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Abstract 

 

The Inhibitor of Wax 1 (Iw1) is a dominant inhibitor of glaucousness, the whitish waxy bloom present 

on the aerial surfaces of a wheat plant: The presence of Iw1 leads to non-glaucousness. In previous 

work a doubled-haploid population segregating for the presence of the Iw1 locus was created. The 

non-glaucous doubled-haploid lines of this population showed increases in yield and green-canopy 

duration under UK conditions compared to their glaucous counterparts by on average 4.15% and 1.5 

days, respectively. 

 

The aim of this study was to identify Iw1 via a positional cloning approach and to characterize its 

effects on yield and green-canopy duration in a field-grown set of glaucous and non-glaucous Near 

Isogenic Lines (NILs). In addition a number of physiological experiments were carried out on these 

NILs to determine the effects of non-glaucousness on light reflectance and transmission as well as on 

water-use efficiency (WUE). Finally, the composition of surface waxes in glaucous and non-glaucous 

NILs was elucidated using a combination of electron microscopy and biochemical methods. 

 

Here, we have fine-mapped Iw1 to a 0.42-cM interval on the short arm of chromosome 2B and we 

have constructed a physical map, which is currently 1,200 kb in size. Gene models were predicted in 

silico and we have begun to test candidate genes using allelic diversity and expression analysis. The 

results of our physiological experiments clearly show a reduction in light reflectance and a possible 

increase in light transmission through the canopy leaves in non-glaucous NILs. We could not detect a 

negative effect on WUE in field-grown NILs nor did we identify significant increases in yield. A 

consistent extension in green-canopy duration was associated with the Iw1 region, although not 

significant in all years. Our analysis of the composition of surface waxes has shown that only a 

discrete type of wax, the β–diketone aliphatics, is being inhibited by Iw1. 
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General Introduction 

 

Origin of wheat 

The invention of agriculture marks one of the biggest turning points in the history of mankind. 

Approximately 10,000 years ago humans started to cultivate cereals for their seeds, thus changing 

their lifestyle from that of hunter-gatherers to sedentary farmers. Einkorn wheat (Triticum 

monococcum, genomes AmAm) and barley (Hordeum vulgare, genomes HH) were the first cereals to 

be domesticated (Nesbitt and Samuel 1996) in southeastern Turkey (Heun et al. 1997) and northern 

Israel, respectively (Badr et al. 2000). 

 

The cultivation of tetraploid emmer wheat (Triticum turgidum ssp. dicoccon, tetraploid, genomes 

AABB) from wild emmer wheat (Triticum turgidum ssp. dicoccoides, genomes AABB) (Luo et al. 2007) 

marked a significant advance in wheat agriculture. Wild emmer wheat was formed via the 

hybridization of two diploid grasses; the A-genome was donated from Triticum urartu (genomes 

AuAu), while the B-genome donor is an unknown member of the Sitopsis section closely related to 

Aegilops speltoides (genomes SS) (Feldman et al. 1995, Huang et al. 2002). The tetraploid emmer 

wheat proved to be more vigorous, high-yielding and more adaptable than its diploid progenitors and 

was the source for many subspecies that spread around the world and were cultivated for thousands 

of years. One of these subspecies, Triticum turgidum ssp. durum (genomes AABB) gave rise to our 

modern day pasta wheat cultivars Triticum durum (genomes AABB) (Feldman 2001, Gepts 2003). 

 

The second major step in wheat agriculture occurred ~10,000 years ago when emmer wheat spread 

northeast towards the Caspian Sea where it hybridized with Aegilops tauschii (genomes DD) (Dvorak 

et al. 1998) to form hexaploid common wheat (Triticum aestivum, genomes AABBDD) (Kihara 1944), 

from which modern bread wheat (Triticum aestivum ssp. aestivum) cultivars are derived. As was with 

emmer wheat, hexaploid bread wheat was superior in terms of viability, yield and adaptability to its 

progenitor species. The addition of the D-genome also modified the end use characteristics of wheat 

by the introduction of genes controlling endosperm texture (Pina and Pinb) (Feldman et al. 1995). 

This increased bread making quality of hexaploid wheat compared to the very hard endosperm of T. 

durum (Morris 2002). 

 

Different grades of grain hardness were subsequently selected for by farmers in addition to many 

other traits before and afterwards, all of which led to a clear differentiation between the cultivated 

forms of wheat and their wild ancestors, also referred to as the domestication syndrome (Hammer 

1984). The key domestication event for wheat, barley and other cereals was the reduction of spike-
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shattering, which facilitated grain harvest and prevented spikelets (and thus grains) to be scattered 

by the wind, rain and/or animals. In wheat, this trait was shown to be controlled by the brittle rachis 

(Br) loci on chromosomes 3A and 3B (Nalam et al. 2006). Other domestication traits in wheat include 

the change from hulled wheat to free-threshing wheat by softening of the glumes holding the grain, 

which reduced the amount of labour required to separate the grain from the spikelets. This trait is 

predominantly affected by the tenacious glume (Tg) locus on chromosome 2D and to a lesser extent 

by the Q gene on chromosome 5A (Jantasuriyarat et al. 2004). In addition, the Q gene, which encodes 

an AP2-like transcription factor, pleiotropically affects other domestication traits like rachis fragility, 

spike length or the square spike phenotype (Simons et al. 2006). Interestingly, the mutation that 

caused the Q-allele is identical between free-threshing tetra- and hexaploid wheat, indicating that it 

arose only once (Simons et al. 2006). Other domestication traits involve an increase in seed size, a 

reduction in tiller number and a more erect growth habit. Increases in seed and spike sizes in wheat 

over the past millennia have greatly boosted yields but at the cost of a higher risk of lodging. The 

introduction of semi-dwarfing genes from Japanese cultivars, also called the ‘Green Revolution 

Genes’, reduced the height of wheat plants, which increased the Harvest Index (the ratio of grain 

yield to the aboveground tissue at maturity (Huehn 1993)) and also allowed the application of higher 

amounts of nitrogen fertilizer to the crop without the risk of lodging, thus greatly boosting wheat 

yields around the globe (Hedden 2003, Borojevic and Borojevic 2005). 

 

 

World Production  

Wheat is a major provider of the calories and protein consumed worldwide, having supplied as many 

calories (kcal/capita/day) and one and a half times as much protein (g/capita/day) as rice in 2009 

(FAOSTAT, Figure 1). But wheat production, and food production in general, need to rise by as much 

as 70% in the next 40 years, as the world population is predicted to increase from currently seven 

billion to nine billion by the year 2050 (FAO 2009). In order to meet these demands the annual 

increase in wheat yield needs to rise from currently <1% to approximately 1.7% (Initiative 2013). A 

second Green Revolution is needed to solve these problems. 
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Figure 1: Calories and protein provided worldwide by rice, maize and wheat 

These graphs display the amount of calories and protein provided worldwide by rice, maize and 

wheat in 2009. (A) Wheat supplies as many calories per capita per day as rice and five times as many 

as maize. (B) Wheat supplies one-and-a-half times more protein per capita per day as rice and five 

times as much as maize. 

 

 

Domestication and the use of wild progenitor and alien species 

Domestication relies on selecting individuals with desirable traits. This, however, creates diversity 

bottlenecks and reduces the genetic variability of cultivated plants in comparison to their wild 

ancestors (Tanksley and McCouch 1997, Buckler et al. 2001). Wheat breeding has mostly relied on 

developing new allele combinations within the pool of domesticated germplasm to achieve increases 

in production. But in order to meet the food security challenges of the future, new and useful alleles 

need to be identified so they can be deployed in adapted germplasm, just like Norman Borlaug did 

~60 years ago. 

 

There are several possible sources to introduce new alleles into elite wheat germplasm. Over the last 

millennia farmers have grown and selected wheat varieties that performed best in their fields, thus 

creating genetically diverse and dynamic populations adapted to specific environments. These 

landraces have been largely abandoned by farmers in the developed world with the advent of high-

yielding wheat varieties and the adoption of high input wheat farming systems. However, landraces 

represent a vast resource of new allelic variation that can be easily transferred into modern varieties 

(Dreisigacker et al. 2005, Ghimire et al. 2005, Zhang et al. 2006, Wingen et al. 2012). 
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New genetic variation can also be found in the birthplace of agriculture. Modern wheat is the result 

of allopolyploidisation of a few wild and cultivated individuals, which comprises only part of the 

genetic diversity that is present in the wild populations. A nucleotide diversity analysis of 21 genetic 

loci revealed an estimated loss of diversity of ~75% for T. durum, ~55% for the A- and B- genome of T. 

aestivum and a staggering ~90% for the D-genome of T. aestivum (Haudry et al. 2007). This highlights 

the possibilities offered by wild ancestral species, especially for the wheat D-genome. This was 

realized by scientists at CIMMYT and at NIAB, where Aegilops tauschii accessions were crossed to a 

wide selection of tetraploid wheat lines to recreate the formation of hexaploid wheat, thus creating 

so-called synthetic wheat. These synthetics lack a good agronomic phenotype, but they can be 

incorporated into pre-breeding programs to boost diversity and create new allele combinations. The 

CIMMYT synthetics have been used successfully in Chinese breeding programs, increasing kernel size 

and spike weight and providing new resistance alleles against stripe rust (CIMMYT 2004). 

 

Alternatively, wild wheat progenitors can be crossed directly to modern hexaploid wheat. This 

method has been used successfully in the past to introduce new traits like increased photosynthetic 

activity (Carver et al. 1989), an increased grain protein content (Gerechter-Amitai and Stubbs 1970), 

an increased kernel weight (Kushnir and Halloran 1984) or increased disease resistance against leaf 

rust (Nevo et al. 1986, Fahima et al. 1998), stem rust (Nevo et al. 1991) and powdery mildew (Nevo 

et al. 1985) from wild emmer wheat into modern varieties. 

 

Alien grass species can also be used to introduce new traits into wheat, but this requires the use of 

mutant wheat line. The Ph1 locus is located on wheat chromosome 5B and prevents the pairing and 

thus recombination of non-homologous chromosomes (Griffiths et al. 2006). Thus, ph1 mutant wheat 

lines are needed to introgress desirable traits from alien grass species such as the Lr19 disease 

resistance gene from Lophopyrum ponticum (Zhang et al. 2005). However, these crosses often form a 

low frequency of chromosome pairing which can cause deleterious characters to be transferred 

together with the desired genes (Islam and Shepherd 1991). These deleterious chromosome 

segments, the so-called linkage drag, often require many back-crossing steps to be completely 

broken up. Molecular markers can help to monitor this process though (Fedak 1999). 

 

 

Mapping desirable traits in polyploid wheat 

Genetic maps are essential in identifying regions in the genome that contribute towards specific, 

desirable phenotypic features, like early/late flowering, plant height or yield: These genomic regions 

are called quantitative trait loci (QTL). There are also less complex phenotypic features that are 
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controlled by single genetic loci, like major disease resistance loci. DNA markers are used to map 

genetic loci to certain intervals. Genetic maps have been also used in marker-assisted selection for 

breeding, the development of comparative maps as well as high resolution screening and map-based 

cloning. Approximately 80 interactive genetic maps are available on the GrainGenes website, but 

research groups around the world have likely produced hundreds of genetic maps in wheat so far, 

using a variety of different markers. 

