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Abstract

The first systematic analysis of the skew-normal distribution in a scalar case

is done by Azzalini (1985). Unlike most of the skewed distributions, the

skew-normal distribution allows continuity of the passage from the normal

distribution to the skew-normal distribution and is mathematically tractable.

The skew-normal distribution and its extensions have been applied in lots of

financial applications. This thesis contributes to the recent development

of the skew-normal distribution by, firstly, analyzing the the properties of

annualization and time-scaling of the skew-normal distribution under het-

eroskedasticity which, in turn allows us to model financial time series with the

skew-normal distribution at different time scales; and, secondly, extending

the Skew-Normal-GARCH(1,1) model of Arellano-Valle and Azzalini (2008)

to allow for time-varying skewness.

Chapter one analyses the performance of the time scaling rules for com-

puting volatility and skewness under the Skew-Normal-GARCH(1,1) model

at multiple horizons by simulation and applies the simulation results to the

Skew-Normal-Black-Scholes option pricing model introduced by Corns and

Satchell (2007). Chapter two tests the Skew-Normal Black-Scholes model

empirically. Chapter three extends the Skew-Normal-GARCH(1,1) model to

allow for time-varying skewness. The time-varying-skewness adjusted model

is then applied to test the relationship between heterogeneous beliefs, short-

sale restrictions and market declines.
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Chapter 1

Annualization of skewness with

application to the Skew Normal

Black Scholes model: A Monte

Carlo Study

1.1 Introduction

Skewness of the return distribution is generally acknowledged in the litera-

ture. The skew normal distributions, firstly documented by Azzalini (1985),

has been seen as a natural choice for modelling skewness. The class of dis-

tributions not only has properties accords with the fundamental principles

of the efficient market hypothesis but also derives useful theoretical out-

comes for varies financial applications which, for example, includes the cap-

ital asset pricing model with skew normal distribution discussed in Adcock

(2004), the skew-in-Mean GARCH model introduced by De Luca and Loper-

fido (2004) and the stochastic frontier analysis with skew-normality studied

by Domı̀nguez-Molina and Ramos-Quiroga (2004). While financial applica-

tions assuming the skew normal distributions have gained more and more

recognition, theories related to multi-period returns under the distributions

are remain untested. The Skew-Normal-Black-Scholes option pricing model
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Chapter 1. Annualization of skewness: A Monte Carlo Study

(Corns and Satchell, 2007) is one of the theories which carries great signifi-

cance in the related area. The model assumes that underlying stock prices

follow skew Brownian motion and option pricing formula derived from the

model extends the original Black-Scholes equation (Black and Scholes, 1973)

to allow for the present of skewness. The Skew-Normal-Black-Scholes model

nests the Black-Scholes model as a special case and accommodates skewness

in the option pricing equation. Once the Skew-Normal-Black-Scholes equa-

tion is derived, the solution can be solved by standard build in functions in

most of the computer software nowadays. It is tempting to test the theo-

ries empirically by converting daily volatility and daily skewness to annual

volatility and annual skewness by applying the time scaling rules; that is, by

applying the
√
250 rule to daily volatility to obtain annual volatility and the

1/
√
250 rule to daily skewness to obtain annual skewness. However, unlike

volatility, the properties of annualization and time-scaling of skewness un-

der heteroskedasticity, one of the most prominent features of financial data,

are far from clear. In this chapter, we address this question by analyzing

the properties of skewness in the Skew-Normal model (Arellano-Valle and

Azzalini, 2008) and the Skew-Normal-GARCH(1,1) model (Liseo and Loper-

fido, 2006). The resulting annual volatility and annual skewness estimators

obtained from the simulation study are then applied to the Skew-Normal-

Black-Scholes model to analysis the performance of the time scaling rules on

option prices.

We note that the Skew-Normal distribution is not the only distribution

to model skewness and the Skew-Normal-GARCH(1,1) model is not the only

model that can model heteroskedasticity. However, computing option prices

by plugging in the volatilities, mainly obtained from the GARCH type mod-

els, into the Black-Scholes formula is a widely used strategy among market

participants (Knight and Satchell, 2002; Xekalaki and Degiannakis, 2010).

Moreover, the Skew-Normal-Black-Scholes formula is no more complicated

than the original formula and it nests the Black-Scholes model as a spe-

cial case. Therefore the Skew-Normal-GARCH(1,1) model together with the

Skew-Normal-Black-Scholes model allow us to extent the original model at

almost no cost. The study of the properties of annualized skewness under the
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Chapter 1. Annualization of skewness: A Monte Carlo Study

Skew-Normal and the Skew-Normal-GARCH(1,1) models enable us not only

to test the performance of the time scaling rules but, perhaps, also help us

to to bring the Skew-Normal-Black-Scholes option pricing theory into more

practical uses.

In section 2, we review the theoretical and empirical work that motivate

our study. In section 3, we present our Skew-Normal model and the Skew-

Normal-GARCH(1,1) model which help us to test the appropriateness of the

time scaling rules. In section 4, we discuss our simulation analysis. In section

5, we apply the simulation results to the Skew-Normal-Black-Scholes option

pricing model in order to analysis the performance of the time scaling rules

on the option pricing model.

1.2 Literature Review

Converting 1-day to h-day volatility by scaling daily volatility with
√
h, i.e.

the square root of time rule, is widely accepted by market practitioners.

For example, it is not uncommon to calculate annualized volatility in the

Black-Scholes equation by scaling daily conditional volatility of a univariate

GARCH model with
√
250. The practice is more than just a convention;

the Basel Committee on Banking Supervision (1996), a banking supervisor,

recommends the use of the square root of time rule to get a 10-day VAR

by rescaling daily VAR with
√
10. The square root of time rule is asserted

again strongly as it is well known that it provides good unconditional h-

day volatility approximations provided asset price follows a martingale, then

its return is serially uncorrelated and unpredictable in mean. In addition,

we assume that the asset market is under a non-speculative environment

where the transversality condition should hold such that prices will never

rise quicker than their discounts. Meucci (2010a), for example, provides an

analytical proof exposing market invariant returns. Moreover, as can be

seen in Diebold et al. (1997), when returns appear to be heteroskedastic, the

square root of time rule provides correct unconditional h-day volatility on

average although it magnifies conditional volatility fluctuations. Drost and

Nijman (1993) has also demonstrated analytically that volatility fluctuation
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disappears and conditional volatility converges to unconditional volatility as

h → ∞. However, the simulation analysis carried by Diebold et al. (1997) as-

sumes that returns follow a GARCH(1,1) process with normally distributed

errors whereas Drost and Nijman (1993) mention nothing about skewness.

Therefore, although we are able to show that the
√
h rule provides cor-

rect h-day unconditional volatility on average, we know nothing about the

properties of h-day unconditional skewness. Indeed, since skewness was not

considered in the previous studies, we may not even know the properties of

h-day unconditional volatility with the present of skewness.

Separated works about skewness have been done. Similar to the time

scaling of volatility, Lau and Wingender (1989) and Meucci (2010b) shows

that if the time series is invariant or, equivalently, independent and iden-

tically distributed across time, 1-day skewness can be converted to h-day

skewness by applying the 1/
√
h time-scaling rule which indicates that skew-

ness decays with time and vanishes as h → ∞. However, as suggested by

Meucci (2010b), the 1/
√
h rule does not hold under heteroskedasticity and

there is no analytical formula available for calculating skewness at multiple

horizons under heteroskedasticity. The closest topic has been discussed by

Wong and So (2003). They calculate the third and forth moments of return

under a Quadratic-GARCH (QGARCH) model. However, skewness in their

model is induced by asymmetric volatility. If the asymmetric term in the

QGARCH model is insignificant, the third moment will vanish and skew-

ness will disappear. Although asymmetric GARCH models are important,

asymmetric volatility is not the only source of skewness. For example, the

rational bubble theory (Blanchard and Watson, 1983; Diba and Grossman,

1988) suggests that a sharp fall in price followed by a period of sustained stock

price increase contributes to the overall negative skewness in the market and

the heterogeneous-agent-based theory (Hong and Stein, 2003) suggests that

negative skewness is greater when short selling is not allowed and hetero-

geneous beliefs is high enough. In other words, skewness could be induced

by factors other than asymmetric volatility and can be present even without

heteroskedasticity.

In light of the previous studies, we are interest in extending their work
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by analyzing the
√
h and the 1/

√
h rule when the normality assumption

is replaced by the skew-normality assumption under both homoskedastic-

ity and heteroskedasticity using the Skew-Normal and the Skew-Normal-

GARCH(1,1) models.

1.3 The Skew-Normal and the Skew-Normal-

GARCH(1,1) models

1.3.1 The Skew-Normal model

In the centered parameterized Skew-Normal model, we consider the specifi-

cation of returns in which

rt = µ+ ut , ut = σεt , (1.1)

εt ∼ CSN(0, 1, γ) (1.2)

where rt is return at time t, µ is the unconditional mean of returns, ut is the

unexpected part of returns which is generally referred to as “news” in the

markets, σ2 is a homoscedastic variance parameter and γ is the unconditional

skewness of returns. Following the centered parametrization used in Arellano-

Valle and Azzalini (2008) and Liseo and Loperfido (2006), the centered skew

normal innovation term εt with zero mean, unit variance and unconditional

skewness γ is the standardized version of zt given by

εt =
zt − µz

σz

, (1.3)

zt ∼ SN(0, 1,α) (1.4)

where µz = bδ and σ2
z = 1− µ2

z with b = (2/π)1/2 and δ = α(1 + α2)−1/2 are

the mean and variance of zt which is a sequence of independent, identically

distributed standard skew normal random variable with density function

f(z ; η,ω,α) = 2φ

(
z − η

ω

)
Φ

(
α
z − η

ω

)
. (1.5)
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Note that when α = 0 the skew normal density function is identical to the

normal density function. Having set the unconditional mean µ, variance σ2

and skewness γ as

µ = η + ωµz , (1.6)

σ2 = ω2
(
1− µ2

z

)
(1.7)

and

γ =
4− π

2

µ3
z

(1− µ2
z)

3/2
(1.8)

the centered parameterized Skew-Normal model is equivalent to

rt = η + ωzt , zt ∼ SN(0, 1,α) (1.9)

where return at time rt in the model is parameterized by using the standard

skew normal random variable zt directly with location parameter η, scale

parameter ω and shape parameter α. We denote the parameter vector for

the centered parameterized Skew-Normal model as

SKEWN(µ, σ2, γ) (1.10)

with

SKEWN(µ(1), σ
2
(1), γ(1)) and SKEWN(µ(h), σ

2
(h), γ(h)) (1.11)

represents its daily and h-day parameter vectors respectively; and the direct

parameterized Skew-Normal model as

SKEWN(η,ω2,α) (1.12)

with

SKEWN(η(1),ω
2
(1),α(1)) and SKEWN(η(h),ω

2
(h),α(h)) (1.13)

represents its daily and h-day parameter vectors respectively. The two pa-

rameterization can be used interchangeably. However model parameters has
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to be estimated by using the centered parameterization since Azzalini (1985)

and Arellano-Valle and Azzalini (2008) has shown that the maximum like-

lihood estimation can be problematic if the direct parameterization is used.

Note that returns under the Skew-Normal model are independent and iden-

tically distributed (i.i.d) across time, and thus, the Skew-Normal model is in

accordance with the assumptions of the
√
h and the 1/

√
h rules.

1.3.2 The Skew-Normal-GARCH(1,1) model

In the centered parameterized Skew-Normal-GARCH(1,1) model, we con-

sider the specification of returns in which

rt = µ+ σtεt (1.14)

where rt is daily return at day t, µ is the unconditional mean, εt is the innova-

tion terms which follows the centered skew normal distribution, CSN(0, 1, γ),

and σ2
t is the conditional variance of a GARCH(1,1) process

σ2
t = a0 + a1σ

2
t−1 + a2u

2
t−1 . (1.15)

We denote the parameter vector for Skew-Normal-GARCH(1,1) model as

SKEWN-GARCH(µ, σ2, γ) (1.16)

with unconditional mean µ, unconditional variance

σ2 = E(σ2
t ) = a0/(1− a1 − a2) (1.17)

and unconditional skewness γ. The corresponding daily and h-day parameter

vectors are

SKEWN-GARCH(µ(1), σ
2
(1), γ(1)) and SKEWN-GARCH(µ(250), σ

2
(250), γ(250))

(1.18)

respectively. While returns under the Skew-Normal model are invariant,

similar to the GARCH model with normally distributed errors, returns under

8
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the Skew-Normal-GARCH(1,1) model are still uncorrelated but no longer

i.i.d across time.

