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a b s t r a c t

The infiltration of liquid into a gas saturated porous network is investigated. Particular attention is paid
to the situation in which a pressure gradient in the porous medium drives a gas flow upwards, while
a more dense liquid infiltrates down into the reservoir due to gravity. There are two flows in opposite
directions. Amodel is proposed, based upon a compressible gas phase and an incompressible liquid phase.
The volume fluxes in each phase are assumed to be governed by Darcy type flow laws, modified to include
the permeability caused by both the solid matrix and the impeding of the gas flow by the liquid phase.
Isothermal flows are examined in the absence of phase changes. The proposed model is an extension
of the traditional Buckley–Leverett model and is used to consider a variety of flows, including carbon
sequestration in a porous medium below the seabed and rainfall infiltration into a lava dome.

© 2013 Elsevier Masson SAS. All rights reserved.
1. Introduction

Liquid infiltration into a gas filled porous medium will be
investigated. A background pressure gradient will be applied
across the porous medium, which drives the gas upwards. The
imposed pressure gradient will be insufficient to overcome the
effect of gravity on the heavier liquid, setting up counter-current
fluid flows as the liquid descends and the gas rises. The effect of
the pressure gradient on the gas will be investigated (see Fig. 1).

The infiltration of a fluid into a porous medium is an impor-
tant process which occurs in many geophysical and industrial
situations, including liquid infiltration into soils [1,2], heat ex-
changers [3,4] and filtration processes [5] as well as biological pro-
cesses such as fluid flow in the lungs [6,7]. Generally, when such
a fluid infiltrates the porous media, it displaces a second fluid
that was occupying the void spaces. This displacement can take
place by one of two distinct mechanisms. One mechanism is when
both fluids completely saturate distinct adjacent regions (on the
macroscale) with a mobile interface between the two regions. The
second mechanism is that one fluid can displace only a propor-
tion of the second fluid at the macroscale. In this case the fluids
co-exist in a state of partial saturation. Of the latter type, Buckley
and Leverett [8] began the study of partial saturation of a porous
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medium and employed the additional assumptions that the pro-
cess is isothermal and that both fluids are incompressible. The as-
sumption of incompressible fluids is best suited to the case where
one liquid is infiltrating a reservoir initially saturated with a sec-
ond liquid. An example of this process is sea water seeping into
an oil reservoir. With these assumptions a single partial differen-
tial equation, now called the Buckley–Leverett equation, governs the
flow of both fluids. This is a hyperbolic partial differential equation
for the saturation of the void-spaces by one of the fluids. Under
these theoretical simplifications this equation possesses solutions
corresponding to a sharp saturation front which propagates into
the porousmedium. This analysis has been subsequently reviewed
bymany authors including Bear and Bachmat [9] and Kaviany [10].

In addition to gravity, capillary suction can have a significant
affect on liquid infiltration. Richards [11] investigated the influence
capillarity has on liquid infiltration in soils, and the equation
derived is now known as Richards’ equation. In the derivation
of Richards’ equation it is assumed that the liquid infiltration is
driven by capillarity and gravity, while the second fluid phase
occupying the unsaturated void-spaces is largely inert and does not
affect the evolution. Richards’ equation has been widely studied
for its practical applications and also as an example of degenerate
parabolic partial differential equations [12,13].

If the problem of liquid infiltrating a pressurized gas-saturated
porous medium is investigated, then the assumption of incom-
pressibility may be justified in the liquid. However, due to the
pressurization of the reservoir, the gas should be modelled as
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Fig. 1. A schematic diagram of the problem of interest showing liquid infiltrating
into a gas filled porous medium. A counter-current flow is established due to phase
density differences, gravity and an existing background pressure gradient.

compressible. Therefore generalizations of the models of Buckley
and Leverett [8] and Richards [11] are sought, in which one of the
fluids present is compressible. Interactions between the different
fluid phases occur due to the pressure gradients presented. Our
work is motivated by situations in which a liquid is infiltrating
a gas-filled porous medium. This situation could arise as the re-
sult of carbon sequestration (as part of carbon capture and stor-
age schemes), where pressurized carbon dioxide is stored in an
exhausted natural gas field [14,15]. Several exhausted gas fields
are found under bodies of water (such as the North Sea); it is pos-
sible that if the integrity of the reservoir becomes compromised,
then seawater may infiltrate the reservoir, releasing carbon diox-
ide [16,17]. Models of liquid infiltration into porous media are also
of relevance to understanding the processes associated with hy-
draulic fracturing, which attempts to release hydro-carbon based
gases trapped within a porous medium by creating new pathways
through which the gas can escape by forcing a liquid into the ex-
isting pore spaces at very high pressures [18,19].

There has also been recent interest in the interactions of rainfall
and volcanic lava domes as the result of a series of dome collapses
after periods of intense rainfall at the Soufrière Hills Volcano,
Montserrat [20–22]. A high pressure build-up below the surface
of the dome, caused by rainwater infiltrating the void spaces
of the dome and interacting with the escaping magmatic gases,
may contribute to dome collapse [23,24]. In the case of liquid
infiltration into both a pressurized porous medium sequestered
with carbon dioxide and a lava dome, the pressure gradient across
the saturation interface, gravity and the difference in densities
between liquid and gas phases may induce counter-current flows,
in which liquid falls predominantly due to its weight, whereas the
gas is driven upwards by the dominant influence of the pressure
gradient. Across many areas of the surface of a lava dome the
measured temperatures are high enough to rapidly boil rainwater
landing upon it [25]. This continues until sufficient energy has been
expended in boiling water to quench the surface temperature to
below boiling point [26,23]. For temperatures below the boiling
point of water there will be a descending saturation front at which
the temperature equals the boiling point, and above which the
temperature is less than or equal to the boiling point. In this
situation boiling will reduce the volume of liquid in the porous
medium, slowing the front advancement.

Thermal effects are also prevalent in carbon sequestration,
where the Joule–Thomson effect acts to cool the gas as it is
forced through a porous medium [27,28]. In this case the carbon
dioxide may be cooled to the extent that the liquid freezes, which
would significantly alter the progress of the front. Carbon dioxide
dissolution will occur through interactions between liquid water
and gaseous carbon dioxide. The resulting aqueous carbon dioxide
solution will increase the liquid acidity and (depending on the
rock type) produce porosity and permeability reducing mineral
precipitates [29,30]. Additionally, depending on the carbon dioxide
concentration and the ambient conditions, the viscosity of an
aqueous carbon dioxide solution can differ from that of pure water
by up to 38% [31]. As a preliminary investigation into counter-
current flows driven by a combination of phase density differences,
gravity and a background pressure gradient, an idealized problem
is considered in a uniformly porous and permeable material, in
which all the processes are isothermal and there are no phase
changes. However, once our initial model of counter-current flows
has been developed, then it can be extended to include these
additional effects and be specifically tailored to model either
carbon sequestration or rainwater infiltration.

