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Abstract 

The Nrf2/Keap1 protein-protein interaction (PPI) regulates activity of the Nrf2 antioxidant and 

anti-inflammatory pathway. The transcription factor Nrf2 has been found to be a key mediator in 

the resolution of inflammation and the progression of chronic diseases. Most known inducers of 

the Nrf2 pathway act by covalent modification of Keap1 via electrophilic functional groups. 

Controlled induction of the Nrf2 pathway via specific disruption of the Nrf2/Keap1 interaction is 

an attractive therapeutic target. 

This work describes a cell penetrating, TAT-Nrf2 peptide which targets the Nrf2/Keap1 interaction 

in vitro. Induction of downstream genes is both sequence and dose dependent. In an established 

model of bacterial sepsis, the peptide reduces pro-inflammatory mediators. Investigation of both 

cell penetrating and Keap1 binding sequences has identified the requirements for effective Nrf2 

induction in cell based assays. An in vitro purified protein, fluorescence polarisation (FP) assay was 

established in order to rapidly characterise these peptides. 

Based on the secondary structure of the Keap1 binding portion of Nrf2, further peptides were 

designed to constrain the conformation and mimic the full protein, while reducing overall size. 

Synthesis of cyclic peptides has identified the minimal sequence required for efficient binding and 

provides significant improvement in affinity over linear sequences. Several macrocyclisation 

techniques were explored in an attempt to retain biological activity, without the need for cell 

penetration sequences. Initially, disulfide bridge formation was used to produce peptides with 

affinities for Keap1 similar to the TAT-Nrf2 peptides at considerably reduced size. Subsequently, 

both head-to-tail cyclisation and peptide stapling were examined in order to restore potency in 

cell based assays. 

Finally, an alternative method for identification of Nrf2/Keap1 disruptors was explored. In silico 

docking calculations were used to identify potential novel PPI disruptors through library 

screening. Extracted hits were assessed using the FP assay, validating its use for high throughput 

screening. 
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Chapter 1:  Inflammation, Nrf2 and Protein-Protein Interactions 

1.1 - Inflammation 

1.1.1 - The Inflammatory Response 

The body's inflammatory response acts as a first line of defence against invasion. Known as acute 

inflammation, the objective is to return the affected tissue to its pre-injury state.1 The second 

form of inflammation, termed chronic, is caused by persistent engagement of the innate and 

acquired immune system. Both forms of inflammation can cause significant damage due to 

dysregulation, for example, anaphylactic shock and sepsis in the case of acute inflammation and a 

wide range of conditions, from cardiovascular and neurodegenerative diseases to various forms of 

cancer as a result of chronic inflammation.2 Whereas the acute inflammatory response has a 

defined purpose in defence, it is still unclear whether chronic inflammation may have a beneficial 

counterpart.3 

Whether the result of bacterial, viral, chemical or physical trauma, the initial stages of acute 

inflammation are the same.1 Initial damage is detected by tissue resident macrophages and mast 

cells, which produce a variety of pro-inflammatory mediators. This leads to activation of blood 

vessel endothelial cells near the site, which release cytokines and chemokines into the 

bloodstream to attract leukocytes.4 At the same time, the endothelial cells display adhesion 

molecules on their surfaces, for the leukocytes to attach to. The tight junctions between 

endothelial cells reversibly open to allow plasma protein and fluid to enter the tissue. This is the 

cause of the characteristic swelling and pain associated with inflammation, the redness and heat 

coming from increased blood flow to the area. Once the leukocytes, predominantly neutrophils, 

have bound to the endothelium, they migrate into the tissue through the tight junctions. At the 

site of inflammation, the neutrophils release granules containing reactive oxygen and nitrogen 

species alongside proteases to destroy the invading agent.3 During this process, there is no control 

over the cells targeted by these toxic compounds, resulting in collateral damage to the host 

tissue. However, the damage caused by neutrophils does not continue unchecked. Once 

neutrophils have entered the tissue, they switch from production of pro-inflammatory to anti-

inflammatory mediators.5 As the balance of signals shifts from induction to reduction of 

inflammation, the recruitment of leukocytes ceases and apoptosis of neutrophils in the tissue is 

triggered. Macrophages clear apoptotic neutrophils and other debris by phagocytosis and release 

repair cytokines. The macrophages then leave the tissue by draining into the lymphatic system 

and eventually return to the blood. The repair phase can result in total regeneration of the tissue 
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as seen with the liver, or to formation of scar tissue when repair is not possible, as with the 

myocardium.1 

1.1.2 - Inflammatory Disease 

If the invading agent is not cleared, for instance in severe bacterial infections, the inflammatory 

response persists and can escalate to dangerous levels. Sepsis is one result of uncontrolled acute 

inflammation and can lead to respiratory or renal failure and death in around 30% of cases.6 

Treatment of sepsis is still a challenge, despite recent advances in reduction of mortality rates. As 

well as escalation of the acute response to dangerous levels, changes in the cells recruited to the 

site of injury can lead to damage through a switch to chronic inflammation. Despite the 

association of “chronic” with duration, chronic inflammation is defined by the types of leukocyte 

present in the tissue.3 The exact cause of chronic inflammation is still unclear, however it appears 

to be due to tissue malfunction rather than specific infection or injury. A change in the adhesion 

molecules displayed by endothelial cells promotes binding of lymphocytes and monocytes rather 

than neutrophils. Once these have migrated into the tissue, the monocytes differentiate into 

macrophages over a number of days.1 The lymphocytes and macrophages release pro-

inflammatory mediators which trigger fibrinoblasts to produce scar tissue. These mediators also 

activate further macrophages and lymphocytes which perpetuate the response leading to long 

term damage.  
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Table 1.1: Examples of inflammatory diseases (adapted from Nathan et al.
2
) 

Uncontrolled inflammation has been linked to a wide range of diseases (Table 1.1). In the case of 

many of these conditions, the underlying cause is unknown and control of the inflammation is the 

only available course of action.2 As the pathogens are identified, methods of treatment may 

increase, as was the case for gastric ulcers caused by Helicobacter pylori.7 However, until this 

happens, more effective treatments than those currently available for inflammation need to be 

developed. In any case, the inflammatory response may be more harmful than the pathogen 

causing it.  

1.1.3 - Anti-inflammatory Drugs 

Currently there are two categories of drugs commonly used to treat inflammation, glucocorticoids 

(GCs) and non-steroidal anti-inflammatory drugs (NSAIDs).8 In addition, some success has been 

found in the form of antibodies targeting specific pro-inflammatory cytokines. GCs are one of the 

most effective anti-inflammatory treatments available. The main effect of GCs is through binding 

to the glucocorticoid receptor, which then translocates to the nucleus.9 It binds to the 

glucocorticoid responsive element in the promoter region of various genes and causes the 
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production of anti-inflammatory proteins. Activation of the glucocorticoid receptor also reduces 

inflammation indirectly by suppressing pro-inflammatory gene expression. Modelled on the 

hormone cortisol, the GCs were heralded as a solution for treatment of chronic inflammatory 

disorders. Their wide spread efficacy led to Philip Hench, Edward Kendall and Tadeus Reichstein 

receiving the 1950 Nobel Prize in medicine, however, common and severe side effects from their 

use means they are now used only in low doses or to treat life threatening conditions.10,11 Side 

effects from short term use, such as suppressed resistance to infection, are reversible, however 

conditions such as osteoporosis, atherosclerosis and even psychosis from long term use can be 

permanent. 

While not as potent as the GCs, the NSAIDs achieve fewer side effects by targeting a single pro-

inflammatory enzyme, cycloxygenase (COX). COX produces PGE2, a prostaglandin, which lowers 

the body's pain threshold.8 Aspirin, the archetypal NSAID, inhibits both COX-1 and COX-2, whereas 

more modern NSAIDs have been designed to be more selective to COX-2. This has two benefits, 

COX-2 produces around 100 fold more PGE2 than COX-1, making them more effective, and 

inhibition of COX-2 has fewer associated side effects. Compared to the GCs, side effects are 

minor, including gastric irritation, reduced renal blood flow and skin reactions.11 However, while 

NSAIDs reduce swelling and pain, they do little to treat the underlying disease. In conditions such 

as rheumatoid arthritis, vasculitis and nephritis where NSAIDs are used to relieve symptoms, the 

underlying tissue damage is unaffected.  

The use of antibodies as therapeutic agents offers a new avenue for treatment of inflammation. 

Because the concentration of cytokines is very low, 10-20 pM in some cases, targeting them 

directly requires similarly small concentrations of drug.8 By using antibodies specific for TNFα or 

the pro-inflammatory interleukins, effective therapies have been developed for rheumatoid 

arthritis, inflammatory bowel disease, psoriasis and multiple sclerosis. Antibody therapies have 

little to no organ toxicity, however they suppress the body's innate immune response, increasing 

the likelihood of opportunistic infections.12 A more worrying side effect seen with some antibody 

therapies is progressive multifocal leukoencephalopathy, which causes demyelination of nerves 

and can be fatal. Why this occurs is unknown. 
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1.2 - Nrf2 

1.2.1 - Nrf2 Antioxidant and Anti-inflammatory Response 

An area that has only recently been explored therapeutically, seeks to treat a host of diseases by 

harnessing the body's own antioxidant and anti-inflammatory defences. Nuclear factor erythroid 

2-related factor 2 (Nrf2) is widely acknowledged as the master regulator of the body's innate 

antioxidant response.13 It is a ubiquitously expressed transcription factor of the cap'n'collar 

family, which is responsible for basal and induced expression of proteins involved in metabolism, 

resolution of oxidative stress and cytoprotection.14 This system is tightly controlled however. The 

negative regulator of Nrf2, Kelch-like ECH-associated protein 1 (Keap1), rapidly sequesters Nrf2 in 

the cytosol, facilitating its ubiquitination. As a result, Nrf2 has a half life of just 10 to 20 minutes in 

unstressed cells. 

The close connection between inflammation and generation of reactive oxidant species (ROS) is 

already highlighting areas where induction of Nrf2 regulated genes could be beneficial. Continued 

oxidative stress can lead to chronic inflammation which can in turn mediate cancer, diabetes, 

cardiovascular and neurological diseases.15 In atherosclerosis, where low shear stress in vessels is 

associated with formation of lesions, Nrf2 has been found to be responsible for inducing a 

number of ARE mediated protective enzymes in areas of high shear stress.16 Under the same 

conditions, Nrf2 was found to reduce TNFα levels and expression of inflammatory response 

adhesion molecules. There is also evidence to suggest that Nrf2 induction could be used in 

combination with current treatments. Adenuga et al. have shown that histone deacetylase 2 

(HDAC2) levels are regulated by Nrf2.17 Nrf2 knockout mice were found to have lower levels of 

HDAC2 which led to increased resistance to steroidal treatment of inflammation. Some 

interactions between Nrf2 mediation and the inflammatory response appear to be more complex. 

The cytokine interleukin 6 (IL-6) is usually pro-inflammatory, however IL-6 deficient mice show 

increased oxidative stress and neurodegeneration.18 Nrf2 knockout mice were used to show that 

Nrf2 is a potent inducer of IL-6. This is unusual as IL-6 has neither an antioxidant effect nor is it a 

detoxification enzyme. However, it appears to have a protective function in cells subjected to 

oxidative stress. One particularly promising area of investigation, is the role of Nrf2 mediated 

hemeoxygenase 1 (HO-1) expression in inflammation.19 The HO-1 enzyme converts heme to the 

antioxidant  biliverdin and carbon monoxide. Biliverdin is itself converted to the more potent 

bilirubin by biliverdin reductase. The anti-inflammatory properties of HO-1 have been 

demonstrated in mouse models as well as a case of human HO-1 deficiency.20,21 The anti-

inflammatory effects of HO-1 come not only from degradation of pro-inflammatory heme, but 
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also from production of anti-inflammatory carbon monoxide. The results of HO-1 deficiency have 

been demonstrated in HO-1 knockout mice which develop chronic inflammatory diseases and are 

highly vulnerable to sepsis.22 

Despite the potential therapeutic benefits of Nrf2 activation, there are a few cautionary findings 

which would prevent the use of Nrf2 induction as a panacea. Permanent upregulation of Nrf2 

activity has been found to be detrimental in mouse models. In Keap1 null mice, where Nrf2 is not 

suppressed, thickening of the skin in the oesophagus results in mortality by three weeks of age.23 

Similarly, in mice with a constitutively activated Nrf2 gene mutation, various skin abnormalities 

were observed, including thickening, as well as small body size and low weight.24 

While Nrf2 induction has potential as a chemopreventive, use in the treatment of cancer has 

recently been called into question. Several Keap1 mutations have been identified in various 

cancer cell lines and cancer tissues.25 These cause permanent activation of Nrf2, which confers an 

advantage to the cancerous cells. In addition, these cells are better able to detoxify 

chemotherapeutic drugs, which makes them harder to treat. This effect has been confirmed by 

pretreatment of cells with an Nrf2 inducer, reducing cisplatin toxicity and by siRNA knockdown of 

Nrf2 in cancerous cells, which restores sensitivity.26,27 In spite of these short comings, harnessing 

the Nrf2 response for the treatment of inflammatory disease is an exciting prospect.  

1.2.2 - Nrf2 Protein Structure 

The Nrf2 protein is comprised of six highly conserved Nrf2-ECH homolog (Neh) domains (Figure 

1.1), which form the various interactions responsible for its activity.14 The Neh3-5 domains are 

involved in transactivation though their exact role is poorly understood. The Neh6 domain may be 

involved in an alternate degradation mechanism which operates under conditions of cell stress. 

The two most extensively studied domains are the Neh1 and Neh2 domains, which are 

responsible for the transcriptional activity and negative regulation of Nrf2 respectively. 

 

Figure 1.1: Functional domains of the Nrf2 protein 

The Neh1 domain contains a basic leucine zipper (bZip) motif which allows the protein to interact 

with small Maf proteins, which also feature a bZip motif, to form a heterodimer.28 Once formed, 

this dimer can interact with DNA sequences and activate gene transcription.29 The complex binds 
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selectively to antioxidant response element (ARE) sequences in the promoter region of a large 

number of antioxidant and anti-inflammatory genes. Venugopal et al. first described the effects of 

Nrf2 overexpression on the ARE mediated gene expression of two detoxifying enzymes, 

NAD(P)H:quinone oxidoreductase 1 (NQO1) and glutathione S-transferase (GST).30 Subsequently 

Alam et al. found that induction of HO-1 protein expression was suppressed in Nrf2 deficient 

mutants.31 They noted that most inducers of HO-1 expression stimulate production of ROS or 

deplete glutathione levels. As HO-1 catalyses the first and rate limiting step in heme catabolism, it 

was proposed that HO-1 presented an important aspect of the cellular defence mechanism. Since 

this time, a wide range of antioxidant and metabolic enzymes have been found to be regulated by 

Nrf2, a selection of which are presented in Table 1.2. 

 

Table 1.2: Target genes of Nrf2 (Adapted from Suzuki et al.
32

) 
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The Neh2 domain is responsible for repression of Nrf2 activity. Itoh et al. noted that removal of 

this region resulted in increased Nrf2 activity.33 The binding partner for this region was then 

identified using an artificial Neh2 containing protein to capture it in a yeast based assay. As the 

protein shared similar homology with the Drosophila protein Kelch they named it Kelch-like ECH-

associated protein 1 (Keap1). 

1.2.3 - Keap1 Regulator of Nrf2 

Keap1 is a cytoplasmic actin binding protein, comprising a globular double glycine repeat (DGR) 

Kelch domain at its C-terminus, an intervening region (IVR) and a broad complex - tramtrack - bric-

a-brac (BTB) domain.34 The BTB domain at its N-terminus is found among many Kelch proteins and 

usually mediates protein dimerisation.35 This is also the case for Keap1 which possesses a highly 

conserved Ser104 residue in the BTB domain found to be essential for homodimerisation.36 The 

wild type protein was found to form a high molecular weight complex and bind Nrf2, however a 

S104A mutant did not dimerise and crucially was unable to suppress Nrf2 activity. 

In the C-terminal region of Keap1, the Kelch domain binds to actin and sequesters the Neh2 

domain of Nrf2, repressing its activity. By screening for Nrf2 mutants that failed to interact with 

Keap1, Kobayashi et al. identified several single point mutations which significantly affected 

binding.37 All the important mutations were found in the C-terminal region, corresponding to the 

79ETGE82 motif, which they noted was conserved in all vertebrate Nrf2 sequences. The importance 

of this motif was confirmed by the inability of Keap1 to suppress ETGE mutant Nrf2 activity in an 

ARE-luciferase reporter assay. 
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Figure 1.2: Keap1 Kelch domain X-ray crystal structure viewed from Nrf2 binding face, comprising six anti-parallel β-
sheets forming a β-propeller. Coloured by secondary structure progression from blue (N-term) to red (C-term). PDB 

I.D. 1U6D 

The crystal structure of the human Keap1 Kelch domain was first reported and characterised by Li 

et al. in 2004 (Figure 1.2).38 The domain consists of six copies of the conserved Kelch repeat motif, 

forming a six bladed β-propeller. Each blade is a twisted β-sheet composed of four anti-parallel 

beta strands, with the C-terminus forming the first strand in the first blade. The centre of the 

propeller forms a channel which is exposed to the solvent and runs through the entire domain. 

Large portions of the surface of the protein were found to be positively charged, indicating a 

possible binding site for the negatively charged ETGE motif. Subsequently, murine Kelch domain 

was crystallised with a Neh2-based 9 mer peptide corresponding to residues 76LDEETGEFL84.39 The 

peptide was found to bind into a positively charged pocket at one end of the β-propeller, 

containing multiple arginine residues. The key ETGE motif formed part of a tight four residue 

β-turn, stabilised by three intramolecular hydrogen bonds in the Asp77-Glu82 sequence. The side 

chains of Asp77 and Thr80 contribute two of these hydrogen bonds. In total 13 interactions were 

identified between the Kelch protein and the peptide localised on one face of the β-propeller and 

mainly within two discreet pockets. The most significant of these being between the side chain of 

Glu79 and Arg415, Arg483 and Ser508 in one pocket and between the side chain of Glu82 and 

Arg380, Asn382 and Ser363 in a second pocket (Figure 1.3). These findings were confirmed for 

human Kelch domain and a 16 mer peptide later the same year.40 
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Figure 1.3: Hydrogen bonding interactions of the ETGE motif β-turn of the Nrf2 Neh2 domain with the Keap1 Kelch 
domain 

In addition to the ETGE binding motif, a second highly conserved sequence in the Neh2 domain 

has been found to interact with Keap1. The DLG motif, in the N-terminal region of the Neh2 

domain, has been shown to be important for Keap1 mediated ubiquitination of Nrf2.41 However, 

the DLG motif is not necessary for Neh2 domain binding to Keap1. Using NMR studies, Tong et al. 

have determined that the ETGE motif resides in a short antiparallel β-sheet and that both the DLG 

and ETGE motifs bind to the same region of the Keap1 Kelch domain.42 They also found that a 33 

residue α-helix with a high lysine content separates the DLG and ETGE motifs. This helix has no 

affinity for Keap1, but the seven lysine residues are essential for polyubiquitination and Nrf2 

degradation.43 In addition, using isothermal titration calorimetry (ITC), Tong et al. found that one 

Neh2 domain is bound by two Keap1 units, with a high affinity to the ETGE motif and a low affinity 

to the DLG motif.42 They have proposed that the ETGE motif allows Keap1 to sequester Nrf2 in the 

cytoplasm and subsequently, interaction of the DLG motif with the other Kelch domain of the 

Keap1 dimer locks Nrf2 in place. This places the α-helix between the two Keap1 Kelch domains, in 

a favourable position for ubiquitination of the lysine residues.  

This model has been built upon using electron microscopy (EM) data of Keap1 dimer structures.44 

Ogura et al. have shown that the globular Kelch domain is enclosed in the IVR domain, while a 

short linker leads to the BTB dimerisation domain. Overlay of Kelch domain crystal structures onto 

the globular domain shows alignment of the central channel of the β-propeller in both the X-ray 

and EM structures. Interestingly, the predicted volume of each of the Keap1 domains indicates 
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that the linker between BTB and globular portions of the protein is in fact part of the BTB domain 

rather than the IVR as previously thought. Using the EM data, the distance between the two Kelch 

binding pockets was estimated to be 80 Å. By combining the length of the α-helix between the 

DLG and ETGE motifs with the remaining length of amino acids in the Neh2 domain, Ogura et al. 

predict an overall distance of 98 Å between binding motifs. They propose that the distance 

between the binding pockets of the Keap1 dimer plays a critical role in regulation of Nrf2. 

The current understanding of the in vivo structure of Keap1 and the Nrf2/Keap1 interaction is 

summarised by the schematic in Figure 1.4. 

 

Figure 1.4: Schematic showing Keap1 dimerisation via its broad complex - tramtrack - bric-a-brac (BTB) domain, 
binding of Nrf2 Neh2 domain via DLG and ETGE β-hairpin motifs and display of seven Lys residues along an 

intervening α-helix 

Once formed, the complex binding interaction between the Keap1 dimer and Nrf2 allows the 

efficient degradation of Nrf2 via ubiquitination (Figure 1.5A). Zhang et al. determined that Keap1 

functions as a substrate adaptor protein for the formation of a Cul3-dependent E3 ubiquitin ligase 

complex.43 Using immunoprecipitation with several cullin proteins, Cul3 was identified as the 

main binding partner for the Nrf2/Keap1 complex. The cullin family of proteins are known to act 

as scaffolds for ubiquitin ligase. Formation of this complex with E3 ligase facilitates the 

polyubiquitination of Nrf2 and subsequent degradation. Zhang et al. also found that inhibition of 

Nrf2 ubiquitination decreased the association of Keap1 and Cul3 but did not affect Keap1/Nrf2 

binding. 
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1.2.4 - Activation of Nrf2 

While Nrf2 is being degraded, it cannot exert its protective effect on the cell. As a result when 

damage occurs, the Nrf2 suppression system must detect the stress and stop Nrf2 degradation. 

This sensor of cellular stress takes the form of a series of cysteine residues arrayed over the 

surface of Keap1.34 The protein is unusually rich in cysteine, comprising 4.3% of the total residues, 

which is double the average for proteins.45 Current evidence suggests that one or more of these 

residues reacts with electrophiles or oxidants present in the cytosol, triggering a conformational 

change in Keap1 that prevents Nrf2 ubiquitination. Of the 27 cysteine residues, there are certain 

patterns of reactivity. While no single residue has been found to react with all electrophiles, 

certain residues appear to be more reactive than others. Residue 151 in the BTB domain and 

residues 273 and 288 in the IVR domain are considered to be critical for switching off Nrf2 

ubiquitination.14 

Following reaction with an activator, the fate of the bound Nrf2 is uncertain. The theory initially 

proposed by Dinkova-Kostova et al. provided the first direct evidence of covalent cysteine 

modification, alongside evidence to suggest that Nrf2 is released from Keap1.46 Once released, 

Nrf2 would be free to translocate to the nucleus where it could activate ARE mediated genes. This 

is not supported by later work by Tong et al. who proposed the hinge and latch mechanism of 

binding.42 In this case, where the DLG motif acts as a latch to lock Nrf2 in place after ETGE binding, 

only the DLG portion of Nrf2 is released from Keap1. This results in build up of Nrf2 protein in the 

cell because Keap1 is unable to facilitate its ubiquitination. As Nrf2 is still bound to Keap1 in this 

case, activation of ARE mediated genes is achieved by newly translated Nrf2 protein. Recently an 

alteration to this model of activation has been proposed. Förster Resonance Energy Transfer 

(FRET) based measurements of the Nrf2/Keap1 interaction indicate that neither of the two 

binding motifs are released by Keap1 modification.47 Instead, a conformational change in Keap1 is 

proposed that prevents binding of Cul3 and subsequent ubiquitination of Nrf2. This is somewhat 

supported by the work of Zhang et al. who noted that inhibition of ubiquitination reduced 

association of Keap1 and Cul3 but did not affect the Nrf2/Keap1 interaction.43 In Baird's model of 

activation, the existence of two binding sites for Nrf2 allows activation of Nrf2 by direct inhibition 

of the Nrf2/Keap1 interaction. If this is the case, it offers an interesting prospect for controlled 

induction of the Nrf2 pathway. A generalised scheme for Nrf2 induction is presented in Figure 

1.5B. 



30 
 

 

Figure 1.5: Degradation and induction of Nrf2. A) Ubiquitously expressed Nrf2 is bound by Keap1 via two distinct 
motifs. Acting as a substrate adaptor, Keap1 facilitates binding of Cul3 and polyubiquitination of Nrf2. B) Following 
modification of Keap1 sulfhydryls, degradation of Nrf2 is suppressed. Newly synthesised Nrf2 translocates to the 

nucleus, heterodimerises with Maf proteins and triggers gene transcription by binding to antioxidant response 
element (ARE) sequences 

1.2.5 - Inducers of Nrf2 Activity 

Given the information currently available about the Keap1/Nrf2/ARE pathway, two methods of 

activating Nrf2 appear valid. The first is to mimic cellular stress by reacting with the cysteine 

residues of Keap1 using compounds with low toxicity. There are an increasing number of 

compounds which may fulfil this role, however, due to their reactive nature, preventing off target 

reactions is likely to be very challenging. Alternatively, mimicking the Keap1 binding portion of 

Nrf2 could be used block Nrf2 binding and prevent ubiquitination. There is a smaller background 

of research to support this approach, however the specificity required by protein-protein 

interactions means inhibitors are far less likely to suffer from off target effects. 

1.2.6 - Small Molecule Inducers 

A vast number of small molecules are now known to induce genes in an Nrf2 dependent manner, 

the majority of which are believed to act via the modification of key cysteine residues of Keap1. 

While these molecules are highly diverse in structure, they can be categorised by the specific 
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functionalities determining the way in which they react with thiols. The compounds fall into one 

of six categories depending on reactive functional groups: isothiocyanates, organosulfur 

compounds, compounds with a leaving group, indoles, phenolic compounds and Michael 

acceptors.  

A range of biologically active isothiocyanates are found in cruciferous vegetables such as cabbage 

and broccoli. While they have no direct antioxidant capacity due to relatively low reactivity, they 

are able to prevent degradation of Nrf2 by Keap1. The best known of these compounds is 

sulforaphane (Figure 1.6), which has been shown to be a potent inducer of HO-1, NQO1 and GST 

in an ARE dependent manner.48 The involvement of an ARE in the activity of sulforaphane has 

been confirmed through the use of an ARE regulated GFP construct.49 Induction is both time and 

dose dependent, with significant efficacy at just 2 µM. Examining the cysteine adducts of 

sulforaphane is problematic as they readily revert to sulforaphane and free cysteine. Using 

carefully controlled conditions however, the most reactive cysteine residues of Keap1 with 

sulforaphane have been identified as Cys489, Cys513, Cys518 and Cys583 all of which are located 

in the Kelch domain. Due to its naturally high levels in cruciferous vegetables, sulforaphane has 

seen significant attention as a dietary supplement as well as in clinical trials for cancer 

chemoprevention.50  

 

Figure 1.6: Selected small molecule inducers of the Nrf2/Keap1 pathway of the isothiocyanate, organosulfur, leaving 
group and indole categories 
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The organosulfur compounds (Figure 1.6) have had limited success in clinical trials as Nrf2 

inducers. Oltipraz, a synthetic 1,2-dithiole-3-thione, has been shown to increase expression of 

several phase II enzymes in vivo in an Nrf2 dependent manner.51 Direct reaction of Oltipraz and 

Keap1 has not yet been shown however. Despite several clinical trials in humans examining the 

possible chemopreventative properties of Oltipraz, no consistent effect has been observed. 

During one trial in which participants were given up to 1 g/m2 as a single dose, no side effects 

were apparent and several proteins were upregulated.52 However in trials where Oltipraz was 

given regularly over a longer period, fatigue, numbness, tingling and pain in the extremities have 

been observed with no beneficial activity.53,54 

While less extensively studied, other compounds in this category seem to have greater efficacy in 

trials with fewer side effects. 5-(4-methoxyphenyl)-3H-1,2-dithiole-3-thione (ADT), has been 

shown to elevate GST and NQO1 levels in rats as well as protect against multiple carcinogens.55 In 

a trial where smokers with bronchial dysplasia were given 25 mg ADT three times per day over six 

months, a decrease in the progression of preexisting dysplastic lesions was seen.56 In this case the 

only side effects were mild gastrointestinal symptoms. Another compound with promising activity 

is 3H-1,2-dithiole-3-thione (D3T), which has been shown to be a highly potent inducer of phase II 

enzymes in vitro.57 However, a recent review has highlighted some discrepancies, suggesting that 

in vitro assays for these compounds do not accurately reflect their activity in vivo.58 

Compounds containing leaving groups (Figure 1.6) have primarily been utilised to examine 

modification of Keap1 cysteine residues, though progress has been made in developing a more 

drug-like inducer. Reaction of iodoacetamide with Keap1 has provided key structural data about 

the nature of cysteine adducting Nrf2 inducers.59 N-iodoacetyl-N-biotinylhexylenediamine (IAB) 

was used as a probe, identifying 6 cysteine residues which were adducted after incubation with 

Keap1. The sites of modification determined by LC-MS-MS were Cys196, Cys226, Cys241, Cys257, 

Cys288 and Cys319, all located within the IVR domain, showing little overlap with sulforaphane 

adducts. 

The discovery of a drug-like inducer incorporating a leaving group is the result of a high-

throughput cellular screen.60 The compound, dubbed ARE-Inducer-1 (AI-1), was screened from a 

library of 1.2 million compounds using TBHQ as a positive control. Induction of NQO1 was found 

to be concentration dependent and not due to oxidative stress. ARE activation was shown to be 

dependent on the activity of the phosphorylase PI3K however, suggesting several mechanisms of 

activation may be involved. Using biotinylated AI-1 and LC-MS-MS, Cys151 was identified as a key 

modified residue. 
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The indole, indomethacin (Figure 1.6), an NSAID, has been shown to induce antioxidant genes in 

an Nrf2 dependent manner.61 Stimulation of HepG2 cells with indomethacin showed an increase 

in glutathione levels and prevention of oxidation by diethyl maleate. Removal of the indolic 

N-aromatic substituent and replacement with a methyl group or proton abolishes activity.62 

Modification of Keap1 cysteines by these compounds was examined by isoelectric focusing, which 

shows Keap1 is adducted, though which residues are affected was not determined. 

In addition to sulforaphane, other components of cruciferous vegetables have been shown to 

induce Nrf2 activity. One of these, indole-3-carbinol (I3C), has shown interesting activity in vitro. 

When tested alongside several other inducers it was found to modestly induce luciferase activity 

in HepG2-C8 cells.63 However, this was not translated into an increase in HO-1 protein levels. In 

contrast, activity in vivo has been known for some time, including anti-proliferative and pro-

apoptotic effects in various cancers.64 It is proposed that it is in fact metabolites of I3C, which 

under acidic conditions will form a series of oligomeric products, that are responsible for the 

observed activity. Recently this has been clarified in the case of Nrf2, using a luciferase reporter in 

addition to mRNA and protein measurements.65 Specifically, it was shown that while I3C was 

unable to induce activity, its major metabolite 3,3’-diindolylmethane (DIM) showed significant 

dose dependent induction of HO-1, NQO1 and γGCS. 
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Figure 1.7: Selected small molecule inducers of the Nrf2/Keap1 pathway of the phenolic, and Michael acceptor 
categories 

Polyphenolic compounds possess intrinsic antioxidant and anti-inflammatory properties. After 

undergoing oxidation, however, they are able to react with Keap1 by acting as Michael acceptors. 