1.4 Annualization and time scaling of volatil-

ity and skewness with Simulated Data

Testing the time scaling rule empirically is difficult if not impossible. A

data set which includes daily data from 1950 to 2013 has around 60 yearly

non-overlapping observations. The annual data set, even the largest possible

data set that we can obtain, is pitifully small in terms of sample size. We can

achieve a larger data set by using overlapping data. However, the overlapped

data are highly dependent, and thus, are not very useful for any statistical

tests. We can also test the scaling rules at a shorter horizon. However, we

cannot grantee the short-horizon behavior can be inferred to long-horizon

behavior. Fortunately, we can confirm the validity of the time scaling rules

using simulation. For testing the problem of annualization, we generate m =

1000 time series of daily returns or Monte Carlo sample paths with daily

sample size n1 = 250000 under the Skew-Normal model with daily parameters

µ(1) = 0, σ2
(1) = 0.042 and γ(1) = −0.7,−0.3,−0.1, 0, 0.1, 0.3, 0.7 ; and the

Skew-Normal-GARCH(1,1) model with daily parameters µ(1) = 0, γ(1) =

-0.7, -0.3, -0.1, 0, 0.1, 0.3, 0.7 and

σ2 = E(σ2
t ) =

a0
1− a1 − a2

=
0.0041

1− 0.8− 0.1
= 0.042 . (1.19)

Note that the two models have the same unconditional variance, i.e. 0.042, for

ease of comparison. We calculate the “theoretical” annual volatility by mul-

tiplying 1-day volatility with
√
250 ; and the annual skewness by multiplying

1-day skewness with 1/
√
250 . We denote annual volatility and skewness ob-

tained by using the time-scaling rules as σS
(250) and γS

(250) respectively. Daily

returns are then aggregate to obtain non-overlapping annual returns with

9
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sample size n(250) = 1000. The annual unconditional parameters

µ
(m)
(250), σ

2,(m)
(250) , γ

(m)
(250) , (1.20)

for each Monte Carlo sample paths, m=1,...1000, under both the Skew-

Normal and the Skew-Normal-GARCH(1,1) models are estimated by the

maximum likelihood method assuming that conditional returns follow the

centered parameterized Skew-Normal model. We regard the “actual” uncon-

ditional annual variance for the underlying data generating process as

σ2,A
(250) =

1

m

∑

m

σ̂
2,(m)
(250) (1.21)

and the “actual” unconditional annual skewness for the underlying data gen-

erating process as

γA
(250) =

1

m

∑

m

γ̂
(m)
(250) (1.22)

where σ̂
2,(m)
(250) and γ̂

(m)
(250) are the annual variance and annual skewness estima-

tors for the mth Monte Carlo sample path. To look at the performance of the

time-scaling rules. We compare the actual values with the values obtained

by applying the time-scaling rules. In other words, we are concerned with

the problem of testing the two null hypothesis

Hypothesis I: H0 : σ
2,A
(250) = σ2,S

(250)

Hypothesis II: H0 : γ
A
(250) = γS

(250)

against the alternatives that the actual values obtained by using the simu-

lation method are not the same as the theoretical values obtained by using

the time scaling rules for annual volatility and skewness.

The Matlab simulation program,“mysn sim” and “mysngarch sim” for

the centered parameterized Skew-Normal Model and Skew-Normal-GARCH

Model are presented in the Appendix.
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1.4.1 Simulation results

Tables 1 and 2 contain the simulation results for the parameters σ2
(1) and

γ(1) respectively. The interpretation of the content of these tables is best

explained with an example. In the very first line of Table 1, we see that when

the simulation is carried out using SKEWN(0,0.042,-0.7), the mean value of

the actual unconditional annual variance obtained over the 1000 replications

is 0.4002, which compares very closely to the true value of this parameter,

which is 0.4000. The t-statistic for testing this difference is 0.2739, resulting

in an acceptance of the null hypothesis in this case.

In fact, we see that all of the rows in Table 1 contain acceptances of

this null hypothesis. From this we may conclude that the
√
250 rule for

converting 1-day volatility to 250-day volatility is correct for both the Skew-

Normal model and the Skew-Normal GARCH(1,1) model. Figures 1 and

2 present graphical representations of the same information, and these also

suggest that the unconditional annual variance estimators for both models

are closely centred around the scaling value.
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Figure 1: Estimated distributions of the unconditional annual variance estimators,

σ̂
2,(m)
(250) , for the Skew-Normal model.

Notes for Figure 1 to 5: The daily model parameter vectors for the Skew-Normal model
and the Skew-Normal-GARCH model are displayed in the graphs as SKEWN(µ(1) , σ2

(1),

γ(1)) and SKEWN-GARCH(µ(1) , σ2
(1), γ(1)) where µ(1) is its daily unconditional mean,

σ2
(1) is the daily unconditional variance and γ(1) is the daily unconditional skewness. The

annual unconditional parameters, σ̂
2,(m)
(250) and γ̂

(m)
(250) for each Monte Carlo sample paths,

m=1,...1000, are estimated by the maximum likelihood method assuming that conditional
returns follow the centered parameterized Skew-Normal model. The vertical lines represent
the scaling values σ2,S

(250) and γS
(250).

13



Chapter 1. Annualization of skewness: A Monte Carlo Study

0
5

10
15

20
25

D
en

si
ty

.34 .36 .38 .4 .42 .44 .46

SKEWN−GARCH(0,0.042,−0.7)

0
5

10
15

20
25

D
en

si
ty

.34 .36 .38 .4 .42 .44 .46
estimated σ(250)

SKEWN−GARCH(0,0.042,0.7)
0

5
10

15
20

D
en

si
ty

.34 .36 .38 .4 .42 .44 .46

SKEWN−GARCH(0,0.042,−0.3)

0
5

10
15

20
25

D
en

si
ty

.34 .36 .38 .4 .42 .44 .46
estimated σ(250)

SKEWN−GARCH(0,0.042,0.3)

0
5

10
15

20
D

en
si

ty

.34 .36 .38 .4 .42 .44 .46
estimated σ(250)

SKEWN−GARCH(0,0.042,0.1)
0

5
10

15
20

D
en

si
ty

.34 .36 .38 .4 .42 .44 .46

SKEWN−GARCH(0,0.042,−0.1)

Figure 2: Estimated distributions of the unconditional annual variance estimators,

σ̂
2,(m)
(250) , for the Skew-Normal-GARCH model.

See notes under Figure 1

However, looking at Table 2 for the performance of the 1/
√
250 rule,

we conclude that the 1/
√
250 rule for converting 1-day to 250-day skew-

ness is appropriate only under the assumption of homoskedasticity while the

rule is inappropriate for heteroskedastic returns. As, on one hand, we have

evidence to show that the 1/
√
250 rule under the Skew-Normal model pro-

vides correct h-day unconditional skewness estimates since we cannot reject

the null hypothesis that the actual annual skewness is equal to the annual

skewness obtained by using the scaling rule for all specifications under the

Skew-Normal model, but on the other hand, we reject the null hypothesis and

accept the alternative hypothesis that the actual annual skewness estimators

obtained by using the simulation method are not the same as the theoretical

values obtained by applying the 1/
√
250 rule for almost all of the specifi-

cations under the Skew-Normal-GARCH(1,1) model. The only exception

when the 1/
√
250 rule under the Skew-Normal-GARCH(1,1) model provides
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Chapter 1. Annualization of skewness: A Monte Carlo Study

a good approximation for the 250-day skewness is when the daily and, thus,

the annual skewness parameters are equal to zero. Moreover, Figure 3 and

Figure 4 indicate that annual skewness estimators under the Skew-Normal

model are closely centered around the scaling values whereas the scaling val-

ues overestimate (underestimate) unconditional annual skewness when daily

skewness is negative (positive) under the Skew-Normal-GARCH(1,1) model.

Note that the aim of the simulation is to show that controlling for both

skewness and variance, i.e. given the same location, shape and scale param-

eters, the time scaling rule fail to provide good approximation for annual

skewness under the assumption of heteroskedasticity. This is clearly shown

in the results discussed above. However, it is difficult to say that when daily

skewness is becoming more and more negative or positive, the precision of

the time scaling rule will decay since skewness is affecting variance under the

Skew-Normal and the Skew-Normal-GARCH models. Therefore, although

the RMSE and the BIAS indicate that the time scaling rule provide less and

less precise estimation for annual skewness when we have more and more neg-

ative or positive daily skewness, we cannot conclude that the degree of daily

skewness will be affected the precision of the time scaling annual skewness

because the lost in precision may be caused by increasing variance which is

positively correlated with the severity of skewness.
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Figure 3: Estimated distributions of the unconditional annual skewness estimators,

γ̂
(m)
(250), for the Skew-Normal model.

See notes under Figure 1
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Figure 4: Estimated distributions of the unconditional annual skewness estimators,

γ̂
(m)
(250), for the Skew-Normal-GARCH model.

See notes under Figure 1

The behavior of the scaling rules under the normality assumption can be

seen from the fourth specification in Table 1 and 2 which display the hypoth-

esis test results when the daily and annual skewness parameters are set equal

to zero. When the skewness parameter is equal to zero, the Skew-Normal

distribution collapses to the normal distribution. Since we cannot reject the

null hypothesis that the actual annual variance and skewness estimators ob-

tained by using the simulation method are the same as the theoretical values

obtained by applying the
√
250 and the 1/

√
250 rules when the daily and

annual skewness parameters are equal to zero; and the actual unconditional

variance and skewness estimators are centered closely around the scaling val-

ues as can been seen in Figure 5, we can conclude that the scaling rules

work well under the normality assumption with or without the present of

heteroskedasticity.
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Figure 5: Estimated distributions of the unconditional annual variance, σ̂
2,(m)
(250) ,

and unconditional annual skewness, γ̂
(m)
(250), estimators for the Skew-Normal and

the Skew-Normal-GARCH models with daily skewness parameter γ(1) = 0.

See notes under Figure 1

1.5 Application to the Skew-Normal-Black-

Scholes option pricing model

The Skew-Normal-Black-Scholes Option pricing model introduced by Corns

and Satchell (2007) assumes stock price follows skew Brownian motion. The

European call option price with underlying stock price S, exercise price K,

time to maturity τ and interest rate r derived from their model is:

CALL =
1

2Φ(δ(250)ω(250)

√
τ)

SΨ1(θ)− e−rτKΨ2(θ), (1.23)

with

Ψ1(θ) = 2

∫ ∞

θ

∫ sα(250)

−∞
φ(s− ω(250)

√
τ)φ(u)duds, (1.24)
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Ψ2(θ) = 2

∫ −θ

−∞

∫ −sα(250)

−∞
φ(s)φ(u)duds, (1.25)

θ =
ln(K/S)− {[r − (ω2

(250)/2)]τ − ln2Φ(δ(250)ω(250)

√
τ)}

ω(250)

√
τ

, (1.26)

where δ(250) = α(250)(1 + α2
(250))

1/2, φ(·) and Φ(·) are the standard normal

density and distribution functions. The Skew-Normal-Black-Scholes formula

and the Black-Scholes differ only by the skewness parameters α(250) which

govern the degree of skewness of the underlying data. When α(250) = 0,

the skew-Normal-Black-Scholes option pricing model reduces to the Black-

Scholes model.

Empirically, the two parameters ω(250) and α(250) are not observable and

have to be estimated. Since daily returns are almost surely heteroskedas-

tic, in practice, one can estimate the center parameterized Skew-Normal-

GARCH(1,1) model to obtain the daily centered parameters, σ2
(1) and γ(1),

and then apply either the scaling rules or the simulation method to obtain

the annual centered parameters, σ2
(250) and γ(250), which can be transformed

into the annual direct parameters, ω2
(250) and α(250).

Consider a benchmark case with stock price S = 100, exercise price K =

100, annual risk free rate r = 0.1 and time to maturity τ = 0.25. In order to

study the performance of the time scaling rules on option pricing, we compare

the European call option prices computed by the “actual” annual volatility

and skewness estimators obtained by simulation with the prices computed by

the scaling values. The centered annual parameters have been analyzed in the

previous section and the parameter values are reported in Table 1 and Table

2. Since estimations haven been done by using the centered parameterization,

the annual centered parameters obtained either by the simulation method or

the scaling rules are transformed into direct annual parameters needed for

the option pricing formula. By plugging in the transformed direct values

into the Skew-Normal-Black-Scholes option pricing formula, we obtain the

corresponding call option prices. Table 3 reports the European call option

prices obtained by using the scaling parameters in panel A and the prices

obtained by using the simulated parameters in panel B. As can be seen in
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Chapter 1. Annualization of skewness: A Monte Carlo Study

the tables, the call option prices CALL(S) and CALL(A) are monotonically

increasing in αS
(250) and αA

(250). By plotting CALL(S) and CALL(A) against

their corresponding annual skewness parameters αS
(250) and αA

(250) in Figure

6, it can be easily seen that the scaling rule overestimates (underestimate)

the skewness parameters as well as the call option prices when returns are

negatively (positively) skewed.