To further simplify the problem, fluid flows will be considered
only in one spatial dimension, which will be aligned parallel
to gravity. A schematic diagram of the situation of interest is
shown in Fig. 1. However, if additional spatial dimensions aligned
parallel to the infiltration front are considered, then flows of this
type commonly exhibit viscous fingering as an initially planar
infiltration front descends and becomes unstable. In the context
of rainwater infiltration into a lava dome, the front is unlikely to
propagate too far below the surface. Here a one dimensionalmodel
is likely to be appropriate as the initially planar front has not had
sufficient opportunity to become unstable. In the context of the
Buckley–Leverett problem the stability of a planar saturation front
has previously been studied by many authors including Tan and
Homsy [32], Chikhliwala et al. [33] and Riaz and Tchelepi [34].
However, the stability analysis of the current situation remains an
open problem and is worthy of further study.

In Section 2, a system of equations governing the conservation
of mass and momentum of a liquid and gas in a partially saturated
region is described. Boundary conditions are considered, which
naturally give rise to a pressurized upwards gas flow and a
counter-current liquid flow. Steady-state solutions and the initial
configuration for the gas profile are considered in Section 3, before
the resulting system is investigated with andwithout capillarity in
Sections 4 and 5, respectively. Changes to the degree of saturation
at the surface and the underlying gas pressure gradient are
considered. In the absence of capillarity the regime of small gas
pressure gradient is investigated in Section 4.2, and the behaviour
simplifies to that which has been previously reported. Finally,
Section 6 contains conclusions and analysis resulting from the
modelling.

2. Model development

We consider liquid infiltration and descent into the void spaces
of an initially completely unsaturated gas-filled porous medium.
Across the porous medium there is a vertical pressure gradient,
which drives an upward gas flow. A system of coordinate axes
is chosen, in which the z-axis is parallel to the pressure gradient
and positive in the upwards direction. The porous medium lies
between surfaces at z = 0 and z = −H . Between z = 0 and z =

−L a pressure difference exists and in an initial dry configuration
this is denoted by


Pg


, with a constant pressure Pg,0 at z = 0 and

L < H . Attention is restricted to the case in which the two fluid
phases are immiscible and phase change between the fluids does
not occur.

2.1. Field equations

The mass flux of gas per unit cross sectional area of the porous
medium m̃g is then related to the gas volume flux per cross
sectional area of void-space ṽg , through the relationship

m̃g = φρ̃g (1 − s) ṽg , (1)
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where the gas density is denoted by ρ̃g , the porosity φ, and the
degree of saturation by the liquid s. The saturation is defined to
be the proportion of the volume of void-space occupied by the
liquid phase. If the gas mass flux into and out of some arbitrary
control volume is considered, then an equation governing gasmass
conservation can be derived with the form

∂

∂ t̃


φρ̃g (1 − s)


+ ∇̃ ·


φρ̃g (1 − s) ṽg


= 0. (2)

If the liquid volume flux per unit cross section area of void-space
is denoted by vl, then a similar argument leads to an equation for
the liquid mass conservation of the form

∂

∂ t̃
[φρls] + ∇̃ ·


φρlsṽl


= 0. (3)

For simplicity, it is assumed that the porosity distribution is
homogeneous and liquid is incompressible, making φ and the
liquid density ρl constant.

We assume that momentum conservation in both the gas and
the liquid are adequately described by a modified version of
Darcy’s law in which a constant, uniform intrinsic permeability K ,
is modified by a relative permeability K r

g for the gas phase and
K r
l for the liquid. The relative permeabilities are assumed to be

functions of just the saturation. If k̂ is a unit vector in the positive
z direction, then the momentum conservations in the gas and the
liquid are governed by

φ (1 − s) ṽg = −
KK r

g (s)

µg


∇̃p̃g + ρ̃gg k̂


, (4a)

φsṽl = −
KK r

l (s)
µl


∇̃p̃l + ρlg k̂


, (4b)

respectively. In these equations µg and µl are the dynamic
viscosity of the gas and liquid phases, respectively, which are
assumed constant in each phase. The gas pressure, p̃g , is related to
the liquid pressure, p̃l, through the capillary pressure, p̃c = p̃g − p̃l.
Therefore the liquid pressure can be eliminated from the liquid
momentum conservation equation to leave

φsṽl = −
KK r

l (s)
µl


∇̃p̃g − ∇̃p̃c + ρlg k̂


. (5)

The capillary effects contribute to the motion through the term
∇̃p̃c , in the liquid momentum conservation equation (5). The
capillary pressure is assumed to be a function purely of the
saturation and (based on themodels of van Genuchten [2]) is taken
to be

p̃c (s) = σ


φ

K
J (s) , (6)

where σ is the surface tension coefficient of the liquid–gas
interface, and the non-dimensional van Genuchten [2] J-function
has the form

J (s) =

s−1/m

− 1
1/n

(7)

wherem = 1 − 1/n and n > 1 is a fitting parameter, the choice of
which depends upon the structure of the porous medium.

In this simplified model there is no momentum transfer
between the two fluid phases, owing to the relative movement.
In physical problems, the relative permeabilities present in these
equations have complicated dependences on many variables,
including the degree of saturation, the nature of the rigid matrix,
the temperature, and the fluids in question. However, our attention
shall be restricted to the simple case in which the relative
permeabilities depend solely on the saturation, s. Kaviany [10]
provides a number of empirical relationships appropriate for
different types of porous matrix and fluids, in particular we use

K r
g (s) =


1 − s2


(1 − s)2 , (8a)

K r
l (s) = s4, (8b)

which are originally due to Corey [35] and have been used tomodel
permeability in geological formations.

The model is completed by an equation of state for the gas and
we take

p̃g
Pg,0

=


ρ̃g

ρg,0

γ

, (9)

for a reference pressure and density Pg,0 and ρg,0 respectively.
Appropriate choices for the constant γ are 1 for isothermal gas
and 1.4 for adiabatic dry air at 20 °C. For carbon dioxide at 10 °C
involved in carbon sequestration, γ = 1.300 [36] and for the
porous lava dome example adiabatic flowofwater vapour at 100 °C
corresponds to γ = 1.324. For gases escaping through vents
around the lava dome at the Soufrière Hills Volcano, Montserrat
the appropriate values are those corresponding to water vapour,
as samples taken by [37] were found to be in excess of 90% water
by volume. Other equations of state can readily be considered
extending the basicmodel, while themore complicated extensions
to non-isothermal interactions will form the basis of a subsequent
paper. If non-isothermal effects were included then it would be
necessary to also model evaporation and condensation, between
the liquid water and the water vapour phases.