One of the most extensively studied of these compounds, Curcumin, a major component of the 

spice turmeric, has been shown to induce Nrf2 in a time and concentration dependent manner by 

inactivation of the Keap1/Nrf2 complex.66 Protein quantification experiments in LLC-PK1 cells 

show a maximal HO-1 protein induction of 12.4 fold with 20 µM curcumin, though at greater 

concentrations this decreases. This induction has been shown to be ARE dependent using 

luciferase fusion constructs.67 

Butylated hydroxyanisole (BHA) is a synthetic preservative used in foods and cosmetics. It is 

converted by cytochrome p450 into the widely studied Nrf2 inducer tert-butylhydroquinone 

(TBHQ).68 Once oxidised, TBHQ prevents degradation of Nrf2 and causes its translocation to the 

nucleus. While generation of ROS by TBHQ is observed and may increase Nrf2 induction, usage of 

PEG-Catalase as a peroxide scavenger has shown that ROS are not necessary for Nrf2 induction.69 

Following this, the specific cysteine residues modified by TBHQ were determined. In total four 

residues are modified, Cys23, Cys151, Cys226 and Cys368 some of which correlate with data from 

reaction of Keap1 with IAB mentioned previously. 
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Unlike the phenolic compounds, Michael acceptors have no intrinsic antioxidant capacity but act 

via induction of Nrf2. Of these compounds two specific subsets are of particular interest. The first 

are the endogenous cyclopentenone prostaglandins, which are able to form cysteine adducts due 

to the presence of an electrophilic α,β-unsaturated carbonyl in their cyclopentenone ring.70 

Removal of this double bond eliminates their activity. The most extensively characterised of 

these, 15-Deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2), has been shown to induce both nuclear Nrf2 

accumulation and induction of several phase II genes.71 In addition, binding of 15d-PGJ2 to the IVR 

of Keap1 has been shown using biotinylated 15d-PGJ2 and various Keap1 mutants.72 Removal of 

the IVR results in only weak binding of 15d-PGJ2 compared to natural Keap1 or Keap1 lacking 

either the BTB or DGR domains. Within the IVR, point mutation of the cysteine residues to alanine 

prevents 15d-PGJ2 binding. This suggests direct reaction of 15d-PGJ2 with cysteine residues of 

Keap1 via addition to the Michael acceptor functionalities. 

The second sub category of Michael acceptors which has seen significant research are the 

triterpenoids (TP). These synthetic compounds, based on the natural products oleanolic and 

ursolic acid, are probably the most potent anti-inflammatory and anti-carcinogenic compounds 

known.73 The TPs 2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid (CDDO) and 1-(2-cyano-3,12-

dioxooleana-1,9-dien-28-oyl) imidazole (CDDO-Im), have shown rapid induction of HO-1 both in 

vitro and in vivo, at nanomolar concentrations.74 While removal of the ARE containing sequence 

from gene promoters nullifies activity, addition of kinase inhibitors reduces efficacy as well, 

indicating several mechanism are involved in induction.  

The reactions of TPs with Keap1 have been explored in detail using a library of synthetic oleanolic 

acid analogues in order to determine a structure activity relationship.75 This identified the Michael 

acceptor functionality as a requirement for activity and subsequently used the characteristic UV 

absorbance of this group to show direct interaction of the compound TP225 with purified 

recombinant Keap1. As these compounds contain two discreet Michael acceptor functionalities 

further work has identified the contribution of each of these to the overall potency, though not 

which cysteine residues are modified.76 

To date the most successful Nrf2 inducer is the triterpenoid 1-(2-cyano-3,12-dioxooleana-1,9-

dien-28-oyl) methyl (CDDO-Me) branded as bardoxalone methyl. A recent phase 3, randomised, 

double blind clinical trial, sought to determine the efficacy of bardoxalone in treating patients 

with type 2 diabetes.77 2185 patients with type 2 diabetes mellitus and stage 4 chronic kidney 

disease were recruited and assigned to either the bardoxalone (20 mg per day) or placebo group. 

Participants in the bardoxalone group were found to have a significant increase in kidney 
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function. However, the bardoxalone group also had a significantly higher incidence of heart 

failure, myocardial infarction, stroke and death from cardiovascular causes. The trial was 

terminated less than half way through, on the recommendation of an independent data and 

safety monitoring committee. A total of 96 patients in the bardoxalone group were hospitalised 

for or died from heart failure, compared to 55 in the placebo group. Whether the increased 

incidence of heart failure is due to Nrf2 induction or other effects of bardoxalone is unknown.  
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1.3 - Protein-Protein Interactions 

1.3.1 - Protein-Protein Interaction Disruptors 

An alternative to inducing the Nrf2 pathway via the reactive cysteines of Keap1 is to target the 

Nrf2/Keap1 interaction directly. The concept of protein-protein interactions (PPIs) as therapeutic 

targets has only recently been accepted as viable.78 There are a number of factors unique to PPIs 

which make targeting them more challenging than small molecule enzyme interactions. The area 

encompassed by a PPI is typically between 1500 to 3000 Å2 as compared to 300 to 1000 Å2 for 

small molecule interactions.79 As well as sheer size, PPIs tend to have flat surfaces which lack 

grooves and pockets for molecules to bind into.80 Where these pockets do exist, they may be 

separated by great distances. In spite of this, a number of PPIs have emerged where smaller 

binding pockets contribute the majority of binding. This has allowed the development of peptides, 

peptidomimetics and small molecules to target these so called 'hot spots'. These PPIs span a wide 

range of diseases, including inflammation (interleukins81 and TNFα82), signal transduction83 and 

HIV.84 Undoubtedly though, it is in the treatment of cancer that targeting PPIs has seen the most 

progress.  

Two pathways currently have drugs in clinical trials which act by disruption of PPIs. Abbot 

Laboratories have developed a series of small molecule binders for the Bcl-Xl protein, inhibition of 

which promotes apopototic cell death.85 The best of these has a sub nanomolar affinity for the 

protein and a mass of just 813 Da. The drug, branded as Navitoclax, is currently in phase II clinical 

trials for small cell lung cancer. The other targets the MDM2/p53 interaction, which is probably 

the most widely studied of all PPIs and as a result has been a testing ground for a variety of 

inhibition approaches.86 The p53 protein is a transcription factor which responds to cellular stress 

and DNA damage by triggering cell cycle arrest or apoptosis. Interest in targeting the PPI followed 

publication of the MDM2 crystal structure with a bound p53 based peptide.87 The structure 

identified three hydrophobic side chains which were key to the interaction. The viability of MDM2 

as a target was confirmed using a variety of peptide antagonists in vitro and in vivo.88 Following 

this, a number of inhibitors have been reported, including the natural peptide chlorofusin,89 small 

molecules identified by high throughput screening (benzodiazapinediones90 and nutlins91) and 

compounds produced by structure based design (spiro-oxindoles92 and aromatic bicyclics93). The 

nutlins, developed by Roche, deserve particular mention, as they are currently in clinical trials for 

acute myeloid leukemia.94 The large body of work surrounding targeting PPIs provides a 

framework for approaching a new interaction, first through validation of the target, followed by 

development of peptidic and non-peptidic inhibitors. 
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A number of key components in the work towards producing Keap1 inhibitors have already been 

established. In order to study the interaction between Keap1 and Nrf2, Lo et al. measured the 

ability of Nrf2 peptide fragments based on the ETGE motif of the Neh2 region to disrupt 

Nrf2/Keap1 binding in vitro.40 Using isothermal titration calorimetry (ITC), a 16 mer peptide 

(69AFFAQLQLDEETGEFL84), was assessed for its ability to bind Keap1. A Kd value of 20 nM was 

determined, which is in line with previously reported values for Nrf2.42,95 Two further peptides 

were tested, a 14 mer which was found to bind as effectively as the 16 mer and a 10 mer which 

was found to have considerably weaker binding. The 16 mer peptide was crystallised with Keap1 

Kelch domain, confirming the key side chain binding interactions of Glu79 and Glu82 seen 

previously with murine Keap1.39 

1.3.2 - Recent Developments 

Since beginning the work presented in this thesis, a number of developments have been reported 

in the area. A peptide sequence containing the ETGE motif of Nrf2 and TAT, the cell transduction 

domain of HIV, linked by a Calpain cleavage sequence has been tested for its ability to increase 

Nrf2 mediated gene expression in mice suffering from brain injury.96 It was found that without the 

calpain cleavage sequence, there was no significant increase in gene expression and therefore a 

linker cleaved under the specific conditions found in injured brain tissue was incorporated. 

Expression of GPx1, Catalase and GSTm1 was evaluated by quantitative polymerase chain reaction 

(qPCR) and upon treatment with the TAT-CAL-Nrf2 peptides a 2 fold increase in the genes of 

interest was observed. In addition, the integrity of the blood brain barrier was far greater in 

comparison to controls. In mice without brain injury the peptide had no effect, due to lack of 

cleavage by calpain. While no direct evidence is given, it is likely that the mode of action is via 

disruption of the Nrf2/Keap1 interaction. 

In order to facilitate the hunt for a PPI specific inducer of Nrf2, Hancock et al. have developed a 

high throughput fluorescence polarization (FP) assay using the Kelch domain of Keap1 and a 

fluorescently tagged peptide based upon the binding sequence of Nrf2.97 The fluorescein tagged 

peptide (FITC-βDEETGEF) was chosen from a selection of Nrf2 binding sequence peptides, based 

upon the maximum observed change in polarization upon binding rather than the lowest 

observed Kd. With this assay in place they were able to explore the minimum peptide sequence 

required to displace the fluorescently tagged peptide. Removal of the leucine residues either side 

of the DEETGEF binding sequence was seen to reduce activity, suspected to be due to their ability 

to stabilise the β-hairpin structure of the peptide. Further removal of Asp77 and Phe83 was 

shown to abolish activity, though whether both these amino acids are required for activity was 
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not explored. All further modifications to the peptide sequence were found to be 

disadvantageous with the exception of replacement of Glu78 with proline which was found to 

improve binding. 

Hancock et al. have utilised this assay to further develop peptide inhibitors.98 By modifying the 

termini of peptides, they have developed a 7 mer peptide with a stearylated N-terminus which 

has cellular activity (Figure 1.8). The addition of a long alkyl chain overcomes the multiple acidic 

residues, allowing cell membrane permeation. In their FP assay, the peptide was found to have an 

IC50 of 22 nM, comparable to values determined for other Neh2 based peptides.40 The activity of 

the peptide was also examined in a cellular assay measuring the concentration required to double 

NQO1 activity. The concentration required for doubling of activity for the stearylated peptide was 

30-80 µM compared to 0.3 µM for sulforaphane. The development of this assay provides a 

powerful tool for screening potential PPI disruptors and the analysis of modified peptides sheds 

further light on the required properties of any target molecule. 

 

Figure 1.8: Recently identified inhibitors of the Nrf2/Keap1 interaction 

To date three small molecules have been identified as acting via disruption of the Nrf2/Keap1 

interaction (Figure 1.8). The first was identified using a high throughput FP screen of 337,116 

compounds.99 The compound, named (SRS)-5 due to its three chiral centres, was found to have a 
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Kd of 1 µM by surface plasmon resonance and an EC50 under 20 µM in cellular assays. Docking 

calculations suggest that the compound binds into both of the arginine rich pockets on the face of 

the Kelch domain. A second small molecule, also identified by a high throughput FP assay, was 

found to have activity at 100 µM in an ARE luciferase reporter assay.100 Selected from a screen of 

269,462 molecules, the interaction of Cpd16 with Keap1 was confirmed by NMR and X-ray 

crystallography. The third small molecule disruptor (Compound 15) was identified via a process of 

structure-base virtual screening followed by validation in an FP assay.101 The initial screen of 

21,199 structures from the Specs library, identified 17 structures which were validated by FP. Of 

these, Compound 15, with an IC50 of 9.8 µM, was also found to have activity in HepG2 cells. 

Induction was found to be dose dependent in a stably transfected ARE luciferase reporter assay, 

with a maximal 10 fold induction at 200 µM. 

A fourth molecule has been proposed to act by PPI disruption though this has not been 

confirmed. While developing a luciferase based assay for screening potential Nrf2 inducers, a 

novel inducer was identified.102 The natural product gedunin (Figure 1.8) was identified, alongside 

others, from a screen of 2000 biologically active compounds as and inducer of Nrf2. While similar 

to other known inducers, Smirnova et al. suggest that the rate and shape of the induction curve 

indicates a competitive binding of Keap1 rather than the typical cysteine modification mechanism. 

Computer modelling shows this is a favourable binding, the shape of which is similar to the 

83FETGE79 section of Nrf2 responsible for binding to Keap1. However, the molecule contains a 

Michael acceptor which would also allow it to act via cysteine modification. 

1.3.3 - Development of Nrf2 Based Peptides as Nrf2/Keap1 PPI Disruptors 

Given the work by Lo et al. showing strong binding of Nrf2 based peptides to the Keap1 Kelch 

domain, it was proposed that a peptide containing one of the sequences tested, with the ability to 

cross cell membranes, could affect Nrf2 levels in cells. Determination of the efficacy of these 

peptides could be achieved by assessing their ability to increase Nrf2 protein levels. Development 

of such a peptide would comprise the first stage of this work. The peptide would act as a first 

validation of disrupting the Nrf2/Keap1 interaction without covalent modification of Keap1. Using 

this tool it would be possible to examine the effects of disruption of the Nrf2/Keap1 interaction 

on downstream genes and ultimately reduction of inflammation. With validation of the approach 

completed, work would then focus on developing inhibitors more suitable for use as drug leads, 

either through modification of the peptide framework or using small molecules to mimic specific 

functionalities. It was expected that this work would take the form of several approaches, 
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including rational drug design and high throughput screening, culminating in the identification of 

highly potent, novel Nrf2 inducers. 

The work presented in the following four chapters describes several approaches to targeting the 

Nrf2/Keap1 interaction. Chapter 2 aims to validate the inhibition of the Nrf2/Keap1 interaction for 

the reduction of inflammation in vitro using Nrf2 based peptides, conjugated to cell penetration 

sequences. Design, synthesis and biological evaluation of several peptides is described. One 

sequence which was shown to have high potency in inducing Nrf2 downstream genes, was found 

to have anti-inflammatory activity in a model of sepsis. Following initial validation of the 

approach, a fluorescence polarisation assay was established to allow more rapid in vitro screening 

of compounds as compared to cellular techniques. Development of the assay and characterisation 

of the Nrf2 based cell penetrating peptides using the assay is described in Chapter 3. With a 

screening assay in place, developments towards smaller peptide inhibitors which retain potency 

through formation of macrocycles are presented in Chapter 4. Three cyclisation strategies were 

explored, disulfide bridge formation, head-to-tail cyclisation and peptide stapling. From this work, 

the minimum sequence for binding was identified and the benefits of cyclisation assessed. Finally, 

approaches toward identification of novel PPI inhibitors through high throughput in silico 

screening are presented in Chapter 5. 
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Chapter 2:  Anti-inflammatory Effects of Cell Penetrating Peptides 

2.0 - Introduction 

2.0.1 - Cell Penetrating Peptides 

While the ability to synthesise peptide sequences to target a specific interaction is an enticing 

prospect, the delivery of these peptides to their intended target is often far from trivial. In 

utilising larger and often complex molecules to ensure specificity, stability and rapid cellular 

uptake are often negatively affected. Despite this, the potency and specificity of these molecules 

has driven research into new methods of drug delivery.103 Cell penetrating peptides (CPPs) offer a 

promising avenue for delivery, with over 100 peptide sequences now identified and an extensive 

amount of background data on stability, toxicity and efficacy now available (Table 2.1).104 In 

addition, their popularity has led to several therapies utilising CPPs entering clinical trial for 

applications ranging from scarring to myocardial infarction and from hearing loss to cancer.105 Of 

these Xigen's XG-102 peptide has recently completed a phase 2 trial as has Capstone 

Therapeutics' AZX100 peptide for keloid scarring.  

 

Table 2.1: Selected cell penetrating peptides and their sequences 

While a diverse range of peptides fall into the category of CPPs, most share a few common 

features. Typically they consist of fewer than 30 residues with amphipathic characteristics and 

most often a net positive charge.103 The term "protein transduction domain" is sometimes used 

interchangeably with "cell penetrating peptide" highlighting their origin in larger proteins which 

were found to translocate across cell membranes. The first of these to be identified and 

consequently, the most studied is the transcription-transactivating (TAT) protein of HIV-1. While 

trying to develop an assay for measuring the activity of the protein, Frankel et al. found TAT was 

able to enter cells and translocate to the nucleus.106 They noticed that when purified TAT protein 
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was added to cultured cells the protein was taken up by them. However, their note that the 

protein was found to translocate to the nucleus, may have been an artefact that was only 

revealed much later.107,108 Subsequently a second protein showing similar abilities to cross cell 

membranes was discovered in Drosophila.109 A synthetic peptide corresponding to 60 amino acids 

of the antennapedia homeobox peptide was found to enter both live and fixed neurons, a fact 

that was confirmed using confocal microscopy. Subsequent research has shortened these 

sequences to the more manageable peptides currently in use.110,111 More recently, Schwarze et al. 

clarified the potential of CPPs by using a β-galactosidase-TAT fusion protein to deliver the 120 kDa 

protein across the blood brain barrier in mice.112 Early work on CPPs had focussed on reducing the 

length of natural peptides while retaining efficacy, little research had been carried out to 

elucidate the residues crucial for transduction across the membrane. More recently, such a 

structure activity relationship was carried out for the TAT peptide, which identified arginine as the 

key residue.113 In fact, it was found that a peptide consisting solely of nine arginine residues was 

20 fold more potent than the TAT peptide itself. Inverso sequences were found to increase 

potency further, with up to 100 fold greater activity for D-nona-arginine compared to the TAT 

peptide. From this work Wender et al. concluded that the guanidine moiety was having the key 

effect and subsequently designed a series of guanidine containing peptoids which retained 

potency while increasing resistance to proteolysis. While the polyarginine peptides show greater 

efficacy than natural CPPs there is a definite dependence on length. By examining polyarginine 

peptides of between 4 and 16 amino acids it was determined that approximately 8 amino acids 

offers optimal transduction properties.114 Above and below this length, potency decreases with 

size. The potency of polyguanidino sequences is believed to be due to their ability to form 

bidentate hydrogen bonds, either with the phospholipid bilayer directly or through surface 

glycans.115  

Despite the large body of work investigating the properties of CPPs, their exact mechanism of 

action is still unknown. In a large part this is due to an artefact found in all early data which 

suggested that the penetration was a zero energy process. Up until 2003 it was believed that all 

CPPs entered the cell by some form of passive diffusion, as experiments which depleted ATP 

supply or were conducted at low temperature still resulted in internalised peptide.106 In these 

cases, the peptides were found to penetrate the membrane and translocate to the nucleus within 

5 minutes of peptide addition. In 2003, two separate studies simultaneously determined that, 

when imaging live cells, the data for CPPs was quite different to previous work where cells had 

been fixed using formaldehyde.107,108 Both groups noted that the peptides adsorb to the surface of 

the cell and are then internalised by classical endocytosis type mechanisms. In live cells, no 
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nuclear transport was observed and it was concluded that the fixing process of previous work had 

permeabilised both the cell membrane and endosomes allowing the CPP to leak into the cytosol.  

In order to visualise the cells efficiently Richard et al. introduced a trypsin digest step to sample 

preparation, stripping membrane adsorbed peptides from the cells and allowing accurate 

measurement of internalised peptide.108 The uptake process was found to be significantly slower 

than previously thought and dependent on both temperature and ATP availability, characteristic 

of endocytosis mechanisms. They could not, however, rule out the possibility that a small portion 

of the peptide was entering by an endocytosis independent mechanism.  

The most common technique to examine translocation is via fluorescent labelling of the peptide, 

usually at one of the termini. While fluorescent labelling is convenient and has provided a lot of 

valuable data, its limitations must be appreciated. The properties of the fluorophore itself must 

be considered. There is a very real possibility that the cell entry mechanism may be altered by the 

fluorescent tag. In addition, due to the tendency of CPPs to adsorb to the cell membrane, 

fluorescence intensity may not be a valid measure of cellular peptide concentration. This can be 

overcome by trypsin digest prior to sampling (though this introduces another variable) or by 

utilising confocal microscopy, which can differentiate depth within the cell, at the cost of reduced 

sampling size.  

Current understanding suggests the following sequence of events are important or essential for 

the majority of CPP uptake. Firstly the CPP binds to anionic surface receptors, most likely 

membrane associated proteoglycans, particularly heparan sulfate proteoglycan (HSPG).116 This 

leads to activation of Rac resulting in filamentous actin organisation and macropinocytosis.117 

There are conflicting reports which, for TAT at least, suggest that clathrin-mediated endocytosis is 

equally important, though it is acknowledged that the situation may be different when TAT is 

attached to a cargo.118 These authors also note that the typical end stage of endocytosis results in 

hydrolysis of the contents by lysosomes and that the mechanism by which CPPs escape this fate is 

unclear.  

In selecting a cell penetrating sequence to conjugate to the Nrf2 binding sequence peptides, it 

was important to consider several factors. While there are a wide range of sequences known, 

including both anionic and non-polar (Table 2.1) as well as the more typical cationic peptides, only 

a few have been extensively studied. Among these is the TAT sequence and recent work by Sugita 

et al. has shown that of the CPPs tested, TAT is the most versatile with regards to attached 

cargo.119 They do note that ideally several sequences should be examined in order to determine 

the most effective for the specific application. In addition, the use of TAT in the delivery of several 
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compounds currently undergoing clinical trials makes it a prudent choice for first validation of the 

approach.105 

In addition to the advantages of CPPs mentioned previously, by utilising a cell penetrating peptide 

for delivery of a synthetic peptide binding sequence, synthesis can be achieved via a single route 

rather than synthesis followed by formulation for delivery. Over the last 50 years, interest in 

peptide synthesis has exploded, in a large part thanks to the relative ease of synthesis using solid 

phase techniques. 

2.0.2 - Solid Phase Peptide Synthesis 

The synthesis of peptides can be achieved using two principle approaches. Typically in the 

solution phase approach peptides are constructed by forming blocks of amino acids which are 

then assembled into the full chain (Figure 2.1A). Alternatively, in the solid phase approach, the 

C-terminal amino acid is immobilised on a solid support and the peptide chain is extended in a 

stepwise fashion (Figure 2.1B). Stepwise synthesis in solution can be performed, as can block 

synthesis on the solid phase, however, for the majority of syntheses it is not considered practical. 

Both methods of synthesis have advantages. In general solution phase is preferred for short 

peptides or peptides containing precious non-natural amino acids due to the excesses of reagents 

involved in solid phase synthesis. On the other hand for longer sequences, comprising natural 

amino acids, the increase in yield and rapidity of assembly favours the use of solid phase 

techniques. Due to the length of the proposed cell penetrating Nrf2 binding sequence peptides, 

solid phase synthesis is the more practical choice. 
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Figure 2.1: Simplified Peptide Synthesis A) Solution phase block synthesis B) Solid phase stepwise synthesis 

In its most basic form, solid phase peptide synthesis uses a chloromethylated polystyrene polymer 

bead as an insoluble but porous support on which to construct a peptide chain. While it is 

referred to as "solid phase" synthesis, due to the swelling properties of the polymer it is more 

accurate to think of it as solvated gel phase, which is closer to solution than to solid.120 The initial 

development of this technique is attributable to Merrifield, a contribution which earned him the 

1984 Nobel Prize in Chemistry.121 In his 1963 paper, Merrifield describes the synthesis of a tetra-

peptide by carbodiimide coupling, however, the difficulty in driving the reactions to completion 

led to numerous by products.122 Had it not been for a subsequent communication the same year 

in which the synthesis of the nona-peptide bradykinin was described, the technique may have 

been entirely forgotten.123 The peptide was synthesised in just four days and isolated in another 

five with an overall yield of 68%, an achievement far beyond the capabilities of solution phase 

synthesis at the time. This method of solid phase synthesis has come to be referred to as 

Boc/benzyl, due to the protecting group strategy, or Merrifield synthesis. The major advantage of 

this system over solution phase synthesis is reduced stepwise purification, requiring only washing 

of the resin between couplings rather than lengthy chromatography. This also allows the use of 

excess reagents to drive the couplings as separation is easy. The global deprotection of side chain 

protecting groups along with cleavage from the resin in a single step also reduces synthesis time. 

The acid labile nature of both the N-terminal and side chain protecting groups used in Merrifield's 

original synthesis meant a small portion of side chains were deprotected during each N-terminal 

deprotection, leading to undesirable side products. More significantly, the more acid stable benzyl 



47 
 

groups and resin linker require even more strongly acidic conditions than the trifluoroacetic acid 

(TFA) used to deprotect the N-terminus. As a result, final deprotection and resin cleavage is 

achieved via use of anhydrous hydrogen fluoride, a highly dangerous chemical requiring specialist 

equipment and protocols. In the 50 years following this initial report much progress has been 

made in expanding both the scope and ease of solid phase peptide synthesis.  

Attempts to develop a protecting group strategy which could be removed under more mild 

conditions were initially hampered by the availability of appropriately protected amino acids. 

However, Carpino's fluorenylmethoxy carbonyl (Fmoc) protecting group, which had seen limited 

usage in solution due to the reactivity of and difficulty in separating its cleavage side products, 

became the N-terminal protecting group of choice in solid phase synthesis.124 Fmoc deprotection 

under basic conditions is truly orthogonal in nature to the tertiary butyl (tBu) side chain protecting 

groups, which are removed by acid. This meant that there was no concern about unwanted side 

chain deprotection during synthesis. In addition, the reactive dibenzofulvene from Fmoc removal 

could simply be washed off the resin before it had time to react. The commercial availability of 

Fmoc protected amino acids secured its place as a viable alternative to Merrifield synthesis. 

Combined with tBu side chain protection, global deprotection and resin cleavage can now be 

achieved using the comparatively much safer TFA method previously used for N-terminal 

deprotection. 
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Scheme 2.1: Typical Fmoc solid phase peptide synthesis (SPPS) procedure, using a benzyl alcohol functionalised resin, 
symmetrical anhydride loading and HBTU coupling 

In general, current peptide synthesis follows a standard procedure of N-terminal deprotection, 

followed by amino acid coupling and free amine detection, to ensure the reaction is complete, 

before repetition of the cycle (Scheme 2.1). For hydroxy functionalised resins, which yield a free 

acid C-terminus, resin loading is typically achieved via formation of a symmetrical anhydride. The 

first amino acid to be attached is converted to its anhydride by a condensation reaction with 

diisopropylcarbodiimide (DIC), and then introduced to the resin with a catalytic amount of 

dimethylaminopyridine (DMAP). Keeping the equivalence of DMAP low reduces racemisation of 

the first residue. The ester produced is stable to the stepwise deprotection and coupling reactions 

involved in chain elongation. Couplings are achieved via formation of an active ester followed by 

attack of the peptide chain's terminal amine (Scheme 2.2). Many coupling agents are available, 

including carbodiimides (DIC, EDCI), uronium salts (HBTU, HATU) and phosphonium salts (PyBOP, 

PyAOP). All of these are used regularly in SPPS, however, HBTU is generally preferred as it offers a 

balance of efficiency and cost while minimising racemisation. Due to ease of excess reagent and 
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side product removal by washing the resin, it is typical to use both coupling agents and amino 

acids in a 4 to 8 fold excess to drive the reactions to completion.  

 

Scheme 2.2: Coupling of an amino acid to a resin bound peptide using HBTU 

Even with these excess reagents, it is not uncommon for the coupling to be incomplete after a 

single treatment. To assess this, the colourimetric ninhydrin test described by Kaiser et al. is 

employed (Scheme 2.3).125 A small sample of washed resin is treated with ninhydrin, phenol and 

potassium cyanide and heated to 120°C for a few minutes. Reaction of the ninhydrin with primary 

amines generates an extended conjugation network, resulting in a deep blue colour to the resin 

beads and solution. This decreases as the number of free amines is reduced by coupling, leaving a 

yellow colour when all amines are reacted. There are a few notable drawbacks to the Kaiser test, 

firstly, it is destructive, so the amount of resin used should be minimised. Secondly, it is unable to 

detect secondary amines or primary amines adjacent to a tertiary carbon due to the imine 

formation and deprotonation steps respectively. Despite this, its sensitivity to primary amines and 

ease of use make it the most commonly used amine test in SPPS. 
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Scheme 2.3: Kaiser's ninhydrin test for the detection of primary amines 

Once coupling is completed, the N-terminal Fmoc protecting group is removed using piperidine as 

a hindered base (Scheme 2.4). Coupling can then be repeated to add another amino acid to the 

chain. This process is repeated until the peptide is complete, at which point the chain is cleaved 

from the resin and all side chain protecting groups are removed. 

 

Scheme 2.4: Removal of N-terminal Fmoc protecting group using piperidine 
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An unexpected result of adopting Fmoc based chemistry was the ability to monitor deprotection 

reactions by UV spectroscopy. The fulvene (Scheme 2.4) species generated have a strong 280 nm 

absorption which can be measured to calculate an estimate of resin loading as well as to assess 

the aggregation of so called 'difficult sequences'. This phenomenon is characterised by a sudden 

decrease in reactivity of the growing peptide chain, both to deprotection and coupling. While free 

amine may be detected by Kaiser test, repeated coupling steps have no effect. The gel-phase 

properties of SPPS require a fully solvated matrix, which the reagent can penetrate freely. Intra 

and inter-molecular hydrogen bonding can disrupt this accessibility, leading to the effects of 

aggregation (Figure 2.2). Under ideal conditions of the fully solvated gel phase, both the peptide 

chains and polymer support are evenly distributed and exposed to solvent (Figure 2.2A). 

Aggregation can manifest in a number of ways as a result of less than ideal solvation. Firstly, 

individual peptide chains can form intra-molecular bonds, preventing access to the N-terminus for 

elongation (Figure 2.2B). Alternatively, the polymer support may form intra-molecular 

interactions with itself, contracting the resin bead and preventing access to the peptide chains 

(Figure 2.2C). Lastly, proximity of peptide chains to one another may allow formation of inter-

molecular interactions, again preventing access to the N-terminus for elongation (Figure 2.2D). 

 

Figure 2.2: Solvation and aggregation of peptide chains and polymer supports. A) Fully solvated B) Intra-molecular 
peptide chain aggregation C) Polymer support aggregation D) Inter-molecular peptide chain aggregation 

The earliest attempts to combat aggregation, introduced by Sheppard, included switching to 

polyamide based resins to increase solvation and utilising more polar aprotic solvents than DCM 

which was standard at the time.126 The highly polar aprotic amide solvent dimethylformamide is 

now the solvent of choice for most syntheses. Although this alone has not completely solved the 

problem of aggregation, there are several other alterations that can be made if aggregation is 

suspected. During a synthesis it may be possible to reverse aggregation by addition of chaotropic 

salts to the reaction. Addition of 0.4 M lithium chloride or potassium thiocyanate has had some 
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success.127 Alternative solvents may also be employed to increase solvation, including N-

methylpyrrolidone and dimethylsulfoxide.128,129 However, both these methods attempt to reverse 

aggregation rather than prevent its occurrence. Two methods exist to physically prevent inter-

molecular backbone hydrogen bonding, the first utilises PEGylated resin to increase solvation and 

place growing peptide chains at a greater distance from one another.130 The second requires more 

planning and knowledge about the onset of aggregation in the sequence but provides the only 

definite solution to aggregation. By selectively alkylating the amine of the amino acid, its ability to 

hydrogen bond is removed. The 2-hydroxy-4-methoxybenzyl (Hmb) group has been developed for 

this purpose and insertion of an Hmb protected amino acid prior to the onset of aggregation is the 

most reliable method for its prevention.131 While still far from trivial, all these developments have 

made synthesis of peptides accessible to a wide audience and equipped them to deal with the 

challenges it presents.  
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2.1 - TAT-Nrf2 Peptides 

2.1.1 - TAT-Nrf2 Peptide Synthesis 

The design of the proposed cell penetrating Nrf2 binding sequence peptides was based upon 

previous work by Lo et al. who examined the ability of three peptides, based on the key DEETGE 

binding motif of Nrf2, to disrupt the Nrf2/Keap1 interaction.40 These peptides, a 16 mer, 14 mer 

and 10 mer were all found to be able to displace tagged Nrf2 protein in vitro. Using isothermal 

titration calorimetry they were able to determine a Kd for the binding of the 16 mer peptide of 20 

nM. This was in good agreement with other data for the Nrf2/Keap1 interaction.42,95 While no 

data was provided for the shorter peptides, they state that the 14 mer peptide had comparable 

binding while the 10 mer peptide's binding  was considerably weaker. Based on this information, 

initially three peptides were devised comprising those described by Lo et al. with the addition of 

the TAT cell penetrating sequence to their N-terminus (Table 2.2). It was predicted that with the 

addition of TAT, the peptides would enter cells and bind to Keap1, preventing Nrf2 degradation. 

