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Abstract 

 

Tröger’s base was discovered in 1887 by J. Tröger and has a V-shaped structure with C2 symmetry 

containing a chiral, hydrophobic cleft creating an angle of 90˚.  For many years its chiral cleft has 

been utilised for the stationary phase of chiral HPLC columns, a chiral resolving agent and as a 

chiral catalyst. 

Over the past 30 years it has been reported that this interesting molecule can intercalate DNA, 

inhibit enzyme activity and behave as a synthetic receptor.  The biological activity of the analogues 

of Tröger’s base has only been narrowly investigated.  This investigation has generated a plethora 

of biologically interesting Tröger’s base derivatives via utilisation of ‘click’ chemistry on a novel 

bis-azido Töger’s base scaffold.    

The detection of proteins quickly, efficiently and cheaply is a huge challenge and this project aims 

to use cheap, readily available gold compact discs as a novel platform for the portable detection and 

sensing of biological interactions on the gold CD surface. The use of a gold compact disc and its 

ability to bind self assembled monolayers will be investigated and the detection of these biological 

interactions via MALDI-TOF spectrometry will be probed.  The (+)-biotin / streptavidin interaction 

will be used as a model study for these purposes with the ambition to develop this further with 

humanitarian and military applications. 

The V-shape and 90˚ angle of Tröger’s base will be exploited to investigate its use as a scaffold for 

binding to gold compact discs for the development of surface based biological assays and 

proteomics. 

The incorporation of stable isotopes into organic molecules will also be investigated and we report 

a new protocol for the mild and efficient deuteration of terminal alkynes and their subsequent use in 

organic chemistry. 
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1 Introduction 

1.1  Tröger’s base 

In 1887 Carl Julius Ludwig Tröger published a paper on his results of the condensation of para-

toluidine 1 with methyal [CH2-(OCH3)2] in an aqueous solution of hydrochloric acid.  From this 

reaction he isolated an unexpected compound, which he described as ‘base C17H18N’.
1
  It wasn’t 

until 1935 that the correct chemical structure of this unusual base was finally determined by 

Spielman, who confirmed the structure of Tröger’s base was in fact racemic 2,8-dimethyl-6,12-

dihydro-5,11-methanodibenzo[b,f][1,5]diazocine 2.
2
 

 

Scheme 1 J. Trögers synthesis of Tröger’s base (2,8-dimethyl-6,12-dihydro-5,11-methanodibenzo[b,f][1,5]diazocine) 2 

In the same year, 1935, Wagner proposed the mechanism for the synthesis of racemic Tröger’s base 

2 (scheme 2 (vide infra)) via acid catalysed condensation of 1 with formaldehyde affording an 

iminium ion, which, reacts with a second equivalent of 1 affording the first intermediate.  

Subsequently this reacts with two methylenes, followed by ring closing to afford (+/-) 2.
3
  This 

mechanism was further confirmed by Abella et al. in 2007 by mass spectrometry analysis of the 

intermediates formed during the condensation of 1 with paraformaldehyde.
4
 

 

Scheme 2 Proposed mechanism for the synthesis of racemic Tröger’s base 2 as described by Wagner 
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Prior to 1980 Tröger’s base was mainly used for investigating separation techniques
5
 but since then 

Tröger’s base and its various analogues have provoked much interest, due to its rigid shape and 

hydrophobic cavity, as supramolecular building blocks, molecular recognition tools, potential 

ligands for catalysis and as molecular tweezers. 
6,7,8

  This C2 symmetric heterocycle has its two aryl 

groups very nearly perpendicular to each other at angles between 90-100º and gives the structure a 

rigid backbone with a concave conformation and leads to a cavity or chiral cleft with hydrophobic 

behaviour
9
.   

Tröger’s base, a chiral diamine contains two stereogenic bridge-head nitrogens and has C2 – 

symmetry.
7
  Therefore two enantiomers exist for this moiety, the resolution of 2 using (-)-1,1’-

binaphthalene-2,2'-diyl hydrogen phosphate, (1:1) in ethanol affords (+)-enantiomer.
10

 This is 

commercially available from Aldrich, as a chiral resolving agent. 

 

Figure 1 Enantiomers of Tröger’s base 2 showing hydrophobic chiral cleft and C2-symmetry.  

The asymmetric synthesis of a Tröger’s base analogue has been reported using 7-deoxycholic acid 

as a chiral steroid template prior to the bridged nitrogen formation.
11

  Although separation of the 

enantiomers of this molecule does seem to be possible, there are problems with maintaining chiral 

purity during reaction procedures due to the high tendency of Tröger’s base to racemise in acid 

conditions
10

. 

 

Figure 2 Proposed mechanism for Tröger’s base racemisation under acidic conditions.  Protonation on either of the 

tertiary amines causes ring opening to occur.  This can then ring close from either face causing racemisation to occur. 
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1.2  Analogues of Tröger’s base 

1.2.1  Chiral clefts 

Many analogues of Tröger’s base, also known as [1,5] diazocines, have been synthesised that 

contain a chiral cleft, indeed many of these have been utilised in a plethora of chemical and 

biological disciplines.  Thus an ether bridged carbocycle derivative 3 (Kagan's ether),
12

 an 

unbridged dithiocene 4 and an α, β unsaturated ketone carbocycle 5 
13

 all contain clefts.  Although 4 

does not possess a chiral cleft it is an interesting example of a cleft molecule that doesn’t contain a 

bridgehead atom to hold it in this conformation. 

 

Figure 3  Examples of cleft containing compounds and Chem 3D representation of the unbridged di-thiocene 4 

1.2.2  Tröger’s base modifications at the 2 and 8 positions 

With a large variety of Tröger’s base analogues reported in the literature, synthetic chemists require 

further functionalisation of the moiety in order to exploit the unique properties that Tröger’s Base 

possess.  The synthesis of racemic 2,8-bis-bromo-Tröger’s base (+/-)-6 by Jensen and Warnmark 

lead the way for functionalised analogues of the Tröger’s base to be constructed.  They reported the 

condensation of para-bromo aniline 7 with paraformaldehyde in neat trifluoroacetic acid
14

 afforded 

(+/-)-6 in a 63% yield.  Didier and Sergeyev later reported a 2,8-di-amino analogue 8, generated via 

transition metal catalysed aromatic amination of racemic-2, 8-bis-iodo Tröger’s base.
7
 

Scheme 3  racemic 2,8-bis-bromo Tröger’s base (+/-)-6 as reported by 

Warnmark et al 

 

Figure 4 Didier and Sergeyev reported 

(+/-)-8 2,8-bis-amino Tröger’s base.  

Following these developments Jensen et al.continued to functionalise the 2 and 8 positions of 

Trögers base by utilising bromine-lithium exchange.  Jenson et al.reacted (+/-)-6 with n-butyl 

lithium which afforded bis-lithiated Trögers base analogue (+/-)-9 and then quenched the 

intermediate with a wide array of different electrophiles generating 2,8-bis substituted Trögers base 
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analogues  i.e. quenching (+/-)-9 with CO2 to generate (+/-)-10.
15

  This paved the way for synthetic 

chemists to utilise the 2 and 8 positions of Tröger’s base for further functionalisation of these 

interesting molecules. 

Scheme 4 Jenson et al.reported bromine-lithium exchange on (+/-)-6 generating 2,8-bis-substituted Tröger’s base 

analogues.  Other electrophiles reported H2O - 88%, TMSCl - 89%, PhCHO – 58%, Bu3SnCl – 71%. 

Bew et al.used this development to use Tröger’s base as a scaffold for generating peptide 

derivatives (+/-)-11.  The unique shape allows Tröger’s base to be considered as a β-turn mimic or a 

hairpin which are widely found in natural peptides.  The poly peptide TNYLFSPNGPIARAW 

binds to EphB4 (IC50 15 nM) and contains a 90° turn induced by proline-glycine di-peptide which 

was found to be essential for high affinity binding.  It was reported that Tröger’s base analogues 

could be used to probe these regions.
9
 

 

Figure 5 2,8-bis-peptidyl Tröger’s base analogue generated as a β-turn director as reported by Bew et al. 

1.2.3  Tröger’s base modification at bridgehead methylene C13 

Lenev et al.reported a small library of analogues with substituent’s at the bridged carbon, (C 13, 

Scheme 1) (+/-)-12, (+/-)-13.  Reactions at the bicyclic core, were obtained by ring opening with 

boron trifluoride diethyl etherate and insertion of the activated acetylene via nucleophilic attack of 

the amine on the terminal acetylene carbon.  This adduct then ring closes followed by allylic 

rearrangement which afforded (+/-)-1.
16

 

 

Scheme 5  Lenev et al. reported modification of Tröger’s base at the C13 position 
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Mahon et al. reported the complete removal of the Tröger’s base methylene bridge C13, by reacting 

(+/-)-2 with trifluoroacetic anhydride, which, afforded a trifluoroacetate salt of a bis-

trifluoroacetylated disecondary amine 14 this was then hydrolysed by ethanoloysis affording the 

methylene removed Tröger’s base derivative 15.
17

 

 

Scheme 6  Mahon et al. reported complete removal of the Tröger’s base methylene bridge 

In the same publication Mahon et al. reported the replacement of the methylene bridge by insertion 

of a bridging methylene component, benzaldehyde, into the diazocine framework.  This was 

achieved via refluxing 15 with benzaldehyde in toluene affording (+/-)-16.
18

  Hamada et al. 

reported an ethano-bridged Tröger’s base analogue (+/-)-17 by treatment of (+/-)-2 with 1,2-

dibromoethane.  It was suggested that this reacts via ammonium ion and dibromide intermediates 

before formation of (+/-)-17 and bromomethane.
19

  The introduction of a spiro[4,5]lactone strap on 

Tröger’s base was reported by Try et al. via treatment of (+/-)-2 or 15 with phthaloyl dichloride and 

triethylamine  affording analogue (+/-)-18.
20

 

 

Figure 6  Tröger’s base bridgehead methylene replaced derivatives 

1.2.4  Aryl extended and aryl modified Tröger’s base analogues 

Various different aromatic systems, including thiophenes (+/-)-19 
21

 as reported by Kobayashi and 

N-methyl pyrrole (+/-)-20,
22

 reported by Valik et al. In both cases they have replaced the standard 

benzene rings affording different aromatic, hetrocyclic analogues.  These were generated by 

replacing the aniline start material with 3-aminothiophene and 4-amino-1-methylpyrrole, 

respectively.  They were then condensed with paraformaldehyde in hydrochloric acid.
21, 22
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Figure 7  Thiophene (+/-)-19 and N-methyl pyrrole (+/-)-20 derivatives of Tröger’s base. 

Aza indole analogues (R)-21 containing a molecular chiral cleft have been reported by Warnmark 

et al. with the purpose of self aggregation to form helical tubes with non-covalent, end to end, 

aggregation.  These compounds can be synthesised as either enantiomer as the start material, 

(1S,5S)-bicyclo[3.3.1]nonane-2,6-dione (+/-)-22 is available enantiomerically pure from Aldrich.
23

 

 

Scheme 7 Warrnmark et al. synthesis of a chiral cleft containing aza indole Tröger’s base analogue 

 

Figure 8 PM3-optimised geometry of a proposed homochiral helical assembly of (R)-2.  Side view (a) and top view (b) 

Valik et al. have reported the synthesis of a calix type Tröger’s base molecule, this tris - Tröger’s 

base was formed via annulation of three benzene rings to one, to give a cup or “calix” shaped 

molecule (+/-)-23.  During the synthesis of (+/-)-23 an isomer was also isolated to yield a “throne” 

shaped molecule (+/-)-24.  These molecules are of significant interest to scientists at the nano-

technology interface as possible “nano-reactors” or capping them to make “nano-capsules”.  The 

pharmaceutical industry is interested in (+/-)-23 as potential drug delivery systems due to their 

ability to isomerise in acidic conditions.
24
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Figure 9  ORTEP style plots of ‘calix’ (+/-)-23 and ‘throne’ (+/-)-23 type Tröger’s base analogues 

 

Scheme 8 Reaction scheme for the preparation of tris-Tröger’s base analogues as reported by Valik et al, 3% overall 

yield 

1.3  Biological properties and interactions of Tröger’s base analogues 

1.3.1 Tröger’s base analogues as thromboxane A2 (TxA2) synthase inhibitor 

Johnson et al. report 2,8-bis-3-pyridylmethyl Tröger’s base (+/-)-25 to be an efficient inhibitor of 

thromboxane A2 (TxA2) synthtase.  With in vitro assays affording an ED50 of 30ng/ml.  This level 

of activity is comparable with current (TxA2) inhibitors, such as, sodium furegrelate 26, dazoxiben 

27 and OKY-1581 28, although it falls outside of the standard structure-activity correlations for 
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these inhibitors.
25

  It was also reported that any modification to the C13 methylene bridge severely 

reduced the bioactivity as a TxA2 inhibitor. 

 

Figure 10  Tröger’s base analogue (+/-)-25 affords an ED50 that is comparable with currently marketed TxA2 inhibitors.   

1.3.2  Tröger’s base analogues and their interactions with ds-DNA 

Incorporating different aromatic systems into the Tröger’s base scaffold and other carbocycles have 

been reported and many of these show a degree of biological activity towards ds-DNA.  The ability 

of these molecules to direct appended substrates through different angles has been of major interest 

as the V shaped molecules can fit into the minor groove of ds-DNA.
26

 

Tatibouët et al. (1999) and Bailly et al. (2000) independently reported DNA affinity of a proflavine 

Tröger’s base moiety (+/-)-29.  Proflavine is a known DNA intercalator in the major and minor 

grooves.
27

  Their studies show that the Tröger’s base containing compound was not as efficient at 

binding, as the circular dichromism (CD) signals were weaker than values obtained for proflavine, 

but still had some interesting properties.  It is thought that the Tröger’s base moiety is not actually 

intercalating DNA as there is no evidence of the DNA unwinding and it is suggested that binding 

occurs in the minor groove.  Interestingly, they have shown that the binding of the Tröger’s base 

analogue to calf-thymus DNA (ct-DNA) is enantioselective and that the (-)-isomer has a much 

higher binding affinity than the (+) isomer.  This was regarded as  enantio-specific ligand towards 

DNA.
28
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Figure 11  Molecular modelling representation of the two enantiomers of proflavine Tröger’s base analogue (+/-)-29 

and its structure. 

DNase I footprinting was used to discover the sequence-selectivity of the (-) isomer and showed 

DNase I inhibition specifically at the A · T and G · C pairs.  This crucially differs from other DNA 

intercalating agents which typically favour G · C pairs and minor groove binders favour the A · T 

pairs.  There is potential for Tröger’s base molecules and other analogues to be used as biological 

probes for nucleic acid structure determination.
28,29

 

Baldeyrou developed this model further by introducing a phenanthroline chromophore thus 

affording an unsymmetrical Tröger’s base analogue (+/-)-30.  Both chromophores are well known 

to bind DNA
30

 and as shown previously the (-) bis-proflavine Tröger’s base (-)-29 has a strong 

affinity to bind in the minor groove.
28

  The mechanism for the binding of Tröger’s base analogues 

is so far unknown due to the complications that arise from the symmetric nature of the analogues.
31

  

Therefore, an investigation into unsymmetrical analogue may throw some light on the mechanisms 

of binding.  Melting point analysis, where the change in melting point shows whether there is 

interaction between DNA and substrates, showed a strong binding of the (+/-)-30 to DNA as the 

temperature of decomposition was increased.  Studies on the effect of the (+/-)-30 on poly (dAT)2 

showed stabilisation against thermal decomposition.  CD and electric linear dichromism (ELD) 

measurements were recorded and showed the acridine ring is located parallel to base pairs, as is 

consistent with intercalative binding.  As a consequence of the right angled orientation of Tröger’s 

base it would suggest that the phenanthroline heterocycle is able to bind to the minor groove of 

DNA resulting in a bimodal process.  The proflavine moiety is intercalated between the base pairs 

and the phenanthroline simultaneously bound to the minor groove.  This bimodal action causes the 

molecule to have a different preferred site of interaction than its parent compounds.  Footprinting 

with bovine pancreatic DNase I showed the Tröger’s base moiety had moderate sequence 

selectivity and protected the sequence 5’-GTCACGACG from cleavage by the enzyme.  

Interestingly, the underlined segments were adjacent and anti-parallel triplets and was believed to 

be the preferred target sequence for the Tröger’s base moiety.
31

  The footprinting also afforded an 
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increase in cleavage susceptibility at the sequences 5’-GGGTTT and 5’-AAAACGAC, i.e. at the 

“flanks” of the Tröger’s base preferred binding site.  It was suggested that this was due to 

intercalation-induced structural re-arrangement thus promoting cutting by the enzyme.
31

 

 

Figure 12 Energy minimised representation of proflavine-phenthroline Tröger’s base (-)-30 and structure of (+/-)-30 

It has been shown that taking known DNA binding molecules and introducing these to a Tröger’s 

base scaffold has been successful in generating biologically active Tröger’s base molecules with 

different properties to the original parent compounds.  Distamycin has the ability to bind to the 

minor groove of DNA with A·T selectivity and interestingly it can bind as a monomer and as anti-

parallel dimers.  Dystamycin is also known to inhibit protein interactions with G-quadruplex DNA 

and thus is a probe of protein interactions with double stranded DNA.
32

  A variety of linkers for 

dystamicin analogues were synthesised and it was found to be conformationally restrained linkers 

that were more effective at binding calf thymus DNA than flexible units.  Stereochemical effects of 

the linkers have been reported to be critical to the binding affinity, making Tröger’s base a good 

scaffold.  It was also reported that increasing the number of pyrrole units in analogues afforded a 

rise in A·T selectivity.
26

  Dystamycin therefore seems to be a likely candidate to benefit from 

appendage to the Tröger’s base scaffold.  This was carried out by Palivec et al. with bis-distamycin 

Tröger’s base analogues (+/-)-31, using the N-methyl pyrrole Tröger’s base scaffold.  A small 

number of analogues were synthesised with an increasing numbers of pyrrole units in a symmetrical 

fashion. 

 

Figure 13 Dystamycin Tröger’s base analogues with DNA binding affinity where n=2 and n=3 
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Changes in UV-vis spectra were observed upon addition of (+/-)-31, where n= 1-3, to ct-DNA and 

gave evidence of complex formation.  Only a weak interaction was observed where n=0.  Electronic 

circular dichromism (ECD) showed signals in the 300-400nm range, where n=2,3, whereas neither 

the ct-DNA or (+/-)-31 derivative controls have signals in this range.  Where n=3 the signal was 3 

times stronger than when n=2 thus proving it has a strong binding affinity to the minor groove.  No 

signal was observed for n=1 and was assumed to be suppressed.  There was an increase in DNA 

binding activity as the chain length was increased due to better arrangement of the complex with 

DNA.  Sequence selectivity was determined using oligonucleotides (dA-dT)10 and (dG-dC)10 for 

n=3.  ECD signals were observed for (dA-dT)10 but not for (dG-dC)10 therefore afforded an affinity 

for A·T rich sequences.  The binding affinity was influenced greatly by temperature, as ECD 

signals strengthened as the temperature increased, due to the increased accessibility of the minor 

groove in β-form of the ct-DNA.  The stereochemistry of the (+/-)-31 analogue n=3 is not important 

for the binding affinities, but ECD experiments afforded different signs and symmetric patterns for 

the enantiomers, thus afforded differing chiroptical properties.
26

 

Chiral metal complexes have been used for enantioselective DNA configuration recognition.
29

  

Now a combination of chiral Tröger’s base analogues (ligand) and a metal centre were synthesised.  

A bis-phenanthroline Tröger’s base was generated and employed as a ligand and introduced to cis-

[Ru(phen)2(py)2]
2+

 (phen = 1,10-phenanthroline) which afforded the complex [Ru(phen)2 bis-

phenanthroline Trogers Base]
2+

 (+/-)-32 as a racemic mixture.  Subsequent purification by slow 

fractional crystallisation gave 80% entaniomerically pure S-isomer (S)-32.
33

     

 

Figure 14  [Ru(phen)2 bis-phenanthrolineTröger’s base]
2+

 complex (S)-32 

DNA binding isotherms were determined using luminescence intensities as ct-DNA was added in 

order to determine the interactions of the Tröger’s base derivative (S)-32 with calf thymus DNA.  

These experiments afforded a binding to ct-DNA that was stronger than the racemic mixture of the 

parent compound [Ru(phen)3]
2+

 this was attributed to an increase in binding geometry given by the 

Tröger’s base structure.  The extra steric bulkiness given to the compound by the Tröger’s base 

unit, over the parent compound hinders semi-intercalation which was the known binding method of 
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[Ru(phen)3]
2+

.
34

  Unfortunately no information was given on the sequence selectivity of the 

Tröger’s base analogue and is assumed to be work in progress.  

There have been clear interactions found between Tröger’s base analogues and DNA but the 

research has so far been aimed at taking known DNA binding molecules and appending them to 

Tröger’s base.  As was shown there are many analogues of Tröger’s base with differing cleft angles 

and appendages where no study into biological activity has been reported.  This is an exciting time 

for Tröger’s base as more and more analogues are being reported and are “calling out” to have their 

biological properties tested.  Tröger’s bases’ unique structure has been shown to change the binding 

sites of known intercalaters and interfere with both the minor and major grooves of DNA with some 

surprising results and good sequence selectivity.  Strangely there have been no reports of any 

experimental data on Tröger’s base analogues with RNA which could yield some interesting results 

to explore the gap between DNA and protein formation.  Perhaps this is due to the relative 

instability of RNA or maybe just an oversight. 

1.3.3 Tröger’s base analogues as synthetic receptors 

Wilcox et al. have described the synthesis of Tröger’s base analogues containing di-carboxylic acid 

groups (+/-)-33 and these have been shown to act as hosts for adenine 34 and (+)-biotin (+)-35 

moieties.
35

  The interaction was due to the formation of four hydrogen bonds between the 

carboxylic acid groups on the host and nitrogens on the guest substrate. 

 

Figure 15  Tröger’s base host (+/-)-33 and guest binding coefficients in CDCl3: 9-ethyladenine 34 Ka = (4.5 ± 1.7) x 

10
4
 M

-1
, (+)-biotin methyl ester 35 Ka =  (1.7 ± 0.3) x 10

4
 M

-1
, 2-imidazoleidone 36 Ka =  (2.1 ± 0.4) x 10

4
 M

-1
, 
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trimethyleneurea 37 Ka =  (3.3  ± 1.6) x 10
4
 M

-1
, 2-aminopyrimidine 38 Ka =  (2.6  ± 0.5) x 10

3
 M

-1
.  Figure taken from 

Wilcox et al.
35

 

Interactions between guest and host were measured using NMR and UV/fluorescence techniques 

and binding affinities were compared to benzoic acid (Ka = 30M
-1

).  The host was shown to 

hydrogen bond remarkably well to guests 34-38 all of which have two hydrogen bonding surfaces 

available.  The ability to hydrogen bond with the guests was dependent on properly arranged 

carboxylic acid groups at an angle of 120°.  The ability of the guest to interact is due to 

simultaneous Watson-Crick and Hoogsteen interactions.  These interactions were observed with 

adenine in vivo for triple ribonucleic acid helix formation and protein –nucleic acid interactions.
35

 

Goswami et al. designed a series of amino pyridine Tröger’s base analogues for the recognition of 

di-carboxylic acids.  Here the amino pyridine heterocycles have a strong affinity to form hydrogen 

bonds with di-carboxylic acids and these scaffolds provide a well arranged system for the selective 

binding of the guest.  The system can only bind with certain guests that fit into the concave area 

formed by the appended Tröger’s base analogue.
36

 

 

Figure 16  Synthetic Tröger’s base binding receptors as described by Goswami.
36

  

1
H NMR titration studies were performed on a variety of guests with the above hosts 39-40 and 

changes in chemical shifts were processed as a function of concentration and subsequent Foster-

Fyfe analysis yielded the binding constants.
36

 

 

Di-acids Ka(25˚C) M-1 Δ G (25˚C), kcal/mol 

Glutaric 1.0 x 10
3
 -4.09 

Adipic 1.69 x 10
3
 -4.40 

Suberic 1.5 x 10
4
 -5.69 

Sebaic 3.10 x 10
3
 -4.76 

Benzene-1,4-diacetic 2.88 x 10
2
 -3.35 

 

Table 1  Binding constants of host (+/-)-39 with di-acids 
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Figure 17 Mode of complexation of 

di-acids with (+/-)-39 
 Glutaric Adipic Suberic Sebaic 

(+/-)-40 2.4 x 10
2
 3.5 x 10

2
 4.8 x 10

2
 5.8 x 10

2
 

(+/-)-41 1.1 x 10
2
 5.3 x 10

2
 1.01 x 10

3
 6.54 x 10

3
 

Table 2 Binding constant values of receptors 40 and 41 Ka (M
-1

) 

 

Fluorescence data provided by the Goswami et al. afforded strong complexation characteristics 

between host (+/-)-39 and suberic acid to back up their findings from the titration experiments.  

Effects of chirality on the host were also studied using (+)-camphoric acid as guest and 
1
H NMR 

titration experiments afforded the amide proton peak has split into two. Subsequent analysis 

afforded differences in binding constant energy as shown in table 1 and 2.  Attempts to prove the 

stereospecific interactions couldn’t be completed due to the difficulties in resolving host (+/-)-39.
36

 

Macrocyclic Tröger’s base derivatives have also been reported and shown to be useful synthetic 

receptors.  Wilcox et al. reported the synthesis of optically pure, water soluble, cyclophane receptor 

42 which binds to neutral alicyclic guests in a stereospecific manner.
37

  Many cyclophanes have 

been developed to accept aromatic guests and a simple rectangular shape is sufficient to allow 

planer molecules into the pocket.  Alicyclic guests required a much larger pocket to allow the 

bulkier substrates to bind.  The minimum size required for a cyclohexane ring to be confined by 

two benzene rings is 8.5Å, therefore larger cyclophanes are required
37

 

 

Figure 18  Tröger’s base cyclophane (+/-)-42 interacting with guest.  Di-phenyl methane analogue (+/-)-43 and di-

phenyl ether analogue (+/-)-44 as reported by Wilcox et al.
38

 

Other Tröger’s base cyclophanes have also been generated within the Wilcox group, thus a 

Tröger’s base unit bridged by a second diaryl unit (fig 18).  They include a diphenyl ether (+/-)-44 

and a diphenyl methane (+/-)-43 unit.  These water soluble cyclophanes were shown, by 
1
H NMR 

titrations, to accommodate a range of guests.  
1
H NMR data showed strong up field shifts of guest 
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protons and titration curves gave rise to saturation phenomena, compared to control experiments.  

Both hosts (+/-)-43  and (+/-)-44  had binding energies in the range 2.1 – 3.3 kcal / mol with 

benzoidal substrates including 4-toluene sulfonic acid and 1,3-dihydroxynapthalene.
38

 

Khoshbin et al. have reported the synthesis of metallomacrocycles containing hemiliable Tröger’s 

base ligands.  The ligands are comprised of phosphinoalkyl thioethers appended to Tröger’s base 

(+/-)-45.  These were subsequently reacted with copper(I) and rhodium(I) complexes generating the 

corresponding metallomacrocycles.  These metallomacrocycles have some interesting geometries.  

Reaction with the Cu
I
 metal centre provided a bi-metallic closed metallomacrocycle (46) as is 

common for the tetrahedral favoured geometry of copper.  Whereas, the square planer geometry of 

Rh
I
 meant that bi-metallic macrocycle systems weren’t generated but tri-(47) and tetra-(48) 

macrometallic closed macrocycle systems were formed instead.
39

  

 

Scheme 9 Synthesis of (+/-)-45 i) 4.4 eq t-BuLi, 3eq S8, THF -78˚C, ii) 2 eq Cl(CH2)2PPh2, 0.2eq CsCO3, MeCN, 

reflux. 

 

Figure 19  Open bis-metallic Cu Tröger’s base metallocycle (46); closed tri-metallic Rh Tröger’s base metallocycle 

(47) and closed tetra-metallic Rh Tröger’s base metallocycle (48) 

1.3.4  Stable isotope incorporated Tröger’s base 

Lenev et al. reported the synthesis two of d
6
-Tröger’s base analogues (+/-)-49 & 50 generated by 

replacing paraformaldehyde with d
2
-paraformaldehyde and condensing with anilines in neat TFA, 

however no yields were reported.
40

  The resolution of (+/-)-49 & 50 to (R)-49 & (S)-50 was 
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achieved by crystallisation of spherical homochiral druses from toluene, followed by manual 

separation and recrystallisation.
41

 

 

Figure 20  Deuterium incorporated Tröger’s base analogues 

Lenev et al. was investigating the rate of racemisation of (R,R)-49 & (S,S)-50 compared to its 

proteo counterparts.  He observed the isotopic effects of deuterium on the rate of racemisation with 

(R,R)-49 racemising more slowly than its proteo counterpart, however, for (S,S)-50 the opposite 

was observed.  He suggests this is due to an increased steric volume of H compared to D, affording 

retardation of racemisation in the sterically hindered proteo (S,S)-50.
40

 

In honour of Julius Tröger’s discovery of Tröger’s base 125 years ago, Runarsson et al published a 

review on the diverse uses and research undertaken, over the past 125 years, upto 2012 of this 

interesting and structurally unique compound.
42

 

1.4  Incorporation and reactions of stable isotopes into organic compounds 

1.4.1  Deuterium in organic synthesis 

The development of protocols that afford high value, deuterated molecules in high yields and, 

importantly, with excellent levels of deuterium incorporation is very important to academia and 

biotechnology, medicinal, analytical, pharmaceutical, and agrochemical industries.
43

  A deuteron 

has 0.02% natural abundance and is made up of a proton and a neutron, the additional neutron 

(compared to its proteo 
1
H counterpart) affords it with an atomic mass of 2.014u that is double the 

protium.  This extra mass confers a difference of chemical properties to the 
2
H-isotope over the 

1
H-

isotope which is not seen in other isotopes of heavier elements, for example deuterium oxide is 

more viscous than water, has a melting point of 3.82˚C, boiling point of 101.72˚C and a density of 

1.1056 g/mL (20˚C).
44

  The kinetic isotope effect (KIE) for deuterium is considerably more 

noticeable than for other isotopes of heavier elements because of the two fold increase in mass, 

equating to a theoretical maximum difference of 9 at 37˚C.  The higher mass affords a deuterium-

carbon bond with a lower vibrational frequency and thus a lower zero point energy than the 

corresponding proton-carbon bond.  This lower zero point energy translates into a higher activation 
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energy for carbon-deuterium bond cleavage and a slower reaction rate.  This effect on reaction rate 

is known as the primary KIE for deuterium.
45

   

The KIE is the ratio of the rate of reaction between two different istopically labelled molecules 

during a chemical reaction.  For example the KIE for a proteo and deutero reaction is:  

KIE = kH/kD 

where, kH and kD are rate constants. 
45

  The specific KIE expressed above for deuterium and 

protium, is also known as the dueterium isotope effect (DIE). 

1.4.2  Dueterium isotope effect 

The primary DIE is the difference between the rates of reaction observed between a proton and 

deuterium atom substitution.  DIE is an important tool in the elucidation of mechanisms in chemical 

synthesis due to the rate constant KH observed for proteo species often exceeding the rate constant 

KD  for deutero species.  The strength of the deuterium carbon bond is much stronger than its proteo 

counterpart, thus making it more resistant chemical or enzymatic cleavage.
46

 

1.4.3  Deuterium in the pharmaceutical industry 

The incorporation of deuterium into a drug molecule has negligible steric and minimal effect on its 

physiochemical properties; however the resulting increase in bond stability, carbon-deuterium bond 

for example, may cause a dramatic change in biological properties.  The increased bond stability 

has the potential to retard certain pathways of the drug molecules metabolism in vivo.
46

  The 

substitution of deuterium atom for a proton at a specific site of metabolic cleavage could offer 

potential benefits including improved exposure profiles and a reduction of toxic metabolites.  This 

could lead to greater efficacy, safety and tolerability.  Incorporation of deuterium at positions not 

involved in metabolism, affords it to be metabolically silent, and has lead to its use as a tracer.
45

  

One of the first reported instances of the DIE in vivo was the replacement of the α-hydrogens of 

tyramine 51  and tryptamine 52, which when administered produced a marked intensification of 

blood pressure effects and nicitating membrane contractions.
47

 

 

Figure 21  α-di-deutero tyramine 51 and α-di-deutero tryptamine 52 – two of the first reported deuterated drugs to 

exhibit deuterium kinetic isotope effects in vivo.   
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More recently (2008) Auspex Pharmaceuticals has developed a selectively deuterated analogue of 

venlafaxine (+/-)-53, an anti-depressant and subsequently issued a press release stating that after the 

phase I healthy volunteer study “exhibited a pharmokinetic profile that appears to be superior to 

that of to that of venlafaxine”.
48

 

Concert Pharmaceuticals have developed a 
2
H-incorporated HIV protease inhibitor based on the 

scaffold of atanavir 54 and has initiated multiple ascending dose studies.  Its antiviral potency and 

pharmokinetic profile has positive implications that it could be used without the need of the 

pharmokinetic booster ritonavir, which causes problematic side effects.
48

 

 

Figure 22  Auspex Pharmacueticals deuterated venlafaxine (+/-)-53 and Concert Pharmacuticals deuterated atazanavir 

54.  Both have been reported to have increased biological activities compared to their parent proteo analogues. 

The inclusion of deuterium into biologically active molecules does not always offer benefits.  The 

incorporation of deuterium to the DNA alkylating species 1,2-di-bromo ethane affords a slower 

metabolism thus results in more damage to the DNA than its proteo analogue.  Similarly diazepam 

55 requires metabolic oxidation to the active form oxepam 56 and deuteration inhibits the 

anticonvulsive properties of diazepam.
49

 

 

Scheme 10  Deuteration of diazepam 55 slows down the 3-hydroxylation to the active species oxepam 56 resulting in a 

loss of anticonvulsive properties. 

The success of a few deuterium incorporated drugs affording improved pharmokinetics, longer half 

lives and the ability to patent them has lead to a need for more deuterated building blocks for the 
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synthesis of these important molecules.  With the current trend in the utilization of the Azide-

Alkyne Hüisgen 1,3-dipolar cycloaddition (‘click’) reaction, the synthesis of deuterated terminal 

alkynes could lead to the synthesis of deuterated triazoles.  The synthesis of a plethora of deuterated 

alkynes would allow for functionalization of these triazoles for incorporation into drug candidates. 

1.4.4  Current methods for the synthesis of deuterated terminal alkynes 

The requirement for deuterated building blocks with excellent levels of 
2
H-incorporation for 

organic synthesis is very important for the research community.  The incorporation of deuterium at 

specific points in a drug molecule, generally in regions where metabolism occurs ‘soft spots’, is 

currently a ‘hot topic’.  The ability to generate 
2
H-alkynes will be beneficial to organic synthesis as 

precursors to 
2
H-alkyne hydrogenation generates cis- or trans-

2
H-alkenes

50
 or 

2
H-alkanes.

51
 

Alternatively aqueous gold salts afford 
2
H-ketones,

52
 and 

2
H-alkyne cyclotrimerization with a 

ruthenium catalyst affords 
2
H-aromatics.

53
 

Hislop et al. reports the synthesis of deutero-decyne 58 via deprotonation, with n-BuLi at -78˚C 

followed by quenching of the lithiated intermediate with deuterium oxide in a 97% yield, however 

the 
2
H-incorporation was only described as ‘high’.

54
 

 

Scheme 11  Hislop et al. describe the synthesis of 
2
H-decyne with n-BuLi and D2O 

Sabot et al. reported the synthesis of three deuterated alkynes using CDCl3 as a deuterium donor 

and reported yields and 
2
H-incorporations between 31% and 93% using catalytic 

triazabicyclodecene (TBD 10 mol%) for 12 hours.
55

  Lewandos et al. reported the synthesis of 
2
H-

1-hexyne 
2
H-incorporation 79%, 

2
H-3-methyl-1-pentyne 

2
H-incorporation 75% and 

2
H-dimethyl-1-

butyne 
2
H-incorporation 80% via stirring with sodium hydroxide in deuterium oxide for 7 hours.

56
 

Other protocols for the synthesis of 
2
H-incorporated alkynes including, Hashimi et al. This 

employed excess ethyl magnesium bromide at -40˚C quenching with deuterium oxide followed by 

stirring for a further hour at -20˚C.  Unfortunately details of the level of 
2
H-incorporation were not 

reported.
57
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Scheme 12  Hashimi et al. reported the synthesis of deuterated alkynes via ethyl magnesium bromide. 

Although numerous syntheses of terminally deuterated alkynes are available in the literature many 

of these methods require extended reaction times, strong bases, low temperatures and strictly 

anhydrous reaction conditions to afford the 
2
H-alkyne analogues in high yield with high levels of 

2
H-incorporaton.  There is clearly a necessity to generate these compounds quickly, safely and with 

high yields.  

1.4.5  
2
H-incorporated alkynes as building blocks for organic synthesis 

The ability to generate 
2
H-alkynes would be unfeasible if they couldn’t be used for further 

synthesis.  A Scifinder search for 
2
H-alkynes as a reactant affords over 500 references where they 

are used as start materials for more complex reactions. 

Tanaka et al. reported the reduction of a deuterated alkyne to the corresponding deutero-Z-alkene 

60 via hydrogenation with a palladium catalyst (Scheme 13) with a 90% yield and deuterium 

incorporation.
58

  Porcel et al. reported an elegant silver salt catalysed procedure for the cyclisation 

of α, ω-enynes 62 to a carbocycle, via a procedure that retained 99% 
2
H-incorporation.

59
  

Egorova et al. reported the gold(I) and gold(III) catalysed cyclisation which afforded heterocycle 

61 via proto-deauration of a di – vinylgold  species affording a mono-deuterated methyl group 

(Scheme 13).
59

  For the final example of 
2
H-alkynes as building blocks for synthesis; Maeyama et 

al. reports the synthesis of bicyclic aromatics from aromatic eneyne via an electrocyclisation with a 

catalytic amount (5 mol%) tungsten pentacarbonyl•THF complex.  This afforded 63 in a 99% 
2
H-

incorporation and good yield.
60

  Interestingly the deuterium atom finishes at the 4-position 

suggesting a 1,2 migration has occurred. 
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Scheme 13  Reported syntheses utilising 
2
H-incorporated terminal alkynes affording selectively deuterated products 60-

63. 

1.5  Small molecule – protein interactions 

1.5.1 Proteins  

Proteins are long polymer chains of amino acids, ranging from 50-200 monomer amino acid units.  

They are ubiquitous in nature with many different shapes and sizes.  They are synthesised using 

genetic information encoded in cells and are essential for life.  Problems with the biosynthesis of 

proteins within organisms are responsible for many diseases, such as sickle cell anaemia which is 

caused by an error in the gene which codes for the amino acid sequence that forms haemoglobin.  

This causes one amino acid in the whole protein sequence to be wrong with dramatic consequences. 

Not all proteins have positive ‘outcomes’ for organisms for example the protein produced by 

Bacillus antracis, the Anthrax toxin is comprised of three proteins known as the protective antigen, 

edema factor and lethal factor.  These three proteins all work together to attack the immune system 

in mammals and if left untreated will, ultimately, kill the host.
61

  Another protein toxin is cholera 
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toxin which is secreted by the bacterium Vibrio cholerae.  This causes the symptoms of cholera and 

again if left untreated will kill the host. 

Protein research is of great importance to the pharmaceutical industry, medicine, military and 

academics alike.  A model substrate for developing novel detection techniques of small molecules 

and proteins comes from the strong interaction of (+)-biotin and streptavidin/avidin proteins.
62

   

 

Figure 23  Crystal structure of the anthrax toxin 
 

Figure 24  Crystal structure of cholera lethal factor 

1.5.2  (+)-Biotin and (strept)avidin system 

Avidin is a 67kDa glycoprotein, found in egg white, consisting of 4 identical subunits of 128 amino 

acids each.  Streptavidin is a similar protein that is extracted from the culture broth of S.avidinii and 

is again comprised of four identical subunits.  Streptavidin doesn’t contain any carbohydrates and 

has a slightly lower mass of 60 kDa in its native form.  Much of the commercially available 

streptavidin reports a mass of 50-60 kDa depending on supplier and the mass is dependent on the 

purification technique employed as proteolytic digestion at both N and C terminus can occur, thus a 

lower mass material can be generated.
62

  Both streptavidin and avidin bind to (+)-biotin (+)-64 non-

covalently with a formation (affinity) constant of 10
15

L/mol
-1

, this puts it among the highest 

formation constants reported.  To put this into context this interaction is 10
3
-10

6
 times stronger than 

those found between ligands and their specific antibodies.  Both avidin and streptavidin proteins 

possess four binding sites for (+)biotin per molecule which make it possible to form 

multibiotinylated moieties.
62
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Figure 25  Structure and Chem 3D representation of (+)-

biotin (+)-64 

 

Figure 26  tetrameric streptavidin structure showing 

binding sites of (+)-biotin(+)-64  

 (+)-Biotin (+)-64 (vitamin H or coenzyme R) is a small molecule with a molecular weight of 244 

Da which when introduced to a biologically active macromolecule, such as DNA the biological 

activity is generally not affected.  This has resulted in its use within a diverse range of applications 

including; biotinylated anti-lectins for localisation of lectin receptors, biotinylated enzymes for 

immunological assays, biotinylated agarose or cellulose for affinity chromatography, biotinylated 

DNA and nucleotides for nucleic acid hybridisation, molecular mass markers and DNA 

sequencing.
62

  These applications often require the chemical modification of (+)-biotin (+)-64 

usually via the appendage of organic compounds and this has to be achieved without destroying the 

binding ability of the (+)-biotin (+)-64 to (strept)avidin.  However it has been reported that 

chemical derivatisation of (+)-biotin can also decreases the affinity constant for binding with avidin 

but not for streptavidin.
63

 

1.5.3  Chemical derivatisation of (+)-biotin 

A diverse array of (+)-biotin derivatives are currently commercially available from suppliers such 

as Sigma.  The commercial availability of (+)-65 and (+)-66 have found uses for coupling directly 

to the C or N-terminus of proteins allowing them to be biotinylated relatively simply and allows for 

the recovery of the biotinylated protein by affinity chromatography.  This has also lead to the 

straight forward synthesis of many alternative derivatives of (+)-biotin via coupling to amines and 

forming an amide bond with the (+)-biotin carboxylic acid.  Particularly note worthy is the 

synthesis of cleavable (+)-biotin linkers which allow for ‘catch and release’ methodology to be 

applied.  Szychowski et al.  reported the inclusion of an L-homopropargyl glycine as a methionine 

surrogate during a protein synthesis and then utilised an azido (+)-biotin derivative to ‘click’ to the 

synthesised protein.  Eluting through a streptavidin column elutes non-biotinylated proteins and the 
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biotinylated proteins remain bound.  The cleavable linker is then activated to release the new 

protein and allow it to be eluted.
64

 

Figure 27  Commercially available (+)-biotin derivatives.  (+)-65 N-hydroxy succinnamide ester (NHS), activated ester 

for coupling to amines.  (+)-66 biotin hydrazide for coupling to carboxyl groups and (+)-67 biotin-4-fluorescein, 

incorporated fluorophore for labelling DNA. 

 

Figure 28  Catch and release methodology as described by Szychowski et al. for biotinylating proteins and eluting 

through a streptavidin column, followed by cleavage and elution off the column.
64

 

Different (+)-biotin analogues were developed that would cleave under different conditions these 

included two which resulted in 98% efficiency a photocleavable analogue and an acid cleaveable 

silicon based analogue.
64
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Scheme 14  Szychowski et al. reported a photocleavable linker for release of target protein from streptavidin 

linker(top) and formic acid cleaved-silicon based linker (bottom) both gave 98% cleavage efficiency. 

The ‘click’ reaction is an extremely popular protocol due to its high yields (99%), quick reaction 

times (1 hour) and its relative simplicity.  This has resulted in a number of (+)-biotin analogues 

containing azido (see Scheme 14) and alkynyl functionalities.
65-67

  

 

Figure 29  Xu et al. reported the synthesis of (+)-70 via stirring NHS-biotin with propargyl amine and triethylamine, 

Crisp et al. reported (+)-71  via stirring NHS-biotin with 1-amino-11-undecyne in DMF and Renhack et al. reported 

(+)-72 via stirring biotin with 1-hydroxy-6 hexyne, TBTU, DIPEA and DMF at room temperature for 5 h. 

1.5.4  Biotin/(strept)avidin interactions on a surface 

The biotin/streptavidin interaction has been utilised at the surface interface for a handful of 

applications.  Wong et al. reported the functionalisation of an atomic force microscopy (AFM) 

probe with avidin via binding (+)-biotin to the AFM tip followed by addition of avidin using two of 

the four available binding sites.  An agarose bead was subsequently functionalised with (+)-biotin 

and bound to a mica surface which was then analysed by AFM using the streptavidin modified 

AFM tip.  As the tip passed over the biotinylated bead the remaining two avidin binding sites 

interacted with the (+)-biotin affording an interaction between the bead and the tip.  As the AFM tip 

moved further away from the bead the bond is effectively ‘pulled apart’ and this can be translated 

,mathematically, into a binding constant for the avidin/biotin interaction.
68

 

Hodneland et al. bound (+)-biotin to a gold surface via a mixed SAM formation of hydroxyl 

terminated alkane thiolates and (+)-biotin terminated alkane thiolates.  The (+)-biotin moiety 

incorporated a quinone propionic ester linker which can undergo electrochemical reduction and 
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subsequent lactonisation liberating the (+)-biotin from the surface,
69

 scheme 15 outlines this 

process.   

 

Scheme 15  Hodneland et al. report SAM formation with an electrochemical reducible linker to a gold surface.  Upon 

treatment of a voltage of 700mV across the gold layer the linker undergoes reduction to hydroquinone and immediate 

lactonisation releasing the (+)-biotin.
69

  

Hodneland et al. employed surface plasmon resonance (SPR) to demonstrate the (+)-biotin had 

been released.  The biotinylated surface was submitted to SPR and streptavidin passed across the 

surface and the binding event recorded.  The surface was then treated with 700mV across the gold 

layer to release the (+)-biotin and streptavidin complex.  This same sample was re-submitted to 

SPR analysis after streptavidin exposure and no binding event was observed.
69

 

Pérez-Luna et al. synthesised (+)-biotin alkane thiolates 73-75 [Figure 30] and bound them to a 

gold sputtered mica surface for investigating the association and dissociation constants of wild-type 

streptavidin and streptavidin mutants.  Two types of SAM were investigated, mixed SAMs 

(biotinylated and non-biotinylated) and pure biotinylated SAMs.  Interestingly they reported that 

the mixed SAMs were more easily disassociated from the streptavidin protein by introduction of 

‘free’ non–bound streptavidin in solution and that streptavidin bound to a surface has a much larger 

dissociation constant.  Very nearly all the streptavidin bound to the surface via the mixed SAM 

could be dissociated with ‘free’ (+)-biotin.  They suggested that the difference between the 

dissociation of mixed and pure SAMs with streptavidin was due to the closer packing of the pure 

SAM, this affords more crossovers between the streptavidin i.e. the closer packing of the SAMs 

leaves less space around the streptavidin for dissociation to occur.
70
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Figure 30  (+)-Biotin thiolates (+)-73 and (+/-)-74 were bound to gold as ‘pure’ SAMs and mixed SAMs with 75.  The 

mixed SAMs afforded lower dissociation energies with streptavidin whilst the C12-alkane thiolate (+)-74 afforded a 

more ordered structure of SAM than C11 (+/-)-73. 

Dupont-Fillard et al. has reported a reversible DNA sensor using the (+)-biotin/avidin interaction.  

Electropolymerisation of a (+)-biotin pyrrole unit (+)-76 to a polymer surface followed by binding 

of avidin to the immobilised (+)-biotin (see Figure 31).  Single stranded biotinylated DNA (ODN-

bio) (see Figure 31) was bound to the remaining sites of avidin and then this was incubated with 

complimentary and/or non complimentary biotinylated oligionucleotides (ODNc-bio) (see Figure 

31).  In the presence of the ss-DNA the two sequences hybridise to form a ds-DNA.  This was then 

treated with a fluorophore (R-phycoerythrin) incorporated streptavidin (SAPE) which binds to the 

newly incorporated strand of ds-DNA provided hybridisation has occurred and the fluorophore can 

then be detected confirming hybridisation event.
71

 

 

Figure 31  Pyrrole biotin analogue (+/-)-76 for electrochemical binding to polymer surface and scheme showing (+)-

biotin-streptavidin based DNA hybridisation detection.
71

 

Fang et al. and Pan et al. have also reported very similar methodologies to Dupont-Fillard to 

investigate the same hybridisations via (+)-biotin (strept)avidin interactions.  Fang et al. reported 
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using a fluorescence marker and a quencher on the ss-DNA sequence, which was not fluorescent, 

and after hybridisation occurs a change in the structure of the ds-DNA activates the fluorescence 

properties of the fluorophore.
72

  Pan et al. employed the methodology outlined in figure 31 however 

the biotinylated substrate has been bound to a gold electrode using alkane-thiolates to form mixed 

SAMs.
73

 

1.6.1  Self assembled monolayers (SAMs) 

Self Assembled Monolayers (SAMs) are a branch of nanoscience which involves the study of 

objects and systems with dimensions of between 1 and 100nm.
74

  An organic SAM is comprised of 

a surface substrate (usually a noble metal or silicon wafer), ligand or head group (this varies 

depending on the surface i.e. thiols on gold or alcohols on silica), a spacer unit, usually an alkane 

chain and finally a terminal functional group.
74

 

 

Figure 32  The “ideal” SAM between a gold surface and alkanethiolates, showing characteristics of the monolayer.
74

 

These nanostructures exhibit a plethora of physical behaviours derived from quantum phenomena 

including electron confinement, quantum entanglement, electron tunnelling and ballistic transport.
74

  

Since the introduction of alkanethiolates on a gold substrate by Nazzo et al. in 1983
75

 a broad range 

of applications have been generated for application in many areas of science these include nano 

fabrication, biomolecular recognition and electron-transfer processes.
76

  The ability of the organic 

chemist to perform chemical reactions at the terminal functional group and to vary the chain length 

and shape has proved to be central to the applications mentioned above.
76

  By way of an example 

chemical reactions that have been performed at the terminal functional group include Sonogashira 

and Suzuki couplings, imine formations, ‘click’ chemistry and amide bond formation.
76
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1.6.2  SAM formation on gold surfaces 

Self assembly is the spontaneous formation of an ordered molecular ensemble, the self assembly of 

monolayers is achieved via immersion of a suitable substrate in an adsorbate solution.
77

  This 

project will concentrate the SAM formation of thiols on a clean gold surface exclusively.  The 

binding of sulfur groups, which can take the form of thiols,
78

 disulfides
79

 and/or thiosulfates,
80

 

occurs as a two step process.  The first step is adsorbtion, a fast process that typically lasts a few 

minutes and covers the around 80-90% of the surface.  This followed by the second step, adsorbtion 

and reorganisation which are much slower and the reorganisation process can take several days.
81

  

The interaction of the head group sulfur and the gold substrate dominates generating a strong semi-

covalent bond (~50 kcal/mol) and the alkane chains pack together leaving the functionalised tail 

group at the interface.
74

  There is evidence that a low density lying down phase is formed first, with 

the alkyl chains lying parallel to the gold surface, before reorganisation forces the 3D structure 

associated with high density SAMs to be generated.
74

 

Strong et al. has used electron diffraction of docosanethiol (CH3(CH2)21SH) on gold film single 

crystals and concluded that the packing is an incommensurate hexagonal array on Au(111) with 

interchain distances of 4.97 Å
82

.  Two years later the results were re analysed by Chidsey et al. and 

they concluded the diffraction patterns were consistent with commensurate (√3 x √3)R30˚ 

overlayer.
83

 

 

Figure 33  Schematic diagram, white circles represent Au(111) lattice with gold unit cell(orange), red circles represent 

arrangement of alkane thiol bound to Au(111), green box represents (√3 x√3)R30˚ unit cell and blue box is the simplest 

representation of c(4x2) super lattice. 

Poirier et al. has however found evidence for a c(4x2) super lattice again via electron diffraction for 

simple alkane thiol moieties
84

 and Alves et al. have reported c(7x7) unit cells for SAMs with 

fluorinated alkane thiol SAMs as these have larger van der Waals diameter than the 5Å maximum 

for (√3 x √3)R30 unit cell.
85

  X-ray studies have also shown pairings of neighbouring sulfur head 

groups
86

 which is incompatible with the (√3 x √3)R30 unit cell and a dispute still remains as to the 

Au(111) surface-sites which the sulfur atoms bind to.  Most studies indicate the thiolate is bound to 
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the hollow site between three neighbouring Au (111) atoms.
74

  There is still much to learn about the 

exact locations of binding to gold and how the SAMs are generated. 

1.6.3  SAM characterisation 

Characterisation of SAMs bound to a surface has proved difficult.  Unlike ‘free’ compounds in 

solution a simple NMR experiment can not be performed so alternative analytical methods were 

developed to allow their characterisation.  Scanning probe microscopy, such as atomic force 

microscopy (AFM), have been developed to provide structural information on SAMs.  Alternative 

spectroscopic methods have also been utilised that allow information to be obtained including 

reflection absorption infra red spectroscopy (RAIRS).
74

  The increased resolution available from 

scanning electron microscopes
87

 and tunnelling electron microscopes has shown images of SAMs 

with astonishing clarity as shown by Sharma et al. with this image of 1-octane-thiol on Au111 

(figure 34)
88

.   

Optical techniques for the characterisation of SAMs are well established, ellipsometry has been 

used for investigating surfaces and thin films.  Ellipsometry is a simple, non-destructive technique 

which allows the thickness of the monolayer to be measured at the angstrom scale.
89

  A beam of 

polarised light is directed onto the monolayer surface and the change in the polarisation of the 

reflected light can be detected and the thickness can be calculated.
77

 

 

Figure 34  Image of 1-octane thiol (right) on gold substrate as seen by tunnelling electron microscopy (left) 
88

 

1.6.4  SAMs for the detection of biological interactions 

Surface plasmon resonance (SPR) has been developed by Biacore, a company who manufacture 

equipment for investigating biomolecular interactions on a surface.  These instruments integrate an 

optical detector, a gold coated sensor chip and a micro-fluidic arrangement of flow cells.  Self 

assembly is used on the gold chip for binding molecular probes and upon exposure to the flow cell 
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containing analytes, in solution, binding to the probe occurs.  The binding event is measured by a 

change in angle of resonance allowing the detection of the binding event to be recorded.  Which is 

reported in the form of a ‘sensorgram’ that allows determination of mass and the kinetics of 

association and dissociation in real time.  Applications of this are used for protein-protien 

interactions, drug discovery and antibody characterisation.
90

 

 

Figure 35  Biacore SPR schematic, illustrating the principles of the SPR detection technique.
91

 

The ability to add functionality to the SAM has allowed a wide variety of biologically active 

compounds to be immobilised onto the gold surface allowing rapid testing for binding events using 

Matrix Assisted Laser Desorbtion Ionisation Time of Flight Mass Spectrometry (MALDI-TOF 

MS).  The ability of SAMs to form organised layers with good control over density and orientation 

on an inert substrate makes this an attractive method for bio-assays in a high throughput (HT) 

manner
92

.   

1.6.5  SAMs and matrix-assisted LASER-desorption/ionisation time of flight mass 

spectrometry (MALDI-TOF MS) 

Matrix-assisted LASER-desorption/ionisation time of flight mass spectrometry (MALDI-TOF MS) 

is a soft ionisation technique for recording the mass spectrum of high mass biomolecules for 

example (proteins, DNA) and large organic compounds (polymers).  The advantages of this 

technique over other mass analysis techniques other than being able to analyse large compounds 

(2000+ Da) is that it produces far less mass ions compared to some of the harsher analysis 

(chemical ionisation for example).  MALDI analysis occurs by; first the desorbtion of the substrate 

via LASER irradiation, in combination with a chemical matrix (medium to aid in the absorbstion of 

LASER energy) leads to the ablation of the top layer of matrix and analyte.  The plume of 

molecules following ablation contains many species of ionised, neutral, protonated and non-

protonated matrix molecules.  These then ionise the analyte molecules in the hot plume and become 

charged.  These charged species are then detected by time of flight mass detector to afford the 

spectrum of the required analyte
93

. 
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With SAMs on metal surfaces being notoriously difficult to characterise by normal analytical 

methods, MALDI-TOF spectrometry appeared to offer a significant advantage due to the necessity 

of the analytes needing to be on the surface of the MALDI plate.  Detection of the analyte in the 

modern day with favourable conditions can be as low as the atto mole (10
-18

 mol) scale, making the 

detection of very small amounts of compound detectable
93

.  This appears to be a perfect system for 

analysing SAMs. 

Su et al. report the MALDI-TOF analysis of SAMs on a gold surface and their subsequent chemical 

reactions.  A SAM of a PEG chain terminating at the tail group with maleimide functional group 

was bound to a gold surface and treated with 2,5-dihydroxyl benzoic acid (10mg/mL, 1µL) as the 

matrix.  The sample was then analysed by MALDI-TOF ms and generated the mass spectrum 

which afforded three large ion peaks for the disulfide moieties as sodium adducts (Figure36).  

Another sample was then tested following reaction of the maleimide via Diels-Alder reaction with 

pentamethyl cyclopentadiene and this generated a new mass ion confirming the reaction on the 

surface had been a success.  This was repeated on two other SAMs and identical results were 

obtained
94

. 

 

Figure 36  Su et al. reported the MALDI-TOF analysis of maleimide SAM (top spectrum) and MALDI-TOF analysis 

following Diels-Alder reaction of maleimide with pentamethyl cyclopentadiene (bottom spectrum).
94

 

Su suggested disulfide bonds were being generated in the plume of the ablation by dimerisation of 

the ionised species; however, Ha et al. has subsequently reported evidence that the dimers are being 

produced by dissolution of the SAMs into the matrix crystals by using alcoholic solvents for matrix 
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application.  Ha tried applying the matrix in an aqueous solution which resulted in no observation 

of the di-sulfide species, he subsequently took another sample and applied the matrix in ethanol and 

let it dry.  The matrix crystals at the surface were then removed and directly placed onto a MALDI 

target and analysed affording the dimer signals once more.  This lead him to conclude that the 

matrix and solvent were critical for the analysis of SAMs by MALDI-TOF spectrometry.
95

  

Ha has also reported the matrix free MALDI-TOF analysis of SAMs using sodium and potassium 

iodide as a matrix replacement.  He has described this procedure as CALDI ms (cation assisted 

laser desoption ionisation mass spectrometry) and Ha obtained very clear mass ion peaks of simple 

SAMs as the disulfide sodium or potassium adducts.  He also noted that the power of the LASER 

for ablation was critical as high LASER powers produced gold salts and produced saturation of the 

mass spectrum.  The CALDI protocol was also successful in the analysis of SAM modified gold 

nano-particles.
96

  

1.6.6  Binding events of biological interactions on SAMs analysed by MALDI-TOF MS 

With the ability to detect SAMs on a surface by MALDI-TOF MS the next step was to generate 

evidence of binding events taking place on the SAM surface.  The interactions of proteins are 

ideally suited to analysis by MALDI-TOF MS as the high mass of proteins easily fit within the 

detection parameters of MALDI-TOF MS.  Su et al. reported the synthesis of α-mannose 

incorporated tail group on a gold platform.  This was subsequently treated with a buffered solution 

of the lectin Concanavalin A, the excess was washed off and submitted for MALDI analysis.  They 

were able to detect the ions for the singly charged and doubly charged monomer units and doubly 

ionised trimer and tetramer units of the protein.
97

 

 

Figure 37  Su et al.  report the detection of binding events between mannose and lectin on a gold surface.  Monomer, 

trimer and tetramer units of the lectin protein can be observed.
97
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Dal-Hee et al. reported analysis of anthrax inhibitors by immobilising small compound libraries 

onto a gold surface and incubating with the lethal factor protease (LF-protease).  The excess LF-

protease was washed off and then analysed using MALDI-TOF MS.  The LF-protease targets a 

specific peptide sequence and cleaves the peptide at that point.  By analysing the before and after 

m/z spectra it was possible to observe the difference in mass between the starting peptide and the 

cleaved peptide.  After analysing many synthetic peptides, synthesised via solid phase peptide 

synthesis, he found only one that was cleaved by the LF-protease.  He confirmed the results via 

solution phase cell based assays of the peptide.
98

   

It appears that the use of SAMs for detection of binding events at a surface via MALDI-TOF MS is 

clearly possible and using these methods for the high-throughput screening of new drug candidates 

should be possible. 

1.6.6  SAMs on compact discs 

With much of our lives now revolving around computers in some shape or form there has been a 

massive demand for storage and security of computer files.  This has meant that there has been a 

huge amount of research done on data storage.  With this being the case gold has been used to make 

high end CD-Rs for archiving the huge amounts of sensitive data which needs to be stored securely 

for long periods of time.  The inert nature of gold to many of the compounds and elements found in 

the atmosphere has allowed it to replace aluminium as the reflective layer in some CD-R brands.  

Thus a gold CD is a cheap and readily available media that with little modification can be used as a 

platform for SAM formation.  The gold layer is only 50 nm thick and has a slightly flatter surface 

than found on commercially available gold slides.
99

  This makes it a perfect surface for SAM 

formation.  Yu has reported a method to modify gold compact disks and remove the protective 

coating via treatment with 70% nitric acid to expose the bare gold surface which is immediately 

ready for SAM formation.  Subsequent treatment of the exposed gold layer with alkanethiols has 

produced SAMs on the CD surface.  Contact angles and other measurements performed on these 

SAMs have shown next to no differences to those recorded on standard commercially available 

gold plated glass slides.
99
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Figure 38  Yu et al. has shown the composition of the compact disc  a) poly carbonate base, the major part of the CD, 

b) photosensitive dye layer (CD-R), c) gold layer ~50nm thick, d) polymer film as protective coating, e) SAM formed 

on gold surface.
99

 

Yu published his paper on SAMs on gold CDs in 2001 and there are currently no more published 

examples of SAM formation on CDs.  There are reports of using the gold CDs as electrodes for 

electrochemical reactions and they are as good as commercially available gold electrodes and are 

much cheaper.
100

 

1.7  Compact discs and CD drives for biological assays 

The idea of bioassays on a CD surface is not new and there are a handful of papers in the literature 

reporting binding events that have been detected using standard CD players and unmodified CDs 

(without removal of the protective lacquer).  Li bound molecules to the polycarbonate by activating 

the surface with ozone to form carboxylic acid groups followed by forming amide bonds with a 

DNA tether.  The DNA was then hybridized with biotin and coated with streptavidin/gold nano 

particle conjugates.  This was subsequently placed in a standard CD drive on a PC and an error 

diagnostic program was run, therefore, errors were shown at the coordinates of the modified 

surface.
101

  Similar experiments have also been shown to work by La Clair using very similar 

methodology but different substrates and using a different error diagnostic tool.
102

 

Potyrailo et al. has taken this idea to a different level by converting the CD drive in order to extract 

the analogue signal directly from the LASER diode.
103

  This gives many benefits to the quality of 

the data compared to the previous examples.  The CD player has a built in microprocessor which 

converts the analogue signal to digital signal before it is sent to the computer as it only understands 

binary format therefore giving, for example, 1 for signal or 0 for error.  The analogue signal is then 

processed by an oscilloscope which allows a variety of different voltages to be recorded.  This 

gives more information to the user as all values can be read rather than just 1 or 0, therefore, this 

could be used as a fingerprint of the bound molecules.  This was tested using calcium sensitive 

films which were treated with different concentrations of Ca
2+

 to give a gradient, which was then 
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analysed using his modified CD drive.  As expected, the oscilloscope data showed different values 

depending on concentration.
103

 

 

Figure 39  Potyrailos CD with different concentrations of 

Ca
2+

. 

 

Figure 40  Potyrailos results from least concentrated to 

most concentrated (left to right) showing more signal 

returning to diode at lower concentrations.
103

 

 

So far there have been no reports in the literature of overlap between SAM formation on CD and 

using a conventional, but modified, CD drive to recognise binding events or even simply as a 

characterisation method to confirm the SAM formation.  This would be an extremely interesting 

concept and could allow bio-screening to be performed on a large scale and very quickly using 

already available, cheap, apparatus.   

2  Aims of research 

 

In this project we aimed to investigate the potential of utilising gold compact discs as a cheap and 

readily available media for detection of proteins via MALDI-TOF spectroscopy.  This model study 

will endeavour to utilise the strong (+)-biotin / streptavidin interaction to develop a proof of 

concept protocol which could then be extrapolated to substrates of a more useful nature.  Since the 

events of September 11
th

 the threat of terrorist attacks across the world is a real and present danger 

including the use of Anthrax and Ricin, both of which are protein based toxins.  It is hoped that this 

work could make the detection of these and other toxic proteins much quicker and more reliable to 

determine whether the threat posed by unknown substances is real.  The humanitarian applications 

of this project could also be revealed by the detection of the Cholera toxin, another deadly protein, 

in drinking water.   
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The detection of binding events with proteins and small molecules would be of huge interest to the 

pharmaceutical industry as many diseases are caused by proteins Alzheimer’s, CJD and some 

cancers.  The analysis of small molecule drug candidates with proteins could be a valuable asset to 

this industry.  Quick and cheap methods for the discovery of new drugs would not only benefit 

them but also the general population as the cost of finding new drugs becomes cheaper. 