13
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13
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13
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13
.8

C
al

l O
pt

io
n 

Va
lu

es

−1.1107 −0.7743 −0.5162 0 0.5219 0.7776 1.1145
αA

(250)

−0.6287 −0.4601 −0.3123 0 0.3123 0.4601 0.6287

  α(250)
S

CALL(S) CALL(A)

Figure 6: The relationship between Skew-Normal-Black-Scholes call option prices
and the skewness parameters

To see how implied variance correlated with skewness when the annual

skewness parameters are obtained by using the scaling values, consider the

actual call option prices CALL(A) reported in Table 3 are observable with

annual volatility not known. We substitute the call option prices with annual

scaling skewness parameters αS
(250) into the pricing formula and numerically

solve for the variance rates. The resulting variance rate is the implied vari-

ance for the Skew-Normal-Black-Scholes model. The relationship between

implied variance and the skewness parameter αS
(250) are plot in Figure 7.

Implied Variances in the figure are computed by numerically solving the

Skew-Normal-Black-Scholes equation for the variance rate for each call prices

CALL(A) and annual scaling skewness parameters αS
(250) reported in Table 3.

It is not surprising to see that implied variance are increasing with the skew-
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Chapter 1. Annualization of skewness: A Monte Carlo Study

ness parameter αS
(250) since the scaling values overestimate (underestimate)

skewness as well as call option prices when returns are negatively (positively)

skewed, the variance rates which are positively related to call prices have to

be adjusted downward (upward) to account for the pricing bias. Therefore,

we can also see that implied variances are lower (higher) than the actual

value(40%) represented by the horizontal line in the diagram when returns

are negatively (positively) skewed.

39
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Im
pl
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ria

nc
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(%
)

−0.6287 −0.4601 −0.3123 0 0.3123 0.4601 0.6287
α(250)

S

Figure 7: The relationship between the Skew-Normal-Black-Scholes’s implied vari-
ance and skewness parameters

We now look at the potential pricing errors and misrepresentation of the

relationship between implied variance and moneyness. Looking at Figure

8, all pictures represent call prices for the benchmark case with stock price

S = 100 and moneyness defined as K/S. All figures show that both the the

Skew-Normal-Black-Scholes call prices obtained by using the scaling annual

parameters and the original Black-Scholes call prices computed by using an-

nual variance obtained by historical variance overestimate (underestimate)

in-the-money calls and underestimate (overestimate) at-the-money and out-

of-the-money calls when returns are negatively(positively) skewed. This leads

to what we can see in Figure 9 which shows that implied variance for the

Skew-Normal-Black-Scholes model with scaling annual parameters and the
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original Black-Scholes model are monotonically decreasing (increasing) with

moneyness when returns are negatively (positively) skewed. However, we

observe the same implied variance across different moneyness if the actual

annual skewness parameters obtained by simulation are used. Therefore, we

can conclude that the relationship between implied variance and moneyness

is misrepresented when the present of skewness is ignored or biasly estimated

by the scaling rule 1/
√
250 when returns are actually heteroskedastic.

In this chapter, the pricing errors and the misrepresented relationship

between implied variance and moneyness are generated purely by either ig-

noring the present of skewness or biasly estimated annual skewness using the

scaling rule 1/
√
250 when returns are actually heteroskedastic. However, the

Skew-Normal-Black-Scholes model is computed by skew Brownian motion

with constant variance. The hybrid procedure of estimating volatility and

skewness from the discrete Skew-Normal-GARCH(1,1) but using the Skew-

Normal-Black-Scholes model to price options have to be tested empirically.
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Chapter 2

Testing the Skew Normal Black

Scholes Model

2.1 Introduction

Fat-tailed and skewness of the return distributions have important impli-

cations for option pricing. Since the publication of the Black and Scholes

(1973)’s option pricing theory, their model has been the cornerstone of the

option pricing theory. The model assumes stock price follows geometric

Brownian motion and has a closed form solution which is a function of the

underlying share price of the option, the risk free rate, the exercise price,

the volatility of the share and the option’s time to maturity. Concerning ge-

ometric Brownian motion implies constant volatility and symmetric return

distributions, the Black Scholes model has been criticized for its incapability

of capturing time-varying volatility and negative skewness; the most promi-

nent features of financial time series. To capture both time-varying volatility

and skewness, in this chapter, we use the Skew-Normal-GARCH model in-

troduced by Liseo and Loperfido (2006) to model volatility and skewness and

use the Skew-Normal-Black-Scholes model developed by Corns and Satchell

(2007) to predict the European call option prices in the Hang Seng Index

options market in Hong Kong. Section 2 of the chapter reviews the the-

oretical and empirical work that motivate our study. Section 3 presents
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the Skew-Normal-Black-Scholes model. Section 4 review the Skew-Normal-

GARCH(1,1) model which help us to estimate daily volatility and skewness.

Section 5 describes the empirical data. Section 6 investigates the behavior of

volatility and skewness in the data. Section 7 presents our empirical results.

Section 8 concludes.

2.2 Literature Review

Numerous attempts have been made to relax the constant volatility assump-

tion of the Black-Scholes model including the jump diffusion model discussed

in Merton (1976) which assumes the dynamic of stock prices incorporates

small diffusive movements with the presence of large jumps; the stochas-

tic volatility model firstly introduced by Hull and White (1987) treating

volatility as a random process; the stochastic volatility jump diffusion model

of Bates (1996) which incorporate both the jump diffusion as well as the

stochastic volatility processes in the option pricing models; the ARCH op-

tion pricing model of Engle and Mustafa (1992) with stock returns follow a

ARCH process and the GARCH option pricing model of Duan (1995) which

assumes stock returns follow a GARCH process. The list here is far from

exhaustive and, theoretically, can be endless since new option pricing mod-

els can be derived once new compatible volatility processes are developed.

Nevertheless, the time varying volatility adjusted option pricing models, in-

cluding those not listed here, help providing extensive evidence to show that

time varying volatility is capable of explaining the systematic errors between

observed option prices and the Black-Scholes prices.

Pricing error depends not only on time varying volatility but depends

also on skewness. The option pricing model has been extended to include

skewness in the expense of assuming more complicated distribution functions.

The Jarrow and Rudd (1982)’s skewness adjusted model is one of the option

pricing models which have been applied in early empirical option pricing tests

to incorporate the presence of skewness. The Jarrow-Rudd model different

from the original Black-Scholes model by having an additive term which

depends on the cumulants of the log-normal distribution and an unknown
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distribution. Corrado and Su (1997) empirically tested the model developed

by Jarrow and Rudd (1982). They find significant negative skewness and

positive excess kurtosis in the option-implied distribution of S&P 500 index

prices. Moreover, they show that adding skewness- and kurtosis-adjustment

terms in the Black-Scholes model yield significant improvement for pricing

European options. Their findings suggest that skewness and kurtosis are

factors affecting option prices. Instead of letting option prices depending on

an unknown distribution, Eberlein et al. (1998) develop a closed form option

pricing formula based on the hyperbolic Levy motion. Although not as plain

and simple as the Black-Scholes price, the hyperbolic price can be computed

by employing fast Fourier transformation and numerical integration. They

find that employing the hyperbolic model help reducing volatility smile and

improving the pricing accuracy. The skewness adjusted models mentioned

above pay no attention to the behavior of time varying volatility. To capture

both skewness and time varying volatility in financial time series, Menn and

Rachev (2005) developed an option pricing model where stock returns follow

a GARCH process with α-stable innovations. Their time varying volatility

and skewness adjusted model reveals the unneglectable linkage between time

varying volatility, skewness and option prices empirically.

Despite all these criticisms, with little doubt, the Black-Scholes model is

still the standard option pricing model in the finance industry. On the theo-

retical side, the Black-Scholes model is constructed base on the assumption

that the underlying stock price follows a geometric Brownian motion with

constant variance. On the other hand, the GARCH(1,1) model assumes that

the underlying stock price is a discrete process with time varying variance.

Therefore, in principle, we cannot use the GARCH(1,1) variance in the Black-

Scholes model. However, in practice, estimating volatility from the discrete

GARCH model and suing the continuous Black-Scholes model to price op-

tions is widely used option pricing strategy among market participants and

it is generally believe that the volatility adjusted Black-Scholes price is a

good approximation of the actual price (Satchell and Knight, 2011). The as-

sumptions behind the Black-Scholes model are overly simplified. Yet, if the

model is based on more complicated stochastic processes or distributions,
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solutions of the model would have to be relied on more complicated numeri-

cal methods, algorithm development or computer simulations. This becomes

one of the biggest obstacles impeding the application of a more realistic and

accurate but complicated option pricing theory in everyday option trading

operations.

The Skew-Normal-Black-Scholes option pricing model allows us to incor-

porate skewness in the original Black-Scholes formula with almost no extra

cost. The model assumes that underlying stock prices follow skew Brow-

nian motion and option pricing formula derived from the model nests the

Black-Scholes model as a special case and extends the original Black-Scholes

equation to allow for the present of skewness with an additional parame-

ter. Unlike other option pricing models which involve skewness, once the

Skew-Normal-Black-Scholes equation is derived, the solution can be solved

by standard build in functions in most of the statistical or mathematical soft-

ware nowadays within approximately one-tenth of a second. Indeed, the most

complicated part of the formula is to evaluate a double integral numerically.

Above all, the model has not been verified empirically. It is worth carrying

out empirical tests to compare the performance of the Skew-Normal-Black-

Scholes (SNBS) model and the original Black-Scholes (BS) model.

2.3 A Brief Review of The Skew-Normal-Black-

Scholes Model

Under the SNBS framework of Corns and Satchell (2007), the stock price at

expiry is

ST = St+τ = St exp(ητ + ω
√
τZt) (2.1)

where

Zt =
1√

1 + α2
W1,t +

α√
1 + α2

| W2,t | (2.2)

with t the current date, T the expiry date, τ = T − t the time to expiry,

St the current stock price, ST the stock price at expiry, W1,t and W2,t the
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independent standard Brownian motions. It follows that

ln
ST

St

= ητ + ω
√
τZt (2.3)

is skew normally distributed with density

f

(
ln

ST

St

)
=

2

ω
√
τ
φ

(
lnST

St
− ητ

ω
√
τ

)
Φ

[
α

(
lnST

St
− ητ

ω
√
τ

)]
(2.4)

where η is the location parameter, ω is the scale parameter, α is the shape

parameter, φ(·) and Φ(·) are the standard normal density and distribution

functions. From the moment generating function of lnST

MlnST (β) = 2 exp(lnSt + ητ +
1

2
β2ω2τ)Φ(βδω

√
τ) (2.5)

we have

E

(
ST

St

)
= 2 exp(ητ +

1

2
ω2τ)Φ(δω

√
τ) . (2.6)

Moreover,

E

(
ST

St

)
= exp(rτ) (2.7)

since the average return of stocks equals to the risk-free return r. This implies

that, assuming risk-neutrality, the stock price is

ST = St exp(rτ − 1

2
ω2τ − ln 2Φ(δω

√
τ)) . (2.8)

Recall that a call option pays max(0, ST −K) τ periods in the future, there-

fore, the current value of a call option is

CALL = e−rτ

∫ ∞

K

f(ST | St)dST . (2.9)

Using the properties of the log-skew-normal distribution discussed in Corns

and Satchell (2007), we can evaluate the above integral. It follows that the

European call option price with underlying stock price S, exercise price K,
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time to maturity τ and risk-free rate r is:

CALL =
1

2Φ(δω
√
τ)

StΨ1(θ)− e−rτKΨ2(θ), (2.10)

with

Ψ1(θ) = 2

∫ ∞

θ

∫ sα

−∞
φ(s− ω

√
τ)φ(u)duds, (2.11)

Ψ2(θ) = 2

∫ −θ

−∞

∫ −sα

−∞
φ(s)φ(u)duds, (2.12)

θ =
ln(K/S)− {[r − (ω2/2)]τ − ln 2Φ(δω

√
τ)}

ω
√
τ

. (2.13)

The SNBS formula and the BS differ only by the skewness parameters α

which govern the degree of skewness of the underlying data. When α = 0,

the SNBS option pricing model reduces to the BS model.

