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Abstract: Color correction involves mapping device RGBs
to display counterparts or to corresponding XYZs. A popu-
lar methodology is to take an image of a color chart and
then solve for the best 3 3 3 matrix that maps the RGBs to
the corresponding known XYZs. However, this approach
fails at times when the intensity of the light varies across
the chart. This variation needs to be removed before esti-
mating the correction matrix. This is typically achieved by
acquiring an image of a uniform gray chart in the same
location, and then dividing the color checker image by the
gray-chart image. Of course, taking images of two charts
doubles the complexity of color correction. In this article,
we present an alternative color correction algorithm that
simultaneously estimates the intensity variation and the
3 3 3 transformation matrix from a single image of a color
chart. We show that the color correction problem, that is,
finding the 33 3 correction matrix, can be solved using a
simple alternating least-squares procedure. Experiments
validate our approach. VC 2014 Wiley Periodicals, Inc. Col Res Appl,

40, 232–242, 2015; Published Online 24 May 2014 in Wiley Online

Library (wileyonlinelibrary.com). DOI 10.1002/col.21889
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INTRODUCTION

Color correction is the process by which device RGBs are

mapped to a device independent space such as, for exam-

ple, display RGBs (sRGB1) or as in this article, XYZ tristi-

mulus values.2 Interpolation,3 look up tables,4 polynomial

or root-polynomial regression,5,6 artificial neural net-

works,7 and methods based on the spectral reconstruction

from a set of basis functions8 can be used to map the

camera RGB responses to XYZ values. Some similar tech-

niques have been applied for scanner characterization.8–11

A linear mapping from RGB to XYZ is achieved through

a 3 3 3 linear transformation matrix M. Mathematically,

linear color correction can be written as:

PM � Q (1)

where P is a N 3 3 set of raw linear camera (or scanner)

RGB responses for N color patches and Q is the corre-

sponding N 3 3 matrix of corresponding XYZ triplets The

color correction problem consists of finding the matrix M

such that M: RGB!XYZ. The best mapping to XYZs

could be found by minimizing the following expression.

Min MkPM 2Qk (2)

While linear color correction generally works well, it

turns out that finding the correct transformation matrix is

not easy. Indeed, to solve (2) we need to have the RGBs

measured in a real scene and imaged in the same lighting

and viewing geometry as the reference XYZs. If for exam-

ple one side of the RGB image of a reference chart was

darker—due to lighting variation—than the other, then we

could only solve for (2) if the measured XYZs showed the

same shading profile. Thus, the matrix M would map the

captured RGBs with the shading profile to the correspond-

ing measured XYZs with the same shading profile. How-

ever, in this article we address the situation when we do

not have access to the measured XYZs at this particular

scene, but only to the XYZs measured by the manufac-

turers under some standard illuminant. In Fig. 1(a), we

show an image of a color checker captured under nonuni-

form light. It is clear that there is a significant intensity

variation. Thus, the basic premise that the RGBs acquired

in this image correspond to the measured XYZs (under
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different light geometry) does not hold. Of course,

we could divide the RGB image by the shading field

[Fig. 1(b)] to give the shading corrected image [Fig.

1(c)]. Yet, now we need two reference charts to carry out

color calibration rather than one.

Recently, Funt and Bastani12 proposed that it is not

necessary to take a second image of a gray patch if the

optimization problem is changed. Specifically, they pro-

pose finding a 3 3 3 matrix by minimizing a shading

independent quantity. For example, through search we

can find a 3 3 3 matrix that maps RGBs to corresponding

XYZs such that the angular error is minimized. Signifi-

cantly, they report that color correction performance can

be almost twice as good when the correction matrix is

found in an intensity independent way compared with

using (2) directly (without dividing out the shading).