2.2. Boundary conditions

The evolution of the pressures and the saturation are investi-
gated, starting from an initially completely dry porous network
through which a steady, uniform gas mass flux is driven upwards
by the pressure gradient. At the top of a carbon sequestration reser-
voir, the pressure is assumed to be a constant, Pg,0, so the boundary
condition is

p̃g (z = 0, t) = Pg,0. (10a)

The surface of a lava dome is at ground level, where the gas
pressure can be fixed at constant atmospheric pressure (although
without loss of generality a constant can be added to all the
pressures within the model). An idealized liquid inflow condition
is envisaged in which the saturation, s, jumps from zero at t = 0 to
some positive fixed constant in the range [0, 1) for positive time,
to allow gas to escape through the surface:

s (z = 0, t) = s0χ (t) , (10b)

where χ (t) is the Heaviside function

χ (t) =


1, for t > 0,
0, otherwise,

and the constant s0 ∈ [0, 1) determines the value of the
saturation at the surface. This boundary condition is an idealized
representation of the sudden presence of liquid at the top of the
porous media, caused perhaps by the presence of rainfall upon the
surface, or the opening of a liquid leak from the rock above the
porous media.

The length scale for liquid infiltration associated with the
phenomena of interest is denoted by L, which is much less than
the thickness of the porous layer, H . Far below the region in which
there is a perturbation caused by the liquid infiltration, the gas
pressure is assumed to be constant and unaffected by the changes
occurring close to the upper surface. The depth of the porous
matrix is chosen to be large enough that the solutions are not
sensitive to its exact value. In the following examples a choice for
the infiltration depth of interest of L = 20 m has been made.
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2.3. Non-dimensionalization

We shall now restrict our analysis to one spatial dimension.
In order to investigate counter-current flows we shall assume the
pressure gradient and gravity are directed parallel to the z-axis. If
the pressure gradient and gravity are not parallel, then the cosine
of the angle between the two must be sufficiently close to unity to
allow the liquidweight term to dominate the gas pressure gradient
in the liquid momentum flux. The non-dimensional gas and liquid
volume fluxes are denoted by vg and vl, respectively and the non-
dimensional gas mass flux mg . In this one spatial dimension, the
variables in our model are related to non-dimensional equivalents
through

ρ̃g = ρg,0 +

ρg


ρg , (11a)

p̃g = Pg,0 +

Pg


pg , (11b)

p̃c = [Pc ] pc, (11c)

ṽg = Vgvg , (11d)

ṽl = Vlvl, (11e)

z̃ = Lz, (11f)

t̃ = Tt. (11g)

Here ρg , pg , pc, vg and vl are dimensionless functions of position z
and time t . The saturation s, which is the proportion of the void-
space occupied by the liquid phase, is already non-dimensional.
The gas pressure difference


Pg


is prescribed, which defines

the gas density difference

ρg


, over a region of interest, of

height L metres. The top surface is at constant pressure, which
is atmospheric pressure if there is no overlying material. The

capillary pressure scale [Pc ] = σ


φ

K , so that pc (s) = J (s). A time
scale T = L/Vl is chosen, based on the liquid flux.

Substituting into the equation of state (9), we find

1 + Π−1pg =

1 + δ−1ρg

γ
, (12)

where the ratio of the pressure reference state to the pressure
difference across the porous medium is

Π =
Pg,0
Pg

 , (13a)

and the corresponding density ratio is defined by

δ =
ρg,0
ρg

 . (13b)

In a rigid porous matrix and in the absence of phase changes,
non-dimensional forms of the gas and liquid mass conservation
equations (2) and (3) are given by

∂

∂t


(1 − s)


δ + ρg


+ β

∂

∂z


(1 − s)


δ + ρg


vg


= 0, (14a)

∂s
∂t

+
∂

∂z
(svl) = 0, (14b)

where the ratio of gas to liquid volume fluxes is denoted by β =

Vg/Vl. The aim is to investigate counter-current flows in which
the gas is forced upwards by the pressure gradient (overcoming
the effect of gravity on the gas), while the pressure gradient is
insufficient to overcome the effect of gravity on drawing down the
liquid. These opposing velocities are sustained by the disparity in
the fluid densities. Balancing the gas flux with the gas pressure
gradient implies Vg = K


Pg


/φµgL, and a balance between the

liquid flux and gravity implies Vl = Kρlg/φµl. This means

β = µl

Pg


/µgρlgL, (15)
and that the non-dimensional forms of the gas and liquid momen-
tum conservation equations (4a) and (5) are given by

(1 − s) vg = −K r
g (s)


∂pg
∂z

+ Ag

δ + ρg


, (16a)

svl = −K r
l (s)


A−1
l

∂pg
∂z

− A−1
l C

∂ J
∂z

+ 1


, (16b)

where the dimensionless measures of the influence of gravity on
the gas and liquid flows are denoted by

Ag =


ρg


gL

Pg
 , (17a)

Al =
ρlgL
Pg

 , (17b)

respectively. For counter-current flow a regime inwhich 0 < Ag <
1 < Al is anticipated. In the typical parameter regime of interest
(see Section 2.4), Ag is small and the role gravity plays on the flow
of gas is negligible. Consequently, the terms multiplied by Ag are
subsequently neglected. The capillary number

C =
σ
Pg


φ

K
, (18)

measures the influence of capillarity on the flow, and the capillary
pressure is given by (7). In the following examples the J-function
fitting parameter is taken to be n = 2, as a representative value for
a geophysical porous medium and to illustrate an example of the
possible behaviour.

In this spatial direction, the gas mass flux Eq. (1) gives

mg =

δ + ρg


vg , (19)

where the non-dimensional mass flux mg is related to the compo-
nent of the dimensional mass flux m̃g in the direction of interest,
through

mg =
m̃gµgL

ρg

K


Pg

 . (20)

Subsequently, the pressure and density scales (constants

Pg


and

ρg

, respectively) across the porous medium of length L are cho-

sen so thatmg = 1.
If the volume fluxes are eliminated from the mass conservation

equations using the momentum conservation equations, then a
system of advection–diffusion equations is formed, which is given
by

∂

∂t


(1 − s)


δ + ρg


=

µlg

Al

∂

∂z


δ + ρg


K r
g (s)

∂pg
∂z


, (21a)

∂s
∂t

=
∂K r

l

∂z
(s) +

1
Al

∂

∂z


K r
l (s)


∂pg
∂z

− C
∂ J
∂z


. (21b)

In the gas conservation equations (21a), we havemade use of (17b)
in order to express β = µlg/Al, where µlg = µl/µg .