2.4 Modeling Volatility and Skewness

Empirically, the two parameters ω and α in the SNBS formula are not ob-

servable and have to be estimated. Since daily returns are almost surely

heteroskedastic, we obtain the parameters by estimating the centered Skew-

Normal-GARCH(1,1) model with specification of returns in which

rt = µ+ ut , ut = σtεt , (2.14)

where rt is return at time t, µ is the unconditional mean of returns, ut is

the unexpected part of returns which is generally referred to as “news” in

the markets and σ2
t is the conditional variance of a GARCH(1,1) process

(Bollerslev, 1986)

σ2
t = a0 + a1σ

2
t−1 + a2u

2
t−1 (2.15)

with unconditional variance

σ2 = E(σ2
t ) = a0/(1− a1 − a2) . (2.16)
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Following Arellano-Valle and Azzalini (2008), the centered skew normal in-

novation term εt with zero mean, unit variance and unconditional skewness

γ is the standardized version of zt given by

εt =
zt − µz

σz

, (2.17)

where µz = bδ and σ2
z = 1− µ2

z with b = (2/π)1/2 and δ = α(1 + α2)−1/2 are

the mean and variance of zt which is a sequence of independent, identically

distributed standard skew normal random variable with skew normal density

function

f(zt) = 2φ

(
zt − η

ω

)
Φ

(
α
zt − η

ω

)
. (2.18)

Note that when α = 0 the skew normal density function is identical to the

normal density function. Having set the unconditional mean µ, variance σ2

and skewness γ as

µ = η + ωµz ,

σ2 = ω2
(
1− µ2

z

)

and

γ =
4− π

2

µ3
z

(1− µ2
z)

3/2
(2.19)

the centered parameters (µ, σ, γ) can be transformed into the direct parame-

ters (η, ω, α) where the scale parameter ω and the shape parameter α are the

two unknown parameters in the SNBS model. The two parameterization can

be used interchangeably. However model parameters have to be estimated by

using the centered parameterization since Azzalini (1985) and Arellano-Valle

and Azzalini (2008) has shown that the maximum likelihood estimation can

be problematic if the direct parameterization is used. We denote the Skew-

Normal-GARCH(1,1) model as SNGARCH(1,1) model in this chapter with

the emphasis of the number of lags used in modelling conditional variance.

Estimation for the centered SNGARCH(1,1) model has been performed us-

ing the numerical optimization program in Matlab; the code is available from

the authors on request.
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2.5 Data Description

Figure 10: Hang Seng Index
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Hang Seng Index call options which are of European style are used to

examine the performance of the Skew-Normal-Black-Scholes European option

pricing model. Data used in this chapter are obtained from several sources.

The Hang Seng Index call option prices for the sample period 1 August 2005

to 31 December 2010 are purchased from the Hong Kong Exchanges and

Clearing Limited. The Hang Send Index historical prices for the sample

period 17 July 2001 to 31 December 2010 are purchased from the Hang Seng

Indexes Company Limited. Returns of the Hang Send Index time series are

defined as ln(pt)− ln(pt−1) where pt is the Hang Seng Index adjusted closing

price at day t. The Hang Seng Index and its corresponding log relative returns

series are shown in Figure 10 and Figure 11 respectively. The overnight

Hong Kong Interbank Offered Rate (HIBOR) which is used as a proxy of

the risk-free rate is download from the Hong Kong Monetary Authority’s

monthly statistical bulletin. To avoid thin trading, any option with less than

10 transactions or with less than 20 options traded are eliminated. Since by
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Figure 11: Return
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definition the bid price is always below the ask price, options which cannot

satisfied the condition: 0 < bid price ≤ ask price, are excluded. Moreover,

options prices which violate the basic no-arbitrage constraint, i.e. call prices

should be greater than the intrinsic values defined as the difference between

the underlying stock prices and exercise prices, are removed. Moneyness is

defined as [ln(K/S) − rτ ]/
√
τ . At-the-Money corresponds to 0 moneyness,

while in-the-money corresponds to negative moneyness and out-of-the-money

corresponds to positive moneyness. We sort moneyness into three deciles,

the in-the-money decile (ITM), the at-the-money decile (ATM) and the out-

of-the-money decile (OTM). We first sort options into 2 groups, namely,

positive moneyness and negative moneyness. We then assign one-third of

the data closest to zero in both groups to the ITM decile and the remaining

observations in the negative (positive) moneyness group to the ITM (OTM)

decile. The summary statistics for moneyness and the Hang Seng Index call

option data are reported in Table 4 and Table 5 respectively.
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Table 4: Summary statistics for moneyness

Moneyness Deciles

In-the-money At-the-Money Out-of-the-money
(ITM) (ATM) (OTM) Total

A. Percentile
1th -0.8773 0.0030 0.4666 -0.0951
5th -2.0236 -0.2449 0.1737 -1.6385
10th -1.5439 -0.2026 0.1876 -1.2541
50th -1.3843 -0.1559 0.2033 -1.0398
90th -0.8547 0.0145 0.3713 0.0418
95th -0.3662 0.1389 0.8238 0.5289
99th -0.3058 0.1541 1.0556 0.7239
B. Other Statistics
Mean -0.2632 0.1661 1.7883 1.2778
Min -4.2777 -0.2542 0.1696 -4.2777
Max -0.2544 0.1696 6.2028 6.2028
No. of Obs. 8661 9529 10398 28588

Moneyness is defined as [ln(K/S) − rτ ]/
√
τ . At-the-Money corresponds to 0

moneyness, while in-the-money corresponds to negative moneyness and out-of-the-
money corresponds to positive moneyness.

Table 5: Summary statistics for the Hang Seng Index call option data

Moneyness Settlement Bid Ask Bid-Ask
Deciles Price Price Price Spread Volume Deals
ITM 0.2819 0.2287 0.3030 0.0743 3477 834
ATM 0.3601 0.2992 0.3892 0.0900 3795 1176
OTM 0.0563 0.0461 0.0720 0.0258 2830 977

Total 0.2259 0.1858 0.2477 0.0619 10102 2987

The Settlement Price, the Bid and the Ask Prices reported in the table are the
average prices for different moneyness category. The Bid-Ask Spread is calculated
as the average difference between the bid and ask price. Volume is the total contract
volume and Deals is the total number of transaction. All prices are displayed
in thousands of Hong Kong dollars whereas volume and deals are displayed in
thousands of options traded. All values are daily closing figures.
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Table 6: Daily parameters estimation results for the centered SNGARCH(1,1) and
the GARCH(1,1) Models using daily log relative returns of the Hand Seng Index

Model

Parameter SNGARCH(1,1) GARCH(1,1)

Mean Eq. µ 0.0296 0.0287
(0.0322) (0.0322)

Variance Eq. con 0.0213* 0.0225*
(0.0099) (0.0101)

σ2
t−1 0.0652** 0.0682**

(0.0109) (0.0112)

u2
t−1 0.9215** 0.9181**

(0.0125) (0.0127)

Skewness Eq. γ -0.1413*
(0.0578)

Log Likelihood 437.8533 435.7501
N 1367 1367

Standard errors in parentheses (* p < 0.05, **p < 0.01). The parameter values
reported in the table are estimated using the first 1000 observations from the sample
period 17 July 2001 up to 1 August 2005.
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2.6 Volatility and skewness in Hang Seng In-

dex

To obtain daily volatility and skewness in the returns of the Hang Seng Index

time series, we first estimate the centered Skew-Normal-GARCH(1,1) model

by using observations from the sample period 17 July 2001 up to 1 August

2005, then estimate the model again using observations up to 2 August 2005,

and so on, finishing the estimation procedure with a total of 1376 estimated

coefficient vectors by using all the observations up to 31 December 2010.

Unconditional volatility and skewness on 1 August 2005 is estimated by us-

ing data up to 1 August 2005, and so on. We do the same to obtain the

parameters for the GARCH(1,1) model with the shape parameter restricted

to be zero. The parameter values obtained by using the first 1000 obser-

vations of our sample for both models are reported in table 6. The daily

centered unconditional variance estimators for the SNGARCH(1,1) and the

GARCH(1,1) models are plotted against time in Figure 12 whereas the

time series of the daily centered unconditional skewness estimators for the

SNGARCH(1,1) model is presented in Figure 13. Individual parameters

except the unconditional mean of returns for both models are significantly

different from zero at a 5% level on each day throughout the sample period

for both models. As discussed in Adcock (2004), in the skew normal case,

the hypothesis of α = 0 against the alternative is the most powerful invariant

test for testing normality; thus, we have evidence to reject the null hypoth-

esis of normality in favor of the alternative of skew-normality since the null

hypothesis of γ = 0, and thus α = 0, in the centered SNGARCH(1,1) model

has been consistently rejected at a 5% level on each day throughout the entire

rolling sample as shown in Figure 14.

The annualized volatility for the Black-Scholes model is the daily un-

conditional volatility of the GARCH(1,1) scaled with
√
250. The square

root of time rule is widely accepted by market practitioners and is asserted

again strongly as it is well known that it provides good unconditional h-day

volatility approximations. As can be seen in the simulation study of Diebold

et al. (1997), even when returns appear to be heteroskedastic with returns
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Figure 12: Daily Unconditional Variance Estimators σ̂2
(1) for the Skew-Normal-

GARCH(1,1) and the GARCH(1,1) models
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Figure 13: Daily Unconditional Skewness Estimator γ(1) for the Skew-Normal-
GARCH(1,1) Model
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Figure 14: The p-values test for the daily unconditional skewness estimator γ(1)
differences from zero for the SNGARCH(1,1) Model
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follow the GARCH(1,1) process, the square root of time rule provides correct

unconditional h-day volatility on average although it magnifies conditional

volatility fluctuations. Drost and Nijman (1993) has also demonstrated ana-

lytically that volatility fluctuation disappears and conditional volatility con-

verges to unconditional volatility as h → ∞. Converting daily skewness to

annual skewness, however, require the use of simulation since there is no an-

alytical formula available for calculating skewness at multiple horizons under

heteroskedasticity. This is a universal problem for all option pricing models

which involve skewness. For converting daily skewness to annual skewness

at day t, We generate m = 1000 time series of daily returns with daily sam-

ple size n(1) = 250000 under the SNGARCH(1,1) model calibrated by daily

parameters estimated at day t. Daily returns are then aggregate to obtain

non-overlapping annual returns with sample size n(250) = 1000. The annual

unconditional parameters for each Monte Carlo sample paths, m=1,...1000,

under the SNGARCH(1,1) models are estimated by the maximum likelihood

method assuming that conditional returns follow the skew normal distribu-
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tion function in equation 2.18. We regard the unconditional annual variance

and unconditional skewness at day t for the underlying process as the average

values obtained from the simulation process. These values are then trans-

formed into annual scale parameters ω(250) and annual location parameters

α(1) for the SNBS model. Note that annual scale parameters are the same

as their corresponding unconditional variance values under the GARCH(1,1)

model since centered parameters are the same as direct parameters in the

absence of skewness. The rolling annual shape and scale parameters for the

SNBS and the BS models are shown in Figure 15 and 16.

Figure 15: Annual Scale Estimators ω̂2
(250) for the SNBS and the BS models
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2.7 The empirical performance of the SNBS

and the BS models

Many criteria could be used to evaluate alternative option pricing models;

four measurements are going to be used in this chapter. They are defined as

follow:
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Figure 16: Annual Shape Estimators α̂(250) for the SNBS models
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1. The root mean squared valuation error (RMSVE) is the square root of

the mean squared deviations of the observed option settlement prices

from the theoretical prices. The RMSVE measures by how much the

observed prices deviate from the theoretical prices.

2. The relative RMSVE (Rel.RMSVE) is the % difference between the

SNBS root mean squared valuation error and the BS root mean squared

valuation error. The relative RMSVE compares the performance of the

SNBS and the BS option pricing models using the root mean squared

valuation error. A negative figure implies the SNBS model outperforms

the BS model, and vice versa.

3. The average absolute error (MAE) is the average absolute valuation

error outside the bid-ask spread. The MAE measure how well the

models fir within the bid and ask prices.

4. The relative MAE (Rel.MAE) is the % difference between the SNBS

average absolute error and the BS average absolute error. The relative

MAE compares the performance of the SNBS and the BS option pricing

models using the average absolute error. A negative figure implies the
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SNBS model outperforms the BS model, and vice versa.

Table 7: In sample goodness of fit statistics

RMSVE MAE

Moneyness SNBS BS Rel.RMSVE SNBS BS Rel.MAE

ITM 0.0343 0.0337 1.7768 0.0765 0.0784 -2.4861

ATM 0.0375 0.0396 -5.3220 0.1078 0.1158 -6.8373

OTM 0.0068 0.0071 -4.7688 0.0373 0.0416 -10.3916

Total 0.0254 0.0260 -2.4783 0.0727 0.0775 -6.1969

2.7.1 In-sample Performance of the SNBS and the BS

models

Table 7 reports the in-sample goodness of fit statistics described above. Both

the root mean squared valuation error and the average absolute error rank

the SNBS model the best model using the full sample since the RMSVE is

0.0254 for the SNBS model and is 0.0260 for the BS model, indicating that

the RMSVE for the SNBS model is 2.5% less than that of the BS model;

whereas the MAE is 0.0727 for the SNBS model and 0.0775 for the BS model;

indicating that the MAE for the SNBS model is 6.2% less than that of the BS

model. We can also see clearly from the relative root mean squared valuation

error and the relative average absolute error that the SNBS model perform

better when options are at-the-money or out-of-the-money. On one hand,

the Rel.RMSVE for the SNBS model is 5.3% less than that of the BS model

in the ATM decile and is 4.8% less than that of the BS model in the OTM

decile. On the other hand, the Rel.MAE for the SNBS model is 6.8% less

than that of the BS model in the ATM decile and is 10.4% less than that of

the BS model in the OTM decile. However, the SNBS model showed a slight

deterioration in performance in the ITM decile. Indeed there is insufficient

evidence to indicate that the SNBS model prefers better than the BS model.
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Yet, there is no evidence supporting the superiority of the BS model either.