Once the proof of concept has been developed we will endeavour to use Töger base as a scaffold 

for binding to the gold CD, through modification of the methylene bridge to incorporate a sulfer 

group for SAM formation.  The 2 and 8 positions of the Tröger’s base scaffold will be modified to 

incorporate a novel bis-azido functionality append the (+)-biotin warheads via ‘click’ chemistry, 

with varying lengths of linkers between the warhead and scaffold.  It is hoped that the chiral cleft 

and the 90˚ angle found in Trögers base will push the two warheads in opposite directions to ensure 

there is enough space to bind strongly to the streptavidin protein. 

These will then be bound to the CD surface and the protein applied before being submitted for 

MALDI-TOF spectrometry analysis. 

3  Methodology 

3.1  Tröger’s base synthesis and ‘click’ reaction 

The synthesis of racemic bis-iodo Tröger’s base (+/-)-78 has been reported by Warnmark et al. by 

the condensation of para-iodo aniline 77 with paraformaldehyde in neat trifluoroacetic acid.
15

   

 

Scheme 16  Proposed synthesis of racemic bis-iodo Tröger’s base 

It is suggested that the reaction be kept in the dark to prevent cleavage of the carbon iodine bond, 

which is susceptible to cleavage by light.  The reaction mixture will be cooled to 0˚C as the 

addition of TFA to the mixture of aniline and paraformaldehyde is reported to be highly 

exothermic.
15

   

The modification of Tröger’s base (+/-)-78 at the 2- and 8- positions to an azide moiety will be 

performed by a procedure adapted from Li et al. as racemic 2,8-bis-azido Tröger’s base (+/-)-79 has 
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not been reported in the literature.  Li generated a bis-azido functionality of 3,6-diiodo-9-octyl-9H-

carbazole 80 via a copper(I) catalysed transformation (Scheme 17).
104

   

 

Scheme 17  Li et al. reported the synthesis of a bis-azido adduct containing a tertiary amine at the para position. 

 

Scheme 18  Proposed synthesis of racemic bis-azido Tröger’s base (+/-)-79 

If successful it will be a good candidate for synthesis in a microwave reactor, due to the polar 

solvents used in this reaction, in an attempt to decrease the reaction time. 

Before attempting to generate a (+)-biotin derivative capable of ‘click’ chemistry we need to ensure 

that (+/-)-79 is capable forming a 1,2,3-1,4-triazole ring and the bicyclic core is stable to the 

conditions necessary for 1,2,3 – triazole formation.  Following a procedure reported by Bew et al
105

 

a series of propargyl substarates will be synthesised and ‘clicked’ to the scaffold.  A simple and 

mild protocol, utilising N-protected α- and β- amino acids to generate their propargyl esters with 

propargyl bromide and potassium carbonate will be attempted.  

The propargyl esters will be coupled to the scaffold via the azide-alkyne Huisgen cycloaddition 

reaction.  This 1,3 cycloaddition was coined ‘click’ reaction by Sharpless although the scope of the 

reaction was originally determined by Rolf Huisgen. 

 

Scheme 19  Azide-alkyne Huisgen cycloaddition  

In the cycloaddition shown in Scheme 20, a long reaction time is required and a high temperature is 

necessary for reaction to progress.  This also yields a mixture of 1,4 and 1,5 adducts as products.  

By introducing a copper or ruthenium catalyst to this reaction, the time required for reaction and 
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temperature requirements are greatly reduced.  The copper(I) catalysed variant will afford 

predominantly the 1,4 substituted 1,2,3 triazole (usually greater than 95%) and the ruthenium 

catalyst will afford predominantly the 1,5 substituted 1,2,3 triazole. 

 

Scheme 20  Proposed mechanism for copper(I) catalysed alkyne-azide cycloaddition   

To ensure the chiral cleft and 90˚ angle of Tröger’s base are used to push the 2 and 8 appended 

substituent’s away from each other we require the 1,2,3 triazole to be in the 1,4 orientation.  To 

achieve this, a copper catalysed procedure will need to be employed as described by Bew et al.  The 

procedure employs copper(II) sulfate pentahydrate, TBTA (tris[(1-benzyl-1H-1,2,3-triazol-4-

yl)methyl]amine) as a proton accepting ligand which negates the need for a base in the reaction and 

sodium-L-ascorbate, as a reducing agent to reduce the copper salt from copper(II) to copper (I).
106

   

 

Scheme 21 Proposed synthesis of copper(I) catalysed azide-alkyne cycloaddition to afford the 1,4 substituted 1,2,3 

triazole. 

Should this be successful then it will be the first synthesis of a 2,8-bis-azido Tröger’s base (+/-)-79 

and also the first 1,2,3 triazole containing Tröger’s base analogue. 



49 

 

3.2  Stable isotope incorporation of alkynes and Tröger’s base 

The incorporation of stable isotopes into organic molecules is of great interest to many science 

disciplines, including chemists for mechanism elucidation
107

 and biologists following the pathways 

of compounds through biological systems.  During a project to generate deuterated propargyl 

diazoacetate it became apparent that the terminal alkyne of the propargyl functionality had been 

deuterated under particularly mild conditions.  This observation was worth perusing further as 

current protocols require strong bases ie ethyl lithium,
108

 low temperatures ie -50˚C
109

 or extended 

reaction times ie several weeks
110

 with poor 
2
H incorporations >70% or no mention of 

2
H 

incorporation.  With aspirations to generate propargyl esters an experiment was designed to 

optimise this exchange for 
2
H-incorporation <95%.

43
 

 

Scheme 22  Optimisation strategy for the deuteration of terminal alkynes 

Lenev et al. reported the synthesis of d6-bis-methyl Tröger’s base analogue by employing the 

condensation of d2-paraformaldehyde with toluidine.
40

  With 
15

N-aniline commercially available a 

simple electrophillic aromatic substitution to afford 
15

N-para-iodo-aniline, followed by condensing 

this with d2-paraformaldehyde should afford 
15

N-d6-Tröger’s base (Scheme 23). 

 

Scheme 23  Proposed synthesis of 
15

N, d4, 
13

C – multi isotopically labelled Tröger’s base analogue. 

This could be followed by removal of the methylene bridge as described by Mahon et al. with 

TFAA and NaOH/EtOH and replacement with an α
 13

C-benzaldehyde
18

 should afford a novel multi 

isotopically labelled Tröger’s base.  Subsequent reaction of this labelled Tröger’s base via copper(I) 

catalysed azide insertion and ‘click’ reaction (scheme 20) with a deuterated alkyne has the potential 

to afford a deuterated 1,2,3-triazole analogue. 
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3.3  Proof of concept for MALDI-TOF analysis of SAM (+)-biotin / streptavidin binding 

Before synthesising Tröger’s base incorporated SAMs it will be prudent to see if the binding of (+)-

biotin and streptavidin on a compact disc is detectable by MALDI-TOF spectrometry.  To do this a 

series of simple (+)-biotin with linkers will be required.  Different lengths of linkers will be 

examined to ascertain optimum binding of biotin to streptavidin.   The carboxylic acid functionality 

on the (+)-biotin moiety is the most feasible position for modification.  To utilise the ‘click’ 

reaction for coupling to a disulfide linker, as will be used on the Tröger’s base scaffold, an alkynyl 

group will need to be incorporated at this position.  Reports in the literature utilise this functionality 

for amide bond formation via activation of the carboxylic acid with N,N'-

dicyclohexylcarbodiimide
111

 (DCC), however this was generated in a low 60% yield and the 

removal of the urea generated as a by product is notoriously difficult.  Esterification is another 

possibility, however, the literature doesn’t afford any hits on the Fisher esterification using 

propargyl alcohol or any alkyne moiety.  The esterification by displacement of an alkynyl bromide, 

is another possibility for this coupling.  

 

Figure 41  Required (+)-biotin linker incorporating a alkyne for subsequent ‘click’ reaction 

A di-sulfide, a self protected thiol, and azide containing linker will be necessary for coupling to the 

biotin moiety and to bind to the gold CD.  A readily available substrate that already contains a 

disulfide bond and an amine for conversion to an azide is the amino acid (L)-cystine.  The 

carboxylic acid will need to be protected and this will be accomplished by an HCl catalysed Fisher 

esterification with methanol according to the procedure of Guerrero.
112

  This will subsequently be 

converted to the bis-azide-(L)-cystine using imidazole sulfonyl azide hydrochloride as described by 

Goddard et a.l
113

  This procedure is preferred to diazotisation followed by displacement with 

nucleophillic azide as Goddard reports the stereocentre of the (L)-cystine is unaffected as imidazole 

sulfonyl azide is a diazo transfer reagent.  

 

Scheme 24  Proposed synthesis of L-cystine-bis-azide-methyl ester (L)-83 
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This will subsequently be ‘clicked’ to the biotin linkers affording di-sulfide, connected to a ‘biotin 

warhead’ with different length linker units between them.  These will need to be bound to the gold 

CD surface prior to analysis by MALDI-TOF spectroscopy.   

The CD surface will need to be cleaned and the protective lacquer removed prior to binding of the 

substrates.  Yu has reported a procedure for removal of the lacquer by immersion of the compact 

disk in 70% nitric acid.
114

  Energy-dispersive X-ray spectroscopy (EDS), scanning electron 

microscopy(SEM) and atomic force microscopy (AFM)  analysis of the gold surface will then be 

performed to ensure the surface is flat and the gold layer has been exposed.  A suitable method for 

cutting the CD into small sections will be necessary for analysis to be performed. 

A protocol will need to be developed to aid formation of the SAMs as simply spotting a solution of 

the disulfide and biotin linker onto the surface will result in evaporation of the solvent.  We 

intended to design a rig for the application of the solution to the gold, therefore ensuring the 

compounds remain in solution during the SAM formation over a 24 hour period.  The same 

procedure will be necessary for applying the streptavidin solution to the SAM, again for a 24 hour 

period.  The resulting SAM/streptavidin binding event will need to be analysed by MALDI-TOF 

spectroscopy.  Collaboration will be sought, from an outside source, as we have been expressly told 

not to disassemble the in house MALDI-TOF spectrometer. 

3.4  Tröger’s base modification for (+)-biotin and di-sulfide incorporation 

The Tröger’s base will need to be modified at the 2, 8 and 13 position to allow for a disulfide linker 

to be attached at position 13, and (+)-biotin linkers to be appended at the 2 and 8 positions.  It is 

hoped that by incorporating two (+)-biotin linkers onto the scaffold an increase in binding 

effectiveness will be observed.  To modify the C13 of Tröger’s base the methylene bridge will have 

to be removed and replaced with a suitable linker capable of modification to afford extended linkers 

and finally the disulfide unit.  This will be achieved by synthesis of a linear alkyl chain with an 

aldehyde at one end, for incorporation at the C13 position and a protected carboxylic acid, for 

future deprotection, coupling to linkers and finally to the di-sulfide moiety. 
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Scheme 25  Synthetic strategies for synthesis of protected bis-4-biotin-linker 1,2,3 Tröger’s base.  a)  i) Trifluoroacetic 

anhydride, DCM.  ii) NaOH/EtOH.  b) aldehyde, reflux, toluene.  c)  Copper(I) iodide, sodium ascorbate, N
1
,N

2
-

dimethylethane-1,2-diamine, sodium azide, DMSO/H2O.  d)  Copper(II) sulphate pentahydrate, sodium ascorbate, 

TBTA, alkyne, DMF. 

Following deprotection other linkers will be incorporated off the carboxylic acid functionality to 

investigate the effect of varying the length of the linker on SAM formation.  This will also include 

an alkynyl group for final dimerisation to the disulfide moiety [scheme 26]. 

 

Scheme 26  Proposed strategy for synthesis of dimerised Tröger’s base analogue through di-sulfide linker 

This series of dimerised compounds will be bound to the surface of the compact disc using a rig to 

ensure they remain in solution during the SAM formation process.  They will then be treated with a 

streptavidin solution to allow the interaction to take place.  The gold CD segments will then be 

analysed by MALDI-TOF spectrometry to confirm whether or not a binding event can be observed. 
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4  Results and Discussion 

4.1  Tröger’s base synthesis and functionalisation 

The original synthesis of 2,8 di-methyl Tröger’s base (+/-)-2 by Julius Tröger in 1887 was 

performed by the condensation of para-toluidine 1 with methylal [CH2-(CH3O)2] in an aqueous 

hydrochloric acid solution [Scheme 27].
1
 

 

Scheme 27  J. Trögers synthesis of Tröger’s base (2,8-dimethyl-6,12-dihydro-5,11-methanodibenzo[b,f][1,5]diazocine) 

2 

A modified variation of J. Trögers synthesis is still used today for preparing functionalised Tröger’s 

bases’ at the 2-and 8-positions.  Warnmark et al. reported the synthesis of  (+/-)-2,8-bis-iodo-6,12-

dihydro-5,11-methanodibenzo[b,f][1,5]diazocine (+/-)-78 via the condensation of para-iodoaniline 

77 with paraformaldehyde in neat trifluoroacetic acid affording (+/-)-78 in a 41% yield.
115

  

Warnmarks procedure for (+/-)-78 needed to be optimised to improve the yield for generating 

multigram quantities of (+/-)-78.  After much experimentation this was achieved by premixing one 

equivalent of para-iodoaniline 77 with 1.5 equivalents of paraformaldehyde and adding, in 

portions, to vigorously stirred neat anhydrous trifluoroacetic acid at 0°C.[Scheme 28]  The reaction 

mixture was protected from the light by covering the round-bottom flask in aluminium foil and left 

to stir for 72 hours under an argon atmosphere. 

 

Scheme 28  Synthesis of racemic 2, 8-bis- iodo Tröger’s base (+/-)-78 

This slightly altered protocol was found to be more effective for the multigram synthesis of (+/-)-

78, than the literature protocol (41%), giving an increase in yield of 13%, to 54%.  The synthesis of 

(+/-)-78 generates a racemic mixture and all attempts to resolve the enantiomers, using 0.5 

equivalents of (+)-camphor-10-sulfonic acid or d-mandelic acid failed.  The 
1
H-NMR (400MHz) 

spectrum of (+/-)-78 was very interesting.  Rather than observing a singlet for the equivalent 
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protons at positions C6 and C12 [Figure42], a splitting was observed resulting in two doublets, the 

first at δ4.61, corresponding to the exo protons of C6 and C12.  The second doublet was further 

upfield at δ4.07 and corresponds to the endo protons.  A coupling constant of 16.8Hz was observed 

between the endo and exo protons of C6 and C12 and was in agreement with 
1
H-NMR study of (+/-

)-2 reported by Pardo et al.
116

  All data for (+/-)-78 was in agreement with the literature provided by 

Warnmark et al.
115

 

 

Figure 42  
1
H-NMR (400 MHz) of racemic 2, 8-bis- iodo Tröger’s base (+/-)-78 

With Tröger’s base (+/-)-78 in hand, it was now possible to initiate studies functionalising the 2,8–

positions of (+/-)-78.  A wide variety of functionalised analogues such as, 2,8-bis-formyl, 

carboxylic acid, cyano, hydroxy
15

 and amino
117

 have been reported.  In the first instance we decided 

to emulate Li et al, who demonstrated the conversion of an aryl iodide to an aryl azide using a 

copper(I) catalysed procedure [Scheme 29].
104

  We opted to modify this procedure slightly, by 

utilizing a microwave reactor
1
 which took the total reaction time down to only one hour at 100°C, a 

significant improvement on the reported 8 hour reflux.
104

 

                                                 
1
 Microwave reactors can decrease reaction times by increasing bond vibration of polar solvents and this results in extra 

collisions, therefore, reaction times improve. 
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Scheme 29  Synthesis of racemic 2, 8-bis-azido Tröger’s base (+/-)-79 

Scheme 30 (infra vide) outlines the proposed catalytic cycle for the conversion of aryl iodides to 

aryl azides via a copper(I) catalysed procedure.  The copper(I) iodide associates with the ligand, 

followed by introduction of the azide anion with loss of sodium iodide.  This then under goes 

oxidative addition with the aryl iodide, forming a copper(III) adduct.  Reductive elimination affords 

the aryl azide product and regeneration of the original copper ligand catalyst. 

 

Scheme 30  Proposed catalytic cycle for the synthesis of aryl azides from aryl halides. 

Following purification of (+/-)-79 by flash chromatography the desired novel Tröger’s base 

analogue, (+/-)-2,8-bis-azido-6,12-dihydro-5,11-methanodibenzo[b,f][1,5]diazocine (+/-)-79 was 

afforded in an unoptimised 72% yield.  That we had generated (+/-)-79 was confirmed by full 

physiochemical analysis for example the 
1
H-NMR (400MHz) [Figure 43] observed a shift in peaks 

in the aromatic region, from δ7.45(d, J8.4 Hz), δ7.23 (s) and δ6.87 (d, J8.5 Hz) in (+/-)-78 to δ7.08 

(d, J8.5 Hz), 6.81 (d, J8.4 Hz), 6.55 (s), in the bis-azide (+/-)-79.  In the 
13

C-NMR (75 MHz) 

[Figure 44] a clear shift of the C2 and C8 from δ87.7 found in the carbon iodine bond to δ118.68, 
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117.23 in the carbon azide bond.  The presence of the azide group on the product was indicated by 

FT-IR with a strong peak at 2112 cm
-1

. 

 

Figure 43 
1
H-NMR (400MHz) of racemic 2, 8-bis-azido Tröger’s base (+/-)-79. 

 

Figure 44  
13

C-NMR spectrum comparing racemic 2, 8-bis- iodo Tröger’s base (+/-)-78 (blue) and racemic 2, 8-bis-

azido Tröger’s base (+/-)-79 (red). 

4.2  Propargyl esterification of (+)-biotin (+)-64 

 

With the synthesis of (+/-)-79 completed it was necessary to synthesise a suite of compounds with 

suitable functionality to react with the azide of (+/-)-79.  The azide functionality can be used to 

generate amines via reduction in the Staudinger reaction or hydrogenation, tetrazoles via reaction 

with cyanides, tetrazolinones via reaction with isocyanates and mercaptotetrazoles via reaction with 

isothiocyanates.
118

  We opted to generate 1, 4-bis substituted-1,2,3-triazoles from terminal alkynes 

via ‘click’ utilising a copper(I) catalysed Hüisgen 1,3-dipolar cycloaddition reaction.  For the 
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purpose of utilising Tröger’s base as a scaffold for the detection of proteins on a compact disc it 

was necessary to incorporate a suitable ligand capable of forming strong bonds with a protein.  It is 

known that the (+)-biotin – streptavidin interaction is one of the strongest non covalent bonds in 

Nature, with a dissociation constant (Kd) of approximately 10
-14

 mol/L.
119

  This interaction has been 

employed as a model study for the development of protein detection systems and has been used, as 

such, on the surfaces of nanoparticles
119

 and other surfaces i.e. silica.
120

  We envisage this 

interaction would make an ideal model for the detection of proteins on the surface of a compact 

disk. 

The synthesis of an alkynyl derived (+)-biotin (+)-64 would be necessary to utilise the (+)-biotin / 

streptavidin interaction with our azide containing scaffold (+/-)-79.  We envisage the esterification 

of the carboxylic acid functionality with propargyl alcohol 84 via a Fisher esterification, which 

utilises the acid-catalysed, typically hydrogen chloride, condensation of an alcohol and carboxylic 

acid, should afford (+)-85 [Scheme 31].  A Scifinder search, at the time, for (+)-85, afforded no hits 

but (+)-85 was subsequently reported by Zhang et al
2
  in 2012.

121
  

The attempted Fisher esterification of (+)-64 by refluxing (+)-biotin (+)-64 in propargyl alcohol 84 

with 10 mol% of hydrogen chloride, formed in situ by the reaction of acetyl chloride with propargyl 

alcohol 84 was disappointing and afforded a brown tar after 4 hours.  Analysis of this tar by 
1
H-

NMR (400MHz) couldn’t confirm conclusively that (+)-85 had been formed. 

 

Scheme 31  Synthesis of (+)-biotin propargyl ester (+)-85 top reaction pathway affords the unsuccessful synthesis via 

Fisher esterification and bottom pathway affords the successful synthesis. 

                                                 
2
 Disappointingly Zhang didn’t cite the Letter, published by Bew and Hiatt-Gipson, that brought the 

facile synthesis of propargyl esters to the literature in 2010. 
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Using this protocol the Fisher esterification was disappointing.  As no product was isolated and 

because the cost of (+)-biotin (+)-64, approaching £50 a gram, (Sigma Aldrich 2012) it was crucial 

to find a more efficient synthesis of (+)-85.  A literature search on the synthesis of propargyl esters 

was, surprisingly, rather limited.  The reported procedures employed relatively expensive reagents 

i.e. N-(3-dimethylaminopropyl)-N-ethylcarbodiimide hydrochloride (£15/gram Sigma Aldrich 

2012) 
122

and extended reaction times i.e. 48 hours.
123

  Sudhir et al. reported the synthesis of the 

propargyl ether of (S)-tyrosine and the bis-propargyl ester of (S)-aspartic acid using propargyl 

bromide 86 and potassium carbonate.
124

  We opted to employ this method for the esterification of 

(+)-biotin (+)-64 and gratifyingly the required ester (+)-85 was afforded in an unoptimised 91% 

yield.  The 
1
H-NMR (400MHz) spectrum of (+)-85 displayed a triplet at δ2.45 (t, J2.5 Hz) and a 

singlet at δ4.61 (d, J2.5 Hz) corresponding to the alkynyl proton and the propargyl methylene 

protons respectively, see [Figure 45].   

 

Figure 45  
1
H-NMR (400MHz) spectrum of (+)-biotin propargyl ester (+)-85. 

The O-propargylation of carboxylic acids has not been widely reported, and a Scifinder search 

afforded only ~10 hits (2010), with the increasing popularity of ‘click’ (Hüisgen 1,3-dipolar 

cycloaddition) chemistry amongst the research community it was thought that development of the 

facile O-propargylation reaction should be more extensively investigated. 

4.3  Propargyl ester synthesis of N-protected α / β- amino acids 

A selection of structurally and functionally diverse N-protected α- or β- amino acids were chosen, 

including known O-propargyl esters which afforded poor yields or were synthesised by other 

methods.  Investigating the possibility that our reaction would be an improvement, these were 

subjected to our reaction conditions[Scheme 32].  
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Scheme 32  General reaction scheme for the mild synthesis of propargyl esters 87-104 

The SN2 O-propargylation [Scheme 32], afforded the corresponding esters 87-104 [Table 1] for a 

plethora of N-protected α- and β-amino acids.  The carboxylic acid functionality of natural, 

unnatural, α- and β-amino acid substrates were successfully O-propargylated in good to excellent 

yields i.e. 41-95%.[Table 1]  However, N-fmoc and N-acetyl protecting groups were not compatible 

with our conditions, it is known that these groups are removed by relatively weak basic reaction 

conditions [Scheme 33].
125

  It was also essential that the optical activity of the stereogenic centre 

within the α-amino acids was retained during the reaction as basic conditions have been reported to 

racemise enantiomerically pure α-amino acids.
125

 

After an aqueous work up 87-104 was filtered through NH2 loaded silica
3
, eluting with 

dichloromethane, this removed unreacted α- or β-amino acid and propargyl bromide 86.  

Subsequent 
1
H-NMR (400MHz) analysis confirmed the desired compounds were generated in 

purities <95% and did not require flash chromatography. 

 

Scheme 33  Reaction mechanism for N-Fmoc deprotection with piperidine 

Product Yield % Product Yield % Product Yield % 

 

83 

 

95 

 

65 (14) 

                                                 
3
 Isolute prepacked flash chromatography cartridge, containing amino functionalised silica. 
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85 

 

81 

 

86 (62) 

 

82 

 

89 

 

85 

 

92 

 

95 

 

85 

 

91 

 

86 

 

43 

 

67 

 

71 

 

41 

Table 1 Synthesis of α-, β- amino acid derived propargyl esters 

The O-propargyl ester of (+)-biotin (+)-85 was excluded from the communication for several 

reasons; firstly it was not a N-protected amino acid and secondly it required purification, unlike the 

α-, β-amino acids, via flash column chromatography.
105

  We were delighted to see that the 

structurally and functionally diverse propargyl esters 87-104 were synthesised in good to excellent 

yields i.e. (43-95%).  It was particularly noteworthy that the new procedure afforded improved 

yields for the synthesis of N-boc-(S)-serine-O-propargyl ester (S)-89, reported by Sanda et al. in a 

disappointing 14% yield via 1-[3-(dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride 

(EDC•HCl) coupling of N-boc-(S)-serine with propargyl alcohol 84.
122

  N-Cbz-(S)-phenylalanine 

propargyl ester 92 was also reported in 1977 by Loeffler et al. with a 62% yield, using a 

triethylamine base, however, this required elevated temperatures (75°C) and purification by flash 
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column chromatography.
126

  The propargyl esters 87-104 are the first examples of such compounds, 

reported by Bew and Hiatt-Gipson.
105

 

Synthesis of N-dansyl-L-proline propargyl ester (S)-95 employing our procedure was particularly 

gratifying.  It was felt that this substrate could have significant potential as a readily employed 

‘clickable’ end capping fluorophore for protein and peptide applications and could easily be utilized 

by biologists as a fluorescence probe, both in vitro and vivo.
127

  

The 
1
H-NMR (400MHz) spectra of (S)-95 displayed a clear triplet for the alkynyl proton δ2.44 (t, 

J2.5 Hz)  and the propargyl methylene δ4.50 (d, J2.5 Hz).  The 
1
H-NMR(400MHz) spectrum 

[Figure 46] following purification by Isolute NH2 loaded silica, is shown below and indicates the 

excellent levels of purity routinely generated in this protocol, >95% by 
1
H-NMR. 

 

Figure 46  
1
H-NMR of N-dansyl-(L)-proline-O-propargyl ester a novel ‘clickable’ fluorophore 

The synthesis of ‘clickable’ fluorophores is of interest to the research community; they are 

frequently used in molecular biology, for ‘tracing’ interactions in vivo and vitro, 
127

 and in physical 

chemistry, for excitation by LASER radiation.
128

  Rhodamine 6G 105 is routinely employed as a 

LASER dye that is excited by Nd:YAG and nitrogen LASERs at 1064 nm and 331.1 nm 

respectively.  A procedure to modify rhodamine 6G 105 into a ‘clickable’ substrate was, at the time 

we required it, unreported.  With this in mind we opted to adapt a procedure reported to incorporate 

a propargyl group.  With this in mind rhodamine 6G 105 was left to stir for 16 hours, under an 

atmosphere of argon at room temperature, with propargylamine 106 and Hünigs base in N-N-

dimethylformamide.  Following an aqueous workup and recrystallisation from ethanol afforded a 

crystalline pink solid.  The small pink platelets were submitted for X-ray crystallographic 

diffraction analysis.  Thus confirming a propargyl rhodamine analogue 107, had indeed been 

generated and in good yield 76%.   
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Scheme 34  Synthesis of propargyl rhodamine 6G 107 

Interestingly the X-ray structure of 107 showed that there was no π – stacking observed, which, was 

peculiar for this type of aromatic compound.  Presumably this was due to the perpendicular group, 

in a fixed configuration, that was hindering the stacking.   

 

  

Figure 47  Crystal structure of propargyl rhodamine 6G 107.  Data collected and structure solved by Dr. D. Hughes, 

UEA. 

Finally, 4-hydroxycoumarin 108, a member of the vitamin K antagonists anticoagulant drug 

molecules, was subjected to our procedure (outlined in Scheme 35) thus affording phenolic 

propargyl ether 4-hydroxy coumarin 109.  This utilised the stability of the phenoxide type anion, to 

increase the nucleophilicity of the alcohol. 

 

Scheme 35 Synthesis of 4-propargyl ether coumarin 109 
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4.4  Synthesis of 2,8-bis(4-substituted-5H-1,2,3-triazol-1-yl)-6,12-dihydro-5,11-methano 

dibenzo[b,f][1,5]diazocines 

With a selection of alkynes 87–104 and 2,8-bis-azido Tröger’s base motif (+/-)-79 in hand,  we 

were ready to attempt the synthesis of 2,8-bis-(4-substituted-5H-1,2,3-triazol-1-yl)-6,12-dihydro-

5,11-methanodibenzo[b,f][1,5]diazocines 112-120.  Although Tröger’s base is not a traditional 

beta-turn director, as it turns through only 90˚, it bears a resemblance to proline, a known 

constituent of beta-turn directors.  Proline has an angle of 90˚ [Figure 48 A], however when it’s 

found in a peptide chain it will direct through 180˚.  Figure 48 B and C display the 90˚ turn of the 

Tröger’s base scaffold, the 1,2,3 triazole should be in the 1,4-configuration and not in the 1, 5-

configuration [Figure 48 Band C] this we anticipate would aid Tröger’s base afford a 90˚ turn 

between the 2, 8- appended motifs. 

A  

 
B  

 

C 

Figure 48 A)  Chem 3D structure of β-turn director (L)-proline affording a 90˚ turn via the amino and carboxylic acid 

functionality.  B) Tröger’s base analogue affording a 90˚ angle and extension properties of the 4-substituted 1,2,3-

triazole.  C) Tröger’s base analogue affording 90˚ angle and non-extending properties of 5-substituted 1,2,3-triazole. 

A model reaction with phenyl acetylene 110 and (+/-)-79 was attempted using a copper(I) catalysed 

Hüisgen 1,3-dipolar cycloaddition.  Copper(II) sulfate pentahydrate, TBTA (tris[(1-benzyl-1H-

1,2,3-triazol-4-yl)methyl]amine), sodium-(L)-ascorbate in N-N-dimethylformamide the synthesis of 

(+/-) 111 was attempted.  2,8-Bis-azido Tröger’s base (+/-)-79, phenyl acetylene 110 and the above 

reagents where sealed in a microwave vial and heated to 70°C, (via-microwave irradiation) for 1 

hour, before an aqueous work up and extraction with ethyl acetate was employed to remove the N-

N-dimethylformamide.   
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Scheme 36  Model ‘click’ reaction of 2,8-bis-azido Tröger’s base (+/-)-79 with phenylacetylene 110 

Purification of (+/-)-111 by flash column chromatography on silica gel, eluting with diethyl-ether, 

afforded a white solid that was recrystalised from dichloromethane (+/-)-111 was afforded as 

orthorhombic, colourless crystals.  Subsequent X-ray diffraction analysis confirmed the product had 

not only been synthesised in a good yield (84%) but it was also in the desired 1,4-configuration 

[Figure 49 A].  The crystal structure affords both enantiomers (RR)-111 and (SS)-111 were formed 

in equal amounts [Figure 49 B] and an interlocking packing system [Figure 49 C], which indicates 

the π-stacking of the aromatic systems of the triazoles, Tröger’s base and phenyl ring systems. The 

angle between the aromatic planes of (+/-)-111 was calculated using: 

  Least-squares planes (x,y,z in crystal coordinates) and deviations from them 

 (* indicates atom used to define plane) 

  

  13.0261 (0.0131) x + 1.6108 (0.0062) y - 8.4602 (0.0045) z = 8.8029 (0.0101) 

  

 *    0.1179 (0.0007)  N1_$1 

 *   -0.0980 (0.0007)  N1 

 *   -0.1333 (0.0010)  C1_$1 

 *    0.0710 (0.0009)  C11 

 *    0.0424 (0.0010)  C16 

  

 Rms deviation of fitted atoms =   0.0981 

  

  13.0261 (0.0131) x + 1.6108 (0.0062) y + 8.4602 (0.0045) z = 11.5416 (0.0101) 

  

 Angle to previous plane (with approximate su) = 71.97 ( 0.04 ) 

  

 *    0.0980 (0.0007)  N1_$1 

 *   -0.1179 (0.0007)  N1 

 *    0.1333 (0.0010)  C1 

 *   -0.0710 (0.0009)  C11_$1 

 *   -0.0424 (0.0010)  C16_$1 

  

 Rms deviation of fitted atoms =   0.0981 

Thus the angle between the planes equals 180 - 71.97 = 108.03° (+/- 0.04) 
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A 

 

B 

 

C 

 

Figure 49 Crystal structure of  2, 8 bis–(4-phenyl-1H-1,2,3-triazole)-6H, 12H-5, 11-methandibenzo[b,f][1,5]diazocine 

(+/-)-111 and structure of (+/-)-111.  Data collected and structure solved by Dr. M. Schorman, UEA 

 

Figure 50  
1
H-NMR (300MHz) of (+/-)-111 

The 
1
H-NMR (300 MHz) of (+/-)-111 shows the C5 triazole proton, as a singlet at δ8.08, this agrees 

with literature values for a proton on the C5 of a 1,2,3-triazole. The Tröger’s base exo and endo 

methylenes of (+/-)-111 were doublets at δ4.83 (J16.8 Hz) and δ4.32 (J16.8 Hz) respectively, the 

singlet at δ4.40 was associated with the bridge head methylene protons, indicating the scaffold was 

not ring opened by the reaction conditions employed. With the success of this, the first example of 

a 1,2,3-triazole containing Tröger’s base analogue (+/-)-111, we opted to construct a small library 

of bis-appended analogues [112-120]. 
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2,8-bis(4-substituted-5H-1,2,3-triazol-1-yl)-6,12-dihydro-5,11-

methanodibenzo[b,f][1,5]diazocines 112-120 

1,2,3 Triazole 

C5 Proton ppm 
Yield % 

 

δ8.32 

(CDCl3) 
95 

 

δ8.53 

(CDCl3) 
74 

 

δ8.06 

(CDCl3) 
93 

 

δ7.95 

(CDCl3) 
70 

 

δ 7.88 

(CDCl3) 
78 

 

δ 8.66 

(DMSO) 
55 

 

δ 7.98 

(CDCl3) 
70 

 

δ 8.02 

(CDCl3) 
72 

 

δ 7.90 

(CDCl3) 
74 

Table 2 Synthesis of racemic 2,8-bis(4-substituted-5H-1,2,3-triazol-1-yl)-6,12-dihydro-5,11-methanodibenzo[b,f][1,5]-

diazocines 112-120. 
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111 - 120 were all synthesised in good i.e. 55% to excellent i.e. 95% yields, of particular interest 

within this library is (+/-)-116 and (+/-)-120.  (+/-)-116  provides access to an aryl extended 

Tröger’s base with the possibility of functionalising the carbon-iodine bond using transition-metal 

based chemistry for example Sonogashira or Suzuki couplings.  (+/-)-120 is the phthalimide 

protected amine which can be liberated to form the amine by hydrazinolysis.[Scheme 37]  This 

would be useful for subsequent amine coupling reactions for example amide bond formation and 

the methylene between the triazole and amine would allow for greater rotation. 

 

Scheme 37  Proposed Gabriel deprotection of phthalimide Tröger’s base derivative (+/-)-120 affording a primary amine 

with rotation around the methylene. 

4.5  Synthesis of 2,8-bis(4-N-protected-α- or β-amino acids-5H-1,2,3-triazol-1-yl)-6,12-

dihydro-5,11-methanodibenzo[b,f][1,5]diazocines  

With 111-120 in hand, we turned our attention to the application of the O-propargyl-N-protected 

amino acids 121-130, submitting them to the same procedure as the above examples 111 – 120. 

2,8-bis(4-N-protected-amino acid-5H-1,2,3-triazol-1-yl)-6,12-

dihydro-5,11-methanodibenzo[b,f][1,5]diazocines 121-130 

1,2,3 Triazole C5 Proton 

ppm 

Yield 

% 

 

7.97 

(CDCl3) 
74 

 

7.82 

(CDCl3) 
76 

 

7.82 

(CDCl3) 
74 



68 

 

 

7.91 

(CDCl3) 
63 

 

7.99 

(CDCl3) 
71 

 

7.96 

(CDCl3) 
64 

 

7.72 

(CDCl3) 
61 

 

8.08 

(CDCl3) 
60 

 

8.46 

(CDCl3) 
68 

 

7.73 

(CDCl3) 
57 

Table 3  Synthesis of  2,8-bis(4-N-protected-amino acid-5H-1,2,3-triazol-1-yl)-6,12-dihydro-5,11-methanodibenzo[b,f] 

[1,5]diazocines 121-130. 

The copper(I) catalysed Hüisgen 1,3-dipolar cycloaddition worked very well affording the desired 

N-protected-α-β-amino acid derived substrates 121-130 in good yields i.e. 57-74%.  Of particular 

interest was the incorporation of unnatural para-fluoro-N-boc-(R)-phenylglycine 130, it was 

envisaged that this could serve as an unusual biological probe using 
19

F-NMR analysis.  As fluorine 

is rarely found in natural biological systems it can be incorporated into peptides and the changes in 
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conformation due to interactions with the lipid membranes of cells can be traced by 
19

F-NMR 

analysis see Figure 51.
129

 

 

Figure 51  Incorporation of fluorine into peptides, followed by introduction to cells affords changes in conformation 

that can be detected by 
19

F-NMR analysis.
129

 

 

Figure 52  
1
H-NMR (300 MHz) of 130 

In the 
1
H-NMR (300MHz) spectrum of 130 the C5-1,2,3-triazole proton was observed as a singlet at 

δ7.73, the characteristic Tröger’s base exo and endo methylenes were observed as doublets at δ4.79 

(J16.7 Hz) and δ4.27 (J17.0 Hz) respectively, and the singlet at δ4.37 corresponds to the bridge 

head methylene protons.  The expected doublet associated with the meta-protons (light blue on 

aromatic ring) was split by the neighbouring fluorine affording a triplet at δ7.01 (J8.6 Hz). An 

optical rotation of 130, [α]
26

D -8.6 (c 1.0, CHCl3), indicated that the stereogenic centre of 130 has 

been preserved, however, no further investigations were undertaken i.e. chiral HPLC analysis, to 

confirm this. 
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4.6  Synthesis of symmetrical 2,8-bis(4-O-protected-carbohydrates-5H-1,2,3-triazol-1-yl)-6,12-

dihydro-5,11-methanodibenzo [b,f][1,5]diazocines.   

Following the successful synthesis of α-β-N-protected amino acid derived analogues 121-130 we 

turned our attention to the synthesis of carbohydrate derived Tröger’s base analogues 121-130.  

Protected O-acetate monosaccharide’s, (i.e. glucose, galactose, mannose) and disaccharides (i.e. 

lactose, maltose) were O-propargylated at the anomeric-carbon using a protocol of Mereyala et al, 

who took O-acetate-protected carbohydrates, stirring them with the Lewis acid boron trifluoride 

diethyl etherate and an excess of propargyl alcohol 84.
130

 

 

Scheme 38  Reaction mechanism for synthesis of O-acetate protected propargyl-β-glucose utilising the neighbouring 

effect of the C2 acetate group. 

By employing the O-acetate protecting group we have strategically employed the neighbouring 

group affect which affects the ratio of α– and β- glycoside formation.  In summary the acetate at C2 

forms the acetoxonium ion which hinders attack of propargyl alcohol 84 from the bottom face, 

therefore affording the β-glycoside in preference to the α-glycoside.   The major product of the 

glycosylation was the β-glycoside (β)-131.  The β-propargyl glycosides of glucose 131, galactose, 

maltose and lactose O-acetates, were all synthesised following Mereyala et al. procedure.  These 

were all separated from the α-anomer by column chromatography and data collected matched the 

literature values for the β-anomers.
130

  The 
1
H-NMR (300MHz) spectra of (β)-131 [Figure  53] 

afforded signals matching the β-anomer as reported by Mereyala et al.
130

 The coupling constant 

between C1 δ5.20 (t, J9.5 Hz) and C2 4.97 (dd, J9.6 Hz) afforded an axial-axial interaction, 

affording an angle of 180˚ between the protons thus a greater coupling constant than would be 

observed for the α-anomer. 
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Figure 53 
1
H-NMR (300MHz) spectrum of O-acetate-β-glucose-propargyl ether (β-131) 

For the O-benzyl protected-β-glucose (β)-132 the tetra-O-acetate (β)-131 was reacted with sodium 

in methanol, generating sodium methoxide in situ, this hydrolysed the acetates allowing the 

deprotonation of the hydroxyls with sodium hydride and addition of benzyl bromide afforded the 

corresponding O-benzyl protected β glucose (β)-132.  The physiochemical analysis of this substrate 

matched that reported by Wardrop et al.
131

 

 

Scheme 39  Synthetic route to O-benzyl-β-glucose-propargyl ether β-132 

The propargyl β-carbohydrates were then coupled to the Tröger’s base scaffold (+/-)-79 via a 

copper(I) catalysed Hüisgen 1,3-dipolar cycloaddition using the same conditions as previously 

described, affording 133-136. 

Symmetrical 2,8-bis(4-O-protected-β-carbohydrates-5H-1,2,3-triazol-1-

yl)-6,12-dihydro-5,11-methanodibenzo [b,f][1,5]diazocines  

1,2,3 Triazole 

C5 Proton ppm 

Yield 

% 

 

7.76 

(CDCl3) 
82 
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7.88 

(CDCl3) 
82 

 

7.78 

(CDCl3) 
80 

 

7.85 

(CDCl3) 
68 

Table 4 Synthesis of Symmetrical 2,8-bis(4-O-protected-β-carbohydrates-5H-1,2,3-triazol-1-yl)-6,12-dihydro-5,11-

methanodibenzo [b,f][1,5]diazocines 133-136. 

For the final carbohydrate derivative in this series, a Sialic acid, N-acetylneuraminic acid (Neu5Ac) 

137 was chosen due to its importance in nature as it is found on the surface of all mammalian cells.  

Sialic acids are found in many cells, including both prokaryotic and eukaryotic, they have a an 

important role in biological processes such as cell-cell recognition and small molecule-cell 

recognition.  The generic term Sialic acid is used to describe the family of nine carbon containing 

carbohydrate acids and they are found at the surface of many eukaryotic cells.  They confer 

important properties to the cell surface.  Bacteria have found a use for Sialic acids in order to resist 

the hosts’ immune responses and to interact with host cell surfaces.  The most abundant of these 

Sialic acids is Neu5Ac.
132

 

137 was modified to afford the first example propargylated Neu5Ac 138.  138 was prepared 

following a modified procedure by Baumberger et al. who reported an example of a methyl ester 

derivative of Neu5Ac.  The sialic acid 137 was suspended in propargyl alcohol 84 and one 

equivalent of trifluoroacetic acid added.  The suspension was warmed to 40˚C and left to stir for 72 

hours under an atmosphere of argon.
133

  The unreacted Neu5Ac 137 was filtered off through a short 

plug of silica and the solvent removed.  The residue was redissolved in pyridine, followed by 

addition of acetic anhydride and a catalytic amount (10 mol%) of DMAP.  Following flash 

chromatography on silica, eluting with ethyl acetate, a white solid was isolated.  Subsequent 

physiochemical analysis indicated this was the required derivative 138 generated in a 43% yield. 
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Scheme 40 Synthesis of per-acetylated Neu5Ac propargyl ester 138 

 

Figure 54  
1
H-NMR (400 MHz) of per-acetylated Neu5Ac propargyl ester 138 

The 
1
H-NMR (400MHz) spectrum [Figure 54] of 138 displayed the propargyl methylene multiplet 

at δ4.74, the signal shown in green, (partially obscured by the alkynyl proton (orange) at δ2.52) is 

the equatorial proton, as reported by Johannes et al, with the axial proton found upfield,
134

 which in 

our case, is totally obscured by the O-acetate signals.  The signal observed at δ1.86 ppm, shown in 

red, corresponds to the N-acetyl protecting group.  FT-IR spectroscopy affords a strong peak 3277 

& 2129cm
-1

 corresponding to the terminal alkyne proton stretch and C-C alkyne respectively. 

138 was subsequently ‘clicked’ under milder reaction conditions (as opposed to µW irradiation at 

70˚, 1 hour), to prevent its thermal decomposition a problem reported by Baumberger et al. at 

temperatures greater than 40˚C.
133

  Our procedure employed the same reagents used for previous 

‘click’ reactions, however, the reaction was left to stir at room temperature for 24 hours.  The 

desired bis-substituted sialic acid Tröger’s base adduct 139 was afforded in a 58% yield. 

Gratifyingly, both N-acetyl and O-acetate protecting groups were retained, [Figure 55] and an 

optical rotation of 139 [α]
23

D -27 (c 1.0, CHCl3) suggests that stereogenic centres were present, 

however, no further analysis to prove this was undertaken. 
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Figure 55 Structure and 
1
H-NMR (400MHz) of 2, 8 bis–(((1S,2R)-1-((2R,3R,4S,6R)-3-acetamido-4,6-diacetoxy-6-

(((1H-1,2,3-triazol-4-yl)methoxy)carbonyl) tetrahydro-2H-pyran-2-yl)propane-1,2,3-triyl triacetate))-6H, 12H-5, 11-

methanodibenzo[b,f] [1,5]diazocine 139 

From the 
1
H-NMR (400MHz) spectra of 139 [Figure 55], the diagnostic signal of the Neu5Ac C3 

equatorial proton at δ2.46 (dd, J13.4, 5.0 Hz) was clearly visible. The aromatics δ7.52 (t, J7.9 Hz), 

7.37 (d, J5.4 Hz), 7.23 (d, J8.7 Hz) and methylenes 4.73 (d, J16.9 Hz), 4.31 (s, 2H), 4.24 (d, J17.1 

Hz) (light blue and purple) associated with the Tröger’s base scaffold were observed.  The signal of 

the axial C3 proton of Neu5Ac is still obscured by the O-acetates and the 1,2,3 triazole C5 protons 

(orange) were observed at δ 8.09 (d, J3.1 Hz) 

4.7  Unsymmetrical 2-(4-substituted-5H-1,2,3-triazol-1-yl)-8-(4-substituted-5H-1,2,3-triazol-1-

yl)-6,12-dihydro-5,11-methanodibenzo[b,f][1,5]diazocine  

With the synthesis of a plethora of symmetrical 2,8-bis-1,2,3 triazole containing Tröger’s base 

analogues accomplished, we attempted to de-symmetrise Tröger’s base via chemoselective ligation 

at the 2- and 8- positions.  One equivalent of phenyl acetylene 110 was reacted with (+/-)-79, using 

the same coupling reagents as previously employed, however the reaction was diluted to 

approximately 0.05M to promote a mono ‘click’ coupling.   Gratifyingly a mono-substituted-1,2,3 

triazole containing Tröger’s base scaffold (+/-)-140 was afforded in a 52% yield.  
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Scheme 41 Synthesis of 2-azido-8-(4-phenyl-1H-1,2,3-triazol-1-yl)-6,12-dihydro-5,11-methanodibenzo[b,f][1,5] 

diazocine (+/-)-140 

 

 

Yield 51% 
Azide 

FT-IR 
2112 cm

-1
 Yield 47% 

Azide 

FT-IR 
2115 cm

-1
 

 

The reaction afforded the desired product (+/-)-140 in an unoptimised but gratifying 52% yield, 

following an aqueous work up and flash chromatography on silica gel eluting with diethyl ether.  

Recovery of the unreacted azide 27% (+/-)-79 and the bis-substituted product 13% (+/-)-111, 

afforded an overall 92% recovered yield.  The presence of an intact azide in (+/-)-140 was 

confirmed by FT-IR spectroscopy, a strong signal was observed at 2113 cm
-1

.  This procedure was 

elaborated to incorporate a mono-substituted 2-napthalene (+/-)-141 and O-benzyl glucose 142 

derivatives.  All three examples afforded the required products 140-142 in reasonable yields 47-

52%.  The O-benzyl glucose derivative was inseparable from the bis-substituted product by flash 

chromatography, FT-IR of the mixture afforded an azide peak at 2115 cm
-1

 and 
1
H-NMR analysis 

afforded a purity of 85% so was used for subsequent reaction without further purification.   
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Figure 56  
1
H-NMR (400MHz) spectrum of  2-azido-8-(4-(naphthalen-2-yl)-1H-1,2,3-triazol-1-yl)-6,12-dihydro-5,11-

methanodibenzo[b,f][1,5]diazocine (+/-)-141 

The 
1
H-NMR (400MHz) spectrum [Figure 56] of (+/-)-141 afforded a more complex spectrum than 

the bis-substituted (+/-)-112 due to the unsymmetric ‘click’ coupling.  The singlet of the 1,2,3-

triazole C5 proton (dark blue) at δ8.38 was observed and the singlet at δ8.18 corresponds to the 1-

napthyl proton (red).  The Tröger’s base C13 proton (pink) was observed as a singlet at δ4.32, the 

endo and exo protons (light blue) were split into a doublet of doublets at δ4.72 (dd, J16.8, 9.3 Hz) 

and δ4.19 (dd, J16.9, 10.4 Hz).   

With mono-substituted analogues 140-142 in hand, their unsymmetrical elaboration was completed 

via a second ‘click’ reaction on the remaining azide.  This time employing a different alkyne via the 

same methodology as previously employed for the symmetrical coupling (µW irradiation 70˚C, 1 

hour).  The Neu5Ac derivative 149 was not heated and was left at room temperature for 24 hours to 

prevent thermal degradation.   

Unsymmetrical 2-(4-substituted-5H-1,2,3-triazol-1-yl)-8-(4-

substituted-5H-1,2,3-triazol-1-yl)-6,12-dihydro-5,11-

methanodibenzo[b,f][1,5]diazocines 

143-149 

1,2,3-Triazole C5 

proton ppm 

Yield 

% 

 

8.07 

8.01 

(CDCl3) 

72 



77 

 

 

8.08 

7.95 

(CDCl3) 

71 

 

8.39 

8.20 

(CDCl3) 

72 

 

8.39 

8.20 

(CDCl3) 

73 

 

7.93 

7.87 

(CDCl3) 

58 

 

8.08 

7.84 

(CDCl3) 

64 

Table 5  Synthesis of Unsymmetrical 2-(4-substituted-5H-1,2,3-triazol-1-yl)-8-(4-substituted-5H-1,2,3-triazol-1-yl)-

6,12-dihydro-5,11-methanodibenzo[b,f][1,5]diazocines 143-149. 

The 
1
H-NMR (400 MHz) spectrum of 143 [Figure 57] afforded two singlet signals at δ8.07 and 

δ8.01 they corresponded to the 1,2,3-triazole C5 protons of the phenyl-triazole and the N-dansyl-L-

proline-O-triazole respectively.  This was determined by matching the singlet for the 1,2,3- triazole 

found on the mono-substituted scaffold and comparing this with the new 1,2,3-triazole singlet.  The 

quartet at δ5.25 (J13.0 Hz) corresponded to the methylene adjacent to the 1,2,3-triazole of the N-

dansyl-L-proline functionality.  The Tröger’s base methylenes (green) at C6 and C12, and their endo 

and exo protons, were observed as a doublet of doublets at δ4.78 (J17.6, 8.4 Hz) and δ4.27 (J17.4, 

7.6 Hz) the matching J values were a strong indication that these were the correct assignments.  The 

C13 bridgehead methylene (orange) of the Tröger’s base afforded a singlet at δ4.37.  The methyl 

protons of the dansyl fluorophore were observed as a singlet at δ2.84.  The disappearance of the 
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azide peak in the FT-IR spectra confirmed the azide moiety had been consumed during the second 

‘click’ reaction. 

 

Figure 57  
1
H-NMR (400MHz) of 2,-(4-phenyl-1H-1,2,3-triazole),8,-((S)-(1H-1,2,3-triazol-4-yl)methyl 1-(5-

(dimethylamino)naphthalen-1-ylsulfonyl)pyrrolidine-2-carboxylate)-6H, 12H-5, 11-methanodibenzo [b,f][1,5]diazocine  

143. 

4.8  Biological testing of 2, 8-appended 1,2,3-triazole Tröger’s bases 

4.8.1  DNA intercalation  

Veale et al, Tatibouët et al, Baldeyrou et al. and Bailly et al. have all independently reported on the 

DNA intercalation properties of Tröger’s base analogues.
28, 31, 135, 136

  Tatibouët et al. reported the 

binding of the acridine analogue of Tröger’s base (-)-150 to calf thymus B-DNA to be an 

enantiospecific process and the (-)-150 enantiomer affording a preference for binding.  This was 

determined via the resolution of (+/-)-150, achieved by crystallisation of racemic (+/-)-150 with the 

(+)-dibenzoyl tartrate salts which afforded (-)-150 in an 80% ee.  The resolved (-)-150 was 

subsequently submitted to liquid-liquid partition experiments between an aqueous solution of ct-

DNA and (-)-150 in n-butanol.  This biphasic mixture was vigorously stirred and the n-butanol 

layer separated and analysed by circular dichromism (CD).
135

  This afforded a broad band in the 

CD spectra which increased as the DNA concentration was increased.  Bailly et al. confirmed the 
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Tatibouët results via melting point temperature experiments and DNase I footprinting experiments,
4
 

Bailly demonstrated that the (-)-150 was not only preferred for binding but was specific to certain 

DNA sequences that contained A • T and G • C base pairs.
28

  Baldeyrou et al. reported that an 

unsymmetrical (-)-acridine – phenanthroline Tröger’s base (-)-151 also afforded sequence specific 

DNA binding properties to calf thymus B-DNA.  They also determined this via DNase footprinting 

experiments and that (-)–151 had a strong preference for sites containing adjacent 5’-GTC•5-GAC 

triplets.
31

 

 

Figure 58  Tröger’s base analogues capable of the enatiospecific binding to ds-DNA. 

Veale et al. reported the binding of three bis-1,8-naphthalamide-containing Tröger’s bases 152-154 

to calf thymus double stranded DNA.  Photophysical investigations, UV-vis and fluorescence 

spectroscopy of 152-154 afforded evidence for strong binding affinities, with Kbs of 10
-6

 M, to 

DNA.  They reported the binding to be irreversible and this stabilised the DNA double helix.  

However there was no mention of their enantiospecific binding.
136

 

 

Figure 59  Tröger’s base analogues 152-154 capable of binding to and stabilising ds-DNA. 

With a plethora of novel Tröger’s base analogues to hand, a select few, with potential DNA 

intercalative properties, i.e. planer compounds anthracene (+/-)-113, napthyl (+/-)-112, (+/-)-141, 

147, (+/-)-115, phenyl 143 and 4-pyridyl 117, were tested for their ability to interact with double 

stranded DNA by gel shift essay.  A modified procedure of Furlan et al. was used to examine the 

target compounds.  A mixture of BamHI linearized plasimids, pUC 19 (2,6 kb) 50ng/µL, 2 µL and 

the target compounds [Table 6] 100 ng/µL, 1µL in deionised water 7µL, this was left at 37°C for 

                                                 
4
 DNase footprinting is a technique for determining DNA binding events and where they occur.  DNase enzymes cleave 

DNA producing a footprint of the segments.  If a binding event was occurring between DNA and an introduced 

compound, this can change the structure of DNA and hinder cleavage sites for the enzyme, therefore the footprint will 

change. 
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one hour, before being transferred to a well in a 1% agarose gel.  The gel was run at 85V for two 

hours before being stained by ethidium bromide solution (10ppm).
137

   Echinomycin, a known 

intercalating antibiotic, was prepared in an identical way and was used as the positive control. 

 

 

Tröger’s base 

analogue 
R

1
 R

2
 

(+/-)-120 

  

(+/-)-112 

  

(+/-)-141 

 

 

143 
 

 

147 

  

(+/-)-113 

  

(+/-)-117 

  

(+/-)-115 

  

(+/-)-119 

  

Table 6  Tröger’s base analogues submitted for DNA intercalation experiments. 
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Gel position Compound 

1 Ladder 1Kb 

2 Control 

3 Echinamycin 

4 (+/-)-120 

5 (+/-)-112 

6 (+/-)-141 

7 143 

8 147 

9 (+/-)-113 

10 (+/-)-117 

11 (+/-)-115 

12 (+/-)-119 

Table 7  Results from gel-shift assay 

From the gel shift essay [Table 7] we can observe that only the known DNA intercalater, 

Echinomycin (lane 3) generated a small shift in the DNA band.  This suggests that our protocol 

worked for detecting DNA intercalation properties, however, no DNA binding was detected for our 

analogues via this technique.  Subsequent analysis, such as, thermal melting point analysis, would 

be required to definitively prove whether a binding event is occurring between the ct-DNA and 

Trögers’ base analogues. 

4.9 Mild conditions for the deuteration of terminal alkynes 

The development of stable isotope enriched building blocks for organic synthesis is of great 

importance to the pharmaceutical industry, biotechnology and academics alike.  
2
H-labelled 

compounds often need to be synthesised in high yields, for cost viability, and perhaps more 

importantly with high levels of 
2
H-incorporation.  

2
H-alkynes are valuable, synthetically useful 

entities
43

 capable of being used for the synthesis of additional deuterated molecules; e.g., 
2
H-alkyne 

hydrogenation generates cis- or trans-
2
H-alkenes or 

2
H-alkanes.

50
 Alternatively aqueous gold salts 

afford 
2
H-ketones,

52
 and 

2
H-alkyne cyclotrimerization affords 

2
H-aromatics.

53
 

During an unrelated project involving the deuteration of propargyl diazoacetate, it became apparent 

that the proton of the terminal alkyne had exchanged for 
2
H under very mild reaction conditions, 

stir in acetonitrile with potassium carbonate and deuterium oxide.  This unexpected result was 

investigated further with the library of propargyl compounds 87-104.  The method employed was 
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simple:- stirring a terminal proteo alkyne with potassium carbonate in acetonitrile followed by 

addition of deuterium oxide. 

 

Scheme 42  Reaction conditions for the mild deuteration of terminal alkynes 

During the reaction it was clear that a gas was afforded during the exchange, as seen by a build up 

of pressure in the reaction vial used to conduct the experiment in.  Bubbling the evolved gas 

through lime water caused it to turn cloudy suggesting that carbon dioxide was present.  This 

observation lead to the conclusion that the potassium carbonate was important for the exchange as 

carbon dioxide must have been released by the potassium carbonate.  The literature provides 

examples of the deuteration of terminal alkynes using n-butyl-lithium or lithium di-isopropylamine 

and low temperatures -78˚C
54

 or Grignard reagents at -40˚C.
57

   However the literature failed to 

provide any deuteration protocols that afford the exchange at ambient temperature in less than two 

hours.  To investigate the effect of the base further, a range of bases, inorganic, organic and 

polymer supported, were chosen and the exchanges attempted on phenyl acetylene as a model 

substrate 110 [Table 8]. 

Base Yield % Deuterium incorporation %* 

Sodium hydrogen carbonate 99 99% 

Caesium carbonate 97 96% 

Sodium carbonate 98 96% 

Triethylamine 92 94% 

Polymer supported trisamine 90 93% 

None 
0 

(99% proteo alkyne recovered) 
0 

Table 8  Base study for mild deuteration of terminal alkynes                       * (determined by 
1
H-NMR (300MHz)) 

 

Table 8 allows us to conclude that the inclusion of a base was essential to the H/
2
H exchange 

process, however, which base had little impact on either the yield or 
2
H-incorporation.  The 

inorganic bases facilitated the exchange more efficiently, presumably due to the loss of carbon 

dioxide, a factor that may help drive the reaction forward. 
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Efforts to simplify the exchange further by utilising a non miscible organic solvent which would 

allow the two phases to separate after the exchange was completed. Upon collection the organic 

layer it was hoped this would afford the required 
2
H-alkyne without work up.  However, this was 

not the case and a plethora of non water miscible organic solvents were employed and the 

deuterium incorporation suffered. 

Non-miscible solvent Yield  Deuterium Incorporation %* 

Dichloromethane 99% (recovered) 28 

Diethyl ether 98% (recovered) 25 

Toluene 99% (recovered) 32 

Hexane 97% (recovered) 12 

Ethyl Acetate 99% (recovered) 26 

1,2 Dichloroethane 99% (recovered) 16 

Miscible solvent   

1,4-dioxane 98 99 

Tetrahydrofuran 97 99 

Table 9  Solvent study for mild deuteration of terminal alkynes.                 * (determined by 
1
H-NMR (300MHz)) 

 

With non-miscible solvents deteriorating the exchange, other water miscible solvents were 

employed and were just as efficient as acetonitrile and didn’t offer any significant advantage. 

A 
1
H-NMR (300MHz) experiment was initiated in an attempt to follow the 

2
H-exchange ‘in situ’.  

An NMR tube was charged with phenylacetylene 110 and potassium carbonate in deuterated 

acetonitrile (500µL) was added.  The sample was locked and shimmed and a t=0 spectra was 

accumulated, this was followed by addition of deuterium oxide (50µL).  The sample was 

immediately re-submitted for 
1
H-NMR analysis. However, to our surprise the H/

2
H exchange 

reaction was already complete.  The triplet alkyne peak had completely disappeared and a HOD 

peak could be seen at δ 2.10 

With the procedure unchanged from the original, alkyne (1 equivalent), potassium carbonate (1.5 

equivalents) and deuterium oxide (25 equivalents) in acetonitrile, a series of alkynes 156-167 were 

subjected to the deuteration conditions. 
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Deuterated 

terminal alkynes 

Yield 

% 

Deuterium 

Incorporation 

%* 

Deuterated 

terminal alkynes 

Yield 

% 

Deuterium 

Incorporation 

%* 

 

99 98 

 

98 99 

 

99 99 

 

99 99 

 

99 99 

 

99 99 

 

99 95 

 

99 99 

 

93 95 

 

99 99 

 
 

Yield Deuterium incorporation Yield Deuterium incorporation 

99% 96% 99% 97% 

Table 10  Synthesis of deuterated terminal alkynes 156-157                                    *(determined by 
1
H-NMR(300MHz))  

 

This very simple procedure worked well with 
2
H-incorporations often >95% and practically 

quantative yield in all cases.  Gratifyingly, the H/
2
H exchange was just as efficient in affording 

deuterated compounds containing more than one terminal alkyne 165-167, including a calix[4]arene 

167 substrate, afforded a yield of 99% and a 
2
H-incorporation of 97%.   All compounds were fully 

characterised and deuterium incorporation was confirmed by mass spectrometry and 
13

C-NMR.   
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Figure 60  
1
H-NMR(300 MHz) and 

13
C-NMR(75 MHz) of diethyl 2,2-di(deutero-prop-2-ynyl)malonate 165 

In the 
1
H-NMR (300 MHz) spectra of 165 the residual proteo-terminal alkyne δ1.97 needed to be 

greatly expanded before it could be observed; effectively the peak had disappeared [see Fig 60].  In 

the 
13

C-NMR (75 MHz) the signals of the terminal and the internal alkynyl carbon have been split 

into triplets by 
2
H-

13
C coupling.  The triplets were observed at δ78.08 and δ71.66 and correspond to 

the internal carbon and terminal carbon of the alkyne respectively, the 
2
H-bound to the terminal 

carbon has a spin of -1, 0, +1 and as the NMR spectrometer was not 
2
H decoupled, this afforded a 

three way splitting of the terminal alkyne carbon.  The observed triplet of the alkynes ‘internal’ 
13

C 

was due to ‘two bond’ coupling of the 
2
H with the 

13
C.  The poor intensities of the alkynyl 

13
C 

signals, due to the 
13

C-
2
H coupling and the relative abundance of 

13
C (1.1%), require a very 

concentrated sample and a very long acquisition time to detect these signals.  With the success of 

the 
2
H-exchange on 156-167, the procedure was employed for O-propargyl-N-protected amino acid 

derivatives 169-176 and carbohydrates 177-178. 
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Deuterated 

terminal alkynes 

Yield 

% 

Deuterium 

Incorporation % 

Deuterated  

terminal alkynes 

Yield 

% 

Deuterium 

Incorporation % 

 

95 99 

 

99 99 

 

99 99 

 

94 96 

 

99 95 

 

98 98 

 

98 98 

 

89 98 

 

99 99 

 

99 99 

 

98 99 
*(determined by 

1
H-NMR(300MHz)) 

Table 11 Synthesis of deuterated terminal alkynes 169-

179 
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Gratifyingly our mild reaction conditions for H/
2
H exchange afforded the terminal alkynyl 

2
H-

incorporated N-protected-α-amino acid-O-propargyl esters 169-175, O-benzyl propargyl glucose 

(β)-177, O-hepta-acetate propargyl lactose (β)-178 and 1-ferrocene propargyl ester 179 afforded the 

desired compounds in excellent yields 89-99% with excellent levels of 
2
H-incorporation >95%.   

Interestingly the (+)-biotin derivative (+)-176 underwent a small amount of decomposition to an 

unisolatable by-product , however, purification via flash chromatography on silica gel eluting with 

3% methanol in dichloromethane, afforded the required 
2
H-incorporated product (+)-176 in a 89% 

yield.  The ability to purify the 
2
H-alkynes on silica indicated their stability to reverse 

2
H/H-

exchange i.e. no loss of 
2
H-incorporation was observed.  The ferrocene propargyl ester derivative 

179, was also successful with no scrambling of the protons on the cyclopentadiene ring observed. 