All three sequences were tested simultaneously in order to compare efficacy between them. It 

was anticipated that potency would follow the same pattern as seen by the previous author. 

 

Table 2.2: TAT-Nrf2 peptide sequences  

The initial three TAT-Nrf2 peptides were synthesised using standard Fmoc solid phase peptide 

synthesis techniques. In order to produce C-terminal acid peptides the hydroxybenzyl linker of 

Wang resin was used to immobilise amino acids on the resin via ester formation. For the TAT-10 

peptide however, 3-chlorotrityl chloride resin was employed in order to prevent diketopiperazine 

formation. This is a common occurrence in sequences featuring C-terminal proline attached to the 

resin via benzyl esters. The much more hindered trityl linker used in this case prevents the 

cyclisation reaction, suppressing side product formation. Purity of the two longest peptides 

following cleavage was low, resulting in the need for extensive purification of both. Initial gross 

purification was achieved using reverse phase flash chromatography, yielding mixtures in which 

the desired product was the majority component. Subsequent purification by reverse phase HPLC 

increased the purity to >90%, suitable for further usage. The TAT-10 peptide had far higher crude 
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purity and required only reverse phase flash purification to yield pure peptide. After purification, 

the peptides were lyophilised from 0.05% TFA in water, yielding the products as TFA salts.  

 

Table 2.3: HO-1 mRNA levels by qPCR following treatment with TAT-10, TAT-14 and TAT-16 peptides in THP-1 cells, 
75 µM peptide, Mean ± SEM, n = 3 

Peptide concentrations were calculated assuming all basic residues were protonated and 

associated with a trifluoroacetate counter ion.  Assessment of these peptides' ability to stabilise 

Nrf2 and induce downstream genes via qPCR (Table 2.3) and Western blotting, identified the 

TAT-14 peptide as the lead sequence (see below, Section 2.1.3). Following which a second set of 

peptides were synthesised. 

 

Table 2.4: Peptide sequences based on the 14 mer peptide 

Having identified TAT-14 as a strong inducer of Nrf2 regulated genes, it was necessary to design 

control molecules in order to demonstrate both the specific binding of the 14 mer sequence and 

the enhanced cellular uptake provided by TAT (Table 2.4). To this end, the 14 mer sequence 

without TAT was synthesised to demonstrate that uptake of TAT-14 into cells was dependent on 

the CPP. In addition a scrambled 14 mer sequence was designed to demonstrate that increase in 

Nrf2 regulated genes was due to the specific sequence chosen i.e. one from the native Nrf2 

protein and therefore disruption of the Nrf2/Keap1 interaction as the most likely mode of action. 

The TAT-14Sc sequence was created from the same amino acids as the 14 mer peptide but 

ensuring that none of the residues remained in the same position or order, resulting in a peptide 

with distributed polarity rather than clustered as in the natural sequence (Figure 2.3). In 

particular, the glutamic acid residues believed to play a crucial role in the interaction were spaced 

so as to prevent similar binding patterns forming to those found in the native peptide. It was also 

ensured that no inverse sequence remained intact or similarly charged residues were adjacent. 
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Figure 2.3: Hydropathy plots of native 14 mer peptide and designed scrambled sequence showing distribution of 
polar side chains 

2.1.2 - TAT-Nrf2 Peptide Synthesis Optimisation 

Before proceeding further with generation of analogues, the synthesis of the TAT-14 peptide was 

revisited in order to address some shortcomings of the original method. Initial synthesis on Wang 

resin was extremely low yielding, resulting in the need for extensive purification and as a 

consequence, low quantities of pure material. Analysis of crude peptide mixtures by MALDI 

revealed that a series of amino acid deletions were responsible for the multiple peaks observed 

by HPLC (Figure 2.4).  

 

Figure 2.4: Crude HPLC trace of the TAT-14 peptide synthesised on Wang resin 

The occurrence of multiple deletions indicates consistently low coupling efficiencies. Had a single 

residue or sequence been the source of the problem it would be more likely to see a small 

number of by-products rather than the wide range observed. In order to attempt to counteract 

this, couplings were repeated in triplicate, it was hoped that this would force each step to 

completion and thus yield pure peptide. This was not the case however and while the crude 

material contained far fewer peaks, the desired peptide was not the majority (Figure 2.5). 
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Figure 2.5: Crude HPLC trace of the TAT-14 peptide synthesised using triple couplings 

 The shift in retention times for the peaks is due to a change in mobile phase from 

water/methanol to water/acetonitrile. The two large peaks at 15.7 and 16.2 minutes are side 

chain protection by products as a result of simultaneous deprotection during cleavage. Following 

this synthesis, the opportunity arose to trial a microwave peptide synthesiser. It was decided that 

the TAT-14 peptide would be a good test as it should be easy to see any improvements afforded 

by the technique. The synthesis was carried out using the same reagents and conditions as the 

first synthesis with the exception of the coupling steps where 25 min agitation at room 

temperature was replaced with 10 min microwave irradiation. In this case there appears to have 

been little benefit to microwave irradiation for couplings. While the coupling steps were 

significantly shortened, the purity of peptide is comparable to the synthesis utilising triple 

couplings (Figure 2.6). 

 

Figure 2.6: Crude HPLC trace of the TAT-14 peptide synthesised using microwave irradiation for coupling steps 

It was suspected that aggregation was the cause of the poor coupling efficiency, despite the lack 

of residues commonly associated with the problem. In order to identify the point at which 

aggregation was beginning and hopefully find a way to continue the synthesis, the peptide was 

synthesised manually.  
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Figure 2.7: Sequence of 14 mer peptide indicating coupling requirements and onset of aggregation 

To this end it was decided to synthesise the 14 mer peptide and subsequently assess the viability 

of continuing to the full TAT-14 peptide (Figure 2.7). The first amino acid, glutamine, was loaded 

and capped as normal using the symmetrical anhydride method and acetic anhydride 

respectively. The following five amino acid additions, 82EFLPI86, were complete by Kaiser test with 

a single 25 min coupling. Subsequently three of the next four amino acids, 78EETG81, required 

double coupling to drive them to completion. Couplings were extended to 45 min to try and 

improve efficiency. This seems to have had little effect as the next two amino acids, Asp77 and 

Leu76, required four and three couplings respectively. It was fairly clear that this was the point at 

which aggregation became insurmountable. For the penultimate amino acid addition, Gln75, 

several attempts were made to ease the coupling. Initially the coupling agent was switched from 

HBTU to PyBOP in the hope that a more potent agent would benefit coupling, though this was not 

seen to have an effect. Several approaches were assessed to reduce the aggregation itself, firstly 

lithium chloride was added to the DMF used in the reaction at a concentration of 0.4 M, with the 

hope that the additional ions would prevent the association of peptide chains. The reaction 

solvent was then changed to NMP still containing 0.4 M LiCl as there is evidence to suggest 

improved solvation compared to DMF. This finally led to completion of the reaction, though it 

took seven couplings to do so. The final amino acid addition was achieved in just two couplings 

though each lasted 24 hours. The crude HPLC of this peptide contains one major product, aside 

from cleavage by-products at 16 min,  however this is only 14 amino acids of the full 25 in the 

TAT-14 peptide (Figure 2.8). 
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Figure 2.8: Crude HPLC trace of  the 14 mer peptide synthesised manually to assess aggregation 

Due to the multiple extended couplings required to add additional amino acids to this chain, 

continuing the synthesis to the full TAT-14 peptide and analogues was not viable. Instead, options 

for preventing the onset of aggregation were examined. One option was to introduce Hmb 

protected amino acids into the sequence prior to the onset of aggregation. With good knowledge 

of where aggregation starts to affect coupling efficiency this would have been possible but it was 

felt that it would be prohibitively expensive, especially when considering synthesis of analogues. 

An alternative approach was to employ a resin with increased solvation properties and lower 

loading with the hope that this would prevent aggregation by increasing the physical distance 

between immobilised peptide chains. This was believed to be a far more practical approach as it 

would be applicable to any further analogues synthesised. The resin chosen for the synthesis was 

NovaSyn TGA, a PEG functionalised polystyrene resin bearing the same benzyl alcohol functional 

group as Wang resin. This affords the free acid C-terminus when cleaved and can be handled 

under the same conditions as Wang resin, making it an easy transition with our current syntheses. 

The first amino acid was loaded as normal using the symmetrical anhydride method and chain 

elongation was carried out using the Syro I automated peptide synthesiser, with each amino acid 

attached by double coupling. The benefits of this resin are clear from the crude HPLC trace, note a 

return to the original water/methanol mobile phase (Figure 2.9). There is a single major product, 

aside from cleavage by products between 17 and 18 min, which was isolated in a single 

purification step. 
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Figure 2.9: Crude HPLC trace of the TAT-14 peptide synthesised on Nova Syn TGA resin 

2.1.3 - TAT-Nrf2 Peptide In Vitro Assays 

Following purification, the peptides were taken up in sterile PBS to a concentration of 7.5 mM and 

stored at -80°C. In vitro testing was carried out in THP-1 cells, a leukemic human monocytic cell 

line.132 As monocytes play a vital role in the inflammatory response, the ability to modulate their 

behaviour with Nrf2 based peptides could have a large influence on resolution of inflammation.3 

Assessment of the peptides' ability to affect Nrf2 levels by qPCR and Western blot was carried out 

in conjunction with Jon Cowan. None of the peptides were found to be toxic up to 150 µM when 

assessed for cytotoxicity by MTS assay over 72 hours. In all subsequent experiments, aside from 

determining dose response, the peptides were tested at a final concentration of 75 µM. 

 

Figure 2.10: HO-1 mRNA induction by TAT-10, TAT-14 and TAT-16 peptides, Mean ± SEM, n = 3, ***p < 0.001 

The TAT-10, TAT-14 and TAT-16 peptides were expected to enter cells, disrupt the Nrf2/Keap1 

interaction and cause build up of Nrf2 protein. This would result in activation of downstream 

genes which could then be detected in order to measure the potency of the peptides. 

Hemeoxygenase-1 (HO-1) transcription is particularly strongly affected by Nrf2 induction, which 

makes it ideal for monitoring the effects of the peptides.31 Initially, HO-1 mRNA expression was 
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examined by qPCR for each peptide, by comparison to a standard curve and normalised against 

the housekeeping gene glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (Figure 2.10). Cells 

were treated for either three or six hours with 75 µM peptide. The cells were then pelleted and 

taken up in TRI reagent and the RNA isolated using a modified phenol/chloroform extraction 

method.133 The RNA was then converted into the corresponding DNA by reverse transcription and 

the DNA amplified by PCR, monitored in real time by measurement of SYBR Green fluorescence. 

Relative concentrations were calculated by comparison to a standard curve. Neither TAT-10 nor 

TAT-16 showed significant induction, however the induction by TAT-14 was strong, averaging an 

18 fold increase at 6 hours. The reasons for the lack of induction by the other peptides is unclear, 

however the binding of TAT-10 may have been affected by the presence of an arginine residue 

within one amino acid of the key DEETGE binding sequence. A similar result was seen by Inoyama 

et al. who noted that acetylation of the N-terminus of short peptide sequences increased 

binding.134 It was also noted that extending the peptide by a further two amino acids had a similar 

effect. This would explain why the TAT-14 peptide was not affected as there are three amino acids 

in the sequence between the binding region and the TAT peptide. The inability of TAT-16 to 

induce was a more puzzling result as Lo et al. had previously reported that the 14 and 16 amino 

acid peptides showed similar binding to the Keap1 Kelch domain by ITC. While still not a 

significant increase to HO-1 mRNA levels, it is clear that the increase induced by the TAT-16 

peptide is greater than that for the TAT-10 peptide.  
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Figure 2.11: Hairpin sizes for 10, 14 and 16 amino acid binding sequence peptides 

It is possible then, that the ability of the peptides to disrupt the Nrf2/Keap1 interaction in a 

cellular environment is partially due to the length of hairpin as well as overall length. Figure 2.11 

shows the proposed folding pattern for each of the binding sequences tested. While the 16 mer 

peptide is the longest it has only the second longest loop, with four amino acids each side of the 

turn region. In comparison, the 14 mer peptide has five amino acids each side of the turn and the 

10 mer peptide has only three. If an alternate 10 amino acid peptide, removing Pro85 and adding 

Glu75, showed increased binding it would support this hypothesis. Alternate 14 and 16 amino 

acid peptides could be constructed along the same lines to further explore this effect.  

 

Figure 2.12: Nrf2 protein levels following treatment with TAT-14 or TAT-14Sc peptides 

Having synthesised the TAT-14Sc and 14 mer peptides (Table 2.4), more detailed data could be 

collected on the effects of the TAT-14 peptide. In order to confirm that the TAT-14 peptide was 
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increasing Nrf2 levels, protein expression was examined via Western blot. Cells were treated with 

both TAT-14 and TAT-14Sc peptides for the time indicated (Figure 2.12). Following stimulation, 

the cells were pelleted and lysed in SDS buffer. Proteins in the sample were denatured by boiling 

under reducing conditions and then separated according to size by gel electrophoresis.135 After 

transfer to a nitrocellulose membrane, Nrf2 protein levels were measured by immunoblotting 

using Nrf2 specific antibodies and compared to the structural protein β-actin to ensure even 

loading. With addition of the TAT-14 peptide, protein levels were found to peak after 3 hours 

while induction by the TAT-14Sc peptide was negligible. The induction by the TAT-14 peptide is 

strong and persists at 6 hours though it is greatly reduced. In comparison to the negative control 

and the 3 hour stimulation for the TAT-14Sc peptide, the 1 hour stimulation by TAT-14 may be 

showing an effect. If this is the case then there may be a slight induction at 3 and 6 hours with the 

TAT-14Sc peptide though this may be due to cellular stress as a result of penetration of the 

peptide. This shows a clear relationship between sequence and ability to disrupt the Nrf2/Keap1 

interaction which cannot be attributed to cellular stress alone. In addition, a preliminary 

experiment examining Nrf2 mRNA levels by qPCR showed no increase in transcription upon 

stimulation with TAT-14, suggesting disruption of Nrf2 ubiquitination and not increased protein 

production. As Nrf2 production is linked to cell stress, this is also an indication that the effects are 

not simply due to stress. 

 

Figure 2.13: HO-1 mRNA induction by 14 mer, TAT-14Sc and TAT-14, Mean ± SEM, n = 3, p*** < 0.001 

In order to demonstrate the progression of induction by the TAT-14 peptide from increased Nrf2 

levels to downstream genes, a time course was devised to measure HO-1 mRNA by qPCR as 

described previously (Figure 2.13). The increase in HO-1 mRNA over a time course from 2 to 8 

hours was compared to that of the non-cell penetrating 14 mer peptide and the TAT-14Sc 

peptide. A clear pattern of induction was seen in cells treated with the TAT-14 peptide. mRNA 



63 
 

levels were already elevated after 2 hours reaching an average peak induction of 24 fold after 6 

hours which quickly decreased to 12 fold after 8 hours. Conversely the effects of the 14 mer and 

TAT-14Sc peptides were insignificant; it is possible that any slight induction by the TAT-14Sc 

peptide was due to cellular stress as a result of cell penetration. The inability of the 14 mer 

peptide to induce HO-1 mRNA clearly suggests that addition of the TAT cell penetrating peptide is 

necessary for internalisation of the binding sequence peptides. 

 

Figure 2.14: HO-1 protein levels following treatment with TAT-14 or TAT-14Sc peptides 

Examining the translation of HO-1 mRNA into protein was important in ensuring that any 

induction seen in mRNA levels would result in increased antioxidant and anti-inflammatory 

response (Figure 2.14). Therefore, HO-1 protein levels were assessed by Western blot in the same 

way as previously described for Nrf2 protein. The results clearly show a progression from maximal 

HO-1 mRNA production at 6 hours to maximal protein levels at 12 hours. Again the TAT-14Sc 

peptide was seen to have no effect. As with Nrf2 protein and HO-1 mRNA the induction is sharp, 

while there is some increase in protein at 9 hours it has dropped back to basal levels by 16 hours. 

The TAT-14 peptide clearly has a transient effect which suggests it is not permanently altering the 

function of the cells. This is a desirable characteristic as permanent elevation of Nrf2 levels may 

lead to damage as seen in Keap1 null mice, which do not survive to maturity.34 

 

Figure 2.15: Dose Response of TAT-14 induced HO-1 mRNA levels. Mean ± SEM, n = 3, **p < 0.01, ***p < 0.001 
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A dose response experiment was performed in order to demonstrate both the concentration 

dependence of induction and identify the lowest usable level of peptide for future work. As HO-1 

mRNA induction was so strong with 75 µM TAT-14, it was decided that measuring transcription of 

this gene would provide a clear dose response (Figure 2.15). The dose dependent nature of the 

induction is obvious, and while only the 37.5 µM stimulation is significant it is likely that with a 

greater number of replicates the significance of the lower concentrations would increase. Due to 

the sharp decrease in potency, it was decided to keep the concentration of peptide at 75 µM in 

further experiments. 

 

Figure 2.16: Attenuation of lipopolysaccharide (LPS) induced TNFα mRNA levels by TAT-14 compared to TAT-14Sc. 
Mean ± SEM, n = 3, **p < 0.01 

To relate these results directly to reduction in inflammation, one of the ultimate goals of this 

approach, it was decided to measure the effect of the TAT-14 peptide on a key pro-inflammatory 

cytokine, tumour necrosis factor alpha (TNFα). Previous work within the group has shown that 

stimulation of cells with lipopolysaccharide (LPS) induces TNFα production as a model of sepsis.136 

Therefore, cells were treated with either TAT-14 or TAT-14Sc for 4 hours followed by stimulation 

with LPS for 3 hours following which TNFα mRNA levels were measured by qPCR (Figure 2.16). The 

cells treated with TAT-14 show a significant reduction in TNFα mRNA, averaging 61%, compared 

to cells treated with LPS alone. This is a clear demonstration of the utility of the TAT-14 peptide 

and disruption of the Nrf2/Keap1 interaction in general as an anti-inflammatory target. From this 

basis it was hoped to develop both more active peptide sequences and small molecules that 

target the protein-protein interaction as well as using the TAT-14 peptide as a tool for examining 

the extent of Nrf2 induction without increasing cellular stress. 
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2.2 - Polyarginine-Nrf2 Peptides 

2.2.1 - Polyarginine-Nrf2 Peptide Synthesis 

It was suspected that potency of the TAT-14 peptide could be increased by optimising the CPP 

sequence. A wide range of cell penetrating peptides have now been identified, among the most 

studied are TAT, transportan, penetratin and octa-arginine. The most potent of these are the 

polyarginine peptides, where efficiency of penetration increases with chain length up to 10 

residues beyond which efficiency has been seen to decrease.115 The result is that octa- and nona-

arginine have very similar properties. As reduction in chain length where possible is desirable and 

the penetration efficiency of octa-arginine is generally far greater than that of TAT it was decided 

that the octa-arginine peptide conjugated to the 14 mer sequence would be an attractive target. 

In addition, as penetration efficiency decreases with chain length, a second peptide was designed 

with tetra-arginine conjugated to the N-terminus of the 14 mer peptide. It has been reported that 

tetra-arginine is unable to internalise cargo and therefore should show no induction of Nrf2 

regulated genes. This provides a simple control to show that uptake is as a result of cell 

penetrating peptide length. These R4-14 and R8-14 peptides were synthesised using the method 

developed for synthesis of the TAT-14 peptide, utilising PEGylated polystyrene resin. They were 

purified by reverse phase chromatography and lyophilised before being taken up in sterile PBS at 

a concentration of 7.5 mM. 

2.2.2 - Polyarginine-Nrf2 Peptide In Vitro Assays 

 Before testing the efficacy of the compounds, they were both assessed for cytotoxicity by MTS 

assay to determine the maximum concentration at which the peptides could be tested without 

inducing Nrf2 through toxicity. Both R4-14 and R8-14 peptides were tested between 150 µM and 

7.5 nM in THP-1 cells for 24 h. At high concentrations cell viability is clearly reduced by addition of 

the R8-14 peptide, with almost 60% cell death at 150 µM (Figure 2.17). As the highest 

concentrations do not completely prevent cell growth it was not possible to calculate an IC50 value 

for this compound. However, this data was very important in ensuring the correct concentration 

was used for further testing. Cell viability began to decrease at concentrations between 18.75 and 

37.5  µM, therefore the concentration for further testing was set at 25 µM to ensure the greatest 

response without decreasing cell viability. In contrast, the R4-14 peptide showed no toxicity even 

at 150 µM, as with the TAT-14 peptide. This indicates that the source of toxicity is the extended 

arginine chain on increase from four to eight units. The cytotoxicity of octa-arginine has been 

noted previously as a drawback of its increased efficacy.137 It was reasoned that as the TAT-14 
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peptide was potent at 75 µM the more potent R8-14 peptide would still stabilise Nrf2 at lower 

concentrations. The ability to be effective while using less peptide is a significant advantage for 

the R8-14 peptide. 

 

Figure 2.17: Cell viability of THP-1 cells incubated with varying concentrations of the R8-14 (circles) and R4-14 
(triangles) peptides for 24 h. Mean ± SEM, n = 3 

In order to test if this was correct, THP-1 cells were treated with the R8-14 and R4-14 peptides at 

25 µM and protein levels of Nrf2 were assessed. Cells were treated at 1, 3 and 6 hours as for the 

TAT peptides and Nrf2 levels measured by Western blot (Figure 2.18). As with the TAT-14 peptide, 

maximal stabilisation of Nrf2 by the R8-14 peptide occurs after 3 hours with a sharp decrease by 6 

hours. As expected, the R4-14 peptide shows no activity at any of the time points tested. As a 

qualitative technique and without the TAT-14 peptide in parallel it is not possible to assess the 

relative potency of the TAT-14 and R8-14 peptides, though as the R8-14 peptide was tested at one 

third of the concentration of the TAT-14 peptide it would appear to be more potent. 

 

Figure 2.18: Nrf2 protein levels following treatment with R8-14 or R4-14 peptide 

In order to determine the relative efficacy of the TAT-14 and R8-14 peptides as well as the 

induction of HO-1 protein by the R8-14 peptide an HO-1 ELISA was employed. Cells were treated 

with either the R8-14 or R4-14 peptide at 25 µM or the TAT-14 peptide at 75 µM for the time 

specified. Cells were treated for 9, 12, 16 and 24 hours, the same time points as used for TAT-14 

HO-1 induction assessed by Western blot with the addition of a 24 hour time point to determine if 
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induction decreased after 16 hours. HO-1 levels were assessed using an R&D Systems DuoSet IC 

Human Total HO-1 kit by comparison of sample concentration to a standard curve. Total 

concentration of HO-1 was determined by analysing the standard dilution with a four parameter 

logistic curve fit. Induction of HO-1 was then expressed as fold induction compared to a non-

treated control.  

 

Figure 2.19: ELISA of HO-1 protein levels following treatment with TAT-14, R8-14 and R4-14 peptide. Mean ± SEM, 
n = 3, ***p < 0.001, *p < 0.05 

 Unlike the data from Western blot experiments, the induction by the TAT-14 peptide does not 

decrease after 12 hours and in fact continues to increase up to 24 hours (Figure 2.19). The reasons 

for this are unclear, though with some optimisation it should be possible to use samples prepared 

for ELISA in Western blotting experiments to clarify what is occurring. While not as strong an 

effect, the R8-14 peptide also displays a similar pattern of induction to the TAT-14 peptide, though 

only the 24 hour time point is a significant induction over the control. Conversely, the R4-14 

peptide shows no induction at any time point. As with the Nrf2 Western data, this is a clear 

indication that the ability of the peptides to disrupt the Nrf2/Keap1 interaction is dependent on 

the cell penetrating sequence. The decreased induction of HO-1 protein by the R8-14 peptide 

compared to the TAT-14 peptide is likely due to the stimulation being one third the concentration 

of the TAT-14 peptide. This highlights the importance of cytotoxicity assessment, as while the R8 

cell penetrating peptide may be more potent in general, its cytotoxicity outweighs any benefit 

when compared to the TAT peptide which shows very low toxicity. 
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2.3 - Fluorescently Tagged CPPs 

2.3.1 - Fluorescently Tagged CPP Synthesis 

Up to this point the cell penetration of these peptides was assumed to be effective due to the 

inability of the 14 mer and R4-14 peptides to induce Nrf2 stabilisation or HO-1 induction. In order 

to confirm that the peptides were indeed entering the cells and not simply binding to surface 

receptors and acting via an unknown pathway, a fluorescently labelled cell penetrating peptide 

was designed. It was envisaged that a fluorophore attached to the N-terminus of the TAT-14 

peptide would not interfere with binding to Keap1 due to the remoteness from the key binding 

sequence. Therefore, the linear sequence of the peptide was assembled as previously on NovaSyn 

TGA resin and following final Fmoc deprotection, 5(6)-carboxyfluorescein (FAM) was coupled to 

the N-terminal amine using HBTU/HOBt and DIPEA in DMF (Scheme 2.5). The only difference to 

the standard coupling procedure being the use of just two equivalents of FAM, HBTU and HOBt 

and four equivalents of DIPEA, which was found to be sufficient to produce complete 

functionalisation in 30 minutes as assessed by Kaiser test. The peptide was then cleaved from the 

resin and purified as for the TAT-14 peptide. 

 

Scheme 2.5: Synthesis of F-TAT-14 on NovaSyn TGA resin by Fmoc SPPS 

2.3.2 - Fluorescently Tagged CPP In Vitro Assays 

The ability of this peptide to enter cells was monitored by fluorescence microscopy over a period 

of three hours. It was assumed that as maximal Nrf2 induction was seen by this time that the 

peptide must enter the cell in under three hours. THP-1 cells were treated with fluorescently 

labelled peptide as previously, for 180, 120, 60, 30 and 5 minutes, following which cells were 

pelleted and washed to remove excess peptide. In order to prevent the appearance of artefacts, 

cells were imaged live following a trypsin digest step as detailed by Richard et al.108 The 5 min 

sample was split in two before trypsin digest in order to provide a control. 



69 
 

 

Figure 2.20: Fluorescence microscopy images of the F-TAT-14 peptide in live THP-1 cells. 1 * 10
7
 cells/mL in PBS, 

Ex 490 nm, Em 520 nm 

The most significant difference between the samples is the decreasing fluorescence with time. 

The cause of this is unclear, though it may be due to degradation of the peptide, which could 

explain the decrease in Nrf2 protein levels after three hours. Whether the similar levels of 

fluorescence in the control and 5 min samples is due to ineffective trypsinisation, or simply that 

levels of membrane associated peptide are low in THP-1 cells is unclear. There is evidence to show 

that circulating monocytes express very low levels of HSPGs, which are responsible for membrane 

adhesion of CPPs.138 Whether this is the case or not, the higher magnification overlay indicates 

that the fluorescence is restricted to the inside of the cells (Figure 2.21). 

 

Figure 2.21: Representative overlay of 30 min sample showing internalisation of peptide within cells 

While there appears to be significant quantities of peptide within some cells, the uneven 

distribution is puzzling. More detailed experiments need to be conducted in order to determine 

the causes of uneven uptake and decreasing fluorescence over time. 



70 
 

2.4 - Conclusions 

Of the three peptides assessed by Lo et al. in purified protein assays, only one was found to be 

active in cell based assays when conjugated to a cell penetrating sequence. The TAT-14 peptide 

has been shown to be a promising tool for investigation of Nrf2 regulated genes and the role of 

Nrf2 in inflammation. Perhaps most significantly, the peptide validates targeting the Nrf2/Keap1 

PPI for reduction of pro-inflammatory mediators. Optimising the synthesis of the TAT-14 peptide 

has allowed more rapid production and subsequently easier synthesis of similar peptides. 

Investigation of polyarginine peptides as alternative CPP sequences for delivery of Nrf2 based 

peptides has highlighted the importance of assessing multiple transduction sequences. While the 

R8-14 peptide shows some efficacy in cellular assays, the toxicity of the R8 sequence cannot be 

ignored. It is possible that cell types other than monocytes would be more tolerant of the R8-14 

peptide, which may allow its increased cell penetration properties to be determined more easily. 

The fluorescence microscopy experiments seem to indicate the F-TAT-14 peptide is entering cells 

rapidly, however, several questions are raised. The uneven uptake has no clear explanation and 

neither does the speed of uptake which would seem contrary to other recent work. As a tool 

however, the F-TAT-14 peptide provides another way in which disruption of the Nrf2/Keap1 

interaction can be  examined. 

While the peptides presented in this chapter serve as useful tools and proof of concept for 

targeting the Nrf2/Keap1 interaction, they do not fulfil the role of lead-like compounds required 

to develop a small molecule inducer. In addition, the cellular assays required to characterise each 

of the peptides produced to this point were not conducive to rapid screening of new molecules or 

libraries. With this in mind, a fluorescence polarisation assay was established, the development of 

which is described in the following chapter. Using this assay, the CPP-Nrf2 peptides were further 

characterised.  
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Chapter 3: Fluorescence Polarisation 

3.0 - Introduction 

3.0.1 - Fluorescence Polarisation 

Analysis of protein ligand interactions, where the ligand is either a peptide or small molecule, can 

be conducted in a number of ways, for example using fluorescence polarisation (FP), isothermal 

titration calorimetry (ITC), surface plasmon resonance (SPR) or radioligand assays.139 Fluorescence 

polarisation has a number of advantages over other techniques, specifically, unlike radioligand 

assays there is no need to separate bound and unbound ligand before measurements are taken. 

This allows measurements to be taken at equilibrium and as a result readings can be taken from 

the same samples under varied conditions, e.g. temperature and time.140 In addition the 

equipment required for high throughput fluorescence polarisation screens is relatively 

inexpensive and has uses outside the single technique. As a side product of using fluorescently 

tagged ligands rather than radioligands there is no need to handle radioactive compounds for 

prolonged periods which reduces both the cost and safety concerns related with the assay. As 

with any technique there are important limitations, potentially the most significant being the 

possibility of reduced binding of the fluorescently tagged ligand compared to the natural peptide. 

This can be limited somewhat by ensuring the fluorescent tag is introduced away from the key 

binding sequence and by measuring competition with the un-tagged sequence. The binding data 

obtained through fluorescence polarisation is typically not as reliable as ITC, though for screening 

purposes this should not be a problem.141 As a practical consideration, due to the need to titrate 

receptor into a fixed concentration of ligand, fluorescence polarisation uses more protein than an 

equivalent radioligand technique. 