 

Early genetic maps have been based on restriction fragment length polymorphisms (RFLPs)(Chao et 

al. 1989, Devos et al. 1992). The advent of PCR-based markers like random amplified polymorphic 

DNAs (RAPDs)(Williams et al. 1990, Devos and Gale 1992) or amplified fragment length 

polymorphisms (AFLPs)(Vos et al. 1995), but especially of simple sequence repeats (SSRs)(Röder et al. 

1998, Gupta et al. 2002) revolutionized the speed at which genetic maps were created and also their 

accuracy. Over the last decade single nucleotide polymorphisms (SNPs) were described as a new 

source for markers (Gupta et al. 2001, Rostoks et al. 2005). These SNP based maps can be easily 

compared between different varieties as the SNPs are usually discovered in genic sequence, although 

their bi-allelic nature makes them less-informative than SSR. Combined with new low-cost high-

throughput genotyping systems (KASPar) the creation of high-density genetic maps takes only a few 

weeks. 

 

 

Synteny between grass species 

Grass species have diverged over a period of 60 million years from a common ancestor via multiple 

chromosome rearrangements, chromosome deletions and whole genome duplications (WGD) (Gale 

and Devos 1998). As a result grass genomes differ in haploid chromosome number from for example 

five chromosomes in Brachypodium distachyon to twelve chromosomes in Oryza sativa. Likewise, the 

genome size can range from for example 270 Mb in Brachypodium distachyon to 5,000 Mb in the 

various Triticeae genomes (Salse et al. 2009). Despite these differences the gene content and order 

among the grass species has remained remarkably conserved (Moore et al. 1995); this concept is 

referred to as synteny (Bennetzen and Freeling 1997). 

 

This conservation can be used for comparative genomics between cereal or grass species; with the 

switch to SNP based genetic maps, these comparisons have become a lot simpler and more powerful. 

The comparison between genomes can help to enhance the map-density in specific regions for map-

based cloning approaches (Kilian et al. 1997) and it also allows the establishment of genetic maps in 

less well studied species (Van Deynze et al. 1998), as for example sugarcane (Asnaghi et al. 2000). 
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Map-based cloning in polyploid wheat 

The polyploid wheat genome represents a challenge for any map-based cloning approaches due to its 

vast size (~5 Gb per genome), closely related genomes (~95% similar in genic regions) and high 

content of transposable elements (TEs, ~80%); despite these challenges genes have been successfully 

cloned in wheat. Map-based cloning rests on the creation of a physical map of the genetic region of 

interest. While this is a slow process compared to the candidate gene approach (Pflieger et al. 2001) 

it is also an unbiased method in that no assumptions about the locus of interest are made prior to its 

identification. Thus, the approach is very much in keeping with the scientific method. 

 

A map-based cloning approach can be divided into three steps. The first step is the genetic mapping 

of the locus of interest. Most successful cloning projects have screened a large number of gametes 

(>5,000) for recombinants to obtain a small genetic map interval (Yan et al. 2003, Uauy et al. 2006) 

although this is not always necessary (~1,000 gametes screened in (Faris et al. 2003, Huang et al. 

2003)). 

 

The second step is the creation of a physical map, which is dependent on the genetic mapping phase. 

In general, the more gametes that have been screened, the smaller the genetic interval becomes and 

the smaller effort that is needed to create the physical map. This step requires the creation of a 

genomic library, usually either bacterial artificial chromosome (BAC) or yeast artificial chromosome 

(YAC) libraries. These libraries are used to create a physical contig of the genetic interval, which can 

vary in size from 0.36 Mb/cM (Faris et al. 2003) to more than 13 Mb/cM (Yan et al. 2003). 

 

The third step is the identification and validation of candidate genes inside the physical map. Usually 

a mix of several methods, like allelic diversity, expression analysis and mutant analysis are used to 

validate candidate genes, as no one single method guarantees success. Genetic complementation is 

another effective method to test candidate genes and is often used for single effect loci like 

resistance genes (Huang et al. 2003). 

 

 

Current publicly available genomic resources 

Over the last few years the number of genomic resources available to wheat geneticists has 

increased dramatically. Although wheat is still lacking a complete and fully assembled genomic 

sequence, individual wheat chromosome arms have been separated by flow-cytometry (Vrána et al. 

2000) and sequenced individually to create a chromosome arm specific genomic sequence database 

(International Wheat Genome Sequencing Consortium 2011). The sequences have been assembled 
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into contigs of varying size and researchers can perform BLASTN queries to obtain genome- and 

chromosome arm-specific sequence. This tool was used extensively in the present study for marker 

design and for the physical mapping stage of the positional cloning approach. 

 

Recently more than 100,000 SNPs in hexaploid wheat were detected using the NimbleGen Capture 

Array, 10-20% of which are estimated to be co-dominant based on the experimental validation of a 

subset of the SNPs (Allen et al. 2011, Winfield et al. 2012, Allen et al. 2013). The presence of SNPs has 

been studied in 169 wheat varieties, enabling researchers to design variety-specific markers or use a 

set of existing genome- and variety-specific KASPar markers. All this information is integrated in a 

freely accessible database (Wilkinson et al. 2012). This resource is extremely helpful for map-based 

cloning projects as it offers a set of high-density markers as well as information on the level of 

polymorphism between wheat varieties. 

 

The transcriptome of diploid and tetraploid wheat was recently sequenced (Krasileva et al. 2013). 

This data can be used as a reference in RNA-seq studies, replacing the incomplete and collated wheat 

UniGene list, but also as a reference for proteomics studies in wheat, as the predicted open reading 

frames (ORFs) have been translated and functionally annotated. We have used this data in the 

present study as a reference for a RNA-seq experiment to assign reads to the different wheat 

homoeologous. 

 

Targeting induced local lesions in genomes (TILLING) populations of tetraploid and hexaploid wheat 

have been generated using EMS-mediated mutagenesis (Uauy et al. 2009). This reverse genetics 

platform allows wheat researchers to easily obtain mutant lines for their studies. The power of a 

mutant collection for the identification of new genetic alleles and to perform functional genetics in 

wheat cannot be overstated. 

 

These new resources represent a tremendous step forward in wheat genetics and will undoubtedly 

prove to be invaluable tools for the isolation, validation and characterization of genes and gene 

networks in the future. 
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Project background 

Glaucousness is the production of a waxy bloom on the aerial surfaces of a plant, which gives plants a 

whitish appearance. There is little variation in terms of glaucousness in modern UK varieties, 

although some Recommended List varieties differ in their relative visual glaucousness. In addition, 

some varieties, including Shamrock and derivatives (Gulliver and Crusoe) have a bright green 

appearance because of a complete lack of this waxy bloom. Shamrock was derived from a cross 

between a Triticum turgidum ssp. dicoccoides (wild emmer wheat) derivative and a UK breeding line 

(CWW 4899/25—Moulin x Monopol). A recent study has examined the performance of a doubled-

haploid (DH) population made between the glaucous cultivar Shango and the non-glaucous cultivar 

Shamrock in several locations over consecutive years in the field (Simmonds et al. 2008). The study 

concluded that the non-glaucous DH lines outperformed their glaucous counterparts in yield on 

average by 4.15% over a three year trial period. Likewise, the green-canopy duration of the non-

glaucous DH lines was extended by 1.5 days compared to their glaucous siblings. The non-glaucous 

phenotype, the increase in yield as well as the increase in green-canopy duration were mapped to 

the T. dicoccoides introgression on the distal end of the short arm of chromosome 2B. The non-

glaucous phenotype was attributed to a single locus named Viridescence (Vir), but it was unclear 

whether the increases in yield and green-canopy duration were pleiotropic effects of Vir or not 

(Simmonds et al. 2008). 

 

We hypothesize that Vir is identical to the dominant inhibitor of glaucousness Inhibitor of Wax 1 

(Iw1). The aim of the present study was to identify Iw1 via positional cloning and validate it. The 

effects of Iw1 on yield and green-canopy duration were to be tested in a set of Near Isogenic Lines 

(NILs) in the field. In addition, several physiological parameters like light reflectance, light 

transmission and water-use efficiency were to be measured in these NILs as well. Furthermore, the 

effect of Iw1 on the composition of surface waxes was to be elucidated using a combination of 

microscopy and biochemical techniques. 
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Chapter 1 The effects of Iw1 on cuticular wax layer composition and other 

plant physiological properties 

 

Introduction 

Plants have evolved in an aquatic environment and needed to adapt their morphology before being 

able to succeed in a terrestrial environment. One of the key adaptations of plants that colonized dry 

land is the cuticle, which forms a thin and continuous membrane around the outer surface of aerial 

plant organs (Edwards et al. 1998). It consists of a polymer matrix (cutin), polysaccharides, as well as  

monomeric, and thus solvent-soluble, lipids (cuticular waxes)(Holloway 1982, Jeffree 1996). While 

cutin mainly consists of short C16 and C18 fatty acids (Heredia 2003) the cuticular wax is a complex 

mixture of C20 to C60 aliphatics including secondary metabolites such as flavonoids, triterpenoids and 

phenylpropanoids (Jetter et al. 2007). 

 

Cuticular waxes are present throughout the entire width of the cuticle (Jeffree 1996) and can be 

divided into two classes based on their position in the cuticle. Intracuticular waxes are interspersed 

within the cutin polymer matrix while epicuticular waxes are present on the outer surface of the 

cutin matrix. Intracuticular waxes, and the cuticle itself, have been associated with preventing non-

stomatal water loss, thus forming a key adaption of land-living plants (Edwards et al. 1982, Kerstiens 

1996), while no counterpart of cutin is known in algae (Gray and Boucot 1977). 

 

The epicuticular wax layer has been shown to have profound effects on the interaction of a plant 

with its environment. Depending on its composition it influences plant-insect interactions (Ni et al. 

1998, Morris et al. 2000, Cervantes et al. 2002), the germination and appressorium formation of 

biotrophic fungi like powdery mildew (Hegde and Kolattukudy 1997, Tsuba et al. 2002) or the 

reflection of solar radiation by forming a waxy bloom on the plant surface (Johnson et al. 1983). This 

waxy bloom is also referred to as glaucousness and it gives plants a whitish or bluish appearance (see 

Figure 1.1). 

 

Glaucousness causes a whitish or bluish appearance of plant surfaces. Most UK and European wheat 

varieties are glaucous like the plot on the right in Figure 1.1, while non-glaucous plants appear green 

like the left plot in Figure 1.1. 

The epicuticular wax layer can vary in composition and quantity of individual compounds not only 

between individual plants, but also between plant organs and developmental stages. In wheat and 

barley, glaucousness first becomes visible to the naked eye during stem elongation when the flag leaf 

starts to emerge. In contrast, maize leaves are glaucous at the juvenile stage, but after the switch to 
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the reproductive stage new leaves are glossy or non-glaucous. In various plant species, like wheat, 

barley, eucalyptus and blue tussock, glaucousness was suggested to be the result of the presence of 

β-diketones in the epicuticular wax (Hall et al. 1965, Barber and Netting 1968, von Wettstein-

Knowles 1972). 

 

 

Figure 1.1: Field plots of wheat exhibiting non-glaucous (front left) and glaucous (front right) 

phenotypes. 

