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Abstract Here, we describe a single micro-CT scan with a spatial resolution of 10 lm of a 10-day-old adult

male Schistocerca gregaria (Forsk�al) (Orthoptera: Acrididae) and we compare our tracheal volume

(VT) determination with published work on the subject. We also illustrate the feasibility of perform-

ing non-invasive ‘virtual dissection’ on insects after performing micro-CT. These post-processing

steps can be performed using free downloadable 3-D software. Finally, the values of producing

stereo-lithography (STL) files that can be viewed or used to print out 3-Dmodels as teaching aids are

discussed.

Introduction

The intricate tracheal respiratory system that delivers oxy-

gen directly to tissues and cells is a distinctive feature of

many arthropods (Chapman, 1998; Lease et al., 2006). In

terrestrial arthropods, the tracheal system plays a vital role

in delivering oxygen from the atmosphere directly to cells

via the haemolymph and in expelling carbon dioxide

derived from cellular respiration back into the atmo-

sphere. In 2006, Lease et al. determined that the tracheal

volume (VT) of one group of terrestrial arthropods (the

insects) should be considered as the total volume of air in

the tracheae and air sacs combined. Because the vast

majority of insects have a paucity of the oxygen-carrying

respiratory proteins haemocyanin and haemoglobin

(Chapman, 1998), VT greatly determines the amount of

oxygen available during insect respiration when the spira-

cles are closed (Lease et al., 2006). The relationship

between insect VT and ontogeny is complex. VT varies

according to body size, metabolic rate, species type, pres-

ence/absence of air sacs, developmental stage, and the indi-

vidual’s reproductive or digestive status (Lease et al.,

2006).

Various methods have been used to determine VT in

insects, including water displacement (Wigglesworth,

1950), use of inert gases (Bridges et al., 1980; Lease et al.,

2006), stereology (Schmitz & Perry, 1999; Hartung et al.,

2004; Snelling et al., 2011, 2012), and stereology in com-

bination with synchrotron X-ray imaging (Kaiser et al.,

2007; Greenlee et al., 2009; Socha et al., 2010; Kirton

et al., 2012). All have potential advantages and disadvan-

tages. Insect imaging is being revolutionised by the use of

X-ray Synchrotron imaging (Kaiser et al., 2007; Greenlee

et al., 2009; Socha et al., 2010; Greco et al., 2011b, 2012;

Kirton et al., 2012); however, adequate long-term access

to synchrotron facilities is a limiting factor for entomolo-

gists who require non-invasive approaches to their

research.

Nevertheless, visualising the anatomy of an entire insect

tracheal system including the use of modern stereomicro-

scopes remains notoriously difficult (Vinal, 1919;
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Snodgrass, 1935; Albrecht, 1953, 1956; Miller, 1960a,b,c;

Clarke & Richards, 1976). In 1919, Vinal eloquently

illustrated the respiratory system of the Carolina locust,

Dissosteira carolina (L.) and summarised and referenced

much of the earlier work on locust tracheal systems. The

article includedMalpighi’s discovery of the respiratory sys-

tem of the silk worm in 1669 and the beautifully illustrated

work of Swammerdam on honey bee anatomy published

in 1673. Vinal (1919) also details the work of others

including Lyonet (1762) on the goat mothCossus cossus L.,

Strauss-Durckheim (1828) on the cockchafer Melolontha

vulgaris (L.) and Denny’s studies of the cockroach, and

finally the studies of Alt (1912) on the great diving beetle,

Dytiscus marginalis L.

Much of the research on insect respiration from the

1970s onwards (Richards & Davies, 1977; Chapman, 1998;

