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Abstract 

 

Temperature is one of the most important abiotic environmental regulators of plant growth 

and development. The temperature-dependent elongation of the Arabidopsis thaliana 

hypocotyls (seedling stems) is a well-characterised environmental response. The aim of this 

study was to identify allelic variants underlying Quantitative Trait Loci (QTL) responsible for 

the natural genetic variation of hypocotyl length in response to ambient temperatures.  

The Arabidopsis thaliana accessions were phenotyped for hypocotyl length at 12°C, 17°C, 

22°C and 27°C ambient temperature environments and substantial genetic variation was 

established. This facilitated a forward genetic approach by performing a QTL analysis to 

identify the genetic basis of thermal sensitivity. Firstly, fine-mapped QTL were identified for 

hypocotyl length in response to different temperatures. SMALL AUXIN UPREGULATED RNA 

38 (SAUR38) is a novel candidate gene for a QTL. Another major-effect QTL ‘Temp22.2’ was 

also identified which harbours the candidate gene PHYTOCHROME B (PHYB). Secondly, fine-

mapped ‘Environmental QTL’ were also discovered for the genotype by environment (G x E) 

interaction. PHYTOCHROME D (PHYD) is a candidate for a temperature-responsiveness QTL.  

For QTL cloning, functional characterisation of SAUR38 and PHYB was carried out by 

knockout analysis and transgenic allelic complementation. The results showed that SAUR38 

controlled natural variation in the Tsu-0 accession by increasing elongation. The PHYB alleles 

of Ct-1, Sf-2 and Col-0 accessions explain the Temp22.2 QTL. Ct-1 and Sf-2 alleles are 

positive regulators increasing elongation, whereas Col-0 allele is a negative regulator. 

Temp22.2 QTL was cloned and novel alleles were discovered revealing the molecular basis 

of quantitative variation in hypocotyl length in response to temperature.  
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Chapter 1 

Introduction 

 

1.1 Introduction: 

Temperature is one of the most important environmental abiotic factors that affect plant 

growth and development. Changes in ambient temperature affect plant growth 

throughout its life cycle at all different stages of development from seed germination, 

seedling establishment, vegetative growth and flowering time. The problem of global 

warming is a key concern for plants for they are sessile in nature; and to survive and 

reproduce they need to rapidly adapt their growth and development to their changing 

warmer environments. The threats of climate change on plant species and ecosystem 

dynamics are obvious and increases in mean global temperature poses a significant 

environmental challenge to them. In such an ever changing climate, it is important to 

develop our understanding of how plant growth responds to ambient temperatures and 

identify the underlying genetic basis of this growth regulation. 

Plants have developed sophisticated signal transduction mechanisms that allow them to 

show remarkable growth responses to even small changes in key environmental abiotic 

factors such as light and ambient temperature. Temperature is a major environmental 

signal (Franklin, 2010) and plants can sense temperature changes of as slight as 1°C 

(Argyris et al., 2005; Penfield, 2008; Kumar and Wigge, 2010) and alter their growth and 

development accordingly. The rise in mean global temperatures due to climate change 

will be a great challenge for plants to adapt to changing warmer climates. This is because 

the effects of temperature variation on plants can not only be seen in physiological 

processes such as photosynthesis and metabolism, but also on their growth and 

development related phenotypes. Minute changes in ambient temperature affect growth 

and the various stages of development (Penfield, 2008).  

The threats of our changing climate on biodiversity and ecosystems are profound 

(Barnosky et al., 2012). The effects of climate change on various plant species have been 
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well studied, e.g., in the temperate zones, with no changes in photoperiod, elevated 

spring temperatures have resulted in the accelerated onset of flowering in a number of 

plant species (Sparks et al., 2000; Menzel et al., 2001; Fitter and Fitter, 2002) representing 

altered plant phenology. As a consequence of climate change, plants are already 

displaying rapid adaptive evolutionary responses in their flowering time (Franks et al., 

2006). Climate change is also responsible for altered plant distributions (Willis et al., 

2008). Furthermore, it has been estimated that one-third of all plant species in Europe 

will go extinct solely due to the effects of increased temperature as a consequence of 

climate change (Thuiller et al., 2005). Crop plants also face serious threats from a warmer 

world by affecting yields. The significant harmful effects of elevated temperatures on crop 

yield have already been highlighted (Battisti and Naylor, 2009). It is predicted that as little 

as 1 – 2°C rise in temperature will have noticeably unfavourable effects on crop yields 

(Tubiello et al., 2007).  

 

 

Figure 1.1: Ambient temperature is a key abiotic signal that controls plant growth across all the 

various developmental stages from juvenile to adult. 
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Recent climate change trends have shown a steady increase in mean global temperatures. 

Throughout the last millennium, the period covering the last several decades of the 20th 

century witnessed an unprecedented rapid global warming (Stott et al., 2000). Since the 

late 19th century, our Earth has experienced an increase in the mean global surface 

temperature and the decade of 2000’s has been the warmest (IPCC, 2013). From 1880 to 

2012 our planet underwent a 0.85°C rise in the mean global temperature and it is 

expected from projections that the mean global surface temperature increase will be in 

the range of 0.3°C to 0.7°C for the period 2016–2035 relative to 1986–2005 (IPCC, 2013). 

The rising temperatures will affect local habitats and ecosystems; and this is leading to 

increased biological responses to global warming (Parmesan, 2006). Global warming is an 

environmental problem due to gradual increase in average temperatures, but at the same 

time it is also an evolutionary one, particularly for plants as they can potentially evolve in 

response to higher temperatures. This depends on the amount of genetic variation 

present in a particular species, known as intraspecific variation, which is the most primary 

level of biodiversity. Climate change not only threatens species extinction but also loss of 

intra-specific diversity termed as cryptic diversity (Balint et al., 2011). Therefore, 

identifying functional natural allelic variation is of high significance.  

For survival it is necessary that plants endure changes in environmental temperature. This 

can be achieved in two ways. To cope with the changing environment plants over the 

course of their lifetime may undergo phenotypic plasticity, which means that their 

features can be influenced to a certain degree by the surrounding environment. This 

includes any kind of change that is not a consequence of changes in its genetic makeup. 

Hence, plasticity is likely to be an essential feature of persistence of species in a rapidly 

changing climate (Nicotra et al., 2010). Another way of coping with environmental change 

in longer time scales is to adapt to the environment. Plant populations can adapt if they 

evolve in response to climate change by improving the function of a particular trait in a 

specific environment. Many species that lack both the phenotypic plasticity and natural 

variation may go extinct in the face of global climate change.  

Whether plants will be able to adapt to higher temperatures, due to increase in global 

warming, depends primarily on the genetics of the plant species. Genetic variation in 

natural plant populations for a particular species is necessary for adaptation to changing 
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conditions. Naturally occurring variation is likely to be instrumental in allowing adaptation 

to new temperature environments. Therefore, the whole issue of such responses is 

addressed by origin and maintenance of natural variation in plant populations. Due to 

environmental change and related selection pressures, plants will experience growth and 

development related challenges. Under such circumstances, genetic variation in plants 

will allow the maintenance of its evolutionary potential and this could lead to their 

persistence (Hoffmann and Willi, 2008). Polymorphisms having functional effects on 

phenotypic variation must be identified to comprehend how ecologically important 

natural variation is evolved (Mitchell-Olds and Schmitt, 2006). 

1.1.1 Study of Intraspecific Variation in Response to Temperature: 

Arabidopsis thaliana (Arabidopsis) is a small annual flowering plant and it is a model 

experimental system for molecular and genetic studies (Meyerowitz, 1987).  

 

 

Figure 1.2: Image of Arabidopsis showing characteristics that help make it a useful model 

organism. 
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Arabidopsis is broadly distributed in the northern hemisphere (Al-Shebaz and O Kane, 

2002; Hoffmann, 2002). It grows in various global climates and habitats. They are not only 

found in natural landscapes such as fields, rocky slopes and Mediterranean forests, but 

also in anthropogenic areas such as roadsides and pavements (Hoffmann, 2002; Pico et 

al., 2008). 

Arabidopsis is an efficient model plant due to several biological characteristics (Somerville 

and Koornneef, 2002). It has a short life cycle (6-7 Weeks), a small genome (~150 Mb) and 

can be easily genetically transformed (Meinke et al., 1998). Moreover, it is a selfing plant 

and natural accessions are homozygous which produce large quantity of seeds (~10,000). 

Though its genome is relatively small, it still shares the functional genomic characteristics 

of other higher plants. Arabidopsis was proposed as a model plant for genome analysis 

(Meinke et al., 1998) and due to an international effort the accession Columbia (Col-0) 

genome was sequenced (AGI, 2000), the first in the plant kingdom. Moreover, various 

experimental tools are available which include large genetic resources; and bioinformatic 

resources are becoming increasingly available. Therefore, because of all of its genetic 

characteristics, it is a model organism for plant genetics and development. Additionally, 

Arabidopsis is an ideal experimental system for integrating genomics with the study of 

ecology and evolution (Mitchell-Olds, 2001). The study of ecological and evolutionary 

processes are not well known from a climate change point of view, including the genetic 

basis of local adaptation (Anderson et al., 2012), and in this regard, the synthesis of 

functional genomics with the study of ecology and evolution is an interesting emerging 

interdisciplinary field (Jackson et al., 2002; Mitchell-Olds and Schmitt, 2006). 

One of the key sources of genetic variation in natural populations is mutation. Over the 

course of evolutionary history, mutations have occurred in nature, which are now 

reflected in the genetic diversity seen in Arabidopsis accessions. Understanding the 

nature of this variation at the molecular level for important plant architectural traits can 

help us to understand how plant species adapt to their surrounding environment. 

Arabidopsis is a largely selfing species (Abbott & Gomes, 1989) and a lot of natural 

variation is distributed among instead of within wild populations. The Arabidopsis 

accessions collected worldwide vary from one another at thousands of loci and this 

represents naturally occurring genetic variation that cannot be achieved in the laboratory 
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(Alonso-Blanco and Koornneef, 2000). This makes these accessions a powerful natural 

resource to dissect the molecular basis of natural variation for traits of interest. Genetic 

analyses can be used to investigate responses to environmental factors in these 

accessions. Differences in accessions are suitable to unravel the molecular basis of their 

responses to environmental factors for important morphological traits. 

The identification of mutant alleles, either dominant or recessive, related with phenotypic 

variation in Arabidopsis accessions will be a challenge (Meinke, 2013). Furthermore, to 

understand the molecular and genetic basis of naturally occurring variation in plant 

developmental traits is one of the major challenges of current biology (Alonso-Blanco et 

al., 2005). It becomes more interesting when we aim to study this variation in response to 

essential environmental factors such as temperature. This addresses the main notion of 

whether Arabidopsis accessions respond differentially to temperature changes based on 

their natural variation. Greater the variation of growth responses to temperature, greater 

would be the ability of the species to adapt to changing warmer climates.  

Generally, plant growth is a trait that is quantitative in nature, showing a continuous 

distribution, and is controlled by multiple loci and the environment. Quantitative traits 

are difficult to study as they are under the control of multiple genes and are also 

influenced by the environment. Undertaking research on quantitative traits related to 

plant growth and development, in response to temperature, can potentially improve our 

basic knowledge of the underlying genetic components that contribute to the variation of 

these traits.  

It is quite interesting that those environmental factors such as temperature and light 

which affect the growth of adult plants also influence the hypocotyl, which is the seedling 

stem. Therefore, the hypocotyl of Arabidopsis is an important seedling organ and is an 

excellent proxy of elongation growth in plants. It is a model organ for investigating the 

effects of environmental factors on its growth. Seedling development is very plastic and is 

modulated by ambient temperature responses. Plants need to cope with their ever 

changing environment and successful survival is dependent upon their ability to integrate 

environmental cues to regulate their growth and development. This ability is most 

important at the seedling stage and hypocotyl length plays a pivotal role in seedling 

establishment, which is an ecologically critical developmental process. Hypocotyl length is 
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one of the important life history traits of plants and is necessary for plant survival in the 

early juvenile stage. Hypocotyl elongation is a well characterised seedling process (Quail 

et al., 1995; Quail, 2002) which allows the seedlings to initiate photoautotrophic growth. 

The hypocotyl, in the early photomorphogenesis stage, enables the seedling to cut 

through the soil and reach sunlight so that the first leaves can appear and start growing in 

order to initiate photosynthesis for the entire plant. It is of significance both from an 

ecological and molecular point of view because in addition to the environmental factors it 

is also influenced by endogenous phytohormone regulators. Multiple cues integrate to 

control the developmental process of hypocotyl elongation (Alabadí and Blázquez, 2009) 

and therefore, it is a good system to study the Genotype x Environment (G x E) 

interactions. In light of all this, the hypocotyl is ideal for ecological, evolutionary and 

molecular genetic examination.  

 

 

Figure 1.3: 1 week old hypocotyl lengths revealing response to temperature; the hypocotyl 

lengths are elongated at higher ambient temperature as compared to lower ambient 

temperature. A recombinant inbred line was phenotyped in short days (8 hours light/16 hours 

dark) at 170 μE/m2/sec.  

 

12°C
1.64 mm

27°C
9.36 mm

Under the control of endogenous and exogenous factors

Easily scored

Hypocotyl Length: A Model of Plant Growth

Ideal system to study G x E interaction
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Arabidopsis has a worldwide distribution (Redei, 1970) which reflects variable plant 

growth environments. Because of diverse geographic origins, the accessions have 

retained the best alleles for their survival. Hence the study of variation in response to 

temperature can to help identify the genes and alleles in specific accessions that have 

been used to survive in the native environments. It is expected that phenotypic variation 

in hypocotyl length among natural accessions represents the genetic variation which is 

necessary for adaptation to specific environments. It is anticipated that analysis of the 

natural genetic variation in hypocotyl length will provide distinctive knowledge from 

functional perspectives of candidate genes involved and potentially from an ecological 

perspective too. 

1.1.2 Hypocotyl Biology and Factors affecting its Growth: 

The hypocotyl is a relatively less complex organ for genetic studies because during 

germination of the seedling it does not grow as a result of cell division but rather due to 

cell elongation. It was shown that the hypocotyl cells, after forming in the seed embryo, 

do not undergo any further divisions after germination; rather the cells elongate during 

seedling emergence (Gendreau et al., 1997). However, the developmental process of 

hypocotyl elongation is complex, as it is controlled by both the environment and 

hormones (Jensen et al., 1998). Hence, in the hypocotyls, all growth takes place by cell 

expansion and elongation until saturation is reached. The natural variation affects 

hypocotyl elongation by modulating cell expansion.  

Although hypocotyl length is a manifestation of the genotype, its phenotypic expression is 

strongly influenced by light, temperature, and hormones. The two most important 

exogenous factors which crosstalk to regulate general plant development are light and 

temperature (Franklin, 2009). These two environmental factors affect hypocotyl 

elongation. Firstly, hypocotyl elongation is controlled by light and various phytochromes 

(PHYA – PHYE), which encode for plant photoreceptors (Mathews and Sharrock, 1997) 

that mediate this response. Phytochrome mutants were identified with long hypocotyls 

initially through mutagenesis screens (Somers et al., 1991; Reed et al., 1993; Parks et al., 

1993) that revealed genetic control of the hypocotyl. Light represses hypocotyl elongation 

and mutations in the phytochromes give rise to seedlings with long hypocotyls (Shin et 

al., 2009). 
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Another family of photoreceptors called cryptochromes also control hypocotyl elongation 

in blue light. Cryptochrome 1 (cry1) and cryptochrome 2 (cry2) are two receptors that 

mediate several light responses in plants. The functions of cryptochromes in hypocotyl 

elongation were identified from mutagenesis screens. The isolation of mutants deficient 

in cry1 and cry2 identified roles for these photoreceptors. Cry1 was identified due to its 

long hypocotyl phenotype in blue light and with no differences from wild type seedlings 

grown in R or FR (Koornneef et al., 1980; Lin et al., 1996).  In Arabidopsis, Cry1 mediates 

inhibition of hypocotyl elongation (Lin et al., 1996). Cry2 is also a negative regulator of 

hypocotyl length. When compared with wild type seedlings, cry2 null mutants displayed 

longer hypocotyls (Lin et al., 1998). 

Light intensity and hypocotyl length are inversely proportional to each other, the lower 

the light intensity, the bigger the hypocotyls and vice versa. By default, when a seedling 

germinates it undergoes skotomorphogenesis, i.e. growth in the dark when buried in the 

soil. This type of growth allows the hypocotyl to elongate and enables the seedling to 

emerge from the soil. Upon perception of light, plants undergo a developmental change 

and photomorphogenesis starts i.e. growth in light, and inhibition of hypocotyl elongation 

takes place; the opening of the apical hook and cotyledons, increase in root growth, and 

the pigment synthesis is initiated (Chen et al., 2004, Franklin et al., 2005).  

Upon germination, if the seedling senses reduced light quantity and low red/far red ratio 

due to vegetation canopy in the wild, it undergoes a shade avoidance syndrome which 

allows the hypocotyl to elongate enabling the seedling to reach higher to receive more 

light, a response which is mainly mediated by phyB (Smith and Whitelam, 1997). Plants 

have sophisticated photoreceptors which control these two different types of growth. In 

Arabidopsis, hypocotyl elongation has been widely studied as a model for light responses, 

which has revealed various genes coding for photoreceptors and transcription factors 

(Quail, 2002; Kevei and Nagy, 2003). Plants have evolved various photoreceptor gene 

families that sense various wavelengths of light.  

Secondly, temperature promotes hypocotyl elongation and has an antagonistic effect to 

light. Temperature is directly proportional to hypocotyl length; the higher the 

temperature, the bigger the hypocotyls and vice versa. The growth effects of temperature 

on hypocotyl length both in light and darkness have been previously studied. In 
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Arabidopsis, temperature-dependent hypocotyl elongation is associated to an increase in 

auxin levels at higher temperatures in light (Gray et al., 1998). It was shown that 

hypocotyls displayed a dramatic elongation at 29°C as compared to 20°C and it was 

suggested that growth at higher temperature promoted elevated levels of auxin which 

resulted in increased elongation of the hypocotyl. In another study, in a temperature-

dependent manner, Arabidopsis hypocotyls elongated differentially at various 

temperatures when grown in darkness; the hypocotyl length at 23°C was bigger than at 

16°C (Blázquez et al., 2003). Hence in darkness, higher temperatures also increased 

hypocotyl elongation. 

PhyB is one of the important photoreceptors controlling hypocotyl elongation in response 

to light. In the presence of high light, the Red:Far Red (R:FR) ratio is high. The red-

absorbing (Pr) cytosolic form of phyB, after excitation, photoconverts to the far-red-

absorbing form (Pfr) where it translocates to the nucleus (Sakamoto and Nagatani, 1996; 

Kircher et al., 1999) and directly interacts with transcription factors called Phytochrome-

Interacting Factors (PIFs). This leads to the quick degradation of PIFs (Lorrain et al., 2008; 

Leivar and Quail, 2011) which causes a reduction of growth rate in the seedling stem. 

Conversely, under low R:FR ratio, the Pfr changes to Pr, that is the inactive form. This 

conversion allows the PIFs to build up and bind promoters of genes that allow the 

hypocotyl cells to elongate (Franklin, 2009). 

PhyB has been shown to be a major determinant of hypocotyl elongation in white and red 

light (Reed et al., 1993). This has been demonstrated by mutational studies which showed 

that compared with wild type (WT) seedlings, phyB null mutants displayed a long 

hypocotyl (Reed et al., 1993). Moreover, in another study, the seedlings that 

overexpressed phyB exhibited exaggerated photomorphogenic development with shorter 

hypocotyls (Wagner et al., 1991). PhyB and higher ambient temperature have a close 

relationship. PhyB has shown to regulate plant architecture at high ambient temperatures 

(Foreman et al., 2011). The results showed that when grown at 28°C, phyB mutants have 

lower biomass and are less viable. This revealed an important role for phyB at higher 

ambient temperatures. Hence, phyB is vital to temperature response in the hypocotyl 

growth. 
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The importance of phyB and temperature interaction can yet be seen in the flowering 

time trait. In a study, it was shown that a small change from 16°C to 22°C dramatically 

affected flowering time in the null phyB mutants (Halliday et al., 2003). The phyB mutants 

flowered earlier at higher temperature but flowered at the same time as WT plants at 

lower temperature. 

Phytochrome-Interacting Factor 4 (PIF4) is a transcription factor which incorporates 

various environmental signals in plant growth and development (Lucyshyn and Wigge, 

2009). PIF4 regulates hypocotyl elongation responses under low light conditions (Lorrain 

et al., 2008). Molecular genetic studies have shown that functional copies of PIF4 are 

required for hypocotyl elongation (Huq & Quail, 2002). It is a major target that promotes 

hypocotyl growth at higher temperatures. Several studies have shown that PIF4 is 

essential for the elongation of the hypocotyl in response to high temperature (Stavang et 

al., 2009; Koini et al., 2009; Foreman et al., 2011). pif4 mutants had significantly smaller 

hypocotyls at 29°C when compared to Col-0 WT; the hypocotyl length of pif4 mutants 

grown at 29°C were similar to Col-0 WT hypocotyls grown at 20°C (Stavang et al., 2009). 

 In another study, pif4 mutants displayed no hypocotyl elongation when transferred to 

high temperature (Koini et al., 2009); hence PIF4 function is vital for hypocotyl elongation 

in response to temperature. Recently, it was demonstrated that PIF4 controls synthesis of 

auxin at high temperature, leading to increased hypocotyl elongation (Franklin et al., 

2011). Under warm conditions, PIF4 controls hypocotyl elongation by binding to the 

promoters and regulates the expression of Tryptophan Aminotransferase of Arabidopsis 1 

(TAA1) and CYP79B2, two genes that encode auxin enzymes (Franklin et al., 2011). More 

recently, it has been demonstrated that PIF4 regulates hypocotyl elongation at higher 

ambient temperature by directly activating YUCCA8, which is another auxin biosynthetic 

gene (Sun et al., 2012). 

In another study a direct link between PIF4 and Phytochrome-Interacting Factor 5 (PIF5) 

and auxin signaling was shown in which PIF4 and PIF5 bind to the promoter region of an 

auxin gene IAA29. The results showed that this gene had reduced transcript levels in pif4, 

pif5 and pif4pif5 mutants (Hornitschek et al., 2012). PIF4 and PIF5 have been implicated in 

the control of diurnal hypocotyl growth by promoting growth during the dark period at a 
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time when their proteins are in high quantities, whereas at dawn hypocotyl elongation 

ceases because the proteins are degraded in the light (Nozue et al., 2007). 

The hypocotyl elongation in response to temperature has been examined in other species 

too. For example, in Abutilon theophrasti, another annual weed, it was shown that 

temperature significantly affected hypocotyl elongation (Weinig, 2000). Hypocotyls were 

bigger at higher temperature than lower temperature under both conditions of simulated 

foliar shade and full spectrum light. 

In addition to light and temperature, which are exogenous environmental cues, 

endogenous plant growth hormones have been also involved in controlling hypocotyl 

elongation (Vandenbussche et al., 2005). Auxin, gibberellins (GAs) and brassinosteroids 

increase hypocotyl elongation (Jacobsen and Olszewski, 1993; Romano et al., 1995; 

Clouse, 1996; Cowling and Harberd, 1999), while cytokinins and abscisic acid (ABA) inhibit 

hypocotyl elongation (Chaudhury et al., 1993; Stavang et al., 2009). Under 

skotomorphogenic conditions, ethylene inhibits hypocotyl elongation, whereas, under 

some photomorphogenic conditions, it promotes hypocotyl elongation (Smalle et al., 

1997). Hence depending on the light condition, it positively or negatively regulates 

elongation. 

DELLA proteins, like phyB, negatively regulate PIF4. It has been shown that DELLAs are 

repressors of PIF transcription activity as result of which the PIFs are inactivated (de Lucas 

et al., 2008). In the presence of light due to active phyB, PIF4 is destabilised and DELLAs 

stop PIF4 transcription which leads to suppression of hypocotyl elongation. The presence 

of GAs terminates this repression activity leading to the destabilisation of the DELLA 

proteins. This allows the PIF4 activity to be increased which promotes hypocotyl 

elongation. 

It was also demonstrated that when GAs are not present, the DELLA proteins build up in 

higher levels and interact with the transcription factor Phytochrome-Interacting Factor 3 

(PIF3) (Feng et al., 2008). This prevents the binding of PIF3 to target gene promoters and 

down regulates their gene expression. In this way the PIF3 mediated hypocotyl elongation 

is terminated. Conversely, in the presence of GAs, DELLA proteins are degraded and this 

allows the PIF3 to be released from their negative control. 
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In general, these studies show that, of the external abiotic factors, light responses of 

hypocotyl length have been well characterised, whereas the ambient temperature 

responses are not as well studied. 

1.1.3 Hypocotyl Length is Quantitative in Nature: 

Many Arabidopsis accessions have been surveyed for hypocotyl length when grown under 

different wavelengths of light and this revealed quantitative variation (Maloof et al., 

2001; Botto and Smith, 2002). In light of this observation, it is very likely that the 

hypocotyl length trait shows a continuous distribution when inherited; and therefore it is 

an excellent growth model to dissect and determine the genetic basis of quantitative 

variation. Studies on natural variation in hypocotyl growth in Arabidopsis accessions have 

mainly been carried out in light responses (Maloof et al., 2001; Pepper et al., 2002; 

Borevitz et al., 2002; Botto et al., 2003). This provides a strong indication that accessions 

can be a valuable natural resource to discover allelic genetic variation in hypocotyl length 

in response to temperature. The effects of a range of ambient temperatures on 

accessions and the alleles controlling hypocotyl length natural variation in response to 

temperature largely remain unknown.  

The first review of mapping in natural populations proposed to dissect quantitative traits 

in natural populations by Quantitative Trait Loci (QTL) mapping and to look into the 

ecological and evolutionary significance of such variation (Mitchell-Olds, 1995). Due to its 

importance, this review was regarded as a ‘call-to-arms’ (Slate, 2005). Complex traits in 

natural plant populations are inherited quantitatively due to their multifaceted genetic 

basis (Holland, 2007).  Natural variation has been used for the discovery of genes and 

their functions underlying various traits in Arabidopsis (Koornneef et al., 2004). In a 

similar way, in this study, natural variation is exploited in Arabidopsis to improve our 

understanding of the gene functions in hypocotyl length in response to ambient 

temperature. The analysis of accessions found in nature provides a vital source of natural 

variation that can be utilised for gaining insights into the control of hypocotyl length. 

Specific allelic variants can be discovered which are present in nature that may have a 

selective advantage under specific temperature conditions. 
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The identification of the genetic basis of such traits has been challenging due to the fact 

that they are under the control of multiple loci and are also affected by environmental 

factors. The gap between genotype and phenotype can be bridged by identifying the 

causal genes for natural variation in hypocotyl length in response to temperature. For this 

purpose there is a need to integrate the disciplines of genetics and molecular biology. 

Arabidopsis integrates both, due to the widely available methods and resources available 

and hence is a model system to investigate natural variation in hypocotyl length. QTL 

mapping, which is the statistical association of the phenotype with the genotype, can be 

used to dissect the natural variation by identification of the candidate genes that affect 

hypocotyl length during thermomorphogenesis. It can be pursued down to the molecular 

level with the help of molecular biology and functional genomic tools in order to clone 

the QTL, i.e., to find the underlying genes or alleles. QTL cloning is a major objective of 

quantitative genetics in Arabidopsis for key growth related traits.  

Hence, hypocotyl length, which is a plant developmental and architectural trait, can be 

quantitatively assayed in response to temperature because it is a complex trait in nature; 

its elongation exhibits a direct proportionality to ambient temperature signals received; it 

is involved in a straightforward process of seedling emergence; it is a trait that can be 

easily quantified; it is an important parameter of plant growth; and it may have an 

ecological adaptive significance. 

1.1.4 Plant Growth in Response to Temperature: 

Photoreceptors are key regulators controlling various aspects of plant growth and 

development in response to the environment. Striking temperature-dependent 

modifications in growth and development related traits have been observed in previous 

findings, as a consequence of photoreceptor inactivity (Mazzella et al., 2000; Blazquez et 

al., 2003; Halliday et al., 2003; Dechaine et al., 2009). This identifies roles for 

photoreceptors being involved in growth and development in a temperature-dependent 

manner. It also shows that temperature and light signalling are linked in nature due to 

variations in temperature and light in the environment. Interestingly, the photoreceptors 

also have central functions in the acclimation of plants to their surrounding growth 

environment (Smith 1995, 2000). 
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Most of the studies conducted in plants in response to temperature have been focused 

on freezing and high stress extremes. On one end of the temperature spectrum, cold 

acclimation, a process where plants are tolerant to sub-zero temperatures, has been 

extensively investigated in Arabidopsis (Chinnusamy, 2007). It has been shown that 

transcription factors called C-Repeat Binding Factors (CBFs) are functionally involved in 

cold acclimation (Stockinger et al., 1997). At the other end of the temperature spectrum, 

plants show responses to extreme high temperatures which are well characterised. 

Interesting genes have been identified that contribute to the overall thermotolerance in 

Arabidopsis (e.g. Chen et al., 2006; Perez et al., 2009). Plants also show acclimation to 

high temperature stresses, which depends on the expression of heat shock proteins 

(HSPs) (Queitsch, 2000). The family of HSPs, an important factor in the heat shock 

response in plants, is activated by Heat Shock Factors (HSFs) (Schramm et al., 2008; Liu et 

al., 2008) and are essential for plant thermotolerance reactions that prevent denaturation 

of target proteins (Sarkar et al., 2009) and maintain cell homeostasis (Wang et al., 2004). 

In short, plants are capable of tolerating low and high temperatures. Cold acclimation and 

thermotolerance allow plants to cope at freezing temperatures and high stress 

temperatures respectively (Penfield, 2008). Combined, these studies on freezing and high 

heat demonstrate that extreme temperatures are well studied on both ends of the 

temperature spectrum. However, the effects of moderate temperatures on plants are less 

well studied than might be expected (Samach and Wigge, 2005).  

Amongst the abiotic environmental factors that affect plant growth and development in 

Arabidopsis, there is genetic variation present for freezing temperatures (Hannah et al., 

2006), high stress temperatures (Tonsor et al., 2008), drought (Meyer et al., 2001; McKay 

et al., 2003; Bouchabke et al., 2008), salinity (Katori et al., 2010; DeRose-Wilson and Gaut, 

2011), UV light (Torabinejad and Caldwell, 2000; Cooley et al., 2001), CO2 (Zhang and 

Lechowicz, 1995; Tonsor and Scheiner, 2007), and metals (Kobayashi and Koyama, 2002; 

Hoekenga et al., 2003; Baxter et al., 2008). Ironically, of all the studies performed on 

Arabidopsis natural variation in responses to climate change related abiotic factors 

(Lefebvre, 2009; Assmann, 2013), ambient temperature responses on plant growth are 

lacking. Studies on ambient temperature responses are greatly required in the face of 

climate change (Assmann, 2013).  
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From a climate change perspective, the importance of conducting genetic analyses across 

a range of environments has been previously emphasised (Nicotra et al., 2010). From an 

ecological point of view, G x E interactions are necessary to understand how ecologically 

relevant phenotypes interact with the environment. The G x E phenotypic interaction can 

be observed in Arabidopsis and the genetic basis of this can be detected with the help of 

QTL analysis by quantifying the QTL x E effects. Several studies have investigated the G x E 

interactions of the abiotic environmental factors on plant growth. The G x E effects were 

observed for two growth related traits, shoot biomass and fruit production, in a study on 

drought response (Hausmann et al., 2005). Furthermore, significant G x E effects have 

also been reported in nutrient responses (Rauh et al., 2002; Loudet et al., 2003; 

Prinzenberg et al., 2010; Ghandilyan et al., 2009). In hypocotyl length, significant G x E 

interactions has been observed in light and hormonal response (Borevitz et al., 2002). In a 

similar way, this provides a strong indication that significant G x E effects of ambient 

temperature may also be prevalent for hypocotyl length, which has not been studied in 

Arabidopsis to date. 

As can be observed from the above literature review, previous studies have focussed on 

either extreme heat or cold to study the effects of temperature on plant growth. 

However, a recently emerging field of interest is the response of plants to more subtle 

changes in ambient temperatures (Franklin and Knight, 2010). Our knowledge of the 

effects of ambient plant growth temperatures is relatively less known amongst the 

environmental factors that control hypocotyl length. Furthermore, the molecular basis of 

natural variation in hypocotyl length in response to ambient temperatures is unknown. 

 

1.2 Research Questions: 

 Which genes control natural variation in hypocotyl length in response to ambient 

temperature? And what are the underlying functional alleles? 

 Which QTL are responsible for differential hypocotyl length responses to increased 

temperatures? 
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To address these questions, a genetic analysis of natural variation in seedling stem length 

architecture in response to temperature has been performed. In the first question, I am 

exploring the molecular basis of quantitative variation in hypocotyl length trait at various 

temperatures; and in the second one, I am discovering the G x E loci which could be 

involved in the natural variation of a ‘temperature-responsiveness trait’; i.e. which 

‘environmental QTL’ are associated with increased temperature responsiveness? Before 

addressing these questions, initially, it is logical to genetically determine the phenotypic 

variation in accessions at a range of ambient temperatures; and also investigate how the 

hypocotyl elongation responds to these temperature differences. This study, in general, 

aims to explore the phenotype-genotype interaction in an environmental context; and 

provide a mechanistic understanding, at the molecular level, of hypocotyl length variation 

and its response to an important ecological signal – temperature. 

 

 

1.3 Aims and Objectives: 

 To explore natural variation in response to a range of ambient temperatures 

 To map QTL for hypocotyl length in response to different ambient temperatures 

 To map ‘environmental QTL’ for a temperature-responsiveness trait 

 To identify alleles underlying phenotypic variation of the hypocotyl length trait in 

response to temperature 

 To clone novel QTL by functional complementation of QTL candidate genes 

 

1.4 Methodology: 

This section provides an overview of the overall methodology adopted to carry out the 

scientific investigation. Comprehensive research designs for all the different experiments 

and analyses conducted have been presented in detail in the methods and materials 

sections in each of the respective chapters. 
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Figure 1.4: Schematic diagram showing a top (phenotype) to bottom (genotype) approach 

including all milestones for the systematic exploitation of natural variation in order to functionally 

analyse allelic variation for hypocotyl length. Throughout the course from the phenotype to the 

genotype, each step feeds back into the mainstream flow facilitating subsequent steps until gene 

validation. 

 

This methodology aims at dissecting the Arabidopsis intraspecific genetic variation in the 

hypocotyl length trait in response to temperature. To identify the genetic determinants of 

phenotypic variation, a forward genetic analysis approach (i.e. from phenotype to 

genotype) has been adopted for this research study, as seen in figure 1.4. This approach 

aims to phenotype the trait under investigation at various ambient temperatures, leading 

to discovering the genotypic factors that contribute to the variation of the trait. This 

methodology reflects the aims of this study and is described stepwise as follows:  

 

1.4.1 Phenotypic Characterisation: 

In order to understand how the hypocotyl elongation responds to various ambient 

temperatures, a thorough phenotypic analysis was performed and this characterisation 
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determined the genetically controlled variation. For this purpose, a next-generation QTL 

experimental population in Arabidopsis known as Multiparent Advanced Generation 

Inter-Cross (MAGIC) was used which comprises of 19 diverse founding parental accessions 

and 527 recombinant inbred lines (RILs) (Kover et al., 2009).  The genetic variation 

present in the genomes of MAGIC parents has been described after they were sequenced 

(Gan et al., 2011). A detailed description of these lines and their usefulness has been 

given in Chapter 3. The 19 MAGIC parents were phenotyped for hypocotyl length at 12°C, 

17°C, 22°C, and 27°C, which fall within the ambient temperature range of 12°C – 27°C for 

Arabidopsis (Wigge, 2013). The phenotypic variation was genetically determined by 

keeping temperature and other environmental variables constant. Since Arabidopsis is 

well suited for studying the naturally existing phenotypic variation, the hypocotyl length 

phenotype was measured as an indicator of response to ambient temperature in the 

accessions. This phenotyping also revealed whether the MAGIC accessions possessed 

natural variation in their responses to a 5°C or more increase in temperature.  

 

1.4.2 QTL Mapping: 

The initial step towards dissecting the molecular basis of complex traits, such as hypocotyl 

length in Arabidopsis natural accessions, is QTL mapping (Salvi and Tuberosa, 2005). Once 

genetic variation for hypocotyl length in the parental accessions was established at 12°C, 

17°C, 22°C, and 27°C, the next step was phenotyping of the MAGIC RILs at the same four 

different temperatures. MAGIC RILs are immortal homozygous lines and can be 

phenotyped under different environmental conditions. This phenotypic quantitative data 

of the RILs, obtained at these four temperatures, was used for the QTL mapping of two 

different traits, viz., the ‘hypocotyl length trait’ and the ‘temperature-responsiveness 

trait’. The quantitative data of the RILs was statistically associated with allelic variation of 

molecular markers and QTL were identified. 

For hypocotyl length, the phenotypic data of the RILs obtained at these respective four 

temperatures was used in the analysis. This identified QTL at individual temperatures, 

revealing that QTL are mainly temperature specific. For the temperature-responsiveness 

trait, in order to map ‘environmental QTL’ for detection of G x E interactions, all possible 
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ratios of the four individual temperatures were calculated giving a total of six 

combinations. This method identified novel QTL for the ratio temperatures; i.e., the 

genetic basis of the observed phenotypic QTL × E interactions was detected. These QTL 

have been isolated in response to a change of 5°C or more increase in temperature rather 

than at an individual temperature. It is these QTL that are contributing to the variation in 

the temperature responses of the accessions. The ‘environmental QTL’ for temperature-

responsiveness trait were fine mapped and examined for QTL x E interactions. These 

interactions confirmed unique temperature effects when QTL were only identified in a 

subset of temperature environments. These QTL display a temperature-dependent 

correlation with hypocotyl length.  

In summary, the interest was to determine how many loci account for the natural 

variation of these two traits and where they were located. This was performed by QTL 

mapping which estimated the number and location of QTL segregating in the MAGIC RILs 

at the four individual temperatures and the six combination ratio temperatures for the 

two traits. 

 

1.4.3 Candidate Gene Identification: 

The post QTL analysis started with a search for strong candidate genes in each of the QTL.  

A candidate gene approach was used which identified specific genes in a QTL with 

nucleotide polymorphisms that could possibly determine the phenotypic differences 

observed in hypocotyl length. Within each identified QTL interval, candidate genes were 

searched for in the Col-0 accession by looking at the literature, gene ontology and 

annotations. The next important task was to find the alleles of these candidate genes in 

the remaining 18 parental accessions for the detection of polymorphisms. For this 

purpose, several functional genomic tools were used such as the whole genome 

sequences of the 19 MAGIC parents which were available and proved to be a very useful 

resource. This opened up for a more realistic sequence polymorphism analysis in the 

candidate genes and their alleles. With the help of high-throughput bioinformatic 

approaches, the genome sequence of Col-0, which is well annotated, was used to identify 

and locate the alleles of these candidate genes in the genomes of the other 18 accessions. 
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Following their identification, an in silico analysis was performed which comprised of 

multiple sequence alignment and sequence homology methods; and these were used to 

detect polymorphisms in the protein coding regions of the 19 alleles. Interesting 

polymorphisms were identified in the major-effect parental accessions that were 

contributing to the variation of the trait in a particular QTL. These accessions had extreme 

hypocotyl length QTL phenotypes. 

Following the fine mapping of QTL and candidate gene identification, functional strategies 

were used to test the candidate genes. This was carried out in two steps.  

 

1.4.4 Knockout Analysis: 

T-DNA mutant analysis, which is one of the most important functional genomic tools, was 

the first step allowing functional testing of candidate genes. Since the identification of a 

T-DNA mutant showing phenotypic effect in hypocotyl length provides further functional 

evidence for candidate genes, therefore, a knockout analysis was undertaken. This was an 

efficient strategy to study knockout phenotypes for candidate genes and those which 

showed interesting altered hypocotyl length phenotypes were further tested for 

functional complementation in order to clone the QTL. 

 

1.4.5 QTL Cloning by Transgenic Complementation: 

The use of molecular genetic tools aims at identifying the genes and their alleles that 

govern hypocotyl length trait variation. QTL cloning can be performed due to availability 

of molecular markers, full genome sequences and gene knockouts (Borevitz and 

Nordborg, 2003; Maloof, 2003); and due to molecular methods of transgenesis. The 

ultimate proof for a QTL candidate gene comes from by using brute force genetics; and a 

very powerful method for this is transgenic complementation (Maloof, 2003; Paran and 

Zamir, 2003) Borevitz and Chory, 2004; Weigel and Nordborg, 2005). Therefore, in order 

to identify the molecular variation underlying the QTL, which is a major challenge in 

evolutionary biology (Bergelson and Roux, 2010), a transgenic approach was adopted. 

Transgenic plants expressing the transgene allele from one accession in the other 
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accession is a definitive way of QTL cloning which determines the allelic variation for the 

trait. In Arabidopsis, transgenic complementation has been previously shown, e.g. for the 

CRY2 gene (El-Assal et al., 2001) and APR2 gene (Loudet et al., 2007); and this approach 

has been applied for QTL cloning in this study. Moreover, the QTL candidate alleles were 

also transferred into a null background to rescue the hypocotyl length phenotype in the T-

DNA knockout mutants. 

In summary, for QTL gene identification and to dissect the variation in hypocotyl length, 

firstly, QTL analysis was performed which has indeed been very successful in Arabidopsis 

by using RILs. Secondly, a combination of functional genomic and brute force genetics 

was applied to identify the specific alleles that underlie the QTL in response to 

temperature. 
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Chapter 2 

Phenotypic Characterisation of Thermo-Morphogenic Responses 

in Arabidopsis Accessions 

 

2.1 Introduction: 

The underlying genetic variation in Arabidopsis accessions for hypocotyl length can only 

be detected if quantitative differences in hypocotyl length exist. Therefore, the scientific 

objective of this chapter is to carry out a detailed phenotypic analysis and identify natural 

variation in Arabidopsis accessions that is genetically determined. For this purpose, the 

MAGIC parental accessions have been phenotyped because as a first step in the forward 

genetic analysis shown in figure 1.4, the phenotypic characterisation of the parental 

accessions is essential. This paves the way for the phenotyping of the RILs as it will reveal 

the extent of natural variation present in the parents of this mapping population for 

hypocotyl length. Moreover, as shown in chapter 1, these parental accessions have been 

collected from diverse geographical habitats and represent genetic variation to those 

native local environments; hence we expect a greater extent of phenotypic variation in 

hypocotyl length in response to temperature. 

Analysis of genetic variants provides a crucial resource of genetic variation which has 

been used in this chapter to develop a phenotypic understanding into the control of 

hypocotyl length in Arabidopsis. The hypocotyl length phenotype is a plant growth 

parameter and it is a quantitative measurement of growth. Naturally existing variation in 

Arabidopsis has been exploited to discover the thermo-morphogenic responses. The 

terms ‘accession’ and ‘genotype’ are used synonymously throughout this chapter. 

The initial task, as always with non-Mendelian traits, is to identify whether there is any 

genetic component in the causation of the variation of hypocotyl length phenotype. This 

task can be achieved by phenotyping the hypocotyl length of different genotypes under 

the same environmental conditions. The environmental variation, in this way, is 

controlled and any variation in the phenotype, if present, is determined genetically. 
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The genetic elements, the environmental factors and the interaction of both affect 

hypocotyl length and hence it is a complex trait. One such important abiotic 

environmental factor is ambient temperature. This study investigates its role in the 

contribution to the variation of hypocotyl length. The effect of temperature can be 

observed by changing the growing environment of the seedlings by different ambient 

temperature treatments. The patterns of phenotypic variation across variable 

temperatures can be examined. This is important because it not only allows us to 

comprehend natural variation but also responsiveness to varying temperatures. The 

interest is to dissect these various components and determine the effect sizes of each of 

these contributing components. This dissection can be feasibly performed across the 

temperature range and to also identify the G x E interaction. 

Additionally, due to the interest in temperature on which this project is based, this 

chapter also explains the temperature responsiveness of the 19 parental accessions. How 

does the hypocotyl length in Arabidopsis respond to different ambient temperatures? 

This is carried out by phenotyping the accessions across a range of ambient temperatures, 

12°C, 17°C, 22°C and 27°C, followed by calculating their responses to temperature. These 

four temperatures chosen for the study fall within the ambient temperature range and a 

difference of 5 degrees or more will show the responses of the genotypes. For 

Arabidopsis, temperatures less than 12°C are considered as sub-ambient; whereas 

temperatures greater than 27°C fall beyond the higher ambient range. For example, a 

temperature of 30°C has been shown to be the basal thermotolerance for Col-0 accession 

(Ludwig-Muller et al., 2000). The different temperature treatments have been used to 

test for the functional involvement of separate temperature responses of genotypes, 

controlling thermo-morphogenic hypocotyl growth.  

Arabidopsis is an appropriate model to study natural phenotypic variation that is present 

in various accessions. The hypothesis for the phenotyping experiment is that phenotypic 

variation between Arabidopsis accessions is a consequence of genetic variation between 

them. And it is predicted that any given accession, which has a unique genotype, will 

possess a constant phenotype at any given temperature; and this phenotype will remain 

distinct from other MAGIC accessions. The other prediction is that phenotypes of the 

MAGIC parents will change with temperature treatments showing differential phenotypic 
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plasticity. Phenotypic variation is a pre-requisite for QTL mapping and the phenotypic 

identification of genetic variation in hypocotyl length will be established. Before initiating 

analysis of natural variation for hypocotyl length, the overall amount of variation existing 

for hypocotyl length has been explored by a main quantitative genetic study with the 19 

MAGIC parental accessions. The results of this phenotypic assessment would determine if 

a QTL mapping could prove successful.  

Phenotypic variation among the MAGIC parental accessions represents genetic variation. 

This chapter provides a detailed phenotypic analysis of the MAGIC accessions primarily in 

the trait of hypocotyl length followed by the plant size trait as estimated from the total 

leaf area and attempts to find any correlation between the juvenile and vegetative stages 

of development. Hypocotyl length is also proposed as an ecologically relevant trait by 

investigating the hypocotyl length trait and plant size trait, of this heterogeneous set of 

accessions, in relation to their native habitats and local temperature conditions. 

 

Objectives of this chapter: 

1. To establish the presence of natural genetic variation underlying phenotypic 

variation for hypocotyl length trait in response to temperature in Arabidopsis 

2. To compare the morphological responses of growth in the accessions to a range of 

different temperatures 

3. To study the phenotypic plastic responses of the various accessions to a range of 

temperature treatments 

4. To identify possible extreme variations among the accessions in their responses to 

various temperatures 

5. To analyse temperature-induced hypocotyl elongation and gain a mechanistic 

understanding of the connection between ambient temperature and hypocotyl 

length 
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2.2 Methods and Materials: 

2.2.1 Methods and Materials for Hypocotyl Length Experiments: 

The phenotypic characterisation of the 19 parental accessions for the identification of 

natural variation among accessions and of the RILs for QTL mapping study were carried 

out in controlled growth conditions. This maintains the environmental conditions 

constant and any variation that is observed in the hypocotyl length is genetically 

determined. 

2.2.1.1 Sourcing of Seeds: 

The seeds of the MAGIC accessions and RILs were ordered from The European 

Arabidopsis Stock Centre (NASC) in Nottingham, UK. The list of accessions is provided in 

table 2.4. 

2.2.1.2 Surface Sterilisation of Seeds: 

This process was carried out in a laminar flow hood to prevent any contamination 

(especially in the Petri dishes). The seeds were first washed with 70% ethanol with 0.01% 

Triton X-100 (v/v) in a microcentrifuge tube for 3 minutes. The supernatant ethanol was 

discarded and seeds were given a second wash with 95 % ethanol for 1 minute. With a 

pipette, the seeds along with the ethanol were put on sterile filter paper (circular in 

shape; which provides a means for easily sprinkling the seeds over the Petri dishes). The 

seeds were allowed to completely air dry in the flow hood for a few minutes before 

sowing.  