The gas pressure can be eliminated using the equation of state
(12). Initially capillarity shall be neglected by taking C = 0, and
for simplicity the examples illustrated focus on the isothermal
γ = 1 case. The dimensional scales for the pressure and density
are chosen so that pg(z = −1, t) = ρg(z = −1, t) = 1, and
therefore Π = δ, in this case. With these assumptions, the system
of Eqs. (21) becomes

∂

∂t


(1 − s)


Π + pg


=

µlg

Al

∂

∂z


Π + pg


K r
g (s)

∂pg
∂z


, (22a)

∂s
∂t

=
∂K r

l

∂z
(s) +

1
Al

∂

∂z


K r
l (s)

∂pg
∂z


. (22b)
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Eqs. (22a) and (22b) form a coupled system of non-linear
advection–diffusion equations for the saturation s, and the non-
dimensional gas pressure pg , which can be used to model
the behaviour of liquid infiltration into a gas filled porous
reservoir. Steady-state solutions are also possible and these will be
investigated in the next section.

2.4. Parameter estimation

The gas is driven upwards through a porous medium by a pres-
sure difference. Across the top L = 20 m of porous medium, the
pressure difference is denoted as


Pg


. The reference gas pressure

Pg,0 = 105 Pa and gas density ρg,0 = 1 kg m−3 are measured
at the top of the porous medium. We fix the reference pressure
and density as well as the pressure difference across the porous
medium, so that (9) determines the difference in gas density across
the porous medium. With γ = 1, if we take


Pg


= 5 × 104 Pa,

then

ρg


= 0.5 kg m−3 and Π = δ = 2. The length over which

this pressure difference occurs is L = 20 m, so that the values of
the parameters governing the influence of gravity on the gas are
Ag = 1.96×10−3, and for the liquid Al = 3.92. The surface tension
coefficient is taken to be σ = 0.072 Nm−1, and therefore, the cap-
illary number is C = 0.17, respectively. The description and values
of the key non-dimensional numbers are summarized in Table 1.

For the interactions between water and air, µlg = 48.7 and
therefore it is expected that the term β = µlg/Al in the gas conser-
vation equation to beO (1) and should be retained in the analysis. If
terms of size O


A−1
l


are neglected, then, for fixed surface satura-

tion, the well known Buckley–Leverett piecewise constant liquid
infiltration profiles are recovered [9]. Therefore in order to study
the interactions between the gas and the liquid, terms which are
O


A−1
l


are retained.

2.5. Numerical solution technique

The system of Eqs. (21) or (22) is dominated by the gravity-
driven saturation advection term, particularly in the absence of
capillarity. Special caremust be paid to this term to enable accurate
and efficient solution. The numerical solution of (21) or (22) is
accomplished through operator splitting to separate advection and
diffusion terms in equations.

The advective step evolution is calculated by means of an
explicit flux limiter centred scheme using the MinBee limiter.
This is second-order accurate (limiting numerical diffusion) except
in a region close to the saturation front where a first-order
method is employed (to eliminate spurious oscillations in a fully
second-order method). The non-linear diffusive step evolution
is solved using a second-order Crank–Nicolson scheme coupled
to a predictor–corrector iterative scheme to deal with the non-
linearities present in this equation. The resulting scheme has been
tested with a variety of grid and time steps and the results are
independent of both.

3. Steady-state profiles

Our aim is to investigate liquid infiltration into an initially dry
porous medium, by perturbing about an initially dry steady-state
configuration. Before investigating liquid infiltration, we need to
know the initial steady-state flow of the gas, when there is no
liquid.

3.1. Steady-state gas profiles in an unsaturated porous medium

In an unsaturated configuration, (22b) simplifies dramatically
to give s = 0, for which the effective permeabilities K r

g (0) = 1
and K r

l (0) = 0. Having neglected the effect of gravity on the gas
flow, (22a) reduces to

∂pg
∂t

=
∂

∂z


Π + pg

 ∂pg
∂z


. (23)

In steady-state the non-dimensional gas flux through the porous
medium must be constant and therefore, due to the choice of the
gas flux scale,wehave


δ + ρg


vg =


Π + pg


vg = 1. Thismeans

that the steady-state version of (23) contains ∂pg/∂t = 0 and the
integral with respect to z implies
Π + pg

 dpg
dz

= −1, (24)

where pg now depends only on z, not t . At the surface, this first-
order ordinary differential equation must satisfy the condition
pg (0) = 0. Therefore, the steady-state gas pressure profile only
depends on the non-dimensional pressure driving parameter Π ,
as

pg (z) =


Π2 − 2z − Π . (25)

Fig. 2(a) shows gas pressure profiles for Π = 0.2, 0.5, 1.0, 2.0 and
5.0. With γ = 1, the gas pressure is proportional to the gas den-
sity and these profiles show that gas is driven upwards through
the porous mediumwith its density (see Eq. (12)) falling as it goes.
The non-dimensional pressure driving parameter Π as defined by
(13a) measures the ratio of the reference pressure relative to the
pressure difference across the porous medium. Therefore smaller
values of Π correspond to a greater pressure (and density) differ-
ence across the porous medium. This results in a larger pressure
gradient and therefore a larger mass flux is driven up through the
porous medium.

Alternatively, if the effect of gravity on the gas is included, then
starting from the non-dimensional version of Darcy’s law for a sin-
gle gas phase, Eq. (12) with γ = 1 can be used to eliminate pres-
sure, and gas mass conservation to eliminate the gas volume flux,
leaving

1
Π + pg

= −
dρg

dz
− Ag


Π + pg


. (26)

Again this first order ordinary differential equation must be solved
subject to pg (0) = 0 at the surface, giving pressure profiles of the
form

pg (z) =


Ag


1 + AgΠ

2

exp


−2Agz


− 1


Ag

− Π, (27)

in which z ≤ 0. In the limit Ag → 0, (26) reduces to (24).
Fig. 2(b) shows gas pressure profiles for Π = 0.2 and 5.0, and
for the non-dimensional gravity parameter Ag = 0.0, 0.005 and
0.01. This plot shows that the influence of gravity is very small. For
Ag = 1.96 × 10−3 and Π = 5 (as in Section 2.4) there is less than
1% difference between the pressure profiles with and without the
influence of gravity at z = −2. Therefore, we shall subsequently
neglect terms of O


Ag


.

3.2. Steady-state gas profiles in a porous medium with uniform
saturation

In addition to the steady-state pressure profile in an unsat-
urated porous medium, it is expedient to calculate steady-state
pressure profiles with a constant, uniform saturation throughout
the porous medium. In particular, we shall investigate how a fixed
gas mass flux per unit area is forced through a porous matrix as
the degree of liquid saturation takes different constant values. In
subsequent time-dependent calculations (subject to special condi-
tions), the saturation profiles are piecewise constant. It is useful
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Table 1
Summary and description of the key non-dimensional parameters in the problem, for a case in which Pg,0 = 1 × 105 Pa, ρg,0 = 1 kg m−3,


Pg


= 5 × 104 Pa, γ = 1 and

L = 20 m.