The principles behind fluorescence polarisation are based on rotational correlation time and 

absorption and emission of polarised light by rigid dipoles.142 In a fluorescence polarisation 

experiment, light emitted by an excited fluorophore is measured in two planes, in the same plane 

as the excitation and perpendicular to it. As a rigid dipole will emit in the same plane as it 

absorbed, given sufficient fluorescence lifetime, the angle of emission will be determined by the 

speed of rotation of the molecule. Assuming a spherical molecule, and identical viscosity of 

solution, rotational correlation time is proportional to volume. This means that a small unbound 

fluorescent ligand will rotate quickly, whereas a ligand bound to a large receptor will rotate 

slowly. As a result the emitted light from an unbound fluorescent ligand in solution will have no 

polarisation; detected light is equal in both parallel and perpendicular planes. In contrast a ligand 
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bound to a large receptor will have a far higher proportion of emission in the parallel plane than 

the perpendicular (Figure 3.1). This results in a polarisation signal which is proportional to ligand 

binding.  

 

Figure 3.1: Effect of rotational correlation time on polarisation of emitted light. 

Previous work by Hancock et al. has produced detailed sequence activity relationships for multiple 

fluoroscein tagged Nrf2 based peptides.97 Peptides based on both the ETGE and DLG binding 

sequences were assessed along with sequences from sequestrome-1 which contains a sequence 

similar to the ETGE binding region of Nrf2. The DLG sequence peptides and ETGE sequence 

peptides less than 7 amino acids in length were unable to induce polarisation at any 

concentration tested, however 7, 9 and 10 mer peptides were found to induce strongly. Strength 

of binding was found to increase with chain length as may be expected with the 10 mer having a 

Kd of 51.0 nM. Despite this increase in binding the 7 mer peptide was selected for further 

screening assays as it produced the greatest change in polarisation on binding. This was expected 

to benefit the sensitivity of the assay due to the increased signal-to-noise ratio. Having 

established the assay, a screen of several peptide sequences was conducted. Notably, N-acetyl 

capping of an LDEETGEFL peptide was found to significantly increase binding, presumably due to 

removal of the N-terminal positive charge. Elongation of the peptide by 2 amino acids was found 

to have a similar effect. The lack of binding of TAT-10 may be related to this due to the proximity 

of the positively charged arginine residues to the binding sequence. Further modification of the 

peptide sequence using an alanine scan found that mutation of Ac-DEETGEF to Ac-DAETGEF 

increased binding from 5.39 μM to 0.730 μM. Sequences from sequestrome-1 indicated that 
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changing from DEETGEF to DPETGEL would increase binding further. With this in mind a 

fluorescence polarisation assay utilising the 14 mer peptide was developed in order to screen 

small molecules and assess the binding of peptides used previously in cells to explain their 

observed activities. 

3.1 - Fluorescence Polarisation Assay 

3.1.1 - Setup of Fluorescence Polarisation Assay 

Development of an Nrf2/Keap1 based fluorescence polarisation assay for the screening of 

peptides and small molecules, as well as measurement of detailed binding data was setup based 

on those established by Rossi et al., Hancock et al. and Cox et al.97,142,143 In order to construct the 

assay, a receptor-ligand pair was required. Isolation of the complete Keap1 protein is not trivial, 

however, analysis of binding to the Kelch region was expected to be sufficient as this is the 

location of the key binding interactions.39 For this reason, Keap1 Kelch plasmid and protein 

provided by Hannink, as used to produce the crystal structure of the Kelch domain bound to the 

16 mer peptide, was selected as the receptor.40 For the ligand it seemed reasonable to select a 

peptide sequence for which we have strong positive data, therefore the 14 mer sequence was 

chosen as the basis for the fluorescently tagged ligand. As the N-terminal Leu residue of the 14 

mer peptide plays no part in the interaction, and is positioned far from the binding site in the 

crystal structure (PDB I.D. 2FLU), it was decided that N-terminal functionalisation of the peptide to 

create a fluorescent ligand would be optimal. This was achieved by reaction of the fully 

deprotected and purified 14 mer peptide with fluorescein isothiocyanate in DMSO using 

triethylamine as a base. As there are no other nucleophiles present in the peptide, side products, 

such as double tagging were not expected, however, two major products were seen by RP-HPLC. 

One of these was identified by MALDI-TOF as having the correct mass and isolated by semi-

preparative RP-HPLC. 

The concentration of the N-terminally fluorescently tagged 14 mer peptide (F-14) was determined 

spectroscopically by dissolving the compound in DMSO, which was found to quench fluorescence, 

and diluting in water. The absorbance at 495 nm was measured using a Thermo NanoDrop 100 

spectrophotometer and the concentration calculated using the Beer-Lambert law (Equation 1) 

with the extinction coefficient (ε) of fluorescein being 63000 M-1 cm-1 and path length of 0.1 cm to 

give a stock concentration of 425 μM from which all subsequent dilutions were made. 
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Equation 1: Beer-Lambert law. A: absorbance at 495 nm, ε: molar extinction coefficient (M
-1

 cm
-1

), 
c: concentration (M), l: path length (cm) 

Initial experiments sought to determine the Kd of the F-14/Keap1 interaction. In order to do this 

an estimate of the Kd was needed as a starting point for binding curves. The calorimetry data 

given by Lo et al. for binding of the 16 mer Nrf2 peptide indicated that 20 nM would be a 

reasonable concentration.40  

 

Figure 3.2: Fluorescence anisotropy of the F-14 peptide with varying concentrations of Keap1, Mean ± SEM, n = 3, 
Kd 338 ± 231 nM 

Initially the only components of the system were the fluorescent peptide ligand and the protein 

receptor. Unlike typical radioligand assays, due to the build up of background fluorescence, the 

fluorescent ligand concentration must be fixed while the receptor is titrated in. Work by Hancock 

et al. indicated that 50 mM sodium phosphate buffer at pH 7.4 would provide the best signal 

while maintaining buffering capacity.97 With the concentration of the F-14 peptide fixed at 20 nM 

a binding curve was constructed with Keap1 concentrations from 0 nM to 2000 nM (Figure 3.2). 

Analysis by non-linear regression gave a Kd of 338.4 ± 231.3 nM, far higher than the expected 

value even taking into account reduced binding caused by the attachment of fluorescein. The 

large range of this value is mostly due to the lack of data points in the high concentration range. 

While stock concentrations of Keap1 would not allow higher data points, optimisation to decrease 

the Kd
 would have a similar effect. In order to optimise the assay the concentration of the F-14 

peptide which produced the greatest change in polarisation upon binding to Keap1 was 

determined. A titration of 1000 nM Keap1 with between 1 and 15 nM F-14 suggested that with a 

100 μL well volume 5 nM F-14 peptide produced the greatest change in polarisation.  
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Figure 3.3: Fluorescence anisotropy of the F-14 peptide with varying concentrations of Keap1, Mean ± SEM, n = 3, 
equilibration 20 min, Kd 128.4 ± 67.7 nM 

At this point it was noted that successive readings within an experiment showed steadily 

increasing polarisation, indicating that the peptide protein interaction had yet to reach 

equilibrium. To test this, a more detailed triplicate binding curve was performed, with readings 

taken immediately after mixing and then with increasing time intervals up to 6 hours. The 

resulting data shows that the Kd is stable for around 30 minutes after mixing; after which the Kd 

increases rapidly, suggesting a breakdown of the interaction. Analysis of the data after 20 minutes 

equilibration using non-linear regression produced a Kd value of 128.4 ± 67.7 nM (Figure 3.3). 

Despite the relatively short window in which readings could be made and the still higher than 

expected Kd it was decided that collection of preliminary data for inhibition by the untagged 

peptide would be beneficial to ensure the assay was working as expected. 

 

Figure 3.4:  Fluorescence Polarisation inhibition by the 14 mer peptide, IC50 9.4 nM, 95% CI [2.6, 29.2], Mean ± SEM, 
n = 3, 200 nM Keap1, 5 nM F-14 

Displacement of the F-14 peptide by the unlabelled 14 mer peptide was assessed as a function of 

concentration. The concentration of Keap1 was fixed at 200 nM so as to produce a fully bound 

signal of between 0.5 and 0.8 of saturation and F-14 peptide concentration was fixed at 5 nM as 

before. The concentration of the 14 mer peptide was then varied from 1000 to 0 nM in triplicate. 
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Readings were taken after 15 min incubation and show a clear decrease in polarisation with 

increasing 14 mer peptide concentration (Figure 3.4). Analysis of inhibition by non-linear 

regression resulted in an IC50 of 9.4 nM though a greater number of data points in the low 

concentration range would be needed for a robust figure. Conversion of IC50 to Ki via the Cheng-

Prusoff equation was not thought to be valid at this point as an accurate Kd value was yet to be 

determined.144 

 

Figure 3.5: Fluorescence anisotropy of F-14 with varying concentrations of Keap1 and 0.1% Tween20 additive, 
Mean ± SEM, n = 3,  average over 30 min, 11 readings, Kd 42.1 ± 7.2 nM 

It was noted that Hancock et al. had examined the effect of surfactant on their similar assay and 

found it to have little effect on either binding affinity or assay stability. As surfactant is known to 

both decrease non-specific binding and increase stability of FP assays it was decided that the 

addition of 0.1% Tween20 may be beneficial.141 To this end an F-14/Kelch binding curve was 

produced both with and without the added surfactant. It was found that with surfactant the assay 

was stable for far longer and it appeared the Kd was reduced. In order to confirm this, a triplicate 

experiment was performed and the Kd measured over a period of 7 hours. Analysis by non-linear 

regression on all of the data collected over the first 30 minutes produced a Kd of 42.1 ± 7.2 nM, far 

better than any previous experiment (Figure 3.5). In addition stability was increased dramatically, 

with the Kd rising to only to 55 nM after 7 hours.  

The fluorescence polarisation assay was further optimised within the group, primarily in terms of 

simplifying the setup and reducing error due to pipetting where possible. The microplates for the 

assay were also changed to ones with very low surface binding. In addition it was found that in 

order to reduce the error of a single reading it was necessary to average multiple readings from 

the same wells. As a result each plate was subsequently read 10 times and values averaged before 

comparison to replicates. This reduced the observed error to within the expected limits for the 

plate reader and resulted in far more reliable data. After this process, a final binding curve was 
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performed to determine an accurate Kd value from which the parameters for inhibition 

experiments could be determined. 

 

Figure 3.6: Fluorescence anisotropy of the F-14 peptide with varying concentrations of Keap1 and 0.1% Tween20, 
Mean ± SEM, n = 3,  Kd 14.6 ± 1.1 nM 

The optimised binding curve provides a Kd value that is in line with literature values for similar 

systems (Figure 3.6).97 The assay was assessed for stability after 18 hours with no change in Kd 

over this time. With an accurate value for Kd determined and the stability of the assay confirmed, 

it was possible to define the parameters for the inhibition assay. For ideal conditions, the 

concentration of receptor should be fixed at between Kd and 0.8 maximal binding (Bmax). With 80% 

of Bmax being between 40 and 50 nM, 30 nM was chosen as a reasonable concentration.  

3.1.2 - Fluorescence Polarisation Inhibition Assays 

Following optimisation of the FP assay, the peptides screened previously for activity by cell 

culture techniques were assessed. The in vitro experiments had shown that ability to increase 

HO-1 mRNA expression and translation as well as stabilisation of Nrf2 protein was highly 

sequence specific. It was hypothesised that the inability of the TAT-10 peptide to induce these 

effects was due to disruption of binding to the Keap1 Kelch domain by the proximity of multiple 

positively charged arginine residues to the key negatively charged DEETGE binding sequence. In 

comparison to the TAT-14 peptide which has three residues between the cell-penetrating and 

binding sequences, the TAT-10 peptide has only a single residue between the two. For 

comparison, the 14 mer and 10 mer peptides were also tested. The 10 mer peptide was 

synthesised on 2-chlorotrityl chloride resin in an analogous manner to the TAT-10 peptide (See 

Chapter 2). It was expected that without the addition of the TAT sequence the potency would be 

increased due to greater ease of binding.  
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Figure 3.7: Fluorescence Polarisation inhibition by the 14 mer peptide, Ki 12.3 nM, 95% CI [10.7, 14.1], Mean ± SEM, 
n = 3, 30 nM Keap1, 5 nM F-14 

As a base line, the 14 mer peptide was used to displace the fluorescently tagged version (Figure 

3.7). With a Ki of 12.3 nM (95% CI [10.7, 14.2]) the affinity is very similar to the tagged peptide, 

which had a Kd of 14.6 nM in the assay. This means that addition of the fluorescein has not 

affected the binding of the peptide. As a result the Ki values for other peptides and small 

molecules should be relevant to the full PPI. Subsequently the remaining peptides screened in 

vitro were tested for their ability to disrupt the assay.  

The first surprise in these experiments came with the assessment of TAT-14 binding (Table 3.1). 

The 3.6 nM (95% CI [2.9, 4.6]) Ki was unexpected and indicates that the addition of the cell-

penetrating sequence increases binding affinity rather than reducing as may be expected. The 

second surprise was that the TAT-10 and 10 mer peptides follow the same pattern of binding 

affinity.  

Lo et al. previously determined that the binding affinity of the 10 mer peptide was an order of 

magnitude weaker than the 14 mer peptide which correlates with the 146.8 nM Ki (95% CI [102.3, 

210.8]) by FP (Table 3.1). The TAT-10 peptide however has a far lower Ki of 6.9 nM (95% CI [4.7, 

10.1]), which is more potent than the 14 mer peptide alone (Table 3.1). This suggests that the TAT 

peptide sequence contributes to binding significantly. 
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Table 3.1: Fluorescence Polarisation inhibition by CPP-Nrf2 peptides, n = 3, 30 nM Keap1, 5 nM F-14 

With these results in mind it was decided that analysis of the TAT-16 peptide and its non-TAT 

counterpart would provide more details about the relationship between the addition of the cell 

penetrating peptide and increase in binding affinity. The TAT-16 and 16 mer peptide were 

synthesised using the revised PEG-polystyrene resin synthesis producing the peptides in good 

crude purity. It is interesting to note that the 16 mer peptide was retained far more strongly on 

the reverse phase column than the other non-TAT peptides. This proved problematic for 

purification, as methanol was not sufficient to elute the peptide. Instead acetonitrile was used, as 

a more non-polar solvent. The importance of this finding is that it indicates the peptide is far more 

non-polar than the 14 mer peptide. This is significant when considering the effect of hydrophobic 

residues, particularly phenylalanine, on the potency of cell penetrating peptides. Addition of two 

Phe residues to the terminus of polyarginine peptides increases their uptake efficiency, which is 

thought to be due to increased hydrophobic membrane interactions.145 

The binding affinity of these two peptides was assessed using the FP assay as before. The TAT-16 

peptide however, caused interference with the assay at concentrations above 100 nM, requiring 

the points above this concentration to be excluded (Table 3.1). In spite of this a Ki value of 38.9 
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nM (95% CI [15.6, 96.9]) could be calculated, though it is not as accurate as the values determined 

for the other peptides. In comparison to the other TAT conjugated peptides, there is a clear 

reduction in affinity even taking this into account. 

As may be expected from looking at the degree of expected intra-molecular backbone hydrogen 

bonding of the Nrf2 binding sequence peptides, the 16 mer peptide falls in between the 16 mer 

and 14 mer peptides in binding affinity (Table 3.1). With 4 backbone hydrogen bonds and a Ki of 

88.1 nM (95% CI [67.4, 115.3]), it fits with the pattern of the 14 mer peptide having 5 hydrogen 

bonds and the strongest binding affinity and with the 16 mer peptide having 3 hydrogen bonds 

and the weakest affinity. 

For comparison, the polyarginine conjugated peptides were also tested. In this case it was found 

that the length of the cell penetrating peptide has little effect on the binding affinity (Table 3.1). 

The Ki of 5.8 nM for the R8-14 and 5.3 nM for the R4-14 peptides (95% CI [4.7, 7.1] and [4.6, 6.2] 

respectively) are identical within experimental error. Interestingly they are both more potent than 

the 14 mer sequence alone, suggesting that it is the first few amino acids before the key binding 

sequence which increases potency. The potency is decreased compared to that of TAT-14 which 

perhaps indicates that there are additional interactions as a result of the increased length of the 

TAT peptide. It must be noted however that the Keap1 Kelch domain expressed for use in this 

assay comprises only a portion of the entire Keap1 protein. Recent electron microscopy 

experiments indicate that the IVR domain of Keap1 is wrapped around the Kelch domain in the 

native protein.44 As a result, if the cell penetrating portion of these peptides is interacting with the 

outer face of the Kelch domain this may not be an accurate representation of the interaction in 

vivo. 
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Figure 3.8: Hairpin backbone loop sizes for TAT-Nrf2 peptides, excess TAT chain truncated for clarity 

With this new information, the hypothesis presented in Chapter 2 regarding levels of HO-1 

induction and hairpin length may need to be revised. The factors affecting cellular systems are 

vastly more complex than those in a purified protein assay, as a result there may be entirely 

unrelated causes which result in similar patterns of binding affinity and gene induction. Taking 

this into account, the FP data indicates that the CPP portion of the peptide can affect its 

properties beyond the expected increase in cell membrane permeability. This might be explained 

by examining the secondary structure of the peptides when bound to Keap1. Taking into account 

the additional backbone interactions that could be formed between the binding and cell 

penetrating sequences the relative loop sizes between the TAT-10, TAT-14 and TAT-16 peptides 

change compared to those proposed in Chapter 2 (Figure 3.8). The TAT-14 peptide still has the 

largest loop, but because of the positioning of the amino acids in the TAT-16 peptide relative to 

the β-turn, the addition of the TAT sequence does not increase the loop size. This means that the 

TAT-10 peptide has the second longest loop when including the TAT peptide. While this would 

explain why the TAT-14 and R8-14 peptides have increased binding compared to the 14 mer 

peptide it would not follow for the TAT-10 and TAT-16 peptides as by qPCR the TAT-16 peptide is 

more potent than the TAT-10 peptide. If however, the increased hydrophobicity of the 16 mer 

sequence has an enhancing effect on cell penetration of the TAT-16 peptide it could explain the 

observed activity despite reduced binding to the target. 
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Equation 2: Z′ test for well-to-well variation 

Before embarking on further inhibition screens to assess the ability of unknown compounds to 

inhibit the interaction, the suitability of the assay to high throughput screening was determined. 

In order to do this, the Z′ test was employed which measures the signal to noise ratio for 

inhibition assays.146 Multiple data points with fully bound protein are taken, in this case 48, and 

compared to the same number with a sufficient concentration of inhibitor to fully displace the 

fluorescent ligand. The standard deviations of these measurements are then compared according 

to Equation 2, where SD is standard deviation of the anisotropy and mAu is the average 

anisotropy, to determine a value for variability. A value above 0.5 is considered to be suitable for 

usage as a high throughput assay. In this case, 48 wells containing 5 nM F-14 peptide and 30 nM 

Keap1 for the fully bound state and 48 wells with an additional 2000 nM 14 mer peptide for the 

fully dissociated state were compared (Figure 3.9). The calculated Z′ value of 0.86 indicates that 

the assay is suitable for usage in high throughput screening. 

 

Figure 3.9: Z′ test, wells 1-48: 5 nM F-14, 30 nM Keap1, wells: 49-96 5 nM F-14, 30 nM Keap1, 2 µM 14 mer 

3.2 - Conclusions 

Having developed the FP assay, two avenues of investigation are now open. The assay can be 

used to gather detailed information about the binding affinities of further Nrf2 based peptides. 

Alternatively, as shown by the Z′ test, the assay is suitable for high throughput screening, which 

could be used to identify entirely novel binders of Keap1 through analysis of compound libraries. 

The binding affinities of the CPP-Nrf2 peptides determined using the FP assay have shed light on 

the relationship between loop length and binding affinity. It appears that additional residues 

added evenly each side of the turn increases binding to Keap1, possibly through stabilisation of 
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the β-hairpin motif. This would correlate with the intramolecular backbone hydrogen bonding 

seen in crystal structures, though more work is needed to confirm this. The binding affinities of 

the TAT-14 and Rx-14 peptides show that these are particularly potent inhibitors of the 

Nrf2/Keap1 interaction, further highlighting their potential as tools for investigating the Nrf2/ARE 

pathway. 

With these potent tools in hand, development of peptides progressed towards more lead-like 

molecules. Key to this was minimisation of size while maintaining potency. As stabilisation of the 

backbone hairpin appeared advantageous, synthesis of peptide macrocyles was explored via a 

number of routes. These are described in the following chapter.  
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Chapter 4: Design and Synthesis of Cyclic Peptides 

4.0 - Introduction 

4.0.1 - Peptide Macrocyclisation 

Cyclic peptides offer a number of benefits over their linear counterparts. The main effect of 

cyclisation is to restrict free rotation of the peptide's bonds which results in a more rigid, ordered 

structure that loses less entropy upon binding to its target than the linear analogue.147 The 

decreased entropy penalty means binding affinity is increased. A side effect of cyclisation is 

decreased proteolytic degradation, particularly by exoproteases, this in turn increases the half-life 

of the peptide and therefore bioavailability.148 There are several motifs for forming macrocycles in 

peptides, these are summarised in Figure 4.1. In addition to those shown, mixtures of strategies 

are possible, for example side chain to backbone or side chain to terminus. While many examples 

exist of each motif, a few examples, specifically of head-to-tail and sidechain-sidechain cyclisation, 

are highlighted. 

 

Figure 4.1: Selected cyclisation motifs found in natural peptides and employed in synthetic strategies (adapted from 
Liskamp et al.

147
) 

Cyclic peptides can be divided into two broad categories, natural products and protein derived 

macrocycles. As is often the case with drugs, the natural cyclic peptides have a long and detailed 

history from initial isolation through structure elucidation to total synthesis. The protein derived 

cyclic peptides are a more recent development, based on the observation that restriction of the 

conformation of a protein derived peptide can result in a compound with similar or increased 

activity to the entire protein.149 

4.0.2 - Cyclic Peptide Natural Products 

A number of cyclic peptide natural products have found applications in areas such as antibiotics 

and immunosuppressants. Of these, vancomycin and ciclosporin are probably the most successful. 
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Aside from their cyclic structure, there are several features commonly found in cyclic peptides, 

which can be exploited when designing synthetic macrocycles. The cyclic heptapeptide portion of 

the glycopeptide vancomycin (Figure 4.2A) forms three macrocycles via modified sidechains.150 

These introduce atropisomerism to the molecule, which adopts a single atropisomer in the 

natural product. This produces a highly structured three dimensional conformation in the 

glycopeptide that affords high affinity binding to its target dipeptide, preventing bacterial cell wall 

biosynthesis. In spite of several approaches to total synthesis and development of analogues, the 

complexity of the compound means large scale synthetic production is still impractical.147  

 

Figure 4.2: Cyclic peptide natural products A) Vancomycin B) Ciclosporin A C) Chlorofusin 

The immunosuppressant ciclosporin (Figure 4.2B) is one of the main drugs used to prevent graft 

rejection following transplant surgery.151 The peptide is head-to-tail cyclised and consists of a 

mixture of L and D amino acids, a common feature in cyclic peptides as D amino acids allow 
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formation of a turn in the peptide backbone. Of the 11 residues, six are N-methylated and all are 

hydrophobic, important features in allowing the peptide to cross cell membranes.152  

Naturally occurring cyclic peptides have also been found to target PPIs. The head-to-tail cyclised 

nonapeptide chlorofusin (Figure 4.2C), binds to the N-terminal domain of MDM2, the negative 

regulator of the tumour suppressor p53.153 Overexpression of MDM2 has been implicated in 

several cancers and represents an attractive target for development of chemotherapeutics. The 

cyclic peptide portion of chlorofusin consists of nine head-to-tail cyclised residues of which four 

are D amino acids. Synthesis of chlorofusin analogues has shown that both the peptide and 

chromophore portions are necessary for activity.154 

4.0.3 - Synthetic Cyclic Peptides 

The second class of cyclic peptides are those based upon truncated protein structures, which seek 

to replicate the efficacy of the full protein while reducing overall size and increasing 

bioavailability. These peptides tend to be far smaller than the natural cyclic peptides, and in 

general feature less complex structures. Bernal et al. have developed an alternate method for 

targeting MDM2 by using truncated p53 based peptides.155 In their strategy, non-natural amino 

acids bearing alkene side chains are inserted into the peptide sequence in place of residues that 

do not take part in the PPI. Following synthesis of the peptide chain, the two hydrocarbon side 

chains are linked by ruthenium-catalysed olefin metathesis, generating a so-called "stapled" 

peptide (Figure 4.3A). By spacing these amino acids seven residues apart, the α-helical structure 

of the peptide is stabilised. Variation of the position of these residues within the peptide chain 

generated a series of analogues with varying α-helix structure. This was measured using circular 

dichroism (CD) and the affinity of the peptide for MDM2 assessed by fluorescence polarisation 

(FP) binding experiments, using fluorescently-labelled peptides. The most efficient MDM2 binder 

of these peptides was found to restore p53 protein levels in SJSA-1 cells. 
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Figure 4.3: Synthetic cyclic peptides A) Stapled p53 derived α-helix B) Stapled SH2 domain binding peptide 
C) Disulfide cyclised oestrogen receptor binding peptide D) RGD derived head-to-tail cyclised peptide 

Src homology 2 (SH2) domain binding peptides represent another area where small cyclic 

peptides have been designed based upon proteins with a specific recognition sequence. SH2 

domains are found in a variety of regulatory and signalling proteins which recognise 

phosphotyrosine, with the specificity of each protein determined by the flanking residues.156 Gao 

et al. have developed a stapled peptide using olefin metathesis for macrocyclisation in addition to 

a 1-aminocyclohexanecarboxylic acid residue which induces a turn in the peptide chain (Figure 

4.3B).157 Further work by the same group has generated analogues through side chain variation, 

resulting in a lead compound which shows picomolar affinity for the Grb2 protein and anti-

mitogenic effects against breast cancer cells.158 

Disulfide bridges exist throughout natural proteins as a method of inducing structure.159 This 

strategy has also been used to generate small cyclic peptides to target PPIs. The alpha and beta 

forms of oestrogen receptors and their cofactors are an attractive target for inhibition due to 

their role in skeletal and cardiovascular regulation as well as being implicated in certain forms of 

cancer.160 Galande et al. have used the LXXLL recognition motif found in these receptors to 

synthesise a large library of cyclic helical peptides stabilised by disulfide bridges between i and i+3 

residues (Figure 4.3C). By variation of side chains and disulfide position within the peptides, they 

were able to identify structure activity data for both affinity and selectivity between alpha and 

beta forms of the oestrogen receptor protein.  
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Head-to-tail cyclisation has also been employed in synthetic peptides. Integrins comprise a large 

family of cell surface adhesion and signalling receptors. The RGD based peptides aim to disrupt 

cell surface signalling by binding integrins which contain a highly conserved Arg-Gly-Asp (RGD) 

binding motif.161 Through an iterative design-synthesis-activity approach, a series of head-to-tail 

cyclised hexa- and pentapeptides were produced in order to probe the interaction.162 Of the 

peptides synthesised, Gurrath et al. were able to identify a c(RGDDFV) pentapeptide as a potent 

inhibitor of cell adhesion to both laminin and vitronectin (Figure 4.3D). Through analysis of X-ray 

crystal structures, the conformation of these peptides has been confirmed to be the same as for 

endogenous RGD motifs.163 

The cyclic peptide natural products and synthetic strategies highlighted above provide a selection 

of examples for methods of peptide macrocyclisation. When designing a novel cyclic peptide 

structure, however, the specific conditions for each transformation must be considered. For every 

strategy there are a variety of approaches, each with their own benefits dependent on 

application. 

For synthetic peptides, two main categories for cyclisation exist, either solution phase or on-resin. 

There are two key restrictions for solution phase cyclisation. Dilutions must be kept high to 

prevent intermolecular reactions as cyclisations tend to be slow and coupling agents must be 

carefully selected to allow separation of side products from the cyclic peptide.164 On resin 

cyclisation avoids these issues due to the pseudo dilution effect of peptide chain immobilisation 

and the ease of side product removal by washing the resin. Unlike solution phase reactions 

however, on resin cyclisations tend to be more difficult to monitor due to the qualitative nature 

of protocols such as the Kaiser test.125 While resin tests exist for free thiols and amines, for 

cyclisation strategies not involving these moieties and for following removal of orthogonal 

protecting groups, cleavage of small portions of resin is often the only way to be certain about the 

progress of reactions.165 As a result, choice of conditions for macrocyclisation largely depends on 

the specific application. 

Formation of a disulfide bridge is one of the most straightforward methods of macrocyclisation, 

with numerous oxidation methods available.159 Developed alongside these techniques are a range 

of orthogonal protecting groups that allow not only disulfide formation in otherwise fully 

protected peptides, but selective formation of multiple bridges for the construction of polycyclic 

peptides.166 In its most basic form however, where only a single disulfide bridge is formed, the 

oxidation can be carried out in the presence of a number of other functional groups without 
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concern for side reactions. This makes the use of cysteine disulfides an attractive starting point for 

investigation of cyclic peptide sequences. 

While slightly more complex than disulfide formation, lactam cyclisation offers a number of 

distinct advantages. The amide bond produced is more stable to reduction and in head-to-tail 

cyclisation, the peptide has no N-terminus for exopeptidases to attach to. Whether in solution or 

on-resin, in many cases orthogonal protection for functional groups not involved in cyclisation is 

required, which has resulted in a number of specialist protecting groups including 

allyl/alloxycarbonyl and DMAB.167,168 These are stable to the standard deprotection conditions 

used in chain elongation, but can be selectively removed prior to cyclisation. In situations where 

head-to-tail cyclisation is not desirable, lactam formation can be achieved via careful placement 

of amine and carboxylic acid bearing amino acids. Where this is not possible, for example due to 

side chain interactions, methods have been developed to allow backbone cyclisation via 

N-alkylation to introduce amines and carboxylic acids.169 

For strategies involving cyclisation by formation of a lactam, careful selection of coupling agents is 

necessary to avoid C-terminal racemisation and optimise coupling time. The highly active HOAt 

catalyst used in conjunction with carbodiimide condensating agents has become a popular 

solution for this cyclisation.170 More recently, introduction of phosphonium coupling agents has 

further expanded the options available for slow couplings.171 

Peptide stapling is a more recent development which allows covalent macrocyclisation through 

non-peptidic coupling methods. While this strategy has most often been applied to the 

stabilisation of α-helical peptides, the principle is applicable generally.172 This method uses a side 

chain hydrocarbon bridge by olefin metathesis between two alkene bearing side chains.173 The 

linkers produced in this way are not only more stable than disulfide and amide bonds, but confer 

more cell permeability to the resulting peptide.174 This is believed to be due to the more lipophilic 

nature of the hydrocarbon chain. However, this method does require specialist non-natural amino 

acids, making it one of the more costly techniques. 
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4.1 - Disulfide Cyclised Peptides 

One reason for the TAT-14 peptide's increased potency in in vitro testing over the 10 and 16 

amino acid sequences may be the increased hairpin stabilisation by backbone hydrogen bonding 

(see Chapter 2). If this is the case then a peptide with a constrained conformation, for example by 

cyclisation, would not require as long a chain to achieve the same affinity. Based on this 

assumption, a cyclic peptide consisting of just the key DEETGE motif should be capable of 

disrupting the Nrf2/Keap1 interaction. As formation of disulfide bridges is one of the most simple 

methods for forming cyclic peptides, this was chosen as a starting point. 

