records.  They note that CBE 

and DRE are not reimbursed well, reducing the incentive to record tests accurately, thus the observed specificity may be 

biased downwards. 

xxxix As per Rauscher, Howard et al.
172

 suggest that over-reporting of Pap smears in particular may be due to confusion of 

any examination with a screening test: mammography may be less susceptible to over-reporting due to the nature of the test 

itself, requiring a specific visit to a radiology unit rather than a general gynaecological unit (where different investigations 

including the Pap smear take place) leading to less risk of confusion in recall.  They also suggest that over-reporting may be 

due to the social desirability of screening, and that the wording of the questionnaire may have some influence over the false 

positive rate. 
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Studies were set in the USA (two studies), Netherlands (two studies), Switzerland, Canada, 

Mozambique and Finland (one in each).  The studies each varied substantially in purpose and 

approach: five explored the effect of prompting respondents for specific drugs or indications, two 

examined the effect of question or response order, and one explored the use of memory aids to 

assist recall.  Four studies recruited members of the general population, whilst the others studied 

women post-partum (two studies), university students and hypertensive patients.  Half of the 

studies collected information by face to face or telephone interview whilst the other half relied on 

self-completed questionnaires.  Recall period varied from current consumption of drugs to those 

used during a previous condition. 

The included studies reported that asking for specific indications or drug names and the use of 

pictures or lists of medicines following an indication-oriented question leads to a higher reported 

prevalence of drug use compared with open-ended questions.  Asking questions on specific drugs 

followed by an open-ended question was associated with higher recall of use of the specific drugs 

than when the open-ended question preceded the specific.  Finally the order in which a list of drugs 

is presented appears to affect response with options appearing at the top of the list more likely to be 

selected (‘primacy effect’). 

In discussion, the authors state that the design of a questionnaire is one of several known sources of 

bias in surveys.  In addition to the effects described above, Gama et al.175 identify a number of other 

known limitations, namely that excessively lengthy surveys can induce respondent fatigue resulting 

in inaccurate responses, interviewer administered questionnaires lead to more reliable results than 

self-administered, and that open-ended questions should, in general, be avoided.  Given the 

variability in responses according to the means by which questions are asked, the authors 

recommend that journal editors should request full access to questionnaires used to allow 

assessment of the validity of the instrument. 

Whilst Gama et al.’s175 study shows there is a difference in reported prevalence of use of different 

drugs according to the manner in which the question is asked, they do not appear to show whether 

there is a difference in overall accuracy – that is, whilst the sensitivity of one approach may be 

higher than another, the specificity is unknown.  Indeed the word ‘specificity’ does not appear at all 

in the review.  Thus it is not possible to know whether the increase in reported prevalence of use of 

drugs is true omission or a false-positive.  This has obvious implications for economic evaluations 

leading to potential overestimation of the cost of drugs (although if the absolute bias in each arm of 

a study is equal the estimate of the incremental cost will be unbiased). 
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Evans and Crawford176 conducted a review of the literature to provide guidance as to when patient 

self-report data can provide reliable estimates of resource use and when their use can lead to 

erroneous cost-effectiveness conclusions.  In general, the authors noted that under-reporting of 

events was more common than over-reporting.  Recall appeared to be better over shorter time 

periods and with more salient events (e.g. surgical procedures vs a routine GP visit).  However, 

medication recall was less accurate compared with, say, hospitalisation.  Interestingly (and perhaps 

unsurprisingly) the perceived social acceptability of a condition also influences patient reporting.   

The authors conclude that with respect to cost-effectiveness, the major concern is with validity 

rather than bias.  For example, over long recall periods there may be some vagueness about specific 

resource use episodes.  This may affect the mean cost per patient estimated in each arm, but in 

general if such vagueness is equally spread between treatment groups, it should not affect the 

incremental cost-effectiveness ratio. 

Bhandari et al.174 aimed to establish the accuracy of self-reported health care utilisation, identifying 

a number of factors that affect the reliability of such data.  Building on and complementing the 

Evans and Crawford review,176 the authors identified 42 studies.  The factors having the greatest 

impact on accuracy of self-report data are the sample population and their cognitive abilities, the 

recall time frame, type of health service use, the frequency of use, design of the questionnaire, 

mode of data collection and the use of memory aids or probes.  In order to assist analysts, they 

suggest considerations to be taken into account to mitigate the effects of each of these on accuracy 

of recall. 

Finally, Evans and Crawford, in a second review considered the accuracy of data collection methods 

in prospective economic evaluations,171 focusing on three areas: the use of self-report data, 

surrogate respondents and mode of administration of questionnaires (‘recall’, ‘proxy’ and ‘mode’ 

respectively).  They discuss how each leads to different levels of internal validity within a prospective 

study as well as the measurement validity (defined as “the ability of a measure to assess what it was 

designed to assess”171).  The authors recommend an a priori assessment of the likely effects of 

different approaches to measurement on the validity and bias of the results.  They cite an example 

of a study of a terminal disorder where non-response due to death can be anticipated and data loss 

minimised by proxy reporting, but as proxy completion may not be accurate, data can be collected 

by both patient and proxy, and the proxy responses adjusted for any systematic difference between 

the two. 

In summary, Evans and Crawford171 provide a useful categorisation of issues to assess the accuracy 

of data collection methods: ‘recall’, ‘proxy’ and ‘mode’.  Systematic reviews suggest there is some 
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evidence of recall bias when extracting resource use data from patients compared with medical 

records, the extent of which may vary by gender and ethnicity.  Questionnaire design also has the 

capacity to affect responses, with evidence of primacy effects and prompting shown to alter recall. 

PPPPrimary Studiesrimary Studiesrimary Studiesrimary Studies    

I now review a number of primary studies not covered by the systematic reviews described above 

and selected for their particular interest and methodological importance.  Studies cover areas 

including the use of cost diaries to measure resource use,177 178 comparisons of the reliability of self-

report versus medical records specifically in a UK setting,55 179 180 and comparisons of top-down vs 

bottom-up costing approaches181 182 as well as other levels of aggregation in cost analyses, including 

collection of a restricted data set to approximate full data.183-186 

Resource use diaries versus questionnaires 

The development, feasibility and construct validity of a cost diary to measure direct and indirect 

costs have been explored following use in two randomised controlled trials.177  The authors cite 

evidence187-191 in support of (prospective) diaries compared with (retrospective) questionnaires, with 

reduced recall bias and higher completion rates.  Their diary was intended for continuous 

completion, with each diary filling a single page, divided into four columns, one for each week of the 

month.  Patients were sent six at baseline and again at six months, with a request to return those 

completed to date every three months in a pre-paid envelope.  Therefore the period of completion 

was a year.  Non-responders were prompted with a telephone call. 

As keeping a diary continuously for 12 months may be seen as somewhat onerous, the authors also 

simulated the impact of partial collection (e.g. for a period of 2 weeks every 2 months) from the full 

data, with extrapolation to fill in the missing periods, and compared these estimates with the full 

data.  They also compared the self-reported data with insurance company records as a validity 

check. 

Over both RCTs, 85% of patients completed at least one diary (covering a 4 week period), and 68% of 

diaries were returned, yielding an average of 32 weeks of data per patient (out of a maximum of 52).  

Fifty percent of patients completed all diaries but 15% completed none (mainly due to withdrawal 

from the trials).  There was no significant difference observed in cost estimates based on complete 

data versus partial completion, although the correlation between the estimates was only moderate.  

This could be explained by low statistical power.  When comparing self-reported data with insurance 

company records, there was agreement between some visits (e.g. specialist contacts), but quite 

some disparity in others (physiotherapist visits, where there was a 10-fold difference between self-

report and insurance company records: 5.4 vs 0.55 visits per patient).  The authors explain this as 
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due to half of the patients consulting a physiotherapist weekly which for some reason was not on 

the insurance company records. 

In conclusion, for chronic diseases the authors recommend collecting data for an abbreviated period 

of time rather than for a whole period such as a year or more.  However, they caution against this 

approach for acute conditions where resource use may well be time dependent (and indeed in 

chronic disease with seasonal effects). 

Merlo and colleagues178 compared the use of a self-administered questionnaire with a personal diary 

for use of hormone therapy in 16,060 women aged 45-73 years in a prospective cohort study in 

Malmö, Sweden.  They consider that a personal diary may be more appropriate than a questionnaire 

for collecting these data, but that feasibility and cost may lead to a decision to use a questionnaire.  

For the purposes of calculating sensitivity and specificity, they assume a personal diary represents 

the gold standard. 

The questionnaire comprised an open-ended question asking respondents “which medicines do you 

use on a regular basis?”  The diary was a structured 7-day form including an open-ended question on 

drug use.  In both cases, participants were asked to list current hormone use. 

Overall agreement between the two methods was high (kappa 0.84, p<0.001), although reported 

prevalence of hormone use was higher with the questionnaire than with the diary, except in the case 

of women also taking anxiolytics, hypnotics and opiates where recorded prevalence was higher with 

the diary.  Agreement was lower amongst women in their 50s compared with those in their 40s, but 

interestingly was highest amongst women aged 70-73.  Agreement was also lower for those with 

high alcohol consumption. 

If the diary is assumed to be the gold standard, the sensitivity and specificity of the questionnaire is 

high at 0.977 and 0.845 respectively.  The authors conclude that a simple self-administered 

questionnaire comprising a single open-ended question on drug use is reliable and highly valid 

compared with a diary in order to ascertain current hormone use. 

An obvious criticism of the method is the assumption of a personal diary as a gold standard for use 

of hormone therapy.  The authors cite evidence in support of this192 but arguably the most reliable 

approach would involve biochemical measurements (blood tests or similar) to detect levels of the 

drugs in the body.  However depending on the half-life of the drug in the body, and variability 

between individuals themselves, such an approach may not be a sufficient proxy to measure strict 

adherence to every drug consumed.  Furthermore very regular monitoring would be inconvenient to 

the patient, as well as time consuming and expensive.  Whilst the authors do not explicitly consider 
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the incremental cost of a diary approach compared with the questionnaire, knowledge of the 

relationship between the two methods (i.e. sensitivity and specificity of one compared with the 

other) could in principle be used to estimate the impact on decision uncertainty in a model to then 

estimate the incremental gain from the diary over the questionnaire.  This idea is explored and 

developed in Chapter 4 of this thesis. 

Questionnaires vs medical records: UK evidence 

Several studies have compared cost estimates obtained from patient self-reporting (e.g. 

questionnaire) with those from hospital or primary care records in the UK.55 179 180   

Patel et al.179 found generally good agreement between self-completed postal questionnaires (the 

client service receipt inventory, CSRI193) and GP records when asking about the number of GP 

contacts over the previous six months in a sample of primary care attendees (3.03 vs 2.99 per 

patient according to GP records and CSRI respectively, correlation 0.76).  However agreement 

between the cost of those visits was poorer, due to differences in reported average visit length.   

Byford et al.55 compared patient self report health service use (CSRI193) at 6 and 12 months with GP 

records in an RCT of treatments for adults with recurrent deliberate self harm.  The authors found 

agreement for overall incremental cost observed in the trial to be high, but at a lower level of 

aggregation, agreement was poorer.  In particular, the mean cost per patient estimated using the 

CSRI was significantly higher than that based on GP records (£2185 vs £1371, 95%CI of difference: 

£423, £1204).  The authors observe that GP records generally provide more reliable information on 

primary care contacts than patient self-report data, but less reliable information on other care 

contacts.  They conclude by cautioning against the use of primary care records as a source of data on 

hospital and community services use. 

The period over which patients are asked to recall health service contacts is, a priori, likely to affect 

reliability, with memories fading over longer recall periods (recall bias).  Petrou et al.180 sought to 

establish whether the accuracy of self-reported health service use was a function of the duration of 

the recall period (as well as the prominence of the service contact).  They also sought to identify any 

socioeconomic or clinical factors that may influence the accuracy of self-report data. 

Data comprised the control arm of an RCT of an intervention in primiparous women at risk of post-

natal depression, the control comprising routine care for the patients (n=82).  Resource use data 

were collected via face to face interviews at 4 and 12 months postpartum.  The interviews comprised 

structured closed-ended questions delivered by a trained interviewer covering primary care and 

community midwife contacts, attendances at A&E, outpatient contacts and inpatient admissions.  
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The first interview related to the previous four months, and the second to the previous eight.  The 

primary, secondary and other provider care records of the control arm patients were obtained and 

the cost estimates collected using both methods compared. 

The authors found that self-reported resource use may be unreliable for longer recall periods and for 

heavy service users.  Particularly salient events such as attendance at outpatient and inpatient 

admissions tend to be more accurately recalled, although they caution against over interpretation of 

their findings due to the small numbers of events observed in their sample. 

Top-down vs bottom up costing 

As I explained in Chapter 1, two key costing approaches are top-down and bottom-up.  Chapko and 

colleagues181 explicitly compared the two approaches using veterans' association (VA) data in the 

USA.  They compared data for 14,915 patients at 72 facilities in 2001 in terms of total annual cost 

per patient plus the cost of specific services (for example clinic visits, inpatient admissions).  Cost 

was calculated using two approaches.  The bottom-up approach extracted data from the US 

Department of Veterans' Affairs Decision Support System, comprising local costs for specific items.  

The top-down approach was calculated using a costing system devised by the VA Health Economics 

Resource Center.  Agreement between the two systems was variable, with a correlation on 0.85 for 

total annual cost, but 0.24 and 0.77 for the cost of outpatient and inpatient admissions respectively.  

Agreement between the systems increased with the level of aggregation.  The authors concluded 

that those conducting cost analyses needed to carefully consider the purpose and relative merits of 

different approaches when choosing an appropriate method. 

Tan et al.182 compare bottom-up micro-costing with top-down gross costing for hospital services 

(appendectomy, normal delivery, stroke and AMI in 2005).  They define three approaches: bottom-

up microcosting is the identification, measurement and valuation of all patient specific resource 

items with hospital specific unit and overhead costs.  Top-down micro-costing is as per bottom-up 

microcosting, but national average unit costs are applied in place of local ones.  Finally gross costing 

is based on inpatient length of stay and hospital specific unit costs alone. 

The authors found that top-down approaches tended to lead to higher cost estimates than bottom-

up.  For three of the interventions there was no significant difference.  However, cost estimates for 

appendectomy were significantly higher using the gross costing method.  They recommend the use 

of bottom-up costing for the largest components of total cost, for example labour costs for 

particularly labour intensive procedures, or components of hotel costs for admissions with a 

particularly long length of stay (e.g. stroke). 
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Other levels of aggregation in costing studies 

Geue et al.183 compared five different methods to calculate the cost of a 'continuous inpatient stay' 

(CIS) with a view to exploring whether regression models based on each method yielded a difference 

in the significance and magnitude of explanatory variables.  This would have implications for the 

econometric modelling of costs in future studies.  The methods compared are (1) application of the 

English HRG tariffs (comprising a fixed cost plus a per diem component for excessively long stays); (2) 

application of the Scottish HRG tariff (based on a fixed cost alone); (3) per diem costing; (4) per 

episode costing with a fixed and variable component; and (5) per episode costing using a fixed 

component alone. 

When comparing HRG-based and per-diem based costing approaches, the authors did observe some 

difference in estimated effect size for regressors.  They also observed more variability in per-diem 

approaches (to be expected given the larger possible range of values for length of stay compared 

with the number of episodes of care).  They point out that costing based on a pure per-diem 

approach ignores the nature of a hospital stay, characterised by "fixed costs being independent of 

length of stay and variable costs varying with LoS".  Alternatively, the per diem costs in the first day 

or two of an admission are frequently much higher than the remaining days as medical interventions 

reduce in intensity, leaving only 'hotel costs'. 

The authors found that whilst general conclusions such as elderly and male patients being more 

costly seem to hold irrespective of the costing approach, the magnitude of the cost differences is 

dependent on the costing method.  They state this has implications for studies exploring the impact 

of ageing or end of life care costs.  Finally, the authors recommend the first method (as followed by 

the English HRG system) as the most appropriate (disease specific costings incorporating a fixed and 

variable component). 

Chapko et al.184 considered the question of which resource use items needed to be tracked in an 

economic evaluation alongside a clinical trial, and whether centre specific or national average unit 

costs would be preferable.  They recalculated costs per patient in an RCT of adult day health care 

(ADHC) vs treatment as usual in patients at risk of admission to nursing home in the US veterans' 

administration (VA).  The original method used in the trial comprised a mix of local and national 

costs.  Costs were then recalculated using facility level costs and national costs and the results 

compared.  Using facility level costs resulted in higher estimates of per patient costs in each arm of 

the trial, but the bias appeared to be approximately equal in each arm, thus the estimate of the 

incremental cost was very similar irrespective of the method employed.  After examining the costs in 

more detail they conclude that the services to be tracked include the intervention itself, the services 
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which account for 'a good deal of the variance in total cost', and any specific smaller items which are 

likely to be affected by the intervention.  In terms of the sensitivity of the results of an economic 

evaluation, in their case study there was very little difference in incremental cost irrespective of the 

costing method, suggesting an ICER would be insensitive to the costing approach.  However, they 

advise conducting sensitivity analysis to establish this. 

Knapp and Beecham185 also considered whether collecting less resource use data affected the 

accuracy of resulting cost estimates, given the expense of collecting the data.  The authors apply a 

'reduced list' costing based on the CSRI193 in two case studies in mental health: psychiatric 

reprovision in the community for long-stay hospital residents and caseloads of community 

psychiatric nursing teams.  They find that concentrating on the top five cost items, between 91 and 

94% of the total costs are predicted.  These results appeared robust when simulating data collection 

in the two case studies, as well as in three further applications.  However, they caution against the 

use of the reduced list when (i) an analysis specifically requires full costing, (ii) the impact of a policy 

change on 'seemingly peripheral services' is relevant to the decision, (iii) when inter-individual 

differences in cost are of primary concern. 

Whynes and Walker,186 explored the use of Knapp and Beecham's185 reduced list approach in an 

acute care setting (colorectal cancer surgery).  Their original study comprised follow-up of 360 

patients treated for CRC.  Data on the number and nature of pre-operative diagnostic procedures, 

length of hospital and ICU stay, duration of surgical procedure, blood use and other diagnostic 

requests were all extracted from patient notes covering a period of three years from index 

procedure (or until death if sooner).  Unit costs were based on local centre costs where possible, 

with other sources (e.g. national costs) used where necessary.xl  Of particular interest to this thesis, 

the authors estimate the researcher resource requirements to collect the data at one year WTE.   

The authors' objective was to "identify a formulation of crude costs which best approximates [the 

detailed costing approach described above]".  Replicating Knapp and Beecham's185 approach, 

Whynes and Walker186 found it to generate far less accurate predictions of total cost: a crude costing 

approach based on length of stay multiplied by a daily rate produced much better predictions, with 

only 12% of the variation between the crude and ‘true’ cost remaining unexplained.  They conclude 

that the reduced costing method did not fare well in this example, and that a crude costing approach 

based on mean costs per specialty appears adequate with large samples and when ‘the frame of 

reference is the aggregate’186 (that is, the interest is in total cost per patient rather than some more 

detailed component).    

                                                           
xl This work pre-dates the NHS reference costs 
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2.4.2.4.2.4.2.4.     DiscussionDiscussionDiscussionDiscussion    

This review set out to explore the literature with a view to answering three questions of pertinence 

to this thesis.  Issues arising in the literature relating to each question are discussed in turn below.  I 

conclude by drawing together the three areas, considering whether the existing literature does 

indeed provide adequate answers to the questions, and thus where the gaps are. 

2.4.1.2.4.1.2.4.1.2.4.1. Use of VoI or similar techniques to inform study design.Use of VoI or similar techniques to inform study design.Use of VoI or similar techniques to inform study design.Use of VoI or similar techniques to inform study design.    

Whilst some studies mention the importance of cost-effectiveness in the design of a clinical trial,137 

140  very few studies use a formal economics-based technique to choose between different aspects 

of study design.  Only four studies appeared to do this.  Two were based on the principles of value of 

information analysis,20 139 one sought to elicit the willingness to pay of a grants committee for ‘better 

quality’ information141 and one appeared to take into account some concept of the opportunity cost 

of research to inform research design. 

Hak et al.140 compared a nested case-control study with a full cohort analysis.   An obvious limitation 

of this study is the fact that it was an ex post study: the case-control data were drawn from a sub-

sample of the entire cohort.  Thus in order to conduct the case-control study, the entire cohort study 

needed to be conducted too.  As the two options are not mutually exclusive it is not possible to 

realise any increase in efficiency of research funds from this particular example!  The authors do 

point out though that given their results, such case-control studies could be considered as a valid 

alternative to RCTs, their logic being the apparent lack of bias of the smaller subset compared with 

the full cohort study.  However, this may be pushing the interpretation of their results further than is 

justified given the analysis: they did not compare an RCT design with case-control study. 

Shavit et al.’s20 approach appears to be a logical means by which the expected value of one study 

design can be compared with another.  However, the lack of a fully worked out numerical example 

hampers comprehension of the approach.  Correspondence following publication of the manuscript 

challenged the use of two thresholds: one for a willingness to pay for a ‘unit’ of information in the 

research decision and another for a willingness to pay for a unit of health outcome in the adoption 

decision.194  The author (Grandjour) suggested that the same threshold should be used for both 

research and adoption decisions.  This is logical if it is assumed the sole purpose of information is to 

reduce decision uncertainty thus increasing the expected health gain associated with the decision.  

However in response Shavit and colleagues disagree,195 arguing that the societal willingness to pay 

for information may well differ from that it is willing to pay for health gain, the reason being that 

information for its own sake may have consumption qualities (stemming from a desire to feel ‘in 

control’) as well as production qualities (use in reducing decision uncertainty in health care).  This is 

an interesting area for further research, but beyond the scope of this thesis.  Grandjour also suggests 
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that the analysis take account of decision makers’ risk aversion.  The arguments in favour of risk 

neutrality in public sector decision making are fairly persuasive,96 however health care decision 

making, particularly in the NHS is extremely risk averse.  I discuss this further in Chapter 5. 

A key aspect of Shavit and colleague’s20 approach is the quantification of the likely bias associated 

with the different study designs.  The means by which the expected impact is assessed is not 

explicitly stated but appears to be narrative approach based on the authors’ opinions.  This is 

reasonable as in a real application of this process, such information could be elicited from experts, 

by review of the literature or use of pilot studies.  Thus Shavit and colleagues have a potentially 

viable method to assist the choice between overall trial designs to provide evidence for decision 

making. 

There are three important criticisms of Thach & Fisher’s138 approach as a means of maximising the 

expected net benefits of a research project.  These relate to the stopping rules being based on 

hypothesis testing, powering on expected treatment effect rather than the minimal clinically 

important difference and ignoring the opportunity cost of making the wrong decision. 

The authors point out that their approach focuses on frequentist hypothesis testing to determine 

the stopping rule at each stage of the trial.  Given the obvious linkage with Bayesian statistics 

(updating prior beliefs about expected treatment effect), they state that a frequentist interpretation 

of the analysis may be sub-optimal.  However they point out that their approach “mixes both 

Bayesian and frequentist thought processes and may be considered from either point of view”.  They 

state that their analysis can be adapted to consider either point of view: a frequentist interpretation 

would use the prior distribution of treatment effect to inform sample size and then make inferences 

on the observed data alone.  A Bayesian interpretation would formally combine the prior and 

observed data into a posterior from which to make inferences.7 

A criticism of the approach though is whether hypothesis testing is an appropriate means to 

determine a stopping rule in any case.  As stated in Chapter 1, Claxton3 is critical of hypothesis 

testing on the grounds that it does not lead to maximisation of expected net benefits.  Nevertheless, 

Thach & Fisher’s138 approach may have greater acceptability to regulatory agencies as it sits within a 

more familiar approach based on hypothesis testing. 

Cohen et al. argue that research output has “multidimensional… output[s which] make it impossible 

to specify a single outcome measure and hence derive and ICER [for a particular research design 

compared with another]”.  If one takes the extra-welfarist point of view and argues that the sole 

purpose of research is to reduce decision uncertainty and increase expected health gain associated 
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with the decision, then Cohen et al.’s argument does not hold: the expected value of a research 

project is unidimensional in terms of the increase in expected health gain it will yield.  Thus it would 

be possible to calculate an incremental cost-effectiveness ratio for one trial design compared with 

another. 

In summary, only one study (Shavit et al.20) appears to have employed the principles of value of 

information analysis to inform qualitative choices between study designs.  Their approach appears 

reasonable, relying on prior beliefs about sources of relative bias between, for example 

observational and randomised trials.  However their work tackles a more macro question, addressing 

overall trial type.  The starting point of my thesis is where a randomised controlled trial has already 

been decided upon, and more micro-design questions are of concern, namely how best to collect a 

particular data item.   

2.4.2.2.4.2.2.4.2.2.4.2. The Cost of collecting resource use data alongside clinical trials and/or the cost of clinical trials The Cost of collecting resource use data alongside clinical trials and/or the cost of clinical trials The Cost of collecting resource use data alongside clinical trials and/or the cost of clinical trials The Cost of collecting resource use data alongside clinical trials and/or the cost of clinical trials 

themselves.themselves.themselves.themselves.    

Despite much discussion of the expense of resource use data collection in the health economics 

literature (e.g. 196 197), my review did not identify a single study attempting to measure this aspect of 

data collection at all.  Instead, studies focused on overall costs of trials and strategies to contain such 

costs.  Careful examination of predicted costs and efficient trial management appears to have had 

quite a dramatic effect on the expected costs of some trials, with 50% or more reductions appearing 

feasible, particularly with very large ‘megatrials’ such as the women’s health trial.164  However, a 

second attempt to use the same methods was less successful: faced with a choice between adding 

another trial centre and extending the follow up of existing recruits to increase power at minimum 

cost, extension of follow-up appeared to be more efficient.  The investigators ultimately decided on 

the former course of action, citing the need to hedge against risk as justification.165  This provides an 

example of the limitations of technical solutions: they cannot incorporate all elements of interest, 

and so should be used to guide to assist, rather than make, decisions. 

Vickers & Scardino170 present an interesting method based on the idea of incorporating 

experimentation into routine clinical practice.  This is an appealing idea (subject to ethical 

boundaries and informed consent).  However, the authors appear to focus on the treatment costs of 

a trial, rather than the associated overheads:  the resources required to develop protocols, design 

data collection instruments, analyse the data and write up reports are substantial and so, depending 

on the nature of the trial, the scope for savings will vary. 

Finally, and of most relevance to this thesis, Allison et al. in their study of approaches to maximise 

statistical power for minimum cost, conclude that ‘better quality data’, for example use of better 
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trained observers, may increase the statistical power of a study (presumably by reducing variability 

due to measurement error), and ‘[optimise].. power and costs’.169  Unfortunately they do not 

elaborate on this, but in essence this is the question posed in this thesis, that is, what is the added 

value of ‘better quality’ data? 

2.4.3.2.4.3.2.4.3.2.4.3. Comparisons of alternative data collection techniquesComparisons of alternative data collection techniquesComparisons of alternative data collection techniquesComparisons of alternative data collection techniques    

The primary purpose of this review was to explore the evidence of any systematic differences in 

resource use estimates / costs measured using alternative data collection techniques / processes.  I 

uncovered a large number of studies comparing different data collection techniques.  Whilst some 

informally referred to cost or cost-effectiveness none attempted to formally value cost or the 

additional gain (or loss) associated with using one method compared with the other.  For example 

Merlo et al.178 referred to the expense associated with a daily dairy to record hormone use 

compared with an open-ended questionnaire to be completed once only.  They did not elaborate on 

what these costs would be and who bore them.  In this case a daily diary places substantial burden 

on the participants themselves (possibly leading to incomplete data), as well as requiring 

considerable analytic and data entry effort, thus adding to research costs.  As I state above, 

knowledge of the relationship between the data gathered using each method could be used to value 

the relative gain from one method over the other (this idea is developed in Chapter 4). 

The systematic reviews of comparisons of data collection techniques reveal an overall picture of the 

relative reliability of self-reported resource use compared with official records, concluding that 

surveys based on self-report are broadly valid but may overestimate the proportion of the 

population screened for cancers.172 173  If an analyst must rely on self-reported health service use, 

then the design of the questionnaire can also influence the responses received.  Gama et al.’s175 

systematic review found that beginning with a prompted list of drugs followed by an open ended 

question leads to a higher reported prevalence of drug use than if questions are asked the other way 

around, and that within the prompt list, the order in which drugs are presented to respondents 

affects the responses received.  However, it was not possible to judge the overall accuracy of 

responses from the Gama review as the specificity of different approaches was not reported: a 

higher prevalence may simply be a false positive.  Of interest is Gama’s observation that excessively 

lengthy surveys can lead to ‘respondent fatigue’.  This will affect the completion rate of the survey, 

thus whilst a more detailed survey may yield ‘better quality’ data, the response rate will fall.  Such a 

survey is also more costly to administer and analyse. 

Amongst studies conducted in the UK, using self-reported questionnaires compared with medical 

records does not appear to lead to a substantive difference in incremental cost, thus the resulting 
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incremental cost-effectiveness ratio will not be biased.  However the total cost per patient may be 

affected.  This is a consistent theme in the literature: the divergence between self-report and 

medical records increases with increasing disaggregation of cost.55  Extending this, studies 

comparing top-down costing with bottom-up approaches found greater agreement with top-down 

approaches,181 although top-down approaches also tend to lead to higher overall per patient cost 

estimates.182  Unsurprisingly the reliability of self-report also decreases with increasing recall 

period.180 

In attempting to replicate Knapp and Beecham’s185 reduced list costings approach, Whynes and 

Walker186 found it generated far less reliable estimates of cost than the formers’ original analysis.  

However, Whynes and Walker do not consider whether the reduced cost approach is ‘good enough’ 

for purpose.  As observed by Knapp and Beecham,185  if the objective is to obtain accurate resource 

use costs for a particular cohort, then the reduced approach may be inappropriate.  However, if the 

objective is to inform a decision as to whether to adopt an intervention, the costs form one input 

into incremental net benefit.  There are then two issues to consider.  Firstly, as stated above, whilst 

absolute costs may be invalid, this is not necessarily true for incremental cost.  Secondly, even if the 

estimate of incremental cost is biased, the issue is whether it is sufficient enough to change the 

probability of making the ‘wrong’ decision.  A rational approach would be to quantify the expected 

change in expected loss as a result of using the inferior or superior process and to compare this with 

the incremental cost of collecting one or the other data sets.  This idea forms the basis of my 

approach in this thesis, and is developed in Chapters 3 and 4. 

2.5.2.5.2.5.2.5.     ConclusionConclusionConclusionConclusion    

The purpose of this review was to establish the extent to which (1) economics-based techniques 

have been used to inform the design of clinical trials (other than sample size), (2) the costs of 

collecting (resource use) data within clinical trials have been analysed and (3) different approaches 

to collecting the same data had been compared. 

My review found very few examples of the use of economics-based techniques to inform the design 

of clinical trials: whilst several studies claimed to consider both costs and ‘outcomes’ (i.e. 

validity/bias of the trial result) of different aspects of trial design, only one study reported an 

approach attempting to explicitly value the costs and consequences of alternative designs, this being 

a comparison between a prospective and retrospective study.20   

Despite frequent reference in the health economics literature to the cost and burden of resource 

data collection alongside clinical trials, I was unable to identify any studies exploring or estimating 

the cost of collecting such data.  However, there were a number of studies comparing the treatment 
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costs of patients enrolled in trials compared with those receiving routine care, the conclusion being 

that treatment costs were not necessarily higher for such patients. 153-161,xli  Other studies focused on 

organisational and management techniques to reduce the total cost of very large trials, in some 

cases with considerable success.164 

Finally, there is a substantial literature comparing alternative approaches to measuring the same 

data.  In general, different approaches lead to similar but not identical cost estimates, although the 

generalisability of such comparisons is uncertain.  For example, use of a ‘reduced list costings’ 

approach was able to predict the majority of cost in one case,185 but not another.186  However, as 

stated above, this does not mean that the ‘inferior’ process should be abandoned: if it is 

substantially less expensive to collect, it may still be preferable if the reduction in research cost 

outweighs the reduction in ‘outcome’ or ‘quality’ of the resulting parameter estimates (however 

defined).  The remainder of my thesis provides an approach to measuring and valuing the added 

quality of one data process compared with another, and thus when taking into account the relative 

cost of each, whether one yields a higher net benefit compared with the other. 

 

                                                           
xli The driver for these analyses being a reluctance for insurance companies in the USA to meet the treatment costs of 

patients enrolled in trials due to a perception of higher cost. 
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3.3.3.3. A critique of Value of Information A critique of Value of Information A critique of Value of Information A critique of Value of Information 

AnalysisAnalysisAnalysisAnalysis    

3.1.3.1.3.1.3.1. IntroductionIntroductionIntroductionIntroduction    

In this section, I explore the methods and limitations of value of information analysis as 

currently applied in health care research.  I consider three specific areas: a criticism of value 

of information analysis in general, followed by separate consideration of issues specific to 

the analytic and numeric solutions.  Finally I consider a particular limitation in more detail, 

that is, the unknown correlation structure between evidence combined from different 

sources. 

As outlined in Chapter 1, the two main approaches to calculation are the analytic and 

numeric solutions.  The analytic approach requires knowledge of the mean and standard 

error of incremental net benefit.  This approach has been used to calculate value of 

information statistics using data from randomised controlled trials, where the source data 

for calculating incremental net benefit is incremental mean cost and outcome, the valuation 

of a unit of outcome, the standard deviation and error of each increment and the covariance 

between the two.82  The numeric (simulation) solution is more commonly associated with 

decision models, where Monte Carlo simulation is used to build up an empirical distribution 

of incremental net benefit (e.g.84 85). 