Although the Rel.RMSVE for the SNBS model is 1.8% larger than the BS

model, the percentage difference is very small. Moreover, the Rel.MAE for

the SNBS model is still 2.5% less than that of the BS model although the

2.5% difference is far less than that of the 10.4% in the OTM decile. We

conclude that the SNBS model outperform the BS model since the SNBS

perform better in both the ATM and the OTM deciles while the two models

have similar performance in the ITM decile.

2.7.2 Out-of-the-sample Performance of the SNBS and

the BS models

The question of which of SNBS and BS is a superior model is addressed in

terms of out-of-sample forecasting performance. Clearly, SNBS is destined to

perform better than BS in terms of in-sample forecasting performance, as a

consequence of the fact that the former contains an additional parameter and

is therefore more flexible. However, out-of-sample forecasting performance

only improves if the additional parameter represents a genuine improvement

to the model; addition of an unnecessary parameter would result in a wors-

ening of out-of-sample forecasting performance. For this reason, we may use

out-of-sample forecasting performance, without any adjustment for the num-

ber of parameters, as a valid criterion for judging which model is superior.
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Table 8: Out of sample goodness of fit statistics

Panel A. One day ahead goodness of fit statistics

RMSVE MAE

Moneyness SNBS BS Rel.RMSVE SNBS BS Rel.MAE

ITM 0.0362 0.0364 -0.7055 0.0807 0.0836 -3.5533

ATM 0.0380 0.0402 -5.4666 0.1086 0.1165 -6.8081

OTM 0.0069 0.0072 -4.5975 0.0374 0.0417 -10.2511

Total 0.0261 0.0270 -3.4391 0.0742 0.0793 -6.4268

Panel B. Five day ahead goodness of fit statistics

RMSVE MAE

Moneyness SNBS BS Rel.RMSVE SNBS BS Rel.MAE

ITM 0.0416 0.0440 -5.4290 0.0951 0.1015 -6.2881

ATM 0.0397 0.0421 -5.6256 0.1113 0.1190 -6.4475

OTM 0.0071 0.0075 -4.6174 0.0379 0.0420 -9.8294

Total 0.0284 0.0301 -5.4473 0.0797 0.0857 -6.9931

Table 8 reports the out-of-the-sample goodness of fit statistics. Unlike

the in-sample analysis, the relative root mean squared valuation error and

the relative average absolute error for the SNBS models are less than those

for the BS model in all moneyness deciles. However, looking at the one

day ahead statistics, the Rel.RMSVE for the ITM deciles is -0.71%. This

indicates that the one day ahead forecast performance of the two models are

not very different for the ITM decile. Nevertheless, looking at all the other

figures in the table, we can conclude that the SNBS model outperform the

BS model in our out-of-the sample analysis. The Relative root mean squared

valuation errors indicate that the SNBS model perform 5% better than the

BS model on average excluding the ITM decile while the Relative average

absolute errors indicate that the SNBS model perform at least 3.6% better

than the BS model and can be up to 10.3% depending on the moneyness
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deciles.

2.8 Concluding Remarks

In this chapter, we tested the Skew-Normal-Black-Scholes model in the Hang

Seng Index options market in Hong Kong. Our empirical evidence indicated

that regardless of the performance yardsticks, taking into account of skewness

improves both the in-sample and the out-of-the-sample pricing performance.

The pricing procedure used in this chapter is the standard procedure used in

the finance industry. We use the Skew-Normal-GARCH(1,1) model to predict

daily volatility and skewness and use the SNBS model to price options. The

only complication of the procedure is to simulate annual skewness. This

complication can be solved by having an analytical formula for converting

1-day skewness to h-day skewness for the Skew-Normal-GARCH(1,1) model

just like the Drost and Nijman (1993)’s formula which convert 1-day volatility

to h-day volatility for the GARCH(1,1) model.
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Chapter 3

Modeling Conditional

Skewness: Heterogeneous

Beliefs, Short-sale restrictions

and Market Declines

3.1 Introduction

Skewness of the conditional return distribution has been widely recognized

as a common phenomenon in financial markets. Some important aspects of

skewness in returns have been studied. Firstly, a substantial body of liter-

ature documents that negative unconditional skewness is caused by asym-

metric volatility (Nelson, 1990; Engle and Ng, 1993; Glosten et al., 1993).

Secondly, many authors note that financial time series behave differently dur-

ing market declines and periods of market growth. Officer (1973), Schwert

(1989a,b), and Campbell and Lettau (1999) indicate that volatility is higher

when price slumps than when price rises while Perez-Quiros and Timmer-

mann (2001) identify more pronounced negative conditional skewness during

late expansions and early recessions. Thirdly, starting from Hansen (1994),

several empirical studies document that conditional skewness in market re-

turns is time varying and predictable. Harvey and Siddique (1999), Jondeau
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and Rockinger (2003), Brooks et al. (2005), Leon et al. (2005) and Lanne and

Saikkonen (2007) find significant presence of time varying conditional skew-

ness in market returns. These studies view conditional skewness as analogous

to heteroskedasticity and model conditional skewness as a function of lagged

skewness.

However, more recent studies argue that time varying conditional skew-

ness is not stable over time and thus cannot be explained by lagged skewness

alone (Boyer et al., 2010). Motivated by the theory proposed by Hong and

Stein (2003) which predicts negative skewness that is more pronounced when

investors disagree more and short selling is restricted, a number of empirical

studies address this question by analyzing the relationship between skew-

ness, short sale constraints and heterogeneous beliefs. The validity of the

theory, however, is answered with conflicting findings. Daouk and Charoen-

rook (2005), Chang et al. (2007) and Hueng and McDonald (2005) have found

either insignificant or positive relationship between short sale restriction, het-

erogeneous beliefs and skewness whereas Chen et al. (2001) and Boyer et al.

(2010) find a negative relationship.

The empirical analyses of skewness mentioned above pay no attention

to the behavior of skewness under different market conditions. This paper

argues that the relationship between short sale restrictions, heterogeneous

beliefs and conditional skewness behaves differently during periods of mar-

ket decline and periods of market growth. Time series models which ignore

this difference are highly likely to be misspecified if sample skewness mea-

sured during the slump periods behaves differently from that in the expansion

periods. Several theoretical and empirical papers motivate our empirical in-

vestigation on the effect of heterogeneous beliefs, short sale restrictions and

market direction on conditional skewness. Section 2 reviews the theoretical

and empirical work that motivate our study. Section 3 presents our condi-

tionals skewness model which helps us to test our idea. Section 4 discusses

our empirical results. Section 5 concludes.
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3.2 Literature Review

A number of theories have been proposed to explain the existence of skewness.

One of the most influential theories of skewness, firstly documented by Black

(1976), attributes the negative relationship between current stock prices and

future volatility to leverage. An increase in financial leverage followed by a

period of price decline increases future volatility and thus introduces nega-

tive skewness while the debt level is fixed. Although the empirical effect of

leverage on volatility has been proved to be statistically significant (Christie,

1982), the effect is not sufficiently large to account for all asymmetries in

stock prices (Schwert, 1989b; Figlewski and Wang, 2000).

Second is the rational bubble theory (Blanchard and Watson, 1983; Diba

and Grossman, 1988). A sharp fall in price followed by a period of sustained

stock price increase contributes to the overall negative skewness in the mar-

ket. The rational bubble theory, however, cannot help us to model skewness.

Just like the bubble theory itself cannot predict when the bubble will burst,

the model tells us nothing about when the distribution of returns will become

more negatively skewed.

Third is the volatility feedback model (French et al., 1987; Pindyck, 1983)

which assumes that both good news and bad news generate uncertainty and,

hence, volatility shocks with respect to future prices. Risk averse investors

will, therefore, require a higher rate of return and consequently a lower cur-

rent price to compensate for a higher risk level regardless of the nature of the

news. This volatility feedback effect strengthens the effect of the negative

impact of bad news but moderates the effect of the positive impact of good

news. As a result, on average, magnitude of the effect of negative events

are larger than that of positive events, contributing to negative skewness in

equity returns.

The above theories are representative-agent-based and assume rationality.

The heterogeneous-agent-based theory proposed by Hong and Stein (2003),

however, suggests that a mild assumption of investor irrationality together

with some institutional frictions may offer us some insights into the abnormal

behavior of daily skewness. They assume that at least some of the investors
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are overconfident and thus believe in their own private signals, which in turn

generates differences of opinion. When differences of opinion are large and

short selling is not allowed, the market price reflects only the valuation of

the optimists since short sale constraints prevent negative information from

being revealed in the market. The hidden information of those aggressive

investors is more likely to flush into the market when prices fall than when

prices rise. Therefore, the negative skewness that we expect as a result of a

price fall is greater when short selling is not allowed.

One implication of this theory is that negative asymmetries are positively

related to the degree of heterogeneous beliefs. Chen et al. (2001) develop a

series of cross sectional analyses in an attempt to test this idea. In their

analysis, they find that higher detrended turnover, a proxy of the degree of

heterogeneous beliefs, can predict more negative skewness of daily returns

measured. Thus, they find evidence to confirm the theory proposed by Hong

and Stein (2003). Through the use of a similar methodology, Boyer et al.

(2010) find similar results by showing that firms which have high turnover

have more negatively skewed returns.

Not all evidence points to the same conclusion. There is empirical ev-

idence against Hong and Stein (2003)’s theory. Charoenrook and Daouk

(2004) find that higher detrended turnover predicts more negative uncondi-

tional skewness in countries where short selling is allowed than in countries

where short selling is not allowed. Chang et al. (2007) find that skewness of

unconditional returns increases when stocks are not allowed to be sold short

and decreases when stocks are allowed to be sold short. Blau and Pinegar

(2009) who approximate short sale constraints by using relative short inter-

est show that there are positive relationships between turnover, relative short

interest and unconditional skewness. Hueng and McDonald (2005) test the

behavior of time-varying conditional skewness by assuming that conditional

returns have a skewed-t distribution which allows for time varying conditional

skewness and kurtosis. They show that a larger variance today is positively

related to contemporaneous skewness in the market level.

None of the above empirical analyses of skewness pay attention to the

possibility that the behavior of skewness may depend on market conditions.
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We believe that a general market decline over time implies a stream of se-

quentially revealed bad news which was previously hidden during market ex-

pansion. Therefore the theory proposed by Hong and Stein (2003) predicts

more pronounced negative skewness during market declines than during ex-

pansions and thus negative asymmetries are more positively related to the

degree of heterogeneous beliefs and short sale restrictions during periods of

general market declines.

The aim of this paper is therefore to look at the effects of short sale

restrictions, heterogeneous beliefs and market direction on time varying con-

ditional skewness. In particular, we would like to see how the relationship be-

tween heterogeneous beliefs, short sale restrictions and conditional skewness

changes under different market conditions. In the next section, we present a

skew normal generalized autoregressive conditional heteroskedasticity model

which help us to test the idea.

3.3 Modelling Time-Varying Conditional Skew-

ness

The Time-varying Conditional Skew-normal GARCH (TVSN-GARCH) model

extends the GARCH model to allow for time varying conditional skewness

by assuming that conditional returns follow a skew normal distribution. To

model conditional skewness, we consider the specification of returns in which

rt = µ+ ut , ut = σtεt

where rt is daily return at day t, µ is the conditional mean, ut is the unex-

pected part of returns which is generally referred to as “news” in the markets.

Since arbitrage forces unexpected returns to have zero mean, we are going

to assume that the innovation term εt is a sequence of independent, identi-

cally distributed random variates from the general skew normal distribution,

SN(κ, τ 2,α). Similarly to Liseo and Loperfido (2006), we assume that the
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location parameter is

κ = −
√

2

π

τ 2α√
1 + α2

and that the scale parameter is

τ 2 =

(
1− 2α2

π(1 + α2)

)−1

such that the innovation term εt has zero mean as required by the arbitrage

free condition and the scale parameter σ2
t is retained to be the conditional

variance of the model. We assume that conditional variance follow either the

GJR-GARCH(1,1) process of Glosten et al. (1993) or the Q-GARCH(1,1)

process of Sentana (1995). According to the GJR-GARCH model, the con-

ditional variance follows an asymmetric GARCH process as follows:

σ2
t = a0 + a1σ

2
t−1 + a2u

2
t−1 + a3u

2
t−1I

+

where I+ = 1 if ut−1 > 0 and I+ = 0 if ut−1 ≤ 0. We expect the coefficient

on the asymmetric term to be negative so that bad news has a larger impact

than good news on the conditional variance of the return. In the Q-GARCH

model1, the variance equation is specified as:

σ2
t = a0 + a1σ

2
t−1 + a2u

2
t−1 + a3ut−1.