Parameter Defined by Description Value

Ag (17a) Ratio of driving pressure to hydrostatic gas pressure 1.96 × 10−3

Al (17b) Ratio of driving pressure to hydrostatic liquid pressure 3.92
β (15) Ratio of gas to liquid volume fluxes 12.4
Π (13a) Ratio of upper surface pressure to pressure increase across the porous medium 2
δ (13b) Ratio of upper surface density to density increase across the porous medium 2
C (18) Capillary number 0.17
a b

Fig. 2. Steady-state isothermal pressure profiles for compressible gas flow through a rigid porous medium, showing (a) profiles in the absence of gravity Ag = 0 and for
Π = 0.2, 0.5, 1.0, 2.0 and 5.0, and (b) the difference between profiles with and without gravity for Ag = 0.0, 0.005 and 0.01.
to be able to compare these solutions to the steady-state pressure
profiles inwhich the equivalent saturations are constants through-
out the porous medium. If we assume s = S̄, a constant for all z,
and the role of gravity in the gas flow is negligible, then the steady-
state gas mass conservation equation (22a) reduces to

d
dz


Π + pg


K r
g


S̄
 dpg

dz


= 0. (28)

As a result of the non-dimensionalization, integrating once gives
Π + ρg


K r
g


S̄
 dpg

dz
= −1, (29)

a first order ordinary differential equation which generalizes (24)
to the case of uniform saturation.

If a rescaled spatial variable z̄ is defined satisfying

z̄ =
z

K r
g (s̄)

, (30)

then in terms of the rescaled variable, Eq. (29) becomes
Π + pg

 dpg
dz̄

= −1. (31)

This is a rescaled version of Eq. (24), with solutions similar to
Eq. (25)

pg =


Π2 − 2z̄ − Π =


Π2 −

2z
K r
g


S̄
 − Π . (32)
This illustrates that the steady-state pressure profiles with
constant saturation are the same as those without saturation,
subject to a rescaling of the spatial variable. Steady-state pressure
profiles for a pressure difference


Pg


= 6 × 104 Pa and δ = 5/3

and constant saturation S̄ = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5 and 0.6 are
plotted in Fig. 3. The fact that steady-state pressure profiles with
a constant saturation are merely rescaled versions of the steady-
state profiles in the absence of saturation should not come as a
surprise. In assuming that the momentum conservation in each
liquid is governed by a Darcy type law, terms corresponding to
interfacial momentum transfer are neglected. The gas flow only
depends on the degree to which the liquid impedes the gas flow.
Darcy’s law predicts the same momentum in the gas whether the
liquid phase is stationary, or moving with a constant speed.

4. Liquid infiltration into a gas saturated reservoir

If the influence of gravity on the gas flow is neglected, then the
only remaining advective term in the system of Eqs. (22) is found
in the liquid mass conservation equation and corresponds to the
influence of gravity on the liquid phase. Before solving (22) it is
worth considering Darcy’s law for the liquid phase. In the absence
of capillarity, Eq. (16b) in one dimension satisfies

svl = −K r
l (s)


1
Al

∂pg
∂z

+ 1


. (33)

Hence, if ∂pg
∂z > −Al, then liquid descends into the porousmedium.

Conversely, if ∂pg
∂z < −Al, then liquid rises in the porous medium.
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Fig. 3. Steady-state isothermal pressure profiles for compressible gas flow through
a rigid porous medium with constant saturations, for Π = 2 and S̄ = 0.0, 0.1, 0.2,
0.3, 0.4, 0.5 and 0.6.

These conditions relate the driving pressure in the gas phase to the
hydrostatic pressure in an equivalent column of liquid.

Fig. 4 shows the time-dependent infiltration of liquid into a
porous medium in the absence of capillarity. A regular grid is used,
with a grid-spacing 1z = 0.001 and results at integer time-steps
after the onset of liquid infiltration. For numerical expediency a
saturation pre-layer s (z, 0) = 1 × 10−6 is specified below the
descending saturation front, to overcome the degeneracy inherent
in (22), which occurs when the saturation tends to zero. Tests were
conducted with a variety of saturation pre-layer thicknesses and
grid-sizes, which showed that the saturation and pressure profiles,
and the speed of front infiltration in the numerical results are
insensitive to variations of these parameters. Liquid infiltration
profiles as plotted in Fig. 4 correspond to a configuration in which
initially there is a steady-state gas flux rising through the void-
spaces, driven by a pressure gradient


Pg


= 6 × 104 Pa over

L = 20 m. Values for the porosity φ = 0.2, and permeability K =

1.0×10−11 m2 correspond to a typical geophysical rock sample. At
the start of the simulation the surface saturation is increased from
the pre-layer value to a fixed surface saturation of s (0, t) = 0.4.

The saturation frontmoves into the porousmediumat a roughly
constant speed (Fig. 4(a)). This constant speed is reproduced in all
the subsequent experiments in this section and will be analysed
later. Where there is liquid water, the degree of saturation s is
approximately constant. However, we shall see that variations
in the model parameters can change the saturation profiles
significantly.

Fig. 4(b) shows the corresponding gas pressure profiles. If the
gas is assumed to behave isothermally, then these profiles are
proportional to the gas density profiles. Before liquid infiltration
the gas profile corresponds to the unsaturated steady profile given
by (25) and is indicated in the plot as the thick solid line. To
the right of the steady-state profile there are a series of time-
dependent gas pressure profiles, at integer time-step increments,
resulting from the liquid infiltration into the porous medium.
These profiles exhibit a cusp which marks the position of the
saturation front at that time. Above this cusp the gas profiles are
very similar to the steady-state uniform saturation profile, and this
corresponds to the fact that for a gas pressure difference


Pg


=

5×104 Pa, the saturation profiles vary only slightly from constant.
The gas pressure profiles show an increase above the steady-
state profile as the liquid infiltrates the porous medium. This is
because liquid infiltration blocks the pathways through which the
gas previously escaped and a larger pressure difference is required
to drive the gas across the partially saturated region. Fig. 4(b) also
shows the steady-state pressure profile corresponding to a uniform
saturation throughout the porous medium, s = 0.4. This steady-
state pressure profile is in good agreement with the transient
profiles generated above the saturation front, as in this region
and for this pressure difference across the porous medium, the
saturation decreases only slightly from the value at the surface.

Fig. 5(a) shows the gas volume fluxes and 5(b) the liquid volume
fluxes corresponding to the liquid infiltration profiles shown in
Fig. 4. Each volume flux is given with respect to the unit cross
sectional area of that fluid. In the partially saturated region the
gas volume flux increases above the steady-state profile, as more
fluid is forced through just the proportion of the void-spaceswhich
are not saturated. This is driven by the steeper pressure gradient
evident above the saturation front in Fig. 4(b). Below the saturation
front there is a decrease in the gas flow through the void-spaces,
which corresponds to the reduction in the pressure gradient seen
below the saturation front in Fig. 4(b). The corresponding liquid
volume fluxes, shown in Fig. 5, are negative in the partially
saturated region, corresponding to the descent of liquid into the
porousmedium and are zero below the saturation front, where the
porous medium is assumed to be completely unsaturated.

