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In many of the materials and systems in which resonance energy transfer occurs, the individual chro-
mophores are embedded within a superstructure of significantly different chemical composition. In
accounting for the influence of the surrounding matter, the simplest and most widely used repre-
sentation is commonly cast in terms of a dependence on local refractive index. However, such a
depiction is a significant oversimplification, as it fails to register the electronic and local geometric
effects of material specifically in the vicinity of the chromophores undergoing energy transfer. The
principal objective of this study is to construct a detailed picture of how individual photon inter-
action events are modified by vicinal, non-absorbing chromophores. A specific aim is to discover
what effects arise when input excitation is located in the neighborhood of other chromophores that
have a slightly shorter wavelength of absorption; this involves a passive effect exerted on the trans-
fer of energy at wavelengths where they themselves display no significant absorption. The theory
is based on a thorough quantum electrodynamical analysis that allows the identification of specific
optical and electronic chromophore attributes to expedite or inhibit electronic energy transfer. The
Clausius-Mossotti dispersion relationship is then deployed to elicit a dependence on the bulk refrac-
tive index of the surroundings. A distinction is drawn between cases in which the influence on the
electromagnetic coupling between the donor and the acceptor is primarily due to the static electric
field produced by a polar medium, and converse cases in which the mechanism for modifying the
form of energy transfer involves the medium acquiring an induced electric dipole. The results provide
insights into the detailed quantum mechanisms that operate in multi-chromophore systems, pointing
to factors that contribute to the optimization of photosystem characteristics. © 2013 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4811793]

I. INTRODUCTION

This study concerns the effect of molecules near spe-
cific light-absorbing chromophores, on the transfer of elec-
tronic excitation in a complex multi-component molecular
system. At the molecular level, the effects of such compo-
nents, not specifically absorbing in the same wavelength re-
gion as the excitation donor or acceptor, can be understood in
terms of their electronic polarizability. Molecular polarizabil-
ity is a tensor quantity with elements whose dispersion char-
acter, owing to an intricate dependence on transition energies
and dipoles, typically exhibit their largest and most sharply
wavelength-dependent values at near-resonant wavelengths.
Accordingly, appropriately positioned components can sig-
nificantly modify the strength of electromagnetic influence in
their vicinity, and this effect can modify the character of a
nearby energy transfer process. It is well known that polariz-
ability values are related to refractive index by the Clausius-
Mossotti equation, affording the basis for linkage to a descrip-
tion in terms of bulk properties of the medium. Here, one can
begin to consider the net effect of all the matter comprising the
system in statistical terms, such as compositional fractions.
Although expedient, the application of such bulk concepts to
processes that fundamentally involve photonic interactions is
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decidedly crude. In materials where chromophores of a va-
riety of types form local arrangements of complex architec-
ture, it can reasonably be supposed that the detailed quan-
tum mechanisms operating at the local chromophore-photon
level might operate in a fashion significantly different from
that predicted for the bulk.

Our principal aim is to construct a detailed picture of
how individual photon interaction events are modified by
vicinal, non-absorbing chromophores. We seek to discover
what particular effects arise when input excitation is located
in the neighborhood of other, constitutionally different chro-
mophores that have a slightly shorter wavelength absorption
– sufficiently removed from the wavelength equivalent of the
transfer energy to obviate direct action as a third body ab-
sorber, as illustrated in Figure 1.

This is indeed a situation that arises in many photosyn-
thetic systems.1 It is well known that chromophores absorb-
ing at short wavelengths, absorbing from a broadband input,
commonly harvest energy and transfer it with minor losses
to other, longer-wavelength absorbers. There are also ancil-
lary pigments that have significant photoprotective roles as-
sociated with direct absorption.2 However, our concern is
with the passive effect that such species can exert on the
transfer of energy at wavelengths where they themselves dis-
play no significant absorption. The results can provide in-
sights into the detailed quantum mechanisms that operate in
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FIG. 1. Schematic Jablonski-type depiction of an energy transfer between
donor D and acceptor A, in the vicinity of a species M with a higher first
excited state.

multi-chromophore systems, pointing to factors that con-
tribute to the optimization of photosystem characteristics. As
Scholes et al.3 have pointed out, energy harvesting efficiency
is generally determined by the interplay of numerous factors.

An example serves to illustrate the cases we shall con-
sider. Natural photosystems generally contain a proliferation
of chromophores with absorption bands shifted to differing
extents by local molecular structure. In many photobacte-
rial systems based on bacteriochlorophyll B800 and B850
(the numerals denoting absorption maxima in nanometers),
it is well understood that B800 chromophores commonly ab-
sorb light of this wavelength and then pass excitation on to a
B850, when both are in the same vicinity.4 The correspond-
ing spectroscopic gradient,5 which is offset by minor vibra-
tional losses, serves to impart a significant degree of direc-
tionality to the energy routing. Although it might be supposed
that replacing the B800 with B850 might achieve the same
end in a system of reduced complexity, higher densities of
B850 could promote singlet-singlet annihilation and exciton
formation. So, given the naturally occurring local architecture
one can pose the question; is there an effect on the transfer of
energy, following absorption of 800 nm radiation by B800, to
B850? Seminal work by Scholes and Fleming6 has considered
in detail the dielectric influence of surrounding protein host
material, as well as the mutual interaction of the donor and
acceptor. Nonetheless, the density of chromophore packing in
such structures suggests the possibility of other, additional ef-
fects due to non-participant bacteriochlorophyll units, those
not directly engaged as donor or acceptor. Such questions are
only indicative of the much broader issues which we now turn
to address.