 

The lipid components of the epicuticular wax layer, including β-diketones, have several basic steps in 

their biosynthetic pathway in common. Fatty acid synthase (FAS) multienzyme complexes located in 

the plastids form carbon chains by adding activated units of malonyl-CoA to a carbon acceptor, 

initially C2. Through reiteration of this process, fatty acids of chain length C16 or longer are formed 

(von Wettstein-Knowles 1976, Lodwig et al. 2005). These precursor molecules are then exported, by 

an unknown mechanism, from the plastids into the endoplasmic reticulum (ER), where they become, 

targets for fatty acid elongase (FAE) multienzyme complexes or Type III polyketide synthases (KCSs). 

The first complex produces very long chain acyl-CoAs, predominantly C30, which can be further 

modified to become alkanes, aldehydes, esters, ketones, primary or secondary alcohols (see Figure 

1.2A) (Von Wettstein-Knowles 1974). The latter complex elongates the fatty acid primers from both 

the FAS and FAE pathway, but takes ‘shortcuts’ in doing so, i.e. keto- and hydroxy-groups, as well as 

double bonds, are retained during elongation. The resulting carbon chains act as precursors for a 

three-branch pathway, which either leads to alkylresorcinols, alkan-2-ols and alkan-2-ol-esters, or to 

β- and hydroxy-β-diketones (see Figure 1.2B) (Von Wettstein-Knowles 1974). 
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Figure 1.2: Biosynthetic pathways of lipid components in plants 

Acyl chains from the FAS pathway get exported to the ER where they become targets for various 
types of FAE complexes. The classic pathway (A) is common to all plant species, whereas the β- and 
hydroxy-β-diketone pathway depicted in panel B is not present in all plant species. Figures taken 
from von Wettstein-Knowles (2012). 
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The components of the epicuticular wax layer are produced in the epidermal cell layer only. After 

completion of synthesis, the wax compounds are delivered to the plasma membrane (PM), although 

there is little evidence on how this is accomplished; transfer at the site of contact between the ER 

and the PM as well as vesicle mediated trafficking have been proposed, but none has been yet 

conclusively proven (Figure 1.3) (von Wettstein-Knowles 2012). Once the wax compounds have 

reached the PM, they are exported to the cuticle, probably via a number of transport proteins 

including ABC transporters (Kunst and Samuels 2009), although again it is not clear how exactly the 

wax molecules are transported through the cell wall onto the cuticle. The current hypothesis is that 

Lipid Transfer Proteins (LTPs), which are small proteins with hydrophobic pockets that bind long-

chain fatty acids, are responsible for the transport of the wax molecules onto the cuticle (Samuels et 

al. 2008). However, this has not been conclusively proven yet. Once upon the cuticle the wax 

compounds self-assemble into wax crystals(Koch and Ensikat 2008). 

 

 

Figure 1.3: Transport of lipid compounds from the cell onto the cuticle 

After synthesis in the endoplasmic reticulum the lipid compounds are transported to the plasma 

membrane. From there, they are thought to be exported from the cells via ABC transport proteins 

and further transported through the cell wall onto the cuticle surface by LTPs. Figure taken from 

(Samuels et al. 2008). 
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Analyses of leaf surfaces using electron microscopy have associated rod-like crystals with 

glaucousness and platelet shaped crystals with non-glaucousness (Hall et al. 1965, Barber and 

Netting 1968). This suggests that the rod-like tubes contain β-diketones, while the platelet shaped 

crystals probably are mainly made up of primary alcohols (Netting and Wettstein-Knowles 1973). 

 

Glaucousness is thought to be an adaption to water-limited environments, hence many studies have 

tried to understand the relationship between glaucousness and drought stress or radiation intensity 

(Chatterton et al. 1975, Reicosky and Hanover 1978, Johnson et al. 1983, Richards 1984, Blum 1988, 

Febrero et al. 1998, Merah et al. 2000, Monneveux et al. 2004). Most of the above-mentioned 

studies on abiotic interactions agree that glaucousness increases the reflectance of solar radiation 

and that glaucous leaves are cooler than non-glaucous ones, but they also show that the 

transpiration efficiency (net photosynthesis to transpiration ratio) is lower in glaucous plants. An 

increased yield was reported in glaucous wheat, durum wheat and barley lines compared to their 

non-glaucous counterparts in a Mediterranean climate (Chatterton et al. 1975, Johnson et al. 1983, 

Richards et al. 1986, Merah et al. 2000, Monneveux et al. 2004). 

 

All of these studies have been performed under Mediterranean conditions and for some of these 

studies the yield was evaluated in the glasshouse (Richards et al. 1986), gas exchange and cuticular 

conductance were unchanged or higher in non-glaucous lines (Johnson et al. 1983, Febrero et al. 

1998, Merah et al. 2000) and glaucousness did not seem to have an effect in a well-watered or 

extremely dry environments (Johnson et al. 1983, Febrero et al. 1998). Also the relationship between 

glaucousness and cuticular wax load was inconsistent (Johnson et al. 1983, Febrero et al. 1998). 

 

In contrast a study performed in the UK at several locations over consecutive years using a UK 

adapted doubled haploid (DH) population has shown an increase in yield (~4.15% on average) in non-

glaucous lines over their glaucous counterparts, as well as a delay in senescence, thus extending the 

green canopy duration of the non-glaucous material by ~1.5 days (Simmonds et al. 2008). This 

suggests that non-glaucousness might be a beneficial trait in a UK environment, which has more 

rainfall and less sunshine than Mediterranean environments. 

 

However, the molecular mechanism underlying the non-glaucous phenotype, what type(s) of 

compound(s) are being affected by Iw1, and its effects across developmental stages remain 

unknown. Based on previous studies (Hall et al. 1965, Barber and Netting 1968, Netting and 

Wettstein-Knowles 1973, Johnson et al. 1983), where non-glaucous plants were shown to have 

waxes on their surfaces we hypothesise that Iw1 abolishes the rod-like tubes found on plant surfaces, 
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but that at least some other wax compounds remain largely unaffected. We further hypothesise that 

the non-glaucous lines of the DH population have an increased yield because they (i) reflect less light 

than their glaucous counterparts, thus using the “sparse” solar radiation to its full potential and (ii) 

senesce later and thus increase the grain filling period, allowing them to channel more nutrients to 

the grain. Alternatively, other factors (genes) linked to the non-glaucous trait affect yield positively 

either by themselves or in combination with the reflectance and senescence effects. 

 

The present chapter aims to test the hypotheses regarding the effects of Iw1 on epicuticular wax 

composition and its effects on physiological properties (cuticular conductance, reflectance, water use 

efficiency) as well as yield and grain-filling period. 
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1.1 Materials and Methods 

1.1.1 Plant material 

Shamrock is a non-glaucous hexaploid UK winter wheat variety that originates from a cross between 

a hexaploid breeding line (CWW 4899/25—Moulin x Monopol) and a tetraploid Triticum turgidum 

ssp. dicoccoides (TTD) accession (Comp Tig 323-1-3 M). It was shown that the non-glaucous trait 

originates from the TTD introgression (Simmonds et al. 2008). Shango is a hexaploid UK winter wheat 

variety that has a strong glaucous phenotype. A doubled-haploid (DH) population of the cross Shango 

x Shamrock (87 lines) has been described before (Simmonds et al. 2008). Here we focus on four of 

these DH lines: DH21 and DH119 are glaucous lines while DH81 and DH93 are non-glaucous lines. The 

non-glaucous phenotype of the DH population was mapped between SSR marker  Xgwm614 and 

DArT marker wPt-4453 (Simmonds et al. 2008). 

 

To study the effects of Iw1 in UK adapted germplasm six glaucous hexaploid UK varieties (Alchemy, 

Einstein, Hereward, Malacca, Robigus, Xi19) were crossed to a non-glaucous Shango x Shamrock DH 

line (consists to ~70% of alleles from Shango). Plants heterozygous across the Iw1 interval were 

selected at each generation and backcrossed to the respective recurrent parent. After the second 

backcross, plants were self-pollinated and homozygous BC2F2 near isogenic lines (NILs) were selected. 

Four streams of NILs were generated and used for field experiments, but only one stream from each 

variety (the streams did not differ in phenotype) was used for the bulk of experiments in this chapter 

(AS4, ES1, HS2a, MS1, RS1, XS1). The nomenclature for the NILs is based on their parents: AS4 is 

stream 4 derived from a cross between Alchemy x Shamrock-like (AS); ES1 is stream 1 derived from a 

cross between Einstein x Shamrock-like (ES), etc. The BC2 material was bulked up in Hege-90 plots 

(H90; 1 m2) in the field in 2009/2010, giving us enough seed to be used for Hege-80 yield plots (H80; 

6 m2) at Church Farm (Bawburgh, Norfolk) and at several locations of the breeding companies 

Limagrain and RAGT (Materials and Methods 1.1.15). Two further backcrosses were performed in 

parallel and the resulting lines were self-pollinated to yield homozygous BC4F2 NILs. These were 

bulked up in the field in H90 plots in 2011/2012 and used in H80 yield plots in 2012/2013. 

 

1.1.2 Scanning electron microscopy (SEM) 

Flag leaf blades and the exposed part of peduncles of Shango, Shamrock, and the six pairs of Iw1 

BC2F3 isogenic lines were sampled from the 2009-2010 field grown plants in July 2010 9 days after 

anthesis (visible wax deposition in glaucous recurrent parents). The collected plant material was 

quickly dissected by hand and samples were stuck to the aluminium SEM stub using O.C.T. compound 

(BDH Laboratory Supplies, Poole, England). The stub was then immediately plunged into liquid 

nitrogen slush at approximately -210°C to cryo-preserve the material. The sample was transferred, 
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onto the cryostage of a CT1500HF cryo-transfer system (Gatan, Oxford, England) attached to a Philips 

XL30 FEG scanning electron microscope (FEI, Eindhoven, The Netherlands). Sublimation of surface 

frost was performed at -95°C for three minutes before sputter coating the sample with platinum for 

135 sec at 10 mA, at colder than -110°C. After sputter-coating, the sample was moved onto the cryo-

stage in the main chamber of the microscope, held at approximately -140°C. The sample was viewed 

at 3 kV with the secondary electron detector and digital TIFF files were stored. 

 

1.1.3 Freeze fractionation of SEM samples 

Samples of two to three millimeter in height were fixed in horizontal orientation on an aluminum 

stub using O.C.T. compound (BDH Laboratory Supplies, Poole, England). The stub was then 

immediately plunged into liquid nitrogen slush at approximately -210°C to cryo-preserve the 

material. The sample was transferred onto the cryostage of a CT1500HF cryo-transfer system (Gatan, 

Oxford, England) attached to a Philips XL30 FEG scanning electron microscope (FEI, Eindhoven, The 

Netherlands). The sample stage was then heated to -100°C at which the tissue was hit with a 

dissecting knife integrated into the sample chamber, causing the sample to fracture. Sublimation of 

surface frost was performed at -95°C for three minutes before sputter coating the sample with 

platinum for 135 sec at 10 mA, at colder than -110°C. After sputter-coating, the sample was moved 

onto the cryo-stage in the main chamber of the microscope, held at approximately -140°C. The 

sample was viewed at 3 kV with the secondary electron detector and digital TIFF files were stored. 