4.1.1 - Synthesis of Disulfide Cyclised Peptides 

In order to maintain the six key residues while making the peptide cyclic, it was necessary to add a 

Cys residue to either end of the sequence. This provided the basic eight amino acid sequence for 

the first disulfide cyclised peptides. Previous work by Hancock et al. has shown that N-terminal 

acetylation of short binding sequence peptides increases their binding affinity.97 This is thought to 

be due to the positive charge of the N-terminus interfering with the cationic binding pockets of 

Keap1. In order to determine if N-terminal acetylation was necessary for these peptides, 

sequences were synthesised both with and without N-terminal modification. From a synthetic 

perspective, C-terminal cysteine presents a specific challenge. When attached to benzyl alcohol 

functionalised resins, a high degree of racemisation occurs. To prevent this, two options are 

available. First, the solid support can be changed for a trityl functionalised resin, which is resistant 

to racemisation of the first residue due to the bulky trityl group. The drawback with 2-chlorotrityl 

chloride resin is that it is moisture sensitive, requiring strictly anhydrous conditions during the 

resin loading step. The second option is to use Rink amide resin which has the benefit of allowing 

loading under standard coupling conditions, though the resulting peptide is C-terminally 

amidated. In order to determine whether either of these methods would affect binding, peptides 

using both resins were synthesised. With these N- and C-terminal modifications in mind, three 

peptides were synthesised to test the effect on binding (Ds8, H2N-Ds8, Ds8-OH, Table 4.1).  
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Table 4.1: Disulfide cyclised peptides and linear controls based on key Nrf2/Keap1 binding motif 

The linear sequences for the two C-terminally amidated peptides, Ds8 and H2N-Ds8, were 

synthesised on Rink Amide resin, using standard coupling procedures. Following chain elongation, 

the Ds8 peptide was N-terminally acetylated using acetyl chloride and DIPEA. The linear sequence 

for the Ds8-OH peptide was synthesised using preloaded 2-chlorotrityl resin and standard 

conditions for chain elongation. The peptide was then N-terminally acetylated using acetyl 

chloride and DIPEA. All three peptides were cleaved with a cocktail containing EDT to prevent 

reaction of cysteine with cleavage side products, and purified by reverse phase flash 

chromatography. Oxidation of the cysteine residues to form the cyclic peptides was achieved 

using iodine in acetic acid, as this method does not require as high dilutions as other methods. 

Monitoring by HPLC showed a slight shift in retention time and mass spectrometry showed a 

decrease in mass by two Da. Following completion of oxidation, iodine was removed by washing 

with carbon tetrachloride and the peptides purified by reverse phase flash chromatography. 

Purity was confirmed by RP-HPLC and identity by MALDI-TOF MS. 

Following analysis of the first three peptides by (FP) (see Section 4.1.2), N-terminal acetylation 

and C-terminal amidation were selected as the optimum configuration for further analogues. Two 

new sets of peptides were designed to test the effects of loop size and the contribution of 

cyclisation on binding affinity. In order to test the influence of loop size, two further peptides 
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were synthesised. The first increased the peptide to 10 amino acids, adding one residue to either 

end of the key binding sequence (Ds 10, Table 4.1). With an increased size, the peptide should be 

able to adopt an optimal binding configuration more easily and in addition allow an increased 

number of backbone interactions. The second peptide decreased the size to six amino acids, 

though in order to achieve this, the amino acids were not removed symmetrically from each end. 

This maintained the presence of Glu82, which forms a side chain interaction with one of the 

cationic binding pockets of Keap1. This peptide features just the ETGE core, with the two residues 

involved in side chain interactions with Keap1 and the two residues allowing formation of the β-

turn flanked by two Cys residues (Ds6, Table 4.1). Alongside these two peptides, a further three 

peptides were designed to be linear counterparts to the six, eight and ten residue cyclic peptides 

(Ln6, Ln8, Ln10, Table 4.1). By substituting cysteine for serine, similar physical properties were 

maintained, while removing the ability to cyclise. The peptides were synthesised in the same 

manner as Ds8, with the exception that the serine analogues were not subjected to the oxidation 

step. The compounds were purified by reverse phase chromatography and characterised by 

MALDI-TOF MS. 

4.1.2 - Fluorescence Polarisation Inhibition 

Following synthesis of the initial three peptides, Ds8, H2N-Ds8 and Ds8-OH, their ability to disrupt 

the Nrf2/Keap1 interaction was assessed by FP. Based on previous binding experiments (see 

Chapter 3), fluorescent peptide concentration was fixed at 5 nM and the concentration of Keap1 

at 30 nM, consistent with the inhibition assays using the CPP-Nrf2 peptides.  

The Ds8 peptide, having both an acetylated N-terminus and amidated C-terminus was expected to 

bind well to Keap1. This was found to be the case, with a Ki of 95.0 nM (95% CI [73.2, 123.3]), 

indicating a strong interaction with the receptor (Figure 4.4). Interactions in the nanomolar range 

are consistent with work by Lo et al.40 In comparison however, the Ds8 peptide is half the length 

of the 16 mer peptide for which Lo et al. determined a Kd value of 20 nM. Linear peptides of a 

similar length to the Ds8 peptide, analysed by Hancock et al., were found to have IC50 values in the 

micromolar range.97 This was a clear indication that cyclisation could improve affinity for Keap1 

significantly. The Ds8 peptide formed a baseline to which the other peptides synthesised could be 

compared.  
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Figure 4.4: Fluorescence Polarisation inhibition by the Ds8 peptide, Ki 95.0 nM, 95% CI [73.2, 123.3], Mean ± SEM, 
n = 3, 30 nM Keap1, 5 nM F-14 

As expected, removal of the N-terminal acetyl group from the Ds8 peptide severely affected 

binding. The H2N-Ds8 peptide had a Ki of 274.9 nM (95% CI [182.6, 413.8]), threefold weaker than 

the Ds8 peptide (Table 4.2). As noted previously this is likely due to the interference of the 

positively charged N-terminus with the cationic arginine binding pocket of Keap1. Despite this, 

binding is still in the nanomolar range, indicating the interaction is strong.  

 

Table 4.2: Fluorescence Polarisation inhibition by disulfide cyclised peptides, n = 3, 30 nM Keap1, 5 nM F-14 

Replacing the C-terminal amide with the free acid had a similarly potent result, increasing the 

binding affinity to 47.7 nM (95% CI [35.5, 64.1]) (Table 4.2). The cause of this improved binding is 

unclear, though may be due to an additional hydrogen bonding interaction between the 

C-terminus and the receptor.  

From the initial screen, it was clear that protection of the N-terminus was necessary to increase 

binding efficiency. As a result all subsequent peptides were N-terminally acetylated. Masking of 

the C-terminus however, reduces affinity. This presented a problem in that the C-terminal acid 

peptides were significantly more difficult to synthesise in high purity and yield than the C-terminal 

amide analogues. In addition, the binding sequence peptides already bear four acidic residues, 
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which make them less likely to diffuse across cell membranes. The C-terminal acid results in a 

peptide with an extra negative charge in solution. Before examining these peptides in cells it was 

not possible to know how significant this would be, however reduction of charge was considered 

more important than binding affinity in this case. It was decided that as the Ds8 peptide showed 

strong binding and was easily accessed, further peptides should be based on C-terminal amides, 

despite the possible reduction in binding affinity. 

This led to the production of two peptides with differing sizes of cycle and three as linear 

counterparts (Table 4.1). The linear peptides were expected to show weaker binding to Keap1 as 

they lacked the constrained conformation of the cyclic peptides. This is evident from the Ln8 

peptide binding data, with a Ki of 1271 nM (95% CI [1046, 1545]), binding is an order of magnitude 

weaker than the cyclic Ds8 peptide (Table 4.3), similar to a 7 mer peptide synthesised by Hancock 

et al.97 

 

Table 4.3: Fluorescence Polarisation inhibition by disulfide cyclised peptides, n = 3, 30 nM Keap1, 5 nM F-14 

In comparison, increasing the length of the peptide to 10 amino acids, improves the binding 

dramatically. While still not as potent as the Ds8 peptide, the Ln10 peptide was found to have a Ki 

of 176.9 nM (95% CI [135.6, 230.6]) which is stronger than the non-acetylated H2N-Ds8 peptide 

(Table 4.3). 

This trend in increased binding with peptide length was continued with the Ds10 cyclic peptide. 

Comprising 10 amino acids, the peptide's Ki was found to be 48.0 nM (95% CI [33.2, 69.2]) which is 

half that of the Ds8 peptide (Table 4.3). Encouragingly, this is as potent as the C-terminal acid 
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Ds8-OH peptide, the most potent cyclic peptide so far. Again the increase in binding afforded by 

cyclisation is clear in comparison to the Ln10 peptide.  

Moving in the opposite direction, by decreasing the number of amino acids to six, it was hoped 

that the minimum binding sequence could be identified. As expected the affinity of the Ds6 

peptide (Table 4.3) is weaker (Ki of 151.5 * 103 nM (95% CI [88.8 * 103, 258.7 * 103])), however the 

extent to which binding was decreased was surprising. While the weak binding made determining 

an accurate Ki difficult, as indicated by the range of the 95% CI, the fact that binding is three 

orders of magnitude weaker than the Ds8 peptide is a strong indication that decreasing beyond 

the DEETGE sequence is not viable.  

As would be expected from the previous data, displacement of the F-14 peptide by the Ln6 

peptide required very high concentrations. As with the Ds6 peptide, the 280.4 * 103 nM Ki has a 

very wide confidence interval (95% CI [116.2 * 103, 676.2 * 103]), as a result of the high 

concentrations required for displacement, though it appears that binding is decreased compared 

to the cyclic peptide (Table 4.3). This would follow the pattern seen with the other peptides in the 

series. 

From the fluorescence polarisation data it was clear that the degree to which peptides bind to 

Keap1, is strongly dependent on both length and conformation. However, as the FP assay uses 

purified protein and a fluorescently tagged peptide, rather than intact cells, the data gives no 

indication as to how easily the peptides cross cell membranes.  

4.1.3 - HO-1 Protein Induction 

In order to assess the ability of the peptides to disrupt the Nrf2/Keap1 interaction in cells, their 

effect on HO-1 protein induction was measured by ELISA. As the linear peptides and non-

acetylated N-terminus peptide showed very weak binding in the FP assay, they were not included 

in cell testing. Despite the very weak binding of the Ds6 peptide, it was included in case its small 

size and removal of two negatively charged side chains allowed cell entry, resulting in weak 

induction. Each of the peptides was tested at a concentration of 10 mM in THP-1 cells between 9 

and 16 hours. 
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Figure 4.5: Induction of HO-1 protein by disulfide cyclised peptides, Mean ± SEM, n = 3 

As can be seen from Figure 4.5, none of the peptides increased HO-1 protein levels at the time 

points tested. This may be due to their inability to enter cells, which would not be unreasonable, 

as despite being cyclic and having uncharged termini, they bear several negatively charged side 

chains.  
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4.2 - Head-to-tail Cyclised Peptides 

As an alternate cyclisation strategy to the disulfide peptides, head-to-tail cyclisation by lactam 

formation was explored. By attaching an amino acid to the resin by its side chain, it was hoped 

that both chain elongation and cyclisation could be achieved on the resin. This would reduce the 

number of purification steps and remove the need for high dilutions during cyclisation. 

4.2.1 - Synthesis of Fmoc-Glu-ODMAB 

Before synthesising the linear precursor to a head-to-tail cyclised peptide, it was necessary to 

produce an orthogonally protected amino acid which could be selectively deprotected to allow 

on-resin cyclisation. Because the key Nrf2 binding motif contains multiple acidic residues it was 

decided that production of a C-terminally DMAB protected amino acid would provide the largest 

number of options for the peptide synthesis.168 While commercially available, the DMAB 

protecting group can be prepared on a large scale from inexpensive reagents in just three steps 

(Scheme 4.1).175,176 As production of the DMAB protecting group has been reported, each 

synthetic step was confirmed by comparison to published NMR data. The final compound, 

Fmoc-Glu-ODMAB, was characterised by NMR and mass spectrometry. 

 

Scheme 4.1: Synthesis of DMAB protecting group 

The first step in the synthesis was production of isovaleryl dimedone (IvDde) via an ester 

intermediate. This was obtained by reaction of dimedone with 1.2 equivalents isovaleryl chloride 

in the presence of pyridine. Reaction for 18 hours is necessary to ensure quantitative conversion. 

Aqueous workup was sufficient to produce the pure product as a yellow oil. Conversion of the 

ester into IvDde via a Fries type rearrangement, was achieved by reacting the material with 

aluminium chloride at room temperature.  At a 10 mmol scale, rearrangement required only 1.2 

equivalents aluminium chloride. However when scaled up to 50 mmol 2.2 equivalents aluminium 
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chloride are necessary, along with the use of anhydrous solvent. It was suspected that both the 

starting material and product were coordinating to aluminium, resulting in the need for an excess 

of reagent. Under these conditions however, the reaction proceeded in 2 hours and required only 

filtration through silica to remove baseline impurities to afford the product in an 87% yield as a 

yellow oil.  

 

Scheme 4.2: Synthesis of Fmoc-Glu-ODMAB 

Reaction of p-amino benzylalcohol with IvDde to produce DMAB by refluxing in THF was relatively 

slow, requiring 60 hours to complete. However, after purification by flash chromatography the 

product was isolated as a yellow solid in 69% yield. DMAB was then used to C-terminally protect 

Fmoc-Glu(tBu)-OH using standard condensation conditions (Scheme 4.2). Flash chromatography 

afforded the product as a white solid in 79% yield. Side chain deprotection of 

Fmoc-Glu(tBu)-ODMAB was achieved by treatment with 50% TFA in DCM for 1 hour. Removal of 

solvent under reduced pressure and coevaporation with methanol to remove residual t-butanol 

produced Fmoc-Glu-ODMAB in quantitative yield as a yellow foam. 

4.2.2 - Synthesis of Head-to-tail Cyclised Peptides 

 

Table 4.4: Peptide sequences for head-to-tail cyclised Nrf2 peptides, linear sequence as synthesised in italics 

Unlike the disulfide bridged peptides, a head-to-tail cyclic peptide must incorporate a planar 

amide bond into the cyclic turn. In order for this not to impact the binding of the peptide, it was 

decided that a larger cycle would be a good starting point. Based on the shortest of the three 
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peptides identified as binders by Lo et al., a linear sequence was designed that when cyclised 

would produce a cyclic version of the 10 mer peptide (Table 4.4). There were three possible 

options for placement of the C-terminus of the linear sequence, determined by the placement of 

Glu residues in the peptide. One option was to start at Glu79, which would break the sequence in 

the middle of the β-turn section. This was discounted as it was hoped the natural turn of the 

peptide would aid cyclisation. The remaining two residues are located at either end of the turn 

section, Glu82 was selected as the first residue, though Glu78 would have been equally suitable 

(Scheme 4.3). 

 

Scheme 4.3: Initial synthesis of a head-to-tail cyclised peptide, resin loading, chain elongation and attempted 
cyclisation 
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Fmoc-Glu-ODMAB was immobilised on the resin via its side chain using symmetrical anhydride 

loading. The chain was elongated under normal conditions and following completion a small 

portion of resin was cleaved for analysis. Both HPLC and mass analysis showed the presence of 

the linear chain as the majority product, with DMAB group intact. Following DMAB removal with 

2% hydrazine, the process was repeated and again the linear peptide, this time without DMAB, 

was observed. On-resin cyclisation was attempted using 1.5 equivalents DIC and 1 equivalent 

HOBt in DMF, following a literature procedure.177 Coupling was carried out for 48 hours, with 

refreshed coupling agents after 24 hours. No significant reaction was observed by Kaiser test in 

this time. As a result, coupling conditions were altered. PyBOP was employed instead of DIC, 

equivalents were increased to 4 for both PyBOP and HOBt and 8 equivalents DIPEA were added. 

Following a further 48 hours, some reduction in colour was observed by Kaiser test and the 

peptide was cleaved from the resin to assess the extent of cyclisation. HPLC analysis of the crude 

product showed multiple small peaks, while analysis by MALDI showed multiple products 

including linear peptide but no presence of the desired product. 

Due to the difficulties in the cyclisation step, an alternate peptide sequence was devised, which it 

was hoped would be more conducive to cyclisation (Table 4.4). In the new sequence, the β-turn 

was positioned in the middle of the linear chain. With a natural turning point in the peptide, it 

was hoped that the two ends of the chain would be in closer proximity for the cyclisation 

reaction. In order to place the β-turn in the centre of the sequence, none of the previously 

suggested Glu residues could be used for resin attachment. Aside from the high concentration of 

Glu in the binding motif, there are no other Glu residues in the natural peptides. By shifting the 

frame of the 10 mer however, from residues 76-85 to 75-84, a Gln residue is added to the N-

terminus. As the final peptide has no N- or C-terminus, the chain can be broken at any point, 

making it possible to place the Gln residue at the C-terminus instead of the N-terminus. By 

synthesising this peptide using Fmoc-Glu-ODMAB at the C-terminus as before, but immobilising 

on Rink Amide resin instead of Wang resin, following cleavage the side chain is converted to an 

amide. Using this method, the β-turn motif is in the centre of the sequence and the same 

Fmoc-Glu-ODMAB prepared previously could be used (Scheme 4.4). 
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Scheme 4.4: Synthesis of the Ht10 peptide, resin loading, chain elongation and on-resin cyclisation 

The linear sequence was constructed on a 0.195 mmol scale, attaching all the amino acids using 

standard HBTU mediated couplings. Following synthesis the resin was split into three batches to 

allow several attempts at cyclisation. As before, the linear peptide was the majority product both 

before and after DMAB removal. The initial cyclisation was based upon the protocol laid out by 

Meller et al. using DIC as the condensating agent as before, using 1.5 equivalents DIC and 1 

equivalent HOBt in a minimum volume of DMF.177 The reaction was monitored by Kaiser test and 

the reagents refreshed every 24 hours. After reacting for 4 days, the Kaiser test results had 

become weak (pale blue), though the reaction was still not complete. The reaction was continued 
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using PyBOP as a stronger coupling agent and anhydrous conditions as PyBOP is known to be less 

stable to hydrolysis than other coupling agents. Coupling was complete overnight using the new 

conditions and the peptide was cleaved from the resin. HPLC analysis showed consumption of the 

linear peptide and new peak corresponding to 2 M+Na by MALDI TOF. The presence of this peak 

was unlikely to be due to a physical head-to-tail dimerisation of two peptide chains, as the pseudo 

dilution effects of on-resin cyclisation do not allow chains to come into close proximity. In 

addition to this new peak, there were a large number of small impurities, which it was hoped 

could be eliminated by optimising the coupling conditions. 

As use of a more potent coupling agent had driven the reaction to completion, coupling agents 

were considered based on their relative efficiencies. Of the reagents commonly used in SPPS, 

HATU is known to be one of the most effective. Its cost is prohibitive for general use in synthesis, 

however it has been found to be particularly effective in difficult couplings.178 A second portion of 

resin was deprotected as before and swollen in dry DMF. The peptide was reacted overnight with 

4 equivalents HATU and HOBt and 8 equivalents DIPEA in dry DMF. Encouragingly, the Kaiser test 

was negative and the peptide was cleaved from the resin. While HPLC and mass analysis showed 

consumption of the starting material, the major product had a mass corresponding to M+99 

which is indicative of guanidinium capping by HATU (Scheme 4.5).179 As a result, the final portion 

of resin was cyclised using PyBOP in the place of HATU, which resulted in fewer side products than 

the initial attempt, though still requiring three days to cyclise. The major peak seen by MALDI was 

still 2 M+Na, however. Further analysis of the mass spectrum, showed peaks which could be 

attributed to either adducts of the desired peptide or double ions of the dimer adducts. These 

species would both have identical mass spectra, making determination of the product difficult 

using this method. This was resolved using negative mode ESI, which showed only the M-H ion for 

the desired cyclic product. Following purification by reverse phase flash chromatography, only 

1 mg of pure peptide was isolated. This raises questions as to the fate of the remaining peptide.  

 

Scheme 4.5: Mechanism of N-terminal guanidinium capping by HATU 

To see if rate of cyclisation and overall yield was dependent on chain length, a further peptide 

sequence was devised to test the effect of chain length. A nine amino acid peptide corresponding 

to residues 75-83 was synthesised as before (Table 4.4). This used the same residues as the 10 

amino acid sequence, but without the C-terminal Leu residue. Despite hopes that this sequence 
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would cyclise more easily, under the same conditions as before, coupling was complete in three 

days and produced a similarly poor yield of pure peptide. Interestingly, as with the larger peptide, 

the major peak by MALDI was that of 2 M+Na, though as before analysis by ESI showed the 

desired product. 

4.2.3 - Fluorescence Polarisation Inhibition 

As with the disulfide cyclised peptides, initial assessment of the Keap1 binding affinity of the 

backbone cyclised peptides was determined by inhibition of fluorescence polarisation. The 

peptides were tested from 100 µM to 0.01 nM in 10 fold dilutions, with a Keap1 concentration of 

30 nM and 5 nM fluorescent peptide. The Ht10 peptide was found to have similar affinity to the 

disulfide cyclised peptides with a Ki of 107.2 nM (95% CI [82.5, 135.0]) (Table 4.5). This places it 

close to the Ds8 peptide in terms of potency.  

 

Table 4.5: Fluorescence Polarisation inhibition by the head-to-tail cyclised peptides, n = 3, 30 nM Keap1, 5 nM F-14 

FP inhibition by the Ht9 peptide shows a similar potency to the Ht10 peptide, however it is 

increased to 66.3 nM (95% CI [50.0, 89.6]) (Table 4.5), making it more potent than the Ds8 

peptide and approaching the affinity of the Ds10 peptide. 

Contrary to the pattern seen with the disulfide cyclised peptides, where increased cycle size 

increased potency, in this case the smaller Ht9 peptide had a higher affinity than the Ht10 

peptide. The cause of this is unclear and synthesis of further peptides may help elucidate the 

finding, however due to the difficulties experienced with the synthesis, it was not deemed 

practical. 

4.2.4 - HO-1 Protein Induction 

As with the disulfide peptides, affinity for Keap1 assessed by the FP assay is not necessarily 

transferable to potency in cell based assays. To assess whether, unlike the disulfide peptides, the 

backbone cyclised peptides were able enter cells, HO-1 protein levels were measured by ELISA. 
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Prior to measuring protein levels, cytotoxicity was assessed by MTS assay, no toxicity was found 

for either peptide up to 300 µM. 

 

Figure 4.6: Induction of HO-1 protein by head to tail cyclised peptides, Mean ± SEM, n = 3, 24 h, 100 µM peptide 

Due to limited quantities of peptide, only a single time point could be tested for activity. As 24 

hours had shown the highest induction in tests with the TAT-14 peptide (See Chapter 2), this was 

the time point chosen. As with the disulfide cyclised peptides, there was no induction of HO-1 

protein seen. This indicates that the peptides are unable to cross the cell membrane which 

considering the similarity in overall charge to the disulfide peptides was not surprising. Both the 

forms of cyclisation explored to this point indicate that binding affinity is increased by 

constraining the peptide's conformation. 
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4.3 - Aryl Stapled Peptides 

While both the head-to-tail cyclised and disulfide bridged peptides showed promising affinity for 

Keap1 in the FP assay, assessment of their activity by ELISA clearly shows this is not translated 

into increased Nrf2 levels in whole cells. The cause of their inactivity is likely due to the multiple 

negatively charged side chains, preventing penetration of the cell membrane. One option to 

overcome this would be to attach cell penetrating sequences to the cyclic peptides, generating 

cyclic-tail peptides.180 However, as one of the aims in generating cyclic peptides was to remove 

the requirement for large CPPs, it was not a desirable solution.  

Having explored head-to-tail and disulfide cyclisation, the increased membrane permeability of a 

stapled peptide was an attractive target. While traditional metathesis mediated stapling 

techniques require expensive non-natural amino acids inserted into the sequence, a recent report 

has highlighted a method of peptide stapling which is directly applicable to the cysteine 

containing sequences already synthesised. Spokoyny et al. identified a stapling method using 

nucleophilic aromatic substitution (SNAr) of perfluorinated aromatics by cysteine thiols (Scheme 

4.6).181 

 

Scheme 4.6: Perfluoroarylation of thiols via nucleophilic aromatic substitution 

In addition to the typical improvements in binding affinity, cell permeability and proteolytic 

stability, they found the stapled peptides to be more chemically stable than disulfide analogs. It 

was also observed that even when hexafluorobenzene was used in excess, the only product was 

the result of 1,4 disubstitution. This is due to the steric hindrance of the 2,5-(ortho) C-F positions 

and para activation by the thioether following the first substitution. Stabilisation of the 

intermediate in the second substitution by the para sulfur increases the rate of the reaction, 

favouring disubstitution over multiple arylation. It was hoped that, as seen in olefin stapled 

peptides, the lipophilicity of the perfluoroaromatic linker would allow cell permeability of the 

peptides. 

4.3.1 - Synthesis of Stapled Peptides 

As this stapling strategy was amenable to the cysteine containing peptides used previously, the 

linear sequences were synthesised as before for the 10, 8 and 6 amino acid peptides. In addition, 
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two further peptides were synthesised based upon an observation by Hancock et al. that 

incorporation of a proline residue in place of Glu78 improved binding in a similar FP assay.97 The 

side chain of Glu78 plays no specific role in the binding interaction of Nrf2 to Keap1 and proline is 

known to help induce formation of beta turns due to the reduced preference for a trans 

conformation. All five peptides were synthesised as described previously (Table 4.6). Following 

purification, the peptides were stapled using 25 equivalents 50 mM hexafluorobenzene in DMF 

with 25 mM TRIS base. The large excess of hexafluorobenzene, ensured the reactions were driven 

to completion and due to the para activation of the thioether following the first substitution, no 

disubstituted product was detected. Following reaction at room temperature for 18 hours, the 

solvent and excess hexafluorobenzene was removed under reduced pressure. Purification by RP-

HPLC yielded four of the five expected products, which were characterised by MALDI TOF mass 

spec. Purity was confirmed by analytical HPLC. Interestingly, the 10 amino acid peptide produced 

only oxidised starting material while the proline substituted analogue reacted without issue. As a 

result, only four of the peptides designed could be taken on to in vitro testing. 

 

Table 4.6: Perfluoroaryl stapled peptide sequences 

4.3.2 - Fluorescence Polarisation Inhibition 

As for the other cyclic peptides, following purification the stapled peptides were assessed for 

Keap1 affinity by FP. As seen with the equivalent disulfide peptides, the Ar6 peptide binds very 



107 
 

weakly to Keap1. Due to the quantities of peptide available, it was not possible to increase the 

concentration of peptide in the assay in order to determine a Ki value. 

 

Table 4.7: Fluorescence Polarisation inhibition by the aryl stapled peptides, n = 3, 30 nM Keap1, 5 nM F-14 

In comparison to the Ar6 peptide the binding of the Ar8 peptide is greatly improved, however 

when comparing to the equivalent Ds8 peptide, the reduction in affinity is dramatic. The Ki of 

1355 nM (95% CI [1083, 1694]) is an order of magnitude greater than the disulfide. This indicates 

that incorporation of the fluorobenzene staple severly alters the solution conformation of the 

peptide, making binding to Keap1 far less favourable. As a result, the activity in cellular assays was 

expected to be similarly affected. 

In stark contrast to the Ar8 peptide, substitution of Glu78 by proline in the Ar8P peptide not only 

restored binding affinity but improved it compared to all the previously tested cyclic peptides. 

With a Ki of 6.1 nM (95% CI [4.4, 8.5]) the Ar8P peptide has comparable affinity for Keap1 to the 

16 mer peptide tested by Lo et al. and to the full length Nrf2 protein.40,42,95 This was a truly 

encouraging result as if the fluoroaryl moiety enabled membrane permeability, the peptide could 

prove to be very potent. 
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Figure 4.7: Fluorescence Polarisation inhibition by the Ar8P peptide, Ki 6.1 nM, 95% CI [4.4, 8.5], Mean ± SEM, n = 3, 
30 nM Keap1, 5 nM F-14 

The Ar10P peptide does not bind as strongly as the Ar8P peptide, though still has a high affinity 

for Keap1, with a Ki of 61.9 nM (95% CI [ 46.1, 83.0]). The reasons for this are unclear, though it 

may be an indication that orientation of the side chains of the two cysteine residues has an 

impact on the position of the fluoroaryl group upon binding to Keap1. It is conceivable that in the 

Ar8 peptide the aromatic ring clashes with the binding pocket, while the inclusion of the proline 

positions the aryl away from the pocket. Upon elongation to the 10 amino acid sequence, the 

cysteine side chains will face in the opposite direction, once again placing the aryl ring in a less 

favourable position. 

4.3.3 - HO-1 Protein Induction 

The lipophilicity of the stapled peptides is increased in comparison to the disulfide bridged 

peptides, due to the fluoroaryl linker. It was anticipated that this would improve cell membrane 

permeability and result in HO-1 protein induction. Before assessing the effect of the peptides on 

HO-1 by ELISA, each of the peptides was tested for cytotoxicity by MTS assay. None of which were 

found to have any toxicity up to 300 µM. 
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Figure 4.8: Induction of HO-1 protein by aryl stapled peptides, Mean ± SEM, n = 3, 24 h, 100 µM peptide 

As can be seen from Figure 4.8, at 24 h there is no induction from the Ar6, Ar8P or Ar10P 

peptides. Due to a high variance between replicates, induction by the Ar8 peptide is not 

significant. The cause of this is unclear and time constraints prevented any further investigation. 

The lack of induction seen may be due to incorrect selection of time point, in which case a time 

course should be conducted. It may also be beneficial to use qPCR to assess these peptides as an 

additional screen. In spite of this, the stapled peptides and in particular the Ar8P peptide,  still 

represent highly potent inhibitors of Keap1. 
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4.4 - Conclusions 

Development of cyclic peptide sequences has produced inhibitors of Keap1 with significantly 

increased binding over their linear counterparts. The reduced size of these peptides is also 

important to progress towards more drug like molecules, the molecular weight of the cyclic 

peptides being around one third of the TAT-14 peptide. The Ds8 peptide manages an affinity of 95 

nM while being below 1000 Da in weight and the Ar8P peptide, although larger at 1067 Da, has an 

affinity for Keap1 of just 6.1 nM. 

The general pattern of binding affinity seen with the cyclic peptides indicates longer peptides bind 

more strongly. However, the cyclic 8 and 10 mer peptides in general show very good binding. It is 

only when reducing the peptides to the ETGE sequence that binding becomes weak. From the 

data presented here, it would appear that the DEETGE sequence, flanked by the two residues 

required for side chain cyclisation, is the minimum requirement for effective binding to Keap1. In 

that reducing the size of the peptides was one aim in producing cyclic sequences, the 8 mer 

peptides probably represent the best compromise of size and potency.  

The head-to-tail cyclised peptides present an interesting option for stabilisation of the peptide 

β-turn and preventing degradation by exopeptidases. Unlike the other cyclic peptides, the head-

to-tail sequences were constructed entirely on the solid phase, reducing the number of 

purification steps. Unfortunately the difficulty in cyclisation and resulting low yields prevented 

further exploration of these compounds' properties. 

The aryl stapled peptides are the most promising of the cyclic peptides produced so far. While 

cellular assays have proved inconclusive there is reason to be optimistic. Only a single time point 

was assessed for HO-1 activity and while this was optimal for the CPP-Nrf2 peptides, there is no 

guarantee that induction by the cyclic peptides would follow the same time course. As a result it 

may simply be that the induction was missed. The other properties afforded by the aryl staple are 

also beneficial in comparison to the disulfide bridged peptides. As the fluoroaryl group bridges the 

two thiols, the peptides are not vulnerable to reduction, which, alongside the increased 

lipophilicity, should increase their bioavailability. The substitution of Glu78 with proline appears 

to have widely differing effects depending on the length of peptide. In the case of the Ar8P 

peptide, the substitution, in combination with the other benefits of aryl stapling, has resulted in a 

very promising lead for further development. 

Production of high affinity inhibitors of a PPI can result from several differing approaches. 