Although the analysis has particular relevance to the role
of ancillary pigments in photobiological systems, the princi-
ples to be established will have a wider application to vari-
ous forms of complex structured materials. Accordingly, this
work is intended as part of a larger study aiming to determine
the key principles for optimizing the sought photonic mecha-
nisms in meta-structured molecular materials, through the in-
clusion of suitable chromophores. In the design of functional
optical materials, there is currently great interest in deploy-
ing the mechanism of internal electronic energy transport to
achieve or enhance desired photophysical characteristics.7 A
primary area of application can be found in the field of arti-

ficial energy harvesting materials, but numerous other exam-
ples arise in nonlinear optical connections.8–11 The identifica-
tion of stepwise energy transfer mechanisms in natural pho-
tosynthetic systems, typically following an initial absorption
of light, has inspired efforts to secure similar principles of op-
eration in molecular nanomaterials.12, 13 Examples are readily
found in the realm of dendrimers and other self-assembled
molecular structures such as block copolymers.14–16 En-
ergy transport between electronically distinct components
or chromophores within such systems usually operates as a
multi-step sequence, due to the sharp decline in efficiency
with distance. Each stage is an ultrafast migration that is well
described by the standard Förster model17 of resonance en-
ergy transfer (RET).

Molecular quantum electrodynamics (QED) has been
widely and very successfully applied to such processes, pro-
ducing a unified theory that reconciles both RET and radia-
tive energy transfer as the short- and long-range limits of one
mechanism.18–21 The purpose of the present analysis is to ad-
dress this problem using a more rigorous approach to the rep-
resentation of local molecular electronic structure. In the fol-
lowing, by developing a thorough quantum electrodynamical
analysis including state-sequence methodology, extending a
recent analysis by Salam,22 a path is established towards a
formalism that will allow the identification of specific optical
and electronic chromophore attributes to expedite or inhibit
electronic energy transfer.

II. QED BACKGROUND

A. Foundations

To fully describe the coupling of donor relaxation and ac-
ceptor excitation events involved in RET (excluding exchange
via molecular wavefunction overlap), a quantum electrody-
namical treatment is required. QED is an essential frame-
work for rigorous analysis of the interactions of molecules
with light, and their electromagnetic interactions with each
other.23, 24 Quantizing the whole system under consideration,
particles and fields alike, introduces the virtual photon for de-
scribing the couplings between particles of matter;20, 23 this
ensures that causality and retardation principles are inbuilt.
In fact, where molecules are not in direct contact, all inter-
molecular interactions must be mediated by virtual photon
exchange. For each molecule, every discrete electronic transi-
tion is a local matter-radiation interaction event.

The non-relativistic Hamiltonian operator for a system
comprised of interacting molecules ξ , promoted to operator
form, is exactly expressible as

H = Hradiation +
∑

ξ

Hmatter(ξ ) +
∑

ξ

Hinteraction(ξ ). (1)

Since the theory that is to be developed from this basis
will have wide-ranging general validity, the terms “molecule”
and “chromophore” can be regarded as essentially inter-
changeable in the following. Operations of the interaction
Hamiltonian term, henceforth abbreviated as Hint, account for
individual transition events within each interacting molecule.
The rate (probability per unit time), �FI, of an identified tran-
sition process is given by the Fermi golden rule.25 For a
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FIG. 2. RET. Event (Y) is the relaxation of D, event (Z) the excitation of A. The Feynman diagrams show the time-order: (a) (Y)→(Z); (b) (Z)→(Y). The
state-sequence diagram (c) contains all the information of both Feynman diagrams. Reproduced by permission from D. L. Andrews and J. S. Ford, Proc. SPIE
8459, 84590C (2012). Copyright 2012 SPIE.

system proceeding from its initial state I to a final state F
within a continuum of density ρF,

�FI = 2π �
−1ρF |MFI |2. (2)

A process consisting of N interaction events is described
by Nth-order perturbation theory, such that its quantum am-
plitude MFI is given by the Nth term of the perturbation
expansion,26

MFI = 〈F |Hint|I 〉 +
∑
R

〈F |Hint|R〉〈R|Hint|I 〉
(EI − ER)

+
∑
R,S

〈F |Hint|S〉〈S|Hint|R〉〈R|Hint|I 〉
(EI − ER)(EI − ES)

+ · · · . (3)