Klowden, 2007; Nation, 2008) continues to refer back to

the early research of Swammerdam (1673), Vinal (1919),

and Snodgrass (1935). Research on respiratory physiology

on the mechanisms of insect ventilation and flight fre-

quently refers to research from Hamilton (1937), Weis-

Fogh (1952, 1956a,b,c, 1964a,b,c, 1967), and Miller

(1960a,b,c), and to the detailed light and electron micro-

scopic studies of tracheal and air sac anatomy (Maina,

1989; Hartung et al., 2004). This common practise of

referring to historical studies reflects the continuing diffi-

culties with dissecting extremely small (10–20 lm) and

delicate tracheae and air sacs (Vinal, 1919). Such problems

include (1) obstruction or alteration of exact anatomical

and spatial relationships due to air sacs expanding and

shifting as soon as the insect is opened, particularly with

the insect under water or a preservative liquid, and (2) air

sacs/tracheae are often situated between muscle layers in

the thorax or fat bodies and ovaries in the abdomen and it

is almost impossible to dissect these out without severing

much of the connecting tracheal network. Subsequently,

alternativemethods to demonstrate tracheal anatomy such

as direct injection of various dyes into the tracheal system

(Wigglesworth, 1950) and corrosion casting plus scanning

electronmicroscopy (Meyer, 1989) have been attempted.

X-ray computerised tomography methods are being

used increasingly by entomologists (Hornschemeyer et al.,

2002; Honnickea et al., 2005; Greco et al., 2005, 2006,

2008, 2009, 2011a, 2012) to visualise and study nest archi-

tecture and insect morphology, physiology, and behav-

iour. In 2008, we hypothesised that micro-CT would be a

suitable method for visualising the insect tracheal system

(Al-Harbi, 2008) and we attempted to quantify changes in

abdominal air sac size that occur during insect digestion.

The terrestrial arthropod we chose was the desert locust,

Schistocerca gregaria (Forsk�al) (Orthoptera: Acrididae),

because its anatomy and that of several similar acridids

have been well documented (Vinal, 1919; Snodgrass, 1935;

Misra, 1945, 1946, 1947).

Our early results supported the hypothesis of Al-Harbi

(2008, 2008). We have subsequently developed more

sophisticated software to analyse insect micro-CT data

(Bell et al., 2012; Greco et al., 2012) and we have aug-

mented our methods by including 3-D printed models

which we generate from macro-CT (Hulse et al., 2012)

andmicro-CT data (Laycock et al., 2012).

Here, we describe the methods used and the results

obtained from a single micro-CT scan of a 10-day-old

adult male S. gregaria and we compare our results for VT

determination with published work on the subject. We

also illustrate the feasibility of performing non-invasive

‘virtual dissection’ on insects after performing micro-CT.

These post-processing steps can be performed using free

downloadable 3-D software. Finally the value of producing

STL (stereo-lithography) files that can be viewed or used

to print out 3-Dmodels as a teaching aid is discussed.

Materials and methods

The insect

At 10 days post-moult of the adult stage, amale S. gregaria

was randomly selected from a stock of caged experimental

locusts that were kept at 26 °C, 40% r.h., and L12:D12

photoperiod. The cages were equipped with a 60-W light

bulb. Locusts were fed on wheat bran and fresh wheat

shoots and provided with distilled water periodically trea-

ted with 5% antiprotozoal solution (wt/vol; 4.26% sodium

sulphamethazine, 3.65% sodium sulphathiazole, 3.13%

sodium sulphamerazine) to prevent infection from the

sporozoan parasite Malamoeba locustae (King & Taylor).

To obtain sharp images during the scan, it is very impor-

tant that the temperature of the sample reaches equilib-

rium with room temperature before the scan starts. The

high spatial resolution for this experiment, 10.469 lm,

would cause even minor temperature-induced expansion

or contraction to blur the reconstructed cross-sectional

images. Therefore, prior to scanning, the specimen was left

at room temperature for 24 h in a sealed acrylic tube. To

avoid shrinkage of structures during scans due to dehydra-

tion, we mounted the locust in a sealed tube containing

some free saline during the scan. No shrinkage related arte-

facts were visible in the resulting cross-sectional images.

Micro-CT scanning

The methods used are described in greater detail by

Tarplee & Corps (2008). The 10-day-old male was killed

by placing in the deep freeze at �20 °C and micro-CT

scanned approximately 2 days later. The scanned insect

was suspended vertically in a 30-mm acrylic tube that was
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mounted tightly on the micro-CT’s inclination stage. This

stage was used to ensure that the rotation axis was at 90° to
the x-ray source. Exposure factors were: kVp = 50 and

lA = 198. The data were isotropic 16 bit 2000 9 2000

with 1 048 rows. Pixel size was 10.469 lm.

Image reconstruction and viewing

Skyscan NRecon software version 1.5.1.4 was used to

reconstruct the projection data (Tarplee & Corps, 2008).