 

1.1.4 Isolation of waxes 

To study the effect of Iw1 on cuticular waxes, flag leaves and the exposed part of peduncles from five 

independent biological replications were collected for Shango, Shamrock, the four DH lines (DH21, 

DH81, DH93, DH119), and five BC2 NIL pairs (Alchemy, Einstein, Hereward, Malacca, Robigus) from 

the 2009-2010 field plots. For the time course analyses, three flag leaves from independent 

replications were collected from four BC2 NIL pairs (Alchemy, Malacca, Robigus, Xi19) grown in 2010-

2011. Samples were collected in the field, placed in pre-weighed 15 mL polypropylene tubes and 

frozen on dry ice. Tubes were reweighed to determine the wet tissue weight before freezing in liquid 

nitrogen and storing at -80°C. 

Waxes were extracted using 5 mL chloroform (Merck, analytical grade; as are all other solvents 

below) in glass tubes with screw-cap polytetrafluoroethylene lids containing chloroform and 

triacontane (C30 alkane, Sigma 263842, Poole, UK) as an internal standard (35 µg/mL for leaves and 

10 µg/mL chloroform for peduncles); samples were immersed for 10 min at room temperature and 

shaken three times for 10 sec. The extracts were transferred to new glass tubes and dried down in a 

Vortex Evaporator (3-2201, Buchler Instruments Inc., NJ, USA). Each wax sample was re-suspended in 
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1 mL of chloroform and transferred to a pre-weighed Agilent glass vial, dried under nitrogen and 

then re-weighed to determine the total amount of wax extracted. 

 

1.1.5 Thin layer chromatography (TLC) 

Thin layer silica-glass Uniplates (Analtech Inc, Newark, USA; 21011) were run in a hexane-diethyl 

ether solvent (9:1 v/v) and waxes visualized by spraying the plate with 0.05% primuline (Sigma, 

206865) in acetone-water (8:2 v/v) and imaging under UV light in a BioDoc-It™ transilluminator (UVP, 

Cambridge, UK). The edges of preparative plates were sprayed to reveal the locations of the different 

lipids and the unsprayed silica in the same relative positions scraped off, extracted in chloroform and 

processed for GC-MS analysis as described in Experimental Procedures. To visualize alkylresorcinols 

and methyl alkyresorcinols, TLC plates run in either hexane-diethyl ether (9:1 v/v) or chloroform-

ethyl acetate (8.5:1.5 v/v) were sprayed with 0.05% aqueous Fast Blue B (Sigma, D9805), reacting 

with the hydroxyl groups at positions 1 and 3 of the benzol ring of the MARs (Kozubek and Tyman 

1995). 

 

1.1.6 Spectrophotometry 

The maximum amount of β-diketone aliphatics in a wax sample was estimated from optical density 

measurements at 273 nm (von Wettstein-Knowles 1976) using a calibration curve made from purified 

barley β-diketones. The relative amounts of hentriacontane-14,16-dione (β-diketone) and 25-

hydroxyhentriacontane-14,16-dione (OH-β-diketone) of the total β-diketone lipids were determined 

similarly after extracting them from preparative TLC plates (Rf circa 0.87 and 0.27, respectively). 

 

1.1.7 Gas chromatography-mass spectrometry  

Wax samples were derivatised in a 100 µL aliquot of a pyridine and TMS-BSTFA (Sigma 15238) 

mixture (1:1 v/v) at 75 °C for 1 h; samples were vortexed every 15 min. Commercial standards [C30 

alkane (Sigma 263842), a mix of C7-C40 n-alkanes (Sigma 49452), a mix of 100 µg each of 1-

tetracosanol (Sigma L350), 1-hexacosanol (Sigma H2139), 1-octacosanol (Sigma O3379) and 1-

triacontanol (Sigma T3777)] and samples of β-diketones (96% hentriacontane-14,16-dione) and 

hydroxy-β-diketones (97% 25-hydroxyhentriacontane-14,16-dione) isolated from barley (Hordeum 

vulgare L. cv. Bonus) spikes (von Wettstein-Knowles 1976) were derivatised similarly. The derivatised 

fraction was analysed on an Agilent GC 6890N gas chromatograph (Agilent Technologies, Wilmington, 

Delaware, USA) coupled to a 5973 Inert Mass Selective Detector. Automated splitless 3 μL injections 

were made using an Agilent 7683 automatic sampler. Conditions of chromatography were: inlet 

temperature 250°C, He carrier gas at a flow rate of 0.8 mL/min, nominal inlet pressure of 9.27 psi, 

the oven temperature program was: from 140°C (1 min) to 380°C (at 10°C/min), then held for 5min. 
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The column used was a ZB-5HT Inferno (Zebron; 7HG-G015-02, Phenomenex, Torrance, CA, USA) 30 

m x 0.25 mm x 0.1 μm with a 5 m guard column fitted to the front end. The Retention Time Locking 

feature was used and the method locked to the retention time of the triacontane internal standard 

(16.3 min). The mass spectrometer parameters using electron ionisation in positive mode (70eV), 

with a source temperature of 230°C and a quad temperature of 150°C were set to the 

manufacturer’s recommended defaults. Total ion scans were made from 50-500 amu; all data were 

processed via the Agilent GC Chemstation software (D.03.00) in conjunction with the NIST Mass 

Spectral Library, V8.0 (National Institute of Standards and Technology, Gaithersburg, Maryland, USA). 

 

1.1.8 Quantification of wax compounds 

Subtracting the percentages of the β-diketone aliphatics from the total wax gives the percentage 

attributable to the other components. Relative abundances for these compounds were calculated 

from GC-MS TIC peaks by automatic integration using the Custom Report function in ChemStation. 

Where compounds such as the C26 FA/C28 aldehyde and C28 FA/C30 aldehyde eluted closely together, 

so that individual total ion chromatogram (TIC) peaks could not be integrated separately, the major 

ion for each compound was searched and integrated separately for the relevant retention time. The 

derivatised β-diketone peak was integrated manually and then the characteristic ion for the obscured 

C30 FA peak was integrated and subtracted from the β-diketone peak. The same approach was used 

to estimate the C23MAR peak hidden within the hydroxy--diketone peak. While the data presented 

do not take into account that not all wax aliphatics are silylated nor the differential responses of the 

chemical groups to flame ionization (Sternberg et al. 1962), they give a reproducible approximation 

of the quantities of the wax aliphatics. All together 53 components were identified, with 26 being 

studied in more detail as they account for >95% of the total wax load in both Shango and Shamrock 

flag leaves and peduncles. 

 

1.1.9 Chemical modification of waxes 

Some wheat wax samples dissolved in hexane were passed through columns containing inert silica ± 

NaOH powder extracted with chloroform (Von Wettstein-Knowles 1974). The eluates lack free fatty 

acids which are retained on the column. Control and treated eluates, together with wax standards, 

were then assessed by TLC and GC-MS. 

 

To further assist in identifying some GC-MS peaks, selected wax samples were treated either with 

NaBH4 to reduce the carbonyl group of ketones and aldehydes to secondary and primary alcohols, 

respectively, or with K2Cr2O7 to oxidize the hydroxyl group of secondary alcohols to the carbonyl 

group of ketones (von Wettstein-Knowles 1976, Mikkelsen and von Wettstein-Knowles 1978). 
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1.1.10 Transmission electron microscopy 

Field grown (2009-2010) Shamrock and Shango (264 days old; 3 biological replicates) and glasshouse 

grown Xi19 BC2 NILs (3 biological replicates) were dissected by hand. Plant material was fixed in 2.5% 

(v/v) glutaraldehyde, 0.05 M sodium cacodylate, pH 7.3, and embedded in LR White resin (London 

Resin) (Lodwig et al. 2005). The embedded material was cut into ultra-thin sections of approximately 

90 nm using a diamond knife on a Leica UC6 ultramicrotome (Leica Microsystems; Milton Keynes, UK) 

and placed on 200 mesh copper grids which had been pyroxylin- and carbon-coated. The sections 

were contrast-stained with 2% (w/v) uranyl acetate and 1% (w/v) lead citrate before imaging in a FEI 

Tecnai 20 TEM (FEI, Eindhoven, Netherlands) at 200 kV. Digital TIFF images were acquired on the 

microscope using a Deben AMT XR60B CCD camera (Deben, Bury St Edmunds, UK). Cuticle thickness 

was calculated from 20-40 pictures taken for each biological sample and the average cuticle thickness 

was calculated for statistical analyses. 

 

1.1.11 Analysis of cuticular conductance 

Flag leaf tissue of six pairs of field-grown BC2F3 NILs (15 replicates each) from two different UK 

locations (Woolpit and Docking) was collected and imbibed in water in the dark over night at 4°C. The 

tissue was weighed on a balance (Sartorius analytical balance BP61S) and then dried in the dark at 

25°C and ~50% relative humidity. Tissue weight was recorded in intervals of 20 min for 120 min total, 

thus obtaining seven data points. The leaves were then dried at 70°C for 24 h and the dry weight of 

the leaf was subtracted from the individual measurements. 

 

1.1.12 Bulk δ13C measurements and calculation of 13C discrimination 

Carbon isotope discrimination was determined for tissues from field grown plants in 2011 and 2012. 

Flag leaves and spikes were collected at anthesis and grains at maturity. Freeze-dried samples were 

milled to powder using mortar and pestle. Approximately 0.5 mg of powder was measured for δ13C 

using a Thermo Finnigan Deltaplus XP isotope ratio mass spectrometer interfaced to a Costech 

Elemental Combustion System CHNS-O 4010. Isodat Version 2.0 was used for data processing of δ13C 

measurements. Carbon isotope composition is expressed relative to Vienna PeeDee belemnite 

Standard (VPDB) based on an in-house reference gas. The accuracy of δ13C measurements was 

±0.2‰ or better based on an in-house collagen standard. 13C discrimination was calculated using the 

following formula ∆ = (δa – δp)/(1 + δp) (Farquhar et al. 1989) and expressed in per mL on the VPDB 

scale, where ambient CO2 value δa, was assumed to be -8‰. δp represents the δ13C values for flag 

leaf, spike, and grain samples measured using the above methodology. 
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1.1.13 PAR reflectance measurements 

PAR reflectance was measured in the field in consecutive years (2010-2011 and 2011-2012). The 

sensor system consists of two PAR Quantum sensors (SKP215, Skye Instruments) attached to a pole 

(SKL 910, Skye Instruments) with one hemispherical sensor facing upwards registering all incoming 

light and a second sensor with a collar, which limits the sensor’s field of view to 25°, facing 

downwards collecting reflected light from a ~50 cm2 piece of a H80 plot. The sensors were connected 

to a Spectrosense+ data logger (SKP 215LQ/SS2, Skye Instruments) and a circular level bubble 

ensured that the sensors were level over the plot. Approximately 30 measurements were taken at 

three to four different positions of each plot and combined into one average value. For each 

genotype five plots were measured. The ratio of incoming to reflected light remained constant 

independent of light intensity, cloud cover or time of day. From this ratio the difference in 

reflectance (in percent) was calculated. 

 

1.1.14 Integrating sphere measurements 

Field-grown Alchemy and Malacca BC2F3 NILs (five replicates each) were dug up from Church Farm 

field in 2012, transferred into 2 L pots and left to acclimatise in the lab for one week, before 

transporting them by car to the University of Colchester, where their flag leaf blades were analysed 

using an integrating sphere. Transmission and reflectance between 300 and 800 nm was measured 

for both the abaxial and adaxial side of the flag leaf blades and normalized using blank 

measurements (no leaf tissue in the path of light). 