In this article, we wish to build on the Funt and Bas-

tani result. First, we note that by minimizing the angular

error (between mapped RGBs and corresponding XYZs)

that of the N 3 3 RGB measurements they effectively use

only N 3 2 degrees of freedom (the orientation of a vec-

tor—on which the angular error depends—is parameter-

ized by two numbers).12 Returning to Fig. 1 where the 24

patch Macbeth color checker is used then in their method

the 9 terms of the 3 3 3 correction matrix are calculated

with — effectively — only the 24 3 2 parameters neces-

sary to represent the orientations of the RGBs. In fact the

situation is, arguably, even a little more austere than this.

There is no extra information to be gained from using all

6 achromatic patches. Thus, there are really only (19) 3 2

independent measurements.

In this article, we wish to use more of the data avail-

able or, put another way, to discard less information in

solving for the correction matrix. We begin by modelling

the light intensity variation directly, by writing the mini-

misation as follows:

Min D;M kDPM 2Qk: (3)

Here, D denotes an N 3 N diagonal matrix. Each ele-

ment of the diagonal matrix models a shading correction

for one of the patches of the color chart (premultiplying

by a diagonal matrix scales the rows of P by the recipro-

cal of the shading field). In spirit, (3) is like the Funt and

Bastani formalism. Although, advantageously we are not

thinking of the target XYZs as orientated vectors but as

the full 3-dimensional colors. As we will see in section

“Alternating Least Squares Color Correction,” Equation

(3) also admits a straightforward alternating least-squares

solution strategy.

However, should we really think of the shading for one

color as being independent from another? Clearly, in Fig.

1 while the shading varies across an image, proximate

pixels have similar shading. Modeling shading and incor-

porating it into the minimization are the key contributions

of this article. We show that shading can be modelled by

the 2D Discrete Cosine Transform (DCT13) basis func-

tions. The shading field is smooth and therefore we can

suspect that it can be modelled using relatively few DCT

basis. In the experimental section we show that by taking

linear combinations of around 15 bases, we can model

the typical shadings that occur across the color chart

image. We then incorporate this basis idea into our

minimization.

In section “Background,” we present the background

on linear color correction. Our new alternating least

squares algorithm for the joint estimation of the color cor-

rection matrix and shading is presented in section

“Alternating Least Squares Color Correction.” Experi-

ments demonstrate the utility of our method in section

“Experiments and Results.” The article concludes in sec-

tion “Conclusions.”

BACKGROUND

Equation (1) is an over-determined system of equations,

which is usually solved by the least squares regression,14

M5P1Q; P15½PtP�21
Pt (4)

where P1 denotes the Moore-Penrose pseudo-inverse15

and t the matrix transpose. From a statistical point of

view, we assume that the XYZs in Equation (2) are meas-

ured without error. However, Marimont and Wandell pro-

vide an alternate “total least-squares” minimization where

measurement error can lie in the camera RGBs or meas-

ured XYZs.16 Vrhel and Trussel carried out the minimiza-

tion indirectly.17 First, Principal component analysis is

used to find a 3D basis to model spectral reflectance.

With respect to this, 3D assumption color correction is

exactly a linear transform. Finlayson et al. proposed a

constrained least-squares regression, where the 3 3 3

Fig. 1. Illustration of (a): cropped Macbeth color chart image, (b): cropped image of the gray chart showing the non-
uniform shading, (c): color chart in (a) after dividing out by (b).
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linear transform is constrained to map one (or possibly 2)

color patches exactly.18 The authors note that usually it is

beneficial to map the white patch without error, hence the

name of their algorithm, the white preserving color cor-

rection. Although the constrained regression in general

returns a higher mean error than standard linear color cor-

rection, the authors maintain that it performs particularly

well when there is incomplete training set and so called

maximum ignorance training is performed.

An advantage of 3 3 3 linear mapping is that when the

exposure changes (e.g., an RGB becomes darker) the

resulting RGBs are correctly mapped to the corresponding

XYZs.

kPM � kQ (5)

In contrast, with the exception of the root-polynomial

method,5 other nonlinear color correction schemes (in

particular polynomial color correction)6 work less well

when exposure varies (the same object color might be

mapped to different xy chromaticities if, say, the object is

viewed both in a well exposed and under exposed part of

the image). Andersen and Hardeberg19 proposed an

improvement to the linear color correction with a view to

tackle the aforementioned nonlinear color correction

exposure dependence problem. Their proposition of the

mapping from RGB to XYZ uses a set of linear trans-

forms, where each transform is applied in a different

region (hue slice) of the color space. Their method

improves on the linear color correction, while maintaining

its major advantage, that is, (5) still holds.