Limitations of the analytic solution are 1) the requirement for incremental net benefit to be 

normally distributed and 2) that if based on a single source of evidence it is not necessarily 

consistent with the principles of evidence based medicine,91 potentially excluding other 

relevant evidence.  The numeric solution (typically based on a decision model) overcomes 

these limitations, but with the consequence that the correlation structure between model 

input parameters is usually unknown, and whilst prior beliefs about correlations can be 

incorporated, frequently they are ignored.  The structure of the model also leads to 

additional uncertainty (that is, different model structures may be equally valid yet yield 

different results).  The final section of this chapter explores the impact of ignoring 

correlation on the value of information statistics with four empirical examples.  I find that 

ignoring correlation between parameters can have consequences for the optimal sample 

size, particularly where parameters are very strongly positively correlated or where the 
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variable cost of sampling is low relative to the EVSI.  Finally I consider possible solutions to 

take account of correlation in a decision model. 

  

3.2.3.2.3.2.3.2. Criticism of methods Criticism of methods Criticism of methods Criticism of methods     

In this section, I first discuss issues relating to value of information analysis as a whole 

before discussing aspects specific to the analytic versus numeric approaches.  The issues 

relevant to VoI itself are defining the beneficial population, the assumption of independence 

between the adoption and research decisions, the impact of multiple jurisdictions and the 

analytic perspective. 

Issues specific to the analytic approach are the required assumption of normally distributed 

parameters and the use of 'all relevant information'.  Those relating only to the numeric 

solution are structural uncertainty and the characterisation of parameter uncertainty, and 

correlation between input parameters. 

3.2.1.3.2.1.3.2.1.3.2.1. Issues relating to VoI in generalIssues relating to VoI in generalIssues relating to VoI in generalIssues relating to VoI in general    

Defining the relevant patient population Defining the relevant patient population Defining the relevant patient population Defining the relevant patient population     

The value of additional research into a decision question is a function of not only the 

current, but also future patient population estimated over an ‘appropriate’ time horizon.  

This is usually taken as the sum of the (discounted) incidence of the disease.  Depending on 

the nature of the disease and treatments, it may also be appropriate to include the current 

stock of prevalent disease to this.  Whilst it may be possible to estimate the future incidence 

and prevalence of the disease with a reasonable degree of certainty, it is far from clear 

exactly what an ‘appropriate’ time horizon is, and the value of information is extremely 

sensitive to the time horizon selected.198 

One approach would be to adopt an infinite time horizon.  This will yield a finite value of 

information for any positive discount rate, and so may provide an upper limit of the value of 

information (although this ceases to be true once uncertainties associated with 

technological change and future prices are incorporated198).  However, an infinite time 

horizon is not particularly plausible.  An alternative would be that the time horizon should 

reflect the ‘effective lifetime of the technology’.  However, this is itself an unknown 

parameter for which further information could be sought.83  The most appropriate horizon 

would be one that equates to the time over which the decision question remains relevant.  

In other words, the time to the next major development in the disease area rendering the 
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current decision question obsolete.  'Horizon scanning’ of new technologies in early stage 

development may be a means to estimate this. 

A review of applied studies employing VoI techniques found studies tended to use a horizon 

of either 10 or 20 years, with no clear justification in either case.198  Philips et al.198 argued 

that adopting a single cut-off is essentially an approximation representing a more complex 

process of changes to the decision problem through time, where changes in relative prices, 

information and development of new technologies each affect the value of information 

attributable to different model parameters to differing degrees.198  They do not, however, 

recommend simultaneous modelling of all these aspects for pragmatic reasons.  Instead they 

recommend consideration of the information needs of decision makers: in essence the 

analysis has to be sophisticated enough to incorporate all relevant influences, but simple 

enough to be delivered within a reasonable timeframe and comprehensible to those 

decision makers.  The decision to pursue additional research will be made, with or without 

formal analysis and the purpose of decision analysis is to improve the quality of the decision 

(increase the probability of a decision being the ‘correct’ one), and not to capture in minute 

detail every nuance of the decision problem.  The overriding principle is the same for all 

decision modelling: that the analysis has to be fit for purpose.xlii  

Those patients who participate in a study will not normally be able to benefit from the 

information obtained from that study.  Thus when calculating population EVSI, the 

population is defined as (N-2n) where n is the number of patients in each arm of the study.  

However, this is not necessarily the case.  For example, study participants may benefit from 

the information from that study where the disease is characterised by well-defined periods 

of relapse and remittance, and the treatment provides symptomatic relief of relapses.  

Therefore when multiplying the per patient EVSI to the population level, the population 

should be adjusted for this.3  Furthermore, there will be a delay between any decision to 

carry out research and the results being acted upon, which carries an opportunity cost borne 

by the entire patient population, requiring further adjustment to the population EVSI.199  

Similarly, patients enrolled in the trial randomised to the 'inferior' arm incur an opportunity 

cost equal to the foregone incremental net benefit per patient.  The impact of these issues 

on the overall EVSI depends on the size of the patient population relative to those enrolled 

in the trial.  For a common disease such as asthma or diabetes, trial enrolees will comprise a 

very small proportion of the total population.  However, for rarer diseases, accounting for 

                                                           
xlii

 A consequence of this is that making a model fit for purpose may make it less transferable to another purpose. 
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the opportunity cost of trial enrolees may affect the optimal sample size calculations 

substantially. 

Independence of the adoption and research decisioIndependence of the adoption and research decisioIndependence of the adoption and research decisioIndependence of the adoption and research decisionsnsnsns    

The iterative approach to evidence-gathering and decision making requires the important 

conceptual split between the decision to adopt a new technology and the decision to pursue 

further research (to inform a future revision of the adoption decision).   

Whilst separate, the adoption and research decisions are not truly independent of one 

another as (1) if the adoption decision is delayed whilst new research is underway, there will 

be an opportunity cost to those who could have benefitted if the technology does indeed 

have a positive incremental net benefit (and vice versa),144 and (2) if there are considerable 

costs associated with reversing a decision.200 

For example, suppose current information suggests a new technology has a positive mean 

incremental net benefit, but with sufficient uncertainty to warrant further research.  The 

recommendation from this would be to adopt the technology for the present, and gather 

new evidence.  If, after gathering the new evidence and incorporating it with the prior, 

expected INB becomes negative, the decision should be reversed at that point.  But if the 

cost of reversing that decision is greater than the benefit from reversal (e.g. retraining of 

staff, construction of new facilities), the expected value of “adopt and research” was actually 

zero (it cannot affect the adoption decision): the optimal decision would have been “delay 

and research”, even when current evidence suggests a mean positive incremental net 

benefit.200  It is important therefore to include the cost of reversal in the analysis.144 

Multiple jurisdictionsMultiple jurisdictionsMultiple jurisdictionsMultiple jurisdictions    

Information is a public good: once in the public domain it is non-rival and non-excludable 

meaning consumption by one individual or group neither diminishes consumption by 

another, nor can that individual group prevent the other from consuming it.  In the absence 

of other benefits from research (e.g. employment maintenance and prestige), this would 

lead to free riding as there is no reason for one jurisdiction (e.g. a state research funder) to 

pay for research when another can do so.  Therefore whilst the EVSI may suggest a particular 

study should be carried out, it may be strategically optimal to wait for another jurisdiction to 

undertake the research instead, depending on the transferability/ generalisability of the 

results to the local jurisdiction.  This could lead to a sub-optimal (Nash) equilibrium with a 

failure to carry out research that would be beneficial to both jurisdictions.  Alternatively, 
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there may be a global optimal allocation of patients across jurisdictions in a particular trial, 

dependent on the relative costs and benefits in each location.201 

Analytic perspectiveAnalytic perspectiveAnalytic perspectiveAnalytic perspective    

As discussed in section 1.3.1, a critical issue when defining the study question for an 

economic evaluation is the analytic perspective.  This is just as true for value of information 

analysis: the analytic perspective determines whose costs should be included.  In 1.3.1, I 

stated that the preferred perspective is all of society (usually defined as a particular legal 

jurisdiction, i.e. country).  It is important that value of information analyses are consistent in 

the perspective they adopt.  For example, where a VoI analysis is based on an economic 

evaluation with a societal perspective relevant to the UK, the relevant population by which 

the per patient EVPI and EVSI should be calculated would be based on the incidence and 

prevalence across the whole of the UK. 

Where (as is often the case and indeed, mandated, for the reference case in NICE 

appraisals72) the perspective is limited to just the public sector, the VoI will ignore 

uncertainty in broader societal costs such as out of pocket costs, carer time and lost 

productivity to the economy (although, by defining the perspective as public sector only, 

these costs are not relevant to the decision in any case). 

Related to this issue is the use of centre specific versus national average unit costs.  As I 

stated in Section 1.3.6, the choice between using nationally representative unit costs and 

centre specific ones is dependent on the study question: if the purpose is to inform policy 

across the UK, then it may be reasonable to apply national average unit costs for inputs such 

as GP or hospital attendances (e.g. 127 202).  However, this risks underestimating the true 

variability in unit costs from centre to centre: collecting centre specific data would allow 

estimation of not only the mean costs nationally, but also the spread around those means.  

This though would be extremely resource intensive, but could well be unnecessary as 

published datasets such as the national schedule of reference costs127 include measures of 

uncertainty around the national average which should be incorporated into sensitivity 

analyses and thus value of information analyses. 

3.2.2.3.2.2.3.2.2.3.2.2. Issues sIssues sIssues sIssues specific to the analytic solutionpecific to the analytic solutionpecific to the analytic solutionpecific to the analytic solution    

In this section I consider the requirement of the analytic solution for normally distributed 

parameters, and the consideration of 'all relevant evidence'. 
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Assumption of normalityAssumption of normalityAssumption of normalityAssumption of normality    

The analytic solution described in Chapter 1 requires distributions of incremental net benefit 

(and indeed of any component parameters) to be normally distributed.  The central limit 

theorem states that the sampling distribution of the mean of a parameter will be 

approximately normal, irrespective of the distribution of the parameter itself.203  Eckermann 

et al.204 thus argue the analytic solution provides a quick and simple approach to calculating 

value of information statistics avoiding the complexities of the numeric simulation 

method.xliii   However such a justification risks conflating frequentist and Bayesian statistical 

techniques:  Within a frequentist framework, the ‘true value’ of a parameter (such as mean 

incremental net benefit) is unknown and a fixed constant, but can be estimated from 

samples drawn from the data (in this case conducting a clinical trial reporting mean 

incremental net benefit).  As the number of observations increases, the sampling 

distribution of mean incremental net benefit tends towards normal.  The implication is that 

large sample procedures can be used to make inferences about the population mean even 

when the distribution of the population mean is unknown (i.e. hypothesis testing). 

In a Bayesian framework, the distribution around the mean of the parameter represents 

belief about likely values, therefore there is no reason why this should (or indeed should 

not) be normal. 

Coyle and Oakley205 in their review of a number of approaches to calculating the expected 

value of perfect parameter information (EVPPI) include one based on the unit normal linear 

loss integral (UNLLI) similar to that described in Chapter 1.  The difference however is that 

whilst they require the target parameter(s) for the EVPPI analysis to be normally distributed 

and linear in incremental net benefit, no such requirement is placed on the remaining 

parameters. 

Use of all relevant evidenceUse of all relevant evidenceUse of all relevant evidenceUse of all relevant evidence    

The analytic solution does not naturally incorporate all relevant information.  The source of 

the prior distribution of INB is not specified by Willan & Briggs,86 but it is natural to assume 

that it may be from a pilot trial with concurrent resource data collection.  Alternatively it 

may be from a systematic review (or rather, meta-analysis).  However there are difficulties 

with this.  Systematic reviews and meta-analyses such as those produced by the Cochrane 

                                                           
xliii Eckermann and colleagues invoke Occam’s razor to justify their preference for the analytic solution, although 
arguably the numeric solution is not more complicated but merely time consuming: performing sufficient 
simulations to adequately characterise uncertainty may in practice require many months of computer processing 
time, and thus may only be practical with the use of high performance cluster processors. 
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Collaboration206 focus on randomised controlled trials to estimate an incremental treatment 

effect.  To my knowledge, there are no meta-analyses of trials reporting incremental net 

benefit (or even of costs alone).  Therefore it is unclear how the cost data should be 

combined with trial outcomes data to form a measure of incremental net benefit within an 

analytic solution.  Doing so enters the realm of decision modelling. 

Decision models start from the principles of evidence based medicine by allowing 

incorporation of 'all relevant evidence'.  This would include not only randomised controlled 

trials, but other data sources too such as database analyses, reference cost indices and even 

expert opinion where necessary.  However, the use of data from such disparate sources 

means that the correlation structure of the input parameters is unknown (see section 3.3). 

3.2.3.3.2.3.3.2.3.3.2.3. Issues specific to the numeric solutionIssues specific to the numeric solutionIssues specific to the numeric solutionIssues specific to the numeric solution    

In this section I discuss the issues of computational burden, the characterisation of structural 

and parameter uncertainty, and the lack of correlation between input parameters. 

Computational burdenComputational burdenComputational burdenComputational burden    

The numeric solution to VoI can be somewhat “computationally expensive”.  Whilst 

improvements in the power of computers may partially solve the problem, there is a 

tendency for programmers to develop more sophisticated models as a result, thus 

counteracting the increase in modern computer processor speed.  Alternative shortcuts 

have been proposed including linear approximations of non-linear models, meta-models and 

search algorithms, which may provide an appropriate compromise between computational 

speed and loss of accuracy.11 145 207-209  However computational burden remains a challenge 

to simulation methods to estimate VoI due to it being costly in both time and resources. 

Structural uncertainty and characterisation of parameter uncertaintyStructural uncertainty and characterisation of parameter uncertaintyStructural uncertainty and characterisation of parameter uncertaintyStructural uncertainty and characterisation of parameter uncertainty    

The validity of the value of information approach to research prioritisation rests on two 

critical assumptions.  Firstly, that the structure of any decision analytic model on which it is 

based is correct, and secondly that the uncertainty around each of the parameter inputs is 

appropriately characterised. 

The first point is a question of ‘structural uncertainty’, a type of uncertainty which 

conventional sensitivity analyses do not commonly address, other than through a range of 

scenario analyses from which the decision maker is invited to choose the most plausible.210  

An alternative is to employ a model averaging approach based either on model fit to the 

data, or by adding parameters to the model to represent the choice between the alternative 



 

 103 

scenario analyses. Each iteration of the probabilistic sensitivity analysis then selects one of 

the scenarios based on some distribution of the likelihood of each.210 

The second point relates to the use and combining of evidence, i.e. systematic review and 

meta-analysis.  Economic evaluations should make use of “all appropriate evidence”.211  This 

is to ensure consistency with the principles of evidence-based medicine, defined as: 

 “...the conscientious, explicit and judicious use of current best evidence in making decisions 

about the care of individual patients”.
91

   

Although in this case the concern is with the population level, i.e. policy decision making, 

rather than an individual patient, the statement is equally valid for informing economic 

evaluations upon which to base policy decisions. 

The question though is what constitutes appropriate evidence.  The Cochrane Handbook for 

Systematic Reviews of Interventions states that the primary difference between a systematic 

as opposed to narrative review is the “pre-specification of eligibility criteria for including and 

excluding studies in the review”,212 defined as a statement of the clinical question and 

specification of the types of study that will be included.  The Handbook suggests a review 

should seek ‘all rigorous studies (e.g. randomised trials) of a particular comparison of 

interventions’.  For estimating measures of the effect of health care interventions, they 

suggest a focus on randomised trials as the study design least prone to bias. 

The result is that systematic reviews, such as those produced by The Cochrane 

Collaboration, focus on establishing the best estimate of one particular parameter, or group 

of related parameters (i.e. beneficial and adverse effects).  They provide a valuable input 

into decision analytic models, but are highly unlikely to provide data for every parameter 

included in a model.213  For example, a systematic review of early versus delayed 

laparoscopic cholecystectomy for acute cholecystitis reported statistics relating to risk of 

peri- and post-surgical complications, conversion to open procedure and mortality.214  A 

subsequent economic evaluation drew heavily on this review, but in addition required data 

on the probability of a patient becoming symptomatic, prognosis of pancreatitis, as well as 

resource use, unit costs and utilities.215 

To be classed as using all appropriate evidence these model inputs too should be based on 

systematic reviews.1  However these are simply not available for every parameter (especially 

resource use estimates), and as a last resort, model inputs are sometimes based simply on 
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author estimates.xliv   It is therefore unclear whether the probability distribution assigned 

around such point estimates adequately reflects parameter uncertainty. 

Incorrect specification of parameter uncertainty will lead to incorrect estimation of the value 

of further research.  The only practical solution is to ensure that care is taken to fully 

characterise parameter uncertainty.  For example replacement of 'author estimates' with a 

formal elicitation technique,218 or use of Bayesian multi-parameter evidence synthesis, 

where data on a number of related parameters from a number of sources are synthesised 

together.219  Ultimately, a ‘comprehensive decision analytic modelling’ technique is desirable 

where systematic review, parameter estimation, sensitivity analysis and economic 

evaluation are carried out within one single modelling framework.220 

CorrCorrCorrCorrelationelationelationelation    

Due to the nature of decision models, drawing on diverse data from numerous sources, the 

analyst does not have information on the correlation structure between the parameters.  A 

common approach, as observed by Briggs et al.74 is to simply ignore correlation and assume 

independent inputs, but this may not be realistic.  There are two sources of correlation: that 

between parameters observed in the same individual and that induced between parameters 

by the structure of a model.  I refer to ignorance of the former in this case.  For example, 

patients with poorer outcomes are likely to consume more health care resources.  Patients 

who consume more of one type of resource (e.g. hospital admission length of stay) may also 

consume more of another (e.g. long term care).  In a linear model, ignoring correlation 

should not bias the point estimate of incremental net benefit (although it may do in a non-

linear structure), but could either over or underestimate the variance.  As the value of 

information statistics are a function of variance of INB, the value of additional research too 

could be over or underestimated.  I provide a fuller discussion of this in Section 3.3. 

3.2.4.3.2.4.3.2.4.3.2.4. SummarySummarySummarySummary    

In this section I have outlined a number of issues relating to value of information in general, 

and issues specific to the analytic and numeric solutions.  A key issue with the analytic 

solution is that it is inconsistent with the axiom that decisions should make use of 'all 

relevant data'.  The exact definition of this is a moot point, but all definitions are likely to 

include the desire to incorporate data from more than one source, if only for pragmatic 

reasons.92  Published examples using the analytic solution82 have drawn data from one 

                                                           
xliv Expert opinion is considered the lowest grade of evidence in a hierarchy topped by well conducted systematic 
reviews, followed by RCTs, observational studies (in the order of cohort studies, case control studies and then 
cross-sectional surveys) and finally case reports216 217 
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source only, where information on all input parameters (i.e. cost and outcomes) are 

simultaneously observed in the same sample.  The correlation structure between those 

parameters is therefore also observed.  However, once more than one data source is 

employed the data need to be combined in some decision model, and the correlation 

structure is unobserved.  The next section explores the implications of this for value of 

information in detail. 
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3.3.3.3.3.3.3.3. Ignoring correlation between modeIgnoring correlation between modeIgnoring correlation between modeIgnoring correlation between model input parametersl input parametersl input parametersl input parameters    

3.3.1.3.3.1.3.3.1.3.3.1. IntroductionIntroductionIntroductionIntroduction    

Stochastic decision models (i.e. Monte Carlo simulations of Markov or other model 

structures) are recommended to estimate the cost-effectiveness of interventions, and to 

appropriately characterise uncertainty around the mean72 92 

In such models, input parameters (for example response rates to treatments, resource 

quantities and utilities) are commonly assumed to be independent as  “…analysts usually 

have no data on the covariance structure and so choose not to model covariance…”.74  This 

is due to the nature of decision analytic modelling: a single trial is unlikely to provide all 

necessary data for decision making.  It is therefore necessary to draw on a variety of 

summary data from numerous sources.88 92  Even for those modelling studies drawing on one 

primary study for effectiveness data, resource use data are frequently extracted from other 

sources, and any correlations between resource use and other model inputs (e.g. response 

rate) are therefore unknown.  Excluding correlations implicitly assumes the correlation 

between parameters is precisely zero. 

In the remainder of this section, I first define correlation (as the Pearson linear correlation 

coefficient), before exploring methods by which correlation between input parameters may 

be incorporated in decision models.  I then examine some decision models reported in the 

literature and consider how they have incorporated correlations or dependencies between 

input parameters.  In the following Section (3.3.2) I explain the methods to compare the 

impact of ignoring correlation before presenting results and discussion in Sections 3.3.3 and 

3.3.4 respectively. 

Definition of correlationDefinition of correlationDefinition of correlationDefinition of correlation    

Correlation is a measure of the strength of the relationship between two parameters.  

Whilst regression analysis attempts to estimate the relationship between two (or more) 

parameters, correlation analysis attempts to estimate the strength of that relationship.221  In 

other words it is a measure of how often high values of one are associated with high or low 

values of the other. 

The most common statistical measure of correlation is Pearson's (linear) correlation 

coefficient.  This is the covariance divided by the product of the standard deviations, and is 

usually denoted ρxy (Equation [  3-1 ]).  What is true for individual observations is also true for 

parameter means, where the correlation coefficient between the mean of two parameters is 

defined as the covariance between the means divided product of the standard errors (where 
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the covariance between the means and standard errors are the sample covariance and 

standard deviations divided by n and √n respecbvely).  In both cases, the division by n or √n  

cancels out and the equation reduces to equation 3-1. 

�D} = [��D}UDU} = ∑ ��� − �̅	�~� − ~�	��5��∑ ��� − �̅	���5� �∑ �~� − ~�	���5�  [  3-1 ] 

The advantage of the correlation coefficient over the covariance is that it is normalised to 

between -1 and +1, whilst covariance is a function of the units of measurement.  

Independent parameters have a correlation coefficient of zero.  However, it is not true to say 

that zero correlation implies independence as the correlation coefficient only measures 

linear correlation (the variables may have some other functional dependency).  The 

exception is where both variables follow a bivariate normal distribution.  That is, for any 

value of y, x is normally distributed, and for any given value of x, y is normally distributed. 

I distinguish here two sources of correlation.  Firstly, the relationship between two 

parameters can be estimated where both are observed in the same patient.  For example, 

within a clinical trial it can be observed that patients who have a better health status may 

have lower health care costs.  Alternatively at baseline, it may be observed that heavier 

patients also tend to have higher blood pressure.  Secondly, there are correlations induced 

by the structure of a decision model.  Interestingly the model structure can induce both 

observable and unobservable correlations: 

Potentially observable correlations can be induced within a model as shown in Figure 3-1 

below.  This shows part of a decision tree where a patient given a treatment has an 80% 

probability of response (e.g. as measured by some biochemical marker).  If they respond, 

they have a 5% probability of relapse, compared with a 40% probability of relapse if they do 

not respond.  QALYs and costs are assigned at the terminal nodes as shown.  Rolling back the 

tree, the expected cost and QALYs gained for a patient receiving this treatment are £560 and 

4.88 respectively.  

A probabilistic sensitivity analysis can be conducted by assigning probability distributions to 

each parameter, in this case the probability of response, probability of relapse given 

response, probability of relapse given no response, cost and QALYs of relapse and non-

relapse respectively.  Even when all input parameters are assigned independent probability 

distributions, a correlation between expected cost and QALYs is induced due to the structure 

of the model.  For example, as the probability of relapse rises, expected cost will rise and 
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expected QALYs will fall simply because the model is structured such that those relapsing 

incur higher cost and lower QALYs.   

Note that the degree to which this is expressed in the correlation between final cost and 

QALYs accrued per patient depends on the proportion of overall cost and QALYs the model 

section represents, as well as uncertainty in mean cost and QALY decrement: if there is very 

little uncertainty in cost or the utility decrement, the observed correlation will be stronger 

than otherwise.  For example, assigning probability distributions to probabilities and 

assuming QALYs and Cost are known with certainty means that as the probability of relapse 

or response is varied, expected cost will always rise as expected QALYs fall and vice versa, 

thus inducing perfect negative correlation between the two (-1, Figure 3-2a).  Assigning an 

arbitrarily ‘large’ standard error around QALYs and cost ‘dilutes’ this effect, yielding a 

correlation coefficient close to zero (-0.017 in this example, Figure 3-2b). 

Figure 3-1: Example decision tree (part)  

Probabilities are illustrated in purple, QALYs in blue and costs in red. 
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Figure 3-2: Scatterplot of sampled costs and QALYs with (a) fixed costs and QALYs, 

probabilities allowed to vary, and (b) with uncertainty in cost, QALYs and probabilities.  

 

 

 

 

 

 

Unobservable correlations are those between patients.  For example, if a particular patient 

does better than expected on treatment A, it may be reasonable to assume they will also do 

better than expected on treatment B.  This is true of means too: if the mean response to 

treatment A is higher than expected, then it may be reasonable to believe that the mean 

response to treatment B will also be higher than expected.  There is no way to observe this 

as it is not possible to give the same (group of) patient(s) both treatments separately at the 

same time.  However a decision model can impose a correlation structure between the 

means.  For example, Wilson et al.15 estimated the cost effectiveness of early versus delayed 

laparoscopic cholecystectomy (LC).  One of the inputs was the conversion rate to an open 

procedure with early or delayed LC.  The contingency table is shown in Table 3-1, using data 

extracted from a Cochrane systematic review.214,xlv  

Table 3-1: 2x2 contingency table for conversion to open procedure 

Convert to open? 

 
Y N 

Early 46 178 

Delayed 52 166 
 

These data were modelled as independent beta distributions.  However, it may have been 

more appropriate to model the probability of conversion with Early LC as a function of the 

baseline probability and the odds ratio of conversion.xlvi   Figure 3-3 shows the results of 

10,000 draws from the respective independent beta distributions, yielding as expected, a 

correlation coefficient very close to zero.  Figure 3-4 shows 10,000 draws with the imposed 

                                                           
xlv Note the data include a non-informative prior.  See Appendix to Wilson et al.15 for details. 
xlvi Where P(conversion with early LC) = exp(logit(P(conversion with delayed))+Log Odds Ratio) 
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structural correlation, yielding a correlation coefficient between the two parameters of 

approximately 0.57.xlvii   In particular note the range of conversion rates with ‘early LC’ is 

much higher than in the uncorrelated case.  Incorporating these ‘structural correlations’ 

often leads to induced correlations between mean incremental cost and QALYs gained. 

Figure 3-3: Scatterplot of 10,000 uncorrelated draws 

  

 

Figure 3-4: Scatterplot of 10,000 correlated draws (a) natural units and (b) logarithmic 

(a)               (b) 

 

 

 

 

 

 

 

 

Methods to incorporate correlation in decision models.Methods to incorporate correlation in decision models.Methods to incorporate correlation in decision models.Methods to incorporate correlation in decision models.    

There are a number of approaches which explicitly take correlation into account within 

decision modelling.  These are the Cholesky decomposition, Gibbs sampling (an 

                                                           
xlvii This is the correlation coefficient between P(conversion with delayed) and log(P(conversion with early)), to 
linearise the relationship. 
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implementation of Markov Chain Monte Carlo (MCMC) methods), and Copula equations.  

Each assumes that the complete multivariate distribution is known.  Such a distribution is 

typically extremely awkward to solve analytically, and so the three methods are means of 

making correlated draws from the joint distribution.  Repeated sets of draws can then be 

used as inputs into a probabilistic decision model.  These are discussed in turn below. 

The Cholesky decomposition 

Briggs et al.74 describe a method for making correlated draws from a set of multivariate 

normal parameters known as the Cholesky decomposition.  This requires some estimate of 

the variance-covariance matrix (either from data or based on prior belief) and all parameters 

are (assumed to be) normally distributed, such as is generated from a standard OLS 

regression analysis.  Where parameters are non-normal, appropriate transformations can be 

made such that they more closely approximate the normal.  A number of models make use 

of this technique for at least some model inputs where data on correlations are available 

(e.g. 222-224). 

The method is as follows: 

Define a matrix, V, as the variance-covariance matrix.  The Cholesky decomposition of V is T, 

such that T is a lower triangular matrix which, when multiplied by its transpose, TT gives V.  

A vector of correlated draws from the parameters (call this x) can be generated as per 

equation [  3-2 ], where y is the vector of parameter means and z is a vector of independent 

standard normal variables.  An example with two parameters, x1 and x2, is shown in Box  3-3. 

� = � + �� [  3-2 ] 

Box  3-3: Bivariate example of Cholesky decomposition 

8Br � = Q� 0� [S ∴ �� = Q� �0 [S 

��� = �: 
 Q� 0� [S Q� �0 [S = C �D� ���D�,DE���D�,DE �DE F 

C�� ���� �� + [�F = C �D� ���D�,DE���D�,DE �DE F 

Q� 0� [S = � XBD� 0�D�,DEXBDE �1 − �D�,DE� XBDE� 
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Using the Cholesky equation, the correlated parameters are defined as : 

Q����S = Q����S + Q� 0� [S Q����S 

Multiplying out the matrices yields: 

Q����S = C �� + ����� + ��� + [��F 

Q����S = � �� + XBD����� + �D�,DEXBDE�� + �1 − �D�,DE� XBDE��� 

 

 

Markov Chain Monte Carlo & Gibbs Samping 

Gibbs sampling is based on the Metropolis-Hastings algorithm.225  The Metropolis algorithm 

is used to sample from complex distributions which would be awkward or impossible to 

integrate analytically, and can therefore be considered an improvement on the Cholesky 

decomposition as it relaxes the assumption of normally distributed parameters.  Briefly, a 

starting value is chosen, θ0.  A new candidate value is then picked at random from some 

(arbitrary) 'jumping' or 'proposal' distribution.  This is denoted θ*.  The density of the target 

distribution is then evaluated at θ* and θ0.  The probability of accepting θ* is then the 

minimum of the ratio of these densities and 1 (Equation [  3-3 ]).  If θ* is accepted, then θt is 

set to equal θ*, else θt is set to equal θt-1.  This is repeated an arbitrarily large number of 

times.  The values θ0, θ1, ..., θn thus form a Markov chain as the probability of observing a 

particular value of θt is only dependent on θt-1.  As the chain progresses, whilst initial values 

may be at extremes of the density, eventually, after a 'burn in' period of k iterations, the 

distribution of the θs will be approximately equal to the target distribution, that is, the chain 

will converge on the distribution of θ. 

Hastings generalised the method by allowing for non-symmetric jumping distributions (the 

Metropolis-Hastings algorithm; Equation [  3-4 ]). 
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� = ��O ( p�z∗	p�z3.�	 , 11 [  3-3 ] 

� = ��O ( p�z∗	��z∗, z3.�	p�z3.�	��z3.�, z∗	 , 11 [  3-4 ] 

Where: 

α = probability of accepting θ* 
p(θ) = target distribution evaluated at θ 
q(x,y) = jumping distribution. 

Note that where the jumping distribution is symmetric, the second term in Equation [  3-4 ] 

cancels out (i.e. ��z∗, z3.�	 = ��z3.�, z∗	, and the algorithm is the same as the Metropolis 

algorithm).  For example, if a uniform or normal distribution is chosen as the jumping 

distribution, the Metropolis algorithm is appropriate.  However for a chi-squared or gamma 

jumping distribution, the Metropolis-Hastings algorithm must be used. 

Gibbs sampling is a special case of the Metropolis-Hastings algorithm where θ* is always 

accepted.  For a complex multivariate distribution, initial values are set for all the 

parameters.  The sampler then draws a new value for the first parameter, conditional on the 

values of all the others.  This process is repeated for all the other parameters until a new set 

of values is drawn for all parameters.  This is termed one scan of the sampler.  This is 

repeated a large number of times and after a sufficient burn-in period, the chain will 

converge on the target multivariate distribution. 

Cooper and colleagues220 extend the MCMC approach to incorporate meta-analysis of trial 

data and economic evaluation into one process termed 'comprehensive decision analytical 

modelling', using software such as WinBUGS.226  For example, to estimate the cost-

effectiveness of taxanes for second-line treatment of advanced breast cancer,220 227 a meta-

analysis of trial data was combined with a Markov chain model.  The advantage of this 

approach is that it "makes full allowance for any potential inter-relationships between 

model input parameters, as the joint distribution of costs and effectiveness, conditional on 

the model, prior beliefs and the data, is used to make inferences".220  However, this is only 

possible where trial data allow correlations to be observed. 

For example, Table 3 of Cooper et al.220 reports marginal probabilities of a number of side 

effects.  These could be entered into a decision model as stated as marginal probabilities, 

and sampled from independently in probabilistic sensitivity analysis.  However, it is 

reasonable to suppose that a patient suffering from diarrhoea may also be more likely to 

suffer vomiting, i.e. there may be a positive correlation between the two.  Data informing 
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risks of side effects is primarily from one trial (Chan et al. 1999).228  Therefore using the 

MCMC sampling algorithm will allow correlated draws from the data, which are then 

'plugged' straight into the decision model. 

Copula equations 

Copula equations are functions that link multivariate distributions to the marginal 

distribution of each parameter.  A detailed exploration of copulas is beyond the scope of this 

thesis, but briefly, Nelsen229 defines copulas as follows: 

Consider the bivariate case, with two random variables X and Y.  Their respective marginal 

distributions are shown in Equations [  3 5 ] and [  3 6 ], and the joint distribution in Equation 

[  3 7 ]. 