 

The reflectance values across each individual time point were quite variable, thus making single point 

analysis difficult. To compensate this effect, trendlines were added to the graphs to smoothen the 

reflectance values: A single point of the trendline consists of the sliding window average of 15 

datapoints, e.g. from 400 – 414 nm. The next point of the trendline consists of datapoints from 401 – 

415 nm and so on. This results in a much smoother and much more informative graph than before. 

 

1.1.15 Measurements of green-canopy duration and yield 

The grain filling period is the time after flowering when plants channel photo-assimilates into their 

grain. Since grain filling period is not easily measured for large amounts of samples, the green canopy 

duration, the time between flowering and full plant senescence, is generally used as a surrogate 

measurement. Flowering date was assessed as the day in which ¾ of the plot had reached ¾ of 

inflorescences emerged, and full plant senescence as the day where a loss of chlorophyll was 

observed on all leaves and peduncles of the main shoots for ¾ of the plot. The green canopy duration 

was then calculated for each plot by subtracting the number of days from drilling to flowering from 
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the number of days to full plant senescence. Yield was measured as weight of grains per plot and 

then normalized to 15% moisture content (plot size was verified to be uniform across the field). The 

yield of glaucous lines was then used as a baseline (100%), which the yield of non-glaucous lines 

could be compared to. A value below 100% represents a reduction in yield in the non-glaucous line, 

while values above 100% represent an increased yield in the non-glaucous line. At Church Farm all 

streams for every BC2 NIL pair were used, while only one stream of each NIL pair was sent to the 

breeders. In 2010 and 2011, these were the same streams that were used for most of the 

biochemical and physiological experiments: AS4, ES1, HS2a, MS1, RS1 and XS1 (see Materials and 

Methods 1.1.1). Two streams were generated for the BC4 NILs and both of them were used for the 

field trials at JIC and at the breeder’s trial sites. The UK locations at which the field trials were 

performed are: Church Farm (Bawburgh, Norfolk, NR9), Docking (Norfolk, PE31), Drinkstone (Suffolk, 

IP30), Dukes (Cambridgeshire, CB10), Ickleton (Cambridgeshire, CB10), Pampisford (Cambridgeshire, 

CB2), Whittlesford (Cambridgeshire, CB22), Wolferton (Norfolk, PE31) and Woolpit (Suffolk, IP30). 

 

1.1.16 Statistical analysis of results 

We have used Genstat version 15.2.0.8821 (VSN International Ltd) throughout for the statistical 

analysis of our data. We have performed analysis of variance (ANOVA) for multiple mean 

comparisons. 
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1.2 Results 

 

1.2.1 Scanning electron microscopy analysis of glaucous and non-glaucous material 

As was mentioned before, a glaucous phenotype is caused by the deposition of wax crystals onto the 

cuticle surface of aerial plant organs. This so-called epicuticular wax layer scatters incoming light, 

thus causing the plant surface to appear whitish or bluish, rather than bright green. To analyse the 

structure of this epicuticular wax layer, field-grown tissue samples from both glaucous and non-

glaucous lines were collected and examined using cryogenic scanning electron microscopy (cryo-

SEM). Since the tissue to be analysed is frozen in a slush of liquid nitrogen, the tissue surface is 

perfectly conserved when using cryo-SEM, thus allowing for a detailed and accurate analysis. 

 

Three biological replicates of flag leaf blades and the exposed part of peduncles were used for each 

genotype and tissue. Samples from both glaucous and non-glaucous lines were always loaded on the 

same sample stage and thus underwent the same pre-treatment (see Materials and Methods 1.1.2). 

 

 

1.2.1.1 SEM of the abaxial side of the flag leaf 

The abaxial side of the flag leaf, which is the outer side of the flag leaf that faces away from the stem, 

showed a dense network of tubular shaped wax crystals covering the entire surface of the flag leaf in 

Shango sections (Figure 1.4A, B). Stomata were sometimes barely visible underneath this thick layer 

(see arrow in Figure 1.4A). In stark contrast, the abaxial flag leaf surface of Shamrock completely 

lacks these tubular shaped wax crystals (Figure 1.4C, D). The surface is not completely bare though, 

as other types of wax crystals are visible. These compounds are probably also present on the Shango 

leaf samples, but not visible due to the dense layer of tubular shaped wax crystals covering the leaf 

surface. 

 



37 
 

 
Figure 1.4: Epicuticular wax pattern on abaxial side of Shango and Shamrock flag leaves 

Images from flag leaf blades of two different plants from both Shango and Shamrock are shown. The 

abaxial side of the flag leaf in Shango is completely covered with a tubular shaped wax (A, B), while 

the corresponding surface in Shamrock is almost bare, with only low amounts of other wax crystals 

visible (C, D). The arrow in (A) points shows a stomata that is almost completely covered by wax. 

 

 

1.2.1.2 SEM of the adaxial side of the flag leaf 

The adaxial side of the flag leaf, which is the inner side of the flag leaf that faces towards the stem, 

revealed a more complex pattern of wax crystals. Unlike the abaxial side, a pattern of light and dark 

strips is visible in leaf sections of both Shamrock and Shango when using a low magnification level 

(Figure 1.5A, B). The dark strips seem to be separated from the light strips by rows of stomata and 

leaf hairs. Zooming in unto the dark strips reveals that their surface is densely covered by a platelet 

shaped wax crystal in both Shamrock and Shango (Figure 1.5C, D). These platelet shaped crystals are 

also present on the surface of the light strips in both varieties, but at a much lower density than on 

the dark strips (Figure 1.5E, F). Similarly to the abaxial surface of the flag leaf, Shango samples 

showed presence of a tubular shaped wax in addition to the other type of wax crystal (Figure 1.5D, 

F). However the density of the tubular shaped wax is markedly reduced on the adaxial surface 

compared to the abaxial side. 
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Figure 1.5: Epicuticular wax pattern on adaxial side of Shango and Shamrock flag leaves 

The adaxial side of flag leaves shows a pattern of light and dark strips in both Shango (A) and 

Shamrock (B). A close-up of the dark strips reveals a high abundance of platelet shaped wax crystals 

in both Shango (C) and Shamrock (D), whereas this type of wax crystal is much rarer in the light strips 

(Shango E, Shamrock F). In addition, both light and dark strips in Shango show presence of the 

tubular shaped wax (C, E), which is completely absent from Shamrock (D, F). Arrows point out tubular 

shaped wax. 

 

 

1.2.1.3 SEM of the surface of peduncles 

Sections of the exposed part of peduncles from both Shamrock and Shango look very similar to 

abaxial flag leaf sections, Shango samples having a high density network of the tubular shaped wax, 

which covers the entire peduncle (Figure 1.6A, B). In contrast, Shamrock samples appear bare, with 

only small amounts of the platelet shaped wax visible (see Figure 1.6C, D). This platelet shaped wax is 
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also present on peduncle sections of Shango, but in a much lower abundance than the tubular 

shaped wax. 

 
Figure 1.6: Epicuticular wax pattern on Shango and Shamrock peduncles 

Images from the exposed part of peduncles of two different plants from both Shango and Shamrock 

are shown. The glaucous Shango peduncle is covered by a thick layer of the tubular shaped wax (A, 

B), while the non-glaucous Shamrock peduncle is completely devoid of this type of wax crystals (C, 

D). Both varieties have the platelet shaped wax crystals present on the peduncle surface (A, D). 

 

 

1.2.1.4 Freeze fractionation of flag leaf blades 

To get a qualitative overview of the cuticle and the epicuticular waxes, flag leaf blades of Shango and 

Shamrock were freeze fractionated (Materials and Methods 1.1.3). This essentially produces a cross-

section of the tissue that can be analysed using the cryo-SEM. Similar to the standard cryo-SEM 

analysis Shango samples contained a tubular shaped wax on the surface of the cuticle (Figure 1.7A, 

B), which was absent from Shamrock samples (see Figure 1.7C, D). From the images obtained it 

appears that the wax crystals form a single relatively thin layer on top of the cuticle. However, this 

method proved to be too difficult and inaccurate an approach to accurately quantify the thickness of 

the epicuticular wax layer. 

 



40 
 

 
Figure 1.7: Freeze Fractionation of Shango and Shamrock Flag Leaf Blades 

Images from flag leaf blades of two different plants from both Shango and Shamrock are shown. 

Cross section through flag leaf blades of Shango (A, B) and Shamrock (C, D) made using freeze 

fractionation. Epidermal cells (EC) and cell walls (CW) are clearly visible, as are epicuticular wax 

crystals (arrows). 

 

In addition to Shango and Shamrock, flag leaves and the exposed part of peduncles of the six pairs of 

BC2F2 near isogenic lines (NILs) and their parents were also analysed using cryo-SEM. All NILs carrying 

the Iw1 introgression mimicked the Shamrock phenotype and lacked the tubular shaped wax on all 

surfaces, while all NILs without the introgression had the tubular wax crystals present, similar to 

Shango. However, the density of these tubular wax crystals varied perceptibly between the different 

varieties (Appendix, A1.1-A1.6). 

 

The results from this cryo-SEM analysis show a very consistent pattern regarding the function of the 

introgressed segment containing Iw1. In its absence, all three plant organ surfaces were covered with 

a tubular shaped wax to varying degrees in addition to other wax crystals. However, upon 

introduction of this physical segment, the tubular shaped wax crystals completely disappeared, while 

other types of wax crystals remained present. This suggests that the function of the introgressed 

segment containing Iw1 is to alter the biosynthesis or transport to the surface of the tubular shaped 

wax crystals. 
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1.2.2 Biochemical analysis of cuticular wax compounds in glaucous and non-glaucous wheat 

The results in this section (1.2.2) were performed in close collaboration with Prof. Penny von 

Wettstein-Knowles from the University of Copenhagen. Prof. von Wettstein-Knowles has been 

working on wax composition in barley for several decades and was paramount in the following work 

by supplying both chemical standards and her extensive knowledge. The biochemical experiments 

described in this section (1.2.2) were performed by Dr. Sarah G. Mugford and Dr. Max Bush. My role 

in these experiments was to supply tissue for analysis, helping with the experimental design and the 

ultimate analysis of the results. This analysis is highly relevant in order to understand the big picture 

of Iw1 and non-glaucousness and the results were published in The Plant Journal (Adamski et al. 

2013) and some figures and tables from this publication are used here. 

 

 

1.2.2.1 TLC and spectrophotometric analysis of cuticular waxes 

The results from section 1.2.1 showed that a tubular shaped type of wax is present in all glaucous 

samples and absent from all non-glaucous samples, suggesting that this type of wax is the causal 

agent that scatters incoming light and thus creates a glaucous phenotype. 

 

The tubular shaped wax has been reported in previous studies on barley, wheat, Poa colensoi (blue 

tussock) and several Eucalyptus spp. to correlate with the amount of β-diketone aliphatics, 

suggesting that these compounds cause glaucousness (Netting and Wettstein-Knowles 1973). Indeed, 

a thin-layer chromatography (TLC) analysis of wax extracts from Shango and Shamrock flag leaf 

blades clearly shows an absence of β-diketones from the Shamrock lane, further strengthening the 

correlation between tubular wax crystals and β-diketones (Materials and Methods 1.1.4 and 1.1.5; 

Figure 1.8). In addition, one band in the Shango extract (band 6, labeled “unknown”) was absent 

from Shamrock as well and it also did not correspond with the hydroxy-β-diketone band from the 

eucalyptus standard (band 5), as was expected. A mass-spectrometric analysis of this band did not 

yield any diagnostic ions, thus leaving the identity of the compounds in this band unknown (Figure 

1.8). 