2.2.1.3 Plating Procedure: 

The seeds were sowed in Petri dishes (plates) containing ½ strength Murashige-Skoog 

growth media (Murashige and Skoog, 1962) with no sucrose; for sucrose has been shown 

to interfere with light signalling and decreases light responsiveness (Smeekens, 2000) and 

hence it has strong effects on growth rates and de-etiolation responses. Once completely 

dried in the flow hood, the seeds were sprinkled evenly over the Petri dishes to create an 

equidistant distribution of the seeds.  
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2.2.1.4 Seed Germination: 

Seeds were allowed to imbibe after placing them evenly on agar plates. To account for 

potential variation caused by germination differences and consequently seedling age 

differences in the hypocotyls, the seeds were stratified in the dark for 4 days at 4°C to 

ensure uniform seed germination. Stratification not only improves the germination rate 

but also the synchronisation. After stratification, in order to induce germination and 

achieve maximum uniformity in germination the plates were placed at a standard 

temperature of 22°C in a growth incubator in short days. Germination of the seedlings 

was carefully monitored for 24-36 hours. It should be noted that since the seedlings 

undergo de-etiolated germination in the presence of light (short days), the cotyledons 

emerge very shortly after the radicle protrudes from the testa, due to the 

photomorphogenic state of growth and 22°C temperature. However, when the seedlings 

rupture the testa and emerge from the seed and if they are still kept at 22°C for longer 

than required, then the hypocotyls elongate at 22°C and this will confound the hypocotyl 

elongation results. So the plates were carefully monitored. Once the seedlings emerged 

from the testa and the cotyledons could be seen, the plates were then placed in the 

respective testing temperature treatment incubators at 12°C, 17°C, 22°C and 27°C. The 

photoperiod/light level etc. conditions of germinating the seeds at 22°C were exactly the 

same under which the hypocotyls were tested and allowed to elongate.  

2.2.1.5 Growth Conditions: 

Temperature, photoperiod and light intensity play roles in identifying phenotypic 

variation in hypocotyl length and hence environmental variables have to be carefully 

selected while phenotyping hypocotyl lengths for laboratory experiments under 

controlled conditions to avoid any confounding effects. Therefore, precise environmental 

conditions for phenotyping are crucial for determining differences in Arabidopsis 

accessions. Before embarking on a detailed parental phenotyping experiment, pilot 

experiments were run and these environmental conditions were tested which provided 

valuable insights into the conditions of growth that showed maximum variability in the 

accessions. 
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Climate control growth incubators were used for growing the seedlings. After the 

stratification, the plates were put in light in the incubators because seed germination is 

induced by light. Plants were grown in short days (8 hours of daylight) because growth 

differences at different temperatures are more pronounced in short day grown plants. 

When the seedlings are grown in moderate light intensity (100 microeinsteins per second 

per square meter (μE/m2/sec) or less), they exhibit mild etiolation-like effects where the 

hypocotyls are elongated. Under higher light intensity (200 μE/m2/sec or more), 

hypocotyls display stronger de-etiolation phenotypes and they do not elongate and are 

shorter. Therefore, a light intensity of 150-170 μE/m2/sec enables the seedlings to 

respond in such a manner that the effects of etiolation and extreme de-etiolation are 

avoided. Therefore, a light intensity of 170 μE/m2/sec was used in the phenotyping of the 

hypocotyl lengths. Moreover, the duration of light intensity, i.e. whether seedlings are 

grown under short day (SD) or long day (LD) also affects hypocotyl length. Both of these 

conditions of light intensity and light duration have been experimentally tested and the 

results of photoperiod are analysed in detail in section 2.3.7. The humidity in the 

incubators does not need any regulation because the micro-climate of the agar plates 

keeps the seedlings humid. No other objects were placed in the incubators that could 

reduce the light or cause shade and potentially cause the hypocotyls to undergo the 

shade avoidance syndrome. 

The above optimal conditions for seedling growth were selected so that maximum 

phenotypic variation could be observed in the 19 accessions in response to temperature.  

2.2.1.6 Measurement of Hypocotyl Lengths: 

Up to 60 individuals per genotype were measured. The seedlings were measured after 

one week of growth. They were removed from the incubators and phenotyped shortly 

after the time when the dark cycle had ended in the incubators, representing early 

morning because maximum hypocotyl growth occurs at dawn under diurnal conditions.  

To ensure the hypocotyl length phenotype was measured precisely, an appropriate 

quantitative assay was set up and specific environmental, temporal and spatial conditions 

were taken into account to reduce any variation that may be caused by the environment. 

To obtain unbiased means and variances, the seedlings of the parental accessions were 
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grown in Petri dishes in a random design for 7 days and then measured for hypocotyl 

lengths. The error of the means is reduced by measuring many individual seedlings per 

accession. The hypocotyls were measured on a flat-bed scanner between two 

transparency sheets and scanned with a black background. The images were saved in TIFF 

format at a resolution of 600 dpi, so at this resolution, 1 mm = 24 pixels. The software 

ImageJ was used for image analysis and the scale was set to 24 pixels per mm. The 

accuracy of ImageJ scaling was tested by measuring a standard size. To set the scale, a 

known distance of 1mm was measured and the number of pixels was visually counted on 

the computer screen. The measurements were taken using the segmented line selection 

tool of ImageJ. The segmented line followed the central axis of the hypocotyl starting at 

the base of the two cotyledons which is recognised by a dark shaded ‘V’, to the region of 

the shoot-root collet junction. This measuring method was repeated for all the seedlings. 

A total of 3100 individual seedlings were measured for the hypocotyl length analysis.  

2.2.1.7 Data Analysis: 

All data were analysed using Excel; and the ANOVA and GLM procedures in SPSS. Since 

the parental accessions have been selected non-randomly based on the extreme genetic 

variation present between them, therefore, accession has been considered as a fixed 

effect. Similarly, ambient temperatures have been considered as a fixed effect because 

they are chosen for this study in a non-random manner. The correlation analyses were 

determined using Pearson’s correlation between the mean values of the trait for each 

accession. 

2.2.2 Methods and Materials for Plant Size Experiments: 

The methods for surface sterilisation of seeds, plating procedure, seed germination and 

growth conditions were all the same as explained in section 2.2.1. However, there was an 

additional step of transplanting the seedlings to the pots and a different method for 

quantitative measurements of plant size which are explained as follows. 

2.2.2.1 Transplantation: 

After one week of growth at the respective 17°C and 22°C temperatures, the seedlings 

were transplanted on to soil pots. The same soil was used for all the plants in this 
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experiment. 10 replicates per accession were grown in a randomised design under the 

same set of environmental conditions. The seedlings were transplanted with precaution 

to avoid any damage which could affect its growth. This ensured that the seedlings were 

healthy and grew uniformly under controlled conditions. All the pots were watered 

equally periodically. The plants were allowed to grow for three more weeks, so in total 

the plants had grown for four weeks. 

2.2.2.2 Plant Size Measurements: 

Images were taken after four weeks of growth from above with the help of a tripod stand 

to ensure the clarity of the pictures. The images were analysed in MATLAB software. The 

plant size was estimated by quantifying the rosette leaves during the vegetative stage of 

development. The estimation was based on the total leaf area in the vegetative stage of 

development. The green pixels of the total leaf area were counted for all of the 

individuals phenotyped. After the image analysis plant size was estimated by converting 

the number of pixels into square centimetres.  
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2.3 Results: 

2.3.1 Arabidopsis Accessions Exhibit Natural Variation in Hypocotyl Length: 

To investigate natural variation in hypocotyl length in the MAGIC parents, a phenotyping 

experiment was conducted in which all the environmental variables were kept constant. 

Arabidopsis MAGIC parents may differ in their hypocotyl lengths when phenotyped at 

individual ambient temperatures of 12°C, 17°C, 22°C and 27°C. To test this, a one-way 

ANOVA for between accessions and the ‘tests of between-subjects effects’ were 

performed on each of the individual temperatures separately. The hypocotyl length data 

was either normally distributed or the sample sizes were > 30. The ANOVA results 

demonstrated that the mean hypocotyl lengths of MAGIC parents were significantly 

different (p < 0.001) at each of the 12°C, 17°C, 22°C and 27°C temperatures. There are 

differences between accessions at all temperatures. 12°C = F(18,875) = 332.36, p < 0.001; 

17°C = F(18,829) = 527.7, p < 0.001; 22°C = F(18,716) = 638.2, p < 0.001; 27°C = F(18,604) 

= 490.01, p < 0.001. These results show that the hypocotyl lengths are responding to the 

individual temperature treatments. The variation in length between the accessions can be 

seen in figures 2.1 – 2.4. 

At all the four temperatures, Ct-1 always has the longest length (1.58 mm, 2.48 mm, 7.05 

mm, 11.01 mm) whereas, the shortest accessions are different at each temperature. Hi-0 

(1.03 mm), Ws-0 (1.23 mm), Col-0 (1.84 mm) and Wil-2 (4.59 mm) had the shortest mean 

hypocotyl lengths at 12°C, 17°C, 22°C and 27°C respectively.  

As a consequence to this finding, to determine if the effect of the genotypes on the 

hypocotyl lengths is big or small at each of the individual temperatures, the effect sizes 

were estimated. The estimates of the effect size were carried out in the ‘tests of 

between-subjects effects’. Partial Eta squared (η2) provided the measure of effect size 

and the genotypes explained 87% - 94% of the variance in hypocotyl length. The 

genotypes account for a very large percentage of variability in the hypocotyl lengths when 

grown at these four temperatures. Remarkable natural variation in temperature-

dependent hypocotyl length responses to a variety of temperature conditions was 

observed. 
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A gradual increase in the pattern for effect size at the different temperatures was 

observed in this analysis. The effect size is lower at lower temperatures and increases 

with temperature; 12°C < 17°C < 22°C = 27°C. Therefore, the phenotypic variation in the 

hypocotyl length that the genotypes produce is lower at lower temperatures and higher 

at higher temperatures. Based on these overall natural variation results in hypocotyl 

length, a detailed G x E interaction analysis across the range of temperatures, explained 

by a two-way ANOVA, is provided in section 2.3.5. 

To compare the mean hypocotyl lengths of each of the 19 accessions individually 

between any two given ambient temperature treatments, the independent-samples t-

tests were carried out. Surprisingly, all of the accessions had significant (p < 0.001) 

differences in hypocotyl length means between any two given temperature combinations. 

Even at the lower temperature comparison of 12°C - 17°C, where temperature effect is 

lower on hypocotyl length than higher ambient temperatures, all of the MAGIC accessions 

showed significant differences in hypocotyl length between 12°C and 17°C temperatures. 

This natural variation analysis of hypocotyl length in response to temperature provides a 

basis for the detailed genetic analyses performed in the subsequent chapters. 
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Figure 2.1: Natural variation in 1 week old hypocotyl length in thermal response at 12°C and at 

170 μE/m2/sec short day light. Error Bars: +/- 2 SE.  

 

 

Figure 2.2: Natural variation in 1 week old hypocotyl length in thermal response at 17°C and at 

170 μE/m2/sec short day light. Error Bars: +/- 2 SE. 
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Figure 2.3: Natural variation in 1 week old hypocotyl length in thermal response at 22°C and at 

170 μE/m2/sec short day light. Error Bars: +/- 2 SE. 

 

 

Figure 2.4: Natural variation in 1 week old hypocotyl length in thermal response at 27°C and at 

170 μE/m2/sec short day light. Error Bars: +/- 2 SE.
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2.3.2 Skotomorphogenic Natural Variation in Hypocotyl Length: 

To test whether there was any genetic variation present when grown in the dark, the 

MAGIC parental accessions were phenotyped under etiolated conditions and the 

skotomorphogenic phenotyping results in figure 2.5 reveal the extent to which natural 

variation is present. 

 

Figure 2.5: Natural variation in 1 week dark-grown hypocotyl length in thermal response at 22°C. 

Plot showing genetically determined extensive etiolated phenotypic variation in Arabidopsis 

accessions. 

 

The Arabidopsis MAGIC parents may differ in the hypocotyl lengths when grown in the 

dark at 22°C ambient temperature. To test this, a one-way ANOVA for between 

accessions and the ‘tests of between-subjects effects’ were performed on the 

quantitative data obtained from phenotyping hypocotyl length in the dark. The hypocotyl 



Phenotypic Characterisation 

48 
 

length data was either normally distributed or the sample sizes were > 30. The ANOVA 

results showed that the mean hypocotyl lengths were statistically significant; 22°C = 

F(18,601) = 256.02, p < 0.001.  This shows that extensive natural variation is present in 

hypocotyl lengths when grown in the dark (figure 2.5). The effect sizes of the genotypes 

on etiolated hypocotyl length were estimated using ‘tests of between-subjects effects’. 

The genotypes explained 89% of the variability in hypocotyl length and substantial 

variation in etiolation-dependent hypocotyl elongation was observed.  

2.3.3 Correlation between Etiolated and De-etiolated Hypocotyl Length: 

Furthermore, to investigate if the natural variation in hypocotyl length at 22°C grown in 

light is correlated to hypocotyl length at 22°C grown in dark, a correlation analysis was 

performed as can be seen in the scatter plot in figure 2.6. This analysis identified r = 0.3 

which is showing a weak positive correlation between the dark and light grown hypocotyl 

lengths. The coefficient of determination, R2 is near to zero (0.09) and therefore, it is less 

likely that a linear relationship exists between the two conditions.  

 

Figure 2.6: Scatter plot of hypocotyl length grown in the light vs. dark at 22°C. The Coefficient of 

Correlation r = 0.3, measures the medium strength and positive direction of the linear 

relationship. This identifies accessions with strong etiolation responses. 

To determine if this identified linear relationship exists in the population from which the 

samples of accessions were drawn, a significance test showed that there is not a 
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statistically significant relationship between the two states of growth, r (17) = 0.3, p > 

0.05. Additionally, the correlation between hypocotyl length at 27°C grown in light and 

hypocotyl length at 22°C grown in dark was performed as can be seen in the scatter plot 

in figure 2.7. This analysis identified r = 0.42 which is also showing a weak to medium 

positive correlation. The coefficient of determination, R2 is near to zero (0.1) and 

therefore, it is less likely that a linear relationship exists between the two conditions. A 

significance test showed that there is not a statistically significant relationship, r (17) = 

0.42, p > 0.05. 

 

 

Figure 2.7: Scatter plot of hypocotyl length grown in light at 27°C vs. dark at 22°C. The Coefficient 

of Correlation r = 0.42, measures the weak to medium strength and positive direction of the linear 

relationship.  

 

2.3.4 Temperature Responsiveness in Hypocotyl Length:  

The variation in hypocotyl length that was seen in figures 2.1 – 2.4 was temperature 

specific. To study if temperature interacts with the genotype to determine hypocotyl 

length, the temperature responsiveness of the accessions was examined. This analysis 

also aims at studying the degree to which MAGIC parents respond to increased changes in 

y = 0.5763x + 9.4238 
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ambient temperature. The phenotyping at multiple temperatures provided a better 

understanding of the temperature responsiveness concept. This allowed the calculation 

of the ratios between the means of the phenotypic data for every parental accession at 

any two temperature treatments, revealing detailed interactions of temperature with the 

accession.  

The temperature responsiveness reaction norms of the 19 MAGIC accessions have been 

plotted in figure 2.8. These reaction norms define the level of plasticity of hypocotyl 

length and portray its responses to temperature changes. This has also been quantified in 

the table 2.1. It illustrates the nature of differential responses to temperature treatments 

amongst the genotypes; and aids in interpreting the genotype by environment (G x E) 

interaction that has been statistically explained in detail by a two-way ANOVA in section 

2.3.3. 

Figure 2.8: Mean hypocotyl lengths of the accessions plotted against four temperatures 

highlighting their specific temperature response reaction norms. Each line represents a different 

accession. 

Figure 2.8 hints at two major areas of Arabidopsis responses to temperature. One is the 

interaction of the various genotypes with the temperature environments. This is 
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explained by the individual response lines for the accessions across the temperatures. The 

differential responses elucidate the variable interactions of the genotypes with 

temperature.  

The second response is obtained from the changes in the ranking of the genotypes with 

temperature treatments. Accessions change their ranking across the temperature 

gradient and show a considerable amount of variation revealing that they are highly 

responsive to ambient temperature changes. These differential responses are genetically 

determined. The non-parallel nature of the response lines shows that temperature is 

interacting with the genotypes in determining the differential responses. The differences 

in their responses across the temperatures determine their individual ranking at each of 

the temperatures. Some accessions are more responsive at one temperature than others. 

However this hierarchy differs between the various temperature ranges. Each of the 

genotypes has its distinct reaction norm which describes its pattern of phenotypic 

expression across the temperature gradient. The relative performance of the various 

accessions varies from one temperature environment to the other.  

 

Figure 2.9: Responsiveness reaction norms of the MAGIC parents to a change of 15°C. 
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The MAGIC parents show an impressive degree of variation in responsiveness to the two 

extremes of ambient temperatures which has been plotted in figure 2.9. The temperature 

responses of the accessions are compared to a change in 15°C. The accessions are not 

only interacting with temperature but are also changing their ranking. This change in 

ranking pinpoints to accessions being either more or less responsive.  

In order to determine the temperature responsiveness in the accessions across the range 

of temperatures, the relative responsiveness index (RRI) was calculated which is defined 

as the ratio of hypocotyl length at any one given temperature to hypocotyl length at any 

other given temperature. For the four temperature treatments, there are six possible 

RRIs. Table 2.1 quantifies phenotypic plasticity and temperature responsiveness; and 

identifies the accessions that show high and low phenotypic plasticity. 

 

Accession 
Relative Responsiveness Index (RRI) 

27°C/22°C 27°C/17°C 27°C/12°C 22°C/17°C 22°C/12°C 17°C/12°C 

Bur-0 2.41 4.46 5.22 1.85 2.17 1.17 

Can-0 1.83 3.64 4.39 1.99 2.39 1.20 

Col-0 2.66 3.93 4.43 1.47 1.66 1.13 

Ct-1 1.56 4.44 6.96 2.84 4.46 1.57 

Edi-0 2.73 5.34 8.74 1.96 3.2 1.64 

Hi-0 1.92 3.25 5.18 1.69 2.7 1.59 

Kn-0 2.22 4.74 6.6 2.14 2.97 1.39 

Ler-0 2.07 4 5.52 1.93 2.66 1.38 

Mt-0 2.18 3.86 6.33 1.77 2.91 1.64 

No-0 2.12 3.86 5.94 1.83 2.81 1.54 

Oy-0 2.15 3.32 6.07 1.54 2.82 1.83 

Po-0 2.59 4.79 5.71 1.85 2.21 1.19 

Rsch-4 2.31 3.69 7.17 1.6 3.1 1.94 

Sf-2 2.37 4.95 8.51 2.09 3.59 1.72 

Tsu-0 1.89 3.73 5.74 1.98 3.04 1.54 

Wil-2 1.66 3.51 4.3 2.12 2.59 1.22 

Ws-0 2.19 4.97 5.89 2.28 2.69 1.18 

Wu-0 1.82 4.11 6.82 2.26 3.75 1.66 

Zu-0 2.77 4.87 6.29 1.76 2.27 1.29 

Table 2.1: Table of RRI for MAGIC parents identifying temperature responses quantitatively. 
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From table 2.1, we can see that Ct-1 was the least responsive and Zu-0 was the most at 

RRI of 27°C/22°C. Hi-0 was the least responsive and Edi-0 was the most at RRI of 

27°C/17°C. Wil-2 was the least responsive and Edi-0 was the most at RRI of 27°C/12°C. 

Oy-0 was the least responsive and Ct-1 was the most at RRI of 22°C/17°C. Col-0 was the 

least responsive and Ct-1 was the most at RRI of 22°C/12°C. Col-0 was the least 

responsive and Rsch-4 was the most at RRI of 17°C/12°C. The range of variation across all 

the RRIs reveals the presence of substantial genetic variation in plasticity in MAGIC 

accessions. 

By calculating the means of each of the RRIs across all of the accessions, the overall 

responsiveness of the accessions can be calculated across the different temperature 

ranges. This analysis shows that the overall increased responsiveness of the accessions is 

in the following order: 17°C/12°C = 1.46 < 17°C/22°C = 1.94 < 27°C/22°C = 2.18 < 

22°C/12°C = 2.84 < 27°C/17°C = 4.18 < 27°C/12°C = 6.09. The accessions collectively show 

least responsiveness to a temperature change from 12°C to 17°C, whereas most 

responsiveness from 12°C to 27°C. 

 

2.3.5 Natural Variation in Hypocotyl Length Temperature Responsiveness: 

To determine the components that explained the variation in the hypocotyl length 

responsiveness and whether Arabidopsis accessions responded to a range of temperature 

treatments, the G x E interactions of hypocotyl length across the temperature range were 

evaluated. Ambient temperature may contribute to the hypocotyl length variation in 

Arabidopsis accessions but this effect may differ across the various accessions. The null 

hypothesis is that the treatment of temperature has no effect on the hypocotyl length 

across the temperature range. A two-way ANOVA tested for natural variation in hypocotyl 

lengths of the MAGIC accessions in response to the ambient temperatures of 12°C, 17°C, 

22°C, and 27°C. It tested the main effects of temperature, the main effects of accession 

and the interaction between the two. Ambient temperature showed a statistically 

significant effect on hypocotyl length F(3,3024) = 77233.9, p < 0.001, η2 = 0.987. The 19 

parental accessions also showed statistically significant effects on the hypocotyl 

elongation F(18,3024) = 1443.8, p < 0.001, η2 = 0.896. The interaction effects of 
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accessions and temperature (G x E) were also significant F(54,3024) = 391.2, p < 0.001, η2 

= 0.875). Remarkable natural variation in temperature-dependent responsiveness was 

observed. 

From figure 2.8, it is expected that a positive association exists between temperature and 

hypocotyl length; when temperature is increased, hypocotyl length also increases. The 

Pearson’s correlation r = 0.97 shows a very strong positive correlation between 

temperature and hypocotyl length and it is highly significant F(1,3099) = 24566.42, p < 

0.001, N = 3100 and adjusted R2 value = 0.88. Hence 88% of the variability in hypocotyl 

length can be accounted for by temperature.  

To predict the hypocotyl length elongation with an increase in 1°C, a linear regression 

analysis was performed. The results demonstrated that with an increase of 1°C, hypocotyl 

length increased by 12%. This was a substantial change in the hypocotyl elongation in 

response to temperature. It identified temperature as a very meaningful predictor 

accounting for a large amount of variation in hypocotyl length in Arabidopsis accessions. 

 

2.3.6 Higher Temperatures Determine Higher Variation in Hypocotyl Length: 

To determine the most discriminating temperature where maximum phenotypic variation 

is observed in the MAGIC parents, the phenotypic data across the four temperatures 

were analysed comparatively. This analysis showed that the total amount of phenotypic 

variation is directly proportional to temperature; the higher the temperature, the greater 

the variation. Figure 2.10 shows the four temperatures hosting the phenotypic variation 

of the MAGIC parents. The descriptive statistical data in table 2.2 illustrate that the, 

standard deviation, standard error and variances increase with increase in temperature. 

This reveals that temperature is a major determinant in identifying phenotypic variation 

in MAGIC parents.  
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Figure 2.10: Phenotypic variation in the 19 MAGIC parents. Variation in accessions is temperature 

dependent and it increases with increase in temperature. This figure graphically corresponds to 

table 2.2 for the four different temperature groups. 

 

Statistic 12°C 17°C 22°C 27°C 

Coefficient of Variation 0.12 0.20 0.33 0.24 

Standard Deviation 0.14 0.34 1.10 1.74 

Standard Error 0.03 0.07 0.25 0.40 

Variance 0.01 0.11 1.21 3.02 

Table 2.2: Coefficient of variation, standard deviation, standard error and variance calculated 

from the means of hypocotyl lengths of the accessions at 12°C, 17°C, 22°C and 27°C. The greatest 

variation between the accessions is observed at 27°C. 

 

2.3.7 Arabidopsis Hypocotyls are Longer when Phenotyped in Short Days: 

To determine if there were any significant differences in hypocotyl length between short 

days and long days, Arabidopsis MAGIC parents were phenotyped separately in these 

conditions at 22°C. 19 independent-samples t-tests were performed for the 19 parents 
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separately between long days and short days. For each genotype, the means of the 

hypocotyl length grown under long days were compared to hypocotyl length grown under 

short days. All the tests showed that there were significant differences (p < 0.001) in 

hypocotyl length. The photoperiod duration affects hypocotyl length and as can be seen 

in figure 2.11, hypocotyls grown under short days are overall bigger than long days. 

 

 

Figure 2.11: Hypocotyl lengths are bigger when phenotyped in short days. In long days they are 

smaller due to the greater de-etiolation effects. Arabidopsis hypocotyls exhibit higher natural 

variation when grown for 1 week in 170 μE/m2/sec short days (8 hours daylight) as compared to 

long days (16 hours daylight). 

 

2.3.8 Natural Variation in Hypocotyl Length is Present in Short Days and Long 

Days: 

Arabidopsis MAGIC parents may differ in their hypocotyl lengths when grown in short day 

and long day photoperiods at an ambient temperature of 22°C. To test this, two one-way 
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ANOVAs for ‘tests of between-subjects effects’ were performed separately for short day 

phenotype data and long day phenotype data for all the 19 accessions. The hypocotyl 

length data was either normally distributed or the sample sizes were > 30. The results for 

both conditions demonstrated that the mean hypocotyl lengths of Arabidopsis accessions 

are statistically significant (p < 0.001). Short days = p < 0.001; 22°C = F(18,716) = 638.2. 

Long days = p < 0.001; 22°C = F(18,438) = 36.92. Natural variation is present in the 

hypocotyl length when grown in short days and long days. 

2.3.9 Natural Variation in Hypocotyl Length is Greater in Short Days: 

To determine which photoperiod hosts more of the variation, and if the effect of the 

genotype on hypocotyl length is big or small in short days or long days, the effect sizes 

were estimated. ANOVA provided the Partial Eta squared (η2) values which estimate 

effect size; and the genotypes account for 94% of the variance in hypocotyl length in 

short days, whereas in long days the genotypes account for 60% of the variance in 

hypocotyl length.  

To establish which of the two photoperiod conditions enables the Arabidopsis seedlings 

to show maximum variation in the hypocotyls, the phenotypic data were analysed 

comparatively. The descriptive statistical data, shown in table 2.3, was calculated for both 

of the photoperiods. The findings demonstrate that in long days, the coefficient of 

variation, standard deviation, standard error and variances are less as compared to short 

days. Therefore, the variation between the accessions is greater in short days than long 

days. This illustrates the effect of photoperiod on the presence of natural variation in 

Arabidopsis accessions and is a key determinant in identifying phenotypic variation in 

seedlings.  

Statistic Long Days Short Days 

Coefficient of Variation 0.125 0.333 

Standard Deviation 0.133 1.104 

Standard Error 0.031 0.254 

Variance 0.018 1.218 

Table 2.3: Standard deviation, standard error and variance calculated from the means of 

hypocotyl lengths of the accessions grown in short days and long days. The greatest variation 

between the accessions is observed in short days. 
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Accession NASC 
ID 

Geographical 
Location 

Altitude 
in Meters 

Latitude Habitat Average Air 
Temperature 

Bur-0 N6643 Burren, Ireland 1-100 N 54 Temperate, 
Roadside 

Spring: 4°C 
Summer: 15°C 

Can-0 N6660 Las Palmas, Canary 
Islands, Spain 

1200-
1300 

N 28 Sub-Tropical  Spring: 6°C 
Summer: 25°C 

Col-0 N6673 Gorzow 
Wielkopolski, 
Poland 

1-100 N 52 Unknown Spring: 1-7°C 
Summer: 20-22°C 
Autumn: 9-19°C 

Ct-1 N6674 Catania, Italy 1-100 N 37 Unknown Spring: 13-14°C 
Summer: 25°C 
Autumn: 21-22°C 

Edi-0 N6688 Edinburgh, UK 1-100 N 56 Botanic 
Gardens 

Spring: 3-4°C 
Summer: 16°C 
Autumn: 9-10°C 

Hi-0 N6736 Hilversum, 
Netherlands 

1-100 N 52 Unknown Spring: 5-6°C 
Summer: 16°C 
Autumn: 9-10°C 

Kn-0 N6762 Kaunas, Lithuania 1-100 N 54 Unknown Spring: 3-4°C 
Summer: 16°C 
Autumn: 9-10°C 

Ler-0 NW20 Poland 1-100 N 53 Unknown Spring: 1-7°C 

Mt-0 N1380 Martuba/Cyrenaika, 
Libya 

100-200 N 33 Unknown Spring: 15-16°C 
Summer: 25°C 
Autumn: 15-16°C 

No-0 N6805 Nossen, Germany 200-300 N 51 Unknown Spring: 2°C 
Summer: 17°C 

Oy-0 N6824 Oystese, Norway 1-100 N 60 Unknown Spring: 3-4°C 
Summer: 11°C 
Autumn: <5-6°C 

Po-0 N6839 Poppelsdorf, 
Germany 

1-100 N 50 Dry, Sandy 
Soil 

Spring: 7-8°C 
Summer: 17°C 
Autumn: 11-12°C 

Rsch-4 N6850 Rschew, Russia 100-200 N 56 Unknown Spring: <0-2°C 
Summer: 16°C 
Autumn: 7-8°C 

Sf-2 N6857 San Feliu, Spain 1-100 N 41 Unknown Spring: 11-12°C 
Autumn: 19-20°C 

Tsu-0 N6874 Tsu, Japan 1-100 N 34 Unknown Spring: 9-10°C 
Summer: 22°C 
Autumn: 19-20°C 

Wil-2 N6889 Wilna/litvanian Ssr, 
Russia 

100-200 N 55 Near 
Towniskaya 

Spring): <0-2°C 
Autumn: 9-10°C 

Ws-0 N6891 Wassilewskija, 
Belarus 

100-200 N 52 Sandy 
Ryefield 

Spring: 3-4°C 
Summer: 17°C 
Autumn: <5-6°C 

Wu-0 N6897 Wurzburg, 
Germany 

100-200 N 49 Sandy Soil Spring: 5-6°C 
Summer: 16°C 
Autumn: 11-12°C 

Zu-0 N6902 Zurich, Switzerland 500-600 N 47 Botanic 
Gardens 

Spring: 5-6°C 
Summer: 17°C 
Autumn: 9-10°C 

Table 2.4: Arabidopsis MAGIC parental accessions used for analysis of natural variation in hypocotyl length 

in response to temperature. Climatological and Geographical data were obtained from the websites of 

NASC (http://arabidopsis.info/EcoForm) and (http://arabidopsis.info/info/annualreports/ais24.pdf); and 

Versailles Biological Resource Centre (http://dbsgap.versailles.inra.fr/vnat/). 
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2.3.10 Correlation between Hypocotyl Length and Habitat Temperature Clines: 

As seen in table 2.4, the different geographic habitats represent varying ambient 

temperatures. Therefore, it was interesting to analyse hypocotyl length of the MAGIC 

parents to their respective habitat temperatures which could provide some basic insights, 

from an ecological perspective, to the study of adaptations of these accessions to their 

native habitats. To examine if there was any association between the hypocotyl length 

and the native habitat temperature, a correlation analysis was performed. The coefficient 

of correlation, r = 0.7, measures a medium to high strength. In figure 2.12 the line of best 

fit numerically describes the linear relationship between the hypocotyl length and the 

habitat temperature; where temperature is the explanatory variable and hypocotyl length 

is the response variable. The coefficient of determination, R2 is 0.46 and therefore, it is 

more likely that a linear relationship exists between the two variables. It is assumed that 

we can model hypocotyl length on habitat temperature with a linear relationship. 

 

 

Figure 2.12: Scatter plot of hypocotyl length vs. habitat spring temperature. 
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significant relationship between hypocotyl length and habitat temperature,  r (17) = 0.7, p 

< 0.05.  

The R2 in this analysis shows that 46% of the variance in hypocotyl length can be 

predicted and accounted for by the temperature clines in the native habitats. The gradual 

change in the inherited trait of hypocotyl length across the geographic range is positively 

correlated with temperature in the native habitats. The hypocotyl lengths tend to be 

bigger at native geographic regions where mean temperatures are higher, and this 

correlation is consistent with the finding in figure 2.10 that at higher temperatures, the 

hypocotyls are longer. 

2.3.11 Correlation between Hypocotyl Length and Latitudinal Clines: 

A correlation analysis was performed to study the linear relationship between hypocotyl 

length and the native latitudes of the MAGIC accessions. In figure 2.13 the results show 

that r = - 0.3 and there is a weak negative correlation between hypocotyl length and 

native latitude. The significance test showed that there is not a statistically significant 

relationship between the hypocotyl length and native latitude, r (17) = - 0.3, p > 0.05. 

 

 

Figure 2.13: Scatter plot of hypocotyl length vs. native latitude. 
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2.3.12 Correlation between Etiolated Hypocotyl Length and Latitudinal Clines: 

It was also of interest to figure out if there is any correlation between hypocotyl lengths 

grown in the dark with latitudinal clines. From the correlation analysis, the value r = 0.05 

shows almost no correlation at all between etiolated hypocotyl length and habitat 

temperature. The coefficient of determination, R2 is 0.0023 and therefore, it is more likely 

that no linear relationship exists between the two and no variation in the hypocotyl 

length can be accounted for by latitude (figure 2.14). The significance test showed that 

there is not a statistically significant relationship between the etiolated hypocotyl length 

and native latitude, r (17) = 0.05, p > 0.05. 

 

Figure 2.14: Scatter plot of etiolated hypocotyl length vs. native habitat latitude. The coefficient of 

correlation, r = 0.05, measures almost no strength of the linear relationship. 

 

2.3.13 Natural Variation and Phenotypic Analysis of Plant Size: 

To investigate if natural variation in the plant size trait is present in the MAGIC accessions 

and whether this trait showed any responsiveness to changes in ambient temperature, 

the MAGIC parents were phenotyped at 17°C and 22°C.  
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Arabidopsis MAGIC parents may differ in their plant sizes when phenotyped at ambient 

temperatures of 17°C and 22°C. To test this, a one-way ANOVA was performed at each of 

the individual temperatures separately. The ANOVA results revealed that the mean plant 

sizes of Arabidopsis accessions are significantly different (p < 0.001) at each of the 17°C 

and 22°C temperatures. 17°C = F(18,169) = 24.44, p < 0.001; 22°C = F(18,156) = 28.95, p < 

0.001. The phenotypic variation in plant sizes between the accessions at 17°C and 22°C 

can be seen in figures 2.15 and 2.16 respectively. These data show that there is greater 

phenotypic variation in the mean plant area amongst the accessions at 22°C (SD = 0.81) as 

compared to 17°C (SD = 0.64). 

 

 

Figure 2.15: Natural phenotypic variation in plant size in MAGIC accessions at 17°C after four 

weeks of growth in 170 μE/m2/sec short days (8 hours light/16 hours dark). 
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Further to this finding, in order to establish if the effect of the genotypes on the plant 

sizes is big or small at each of the two temperatures, the effect sizes were estimated by 

Partial Eta squared (η2). The genotypes account for 72% and 77% of the variance in plant 

size at 17°C and 22°C temperatures respectively. Notable natural variation in 

temperature-dependent plant size responses was observed; and similar to the hypocotyl 

length trait, the variation increases with increase in temperature. These results provided 

a basis to further explore the G x E interaction by a two-way ANOVA for temperature 

responsiveness. 

 

 

Figure 2.16: Natural phenotypic variation in plant size in MAGIC accessions at 22°C after four 

weeks of growth in 170 μE/m2/sec short days (8 hours light/16 hours dark). 
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To determine if there were any significant differences between the mean plant size at 

17°C and 22°C for any given accession, 19 independent-samples t-tests were performed 

on the 19 parents separately. For each accession, the means of the plant size at 17°C 

were compared to plant size at 22°C. Accessions Ct-1, Ler-0, Mt-0, No-0, Rsch-4, and Wu-0 

did not show any significant differences in plant size between the two temperature 

treatments (figure 2.17). However, it is interesting that all of these accessions showed 

significant differences in hypocotyl length between the same two temperature 

treatments. 

 

 

Figure 2.17: Comparison of the 19 MAGIC accessions for plant size at 17°C and 22°C. 

 

2.3.14 Temperature Responsiveness in Plant Size: 

In order to study the temperature responsiveness of the plant size trait, the mean 

phenotypic values of the accessions at 17°C were compared to 22°C. Ambient 

temperature, may contribute to the plant size variation in Arabidopsis accessions but this 
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effect may differ across the various accessions. A two-way ANOVA tested for natural 

variation in plant size temperature responsiveness and compared the plastic responses of 

the 19 genotypes to 17°C and 22°C. Ambient temperature showed a statistically 

significant effect on plant size F(1,325) = 160.5, p < 0.001, η2 = 0.331. The genotypes also 

showed statistically significant effects on plant size F(18,325) = 51.64, p < 0.001, η2 = 

0.741. The G x E interaction effects were also significant F(18,325) = 2.99, p < 0.001, η2 = 

0.142). 

 

 

Figure 2.18: Reaction norms of MAGIC accessions for phenotypic plasticity of plant size across the 

two temperatures of 17°C and 22°C. Accessions show temperature responsiveness in their plant 

size. 
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The results of a significant environment term reveal that the genotypes express plasticity 

by responding to the temperature treatments. The 17°C means for the accessions are 

lower than 22°C (figure 2.15 and 2.16); hence there is a main effect for temperature. 

There is a main effect for genotype as variation in the mean plant size is observed. 

Additionally, a significant G x E term was also found indicating that the Arabidopsis 

genotypes and ambient temperatures are interacting and affecting the plant size. 14% of 

the variability in plant size is accounted for by the G x E interaction and can be attributed 

to the interaction. A distinct reaction norm is seen for each of the genotypes which 

describe the pattern of phenotypic expression of plant size between the two temperature 

treatments. The differences in the responses of genotypes across the two temperatures 

determine their individual ranking at each of the temperatures. The ranking of the mean 

phenotypic values change between the two temperatures (figure 2.18), which identifies 

the responsiveness of the accessions resulting in G x E interactions. 

 

Accession RRI 22°C / 17°C  

Ct-1 1.08 

No-0 1.08 

Wu-0 1.14 

Rsch-4 1.16 

Mt-0 1.18 

Can-0 1.26 

Bur-0 1.28 

Ler-0 1.28 

Hi-0 1.37 

Wil-2 1.37 

Po-0 1.40 

Oy-0 1.40 

Sf-2 1.49 

Kn-0 1.61 

Tsu-0 1.63 

Edi-0 1.66 

Col-0 1.67 

Ws-0 1.72 

Zu-0 1.91 

Table 2.5: RRI of the 19 MAGIC parents showing hierarchy of least to most temperature 

responsiveness for plant size. 
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2.3.15 Comparative Analysis of Hypocotyl Length with Plant Size: 

The analyses of the plant size trait paved the way for a comparative natural variation 

analysis between hypocotyl length and plant size traits at 17°C and 22°C. The results, in 

the case of plant size, show that the effect size of the genotype is greater than the effect 

size of temperature (genotype η2 = 0.741 > environment η2 = 0.331). Conversely, in the 

case of hypocotyl length trait, the effect size of temperature is greater than the effect size 

of genotype (environment η2 = 0.948 > genotype η2 = 0.917). The genetic differences 

between the genotypes account for greater variation in plant size when compared to the 

effect of temperature; on the contrary, temperature has a bigger effect on the hypocotyl 

length trait when compared to the genotypic effect. 

The comparative analyses show that hypocotyl length, in response to temperature, 

displays greater phenotypic plasticity than plant size. Moreover, G x E interaction was 

greater for the hypocotyl length trait than the plant size trait (the hypocotyl length G x E 

η2 = 0.793 > plant size G x E η2 = 0.142). This indicates that the hypocotyl length trait is 

highly responsive to the G x E interaction (> 5 X) than the plant size trait. It is interesting 

to establish that the effects of temperature, genotype and their interaction are greater on 

hypocotyl length than plant size. This makes hypocotyl length a more interesting trait to 

investigate in response to temperature and to find the underlying genes involved in the 

natural variation of the trait.  

The hypocotyl length and plant size are two different growth traits of two different 

developmental stages in plants. The hypocotyl elongation takes place during seedling 

development in the juvenile stage, whereas the plant size is determined during the 

vegetative stage of development. An interesting biological question relating to the two 

different stages of development in Arabidopsis is to determine if there is any linear 

relationship between these two independent variables which show a continuous 

distribution in their phenotypes. In other words; is hypocotyl length correlated to plant 

size? Does the plant size increase with increase in hypocotyl length and vice versa? To 

address these questions, the correlation analyses have been carried out separately for 

17°C and 22°C; and for the temperature responsiveness between the two traits. 
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2.3.16 Correlation between Hypocotyl Length and Plant Size at 17°C: 

At 17°C the value r = 0.16 showed a very weak positive correlation between hypocotyl 

length and plant size (figure 2.19). The coefficient of determination, R2 is very near to zero 

(0.026) and therefore, it is less likely that a linear relationship exists between hypocotyl 

length and plant size. There is not a statistically significant relationship between 

hypocotyl length and plant size at 17°C, r (17) = 0.16, p > 0.05. 

 

 

Figure 2.19: Scatter plot of hypocotyl length vs. plant size at 17°C. 
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2.3.17 Correlation between Hypocotyl Length and Plant Size at 22°C: 

At 22°C the value r = -0.11 showed a very weak negative correlation between hypocotyl 

length and plant size. The coefficient of determination, R2 is almost zero (0.012) and 

therefore, in a similar way, it is less likely that a linear relationship exists between 

hypocotyl length and plant size at this temperature (figure 2.20). There is not a 

statistically significant relationship between hypocotyl length and plant size at 22°C, r (17) 

= -0.11, p > 0.05. 

 

 

Figure 2.20: Scatter plot of hypocotyl length vs. plant size at 22°C. 
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Figure 2.21: Scatter plot of hypocotyl length vs. plant size RRI 22°C/17°C. 

 

2.3.19 Inheritance of Hypocotyl Length as a Quantitative Trait: 

To genetically analyse the inheritance pattern of hypocotyl length two genetically distinct 

accessions were crossed which possess extreme hypocotyl lengths. The MAGIC parental 

phenotypic analysis showed that Col-0 had shorter and Sf-2 had bigger hypocotyl lengths. 

The genetic cross between these two accessions allowed the examination of hypocotyl 

length inheritance both in the F1 and F2 generations. The analysis revealed that the F1 

progeny had hypocotyl lengths that were intermediate between those of the Col-0 and Sf-

2 parents. The F2 experimental segregating population did not give rise to hypocotyl 

length distributions that were discrete and hence could not be fitted to monogenic 

inheritance. The F2 individuals showed a continuous distribution of phenotype as seen in 

figure 2.23. 
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Figure 2.22: The F2 segregation analysis of a cross between two genetically distinct accessions 

explains the nature of hypocotyl length as a complex trait. 

 

Figure 2.23: Distribution of hypocotyl length in an F2 population of 340 individuals derived from a 

Col-0 × Sf-2 cross at 22°C. 
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2.4 Discussion: 

2.4.1 Discussion on Hypocotyl Length Natural Variation: 

Arabidopsis natural variation in hypocotyl length in response to ambient temperature has 

not been described previously. Chapter 2 has provided a comprehensive phenotypic 

analysis of the intraspecific natural variation in an ecologically relevant trait - hypocotyl 

length in response to temperature. The phenotypic analysis shows that extensive 

naturally existing variation is present in the 19 MAGIC accessions in the developmental 

stage of hypocotyl elongation in response to a range of ambient temperatures. This 

variation at any given temperature shows that there is an underlying genetic basis for this 

variation. Analysing the phenotypic variation aids in identifying the functional 

polymorphisms of the causal genes. Natural variation is observed at each of the individual 

temperatures and Arabidopsis accessions respond to different ambient treatments.  

The MAGIC accessions encompass a wide geographic and phenotypic varied sample 

across the Arabidopsis species (Kover, 2009). These accessions have been locally adapted 

to their specific native environments over long evolutionary periods of times and this is 

reflected in the variation of hypocotyl length. The genetic variation that we observe in 

hypocotyl length in response to temperature has presumably arisen in nature which 

implies that natural selection has permitted the survival of the underlying alleles that 

cause this variation. 

In general, extensive naturally occurring phenotypic variation is prevalent in Arabidopsis 

accessions (Alonso-Blanco and Koornneef, 2000). When various genotypes are grown 

together and are compared under the same environmental conditions, genetic variation 

has been observed for hypocotyl length trait (figure 2.1 – 2.4). The variation in the 

hypocotyl length in response to temperature is due to the underlying genetic differences 

present in the accessions. 

In darkness, seedlings of higher plants experience a different and specialised type of 

development termed as skotomorphogenesis, also known as etiolation. The seeds 

undertake this developmental program when they are buried under the soil in the dark. 

Under such conditions of growth, the seedlings have elongated hypocotyls, the 

cotyledons are folded and an apical hook is present. It was proposed that the apical hook 
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protects the shoot meristem when the seedling protrudes through the soil (Goeschl et al., 

1967). Such morphologies of these juvenile organs collectively enable the seedlings to 

emerge from the soil layer in a swift fashion. This developmental programme ensures the 

seedlings to utilise the limited stored energy for hypocotyl elongation. 

Upon reaching the surface, the seedlings detect light signals and this skotomorphogenic 

development is changed into a photomorphogenic development in the presence of light, 

ultimately leading the plant from a heteroautotrophic state to an autotrophic state (Chen 

et al., 2004; Franklin et al., 2005). The skotomorphogenic elongation growth of seedlings 

is a default pathway in etiolated development. Under dark growth conditions, this 

pathway is expressed due to the non-availability of light, as the seeds are buried in the 

soil and/or dense canopies of vegetation, and plants undergo skotomorphogenic growth.  

Skotomorphogenesis has been suggested as an evolutionary adaptation in higher plants 

that gives them survival advantage in etiolated or etiolated-like terrestrial growth 

conditions (McNellis and Deng, 1995). There are a few studies where natural variation in 

etiolated hypocotyls has been studied. In a previous study, a smaller sample of 11 

Arabidopsis accessions had shown subtle and indistinguishable differences in hypocotyl 

lengths when grown in the dark (Pepper et al., 2002). The phenotypic analysis of the 

heterogeneous set of a small sample population of 19 MAGIC accessions possesses 

greater natural variation in hypocotyl length when phenotyped in the dark as seen in 

figure 2.5. These results are complementary to a previous study (Maloof et al., 2001) 

which used a large number of 141 accessions grown under dark conditions. This further 

highlights the fact that they are genetically diverse and represent different native 

habitats. This study has shown that the MAGIC parents exhibit natural variation under 

both photomorphogenic and skotomorphogenic conditions. The high phenotypic 

variability demonstrated in photomorphogenesis and skotomorphogenesis in juvenile and 

vegetative states of growth in Arabidopsis make it an ideal system for ecological, genetic 

and functional studies. 
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2.4.2 Discussion on Hypocotyl Length Phenotypic Plasticity: 

Phenotypic plasticity is the environmentally induced variation in phenotypes. There is a 

genetic basis for this response. Bradshaw (1965) defined plasticity as “..... shown by a 

genotype when its expression is able to be altered by environmental influences”. 

Phenotypic plasticity has been defined as the ability of organisms to change their 

phenotypes in response to environmental changes (Schlichting, 1986). From a genomic 

point of view, phenotypic plasticity has been defined as “re-programming of the genome 

in response to the environment” (Aubin-Horth and Renn, 2009). Phenotypic plasticity can 

be also considered as an environmental acclimation. When grown under different 

temperature environments, the seedlings respond and the hypocotyls elongate which is 

indicative of the seedling to being accustomed to changing temperatures. This response 

pattern of the hypocotyls describes the whole process of adjusting to an environmental 

change.  

Phenotypic plasticity takes place when the phenotypic responses of plants to exogenous 

environmental changes are mediated genetically. Plants at the molecular level receive 

and process environmental signals as a result of which plastic responses are originated. 

Therefore, the expression of phenotypic plasticity for any trait is mediated at the cellular 

level (Schlichting and Smith, 2002). 

Natural variation in plant species, other than Arabidopsis, for phenotypic plasticity has 

been well identified (Khan et al., 1976 and Jain, 1978). Previous studies on phenotypic 

plasticity in Arabidopsis have identified significant G x E interactions. For example, a study 

on plasticity showed significant G x E interactions by quantifying vegetative traits in 26 

natural accessions across low and high environments of mineral nutrients (Pigliucci and 

Schlichting, 1995). 

Phenotypic plasticity has been termed as an ecological strategy (Anderson et al., 2012) for 

species to continue in the face of climate change. Phenotypic plasticity is of great 

importance for various developmental processes in plants ultimately leading to their 

survival in the wild. It facilitates various genotypes to thrive in varying environmental 

conditions by changing phenotypic trait values in order to suite precise conditions 

(Moczek et al., 2011). In the context of rapidly changing climates, phenotypic plasticity, in 
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a recent review, has been argued to be a vital determinant of plant responses; and for 

exploring phenotypic plasticity, plant functional traits should have priority (Nicotra et al., 

2010). The hypocotyl length is a plant functional trait involved in seedling shoot 

architecture; is also responsive to environmental cues and hence is ideal to studying 

phenotypic plasticity. 

The interactions of a genotype with various temperatures can be represented in the form 

of reaction norms which is an essential subject in the field of molecular ecology. 

Schmalhausen (1949) introduced the concept of reaction norms of a genotype. A reaction 

norm is depiction of trait values relative to the environment. In ecological research, 

reaction norms are generally used to depict phenotypic plasticity (Aubin-Horth and Renn, 

2009).  

