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ABSTRACT 

  

To understand the forces and dynamics of two or more neutral particles trapped within an optical beam, careful 

consideration of the influence of inter-particle forces is required.  The well-known, field-independent intrinsic force is 

known to derive from the Casimir-Polder interaction.  However, the magnitude of this force may be over-ridden by the 

effect known as optical binding, in cases when the laser beam is of sufficient intensity.  This binding interaction is 

completely independent of optomechanical effects relating to optical tweezers, and involves a stimulated (pairwise) 

forward-scattering process.  Unlike the Casimir-Polder coupling, optical binding is not always an attractive force when 

both particles are in their ground state.  Associated with optical binding are potential energy surfaces, which reveal 

intricate patterns of local minima – sets of positions in which one of the particles will sit at equilibrium (with the other 

notionally set at the origin).  These optical energy landscapes, which can be illustrated by use of contour diagrams, have 

mostly been considered for systems in which spherical particles are optically bound.  The effect of different particle 

shapes, for example tube-like structures, can also be explored.  Moreover, although the theory of conventional optical 

binding generally assumes situations in which both particles reside in their ground states, new results arise when 

individual particles are excited to a higher electronic state.  Although, in the experimentally most convenient structural 

configuration (for tumbling spherical particles), pairwise optical binding vanishes in the short-range region, novel effects 

can arise as a result of non-zero optical binding between three neighbouring particles. 
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1.  INTRODUCTION 

 

In general, optical tweezer methods involve individual particles being subjected to an attractive force, usually directed 

towards the high intensity region of a laser beam.
1-4

  On the inclusion of additional particles within the beam, the 

positioning and dynamics of each unit becomes subject to inter-particle forces that are distinct and separable from the 

optomechanical optical tweezer forces.  The most familiar intrinsic forces of this inter-particle type are the well-known 

field-independent Casimir-Polder interactions,
5-10

 which relate to the van der Waals or dispersion interaction, first 

characterized in London’s calculation (which derived an R
-6

 dependence): Casimir and Polder’s more accurate 

derivation, based on quantum electrodynamics (QED), revealed an R
-7

 dependence in the long-range.  However, on the 

presence of a laser beam of sufficient intensity, the form and magnitude of the inter-particle coupling forces may be 

modified through a phenomenon known as optical binding,
11-19

 which may override the intrinsic force.  Despite a diverse 

set of optical processes being operational for particle sizes approaching or exceeding the wavelength of the throughput 

beam, the case of non-contact interactions between ‘Rayleigh particles’ has a specifically QED origin.   To be more 

precise, the optical binding mechanism entails stimulated Rayleigh forward-scattering of the (off-resonant) laser beam, 

meaning that no net absorption or stimulated emission occurs; the coupling interaction is mediated by virtual photon 

exchange between the particles (Figure 1).  This phenomenon, first predicted using the quantum electrodynamical  
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Figure 1. Feynman diagrams for optical binding, equivalent to stimulated Rayleigh forward-scattering of an off-resonant laser beam, 

with time increasing upwards. The two vertical lines denote nanoparticle states and the wavy lines photons: (a) two-particle system, 

(b) three-particle system. 

 

 

formalism,
20

 is increasingly advocated as a tool for optical manipulation –  indeed, many forms of optically induced array 

have been observed experimentally.
11,21,22  In this paper, the quantum electrodynamical theory of optical binding 

between particles is reviewed and related potential energy surfaces are produced.  A brief discussion then follows on the 

effects of electronically exciting one (or both) of the particles.  As an introduction to multi-particle systems, the analysis 

is finally extended to include three particles with the corresponding optical energy landscapes presented. 

 

 

2.  THEORY OF OPTICAL BINIDING 
 

2.1 General expression 

 

To properly account for the quantum features arising for optical binding between Rayleigh particles, the Power-Zienau-

Woolley approach is employed.
23

  Using this framework, the multipolar Hamiltonian, H, for a pair of nanoparticles A and 

B is represented as; 

 

    part int rad

, ,A B A B

H H H H
 

 
 

      , (1) 

 

where  partH   is the Hamiltonian for nanoparticle   and 
radH  denotes the energy operator for the radiation field.  The 

Hamiltonian  intH   gives the interaction of the field with   and, using the electric dipole approximation, the following 

applies;  

 

   1

int 0 ( ) ( )H 



      d R   ,   (2) 
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with ( )  and R  as the electric-dipole moment operator and the position vector, respectively.  The operator ( )


d R  

represents the transverse electric displacement field of the radiation.  General results for the optical binding forces 

between a pair of neutral nanoparticles A and B can be determined from an expression for the distance-dependent energy 

shift, ΔE , which in turn is obtained by the application of fourth-order perturbation theory, i.e.;  

 

 
int int int int

, ,

Re
( )( )( )t s r i t i s i r

i H t t H s s H r r H i
E

E E E E E E

  
   

    
   , (3) 