Nevertheless, none of the above color correction algo-

rithms addresses the problem of nonuniform lighting vari-

ation (unless the shading field is known) except the Funt

and Bastani12 method mentioned in the Introduction. That

method determines the 3 3 3 color correction matrix that

minimizes the sum of angles between the mapped RGBs

and the known XYZ values. Thus, instead of accounting

for both direction and magnitude of color vectors as is

the case in standard linear color correction, they find M

by minimizing the following

Min
M

X
i

angle ð PM½ �i;QiÞ: (6)

However, there is no closed form solution to (6). Rather,

a “good”—often nonglobally optimal—solution is found

by applying standard search algorithms (e.g., Matlab’s

fminsearch20). This search strategy is complex. Indeed, the

complexity of the algorithm makes it an unlikely candidate

for implementation in a digital camera. Moreover,

minimizing the angular error effectively discards some

information, which might be used to find a more precise

solution.

ALTERNATING LEAST SQUARES COLOR

CORRECTION

We outlined our proposition of the intensity independent

color correction in the Introduction. We model the light

intensity variation directly by introducing the diagonal

matrix D to the color correction equation:

DPM � Q:

Recall that we are minimizing:

Min k
D;M

DPMk2Q:

Unlike the standard color correction, this optimisation

does not have a least-squares closed form solution for D

and M. Rather an alternating least-squares procedure is

used. Here, we solve for M by keeping D fixed and then

solve for D given M. We alternate between solving for

D and M (and at each stage we update our estimate).

The principle of alternating methods is that parameters

are iteratively improved in turn, until they converge to

optimum good solution.21,22 Importantly, alternating

least squares is a procedure that is guaranteed to con-

verge. However, the alternating least square approach,

like searching, is not guaranteed to find the global

optimum.

A step-by-step algorithm to solve (3), in which both

parameter matrices D and T are updated while keeping

the other fixed, is given below. Pk denotes matrix P after

iteration k and P0 is the initial matrix P.

Algorithm 1:

1. Update D

D 

d11 � � � 0

� . .
.

�

0 � � � dNN

2
6664

3
7775; (7)

where

djj 5
pj:q

T
j

kpjk2
; j 51; . . . ;N; (8)

and pj and qj represent the jth row of Pk21 and Q (i.e., D

is the optimal diagonal transform in a least-squares sense

between Pk21 and Q).

2. Update M

M5ðDP 0Þ1Q : (9)

3. Update P

Pk5P0M: (10)

4. Repeat steps 2–4 until convergence.

Usually, about 15 iterations of the algorithm suffice to

produce a stable solution for matrices D and M. The

shading profile cannot be recovered precisely and conse-

quently it is recovered with some error. This is the case

when there is no shading and when there is. When there

is no shading, applying the diagonal matrix D should

have no influence (ideally it should be equal to identity);

and when there is shading the elements of matrix D will
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approximate shading in the corresponding points. How-

ever, the N diagonal elements of matrix D do not provide

the smooth shading field across the scene as D approxi-

mates the intensity correction patch by patch. Below, we

develop an algorithm targeted at recovering the shading

field with the smoothness constraint. Our motivation is

three-fold. First, there is strong correlation—for real shad-

ing affected images—between the best intensity correc-

tion terms for color patches and their close neighbours.

Second, modeling the shading field with few parameters

means (as we show below) that there are less unknowns

to solve for (and this means our ALS minimization con-

verges more rapidly). Finally, as we show in the experi-

mental section, there is no advantage of shading

correction per patch compared with the modeling of the

shading field as a whole across the calibration target.