Reaction norms can only be plotted for homozygous individuals so that the same identical 

genotypes can be replicated and tested in different environments. Given the fact that the 

Arabidopsis accessions are naturally inbred lines and are homozygous due to the selfing 

nature of pollination (Lawrence, 1976, and Abbot and Gomes, 1989), their reaction norms 

for hypocotyl length can be plotted across a range of temperatures. This could well be an 

ideal example of differentiated reaction norms of a quantitative trait showing 

responsiveness to temperature. 

Little information exists on reaction norms of quantitative traits in any species in general. 

In Arabidopsis, reaction norms for hypocotyl length in 180 accessions have been plotted 

for R:FR light responses (Filiault and Maloof, 2012). However, reaction norms in response 

to temperature have not been reported in Arabidopsis, despite its importance from a 

climate change point of view. This chapter addressed the basic question whether there is 

intraspecific natural variation for reaction norms in response to temperature in hypocotyl 

length. This study reports a novel finding of the prevalence of extensive intraspecific 

variation for plasticity in response to temperature in Arabidopsis. The ANOVA and the 

reaction norms strongly identify natural variation, plasticity, and natural variation for 

plasticity in hypocotyl length. In figure 2.8 the slopes of the intersecting lines between 

any given two temperature shifts exhibits a vast complexity between the inter-

relationship of the genotypes and temperature in determining the hypocotyl length. A 

unique reaction norm is present in every parental accession for hypocotyl length; the 



Phenotypic Characterisation 

76 
 

basis of which is the respective genotype and the temperature condition. This suggests 

that Arabidopsis has proven as a useful species for the investigation of temperature-

dependent plasticity studies. These empirical findings vividly show the effectiveness of 

Arabidopsis for ecological genetic studies, particularly in response to temperature as the 

global mean temperatures continue to rise.  

A trait can become plastic in nature when a genotype is subjected to an environmental 

change resulting in different phenotypes (Pigliucci, 2001). The plasticity experiment 

conducted in this study consists of the 19 parental genotypes grown in a series of 

temperature treatments in controlled incubators. Environmentally induced variability has 

been avoided to the maximum possible extent. The parental phenotyping results 

illustrate that the Arabidopsis genome reacts to the temperature treatment resulting in 

different hypocotyl phenotypes at different temperatures.  

Changes in an organism’s phenotype that are induced due to different environments are 

a result of phenotypic plasticity (Price et al., 2003). Phenotypic Plasticity is observed 

during the developmental stage of hypocotyl elongation when accessions are grown 

under different temperature treatments. When the same genotypes are phenotyped 

across varying temperatures, we observe an environmentally induced variation that could 

be considered as a functional response. Changes in temperature influence the hypocotyl 

length and cause changes in phenotype. This functional response may ensure plants to 

maximise their survival and fitness in changing temperature conditions. 

The variation seen in any particular accession across a range of temperatures represents 

phenotypic plasticity. Interestingly, all the genotypes not only showed notable variation in 

hypocotyl length at any given temperature, but also in their plastic responses to a range 

of temperatures. The different accessions reacted differentially to varying temperatures 

which is pointed out by the very high G x E interaction. Remarkably, none of the 

genotypes showed a non-significant interaction between any given two temperature 

treatment comparison (12°C - 17°C, 17°C - 22°C, 22°C - 27°C). The differences between 

the genotypes may be a result of genetic variation, environmental variation and/or the 

interaction of both and it is essential to separate the sources of phenotypic variation. 

Hence the analysis of phenotypic data of hypocotyl length illustrates that this is a trait 

which is under the control of endogenous genetic and exogenous environmental factors. 
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Arabidopsis changes its hypocotyl length phenotype in response to increased changes in 

temperature, hence at different temperatures, each of the accessions have different 

hypocotyl lengths. From figure 2.8, highly morphological distinct phenotypes can be 

identified. These results show that hypocotyl length is a trait that displays extensive 

plasticity due to its sensitivity to temperature as an environmental stimulus. In fact, the 

various accessions do not develop the same hypocotyl phenotype at any given 

temperature treatment, and therefore the genetic variation cannot be measured as null. 

The high degrees of differential plastic responses that are seen in the Arabidopsis 

accessions across a range of temperatures are due to the genetic differences present 

between them.  

The comparisons of the hypocotyl lengths across the various genotypes are made at a 

common point in time after one week of growth. This comparison is based on two major 

standards, viz. chronology and growth, because hypocotyls during elongation show size 

dependent changes. This also shows that different genotypes growing under different 

temperature treatments grow at different rates. The hypocotyl elongation increases with 

increase in temperature and therefore the genotypes have different sizes across the 

range as can be seen in figure 2.8. As a result of multi-environment phenotyping analysis 

of the MAGIC accessions, it has been possible to show the phenotypic plasticity present in 

hypocotyl length. 

 

2.4.3 Discussion on Hypocotyl Length Temperature Responsiveness: 

The two-way ANOVA compared the plastic responses of the 19 genotypes for hypocotyl 

length grown at a range of temperatures. From this analysis, three main parts of variation 

were obtained; variance resulting from genotypes, variance resulting from temperature, 

and variance resulting from the interaction of the genotypes and temperature (G x E). The 

results of a significant environment term reveal that the genotypes express plasticity by 

responding to the temperature treatment. The 12°C hypocotyl length means for the 

accessions are the lowest followed by 17°C, 22°C and the highest at 27°C, as seen in the 

figure 2.8, hence there is a main effect for temperature. The results of a significant 

genotype term elucidate that across each of the temperatures, variation in the mean 
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hypocotyl length of the accessions is also seen, and thus there is a main effect for 

genotype. Moreover, the results of a significant G x E term show that there are 

differences present between the genotypes for their respective plastic responses. The 

Arabidopsis genotypes and ambient temperatures are interacting and affecting the 

hypocotyl length. 88% of the variability in hypocotyl length is accounted for by the G x E 

interaction and can be attributed to the accession and temperature interaction. How 

much difference there is in the hypocotyl length between accessions depends on 

genotype and temperature. 

Figure 2.8 shows that Arabidopsis accessions change their ranking across a temperature 

range. The intersection of response lines at specific points in the figure explains the 

change in ranking. For example, an accession with a lower rank at one temperature has a 

higher rank at the other temperature when compared to other accessions. Such nature of 

the reaction norms for the different genotypes exhibits G x E interaction. This 

phenomenon explains that certain genotypes of Arabidopsis differ as a function of 

temperature response. The accessions are dynamic in their responses to temperature 

treatments which demonstrate their overall stability as observed in figure 2.8. This 

reveals that the accession performance is affected by the individual temperature 

environments, but the relative performance is steady across the various environments. 

This stability may well be a result of the underlying unique genetic makeup that the 

accessions possess and the effect of ambient temperature on hypocotyl length. 

All the accessions show a progressive increase in hypocotyl length starting from 12°C up 

to 27°C. This highlights the fact that higher temperatures influence hypocotyl elongation 

as has been previously shown to be associated with higher auxin biosynthesis (Gray et al., 

1998). These interesting reaction norm findings reveal that various genotypes are not 

only highly responsive to temperature treatments but there is also considerable natural 

variation present between their responsiveness. These results explain that different 

accessions respond differentially to a range of temperature environments. Interestingly, 

this analysis reveals that the hypocotyl length trait is much more sensitive to temperature 

differences at higher temperatures than lower temperatures. 

In summary, the greatest effects of the genotype were observed in the temperature 

combinations of 17°C - 22°C, whereas the greatest effects of temperature were seen in 
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the combinations 12°C - 27°C and 17°C - 27°C. The greatest effects of the interaction of 

both the main effects were identified in 12°C - 22°C and 12°C - 27°C combinations. 

Interestingly, a greater change in temperature results in greater variation in hypocotyl 

length due to G x E interaction. 

In all the possible six combinations of temperature comparisons, the environmental effect 

is the greatest (table 2.1) which suggests hypocotyl length as a highly responsive trait to 

changes in ambient temperature conditions. The comparative analysis of hypocotyl length 

with plant size also supports this notion where in section 2.3.15 it has been shown that 

hypocotyl length trait is more responsive to changes in temperature than the plant size 

trait. Perhaps this is because in the Arabidopsis post-germination juvenile developmental 

stage, the embryonic shoot has to perceive the environmental signals from its 

surrounding and enable the seedling to being more responsive to these signals for its 

early on survival. 

These interesting G x E interaction findings provide a strong basis for QTL mapping for a 

‘temperature responsiveness trait’ which aims at identifying loci in the Arabidopsis 

genome associated with increased temperature responses, described in detail in Chapter 

3. The temperature responsiveness findings showed that a main part of phenotypic 

variation in hypocotyl length amongst the MAGIC accessions was strongly temperature-

dependent. 

 

2.4.4 Discussion on Hypocotyl Length Photoperiod: 

An important environmental factor affecting the hypocotyl length and the variation 

between the accessions is photoperiod. Therefore, it requires regulation when 

Arabidopsis accessions are phenotyped under controlled conditions in climate growth 

chambers. The comparison to classify which of the photoperiod conditions reveals greater 

natural genetic variation was essential for the identification of the ideal experimental 

conditions for the phenotyping of the MAGIC parents and their RILs for QTL mapping in 

the subsequent chapter. This analysis exemplifies the effect of photoperiod on hypocotyl 

length. Notable natural variation in hypocotyl length responses to short day photoperiods 

was observed. The estimated measures of effect size suggest that the genotypes grown in 
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short days account for a very large percentage of variability in the hypocotyl lengths when 

compared to long days.  

Previously a complex association was found between day length and hypocotyl elongation 

(unpublished results in Maloof et al., 2001). It was also reported that there is more 

variation in hypocotyl length between Arabidopsis accessions when they are phenotyped 

in short days (Detlef Weigel, Joanne Chory, Justin Borevitz, Mark Estelle; personal 

meetings) and the results of this comparative study on the MAGIC parental accessions 

complement this. They highlight the fact that the hypocotyl lengths are not only bigger 

when seedlings are grown in short days but they also show greater variation and the 

differences in hypocotyl lengths are bigger between the accessions. The duration of the 

daily dark period is an essential feature controlling elongation of hypocotyl length (Niwa 

et al., 2009). Hypocotyl length is very sensitive to photoperiod duration. Under extreme 

de-etiolation effects usually arising in long days, the hypocotyl ceases to elongate and the 

phenotypic differences between accessions, if any, are subtle. Based on this result, it is 

important to notice that photoperiod is an important environmental element determining 

the extent to which natural accessions show genetic variation in hypocotyl length. Hence, 

in order to maximise the phenotypic variation, the MAGIC parents and RILs were 

phenotyped in short days. 

 

2.4.5 Discussion on Hypocotyl Length Adaptive Significance: 

Upon discovering that Arabidopsis MAGIC accessions harbour substantial natural 

variation in hypocotyl length in response to temperature, an interesting question from an 

ecological point of view is whether hypocotyl length is an ecologically relevant trait and if 

natural variation for this trait would allow specific natural accessions to being 

advantageous in certain habitats. From an ecological point of view, the hypocotyl length 

is a trait that plays a vital role in the seedling establishment leading to its survival. In 

nature, this organ allows the seedling to emerge from the soil and establish itself in 

response to the various environmental signals that it receives. In this regard, hypocotyl 

length has been regarded as an ecologically relevant trait (Thomas Mitchell-Olds; 

personal meeting). Hypocotyl length has also been listed as one of the ecologically 
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important developmental phenotypes in a recent genome-wide association study (Atwell 

et al., 2010). 

Arabidopsis is a biogeographic species (Hoffmann, 2002) and table 2.4, comprising of the 

MAGIC parental accessions, reflects a wide geographic distribution, though being a 

smaller sample collected worldwide. Due to their collection from and potential 

adaptation to different geographic locations, the MAGIC accessions can be easily 

distinguished from one another on the basis of natural differences present in 

morphological traits, both in the vegetative and flowering stages. 

One of the several factors that will determine the degree to which plants will adapt to 

changing climates is phenotypic variation (Aitken et al., 2008). The temperature 

responsiveness study in the MAGIC parents suggests adaptive significance for hypocotyl 

length. The described phenotypic variation in hypocotyl length and their plastic responses 

to temperature may provide insights in to the degree to which natural populations of 

Arabidopsis may adapt to changing climates. The reaction norms in section 2.3.4 illustrate 

that Arabidopsis accessions display variable responses and this suggests that they are 

probably more suited to adapt to changing temperatures. The amount of plasticity in 

response to temperature may have evolved differently in various Arabidopsis accessions 

based on their natural habitats and the local environmental conditions of growth. These 

high levels of natural variation observed in hypocotyl length in the Arabidopsis accessions 

may increase their potential, in the early juvenile stage of development, to endure abiotic 

temperature changes resulting from climate change. 

The natural variation observed in plastic responses is important because different 

genotypes can respond differentially to changing temperatures that may have important 

consequences for their adaptation to their local habitats. The consequence of plastic 

responses in the hypocotyl length in response to temperature is a morphological 

modification of the trait. This modification, in the natural habitat, may allow the different 

accessions to meet the challenges of the changing environments due to climate change. 

Though a smaller sample of MAGIC parents was used for the several correlation analyses 

performed in this chapter, it provides a basic insight into the study of their adaptations to 

native habitats. The result of the correlation analysis between hypocotyl length and 
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habitat spring temperature shows that they have a significant medium to high positive 

correlation. However, no significant correlation was observed between etiolated and de-

etiolated hypocotyl length and latitudinal clines. This result of no significant positive 

correlation between etiolated hypocotyl length and latitudinal clines is consistent with a 

previous finding on a larger set of Arabidopsis accessions (Maloof et al., 2001). Several 

other studies in light responses also found a negative correlation between hypocotyl 

length and latitude of origin (Stenøien et al., 2002; Balasubramanian et al., 2006; Filiault 

and Maloof, 2012). 

Arabidopsis latitudinal distribution range covers 0° up to 68°N (Koornneef et al., 2004). 

Latitudinal natural variation in plant size has been well studied in forty Arabidopsis 

accessions ranging from 16°N to 63°N (Li et al., 1998). However, latitudinal variation in 

hypocotyl length in response to temperature is less well studied. The MAGIC parental 

accessions represent considerable variation in the latitudes of their habitats ranging from 

28°N to 60°N, suggesting variable growth temperature environments. In general, the 

tropical climate which is near to the equator of the Earth has a pattern of warm 

temperatures throughout the year with little variation. As the latitude distance from the 

equator increases, particularly towards the north where most of the Arabidopsis 

accessions come from, the average temperatures gradually tend to decrease. Therefore, 

the varying latitudes, which are generally a good predictor of average temperatures, 

affect the average local temperature in the native regions of the accessions, in addition to 

other contributing factors such as altitude. Nonetheless, it may be reasonable to 

hypothesise that plants may have bigger hypocotyls in habitats nearer to the equator 

where ambient temperatures are higher; and with the latitudinal cline towards the North 

the hypocotyls may tend to be smaller. In nature, the Arabidopsis accessions may have 

adapted to the varied temperatures and latitudes of their native habitats. Results from 

this study reveal that correlation of hypocotyl length is stronger with native habitat 

temperature than latitudes. 

It has been previously determined that hypocotyl length does not have any correlation 

with flowering time across latitudinal clines (Stenøien et al., 2002). The comparative 

analysis of hypocotyl length and plant size in this study has shown no correlation between 

these two traits across ambient temperature. Hence, information collected on hypocotyl 
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length cannot be used to infer the phenotypic values of plant size and vice versa. These 

traits need to be assayed independently. 

The presence of phenotypic variation in the MAGIC parental accessions is central for 

dissecting the genetic architecture of hypocotyl length in response to temperature. 

Gaining a profound understanding of the plastic responses is critical for not only 

predicting but also managing the effects of changing climates on plant species and may 

have broader applications for managing crop plants in response to higher temperatures. 

The findings of the parental phenotyping experiments highlight the value of such analyses 

in relation to climate change and are an important milestone in paving the way for 

undertaking genetic analyses across a range of ambient temperatures. The extensive 

phenotypic variation discovered in the MAGIC accessions for hypocotyl length in response 

to temperature provides a strong basis for exploring the underlying genetic basis of this 

variation, which begins with QTL mapping in Chapter 3. 
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Chapter 3 

Dissecting the Genetic Basis of Hypocotyl Length in Response to 

Temperature by QTL Mapping 

 

3.1 Introduction: 

Finding key genes or novel alleles of candidate genes for plant growth traits is a major 

goal for experimental studies in natural variation. Natural variation in Arabidopsis 

accessions can be exploited for novel allelic discovery. The plant growth trait of hypocotyl 

length is controlled by multiple loci that contribute to the variation to varying degrees. 

QTL mapping is an essential tool for dissecting such natural variation. Because continuous 

variation is present in hypocotyl length within Arabidopsis populations, it is a quantitative 

trait for which methods of QTL mapping can be deployed (Falconer and Mackay, 1996). 

QTL mapping utilises intraspecific natural variation (Alonso-Blanco and Koornneef, 2000; 

Maloof, 2003) and helps in identifying allelic variation for known candidate genes and/or 

isolating novel genes that may contribute to phenotypic variation in hypocotyl length. For 

any given trait under investigation, the principle of QTL mapping is based on the 

genotyping of progenitor lines obtained from intercrossing dissimilar accessions (Slate, 

2005). Thus, QTL mapping has an ultimate goal of determining the genes controlling 

natural variation in the trait (Mackay, 2001). This is also called QTL cloning (Borevitz and 

Chory, 2004) which is followed by detection of causal sequence polymorphisms. 

Achieving this goal is a daunting task and QTL studies for quantitative traits usually only 

identify the approximate map position of QTL. The search for QTL genes is rapidly 

developing (Barton and Keightley, 2002); however, the identification of genes that affect 

intraspecific phenotypic variation still remains a major challenge (Christians and 

Keightley, 2002). 

Natural variation in Arabidopsis accessions has been shown to be an essential asset for 

investigating photomorphogenic responses of seedlings (Maloof et al., 2000), and this has 

paved the way for hypocotyl length analysis to temperature responses. This chapter 

examines the dissection of thermomorphogenic quantitative responses of seedlings. 
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Therefore, Arabidopsis is particularly suited to study natural variation and the effects of 

temperature on hypocotyl length. Also with the available methods, novel allelic discovery 

is possible. 

In chapter 2, phenotypic variation of hypocotyl length in the 19 MAGIC parental 

accessions in response to temperature was established. This chapter is about the 

dissection and determination of the genetic basis of hypocotyl length and is the second 

step in the forward genetic analysis (figure 1.4). This step is accomplished with the help of 

QTL mapping; a statistical method that looks for significant associations between the 

molecular markers and the phenotypic trait values (phenotype-genotype association). 

QTL mapping is for the identification of the genomic regions that affect variation in 

hypocotyl length. In chapter 3, a QTL mapping study has been applied to examine the 

basis of natural variation in hypocotyl length and temperature responses. It will look at 

the phenotypic analysis of the RILs and describe the discovery of the QTL. For this 

purpose, reliable phenotypic screen of the RILs with precise measurements is essential. 

Mather (1949) introduced the term ‘polygenes’ for genes that underlie quantitative traits. 

Later, Gelderman (1975) first coined the acronym ‘QTL’ to describe polymorphic regions 

of the genome that contribute to the variation of continuous traits. This region could be a 

single gene or a cluster of linked genes affecting the trait. QTL mapping is performed 

when the phenotypic data of the trait of interest and genotypic data of molecular 

markers of experimental populations are statistically compared to look for associations 

(Alonso-Blanco et al. 2006). In a QTL mapping, one is essentially looking at all the genome 

to find the genes that influence the trait of interest. This process of discovery allows us to 

identify loci in response to specific environmental conditions of growth. 

There are four pre-requisites for QTL mapping: 

 An experimental population of lines that is genetically variable 

 The presence of molecular markers that allow the genotyping of this experimental 

population 

 Quantitative phenotypic data for a trait 

 Appropriate statistical methods for the isolation of significant QTL 
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In this research study, the general goal of QTL mapping is to correlate the hypocotyl 

length phenotype with the specific parental accessions by using RILs where the molecular 

markers segregate due to recombination events. One of the principles of QTL mapping is 

that the detection of QTL can only take place in genomic regions where the parents of a 

cross vary. 

What are the QTL that control hypocotyl length trait in response to temperature? To 

address this question the phenotyping of the RILs needs to be performed in multiple 

temperature environments. This will not only allow the discovery of QTL at individual 

temperatures but will also facilitate the discovery of environmental QTL for a 

‘temperature responsiveness trait’. 

 

The goals of this chapter are: 

1. Phenotypic analysis of the RILs 

2. QTL mapping and discovery of QTL for hypocotyl length trait to temperature 

responses 

3. Discovery of environmental QTL for ‘temperature responsiveness trait’ 

4. Determination of underlying sequence variation in candidate genes 

5. Shortlisting of candidate genes for QTL cloning 
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3.2 Methods and Materials: 

The methods and conditions for seedling growth for the calibration experiment (for 

comparison of seedling hypocotyl length at 12°C and 17°C) and the phenotyping of the 

RILs were the same as explained in section 2.2. 

3.2.1 Growth Conditions for Calibration Experiment: 

Phenotyping of the parental accessions showed that seedlings grown at higher ambient 

temperatures of 22°C and 27°C were bigger and easier to handle while scanning them, 

with no risk of damage to the hypocotyls. However, seedlings grown at lower ambient 

temperatures of 12°C and 17°C were very small (1 mm) and difficult to handle, when 

placing them on to the transparency sheets at the time of scanning. Hence, there was an 

increased risk of damage to the seedlings, especially the hypocotyls. In addition, at lower 

ambient temperatures the hypocotyls reached their maximum length after 1 week of 

growth and the first true leaves started to appear and grow in the presence of light 

facilitating the start of photosynthesis. Therefore, RILs at 12°C and 17°C were grown for 2 

weeks and RILs at 22°C and 27°C were grown for 1 week. This method allowed the roots 

and first true leaves to develop, making them easier to handle and consequently 

eliminate the risk of damage to the hypocotyls and without compromising with the 

hypocotyl length due to the longer time given for growth.  

To test if there are any confounding effects due to the difference in time scales resulting 

in any differences between 1 and 2 weeks of hypocotyl growth at 12°C and 17°C, a 

calibration experiment was performed which showed that the hypocotyls had equal 

lengths when grown for 1 and 2 weeks. The seedlings of the 19 parental accessions were 

grown in Petri dishes for one week at 12°C and 17°C in incubators. After 1 week of 

growth, digital images were taken with a Nikon D300S camera. The same seedlings were 

placed back in the respective incubators and allowed to grow for another week. After 2 

weeks of growth, images were taken again. The hypocotyls were measured in ImageJ. Up 

to 66 individuals per genotype were measured. At lower ambient temperatures 12°C and 

17°C the cessation of the hypocotyl elongation occurs after 1 week of growth upon 

reaching saturation. This is can be observed in figures 3.1 and 3.2. 
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Figure 3.1: 19 Parental accessions phenotyped at 1 week and 2 weeks of growth at 12°C showing 

similar hypocotyl lengths 

 

 

Figure 3.2: 19 Parental accessions phenotyped at 1 week and 2 weeks of growth at 17°C showing 

similar hypocotyl lengths  
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These results showed that in any of the given genotypes the hypocotyl lengths were the 

same and this indicated that the time factor, as a control, for the phenotyping of the RILs 

at 12°C and 17°C was not compromised. Therefore, since the hypocotyl lengths were 

similar, the seedlings grown for 2 weeks were used for phenotyping.  

3.2.2 Experimental Population for QTL Mapping: 

The genetically diverse resource of the Multiparent Advanced Generation Inter-Cross 

(MAGIC) Recombinant Inbred Lines (RILs) of Arabidopsis was used for the phenotyping of 

the hypocotyl length. This is a synthetic mapping population and is a family based 

method. The molecular markers used in MAGIC lines are single nucleotide polymorphisms 

(SNPs). This segregating RIL population is an alternative resource to genetically dissecting 

complex traits and is derived from the intercrossing of the 19 parental accessions, which 

represent more of the genetic and phenotypic variation present.  

These accessions come from a wide range of geographical locations and their genotypes 

represent local adaptations to their original habitats and climates. The advantages of 

using this mapping population are manifold. The RILs are highly recombinant which 

improves the mapping resolution. There is greater allelic and phenotypic diversity present 

in the RILs due to the intermating of 19 heterogeneous parents. Moreover, this immortal 

population that consists of homozygous individuals allows phenotyping in multiple 

environments for the detection of G x E interactions. 

These lines were constructed by intermating each of the 19 founder accessions as both 

maternal and paternal parents, 19 X 18 = 342 F1 progeny. The F1 were intermated 

randomly for four generations producing 342 outbred F4 families. From each F4 family, 3 

inbred MAGIC lines were derived by selfing an F4 plant for six generations producing a 

total of 1026 RILs. The first batch of 527 RILs was obtained from NASC which were used 

for phenotyping.  

3.2.3 Phenotyping of RILs: 

One of the pre-requisites for mapping QTL is accurate phenotyping of the RILs for the 

hypocotyl length trait. By using growth incubators for phenotyping, all environmental 

variables of growth such as temperature, light and humidity, were controlled and kept 
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constant to the greatest extent possible. Phenotyping of all the RILs under multiple 

temperature environments is a bottleneck in QTL analyses. It is a time consuming and 

laborious task. Under such circumstances, high throughput phenotyping is essential.  

Phenotyping of the hypocotyl length under controlled environments should involve high 

experimental reproducibility and better levels of precision in phenotyping. The accurate 

phenotyping allows the dissection of the hypocotyl length trait for the large population of 

the RILs to enable QTL mapping to be undertaken, elucidating the molecular basis of this 

complex trait.  

For RILs, N = 12 and in total > 19,000 plants were measured for QTL mapping. The 

replication of genetically identical individuals reduced the environmental error and 

increased the statistical power of analyses and this provided a powerful system to map 

QTL. 

3.2.4 Image Analysis for Quantitation: 

The large amount of hypocotyl length quantitative data of the RILs was analysed with the 

help of using Image J for image analysis. However, it was a laborious task due to the 

manual method of measuring the hypocotyls of each of the individual seedlings in the 

images.  

3.2.5 QTL Mapping Procedure/Statistical Analysis: 

Associations of the hypocotyl length trait differences with specific SNP markers were used 

for the identification of chromosomal intervals that harbour genes accountable for the 

natural variation segregating in the MAGIC lines. The QTL mapping was performed in the 

HAPPY package in the software/programme R which has been developed by Richard Mott 

(http://www.well.ox.ac.uk/happy/happyR.shtml). The genome-wide molecular genetic 

map of the RILs is based on SNPs. Hypocotyl length phenotypic values of the RILs were 

compared with the SNP marker genotypes of the RILs to search for specific genomic 

intervals (QTL) that showed statistically significant associations with hypocotyl length trait 

variation.  

Associations at the four temperatures was performed and a QTL was declared on the 

basis of p = 0.05 significance threshold. If p = 0.01 then there is a chance to have false 
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negatives as the actual SNPs that may be involved in the QTL may be missed out. If p = 

0.05 then there is a chance to have false positives but at the same time we may not miss 

out actual causal genes that could be involved in the QTL. 

This was followed by a candidate gene approach. In order to detect QTL, the QTL mapping 

software performed a genome scan to determine QTL thresholds for statistical 

significance. It then found all QTL where the logP of genetic association to the hypocotyl 

length phenotype data was significant at p = 0.05.  

The QTL mapping also provided the mean estimates of the parental accession effects at 

each QTL peak marker SNP and all the SNP markers within a particular QTL. The QTL 

mapping was performed as described by Kover et al. (2009).  

Two different types of QTL mapping were performed; one type was mapping at individual 

temperatures, the same ambient temperatures at which the parents were phenotyped 

(12°C, 17°C, 22°C, 27°C). In this type, phenotypic data of all the RILs was used separately 

at each of the temperatures.  

The second kind was mapping by calculating the ratio between any two temperatures to 

measure the response of the RILs to temperature changes. This type of mapping was 

carried out for the temperature responsiveness trait. In essence, this mapping should 

isolate QTL that are implicated in increased temperature responses.  

The next task was to find polymorphisms in candidate genes that may be involved in 

temperature responsiveness. 

3.2.6 Bioinformatic Methods: 

The in silico analysis of genomic sequences was performed for the candidate genes in the 

different QTL. The software ‘BioEdit Sequence Alignment Editor’ was used for genomic 

sequence analysis, which is a very effective programme to performing this data analysis.  

For each of the genes, the predicted protein sequences for all the 19 parents were aligned 

using Multiple Sequence Comparison by Log- Expectation (MUSCLE) software available at 

http://www.ebi.ac.uk/Tools/msa/muscle/. This multiple sequence alignment software 
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achieves both better speed and average accuracy as compared to ClustalW2 or T-Coffee 

softwares.  

At the time of this analysis, the sequences of the MAGIC parents were not available 

online on bioinformatic search websites but were available to download from Richard 

Mott’s webpage in the raw form.  

In order to do a multiple sequence alignment for the detection of polymorphisms, it was 

necessary to in silico extract the alleles of the candidate genes in all the founder 

accessions of the MAGIC lines. The identification of alleles in parental accessions other 

than Col-0 was a difficult step because they have different physical positions on the 

respective chromosomes. Therefore, the coding sequences of the DNA of all the 

candidate genes were manually extracted for each of the 18 parental accessions by using 

the reference sequences from Col-0 accession which were available on TAIR’s website.  

The DNA sequences were translated to protein coding sequences and multiple sequence 

homology was used for the detection of amino acid changes or other indels in the 

candidate genes. 
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3.3 Results: 

3.3.1 Phenotypic Characterisation of MAGIC RILs: 

As mentioned before, in a QTL analysis, the phenotypic characterisation of RILs is a bottle 

neck and requires high throughput phenotyping methods that need to be accurate and 

precise. This accuracy of the quantitative trait data is essential for the detection of QTL.  

To study the amount of variation in the RILs, a one-way ANOVA was performed at each of 

the four treatment temperatures. The results show that there are highly significant 

differences between the means of hypocotyl lengths of the RILs.  

12°C = F(411, 4532) = 680.77, p < 0.001) 

17°C = F(339, 3740) = 710.32, p < 0.001) 

22°C = F(425, 4686) = 1420.5, p < 0.001) 

27°C = F(408, 4499) = 4707.7, p < 0.001) 

RILs show significant differences in hypocotyl length because they were constructed by 

the intermating of the 19 founder accessions and hence each RIL carries a unique fine 

mosaic of the parental genomes. The phenotypic analysis of the RILs provided valuable 

insights into the large range of quantitative data which the hypocotyl length trait exhibits. 

The range of hypocotyl lengths at each of the temperatures shows the extent of genetic 

variation in the RILs;  

12°C = 0.79 – 3.29 mm, 

17°C = 0.96 – 4.39 mm, 

22°C = 1.29 – 7.07 mm, 

27°C = 3.10 – 11.64 mm 

3.3.2 Hypocotyl Length Trait is Continuously Distributed: 

The phenotypic characterisation of the RILs reveals that hypocotyl length is quantitatively 

inherited and therefore shows a continuous phenotypic distribution. Figure 3.3 shows the 

continuous range of hypocotyl lengths in the RILs at different temperatures. The 

inheritance of hypocotyl length in an F2 progeny of a cross between Col-0 and Sf-2 

accessions has been studied thoroughly in chapter 2.
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Figure 3.3: Plots revealing the continuous distribution of RILs at different temperatures; a typical feature of quantitatively inherited traits.
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3.3.3 Discovery of QTL at Individual Temperatures 12°C, 22°C, 27°C: 

QTL were mapped which were responsible for hypocotyl length variation in response to 

temperature in the MAGIC RILs. Temperature-dependent QTL have been isolated. At 

different temperatures, different sets of QTL appear suggesting that particular QTL affect 

natural variation in hypocotyl length trait under a specific set of environmental 

conditions. The QTL are temperature sensitive as seen in figure 3.4, revealing the 

importance of temperature.  

 

 

 

 

Figure 3.4: QTL scanning maps at 12°C, 17°C, 22°C and 27°C (top to bottom) showing the isolated 

QTL with peak marker positions as orange dots. The red lines are boundaries of chromosomes.
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12°C 

Chromosome QTL  Island.From.bp Island.To.bp Peak.bp Peak.SNP logP Genomewide.pvalue 

Chr1 QTL1 13832180 15765615 14922486 PERL0126101 4.255643273 0.021 

Chr1 QTL2 15928121 15974746 15974746 NMSNP1_15977186 3.894408886 0.0385 

Chr1 QTL3 16134927 16644538 16251782 PERL0133385 4.08008612 0.0282 

Chr1 QTL4 16871886 16872100 16872100 MN1_16874540 3.928843916 0.0359 

Chr1 QTL5 17148697 17179544 17179544 MN1_17181992 3.797107195 0.0461 

Chr5 QTL1 5005747 5145069 5145069 MASC01136 3.82599005 0.044 

22°C 

Chromosome QTL  Island.From.bp Island.To.bp Peak.bp Peak.SNP logP Genomewide.pvalue 

Chr2 QTL1 6154830 7722797 7065654 MN2_7072735 4.786055984 0.008 

Chr2 QTL2 7722958 8144073 8141710 PHYB_2850 4.482622015 0.0137 

Chr2 QTL3 8742966 13319028 10933252 MASC02949 7.628476898 0.0002 

Chr2 QTL4 13782937 15244621 14399791 MN2_14406873 4.896008743 0.0062 

Chr3 QTL1 15317766 15668809 15668414 MN3_15679400 3.845717159 0.0439 

Chr3 QTL2 15760957 15869095 15869095 MN3_15880080 3.793127808 0.0482 

Chr3 QTL3 15966634 19913837 17155377 MN3_17166362 6.437050678 0.0013 

27°C 

Chromosome QTL  Island.From.bp Island.To.bp Peak.bp Peak.SNP logP Genomewide.pvalue 

Chr3 QTL1 17370484 17639552 17438018 MASC07256 3.960640517 0.0197 

Chr3 QTL2 17755915 18428879 17871357 NMSNP3_17882342 4.094330979 0.0142 

Chr4 QTL1 10042015 10977564 10302880 MASC01526 5.207123235 0.0012 

Chr4 QTL2 11001770 11003558 11003558 TSF_606 3.691393187 0.0325 

Table 3.1: Different QTL isolated at 12°C, 22°C and 27°C for hypocotyl length. At 12°C, a total of 6 QTL; at 22°C 7 QTL; and at 27°C 4 QTL were identified.
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The use of MAGIC RILs has enabled fine-scale and refined QTL mapping to isolate majority 

of the intervals that contain a manageable number of genes for the candidate gene 

approach to follow. Upon identification of obvious candidate genes involved in hypocotyl 

elongation, a comprehensive methodology was undertaken to shortlist the candidate 

genes. This has been described in detail in section 3.3.5. 

When compared to traditional biparental QTL mapping, the isolated QTL intervals have 

narrow boundaries. The mapping resolution of MAGIC RILs is very high and several QTL 

have been mapped in the sub-centimorgan (cM) range as shown in table 3.2. This fine 

mapping of QTL allows direct investigation of the candidate genes for further shortlisting 

and functional analysis. The QTL represent a mapping resolution of the order of few to 

several centimorgans. 

12°C 

QTL Name 
QTL Interval 

in bp 

QTL Interval 

in Kb 

QTL Interval 

in Mb 

QTL Interval 

in cM 

No. of 

Genes 

Chr1, QTL1 1933435 1933.435 1.933435 9.66 42 

Chr1, QTL2 46625 46.625 0.046625 0.23 4 

Chr1, QTL3, 509611 509.611 0.509611 2.54 51 

Chr1, QTL4 214 0.214 0.000214 0.001 1 

Chr1, QTL5, 30847 30.847 0.030847 0.15 9 

Chr5, QTL1 139322 139.322 0.139322 0.69 39 

22°C 

Chr2, QTL1 1567967 1567.967 1.567967 7.83 288 

Chr2, QTL2 421115 421.115 0.421115 2.10 110 

Chr2, QTL3 4576062 4576.062 4.576062 22.88 1160 

Chr2, QTL4 1461684 1461.684 1.461684 7.30 426 

Chr3, QTL1 351043 351.043 0.351043 1.75 38 

Chr3, QTL2 108138 108.138 0.108138 0.54 19 

Chr3, QTL3 3947203 3947.203 3.947203 19.73 1009 

27°C 

Chr3, QTL1 269068 269.068 0.269068 1.34 61 

Chr3, QTL2 672964 672.964 0.672964 3.36 177 

Chr4, QTL1 935549 935.549 0.935549 4.67 243 

Chr4, QTL2 1788 1.788 0.001788 0.008 1 

Table 3.2: QTL intervals in bp, Kb and Mb and total number of protein-coding genes in each of the 

QTL. 
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3.3.4 Genetic Architecture of Hypocotyl Length as a Quantitative Trait: 

In plants, the number of genes, their location on the genome and QTL effect sizes, 

describes the genetic architecture of complex traits (Holland, 2007). An interesting 

feature of MAGIC RILs is that for each SNP marker, the QTL mapping reconstructs the 

mean estimates of hypocotyl lengths for all the 19 parental accessions. This data 

calculates the effect sizes of the parental accessions and identifies the parental 

contribution to the variation of the hypocotyl length trait. The effect sizes of those SNPs 

that fall within a QTL interval were all available and that provided insights to the genetic 

architecture of hypocotyl length. 

From the QTL mapping, it is interesting to know that at each of the temperatures, few 

large effect QTL determine the quantitative genetic variation of hypocotyl length. This in 

turn means that the few QTL explain a greater proportion of the variation. As the number 

of QTL is inversely proportional to the distribution of variance, fewer QTL isolated account 

for the variance and hence they are large effect QTL and vice versa. The underlying 

genetic variance is attributable to few QTL. Therefore, due to the fact that multiple 

parents are used in MAGIC QTL mapping, instead of having an overall percentage of 

variation of hypocotyl length for each of the QTL, it is of great interest to know which of 

the accessions are major effect parents and show more differences in the hypocotyl 

length phenotypes at each particular isolated QTL. This is explained by the mean 

accessions estimates, shown in section 3.3.5.2, which provides a meaningful way to 

analyse the contribution of the parents to the variation of the QTL, at the peak individual 

SNP molecular marker. 

There are two important quantitative analyses that are informative about the genetic 

architecture of hypocotyl length. The first is to calculate how much of the phenotypic 

variance between accessions is attributable to genetic variation. This is the simplest way 

of analysing genetic and phenotypic variance. This has already been carried out in chapter 

2 that provides the estimates of heritability. In this analysis, since the sample is very big, 

therefore, it is a very good estimate of heritability. 

The second analysis is to determine what proportion of the phenotypic variation in 

hypocotyl length is explained by each of the QTL. In a QTL if there is a single gene, it is 
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interesting to analyse the proportion of the contributing variance of this locus to 

hypocotyl length phenotypic variation. This proportion of variance has been estimated by 

the QTL mapping procedure by the reconstruction of the parental accessions explaining 

their effect sizes at this particular locus. Hence this quantitative data is more useful in 

estimating the proportion of variation in hypocotyl length by each of the loci showing a 

significant effect. 

The major effect size parental accessions and their hypocotyl length phenotypes correlate 

with each other. This information is available from the box plots in section 3.3.5.2 which 

show that e.g. Sf-2 has a bigger phenotype and Col-0 has a smaller phenotype. This 

reconstruction data from the QTL mapping is congruent to the actual hypocotyl lengths 

when phenotyped. 

3.3.5 Post QTL Mapping Analyses: 

The discovery of QTL for the hypocotyl length trait in response to temperature, in the pre-

QTL cloning step, is one of the most noteworthy results and an achievement in itself, 

however, to enhance our molecular understanding of the genomic regions involved in the 

natural variation of hypocotyl length in response to temperature, the post QTL mapping 

analysis aimed to identify candidate genes. Due to the fine mapping of QTL, the approach 

adopted for this purpose was to conduct a detailed analysis of the isolated fine-mapped 

QTL and subsequent QTL cloning. This allowed the detailed examination of small genomic 

intervals that may be involved in the natural variation of hypocotyl length. 

3.3.5.1 A Three-Dimensional Strategy for Candidate Gene Identification: 

The post QTL mapping approach, for the preliminary shortlisting of candidate genes, was 

based on a three-dimensional strategy. This effective method, which culminated in an 

exhaustive list of candidates, included: 

1. A candidate gene approach by identifying genes functionally involved in the 

hypocotyl length phenotype 

2. Identification of molecular allelic polymorphisms that may be responsible for the 

functional variation of hypocotyl length phenotype in candidate genes 
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3. Identification of the major effect size parental accessions for these candidate 

genes in the QTL showing allelic polymorphism 

These three criteria form the basis of an integrated approach to data analysis as follows. 

The identification of candidate genes was carried out in a systematic way once the QTL 

were isolated to a relatively narrow interval by fine-QTL mapping. The candidate gene 

screening comprised of two parallel and complementary methods for each of the QTL at 

different temperatures. First was to retrieve online gene descriptions and orthology from 

TAIR’s website (http://www.arabidopsis.org) and screen for the significant ones according 

to their known or predicted function in hypocotyl elongation. The lists of genes in each of 

the QTL were compared against exhaustive lists of genes which have been already 

implicated in growth and development related phenotypes or characteristics; such as 

hypocotyl length, temperature response, light response, seedling germination, auxin 

response, shoot development and developmental regulation. These comprehensive lists, 

based on phenotypes, were prepared from a study (http://walnut.usc.edu/2010) related 

to the 1001 genomes project (http://www.1001genomes.org/index.html). Subsequently, 

more than 130 protein-coding genes, associated to the above mentioned characteristics 

or phenotypes, were identified in all of the QTL. Second was to look in the literature and 

spot all those pre-identified genes that have functional relationships to the trait; and 

observe if they are present in the isolated QTL. This method ensured that no significant 

gene was left out in the screening process. And as it is usually the case, the candidate 

gene approach was an informed first step in the shortlisting of genes in the QTL. 

The in silico bioinformatic analysis of genome sequences for identifying allelic sequence 

polymorphisms in the protein coding regions of the candidate genes in the QTL was a 

second step of gene shortlisting. The genome sequences of the 19 parental accessions 

were available and this greatly benefitted the QTL cloning as it reduced the total number 

of candidate genes in a QTL. All those genes were disregarded and excluded from any 

further analysis that did not show any allelic polymorphism in any of the 19 accessions in 

their protein coding regions. This is because these genes are unlikely to be causative of 

the QTL based on their coding sequence (CDS). This was an important step in the 

shortlisting of candidate genes. Conversely, those genes and their splice variants were 

selected for further investigation which had sequence polymorphisms, such as indels and 
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SNPs in the coding sequences of the genes. The DNA sequences of the candidate genes 

and their splice variants, if any, in all the 19 parental accessions, were analysed for 

identification of sequence polymorphisms. However, SNP mutations were not studied in 

the DNA sequences, because these point mutations could lead to synonymous changes. 

These types of polymorphisms were studied in greater depth in the protein sequences 

that were obtained by in silico translation of the DNA sequences. The bioinformatic 

protocol created and used for this analysis is provided in the Appendix (section 3.9). 

The various kinds of polymorphisms that were analysed are insertions, deletions, (indels), 

nonsynonymous mutations such as nonsense and missense mutations, which could 

potentially lead to a different amino acid substitution in the polymer or a pre-mature 

truncation stop codon, eventually forming a different protein structure and hence altering 

its function (loss of function mutations).  

The first and second steps of shortlisting identified candidate genes with potentially 

significant sequence polymorphisms. In the third step it was essential to pinpoint which 

parents were major contributors to a QTL. To distinguish between minor and major effect 

size parents, the corresponding box plots for the peak SNP marker and for the flanking 

markers of the genes in the respective QTL were analysed. The box plots estimate the 

effects of the parental accession at each locus. The box plots represent parental 

reconstruction data from the QTL mapping showing hypocotyl length effect sizes. This 

data revealed candidate genes which showed sequence polymorphisms in the major 

effect size parents. These are parents which show extreme phenotypes (bigger or smaller) 

in the box plots. These accessions show the most significant association with the peak 

SNP markers or the flanking SNP markers in the QTL. Therefore, candidate genes that had 

polymorphisms in the main effect size parental accessions in a QTL were investigated 

further for genetic analyses. The shortlist comprised of a total of ~ 30 candidate genes in 

various QTL. 

 

3.3.5.2 Implementing an Integrated Approach for Gene Discovery: 

Following the shortlisting of genes according to the three-tier strategy as explained in 

section 3.3.5.1, candidate genes were identified in all of the different QTL at all the 
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temperatures. This section provides the results of the QTL mapping and details of the 

candidate genes in each of the QTL. For each of the QTL and their candidate genes the 

molecular polymorphisms have also been identified. 

Since all the candidates underwent a rigorous shortlisting methodology, this allowed for 

very few strong candidate genes to be taken to the next level of functional analysis. In the 

following sections, the figures with the box plot data show effect sizes of the parental 

accessions contributing to the variation of the trait at a particular peak SNP marker; and 

the tables show types of mutations in accessions compared to the reference Col-0 

genome. 

 

3.3.5.2.1 QTL Data Analysis at 12°C: 

 

 

Figure 3.5: Effect sizes of parental accessions at peak SNP marker at Chr1, QTL3 

 

QTL Gene Locus Gene Name and 
Description from TAIR 

Major Effect 
Parents 

Type of 
Mutation 

 Chr1, 
QTL3 

AT1G43040 SAUR58, auxin-responsive 
protein, putative 

Kn-0, Wil-2, Zu-
0 

Stop Codon 

Table 3.4: Table of candidate genes at Chr1, QTL3 
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The SAUR58 gene belongs to the Small Auxin Up-RNA (SAUR)-like auxin responsive 

protein family. The total length of the DNA sequence is 315bp. In the accessions Kn-0, 

Wil-2 and Zu-0 at 70 bp, C => T, a SNP mutation which changes the amino acid Arginine 

(R) into a truncation stop codon TGA and hence terminates the predicted protein 

prematurely. This gene is an interesting candidate for the QTL and a T-DNA knockout ‘GK-

441A08-018217’ is available on TAIR’s website. However, this gene could not be further 

functionally characterised as no seeds for knockouts were received from the stock centre. 

 

3.3.5.2.2 QTL Data Analysis at 22°C: 

The following data are for Chr2 QTL1: 

 

 

Figure 3.6: Effect sizes of parental accessions at peak SNP marker at Chr2, QTL1 

 

QTL Gene Locus Gene Name and 
Description from TAIR 

Major Effect 
Parents 

Type of Mutation 

Chr2, 
QTL1 

AT2G14820 NPY2, phototropic-
responsive NPH3 family 
protein 

Ct-1, Kn-0, No-
0, Sf-2, Tsu-0, 
Zu-0 

non-synonymous 

Chr2, 
QTL1 

AT2G16580 SAUR8, auxin-
responsive protein, 
putative 

No-0, Sf-2, Tsu-
0 

non-synonymous 

Table 3.5: Table of candidate genes at Chr2, QTL1 
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Following are the non-synonymous mutations in the candidate gene NPY2: 

In Ct-1, No-0, Sf-2, Tsu-0 at residue 177 Histidine => Glutamine and at residue 270 

Isoleucine => Valine. In Ct-1 at residue 376 Leucine => Phenylalanine and at residue 416 

Serine => Isoleucine. In Kn-0 at residue 341 Aspartic acid => Glutamic acid. In Sf-2 and 

Tsu-0 at residue 569 Isoleucine => Methionine. In Kn-0 at residue 444 Lysine => 

Asparagine and at residue 598 Glycine => Glutamic acid. 

Following are the non-synonymous mutations in the candidate gene SAUR8: 

In No-0, Sf-2, Tsu-0 at residue 38 Valine => Aspartic acid. In Tsu-0 at residue 50 Proline => 

Histidine. 

 

The following data are for Chr2 QTL2: 

 

 

Figure 3.7: Effect sizes of parental accessions at peak SNP marker at Chr2, QTL2 

 

QTL Gene Locus Gene Name and 
Description from TAIR 

Major Effect 
Parents 

Type of 
Mutation 

Chr2, 
QTL2 

AT2G18790 PHYB (PHYTOCHROME B); 
G-protein coupled 
photoreceptor/ signal 
transducer 

Ct-1, Kn-0, No-0, 
Sf-2, Wil-2, Zu-0 

non-synonymous 

Table 3.6: Table of candidate genes at Chr2, QTL2 
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Following are the non-synonymous mutations in the candidate gene PHYB: 

In Kn-0, No-0, Sf-2, Wil-2, Zu-0 there is a 4 residue (GGGR) deletion starting at residue 9. 

In No-0 at residue 19 Glutamic acid => Lysine and at residue 980 Valine => Isoleucine. In 

Ct-1 at residue 93 Glycine => Aspartic acid. In Kn-0, No-0, Sf-2, Wil-2, Zu-0 at residue 143 

Isoleucine => Leucine. In Kn-0, Wil-2, Sf-2 at residue 247 Alanine => Serine. In Zu-0 at 

residue 709 Glutamic acid => Lysine. In Sf-2, Wil-2, Kn-0 at residue 736 Serine => 

Threonine. In Kn-0 and Wil-2 at residue 949 Alanine => Threonine and at residue 989 

Glutamic acid => Aspartic acid. In Ct-1, Kn-0, No-0, Sf-2, Wil-2, Zu-0 at residue 1072 

Leucine => Valine. 