Development of cyclic Nrf2 based peptides from the linear CPP-Nrf2 sequences tested previously 
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was only one possible avenue of research. Alongside the cyclic peptides, which were a rational 

drug design approach to developing inhibitors, a library screening approach to lead identification 

was employed. Using high throughput in silico screening, a large chemical space was explored 

with fewer time and financial costs than a conventional in vitro screen. These could then be 

validated using the established FP assay for rapid hit confirmation. This approach is described in 

the following chapter.  
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Chapter 5: In Silico Screening 

5.0 - Introduction 

5.0.1 - In Silico Screening 

There are three common approaches for targeting PPIs. The first is through interface derived 

peptides, as shown in Chapters 2 and 4. The second is by high throughput in vitro screening, one 

of the objectives for development of the FP assay described in Chapter 3. The third exploits the 

advances made in both computing and elucidation of protein structures, through virtual 

compound screening. While in vitro screening still dominates the drug discovery process, virtual 

screening is increasing in popularity.182 It is based on a key assumption, that the function of 

molecules whether large proteins or small compounds, comes from their chemical and physical 

structure. If enough information is known about either a target or its inducers, this can be used to 

predict new drug leads.183  

Two methods of lead identification by computational methods are commonly used. In cases 

where the target may be unknown, or at least the structure is unsolved, known inducers can be 

used to develop a pharmacophore model.184 The model identifies key features of known 

compounds, such as solvent accessible surface area and lipophilicity. Virtual libraries can then be 

screened for leads which fit these parameters and the resulting hits validated by in vitro assays. 

If the target is known however, and the structure elucidated, either through crystallography or 

NMR, docking experiments are generally preferred.185,186 In this approach, conformational 

sampling of each compound in a virtual library is used to generate a series of poses for receptor-

ligand interactions. Each of these complexes is then ranked using a scoring function, in order to 

produce hits which can be validated in vitro. Docking studies have been used to indentify leads 

targeting several PPIs including MDM2 and Bcl family proteins.187,188  

There are two major challenges still to be solved in the field of docking calculations. The first is 

receptor flexibility, the classical lock and key model of ligand binding and even the more modern 

idea of induced fit do not take into account the dynamic nature of proteins.189 Ideally every bond 

in both the ligand and receptor would be allowed to rotate freely in order to sample all possible 

conformations. This is not possible in practice however, as the number of conformations scales 

exponentially with the number of rotatable bonds.190  

The other challenge facing accurate computational techniques is assessment of binding affinity. 

This problem is intrinsic to the identification of hits, as once conformations have been generated, 
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they must be scored in a way that accurately reflects their in vitro potency. The way in which 

solvent is treated by computational models has a large effect on this. Generally in biological 

systems, the solvation energy of both ligand and receptor is high, which disfavours binding.191 This 

is countered by high affinity between receptor and ligand, which favours binding. The result of 

these two competing factors is a very small net binding affinity, which makes it difficult to 

calculate. 

Both these problems can be tackled in a number of ways. Various algorithms exist which attempt 

to take the flexibility of the receptor into account, though at the expense of speed.192 A more 

basic approach exploits available information about binding interactions, by using crystal or NMR 

structures of ligand receptor complexes. It is assumed that in order to bind, the receptor must 

adopt a favourable conformation. If this is the case, by removing the ligand, a suitable receptor 

for docking studies is produced.193 This does however prejudice results towards compounds 

similar to the original ligand. It has been suggested that this can be mitigated somewhat by 

comparison of multiple structures.194 While this requires more time than assessing a single 

structure, it can still be faster than accounting for receptor flexibility. 

With the aim of trying to increase the reliability of compound ranking, there are arguments for 

applying high level free energy calculations for all docking screens.195 The principle being that the 

expense of further developing false positives outweighs the cost in computation time to score 

poses accurately. However, the accuracy of calculated IC50 values is often not as important as the 

order in which the docked compounds fall. This is especially true when precise affinities are 

determined later through in vitro methods. Currently available docking programs use a variety of 

inbuilt or external scoring functions to rank generated poses.193 Following in vitro screening, it 

may be apparent that low level scoring is insufficient in which case higher level but slower 

methods can be used to rescore docked conformations.182  

With the increased interest in computational strategies for drug discovery, several public domain 

packages have been made available. These efforts have made docking calculations accessible to a 

far wider portion of the scientific community, as there is no longer the need for an expensive 

initial outlay before exploring computational studies. Four programs have received significant 

attention in recent years, DOCK, SLIDE, AutoDock and AutoDock Vina (Vina).196 Despite the 

similarity in name, AutoDock and Vina share no components in their docking algorithms. All these 

programs take different approaches to the problem of conformational sampling. DOCK uses a 

shape-matching approach to sample alternative ligand poses.197 These poses are then combined 

with the receptor to form a complex which can be scored using the Amber molecular force field. 
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Unlike most docking programs, SLIDE achieves high accuracy through intrinsic treatment of 

receptor flexibility.198 The model assumes that multiple conformations of both ligand and receptor 

contribute to overall binding affinity. AutoDock divides the rigid receptor into a force field based 

grid, assigning electrostatic properties to each section. Poses generated by rotation of free bonds 

in the screened molecules can then be scored against the grid using an internal scoring 

function.199 Vina uses stepwise mutation and local minimisation for generation of ligand 

conformations followed by global optimisation to calculate poses.200 In addition, its ability to run 

on multiple processors and combine multiple local minimisations to improve sampling produces 

an almost 60 fold increase in speed compared to AutoDock. 

Vina is a recently developed docking program, which has been built with modern multiple core 

CPUs in mind.201 In addition, its gradient optimisation method uses the first run as a guide for 

subsequent dockings, increasing the likelihood of finding the optimum conformation. As a result, 

it shows a significant increase in speed and increased accuracy of binding mode. In test screens 

using datasets which contain known ligands as well as decoys, Vina has achieved significant 

enrichment of high affinity ligands.202 Encouragingly, rescoring the binding energies with higher 

level calculations did not result in generalised improvement of predictions. Vina offers a balance 

of speed and accuracy not found in previous programs, thanks to its ability to harness current 

hardware. 

5.1 - In Silico Screening 

5.1.1 - In Silico Screening Validation 

In addition to rational drug design, molecular docking was employed in an attempt to identify 

potential binders of the Keap1 Kelch domain. Using this approach, it was hoped that both probes 

and drug leads for targeting the Keap1/Nrf2 interaction could be developed. The principle piece of 

software used to perform these docking experiments was Vina.201 The program was chosen for its 

ability to rapidly screen thousands of molecules, its accuracy and ease of use.202  In addition, it is 

open source and therefore freely available, with an active support community. 

As the crystal structure for Keap1 is yet to be solved and the target for binding quite specific it 

was decided that the Kelch domain of Keap1 would be sufficient as the receptor. Previous work by 

Lo et al. has produced a crystal structure of the Kelch domain of Keap1 (Gly325-Thr609) with a 

bound 16 mer peptide from the Nrf2 protein.40 The data for this structure has been deposited in 

the protein databank with the code 2FLU. This crystal structure provided the receptor for docking 

and in addition a ligand with which to test the accuracy of the calculations.  
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The receptor was prepared using the Swiss-Pdb Viewer203 by removing the 16 mer peptide 

followed by processing in AutoDock Tools (ADT) to add polar hydrogens appropriate for 

physiological pH and produce the receptor in the required pdbqt format. The workspace for 

docking was defined as a cube with sides of 30 Å to allow the largest space for docking possible 

while maintaining the speed of each run and the likelihood of finding the best bound 

conformation. The workspace was located so as to encompass the entirety of the area occupied 

by the peptide in the crystal structure and as much of the outer rim of the Kelch domain as 

possible. This also allowed for a certain amount of the central channel of the receptor to be 

explored. It was decided that including the sides would not be beneficial as recent work has 

suggested that in the complete Keap1 protein they are covered by the intervening region and 

binding here would be unlikely to disrupt the interaction of Nrf2.44 

Before embarking on screening it was important to validate the docking calculations with a known 

ligand. For this, the peptide sequence from the crystal structure was used. Due to limitations on 

the number of rotatable bonds that can easily be handled by Vina, two assumptions were made. 

Firstly, as only six of the residues present in the crystal structure form the binding sequence and 

the remaining residues are not in close proximity to the protein, Ala69 to Leu76, Phe83 and Leu84 

were removed. These residues do however provide stabilisation of the β-turn structure of the 

peptide, as a result the backbone of the DEETGE peptide was fixed in the conformation found in 

the crystal structure. Unlike validation of docking with the full sequence, the peptide used here 

has the potential to rotate in the binding site if a more stable conformation can be located as the 

restriction of the long tail has been removed. In addition the side chain of Glu78 was disordered in 

the crystal data and therefore omitted. This was added back in using Swiss-Pdb Viewer. The ligand 

was prepared in the pdbqt format, including addition of polar hydrogens, using ADT, allowing all 

side chain bonds to be freely rotated. 
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Figure 5.1: Docked conformation of the DEETGE binding sequence of Nrf2 into the Keap1 Kelch domain calculated by 
Vina 

The resulting docking produced the conformation shown in Figure 5.1. As can be seen the peptide 

fits tightly into a curved pocket in the centre of the protein. The calculated binding energy of this 

conformation is -8.8 kcal/mol, which due to the nature of the docking calculation does not take 

into account the energy associated with the fixed conformation specified. However it can be 

assumed that any hit with a binding energy equal to or greater than this should show activity, as a 

greater number of free rotations can only reduce the energy of binding.  
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Figure 5.2: Overlay of DEETGE crystal structure (pink) and conformation calculated by Vina (grey) 

In addition to the binding value calculated, overlay of the docked conformation with the crystal 

structure shows remarkable overlap (Figure 5.2). The only notable difference is the side chain of 

Glu78 which was disordered in the crystal structure and therefore to be expected. This shows that 

Vina is able to reproduce the binding mode found in the crystal structure, which is important for 

producing reliable results from screening. 

5.1.2 - NCI Diversity Set II 

With this initial validation completed and a benchmark in place, screening was started. Two sets 

of compounds were chosen for screening, the NCI Diversity Set II and the ChemBridge Building 

Blocks collection. The protonation states of the compounds within both these sets have been 

adjusted for physiological pH. The NCI Diversity Set II was chosen as a relatively small screen to 

test the capabilities of Vina. The aim of this set of compounds is to encompass as large a chemical 

space as possible using the smallest number of compounds. The result is 1880 compounds the 

structures of which are freely available in a number of formats including the required .pdbqt 

format used by Vina. As not all the structures can be successfully converted to the .pdbqt format, 

due to metal atoms, the screened set comprised 1540 structures. Compounds excluded contained 

atoms such as arsenic which would be less suitable as leads.200 



118 
 

 

Figure 5.3: Top 10 hits identified by NCI Diversity Set II screen. NCI number, binding energy in brackets (kcal/mol) 
hydrogen bonding, pi-pi and pi-cation interactions shown in grey 
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Upon completion of this screen the top 10 hits were extracted and analysed (Figure 5.3). Hits 

were selected based on binding affinity, a more negative value meaning greater affinity. It was 

noted that all of the compounds in the top 10 had better binding energies than the test peptide 

and all bound within the same area of the receptor as the test peptide. Compound 61610 is a 

particularly interesting hit due to its binding mode. In addition to having the best binding energy, 

˗11.0 kcal/mol,  the location of its binding is unique among the top 10 (Figure 5.4). One of the 

benzimidazole groups is bound within the central channel, while the other is bound into a groove 

on the surface of the protein. The result is that the linking terephthalic acid blocks access to the 

peptide binding site. In addition it forms a single hydrogen bond to Gln530, which forms a 

backbone hydrogen bond to the test peptide. Due to the symmetry and lack of stereochemistry, 

synthesis of this molecule was expected to be relatively straight forward, allowing rapid 

preliminary validation of these results in vitro.  

 

Figure 5.4: Conformation of the highest scoring hit from NCI Diversity Set II screen (NCI_61610) 

The remaining hits fall into two categories, those which form pi-pi interactions with residues not 

involved in binding the test peptide and those that bind into one or other of the cationic pockets, 

which hydrogen bond to Glu79 and Glu82 of the test peptide. The distribution of affinities 
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between pi-pi stacking and hydrogen bonding compounds is fairly even, suggesting there may be 

two methods for targeting the interaction. One of the compounds, NCI_327702, interacts slightly 

differently with the binding pocket, instead of a hydrogen bond, it forms a pi-cation interaction 

via one of its nitrogens to the plane of Arg415. This may be another interaction that can be 

exploited further. It is important to note however, despite the high affinity and large size of these 

molecules none bind into both cationic pockets. This may be due to the shape of the molecules, 

as the binding site has a specific curve between the two pockets, though this is something that 

could be explored further through docking simulations. An ideal lead would interact with both 

cationic pockets, mimicking the key binding motif of Nrf2. 

5.1.3 - ChemBridge Building Blocks 

Subsequently a much larger set, the ChemBridge Building Blocks, was screened. This database, 

available through ZINC,204 comprising 11950 structures, is composed of lead-like compounds. The 

benefit of this is that the hits produced should have far less structural complexity than those in 

the previous screen, allowing greater scope for modification to improve binding and specificity. 

Again the top 10 hits were analysed (Figure 5.5) and all were found to bind within the same 

pocket as the test peptide. 
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Figure 5.5: Top 10 hits identified by ChemBridge Building Blocks screen. ChemBridge number, binding energy in 
brackets (kcal/mol), hydrogen bonding, pi-pi and pi-cation interactions shown in grey 
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The best hit, CB_5560378 (Figure 5.6), only binds as strongly as the test peptide but due to its 

simple structure has great potential for variation. The framework for CB_5560378 can easily be 

accessed via reductive amination of 1-naphthaldehyde with piperonyl amine. Further variations 

could then be made using various aromatic aldehydes or amines to generate a library of leads.  

 

Figure 5.6: Conformation of the highest scoring hit from the ChemBridge Building Blocks screen (CB_5560378) 

All the hydrogen bonds formed by the top 10 hits are to residues that the test peptide forms 

bonds with. Similarly to the NCI compounds, pi-pi interactions are with residues not involved in 

binding the test peptide, though Tyr525 is involved in interactions with both the ChemBridge and 

NCI compounds. Interestingly, there is another pi-cation interaction between a nitrogen in 

CB_6571942 and a cationic pocket arginine, however in this case it is the other binding pocket. All 

but one of the compounds binds into a cationic pocket, though again each compound only binds 

one pocket. Among these compounds, there does not seem to be a preference for one of the 

pockets over the other. The advantage with these compounds however, is the scope for extending 

their structures in order to target the second pocket, due to their simplified structures compared 

to the NCI set. 
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5.1.4 - Synthesis and In Vitro Screening 

 

Scheme 5.1: Synthesis of NCI_61610 

Having identified NCI_61610 as a potential target molecule, a synthesis was devised to afford the 

desired product in four steps (Scheme 5.1). Synthesis of the benzimidazole 2 was achieved in two 

steps by reaction of diamino benzene with a sub-stoichiometric amount of 3-nitrobenzoyl 

chloride. This, along with gradual addition of the acid chloride, ensured exclusive formation of the 

monosubstituted intermediate 1. Refluxing this intermediate in acetic acid afforded 

benzimidazole 2 in an adequate 56% yield over the two steps. Reduction of the nitro substituent 

to generate aniline 3 was initially attempted by refluxing with iron powder in acidic conditions. 

This was found to be very low yielding and result in the formation of numerous side products. An 

alternative reduction with palladium on charcoal was found to produce the desired product in 

81% yield with only minor side products. Proton NMR shows an expected shift in the nitro 

benzene signals upon reduction to aniline. A shift up field is characteristic of the change from an 

electron withdrawing nitro substituent to an electron donating aniline. Reaction of aniline 3, with 

half an equivalent of terephthaloyl chloride, afforded the target compound 4 (NCI_61610). 

Isolation of which was complicated by the poor solubility of the product in organic solvents. 

Precipitation of the product from DMF by addition of water resulted in a satisfactory 68% yield. 

Amide formation is evident from the proton NMR, which shows the disappearance of the aniline 
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protons and a new signal at  10.66 ppm corresponding to the amide NH. As the molecule now has 

a plane of symmetry running through the terephthaloyl ring, only a single resonance is added to 

the aromatic region, appearing as a singlet. 

Synthesis of CB_5560378 was achieved by imine formation between piperonyl amine and 1-

naphthaldehyde in the presence of magnesium sulfate, followed by reduction with sodium 

borohydride affording the compound in a 47% yield (Scheme 5.2). Validation of these two hits 

was then carried out using the FP assay.  

 

Scheme 5.2: Synthesis of CB_5560378 

Both compounds were tested for their ability to disrupt the interaction at a concentration of 1000 

nM using the 14 mer peptide as a positive control (Figure 5.7). At the concentration tested 

however, no reduction in anisotropy was observed. While higher concentrations of compound 

could be tested, it was decided that with no reduction in signal at 1000 nM the Ki values would be 

very high if they bound at all, rendering them unsuitable as leads. In addition, solubility of 

NCI_61610 was found to be an issue as may be expected considering the high proportion of 

hydrophobic groups and its polyaromatic structure which would allow for extensive pi-pi stacking.  

 

Figure 5.7: Fluorescence Polarisation inhibition screen of NCI_61610 and CB_5560378, Mean ± SEM, n = 3, 30 nM 
Keap1, 5 nM F-14, 1000 nM compound 

With these preliminary results indicating that neither of the predicted inhibitors would be 

effective, it was decided to return to the docking calculation experiments and attempt to validate 

the hits with other receptor structures.  
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5.1.5 - Cross-Receptor Screening 

Crystal structures are an average of all the molecules in a crystal lattice, which can result in 

significant variation between structures.205 This is important when using the structures for drug 

discovery as they may not be a true representation of the protein in solution. It was decided that 

by screening against multiple structures and ranking hits by both frequency and affinity it would 

be possible to reduce the impact of variation within any one structure on lead identification. In 

order to do this, the other known crystal structures for the Keap1 Kelch domain were prepared 

for docking as before. This gave a total of eight structures to screen against. 

Before screening a library of compounds against the structures, it was once again necessary to 

validate the docking with a known ligand. If any of the structures were altered to the point where 

known ligands would not bind, the results of screening could not be relied upon. The same six 

amino acid DEETGE sequence used in validating docking to the 2FLU structure was used to test 

the docking of the other seven receptor structures. The peptide was docked into each receptor 

using the default parameters and the resulting binding modes assessed. All but one of the docking 

calculations resulted in a lowest energy conformation which matches the original structure very 

closely. The main variation between the structures is the position of the Glu78 side chain, which is 

to be expected as it is missing from the original crystal structure due to disorder. The Nrf2 binding 

site of the majority of the crystal structures share a high degree of similarity. The exception to this 

is the structure of 2DYH which has a smaller central channel and smaller binding pocket in 

general. As a result the side chain of Glu82 is rotated out of the Arg380 pocket where it binds in 

its original crystal structure. In the second highest affinity mode for this docking however, the 

peptide assumes the same conformation as for the other structures. 

As the Chembridge Building Blocks library showed the most potential for modification after lead 

identification, it was selected to screen against the Keap1 crystal structures. Docking calculations 

were carried out for the library against all eight of the receptors using identical parameters, with 

the exception of grid box location, which was adjusted depending on the orientation of the 

receptor structure. Following docking, results were processed to extract the 30 compounds with 

the highest binding affinity for each receptor. These 240 hits were then pooled and ranked by 

number of occurrences, the maximum being eight where the compound was a top 30 hit for every 

receptor and the minimum being one. Those with an equal rank by occurrences were then ranked 

by highest binding affinity for any one receptor. This produced a set of 21 compounds with high 

affinity for four or more receptor structures and 10 with high affinity for five or more, from a total 

of 107 unique structures, with binding affinities ranging from -8 to -9 Kcal/mol. 50 of the unique 
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compounds are only present for a single receptor structure, highlighting the difference between 

the reported crystal structures. The top 10 compounds, those with affinity for five or more 

receptor structures, were analysed for binding interactions to their highest affinity receptor 

(Figure 5.8). 

 

Figure 5.8: Top 10 hits from receptor screening, intermolecular interactions with highest affinity receptor in grey, 
ChemBridge ID. Frequency, affinity (kcal/mol), PDB ID of highest affinity receptor, in brackets  

The most striking thing to note about these hits is the resemblance to those for 2FLU alone. The 

seven most frequent hits all appear in the top 10 for the original docking experiment, including 

CB_5560378, the top hit from the first screen. This indicates that despite some visual differences 

between the Keap1 crystal structures there is a high degree of similarity between them. It was 

decided that even though one of the compounds was known to not be effective in vitro, that the 

rest of the compounds may still be effective and therefore worth examining further. 
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The most frequent hit, CB_6571942, shows two common binding modes in its docking. With 

receptor structures where the central channel is open, the benzimidazole unit fits into the 

channel while the β-naphthol unit binds into one of the cationic pockets. Where the structure has 

either a very small central channel or a residue partially covering it, the two aromatic units bind 

into each cationic pocket. Despite the relatively strong binding, -8.8 Kcal/mol, and affinity for 

every receptor examined, no specific intermolecular interactions are formed between the ligand 

and receptor. This does however raise the possibility of adding structural modifications to 

introduce hydrogen bond acceptors to increase affinity. The other molecules all bind within the 

Nrf2 binding pocket of Keap1 and those with hydrogen bond acceptors forming specific 

interactions with the cationic pockets tend to have two similar sets of binding modes. One in 

which they form interactions with one cationic pocket and another where they bind to the other 

cationic pocket. In these cases it seems likely that modifications to include two hydrogen bond 

acceptors would increase affinity as both cationic pockets could be bound simultaneously. 

 

Figure 5.9: Representative calculated binding modes for CB_6571942 with Keap1 A) benzimidazole moiety binds in 
central channel, PDB I.D. 3ADE B) partially blocked central channel causes benzimidazole to bind into a cationic 

pocket, PDB I.D. 1ZGK 

Of the 10 hits identified, nine were available commercially, CB_6311457 being unavailable at the 

time. The compounds were purchased and screened as previously in the FP assay at a 

concentration of 2 µM. No significant inhibition was seen for any of the compounds and as a 

result investigations in this area were stopped. One issue that arose during in vitro testing, was 

the poor solubility of many of the compounds. Preparation of stock solutions in DMSO was 

necessary and in some cases solubility was such an issue that compounds precipitated once added 

to the assay wells. As a result, these compounds may indeed disrupt the interaction at high 
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concentrations, however their poor solubility prevents testing and renders them unsuitable as 

leads. 

As there is such a high degree of consensus between the original ChemBridge screen and the 

calculations with multiple crystal structures, the fact that none of these compounds inhibits the 

interaction points to a fundamental problem with the docking calculations. The nature of this 

problem is not clear, though there is some evidence to suggest that Vina, and docking programs in 

general, are more suited to generation of binding modes rather than prediction of affinity.206 It 

may be possible to reanalyse these results, using an alternate molecular mechanics based binding 

energy calculation, in order to yield more accurate hits. With the FP assay optimised for both 

screening and inhibition curves, it was decided that focussing on optimisation of peptide 

sequences would be more productive than high throughput screening. 
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5.2 - Conclusions 

In silico screening is emerging as an important aspect of the drug discovery process. The ability to 

screen large libraries without the expense of purchasing compounds is especially significant for 

academic research. In combination with the FP assay developed in Chapter 3, docking 

experiments have the potential to reduce both the time and cost required to identify new leads.  

As has been shown with the work here, identification of hits using in silico techniques does not 

necessarily transfer to hits in vitro. It may be the case that the molecules identified would inhibit 

at high micromolar concentrations, however, their limited solubility prevented testing above the 

concentrations used. Re-examination of the results, using alternate scoring functions may be a 

more beneficial method to identify potent binders. Alternatively, screening more focussed 

libraries may produce more suitable leads.  

This highlights an intrinsic problem when targeting PPIs in general. The interaction between two 

proteins typically comprises many weak hydrophobic contacts, spread over a large area, which 

combine to produce a strong overall binding. As a result, molecules predicted to bind well to 

these surfaces are typically large and hydrophobic as seen with the screens performed here. 

These factors negatively impact the physiochemical properties of the molecule, limiting their use 

as drug leads. This problem has to be overcome in order to develop effective inhibitors, either by 

insertion of hydrogen bonding functionalities where tolerated or by targeting hydrophilic "hot 

spots" which contribute more significantly to PPI binding. This may be effective for targeting the 

Nrf2/Keap1 interaction, by developing molecules which can bind into both of the cationic pockets.  
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Chapter 6: Conclusions and Future Work 

6.1 - General Conclusions 

Control of inflammation and resolution of chronic disease through manipulation of the Nrf2 

pathway shows great promise. The work presented here has shown the first clear example of 

cellular non-covalent induction of the Nrf2/Keap1 pathway. In addition it has confirmed the 

validity of targeting the Nrf2/Keap1 PPI using Nrf2 derived peptides. Induction of genes regulated 

by Nrf2 can be triggered in a dose and time dependent manner in monocytic cells and one of 

these peptides, TAT-14, has been shown to reduce levels of the pro-inflammatory mediator TNFα 

in a model of sepsis. These peptide tools fulfil two roles, they act as a starting point for the 

development of smaller, more drug-like molecules and they allow detailed investigation of the 

Nrf2 pathway with more control than afforded by cysteine modifying inducers. 

Development of an FP assay has allowed quantification of the binding affinities for each of the 

peptides synthesised. When considering the PPI isolated from the complex processes found in 

cells, the affinities of the synthesised peptides are remarkable. Single digit nanomolar inhibition 

by the CPP conjugated 14 mer sequences demonstrates that highly potent inhibitors can be 

developed from natural sequences. While this has not always correlated with data from cellular 

assays, it has indicated that the β-hairpin structure is of great imprtance to the potency of the 

Nrf2 based peptides. Further development of these peptides has become significantly faster 

thanks to the rapidity with which they can be screened in th FP assay before moving to cellular 

assays. 

Development of disulfide cyclised peptides has shown that constraining the conformation of Nrf2 

based peptides can dramatically increase binding affinity. These peptides have also identified a 

relationship between peptide length and potency. The 8 and 10 amino acid sequences bind 

strongly to the target, whereas the shorter 6 residue peptides only inhibit at high concentrations. 

This confirms the DEETGE sequence as the minimum required sequence for potent inhibition, 

from which further peptide inhibitors can be designed.  

The transition from peptide inhibitors to small molecules is a lengthy process, only the beginning 

of which is presented here. In spite of this, the cyclic peptides produced show great promise. The 

key objectives of reduction in size while maintaining affinity have been met. An almost two thirds 

reduction in mass from the 3171 Da TAT-14 peptide to the 1067 Da Ar8P peptide while only 

increasing Ki from 3.6 nM to 6.1 nM is a significant development. In addition to the potent binding 

affinity, the properties of stapled peptides on both cell membrane permeability and proteolytic 
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stability will be beneficial for further work. Whether or not the aryl stapled peptides prove to 

have cellular activity, the groundwork has been laid for the production of small, highly potent 

inducers of the Nrf2/ARE pathway. 

In combination, the FP assay and computational docking techniques allow for rapid screening of 

libraries in order to identify novel leads. The process of hit determination from in silico screens 

needs to be refined however. Either through screening of compounds selected by computation or 

through high throughput screening of focussed libraries, the tools are in place for the 

identification of small molecule inhibitors of the Nrf2/Keap1 interaction. 
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6.2 - Future work 

Continuation of cell based assays with the aryl stapled peptides is the most pressing avenue of 

research. If the peptides are found to induce downstream genes, they have great potential as 

drug leads and should be assessed more extensively. If they are not active however, it may be 

possible to attach fluorescent tags in order to identify whether an inability to enter cells is 

responsible. If this is the case, model peptides may be of use to determine which components are 

reducing bioavailability.  

In parallel to determining why the aryl stapled peptides are unable to induce Nrf2 dependent 

genes, work should commence on increasing cell membrane permeability. Initially conjugation of 

a cell penetrating sequence, such as TAT, would hopefully enable peptide internalisation and 

assessment of their propeties as Nrf2 inducers. Such a peptide could incorporate the CPP 

sequence at either the N- or C-terminus to generate a cyclic-tail peptide. While this solution may 

be effective for allowing cellular activity, it should not represent a ultimate goal as one aim of the 

cyclic peptide work was to remove the need for a CPP sequence. alternatively, smaller additions 

to the peptide to increase lipophilicity, such as conjugation of a hydrocarbon chain to one 

terminus, may offer a compromise in increasing molecular weight and cell membrane 

permeability. N-methylation of one or more residues may also benefit cell penetration, however, 

as the β-hairpin structure features multiple intra-molecular backbone hydrogen bonds, placement 

would have to be carefully considered. 

Further refinement of the cyclic peptide sequence should also be undertaken. Reduction of 

overall charge to increase membrane permeability, such as through substitution of aspartic acid 

with asparagine is an option. In combination with the proline substitution already identified, this 

would reduce the overall charge to -2, compared to the -4 charge of the disulfide bridged 

peptides. Exploration of carboxylic acid isosteres such as tetrazoles may also prove beneficial for 

both cell membane permeability and binding affinity. Movement away from a peptidic scaffold 

should be a long term goal, though this may take a considerable amount of time. 

Peptidomimetic scaffolds would act as a convenient intermediate between peptide and small 

molecule inhibitors. Molecules analogous to the peptide synthesised previously, either CPP-Nrf2 

or cyclic could be constructed using peptoid or β-peptide backbones. Both strategies benefit from 

increased proteolytic stability due to their non-natural structures. The N-substituted glycine 

peptoids offer a wide range of amide nitrogen functionalities as the necessary building blocks are 

widely available. The molecules produced are achiral which eliminates racemisation as an issue, 
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however, this may impact binding affinity. Alternatively the β-peptide scaffold inserts and 

additional CH2 unit into the peptide chain producing chiral molecules with differing secondary 

structures to the parent molecule. Again, this may be either beneficial or detrimental for binding 

to the target. Either approach may open up new areas for further development to suitable drug 

leads. 

While the CPP-Nrf2 peptides are less suitable as drug leads, they are potentially useful tools. As 

such, it would be beneficial to test their effects in a wide variety of cell lines. In particular, if a cell 

type is identified with higher resistance to octa-arginine, the R8-14 peptide could prove to be a 

more potent inducer than the TAT-14 peptide, due to its increased uptake. 

The results of the experiments using fluorescently tagged TAT-14 were unexpected. The rapid cell 

entry and decreasing fluorescence over time cannot be easily explained using normal 

fluorescence microscopy. Using confocal microscopy however, would allow for visualisation of 

sections through the cell, eliminating the issue of membrane binding. It would also allow for some 

degree of localisation to be assessed and may determine the cause of decreasing fluorescence 

over time. 

Separate from continued development of peptides, identification of entirely novel Keap1 binders 

through high throughput screening is now possible. Computational results could be refined by 

implementation of an alternate scoring function. Comparison of multiple docking programs may 

also be beneficial to identify the shortcomings of Vina. Screening of libraries using the FP assay 

could be profitable, either in conjunction with in silico screens or alone.   
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Chapter 7: Experimental 

7.1 - Chapter 2 

7.1.1 - Peptide Synthesis 

General 

Unless otherwise noted all peptides were synthesised using solid phase Fmoc chemistry on a 

Multisyntech Syro I automated peptide synthesiser. Couplings were performed using 4 eq 

protected amino acid, 4 eq O-benzotriazole-N,N,N’,N’-tetramethyl-uronium-hexafluoro-

phosphate (HBTU), 4 eq hydroxybenzotriazole (HOBt) and 8 eq N,N-diisopropylethylamine (DIPEA) 

in N,N-dimethylformamide (DMF). Removal of Fmoc protecting groups was achieved using 

piperidine (20% in DMF) for 3 x 10 min. Amino acids were dissolved in NMP at 0.69 M with the 

exception of arginine which was dissolved in DMF. DIPEA was prepared at 2 M in NMP and 

HBTU/HOBt at 0.45 M in DMF. Couplings proceeded for 25 min followed by washing with DMF 

and repetition of coupling. Following chain elongation on the automated synthesiser, the resin 

was washed with DMF (3 x 5 mL), DCM (3 x 5 mL), 1:1 DCM:MeOH (3 x 5 mL) and dried by suction. 