 

Figure 61 
1
H-NMR (300MHz) spectra of (L)-104 and (L)-175 as a comparison of proteo verses deutero terminal 

alkynes. 
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In the 
1
H-NMR (300MHz) spectrum of (L)-175 [Figure 61 bottom] we observed almost complete 

disappearance of the alkynyl proton of (L)-104 originally located at δ2.32 (t, J2.4 Hz)[Figure 61 

top] and in the 
13

C-NMR (75 MHz) spectra of (L)-104  [Figure 62 top] and (L)-175  [Figure 62 

bottom] we observed a peak that has been split into a triplet by the deuterium coupling with the 
13

C, 

the second triplet has been obscured by the chloroform peak. 

 

Figure 62  
13

C-NMR(75 MHz) spectra of (L)-104 and (L)-175 as a comparison of proteo verses deutero terminal 

alkynes. 

Our standard procedure was not always compatible with all compounds tested, for example, 

attempts to use the potassium carbonate mediated H/
2
Hexchange on the antibiotic derived O-

propargyl tazobactam 180 and O-propargyl cefazolin 181 substrates failed.  A range of bases [Table 

8], as already discussed in the previous study (see page 73), were investigated but to no avail.  The 

reactivity of the β-lactam ring to ring-opening when subjected to basic conditions seemed to be at 

the root of the problem, as the ring strain of the 4-membered β-lactam ring makes it highly 

susceptable to hydrolysis.  Undeterred by this minor setback, the problem afforded us with the 

perfect situation to ensure that the deuterated compounds were in fact useful for further chemistry.   
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Figure 63  Unsuccessful deuteration of the antibiotic tazobactam-O-propargyl ester 180 

Figure 64  Unsuccessful deuteration of the antibiotic cefazolin-O-propargyl ester 183 

4.10  
2
H-incorporated terminal alkynes as building blocks for organic synthesis 

The above problem was resolved by deuterating propargyl bromide 86 and then employing the 
2
H 

exchange methodology, followed by reaction directly with the sodium salts 184 and 186. 

 

Figure 65  Synthesis of deutero-tazobactam-O-propargyl ester 182 using deuterated propargyl bromide 185 

 

Figure 66  Synthesis of deutero-cefazolin-O-propargyl ester 183 using deuterated propargyl bromide 185 

Pleasingly this ‘reverse’ deuteration/alkylation process was successful with 182 and 183 afforded in 

good yields i.e. 82% and 71% respectively, and >95% deuterium incorporation in both cases.  This 
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result further enhances the protocol and its application in synthesis and could be used or 

incorporated as a building block in organic synthesis.  To prove this point further we sought to 

exploit our protocol in the synthesis of deuterated 1,2,3-triazole-piperidine 189, via intramolecular 

cycloaddition of a, β–amino azide, as described by Couty et al.
138

 

 

Scheme 43  Synthesis of deuterated 1,2,3-triazole-piperidine 189.  a) Propargyl bromide, potassium carbonate in N-N-

dimethylformamide 12 hours.  b) Deuterium oxide, ambient temperature 2 hours.  c) thionyl chloride 1 hour.  d) 

Sodium azide, d
6
-DMSO, 110˚C, µW, 1 hour. 

189 was synthesised using (+)-ephedrine hydrochloride 187 as the start material in a two step, one 

pot propargylation of the amine and subsequent deuteration of the terminal alkyne 188, was 

afforded in a 94% yield and with 99% deuterium incorporation.  This was followed by the in situ 

chlorination of 188 via displacement of the hydroxyl group, with a chloride anion. This was 

immediately transferred to a microwave vial and sodium azide and deuterated dimethyl sulfoxide 

were added.  The vial was sealed and heated to 110°C under microwave irradiation for 1 hour.   

 

Scheme 44  Reaction mechanism for the synthesis of 189 

Following flash column chromatography on silica gel, eluting with 20% ethanol in diethyl ether, the 

required product 189 was afforded as a yellow oil in a 64% yield and with 95% deuterium 

incorporation.  Subsequent physiochemical analysis confirmed this to be the required compound 

with our data and the data matching that reported by Couty,
138

 with the exception of a missing 
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triazole peak in the 
1
H-NMR (400MHz) spectrum, due to the incorporation of a 

2
H at the C4 

position of the 1,2,3-triazole ring, and LCMS [ES]
+
 M+H 230.1.  

4.11  Stable isotope incorporation within 2,8-appended Tröger’s base (4-deutero) 1,2,3 

triazoles 

With the success of the Tröger’s base ‘click’ reactions and the discovery of a novel procedure for 

the deuteration of alkynes, the two were combined to attempt the synthesis of a 1,2,3-C5 deuterated 

triazoles appended to a Tröger’s base scaffold.  2,8-Bis-iodo-Tröger’s base (+/-)-78 was 

desymmetrised to 2-azido-8-iodo Tröger’s base (+/-)-190 in a 43% yield, followed by ‘clicking’ 

with O-benzyl protected deutero-propargyl β-glucose (β)-177.  To achieve this required we 

undertake a solvent study as employing our standard ‘click’ procedure afforded deuterium 

incorporations of the 1,2,3-C5 deuterated triazole 191 below 95%.  After much experimentation we 

were delighted that a biphasic mixture 1:1 of deuterated chloroform and deuterium oxide with an 

extended reaction time of 72 hours generated the required deuterated 1,2,3-triazoles 191-193 with a 

2
H-incorporation of >95%. 

Solvent 
2
H-Incorporation Solvent 

2
H-Incorporation 

DMF 75% d
6
 - DMSO 78% 

THF 71% CDCl3/D2O 97% 

Table 12  Solvent study for synthesis of C5-deutero-1,2,3-triazoles 
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Scheme 45  a) Sodium azide, copper(I) iodide, sodium ascorbate, N-N-dimethylethane-1,2-diamine, ethanol : water 3:2, 

100˚C µW, 1 hour, 43%; b) O-benzyl β-glucose deuteropropargyl ether, copper(II) sulfate pentadeuterate, Sodium 

ascorbate, deuterium oxide : d-chloroform 1 : 1, 72 hours, ambient temperature, 60%.  c) Trimethylsilylacetylene, 

tetrakis(triphenylphosphine) palladium(0), copper(I) iodide, triethylamine, tetrahydrofuran.  d) Methanol, potassium 

carbonate, 2 hours then acetonitrile, potassium carbonate, deuterium oxide, 1 hour, 81%.  e) 
15

N-4-iodoaniline, 

copper(II) sulfate pentadeuterate, Sodium ascorbate, deuterium oxide : d
3
-chloroform 1 : 1, 72 hours, ambient 

temperature. 

With 191 in hand the opportunity was taken to investigate utilising the carbon-iodine bond for 

palladium(0) catalysed Sonogashira couplings with trimethylsilylacetylene, utilising a procedure 

previously reported by Bew et al, affording a trimethylsilyl protected alkyne Tröger’s base
139

 this 

was desilylated and deuterated in one step.  Stirring with potassium carbonate in acetonitrile, 

followed by addition of deuterium oxide, afforded 192 with 95% 
2
H-incorporation at the newly 

installed alkyne 192.  192 was subsequently ‘clicked’ with a 
15

N-labelled para-azido-iodobenzene 

194, synthesised by iodination of 
15

N-aniline and subsequent diazotisation with tert-butyl nitrite 

and formation of the azide with trimethylsilyl azide.  This afforded an aryl extended Tröger’s base, 

193 functionalisable at a later stage via the carbon-iodine bond [Scheme 45]. 

193 now contained two 
2
H-C5-deuterated 1,2,3-triazoles and also, a 

15
N isotopically enriched 

15
N1- 

1,2,3-triazole was incorporated.  This is the first example of a multisotopermeric i.e. 2 x 
2
H and 

15
N 
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synthesis of a compound via ‘click’ chemistry.  The confirmation of the isotopic incorporation of 

193 was generated by 
2
H and 

15
N-NMR spectra figure 68.   

In the 
15

N-NMR (51 MHz) spectra of 193 [Figure 68] the shift of the 
15

N peak from δ-288.01 for 

the azide 194 [FIGURE67] to δ-127.18 for the 1,2,3-triazole of 193 (referenced to nitromethane) 

was observed.  The 
2
H-NMR (77MHz) spectra affords two peaks at δ8.13 and 7.89 this is the 

region where the C5-1,2,3- triazole proton signals would be observed in 
1
H-NMR spectrum. 

 

Figure 67 
15

N-NMR(51 MHz) of 194 

 

Figure 68  
15

N-NMR (51 MHz) and 
2
H-NMR (77 MHz) of 193 
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4.12  Incorporation of stable isotopes within the Tröger’s base scaffold 

With the success of the stable isotope enriched 2,8 appended Tröger’s base 193, the synthesis of a 

15
N-and 

2
H-labelled Tröger’s base scaffold was attempted.  

 

Scheme 46  a) Sodium bicarbonate, iodine, water, 0-5˚C, 1 hour, 88%. b) d2-paraformaldehyde, d3-trifluoroacetic acid, 

dark, 72 hours, 54%.  c) Trifluoroacetic anhydride, dichloromethane, 16 hours, d) sodium hydroxide and ethanol, 4 

hours, 90%. e)  toluene, reflux, 4Å molecular sieves 24 hours, 53%. 

15
N-labelled aniline 195 was iodinated at the para-position with sodium bicarbonate and iodine in 

water, 
15

N-4-iodo-aniline 196 was afforded in an 89% yield.  Condensing 196 with deuterated-

paraformaldehyde in neat deuterated trifluoroacetic acid afforded 
15

N- and 
2
H- labelled 2,8-iodo-

Tröger’s base in a 54% yield (+/-)-197 [Scheme 46].  The NMR analysis of (+/-)-197  was very 

interesting; the 
1
H-NMR (500MHz) spectrum [Figure 69 top] afforded no aliphatic peaks and the 

2
H-NMR (77MHz) spectrum afforded signals in the expected region 

2
H-δ4.52 exo, 

2
H-δ4.15 C13 

and 
2
H-δ4.00 endo. The splitting in the 

13
C-NMR (100MHz) spectrum of (+/-)-197 had a complex 

splitting pattern.  The aliphatic 
13

C-signals C6, C12 at δ57.35 and C13 δ65.78 are split by both the 
2
H- 

and 
15

N-nuclei afforded a visible quintet and triplet.  The triplet was only part of the splitting 

pattern as the intensity of the signal was reduced as there were half as many 
13

C atoms compared to 

the quintet.  To improve the resolution of these peaks it would be necessary to use more sample or 

run the acquisition for an extended time.  The splitting pattern observed is due to the NMR 

spectrometer not being deuterium and 
15

N decoupled.  The nuclear spin of deuterium is 1 and 

causes the attached 
13

C signal to be split into 3 signals (in a similar manner to CDCl3 peak in 
13

C-

NMR spectra).  As the 
15

N is also coupled to the 
13

C, and has a spin of ½, this causes the already 

split 
13

C signal to be further split into 2 signals, thus affording the complicated signal as seen in 

figure 69.  The next step was to remove the methylene bridge C13 of (+/-)-197.  This was attempted 

by employing a method reported by Mahon et al. who used trifluoroacetic anhydride to form an N-
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trifluoroacetamide intermediate.
17

  Ethanolysis of the intermediate afforded the required diamine 

198 in a 90% yield.  198 was then refluxed with α-
13

C-labelled 3-N-Boc benzaldehyde 199 in 

toluene, as described by Mahon et al.  This inserted the 
13

C-label at the bridgehead position 

affording (+/-)-200 in a 53% yield.  Subsequent physiochemical analysis of (+/-)-200 including 

15
N-NMR (51MHz) afforded two signals, at δ-335.12, -338.22 with respect to internal standard 

CH3NO2, for what appears to be chemically identical nitrogens. 

 

Figure 69  
1
H-, 

2
H-, 

15
N- and 

13
C- NMR analysis of (+/-)-197 
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(+/-)-200 was transformed to (+/-)-201 via the copper(I) catalysed procedure employed earlier, 

followed by a de-symmetrising ‘click’ procedure with O-acetate deutero-propargyl lactose (β)-178  

which afforded 202 in 40% yield and with >95% deuterium incorporation.   

 

Scheme 47  a) Sodium azide, copper(I) iodide, sodium ascorbate, N-N-dimethylethane-1,2-diamine, dimethylsulfoxide : 

water 5:1, 100˚C µW, 1 hour, 80%.  b)  O-acetate β-lactose deuteropropargyl ether, copper(II) sulfate pentadeuterate, 

sodium ascorbate, deuterium oxide : d-chloroform 1 : 1, 72 hours, ambient temperature, 40%. 

202 was subsequently ‘clicked’ with N-Boc-O-methyl ester deutero-propargyl ether (L)-tyrosine 

(L)-169 and deutero-O-propargyl-ester of N-Boc-para-fluoro-(R)-phenyl glycine (R)-172.  This 

afforded the first example of multi-isotopically labelled, natural and unnatural α-amino acids and 

carbohydrate based 2,8-appended Tröger’s base derivatives 203 and 204. 

 

Figure 70  Structure of multi-isotopically labelled Tröger’s base derivative 203 
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Figure 71  Structure of multi-isotopically labelled Tröger’s base derivative 204 

4.13  Synthesis of (+)-biotin analogues for SAM formation. 

With intentions of binding compounds to the surface of the CD the synthesis of a range of 

substrates was required to bind to the gold layer.  These substrates would need to be bifunctional, 

namely capable of binding to the gold and interacting with a protein.  To show proof of principle 

the model study of the interaction between (+)-biotin and the protein streptavidin was chosen to be 

investigated.  The interaction between this protein and ligand is one of the strongest non-covalent 

interactions, found in nature.  The first biotin derivative was synthesised from the propargyl biotin 

(+)-85, in order for this to bind to gold a sulfur group needs to be incorporated.  This can take the 

form of a thiol, a disulfide or a thiosulfate.  To allow for coupling to the propargyl group of the (+)-

biotin derivative an azide group needs to be introduced to the sulfur containing linker.  A cheap, 

readily available source containing a disulfide and amine, which, can be converted to an azide is the 

amino acid L-cystine.  It was hoped that the methyl ester of L-cystine (L)-82 could be converted to 

the N-bis-azide-L-cystine-O-methyl ester (L)-83 derivative using the diazo donor, imidazole 

sulfonyl azide hydrochloride 205, as described byGoddard-Borger.
113

 

 

Scheme 48  Failed synthesis of (L)-83 

This reaction was unsuccessful and resulted in the formation of a black sticky tar within minutes of 

adding the reagents.  Why this reaction failed has still to be determined.  The reported procedure 

has many examples of successful α-amino acid azide derivatives, however (L)-cystine was not 
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included.
113

  Another method was needed to form the disulfide and azide containing intermediate.  

This was finally over come using de-carboxylated cystine hydrochloride or 2,2'-

disulfanediyldiethanaminium chloride 206. 

 

Scheme 49  Synthesis of 207 using imidazole sulfonyl azide hydrochloride 

Gratifyingly, the desired compound 207 was synthesised in an 82% yield and common with other 

sulfur containing compounds had a strong onion odour.  207 was filtered through a short silica plug, 

eluting with ether before being used for further reaction.  Decomposition was rapid if left on the 

bench for as little as an hour.  The FT-IR spectra afforded a strong peak at 2101 cm
-1

 confirming 

the presence of the azide.  207 was coupled to the propargyl (+)-biotin (+)-85 affording a 1,2,3-

triazole linked disulfide 208, for SAM formation and the (+)-biotin ‘warhead’ for protein 

interaction.  The reaction outlined [Scheme 50] was carried out using the standard ‘click’ procedure 

(CuSO4•5H2O, TBTA, sodium ascorbate, DMF, 70˚C µW, 1 hour) as previously employed. 

 

Scheme 50  Synthesis of (+)-208 a) CuSO4•5H2O, TBTA, sodium ascorbate, DMF, 70˚C µW, 1 hour, 88% 
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Gratifyingly this was successful affording the required product (+)-208 in an 88% yield.  The 

product was highly polar and 10% methanol in dichloromethane eluent was required to elute (+)-

208 from a silica column. 

 

Figure 72  
1
H-NMR (400 MHz) of 208 

In the 
1
H-NMR (400MHz, d6-DMSO) the 1,2,3-C5-triazole peak can clearly be seen at δ8.19 as a 

singlet and the diagnostic (+)-biotin amide signals, as two singlets, at δ6.44 and δ6.38 can be 

observed.  The methylene between the 1,2,3-triazole and carbonyl group was observed at δ5.13 as a 

singlet and the methylenes from the disulfide linker were observed as triplets δ4.64 (t, J6.6 Hz) and 

δ3.25 (t, J6.5Hz). 

Gratifyingly, both (+)-85 and the disulfide from 207 had survived the conditions for ‘click’ and 

formed (+)-208, we were concerned that the sulfur may chelate to the copper.  The literature 

suggests that the length of the SAM linker effects the ability of the protein (streptavidin) binding of 

a ligand (+)-biotin) when bound to a surface.
70

  With this in mind a selection of extended linkers 

were synthesised. 

 

Scheme 51 a) Sodium acetylide, DMF, 12 hours, 50%.  b) (+)-biotin (+)-64, K2CO3, N-N-dimethylformamide, 16 

hours, 94%.  c) 207, CuSO4•5H2O, TBTA, sodium ascorbate, DMF, 70˚C µW, 1 hour, 78%. 
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210 was generated by the desymmetrisation of 1,6-dibromohexane 209 with sodium acetylide 

affording 8-bromo-octyne 210.  This was followed by the displacement of the remaining bromide 

by the carboxylate of (+)-biotin (+)-64 affording the 8 membered linker (+)-211 complete with 

alkyne for coupling to the azido linker 207.  The 
1
H-NMR(500 MHz) of (+)-211 [Figure 73] affords 

the alkynyl triplet, at δ1.89 originating from the 8-bromo-octyne 210 and the broad amide protons 

seen at δ6.06 and 5.73 originate from the (+)-biotin (+)-64. 

 

Figure 73  
1
H-NMR (500MHz) of (+)-211 

Subsequently the standard ‘click’ conditions (CuSO4•5H2O, TBTA, sodium ascorbate, DMF, 70˚C 

µW, 1 hour) were employed to couple (+)-211 and 207 affording (+)-212.   

Compound (+)-212 was very polar and required a highly polar eluent 10% methanol in 

dichloromethane to elute it from the silica column.  The solubility of the product in chloroform and 

methanol was poor, however, a mixture of chloroform and methanol afforded good solubility.  This 

afforded a very broad 
1
H-NMR (500MHz) spectrum but the 1,2,3-C5-triazole peak could clearly be 

observed at δ7.52.  Mass spectrometry afforded a strong ion at, m/z [ESI]
+
 M+Na 931.2  suggesting, 

along with full physiochemical analysis, FT-IR KBr(neat) 1750 C=O, 1683 C=O cm
-1

, the product 

(+)-212 had been generated. 

The linker was then increased using 11-bromoundecanol 213.  After attempts to use sodium 

acetylide to displace the bromide failed, due to the strong basic nature of the sodium acetylide, the 

deprotonation of the alcohol to form an alkoxide was favoured.  To negate this 213 was 

deprotonated at the alcohol using sodium hydride followed by the addition of an excess of 5 

equivalents of propargyl bromide 86 affording the corresponding propargyl ether 214.  The 

subsequent displacement of the bromide by the (+)-biotin (+)-64 carboxylate afforded the required 

(+)-biotin derivative 215.  215 was subsequently ‘clicked’ to the disulfide linker 207, using the 
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standard conditions (CuSO4•5H2O, TBTA, sodium ascorbate, DMF, 70˚C µW, 1 hour), affording 

216 in good yield 80%. 

 

Scheme 52  a) Sodium hydride(60% dispersion in mineral oil), propargyl bromide, THF, 72%.  b)  (+)-biotin (+)-64, 

potassium carbnonate, DMF, 80%  c)  207, CuSO4•5H2O, TBTA, sodium ascorbate, DMF, 70˚C µW, 1 hour, 86%. 

 

Figure 74   1
H-NMR(400MHz) spectra of (+)-215 
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In the 
1
H-NMR (400MHz) spectra of (+)-215 (Figure 74) the alkynyl proton at δ2.44 (t, J2.3 Hz) 

and is coupled to the propargyl methylene at δ4.15 (d, J2.3 Hz) and the broad singlet at δ1.27 

showing the aliphatic chain from the linker and the broad multiplets between δ1.31 and 1.75 

correspond to the aliphatic chain of the (+)-biotin.  The (+)-biotin signals can also be observed, the 

two central (+)-biotin protons (pink) at δ4.62 and 4.34 and the amide protons are very broad and are 

located at around δ5.34.   Mass spectrometry afforded an ion at m/z [ES]
+
 M+Na 475.2 affording a 

strong indication that (+)-216 had been generated.   

 

Figure 75 
1
H-NMR (500MHz) spectra of (+)-216 

In the 
1
H-NMR (500MHz) spectra of (+)-216 [Figure 75] the 1,2,3-C5 triazole peak at δ7.60 was 

observed and the disappearance of the alkynyl proton (Figure 74 δ2.44).  The methylene between 

the 1,2,3-triazole and oxygen (light blue, Figure 75) was shifted from δ4.15 downfield to δ4.59 

affording a strong indication that the chemical environment of the protons has changed to the 

expected more deshielded environment.  The amide NHs, from (+)-biotin were observed at δ5.84 

and δ5.50, and the two central (+)-biotin protons (pink) were observed at δ4.44 and δ4.29.  The 

methylenes from the disulfide linker can be observed as triplets at δ4.59 (t, J6.6 Hz) and δ3.12 (t, 

J6.7 Hz). 

The final extended linker was synthesised using tetraethylene glycol (PEG4) 217.  One of the free 

hydroxyl groups was protected with a trityl group affording the triphenyl methyl ether 218. 

Subsequent deprotonation of the remaining hydroxyl with sodium hydride and attack of the 

resulting alkoxide anion on propargyl bromide afforded a trityl protected PEG4 propargyl ether 219.  

219 was O-trityl-deprotected with para-toluene sulfonic acid hydrate generating the free hydroxyl 

containing 220 [Scheme 53]. 
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Scheme 53 a) Trityl chloride, pyridine, 12 hours, 45%.  b)  Sodium hydride (60% dispersion in mineral oil, propargyl 

bromide, THF, 2 hours, 74%.  c)  para-toluene sulfonic acid hydrate, methanol, 4 hours, 92%. 

Attempts to couple 220 to (+)-biotin (+)-64 using in situ formation of an ‘activated’ ester, using 

TBTU, [Scheme 54 path a] of (+)-biotin failed affording only start material 220.  This was 

overcome by refluxing (+)-biotin (+)-64 with 220 and catalylitic para-toluene sulfonic acid hydrate 

in toluene, the water generated during this condensation reaction was removed via a Dean-Stark 

trap.  This reaction afforded a low yield 35%, presumably due to polymerisation of the linker, 

generating a dark brown sticky residue during the reaction.  Careful flash column chromatography 

on silica gel eluting with 10% methanol in dichloromethane afforded the required product (+)-221 

in a 35% yield. 

Scheme 54 a)  TBTU, diisopropylethylamine, (+)-biotin (+)-64, -20˚C – ambient temperature, no reaction. b) (+)-biotin 
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(+)-64, para-toluene sulfonic acid hydrate, toluene, reflux, 4 hours, 35%.  d) 207, CuSO4•5H2O, TBTA, sodium 

ascorbate, DMF, 70˚C µW, 1 hour, 82%. 

Compound (+)-221 was subsequently coupled to the disulfide linker 207 following the normal 

‘click’ protocol (CuSO4•5H2O, TBTA, sodium ascorbate, DMF, 70˚C µW, 1 hour) in good yield 

74%.  In the 
1
H-NMR(500MHz) spectrum of (+)-222 [Figure 76] the 1,2,3-C5-triazole peak is 

observed at δ7.68. A large signal at δ3.59 corresponds to the ethylene groups from PEG.  The 

diagnostic (+)-biotin peaks were observed at δ6.08 and δ5.39 for the amides, the central (+)-biotin 

(blue) signals were observed at δ4.43 and δ4.22.  The methylene between the triazole and oxygen 

was observed as a singlet at δ4.59 and finally the two methylenes from the disulfide linker were 

observed as triplets at δ4.59 (t, J6.9 Hz) ppm and 3.13 (t, J6.6 Hz).  FT-IR afforded disappearance 

of the azide peak at 2101cm
-1

, and mass spectrometry afforded an ion at m/z [ES]
+
 M+Na 1143.3. 

 

Figure 76 
1
H-NMR(500MHz) spectrum (+)-222 

4.14  Preparation of 24 karat gold compact discs for SAMs 

The preparation of the compact disc, to expose the 24 karat gold layer, has been described by Yu.  

The lacquer layer, which protects the gold surface, was removed by treating the top surface, 

identifiable via the writing on the top face, with a solution of 70% nitric acid for 3-5 minutes, 

followed by washing with deionised water and absolute ethanol.
114

  The compact disc was 

submerged in 70% nitric acid in a 7 inch shallow beaker.  This was left until the surface took on a 

‘crackled’ appearance and then removed from the acid and washed with deionised water and 

absolute ethanol.  An air line was used to blow the remaining lacquer from the surface and the 

exposed gold layer was washed again with absolute ethanol and dried with an air line.  The disc 

was then placed in a desiccator and stored under argon.   
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Figure 77  Components of a gold compact disc.  a) polycarbonate backing, makes up most of the CD.  b)  

photosensitive dye layer CD-R.  c)  gold layer ~50 nm.  d)  protective lacquer.  The protective lacquer is removed by 

immersion of the CD in 70% nitric acid. 

This process was essentially simple, however, the compact disc needed to be cut up to allow for 

analysis by scanning electron microscopy (SEM) and Energy-dispersive X-ray spectroscopy (EDS).  

This proved to be rather challenging, as cutting the compact disc after the lacquer had been 

removed resulted in the displacement of the gold from the polycarbonate backing.  A variety of 

techniques were attempted including a hot knife, metal press, scissors and guillotine but all resulted 

in displacement of the gold.  The problem was finally solved by cutting the compact disc, into 

pieces approximately the size of microscope slides and then removing the lacquer.  A small amount 

of damage was caused to the edge of the slides but the centre area remained bound to the surface of 

the polycarbonate layer.  To remove the lacquer from the compact disc centre required more care 

than from a complete disc.  Submerging the slides into nitric acid resulted in total removal of the 

gold layer from the base.  To negate this problem 200 µL of nitric acid was pippetted onto the 

surface and care was taken not to spill it on the edges of the slide.  This was left for approximately 

five minutes before being removed by pipette.  This left a crackled area in the centre of the slide, 

where the laquer had come away from the gold, and this was removed by washing with a jet of 

water.  The slide was then treated with an air line to blow the lacquer off of the surface leaving the 

bare gold layer exposed.  This was then washed with ethanol and dried before being stored in a 

dessiccator under argon. 

 

Figure 78 Successful route to generating segments of CD for analysis and subsequent removal of protective lacquer. 
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Figure 79  Segments of CD with protective lacquer removed via route shown in Figure 78 

These segments were then analysed by SEM, atomic force microscopy (AFM) and EDS to confirm 

the gold layer had been exposed and that the surface was flat enough to afford for the formation of 

self assembled monolayer (SAM).   

 

Figure 80  SEM image of gold surface of the CD the 

grooves are used for alignment of the LASER during 

reading / writing 

 

Figure 81 AFM image of gold CD surface affording closer 

images of the pregroove and feathered appearance of the gold 

layer. 

 

The SEM image [Figure 80] shows a 25 µm
2 

area of the bare gold on the compact disc, the lines 

seen are trenches which are built into the polycarbonate disc before the gold surface is applied.  

These are called the pregroove and are used to guide the LASER to the read/write areas on the disc.  

The AFM images [Figure 81] show the width of this groove is just under 0.5 µm wide.  The AFM 

images show the surface in more detail and the slight imperfections on the surface can be observed.  

Discussions with the microscopist suggest that the surface of the disc is slightly flatter than a 

sputter coated slides but not quite as flat as mica.  The image to the right shows the feathering 

pattern of the gold at the hundreds of nanometre scale.  Below is an AFM depth map which shows 

clearly a difference in height of the pregrooves, with dark being the deeper areas. 
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Figure 82  AFM depth map of the CD surface, the pregroove can be seen as the darker areas, therefore, deeper region 

compared to the lighter coloured area. 

 

Figure 83  Energy Dispersive X-ray Spectroscopy spectrum showing the signature fingerprint of gold from the surface 

of the compact disc 

The EDS data [Figure 83] shows the gold layer has been successfully exposed affording a very 

strong signal in the gold region.   

4.15  Self Assembled Monolayer formation 

With the (+)-biotin analogues (+)-208, (+)-212, (+)-216 and (+)-222 in hand, we were ready to 

attempt their use as SAM precursors on a gold disc.  A 5 mg sample of (+)-208, (+)-212, (+)-216 

and (+)-222 were dissolved in 500 µL of dimethylsulfoxide and 50 µL was loaded into a 1 mL 

syringe.  The syringe had the air pushed out and the dimethylsulfoxide solution was held by its 

meniscus petruding from the end of the syringe.  This was clamped and the segment of gold disc 

raised via a lab jack until the hanging drop of solution was resting on the gold surface.  This 

ensured that the sample would not dry out whilst the SAMs were forming.   
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Figure 84  Hanging drop method of applying di-sulfides (+)-208, (+)-212, (+)-216 and (+)-222 to the surface of the 

compact disc to ensure (+)-208, (+)-212, (+)-216 and (+)-222 remained in solution during the SAM formation process.  

The solution was left for 24 hours before being carefully removed and the gold surface washed with 

deionised water and absolute ethanol, thoroughly dried and returned to a dessicator for storage 

under argon.  Attempts to establish if the SAM had indeed been formed turned out to be 

problematic.  Attempts to obtain an FT-IR spectrum of the monolayer using Reflection Absorption 

Infra Red Spectroscopy (RAIRS) failed due to the weak signal afforded from the tiny quantity of 

sample.  Attempts to visualise the SAM using AFM and SEM also drew a blank.  However, 

discussions with a mass spectrometry company, ‘SAI Limited’ were fruitful and they kindly agreed 

to do some testing for us.  The sample of (+)-208 was sent and some interesting results came back. 

 

Figure 85  The MALDI-TOF MS image of the SAM applied region of the compact disc segment, red indicates strong 

ion count (left).  Image of the gold segment in the MALDI-TOF mass spectrometer (centre) and the mass spectrum of 

the SAM region indicating mass of around 440 Da (right). 

The image in the centre, [Figure 85] affords the gold surface inside the MALDI-TOF and to the left 

is an image map of the mass analysis of the sample.  The blue area corresponds to no signal, the 

yellow and green correspond to low signal and red corresponds to a strong signal.  Clearly the area 

where the syringe was applied affords an incredibly strong signal and has a well defined shape.  

This red region shows a mass on the right of around 440 mass units, which is approximately half of 
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the mass of the disulfide.  This was the clearest indication that the SAM had been formed.  The 

mass is not exact, however SAI say that calibration was off due to the extra height of the sample in 

the MALDI-TOF spectrometer.  A snippet of their assessment can be seen below. 

 

With some evidence of SAM formation taking place at the surface the other examples (+)-208, (+)-

212, (+)-216 and (+)-222 were then bound to gold discs in an identical fashion.  The raster used to 

complete the MALDI-TOF image of the gold surface was very intensive on the equipment and it 

was noted by SAI that 1% of the total LASER life of the spectrometer had been consumed during 

this one experiment.   

4.16  Biotin / Streptavidin binding on a gold disc. 

With evidence that the (+)-biotin compound (+)-208 had bound to the gold CD surface, the 

application of streptavidin was investigated.  Once again a rig was made from a syringe and 100µL 

of a solution of 11.32 µM streptavidin in deionised water was applied using the hanging drop 

method.  This was left in a warm place ~30°C for 16 hours to encourage binding and reorganisation 

to occur.  The syringe was carefully removed and the applied area was washed with water and 

ethanol.  These were then stored under argon in a dessicater, before being transferred to SAI for 

analysis. 

4.17  MALDI-TOF mass spectrometry analysis of binding events 

The samples were subjected to MALDI-TOF mass spectrometry at SAI Ltd using a LaserToF TT 

mass spectromer.  This is a top of the range time of flight mass spectrometer, designed for peptide 

and protein analysis.  The SAI research model was used as it could be easily modified to 

accommodate the disc segments.   
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Figure 86 SAI LaserToF TT mass 

spectrometer 

 

Figure 87  Durability test to ensure the CD could withstand the LASER 

energy from the MALDI-TOF 

 

The durability of the disc was tested to ensure the gold layer and CD would stand up to the 

LASERs intense ionisation.  A power of 75% was selected on advice from SAI, stating that in their 

opinion this power was suitable for successful proteomic analysis, and a blank CD segment was 

bombarded with 1 – 10,000 shots of the LASER in small 200 µm raster.  This showed that the 

damage started to occur over 100 shots but was not clearly visible until over 1000 shots.  Out of 

curiosity the LASER was then set to 100% power and fired at the blank sample, unsurprisingly, this 

obliterated the gold layer and caused visible damage to the polycarbonate layer very quickly. 

Generating a reference streptavidin MALDI-TOF mass spectrum with the parameters outlined 

above, a 10 µL sample of 11.32 µM streptavidin in water was placed on the surface of a CD 

segment and left to evaporate, following this 1 µL of a 20 mg/mL aqueous solution of α-cyano-4-

hydroxycinnamic acid (CHCA) was added to the streptavidin as a matrix to aid in ionisation of the 

sample.  This was subjected to MALDI analysis to give a reference of the streptavidin protein. 

 

Figure 88  MALDI-TOF MS spectrum of streptavidin with CHCA matrix 
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The units of the streptavidin protein can clearly be seen, at 12,967 Da for the monomer, 25,985 Da 

for the dimer, 38,942 Da for the trimer and 51,921 Da for the tetramer.  A decrease in intensity is 

observed as the oligomer gets larger and is presumably due to the high energy of the LASER 

disrupting the bonding between the units, resulting in a higher proportion of streptavidin monomers 

being detected.  This is in agreement with the literature value of the monomer unit reported by 

Beavis who calculated the mass of the amino acid residues 14 - 136 of the streptavidin sequence 

12,971 Da.  Beavis offers an experimental value of 12,969 ± 2 Da from experimental results.
140

 

Streptavidin is a tetrameric protein, made up of four identical monomer units each capable of 

binding a (+)-biotin unit.  Due to the shape of streptavidin we expect two of the four streptavidin 

binding sites to be occupied by (+)-biotin analogues.  The high energy of the LASER radiation used 

to ionise the sample will cause the streptavidin to break into its constituent monomers. [Figure 89] 

 

Figure 89  Schematic of (+)-biotin and its interaction with streptavidin on a gold surface.  It is thought that two of the 4 

avaliable streptavidin binding sites will interact with the (+)-biotin.  MALDI-TOF ablation of the streptavidin and (+)-

biotin linker will release it from its tether and allow it to be detected. 

This was followed by a control sample, where, streptavidin was applied to the gold disc, using the 

syringe hanging drop method as previously described, but this had not previously been treated with 

a (+)-biotin substrate.  The control was treated in an identical fashion to the biotinylated samples 

and was washed with deionised water and absolute ethanol, dried and stored in a desiccater.   

The raster choice was essential, as firing on the spot once would obliterate the sample, the second 

shot would then be firing on bare gold and lead to an unnecessary number shots being used and a 

diminished result.  The raster was set to ‘fire’ and move to ensure the same region was not ablated 

twice. 
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Figure 90  MALDI-TOF image and spectrum used as a control for non-specific binding. 

The spot below the control sample was of neat streptavidin, freshly applied before analysis as a 

spectrometer control.  A very low intensity peak at ~13 kDa can be seen which is from a very small 

amount of residual streptavidin but is hardly detectable. 

The mass spectrometriest could only run these samples with a maximum detection limit of 30 kDa 

in order to use the imaging functionalities.  To modify the spectrometer for analysis up to 60 kDa 

would have required ‘major electronic changes’ so this limit was deemed suitable as the two 

strongest intensities of the streptavidin (monomer and dimer) would still be able to be seen. Smaller 

rasters and imaging areas were necessary to prolong the life of the LASER. 

The first sample to be analysed was (+)-208 the (+)-biotin unit where the linker was shortest, n = 6. 

(6 atoms between (+)-biotin and the sulfur head group)  The spot seen below the sample was of neat 

streptavidin as a control, this allows us to be confident that MALDI-TOF spectrometer was 

functioning correctly.  The mass spectrum shown was the sums of only the target spot, the control 

was not included.   
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Figure 91  MALDI-TOF image and spectrum of sample (+)-208 

The mass spectrum above [Figure 91] has a very weak signal corresponding to the streptavidin 

monomer with a very low intensity of mass ions ~340 with an incredibly poor signal to noise ratio 

~4:1.  The peak at ~13 kDa is of the monomer and a slight hump at ~26 kDa can just be made out, 

however, this is far from conclusive but was looking promising as it was more intense than the 

control sample.  This was followed by (+)-212, where, n = 11 and again the spot below the sample 

is a spectrometer control. 

 

Figure 92  MALDI-TOF image and spectrum of sample (+)-212 
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The mass spectrum from sample (+)-212 [Figure 92] affords an improvement with a much more 

intense spectra acquired and a clear peak at ~13 kDa and a clearer ‘hump’ at 26 kDa compared to 

the previous sample using (+)-208.  The intensity for the streptavidin monomer is ~2200 and a 

signal to noise ratio of ~15:1.  This would suggest that this sample has more streptavidin bound to it 

than the previous example (+)-208.  The increase in chain length here appears to have improved 

binding efficiency of the streptavidin and the (+)-biotin. 

With another promising result, the next to face the LASER bombardment was (+)-216, where n=19, 

an increase of 8 atoms on the linker length.  The spot below the sample is, again, the control 

streptavidin. 

 

Figure 93  MALDI-TOF image and spectrum of sample (+)-216 

For sample (+)-216 there was another improvement in intensity of ~19,500 and an improvement in 

the signal to noise ratio ~39:1 seen on this sample compared to both previous samples (+)-208 and 

(+)-212.  This affords a strong indication that the (+)-biotin/streptavidin binding events were 

occurring on the CD surface.  The strongest intensity peak at ~13 kDa and an indisputable signal at 

~26 kDa seem to confirm mass ions for both monomer and dimer of streptavidin. 

With an excellent result in hand the next sample (+)-222 was subjected to MALDI-TOF analysis.  

Here sample (+)-222 thus, n=19, but with a tetra-ethylene glycol linker rather than the alkyl chain 

as previously seen. 
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Figure 94  MALDI-TOF image and spectrum of sample (+)-222 

From sample (+)-222 [Figure 94] a clear peak is observed at ~13 kDa and a small broad peak at ~26 

kDa, suggesting that this has also got potential, however, this doesn’t appear to be as successful as 

the previous sample.  The intensity was ~2800 and the signal to noise ratio was ~28:1. 

Sample n= Intensity 
Signal to noise ratio 

streptavidin monomer 

Reference x 250 2:1 

(+)-208 6 340 4:1 

(+)-212 11 2200 15:1 

(+)-216 19 19500 39:1 

(+)-222 19PEG 2800 28:1 

Table 13  Intensity and signal to noise ratio for MALDI-TOF analysis  

From the data in table 13 above it was clear that the length of the linker on (+)-biotin plays a hugely 

important role in the detection of streptavidin on a surface.  Where the linker is very short i.e. n = 6, 

(+)-208 barely any streptavidin is detected, from this we can infer the (+)-biotin analogue (+)-208 

has not bound very much streptavidin.  This could be because: a) the linker has not packed very 

well onto the surface, reducing the density of the SAM and therefore less (+)-biotin is present on 

the surface for binding to streptavidin.  b) the linker has bound to the surface and has a high density 

SAM but the linker is too short for the (+)-biotin to interact with the streptavidin binding sites.  The 

increase in linker length to n = 11 (+)-212 has made a great improvement in the intensity and the 
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signal to noise ratio.  The increase in the length of the linker could have increased the density of the 

SAM or made the (+)-biotin more available to the binding pockets of the streptavidin, therefore 

affording a stronger signal.  When n = 19 via an alkane chain (+)-216 a vastly improved spectrum 

was afforded.  The intensity has been increased to a huge 19,500 and a signal to noise ratio of 

nearly 40:1 affording a very strong indication that the (+)-biotin and streptavidin were interacting at 

easily detectable concentrations on the compact disc.  Sample (+)-222 where n = 19 via a PEG 

chain the intensity and signal to noise ratios are still very good but not as conclusive as the previous 

sample (+)-216.  The data in Table 13 gives a very strong indication that the best performing ligand 

in the series of compounds (+)-208, (+)-212, (+)-216 and (+)-222 was (+)-216 where n = 19 via an 

aliphatic chain  

This was probably indicative of the interactions of the alkyl chains between neighbouring SAMs, as 

described by Perez-Luna et al, the longer linker allows them to pack more tightly.
70

  Thus, 

affording more (+)-biotin tail groups for the streptavidin to bind to, resulting in increased quantities 

of streptavidin on the surface and a stronger signal under MALDI-TOF analysis. 

4.18  Tröger’s Base Scaffolds for SAMs 

With some excellent results in hand, we postulated the idea that doubling the available (+)-biotin 

motifs on the SAMs, may allow more streptavidin to bind to the gold surface. If this was successful 

it would have the potential to increase the signal observered by the mass analysis or allow the 

spectra to be run for a shorter amount of time.   

The Tröger’s base scaffold, with its right angled shape, rigid structure and 3-fold functionality 

would be ideal scaffold for this purpose.  Utilising the right angled shape and directing properties of 

Tröger’s base, in conjunction with the 1,4 bis-substituted-1,2,3-triazole at the 2- and 8- position, 

would ‘push’ the (+)-biotin motifs away from each other.  This would potentially allow twice the 

number of (+)-biotin motifs to be available for binding to the streptavidin protein.  With the 

chemistry for functionalisation at the 2- and 8- position already in place, modification of the C13 

methylene bridge could be attempted.  

4.19  Methylene bridge removal from Tröger’s base 

Insertion, modification or replacement of the methylene bridge (C13) of Tröger’s base has been 

previously reported.  These include total removal with acids and anhydrides,
17

 insertion of activated 

akynes
16

 and replacement with aldehydes and di-bromo alkanes.
19

  The method as described by 

Mahon et al, total removal of the methylene bridge using trifluoroacetic anhydride, followed by 
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ethanolysis with sodium hydroxide in ethanol, was employed on a 2,8-bis-1,2,3-triazole-N-Boc-L-

leucine Tröger’s base derivative 121. 

 

Scheme 55  Attempted removal of C13 bridgehead methylene from 121.  a) trifluoroacetic anhydride, DCM, 16 hours.  

b)  Sodium hydroxide and ethanol. 

This was unsuccessful and resulted in the efficient recovery of the starting material 121.  

Undeterred, the much simpler 2,8-bis-iodo-Tröger’s base (+/-)-78 was submitted to the same 

procedure.  Gratifyingly this afforded the desired diazocine 224 in a 71% yield.  The reaction 

mechanism for the synthesis of 224 from (+/-)-78 [Scheme 56] proceeds via nucleophillic attack of 

the tertiary amine of (+/-)-78 on trifluoroacetic anhydride thus affording an amide salt.  This was 

followed by imine formation of the remaining amine to the C13 methylene thus ring opening the 

structure.  The resulting imine is attacked by the carboxylate ion of trifluoroacetic acid to give the 

corresponding ester.  The resulting amide and ester are then hydrolysed via ethanolysis to give the 

diamine 224. 

 

Scheme 56  Proposed mechanism for the C13 bridgehead methylene removal using trifluoroacetic anhydride followed 

by ethanolysis. 
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Scheme 57  Reaction scheme for the removal of C13 bridgehead methylene of 2-,8-bis-iodo Tröger’s base (+/-)-78 

 

Figure 95  
1
H-NMR (400MHz) spectrum of 2,8-bis-iodo-5,6,11,12-tetrahydrodibenzo[b,f][1,5]diazocine 224 

The 
1
H-NMR (400MHz) spectra of 224 [Figure 96] has dramatically changed, the aliphatic 

doublets from (+/-)-78 have been replaced by a singlet at δ4.41 integrating to 4 protons.  Thus the 

singlet originating from the C13 bridgehead group is no longer observed and a shift can be seen in 

the aromatic region. 

 

Figure 96  Superimposed 
1
H-NMR spectra of 2-,8-bis-iodo Tröger’s base (+/-)-78 and 2,8-bis-iodo-5,6,11,12-

tetrahydrodibenzo[b,f][1,5]diazocine 224 
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The diagnostic peak for the carbon-iodine bond, in the 
13

C-NMR (100 MHz) of 224, was located at 

δ79.75 confirming that the procedure employed had not interfered with this substituent.  Analysis 

via mass spectrometry afforded a mass ion at m/z [ES]
+
 M+H 462.8 this with full physiochemical 

analysis afforded a strong indication the desired compound had been generated. 

4.20 Tröger’s base C13 modification 

A procedure reported by Mahon et al. has demonstrated that aldehydes can be used to replace the 

C13 methylene bridge.
17

  The re-insertion of the methylene bridge for subsequent attachment to the 

gold CD surface would need to be equipped with an aldehyde and another suitably protected 

functional group, such as a benzyl ester.  A short alkyl chain would be required to allow room for 

insertion and further coupling later.  The functional group of choice was a carboxylic acid as further 

alkyl chains could be added by utilising the nucleophilicity of the carboxylate anion, which can be 

formed using a weak base.  Protecting groups which require a strong base to deprotect such as 

methyl or ethyl esters were avoided as other ester groups added ‘downstream’ in the synthesis 

could be competitively hydrolysed.  The ring opening of γ-butyrolactone 225 with sodium 

hydroxide as a base
141

 in the presence of benzyl alcohol or bromide have been reported but was 

found to be quite poor yielding 35%.  An alternative route was necessary, and we considered using 

potassium trimethylsilanolate and benzyl bromide in N-N-dimethylformamide.  The lactone 225 

was dissolved in N-N-dimethylformamide and potassium trimethylsilanolate added, resulting 

almost immediately in a precipitate forming.  Stirring the reaction for 16 hours, allowed the 

precipitate to re dissolve.  Following an aqueous work up and flash chromatography on silica gel, 

eluting with 25% ethyl acetate in hexane afforded a colourless liquid in a 69% yield.  Subsequent 

physiochemical analysis was in agreement with the literature values for 226.
141

 

226 was subsequently oxidised via Swern oxidation to give the necessary aldehyde 227, again the 

data corresponded with the literature values,
142

 in a 54% yield over two steps.   
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Scheme 58  Proposed reaction mechanism for the potassium trimethysilanoate mediated ring opening of γ-

butyrolactone 225 and subsequent esterification with benzyl bromide.  Followed by proposed mechanism of Tröger’s 

base C13 insertion with benzyl 4-oxobutanoate 227.  a) TMSOK, benzyl bromide, DMF, 75%. b) Oxalyl chloride, 

DMSO, DCM, triethylamine, -60˚C, 89%. 

The benzyl 4-oxobutanoate linker 227 was then refluxed in toluene with the diazocine 224 

affording, presumably an imine followed by immediate intramolecular cyclisation via the favoured 

6 endo-trig cyclisation, driven by the evolution of water, to afford the unreported new modified 

Tröger’s base substrate (+/-)-228. 

The 
1
H-NMR (500MHz) [Figure 97] spectrum outlines the splitting of the protons at C6 and C12, 

with each of the protons split into doublets δ4.55 (d, J16.7 Hz) and δ4.46 (d, J17.4 Hz) 

corresponding to the exo protons, δ4.07 (d, J16.7 Hz) and δ3.95 (d, J17.4 Hz) the endo protons and 

the C13 proton can be observed as a doublet of doublets δ4.05 (dd, J6.5, 8.1 Hz) nestled between 

two doublets.  The aromatic peaks of both the Tröger’s base and benzyl ester were observed, along 

with the benzyl methylene at δ5.10 and the aliphatic linker methylenes further upfield, δ2.57 (t, 7.3 
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Hz) and δ1.96.  Mass spectrometry afforded a mass ion m/z [ES]
+
 M+H 637.0 which further 

indicated the desired compound (+/-)-228 had been generated. 

 

Figure 97  
1
H-NMR (500MHz) of (+/-)-228 affording a new doublet of doublets at δ4.05 corresponding to the newly 

inserted C13 proton.  

The 
13

C-NMR (500MHz) spectrum affords a peak at δ87.57 confirming the carbon-iodine bond is 

still intact.  A signal at δ172.91 indicating the presence of a carbonyl peak, associated with the ester 

group is still present which, is also confirmed by its characteristic FT-IR peak at 1730cm
-1

.  (+/-)-

228 was then converted to the bis-azide Tröger’s base (+/-)-229 via the copper catalysed protocol 

employed earlier. (sodium azide, copper(I) iodide, sodium ascorbate, N
1
,N

2
-dimethylethane-1,2-

diamine, DMSO / water (5:1), 100°C µw, 1 hour)  Once again this employed procedure worked 

very well affording the desired substrate (+/-)-229 in a 95% yield after flash column 

chromatography on silica gel, eluting with 25% ethyl acetate in hexanes. 

 

Scheme 59  Synthesis of benzyl 3-(2,8-bis-azido-6,12-dihydro-5,11-methanodibenzo[b,f][1,5]diazocin-13-

yl)propanoate (+/-)-229 
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Figure 98  The 
1
H-NMR (500MHz) spectra of (+/-)-229 

The 
1
H-NMR (500MHz) spectra of (+/-)-229 [Figure 98] clearly affords an upfield shift in the 

aromatic peaks of the Tröger’s base with all the other peaks remaining at approximately the same 

chemical shift.  The 
13

C-NMR (100MHz) of (+/-)-229 [Figure 99] indicates the diagnostic carbon-

iodine bond at δ87.57 has gone with new peaks observed at δ118.77, 118.36, 116.97 and 116.72.  

These correspond to the carbon-azide bond located at C2 and C8 of the Tröger’s base and four 

signals are evident, a consequence of the diastereoisomerism of Tröger’s base, and the resonance 

structures of the azide functionality.  The FT-IR spectrum afforded a strong signal at 2105 cm
-1

, a 

diagnostic peak of the azide functional group. 

 

Figure 99  Superimposed 
13

C-NMR spectra of (+/-)-229 (blue) and (+/-)-228 (red) indicating the shift of the substituted 

aromatic carbon. 

4.21  Synthesis of (+)-biotin incorporated Tröger’s bases   

With the scaffold successfully synthesised, allowing for functionalisation at the 2- and 8- positions 

as well as the modified bridgehead, the simplest propargyl (+)-biotin (+)-85 was ‘clicked’ 



123 

 

symmetrically to the Tröger’s base scaffold (+/-)-229, using the standard procedure (CuSO4•5H2O, 

TBTA, sodium ascorbate, DMF, 70˚C µW, 1 hour).  Following an aqueous workup and flash 

column chromatography on silica gel eluting with a gradient of 5-10% methanol in 

dichloromethane the required compound was produced in an 85% yield. 

 

Scheme 60 Synthesis of 230 a) CuSO4•5H2O, TBTA, sodium ascorbate, DMF, 70˚C µW, 1 hour, 82%. 

 

Figure 100 
1
H-NMR (400MHz) spectrum of 230 

The 
1
H-NMR (400MHz)  of 230 was a little broad most probably due to the poor solubility of 230 

in many deuterated solvents, however, the Tröger’s base exo protons were observed as doublets at 
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δ4.64 and δ4.56, the four NHs’ and aliphatic methylenes of the (+)-biotin substrate (+)-85 at δ6.25 

and δ5.58, δ1.48 and δ1.27 respectively.  The two 1,2,3-C5-triazole peaks, are split into a doublet of 

doublets, and can be observed at δ7.99.  Together with a mass ion m/z [ES]
+
 M+H 1031.6 and the 

loss of the azide functionality as determined by FT-IR, the signal at 2105 cm
-1

 was no longer 

observed, indicated the substrates had been successfully ‘clicked’.   

With the symmetrical, O-benzyl ester protected, Tröger’s base bis-biotin 230 in hand deprotection 

of the benzyl ester was investigated.  Routinely removed by hydrogenation over a palladium 

catalyst, however, 230 was resistant to this treatment see Table 14.  A range of O-deprotection 

methods were attempted, however these resulted in very poor yields <10%, recovered start material 

230 and/or decomposition of the compound 230. 

Conditions Yield % Conditions Yield % 

Pd/C, H2, methanol, 

50psi 
< 5 

Pt/C, H2, Methanol, 

50psi 
< 10 

NiCl2, NaBH4, DCM s/m recovered 

Pd black, 1,4 

cyclohexadiene, acetic 

acid 

s/m recovered 

PtO2/C, H2, ethanol, 50 

psi 
< 10 

Hydrobromic acid, 

acetic acid 
0 

Table 14 Reaction conditions for the attempted O-benzyl-deprotection. 

Searching the literature, an explanation was found.  Palladium catalysts are poisoned by sulfur and 

amines,
143

 it is presumed that the combination of the sulfurs from the (+)-biotin and the imines from 

the triazoles and amines from the Tröger’s base were co-ordinating on the metal surface inhibiting 

hydrogenolysis from taking place.  Adams catalyst, platinum dioxide, is sometimes employed to 

negate this problem,
143

 however, this was also ineffective.  A procedure reported by Khurana et al. 

using nickel(II) chloride and sodium borohydride
144

 was attempted but this also returned start 

material 230.  An alternative, but much harsher, O-deprotection using hydrobromic acid in acetic 

acid didn’t return any product or start material.  After many attempts this pathway was abandoned 

and another was devised and investigated. 

The tert-butyl ester protecting group was considered a suitable alternative for this protection; this 

would require deprotection by trifluoroacetic acid, which is compatible with both (+)-biotin and the 

Tröger’s base scaffold, as Tröger’s base was synthesised in neat trifluoroacetic acid. 
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Scheme 61  Reaction scheme for the synthesis of (+/-)-237.  a) N-hydroxysuccinamide, DMAP, triethylamine in 

toluene, reflux 24 hours, 75%.  b) borane dimethyl sulfide complex, THF, 0˚C – ambient temperature, 24 hours, 96%. 

c)  oxalyl chloride, dimethylsulfoxide, dichloromethane, -60˚C, 15 minutes, 92%.  d) 224, reflux, toluene 16 hours, 

Dean-Stark trap, 95%.  e)  Sodium azide, copper(I) iodide, N
1
,N

2
-dimethylethane-1,2-diamine, DMSO:water 5:1, 100˚C 

µW, 1 hour, 81%. 

This was achieved using a procedure reported by Srinivasan et al, employing succinic anhydride 

232 was ring-opened and activated by N-hydroxy succinamide. This was subsequently esterified 

with tert-butanol, affording a mono-protected 1,4 dicarboxylic acid 233.
145

  Subsequent reduction 

using borane-dimethylsulfide, afforded the corresponding alcohol 234.  Oxidation of the primary 

alcohol to the aldehyde 235 via Swern oxidation generated the desired linker for subsequent 

insertion into the diazocine 224.  This was accomplished, in 95% yield, by refluxing 224 and 235 in 

toluene followed by the copper(I) catalysed, azide formation (sodium azide, copper(I) iodide, 

sodium ascorbate, N
1
,N

2
-dimethylethane-1,2-diamine, DMSO / water (5:1), 100°C µw, 1 hour) 

afforded the bis-azide (+/-)-237 once again in excellent yield 81%. 
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Figure 101  Stacked 
1
H-NMR spectra of 235(blue), (+/-)-236 (green) and (+/-)-237 (red).  

The 
1
H-NMR (400MHz) spectra [Figure 101] (blue) outlines the aldehyde peak of 235 at δ9.79, 

two triplets from the methylenes at δ2.72 and δ2.53 with a coupling constant of J6.7 Hz and a sharp 

singlet at δ1.43 for the tert-butyl protons.  In the spectra of (+/-)-236 (green) the aldehyde peak had 

disappeared and aromatic peaks at δ7.42, 7.18, 6.84 corresponding to the Tröger’s base section of 

the scaffold are clearly identifiable.  The methylene protons found at C6 and C12 were located at 

δ4.58 (J16.7 Hz), δ4.47 (J17.4 Hz), δ4.09 (J16.7 Hz) and δ3.94 (J17.5 Hz), demonstrating the exo 

and endo couplings.  The triplet at δ4.02 is the proton at the newly inserted C13 bridgehead.  The 

methylene next to the tert-butyl ester of the linker has moved slightly upfield to δ2.43 ppm, 

however, the methylene closest to the scaffold has shifted dramatically upfield to δ1.90 and has 

been split into a multiplet.  Conversion of (+/-)-236  to (+/-)-237 affords a shift of the aromatic 

protons upfield to δ7.08, δ6.82 and δ6.55 due to a change in chemical environment of the aromatic 

protons, as would be expected when converting from a carbon-iodine bond to a carbon-azide bond.  

The FT-IR spectra afforded a strong peak at 2104 cm
-1

 further indicating that the azide group had 

been introduced. 

With the new tert-butyl protected scaffold (+/-)-237 in hand, ‘clicking’ of the (+)-biotin substrate 

(+)-85 was the next task.  Using the same procedure as employed for the synthesis of (+/-)-230, the 

reagents (CuSO4•5H2O, TBTA, sodium ascorbate, DMF) were sealed in a microwave vial and 

heated to 70°C for 1 hour.  Following an aqueous work up and column chromatography on silica 
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gel eluting with a gradient of 5-10% methanol in dichloromethane a white amorphous powder was 

collected in a 92% yield.  

238 was submitted for physiochemical analysis, this suggested that this was the expected product.  

The 
1
H-NMR (400MHz) spectrum [Figure 103] afforded a 1,2,3-C5-triazole peaks as two singlets δ 

8.04 and 8.01. The Tröger’s base exo protons have remained intact at δ4.74 (J16.8 Hz) and 4.62 

(J17.8 Hz), the diagnostic (+)-biotin NHs at δ6.33 and 5.70 and the tert-butyl protecting group can 

be seen at δ1.41.  The FT-IR spectra affords no azide peak, usually observed at 2106 cm
-1

, in 

compound (+/-)-237 this was no longer present, indicating the azide has reacted as expected. 

 

Figure 102  Structure of 238, product of the reaction between (+/-)-237 and (+)-85 

 

Figure 103  
1
H-NMR (400MHz) spectrum of 238 

With 238 in hand the deprotection was, once again, attempted in this case 238 was dissolved in 

dichloromethane and sealed in a 2.5 mL microwave vial.  One equivalent of trifluoroacetic acid was 

added via syringe and left to stir at room temperature.  Thin layer chromatography was used to 

monitor the tert-butyl ester deprotection and after 12 hours start material 238 had been consumed 

and all material was on the baseline.  The solvent and trifluoroacetic acid were removed under 

reduced pressure and the residue redissolved in the minimum amount of dichloromethane and 

diethyl ether was added resulting in the formation of a precipitate.  This was filtered off and taken 
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straight through to the next step.  Using 239 it was submitted to the mild conditions (potassium 

carbonate and propargyl bromide in dimethylformamide, as described by Bew and Hiatt-Gipson, 

for the synthesis of propargyl esters,
105

) gratifyingly 240 was afforded in an excellent 88% yield.  

 

Scheme 62  Synthesis of 240 from 238.  tert-butyl deprotection with a)  trifluoroacetic acid, dichloromethane, 12 hours, 

affording intermediate 239 followed by propargyl ester formation b) potassium carbonate, propargyl bromide in N-N-

dimethylformamide afforded 240 in 88% yield. 

 

Figure 104 
1
H-NMR (400MHz) spectrum of 240 
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1
H-NMR (400MHz) analysis of 240 [Figure 104] confirmed that a new methylene peak at δ4.63, 

corresponding to the propargyl group and the alkynyl proton, usually seen at ~δ2.50 cannot be 

clearly seen as it has merged with other signals found at the same chemical shift.  LC-MS [ES]
+
 

confirmed an expected mass ion m/z [ES]
+
M+Na1001.4, offering evidence that compound 240 had 

been successfully synthesised.  With the O-tert-butyl ester deprotection of 238 accomplished and a 

methodology to introduce an alkynyl group on to the Tröger’s base scaffold, the (+)-biotin linkers 

(+)-211 and 215, were coupled via the same procedure, (CuSO4•5H2O, TBTA, sodium ascorbate, 

DMF, 70˚C µW, 1 hour) affording different lenth (+)-biotin linkers to Tröger’s base scaffold 241 

and 242. 

 

Figure 105 Structure of 241 

 

Figure 106  
1
H-NMR (400MHz) of 241 

The 
1
H-NMR (400MHz) of 241 was very similar to 240, however the signals were broader due to 

the increased degrees of freedom from the extended, more flexible alkyl linker.  The 1,2,3-C5-

triazole peak was observed at δ7.62, the characteristic (+)-biotin amide protons at δ5.88 and δ5.49 

and the Tröger’s base exo methylene doublets at δ4.76 (d, J16.8 Hz) and δ4.64 (d, J17.5 Hz).  The 

aliphatic region displayed broad peaks at δ1.64 (m) and δ1.37 (s), as before correspond to the 

methylene protons from (+)-biotin alkyl chain.   The FT-IR azide peak at 2106 cm
-1

, from (+/-)-

237, has disappeared suggesting reaction at the azide moiety affording the desired product in 89% 

yield.   
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Figure 107  Structure of 242 

 

Figure 108  
1
H-NMR (400MHz) spectrum of 242 

The 
1
H-NMR (400MHz) spectrum of 242 affords the 1,2,3-C5-triazole peak at δ7.80, the diagnostic 

amide protons of (+)-biotin at δ5.65 and δ5.30, and one of the exo protons of the Tröger’s base 

methylenes is visible as a doublet at δ4.71.  The second Tröger’s base exo proton is obscured by the 

new signal at δ4.59 corresponding to the methylenes of the (+)-biotin linker next to the triazole 

ring.  Once again there were strong signals in the aliphatic region δ1.56 and δ1.18 corresponding to 

the methylenes from the (+)-biotin linker.  The FT-IR also shows the disappearance of the azide 

signal at 2106 cm
-1

 and a mass ion m/z [ES]
+ 

M+Na 1308.7 afforded a strong indication that the 

reaction was successful in 85% yield.   

With compounds 241 and 242 in hand these were O-tert-butyl deprotected using trifluoroacetic acid 

in dichloromethane.  After 16 hours of reaction time, the solvent was removed under reduced 

pressure and redissolved in the minimum amount of dichloromethane.  A precipitate was generated 

upon addition of diethyl ether and the precipitate was filtered off.  The free carboxylic acid 

derivatives were dissolved in N,N-dimethylformamide and potassium carbonate added.  This was 

followed by addition of linkers 86, 210 and 214 and left to stir for 12 hours affording the 
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corresponding Tröger’s base scaffold 245-250 with varying lengths of (+)-biotin linkers and 

extended linkers for ‘clicking’ with the disulfide 207. 

 

Scheme 63  Synthesis of extended linkers for 245-250.  a) TFA, DCM, 12 hours, b) potassium carbonate, 86 or 210 or 

214, DMF, 12 hours. 

Compound Structure Yield % 
1
H-NMR alkynyl peak 

245 X=(CH2)6,  Y=CH2 88 δ2.41  

246 X=(CH2)6,  Y=(CH2)6 86 δ1.87  

247 X=(CH2)6,  Y=(O(CH2)11O) 75 δ2.35 

248 X=(O(CH2)11O),  Y=CH2 66 δ2.41 

249 X=(O(CH2)11O), Y=(CH2)6 85 δ1.87 

250 X=(O(CH2)11O),  Y=(O(CH2)11O) 83 δ2.35 
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Figure 109 
1
H-NMR (400MHz) of 245 

In the 
1
H-NMR (400MHz) of 245 [Figure109] the propargyl methylene was observed at δ4.62 (t, 

J2.4Hz) and the alkynyl proton was observed at δ2.41 (t, J2.5 Hz).   

The 
1
H-NMR (500MHz) spectra of 250 [Figure 110] afforded a propargyl methylene signal at 

δ4.12 (d, J2.4 Hz), slightly upfield of 245, due to less shielding from the ether bond, and the signal 

from the alkynyl proton was observed at δ2.35 (t, J2.4Hz). 

 

Figure 110  Structure and 
1
H-NMR (500MHz) of 250 
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4.22  Synthesis of symmetrical 2,8-1,2,3-triazole Tröger’s base C13 disulfide dimers 

The next step in this project will be the synthesis of the disulfide dimers of the Tröger’s base 

analogues 251-256.  This was already attempted and purification of the large analogues was far 

from facile.  The reaction appeared to proceed under the reaction conditions [Scheme 64] the 

consumption of both start materials 245 and 207, however upon aqueous work up of the reaction 

mixture less than 10% of mass balance was recovered and 
1
H-NMR analysis afforded a complex 

spectrum with minimal structural information acquired.  MALDI-TOF mass spectrometry afforded 

mass ions of the expected mass, however this was far from conclusive.  Efforts are ongoing to 

resolve this problem and semi-preparative reverse phase chromatography will be attempted.  

Another option that is currently under investigation is to perform the ‘click’ reaction on the surface 

of the gold compact disc in situ by forming SAMs of the di-sulfide di-azido linker 207 and then 

coupling the Töger base analogues 245-250. 