The analysis of electronic energy transport concerns the
exchange of quanta between discrete chromophores individ-
ually possessing characterized absorption and fluorescence.
For example, elementary absorption entails the annihilation
of single photons, and is accordingly represented by the first
order term in Eq. (3). In its simplest form, RET entails one
donor and one acceptor, the mechanism for energy transfer
being described as the exchange of a single virtual photon.
Here, since there is one photon creation and a correspond-
ing photon annihilation event, the leading term in the theory
emerges from the second order term in Eq. (3). When the
donor and acceptor chromophores are embedded within a host
medium comprising optically passive molecules, the influ-
ence upon RET is described by considering the passive elec-
tromagnetic influence of a neighboring chromophore upon
each absorber, or each interacting pair. Once again, the only
mechanism for exerting such an influence is virtual photon
coupling, for which the associated creation and annihilation
events add two to the order of the term in Eq. (3) that leads.
Accordingly, fourth order perturbation theory forms the basis
for identifying passive chromophore effects on RET.

B. Coupling configurations and their diagrammatic
representations

Intermolecular interaction processes are understood by
this formalism to consist of molecules changing their elec-

tronic states while exchanging photons. Equation (3) sums
all the quantum amplitude results that involve the accessible
system intermediate states R, S, etc. A process consisting of
multiple interaction events may proceed with those events oc-
curring in any order, and each time-ordering involves the sys-
tem transitioning through a unique sequence of intermediate
states. Each such time-ordering may be illustrated by plotting
the positions of the molecules and photons in nonrelativistic
Feynman diagrams, where the vertical dimension proceeding
upward signifies time and the horizontal dimension represents
a spatial direction. Since each Feynman diagram illustrates
one time-ordering, N! such Feynman diagrams are required to
account for all N! permutations of the N interaction events.
Whereas the Feynman diagrams represent each fundamental
photon interaction as a vertex and states as line segments,
there is an alternative graphical form in which the states are
cast as vertices on a net in which the interactions form the
edges. Such state-sequence representations27 (equivalent to
Hasse diagrams28 with superior elements to the right) have
the advantage of accommodating the full information content
of all N! time-ordered graphs.

In the case of RET between a donor chromophore D and
counterpart acceptor A, the transfer of electronic excitation
via virtual photon may be illustrated with the two Feynman
diagrams shown in Fig. 2. The donor relaxes from an initial
excited state α to its ground state 0 in event (Y); the acceptor
is excited by an equal amount from its ground state to its state
β in event (Z). Figure 2 illustrates the two time-orderings,
and the corresponding state-sequence diagram accounting for
both.27

The exchange of an additional photon p with a passive
chromophore M is the lowest-order coupling process that el-
evates RET to third-body-modified RET. Figure 3 shows one
configuration, where it is chromophore D that interacts with
both photons, through which the three-chromophore system
may connect together. Later in the present analysis, the theory
will be extended and generalized to subsume this particular
case. The four distinct matter-radiation interaction events are
labeled (W), (X), (Y), and (Z). At each event, one molecule
undergoes a transition between states 0, α, r, β and one photon
is either created or annihilated.
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FIG. 3. One time-ordering for one coupling configuration for third-body-
modified RET. Event (W) is the static interaction of M, (X) is the interaction
of D with photon p, (Y) is the interaction of D with photon ϕ, and (Z) the
excitation of A. Reproduced by permission from D. L. Andrews and J. S.
Ford, Proc. SPIE 8459, 84590C (2012). Copyright 2012 SPIE.

The four events may occur in any time-ordering, such
that there are 4! = 24 permutations. Therefore, 23 other
Feynman diagrams may be constructed which equally de-
scribe the same overall process, which we shall refer to as
the MDA configuration – signifying by shorthand the photon
connectivity of the three components (not necessarily their ge-
ometric alignment). An initial treatment of this feature was
given in Ref. 29; the present system-based approach will af-
ford a more detailed investigation of the electrodynamic in-
volvement of the donor-acceptor pair with its material sur-
roundings.

The occurrence of four transition events punctuates five
stages of the system’s evolution, labeled I, R, S, T, F in
chronological order. In each stage, there are various possible
states that the overall system may occupy, depending on the
particular event-ordering – i.e., which of the 24 Feynman dia-
grams is being followed. This corresponds to the summations
over system states in Eq. (3). Figure 4 expresses the system’s
evolution through the five stages with one state-sequence
diagram that summarizes the impacts of the four events in
every time-order. Each of the 24 pathways through the state-
sequence network represents one event-ordering, formally a

mapping of one of the Feynman diagrams. For example,
Fig. 3, illustrating the process with (W)→(X)→(Y)→(Z) or-
dering, corresponds to the uppermost pathway in Fig. 4.

The state-sequence network has precisely the form of
a four-dimensional hypercube,27 with states as vertices and
events as cell edges. The combinatorial possibilities of four
transitions occurring in any order map to a representation
of a four-dimensional state space, through which the system
moves in unit vector leaps from I to the opposing vertex F of
this hypercube.