Having obtained the projection data in the form of an

image stack of 2-D TIFF (tagged image file format) files

the data was viewed as a 3-D model using disect software,

DISECT Systems (www.disectsystems.com; Greco et al.,

2012).

Masking and segmenting

The TIFF image stacks were loaded into the masking and

segmenting software ‘Tomomask’ at full resolution (www.

tomomask.com). The application of the masking features

within the software enabled ‘virtual’ removal of the acrylic

tube surrounding the locust before performing various

‘virtual’ dissections to remove the legs and wings as fol-

lows.

The TIFF image stacks were loaded into TomoMask at

full resolution. The acrylic tube surrounding the locust

was ‘removed’ from the images by painting with the back-

ground grey tone, i.e., black. Next, in a similar manner a

series of virtual dissections were performed to remove the

legs andwings. From thesemasking operations, new image

stacks were created consisting of the locust body only,

front leg, middle leg, rear leg, and wings. These image

stacks were then reloaded into TomoMask one-by-one

and the tracheae/air sacs were segmented by replacing the

black connected regions of the air sacs with white. This

was done automatically using the 3-D connected threshold

function of TomoMask. Care was taken to ensure that

where the tracheae exited the body of the locust, a barrier

mask was applied to prevent the air external to the locust

from being included in the 3-D connected region. To cal-

culate the volume of the tracheae/air sacs, the voxel vol-

ume was multiplied by the number of segmented ‘white’

pixels. As the entire Micro-CT scan is composed of 3-D

voxels, we used Tomomask’s voxel statistics feature and

tallied the voxel values obtained from the dissected legs,

wings, head, thorax, and abdomen to calculate the VT.

Production of 3-D printed models

When we were satisfied with the segmenting process of

the tracheal system with the legs, wings, head, thorax,

and abdomen, the files were saved and converted to

STL files by using the marching cubes algorithm within

TomoMask. These STL files are available for download

at www.fishersideas/Papers/LocustTrachea. We then

viewed in 3-D by using the freely available software

(Meshlab: http://meshlab.sourceforge.net/) and printed

out as 3-D model using a 3-D printer (Z-Corps 450:

http://www.zcorp.com/en/home.aspx).

Validating volume accuracy

To confirm the accuracy of our volume estimations, we

scanned six insulin syringes (Terumo, Egham, UK) using

the same parameters as for the locust scan. Importantly

the parameters such as scanning at 9.01 microns are the

same as those used for the locust scan. The syringes are

designed so that 300 ll is equivalent to 30 units of the

U-100 insulin. The external and internal diameters of

the syringe are 5 and 3 mm, respectively. The length of the

scale from 0 to 30 units is 42 mm. So each 5-unit mark is

7 mm long. There are 10 marks (five large and five small)

between each 5-unit mark. The total internal volume of a

syringe is 296.856 ll and wemoved the plungers to six dif-

ferent positions for the scan. This gave us six volumes to

estimate. We used the same syringe volume estimation

method as for the locust. We then plotted expected vol-

umes vs. estimated volumes as a linear regression with best

line of fit.

We also compared the linear measurements (using digi-

tal callipers) obtained from the diameter of the syringe

with that obtained from the micro-CT scan. Again these

correlate well.

Results

Imaging

Initially, the 3-D views of the insect were obscured by the

acrylic tube (Figure 1A). However, masking and segmen-

tation of the tube (Figure 1B) enabled full visualisation of

the locust externally including cuticular details. High-

attenuation structures (HAS) within the muscular tissues

of the head, thorax, and proximal metathoracic femora

and a notable absence of HAS in the abdomen were

observed (Figure 1C). At greater magnification (Fig-

ure 1D) details of the ramiform nature of some of the

intra-thoracic HAS can be seen. High, medium, and low

attenuation structures were observed, varying from very

dense structures (grey scale between +230 and +4 000),

such as the zinc-containing mandibles (Hillerton &

Vincent, 1982; Al-Harbi, 2008), to very low-density air-

filled structures (grey scale between �4 000 and 0), such

as air sacs and larger tracheae (Figure 2A). The grey-scale

values for soft-tissue structures such as muscle and the

brain ranged from +30 +279 to +35 +300 and were visual-

ised as various shades of grey. Figure 2B shows the tergo-

ventral muscles, dorsal longitudinal muscles, air sacs, and
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tracheae clearly in a 3-D transverse section through the

prothorax at the level of the first thoracic spiracle. The

hollow ‘pegs’ arising from the pleural surface of the pro-

thorax which keep the pronotum clear of the spiracular

orifice are also clearly seen. Figure 2C demonstrates the

ability to produce oblique, 3-D cut away virtual ‘dissec-

tions’ at an infinite number of angles (Greco et al., 2005).