In this approach, we model smoothness in the shading

field pixel by pixel. This is formulated as

J5
XK

k51

wkGk; (11)

where J is the E 3 F shading matrix (reciprocal of the shading

field) representing the E 3 F image of intensity variation

across the scene, K is the number of 2-D DCT basis functions

(six first DCT basis can be seen in Fig. 2), Gk represents the

kth, E 3 F DCT basis, and wk is a scalar representing its corre-

sponding weight. See Appendix for further details on obtain-

ing vector w given an image of the color chart.

Analogously to Algorithm 1, we can solve for the best

transformation matrix M and the shading matrix J using

a similar alternating least squares method as presented

below in the Algorithm 2. Each step of the Algorithm 1

has a corresponding step in the Algorithm 2.

Let Ri denote a three dimensional row vector of RGBs

at ith pixel of the color chart image R, Ji is the intensity

value of the corresponding pixel in matrix J and P is a N 3

3 matrix containing RGB values averaged over the center

area of each patch in the color chart image R. As in Algo-

rithm 1, the upper index denotes the iteration number, thus

R0 denotes the initial color chart image R:

Algorithm 2:

1. Update J (from Rk21 and DCT basis G) by determining

was described in the appendix.

2. Update M

a. Update R, Rk  J�R k21 where * denotes pixel by

pixel multiplication.

b. Update P; P k  average RGB for each color patch in

Rk.

c. Update M:

M5ðPkÞ1Q: (12)

3. Update R

Rk
i 5R0

i M; i 51; . . . ;E 3 F: (13)

4. Repeat steps 2–4 until convergence.

Empirically, we found that this algorithm converges in

about 15 iterations (for 21 DCT basis) which is independ-

ent of the size of matrices P and Q. When the mean least

squares (Eq. (3)) error difference between the iterations is

less than a very small amount (0.5 DE values) then we

indicate convergence. This is a much faster algorithm

Fig. 2. Mesh plots of the first six 2-D DCT basis functions used in ALS-DCT. The weighted linear combination of these
basis functions are used to approximate a shading field.
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than angle minimization. In the next section, both alter-

nating least squares methods are applied to synthetic and

real image data and are compared with other methods.

EXPERIMENTS AND RESULTS

We compared the performance of our proposed algo-

rithms with the standard linear color correction and Funt

and Bastani method in both synthetic and real data

experiments. As to the former, we used the Sony DXC-

930 camera sensor sensitivities23 to integrate the spectral

data from two surface reflectance datasets. The first data-

set comprised 96 reflectances of the Xrite SG color

checker (border patches excluded) and the second dataset

contained 180 patches of the Macbeth DC color checker

(again border patches were excluded). For each dataset,

we integrated the Sony sensor sensitivities and the color

matching functions under D65 illuminant24 producing

corresponding sets of camera responses (RGBs) and

XYZs. Spectra calculations were carried out for 31 spec-

tral channels: 400–700 nm sampled every 10 nm. For

each of the two datasets we created the set of 20 syn-

thetically generated shading fields (six of these can be

seen in Fig. 3). Those shading fields were generated by

randomly varying a center and spread of the normal dis-

tribution. The shading fields have the ratio of the maxi-

mum pixel value to the minimum value between 1.7

Fig. 3. Mesh plots of six synthetically generated shading fields with shading ratios of 3.3, 4.6, 3.2, 3.9, 2.1, and 6.7 for
shading images (a–f).

TABLE I. CIELAB DE errors obtained after color correcting the SG and DC chart images averaged over 20
different synthetic shading recoveries.