III. QUANTUM AMPLITUDES

A. Derivation for the MDA coupling configuration

Applying the electric dipole approximation, the inter-
action Hamiltonian operator for each event takes the form
(−ε−1

0 )μ · d⊥. From the standard mode expansion23 for the
electric displacement field operator d⊥, when applied to a ra-
diation mode of wavevector p, it emerges that an interaction
taking the molecule from state A to state B corresponds to the
following Dirac bracket:

〈B|Hint|A〉 = −iμBA
i

∑
p e(p)

(
�cp

2ε0V

)1/2

×(e(p)i exp(i p · r)〈radB |ap|radA〉

− ē(p)i exp(−i p · r)〈radB |a†
p|radA〉). (4)

The subscript i is a Cartesian index that relates the di-
rection of the molecule’s transition dipole moment vector to
that of the radiation mode’s polarization vectors e(p), using
the convention of implied summation over repeated tensor in-
dices: overbars denote complex conjugation. The vector r is
the molecular position, ap and a

†
p are, respectively, the photon

annihilation and creation operators for radiation mode p, and
V is the arbitrary volume of quantization.

For any particular time-ordering of the four interaction
events, the quantum amplitude of the MDA configuration
of third-body-modified RET is given by the fourth term of
Eq. (3). Hence, we obtain

MFI =
∑

R,S,T

〈F |Hint|T 〉〈T |Hint|S〉〈S|Hint|R〉〈R|Hint|I 〉[
ED

IT + EA
IT − Erad

T

][
ED

IS + EA
IS − Erad

S

][
ED

IR + EA
IR − Erad

R

]

=
(

�c

2ε0V

)2 ∑
p,e(p),φ,e(φ)

p φ ē(p)ae(p)bē(φ)ce(φ)d μ
MoMo

i μ
DoDr

j μ
DrDα

k μ
AβAo

l[
ED

αT + EA
0T − Erad

T

][
ED

αS + EA
0S − Erad

S

][
ED

αR + EA
0R − Erad

R

]
× exp(ip . (rpAnn. − rpCre.) + iϕ . (rφAnn. − rφCre.)), (5)

where EAB ≡ EA − EB. In each case, these variables are spec-
ified by the states explicitly labeled in the boxes of the state-
sequence diagram of Fig. 4, e.g., the ERad terms will deliver

0, �cp, �cφ, or �c(p + φ). The r vectors of Eq. (5) are the po-
sitions of the interaction events that create and annihilate the
photons p and φ. The variables p and φ are the magnitudes
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FIG. 4. State-sequence diagram for the MDA configuration of third-body-modified RET. Time progresses left to right, each of the 16 boxes representing one
of the possible overall states of the system in one of the five stages I, R, S, T, F. Each overall state comprises states for each changing sub-system – the radiation,
and chromophores D and A. In each system state, M remains in its ground state. Reproduced by permission from D. L. Andrews and J. S. Ford, Proc. SPIE
8459, 84590C (2012). Copyright 2012 SPIE.

of wavevectors p and φ. The new spatial indices a, b, c, d de-
scribe directional information for the radiation polarizations.
Each relates to the directionality of the transition dipole mo-
ment associated with the photon’s creation/annihilation, such
that a, b, c, d represent some permutation of i, j, k, l deter-
mined by which molecular transition creates or annihilates
each photon.

Equation (5) is the quantum amplitude for energy trans-
fer within a finite volume of quantization V, via a particular
event-order. The general result for energy transfer at the limit
of infinite V, with the time-ordering of events left unspecified,
is found by recasting the sum over modes p and φ as triple
integrations over p-space and over φ-space. The sum over all
24 event-orderings yields

MFI = (2π )−2(2ε0)−2μMoMo
a μ

Aβ Ao

d

∑
Dr

{
μ

DoDr

b μDr Dα
c

ED
αr

+ μDoDr
c μ

Dr Dα

b

ED
αr − �ck

}

× (∇2δab − ∇a∇b)R−1
MD(∇′2δcd − ∇′

c∇′
d )R−1

DA exp(ikRDA) (6)

∵ RAB ≡ rA − rB; ∇j ≡ ∂/∂RMD j ; ∇′
j ≡ ∂/∂RDA j .

Hereafter, k refers specifically to the wavenumber k

≡ ED
α0/�c = EA

β0/�c. All variables associated with p and φ

have been eliminated, as the photons are considered virtual
and all possible values of their wave-vectors are accommo-
dated. This is the result for the MDA configuration quantum
amplitude.

For a generic chromophore X, the specific form of
linear polarizability for the transition Xf ← X0 is given

by implementation of the standard result for a gen-
eralized and damped polarizability tensor, as given in
Eq. (7) below. This describes any process in which the
molecule X undergoes this state transition via unspec-
ified intermediate state r, entailing one photon absorp-
tion and one photon emission. The wavenumbers k and
k′ are those of the input and output photons, respec-
tively. The wavenumber γ X

r represents damping, incorporated
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FIG. 5. The five factors of MMDA, each corresponding to a coupling element illustrated by one part of Fig. 3. Reproduced by permission from D. L. Andrews
and J. S. Ford, Proc. SPIE 8459, 84590C (2012). Copyright 2012 SPIE.

phenomenologically

α
Xf X0

ij (−k′; k)

=−
∑
Xr

[
μ

Xf Xr

i μ
Xr X0
j

EX
r0 − �c k − i�c γ X

r

+ μ
Xf Xr

j μ
Xr X0
i

EX
r0 + �c k′ ± i�c γ X

r

]
.