 

The total and relative amount of β-diketones and their hydroxy derivatives was determined by OD273 

measurements on flag leaf blade extracts from Shango and Shamrock (Materials and Methods 1.1.6; 

Table 1.1). Shango had more than twice as much total wax in the extracts than Shamrock, most of 

which (67%) consisted of β- and hydroxy-β-diketones, while in Shamrock only 7.5% of waxes 

consisted of β-diketone aliphatics. In both varieties the hydroxy-β-diketones constitute only a small 

part of the total β-diketone aliphatics (0.5 and 2% respectively). Both genotypes also had a number 

of compounds in common that have been previously reported to be part of cuticular waxes in 
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different wheat varieties, for example n-alkanes, primary alcohols, aldehydes and free fatty acids 

(Netting and Wettstein-Knowles 1973, Tulloch and Hoffman 1973, Koch et al. 2006). 

 

Table 1.1: Spectrophotometric OD273 measurements of Shango and Shamrock wax extracts 

The relative abundance of -diketones in Shango and Shamrock flag leaf epicuticular waxes from 

field grown plants 20 DPA in 2011 was assessed using spectrophotometric OD273 measurements. The 

values are the average of two biological replicates; Dik = β-diketones plus hydroxy-β-diketones;  = -

diketones; OH- = hydroxy--diketones. 

§ Dried weight of the leaf extract. 
† Estimations based on OD273 measurements. 
¶ Fresh wet weight 

tr = < 0.01µg/mg leaf 

 

 

 

 

 

Variety Wax [mg§] Leaf [mg¶] Total Dik [mg] 
% of Dik† µg Dik/mg leaf 

β OH-β β OH-β 

Shango 6.39 959 4.28 99.5 0.54 4.67 0.03 

Shamrock 2.81 919 0.21 97.9 2.12 0.23 tr 
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Figure 1.8: Thin layer chromatography (TLC) of Shango, Shamrock and eucalyptus wax extracts 

Wax lipids in flag leaf blades of Shango (iw1), Shamrock (Iw1), and eucalyptus visualized after thin 

layer chromatography in hexane:ether (9:1 v/v) using primuline. The numbered arrows correspond to 

n-alkanes (1); β-diketone aliphatics (2); aldehydes (3); primary alcohols (4); hydroxy-β-diketones (5); 

unknown (6); alkylresorcinols, methylalkylresorcinols and free fatty acids (7). All samples were run on 

the same TLC plate. 

 

 

1.2.2.2 GC-MS analysis of flag leaf blades and peduncles 

The accumulation of results suggests that the presence of β-diketone aliphatics is responsible for a 

glaucous phenotype and that the amount of these compounds is at least strongly reduced, if not 

even completely abolished in an Iw1 background. To systematically analyse the cuticular wax of 

Shango and Shamrock flag leaf blades and the exposed part of peduncles, an extensive gas 

chromatography/mass spectrometry (GC-MS) analysis was performed (Materials and Methods 1.1.7). 

 

Gas chromatography in combination with mass spectrometry is a cost-effective way to analyse large 

numbers of complex samples with high efficiency. The high reproducibility of fragmentation patterns 

in electron impact (EI) ionization mass spectra combined with readily available mass spectra libraries 

make GC-MS an accurate method of identifying chemical compounds. One limitation to the approach 

is the restriction to volatile analytes, which requires chemical derivatization of metabolites, like 



44 
 

silylation, to increase their volatility, stability and peak symmetry (Orata 2012). In the resulting total 

ion chromatogram (TIC) traces, non-silylated aliphatics, for example n-alkanes and aldehydes, are 

less prominent than silylated primary alcohols (POHs), and silylated β-diketone aliphatics are 

underestimated versus silylated POHs (Tulloch and Hogge 1978). Peaks of individual compounds 

were resolved straightforwardly, apart from three non-symmetrical peaks (elution time between 

18.5 and 20 min) present in Shango, but not Shamrock, wax samples (Figure 1.9). Silylation and 

subsequent GC-MS analysis of the C31 standards hentriacontane-14,16-dione (a β-diketone) and 25-

hydroxy-14,16-dione (an hydroxy-β-diketone) resulted in similarly shaped peaks eluting with the 

same retention time as the three peaks in Shango samples. The mass spectra from the silylated 

standards suggest that the first peak consists of non-derivatized β-diketone (hentriacontane-14,16-

dione), that the second peak consists of silylated isomers of hentriacontane-14,16-dione and that the 

third peak consists of silylated isomers of 25-hydroxy-14,16-dione (Tulloch and Hogge 1978). As 

these three peaks are not present in Shamrock TIC traces, it can be suggested that β- and hydroxy-β-

diketones are absent from Shamrock waxes. This hypothesis is further supported by the fact that 

trace components in cuticular waxes absorbing at 273 nm will result in an overestimation of the 

amount of the β-diketone aliphatics (Table 1.1)(von Wettstein-Knowles 1976) and that β-diketone 

aliphatics were absent from Shamrock samples on TLC plates. Combining these results with the SEM 

analysis and previous reports on glaucousness (Netting and Wettstein-Knowles 1973), it is evident 

that the causal agent of glaucousness in Shango is a tubular shaped wax formed by β-diketone 

aliphatics. 
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Figure 1.9: GC-MS analysis of Shango and Shamrock flag leaf blades and peduncles 

Gas chromatography-mass spectrometry total ion chromatograms of Shango (A and C; iw1) and 

Shamrock (B and D; Iw1) flag leaf blades (A-B) and the exposed part of peduncles (C-D). Vertical axis 

is relative abundance; IS, internal standard (C30 ALK); * indicates non silylated. Fatty acids (FA), n-

alkanes (ALK), primary alcohols (POH), aldehydes (ALD), methylalkylresorcinol (MAR), and both β- 

and hydroxy-β-diketones (β-Dik and OH-β-Dik) are indicated. 

 

Furthermore, the GC-MS analysis identified C28POH as a major constituent of cuticular waxes from 

flag leaf blades, but not of peduncles, where it is only present in trace amounts (Figure 1.9). Again, 

this agrees with the SEM analysis, the results of the TLC plates and previous work (Baker et al. 1982). 

Other highly abundant compounds on both flag leaf blades and peduncles are C24POH, C29 and C31 n-

alkanes. All in all, 26 compounds were quantified and a further 27 compounds were detected by this 
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GC-MS analysis, including n-alkanes from C22-C33 and POHs from C18-C34 chain lengths as well as less 

abundant C22-C32 free fatty acids and C24-C34 aldehydes (Materials and Methods 1.1.8 and 1.1.9; 

Appendix, A2). 

 

In addition, field-grown flag leaf blades and the exposed part of peduncles of a doubled-haploid 

population derived from a Shango x Shamrock cross as well as five BC2F3 NILs were analysed using 

GC-MS. The wax load on Shamrock flag leaves was 38% of that on Shango, whereas in peduncles it 

was only 13% and similar results were obtained for the DH lines. The cuticular waxes of the Iw1 DH 

lines contained only low amounts of β-diketone aliphatics, similar to Shamrock (Table 1.2), whereas 

waxes from the iw1 DH lines contained high amounts of β-diketone aliphatics. In contrast, the 

amount of C28POH was not significantly different between flag leaf blades of all lines. However, a 

significant increase in the amounts of n-alkanes and C24POHs was observed in all lines carrying Iw1 

(p<0.001). The same patterns were obtained for the BC2F3 NILs independent of the amount of 

glaucousness of the original parent (Table 1.2). Wax samples from Iw1 containing lines had low or 

trace amounts of β-diketone aliphatics and increased amounts of n-alkanes and C24POHs. 

Interestingly, there is a lot of variation in the amount of individual wax components in the different 

varieties. Shango for example has ten times more β-diketones on its flag leaf blades and ~14 times 

more on its peduncles than Malacca, suggesting that even low amounts of β-diketone aliphatics will 

result in a glaucous phenotype (Table 1.2). These stark differences in the amount of β-diketone 

aliphatics can be recognized also by the naked eye, with Shango plants appearing much more 

glaucous than Malacca iw1 NILs (MS1-, Figure 1.10). 

These results suggest that β-diketone aliphatics (β- and OH-β-diketones) are the causal agent of 

glaucousness in wheat and that Iw1 inhibits the production of these compounds. 

 

 

Figure 1.10: Field-grown Shango and Malacca NIL pair in 2010 

Field-grown plots of Shango and a NIL pair of Malacca. While Shango and MS1- are both glaucous in 

comparison to MS1+, Shango is visibly more glaucous than MS1-, possibly reflecting the large 

difference in β-diketone aliphatics between the two genotypes. 
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Table 1.2: Total wax load on Shango, Shamrock, DH and BC2F3 lines 

Total wax load (μg wax/mg leaf) on field-grown flag leaf blades and the exposed part of peduncles 

plus amounts (µg/mg) of the six most important constituents in the parental Shango and Shamrock 

lines, four DH lines and four BC2F3 lines nine days post anthesis in 2010. The sem is indicated for total 

wax load as well as β- and Hydroxy-β-diketones. tr = < 0.01; - = not detected 

Wheat line 
Iw1 
+/- 

Wax load          
[μg wax/mg 

leaf] 