Unlike Liseo and Loperfido (2006), we allow the shape parameter α and

thus skewness in the Q-GARCH model to be time varying

αt = b0 + b1αt−1 + b2ε
2
t−1 + b3εt−1 + St.

Note that when b3 > 0, good news has a positive impact whereas bad news

has a negative impact on the skewness of the returns. The use of εt−1 instead

1The principal restriction of this model is that σ2
t should be positive although this

constraint is not explicitly applied in our estimation process as the constraint is not binding
in any part of the sample period.
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of ut−1 in the skewness equation is to prevent conditional variance from hav-

ing an effect on skewness. St represents all relevant skewness factors and can

be defined as follows:

St = c1 ·DTOt + c2 ·DSIt + c3 ·DTOt · '+ c4 ·DSIt · '

+c5 ·DTOt ·DSIt + c6 ·DTOt ·DSIt · '+ c7 · ' .

The model has three main skewness factors. DTOt is detrended turnover,

which is a proxy for heterogeneous beliefs; DSIt is detrended short interest,

which is a proxy of short sale restrictions. (On these uses of proxies, see Miller

(1977), Epps and Epps (1976), Figlewski (1981), Jones and Lamont (2002),

and others.) The third skewness factor is the market direction indicator,

', which is equal to one during periods of general market declines and zero

otherwise. We expect the signs of the coefficients on “DTOt·'” and “DSIt·'”
to be negative since the Hong and Stein (2003) theory predicts that negative

asymmetries are more positively related to the degree of heterogeneous beliefs

and short sale restriction during periods of general market declines. The other

variables are there to control for any interaction effects between the three

variables. We refer to the model which uses the GJR-GARCH conditional

variance as TVSN-GJR-GARCH model and refer the model which uses the

Q-GARCH conditional variance as TVSN-Q-GARCH model.

Estimation has been performed using the “optimize” routine in Mata; the

code is available from the authors on request.

3.4 Empirical Tests

In this paper, we carry out tests of the effects of short sale restrictions,

heterogeneous beliefs, market direction on conditional skewness by exploiting

the unique short-sale restrictions present in the Hong Kong stock market. We

start off with the general background of the Hong Kong borrowing market

followed by a formal description of the data and then we present our empirical

results.
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3.4.1 Short Sales on the Hong Kong Stock Market

In Hong Kong, short selling was prohibited before January 1994. After that,

17 stocks under the pilot program listed on the “Designated Securities Eli-

gible for Short Selling List” could be sold short. In March 1996, the list was

expanded. Since than, the stocks that constitute the list are revised quarterly

and all components of the Hang Seng Index are allowed to be sold short. In

practice, short selling is done through the “Automatic Order Matching and

Execution System” where brokers can identify potential lenders and short

sellers, place trading requests and make short selling transactions. Short

selling data are recorded on a daily basis and daily data from 1999 onward

are available to the public on the Hong Kong Stock Exchange web site under

the “Statistics and Research” section with usually one day delay. Full details

of short selling regulations in Hong Kong can be found in the “Regulated

Short Selling” page on the Hong Kong Stock Exchange web site.

Compared to other markets, the borrowing market in Hong Kong is

more transparent, better regulated, and has a more complete and accessi-

ble database which covers the 12-year period of 1999-2012. Hence the Hong

Kong stock market provides us with a unique opportunity to test the effect

of short sale restrictions, heterogeneous beliefs and market direction on time

varying conditional skewness.

3.4.2 Data

The stocks analyzed in this paper consist of all the components of the Hang

Seng index (HSI). Our data, including short interest, trading volume and

total shares outstanding of individual stocks which constitute the Hang Seng

index over the period 4th Jan, 1999 to 31st May, 2011 were purchased from

the Hong Kong Stock Exchange web site (www.hkex.com.hk). The daily

return series for individual stocks are calculated as ri,t = ln(pi,t)− ln(pi,t−1),

where daily closing prices for individual stocks, pi,t, are obtained from the

Reuters EcoWin Pro database. Figure 17 plots the market returns of the HSI

against time. Market return, turnover and short interest are capitalization-

weighted and consist of all HSI components. Historical changes to the list of
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HSI constituents can be downloaded from the HSI website (www.hsi.com.hk).

The turnover and short interest series are measured in number of shares

traded per day. Following the methodology used by Chen et al. (2001), the
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Figure 17: Return

normal level of heterogeneous beliefs and short sale restrictions in this paper

are approximated by a centered moving average of market turnover and short

interest over a 120-day window where the centered moving average with i-

day window is defined as x̄t,i = 1
2i+1

∑i
j=−i xt+j. Both the turnover and

short interest series are detrended by first taking its natural log and then

subtracting the moving average trends from the logged series. The degree

of heterogeneous beliefs and short sale restrictions are the highest (lowest)

when the level of turnover or short interest has the highest positive (negative)

deviation from the normal levels. We use a centered instead of a backward

moving average since we are interested in detrending, not forecasting. We

also use 5, 20, 250 and 750-day windows to detrend the series since there

is no solid rule to determine the size of the window for a moving average

filter. We refer to the series thus obtained as (respectively) very short-term,

short-term, long-term, and very long-term detrended turnover and detrended

short interest. We label them as DTOi and DSIi, with i equal to 5, 20, 250
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or 750. When we specify no particular value for i, we refer DTO and DSI

as medium term detrended turnover and short interest which are detrended

by a moving average trend indicator with a 120-day window. Figure 18 and

19 plot the medium term detrended turnover and detrended short interest

series against time.

Figure 18: Detrended Turnover
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Figure 19: Detrended Short Interest
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We define four different market direction indicators, namely, the crisis

indicator 'crisis, the yearly market direction indicator 'year, the quarterly
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market direction indicator 'qtr and the weekly market direction indicator

'week. We now look at the crisis indicator. There were two major financial

crises in Hong Kong over the period 1999-2012. Firstly, shortly after recovery

from the financial crisis of 1997-1998, Hong Kong’s economy was hit by the

global economic downturn in 2001 followed by the outbreak of Severe Acute

Respiratory Syndrome (SARS) in 2003. Second is the global financial crisis

that happened in 2008. We define the first crisis period to be 28th March,

2000 to 25th April, 2003 and the second crisis period to be 30th October,

2007 to 9th March, 2009. Figure 20 shows the HSI series along with the

start and end dates of the crises. Since the purpose of the crisis indicator

is to indicate general market declines, we pick up the starting and ending

dates by using ex-post data. Since the crisis indicator is somewhat arbitrary,

we also test other market direction indicators. The yearly market direction

indicator 'year, t is equal to 1 at day t for the year y − 1 if yearly price

difference calculated as Py − Py−1 is negative, where the variable y records

the number of years from the start of 4th Jan, 1999 to 31st May, 2011 and

Py is the last observation of the daily price series at year y. The quarterly

market direction indicator 'qtr, t is equal to 1 at day t for the quarter q − 1

if quarterly price difference calculated as Pq − Pq−1 is negative, where the

variable q records the number of quarters from the start of 4th Jan, 1999

to 31st May, 2011 and Pq is the last observation of the daily price series at

quarter q. The weekly market direction indicator 'week, t is equal to 1 at day

t for week w if weekly price difference calculated as Pw − Pw−1 is negative,

where the variable w records the number of weeks from the start of 4th Jan,

1999 to 31st May, 2011 and Pw is the last observation of the daily price series

at week w. Figure 21, 22 and 23 show the yearly, quarterly and weekly

price difference indicators.
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Figure 20: Hang Seng Index With Starting and Ending Dates For The Crises
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Hang Seng Index Yearly Price Difference

Figure 21: Yearly Price Difference

58



Chapter 3. Modeling Conditional Skewness

−5
00

0
−2

00
0

10
00

40
00

70
00

10
00

0
13

00
0

Q
ua

rte
rly

 P
ric

e 
D

iff
er

en
ce

−2
00

00
−1

00
00

0
10

00
0

20
00

0
30

00
0

H
an

g 
Se

ng
 In

de
x

01jan1998 01jan2000 01jan2002 01jan2004 01jan2006 01jan2008 01jan2010 01jan2012

Hang Seng Index Quarterly Price Difference

Figure 22: Quarterly Price Difference
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Figure 23: Weekly Price Difference

3.4.3 Results

Table 9 shows the estimation results and various specification tests for the

TVSN-GJR-GARCH and TVSN-Q-GARCH models presented in the pre-
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Table 9: TVSN-GJR-GARCH and TVSN-Q-GARCH Estimation Results

TVSN-GJR-GARCH TVSN-Q-GARCH

(1) (2) (3) (4) (5) (6)

Variance Equation
ht−1 0.924716∗∗∗ 0.925830∗∗∗ 0.919784∗∗∗ 0.921695∗∗∗ 0.922646∗∗∗ 0.930184∗∗∗

(0.0075) (0.0072) (0.0076) (0.0075) (0.0071) (0.0068)

u2
t−1 0.093426∗∗∗ 0.093019∗∗∗ 0.095635∗∗∗ 0.067327∗∗∗ 0.066482∗∗∗ 0.062880∗∗∗

(0.0096) (0.0091) (0.0088) (0.0069) (0.0065) (0.0066)

u2
t−1I

+ -0.054642∗∗∗-0.054685∗∗∗-0.050366∗∗∗

(0.0104) (0.0098) (0.0099)

ut−1 -0.000625∗∗∗-0.000644∗∗∗-0.000656∗∗∗

(0.0001) (0.0001) (0.0001)

cons 0.000002∗∗∗ 0.000002∗∗∗ 0.000001∗∗∗ 0.000002∗∗∗ 0.000002∗∗∗ 0.000002∗∗∗

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Skewness Equation
st−1 -0.399160∗∗∗-0.400692∗∗∗-0.460596∗∗∗-0.430430∗∗∗-0.448076∗∗∗-0.328663∗∗∗

(0.1103) (0.1213) (0.1494) (0.1052) (0.1117) (0.1098)

u2
t−1 0.134970∗∗ 0.131701∗∗ 0.043110 0.149620∗∗∗ 0.130374∗∗∗ 0.106321

(0.0580) (0.0537) (0.0504) (0.0551) (0.0492) (0.0719)

ut−1 0.458544∗∗∗ 0.410136∗∗∗ 0.208406∗∗ 0.440773∗∗∗ 0.396245∗∗∗ 0.440645∗∗∗

(0.1297) (0.1194) (0.0945) (0.1250) (0.1121) (0.1021)

cons 0.323589 0.837111∗∗∗ -2.102074∗∗∗0.318898 0.955872∗∗∗ 1.345092∗∗∗

(0.4852) (0.2949) (0.3170) (0.4731) (0.2889) (0.2968)

Skewness Factors
DTO 0.748852 1.457434∗∗∗ 0.758511 -2.606873∗∗∗

(0.5700) (0.3346) (0.5649) (0.3130)

DSI -0.165695 -0.205270 0.390758 -0.705571∗∗∗

(0.3945) (0.1252) (0.4208) (0.1832)

DTO×'Crisis -1.742325∗∗ -1.235309∗∗ -1.936706∗∗∗-1.543076∗∗∗

(0.7447) (0.5073) (0.7376) (0.5372)

DSI×'Crisis -1.815924∗∗∗-1.672560∗∗∗ -2.460995∗∗∗-1.705960∗∗∗

(0.5183) (0.3253) (0.5395) (0.3134)

DTO×DSI -0.098086 -0.792320
(0.7768) (0.8731)

DTO×DSI 1.069672 1.939779
×'Crisis (1.2503) (1.2918)

'Crisis -1.278767∗∗ -1.657665∗∗∗ -1.161699∗∗ -1.563355∗∗∗

(0.5584) (0.4192) (0.5314) (0.4077)

Mean Equation
cons 0.000447 0.000196 0.002260∗∗∗ 0.000358 0.000009 -0.000626∗∗

(0.0003) (0.0003) (0.0003) (0.0003) (0.0004) (0.0003)

N 3061 3061 3061 3061 3061 3061
LL 8844.3516 8842.1595 8825.3523 8844.3096 8842.3898 8828.8507

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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vious section. In the variance equations of both models, all the signs are

consistent with our expectation. Coefficients on the asymmetric terms in

the variance equations are negative and strongly signification at the 1% level

for various specifications, implying that negative shocks tend to cause higher

volatility than positive shocks. This result is consistent with Nelson (1990),

Engle and Ng (1993), Glosten et al. (1993) and other empirical asymmetric

GARCH studies. In the skewness equations of both models, coefficients are

generally significant at the 5% level indicating that conditional skewness is

time varying which is consistent with Harvey and Siddique (1999), Jondeau

and Rockinger (2003), Brooks et al. (2005), Leon et al. (2005) and Lanne and

Saikkonen (2007). The coefficients on ut−1 in the skewness equations of both

models are positive, implying that good news has a positive impact while bad

news has a negative impact on the skewness of the returns. This shows that

our asymmetric terms in the variance equations and skewness equations are

consistent with each other. The asymmetric terms in the variance equations

tell us that the distribution of return is negatively skewed for the estimation

period whereas the asymmetric terms in the skewness equations tell us that

today’s return is more negatively skewed when the market received bad news

yesterday.