Scheme 64  Proposed synthesis of Tröger’s base dimers 251-256 from 245-250.  a)  CuSO4•5H2O, TBTA, sodium 

ascorbate, DMF, 70˚C µW, 1 hour 
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Once these have been successfully synthesised and characterised they will be bound to the gold CD 

surface as previously reported via the hanging drop method. They will then be treated with a 

solution of streptavidin and submitted for MALDI-TOF mass spectrometry analysis. 

5.0 Discussion 

During the course of this project a plethora of novel Tröger’s base analogues have been 

synthesised, including symmetrical and unsymmetrical 2,8-(1,2,3,-triazole)-1,4 substituted Tröger’s 

bases’. 
2
H, 

15
N and 

13
C isotopically enriched Tröger’s bases’ have been synthesised as well as many 

novel propargyl compounds.  A procedure has been discovered and applied for the mild deuteration 

of terminal alkynes and their use as a building block for organic synthesis has been explored.   

The binding of biotinylated linkers to a compact disk, via self assembled monolayers, and their 

ability to subsequently bind streptavidin to the surface of the disc has been investigated and probed 

by MALDI-TOF spectroscopy affording positive results.  This ability to detect proteins on a 

compact disc by MALDI-TOF has afforded a proof of concept and work will continue to discover 

further ligands and proteins, for example the detection of cholera and anthrax proteins, that can be 

incorporated into this design. 

The use of Tröger’s base as a scaffold for these interactions, is still ongoing and although the 

chemistry has been successful, the analysis of their ability to bind proteins more efficiently than 

(+)-208, (+)-212, (+)-216 and (+)-222 is still unknown.  The confirmation that these complex 

Tröger’s base analogues 251-256 have the ability to form self assembled monolayer on the surface 

of the compact disc will be discovered when a suitable protocol for their purification is developed. 

This work has currently afforded two peer reviewed publications (included in the appendix) and 

there are currently two more awaiting submission.  

5.1  Further work 

With successful results of the detection of proteins on a compact disc by MALDI-TOF 

spectroscopy this work could be used as a model for designing ligands to bind to more interesting 

proteins.  For example work has begun on designing a ligand that can be bound to the compact disc 

surface for the detection of cholera lethal factor.  It is known that the carbohydrates lactose and 

galactose have been used to detect the cholera lethal factor on gold nano-particles.
146

  These ligands 

are currently being synthesised to bind to the compact disc, using the same procedures as seen in 

this report.  Should this be successful then the detection of cholera contaminated water could be 

analysed in minutes or hours, rather than the days it currently takes and has the potential for saving 
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lives in developing countries.  There has been interest from the DSTL who provided some of the 

funding for this project and steps are being taken to design a scaffold to bind to the compact disc 

for the detection of anthrax toxin.  It is envisaged that this could be used in the field on military 

operations for the rapid detection of this toxin and others. 

Interestingly, with the compounds being bound to a compact disc and reports in the literature that a 

CD-player has been adapted to be used as a LASER spectrometer.
103

  It could be possible to make 

the procedure of protein detection even easier and more compact by simply placing the compact 

disc into a laptop and running a scan of the surface.  Early efforts to investigate this possibility were 

undertaken with some interesting but not conclusive results.  A series of compounds were generated 

containing modified LASER dyes and di-sulfide bonds.  These compounds were bound to the 

surface of the compact disc and analysed by physical chemists to see if any fluorescence could be 

detected from the SAMs when they were irradiated with light of 405nm.  Interestingly small 

amounts of light emitted from the compounds on the compact disc were observed. 

 

Figure 111  Representation of a rhodamine 6G analogue 257 and the dansyl fluorophore analogue (l)-258 bound to the 

surface of a gold CD via self assembled monolayer formation. 
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Figure 112  Image of rig used to bind 257 and (L)-258 to gold CD surface (left).  Close up image of applicator syringe 

applying 257 and (L)-258 to gold CD surface (centre).  Image of LASER detector set up for analysing the emission of 

257 and (L)-258 on gold CD surface (right).   

The compounds 257 and (L)-258 were bound to the disk using the rig shown in Figure 112 and 

analysed using the set up in figure 112.   A gold CD with 257 and (L)-258 bound to its surface was 

installed on a light table. A fibre optic detector (blue lead) was placed near to the surface of the CD 

at a suitable angle to detect / capture reflected light off the CD surface.  The compact disk was 

rotated, to ‘scan’ over the surface in alignment with the bound samples.  

 

 

 

Figure 113  Emission spectra of 257 and (L)-258 on a gold compact disc when illuminated with a light of 405 nm 

Gratifyingly when the light passed over the SAMs a small amount of emission, at different 

wavelengths ~560-650nm for 257, ~480-560nm for (L)-258 was detected for both, Figure 113.  It is 

unknown whether this emission would be strong enough or change enough to observe a binding 

event on the CD surface.  The next step would be to design a ligand that incorporates the (+)-biotin 

and LASER dye moieties. This is currently under investigation by utilising the unsymmetrical 

Tröger’s base ‘click’ reaction described in this work. 
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Figure 114  Schematic of how this project could be incorporated into a CD-player spectrometer. 

Efforts to convert a CD drive into a CD spectrometer was also briefly investigated.  Using a 

reported method by Potyralio et al. a CD drive was converted to intercept the analogue signal from 

the drive before it was converted to a digital signal by the onboard micro processer.
103

  The drive 

was opened and the connection from the LASER diode detector was intercepted by soldering a wire 

to the Rf connection found on the main circuit board figure 115.   

 

 

 

Figure 115  A standard CD-drive has been modified to intercept the analogue signal via the soldering of a wire to the 

output of the detector diode. 

To test whether the signal could be detected a standard compact disc was defaced using a black 

marker and placed in the drive.  The soldered wire was connected to a high end oscilloscope and 

the surface was scanned using a CD error diagnostics program.  Interestingly the oscilloscope 

picked up the errors more rapidly than the diagnostics tool.  This was thought to be a good 

indication that the analogue signal was being intercepted as the time lag between the signal from 

the detector and the time taken convert this to digital signal was observed.  The results were 

collected and produced 30 million data points, it was necessary to thin out these results to process 

the data as MS Excel and Origin pro found it difficult to work with data of this volume.  Once the 

data had been processed a clear change in observed voltages from the detector, matched that from 

the pattern that defaced the CD.  This afforded a strong indication that the analogue signal had been 

intercepted. 
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Figure 116 A defaced compact disc was used to test whether the analogue signal had been successfully intercepted. 

Unfortunately this couldn’t be investigated further as the computing knowledge needed to make the 

CD drive spin and record data without the header of the CD being present was far too complicated 

to design without outside help.  Attempts to find a collaborator both within the university, from the 

School of Computer Science, and from industry was not possible and this aspect of the project was 

postponed until a suitable collaborator could be found. 
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6.0  Experimental 

6.1  General Directions 

Reactions described as under an argon or nitrogen atmosphere were conducted in flame dried 

apparatus.  Reactions carried out at 0˚C were cooled using a water / ice bath, those at -78˚C were 

cooled in an acetone / cardice bath.  Tetrahydrofuran and diethyl ether were freshly distilled from 

sodium benzophenone ketyl under argon.  Dichloromethane and triethylamine were freshly distilled 

from calcium hydride under argon.  Toluene and acetonitrile were freshly distilled from sodium 

under argon.  Anhydrous dimethylformamide was purchased from Sigma Aldrich.  All 

commercially available reagents were used as supplied.  Petroleum ether was refers to the fraction 

that boils between 40 and 60˚C.  Column chromatography was carried out on silica gel (Fluka 

Silica gel 60 70-230 mesh) TLC was performed on Merck plates (aluminium coated with 0.2mm 

silica gel 60 F254).  NH2 loaded silica refers to pre-packed Isolute flash chromatography cartridges.  

24 carat gold coated compact discs (Sony Gold CD-R pro 24k Gold 4 – 16x – 700)  were purchased 

from a variety of vendors. 

6.2  Characterisation 

Melting points were recorded using open capillary tubes on melting point apparatus and are 

uncorrected. Infrared spectra were recorded either as a thin film or neat sample. 
1
H and 

13
C-NMR 

spectra were recorded in Fourier transform mode on an Oxford Gemini 300 MHz, 400 MHz, 

Bruker Ultrashield 400MHz or Bruker Ascend 500 MHz at the field strength indicated and unless 

otherwise stated deuterated chloroform was used as solvent.  
15

N and 
2
H-NMR were run, unlocked, 

on a Bruker Ascend 500MHz. The 
1
H-spectra were recorded in ppm and referenced to the residual 

CHCl3 signal located at  7.26 ppm. 
13

C-NMR spectra were recorded in ppm and referenced to the 

residual CHCl3 signal found at   77.00. Multiplicities in the NMR spectra are described as: s = 

singlet, d = doublet, t = triplet, q= quartet, m = multiplet, br = broad; coupling constants are 

reported in Hz. Ion mass/charge (m/z) ratios are reported as values in atomic mass units and carried 

out on a Shimadzu LCMS or Shimadzu Kratos MALDI-TOF.  Microwave reactions were carried 

out in sealed vials in a Biotage Optimizer or Emerys Creator.  Optical rotation values were 

measured on a Perkin Elmer 241 polarimeter.  FT-IR spectra were recorded on a Perkin-Elmer 298 

spectrometer.  HRMS was carried out by the EPSRC at the National Mass Spectrometry Service, 

University of Wales, Swansea 
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Synthesis of 2,8-Diazo-6H,12H-5,11-methandibenzo[b,f][1,5]diazocine (+/-)-79 

 

(+/-)-79 A 5 mL microwave vial was charged with 2,8-bis-iodo-6H,12H-5,11-

methandibenzo[b,f][1,5]diazocine (+/-)-78 (1.5 g, 3.16 mmol), sodium ascorbate (0.063 g, 0.319 

mmol), copper(I) iodide (0.122 g, 0.638 mmol) and sodium azide (0.830 g, 12.76 mmol) in ethanol 

(5 mL) and water (2.143 mL).   The reaction vessel was sealed and to this N
1
,N

2
-dimethylethane-

1,2-diamine (59 µL, 0.957 mmol) was added and the reaction mixture heated to 100°C for 1 hour 

by microwave irradiation.  The reaction mixture was diluted with water (5 mL) and extracted with 

dichloromethane (2 x 10 mL).  The combined organic extracts were washed with brine (5 mL) and 

dried with magnesium sulfate.  This was filtered and solvent removed under reduced pressure.  The 

reaction mixture was absorbed onto silica and purified by flash chromatography (hexane : ethyl 

acetate 4 : 1).  Subsequent physiochemical analysis confirmed this to be the title compound (+/-)-79 

(702 mg, 2.307 mmol, 72.3 % yield) 

 Pale orange solid. Rf 0.6 (hexane : ethyl acetate 4 : 1).   MP : 120-122˚C (diethyl ether); 
1
H-NMR 

(400MHz, CDCl3) δ7.08 (d, J8.5 Hz, 2H, ArH), 6.81 (d, J8.4 Hz, 2H, ArH), 6.55 (s, 2H, ArH), 4.62 

(d, J16.8 Hz, 2H, CHH), 4.25 (s, 2H, CH2), 4.07 (d, J16.8 Hz, 2H, CHH); 
13

C-NMR (100MHz, 

CDCl3) δ145.02, 135.78, 129.36, 126.62, 118.68, 117.23, 67.13, 58.88 ppm; FT-IR (KBr neat)  

2112 azide cm
-1

; m/z [ES]
+
 M+H (found) 305.1, (calc): 305.1,  HRMS (NSI) Calcd for C15 H13 N8, 

M+H, 305.1258; Found 305.1260. 
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Synthesis of prop-2-ynyl 5-((3aS,4S,6aR)-2-oxohexahydro-1H-thieno[3,4-d]imidazol-4-

yl)pentanoate (+)-85 

 

A flame-dried 25mL round-bottomed flask was charged with (+)-biotin (+)-64 (500 mg, 2.047 

mmol) and potassium carbonate (424 mg, 3.07 mmol) in N-N-dimethylformamide (10 mL) and left 

to stir under an argon atmosphere for 30 minutes.  Following this propargyl bromide 86 (331 µl, 

3.07 mmol) was added slowly and left to stir for 16 hours at room temperature.  The resulting 

solution was diluted with ethyl acetate (10 mL), water (10 mL) and transferred to a 50 mL 

separating funnel.  The solution was extracted with ethyl acetate (2 x10 mL) and the combined 

organic extracts were washed with water (5 x10 mL), washed with brine (10 mL) and dried over 

magnesium sulfate.  The solution was filtered and the solvent removed under reduced pressure.  

The residue was purified by flash chromatography on silica eluting with 3% methanol in 

dichloromethane affording a white solid.  Subsequent physiochemical analysis confirmed this to be 

the title compound O-propargyl (+)- biotin (+)-85 (525 mg, 1.859 mmol, 91 % yield) 

White solid Rf 0.45 (3% methanol in dichloromethane).  MP 87-88˚C (methanol/ether).  
1
H-NMR 

(400 MHz, CDCl3) δ 6.34 (s, 1H, NH), 5.96 (s, 1H, NH), 4.61 (d, J2.5 Hz, 2H, CH2), 4.44 (dd, J 

7.7, 4.8 Hz, 1H, CH), 4.24 (dd, J 7.7, 4.7 Hz, 1H, CH), 3.20 – 2.97 (m, 1H, CH), 2.84 (dd, J 12.8, 

4.9 Hz, 1H, CH), 2.69 (d, J 12.7 Hz, 1H, CH), 2.45 (t, J 2.5 Hz, 1H, CH), 2.33 (t, J 7.5 Hz, 2H, 

CH2), 1.76 – 1.51 (m, 4H, 2CH2), 1.46 – 1.29 (m, 2H, CH2).  
13

C-NMR (101 MHz, CDCl3) δ 

173.08, 164.34, 77.98, 75.16, 62.16, 60.34, 55.76, 52.06, 40.77, 33.80, 28.52, 28.38, 24.83 ppm. 

ATR-IR 3214 CH alkyne, 2135 C-C alkyne, 1759 C=O, 1678 C=O cm
-1

 m/z [ES]
+
 M+Na 305.1.  

HRMS (NSI) Calcd for, C13H22N3O3S, M+NH4, 300.1390; Found 300.1392  

 

General procedure for propargylation of terminal alkynes 

A flame dried 25 mL round bottomed flask was charged with carboxylic acid (1eq), potassium 

carbonate (1.5 eq) in dimethylformamide (10 mL).  This was left to stir under an inert atmosphere 
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of argon for 30 minutes.  To this propargyl bromide (80% in toluene, 1.5 eq) was added drop wise 

and left to stir for 16 hours at room temperature.  The reaction mixture was diluted with 

dichloromethane (5 mL) and water (10 mL), transferred to a separating funnel and extracted with 

dichloromethane (2 x 5 mL).  The combined organic extracts were washed with water (5 x 10 mL), 

saturated sodium bicarbonate (2 x 10 mL), brine (10 mL), dried with magnesium sulfate and 

filtered through a NH2 loaded silica column (Isolute prepacked flash chromatography cartridge), 

eluted with dichloromethane and the solvent removed under reduced pressure to afford the 

corresponding O-propargylated compound. 

Prop-2-ynyl 2-benzamido-4-methylpentanoate (+/-)-87 

 

(+/-)-87 (54 mg, 0.198 mmol, 83%) orange oil.  No further purification necessary.  Rf  0.6 (1:5, 

ethyl acetate : hexane).  
1
H-NMR (400MHz, CDCl3) δ7.72 (dd, J1.3, 8.3Hz, 2H, ArH), 7.43 (m, 

1H, ArH), 7.35 (m, 2H, ArH), 6.56 (d, J8.1Hz, 1H, NH), 4.82 (ddd, J5.1, 8.6 Hz, 1H, CH), 4.68 (m, 

2H, CH2), 2.43 (t, J2.Hz, 1H, CH), 1.50 – 1.78 (m, 3H, CH2, CH), 0.91 (t, J5.7Hz, 6H, (CH3)2); 

13
C-NMR (100 MHz, CDCl3) δ172.7, 167.4, 134.0, 132.0, 128.8, 127.3, 77.5, 75.6, 52.9, 51.2, 41.7, 

25.1, 23.1, 22.2 ppm; FT-IR(KBr neat) 3298 CH alkyne, 2129 C-C alkyne, 1747 C=O, 1643 C=O 

cm
-1

; m/z [ES]
+
 M+H (found)  274.1, M+Na (found) 296.1, M+H (calc) 274.14, M+Na (calc) 

296.13.  HRMS (NSI) Calcd for C16H20NO3, M+NH4. 274.1438; Found, 274.1440. 

 (S)-1-benzyl 2-prop-2-ynyl pyrrolidine-1,2-dicarboxylate (S)-88 

 

(S)-88 (1.1g, 3.8 mmol, 95%) yellow oil.  No further purification necessary.  Rf 0.5 (1:5, ethyl 

acetate : hexane).  
1
H-NMR (400MHz, CDCl3) δ7.23 (m, 5H, ArH), 5.03 (m, 2H, CH2) 4.62 (m, 

1H, CH), 4.45 (s, 1H, βCHH), 4.28 (m, 1H, βCHH), 3.41 (m, 2H, CH2), 2.41 (t, J2.4Hz, 1H, 

CH(yne)), 2.12 (d, J7.4Hz, 1H, CHH), 1.85 (m, 3H, CH2, CHH); 
13

C-NMR (75MHz, CDCl3) δ172.1, 

171.9, 154.9, 154.2, 136.7, 136.6, 128.5, 128.4, 128.0, 127.9, 127.9, 127.8, 77.2, 75.3, 66.9, 66.9, 
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58.9, 58.6, 52.4, 52.3, 46.8, 46.3, 30.6, 29.6, 24.1, 23.3 ppm; FT-IR (KBr neat) 3285 CH alkyne, 

1753 C=O, 1704 C=O cm
-1

; m/z [ES]
+
 M+Na (found) 310.0, (calc): 310.11; HRMS (NSI) Calcd for 

C16H21N2O4, M+NH4, 305.1496; Found 305.1496. [α]
25

D -80.3 (c 1.0, CHCl3). 

 (S)-Prop-2-ynyl 3,11-dioxo-1,13-diphenyl-2,12-dioxa-4,10-diazatridecane-5-carboxylate (S)-

90 

 

(S)-90 (93 mg, 0.205 mmol, 85%) orange oil. No further purification necessary.  Rf 0.45  (1:5, ethyl 

acetate : hexane).  
1
H-NMR (300 MHz, CDCl3) δ7.33 (s, 10H, ArH), 5.48 (d, J7.4Hz, 1H, NH), 

5.08 (d, J7.7Hz, 4H, (CH2)2), 4.89 (m, 1H, NH), 4.72 (m, 2H, CH2), 4.39 (m, 1H, αCH), 3.17 (dd, 

J6.2, 12.5Hz, 2H, βCH2), 2.49 (t, J2.2Hz, 1H, CH), 1.75 (m, 2H, CH2), 1.41 (m, 4H, (CH2)2); 
13

C-

NMR (75 MHz, CDCl3) δ171.8, 156.6, 156.1, 136.6, 136.2, 128.6, 128.5, 128.2, 128.2, 128.2, 77.3, 

75.5, 67.0, 66.6, 53.5, 52.6, 40.3, 31.7, 29.2, 22.0 ppm; KBr neat
 
 3298 CH alkyne, 2129 C-C 

alkyne, 1703, br, C=O cm
-1

. m/z [ES]
+
 M+Na (found) 475.2 M+Na (calc) 475.18; HRMS (NSI) 

Calcd for C25H32N3O6, M+NH4, 470.2286; Found 470.2282. [α]
25

D  -8.0 (c1.0, CHCl3) 

(S)-prop-2-ynyl-3-(benzyloxy)-2-(benzyloxycarbonylamino) propanoate (S)-91 

 

(S)-91 (90 mg, 0.245 mmol, 81%) yellow oil. No further purification necessary.  Rf 0.55 (1:5, ethyl 

acetate : hexane).  
1
H-NMR (300MHz, CDCl3) δ7.31 (m, 10H, ArH), 5.72 (d, J8.4Hz, 1H, NH), 

5.14 (s, 2H, CH2), 4.74 (d, J2.1Hz, 2H, CH2), 4.57 (m, 1H, αCH), 4.52 (d, J5.5Hz, 2H, CH2), 3.94 

(dd, J2.9, 9.4Hz, 1H, βCHH), 3.72 (dd, J2.9, 9.4Hz, 1H, βCHH), 2.49 (t, J2.4Hz, 1H, CH); 
13

C-

NMR (75 MHz, CDCl3) δ169.5, 156.1, 137.4, 136.3, 128.6, 128.5, 128.2, 128.1, 127.9, 127.7, 75.4, 

73.3, 69.6, 67.0, 54.4, 52.9 ppm; FT-IR (KBr neat)3291 CH alkyne, 2130 C-C alkyne, 1755 C=O, 

1736 C=O cm
-1

; m/z [ES]
+
 (found) M+H  368.1, M+Na  390.0 (calc) M+H  368.2, M+Na  390.13; 

HRMS (NSI) Calcd for C21H22NO5, M+H, 368.1492; Found 368.1497.  [α]
25

D +19 (c1.0, CHCl3). 
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(S)-4-benzyl-1-prop-2-ynyl 2-(benzyloxycarbonylamino) succinate (S)-93 

 

(S)-93 (91 mg, 0.23 mmol, 82%) yellow oil. No further purification necessary.  Rf  0.3 (1:5, ethyl 

acetate : hexane).  
1
H-NMR (400MHz, CDCl3) δ7.24 (m, 10H, ArH), 5.74 (d,  J8.5 Hz, 1H, NH), 

5.03 (s, 4H, (CH2)2), 4.59 (m, 3H, CH2, αCH), 3.00 (dd, J4.7 Hz, 1H, βCHH), 2.83 (dd, J4.5 Hz, 

1H, βCHH), 2.38 (t, J2.5, 1H, CH); 
13

C-NMR (100 MHz, CDCl3) δ170.7, 170.2, 156.1, 136.3, 

135.4, 128.9, 128.7, 128.7, 128.6, 128.4, 128.3, 77.1, 75.8, 67.4, 67.2, 53.4, 50.6, 36.9 ppm; FT-IR 

(KBr neat) 3290 CH alkyne, 2130 C-C alkyne, 1731 C=O cm
-1

; m/z [ES]
+
 (found) M+Na 418.1 

(calc) M+Na 418.13. HRMS (NSI) Calcd for C22H25N2O6, M+NH4, 413.1707; Found 413.1701. 

[α]
25

D +21.2 (c1.0,CHCl3). 

(S)-1-tert-butyl 5-prop-2-ynyl 2-(tert-butoxycarbonylamino) pentanedioate (S)-94 

 

(S)-94 (998mg, 2.93 mmol, 89%) pale yellow solid.  No further purification necessary.  Rf 0.7 (1:5, 

ethyl acetate : hexane). MP 37-39˚C (hexane). 
1
H-NMR (300 MHz, CDCl3) δ5.09 (d, J8.1 Hz, 1H, 

NH), 4.63 (d, J2.5 Hz, 2H, CH2), 4.15 (d, J4.9 Hz, 1H, αCH), 2.40 (m, 3H, CH2, CH), 2.12 (m, 1H, 

CHH), 1.87 (m, 1H, CHH), 1.41 (s, 9H, (CH3)3), 1.38 (s, 9H, (CH3)3); 
13

C-NMR (75 MHz, CDCl3) 

δ172.1, 171.3, 155.4, 82.1, 79.7, 74.9, 53.1, 51.9, 29.9, 28.1, 27.8 ppm; FT-IR (KBr neat) 3293 C-H 

alkyne, 1713 C=O cm
-1

; m/z [ES]
+
 (found) M+Na 364.1 (calc) M+Na 364.17.  HRMS (NSI) Calcd 

for C17H28NO6, M+NH4, 342.1911; Found 342.1913.  [α]
25

D 10.4 (c 1.0, CHCl3). 
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(S)-prop-2-ynyl-1-(5-(dimethylamino)naphthalen-1-ylsulfonyl) pyrrolidine-2-carboxylate  (S)-

95 

 

(S)-95 (47 mg, 0.122 mmol, 85%) bright yellow oil. No further purification necessary.  Rf   0.3  

(1:5, ethyl acetate : hexane).  
1
H-NMR (300 MHz, CDCl3) δ8.54 (dt, J7.5, 1.3 Hz, 1H, ArH), 8.45 

(dt, J0.9, 8.7 Hz, 1H, ArH), 8.27 (dd, J1.3, 7.4 Hz, 1H, ArH), 7.54 (ddd, J7.5, 8.61, 13.3 Hz, 2H, 

ArH), 7.18 (dd, J0.8, 7.6 Hz, 1H, ArH), 4.55 (d, J8.5 Hz, 1H, αCH), 4.50 (t, J2.5 Hz, 2H, CH2), 

3.51 (m, 2H, CH2), 2.87 (s, 6H, (CH3)2), 2.44 (t, J2.5 Hz, 1H, CH), 1.75 – 2.30 (m, 4H, (CH2)2); 

13
C-NMR (75 MHz, CDCl3) δ171.3, 151.7, 134.4, 130.7, 130.7, 130.4, 130.0, 128.2, 123.2, 119.7, 

115.3, 77.2, 75.2, 59.8, 52.4, 48.4, 45.3, 30.9, 24.6 ppm; FT-IR (KBr neat) 3276 C-H alkyne, 2129 

C-C alkyne, 1754 C=O, 1335 O=S=O, 1143 O=S=O cm
-1

; m/z [ES]
+
 (found) M+H  387.1, M+Na  

409.1, (calc) M+H 387.14, M+Na 409.12.  HRMS (NSI) Calcd for C20H23N2O4S, M+H, 387.1373; 

Found 387.1373.  [α]
25

D -65 (c 1.0, CHCl3). 

(S)-prop-2-ynyl-2-(tert-butoxycarbonylamino)-4-methyl pentanoate  (S)-96 

 

(S)-96 (1.07 g, 3.98 mmol, 92%) yellow oil.  No further purification necessary.  Rf  0.7  (1:5, ethyl 

acetate : hexane).   
1
H-NMR (300MHz CDCl3) δ4.90 (d, J8.3 Hz, 1H, NH), 4.71 (q, J15.8 Hz, 2H, 

CH2), 4.33 (t, J8.2 Hz, 1H, αCH), 2.47 (s, 1H, CH), 1.61 (m, 3H, CH2 and CH), 1.42 (s, 9H, 

(CH3)3), 0.93 (d, J6.2 Hz, 6H, (CH3)2).  
13

C-NMR (75 MHz CDCl3) 172.86, 155.45, 79.90, 77.15, 

75.15, 52.40, 51.90, 41.41, 28.15, 24.59, 22.67, 21.66 ppm.  FT-IR (KBr neat) 3363 C-H alkyne, 

1750 C=O, 1713 C=O cm
-1

. m/z [ES]
+
 (found) M+Na  292.1 (calc) M+Na  292.15  HRMS (NSI) 

Calcd for C14H24NO4, M+H, 270.1700; Found 270.1701.  [α]
25

D  -17.8 (c 1.0, CHCl3). 
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(S)-1-tert-butyl 2-prop-2-ynyl pyrrolidine-1,2-dicarboxylate  (S)-97 

 

(S)-97 (1.1 g, 4.42 mmol, 95%), white solid. No further purification necessary.  Rf  0.6  (1:5, ethyl 

acetate : hexane).   MP 52-54˚C (hexane), 
1
H-NMR (300MHz, CDCl3) δ4.70 (m, 2H, CH2), 4.27 

(m, 1H, αCH), 3.45 (m, 2H, CH2), 2.45 (m, 1H, CH), 2.21 (m, 1H, CHH), 1.90 (m, 3H, CH2, CHH), 

1.41 (d, J11.89 Hz, 9H, (CH3)3); 
13

C-NMR (75 MHz, CDCl3) δ175.5, 172.2, 153.7, 150.5, 79.9, 

79.8, 77.3, 75.0, 74.9, 58.8, 58.5, 52.3, 52.1, 46.4, 46.2, 30.6, 29.6, 28.2, 28.1, 24.1, 23.4 ppm; FT-

IR (KBr neat) 3509, 3242 C-H alkyne, 2127 C-C alkyne, 1755 C=O, 1700 C=O cm
-1

; m/z [ES]
+
 

M+Na  (found)276.0, calc(276.12) HRMS (NSI) Calcd for C13H20NO4, M+H, 254.1387; Found 

254.1381. [α]
25

D -68.5 (c 1.0, CHCl3). 

(R)-prop-2-yn-1-yl-3-(tert-butoxycarbonylamino)-3-phenyl propanoate (R)-98 

 

(S)-98 (43 mg, 0.142 mmol, 75%) white solid. No further purification necessary.  Rf  0.7 (1:5, ethyl 

acetate : hexane).  MP 47-49˚C, 
1
H-NMR (300 MHz, CDCl3) δ7.29 (m, 5H, ArH), 5.40 (s, 1H, 

NH), 5.13 (s, 1H, αCH), 4.60 (d, J2.5 Hz, 2H, CH2), 2.89 (qd, J6.5, 15.6 Hz, 2H, βCH2), 2.43 (t, 

J2.5 Hz, 1H, CH), 1.41 (s, 9H, (CH3)3); 
13

C-NMR (75 MHz, CDCl3) δ170.2, 155.1, 128.7, 127.7, 

126.2, 79.7, 77.2, 75.0, 52.0, 51.2, 40.6, 28.2 ppm; FT-IR (KBr neat)
 
3354 C-H alkyne,  2130 C-C 

alkyne, 1742 C=O, 1711 C=O cm
-1

;  m/z [ES]
+
 (found) M+Na  326.0 (calc) M+Na  326.14. HRMS 

(NSI) Calcd for C17H22NO4, M+H, 304.1543; Found 304.1545. [α]
25

D 23.3 (c1.0, CHCl3). 
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(R)-prop-2-ynyl-2-(tert-butoxycarbonylamino)-3-phenyl propanoate (R)-99 

 

(R)-99 (1.04g, 3.43 mmol, 91%) colourless oil. No further purification necessary.  Rf 0.7 (1:5, ethyl 

acetate : hexane).  
1
H-NMR (300 MHz, CDCl3) δ7.29 (m, 3H, ArH), 7.16 (m, 2H, ArH), 4.96 (s, 

1H, NH), 4.72 (m, 3H, αCH, CH2), 3.11 (m, 2H, CH2), 2.51 (t, J1.9 Hz, 1H, CH), 1.41 (s, 9H, 

(CH3)3); 
13

C-NMR (75 MHz, CDCl3) δ171.3, 155.2, 135.8, 129.4, 128.6, 127.2, 80.0, 75.4, 54.2, 

52.5, 38.0, 28.1 ppm; FT-IR (KBr neat) 3383 C-H alkyne, 2129 C-C alkyne, 1750C=O, 1713 C=O 

cm
-1

;  m/z [ES]
+
 (found) M+Na 326.1, (calc) M+Na 326.14.  HRMS (NSI) Calcd for C17H22NO4, 

M+H, 304.1543; Found 304.1546.  [α]
25

D -13.5 (c 1.0, CHCl3). 

(R)-prop-2-ynyl 2-(tert-butoxycarbonylamino)-2-(4-fluorophenyl) acetate (R)-100 

 

(R)-100 (49mg, 0.16 mmol, 86%) yellow oil. No further purification necessary.  Rf 0.7 (1:5, ethyl 

acetate : hexane).  
1
H-NMR (300 MHz, CDCl3) δ7.35 (m, 2H, ArH), 7.04 (m, 2H, ArH), 5.51 (s, 

1H, NH), 5.34 (d, J7.1 Hz, 1H, αCH), 4.68 (ddd, J2.4, 5.3, 8.3 Hz, 2H, CH2), 2.45 (t, J2.5 Hz, 1H, 

CH), 1.42(s, 9H, (CH3)3); 
13

C-NMR (75 MHz, CDCl3) δ162.9 (d, J C-F 246.0 Hz), 129.0 (d, J C-F 8.4 

Hz), 115.9 (d, J C-F 21.0 Hz), 80.4, 76.6, 75.5, 56.8, 53.0, 28.1 ppm; FT-IR (KBr neat) 3301C-H 

alkyne, 2130 C-C alkyne, 1752 C=O, 1712C=O cm
-1

; m/z [ES]
+
 (found) M+Na 330.1(calc) M+Na  

330.11. HRMS (NSI) Calcd for C16H19FNO4, M+H, 308.1293; Found 308.1294.  [α]
25

D -49.4 (c1.0, 

CHCl3). 
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(S)-prop-2-ynyl 3-(1-(benzyloxymethyl)-1H-imidazol-4-yl)-2-(tert-butoxycarbonyl amino) 

propanoate (S)-101 

 

(S)-101 (47 mg, 0.11 mmol, 43%) orange oil.  No further purification necessary.  Rf 0.3 (1:5, ethyl 

acetate : hexane).  
1
H-NMR (300 MHz, CDCl3) δ7.48 (s, 1H, CH), 7.32 (m, 5H, ArH), 6.90 (s, 1H, 

CH), 5.27 (m, 3H, NH, CH2), 4.70 (m, 2H, CH2), 4.59 (m, 1H, αCH), 4.44 (s, 2H, CH2), 3.16 (m, 

2H, βCH2), 2.49 (t, J2.5 Hz, 1H, CH), 1.39 (s, 9H, (CH3)3); 
13

C-NMR (75 MHz, CDCl3) δ170.8, 

155.2, 138.5, 136.1, 129.7, 128.7, 128.4, 128.1, 126.4, 80.2, 76.8, 75.6, 73.0, 69.7, 52.9, 52.8, 28.1, 

26.5 ppm; FT-IR (KBr neat)
 
3287 C-H alkyne, 2128 C-C alkyne, 1750 C=O, 1710C=O cm

-1
; m/z 

[ES]
+
 (found) M+H 414.3, M+Na 436.2 (calc) M+H 414.20, M+Na 436.18.  HRMS (NSI) Calcd 

for C22H28N3O5, M+H, 414.2023; Found 414.2014.  [α]
25

D -3.5 (c 1.0, CHCl3). 

Prop-2-ynyl-2-(2-(tert-butoxycarbonylamino)acetamido) acetate 102 

 

102 (780 mg, 2.89 mmol, 67%) white solid. No further purification necessary.  Rf  0.7 (1:5, ethyl 

acetate : hexane).  MP : 93-95˚C (hexane), 
1
H-NMR (400MHz, CDCl3) δ7.08 (s, 1H, NH), 5.52 (s, 

1H, NH), 4.67 (dd, J1.1, 2.5Hz, 2H, CH2), 4.03 (d, J5.2 Hz, 2H, CH2), 3.80 (d, J5.2 Hz, 2H, CH2), 

2.47 (t, J2.45Hz, 1H, CH); 
13

C-NMR (75 MHz, CDCl3) δ170.4, 169.3, 156.3, 80.2, 76.9, 75.5, 52.7, 

43.9, 40.9, 28.1 ppm; FT-IR (KBr neat) 3251 C-H alkyne, 1747 C=O, 1671C=O, cm
-1

; m/z [ES]
+
 

M+Na (found)293.0, (calc): 293.11.  HRMS (NSI) Calcd for C12H19N2O5, M+H, 271.1288; Found 

271.1291. 
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(S)-prop-2-ynyl 2-(tert-butoxycarbonylamino)-4-(methylsulfonyl)butanoate (S)-103 

 

(S)-103 (86 mg, 0.269 mmol, 71%) white solid. No further purification necessary.  Rf  0.5 (1:5, 

ethyl acetate : hexane).  MP 85-87˚C (hexane), 
1
H-NMR (300 MHz, CDCl3) δ5.33 (d, J8.2 Hz, 1H, 

NH), 4.70 (qd, J2.5, 15.5 Hz, 2H, CH2), 4.37 (s, 1H, αCH), 3.08 (m, 2H, βCH2), 2.88 (s, 3H, CH3), 

2.49 (t, J2.5 Hz, 1H, CH), 2.37 (m, 1H, CHH), 2.13 (m, 1H, CHH), 1.38 (s, 9H, (CH3)3); 
13

C-NMR 

(75 MHz, CDCl3) δ170.7, 155.4, 80.6, 76.7, 75.9, 53.1, 51.9, 50.8, 40.6, 28.1, 25.3 ppm; FT-IR 

(KBr neat) 3356 C-H alkyne, 2129 C-C alkyne, 1748 C=O, 1712 C=O, 1368 O=S=O cm
-1

; m/z 

[ES]
+
 M+Na (found)342.1, (calc)342.1.  HRMS (NSI) Calcd for C13H25N2O6S, M+NH4, 337.1428; 

Found 337.1432.  [α]
25

D +12.5 (c 1.0, CHCl3). 

(S)-prop-2-ynyl-3-(1-benzyl-1H-imidazol-4-yl)-2-(tert-butoxycarbonylamino) propanoate (S)-

104 

 

(S)-104 (45 mg, 0.12 mmol, 41%) yellow oil. No further purification necessary.  Rf  0.3 (1:5, ethyl 

acetate : hexane)    
1
H-NMR (300 MHz, CDCl3) δ7.46 (d, J1.2 Hz, 1H, CH), 7.3 (m, 3H, ArH), 

7.12 (m, 2H, ArH), 6.68 (s, 1H, CH), 6.02 (d, J8.2 Hz, 1H), 5.03 (s, 2H, CH2), 4.63 (m, 3H, αCH, 

CH2), 3.05 (m, 2H, βCH2), 2.32 (t, J2.4 Hz, 1H, CH), 1.42 (s, 9H, (CH3)3); 
13

C-NMR (75 MHz, 

CDCl3) δ171.4, 155.7, 137.7, 136.0, 129.0, 128.3, 127.3, 117.2, 79.6, 77.2, 74.9, 53.5, 52.3, 50.7, 

29.9, 28.2 ppm.  FT-IR (KBr neat) 3290 C-H alkyne, 2128 C-C alkyne, 1754 C=O, 1711 C=O cm
-1

; 

m/z [ES]
+
 M+H (found) 384.2, (calc): 384.19.  HRMS (NSI) Calcd for C21H26N3O4, M+H, 

384.1918; Found 384.1911.  [α]
25

D -5.6 (c 1.0, CHCl3). 
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General procedure for bis-functionalisation of 2,8-diazo-6H,12H-5,11-methanodibenzo 

[b,f][1,5]diazocine 

 

A microwave vial was charged with 2,8-diazo-6H,12H-5,11-methandibenzo[b,f][1,5]diazocine (+/-

)-79 (1 eq), alkyne (2.2 eq), copper(II) sulfate pentahydrate (0.3 eq), sodium-L-ascorbate (0.8 eq) 

and TBTA (0.3 eq) in  N-N-dimethylformamide.  The reaction mixture was heated to 70°C, in a 

sealed vial, by microwave radiation for 1 hour.  The reaction mixture was then diluted with 

dichloromethane (5 mL), washed with water (5 x 10 mL), brine (5 mL) and dried with magnesium 

sulfate.  The suspension was filtered and the solvent removed under reduced pressure.  The reaction 

mixture was purified by flash column chromatography on silica gel 1:1 ethyl acetate : petroleum 

ether unless otherwise stated. 

2, 8 bis–(4-phenyl-1H-1,2,3-triazole)-6H, 12H-5, 11-methanodibenzo [b,f][1,5]diazocine (+/-)-

111 

 

(+/-)-111 Purified by flash chromatography on silica eluting with 1:1 ethyl acetate : petroleum ether 

to afford an of white solid (28 mg, 0.06 mmol, 84%) Rf  0.6 (1:1 ethyl acetate : petroleum ether) 

,MP : 268-270˚C (DCM);  
1
H-NMR (300MHz, CDCl3) δ8.08 (s, 2H, (CH)2), 7.87 (dd, J1.4, 8.4 Hz, 

4H, ArH), 7.56 (dd, J2.5, 8.7 Hz, 2H), 7.45 (m, 6H, ArH), 7.37 (m, 2H, ArH), 7.33 (m,2H, ArH), 

4.83 (d, J16.8 Hz, 2H, 2(CHH)), 4.40 (s, 2H, CH2), 4.32 (d, J16.8 Hz, 2H, (2CHH)); 
13

C-NMR 

(75MHz, CDCl3) δ148.46, 148.42, 133.19, 130.21, 129.22, 128.96, 128.48, 126.38, 125.84, 120.05, 

119.05, 119.44, 117.54, 66.78, 58.77, 29.56 ppm; ATR-IR-IR 3052, 2161, 1975, 1610, 1498, 

1482,1329, 1230 cm
-1

; m/z [ES]
+
 M+1 (found) 509.5, (calc): 509.6.  HRMS (NSI) Calcd for 

C31H25N8, M+H, 509.2197; Found 509.2190. 
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2, 8 bis-(4-(naphthalen-2-yl)-1H-1,2,3-triazole)-6H, 12H-5, 11-methanodibenzo [b,f] 

[1,5]diazocine (+/-)-112 

 

(+/-)-112 (19 mg, 0.03 mmol, 95%)  Precipitated from dichloromethane with hexane to afford a 

cream solid.  Rf 0.4 (1:1 ethyl acetate : petroleum ether).  MP : 226-228˚C (ether); 
1
H-NMR 

(400MHz, CDCl3) δ 8.32 (s, 2H, 2CH), 8.14 (s, 2H, ArH), 7.93-7.74 (m, 8H, ArH), 7.25 (dd, J2.5, 

8.6 Hz, 2H, ArH), 7.48-7.38 (m, 6H, ArH), 7.32 (d, J8.7 Hz, 2H, ArH), 4.80 (d, J17.0 Hz, 2H, 

2(CHH)), 4.38 (s, 2H, CH2), 4.29 (d, J17.0 Hz, 2H, (2CHH)); 
13

C-NMR (75MHz, CDCl3) δ148.50, 

147.31, 133.30, 132.86, 132.43, 129.73, 128.80, 128.17, 127.91, 126.87, 126.44, 123.80, 120.10, 

119.43, 118.95, 66.05, 58.25 ppm; FT-IR (ATR) 2936, 1605, 1495, 1433, 1338, 1230, 1213, 1112, 

1035, 965, 937, 824, 782, 759 cm
-1

; m/z [CI] M+H (found) 609.2, (calc): 609.3.  HRMS (NSI) 

Calcd for C39H29N8, M+H, 609.2510; Found 609.2505. 

2, 8 bis -4-(anthracen-9-yl) -1H-1,2,3-triazole-6H, 12H-5, 11-methanodibenzo[b,f] 

[1,5]diazocine (+/-)-113 

 

(+/-)-113 (52 mg,  0.07 mmol, 74%) Purified by flash chromatography on silica eluting with diethyl 

ether to afford a red solid.  Rf 0.6 (diethyl ether) MP :256-259˚C (diethyl ether); 
1
H-NMR 

(400MHz, CDCl3) δ8.53 (s, 2H, 2CH), 8.10 (s,2H, ArH), 8.02 (d, J8.4 Hz, 4H, ArH), 7.84 (dd, 

J0.9, 8.7 Hz, 4H, ArH), 7.65 (dd, J2.5, 8.6 Hz, 2H, ArH), 7.5 (d , J2.5 Hz, 2H, ArH), 7.44 (m, 4H, 

ArH), 7.38 (m, 4H, ArH), 7.33 (d, J8.7 Hz, 2H, ArH), 4.82 (d, J17.0Hz, 2H, 2(CHH)), 4.41 (s, 2H, 

CH2), 4.33 (d, J17.0 Hz, 2H, (2CHH)); 
13

C-NMR (75MHz, CDCl3) δ148.58, 144.83, 133.32, 
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131.48, 131.46, 129.49, 128.74, 126.61, 126.45, 126.03, 125.49, 124.16, 122.90, 120.16, 119.55, 

67.12, 59.15 ppm; FT-IR (KBr neat), 3049, 2970, 2949, 2241, 1739, 1498, 1365, 1227, 1217, 1046, 

920, 734 cm
-1

; m/z [CI] M+H (found) 709.3, (calc): 709.3.  HRMS (NSI) Calcd for C47H33N8O4, 

M+H, 709.2823; Found 709.2820. 

2,8-bis(4-(3,4,5-trimethoxyphenyl)-1H-1,2,3-triazol-1-yl)-6,12-dihydro-5,11-methanodibenzo 

[b,f][1,5]diazocine (+/-)-114 

 

(+/-)-114 (21 mg, 0.03 mmol, 93%) Purified by flash chromatography on silica eluting with 1:1 

ethyl acetate : petroleum ether to afford an off white solid. Rf 0.5 (1:1 ethyl acetate : petroleum 

ether) MP : 170-172 ˚C (hexane); 
1
H-NMR (300MHz, CDCl3) δ8.06 (s, 2H, 2(CH)), 7.55 (dd, J2.5, 

8.7 Hz, 2H, ArH), 7.42 (d, J2.3 Hz, 2H, ArH), 7.30 (d, J8.7 Hz, 2H, ArH), 7.09 (s, 4H, ArH), 4.81 

(d, J17.0 Hz, 2H, 2(CHH)), 4.39 (s, 2H, CH2), 4.30 (d, J17.0 Hz, 2H, 2(CHH)), 3.91(s, 12H, 

4(CH3)), 3.87 (s, 6H, 2(CH3)); 
13

C-NMR (75MHz, CDCl3) δ153.86, 148.54, 148.39, 138.40, 

133.20, 129.36, 126.49, 125.92, 120.16, 119.53, 117.61, 103.02, 61.20, 59.02, 56.42 ppm; FT-IR 

(KBr neat) 3133, 2935, 2840, 1589, 1495, 1352, 1239, 1125, 1046, 1003, 863, 735 cm
-1

; m/z [ES]
+
 

M+Na (found) 711.5, (calc): 711.7.  HRMS (NSI) Calcd for C37H37N8O6, M+H, 689.2831; Found 

689.2826. 
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2, 8 bis -4-((naphthalen-2-yloxy)methyl)-1H-1,2,3-triazole -6H, 12H-5, 11-methanodibenzo 

[b,f][1,5]diazocine (+/-)-115 

(+/-)-115 (75 mg, 0.11 mmol, 70%) Purified by flash chromatography on silica eluting with 1:1 

ethyl acetate : petroleum ether to afford yellow solid. Rf 0.5 (1:1 ethyl acetate : petroleum ether) 

MP : 162-164˚C (hexane); 
1
H-NMR (300MHz, CDCl3) 7.95 (s, 2H, 2(CH)), 7.75 (m, 6H, ArH), 

7.46 (ddd, J4.6, 8.4, 13.4 Hz, 4H, ArH), 7.35 (m, 4H, ArH), 7.26 (d, J8.6 Hz, 4H, ArH), 7.18 (dd, 

J2.6, 8.9 Hz, 2H, ArH), 5.37(s, 4H, 2(CH2)), 4.76 (d, J17.0, 2H, 2(CHH)), 4.35 (s, 2H, CH2), 4.24 

(d, J17.0Hz, 2H, (CHH)); 
13

C-NMR (75MHz, CDCl3) δ156.10, 148.44, 144.88, 134.42, 133.03, 

129.69, 129.23, 129.15, 127.69, 126.96, 126.58, 126.34, 124.02, 120.93, 120.11, 119.47, 118.74, 

107.19, 66.69, 61.92, 58.67 ppm; FT-IR (KBr neat) 3853, 3744, 3649, 3056, 2923, 2322, 1627, 

1599, 1500, 1257, 1214, 1179, 1119, 1013, 836, 735 cm
-1

; m/z [ES]
+
 M+1 (found) 669.2, (calc): 

669.3.  HRMS (NSI) Calcd for C41H33N8O2, M+H, 669.2721; Found 669.2719. 

2, 8 bis (4-((4-iodophenoxy)methyl)-1H-1,2,3-triazole-6H), 12H-5, 11-methanodibenzo 

[b,f][1,5]diazocine (+/-)-116 

(+/-)-116 (42 mg, 0.05 mmol, 78%) Precipitated from dichloromethane with diethyl ether to afford 

a white solid. Rf 0.4 (1:1 ethyl acetate : petroleum ether),  MP : 224-226˚C (diethyl ether); 
1
H-NMR 

(400MHz, CDCl3) δ7.88 (s, 2H, 2(CH)), 7.53 (m, 4H, ArH), 7.47 (dd, J2.5, 8.7 Hz, 2H, ArH), 7.34 

(d, J2.4 Hz, 2H, ArH), 7.29 (d, J8.7 Hz, 2H, ArH), 6.74 (m, 4H, ArH), 5.19 (s, 4H, 2(CH2)), 4.78 
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(d, J17.0Hz, 2H, 2(CHH)), 4.37 (s, 2H, CH2), 4.26 (d, J17.0 Hz, 2H, 2(CHH)); 
13

C-NMR (75MHz, 

CDCl3) δ158.05, 144.58, 138.43, 133.28, 128.94, 126.39, 120.88, 120.21, 119.63, 119.51, 117.19, 

83.57, 66.70, 61.91, 58.57 ppm; ATR-IR 2158, 1571, 1497, 1483, 1401, 1329, 1235, 1208, 1178, 

1047, 995, 821, 804 cm
-1

; m/z [ES]
+
 M+H (found) 821.1, (calc): 821.0.  HRMS (NSI) Calcd for 

C33H27I2N8O2, M+H, 821.0341; Found 821.0339. 

2, 8 bis-4-((1H-1,2,3-triazol-4-yl)methoxy)pyridine-6H, 12H-5, 11-methanodibenzo[b,f][1,5] 

diazocine (+/-)-117 

 

(+/-)-117 (83 mg, 0.15mmol, 55%)  Purified by flash chromatography on silica eluting with 5-20% 

methanol in dichloromethane affording an off white solid. Rf 0.5 (20% methanol in 

dichloromethane), MP : <300˚C (methanol); 
1
H-NMR (300 MHz, DMSO) δ 8.66 (s, 2H, 2CH), 

7.73 (d, J7.6 Hz, 4H, ArH), 7.62 (dd, J8.6, 2.4 Hz, 2H, ArH), 7.49 (d, J2.3 Hz, 2H, ArH), 7.33 (d, 

J8.7 Hz, 2H, ArH), 6.08 (d, J7.6 Hz, 4H, ArH), 5.20 (s, 4H, 2CH2), 4.72 (d, J16.9 Hz, 2H, 2CHH), 

4.27 (d, J20.6 Hz, 4H, 2CHH, CH2). 
13

C-NMR (75 MHz, DMSO) δ 177.52, 148.56, 143.48, 

141.12, 132.16, 129.67, 126.34, 126.16, 122.47, 122.15, 119.63, 119.31, 119.14, 117.80, 65.96, 

58.33, 49.82 ppm; FT-IR (KBr neat) 1635, 1540, 1182, 1101, 616 cm
-1

; m/z [CI] M+H (found) 

571.3, (calc): 571.2.  HRMS (NSI) Calcd for C31H27N10O2, M+H, 571.2313; Found 571.2306. 
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2, 8 bis -(4-((1H-1,2,3-triazol-4-yl)methoxy)-2H-chromen-2-one) 6H, 12H-5, 11-methano-

dibenzo[b,f][1,5]diazocine (+/-)-118 

 

(+/-)-118 (40 mg, 0.06  mmol, 86%) Purified by flash chromatography on silica eluting with 1 : 1 

ethyl acetate : petroleum ether to afford a white solid. Rf  0.6 (1 : 1 ethyl acetate : petroleum ether), 

MP : decomposed 245˚C (hexane); 
1
H-NMR (400MHz, CDCl3) δ7.98 (s, 2H), 7.70 (dd, J1.6, 7.9 

Hz, 2H), 7.52-7.42 (m, 4H), 7.33 (d, J2.3 Hz, 2H), 7.26 (d, J8.7 Hz, 2H), 7.23 (m, 2H), 7.16 (m, 

2H), 5.79 (s,2H), 5.32 (s, 4H), 4.75 (d, J17.0Hz, 2H), 4.33 (s, 2H), 4.24 (d, J17.0Hz, 2H); 
13

C-

NMR (75MHz, CDCl3) δ165.00, 162.61, 153.43, 148.57, 142.17, 132.88, 132.67, 129.23, 126.46, 

123.97, 123.12, 121.66, 120.24, 119.66, 116.8, 115.41, 91.24, 66.72, 62.48, 58.68 ppm; FT-IR 

(KBr neat) 3442, 3089, 2949, 2245, 1712 C=O, 1621, 1565, 1500, 1238, 1106, 1048, 937, 730 cm
-1

; 

m/z [ES]
+
 M+Na (found) 727.6, (calc): 727.7.  HRMS (NSI) Calcd for C39H29N8O6, M+H, 

705.2210; Found 705.2223. 

2, 8 bis (1-((1H-1,2,3-triazol-4-yl)methyl)-1H-benzo[d]imidazole)-6H, 12H-5, 11-

methanodibenzo[b,f][1,5]diazocine (+/-)-119 

(+/-)-119 (51 mg, 0.08mmol, 72%) Purified by flash chromatography on silica eluting with 1 : 1 

ethyl acetate : petroleum ether to afford a white solid.  Rf 0.4  (1 : 1 ethyl acetate : petroleum ether).  
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MP : Decomposed 210˚C (diethyl ether);  
1
H-NMR (300MHz, CDCl3) δ8.02 (s, 2H, 2CH), 7.79 (d, 

J5.2 Hz, 2H, ArH), 7.57 (s, 2H, 2CH), 7.41 (d, J3.5 Hz, 2H, ArH), 7.36 (dd, J2.4, 8.7 Hz, 2H, 

ArH), 7.27 (dd, J2.9, 6.2 Hz, 4H, ArH), 7.19 (m, 4H, ArH) 5.52 (s, 4H, 2CH2), 4.69 (d, J17.0 Hz, 

2H, 2CHH ), 4.29 (s, 2H, CH2), 4.16 (d, J17.0 Hz, 2H, 2CHH); 
13

C-NMR (75MHz, DMSO) 

δ148.46, 143.19, 132.15, 129.59, 126.17, 123.11, 122.19, 119.53, 119.09, 79.26, 65.94, 58.11 ppm; 

FT-IR (ATR) 3200, 1673, 1410, 1177, 1103, 1078, 1045, 983 cm
-1

; m/z [CI] M+H (found) 617.4, 

(calc): 617.3.  HRMS (NSI) Calcd for C35H29N12, M+H, 617.2633; Found 617.2624. 

2, 8 bis -(2-((1H-1,2,3-triazol-4-yl)methyl)isoindoline-1,3-dione) -6H, 12H-5, 11-

methanodibenzo[b,f][1,5]diazocine (+/-)-120 

 

(+/-)-120 (33 mg, 0.05 mmol, 74%) Purified by flash chromatography on silica eluting with 1 : 1 

ethyl acetate : petroleum ether to afford a white solid. Rf  0.5 (1 : 1 ethyl acetate : petroleum ether), 

MP : 300+˚C (hexane); 
1
H-NMR (300MHz, CDCl3) δ7.90 (s, 2H, 2CH), 7.84 (dd, J3.0, 5.5 Hz, 4H, 

ArH), 7.71 (dd, J3.1, 5.4 Hz, 4H, ArH), 7.44 (dd, J2.5, 8.6 Hz, 2H, ArH ), 7.28 (d, J2.4 Hz, 2H, 

ArH), 7.23 (d, J8.7 Hz, 2H, ArH), 5.03 (s, 4H, 2CH2), 4.74 (d, J16.8 Hz, 2H, 2CHH), 4.33 (s, 2H, 

CH2), 4.22 (d, J16.9 Hz, 2H, 2CHH); 
13

C-NMR (75MHz, CDCl3) 167.76, 148.32, 143.42, 134.22, 

132.98, 132.02, 129.05, 126.26, 123.51, 121.23, 120.10, 119.43, 66.67, 58.62, 53.38, 52.85, 29.56 

ppm; FT-IR (KBr neat) 2925, 1771 C=O, 1713 C=O, 1500, 1395, 1331, 1045, 939, 731, 713, 529 

cm
-1

; m/z [ES]
+
 M+Na (found) 697.2, (calc): 697.2.  HRMS (NSI) Calcd for C37H27N10O4, M+H, 

675.2211; Found 675.2207. 
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2, 8 bis-4-((S)-( 1H-1,2,3-triazol-4-yl)methyl 2-(tert-butoxycarbonylamino)-4-methyl 

pentanoate)-6H, 12H-5, 11-methanodibenzo[b,f][1,5]diazocine 121 

 

121 (100 mg, 0.12 mmol, 74%) Purified by flash chromatography on silica eluting with 1 : 1 ethyl 

acetate : petroleum ether to afford a white solid. Rf 0.6 (1 : 1 ethyl acetate : petroleum ether) MP : 

92 - 94˚C (hexane); 
1
H-NMR (300MHz, CDCl3) δ7.97 (s,2H, 2CH), 7.50(d, J8.7 Hz, 2H, ArH), 

7.35 (s, 2H, ArH), 7.28 (d, J9.1 Hz, 2H, ArH), 5.32 (q, J12.9 Hz, 4H, 2CH2), 4.87 (d, J8.3 Hz, 2H, 

2NH), 4.78 (d, J16.9 Hz, 2H, CHH), 4.36 (s, 2H, CH2), 4.28 (m, 3H, CHH, 2αCH), 1.58 (m, 6H, 

2βCH2, 2CH), 1.38 (s, 18H, (CH3)6), 0.89 (dd, J2.3, 6.4, 12H, (CH3)4); 
13

C-NMR (75MHz, CDCl3) 

δ173.69, 155.73, 148.57, 143.54, 133.09, 129.29, 126.49, 122.14, 120.19, 119.51, 80.18, 66.95, 

58.95, 58.50, 52.41, 41.41, 28.48, 24.94, 23.05, 21.89 ppm; FT-IR (KBr neat) 3360, 3145, 2960, 

1707 C=O, 1501, 1367, 1234, 1047, 756 cm
-1

; m/z [ES]
+
 M+Na (found) 865.5, (calc): 865.43. 

HRMS (NSI) Calcd for C43H59N10O8, M+H, 843.4512; Found 843.4516. [α]
26

D +10.5 (c 1.0, 

CHCl3). 
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2, 8-bis-((S)-4-benzyl 1-(1H-1,2,3-triazol-4-yl)methyl 2-(benzyloxycarbonylamino)succinate)-

6H, 12H-5, 11-methanodibenzo[b,f][1,5]diazocine 122 

 

122 (19 mg, 0.02 mmol, 76%)  Purified by flash chromatography on silica eluting with 8 : 2 ethyl 

acetate : dichloromethane affording a yellow solid. Rf 0.5  (8 : 2 ethyl acetate : dichloromethane), 

MP : 70-72 ˚C diethyl ether; 
1
H-NMR (300MHz, CDCl3) δ7.82 (s, 2H, 2CH), 7.40 (dt, J2.2, 9.1 Hz, 

2H, ArH), 7.30-7.14 (m, 24H, ArH), 5.70 (d, J8.6 Hz, 2H, 2NH), 5.26 (s, 4H, 2CH2), 5.03 (s, 4H, 

2CH2), 4.95 (d, J2.1 Hz, 4H, 2CH2), 4.71 (d, J17.0 Hz, 2H, CHH), 4.60 (m, 2H, 2αCH), 4.29 (s, 

2H, CH2), 4.19 (d, J17.0Hz, 2H, CHH), 3.02 (dd, J4.4, 17.3 Hz, 2H, 2βCHH), 2.82 (dd, J4.5, 17.3 

Hz, 2H, 2βCHH); 
13

C-NMR (75MHz, CDCl3) δ170.87, 156.08, 148.59, 143.04, 136.15, 135.27, 

133.05, 128.82, 128.76, 128.69, 128.48, 128.30, 126.48, 122.42, 120.22, 119.57, 67.40, 67.10, 

59.05, 58.92, 50.54, 36.87 ppm; FT-IR (KBr neat) 3357, 2338, 1729 C=O, 1502, 1206, 1046, 753, 

698 cm
-1

; m/z [ES]
+
 M+Na (found) 1118.0, (calc): 1118.1. HRMS (NSI) Calcd for C59H55N10O12, 

M+H, 1095.3995; Found 1095.3979.  [α]
26

D +12.0 (c 1.0, CHCl3). 
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2, 8 bis-((R)-(1H-1,2,3-triazol-4-yl)methyl 2-(tert-butoxycarbonylamino)-3-phenylpropanoate)-

6H, 12H-5, 11-methanodibenzo[b,f][1,5]diazocine 123 

 

123 (44mg, 0.05 mmol, 74%) Purified by flash chromatography on silica gel eluting with 1-3% 

methanol in dichloromethane to afford a pale yellow solid. Rf 0.7 (3% methanol in 

dichloromethane), MP : 102-104˚C (hexane); 
1
H-NMR (300MHz, CDCl3) δ7.82 (s, 2H), 7.48 (dt, 

J2.9, 8.6 Hz, 2H), 7.34 (t, J2.4 Hz, 2H), 7.30 (d, J8.7 Hz, 2H), 7.14 (m, 6H), 7.02 (m, 4H), 5.29 (d, 

J3.1 Hz, 4H), 5.00 (d, J8.1 Hz, 2H), 4.80 (d, J15.2 Hz, 2H), 4.57 (dd, J6.2, 14.0 Hz, 2H), 4.37 (s, 

2H), 4.28 (d, J17.1 Hz, 2H), 3.05 (m, 4H), 1.38 (s, 18H); 
13

C-NMR (75MHz, CDCl3) δ171.97, 

155.21, 148.48, 143.09, 135.75, 132.92, 129.34, 129.17, 128.51, 127.04, 126.35, 122.25, 119.99, 

119.37, 80.03, 66.69, 58.68, 58.28, 54.34, 37.89, 28.14 ppm; FT-IR (KBr neat) 3362, 2976, 2929, 

1743C=O, 1706 C=O, 1500,1366, 1165, 1047, 733 cm
-1

; m/z [ES]
+
 M+Na (found) 933.0, (calc): 

933.4.  HRMS (NSI) Calcd for C49H55N10O8, M+H, 911.4199; Found 911.4201.  [α]
27

D -38.8 (c 1.0, 

CHCl3). 
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2, 8 bis-((S)-methyl 2-(tert-butoxycarbonylamino)-3-(4-((1H-1,2,3-triazol-4-yl)methoxy) 

phenyl)propanoate)-6H, 12H-5, 11-methanodibenzo[b,f][1,5]diazocine 124 

 

124 (50.3 mg, 0.052 mmol, 63 %) Purified by flash chromatography on silica gel eluting with 4 : 1 

ethyl acetate : dichloromethane to afford a pale red solid. Rf 0.5 (4 : 1 ethyl acetate : 

dichloromethane), MP : 98-100˚C (diethyl ether); 
1
H-NMR (400MHz, CDCl3) δ7.91 (s, 2H, 2CH), 

7.48 (dd, J2.5, 8.6 Hz, 2H, 2ArH), 7.33 (d, J2.4 Hz, 2H, 2ArH), 7.27 (d, J8.7 Hz, 2H, 2ArH), 7.03 

(d, J8.7 Hz, 4H, 4ArH), 6.90 (d, J8.7 Hz, 4H, 4ArH), 5.21 (s, 4H, 2CH2), 4.99 (d, J8.4 Hz, 2H, 

2NH), 4.76 (d, J16.9 Hz, 2H,CHH), 4.52 (dd, J6.1, 13.8 Hz, 2H, 2αCH), 4.35 (s, 2H, CH2), 4.25 (d, 

J16.9 Hz, 2H, CHH), 3.69 (s, 6H, 2CH3), 3.00 (m, 4H, 2βCH2), 1.39 (s, 18H, 2(CH3)3); 
13

C-NMR 

(100MHz, CDCl3) δ172.49, 157.31, 148.33, 144.95, 133.08, 130.47, 129.11, 128.80, 126.35, 

120.88, 120.10, 119.44, 114.83, 79.89, 66.66, 61.90, 58.64, 54.41, 53.37, 52.15, 37.35, 28.16 ppm; 

FT-IR (KBr neat) 3363, 3144, 2977, 2953, 2930, 2250, 1742 C=O, 1705 C=O, 1611, 1505, 1439, 

1366, 1241, 1166, 1046, 1016, 731 cm
-1

;  m/z [CI] M+H -2boc (found) 771.4, (calc): 771.3. HRMS 

(NSI) Calcd for C51H59N10O10, M+H, 971.4410; Found 971.4421.  [α]
27

D +26.4 (c 1.0, CHCl3). 
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2, 8 bis-((S)-(1H-1,2,3-triazol-4-yl)methyl 3-(1-benzyl-1H-imidazol-4-yl)-2-(tert-

butoxycarbonylamino)propanoate)-6H, 12H-5, 11-methanodibenzo [b,f][1,5]diazocine 125 

 

125 (62 mg, 0.06 mmol, 71%) Purified by flash chromatography on silica eluting with 1-3% 

methanol in dichloromethane to afford a yellow solid.  Rf 0.8 (3% methanol in dichloromethane) 

MP : 96-98˚C (diethyl ether); 
1
H-NMR (300MHz, CDCl3) δ7.99 (d, J3.9 Hz, 2H, ArH), 7.50 (d, 

J8.6 Hz, 2H, ArH), 7.42-7.18 (m, 12H, ArH), 7.02 (d, J3.8 Hz, 2H, ArH), 6.56 (s, br, 2H), 6.05 (s, 

br, 2H), 5.24 (m, 4H, 2CH2), 4.89 (d, J11.0 Hz, 4H, 2CH2), 4.75 (d, J16.8 Hz, 2H, CHH), 4.52 (s, 

br, 2H, αCH), 4.34 (s, 2H, CH2), 4.24 (d, J16.8 Hz, 2H, CHH), 2.98 (s, br, 4H, 2βCH2), 1.39 (s, 

18H, 2(CH3)3); 
13

C-NMR (100MHz, CDCl3) δ172.23, 155.88, 148.52, 143.76, 136.11, 133.08, 

129.29, 129.12, 128.45, 127.38, 126.48, 122.20, 120.00, 119.25, 79.82, 77.59, 77.28, 76.96, 66.96, 

58.94, 58.42, 53.88, 53.66, 50.94, 30.17, 28.52 ppm; FT-IR (ATR) 2937, 2490, 2159, 2029, 1976, 

1738 C=O, 1500, 1436, 1367, 1212, 1135, 1040, 974, 729 cm
-1

; m/z [ES]
+
 M+H (found) 1071.6, 

(calc): 1071.5. HRMS (NSI) Calcd for C57H63N14O8, M+H, 1071.4948; Found 1071.4936.  [α]
23

D 

+5.0 (c 1.0, CHCl3). 
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2, 8 bis-((S)-(1H-1,2,3-triazol-4-yl)methyl 2-(tert-butoxycarbonylamino)-4-(methylsulfonyl) 

butanoate)-6H, 12H-5, 11-methanodibenzo[b,f][1,5] diazocine 126 

 

126 (14 mg, 0.02 mmol, 64%) yellow solid. Purified by flash chromatography on silica eluting with 

2-5% methanol in dichloromethane. Rf  0.8 (5% methanol in dichloromethane).  MP : 154-156˚C 

(diethyl ether); 
1
H-NMR (300MHz, CDCl3) δ 7.96 (s, 2H, ArH), 7.50 (dt, J2.8, 8.4 Hz, 2H, ArH), 

7.35 (t, J2.5 Hz, 2H, ArH), 7.29 (d, J8.7 Hz, 2H, ArH), 5.36 (dd, J12.8 Hz, 4H, 2CH2), 5.25 (d, 

J7.8 Hz, 2H, 2NH), 4.79 (d, J16.9 Hz, 2H, CHH), 4.41 (m, 4H, CH2, 2αCH), 4.28 (d, J16.9 Hz, 2H, 

CHH), 3.21 – 2.94 (m, 4H, 2βCH2), 2.89 (s, 6H, 2CH3), 2.47 – 2.27 (m, 2H, CH2), 2.27 – 2.07 (m, 

2H, CH2), 1.41 (s, 18H, 2(CH3)3); 
13

C-NMR (75MHz, CDCl3) δ171.24, 155.52, 148.72, 142.75, 

132.93, 126.36, 126.55, 122.35, 120.31, 119.77, 94.62, 80.88, 66.97, 58.97, 58.49, 52.22, 51.04, 

40.98, 28.44, 25.61 ppm; FT-IR (KBr neat) 2367, 1750, 1710 C=O, 1676 C=O, 1636, 1508, 1367 

O=S=O, 1299, 1164,1050, 764 cm
-1

; m/z [CI]
+
 M+H -2Boc (found)743.3, (calc): 743.2. HRMS 

(NSI) Calcd for C41H55N10O12S2, M+H, 943.3437; Found 943.3437.  [α]
27

D +4.6 (c 1.0, CHCl3). 
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2, 8-bis-((R)-(1H-1,2,3-triazol-4-yl)methyl 3-(tert-butoxycarbonylamino)-3-phenylpropanoate) 

-6H, 12H-5, 11-methandibenzo[b,f][1,5]diazocine 127 

 

127 (18 mg, 0.02 mmol, 61%) white solid.  Purified by flash chromatography on silica gel eluting 

with 1 – 3% methanol in dichloromethane. Rf 0.8 (3% methanol in dichloromethane) MP : 90-92˚C 

(diethyl ether); 
1
H-NMR (300MHz, CDCl3) 7.72 (s, 2H, ArH), 7.46 (dd, J2.4, 8.6 Hz, 2H, ArH), 

7.30 (m, 2H, ArH), 7.23 (d, J4.4 Hz, 8H, ArH), 7.13 (dd, J4.6, 8.9 Hz, 2H, ArH), 5.29 (s,2H, 2NH), 

5.21 (s, 4H, 2CH2), 5.10 (s, br, 2H, 2αCH ), 4.80 (d, J16.9 Hz, 2H, CHH), 4.38 (s, 2H, CH2), 4.28 

(d, J16.9 Hz, 2H, CHH), 2.86 (m, 4H, 2βCH2), 1.38 (s, 18H, 2(CH3)3); 
13

C-NMR (75MHz, CDCl3) 

δ170.91, 155.17, 148.61, 143.45, 133.06, 129.28, 128.79, 127.75, 126.45, 126.35, 122.04, 120.23, 

119.57, 67.00, 58.98, 58.03, 41.04, 28.50 ppm; FT-IR (KBr neat) 3340, 2976, 2928, 2247, 1704 

C=O, 1506, 1366, 1239, 1164, 1046, 732 cm
-1

; m/z [ES]
+
 M+H (found) 911.4, (calc): 911.3.  