PHYB was an obvious candidate and this QTL has been named as ‘Temp22.2’ QTL. The QTL 

has been named according to the temperature environment in which it has been isolated 

and the chromosome number.  

 

The following data are for Chr2 QTL3: 

 

 

Figure 3.8: Effect sizes of parental accessions at peak SNP marker at Chr2, QTL3 
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QTL Gene Locus Gene Name and 
Description from TAIR 

Major Effect 
Parents 

Type of 
Mutation 

Chr2, 
QTL3 

AT2G23050 NPY4, phototropic-
responsive NPH3 family 
protein 

Can-0, Kn-0, 
No-0, Wil-2, 
Ct-1, Sf-2 

non-synonymous 

Chr2, 
QTL3 

AT2G23380 CLF (CURLY LEAF); 
transcription factor 

Ct-1, Sf-2, No-
0, Tsu-0 

non-synonymous 

Chr2, 
QTL3 

AT2G24400 SAUR38, auxin-responsive 
protein, putative / small 
auxin up RNA (SAUR_D) 

Can-0, Kn-0, Sf-
2, Mt-0, Tsu-0, 
Wil-2, Ws-0 

non-synonymous 

Chr2, 
QTL3 

AT2G24790 COL3 (CONSTANS-LIKE 3); 
protein binding / 
transcription factor/ zinc 
ion binding 

Edi-0, Bur-0, 
No-0, Tsu-0, 
Wil-2, Ct-1 

non-synonymous 

Chr2, 
QTL3 

AT2G27380 ATEPR1 Arabidopsis 
thaliana extensin proline-
rich 1 

Sf-2, Tsu-0, Zu-
0 

non-synonymous 

Chr2, 
QTL3 

AT2G28350 ARF10 (AUXIN RESPONSE 
FACTOR 10); miRNA binding 
/ transcription factor 

Sf-2, Tsu-0, Ct-
1 

non-synonymous 

Chr2, 
QTL3 

AT2G28890 PLL4 (POLTERGEIST LIKE 4); 
protein serine/threonine 
phosphatase 

Tsu-0, Bur-0, 
Zu-0, Ct-1, Sf-
2, Can-0 

non-synonymous 

Chr2, 
QTL3 

AT2G30520 RPT2 (ROOT 
PHOTOTROPISM 2) 

Sf-2, Po-0, Zu-
0, Can-0 

non-synonymous 

Chr2, 
QTL3 

AT2G30950 VAR2 (VARIEGATED 2); ATP-
dependent peptidase/ 
ATPase/ metallopeptidase/ 
zinc ion binding 

Tsu-0, Edi-0, 
Oy-0, Bur-0 

non-synonymous 

Table 3.7: Table of candidate genes at Chr2, QTL3 

 

Following are the non-synonymous mutations in the candidate gene NPY4: 

In Can-0, Kn-0, No-0, Wil-2, an insertion of T at residue 61 causes a frame shift mutation. 

In the same accessions at residue 245 Alanine => Threonine; at residue 257 Glutamic acid 
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=> Glycine; at residue 268 Asparagine => Aspartic acid; at residue 305 Lysine => Arginine; 

at residue 321 Aspartic acid => Histidine; and at residue 339 Asparagine => Aspartic acid. 

In Ct-1 at residue 14 Leucine => Glutamine, at residue 268 Asparagine => Aspartic acid. In 

Sf-2 at residue 14 Leucine => Glutamine. 

Following are the non-synonymous mutations in the candidate gene CLF: 

In Ct-1, No-0 at residue 204 Tyrosine => Serine, at residue 408 Arginine => Glutamine, at 

residue 453 Histidine => Asparagine, at residue 510 Serine => Asparagine, at residue 542 

Leucine => Phenylalanine. In Sf-2, Tsu-0 at residue 225 Serine = Asparagine, there is an 

insertion of two residues at 337 Threonine and 338 Glycine, and at residue 415 Lysine => 

Asparagine. 

Following are the non-synonymous mutations in the candidate gene SAUR38: 

In Can-0 at residue 48 Serine => Glycine. In Kn-0, Sf-2 at residue 121 Glutamic acid => 

Aspartic acid. In Mt-0, Tsu-0, Wil-2, Ws-0 at residue 156 Serine => Arginine. 

Following are the non-synonymous mutations in the candidate gene COL3: 

In Edi-0, Bur-0, No-0 at residue 30 Aspartic acid => Asparagine, at residue 286 Glycine => 

Cysteine. In Tsu-0, Wil-2 at residue 64 Lysine => Glutamic acid. In Tsu-0 at residue 182 

Isoleucine => Valine. In Ct-1 at residue 273 Aspartic acid => Glutamic acid. 

Following are the non-synonymous mutations in the candidate gene EPR1: 

In Zu-0 at residue 274 Valine => Leucine, at residue 723 Isoleucine => Threonine. In Tsu-0 

at residue 280 Isoleucine => Threonine, at residue 623 Proline => Serine. In Sf-2 at residue 

307 Valine => Isoleucine, at resuide 422 Leucine => Proline, at residue 509 Glutamine => 

Lysine, at residue 558 Isoleucine => Valine, at residue 710 Proline => Glutamine. 

Following are the non-synonymous mutations in the candidate gene ARF10: 

In Sf-2, Tsu-0, Ct-1 at residue 411 Histidine => Aspartic acid. 

Following are the non-synonymous mutations in the candidate gene PLL4: 
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In Tsu-0 at residue 436 Alanine => Proline. In Bur-0, Tsu-0 at residue 327 Aspartic acid => 

Histidine. In Zu-0, Ct-1, Sf-2, Tsu-0 at residue 363 Leucine => Serine. In Zu-0 at residue 315 

Alanine => Glycine. In Can-0 at residue 208 Proline => Serine. 

Following are the non-synonymous mutations in the candidate gene RPT2: 

In Po-0, Sf-2, Zu-0 at residue 244 Tyrosine => Phenylalanine. In Can-0 at residue 458 

Isoleucine => Valine. In Sf-2 at residue 555 Lysine => Arginine. 

Following are the non-synonymous mutations in the candidate gene VAR2: 

In Edi-0, Tsu-0, Oy-0, Bur-0 at residue 14 Serine => Leucine. 

 

The following data are for Chr3 QTL3: 

 

 

Figure 3.9: Effect sizes of parental accessions at peak SNP marker at Chr3, QTL3 

 

QTL Gene Locus Gene Name and 
Description from TAIR 

Major Effect 
Parents 

Type of 
Mutation 

Chr3, 
QTL3 

AT3G44600 CYP71 (CYCLOPHILIN71); 
chromatin binding / histone 
binding / peptidyl-prolyl cis-
trans isomerase 

Ct-1, Sf-2, Tsu-
0, Zu-0, Oy-0, 
Po-0, Bur-0 

non-
synonymous 

Chr3, 
QTL3 

AT3G45780 PHOT1 (phototropin 1); 
kinase 

Zu-0, Can-0, 
Oy-0, Po-0, Sf-
2 

non-
synonymous 

Chr3, 
QTL3 

AT3G49120 PCB, defense response to 
bacterium, defense 

Sf-2, Zu-0, Mt-
0, Ct-1, Oy-0, 

non-
synonymous 
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response to fungus, 
response to light stimulus, 

Po-0 

Chr3, 
QTL3 

AT3G49670 BAM2 (big apical meristem 
2); ATP binding / protein 
serine/threonine kinase 

Sf-2, Can-0, 
Oy-0, Po-0 

non-
synonymous 

Chr3, 
QTL3 

AT3G51200 SAUR18, auxin-responsive 
family protein 

Sf-2, Mt-0, 
Can-0, Bur-0, 
Ler-0 

non-
synonymous 

Chr3, 
QTL3 

AT3G51240 TT6, F3H (TRANSPARENT 
TESTA 6); naringenin 3-
dioxygenase 

Sf-2, Zu-0, Edi-
0, Ct-1, Oy-0, 
Po-0 

non-
synonymous 

Chr3, 
QTL3 

AT3G52910 ATGRF4 (GROWTH-
REGULATING FACTOR 4) 

Zu-0, Can-0, 
Oy-0, P-0, Ct-1, 
Sf-2 

non-
synonymous 

Table 3.8: Table of candidate genes at Chr3, QTL3 

 

Following are the non-synonymous mutations in the candidate gene CYP71: 

In Ct-1, Oy-0, Po-0 at residue 9 Glycine => Glutamic acid, at residue 357 Phenylalanine => 

Leucine. Bur-0, Tsu-0 at residue 9 Glycine => Arginine. In Zu-0 at residue 181 Leucine => 

Serine, at residue 278 Alanine => Serine, at residue 357 Phenylalanine => Leucine. In Sf-2 

at residue 357 Phenylalanine => Leucine. 

Following are the non-synonymous mutations in the candidate gene PHOT1: 

In Can-0 at residue 41 Phenylalanine => Tyrosine, at residue 365 Aspartic acid => 

Asparagine. In Oy-0, Po-0 at residue 67 Proline => Leucine. In Ct-1 at residue 79 Isoleucine 

=> Serine. In Zu-0 at residue 268 Lysine => Asparagine. In Bur-0 at residue 836 Glutamine 

=> Glutamic acid. 

Following are the non-synonymous mutations in the candidate gene PCB: 

In Mt-0 at residue 53 Valine => Glutamic acid. In Ct-1, Oy-0, Po-0, Sf-2, Zu-0 at residue 270 

Arginine => Glutamine. 

Following are the non-synonymous mutations in the candidate gene BAM2:  

In Can-0 at residue 39 Threonine => Alanine, at residue 77 Serine => Proline, at residue 

184 Alanine => Proline, at residue 353 Glutamine => Lysine, at residue 983 Alanine => 
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Serine. In Sf-2 at residue 130 Asparagine => Aspartic acid. In Oy-0, Po-0 at residue 353 

Glutamine => Histidine. 

Following are the non-synonymous mutations in the candidate gene SAUR18: 

Sf-2, Mt-0, Can-0, Bur-0 at residue 44 Tyrosine => Histidine. In Ler-0 at residue 21 

Glutamine => Lysine. 

Following are the non-synonymous mutations in the candidate gene TT6: 

In Edi-0 at residue 11 Glycine => Arginine. In Ct-1, Sf-2, Oy-0, Po-0 at residue 148 Aspartic 

acid => Asparagine, at residue 350 Aspartic acid => Alanine. In Zu-0 at residue 151 

Glutamic acid => Lysine. In Oy-0, Po-0 at residue 158 Glutamic acid => Lysine. 

Following are the non-synonymous mutations in the candidate gene GRF4: 

In Can-0, Zu-0 at residue 204 Alanine => Threonine, at residue 380 Histidine => Glutamine. 

In Oy-0, Po-0 at residue 380 Histidine => Glutamine. In Ct-1, Sf-2 at residue 120 Leucine 

=> Isoleucine. 

 

3.3.5.2.3 Data Analysis at 27°C: 

The following data are for Chr4 QTL1: 

 

Figure 3.10: Effect sizes of parental accessions at peak SNP marker at Chr4, QTL1 
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QTL Gene Locus Gene Name and 
Description from TAIR 

Major Effect 
Parents 

Type of 
Mutation 

Chr4, 
QTL1 

AT4G18130 PHYE, peptidyl-histidine 
phosphorylation, protein-
chromophore linkage, red, 
far-red phototransduction,  

Ct-1, Can-0, Sf-
2, Zu-0 

non-synonymous  

Chr4, 
QTL1 

AT4G18610 LSH9 flower, hypocotyl, 
inflorescence meristem, 
leaf apex, root, shoot apex 

Wil-2, Ct-1, No-
0, Oy-0, Sf-2, 
Tsu-0, Zu-0 

non-synonymous 

Chr4, 
QTL1 

AT4G18710 BIN2 (BRASSINOSTEROID-
INSENSITIVE 2); kinase 

Tsu-0,  non-synonymous 

Chr4, 
QTL1 

AT4G18780 CESA8 (CELLULOSE 
SYNTHASE 8); cellulose 
synthase/ transferase, 
transferring glycosyl groups 

Ct-1, Bur-0, Sf-
2, Wu-0 

non-synonymous 

Chr4, 
QTL1 

AT4G19600 CYCT1;4; cyclin-dependent 
protein kinase 

Zu-0, Can-0, 
Mt-0, Tsu-0, 
Bur-0 

non-synonymous 

Table 3.9: Table of candidate genes at Chr4, QTL1 

 

Following are the non-synonymous mutations in the candidate gene PHYE: 

In Can-0 at residue 261 Glutamic acid => Glycine. In Ct-1, Sf-2, Zu-0 at residue 499 

Phenylalanine => Isoleucine. In Ct-1 at residue 686 Tyrosine => Serine, at residue 878 

Valine => Isoleucine, at residue 900 Glutamic acid => Aspartic acid, at residue 910 

Glutamic acid => Aspartic acid, at residue 925 Serine => Glycine, at  residue 959 Isoleucine 

=> Methionine, at residue 977 Threonine => Alanine, at residue 1016 Glycine => Arginine, 

at residue 1104 Glycine => Valine. In Mt-0 977 Threonine => Alanine, at residue 1016 

Glycine => Arginine. 

Following are the non-synonymous mutations in the candidate gene LSH9: 

In Wil-2 at residue 186 Proline => Leucine. In Ct-1, No-0, Oy-0, Sf-2, Tsu-0, Zu-0 at residue 

173 Valine => Methionine. 

Following are the non-synonymous mutations in the candidate gene BIN2: 

In Tsu-0 at residue 53 Isoleucine => Valine. 
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Following are the non-synonymous mutations in the candidate gene CESA8: 

In Sf-2 at residue 24 Phenylalanine => Valine, at residue 85 Serine => Proline. In Ct-1 at 

residue 145 Glutamic acid => Aspartic acid, at residue 157 Threonine => Methionine. In 

Bur-0, Wu-0 at residue 144 Histidine = Glutamine. 

Following are the non-synonymous mutations in the candidate gene CYCT1: 

In Zu-0 at residue 14 Serine => Isoleucine, at residue 364 Alanine => Valine, at residue 501 

Leucine => Phenylalanine. In Can-0 at residue 313 Serine => Leucine, at residue 529 

Tyrosine => Histidine. In Mt-0 at residue 386 Valine => Alanine. In Tsu-0 at residue 400 

Isoleucine => Leucine. In Bur-0 at residue 501 Leucine => Phenylalanine. 

The following data are for Chr4 QTL2: 

 

Figure 3.11: Effect sizes of parental accessions at peak SNP marker at Chr4, QTL2 

 

QTL Gene Locus Gene Name and Description 
from TAIR 

Major Effect 
Parents 

Type of Mutation 

Chr4, 

QTL2 

AT4G20370 TSF (TWIN SISTER OF FT); 

phosphatidylethanolamine 

binding 

Can-0, Kn-0 Non-synonymous 

Table 3.10: Table of candidate genes at Chr4, QTL2 

Following are the non-synonymous mutations in the candidate gene TSF: 

In Can-0 at residue 12 Glycine => Serine, at residue 46 Serine => Phenylalanine. In Kn-0 at 

residue 24 Arginine => Serine. 
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3.3.6 Discovery of Environmental QTL (G x E Interaction): 

As shown in the previous chapter, hypocotyl length as a complex trait is also influenced 

by the environment. Temperature has a significant effect on hypocotyl length. Due to the 

fact that the phenotyping of the RILs was carried out in a range of temperature 

environments, QTL for increased temperature responses could be identified. This analysis 

aims at the following questions: What are the genomic regions (QTL) that show significant 

effects to changes in temperature? What are the loci that are associated with the 

temperature responsiveness of the seedlings? The genetic basis of the phenotypic G x E 

interactions in hypocotyl length to increased temperatures has been investigated and 

analysed in this section. As mentioned in section 3.1, the interest is to map QTL for a 

‘temperature responsiveness trait’. These QTL can also be referred to as ‘environmental 

QTL’.  

We can treat the ratio of hypocotyl length at two different temperatures as a quantitative 

trait and carry out a QTL analysis to identify candidate genes for temperature 

responsiveness. This trait can be quantitatively calculated when the phenotype is a 

product of the ratio of two temperature environments. The temperature responsiveness 

trait shows the genetic interaction between the loci and the temperature environments.  

To explore the overall amount of variation present in the MAGIC RILs for hypocotyl length 

in response to temperature, a two-way ANOVA was performed. The results reveal that 

RILs are significantly different F(433, 17457) = 3692.36, p < 0.001), the effect of 

temperature on the RILs is significant F(3, 17457) = 4034818.84, p < 0.001) and the G x E 

interaction is also highly significant F(1150, 17457) = 1705.32, p < 0.001). (ANOVA table 

3.1 in appendix). 

For RILs, the partial eta squared showed the effect sizes which are:  for genotype = 0.98, 

for temperature = 0.99 and for G x E = 0.99. This shows that hypocotyl length in the 

MAGIC RILs is a highly heritable trait. Temperature has a very high effect on hypocotyl 

length and it is interesting to find genes at individual temperature treatments and also in 

temperature response, as the G x E both are interacting and affecting the hypocotyl 

length. The range of differences in hypocotyl length of the RILs at various temperature 

ratios is shown in table 3.11. 
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Relative Responsiveness Index (RRI) Range of hypocotyl length 

27°C/22°C 1.11 – 4.51 mm 

27°C/17°C 1.17 – 6.07 mm 

27°C/12°C 1.45 – 8.52 mm 

22°C/17°C 1.07 – 3.97 mm 

22°C/12°C 1.12 – 5.26 mm 

17°C/12°C 1.05 – 2.82 mm 

Table 3.11: Range of hypocotyl length of the RILs at each of the RRI combinations showing very 

high responsiveness to temperature 

 

 

Figure 3.12: QTL scan results for temperature ratio 12°C/17°C 

 

Figure 3.13: QTL scan results for temperature ratio 12°C/22°C 
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Figure 3.14: QTL scan results for temperature ratio 12°C/27°C 

 

 

Figure 3.15: QTL scan results for temperature ratio 22°C/17°C 

 

 

Figure 3.16: QTL scan results for temperature ratio 22°C/27°C 

 

 

Figure 3.17: QTL scan results for temperature ratio 27°C/17°C 
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phenotype chromosome island.from.bp island.to.bp peak.bp peak.SNP logP genomewide.pvalue 

Length.12.22 chr4 8048343 8078653 8078653 MN4_8078648 3.766076634 0.0442 

Length.12.22 chr4 8177688 8482332 8482332 NMSNP4_8482327 3.746734574 0.0463 

                

phenotype chromosome island.from.bp island.to.bp peak.bp peak.SNP logP genomewide.pvalue 

Length.12.27 chr4 6523087 9121201 8789187 MN4_8789187 6.332249203 0.0017 

Length.12.27 chr4 9198009 9198484 9198484 PHYD_1815 4.408593757 0.0278 

Table 3.12: Four environmental QTL isolated at 22°C/12°C and 27°C/12°C for the temperature responsiveness trait 

 

RRI QTL Name 
QTL Interval 

in bp 
QTL Interval 

in Kb 
QTL Interval 

in Mb 
QTL Interval 

in cM 
No. of 
Genes 

  

12°C/22°C Chr4, QTL1 30310 30.31 0.03031 0.15 9 

12°C/22°C Chr4, QTL2 304644 304.644 0.304644 1.52 82 

  

12°C/27°C Chr4, QTL1 2598114 2598.114 2.598114 12.99 640 

12°C/27°C Chr4, QTL2 475 0.475 0.000475 0.0023 1 

 

Table 3.13: QTL intervals in bp, Kb and Mb and total number of protein-coding genes in each of the environmental QTL
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Figure 3.12: Effect sizes of parental accessions at peak SNP markers at ratio 22°C/12°C for QTL1 

(top) and QTL2 (bottom) 

 

Figure 3.13: Effect sizes of parental accessions at peak SNP markers at 27°C/12°C for QTL1 (top) 

and QTL2 (bottom) 
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3.6 Discussion: 

The approach of using naturally occurring variation has been exploited by using the 

MAGIC homozygous RILs population for the dissection of hypocotyl length in response to 

temperature. The genetic basis of natural variation in hypocotyl length in response to 

temperature was determined by QTL analysis. The principle of QTL mapping in the MAGIC 

lines is based on the genotyping of the SNP markers of the progeny obtained from the 

inter-crossing of distinct accessions for the trait. It requires an experimental population 

(MAGIC) where genetic variation has segregated between the lines. 

As a useful resource, the whole genome sequences of the 19 parental accessions were 

utilised effectively with the help of a high-throughput bioinformatics approach. In silico 

screens were performed for non-synonymous mutations that allowed the quick 

identification of candidate genes with polymorphisms. Such remarkable advances in 

technology and resources facilitated the search for underlying genes. Candidate genes 

were selected based on sequence polymorphism data, such as indels and SNPs in the 

coding sequences of the genes.   

Two essential features for detection of QTL are power and precision. Power means the 

probability of isolating a QTL which is segregating and precision is the location error 

connected to the mapped QTL and the actual QTL.  

The main method to identify the genetic basis of ecological and evolutionary complex 

traits is through genotype-phenotype association. For the identification of the loci that 

underpin natural variation in complex traits, this approach statistically associates 

genotypic and phenotypic variation. These loci can be identified by association mapping 

which uses historical recombination events (Flint-Garcia et al., 2003) in natural 

populations or by QTL mapping which exploits recent recombination events in RILs.  

QTL mapping is a well established method in the field of genetics dealing with 

quantitative traits in plants (Hackett, 2002), whereas the association mapping method has 

been more recently introduced in plant genetic analyses and is still being significantly 

developed and improved. The first genome-wide association (GWA) mapping study in 

Arabidopsis has been recently reported (Atwell et al., 2010). 
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Hence the analysis of natural variation can be performed on natural populations as well 

as synthetic populations. In the approach that uses natural populations to dissect QTL 

using association mapping, the analysis looks for associations between SNPs and trait 

variation across natural accessions (Atwell et al., 2010). It exploits linkage disequilibrium 

(LD), which is the non-random association of alleles, to detect QTL in natural populations. 

The LD for association mapping is much shorter than in RILs and in principle it isolates fine 

mapped intervals.  

One of the benefits is that it tackles wider natural variation as large numbers of 

accessions are used in the analysis. Another benefit is that it provides increased precision 

as compared to family based linkage mapping (Mackay and Powell, 2007) as QTL 

detection is based on correlation between a trait and a molecular marker.  

A major drawback is presence of increased rate of false positives due to population 

structure that has to be controlled for (Yu et al., 2006). In association studies the 

population structure may be controlled but with a trade-off of reducing the power to 

detect associations between the genotype and the phenotype (Atwell et al., 2010).  

Another problem with association mapping is that it usually detects the variants that are 

common in populations of wild accessions, and therefore may not pick out rare alleles.  In 

general, association mapping provides increased precision but has lower power for 

isolation of QTL. 

On the other hand, artificial populations are used to dissect QTL. These experimental 

segregating populations are derived from natural populations by controlled crosses. The 

detection of QTL can only take place in genomic regions for which polymorphisms in the 

parental accessions exist. The classical method of generating an experimental population 

(RILs or F2s) is by crossing two parents. These are called biparental populations. Even 

though inbred lines with large phenotypic differences have been used in classical 

biparental QTL mappings (Doerge, 2002), yet the genetic variation is limited to two lines. 

And it isolates QTL intervals at a low mapping resolution of 10–30 cM (Cavanagh et al., 

2008) or ranging from 5–50 cM (Alonso-Blanco et al., 2005) with hundreds to thousands 

of protein-coding genes. Consequently, there are relatively few traditional QTL studies 

that have determined the genes and nucleotide polymorphisms underlying QTL (Flint and 
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Mott, 2001). Examples of biparental mapping populations are Col-0 x Ler (Lister and Dean, 

1993) and Bay-0 x Shahdara (Loudet et al., 2002). 

A higher mapping resolution is directly proportional to the number of recombination 

events in these types of mapping populations. The higher the number of recombination 

events, the higher will be the mapping resolution. That is why in QTL mapping where 

biparental populations are used, there are lower number of recombinations leading to 

lower mapping resolution which is a drawback. Conversely, in association mapping since 

natural accessions are used, the historical recombination events are greater leading to 

higher mapping resolution. However, as described above this method has other 

drawbacks. 

In QTL mapping, in order to overcome this limitation of low resolution, greater numbers 

of recombinations are required. This can be accomplished by increasing the number of 

crosses in a population. An extension of the classical RILs populations derived from 

biparental crosses were proposed by Darvasi and Soller (1995) known as the advanced 

intercross (AIC) population aiming at improving QTL location estimates.  

The advanced intercross lines can be constructed from two parents (Balasubramanian et 

al., 2009 and Balint-Kurti et al., 2010). In this method, the F2 progeny arising from the 

biparental cross are intercrossed to increase recombination events. This is followed by 

selfing, which produce RILs. With this approach, in these lines, although the mapping 

resolution is increased, yet the issue of reduced genetic diversity is not addressed as it is 

still biparental. These methods have shortcomings in identifying candidate genes and 

subsequently in the post QTL mapping process of QTL cloning.  

Therefore, in QTL mapping, a next-generation approach that maintains a high mapping 

resolution, and at the same time overcomes the issues of reduced genetic variation in 

biparentals and population structure problems in natural accessions, is to use 

multiparental populations with advanced intercrosses. This allows the inclusion of a 

bigger fraction of the genetic variation present in natural populations. This type of 

experimental population is a further extension to the advanced intercross lines. The 

multiparent intercrossing lines undergo additional recombination events, which allow 

isolation of QTL with smaller intervals. In plants, Cavanagh et al. (2008) proposed 
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multiparent advanced generation intercross (MAGIC) populations obtained from crossing 

multiple parents and have described the usefulness of MAGIC populations for QTL 

mapping.  

The MAGIC population was initially used in mapping genes in mice also called the 

heterogeneous stock which isolated QTL with small confidence intervals (Yalcin et al., 

2005). With the help of this RIL population, derived from multiparents, the power to 

detect precise QTL has been demonstrated and is applicable to plant genetics (Valder et 

al., 2006). In Arabidopsis examples of populations obtained from multiple parents are 

Arabidopsis Multi Parent RIL (AMPRIL) (Huang et al., 2011) and MAGIC which has been 

used for fine mapping of quantitative traits (Kover et al., 2009).  

MAGIC lines have been shown to be a better mapping population to identify QTL 

intervals, underlying quantitative traits, due to its higher mapping accuracy and detection 

in comparison to biparental mapping populations (Kover, 2009). The 527 RILs of this 

population and the 19 parents have been genotyped with 1260 single nucleotide 

polymorphisms (SNPs) across the whole genome. With the presence of the 1260 SNPs the 

MAGIC lines offer better resolution to localise candidate loci.  

In the MAGIC lines the added rounds of progeny crosses result in greater recombination 

events leading to decay in LD. This in turn increases the precision of a QTL location 

(Richard Mott, personal meeting). The QTL mapping in this chapter using MAGIC lines has 

isolated fewer QTL of large effects than traditional RILs which is in congruence to a 

previous study that has used the multiparent AMPRIL population (Huang et al., 2011). 

MAGIC lines have benefits of no population structure and increased genetic diversity. Due 

to the prevalence of greater number of alleles, from many parents, segregating in the 

population, QTL have been mapped to significantly smaller QTL intervals as has been 

demonstrated in this chapter (table 3.2). These RILs possess an increased genetic 

heterogeneity, by being a fine genetic mosaic, leading to a higher mapping resolution 

property.  

The MAGIC lines are a new generation of multiparent genetic mapping population which 

could be considered as next-generation experimental populations. The 19 MAGIC 

accessions have been shown to exhibit extensive natural variation for disease resistance 
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(Kover and Schaal, 2002). MAGIC lines have also been used to validate previously 

identified QTL and novel QTL have been identified for the traits of glaborous and erecta 

(Kover et al., 2009). They offer exploitation of more natural variation by using multiple 

parents with large phenotypic differences. In terms of the genetic variation present in 

MAGIC lines, the 19 parental accessions represent the amount of commonly available 

molecular variation present in Arabidopsis (Kover and Mott, 2012). This suggests that 

although 19 accessions were used to make the MAGIC RILs, yet they do capture a 

significant proportion of the common molecular variation present in the species. 

In comparison to a large set of natural accessions used for association mapping, although 

MAGIC RILs experience less recombination and thus their mapping resolution is lower, yet 

there are less false positive QTL, which could lead to identifying the actual loci involved in 

the variation of the trait.  

In summary, for dissecting the genetic basis of hypocotyl length trait, the MAGIC 

population is ideal for it represents diversity, has no population structure and allows fine 

mapping of QTL intervals. In this study the MAGIC lines have proved effective in the 

discovery and subsequent characterisation of the underlying allelic variation for hypocotyl 

length, a complex trait. It has also been proposed to use the MAGIC approach in all crop 

plants (Mackay and Powell, 2007). 

In this study, QTL were mapped for each temperature environment independently. The 

QTL mapping has identified loci that are associated with variation in hypocotyl length. 

This mapping method was found to be very informative and it revealed that these QTL are 

temperature sensitive as they appear only at individual temperatures suggesting that 

different regions of the genome control natural variation in hypocotyl length at different 

temperatures.  

This finding illustrates that different functional genes are involved in controlling natural 

variation in hypocotyl length at various temperatures. And therefore, it signifies the 

relevance of understanding the genetic basis of growth at different temperature regimes. 

It also shows that any given temperature treatment and the QTL are interacting at this 

specific environmental condition and are affecting the variation in the elongation of the 

hypocotyl. The individual temperature environment played a role in determining which 
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parts of the genome show significant associations with the phenotype. From the 

comparison of associations between genotype and phenotype across different 

temperature environments, it was seen that very different sets of loci were associated 

with hypocotyl length.  

The importance of carrying out genetic analyses across a range of environments has been 

previously emphasised (Nicotra et al., 2010). G x E interaction studies in Arabidopsis can 

identify genomic regions involved in responses to various abiotic environmental factors. 

Most interaction studies in Arabidopsis have focused on the G x E interactions to abiotic 

nutrient responses (Rauh et al., 2002), (Loudet et al., 2003), (El-Lithy et al., 2006), 

(Ghandilyan et al., 2009), (Prinzenberg et al., 2010). A recent study in Arabidopsis also 

found different loci for flowering time under different laboratory and field conditions 

(Brachi et al., 2010). These studies reveal the importance of multi-environment 

phenotyping and QTL mapping. The G x E interactions in these studies indicate that such 

interaction is likely to be present in other environmental abiotic factors including 

temperature. Moreover, the data on phenotyping of accessions in response to increased 

temperatures in chapter 2 is a strong indication of possible QTL x Temperature 

Environment (Q x ET) interactions for hypocotyl length.  

The genetic basis of phenotypic plasticity and the intraspecific variation in plastic 

responses to temperature present in Arabidopsis accessions in hypocotyl length is poorly 

understood. One way of developing our understanding of plasticity is to identify genes 

and QTL involved in plastic responses (Bradshaw, 2006). The hypocotyl length is regulated 

by environmental factors such as temperature, light quality and quantity, photoperiod, 

etc, and there is a lack of studies investigating significant Q x ET interactions.  

In this study, significant Q x ET interactions have been, for the first time, detected 

between hypocotyl length and temperature responsiveness under different controlled 

temperature environments. For an understanding of the G x ET it was of interest to know 

what the effect of the temperature environment is in determining associations between 

the genotype and phenotype.  

While the QTL cloning was being carried out to identify the molecular basis of variation in 

hypocotyl length, the data for the environmental QTL mapping were also analysed. In 
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addition to QTL isolation at individual temperatures, ‘environmental QTL’ were mapped 

for increased temperature responses of hypocotyl length looking at G X ET interaction. 

The environmental QTL have been mapped for a trait termed as a ‘temperature 

responsiveness trait’ that is calculated as the ratio of hypocotyl length at one 

temperature to the hypocotyl length at another temperature.  

This method of QTL analysis proved very useful as it dissects the variation in hypocotyl to 

temperature responsiveness. And since the phenotyping of the RILs was performed at 

four different temperatures, a combination of six temperature responses was carried out.  

The purpose of such QTL mapping was to address the question: what are the genomic 

regions that control variation in hypocotyl elongation responses to increased 

temperatures? The resulting analysis, to address this question, aims at comprehending 

the G x E interaction. It was found that a few high resolution QTL appeared in this analysis 

suggesting that there are a small number of loci on the genome that are involved in 

controlling variation in hypocotyl length to increased temperature responses in natural 

accessions.  

One such very high resolution QTL in the sub cM range harbours a single phytochrome 

gene, PHYD and sequence alignment analysis in this gene has revealed important 

polymorphisms such as indels in some of the MAGIC accessions (Hi-0, Mt-0 and Wil-2) 

that also show differences in their phenotypic plastic responses to increased 

temperature. And therefore, PHYD is an important candidate gene underlying a 

temperature responsiveness QTL. The Wassilewskija (Ws) accession has previously been 

shown to be deficient in PHYD due to the presence of an indel resulting in a premature 

stop codon (Aukerman et al., 1997). phyD mutants had bigger hypocotyls because they 

showed a reduced inhibition of elongation compared to WT seedlings, when grown under 

red or white light (Aukerman et al., 1997). The identification of the Ws PHYD allele 

provided evidence that PHYD performs a similar role to PHYB.  

The discovery of this mutation in the Ws-0 accession was further exploited in another 

study to investigate the role of PHYD in the shade avoidance syndrome (Devlin et al., 

1999) which suggested that PHYD is significantly involved in the shade avoidance 

response. Due to the nature of the mutation, its functional role, and isolation of an 

environmental QTL harbouring it, PHYD gene would seem a reasonable candidate for 
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underlying differences in temperature responsiveness. The PHYD environmental QTL may 

be a major effect QTL for natural variation in thermo-sensitivity. And this can be tested by 

functional complementation using a transgenic approach followed by quantifying the 

differential responses of the major effect size accessions that reveal polymorphisms. 

The G x E analysis addresses the question of genetic basis of phenotypic plasticity and the 

MAGIC RILs have proved to be an effective tool for studying the genetic basis of hypocotyl 

length under multiple temperature environments. In general Arabidopsis RILS, which are 

homozygous immortal mapping populations, can be genotyped or sequenced once and 

can be replicated across different environments (Nordborg and Weigel, 2008). In 

particular, MAGIC lines are ideal for investigating natural variation in different 

environments.  

One of the benefits of these RILs, similar to others, is that unlimited replicates of each line 

can be phenotyped across multiple environments for growth and development related 

traits. In this way, phenotypic data can be accumulated for hypocotyl length, facilitating 

the investigation of G x E interactions and localising QTL for the environmental 

responsiveness. This approach has been effectively utilised in this study by phenotyping 

the RILs across a range of temperatures (12°C, 17°C, 22°C and 27°C) and by identifying loci 

associated with the temperature responsiveness between any two temperature 

conditions/treatments. 

Due to the complexity of quantitative traits and their interaction with the environment,   

G x E analyses are usually difficult to comprehend. Studying G x E interactions is an 

opportunity rather than just a problem (Simmonds, 1991). The G x ET in this study has also 

been considered as such an opportunity. This is evident from the fact that a pre-QTL 

mapping phenotypic analysis to temperature responses in chapter 2, has demonstrated 

that G x ET interactions exist between the Arabidopsis accessions (figure 2.8). It is of great 

interest to identify the molecular and genetic basis of the observed phenotypic G x ET 

interactions.  

For the temperature responsiveness QTL mapping, this has been accomplished by using 

the ratios of the phenotypic values and hence the Q x ET effects have been quantified. The 

results of this mapping show that QTL reveal a temperature-dependent correlation with 
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hypocotyl length and hence these QTL are variable-effect QTL. Q x ET interactions in the 

hypocotyl length trait in Arabidopsis has not been previously undertaken especially in 

response to temperature. Studying Q x ET interactions in response to increased ambient 

temperatures could identify candidate genes involved in temperature responses of 

Arabidopsis growth.  

This forms the basis of temperature responsiveness, which influences the phenotype of 

hypocotyl length as shown in chapter 2. The G x ET interaction confirmed unique 

temperature effects when QTL were detected in a specific temperature environment. The 

QTL mapping for the temperature responsiveness trait in various temperature 

environments has allowed the dissection of responses to temperature of hypocotyl 

length.  

In a post QTL mapping analysis, a QTL causal gene can be isolated on the basis of its 

chromosomal location, known as positional cloning. This classical method that identifies 

genes for which no prior knowledge of the protein product or its function is known has 

been previously used effectively (Tanksley et al., 1975). Positional cloning methods were 

developed for identifying genes with Mendelian effects. Variations of these methods have 

been used for the identification of QTL (Frary et al., 2000; Fridman et al., 2000; Johanson 

et al., 2000; El‐Assal et al., 2001; Takahashi et al., 2001; Liu et al., 2002). 

Another approach is to test candidate genes of known function associated with the 

phenotypic trait that map to QTL intervals (Doebley et al., 1995; Thornsberry et al., 2001; 

Loudet et al., 2007). Genes that are functionally related to a trait and that map at a QTL 

critical region can be selected as candidates (Wayne and McIntyre, 2002).  

The candidate gene method, used in conjunction with QTL mapping, is a powerful tool to 

discover the genes involved in natural variation in a trait. This involves searching for 

strong candidate genes in a QTL interval that are functionally involved in controlling a 

trait. It is then possible to look for molecular polymorphisms in these candidate genes 

that may explain the variation in the trait. This method allows to shortlist and prioritises 

genes in a QTL. The candidate gene method can be used to proceed directly to functional 

testing if a strong candidate gene is present within a QTL (Remington et al., 2001). If the 

biological function of a candidate gene is known, this functional information could be 
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used to test for natural variation in the trait. This approach has been utilised successfully 

in plant genetics (Byrne and McMullen, 1996) and is facilitated with the availability of 

genome sequences because the polymorphisms in the sequences of the candidate genes 

and their alleles are known. 

In this study, the candidate gene approach was applied for the characterisation and 

subsequent cloning of the QTL intervals. The working hypothesis is that a molecular 

polymorphism in the protein-coding region of the candidate gene is related to the 

observed phenotypic variation in the hypocotyl length trait. This approach hypothesises 

that genes of known function could correspond to QTL controlling natural variation in 

hypocotyl length.  

Consequently, the analysis of sequence data, from the sequencing of the whole genomes, 

combined with QTL mapping parental reconstruction data led to an integrated and 

informed approach, which has played a fundamental role in the shortlisting of the 

number of genes identified in each of the QTL. 

The ultimate goal of QTL mapping is to identify the causal alleles controlling a quantitative 

trait (Mackay, 2001) also known as QTL cloning. In this study, the QTL have been fine 

mapped to a few cM or less and there are a number of interesting candidate genes in the 

various QTL.  Hence, the identification of the responsible genes in the QTL intervals by 

candidate gene approach should be a less daunting task where the QTL are a few cM or 

less. The QTL cloning includes approaches of mutational and transgenic analyses for 

functional testing of candidate genes which comprise of the subsequent two chapters 

respectively. 
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3.8 Appendix: 

Tests of Between-Subjects Effects 

Dependent Variable: Hypocotyl Length 

Source 

Type III Sum of 

Squares df Mean Square F Sig. 

Partial Eta 

Squared 

Corrected Model 86654.055
a
 1586 54.637 10028.098 .000 .999 

Intercept 186085.482 1 186085.482 34154297.644 .000 .999 

RIL 8710.832 433 20.117 3692.365 .000 .989 

Temperature 65949.640 3 21983.213 4034818.847 .000 .999 

RIL * Temperature 10684.938 1150 9.291 1705.324 .000 .991 

Error 95.112 17457 .005    

Total 286179.130 19044     

Corrected Total 86749.168 19043     

a. R Squared = .999 (Adjusted R Squared = .999) 

Table 1: Two way ANOVA showing significance and heritability in the MAGIC RILs 

 

 

Procedure for the Manual Extraction of Gene Sequences: 

I created the following bioinformatic protocol for the software BioEdit for the in silico 

extraction of genes from the completely sequenced MAGIC parental genomes. A local 

BLAST nucleotide library was constructed by using the genomic sequences of the parental 

accessions. This library was then used to perform a BLAST search of the genes of interest. 

Protocol: 

To begin with, the sequence of the gene of interest was obtained from the reference wild 

type annotated Col-0 accession by using the sequence viewer section on TAIR’s website. 

This sequence contained the whole gene from the ATG start codon to the stop codon 

including both the exons and introns. The extracted Col-0 sequence was saved as a text 

document in a fasta file format and then opened in BioEdit. BLAST is included in BioEdit as 

an accessory application and this function was used to perform a local BLAST by using this 

file on the specific chromosome of the genomes where the gene of interest lies. The 

BLAST result provided the coordinates of the gene in each of the parental accessions. 
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These coordinates were used in BioEdit to extract the gene of interest by pinpointing the 

start and end base positions of the gene. The gene of interest was extracted in the same 

manner from all the parental accessions and saved as a text document. This file, 

containing the gene of interest from the nineteen parental accessions, was opened in 

BioEdit and the exons were extracted from the whole gene sequence. All the exons were 

concatenated together after splicing the introns and hence the whole coding sequence 

was obtained. This coding sequence was then translated in to the amino acid sequence 

using a function in BioEdit. 
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Chapter 4 

Functional Analysis 1 – Knockout Analysis of Candidate Genes 

 

4.1 Introduction: 

In order to initiate a preliminary analysis of the causal relationship between candidate 

gene sequences and their potential function in hypocotyl length phenotype, gene 

knockouts have been used which possess a loss of function mutation. One of the primary 

goals of knockout analysis is the identification of the altered hypocotyl length phenotype 

that is caused by the insertional mutation in the candidate genes under study. Gene 

deficiencies in Arabidopsis knockouts may provide insights into the roles of QTL candidate 

genes involved in hypocotyl length trait. It is interesting to explore the phenotypic 

consequences of the missing QTL candidate genes. Furthermore, this analysis also 

provides a mean to further shortlist the QTL candidate genes for further investigation. 

This knockout strategy is effective as a first step in functional analysis because in this 

study it allows focusing experimentation on a smaller number of already shortlisted 

candidate QTL genes showing interesting non-synonymous sequence polymorphisms. In 

this knockout study, since the null mutations provide a direct means for the 

determination of the function of candidate gene sequences in situ, hence they are of due 

importance in post QTL analyses. Insertional mutagenesis allows the disruption of gene 

function by inserting a foreign sequence into the QTL candidate genes under study. This 

approach allows the direct monitoring of the effect of the deficiency of the candidate 

gene sequence in plants.  

Agrobacterium tumefaciens (Agrobacterium) is a widespread soil bacterium which occurs 

naturally, induces crown gall, and has the capability to introduce new genetic material 

into the plant cell (Gelvin, 2003). Agrobacterium transfer-DNA (T-DNA) has been used for 

the generation of large collections of Arabidopsis insertion mutants (Alonso et al., 2003). 

The T-DNA insertional mutation is one of the tools of functional genomics and is a simple 

and direct gene targeting approach for exploring candidate gene function because a 
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known genomic QTL candidate sequence has been interrupted with a T-DNA. The main 

objective of this chapter is to use T-DNA insertional mutations in QTL candidate genes to 

understand the biological function that they may have in controlling the hypocotyl length 

phenotype.  

In the forward genetic approach loss of function analysis of candidate genes is the fifth 

step as outlined in figure 1.4. For the successful identification of a particular gene that 

underlies a QTL identified in the previous chapter, direct tests have been carried out on 

promising candidates for their functional involvement in hypocotyl length variation. This 

has been feasible due to several reasons; the T-DNA knockouts are easily available from 

stock centres, homozygous individuals for the T-DNA insertion can be genotyped by PCR, 

and the phenotype of hypocotyl length can be easily scored. 

It is imperative that gene function be explored to determine if any of the QTL candidate 

genes identified in chapter 3 are functionally involved in the hypocotyl length phenotype. 

Such biological function of the candidate genes can be initially ascertained in the 

hypocotyl length trait through knockout mutants obtained by gene disruption. The most 

direct method of understanding gene function in general is its complete inactivation. To 

facilitate the study of natural variation, a knockout approach has been applied in a post 

QTL mapping analysis with the objective to experimentally test if a particular gene shows 

any function in controlling hypocotyl length in response to temperature. 

In chapter 3, although bioinformatic tools were used effectively for the detection of 

sequence polymorphisms by in silico analysis in QTL candidate genes, this analysis is only 

indicative and insufficient for the definition of gene function. Genomic sequence data is 

not quite enough to attribute hypocotyl length function to any particular candidate gene. 

Hence, one way to overcome this problem is to perform a phenotypic analysis of mutated 

candidate genes by analysing plants that are homozygous for the mutation. The in silico 

analysis aids in the shortlisting of QTL candidate genes and experimental evidences are 

necessary for functional characterisation purposes. 

The results of this preliminary analysis provide a roadmap for the functional shortlisting 

and subsequent direct testing of candidate sequences by using brute force genetics 

including transgenic complementation methods described in the next chapter 5. 
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4.2 Methods and Materials 

This section describes the PCR-based genotyping and molecular procedures used for the 

identification of homozygous knockout lines of candidate genes. It also describes the 

phenotyping of the knockout lines for hypocotyl length. 

4.2.1 Knockout Mutants: 

For the selection of knockout lines and the location of the mutation, computational 

searches were performed using the SALK Institute Genomic Analysis Laboratory (SIGnAL) 

database called ‘T-DNA Express: Arabidopsis Gene Mapping Tool’ (Alonso et al., 2003) 

http://signal.salk.edu/cgi-bin/tdnaexpress. The interactive map shows the gene position, 

its location and T-DNA insertions along with its orientation. This allowed in silico searches 

in the database for knockout lines which had T-DNA inserted in the candidate genes. The 

choice of mutation, for the purpose of QTL candidate gene functional study, was 

prioritised to maximise the possibility that the gene was knocked out; and hence the 

preferred location of the T-DNA insertion sites were exons of candidate genes. The SALK 

lines are in the Col-0 background and the size of the T-DNA is 4501 bp, which confers 

resistance to Kanamycin. 

The seeds of the knockout lines were obtained from the European Arabidopsis Stock 

Centre (NASC) (www.arabidopsis.info). These knockout seeds are usually heterozygous 

and are segregating for the T-DNA (25% homozygous WT: 50% heterozygous: 25% 

homozygous mutant) thus allowing for homozygous lines to be identified. To determine 

the hypocotyl length phenotype of the knockouts, homozygous plants were required 

where no segregation of the T-DNA insertion is taking place. Therefore, the seeds were 

bulked up for the detection of homozygous individuals. For this purpose, the seeds were 

germinated as described in Chapter 2. One week old seedlings were transplanted onto 

the soil pots and were covered with lids for a few days to retain the moisture. The plants 

were grown in controlled environmental rooms (CERs) under long days at 22°C. For DNA 

extraction, fresh leaf tissue was taken from 10-12 individual plants for each knockout line 

progeny and put in separate tubes and in dry ice. The individual plants from which leaf 

tissues were taken were allowed to self and set seed. The genotyping by PCR and gel 

electrophoresis determined which of these individual plants for each of the knockout 
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lines were homozygous and these lines were used for the phenotyping of hypocotyl 

length.  

4.2.2 DNA Extraction: 

Plant DNA was extracted using CTAB buffer extraction method. The protocol is as follows: 

1. Put floral meristem or leaf into tube (freeze until enough samples) 

2. Put metal ball into each well and put on cap 

3. Freeze at -70°C 

4. Shake for 30 seconds at speed 800 on Geogrinder 

5. Add 300µl extraction buffer and mix by inversion 

6. Heat at 60°C for 15 minutes in the oven 

7. Add 300µl chloroform and mix by inversion 

8. Spin for 20 minutes at speed 5000 

9. Transfer supernatant (clear upper layer) to a new plate 

10. Add 300µl Isopropanol and mix by inversion 

11. Leave at room temperature for 10 minutes 

12. Spin DNA for 10 minutes at speed 5000 and remove liquid 

13. Wash pellet with 500µl of 70% ethanol and spin for 5 minutes 

14. Air dry pellet in laminar flow hood 

15. Resuspend DNA in 100µl water and leave in fridge overnight or store at -20°C 

 

4.2.3 Genotyping of Knockout Lines: 

For the identification of homozygous individuals in each of the candidate genes under 

study, the segregating T-DNA lines were genotyped. The genotype of the DNA samples 

obtained from the multiple individuals for each knockout line was determined by PCR and 

gel electrophoresis. Two separate PCR reactions were set up for each candidate gene. 