We now turn to the skewness factors equation. The coefficients on DTOt ·
'Crisis and DSIt ·'Crisis are negative and strongly significant for various spec-

ifications in both models, indicating that both turnover and market short in-

terest have statistically significant power in predicting conditional skewness

during the two crisis periods. Specifically, during the two crisis periods, neg-

ative conditional skewness is more pronounced when people disagree about

the market more or the short sale constraints are more and more binding.

However, heterogeneous beliefs and short sale restrictions do not seem im-

portant to the determination of market conditional skewness during market

growth since the coefficients on DTO and DSI in our baseline specifications,

specification (1) for the TVSN-GJR-GARCH model and specification (4) for

the TVSN-Q-GARCH model, are not statistically significant. However, this

does not necessarily imply a falsification of the Hong and Stein (2003)’s the-

ory since the theory predicts more pronounced negative skewness when the
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short sale constraint is binding and the differences in opinions are high. Our

results might indicate that the short sale constraint is binding and the differ-

ences in opinions are high enough during the two crisis periods but not during

the periods of market growth. Note that in specification (3) and (6), when

we omit the crisis indicator and its related terms, heterogeneous beliefs and

short sale restrictions have either positive, negative or no impacts on condi-

tional skewness. It may shed light on why the effect of heterogeneous beliefs

and short sale restrictions on skewness has been answered with conflicting

findings.

Second, in table 10 and 11, we estimate the model with different terms

of detrended turnover and detrended short interest. In our model, detrended

turnover and detrended short interest are proxies for the degree of heteroge-

neous beliefs and short sale constraints. We use a centered moving average

over a 120-day window to detrend both series. However, the size of the mov-

ing average window is subject to debate. Therefore, we also use 5, 20, 250

and 750-day moving average windows to detrend the series. Our results are

consistent with various terms of detrended turnover and short interest. Co-

efficients on “DTOi ·'Crisis” and “DSIi ·'Crisis” are negative and significant

except for i equal to 20 in both models. Therefore, we have further evidence

that market turnover and short interst have negative effect on conditional

skewness during the two crisis periods. Coefficients on “DTOi” and “DSIi”

are either positive or insignificant except for i equal to 20 in the TVSN-Q-

GARCH model. This finding is consistent with Hueng and McDonald (2005)

who have found either insignificant or positive relationship between short

sale restriction, heterogeneous beliefs and skewness. Our results, instead

of rejecting the Hong and Stein (2003)’s model or any previous empirical

tests, suggest that the relationship between heterogeneous beliefs, short sale

restrictions and skewness behave differently under different market states.

Third, in table 12, we test the TVSN-GJR-GARCH and TVSN-Q-GARCH

models with different market direction indicators. As mentioned in the previ-

ous section, the crisis indicator is somewhat arbitrary, as a robustness check,

we test also the yearly, quarterly and weekly market direction indicators.

As can be seen form figure 20 and 21, the yearly market indicator spots
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Table 10: TVSN-GJR-GARCH Estimation Results with Different Terms of De-
trended Turnover and Detrended Short Interest

Terms of Detrended Turnover and Detrended Short Interest

Very Short Short Medium Long Very Long
(i=5) (i=20) (i=120) (i=250) (i=750)

Variance Equation
cons 0.000002∗∗∗ 0.000002∗∗∗ 0.000002∗∗∗ 0.000002∗∗∗ 0.000001∗∗∗

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

ht−1 0.924641∗∗∗ 0.928194∗∗∗ 0.924716∗∗∗ 0.925026∗∗∗ 0.923910∗∗∗

(0.0075) (0.0073) (0.0075) (0.0074) (0.0076)

u2
t−1 0.095164∗∗∗ 0.089566∗∗∗ 0.093426∗∗∗ 0.092972∗∗∗ 0.087010∗∗∗

(0.0098) (0.0090) (0.0096) (0.0094) (0.0085)

ut−1 -0.056851∗∗∗-0.051924∗∗∗-0.054642∗∗∗-0.054171∗∗∗-0.044262∗∗∗

(0.0103) (0.0099) (0.0104) (0.0103) (0.0105)

Skewness Equation
cons 0.461767 0.578186 0.323589 0.346870 -1.987924∗∗∗

(0.3837) (0.3692) (0.4852) (0.4839) (0.3161)

st−1 -0.368912∗∗∗-0.383245∗∗∗-0.399160∗∗∗-0.429248∗∗∗-0.460735∗∗∗

(0.0896) (0.0897) (0.1103) (0.1072) (0.1211)

u2
t−1 0.165522∗∗ 0.191689∗∗∗ 0.134970∗∗ 0.142773∗∗∗ 0.084871

(0.0687) (0.0694) (0.0580) (0.0544) (0.0588)

ut−1 0.480123∗∗∗ 0.460506∗∗∗ 0.458544∗∗∗ 0.437505∗∗∗ 0.269005∗∗

(0.1304) (0.1151) (0.1297) (0.1263) (0.1108)

Skewness Factors
DTOi 0.351370 -0.802228 0.748852 0.727349 1.418962∗∗∗

(0.5701) (0.5067) (0.5700) (0.5249) (0.3430)

DSIi 1.089533∗∗ 1.345161∗∗∗ -0.165695 -0.139840 0.220347
(0.5274) (0.4423) (0.3945) (0.3210) (0.1672)

DTOi ×'Crisis -2.057438∗∗ -0.081393 -1.742325∗∗ -1.897282∗∗∗-0.972849∗

(0.8230) (0.7270) (0.7447) (0.7185) (0.5403)

DSIi ×'Crisis -3.712871∗∗∗-3.682146∗∗∗-1.815924∗∗∗-1.938751∗∗∗-1.979838∗∗∗

(0.7906) (0.5703) (0.5183) (0.4471) (0.5155)

DTOi×DSIi -3.370001∗∗ -4.542003∗∗∗-0.098086 0.011697 0.056073
(1.5268) (1.1738) (0.7768) (0.5608) (0.3130)

DTOi×DSIi ×'Crisis 6.840392∗∗∗ 6.711280∗∗∗ 1.069672 1.176087 -0.200208
(2.2309) (1.6373) (1.2503) (1.1277) (0.8631)

'Crisis -1.058154∗∗ -1.628250∗∗∗-1.278767∗∗ -1.160213∗∗ -0.159771
(0.4896) (0.4605) (0.5584) (0.5491) (0.4022)

Mean Equation
cons 0.000289 0.000376 0.000447 0.000416 0.002351∗∗∗

(0.0003) (0.0003) (0.0003) (0.0003) (0.0003)

N 3061 3061 3061 3061 3061
LL 8847.1701 8846.8856 8844.3516 8844.2970 8845.0959

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 11: TVSN-Q-GARCH Estimation Results with Different Terms of Detrended
Turnover and Detrended Short Interest

Terms of Detrended Turnover and Detrended Short Interest

Very Short Short Medium Long Very Long
(i=5) (i=20) (i=120) (i=250) (i=750)

Variance Equation
cons 0.000002∗∗∗ 0.000002∗∗∗ 0.000002∗∗∗ 0.000002∗∗∗ 0.000002∗∗∗

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

ht−1 0.920874∗∗∗ 0.926413∗∗∗ 0.921695∗∗∗ 0.921641∗∗∗ 0.919847∗∗∗

(0.0076) (0.0072) (0.0075) (0.0074) (0.0077)

u2
t−1 0.068125∗∗∗ 0.064648∗∗∗ 0.067327∗∗∗ 0.067391∗∗∗ 0.068674∗∗∗

(0.0070) (0.0067) (0.0069) (0.0069) (0.0070)

ut−1 -0.000662∗∗∗-0.000624∗∗∗-0.000625∗∗∗-0.000623∗∗∗-0.000622∗∗∗

(0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

Skewness Equation
cons 0.481314 1.543825∗∗∗ 0.318898 0.333259 0.218796

(0.3829) (0.3105) (0.4731) (0.4714) (0.4215)

st−1 -0.371087∗∗∗-0.363995∗∗∗-0.430430∗∗∗-0.435419∗∗∗-0.380221∗∗∗

(0.0892) (0.0941) (0.1052) (0.1044) (0.1222)

u2
t−1 0.165315∗∗ 0.187735∗∗∗ 0.149620∗∗∗ 0.157144∗∗∗ 0.176111∗∗∗

(0.0671) (0.0690) (0.0551) (0.0522) (0.0528)

ut−1 0.476801∗∗∗ 0.370677∗∗∗ 0.440773∗∗∗ 0.428017∗∗∗ 0.414066∗∗∗

(0.1289) (0.1056) (0.1250) (0.1231) (0.1210)

Skewness Factors
DTOi 0.419213 -2.671636∗∗∗0.758511 0.700311 0.818530∗

(0.5719) (0.4582) (0.5649) (0.5308) (0.4726)

DSIi 1.068138∗∗ 0.020256 0.390758 0.414690 0.661859
(0.5419) (0.4208) (0.4208) (0.4183) (0.4736)

DTOi ×'Crisis -2.194376∗∗∗1.316030∗ -1.936706∗∗∗-1.953506∗∗∗-1.488445∗∗

(0.8174) (0.6963) (0.7376) (0.7154) (0.6133)

DSIi ×'Crisis -3.615895∗∗∗-2.313101∗∗∗-2.460995∗∗∗-2.511521∗∗∗-2.155910∗∗∗

(0.7922) (0.5357) (0.5395) (0.5312) (0.6408)

DTOi×DSIi -3.191515∗∗ -1.795606 -0.792320 -0.607398 -1.001791
(1.5820) (1.1174) (0.8731) (0.7100) (0.7434)

DTOi×DSIi ×'Crisis 6.357902∗∗∗ 3.646588∗∗ 1.939779 1.801792 0.578859
(2.1972) (1.5243) (1.2918) (1.1919) (1.1992)

'Crisis -1.028812∗∗ -2.198506∗∗∗-1.161699∗∗ -1.098822∗∗ -1.183944∗∗

(0.4850) (0.4015) (0.5314) (0.5273) (0.4995)

Mean Equation
cons 0.000202 -0.000304 0.000358 0.000351 0.000498

(0.0003) (0.0003) (0.0003) (0.0003) (0.0003)

N 3061 3061 3061 3061 3061
LL 8847.0001 8850.6517 8844.3096 8844.2785 8845.5999

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 12: Estimation Results with Different Market Direction Indicators

TVSN-GJR-GARCH TVSN-Q-GARCH

Indicator (') = 'Y ear 'Qtr 'Week 'Y ear 'Qtr 'week

Variance Equation
ht−1 0.921061∗∗∗ 0.920933∗∗∗ 0.918887∗∗∗ 0.924689∗∗∗ 0.924108∗∗∗ 0.921815∗∗∗

(0.0075) (0.0074) (0.0082) (0.0076) (0.0074) (0.0082)

u2
t−1 0.068102∗∗∗ 0.069428∗∗∗ 0.066425∗∗∗ 0.094890∗∗∗ 0.093352∗∗∗ 0.095022∗∗∗

(0.0070) (0.0070) (0.0070) (0.0097) (0.0094) (0.0098)

u2
t−1I

+ -0.000647∗∗∗-0.000588∗∗∗-0.000577∗∗∗

(0.0001) (0.0001) (0.0001)

ut−1 -0.057155∗∗∗-0.050765∗∗∗-0.058381∗∗∗

(0.0106) (0.0108) (0.0103)

cons 0.000002∗∗∗ 0.000002∗∗∗ 0.000002∗∗∗ 0.000002∗∗∗ 0.000002∗∗∗ 0.000001∗∗∗

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Skewness Equation
st−1 -0.395437∗∗∗-0.335266∗∗∗0.180489∗∗∗ -0.393245∗∗∗-0.318248∗∗∗0.188818∗∗∗