Standard cleavage from the resin and global deprotection was performed using TFA:H2O:TIPS 

95:2.5:2.5 (5 mL) for 3 hours with constant agitation. The peptide, dissolved in the cleavage 

mixture was separated from the resin by filtration and the resin washed with TFA (2 x 3 mL) which 

was added to the filtrate. The cleavage cocktail and volatile components were removed under 

reduced pressure to give a gel. This product was then washed with ice cold diethyl ether (10 mL) 

precipitating the crude peptide as a white solid. 

Analytical RP-HPLC was used to assess the purity of the product after precipitation and between 

purification steps. Analytical HPLC was performed on an Agilent Technologies 1200 series 

chromatograph with an Agilent Technologies ZORBAX Eclipse XDB-C18 (5 µm, 4.6 x 150 mm) 

column at 40°C and a gradient of 95:5 water:methanol with 0.05% TFA additive to 5:95 

water:methanol over 15 min returning to 95:5 water:methanol over 5 min at a flow rate of 1 

mL/min.  

Peptides were isolated by reverse-phase chromatography using a Biotage Isolera Four providing 

gross purification using a 12 g C18 cartridge with a gradient of 95:5 water:methanol with a 0.05% 

TFA additive going to 5:95 water:methanol over 40 min with a flow rate of 20 mL/min, collecting 

at 214 and 254 nm. Where necessary, peptides were further purified by semi-preparative HPLC on 
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an Agilent Technologies 1200 series chromatograph using an Agilent Technologies ZORBAX Eclipse 

XDB-C18 (5 µm, 9.4 x 250 mm) column.  

TAT-10 synthesis 

The peptide was synthesised on 2-chlorotrityl chloride resin (250 mg, Merck, loading: 1.01 

mmol/g). Attachment of the first amino acid was carried out manually on a shaker. The resin was 

swollen in dry DCM, followed by addition of Fmoc-Pro-OH (340 mg, 1.01 mmol) and DIPEA (220 

µL, 1.26 mmol). The reaction proceeded for 2 hours after which the resin was capped using a 

mixture of DCM:MeOH:DIPEA 80:15:5 (10 mL) for 5 minutes, twice. Chain elongation and cleavage 

from the resin were conducted using the standard procedure. The peptide was isolated by 

reverse-phase chromatography using a Biotage Isolera Four using the standard method. Fractions 

containing pure peptide as determined by RP-HPLC and MALDI-TOF mass spec were combined, 

the solvent removed under reduced pressure and lyophilised from water (0.05% TFA) to produce 

the desired product as a white powder. TAT-10 MS (MALDI +ve): calculated for: 2689.5 found: 

2689.8 

Initial synthesis of the TAT-14 and TAT-16 peptides 

Synthesis was performed on Wang resin preloaded with the appropriate amino acid (500 mg, 

Merck, loading: 0.59 and 0.64 mmol/g respectively). Chain elongation and cleavage from the resin 

were conducted using the standard procedure. The peptides were isolated initially by reverse-

phase chromatography using a Biotage Isolera Four using the standard method. 

TAT-14 was further purified by semi-prep RP-HPLC using a gradient of 95:5 water:methanol to 

5:95 water:methanol with 0.05% TFA additive over 45 min at a flow rate of 4 mL/min collecting at 

214 nm. Fractions containing pure peptide as determined by RP-HPLC and MALDI-TOF mass spec 

were combined, the solvent removed under reduced pressure and lyophilised from water (0.05% 

TFA) to produce the desired product as a white powder. MS (MALDI +ve): calculated for: 3171.7 

found: 3171.5 

TAT-16 was further purified by semi-prep RP-HPLC using a gradient of 95:5 water:methanol to 

5:95 water:methanol with 0.05% TFA additive over 60 min at a flow rate of 4 mL/min collecting at 

214 nm. Fractions containing pure peptide as determined by RP-HPLC and MALDI-TOF mass spec 

were combined, the solvent removed under reduced pressure and lyophilised from water (0.05% 

TFA) to produce the desired product as a white powder. MS (MALDI +ve): calculated for: 3397.8 

found: 3398.8 [M + H] 
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TAT-14Sc and 14 mer synthesis 

Peptides were synthesised on Wang resin (125 mg, AGTC, loading: 3.8 mmol/g). Attachment of 

the first amino acid was carried out manually on a shaker. A symmetrical anhydride of the first 

amino acid was formed under an inert atmosphere at 0°C using the appropriate amino acid (10 

eq, 4.788 mmol)  in DCM, followed by addition of DIC (375 µL, 2.394 mmol) dropwise. The 

reaction was stirred for 30 min before removal of solvent under reduced pressure. The anhydride 

was then taken up in a minimum amount of DMF and added to the pre-swollen resin along with a 

catalytic amount of DMAP. The reaction proceeded for 3 hours before capping the resin using 

acetic anhydride (90 µL, 0.9576 mmol) and pyridine (75 µL, 0.9576 mmol) in a minimum amount 

of DMF for 30 min. Chain elongation and cleavage from the resin were conducted using the 

standard procedure. The peptides were isolated initially by reverse-phase chromatography using a 

Biotage Isolera Four using the standard method. 

The 14 mer was further purified by semi-prep RP-HPLC using a gradient of 95:5 water:methanol to 

5:95 water:methanol with 0.05% TFA additive over 30 min returning to 95:5 water:methanol over 

5 min at a flow rate of 4 mL/min collecting at 214 nm. Fractions containing pure peptide as 

determined by RP-HPLC and MALDI-TOF mass spec were combined, the solvent removed under 

reduced pressure and lyophilised from water (0.05% TFA) to produce the desired product as a 

white powder. MS (MALDI +ve): calculated for: 1630.8 found: 1653.4 [M + Na] 

TAT-14Sc was further purified by semi-prep RP-HPLC using a gradient of 95:5 water:methanol to 

5:95 water:methanol with 0.05% TFA additive over 45 min returning to 95:5 water:methanol over 

5 min at a flow rate of 4 mL/min collecting at 214 nm. Fractions containing pure peptide as 

determined by RP-HPLC and MALDI-TOF mass spec were combined, the solvent removed under 

reduced pressure and lyophilised from water (0.05% TFA) to produce the desired product as a 

white powder. MS (MALDI +ve): calculated for: 3171.7 found: 3173.2 [M + H] 

Revised synthesis of TAT-14 and TAT-14Sc and synthesis of R8-14 and R4-14 

After determination of aggregation on Wang resin, subsequent syntheses were performed using 

NovaSyn TGA resin (100 mg, Merck, loading 0.26 mmol/g). Attachment of the first amino acid was 

carried out manually on a shaker. A symmetrical anhydride of the first amino acid was formed 

under an inert atmosphere at 0°C using the appropriate amino acid (10 eq, 0.26 mmol)  in DCM, 

followed by addition of DIC (20 µL, 0.13 mmol) dropwise. The reaction was stirred for 30 min 

before removal of solvent under reduced pressure. The anhydride was then taken up in a 

minimum amount of DMF and added to the pre-swollen resin along with a catalytic amount of 
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DMAP. The reaction proceeded for 3 hours before capping the resin using acetic anhydride (5 µL, 

0.052 mmol) and pyridine (4 µL, 0.052 mmol) in a minimum amount of DMF for 30 min. Chain 

elongation and cleavage from the resin were conducted using the standard procedure. The 

peptides were isolated by reverse-phase chromatography using a Biotage Isolera Four using the 

standard method, substituting methanol for acetonitrile. Fractions containing pure peptide as 

determined by RP-HPLC and MALDI-TOF mass spec were combined, the solvent removed under 

reduced pressure and lyophilised from water (0.05% TFA) to produce the desired product as a 

white powder. 

TAT-14 MS (MALDI +ve): calculated for: 3171.7 found: 3174.4 [M + H] 

TAT-14Sc MS (MALDI +ve): calculated for: 3171.7 found: 3176.2 [M + H] 

R8-14 MS (MALDI +ve): calculated for: 2879.6 found: 2880.8 [M + H] 

R4-14 MS (MALDI +ve): calculated for: 2255.2 found: 2256.4 [M + H] 

F-TAT-14 synthesis 

Attachment of 5(6)-carboxyfluorescein to the N-terminus of TAT-14 was carried out on the solid 

phase, using TAT-14 synthesised by the NovaSyn TGA method (100 mg, 0.026 mmol). 5(6)-

carboxyfluorescein (20 mg, 0.052 mmol), HBTU (20 mg, 0.052 mmol), HOBt (8 mg, 0.052 mmol) 

and DIPEA (18 µL, 0.104 mmol) were preactivated in DMF before addition to preswollen peptidyl 

resin. The resin was shaken for 30 min, washed with DMF 4 x 5 mL and completion of coupling 

confirmed by Kaiser test. The resin was washed with DCM (3 x 5 mL), 1:1 DCM:MeOH (3 x 5 mL) 

and dried by suction. Cleavage from the resin was conducted using the standard procedure. The 

peptide was isolated by reverse-phase chromatography using a Biotage Isolera Four using the 

standard method. Fractions containing pure peptide as determined by RP-HPLC and MALDI-TOF 

mass spec were combined, the solvent removed under reduced pressure and lyophilised from 

water (0.05% TFA) to produce the desired product as a yellow powder. 

7.1.2 - Cell Biology 

Unless otherwise noted all reagents for cell experiments were purchased from PAA and used 

according to manufacturer’s instructions. THP-1 cells were obtained from the European Collection 

of Cell Cultures. 
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Cell Culture 

THP-1 cells were cultured in RPMI1640 medium with 10% Foetal Calf Serum (FCS), 2 mM 

L-glutamine and penicillin/streptomycin (P/S). Cells were grown at 37°C in an atmosphere of 5% 

CO2. 

MTS Cell Proliferation Assay 

Cells were plated out at a concentration of 3 x 105/mL 100 µL per well and treated with 1 µL of 

compound at appropriate dilution in triplicate. The cells were then incubated for 72 or 24 h 

before addition of 10 µL MTS per well and further incubation for 2.5 h. Absorbance of the plates 

was determined using a BMG Labtech Optima microplate reader (492 nm) and toxicity of 

compounds assessed by comparison to untreated controls. 

Stimulation 

Cells were plated out at a concentration of 5 x 105/mL, 2 mL per well and incubated for 18 h  to 

allow them to return to an unstressed state before stimulation. Cells were treated at a 

concentration of 1 x 106/mL. Plates were then incubated at 37°C in an atmosphere of 5% CO2 for 

the appropriate time interval. 

RNA extraction and real-time PCR 

Cells were prepared and treated according to the standard method. Following incubation, cells 

were spun down, the supernatant removed and TRI Reagent (Ambion) added followed by 100 μL 

1-bromo-3-chloropropane. After centrifugation the clear colourless top layer containing RNA was 

transferred to clean tubes and 200 μL 2-propanol added. After vortexing, incubation for 10 min 

and centrifugation at 12,000 rpm for 15 min the supernatant was removed and discarded leaving 

a pellet containing the RNA. This was then taken up in 1 mL 70% EtOH in H2O, followed by further 

centrifugation at 12,000 rpm for 10 min and subsequent removal of supernatant. The pellets were 

then allowed to air dry before the addition of 20 μL H2O and freezing overnight at −80°C. 

RNA concentration was quantified using a Nanodrop ND-1000 spectrophotometer and 

concentrations adjusted as necessary. RNA reverse transcription was achieved using a TaqMan kit 

(Applied Biosystems) according to the manufacturer’s instructions and carried out on a PTC-100 

Peltier thermal cycler using the following profile: 21°C for 10 min, 42°C for 15 min, 99°C for 5 min 

and 4°C for 5 min.  
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HO-1 and GAPDH primers were acquired from Invitrogen with the following sequences, HO-1 

forward: 5’-ATGGCCTCCCTGTACCACATC-3’, reverse: 5’-TGTTGCGCTCAATCTCCTCCT-3’, GAPDH 

forward: 5’-AACAGCCTCAAGATCATCAGCA-3’, reverse: 5’-TGCTAAGCAGTTGGTGGTGC-3’. mRNA 

expression was measured by real-time PCR using a QIAGEN Rotor-Gene Q and SYBR Green 

technology for 40 cycles of 95°C for 15 s and 60°C for 1 min. Each mRNA expression was 

normalised against GAPDH mRNA expression using the standard curve method.207 

Western Blotting 

Cells were prepared and treated according to the standard method. Following incubation, cells 

were spun down and the supernatant removed. SDS (Invitrogen) 100 μL was added to each 

sample, mixed to dissolve the pellet and then boiled for 5 min. 13.5 μL of sample was combined 

with 1.5 μL reducing agent (Invitrogen) and boiled for a further 5 min, 10 μL of each sample was 

loaded on to the gel. Separation was performed using premade Bis-Tris PAGE gels (Invitrogen) 

before being transferred to a nitrocellulose membrane. Antibodies used are shown in Table 7.1. 

 

Table 7.1: Antibodies used in Western blotting, manufacturer and dilution 

Bands were visualised using Amersham ECL Prime according to manufacturer's instructions. 

HO-1 ELISA 

HO-1 protein levels were determined using an R&D Systems DuoSet IC Human Total HO-1/HMOX1 

assay kit. Cells were prepared and treated according to the standard method. Following 

incubation,  cells were spun down, the supernatant removed and washed twice with PBS. The cell 

pellet was then resuspended in lysis buffer (0.5% Triton X-100, Pierce protease cocktail in PBS)  to 

a concentration of 6.66*106 cells/mL and kept on ice for 15 min before storage at -80°C. Plates 

were prepared by incubation with 100 µL of 8 µg/mL capture antibody per well over night at RT. 

The wells were emptied and washed with Wash Buffer (PBS + 0.05% Tween20) three times. Wells 

were then blocked with 300 µL Block Buffer (PBS + 1% BSA + 0.05% sodium azide) for 2 hours at 
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RT. Standards were prepared by serial dilution of an HO-1 protein stock (10 ng/mL) in two fold 

steps in IC Diluent #4 (1 mM EDTA, 0.5% Triton X-100 in PBS) to give a 7 point curve from 10 

ng/mL to 0.156 ng/mL. Samples were defrosted, spun to pellet any undissolved material and 

diluted 2 fold in IC Diluent #4 to give an effective concentration of 3.33*105 cells/mL. The plate 

was washed as before and 100 µL standards and samples were added using IC Diluent #4 as the 

zero concentration. The plate was then sealed and incubated for 2 hours at RT. The plate was 

washed and 100 µL detection antibody (200 ng/mL) diluted in IC Diluent #1 (1% BSA in PBS) 

added, sealed and incubated for 2 hours at RT. Following another wash step, 100 µL Strepavidin-

HRP conjugate was added per well diluted as directed in IC Diluent #1 and incubated for 20 min at 

RT in the dark. The plate was washed and 100 µL of a  1:1 solution of Color Reagent A (H2O2) and 

Color reagent B (tetramethylbenzidine) added to each well. The plate was then incubated for 20 

min at RT in the dark. 50 µL Stop Solution (1M H2SO4) was added to each well and the absorbance 

(450 nm) measured using a microplate reader. 

The standards were analysed using a 4 parameter logistic curve fit, from which sample 

concentrations were calculated. Fold inductions were then determined by comparison to a non-

treated control sample. 

Fluorescence Microscopy 

Cells were prepared according to the standard method. Cells were treated for 180, 120, 60, 30 

and 5 min with 75 µM F-TAT-14 peptide. Following incubation, cells were spun down and the 

supernatant removed. Cell pellets were washed 2 times with sterile PBS to remove excess 

fluorescent peptide. In order to remove membrane bound peptide, cells were incubated with 

trypsin (1 mg/mL) for 15 min before a final wash in sterile PBS. Prior to trypsin digest, half the 5 

min sample was set aside as a control. The cells were resuspended to a concentration of 

1 x 107 ml-1 and visualised using a Leica Microsystems CMS GmbH Fluorescence Microscope and 

Leica Application Suite software, exciting at 490 nm and detecting at 520 nm. 
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7.2 - Chapter 3 

7.2.1 - Peptide Synthesis 

General 

Unless otherwise noted all peptides were synthesised using solid phase Fmoc chemistry on a 

Multisyntech Syro I automated peptide synthesiser. Couplings were performed using 4 eq 

protected amino acid,  4 eq O-benzotriazole-N,N,N’,N’-tetramethyl-uronium-hexafluoro-

phosphate (HBTU) ), 4 eq hydroxybenzotriazole (HOBt) and 8 eq N,N-diisopropylethylamine 

(DIPEA) in N,N-dimethylformamide (DMF). Removal of Fmoc protecting groups was achieved 

using piperidine (20% in DMF) 3 x 10 min. Amino acids were dissolved in NMP at 0.69 M with the 

exception of arginine which was dissolved in DMF. DIPEA was prepared at 2 M in NMP and 

HBTU/HOBt at 0.45 M in DMF. Couplings proceeded for 25 min followed by washing with DMF 

and repetition of coupling. Following chain elongation on the automated synthesiser, the resin 

was washed with DMF (3 x 5 mL), DCM (3 x 5 mL), 1:1 DCM:MeOH (3 x 5 mL) and dried by suction. 

F-14 Synthesis 

14 mer peptide was synthesised using standard solid phase Fmoc peptide synthesis, cleaved from 

the resin using 95:2.5:2.5 TFA:H2O:TIPS and purified using RP-HPLC as described previously (See 

Chapter 2). The fluorophore was then attached to the N-terminus of the peptide by addition of 

Triethylamine (0.1 μL, 0.612 μmol) 14 mer peptide (1 mg, 0.612 μmol) and fluorescein 

isothiocyanate (0.5 mg, 1.224 μmol) in DMSO (200 μL). The solution was agitated for 1 hour after 

which the solvent was removed by lyophilisation. The crude product was purified by semi-

preparative RP-HPLC using a gradient of 95:5 water:acetonitrile to 5:95 water:acetonitrile with 

0.05% TFA additive over 45 min at a flow rate of 4 mL/min collecting at 214 nm. Fractions 

containing pure peptide as determined by RP-HPLC and MALDI-TOF mass spec were combined, 

the solvent removed under reduced pressure and lyophilised from water (0.05% TFA) to produce 

the desired product as a yellow powder. MS (MALDI-TOF +ve): calculated for: 2019.83 found: 

2043.63 [M + Na] 

TAT-16 and 16 mer synthesis 

Peptides were synthesised on NovaSyn TGA resin (Merck, loading 0.26 mmol/g). Attachment of 

the first amino acid to 100 mg resin (0.026 mmol) was carried out manually on a shaker. A 

symmetrical anhydride of leucine was formed under an inert atmosphere at 0°C by dissolving 

Fmoc-Leu-OH (92 mg, 0.26 mmol) in DCM, followed by addition of DIC (20 µL, 0.13 mmol) 
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dropwise. The reaction was stirred for 30 min before removal of solvent under reduced pressure. 

The anhydride was then taken up in a minimum amount of DMF and added to the pre-swollen 

resin along with a catalytic amount of DMAP. The reaction proceeded for 3 hours before capping 

the resin using acetic anhydride (5 µL, 0.052 mmol) and pyridine (4 µL, 0.052 mmol) in a minimum 

amount of DMF for 30 min. Chain elongation was achieved using standard solid phase Fmoc 

peptide synthesis, cleaved from the resin using 95:2.5:2.5 TFA:H2O:TIPS and purified by reverse 

phase flash chromatography. Fractions containing pure peptide as determined by MALDI TOF and 

analytical HPLC were pooled and the solvent removed under reduced pressure. The peptides were 

lyophilised from water (0.05% TFA) to give the product as a white powder.  

TAT-16 MS (MALDI +ve): calculated for: 3397.8 found: 3400.7 [M + H]  

16 mer MS (MALDI +ve): calculated for: 1856.9 found: 1881.5 [M + Na] 

10 mer synthesis 

The peptide was synthesised on 2-chlorotrityl chloride resin (250 mg, Merck, loading: 1.01 

mmol/g). Attachment of the first amino acid was carried out manually on a shaker. The resin was 

swollen in dry DCM, followed by addition of Fmoc-Pro-OH (340 mg, 1.01 mmol) and DIPEA (220 

µL, 1.26 mmol). The reaction proceeded for 2 hours after which the resin was capped using a 

mixture of DCM:MeOH:DIPEA 80:15:5 (10 mL) for 5 minutes, twice. Following chain elongation on 

the automated synthesiser, the resin was washed with DMF (3 x 5 mL), DCM (3 x 5 mL), 1:1 

DCM:MeOH (3 x 5 mL) and dried by suction. The peptide was cleaved from the resin using a 

mixture of TFA:H2O:TIPS 95:2.5:2.5 (5 mL) with agitation for 3 h. The peptide, dissolved in the 

cleavage mixture was separated from the resin by filtration and the resin washed with TFA (2 x 3 

mL) which was added to the filtrate. The cleavage cocktail and volatile components were removed 

under reduced pressure to give a colourless gel. This product was then washed with ice cold 

diethyl ether (10 mL) resulting in a white solid. The peptide was isolated by reverse-phase 

chromatography using a Biotage Isolera Four using a 12 g C18 cartridge with a gradient of 95:5 

water:methanol with a 0.05% TFA additive going to 5:95 water:methanol over 40 min with a flow 

rate of 20 mL/min, collecting at 214 nm. The peptide was further purified by semi-prep RP-HPLC 

using a gradient of 95:5 water:methanol to 5:95 water:methanol with 0.05% TFA additive over 15 

min returning to 95:5 water:methanol over 5 min at a flow rate of 4 mL/min collecting at 214 nm. 

Fractions containing pure peptide as determined by RP-HPLC and MALDI-TOF mass spec were 

combined, the solvent removed under reduced pressure and lyophilised from water (0.05% TFA) 
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to produce the desired product as a white powder. 10 mer MS (MALDI +ve): calculated for: 

1148.5 found: 1171.3 [M + Na] 

7.2.2 - Fluorescence Polarisation 

General 

All solutions were made using Milli-Q water. Fluorescence polarisation assays were carried out in 

black Costar low binding 96 well microplates. Tween20, monobasic and dibasic sodium phosphate 

were purchased from Sigma Aldrich. Fluorescence polarisation measurements were taken using a 

BMG Labtech Optima microplate reader equipped with a fluorescence polarisation optic, 

measuring at 490/520 nm. Data was averaged over 10 readings. 

Plasmid transformation 

pET15b plasmid containing the Keap1 Kelch domain gene, 325-609, was dissolved in water to a 

concentration of 10 ng/µL. 5 µL plasmid solution was added to 50 µL chemically competent E. Coli 

cells (Invitrogen BL21 Star (DE3)) and gently mixed by stirring. Plasmid and cells were then 

incubated on ice for 20 min. Cells were then heat shocked by placing the tube in at heat block at 

42°C for 45 seconds before returning to ice for 2 min. 750 µL sterile LB medium was added and 

the tube incubated at 37°C on a shaker for 1 hour. The cells were then streaked out on LB agar 

plates containing 100 µg/mL ampicillin and grown in an incubator overnight at 37°C. 

Protein expression 

30 mL sterile LB media containing 0.1 mg/mL ampicillin was inoculated with a single colony from 

the plasmid transformation plates and incubated overnight at 37°C. Two flasks each containing 

600 mL sterile LB medium and 0.1 mg/mL ampicillin were inoculated with 6 mL of the overnight 

culture and incubated at 30°C for 5 hours until the bacteria reached an O.D. of 0.6. 

Overexpression was induced by addition of 6 mL IPTG (100 mM) to give a final concentration of 1 

mM and incubated at 30°C for 2.5 hours. Cells were then pelleted at 10000 rcf for 3 min at 4°C 

and stored at -80°C. 

Protein Purification 

Half of the cells pelleted in the previous step were resuspended in lysis buffer (50 mM NaH2PO4, 

300 mM NaCl, 10% glycerol, 25 mM imidazole, 1 mg/mL lysozyme, pH 7.4, 20 mL) and incubated 

on ice for 30 min. The suspension was then sonicated on ice 10 x 15 seconds before pelleting at 

10000 rcf for 30 min at 4°C. The supernatant was transferred to a clean tube and 5 g USB 
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PrepEase Histidine-Tagged High Yield Purification Resin added followed by incubation on a shaker 

for 15 min. Solution and resin was decanted into a fritted column and the supernatant eluted. The 

resin bed was washed with buffer under gravity (50 mM NaH2PO4, 300 mM NaCl, 10 % glycerol, 25 

mM imidazole, pH 7.4, 3 x bed volume) and the protein eluted (50 mM NaH2PO4, 300 mM NaCl, 

10 % glycerol, 250 mM imidazole, pH 7.4) in 8 x 2.5 mL fractions. Protein concentration and purity 

was assessed by SDS PAGE and fractions containing the majority of high purity protein pooled and 

stored at 4°C overnight. Prior to further purification by anion exchange the protein solution was 

diluted to 50 mM NaCl with 20 mM Tris buffer pH 8 to give a total volume of 45 mL. The 5 mL 

HiTrap Q HP strong anion exchange column was prepared according to manufacturer's 

instructions and the sample added by syringe. The column was then washed with 5 volumes 20 

mM pH 8  Tris buffer and the sample eluted with increasing concentrations of NaCl in pH 8 Tris 

buffer from 100 mM to 1M in 100 mM steps 5 mL per step. Protein concentration and purity was 

assessed by SDS PAGE. A single fraction containing a high concentration of pure protein was 

desalted using a PD-10 desalting column acording to manufacturer's instructions into buffer 

containing 10 mM pH 7.4 NaH2PO4, 10 mM β-mercapto ethanol and 10% glycerol. The protein was 

then concentrated by spin filtration to a final volume of 2 mL, separated into 100 µL aliquots and 

stored at -80°C. Protein concentration was determined by UV absorption at 280 nM  giving a stock 

concentration of 26.7 µM.  

Binding curve 

Buffer solution was prepared containing 10 mM sodium phosphate at pH 7.4 and 0.1% Tween20. 

A serial dilution of Keap1 Kelch domain protein was prepared from 20 µM to 1 pM in buffer 

solution to give a 16 point dilution and kept on ice. F-14 peptide was diluted to a concentration of 

5.56 nM in buffer solution and transferred to a microplate, 90 µL per well. 10 µL Keap1 dilution 

was then added to each well and mixed by pipetting to give a final concentration of 5 nM F-14 and 

a concentration range of 2 µM to 0.1 pM Keap1 in triplicate. Bubbles were removed from wells 

using compressed air and the plate was then incubated at room temperature for 15 min before 

reading. Fluorescence anisotropy readings were averaged over 10 measurements and analysed 

using non-linear regression with no cooperativity of binding. Values were normalised and 

expressed as percentage F-14 bound. 

Z′ test 

Buffer solution was prepared containing 10 mM NaH2PO4 at pH 7.4 and 0.1% Tween20. A solution 

of 5.56 nM F-14 and 33.33 nM Keap1 was prepared in buffer. 90 µL per well of this solution was 



145 
 

transferred to a microplate, 96 wells in total. 14 mer peptide was diluted in buffer to a 

concentration of 20 µM and 10 µL added to each of 48 wells to give a final concentration of 5 nM 

F-14, 30 nM Keap1 and 2 µM 14 mer peptide. 10 µL buffer was added to the remaining 48 wells to 

give the same concentration without 14 mer peptide. Bubbles were removed from wells using 

compressed air and the plate was then incubated at room temperature for 15 min before reading. 

The plate was read 10 times and the data averaged. The data for each half was averaged and 

analysed using the Z′ test for well to well variation where SD is the standard deviation of the 

anisotropy readings and mAu is the average anisotropy (Equation 2). 

       
                

                
 

Equation 3: Z′ test for well-to-well variation 

Compound screening 

Buffer solution was prepared containing 10 mM sodium phosphate at pH 7.4 and 0.1% Tween20. 

A solution of 5.56 nM F-14 and 33.33 nM Keap1 was prepared in buffer and kept on ice. 90 µL per 

well of this solution was transferred to a microplate. Compounds were diluted in DMSO to 10 fold 

their final plate concentration. Compounds were transferred to the plate, 10 µL per well in 

triplicate and mixed by pipetting. Bubbles were removed from wells using compressed air and the 

plate was then incubated at room temperature for 15 min before reading 10 times. Replicates 

were averaged and analysed for significant inhibition by One-way ANOVA followed by Tukey's test 

for significance. 

Inhibition curve 

Buffer solution was prepared containing 10 mM sodium phosphate at pH 7.4 and 0.1% Tween20. 

A solution of 5.56 nM F-14 and 33.33 nM Keap1 was prepared in buffer and kept on ice. 90 µL per 

well of this solution was transferred to a microplate. Compounds were serially diluted in buffer in 

10 fold steps, from 5 µM to 0.1 pM to give 16 data points. 10 µL compound solution was added to 

each well and mixed by pipetting. Bubbles were removed from wells using compressed air and the 

plate was then incubated at room temperature for 15 min before reading 10 times. Data was 

averaged for the 10 readings followed by averaging replicates. Data was analysed by non-linear 

regression assuming a Hill Slope of -1.0 to calculate IC50 values. Ki values were then calculated 

using the Cheng-Prusoff equation, with ligand concentration fixed at 5 nM and a Kd of 14.6 nM 

(Equation 4). 
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Equation 4: Cheng-Prusoff equation for conversion of IC50 to Ki for protein-ligand complexes 

 

7.3 - Chapter 4 

7.3.1 - Peptide Synthesis 

Unless otherwise noted all peptides were synthesised using solid phase Fmoc chemistry on a 

Multisyntech Syro I automated peptide synthesiser. Couplings were performed using 4 eq 

protected amino acid,  4 eq O-benzotriazole-N,N,N’,N’-tetramethyl-uronium-hexafluoro-

phosphate (HBTU) ), 4 eq hydroxybenzotriazole (HOBt) and 8 eq N,N-diisopropylethylamine 

(DIPEA) in N,N-dimethylformamide (DMF) and with double coupling. Removal of Fmoc protecting 

groups was achieved using piperidine (20% in DMF) 3 x 10 min. Amino acids were dissolved in 

NMP at 0.69 M with the exception of arginine which was dissolved in DMF. DIPEA was prepared at 

2 M in NMP and HBTU/HOBt at 0.45 M in DMF. Couplings proceeded for 25 min followed by 

washing with DMF and repetition of coupling. 

General synthesis of N-terminally acetylated C-terminally amidated peptide linear sequences 

(Ds10, Ds8, Ds6, Ln10, Ln8, Ln6, Ar6, Ar8, Ar8P, Ar10P) 

Peptides were synthesised on Rink Amide MBHA resin (Merck, 100 mg, loading: 0.64 mmol/g). 

After chain elongation on the automated synthesiser, the N-terminal amine was acetylated by 

addition of acetyl chloride (18 µL, 0.26 mmol) and DIPEA (89 µL, 0.51 mmol) in a minimum 

amount of DMF and agitated for 30 min. The resin was then washed with DMF (3 x 5 mL), DCM (3 

x 5 mL), 1:1 DCM:MeOH (3 x 5 mL) and dried by suction. Peptides were cleaved from the resin 

using a mixture of TFA:H2O:EDT:TIPS 94:2.5:2.5:1 (5 mL) with agitation for 3 h. The peptide, 

dissolved in the cleavage mixture was separated from the resin by filtration and the resin washed 

with TFA (2 x 3 mL) which was added to the filtrate. The cleavage cocktail and volatile 

components were removed under reduced pressure to give a colourless gel. This product was 

then washed with ice cold diethyl ether (10 mL) resulting in a white solid. Peptides were isolated 

by reverse-phase chromatography using a Biotage Isolera Four providing gross purification using a 

12 g C18 cartridge with a gradient of 95:5 water:methanol with a 0.05% TFA additive going to 5:95 

water:methanol over 40 min with a flow rate of 20 mL/min, collecting at 214 nm. Fractions 
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containing pure peptide as determined by RP-HPLC and MALDI-TOF mass spec were combined, 

the solvent removed under reduced pressure and lyophilised from water (0.05% TFA) to produce 

the desired products as white powders.  