This enabled a longitudinal oblique view with removal of

the legs to demonstrate the orifices of the first and second

thoracic and first abdominal spiracles. Figure 2D accu-

rately demonstrates the tympanum, which is difficult to

visualise without physical dissection, including the tym-

panic membrane, camera tympanum, and the thoracic air

sacs positioned between them.

A B

C D

Figure 1 Four 3-D views of the desert

locust (Schistocera gregaria). (A) Obscured

by the acrylic tube. (B) After masking and

segmenting the tube showing cuticular

details. (C) Evidence of the high-

attenuation structures (HAS) as white

ramiform structures within themuscular

tissues of the head, thorax, and proximal

metathoracic femora, but not in the

abdomen. (D) Greater magnification of

the HAS to show detail of the ramiform

patterns.

A B

C D

Figure 2 Four 3-D views of the head and thorax. (A) Sagittal view of themandibular incisors (a), mandibular molars (b), air in the

oesophagus (c), air sacs (d), tracheae (e), mandibular adductor muscles (f), prothoracic dorsal longitudinal muscles (g), brain (h), pharynx

(i), and the circumoesophageal commissures (j). (B) Transverse view through the prothorax at the level of the first thoracic spiracle

showing the hollow ‘pegs’ (a) arising from the pleural surface of the prothorax (b), tergo-ventral muscles (c), dorsal longitudinal muscles

(d), air sacs (e), and tracheae (f). (C) Oblique longitudinal view with legs and wings segmented showing the orifices of the first (a) and

second (b) thoracic and first abdominal (c) spiracles, camera tympanum (d), thoracic air sacs (e), and tergo-ventral muscles and

interposed air sacs with one of the high-attenuation structures traversing them (f). (D) Transverse view at the level of the first abdominal

section showing fine detail of the camera tympanum (a), abdominal air sacs between the tympana (b), and tracheae in the proximal

metathoracic femora (c).
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Figure 3 shows a 3-D view of the locust’s head and tho-

rax, that has been virtually dissected transversely at the

level of the cervix (Figure 3A), virtually dissected horizon-

tally at the level of the posterior cibarium/anterior oesoph-

agus (3B), and virtually dissected transversely at the mid

thoracic level (3C). The ring of perivisceral tracheae sur-

rounding the gut is particularly well shown as are those in

the proximal metathoracic legs. We were able to demon-

strate the entire 3-D segmented tracheal system with some

of the HAS (Figure 4A) and an enlarged 3-D view of the

thoracic section to show finer detail of tracheoles (4B).

Details of legs, HAS, and tracheae including the left pro-

thoracic leg tracheal system and prothoracic HAS (Fig-

ure 5A), the mesothoracic HAS and tracheal system of the

corresponding right leg (5B), and the metathoracic HAS

and the tibial spur tracheae of the left metathoracic leg

(5C) were shown. The left forewing segmented to reveal

the left tympanum and first abdominal spiracle (Figure 6).

The estimated combined tracheal volume of the legs, head,

thorax, and abdomenwas 253 ll.

The 3-D printed model

Examples of the interactive STL files that were recon-

structed (Figure 7) can be downloaded at www.fishersid

eas.co.uk/Papers/LocustTrachea/LocustTrachea.html. An

STL file of one and a half abdominal segments of the locust

with a ‘U’ shaped structural support added to the image

prior to printing was reconstructed (Figure 8A) and a

physical powder 3-D model produced using Zp150 pow-

der (8B) in a 3-D printer (Z-Corps 450: http://www.zcorp.

com/en/home.aspx).