HRMS (NSI) Calcd for C49H55N10O8, M+H, 911.4199; Found 911.4201. [α]
27

D +11.0 (c 1.0, 

CHCl3). 

2, 8-bis-((S)-1-tert-butyl 2-(1H-1,2,3-triazol-4-yl)methyl pyrrolidine-1,2-dicarboxylate)-6H, 

12H-5, 11-methanodibenzo[b,f][1,5]diazocine 128 

128 (32 mg, 0.07 mmol, 60%) white solid. Purified by flash chromatography on silica eluting with 
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3 : 2, ethyl acetate : petroleum  ether.  Rf 0.6 (3 : 2, ethyl acetate : petroleum  ether) MP : 100-

102˚C (diethyl ether); 
1
H-NMR (300MHz, CDCl3) δ8.08 (s, 1H, ArH), 7.94 (s, 1H, ArH), 7.51 (m, 

2H, ArH), 7.35 (m, 2H, ArH), 7.27 (m, 2H, ArH), 5.35 (d, J3.5 Hz, 2H, CH2), 5.28 (s,2H, CH2), 

4.78 (d, J16.7 Hz, 2H, CHH), 4.36(s, 2H, CH2), 4.31 (dd, J3.4, 8.6 Hz, 2H, CH2). 4.22 (m, 2H, 

CHH), 3.44 (m, 4H, 2CH2), 2.19 (m, 2H, CHH), 1.87 (m, 6H, 2CH2, CHH), 1.41 (d, J4.9 Hz, 9H, 

3(CH3)), 1.28 (s, 9H, 3(CH3)); 
13

C-NMR (75MHz, CDCl3) δ173.4, 173.2, 154.6, 153.7, 148.1, 

143.9, 143.2, 133.1, 132.8, 129.2, 128.9, 126.3, 126.2, 122.2, 121.8, 119.9, 119.3, 119.1, 79.8, 66.6, 

58.8, 58.6, 58.2, 57.8, 53.3, 46.5, 46.2, 30.6, 30.1, 29.7, 29.5, 28.2, 28.0, 24.2, 23.4 ppm; FT-IR 

(KBr neat) 3483, 3139, 2974, 2927, 2247, 1748 C=O, 1692 C=O, 1500, 1401, 1366, 1159, 1124, 73 

cm
-1

; m/z [ES]
+
 M+Na (found) 833.4, (calc): 833.4. HRMS (NSI) Calcd for C41H51N10O8, 

811.3886; M+H, Found 811.3892.  [α]
26

D -13.3 (c 1.0, CHCl3). 

2, 8 bis -((S)-(1H-1,2,3-triazol-4-yl)methyl 1-(5-(dimethylamino)naphthalen-1-ylsulfonyl) 

pyrrolidine-2-carboxylate)-6H, 12H-5, 11-methanodibenzo[b,f][1,5]diazocine129 

129 (12 mg,  0.01 mmol, 68%) yellow solid.  Purified by flash chromatography on silica gel eluting 

with ethyl acetate.  Rf  0.7 (ethyl acetate).  MP : 98-100˚C (diethyl-ether); 
1
H-NMR (300MHz, 

CDCl3) δ8.46 (dd, J8.4 Hz, 4H, ArH), 8.20 (dd, J1.2, 7.4 Hz, 2H, ArH), 7.97 (d, J1.6 Hz, 2H, ArH), 

7.49 (m, 6H, ArH), 7.31 (d, J2.4 Hz, 2H, ArH), 7.23 (d, J6.9 Hz, 2H, ArH), 7.13 (d, J7.6 Hz, 2H, 

ArH), 5.22 (q, J12.9 Hz, 4H, 2CH2), 4.74 (d, J16.6 Hz, 2H, 2CHH), 4.50 (d, J5.9 Hz, 2H, 2αCH), 

4.33 (s, 2H, CH2), 4.22 (d, J16.8 Hz, 2H, 2CHH), 3.43 (m, 4H, 2CH2), 2.83 (s, 12H, 4(CH3)), 2.17-

1.71 (m, 8H, 4(CH2)); 
13

C-NMR (100MHz, CDCl3) δ172.24, 148.52, 143.50, 134.41, 133.10, 

130.82, 130.46, 130.13, 130.07, 129.23, 128.35, 126.50, 123.37, 122.03, 120.16, 119.66, 119.44, 

115.44, 77.42, 66.96, 60.36, 58.92, 58.79, 48.69, 45.58, 31.15, 24.95 ppm; FT-IR (KBr neat) 2947, 

1653C=O, 1571, 1500, 1404, 1329 O=S=O, 1142, 1075, 1046, 791, 731 cm
-1

; m/z [ES]
+
 M+H 
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(found) 1077.5, (calc): 1077.4.  HRMS (NSI) Calcd for C55H57N12O8S2, M+H, 1077.3858; Found 

1077.3859.  [α]
27

D -22.2 (c 1.0, CHCl3). 

2, 8 bis–((R)-(1H-1,2,3-triazol-4-yl)methyl 2-(tert-butoxycarbonylamino)-2-(4-fluorophenyl) 

acetate)-6H, 12H-5, 11-methandibenzo[b,f] [1,5]diazocine 130 

 

130 (12 mg, 0.01 mmol, 57%) off white solid. Purified by flash chromatography eluting with 1 : 1 

ethyl acetate : petroleum ether.  Rf  0.5 (1 : 1 ethyl acetate : petroleum ether). MP : 88-90˚C (diethyl 

ether); 
1
H-NMR (300MHz, CDCl3) δ7.73 (s, 2H, ArH), 7.45 (d, J9.1 Hz, 2H, ArH), 7.36-7.26 (m, 

8H, ArH), 7.00 (t, J8.6 Hz, 4H, ArH), 5.49 (d,  J6.3 Hz, 2H, 2NH), 5.32 (m, 6H, 2αCH, 2CH2), 

4.79 (d, J16.7 Hz, 2H, CHH), 4.37 (s, 2H, CH2), 4.27 (d, J17.0 Hz, 2H, CHH), 1.40 (s, 18H, 

2(CH3)3); 
13

C-NMR (75MHz, CDCl3) δ171.00, (C-F resonance too small to observe), 148.69, 

143.21, 133.01, 129.2 (d, J C-F 8.0 Hz), 126.53, 121.73, 120.17, 119.50, 116.11 (d, J C-F 21.6 Hz), 

80.65, 66.96, 58.95, 57.33, 28.45 ppm; FT-IR (KBr neat) 3444, 2970, 1738 C=O, 1604 C=O, 1506, 

1365, 1228, 1217, 1160, 1049 cm
-1

; m/z [ES]
+
 M+Na (found) 941.6, (calc): 941.4.  HRMS (NSI) 

Calcd for C47H52F2N11O8, M+NH4, 936.3663; Found 936.3673.  [α]
26

D -8.6 (c 1.0, CHCl3). 
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2, 8 bis-(4-(((3R,4S,5R,6R)-3,4,5-tris(benzyloxy)-6-(benzyloxymethyl)tetrahydro-2H-pyran-2-

yloxy)methyl)-1H-1,2,3-triazole)-6H, 12H-5, 11-methanodibenzo[b,f][1,5] diazocine 133 

 

133 (98 mg, 0.07 mmol, 82%) yellow solid.  Purified by flash chromatography eluting with ethyl 

acetate.  Rf 0.7 (ethyl acetate).  MP : 84-86˚C (ether); 
1
H-NMR (300MHz, CDCl3) δ7.76 (d, J2.5 

Hz, 2H), 7.17 (m, 40H), 7.10 (s, 2H), 7.05 (m, 4H), 4.97 (d, J13.1 Hz, 2H), 4.88 (d, J13.2 Hz, 2H), 

4.82 (d, J11.0 Hz, 4H), 4.71 (t, J10.4 Hz, 4H), 4.63 (dd, J9.1, 14.0 Hz, 4H), 4.50 (d, J12.2 Hz, 2H), 

4.43 (m, 6H), 4.23 (s, 2H), 4.09 (d, J17.0 Hz, 2H), 3.62 (m, 4H), 3.53 (m, 4H), 3.41 (m, 4H); 
13

C-

NMR (75MHz, CDCl3) δ148.29, 145.67, 138.61, 138.15, 138.11, 133.12, 129.06, 128.48, 128.01, 

127.98, 127.94, 127.86, 127.83, 127.76, 127.73, 127.68, 126.25, 121.02, 119.85, 119.16, 102.70, 

84.68, 82.27, 77.77, 75.69, 74.98, 74.77, 73.45, 68.89, 66.71, 62.96, 58.68 ppm; FT-IR (KBr neat) 

2903, 2867, 1498, 1453, 1360, 1208, 1070, 1044, 735, 697 cm
-1

; m/z [ES]
+
 M+Na (found) 1484.8, 

(calc): 1484.7. HRMS (NSI) Calcd for C89H90N8O12, M+H, 1462.6626; Found 1462.6630.  [α]
23

D -

12.7(c 1.0, CHCl3). 
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2, 8 bis–((2R,3S,4S,5R)-2-(acetoxymethyl)-6-((1H-1,2,3-triazol-4-yl)methoxy)tetrahydro-2H-

pyran-3,4,5-triyl triacetate) -6H, 12H-5, 11-methandibenzo[b,f] [1,5]diazocine 134 

 

134  (58 mg, 0.05mmol,82%) pale yellow solid.  Purified by flash chromatography on silica eluting 

with 1 – 5% methanol in dichloromethane. Rf 0.7 (5% methanol in dichloromethane) MP : 92-94˚C 

(diethyl ether); 
1
H-NMR (300MHz, CDCl3) δ7.88 (t, J11.6 Hz, 2H), 7.51 (d, J8.6 Hz, 2H), 7.38 (s, 

2H), 7.31 (d, J8.6 Hz, 2H), 5.41 (dd, J2.9, 14.8 Hz, 2H), 5.33 (dd, J3.6, 10.6 Hz, 2H), 5.26 (d, J3.6 

Hz, 2H), 5.13 (dd, J3.6, 10.9 Hz, 2H), 5.04 (dd, J7.0, 14.9 Hz, 2H), 4.88 (d, J12.4 Hz, 2H), 4.78 (s, 

2H), 4.71 (d, J12.5 Hz, 2H), 4.38 (s,2H), 4.32 (s, 2H), 4.26 (t, J7.0 Hz, 2H), 4.09 (d, J6.2 Hz, 2H), 

2.13 (d, J2.5 Hz, 6H), 2.06 (m, 6H), 2.01 (d, J4.0 Hz, 6H), 1.96 (d, J1.3 Hz, 6H); 
13

C-NMR 

(75MHz, CDCl3) δ170.74, 170.56, 170.42, 170.23, 144.53, 133.23, 126.55, 121.13, 120.37, 119.59, 

95.87, 77.44, 68.11, 68.06, 67.63, 66.97, 66.69, 61.83, 61.50, 58.93, 21.02, 20.97, 20.87 ppm; FT-

IR (ATR) 2934, 2490, 2159, 2029, 1977, 1738 C=O, 1500, 1437, 1368, 1214, 1133, 1039, 832, 729 

cm
-1

; m/z [ES]
+
 M+Na (found) 1100.6, (calc): 1100.0.  HRMS (NSI) Calcd for C49H57N8O20, M+H, 

1077.3689; Found 1077.3692.  [α]
23

D +25.4 (c 1.0, CHCl3). 

 

 

 

 

 

 



168 

 

2, 8 -bis-((2S,3R,4S,5S,6R)-2-((2R,3R,4S,5R)-6-((1H-1,2,3-triazol-4-yl)methoxy)-4,5-diacetoxy-

2-(acetoxymethyl) tetrahydro-2H-pyran-3-yloxy)-6-(acetoxymethyl)tetrahydro-2H-pyran-

3,4,5-triyl triacetate)-6H, 12H-5, 11-methandibenzo[b,f][1,5] diazocine 135 

 

135 (65 mg, 0.04 mmol, 80%) Yellow translucent solid.  Purified by flash chromatography on silica 

eluting with 1 – 10% methanol in dichloromethane. Rf 0.8 (10% methanol in dichloromethane). MP 

: 150-152˚C (diethyl-ether); 
1
H-NMR (400MHz, CDCl3) δ7.78 (s, 2H), 7.43 (dd, J1.7, 8.6 Hz, 2H), 

7.30 (d, J2.4 Hz, 2H), 7.23 (d, J8.7, Hz, 2H), 5.28 (d, J3.3 Hz, 2H), 5.12 (t, J9.2 Hz, 2H), 5.04 (dd, 

J7.9, 10.4 Hz, 2H), 4.88 (ddd, J2.6, 4.8, 9.4 Hz, 6H), 4.77 (dd, J17.8, 30.8 Hz, 4H), 4.60 (dd, J1.6, 

7.9 Hz, 2H), 4.45 (m, 2H), 4.31 (s, 2H), 4.23 (d, J17.0 Hz, 2H), 4.04 (m, 8H), 3.75 (t, J7.2 Hz, 2H), 

3.75 (t, J9.4 Hz, 2H), 3.59 (m, 2H), 2.09 (s, 6H), 2.03 (d, J2.7 Hz, 6H), 1.99 (s, 6H), 1.98 (s, 6H), 

1.97 (s, 6H), 1.91 (m, 12H); 
13

C-NMR (100 MHz, CDCl3) δ170.54, 170.52, 170.32, 170.24, 169.89, 

169.84, 169.22, 148.59, 144.97, 133.12, 129.33, 126.50, 121.11, 120.14, 119.58, 119.55, 101.17, 

99.99, 76.26, 72.99, 72.84, 71.71, 71.11, 70.83, 69.25, 66.78, 63.13, 62.02, 60.96, 58.59, 21.04, 

20.95, 20.90, 20.81, 20.69 ppm; FT-IR (KBr neat) 2970, 2946, 1746 C=O, 1504, 1370, 1228, 1217, 

1057,1046, 732 cm
-1

;  m/z [ES]
+
 M+Na (found) 1676.6, (calc): 1676.5. HRMS (NSI) Calcd for 

C73H90N8O36, M+H, 1654.5406; Found 1654.5372.  [α]
23

D -27.8 (c 1.0, CHCl3). 
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2, 8 bis–((2R,3R,4S,5R,6R)-2-(acetoxymethyl)-6-((2R,3R,4S,5R)-4,5-diacetoxy-2-

(acetoxymethyl)-6-((1H-1,2,3-triazol-4-yl)methoxy)tetrahydro-2H-pyran-3-yloxy)tetrahydro-

2H-pyran-3,4,5-triyl triacetate)-6H, 12H-5, 11-methandibenzo[b,f][1,5]diazocine 136 

136  (74 mg, 0.05 mmol, 68%) white solid.  Purified by flash chromatography on silica gel eluting 

with 1 – 10% methanol in dichloromethane. Rf  0.8 (10% methanol in dichloromethane).  MP : 112-

114˚C; 
1
H-NMR (300MHz, CDCl3) δ7.85 (d, J7.8 Hz, 2H), 7.48 (t, J7.3 Hz, 2H), 7.31 (m, 4H), 

5.45 (m, 2H), 5.18 (dd, J6.5, 12.4 Hz, 4H), 5.07 (dd, J5.6, 9.7 Hz, 4H), 4.99 (m, 2H), 4.85 (m, 6H), 

4.76 (s, 2H), 4.71 (d, J5.4 Hz, 2H), 4.67 (s, 2H), 4.36 (s, 2H), 4.25 (m, 6H), 4.09 (t, J14.0 Hz, 4H), 

3.74 (s, 2H), 2.06 (s, 6H), 2.03 (s, 6H), 2.00 (s, 6H), 1.98 (d, J1.0 Hz, 9H), 1.97 (d, J.1.0 Hz, 9H), 

1.94 (d, J1.5 Hz, 6H); 
13

C-NMR (100MHz, CDCl3) δ169.68, 169.64, 169.18, 169.11, 169.07, 

168.56, 168.44, 168.39, 147.30, 143.81, 143.17, 131.96, 128.11, 125.34, 120.05, 119.93, 119.13, 

118.98, 118.54, 118.36, 99.02, 94.27, 71.64, 70.89, 70.16, 69.55, 68.94, 67.38, 67.21, 66.50, 65.73, 

61.99, 60.80, 60.70, 60.37, 57.71, 19.76, 19.73, 19.69, 19.61 ppm; FT-IR (KBr neat) 3474, 3145, 

2959, 1753 C=O, 1501, 1436, 1368, 1331, 1227, 1041, 834, 735 cm
-1

; m/z [ES]
+
 M+Na (found) 

1675.7, (calc): 1675.5.  HRMS (NSI) Calcd for C73H89N8O36, M+H, 1653.5379; Found 1653.5401.  

[α]
26

D -8.6 (c 1.0, CHCl3). 
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Synthesis of (1S,2R)-1-((2R,3R,4S,6R)-3-acetamido-4,6-diacetoxy-6-((prop-2-ynyloxy) 

carbonyl)tetrahydro-2H-pyran-2-yl)propane-1,2,3-triyl triacetate 138 

 

A flame-dried 25 mL, round-bottomed flask was charged with Neu5Ac (100 mg, 0.323 mmol) in 

propargyl alcohol (6 mL).  To this TFA (37 µL, 0.485 mmol) was added and left to stir for 3 days at 

40˚C.  The solvent was removed under reduced pressure and azeotroped with toluene (3 x 10mL).  

The resulting oil was dissolved in acetic anhydride (5 mL), pyridine (2 mL) and N-N-

dimethylaminopyridine (5 mg) was added.  The solution was left to stir at room temperature for 3 

days.  The solvent was removed under reduced pressure and the resulting residue was azeotroped 

with toluene (3 x 10 mL).  The reaction mixture was then absorbed onto silica and subjected to 

flash chromatography, eluting with ethyl acetate affording an off white solid.  Subsequent 

physiochemical analysis confirmed this to be the title compound 138 (78 mg, 0.14 mmol, 43%) 

138 (78 mg, 0.14mmol, 43%) white solid.  Rf 0.4 (ethyl acetate).  MP : 60-62˚C (ethyl acetate); 
1
H-

NMR (300MHz, CDCl3) δ5.57 (d, J9.5 Hz, 1H), 5.35 (d, J4.8 Hz, 1H), 5.23 (dt, J6.5, 10.6 Hz, 1H), 

5.04 (m, 1H), 4.74 (t, J2.4 Hz, 2H), 4.46 (dd, J2.0, 12.5 Hz, 1H), 4.11 (m, 3H), 2.52 (m, 2H), 2.12 

(dd, J0.8, 4.6 Hz, 7H), 2.03 (d, J0.8 Hz, 3H), 2.01 (m, 6H), 1.86 (d, J0.8 Hz, 3H); 
13

C-NMR 

(75MHz, CDCl3) δ171.17, 170.80, 170.52, 170.74, 168.42, 165.23, 97.37, 76.69, 75.94, 73.11, 

71.62, 68.38, 68.05, 62.26, 53.82, 49.43, 35.99, 23.37, 21.12, 21.05, 21.00, 20.99, 20.89 ppm; FT-

IR (KBr neat) 3277 CH alkyne, C-Calkyne, 1748 C=O, 1664 C=O cm
-1

; m/z [ES]
+
 M+Na (found) 

580.3, (calc): 580.2.  HRMS (NSI) Calcd for C24H32NO14, M+H, 558.1823; Found 558.1798.  

[α]
23

D -17 (c 1.0, CHCl3). 
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Synthesis of 2, 8 bis–(((1S,2R)-1-((2R,3R,4S,6R)-3-acetamido-4,6-diacetoxy-6-(((1H-1,2,3-

triazol-4-yl)methoxy)carbonyl) tetrahydro-2H-pyran-2-yl)propane-1,2,3-triyl triacetate))-6H, 

12H-5, 11-methanodibenzo[b,f] [1,5]diazocine 139 

 

A flame dried 5 mL round bottomed flask was charged with 2,8-bis-azido-6H,12H-5,11-

methandibenzo[b,f][1,5]diazocine (+/-)-79 (4.5 mg, 0.015 mmol), 138 (17 mg, 0.03 mmol), TBTA 

(616µg, 1.162 µmol), copper(II) sulfate pentahydrate (290 µg, 1.161 µmol) and sodium ascorbate 

(2.3 mg, 0.012 mmol) in N-N-dimethylformamide (1 mL).  The resulting solution was stirred at 

ambient temperature, under an atmosphere of nitrogen for 24 hours.  The reaction mixture was 

diluted with ethyl acetate (2 mL) and transferred to a 10 mL separating funnel, washed with water 

(3 x 5 mL), brine (5 mL) and dried with magnesium sulfate.  The suspension was filtered and the 

solvent removed under reduced pressure.  The resulting residue was columned under gravity (ethyl 

acetate, acetone, 9:1) affording a white solid.  Subsequent physiochemical analysis confirmed this 

to be the title compound 139 (12 mg, 8.45 µmol, 58%) 

139 (12 mg, 8.45 µmol, 58%) white solid. Rf 0.5 (ethyl acetate, acetone, 9:1).  MP : 122-124˚C 

(ethyl acetate); 
1
H NMR (400 MHz, CDCl3) δ 8.03 (d, J 3.1 Hz, 2H), 7.52 (t, J 7.9 Hz, 2H), 7.37 (d, 

J 5.4 Hz, 2H), 7.23 (d, J8.7 Hz, 2H), 4.99 (t, J 7.2 Hz, 2H), 4.73 (d, J 16.9 Hz, 2H), 4.37 (d, J10.0 

Hz, 2H), 4.31 (s, 2H), 4.24 (d, J17.1 Hz, 2H), 4.03 (t, J8.5 Hz, 6H), 2.46 (dd, J13.4, 5.0 Hz, 2H), 

2.05 (d, J1.4 Hz, 6H), 2.01 (d, J1.1 Hz, 6H), 1.95 (t, J3.1 Hz, 12H), 1.91 (d, J4.8 Hz, 6H), 1.82 (s, 

6H);
 13

C-NMR (75 MHz, CDCl3) δ 171.04, 170.70, 170.40, 170.28, 170.15, 168.29, 165.84, 148.00, 

142.70, 133.24, 128.97, 126.32, 122.29, 120.15, 119.38, 97.38, 77.17, 72.56, 70.65, 68.08, 67.38, 

66.73, 61.78, 59.44, 58.58, 49.20, 35.77, 29.56, 23.03, 20.76, 20.67, 20.64, 20.54 ppm; FT-IR (KBr 

neat) 1745 C=O, 1671 C=O cm
-1

; m/z [ES]
+
 M+Na (found) 1442.9, calc (1442.3). HRMS (NSI) 

Calcd for C63H75N10O28, M+H, 1419.4752; Found 1419.4746.  [α]
23

D -27 (c 1.0, CHCl3).
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Synthesis of 2- (4-phenyl-1H-1,2,3-triazole)-8-azo -6H, 12H-5, 11-methandibenzo[b,f][1,5] 

diazocine (+/-)-140 

 

A 10 mL microwave vial was charged with 2,8-bis-azido-6H,12H-5,11-

methandibenzo[b,f][1,5]diazocine (+/-)-79 (100mg, 0.329 mmol), copper sulfate pentahydrate 

(1.641 mg, 6.57 µmol), TBTA (3.49 mg, 6.57 µmol), sodium ascorbate (13.02 mg, 0.066mmol) in 

N-N-dimethylformamide (7 mL).  The vial was sealed with a Teflon cap and phenyl acetylene (33.6 

mg, 0.329 mmol) was added via syringe.  The reaction mixture was heated to 70˚C in a microwave 

reactor for 1 hour.  The reaction mixture was diluted with dichloromethane (5 mL), transferred to a 

50 mL separating funnel, washed with water (5 x 10 mL), brine (5 mL) and dried with magnesium 

sulfate.  The resulting suspension was filtered and the solvent removed under reduced pressure.  

The impure material was submitted to flash column chromatography on silica gel eluting with 

diethyl ether affording an off white solid.  Subsequent physiochemical analysis confirmed this to be 

the desired product. (70 mg, 0.171 mmol, 52%).         

(+/-)-140 (70 mg, 0.171, 52%).  Rf  0.6 (diethyl ether) 
1
H-NMR (300MHz, CDCl3) δ8.07 (s, 1H, 

ArH), 7.87 (d, J7.1 Hz, 2H, ArH), 7.54 (dd, J2.4, 8.6 Hz, 1H, ArH), 7.44 (t, J7.4 Hz, 1H, ArH), 

7.37 (m, 2H, ArH), 7.28 (d, J8.7 Hz, 1H, ArH), 7.14 (d, J8.6 Hz, 1H, ArH), 6.86 (dd, J2.5, 8.6 Hz, 

1H, ArH), 6.60 (d, J2.5 Hz, 1H, ArH), 4.73 (dd, J8.9, 16.8 Hz, 2H, CH2), 4.33 (s, 2H, CH2), 4.20 

(dd, J8.3, 16.9 Hz, 2H, CH2).  
13

C-NMR (75 MHz, CDCl3) δ 148.56, 148.35, 144.63, 135.85, 

133.04, 130.22, 129.35, 128.97, 128.47, 126.53, 126.30, 125.83, 119.91, 119.36, 118.68, 117.58, 

117.06, 66.80, 58.69, 58.6.  FT-IR KBr neat : 3411, 2359, 2113 N3, 1614, 1504, 1488, 1210, 912, 

732.  m/z [ES]
+
 M-N2+Na (found) 401.5, calc (401.42). HRMS (NSI) Calcd for C23H22N9, M+NH4, 

424.1992; Found 424.1996. 
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Synthesis of 2-azido-8-(4-(naphthalen-2-yl)-1H-1,2,3-triazol-1-yl)-6,12-dihydro-5,11-

methanodibenzo[b,f][1,5]diazocine (+/-)-141 

 

A 10 mL microwave vial was charged with 2,8-bis-azido-6H,12H-5,11-

methandibenzo[b,f][1,5]diazocine (+/-)-79 (100mg, 0.329 mmol), 2-ethynylnapthalene (50 mg, 

0.329 mmol), copper(II) sulfate pentahydrate (1.641 mg, 6.57 µmol), TBTA (3.49 mg, 6.57 µmol), 

sodium ascorbate (13.02 mg, 0.066mmol) in N-N-dimethylformamide (7 mL).  The vial was sealed 

with a Teflon cap and the reaction mixture was heated to 70˚C in a microwave reactor for 1 hour.  

The reaction mixture was diluted with dichloromethane (5 mL), transferred to a 50 mL separating 

funnel, washed with water (5 x 10 mL), brine (5 mL) and dried with magnesium sulfate.  The 

resulting suspension was filtered and the solvent removed under reduced pressure.  The impure 

material was submitted to flash column chromatography on silica gel eluting with diethyl ether 

affording a yellow solid.  Subsequent physiochemical analysis confirmed this to be the desired 

product (+/-)-141.  (76 mg, 0.165, 51%). 

(+/-)-141 (76 mg, 0.165, 51%)  Rf 0.4 (diethyl ether), 
1
H-NMR (400 MHz, CDCl3) δ 8.38 (s, 1H, 

ArH), 8.18 (s, 1H), 7.87 (dd, J1.7, 8.5 Hz, 1H, ArH), 7.78 (m, 3H, ArH), 7.47 (dd, J2.5, 8.6 Hz, 1H, 

ArH), 7.40 (m, 2H, ArH), 7.30 (d, J2.4 Hz, 1H, ArH), 7.19 (d, J8.6 Hz, 1H, ArH), 7.06 (d, J8.6 Hz, 

1H), 6.77 (dd, J2.6, 8.6 Hz, 1H), 6.51 (d, J2.5 Hz, 1H), 4.72 (dd, J9.3, 16.8 Hz, 2H, CH2), 4.32 (s, 

2H, CH2), 4.19 (dd, J10.4, 16.9 Hz, 2H, CH2).  FT-IR KBr neat : 2112 N3.  m/z [ES]
+
 M-N2+Na 

(found) 451.3, calc (451.1). HRMS (NSI) Calcd for C27H24N9, M+NH4, 474.2161; Found 474.2156. 
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Synthesis of 2, - (4-phenyl-1H-1,2,3-triazole), 8,-((S)-(1H-1,2,3-triazol-4-yl)methyl 1-(5-

(dimethylamino)naphthalen-1-ylsulfonyl)pyrrolidine-2-carboxylate)-6H, 12H-5, 11-

methanodibenzo [b,f][1,5]diazocine  (+/-)-145 

 

A 2.5 mL microwave vial was charged with 2-(4-phenyl-1H-1,2,3-triazole)-8-azo-6H, 12H-5, 11-

methandibenzo[b,f][1,5]diazocine (+/-)-140 (10mg, 0.025 mmol), (S)-prop-2-ynyl 1-(5-

(dimethylamino)naphthalen-1-ylsulfonyl)pyrrolidine-2-carboxylate (10.46 mg, 0.027 mmol), 

copper(II) sulfate pentahydrate (0.49 mg, 1.968µmol), TBTA (1.04mg, 1.968µmol) and sodium 

ascorbate (3.9 mg, 0.02 mmol) in N-N-dimethylformamide (1mL).  The vial was sealed with a 

Teflon cap and heated to 70˚C in a microwave reactor for 1 hour.  The reaction mixture was diluted 

with ethyl acetate (2mL) and transferred to a 25 mL separating funnel, washed with water (5 x 5 

mL), brine (2 mL) and dried with magnesium sulfate.  The resulting suspension was filtered and the 

solvent removed under reduced pressure.  The resulting solid was columned by flash 

chromatography (dichloromethane:methanol 1-5%) affording a yellow solid.  Subsequent 

physiochemical analysis confirmed this to be the title compound (+/-)-143 (14 mg, 0.02 mmol, 

72%) 

(+/-)-143 (14mg, 0.02 mmol, 72%) Dark yellow solid. Rf 0.6 (dichloromethane:methanol 5%) MP : 

162-164˚C (diethyl ether); 
1
H-NMR (300MHz, CDCl3) 8.51 (d, J8.6 Hz, 1H), 8.40 (d, J8.7 Hz, 

1H), 8.20 (dd, J1.2, 7.4 Hz, 1H), 8.07 (s, 1H), 8.01 (s, 1H), 7.86 (dd, J1.3, 8.3 Hz, 2H), 7.57 – 7.24 

(m, 11H), 7.14 (d, J7.6, 1H), 5.25 (q, J13.0, 12.9 Hz, 2H), 4.78 (dd, J17.6, 8.4 Hz, 2H), 4.51 (ddd, 

J1.7, 3.7, 8.5 Hz, 1H), 4.37 (s, 2H), 4.27 (dd, J7.4, 16.9 Hz, 2H), 3.52 (m, 1H), 3.36 (m, 1H), 2.84 

(d, J0.6 Hz, 6H), 2.04 (m, 3H), 1.80 (m, 1H); 
13

C-NMR (75MHz, CDCl3) δ172.18, 148.41, 143.44, 

133.16, 133.00, 130.66, 130.32, 130.22, 129.92, 129.17, 129.10, 128.94, 128.44, 128.19, 126.35, 
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125.83, 123.23, 121.89, 120.03, 119.37, 119.32, 117.56, 115.31, 66.74, 60.11, 58.70, 58.54, 48.40, 

45.29, 31.44, 30.82, 29.55, 24.60, 22.49, 13.94 ppm; FT-IR (KBr neat) 1747 C=O, 1675 C=O, 1331 

O=S=O cm
-1

; m/z [ES]
+
 M+H (found) 793.4, (calc): 793.3.  HRMS (NSI) Calcd for C43H41N10O4S, 

M+H, 793.3027; Found 793.3028. [α]
28

D -8.8 (c 1.0, CHCl3). 

2,-(4-phenyl-1H-1,2,3-triazole),-8 (3',6'-bis(ethylamino)-2',7'-dimethyl-2-((1H-1,2,3-triazol-4-

yl)methyl)spiro [isoindoline-1,9'-xanthen]-3-one)-6H, 12H-5, 11-methanodibenzo[b,f][1,5] 

diazocine  (+/-)-145 

 

(+/-)-145 Purified via flash chromatography on silica gel eluting with 1-5% methanol in 

dichloromethane (15 mg, 0.02 mmol, 71%) pink solid.  Rf 0.4 (5% methanol in dichloromethane). 

MP : 210-212˚C (diethyl ether); 
1
H-NMR (300MHz, CDCl3) δ8.08 (s,1H), 7.95 (m, 1H), 7.87 (d, 

J7.0 Hz, 2H), 7.54 (dd, J2.5, 8.5 Hz, 2H), 7.44 (dd, J6.2, 8.5 Hz, 6H), 7.36 (d, J7.3 Hz, 1H), 7.30 

(d, J8.7 Hz, 1H), 7.22 (d, J4.4 Hz, 2H), 7.18 (d, J3.9 Hz, 2H), 7.05 (dd, J2.8, 5.8 Hz, 1H), 6.29 (d, 

J2.9 Hz, 2H), 6.08 (s, 2H), 4.78 (dd, J13.2, 16.6 Hz, 2H), 4.49 (s, 2H), 4.37 (s, 2H), 4.26 (dd, J7.9, 

16.9 Hz, 2H), 3.13 (qd, ( J3.0, 7.5, 7.7 Hz, 4H), 1.74 (d, J3.6 Hz, 6H), 1.25 (m, 6H)  
13

C-NMR 

(75MHz, CDCl3) δ168.01, 153.54, 151.92, 148.46, 148.41, 147.86, 147.39, 144.84, 133.21, 133.15, 

132.71, 130.90, 130.20, 129.22, 128.95, 128.84, 128.56, 128.47, 128.15, 126.31, 125.93, 125.84, 

123.89, 123.01, 120.44, 119.96, 119.56, 119.41, 118.91, 117.66, 117.55, 105.71, 105.66, 96.53, 

77.39, 77.17, 76.97, 76.54, 66.77, 65.02, 58.73, 38.18, 34.91, 29.56, 16.45, 16.42, 14.57 ppm; FT-

IR (KBr neat) 3420, 2925, 2324, 1684C=O, 1620, 1504, 1422, 1268, 1207, 1092 cm
-1

; m/z [CI]
+
 

M+H (found) 858.5, (calc): 858.4.  HRMS (NSI) Calcd for C52H48N11O2, M+H, 858.3987; Found 

858.3986 
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2,-(4-(naphthalen-2-yl)-1H-1,2,3-triazole),-8-((1H-1,2,3-triazol-4-yl)methyl 2-(tert-butoxy 

carbonylamino)-2-(4-fluorophenyl)acetate),-6H,12H-5,11-methanodibenzo[b,f] [1,5]diazocine 

146 

 

146 Purified via flash chromatography eluting with 1-5% methanol in dichloromethane (12 mg, 

0.02mmol, 72%) white solid. Rf 0.7 (5% methanol in dichloromethane).  MP : 106-108˚C (diethyl 

ether); 
1
H-NMR (300MHz, CDCl3) δ8.39 (s, 1H), 8.20 (s,1H), 7.95 (d, J1.6 Hz, 1H), 7.93 (s, 1H), 

7.88 (m, 2H), 7.75 (s, 1H), 7.59 (dd, J2.4, 8.7 Hz, 1H), 7.54-7.43 (m, 4H), 7.38-7.28 (m, 5H), 7.02 

(d, J8.5 Hz, 2H), 5.49 (d, J7.8 Hz, 1H), 5.33 (dd, J9.4,Hz, 3H), 4.82 (dd, J6.7, 16.7 Hz, 2H), 4.40 

(s, 2H), 4.31 (dd, J5.8, 16.1 Hz, 2H), 1.40 (s, 9H); 
13

C-NMR (75MHz, CDCl3) δ170.84,(C-F 

resonance too small to observe) 148.62, 148.46, 133.57, 133.32, 133.19, 132.87, 129.02 (d, JC-F 8.3 

Hz) 128.97, 128.73, 128.26, 127.83, 127.51, 126.58, 126.38, 124.66, 123.80, 121.58, 120.05, 

119.44, 119.35, 117.82, 116.06, 115.92 (d, JC-F 21.8 Hz), 77.16, 66.75, 58.76, 29.55, 28.12  ppm; 

FT-IR (KBr neat) 2924, 2853, 1745C=O, 1706 C=O, 1500, 1367, 1229,1159, 1044 cm
-1

; m/z [CI] 

M+H – boc (found) 664.3, (calc): 664.3.  HRMS (NSI) Calcd for C43H39FN9O4, M+H, 764.3104; 

Found 764.3102. [α]
27

D -4.5 (c 1.0, CHCl3). 
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2-(4-(naphthalen-2-yl)-1H-1,2,3-triazole), 8-((R)-(1H-1,2,3-triazol-4-yl)methyl 3-(1-

(benzyloxymethyl)-1H-imidazol-4-yl)-2-(tert-butoxycarbonyl amino)propanoate),-6H, 12H-5, 

11-methandibenzo[b,f][1,5]diazocine 147 

 

147 Purified via flash chromatography eluting with 5% methanol in dichloromethane.  (14 mg, 0.02 

mmol, 73%) dark yellow solid. Rf 0.6 (5% methanol in dichloromethane).  MP : 114-116 ˚C 

(diethyl ether); 
1
H-NMR (300MHz, CDCl3) δ8.39 (s, 1H, ArH), 8.20 (s, 1H, ArH), 7.99-7.82 (m, 

5H, ArH), 7.63-7.44 (m, 5H, ArH), 7.41-7.20 (m, 9H, ArH), 5.38 (s, 3H), 5.21 (s, 2H), 4.82 (dd, 

J6.0, 17.1 Hz, 2H, 2CHH), 4.58 (dd, J6.9, 13.3 Hz, 1H, αCH), 4.34 (m, 6H), 3.13 (m, 2H, βCH2), 

1.37 (s, 9H, 3(CH3)); 
13

C-NMR (75MHz, CDCl3) δ171.42, 148.63, 148.45, 135.95, 133.58, 133.32, 

133.19, 132.90, 129.22, 128.73, 128.37, 128.25, 128.03, 127.83, 127.54, 126.57, 126.39, 126.33, 

124.66, 123.80, 122.22, 120.17, 120.06, 119.51, 119.43, 117.83, 77.15, 69.75, 66.76, 58.73, 58.42, 

29.55, 28.11 ppm; FT-IR (KBr neat) 3300, 2928, 1705C=O, 1500, 1366, 1162, 1046 cm
-1

; m/z 

[ES]
+
 M+H (found) 870.5, (calc): 870.4. HRMS (NSI) Calcd for C49H48N11O5, M+H, 870.3834; 

Found 870.3831.  [α]
27

D +2.2 (c 1.0, CHCl3). 
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2,-(4-(((2R,3R,4S,5R,6R)-3,4,5-tris(benzyloxy)-6-(benzyloxymethyl)tetrahydro-2H-pyran-2-

yloxy)methyl)-1H-1,2,3-triazole),- 8- ((methyl 2-(tert-butoxycarbonylamino)-3-(4-((1H-1,2,3-

triazol-4-yl)methoxy)phenyl)propanoate),-6H,12H-5,11-methandibenzo[b,f][1,5] diazocine 

148 

 

148 Purified via flash chromatography eluting with 5% methanol in dichloromethane.  (8 mg, 

6.58µmol, 58%) white solid. Rf 0.6 (5% methanol in dichloromethane). MP :64-66˚C (diethyl 

ether); 
1
H-NMR (300MHz, CDCl3) δ7.93 (s, 1H), 7.87 (s,1H), 7.54 (d, J7.5 Hz, 2H), 7.40(d, J8.0 

Hz, 2H), 7.34 – 7.20 (m, 20H), 7.14 (m, 2H), 7.04 (d, J7.9 Hz, 2H), 6.91 (d, J8.6 Hz, 2H), 5.23 (s, 

2H), 5.10 – 4.91 (m, 4H), 4.88(s, 2H), 4.81 (d, J5.2 Hz, 3H), 4.73 (d, J11.2 Hz, 2H), 4.59 (d, J11.6 

Hz, 2H), 4.51 (d, J10.9 Hz, 4H), 4.44 (s, 2H), 4.35 (t, J15.3 Hz, 2H), 3.71 (m, 3H), 3.61 (m, 2H), 

3.49 (m, 2H), 3.01 (m, 2H), 1.40 (s, 9H); 
13

C-NMR (75MHz, CDCl3) δ172.46, 157.35, 148.52, 

148.20, 145.66, 144.97, 138.52, 138.05, 133.10, 133.05, 130.46, 129.18, 128.98, 128.82, 128.42, 

127.97, 127.89, 127.77, 127.70, 127.63, 126.33, 126.21, 120.95, 120.79, 120.05, 119.86, 119.44, 

119.16, 114.85, 102.66, 84.62, 82.22, 79.86, 77.70, 75.66, 74.94, 74.72, 73.40, 68.80, 66.71, 62.96, 

61.96, 58.66, 52.10, 29.55, 28.14 ppm; FT-IR (KBr neat) 2924, 2862, 1747 C=O, 1713 C=O, 1500, 

1454, 1365, 1246, 1209, 1164, 1070 cm
-1

; m/z [CI] M+Na (found) 1239.8, (calc): 1239.4 HRMS 

(NSI) Calcd for C70H74N9O11, M+H, 1216.5508; Found 1216.5523.  [α]
23

D 15.0 (c 1.0, CHCl3). 
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Synthesis of 2- (4-(((2R,3R,4S,5R,6R)-3,4,5-tris(benzyloxy)-6-(benzyloxymethyl)tetrahydro-2H-

pyran-2-yloxy)methyl)-1H-1,2,3-triazole)-8-(((1S,2R)-1-((2R,3R,4S,6R)-3-acetamido-4,6-

diacetoxy-6-(((1H-1,2,3-triazol-4-yl)methoxy)carbonyl)tetra-hydro-2H-pyran-2-yl)propane-

1,2,3-triyl triacetate)) -6H, 12H-5, 11-methanodibenzo [b,f][1,5]diazocine 149 

 

A flame-dried 5 mL round-bottomed flask was charged with 2-(4-(((2R,3R,4S,5R,6R)-3,4,5-

tris(benzyloxy)-6-(benzyloxymethyl)tetrahydro-2H-pyran-2-yloxy)methyl)-1H-1,2,3-triazole)-8-

azo-6H, 12H-5, 11-methandibenzo [b,f][1,5]diazocine 142 (8.64 mg, 9.78 µmol), (1S,2R)-1-

((2R,3R,4S,6R)-3-acetamido-4,6-diacetoxy-6-((prop-2-ynyloxy)carbonyl)tetrahydro-2H-pyran-2-

yl)propane-1,2,3-triyl triacetate 138 (6 mg, 10.76 µmol), TBTA (0.42 mg, 0.783 µmol), sodium 

ascorbate (1.6 mg, 7.83 µmol) and copper(II) sulfate pentahydrate (0.195 mg, 0.783 µmol) in N-N-

dimethylformamide (1 mL).  The solution was left to stir under an atmosphere of nitrogen for 24 

hours.  The reaction mixture was diluted with ethyl acetate (2 mL) and transferred to a separating 

funnel, washed with water (5 x 5mL), brine (3 mL) and dried with magnesium sulfate.  The 

resulting suspension was filtered and the solvent removed under reduced pressure.  The resulting 

mixture was absorbed onto silica and columned under gravity, eluting with ethyl acetate: acetone 

(9:1) affording a white solid.  Subsequent physiochemical analysis confirmed this to be the title 

compound 149 (9mg, 6.25 µmol, 64%) 

149 (9mg, 6.25 µmol, 64%) white solid. Rf 0.6 (ethyl acetate: acetone (9:1)). MP : 108-110˚C 

(diethyl ether); 
1
H-NMR (300MHz, CDCl3) 8.08 (d, J2.5 Hz, 1H), 7.84 (d, J2.7 Hz, 2H), 7.56 (m, 

2H), 7.43 (m, 1H), 7.36 – 7.19 (m, 21H), 7.14 (m, 2H), 5.38(m, 3H), 5.22 (d, J9.3 Hz, 2H), 5.04 

(m, 3H), 4.90 (d, J11.0 Hz, 2H), 4.81 (d, J7.2 Hz, 2H), 4.73 (d, J17.2 Hz, 3H), 4.55 (d, J15.3 Hz, 

3H), 4.44 (m, 2H), 4.33 (d, J14.9 Hz, 3H), 4.21 (d, J17.2 Hz, 2H), 4.08 (t, J6.1 Hz, 2H), 3.70 (d, 

J7.1 Hz, 2H), 3.62 (d, J5.6 Hz, 2H), 3.48 (s, 2H), 2.52 (dd, J5.0, 13.4 Hz, 1H), 2.10 (d, J1.1 Hz, 
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4H), 2.06 (s, 3H), 2.00 (s, 6H), 1.96 (d, J5.9 Hz, 3H), 1.88 (s, 3H); 
13

C-NMR (75MHz, CDCl3) 

δ171.07, 170.67, 170.35, 170.29, 168.27, 165.82, 148.43, 145.66, 142.64, 138.52, 138.05, 133.07, 

129.11, 129.00, 128.44, 127.99, 127.91, 127.78, 127.71, 126.23, 122.27, 97.39, 84.63, 82.22, 75.68, 

74.96, 72.73, 73.41, 72.60, 70.98, 70.65, 68.79, 68.04, 67.35, 66.72, 58.64, 35.75, 29.55, 23.06, 

20.67, 20.55 ppm; FT-IR (KBr neat) 2967, 2925, 2862, 2253, 1747 C=O, 1683 C=O, 1500, 1454, 

1369, 1229, 1070cm
-1

; m/z [ES]
+
 M+Na (found) 1463.5, calc (1463.5). HRMS (NSI) Calcd for 

C76H82N9O20, M+H, 1440.5676; Found 1440.5678.  [α]
23

D -7.2(c 1.0, CHCl3). 

General procedure for the deuteration of terminal alkynes 

 

A flame-dried 10 mL round-bottomed flask was charged with an alkyne (1 eq) and potassium 

carbonate (1.5 eq) in acetonitrile (2mL).  This was left to stir under an atmosphere of nitrogen gas 

for 30 minutes.  To this deuterium oxide (500 μL, ~50eq) was added via syringe and left to stir for 

1 hour.  The resulting reaction mixture was diluted with dichloromethane (5 mL) and transferred to 

a 25 mL separating funnel.  The organic layer was separated and dried with magnesium sulfate, 

filtered and the solvent removed under reduced pressure.  Subsequent physiochemical analysis 

confirmed the alkyne had been deuterated.  No further purification was necessary unless otherwise 

stated 

2-ethynyl-(1-D)-napthalene 156 

 

156 99% yield, 98% deuterium incorporation.  Off white solid. No further purification necessary.  

Rf  0.7  (10% diethyl ether in hexane) MP 30-32°C (hexane).  
1
H-NMR (400 MHz, CDCl3) δ 8.37 

(d, J8.2 Hz, 1H, ArH), 7.87 (d, J8.3 Hz, 2H, ArH), 7.75 (d, J7.2 Hz, 1H, ArH), 7.57 (dt, J7.0 Hz, 

2H, ArH), 7.47 – 7.39 (m, 1H, ArH).  
13

C-NMR (101 MHz, CDCl3) δ 133.24, 133.03, 132.54, 

128.78, 128.26, 128.01, 127.14, 126.85, 119.59, 83.78 (t, JC-D7.1 Hz), 77.40 (t, JC-D25.3 Hz) ppm.  

ATR-IR 3291 C-D, 2111 C-C cm
-1

; m/z LCMS [ES]
+
 M+H, 154.0,  HRMS calc for C12H8D, M+H, 

(154.0767) found (154.0765). 
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4-(prop-1-deuteroynyloxy)pyridine 157 

 

157 98% yield, 99% deuterium incorporation. Yellow solid. No further purification necessary.  Rf 

0.3 (10% diethyl ether in hexane).  MP 162-163˚C (hexane) 
1
H-NMR (300 MHz, CDCl3) δ 7.42 (d, 

J7.6 Hz, 2H, ArH), 6.35 (d, J7.7 Hz, 2H, ArH), 4.57 (s, 2H, CH2).  
13

C-NMR (75 MHz, CDCl3) δ 

179.0, 139.23, 137.00, 118.97, 76.75 (t, JC-D39.8 Hz), 74.90 (t, JC-D7.5 Hz), 45.32 ppm;  FT-IR 

[ATR] 2935 C-D, 2602 C-C cm
-1

; m/z LCMS [ES]
+
 M+H 135.0, 2M+1 269.1, 2M+Na 291.1.  

HRMS calc for C8H6DNNaO, M+Na, (157.0488) found (157.0483) 

1-(prop-1-deutero-ynyl)-1H-benzo[d]imidazole 158 

 

158 99% yield, 99% deuterium incorporation.  Pale yellow oil. No further purification necessary.  

Rf 0.2 (10% diethyl ether in hexane).  
1
H-NMR (300 MHz, CDCl3) δ 8.02 (s, 1H, CH), 7.82 (d, J5.8 

Hz, 1H, ArH), 7.46 (d, J5.8 Hz, 1H, ArH), 7.39 – 7.18 (m, 2H, ArH), 4.86 (s, 2H, CH2).  
13

C-NMR 

(101 MHz, CDCl3) δ 142.24, 123.42, 122.74, 120.47, 109.74, 75.41 (t, JC-D8.1 Hz), 74.78 (t, JC-

D39.4 Hz), 34.71 ppm. ATR-IR 3286 C-D cm
-1

; m/z LCMS [ES]
+
 M+1 158.0, HRMS calc for 

C10H8DN2, M+H, (158.0823), found (158.0822). 

1-deutero-prop-2-ynyl 2,2,3,3-tetramethylcyclopropanecarboxylate 159 

 

159 99% yield, 99% deuterium incorporation.  Colourless oil. No further purification necessary.  Rf 

0.5 (10% diethyl ether in hexane).  
1
HNMR (300 MHz, CDCl3) δ 4.60 (s, 2H, CH2), 1.21 (s, 7H, 

2CH3, CH), 1.16 (s, 6H, 2CH3).  
13

C-NMR (75 MHz, CDCl3) δ 171.23, 77.78 (t, JC-D7.5 Hz), 74.13 

(t, JC-D38.3 Hz), 51.07, 35.20, 30.63, 23.29, 16.32 ppm. FTIR [ATR] 2926 C-D, 2159 C-C, 1595 
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C=O cm
-1

.  m/z LCMS [ES]
+
 M+H 181.1.  HRMS calc for C11H16NaO2, M+Na, (203.1048) found 

(203.1052) 

1-deutero-ethynyl-4-nitrobenzene 160 

 

160 99% yield, 99% deuterium incorporation.  Yellow solid.  No further purification necessary.  Rf 

0.5 (10% diethyl ether in hexane).  MP 130-131°C (hexane)  
1
H-NMR (400 MHz, CDCl3) δ 8.12 

(d, J8.9 Hz, 2H, ArH), 7.56 (d, J8.9 Hz, 2H, ArH); 
13

C-NMR (101 MHz, CDCl3) δ 146.53, 131.95, 

127.91, 122.54,81.03 (t, JC-D38.4 Hz) 80.15(t, JC-D8.1 Hz) ppm.  FTIR [ATR] 3106 C-D, 2921, 

2846, 2562 C-C, NO2, 1341 NO2 cm
-1

. m/z LCMS [ES]
+
 2M-NO2 251.2.  HRMS calc for 

C8H4DNNaO2, M+Na, (171.0281) found (171.0285) 

4-(prop-1-deutero-ynyloxy)-1H-isochromen-1-one 161 

 

161 99% yield, 99% deuterium incorporation.  White solid.  No further purification necessary.  Rf 

0.7 (10% diethyl ether in hexane).   MP 142-143°C (hexane).   
1
H-NMR (300 MHz, CDCl3) δ 7.82 

(dd, J7.9, 1.6 Hz, 1H, ArH), 7.65 – 7.47 (m, 1H, ArH), 7.39 – 7.20 (m, 2H, ArH), 5.82 (s, 1H, CH), 

4.86 (s, 2H, CH2). 
13

C-NMR (101 MHz, CDCl3) δ 163.24, 161.43, 152.34, 131.56, 122.99, 122.06, 

115.77, 114.38, 90.70, 76.63 (t, JC-D39.4 Hz), 74.25 (t, JC-D7.6 Hz), 55.82 ppm.  ATR-IR 3076 C-D, 

2583, 2566, 1982, 1708 C=O cm
-1

. m/z LCMS [ES]
+
 M+Na 223.9.  HRMS calc for C12H7DNaO3, 

M+Na, (224.0434) found (224.0429) 
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2-(prop-1-deutero-ynyloxy)tetrahydro-2H-pyran 162 

 

162  99% Yield, 95% deuterium incorporation.  Colourless liquid. No further purification 

necessary.  Rf 0.9 (10% diethyl ether in hexane)
 1

H-NMR (300 MHz, CDCl3) δ 4.74 (t, J3.1 Hz, 1H, 

CH), 4.33 – 4.00 (m, 2H, CH2), 3.88 – 3.64 (m, 1H, CHH), 3.57 – 3.29 (m, 1H, CHH), 1.87 – 1.28 

(m, 6H, (CH2)3).  
13

C-NMR (101 MHz, CDCl3) δ 96.83, 79.41(t, JC-D7.1 Hz), 73.95 (t, JC-D38.4 

Hz), 62.00, 54.03, 30.30, 25.46, 19.09 ppm.  FTIR [ATR] 2946 C-D, 1120 cm
-1

. m/z LCMS [ES]
+
 

M+H 142.9. HRMS calc for C8H11DNaO2, M+Na, (164.0798) found (164.0795). 

2-(prop-1-deutero-ynyl)isoindoline-1,3-dione 163 

 

163  99% yield, 99% deuterium incorporation.  White solid.  No further purification necessary.  Rf 

0.6 (10% diethyl ether in hexane)
 
MP 135-136°C (diethyl ether).   

1
H-NMR (400 MHz, CDCl3) δ 

7.82 (dd, J5.5, 3.0 Hz, 2H, ArH), 7.68 (dd, J5.4, 3.1 Hz, 2H, ArH), 4.39 (s, 2H, CH2).  
13

C-NMR 

(101 MHz, CDCl3) δ 167.17, 134.43, 132.13, 123.77, (alkyne carbon resonances obscured by 

CDCl3 peak), 71.69 (t, JC-D6.1 Hz), 27.16 ppm.  ATR-IR 2967 C-D, 2591, 1989, 1770C=O, 1703 

C=O cm
-1

. m/z LCMS [ES]
+
 M+H 141.9.  HRMS calc for C11H6DNNaO2, M+Na, (209.0437) found 

(209.0439). 

4-(prop-1-deutero-ynyl)morpholine 164 

 

164 93% yield, 95% deuterium incorporation.  Red liquid. No further purification necessary.  Rf 0.9 

(10% diethyl ether in hexane)
 1

H-NMR (300 MHz, CDCl3) δ 3.77 – 3.61 (m, 4H, 2CH2), 3.25 (s, 

2H, CH2),  2.64 – 2.43 (m, 4H, 2CH2).  
13

C-NMR (75 MHz, CDCl3) δ 78.11 (t, JC-D7.1 Hz), 73.40 

(t, JC-D38.4 Hz) 66.74, 52.07, 47.05 ppm.  FTIR-[ATR] 2857 C-D, 2582C-C, 1454, 1289, 1113, 
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1005, 860 cm
-1

.  m/z  LCMS [ES]
+
 M+H 127.1.  HRMS calc for C7H10DNNaO, M+Na, (149.0801) 

found (149.0800) 

Diethyl 2,2-di(deutero-prop-1-ynyl)malonate 165 

 

165 99% yield, 99% deuterium incorporation.  White solid. No further purification necessary.  Rf  

0.2 (10% diethyl ether in hexane).  MP 28-30°C (diethyl ether).  
1
H-NMR (400 MHz, CDCl3) δ 

4.15 (q, J7.1 Hz, 4H, (CH2)2), 2.90 (s, 4H, (CH2)2), 1.19 (t, J7.1 Hz, 6H, (CH3)2).  
13

C-NMR (101 

MHz, CDCl3) δ 168.73, 78.08 (t, JC-D7.2 Hz), 71.66 (t, JC-D38.4 Hz), 62.23, 56.37, 22.59, 14.16 

ppm.  ATR-IR 2983 C-D, 2587, 2118 C-C, 1732 C=O, 1288, 1188 cm
-1

. m/z LCMS [ES]
+
 M+Na 

261.1.  HRMS calc for C13H14D2NaO4, M+Na, (261.1072) found (261.1068) 

Di-prop-1-deutero-ynyl pyridine-2,6-dicarboxylate 166 

 

166 99% yield, 96% deuterium incorporation.  White solid  No further purification necessary.  Rf 

0.2 (10% diethyl ether in hexane).  MP 108-109° (diethyl ether).  
1
H-NMR (300 MHz, CDCl3) δ 

8.33 (d, J8.1 Hz, 2H, ArH), 8.21 – 7.90 (m, 1H, ArH), 5.00 (s, 4H, (CH2)2).  
13

C-NMR (101 MHz, 

CDCl3) δ 162.69, 146.82, 137.46, 127.49, 77.45 (t, JC-D7.1 Hz) 74.77 (t, JC-D39.4 Hz), 52.54 ppm.  

ATR-IR 2574C-D, 1979, 1729C=O, 1446, 1384, 1368, 1133 cm
-1

. m/z LCMS [ES]
+
 M+H 246.1, 

M+Na 268.1, 2M+Na 513.3.  HRMS Calc C13H8D2NO4, M+H, (246.0730), found (246.0732) 

1,3 dipropyl, 2,4- di-deutero-propynyl-para-di-formyl-calix[4]arene 167 
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167 99% yield, 97% deuterium incorporation.  Off white solid. No further purification necessary.  

Rf  0.5 (25% diethyl ether in hexane).  MP 176-178°C (diethyl ether).  
1
H-NMR (400 MHz, CDCl3) 

δ 9.91 (d, J 2.7 Hz, 2H, 2CH), 7.64 (s, 4H, ArH ), 6.25 (dd, J 8.4, 6.6 Hz, 2H, ArH), 6.17 (d, J 7.5 

Hz, 4H, ArH), 5.01 (s, 4H, 2CH2), 4.51 (d, J 13.5 Hz, 4H, 4CH ), 3.67 (t, J 6.9 Hz, 4H, 2CH2), 3.27 

(d, J 13.6 Hz, 4H, 2CH), 1.88 (m, 4H, 2CH2), 1.09 – 0.94 (m, 6H, 2CH3).  
13

C-NMR (101 MHz, 

CDCl3) δ 191.75, 160.97, 155.40, 138.92, 132.25, 132.06, 130.49, 127.87, 122.65, 79.26 (t, JC-D4.0 

Hz) 77.12 (t, JC-D31.3 Hz), 60.19, 31.25, 23.59, 10.86 ppm.  ATR-IR 2924.29 C-D, 1681.41 C=O, 

1126.40 cm
-1

.  m/z LCMS [ES]
+
 M+Na 665.2.  HRMS calc for C42H38D2NaO6, M+Na, (665.2848) 

found (665.2852) 

(S)-methyl 2-(tert-butoxycarbonylamino)-3-(4-(prop-1-deutero-ynyloxy)phenyl) propanoate 

(L)-169 

 

(L)-169 95% yield, 99% deuterium incorporation. Red oil. No further purification necessary.  Rf  

0.6 (50% diethyl ether in hexane).   
1
H-NMR (400 MHz, CDCl3) δ 6.98 (d, J8.4 Hz, 2H, ArH), 6.83 

(d, J8.6 Hz, 2H, ArH), 4.90 (d, J7.7 Hz, 1H, NH), 4.60 (s, 2H, CH2), 4.48 (dd, J13.5, 5.8 Hz, 1H, 

αCH), 3.64 (s, 3H, CH3), 2.96 (qd, J13.9, 6.1 Hz, 2H, βCH2), 1.35 (s, 9H, (CH3)3).
 13

C-NMR (101 

MHz, CDCl3) δ 172.59, 156.81, 155.28, 130.51, 130.42, 129.13, 121.51, 115.12, 80.12, 78.29 (t, JC-

D7.1 Hz), 75.46 (t, JC-D 44.4 Hz), 55.96, 54.65 ppm; m/z LCMS [ES]
+
 M+Na 357.3. HRMS calc for 

C18H22DNNaO5, M+Na, (357.1537) found (357.1541). [α]
24

D +42.9 (c 1.0, CHCl3) 

(S)-prop-1-deutero-ynyl 2-(tert-butoxycarbonylamino)pent-4-deutero-ynoate (L)-170 

 

(L)-170 99% yield, 99% deuterium incorporation. Colourless oil. No further purification necessary.  