���	 = %�� ≤ �	 [  3-5 ] 

��~	 = %�� ≤ ~	 [  3-6 ] 

���, ~	 = %�� ≤ �, � ≤ ~	 [  3-7 ] 

For every value of x and y, F(x), G(y) and H(x,y) are each defined on the interval [0,1], so 

every value of (x,y) corresponds to a point [F(x),G(y)] in a unit square, and also a value of 

H(x,y).  Therefore every point [F(x),G(y)], which is in the range [0,1],[0,1] corresponds to a 

point H[x,y] in the range [0,1].  The copula is the equation that maps [F(x),G(y)] to H(x,y). 

The advantage of the copula is that instead of modelling the links between complex marginal 

distributions, the problem is reduced to specifying the dependency between a series of 

uniform distributions bounded between [0,1]. 

Most examples of their use are in the financial literature, for example, to price collateralised 

debt obligations,230  although their popularity may have waned somewhat since the banking 

crisis of 2008.  I identified one use within a medical context, comparing use of a copula with 

simple Pearson's correlation coefficient to predict the change in aortic ejection fraction 

following surgery.231  Using pre- and post-operative data on 20 patients, the authors 

estimated post-operative ejection fraction as a function of pre-operative using OLS and also 

using copulas.  On both measures of concordance (Lin's concordance measure) and 

accuracy, the copula-based model performed better than the correlation-based prediction 

model.  The authors concluded that copula-based models are an appropriate alternative to 

conventional correlation-based approaches, as the conventional approaches are not suited 

to parameters with skewed (i.e. non-symmetric) distributions. 
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Examples of economic evaExamples of economic evaExamples of economic evaExamples of economic evaluations incorporating structural correlations and/or dependencies luations incorporating structural correlations and/or dependencies luations incorporating structural correlations and/or dependencies luations incorporating structural correlations and/or dependencies 

between input parametersbetween input parametersbetween input parametersbetween input parameters    

Of recent economic evaluations published in the journal ‘Pharmacoeconomics’ employing 

decision analytic modelling and probabilistic sensitivity analysis, a number had access to 

individual patient level data from one (or more) primary source(s) and so incorporated the 

correlation structure between (some) variables, most usually the treatment effect.  For 

example: 

• Reed et al.232 modelled the cost-effectiveness of imatinib versus interferon alpha 

(IFNa) in patients with newly diagnosed chronic phase chronic myeloid leukaemia, 

drawing on a meta-analysis of two RCTs.  In the model, survival in the treatment 

(imatinib) arm was modelled as survival in control (IFNa) multiplied by a ‘calibration 

constant’ corresponding to a percentage reduction in the hazard ratio.  From the 

report it is unclear from where resource use data were drawn. 

• Ramsey and colleagues233 developed a Markov model drawing on data from a single 

trial of atorvastatin vs no statin in the primary prevention of cardiovascular (CV) 

events in type 2 diabetes (T2DM).  Risk of a CV event with atorvastatin was 

expressed as a hazard ratio relative to baseline (no statin), using data observed in 

the CARDS trial.  The hazard ratio was assigned a normal distribution, and the 

baseline risk was that observed from an epidemiological study of the United States 

T2DM population.  Costs were estimated from a separate source. 

However, other studies maintained independence between parameters: 

• Bojke et al.19 estimated the cost effectiveness of pharmacotherapy versus surgery 

(laparoscopic fundoplication) for gastro-oesophageal reflux disease (GORD).  Key 

variables (e.g. outcome of surgery, risk of complications, probability of stable 

maintenance on medical management) were estimated from a fixed-effects meta-

analysis of the literature, and incorporated into the model as independent beta 

distributions.  Resource use was estimated from a survey of five hospitals involved in 

a concurrent comparative trial (the REFLUX trial), and resulting cost inputs were 

modelled as independent gamma distributions. 

• Teerawattananon and colleagues234 report a comparison of three treatments for 

cytomegalovirus retinitis (eye infection) in HIV/AIDS patients: systemic (either oral 

or intravenous) ganciclovir ("O/IV"), intravitreal injection ("IVI"), or intraocular 

implantation ("IMP").  The model is a decision tree populated with data from a 
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systematic review.  All inputs are modelled independently.  For example variables 

"U2" (unilateral infection, risk of complications with IVI) and "U9" (unilateral 

infection, risk of complications with IMP) are modelled as independent beta 

distributions.  

The first point to note is that even in the first two cases, dependencies between variables 

are limited to treatment effect between intervention and control (response in one arm is 

modelled as a function of response in the other): other inputs are modelled as independent 

distributions.  Secondly, a crucial difference between the Reed232 & Ramsey233 papers and 

the Bojke19 and Teerawattananon234 papers is that the first two are modelling one drug 

versus another, and thus the model structure between the two arms is identical.  For the 

latter two however, comparing surgical and medical interventions, the model structure is of 

necessity different between the arms.  

Where model arms are of identical structure, treatment effect of one drug can be modelled 

as a function of the treatment effect on the other, imposing a structural correlation between 

parameters: Pn=f(Po), where Pn is response on new, Po response on old.  For example, a 

commonly used relationship is Pn=Po.RR where RR is relative risk.  Where the structure 

between the arms is fundamentally different (e.g. drug vs surgery) it is less clear exactly 

where and how relationships between parameters should be incorporated. 

These heterogeneous data are also a key drawback of decision models as the interactions 

between the input variables (that is, the variance-covariance matrix) are unknown and 

probably unknowable for two reasons:  firstly, as data are from different samples, there is no 

correlation observed between the parameters, yet it is reasonable to believe that high 

values of one (e.g. cost) may be associated with, for example, low values of another (e.g. 

utility / health-related quality of life / QALYs).  Secondly, where parameters are observed in 

the same sample, analysts may not have access to the individual patient data, and so rely on 

what is reported in the published manuscript, which occasionally fails to provide the 

relevant statistics. 

For these reasons, most decision models assume independence between input parameters.  

This has implications for the value of information, as the VoI is a function of the variance of 

incremental net benefit (INB).  Ignoring correlations between input parameters may over or 

underestimate the variance of INB, thus over or underestimating the VoI. 
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3.3.2.3.3.2.3.3.2.3.3.2. Method Method Method Method & Data& Data& Data& Data    

In order to focus on the issue of correlation and exclude other impacts on value of 

information, I propose a very simple decision model.  That is, where incremental net benefit, 

b, is simply a function of two parameters, incremental cost and outcome, denoted ΔC and 

ΔE, and that these are observed simultaneously in one dataset (i.e. a within-trial economic 

evaluation).  I also assume that b, ΔE and ΔC are normally distributed.  Mean incremental 

net benefit (b) and variance are calculated as per Equations 1-4 and 1-5 in Chapter 1, 

repeated here as Equations [  3-8 ] and [  3-9 ].  λ is the willingness to pay for a unit of 

outcome.  The outcome in each example is QALYs, and λ assumed to be £30,000.  Note the 

covariance is expressed as the product of the standard errors and correlation coefficient. 

bK = �Δ�K − Δ�I [  3-8 ] 

�JbKL = ���JΔ�KL + �JΔ�IL − �2UG�K UG]I�G�K,G]I  [  3-9 ] 

This simple setup with its assumptions of normally distributed parameters allows analytic 

solutions to VoI on b, ΔE and ΔC to be calculated without concern for the parameters 

'behind' ΔE and ΔC (e.g. health state utilities, unit costs, resource quantities etc), or the 

structure of a decision model.  Both the implications of structural uncertainty and the 

random 'noise' of numeric solutions are therefore avoided.  However, it could be argued 

that this approach oversimplifies the issue.  I therefore provide one further example 

calculating value of information statistics on a previously published decision model15 both 

assuming independence between all parameters, and with structural correlations induced 

wherever possible, by, for example expressing response rates under one strategy as a 

function of the baseline response rate and the relative risk. 

For the first three example datasets, I calculate the VoI statistics and optimal sample size for 

further studies.  I then recalculate the VoI statistics assuming a correlation coefficient of zero 

between ΔE and ΔC.  This simulates developing a decision model drawing on separate data 

sources where the correlation is unknown.  I then show how the VoI statistics vary as the 

correlation coefficient is varied between its logical limits of -1 and +1.  For the decision 

model I calculate the VoI statistics as reported in the original analysis (which assumed 

independence between all parameters), before repeating the calculation with structural 

correlations incorporated. 

DataDataDataData    

Data are drawn from three recently reported clinical trials and one decision model based 

analysis: 
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1. The BEfriending and Cost of CAring trial (BECCA);235 

2. The Effectiveness of Leukotriene receptor antagonists in the EValuation of Asthma 

Therapies and for health Economics trial (ELEVATE);236 

3. The Conventional ventilation or Extra corporeal membranous oxygenation for Severe 

Adult Respiratory failure trial (CESAR).237 

4. A cost-utility and value of information analysis of early versus delayed laparoscopic 

cholecystectomy for acute cholecystitis.15 

The BECCA trial is a study of the cost-effectiveness of a befriending intervention on the 

quality of life of carers of people with dementia.50 235  Data are the total NHS cost and QALYs 

gained over 15 months of 105 intervention and 113 control subjects.  The reference case 

analysis reported incremental analyses adjusted for baseline cost and utility with 95%CIs 

calculated via a non-parametric bootstrap (thus allowing for non-normality of the data).  

Missing data were handled using multiple imputation.238  For the purpose of the analysis 

described here, I reanalysed the data, adjusting for baseline values and missing data as 

previously, but calculating 95%CIs around increments parametrically (i.e. assuming 

normality).  Costs for a future trial are estimated based on original trial budgets, adjusted to 

reflect actual expenditure and expressed in 2010 prices. 

The second example is based on data from a pragmatic randomised controlled trial of 

leukotriene receptor antagonists (LTRAs) in asthma patients treated in primary care (the 

ELEVATE trial).236 239-241  The full trial comprised the same experiment on two groups of 

patients: those at 'step 2' and 'step 3' of the British Thoracic Society's asthma treatment 

algorithm.  The data used here relate to the less severe 'step 2' patients, and are QALYs 

gained and cost to society over two years (discounted at 3.5%) from 324 patients 

randomised between LTRAs and inhaled corticosteroids.  As in the previous example, missing 

data were handled in the analysis by means of Rubin's multiple imputation method.238 Note 

that budgets for the two experiments were not reported separately.  For the purpose of 

estimating the cost of a new trial, I assumed that the fixed costs were constant, but variable 

costs were allocated across all 629 patients enrolled in both trials. 

The third dataset is a trial of Extra Corporeal Membranous Oxygenation (ECMO) versus 

conventional ventilatory support for severe adult respiratory failure (the CESAR trial).237  This 

trial reported cost and QALYs gained on 84 and 79 intervention and control patients 
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respectively.  The primary end point of the study was 6 months, but cost and QALY data 

were modelled to a lifetime horizon.  The lifetime data are used for this analysis. 

The decision model is an analysis of two strategies for treating patients presenting with 

acute cholecystitis.15  Conventional management is to delay removal of the gallbladder for 

several weeks until the initial inflammation has subsided as it was thought to be associated 

with a higher risk of intra-operative complications.  However, a Cochrane review214 

suggested this was not the case and if delayed, patients were at higher risk of complications 

such as recurrence of acute cholecystitis, biliary colic, obstructive jaundice and pancreatitis. 

The decision model was designed to establish the cost-utility of early versus delayed 

laparoscopic cholecystectomy.  The study drew heavily on the Cochrane review as well as 

other sources for additional data with which to populate the model.  All parameters such as 

probabilities were modelled as independent beta distributions rather than assigning any 

‘structural linkages’ (modelling one probability as a function of another as previously 

described).  The EVPI and EVPPI were calculated.  These showed that at a threshold of 

£20,000 - £30,000 per QALY, there was only value in additional research to reduce 

uncertainty in health state utilities.  The EVSI of proposed study designs was not calculated.  

I therefore repeat the analysis calculating the EVSI and optimal sample size (n*) for a study 

eliciting health state utilities, with assumptions as to the cost of the research clearly stated.  

Following this I assign the following structural dependencies calculable from the data 

reported in the Cochrane review214: 

• Probability of conversion to open procedure 

• Probability of inter-operative complications (bile duct injury, bile leak, ‘other’) 

In the original analysis, each of the three probabilities of conversion (risk of conversion 

during ‘early’ LC, during an elective delayed procedure and during an elective emergency 

procedure) were modelled as independent beta distributions.  Structural dependencies were 

then induced by defining the probabilities under the comparators as functions of the 

baseline probability via the odds ratios (Table 3-2). 

For inter-operative complications, the probabilities of each of the four possibilities (bile duct 

injury, bile leak requiring ERCP, other complication and no complication) were originally 

modelled with a Dirichlet distribution.  Structural dependencies were induced by expressing 

the probability of any complication with ELC as a function of the probability with DLC and 
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the odds ratio, and using Dirichlet distributions to model the type of complication (bile duct 

injury, bile leak and ‘other’, Table 3-3). 

Table 3-2: Conversion rates to an open procedure 

 Converted to 
open 

Successful laparoscopic 
procedure 

P 

Conversion if delayed and 
emergency admission 
(DLC+Em) 

19 23 45.24% 

Conversion if operated early 
(ELC) 

46 178 20.54% 

Conversion if delayed and 
operated electively (DLC+El) 

52 166 23.85% 

 DLC+Em:ELC+El ELC:DLC+El  

OR 2.6371 0.8250  
Ln(OR) 0.9697 -0.1924  
V(Ln(OR)) 0.1214 0.0526  
 

Table 3-3: Risk of inter-operative complications 

 ELC DLC 

Bile duct injury 2 4 
Bile leak 8 1 
Other complication 21 17 
No complication 195 198 

OR (ELCvsDLC)* 1.4381  
Ln(OR) 0.3634  
V(ln(OR)) 0.0879  
* OR calculated as the ratio of odds of any complication, i.e. [=(2+8+21)/195]/[(4+1+17)/198] 

I repeat the EVPI and EVPPI calculations as well as calculating the EVSI and n* for the same 

utility elicitation exercise and compare the results.  

3.3.3.3.3.3.3.3.3.3.3.3. ResultsResultsResultsResults    

BECCABECCABECCABECCA    

Summary statistics from the data are in Table  3-4, and net benefit calculated assuming a 

threshold of £30,000 per QALY.  The point estimate ICER is £117,039 and incremental net 

benefit -£1490 (variance £6.1m).  On this basis, the decision would be to reject the 

intervention.  The 95% confidence ellipse of incremental cost and QALYs is shown in Figure 

3-5, and the CEAC in Figure 3-6.  The distribution of incremental net benefit is shown in 

Figure  3-7). 
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Expected value of perfect information, of sample information and expected net benefit of 

sampling 

Using the unit normal loss integral method, the per-patient EVPI at a £30,000 threshold is 

£414.36 (Table  3-5).  The per-patient EVSI of a trial of, for example, sample size n=100 in 

each arm gathering data on b is £188.85.  As the sample size approaches infinity, the EVSI of 

b approaches the EVPI of b (Figure  3-8).  The per-patient EVSI cannot be used to make a 

research funding decision.  This should be based on the expected net benefit of sampling 

(ENBS), which is the per-patient EVSI multiplied by the total (present and future, discounted) 

patient population, less the cost of sampling (i.e. the cost of the trial).  The ENBS maximising 

point is where the marginal gain from the last patient enrolled is equal to the marginal cost 

of sampling. 

For the purpose of this example, I assume the beneficial population is approximately 

770,000 patients (based on a 10 year time horizon, discounted at 3.5%). Research costs for 

the BECCA trial were based on the original budget categories included in the grant 

application, adjusted to actual cost and uprated to 2010 costs.  This equates to a fixed cost 

of £469,731 and variable costs of £2,131 per patient (see Appendix A Tables A-1 to A-3 for 

details). 

Under these assumptions, the population EVPI is £318.8m.  The population EVSI of a trial of 

n=100 in each arm is £145.3m.  A trial of 100 patients in each arm would cost 

£469,731+2*100*£4,262=£1,044,861, thus the expected net benefit of sampling is 

£144,274,000.  The trial of n=100 per arm, collecting b (incremental net benefit) as the 

outcome would therefore yield a positive net benefit.  Figure  3-9 shows the population EVSI 

and ENBS for a range of sample sizes.  The ENBS-maximising sample size is 2279 per arm. 

In summary, current evidence is in favour of rejecting the befriending intervention, but there 

is sufficient decision uncertainty that a further trial is warranted, enrolling 2279 patients in 

each arm. 

Impact of ignoring correlation 

Setting the Pearson correlation coefficient, ρΔC,ΔE, to zero is analogous to assuming 

independence between input parameters: in principle they could have been drawn from 

different sources. 
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If ρΔC,ΔE is set at zero, the variance of incremental net benefit becomes simply the sum of the 

variances of ΔE and ΔC, which may be either an over or underestimate of the true variance, 

depending on whether ρΔC,ΔE is positive or negative (see Equation [  3-9 ]). 

In this example, ρΔC,ΔE is negative, so ignoring it will underestimate the variance of INB at 

£4,994,210 (Table  3-6), compared with £6,097,911 in the base case (Table  3-5). 

As EVPI is a function of the variance, the EVPI is similarly underestimated at £337.79 per 

patient, compared with £414.36 in the base case (Table  3-6).  As ρΔC,ΔE is increased from -1 to 

+1, both the variance of incremental net benefit and EVPI fall (Figure  3-10).  This follows 

through to impact on the estimated EVSI of a study of a given sample size, and hence also 

the EVSI-maximising sample size.  In this case, if ρΔC,ΔE is assumed equal to zero, the efficient 

sample size of a study is 2329 patients per arm, rather than 2279, a 2% overestimate 

(Table  3-6).   

Plotting for ρΔC,ΔE between -1 and +1. the optimal sample size varies between 2146 for ρΔC,ΔE 

= -1, is at a maximum where ρΔC,ΔE is approximately 0.4 (n=2380), before dropping to zero at 

values of ρΔC,ΔE > 0.95.  At this point, the ENBS is negative at all sample sizes (Figure  3-11). 

In conclusion, in this data set, the point estimate of ρΔC,ΔE is approximately -0.26.  Ignoring 

this correlation leads to a slight overestimate of the efficient sample size for a future study 

estimating b.  However, the optimal sample size is much more sensitive to high positive 

values of ρΔC,ΔE. 
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Figure 3-5: BECCA Cost-effectiveness plane 

and 95% confidence ellipse 
Figure 3-6: BECCA Cost Effectiveness 

Acceptability Curve 

 

Figure  3-7: BECCA Plot of Incremental Net 

Benefit @ WTP = £30,000 
Figure  3-8: BECCA per patient EVSI and EVPI 

Figure  3-9: BECCA EVSI and ENBS 
Figure  3-10: BECCA variance of INB and EVPI 

as a function of correlation coefficient 
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Figure  3 11: BECCA Optimal sample size (n*) of a new study measuring INB, and ENBS at n* 

as a function of the correlation coefficient 

 

 

 

 

 

 

 

 

 

Table  3 4: BECCA Summary Statistics  

 Intervention Control Increment 

N 105 113  
 0.946 0.929 0.017 
 £13,740 £11,737 £2,003 

 £14,644 £16,133 -£1,490 

 0.060 0.068  

 £253,411,414 £140,659,473  

 £360,990,075 £260,589,328  

 0.00058 0.00070  

 £2,413,442 £1,435,301 £3,848,743 

 -0.226 -0.315 -0.263 

 £3,438,019 £2,659,892 £6,097,911 
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Table  3 5: BECCA VoI Statistics 

Parameter Per patient Population* 

 -£1,490 -£1,490 

V(b) £6,097,911 £6,097,911 
EVPI £414.36 £318,840,000 
EVSIb (n=100 in each arm) £188.85 £145,319,000 

Trial of: n=100 per arm n=n* per arm  
N 100 2279 
EVSI £145,319,000 £305,240,000 
Fixed cost £469,731 £469,371 
Variable cost £426,176 £9,713,000 
Total cost £1,044,861 £13,577,000 
ENBS £144,274,000 £291,663,000 
*769,484 potential beneficiaries. 

The first section of table shows the per patient and population level VoI statistics.  The 

second section shows the population level statistics for trials of size n=100 and size n=n*, i.e. 

the sample size that maximises ENBS. 

 

Table  3 6: BECCA VoI statistics, rho=0 

Parameter Per patient Population* 

 
-£1,490 -£1,490 

V(b) £4,994,210 £4,994,210 
EVPI £337.79 £259,928,000 
EVSIb (n=100 in each arm) £124.77 £96,012,000 

Trial of: n=100 per arm n=n* per arm  
N 100 2329 
EVSI £96,012,000 £245,916,000 
Fixed cost £469,731 £469,371 
Variable cost £426,176 £9,926,000 
Total cost £1,044,861 £13,865,000 
ENBS £94,967,000 £232,052,000 
*769,484 potential beneficiaries. 

The first section of table shows the per patient and population level VoI statistics.  The 

second section shows the population level statistics for trials of size n=100 and size n=n*, i.e. 

the sample size that maximises ENBS. 
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ELEVATEELEVATEELEVATEELEVATE    

Summary statistics for the ELEVATE data are in Table  3-7 with net benefit calculated 

assuming a threshold of £30,000 per QALY.  The point estimate ICER is -£2,291 (control is 

dominant) and the incremental net benefit -£2,952.30 (variance £1.57m).  On this basis, the 

decision would be to reject the intervention.  The 95% confidence ellipse of incremental cost 

and QALYs is shown in Figure 3-12, and the CEAC in Figure 3-13.  The distribution of 

incremental net benefit is shown in Figure  3-14. 

Expected value of perfect information, of sample information and expected net benefit of 

sampling 

Only a small proportion of the distribution is to the right of the Y-axis, suggesting a small 

probability of being 'wrong'.  This is reflected in the small per patient EVPI of £3.87 (Table  3-

8).  The per-patient EVSI of a trial of, say, n=100 patients in each arm with b as the primary 

outcome is £0.01.  EVPI and EVSI for various sample sizes are plotted in Figure  3-15. 

I assume the beneficial population of 6,787,000 patients (based on a 10 year time horizon, 

discounted at 3.5%).  Research costs for the ELEVATE trial were based on the original budget 

categories included in the grant application, adjusted to actual expenditure and uprated to 

2010 costs using the CPI.  I estimate a fixed cost of a new trial of £1,305,000 with variable 

costs of £289 per patient (see Appendix A Tables A-4 to A-6 for details).   

On this basis, the population EVPI is £26.276m, and the population EVSI of a trial of n=100 in 

each arm is £84,521 (Table 3-8).  A trial of 100 patients in each arm would cost £1,305,470 + 

£289*2 = £1.658m, yielding an expected net benefit of sampling of -£1.6m.  As this trial has 

a negative net benefit, it would not be efficient to undertake (Table  3-8).  However, as the 

sample size increases, the marginal gain exceeds the marginal cost, thus larger trials would 

be efficient: the point at which the marginal gain is equal to the marginal cost is at 1822 

patients enrolled into each arm (Figure  3-16).  This is thus the ENBS-maximising sample size. 

In summary, current evidence is in favour of rejecting the intervention, but a new trial with a 

sample size of 1822 patients in each arm would be justified on economic grounds. 

Impact of ignoring correlation 

As the correlation coefficient between ΔC and ΔE is negative, setting it to zero will 

underestimate the variance of b.  The EVPI per patient is then underestimated at £3.69 

(versus £3.87), and the population EVPI £25.035m (versus £26.276m).  The optimal sample 

size for a trial is now 1783 (versus 1822), or a 2% underestimate (Table  3-9).  Calculating n* 
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for all values of ρ yields Figure  3-17, with a steady almost linear (although slightly concave) 

decline in n* as rho rises from -1 to +1. 

In conclusion, in this data set, the point estimate of ρΔC,ΔE is approximately -0.13.  Ignoring 

this correlation leads to a slight (2%) underestimate of the efficient sample size for a future 

study estimating b. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1
00

15
0

2
00

2
50

3
00

dC

-.2 -.15 -.1 -.05 0
dE

Figure  3-12: ELEVATE Cost-effectiveness plane 

and 95% confidence ellipse  

 

Figure  3-13: ELEVATE Cost-effectiveness 

acceptability curve 

 

Figure  3-14: ELEVATE Plot of Incremental Net 

Benefit  

 

Figure  3-15: ELEVATE per patient EVPI and 

EVSI 

 

Figure  3-16: ELEVATE Optimal sample size for 

a new trial 

 

Figure  3-17: ELEVATE Optimal sample size (n*) 

of a study measuring INB, and ENBS at n* as a 

function of rho 
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Table  3 7: ELEVATE Summary Statistics 

 Intervention Control Increment 
N 160 164  

 1.618 1.710 -0.091 

 £564.71 £355.22 £209.48 

 £47,986.80 £50,939.09 -£2,952.30 

 0.158 0.120  

 £384,427.24 £125,503.32  

 £144,833,880.17 £108,776,891.69  

 0.001 0.001 0.002 

 £2,402.67 £765.26 £3,167.93 

 -0.142 -0.125 -0.134 

 £905,211.25 £663,274.07 £1,568,485 
  

Table  3 8: ELEVATE VoI Statistics 

Parameter Per patient Population* 

 
-£2,952 -£2,952 

V(b) £1,568,485 £1,568,485 
EVPI £3.87 £26,276,000 
EVSIb (n=100 in each arm) £0.01 £84,521 

Trial of: n=100 per arm n=n* per arm  
n 100 1822 
EVSI £84,521 £18,485,000 
Fixed cost £1,305,470 £1,305,470 
Variable cost £57,716 £1,052,000 
Total cost £1,658,000 £7,736,000 
ENBS -£1,574,000 £10,749,000 
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Table  3 9: ELEVATE VoI Statistics, rho=0 

Parameter Per patient Population* 

 
-£2,952 -£2,952 

V(b) £1,549,758 £1,549,758 
EVPI £3.69 £25,036,000 
EVSIb (n=100 in each arm) £0.01 £71,366 

Trial of: n=100 per arm n=n* per arm  
n 100 1783 
EVSI £71,366 £17,347,000 
Fixed cost £1,305,470 £1,305,470 
Variable cost £57,716 £1,029,000 
Total cost £1,658,000 £7,598,000 
ENBS -£1,587,000 £9,749,000 
  

  

)ˆ(ˆ bNB =∆



 

 130 

CESARCESARCESARCESAR    

Summary statistics from the CESAR trial data are in Table  3-10, with net benefit calculated at 

a threshold of £30,000 per QALY.  The point estimate ICER is £13,995 and the incremental 

net benefit £55,073.51 (variance £1.592bn).  On this basis the decision would be to adopt 

the intervention.  The 95% confidence ellipse of incremental cost and QALYs is shown in 

Figure 3-18, and the CEAC in Figure 3-19.  The distribution of incremental net benefit is 

shown in Figure  3-20. 

Expected value of perfect information, of sample information and expected net benefit of 

sampling 

The per-patient EVPI at a £30,000 threshold is £1,526.74 (Table  3-11).  The per-patient EVSI 

of a trial of sample size n=100 in each arm gathering data on b is £361.49.  As the sample 

size approaches infinity, the EVSI of b approaches the EVPI of b (Figure  3-21). 

I make the following assumptions regarding the patient population and cost of sampling:  I 

assume a beneficial population of 504,028 (10 year time horizon, 3.5% discount rate).  Based 

on a 2011 start date, I estimate a new trial would have fixed costs of £1,827,720 and variable 

costs of £65,102 per patient (see Appendix A Tables A-7 to A-9 for details). 

Under these assumptions, the population EVPI is £769.5m, and the EVSI of a trial of n=100 

patients in each arm would be £182.2m (Table  3-9).  A trial this size would cost £20.4m, thus 

the expected net benefit of sampling would be £161.8m.  The ENBS-maximising sample size 

is 722 patients per arm (Figure  3 22), at an ENBS of £480.5m. 

In summary, current evidence is in favour of accepting the intervention, but there is 

sufficient decision uncertainty to warrant a further trial with 722 patients enrolled into each 

arm. 

Impact of ignoring correlation 

In this example, ρΔC,ΔE is positive (0.353; Table  3-10), so ignoring it will overestimate the 

variance of INB, and thus overestimate the value of additional information (Table  3-12).  

Assuming ρΔC,ΔE is zero leads to an efficient sample size estimate of 767 patients per arm, 

rather than 722, or a 6% overestimate.  Plotting for ρΔC,ΔE between -1 and +1, the optimal 

sample size varies between a maximum of 826 for ρΔC,ΔE = -1, falling to 555 at ρΔC,ΔE (Figure  3-

23). 
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In conclusion, in this dataset, the point estimate of ρ is +0.353.  Ignoring this correlation 

leads to a 6% overestimate in the optimal sample size of a future study estimating b. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  3-18: CESAR Cost-effectiveness plane 

and 95% confidence ellipse 

 

Figure  3-19: CESAR Cost-effectiveness 

Acceptability Curve 

 

Figure  3-20: CESAR plot of incremental net 

benefit 

 

Figure  3-21: CESAR per patient EVSI and EVPI 

 

 

Figure  3-22: CESAR Optimal sample size for a 

new trial 

 

 

Figure  3-23: CESAR Optimal Sample size (n*) 

of a study measuring INB, and ENBS at n* as a 

function of rho 
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Table  3 10: CESAR Summary Statistics 

 Intervention Control Increment 
N 84 79  

 10.751 7.310 3.441 
 £87,463.54 £39,305.70 £48,157.84 

 £235,067 £179,994 £55,073.51 

 80.717 79.810  

 £4,112,868,974 £2,087,523,142  

 £69,895,319,898 £59,992,880,652  

 0.961 1.010 1.9712 

 £48,962,726 £26,424,344 £75,387,069 

 0.199 0.569 0.353 

 
£832,087,142 £759,403,553 

£1,591,490,694 
    
    

 

Table  3 11: CESAR VoI Statistics 

Parameter Per patient Population* 

 £55,074 £55,074 

V(b) £1,591,491,000 £1,591,491,000 
EVPI £1,527 £769,522,000 
EVSIb (n=100 in each arm) £361.49 £182,202,000 

Trial of: n=100 per arm n=n* per arm  
n 100 722 
EVSI £182,202,000 £616,137,006 
Fixed cost £1,827,720 £1,827,720 
Variable cost £13,020,161 £94,007,726 
Total cost £20,355,532 £135,598,522 
ENBS £161,846,210 £480,538,484 
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Table  3 12: CESAR VoI Statistics, rho=0 

Parameter Per patient Population* 

 
£55,074 £55,074 

V(b) £1,849,400,000 £1,849,400,000 
EVPI £2,039.98 £1,028,200,000 
EVSIb (n=100 in each arm) £645.58 £325,391,000 

Trial of: n=100 per arm n=n* per arm  
n 100 767 
EVSI £325,391,000 £870,532,987 
Fixed cost £1,827,720 £1,827,720 
Variable cost £13,020,161 £99,866,934 
Total cost £20,355,532 £143,936,037 
ENBS £305,035,464 £726,596,950 
 

  

  

)ˆ(ˆ bNB =∆
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Acute CholecystitisAcute CholecystitisAcute CholecystitisAcute Cholecystitis    

Summary statistics for the acute cholecystitis model with uncorrelated inputs are in Table 3-

13, and with the structural correlations in Table 3-14.  Incorporation of the correlation does 

not, in this case alter the adoption decision: incremental net benefit is positive in both cases.  

However, the point estimate is lower where the inputs are correlated (£718 per patient vs 

£649).  More importantly, the variance of mean incremental net benefit is substantially 

lower (£7.385m vs £6.452m).  The scatterplot of incremental cost and QALYs for both the 

correlated and uncorrelated models are shown in Figure 3-24, both generating very similar 

distributions of increments.  The resulting CEACs and distributions of incremental net benefit 

are in Figures 3-25 and 3-26.  Whilst the distributions of incremental net benefit are almost 

identical (Figure 3-26), the CEAC tails off more steeply when inputs are correlated such that 

at a threshold of £30,000 per QALY, there is an approximately 60% probability that early LC 

is cost-effective in the base case (uncorrelated) model, but 50% in the correlated model 

(Figure 3-25). 

Expected value of perfect information, of sample information and expected net benefit of 

sampling 

Overall estimates of the EVPI and EVSI appear little changed between the two models, with 

observed differences possibly attributable to random noise from the simulation approach.  

The per-patient EVPI at a £30,000 threshold is £463 in the original, uncorrelated model, and 

£465 in the version with correlations (Tables 3-15 and 3-16).  In both cases, the EVPPI is 

highest around the utility values attached to health states.  The per patient EVPPI for utility 

inputs (EVPPIQoL) is £322 in the base model, but £343 in the correlated model and the EVSI of 

a health state utility elicitation study of 100 observations is £283 in the base case but £265 in 

the correlated model. 

To calculate the ENBS, I assumed a fixed cost of £50,000 and variable costs of £500 per 

patient.  The potentially beneficial population was estimated at 111,900 (10 year time 

horizon, 3.5% discount rate).15 

Under these assumptions, the population EVPI is £51.8m in the base model compared with 

£52.0m in the correlated model.  The ENBS of a study of 100 patients is estimated at £32.1m 

vs £29.1m.  Again these differences are most likely due to simulation noise. 

However, the optimal sample size for such studies appears to be highly sensitive: I estimate 

an optimal n of 436 when model inputs are uncorrelated, but only 206 when correlations are 
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incorporated.  The explanation for this could simply be due to simulation noise, however the 

variable cost per patient also has a large effect on the optimal sample size:  If the gradient of 

the TC curve is very flat (as is the case here), the optimal sample size occurs where the EVSI 

is similarly flat.  Therefore very small changes in the EVSI curve can have dramatic effects on 

n* as is the case here (Figure 3-27). 