Method

SG chart DC chart

Mean DE�ab Median DE�ab Max DE�ab Mean DE�ab Median DE�ab Max DE�ab

Least squares 5.4 3.9 38 4.3 2.5 53
Angle minimization 4.2 2.2 25 3.1 2.2 25
ALS-Diagonal matrix 3.7 2.8 17 2.9 1.9 23
ALS-DCT Basis

1 Basis 5.4 3.9 38 4.3 2.5 53
3 Basis 4.9 3.7 27 4.0 2.2 54
6 Basis 4.1 3.0 22 3.1 1.6 25
10 Basis 4.0 2.9 19 3.0 1.6 24
15 Basis 3.7 2.7 18 2.9 1.6 23
21 Basis 3.7 2.7 18 2.9 1.6 22
28 Basis 3.7 2.7 18 2.9 1.6 22
Uniform lighting LSQ 3.6 2.6 17 2.9 1.6 22

The transformation matrices were tested on the ground truth image. Five methods are compared: Least squares, angle minimization,
alternating least squares with the diagonal matrix, alternating least squares with 2-D DCT using 1, 3, 6, 10, 15, and 21 basis functions
and the least squares on the ground truth image (shading field removed).
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(weak shading) and 13 (strong shading). Next, we multi-

plied the two color checker images by the generated

shading fields obtaining 2 3 20 images of the color

checker with nonuniform lighting. Then, for each of these

2 3 20 color checker images, we calculated the color cor-

rection matrices using standard linear color correction,

Funt and Bastani method and our two alternating least

squares methods. We also calculated two additional color

correction matrices from the two color checker images

before any of the shading fields were applied, that is,

with a uniform lighting field. These two images were

also used as the ground truth in our experiments, that is,

all the above methods were tested on these two uniform

lighting images. For each color correction matrix M, we

calculated the mean, median and max DE in the CIELab

color space23 from all patches in the test color chart giv-

ing us the above three statistics for each of the 20 train-

ing color charts. The average of those three figures

across the 20 images can be seen in the rows of Table I.

The reader can see that the Algorithm 2 was tested with

a varying number of DCT basis, ranging from 1 to 21

(the actual numbers of basis were chosen according to

the DCT zigzag pattern of 1, 3, 6, 10, 15, and 21 derived

from Fig. 413). From comparing the rows of Table I, it is

clear that a single DCT basis is unable to correct for the

nonuniform lighting field and returns the result, which is

identical to the standard linear color correction. As the

number of DCT basis increases, the results improve

reaching the accuracy of the diagonal alternating least

squares and also the standard LCC with the uniform

lighting. Both alternating least squares methods produce

the similar results and both slightly outperform the Funt

and Bastani method. Moreover, for the synthetic data, the

Algorithm 1 produces the same error statistics for any of

the 20 shading fields, that is, the mean of the statistics in

the Table I is identical to the 20 separate error statistics.

This is not the case for the Funt and Bastani method,12

where the means of the three statistics given in the two

tables are slightly higher than for the Algorithm 1, but

the individual result error statistics can be substantially

higher, the highest was 7.9, 3.6, and 42 for the mean,

median and max DE (SG chart) and 3.7, 2.6, and 44 (DC

chart). The results for the alternating least squares with

the basis functions vary only slightly between different

shading fields and are in fact very close to the mean

results provided in the two tables, for example, for 21

DCT basis, the corresponding figures are 4.1, 3.0, and 20

(SG chart) and 2.9, 1.7, and 23 (DC chart). Figure 5

illustrates the mesh plots of the recovered shading fields

for 21 DCT basis and the diagonal alternating least

squares algorithms. Images of the SG chart, with shading

Fig. 4. Zigzag ordering of 2-D DCT image components
as used in JPEG compression13.

Fig. 5. (a) Mesh plot of the recovered shading field [Fig. 3(a)] for synthetic SG chart using ALS-DCT with 21 basis func-
tions. (b) Mesh plot of the same recovered shading field using ALS with the diagonal matrix.

Fig. 6. (a) Illustration of synthetic SG chart with shading
field [Fig. 3(a)] applied; (b) shading field removed using
ALS-DCT with 21 basis functions.
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field applied and removed after recoveries are compared

in Fig. 6. For the DC chart, the same illustrations are

shown in Figures 7 and 8.