Rf 0.8 (50% diethyl ether in hexane).   
1
H-NMR (400 MHz, CDCl3) δ 5.28 (d, J8.0 Hz, 1H, NH), 

4.70 (s, 2H, CH2), 4.53 – 4.38 (m, 1H, αCH), 2.70 (qd, J4.8 Hz, 2H, CH2), 1.39 (s, 9H, (CH3)3).  

13
C-NMR (101 MHz, CDCl3) δ 79.36, 76.60 (t, JC-D7.1 Hz), 75.40 (t, JC-D8.1 Hz), 74.28 (t, JC-D38.4 

Hz), 70.64 (t, JC-D38.4 Hz) 52.06, 50.86, 27.26, 21.71 ppm.  FTIR [ATR] 3387 C-D, 2978, 2593 C-
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C, 1753 C=O, 1713 C=O cm
-1

. m/z LCMS [ES]
+
 M+Na 276.0.  HRMS calc for C13H15D2NNaO4, 

M+Na, (276.1181) found (276.1184).  [α]
29

D +10.6 (c 1.0, CHCl3). 

(R)-prop-1-deutero-ynyl 2-(tert-butoxycarbonylamino)-3-phenylpropanoate (D)-171 

 

(D)-171 99% yield, 99% deuterium incorporation.  Colourless oil.  No further purification 

necessary.  Rf  0.7 (1:5, ethyl acetate : hexane).  
1
H-NMR (300 MHz, CDCl3) δ 7.34 – 7.20 (m, 3H, 

ArH), 7.15 (dd, J7.8, 1.7 Hz, 2H, ArH), 4.94 (d, J8.2 Hz, 1H, NH), 4.72 (m, 2H, CH2), 4.66 – 4.57 

(m, 1H, αCH), 3.25 – 2.92 (m, 2H, βCH2), 1.41 (s, 9H, (CH3)3).  
13

C-NMR (101 MHz, CDCl3) δ 

171.15, 155.06, 135.69, 129.41, 128.60, 127.13, 80.06, (alkyne carbon resonances obscured by 

CDCl3 peak), 75.18 (t, JC-D38.4 Hz), 54.30, 52.63, 38.10, 28.28 ppm.  FTIR [ATR] 2979 C-D, 1748 

C=O, 1701C=O, 1411, 1162, 906 cm
-1

. m/z LCMS [ES]
+
 M+Na 327.0  HRMS Calc for 

C17H20DNO4Na, M+Na, 327.1426, found: 327.1435.  [α]
27

D -12.9 (c 1.0, CHCl3) 

(R)-prop-1-deutero-ynyl 2-(tert-butoxycarbonylamino)-2-(4-fluorophenyl)acetate. (R)-172 

 

(R)-172 94% yield, 96% deuterium incorporation.  Yellow oil. No further purification necessary.  

Rf  0.7 (1:5, ethyl acetate : hexane).  
1
H-NMR (400 MHz, CDCl3) δ 7.34 – 7.29 (m, 2H, ArH), 7.02 

(m, 2H, ArH), 5.28 (d, J24.0 Hz, 1H, NH), 4.80 – 4.58 (m, 3H, CH2, αCH), 1.40 (s, 9H, (CH3)3).  

13
C-NMR (101 MHz, CDCl3) δ 170.46, 162.76 (d, JC-F248.5 Hz), 132.31, 128.98 (d, JC-F9.1 Hz), 

115.90 (d, JC-F21.2 Hz), 80.64, 76.24 (t, JC-D7.1 Hz), 75.34 (t, JC-D38.4 Hz), 56.93, 53.34, 28.47 

ppm.  FTIR [ATR] 2979 C-D, 2593C-C, 1747 C=O, 1702 C=O cm
-1

. m/z LCMS [ES]
+
 M+Na 

330.9.  HRMS calc for C16H17DFNNaO4, M+Na, (331.1180) found (331.1177).  [α]
27

D -47.5 (c1.0, 

CHCl3). 
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(S)-prop-1-deutero-ynyl 2-(tert-butoxycarbonylamino)-4-(methylsulfonyl) butanoate (L)-173 

 

(L)-173 99% yield, 95% deuterium incorporation. White solid.  No further purification necessary.  

Rf  0.5 (1:5, ethyl acetate : hexane).  MP  86-88˚C (hexane)  
1
H-NMR (400 MHz, CDCl3) δ 5.13 (s, 

1H, NH), 4.70 (m, 2H, CH2), 4.38 (s, 1H, αCH), 3.07 (m, 2H, βCH2), 2.87 (s, 3H, CH3), 2.40 (m, 

1H, CHH), 2.20 – 2.01 (m, 1H, CHH), 1.38 (s, 9H, (CH3)3). 
13

C-NMR (101 MHz, CDCl3) δ 170.47, 

155.30, 80.78, (alkyne carbon resonances obscured by CDCl3 peak), 53.24, 51.98, 50.98, 40.80, 

28.25, 25.74 ppm.  FTIR [ATR] 3355 C-D, 2160 C-C, 1977, 1749 C=O, 1707 C=O, 1367 O=S=O 

cm
-1

; m/z LCMS [ES]
+
 M+Na 343.  HRMS calc for C13H20DNNaO6S, M+Na, (343.1050) found 

(343.1047). [α]
27

D +13.6 (c 1.0, CHCl3) 

(S)-prop-1-deutero-ynyl 1-(5-(dimethylamino)naphthalen-1-ylsulfonyl) pyrrolidine-2-

carboxylate (L)-174 

 

(L)-174 98% yield, 98% deuterium incorporation.  Yellow oil. No further purification necessary.  

Rf  0.3  (1:5, ethyl acetate : hexane).  
1
H-NMR (300 MHz, CDCl3) δ 8.58 – 8.51 (m, 1H, ArH), 8.46 

(d, J8.7 Hz, 1H, ArH), 8.27 (dd, J7.4, 1.3 Hz, 1H, ArH), 7.54 (m, 2H, ArH), 7.18 (dd, J7.6, 0.8 Hz, 

1H, ArH), 4.59 – 4.52 (m, 1H, αCH), 4.50 (d, J2.5 Hz, 2H, CH2), 3.59 – 3.42 (m, 2H, CH2), 2.87 (s, 

6H, (CH3)2), 2.23 – 2.13 (m, 1H, CHH), 2.12 – 2.00 (m, 2H, CHH, CH’H’), 1.95 – 1.80 (m, 1H, 

CH’H’).  
13

C-NMR (101 MHz, CDCl3) δ 171.39, 151.82, 134.49, 130.86, 130.52, 130.19, 128.34, 

123.37, 119.86, 115.45, (alkyne carbon resonances obscured by CDCl3 peak), 60.03, 52.72, 48.72, 

45.63, 31.20, 24.91 ppm.  FTIR [ATR] 2944 C-D, 2583, 1755 C=O, 1574, 1332 O=S=O, 1142 

O=S=O cm
-1

. m/z LCMS [ES]
+
 M+1 388.1, M+Na 410.3.    HRMS calc for C20DH21N2NaO2, 

M+Na, (346.1579) found (346.1575) [α]
27

D -64.2 (c 1.0, CHCl3). 

 



188 

 

(S)-prop-1-deutero-ynyl-3-(1-benzyl-1H-imidazol-4-yl)-2-(tert-butoxycarbonyl amino) 

propanoate (L)-175 

 

(L)-175 98% yield, 98% deuterium incorporation.  Brown oil.  No further purification necessary.  

Rf 0.3 (1:5, ethyl acetate : hexane).  
1
H-NMR (300 MHz, CDCl3) δ 7.77 (s, 1H, CH), 7.36 (d, J6.8 

Hz, 3H, ArH), 7.16 (dd, J7.5, 1.9 Hz, 2H, ArH), 6.74 (s, 1H, CH), 5.99 (d, J9.5 Hz, 1H, NH), 5.09 

(s, 2H, CH2), 4.78 – 4.43 (m, 3H, CH2, αCH), 3.12 (m, 2H, βCH2), 1.41 (s, 9H, (CH3)3).  
13

C-NMR 

(75 MHz, CDCl3) δ 171.32, 155.61, 137.59, 137.32, 136.22, 128.94, 128.20, 127.29, 117.15, 79.89 

(t, JC-D6.1 Hz) 79.43, 74.83 (t, JC-D38.3 Hz)), 53.40, 52.16, 50.56, 29.72, 28.13 ppm.  ATR-

IR:1707.90 C=O cm
-1

.  m/z LCMS [ES]
+
 M+H 385.3, M+Na 407.1. HRMS calc for 

C21H24DN3NaO4, M+Na, (407.1806) found (407.1810).  [α]
27

D -6.2 (c 1.0, CHCl3).   

Prop-1-deutero-ynyl 5-((3aS,4S,6aR)-2-oxohexahydro-1H-thieno[3,4-d]imidazol-4-

yl)pentanoate (+)-176 

 

(+)-176 89% yield, 98% deuterium incorporation.  Purified by column chromatography on silica 

and eluted with 3% methanol in dichloromethane.  White solid. Rf 0.45 (3% methanol in 

dichloromethane).  MP 58-60˚C.  
1
H-NMR (300 MHz, CDCl3) δ 5.94 (s, 1H, NH), 5.41 (s, 1H, 

NH), 4.67 (s, 2H, CH2), 4.50 (dd, J7.3, 5.4 Hz, 1H, CH), 4.30 (dd, J7.8, 4.6 Hz, 1H, CH), 3.14 (dd, 

J12.0, 7.3 Hz, 1H, CH), 2.98 – 2.64 (m, 2H, CH2), 2.38 (t, J7.5 Hz, 2H, CH2), 1.78 – 1.60 (m, 4H, 

(CH2)2), 1.46 (m, 2H, CH2).  
13

C-NMR (101 MHz, CDCl3) δ 171.62, 161.75, (alkyne carbon 

resonances obscured by CDCl3 peak), 60.82, 59.04, 54.11, 50.87, 39.53, 32.51, 28.69, 27.21, 23.56 

ppm.  FT-IR [ATR] 3219 C-D, 2929, 1732C=O, 1698 C=O, 1464, 1165 cm
-1

. m/z LCMS [ES]
+
 

M+Na 306.1.  HRMS calc for C13H17DN2NaO3S, M+Na, (306.0999) found (306.1001). [α]
24

D 36.8 

(c 1.0, CHCl3).   
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(2R,3R,4S,5R,6S)-3,4,5-tris(benzyloxy)-2-(benzyloxymethyl)-6-(prop-1-deutero-ynyloxy)tetra 

hydro -2H-pyran (β)-177 

 

(β)-177 99% yield, 99% deuterium incorporation.  White solid.  No further purification necessary.  

Rf 0.3 (1:5, ethyl acetate : hexane).  MP: 72-73˚C (diethyl ether),   
1
H-NMR (300 MHz, CDCl3) δ 

7.54 – 7.07 (m, 20H, ArH), 5.02 (d, J10.8 Hz, 1H, CH), 4.97 (d, J10.9 Hz, 1H, CH), 4.84 (t, J11.2 

Hz, 2H, CH2), 4.73 (d, J10.8 Hz, 1H, CH), 4.66 (t, J4.5 Hz, 1H, CH), 4.63 (s, 1H, CH), 4.58 (d, 

J3.4 Hz, 1H, CH), 4.54 (d, J2.2 Hz, 1H, CH), 4.48 (d, J6.0 Hz, 2H, ), 3.82 – 3.60 (m, 4H), 3.52 (dd, 

J14.2, 5.3 Hz, 2H).  
13

C-NMR (101 MHz, CDCl3) δ 138.62, 138.41, 138.12, 128.54 – 128.19 (m), 

128.05 – 127.43 (m), 101.47, 84.63, 82.00, 78.59 (t, JC-D7.1 Hz) 77.67, 75.73, 74.90 (t, JC-D11.1 

Hz), 73.52, 68.81, 55.97 ppm. FTIR [ATR] 3029 C-D, 2865, 1604, 1496, 1452, 1360 cm
-1

. m/z 

LCMS [ES]
+
 M+Na 602.4.    HRMS calc for C37H37DNaO6, M+Na, (602.2629) found (602.2628).  

[α]
24

D -6.0 (c 1.0, CHCl3). 

(2R,3S,4S,5R,6S)-2-(acetoxymethyl)-6-((2R,3R,4S,5R)-4,5-diacetoxy-2-(acetoxymethyl)-6-

(prop-1-deutero-ynyloxy)tetrahydro-2H-pyran-3-yloxy)tetrahydro-2H-pyran-3,4,5-triyl 

triacetate (β)-178 

 

(β)-178 99% yield, 99% deuterium incorporation.  White solid.  No further purification necessary.  

Rf  0.35 (1:5, ethyl acetate : hexane).  MP 77-78°C (diethyl ether).  
1
H-NMR (300 MHz, CDCl3) δ 

5.33 (d, J3.3 Hz, 1H, CH), 5.30 – 5.22 (m, 1H, CH), 5.20 (d, J9.4 Hz, 1H, CH), 5.09 (dd, J10.4, 7.9 

Hz, 1H, CH), 4.92 (ddd, J11.4, 8.6, 5.7 Hz, 2H, CH2), 4.72 (d, J7.9 Hz, 1H, CH), 4.52 – 4.43 (m, 

2H, CH2), 4.33 (d, J6.3 Hz, 2H, CH2), 4.15 – 3.99 (m, 3H, (CH)3), 3.93 – 3.82 (m, 1H, CH), 3.78 

(d, J9.4 Hz, 1H, CH), 3.62 (ddd, J9.9, 4.8, 2.0 Hz, 1H, CH), 2.17 – 2.12 (m, 3H, CH3), 2.10 (d, J4.3 

Hz, 4H, CH3,CHHH ), 2.08 – 2.01 (m, 11H), 1.99 (t, J3.7 Hz, 1H), 1.94 (s, 2H).  
13

C-NMR (101 
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MHz, CDCl3) δ 170.54, 170.34, 170.26, 169.93, 169.24, 101.20, 98.04, (alkyne carbon resonances 

obscured by CDCl3 peak), 76.30, 72.92, 72.85, 71.46, 71.15, 70.86, 69.26, 66.78, 62.00, 61.00, 

56.05, 21.06, 20.99, 20.92, 20.84, 20.71 ppm.  ATR-IR:1743 C=O, 1368, 1218, 1053, 901 cm
-1

; m/z 

LCMS [ES]
+
 M+Na 336.9.  HRMS calc for C29H38NaO18, M+Na, (697.1956) found (697.1959).  

[α]
24

D -24.5 (c 1.0, CHCl3).  

1-deutero-propynyl-1-ferrocenoate 179 

 

179  98% yield, 98% deuterium incorporation.  Orange solid.  No further purification necessary.  Rf  

0.7 (1:5, ethyl acetate : hexane).  MP 76-76˚C.  
1
H-NMR (300 MHz, CDCl3) δ 4.87 – 4.83 (m, 2H, 

ArH), 4.82 (s, 2H, CH2), 4.45 – 4.39 (m, 2H, ArH), 4.25 (s, 5H, ArH).  
13

C-NMR (101 MHz, 

CDCl3) δ 170.06, 77.08(t, JC-D7.1 Hz), 73.26 (t, JC-D39.4 Hz), 70.61, 69.25, 68.83, 50.47 ppm.  

ATR-IR 2578 C-D, 1980, 1712 C=O cm
-1

.  m/z LCMS [ES]
+
 M+K 297.1.  HRMS calc for 

C14H13DFeNO2, M+NH4, (285.0515) found (285.0510). 

Synthesis of deutero-1-propargyl tazobactam 182 

 

A flame-dried 10 mL round- bottomed flask was charged with tazobactam sodium salt 184 (30 mg, 

0.093 mmol) in N-N-dimethylformamide (2 ml).  To this d-1-propargyl bromide 185 (0.012 ml, 

0.140 mmol) was added and left to stir under an atmosphere of argon gas at ambient temperature 

for 16 hours.  The solvent was removed under reduced pressure and the residue was transferred to a 

silica column and eluted with 1-5% methanol in dichloromethane.  This afforded a white solid and 

subsequent physiochemical analysis confirmed this was the title compound (182) (26 mg, 0.077 

mmol, 82 % yield, 96% deuterium incorporation).   
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182 White solid.  Rf 0.6 (5% methanol in dichloromethane).  MP 140-142˚C (diethyl ether)  
1
H-

NMR (300 MHz, CDCl3) δ 7.82 (d, J1.1 Hz, 1H, CH), 7.76 (d, J1.0 Hz, 1H, CH), 5.09 (q, J15.0 

Hz, 2H, CH2), 4.85 (q, J15.4 Hz, 2H, CH2), 4.67 (dd, J4.2, 2.0 Hz, 1H, CH), 4.60 (s, 1H, CH), 3.56 

(qd, J16.3, 3.1 Hz, 2H, CH2), 1.41 (s, 3H, CH3).  
13

C-NMR (101 MHz, CDCl3) δ 169.62, 165.37, 

134.38, 125.76, 75.32 (t, JC-D7.1 Hz), 65.29, 62.58, 60.28, 54.01, 53.43, 50.52, 39.22, 16.13 ppm.  

ATR-IR 3019 C-D, 2968, 2579, 1983, 1792 C=O, 1756 C=O, 1404, 1376 O=S=O, 1322, 1274, 

1187 O=S=O cm
-1

.  m/z LCMS [ES]
+
 M+Na 362.0  HRMS calc for C13H13DN4NaO5S, M+Na, 

(362.0645) found (362.0649).  [α]
24

D +27.4 (c 1.0, CHCl3). 

Synthesis of deutero-1-propargyl cefazolin 183 

 

A flame-dried 10 mL  round-bottomed flask was charged with cefazolin sodium salt 186(30 mg, 

0.063 mmol) in N-N-dimethylformamide (2 ml).  To this 1-deutero-propargyl bromide 185 (8.14 µl, 

0.094 mmol) was added and left to stir under an atmosphere of argon gas at ambient temperature 

for 16 hours.  The solvent was removed under reduced pressure and transferred to a silica column 

eluting with 1-5% methanol in dichloromethane to afford a white solid.  Subsequent 

physiochemical analysis confirmed this to be the title compound 183 (22 mg, 0.045 mmol, 70.8 % 

yield, 96% deuterium incorporation).  

183 White solid. Rf 0.3 (5% methanol in dichloromethane)   MP 128-130˚C (diethyl ether).  
1
H-

NMR (300 MHz, CDCl3) δ 8.90 (s, 1H, CH), 7.76 (d, J8.9 Hz, 1H, NH), 5.82 (dd, J8.7, 4.8 Hz, 1H, 

CH), 5.32 (dd, J41.0, 16.6 Hz, 2H, CH2), 5.00 (d, J4.9 Hz, 1H, CH), 4.88 (q, J15.6 Hz, 2H, CH2), 

4.60 (d, J13.8 Hz, 1H, CH), 4.23 (d, J13.8 Hz, 1H, CH), 3.76 (s, 2H, CH2), 2.75 – 2.71 (m, 3H, 

CH3).  
13

C-NMR (101 MHz, CD3OD, CDCl3) δ 167.15, 165.49, 164.72, 164.30, 160.95, 144.47, 

130.06, 124.72, 76.64 (t, JC-D7.1 Hz), 75.98 (t, JC-D41.4 Hz) 59.36, 57.52, 53.60, 49.79, 35.64 ppm.  

ATR-IR 1775 C=O, 1699 C=O, 1553, 1381, 1242, 1168, 1098, 1023 cm
-1

.  m/z LCMS [ES]
+
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M+Na516.0.   HRMS calc for C17H15DN8NaO4S3, M+Na, (516.0417) found (516.0414).  [α]
24

D -

19.0 (c 1.0, CHCl3) 

Synthesis of (1R,2S)-2-(methyl(prop-1-deutero-ynyl)amino)-1-phenylpropan-1-ol 188 

 

A 25 mL round-bottomed flask was charged with (+) ephedrine hydrochloride 187 (250 mg, 1.240 

mmol) and potassium carbonate (377 mg, 2.73 mmol) in acetonitrile (4 ml).  This was left to stir for 

30 minutes.  To this propargyl bromide (0.147 ml, 1.363 mmol) was added and left to stir under an 

atmosphere of argon gas at ambient temperature for 16 hours.  After 16 hours potassium carbonate 

(171 mg, 1.24 mmol) was added and deuterium oxide (2 mL) was added and left to stir for 2 hours.  

The reaction mixture was transferred to a 25 mL separating funnel and extracted with 

dichloromethane (2 x 5 mL).  The organic extracts were dried with magnesium sulfate, filtered and 

the solvent removed under reduced pressure to afford a yellow oil.  234 mg.  Subsequent 

physiochemical analysis confirmed this to be the titled compound 188.  94% yield, 99% deuterium 

incorporation. Yellow Oil. No further purification necessary.  Rf 0.5(ethyl acetate).  
1
H-NMR 

(CDCl3, 400 MHz) 
 
δ 7.24-7.17 (m, 5H, ArH), 4.15 (d, J9.6 Hz, 1H, CH), 3.53-3.19 (m, 2H, CH2), 

2.88-2.59 (m, 1H, CH). 2.32 (s, 3H, CH3), 0.74 (d, J6.7, 3H, CH3).
 13

C-NMR (CDCl3, 100 MHz) δ 

141.84, 128.47,128.02, 127.60 , 80.01 (t, JC-D7.1 Hz), 75.04, 72.93 (t, JC-D38.4 Hz), 44.04, 35.41, 

8.4 ppm.  FT-IR (ATR) 3366 OH, 2970, 2588, 1454, 1037 cm
-1

. m/z LCMS [ES]
+
 M+H 205.0, 

 
  

HRMS calc for C13H17DNO, M+H (205.1451) found (205.1455). [α]
24

D +36 (c 1.0, CHCl3). 

Synthesis of (6S,7R)-5,6-dimethyl-7-phenyl-4,5,6,7-tetrahydro-[1,2,3]triazolo[1,5deutero-

a]pyrazine 189 

 

A 10 mL flame-dried round-bottomed flask was charged with (1R,2S)-2-(methyl(prop-2-deutero-

ynyl)amino)-1-phenylpropan-1-ol 188 (46 mg, 0.224 mmol) and dissolved in dry dichloromethane 
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(2 mL).  To this thionyl chloride (1 mL) was added slowly with stirring.  This was left to stir for 2 

hours.  The reaction mixture was concentrated under vacuum to afford a brown oil.  This was 

dissolved in deuterated dimethylsulfoxide (2 mL) and transferred to a 2.5 mL microwave vial.  To 

this sodium azide (15mg, 0.224 mmol) was added, the vial was sealed with a Teflon cap and heated 

to 110 °C in a microwave reactor for 1 hour.  The resulting solution was diluted with ethyl acetate 

(5 mL), transferred to 25 mL separating funnel and washed with saturated sodium bicarbonate 

solution (5mL), water (5 x 5mL) and with brine.  The organic extracts were dried with magnesium 

sulfate, filtered and the solvent removed under reduced pressure.  The resulting oil was further 

purified by chromatography (Et2O : EtOH, 8:2) to afford a yellow/brown oil.  Subsequent 

physiochemical analysis confirmed this to be the title compound 189.  33mg, 64% yield, 95% 

deuterium incorporation.  Rf  0.4 (Et2O : EtOH, 8:2) 
1
H-NMR (300 MHz, CDCl3) δ 7.29 (dd, J6.6, 

3.6 Hz, 3H, ArH), 7.19 (dd, J6.8, 3.0 Hz, 2H, ArH), 5.54 (d, J4.0 Hz, 1H, CH), 4.20 (d, J15.3 Hz, 

1H, CHH), 3.59 (d, J15.3 Hz, 1H, CHH), 3.22 – 2.95 (m, 1H, CH), 2.42 (s, 3H, CH3), 0.96 (d, J6.7 

Hz, 3H, CH3).  
13

C-NMR (101 MHz, CDCl3) δ (carbon deuterium resonances to weak to be 

observed), 127.57, 127.30, 127.11, 63.57, 57.77, 48.47, 40.34, 28.68 ppm.  FTIR [ATR] 2786, 

2336, 1655, 1454, 1355, 1245, 998 cm
-1

. m/z LCMS [ES]
+
 M+H 230.1.  HRMS calc for 

C13H15DN4Na, M+Na, (252.1335) found (252.1335).  [α]
24

D +24 (c 1.0, CHCl3)   

Synthesis of 2-azido-8-iodo-6H,12H-5,11-methanodibenzo[b,f][1,5]diazocine (+/-)-190 

 

A 10 mL microwave vial was charged with 2,8-bis-iodo-6H,12H-5,11-

methanodibenzo[b,f][1,5]diazocine (+/-)-78 (700mg, 1.47 mmol), sodium ascorbate (29mg, 0.148 

mmol), copper(I) iodide (28m g, 0.148 mmol) and sodium azide (86mg, 1.329 mmol) in  a 1 : 1 

ethanol : water mixture (7 mL).   The reaction vessel was sealed with a Teflon cap and to this 

N
1
,N

2
-dimethylethane-1,2-diamine (13mg, 0.148 mmol) was added via syringe and the reaction 

mixture was heated to 100 °C for 1 hour by microwave irradiation.  The reaction mixture was 

diluted with water (5 mL) and transferred to a 25 mL separating funnel, extracted with 

dichloromethane (2 x 10 mL).  The combined organic extracts were washed with brine (5 mL) and 

dried with magnesium sulfate.  The suspension was filtered and the solvent removed under reduced 
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pressure.  The resulting solid was purified by flash chromatography on silica gel eluting with 

(hexane : ethyl acetate 4 : 1) affording an off white solid.  Subsequent physiochemical analysis 

confirmed this was the title compound.  2-azido-8-iodo-6H,12H-5,11-

methanodibenzo[b,f][1,5]diazocine (+/-)-190 (193mg, 0.643mmol, 43%) 

Rf  0.6 (hexane : ethyl acetate ,1:1) 
1
H-NMR (500 MHz, CDCl3) δ 7.39 (d, J 8.6 Hz, 1H), 7.17 (d, J 

2.0 Hz, 1H), 7.03 (d, J 8.6 Hz, 1H), 6.88 – 6.71 (m, 2H), 6.50 (d, J 2.5 Hz, 1H), 4.57 (dd, J 16.7, 

12.4 Hz, 2H), 4.23 – 4.14 (m, 2H), 4.09 – 3.93 (m, 2H).  
13

C-NMR (126 MHz, CDCl3) δ 147.70, 

144.76, 135.78, 130.26, 129.12, 126.45, 118.56, 117.04, 87.60, 66.75, 58.66, 58.18 ppm;  FT-IR 

(KBr neat) 2112 N3, 1488, 1209 cm
-1

.  m/z [MALDI]
+
 M-N2 362.05, HRMS (NSI) Calcd for 

C15H16IN6, M+N4, 407.0481; Found 407.0477 

Synthesis of 2-iodo-8-(5-deutero-4-((((3R,4S,5R,6R)-3,4,5-tris(benzyloxy)-6-((benzyloxy) 

methyl)tetrahydro-2H-pyran-2-yl)oxy)methyl)-1H-1,2,3-triazol-1-yl)-6,12-dihydro-5,11-

methanodibenzo[b,f][1,5]diazocine 191 

 

A 25 mL round-bottomed flask was charged with  2-azido-8-iodo-6H,12H-5,11-

methandibenzo[b,f][1,5]diazocine (44.7 mg, 0.077 mmol) and deuterated propargyl-O- benzyl 

glucose (30 mg, 0.077 mmol) in d-chloroform (1 mL).  To this a solution of copper(II) sulfate 

pentadeuterate (1.230 mg, 7.71 µmol) and sodium ascorbate (15.27 mg, 0.077 mmol) in deuterium 

oxide (1 mL) was added and stirred vigorously for 72 hours at room temperature.  The solution was 

transferred to a 25 mL separating funnel and the organic layer was collected.  The impure reaction 

mixture was dried with magnesium sulfate, filtered and the solvent removed under reduced 

pressure.  The resulting mixture was purified via flash chromatography eluting with 50% ethyl 

acetate : petrol.  Subsequent physiochemical analysis confirmed this to be the title compound.  191 

(45 mg, 0.046 mmol, 60.3 % yield) 
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191 Rf  0.3 (hexane : ethyl acetate, 1:1) 
1
H-NMR (400 MHz, CDCl3) δ 7.40 (d, J 8.5 Hz, 1H), 7.28 

– 7.02 (m, 23H), 6.83 (d, J 8.5 Hz, 1H), 4.94 (dd, J 34.6, 13.5 Hz, 2H), 4.84 (d, J 11.0 Hz, 2H), 

4.73 (t, J 10.3 Hz, 2H), 4.66 (d, J 11.1 Hz, 1H), 4.60 (d, J 16.9 Hz, 2H), 4.53 (dd, J 12.1, 1.8 Hz, 

1H), 4.48 – 4.41 (m, 3H), 4.23 (s, 2H), 4.06 (d, J 17.9 Hz, 2H), 3.57 (m,, 6H).  
13

C-NMR (126 

MHz, CDCl3) δ 147.17, 146.44, 144.42, 137.57 – 137.32, 137.11 – 136.87, 135.52, 134.70, 131.92, 

128.97, 128.04, 127.69, 127.47 (t, JC-D27.7 Hz), 127.37 – 127.13, 127.01 – 126.48, 126.01, 125.10, 

119.69 (t, JC-D30.2 Hz), 118.73, 118.06, 101.61, 86.71, 83.65, 81.24, 76.74, 74.69, 73.97, 73.76, 

72.45, 67.86, 65.60, 64.83, 61.98, 57.58, 57.20 ppm.  FT-IR (KBr neat) 1503, 1474, 1454, 1211, 

1070 cm
-1

; m/z [MALDI]
+
 M+Na 991.25, HRMS (NSI) Calcd for C52H53DIN6O6, M+NH4, 

986.3212; Found 986.3215. 

Synthesis of 2-deutero-ethynyl-8-(4-((((3R,4S,5R,6R)-3,4,5-tris(benzyloxy)-6-((benzyloxy) 

methyl)tetrahydro-2H-pyran-2-yl)oxy)methyl)-1D-1,2,3-triazol-1-yl)-6,12-dihydro-5,11-

methanodibenzo[b,f][1,5]diazocine 192 

 

A flame dried 25 mL round bottomed flask was charged with 191 (40 mg, 0.041 mmol), 

tetrakis(triphenylphosphine) palladium(0) (4.77 mg, 4.13 µmol), copper(I) iodide (1.573 mg, 8.26 

µmol) in tetrahydrofuran (2 mL).  To this trimethylsilylacetylene (0.018 ml, 0.124 mmol) was 

added and left to stir for 20 minutes.  This was followed by the addition of triethylamine (0.023 ml, 

0.165 mmol) and the resulting solution was left to stir for 24 hours at ambient temperature under an 

atmosphere of argon gas. The reaction mixture was transferred into a 25mL separating funnel and 

extracted with ethyl acetate (2 x 5mL). The combined extracts were washed with brine (5 mL) and 

dried with magnesium sulfate.  The suspension was filtered and the solvent removed under reduced 

pressure.  The resulting solid mixture was dissolved in methanol (2 mL) and potassium carbonate 
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(11.41 mg, 0.083 mmol) was added and left to stir for 1 hours.  The solution was transferred to a 

25mL separating funnel, diluted with ethyl acetate and washed with water (5 mL) and brine (5 mL).  

The solution was dried with magnesium sulfate, filtered and the solvent removed under reduced 

pressure.  The impure solid was dissolved in acetonitrile (1 mL) and potassium carbonate (11.41 

mg, 0.083 mmol) was added followed by deuterium oxide (1 mL) and left to stir for 1 hour.  The 

solution was diluted with dichloromethane (5 mL), transferred to a 25 mL separating funnel and the 

organic layer was collected, dried with magnesium sulfate, filtered and the solvent removed under 

reduced pressure.  The impure solid was purified via flash chromatography on silica gel eluting 

with 1:1 ethyl acetate : petrol to afford a yellow solid.  Subsequent physiochemical analysis 

confirmed this was the title product.  192 (29 mg, 0.033 mmol, 81 % yield) 

192 Rf 0.4 (hexane : ethyl acetate, 1:1)
 1

H NMR (500 MHz, CDCl3) δ 7.29 – 7.09 (m, 20H), 7.09 – 

7.05 (m, 4H), 7.01 (d, J7.4 Hz, 2H), 4.98 (dd, J13.2, 1.7 Hz, 1H), 4.90 (dd, J13.2, 1.1 Hz, 1H), 4.83 

(d, J11.0 Hz, 2H), 4.72 (t, J11.6 Hz, 2H), 4.67 (s, 1H), 4.65 – 4.61 (m, 1H), 4.60 (d, J5.5 Hz, 1H), 

4.52 (dd, J12.2, 2.0 Hz, 1H), 4.45 (d, J7.8 Hz, 3H), 4.24 (s, 2H), 4.09 (t, J15.6 Hz, 2H), 3.69 – 3.59 

(m, 2H), 3.59 – 3.50 (m, 2H), 3.45 – 3.37 (m, 2H). 
13

C NMR (126 MHz, CDCl3) δ 147.27, 147.19, 

144.43, 137.48, 137.43, 137.42, 137.02, 136.98, 131.91, 130.37, 129.85, 128.10, 127.53 (t, JC-

D20.2Hz), 127.37, 127.35, 126.92, 126.89, 126.85, 126.76, 126.72, 126.65, 126.63, 126.58, 126.50, 

119.70 (t, JC-D29.1 Hz), 118.74, 118.04, 116.87, 101.61, 83.65, 81.71 (t, JC-D6.3 Hz), 81.25, 76.75, 

76.41 (t, JC-D20.2 Hz), 74.70, 73.98, 73.76, 72.46, 67.86, 65.70, 62.01, 57.57 ppm.  
2
H-NMR (77 

MHz, DCM) δ 7.86 (s, 1D), 2.93 (s, 1D).  m/z [MALDI]
+
 M+Na 890.4. 

 

Synthesis of 2-(1-(4-iodophenyl)-1D-1
15

N,2,3-triazol-4-yl)-8-(4-((((3R,4S,5R,6R)-3,4,5-tris 

(benzyloxy)-6-((benzyloxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)methyl)-1D-1,2,3-triazol-1-

yl)-6,12-dihydro-5,11-methanodibenzo[b,f][1,5]diazocine 193 
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A 25 mL round-bottomed flask was charged with 192 (15mg, 0.017 mmol) and 
15

N-α-1-azido-4-

iodobenzene (6mg, 0.024mmol) in deuterated chloroform (2 mL).  To this a premixed solution of 

copper (II) sulfate pentadeuterate (0.25mg, 0.0017 mmol) and sodium ascorbate (0.3 mg, 0.0017 

mmol) in deuterium oxide (2 mL) was added and left stirring vigorously for 72 hours.  The 

resulting biphasic mixture was transferred to a 25 mL separating funnel and extracted with 

dichloromethane (3 x 5mL).  The organic extracts were washed with brine (5 mL) and dried with 

magnesium sulfate.  The suspension was filtered and the solvent removed under reduced pressure.  

The impure mixture was purified via flash chromatography on silica gel eluting with 50 – 100% 

ethyl acetate in petroleum ether to afford an off white solid.  Subsequent physiochemical analysis 

confirmed this to be the title compound 193 (12 mg, 10.8 µmol, 62% yield, 95% 
2
H) 

193 Rf  0.6 (ethyl acetate) 
1
H-NMR (500 MHz, CDCl3) δ 7.78 (t, J 8.7 Hz, 2H), 7.57 (d, J 8.3 Hz, 

2H), 7.45 (ddd, J 24.2, 15.6, 8.5 Hz, 3H), 7.30 – 7.11 (m,21 H), 7.11 – 7.00 (m, 2H), 4.94 (ddd, J 

13.2, 1.5 Hz, 2H), 4.82 (dd, J 11.0, 2.6 Hz, 2H), 4.72 (dd, J 13.2, 11.2 Hz, 2H), 4.68 – 4.61 (m, 

2H), 4.54 – 4.49 (m, 2H), 4.47 – 4.39 (m, 2H), 4.35 – 4.23 (m, 2H), 4.18 (t, J 16.2 Hz, 2H), 3.69 – 

3.49 (m, 4H), 3.40 (dt, J 9.5, 5.8 Hz, 2H).  
13

C-NMR (126 MHz, CDCl3) δ 147.46, 147.09, 144.41, 

137.86 (d, JC-N1.9 Hz), 137.43(t, JC-D5.0 Hz), 136.99 (d, JC-N5.6 Hz), 131.84, 128.24, 127.37, 

126.92, 126.85, 126.73, 126.65, 126.58, 125.16, 124.53, 124.23, 123.44, 120.88, 118.70, 118.10, 

101.60 (d, JC-N2.8 Hz), 92.54, 83.65, 81.24, 74.70, 73.98, 73.76, 72.46, 67.85, 65.85, 61.98, 57.86, 

57.66, 52.40, 28.68 ppm.  
15

N-NMR (51 MHz, CDCl3) δ -127.18 (wrt CH3NO2).  
2
H-NMR (77 

MHz, DCM) δ 8.13, 7.89.  FT-IR (KBr neat) 2925, 1499, 1465, 1260, 1106, 1069 cm
-1

.  m/z [ES]
+
 

M+H 1115.1, HRMS (NSI) Calcd for C60H57D2IN8
15

NO6, M+NH4, 1131.3729; Found 1131.3724. 

Synthesis of 2,8-bis-iodo-6,12-dideutero-5,11-deutero methanodibenzo[b,f][1,5]
15

N diazocine 

(+/-)-197 

 

A flame-dried 25 mL round-bottomed flask was charged with 
15

N-4-iodoaniline (75mg, 0.34 mmol) 

and d2-paraformaldehyde (16mg, 0.51 mmol).  This was cooled 0°C in an ice bath and stirred 

vigorously with a magnetic stirrer.  To this d3-trifluoroacetic acid (1 mL) was added slowly over 5 

minutes.  The reaction mixture was allowed to warm to ambient temperature and kept in the dark by 

covering the flask in tin foil for 72 hours.  The reaction mixture was diluted with water (2 mL) and 
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neutralised with ammonia solution (aqueous 35%) until the mixture had changed from red to bright 

yellow.  The resulting slurry was transferred to a 25 mL separating funnel and extracted with 

chloroform  (3 x 5mL).  The combined organic extracts were washed with brine (5 mL) and dried 

with magnesium sulfate.  The suspension was filtered and the solvent was removed under reduced 

pressure.  The resulting yellow solid was purified by flash chromatography eluting with ethyl 

acetate : petrol (1 : 5) affording an off white solid.  Subsequent physiochemical analysis confirmed 

this to be the title compound (+/-)-197 (45mg, 0.09 mmol, 54%) 

(+/-)-197 Rf  0.3 (ethyl acetate : hexane, 1 : 5) 
1
H-NMR (400 MHz, CDCl3) δ 7.37 (dd, J8.5, 2.0 

Hz, 2H), 7.15 (d, J2.0 Hz, 2H), 6.79 (dd, J8.5, 1.2 Hz, 2H).  
13

C-NMR (101 MHz, CDCl3) δ 147.55 

(d, JC-N6.6 Hz), 136.49, 135.76, 130.03, 127.04, 87.66, 65.79 (t, JC-D22.2 Hz), 57.35 (quintet, JC-

D20.2 Hz) ppm.  
2
H-NMR (77 MHz, DCM) δ 3.69 (s, 2D), 3.31 (s, 2D), 3.16 (s, 2D).  

15
N-NMR (51 

MHz, DCM) δ -341.00 (s).wrt CH3NO2.  FT-IR (KBr neat) 1470, 1389, 1265, 1242 cm
-1

; m/z 

[MALDI]
+ 

M+H(found) 481.87, (calc) 481.94.  HRMS (NSI) Calcd for C15H7D6I2
15

N2, M+H, 

482.9485; Found 482.9479 

Synthesis of 2,8-bis-iodo-5,6,11,12-tetradeuterodibenzo[b,f][1,5]di-
15

N-azocine 198 

 

A flame-dried 25 mL round-bottomed flask was charged with (+/-)-197 (40 mg, 0.083 mmol) in 

anhydrous dichloromethane (1 mL) with stirring.  To this trifluoroacetic anhydride (115µL, 

0.83mmol) was added and left to stir under argon gas for 16 hours.  The reaction mixture was 

diluted with water (2 mL) and neutralised with the drop wise addition of an aqueous saturated 

sodium bicarbonate solution until bubbling stopped.  The reaction mixture was transferred to a 25 

mL separating funnel and extracted with dichloromethane (3 x 5 mL).  The combined organic 

extracts were washed with brine (5 mL) and dried with magnesium sulfate, filtered and the solvent 

removed under reduced pressure.  The resulting solid was dissolved in ethanol (2 mL) and sodium 

hydroxide (100mg) was added and the resulting cloudy solution was left to stir for 4 hours at 

ambient temperature under an atmosphere of argon.  This was then diluted with water (5 mL) and 

transferred to a 25 ml separating funnel and extracted with dichloromethane (3 x 5 mL).  The 

combined organic extracts were washed with brine (5 mL) and dried with magnesium sulfate, 

filtered and the solvent removed under reduced pressure.  The impure mixture was purified by flash 
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chromatography on silica gel eluting with dichloromethane to afford a pale yellow solid.  

Subsequent physiochemical analysis confirmed this to be the title compound 198.  (35 mg, 

0.075mmol, 90%)  

198  Rf 0.5 (dichloromethane) 
1
H-NMR (400 MHz, CD3OD/CDCl3) δ 7.25 (dd, J12.4, 11.0 Hz, 

4H), 6.53 – 6.36 (m, 2H).  
13

C-NMR (101 MHz, CD2Cl2) δ 148.10 (d,JC-N13.1 Hz), 140.28, 137.24, 

127.78 (d, JC-N4.0 Hz), 120.18 (d, JC-D3.0 Hz), 79.58, 48.87 (ddd, JC-D26.3, 20.6, 4.9 Hz).  
2
H-NMR 

(77 MHz, None) δ 4.60 (s, 4D).  
15

N-NMR (51 MHz, None) δ -310.74. wrt CH3NO2.  FT-IR (KBr 

neat) 1475, 1394, 1260, 1189 cm
-1

; m/z [MALDI]
+ 

M+K (found) 508.97, (calc) 508.18.  HRMS 

(NSI) Calcd for C14H11D5I2N
15

N2, M+NH4, 486.9679; Found 486.9688. 

Synthesis of tert-butyl (3-((5R,11S)-2,8-bis-iodo-6,12-di-deutero-5,11-
13

C-methanodibenzo[b,f] 

[1,5]-
15

N-diazocin-13-yl)phenyl)carbamate (+/-)-200 

A flame-dried 25 mL round-bottomed flask was charged with 198 (30mg, 0.064 mmol) and 
13

C-α-

3-boc amino benzaldehyde 199 (14mg, 0.064mmol) and pre-dried 4Å molecular sieves in toluene 

(5 mL).  The reaction mixture was heated to reflux for 24 hours.  After this time the solvent was 

removed under reduced pressure and the resulting mixture was purified by flash chromatography on 

silica gel eluting with diethyl ether : petroleum ether (1 : 5) to afford a waxy solid.  Subsequent 

physiochemical analysis confirmed this to be the title compound (+/-)-200.  (23mg, 0.034mmol, 

53%) 

(+/-)-200 Rf 0.4 (diethyl ether : hexane (1 : 5).  
1
H-NMR (500 MHz, CDCl3) δ 7.36 (ddd, J13.2, 8.5, 

2.0 Hz, 2H), 7.29 (d, J8.4 Hz, 2H), 7.18 (d, J2.0 Hz, 1H), 7.12 – 7.04 (m, 2H), 6.91 (dd, J8.5, 1.6 

Hz, 1H), 6.88 (d, J2.0 Hz, 1H), 6.86 (dd, J8.5, 1.2 Hz, 1H), 6.33 (s, 1H), 5.13 (m, 1H), 1.38 (s, 9H).
 

13
C NMR (126 MHz, CDCl3) δ 152.71, 138.61, 136.65 (d, JC-N36.5 Hz), 135.65 (d, JC-D37.8 Hz), 

129.25, 127.59, 127.47 (ddd, JC-D22.4, 6.3, 2.2 Hz), 122.01, 118.14, 117.55, 87.84, 80.64, 74.13, 

73.24, 28.41 ppm.  
15

N-NMR (51 MHz, DCM) δ -335.12, -338.22 with respect to CH3NO2.  
2
H-

NMR (77 MHz, DCM) δ 4.71 (s, 1D), 3.69 (d, 3D).  FT-IR (KBr neat) 1714 C=O, 1610, 1531, 

1470, 1159 cm
-1

.  m/z [MALDI]
+ 

M+Na (found) 695.01, (calc) 695.02.  HRMS (NSI) Calcd for 

C25
13

CH25D4I2N2
15

N2O2, M+NH4, 690.0605; Found 690.0600 
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Synthesis of tert-butyl (3-((5R,11S)-2,8-bis-azido-6,12-di-deutero-5,11-
13

C-methanodibenzo 

[b,f][1,5]-
15

N-diazocin-13-yl)phenyl)carbamate (+/-)-201 

 

A 10 mL microwave vial was charged with (+/-)-200 (50 mg, 0.074 mmol), sodium azide (19.34 

mg, 0.297 mmol), copper(I) iodide (1.416 mg, 7.44 µmol), sodium ascorbate (2.95 mg, 0.015 

mmol) and N
1
,N

2
-dimethylethane-1,2-diamine (1.967 mg, 0.022 mmol) in a 5 : 1 dimethylsulfoxide, 

water mixture.  The vial was sealed with a Teflon stopper and heated via microwave irradiation at 

100 °C for 1 hour.  The reaction mixture was diluted with dichloromethane (10 mL) and transferred 

to a 50 mL separating funnel and washed with water (5 x 20mL).  The organic extract was washed 

with brine (10 mL) and dried with magnesium sulfate.  The suspension was filtered and the solvent 

removed under reduced pressure.  The remaining solid purified via flash chromatography eluting 

with 20% diethyl ether in petrol to afford a yellow solid.  Subsequent physiochemical analysis 

confirmed this to be the title compound. (+/-)-201 (30 mg, 0.060 mmol, 80 %) 

(+/-)-201 Rf 0.5(diethyl ether : petrol, 1 : 5) 
1
H-NMR (500 MHz, CDCl3) δ 7.41 (s, 2H), 7.27 – 7.25 

(m, 2H), 7.23 – 7.17 (m, 3H), 6.87 (ddd, J 14.6, 8.6, 2.6 Hz, 2H), 6.65 (d, J 2.6 Hz, 1H), 6.44 (s, 

1H), 6.35 (d, J 2.6 Hz, 1H), 5.26 (d, 1H), 1.51 (s, 9H).  
13

C NMR (126 MHz, CDCl3) δ 165.28, 

151.64, 145.83, 142.07, 137.76, 137.49, 137.34, 134.40 (d, JC-N42.8 Hz), 128.68 (d, JC-N6.4 Hz), 

128.24 (d, JC-N5.8 Hz), 128.04, 125.83 (ddd, JC-D26.3, 6.5, 2.4 Hz), 121.01, 117.69, 117.38, 116.88, 

116.56, 115.97, 115.73, 79.51, 73.26, 27.32 ppm.  
15

N-NMR (51 MHz, CDCl3) δ -335.25 (s), -

338.35 (s).  
2
H-NMR (77 MHz, None) δ 4.72 (s, 1D), 4.18 (d, J 5.1 Hz, 2D), 3.81 (s, 1D).  FT-IR 

(KBr neat) 2977, 2110 C-N3, 1715 C=O, 1486, 1159 cm
-1

.   m/z [MALDI]
+
 M+H 503.35, HRMS 

(NSI) Calcd for C25
13

CH21D4N7
15

N2NaO2, M+Na, 525.2254; Found 525.2263. 
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Synthesis of (2R,3S,4S,5R,6S)-2-(acetoxymethyl)-6-(((2R,3R,4S,5R)-4,5-diacetoxy-2-

(acetoxymethyl)-6-((1-((5R,11S)-8-(4-(((R)-2-((tert-butoxycarbonyl)amino)-2-(4-fluorophenyl) 

acetoxy)methyl)-1D-1,2,3-triazol-1-yl)-13-(3-((tert-butoxycarbonyl)amino)phenyl)-6,12-

dihydro-5,11-
13

C-methanodibenzo[b,f][1,5]-
15

N-diazocin-2-yl)-1D-1,2,3-triazol-4-yl)methoxy) 

tetrahydro-2H-pyran-3-yl)oxy)tetradeutero-2H-pyran-3,4,5-triyl triacetate. 203  

 

A 2.5 mL microwave vial was charged with 202 (6mg, 5.09μmol) and (R)-172 (3.14mg, 

10.18μmol) in deuterated chloroform (1 mL).  To this a premixed solution of copper (II) sulfate 

pentadeuterate (0.5mg, 0.0034 mmol) and sodium ascorbate (0.7 mg, 0.0034 mmol) in deuterium 

oxide (1 mL) was added and left stirring vigorously for 72 hours under an argon gas atmosphere.  

The resulting biphasic mixture was transferred to a 25 mL separating funnel and extracted with 

dichloromethane (3 x 5 mL).  The organic extracts were washed with brine (5 mL) and dried with 

magnesium sulfate.  The suspension was filtered and the solvent removed under reduced pressure.  

The impure mixture was purified via flash chromatography on silica gel eluting with 2-4% 

methanol in dichloromethane to afford an off white amorphous solid.  Subsequent physiochemical 

analysis confirmed this to be the titled compound 203 (4mg, 2.69μmol, 53%)  

203 Rf 0.6 (4% methanol in dichloromethane) 
1
H-NMR (500 MHz, CDCl3) δ 7.51 – 7.41 (m, 2H), 

7.38 (dd, J12.6, 6.0 Hz, 2H), 7.19 (s, 2H), 7.01 – 6.86 (m, 4H), 6.38 (s, 1H), 5.34 – 5.19 (m, 4H), 

5.06 (ddt, J 10.5, 7.9, 7.4 Hz, 4H), 4.93 – 4.70 (m, 4H), 4.67 – 4.54 (m, 2H), 4.48 – 4.37 (m, 2H), 

4.11 – 3.96 (m, 4H), 3.84 – 3.68 (m, 4H), 3.58 (d, J 12.3 Hz, 2H), 2.09 – 2.05 (m, 3H), 2.05 – 2.00 

(m, 3H), 2.00 – 1.93 (m, 9H), 1.93 – 1.86 (m, 6H), 1.51 (d, J 18.4 Hz, 18H).  
13

C-NMR (126 MHz, 
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CDCl3) δ 74.23 ppm.  
19

F-NMR (471 MHz, CDCl3) δ -107.23.  FT-IR (KBr neat) 2928, 1755 C=O, 

1495, 1229, 1060 cm
-1

.  m/z [ES]
+
 M+K 1526.0.  HRMS (NSI) Calcd for C70

13
CH77D8FN9

15
N2O24, 

M+NH4, 1505.6229; Found 1505.6237. 

Synthesis of (2R,3S,4S,5R,6S)-2-(acetoxymethyl)-6-(((2R,3R,4S,5R)-4,5-diacetoxy-2-

(acetoxymethyl)-6-((1-((5R,11S,13R)-8-(4-((4-((R)-2-((tert-butoxycarbonyl)amino)-3-methoxy-

3-oxopropyl)phenoxy)methyl)-1D-1,2,3-triazol-1-yl)-13-(3-((tert-butoxycarbonyl)amino) 

phenyl)-6,12-dideutero-5,11-
13

C-methanodibenzo[b,f][1,5]-
15

N-diazocin-2-yl)-1D-1,2,3-triazol-

4-yl)methoxy)tetrahydro-2H-pyran-3-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate.  204 

 

A 2.5 mL microwave vial was charged with 202 (6mg, 5.09 μmol) and (L)-169(3.40mg, 

10.18μmol) in deuterated chloroform (1 mL).  To this a premixed solution of copper(II) sulfate 

pentadeuterate (0.5mg, 0.0034 mmol) and sodium ascorbate (0.7 mg, 0.0034 mmol) in deuterium 

oxide (1 mL) was added and left stirring vigorously for 72 hours.  The resulting biphasic mixture 

was transferred to a 25 mL separating funnel and extracted with dichloromethane (3 x 5 mL).  The 

organic extracts were washed with brine (5 mL) and dried with magnesium sulfate.  The suspension 

was filtered and the solvent removed under reduced pressure.  The impure mixture was purified by 

flash chromatography on silica gel eluting with 2-4% methanol in dichloromethane to afford an off 

white amorphous solid.  Subsequent physiochemical analysis confirmed this to be the title 

compound 204 (4mg, 2.64μmol, 52%)  
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204 Rf 0.5 (4% methanol in dichloromethane) 
1
H-NMR (500 MHz, CDCl3) δ 7.50 – 7.43 (m, 3H), 

7.40 – 7.34 (m, 2H), 7.32 (dd, J 7.9, 3.6 Hz, 2H), 7.19 – 7.15 (m, 2H), 7.04 – 7.01 (m, 1H), 7.00 – 

6.93 (m, 2H), 6.84 (dd, J 17.8, 8.7 Hz, 2H), 6.38 (s, 1H), 5.30 – 5.25 (m, 1H), 5.19 – 4.98 (m, 4H), 

4.92 – 4.71 (m, 4H), 4.58 (ddd, J 17.5, 7.9, 1.8 Hz, 2H), 4.49 – 4.38 (m, 2H), 4.11 – 3.96 (m, 4H), 

3.82 – 3.69 (m, 4H), 3.62 (t, J 9.7 Hz, 3H), 3.60 – 3.48 (m, 1H), 2.95 (dd, J 15.1, 8.8 Hz, 2H), 2.10 

(d, J 6.4 Hz, 2H), 2.09 – 2.06 (m, 4H), 2.02 (dd, J 5.9, 2.8 Hz, 2H), 2.01 – 1.94 (m, 10H), 1.93 – 

1.86 (m, 4H), 1.44 (s, 9H), 1.37 – 1.29 (m, 9H).  
13

C-NMR (126 MHz, CDCl3) δ 73.21ppm.  
15

N-

NMR (51 MHz, none) δ -333.47, -336.47 (with respect to CH3NO2).  FT-IR (KBr neat) 2927, 1752 

C=O, 1495, 1368, 1231, 1168, 1160 cm
-1

.  m/z [ES]
+
 M+K 1552.4.  HRMS (NSI) Calcd for 

C72
13

CH83D7N9
15

N2O25, M+NH4, 1530.6523; Found 1530.6529 

Synthesis of 1,2-bis(2-azidoethyl)disulfane 207 

 

A  25 mL round-bottomed flask was charged with 2,2'-disulfanediyldiethanaminium chloride 206 

(134 mg, 0.596 mmol) ,  potassium carbonate (494 mg, 3.58 mmol) and copper(II) sulfate 

pentahydrate (1.489 mg, 5.96 µmol) in methanol (10 ml).  To this 1H-imidazole-1-sulfonyl azide 

hydrochloride (250 mg, 1.193 mmol) was added in portions over 5 minutes.  The reaction mixture 

was left to stir for 12 hours under an atmosphere of argon.  The impure reaction mixture was 

transferred to a 25 mL separating funnel and diluted with water (10 mL).  1N aqueous hydrochloric 

acid (10 mL) was added and pH was checked to ensure the aqueous layer was acidic (pH1).  The 

mixture was extracted with ether (2x10mL) and washed with 1N aqueous hydrochloric acid (10 

mL), washed with brine (10 mL) and dried with magnesium sulfate.  The suspension was filtered 

and the solvent was removed under reduced pressure until 1 mL remained. This was filtered 

through a small plug of silica, washed through with diethyl ether (3 mL) and the solvent was 

removed under reduced pressure to afford a yellow liquid.  Subsequent physiochemical analysis 

confirmed this to be the title compound 207 (100 mg, 0.490 mmol, 82 % yield)  

207 Rf 0.8 (diethyl ether)
1
H-NMR (300 MHz, CDCl3) δ 3.59 (t, J 6.7 Hz, 4H), 2.86 (t, J 6.7 Hz, 

4H).  
13

C-NMR (75 MHz, CDCl3) δ 49.81, 37.45 ppm.  ATR-IR  2101 C-N3 cm
-1

. 
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Synthesis of (S,S,R)-(1,1'-(2,2'-disulfanediylbis(ethane-2,1-diyl))bis(1H-1,2,3-triazole-4,1-

diyl))bis(methylene) bis(5-((3aS,4S,6aR)-2-oxohexahydro-1H-thieno[3,4-d]imidazol-4-

yl)pentanoate) (+)-208 

 

A 2.5 mL microwave vial was charged with propargyl (+)-biotin (+)-85 (25 mg, 0.089 mmol), 1,2-

bis(2-azidoethyl)disulfane 207 (9.04 mg, 0.044 mmol), sodium ascorbate (2.63 mg, 0.013 mmol), 

copper(II) sulfate pentahydrate (1.105 mg, 4.43 µmol) and TBTA (4.70 mg, 8.85 µmol) in N-N-

dimethylformamide (2 mL).  The vial was sealed with a Teflon cap and heated via microwave 

irradiation for 1 hour at 70 °C.  The resulting solution was diluted with ethyl acetate (2 mL), water 

(2 mL) and transferred to a 25 mL separating funnel.  The mixture was extracted with ethyl acetate 

(2 x 5 mL) and the combined organic extracts were washed with water (5 x 10mL) and washed with 

brine (5 mL) and dried with magnesium sulfate.  The suspension was filtered and the solvent 

removed under reduced pressure.  The impure product was purified by flash chromatography on 

silica gel eluting with 10% methanol in dichloromethane to afford a white solid.  Subsequent 

physiochemical analysis confirmed this was the title compound (+)-208 (30 mg, 0.039 mmol, 88 % 

yield) 

(+)-208 Rf 0.4 (10% methanol in dichloromethane) 
1
H NMR (400 MHz, DMSO) δ 8.19 (s, 2H), 

6.44 (s, 2H), 6.38 (s, 2H), 5.13 (s, 4H), 4.64 (t, J 6.6 Hz, 4H), 4.38 – 4.22 (m, 2H), 4.12 (d, J 6.0 

Hz, 2H), 3.25 (t, J6.5 Hz, 4H), 3.08 (t, J 9.7 Hz, 2H), 2.81 (dd, J12.6, 5.0 Hz, 2H), 2.31 (t, J7.4 Hz, 

4H), 1.66 – 1.18 (m, 12H).  
13

C NMR (101 MHz, DMSO) δ 180.04, 176.94, 142.62, 125.63, 61.63, 

59.81, 57.65, 56.00, 48.70, 37.55, 28.60, 25.09, 9.39, 9.18.  ATR-IR 1748 C=O, 1679 C=O   m/z 
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[ES]
+
 M+Na 791.1 HRMS (NSI) Calcd for C30H48N11O6S4, M+NH4, 787.2705; Found 787.2710.  

[α]
27

D +39 (c 1.0, CHCl3). 

Synthesis of oct-7-ynyl 5-((3aS,4S,6aR)-2-oxohexahydro-1H-thieno[3,4-d]imidazol-4-yl) 

pentanoate (+)-211 

 

A 25 mL round-bottomed flask was charged with (+)-biotin (+)-64 (100 mg, 0.409 mmol)  and 

potassium carbonate (85 mg, 0.614 mmol) in N-N-dimethylformamide (5 mL).  This was left to stir 

for 30 minutes before addition of 8-bromooct-1-yne (116 mg, 0.614 mmol).  The resulting solution 

was left to stir for 16 hours under an atmosphere of argon.  The resulting solution was diluted with 

ethyl acetate (5 mL), transferred to a 50 mL separating funnel and diluted with water (10 mL).  The 

mixture was extracted with ethyl acetate (2 x 5mL) and the combined organic extracts were washed 

with water (5 x 10mL), brine (10 mL) and dried with magnesium sulfate.  The suspension was 

filtered and the solvent removed under reduced pressure.  The impure material was purified by flash 

chromatography on silica gel eluting with 5% methanol in dichloromethane to afford a waxy solid.  

Subsequent physiochemical analysis confirmed this to be the title compound.  (+)-211 (135 mg, 

0.383 mmol, 94 % yield) 

(+)-211 Rf 0.5 (5% methanol in dichloromethane) 
1
H-NMR (400 MHz, CDCl3) δ 6.06 (s, 1H, NH), 

5.73 (s, 1H, NH), 4.44 (dd, J 7.6, 4.7 Hz, 1H, CH), 4.24 (dd, J 7.5, 4.8 Hz, 1H, CH), 3.99 (t, J 6.7 

Hz, 2H, CH2), 3.15 – 3.01 (m, 1H, CH), 2.84 (dd, J 12.8, 5.0 Hz,1H, CH), 2.68 (d, J 12.7 Hz, 1H, 

CH), 2.26 (t, J 7.5 Hz, 2H, CH2), 2.13 (td, J 7.0, 2.6 Hz, 1H, CH), 1.89 (t, J 2.6 Hz, 1H, CH), 1.74 – 

1.51 (m, 8H, 4CH2), 1.42 – 1.21 (m, 6H, 3CH2).  
13

C-NMR (101 MHz, CDCl3) δ 173.79, 163.92, 

84.49, 68.31, 64.37, 64.24, 61.99, 60.15, 55.51, 40.56, 33.97, 32.59, 28.49, 28.40, 28.28, 25.44, 

24.83, 18.30 ppm.  FT-IR KBr(neat) 3220 C-H, 2119 C-C, 1729 C=O, 1699 C=O cm
-1

. 
 
m/z [ES]

+
 

M+Na 375.1  HRMS (NSI) Calcd for C18H29N2O3S 353.1893, M+H, Found 353.1898.  [α]
26

D +35 

(c 1.0, CHCl3). 
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Synthesis of 6-(1-(2-((2-(4-(6-(5-((3aR,4R,6aS)-2-oxohexahydro-1H-thieno[3,4-d]imidazol-4-

yl)pentanoyloxy)hexyl)-1H-1,2,3-triazol-1-yl)ethyl)disulfanyl)ethyl)-1H-1,2,3-triazol-4-

yl)hexyl 5-((3aS,4S,6aR)-2-oxohexahydro-1H-thieno[3,4-d]imidazol-4-yl)pentanoate (+)-212 

 

A 3 mL microwave vial was charged with oct-7-ynyl 5-((3aS,4S,6aR)-2-oxohexahydro-1H-

thieno[3,4-d]imidazol-4-yl)pentanoate (+)-211 (40 mg, 0.113 mmol), 1,2-bis(2-azidoethyl)disulfane 

207  (11.59 mg, 0.057 mmol), copper (II) sulfate pentahydrate (1.5 mg, 5.67µmol), sodium 

ascorbate (8.99 mg, 0.05 mmol) and TBTA (3 mg, 5.67 µmol)  in N-N-dimethylformamide (2 mL).  

The vial was sealed with a Teflon cap and heated to 70°C via microwave irradiation for 1 hour.  

The resulting solution was transferred to a 50 mL separating funnel and diluted with ethyl acetate (2 

mL) and water (5 mL).  The solution was extracted with ethyl acetate (2 x 5mL) and the combined 

organic extracts were washed with water (5 x 10mL), brine (10 mL) and  dried with magnesium 

sulfate.  The suspension was filtered and the solvent removed under reduced pressure.  The 

resulting impure product was purified by flash chromatography on silica gel eluting with 10% 

methanol in dichloromethane to afford an off white solid.  Subsequent physiochemical analysis 

confirmed this to be the title compound (+)-212 (40 mg, 0.044 mmol, 78 % yield) 

(+)-212 Rf 0.4 (10% methanol in dichloromethane). 
1
H-NMR (400 MHz, CDCl3, 10%CD3OD) δ 

7.52 (s, 2H, ArH), 4.59 (s, 4H, 2CH2), 4.50 – 4.35 (m, 2H, 2CH), 4.34 – 4.17 (m, 2H, 2CH), 4.00 (t, 

J 6.6 Hz, 4H, 2CH2), 3.13 (t, J 5.4 Hz, 6H, 2CH2, 2CH), 2.68 (d, J 12.4 Hz, 6H, 2CH2, 2CH), 2.27 

(t, J 7.3 Hz, 4H, 2CH2), 1.75 – 1.46 (m, 18H, 9CH2), 1.38 (m, 12H, 6CH2).  
13

C-NMR (101 MHz, 
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CDCl3, 10%CD3OD) δ 173.97, 163.92, 153.72, 124.24, 64.45, 61.93, 60.10, 55.42, 40.36, 37.58, 

33.94, 29.05, 28.66, 28.41, 28.22, 25.59, 25.36, 24.75 ppm. AT-IR 1750 C=O, 1683 C=O   m/z 

[ESI]
+
 M+Na 931.2 HRMS (NSI) Calcd for C40H68N11O6S4, M+NH4, 926.4237, found 926.4232. 

[α]
26

D +37 (c 1.0, CHCl3). 