In conclusion, ignoring correlation between parameters may be having a large impact on the 

optimal sample size.  However, it is difficult to disentangle this from noise due to the 

simulation process.  Performing enough simulations to minimise simulation noise would 

require an unfeasible amount of computer processing time.  In this example, the optimal 

sample size is particularly sensitive to the EVSI because the variable cost per patient is ‘small’ 

relative to the EVSI. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

* Note the EVSI for trials with varying sample sizes was calculated via simulation.  This 

generated a ‘noisy’ estimate of the EVSI curve as shown by the scatterplot (red squares for 

Figure 3-24: LC Cost-effectiveness plane: 

Scatterplot and 95% Confidence ellipse 

Figure 3-25: LC Cost-

effectiveness acceptability curve 

Figure 3-26: LC Incremental Net 

Benefit at λ=£30,000 

Figure 3-27: LC EVPI & EVSI(b) under i) 

independent parameters ii) structurally induced 

correlation* 
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the un-correlated and blue diamonds for the correlated model).  Two lines were fitted by OLS, 

EVSI = a + b*Ln(n) and EVSI= a + b1*Ln(n) + b2*ln(n)^2.  The latter incorporating the 

quadratic term yielded a much better fit of the sampled estimates in both the correlated and 

uncorrelated models (r
2
 of approximately 0.9 versus 0.45 in each case) 

 

Table 3-13: Cholecystectomy summary statistics: uncorrelated 

 Early LC Delayed LC Increment 

 0.879 0.882 -0.003 

 £2,563 £3,365 -£801 

 £23,812 £23,093 £718 
   0.008 
   £218,132 
   0.003 

 £646,442 £8,197,915 £7,384,892 
    
    

 

Table 3-14: Cholecystectomy summary statistics: correlated 

 Early LC Delayed LC Increment 

 0.878 0.883 -0.005 

 £2,578 £3,384 -£806 

 £23,758 £23,108 £649 
   0.007 
   £207,676 
   0.005 

 £744,651 £7,386,643 £6,452,016 
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Table 3-15: Cholecystectomy VoI statistics: uncorrelated 

Parameter Per patient Population* 

 £718 £718 

V(b) £7,384,892 £7,384,892 
EVPI £463 £51,840,271 
EVPPIQoL £322 £36,117,227 
EVSIQoL (n=100 in each arm) £283 £32,225,532 

Study of: n=100  n=n*  
n 100 436 
EVSIQoL £32,225,532 £34,304,608 
Fixed cost £50,000 £50,000 
Variable cost £50,000 £218,000 
Total cost £100,000 £268,000 
ENBSQoL £32,125,532 £34,036,608 
 

Table 3-16: Cholecystectomy VoI statistics: correlated 

Parameter Per patient Population* 

 £649 £649 

V(b) £6,452,016 £6,452,016 
EVPI £465 £52,031,746 
EVPPIQoL £343 £38,407,816 
EVSIQoL (n=100 in each arm) £265 £29,155,540 

Trial of: n=100 n=n* 
n 100 206 
EVSI £29,155,540 £29,748,089 
Fixed cost £50,000 £50,000 
Variable cost £50,000 £103,000 
Total cost £100,000 £153,000 
ENBS £29,055,540 £29,595,089 
 

  

  

)ˆ(ˆ bNB =∆

)ˆ(ˆ bNB =∆
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3.3.4.3.3.4.3.3.4.3.3.4. DiscussionDiscussionDiscussionDiscussion    

The purpose of this section was to illustrate the impact of ignoring correlation between 

input variables in a decision model.  In order to focus solely on this issue, and to prevent 

confusion with other issues such as model structural uncertainty and uncertainty due to 

simulation 'noise', I devised the simplest possible model defining incremental net benefit as 

a function of two variables, ΔE and ΔC (as well as the constant λ).  The source was assumed 

to be a single randomised controlled trial with piggy-backed economic evaluation, with 

simultaneous collection of both ΔE and ΔC.  The correlation coefficient between ΔE and ΔC is 

thus observable.  Setting this to zero is analogous to developing a decision model drawing on 

data from separate sources where the covariance structure between the parameters is 

unknown (for example, ΔE being drawn from one trial, and ΔC from some other source).  In 

order to assess the impact in a ‘real life’ model, I also imposed a number of correlations 

between parameters in a previously published model. 

In this discussion, I first restate the results of the analyses, finding that in the observed trial-

based studies the impact of excluding correlation is minimal, but that there could be a 

substantial difference in optimal sample size in the decision model based analysis, although 

it is unclear whether this could simply be due to random noise from the simulation.  I then 

consider two specific issues: determinants of the shape of the n* curve elicited for the three 

trial-based studies and a potential solution to obtaining information on the correlation 

between parameters when the impact is of concern. 

Restatement and comparison of resultsRestatement and comparison of resultsRestatement and comparison of resultsRestatement and comparison of results    

The BECCA data yielded a point estimate incremental net benefit close to zero with a large 

variance (-£1,490 and £6.1m respectively).  Therefore a large proportion of the distribution 

(27.3%) was to the right of the y-axis.  (Note this is the same as the CEAC showing a 72.7% 

probability of cost-effectiveness at a £30,000 threshold).  This decision uncertainty is 

reflected in the per-patient EVPI and EVSI.  Given the relatively large population would could 

benefit from the trial results (crudely estimated at 770,000 carers), and assumptions over 

the cost of sampling, I estimate a new trial of 2,280 patients per arm would be optimal.   

In comparison, there was very little decision uncertainty in the ELEVATE results: it is highly 

likely that the incremental net benefit is negative (99.08% probability).  Therefore the per-

patient value of information (EVPI and EVSI) is small.  However, the disease is very common, 

thus the total potential health gain is large and when aggregated across the UK population a 

new trial would be efficient (n=1,641 per arm). 
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The point estimate of incremental net benefit in the CESAR data was positive, suggesting the 

decision should be to adopt the intervention, but again, there was sufficient uncertainty to 

warrant an additional trial of 722 patients in each arm.xlviii  

The base case decision model-based analysis yielded a positive incremental net benefit 

suggesting that on average early LCxlix  is cost-effective compared with delayed LC, however 

there is substantial decision uncertainty (point estimate INB £718, SE £2718).  Uncertainty 

was concentrated in estimates of health state utilities, with the EVPPI for such estimated at 

£322 per patient.  Given assumptions over study costs and the beneficial population, a study 

collecting health state utility data enrolling 436 respondents would be the most efficient 

sample size. 

In each of the three trial-based cases, the optimal sample size for new trials was much larger 

than the original trial.  The estimated budget of each trial was correspondingly high (£13.6m, 

£10.7m and £135.6m respectively).  It is highly unlikely that funders would be willing or able 

to dedicate such large sums to a single trial.  Nevertheless, the results state the optimum 

sample sizes for future trials, conditional on the value placed on the expected health gain as 

a result of the additional information yielded.  If funders are not willing to spend such large 

sums on single trials then a possible explanation is that funders have a diminishing marginal 

valuation on the reduction in uncertainty from a given trial.  Alternatively they may be risk 

averse to allocating an entire budget to one project and place value on funding a variety of 

projects.  This is an area that may be worthy of investigation but is beyond the scope of this 

thesis. 

Setting the correlation coefficient between ΔC and ΔE to zero does appear to change the 

optimal sample size in the trial-based analyses, but this was by only approximately 2%-6% in 

each case.  Given the uncertainties inherent in patient recruitment and retention to trials, 

such a small difference is unlikely to be of consequence.  However, the model based analysis 

appeared much more sensitive to the correlations, suggesting an optimal study size of only 

206 participants (versus 436).  Assuming this is not due to random noise in the simulation 

approach, an explanation for this is the low variable cost of the study relative to the EVSI 

(the variable cost is the gradient of the TC curve): The point at which the difference between 

the EVSI and TC is maximised is where the gradients of the two curves are equal.  As this is at 

                                                           
xlviii

 Of note is that such a trial would take over six years to recruit in the UK if 100% of eligible cases 
were randomised.  My analysis does not adjust for this but could have a large impact on the value of 
additional information. 
xlix

 Laparoscopic cholecystectomy 
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a point where the EVSI curve is relatively flat, the optimal sample size can change 

dramatically for only a very small change in the EVSI curve.  Brennan and colleagues 

explored the impact of correlation between model parameters on estimates of the EVPPI 

(rather than n*).207  Their study focused on comparing two methods to calculate the EVPPI 

for model parameters in the presence of correlation, rather than comparing the impact of 

ignoring correlation per se.  Using a nested two-stage Monte Carlo algorithm (as performed 

in my acute cholecystitis example above), Brennan and colleagues’ results show that 

ignoring correlations has the potential to underestimate the EVPPI of some parameters. 

Whilst the observed analyses in the trial-based studies showed limited impact from ignoring 

correlation, plotting the optimal sample size for all values of rho between its logical limits of 

-1 to +1 shows that there is the potential for the optimal sample size to be grossly 

overestimated in the BECCA data (Figure  3-11): there is a dramatic fall in the optimal sample 

size where the correlation between ΔC and ΔE is very strongly positive (greater than 

approximately 0.8).  In cases where such a strong positive correlation exists and is ignored, 

the optimal sample size could be overestimated.  Examination of the correlation coefficients 

between components of the BECCA dataset suggests that generally there are no such strong 

correlations between parameters, with no values greater than 0.5 observed (Appendix B).  If 

this is typical of the correlations between input parameters, then the impact of ignoring 

correlation on value of information analyses may be minimal. 

The shape of the n* curve.  The shape of the n* curve.  The shape of the n* curve.  The shape of the n* curve.      

Intuitively, one would expect that the n* curve would be at minima at perfect negative and 

positive correlation.  This is because a correlation coefficient of -1 or +1 means that there is 

a deterministic relationship between two parameters (in this case ∆E and ∆C).  It would 

follow therefore that information about one yields information about the other, therefore 

there should be less to gain from additional information at these two extremes, and hence a 

lower optimal sample size. 

However, the shape of the n* curve does not follow this expectation.  In all three examples, 

whilst the curve does exhibit a degree of concavity in each case, the optimal sample size at 

ρ=-1 is positive.  In the case of BECCA (Figure  3-11), n* then rises steadily until there is a 

strong positive correlation (ρ≈0.8), before declining rapidly.  At extremely high values of ρ 

there is no size of trial which yields a positive ENBS, therefore no trial should be undertaken.  

It is interesting to note that the equivalent curves for the ELEVATE (Figure  3-17) and CESAR 

(Figure  3-23) data do not exhibit the same behaviour, showing only a steady decline in n* as 
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ρ increases: the rate of change in the rate of change in n* is less (second derivative of n*, 

illustrated by the lesser degree of concavity). 

The logic behind this observation is as follows.  Consider the BECCA data.  The optimal 

sample size at any ρ is the sample size associated with the maximum net benefit of the trial.  

That is, where the marginal cost of enrolling the last patient is equal to the marginal gain.  

This occurs where the gradient of the TC curve is equal to the gradient of the pEVSI curve 

(Figure  3-9).  The gradient of the TC curve is fixed.  The gradient of the pEVSI curve is a 

function of the expected reduction in decision uncertainty from each marginal enrolee (i.e. 

the per patient EVSI, Figure  3-8).  Where there is a great deal of decision uncertainty, the 

information gained from one additional patient enrolled is proportionally greater than 

where there is little decision uncertainty (there are diminishing marginal returns to 

information).  Therefore in the case of the BECCA data, the per-patient EVSI curve is steep 

for small sample sizes. 

As the correlation coefficient increases from -1 to +1, the variance of incremental net benefit 

declines (see Figure  3-28, column 2).  This shifts the EVPI and EVSI curves downwards 

(Figure  3-28, column 3).  This has the effect of first increasing n*, before n* falls sharply 

(Figure  3-28, column 4).  At a ρ of approximately 0.9576, the ENBS associated with n* is just 

zero.  At higher values of ρ, there is no n leading to a positive ENBS.  This is because at 

ρ=0.9576, two conditions are satisfied: 

��$N&�O = �i��O  

AND 

�$N&�O∗	 = i��O∗	 

At ρ=0.9576, 
������� = �4]�� = £2131, which is equal to the per patient variable cost, and  

�$N&�O∗	 = i��O∗	 = £7,929,177. 

This point is not reached in either the ELEVATE or CESAR examples (Figures  3-29 and  3-30).  

The reason for this is that no matter how high ρ, the EVSI curve is always greater than the TC 

curve at some value of n.  In other words, the EVSI curve does not decline so dramatically as 

ρ rises.  This is because there is less decision uncertainty in these two examples and hence 

less to gain from additional information. 
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Figure  3-28: VoI statistics for BECCA data as rho is increased from -1 to +1 
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Figure  3-29: VoI statistics for ELEVATE data as rho is increased from -1 to +1 
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Figure  3-30: VoI statistics for CESAR data as rho is increased from -1 to +1 
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ρ=1.00 
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Potential solutionPotential solutionPotential solutionPotential solution    

If it is desired to incorporate correlation between parameters in VoI statistics, the only solution is to 

estimate or elicit some measure.  This could be estimated from the literature, analysis of databases 

or via a formal elicitation process from experts.  A tool to assist with this is the SHeffield ELicitation 

Framework ('SHELF').98 218  This is a software tool written in the R language242 and designed to be 

used in a workshop setting with 5-6 experts from whom an opinion is sought. 

The exact format of the elicitation process is fairly flexible, and several formats have been 

proposed243 244 but it typically includes an introductory session to train experts in the techniques, a 

full presentation of existing information and data, individual elicitation of the distribution of the 

unknown parameter, and finally combination of the individual distributions into a single distribution 

representing some aggregate of the group's opinion. 

The SHELF software provides a number of methods to elicit individual preferences, based on 

quartiles (where the expert is first asked for a median value of a parameter followed by the lower 

and upper quartile), or tertiles (where just the lower and upper tertiles are elicited).  Alternatively, a 

'roulette' mode allows respondents to place tiles in bins representing a range of plausible values 

from lowest to highest.  The software calculates the best fit of a number of distributions from either 

technique and presents the results.  The distribution is then verified with the expert by considering 

extreme values and questions such as "do you really believe there is only a 1% / 5% / 25% probability 

of X being below x?".  The distribution is modified until the expert is happy that it closely resembles 

her beliefs. 

It is possible to pool the individual distributions to obtain a composite representing the average 

either linearly (as the arithmetic mean of the individual distributions) or multiplicatively (the 

geometric mean).  However, O'Hagan does not recommend these as either involves loss of 

potentially desirable features of the distribution,245 favouring a discursive approach instead.  It is 

important to consider that the summary distribution will not necessarily be the opinion of any of the 

individual experts, but should be seen as the facilitator's (or commissioner of the panel's) 

distribution of the parameter of interest, derived from discussion with the experts. 

After eliciting univariate distributions, it is natural to consider whether multivariate distributions can 

be similarly elicited.  However, this is not straightforward.  O'Hagan mentions copulas as a means of 

eliciting multivariate distributions, but does not recommend this as it requires direct elicitation of 

correlation between the marginal distributions.  This is conceptually difficult.246  The alternative is to 

restructure the elicitation process.  For example,246 suppose we wish to elicit two parameters A and 

B, the mean effectiveness of standard treatment and a new drug.  It is reasonable to believe that A 
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and B are not independent: if A is higher than thought, it is reasonable to suppose B will also be 

higher than thought.  To elicit the correlation between A and B, the problem can be restructured by 

defining C = A/B, i.e. the relative treatment effect.  It may be reasonable to suppose that the relative 

effect (C) is independent from the standard treatment effect (A).  Therefore A and C could be elicited 

independently, and the multivariate distribution of (A,B) indirectly estimated. 

This approach thus provides a prior estimate of the correlation coefficient, which is itself then a 

parameter about which further information could be sought.  However, it should be noted that 

information on the correlation coefficient cannot be collected without also collecting information on 

the parameters themselves.  Whilst I do consider this issue in chapter 4, this remains an area in need 

of further exploration. 
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3.4.3.4.3.4.3.4. Summary & ConclusionSummary & ConclusionSummary & ConclusionSummary & Conclusion    

Value of information analysis is a viable method to estimate optimal sample sizes in trials, although 

there are a number of limitations.  In particular, this chapter considered the issue of input parameter 

correlation in decision analytic models, and the tendency for analysts to ignore such correlations 

during the development of models.  In some cases the implications can be minor, resulting in an 

approximately 2%-6% error in optimum sample size estimation, however in others ignoring 

correlation has the potential to grossly overestimate the efficient sample size.  Overestimation is 

more likely where two parameters are very strongly positively correlated (>0.8), or the variable cost 

of sampling is low relative to the EVSI.  Where correlation is considered to be an issue, the only 

approach in the absence of data is to undertake a formal elicitation process from ‘relevant experts'.  

Direct elicitation of correlations is not recommended, but it may be possible to restructure the 

problem in terms of independent parameters and compute the resulting multivariate distribution. 

Despite the limitations explored in this chapter, value of information analysis provides a useful 

approach to inform the design of clinical trials, providing a quantitative method to estimate the 

returns to reducing uncertainty in different inputs to a decision question.  In chapter 4, I explore an 

approach to make use of the principles to address the question of this thesis, that is to estimate 

when it is worth investing in a more detailed costing method, or when a simpler approach will 

suffice.
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4. Using VoI to assess the level of 

detail required in resource data 

collection in an economic evaluation 

alongside a clinical trial 

4.1.4.1.4.1.4.1.     IntroductionIntroductionIntroductionIntroduction    

In previous chapters I outlined the iterative approach to analysing both the adoption and 

research questions using the techniques of economic evaluation and value of information 

analysis respectively.  I proposed value of information analysis as an appropriate technique 

potentially adaptable to the question posed in this thesis, considered the strengths and 

weaknesses of the approach, and examined the issue of correlation between input 

parameters in particular detail.   

In this chapter I revisit the study question and explore the means to address it.  I extend the 

principles of value of information analysis to compare two approaches to measuring the 

same parameter.  The theory is based on the work by Raiffa and Schlaiffer,4 the original 

developers of statistical decision theory.  As described in Chapter 2, elements of this theory 

have been used to inform macro-scale decisions (i.e. comparing RCT with retrospective 

cohort designs20), but I am not aware of any attempts to use the theory to inform more 

detailed elements, for example to choose between alternative methods to collect the same 

data within an RCT. 

Consider a parameter of interest, θ.  This could, for example, be the incrementl of a 

particular resource data item between treatment and control such as rehabilitation 

attendances post MI, long term care costs post stroke or cost of drugs.  Thus θ is an input 

parameter into the calculation of incremental net benefit.  When designing a clinical trial 

with an objective of measuring incremental net benefit, there are three questions a trialist 

may ask about θ: 

1. Is it necessary to include θ in the estimate of incremental net benefit at all?  

                                                           
l Note that θ is therefore the incremental cost or quantity between the two arms, for example incremental drug 

costs 
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2. If θ is to be included, then is additional information on θ required or is current 

evidence sufficient? 

3. If additional information on θ is required, then how should the data be collected? 

Briefly, (1) can be answered by considering the proportion of incremental net benefit for 

which θ accounts.li  (2) can be answered by a standard application of value of information 

analysis as described in Chapter 1, whilst (3), the focus of this thesis, can be addressed with 

an extension of the principles of value of information analysis to consider two alternative 

data collection processes, one detailed and hence costly, and another more approximate, 

but less expensive. 

Note I use the term ‘data collection process’ to cover both the method of measurement and 

valuation of a particular parameter.  Thus processes can vary in measurement, such as 

obtaining resource use data from a questionnaire versus patient records, or in valuation 

method, such as costing drugs by applying an average daily cost by drug class versus costing 

each chemical or brand by mg consumed. 

The approximate (and hence inferior) process is assumed to be more likely to give a biased 

estimate of the incremental net benefit, leading to a higher probability of making the 

'wrong' decision.  Phrasing this in Bayesian terms, the trialist has prior beliefs about the 

relative quality of the two data processes, which may be informed by prior data, ‘gut feeling’ 

or expert consensus.  Thus the question is whether the expected gain from the 'better' data 

collection process is worth the extra cost. 

Decisions are required as to how to collect data on specific parameters.  At issue is whether 

using an inferior data collection process leads to sufficient bias in the estimate of 

incremental net benefit for it to affect the decision,lii and whether it is worth investing in the 

superior (and assumed more expensiveliii) study design.   

This issue (i.e. question (3) above) is the focus of the method explored in this chapter, 

although in the example analysis I present results which answer both questions (2) and (3).  

                                                           
li There is very little guidance as to what cost items should be included beyond a ‘rule of thumb’ comprising 

subjective judgement as to whether a particular item will have a sufficient impact on incremental net benefit or 

whether it is appropriate to the study question. 
lii In other words, if the inferior process leads to a negative estimated mean INB when the 'true' mean is positive 

and vice versa. 
liii Where the less biased process is also less expensive, that process dominates the biased process and the 

decision to use it is unambiguous. 
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As stated earlier, Pratt, Raiffa and Schlaiffer define an approach to calculating the expected 

value of information from one data collection process compared with another.4  Briefly, the 

(prior) relationship between the two data processes is defined as a bivariate normal 

distribution.  Critically the covariance between the two is specified.  Such data could be 

obtained from a pilot study where both processes are observed in the same patient group, 

or obtained from experts using a suitable elicitation process.98  Specifying this prior 

relationship allows calculation of the predicted posterior mean and variance of both 

processes after data are observed on either process or some mix of the two.   

A priori, one process is considered superior to the other but is also more expensive to 

collect.liv  As stated above, an example of this is estimation of drug costs by quantifying exact 

consumption of every drug by every patient compared with an approximation based on total 

number of prescriptions of a particular drug or drug class.  Another example is the use of 

time and motion studies combined with exact drug use, consumables and allocation of 

overhead costs to estimate exact resource consumption for an inpatient hospital admission 

compared with an approximation based on length of stay or mean cost per admission.   

Call the superior process A and the inferior process B.  The estimate of (incremental) cost 

yielded from process A should be used in the calculation of incremental net benefit (as it is 

the ‘better quality’ estimate).  Specifying the prior bivariate distribution allows one to 

calculate the posterior mean and variance of process A with information on process B alone, 

or a mix of information on A and B (or indeed from A alone, although in this case the analysis 

reduces to the method described in Chapter 1).lv 

Predicting the expected reduction in variance in process B from a study of given sample size 

(i.e. the preposterior distribution of B) then allows prediction of the expected reduction in 

variance in process A, which is then followed through to a predicted reduction in decision 

uncertainty (i.e. predicted reduction in variance of incremental net benefit).  The EVSI and 

the ENGS of the study (when combined with information on cost) can then be calculated.  

This approach can be repeated with various combinations of observations on A and B.  The 

combination that maximises the ENGS is the optimal combination.  This is shown 

conceptually in Figure  4-1, where processes A and B are alternative methods for calculating 

drug costs in a clinical trial: the predicted reduction in variance of drug costs following a data 

                                                           
liv For a discussion of comparisons of different methods in the literature, please see Chapter 2 
lv An alternative approach to articulating the problem is to define the costs function using processes A and B, 
where process B has an extra term to account for the bias.  The correlation between the residuals using processes 
A & B is then the matrix of interest.  This may provide a more flexible approach and is discussed in Chapter 5. 
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collection exercise of size n using process B is used to predict the reduction in variance of 

drug costs using process A, which in turn is used to predict the reduction in variance of 

incremental net benefit. 

Figure  4-1: Calculation of ENGS of a trial using a combination of processes A & B 

 

 

 

 

 

 

 

The remainder of this chapter is structured as follows.  Section  4.2 outlines the algebra 

required to solve the optimal mix of observations on processes A and B.  In this section I also 

describe the source data for the applied example, where incremental net benefit is defined 

as a function of three components: incremental QALYs, non-drug costs and drug costs.  I 

then apply these methods to the subject dataset in Section  4.3, conducting a complete 

analysis to predict the optimal sample size for a new trial reporting incremental net benefit 

as its primary outcome ( 4.3.1), then disaggregated in to trials reporting incremental QALYs 

and cost, and of trials collecting drug and non-drug cost alone ( 4.3.2).  Section  4.3.3 is the 

key analysis where I compare two alternative approaches to calculating drug costs 

(processes A and B) and calculate the optimal mix of observations on each in a trial collecting 

drug cost data alone.  Finally I bring  4.3.2 and  4.3.3 together into one analysis reporting the 

optimal number of observations of QALYs, non-drug cost and drug costs measured using 

processes A and B ( 4.3.4).  This section thus shows how a decision analytic approach can be 

used to determine the optimal design of a proposed trial in terms of how many observations 

are required on each component of incremental net benefit.  The results are discussed in 

Section  4.4.  

Cost of drugs, Process A Cost of drugs, Process B 

-1500 -1000 -500 0 500 1000 1500

-1500 -1000 -500 0 500 1000 1500
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4.2.4.2.4.2.4.2.     MethodsMethodsMethodsMethods    

In this section I outline the algebra required to calculate the ENGS of collecting data using 

one or both of two processes, A and B. 

I make the following assumptions: 

1. Decision makers are risk neutral and so will adopt the course of action with the highest 

expected net benefit. 

2. There are only two possible courses of action (i.e. two comparator treatments), thus the 

decision problem simplifies to choosing the new treatment if the incremental net 

benefit is greater than zero.lvi 

3. There are two possible approaches to collecting the target parameter (itself a 

component of (incremental) net benefit), one imperfect (i.e. yields a biased estimate of 

incremental net benefit, referred to as process ‘B’) and the other 'perfect' (unbiased, 

process ‘A’), but more expensive. 

4. Data can only be collected from each patient enrolled in a study using either process A 

or process B, but not both. 

The forth assumption is a simplifying assumption which to a certain extent limits the 

generalizability of this analysis.  For example, a reasonable approach to data collection 

would be to collect data using process B on all participants, and to verify the quality of 

process B by collecting data using process A on a subset.  This analysis currently does not 

allow this situation: Pratt, Raiffa and Schlaifer4 suggest that ‘alternative methods’ are 

required to accommodate this, but they do not elaborate further.  I explore why this is the 

case in Appendix D. 

I define net benefit in arm j, bj, as the value of the health gain (defined as QALYs gained, E 

multiplied by the value attached to a QALY, λ, less the cost (equation [4-1]; arm 

T=treatment, C=control).  For this purpose of this example, cost comprises two components: 

cost of drugs, denoted ���, and all other (non-drug) costs, Cn (equation [4-2]).lvii  If the 

current estimates of mean costs and outcomes are from a clinical trial where individual 

patient data are available, these are calculated as per equation [4-3].  Alternatively they may 

                                                           
lvi This is to maintain simplicity in the example.  Extensions of the analysis to multiple comparators are discussed in 
Chapter 5. 
lvii Note the superscript ‘A’ refers to drug costs collected using process A.  This is explained below. 
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be based on a meta-analysis of existing data or expert beliefs elicited using an appropriate 

method (e.g. 247). 

Incremental net benefit, denoted Δb, can be defined as the difference in net benefit with 

each course of action (equation [4-4]).  The variance of incremental net benefit, v(Δb) is 

therefore the sum of the variances of net benefit in each arm (equation [4-5]).  As bj is the 

difference between Ej and Cj, the variance of bj is the sum of the variances between the 

components Ej and Cj, less twice the covariance (equation [4-6]).  Likewise, as Cj is the sum of 

the two components ��� and Cn, the variance of Cj is the sum of the variances of the 

components plus twice the covariance (equation [4-7]).  As before, if the current estimates 

of the parameters are extracted from trial data, the variances and covariances are calculated 

as per Equations [4-8] and [4-9].  As before, alternatively these parameters may be based on 

meta-analyses of other trials and/or expert opinion.  

Inserting equation [4-6] into [4-5] provides an alternative expression for the variance of 

incremental net benefit as the sum of the variances of incremental cost and outcomes less 

twice the respective covariances (outcomes rescaled to cost units using λ, equation [4-10]).  I 

then express the covariance as the product of the correlation coefficient and the standard 

errors (equation [4-11]) and add the subscript ‘0’ to denote the prior parameter estimates to 

derive equations for the variance of prior incremental net benefit (equation [4-12]) and 

incremental cost (equation [4-13]). 

 

�m = ��m − �m          o = i, � [4-1] �m = ��,m + ��,m�           o = i, � [4-2] 

�m = ∑ �����5�Om           o = i, �;  � = �, ��, ��� [4-3] 

¡� = �4 − �] [4-4] ��¡�	 = ���4	 + ���]	 [4-5] �J�mL = ���J�mL + �J�mL − 2����J�m , �mL                   o = i, � [4-6] 

�J�mL = �J��,m� L + �J��,mL − 2����J��,m� , ��,mL          o = i, � [4-7] 

�J�mL = ∑ J��,m − �mL����5�OmJOm − 1L           o = i, �;    � = �, ��, ��� [4-8] 
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���J�m , �mL = ∑ J��,m − �mLJ~�,m − �mL���5� OmJOm − 1L           o = i, �;   )�, �* = ¢��, ���£, )�, �* [4-9] 

��Δ�	 = �����4	 + ���4	 − 2������4 , �4	 − �����]	 + ���]	 − 2������] , �]	= ��J���4	 − ���]	L + ���4	 + ���]	− 2�J�����4 , �4	 + �����] , �]	L= ����Δ�	 + ��Δ�	 − 2�����Δ�, Δ�	 

[4-10] 

�����, �	 = �¤,¥���X	���Y	 [4-11] 

��Δ�	� = ����Δ�	� + ��Δ�	� − 2��G�,G],����Δ�	����Δ�	� [4-12] 

��Δ�	� = ����Δ��	� + ��Δ��	� + 2��G]¨,G]©,����Δ��	����Δ��	� [4-13] 

 

Note that there are five parameters on which information could be obtained after which the 

distribution of b can be revised.  These are not only ΔE, ΔCn, and Δ���, but also ρΔE, ΔC and 

ρΔ]ª,Δ]©«. 

Now assume that a second data process (process B) is available which can be used to 

estimate the incremental cost of drugs, ∆��­.  I assume that process A is the superior 

process, that is, using process A will lead to an unbiased estimate of b0, and that process B 

will lead to a biased estimate of b0.
lviii  Given prior belief that A is a ‘superior’ data process, 

the results from process A will be used to calculate incremental net benefit. 

The prior expectations and variance/covariance matrix are in Equation [  4-14 ]  Similarly, a 

sample of observations using process A or B, denoted ∆��,P�  and ∆��,P­  with sample sizes nA 

and nB respectively has a mean and variance/covariance as shown in Equation [  4-15 ].   

Thus �� O�⁄  is the variance of the mean estimated from sampled data using process i alone 

(without the prior information).   

                                                           
lviii Or alternatively, process B could still lead to an unbiased estimate of b (incremental net benefit), but be less 

efficient, i.e. yielding a greater standard error for the same number of observations. 
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� (∆���∆��­1 = (∆��,��∆��,�­ 1 , $ (∆���∆��­1 = ¯ $J∆���L� ����∆���, ∆��­	�����∆���, ∆��­	� $J∆��­L� ° [  4-14 ] 

� ;(∆��,P�∆��,P­ 1± (∆���∆��­1= = (∆��,��∆��,�­ 1 ,
$ ;(∆��,P�∆��,P­ 1± (∆��,��∆��,�­ 1= = (��∆���	P O�⁄ 00 ��∆��­	P O­⁄ 1 

[  4-15 ] 

The objective is to combine [4-15] (the likelihood) with [4-14] (the prior) to estimate the 

posterior distributions.  This is done as follows4: 

1. Define H' as the inverse of the prior var/covar matrix (Equation [  4-16 ]) 

2. Define H as one over the var/covar matrix of the sample data (i.e. the precision 

matrix, Equation [  4-17 ]) 

3. Define H'' as the sum of H' and H (Equation [  4-18 ]) 

The joint posterior variance/covariance matrix is the inverse of H'' thus the posterior 

distribution is summarised in Equations [  4-19 ] and[  4-20 ], where m is the mean from each 

data process (Equation [  4-21 ]). 

²R = ³���R ���R���R ���R ´ = ¯ �J∆���L� ����∆���, ∆��­	�����∆���, ∆��­	� �J∆��­L� °.�
 

= 1��∆���	���∆��­	� − ����∆���, ∆��­	�� ¯ �J∆��­L� −����∆���, ∆��­	�−����∆���, ∆��­	� �J∆���L� °
[  4-16 ] 

² = ³O� ��⁄ 00 O­ �­⁄ ´ [  4-17 ] 

²RR = ²R + ² = ³�′�� + O� ��⁄ �′���′�� �′�� + O­ �­⁄ ´ [  4-18 ] 

(∆��,��∆��,�­ 1 = ²RR.� ;²R (∆��,��∆��,�­ 1 + ²¶= [  4-19 ] 

�RR = ¯ �J∆���L� ����∆���, ∆��­	�����∆���, ∆��­	� �J∆��­L� ° = ²′′.� [  4-20 ] 

¶ = ·���­¸ [  4-21 ] 

The algebra above thus show how the posterior mean and variance of both parameters are 

calculated after collection of data on either of the processes, or in the case of preposterior 
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analysis, the predicted posterior means and variances after a proposed data collection 

exercise of sample size (nA, nB) on each process.  The predicted posterior mean and variance 

of process A are then used in the calculation of the predicted posterior mean and variance of 

the objective function (incremental net benefit), and thence the ENGS, defined as the EVSI 

less the cost of sampling.  The EVSI is as defined in Chapter 1, which can be summarised as 

the unit normal loss multiplied by the predicted reduction in standard error of incremental 

net benefit, multiplied by the beneficial population.  The cost of sampling is divided into a 

fixed cost which is incurred if either nA or nB are greater than zero, and a variable cost per 

patient of ksA and ksB for processes A and B respectively.  Algebraically then the problem is 

to choose (nA, nB) that maximises the ENGS (Equation [  4-22 ]). 