(7)

A variety of physically distinct features and processes
contribute to spectral damping, including the finite lifetime
of electronic excited states, the manifold of vibrational states
typically associated with each of those states, and a finite ra-
diation linewidth. The inclusion of damping in polarizability
formulas is essentially pragmatic and phenomenological;30

it is impossible to reconcile any rigorous form with the de-
mands of time-reversal invariance, due to the non-Hermitian
nature of the Hamiltonian for an implicitly non-conservative
system. The sign of the damping correction on the dominant,
potentially resonant term in the polarizability (the first term in
Eq. (7)) proves uncontroversial, and leads to a Lorentzian
lineshape. Different arguments support varying conclusions
on the sign and magnitude of the damping in the anti-resonant
term,31–33 but the results cannot be experimentally differenti-
ated. Accordingly, the sign for the damping correction to the
anti-resonant term can be left unspecified, and has no bearing
on the following development: the correction to this term can
be effectively omitted.

The sum in Eq. (6) over all transitional states r of chro-
mophore D is now expressible as the relevant transition polar-
izability, α

D0Dα

bc (−k; 0). Also, the factors involving RMD and
RDA are expressible in terms of the rank-two electrodynamical
coupling tensor which is ubiquitous in two-body RET work.20

Using the notationR̂j ≡ Rj/R,

Vij (k; R) ≡ (4πε0)−1(∇2δij − ∇i∇j )R−1 exp(ikR)

= (4πε0)−1R−3 exp(ikR){(δij − 3R̂iR̂j )

−ikR(δij − 3R̂iR̂j ) − k2R2(δij − R̂iR̂j )}. (8)

Expressions (7) and (8) permit a concise and expedient
statement of the quantum amplitude for the MDA configura-
tion. Equation (6) is thus finally cast as

MMDA = μ
MoMo

i Vij (0; RMD) α
DoDα

jk (−k; 0)

×Vkl(k; RDA) μ
Aβ Ao

l . (9)

B. Other coupling configurations

Figure 5 shows that each of the five factors of Eq. (9) cor-
responds to one of the coupling phenomena which together
comprise the MDA energy transfer process as illustrated by
the Feynman diagram of Fig. 3. The spatial indices i, j, k, l
continue to correspond to the transition dipole moments of
the four transitions, the vertices of the Feynman diagram. The
arguments of the tensor Vkl indicate that it describes the trans-
fer of energy �ck over the distance RDA via the coupling in-
teraction. The tensor Vij connects the third body to the RET
system, but zero energy is exchanged between M and D.34

Building on Eq. (9), formulae for the other two three-
body configurations may be derived by substitution of vari-
ables. The quantum amplitudes for the DAM configuration
and for the DMA configuration thus evaluate as

MDAM = μ
DoDα

i Vij (k; RDA) α
Aβ Ao

jk (0; k)

×Vkl(0; RAM) μ
MoMo
l , (10)

MDMA = μ
DoDα

i Vij (k; RDM) α
MoMo
jk (−k; k)

×Vkl(k; RMA) μ
Aβ Ao

l . (11)

Equations (10) and (11) may be constructed from (9) by
comparing Fig. 6 with Fig. 3.

The latter of these, DMA, has been considered in recent
work by Salam;22 our work extends the analysis by addition-
ally including the influence of static dipole coupling with M –
that coupling being with the donor in the form of coupling
represented as MDA, and with the acceptor in the case of
DAM. In general, one should also account for the second-
order process of two-body RET, not involving any M. This
has quantum amplitude expressible in the same formalism as

MDA = μ
DoDα

i Vil(k; RDA) μ
Aβ Ao

l . (12)

C. Quantum interference

It is a central feature of the quantum electrodynamical
method utilized here that the analysis directly secures results
for physical measurables – here, the rate of excitation trans-
fer. The measurable rate of the transfer of excitation energy
between two chromophores D and A in the presence of a
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FIG. 6. Feynman diagrams for the other two three-body configurations: (a) DAM configuration; (b) DMA configuration. These have the same structure as
Fig. 3 but with different chromophores and state labels. Reproduced by permission from D. L. Andrews and J. S. Ford, Proc. SPIE 8459, 84590C (2012).
Copyright 2012 SPIE.

passive molecule M is predicted by the Fermi rule, Eq. (2), as
proportional to the square modulus of a quantum amplitude
for that process. The four quantum amplitude results derived
above all describe this same process via different intermediate
stages, so may be summed to deliver the general quantum am-
plitude. The square modulus of the sum over four amplitudes
results in ten complex product terms