Synthesis of 11-(prop-2-ynyloxy)undecyl 5-((3aS,4S,6aR)-2-oxohexahydro-1H-thieno[3,4-

d]imidazol-4-yl)pentanoate (+)-215 

 

A 25 mL round-bottomed flask was charged with (+)-biotin (+)-65(100 mg, 0.409 mmol) and 

potassium carbonate (85 mg, 0.614 mmol) in N-N-dimethylformamide (5 mL).  This was stirred for 

30 minutes before addition of 1-bromo-11-(prop-2-ynyloxy)undecane 214 (154 mg, 0.532 mmol).  

The solution was left to stir for 16 hours under an atmosphere of argon and then diluted with ethyl 

acetate (5 mL), water (5 mL) and transferred to a 50 mL separating funnel.  The mixture was 

extracted with ethyl acetate (2 x 5mL) and the combined organic extracts were washed with water 

(5 x10mL), brine (5mL) and dried with magnesium sulfate.  The suspension was filtered and the 

solvent removed under reduced pressure.  The impure product was purified by flash 

chromatography on silica gel eluting with 5-7% methanol in dichloromethane to afford an off white 

solid.  Subsequent physiochemical analysis confirmed this was the title product. (+)-215 (148 mg, 

0.327 mmol, 80 % yield) 

(+)-215 Rf  0.5 (7% methanol in dichloromethane) 
1
H-NMR (400 MHz, CDCl3) δ 5.57 (d, br, 1H, 

NH), 5.20 (s, br ,1H, NH), 4.62 – 4.45 (m, 1H, CH), 4.34 (dd, J 7.5, 4.6 Hz, 1H, CH), 4.15 (d, J2.3 

Hz, 2H, CH2), 4.07 (t, J 6.7 Hz, 2H, CH2), 3.53 (t, J 6.6 Hz, 2H, CH2), 3.19 (s, 1H, CH), 2.95 (d, J 

12.6 Hz, 1H, CH), 2.76 (d, J 12.8 Hz, 1H, CH), 2.44 (t, J 2.3 Hz, 1H, CH), 2.35 (t, J 7.4 Hz, 2H, 

CH2), 1.82 – 1.56 (m, 8H, 4CH2), 1.54 – 1.42 (m, 2H, CH2), 1.31 (d, J 11.4 Hz, 14H, 7CH2).  
13

C-

NMR (101 MHz, CDCl3) δ 173.74, 163.30, 80.08, 74.04, 70.32, 64.59, 61.94, 60.13, 58.01, 55.33, 
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40.55, 33.93, 29.50, 29.42, 29.25, 28.64, 28.34, 28.27, 26.09, 25.93, 24.82 ppm. ATR-IR 3247 C-

H, 1727 C=O, 1706 C=O cm
-1

m/z [ES]
+
 M+Na475.2, HRMS (NSI) Calcd for C24H41N2O4S, M+H, 

453.2782; Found 453.2782.  [α]
25

D +24 (c 1.0, CHCl3) 

Synthesis of (S,S,R)-(((1,1'-(disulfanediylbis(ethane-2,1-diyl))bis(1H-1,2,3-triazole-4,1-

diyl))bis(methylene))bis(oxy))bis(undecane-11,1-diyl) bis(5-((3aS,4S,6aR)-2-oxohexahydro-1H-

thieno[3,4-d]imidazol-4-yl)pentanoate) (+)-216 

 

A 3 mL microwave vial was charged with (+)-215 (40 mg, 0.088 mmol), 1,2-bis(2-

azidoethyl)disulfane 207 (9 mg, 0.044 mmol), copper (II) sulfate pentahydrate(1 mg, 4.42 µmol), 

sodium ascorbate(7 mg, 0.035 mmol) and TBTA (7 mg, 0.013) in N-N-dimethylformamide (2 mL).  

The vial was sealed with a Teflon cap and heated to 70 °C via microwave irradiation for 1 hour.  

The resulting solution was transferred to a 50 mL separating funnel and diluted with ethyl acetate (2 

mL) and water (5  mL).  The solution was extracted with ethyl acetate (2 x 5mL) and the combined 

organic extracts were washed with water (5 x 10mL), brine (10 mL) and dried with magnesium 

sulfate.  The suspension was filtered and the solvent removed under reduced pressure.  The 

resulting impure product was purified by flash chromatography on silica gel eluting with 10% 

methanol in dichloromethane to afford an off white solid.  Subsequent physiochemical analysis 

confirmed this to be the title compound (+)-216 (39 mg, 0.035 mmol, 80 % yield) 
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(+)-216 Rf 0.3 (10% methanol in dichloromethane)
1
H-NMR (400 MHz, CDCl3) δ 7.60 (s, 2H, 

2ArH), 5.84 (s, 2H, 2NH), 5.50 (s, 2H, 2NH), 4.59 (t, J 6.6 Hz, 4H, 2CH2), 4.55 (s, 4H, 2CH2), 4.49 

– 4.39 (m, 2H, 2CH), 4.30 – 4.18 (m, 2H, 2CH), 3.98 (t, J 6.7 Hz, 4H, 2CH2), 3.45 (t, J 6.7 Hz, 4H, 

2CH2), 3.12 (t, J 6.7 Hz, 6H, 2CH, 2CH2), 2.84 (dd, J 12.6, 4.4 Hz, 2H, 2CH), 2.67 (d, J 12.7 Hz, 

2H, 2CH), 2.26 (t, J 7.5 Hz, 4H, 2CH2), 1.78 – 1.44 (m, 16H, 8CH2), 1.21 (s, 32H, 16CH2).   
13

C-

NMR (101 MHz, CDCl3) δ 173.80, 163.70, 123.24, 70.96, 64.55, 64.25, 61.96, 60.15, 55.47, 48.69, 

40.57, 37.71, 33.98, 29.64, 29.51, 29.46, 29.43, 29.20, 28.62, 28.38, 28.27, 26.10, 25.91, 24.85 

ppm.  AT-IR 1741C=O, 1648C=O; m/z [ES]
+
 M+H 1109.6; HRMS (NSI) Calcd for C52H92N11O8S4, 

M+NH4, 1126.6012; Found 1126.6013; [α]
24

D +24 (c 1.0, CHCl3) 

 

Synthesis of 3,6,9,12-tetraoxapentadec-14-ynyl 5-((3aS,4S,6aR)-2-oxohexahydro-1H-thieno 

[3,4-d]imidazol-4-yl)pentanoate (+)-221 

 

A flame-dried 25mL round-bottomed flask was charged with (+)-biotin (+)-65 (250 mg, 1.023 

mmol) and p-toluenesulfonic acid monohydrate (19.46 mg, 0.102 mmol) in toluene (10 mL).  To 

this 220 (475 mg, 2.047 mmol) was added and the solution was refluxed, with continuous removal 

of water via Dean-Stark trap, for 12 hours.  The resulting reaction mixture was left to cool and the 

solvent removed under reduced pressure.  The resulting residue was purified by flash 

chromatography on silica gel eluting with 5-10% methanol in dichloromethane affording an off 

white waxy solid.  Subsequent physiochemical analysis confirmed this was the title product.   (+)-

221 (398 mg, 0.868 mmol, 35 % yield) 

Rf 0.4 (10% methanol in dichloromethane) 
1
H-NMR (400 MHz, CDCl3) δ 6.11 (s, 1H, NH), 5.51 

(s, 1H, NH), 4.48 (dd, J 7.0, 5.0 Hz, 1H, CH), 4.35 – 4.24 (m, 1H, CH), 4.18 (t, J 3.7 Hz, 4H, 

2CH2), 3.65 (m, 12H, 6CH2), 3.21 – 3.04 (m, 1H, CH), 2.88 (dd, J 12.8, 4.9 Hz, 1H, CH), 2.72 (d, J 

12.8 Hz, 1H, CH), 2.42 (t, J 2.3 Hz, 1H, CH), 2.35 (t, J 7.6 Hz, 2H, CH2), 1.82 – 1.55 (m, 4H, 

2CH2), 1.43 (m, 2H, CH2).  
13

C-NMR (101 MHz, CDCl3) δ 173.68, 163.72, 79.66, 74.57, 70.59, 
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70.58, 70.56, 70.50, 70.39, 69.14, 69.11, 65.83, 63.42, 61.94, 60.11, 58.39, 55.56, 40.53, 33.77, 

28.32, 28.22, 24.74, 15.26 ppm. ATR-IR 2112 C-C, 1738 C=O, 1648C=O, 1010 cm
-1

.  m/z [ES]
+
 

M+H 458.9 HRMS (NSI) Calcd for C21H35N2O7S, M+H, 459.2160; found 459.2160.  [α]
26

D +28 (c 

1.0, CHCl3). 

 

Synthesis of (S,S,R)-1,1'-(1,1'-(disulfanediylbis(ethane-2,1-diyl))bis(1H-1,2,3-triazole-4,1-

diyl))bis(2,5,8,11-tetraoxatridecane-13,1-diyl) bis(5-((3aS,4S,6aR)-2-oxohexahydro-1H-

thieno[3,4-d]imidazol-4-yl)pentanoate) .   (+)-222 

 

A 3 mL microwave vial was charged with (+)-221 (30 mg, 0.065 mmol), 1,2-bis(2-

azidoethyl)disulfane 207 (6.68 mg, 0.033 mmol), copper (II) sulfate pentahydrate (1 mg, 3.27 

µmol), sodium ascorbate (5 mg, 0.026 mmol) and TBTA (5.21 mg, 9.81µmol) in N-N-

dimethylformamide (2 mL).  The vial was sealed with a Teflon cap and heated to 70 °C via 

microwave irradiation for 1 hour.  The resulting solution was transferred to a 50 mL separating 

funnel and diluted with ethyl acetate (2 mL) and water (5 mL).  The solution was extracted with 

ethyl acetate (2 x 5mL) and the combined organic extracts were washed with water (5 x 10mL), 

brine (10 mL) and dried with magnesium sulfate.  The suspension was filtered and the solvent 

removed under reduced pressure.  The resulting impure product was purified by flash 

chromatography on silica gel eluting with 10% methanol in dichloromethane to afford an off white 

solid.  Subsequent physiochemical analysis confirmed this to be the title compound .   (+)-222 (30 

mg, 0.027 mmol, 74 % yield) 

1
H-NMR (400 MHz, CDCl3) δ 7.68 (s, 2H, ArH), 6.08 (s, 2H, 2NH), 5.39 (s, 2H, 2NH), 4.68 – 4.52 

(m, 8H, 4CH2), 4.47 – 4.37 (m, 2H, 2CH), 4.22 (dt, J15.3, 7.5 Hz, 2H, 2CH), 4.18 – 4.06 (m, 4H, 
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2CH2), 3.69 – 3.49 (m, 24H, 12CH2), 3.13 (t, J6.7 Hz, 4H, 2CH2), 3.07 (dd, J11.8, 7.3 Hz, 2H, 

2CH), 2.83 (dd, J12.8, 4.9 Hz, 2H, 2CH), 2.67 (d, J12.7 Hz, 2H, 2CH), 2.29 (t, J7.5 Hz, 4H, 2CH2), 

1.74 – 1.49 (m, 8H, 4CH2), 1.46 – 1.30 (m, 4H, 2CH2).  
13

C-NMR (101 MHz, CDCl3) δ 173.67, 

163.67, 123.55, 70.61, 70.56, 70.55, 70.54, 70.53, 69.76, 69.14, 64.62, 63.42, 61.93, 60.11, 55.61, 

48.72, 40.57, 37.72, 33.67, 28.31, 28.22, 24.77 ppm.  ATR-IR 1740 C=O, 1642C=O, 1012 cm
-1

.  

m/z [ES]
+
 M+Na 1143.3.  HRMS (NSI) Calcd for C46H80N11O14S4, M+NH4, 1138.4773; Found 

1138.4775.  [α]
25

D +27 (c 1.0, CHCl3) 

 

Synthesis of 2,8-bis-iodo-5,6,11,12-tetrahydrodibenzo[b,f][1,5]diazocine 224 

 

A 50 mL round bottomed flask was charged with 2,8-bis-iodo-6H,12H-5,11-

methandibenzo[b,f][1,5]diazocine (1.4 g, 2.95 mmol) in dichloromethane (10 mL).  To this 

trifluoroacetic anhydride (1.232 ml, 8.86 mmol) was added and left to stir for 12 hours under an 

atmosphere of argon gas.  The solution was diluted with water (10 mL) and quenched with 

saturated sodium bicarbonate until fizzing stopped.  The reaction mixture was transferred to a 50 

mL separating funnel and the layers were separated and extracted with dichloromethane (2 x 10mL) 

the combined organic extracts were washed with brine (10 mL) and dried with magnesium sulfate.  

The suspension was filtered and the solvent was removed under reduced pressure and the resulting 

solid redissolved in ethanol (10 mL).  Sodium hydroxide pellets (100mg) were added and left to stir 

for 4 hours under an atmosphere of argon gas.  The reaction mixture was then diluted with water, 

transferred to a 50 mL separating funnel and extracted with dichloromethane (2 x 10mL). The 

organic extracts were washed with brine (10 mL) and dried with magnesium sulfate.  The solution 

was filtered and the solvent was removed under reduced pressure.  The resulting impure solid was 

purified by flash chromatography on silica gel eluting with dichloromethane to afford a pale yellow 

solid.  Subsequent physiochemical analysis confirmed this was the title compound 2,8-bis-iodo-

5,6,11,12-tetrahydrodibenzo[b,f][1,5]diazocine 224 (978 mg, 2.117 mmol, 71.7 % yield) 

1
H-NMR (300 MHz, CDCl3) δ 7.30 – 7.22 (m, 4H), 6.36 (d, J 8.0 Hz, 2H), 4.41 (s, 4H).  

13
C-NMR 

(75 MHz, CDCl3) δ 147.38, 139.85, 136.99, 127.41, 119.98, 79.75, 49.29 ppm.  m/z [ES]
+
 M+H, 

462.8  HRMS (NSI) Calcd for C14H16I2N3, M+NH4, 479.9434; Found 479.9434 
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Synthesis of benzyl 3-(2,8-bis-iodo-6,12-dihydro-5,11-methanodibenzo[b,f][1,5]diazocin-13-

yl)propanoate (+/-)-228 

A flame-dried 25 mL round-bottomed flask was charged with 2,8-bis-iodo-5,6,11,12-

tetrahydrodibenzo[b,f][1,5]diazocine  224 (313 mg, 0.676 mmol) and benzyl 4-oxobutanoate 227 

(130 mg, 0.676 mmol) in toluene (10 mL).  The suspension was heated to 130 °C and refluxed for 

16 hours with constant removal of water by Dean-Stark trap.  The resulting solution was evaporated 

to dryness under vacuum and purified via flash chromatography silica gel eluting with 20% diethyl 

ether in petroleum ether affording a waxy solid.  Subsequent 
1
H-NMR physiochemical analysis 

confirmed this to be the title compound (+/-)-228 (374 mg, 0.588 mmol, 87 % yield) 

Rf
 
0.7 (1:5, diethyl ether : hexane) 

1
H-NMR (500 MHz, CDCl3) δ 7.48 – 7.41 (m, 2H, ArH), 7.37 – 

7.28 (m, 5H, ArH), 7.21 (dd, J 8.4, 1.6 Hz, 2H, ArH), 6.82 (dd, J 12.4, 8.5 Hz, 2H, ArH), 5.23 – 

4.88 (m, 2H, CH2), 4.55 (d, J 16.7 Hz, 1H, CH), 4.46 (d, J 17.4 Hz, 1H, CH), 4.07 (d, J 16.7 Hz, 

1H, CH), 4.05 (dd, J6.5, 8.1 Hz, 1H, CH), 3.95 (d, J 17.4 Hz, 1H, CH), 2.57 (t, J 7.3 Hz, 2H, CH2), 

2.05 – 1.86 (m, 2H, CH2).  
13

C NMR (75 MHz, CDCl3) δ 172.91, 149.80, 145.17, 136.77, 136.34, 

135.97, 135.74, 135.42, 130.56, 129.54, 128.62, 128.32, 128.28, 127.22, 87.57, 72.10, 66.27, 59.87, 

51.50, 30.39, 25.92 ppm.  ATR-IR 1730 C=O, 1471, 1166, 907, 826, 729 cm
-1

.  m/z [ES]
+
 M+H 

637.0  HRMS (NSI) Calcd for C25H23I2N2O2, M+H, 636.9843; Found 636.9840. 
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Synthesis of benzyl 3-(2,8-bis-azido-6,12-dihydro-5,11-methanodibenzo[b,f][1,5]diazocin-13-

yl)propanoate (+/-)-229 

 

A 5 mL microwave vial was charged with (+/-)-228 (250 mg, 0.393 mmol), sodium azide (102 mg, 

1.572 mmol), copper(I) iodide (14.97 mg, 0.079 mmol) and sodium ascorbate (7.78 mg, 0.039 

mmol) in dimethylsulfoxide / water mixture (3 mL).  The vial was sealed with a Teflon cap and 

N
1
,N

2
-dimethylethane-1,2-diamine (10.39 mg, 0.118 mmol) was added via syringe.  The suspension 

was heated to 100 °C for 1 hour via microwave irradiation.  The reaction mixture was diluted with 

dichloromethane and transferred to a 50 mL separating funnel and washed with water (3 x 10mL).  

The combined organic extracts were washed with brine (5 mL) and dried with magnesium sulfate.  

The suspension was filtered and the solvent removed under reduced pressure.  The impure mixture 

was columned by flash chromatography on silica gel eluting with dichloromethane afforded a thick 

yellow oil.  Subsequent physiochemical analysis confirmed this was the title compound. (+/-)-229 

(174 mg, 0.373 mmol, 95 % yield) 

Rf 0.6 (dichloromethane)
 1

H-NMR (300 MHz, CDCl3) δ 7.33 (s, 5H, ArH), 7.07 (t, J 8.6 Hz, 2H, 

ArH), 6.83 (dt, J 8.6, 2.2 Hz, 2H, ArH), 6.56 (dd, J 4.5, 2.6 Hz, 2H,ArH), 5.11 (s, 2H, CH2), 4.59 

(d, J 16.7 Hz, 1H, CH), 4.50 (d, J 17.4 Hz, 1H, CH), 4.09 (m, 2H), 3.98 (d, J 17.5 Hz, 1H, CH), 

2.60 (t, J 7.4 Hz, 2H, CH2), 2.12 – 1.81 (m, 2H, CH2).  
13

C-NMR (75 MHz, CDCl3) δ 173.00, 

147.10, 142.40, 135.99, 135.65, 135.48, 129.53, 128.58, 128.49, 128.27, 128.22, 127.64, 126.59, 

118.77, 118.36, 116.97, 116.72, 72.50, 66.22, 60.39, 52.09, 30.44, 26.03.  ATR-IR (neat) 2105C-

N3, 1731 C=O, 1484, 1274, 1165 cm
-1

.  m/z [ES]
+
 M+H 467.6.  HRMS (NSI) Calcd for 

C25H23N8O2, M+H, 467.1945; Found 467.1946 
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Synthesis of (S,S,R)-(1,1'-(13-(3-(benzyloxy)-3-oxopropyl)-6,12-dihydro-5,11-methanodibenzo 

[b,f][1,5]diazocine-2,8-diyl)bis(1H-1,2,3-triazole-4,1-diyl))bis(methylene) bis(5-((3aS,4S,6aR)-

2-oxohexahydro-1H-thieno[3,4-d]imidazol-4-yl)pentanoate) 230 

 

A 2.5 mL microwave vial was charged with (+/-)-229 (45 mg, 0.096 mmol) ,(+/-)-85 (57.2 mg, 

0.203 mmol) , copper(II) sulfate pentahydrate (0.3 eq), sodium-L-ascorbate (0.8 eq) and TBTA (0.3 

eq) in N-N-dimethylformamide.  The reaction mixture was heated to 70°C, in a sealed vial, by 

microwave radiation for 1 hour.  The reaction mixture was then diluted with ethyl acetate (5 mL) 

and transferred to a 25mL separating funnel.  The solution was extracted with ethyl acetate 

(2x5mL) and  washed with water (5 x 10mL), dried with brine (5 mL) and magnesium sulfate.  The 

extract was filtered and solvent removed under reduced pressure.  The reaction mixture was 

purified by column chromatography on silica eluting with 5-10% methanol in dichloromethane 

affording a white solid.  Subsequent physiochemical analysis confirmed this to be the title 

compound 230 (85 mg, 0.082 mmol, 85 % yield) 

1
H NMR (400 MHz, CDCl3) δ 7.99 (dd, J25.5, 5.1 Hz, 2H), 7.45 (d, J6.4 Hz, 2H), 7.26 (s, 5H), 

7.18 – 7.03 (m, 2H), 6.25 (d, J18.4 Hz, 2H), 5.58 (d, J6.4 Hz, 2H), 5.30 – 5.11 (m, 4H), 5.12 – 4.95 

(m, 2H), 4.64 (d, J17.1 Hz, 2H), 4.56 (d, J16.9 Hz, 2H),4.31 – 3.89 (m, 6H), 2.94 (dd, J14.7, 8.6 

Hz, 4H), 2.60 (dt, J14.5, 9.5 Hz, 4H), 2.46 (dd, J17.6, 13.0 Hz, 2H), 2.25 (t, J6.8 Hz, 4H), 2.13 – 

1.71 (m, 4H), 1.48 (m,  8H), 1.27 (m, 4H).  ATR-IR (neat) 1745 C=O, 1705 C=O, 1695 C=O cm
-1

; 

m/z [ES]
+
 M+H 1031.6.  HRMS (NSI) Calcd for C51H62N13O8S2, M+NH4, 1048.4284; Found 

1048.4284.  [α]
24

D +18 (c 1.0, CHCl3) 
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Synthesis of  tert-butyl 3-(2,8-bis-iodo-6,12-dihydro-5,11-methanodibenzo[b,f][1,5]diazocin-

13-yl)propanoate (+/-)-237 

A flame-dried 25 mL round-bottomed flask was charged with 2,8-bis-iodo-5,6,11,12-

tetrahydrodibenzo[b,f][1,5]diazocine  224 (117 mg, 0.253 mmol) and tert-butyl 4-oxobutanoate 235 

(40 mg, 0.253 mmol) in toluene (10 mL).  The suspension was heated to 130 °C and refluxed for 16 

hours with constant removal of the water by Dean-Stark trap.  The resulting solution was 

evaporated to dryness under vacuum and purified via flash chromatography on silica gel eluting 

with 20% diethyl ether in petroleum ether affording a waxy solid.  Subsequent physiochemical 

analysis confirmed this to be the title compound (+/-)-236 (145 mg, 0.241 mmol, 95 % yield) 

Rf
  
0.8 (1:5, diethyl ether : hexane) 

1
H-NMR (300 MHz, CDCl3) δ 7.42 (dt, J 8.5, 1.9 Hz, 2H, ArH), 

7.18 (dd, J 5.7, 1.8 Hz, 2H, ArH), 6.84 (dd, J 8.5, 2.6 Hz, 2H, ArH), 4.58 (d, J 16.7 Hz, 1H, CH), 

4.47 (d, J 17.4 Hz, 1H, CH), 4.09 (d, J 16.9 Hz, 1H, CH), 4.05 – 3.99 (m, 1H, CH), 3.94 (d, J 17.5 

Hz, 1H, CH), 2.43 (t, J 7.5 Hz, 2H, CH2), 2.04 – 1.75 (m, 2H, CH2), 1.42 (s, 9H, (CH3)3).  
13

C-

NMR (75 MHz, CDCl3) δ 172.45, 149.89, 145.26, 136.70, 136.30, 135.71, 135.40, 130.58, 129.65, 

128.28, 127.26, 87.72, 87.57, 80.35, 72.19, 59.94, 51.51, 31.50, 28.06, 26.04 ppm.  ATR-IR 1748 

C=O cm
-1

.  m/z [ES]
+
 M+H 603.0.  HRMS (NSI) Calcd for C22H25I2N2O2, M+H, 603.0000; Found 

602.9996 

 

 

 

 

 

 



216 

 

Synthesis of tert-butyl 3-(2,8-bis-azido-6,12-dihydro-5,11-methanodibenzo[b,f][1,5]diazocin-

13-yl)propanoate (+/-)-237 

 

A 5 mL microwave vial was charged with (+/-)-236 (235 mg, 0.390 mmol), sodium azide (101 mg, 

1.561 mmol), copper(I) iodide (7.43 mg, 0.039 mmol) and sodium ascorbate (7.73 mg, 0.039 

mmol) in a dimethylsulfoxide / water mixture (5:1, 3 mL).  The vial was sealed with a Teflon cap 

and N
1
,N

2
-dimethylethane-1,2-diamine (5.16 mg, 0.059 mmol) was added via syringe.  The 

suspension was heated to 100 °C for 1 hour via microwave irradiation.  The reaction mixture was 

diluted with dichloromethane and transferred to a 50 mL separating funnel and washed with water 

(3 x10mL).  The combined organic extracts were washed with brine (5 mL) and dried with 

magnesium sulfate.  The suspension was filtered and the solvent removed under reduced pressure.  

The impure mixture was purified via flash chromatography on silica gel eluting with 20% diethyl 

ether in petroleum ether affording a yellow oil.  Subsequent physiochemical analysis confirmed this 

was the title compound. (+/-)-237 (136 mg, 0.314 mmol, 81 % yield) 

1
H-NMR (300 MHz, CDCl3) δ 7.08 (dd, J 8.6, 0.7 Hz, 2H), 6.82 (dt, J 8.6, 2.5 Hz, 2H), 6.55 (dd, J 

5.3, 2.5 Hz, 2H), 4.62 (d, J 16.7 Hz, 1H), 4.51 (d, J 17.4 Hz, 1H), 4.09 (dd, J 20.9, 11.9 Hz, 2H), 

3.97 (d, J 17.4 Hz, 1H), 2.45 (t, J 7.5 Hz, 2H), 2.08 – 1.75 (m, 2H), 1.43 (s, 9H).  
13

C-NMR (75 

MHz, CDCl3) δ 172.56, 147.20, 142.51, 135.56, 135.39, 129.54, 128.62, 127.62, 126.59, 118.72, 

118.34, 116.96, 116.73, 80.31, 72.63, 60.46, 52.09, 31.57, 27.99, 26.18 ppm.  ATR-IR 2104 C-

N3,1749 C=O cm
-1

. m/z [ES]
+
 M+1 433.1  HRMS (NSI) Calcd for C22H25N8O2, M+H, 433.2095; 

Found 433.2096 
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Synthesis of (S,S,R)-(1,1'-(13-(3-(tert-butoxy)-3-oxopropyl)-6,12-dihydro-5,11-

methanodibenzo[b,f][1,5]diazocine-2,8-diyl)bis(1H-1,2,3-triazole-4,1-diyl))bis(methylene) 

bis(5-((3aS,4S,6aR)-2-oxohexahydro-1H-thieno[3,4-d]imidazol-4-yl)pentanoate) 238 

 A 5 mL microwave vial was charged with (+/-)-237 (53 mg, 0.123 mmol), (+)-85 (73 mg, 0.257 

mmol) , copper(II) sulfate pentahydrate (3 mg, 0.012 mmol), sodium-L-ascorbate (19 mg, 0.098 

mmol) and TBTA (13 mg, 0.025 mmol) in N-N-dimethylformamide (2 mL).  The reaction mixture 

was heated to 70°C, in a sealed vial, by microwave radiation for 1 hour.  The reaction mixture was 

then diluted with ethyl acetate (5 mL) and transferred to a 25 mL separating funnel.  The solution 

was extracted with ethyl acetate (2 x 5mL) and washed with water (5 x 10mL), brine (5 mL) and 

dried with magnesium sulfate.  The suspension was filtered and solvent removed under reduced 

pressure.  The reaction mixture was purified by flash chromatography on silica gel eluting with 5-

10% methanol in dichloromethane affording a white solid.  Subsequent physiochemical analysis 

confirmed this was the title product 238 (112 mg, 0.112 mmol, 92 % yield) 

Rf 0.5 (10% methanol in dichloromethane) 
1
H-NMR (300 MHz, CDCl3) δ 8.01 (s, 2H, ArH), 7.60 – 

7.44 (m, 2H, ArH), 7.38 – 7.28 (m, 2H, ArH), 6.33 (d, J 8.9 Hz, 2H, NH), 5.70 (s, 2H, NH), 5.27 – 

5.14 (m, 4H, 2CH2), 4.74 (d, J 16.8 Hz, 2H, 2CH), 4.62 (d, J17.8 Hz, 2H), 4.38 – 4.02 (m, 5H, 

1CH, 2CH2), 3.08 – 2.90 (m, 2H, 2CH), 2.80 – 2.59 (m, 2H, 2CH), 2.59 – 2.40 (m, 4H, 2CH2), 2.30 

(t, J 7.0 Hz, 4H, 2CH2), 1.94 (qd, J 13.9, 6.7 Hz, 2H, 2CH2), 1.58 (d, J 6.8 Hz, 8H, 4CH2), 1.41 (s, 

9H, 3(CH3))  
13

C-NMR (75 MHz, CDCl3) δ 173.66, 172.51, 163.99, 150.61, 146.13, 143.58, 

132.82, 132.67, 129.52, 128.61, 127.49, 122.18, 120.23, 119.86, 119.22, 118.89, 80.53, 72.52, 

61.74, 60.56, 59.98, 57.30, 55.44, 50.57, 40.32, 33.61, 31.40, 28.06, 27.99, 26.09, 24.60 ppm.  
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ATR-IR 1744 (br) C=O, 1697 C=O cm
-1

 m/z [ES]
+
 M+Na 1019.3,  HRMS (NSI) Calcd for 

C48H64N13O8S2, M+NH4, 1014.4444; Found 1014.4446.  [α]
25

D +19 (c 1.0, CHCl3) 

 

Synthesis of (S,S,R)-(1,1'-(13-(3-oxo-3-(prop-2-yn-1-yloxy)propyl)-6,12-dihydro-5,11-

methanodibenzo[b,f][1,5]diazocine-2,8-diyl)bis(1H-1,2,3-triazole-4,1-diyl))bis(methylene) 

bis(5-((3aS,4S,6aR)-2-oxohexahydro-1H-thieno[3,4-d]imidazol-4-yl)pentanoate) 240 

 

A 2.5 mL microwave vial was charged with 238 (94 mg, 0.094 mmol) in dichloromethane (2 mL).  

To this trifluoroacetic acid (500 µl, 6.49 mmol) was added, the vial was sealed and left to stir for 12 

hours.  The solvent was removed under reduced pressure and the residue was dissolved in a 

minimum amount of dichloromethane (500µL) followed by addition of diethyl ether (3 mL).  The 

precipitate was filtered off and used without further purification. 239 (85 mg, 0.090 mmol, 96 % 

yield) 

A 25 ml round-bottomed flask was charged with 239 (25 mg, 0.027 mmol) and potassium 

carbonate (7.34 mg, 0.053 mmol) in N-N-dimethylformamide (2 mL) and left to stir for 30 minutes.  

To this propargyl bromide (4.29 µl, 0.040 mmol) was added and the solution continued to be stirred 

for 16 hours.  The resulting mixture was diluted with water (5 mL) and ethyl acetate (5 mL) then 

transferred to a 50 mL separating funnel.  This was extracted with ethyl acetate (2 x 5mL) and the 

combined organic extracts were washed with water (5 x 10mL), brine and dried with magnesium 
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sulfate.  The suspension was filtered and the solvent removed under reduced pressure.  The impure 

product was purified by flash chromatography on silica eluting with 5-10% methanol in 

dichloromethane to afford and off white solid.  Subsequent physiochemical analysis confirmed this 

to be the title compound.  240 (23 mg, 0.023 mmol, 88 % yield) 

 MP 96-98°C (diethyl ether) (Et2O), 
1
H-NMR (400 MHz, CDCl3) δ 8.02 (s, 1H, ArH), 7.95 (s, 1H, 

ArH), 7.47 (d, J 8.8 Hz, 2H, ArH), 7.30 (dd, J 14.1, 6.1 Hz, 2H, ArH), 7.20 (d, J 13.0 Hz, 2H), 6.18 

(d, J 19.5 Hz, 2H, 2NH), 5.41 (s, 2H, 2NH), 5.26 – 5.12 (m, 4H, 2CH2), 4.71 (d, J 16.9 Hz, 1H, 

CH), 4.63 (d, J 2.6 Hz, 2H, CH2), 4.57 (d, J 18.0 Hz, 1H, CH), 4.32 – 3.96 (m, 7H, 3CH,2CH2), 

3.01 – 2.82 (m, 2H, 2CH), 2.70 – 2.52 (m, 4H, 2CH2), 2.51 – 2.37 (m, 3H, 3CH), 2.26 (t, J 6.8 Hz, 

4H, 2CH2), 2.12 – 1.73 (m, 2H, CH2), 1.65 – 1.42 (m, 8H, 4CH2), 1.32 – 1.13 (m, 4H, 2CH2).  
13

C-

NMR (101 MHz, CDCl3/10%CD3OD) δ 173.82, 172.55, 164.15, 150.50, 146.05, 143.49, 132.99, 

132.82, 129.59, 128.51, 127.67, 126.63, 122.44, 120.53, 120.09, 119.42, 119.22, 75.28, 72.51, 

61.98, 61.95, 60.64, 60.16, 57.40, 55.59, 52.27, 40.45, 33.81, 30.29, 28.43, 28.20, 26.04, 24.70 

ppm. ATR-IR 1749 C=O, 1658 C=O cm
-1

, m/z [ES]
+ 

M+Na 1001.4.  HRMS (NSI) Calcd for 

C47H58N13O8S2, M+NH4, 996.3975; Found 996.3971.  [α]
25

D +13.4 (c 1.0, CHCl3/10% MeOH) 

Synthesis of (S,S,R)-(1,1'-(13-(3-(tert-butoxy)-3-oxopropyl)-6,12-dihydro-5,11-methano-

dibenzo[b,f][1,5]diazocine-2,8-diyl)bis(1H-1,2,3-triazole-4,1-diyl))bis(hexane-6,1-diyl) bis(5-

((3aS,4S,6aR)-2-oxohexahydro-1H-thieno[3,4-d]imidazol-4-yl)pentanoate) 241 
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A 5 mL microwave vial was charged with (+/-)-237(61 mg, 0.142 mmol), (+)-211 (100 mg, 0.203 

mmol), copper(II) sulfate pentahydrate (4 mg, 0.014 mmol), sodium-L-ascorbate (22.48 mg, 0.113 

mmol ) and TBTA (15 mg,0.028 mmol) in N-N-dimethylformamide (3 mL).  The reaction mixture 

was heated to 70°C, in a sealed vial, by microwave radiation for 1 hour.  The reaction mixture was 

then diluted with ethyl acetate (5 mL) and transferred to a 25 mL separating funnel.  The solution 

was extracted with ethyl acetate (2 x 5mL), washed with water (5 x 10mL), brine (5 mL) and dried 

with magnesium sulfate.  The suspension was filtered and solvent removed under reduced pressure.  

The reaction mixture was purified by flash chromatography on silica gel eluting with 5-10% 

methanol in dichloromethane affording a white solid.  Subsequent physiochemical analysis 

confirmed this was the title compound 241 (143 mg, 0.126 mmol, 89 % yield) 

1
H-NMR (400 MHz, CDCl3) δ 7.62 (s, 2H, ArH), 7.47 (d, J 8.1 Hz, 2H, ArH), 7.32 (d, J 11.1 Hz, 

2H, ArH), 7.24 (d, J 8.7 Hz, 2H, ArH), 5.88 (s, 2H, 2NH), 5.49 (s, 2H, 2NH), 4.76 (d, J 16.8 Hz, 

1H, CH), 4.64 (d, J 17.5 Hz, 1H, CH), 4.52 – 4.38 (m, 2H, 2CH, ), 4.33 – 4.22 (m, 3H, 3CH), 4.16 

(dd, J 16.0, 9.7 Hz, 2H, 2CH), 4.03 (t, J 6.5 Hz, 4H, 2CH2), 3.13 (s, 2H, 2CH), 2.87 (d, J 12.2 Hz, 

2H, 2CH), 2.80 – 2.62 (m, 6H, 2CH, 2CH2), 2.48 (t, J 7.4 Hz, 2H, CH2), 2.29 (t, J 7.3 Hz, 4H, 

2CH2), 2.08 – 1.83 (m, 2H, CH2), 1.76 – 1.52 (m, 16H, 8CH2 ), 1.43 (s, 9H, 3CH3), 1.37 (s, 12H, 

6CH2).  
13

C-NMR (101 MHz, CDCl3) δ 173.76, 172.38, 163.64, 150.19, 145.70, 133.29, 133.13, 

129.39, 128.48, 127.38, 126.36, 120.16, 119.73, 119.14, 118.94, 80.54, 72.64, 64.35, 61.97, 60.70, 

60.15, 55.45, 52.28, 40.53, 33.97, 31.59, 29.16, 28.66, 28.47, 28.36, 28.26, 28.14, 26.26, 25.68, 

25.48, 24.84 ppm. FT-IR KBr(neat) 1703 (br) C=O, m/z [ES]
+
 1159.5.  HRMS (NSI) Calcd for 

C58H84N13O8S2, M+NH4, 1154.6009; Found 1154.6007.  [α]
26

D +12 (c 1.0, CHCl3) 
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Synthesis of (S,S,R)-(((1,1'-(13-(3-(tert-butoxy)-3-oxopropyl)-6,12-dihydro-5,11-methano-

dibenzo[b,f][1,5]diazocine-2,8-diyl)bis(1H-1,2,3-triazole-4,1-diyl))bis(methylene))bis(oxy)) 

bis(undecane-11,1-diyl) bis(5-((3aS,4S,6aR)-2-oxohexahydro-1H-thieno[3,4-d]imidazol-4-

yl)pentanoate) 242 

 

A 5 mL microwave vial was charged with (+)-237 (50 mg, 0.116 mmol), (+)-215 (110 mg, 0.243 

mmol), copper(II) sulfate pentahydrate (8.66 mg, 0.035 mmol), sodium ascorbate (18.32 mg, 0.092 

mmol) and TBTA (18.40 mg, 0.035 mmol) in N-N-dimethylformamide (2.5 mL).  The reaction 

mixture was heated to 70°C, in a sealed vial, by microwave radiation for 1 hour.  The reaction 

mixture was then diluted with ethyl acetate (5 mL) and transferred to a 25 mL separating funnel.  

The solution was extracted with ethyl acetate (2 x 5mL) and washed with water (5 x 10mL), brine 

(5 mL) and dried with magnesium sulfate.  The suspension was filtered and the solvent removed 

under reduced pressure.  The reaction mixture was purified by flash chromatography on silica 

eluting with 5-10% methanol in dichloromethane affording a white solid.  Subsequent 

physiochemical analysis confirmed that this was the title compound 242 (132 mg, 0.099 mmol, 85 

% yield) 

1
H-NMR (400 MHz, CDCl3) δ 7.80 (s, 2H, ArH), 7.41 (d, J 8.6 Hz, 2H, ArH), 7.27 (dd, J 11.1, 2.0 

Hz, 2H, ArH), 7.19 (m, 2H, ArH), 5.65 (s, 2H, 2NH), 5.30 (s, 2H, 2NH), 4.71 (d, J 16.8 Hz, 1H, 

CH), 4.65 – 4.52 (m, 5H, CH, 2CH2), 4.49 – 4.37 (m, 2H, 2CH), 4.31 – 4.17 (m, 3H, 3CH), 4.10 

(dd, J 15.9, 8.2 Hz, 2H, 2CH), 3.98 (t, J 6.7 Hz, 4H, 2CH2), 3.46 (t, J 6.7 Hz, 4H, 2CH2), 3.08 (dd, 
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J 11.0, 7.0 Hz, 2H, 2CH), 2.84 (dd, J 12.7, 4.5 Hz, 2H, 2CH), 2.66 (d, J 12.7 Hz, 2H, 2CH), 2.42 (t, 

J 7.4 Hz, 2H, 2CH), 2.25 (t, J 7.4 Hz, 4H, 2CH2), 2.03 – 1.80 (m, 2H, CH2), 1.69 – 1.45 (m, 16H, 

8CH2), 1.37 (s, 9H), 1.31 – 1.14 (m, 32H, 16CH2).  FT-IR KBr(neat) 1703(br) C=O cm
-1

, LCMS 

[ES]
+
 M+Na 1360.8  HRMS (NSI) Calcd for C76H118N13O11S2, M+NH4, 1354.7785; Found 

1354.7789.  [α]
27

D +13 (c 1.0, CHCl3) 

Synthesis of (S,S,R)-(1,1'-(13-(3-oxo-3-(prop-2-yn-1-yloxy)propyl)-6,12-dihydro-5,11-

methanodibenzo[b,f][1,5]diazocine-2,8-diyl)bis(1H-1,2,3-triazole-4,1-diyl))bis(hexane-6,1-diyl) 

bis(5-((3aS,4S,6aR)-2-oxohexahydro-1H-thieno[3,4-d]imidazol-4-yl)pentanoate) 245 

 

A 5 mL  microwave vial was charged with 241 (90 mg, 0.018 mmol) in dichloromethane (2 mL).  

To this trifluoroacetic acid (50 µl, 0.649 mmol) was added, the vial was sealed and left to stir for 12 

hours.  The solvent was removed under reduced pressure and the residue was dissolved in a 

minimum amount of dichloromethane (500 µL) followed by addition of ether (3 mL).  The 
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precipitate was filtered off and used without further purification. 243 (74 mg, 0.079 mmol, 86 % 

yield) 

A 25 ml round bottomed flask was charged with 243 (20 mg, 0.018 mmol) and potassium carbonate 

(5.5 mg, 0.037 mmol) in N-N-dimethylformamide (2 mL) and left to stir for 30 minutes.  To this 

propargyl bromide (4 µl, 0.037 mmol) was added and the solution continued to be stirred for 16 

hours.  The resulting mixture was diluted with water (5 mL) and ethyl acetate (5 mL) then 

transferred to a 50 mL separating funnel.  This was extracted with ethyl acetate (2 x 5mL) and the 

combined organic extracts were washed with water (5 x 10mL), brine (10 mL) and dried with 

magnesium sulfate.  The suspension was filtered and the solvent removed under reduced pressure.  

The impure product was purified by flash chromatography on silica gel eluting with 5-10% 

methanol in dichloromethane to afford an off white solid.  Subsequent physiochemical analysis 

confirmed this to be the title compound.  245 (18 mg, 0.016 mmol, 88 % yield) 

m/p 79-80°C (diethyl ether), 
1
H-NMR (400 MHz, CDCl3) δ 7.55 (s, 2H, ArH), 7.41 (d, J 8.6 Hz, 

2H, ArH), 7.26 (d, J 8.5 Hz, 2H, ArH), 7.18 (d, J 8.8 Hz, 2H, ArH), 5.80 (s, 2H, 2NH), 5.37 (s, 2H, 

2NH), 4.71 (d, J 16.9 Hz, 1H, CH), 4.62 (t, J 2.3 Hz, 2H, CH2), 4.57 (d, J 17.6 Hz, 1H, CH), 4.50 – 

4.36 (m, 2H, 2CH), 4.23 (dd, J 10.8, 6.0 Hz, 3H, 3CH), 4.12 (dd, J 17.3, 12.7 Hz, 2H, 2CH), 3.97 

(t, J 6.6 Hz, 4H, 2CH2), 3.06 (dd, J 12.2, 6.3 Hz, 2H, 2CH), 2.81 (dd, J 12.6, 4.6 Hz, 2H, 2CH), 

2.68 (m, 6H, 2CH, 2CH2), 2.57 (t, J 7.3 Hz, 2H, 2CH), 2.41 (t, J 2.5 Hz, 1H), 2.23 (t, J 7.4 Hz, 4H, 

2CH2), 1.98 (m, 2H, CH2), 1.58 (m, 16H, 8CH2), 1.44 – 1.30 (m, 12H, 6CH2).  
13

C-NMR (101 

MHz, CDCl3) δ 173.75, 172.17, 163.62, 149.95, 145.46, 133.40, 133.24, 129.35, 128.30, 127.41, 

126.37, 120.22, 119.76, 119.11, 118.94, 77.64, 75.01, 72.50, 64.34, 61.96, 60.62, 60.12, 55.44, 

52.28, 52.06, 40.53, 33.97, 30.21, 29.70, 29.15, 28.65, 28.46, 28.35, 28.25, 25.98, 25.67, 25.48, 

24.84ppm. ATR-IR 1752 C=O, 1635 C=O cm
-1

 m/z [ES]
+
 M+Na, 1141.5.  HRMS (NSI) Calcd for 

C57H75N12O8S2, M+H, 1119.5278; Found 1119.5278, [α]
25

D +14.3 (c 1.0, CHCl3/10% MeOH) 
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Synthesis of (S,S,R)-(1,1'-(13-(3-(oct-7-yn-1-yloxy)-3-oxopropyl)-6,12-dihydro-5,11-

methanodibenzo[b,f][1,5]diazocine-2,8-diyl)bis(1H-1,2,3-triazole-4,1-diyl))bis(hexane-6,1-diyl) 

bis(5-((3aS,4S,6aR)-2-oxohexahydro-1H-thieno[3,4-d]imidazol-4-yl)pentanoate) 246 

 

A 5 mL microwave vial was charged with 241(94 mg, 0.094 mmol) in dichloromethane (2 mL).  To 

this trifluoroacetic acid (500 µl, 6.49 mmol) was added, the vial was sealed and left to stir for 12 

hours.  The solvent was removed under reduced pressure and the residue was dissolved in a 

minimum amount of dichloromethane (500 µL) followed by addition of ether (3 mL).  The 

precipitate was filtered off and used without further purification. 243 (85 mg, 0.090 mmol, 96 % 

yield) 

A 25ml round bottomed-flask was charged with 243 (20 mg, 0.018 mmol) and potassium carbonate 

(5.11 mg, 0.037 mmol) in N-N-dimethylformamide (2 mL) and left to stir for 30 minutes.  To this 

8-bromooct-1-yne (7 mg, 0.037 mmol) was added and the solution continued to be stirred for 16 
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hours.  The resulting mixture was diluted with water (5 mL) and ethyl acetate (5 mL) then 

transferred to a 50 mL separating funnel.  This was extracted with ethyl acetate (2 x 5mL) and the 

combined organic extracts were washed with water (5 x 10mL), brine and dried with magnesium 

sulfate.  The suspension was filtered and the solvent removed under reduced pressure.  The impure 

product was purified by flash chromatography on silica gel eluting with 5-10% methanol in 

dichloromethane to afford an off white solid.  Subsequent physiochemical analysis confirmed this 

to be the title compound. 246(19 mg, 0.016 mmol, 86 % yield) 

1
H-NMR (400 MHz, CDCl3) δ 7.56 (s, 2H, ArH), 7.42 (d, J 8.6 Hz, 2H, ArH), 7.27 (d, J 9.0 Hz, 

2H, ArH), 7.19 (d, J 8.6 Hz, 2H, ArH), 5.76 (s, 2H, 2NH), 5.31 (s, 2H, 2NH), 4.71 (d, J 16.9 Hz, 

1H, CH), 4.58 (d, J 17.5 Hz, 1H, CH), 4.49 – 4.35 (m, 2H, 2CH), 4.23 (m,3H, 3CH), 4.12 (m, 2H, 

2CH), 3.99 (m, 6H, 2CH, CH2), 3.07 (d, J 4.2 Hz, 2H, 2CH), 2.81 (dd, J 12.6, 4.3 Hz, 2H, 2CH), 

2.73 – 2.60 (m, 6H, 3CH2), 2.52 (t, J 7.3 Hz, 2H, CH2), 2.23 (t, J 7.4 Hz, 4H, 2CH2), 2.10 (td, J 6.9, 

2.6 Hz, 2H, CH2), 2.05 – 1.89 (m, 2H, CH2), 1.87 (t, J 2.6 Hz, 1H, CH2), 1.58 (m, 18H, 9CH2), 1.33 

(m, 18H, 9CH2).  
13

C-NMR (101 MHz, CDCl3) δ 173.74, 173.07, 163.55, 149.97, 145.51, 133.41, 

129.33, 128.36, 127.39, 126.36, 120.20, 119.77, 119.13, 118.95, 84.48, 72.61, 68.33, 64.62, 64.49, 

64.34, 61.95, 60.66, 60.11, 55.42, 52.28, 40.53, 33.97, 33.74, 32.57, 30.42, 29.15, 28.64, 28.46, 

28.35, 28.26, 27.76, 26.14, 25.68, 25.48, 25.16, 24.84, 18.30 ppm.  ATR-IR 2152 C-C,1749 C=O, 

1640 C=O cm
-1

.  m/z [ES]
+
 M+Na, 1211.5874.  HRMS (NSI) Calcd for C62H88N13O8S2, M+NH4, 

1206.6320; Found 1206.6323.  [α]
26

D +19.5 (c 1.0, CHCl3/10% MeOH) 
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Synthesis of (S,S,R)-(1,1'-(13-(3-oxo-3-((11-(prop-2-yn-1-yloxy)undecyl)oxy)propyl)-6,12-

dihydro-5,11-methanodibenzo[b,f][1,5]diazocine-2,8-diyl)bis(1H-1,2,3-triazole-4,1-diyl))bis 

(hexane-6,1-diyl)-bis(5-((3aS,4S,6aR)-2-oxohexahydro-1H-thieno[3,4-d]imidazol-4-

yl)pentanoate) 247 

 

A 2.5 mL microwave vial was charged with 241 (94 mg, 0.094 mmol) in dichloromethane (2 mL).  

To this trifluoroacetic acid (500 µl, 6.49 mmol) was added, the vial was sealed and left to stir for 12 

hours.  The solvent was removed under reduced pressure and the residue was dissolved in a 

minimum amount of dichloromethane (500 µL) followed by addition of diethyl ether (3 mL).  The 

precipitate was filtered off and used without further purification. 243(85 mg, 0.090 mmol, 96 % 

yield) 

A 25 ml round bottomed flask was charged 243 (20 mg, 0.018 mmol) and potassium carbonate 

(5.11 mg, 0.037 mmol) in N-N-dimethylformamide (2 mL) and left to stir for 30 minutes.  To this 

1-bromo-11-(prop-2-yn-1-yloxy)undecane (10.70 mg, 0.037 mmol) was added and the solution 

continued to be stirred for 16 hours.  The resulting mixture was diluted with water (5 mL) and ethyl 

acetate (5 mL) then transferred to a 50 mL separating funnel.  This was extracted with ethyl acetate 

(2 x 5mL) and the combined organic extracts were washed with water (5 x 10mL), brine and dried 

with magnesium sulfate.  The suspension was filtered and the solvent removed under reduced 

pressure.  The impure product was purified by flash chromatography on silica eluting with 5-10% 

methanol in dichloromethane to afford an off white solid.  Subsequent physiochemical analysis 

confirmed this to be the title compound. 247 (18 mg, 0.014 mmol, 75 % yield) 
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1
H-NMR (400 MHz, CDCl3) δ 7.55 (d, J 2.2 Hz, 2H, ArH), 7.41 (d, J 8.6 Hz, 2H, ArH), 7.26 (d, J 

9.2 Hz, 2H, ArH), 7.18 (d, J 8.7 Hz, 2H, ArH), 5.82 (s, 2H, 2NH), 5.38 (s, 2H, 2NH), 4.71 (d, J 

16.9 Hz, 1H, CH), 4.58 (d, J 17.5 Hz, 1H, CH), 4.46 – 4.36 (m, 2H, 2CH), 4.27 – 4.18 (m, 3H, 

3CH), 4.18 – 4.10 (m, 2H, 2CH), 4.06 (d, J 2.4 Hz, 2H, CH2), 3.98 (q, J 6.8 Hz, 6H, 3CH2), 3.43 (t, 

J 6.6 Hz, 2H, CH2), 3.07 (dd, J 10.9, 7.9 Hz, 2H, 2CH), 2.81 (dd, J 12.7, 4.7 Hz, 2H, 2CH), 2.73 – 

2.58 (m, 6H, 2CH, 2CH2), 2.51 (t, J 7.4 Hz, 2H, CH2), 2.35 (t, J 2.4 Hz, 1H, CH), 2.23 (t, J 7.4 Hz, 

4H, 2CH2), 2.05 – 1.82 (m, 2H, CH2), 1.70 – 1.44 (m, 20H, 10CH2), 1.30 (m, 26H, 13CH2). ATR-

IR 2158 C-C,1752 C=O, 1646 C=O cm
-1

. m/z [ES]
+
 M+H 1289.7.  HRMS (NSI) Calcd for 

C68H100N13O9S2, M+NH4, 1306.7209; Found 1306.7205.  [α]
26

D +17 (c 1.0, CHCl3). 

Synthesis of (S,S,R)-(((1,1'-(13-(3-oxo-3-(prop-2-yn-1-yloxy)propyl)-6,12-dihydro-5,11-

methanodibenzo[b,f][1,5]diazocine-2,8-diyl)bis(1H-1,2,3-triazole-4,1-diyl))bis(methylene))bis 

(oxy))bis(undecane-11,1-diyl)bis(5-((3aS,4S,6aR)-2-oxohexahydro-1H-thieno[3,4-d]imidazol-4-

yl)pentanoate) 248 

 

A 5 mL microwave vial was charged with 242 (2 mL).  To this trifluoroacetic acid (418 µl, 5.42 

mmol) was added, the vial was sealed and left to stir for 12 hours.  The solvent was removed under 

reduced pressure and the residue was dissolved in a minimum amount of dichloromethane (500µL) 
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followed by addition of ether (3 mL).  The precipitate was filtered off and used without further 

purification 244 (119 mg, 0.093 mmol, 86 % yield) 

A 25 ml round-bottomed flask was charged with 244 (25 mg, 0.020 mmol) and potassium 

carbonate (4.04 mg, 0.029 mmol) in N-N-dimethylformamide (2 mL) and left to stir for 30 minutes.  

To this propargyl bromide (3.15 µl, 0.029 mmol) was added and the solution continued to be stirred 

for 16 hours.  The resulting mixture was diluted with water (5 mL) and ethyl acetate (5 mL) then 

transferred to a 50 mL separating funnel.  This was extracted with ethyl acetate (2 x 5mL) and the 

combined organic extracts were washed with water (5 x 10mL), brine and dried with magnesium 

sulfate.  The suspension was filtered and the solvent removed under reduced pressure.  The impure 

product was purified by flash chromatography on silica gel eluting with 5-10% methanol in 

dichloromethane to afford an off white solid.  Subsequent physiochemical analysis confirmed this 

to be the title compound. 248 (17 mg, 0.013 mmol, 66.0 % yield) 

m/p 64-66°C (Et2O), 
1
H-NMR (400 MHz, CDCl3) δ 7.80 (s, 2H, ArH), 7.42 (dd, J 8.6, 2.1 Hz, 2H, 

ArH), 7.28 (dd, J 8.8, 2.3 Hz, 2H, ArH), 7.18 (s, 2H, ArH), 5.68 (s, 2H, 2NH), 5.34 (s, 2H, 2NH), 

4.72 (d, J 16.9 Hz, 1H, CH), 4.62 (t, J 2.3 Hz, 2H, CH2), 4.58 (m, 5H,CH, 2CH2 ), 4.48 – 4.36 (m, 

2H, 2CH), 4.30 – 4.19 (m, 3H, 3CH), 4.17 – 4.05 (m, 2H, 2CH), 3.97 (t, J 6.7 Hz, 4H, 2CH2), 3.46 

(t, J 6.7 Hz, 4H, 2CH2), 3.08 (dd, J 11.8, 7.1 Hz, 2H, 2CH), 2.83 (dd, J 12.8, 4.8 Hz, 2H, 2CH), 

2.66 (d, J 12.7 Hz, 2H, 2CH), 2.57 (t, J 7.3 Hz, 2H, 2CH), 2.41 (t, J 2.5 Hz, 1H, CH), 2.25 (t, J 7.4 

Hz, 4H, 2CH2), 1.98 (m, 2H, CH2), 1.73 – 1.43 (m, 16H, 8CH2), 1.20 (s (br), 32H, 16CH2).  
13

C-

NMR (101 MHz, CDCl3) δ 173.77, 172.16, 163.54, 150.27, 145.77, 133.22, 133.07, 129.42, 

128.39, 127.50, 126.46, 120.63, 120.37, 119.89, 119.30, 119.12, 77.62, 75.01, 72.44, 71.04, 64.56, 

64.28, 61.94, 60.57, 60.13, 55.41, 52.24, 52.07, 40.55, 33.96, 30.20, 29.64, 29.49, 29.44, 29.42, 

29.19, 28.61, 28.36, 28.26, 26.09, 25.90, 24.83 ppm.  ATR-IR 2155 C-C, 1748 C=O, 1652 C=O 

cm
-1

.
  
m/z [ES]

+
 M+Na 1341.7.  HRMS (NSI) Calcd for C69H99N12O10S2, M+H, 1319.7050; Found 

1319.7049.  [α]
25

D +22 (c 1.0, CHCl3). 
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Synthesis of (S,S,R)-(((1,1'-(13-(3-(oct-7-yn-1-yloxy)-3-oxopropyl)-6,12-dihydro-5,11-

methanodibenzo[b,f][1,5]diazocine-2,8-diyl)bis(1H-1,2,3-triazole-4,1-diyl))bis(methylene))bis 

(oxy))bis(undecane-11,1-diyl) bis(5-((3aS,4S,6aR)-2-oxohexahydro-1H-thieno[3,4-d]imidazol-

4-yl)pentanoate) (249) 

 

A 2.5 mL  microwave vial was charged with (242) (S,S,R)-(((1,1'-(13-(3-(tert-butoxy)-3-

oxopropyl)-6,12-dihydro-5,11-methanodibenzo[b,f][1,5]diazocine-2,8-diyl)bis(1H-1,2,3-triazole-

4,1-diyl))bis(methylene))bis(oxy))bis(undecane-11,1-diyl) bis(5-((3aS,4S,6aR)-2-oxohexahydro-
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1H-thieno[3,4-d]imidazol-4-yl)pentanoate) (145 mg, 0.108 mmol) in dichloromethane (2 mL).  To 

this trifluoroacetic acid (418 µl, 5.42 mmol) was added, the vial was sealed with a Teflon cap and 

left to stir for 12 hours.  The solvent was removed under reduced pressure and the residue was 

dissolved in a minimum amount of dichloromethane (500 µL) followed by addition of ether (3 mL).  

The precipitate was filtered off and used without further purification (244) (119 mg, 0.093 mmol, 

86 % yield) 

A 25ml round bottomed flask was charged with 244 (25 mg, 0.020 mmol)and  potassium carbonate 

(4.04 mg, 0.029 mmol) in dimethylformamide (2mL) and left to stir for 30 minutes.  To this 8-

bromooct-1-yne (5.53 mg, 0.029 mmol) was added and the solution continued to be stirred for 16 

hours.  The resulting mixture was diluted with water (5 mL) and ethyl acetate (5 mL) then 

transferred to a 50 mL separating funnel.  This was extracted with ethyl acetate (2 x 5mL) and the 

combined organic extracts were washed with water (5 x 10mL), brine (10 mL) and dried with 

magnesium sulfate.  The suspension was filtered and the solvent removed under reduced pressure.  

The impure product was purified by flash chromatography on silica eluting with 5-10% methanol in 

dichloromethane to afford and off white solid.  Subsequent physiochemical analysis confirmed this 

to be the title compound.  249 (23 mg, 0.017 mmol, 85 % yield) 

1
H NMR (400 MHz, CDCl3) δ 7.79 (s, 2H), 7.41 (dd, J 8.6, 2.3 Hz, 2H), 7.28 (dd, J 9.4, 2.2 Hz, 

2H), 7.18 (s, 2H), 5.62 (s, 2H), 5.29 (s, 2H), 4.71 (d, J 16.9 Hz, 1H), 4.63 – 4.49 (m, 5H), 4.42 (dd, 

J 7.2, 5.1 Hz, 2H), 4.24 (m, 3H), 4.12 (t, J 6.9 Hz, 2H), 3.97 (t, J 6.7 Hz, 6H), 3.46 (t, J 6.6 Hz, 

4H), 3.07 (t, J5.6 Hz, 3H), 2.83 (dd, J 12.8, 4.9 Hz, 2H), 2.66 (d, J 12.8 Hz, 2H), 2.51 (t, J 7.3 Hz, 

2H), 2.24 (t, J 7.4 Hz, 4H), 2.10 (m , 2H), 2.05 – 1.89 (m, 2H), 1.88 (t, J7.0 Hz, 1H), 1.71 – 1.46 

(m, 18H), 1.36 (m, 8H), 1.19 (s, 37H). ATR-IR 2145 C-C, 1743 C=O, 1650 C=O cm
-1

.
  
m/z [ES]

+
 

M+H, 1388.8 HRMS (NSI) Calcd for C74H112N13O10S2, M+NH4, 1406.8097; Found 1406.8095 

 [α]
25

D +15.4 (c 1.0, CHCl3\10% MeOH). 
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(S,S,R)-(((1,1'-(13-(3-oxo-3-((11-(prop-2-yn-1-yloxy)undecyl)oxy)propyl)-6,12-dihydro-5,11-

methanodibenzo[b,f][1,5]diazocine-2,8-diyl)bis(1H-1,2,3-triazole-4,1-diyl))bis(methylene)) 

bis(oxy))bis(undecane-11,1-diyl)bis(5-((3aS,4S,6aR)-2-oxohexahydro-1H-thieno[3,4-d]-

imidazol-4-yl)pentanoate) 250 

 

A 5 mL microwave vial was charged with 242 (145 mg, 0.108 mmol) in dichloromethane (2 mL).  

To this trifluoroacetic acid (418 µl, 5.42 mmol) was added, the vial was sealed and left to stir for 12 

hours.  The solvent was removed under reduced pressure and the residue was dissolved in a 

minimum amount of dichloromethane (500 µL) followed by addition of diethyl ether (3 mL).  The 

precipitate was filtered off and used without further purification 244(119 mg, 0.093 mmol, 86 % 

yield) 

A 25 ml round bottomed flask was charged with 244 (25 mg, 0.020 mmol) and potassium carbonate 

(4.04 mg, 0.029 mmol) in N-N-dimethylformamide (2 mL) and left to stir for 30 minutes.  To this 

1-bromo-11-(prop-2-yn-1-yloxy)undecane (8.46 mg, 0.029 mmol) was added and the solution 

continued to be stirred for 16 hours.  The resulting mixture was diluted with water (5 mL) and ethyl 

acetate (5 mL) then transferred to a 50 mL separating funnel.  This was extracted with ethyl acetate 

(2 x 5mL) and the combined organic extracts were washed with water (5 x 10mL), brine and dried 

with magnesium sulfate.  The suspension was filtered and the solvent removed under reduced 
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pressure.  The impure product was purified by flash chromatography on silica gel eluting with 5-

10% methanol in dichloromethane to afford and off white solid.  Subsequent physiochemical 

analysis confirmed this to be the title compound.  250 (24 mg, 0.016 mmol, 83 % yield) 

1
H-NMR (400 MHz, CDCl3) δ 7.80 (s, 2H, ArH), 7.42 (dd, J 8.6, 2.3 Hz, 2H, ArH), 7.28 (dd, J 9.4, 

2.3 Hz, 2H, ArH), 7.18 (s, 2H, ArH), 5.71 (s, 2H, 2NH), 5.35 (s, 2H, 2NH), 4.72 (d, J 16.9 Hz, 1H, 

CH), 4.65 – 4.54 (m, 5H, 2CH2, CH), 4.49 – 4.35 (m, 2H, 2CH), 4.24 (m, 3H, 3CH), 4.17 – 4.10 

(m, 1H, CH), 4.06 (d, J 2.4 Hz, 2H, 2CH), 3.98 (m, 5H, CH, 2CH2), 3.52 – 3.34 (m, 6H, 2CH, 

2CH2), 3.08 (dd, J 12.7, 6.5 Hz, 2H, 2CH), 2.83 (dd, J 12.8, 4.9 Hz, 2H, 2CH), 2.66 (d, J 12.7 Hz, 

2H, 2CH), 2.51 (t, J 7.4 Hz, 2H, 2CH), 2.35 (t, J 2.4 Hz, 1H, CH), 2.25 (t, J 7.5 Hz, 4H, 2CH2), 

2.09 – 1.75 (m, 2H, CH2), 1.45 – 1.29 (m, 4H, 2CH2), 1.71 – 1.44 (m, 20H, 10CH2), 1.20 (m, 44H, 

22CH2).  
13

C-NMR (101 MHz, CDCl3) δ 173.76, 173.08, 163.54, 150.29, 146.19, 145.83, 133.19, 

133.03, 129.42, 128.46, 127.47, 126.45, 120.59, 120.33, 119.88, 119.29, 119.11, 80.08, 74.07, 

72.54, 71.04, 70.29, 64.80, 64.55, 64.28, 61.94, 60.59, 60.12, 58.00, 55.42, 52.23, 40.55, 33.96, 

30.40, 29.64, 29.50, 29.45, 29.42, 29.40, 29.22, 29.19, 28.62, 28.36, 28.26, 26.09, 26.08, 25.90, 

24.83 ppm.  ATR-IR 3304 C-H, 1744 C=O, 1661C=O cm
-1

. 
 
m/z [ES]

+
 M+Na 1511.9.  HRMS 

(NSI) Calcd for C80H121N12O11S2, M+H, 1489.8720; Found 1489.8716.  [α]
25

D +21.9 (c 1.0, 

CHCl3/10%MeOH) 
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Appendix 

 

Crystal Structure and refinement for 107 

 

      Crystal and structure refinement data for a derivative of Rhodamine G 

      ___________________________________________________________________ 

  

      Identification code                    glynhg8b 

      Elemental formula                      C29 H29 N3 O2 

      Formula weight                         451.5 

      Crystal system                         Triclinic 

      Space group                            P-1  (no. 2) 

      Unit cell dimensions               a =  8.8708(9) Å    α = 88.826(8) ° 
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                                         b =  9.6838(11) Å   β = 79.174(8) ° 

                                         c = 15.8955(15) Å   γ = 63.088(10) ° 

      Volume                                 1192.7(2) Å
3
 

      No. of formula units, Z                2 

      Calculated density                     1.257 Mg/m
3
 

      F(000)                                 480 

      Absorption coefficient                 0.080 mm
-1

 

      Temperature                            140(1) K 

      Wavelength                             0.71073 Å 

      Crystal colour, shape                  pale brown plate 

      Crystal size                           0.30 x 0.19 x 0.04 mm 

      Crystal mounting                       On a glass fibre, in oil, fixed 

                                                 in cold N2 stream 

      On the diffractometer: 

      Theta range for data collection      3.4 to 23.0 ° 

      Limiting indices                     -9<=h<=9, -10<=k<=10, -17<=l<=17 

      Completeness to theta = 23.0         99.5 % 

      Absorption correction                  Semi-empirical from equivalents 

      Max. and min. transmission             1.156 and 0.803 

      Reflections collected (not including absences) 13360 

      No. of unique reflections              3310  [R(int) for equivalents = 0.073] 

      No. of 'observed' reflections (I > 2σI)   1921 

      Structure determined by:    direct methods, in SHELXS 

      Refinement:                 Full-matrix least-squares     On F
2
, in SHELXL 

      Data / restraints / parameters       3310 / 0 / 309 

      Goodness-of-fit on F
2
                0.884 

      Final R indices ('observed' data)    R1 = 0.046, wR2 = 0.099 

      Final R indices (all data)           R1 = 0.096, wR2 = 0.108 
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      Reflections weighted: 

           w = [
2
(Fo

2
)+(0.0531P)

2
]

-1
 where P=(Fo

2
+2Fc

2
)/3 

  

      Largest diff. peak and hole            0.56 and -0.26 e.Å
-3

 

      Location of largest difference peak    near H(82a) 

      ___________________________________________________________________ 

         Table 1.  Atomic coordinates (x 10
5
) and equivalent isotropic 

                   displacement parameters (Å
2
 x 10

4
).  U(eq) is defined 

                   as one third of the trace of the orthogonalized Uij 

                   tensor.  E.s.ds are in parentheses. 