�'�N�«,�¹ = J' − 2�O� + O­	L. U∗89∗��∗, ��	− [ºP�O� + ºP­O­ + »P&)O� > 0 ∪ O­ > 0* + �O� + O­	��]   [  4-22 ] 

where: 

b0 = prior mean incremental net benefit U∗ = ��� − �� = expected reduction in standard error of incremental net benefit �∗ = |M¾|¿∗   89∗�. 	 = unit normal linear loss integral 

The posterior estimate of the variance of ∆��� (cell 1,1 of matrix V``) can be obtained by 

predicting the results of nA and nB observations using process A or B respectively as 

described in equations [  4-16 ] - [  4-20 ] (Box  4-1).  The resulting reduction in the variance of 

incremental net benefit can then be used to estimate the ENGS as per Equation [  4-22 ] 

(Box  4-2 shows calculation of each input element to Equation [  4-22 ]).  By calculating for a 

large range of values of nA or nB, the combination yielding the highest ENBS can be 

identified. 
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Box  4-1: Preposterior variance of mean of Process A 

�J∆���L� = $ ′′�� = �′′��.� = �′�� + O­��∆��­	P;�′�� + O���∆���	P= ;�′�� + O­��∆��­	P= − ��′��	��′��	 

 

Noting that �′�� = �′�� = .]ÀkJ∆]©«,∆]©¹L¾kJ∆]©«L¾kJ∆]©¹L¾.]ÀkJ∆]©«,∆]©¹L¾E 

thus: �J∆���L�
= �′�� + O­��∆��­	P;�′�� + O���∆���	P= ;�′�� + O­��∆��­	P= − ; −����∆���, ∆��­	���∆���	���∆��­	�−����∆���, ∆��­	��=� 

Substituting in equations for H’11 and H’22:  �J∆���L� =
ÁQ∆Â©«S¾ÁQ∆Â©«S¾ÁQ∆Â©¹S¾ÃÂÄÁ�∆Â©«,∆Â©¹	¾EÅ ¨¹ÁQ∆Â©¹SÆ

� ÁQ∆Â©¹S¾ÁQ∆Â©«S¾ÁQ∆Â©¹S¾ÃÂÄÁ�∆Â©«,∆Â©¹	¾EÅ ¨«ÁQ∆Â©«SÆ�� ÁQ∆Â©«S¾ÁQ∆Â©«S¾ÁQ∆Â©¹S¾ÃÂÄÁ�∆Â©«,∆Â©¹	¾EÅ ¨¹ÁQ∆Â©¹SÆ�.� ÃÂÄÁQ∆Â©«,∆Â©¹S¾ÁQ∆Â©«S¾ÁQ∆Â©¹S¾ÃÂÄÁQ∆Â©«,∆Â©¹S¾E�E

  

This is more clearly written by noting that: 

|²′′′′| = �J∆���L��J∆��­L� − ����∆���, ∆��­	��
 

Thus: 

�J∆���L� = �J∆���L�|²′| + O­��∆��­	P;��∆��­	�|²′| + O���∆���	P= ;��∆���	�|²′| + O­��∆��­	P= − ;−����∆���, ∆��­	�|²′| =� 

    

 

 

 

 

 

 



 

 163 

Box  4-2: Expected Reduction in Variance of Mean Incremental Net Benefit 

U∗ = ��� − �� 

= Ç Q����Δ�	� + ��Δ�	� − 2λρΔ�,Δ],����Δ�	����Δ�	�S          − Q����Δ�	� + ��Δ�	� − 2λρΔ�,Δ],����Δ�	����Δ�	�S 

Noting that ��Δ�	� = ��Δ�	� and ρΔ�,Δ],� = ρΔ�,Δ],� also noting that: 

��Δ�	� = ��Δ��	� + �J∆���L� + 2ρΔ]¨,∆]©«,����Δ��	����∆���	� 

∴ U∗ = ����Δ�	� − ��Δ�	�	 − 2λρΔ�,Δ],����Δ�	� Q���Δ�	� − ���Δ�	�S 

�∗ = |M¾|¿∗     

89∗��∗, ��	 = �>��∗	 − �∗[Ñ�−�∗	 − &)�� < 0*]	 

Where >��	 = standard normal PDF and Ñ��	 = standard normal CDF.   
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4.2.1.4.2.1.4.2.1.4.2.1. DataDataDataData    

The data used in the example are taken from the ELEVATE study, a study of leukotriene 

receptor antagonists compared with conventional treatment in asthma patients.236  The 

study comprised two separate trials, on 'step 2' and 'step 3' patients.  The data used here are 

those relating to the more severe 'step 3' patients,240  reanalysed as detailed below from the 

perspective of the NHS with costs comprising drug and NHS-non drug items (i.e. primary, 

secondary and tertiary resource use) at two years, and outcomes as QALYs gained at two 

years (costs and QALYs incurred in year two were discounted at 3.5%).lix  Incremental net 

benefit was calculated at a threshold of £5000 per QALY.lx 

Drug cost in the original trial analysis was calculated based on individual items with the unit 

cost per item extracted from BNF 2005248 using unique BNF code at the individual 

preparation level.  There were 27,028 items of data in the raw dataset extracted from the 

study database, representing individual prescription items dispensed to 683 patients over 

two years enrolled in the two trials comprising the ELEVATE study.  The cost for each datum 

was recalculated at the BNF chapter section level, using aggregate cost per prescription as 

reported in the Prescription Cost Analysis 2005.249  For eight observations, no sub-paragraph 

or chapter section data were available.  Four of these were costs for specific wound 

dressings so the original unit cost included was applied to both summary cost estimates.  

The other four were blank entries that were subsequently excluded from all analyses.lxi  

Therefore every patient had two estimates of drug costs over the two year study period; one 

based on actual prescribed doses of drugs and the other an approximation aggregated at the 

BNF section level.  Complete drug data were available on all patients.  I define process A as 

the drug costs estimated using actual prescribed doses, and process B as the approximation 

aggregated at BNF section level. 

The other data items were NHS resource use and QALYs gained at two years.  47 (6.9%) and 

283 (41.4%) of 683 observations on NHS cost and QALYs were missing.  Multiple imputation 

was performed on the missing data including step, group, sex, age, education and 

employment status as coefficients.  Five iterations were calculated and the results combined 

using Rubin's rules.238  Data on the step 2 patients was discarded. 

                                                           
lix The reanalysis was required to structure the data into the three inputs of QALYs, non-drug and drug costs. 
lx The threshold was chosen in order to illustrate the point of this chapter.  At higher thresholds, due to the nature 
of the data, there is no value to be gained from research into drug costs. 
lxi Given the small number of data (8 out of 27,028 data entries), I did not consider further adjustments for missing 
data on drug cost necessary.   
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The resulting summary statistics for the step 3 patients (n=359) are in Table  4-1 and 

Table  4-2 below.  Point estimates suggest an increase in QALYs of 0.034, but also increased 

NHS non-drug costs of £13.18.  Incremental drug cost using process A is estimated at 

£102.54, leading to an overall incremental cost of £115.72.  At a willingness to pay for a 

QALY of £5000, this leads to an incremental net benefit of £56.41.  The adoption decision 

would therefore be in favour of intervention.   

As process ‘A’ is considered superior to ‘B’, estimates of mean INB should be based on data 

from process A.  Nevertheless, for the purpose of illustration, recalculating the results using 

process B yields an incremental cost of drugs of £289.83, leading to an overall incremental 

cost of £303.00.  At the £5000 threshold, the value of the incremental QALYs (0.034*£5000) 

is insufficient to offset this additional cost, thus the incremental net benefit is negative (-

£130.86), and the adoption decision would therefore be in favour of control (Table 4-1).   

Estimates of sample variance/covariance and uncertainty in estimates of means are in 

Table  4-2.  I present the estimates of standard deviations and covariance of the different 

parameters calculated from the study data.  The standard errors of the means are calculated 

by dividing by √O, and form the prior estimates of uncertainty in the mean values (final 

seven rows of Table 4-2).   

The beneficial population and cost of research are as defined in Appendix 1.  Briefly, the 

present and future population is estimated at 6,786,978.  The fixed cost of sampling is 

estimated at £1,305,470, with a variable cost of £288.58 per patient to collect all data 

components (QALYs, non-drug and drug costs).  I assume that the variable costs for a trial 

collecting solely QALY or cost data are two thirds those of one collecting all data 

components (£192.39), and that the variable cost of a trial collecting data on non-drug or 

drug data alone is one third the full cost (£96.19 per patient).  Finally, I assume the cost per 

patient of collecting drug data using process B is one tenth that of process A (£9.62 per 

patient).  When conducting a trial including all cost elements, I assume the variable cost per 

patient of collecting QALY, non-drug and drug cost data using process A is £96.19 for each 

(the variable cost of drug cost data using process B is £9.62).  Cost estimates are based on 

trial budget records (University of East Anglia finance office) and personal communication 

with a trial analyst (Stan Musgrave, University of East Anglia). 
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Table  4-1: Summary statistics - means  

Statistic Description Intervention Control Increment O Sample size 175 184  �m  QALYs at two years 1.612 1.578 0.034 ��,m NHS cost (excl. drugs) £190.53 £177.35 £13.18 ��,m�  Drug cost, process A £665.58 £563.04 £102.54 �m� Total cost, process A £856.11 £740.39 £115.72 �m� Net Benefit, process A £7203.89 £7149.61 £56.41 ��,m­  Drug cost, process B £801.38 £511.56 £289.82 �m­ Total cost, process B £991.91 £688.91 £303.00 �m­ Net Benefit, process B £7069.70 £7200.57 -£130.86 

Figures subject to rounding, net benefit calculated at a value of £5000 per QALY, NHS cost perspective 

Table 4.2: Summary statistics - variance and covariance 

Statistic Description Equation Intervention Control Increment 

O Sample size - 175 184  X��m	 standard deviation, 
QALYs 

Footnote i 0.371 0.386 0.536 

X��9m	 standard deviation, 
non-drug costs 

Footnote i  £395.46 £536.81 £666.75 

X��|m� 	 standard deviation, 
drugs, process A 

Footnote i £416.11 £443.34 £608.03 

X��|m­ 	 standard deviation, 
drugs, process B 

Footnote i £516.65 £384.42 £643.97 

������m� , ��m­ 	P Sample covariance, 
drug costs processes 
A and B 

Footnote ii £183,804.36 £137,185.50  

X��m�	 Standard deviation, 
total cost, drugs 
estimated using 
process A 

Footnote i £619.84 £846.73 £1,049.35 

X��m�	 Standard deviation, 
net benefit, process 
A 

Footnote i £2,010.64 £2,356.20 £3,097.47 

���m	�.a Standard error, 
QALYs 

Footnote iii 0.028 0.028 0.040 

����,m	�.a Standard error, non-
drug costs 

Footnote iii £29.89 £39.57 £49.60 

����m� 	�.a Standard error, drug 
costs, process A 

Footnote iii £31.46 £32.68 £45.36 

����m­ 	�.a Standard error, drug 
costs, process B 

Footnote iii £39.05 £28.34 £48.25 

���J�|m� , �|m­ L Covariance between 
mean drug costs 
processes A and B 

Eq. [4-9] £1,056.35 £749.65 £1,805.99 

���m�	�.a Standard error, total 
costs, process A for 
drugs cost 

Footnote iii £46.88 £62.48 £78.11 
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��∆�m�	�.a Standard error of 
incremental net 
benefit, process A 
for drug costs 

Footnote iv   £217.15 

ρΔ]ª,Δ]©« Correlation 
coefficient between 

Δ�Ò and Δ��� 

Footnote v   0.352 

ρΔ],Δ� Correlation 
coefficient between 
Δ�and Δ� 

Footnote v   -0.036 

 

i) XJ�mL = Ó∑ JDÔ,�.D̅�LE¨�ÔÕ�J��.�L  

ii) ���J�m , ~mL = Ó∑ JDÔ,�.D̅�LJ}Ô,�.}��L¨�ÔÕ� J��.�L  

iii) square root of equation [4-8] 

iv) square root of equation [4-12] 
v) re-arrangement of equation [4-11] 

 

4.3.4.3.4.3.4.3. ResultsResultsResultsResults    

The ultimate objective of the analysis is to identify the optimal mix of observations on each 

data process to collect drug costs (thus answering question (3) posed in Section  4.1).  

However I also present standard value of information analyses on other components 

(therefore answering question (2) posed in Section  4.1).  This is then broadened to identify 

the overall optimal number of observations on each drug cost process, non-drug costs and 

QALYs simultaneously, thus providing a decision analytic approach to overall trial design.  

Therefore, in the results section, I present the following: 

1. Value of information analysis for a repeat of the ELEVATE step 3 trial. 

Analysis of uncertainty in incremental net benefit and standard value of information 

analysis (reporting the expected value of perfect and sample information, expected net 

benefit of sampling and optimal sample size of a trial measuring incremental net benefit 

as the outcome collecting all data on all patients).  As stated previously, the estimate of 

drug costs from process A is employed in this analysis. 

2. Value of information analysis for studies collecting one component of data alone. 
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I report results pertaining to studies collecting (a) incremental QALYs (b) incremental 

cost alone.  I then sub-divide cost into two individual studies collecting (c) incremental 

non-drug costs and (d) incremental cost of drugs (using process A) alone. 

3. Comparison of value of alternative data collection processes on drug costs. 

Here I report the efficient mix of observations between processes A and B to measure 

drug costs.  Of interest is a comparison of these results with that in 2d above to observe 

any increase in expected return on investment (ENBS).  

4. Overall efficient trial design  

The efficient numbers of observations on drug cost process A, drug cost process B, non-

drug costs and QALYs are determined simultaneously in this analysis, providing a guide 

to efficient trial design.  The optimal mix is identified using a search algorithm.lxii  

Working for all analyses are in Appendix C, and summarised in Table  4-3.  

4.3.1.4.3.1.4.3.1.4.3.1. Value of information analysis for a repeated ELEVATE trialValue of information analysis for a repeated ELEVATE trialValue of information analysis for a repeated ELEVATE trialValue of information analysis for a repeated ELEVATE trial    

Mean incremental net benefit is £56.41 with a standard error of £217.15 (Figure  4-2).  The 

population EVPI is £416.3m (Table  4-3, Appendix 3, Box A3.1).  Given a fixed and variable 

cost of sampling of £1.3m and £288.58 per patient respectively, and beneficial population of 

6.8m, the ENBS-maximising sample size is a trial enrolling 8,589 patients per arm (Table  4-3, 

Figure  4-3, Appendix C, Box C-2), yielding an ENBS of approximately £401.9m.  Thus the 

efficient sample size of a trial reporting incremental net benefit as its outcome is 8,589 per 

arm. 

4.3.2.4.3.2.4.3.2.4.3.2. Value of information analysis of four separate studies reporting incremental QALYs, Value of information analysis of four separate studies reporting incremental QALYs, Value of information analysis of four separate studies reporting incremental QALYs, Value of information analysis of four separate studies reporting incremental QALYs, 

incrincrincrincremental cost, incremental nonemental cost, incremental nonemental cost, incremental nonemental cost, incremental non----drug cost and incremental drug cost alonedrug cost and incremental drug cost alonedrug cost and incremental drug cost alonedrug cost and incremental drug cost alone    

The expected value of eliminating uncertainty in outcomes (QALYs) alone (i.e. EVPPIQALYs) is 

£378.3m (Table  4-3, Appendix 3 Box A3.3).  Assuming the fixed costs of a study collecting 

outcomes alone are the same as for a full trial (£1.3m), and the variable costs are 2/3rds that 

                                                           
lxii I implemented this by firstly defining an arbitrary maximum and minimum number of observations for each of the 

four parameters, e.g. 0-1000.  The ENGS was calculated at five values between the min and max (i.e. 0, 200, 400, 

600, 800 and 1000 so the ‘step’ is 200) for each parameter = 54 calculations.  If the highest ENGS was with one of 

the parameters at its maximum sample size (i.e. 1000), then the range for that parameter was doubled (i.e. to 

2000).  The 54 calculations were repeated.  The algorithm thus identified a first approximate solution.  The max 

and min ranges for each parameter were then set to halfway between the approximate optimum and the previous 
maximum and minimum to narrow the range (rounded to the nearest whole number), and the calculations 

repeated.  This continued until the step for each parameter was equal to 1, and the optimum solution could 

therefore be identified.  This was written as a Microsoft Excel macro, and took approximately 10 seconds to 

identify the optimal solution. 
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of a trial collecting both cost and outcomes data (£192.39 per patient enrolled), the ENGS-

maximising sample size is 9,458 per arm, at which point the ENGS is approximately £366.0m 

(Table  4-3, Figure  4-4, Appendix 3, Box A3.4). 

The expected value of eliminating uncertainty in costs alone (i.e. EVPPICost) is £87,476,000 

(Table  4-3, Appendix 3 Box A3.5).  Given the same costs of sampling as for an outcomes 

study, the ENGS-maximising sample size is 6,735 per arm for this study, at which point the 

ENGS is approximately £78.7m (Table  4-3, Figure  4-5, Appendix 3 Box A3.6).  Further dividing 

costs into non-drug and drug costs, the EVPPI is £51.0m and £44.4m respectively (Table  4-3 

and Appendix 3 Box A3.7 and Appendix 3 Box A3.9 respectively).  Assuming a variable cost of 

one third that of a trial measuring incremental net benefit (£96.19 per patient enrolled), the 

optimal sample sizes of studies collecting data on those components alone are 9,456 and 

9,197 per arm respectively, and the ENGS of each are £42.9m and £36.5m (Table  4-3, 

Figure  4-7 and Appendix 3, Box A3.8 & Figure  4-6 and Appendix 3, Box A3.10 respectively). 

Figure  4-8 summarises the EVPI and EVPPI on QALYs, non-drug costs and drug costs. 

4.3.3.4.3.3.4.3.3.4.3.3. Comparison of value of alternative data collection processes on drug costsComparison of value of alternative data collection processes on drug costsComparison of value of alternative data collection processes on drug costsComparison of value of alternative data collection processes on drug costs    

As stated in Section 4.2.1, in the following I assume the variable cost of collecting data using 

process A is £96.19 per observation, and for process B, £9.62 (one tenth of process A).  The 

optimal sample size of a study collecting drug cost data alone is estimated at 9081 

observations using process A plus 240 observations using process B per arm (Table  4-3, 

Figure  4-9 and Appendix 3, Box A3.11).  Figure 4-9 shows a three dimensional plot of the 

ENGS as a function of the sample size of each component.  This peaks at an expected net 

gain of sampling of £36.5m. 

4.3.4.4.3.4.4.3.4.4.3.4. Overall efficient trial designOverall efficient trial designOverall efficient trial designOverall efficient trial design    

Calculating for different combinations of nΔE, nΔCn, nΔCAd and nΔCBd, (that is, the number of 

observations per arm collecting QALYs, non-drug costs, drug costs using process A and drug 

costs using process B respectively), the ENGS maximising combination can be identified.  The 

combination is (10,787, 4,264, 3,693, 904) for (nΔE, nΔCn, nΔCAd, nΔCBd), yielding an ENBS of 

£403.7m (Table  4-3, Appendix 3, Box 3.12).  This compares with the maximum ENGS of a trial 

reporting INB alone of £401.9m (Table  4-3). 
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Table  4-3: Summary results 

 EVP(P)I £fixed £var n* EVSI TC OC ENBS 

INB £416.3m £1.3m £288.58 8,589 £406.5m £6.3m £484,500 £401.9m 

QALYs £378.3m £1.3m £192.39 9,458 £366.2m £4.9m £533,500 £366.0m 

Cost £87.5m £1.3m £192.39 6,735 £  82.57m £3.9m £379,900 £  78.673m 

Non-drug Cost £51.0m £1.3m £  96.19 9,456 £  46.06m £3.1m £533,400 £  42.934m 

Drug cost 

(process A) 

£44.4m £1.3m £  96.19 9,197 £  41.49m £3.1m £518,800 £  36.485m 

Drug cost 

(processes A, B) 

£44.4m £1.3m (£96.19,  
£9.62) 

(9081, 
240) 

£  41.52m £2.5m £525,800 £  36.494m 

INB (QALYs, 

non-drug cost, 

drug cost 

process A, drug 

cost process B) 

£416.3m £1.3m (£96.19, 
£96.19, 
£96.19, 
£9.62) 

(10787, 
4264, 
3693, 
904) 

£409.3m £4.9m £608,500 £403.7m 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-4: ENGS QALYs Figure 4-5: ENGS Cost 

Figure  4-2: Distribution of Incremental Net Benefit Figure  4-3: EVSI, total cost and opportunity loss, 

and ENGS 
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Figure  4-8: EVPI and EVPPI @ λ=£5,000 

 

 

 

 

 

 

 

 

 

 

 

EVPI = Expected value of perfect information; dE = EVPPI, QALYS; dCn = EVPPI, non-drug costs; dCd = 

EVPPI, drug costs 

Legend 

Figure 4-6: ENGS Non-drug Cost 
Figure 4-7: ENGS Drug Cost 
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Figure  4-9: Optimal mix of observations from each data process 
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4.4.4.4.4.4.4.4. DiscussionDiscussionDiscussionDiscussion    

4.4.1.4.4.1.4.4.1.4.4.1. Implications of resultsImplications of resultsImplications of resultsImplications of results    

The objective of this chapter was to explore a method to answer the question of this thesis, 

that is, how detailed does a resource data collection process need to be in order to maximise 

the return on investment in a clinical trial with piggybacked economic evaluation (question 

(3) posed in Section  4.1).  In Sections  4.2 and  4.3 I have shown how value of information 

analysis can be used to compare the expected return from two different data processes to 

estimate drug costs, one more ‘detailed’ than the other and thus how it can be used to 

tackle the study question.  I have then combined this with standard VoI analysis to present 

an overall decision analytic approach to clinical trial design. 

The results in the example analysis demonstrate a very high value from eliminating all 

decision uncertainty (Table  4-3; £416.3m).lxiii  This is due to both the high per-patient 

decision uncertainty (a mean incremental net benefit of £56.41 with standard error £217.15) 

and the large population who could benefit from this information: asthma is a common 

disease (N = approximately 6.8mlxiv).  There are very few other VoI studies in respiratory 

disease, but this compares with the EVPI of pharmacogenomic approaches to diagnosing 

non-small-cell lung cancer of to the US of $31.4m.250 

If a trial were proposed with the objective of estimating incremental net benefit, the optimal 

sample size would be 8,589 patients per arm.  Such a trial is expected to cost £6.3m (plus an 

opportunity loss of £485,000), but would yield an expected net benefit of £401.9m.  This 

would be a very large trial, and possibly beyond the budget of all but the most major 

funders.  Nevertheless it is the predicted optimal sample size taking into account the cost of 

acquiring the data and the expected value of the information to the population.lxv  Of 

interest is a comparison with the predicted sample size using a conventional power 

calculation.  Under the assumption that £100 is the minimally important difference in net 

benefit, I estimate a sample size of 3,700 per arm to be sufficient to exclude chance with 

95% confidence if the true difference between the arms is at least £100 (Appendix D). 

The EVPPI for each component shows there is more potential value in reducing uncertainty 

in incremental QALYs than in either of the two cost components (£378.3m for QALYs vs 

£51.0m for non-drug and £44.4m for drug costs; Figure  4-8 and Table  4-3).  Given 

                                                           
lxiii Strictly speaking, this is the value of eliminating decision uncertainty attributable to uncertainty in input 
parameters, and does not include any model structural uncertainty: the implication is that the model structure is 
‘correct’ and certain.  This is a weakness in VoI analyses based on a single model. 
lxiv Calculated over a 10 year time horizon, discounted at 3.5% per annum. 
lxv Although note that this is only true at λ=£5000. 
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assumptions about the cost of sampling, I estimate optimal sample sizes of studies collecting 

only QALYs, non-drug and drug costs at 9,458, 9,456 and 9,197 respectively, yielding ENGS of 

£366.0m, £42.934m and £36.485m respectively.  Interestingly the optimal sample size for a 

study reporting each component alone is greater than that for one reporting incremental 

net benefit (8,589).  However this is explained by the lower (variable) cost of sampling for 

the individual studies, thus the ENBS-maximising point (which is where the marginal cost of 

sampling equals the marginal gain) is at a higher sample size. 

Following this, I reached the key analysis for this thesis estimating the expected return on a 

study of incremental drug costs alone, comparing two alternative approaches to collecting 

the data.  I estimate an optimal mix of 9081 observations using process A and 240 

observations using process B.  The cost of such a study would be £3.1m, yielding an ENGS of 

£36.494m.  This represents the expected return from a trial collecting data on incremental 

drug cost alone.  By using a mix of both processes, a small increase (of £9000) in the return 

on investment can be expected compared with using process A alone (rows 5 and 6 of 

Table  4-3). 

As stated, the above analyses represent the expected return on trials measuring QALYs, non-

drug costs and drug costs alone.  A more realistic scenario would be where all data could be 

collected within the context of a single trial.  Section  4.3.4 brings all the components 

analysed separately in sections  4.3.1- 4.3.3 together to estimate the optimal sample size for 

each component within one study, including the optimal mix between the two data 

processes for collecting drug cost data.  From this, I estimate that the optimal sample size of 

a trial would be 10,787 patients per arm collecting QALY data, 4,262 observations on non-

drug cost, 3,693 observations on drug cost using process A and 904 observations using 

process B.  The total cost of this trial would be £4.9m with an opportunity loss of £608,000, 

totalling £5.5m and yielding an ENGS of £403.7m.  This is compared with £6.3m for the trial 

reported in section  4.3.1, measuring all parameters on 8,589 observations, and yielding an 

ENGS of £401.9m, thus selectivity in which data are collected on which observations in this 

case reduces the cost of the research and leads to a higher expected net return (of 

approximately £1.9m). 

4.4.2.4.4.2.4.4.2.4.4.2. Practical applicationsPractical applicationsPractical applicationsPractical applications    

The analyses above provide an optimal solution to the sample size unconstrained by any 

research budget, defining the optimum at the point where the marginal gain from an 

observation is equal to the marginal cost (analogous to the profit maximising condition in 
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the theory of the firm).  At the point of designing a clinical trial, this technique can be used 

to provide a rational approach to determining what data to collect on which patients.  The 

prior distributions of each of the inputs and research cost estimates are required to do this, 

information ideally provided by a pilot or feasibility study conducted in preparation for a full 

trial.  Alternatively uncertainty in parameters can be captured via a formal elicitation 

process.218 

However, in reality the trialist may be faced with a number of constraints.  For example 

budgets for a research project are usually subject to an upper limit.  In order to adapt the 

analysis to such a constraint, it is simply a question of defining a feasible set of observations 

on each component such that the cost of sampling is less or equal to the budget, B (Equation 

[  4-23 ]). 

ºP�O� + ºP]¨O]¨ + ºP]©«O]©« + ºP]©¹O]©¹+ »P& ÖO� > 0 ∪ O]¨ > 0 ∪ O]©« > 0 ∪ O]©¹ > 0× ≤ l 
[  4-23 ] 

The optimal solution is the combination of observations that maximises ENGS subject to the 

budget constraint and is identified using a simple search algorithm.lxvi  Suppose the 

maximum budget was £2m.  In this case the combination of observations on (nΔE, nΔCn, nΔCAd, 

nΔCBd) is at (2562, 627, 331, 900).  That is, 2562 observations on QALYs, 627 on non-drug 

costs, 331 on drug costs with process A and 900 on drug costs with process B per arm.  This 

trial would cost £1,999,981 and yield an ENBS of £388,168,000.  Likewise, it is 

straightforward to choose the optimal mix from a feasible set where the sample size has 

already been determined (e.g. via a conventional power calculation based on a clinically 

important difference in the primary outcome). 

4.4.3.4.4.3.4.4.3.4.4.3. Determinants of results of Determinants of results of Determinants of results of Determinants of results of  4.3.34.3.34.3.34.3.3    

The optimal mix of observations on two data processes is a function of the relationship 

between the two (as expressed in the covariance, or equivalently the correlation coefficient) 

and the relative cost of sampling.  Where the data processes are very closely related, i.e. 

with a correlation coefficient close to 1, then one would expect the inferior process (process 

B) to be the optimal choice due to the lower cost of sampling: observations on B can be used 

                                                           
lxvi I achieved this simply by running the search algorithm employed to identify the optimal mix of observations as 

before, except with a flag setting the ENBS to zero if the cost of a particular combination of sample sizes 

exceeded the budget. 
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to revise the mean of A simply by adjusting for the prior estimate of bias.lxvii  However, 

where the processes are less closely related there is a trade-off between the extra cost of A 

and the extra information it yields.  Where the processes are completely independent 

(correlation coefficient of zero), gathering information using B provides no information on A, 

therefore it would never be efficient to use process B.   

In the dataset used in this chapter, the correlation coefficient between ΔCd
A and ΔCd

B is 0.83.  

Even though the poorer process is only one tenth of the cost of the better process, the 

information it provides is such that only about 2.6% (240/9321) of the observations should 

be on this process.   

Given this, it is worth investigating how the optimal mix changes with different values of the 

correlation coefficient.  This is shown in Figure  4-10.  As predicted, at almost perfect positive 

or negative correlation, data process B provides equivalent information to process A.  As 

process B is cheaper than process A, it is always preferable to draw observations on that 

process.  As the correlation between the two processes falls, process B provides less 

information on ΔCd
A, until the value of the information falls below the marginal cost of 

sampling at which point it is only worth collecting data using process A. 

It should be noted that this analysis treats the correlation coefficient as constant and known.  

In reality it is a random variable about which additional information could itself be sought.  

This issue is discussed in more detail in Section  4.4.5 below. 

 

 

 

 

 

 

 

 

 

                                                           
lxvii For example, suppose processes A&B are perfectly correlated and process B always estimated A plus £50.  If 

B is cheaper to measure than A, it would make sense to collect data using process B and subtract £50 from the 

estimate before plugging this into the equation for incremental net benefit. 
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Figure  4-10: Optimal mix of observations on each process as a function of rho 

 

4.4.4.4.4.4.4.4.4.4.4.4. Comparison with other studiesComparison with other studiesComparison with other studiesComparison with other studies    

The origins of this analysis lie in statistical decision theory, originally developed in the 1960s 

at Harvard Business School.4  However I am aware of only one previous application of value 

of information principles to help choose study designs (see Chapter 2 for full details of the 

literature review).  Shavit and colleagues20 presented a method to compare the 'net 

information benefit' of an RCT with an observational study.  They define this as a function of 

the current evidence and estimates of the magnitude of five discrete sources of bias 

associated with the two designs: representation, selection, time frame, real-life reflection 

and accuracy of records.  Measures of the degrees of each bias were assumed and expressed 

as percentage deviation from the true mean.  Unfortunately the authors did not provide a 

full numeric example of their method, and thus comparison with our approach is hampered 

somewhat.  However a key difference between the approaches is the question being asked: 

Shavit and colleagues20 are concerned with the choice between a prospective randomised 

design and retrospective cohort study to answer a particular decision question.  The analysis 

in this thesis is useful where the decision to pursue a randomised study design has already 

been made, but the approach to collecting various components of the data is undecided. 

4.4.5.4.4.5.4.4.5.4.4.5. Strengths and WeaknessesStrengths and WeaknessesStrengths and WeaknessesStrengths and Weaknesses        

This analysis presents a decision analytic approach to clinical trial design, providing not only 

an answer to the efficient number of observations in the trial, but an efficient number of 

n* 
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observations for each component.  Furthermore, it also provides an efficient number of 

observations on alternative data processes to measure one data component (and thus 

answers the question posed in this thesis). 

However, there are a number of weaknesses and assumptions in the analysis which must be 

considered. 

Firstly, I have referred to the activity of measuring and valuing a particular resource item as a 

‘data collection process’ without explicitly differentiating between measurement and 

valuation.  Failure to distinguish these two distinct processes may have led to some 

unclarity, however the principles demonstrated are insensitive to this: two data collection 

processes may vary in how resource use data are collected (e.g. use of medical records vs 

patient self-report) or by valuation technique (costing individual items vs applying common 

unit costs to classes of items).  The example of this chapter simulates a hybrid of the two: 

the simpler data process collects data at a more aggregate level (requiring knowledge only 

of drug class rather than precise brand name of individual chemical), and applies an average 

unit cost for that drug class based on a representative daily dose. 

Secondly, throughout the analyses, I expressed the covariance between parameters as the 

product of the correlation coefficient and standard errors.  This allows the correlation 

coefficient to be treated as independent from the variance, and potentially, as a further 

parameter about which information could be sought.  However, for simplicity, I assumed the 

preposterior estimates of the correlation coefficient to be equal to the priors.  Addressing 

this issue would require specifying a distribution for the correlation coefficient.  A proposed 

data collection process collecting information on the correlation coefficient could then be 

combined with the prior to estimate the preposterior along the same lines as with other 

parameters.  However, this is not so straightforward as the correlation coefficient is unlikely 

to be normally distributed, thus complicating the analytic solution.  Furthermore, it is, of 

course, not possible to collect data on the correlation coefficient without collecting data on 

the mean and variances of processes A and B!  A simulation approach would be an 

appropriate method to relax the normality assumptions, and extend the generalizability of 

the method. 