�FI = 2π �
−1ρF |MDA + MMDA + MDAM + MDMA|2

= 2π �
−1ρF {|MDA|2

+ 2Re(M̄DAMDMA) + |MMDA|2

+ 2Re(M̄DAMDAM) + 2Re(M̄MDAMDAM) + |MDAM|2

+ 2Re(M̄DAMMDA) + 2Re(M̄MDAMDMA)

+ 2Re(M̄DAMMDMA) + |MDMA|2}. (13)

There is considerable complexity in each of the terms in
this expression, and in order to most readily elicit the associ-
ated physical significance it is both appropriate and expedient
to introduce some simplifying assumptions about the physi-
cal system. We therefore focus on the case where the transi-
tion dipole moments μDoDα and μAβ Ao are parallel, together
defining a direction that will be designated the z-axis, also as-
suming that the three molecules are separated by a distance
significantly less than k−1, though necessarily beyond signif-
icant wavefunction overlap. One immediate consequence is
that Eq. (8) reduces to

lim
kR→0

Vij (k; R) = (4πε0)−1R−3(δij − 3R̂iR̂j ) (14)

and each of the coupling tensors in Eqs. (9)–(12) now takes
this real form, independent of the wavenumber, with the ap-
propriate displacement argument. It can be anticipated that the
significance of molecules M displaced beyond this near-zone
region will be insignificant, in light of the monotonic decline
in the interaction strength with distance.

To proceed further, aiming to identify the dependence of
the energy transfer on the positional and electronic properties
of the component M – without the encumbrance of secondary
vector and tensor considerations – we now conduct an average
over all molecular orientations of M. In Fig. 7, the ten distinct
contributions to Eq. (13) are identified, along with the spe-
cific factors involving the orientation of M in each term; the
application of each relevant tensor average is denoted below
by chevron brackets. It then emerges that four of these terms
disappear because they involve an isotropic tensor average I(n)

of odd rank n.
Specifically, terms involving the fully index-

antisymmetric average I(3) are index-contracted with
physical tensor components with exchange symmetry in one
index pair; the other terms involve I(1) which is intrinsically
zero. Details are given in Ref. 35. As is apparent, the
non-vanishing terms fall into two groups of three; one group
involves M in the role of static dipole (the inner three in
Fig. 7), whereas M enters the other three terms only through
its scattering polarizability if at all. Physically, the signifi-
cance is that the former terms will be enhanced for molecules
M that are intrinsically highly polar, whereas the latter set
of terms are of greater importance in the case of highly
polarizable species. Furthermore, it is clear that the term
Re(M̄DA MDMA) signifies the leading correction to |MDA|2,
the most important contribution in which M plays a role, and
|MDMA|2 is one of four equally higher-order corrections. In
consequence, we can focus on Re(M̄DA MDMA), which entails
the real part of a product of four complex factors

Re(M̄DAMDMA) = μ
DoDα

i μDoDα

m μ
AβAo

l μ
AβAo

n

×Re[Vij (k; RDM ) Vkl(k; RMA)

×V̄mn(k; RDA) α
MoMo

jk (−k; k)]. (15)

Recognizing that indices i, l, m, and n are now limited
to z, and interpreting the results according to Eqs. (12)–(15)



014107-8 D. L. Andrews and J. S. Ford J. Chem. Phys. 139, 014107 (2013)

FIG. 7. Rotational average of M applied to the terms of Eq. (13). The six emphasized terms are non-vanishing.

finally gives

〈�FI 〉 = 2π ρF

�
[|MDA|2 + 2〈Re(M̄DA MDMA)〉 + · · ·]

= ρF

48 π2 � ε3
0

|μDoDα |2|μAβ Ao |2R−3
DA

(
1 − 3R̂2

DA z

)
× {

6πε0R
−3
DA

(
1 − 3R̂2

DA z

)
+R−3

DMR−3
MA

[
1 − 3R̂2

DM z − 3R̂2
MA z

+ 9R̂MA zR̂DM z(R̂MA · R̂DM )
]

Re(Tr αMoMo (−k; k))

+ · · · }, (16)

where all variables involving M are collected together in one
term. Clearly, the key factors are the position, orientation, and
the trace polarizability of the passive chromophore. The re-
sult, Eq. (16) can be interpreted as the rate for RET between
donor and acceptor, modified by the presence of the passively
interacting medium. In view of the sharp diminution of this in-
fluence with the displacement of M from D and A, the terms in
Eq. (16) that refer to M can be interpreted as applying specif-
ically to the M unit closest to the energy transfer pair. Indeed,
M need not be restricted to a location beyond the region oc-
cupied by the donor and acceptor – this model can account
for the influence of a non-participant molecule located within
that region, acting as an integral part of the energy transfer
system.