One reaction was performed using a gene specific primer and a T-DNA specific primer to 

test for the presence of a T-DNA insertion in the gene of interest. The second reaction 

was performed using a pair of gene specific primers flanking the insertion site to test for 

the presence of a WT undisrupted allele. 
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The genomic primers were designed on the SIGnAL website: 

(http://signal.salk.edu/tdnaprimers.2.html) using ‘T-DNA Primer Design’. The default 

settings for the primer design on the website were changed in order to reduce the total 

length of the PCR product (<1000 bp). The ranking of the genomic primers was checked in 

Net Primer (http://www.premierbiosoft.com). BLAST (http://blast.ncbi.nlm.nih.gov) was 

used to check if the designed primers would virtually anneal to the specific genomic 

location showing primer specificity. All the primers annealed virtually to the targeted 

genomic sequence. For the genotyping of the individual plants the reagents of the PCR 

and their quantities were as follows for a total of 20 µl PCR mix: 

Primer 1 = 1 µl, Primer 2 = 1 µl, dNTPs = 1 µl, Buffer = 2 µl, Taq = 0.1 µl, DNA = 1 µl,   

Water = 13.9 µl 

The PCR programme for genotyping was set up as: denaturation at 95°C for 3 min, then 

35 cycles of denaturation at 95°C for 15 sec; annealing at 55–60°C for 30 sec (as per 

recommendation of primer manufacturer SIGMA), and elongation at 72°C for 1 min.  

The PCR product was loaded on 1% Agarose Gel. Ethidium bromide added to the gel was 

6 µl. 6 µl of 2 Log ladder was used in the gel as a size standard. DNA loading dye used was 

2 µl. After gel electrophoresis, the gel was placed under UV light to detect the DNA bands 

and images were taken. The genotyping data was analysed for all the individuals for each 

knockout line and homozygous individuals for the T-DNA insertion were selected for 

phenotyping. 

4.2.4 Determination of Homozygous Knockout Lines: 

The genotyping by PCR not only identifies the presence of a T-DNA in the mutant plants 

but it is also a means to identify the homozygous lines. The phenotyping of heterozygous 

lines for the trait does not provide an accurate phenotyping result due to the segregation 

of the T-DNA in the background. Therefore, it is imperative to identify homozygous lines. 

A PCR product as a result of a gene specific primer pair meant that the plants were either 

WT or heterozygous. Additionally, a PCR product as a result of a gene specific primer and 

a T-DNA border primer meant that the plants were either heterozygous or homozygous 

for the insertion. Both results combined provided complete information on the genotypes 
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of the plants. To detect an undisrupted wild type allele of a specific candidate gene, in the 

first PCR, a gene specific primer pair flanking the region of insertion was used. Therefore, 

individuals that showed only a band for the gene specific primer pair were wild type 

plants. In the second PCR reaction, to test for the presence of a T-DNA insertion, T-DNA 

specific and gene specific primers were used. Individuals that showed one band for the 

gene specific primer and second band for the T-DNA left border primer and gene specific 

primer were heterozygous plants. Moreover, individuals that only showed a band for the 

T-DNA left border primer and a gene specific primer were homozygous plants. The 

evidence for individual plants to be homozygous for the T-DNA insertion was based on 

the presence of a T-DNA specific product and the absence of a gene specific product. The 

T-DNA border primer was very effective in identifying insertions as it consistently 

amplified a known T-DNA insertion in mutant lines. 

The knockout lines and their list of PCR primers used are provided in the appendix at the 

end of this chapter.  

4.2.5 Phenotyping Growth Conditions: 

The seeds were stratified after plating for 4 days at 4°C. They were then germinated in 

growth incubators at 22°C and were allowed to grow for 1 week in the respective 

treatment temperatures. The Petri dishes were placed vertically on the shelves of the 

incubators. This allowed the seedlings to grow horizontally along the growth media. 

4.2.6 Image Analysis: 

The Petri dishes were placed horizontally on a black background surface and were 

photographed from above with a digital SLR Nikon camera. A scale was included in each 

image for calibration of pixels with length in millimetres, and all the images were taken at 

the same magnification. The number of pixels was counted between the two lines of a 1 

millimetre for scaling. Image J software was used to quantitatively measure the hypocotyl 

lengths as described in Chapter 2. 

4.2.7 Statistical Analysis:  

SPSS version 19; Inc.; IBM software was used to perform the Student’s t-test to determine 

if the knockout lines were significantly different from the WT. 
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4.3 Results and Discussion: 

4.3.1 Phenotypic Analysis of Knockout Mutants for Candidates at 22°C and 27°C: 

The mutational analysis allows us to predict gene functions of the candidate genes by the 

loss of function mutations in them. Therefore, the phenotypic analysis of these knockout 

candidate genes reveals their potential functional involvement in the hypocotyl length 

trait and their contribution to the variation of the trait.  From the post QTL mapping 

analysis in Chapter 3, a total of 25 candidate genes were shortlisted in various QTL at 22°C 

and 27°C.  

In the gene knockout analysis, the effect of the mutant gene sequences for all the 

candidate genes on the hypocotyl length phenotype has been studied. The main 

assumption for this analysis is that if the phenotype of the mutants is different from the 

WT, then it can be implied that this particular candidate gene may be playing a role in the 

natural variation of the trait. The mutant plants were screened by phenotyping to look for 

unusual phenotypes when compared to Col-0 WT. For the mutant plants which showed a 

different phenotype, it was assumed that the T-DNA insertion has caused the candidate 

gene, which is related to hypocotyl length, to be inactivated.  

Since hypocotyl length is a trait that can be easily scored after one week of growth, a 

phenotyping experiment was performed on the knockout seeds obtained from the stock 

centre. The results revealed that there was great variation in the hypocotyl length 

phenotype between the individuals of any particular knockout line. This implied that 

some of the lines were not homozygous as the lines were still segregating which could be 

seen in the phenotype. This hypothesis was later found to be correct when the lines were 

genotyped by PCR methods to determine the genotype of the knockout lines. 

After genotyping there were no heterozygous or homozygous individuals identified for 

the candidate genes PCB, RPT2, CYP71, BAM2, and SAUR18, which indicates a problem 

with knockout lines. And hence their knockout phenotypic analysis could not be 

performed as all the plants genotyped were WT. However, for CYP71 a homozygous 

knockout line cyp71-1 was available in the Wigge Lab. The knockout phenotyping of the 

remaining candidate genes was performed and hypocotyl length phenotype data is 

represented in figures 4.1 and 4.2. 
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The seeds obtained from the stock centre were bulked up and after determining the 

genotypes of the individual plants, homozygous individuals for all the knockout lines were 

identified and phenotyped at the respective QTL temperatures.  

4.3.2 From Gene to Phenotype; Analysing Mutants to Identify Gene Function: 

The characterisation of the knockout phenotypes were performed under the QTL 

environmental conditions. This analysis has shown which of the candidate genes are 

functionally involved in the hypocotyl length phenotype. The first step towards the 

description of gene function was the detection of knockout mutants. As a next step, the 

roles of the candidate genes have been examined by studying these mutant lines in which 

the genes have been changed. These mutant lines have been phenotyped to investigate 

the consequences of the T-DNA mutation on hypocotyl length relative to the WT. 

Homozygous individuals were phenotyped to ensure that both copies of the candidate 

genes were disrupted. The KO lines used for the candidate genes are shown in table 4.1. 

Candidate Gene TAIR Name KO Line Name NASC ID Insertion Location 

ARF10 AT2G28350 SALK_087247C N655696 Exon 

BAM2 AT3G49670 SAIL_1053_E09 N878024 Exon 

BIN2 AT4G18710 GK-244F08.01 N756025 Exon 

CESA8 AT4G18780 SALK_046685C N679626 Exon 

CLF AT2G23380 SALK_088542C N672840 Exon 

COL3 AT2G24790 SAIL_361_A08 N873490 Exon 

CYCT1 AT4G19600 SALK_139324 (BY) N639324 Exon 

EPR1 AT2G27380 GK-710H02.01 N332643 Exon 

GRF4 AT3G52910 SALK_037642C N657589 Exon 

LSH9 AT4G18610 SALK_039868C N660824 Exon 

NPY2 AT2G14820 SALK_058416C N659409 Exon 

NPY4 AT2G23050 SALK_151725 N651725 Exon 

PCB AT3G49120 SAIL_143_G09 N873282 Exon 

PHOT1 AT3G45780 SALK_088841C N666670 Exon 

PHYB AT2G18790 SALK_069700C N675665 Exon 

PHYE AT4G18130 SALK_092529C N671700 Exon 

PLL4 AT2G28890 SALK_047827 N547827 Exon 

RPT2 AT2G30520 SAIL_140_D03 N871473 Exon 

SAUR38 AT2G24400 SALK_001154C N669301 Exon 

SAUR8 AT2G16580 SALK_058324C N679733 Exon 

SAUR18 AT3G51200 GK-695B04.01 N316614 Exon 

TSF AT4G20370 SALK_087522C N663213 Exon 

TT6 AT3G51240 SALK_113321C N653439 Exon 

Table 4.1: Knockout lines for candidate genes showing location of T-DNA insertion. 
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Figure 4.1: 1 week old hypocotyl length of candidate gene knockouts compared against Col-0 WT at 22°C, 170 μE/m2/sec short days; (a) and (b) are technical replicates. 
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Figure 4.2: 1 week old hypocotyl length of candidate gene knockouts compared against Col-0 WT 

at 27°C, 170 μE/m2/sec short days; (a) and (b) are technical replicates. 

 

Figures 4.1 and 4.2 illustrate the hypocotyl length phenotypes of homozygous knockout 

mutants which have been phenotyped under controlled temperature conditions similar to 

those in which the QTL were identified. We are interested in identifying mutant 

phenotypes which are different from the WT under these specific temperature 

conditions.  

An independent-samples t-test was performed to test for the differences in hypocotyl 

lengths of the knockouts as compared to WT at the respective QTL temperatures. The 

most significant and distinctive differences in hypocotyl lengths were demonstrated by 

the mutant lines which are presented in the following table: 
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Temperature KO mutant T-test result Approximate percent 

increase in hypocotyl length 

22°C  phyB t(166) = -124.5, p < 0.001 250% 

22°C cyp71 t(158) = -36.54, p < 0.001 75% 

22°C saur38 t(183) = -28.04, p < 0.001 50% 

22°C npy2 t(197) = -24.58, p < 0.001 40% 

27°C cyct1;4 t(59) = -9.91, p < 0.001 20% 

 

A loss of function mutation in an accession could result in the hypocotyl length either 

being bigger or smaller than WT Col. This would depend on the function of the gene. If 

the gene acts as a positive regulator of hypocotyl length, and when altered with T-DNA, 

we would expect shorter hypocotyls. Conversely, if it acts as a negative regulator of 

hypocotyl length, and when altered with T-DNA, we would expect longer hypocotyls. For 

example, in the case of phyB, which is a negative regulator of hypocotyl length, the phyB 

mutants show bigger hypocotyl lengths. Several of the knockout lines show increases but 

this is not surprising as QTL had small hypocotyls for Col-0. 

The phenotypic analysis demonstrates the roles played by the mutated genes in 

controlling the altered phenotype of hypocotyl length. Under the experimental test 

conditions, knockouts that have a similar phenotype to WT imply that the gene that has 

been knocked out is not functionally involved in hypocotyl length. Although several 

knockouts have been phenotyped, few of them have shown significant informative and 

visible altered phenotypes relative to WT and hence provide a direct indication to gene 

function.  

The strategy for selecting a few of the shortlisted candidate genes was to observe the 

phenotype of the homozygous knockout mutants. Those knockout mutants whose 

hypocotyl phenotypes were the most significantly different (p=0.05) from the WT Col-0 

were selected for further investigation. These genes may functionally be playing a role in 

the hypocotyl elongation, as observed from their phenotypes (figures 4.1 and 4.2). The 

knockout mutants which did not show a phenotype or showed a lesser significant 

phenotype were excluded from further investigation.  
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The knockout phenotyping results were compared with the phenotypes of the MAGIC 

parents to look for similarities. Quite interestingly, it was found that the phyB knockout 

phenotype, which showed the most pronounced difference in hypocotyl length at 22°C 

compared to the WT Col-0 (figure 4.1), had a similar phenotype to the Ct-1 accession at 

22°C (figure 2.3). These results were obtained under dark growth conditions. 

From the skotomorphogenic analysis of the MAGIC parents (figure 2.5), the etiolated 

phenotype of Ct-1 at 22°C had already been determined. The next question was whether 

the phyB knockout also had a similar phenotype to Ct-1 in the dark. To determine this, the 

phyB knockout was phenotyped in the dark and the results (figure 4.3) revealed that they 

both had a similar phenotype. This provided detailed evidence for a further functional 

study of these phenotypes in the transgenic analysis, as described in chapter 5. 

 

Figure 4.3: Comparison of 1 week old phyB knockout phenotype with Ct-1 and Sf-2 accessions in 

light and dark. 
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The study of T-DNA mutants with noticeable hypocotyl length phenotypes is undoubtedly 

a resource that has provided insights into the roles of the candidate genes. There are a 

few candidate genes at different QTL and temperatures that have been implicated in the 

hypocotyl length phenotype as a result of the knockout analysis. From the phenotypic 

analysis of the mutants, those which were identified as demonstrating the most 

significant differences were selected for the next step: QTL cloning by transgenic 

complementation of candidates. 

 

4.3.3 Discussion of Candidate Genes used in Knockout Phenotypic Analysis: 

To help interpret the results of this knockout analysis, the known mutant phenotypes of 

the candidate genes in various stages of development including hypocotyl length have 

been summarised. This is not a comparative study with the phenotypic analysis of the 

knockout mutants of this study, but it helps to develop a basic understanding of the roles 

that these candidate genes play in growth and development in general.  

AUXIN RESPONSE FACTOR 10 (ARF10)  

Auxin response factors (ARF) are transcription factors which function in auxin signal 

transduction in several plant growth phases (Guilfoyle and Hagen, 2007) by controlling 

the expression of auxin response genes (Tiwari et al., 2003). ARF10 has been identified as 

one of the key regulators of root cap formation and is involved in cell differentiation. The 

arf10 mutants show impaired seedling establishment and their leaves and flowers are 

defective (Wang et al., 2005). It has also been reported that repression of ARF10 is vital 

for both seed germination and post-germination phases (Liu et al., 2007).  

The T-DNA insertion in the arf10 mutant (SALK T-DNA line: SALK_087247C) is in the first 

exon. The arf10 mutant was phenotyped at 22°C. 

BRASSINOSTEROID INSENSITIVE 2 (BIN2) 

Brassinosteroids are ubiquitous plant steroid hormones (Schumacher and Chory, 2000) 

that regulate various aspects of normal plant growth and development including cell 

elongation (Clouse and Sasse, 1998). BIN2 was identified by map based cloning and 
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reverse genetics as being involved in the cross-talk between auxin and brassinosteroid 

signalling pathways and bin2 mutants are insensitive to brassinosteroids (Li et al., 2001). 

Skotomorphogenic hypocotyl elongation was studied in the bin2 mutants and the 

seedlings were germinated and grown in darkness. The seedlings showed de-etiolated 

phenotypes that include short hypocotyls with open cotyledons, a characteristic of plants 

grown in light (Li et al., 1996). The bin2 mutant showed reduced sensitivity to growth in 

the dark as compared to WT Col-0. Light signals inhibit brassinosteroids synthesis in the 

seedlings and hence they contribute to overall photomorphogenesis (Li et al., 2001). 

The T-DNA insertion in the bin2 mutant (GABI-Kat T-DNA line: GK-244F08.01) is in the first 

exon. The bin2 mutant was phenotyped at 27°C. 

CELLULOSE SYNTHASE 8 (CESA8) 

In Arabidopsis there are 10 CESA proteins (Richmond and Somerville, 2000). The CESA8 

gene belongs to the cellulose synthase family protein and is involved in secondary cell 

wall biosynthesis (Turner and Somerville, 1997; Taylor et al., 2003). The cesa8 mutants 

were characterised by abnormal xylem formation and had 70% lesser cellulose content 

compared to WT (Turner and Somerville, 1997).  

The T-DNA insertion in the cesa8 mutant (SALK T-DNA line: SALK_046685C) is in the 

eighth exon. The knockout phenotype of CESA8 could not be measured because the adult 

homozygous knockout plants were very small and they did not yield any seeds. This is an 

example of a knockout mutation in these plants leading to a lethal mutation with no seed 

production.  

CURLY LEAF (CLF) 

The CLF gene appears to play a key role in shoot growth. It was initially identified through 

forward genetics as a suppressor of floral genes (Goodrich et al., 1997). The clf mutants 

have altered leaf morphology as the CLF gene regulates cell elongation (Kim et al., 1998). 

The T-DNA insertion in the clf mutant (SALK T-DNA line: SALK_088542C) is in the twelfth 

exon. The clf mutant was phenotyped at 22°C. 
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CONSTANS-LIKE 3 (COL3) 

COL3 belongs to a family of five CONSTANS (CO)-like proteins and it is most closely related 

to the gene CONSTANS (CO) (Robson et al., 2001) which plays a role in shoot growth and 

development. COL3 has been identified through reverse genetics as an interacting protein 

with CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1), a gene which represses 

photomorphogenesis in etiolated growth conditions and hence COL3 is important in 

regulating plant development in light (Datta et al., 2006). The mutant analysis of col3 

indicated that COL3 positively regulates development in light by inhibiting hypocotyl 

elongation under short day conditions. The seedlings studied in white light had a similar 

hypocotyl phenotype to WT, however, col3 was found to be less sensitive to red light; as a 

result had long hypocotyls in short days. These results suggested that COL3 acted as a 

positive regulator of phytochrome mediated suppression of hypocotyl elongation (Datta 

et al., 2006). 

The T-DNA insertion in the col3 mutant (SAIL T-DNA line: SAIL_361_A08) is in the first 

exon. The col3 mutant was phenotyped at 22°C. 

CYCLIN T1;4 (CYCT1;4) 

In Arabidopsis CYCT1;4 belongs to a family of five genes that encode cyclin T-like proteins 

(Wang et al., 2004). Although cyct1;4 loss of function mutants have been previously 

studied for its roles in infection by Cauliflower Mosaic Virus (CaMV), their roles in 

vegetative and reproductive growth phenotypes were also examined and it was found 

that cyct1;4 mutants had altered leaf and flower growth compared to WT (Cui et al., 

2007).  

The T-DNA insertion in the cyct1;4 mutant (SALK T-DNA line: SALK_139324 (BY)) is in the 

sixth exon. The cyct1;4 mutant was phenotyped at 27°C. 

CYCLOPHILIN 71 (CYP71) 

CYP71 in Arabidopsis encodes a nuclear protein which is necessary for organogenesis (Li 

et al., 2007). The cyp71 loss of function mutants have been considered as developmental 

mutants of Arabidopsis because of dramatic defects in multiple shoot and root organs; 
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and mutants had significantly reduced number of flowers compared to WT (Li et al., 

2007). 

The T-DNA insertion in the cyp71-1 mutant (SALK accession number JP69.6C06) is in the 

first intron/exon. The cyp71-1 mutant was phenotyped at 22°C. 

EXTENSIN PROLINE-RICH 1 (EPR1) 

It has been shown that extensins are expressed in elongating cells and are involved in 

modification of the cell wall structure (Bernhardt & Tierney, 2000). From a mutant 

analysis, another study found that EPR1 encodes a proline-rich extensin-like protein 

which is involved in positive regulation of seed germination and plays a more specific role 

in the modification of cell wall structure during germination (Dubreucq et al., 2000). 

The T-DNA insertion in the epr1 mutant (GABI-Kat T-DNA line: GK-710H02.01) is in the 

first exon. The epr1 mutant was phenotyped at 22°C. 

GROWTH-REGULATING FACTOR 4 (GRF4) 

In Arabidopsis, GRF4 is one of the nine members of a GRF gene family. GRF4 encodes a 

putative transcription factor and mutational analysis revealed that it is involved in growth 

and development of shoot and leaves (Kim et al., 2003). GRF4 in Arabidopsis is a 

homologue to GROWTH-REGULATING FACTOR1 of rice (Oryza sativa) (OsGRF1) which is 

involved in the regulation of stem growth (Van der Knaap et al., 2000). 

The T-DNA insertion in the grf4 mutant (SALK T-DNA line: SALK_037642C) is in the first 

exon. The grf4 mutant was phenotyped at 22°C. 

LIGHT SENSITIVE HYPOCOTYLS 9 (LSH9) 

LSH9 is a hypothetical protein but gets its name by sequence homology with other LSHs 

which do have a known function. The T-DNA insertion in the lsh9 mutant (Salk T-DNA line: 

SALK_039868C) is in the first exon. The lsh9 mutant was phenotyped at 22°C. 

NAKED PINS IN YUC MUTANTS 2 (NPY2) and NAKED PINS IN YUC MUTANTS 4 (NPY4) 

NPY2 and NPY4 are members of the NPY gene family and have been shown to be involved 

in auxin-mediated organogenesis (Cheng et al., 2008).  
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The T-DNA insertion in the npy2 mutant (SALK T-DNA line: SALK_058416C) is in the 

second exon. The npy2 mutant was phenotyped at 22°C. 

The T-DNA insertion in the npy4 mutant (SALK T-DNA line: SALK_151725) is in the fourth 

exon. The npy4 mutant was phenotyped at 22°C. 

PHOTOTROPIN 1 (phot1) 

Phot1 is one of the two phototropins which function as blue light receptors in 

Arabidopsis. They absorb blue light and play an important role in the phototropism of the 

hypocotyls which allows them to bend towards blue light and are the main 

photoreceptors mediating this light response (Stowe-Evans et al., 2001). Additionally, 

phototropins also regulate leaf expansion, chloroplast movement and stomatal opening 

(Sakai et al., 2001; Sakamoto and Briggs, 2002). It has been demonstrated that PHOT1 is 

the first light receptor which rapidly inhibits hypocotyl elongation under blue light growth 

conditions (Folta and Spalding, 2001). All such responses support plant growth and 

development. It has been revealed that under blue light the phot1 loss of function mutant 

lacked the rapid inhibition of hypocotyl elongation and hence was blind and continued to 

elongate straight (Folta and Spalding, 2001). 

The T-DNA insertion in the phot1 mutant (SALK T-DNA line: SALK_088841C) is in the 

fourth exon. The phot1 mutant was phenotyped at 22°C. 

PHYTOCHROME B (phyB) 

In Arabidopsis, phyB belongs to a family of five phytochromes (Sharrock and Quail, 1989) 

which regulate plant growth and development mainly under red light. PhyB is the main 

light receptor which predominantly regulates de-etiolation seedling responses in red 

light; however, other phytochromes are also involved in such responses (Franklin et al., 

2003).  

PhyB is well studied and the dramatic developmental phenotypes, as a result of 

insensitivity to red light, were first described in phyB mutant seedlings that had long 

hypocotyls and unexpanded cotyledons (Koornneef et al., 1980). PhyB functionally 

controls the inhibition of hypocotyl elongation under red light (Reed et al., 1993). It is a 

negative regulator of hypocotyl elongation and the mutants are less sensitive to red/far 
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red light as a result of which the hypocotyl elongates. This function of the gene is also 

well understood from the overexpression of PHYB gene. A transgenic PHYB 

overexpression line showed an exaggerated short hypocotyl phenotype that is severely 

light dependant (Wagner et al., 1991). Furthermore, the phyB mutant adult plants 

displayed elongated petioles and flowered early (e.g., Nagatani et al., 1991; Halliday et 

al., 1994). Additionally, the phyB null mutants which display an array of these noticeable 

phenotypes are characteristic of the shade-avoidance syndrome seen in WT seedlings 

exposed to low R/FR ratio light and include elongated hypocotyls and petioles, retarded 

leaf growth and early flowering (Somers et al., 1991; Smith and Whitelam, 1997). The 

phyB mutants that are phenotyped above 21°C display the early flowering phenotype of 

WT plants that avoid shade and hence phyB is considered as a suppressor of flowering 

(Simpson et al., 1999). This phenotype is independent of the short day or long day 

photoperiods (Blazquez and Weigel, 1999) but reveals sensitivity to ambient temperature 

(Blazquez et al., 2003; Halliday et al., 2003). Hence phyB has been implicated as a major 

contributor to the shade avoidance syndrome (Whitelam and Devlin, 1997).  

It has been shown that the early flowering phenotype in the phyB mutant is temperature 

dependent; which was observed at 22°C but was abolished at 16°C (Halliday et al., 2003). 

It is interesting to note that in this study (chapter 3) PHYB has been identified as a strong 

candidate gene for controlling natural variation in hypocotyl length in a temperature-

dependent QTL identified at 22°C. Moreover, in the knockout analysis, phyB mutants 

show the most significantly different hypocotyl length at 22°C. 

It has been previously revealed that the phyB mutant shows a striking long hypocotyl 

phenotype when grown in white light (Somers et al., 1991; Reed et al., 1994). The results 

of the knockout analysis complement this finding and the phyB mutants showed reduced 

sensitivity to light at 22°C when grown under white light. The T-DNA insertion in the phyB 

mutant (SALK T-DNA line: SALK_069700C) is in the second exon. 

PHYTOCHROME E (phyE) 

PhyE is another member of the phytochrome family. It has been previously shown that 

the phyE mutants had a similar phenotype to WT seedlings (Devlin et al., 1998). PhyE has 
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been implicated in the light-induction of seed germination in Arabidopsis (Hennig et al., 

2002). 

The T-DNA insertion in the phyE mutant (SALK T-DNA line: SALK_092529C) is in the first 

exon. 

POLTERGEIST LIKE 4 (PLL4) 

PLL4 is known to regulate shoot and leaf development in Arabidopsis. A reverse genetics 

study showed abnormal leaf morphology in pll4 mutants (Song et al., 2005).  

The T-DNA insertion in the pll4 mutant (SALK T-DNA line: SALK_047827) is in the first 

exon. The pll4 mutant was phenotyped at 22°C. 

SMALL AUXIN UP RNA 38 (SAUR38) and SMALL AUXIN UP RNA 8 (SAUR8) 

SAUR genes belong to a large family that are induced and expressed in the presence of 

auxin. These are putative auxin-responsive genes and it has been demonstrated that they 

are generally expressed in elongated hypocotyls under shade in Arabidopsis (Roig-

Villanova et al., 2007). These genes are also temperature sensitive and in another study it 

has been shown that SAUR genes are highly expressed in hypocotyls at higher ambient 

temperature conditions (Franklin et al., 2011). More recently the role of SAUR19-24 genes 

in auxin transport has also been identified (Spartz et al., 2012). These genes are rapidly 

induced in the presence of auxin in elongating tissues and positively regulate cell 

expansion.  

For the SAUR38 the T-DNA insertion in the saur mutant (SALK T-DNA line: SALK_001154C) 

is in the first exon. The saur mutant was phenotyped at 22°C. 

For the SAUR8 the T-DNA insertion in the saur mutant (SALK T-DNA line: SALK_058324C) 

is in the first exon. The saur mutant was phenotyped at 22°C. 

TWIN SISTER OF FT (TSF) 

TSF is a homolog of FLOWERING LOCUS T (FT) (Kobayashi et al., 1999) which is 

responsible for the induction of floral transition in a redundant manner with FT and is 

under the photoperiod control (Yamaguchi et al., 2005). The tsf mutants displayed a late 
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flowering phenotype when grown under short days and TSF was expressed in the 

hypocotyls of long day seedlings (Yamaguchi et al., 2005). For flowering time, ambient 

temperature influences TSF expression which is higher at 16°C than at 23°C (Blázquez et 

al., 2003). Recently, a mutant analysis showed that stomatal opening was suppressed in 

tsf mutants in the presence of light and indicated that TSF provided a positive effect on it 

(Ando et al., 2013). 

T-DNA insertion in the tsf mutant (SALK T-DNA line: SALK_087522C) is in the third exon. 

The tsf mutant was phenotyped at 27°C. 

TRANSPARENT TESTA 6 (TT6) 

It was demonstrated that the tt6 knockout mutants had a yellow seed coat (Wisman et 

al., 1998). Moreover, the tt6 mutants displayed architectural defects in the seedlings by 

having long hypocotyls (Buer and Djordjevic 2009). T-DNA insertion in the tt6 mutant 

(SALK T-DNA line: SALK_113321C) is in the second exon. The tsf mutant was phenotyped 

at 22°C. 

 

4.3.4 Discussion on Knockout Methods and Results: 

In this knockout analysis, the aim was to associate the candidate gene functions with 

hypocotyl length which is an important seedling organ for plant survival. The stem length 

of the seedling ensures that the seedlings elongate and reach out to light from the soil, 

enabling the seedling to pursue photoautotrophic growth and development. The 

knockout approach has been employed to deduce the functional involvement of the 

candidate genes. When a specific gene is disrupted with a T-DNA insertion, it usually ends 

up as a null gene and is not translated into a functional protein. The hypocotyl length may 

or may not be altered with this null gene and this can be observed by phenotypic analysis 

of mutants.  

T-DNA insertional mutagenesis is an essential tool of functional genomics. The approach 

of using knockouts to test for the involvement of various QTL candidate genes in 

hypocotyl length function was applied, which could provide clues to their potential role in 

contributing to natural variation. This approach has been facilitated due to the availability 
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of insertion mutants and the complete genome sequence in Arabidopsis which are 

probably the most important functional genomics tool. The capability of creating loss of 

function mutations for genes using T-DNA insertional mutagenesis aids in understanding 

the functional consequences of a missing QTL candidate gene on the hypocotyl length 

phenotype.  

Identification of gene functions in Arabidopsis is a major goal of developmental biology. 

More than 25,000 genes have been identified in Arabidopsis (Yamada et al., 2003; Bevan 

and Walsh, 2005), however, less than 10% of these genes have been assigned biological 

functions (Ostergaard and Yanofsky, 2004; Bouche and Bouchez, 2001). Furthermore, 

various accessions of Arabidopsis possess naturally existing alleles for these genes that 

gives rise to functional variation.  

There are two primary methods to determine gene function. The analysis can work from 

genotype to phenotype or from phenotype to genotype. In the former method, known as 

reverse genetics, knowledge of the gene sequence is essential and gene functions can be 

identified through mutational methods. Any particular gene of known sequence can be 

selected and mutated. Disruption in the gene sequence by various methods would 

potentially knockout the gene and the probable function can be inferred by observing the 

phenotype. Mutations in Arabidopsis can be induced by various agents, which include 

mutagenic chemicals, being exposed to radiation, and insertional mutagenesis. The 

induced mutations in Arabidopsis are only limited to a few accessions which are Col-0, 

Ler-0, Ws-0 and C24. These contain a very small portion of genetic variation found in the 

accessions. 

In the latter, known as forward genetics, one starts from an individual with an interesting 

phenotype, by selecting either unusual natural accessions or unusual individuals in a 

mutagenised population, and gene functions can be identified. Natural variation is 

extensively present and observed in accessions collected from around the world and 

there is a great potential to explore this. In some accessions, around 9.4% of the protein-

coding genes have polymorphisms which result in knockout effects and hence are 

naturally absent (Clark et al., 2007). Therefore, natural variation is a resource which could 

also be used to identify gene functions and this has been carried out in this study for the 

hypocotyl length trait. Strong candidate genes have been identified by QTL analysis and 
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then a knockout analysis has been performed, indicating whether they play a functional 

role in hypocotyl length. Hence, QTL analysis can be considered as a gene discovery tool 

because candidate genes are identified and their functional role in natural variation is 

experimentally tested. 

In this study, the knockout analysis was carried out to investigate if the candidate genes 

are functionally involved in hypocotyl length at the specific temperature conditions under 

which the QTL were identified. Because a certain set of genes were identified at a 

particular temperature condition, the phenotypic analysis of knockouts is highly 

informative, for it explains their potential involvement in hypocotyl length under those 

conditions. This further provides a strong basis to determine whether the molecular 

polymorphisms present in the alleles of a specific candidate gene, showing interesting 

functional association, are responsible for the natural variation of the trait. The 

establishment of a functional relationship between a candidate gene and the phenotype, 

under those QTL environmental conditions, paves way for further experimentation and 

testing by transgenic methods for allele discovery.  

Agrobacterium has the natural capability to transfer a specific segment of its DNA into the 

genomes of plants. This segment of the Ti plasmid, known as Transfer-DNA (T-DNA), 

transmits the genes that allow the genetic transformation of the recipient plant genome 

producing crown gall tumours (Chilton et al., 1977). Apart from using T-DNA to 

incorporate foreign genes into plants, early research also revealed that the DNA sequence 

of plant genes can be interrupted by T-DNA causing direct disruption to its function 

(Feldmann et al., 1989; Koncz-Kalman et al., 1990). The T-DNA insert that is several kb in 

length potentially leads to complete inactivation of genes. And hence T-DNA has been 

exploited and utilized for insertional mutagenesis. 

Agrobacterium has developed a sophisticated mechanism for the transfer of its DNA into 

plant genomes causing disease. There are a set of genes which the T-DNA carries which 

include genes for synthesis of auxin and cytokinin that control the neoplastic cell growth 

(Akiyoshi et al., 1984; Schroder et al., 1984) and for synthesis of opines which is the 

growth medium of the bacterium (Schroder et al., 1984; Zambryski et al., 1989). This T-

DNA region, which is flanked by short repeat border sequences (the left and right T-DNA 

borders), allows the delivery of this DNA segment into the host plant genome. For the 
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genetic transformation to take place there is another set of virulence genes which the Ti-

plasmid carries. Interestingly, this set is not found on the T-DNA region (Veluthambi et al., 

1989; Zambryski et al., 1989) and does not need to be linked physically to the T-DNA.  

The position of the T-DNA insertion plays an important role in the disruption of the gene. 

It is more effective in the exons, lesser effective in the introns and least effective in the 

promoters. In the promoter, the expression of a gene may be reduced or increased. 

Insertions in introns could be spliced out whereas insertions in the exons usually lead to 

null mutations and are therefore the preferred location. The protein product is truncated 

in this situation and hence it is less likely to retain its biological function. And therefore, 

knockout lines which possessed T-DNA insertions in the exons were selected for the 

phenotypic analysis of candidate genes. 

T-DNA insertional mutagenesis provides a means of inducing mutations by foreign DNA in 

Arabidopsis to analyse gene function. With the integration of T-DNA, a critical portion of 

the coding sequence of a candidate gene is interrupted, representing a mutation and 

leading to loss of function. This is followed by physically observing the effect of gene 

inactivation on the phenotype. Due to the fact that an efficient procedure for genetic 

transformation is available in plants, T-DNA has been the main agent of insertional 

mutagenesis. For the candidate genes, obtaining T-DNA mutants is an essential step for 

phenotypic analysis of the trait. It is a preliminary powerful tool required to understand 

how the function of candidate genes is carried out. 

One of the benefits of T-DNA in this study is that the foreign T-DNA disrupts the 

expression of the candidate genes and its effect can be monitored by the phenotypic 

analysis of hypocotyl length trait. One of the advantages of using the T-DNA mutagen is 

that it produces stable insertions in the targeted genomic DNA. Further steps for the 

stabilisation of the insert are not required and transformed lines can be bred for 

homozygous lines. As an essential powerful genomic tool for functional characterisation 

of genes and for linking genotypes to phenotypes, T-DNA has proven effective for 

genome-wide mutagenesis (Krysan et al., 1999). Moreover, random insertional 

mutagenesis on a large scale is an effective strategy in Arabidopsis because its genome is 

suitable due to high gene density (Bevan et al., 1999). As a result of this, there are several 

Arabidopsis populations that have been widely mutagenised with T-DNA, thus allowing 
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isolation of knockouts (Koncz et al., 1989; Feldmann 1991; Bechtold et al., 1993; Krysan et 

al., 1999; Galbiati et al., 2000; Sessions et al., 2002; Rosso et al., 2003; Alonso et al., 

2003). 

The results of the phenotypic analysis on the mutant plants show whether the hypocotyl 

lengths are different from WT Col-0 or the same. An altered phenotype would indicate 

that the missing gene in the mutant plant is functionally involved in the trait. The 

phenotyping of the knockout lines was carried out at the specific temperature conditions 

under which the QTL were identified. Therefore, those candidate genes whose mutant 

plants showed interesting phenotypes were further shortlisted for testing. 

Though the knockout analysis is a means of a straightforward way of establishing gene 

function by loss of function mutations due to the insertion of the T-DNA, it misses out the 

effects of individual naturally occurring alleles that are found in the different 19 parental 

accessions. The T-DNA knockout lines focus on extreme null mutations primarily available 

in Col-0 background, whereas naturally existing alleles in Arabidopsis account for a 

broader range of genetic variation. The identification of such alleles is important for 

functional characterisation because there is a possibility that some null mutations could 

be lethal, or detectable phenotypes may not be observed in the mutants due to genetic 

redundancy (Bouche and Bouchez, 2001). 

For identification of candidate genes and for determining their biological function in the 

hypocotyl length trait, a global approach has been adopted that includes various 

experimentation tests. Gene knockout analysis is insufficient to make conclusions and 

assess the role of candidate genes in natural variation of hypocotyl length but provides a 

strong basis on which further tests can be carried out on promising candidates. Therefore, 

it is necessary to enrich these findings with follow up experimentation and test for natural 

mutations in backgrounds other than Col-0 of specific candidate alleles using 

transgenesis. The functional validation of candidate genes needs to be taken to a further 

experimental step of testing by transgenic complementation. 

The knockout analysis has provided a solid foundation upon which a complete 

understanding of the candidate QTL alleles involved in natural variation of hypocotyl 

length can be built. This has been described in detail in the next chapter. 
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4.5 Appendix: 

List of candidate genes and primer information for T-DNA knockout lines: 

Gene Primer Information for T-DNA lines 

AT2G18790 
PHYB 

SALK_069700.46.10.x  PRODUCT_SIZE 668  PAIR_ANY_COMPL 0.00  PAIR_3'_COMPL 0.00  

DIFF_TM 0.46  LP ATGTACCTGAATTCTGTGCGG  Len 21  TM 60.01  GC 47.62  

SELF_ANY_COMPL 0.46  3'_COMPL 0.00 RP ATTGGGGCTTTCTGTTTCTTG  Len 21  TM 

60.47  GC 42.86  SELF_ANY_COMPL 0.46  3'_COMPL 0.00  Insertion chr2 8143030  

BP+RP_PRODUCT_SIZE 272-572 

AT2G23380 
CLF 

SALK_088542.54.90.x  PRODUCT_SIZE 638  PAIR_ANY_COMPL 0.00  PAIR_3'_COMPL 0.00  

DIFF_TM 1.07  LP TAGGTTCAGGAGAATGGTTGG  Len 21  TM 59.04  GC 47.62  

SELF_ANY_COMPL 1.07  3'_COMPL 0.00 RP GAATGTGTAGTGGTGGGGATG  Len 21  TM 

60.10  GC 52.38  SELF_ANY_COMPL 1.07  3'_COMPL 0.00  Insertion chr2 9959378  

BP+RP_PRODUCT_SIZE 296-596 

AT2G23380 
CLF 

SALK_139371.50.70.x  PRODUCT_SIZE 640  PAIR_ANY_COMPL 0.00  PAIR_3'_COMPL 0.00  

DIFF_TM 0.50  LP TTGCCTGTATAAGATGGTCGG  Len 21  TM 59.97  GC 47.62  

SELF_ANY_COMPL 0.50  3'_COMPL 0.00 RP AAATGTAAGCCCCTCGCATAG  Len 21  TM 

60.46  GC 47.62  SELF_ANY_COMPL 0.50  3'_COMPL 0.00  Insertion chr2 9956619  

BP+RP_PRODUCT_SIZE 283-583 

AT2G24400 
SAUR 

SALK_001154.29.99.f  PRODUCT_SIZE 648  PAIR_ANY_COMPL 0.00  PAIR_3'_COMPL 0.00  

DIFF_TM 1.19  LP AGGAACAGAGGTCCACATCAC  Len 21  TM 59.02  GC 52.38  

SELF_ANY_COMPL 1.19  3'_COMPL 0.00 RP AAAGCAGCCAACAACAACAAC  Len 21  TM 

60.20  GC 42.86  SELF_ANY_COMPL 1.19  3'_COMPL 0.00  Insertion chr2 10378295  

BP+RP_PRODUCT_SIZE 247-547 

AT2G24400 
SAUR 

SALK_001155.48.55.x  PRODUCT_SIZE 633  PAIR_ANY_COMPL 0.00  PAIR_3'_COMPL 0.00  

DIFF_TM 1.22  LP CATCACGGTTTCAATGATCTG  Len 21  TM 58.99  GC 42.86  

SELF_ANY_COMPL 1.22  3'_COMPL 0.00 RP AAAGCAGCCAACAACAACAAC  Len 21  TM 

60.20  GC 42.86  SELF_ANY_COMPL 1.22  3'_COMPL 0.00  Insertion chr2 10378297  

BP+RP_PRODUCT_SIZE 245-545 

AT3G45780 
PHOT1 

SALK_088841.45.35.x  PRODUCT_SIZE 626  PAIR_ANY_COMPL 0.00  PAIR_3'_COMPL 0.00  

DIFF_TM 0.02  LP TCACGATTGCTCCCATTAAAG  Len 21  TM 60.08  GC 42.86  

SELF_ANY_COMPL 0.02  3'_COMPL 0.00 RP TCTCCGATTTTGTCATGAAGG  Len 21  TM 

60.06  GC 42.86  SELF_ANY_COMPL 0.02  3'_COMPL 0.00  Insertion chr3 16820402  

BP+RP_PRODUCT_SIZE 251-551 

AT3G45780 
PHOT1 

SALK_146058.55.25.x  PRODUCT_SIZE 566  PAIR_ANY_COMPL 0.00  PAIR_3'_COMPL 0.00  

DIFF_TM 0.11  LP TCACGGAATATAGCCGTGAAG  Len 21  TM 60.10  GC 47.62  

SELF_ANY_COMPL 0.11  3'_COMPL 0.00 RP AATGACATTGCGAACTGGTTC  Len 21  TM 

59.99  GC 42.86  SELF_ANY_COMPL 0.11  3'_COMPL 0.00  Insertion chr3 16821572  

BP+RP_PRODUCT_SIZE 244-544 



Knockout Analysis 

171 
 

AT3G51240 
TT6 

SALK_113321.21.00.x  PRODUCT_SIZE 625  PAIR_ANY_COMPL 0.00  PAIR_3'_COMPL 0.00  

DIFF_TM 0.28  LP AGTGGATACACTGTGGCATCC  Len 21  TM 59.87  GC 52.38  

SELF_ANY_COMPL 0.28  3'_COMPL 0.00 RP GCTGTGCAAGATTGGAGAGAG  Len 21  TM 

60.15  GC 52.38  SELF_ANY_COMPL 0.28  3'_COMPL 0.00  Insertion chr3 19026019  

BP+RP_PRODUCT_SIZE 254-554 

AT3G51240 
TT6 

SALK_061570.56.00.x  PRODUCT_SIZE 579  PAIR_ANY_COMPL 0.00  PAIR_3'_COMPL 0.00  

DIFF_TM 0.67  LP CACAAAACACACCGAGCCTAG  Len 21  TM 60.73  GC 52.38  

SELF_ANY_COMPL 0.67  3'_COMPL 0.00 RP CCTTGCTGCTACAAGACCAAG  Len 21  TM 

60.06  GC 52.38  SELF_ANY_COMPL 0.67  3'_COMPL 0.00  Insertion chr3 19026312  

BP+RP_PRODUCT_SIZE 243-543 

AT3G52910 
GRF4 

SALK_037642.56.00.x  PRODUCT_SIZE 560  PAIR_ANY_COMPL 0.00  PAIR_3'_COMPL 0.00  

DIFF_TM 0.09  LP GGAAGTGATATTTCCAAGGCAG  Len 22  TM 59.97  GC 45.45  

SELF_ANY_COMPL 0.09  3'_COMPL 0.00 RP CAGCAGAAGTAGCAGTTTGGG  Len 21  TM 

60.06  GC 52.38  SELF_ANY_COMPL 0.09  3'_COMPL 0.00  Insertion chr3 19618268  

BP+RP_PRODUCT_SIZE 226-526 

AT3G52910 
GRF4 

SALK_077829.19.30.x  PRODUCT_SIZE 633  PAIR_ANY_COMPL 0.00  PAIR_3'_COMPL 0.00  

DIFF_TM 0.15  LP ATACATGTTGGCTGGTGCTTC  Len 21  TM 60.01  GC 47.62  

SELF_ANY_COMPL 0.15  3'_COMPL 0.00 RP AAAGAAGATGCGGTTGTTGTG  Len 21  TM 

60.16  GC 42.86  SEL_ANY_COMP 0.15  3'_COMPL 0.00  Ins chr3 19617438  

BP+RP_PRO_SIZE 295-595 

AT4G18130 
PHYE 

SALK_092529.39.10.n  PRODUCT_SIZE 585  PAIR_ANY_COMPL 0.00  PAIR_3'_COMPL 0.00  

DIFF_TM 0.14  LP GGATTTGGAGCCTGCTAAATC  Len 21  TM 60.05  GC 47.62  

SELF_ANY_COMPL 0.14  3'_COMPL 0.00 RP AACTCACAAGCATACCGCAAC  Len 21  TM 

60.19  GC 47.62  SELF_ANY_COMPL 0.14  3'_COMPL 0.00  Insertion chr4 10044964  

BP+RP_PRODUCT_SIZE 236-536 

  Same Primers for both of these lines as insertion site is the same 

AT4G18130 
PHYE 

SALK_040131.50.45.x  PRODUCT_SIZE 585  PAIR_ANY_COMPL 0.00  PAIR_3'_COMPL 0.00  

DIFF_TM 0.14  LP GGATTTGGAGCCTGCTAAATC  Len 21  TM 60.05  GC 47.62  

SELF_ANY_COMPL 0.14  3'_COMPL 0.00 RP AACTCACAAGCATACCGCAAC  Len 21  TM 

60.19  GC 47.62  SELF_ANY_COMPL 0.14  3'_COMPL 0.00  Insertion chr4 10044962  

BP+RP_PRODUCT_SIZE 234-534 

AT4G18610 
LSH9 

SALK_039868.20.35.x  PRODUCT_SIZE 547  PAIR_ANY_COMPL 0.00  PAIR_3'_COMPL 0.00  

DIFF_TM 2.07  LP TCCTTCTTGACAACAACGACC  Len 21  TM 60.14  GC 47.62  

SELF_ANY_COMPL 2.07  3'_COMPL 0.00 RP TTCCCCTAATAATGTCTTCGG  Len 21  TM 

58.08  GC 42.86  SELF_ANY_COMPL 2.07  3'_COMPL 0.00  Insertion chr4 10250903  

BP+RP_PRODUCT_SIZE 220-520 

AT4G18610 
LSH9 

GABI_419F10  PRODUCT_SIZE 696  PAIR_ANY_COMPL 0.00  PAIR_3'_COMPL 0.00  

DIFF_TM 0.57  LP TGCATGCAACGTACAGAAATG  Len 21  TM 60.71  GC 42.86  

SELF_ANY_COMPL 0.57  3'_COMPL 0.00 RP TTGTGTCTTCTTCGGACAACC  Len 21  TM 

60.14  GC 47.62  SELF_ANY_COMPL 0.57  3'_COMPL 0.00  Insertion chr4 10251258  

BP+RP_PRO_SIZE 298-598 
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AT4G18780 
CESA8 