n-Alkanes Primary alcohols 
β-diketone 

Hydroxy-β-
diketone 

C29 C31 C24 C28 

Flag leaf 

Shango - 12.68 ± 1.35 0.1 0.04 0.12 3.29 7.09 ± 0.93 1.59 ± 0.17 

Shamrock + 4.76 ± 0.65 0.33 0.13 0.55 3.23 0.06 ± 0.01 - 

DH119 - 10.81 ± 1.27 0.11 0.05 0.06 3.56 5.1 ± 0.85 1.46 ± 0.14 

DH93 + 5.32 ± 0.57 0.38 0.13 0.78 3.45 0.06 ± 0.01 - 

DH21 - 13.06 ± 1.27 0.11 0.05 0.11 2.85 7.86 ± 0.77 1.67 ± 0.26 

DH81 + 4.80 ± 0.47 0.34 0.14 0.41 3.38 0.01 ± 0.001 - 

Alchemy - 7.67 ± 1.59 0.12 0.08 0.13   3.29 2.68 ± 0.59 0.83 ± 0.23 

Alchemy + 4.43 ± 0.57 0.2 0.26 0.39 3.09 - - 

Malacca - 5.82 ± 1 0.1 0.04 0.15 3.99 0.71 ± 0.16 0.35 ± 0.11 

Malacca + 4.80 ± 1.04 0.21 0.09 0.36 3.68 - - 

Robigus - 5.64 ± 0.39 0.08 0.04 0.07 3.04 1.15 ± 0.14 0.78 ± 0.3 

Robigus + 4.42 ± 0.84 0.27 0.09 0.23 3.31 - - 

Einstein - 6.97 ± 1.05 0.09 0.13 0.17 3.57 2.12 ± 0.61 0.42 ± 0.09 

Einstein + 6.23 ± 0.64 0.21 0.34 0.59 4.46 - - 

Hereward - 6.48 ± 0.76 0.09 0.03 0.19 3.53 1.76 ± 0.36 0.50 ± 0.12 

Hereward + 5.50 ± 0.47 0.34 0.11 0.72 3.75 - - 

Exposed part of peduncle 

Shango - 6.03 ± 0.38 0.04 0.01 0.07 - 4.54 ± 0.31 1.34 ± 0.06 

Shamrock + 0.81 ± 0.08 0.27 0.05 0.37 - 0.04 ±0.003 0.03 ± 0.002 

DH119 - 3.42 ± 0.33 0.07 0.01 0.04 - 2.32 ± 0.29 0.96 ± 0.06 

DH93 + 1.24 ± 0.07 0.46 0.05 0.61 tr 0.03 ± 0.001 0.01 ± 0.005 

DH21 - 4.26 ± 0.38 0.04 0.01 0.05 - 3.13 ± 0.25 1.01 ± 0.13 

DH81 + 0.82 ± 0.11 0.35 0.04 0.38 tr tr - 

Alchemy - 1.82 ± 0.35 0.02 0.01 0.03 - 1.23 ± 0.25 0.53 ± 0.09 

Alchemy + 0.27 ± 0.05 0.08 0.06 0.1 - - - 

Malacca - 0.91 ± 0.28 0.06 0.01 0.11 - 0.33 ± 0.13 0.4 ± 0.17 

Malacca + 0.44 ± 0.06 0.16 0.03 0.18 tr - - 

Robigus - 1.29 ± 0.28 0.01 0.01 0.02 - 0.66 ± 0.14 0.58 ± 0.16 

Robigus + 0.36 ± 0.05 0.17 0.03 0.11 - - - 

Einstein - 1.47 ± 0.35 0.04 0.03 0.06 - 0.88 ± 0.26 0.43 ± 0.11 

Einstein + 0.47 ± 0.04 0.12 0.13 0.18 - - - 

Hereward - 0.85 ± 0.12 0.03 0.01 0.07 - 0.42 ± 0.08 0.26 ± 0.07 

Hereward + 0.48 ± 0.05 0.15 0.03 0.21 - tr tr 
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1.2.2.3 The effect of Iw1 throughout plant development 

The previous paragraphs have shown the effect of Iw1 on the composition of cuticular waxes at nine 

days post anthesis, when glaucousness is clearly visible on all plant organs. But what are the effects 

of this locus at different points in time during a plant’s development? To answer this question, a time 

course experiment was designed, where leaf samples of four pairs of field-grown BC2F3 NILs were 

collected at discrete points in plant development. These samples were analysed using the previously 

established GC-MS platform. Wheat developmental stages were assessed using two digit decimal 

Zadoks scale (Zadoks et al. 1974). The time points chosen were GS31, GS47, GS51, 18 days post 

anthesis (DPA) and 42 DPA (Figure 1.11). At the early time point GS31 no wax is visible on the surface 

of a wheat plant, whereas at GS47, the flag leaf and flag leaf sheath are displaying wax, while the ear 

has not yet emerged. The later time points were chosen to elucidate whether cuticular waxes 

continue to accumulate over time or not. 

 

At the earliest time point (GS31) the cuticular wax of all samples consisted solely of primary alcohols, 

specifically of chain length C26, C28 and C30. Of these compounds C28POH was overwhelmingly 

dominant, with its abundance being 100 to 400-fold higher than either of the two other primary 

alcohols in the different lines. At the second time point (GS47) the complexity of the cuticular wax 

increased markedly, with n-alkanes, aldehydes and fatty acids appearing alongside the primary 

alcohols. In addition, glaucous lines also contained β-diketone aliphatics, which were absent from 

non-glaucous lines. Interestingly, although C28POH was still the most abundant constituent of 

cuticular wax at this stage, the total amount of it had dropped to 2 µg/mg leaf. This is most likely due 

to the differences in leaf thickness, and hence weight, between early vegetative leaves and the flag 

leaf that was sampled at boot stage. During the next developmental stages, the general trend for all 

wax components was to increase in amount over time. 

 

 

Figure 1.11: Wheat growth stages 

Wheat growth stages are shown according to Zadoks scale. Modified after “The Wheat Growth 

Guide” released by the Home Grown Cereals Association (HGCA 2008). 
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Figure 1.12: Time course analysis of major cuticular wax components of BC2F3 NILs 

Time course analysis of major cuticular wax components of four field-grown BC2F3 NILs across five 

growth stages in 2011 (Zadoks GS31, GS47, GS51, 18 days post anthesis (DPA) and 42 DPA). Panels 

include C29 and C31 n-alkanes (A-B), C24 and C28 primary alcohols (C-D), β- and hydroxy-β-diketones (E-

F) and total wax load (G). Green lines and triangles represent Iw1 NILs; grey circles represent iw1 

NILs. Asterisks indicate significance at probability <0.05 (*), <0.01 (**), and <0.001 (***). 
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The effect of Iw1 on cuticular wax composition was similar to the effects observed in the previous 

GC-MS analysis. Non-glaucous lines displayed significantly higher amounts of C29- and C31-alkanes, as 

well as C24POH than their glaucous counterparts (Figure 1.12A-C). In glaucous lines, β-diketone 

aliphatics became the most abundant compound from GS51 onwards, making up 50% of all cuticular 

wax components, while in non-glaucous lines no β-diketone aliphatics were detected and hence 

C28POH, amounting to 70% of all cuticular waxes, remained the dominant constituent of cuticular 

wax (Figure 1.12D-F). The total wax load was not significantly different between glaucous and non-

glaucous lines until GS47, but with the ever increasing amounts of β-diketone aliphatics from GS51 

onwards, the wax load of glaucous lines was becoming significantly higher (Figure 1.12G). 

 

In summary, the biochemical analyses of section 1.2.2 consistently showed an inhibition in 

production of β- and hydroxy-β-diketones in Iw1 germplasm coupled with an increase in the 

production of n-alkanes and primary alcohols. Interestingly, an increase in the amount of C24POH and 

n-alkanes appeared to be linked with the decrease of β-diketone aliphatics in the non-glaucous Iw1 

lines. 

 

 

1.2.3 Transmission electron microscopy analysis of glaucous and non-glaucous material 

As was mentioned in the introduction the cuticle prevents excessive transpiration by forming a 

physical barrier that prevents water vapour from escaping. To determine the cuticle thickness, field-

grown flag leaf blades and peduncles from both Shamrock and Shango were analysed using 

transmission electron microscopy (TEM; Materials and Methods 1.1.10). The TEM pictures were 

taken by Dr Kim Findlay. 

 

The thickness of the cuticle was noted for all samples and analysed (Figure 1.13). The cuticles of 

Shango flag leaf blades had an average size of 0.204 ± 0.009 µm (adaxial) and 0.189 ± 0.005 µm 

(abaxial), while Shamrock flag leaf blade cuticles had an average size of 0.176 ± 0.016 µm (adaxial) 

and 0.172 ± 0.018 µm (abaxial). A single factor analysis of variance (ANOVA) did not show any 

significant differences in cuticle thickness between flag leaf blades of Shamrock and Shango, neither 

on the abaxial (p-value: 0.19) nor the adaxial (p-value: 0.40) side. Likewise, the cuticle thickness in 

peduncles of Shango (0.244 ± 0.024 µm) and Shamrock (0.239 ± 0.05 µm) was not significantly 

different from each other (p-value: 0.86). However, cuticle thickness was significantly different 

between peduncles and flag leaf blades (p-value: 0.02) irrespective of genotype. 
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Figure 1.13: Cuticle thickness between glaucous and non-glaucous lines 

The cuticle thickness between glaucous (grey bars) and non-glaucous (green bars) lines was analysed 

using TEM. No significant differences were detected between the two varieties Shango and 

Shamrock or between the two NILs XS1- and XS1+ in any of the analysed tissues. NS = not significant 

 

 

In addition, glasshouse-grown flag leaf blades from a BC2F3 NIL pair, one with the Iw1 introgression 

(XS1+) and one without it (XS1-), were also collected, prepared and analysed using TEM. The cuticle 

thickness was not significantly different between XS1- and XS1+ for the abaxial side (0.098 ± 0.016 

and 0.105 ± 0.012 respectively; p-value: 0.76) or the adaxial side (0.144 ± 0.012 and 0.134 ± 0.016 

respectively; p-value: 0.63) (Figure 1.13). 

 

Figure 1.14 shows cuticles from glaucous and non-glaucous lines next to each other highlighting the 

lack of difference in cuticle thickness between glaucous and non-glaucous NILs. ANOVA showed that 

the cuticles of Xi19 (both parental and NIL pair) flag leaf blades were significantly smaller (p<0.001) 

than those from Shango or Shamrock, while tissue (p-value: 0.174) and genotype-tissue interaction 

(p-value: 0.221) were non-significant factors. 
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Figure 1.14: Transmission electron microscope images 

The cuticle thickness between glaucous and non-glaucous lines was analysed using TEM images. The 

abaxial and adaxial side of flag leaf blades of Shango (A, C), Shamrock (B, D), XS1- (G, I) and XS1+ (H, 

J) was analysed in addition to peduncles of Shango (E) and Shamrock (F). No significant differences in 

cuticle thickness were detected between Shango and Shamrock in any tissue. Likewise, no significant 

differences in cuticle thickness were detected between the Xi19 NIL pair. The bar in each picture 

represents a size of 500µm. Cu = Cuticle; CW = Cell Wall 

 

The results from this analysis clearly demonstrate that cuticle size is not affected by the introgressed 

genetic segment containing Iw1. By comparing cuticle thickness in Shamrock and Shango as well as a 

NIL pair, where the recurrent parent has a different cuticle size than the other two varieties, it is 

evident that this lack of difference in cuticle thickness is not unique to the Shamrock genotype. 
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1.2.4 Analysis of cuticular conductance 

As was mentioned before, one of the major functions of the cuticle is to reduce water loss by forming 

a physical barrier preventing water vapour from escaping. Analysis of the cuticle by TEM did not 

show any significant changes in cuticle thickness upon introgression of the genetic segment 

containing Iw1. However, it is possible that while cuticle thickness remained unaltered, its 

composition and structure might have been affected. One way to test this hypothesis was to 

measure cuticular conductance. Cuticular conductance is a measure of how “watertight” a plant 

organ is, as it determines the amount of water that is being lost from a tissue over time while the 

stomata are closed. 

 

The method used here is based on Febrero et al. (1998) (Materials and Methods 1.1.11). Flag leaves 

of field-grown BC2F3 NILs (15 replicates per NIL) were collected from two locations in the UK (Woolpit 

and Docking), imbibed with water over night and then dried down, with the weight of the leaves 

being recorded in regular intervals. Plotting this data onto graphs (Figure 1.15) revealed that it was 

linear within the times studied. The percentage of fresh weight left at the last time point was 

recorded for all 15 replicates and compared between NIL pairs using a single factor ANOVA. 