The complicated interplay of factors associated with the
relative positions and orientations of the three chromophores
makes it impossible to give a simple general prescription for
M producing amplification of the energy transfer rate. How-
ever, the analysis does provide clear rules that can be ap-
plied to any specific geometry. Take, for example, the case
(R̂MA · R̂DM ) = 0, satisfied when M is situated at any point
on the surface of a notional sphere, on which the positions of
the donor and acceptor represent opposite poles. It then fol-
lows from Eq. (16) that amplification will then occur provided

1 + 9R̂2
DA z

(
R̂2

DM z + R̂2
MA z

)
> 3

(
R̂2

DA z + R̂2
DM z + R̂2

MA z

)
.

(17)

This is based on the fact that the trace polarizability factor
Re(Tr αMoMo (−k; k)) in Eq. (16) must be positive, since our
mechanism specifically requires that the energy being trans-
ferred corresponds to an optical frequency that is redshifted
from the primary absorption band of the species M. The above
inequality evinces supplementary conditions for the case un-
der consideration: amplification of the transfer rate is assured
if the principal axis of D and A (the z-axis) is oriented orthog-
onal to the DMA plane.

IV. DISPERSION BEHAVIOR

We have identified that the role of non-polar chro-
mophores M in modifying resonance energy transfer hinges
on the polarizability tensor α

M0M0
ij (−k; k), which is the time-

symmetric inert scattering tensor of the molecule M, as de-
fined by Eq. (7). As we have seen, the inclusion of an imag-
inary damping correction in each energy denominator, ac-
counting for finite line shape, has the result that the tensor
is regarded as a complex quantity. The two-event process that
is mediated by M has three physical features which specify it
as a simple scattering: there are only two interaction events
within a system satisfying overall energy conservation with
the radiation field; the final state MF is identical to M0 such
that M undergoes no overall transition; the transition dipole
moments μ are entirely real (which is always possible, given
a suitable choice of basis). It follows from these points that
k = k′ and μ

M0Mr

i μ
Mr M0
j = μ

M0Mr

j μ
Mr M0
i . Also, the interme-

diate states r form a complete set of stationary states for the
molecule.

We now focus on the important possibility of a stationary
excited state of the species M being near to resonance with
the energy �ck; we designate this particular near-resonant in-
termediate state as ε. In implementing the sum over states in
the explicit formula (7), the chosen ε may be extracted from
the sum over r, with the substitution �ε ≡ Eε0/�c − k repre-
senting the energy separation from resonance: the exact res-
onance condition is �ε = 0. The damped result for molecule
M is then
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α
M0M0
ij (−k; k) = −1

�c

{
μ

M0Mε

i μ
MεM0
j

[
�ε + iγε

�2
ε + γ 2

ε

+ �ε + 2k ∓ iγε

(�ε + 2k)2 + γ 2
ε

]

+
∑
r �=ε

μ
M0Mr

i μ
MrM0
j

[
kr0 − k + iγr

(EM
r0 / �c − k)2 + γ 2

r

+ kr0 + k ∓ iγr

(EM
r0 / �c + k)2 + γ 2

r

]}
. (18)

In this form, it is trivial to separate the real and imaginary
parts. The near-resonance case of Eq. (18) is found by neglect-
ing all r �= ε terms and also the anti-resonant ε term, as they
become negligible in comparison to the relevant resonance
term. In this case, the real trace polarizability that features in
Eq. (16) is therefore given by

Re
(
Tr α

M0M0
ij (−k; k)

) = −(�c)−1μM0MεμMεM0
�ε

�2
ε + γ 2

ε

.

(19)

From this point, we can identify special types of behavior
that will arise under particular conditions, determined by the
interplay of factors associated with the electronic properties
intrinsic to M, and the amount of energy being transferred be-
tween D and A. Simplifications, based on a truncated Taylor
series expansion, arise under two cases of particular physical
interest

Re
(
Tr α

M0M0
ij (−k; k)

)
∼=

⎧⎨
⎩
− (�c)−1 μM0MεμMεM0

[
�−1

ε −γ 2
ε �−3

ε

]
, (γε  |�ε|)

−(�c)−1μM0MεμMεM0
[
�εγ

−2
ε −�3

εγ
−4
ε

]
, (γε � |�ε|)

.

(20)

These functions of k describe the wavelength-
dependence of the passive molecule Ms influence on
RET, through Eq. (16). Since, in that equation, it is only
the polarizability that varies with k, the Clausius-Mossotti
relation may be used to express this dependence as an optical
dispersion behavior. Specifically, a relationship can be estab-
lished with the variation in wavelength of the refractive index
n of a medium comprised entirely of species M. The general
Clausius-Mossotti relation delivers the linear polarizability
of species M present in number density N, as a function of
the refractive index n of pure M

α = 3N−1 n2 − 1

n2 + 2
. (21)

The prior assumption that there is an isotropic distri-
bution of orientations for molecule M is consistent with the
physically reasonable case for the associated polarizability
itself to exhibit an isotropic form, with each diagonal ele-
ment expressible as the scalar given by Eq. (21). While such
isotropy holds, the real trace tensor that features in Eq. (16)
is expressible as triple the Clausius-Mossotti result. Treating

the variable n2 as complex

Re
(
Tr α

M0M0
ij (−k; k)

)
= 3Reα = 9N−1 Re(n2)2 + Re(n2) + Im(n2)2 − 2

[Re(n2) + 2]2 + Im(n2)2
, (22)

n is now interpreted as the refractive index of a medium con-
sisting of M, within which RET between isolated molecules
D and A occurs – assuming the latter species is present in low
concentration. We thus use the dispersion relationship to link
the bulk refractive index of a material M to the effect that the
presence of its molecules have upon RET.