SALK_046685.56.00.x  PRODUCT_SIZE 626  PAIR_ANY_COMPL 0.00  PAIR_3'_COMPL 0.00  

DIFF_TM 0.02  LP AGAAACAGCATGCTTGCTAGG  Len 21  TM 59.67  GC 47.62  

SELF_ANY_COMPL 0.02  3'_COMPL 0.00 RP GACTCTGTAAACCCGTCAACG  Len 21  TM 

59.65  GC 52.38  SELF_ANY_COMPL 0.02  3'_COMPL 0.00  Insertion chr4 10313904  

BP+RP_PRODUCT_SIZE 226-526 

AT4G18780 
CESA8 

GABI_339E12  PRODUCT_SIZE 602  PAIR_ANY_COMPL 0.00  PAIR_3'_COMPL 0.00  

DIFF_TM 0.68  LP TTTAGGGTTCTTTGTGATGCG  Len 21  TM 60.12  GC 42.86  

SELF_ANY_COMPL 0.68  3'_COMPL 0.00 RP AAGATACGACGTCGCTTAACG  Len 21  TM 

59.44  GC 47.62  SELF_ANY_COMPL 0.68  3'_COMPL 0.00  Insertion chr4 12018722  

BP+RP_PRO_SIZE 220-520 

  GABI_339E12  PRODUCT_SIZE 656  PAIR_ANY_COMPL 0.00  PAIR_3'_COMPL 0.00  

DIFF_TM 0.33  LP AATGTTGCGGTTAGCATATCG  Len 21  TM 60.00  GC 42.86  

SELF_ANY_COMPL 0.33  3'_COMPL 0.00 RP CGTTAACCGATGATTGAATCG  Len 21  TM 

60.33  GC 42.86  SELF_ANY_COMPL 0.33  3'_COMPL 0.00  Insertion chr4 10314972  

BP+RP_PROD_SIZE 265-565 

AT4G20370 
TSF 

SALK_087522.53.25.x  PRODUCT_SIZE 555  PAIR_ANY_COMPL 0.00  PAIR_3'_COMPL 0.00  

DIFF_TM 0.72  LP TTATGGTGGATCCAGATGTGC  Len 21  TM 60.74  GC 47.62  

SELF_ANY_COMPL 0.72  3'_COMPL 0.00 RP AAGATATGGTGCAGTGCAACC  Len 21  TM 

60.01  GC 47.62  SELF_ANY_COMPL 0.72  3'_COMPL 0.00  Insertion chr4 11001694  

BP+RP_PRODUCT_SIZE 230-530 

AT4G20370 
TSF 

GABI_585C12  PRODUCT_SIZE 672  PAIR_ANY_COMPL 0.00  PAIR_3'_COMPL 0.00  

DIFF_TM 1.08  LP TTCTTGACAAGTTGCTGCTCTC  Len 22  TM 59.80  GC 45.45  

SELF_ANY_COMPL 1.08  3'_COMPL 0.00 RP CGGTTAACTTGATTTTGTTTCG  Len 22  TM 

58.72  GC 36.36  SELF_ANY_COMPL 1.08  3'_COMPL 0.00  Insertion chr4 11002318  

BP+RP_PROD_SIZE 272-572 

AT2G16580 
SAUR 

SALK_058324.53.25.x  PRODUCT_SIZE 588  PAIR_ANY_COMPL 0.00  PAIR_3'_COMPL 0.00  

DIFF_TM 0.77  LP TCCGTGGAAATAAAAAGCCTC  Len 21  TM 60.43  GC 42.86  

SELF_ANY_COMPL 0.77  3'_COMPL 0.00 RP AGTGAGCTCGAGAAACTGTGG  Len 21  TM 

59.66  GC 52.38  SELF_ANY_COMPL 0.77  3'_COMPL 0.00  Insertion chr1 26151014  

BP+RP_PRODUCT_SIZE 249-549 

  SALK_058324.50.00.x  PRODUCT_SIZE 601  PAIR_ANY_COMPL 0.00  PAIR_3'_COMPL 0.00  

DIFF_TM 0.60  LP GCTTTCTTGCCAGATCTTAACC  Len 22  TM 59.40  GC 45.45  

SELF_ANY_COMPL 0.60  3'_COMPL 0.00 RP GCAATGCTTAGGCAGATTCTG  Len 21  TM 

60.00  GC 47.62  SELF_ANY_COMPL 0.60  3'_COMPL 0.00  Insertion chr2 7186725  

BP+RP_PRODUCT_SIZE 264-564 

  SALK_058324.50.00.x  PRODUCT_SIZE 588  PAIR_ANY_COMPL 0.00  PAIR_3'_COMPL 0.00  

DIFF_TM 0.77  LP TCCGTGGAAATAAAAAGCCTC  Len 21  TM 60.43  GC 42.86  

SELF_ANY_COMPL 0.77  3'_COMPL 0.00 RP AGTGAGCTCGAGAAACTGTGG  Len 21  TM 

59.66  GC 52.38  SELF_ANY_COMPL 0.77  3'_COMPL 0.00  Insertion chr1 26151015  

BP+RP_PRODUCT_SIZE 248-548 

AT2G16580 
SAUR 

SALK_003272.49.45.x  PRODUCT_SIZE 601  PAIR_ANY_COMPL 0.00  PAIR_3'_COMPL 0.00  

DIFF_TM 0.60  LP GCTTTCTTGCCAGATCTTAACC  Len 22  TM 59.40  GC 45.45  

SELF_ANY_COMPL 0.60  3'_COMPL 0.00 RP GCAATGCTTAGGCAGATTCTG  Len 21  TM 

60.00  GC 47.62  SELF_ANY_COMPL 0.60  3'_COMPL 0.00  Insertion chr2 7186743  
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BP+RP_PRODUCT_SIZE 246-546 

AT2G14820 
NPY2 

SALK_058416.55.50.x  PRODUCT_SIZE 656  PAIR_ANY_COMPL 0.00  PAIR_3'_COMPL 0.00  

DIFF_TM 0.98  LP TAAGAACGGTTTGGTGGTCTG  Len 21  TM 60.02  GC 47.62  

SELF_ANY_COMPL 0.98  3'_COMPL 0.00 RP ACAAGTGCTTGCACTTTTGTG  Len 21  TM 

59.04  GC 42.86  SELF_ANY_COMPL 0.98  3'_COMPL 0.00  Insertion chr2 6359297  

BP+RP_PRODUCT_SIZE 287-587 

AT2G14820 
NPY2 

SALK_142094.45.55.n  PRODUCT_SIZE 669  PAIR_ANY_COMPL 0.00  PAIR_3'_COMPL 0.00  

DIFF_TM 0.73  LP CATTTTGCTTCTCTGATTGGC  Len 21  TM 59.84  GC 42.86  

SELF_ANY_COMPL 0.73  3'_COMPL 0.00 RP TCTAGGCACAAAAGTGCAAGC  Len 21  TM 

60.57  GC 47.62  SELF_ANY_COMPL 0.73  3'_COMPL 0.00  Insertion chr2 6358939  

BP+RP_PRODUCT_SIZE 297-597 

AT2G28350 
ARF10 

SALK_087247.50.00.x  PRODUCT_SIZE 606  PAIR_ANY_COMPL 0.00  PAIR_3'_COMPL 0.00  

DIFF_TM 0.47  LP TCTCTGGTTTGTTTGGTTCTTG  Len 22  TM 59.26  GC 40.91  

SELF_ANY_COMPL 0.47  3'_COMPL 0.00 RP AGAGGATAAGAGGTGGAACGC  Len 21  TM 

59.73  GC 52.38  SELF_ANY_COMPL 0.47  3'_COMPL 0.00  Insertion chr2 12114319  

BP+RP_PRODUCT_SIZE 280-580 

AT2G28350 
ARF10 

GABI_274H01  PRODUCT_SIZE 654  PAIR_ANY_COMPL 0.00  PAIR_3'_COMPL 0.00  

DIFF_TM 0.18  LP AGGATCAATGGTTCAAATCCC  Len 21  TM 60.01  GC 42.86  

SELF_ANY_COMPL 0.18  3'_COMPL 0.00 RP AATCCAGGGTAAGGATTGTCG  Len 21  TM 

60.19  GC 47.62  SELF_ANY_COMPL 0.18  3'_COMPL 0.00  Insertion chr2 12114831  

BP+RP_PRODUCT_SIZE 300-600 

AT2G28890 
PLL4 

SALK_047827.46.25.x  PRODUCT_SIZE 652  PAIR_ANY_COMPL 0.00  PAIR_3'_COMPL 0.00  

DIFF_TM 0.03  LP CGCCACACCACTCTCTACTTC  Len 21  TM 59.92  GC 57.14  

SELF_ANY_COMPL 0.03  3'_COMPL 0.00 RP AGAGAGTAAATAGTCCGGCGC  Len 21  TM 

59.89  GC 52.38  SEL_ANY_COM 0.03  3'_COMPL 0.00 Ins chr2 12407346  

BP+RP_PRO_SIZE 262-562 

AT2G28890 
PLL4 

SALK_047818.16.90.x  PRODUCT_SIZE 652  PAIR_ANY_COMPL 0.00  PAIR_3'_COMPL 0.00  

DIFF_TM 0.03  LP CGCCACACCACTCTCTACTTC  Len 21  TM 59.92  GC 57.14  

SELF_ANY_COMPL 0.03  3'_COMPL 0.00 RP AGAGAGTAAATAGTCCGGCGC  Len 21  TM 

59.89  GC 52.38  SELF_ANY_COMPL 0.03  3'_COMPL 0.00  Insertion chr2 12407346  

BP+RP_PRODUCT_SIZE 262-562 

AT2G23050 
NPY4 

SALK_151725.55.25.x  PRODUCT_SIZE 599  PAIR_ANY_COMPL 0.00  PAIR_3'_COMPL 0.00  

DIFF_TM 0.10  LP TTGGTGATTGGACTAAATCGC  Len 21  TM 59.95  GC 42.86  

SELF_ANY_COMPL 0.10  3'_COMPL 0.00 RP AACATGCGGTACAGAACGAAC  Len 21  TM 

60.05  GC 47.62  SELF_ANY_COMPL 0.10  3'_COMPL 0.00  Insertion chr2 9812467  

BP+RP_PRODUCT_SIZE 265-565 

AT2G23050 
NPY4 

SALK_046452.51.25.x  PRODUCT_SIZE 629  PAIR_ANY_COMPL 0.00  PAIR_3'_COMPL 0.00  

DIFF_TM 0.15  LP GCGATTCTATTTTTGTTGACCC  Len 22  TM 59.85  GC 40.91  

SELF_ANY_COMPL 0.15  3'_COMPL 0.00 RP AGAAGAAGAGAGTATGCGGGC  Len 21  TM 

60.00  GC 52.38  SELF_ANY_COMPL 0.15  3'_COMPL 0.00  Insertion chr2 9812376  

BP+RP_PRODUCT_SIZE 231-531 
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AT2G30950 
VAR2 

SAIL_253_A03  PRODUCT_SIZE 589  PAIR_ANY_COMPL 0.00  PAIR_3'_COMPL 0.00  

DIFF_TM 0.09  LP GTTGGTAGGCAAAGAGGAACC  Len 21  TM 59.99  GC 52.38  

SELF_ANY_COMPL 0.09  3'_COMPL 0.00 RP CACTTACCCACACACTGCATG  Len 21  TM 

60.08  GC 52.38  SELF_ANY_COMPL 0.09  3'_COMPL 0.00  Insertion chr2 13176138  

BP+RP_PRO_SIZE 232-532 

AT3G49120 
PCB 

SAIL_143_G09  PRODUCT_SIZE 630  PAIR_ANY_COMPL 0.00  PAIR_3'_COMPL 0.00  

DIFF_TM 0.18  LP ATAGGCAGGAGGTCCTTCTTG  Len 21  TM 59.72  GC 52.38  

SELF_ANY_COMPL 0.18  3'_COMPL 0.00 RP TTGGTGTAATGTTTCCCATCC  Len 21  TM 

59.54  GC 42.86  SELF_ANY_COMPL 0.18  3'_COMPL 0.00  Insertion chr3 18209766  

BP+RP_PRO_SIZE 271-571 

AT3G49120 
PCB 

GABI_728F08  PRODUCT_SIZE 657  PAIR_ANY_COMPL 0.00  PAIR_3'_COMPL 0.00  

DIFF_TM 0.18  LP GAAAAAGAAAATGCCTCCAGC  Len 21  TM 60.20  GC 42.86  

SELF_ANY_COMPL 0.18  3'_COMPL 0.00 RP TGTTTTGGCATCATCATTGTG  Len 21  TM 

60.37  GC 38.10  SELF_ANY_COMPL 0.18  3'_COMPL 0.00  Insertion chr3 18208160  

BP+RP_PRO_SIZE 294-594 

AT2G24790 
COL3 

SAIL_361_A08  PRODUCT_SIZE 587  PAIR_ANY_COMPL 0.00  PAIR_3'_COMPL 0.00  

DIFF_TM 0.58  LP TTCCTTTTGTGAAAGTCCGTG  Len 21  TM 60.13  GC 42.86  

SELF_ANY_COMPL 0.58  3'_COMPL 0.00 RP ACAGCGTCGTAGAAAGGAGTG  Len 21  TM 

59.55  GC 52.38  SELF_ANY_COMPL 0.58  3'_COMPL 0.00  Insertion chr2 10567096  

BP+RP_PRO_SIZE 261-561 

AT2G30520 
RPT2 

SAIL_140_D03  PRODUCT_SIZE 624  PAIR_ANY_COMPL 0.00  PAIR_3'_COMPL 0.00  

DIFF_TM 1.44  LP CTTGCAGGTCAAGGAAGTGTC  Len 21  TM 59.90  GC 52.38  

SELF_ANY_COMPL 1.44  3'_COMPL 0.00 RP CTGTTGTCAGACTATGATTGCG  Len 22  TM 

58.46  GC 45.45  SELF_ANY_COMPL 1.44  3'_COMPL 0.00  Insertion chr2 13004284  

BP+RP_PRO_SIZE 247-547 

AT3G44600 
CYP71 

SALK_024686.20.75.x  PRODUCT_SIZE 626  PAIR_ANY_COMPL 0.00  PAIR_3'_COMPL 0.00  

DIFF_TM 0.19  LP GCTAACCTGCATTGCTGAAAC  Len 21  TM 59.90  GC 47.62  

SELF_ANY_COMPL 0.19  3'_COMPL 0.00 RP CTTTGGAACCCTCTCTGTTCC  Len 21  TM 

60.10  GC 52.38  SELF_ANY_COMPL 0.19  3'_COMPL 0.00  Insertion chr3 16168816  

BP+RP_PRODUCT_SIZE 284-584 

AT3G44600 
CYP71 

SALK_050092.55.00.x  PRODUCT_SIZE 640  PAIR_ANY_COMPL 0.00  PAIR_3'_COMPL 0.00  

DIFF_TM 0.21  LP TGCCACCAACTTAACCTGATC  Len 21  TM 59.99  GC 47.62  

SELF_ANY_COMPL 0.21  3'_COMPL 0.00 RP ATCCTCTTGGGGATGGTACTG  Len 21  TM 

60.20  GC 52.38  SEL_AN_COM 0.21  3'_COMPL 0.00 Ins chr3 16165705  BP+RP_PRO_SIZE 

251-551 

AT3G49670 
BAM2 

SAIL_1053_E09  PRODUCT_SIZE 654  PAIR_ANY_COMPL 0.00  PAIR_3'_COMPL 0.00  

DIFF_TM 1.98  LP CGACTTTTCAAGTTTTTAATTTGTG  Len 25  TM 58.47  GC 28.00  

SELF_ANY_COMPL 1.98  3'_COMPL 0.00 RP AGGAGAGTTCATCGGGAAATG  Len 21  TM 

60.45  GC 47.62  SELF_ANY_COMPL 1.98  3'_COMPL 0.00  Insertion chr3 18417979  

BP+RP_PRO_SIZE 276-576 

AT3G49670 
BAM2 

GABI_791G02  PRODUCT_SIZE 620  PAIR_ANY_COMPL 0.00  PAIR_3'_COMPL 0.00  

DIFF_TM 0.47  LP CGTTTCAAAACAACAAGGCTC  Len 21  TM 59.78  GC 42.86  

SELF_ANY_COMPL 0.47  3'_COMPL 0.00 RP CCGGAGAGGTTAAGACCTGAG  Len 21  TM 

60.25  GC 57.14  SELF_ANY_COMPL 0.47  3'_COMPL 0.00  Insertion chr3 18417856  
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BP+RP_PRO_SIZE 232-532 

AT4G19600 
CYCT1 

SALK_139324.42.80.x  PRODUCT_SIZE 634  PAIR_ANY_COMPL 0.00  PAIR_3'_COMPL 0.00  

DIFF_TM 0.43  LP TTTCTCGTCTTTTCACCTTGG  Len 21  TM 59.34  GC 42.86  

SELF_ANY_COMPL 0.43  3'_COMPL 0.00 RP CACCTCGACAACTAGAGGGTG  Len 21  TM 

59.77  GC 57.14  SELF_ANY_COMPL 0.43  3'_COMPL 0.00  Insertion chr4 10675741  

BP+RP_PRODUCT_SIZE 300-600 

AT4G19600 
CYCT1 

SALK_139322.15.30.x  PRODUCT_SIZE 618  PAIR_ANY_COMPL 0.00  PAIR_3'_COMPL 0.00  

DIFF_TM 0.11  LP TGACCGTGACATCAGCTGTAC  Len 21  TM 59.77  GC 52.38  

SELF_ANY_COMPL 0.11  3'_COMPL 0.00 RP TTGCTGCGAAGTTCCTTAAAG  Len 21  TM 

59.66  GC 42.86  SELF_ANY_COMPL 0.11  3'_COMPL 0.00  Insertion chr4 10675648  

BP+RP_PRODUCT_SIZE 279-579 

AT2G27380 
EPR1 

GABI_710H02  PRODUCT_SIZE 643  PAIR_ANY_COMPL 0.00  PAIR_3'_COMPL 0.00  

DIFF_TM 0.60  LP AAAAGCTGCCATTAAGGGATC  Len 21  TM 59.58  GC 42.86  

SELF_ANY_COMPL 0.60  3'_COMPL 0.00 RP TGGGAGGACTATAAGTTGGGG  Len 21  TM 

60.19  GC 52.38  SELF_ANY_COMPL 0.60  3'_COMPL 0.00  Insertion chr2 11713514  

BP+RP_PRO_SIZE 291-591 

AT4G18710 
BIN2 

GABI_244F08  PRODUCT_SIZE 652  PAIR_ANY_COMPL 0.00  PAIR_3'_COMPL 0.00  

DIFF_TM 0.07  LP CGAGATTGCTTGAAGTCGAAC  Len 21  TM 60.01  GC 47.62  

SELF_ANY_COMPL 0.07  3'_COMPL 0.00 RP TACCTTATCATCAGCCATGGC  Len 21  TM 

59.94  GC 47.62  SELF_ANY_COMPL 0.07  3'_COMPL 0.00  Insertion chr4 10296332  

BP+RP_PRO_SIZE 259-559 

  GABI_244F08  PRODUCT_SIZE 641  PAIR_ANY_COMPL 0.00  PAIR_3'_COMPL 0.00  

DIFF_TM 0.11  LP CGTTTGTATCTTCCCTCGAATC  Len 22  TM 59.97  GC 45.45  

SELF_ANY_COMPL 0.11  3'_COMPL 0.00 RP GTTCGAGTCTCTCACATTCGG  Len 21  TM 

59.86  GC 52.38  SELF_ANY_COMPL 0.11  3'_COMPL 0.00  Insertion chr4 10035274  

BP+RP_PRO_SIZE 280-580 

AT3G51200 
SAUR 

GABI_695B04  PRODUCT_SIZE 656  PAIR_ANY_COMPL 0.00  PAIR_3'_COMPL 0.00  

DIFF_TM 0.66  LP GTTGCCATGTCAAGCAACTAG  Len 21  TM 58.45  GC 47.62  

SELF_ANY_COMPL 0.66  3'_COMPL 0.00 RP ATCATCATGTGAGGAAGCCTC  Len 21  TM 

59.11  GC 47.62  SELF_ANY_COMPL 0.66  3'_COMPL 0.00  Insertion chr3 19018977  

BP+RP_PRO_SIZE 267-567 

  GABI_695B04  PRODUCT_SIZE 577  PAIR_ANY_COMPL 0.00  PAIR_3'_COMPL 0.00  

DIFF_TM 1.39  LP TCGTTAATCTCATCGTCTCCC  Len 21  TM 59.14  GC 47.62  

SELF_ANY_COMPL 1.39  3'_COMPL 0.00 RP ACTTTGAGTCCGTTAAACCGC  Len 21  TM 

60.53  GC 47.62  SELF_ANY_COMPL 1.39  3'_COMPL 0.00  Insertion chr1 6136804  

BP+RP_PRO_SIZE 225-525 

AT2G17950 
WUS 

SAIL_150_G06  PRODUCT_SIZE 623  PAIR_ANY_COMPL 0.00  PAIR_3'_COMPL 0.00  

DIFF_TM 0.36  LP CCATTTACACCACTAGCTATTACATG  Len 26  TM 58.27  GC 38.46  

SELF_ANY_COMPL 0.36  3'_COMPL 0.00 RP ACCATAGATCCATAGACATGGC  Len 22  TM 

57.90  GC 45.45  SELF_ANY_COMPL 0.36  3'_COMPL 0.00  Insertion chr2 7809606  

BP+RP_PROD_SIZE 223-523 
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Chapter 5 

Functional Analysis 2 – QTL Cloning by Transgenic Allelic 

Complementation 

 

5.1 Introduction: 

The ultimate aim of QTL mapping is to reveal the underlying genes that control a 

quantitative trait. This stage of the project is aimed at fulfilling this ultimate objective. 

This can be accomplished by direct testing of candidate alleles to explore if they influence 

natural variation.  

Upon discovery and isolation of QTL, the next major step is the identification of the causal 

genes (Salvi and Tuberosa, 2005), which is regarded as one of the greatest challenges for 

geneticists this century (Luo et al., 2002). To determine the molecular mechanism for 

functional variation, it is vital to identify the underlying alleles of the QTL and this process 

is known as QTL cloning (Borevitz and Chory, 2004). QTL cloning still remains an important 

challenge (Weigel and Nordborg, 2005) and it allows candidate gene verification by 

functional experimental methods. One of these methods is transgenic complementation 

and it represents a gold standard of proof that a candidate gene is actually controlling 

natural variation (Drinkwater and Gould, 2012).  This is a definitive step to confirm a QTL 

by introducing alleles into QTL parental accessions and null knockout mutants (Borevitz 

and Chory, 2004).  Such a transgenic approach should identify alleles that have 

significantly different effects on the hypocotyl length. This in vivo analysis consisting of 

phenotypic complementation experiments is thus required; which is an essential part of 

the ‘burden of proof’ to determine the causal genes responsible for the variation in the 

trait. 

While considerable progress has been made in mapping QTL, explaining the underlying 

molecular basis of QTL has remained a bottleneck and a challenge. The identification of a 

QTL allele that causes natural variation requires laborious cloning techniques. There are 

very few instances where QTL have been cloned particularly in plant growth and 
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morphology traits (Frary et al., 2000; El-Assal et al., 2001). Despite the challenges, 

Arabidopsis as a model plant offers several advantages for QTL studies. For example, QTL 

cloning is feasible because its genome is relatively small, genetic resources are available 

and candidate genes can be easily tested with transgenic transformation to directly 

examine the effects of their different alleles. 

A combination of follow up experimental methods is essential for definitive identification 

of causal QTL alleles which include molecular genetic, functional and mechanistic studies 

that unequivocally link the genotype to the phenotype (Weigel and Nordborg 2005). 

Therefore, a three tier post QTL mapping strategy was adopted in this study. The high 

level of available molecular genetic information gained from post QTL analyses in the first 

two tiers (candidate gene identification and knockout analysis) for hypocotyl length in 

response to temperature can be further exploited by transgenic analysis and potentially 

this can yield in QTL cloning. This chapter comprises of the third and final tier, which is 

functional testing of candidates by transgenic complementation experiments. This tier 

combined with the first tier (candidate gene identification) and second tier (knockout 

analysis) provides a rigorous understanding of the candidates and is a means of QTL 

cloning.  

The mutational analysis in Chapter 4 has identified several potential candidate genes by 

ascertaining their biological involvement in the trait. Candidate gene knockouts provided 

a causal relationship between function of a gene and its sequence, i.e. a direct way of 

determining function. In this chapter, QTL cloning aims at discovering novel functional 

alleles of candidate genes for natural variation in hypocotyl length at the QTL specific 

temperatures. Therefore, a subset of these genes, based on their phenotypes in the 

knockout analysis, has been selected for direct experimentation by transgenic analysis to 

test for their functional roles. This analysis tests whether the identified mutations in the 

candidates could possibly be influencing natural variation in the hypocotyl length 

phenotype in the corresponding parental accessions. The allelic functional approach 

targets QTL to measure the effect of allelic variation at that particular locus. Functions of 

new alleles can be determined by merging the findings from knockout analysis with 

functional allelic testing. This leads the path from QTL mapping to QTL cloning which is 

the last step in the forward genetic analysis. 
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QTL mapping is a statistical association study that leads to the prioritisation of candidate 

genes. Any such association study needs to be verified by functional experimentation and 

transgenesis provides an in vivo understanding of the candidate alleles.  Transgenic plants 

have been used as a tool for allele discovery and confirmation of hypocotyl length QTL 

natural variation. Whether these candidate genes play a vital role in natural variation of 

the hypocotyl length is an interesting question and is addressed by the transgenic 

complementation analysis. Following the genetic dissection of the hypocotyl length by 

QTL mapping, the functional analysis of Arabidopsis candidate genes is pursued. A direct 

method of QTL cloning is to complement phenotypes of the major effect size accessions 

by using homozygous transgenic lines. The parental accessions selected for allelic 

complementation are based on the data analysis of their effect sizes that are contributing 

to the respective QTL as described in Chapter 3.  

The aims for transgenic allelic complementation, which is a brute force genetics 

approach, are as follows: 

 To find the molecular basis of quantitative variation in the hypocotyl length 

phenotype in response to temperature 

 To directly investigate the phenotypic effects of the different candidate alleles in 

major effect parents that may contribute to the variation of the trait in response 

to temperature 

 To establish a link between allelic variation at candidate loci and the phenotype in 

response to temperature from which gene function can be inferred 

 To provide an insight in to the mechanistic control of hypocotyl length by several 

candidate genes in multiple accessions 
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5.2 Methods and Materials: 

5.2.1 Laboratory Methods: 

This section describes the methods and materials used in the laboratory for different 

experiments. These methods are as follows: 

5.2.1.1 Extracting and Amplifying Genomic DNA for Candidate Genes: 

The DNA from the plants of each of the accessions was extracted and PCR performed as 

explained in the methods section in Chapter 4. The extension time was set up according 

to the total length of the genomic DNA, i.e. 30 seconds per kb. 

The genomic region for the candidate gene fragments were obtained and amplified by 

PCR using gene specific primers listed in table 5.1 in the appendix. These primers were 

designed to amplify the endogenous promoters and the coding sequence for each of the 

candidate genes. The forward PCR primers were designed with sequence CACC at its 5´ 

end to allow directional cloning. To make sure that the PCR product was inserted 

directionally in the pENTR, the reverse PCR primer was designed in such a manner that it 

was not complementary to the overhang sequence GTGG at the 5´ end. The composition 

of the PCR mix was as follows: 

DNA = 1 µl, dNTPs = 1 µl, primer 1 = 1 µl, primer 2 = 1 µl, DMSO = 0.3 µl, Phusion = 0.1 µl, 

water = 13.6 µl, buffer = 2 µl 

5.2.1.2 Purification of Genomic DNA: 

The 1% Agarose gel was observed under UV light for the detection of the PCR amplified 

DNA bands. The DNA bands from the gel were cut out under an UV transilluminator. The 

DNA exposure to UV was minimised to avoid any DNA damage. The PCR amplified 

genomic DNA was purified from the gel using the QIAquick Gel Extraction Kit (from 

QIAGEN) with following protocol: 

1. Place the gels in 1.5 ml tubes 

2. Add 3 volumes of QG buffer to 1 volume gel 

3. Heat at 40°C until the gel is completely dissolved 
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4. Add 1 gel volume of 100% Isopropanol to the sample and mix 

5. No need to leave longer and pipette the sample in the columns to bind the DNA 

6. Spin for 1 min at 13,000 RPM and discard the flow-through 

7. Repeat step 6 if there are more samples 

8. To wash, add 750 µl PE buffer and leave the column for 5 minutes 

9. Spin for 1 minute at 13,000 RPM and remove the flow-through 

10. Spin again for 1 minute at 13,000 RPM to completely remove the flow-through 

11. Place the column into a clean 1.5 ml tube 

12. To elute DNA, add 30 µl EB buffer to the centre of the column and leave for 2 minutes 

13. Centrifuge for 1 min at 13, 000 RPM and collect DNA in the 1.5 ml tube 

 

5.2.1.3 Ligation into pENTR_TOPO Vector: 

The PCR amplified and purified genomic DNA of the various candidate genes were ligated 

into separate pENTR vectors. The Gateway cloning system requires initially the insertion 

of genomic DNA into pENTR which has two flanking recombination sequences called “att 

L 1” and “att L 2”, as can be seen in figure 5.1, which develops a ‘Gateway Entry clone’ 

(Invitrogen nomenclature). 

The pENTR transformation took place by adding the following materials and leaving at 

room temperature for 1 hour: 

Materials for pENTR_TOPO reaction: 

PCR product = 2 µl,  

Salt solution = 0.5 µl,  

TOPO Vector = 0.5 µl 

The virtual pENTR constructs were prepared in the software ‘Gene Construction Kit’ 

(GCK). These various constructs for all the candidate genes functionally tested for 

transgenic complementation experiments can be viewed in Figure 5.1. 
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Figure 5.1: pENTR vector constructs of various candidate genes used in gene cloning. 
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5.2.1.4 Transformation of E. coli with pENTR: 

TOP10 chemically competent bacterial cells (from Invitrogen) were transformed with the 

pENTR constructs according to the following protocol: 

1. Add 10 µl of TOP10 cells to the tubes which have been incubated at room temperature 

for 1 hour after the pENTR reaction 

2. Leave for 30 minutes on ice 

3. Place at 42°C in a water-bath for 45 seconds for the heat shock 

4. Place on ice for 5 minutes 

5. Add 450 µl of SOC and recover at 37°C 

6. Plate transformed cells on LB + Kanamycin selection and incubate at 37°C overnight 

7. Pick 6 colonies from each of the plates and put them in the small glass jars containing 

10 ml LB and 10 µl Kanamycin 

8. Incubate overnight at 37°C in the shaker and then the growth medium is ready for 

plasmid DNA isolation from E. coli 

5.2.1.5 Purification of Plasmid DNA from E. coli: 

For the isolation of plasmid DNA from E. coli, the NucleoSpin Plasmid Kit (from Macherey-

Nagel) was used with the following protocol: 

1. To cultivate and harvest bacterial cells put 2 ml of E. coli LB culture in 2 ml tubes and 

centrifuge at 11,000 x g (rcf) for 1 minute 

2. For cell lysis, add 250 µl A1 buffer and re-suspend pellet by vortexing so that no cell 

clumps should remain 

3. Add 250 µl A2 buffer and mix gently by inverting the tube 10 times, do not vortex 

4. Incubate at room temperature for 5 minutes or until lysate appears clear 

5. Add 300 µl A3 buffer and mix thoroughly by inverting the tube 10 times, do not vortex 

6. To clarify the lysate centrifuge for 6 minutes at 11,000 x g, repeat if the supernatant is 

not clear 

7. To bind DNA place a column in a collection tube 2 ml 

8. Take 750 µl of the supernatant and pipette into the column 

9. Centrifuge for 1 minute at 11,000 x g 
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10. Discard flow-through and place the column back into the collection tube 

11. To wash silica membrane, add 500 µl pre-heated buffer AW to the column 

12. Centrifuge at 11,000 x g for 1 min 

13. Add 600 µl A4 buffer to the column and centrifuge at 11,000 x g for 1 min 

14. Discard the flow-through and place the column back into the empty collection tube 

15. To dry silica membrane, centrifuge the column for 2-3 minutes at 11,000 x g and 

discard the collection tube 

16. To elute DNA, place the column in a 1.5 ml tube and add 50 µl AE buffer 

17. Incubate at room temperature for 1 minute 

18. Centrifuge at 11,000 x g for 1 minute and collect the eluted DNA in 1.5 ml tube 

 5.2.1.6 Digestion of Plasmid DNA: 

The purified plasmid DNA quantity was measured with a Nanodrop spectrophotometer. 

This helped in identifying colonies which possessed the genomic inserts because such 

colonies measured a significantly higher quantity of DNA than those colonies which did 

not possess the genomic inserts. To analyse the plasmid DNA from the selected colonies, 

restriction analysis was carried out to confirm the presence of the genomic inserts in the 

plasmids. Virtual gels were prepared in the GCK software for all candidate genes assisting 

in selecting the restriction enzymes. The reagents used in the digestion were: 

Plasmid DNA = 2 µl, Buffer 10x React 3 = 1 µl, water = 7 µl, restriction enzyme = 0.1 µl 

The reaction was incubated at 37°C for 3 hours. DNA was loaded into a gel for gel 

electrophoresis and the DNA bands were visualised under UV light. The DNA bands in the 

gel were compared against the virtual gels and were found to be correct. 

5.2.1.7 Sequencing of pENTR vectors: 

After the successful identification of the correct clones which carry the genomic inserts, 

to confirm the proper orientation of the inserts in the vector, the constructs were 

sequenced with pENTR M13 F and R Primers. The M13 F Primer is: 5´-

GTAAAACGACGGCCAG-3´ and the M13 R Primer is: 5´-CAGGAAACAGCTATGAC-3´. 
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Once the genomic DNA of the candidate genes was confirmed in the pENTR vectors, the 

next step was to sequence the whole genomic DNA of candidate genes to identify any 

polymorphisms that may have arisen in the cloning process. Primers were designed with 

an interval of about 500 bp and the DNA was sequenced. The pENTR sequenced DNA was 

compared to the already existing reference sequence of Col-0 on TAIR’s website and 

interestingly no mutations were found, showing successful cloning of the candidate 

genes. The software DNA Strider 4.2 was used to tally the DNA sequences.  

5.2.1.8 Gateway Clonase Reaction for Expression Vector: 

Gateway technology (Invitrogen) was used for the cloning of all the plasmid constructs by 

recombination of PCR products into destination vectors. After the entry clone was 

obtained, an LR recombination reaction was performed using the Gateway LR Clonase II 

enzyme mix in order to transfer the candidate gene from the pENTR entry construct into 

the destination vector pJHA212B to generate an expression clone. This vector carries a 

gluphosinate resistance marker (BastaR) and confers Basta resistance in plants. The T-DNA 

lines have transgenes that confer Kanamycin resistance, therefore Basta resistance was 

used. The materials required for the reaction were: 

Purified plasmid DNA of entry clone = 0.4 µl  

Destination vector = 0.4 µl 

Gateway LR Clonase II enzyme = 0.3 µl 

TE Buffer, pH 8.0 (10 mM Tris-HCl, pH 8.0, 1 mM EDTA) = 0.3 µl 

2 μg/μL Proteinase K solution = 0.5 µl 

TOP10 competent E. coli cells = 10 µl 

The LR reaction was performed as follows: 

1. Add 0.4 µl purified plasmid DNA of entry clone to 0.4 µl of destination vector 

2. Incubate at room temperature for 2 hours 

3. Terminate the reaction with 0.5 Proteinase K solution 

4. Incubate at 37°C for 10 minutes 

5. Add 10 µl TOP10 competent cells to the reaction 

6. Incubate on ice for 30 minutes 
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7. Heat shock at 42°C for 45 seconds 

8. Add 250 µl SOC and recover in shaker at 37°C for 1 hour 

9. Plate transformed cells: LB + Spectinomycin 100 (1 µl/ml) and incubate overnight at 

37°C 

 

5.2.1.9 Purification of Expression Vector DNA from E. coli: 

The plasmid DNA of the expression vector was purified from the transformed E. coli cells 

according to the protocol in section 5.2.1.5 

5.2.1.10 Digestion of Expression Vector DNA: 

To analyse the plasmid DNA from the selected colonies, restriction analysis was carried 

out according to the protocol in section 5.2.1.6 to confirm the presence of the genomic 

inserts in the expression vectors. Virtual gels were prepared in the GCK software for all 

candidate genes. The DNA bands in the gel were compared against the virtual gels and 

were found to be correct. 

5.2.1.11 Sequencing of Expression Vector pJHA212B: 

With the digestion confirmation of the presence of the candidate genes in the colonies of 

expression vector, the next step was to sequence the DNA of the vector. Since the whole 

genomic DNA of candidate genes was sequenced in the entry pENTR vector, therefore, in 

the expression vector sequencing only with the F and R primers was performed to further 

confirm the presence of the genomic inserts and their orientation. The candidate gene 

sequences in the vector were matched with the Col-0 genomic sequence by using DNA 

Strider 1.4 software. 

5.2.1.12 Transformation of Agrobacterium: 

The Agrobacterium strain GV3101 was transformed with the expression vector, 

containing the gene of interest, with the following protocol: 

1. Put the cuvettes on ice 

2. Thaw out an aliquot of Agrobacterium (50-100 µl) on ice 
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3. Dilute the plasmid (miniprep) 1:40 

4. Prepare tubes with 1 ml of SOB or YEP (important without antibiotic) 

5. Settings of the Gene Pulser (electroporator) should be: capacitance extender = 25, 

pulse controller = 400, in Gene Pulser press Set volts to 2.5 

6. Take a tube containing the Agro, add 1 µl of the previously diluted plasmid 

7. Introduce the cells into a cuvette, dry out the external surface with some paper 

8. Put the cuvette the white tray and bring it to the end 

9. Press PULSE, then you will hear a beep that indicates that the electroporation is done 

10. Press TIME CONST (in the Gene Pulser) a value around 9 is very good 

11. Put the YEP and SOB in the cuvette and mix it with the cells, collect the mixture and 

put it back in the tube 

12. If there is a bang during the pulse, throw away this cuvette as it is not useful any more 

13. Incubate the cells for at least 2-4 hours 

14. For the GV3101 prepare 100 ml LB agar plates with the following antibiotics (100 µl 

Rifampicin + 100 µl Gentamyicin + 80 µl Spectinomycin) 

15. Spin cells down (6000 rpm for 1 minute), remove 700 µl of medium and resuspend the 

cells. Pour cells on the plates containing the antibiotics and incubate at 30°C for 48 hours 

5.2.1.13 Purification of Plasmid DNA from Agrobacterium: 

The plasmid DNA of the expression vector was purified from the transformed 

Agrobacterium cells according to the protocol in section 5.2.1.5 

5.2.1.14 Digestion of Plasmid DNA: 

To analyse the plasmid DNA from the selected Agrobacterium colonies, restriction 

analysis was carried out according to the protocol in section 5.2.1.6 to confirm the 

presence of the genomic inserts in the expression vectors in the Agrobacterium. Virtual 

gels were prepared in the GCK software for all candidate genes. The DNA bands in the gel 

were compared against the virtual gels and were found to be correct. 
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5.2.1.15 Plant Transformation by Floral Dipping: 

The technique used for plant transformation of the various accessions was 

Agrobacterium-mediated transformation using in the direct floral dipping method (Clough 

and Bent, 1998). The protocol for dipping the plants is as follows: 

1. Grow Agrobacterium culture in selective medium from starter culture to about OD600 

(0.6 – 0.9) in ~ 200 ml YEP or LB. (Can dilute saturated starter 1:1000 into 250 ml, harvest 

next day). Use the spectrophotometer to measure the optical density of the growth 

medium 

2. Harvest cells at 4000 rpm for 10 minutes at room temperature 

3. Resuspend pellet in 0.5 x MS with 5% sucrose (per litre: 2.2 g MS, 50 g sucrose). Use 

deionised water, should have pH 5.7. (Resuspend in equivalent volume of media for 

OD600 to be 0.6 – 0.9) 

4. Add Silwet L-77 to 0.02 % i.e. 200 µl per litre 

5. Dip plants in suspension. It is best to dip plants with secondary inflorescences. For this 

purpose, cut primary shoots and grow for 1 week until there are many buds but no 

siliques 

6. Keep overnight covered in bags 

7. Place the plants in growth incubators and allow them to form transgenic seed 

 

5.2.2 Glasshouse Methods: 

This section describes the methods and materials used in the glasshouses for different 

experiments. These methods are as follows: 

5.2.2.1 Production of Genetically Engineered Plants: 

Transgenic plants were produced by the direct floral dipping method as described above 

and the T1 seeds obtained from the florally dipped T0 plants were harvested. This section 

describes the raising of T0 plants leading all the way to identification of T3 homozygous 

transgenic lines. A large collection of transgenic lines for different candidate genes and 

various Arabidopsis accessions were generated. The screening in the T1 plants for 
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transformed individuals and in the subsequent T2 and T3 generations for the 

determination of heterozygous and homozygous individuals was based on glufosinate 

ammonium (Basta) resistance (2.5 ml/1 litre harvest water of Basta). The precise 

genotype of large numbers of progeny in each generation was determined by Basta 

resistance. The T-DNA insertion carries the Basta resistance gene and is expressed in 

transformed individuals making them resistant. During each of the successive selection 

steps, three rounds of Basta herbicide were applied to rule out any false positive 

seedlings. 

5.2.2.2 Identification of Independently Transformed T1 Lines: 

Numerous T0 plants were transformed for various accessions for the different transgenic 

experiments. Following the floral dipping, the T-DNA was transferred from the 

Agrobacterium to the genomic DNA of developing Arabidopsis ovaries in the various 

accessions. The transformed ovaries were allowed to self-pollinate which yielded T1 

seeds. The T1 seeds are the primary transformants in the hemizygous state. These T1 

seeds were grown under Basta selection to identify individuals containing a T-DNA 

carrying the gene of interest. Transgenic lines were selected by screening the T1 seed 

progeny in soil. 

Since the T-DNA insertion into the genomic DNA takes place in a completely random 

manner, therefore, multiple independently transformed lines were required to assess the 

effect of the insertion site on the phenotype. For this purpose, the seed from the T-DNA 

containing T1 primary transformants were individually collected, each establishing an 

independently transformed T-DNA line. A high transformation efficiency of 2-4% was 

observed in the T1 transgenic plants. This allowed for the identification of independently 

transformed lines for all the different constructs that were used, which are essential for 

understanding the effect of the transgene on the phenotype.  
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Figure 5.2: T1 transformed plants growing 

that have survived the Basta spray. These 

plants carry the Basta resistant transgene as 

a selectable marker. The seeds that were not 

transformed during the floral dipping 

produced seedlings that were susceptible 

and all those plants died. 

 

Using Basta for the screening for T1 transformed heterozygous plants proved very 

effective. In figure 5.2 the dead organic material can be seen lying on the soil of those 

plants which did not survive the herbicide and died. The resistant transformed 

hemizygous individuals were left behind to grow as independent lines. 

5.2.2.3 Identification of Independently Transformed T2 and T3 Lines: 

The identification of hemizygous and homozygous lines was determined by the 

segregation analysis of the transgene in T2 seedlings grown under herbicide selection. In 

the T2 generation, as mentioned above, all the homozygous untransformed plants died 

after the Basta spray leaving behind only transformed hemizygous and homozygous 

plants. For the identification of independently transformed stable homozygous transgenic 

lines, 15 T2 progeny of a single self-pollinated T1 plant were grown. These 15 T2 plants 

for each transgenic line that survived the selection were randomly chosen and were 

selfed to bulk up and set T3 seed. Since the transgene usually segregates in a Mendelian 

fashion, therefore 25% of these should be homozygous for the TDNA.  
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Figure 5.3: Screen for homozygous lines; Image A shows a T2 homozygous line where 100% of the 

seedlings are resistant to Basta; and Image B shows a T2 hemizygous line where the transgene is 

still segregating and 25% of the homozygous untransformed seedlings have died after Basta 

spraying, the dead organic matter can be seen on the top of other seedlings. 

 

T3 generation seeds were harvested from each T2 transformed plant and aliquots of 

these seeds were tested for herbicide resistance. They were sown on soil and seedlings 

were grown for one week, as part of the screening experiment. They were sprayed with 

three rounds of Basta herbicide. Those stable T3 lines in which a 100% of the T3 progeny 

of a single T2 plant were resistant to Basta indicated that the T2 parent was homozygous 

for the T-DNA. There was no segregation of the transgene taking place and hence the 

phenotypes of all the seedlings were uniform. The segregation in the hemizygous lines 

was also obvious due to non-uniform phenotypes. Therefore, the T3 seeds of 

homozygous lines were used for the phenotyping of the hypocotyl length. For all of the 

six constructs, multiple independent homozygous T3 lines were identified.  

5.2.2.4 Identification of Transgene Copy Number: 

To test whether a particular transgenic line had a single copy of the transgene, a 

transgene segregation analysis was carried out. For each transgenic line, about 200 T2 

seeds were sown in a pot evenly distributed and were allowed to grow for 10 days. 

Images of these pots were taken from above with a digital camera and the total number 

of seedlings were counted using Image J. After counting the total seedlings, the pots were 
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sprayed with three rounds of Basta and the total number of homozygous untransformed 

seedlings that died after the spray was counted. In this way only the transformed 

hemizygous and homozygous individuals were left in the pots. For each pot, the total 

number of seedlings that died was deducted from the total number of seedlings and in 

this way the total number of resistant seedlings was identified. This was then compared 

against a 3:1 ratio and statistically tested with a Chi square test. This analysis identified 

transgenic lines which were likely to carry only a single copy transgene number. 

5.2.2.5 Phenotypic Analysis of T3 Homozygous Plants: 

The phenotypic analysis was performed in a similar manner as described in the previous 

chapters.  
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5.3A Results: Transgenic Complementation with PHYBCol-0 allele: 

The results in this section describe in detail the analysis of functional variation of PHYB 

alleles in the ‘Temp22.2’ QTL in hypocotyl length phenotype in response to 22°C 

temperature in multiple Arabidopsis accessions. Multiple major effect parental accessions 

have been experimentally tested for complementation with the PHYBCol-0 allele at 22°C. 

The results of these experiments have been described in detail in individual sub sections 

for each accession separately. These results provide the definitive experimental evidence 

for the PHYB QTL alleles by individual transgenic allelic complementation studies. Before 

embarking on a detailed transgenic analysis to determine if PHYB plays a role in the 

natural variation of hypocotyl length in response to temperature in multiple major effect 

parental accessions, it is necessary to establish whether the long phyB KO hypocotyl 

phenotype is rescued by the re-introduction of PHYBCol-0 allele. The main objective for this 

experiment is to validate the functional role of PHYB. 

 

5.3A.1 Transgenic Complementation of phyB KO with PHYBCol-0 allele: 

The hypothesis for this experiment was that the WT Col-0 phenotype could be restored in 

the phyB knockout mutant with the PHYBCol-0 allele. This was a positive control; PHYB 

from Col-0 should rescue the WT phenotype in phyB mutants. From the KO analysis, it 

was known that PHYB is functionally involved in the hypocotyl length phenotype. This 

experiment that would validate its functional role was performed for the 

complementation of phyB KO mutant with the PHYBCol-0 allele. The phyB KO plants were 

transformed with the PHYBCol-0 construct. This was a gene rescue experiment which is 

considered as a standard testing procedure to prove that the T-DNA mutated allele is 

controlling the phenotype. For this purpose, the WT copy PHYBCol-0 allele, including all 

introns, exons and the 5′ flanking promoter sequence and 3′ flanking sequence was 

transformed directly into the phyB KO mutants.  

5.3A.1.1 Phenotypic Analysis of Homozygous T3 phyB KO Lines: 

As seen in figure 5.4, the phenotyping results revealed that the Col-0 WT phenotype was 

rescued in the phyB mutant by the expression of the QTL candidate transgene. The T3 
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phyB KO transgenic Line 1 carrying the PHYBCol-0 construct had complemented and 

reverted back to the Col-0 WT phenotype and the seedlings exhibited the WT short 

hypocotyl phenotype. This experiment validated the functional role of PHYB already 

identified in controlling hypocotyl length from the KO analysis in Chapter 4. 

Moreover, in order to test for the effect of PHYB gene copy number in Col-0 WT and phyB 

KO plants, a control experiment was performed in which these plants were transformed 

with the PHYBCol-0 construct. The Col-0 WT only has a single copy number of the PHYB 

gene. As seen in figure 5.4, it is interesting to note that with the introduction of the 

PHYBCol-0 allele into Col-0 WT plants, the T3 Col-0 lines carrying the PHYBCol-0 construct 

(Line 1, Line 2 and Line 3) are T3 independently transformed homozygous transgenic 

lines, and showed an even shorter hypocotyl (exaggerated) because they each have an 

estimated double copy number of PHYB. 

Similarly, the double copy number KO transgenic line 2 carrying the PHYBCol-0 construct, 

which was used as a control to observe for the effect of copy number in the transgenic KO 

plants, also showed an exaggerated shorter phenotype exactly similar to the T3 Col-0 

plants transformed with the PHYBCol-0 construct. This independently transformed 

homozygous T3 KO line also possessed an estimated double copy number of the PHYB 

allele. These results from the T3 Col-0 transgenic and KO lines indicate that the 

differential hypocotyl growth responses are sensitive to PHYB copy number. The gene 

copy numbers in the independently transformed transgenic lines were estimated from 

the segregation analysis in the T2 generation. The ratios of Basta-resistant to Basta-

sensitive seedlings were determined. The hypocotyl length phenotypes shown in figure 

5.4 inversely correlate with the PHYB gene copy number, i.e. fewer gene copy number, 

bigger hypocotyl phenotype and vice versa.  

 Long homozygous KO null mutant phenotype has zero PHYB gene, 

 Col-0 WT and ‘Line1 T3 phyB KO + PHYBCol-0’ have an estimated single copy 

number.  

 T3 Col-0 + PHYBCol-0 (3 lines) and ‘Line 2 T3 phyB KO + PHYBCol-0’ have an estimated 

double copy number. These have the shortest exaggerated phenotype. 
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Figure 5.4: Transgenic Col-0 and phyB lines showing complementation of phenotypes and effect of 

gene copy numbers. 1 week old hypocotyls were grown in 170 μE/m2/sec short days at 22°C. 

 

 

Figure 5.5: A T2 phyB line transformed with PHYBCol-0 construct. The tall seedlings are homozygous 

untransformed which died after Basta spray. The short are transformed and Col-0 WTphenotype 

has been rescued in these knockouts.
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Figure 5.6: A T3 phyB homozygous line transformed with PHYBCol-0 construct. All seedlings are 

small and the phenotype has been complemented. 