This would be achieved by specifying the prior distributions, then simulating the results of a 

trial of size nA and nB on each parameter, (and where nA ≠ nB, specifying the number of 

observations where both nA and nB are collected in the same patient) by sampling from the 

joint distribution of the two parameters.  This would provide a ‘sample’ estimate of the 
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mean and variance of each parameter and covariance between them.  This hypothetical 

information is then used to update the priors to estimate the preposteriors.  Repeating 

many times would build up an empirical distribution of the preposteriors.  This would then 

require repeating over various combinations of sample sizes nA and nB. 

Related to this point is the assumption regarding sample sizes in the 'combined' analysis 

(Section  4.3.4).  I assumed that the overall sample size of the trial would be the maximum of 

each individual component, namely 10,787 patients in each arm (on which QALY data would 

be obtained).  Of those 10,787, 4,264 would be chosen at random from which non-drug cost 

data would be obtained, then a further 4,597 (3,693+904) would be chosen from which drug 

cost data would be obtained, 3693 of which using process A and 904 using process B.  The 

trial was costed on this basis.  However, where patients provide data on more than one 

component the covariance and hence correlation between those components can be 

observed and used to revise the prior estimates of the relevant correlation coefficients.  My 

analysis currently ignores this additional information and thus may be overestimating the 

optimal trial sizes.  A simulation approach described above would address this issue. 

A key limitation of the analytic approach is the assumption of normality: costs are known to 

be right skewed, whilst QALYs tend to be left skewed (depending on the patient population).  

The major advantage of the analytic solution is speed of computation, but at the risk of 

misleading conclusions should a normal distribution be a poor representation of the data. 

A further limitation of this work is exclusion of a number of issues and developments 

designed to better represent the true value of the information from a particular research 

project.  When originally developed, the scenarios envisaged in value of information analysis 

related to an industrial setting: the objective function was profit for a firm, and optimal 

sampling related to quality assurance procedures for an industrial process or market 

research to inform production decisions.251  Thompson first introduced value of information 

analysis to the health care field,252 whilst Claxton was the first to explicitly apply the 

technique to address the research (as distinct from the adoption) question,3 however this 

led to a number of challenges: the information yielded from a particular research project is 

of value to both present and future population of patients with the disease in question.  As 

discussed in Chapter 3, defining the relevant patient population is not straightforward, with 

issues such as whether patients enrolled in the trial can benefit from the information or not,  

cost of reversal of decisions and the opportunity loss of the delay whilst a trial recruits, is 
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analysed, reported, disseminated and acted upon affecting the expected value of that 

information.199 200 

The final weakness of this analysis is the assumption of a constant marginal cost of 

recruitment.  This may be an oversimplification of the cost function as the first patients are 

likely to be easier to recruit than the last ones, as stocks of ‘willing volunteers’ get 

exhausted, and further effort is required to identify new patients. 
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4.5.4.5.4.5.4.5.     ConclusionConclusionConclusionConclusion    

In this chapter I have demonstrated how value of information analysis can be used to guide 

trial design issues to choose between two data collection processes and thus provide an 

answer to the question posed in this thesis as to how much detail is required in a resource 

data collection exercise in an economic evaluation conducted alongside a clinical trial.  

Rather than directly answering the question as posed, the method estimates the ‘optimal 

mix’ of observations on each process, taking into account both the relationship between the 

two processes (i.e. how good an observation using process B is at predicting the value of an 

observation using process A), and the relative cost of each.  Furthermore I have extended 

that to show how the principles can be used to determine the efficient number of 

observations of different outcome measures reported in a trial (namely QALYs, non-drug 

costs and drug costs).  I have shown that such a trial would be less expensive and yield a 

higher expected net benefit of sampling than one measuring all data on all patients. 

There are a number of avenues for extending this research.  Firstly I have not considered the 

possibility of unequal allocation between trial arms.253  Secondly, whilst I have taken account 

of the opportunity cost to patients enrolled into the 'wrong' arm of the trial, other aspects 

such as the opportunity loss to all patients whilst a trial is underway, and the cost of 

reversing decisions have been excluded.144 199  This would be relatively simply addressed 

through adjustments to the beneficial population and adding in the cost of reversal. 

Other enhancements include adopting a more complicated cost function with increasing 

marginal cost representing increasing difficulty in recruitment as the supply of patients is 

exhausted, and application of a simulation approach to calculation of the VoI statistics, 

relaxing the assumptions of normality intrinsic in the analytic approach. 

A key area for future work, as previously stated, is in estimating the return on reducing 

uncertainty in the correlation coefficients between the input parameters.  Ignoring the 

impact on this at present may lead to overestimation of the efficient sample sizes, but 

nevertheless the analysis of this chapter provides a rational approach to designing a clinical 

trial, firmly rooted in the decision analytic principles, leading to maximising expected health 

gain subject to the budget available. 

Finally, the analysis presented in this chapter pertains to one example of data collection 

processes only.  Repeating this analysis comparing data processes that vary in terms of 

method of collection (e.g. questionnaires vs medical records) as well as valuation (costing by 

individual resource item versus some aggregate approach) would increase familiarity with 
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the method in the literature, as well as generating new methodological issues requiring 

further investigation, for example the impact of different response rates from more detailed 

and laborious questionnaire based tools versus simpler designs, and the impact of more 

restrictive questionnaires leading to spuriously precise estimates (i.e. underestimating the 

standard error). 
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5. Discussion & Further Work  

5.1.5.1.5.1.5.1.     Summary of FindingsSummary of FindingsSummary of FindingsSummary of Findings    

Trialists are faced with many issues when designing data collection methods in clinical trials.  

This is particularly the case when collecting resource use data due to the multidimensional 

nature of costs: whereas a clinical outcome may be a measurement on a single scale, a cost 

is always a function of a number of components such as hospitalisations, prescribed 

medications, and lost productivity.  Furthermore these can be collected at different levels of 

aggregation. 

The precise list of data items that should be collected is traditionally driven by the study 

question (for example the study perspective will determine whether patient out of pocket 

costs or lost productivity should be estimated).  However there are numerous approaches to 

costing elements such as hospitalisation: a ‘gross’ or ‘top-down’ approach would assign a 

unit cost per admission or per bed-day.  Whereas a ‘micro’ or ‘bottom-up’ costing approach 

would, at the extreme, attempt to measure every individual component of resource use 

such as minutes of medic and nursing time, exact doses of drugs prescribed and the time 

required to administer them, exact number and types of diagnostic tests ordered etc.   

Again, the appropriate ‘level’ of costing may be determined by the study question: a 

comparison of two surgical techniques would a priori require a micro-costing approach to 

the surgery itself, with perhaps a more top-down approach to costing other elements such 

as length of stay and readmissions.   

In this thesis I apply a more systematic method: given the desire to collect data on a 

particular cost element, what is the added benefit of a more detailed approach compared 

with its added cost? 

My literature review (Chapter 2) attempted to identify whether any previous attempts had 

been made to examine the cost-effectiveness of one data collection technique compared 

with another.  It also attempted to identify any studies comparing two or more approaches 

to measuring the same data and any studies exploring the cost of conducting research.  My 

search identified over 100 previous studies comparing different approaches to collecting the 

same data, suggesting this is an area of importance to researchers (and by implication, to 

funders of research), as well as a number of studies reporting attempts to minimise the cost 

of particular research projects.  Of note is the success of trialists in more than halving the 
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cost of a very large prospective study from $200m to $95m by rigorous scrutiny of 

expenditure and modification of the trial design (the Women’s Health Trial164).  However, 

the impact of this on the results of the trial (which I would define here as whether this led to 

any bias in the results) is unknown.   

Another issue of concern evident in the literature was whether enrolling patients in clinical 

trials led to increased costs for health insurers as a result of protocol driven activity.  These 

appeared to be US based concerns, nevertheless is of issue in the UK too: ‘excess treatment 

costs’ must be considered explicitly in clinical trial grant applications.254 

Thus comparisons of different data collection techniques and the costs of research are 

important considerations, according to the literature.  It is somewhat surprising therefore 

that there have been so few attempts to explicitly measure the cost-effectiveness of ‘better 

quality’ data techniques compared with ‘quick and dirty’ approaches.  My review identified 

only nine studies where some concept of economics or cost-effectiveness had been used to 

assist trial design.  Two of these considered the cost-effectiveness of prospective versus 

retrospective study designs,20 140 but only one appeared rooted in the principles of value of 

information analysis.195 

In Chapter 3 I explored the suitability of value of information analysis as an analytic 

approach to answer the question of this thesis.  I identified a number of limitations of the 

technique, centring around the application of the general techniques as developed by Raiffa 

and Schlaiffer251 to the specific area of health care decision making. 

Particular issues are around aggregating the EVPI and EVSI from an individual patient level to 

a population level.  Specifically, the value of information to society as a whole should be a 

function of the current and future population who can benefit from the information.  

Depending on the disease and intervention(s) in question, this may include the prevalent 

population plus the incident population over an ‘appropriate’ time horizon (which, by 

convention is then discounted at the prevailing recommended rate).  The definition of an 

appropriate time horizon, however, is somewhat arbitrary.198  Furthermore, those patients 

enrolled in the study may not be able to benefit from the information,3 those enrolled in the 

‘wrong’ arm of a study experience an opportunity cost in terms of foregone health benefit, 

and there will also be a delay between initiating a new clinical trial and dissemination of 

results leading ultimately to changes in practice.199  The population EVSI should therefore be 

adjusted for these aspects. 
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Other issues include the costs of reversing decisions, challenging the assumption of 

independence of the adoption and research decisions (if a decision is not reversible then the 

value of additional information following that decision is zero; alternatively the cost of 

reversal should be incorporated into the initial estimates of the value of information),144 the 

risk of free-riding leading to a sub-optimal Nash equilibrium (it is cheaper to free-ride and let 

someone else pay for the research then adapt the results to a local setting, thus no-one is 

willing to pay for it and the research does not get done), and the optimal allocation of 

research across multiple jurisdictions.201 

There are limitations specific to the two main implementations of value of information 

analysis.  The analytic solution can be calculated (almost) instantaneously on any modern 

computer whereas numeric solutions can require weeks or more of processing time to 

adequately propagate parameter uncertainty into decision uncertainty.lxviii  However the 

analytic solution requires an assumption of normality in input parameters, whereas the 

numeric (simulation) approach relaxes these assumptions.  It is also more amenable to 

incorporation of ‘all relevant evidence’,91 as it is typically associated with decision modelling 

(whereas the former is more often conducted alongside single clinical trials).  However, due 

to decision models incorporating evidence from diverse sources, the correlation structure 

between inputs is unknown and frequently ignored.74  This has consequences for value of 

information analysis, as a priori one may expect an assumption of independence in input 

parameters to overestimate the variance of the output (i.e. incremental net benefit), 

although such an assumption can actually bias the estimate of variance in either direction, 

depending both on whether the correlation is positive or negative, and on the structure of 

the model.lxix 

I explored the impact of this assumption on four diverse case studies: three based on clinical 

trial data and a fourth based on a decision model.  My findings were that ignoring 

correlation between input parameters did not materially affect the expected optimal sample 

size for future studies in the clinical trial examples, except when input parameters were very 

highly positively correlated.  In the examples considered, such high positive correlation 

appeared rare.  However, in the model based example, the optimal sample size for a study 

to elicit health state valuations did appear to be sensitive to whether or not parameters 

                                                           
lxviii Parallelisation of the analysis across large arrays of processors will speed the actual time taken, but the 
processor-hours of computation required remains the same. 
lxix For example, where two parameters are summed, the variance of the sum is the sum of the variance of each 
plus twice the covariance.  Where two parameters are subtracted, the variance is the sum of the variance of each 
minus twice the covariance.  Assuming zero covariance will therefore under- (over-)estimate the variance of the 
sum (difference). 
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were correlated, although it is not possible to be certain that this is not simply due to 

random noise from the simulation: in this particular example, the variable cost of sampling 

was very low.  In this situation, the gradient of the EVSI (and by definition, that of the total 

cost curve) at n* is very close to zero and so a very small change in the EVSI can have a 

dramatic effect on n*.   

Having explored the strengths and despite the weaknesses of value of information analysis, I 

conclude that may well be a viable technique to answer the question posed in this thesis.  In 

Chapter 4 therefore I adapted the techniques, based on the methods of Pratt, Raiffa and 

Schlaifer4 to compare both the added value and added cost of one data collection process 

with another.  This can be considered a special case of a more general question as to the 

optimal mix of observations using either data process. 

The concept is as follows: 

• Given two approaches to measuring the same component of incremental net benefit 

(for example (incremental) drug costs or (incremental) hospitalisation costs), assume 

one is superior to the other (that is, one is a less biased estimator of the target 

parameter). 

• Define the prior bivariate distribution of the two data processes.  This can be 

estimated from previous data (e.g. a pilot trial where both data processes were 

observed) or elicited from experts (see Chapter 3.3.4, ‘Potential Solution’ for a 

discussion of one approach to elicitation).  Either way it represents the best estimate 

or ‘current knowledge’ about the relationship between the two data processes. 

• The estimate of the target parameter using the ‘better quality’ process will always 

be used to estimate incremental net benefit. 

• Gathering information using either data process can be used to update the estimate 

of the mean and variance of the better quality process via the prior bivariate 

distribution. 

• Thus the predicted posterior mean and variance of incremental net benefit from (n1, 

n2) observations drawn using processes 1 and 2 respectively can be calculated and 

hence the expected value of the information estimated.  Comparing this with the 

cost provides an estimate of the ENGS.  The optimal mix is (n1, n2) that maximises 

the ENGS. 
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Applying this to an example dataset, I find it is possible to observe a small increase in 

expected efficiency (as measured by the ENGS) of a trial by employing a mix of observations 

using both data processes, rather than just the ‘superior’ dataset.lxx 

The approach successfully extends the principles of value of information from identifying 

what parameters on which it is efficient to gather more information (and the efficient 

sample size thereof), to the efficient method of collecting data on those parameters.  In 

other words, my thesis extends value of information analysis from what data to collect in a 

clinical trial designed to inform economic analysis to how to collect it. 

                                                           
lxx Although it should be noted that due to the nature of the data, this is only true at the artificially low valuation of 

£5000 per QALY. 
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5.2.5.2.5.2.5.2.     Discussion PointsDiscussion PointsDiscussion PointsDiscussion Points    

In this section I bring together a number of points arising during development of, and as a 

consequence of, this work.  I firstly reiterate the strengths and weaknesses of the method 

described in Chapter 4, before reflecting on some broader issues.   

5.2.1.5.2.1.5.2.1.5.2.1. Strengths and weaknesses of the methodStrengths and weaknesses of the methodStrengths and weaknesses of the methodStrengths and weaknesses of the method    

Key limitations/simplifications of the method as described in Chapter 4 are the assumption 

of a constant correlation coefficient, assumptions regarding the overall sample size of a 

future trial, assumptions that all parameters are normally distributed, exclusion of other 

developments in value of information analysis that have occurred alongside this work, and 

assumption of a constant marginal cost of recruitment.   

Perhaps the key limitation is the assumption of a constant correlation coefficient between 

estimates of cost derived from the two alternative data processes.  Conceptually, there is no 

reason that this cannot be treated as a random variable about which additional information 

could be sought.  As stated in Chapter 4, a complicating factor is that gathering information 

on the correlation coefficient requires collection of data using both processes, which can 

itself then be used to revise the marginal distributions of each.   

Related to this point is the assumption I made with regard to the overall optimal design of a 

trial, where the total number of recruits to each arm was assumed to be the maximum of 

observations on each individual component (10,787 in the example), with other parameters 

collected on a subset of the 10,787.  Where more than one parameter is observed in the 

same patient, information on the correlation between them becomes available. 

I have explored whether it is possible to incorporate the added information gained from 

observing more than one parameter in the same patient in the analysis.  The base case 

analysis comparing ‘process A’ with ‘process B’ for drug costs assumes that nA observations 

are collected using process A and nB with process B, and that there are no observations 

where both processes are collected.  In some circumstances this may be plausible (it could 

be argued that we are ultimately only interested in ���, therefore why collect ��­ on some 

patients for which we are already collecting ���?).  However, a more realistic scenario would 

be where data are collected using the inferior process (process B) on all patients, with 

process A being collected on a subset of those in order to verify the quality of the data with 

process B.  For example consider the case where a study proposes to collect primary care 

contacts by questionnaire thus relying on patient recall, but with the medical records of a 

sample, say 10%, accessed at random to estimate the degree of any recall bias. 
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I attempted to incorporate this by specifying both nA, nB as well as the ‘overlap’, nA∩B. The 

overlap reduced the prior covariance by a proportionate amount as per Box D-1 of Appendix 

D. However, this led to an unanticipated outcome: the predicted efficient scenario was to 

collect data on all patients using process A, with process B being collected on a subset of 

those (see Appendix D).  This is counter-intuitive as it would be illogical to collect the ‘ideal’ 

data on all patients, and then some inferior data on a subsample of those: the optimal 

solution would have to be the opposite way around. 

Investigating this further showed that the simple method of incorporating nA∩B 

overestimates the reduction in variance associated with a given sample of observations nA, 

nB.  In some cases this leads to a negative preposterior variance, and thus an error when 

computing the EVSI (see Appendix D).  A more thorough investigation of this is required and 

would include exploration of why and how the approach was overestimating the reduction 

in preposterior variance, and development of the mathematics to adjust for this and 

correctly estimate the VoI statistics. 

This aspect should be incorporated into the analysis, but as the paragraph above shows, 

doing so appropriately is not necessarily straightforward.  Accommodation of non-normal 

distributions (such as that of the correlation coefficient) should also be considered, for which 

a numeric (simulation) solution would be appropriate. 

The other parallel developments in VoI to which I allude above focus primarily on the 

appropriate definition of the beneficial patient population.  For example, inter alia, taking 

into account the delay before the results of a proposed trial become disseminated and lead 

to a change of practice.199  A related aspect I have not considered in this thesis is the ‘value 

of implementation’, where consideration is given to the value of implementing current best 

practice as distinct from conducting new research to reduce decision uncertainty.125 

Finally, the assumption of a constant marginal cost of recruitment may be an 

oversimplification.  Often, a principal investigator in a trial will have a ready pool of ‘willing 

volunteers’ amongst his or her own patients.  The cost of recruiting these is therefore low.  

However, as this pool gets exhausted, additional search efforts are required to secure the 

marginal enrolee.  This may be simply a case of publicising the trial more widely.  

Alternatively, consideration may be given to adding additional recruitment centres.  The 

latter would suggest a step function shape to the cost function. 
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5.2.2.5.2.2.5.2.2.5.2.2. Broader issuesBroader issuesBroader issuesBroader issues    

Acceptability of the framework to decision makersAcceptability of the framework to decision makersAcceptability of the framework to decision makersAcceptability of the framework to decision makers    

The acceptability to decision makers of the analysis demonstrated in this thesis is contingent 

on acceptance of the iterative approach to decision making described in Chapter 1,1 93 95 and 

the assumptions underpinning economic evaluation.  Specific issues are the requirement for 

risk neutrality, and the application of standard techniques of discounting future costs and 

outcomes and the determination of an ‘appropriate’ time horizon over which to calculate 

value of information statistics.   

Arrow and Lind argued that public sector decision makers should be risk neutral,96 but the 

reality is that decision makers are extremely risk averse: licensing bodies such as the FDA 

and EMA require a reasonable probability of excluding chance as an explanation for 

observed benefits or harms before granting marketing authorisations for new chemical 

entities,lxxi and anecdotal evidence based on my personal experience with local decision 

makers in the NHS suggests that they too are risk averse.  This may thus be a barrier to 

acceptance of the methods.  However, it may be possible to adjust the analyses to 

incorporate risk aversion (see ‘further work’ below). 

Notwithstanding the above, perhaps the major limitation of value of information analysis is 

the definition of the appropriate population of patients who can benefit from a given 

research project.198  I discussed this in detail in Chapter 1: the de facto standard appears to 

be ten years but there is no logic behind this.  This is of concern as the population VoI 

statistics are extremely sensitive to the assumed time horizon.  Further research into the 

appropriate time horizon for a value of information analysis would therefore be of use. 

Further challenges to the framework are more fundamental: economic evaluation is based 

within the extra- or non-welfarist paradigm, where health is the only maximand and thus 

information is only of value in terms of its ability to increase health.   

In their analysis of the relative value of alternative study designs, Shavit et al.20 included two 

thresholds: one representing a willingness to pay for health and the other for information.  

Correspondence following publication of the manuscript challenged this.194  The 

correspondent (Grandjour) suggested that the same threshold be used for both research 

and adoption decisions.  This is logical where the purpose of information is solely to reduce 

decision uncertainty and thus increase the expected health gain of the decision.  However in 

                                                           
lxxi That is, findings must be statistically significant, usually defined as a p-value of less than or equal to 0.05. 
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response Shavit and colleagues disagreed,195 arguing that the societal willingness to pay for 

information may well differ from that it is willing to pay for health gain, the reason being 

that information for its own sake may have consumption qualities (desire to feel ‘in control’) 

as well as production qualities (use in reducing decision uncertainty in health care).   

These ideas are shared by Cohen and colleagues141 where they state that “research outputs 

are multidimensional”.  In a strict extra- or non-welfarist approach then this argument would 

be rejected: the output, or rather value, of a research project is only in terms of whether it 

increases expected health gain.  However as discussed in Chapter 1, the use of the extra- / 

non-welfarist approach is partly for pragmatic reasons: for the sake of simplicity it may be 

better to conduct economic evaluations and value of information analyses within the extra-

welfarist framework and allow the other elements of value to enter into subsequent 

discussion and interpretation of the results.  This is consistent with the definition of 

economic evaluation being used to inform decisions rather than make those decisions.48   

Trials vs decision models for decision makingTrials vs decision models for decision makingTrials vs decision models for decision makingTrials vs decision models for decision making    

A general issue raised by the iterative approach to decision making, and specifically the use 

of decision models drawing on many different sources, is whether conducting ‘piggybacked’ 

economic evaluations alongside clinical trials is ever an appropriate means to estimate the 

cost-effectiveness of interventions.  Furthermore, value of information analysis simply 

generates a list of parameters about which it is worthwhile eliciting more information, and 

the optimal sample size for each: it does not dictate the nature of the study. 

This suggests that a full RCT with piggybacked economic evaluation may not be the most 

efficient study design, and that a ‘piecemeal’ approach, gathering information on one 

parameter at a time may be preferable.  The limitations of the piecemeal approach are both 

methodological and ethical.  Methodologically, the piecemeal approach means that 

correlation between the input parameters cannot be observed.  Furthermore there may be 

incompatibilities between data sources (e.g. different patient populations), leading to risk of 

bias.  From an ethical perspective it may not be considered appropriate to (for example) 

conduct a randomised study measuring only cost where the benefits of a treatment are 

already established. 

In 1974, Williams196 suggested that economic evaluationslxxii only be conducted under a 

number of specific situations, for example in decisions involving a large movement of 

                                                           
lxxii Williams referred only to cost-benefit analysis as this work predated much of the development of other types of 
economic evaluation. 
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resources, where responsibility is fragmented, and the alternative courses of action are 

radically different.  The justification for this is the research expense of such studies.  Since 

then, there is greater acceptance that knowledge of not only the benefits of a treatment are 

necessary to inform decision making, but also the opportunity cost to other patients in the 

system (most clearly expressed in the incremental net (health) benefit, derived from the 

ICER.lxxiii   

Other potential approaches to tackling the study questionOther potential approaches to tackling the study questionOther potential approaches to tackling the study questionOther potential approaches to tackling the study question    

My starting point in this thesis was that value of information analysis, a method for 

prioritising future research, has the potential to provide an appropriate solution to the 

question.  However other approaches to research prioritisation exist, a number of which 

were identified and reviewed by Fleurence and Torgerson.99  These are: 

• Informal ‘gut feeling’ 

• Burden of disease255 256 

• Welfare loss from clinical practice variations257 

• Trial sequential analysis258 

• Payback259-261 

Fleurence and Torgerson99 argued that a research prioritisation mechanism should be 

consistent with the objective of the health system within which it operates; assumed to be 

the maximisation of health gain, subject to the budget and equity considerations. The 

approaches identified can be broadly divided into ‘non-economic’ and ‘economic’ 

approaches:lxxiv 

Non-economic approaches 

‘Gut feeling’ is perhaps the most commonly used means to prioritise research projects.  

However, due to its subjectivity, lack of replicability, and lack of explicit quantification of the 

value of research, it is unknown whether it will be consistent with the health system 

objective stated above. 

Burden of disease approaches255 256 assume a direct link between the size of a problem and 

the value of research into it.  However, this need not necessarily be the case: there may be 

very little uncertainty regarding the effectiveness of a treatment for a highly burdensome 

                                                           
lxxiii The existence of bodies such as NICE provides evidence to support this claim. 
lxxiv The division between economic and non-economic approaches to research prioritisation is a concept 
introduced by Mitton & Donaldson in a different context.262 
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disease.  Research into that treatment would have very little chance of changing policy and 

hence very little impact on health gain: resources may be spent to greater effect through 

dissemination of current knowledge. 

Priority setting according to the estimated welfare loss from clinical variations in practice 

argues that the reason for variation in practice (after adjustment for casemix, demographics 

etc) is disagreement as to the effectiveness of interventions.  However, this approach does 

not distinguish between variation due to uncertainty in the effectiveness of a treatment and 

that due to lack of dissemination of existing knowledge.  Under this approach, a further trial 

could be recommended even where there was little uncertainty regarding the effectiveness 

of a treatment.  Under these circumstances there are probably more efficient means of 

changing practice than undertaking a new RCT.99 

Finally, trial sequential analysis has been proposed as a means of establishing when 

sufficient evidence has been gathered.258  This approach is an extension of group sequential 

analysis,263 264 a means of adjusting significance levels for repeated interim tests.  As this 

does not take into account the opportunity cost of conducting research, it cannot assess the 

relative value of investments in alternative research projects. 

In summary, the limitations of the ‘non-economic’ approaches are that they are unlikely to 

be consistent with the objectives of the health system to which they contribute, and that 

they do not consider the issue of the opportunity cost of research: namely, that resources 

invested in research may have generated more health for the population had they been 

spent either in alternative research projects, or in direct care provision.   

Economics-based approaches 

The ‘payback’ approach involves the use of scenario analysis to estimate the likely cost-

effectiveness of a proposed trial.  As with the ‘clinical variations’ approach, this is a function 

not only of the results of the trial, but also any change in policy resulting from that trial.  

That is, following publication and dissemination of a trial result, clinical practice may change, 

resulting in a change in costs and health outcomes in the population.  The expected change 

in cost (including the cost of conducting the trial itself) divided by the expected change in 

QALYs gives the expected cost-effectiveness of the trial, expressed in terms of incremental 

cost per QALY gained.  Expression of the results in terms of this commonly used metric 

allows direct comparison with the cost-effectiveness of other health care interventions, 

and/or the expected cost-effectiveness of further trials of other health care interventions 

(and application of the same willingness-to-pay thresholds). 
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Townsend and Buxton260 used this approach to determine the likely cost-effectiveness of a 

trial of the long term effects of Hormone Replacement Therapy (HRT).  They hypothesised 

three possible outcomes from the trial: 

• Positive, meaning long-term cardio-vascular (CV) and fracture benefits and breast 

cancer risk were in accordance with the currently available data (1996); 

• Negative, meaning long-term CV and fracture benefits were 25% and 50% of those 

currently thought, with breast cancer risk twice that of the positive outcome; or 

• Inconclusive, meaning breast cancer risk was as per the positive outcome, and CV 

and fracture risks as per negative outcome. 

They then assumed likely policy changes of +50% uptake of HRT in the target population 

given a positive result, limitation of the use of HRT to short-term relief only given a negative 

result, and no change with the inconclusive result.  The total change in cost and QALYs 

gained in the population and incremental cost-effectiveness ratio (ICER) from each of the 

three scenarios compared with current practice was then calculated (including the cost of 

the trial itself). 

The final step was to calculate a weighted average of the three ICERs, based on an assumed 

likelihood of each (the authors stated a weighting of 0.5, 0.25 and 0.25 for each scenario 

respectively as the ‘most plausible’, but presented results for alternative weightings too).  

Based on this, they estimated an incremental cost of £1153 per QALY gained from 

conducting the trial.  Given a typical UK threshold of £20 - £30,000,72 this would be 

considered a good value for money investment. 

This ‘payback’ approach is useful in that it estimates the likely cost-effectiveness based on 

policy/practice change and across an entire population.  It also explicitly recognises the 

opportunity cost of an action: resources allocated to research cannot be allocated to 

treatment.   

The method has a lot in common with value of information analysis.  However, it does have 

a number of limitations.  The key limitation is that the outcome of the trial is divided into a 

discrete number of scenarios, which do not represent all possible outcomes (for example, 

suppose the results of the trial illustrated above had shown greater than expected CV 

benefits, but worse than expected fracture benefits?).  To adequately take into account all 

possible outcomes and their likely policy responses could easily become burdensome.  Thus 
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whilst payback considers a number of discrete outcome scenarios, value of information 

analysis can be thought of as an extension of this considering all possible outcomes on a 

continuous scale.  Secondly, the incorporation of prior knowledge into the decision is 

undertaken informally in terms of a subjective estimate of the likelihood of each of the three 

outcomes, rather than as an explicit combination of prior knowledge and the new 

information into a posterior belief.  Finally, the role of systematic review and meta-analysis 

within this framework is unclear as policy changes are determined based on the result of the 

one ‘definitive’ trial, rather than a synthesis of all available evidence. 

On this basis, I decided that value of information analysis provided the most appropriate 

research prioritisation technique upon which to base this thesis.   
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5.3.5.3.5.3.5.3.     Implications for practiceImplications for practiceImplications for practiceImplications for practice    

In this thesis, I bring an extension of value of information analysis into the healthcare sector 

for the first time, namely, extension of the principles to consideration of alternative 

approaches to gathering the same data in an economic evaluation alongside a clinical trial.  

This work sits firmly within the iterative decision framework outlined in Chapter 1.  If 

followed, the framework will lead to maximisation of expected health gain subject to the 

resources available.  The novelty of this thesis is that it adds an additional dimension in 

calculating the optimal mix between two data collection processes. 

Whilst ideally the entire framework should be used to inform adoption and research 

decisions, the analyses presented can be used to assist the design of clinical trials either in 

their entirety or, where some trial aspects have already been determined (for example, 

where the total sample size has been determined by a power calculation on the primary 

outcome), to assist subsequent decisions as to what resource use (and indeed outcomes) 

data it is worth collecting, and on how many patients. 

Such a scenario where it can be useful is where there is a desire to, for example, validate 

self-reported resource use data against medical records.  Whereas ‘gut feeling’ may suggest 

a figure of 10% is adequate for this purpose, the methods presented in Chapter 4 can be 

used to estimate an efficient mix between self-reported and medical record data. 

This method would fit into the ‘ideal’ overall trial design process as follows: 

1. Systematic review and economic evaluation based on current evidence, with value 

of information analysis determining whether future research into the research 

question is worthwhile. 

2. Feasibility / pilot studies 

3. Full scale RCT 

4. Updating of systematic review, economic evaluation and value of information 

analysis 

5. Reiteration of the entire process. 

Step one would comprise a number of sub-steps:  firstly the overall expected value of 

perfect information would be calculated.  This would be the EVPI of eliminating all 

uncertainty in incremental net benefit.  If this was ‘sufficiently large’ (e.g. greater than the 
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reasonable minimum cost of any useful evidence collection exerciselxxv) then the EVPI of 

various components of the decision question would be estimated separately (e.g. treatment 

effect, costs, and other relevant components such as health state utilities and longer term 

prognosis).  The EVSI and ENGS of these components should also be estimated to determine 

the optimal sample sizes for either a series of mini-studies or one study collecting all the 

relevant data (as per Section 4.3.4). 

On this basis, a feasibility study may be proposed, the purpose of which is to answer the 

question, ‘Can this study be done?’.55  The study will assess measures such as the standard 

deviation of the primary outcome to inform traditional sample size calculations, willingness 

of patients and clinicians to take part in the study, and usefulness of the proposed measures 

including designing appropriate questionnaires, e.g. resource use data collection tools.265 266   

This feasibility stage would therefore be the opportunity to test alternative data collection 

measures, for example medical records versus patient questionnaires, or more detailed vs 

less detailed prescriptions data.  In each case, both data collection tools would be applied to 

all patients, thus providing data on the bias of one tool compared with the other, the 

variance of each and crucially the correlation between them. 

At this point the information yielded from the feasibility study can be used to inform the 

design of a full scale trial, the method proposed in Chapter 4 of this thesis informing the 

decision as to which data collection process to use on which proportion of patients enrolled. 

The results of the trial would then be used to update the systematic review and the process 

is repeated. 

The iterative approach described above is, of course, an ideal rather than reality, and the 

exact process may not be followed completely.  The case for conducting a systematic review 

of current evidence prior to undertaking any primary data collection process (e.g. a trial) is 

extremely compelling in order to avoid unnecessary duplication of research.267 268,lxxvi  

Incorporating the results of this into an economic evaluation and value of information 

analysis provides a stronger basis for deciding to pursue a particular piece of research.   

However, from the perspective of a researcher interested in conducting a clinical trial with a 

concurrent economic evaluation, they are likely to begin with a review of the current 

                                                           
lxxv A ball-park estimate may be around £50,000, representing the cost of a few months’ researcher time analysing 
a database and writing up the results and including overheads (termed ‘indirect costs’ in management 
accounting). 
lxxvi Notwithstanding a fundamental tenet of science being replication and reproduction others’ results.267 
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evidence, plan a feasibility and/or pilot study, before embarking on the full scale trial.  