Next, we performed the same experiment using the

data obtained from the camera. We used Nikon D5100

camera to capture two images of the Macbeth color

checker placed in the VeriVide cabinet and lit by the

D65 metamer illuminant. We call the two images: test

image 1 (with a strong shading gradient-shading ratio of

14 produced by partially blocking the light in the light

cabinet see Fig. 9) and test image 2 (with a smoother

shading, shading ratio of 2.5). Here, we ignore light fall-

off around the edges of the image. For both color chart

images, an additional image of the gray chart (positioned

at the same location as the color checker) was also taken

to represent the real intensity variation. Dividing the

color chart RGBs by the corresponding intensity values

from the gray chart produces the ground truth image (see

Fig. 1 for test image 1).

The XYZ tristimulus values of each color patch were

measured using a Gretag Macbeth SpectroEye spectro-

photometer.* The camera responses were then mapped

to the XYZ tristimulus values using the same algorithms

as in the synthetic experiment. The ground truth RGB
values were multiplied by the color correction matrix

M, derived from each algorithm. The algorithms per-

formance comparisons are shown in Table II. The

results generally confirm the observations from the ear-

lier experiments. Both alternating least squares methods

provide consistently similar results and approach the

performance obtained with the color correction matrix

obtained from the ground truth. Similarity between the

results of Tables I and II means both algorithms

reached the same level of performance. Increasing the

number of DCTs to 28 did not change the results. This

suggests that more DCT functions are not necessary.

However, Funt and Bastani angle minimization proce-

dure provides less consistent results for these two diffi-

cult cases.

Figure 10 illustrates the mesh plots of the recovered

shading fields for 21 DCT basis and the diagonal alternat-

ing least squares algorithms for test image1. Image of

the Macbeth chart alongside the same image with the

shading field removed is shown in Fig. 11. The corre-

sponding figures for test image 2 are shown in Figs. 12,

13 and 14. The figures compare the color chart with and

without shading.

In above experiments, the availability of the ground-

truth data allowed us to calculate the colorimetric errors

and establish that 21 DCT coefficients were enough to

model the shading profile. In a real application, when

no information is available on the shading profile, an

alternative for testing whether enough DCT coefficients

were included would be to check the change in the

resulting XYZ or CIELAB values between various

(increasing in number of elements) sets of DCT coeffi-

cients. Yet another approach would be to assume that

the shading profile is not less smooth than in the experi-

ments performed here. Where 21 DCT coefficients were

enough for all the images including a very artificial

strong gradient in test image 1, which would be highly

unlikely to be created in practice. In summary, the num-

ber of basis functions needed depends on the expected

shape of the shading image across the target. In our

Fig. 7. (a): Mesh plot of the recovered shading field (Figure 3 (b)) for synthetic DC chart using ALS-DCT with 21 basis
functions. (b): Mesh plot of the recovered shading field using ALS with the diagonal matrix.

Fig. 8. Illustration of (a): synthetic DC chart with shading
field (Figure 10 (b)) applied; (b): shading field removed
using ALS-DCT with 21 basis functions.

*This provides measurements under uniform illumination of D65 for

each of the color patches.
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Fig. 9. Mesh plot showing the variation in intensity in the grey chart for test image1. (b): Cropped image of the same
grey chart.

TABLE II. CIELAB DE errors obtained after color correcting test images 1 and 2.

Method

Test image 1 Test image 2

Mean DE�ab Median DE�ab Max DE�ab Mean DE�ab Median DE�ab Max DE�ab

Least squares 8.6 7.2 25 4.9 3.9 12
Angle minimization 4.4 3.9 7.3 3.8 3.6 8.9
ALS-Diagonal matrix 4.0 4.2 7.9 2.7 2.9 5.3
ALS-DCT Basis

1 Basis 8.6 7.2 25 4.9 3.9 12
3 Basis 5.3 4.8 12 4.2 4.1 9.6
6 Basis 4.7 4.6 8.1 3.1 3.1 5.9
10 Basis 4.2 4.5 7.1 3.1 3.1 6.2
15 Basis 4.0 3.7 7.0 3.0 3.1 5.5
21 Basis 4.0 3.7 7.1 3.0 3.3 4.8
28 Basis 4.0 3.6 7.5 3.0 3.2 5.2
Uniform lighting LSQ 3.1 3.2 6.6 2.8 3.0 6.0

The same methods as in Table I were compared.