 

where i  is the unperturbed state of the system comprising the molecules and the radiation field, in which both A and B 

are in their individual electronic ground states; r , s  and t  are virtual system states, and 
nE  is the energy of state 

n .  The system states can be written in the form; 

 
 part rad part ;radn n n nn     , (4) 

 

with partn
 and radn

 defining the status of all nanoparticle and radiation states, respectively.  The laser-induced 

interaction entails the annihilation of a ‘real’ (laser throughput) photon at one particle and the stimulated emission of a 

‘real’ photon at the other, with a virtual photon mediating the coupling between them; this results in elastic forward-

scattering of the off-resonant beam as shown by Figure 1(a).  The nanoparticles and the throughput radiation suffer no 

overall change in quantum state.  Using the implied summation convention for repeated Cartesian tensor subscript 

indices, as shown previously, the short-range result for ΔE  emerges as;
24

  

 

            

       
0

Re , e , e
2

0, 0, ,

A B i B A i

i l ij jk kl ij jk kl
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I
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c
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k R k R
R R

R R

 

(5)

 

 
where I is the intensity of the input laser beam, Vjk is the dipole-dipole coupling tensor

25,26
 (the first two terms 

corresponding to a dynamic interaction, as shown by the dependence on k, and the final two terms are static), ck is the 

energy per photon, e is the polarization of the input beam; 
   ij k


  and    ijl k


  represent the polarizability and 

hyperpolarizability tensor, respectively, and  is a permanent dipole moment.  The optical binding force is determined 

from equation (5) via the expression E  F R , the result of which is found to have an R
-4

 distance dependence in 

the short-range.  For spherical particles (the main subject of this paper), which necessarily contain no permanent dipoles, 

only the first two terms of equation (5) arise.  In contrast, all four terms are required for cylindrical structures, such as 

carbon nanotubes, with a static dipole – as outlined in the following sub-section.  

 

 

2.2. Expression for two parallel tube-like structures 
 

We briefly recap on a system involving nanoparticles of cylindrical symmetry configured in a parallel arrangement.  In 

contrast to the case of spherical particles there are five degrees of freedom for the spatial and orientation disposition of 

such a system, relative to the salient field vectors (namely, the propagation and polarization vectors).  In detail, we can 

describe a pair of parallel nanoparticles oriented against a system of axes such that each axis is aligned with the x-axis 

and the displacement, R, between the nanoparticles lies on the z-axis.  The assumed plane-polarized throughput radiation 

is defined through the angles  and made by its e vector against R in the xz-plane, and the particle axis in the xy-plane, 

respectively.  By expressing the polarization unit vector in the cylindrical form cos sin sin sin cos     e i + j k , 

and employing the explicit form of the Vjk tensor, the general expression (5) gives;  
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(6)

 

 

where yy zz   , xx   and xxx  , 2yxy zxz    .  Again using E  F R , in the short-range region, 

equation (6) is now written as; 

 

      2 2

2 2 2 2 2 2

2 4

0

ˆ3
sin cos sin 3 cos 2 ,

4

z
z

IR
F

cR
          


  

 
       
 

   (7) 

 

which represents an optical binding force in the z-direction.  To determine typical magnitudes for this force, we employ 

carbon nanotubes of length 200 nm and 0.4 nm in radius, and position them 2 nm apart.  On the assumption that the   

and   values are consistent with the static polarizabilities of the nanotubes,
25

 equation (7) gives a repulsive force in the 

N range for  = 0° (independent of ), and an attractive force in the pN range for  = 90° (the value of  has a very 

small effect).
26

  For spherical particles, the condition       is imposed and equates to null, so that equation (7) 

becomes; 

 

  
2

2

2 4

0

ˆ3
3sin 2 ,

4

z
z

IR
F
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   (8) 

     

on isotropically averaging the system with respect to the incoming light the optical binding force will disappear, i.e. 

0zF   since 2sin 2 3  ; in such a tumbling configuration pairwise interactions are negated. 

 

 

2.3. Optical binding modification via nanoparticle excitation  

 
In the previous section, our considerations of optical binding have been based on the notion that both nanoparticles reside 

in their ground state.  Here, we consider the effects that may arise when one of the particles becomes electronically 

excited: the condition is achievable either through direct photo-excitation (with the same beam as is responsible for the 

optical manipulation, or another that traverses it) or resonance energy transfer.  Although, the Casimir-Polder interaction 

is itself negligible compared to optical binding, given the input of a beam with sufficient intensity, it is interesting to 

observe that the dispersion force is not always attractive when one (or more) particles are excited, as detailed quantum 

electrodynamical analysis has shown.
27,28

   

 