 

Since the phyB KO phenotype is well characterised and the plant architectural phenotypes 

of hypocotyl length, plant size and petiole length are known, it was interesting to test for 

the effect if PHYB copy number in the vegetative growth stage and compare it with the 

effect on hypocotyl length phenotype in the various lines. An experiment was performed 

to compare the hypocotyl length phenotype with the plant size and petiole length 

phenotypes of the vegetative stage. The results showed that the hypocotyl length 

phenotypes of the various lines in figure 5.4 strikingly corresponded to the plant size and 

petiole length phenotypes of the same lines as seen in figure 5.7. In a similar way to the 

hypocotyl length phenotype, the three T3 Col-0 lines and Line 2 of T3 phyB KO carrying 

the PHYBCol-0 construct showed an exaggerated smaller plant size and petiole length 

phenotype as compared to the Col-0 WT plants due to double PHYB copy number. Line 1 

of T3 phyB KO carrying the PHYBCol-0 construct showed a similar phenotype to Col-0 WT 

rescuing the vegetative phenotypes of plant size and petiole length. 

 

Figure 5.7: Effect of PHYBCol-0 allele on vegetative phenotypes (petiole length and plant size) of 

transgenic Col-0 and phyB plants. These phenotypes are proportionate to hypocotyls in figure 5.4. 
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5.3A.2 Transgenic Complementation of Ct-1 accession with PHYBCol-0 allele: 

Transgenic complementation experiments were designed and performed for the 

validation of PHYB as a candidate gene in the Ct-1 accession. The aim was to test the 

hypothesis that allelic variation at PHYB candidate locus contributed to the observed 

phenotypic differences between the Ct-1 and Col-0 accessions. Is the Ct-1 long hypocotyl 

phenotype due to mutations in Ct-1 allele of PHYB? If yes, then with the insertion of 

PHYBCol-0 allele into Ct-1, the long hypocotyl length phenotype of Ct-1 should be 

transformed to the short phenotype of Col-0. 

The hypothesis is that the Ct-1 allele has a loss of function mutation in PHYB, as has been 

observed in the phenotype in figure 5.8 which is the same as phyB KO. Therefore, if a 

functional allele from Col-0 is inserted into the genome of Ct-1 we expect to restore the 

WT phenotype, as has been experimentally demonstrated is the case in transgenic phyB 

lines in figures 5.4 and 5.5. 

For the detection of independently transformed single transgene copy Ct-1 lines carrying 

the PHYBCol-0 construct, at least 10 independent Basta-resistant primary 

transformants/regenerants (T1 generation) were selected. These transformants were 

allowed to self and set T2 generation seed. The T2 segregation data for each 

independently transformed Ct-1 line was analysed. The empirical data was generated as 

explained in the methods section. To test if the observed data was significantly different 

from the expected data, a chi-square test was performed; and the results are shown in 

table 5.3 in the appendix.  

The chi-square results (p = 0.05) show that amongst the 10 independent lines, 7 showed a 

close to 3:1 segregation for Basta-resistance in the T2 generation, which indicated a single 

locus insertion of the transgene. The presence of a single locus of the transgene was 

shown by the monogenic segregation of the Basta resistance marker.  
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5.3A.2.1 Phenotypic Analysis of Homozygous T3 Ct-1 Lines: 

As can be observed in figure 5.8, the Ct-1 accession, which has non-synonymous protein-

coding sequence polymorphism in the PHYB allele, resembles the phyB mutant in having 

an elongated hypocotyl, which implies that the mutations in the Ct-1 PHYB allele could be 

causative of the long hypocotyl, as outlined in the hypothesis. Similar to phyB, Ct-1 

exhibits an approximately 250% increase in hypocotyl length when compared to Col-0. 

The transgenic complementation results can be seen in the phenotypic analysis of the 

independently transformed single copy T3 homozygous Ct-1 lines 1 – 4 carrying the 

PHYBCol-0 construct. The Ct-1 accession having a long hypocotyl phenotype was 

transformed, due to the PHYBCol-0 allele, to the short phenotype of Col-0 WT. This very 

vividly provides direct allelic evidence for natural variation by restoring the short 

hypocotyl and shows that the Ct-1 allele is a positive growth regulator of hypocotyl length 

as opposed to the Col-0 allele which is a negative growth regulator of hypocotyl length. 

To test for natural variation, five independently T3 homozygous transformed Ct-1 lines 

carrying the PHYBCol-0 construct were phenotyped. For each independent line, two 

different but identical plants (offspring of two different plants) were phenotyped and 

scored (as a control) which showed similar hypocotyl phenotypes. From the segregation 

analysis in the T2 generation (explained in section 5.2.2.4), Line 5 is estimated to have 

double copy number of PHYB, hence being shorter than the others and showing an 

exaggerated short phenotype. The remaining four Ct-1 transgenic lines (Line 1 – 4) have 

similar short phenotypes and have complemented the Col-0 WT phenotype. 
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Figure 5.8: Phenotypic analysis of Col-0 and Ct-1 WT, phyB and Ct-1 transgenic lines showing 

complementation results. The different line numbers refer to independent transformants. 1 week 

old hypocotyls were grown in 170 μE/m2/sec short days at 22°C. 

 

 

Figure 5.9: Transgenic allelic complementation of T2 Ct-1 line with PHYBCol-0 allele where the 

transgene is segregating and the effect can be seen on the hypocotyl length phenotype. The 

seedlings with long hypocotyls are the untransformed Ct-1 WT plants which died after the Basta 

spray. 
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As can be seen in figure 5.9, there was an unambiguous classification of seedlings into 

two discrete categories and two clear distinct hypocotyl length phenotypes were 

observed. The individuals with the tall hypocotyls are homozygous untransformed WT Ct-

1 plants, whereas the individuals with the short hypocotyls are transformed Ct-1 plants 

possessing the PHYB allele transgene from Col-0. Ct-1 has complemented Col-0 hypocotyl 

length phenotype with the introduction of the transgene showing that the PHYB allele of 

the Temp22.2 QTL is responsible for the natural variation of hypocotyl length at 22°C. 

Since the plants were grown in a uniform environment therefore no environmental 

variation was observed; all the variation in the hypocotyls was genetic. 

 

Figure 5.10: T3 homozygous Ct-1 transgenic line in which seedlings with no long hypocotyls can be 

seen. Also no environmental variation can be observed with uniform growth. 

Another interesting phenotypic result is the comparison of the hypocotyl length of T3 Ct-1 

Line 5 in figure 5.8 with the hypocotyl length of T3 phyB Line 2 in figure 5.4. Both of these 

lines carry double copy number of the transgene and have exactly the same phenotypes. 

This shows that the effect of the PHYBCol-0 copy number has a similar effect on both the 

Ct-1 and phyB plants supporting further the complementation results with a single gene 

copy number. 

The comparative phenotyping of seedlings and vegetative stages which was done in the 

phyB transgenic phenotyping (figures 5.4 and 5.7) was also carried out for the Ct-1 

accession and PHYB transgenic plants of other accessions. 
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Figure 5.11: Effect of PHYBCol-0 allele on vegetative phenotypes (petiole length and plant size) of 

transgenic Ct-1 plants. These phenotypes are proportionate to hypocotyls in figure 5.8. 

 

As can be seen in figure 5.11, the vegetative stage phenotypes of the Ct-1 WT plant were 

similar to the phyB KO plant with longer petioles and bigger plant size, typical of the 

shade avoidance syndrome. This also suggested that PHYB allele of Ct-1 could be playing a 

role in such plant architecture. This observation is further strengthened by the phenotype 

of T3 Ct-1 Line-1 which carries a single copy of the PHYBCol-0 construct and restores the 

phenotype to Col-0 WT phenotype. T3 Ct-1 Line 2 carries two copies of this transgene and 

hence the exaggerated smaller phenotype can be seen. In the case of Ct-1, the hypocotyl 

length phenotype is directly proportional to the petiole length in the vegetative stage of 

development. It possesses a relatively bigger hypocotyl and the petioles are also longer.  

This comparative study showed that the hypocotyl is an excellent example and proxy of 

general plant growth because the effect of transgenes and their copy numbers can be 

observed in the phenotypes in both stages of development. 

 

 

5.3A.3 Transgenic Complementation of Sf-2 accession with PHYBCol-0 allele: 

Transgenic complementation experiments were designed and performed for the 

validation of PHYB as a candidate gene in the Sf-2 accession. The aim was to test the 

hypothesis that allelic variation at PHYB candidate locus contributed to the observed 
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phenotypic differences between the Sf-2 and Col-0 accessions. Is the Sf-2 long hypocotyl 

phenotype due to mutations in Sf-2 allele of PHYB? If yes, then with the insertion of 

PHYBCol-0 allele into Sf-2, the long hypocotyl length phenotype of Sf-2 should be 

transformed to the short phenotype of Col-0. 

To identify single copy lines, T2 segregation data for each independently transformed Sf-2 

line was analysed. To test if the observed data were significantly different from the 

expected frequencies, a chi-square test was performed; and the results are shown in 

table 5.4 in the appendix. The chi-square results (p = 0.05) show that amongst the 10 

independent lines, 8 showed a close to 3:1 segregation for Basta-resistance in the T2 

generation, which indicated monogenic segregation of a single locus insertion of the 

transgene. The remaining 2 independent lines showed a 15:1 segregation with an 

estimated two copies of the transgene, and were not included in the analysis. The T2 

segregation analyses of all the lines in all of the subsequent experiments for other 

candidates were performed in the same manner and single copy lines were identified.  

5.3A.3.1 Phenotypic Analysis of Homozygous T3 Sf-2 Lines: 

From figure 5.12, it can be seen that Sf-2 WT has bigger hypocotyls than Col-0 WT, a 

difference which is in the same direction of the phyB KO long phenotype. Sf-2 exhibits an 

approximately 100% increase in hypocotyl length when compared to Col-0. To test for 

natural variation, eight independently T3 homozygous transformed single copy Sf-2 lines 

carrying the PHYBCol-0 construct were phenotyped. PHYBCol-0 reverted the long Sf-2 

hypocotyl length phenotype to the short phenotype and these transgenic lines have 

complemented the Col-0 WT phenotype. For each T3 independent line, replicates of two 

plants were phenotyped and scored. All of the single copy Sf-2 lines 1 – 8 carrying the 

PHYBCol-0 construct show similar hypocotyl phenotypes. The phenotypes of the multiple 

independently transformed lines revealed no degree of variability in the hypocotyl length 

phenotype. The Sf-2 long hypocotyl was transformed to the short phenotype of Col-0 WT. 

These results also provide direct allelic evidence for natural variation. These experimental 

results suggest that the long hypocotyl phenotype of the Sf-2 accession is due to the 

mutations in the PHYB allele. 
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Figure 5.12: Phenotypic analysis of Col-0 and Sf-2 WT, phyB and Sf-2 transgenic lines showing 

complementation results. The different line numbers refer to independent transformants. 1 week 

old hypocotyls were grown in 170 μE/m2/sec short days at 22°C. 

 

 

Figure 5.13: Transgenic allelic complementation of T2 Sf-2 line with PHYBCol-0 allele where the 

transgene is segregating and the effect can be seen on the hypocotyl length phenotype. The 

seedlings with long hypocotyls are the untransformed Sf-2 WT plants which died after Basta 

spray. 

As shown in figure 5.13, the Sf-2 T2 seedlings also had two discrete categories. The 

individuals with the tall hypocotyls are homozygous untransformed WT Sf-2 plants which 
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died after the Basta spray, whereas the individuals with the short hypocotyls are 

transformed Sf-2 plants which have complemented Col-0 phenotype. 

 

 

Figure 5.14: Effect of PHYBCol-0 allele on vegetative phenotypes (petiole length and plant size) of 

transgenic Sf-2 plants. These phenotypes are proportionate to hypocotyls in figure 5.12. 

 

As seen in figure 5.14, the vegetative stage phenotypes of the Sf-2 WT plant are similar to 

the phyB KO plant by having long petioles, bigger plant size and similar leaf shape. With 

the introduction of the single copy PHYBCol-0 construct in the T3 Sf-2 line, the petiole 

length and plant size is significantly reduced. This elaborates the role of PHYB allele of Sf-

2 in plant architecture. In the case of Sf-2, the hypocotyl length phenotype is directly 

proportional to the petiole length in the vegetative stage of development. It possesses a 

relatively bigger hypocotyl and the petioles are also longer.  

5.3A.4 Transgenic Complementation of No-0 accession with PHYBCol-0 allele: 

For the validation of PHYB as a candidate gene in the No-0 accession, transgenic 

complementation experiments were designed and carried out.  The aim was to test the 

hypothesis that allelic variation at PHYB candidate locus contributed to the observed 

phenotypic differences between the No-0 and Col-0 accessions. Is the No-0 long 

hypocotyl phenotype due to mutations in No-0 allele of PHYB? If yes, then with the 

insertion of PHYBCol-0 allele into No-0, the long hypocotyl length phenotype of No-0 

should be transformed to the short phenotype of Col-0. 
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5.3A.4.1 Phenotypic Analysis of Homozygous T3 No-0 Lines: 

Figure 5.15 shows that No-0 WT has bigger hypocotyls than Col-0 WT, a difference which 

is in the same direction of the phyB KO long phenotype. No-0 exhibits an approximately 

50% increase in hypocotyl length when compared to Col-0. To test for natural variation, 

five independently T3 homozygous transformed single copy No-0 lines carrying the 

PHYBCol-0 construct were phenotyped. PHYBCol-0 transformed the long No-0 phenotype to 

the short phenotype and these transgenic lines have complemented the Col-0 WT 

phenotype. The phenotypic results can be seen in the single copy No-0 lines 1 –5 carrying 

the PHYBCol-0 construct. The phenotypes of the multiple independently transformed lines 

revealed no degree of variability in the hypocotyl length phenotype. These results provide 

direct allelic evidence for natural variation in another major effect parental accession. 

These experimental results suggest that the long hypocotyl phenotype of No-0 is due to 

the mutations in the PHYB allele. 

As seen in figure 5.16, the vegetative stage phenotype of the No-0 WT plant is not similar 

to the Col-0 WT plant. The No-0 plant has bigger and broader leaves. With the 

introduction of the single copy PHYBCol-0 construct in the T3 No-0 lines 1-5, the petiole 

length and plant size is significantly reduced showing the effect of PHYBCol-0 in its plant 

architecture.  In the case of No-0, the hypocotyl length phenotype is directly proportional 

to the petiole length in the vegetative stage of development. It possesses a relatively 

smaller hypocotyl and the petioles are also shorter. 
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Figure 5.15: Phenotypic analysis of Col-0 and No-0 WT, phyB and No-0 transgenic lines showing 

complementation results. The different line numbers refer to independent transformants. 1 week 

old hypocotyls were grown in 170 μE/m2/sec short days at 22°C. 

 

 

Figure 5.16: Effect of PHYBCol-0 allele on vegetative phenotypes (petiole length and plant size) of 

transgenic No-0 plants. These phenotypes are proportionate to hypocotyls in figure 5.15. 
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5.3A.5 Transgenic Complementation of Zu-0 accession with PHYBCol-0 allele: 

For the validation of PHYB as a candidate gene in the Zu-0 accession, transgenic 

complementation experiments were designed and carried out. The aim was to test the 

hypothesis that allelic variation at PHYB candidate locus contributed to the observed 

phenotypic differences between the Zu-0 and Col-0 accessions. Is the Zu-0 long hypocotyl 

phenotype due to mutations in Zu-0 allele of PHYB? If yes, then with the insertion of 

PHYBCol-0 allele into Zu-0, the long hypocotyl length phenotype of Zu-0 should be 

transformed to the short phenotype of Col-0. 

 

5.3A.5.1 Phenotypic Analysis of Homozygous T3 Zu-0 Lines: 

Figure 5.17 reveals that Zu-0 WT has bigger hypocotyls than Col-0 WT, a difference which 

is in the same direction of the phyB KO long phenotype. Zu-0 exhibits an approximately 

25% increase in hypocotyl length when compared to Col-0. To test for natural variation, 

two independently T3 homozygous transformed single copy Zu-0 lines carrying the 

PHYBCol-0 construct were phenotyped. PHYBCol-0 transformed the long Zu-0 phenotype to 

the short phenotype and these transgenic lines have complemented the Col-0 WT 

phenotype. The phenotypic results can be seen in the single copy Zu-0 lines 1 –2 carrying 

the PHYBCol-0 construct. The phenotypes of these two independently transformed lines 

revealed no degree of variability in the hypocotyl length phenotype. These results provide 

direct allelic evidence for natural variation in yet another major effect parental accession. 

These experimental results suggest that the long hypocotyl phenotype of Zu-0 is due to 

the mutations in the PHYB allele. 

The vegetative stage phenotype of the Zu-0 WT plant is not similar to the Col-0 WT plant 

and has longer petioles as seen in figure 5.18.  With the introduction of the PHYBCol-0 

construct in the T3 Zu-0 lines 1-2, the petiole length and plant size is significantly reduced 

showing the effect of PHYBCol-0 in its plant architecture.  In the case of Zu-0, the hypocotyl 

length phenotype is inversely proportional to the petiole length in the vegetative stage of 

development. It possesses a relatively smaller hypocotyl but the petioles are longer.  
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Figure 5.17: Phenotypic analysis of Col-0 and Zu-0 WT, phyB and Zu-0 transgenic lines showing 

complementation results. The different line numbers refer to independent transformants. 1 week 

old hypocotyls were grown in 170 μE/m2/sec short days at 22°C. 

 

 

Figure 5.18: Effect of PHYBCol-0 allele on vegetative phenotypes (petiole length and plant size) of 

transgenic No-0 plants. These phenotypes are proportionate to hypocotyls in figure 5.17. 
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5.3B Results: Transgenic Complementation with CYP71Col-0 allele: 

The results in this section describe the analysis of functional variation of CYP71 alleles 

from ‘Chr3.QTL3’ QTL in hypocotyl length phenotype in response to temperature at 22°C 

in multiple Arabidopsis accessions. Multiple major effect parental accessions have been 

experimentally tested for complementation with the CYP71Col-0 allele at 22°C. The results 

of these experiments have been described in detail in individual sub sections for each 

accession separately which provide the definitive experimental evidence for the CYP71 

QTL. 

5.3B.1 Transgenic Complementation of Ct-1 accession with CYP71Col-0 allele: 

To confirm CYP71 as a candidate gene in Ct-1, transgenic complementation experiments 

were carried out. The aim was to test the hypothesis that allelic variation at CYP71 

candidate locus contributed to the observed phenotypic differences between the Ct-1 

and Col-0 accessions. Is the Ct-1 long hypocotyl phenotype due to mutations in Ct-1 allele 

of CYP71? If yes, then with the insertion of CYP71Col-0 allele into Ct-1, the long hypocotyl 

length phenotype of Ct-1 should be transformed to the short phenotype of Col-0. 

 

5.3B.1.1 Phenotypic Analysis of Homozygous T3 Ct-1 Lines: 

Figure 5.19 shows that Ct-1 WT has bigger hypocotyls than Col-0 WT, a difference which is 

in the same direction of the cyp71 KO long phenotype. To test for natural variation, five 

independently T3 homozygous transformed single copy Ct-1 lines carrying the CYP71Col-0 

construct were phenotyped. The results reveal that CYP71Col-0 did not transform the long 

Ct-1 phenotype to the short phenotype and these transgenic lines did not complement 

the Col-0 WT phenotype. The phenotypic results can be seen in the single copy Ct-1 lines 

1 –5 carrying the CYP71Col-0 construct. The phenotypes of the multiple independently 

transformed lines revealed no degree of variability in the hypocotyl length phenotype. 

These results did not provide direct allelic evidence for natural variation between Ct-1 

and Col-0 parental accessions and suggest that the long hypocotyl phenotype of Ct-1 is 

not due to the mutations in the CYP71 allele. 
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Figure 5.19: Phenotypic analysis of Col-0 and Ct-1 WT, cyp71 and Ct-1 transgenic lines showing 

complementation results. The different line numbers refer to independent transformants. 1 week 

old hypocotyls were grown in 170 μE/m2/sec short days at 22°C. 

 

 

Figure 5.20: T3 Ct-1 line carrying the CYP71Col-0 allele showing no change in the long hypocotyl 

length phenotype. These transgenic lines did not complement the Col-0 WT phenotype. 
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The T2 generation individuals displayed only one uniform phenotype of long hypocotyls 

and the segregation effect of CYP71Col-0 allele could not be physically seen in the 

phenotype which suggested that the CYP71Col-0 allele was not playing a role in the natural 

variation of the trait. This was confirmed in the phenotyping of the T3 Ct-1homozygous 

lines where the hypocotyl phenotype was unaffected by the CYP71Col-0 allele, as can be 

seen in figure 5.20.  

 

5.3B.2 Transgenic Complementation of Sf-2 accession with CYP71Col-0 allele: 

For the confirmation of CYP71 as a candidate gene in Sf-2, transgenic complementation 

experiments were performed. The aim was to test the hypothesis that allelic variation at 

CYP71 candidate locus contributed to the observed phenotypic differences between the 

Sf-2 and Col-0 accessions. Is the Sf-2 long hypocotyl phenotype due to mutations in Sf-2 

allele of CYP71? If yes, then with the insertion of CYP71Col-0 allele into Sf-2, the long 

hypocotyl phenotype of Sf-2 should be transformed to the short phenotype of Col-0. 

 

5.3B.2.1 Phenotypic Analysis of Homozygous T3 Sf-2 Lines: 

Figure 5.21 shows that Sf-2 WT has bigger hypocotyls than Col-0 WT, a difference which is 

in the same direction of the cyp71 KO long phenotype. To test for natural variation, four 

independently T3 homozygous transformed single copy Sf-2 lines carrying the CYP71Col-0 

construct were phenotyped. The results reveal that CYP71Col-0 did not transform the long 

Sf-2 phenotype to the short phenotype and these transgenic lines did not complement 

the Col-0 WT phenotype. The phenotypic results can be seen in the single copy Sf-2 lines 

1–4 carrying the CYP71Col-0 construct. The phenotypes of the multiple independently 

transformed lines revealed no degree of variability in the hypocotyl length phenotype. 

These results did not provide direct allelic evidence for natural variation between Sf-2 and 

Col-0 parental accessions. These experimental results suggest that the long hypocotyl 

phenotype of Sf-2 is not due to the mutations in the CYP71 allele. 
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Figure 5.21: Phenotypic analysis of Col-0 and Sf-2 WT, cyp71 and Sf-2 transgenic lines showing 

complementation results. The different line numbers refer to independent transformants. 1 week 

old hypocotyls were grown in 170 μE/m2/sec short days at 22°C 

 

 

Figure 5.22: T3 Sf-2 line carrying the CYP71Col-0 allele showing no change in the long hypocotyl 

length phenotype. These transgenic lines did not complement the Col-0 WT phenotype. 
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5.3B.3 Transgenic Complementation of Zu-0 accession with CYP71Col-0 allele: 

To verify CYP71 as a candidate gene in Zu-0, transgenic complementation experiments 

were performed. The aim was to test the hypothesis that allelic variation at CYP71 

candidate locus contributed to the observed phenotypic differences between the Zu-0 

and Col-0 accessions. Is the Zu-0 long hypocotyl phenotype due to mutations in Zu-0 allele 

of CYP71? If yes, then with the insertion of CYP71Col-0 allele into Zu-0, the long hypocotyl 

length phenotype of Zu-0 should be transformed to the short phenotype of Col-0. 

 

5.3B.3.1 Phenotypic Analysis of Homozygous T3 Zu-0 Lines: 

It can be observed in figure 5.23 that Zu-0 WT has bigger hypocotyls than Col-0 WT, a 

difference which is in the same direction of the cyp71 KO long phenotype. To test for 

natural variation, three independently T3 homozygous transformed single copy Zu-0 lines 

carrying the CYP71Col-0 construct were phenotyped. The results reveal that CYP71Col-0 did 

not transform the long Zu-0 phenotype to the short phenotype and these transgenic lines 

did not complement the Col-0 WT phenotype. The phenotypic results can be seen in the 

single copy Zu-0 lines 1–3 carrying the CYP71Col-0 construct. The phenotypes of the 

multiple independently transformed lines revealed no degree of variability in the 

hypocotyl length phenotype. These results did not provide direct allelic evidence for 

natural variation between Zu-0 and Col-0 parental accessions. These experimental results 

suggest that the long hypocotyl phenotype of Zu-0 is not due to the mutations in the 

CYP71 allele. 
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Figure 5.23: Phenotypic analysis of Col-0 and Zu-0 WT, cyp71 and Zu-0 transgenic lines showing 

complementation results. The different line numbers refer to independent transformants. 1 week 

old hypocotyls were grown in 170 μE/m2/sec short days at 22°C. 
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5.3C Results: Transgenic Complementation with SAUR38Col-0 allele: 

The results in this section describe the analysis of functional variation of SAUR38 alleles 

from ‘Chr2.QTL3’ QTL in hypocotyl length phenotype in response to temperature at 22°C 

in multiple Arabidopsis accessions. Multiple major effect parental accessions have been 

experimentally tested for complementation with the SAUR38Col-0 allele at 22°C. The 

results of these experiments have been described in detail in individual sub sections for 

each accession separately. These results provide the definitive experimental evidence for 

the SAUR38 QTL alleles by individual transgenic allelic complementation studies.  

 

5.3C.1 Transgenic Complementation of Tsu-0 accession with SAUR38Col-0 allele: 

In order to functionally test SAUR38 as a candidate gene in Tsu-0, transgenic 

complementation experiments were performed. The aim was to test the hypothesis that 

allelic variation at SAUR38 candidate locus contributed to the observed phenotypic 

differences between the Tsu-0 and Col-0 accessions. Is the Tsu-0 long hypocotyl 

phenotype due to mutations in Tsu-0 allele of SAUR38? If yes, then with the insertion of 

SAUR38Col-0 allele into Tsu-0, the long hypocotyl length phenotype of Tsu-0 should be 

transformed to the short phenotype of Col-0. 

 

5.3C.1.1 Phenotypic Analysis of Homozygous T3 Tsu-0 Lines: 

Figure 5.24 shows that Tsu-0 WT has bigger hypocotyls than Col-0 WT, a difference which 

is similar to and is in the same direction of the saur38 KO long phenotype. To test for 

natural variation, three independently T3 homozygous transformed single copy Tsu-0 

lines carrying the SAUR38Col-0 construct were phenotyped. The results reveal that 

SAUR38Col-0 did not transform the long Tsu-0 phenotype to the short phenotype and these 

transgenic lines did not complement the Col-0 WT phenotype. The phenotypic results can 

be seen in the single copy Tsu-0 lines 1–3 carrying the SAUR38Col-0 construct. The 

phenotypes of the multiple independently transformed lines revealed no degree of 
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variability in the hypocotyl length phenotype. These results did not provide direct allelic 

evidence for natural variation between Tsu-0 and Col-0 parental accessions. These 

experimental results suggest that the long hypocotyl phenotype of Tsu-0 is not due to the 

mutations in the SAUR38 allele. 

 

 

 

Figure 5.24: Phenotypic analysis of Col-0 and Tsu-0 WT, saur38 and Zu-0 transgenic lines showing 

complementation results. The different line numbers refer to independent transformants. 1 week 

old hypocotyls were grown in 170 μE/m2/sec short days at 22°C. 
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Figure 5.25: Phenotypic analysis of Col-0 and Tsu-0 WT, saur38, Col-0 and Tsu-0 transgenic lines. 

The different line numbers refer to independent transformants. 1 week old hypocotyls were 

grown in 170 μE/m2/sec short days at 22°C. 

Since a novel function has been identified for the SAUR38 gene, a transgenic analysis 

(figure 5.25) of the SAUR38Tsu-0 allele was performed to further elucidate the role of this 

candidate gene in the natural variation of hypocotyl length architecture. The role of the 

SAUR38Col-0 allele has been established by knockout analysis in Chapter 4 and transgenic 

analysis in this Chapter. The results respectively reveal that SAUR38 is functionally 

involved in hypocotyl length. Furthermore, the transgenic Col-0 carrying the SAUR38Tsu-0 

allele plants had increased the hypocotyl length and these plants had ~ 90% bigger 

hypocotyls than Col-0 WT. The gene copy number effects can be seen in transgenic Tsu-0 

lines carrying the SAUR38Tsu-0 allele. Due to the presence of an extra copy of the 
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SAUR38Tsu-0 allele, these plants showed an exaggerated phenotype and hypocotyl lengths 

were ~ 45% bigger than Tsu-0 WT plants. 

These are very interesting results. It suggests that the SAUR38Tsu-0 allele is dominant, and 

able to promote hypocotyl elongation, since it increases the length of hypocotyls in both 

Col-0 and even Tsu-0 (which is already long!). By contrast the SAUR38Col-0 allele does not 

increase hypocotyl elongation; in the knockout it even rescues the longer hypocotyl. 

These results are compatible with the SAUR38Tsu-0 allele being a causative agent in the 

Tsu-0 phenotype but acting in a dominant way, so that it cannot be rescued by the 

SAUR38Col-0 allele (figure 5.24). Overall, these results shed light on the role of SAUR38 

alleles that contribute to the natural variation of hypocotyl length. 

 

5.3C.2 Transgenic Complementation of Wil-2 accession with SAUR38Col-0 allele: 

In order to functionally test SAUR38 as a candidate gene in Wil-2, transgenic 

complementation experiments were performed. The aim was to test the hypothesis that 

allelic variation at SAUR38 candidate locus contributed to the observed phenotypic 

differences between the Wil-2 and Col-0 accessions. Is the Wil-2 long hypocotyl 

phenotype due to mutations in Wil-2 allele of SAUR38? If yes, then with the insertion of 

SAUR38Col-0 allele into Wil-2, the long hypocotyl length phenotype of Wil-2 should be 

transformed to the short phenotype of Col-0. 

 

5.3C.2.1 Phenotypic Analysis of Homozygous T3 Wil-2 Lines: 

Figure 5.26 shows that Wil-2 WT has bigger hypocotyls than Col-0 WT, which is exactly a 

similar phenotype of the saur38 KO long phenotype. To test for natural variation, four 

independently T3 homozygous transformed single copy Wil-2 lines carrying the SAUR38Col-

0 construct were phenotyped. The results reveal that SAUR38Col-0 did not transform the 

long Wil-2 phenotype to the short phenotype and these transgenic lines did not 

complement the Col-0 WT phenotype. The phenotypic results can be seen in the single 

copy Wil-2 lines 1–4 carrying the SAUR38Col-0 construct. The phenotypes of the multiple 

independently transformed lines revealed no degree of variability in the hypocotyl length 
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phenotype. These results did not provide direct allelic evidence for natural variation 

between Wil-2 and Col-0 parental accessions. These experimental results suggest that the 

long hypocotyl phenotype of Wil-2 is not due to the mutations in the SAUR38 allele. 

 

 

Figure 5.26: Phenotypic analysis of Col-0 and Wil-2 WT, saur38 and Wil-2 transgenic lines showing 

complementation results. The different line numbers refer to independent transformants. 1 week 

old hypocotyls were grown in 170 μE/m2/sec short days at 22°C. 
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5.3D Results: Transgenic Complementation with NPY2Col-0 allele: 

The results in this section describe the analysis of functional variation of NPY2 alleles from 

‘Chr2.QTL1’ QTL in hypocotyl length phenotype in response to temperature at 22°C in 

multiple Arabidopsis accessions. Multiple major effect parental accessions have been 

experimentally tested for complementation with the NPY2Col-0 allele at 22°C. The results 

of these experiments have been described in individual sub sections for each accession 

separately. These results provide the definitive experimental evidence for the NPY2 QTL 

alleles by individual transgenic allelic complementation studies.  

5.3D.1 Transgenic Complementation of Ct-1 accession with NPY2Col-0 allele: 

In order to functionally test NPY2 as a candidate gene in Ct-1, transgenic 

complementation experiments were performed. The aim was to test the hypothesis that 

allelic variation at NPY2 candidate locus contributed to the observed phenotypic 

differences between the Ct-1 and Col-0 accessions. Is the Ct-1 long hypocotyl phenotype 

due to mutations in Ct-1 allele of NPY2? If yes, then with the insertion of NPY2Col-0 allele 

into Ct-1, the long hypocotyl length phenotype of Ct-1 should be transformed to the short 

phenotype of Col-0. 

 

5.3D.1.1 Phenotypic Analysis of T2 Ct-1 Lines: 

To test for natural variation, four independently T2 single copy Ct-1 lines carrying the 

NPY2Col-0 construct were phenotyped. The results reveal that NPY2Col-0 did not transform 

the long Ct-1 phenotype to the short phenotype and these transgenic lines did not 

complement the Col-0 WT phenotype. In figure 5.27, the phenotype of the single copy Ct-

1 line carrying the NPY2Col-0 construct can be seen. The phenotypes of the multiple 

independently transformed lines revealed no degree of variability in the hypocotyl length 

phenotype. These results did not provide direct allelic evidence for natural variation 

between Ct-1 and Col-0 parental accessions. These experimental results suggest that the 

long hypocotyl phenotype of Ct-1 is not due to the mutations in the NPY2 allele. 
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Figure 5.27: T2 Ct-1 line carrying the NPY2Col-0 allele showing no change in the long hypocotyl 

length phenotype. These transgenic lines did not complement the Col-0 WT phenotype. 

 

5.3D.2 Transgenic Complementation of Sf-2 accession with NPY2Col-0 allele: 

In order to functionally test NPY2 as a candidate gene in Sf-2, transgenic 

complementation experiments were performed. The aim was to test the hypothesis that 

allelic variation at NPY2 candidate locus contributed to the observed phenotypic 

differences between the Sf-2 and Col-0 accessions. Is the Sf-2 long hypocotyl phenotype 

due to mutations in Sf-2 allele of NPY2? If yes, then with the insertion of NPY2Col-0 allele 

into Sf-2, the long hypocotyl length phenotype of Sf-2 should be transformed to the short 

phenotype of Col-0. 

 

5.3D.2.1 Phenotypic Analysis of T2 Sf-2 Lines: 

To test for natural variation, four independently T2 single copy Sf-2 lines carrying the 

NPY2Col-0 construct were phenotyped. The results reveal that NPY2Col-0 did not transform 

the long Sf-2 phenotype to the short phenotype and these transgenic lines did not 

complement the Col-0 WT phenotype. In figure 5.28, the phenotype of the single copy Sf-

2 line carrying the NPY2Col-0 construct can be seen. The phenotypes of the multiple 

independently transformed lines revealed no degree of variability in the hypocotyl length 
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phenotype. These results did not provide direct allelic evidence for natural variation 

between Sf-2 and Col-0 parental accessions. These experimental results suggest that the 

long hypocotyl phenotype of Sf-2 is not due to the mutations in the NPY2 allele. 

 

 

Figure 5.28: T2 Sf-2 line carrying the NPY2Col-0 allele showing no change in the long hypocotyl 

length phenotype. These transgenic lines did not complement the Col-0 WT phenotype. 
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5.3E Results: Transgenic Complementation with CYCT1;4Col-0 allele: 

The results in this section describe the analysis of functional variation of CYCT1;4 alleles 

from ‘Chr4.QTL1’ QTL in hypocotyl length phenotype in response to temperature at 27°C 

in multiple Arabidopsis accessions. A major effect parental accession Zu-0 has been 

experimentally tested for complementation with the CYCT1;4Col-0 allele at 27°C. These 

results provide the definitive experimental evidence for the CYCT1;4 QTL alleles by 

individual transgenic allelic complementation studies.  

 

5.3E.1 Transgenic Complementation of Zu-0 accession with CYCT1;4Col-0 allele: 

In order to functionally test CYCT1;4 as a candidate gene in Zu-0, transgenic 

complementation experiments were performed. The aim was to test the hypothesis that 

allelic variation at CYCT1;4 candidate locus contributed to the observed phenotypic 

differences between the Zu-0 and Col-0 accessions. Is the Zu-0 long hypocotyl phenotype 

due to mutations in Zu-0 allele of CYCT1;4? If yes, then with the insertion of CYCT1;4Col-0 

allele into Zu-0, the long hypocotyl length phenotype of Zu-0 should be transformed to 

the short phenotype of Col-0. 

 

5.3E.1.1 Phenotypic Analysis of Homozygous T3 Zu-0 Lines: 

Figure 5.29 shows that Zu-0 WT has bigger hypocotyls than Col-0 WT, a difference in the 

same direction of the cyct1;4 KO long phenotype. To test for natural variation, four 

independently T3 homozygous transformed single copy Zu-0 lines carrying the CYCT1;4Col-

0 construct were phenotyped. The results reveal that CYCT1;4Col-0 did not transform the 

long Zu-0 phenotype to the short phenotype and these transgenic lines did not 

complement the Col-0 WT phenotype. The phenotypic results can be seen in the single 

copy Zu-0 lines 1–4 carrying the CYCT1;4Col-0 construct. The phenotypes of the multiple 

independently transformed lines revealed no degree of variability in the hypocotyl length 

phenotype. These results did not provide direct allelic evidence for natural variation 

between Zu-0 and Col-0 parental accessions. These experimental results suggest that the 

long hypocotyl phenotype of Zu-0 is not due to the mutations in the CYCT1;4 allele. 
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Figure 5.29: Phenotypic analysis of Col-0 and Zu-0 WT, cyct1;4 and Zu-0 transgenic lines showing 

complementation results. The different line numbers refer to independent transformants. 1 week 

old hypocotyls were grown in 170 μE/m2/sec short days at 27°C. 
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5.4 Discussion: 

5.4.1 Discussion on Methods: 

This study has conducted QTL cloning using transgenic plants, which is a valuable and 

powerful tool to help us understand the function of alleles of QTL candidate genes. The 

use of recombinant DNA technology in the production of transgenic plants for the 

purpose of studying gene function and expression has been widespread. Transgenic 

research on the model organism Arabidopsis has helped us to understand how naturally 

occurring genetic variation in the alleles of various QTL candidate genes control hypocotyl 

length function at the molecular level at specific temperature responses.  

To establish definitively that the natural mutations in the various alleles cause the 

hypocotyl phenotype, one must complement the mutation by introducing a WT copy of 

the allele into the mutant accessions for restoration of WT phenotype by using 

transgenesis. In this regard, one of the benefits of using transgenic complementation, as a 

direct method of testing for the alleles of the candidate genes, is that it conclusively 

demonstrates the alleles causing the natural variation in hypocotyl length. What are the 

consequences of the genetic changes that we have made? The functional analysis allows 

the expression of transgenes to manipulate the underlying biological processes involved 

in hypocotyl elongation. This approach allows the activity of an allele to be functionally 

investigated in the corresponding accession. The phenotype of hypocotyl length can be 

analysed in the presence of the specific allele which may suggest its functional role. 

To generate transgenic Arabidopsis plants, Agrobacterium-mediated transformation was 

used, which transferred the engineered T-DNA carrying the foreign gene into the 

genomes of the various accessions. The use of insertional T-DNA provides a swift way of 

transferring the gene of interest in to various accessions for functional testing. This is the 

most widely used and successful method to generate transgenic plants in Arabidopsis 

(Bechtold et al., 1993; Clough and Bent, 1998). It has been exploited as an effective tool 

for transgenic technology.  

This method has a number of strengths. To understand gene function, it is essential to 

stably insert candidate genes in plants. A very useful feature of Arabidopsis is that it can 

be genetically transformed by the simple method of direct floral dipping. This 
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transformation method of floral dipping is very effective in generating transgenics. 

Benefits of this method are that no tissue culture is required which saves a lot of time and 

it has high transformation efficiency as demonstrated in this study. This method also 

avoids any unwanted genetic changes such as induction of point mutations which could 

arise during tissue culture procedures. Therefore, Agrobacterium-mediated 

transformation has been the method of choice for transforming plants in this study. From 

a QTL cloning point of view, the capability of Agrobacterium to stably insert candidate 

genes into various accessions is essential to elucidate and verify their functions. 

There are also some weaknesses observed in this transformation method. Firstly, the 

construct is randomly inserted into the host genome which could cause differential 

expressions of the candidate genes depending on the insertion location. However, this 

weakness is overcome by using several independently transformed lines which account 

for any differential expression, if present. As a result, several independent transgenic lines 

have been analysed to confirm the effect of the transgene.  

Secondly, more than one copy of the construct can be inserted into the host genome. 

Ideally a single copy of the transgene is functionally informative in the QTL cloning 

process. This problem is overcome by identifying single copy inserts in the various 

independently transformed lines by traditional genetic analysis to look for monogenic 

segregation of the transgene in T2 generation. It helps in the identification of 

homozygous and hemizygous lines. For example, in this study in the PHYB candidate gene 

experiment of Ct-1 transgenic phenotyping, Line 5 (Plants 1 and 2) is a control experiment 

showing that the copy number of the transgene has an effect on the hypocotyl length. 

This particular line has a 15:1 segregation ratio due to double copy number whereas all 

the others have 3:1 ratio and hence the same phenotype as Col-0 WT. The phenotype of 

transgenic Ct-1 Line 5 has the same phenotype (smaller) as transgenic Col-0 having an 

extra copy of the gene, indicating the exaggeration of the hypocotyl length phenotype. 

Moreover, in the case of transgenic Col-0, a control experiment using a line with double 

copy transgene number was phenotyped; which showed an exaggerated smaller 

phenotype. This is in congruence to a previously reported study which showed that an 

extra copy of the PHYB in WT background caused an exaggeration of a shorter hypocotyl 

phenotype (Wester et al., 1994). These results reveal that in Col-0 and other MAGIC 
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parental accessions, the photomorphogenic hypocotyl length responses are sensitive to 

PHYB copy number.  

Due to the presence of the transgene dosage effects, varying phenotypes may be 

observed in the segregating hemizygous and homozygous plants (Dai et al., 1999). The 

phenotype of hypocotyl length may be affected due to transgene dosage effect in the 

homozygous or hemizygous states. To avoid any such unwanted effects, T3 homozygous 

stable individuals were identified after screening with Basta resistance and phenotyped 

for the transgenic complementation results. The single copy multiple independently 

transformed lines were tested for any possible between-transformants phenotypic 

variability. For example, the examination of Ct-1 independently transformed plants, in 

which the PHYBCol-0 construct has been randomly inserted, revealed no degree of 

variability in the hypocotyl length phenotype at 22°C. Therefore, these results indicated 

that there were no position effects of the random insertion of the PHYB transgene in the 

independently transformed lines and the adjacent Ct-1 plant genomic DNA is not 

influencing any expression changes of the Col-0 allele. However, the control Ct-1 

independent Line 5 which had two copies of the Col-0 allele showed variability in the 

hypocotyl phenotype when compared to the independent lines 1-4 which had single 

transgene copies but this exaggerated phenotype was associated to an extra copy of the 

transgene. 

Thirdly, low transformation efficiency is observed during the Agrobacterium-mediated 

transformation process (1 – 2%). This can be addressed by using a selectable marker gene 

(SMG) in the construct; such as Basta resistance and hence it is a necessity that all 

transformed plants be identified in this way. In this study the Basta selection has been 

extraordinarily useful and proved very effective in eliminating all of the untransformed 

seedlings in all the generations, as explained in section 5.2 by negative selection – a 

method which kills all the non-transgenic seedlings. 

Gateway cloning technology was used to make the different constructs. For functional 

analysis of the candidate genes, it is a premier cloning technology and is an ideal method, 

as it is very efficient. It is a recombination based cloning strategy that allows cloning of a 

gene in a quick and robust way.  It also maintains the orientation without using any 

restriction enzymes. There are two main components of Gateway. First is inserting DNA 
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into a Gateway vector (plasmid) by generating an ‘entry clone’ and the second is to 

transfer this into an expression system. In the first step, PCR is used to amplify the 

candidate gene with primer sequences that are compatible with the Gateway system. A 

simple five minute reaction allows the insertion of the candidate gene into the vector. 

The second step involves a subcloning technique in which a recombination reaction takes 

place to move the candidate gene into an expression system (bacterial expression). With 

the help of Gateway technology, the T-DNA in the expression vector was engineered by 

incorporating the gene of interest in the construct. 

QTL cloning by transgenic complementation analysis is a very laborious and time 

consuming method but is a definitive way of identifying the underlying natural variation 

in candidate genes. Very few candidate genes until now have been proven in plants by 

genetic transformation methods. In this study, transgenic methods have provided very 

important tools to prove whether or not QTL candidate genes actually underlie natural 

variation in hypocotyl length in response to temperature. This novel contribution to the 

field in dissecting the natural variation in hypocotyl length, a plant architectural trait, by 

using transgenic analysis to clone QTL has been very robust and effective.  

The transgenic complementation analysis was carried out on both knockout mutants and 

accessions for any particular candidate gene. An interesting experiment for the knockouts 

is to complement a deficient phenotype for hypocotyl length with the corresponding 

missing WT candidate gene. If the QTL candidate transgene rescues the functional 

phenotype, then it can be assumed that the candidate gene is the gene of interest and 

can be further tested in the parental accessions which contribute to that particular QTL. 

This gene rescue experiment in the knockouts is considered as the standard testing 

procedure to prove that the T-DNA mutated candidate gene is controlling the phenotype.  

For all the transgenic lines, the seedlings of the T2 generation were not phenotyped for 

analysis because the genotype (homozygous and hemizygous) of a line was not 

determined. In the T2 generation only those lines were selected for further analysis which 

showed a close to 3:1 segregation for the transgene. As mentioned in the section 5.2, for 

each of the single copy independently transformed T2 Basta-resistant lines, 15 individuals 

(homozygous and heterozygous) were selected randomly and allowed to self pollinate 

forming the T3 seeds. These T3 seeds were sown on pots and sprayed with Basta and 
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lines in which all the individuals survived were determined as T3 homozygous lines. The 

stable homozygous T3 lines, identified as a result of the described screening in the section 

5.2.2.4, were used for the data collection and empirical analysis of hypocotyl length.  

Generally, artificial mapping populations have been fruitful in isolating and cloning QTL in 

plants (Alonso-Blanco et al., 2009). Specifically, analysing the MAGIC mapping population 

has been clearly successful in identifying and cloning QTL in Arabidopsis for hypocotyl 

length in response to temperature. The functional testing of QTL candidate genes was 

performed by transgenic complementation. This approach was carried out in order to 

establish molecular causality for the natural variation in hypocotyl length in response to 

temperature. QTL cloning by transgenic complementation experiments is an important 

approach in establishing allelic functional variation in candidate genes for hypocotyl 

length in accessions. Though it is labour-intensive, it is a definitive method which provides 

direct evidence for natural variation (Weigel and Nordborg, 2005). With the help of 

transgenic complementation, the genetic analyses of hypocotyl length were pursued 

down to the molecular level facilitating the molecular dissection of natural variation in 

hypocotyl length. 

It has been previously argued that mutagenesis is the way forward for dissecting complex 

traits and that QTL cloning is an inferior method as compared to it (Nadeau et al., 2000); 

however, this study has demonstrated that QTL cloning has identified novel functional 

variation and has proved as an effective method in discovering the underlying genetic 

variation in natural populations. Furthermore, with mutagenesis, quantitative traits may 

not be properly understood in natural populations as mutagenesis is usually carried out in 

one genetic background whereas, QTL mapping in the MAGIC population has exploited 

natural variation in many parental accessions.  And as an example, in this study novel 

alleles have been discovered that control natural variation. A more effective way forward 

is to combine mutational analysis with QTL mapping and in this study the use of 

mutagenesis has been exploited in a pre-QTL cloning step to identify functional 

involvement of the candidate genes in the hypocotyl length trait.  

Until recently, the general understanding was that quantitative traits were governed by 

many QTL and a large number of genes (Barton and Turell, 1989). If this were the case, 

then QTL cloning of hypocotyl length in temperature response would have not been 
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feasible because of the prevalence of many small effect QTL. However, since the high 

density genetic maps of molecular markers were developed, dissection of quantitative 

traits in many species became possible (Tanksley, 1993; Lander and Schork, 1994). 

Recently, several QTL studies have identified few major effect QTL for various 

quantitative traits controlling developmental modifications in Arabidopsis (Strange et al., 

2011; Salomé et al., 2011), in maize (Brown et al., 2011) and in rice (Huang et al., 2010; 

Huang et al., 2012). The results of the QTL mapping in this study are complementary in 

this regard showing that hypocotyl length is a trait which is controlled by a few major 

effect QTL at individual temperatures. This is one of the contributing characteristics due 

to which QTL cloning has been successfully achieved. A few QTL with large effects 

represent the fact that few genomic locations are contributing to the variation of the 

trait. This feature of hypocotyl length trait being under the control of few QTL in response 

to temperature restricts the search of causal stretches of DNA in these specific few QTL. 

Furthermore, as described in Chapter 3, the QTL also have narrow boundaries limiting the 

total number of genes located within them. 