Fig. 10. (a) Mesh plot of the recovered shading field for test image1 using ALS-DCT with 21 basis functions. (b) Mesh
plot of the recovered shading field using ALS with the diagonal matrix.
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experiments, we deliberately tried to simulate hard cases

where the gradients were strong without being unrealis-

tic. For practical purposes, we believe 21 DCT coeffi-

cients suffice.

In Table III, the effect of the shading ratios on DE val-

ues are illustrated for various number of DCT basis on

synthetic DC chart. We can see that as the shading profiles

become steeper, the DE errors increase. This is not visible

for the 21 DCTs since all 20 images had their shading pro-

files discounted accurately irrespective of their steepness.

However, as the number of DCT coefficients decrease, the

errors increase, particularly for those images which were

altered by steep shading profiles. However, for practical

purposes the increase afforded by 21 as oppose to 10 basis

functions is modest. We found 10 basis functions sup-

ported very good color correction performance.

Fig. 12. Mesh plot showing the variation in intensity in the gray chart for test image 2. (b) Cropped image of the same
gray chart.

Fig. 13. (a): Mesh plot of the recovered shading field for test image2 using ALS-DCT with 21 basis functions. (b): Mesh
plot of the recovered shading field using ALS with the diagonal matrix.

Fig. 11. (a) Cropped image of test image 1. (b) Shading
recovered using ALS-DCT with 21 basis and removed from
(a).

Fig. 14. (a) Cropped image of test image 2. (b) Shading
recovered using ALS-DCT with 21 basis and removed from
(a).
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CONCLUSIONS

In this article, we introduced the family of alternating

least squares algorithms as a new approach for camera

color correction. These algorithms are particularly useful

when the reference color chart is illuminated non-

uniformly as they remove the need for an additional

image of the gray chart. The key to these methods is that

the two unknown parameters (the shading and the color

correction matrix) are solved for in turn, until conver-

gence. Two variants of the algorithm have been proposed:

first, modelling the shading with a diagonal matrix and

second, decomposing the shading using 2D DCT basis

functions. The latter should be the favourite as it incorpo-

rates the constraint on the intensity field smoothness and

hence it requires estimating fewer parameters. We have

shown that 15 DCT basis suffice to model the shading

field. The diagonal matrix alternating least squares would

require estimating as many parameters as there are

patches in the color chart, which for the larger color

charts such as DC color checker becomes a significantly

higher number. Although the experiments presented here

involved only linear color correction, both alternating

least squares methods could be applied for root-

polynomial and polynomial color corrections, given

enough data are available. In particular, the basis decom-

position method should be more suitable for adopting

here for the same reason that was mentioned above.
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APPENDIX

Below, we give details on calculation of the basis weight

vector w required by the Algorithm 2 (line 2). Let Rj

denote the jth color channel of the reference chart image

where j 5 1, 2, 3, N is the number of color chart

patches and Gk the k-th basis image where k 5 1, . . . , K.

Then, for each of the three color channels, we calculate

K images as the following ratios: i.e., Rj=G1, Rj=G2, . . . ,

Rj=GK . Next, for the above ratio images, we calculate

the average pixel values at the N locations of the color

chart patches. We place these average pixel values into

the N 3K matrix Hj. We form the 3N 3K matrix H

by stacking matrices Hj for all three color channels.

H5

Hred

Hgreen

Hblue

2
664

3
775:

Similarly, we form the column vector u with 3N
elements

u5

X

Y

Z

2
664

3
775; (A1)

where X; Y , and Z denote the column vectors of the tris-

timulus value matrix Q. The K-vector w can be calcu-

lated using least squares regression.

w5H1u: (A2)
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