We now wish to investigate how the basic time-dependent
model described in this section is altered as the result of changes in
model parameters. Given viscosities for the liquid and gas phases,
the system of Eqs. (22) contains just two non-dimensional num-
bers: the ratio of the upper surface pressure to the pressure dif-
ference across the top Lmetres of porous medium, Π = Pg,0/


Pg


and theparameterAl = ρlgL/


Pg


measuring the influence of grav-

ity on the liquid flow. We note, therefore, that a decrease in Π to-
gether with a corresponding proportional decrease in the value of
Ag physically corresponds to an increase in the pressure difference
across the porous medium and a larger counter-current gas flow.
This will be investigated in the next section. Independent changes
in either Π or Ag correspond to changes in either the pressure at
the top of the porous medium, the vertical length scale or a change
in the liquid pressure. Additional significant changes in the flows
can be induced by altering the degree of saturation at the top sur-
face and this is investigated in Section 4.3.

There are many other key model parameters which could be
investigated when considering counter-current flow in a porous
medium, such as the porosity and permeability of the porous
medium. However, neither the porosity nor the permeability
appear in the non-dimensional numbers contained within the
model Eqs. (22) and hence the non-dimensional profiles of the
form of Figs. 4 and 5 are unchanged by variations in either porosity
or permeability. The porosity and permeability are present in
the dimensional volume flux and time scales. This indicates
that variation in either of these two parameters would produce
different dimensional profiles with smaller volume fluxes and
slower liquid infiltration rates corresponding to either decreases
in permeability or increases in porosity.

4.1. Counter-current gas flux variation

If the pressure difference across the porous medium is in-
creased, this will drive a greater gas flux. This in turn acts against
the liquid infiltration and slows the descent of liquid into the
porous medium. Fig. 6(a) shows saturation and 6(b) shows pres-
sure profiles for


Pg


= 3 × 104, 5 × 104, and 7 × 104 Pa, with all

the remaining parameters the same as in the previous section. The
corresponding values of Π and Ag are given in the figure caption.

In all cases, a liquid front descends into the porous medium
at a roughly constant rate. As one would expect, the speed of
descent associated with the saturation front is greatest when the
pressure gradient driving the counter-current gas flow is least.
Small pressure gradients correspond to larger values of Ag and
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a b

Fig. 4. (a) Saturation and (b) non-dimensional pressure profiles at integer time increments after the onset of liquid infiltration into a porous mediumwith porosity φ = 0.2
and permeability K = 1 × 10−11 m2 . A counter-current gas flow is driven by a pressure difference


Pg


= 5 × 104 Pa over the distance L = 20 m. For positive time, the

surface saturation s(0, t) = 0.4. The arrows indicate progress with time. The steady-state pressure profile for a uniform saturation S̄ = 0.4 is also plotted for comparison.
a b

Fig. 5. As Fig. 4, except showing (a) non-dimensional gas volume flux and (b) non-dimensional liquid volume flux. The arrows indicate progress with time.
therefore gravity is even more dominant in the liquid momentum
conservation.

A pressure gradient across the porous medium results in a
reduction of the degree of saturation as liquid infiltrates the
porous medium, with the maximum saturation occurring at the
surface. The reduction in the saturation as we descend into the
porousmedium ismost pronouncedwhen there is a large pressure
gradient across the porousmedium. This is because there is greater
competition between the gravity and the gas pressure gradient
in the liquid momentum conservation equation, when the gas
pressure gradient is largest. For the lowest pressure difference
Pg


= 3.0 × 104 Pa, the reduction in saturation with depth is

barely discernible. As the pressure gradient decreases further, we
approach a state inwhich the gas behaviour has no feedback on the
liquid infiltration, which is then purely limited by gravity. This will
be investigated further in the next section.

The gas pressure profiles in Fig. 6(b) all show pressure increases
when liquid restricts the available void-spaces through which
gas can flow. At a given height and time, the maximum gas
pressure is the result of a combination of competing factors. As
the pressure difference across the porous medium increases the
descent of liquid slows. In this case although the steady-state
pressure at a given depth might be large, the time taken for liquid
to reach that depth may be quite lengthy and the reduction in
saturation between the surface and the point of interest may be
quite significant, so that the eventual local increase in pressure
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ba

Fig. 6. As in Fig. 4, except with profiles shown at two integer time increments after the onset of liquid infiltration andwith initial pressure differences of (i)

Pg


= 3×104 Pa

(corresponding to Al = 6.540 and Π = 3.333), (ii)

Pg


= 5 × 104 Pa (corresponding to Al = 3.924 and Π = 2.0), (iii)


Pg


= 7 × 104 Pa (corresponding to Al = 2.803 and

Π = 1.429).
could be less than in cases with a lower initial pressure difference.
Conversely, for a small pressure difference across the porous
medium, the liquid may infiltrate faster and maintain a greater
proportion of the degree of surface saturation at depth, but the
corresponding initial steady-state pressure at a given level is
less. Therefore, although a larger increase in the local pressure is
possible, the initial local pressure is lower. A determination of the
maximum pressure at a given depth therefore depends upon the
degree of saturation and the pressure difference across the porous
medium.

4.2. Saturation front position

Figs. 4 and 6 suggest that the saturation front descends into
the porous medium with constant speed, which depends on the
counter-current gasmass flux and the degree of surface saturation.
The liquid conservation equation (14b) is hyperbolic in some
region close to the saturation front. Therefore, if we apply a
Rankine–Hugoniot condition across the saturation front, then

Vf =
dzf
dt

=
[svl]+−
[s]+

−

, (34)

where the position of the front is zf = zf (t), the front velocity is
Vf , and the plus (minus) sign means evaluate above (below) the
front. As there is assumed to be zero saturation and liquid volume
flux per metre squared below the saturation front, in the absence
of capillarity (16b) implies

Vf =
dzf
dt

=
svl|+

s|+
= −

K r
l


s|+


s|+


A−1
l

∂pg
∂z


+

+ 1


, (35)

where the +-sign is the value of property immediately above the
saturation front. With the relative permeability of liquid defined
as in (8b) and Al ≫ 1, this implies that the infiltration speed
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of the saturation front has a cubic dependence on the degree
of saturation just above the front. The gas pressure gradient is
negative throughout the porous medium, in order to drive gas
upwards. This means the gas pressure gradient competes with
gravity, acting so as to reduce the infiltration of the liquid into the
porous medium.