A B C

Figure 3 Three views of the head and thorax. (A) 3-D transverse view of small air sacs within the labium (a), high-attenuation structures

(HAS) (b), compound eyes (c), left antenna (d), labial palps (e), maxillary palps (f), and air in the gut (g). (B) 3-D horizontal view of head,

cervix, and anterior prothorax showing air in the crop (a), left antenna (b), and rightmaxillary palp (c). The tracheae and air sacs were also

well visualised. (C) 2-D transverse view through the abdomen. (C) 2-D transverse section through the abdomen showing the tracheal

system (yellow) with the visceral tracheal plexus surrounding the gut (a) and the fat bodies (b) dispersed throughout the abdomen.

A

B

Figure 4 Two 3-D views of the segmented tracheal system.

(A) 3-D view of the segmented thoracic and abdominal tracheae

with the high-attenuation structures in the proximal

metathoracic femora (a) andmeta- andmesothoracic muscles

(b). (B) Enlarged 3-D section of the distal thoracic and proximal

abdominal tracheal system to show fine structural details.

46 Greco et al.



Syringe measurements

Volume. As seen from Figure 9, the simple linear

regression equation is: Micro-CT estimated volume

(ll) = 1.034 9 insulin syringe volume (ll) – 1.171 [slope
SE = 0.034, 95% confidence interval (CI) for population

value of slope = 0.939–1.129]. Correlation coefficient

(r) = 0.998 [95% CI for r (Fisher’s Z trans-

formed) = 0.979–1.0], which is significantly different

from 0 (t = 30.181, d.f. = 4, P<0.0001).

Linear dimensions. As seen from Figure 10, the simple

linear regression equation is: Linear measurements (mm)

using micro-CT = 0.996 9 linear measurements (mm)

using digital callipers + 0.055 (slope SE = 0.0106, 95% CI

for population value of slope = 0.969–1.023). Correlation
coefficient (r) > 0.999 [95% CI for r (Fisher’s Z trans-

formed) = 0.998–1.0], which is significantly different

from 0 (t = 94.018, d.f. = 5, P<0.0001).

Discussion

To our knowledge, our methods show the first account

of non-invasive measurement of an insect tracheal vol-

ume and detailed, physical 3-D models of the anatomy

of an individual insect’s respiratory system. All previous

attempts have been produced with prior knowledge

gained from physical dissections or other destructive

methods. Thus, by definition, those approaches are esti-

mations and prone to large errors. Our results show that

it is straightforward to demonstrate tracheal anatomy in

insects using a micro-CT and appropriate software. The

ready conversion of the image stack data to an STL for-

mat allows the complex 3-D anatomy of the respiratory

system of the locust to be clearly seen.

The tracheal volume we obtained of 253 ll is in accor-

dance with volume estimates based on published methods,

A

B

C

Figure 5 Threemaximum intensity projection (MIP) volume

rendered images of the thorax including details of legs, high-

attenuation structures (HAS) and tracheae. (A)Mandibular teeth

(a), left prothoracic leg tracheal system (b), and prothoracic HAS

(c). (B)Mesothoracic HAS (a), metathoracic leg HAS (b), and

tracheal system of the corresponding right leg (c).

(C)Metathoracic HAS and tibial spur tracheae of the left

metathoracic leg (a).

A

B

Figure 6 Two 3-D views of themetathorax and anterior

abdomen. (A) Left forewing segmented to reveal the left

tympanum (a) and first abdominal spiracle (b). (B) For greater

detail, the fine tracheae in the hind wing has beenmasked (a).
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such as water displacement (Wigglesworth, 1950), inert

gases (Bridges et al., 1980; Lease et al., 2006), stereology

(Schmitz & Perry, 1999; Hartung et al., 2004), and stereo-

logy in combination with synchrotron X-ray imaging

(Kaiser et al., 2007; Greenlee et al., 2009; Socha et al.,

2010; Kirton et al., 2012).

When we used the Tomomask software to segment out

the air-filled tracheal system, there was no filling of other

air-filled spaces within the locust such as air in the crop or

the extra oral space. Thus, there were no problems when

segmenting out the abdominal tracheal system. However,

we did experience ‘leaks’ from inside out at a few predict-

able places due to the ‘partial volume’ effect (Tarplee &

Figure 7 Stereo-lithography file of the

segmented tracheal system of the locust’s

abdominal tracheal system.