         ________________________________________________________________ 

                      x            y            z          U(eq)     

         ________________________________________________________________ 

  

         O(1)      3999(2)      6970(2)      3344.3(11)    260(5)           

         C(1)      5221(3)      4267(3)      3257.7(17)    254(7)           

         C(2)      6439(3)      2792(3)      2899.9(17)    242(7)           

         N(21)     6442(3)      1464(3)      3228.5(15)    328(7)           

         C(22)     5097(4)      1490(4)      3918.4(18)    343(8)           

         C(23)     5389(4)      1736(4)      4801(2)       495(10)          

         C(3)      7726(3)      2661(3)      2182.4(18)    247(7)           

         C(31)     9045(4)      1088(3)      1774(2)       410(9)           

         C(4)      7738(3)      3988(3)      1883.6(17)    242(7)           

         C(5)      6653(3)      6906(3)      1895.6(16)    209(7)           

         C(6)      4676(3)      9819(3)      1979.6(17)    245(7)           

         C(7)      3277(3)     11177(3)      2333.0(17)    231(7)           

         C(71)     2977(4)     12711(3)      1986.2(18)    321(8)           

         C(8)      2120(3)     11089(3)      3053.2(17)    246(7)           



248 

 

         N(81)      756(3)     12456(3)      3467.1(15)    333(7)           

         C(82)     -488(4)     12457(4)      4205(2)       447(9)           

         C(83)    -1728(4)     14055(4)      4571(2)       630(12)          

         C(9)      2411(3)      9663(3)      3363.9(17)    239(7)           

         C(10)     3846(3)      8323(3)      2979.1(17)    199(7)           

         C(11)     5030(3)      8365(3)      2283.7(17)    200(7)           

         C(12)     6533(3)      5483(3)      2236.3(16)    194(7)           

         C(13)     5283(3)      5577(3)      2925.9(17)    199(7)           

         C(51)     8280(3)      6963(3)      2030.7(18)    210(7)           

         C(52)     9306(3)      6931(3)      1258.3(17)    205(7)           

         C(53)    10857(3)      6975(3)      1213(2)       285(8)           

         C(54)    11379(3)      7035(3)      1969(2)       313(8)           

         C(55)    10347(4)      7061(3)      2755(2)       322(8)           

         C(56)     8793(3)      7034(3)      2797.2(19)    264(7)           

         C(521)    8461(3)      6850(3)       558.9(19)    229(7)           

         O(521)    8960(2)      6817(2)      -218.2(12)    312(6)           

         N(522)    6965(3)      6817(2)       942.9(14)    202(6)           

         C(523)    5860(3)      6592(3)       448.2(18)    270(7)           

         C(524)    4400(4)      8041(4)       305.1(18)    284(8)           

         C(525)    3248(4)      9204(4)       193.5(19)    418(9)           

         ________________________________________________________________ 

  

    Table 2.  Molecular dimensions.  Bond lengths are in Ångstroms, 

              angles in degrees.  E.s.ds are in parentheses. 

    __________________________________________________________________________ 

  

    O(1)-C(10)           1.381(3) 

    O(1)-C(13)           1.386(3) 

    C(1)-C(2)            1.392(4) 

    C(1)-C(13)           1.385(4) 
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    C(2)-N(21)           1.377(3) 

    C(2)-C(3)            1.416(4) 

    N(21)-C(22)          1.452(3) 

    C(22)-C(23)          1.516(4) 

    C(3)-C(31)           1.501(4) 

    C(3)-C(4)            1.365(4) 

    C(4)-C(12)           1.400(3) 

    C(5)-C(11)           1.520(3) 

    C(5)-C(12)           1.512(4) 

    C(5)-C(51)           1.523(4) 

    C(5)-N(522)          1.484(3) 

    C(6)-C(7)            1.370(3) 

    C(6)-C(11)           1.393(4) 

    C(7)-C(71)           1.499(4) 

    C(7)-C(8)            1.416(4) 

    C(8)-N(81)           1.392(3) 

    C(8)-C(9)            1.384(4) 

    N(81)-C(82)          1.452(4) 

    C(82)-C(83)          1.483(4) 

    C(9)-C(10)           1.387(3) 

    C(10)-C(11)          1.388(4) 

    C(12)-C(13)          1.376(3) 

    C(51)-C(52)          1.376(3) 

    C(51)-C(56)          1.391(4) 

    C(52)-C(521)         1.474(4) 

    C(52)-C(53)          1.384(4) 

    C(53)-C(54)          1.377(4) 

    C(54)-C(55)          1.397(4) 

    C(55)-C(56)          1.381(4) 

    C(521)-O(521)        1.227(3) 

    C(521)-N(522)        1.367(3) 

    N(522)-C(523)        1.455(3) 

    C(523)-C(524)        1.466(4) 

    C(524)-C(525)        1.167(4) 

 

    C(10)-O(1)-C(13)      117.6(2) 

    C(13)-C(1)-C(2)       120.6(3) 

    N(21)-C(2)-C(1)       122.1(3) 

    C(1)-C(2)-C(3)        118.6(3) 

    N(21)-C(2)-C(3)       119.3(3) 

    C(2)-N(21)-C(22)      122.9(2) 

    N(21)-C(22)-C(23)     112.9(3) 

    C(2)-C(3)-C(31)       120.0(3) 

    C(4)-C(3)-C(2)        118.5(3) 

    C(4)-C(3)-C(31)       121.5(3) 

    C(3)-C(4)-C(12)       123.9(2) 

    C(12)-C(5)-C(11)      110.1(2) 

    C(11)-C(5)-C(51)      111.9(2) 

    N(522)-C(5)-C(11)     111.4(2) 

    C(12)-C(5)-C(51)      112.4(2) 

    N(522)-C(5)-C(12)     110.9(2) 

    N(522)-C(5)-C(51)      99.7(2) 

    C(7)-C(6)-C(11)       124.2(3) 

    C(6)-C(7)-C(71)       121.9(3) 

    C(6)-C(7)-C(8)        117.5(3) 
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    C(8)-C(7)-C(71)       120.6(2) 

    N(81)-C(8)-C(7)       119.0(3) 

    C(9)-C(8)-C(7)        119.9(3) 

    C(9)-C(8)-N(81)       121.0(3) 

    C(8)-N(81)-C(82)      122.1(3) 

    N(81)-C(82)-C(83)     111.7(3) 

    C(8)-C(9)-C(10)       120.1(3) 

    O(1)-C(10)-C(9)       114.9(2) 

    O(1)-C(10)-C(11)      123.4(2) 

    C(9)-C(10)-C(11)      121.7(3) 

    C(6)-C(11)-C(5)       122.0(2) 

    C(10)-C(11)-C(5)      121.5(2) 

    C(10)-C(11)-C(6)      116.5(2) 

    C(4)-C(12)-C(5)       121.3(2) 

    C(13)-C(12)-C(4)      116.4(3) 

    C(13)-C(12)-C(5)      122.2(2) 

    C(1)-C(13)-O(1)       114.6(2) 

    C(12)-C(13)-C(1)      122.0(3) 

    C(12)-C(13)-O(1)      123.4(3) 

    C(52)-C(51)-C(5)      111.0(2) 

    C(56)-C(51)-C(5)      128.8(2) 

    C(52)-C(51)-C(56)     120.2(3) 

    C(51)-C(52)-C(521)    108.7(2) 

    C(51)-C(52)-C(53)     121.9(3) 

    C(53)-C(52)-C(521)    129.4(3) 

    C(54)-C(53)-C(52)     118.3(3) 

    C(53)-C(54)-C(55)     120.1(3) 

    C(56)-C(55)-C(54)     121.4(3) 

    C(55)-C(56)-C(51)     118.2(3) 

    O(521)-C(521)-C(52)   128.4(3) 

    N(522)-C(521)-C(52)   106.3(2) 

    O(521)-C(521)-N(522)  125.2(3) 

    C(521)-N(522)-C(5)    114.2(2) 

    C(523)-N(522)-C(5)    123.6(2) 

    C(521)-N(522)-C(523)  122.0(2) 

    N(522)-C(523)-C(524)  113.8(2) 

    C(525)-C(524)-C(523)  179.2(4) 

    ___________________________________________________________________________ 

 Table 3.  Anisotropic displacement parameters (Å
2
 x 10

4
) for the 

              expression: 

                     exp {-2π
2
(h

2
a*

2
U11 + ... + 2hka*b*U12)} 

              E.s.ds are in parentheses. 

    _______________________________________________________________________ 

  

              U11         U22         U33         U23         U13         U12 

    _______________________________________________________________________ 
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    O(1)    289(11)    243(12)    227(11)    -10(9)      41(9)    -138(10) 

    C(1)    284(16)    339(19)    192(17)     50(14)     -5(13)   -205(15) 

    C(2)    273(17)    267(19)    251(18)     64(14)   -111(14)   -160(15) 

    N(21)   372(15)    230(15)    371(16)     63(13)    -21(12)   -149(13) 

    C(22)   467(19)    357(20)    343(20)    122(16)   -124(16)   -294(17) 

    C(23)   701(24)    575(24)    385(22)    190(18)   -187(18)   -420(20) 

    C(3)    260(16)    215(18)    273(18)     28(14)    -58(13)   -114(14) 

    C(31)   420(19)    253(19)    492(22)     23(16)    -29(16)   -122(16) 

    C(4)    211(15)    250(18)    252(18)     20(14)     -9(13)   -108(14) 

    C(5)    205(15)    240(17)    157(16)      5(13)      0(12)    -93(13) 

    C(6)    242(16)    301(19)    190(17)     24(14)    -22(13)   -131(15) 

    C(7)    265(16)    217(18)    209(17)      6(13)    -74(13)    -99(14) 

    C(71)   341(17)    246(18)    307(18)      0(15)    -76(14)    -69(15) 

    C(8)    200(16)    275(19)    231(18)    -58(14)    -55(13)    -75(15) 

    N(81)   267(13)    243(15)    429(16)    -38(13)     34(12)   -101(12) 

    C(82)   241(17)    332(21)    606(25)   -152(18)    134(16)    -65(16) 

    C(83)   505(22)    564(26)    676(28)   -113(22)     29(20)   -169(20) 

    C(9)    221(16)    278(19)    197(16)    -20(14)     10(12)   -114(14) 

    C(10)   227(15)    209(17)    186(16)      8(13)    -53(13)   -116(14) 

    C(11)   217(15)    190(17)    205(16)      7(13)    -56(13)   -100(13) 

    C(12)   195(15)    203(18)    174(16)     22(13)    -28(13)    -86(14) 

    C(13)   187(15)    188(17)    213(17)     -2(14)    -46(13)    -76(14) 

    C(51)   203(15)    159(16)    241(18)     -4(13)    -36(13)    -62(13) 

    C(52)   176(15)    154(16)    252(18)     16(13)      5(13)    -64(13) 

    C(53)   250(17)    210(18)    355(20)      5(14)     13(14)    -99(14) 

    C(54)   225(16)    272(19)    473(22)     42(16)    -57(16)   -145(15) 

    C(55)   315(18)    287(19)    391(21)     24(15)   -169(15)   -123(15) 
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    C(56)   266(17)    246(17)    262(18)     -4(14)    -18(13)   -114(14) 

    C(521)  225(16)    151(17)    239(18)     16(13)     22(14)    -50(13) 

    O(521)  316(11)    313(13)    237(13)     42(10)     27(9)    -118(10) 

    N(522)  184(12)    197(13)    188(13)     12(10)    -13(10)    -65(11) 

    C(523)  327(17)    319(18)    197(17)     22(14)    -50(13)   -176(15) 

    C(524)  222(17)    342(20)    284(19)     54(15)    -30(13)   -136(16) 

    C(525)  316(19)    540(25)    360(21)    116(18)    -54(15)   -172(18) 

    _______________________________________________________________________ 

         Table 4.  Hydrogen coordinates (x 10
4
) and isotropic displacement 

                   parameters (Å
2
 x 10

3
).  All hydrogen atoms were included 

                   in idealised positions with U(iso)'s set at 1.2*U(eq) or, 

                   for the methyl groups, 1.5*U(eq) of the parent carbon atom. 

         ________________________________________________________________ 

  

                      x           y           z        U(iso)  

         ________________________________________________________________ 

  

         H(1)       4358        4373        3724         30              

         H(21)      7277         580        3016         39              

         H(22A)     5043         516        3881         41              

         H(22B)     3995        2316        3845         41              

         H(23A)     4461        1755        5231         74              

         H(23B)     5430        2706        4845         74              

         H(23C)     6461         904        4885         74              

         H(31A)     9806        1205        1294         61              

         H(31B)     8473         556        1579         61              

         H(31C)     9699         499        2187         61              

         H(4)       8598        3894        1418         29              
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         H(6)       5440        9870        1506         29              

         H(71A)     3918       12565        1525         48              

         H(71B)     2901       13403        2434         48              

         H(71C)     1920       13149        1777         48              

         H(81)       648       13330        3280         40              

         H(82A)      118       11872        4642         54              

         H(82B)    -1116       11946        4034         54              

         H(83A)    -2528       14011        5056         95              

         H(83B)    -2345       14631        4143         95              

         H(83C)    -1111       14557        4750         95              

         H(9)       1642        9603        3832         29              

         H(53)     11529        6965         686         34              

         H(54)     12420        7058        1956         38              

         H(55)     10715        7098        3261         39              

         H(56)      8107        7062        3323         32              

         H(52A)     5419        5926         747         32              

         H(52B)     6548        6061        -104         32              

         H(525)     2330       10130         104         50              

         ________________________________________________________________ 

 Table 5.  Torsion angles, in degrees.  E.s.ds are in parentheses. 

     _________________________________________________________________ 

     C(13)-C(1)-C(2)-N(21)        178.2(3) 

     C(13)-C(1)-C(2)-C(3)          -0.9(4) 

     C(1)-C(2)-N(21)-C(22)          5.8(4) 

     C(3)-C(2)-N(21)-C(22)       -175.1(3) 

     C(2)-N(21)-C(22)-C(23)       -83.9(3) 

     N(21)-C(2)-C(3)-C(4)        -177.8(2) 

     C(1)-C(2)-C(3)-C(4)            1.3(4) 

     N(21)-C(2)-C(3)-C(31)          1.7(4) 

     C(1)-C(2)-C(3)-C(31)        -179.2(2) 

     C(2)-C(3)-C(4)-C(12)          -1.0(4) 

     C(31)-C(3)-C(4)-C(12)        179.5(3) 

     C(11)-C(6)-C(7)-C(8)          -0.1(4) 

     C(11)-C(6)-C(7)-C(71)        179.1(3) 

     C(6)-C(7)-C(8)-C(9)           -1.1(4) 
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     C(71)-C(7)-C(8)-C(9)         179.8(3) 

     C(6)-C(7)-C(8)-N(81)         175.3(2) 

     C(71)-C(7)-C(8)-N(81)         -3.9(4) 

     C(9)-C(8)-N(81)-C(82)         -4.1(4) 

     C(7)-C(8)-N(81)-C(82)        179.5(3) 

     C(8)-N(81)-C(82)-C(83)       175.5(3) 

     N(81)-C(8)-C(9)-C(10)       -175.4(2) 

     C(7)-C(8)-C(9)-C(10)           0.9(4) 

     C(13)-O(1)-C(10)-C(9)        172.3(2) 

     C(13)-O(1)-C(10)-C(11)        -8.2(4) 

     C(8)-C(9)-C(10)-O(1)        -179.9(2) 

     C(8)-C(9)-C(10)-C(11)          0.5(4) 

     O(1)-C(10)-C(11)-C(6)        178.9(2) 

     C(9)-C(10)-C(11)-C(6)         -1.6(4) 

     O(1)-C(10)-C(11)-C(5)         -3.0(4) 

     C(9)-C(10)-C(11)-C(5)        176.5(2) 

     C(7)-C(6)-C(11)-C(10)          1.4(4) 

     C(7)-C(6)-C(11)-C(5)        -176.7(2) 

     N(522)-C(5)-C(11)-C(10)      136.0(3) 

     C(12)-C(5)-C(11)-C(10)        12.5(3) 

     C(51)-C(5)-C(11)-C(10)      -113.3(3) 

     N(522)-C(5)-C(11)-C(6)       -46.0(3) 

     C(12)-C(5)-C(11)-C(6)       -169.5(2) 

     C(51)-C(5)-C(11)-C(6)         64.7(3) 

     C(3)-C(4)-C(12)-C(13)          0.2(4) 

     C(3)-C(4)-C(12)-C(5)         177.8(3) 

     N(522)-C(5)-C(12)-C(13)     -136.1(2) 

     C(11)-C(5)-C(12)-C(13)       -12.4(4) 

     C(51)-C(5)-C(12)-C(13)       113.2(3) 

     N(522)-C(5)-C(12)-C(4)        46.4(3) 

     C(11)-C(5)-C(12)-C(4)        170.2(2) 

     C(51)-C(5)-C(12)-C(4)        -64.2(3) 

     C(4)-C(12)-C(13)-C(1)          0.3(4) 

     C(5)-C(12)-C(13)-C(1)       -177.3(2) 

     C(4)-C(12)-C(13)-O(1)       -179.9(2) 

     C(5)-C(12)-C(13)-O(1)          2.6(4) 

     C(2)-C(1)-C(13)-C(12)          0.1(4) 

     C(2)-C(1)-C(13)-O(1)        -179.8(2) 

     C(10)-O(1)-C(13)-C(12)         8.4(4) 

     C(10)-O(1)-C(13)-C(1)       -171.7(2) 

     N(522)-C(5)-C(51)-C(52)        0.8(3) 

     C(12)-C(5)-C(51)-C(52)       118.2(3) 

     C(11)-C(5)-C(51)-C(52)      -117.2(3) 

     N(522)-C(5)-C(51)-C(56)     -179.1(3) 

     C(12)-C(5)-C(51)-C(56)       -61.6(3) 

     C(11)-C(5)-C(51)-C(56)        63.0(3) 

     C(56)-C(51)-C(52)-C(53)       -0.3(4) 

     C(5)-C(51)-C(52)-C(53)       179.8(2) 

     C(56)-C(51)-C(52)-C(521)     179.8(2) 

     C(5)-C(51)-C(52)-C(521)       -0.1(3) 

     C(51)-C(52)-C(53)-C(54)        0.8(4) 

     C(521)-C(52)-C(53)-C(54)    -179.4(3) 

     C(52)-C(53)-C(54)-C(55)       -0.5(4) 

     C(53)-C(54)-C(55)-C(56)       -0.2(4) 

     C(54)-C(55)-C(56)-C(51)        0.7(4) 

     C(52)-C(51)-C(56)-C(55)       -0.4(4) 



255 

 

     C(5)-C(51)-C(56)-C(55)       179.5(3) 

     C(51)-C(52)-C(521)-O(521)    179.3(3) 

     C(53)-C(52)-C(521)-O(521)     -0.6(5) 

     C(51)-C(52)-C(521)-N(522)     -0.8(3) 

     C(53)-C(52)-C(521)-N(522)    179.4(3) 

     O(521)-C(521)-N(522)-C(523)    5.8(4) 

     C(52)-C(521)-N(522)-C(523)  -174.2(2) 

     O(521)-C(521)-N(522)-C(5)   -178.7(3) 

     C(52)-C(521)-N(522)-C(5)       1.3(3) 

     C(12)-C(5)-N(522)-C(521)    -120.0(2) 

     C(11)-C(5)-N(522)-C(521)     117.0(2) 

     C(51)-C(5)-N(522)-C(521)      -1.3(3) 

     C(12)-C(5)-N(522)-C(523)      55.4(3) 

     C(11)-C(5)-N(522)-C(523)     -67.6(3) 

     C(51)-C(5)-N(522)-C(523)     174.1(2) 

     C(521)-N(522)-C(523)-C(524)  -97.7(3) 

     C(5)-N(522)-C(523)-C(524)     87.2(3) 

     N(522)-C(523)-C(524)-C(525)   19(24)



256 

 

Crystal structure analysis of a derivative of Rhodamine G 

Crystal data:  C29H29N3O2, M = 451.5.  Triclinic, space group P-1 (no. 2), a = 8.8708(9), b = 

9.6838(11), c = 15.8955(15) Å, α = 88.826(8), β = 79.174(8), γ = 63.088(10) , V = 1192.7(2) Å
3
. Z 

= 2, Dc = 1.257 g cm
-3

, F(000) = 480, T = 140(1) K, μ(Mo-Kα) = 0.8 cm
-1

, λ(Mo-Kα) = 0.71069 Å. 

Crystals are pale brown plates.  One, ca 0.30 x 0.19 x 0.04 mm, was mounted in oil on a glass fibre 

and fixed in the cold nitrogen stream on an Oxford Diffraction Xcalibur-3 CCD diffractometer 

equipped with Mo-Kα radiation and graphite monochromator.  Intensity data were measured by 

thin-slice ω- and φ-scans.  Total no. of reflections recorded, to θmax = 23, was 13360 of which 

3310 were unique (Rint = 0.073); 1921 were 'observed' with I > 2σI.  

Data were processed using the CrysAlisPro-CCD and -RED (1) programs.  The structure was 

determined by the direct methods routines in the SHELXS program (2A) and refined by full-matrix 

least-squares methods, on F
2
's, in SHELXL (2B).  The non-hydrogen atoms were refined with 

anisotropic thermal parameters.  Hydrogen atoms were included in idealised positions and their 

Uiso values were set to ride on the Ueq values of the parent carbon atoms.  At the conclusion of the 

refinement, wR2 = 0.108 and R1 = 0.096 (2B) for all 3310 reflections weighted w = [σ
2
(Fo

2
) + 

(0.0531P)
2
]

-1
 with P = (Fo

2
 + 2Fc

2
)/3; for the 'observed' data only, R1 = 0.046. 

In the final difference map, the highest peak (ca 0.56 eÅ
-3

) was near H(82a). 

Scattering factors for neutral atoms were taken from reference (3).  Computer programs used in this 

analysis have been noted above, and were run through WinGX (4) on a Dell Precision 370 PC at 

the University of East Anglia.  

References 

Programs CrysAlisPro-CCD and -RED, Oxford Diffraction Ltd., Abingdon, UK (2008). 

G. M. Sheldrick, SHELX-97 – Programs for crystal structure determination (SHELXS) and 

refinement (SHELXL), Acta Cryst. (2008) A64, 112-122. 

'International Tables for X-ray Crystallography', Kluwer Academic Publishers, Dordrecht (1992). 

Vol. C, pp. 500, 219 and 193. 

L. J. Farrugia, J. Appl. Cryst., (1999) 32, 837-838 . 

Legends for Figures 

Figure 1. View of the molecule, indicating the atom numbering scheme.  Hydrogen atoms 

have been omitted for clarity.  Thermal ellipsoids are drawn at the 50% probability level. 

 

Notes on the structure 

The main C13O three-ring system is basically planar, but there is a slight tilting about the central 

O(1)…C(5) vector; the angle between the normals to the two C6 rings is 8.86(14)°. 

Neither of the two amino hydrogen atoms is involved in hydrogen bonding – there are no acceptor 

atoms nearby.  Nor is there any stacking of ring systems by π…π interactions.  There is one 
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possible ‘weak hydrogen bond’, C(4)-H(4)…O(521′), where the symmetry operation, ′, is 2-x, 1-y, 

-x.  Intermolecular contacts are principally by C-H…π and other van der Waals’ interactions. 

N.B. 

The compound is a derivative of Rhodamine G, and its systematic name is : 

3',6'-bis(ethylamino)-2',7'-dimethyl-2-(prop-2-ynyl)spiro[isoindoline-1,9'-xanthen]-3-one 

 

Crystal structure analysis of ggipson3317 – (+/-)-111 

Crystal data:  C31H24N8, CH2Cl, M = 593.51.  Orthorhombic, space group Pccn, a = 22.8378(19), b 

= 11.4030(12), c = 10.4557(7) Å, α = 90, β = 90, γ = 90 , V = 2722.9(4) Å
3
. Z = 4, Dc = 1448 g 

cm
-3

, F(000) = 1232, T = 140(1) K, λ(Mo-Kα) = 0.71069 Å. 

Crystals are clear, colourless blocks.  From a sample under oil, one, ca 0.70 x 0.15 x 0.15 mm, was 

mounted on a glass fibre and fixed in the cold nitrogen stream on an Oxford Diffraction Xcalibur-

3/Sapphire3-CCD diffractometer, equipped with Mo-Kα radiation and graphite monochromator.  

Intensity data were measured by thin-slice ω- and φ-scans.  Total no. of reflections recorded, to θmax 

= 30.5, was 53410 of which 4155 were unique (Rint = 0.0738); 2518 were 'observed' with I > 2σI.  

Data were processed using the CrysAlisPro-CCD and -RED (1) programs.  The structure was 

determined by the direct methods routines in the SHELXS program (2A) and refined by full-matrix 

least-squares methods, on F
2
's, in SHELXL (2B).  The non-hydrogen atoms were refined with 

anisotropic thermal parameters.  Hydrogen atoms were included in idealised positions and their 

Uiso values were set to ride on the Ueq values of the parent carbon atoms.  At the conclusion of the 

refinement, wR2 = 0.1039 and R1 = 0.0985 (2B) for all 4155 reflections weighted w = [σ
2
(Fo

2
) + 

(0.0P)
2
 + 1.P]

-1
 with P = (Fo

2
 + 2Fc

2
)/3; for the 'observed' data only, R1 = 0.0465. 

In the final difference map, the highest peaks (to ca 0.4 eÅ
-3

) were close to the chlorine atom. 

Scattering factors for neutral atoms were taken from reference (3).  Computer programs used in this 

analysis have been noted above, and were run through WinGX (4) on a Dell Precision 370 PC at 

the University of East Anglia.  

References 

Programs CrysAlisPro, Oxford Diffraction Ltd., Abingdon, UK (2010). 

G. M. Sheldrick, SHELX-97 – Programs for crystal structure determination (SHELXS) and 

refinement (SHELXL), Acta Cryst. (2008) A64, 112-122. 

'International Tables for X-ray Crystallography', Kluwer Academic Publishers, Dordrecht (1992). 

Vol. C, pp. 500, 219 and 193. 

L. J. Farrugia, J. Appl. Cryst., (1999) 32, 837-838 . 

Figures for ggipson3317  

Ellipsoids are drawn at 50% probability. The dichloromethane solvent molecule has been omitted 

for clarity. A center of symmetry is located at C2. 
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Ellipsoids are drawn at 50% probability. The dichloromethane solvent molecule and the hydrogen 

atoms have been omitted for clarity. 
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Packing diagram showing the unit cell contents: View normal to the 010 plane. Ellipsoids are 

drawn at 50% probability. Hydrogen atoms are omitted for clarity. 
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Table 1.  Crystal data and structure refinement for ggipson3317. 

 

Identification code  ggipson3317 

Empirical formula  C32 H26 Cl2 N8 

Moiety formula C31 H24 N8 × C H2 Cl2 

Formula weight  593.51 

Temperature  140(1) K 

Wavelength  0.71073 Å 

Crystal system  Othorhombic 

Space group  Pccn 

Unit cell dimensions a = 22.8378(19) Å  

 b = 11.4030(12) Å  

 c = 10.4557(7) Å  

Volume 2722.9(4) Å3 

Z 4 

Density (calculated) 1.448 Mg/m3 

Absorption coefficient 0.279 mm-1 

F(000) 1232 
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Crystal size 0.70 x 0.15 x 0.15 mm3 

Theta range for data collection 3.57 to 30.51° 

Index ranges -32<=h<=32, -16<=k<=16, -14<=l<=14 

Reflections collected 53410 

Independent reflections 4155 [R(int) = 0.0738] 

Completeness to theta = 30.51° 99.9 %  

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 4155 / 0 / 191 

Goodness-of-fit on F2 0.923 

Final R indices [I>2sigma(I)] R1 = 0.0465, wR2 = 0.0925 

R indices (all data) R1 = 0.0985, wR2 = 0.1039 

Largest diff. peak and hole 0.365 and -0.414 e.Å-3 

 

Table 2.  Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 

103) for ggipson3317.  U(eq) is defined as one third of the trace of the orthogonalized Uij 

tensor. 

________________________________________________________________________________ 

 x y z U(eq) 

________________________________________________________________________________ 

C(15) 6384(1) 1604(1) -544(1)20(1) 

C(16) 6797(1) 1916(1) 375(1) 19(1) 

C 7500 7500 4298(3) 63(1) 

Cl 7380(1) 6240(1) 3362(1) 44(1) 

N(1) 7296(1) 3480(1) 1607(1) 21(1) 

N(21) 5629(1) 2125(1) -2083(1) 20(1) 

C(13) 6120(1) 3628(1) -833(1)23(1) 

N(22) 5479(1) 990(1) -2263(1) 28(1) 

C(31) 4574(1) 2353(1) -4635(1) 21(1) 

C(12) 6535(1) 3939(2) 66(1) 23(1) 
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C(25) 5330(1) 2821(2) -2897(1) 23(1) 

C(1) 7817(1) 4000(1) 1003(1) 22(1) 

N(23) 5090(1) 969(1) -3189(1) 26(1) 

C(32) 4364(1) 1471(2) -5425(1) 24(1) 

C(35) 4019(1) 3752(2) -5855(2) 32(1) 

C(34) 3805(1) 2868(2) -6628(2) 29(1) 

C(11) 6873(1) 3098(1) 683(1) 20(1) 

C(24) 4989(1) 2080(1) -3599(1) 21(1) 

C(33) 3978(1) 1728(2) -6413(2) 27(1) 

C(14) 6049(1) 2453(1) -1133(1) 20(1) 

C(36) 4398(1) 3501(2) -4857(2) 29(1) 

C(2) 7500 2500 2392(2) 23(1) 

________________________________________________________________________________

Table 3.   Bond lengths [Å] and angles [°] for ggipson3317. 

_____________________________________________________ 

C(15)-C(14)  1.379(2) 

C(15)-C(16)  1.394(2) 

C(15)-H(15)  0.9300 

C(16)-C(11)  1.397(2) 

C(16)-C(1)#1  1.516(2) 

C-Cl  1.7596(16) 

C-Cl#2  1.7596(16) 

N(1)-C(11)  1.4336(18) 

N(1)-C(2)  1.4630(16) 

N(1)-C(1)  1.472(2) 

N(21)-C(25)  1.3480(19) 

N(21)-N(22)  1.3518(18) 

N(21)-C(14)  1.4309(18) 

C(13)-C(12)  1.381(2) 

C(13)-C(14)  1.385(2) 
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N(22)-N(23)  1.3144(18) 

C(31)-C(32)  1.388(2) 

C(31)-C(36)  1.389(2) 

C(31)-C(24)  1.473(2) 

C(12)-C(11)  1.391(2) 

C(25)-C(24)  1.363(2) 

C(1)-C(16)#1  1.516(2) 

N(23)-C(24)  1.357(2) 

C(32)-C(33)  1.388(2) 

C(35)-C(34)  1.382(2) 

C(35)-C(36)  1.385(2) 

C(34)-C(33)  1.377(2) 

C(2)-N(1)#1  1.4630(16) 

 

C(14)-C(15)-C(16) 120.30(15) 

C(15)-C(16)-C(11) 119.29(14) 

C(15)-C(16)-C(1)#1 121.10(14) 

C(11)-C(16)-C(1)#1 119.55(13) 

Cl-C-Cl#2 112.44(15) 

C(11)-N(1)-C(2) 111.11(11) 

C(11)-N(1)-C(1) 112.20(11) 

C(2)-N(1)-C(1) 106.91(10) 

C(25)-N(21)-N(22) 110.35(12) 

C(25)-N(21)-C(14) 128.55(14) 

N(22)-N(21)-C(14) 121.10(12) 

C(12)-C(13)-C(14) 118.91(15) 

N(23)-N(22)-N(21) 106.92(12) 

C(32)-C(31)-C(36) 118.88(14) 

C(32)-C(31)-C(24) 120.50(15) 
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C(36)-C(31)-C(24) 120.61(14) 

C(13)-C(12)-C(11) 121.30(15) 

N(21)-C(25)-C(24) 105.32(15) 

N(1)-C(1)-C(16)#1 112.23(12) 

N(22)-N(23)-C(24) 109.27(13) 

C(31)-C(32)-C(33) 120.64(15) 

C(34)-C(35)-C(36) 120.76(16) 

C(33)-C(34)-C(35) 119.40(15) 

C(12)-C(11)-C(16) 119.32(14) 

C(12)-C(11)-N(1) 118.51(14) 

C(16)-C(11)-N(1) 122.16(13) 

N(23)-C(24)-C(25) 108.15(13) 

N(23)-C(24)-C(31) 122.60(14) 

C(25)-C(24)-C(31) 129.25(15) 

C(34)-C(33)-C(32) 120.19(15) 

C(15)-C(14)-C(13) 120.86(14) 

C(15)-C(14)-N(21) 119.89(14) 

C(13)-C(14)-N(21) 119.24(14) 

C(35)-C(36)-C(31) 120.13(15) 

N(1)#1-C(2)-N(1) 111.75(16) 

_____________________________________________________________ 

Symmetry transformations used to generate equivalent atoms:  

#1 -x+3/2,-y+1/2,z    #2 -x+3/2,-y+3/2,z  

Table 4.   Anisotropic displacement parameters (Å2x 103)for ggipson3317.  The anisotropic 

displacement factor exponent takes the form: - 2[ h2a*2U11 + ... + 2 h k a* b* U12 ] 

______________________________________________________________________________ 

 U11 U22 U33 U23 U13 U12 

______________________________________________________________________________ 

C(15) 20(1)  20(1) 20(1)  1(1) 3(1)  -1(1) 
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C(16) 19(1)  23(1) 15(1)  2(1) 2(1)  1(1) 

C 86(3)  70(3) 33(2)  0 0  -1(2) 

Cl 43(1)  44(1) 46(1)  9(1) 3(1)  2(1) 

N(1) 21(1)  25(1) 16(1)  -2(1) 0(1)  1(1) 

N(21) 19(1)  21(1) 21(1)  -1(1) 0(1)  1(1) 

C(13) 22(1)  24(1) 23(1)  -1(1) -2(1)  6(1) 

N(22) 32(1)  24(1) 28(1)  -1(1) -7(1)  1(1) 

C(31) 16(1)  27(1) 20(1)  -1(1) 1(1)  0(1) 

C(12) 25(1)  21(1) 23(1)  -4(1) 2(1)  3(1) 

C(25) 22(1)  23(1) 25(1)  2(1) -2(1)  2(1) 

C(1) 22(1)  24(1) 19(1)  -2(1) 1(1)  1(1) 

N(23) 28(1)  25(1) 26(1)  -2(1) -6(1)  2(1) 

C(32) 25(1)  23(1) 24(1)  2(1) 1(1)  -1(1) 

C(35) 34(1)  29(1) 33(1)  -1(1) -4(1)  11(1) 

C(34) 23(1)  41(1) 22(1)  2(1) -4(1)  2(1) 

C(11) 18(1)  26(1) 15(1)  -2(1) 2(1)  2(1) 

C(24) 19(1)  22(1) 21(1)  -1(1) 2(1)  2(1) 

C(33) 29(1)  33(1) 21(1)  -2(1) -3(1)  -7(1) 

C(14) 17(1)  27(1) 16(1)  -1(1) 1(1)  1(1) 

C(36) 32(1)  26(1) 28(1)  -8(1) -5(1)  4(1) 

C(2) 24(1)  29(1) 15(1)  0 0  1(1) 

______________________________________________________________________________ 
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Recent years have seen a huge surge of interest in the
application of alkyne-derived motifs for so-called “click”
chemistry.Given the critical importance of amino acids in
organic synthesis as well as their myriad of applications in
“click” chemistry it is interesting to note that the synthesis
of C-propargyl derived amino acid esters has not been
particularly well served.We report a convenient, straight-
forward, and high-yielding synthesis of structurally
diverseC-propargyl-derivedN-protected amino acid esters.

A search of SciFinder reveals that to date over 1700 papers
have been published on “click chemistry”. Critical to its
continued success and development is the ready availability
of structurally diverse alkyne (and azide) starting materials.

In an ongoing extension of a Trøger base project1 we
required an efficient, cheap, reliable, and straightforward
synthesis of structurally diverse N-protected R-amino acid
propargyl esters suited to “click” chemistry. Given the wide-
spread availability of structurally diverse natural and un-
natural amino acids and the extensive interest in “click”
chemistry we were surprised that a search on SciFinder
afforded a limited number of R-amino acid propargyl esters.
Furthermore upon closer inspection many of the proposed
syntheses employed elevated reaction temperatures, i.e., 70 �C,2
multistep reaction processes, i.e., synthesis of propargyl ester 3
from methyl ester 1 via acid 2,3 and the use of relatively
expensive reagents, i.e., synthesis of esters 5 and 6 utilized

N-(3-dimethylaminopropyl)-N-ethylcarbodiimide hydrochlor-
ide ($22 per gram), were low yielding, i.e., 14% for 6,4 required
long reaction times, i.e., 5 took 48 h to go to completion,5 or
employedDCC (dicyclohexylcarbodiimide), necessitating flash
chromatography for the efficient and complete removal of the
DCU (N,N0-dicyclohexylurea) byproduct, i.e., synthesis of 3
and 4 (Figure 1).6

Attempting the synthesis of ester 9 a solution of acid 7was
warmed with propargyl alcohol 8 (Q = OH) and 10 mol %
tosic acid (Scheme 1). After 6 h an intractable brown tar had
formed. Subsequent analysis (1H NMR) indicated ∼10% of
ester 9 had formed but that this was embedded within a
complex unidentifiable mixture.

An alternative procedure was required. The O-propargy-
lation of R-amino carboxylic acids with use of propargyl
bromide and base has been reported with (S)-tyrosine and
(S)-aspartic acid.7 Reinvestigating the synthesis of ester 9we
stirred acid 7 in dimethylformamide with propargyl bromide
and anhydrous potassium carbonate (1.2 equiv). After a
simple workup, i.e., dilute with aqueous citric acid, extract
with ethyl acetate, and filter through a Varian SPE cartridge
(NH2), an unoptimized 81% yield of ester 9 was afforded
that was pure enough (1HNMR indicated>95%) to be used
for a subsequent reaction.

With this result we set about investigating the scope of the
reaction with alternative N-protected R-amino acids. Both
aryl and alkyl side chain equipped R-amino acids such as
N-Cbz-(S)-phenylalanine andN-Bz leucine (entries A and B,
Table 1) afforded the corresponding propargyl esters 10 and

FIGURE 1. Previously synthesized N-protected O-propargylic
R-amino acid esters.

SCHEME 1. Synthetic Routes to N-Cbz-β-aminoalanine Pro-

pargyl Ester 9

(1) Bew, S. P.; Legentil, L.; Scholier, V.; Sharma, S. V. Chem. Commun.
2007, 389.

(2) Loeffler, L. J.; Sajadi, Z.; Hall, I. H. J. Med. Chem. 1977, 20, 1578.
(3) Werner, S.; Iyer, P. S.; Fodor,M.D.; Coleman, C.M.; Twining, L. A.;

Mitasev, B.; Brummond, K. M. J. Comb. Chem. 2006, 8, 370.

(4) Sanda, F.; Araki, H.; Masuda, T. Macromolecules 2005, 38, 10605.
(5) Loethen, S.; Ooya, T.; Soo, C. H.; Yui, N.; Thompson, D. H.

Biomacromolecules 2006, 7, 2501.
(6) Haridas, V.; Lal, K.; Sharma, Y. K.; Upreti, S. Org. Lett. 2008, 10,

1645. Brummond, K. M.; Mitasev, B. Org. Lett. 2004, 6, 2245.
(7) Sudhir, V. S.; Venkateswarlu, C.; Musthafa, O. T. M.; Sampath, S.;

Chandrasekaran, S.Eur. J.Org.Chem. 2009, 2120.Mandal, P.K.;McMurray,
J. S. J. Org. Chem. 2007, 72, 6599.
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11 in 86% and 83% yields, respectively. Similarly the cyclic
R-amino acidN-Cbz-(S)-proline derived propargyl ester (12,
entry C) was returned in an excellent 95% yield and without
recourse to flash chromatography. The synthesis of propar-
gyl ester 13 derived from the doubly N-Cbz protected (S)-
lysine was achieved in a pleasing 85% yield (entry D), again
no column chromatography was required. Subjecting differ-
entially N,O-diprotected N-Cbz-(S)-serine-O-benzyl to pro-
pargylation afforded the desired ester 14 (Table 1, entry E,
81% yield) with bothN-Cbz andO-benzyl protecting groups
remaining intact. Similarly the diprotected mono-O-benzyl
esterN-Cbz aspartic acid precursor afforded the correspond-
ing R-amino propargylic ester 15 in an 82% yield (entry F).

Incorporating an N-Boc protecting group within (S)-glu-
tamic acid, (S)-leucine, (S)-proline, and (S)-phenylalanine

afforded (Scheme 1) the expected N-Boc protected R-amino
acid propargylic esters 16-19 in 89%, 92%, 96%, and 91%
yields, respectively (entries G-J), without recourse to column
chromatography. Similarly incorporating an unnatural, aryl
containing R-amino acid, i.e., N-Boc-4-fluoro-(S)-phenylgly-
cine, afforded the corresponding propargylic ester 20 in a
pleasing 86% yield (entry K).

All attempts at transforming N-acetylglycine, N-Fmoc-
(S)-valine, N-Fmoc-(S)-phenylalanine, N-Fmoc-β-alanine,
or N-Fmoc-(S)-alanine into the corresponding propargylic
esters (not shown) employing the reaction conditions
outlined in Scheme 1 failed to return any of the desired
products. Seemingly the use of base labile N-protecting
groups resulted in their cleavage during the reaction
process.

TABLE 1. Examples of Structurally Diverse N-Protected O-Propargylic Amino Acid Esters and Peptides Synthesized in This Study
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A particularly useful application would focus on the
ability to generate propargylic esters of dipeptides. With this
in mind we subjected the simple monoprotected N-Boc-gly
gly dipeptide to our standard propargylation reaction con-
ditions (Scheme 1). After a simple workup we were delighted
to isolate the desired propargyl ester ofN-Boc-gly-gly (21) in
an unoptimised 67% yield (entry L, Table 1).

The application of our O-propargylation reaction to
R-amino acids that have heteroatoms embedded within
their side chains was deemed worthy of investigation.
Initiating this study we probed the O-propargylation of
N-Boc-(S)-methionine sulfone. The desired ester (22) was
afforded in an unoptimized but pleasing 71% yield (entry
M). Similarly incorporating imidazole equipped R-amino
acids such as 3-N-benzyl-R-N-Boc-(S)-histidine (entry N),
3-N-BOM-R-N-Boc-(S)-histidine (entry O) afforded the cor-
responding propargyl esters 23 and 24 in 41%and43%yields,
respectively.

The synthesis of (S)-serine derived propargylic ester 25 has
been previously reported; however, the yield was a very poor
14%.4 We felt our procedure may offer this potentially
valuable R-amino acid building block in a higher yield.
Consequently we were delighted that subjecting N-Boc-(S)-
serine to the reaction conditions outlined in Scheme 1 aff-
orded ester 25 in a significantly improved 65%yield (entry P).

The dansyl group is routinely employed as a fluorogenic
agent for the N-derivatization and analysis of R-amino acids
and peptides.8 Furthermore Borthwick et al. has demon-
strated that a series of N-dansyl-(S)-proline R-methylpyrro-
lidine-5,5-lactam derivatives display single-figure μM inhi-
bition of human cytomegalovirus (HCMV) protease.9 Thus
the ability to generate aN-dansyl-(S)-proline propargyl ester
26 may have significant applications in the spectroscopic
determination of amino acids or peptides as well as acting
as a valuable tool for probing biological systems. With this
in mind we subjected commercially available N-dansyl-(S)-
proline to our standard propargylic reaction conditions. We
were delighted that ester 26 (entryQ) was afforded in an 85%
yield and, similar to previous examples, the product was pure
enough to be used “as is”.

Our study to date had focused on, in the majority of cases,
investigating N-protected R-amino acids derived from nat-
ural sources. Although we did not envisage any issues it was
thought prudent to establish that the procedure outlined in
Scheme 1 also worked for unnatural N-protected β-amino

acids. With this in mind we took commercially available
(R)-3-(Boc-amino)-3-phenylpropionic acid and subjected it
to our standard conditions with propargyl bromide and
potassium carbonate in dimethylformamide. The corre-
sponding propargyl ester (27) was afforded as a white
powder in a 75% yield (entry R).

In summary, the efficient synthesis of C-propargylated
R-amino acids has been achieved by using very mild reaction
conditions that tolerate the majority of commonly used
amino acid protecting groups. Utilizing cheap reagents the
desired products are afforded, in the majority of cases, pure
enough to be employed as is, thus negating the cost and
environmental impact of purification. It is envisaged that
this protocol will be widely applicable, affording valuable
C-propargylated amino acids building blocks that should
find significant use in the synthetic chemistry community.

Experimental Section

General Procedure. A flame-dried 25-mL round-bottomed
flask was charged with N-Cbz-(S)-proline (1 g, 4 mmol) and
anhydrous potassium carbonate (830 mg, 6 mmol) in DMF
(5mL). The resulting suspension was stirred for 30min under an
atmosphere of nitrogen. Propargyl bromide (80% in toluene,
710mg, 6mmol) was added and the reaction was stirred for 16 h
at ambient temperature. The resulting mixture was diluted with
water (5 mL), acidified with citric acid (1 mL), and extracted
with ethyl acetate (2 � 2 mL). The combined organic extracts
were washed with brine (2 mL), dried with magnesium sulfate,
and filtered through NH2 loaded silica. Solvent removal af-
forded 12 (1.1 g, 3.8 mmol) as a yellow oil in a 95% yield, with
the following physicochemical properties.

1H NMR (400 MHz, CDCl3) δ 7.23 (m, 5H, ArH), 5.03 (m,
2H, CH2(cbz)), 4.62 (m, 1H, CHH(yne)), 4.45 (s, 1H, CHH(yne)),
4.28 (m, 1H,RCH), 3.41 (m, 2H, δCH2), 2.41 (1H, CH(yne)), 2.12
(d, J = 7.42 Hz, 1H, βCHH), 1.85 (m, 3H, βCHH, γCH2);

13C
NMR (75 MHz, CDCl3) δ 172.1, 171.9, 154.9, 154.2, 136.7,
136.6, 128.5, 128.4, 128.0, 127.9, 127.9, 127.8, 77.2, 75.3, 66.9,
66.9, 58.9, 58.6, 52.4, 52.3, 46.8, 46.3, 30.6, 29.6, 24.1, 23.3; FT-
IR (KBr neat) 3285, 2956, 2883, 1753, 1704, 1452, 1417, 1353,
1167; m/z [ES] M þ Na (found) 310.0, (calcd) 310.11; HRMS
(NSI) calcd for C16H21N2O4 305.1496, found 305.1496; [R]25D
-80.3 (c 1.0, CHCl3).
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ABSTRACT

Routinely employed syntheses of terminally deuterated alkynes often utilize strong bases (i.e., LDA, n-BuLi, or Grignard reagents) or low
(i.e.,�78 �C) or elevated (i.e., 56 �C) reaction temperatures; furthermore many of these procedures afford average yields and in some cases less
than optimum deuterium incorporation. Herein we report the application of alternative extremely mild reaction conditions that readily afford
quantitative yields of terminally deuterated alkynes in a matter of minutes with exceptional isotope incorporation at ambient temperature.

The development of protocols that afford high value,
deuterated molecules in high yields and, importantly, with
excellent levels of deuterium incorporation is very impor-
tant to academia and biotechnology,medicinal, analytical,
pharmaceutical, and agrochemical industries.

2H-alkynes are valuable, synthetically useful entities1

capable of being used for the synthesis of additional
deuterated molecules; e.g., 2H-alkyne hydrogenation gen-
erates cis- or trans-2H-alkenes2 or 2H-alkanes.3 Alterna-
tively aqueous gold salts4 afford 2H-ketones, and
2H-alkyne cyclotrimerization affords 2H-aromatics.5

Protocols for deuterated alkyne synthesis employ either
elevated6 or subambient reaction conditions;7 extended,
often hour-long reaction times;8 or strong bases, i.e.
n-BuLi,9 Grignard reagents10 (Scheme 1), or LDA;11 or
an expensive transition metal salt,12 a consequence of
which is the requirement that anhydrous reaction condi-
tions and solvents be maintained at all times.

Scheme 1. Synthesis of Deuterated Alkyne 2 from 1

(1) Diederich, F. Acetylene Chemistry: Chemistry, Biology and Ma-
terial Science; Stang, P., Tykwinski, R. R., Eds.; Wiley-VCH: 2004. Denes,
F.; Perez-Luna, A.; Chemia, F. Chem. Rev. 2010, 110, 2366. Willis, M. C.
Chem. Rev. 2010, 110, 725. Amblard, F.; Cho, J. H.; Schinazi, R. F.
Chem.Rev. 2009, 109, 4207.Alonso, F.; Beletskaya, I. P.; Yus,M.Chem.
Rev. 2004, 104, 3079. Beletskaya, I.; Moberg, C. Chem. Rev. 1999, 99,
3435. Bunz, U. H. F.; Kloppenburg, L. Angew. Chem., Int. Ed. 1999,
38, 478.

(2) Lindlar, H.; Dubuis, R.Org. Synth., Coll. Vol. 5 1973, 880. Trost,
B. M.; Ball, Z. T.; Joege, T. J. Am. Chem. Soc. 2002, 124, 7922.

(3) Vanier, G. S. Synlett 2007, 131. Mandal, P. K.; McMurray, J. S.
J. Org. Chem. 2007, 72, 6556.

(4) Marion, N; Ramon, R. S.; Nolan, S. P. J. Am. Chem. Soc. 2009,
131, 448.

(5) Agenet, N.; Bruisine, O.; Slowinski, F.; Gandon, V.; Aubert, C.;
Malacria, M. Organic Reactions 2007, 68, 1�302.

(6) Zhang, G.; Cui, L.; Wang, Y.; Zhang, L. J. Am. Chem. Soc. 2010,
132, 1474.

(7) Hislop, J.-A.; Hunt, M. B.; Fielder, S.; Rowan, D. D. J. Agric.
Food Chem. 2004, 52, 7075.

(8) Sabot, C.; Kumar,K. A.; Antheaume, C.;Mioskowski, C. J. Org.
Chem. 2007, 72, 5001.

(9) Tsuchimoto, T.; Matsubayashi, H.; Kaneko, M.; Nagase, Y.;
Miyamura, T.; Shirakawa, E. J. Am. Chem. Soc. 2008, 130, 15823.

(10) Hashmi, A. S. K.; Rudolph,M.; Siehl, H.-U.; Tanaka,M.; Bats,
J. W.; Frey, W. Chem.;Eur. J. 2008, 14, 3703.

(11) Chen, Y.; Lee, C. J. Am. Chem. Soc. 2006, 128, 15598.
(12) Lewandos, G. S.;Maki, J.W.; Ginnebaug, J. P.Organometallics

1982, 1, 1700.
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Furthermore many afford subquantitative yields of
product with reduced levels of deuterium incorporation
or employ multistep procedures requiring presynthesized
bespoke ‘not off the shelf’ reagents, i.e. 5 (Scheme 2),13 or
hazardous to handle alkali metals.14

Amild, quick, and efficient protocol capable of generat-
ing terminal 2H-6 was required (Scheme 3). Our initial
thoughts focused on reacting methyl propiolate with so-
dium deuteroxide/D2Omixtures; however significant ester
hydrolysis was observed. Using less basic reaction condi-
tions, the weaker base potassium carbonate was probed;
furthermore using a water ether biphasic reaction medium
we envisaged may negate the ester hydrolysis problem,
affording high yields of 2H-6. After methyl propiolate was
dissolved in ether, it was stirred with a 1M aqueous (D2O)
potassium carbonate solution. 2H-6 was generated in an
average yieldwith relativelypoor (25%) 2H-incorporation.
Gratifyingly it seemed these less basic reaction conditions
mediated significantly less ester hydrolysis but at the
expense of lower deuterium incorporation.A solvent study
using dichloromethane, toluene, 1,2-dichloroethane, tert-
butylmethyl ether, ethyl acetate, hexane, toluene, and
1,1,1-trichloroethane and employing the same reaction
conditions again generated 2H-6, but the yields were
unacceptable and purification of 2H-6 from methyl pro-
piolate was tedious and time-consuming.
Aqueous potassium carbonate had negated the ester

hydrolysis problem; however the efficiency of the reaction,
i.e. conversion ofmethyl propiolate to 2H-6, was poor.We
considered that part of the problem lies in the biphasic
nature of the reaction system. Mindful that switching
to water miscible acetonitrile and aqueous potassium
carbonate would result in extensive ester hydrolysis, we
were delighted to observe the formation of 2H-6 in both
quantitative yield and 2H-incorporation (Scheme 3).

Probing the rate of the reaction, we dissolved methyl
propiolate in CD3CN and ran the 1H NMR. To the same

sample was added potassium carbonate (1 eqn) in D2O.
Interestingly the deuteration of methyl propiolate was
extremely fast, complete within minutes affording 2H-6
in >99% (Supporting Information (SI)).
Buoyed by this result we undertook a study using pro-

pargyl alcohol, propargyl bromide, monotri(isopropyl)-
silylacetylene, and propiolic acid (Scheme 4). Using
1H NMR as an efficient, sensitive ‘real time investigative
probe’ we established terminal alkyne deuteration was,
again, fast and complete within minutes.

This limited substrate scope indicated our isotope ex-
change reaction tolerated a range of functionality that
included the relatively base labile propargyl bromide, as
well as propargyl alcohol, TIPS-acetylene (TMS-acetylene
did not survive the reaction15), and electron-poor sub-
strates such as propiolic acid. This simple protocol af-
forded 2H-7�2H-10 via a straightforward process andwith
excellent levels of 2H-incorporation (see SI).
Confident our protocol was robust, we subjected dodec-

1-yne to terminal deuteration. 2H-11was generated in both
quantitative yield and 2H-incorporation (judged by the
disappearance of the terminal alkyne triplet at 1.93 ppm).
Similarly ethynylbenzene as well as 1- and 2-ethynyl-
naphthalenes afforded 2H-12, 2H-13, and 2H-14 in quanti-
tative yields. Gratifyingly performing a one-pot double
deuterationon (Z)-hexa-3-en-1,5-diyne generated 2H-15 in
a quantitative yield and with >95% 2H-incorporation.
Using 1H NMR as our investigative tool no (Z)-2H-15 to
(E)-2H-15 isomerization was observed.16

Using ethynylbenzene (12) we investigated, indepen-
dently, water miscible dioxane and THF as possible alter-
natives to acetonitrile. Both afforded 2H-12 with >99%
deuterium incorporation and essentially quantitative
yields (K2CO3, rt, 1 h). To probe alternative inorganic or
organic bases, the synthesis of 2H-12 was attempted using
cesium carbonate, sodium carbonate, sodium hydrogen
carbonate, triethylamine, and polystyrene bound trisa-
mine (all 1 eqn). All the inorganic bases afforded 2H-12
in excellent yield and deuterium incorporation, i.e.>99%.
Triethylamine and immobilized trisamine afforded 2H-12
in good yields; however the 2H-incorporation was slightly
lower, i.e. 95%.

Scheme 2. Synthesis of Deuterated Alkyne 4 from 3 Using 5

Scheme 3. Mild Synthesis of Deuterated Propiolate Ester 2H-6

Scheme 4. Deuteration of Alkynes Monitored via 1H NMR

(13) Cintrat, J. C.; Pillion, F.; Rousseau, B. Tetrahedron Lett. 2001,
42, 5001.

(14) Sirokan,G.;Molnar, A.; Bartok,M. J. Labelled Compds. Radio-
pharm. 1989, 27, 439.

(15) Diederich, F.; Stang, P. J. Metal Catalyzed Cross-Coupling
Reactions; Wiley-VCH: Chichester, 1998.

(16) McMahon, R. J.; Halter, R. J.; Fimmen, R. L.; Wilson, R. J.;
Peebles, S.A.;Kuczkowski, R. L.; Stanton, J. F. J.Am.Chem.Soc. 2000,
122, 939–949.
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Probing the generality of the deuteration process, a
series of structurally diverse heterocyclic and heteroatom

alkyneswere investigated. 4-Ethynylpyridine (16), 1-(prop-

2-ynyl)-1H-benzo[d]imidazole (17), ethynyl 2,2,3,3-tetra-

methylcyclopropanecarboxylate (18), 1-ethynyl-4-nitro-

benzene (19), 4-(prop-2-ynyloxy)-1H-isochromen-1-one

(20), 2-(prop-2-ynyloxy)tetrahydro-2H-pyran (21), 2-(prop-

2-ynyl)isoindoline-1,3-dione (22), and 4-(prop-2-ynyl)-

morpholine (23) reacted (standard reaction conditions

employed in Scheme 5), within minutes, affording 2H-

16�2H-23 in quantitative yields and excellent levels of

deuterium (Figure 1). Incorporating multiple deuterium

atoms into terminal bis- or tetra(alkynes) in quantitative

yield and 2H-incorporation had significant appeal. Subject-

ing diprop-2-ynyl pyridine-2,6-dicarboxylate and diethyl

2,2-di(prop-2-ynyl)malonate to our standard D2O/K2CO3

(2.5 eqn) reaction conditions afforded 2H-24 and 2H-25

in quantitative yields and, importantly, 100% deuterium

incorporation. To exploit this further, the incorporation

of four deuteriums was attempted using a calix[4]arene

appended with four lower-rim O-propargyl ethers. To our

delight 2H-26was afforded in a quantitative yield and with

outstanding levels of deuterium incorporation.

A terminally deuterated alkyne attached to an optically
active molecule engenders it with synthetic ‘appeal’ espe-
cially if it can be used to synthesize optically active
(deuterated) building blocks or drug-like molecules. Using
an exceptionally mild, one-pot, two-step procedure,
(1R,2S)-ephedrine (27) was N-propargylated using condi-
tions reported17 by Couty et al. (Scheme 6); we were
delighted that, without workup, the introduction of deu-
terium oxide afforded 2H-28 with quantitative 2H-incor-
poration. Treatment of 2H-28 with thionyl chloride and
subsequently sodium azide (D6-DMSO, 110 �C) afforded
>95% incorporated 2H-29 in a 64% yield. No reduction
in 2H-incorporation was observed for this transformation
(cf. >95% for 2H-28). Worthy of note is that this exceeds
the 80% 2H-incorporation reported by Couty et al. for
their low temperature (�78 �C) deprotonation (n-BuLi)
electrophilic quench process using non-2H 28.

To further demonstrate the broad scope of this excep-
tionally mild deuteration protocol, its exploitation for the
chemoselective deuteration of an organometallic complex
was sought. Synthesis of ferrocene propargyl acetate 30
(48% yield) was straightforward.18 Gratifyingly, dissol-
ving 30 in acetonitrile, adding deuterium oxide and potas-
sium carbonate, allowed the efficient synthesis of 2H-31
with >95% deuterium incorporation and in an excellent
98% yield (Scheme 7); no evidence of cyclopentadienyl
1H�2H exchange was detected.

The synthesis of isotopically labeled R-amino acids and
carbohydrates is critically important to (in)organic and
biological mechanism elucidation, probing for kinetic iso-
tope effects, and protein structure analysis. To validate the
extremely mild nature of our protocol, the deuteration of
variously N,C-protected-R-amino acids and O-protected
carbohydrates was investigated. N-Boc-C-tert-butyl-O-

Figure 1. Examples of deuterated molecules 2H-16�2H-26.

Scheme 6. Synthesis of Deuterated Triazole Piperazine 2H-29

Scheme 7. Synthesis of Isotopically Labelled Ferrocene 2H-31

Scheme 5. Synthesis of 2H-Aliphatic and 2H-Aromatic Species

(17) Couty, F.; Durrat, F.; Prim,D.Tetrahedron Lett. 2004, 45, 3725.
(18) Bew, S. P.; Hiatt-Gipson, G. D. J. Org. Chem. 2010, 75, 3897.
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propargyl-(S)-tyrosine, (S)-prop-2-ynyl-2-(tert-butoxy-
carbonylamino)pent-4-ynoate, N-Boc-C-propargyl-(S)-
phenylalanine, and N-Boc-C-propargyl-(S)-4-fluorophe-
nylglycine (unnatural R-amino acid) were transformed
(standard conditions) into 2H-32�2H-35 (Figure 2) with
>99% 2H-incorporation and excellent yields. The term-
inal deuteration (S)-N-Boc-C-propargyl methione, (S)-N-
dansylproline propargyl ester, and N-Bn-38 afforded
2H-36�2H-38 in excellent yields and, again, levels of
deuterium. Incorporating O-propargylated glucose, bio-
tin, and lactose afforded the corresponding deuterated
derivatives, 2H-39�2H-41 respectively, in excellent yields
and levels of deuterium incorporation.

Isotopically labeled entities are crucial to the pharma-
ceutical, agrochemical, and biotechnology industries
(ADME and PKME studies); therefore efficient routes
to labeled drug compounds are very important. β-Lactam
antibiotics are very sensitive to β-lactam ring opening
under aqueous basic or acidic conditions. When O-pro-
pargyl tazobactam 42 was subjected to our standard
slightly basic D2O/K2CO3

2H-propargylating reaction
conditions, none of the desired 2H-43was isolated; instead
as expected extensive decomposition was observed. While

investigating (immobilized) base, solvent, and temperature
conditions, we were unable to prevent ring-opening.

Negating this, 3-deutero propargyl bromide 2H-7 (see
Scheme 4) reacted directly with the sodium salt of the
β-lactam tazobactam 42 affording 2H-43 in excellent yield
and>95% 2H-incorporation (Scheme 8). Similarly react-
ing the sodium salt of 44 with 7 at ambient temperature in
DMF afforded the desired 2H-O-propargylcefazolin 45 in
excellent yield and deuterium incorporation (Scheme 9).

In summary, this is an exceptionally mild, synthetically
versatile, extremely practical protocol that efficiently
transforms terminal alkynes into their deuterated analogs;
is straightforward; does not use low temperature, anhy-
drous solvent, or strong base; is cheap and environmen-
tally friendly; and should prove useful to the organic,
inorganic, medicinal and agrochemist alike.
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Scheme 8. Synthesis of 2H-O-Propargyltazobactam 2H-43

Scheme 9. Synthesis of 2H-O-Propargylcefazolin 45

Figure 2. 2H-alkyne derived R-amino acids and carbohydrates.
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