To analyse further the system of Eqs. (22), in many cases of in-
terestwe recognize the smallness of the value of the dimensionless
parameter ε, defined by

ε =
1
Al

. (36)

In particular if the liquid phase is water and L = 20m, then a range
of pressure differences from


Pg


= 1.5 × 104 to 5 × 104 Pa cor-

responds to values of ε between 0.076 and 0.25. Further if β =

µgl/Al = O (1), andwrite P = Π+pg , then Eqs. (22) can bewritten

∂

∂t
[(1 − s) P] = β

∂

∂z


PK r

g (s)
∂P
∂z


, (37a)

∂s
∂t

=
∂K r

l

∂z
(s) + ε

∂

∂z


K r
l (s)

∂P
∂z


. (37b)

We seek s and P as expansions in powers of the small parameter ε:

s = s0 + εs1 + ε2s2 + · · · , (38a)

P = P0 + εP1 + ε2P2 + · · · , (38b)

where si = si (z, t) and Pi = Pi (z, t) are coefficients to be de-
termined. This perturbation expansion assumes that the leading
order pressure gradient is at most O (1) and we can look for the
position of the front in the case of a small pressure gradient across
the porous medium.

If the coefficients are matched in increasing powers of ε, then
at O (1) we find

∂

∂t
[(1 − s0) P0] = β

∂

∂z


P0K r

g (s0)
∂P0
∂z


, (39a)

∂s0
∂t

=
∂K r

l

∂z
(s0) . (39b)

From this equation the leading order solution for s0 has the form

s0 =


S̄, for z > Vf t,
0, for z < Vf t.

(40)

Here S̄ is a prescribed constant saturation at the surface, s (0, t) =

S̄, and the velocity of the saturation front, Vf , is given by the
Rankine–Hugoniot condition (35) evaluated with the constant
saturation above the front,

Vf =
dzf
dt

= −
K r
l


S̄


S̄
= −S̄3. (41)

Integrating this equation, we find that the position of the front
satisfies

zf (t) = −
K r
l


S̄


S̄
t = −S̄3t, (42)

where the final equality in both (41) and (42) assumes that the
relative permeability with respect to the liquid phase is given by
(8b). If the counter-current gas pressure gradient is assumed to be
small, then (42) gives a maximum depth of liquid infiltration.

In the absence of a pressure gradient at leading order in the
liquid mass conservation equation, we next consider the leading
order equation for the modified pressure P0. If piecewise solutions
are sought above and below the saturation front, then porous
medium equations in each portion are recovered, satisfying

∂P0
∂t

=
βK r

g


S̄


1 − S̄
 ∂

∂z


P0

∂P0
∂z


, for z > Vf t, (43a)

∂P0
∂t

= β
∂

∂z


P0

∂P0
∂z


, for z < Vf t. (43b)

At the saturation front z = Vf t , pressure continuity is also
required, which corresponds to

[P0]+− = 0. (44)
For convenience, Eqs. (43) are written as

∂P0
∂t

= A±
∂2

∂z2

P2
0


, (45)

where

A+
=

βK r
g


S̄


2

1 − S̄

 , for z > Vf t, and

A−
=

β

2
, for z < Vf t.

(46)

With a variables separable solution of the form P0 (z, t) =

P (z) T (t),
dT

dt
= −λ+T 2, A+

d2

dz2

P 2

+ λ+P = 0;

for z > Vf t, (47a)

dT

dt
= −λ−T 2, A−

d2

dz2

P 2

+ λ−P = 0;

for z < Vf t. (47b)
In the small pressure gradient limit, the numerical results of
Section 4.1 suggest that the gas pressure profiles are constant in
time in the partially liquid saturated region above the cusp. This
is equivalent to taking λ+

= 0 in (47a). This is a quasi-steady
approximation in which the effect of the front evolution on the gas
pressure occurs over a much shorter time scale than the time scale
associated with the motion of the front itself. Assuming the time
scale associated with the pressure evolution below the partially
saturated region is the same as the time scale associated with the
pressure evolution in the partially saturated region, then this too is
also much shorter than the time scale associated with the motion
of the front and λ−

= λ+
= 0 in (47b). In this case P 2 is a linear

function of z both above and below the saturation front, which is
consistentwith the previously calculated steady-state gas pressure
profiles. In the quasi-steady regime the corresponding gas pressure
profiles are given by

pg0 =




Π2 − 2z

K r
g


S̄
−1

− Π, for z > Vf t,
Π2 − 2


z + Vf t


K r
g


S̄
−1

− 1


− Π,

for z < Vf t,

(48)

where pg0 = P0 − Π is the leading order pressure corresponding
to P0. Saturation and gas pressure profiles corresponding to (40),
(41) and (48) are plotted in Fig. 7 at time intervals t = 0, 2, 4,
6, 8 and 10 after the onset of liquid infiltration. The results show
good agreement with the numerically computed results of the full
problem.

A comparison of the small ε analytical solutions (given by (a)
Eq. (40) and (b) Eq. (48)) and the numerically computed profiles is
shown in Fig. 8 for time t = 10. Profiles are shown for ε = 0.076
(corresponding to Al = 13.08 and Π = 6.6667), ε = 0.153
(corresponding to Al = 6.540 and Π = 3.3333), and ε = 0.255
(corresponding to Al = 3.924 and Π = 2). The best agreement is
obtained from the smallest value of ε.
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a b

Fig. 7. Analytically constructed approximations to (a) the saturation and (b) the gas pressure profiles at two integer time increments in the small pressure gradient limit, as
given by (40) and (48), respectively. Additionally the gas pressure profiles are plotted in the quasi-steady limit, where disturbances to the pressure profiles occur over much
shorter time scales than those associated with the movement of the saturation front.
a b

Fig. 8. A comparison of numerical results and analytic solutions for small ε at t = 10. Profiles are shown for Al = 13.08 (ε = 0.076, Π = 6.6667), Al = 6.540 (ε =

0.153, Π = 3.3333) and Al = 3.924 (ε = 0.255, Π = 2).
4.3. Surface saturation variation

If the non-dimensional parameters δ and Ag are held constant,
then significantly different model behaviour can be induced by
altering the degree of saturation at the surface. Fig. 9 shows the
saturation and gas pressure profiles for fixed surface saturations
of s (0, t) = 0.2, 0.4, and 0.6, with all the other parameter the
same as in Section 4. We immediately see that as the degree
of surface saturation is increased, the infiltration front descends
faster. However, the increase in infiltration speeds, predicted by
(42), tails off dramatically as the void-space available for gas flow
is reduced and the pressure gradient rises. This reduction in liquid
velocity is due to the increase in the pressure gradient in the
liquid competing with the gravity-driven liquid infiltration. The
competition between gravity and the pressure gradient is most
markedly seen when s(0, t) = 0.6. In this case, the pressure
gradient becomes so large that a saturation of s = 0.6 cannot be
maintained in theporousmediumand thedegree of saturation falls
dramatically just below the surface of the porous medium.