Ds10 linear MS (MALDI +ve): calculated for: 1185.4 found: 1209.3 [M + Na] 

Ds8 linear MS (MALDI +ve): calculated for: 925.3 found: 949.4 [M + Na]  

Ds6 linear MS (MALDI +ve): calculated for: 681.2 found: 703.7 [M + Na]  

Ln10 MS (MALDI +ve): calculated for: 1153.5 found: 1178.0 [M + Na] 

Ln6 MS (MALDI +ve): calculated for: 649.2 found: 672.5 [M + Na]  

Synthesis of N-terminally acetylated peptide linear sequence (Ds8-OH) 

The peptide was synthesised manually on 2-chlorotrityl resin preloaded with H-Cys(Acm) (Merck, 

loading: 0.32 mmol/g). 300 mg resin (0.096 mmol) was swollen by agitating in DMF for 20 min. 

Chain elongation was effected by addition of the appropriate amino acid (4 eq, 0.384 mmol), 

HBTU (145 mg, 0.384 mmol), HOBt (59 mg, 0.384 mmol) and DIPEA (134 µL, 0.768 mmol) in a 

minimum volume of DMF to the resin and agitating for 30 min. Following this the solution was 

removed by filtration and the resin washed with DMF (3 x 10 mL). Completion of the coupling was 

assessed by Kaiser test. Subsequently the N-terminal Fmoc group was removed using 20% 

piperidine in DMF (3 x 10 mL) for 10 min. The coupling process was then repeated for the next 

amino acid until the chain was completed. Following removal of the final N-terminal Fmoc 

protecting group the amine was aceylated using acetyl chloride (27 µL, 0.384 mmol) and DIPEA 

(134 µL, 0.768 mmol) in a minimum volume of DMF. The resin was agitated for 30 min, the 

solution removed by filtration and the resin washed with DMF 3 x 10 mL, DCM 3 x 10 mL and 1:1 

DCM:MeOH 3 x 10 mL. The resin was then dried by compressed air. The peptide was cleaved from 

the resin using a mixture of TFA:H2O:EDT:TIPS 94:2.5:2.5:1 (5 mL) with agitation for 3 h. The 

peptide, dissolved in the cleavage mixture was separated from the resin by filtration and the resin 

washed with TFA (2 x 3 mL) which was added to the filtrate. The cleavage cocktail and volatile 

components were removed under reduced pressure to give a colourless gel. This product was 

then washed with ice cold diethyl ether (10 mL) resulting in a white solid. The peptide was 

isolated by reverse-phase chromatography using a Biotage Isolera Four using a 12 g C18 cartridge 

with a gradient of 95:5 water:methanol with a 0.05% TFA additive going to 5:95 water:methanol 

over 40 min with a flow rate of 20 mL/min, collecting at 214 nm. Fractions containing pure 

peptide as determined by RP-HPLC and MALDI-TOF mass spec were combined, the solvent 
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removed under reduced pressure and lyophilised from water (0.05% TFA) to produce the desired 

product as a white powder. Ds8-OH linear MS (MALDI +ve): calculated for: 1068.3 found: 1092.4 

[M + Na] 

Synthesis of C-terminally amidated peptide linear sequence (H2N-Ds8) 

The peptide was synthesised on Rink Amide MBHA resin (Merck, 100 mg, loading: 0.65 mmol/g). 

After chain elongation on the automated synthesiser, the resin was washed with DMF (3 x 5 mL), 

DCM (3 x 5 mL), 1:1 DCM:MeOH (3 x 5 mL) and dried by suction. The peptide was cleaved from 

the resin using a mixture of TFA:H2O:EDT:TIPS 94:2.5:2.5:1 (5 mL) with agitation for 3 h. The 

peptide, dissolved in the cleavage mixture was separated from the resin by filtration and the resin 

washed with TFA (2 x 3 mL) which was added to the filtrate. The cleavage cocktail and volatile 

components were removed under reduced pressure to give a colourless gel. This product was 

then washed with ice cold diethyl ether (10 mL) resulting in a white solid. The peptide was 

isolated by reverse-phase chromatography using a Biotage Isolera Four using a 12 g C18 cartridge 

with a gradient of 95:5 water:methanol with a 0.05% TFA additive going to 5:95 water:methanol 

over 40 min with a flow rate of 20 mL/min, collecting at 214 nm. Fractions containing pure 

peptide as determined by RP-HPLC and MALDI-TOF mass spec were combined, the solvent 

removed under reduced pressure and lyophilised from water (0.05% TFA) to produce the desired 

product as a white powder. H2N-Ds8 linear MS (MALDI +ve): calculated for: 883.3 found: 907.2 [M 

+ Na] 

General procedure for formation of disulfide cyclised peptides (Ds10, Ds8, Ds6, Ds8-OH, H2N-

Ds8) 

Peptides were dissolved in 80% acetic acid to a concentration of 2 mg/mL, to which solid iodine 

(10 eq) was added in a single portion. The solution was stirred at room temperature and the 

reaction monitored by RP-HPLC. In order to monitor the reaction aliquots of the mixture were 

taken, diluted 2 fold with water and washed with carbon tetrachloride to remove iodine. Samples 

were then filtered before analysis. Upon completion the reaction mixture was diluted 2 fold with 

water and washed with carbon tetrachloride (10 x 20 mL) until no colour was present in the 

carbon tetrachloride. The solvent was removed under reduced pressure and the resulting 

colourless gel was purified using reverse-phase chromatography on a Biotage Isolera Four. 

Fractions containing pure peptide as determined by RP-HPLC and MALDI-TOF mass spec were 

combined, the solvent removed under reduced pressure and lyophilised from water (0.05% TFA) 

to produce the desired products as white powders.  
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Ds10 MS (MALDI +ve): calculated for: 1183.4 found: 1206.2 [M + Na]  

Ds8 MS (MALDI +ve): calculated for: 923.3 found: 946.9 [M + Na]  

Ds6 MS (MALDI +ve): calculated for: 679.2 found: 701.8 [M + Na]  

Ds8-OH MS (MALDI +ve): calculated for: 924.3 found: 947.6 [M + Na]  

H2N-Ds8 MS (MALDI +ve): calculated for: 881.3 found: 905.5 [M + Na] 

General synthesis of head-to-tail cyclised peptides (Ht10, Ht9) 

Peptides were synthesised on Rink Amide MBHA resin (Merck, 100 mg, loading: 0.65 mmol/g). 

The first residue (Fmoc-Glu-ODMAB) was attached via its side chain. Following chain elongation 

on the automated synthesiser the resin was washed with DMF (3 x 5 mL) and the DMAB 

protecting group cleaved with 2% hydrazine monohydrate in DMF (3 x 10 min). The resin was 

washed with 1:1 MeOH:H2O (3 x 5 mL) and complete removal of aminobenzyl alcohol was 

ensured by shaking overnight in a 5 mM NaOH solution of 1:1 MeOH:H2O. The resin was washed 

with 1:1 MeOH:H2O (3 x 5 mL) followed by anhydrous DMF (3 x 5 mL). Cyclisation was achieved 

with PyBOP (4 eq, 0.26 mmol) and DIPEA (8 eq, 0.52 mmol) in a minimum volume of anhydrous 

DMF. The resin was shaken at room temperature for 72 h, with fresh coupling agents every 12 h. 

The progress of the reaction was monitored by Kaiser test and upon completion the resin was 

washed with DMF (3 x 5 mL) , DCM (3 x 5 mL), 1:1 DCM:MeOH (3 x 5 mL) and dried by suction. 

Peptides were cleaved from the resin using a mixture of TFA:H2O:TIPS 95:2.5:2.5 (5 mL) with 

agitation for 3 h. The peptide, dissolved in the cleavage mixture was separated from the resin by 

filtration and the resin washed with TFA (2 x 3 mL) which was added to the filtrate. The cleavage 

cocktail and volatile components were removed under reduced pressure to give a colourless gel. 

This product was then washed with ice cold diethyl ether (10 mL) resulting in a white solid. 

Peptides were isolated by reverse-phase chromatography using a Biotage Isolera using a 12 g C18 

cartridge with a gradient of 95:5 water:methanol with a 0.05% TFA additive going to 5:95 

water:methanol over 40 min with a flow rate of 20 mL/min, collecting at 214 nm. Fractions 

containing pure peptide as determined by RP-HPLC and MALDI-TOF mass spec were combined, 

the solvent removed under reduced pressure and lyophilised from water (0.05% TFA) to produce 

the desired products as white powders. 

Ht10 MS (ESI -ve): calculated for: 1161.52 found: 1161.01 [M - H] 

Ht9 MS (ESI -ve): calculated for: 1048.43 found: 1047.93 [M - H] 
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General synthesis of perfluoroaryl stapled peptides (Ar6, Ar8, Ar8P, Ar10P) 

Peptides were dissolved in a solution of hexafluorobenzene (25 eq, 100 mM) in DMF. An equal 

volume of TRIS base (50 mM) in DMF was added, the vessel agitated and then left at room 

temperature for 18 h. The solvent was removed under reduced pressure and the peptides purified 

by RP-HPLC. Fractions containing pure product as determined by MALDI-TOF mass spec were 

combined, the solvent removed under reduced pressure and lyophilised from water (0.05% TFA) 

to produce the desired products as white powders.  

Ar6 MS (MALDI +ve): calculated for: 827.19 found: 851.02 [M + Na]  

Ar8 MS (MALDI +ve): calculated for: 1071.26 found: 1095.25 [M + Na]  

Ar8P MS (MALDI +ve): calculated for: 1039.27 found: 1063.39 [M + Na]  

Ar10P MS (MALDI +ve): calculated for: 1299.42 found: 1324.15 [M + Na] 

7.3.2 - Small Molecule Synthesis 

 

Scheme 7.1: Synthesis of the DMAB-OH protecting group 

IvDde-OH precursor175 

Dimedone (14 g, 100 mmol) was dissolved in DCM (150 mL) followed by addition of pyridine (9.7 

mL, 120 mmol). To this solution isovaleryl chloride (14.8 mL, 120 mmol) in DCM (40 mL) was 

added dropwise over 10 min. The reaction was stirred at room temperature for 18h with 

monitoring by TLC. Upon completion the reaction was washed with aqueous HCl (2 x 50 mL, 2 M), 

H2O (50 mL) and saturated sodium bicarbonate solution (50 mL) before drying over magnesium 
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sulfate, filtration and removal of solvent under reduced pressure. The product was obtained as a 

yellow oil in quantitative yield and was used without further purification. 1H NMR (400 MHz, 

CDCl3): δH 5.89 (s, 1 H, Dde C(-O)=CH), 2.41 (s, 2H, Dde C(-O)-CH2), 2.33 (d, J = 6.8 Hz, 2H, Iv CH2), 

2.27 (s, 2H, Dde C(=O)CH2), 2.14 (sep, J = 6.8 Hz, 1 H, Iv CH), 1.11 (s, 6H, Dde 2 x CH3), 1.00 (d, J = 

6.4 Hz, 6H, Iv 2 x CH3). NMR data matches literature values. 

IvDde-OH175 

To a suspension of AlCl3 (16 g, 120 mmol) in dry DCM (150 mL) in an ice bath, IvDde-OH precursor 

(12 g, 53 mmol) in DCM (40 mL) was added via a dropping funnel over 1 h. Following addition the 

reaction was stirred at room temperature for 2 h until complete consumption of starting material 

was seen by TLC. The reaction mixture was then poured into a mixture of 37% HCl and ice (150 g) 

in an ice bath ensuring the temperature did not exceed 5°C. After the addition of brine (200 mL) 

the DCM was run off and the aqueous layer extracted with DCM (8 x 50 mL) before drying the 

organic layer over magnesium sulfate and removal of solvent under reduced pressure. Filtration 

of the crude product through a silica plug using Et2O and subsequent removal of solvent afforded 

the product in 87% yield (10.5 g) as a yellow oil. 1H NMR (400 MHz, CDCl3): δH 2.91 (d, J = 6 Hz, 2H, 

Iv CH2), 2.53 (s, 2H Dde CH2), 2.35 (s, 2H, Dde CH2), 2.13 (sep, J = 6.8 Hz, 1H Iv CH), 1.07 (s, 6H, Dde 

2 x CH3), 0.98 (d, J = 7.6 Hz, 6H, Iv 2 x CH3). NMR data matches literature values. 

DMAB-OH168 

IvDde-OH (5 g, 22 mmol) in THF (50 mL) was added to a solution of 4-aminobenzyl alcohol (3.29 g, 

26 mmol) in THF (100 mL). The mixture was refluxed at 90°C for 60 h followed by removal of 

solvent under reduced pressure. The crude mixture was purified by flash chromatography using a 

gradient of hexanes → ethyl acetate to afford the product as a yellow solid (69%, 5 g) along with 

unreacted IvDde-OH (1.25 g, 6 mmol). 1H NMR (400 MHz, CDCl3): δH 15.24 (s, 1H, NH), 7.43 (d, J = 

8 Hz, 2H, 2 x CH Bn Ar), 7.12 (d, J = 8 Hz, 2H, 2 x CH Bn Ar), 4.75 (d, J = 8 Hz, 2H, Bn CH2), 3.00 (d, J 

= 6 Hz, 2H, Iv CH2), 2.49 (s, 2H, Dde CH2), 2.39 (s, 2H, Dde CH2), 1.84 (sep, J = 6.9 Hz, 1H, Iv CH), 

1.08 (s, 6H, Dde 2 x CH3), 0.77 (d, J = 6.7 Hz, 6H, Iv 2 x CH3). NMR data matches literature values. 

 

 

Scheme 7.2: Synthesis of DMAB protected glutamic acid 
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Fmoc-Glu(tBu)-ODMAB176 

DIPEA (1.15 mL, 6.72 mmol) was added to a solution of DMAB-OH (3.2 g, 9.6 mmol), Fmoc-

Glu(tBu)-OH (4.92 g 11.5 mmol) and HOBt (1.28 g, 9.6 mmol) in DCM (80 mL) followed by DCC 

(3.97 g, 19.2 mmol) in DCM (15 mL) dropwise over 10 min. The reaction was stirred at room 

temperature for 18 h after which it was filtered and the solvent removed under reduced pressure. 

The crude product was purified by flash chromatography using a gradient of hexanes → ethyl 

acetate to afford the product as a white solid (79%, 5.5 g). 1H NMR (400 MHz, CDCl3): δH 15.29 (s, 

1H, NH), 7.76, 7.40, 7.30 (m, 8H, Fmoc Ar CH), 7.59 (d, J = 8 Hz, 2H, 2 x CH Bn Ar), 7.11 (d, J = 8 Hz, 

2H, 2 x CH Bn Ar), 5.52 (d, J = 8 Hz, 1H, Glu NH), 5.21 (m, 2H, Bn CH2), 4.45 (m, 1H, Glu CαH), 4.40 

(m, 2H, Fmoc CH2), 4.21 (m, 1H, Fmoc CH), 2.99 (d, J = 4 Hz, 2H, Iv CH2), 2.49 (s, 2H, Dde CH2), 2.39 

(s, 2H, Dde CH2), 2.33 (m, 2H, Glu CγH2), 2.19, 1.98 (2m, 2H, Glu CβH2), 1.84 (m, 1H, Iv CH), 1.44 (s, 

9H, tBu), 1.08 (s, 6H, Dde 2 x CH3), 0.76 (d, J = 8 Hz, 6H, Iv 2 x CH3). NMR data matches literature 

values. 

Fmoc-Glu-ODMAB176 

Fmoc-Glu(tBu)-ODMAB (1.6 g, 2.2 mmol) was dissolved in DCM:TFA 1:1 ( 20 mL) and stirred at 

room temperature for 1 h. The solvent was then removed under reduced pressure and the 

product coevaporated with MeOH (3 x 20 mL). This afforded the product as a yellow solid (86%, 

1.3 g). 1H NMR (400 MHz, CDCl3): δH 15.29 (s, 1H, NH), 7.76, 7.40, 7.31 (m, 8H, Fmoc Ar CH), 7.58 

(d, J = 8 Hz, 2H, 2 x CH Bn Ar), 7.12 (d, J = 8 Hz, 2H, 2 x CH Bn Ar), 5.49 (d, J = 8 Hz, 1H, Glu NH), 

5.22 (s, 2H, Bn CH2), 4.49 (m, 1H, Glu CαH), 4.41 (m, 2H, Fmoc CH2), 4.20 (m, 1H, Fmoc CH), 2.99 (d, 

J = 4 Hz, 2H, Iv CH2), 2.50 (s, 4H, Dde 2 x CH2), 2.43 (m, 2H, Glu CγH2), 2.26, 2.00 (2m, 2H, Glu CβH2), 

1.83 (m, 1H, Iv CH), 1.09 (s, 6H, Dde 2 x CH3), 0.76 (d, J = 8 Hz, 6H, Iv 2 x CH3). NMR data matches 

literature values. MS (ESI +ve): calculated for: 680.31 found: 681.32 [M + H]  

7.3.3 - Fluorescence Polarisation 

General 

All solutions were made using Milli-Q water. Fluorescence polarisation assays were carried out in 

black Costar low binding 96 well microplates. Tween20, monobasic and dibasic sodium phosphate 

were purchased from Sigma Aldrich. Fluorescence polarisation measurements were taken using a 

BMG Labtech Optima microplate reader equipped with a fluorescence polarisation optic, 

measuring at 490/520 nm. Data was averaged over 10 readings. 

Inhibition curve 
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Buffer solution was prepared containing 10 mM sodium phosphate at pH 7.4 and 0.1% Tween20. 

A solution of 5.56 nM F-14 and 33.33 nM Keap1 was prepared in buffer and kept on ice. 90 µL per 

well of this solution was transferred to a microplate. Compounds were serially diluted in buffer in 

10 fold steps, from 1 mM to 0.1 nM to give 8 data points. 10 µL compound solution was added to 

each well and mixed by pipetting. Bubbles were removed from wells using compressed air and the 

plate was then incubated at room temperature for 15 min before reading 10 times. Data was 

averaged for the 10 readings followed by averaging replicates. Data was analysed by non-linear 

regression assuming a Hill Slope of -1.0 to calculate IC50 values. Ki values were then calculated 

using the Cheng-Prusoff equation, with ligand concentration fixed at 5 nM and a Kd of 14.6 nM. 

7.3.4 - Cell Biology 

HO-1 ELISA 

HO-1 protein levels were determined using an R&D Systems DuoSet IC Human Total HO-1/HMOX1 

assay kit. Cells were spun down, the supernatant removed and washed twice with PBS. The cell 

pellet was then resuspended in lysis buffer (0.5% Triton X-100, Pierce protease cocktail in PBS)  to 

a concentration of 6.66*106 cells/mL and kept on ice for 15 min before storage at -80°C. Plates 

were prepared by incubation with 100 µL of 8 µg/mL capture antibody per well over night at RT. 

The wells were emptied and washed with Wash Buffer (PBS + 0.05% Tween20) three times. Wells 

were then blocked with 300 µL Block Buffer (PBS + 1% BSA + 0.05% sodium azide) for 2 hours at 

RT. Standards were prepared by serial dilution of an HO-1 protein stock (10 ng/mL) in two fold 

steps in IC Diluent #4 (1 mM EDTA, 0.5% Triton X-100 in PBS) to give a 7 point curve from 10 

ng/mL to 0.156 ng/mL. Samples were defrosted, spun to pellet any undissolved material and 

diluted 2 fold in IC Diluent #4 to give an effective concentration of 3.33*105 cells/mL. The plate 

was washed as before and 100 µL standards and samples were added using IC Diluent #4 as the 

zero concentration. The plate was then sealed and incubated for 2 hours at RT. The plate was 

washed and 100 µL detection antibody (200 ng/mL) diluted in IC Diluent #1 (1% BSA in PBS) 

added, sealed and incubated for 2 hours at RT. Following another wash step, 100 µL Strepavidin-

HRP conjugate was added per well diluted as directed in IC Diluent #1 and incubated for 20 min at 

RT in the dark. The plate was washed and 100 µL of a  1:1 solution of Color Reagent A (H2O2) and 

Color reagent B (tetramethylbenzidine) added to each well. The plate was then incubated for 20 

min at RT in the dark. 50 µL Stop Solution (1M H2SO4) was added to each well and the absorbance 

(450 nm) measured using a microplate reader. 
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The standards were analysed using a 4 parameter logistic curve fit, from which sample 

concentrations were calculated. Fold inductions were then determined by comparison to a non-

treated control sample. 
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7.4 - Chapter 5 

7.4.1 - In Silico Screening 

Docking studies 

Data sets for NCI Diversity Set II and Chembridge Building Blocks were obtained from 

zinc.docking.org pre-prepared in the required .pdbqt format.204 Receptors were acquired from 

www.pdb.org.208 Counter ions, ligands and solvent molecules were removed using DeepView 

4.0.1203 and prepared for docking by addition of polar hydrogens and calculation of gasteiger 

charges using AutoDock Tools 1.5.6.199 The peptide used for initial validation was extracted from 

the crystal structure 2FLU and prepared by removing residues around the key binding motif using 

DeepView and polar hydrogens and gasteiger charges added using AutoDock Tools. A grid box 

within which molecules would be docked was defined with sides of 30 Å and centred in the Nrf2 

binding pocket.  Docking calculations were performed using AutoDock Vina with default 

parameters.201 Initial docking studies were conducted with the protein portion of crystal structure 

2FLU as the receptor. 

Analysis of docking results 

The top 30 hits, those with highest binding affinity as calculated using the internal free energy 

scoring function, were extracted from the data sets and visualised with AutoDock Tools. Hits were 

then assessed for binding mode in AutoDock Tools to ensure they bound within the same pocket 

as the Nrf2 peptide. Intermolecular hydrogen bonds, pi-pi interactions and pi-cation interactions 

were then calculated for each hit.  The 10 hits with highest affinity and appropriate binding mode 

from each set were selected for further investigation. 

Ligand and receptor screening 

After initial studies screening against a single crystal structure of the Keap1 Kelch Domain (2FLU) 

the screening was extended to multiple receptors. The eight reported crystal structures available 

at the time (1U6D, 1X2J, 1X2R, 1ZGK, 2DYH, 2FLU, 2Z32, 3ADE)  were prepared as before by 

removing solvent and ligands and adding polar hydrogens and gasteiger charges. The Chembridge 

Building Blocks library was then screened against each of these receptors using AutoDock Vina. 

Analysis of docking results 

The top 30 hits as determined by highest binding affinity for each receptor were extracted and 

combined to give a data set of combined hits. Only the top 30 highest affinity hits were extracted 
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to ensure that frequently occurring but low affinity hits were excluded. These 240 hits were then 

sorted by frequency, those that occurred most commonly being given the highest score. Among 

those hits, those with equal frequency were sorted by binding affinity to give a set of the most 

commonly high binding ligands. The top 10 hits were assessed for appropriate binding mode and 

protein ligand interactions with their highest affinity receptor as before, in AutoDock Tools and 

then selected for further investigation. 

Script for sorting top hits 

#! /bin/bash 

# search all files ending in .pdbqt 

for f in *.pdbqt 

# create a variable $b which is equal to everything before the first _ in the filename 

do b="${f%%_*}" 

# find all files which contain $b at the beginning with anything following 

# then use word count to return how many times $b has been found 

o=$(find . -name "$b*" | wc -l) 

# first for every file containing $b extract characters 14-17 from the filename 

# in this case the PDB I.D. for the receptor 

# then extract the second line from the file and print the fourth word 

# in this case the energy of docking 

e=$(for f in $b*.pdbqt 

do n=$(echo $f | cut -c 14-17) 

echo $n , 

sed -n 2p $f | awk '{print $4 ","}' 

done) 

# put all of the pieces collected so far into a file called Sort_top.txt 

echo $b, $o, $e >> Sort_top.txt 

done 

# sort through the file Sort_top.txt and delete any duplicate lines and save  

# to Sort_top_uniq.txt 

uniq Sort_top.txt > Sort_top_uniq.txt 

  



157 
 

7.4.2 - Small Molecule Synthesis 

 

2-(3-nitrophenyl)-1H-1,3-benzodiazole (2) 

3-nitrobenzoyl chloride (2.27g, 12 mmol) in THF (20 mL) was added dropwise over 15 min to a 

solution of 1,2-diaminobenzene (1.62 g, 15 mmol) and triethylamine (2 mL, 15 mmol) in THF (80 

mL) at 0°C  . The reaction mixture was stirred at room temperature for 4 h before being filtered 

and the solvent removed under reduced pressure. The residue was then taken up in ethyl acetate 

and the organic solution washed with water and brine. Before drying over MgSO4 the organic 

phase was filtered to isolate the disubstituted anilide. The solvent was then removed under 

reduced pressure to afford intermediate benzyl amide 1 which was used without further 

purification. A solution of compound 1 in acetic acid (50 mL) was refluxed at 135°C for 4 h. The 

solution was then allowed to cool to room temperature and poured over ice (50 g) before 

extracting the aqueous mixture with DCM (4 x 50 mL) and drying over MgSO4.  Removal of the 

solvent under reduced pressure afforded benzimidazole 2 as a beige solid (2.0 g, 56%). MS (ESI -

ve): calculated for: 239.1 found: 237.9 [M - H]. 1H NMR (400 MHz, DMSO-d6): δ – 13.29 (bs, 1H, 

NH), 8.98-8.97 (m, 1H, mABA CH), 8.59-8.56 (m, 1H, mABA CH), 8.31-8.28 (m, 1H, mABA CH), 7.84-

7.80 (m, 1H, mABA CH), 7.66-7.61 (m, 2H, 2 x BnIm CH), 7.27-7.22 (m, 2H, 2 x BnIm CH); 13C NMR 

(100 MHz, DMSO-d6): δ – 172.31 (mABA C-NO2), 149.21 (mABA C), 148.49 (Im C), 132.61 (mABA 

CH), 131.78 (2 x BnIm C), 130.84 (mABA CH), 126.32 (2 x BnIm CH), 124.37 (mABA CH), 122.93 (2 x 

BnIm CH), 120.98 (mABA CH). 

 

3-(1H-1,3-benzodiazol-2-yl)aniline (3) 

A catalytic amount of palladium on charcoal was added to a solution of benzimidazole 2  (500 mg, 

2 mmol) in ethanol (10 mL) under nitrogen. Hydrogen gas was then bubbled through the mixture 

before stirring for 2 h under a hydrogen atmosphere. The reaction mixture was filtered, the 

solvent removed under reduced pressure and the residue purified by column chromatography 

(DCM to Ethyl Acetate) to afford aniline 3 (355 mg, 81%). MS (ESI -ve): calculated for: 209.1 
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found: 208.0 [M - H]. 1H NMR (400 MHz, DMSO-d6): δ – 7.61-7.59 (m, 2H, 2 x BnIm CH), 7.51-7.50 

(m, 1H, mABA CH), 7.38-7.36 (m, 1H, mABA CH), 7.38-7.36 (m, 1H, mABA CH), 7.23-7.18 (m, 3H, 2 

x BnIm CH, mABA CH), 6.77-6.74 (m, 1H, mABA CH), 4.25 (bs, 2H, NH2); 
13C NMR (100 MHz, 

DMSO-d6): δ – 152.60 (mABA C), 149.49 (mABA C-NH2), 139.72 (Im C), 131.10 (2 x BnIm C), 

129.94 (mABA CH), 122.47 (2 x BnIm CH), 116.23 (mABA CH), 115.37 (2 x BnIm CH), 114.72 (mABA 

CH), 112.45 (mABA CH). 

 

1-N,4-N-bis[3-(1H-1,3-benzodiazol-2-yl)phenyl]benzene-1,4-dicarboxamide (4) (NCI_61610) 

Terephthaloyl chloride (65 mg, 0.323 mmol) in anhydrous THF (2 mL) was added dropwise under 

nitrogen to a solution of aniline 3 (135 mg, 0.645 mmol) in anhydrous THF (6 mL). Triethylamine 

(100 μL, 0.968 mmol) was added to this solution and the mixture stirred for 2 h. The solvent was 

then removed under reduced pressure and the residue taken up in DMF. Upon addition of water a 

cream precipitate formed which was filtered, washed with methanol and dried to afford 

NCI_61610 as a cream solid (120 mg, 34%). MS (MALDI-TOF +ve): calculated for: 548.20 found: 

549.12 [M + H]. 1H NMR (400 MHz, DMSO-d6): δ – 13.01 (bs, 2H, 2 x Im NH), 10.66 (s, 2H, 2 x Am 

NH), 8.76 (m, 2H, 2 x mABA CH), 8.19 (s, 4H, 4 x Trpt CH), 7.93-7.90 (m, 4H, 4 x mABA CH), 7.63-

7.55 (m, 6H, 4 x BnIm CH, 2 x mABA CH), 7.24-7.21 (m, 4H, 4 x BnIm CH); 13C NMR (100 MHz, 

DMSO-d6): δ – 165.53 (2 x Trpt CO), 151.61 (2 x mABA C), 139.96 (2 x Im C), 137.81 (2 x mABA C-

NH), 131.06 (4 x BnIm C), 129.85 (2 x mABA CH), 128.34 (4 x Trpt CH), 122.55 (4 x BnIm CH), 

122.37 (4 x mABA CH), 119.46 (4 x BnIm CH, 2 x mABA CH). 
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(2H-1,3-benzodioxol-5-ylmethyl)(naphthalen-2-ylmethyl)amine (5) (CB_5560378) 

Piperonyl amine (200 μL, 1.6 mmol) and 1-naphthaldehyde (73 μL, 0.535 mmol) in MeOH (2 mL) 

was stirred over MgSO4 for 1 h before addition of NaBH4 (60 mg, 1.6 mmol). The reaction mixture 

was then stirred at room temperature for 12 h before filtration and removal the solvent under 

reduced pressure. The residue was taken up in DCM (20 mL), washed with 1 M NaOH (3 x 10 mL), 

1 M HCl (3 x 10 mL), dried over MgSO4 and the solvent removed under reduced pressure. The 

crude product was then dissolved in diethyl ether and purified by filtration through silica and 

removal of the solvent under reduced pressure to afford the desired secondary amine 5 in 47% 

Yield. MS (ESI +ve): calculated for: 291.1 found: 291.9 [M + H]. 1H NMR (400 MHz, CDCl3): δ – 8.14 

(m, 1H, Nap), 7.90 (m, 1H, Nap), 7.81 (m, 1H, Nap), 7.54 (m, 3H, Nap), 7.47 (m, 1H, Nap), 6.96 (m, 

1H, Pip), 6.84 (m, 2H, Pip), 5.96 (s, 2H, O-CH2-O), 4.25 (s, 2H, NH-CH2-Nap), 3.85 (s, 2H, NH-CH2-

Pip), 1.79 ppm (bs, 1H, NH); 13C NMR (100 MHz, CDCl3): δ – 147.8 (Ar-O), 146.6 (Ar-O), 135.9 

(Nap), 134.4 (Ar-CH2-NH), 134.0 (Ar-CH2-NH), 131.9 (Nap), 128.8 (CH Nap), 127.8 (CH Nap), 126.2 

(CH Nap), 126.1 (CH Nap), 125.7 (CH Nap), 125.5 (CH Nap), 123.8 (CH Nap), 121.4 (CH Pip), 108.9 

(CH Pip), 108.1 (CH Pip), 101.0 (O-C-O), 53.6 (NH-CH2-Ar), 50.8 (NH-CH2-Ar). 
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