(0.1067) (0.0905) (0.0549) (0.1094) (0.0938) (0.0535)

u2
t−1 0.190641∗∗∗ 0.171903∗∗∗ 0.086169 0.185546∗∗∗ 0.167586∗∗∗ 0.086943

(0.0651) (0.0566) (0.0579) (0.0689) (0.0578) (0.0587)

ut−1 0.449871∗∗∗ 0.504000∗∗∗ -0.113099 0.435419∗∗∗ 0.497151∗∗∗ -0.142707
(0.1296) (0.1214) (0.1054) (0.1279) (0.1252) (0.1019)

cons 0.201394 0.398088 1.630147∗∗∗ 0.182494 0.391532 1.634555∗∗∗

(0.4893) (0.4326) (0.1748) (0.4891) (0.4424) (0.1724)

Skewness Factors
DTO 0.914384 0.807952 -0.138865 0.938103 0.797533 -0.164152

(0.5817) (0.5607) (0.3103) (0.5739) (0.5487) (0.3137)

DSI -0.167603 0.265931 -0.430184∗ -0.169346 -0.221363 -0.154579
(0.3310) (0.3445) (0.2305) (0.3174) (0.3217) (0.2012)

DTO×' -2.075701∗∗∗-2.029631∗∗∗-0.852966∗ -2.056578∗∗∗-1.898429∗∗∗-0.917132∗

(0.7184) (0.6706) (0.5149) (0.7188) (0.6612) (0.5335)

DSI×' -1.822093∗∗∗-2.395390∗∗∗0.062384 -1.794744∗∗∗-1.821227∗∗∗-0.244383
(0.4740) (0.4554) (0.4508) (0.4642) (0.4345) (0.4366)

DTO×DSI -0.125198 -0.715096 1.173728 -0.127797 -0.093430 0.478808
(0.6540) (0.7492) (0.9001) (0.6251) (0.6507) (0.7259)

DTO×DSI 1.441900 2.881235∗∗∗ -0.508792 1.437034 2.246968∗∗ 0.326687
×' (1.0968) (1.0884) (1.2879) (1.0996) (1.0026) (1.2084)

' -0.951439∗ -0.766636∗ -3.334832∗∗∗-0.992285∗ -0.864254∗ -3.348793∗∗∗

(0.5381) (0.4539) (0.2619) (0.5457) (0.4693) (0.2599)

Mean Equation
cons 0.000359 0.000268 0.000252 0.000431 0.000355 0.000270

(0.0003) (0.0003) (0.0003) (0.0003) (0.0003) (0.0003)

N 3061 3061 3061 3061 3061 3061
LL 8841.2225 8843.4227 9030.5384 8841.9794 8843.9140 9033.3730

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01 65
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similar turning points in the markets whereas the quarterly market indica-

tor spots more frequent changes in market direction compare with the crisis

indicator. The crisis and yearly indicator help us to test how conditional

skewness responses to general market decline for a relative long period of

time. The quarterly market indicator, which can be seen from figure 22, help

us to test how conditional skewness responses to a more frequent changes

in market direction and the weekly market direction indicator, which can

be seen from figure 23, help us to test how conditional skewness responses

to very short term changes in market direction. The estimation results are

presented in table 12. All coefficients on “DTOi ·'” and “DSIi ·'” are nega-

tive and strongly significant when the yearly and quarterly market indicators

are used. However, we find that market turnover only has mild statistical

power in forecasting conditioanl skewness while market short interest is not

important in the determination of the skewness of market return even during

periods of general market declines when the weekly market direction indi-

cator is used. This may imply that the degree of heterogeneous beliefs and

short sale restrictions in the market has an effect on conditional skewness

when the downward trend in the market persists more than a week. It is

also possible that the weekly market direction indicator that we have used

to obtain the above results may be a noisy proxy for indicating real changes

of market direction.

Finally, in table 13, we test the effect of past returns on conditional skew-

ness by including cumulative return in our model. Both Hong and Stein

(2003) and Hueng and McDonald (2005) find that past returns as far back

as 36 months are negatively related to conditional skewness. Therefore,

following Hong and Stein (2003), we define cumulative return as RETt =
∏τ=750

τ=1 (1 + rt−τ ) − 1 and include it as one of our skewness factors. For

t < 750, we set τ as the number of maximum possible days that we can use.

We drop the first five observations such that our shortest cumulation period

is five days. For each specifications, we estimate the TVSN-GJR-GARCH

and TVSN-Q-GARCH models with RETt as an additional skewness factor

measured in percentage. Unlike Hong and Stein (2003) and Hueng and Mc-

Donald (2005), we find that past returns has no predictive power on condi-
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tional skewness when skewness factors are included. However, when we omit

the skewness factors, the coefficients on cumulative return are negative and

strongly significant. This result is similar to the results shown in Hong and

Stein (2003) and Hueng and McDonald (2005).

3.5 Conclusion

In this chapter, we have analyzed the relationship between short sale restric-

tions, heterogeneous beliefs and conditional skewness by using a skew normal

generalized autoregressive conditional heteroskedasticity model. Unlike pre-

vious studies, our paper considers the relationship under different market

conditions. We show that negative conditional skewness is more pronounced

when people disagree about the market more or the short sale constraints

are more and more binding during general market declines but the effect is

undetermined during periods of market growth. We demonstrated the impor-

tance of market conditions on condition skewness and reconciled conflicting

evidence in recent empirical studies on the relationship between heteroge-

neous beliefs, short sale restrictions and conditional skewness.
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Table 13: Estimation Results With Cumulative Return In the Skewness Equation

TVSN-GJR-GARCH TVSN-Q-GARCH

(1) (2) (3) (4)

Variance Equation
ht−1 0.925946∗∗∗ 0.923723∗∗∗ 0.922395∗∗∗ 0.921480∗∗∗

(0.0075) (0.0076) (0.0075) (0.0073)

u2
t−1 0.090851∗∗∗ 0.098176∗∗∗ 0.066697∗∗∗ 0.068671∗∗∗

(0.0095) (0.0092) (0.0069) (0.0067)

u2
t−1I

+ -0.052000∗∗∗ -0.060109∗∗∗

(0.0103) (0.0094)

ut−1 -0.000601∗∗∗ -0.000659∗∗∗

(0.0001) (0.0001)

cons 0.000002∗∗∗ 0.000002∗∗∗ 0.000002∗∗∗ 0.000002∗∗∗

(0.0000) (0.0000) (0.0000) (0.0000)

Skewness Equation
st−1 -0.449809∗∗∗ 0.193720 -0.455548∗∗∗ 0.241970

(0.1034) (0.1619) (0.1024) (0.1594)

u2
t−1 0.157330∗∗∗ 0.232349∗∗∗ 0.164145∗∗∗ 0.291517∗∗∗

(0.0584) (0.0752) (0.0579) (0.0579)

ut−1 0.407628∗∗∗ 0.545841∗∗∗ 0.422381∗∗∗ 0.462237∗∗∗

(0.1213) (0.1206) (0.1224) (0.1225)

cons 0.247934 -0.075924 0.264295 -0.036921
(0.4766) (0.1867) (0.4743) (0.1529)

Skewness Factors
DTO 0.898929 0.891090

(0.5598) (0.5572)

DSI 0.491968 0.481711
(0.4946) (0.4885)

DTO×'Crisis -2.091444∗∗∗ -2.155092∗∗∗

(0.7377) (0.7311)

DSI×'Crisis -2.573345∗∗∗ -2.551889∗∗∗

(0.6011) (0.6007)

DTO×DSI -0.987776 -0.969622
(0.9728) (0.9595)

DTO×DSI×'Crisis 2.285931∗ 2.236892∗

(1.3760) (1.3503)

'Crisis -0.925596∗ -0.876804∗

(0.5385) (0.5311)

RETt -0.005536 -0.008793∗∗∗ -0.005625 -0.009379∗∗∗

(0.0040) (0.0024) (0.0041) (0.0024)

Mean Equation
cons 0.000495∗ 0.000607∗∗ 0.000416 0.000443

(0.0003) (0.0003) (0.0003) (0.0003)

N 3056 3056 3056 3056
LL 8833.8753 8813.5079 8833.8377 8813.3772

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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3.6 Appendix

The Matlab Simulation Program “mysn sim”

for the centered parameterized Skew-Normal

Model

function [dr kr]=mysn sim(mu,sigma2,gamma,obs,k)

% **************************************************************************

%PURPOSE: 1/ Simulate a time series of SNGARCH(1,1) daily return

% under the assumption that residuals are skew normal distributed

% 2/ Calculate multi period K-day return from daily return

%Remark: if K is specified as 1, daily return = K-day return

%**************************************************************************

%INPUT: mu,sigma2,gamma – SN(mu,sigma2,gamma) parameters

% mu: A constant for the mean equation

% sigma2: A constant for the variance equation

% gamma: A constant for the skewness equation

% obs – number of observation for centered dr

% seed – set seed for normrnd

% K – set the numnber of day for the multi period

% K-day return

% **************************************************************************

% RETURN: centered dr – daily return ; centered kr – K-day return

% **************************************************************************

K = k + 1;

sigma = sqrt(sigma2);

obs = obs+1;

% Transforming CP to DP using the cp2dp function

[eta w alpha] = cp2dp(mu,sigma,gamma);

w2 = wˆ2;

% Creating panel index

if K ∼ = 1
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j = [0;kron((1:(obs/k))’,ones(k,1))];

idk = find((j(2:end)-j(1:end-1))==1);

clear A B j

end % Creating daily and K-day return, centered dr and centered kr

c1 = 1./sqrt(1+((alpha).ˆ2));

c2 = alpha./sqrt(1+((alpha).ˆ2));

z = (c1.*normrnd(0,1,obs,1))+(c2.*abs(normrnd(0,1,obs,1)));

delta = alpha/sqrt(1+((alpha)ˆ2));

ez = sqrt(2/pi)*delta;

sdz = sqrt(1-((sqrt(2/pi)*delta)ˆ2));

% centered skew normal variate

zo = (z-ez)/sdz;

y = exp(mu+(sqrt(sigma2).*zo));

% this is log price. price is log skew normal

p = cumsum(log(y));

dp = [p(2:end);p(end)];

dr = dp-p;

if k ∼=1

kp = [p(K:end);zeros((K-1),1)];

kr1 = kp-p;

kr = kr1(idk,:);

elseif k==1

kr = dr;

end

The Matlab Simulation Program “mysngarch sim”

for the centered parameterized Skew-Normal-

GARCH(1,1) Model

function [dr kr]=mysngarch sim(mu,sigma2,gamma,obs,k)

% **************************************************************************
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%PURPOSE: 1/ Simulate a time series of SNGARCH(1,1) daily return

% under the assumption that residuals are skew normal distributed

% 2/ Calculate multi period K-day return from daily return

%Remark: if K is specified as 1, daily return = K-day return

%**************************************************************************

%INPUT: mu,sigma2,gamma – SN(mu,sigma2,gamma) parameters

% mu: A constant for the mean equation

% sigma2: A constant for the variance equation

% gamma: A constant for the skewness equation

% obs – number of observation for centered dr

% seed – set seed for normrnd

% K – set the numnber of day for the multi period

% K-day return

% **************************************************************************

% RETURN: centered dr – daily return ; centered kr – K-day return

% **************************************************************************

K = k + 1;

sigma = sqrt(sigma2);

obs = obs+1;

% Transforming CP to DP using the cp2dp function

[eta w alpha] = cp2dp(mu,sigma,gamma);

w2 = wˆ2;

% Creating panel index

if K ∼ = 1

j = [0;kron((1:(obs/k))’,ones(k,1))];

idk = find((j(2:end)-j(1:end-1))==1);

clear A B j

end % Creating daily and K-day return, centered dr and centered kr

c1 = 1./sqrt(1+((alpha).ˆ2));

c2 = alpha./sqrt(1+((alpha).ˆ2));

z = (c1.*normrnd(0,1,obs,1))+(c2.*abs(normrnd(0,1,obs,1)));

delta = alpha/sqrt(1+((alpha)ˆ2));

ez = sqrt(2/pi)*delta;
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sdz = sqrt(1-((sqrt(2/pi)*delta)ˆ2));

% centered skew normal variate

zo = (z-ez)/sdz;

sigma2t = zeros(obs,1);

sigma2t(1) = 0.1;

ut2 = zeros(obs,1);

ut2(1) = 0.1;

for j = 2:obs

% conditional variance process

sigma2t(j)= b1 + (b2*ut2(j-1)) + (b3*sigma2t(j-1));

ut2(j) = (sqrt(sigma2t(j))*zo(j))ˆ2 ;

end

y = exp(mu+(sqrt(sigma2).*zo));

% this is log price. price is log skew normal

p = cumsum(log(y));

dp = [p(2:end);p(end)];

dr = dp-p;

if k ∼=1

kp = [p(K:end);zeros((K-1),1)];

kr1 = kp-p;

kr = kr1(idk,:);

elseif k==1

kr = dr;

end
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