Returning to optical binding, Figure 2 visually shows that optomechanical motion is possible between the particle pair 

through manipulation of the optical binding – this is achieved by excitation of either particle.  Moving across the 

diagram, A is excited through one-photon absorption (energy transfer from a nearby non-interacting particle is also 

possible) – resulting in modification to the pair-potential energy.  Moving to the right-hand side of the diagram, 

resonance energy transfer between the pair is represented.  It is noteworthy that, due to the presence of the off-resonant 

beam, the efficiency of resonant absorption and resonance energy transfer may be also be subjected to significant 

modification in such a scheme.
28

  A much more detailed analysis on such a scheme is found within an earlier proceedings 

paper.
29
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Figure 2. Representation of optical binding for: (a) A and B both in their ground states (unfilled circles), (b) A in an excited state (filled 

circle) with B remaining unexcited, and (c) A unexcited and B excited.  The successive states are achievable through the sequential 

optical process, shown horizontally across the diagram, of one-photon absorption (first block arrow) followed by resonance energy 

transfer (second block arrow).  The black arrows on the nanoparticles denote arbitrary changes in the optical binding force.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3. Nanoparticles A and B, residing in the x, z-plane and displaced by R, are trapped in an off-resonant laser beam that is linearly 

polarized.  The polarization vector, e, points in the x-direction, forming an angle with R, the beam propagation vector k creates an 

angle  with the x, z-plane. 

 

 

3.  POTENTIAL ENERGY SURFACES 

 
3.1 Two-particle system 

Using equation (5) as a starting point, the following energy shift expression is found (for spherical particles) as a 

function of the geometric parameters shown in Figure 3;
30,31

 

 

  (9) 

 

where  is a scalar polarizability.  If cylindrical particles are again considered, additional degrees of freedom are 

necessary to describe the orientation of the particle axes.  However, the largest polarizability component of each 

nanoparticle is expected to be aligned with the polarization of the beam, if the particles are well-separated.  Under these 

conditions, only the diagonal (principal axis) elements of the polarizability tensor, on the framework illustrated in Figure 

3, need be considered in the summation of equation (5).  Moreover, due to the orientation of the polarization on the 

x-axis, only one term will contribute.      In consequence, the energy shift expression for cylindrical nanoparticles is again 
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Figure 4. Contour map of the optically binding energy shift for two particles: ΔE is plotted against ζ and kR, and the angle φ is fixed at 

π/4.  Adjacent, differently colored islands signify alternating local maxima (red) and minima (blue). 

 

delivered by equation (9), although and are now interpreted as the largest polarizability elements of the 

particles A and B respectively – usually corresponding to the length-axis of the cylinder.  A potential energy surface for 

optical binding, as shown in Figure 4, is obtained from equation (9).  This contour diagram contains information on the 

location of the stability points of the binding system, i.e. the set of positions where one of the nanoparticles will sit at 

equilibrium (with the other notionally set at the origin).  Moreover, a particle positioned away from the minima will 

experience forces directed towards the nearest points of stability.  

 
3.2 Three-particle system 

 
The two-particle system is now extended to a set of three nanoparticles.  Along with the pairwise optical binding 

mechanism described previously, three body interactions – which are illustrated by Figure 1(b) – should also be 

considered in such a case, i.e.; 

 

    , (10) 

 

in which  is the energy shift due to three-body coupling.  Explicitly, the latter is defined generally by; 

 

  

(11)
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where , with  and   representing either particle A, B or C.  To produce optical energy landscapes for 

the three-particle configuration, a simple geometry is chosen in which the spherical particles are positioned in a straight 

line, as shown by Figure 5.  Employing this model, equation (11) becomes;  
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(12)

 

 
where the dependence on the polarizability is suppressed.  Moreover, the pairwise optical binding is written as; 

 

  (13) 

 

in which  denotes either ,  or  as follows from equation (10).  The optical energy landscape for three 

particles, in a configuration given by Figure 5, is constructed from equation (10) following insertion of equations (12) 

and (13).  The corresponding contour map of E against  and  is shown in Figure 6; here, we assume that the 

volume polarizabilities, /40, are similar for each molecule and approximately equal to the molecular volume.  
 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Geometry for a system containing three spherical nanoparticles.  The wave-vector, k, of the input radiation is directed 

parallel to 
1 2 1 2

–   R R R , where 1 and 2 represent either particle A, B or C. 

 
4.  CONCLUSION 

 

The aim of this paper has been to detail the generation of optical energy landscapes, corresponding to optical binding, for 

a two and three nanoparticle configuration.  In addition, it has been demonstrated that a modification to the optical 

binding potential is possible on excitation of an interacting particle, and typical values for the optical binding force 

between nanotubes have been reported.   In ongoing and future research, we intend to add more particles to the three-

particle system – where an especially interesting case is that of optical binding between multiple particles in a three-

dimensional geometry.  This analysis should provide a consolidated theoretical basis for understanding the mechanisms 

at work in studies of optically induced self-assembly by nanoparticles – itself a subject of highly active experimental 

investigation.  
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Figure 6. Contour map of the optically binding energy shift for three particles: ΔE is plotted against  and .  In this graph the 

three spherical nanoparticles have a radius of 10 nm and the input laser wavelength is 562 nm. 
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