Cast in this form, the result has a greater capacity for in-
terpretation than the conventional method, in which the cou-
pling tensor Vij, in a medium-modified quantum amplitude
from Eq. (12), is redefined to involve the medium’s refrac-
tive index.36 This has been the basis for work analyzing the
protein scaffolding of photosynthetic systems as a polarizable
environment.37, 38 The two approaches are far from equivalent
– interpreting α

MoMo

jk (−k; k) in Eq. (15) to be independent of
n and giving the V tensors the prefactor (n2 + 2)2/9n2 results
in a rate dependence on n that does not replicate Eq. (22). Our
analysis has addressed a physically different scenario, iden-
tifying effects associated with a specific local chromophore.
Since M is identified as the closest medium molecule, it is
clearly inconsistent to model the space between the RET pair
and M as being filled with matter that modifies coupling via
its non-unity refractive index.

V. DISCUSSION

This research opens up substantial opportunities to
reevaluate the standard physical interpretations of known
RET mechanisms, and to refocus the direction of ongoing
mathematical exploration of the theory. In particular, Eq. (16)
is representative of results arising from quantum interfer-
ence between amplitudes for different energy transfer mecha-
nisms. When RET systems are of sufficiently high symmetry,
it is possible to discern which contributions are relevant for
consideration in specific materials because the various inter-
ference terms are subject to different combinations of spectro-
scopic selection rule; but with low-symmetry systems, all pos-
sible quantum interferences may participate in the observed
form of energy transfer. Our aim here has been to develop
the physical principles based on a chosen exemplar, extend-
ing previous, less detailed accounts of similar form that fo-
cused on the short-range influence of a non-polar third body
on energy transfer efficiency.22, 29
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At the molecular level, the effects of a surrounding
medium on RET has been pursued in terms of dispersion in
the scattering polarizability of neighboring molecules, related
to the surroundings’ refractive index through the Clausius-
Mossotti equation. The notions of compositional fraction and
refractive index are bulk concepts, so it must be cautioned
that any analysis which models the surrounding medium as
a featureless homogenous matrix will fail to register the de-
tailed electronic effects of ancillary non-spherical molecules
in close vicinity to the RET chromophores. Our analysis
bridges the gap between three photon-exchanging molecules
and a refractive bulk material by assuming that the RET
chromophores are present in low concentration and taking
the medium to be isotropic in the sense that the orientations
of its molecules are averaged. The DMA configuration has
functional similarities to a DA energy transfer that is mod-
ified by the “screening” influence of a polarizable solvent,
as has been identified in other work treating the medium
molecules collectively as a surrounding fluid.39, 40 Nonethe-
less, the medium is here considered as comprising discrete
molecules with characteristic electronic properties. The case
where M contributes as a polar species, through its static elec-
tric dipole moment μ00, can be interpreted physically as sig-
nifying an influence on the electromagnetic coupling between
the donor and the acceptor, through the static electric field
which the dipole produces. Conversely, for systems in which
M primarily interacts as a polarizable chromophore via its dy-
namic molecular polarizability, the mechanism for modify-
ing the form of energy transfer is one in which M intervenes
through its acquiring an induced electric dipole. Clearly, the
degree of ionic and covalent character in the molecular consti-
tution of the passive chromophore will help determine which
properties are most relevant.

Measurements of RET usually focus on rates, and typ-
ically the efficiency of RET can be gauged by one of two
means: either by detection of fluorescence from the accep-
tor, or by monitoring a reduction in spontaneous fluorescence
from the donor.41 To observe the effect of a third party, as in
the theory we have presented, suggests the need to compare
such results in systems that accommodate, or fail to accom-
modate, such other chromophores in the immediate vicinity.
At this stage, it becomes a matter of experimental strategy,
and the results for a particular set of materials will inform on
the role and significance of the species acting in the role of
chromophore M.

To conclude, we note that there are numerous physical
systems in which the operation of resonance energy trans-
fer mechanisms may be approximately described as involving
three close chromophores, two of which exchange a quan-
tum of excitation while the third influences the rate without
changing its energy state; copious examples can be found in
the operation of natural photosynthetic systems, as well as
in biomimetic multi-chromophore dendrimers used for artifi-
cial light harvesting.8, 42 In terms of synthetic materials, fur-
ther examples arise in connection with the strategic placement
of off-resonant chromophores in quantum dot assemblies.43

These can all provide for the active modification and all-
optical control of key optical effects, not limited to RET. The
results we have secured should support applications in light

harvesting energy materials, optical switching, data process-
ing, communication, and computation, through the achieve-
ment of new methods for optically controlled transmission.
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