Where a full decision model has not been developed prior to the feasibility study, costs and 

outcomes estimated from the feasibility study could be used as priors to estimate the value 

of information statistics, and the resulting value of using one data collection method 

compared with another. 

My analysis is based within a UK context, where the economic evaluation is conducted from 

the perspective of the NHS, and the research funder is assumed to be the NHS (or rather, the 

National Institute for Health Research (NIHR), funding for which is top-sliced from NHS 

allocations).  There is therefore a clear link between the opportunity costs of research and 

treatment: funds not spend by the NIHR can, in principle, be diverted directly to patient care 

(or, more likely, to other research projects).  However this link is not essential: the approach 

is of most relevance to any funder interested in the efficient use of finite research funds, and 

thus the analytic techniques are very transferable to settings outside the NHS.  The only 

adaptations required would be those necessary in any economic evaluation, for example, 

adjustment of the cost perspective allowing for patient out of pocket costs or not as 

appropriate. 

These techniques also have potential outside of public research funding bodies, for example, 

a pharmaceutical firm undertaking an economic evaluation alongside a clinical trial to inform 

reimbursement decisions.  From the firm’s perspective, its objective is to maximise profit 

rather than QALYs.  In order to extend the framework to incorporate this, the firm’s profit is 

defined as a function of price, sales, and manufacturing and development costs.  Sales are a 

function of the probability of acceptance by a reimbursement agency, where the probability 

of acceptance is a function of the ICER, itself a function of price.  The same framework can 

then be employed to predict which research investments yield the greatest expected profit. 
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5.4.5.4.5.4.5.4.     Further workFurther workFurther workFurther work    

The limitations of the analysis described in Chapter 4 provide a framework for future 

research, relating both to methodological and applied aspects.  These are summarised 

below. 

5.4.1.5.4.1.5.4.1.5.4.1. Methodological issuesMethodological issuesMethodological issuesMethodological issues    

A key methodological area requiring deeper investigation is incorporation of uncertainty in 

the correlation coefficient (ρ) between input parameters.  As suggested above this is not 

necessarily straightforward.  The method described in Chapter 4 assumes ρ is known with 

certainty.  However, this is will not be the case: it is itself a random variable about which 

further information could be acquired.  Incorporating uncertainty in ρ would require 

assigning a probability distribution between its logical limits of -1 to +1, to which a normal 

distribution may be a poor fit.  Non-normality in the distribution of the correlation 

coefficient can best be accommodated by adopting a numeric (simulation) approach to 

calculating the value of information statistics.  Comparisons of the analytic and numeric 

approaches would also be of interest, providing a measure of the sensitivity of the results to 

distributional assumptions. 

An informative prior distribution of the correlation coefficient may be obtainable from pilot 

or feasibility study data.  However, as discussed in Chapter 3, where no data are available, 

expert opinion may form a suitable alternative.  Formal methods exist for eliciting 

informative priors from a panel of experts,247 but eliciting multivariate distributions and 

correlation coefficients is somewhat challenging.  As discussed in Chapter 3, O’Hagan246 

suggests restructuring the problem as a means to tackle this.  For example, suppose the 

target distribution is a bivariate distribution between the response rate to two drugs and it is 

reasonable to propose that patients who perform well on one drug may also perform well 

on the other, thus the parameters are correlated.  Eliciting the bivariate distribution directly 

would be cognitively challenging.  However, restructuring the problem into two stages 

where the response rate to one drug is first elicited, followed by the relative risk of response 

with the other, may be more feasible as the two parameters elicited (baseline response and 

relative risk) can reasonably be assumed independent from each other. 

Adapting this principle to eliciting the correlation coefficient would follow the same process.  

Suppose the aim was to estimate the relationship between two measures of the cost of 

hospitalisations.  Restructuring would require eliciting the expected cost of hospitalisations 

using the ‘ideal’ data collection process (as well as a measure of the uncertainty around that 
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mean), followed by an elicitation of the proportionate bias of an inferior measurement 

approach (and a measure of uncertainty around that mean).  For example it may be believed 

that an inferior measurement process will overestimate the ‘true’ cost of a hospitalisation by 

between 5% and 15%. 

A key element in any elicitation process is determining who the experts are whose views are 

to be elicited.  In this case, appropriate experts would be trialists with experience in 

collecting similar data in alternative ways, or financial managers of hospitals who may also 

have experience with alternative approaches to estimating the same data. 

Exploration of the feasibility of this to inform prior correlation coefficients would be an 

interesting methodological extension to this thesis.  Alternatively, in the absence of an 

informative prior, a sensitivity analysis could be conducted on the VoI statistics as a function 

of the correlation coefficient as illustrated in Chapter 3, Section 3.3.4 and Figures 3-14 to 3-

16. 

Another methodological consideration is the use of more sophisticated cost functions.  

Above, I suggest a step function may be an appropriate model where additional centres are 

required in order to boost recruitment.  Whilst the exact cost function for a trial is an 

empirical matter, the sensitivity of the VoI results to alternative functional forms would 

provide additional insight into the robustness of the method. 

For simplicity, I limited this analysis to a case where there were only two comparators.  In 

order to fully inform decisions and avoid spurious comparisons and misleading conclusions, 

economic evaluations should consider all relevant comparators simultaneously.  Therefore a 

further avenue for future work would be extension of these principles to multiple 

comparators.  The analytic approach to calculating value of information statistics is 

somewhat complicated by the presence of multiple comparators as the objective function is 

now an n-dimension maximisation problem where n is the number of comparators, instead 

of a simple uni-dimensional problem of choosing the option which maximises expected 

incremental net benefit.  Each comparator will have a mean and standard error of net 

benefit and these will not be independent of one another. 

The easiest way of considering the multidimensional problem is to consider the bivariate 

case where instead of calculating the incremental net benefit and choosing the comparator 

that maximises this, the bivariate distribution is analysed directly.  The decision rule is to 

choose the option with the maximum (expected) net benefit.  In Figure 5-1, the peak of the 
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bivariate distribution is at a value of NB0 of 15 and NB1 of 22.  Therefore the decision would 

be to adopt option 1.  However the probability of being ‘wrong’ is equal to the probability 

that NB0 is greater than NB1.  This is the proportion of the probability mass to the north west 

of a 450 line.  The loss function is now a plane: to the South East of the 450 line, this is a flat 

surface at a value of zero.  To the North West of the 450 line it has a slope of 450 towards the 

North West: a series of ‘iso-loss’ lines plotted in the Figure illustrate this.  The expected loss 

is then the value of the loss plane at every point multiplied by the probability of observing 

that point, i.e. the ‘height’ of the density function.  This can be approximated numerically. 

However, generalising the unit normal linear loss to a multidimensional loss ‘plane’ would 

allow a convenient analytic solution to VoI along the lines described Chapter 1. 

Figure 5-1: schematic of bivariate distribution of net benefit with two comparators 

 

Another aspect I did not consider was the possibility of unequal allocation of observations 

between arms: a priori, where the standard error of net benefit (or some component of net 

benefit) in one arm is different from that in the other(s), it may be more efficient to allocate 

more patients to the arm with the greater uncertainty.  Alternatively, where research costs 

differ between arms it may be more efficient to randomise more patients to the cheaper 
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arm.269  This has been considered in the context of standard value of information analysis,253 

but this would be an interesting addition to the methods presented in this thesis. 

An implicit assumption within the analytic framework is that information is only of value to 

the specific decision question posed.  However, information is a public good and may give 

rise to positive externalities where that information can be used to inform other decisions.  

This may lead to a situation where a research project would not be efficient when two 

decision questions are considered separately, but when the value of the information to both 

questions is considered simultaneously, that research may be efficient.  Future work should 

focus on whether this is theoretically possible, and if so, whether it can be demonstrated 

empirically.  Demonstrating this theoretically would be relatively straightforward:  two 

decision problems would be simulated where some evidence is common to both (for 

example the incidence or cost of a hospitalisation for a particular side effect from a drug 

used in more than one disease).  By changing point estimates and standard errors of inputs 

and costs of research, the analysis would explore whether it is possible to achieve a situation 

where for each individual situation, the research is not worthwhile, but when the external 

value of the research in one disease area is incorporated (i.e. the benefit to the other 

decision question), the research does become worthwhile.   

Empirical investigations could involve retrospective identification of areas where the same 

research is of value to multiple decision questions, calculation of optimal sample sizes and 

hence predicted efficient research plans, and observation of actual research conducted.  A 

prospective approach would involve identifying parallel research programmes where there is 

the potential for ‘mutual externalities’, and conducting analyses to demonstrate efficient 

allocation of the research between the two programmes. 

In their paper and subsequent correspondence, Shavit and colleagues20 194 195 raised the issue 

of whether there were separate thresholds for health gain and for research.  Taking an 

extra-welfarist approach, it would be argued that the only maximand is health and therefore 

assigning different values to health gain from a research programme versus a health care 

intervention would be illogical.  However, a pure welfarist approach would take the view 

that the information yielded from a research study may have consumption qualities in itself, 

and is therefore of intrinsic value, therefore there is no reason why the willingness to pay for 

a given quantity of information would be the same as the willingness to pay for the health 

gain it achieves alone. 
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Complicating this comparison is the public good nature of information, and the resulting 

externalities mentioned above: a research project may have (health) benefits to patients 

other than those with the disease and treatment(s) in question.  This however is a separate 

issue to what I am concerned with here.  A useful future empirical study would estimate 

whether there is indeed a different willingness to pay for information, over and above the 

value of the health gain it brings about.  Care would be required to account for the 

externalities, that is, to ensure that the study is detecting any consumption value of 

information itself, and not just the value of health gain to other disease areas. Previous 

studies have attempted to estimate an appropriate threshold value for QALY based on 

willingness to pay59 and the opportunity cost within the health sector.73  The proposed study 

here would build on and complement these.   

5.4.2.5.4.2.5.4.2.5.4.2. Applied issuesApplied issuesApplied issuesApplied issues    

I provide only one example illustrating the method to decide the optimal mix between two 

data collection processes.  To a certain extent this is quasi-hypothetical as it is based on 

previously collected data adapted to this purpose.  As a result, rather than two separate data 

collection processes, I simulated the ‘inferior’ process B by applying a more approximate 

costing method to drug costs.  I also did not specifically distinguish between different 

methods to both measure and value resource use, combining the two together in the catch-

all term ‘data collection process’.   

Further empirical work should therefore focus on different approaches to measurement of 

resource use, for example comparing questionnaire data with medical records, interviewer- 

versus self-administered questionnaires, or alternative questionnaire designs.  The latter 

would be of particular interest as a more complicated questionnaire may well yield ‘better 

quality’ information, but also be more onerous to complete thus affecting the response 

rate,175 and hence estimates of standard error.  Issues relating to bias may be relevant 

depending on whether or not data were missing at random.  Evans and Crawford, in their 

review of the validity of different approaches to collecting prospective economic data,171 

distinguished three areas for analysis: the effect of recall bias over different time periods, 

proxy completion of questionnaires and the mode of administration.  This would provide a 

useful framework to explore the issue. 

A recent systematic review looked at studies comparing the effect of questionnaire design 

on recall of pharmacological treatments.175  Amongst the eight studies included in the 

review, the reported prevalence of drug use varied between 5% and 40% when prompts or 
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memory aids were provided as a part of the questionnaire (e.g. provision of drug names or 

pictures), suggesting this too could be a useful element to explore. 

In Chapter 1, I stated that despite commissioning exploratory studies in VoI, neither NICE nor 

HTA formally adopted the principles in order to assist their prioritisation decisions.  A major 

part of this was simple lack of comprehension of the technique.126  Whilst education in the 

principles of economics would assist this, a qualitative research project to investigate the 

barriers to acceptance would be of interest.   

It is possible that risk aversion may be a reason for failure to adopt these techniques (the 

outcomes of the qualitative research would hint at whether this was indeed a factor).  

Experiments to elicit the degree of risk aversion amongst decision makers (either at a local 

or national level) would be of value.  Adjusting results of value of information analyses to 

take into account risk aversion may then lead to more acceptable conclusions and thus 

potential adoption of the techniques.  Such a technique has been attempted to adjust QALY 

gains for risk aversion in a decision model,270 but I am not aware of any attempts to 

incorporate this into value of information analysis.   

The three trial-based case studies explored in chapter 3 yielded very large and high cost 

trials, any one of which would likely consume the entire budget of a typical funding round.  

In section 3.3.4 I raised the possibility of diminishing marginal returns to investment as well 

the possibility of attaching an intrinsic value to funding a broad range of projects rather than 

just the most efficient one.  Work disentangling these elements: risk aversion, diminishing 

marginal returns to investment and any intrinsic valuation of diversity would therefore be of 

value. 

Risk aversion could be detected by exploring whether or not funding panels had any 

systematic preference between studies with identical ENGS, but one would lead to a much 

greater reduction in decision uncertainty.  For example, a trial for a rare disease resulting in 

a large decrease in decision uncertainty and another for a large disease resulting in a small 

decrease in decision uncertainty. 

Diminishing marginal returns to investment and identification of any intrinsic value for 

diversity could be estimated through discrete choice experiments, presenting panels with 

alternative baskets of research projects and observing their preferences as the variety and 

number of projects are varied (all totalling the same expenditure). 
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Finally, research exploring an appropriate time horizon for VoI studies would provide a 

firmer foundation for analyses.  A logical time horizon would be one over which the decision 

question remains relevant.  This could be interpreted as the time before the next 

therapeutic advance renders the current decision question redundant.  Empirical research 

attempting to estimate or predict this time period would therefore be of value. 
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5.5.5.5.5.5.5.5.     ConclusionConclusionConclusionConclusion    

In this thesis, I sought an answer to the question of how much detail is required in an 

economic evaluation alongside a clinical trial to optimise evidence for decision making.  I 

showed how the principles of value of information analysis could be extended to determine 

the optimal mix between two alternative data collection processes, one top-down and the 

other bottom-up.  In the example considered, substituting the superior process for the 

inferior process in a few observations led to a small increase in expected return from the 

trial (as expressed in the expected net benefit of sampling).   

The analysis was limited to a retrospective re-interpretation of previous data.  Further work 

is therefore required to explore more sophisticated comparisons of data processes, for 

example comparing questionnaire with medical record data.  A number of methodological 

issues also remain to be addressed, but the method shows promise as a tool to assist in the 

efficient design of expensive randomised controlled trials. 
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APPENDIX A: Calculation of Beneficial 

Populations and Research Costs 

A1.1 A1.1 A1.1 A1.1 Potential beneficial population and research costs: BECCA.Potential beneficial population and research costs: BECCA.Potential beneficial population and research costs: BECCA.Potential beneficial population and research costs: BECCA.    

In 2006 there were an estimated 750,000 people with dementia in the UK, projected to rise 

to 1,450,000 by 2050.271  Assuming a linear increase, the estimated prevalence in 2011 is 

829,546, with an incidence of 12,727 each year.  Assuming 80% of dementia patients have a 

carer who could potentially benefit from the BECCA intervention, over a ten year period this 

equates to a total of 790,909, or 769,484 (discounted at 3.5%; Table  A-1). 

Table  A-1: BECCA Beneficial Population 

Year PwD Carers df discounted 

0 829545 663636 1.000 663636 

1 15909 12727 0.966 12297 

2 15909 12727 0.934 11881 

3 15909 12727 0.902 11479 

4 15909 12727 0.871 11091 

5 15909 12727 0.842 10716 

6 15909 12727 0.814 10354 

7 15909 12727 0.786 10004 

8 15909 12727 0.759 9665 

9 15909 12727 0.734 9338 

10 15909 12727 0.709 9023 

  
790909 

 
769484 

 

Table  A-2 shows the original budget allocations over the five years of the project, divided 

into a fixed and variable component.  The allocation between fixed and variable costs is 

somewhat arbitrary and therefore required judgement.  For example, staff costs may be 

considered fixed within a particular project as the cost will not vary directly with the number 

of patients enrolled.  However, trials may not recruit at the expected rate, requiring 

extensions to contracts, thus such costs are not completely independent of sample size.  The 

original budget estimated a total cost of £463,586.  Uprating this to current costs, I estimate 

that the budget would be £673,680 if the trial was commenced in 2011 (Table  A-3).  Actual 

expenditure on the BECCA trial was £642,903 (Personal communication, University of East 

Anglia finance office).  Therefore the costs were multiplied by 642903/463586 = 1.39 to 

account for this, yielding a total expected cost of £673,680*1.39= £934,263.  This equates to 

a fixed cost of £469,731 and variable costs of £2,131 per patient. 
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Table  A-2: BECCA trial original budget  

 

Table  A-3: BECCA Budget, 2010 £ 

% FTE months year 1 year 2 year 3 year 4 year 5 total 

Fixed costs 

RA
a
 100 57 34649 35704 36791 37908 39063 184115 

Clerical assistant
b
 20 57 4445 4499 4584 4583 4549 22659 

Project management meetings
c
 694 694 694 694 694 3468 

Computer
d 

2*1000 2000 2000 

Health Economics & proj mgt
b
 19120 8664 4282 4230 7466 43762 

overheads @ 40% 15637 16081 16550 16996 17445 82710 

Total 76544 65642 62900 64411 69216 338714 

Variable 

BF facilitator, 1-3
b 

100 36 37907 38820 40060 116787 

BF facilitator, 4-5
b 

50 18 20612 13872 34484 

Home visits to carers: 4000x£4
c 

3894 3894 3894 3894 3894 19472 

Visits to GP practices: 100*£20
c 

487 487 487 487 487 2434 
Consumables (printing, phone 
etc)

c 
913 949 986 682 529 4058.70 

Volunteer OOP expenses
c 

4868 9736 9736 9736 4868 38944 

GP reimbursement for time
b  

10295 4332 14627.09 

GP reimbursement for admin 22061 22061 

 % FTE months year 1 year 2 year 3 year 4 year 5 total 

Fixed costs 

RA 100 57 23559 24726 25774 26884 20928 121871 
Clerical assistant 20 57 3022 3116 3211 3250 2437 15036 
Project management meetings 570 570 570 570 570 2850 
Computer 2*2000 4000 2850 
Health Economics & proj mgt 13000 6000 3000 3000 4000 29000 
overheads @ 40%  10632 11137 11594 12054 9346 54763 
Total 54783 45549 44149 45758 37281 226370 

Variable 

BF facilitator, 1-3 100 36 25774 26884 28064 80722 
BF facilitator, 4-5 50 18 14618 7432 22050 
Home visits to carers: 4000x£4 3200 3200 3200 3200 3200 16000 
Visits to GP practices: 
100*£20 400 400 400 400 400 2000 
Consumables (printing, phone 
etc) 750 780 810 560 435 3335 
Volunteer OOP expenses 4000 8000 8000 8000 4000 32000 
GP reimbursement for time 7000 3000 10000 
GP reimbursement for admin 
costs 15000 15000 
MD training for lay volunteers 3000 5000 5000 2000 15000 
overheads @ 40% 10310 10754 11226 5847 2973 41109 
Total 69434 58018 56700 34625 18440 237216 

Grand total:               463586 
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costs
b 

MD training for lay volunteers
b 

4412 7220 7137 2820 21589.48 

overheads @ 40% 15163 15528 16024 8245 5549 60508.41 

Total 100000 80967 78324 46476 29200 334965.7 

Grand total               673680 

a. mid point RA starting at 1b4 - spine point 28 

b. uprated from original by same proportion as RA 

c. uprated by CPI 2001-2010 

d. reduced to reflect price fall 
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A1.2 Potential beneficial population and research costs: ELEVATE.A1.2 Potential beneficial population and research costs: ELEVATE.A1.2 Potential beneficial population and research costs: ELEVATE.A1.2 Potential beneficial population and research costs: ELEVATE.    

In 2004 there were an estimated 5.2m people with asthma in the UK,272 of which 90.6% are 

at 'step 2' (controlled with inhaled corticosteroids).273  During the period 1990 - 1998, GPRD 

data suggests the prevalence of asthma in the UK general population rose from 

approximately 3% to 5%.274  This equates to an increase of approximately 0.025% per 

annum.  Assuming a linear increase, and based on a UK population in 2004 of 59,834,300,275 

the estimated prevalence of step 2 patients in 2011 is approximately 5,660,000, with an 

incidence of 135,500 each year.  Over a ten year period therefore, the potential population 

who could benefit from this trial is 7,015,120 or 6,786,978 (discounted at 3.5%; Table  A-4). 

Table  A-4: ELEVATE Beneficial Population 

 

 

 

Table  A-5 and Table  A-6 show the original and uprated budget allocations over the four 

years of the project, divided into a fixed and variable component.  The total original budget 

for the trial in 2000 was £416,293.  In 2011 figures, I estimate this to be £744,525. Actual 

expenditure on the trial was £840,790, therefore 2010 trial cost estimates were increased by 

a factor of 2.02 (=840790/416293) to reflect this.  This yielded a total fixed cost estimate of 

£1,305,470 (=646366*2.02) and variable costs of £198,253 (=98159*2.02) for 687 patients, 

or £289 per patient for a new trial. 

Year Patients df discounted 

0 5659873 1.000 5659873 

1 135525 0.966 130942 

2 135525 0.934 126514 

3 135525 0.902 122236 

4 135525 0.871 118102 

5 135525 0.842 114108 

6 135525 0.814 110249 

7 135525 0.786 106521 

8 135525 0.759 102919 

9 135525 0.734 99439 

10 135525 0.709 96076 

 
7015120 

 
6786978 
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Table  A-5: ELEVATE trial original budget 

 
% FTE months year 1 year 2 year 3 year 4 total 

Fixed costs 

       
RA x1.5 150 78 34912 37991 41478 8402 122783 

Secretary 100 40 15549 16674 17874 9360 59457 

Consumables+ computer 

equip 

  

6100 50 50 250 6450 

Statistician 20 40 6295 6803 7352 1910 22360 

Project supervision 

  

10342 10342 10342 3447 34473 

Steering cttee meetings, travel to 

mtngs & background work 

 

5560 5561 5561 1853 18535 

overheads @ 40%  
  

22702 24587 26682 7869 81840 

Total 
  

101460 102008 109339 33091 345898 

        
Variable 

       
RA practice visits x30 

  

2000 2000 2000 

 

6000 

Practice research assistants 

  

9315 9315 9315 

 

27945 

GP costs 

  

12150 12150 12150 

 

36450 

        
Total 

  
23465 23465 23465 0 70395 

Grand total:             416293 

 

Table  A-6: ELEVATE Budget, 2010 £ 

 
 

       

 

% 
FTE 

month
s year 1 year 2 year 3 year 4 total 

Fixed costs 
       RA x1.5

a 
150 78 51973.5 53556 55186.5 56862 217578 

Secretary
b 

100 40 23148 23505 23781 63345 133780 

Consumables+ computer 

equip
c
 

  

5816.1 61.55 61.55 307.75 6246.95 

Statistician
b 

20 40 9371 9590 9782 12926 41669.67 

Project supervision
b 

  

15396 14579 13760 23328 67063.49 

Steering cttee meetings, travel 

to mtngs & background work
d 

 

6844 6846 6846 2281 22816.59 

overheads @ 40% 

  
33797 34661 35500 53253 157211.1 

Total 
  

146346 142798 144917 212304 646365.7 
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        Variable 
       RA practice visits x30

d 

  
2462 2462 2462 

 
7386 

Practice research assistants
b 

  
13867 13131 12394 

 
39392.23 

GP costs
b 

  
18088 17128 16166 

 
51381.17 

Total 
  

34417 32721 31021 
 

98159.4 

Grand total             744525 

a. mid point RA starting at 1b4 - spine point 28 

b. uprated from original by same proportion as RA 

c. computer price reduced to 1000 each.  Other costs increased by CPI 

d. costs increased by CPI 
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A1.3A1.3A1.3A1.3    Potential beneficial population and research costs: CESAR.Potential beneficial population and research costs: CESAR.Potential beneficial population and research costs: CESAR.Potential beneficial population and research costs: CESAR.    

The incidence of acute lung injury has been estimated at 86.2 per 100,000 person years (age 

adjusted).276  Given a projected UK population of 62,761,000 in 2011, this equates to 54,100 

patients who could potentially benefit from the information in an additional trial per annum.  

Over 10 years the total population is 595,100, or 504,028 discounted at 3.5% per annum 

(Table  A-7). 

Table  A-7: CESAR Beneficial Population 

Year Patients Df discounted 

0 54100 1.000 54100 

1 54100 0.966 52271 

2 54100 0.934 50503 

3 54100 0.902 48795 

4 54100 0.871 47145 

5 54100 0.842 45551 

6 54100 0.814 44010 

7 54100 0.786 42522 

8 54100 0.759 41084 

9 54100 0.734 39695 

10 54100 0.709 38352 

 
595100 

 
504028 

 

Table  A-8 and Table  A-9 show the original budget allocations over the five years of the 

project. divided into a fixed and variable component.  The original budget estimated a total 

cost of £9,466,273.  Based on a 2011 start date, I estimate a new trial would have fixed costs 

of £1,827,720 and variable costs of £65,102 per patient. 
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Table  A-8: CESAR trial original budget 

% FTE months year 1 year 2 year 3 year 4 year 5 total 

Fixed costs 

Study co-ordinator 50 54 17198 17660 17660 17660 8831 79009 

Data manager 50 54 15361 15935 16373 16373 8186 72228 

Statistician 20 54 6844 7089 7370 7744 4007 33054 

Clinical research fellow 100 39 33207 34919 37260 9586 114972 

Data & Admin Officer 50 54 11129 11684 12205 12666 6542 54226 

Secretary  20 54 2908 2996 3084 3176 1614 13778 

Secretary  10 54 1635 1635 1635 1635 829 7369 

Secretary  10 54 1454 1498 1542 1588 807 6889 

Researcher  50 54 14741 15624 16562 17556 9205 73688 

Economist  50 54 10858 11339 11894 12407 6338 52836 

Resp Physician sessional 30 36 2000 12000 12000 10000 36000 

Steering cttee 15000 

collaborators meetings 49500 

consultation  650 

DMC 500 

conference attendance 2000 

7 computers + 1 printer 7500 

exceptional items* 9084 

Overheads 46934 52951.6 55034 44156.4 18543.6 217619.6 

Total 845902.6 

Variable 

site visits and resp ass. 32000 

consumables 55334 

service support costs 186300 253368 253368 693036 

excess treatment costs 2240000 2800000 2800000 7840000 

Total 2426300 3053368 3053368 0 0 8620370 

Grand total:         9466273 

*(randomisation, rent, QoL scales) 
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Table  A-9: CESAR Budget, 2010 £ 

% FTE months year 1 year 2 year 3 year 4 year 5 total 

Fixed costs 

Study co-ordinator
a
 50 54 34649 35704 36791 37908 39063 184115 

Data manager
b 

50 54 30948 32216 34110 35145 36210 168630 

Statistician
b 

20 54 13789 14332 15354 16623 17725 77822 

Clinical research 

fellow
b
 100 39 66903 70597 77624 20577 235700.17 

Data & Admin Officer
b
 50 54 22422 23622 25427 27188 28938 127596.4 

Secretary
b
 20 54 5859 6057 6425 6817 7139 32297.597 

Secretary
b
 10 54 3294 3306 3406 3510 3667 17182.389 

Secretary
b
 10 54 2929 3029 3212 3409 3570 16148.799 

Researcher
b
 50 54 29699 31588 34504 37685 40717 174192.23 

Economist
b
 50 54 21876 22925 24779 26632 28035 124246.68 

Resp Physician 

sessional
b
 30 36 4029 24261 25000 21465 74755 

Steering ctte
c
 18465 

collaborators 

meetings
c
 60935 

consultation
c
 800 

DMC
c
 616 

conference 

attendance
c
 2462 

7 computers + 1 

printer
d
 7500 

exceptional items
c
 11182 

Overheads 94558.45 107054.6 114652.1 94783.74 82025.66 493074.52 

Total 1827720.4 

Variable 

site visits and resp ass.
 

c
 39392 

consumables
c
 68116 

service support costs
c
 853127 

excess treatment 

costs
c
 9651040 

Total 10611675 

Grand total               12439396 

a. Mid point RA starting at 1b4 - spine point 28 
b. Uprated from original by same proportion as RA 
c. Uprated by CPI 
d. Assumed same cost as original 
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APPENDIX B: Correlation Coefficients 

amongst Data components in the 

BECCA study 
Table B-1 shows the correlation coefficients between sections of the resource use 

questionnaire used in the BECCA study.  ‘Intervention’ refers to the cost of the intervention.  

Note that none of the correlation coefficients exceed |0.478|. 

Table  B-1: Correlation Coefficients between cost components of BECCA data 

rho 3.1 3.2 3.3 3.4 3.6 3.7 3.8 3.9 3.11 3.12 3.13 4 5 

3.1 1.000 

            3.2 -0.163 1.000 

           3.3 0.069 0.281 1.000 

          3.4 0.147 -0.099 0.108 1.000 

         3.6 0.033 -0.023 0.056 0.037 1.000 

        3.7 -0.061 -0.067 0.017 0.062 0.465 1.000 

       3.8 0.032 -0.009 0.121 0.008 0.090 0.046 1.000 

      3.9 0.009 -0.003 0.131 0.026 0.035 0.048 0.125 1.000 

     3.11 -0.024 0.254 0.329 -0.050 0.053 0.051 0.189 0.139 1.000 

    3.12 -0.056 -0.025 -0.041 -0.068 0.044 -0.007 0.000 -0.050 -0.046 1.000 

   3.13 0.093 0.006 0.087 0.051 0.005 0.030 0.097 0.239 0.157 -0.029 1.000 

  4 0.333 -0.209 0.175 0.200 0.094 0.064 0.129 0.028 0.167 -0.048 0.106 1.000 

 5 -0.086 0.011 0.029 -0.008 -0.112 -0.078 0.108 0.034 0.082 -0.039 -0.004 -0.026 1.000 

8.1 0.139 -0.010 0.059 0.066 0.060 0.136 0.147 -0.004 0.159 -0.007 0.080 0.154 -0.063 

8.3 -0.025 0.094 0.092 -0.048 -0.053 -0.050 0.076 0.137 -0.022 0.029 0.000 0.080 -0.022 

8.4 -0.054 0.150 0.038 0.123 0.088 0.143 0.153 -0.072 -0.013 -0.052 0.004 0.025 -0.007 

8.5 0.056 -0.037 0.041 0.373 0.118 0.109 0.015 -0.076 -0.022 -0.014 0.001 0.045 -0.005 

8.7 0.009 0.033 0.026 0.381 0.074 0.032 0.023 0.025 -0.053 -0.005 -0.015 0.018 -0.018 

8.8 -0.041 0.191 0.020 -0.067 0.067 0.050 0.118 0.029 0.233 0.037 0.018 0.027 -0.051 

8.9 -0.018 0.017 0.153 0.204 0.107 0.070 0.285 0.096 0.070 -0.011 0.025 0.052 -0.046 

8.10 0.007 -0.026 -0.016 0.074 -0.046 0.000 -0.017 -0.035 0.001 -0.041 -0.025 0.065 -0.044 

8.11 -0.115 -0.021 0.011 0.003 0.025 0.039 -0.040 0.105 -0.100 -0.045 -0.039 -0.122 0.080 

8.12 -0.005 0.148 0.088 0.014 -0.008 0.058 0.207 0.010 0.189 0.029 0.021 0.061 -0.033 

8.13 -0.060 0.014 0.105 0.097 0.001 0.026 0.330 0.115 0.033 -0.022 0.002 -0.071 -0.043 

9 -0.193 0.026 -0.047 -0.105 -0.067 -0.069 -0.088 -0.056 -0.028 -0.013 -0.032 -0.332 0.005 

Intervention -0.018 -0.052 -0.026 -0.029 -0.001 0.043 0.125 -0.012 -0.033 -0.023 0.007 -0.011 -0.035 
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Table  B-1 continued 

rho 8.1 8.3 8.4 8.5 8.7 8.8 8.9 8.10 8.11 8.12 8.13 9 I 

3.1 

             3.2 

             3.3 

             3.4 

             3.6 

             3.7 

             3.8 

             3.9 

             3.11 

             3.12 

             3.13 

             4 

             5 

             8.1 1.000 

            8.3 0.101 1.000 

           8.4 0.063 0.028 1.000 

          8.5 0.069 0.019 0.402 1.000 

         8.7 0.080 0.027 0.217 0.306 1.000 

        8.8 0.171 -0.034 0.113 -0.023 0.019 1.000 

       8.9 0.149 0.008 0.432 0.153 0.478 0.071 1.000 

      8.10 -0.065 -0.018 -0.026 0.068 -0.013 -0.005 -0.011 1.000 

     8.11 0.075 -0.033 0.055 0.068 0.041 -0.030 0.094 -0.031 1.000 

    8.12 0.331 0.013 0.174 -0.002 0.040 0.031 0.242 -0.016 0.063 1.000 

   8.13 0.105 -0.034 0.120 0.089 -0.020 0.200 0.138 0.131 -0.092 0.110 1.000 

  9 -0.074 -0.045 0.005 -0.014 0.015 -0.020 -0.010 -0.002 -0.075 -0.043 -0.015 1.000 

 Intervention 0.096 0.049 -0.078 -0.038 -0.070 -0.015 -0.001 0.018 -0.097 0.131 0.142 0.097 1.000 
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APPENDIX C: Full details of calculations 

for Chapter 4 
For source data see Tables  4-1 and Table  4-2 on page 166. 