Collectively, due to the nature of the identified QTL being few and major effect, and 

presence of strong candidate genes in the QTL, at various temperature treatments, 

Mendelisation of the QTL was feasible as part of the QTL cloning process. Although 

hypocotyl length is a quantitative trait under the control of more than one locus as shown 

in the segregation analysis of the two parental accessions Col-0 and Sf-2 in Chapter 2, for 

the identification of the causal alleles it is necessary to Mendelise the major effect QTL by 

studying individual candidate genes. The candidate genes in this chapter have been 

Mendelised as part of a process of fine gene mapping and for understanding their effects 

on the variation of hypocotyl length. The assumption is that individual genes behave in a 

Mendelian fashion. To give specific examples, in the case of PHYB alleles, the hypocotyl 

length phenotypes of Ct-1 and Sf-2 accessions are drastically different from Col-0 and this 

phenotypic difference was physically seen in the T2 segregating lines as seen in figures 5.9 

and 5.13 respectively. It is quite interesting to note that for both Ct-1 and Sf-2, the 

phenotypic observation in the T2 segregating population revealed that the independent 

lines transformed with a single PHYB transgene showed simple Mendelian inheritance 

(3:1). This provided further phenotypic evidence for PHYB being a large effect QTL 

candidate gene which showed monogenic inheritance of the trait and in this way the QTL 
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had been Mendelised. Whereas, for the other candidate genes tested, no significant and 

physically observable differences could be seen in the hypocotyls e.g. figures 5.20, 5.22, 

5.27 and 5.28, where no segregation was seen. In summary, the PHYB phenotyping has 

shown successful transgenic complementation of the lines. From the experimental testing 

with this method, the PHYB QTL has been cloned and the underlying genetic basis of the 

natural variation that is observed in hypocotyl length has been dissected. 

The functional analysis of multiple alleles is essential in determining natural variation in 

candidate genes. This approach of analysing multiple alleles before assigning any gene 

function is a standard principle of genetics (Hirschi, 2003). 

5.4.2 Discussion on Results: 

The Temp22.2 QTL has been localised to the PHYB gene and therefore, PHYB was an 

obvious strong candidate in this QTL. Like the other candidate genes, PHYB was selected 

for further allelic functional investigation based on the mean effect size estimates of the 

parental accessions at the PHYB locus obtained from the parental reconstruction step in 

the MAGIC QTL mapping. This was combined with the in silico analysis which identified 

PHYB allelic sequence polymorphisms in the major effect size parents. The identification 

of PHYB as a candidate gene is twofold. Firstly, PHYB is a functional candidate gene 

involved in hypocotyl length. Secondly, QTL mapping in MAGIC lines identified PHYB as a 

strong positional candidate gene in response to temperature, because positional 

candidates can be chosen according to their proximity to the segregating QTL. In this case, 

the co-segregation of a functional candidate gene and a QTL is taking place.  

In a previous study, QTL mapping in a biparental population was done in response to light 

which identified LIGHT2 QTL (Borevitz et al., 2002). In that study, although PHYB was not 

within the 8 cM LIGHT2 QTL, it was suggested as a candidate based on its proximity to 

GPA1, a marker which was 14 cM distal to PHYB. At a significance threshold of p = 0.01, 

the 8 cM LIGHT2 QTL interval contained ~200 other genes. Conversely, the QTL mapping, 

in this study with the MAGIC population at a significance threshold of p = 0.01, identified 

PHYB as the only gene in the <0.1 cM Temp22.2 QTL in response to temperature. The SNP 

marker ‘PHYB_2850’ is present within the PHYB gene and therefore, the gene and the 

marker are very tightly linked. The position of the segregating marker ‘PHYB_2850’ is very 
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convincing statistical evidence that Temp22.2 QTL is a real QTL. At a significance of p = 

0.05, the QTL interval is still fine mapped at only 2 cM with ~ 100 genes. Within the 

Temp22.2 QTL, the peak marker ‘PHYB_2850’ was statistically the most strongly 

associated locus with hypocotyl length at 22°C. By using the MAGIC population the QTL 

has been directly mapped to PHYB based on fine mapping and previously it has been 

shown that QTL can be fine mapped directly to genes (Fridman et al., 2000; Kroymann et 

al., 2001). 

The transgenic allelic complementation experiments have proved very effective in 

elucidating the role of PHYB in natural variation. PHYB has a very clear effect, with several 

loss of function or reduced function mutants that are complemented by the functional 

Col-0 allele. In particular, the results reveal naturally occurring variation in PHYB in the Ct-

1 and Sf-2 alleles which drastically increase seedling stem elongation and plants have 

longer hypocotyls. Due to the mutations in the Ct-1 and Sf-2 accessions, it seems that 

PHYB is not functional or less functional and therefore with the incorporation of a WT 

PHYB allele from Col-0, the short hypocotyl phenotype is restored. Ct-1 and Sf-2 have 

complemented the Col-0 short hypocotyl length phenotype. In all of the tested 

accessions, PHYB Col-0 seems to be the dominant allele. These experiments demonstrate 

the definitive proof that PHYB is involved in controlling the natural variation of hypocotyl 

length phenotype at 22°C. Had the transgenic allelic complementation experiments not 

been carried out, the underlying causal alleles of the QTL would have not been 

discovered. 

The transgenic transformation experiment in the phyB knockout mutant Col-0 

background was a control experiment and the insertion of the PHYB allele from Col-0 

rescued the WT phenotype in the phyB knockout. These experimental findings are similar 

to a previously reported study (Wester et al., 1994) which was looking at the effect of 

gene dosage and its expression. It showed that a mutant allele of PHYB Bo64, which had a 

loss of function mutation due to a premature stop codon, was transformed with a WT 

allele which restored the phenotype. It complemented all the mutant phenotypes 

including hypocotyl length. 

These results demonstrate that the mutations in the different PHYB alleles in all four 

accessions could cause a partial or complete loss of function affecting the hypocotyl 
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phenotype in the same direction as the phyB KO mutant, i.e. long hypocotyls. With the 

incorporation of the allele from Col-0, accessions both with drastic and subtle differences 

in the hypocotyl lengths were transformed to the short phenotype of Col-0. Furthermore, 

these results show that multiple alleles of PHYB gene are involved in controlling the 

natural variation of the trait. This highlights the possibility of different mutations in the 

PHYB gene having differential effects on the phenotypes of the hypocotyl lengths. Given 

the fact that the same short hypocotyl length phenotype is linked to the same transgene 

in several independently transformed individuals provides a strong argument that the 

mutations in the PHYB alleles may well be responsible for the altered phenotypes and are 

controlling natural variation. Hence, this suggests that in Arabidopsis PHYB is involved in 

producing either long or short hypocotyl lengths at 22°C. These results demonstrate the 

effect of an individual QTL affecting the quantitative trait; and that the phenotypic 

variation in hypocotyl length between the various accessions is due to the major effect of 

allelic variation at PHYB locus.  

If the candidate alleles are of small or moderate effect, quantitative traits may prove hard 

to study by transgenic complementation (Tian et al., 2003). However, QTL mapping with 

the MAGIC population has identified PHYB as a major effect QTL and experimental 

evidence from the transgenic complementation of various accessions strongly supports 

this finding. Additionally, the importance of PHYB as a major effect gene can be realised 

by the fact that several independently transformed lines which have variability in the 

transgene insertions display similar phenotypes, otherwise very often small to moderate 

effect QTL display heterogeneous phenotypes. 

The experimental results on PHYB have revealed that its alleles have very large effects on 

the highly heritable trait of hypocotyl length. This is because PHYB is a major effect gene 

as observed in the phenotypic analysis of transgenic plants and also it is highly heritable 

as established in Chapter 2. After Mendelising the trait at the PHYB locus, the results of 

transgenic complementation show that allelic differences at this particular locus at 22°C 

are unequivocally responsible for the trait variation. Collectively, from previous studies 

and the findings in this study, it could be hypothesised that PHYB is involved in and is key 

to the evolution of hypocotyl length differences within Arabidopsis accessions.  
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The photobiology of phytochromes in Arabidopsis is well studied in general and some 

studies on natural variation in phytochromes in response to light have been carried out. It 

interesting to note that to date, no study on natural variation in photoreceptors in 

response to temperature has been performed. Phenotypic variation in hypocotyl length 

due to a missense substitution in the coding sequence in PHYA has been shown (Maloof 

et al., 2001) through a genetic complementation test to determine a PHYA naturally 

occurring allele in the Le Mans (Lm-2) accession. It was shown that this allele had reduced 

far-red sensitivity due to an amino acid change altering the protein resulting in a 

substantial loss of PHYA function. In another study, a nonsense substitution forming a 

truncated protein in the coding sequence in PHYC was shown to be responsible for 

phenotypic variation in hypocotyl length in light response (Balasubramanian et al., 2006). 

Due to a natural deletion in PHYD in the accession Wassilewskija (Ws), hypocotyl 

elongation was increased in response to red/far-red light sensing (Aukerman et al., 1997). 

This 14 bp deletion in the coding sequence caused a naturally existing loss of function 

allele in Ws due to a truncated protein. However, in white light the variation was more 

subtle are compared to red/far-red light. The loss of function mutation shown in PHYD 

(Devlin et al., 1998) was in an induced mutant and is not a natural variation study. In all of 

these above studies, changes in the different phytochrome genes were limited to 

individual accessions. 

The importance of PHYB as a candidate gene in this study can be evaluated from previous 

QTL studies in Arabidopsis which have suggested PHYB as a candidate in response to light 

treatments. PHYB was proposed as a candidate for a LIGHT2 QTL in response to red and 

white light (Borevitz et al., 2002) in a RIL population derived from a biparental cross of 

Cape Verde Islands (Cvi) and Landsberg erecta (Ler) accessions. In their study, LIGHT2 QTL 

was confirmed in a NIL on the basis of which they suggested PHYB as a candidate gene. 

In another study QTL were mapped for light response in RILs obtained from the Columbia 

(Col-gl1) and Kashmir (Kas-1) accessions (Wolyn et al., 2004). A RED2 QTL in response to 

red light was associated with PHYB and the Kas-1 allele contributed to long hypocotyls 

while those from Col-gl1 contributed to short ones. They suggested PHYB as a candidate 

for RED2 QTL because the Kas-1 allele had a 12-bp deletion and an amino acid 

substitution as compared to Col allele. However, PHYB was only detected in red light 
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whereas in the LIGHT2 QTL in the Ler × Cvi population (Borevitz et al., 2002), it was also 

detected in white light. 

Since Ler and Cvi accessions were previously shown to segregate for the LIGHT2 QTL and 

PHYB was a candidate gene (Borevitz et al., 2002), the two alleles of Ler and Cvi PHYB 

were experimentally tested for functional variation in hypocotyl length (Filiault et al., 

2008). They conducted an overexpression experiment on the two different alleles in a loss 

of function phyB mutant and showed that due to amino acid polymorphisms PHYB-Cvi 

conferred less light responsiveness than PHYB-Ler in transgenic phyB Col-0 mutants. 

Hence transgenic plants carrying the PHYB-Ler allele were shorter than those carrying 

PHYB-Cvi allele.  

Another QTL study (Botto et al., 2003), which also searched for hypocotyl length QTL 

involved in light responses in Arabidopsis, used the Ler × Cvi population and identified 

five QTL but no candidate genes were suggested. In a more recent study (Kasulin et al., 

2013), PHYB was proposed as a candidate gene for hypocotyl length EODRATIO5 QTL in 

the Ler x Cvi-0 RIL population in shade avoidance and light response which was simulated 

by end-of-day far-red (EOD) treatment. Natural variation in all of the above mentioned 

studies were limited to two parental accessions which showed very subtle differences in 

hypocotyl lengths in various light responses. However, in this study accessions with 

drastic hypocotyl length differences in temperature responses have been found and the 

underlying PHYB QTL has been successfully cloned in multiple MAGIC parents. 

Various photoreceptor mutants were initially identified in light responses, for example 

functional characterisation of the primary photoreceptor PHYB was carried out by 

studying phyB mutants (Reed et al., 1993; Somers et al., 1993). These mutants displayed 

altered hypocotyl lengths in light responses and therefore, QTL mapping in hypocotyl 

length has been previously focused in light responses as described above. It has only been 

a relatively recent event that the phenotypic variation in hypocotyl length due to 

polymorphisms in PHYB in a QTL approach has been described in response to light by 

experimentation (Filiault et al., 2008). More recently, in Chapter 2, it has been 

demonstrated that natural variation in hypocotyl length is prevalent in response to 

temperature in multiple accessions. It is of profound interest to find the underlying 

genetic elements responsible for natural variation in specific temperature responses. 
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PHYB is involved in thermal responses in Arabidopsis flowering time (Halliday et al., 2003) 

and hence it is also relevant to identify PHYB alleles that control another growth related 

trait - hypocotyl length - in response to temperature. This could further help to develop 

our understanding of the role of PHYB in an important seedling architectural trait. For an 

in-depth understanding of natural variation in hypocotyl length, it is essential to explore 

whether Temp22.2 QTL effects are dependent on the temperature environment and 

genetic backgrounds in which it is segregating. Since this QTL is temperature dependent, 

i.e. it has only been detected at 22°C, it shows that PHYB action is dependent on the 

specific environment. 

The phytohormone Indole aceticacid (IAA) is the major natural auxin found in plants. It 

controls almost all aspects of plant growth and development through modulation of gene 

expression achieved through the degradation of repressor proteins called Aux/IAA 

proteins. The SAUR gene family (McClure et al., 1987) is one of the three gene families 

that are induced by auxin. In Arabidopsis, it consists of over 75 genes that belong to 

several groups depending on their sequence homology. Due to their importance of being 

responsive to auxin, and potentially involved in growth promotion, SAUR genes have also 

been studied in model crop plants such as rice (Kant et al., 2009). However, their exact 

functions in plants are not yet properly understood.  

As described in the discussion section of chapter 4, the expression of SAUR genes is 

usually connected with elongating tissue in the hypocotyls (Roig-Villanova et al., 2007) 

and also at higher ambient temperatures (Franklin et al., 2011). However, it has been 

reported that no direct role of any SAUR gene in growth promotion has been 

demonstrated (Stavang et al., 2009). The candidate gene SAUR38 has had a putative role 

in auxin response; however, the combined results of the knockout and transgenic analysis 

have discovered and suggested a novel role for SAUR38 by being involved in controlling 

hypocotyl length in Arabidopsis. This new role has been functionally identified in 

homozygous saur38 knockout lines and subsequently validated by transgenic 

complementation and gene copy number analysis by direct experimentation in different 

Arabidopsis accessions showing differential hypocotyl length phenotypes. Results from 

the transgenic analysis reveal that SAUR38 positively regulates hypocotyl elongation and 

this finding is congruent to the results of another study on a member of the SAUR gene 
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family, that has shown that the overexpression of Arabidopsis SMALL AUXIN UP RNA 63 

(SAUR63) promoted hypocotyl elongation (Chae et al., 2012). The results of this study 

have shown that at 22°C, SAUR38 not only controls hypocotyl elongation but is also 

involved in its natural variation. 

For the candidate genes CYP71, NPY2, and CYCT1;4, the transgenic results did not show a 

neat complementation. However, this does not imply that they may not be involved in 

natural variation. For these genes, there is an effect of the knockout on the hypocotyl 

phenotype. Additionally, the complementation of the knockout by the candidate genes 

was also seen. Transgenic complementation works if a functioning transgene is added 

into a line with a loss of function mutant allele. For example, in the transgenic 

complementation experiment of Zu-0 accession with CYCT1;4Col-0 allele, if the Zu-0 allele 

of CYCT1;4 is an always on mutant or produces a functional protein with a large effect, 

then adding a Col-0 allele with a smaller or better regulated effect would have little 

impact. Therefore, in such experiments, the simple effect of complementation cannot be 

observed because either the candidate is part of a gene network, or is a loss of function 

or reduced function allele. In such a situation, the Col-0 alleles seem to behave in a 

recessive manner. This is nicely illustrated in the SAUR38 example, where the transgenic 

analysis shows that the SAUR38Tsu-0 allele is acting in a dominant way, so that long 

hypocotyl phenotype of Tsu-0 cannot be rescued by the SAUR38Col-0 allele (figure 5.24). It 

is also possible that the candidates participate in gene networks or pathways. There may 

also be interactions with other genes, e.g. one of these genes may only make a difference 

in the presence of a functional (or maybe a non-functional) PHYB gene. Therefore, 

transforming them into Col-0 will give a different response to their function in the 

accession that they come from. 

QTL cloning for hypocotyl length trait in response to temperature in Arabidopsis has not 

been previously performed. Successful QTL cloning of PHYB for hypocotyl length trait by 

transgenic complementation in response to temperature in natural accessions has been 

carried out for the first time in this study. This study brings a twofold novelty; firstly, it has 

cloned a QTL for hypocotyl length which is a growth, developmental and plant 

architectural trait; secondly, it is in response to temperature which is one the most 

important environmental abiotic factors governing plant growth and development. 
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5.6 Appendix: 

Gene Primer Primer Sequence bp Tm Net Primer Rating 

PHYB Left CACCCTCCTCCGCCACATCCTTTG 20+4 62.65 100 

  Right GGCCTTTACCTCTTGATTGCGTA 23 62.75 83 

SAUR Left CACCCATGGTGTGCGATGTTTTGAGC 22+4 63.66 90 

  Right TGGGCTGGTGGGTTCTTGTG 20 63.67 100 

CYP71 Left CACCTCTGATATGCAGTGGCAGAACCA 23+4 62.98 85 

  Right GTCCCCACGGAAAGGAGTCG 20 63.86 99 

NPY2 Left CACCATGCTGTGTATCGCCGTGGTT 21+4 62.69 100 

  Right CGCCACCGTGTCGTTTGAGT 20 63.94 100 

CYCT1 Left CACCGTGGAAATGTGGCAAATCAAGCA 23+4 64.67 100 

  Right CATCCTTCGGCAATGAATGACAA 23 64.61 100 

Table 5.1: Primers used for PCR amplification of genomic DNA of candidate genes 

 

Table 5.2: Primers used for 500 bp sequencing of pENTR DNA of candidate genes 

 

Gene Primer Primer Sequence bp Tm 
Net Primer 
Rating 

PHYB Col-0 Left 1 tccccattttcttcttcctcaa 22 60.54 100 

  Left 2 GCCGTCGATGAATCCAGTTT 20 59.81 87 

  Left 3 TTCCTCAAGCGTCAAGGTTCTT 22 60.8 91 

  Left 4 CCGTTTCCGCTAAGGTATGC 20 60.09 100 

  Left 5 AGAATCTGAGGCGGCTATGAAC 22 60.34 100 

  Left 6 AAGGGAAAGCAGTTTTTGTGGTT 23 61.47 100 

  Left 7 TGGGGCTTTCTGTTTCTTGC 20 60.25 100 

  Left 8 ATCCGTGACATTCCCGAAGA 20 59.95 91 

  Left 9 tcaaattgatgaaaaccagctca 23 60.12 86 

SAUR38 Col-0 Left 1 GCAGAAGCAAGCAATGAACAA 21 59.11 100 

  Right 1 aaaccaaagcatatgattagcacaa 25 60.57 85 

SAUR38 Tsu-0 Left 1 AAACCAAAGCATATGATTAGCACAA 25 60.57 85 

  Right 1 CGCGTCTTATCATCTGCTGCT 21 60.68 81 

NPY2 Col-0 Left 1 ggtccccaccctcagttctt 20 60.02 100 

  Left 2 gcttgcacttttgtgcctagaa 22 60.15 84 

  Left 3 GGTATTCCCGGTGGTCCAA 19 60.07 82 

  Left 4 TTGGTGGAGAGGTCATTGGAG 21 59.62 100 

  Left 5 CAAAGCTGATGGTGGCAAAAG 21 60.85 88 

CYCT Col-0 Left 1 AACCAAGCTGATCCCTCTTATGAA 24 61.4 88 

  Left 2 AGGTTCTGTAGGATCGAATTTTGAA 25 60.9 87 

  Left 3 ttttccttgcgtccgcttat 20 60.21 100 

  Left 4 tttgcactgtttctcgcatattct 24 61.21 86 

  Left 5 TTTTTCTTGCTGCGAAGTTCC 21 60 91 
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Independently 
Transformed 
Line 

No. of 
Basta 
Resistant 
Seedlings 

No. of 
Basta 
Sensitive 
Seedlings 

Observed 
Resistant to 
Sensitive 
Ratios 

Estimated 
transgene copy 
number from T2 
segregation 
analysis 

Chi square 
results P=0.05 

Line 1 157 44 3:1 1 1.03  

Line 2 169 63 3:1 1 0.57 

Line 3 166 44 3:1 1 1.83 

Line 4 128 35 3:1 1 1.08 

Line 5 180 19 15:1 2 3.68 

Line 6 110 32 3:1 1 0.46 

Line 7 195 17 15:1 2 1.13 

Line 8 93 39 3:1 1 1.45 

Line 9  134 36 3:1 1 1.32 

Line 10  135 15 15:1 2 3.59 

Table 5.3: T2 segregation of Ct-1 construct in independently transformed lines determining the 

ratios of Basta-resistant to Basta-sensitive seedlings 

 

Independently 
Transformed 
Line 

No. of 
Basta 
Resistant 
Seedlings 

No. of 
Basta 
Sensitive 
Seedlings 

Observed 
Resistant to 
Sensitive 
Ratios 

Estimated 
transgene copy 
number from T2 
segregation 
analysis 

Chi square 
results P=0.05 

Line 1 110 44 3:1 1 1.04 

Line 2 98 44 3:1 1 2.71 

Line 3 145 38 3:1 1 1.75 

Line 4 90 20 3:1 1 2.72 

Line 5 157 68 3:1 1 3.27 

Line 6 90 27 3:1 1 0.23 

Line 7 102 28 3:1 1 0.83 

Line 8 127 47 3:1 1 0.37 

Line 9  147 16 15:1 2 3.54 

Line 10  133 14 15:1 2 2.69 

Table 5.4: T2 segregation of Sf-2 construct in independently transformed lines determining the 

ratios of Basta-resistant to Basta-sensitive seedlings 
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Chapter 6 

General Discussion, Conclusions and Future Prospects 

 

6.1 General Discussion and Conclusions: 

Ambient temperature is an essential environmental regulator of plant growth and 

development, and hypocotyl length is an ecologically relevant trait that enables the plant 

to survive in its infancy. Despite the importance of these two, studies investigating 

natural variation in hypocotyl length in response to ambient temperatures are lacking. 

Hence, this is a pioneering study in QTL cloning, as to date QTL have not been cloned in 

Arabidopsis for hypocotyl length in response to ambient temperature. It is the first 

example of cloning a QTL using the MAGIC experimental population. Employing the 

MAGIC lines in a forward genetics approach has proven to be a quick way of finding the 

genes involved in the natural variation of an important plant growth trait. 

This study comprises of basic research connecting phenotype to genotype by using the 

developmental process of hypocotyl elongation. The genetic investigation began with an 

observed variation in hypocotyl morphology in the MAGIC parents. Natural genetic 

differences can partly describe the intraspecific variation seen in Arabidopsis due to 

widespread sequence variation (Nordborg et al., 2005; Schmid et al., 2003). Therefore, 

the preliminary question was whether the observed variation in the trait was influenced 

at all by genetic variation? If yes, then are there alleles segregating in the population that 

produce a differential effect on the character, or is all the variation simply the result of 

environmental variation? This study has documented that natural variation, combined 

with an important environmental factor, is responsible for the observed intraspecific 

variation in hypocotyl length. 

This study has attempted to dissect the genetic variation in the environment-dependent 

developmental process of hypocotyl elongation in response to temperature. It has 

focused on the natural variation in thermal sensitivity of hypocotyl length in a diverse 

mapping set of Arabidopsis. It aimed at discovering new allelic variants that affect 
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hypocotyl length in natural accessions. A connection between specific allelic variants and 

phenotypic variation has improved our basic knowledge of plant form and growth, as 

hypocotyl length is a plant architectural and developmental trait. This study aimed at 

gaining a mechanistic understanding of the connection between temperature and plant 

growth. The dramatic elongation of hypocotyl length and their differential responses 

illustrate temperature control of plant development in the juvenile stage. 

With evidence of rising mean global temperatures due to climate change (IPCC, 2013) and 

many plant species responding to global warming by advancing their flowering time 

(Parmesan 2006), studies on plant-temperature interactions are necessary. Current 

changes in climate strongly affect ambient growth temperature, which has direct effects 

on plant functioning in all developmental stages. 

With the current observed effects of climate change and increased temperatures of 2-3°C 

by the end of the 21st century (IPCC, 2013), plant thermo-morphogenesis is likely to 

emerge as a model for investigating interactions of the environment with plant 

development. In this regard, recently a field study on the MAGIC lines was performed for 

phenological sensitivity and fitness responses to simulated increases in temperature 

(Springate and Kover, 2014). The study found that plants exposed to increased 

temperatures flowered earlier than plants grown in ambient temperatures, and 

significant G x E interaction was found. 

One of the post Arabidopsis genome sequencing aims is the rapid discovery of gene and 

allele functions. Mutation is a major source of genetic variation in natural populations 

which leads to intraspecific variation. One way of allele discovery is to exploit untapped 

natural variation to identify polymorphism genes responsible for variation in growth and 

response to environment. Studying natural variation has proven valuable in the 

characterisation of hypocotyl length and in identifying the genetic factors controlling it. 

The genetic variation that is due to the universal prevalence of Arabidopsis in a wide 

variety of habitats is an ideal resource for examining how organisms have adapted to live 

under different temperatures. Thus, adaptation to the native environments is likely to 

have been an important aspect of its evolutionary history. Obtaining knowledge of how 

plants are capable of adapting to climate is essentially interesting at a scientific level. 

However, prior to addressing questions of interest to the evolutionary ecology of plants, 
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it is imperative to make two more immediate problem formulations. Which genes control 

specific trait variation? What are the allelic variants of these genes functionally affecting a 

trait? These are undoubtedly hard questions to answer; however, this study has 

attempted to answer them by exploiting the natural variation in hypocotyl length through 

a systematic methodology. 

Such a methodology consisted of experimental analyses at the organismal and molecular 

levels; and in a specific order as described in figure 1.4. This study has documented 

extensive variation in hypocotyl length in accessions in response to ambient temperatures 

ranging from 12°C to 27°C. The plasticity in the phenotype was caused by the 

temperature effect. The various accessions reacted differentially to varying temperatures 

which was explained by the very high G x E interaction. Thus, variable temperature effects 

on hypocotyl length are vital in understanding plant seedling growth. This finding 

suggested that hypocotyl length may well be an interesting plant architectural trait to 

dissect with the help of QTL mapping leading to QTL cloning.  

The preliminary understanding of the genetic basis of hypocotyl length was achieved by 

QTL mapping that evaluated the association between molecular markers and phenotypic 

variation in MAGIC lines. Since the QTL were fine-mapped, the critical region segregating 

for the trait was smaller allowing focusing on a smaller number of candidates. A 

comprehensive analysis included searching for candidate genes in various QTL at different 

temperatures, instead of limiting search for candidates in any one particular QTL. 

Candidate genes that are more likely to influence hypocotyl growth were identified from 

QTL mapping.  

Though a high resolution QTL mapping identified several candidate genes, functional 

strategies were required for QTL cloning. This was carried out by phenotyping 

homozygous knockout mutants followed by direct testing of the candidate genes through 

transgenic complementation by importing novel alleles in to the accessions. Functional 

analysis of natural alleles has enabled the identification of genetic factors that control 

natural variation in hypocotyl length. 

Since hypocotyl length is a continuous trait, the genotypes of the QTL cannot be directly 

determined from single phenotypic values of a plant, as observed in monogenic 
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segregation, but it can be indirectly inferred from linked marker loci. The post fine-QTL 

mapping strategy adopted a single locus approach. In order to clone a large effect QTL, it 

is important to Mendelise it and work under the assumption that the QTL harbours a 

single large effect gene. Allelic variants at a QTL have similar molecular basis to the 

variations at monogenic Mendelian loci. The basis of this is that protein functions or gene 

expressions vary. The rationale behind focusing on allelic variation is that particular 

mutations will directly impact how the gene functions, and lead to the phenotype being 

variable in natural populations.  

This study has also attempted to promote synergy between ecology and molecular 

biology, both which are usually thought of fields of study on the far ends of the spectrum. 

Based on the fact that climate change will affect future plant growth scenarios, the 

genetic and molecular bases of plant responses to temperature is becoming the subject of 

dynamic research in plant environmental response biology. This is becoming to be a new 

emerging field of environmental sciences which requires an inter-disciplinary approach 

with other related fields of science. 

No single type of experimental evidence may be sufficient to clone a QTL. Nevertheless, 

several lines of experimental evidence can provide a definitive proof for QTL cloning 

(Weigel and Nordborg, 2005). There were several types of information required to show 

that a candidate is the gene for hypocotyl length. First, a candidate was statistically 

associated with hypocotyl length from QTL mapping. Secondly, in the post QTL mapping, 

this study carried out several steps of shortlisting that include identification of potential 

candidates, selecting major effect parental accessions, and finding polymorphisms in the 

candidate genes of such parents. Thirdly, combinations of different functional strategies 

were applied to the hypocotyl length natural variation study, that include mutational 

analysis in which the mutant shows an altered phenotype; and transgenic 

complementation analysis in which various alleles of candidates have been functionally 

tested. Thus, various pieces of information have been put together to make a complete 

picture. 

Where could the mutations lie in the genes that give rise to phenotypic variation? 

Mutations in the regulatory regions, in the introns and in the exons can affect the 

function of the gene and hence the phenotype that it controls. In the promoter region, 
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mutations can affect the gene expression levels, e.g. in the case of the fw2.2 growth QTL 

in tomato (Frary et al., 2000), and they can affect gene silencing as more recently shown 

in the Arabidopsis FLOWERING LOCUS C (FLC) gene (Coustham et al., 2012). In the introns, 

they can affect splicing and cause null alleles, e.g. in the FLC gene (Michaels and Amasino, 

1999; Gazzani et al., 2003; Michaels et al., 2003). In the exons, mutations can cause non-

synonymous amino acid changes leading to truncated DNA sequences and loss of function 

alleles. They can result in change of function alleles that alter the protein function or 

stability. Several studies in Arabidopsis photoreceptor genes have shown that natural 

variation in hypocotyl length is due to amino acid changes. Mutations in the protein 

coding regions of PHYA (Maloof et al., 2001), PHYB (Filiault et al., 2009), PHYC 

(Balasubramanian et al., 2006), PHYD (Aukerman et al., 1997) and CRY2 (El-Assal et al., 

2001) affect natural variation in hypocotyl length. Because they can lead to phenotypic 

variation, non-synonymous mutations in the coding sequences of candidate alleles are a 

powerful means for explaining their potential role in the natural variation of hypocotyl 

length. Therefore, the protein coding regions were a reasonable place to look for 

interesting polymorphisms in the candidates. 

 

6.2 Discussion and Conclusions on PHYB Candidate Gene: 

Different MAGIC accessions have been experimentally studied which are not only the 

common laboratory genotypes such as Col-0 and Ler-0 and therefore, novel PHYB alleles 

have been identified that contribute to the natural variation. This supports the general 

notion that there is greater untapped genetic variation present in natural accessions 

which needs to be exploited to discover new alleles that play important roles in gene 

function pertaining to growth and development in response to temperature. 

One of the advantages of exploiting natural variation, in comparison to classical induced 

mutagenesis, is that this approach allows the identification of variant alleles of genes 

which could be the likely targets for the evolution of hypocotyl length variation. This also 

helps in the identification of recessive mutations which are not deleterious in nature 

because nature has allowed the persistence of accessions carrying such mutations. 
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From the comparative analysis in chapter 4, it has been shown that Ct-1 and the phyB 

knockout mutant in Col-0 background have very similar phenotypes under both light and 

dark growth conditions. Hence, it seems that the Ct-1 allele of PHYB is a loss of function 

allele due to the natural mutations present in it. Furthermore, transgenic 

complementation results in chapter 5 showed very explicitly that the short WT hypocotyl 

phenotype was restored and re-established in single copy transgenic Ct-1 independently 

transformed lines carrying the Col-0 PHYB allele. Loss of function mutations are usually 

deleterious in nature and over time they are expected to be cleared from the gene pool. 

However, as the PHYB results in this study reveal, it may be the case that nature has 

maintained and fixed such null alleles in the population giving it a selective advantage in 

the wild under the native environmental conditions and improving the fitness of the 

species. Accessions having such alleles may germinate better in the field when elongated 

hypocotyls would allow the seedling to reach to light. Therefore, the mutations causing 

such alleles to be present in populations could be regarded as beneficial mutations. Loss 

of function or change of function mutations could be beneficial in the case of hypocotyl 

length which controls seedling plant architecture. The polymorphisms that have arisen in 

nature in PHYB, during the course of evolution, may be seen as a source of variation 

producing multiple alleles that have contributed to the natural variation of hypocotyl 

length in the Arabidopsis populations.   

Is PHYB a genetic driver of adaptive variation in response to temperature with large scale 

consequences in Arabidopsis populations? It has been previously shown that several 

Arabidopsis photoreceptor genes are a major driving force of natural variation in plant 

hypocotyl growth responses to light; these include PHYA (Maloof et al., 2001), PHYB 

(Filiault et al., 2009), PHYC (Balasubramanian et al., 2006), PHYD (Aukerman et al., 1997) 

and CRY2 (El-Assal et al., 2001). The results of this study strongly support this notion and 

provide a new dimension to the role of PHYB as an important QTL, and show that 

naturally existing alleles in PHYB are a major driving force of natural variation in hypocotyl 

length at 22°C. Furthermore, it is worth mentioning that photoreceptor and temperature 

interaction has been previously investigated and a close relationship between the two has 

been found in several studies, as shown in chapter 1. Consistent with this finding, this 

study demonstrates that the interaction of PHYB and ambient temperature control 

natural variation in hypocotyl length. 
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Large effect PHYB alleles for hypocotyl length in response to temperature were identified, 

in what is otherwise a typical quantitative trait. The transgenic phenotypic 

characterisation of the Temp22.2 fine-mapped QTL determines that the hypocotyl length 

trait variation in natural accessions is due to mutations at this single locus. PHYB 

individually explains a large proportion of the phenotypic variance at 22°C. It could, 

therefore, be hypothesised that QTL genes that have relatively large effects on 

phenotypic traits seem to be important in evolution. Important mutations in the QTL 

alleles are likely to explain a big portion of the natural intraspecific variation in 

Arabidopsis. This has been previously shown in the case of FRIGIDA (FRI) which is a major 

determinant of natural variation in Arabidopsis flowering time; though Arabidopsis 

accessions show quantitative variation in the vernalization responses, the FRI gene acts 

like a single gene trait (Sanda et al., 1997; Johanson et al., 2000). 

The results of the transgenic complementation studies reveal allelic variation in PHYB 

resulting in phenotypic diversity of hypocotyl length in Arabidopsis. PHYB is a gene that is 

responsible for altering the quantitative aspect of plant growth and morphology as seen 

in the case of hypocotyl length. This project has provided insights into the genetic basis of 

functional trait evolution in Arabidopsis. It sheds some light on the extent to which a 

major phytochrome gene may be involved in the evolution of hypocotyl length trait 

differences within Arabidopsis. 

The fact that very few QTL have been cloned is a manifestation of the long path from 

phenotype to genotype, despite the wealth of genetic information and resources 

available. However, the PHYB gene has been cloned that explains the Temp22.2 QTL 

revealing the molecular basis of quantitative variation. This study has identified molecular 

variants of PHYB accounting for natural variation in hypocotyl length and has contributed 

to the discovery of novel PHYB alleles. It is an example of how natural variation, as a 

resource for biology, has been exploited down to the molecular level in Arabidopsis to 

advance our knowledge of the genetic basis of seedling architecture. 

The genetic analyses have provided a unique understanding of natural variation in the 

candidate gene PHYB from a functional perspective in response to temperature. 

Moreover, it has helped us to discover novel genetic elements that control hypocotyl 
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length in response to specific temperatures, e.g. in the case of SAUR38 alleles that have 

been shown to control hypocotyl elongation at 22°C in chapter 5. 

 

6.3 Ecological Importance and Adaptation: 

Plants are capable of responding and adapting to changes in abiotic factors in nature due 

to the various sophisticated mechanisms that they have evolved over time. It is important 

to develop our understanding of the genetic basis of local adaptation due to its relevance 

to biodiversity and climate change. It is generally accepted that intraspecific natural 

variation improves the ability of plants to adapt to new changes in the environment as a 

consequence of climate change (Jump et al., 2009). If there is greater genetic diversity, 

there is greater ability to adapt to changing temperatures as a result of climate change. 

The considerable variation for temperature responses observed in MAGIC accessions 

corresponds to the adaptation to specific temperature conditions. 

Though many plant populations are locally adapted to native environmental conditions, 

the genetic basis of their adaptation is not well known (Savolainen, 2011). From an 

evolutionary point of view, there is interest in identifying the genomic basis of adaptation 

to local climates and studies on plant-environment interactions in Arabidopsis can 

facilitate this approach.  

Over the years, the analysis of natural variation in Arabidopsis has had great interest from 

both ecological and evolutionary points of view (Mitchell-Olds, 2001; Remington and 

Purugganan, 2003). What are the characteristics of a complex trait that determine 

whether it is an important ecological trait or not? This primarily depends on the trait in 

question and the role that it plays in the survival and fitness of plants in the wild. It is 

important to identify the genes that underlie ecologically important complex traits. Is 

hypocotyl length assumed to be an ecologically important trait for adaptation to various 

environments? The study of natural variation of hypocotyl length provides a strong 

evolving link, between the molecular analysis of gene function and ecological analysis of 

plant adaptation to local habitats. This could aid in providing new insights into the 

molecular mechanisms that shape complex trait variation in Arabidopsis natural 

populations. Is hypocotyl length an ecologically important trait for plant growth and 
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development in response to temperature? Laboratory based experiments cannot address 

this question entirely due to its limitations; however, as shown in this study, it can 

develop our basic understanding of hypocotyl responses to a range of ambient 

temperatures. The natural variation of the candidate genes in this study could provide 

clues to determine hypocotyl length as an important ecological complex trait. Thus, 

further experimentation and studies are required under field conditions to establish 

whether the polymorphisms identified in the candidate genes, under laboratory 

conditions in this study, are relevant for environmental adaptation. Growing Arabidopsis 

accessions in the native sites under field conditions could provide information about the 

adaptation of hypocotyl length to the local climates. Such analysis may be used in due 

course to predict and manage responses to climate change. 

There are several ways of how this could be investigated. One way of studying this in the 

field could be to grow RILs with extreme hypocotyl phenotypes. Another way could be to 

conduct reciprocal transplant experiments of accessions that can verify the existence of 

natural variation in hypocotyl length in the native sites. Moreover, such experiments can 

confirm that the fitness of the native accession is higher than any introduced non-local 

accession. In such studies, the correlation of hypocotyl length with fitness can also be 

examined.  

An interesting ecological question is whether differences in hypocotyl length have any 

correlation to the fitness of the accessions? It would be interesting to compare the 

hypocotyl lengths of the accessions with total number of seeds produced and determine 

the correlation. The results of a previous reciprocal transplant study provide evidence of 

strong adaptive differentiation between Arabidopsis natural populations in their native 

environments (Agren and Schemske, 2012). Together data from laboratory based 

experiments with these field based experiments would provide a strong basis for 

determining the ecological significance of hypocotyl length.  

QTL cloning results from this study show that molecular variation in PHYB between the 

accessions controls hypocotyl length variation. What are the consequences of molecular 

variation in PHYB to fitness? Do these alleles have any selective advantage under specific 

temperature conditions? These questions are difficult to address, however, such a study 

could provide insights into the adaptive significance of hypocotyl length in the accessions. 
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It has been demonstrated that Arabidopsis natural accessions contain allelic variants that 

confer individual fitness to various environmental factors and climates (Fournier-Level et 

al., 2011; Hancock et al., 2011; Agren and Schemske, 2012; Horton et al., 2012). 

Therefore, the allelic variants of PHYB for hypocotyl length in response to temperature 

may have a potential to confer fitness in Arabidopsis to changing climates in natural 

habitats. 

Is PHYB a key gene necessary for adapting to different climates? The PHYB alleles have 

been maintained in nature and it is likely that this is a photoreceptor that has changed in 

response to the environment, in different accessions from different geographical areas 

allowing them to adapt. In this regard, natural variation in PHYB function may play a role 

in allowing plants to adapt to unique future temperature environments. This could be a 

step forward towards understanding the genetic architecture and basis of hypocotyl 

natural variation involved in climatic adaptation, as the basis of quantitative traits 

associated with climatic adaptation remains unresolved (Aitken, 2008). 

The phenotypic variation observed in hypocotyl length to temperature responses 

explained in chapter 2 seems to reflect adaptation to local climate and habitats from 

where they originally belong. This variation in wild Arabidopsis populations is thought to 

have been shaped by the driving force of natural selection. There may be an increasing 

interest to understand the adaptive nature of temperature responses in plants especially 

in growth and development related traits due to the effects of climate change. Has 

hypocotyl length adapted to local temperature conditions in the native habitats from 

where these accessions were collected? Has the function of the hypocotyl length 

improved (i.e. become bigger or shorter) in response to temperature in the native 

environments? The understanding of intraspecific phenotypic variation present in 

Arabidopsis hypocotyl length may provide clues to how these accessions adapt to their 

environment. Findings of this study show that ambient temperature is one such 

important abiotic environmental factor regulating plant growth and development. 

Arabidopsis hypocotyl length shows unique developmental plasticity to changing 

temperatures. 
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6.4 Application and Translational Biology: 

Developing our understanding of the genetic basis of such important quantitative traits is 

important for enhancing basic knowledge of plant form and growth. To exploit the 

intraspecific natural variation, the discovery of allele variants that affect quantitative 

traits in Arabidopsis is essential. The investigation of variation that is present within a 

species in response to climate factors is a preliminary step, which is currently in its infancy 

and once a profound understanding of this has been developed, one can then look into 

comparing complex variation in plant growth between related species. Once the 

underpinning genetic components of the QTL variation are identified, our understanding 

of complex phenotypes could be improved by linking these genetic components to 

genomic databases of other related species. There is a great potential for comparative 

genomics between Arabidopsis genome and related crop genomes for candidate genes. In 

comparative genomics, the sequences of candidates can be compared to orthologues in 

crops and their functions may be predicted in response to environmental change.  

The QTL that contribute to quantitative variation in natural populations may provide 

prospects for translational biology to other species. One such example is the FLC gene 

that regulates flowering time and confers a requirement for vernalization. This gene was 

initially identified in Arabidopsis but has been involved in controlling flowering time in 

related species such as Brassica napus (Tadege et al., 2001), Thellungiella halophila (Fang 

et al., 2006), Brassica rapa (Kim et al., 2007), Brassica oleracea (Okazaki et al., 2007); and 

unrelated species such as Beta vulgaris (Reeves et al., 2007). This example demonstrates 

how genes discovered in Arabidopsis can be used for understanding variation in other 

species. In light of this, the QTL cloning results from this study in Arabidopsis could 

facilitate similar studies in other related lineages because orthologues of phytochromes 

with similar functions may be exploited for plant growth. The naturally occurring alleles of 

PHYB may also be used to better comprehend the control of plant growth and 

development.  

There is considerable interest in identifying this natural variation to improve crop species 

and to dissect the genetic basis of adaptation. There are two potential ways of improving 

related crop species with useful candidate genes from Arabidopsis. Genes controlling 

plant morphology and development can be either directly transferred into crops or useful 
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orthologues can be identified by homology (Spannagl et al., 2011). How can the 

knowledge gained in Arabidopsis be translated to other species? Potentially, related 

species in the Brassica family and others such as rice could benefit (Rensink and Buell, 

2004); as Arabidopsis and rice share a considerable number of orthologous genes (Izawa 

et al., 2003). 

The empirical results in this study on the reference species Arabidopsis may provide 

resources or knowledge for translational biology methods to improve stem architecture 

leading to yield increases in related crop species. There is great potential in the future to 

apply and use the approaches described for the natural variation in Arabidopsis to other 

crop species. This will depend on the availability of genetic resources being developed for 

crop plants. 

 

6.5 Future Prospects: 

At the beginning of this century, it was put forward that the future should lie in obtaining 

a clearer understanding of QTL at the molecular level that would lead to a better 

understanding of the genes affecting important traits (Kearsey, 2000). In this study, the 

QTL mapping provided the first bridge between hypocotyl length variation and genes that 

control them in response to temperature. The motivation for examining natural variation 

in wild accessions is to find new alleles or new genes involved in the early development of 

the seedling in response to temperature, and to try to establish a foundation for 

understanding the molecular basis of adaptations to the local environment. Potentially, 

this study provides a basis for further analysis to exploit this variation in hypocotyl length 

to unravel the molecular basis of plant adaptation to different environments. 

In general, much progress has been made in mapping QTL; however, finding the causal 

molecular polymorphisms also known as Quantitative Trait Nucleotide (QTN) remains a 

bottleneck. Understanding how natural variation in DNA allelic sequences is responsible 

for phenotypic variation in quantitative traits is a major challenge of contemporary 

biology (Mackay, 2014). The description of the genetic architecture of hypocotyl length 

will be more complete by specifying the polymorphic sites, such as QTN, in the alleles that 

cause differences in the hypocotyl length. This will reveal molecular genetic basis of the 
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putative adaptive trait of hypocotyl length in Arabidopsis. The goal would be to 

determine the QTN responsible for ecologically and evolutionarily relevant hypocotyl 

phenotypic diversity. 

Analysis of naturally existing genetic variation comprises of two major challenging steps. 

These include the determination of the underlying genetic basis of variation, and finding 

the molecular nature of the allelic differences that are responsible for genetic differences 

leading to phenotypic variation (Reymond et al., 2007). In this study, the first step in 

determining the molecular basis of natural variation in hypocotyl length was to determine 

the causal gene by cloning the QTL. Following QTL cloning, the next logical step is to test 

the identified functional polymorphisms in the PHYB alleles in the Temp22.2 QTL that 

explain natural variation in hypocotyl length in response to temperature. This will help in 

understanding in depth the patterns of phenotypic and molecular variation with an aim to 

infer how allelic variation is maintained. This may lead to clues for identifying which PHYB 

allelic variants could be adaptive under specific temperature conditions. 

What are the mechanisms through which causal polymorphisms affect important growth 

phenotypes? To obtain a complete understanding of the molecular and genetic 

architecture of hypocotyl length, in a post QTL cloning strategy, the investigation of the 

molecular polymorphisms in PHYB that functionally define the Temp22.2 QTL will be 

required. This could be a key to understanding the evolutionary significance of Temp22.2 

QTL and may provide valuable information based on which inferences could be made 

whether selection has operated on this QTL. Furthermore, the native habitats provide a 

wealth of environmental knowledge that can be utilised to hypothesise whether the 

allelic variation at Temp22.2 QTL has been adaptive. The findings in this study may also 

pave way for new insights into the networks of gene regulation for hypocotyl length in 

response to temperature. 

The transgenic analysis of PHYB appreciates that natural mutations in its alleles can have 

widespread effects on hypocotyl length. Therefore, the functional analysis of natural 

variation in mutant alleles at a single locus of PHYB has shown to be an effective starting 

point to unravel molecular mechanisms that control the natural variation in the complex 

trait of hypocotyl length. This is because in addition to the immediate mechanistic 

understanding of how PHYB influences hypocotyl length, the nature of inherited variation 
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in hypocotyl length could provide clues to the evolution of the trait in response to 

temperature. 

The QTL underlying the hypocotyl length sensitivity to temperature were detected by 

examining the G x E interaction. The interest was to identify QTL that contribute to the 

variation in temperature responsiveness. For the ‘environmental QTL’, identified for the 

‘temperature responsiveness trait’ in chapter 3, functional characterisation of the 

important candidate gene, PHYD, could provide interesting results by cloning this thermal 

sensitive QTL. As a way forward, a transgenic allelic approach followed by phenotypic 

analysis of differential responses to temperature may well explain natural variation in the 

temperature responsiveness of the major effect MAGIC accessions. Identification of the 

thermal sensitive QTL, contributing to natural variation in responsiveness, is highly 

relevant for understanding plant-temperature interactions from the climate change point 

of view. The alleles controlling such loci could facilitate a population to adapt to changing 

climates (Via and Lande, 1985). The thermal sensitive loci identified from the G x E 

mapping may provide plasticity in hypocotyl length which could help Arabidopsis to adapt 

to warmer climates. Arabidopsis populations that possess allelic variation at such loci 

could be able to adapt better than those that lack it. 

With a thorough understanding of the candidate gene functions, we will be able to 

profoundly broaden our understanding of plant-temperature interactions and the 

important genetic elements controlling their natural variation. The field of evolutionary 

and developmental biology is expanding and by comparing the alleles responsible for 

variation in hypocotyl length, it may be possible to understand how this developmental 

trait became modified during evolution in response to abiotic environmental factors. 

With the help of such information, future plant adaptation to warmer climates may be 

envisaged.  

This natural variation study in response to temperature has identified new QTL candidate 

genes and novel alleles of known candidate genes, controlling hypocotyl length, that have 

evolved in specific genetic backgrounds under specific local environmental conditions. 

This study and future related research can potentially give important insights into plant 

growth responses to increased temperature connected to global climate change. 
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