The associated gas pressure profiles (shown in Fig. 9(b)) show
a cusp at the same depth as the saturation front in all cases.
Although not shown for clarity, above the cusp the gas pressure is
close to the steady-state pressure profile in the cases in which the
saturation profiles are approximately piecewise constant. These
cases correspond to the lower values of the surface saturation.
With the surface saturation s (0, t) = 0.6 the deviation of the
saturation profile away from a constant profile dictated by the
surface saturation is particularly marked.



P.D. Hicks et al. / European Journal of Mechanics B/Fluids 43 (2014) 202–215 213
a b

Fig. 9. As Fig. 4, except with profiles shown at two integer time increments after the onset of liquid infiltration and with surface saturations of (i) s (0, t) = 0.2,
(ii) s (0, t) = 0.4 and (iii) s (0, t) = 0.6.
5. Capillarity

Until nowwe have considered the problem of liquid infiltration
into a porous medium with a counter-current gas flow in the ab-
sence of capillarity. With capillarity added, C ≠ 0 and the time-
dependent liquid infiltration is governed by (21). Applying the
chain rule to the capillary effect term and assuming that the gas be-
haves isothermally mean we can write this system of equations as

∂

∂t


(1 − s)


Π + pg


=

µlg

Al

∂

∂z


Π + pg


K r
g (s)

∂pg
∂z


, (49a)

∂s
∂t

=
∂K r

l

∂z
(s) +

1
Al

∂

∂z


K r
l (s)


∂pg
∂z

− C
dJ
ds

∂s
∂z


, (49b)

where the capillary pressure equations (6) and (7) imply

dJ
ds

= −
1

nm s1+1/m J (s)n−1 , (50)
where againm = 1 − 1/n. Taking n = 2 gives m = 1/2 and

dJ
ds


n=2

= −
1

s3 J (s)|n=2
, (51)

where J (s) is given by (7). Hence, for C > 0 the effect of including
the capillary pressure, as in (49), is to diffuse the saturation front.
To aid numerical computation a thin precursor saturation layer is
used below the saturation front to prevent degeneracy.

Fig. 10 shows the samemodel configuration as Fig. 4, except that
capillary effects are added with a value of C = 0.17. As expected
the addition of surface tension diffuses the sharp saturation front
in the saturation profiles (Fig. 10(a)). Further increases in C act
to diffuse and smooth the front further. Liquid infiltration is also
faster, the larger the value of C . The corresponding gas pressure
profiles are also altered with the sharp cusp at the saturation front
now rounded off.
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a b

Fig. 10. (a) Saturation and (b) non-dimensional gas pressure profiles at integer time increments after the onset of liquid infiltration into a porous medium with porosity
φ = 0.2, permeability K = 1 × 10−11 m2 and a capillary number C = 0.17. The arrows indicate progress with time.
a b

Fig. 11. As Fig. 10, but showing non-dimensional (a) gas volumes and (b) liquid volume fluxes. The arrows indicate progress with time.
Fig. 11(a) shows the corresponding gas volume flux per unit
area and 11(b) shows the corresponding liquid volume flux per
unit area corresponding to the saturation and gas pressure profiles
plotted in Fig. 10. As with the saturation and gas pressure profiles
the inclusion of capillarity acts to smooth out the flux profiles, as
compared to Fig. 5.

6. Discussion and conclusions

The model serves to illustrate the competing processes of a
counter-current gas flow on the infiltration of a liquid into an ide-
alized one-dimensional porous medium. Darcy’s law with rela-
tive permeabilities is used to model the reduction in permeability
caused by the presence of the second fluid phase, while the gas is
assumed to be compressible. By allowing one of the fluid phases
to be compressible extensions to both the Buckley–Leverett and
Richards models are created, which exhibit new flow phenomena
relevant to a wide range of physically motivated practical prob-
lems. The presented analysis incorporates both a background pres-
sure gradient driving the gas upwards, while the density difference
allows the liquid to descend through the porous medium.

The key feature of themodel is the illustration of the competing
processes associated with liquid infiltration and descent driven by
gravity and the upwardsmovement of the gas phase in response to
the pressure gradient. Starting from this basic configuration with
counter-current liquid and gas flows, perturbations are applied to
the basic flow structure and the subsequent evolution investigated.
The central observation is that the pressure gradient in the porous
medium slows the liquid descent relative to infiltration driven
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purely by gravity. As the pressure gradient rises, the infiltration
speed of the liquid falls as the pressure gradient attempts to drive
the liquid up and out of the porousmedium. Theoretical saturation
profiles are found in the small pressure gradient limit, in which the
liquid infiltration is governed by gravity.

The degree of saturation is also investigated. The infiltration
speed increases with saturation and in the small pressure gradient
limit, the infiltration speed is proportional to the cubic power of the
saturation just above the interface. As the pressure gradient rises,
the liquid infiltration rate again falls (fromamaximumspeed in the
small pressure gradient limit), due to the increased competition
between the pressure gradient and gravity. For sufficiently large
levels of saturation at the surface, the pressure gradient that
is created only allows sufficient liquid to infiltrate the porous
medium to saturate the interior of the porous medium at a lower
level.

The final modification made to the model is to add capillarity.
This acts to diffuse the sharp jump at the lower boundary of the
liquid infiltration and generates a more gradual transition in the
degree of saturation from a dry porous medium at depth to the
partially saturated porousmedium just below the surface. Keeping
all other conditions the same, the inclusion of capillarity speeds up
infiltration.

The infiltration of liquids into gas saturated porous media
can have a wider influence than on the changes in the flow
structures described in this paper. In a porous medium used for
carbon sequestration these results indicate that cracks and defects
in an otherwise impermeable boundary to the porous medium
could allow water to infiltrate the porous medium and leakage of
the stored carbon dioxide. Clearly the escape of carbon dioxide
from the reservoir is undesirable, while the pressure increases
associated with transient liquid infiltration and gas leakage may
result in further increases in the size of the pore spaces through
which any leaks occur.

At the Soufrière Hills Volcano, Montserrat, statistical evidence
indicates that the probability of lava dome collapse is significantly
increased shortly after periods of intense rainfall. For example,
the daily probability of lava dome collapse increased from a
background value of 1/70 to 1/11 (a sixfold increase), on dayswhen
at least 20 mm of rain fell on the volcano [38]. The process of
dome collapse began at the surface within 30 min of the start
of the intense rainfall. The proposed mechanism is that after an
initial cooling of the dome surface [23], liquid infiltrated into the
interior [24], leading to an increase in pore pressure as described
here. Subsequently volcanic activity progressed deeper into the
volcano, with disturbances still present at a depth of 1 km after
12 h [22]. This damaged the porous matrix of the lava dome,
ultimately weakening it to the extent that it collapses.
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