A

B

Figure 8 Stereo-lithography image of a section of the segmented

tracheal system of the locust’s abdominal tracheae (A) and a

photograph of the physical 3-Dmodel to be used as a teaching

aid. The instructor is pointing out an abdominal collateral

bridging trachea (B).

Figure 9 Simple linear regression of estimated vs. expected

volume of six syringes with plungers at different positions.

Figure 10 Simple linear regression of estimated vs. expected

linear distances of six syringes with plungers at different

positions.
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Corps, 2008) where the membranous non-sclerotized exo-

skeleton of the insect was extremely thin, such as the tym-

panum and the membranous periarticular regions of

several of the smaller joints of the legs. This problem was

easily solved by using the ‘paint’ function within

Tomomask set at an attenuation of 8 000 to ‘patch over’

any such potential defects, thus rendering the insect ‘leak-

proof’.

On theoretical grounds, with an isotropic micro-CT

scan taken (as in our study) at a voxel size of approxi-

mately 10 lm, one would predict that structures such as

tracheae should be reliably detectible down to a size of

about 10 lm bearing in mind that the X-ray attenuation

of the air in this structure is considerably less than that

of the surrounding soft tissue (Tarplee & Corps, 2008).

When 3-D voxels are located between regions of differ-

ent X-ray attenuation they inherently contain partial vol-

ume errors. As the voxel size for this study was 10 lm,

our method of total respiratory system volume determi-

nation would underestimate the value because the voxels

were bigger than some of the tracheoles and therefore

would be located between different x-ray attenuation

regions (e.g., air/muscle) and, as a consequence, would

be subjected to partial volume errors. These errors

would cause an underestimation of the total respiratory

system volume.

However, if one is using our total respiratory system

volume determination technique for either ‘before and

after’ type studies in the same live anaesthetised insect

(Al-Harbi, 2008) or killed groups of insects (e.g., fed vs.

unfed), then the theoretical underestimation of total respi-

ratory system volume will be the same in both groups. We

were not able to quantify tracheolar volumes that were

smaller than 10 lm in diameter and we estimate that this

volume might be as large as 10% of total tracheal volume

in adult Schistocerca (Snelling et al., 2011, 2012). Therefore

our methods are, at the moment, limited. To partially

overcome these pixel/voxel size limitations, we intend to

conduct further studies on locusts using micro-CT and

nano-CT scanners with smaller voxel sizes and thus greater

resolution.

The results from this study compare with synchrotron

dual phase micro-CT (Kirton et al., 2012); however, we

used a cheaper and readily available high resolution

bench-top micro-CT scanner. A limiting factor for syn-

chrotron imaging is that, in the entire UK there is currently

only one synchrotron scanner and so UK-based research

workers such as ourselves might typically have to wait sev-

eral months for an opportunity to use it.

Shaha et al. (2013) described a similar method to our

approach and used seven samples to overcome variances

in tracheal volumes. However, to validate the accuracy of

our methods, we scanned six insulin syringes of known

volumes. It is worth mentioning that insulin syringes can

vary in actual volumes (Ltief & Schwenk, 1999). Thus, we

suggest that our methods provide more accurate and

reproducible results.

Most researchers using micro-CT for radioentomologi-

cal studies do not have access (as of course do medically

qualified radiologists) to appropriate user-friendly rela-

tively inexpensive viewing, masking, and segmenting soft-

ware. We have shown that by using Tomomask’s 2-D

powerful editing features in combination with ‘disect’s’ 3-

D viewing and conferencing capabilities it is possible to

perform and share the results of virtual and non-destruc-

tive ‘dissection’ of insects. Once one is satisfied with the

result(s), these files can be stored for future viewing or

converted to STL format and used either again for viewing

or alternatively the production of physical 3-D models for

teaching purposes.

The nature of the high-attenuation structures (HAS) are

at this stage unclear, but they may include dried dead cells

accumulated in sections of the tracheae, calcium deposits/

scarring after localised infections, aggregations of the

locust tracheal mite (Locustacarus trachealis Ewing, Locust-

acarus buchneri Macfarlane) or some other species,

infected glandular tissue, or accumulated debris from

external airborne impurities. We are also considering the

hypothesis that these may be effete tracheal structures as

described by Miller (1960c). Further micro-CT scans of

locusts at 5 lMresolution in conjunctionwith histological

sectioning are currently in progress.
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