Box  C-1: Population EVPI 

Population EVPI %��Ø� = '. U∗. 89∗ C��U∗F
= '. U∗. C> C��U∗F − ��U∗ ³Ñ C− ��U∗F − &)�� < 0*´F 

 

Expected reduction in 

standard error of 

incremental net benefit 

U∗ = ��� − �� = �217.15� − 0� = 217.15 

 

Therefore population 

EVPI 

= 6,786,978 ∗ 217.15 ∗ �>�0.26	 − 0.26[Ñ�−0.26	 − 0]	 = 6,786,978 ∗ 217.15 ∗ 0.28 = £416,256,000 

 

Box  C-2: ENBS, INB at n=8,589 per arm 

Expected net benefit of 

sampling n 

observations per arm 

�'lN�O	 = �' − 2O	. U�∗ . 89∗���∗	 − �»P + 2ºPO + O��	 

 

Beneficial population �' − 2O	 = �6,786,978 − 2 ∗ 8589	 = 6,769,800 

Expected reduction in 

standard error of 

incremental net benefit 

U�∗ = Ç217.15� − 11217.15� + 8,5893,097.47� = 214.62 

Normalised mean at 

which to calculate unit 

normal loss 

��∗ = ��U�∗ = 56.41214.62 = 0.26 

Unit normal loss 89∗���∗	 = �>���∗	 − ��∗[Ñ�−��∗	 − &)�� < 0*]	 =  0.28 

Cost of sampling »P + 2ºPO + O��= £1,305,470 + 2 ∗ 8589 ∗ 288.58 + 8589∗ 56.41 = £6,262,667 

Expected net benefit of 

sampling 

∴ �'lN�8,589	 = 6,764,294 ∗ 214.62 ∗ 0.28 − 6,262,667≅ £401,859,000 
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Box  C-3: EVPPI, QALYs 

Population 

expected value of 

partial perfect 

information on 

QALYs 

%��ØØ�Ú«ÛÜÆ = 'U∗89∗��∗, ��	 

= '. ��� − ��. ;> ; ����� − ��=
− ����� − �� (Ñ ;− ����� − ��= − &)�� < 0*1= 

Pre-posterior 

variance of INB 

and its 

components 

�� = ����Δ�	� + ��Δ�	� − 2λρΔ�,Δ],����Δ�	����Δ�	� ��Δ�	� = ��Δ�	� = 78.11� ��Δ�	� = 0 

ρΔ�,Δ],� = ρΔ�,Δ],� = −0.036 

∴ �� = 0 + 78.11� − 0 = £6101.77 

Expected 

reduction in 

standard error of 

INB 

��� − �� = �£47,155.03 − £6101.77 = �£41,053.26 = £202.62 

 

EVPPI %��ØØ�Ú«ÛÜÆ = 6,786,978 ∗ 202.62∗ C> C 56.41202.62F
− 56.41202.62 ³Ñ C− 56.41202.62F − &)56.41 < 0*´F 

= 6,786,978 ∗ 202.62 ∗ 0.28 = £378,296,000 
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Box  C-4: ENGS, QALYs @ n=9458 per arm 

Expected net gain 

of sampling data 

on QALYs, 

n=9458 per arm 

�'�N�O	 = �' − 2O	. U�∗. 89∗���∗	 − �»P + 2ºPO + O��	 

 

Beneficial 

population 

�' − 2O	 = �6,786,978 − 2 ∗ 9,458	 = 6,768,062 

 

Expected 

reduction in 

standard error of 

incremental net 

benefit 

U�∗ = ��� − �� 

 

Preposterior 

variance of INB 

and its 

components 

�� = ����Δ�	� + ��Δ�	� − 2λρΔ�,Δ],����Δ�	����Δ�	� 

��Δ�	� = ��Δ�	� = 78.11� 

��Δ�	� = C1 ��Δ�	�Ý + n X�Δ�	�Ý F.� = Q1 0.04�Ý + 9458 0.536�Ý S.�
= 0.0000298 

ρΔ�,Δ],� = ρΔ�,Δ],� = −0.036 

∴ �� = 5000� ∗ 0.0000298 + 78.11�
− 2λ�−0.036	√0.0000298�78.11� = £6997.80 

Therefore 

expected 

reduction in 

standard error of 

INB 

U�∗ = �47,155.03 − 6997.80 = 200.39 

 

Normalised mean 

at which to 

calculate unit 

normal loss 

��∗ = ��U�∗ = 56.41200.39 = 0.28 

 

Unit normal loss 89∗���∗ , 	 = �>���∗	 − ��∗[Ñ�−��∗	 − &)�� < 0*]	 =  0.27 

 

Cost of sampling »P + 2ºPO + O�� = £1,305,470 + 2 ∗ 9458 ∗ 192.39 + 9458 ∗ 56.41= £4,944,634  
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Expected net 

benefit of 

sampling 

∴ �'lN�9,458	 = 6,768,062 ∗ 200.39 ∗ 0.27 − 4,944,634≅ £365,991,000 
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Box  C-5: EVPPI, Cost 

Population 

expected value of 

partial perfect 

information on 

cost 

%��ØØ�ÂÄÆÞ = 'U∗89∗��∗, ��	 

= '. ��� − ��. ;> ; ����� − ��=
− ����� − �� (Ñ ;− ����� − ��= − &)�� < 0*1= 

Pre-posterior 

variance of INB 

and its 

components 

�� = ����ΔE	� + ��Δ�	� − 2λρΔ�,Δ],����Δ�	����Δ�	� ��Δ�	� = ��Δ�	� = 0.04� ��Δ�	� = 0 

ρΔ�,Δ],� = ρΔ�,Δ],� = −0.036 

∴ �� = 5000�0.04� + 0 − 0 = £39,940.91 

Expected 

reduction in 

standard error of 

INB 

��� − �� = �£47,155.03 − £39,940.91 = �£7,214.12 = £84.94 

 

EVPPI = 6,786,978 ∗ 84.94∗ C> C56.4184.94F − 56.4184.94 ³Ñ C− 56.4184.94F − &)56.41 < 0*´F 

= 6,786,978 ∗ 84.94 ∗ 0.15 = £87,476,000 
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Box  C-6: ENGS, Cost @ n=6735 per arm 

Expected net gain 

of sampling data 

on cost, n=6735 

per arm 

�'�N�O	 = �' − 2O	. U�∗. 89∗���∗	 − �»P + 2ºPO + O��	 

 

Beneficial 

population 

�' − 2O	 = �6,786,978 − 2 ∗ 6735	 = 6,773,508 

 

Expected 

reduction in 

standard error of 

incremental net 

benefit 

U�∗ = ��� − �� 

 

Preposterior 

variance of INB 

and its 

components 

�� = ����Δ�	� + ��Δ�	� − 2λρΔ�,Δ],����Δ�	����Δ�	� ��Δ�	� = ��Δ�	� = 0.040� 

��Δ�	� = C1 ��Δ�	�Ý + n X�Δ�	�Ý F.�
= Q1 78.11�Ý + 6735 1049.35�Ý S.� = £159.23 

ρΔ�,Δ],� = ρΔ�,Δ],� = −0.036 

∴ �� = 5000� ∗ 0.040� + 159.23 − 2λ�−0.036	 ∗ 0.040√159.23= £40,279.83 

 

Therefore 

expected 

reduction in 

standard error of 

INB 

U�∗ = �47,155.03 − 40,279.83 = 82.92 

 

Normalised mean 

at which to 

calculate unit 

normal loss 

��∗ = ��U�∗ = 56.4182.92 = 0.68 

Unit normal loss 89∗���∗ , 	 = �>���∗	 − ��∗[Ñ�−��∗	 − &)�� < 0*]	 =  0.15 

Cost of sampling »P + 2ºPO + O�� = £1,305,470 + 2 ∗ 6,735 ∗ 192.39 + 6,735 ∗ 56.41= £3,896,902  
Expected net 

benefit of 

sampling 

∴ �'lN]ÀP3�6,735	 = 6,773,508 ∗ 82.92 ∗ 0.15 − 3,896,902≅ £78,673,000 
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Box  C-7: EVPPI, non-drug cost 

Population 

expected value of 

partial perfect 

information on 

non-drug cost 

%��ØØ�àÄ¨Ã©áâã äÄÆÞ = 'U∗89∗��∗, ��	 

= '. ��� − ��. ;> ; ����� − ��=
− ����� − �� (Ñ ;− ����� − ��= − &)�� < 0*1= 

Pre-posterior 

variance of INB 

and its 

components 

�� = ����ΔE	� + ��Δ�	� − 2λρΔ�,Δ],����Δ�	����Δ�	� ��Δ�	� = ��Δ�	� = 0.04� 

��Δ�	� = ��Δ�Ò	� + �JΔ�åæL� + 2ρΔ]ª,Δ]çè,����Δ�Ò	���JΔ�åæL� 

�JΔ�åæL� = �JΔ�åæL� = £45.36� 

��Δ�Ò	� = 0 

ρΔ]ª,Δ]ç,� = ρΔ]ª,Δ]ç,� = 0.352 

∴ ��Δ�	� = 0 + £45.36� + 0 = £45.36� 

ρΔ�,Δ],� = ρΔ�,Δ],� = −0.036 

∴ �� = ��0.04� + £45.36� − 2� ∗ �−0.036	�0.04��£45.36�= £42,644.50 

Expected 

reduction in 

standard error of 

INB 

��� − �� = �£47,155.03 − £42,644.50 = √4510.53 = £67.16 

EVPPI = 6,786,978 ∗ 67.16∗ C> C56.4167.16F − 56.4167.16 ³Ñ C− 56.4167.16F − &)56.41 < 0*´F 

= 6,786,978 ∗ 67.16 ∗ 0.112 = £51,037,000 
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Box  C-8: ENGS, non-drug cost @ n=9456 

Expected net gain 

of sampling data 

on non-drug cost, 

n=9456 per arm 

�'�N�O	 = �' − 2O	. U�∗. 89∗���∗	 − �»P + 2ºPO + O��	 

 

Beneficial 

population 

�' − 2O	 = �6,786,978 − 2 ∗ 9456	 = 6,768,066 

 

Expected 

reduction in 

standard error of 

incremental net 

benefit 

U�∗ = ��� − �� 

 

Preposterior 

variance of INB 

and its 

components 

�� = ����Δ�	� + ��Δ�	� − 2λρΔ�,Δ],����Δ�	����Δ�	� ��Δ�	� = ��Δ�	� = 0.040� 

��Δ�	� = ��Δ�Ò	� + �JΔ�åæL� + 2ρΔ]ª,Δ]çè,����Δ�Ò	���JΔ�åæL� 

�JΔ�åæL� = �JΔ�åæL� = £45.36� 

��Δ�Ò	� = C1 ��Δ�Ò	�Ý + n X�Δ�Ò	�Ý F.�
= Q1 49.60�Ý + 6735 666.75�Ý S.� = £46.13 

ρΔ]ª,Δ]çè,� = ρΔ]ª,Δ]çè,� = 0.352 

∴ ��Δ�	� = £46.13 + £45.36� + 2�0.352	√£46.13�£45.36�= £2320.74 

ρΔ�,Δ],� = ρΔ�,Δ],� = −0.036 

∴ �� = 5000� ∗ 0.040� + 2320.74 − 2λ�−0.036	 ∗ 0.040√2320.74= £42,947.65 

 

Therefore 

expected 

reduction in 

standard error of 

INB 

U�∗ = �47,155.03 − 42,947.65 = 64.86 

 

 

Normalised mean 

at which to 

calculate unit 

normal loss 

��∗ = ��U�∗ = 56.4164.86 = 0.87 

Unit normal loss 89∗���∗ , 	 = �>���∗	 − ��∗[Ñ�−��∗	 − &)�� < 0*]	 =  0.11 
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Cost of sampling »P + 2ºPO + O�� = £1,305,470 + 2 ∗ 9,456 ∗ 96.19 + 9,456 ∗ 56.41= £3,124,667 

Expected net 

benefit of 

sampling 

∴ �'lN9À�.�éêë ZÀP3�9,456	 = 6,773,508 ∗ 64.86 ∗ 0.11 − 3,124,667≅ £42,934,000 
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Box  C-9: EVPPI, Drug Cost 

Population 

expected value of 

partial perfect 

information on 

non-drug cost 

%��ØØ�©áâãÆ äÄÆÞ = 'U∗89∗��∗, ��	 

= '. ��� − ��. ;> ; ����� − ��=
− ����� − �� (Ñ ;− ����� − ��= − &)�� < 0*1= 

Pre-posterior 

variance of INB 

and its 

components 

�� = ����ΔE	� + ��Δ�	� − 2λρΔ�,Δ],����Δ�	����Δ�	� ��Δ�	� = ��Δ�	� = 0.04� 

��Δ�	� = ��Δ�Ò	� + �JΔ�åæL� + 2ρΔ]ª,Δ]çè,����Δ�Ò	���JΔ�åæL� 

��Δ�Ò	� = ��Δ�Ò	� = £49.60� �JΔ�åæL� = 0 

ρΔ]ª,Δ]ç,� = ρΔ]ª,Δ]ç,� = 0.352 

∴ ��Δ�	� = £49.60� + 0 + 0 = £49.60� 

ρΔ�,Δ],� = ρΔ�,Δ],� = −0.036 

∴ �� = ��0.04� + £49.60� − 2� ∗ �−0.036	�0.04��£49.60�= £43,106.96 

Expected 

reduction in 

standard error of 

INB 

��� − �� = �£47,155.03 − £43,106.96 = √4048.07 = £63.62 

 

EVPPI = 6,786,978 ∗ 63.62∗ C> C56.4163.62F − 56.4163.62 ³Ñ C− 56.4163.62F − &)56.41 < 0*´F 

= 6,786,978 ∗ 63.62 ∗ 0.103 = £44,439,000 
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Box  C-10: ENGS, drug cost @ n=9197 

Expected net gain 

of sampling data 

on drug cost  

�'�N�O	 = �' − 2O	. U�∗. 89∗���∗	 − �»P + 2ºPO + O��	 

 

Beneficial 

population 

�' − 2O	 = �6,786,978 − 2 ∗ 9197	 = 6,768,584 

 

Expected 

reduction in 

standard error of 

incremental net 

benefit 

U�∗ = ��� − �� 

 

Preposterior 

variance of INB 

and its 

components 

�� = ����Δ�	� + ��Δ�	� − 2λρΔ�,Δ],����Δ�	����Δ�	� 

��Δ�	� = ��Δ�	� = 0.040� 

��Δ�	� = ��Δ�Ò	� + �JΔ�åæL� + 2ρΔ]ª,Δ]çè,����Δ�Ò	���JΔ�åæL� 

��Δ�Ò	� = ��Δ�Ò	� = £49.60� 

�JΔ�åæL� = T1 �JΔ�åæL�ì + n X�Δ�åæ	�Ý V
.�

= Q1 45.36�Ý + 6735 608.03�Ý S.� = £39.43 

ρΔ]ª,Δ]çè,� = ρΔ]ª,Δ]çè,� = 0.352 

∴ ��Δ�	� = £49.60� + £39.43 + 2�0.352	�£49.60�√£39.43= £2718.53 

ρΔ�,Δ],� = ρΔ�,Δ],� = −0.036 

∴ �� = 5000� ∗ 0.040� + 2718.53 − 2 ∗ 5000�−0.036	∗ 0.040√2718.53 = £43,401.92 

 

Therefore 

expected 

reduction in 

standard error of 

INB 

U�∗ = �47,155.03 − 43,401.92 = 61.26 

 

 

Normalised mean 

at which to 

calculate unit 

normal loss 

��∗ = ��U�∗ = 56.4161.26 = 0.92 
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Unit normal loss 89∗���∗ , 	 = �>���∗	 − ��∗[Ñ�−��∗	 − &)�� < 0*]	 =  0.10 

Cost of sampling »P + 2ºPO + O�� = £1,305,470 + 2 ∗ 9,197 ∗ 96.19 + 9,197 ∗ 56.41= £3,074,839 

Expected net 

benefit of 

sampling 

∴ �'lN�éêë ZÀP3�9,197	 = 6,773,508 ∗ 61.26 ∗ 0.10 − 3,074,839≅ £36,485,000 
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Box  C-11: ENGS, drug cost, two processes @ na=9081, nb=240 

Prior mean 

incremental cost of 

drugs from 

processes A and B 

¯J∆���L�J∆��­L�° = ·£102.54
£289.82¸ 

Prior 

variance/covariance 

matrix 

�′ = ³£2,058 £1,806
£1,806 £2,328´ 

 

Inverse of prior 

matrix 
²R = �.� = 12058 ∗ 2328 − 1806� · 2328 −1806−1806 2058 ¸= · 0.0015 −0.0012−0.0012 0.0013 ¸ 

Inverse of sample 

var/covar matrix ² = ¯O� ��Ý 00 O­ �­Ý ° = í9081 369,700Ý 00 240 414,702Ý î
= ·0.0246 00 0.0006¸ 

 

Inverse of pre-

posterior var/covar 

matrix 

²RR = ²R + ² = · 0.0261 −0.0012−0.0012 0.0019 ¸ 

 

Pre-posterior 

var/covar matrix 
�RR = ²′′.� = 10.0261 ∗ 0.0019 − 0.0012� ·0.0019 0.00120.0012 0.0261¸= ·£39.43 £24.20

£24.20 £534.58¸ 

 

Therefore pre-

posterior variance 

of incremental cost 

of drugs using 

process A 

∴ ��∆���	� = �RRïï = £39.43 

 

Expected net gain 

of sampling data on 

drug cost (nA,nB) 

observations with 

each process per 

arm 

�'�N�Oê, OM	 = J' − 2�Oê + OM	L. JU∗89∗��∗	− �ºPêOê + ºPMOM + »P&)Oê > 0 ∪ OM > 0*+ �Oê + OM	��	L 

Beneficial 

population 
J' − 2�Oê + OM	L = J6,786,978 − 2 ∗ �9081 + 240	L = 6,768,336 

 

Expected reduction 

in standard error of 

incremental net 

U�∗ = ��� − �� 
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benefit 

Preposterior 

variance of INB and 

its components 

�� = ����Δ�	� + ��Δ�	� − 2λρΔ�,Δ],����Δ�	����Δ�	� 

��Δ�	� = ��Δ�	� = 0.040� 

��Δ�	� = ��Δ�Ò	� + �JΔ�åæL� + 2ρΔ]ª,Δ]çè,����Δ�Ò	���JΔ�åæL� 

��Δ�Ò	� = ��Δ�Ò	� = £49.60� ��∆���	� = £39.43 

ρΔ]ª,Δ]çè,� = ρΔ]ª,Δ]çè,� = 0.352 

∴ ��Δ�	� = £49.60� + £39.43 + 2�0.352	�£49.60�√£39.43= £2718.55 

ρΔ�,Δ],� = ρΔ�,Δ],� = −0.036 

∴ �� = �� ∗ 0.040� + 2718.55 − 2λ ∗ �−0.036	 ∗ 0.040√2718.55= £43,401.93 

 

Therefore expected 

reduction in 

standard error of 

INB 

U�∗ = �47,155.03 − 43,401.93 = 61.26 

 

Normalised mean 

at which to 

calculate unit 

normal loss 

��∗ = ��U�∗ = 56.4161.26 = 0.92 

 

Unit normal loss 89∗���∗	 = �>���∗	 − ��∗[Ñ�−��∗	 − &)�� < 0*]	 =  0.10 

 

Cost of sampling ºP�O� + ºP­O­ + »P&)O� > 0 ∪ O­ > 0* + �O� + O­	��= 96.19 ∗ 9081 + 9.62 ∗ 240 + £1,305,470 ∗ 1+ �9081 + 240	 ∗ 56.41 = £3,057,140  
 

Expected net 

benefit of sampling 

∴ �'lN�9081,240	 = 6,778,142 ∗ 61.26 ∗ 0.10 − 3,057,140≅ £36,494,000 
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Box  C-12: ENGS of optimal trial design 

Prior mean 

incremental cost of 

drugs from 

processes A and B 

¯J∆���L�J∆��­L�° = ·£102.54
£289.82¸ 

Prior 

variance/covariance 

matrix 

�′ = ³£2,058 £1,806
£1,806 £2,328´ 

 

Inverse of prior 

matrix 
²R = �.� = 12058 ∗ 2328 − 1806� · 2328 −1806−1806 2058 ¸= · 0.0015 −0.0012−0.0012 0.0013 ¸ 

Inverse of sample 

var/covar matrix ² = ¯O� ��Ý 00 O­ �­Ý ° = ¯3693 608.03�Ý 00 904 643.97�Ý °
= ·0.010 00 0.002¸ 

 

Inverse of pre-

posterior var/covar 

matrix 

²RR = ²R + ² = · 0.012 −0.001−0.001 0.004 ¸ 

 

Pre-posterior 

var/covar matrix 
�RR = ²′′.� = 10.012 ∗ 0.004 − 0.001� ·0.004 0.0010.001 0.012¸= ·£89.96 £30.13

£30.13 £293.76¸ 

 

Therefore pre-

posterior variance 

of incremental cost 

of drugs using 

process A 

∴ ��∆���	� = £89.96 

 

Expected net gain 

of sampling data on 

drug cost (nA,nB) 

observations with 

each process per 

arm, nE 

observations on 

QALYs and nn on 

non-drug costs 

�'�N QOG� , OG]ª,OG]çè , OG]çñS= ·' − 2∗ max QOG� , OG]ª,OG]çè + OG]çñS¸ . ·U∗89∗��∗	− QºPG�OG� + ºPG]ªOG]ª + ºPG]çèOG]çè + ºPG]çñOG]çñ+ »P& ÖOG� > 0 ∪ OG]ª > 0 ∪ OG]çè > 0 ∪ OG]çñ > 0×+ max QOG� , OG]ª,OG]çè + OG]çñS ��S¸ 

Beneficial 

population 
' − 2 ∗ max QOG� , OG]ª,OG]çè + OG]çñS= �6,786,978 − 2 ∗ max �10,787, 4,264, 3,693+ 904	 = 6,765,404 
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Expected reduction 

in standard error of 

incremental net 

benefit 

U�∗ = ��� − �� 

 

Preposterior 

variance of INB and 

its components 

�� = ����Δ�	� + ��Δ�	� − 2λρΔ�,Δ],����Δ�	����Δ�	� 

��Δ�	� = Q1 0.04�Ý + 10,787 0.536�Ý S.� = 0.00003 

��Δ�	� = ��Δ�Ò	� + �JΔ�åæL� + 2ρΔ]ª,Δ]çè,����Δ�Ò	���JΔ�åæL� 

��Δ�Ò	� = Q1 49.60�Ý + 4264 666.75�Ý S.� = 100.02 

 ��∆���	� = $��`` = £89.96 

ρΔ]ª,Δ]çè,� = ρΔ]ª,Δ]çè,� = 0.352 

∴ ��Δ�	� = 100.02 + 89.96 + 2�0.352	√100.02√89.96 = £256.78 

 

ρΔ�,Δ],� = ρΔ�,Δ],� = −0.036 

∴ �� = ��0.00003 + 256.78 − 2λ�−0.036	√0.00003√256.78= £939.99 

Therefore expected 

reduction in 

standard error of 

INB 

U�∗ = �£47,155.03 − £939.99 = 214.98 

 

Normalised mean 

at which to 

calculate unit 

normal loss 

��∗ = ��U�∗ = 56.41214.98 = 0.26 

Unit normal loss 89∗���∗	 = �>���∗	 − ��∗[Ñ�−��∗	 − &)�� < 0*]	 =  0.28 
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Cost of sampling ºP�O� + ºP]¨O]¨ + ºP]©«O]©« + ºP]©¹O]©¹+ »P& ÖO� > 0 ∪ O]¨ > 0 ∪ O]©« > 0 ∪ O]©¹ > 0×+ ��� QO� , O]¨ , O]©« , O]©¹S ��= 2 ∗ �96.19 ∗ 10787 + 96.19 ∗ 4264 + 96.19∗ 3693 + 9.62 ∗ 904	 + £1,305,470 + �10787	∗ 56.41 = £5,537,462  
 

Expected net 

benefit of sampling 

∴ �'lN�10787,4264,3693,904	= 6,765,404 ∗ 214.98 ∗ 0.28 − 5,537,462≅ £403,722,000 
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APPENDIX D: Exploration of impact of 

reducing uncertainty in the correlation 

coefficient 
 

In Chapter 4 I made a simplifying assumption that trialists can choose to measure the cost of 

drugs using either process A or process B, but not both together.  In this appendix I explain 

why this simplifying assumption is necessary, and why relaxing it is not so straightforward to 

incorporate into the analysis. 

Allowing both data processes to be observed in the same observations would change the 

algebra of section 4.2 as follows: 

� (∆���∆��­1 = (∆��,��∆��,�­ 1 , $ (∆���∆��­1 = ¯ $J∆���L� ����∆���, ∆��­	�����∆���, ∆��­	� $J∆��­L� ° [ D-1 ] 

� ;(∆��,P�∆��,P­ 1± (∆���∆��­1= = (∆��,��∆��,�­ 1 ,
$ ;(∆��,P�∆��,P­ 1± (∆��,��∆��,�­ 1=
=

õöö
öö÷ ��∆���	P O�⁄ ���J∆���, ∆��­LP O� ⋂ ­ì
���J∆���, ∆��­LP O� ⋂ ­ì ��∆��­	P O­⁄ ùúú

úúû 

[ D-2 ] 

The joint posterior variance/covariance matrix is the inverse of H'' thus the posterior 

distribution is summarised in Equations [  D-6 ] and [ D-7 ], where m is the mean from each 

data process (Equation [  4-12 ]). 

²R = ³���R ���R���R ���R ´ = ¯ �J∆���L� ����∆���, ∆��­	�����∆���, ∆��­	� �J∆��­L� °.�
 

= 1��∆���	���∆��­	� − ����∆���, ∆��­	�� ¯ �J∆��­L� −����∆���, ∆��­	�−����∆���, ∆��­	� �J∆���L� °
[  D-3 ] 
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² = ( O� ��⁄ O� ⋂ ­ ����∆���, ∆��­	P⁄O� ⋂ ­ ����∆���, ∆��­	P⁄ O­ �­⁄ 1 [  D-4 ] 

²RR = ²R + ²
= ( �′�� + O� ��⁄ �′�� + O� ⋂ ­ ����∆���, ∆��­	P⁄�′�� + O� ⋂ ­ ����∆���, ∆��­	P⁄ �′�� + O­ �­⁄ 1 

[  D-5 ] 

(∆��,��∆��,�­ 1 = ²RR.� ;²R (∆��,��∆��,�­ 1 + ²¶= [ D-6 ] 

�RR = ¯ �J∆���L� ����∆���, ∆��­	�����∆���, ∆��­	� �J∆��­L� ° = ²′′.� [ D-7 ] 

¶ = ·���­¸ [  D-8 ] 

As previously, the the problem is to choose (nA, nB) that maximises the ENGS (Equation [  D-9 

]). 

�'�N�«,�¹ = J' − 2�O� + O­	L. U∗89∗��∗, ��	− [ºP�O� + ºP­O­ + »P&)O� > 0 ∪ O­ > 0* + �O� + O­	��]   [ D-9 ] 

where: 

b0 = prior mean incremental net benefit U∗ = ��� − �� = expected reduction in standard error of incremental net benefit 

�∗ = |M¾|¿∗   89∗�. 	 = unit normal linear loss integral 

The posterior estimate of the variance of ∆��� (cell 1,1 of matrix V``) is shown in Box D-1 

(based on equations [  D-3 ] - [  D-7]).   

Box  D-1: Preposterior variance of mean of Process A 

�J∆���L� = $ ′′�� = �′′��.�
= �′�� + O­��∆��­	P;�′�� + O���∆���	P= ;�′�� + O­��∆��­	P= − ;�′�� + O� ⋂ ­����∆���, ∆��­	P= ;�′�� + O� ⋂ ­����∆���, ∆��­	P= 

 

Noting that �′�� = �′�� = .]ÀkJ∆]©«,∆]©¹L¾kJ∆]©«L¾kJ∆]©¹L¾.]ÀkJ∆]©«,∆]©¹L¾E 

thus: 
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�J∆���L�
= �′�� + O­��∆��­	P;�′�� + O���∆���	P= ;�′�� + O­��∆��­	P= − ; −����∆���, ∆��­	���∆���	���∆��­	�−����∆���, ∆��­	�� + O� ⋂ ­����∆���, ∆��­	P=� 

Substituting in equations for H’11 and H’22:  �J∆���L� =
ÁQ∆Â©«S¾ÁQ∆Â©«S¾ÁQ∆Â©¹S¾ÃÂÄÁ�∆Â©«,∆Â©¹	¾EÅ ¨¹ÁQ∆Â©¹SÆ

� ÁQ∆Â©¹S¾ÁQ∆Â©«S¾ÁQ∆Â©¹S¾ÃÂÄÁ�∆Â©«,∆Â©¹	¾EÅ ¨«ÁQ∆Â©«SÆ�� ÁQ∆Â©«S¾ÁQ∆Â©«S¾ÁQ∆Â©¹S¾ÃÂÄÁ�∆Â©«,∆Â©¹	¾EÅ ¨¹ÁQ∆Â©¹SÆ�.� ÃÂÄÁQ∆Â©«,∆Â©¹S¾ÁQ∆Â©«S¾ÁQ∆Â©¹S¾ÃÂÄÁQ∆Â©«,∆Â©¹S¾EÅ ¨« ⋂ ¹ÂÄÁQ∆Â©«,∆Â©¹SÆ�E

  

This is more clearly written by noting that: 

|²′′′′| = �J∆���L��J∆��­L� − ����∆���, ∆��­	��
 

Thus: �J∆���L�
= �J∆���L�|²′| + O­��∆��­	P;��∆��­	�|²′| + O���∆���	P= ;��∆���	�|²′| + O­��∆��­	P= − ;−����∆���, ∆��­	�|²′| + O� ⋂ ­����∆���, ∆��­	P=� 

    

 

ResultsResultsResultsResults    

This analysis identifies an optimal result at 8816 observations in each arm using process A, 

and of these, process B should also be measured in 344.  However, this does not make 

intuitive sense: given that process A is the ‘preferred’ process, there can be no benefit from 

observing process B in a subset of observations on which process A is being measured: the 

results would only make intuitive sense if the numbers of observations on process B were 

greater than process A, and A was measured in a subset of those, i.e. if nB>nA. 

Exploration of this in more detail suggests that the reduction in uncertainty is being 

overestimated as for some combinations of sample sizes, the ENGS is undefined (figure D-1, 

undefined values plotted as zeroes).  The reason for this is that the estimated reduction in 

variance is greater than the prior variance, leading to a negative preposterior variance and 

thus an error in the resulting calculation of EVSI and hence ENGS. 
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This is most easily demonstrated for situations where an equal number of observations are 

proposed using each process.  Box D-2 below shows the calculations, with the resulting 

negative preposterior variance.  This flaw appears to have been identified by Pratt, Raiffa 

and Schalifer,4 but unfortunately they do not elaborate on this, simply stating that “another 

technique will be required” to analyse such data.  For the purpose of this thesis then, I limit 

the analysis to situations where either process A or process B are observed in a particular 

patient.  Whilst limited in applicability, this is mathematically valid.  Relaxing this assumption 

and estimating the expected return on investment when both processes are observed in the 

same patient remains an important area for future research.  

 

Figure D-1: ENGS for combinations of observations collected on nA and nB
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Box D-2: Estimate of preposterior variance when nA=nB=500 

Prior mean 

incremental cost of 

drugs from 

processes A and B 

¯J∆���L�J∆��­L�° = ·£102.54
£289.82¸ 

Prior 

variance/covariance 

matrix 

�′ = ³£2,058 £1,806
£1,806 £2,328´ 

 

Inverse of prior 

matrix 
²R = �.� = 12058 ∗ 2328 − 1806� · 2328 −1806−1806 2058 ¸= · 0.0015 −0.0012−0.0012 0.0013 ¸ 

Inverse of sample 

var/covar matrix 
² = ( O� ��⁄ O� ⋂ ­ ����∆���, ∆��­	P⁄O� ⋂ ­ ����∆���, ∆��­	P⁄ O­ �­⁄ 1

= í5000 369,700Ý 5000 320,990Ý5000 320,990Ý 5000 414,702Ý î
= ·0.0135 0.01560.0156 0.0121¸ 

 

Inverse of pre-

posterior var/covar 

matrix 

²RR = ²R + ² = ·0.0150 0.01440.0144 0.0134¸ 

 

Pre-posterior 

var/covar matrix 
�RR = ²′′.� = 10.0150 ∗ 0.0134 − 0.0144� ·0.0150 0.01440.0144 0.0134¸= ·−£2400.18 −£2578.17−£2578.17 −£2694.73¸ 

 

Therefore pre-

posterior variance 

of incremental cost 

of drugs using 

process A 

∴ ��∆���	� = �RRïï = −£2400.18 
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APPENDIX E: Power calculation 

The formula for determining the sample size for a study with two independent outcomes 

and a continuous outcome measure is: 

O� = 2 CüU� F�
 

Where: 

ni = number of patients per arm 

Z = standard normal distribution evaluated at desired confidence level. 

E = minimally important difference in outcome measure between treatment groups. 

U ≅ Xý = Ó�O� − 1	X�� + �O� − 1	X���O� + O� − 2	  

If the minimally important difference in net benefit is £100, and 95% confidence is desired, 

the appropriate sample size, based on data reported in Table  4-1 and Table  4-2 is: 

U ≅ Xý = Ó�175 − 1	2010.64� + �184 − 1	2356.20��175 + 184 − 2	 = 2194.58 

O� = 2 C1.96 ∗ 2194.58100 F� ≅ 3700 
 

 

  