Significant differences were observed between the AS4± (p-value: 0.0065) and XS1± (p-value: 0.033) 

NIL pairs at Woolpit and the RS1± (p-value: 0.037) NIL pair at Docking. In these NIL pairs the non-

glaucous Alchemy, Xi19 and Robigus lines had lost 2.3%, 2.7% and 3.4% more water than their 

glaucous counterparts respectively, implying that these non-glaucous NILs have a higher cuticular 

conductance. However, this effect was only observed in one location for any of the three NIL pairs, 

while at the other location these NILs did not significantly differ from each other. The Einstein, 

Hereward and Malacca NILs did not exhibit this effect in any of the two locations either. Thus the 

enhanced cuticular conductance observed in some of the non-glaucous NILs is not caused by the 

introgression of Iw1 but instead is most likely due to environmental factors and/or other genetic 

interactions. 
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Figure 1.15: Cuticular conductance between NIL pairs 

Field-grown flag leaves were collected from pairs of BC2F3 NILs at two locations in the UK (Woolpit 

and Docking) in 2011. Flag leaf blades were collected from all NILs in both locations and cuticular 

conductance was assessed. Significant differences were observed in some genotypes in a single 

location, but no overall effect could be seen in all genotypes and all locations. Green dots represent 

non-glaucous Iw1 NILs, whereas grey dots represent glaucous iw1 NILs. Asterisks indicate significance 

at probability <0.05 (*) and <0.01 (**). 
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This preliminary study suggests that the structure and composition of the cuticle is not drastically 

altered in germplasm containing the Iw1 introgression as the six pairs of NILs seem to lose water at 

equal rates with their stomata closed and thus have the same cuticular conductance. However, these 

results need to be replicated in several locations over consecutive years before a definite conclusion 

can be reached. 

 

 

1.2.5 Carbon isotope discrimination 

Most of the carbon on earth (98.9%) is made up of C12, but there is another naturally occurring stable 

isotope, C13, which is much less abundant (1.1%). When plants fix carbon via photosynthesis they 

discriminate between CO2 made with C12 or C13 carbon, preferentially using C12. However, if stomata 

aperture is restricted, plants cannot afford to discriminate for C12 thus reducing the ratio of C13 to C12 

relative to the atmospheric composition. This carbon isotope discrimination can be used as a 

surrogate to measure water-use efficiency (WUE) (Farquhar et al. 1989). Instead of using the isotope 

effect α, it was proposed to use the deviation of α from unity (Δ) as the measure of carbon isotope 

discrimination. 

 

To determine whether the introduction of Iw1 into UK germplasm and the associated change in 

epicuticular wax load and composition affect WUE we assessed the carbon isotope discrimination for 

tissues from field grown plants in 2011 and 2012 (Materials and Methods 1.1.12). Flag leaves and 

spikes of two BC2F3 NILs were collected at anthesis and later at maturity grain samples were also 

taken. The carbon isotope discrimination was performed by Dr. Nikolai Pedentchouk from the 

University of East Anglia. No significant effect was detected for Iw1 in either 2011 or 2012. Carbon 

isotope discrimination in both NIL pairs was not significantly different in any of the three tissues 

examined (Figure 1.16). The Δ of flag leaves and grains, however, was significantly greater (p<0.001) 

in 2012 than in 2011 (by ~1.5 to 2.5‰, Figure 1.15A-B), reflecting the huge impact that 

environmental factors have on this type of measurement. These results indicate that glaucousness is 

not detrimental for WUE in a UK climate. 
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Figure 1.16: Carbon isotope discrimination of two BC2F3 NILs in 2011 and 2012 

Carbon isotope discrimination of Alchemy and Malacca BC2F3 NILs in 2011 (A) and 2012 (B). Green 

bars represent non-glaucous Iw1 NILs, whereas grey bars represent glaucous iw1 NILs. No significant 

differences were detected between NIL pairs across tissues or years. GS: Zadok’s growth stage. 

 

 

1.2.6 The effects of Iw1 on light reflectance and transmission 

1.2.6.1 PAR reflectance of field-grown NILs 

As was mentioned before, glaucousness is the appearance of a whitish bloom on the surface of plant 

organs, caused by a light-scattering effect of epicuticular crystals. This light-scattering effect 

decreases the amount of radiation absorbed in the visible and near-infrared spectrum, thus 

protecting the photosynthetic machinery and reducing leaf surface temperature (Blum 1975a, Blum 

1975b). 

 

To measure the difference in light reflection caused by Iw1 field-grown pairs of BC2F3 NILs were 

assessed for their reflectance rate in the photosynthetic active radiation (PAR) spectrum (400-700 

nm). Incident and reflected light was measured and the ratio between the two calculated for each 

line (Figure 1.17, Materials and Methods 1.1.13). Pair-wise comparison and ANOVA analysis showed 

that glaucous NILs reflect a higher amount of the incident PAR (13.73% more over all lines, locations 

and years; Table 1.3). This effect is independent of the genetic background, the location and the year. 

Note that in 2012 the Robigus and Xi19 NILs could not be measured due to excessive infection with 

Septoria tritici. These results agree with previous reports where it was shown that non-glaucous 

plants reflect less PAR than glaucous lines (Johnson et al. 1983, Febrero et al. 1998). 
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Figure 1.17 Measurement of PAR reflectance 

PAR reflectance was measured using two sensors. One hemispherical sensor was measuring all 

incoming light in a 180° angle (red arrow), while a second sensor with a 25° collar attached to it 

measured the light reflected by the canopy (blue arrow). Three to four measurements were taken at 

different positions in a single plot, as described in Materials and Methods 1.1.13. 

 

 

Table 1.3: PAR Reflectance measurements of field-grown BC2F3 NILs 

The difference in the ratio of incident to reflected light between glaucous and non-glaucous BC2F3 NIL 

pairs is shown. Differences are significant in all NILs, locations and years except for Alchemy (AS4) at 

Docking in 2011 (see p-values). 

 
Docking 2011 Woolpit 2011 Churchfarm 2012 

NIL pair difference p-value difference p-value difference p-value 

Alchemy 2.50% 2.22E-01 21.50% 2.92E-06 14.70% 8.17E-04 

Einstein 4.19% 7.07E-05 9.22% 2.19E-02 18.03% 2.38E-02 

Hereward 16.21% 5.16E-65 20.67% 1.91E-06 16.20% 2.64E-04 

Malacca 15.84% 2.44E-10 16.51% 1.33E-05 13.55% 5.37E-03 

Robigus 17.64% 8.46E-35 8.29% 5.44E-03 - - 

Xi19 14.23% 1.83E-23 21.45% 1.50E-07 - - 
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1.2.6.2 Reflectance and transmission measurements using an integrating sphere 

The results of the above mentioned PAR measurements are conclusive, but they represent a 

combined value over the entire PAR spectrum and do not allow us to distinguish the rate of 

reflectance for specific spectra of light (i.e. red or blue). 

To elucidate whether the reduction in reflectance in non-glaucous plants applies equally over the 

entire PAR range or whether only certain spectra of light are actually affected by Iw1, flag leaf blades 

of two field-grown (Church Farm 2012) pairs of BC2F3 NILs were analysed using an integrating sphere. 

This device emits radiation of a specific wavelength and measures how much of the emitted light is 

being transmitted or reflected by the surface of a leaf (Materials and Methods 1.1.14). 

 

The transmission and reflectance properties of both abaxial and adaxial sides of flag leaf blades from 

Alchemy and Malacca NIL pairs were measured. Abaxial and adaxial flag leaf surfaces between NIL 

pairs showed a remarkable similarity in the average transmission and reflectance properties. The 

values for transmission of radiation produced smooth graphs and no difference could be seen 

between the glaucous and non-glaucous Malacca NILs (Figure 1.18A). 

 

In contrast, flag leaves of the non-glaucous Alchemy NIL transmit a greater percentage of radiation 

than the glaucous leaf irrespective of which side of the leaf is analysed (Figure 1.18B). The difference 

is largest in the green spectrum of light with the non-glaucous leaf transmitting an average of 1.166% 

more radiation than the glaucous leaf from 517 – 574 nm, peaking at 542 nm with 1.43%. On average 

the non-glaucous AS4 NIL transmits 0.78% and 0.74% more radiation through the abaxial and adaxial 

leaf surface than the glaucous AS4 NIL, respectively. However, a single factor ANOVA showed no 

significant difference between AS4 NIL pairs for either side of the flag leaf blade. 

 

The glaucous and non-glaucous Malacca NILs display a similar reflectance profile, differing at most by 

0.7% in the amount of radiation reflected by the leaf surface. On average, the non-glaucous Malacca 

NIL reflects 0.01% more radiation than the glaucous NIL (Figure 1.19A). In contrast, the non-glaucous 

NIL reflects 0.6% less PAR on average than the glaucous NIL from both sides of the flag leaf with the 

lowest reflection at 427 nm (2% and 2.5% less reflection than glaucous NIL on abaxial and adaxial 

side of the flag leaf respectively; Figure 1.19B). A single factor ANOVA though showed no significant 

difference in reflectance between AS4 NIL pairs on either side of the flag leaf blade. 
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Figure 1.18: Transmission of PAR through the adaxial side of flag leaf blades 

Transmission of PAR through the adaxial side of flag leaf blades of two BC2F3 NIL pairs is shown. In 

MS1 (A) transmission is similar in glaucous (grey line) and non-glaucous (green) NILs. In AS4 (B) the 

non-glaucous NIL appears to transmit more light than the glaucous NIL, although this is not 

significant. The difference is biggest in the green portion of the light (525 – 560 nm). The profile on 

the abaxial side is almost identical. Transmission is shown in decimals. 



61 
 

 

Figure 1.19: Reflectance of PAR through the adaxial side of flag leaf blades 

Reflectance of PAR from the adaxial side of flag leaf blades of two BC2F3 NIL pairs is shown. In MS1 

(A) reflectance is similar in both glaucous (grey line) and non-glaucous (green) NILs. In AS4 (B) the 

non-glaucous NIL reflects less light than the glaucous NIL. The difference is biggest in the blue portion 

of the light (400 – 450 nm). The profile on the abaxial side is almost identical. Reflectance is shown in 

decimals. 
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The results for AS4 agree with the PAR measurements of field-grown NIL pairs in terms of non-

glaucous lines reflecting less of the incoming radiation than the glaucous lines. Furthermore, the 

lowest levels of reflection in the non-glaucous Alchemy NIL were observed in the blue and red 

portion of the light (Figure 1.19B). Unexpectedly there was a trend in the non-glaucous Alchemy NIL 

to transmit more PAR than its glaucous counterpart. This difference was not significant with the five 

replicates used here, but by using more biological replicates it might be possible to reduce the 

background noise and get a clearer result. 

 

In contrast, the reflectance profile of MS1 is not different between glaucous and non-glaucous NILs, 

thus contradicting the reflectance results obtained from the same line in the field (see chapter 

1.2.6.1). Comparing the reflectance values of the AS4 and MS1 NILs, it becomes obvious that the 

values for the non-glaucous lines are similar between the two genotypes (see Fig. 1.18A, B), while the 

reflectance values for the glaucous MS1 NIL are lower than those of the glaucous AS4 NIL. Likewise, 

the values for transmission of PAR are similar between the non-glaucous AS4 and MS1 lines, whereas 

transmission in the glaucous MS1 NIL is higher (almost as high as for non-glaucous AS4 and MS1 

lines) than in the glaucous AS4 NIL. This indicates that the results for the MS1 NIL pair are not 

reliable, possibly because the (glaucous) MS1 plants did not cope as well with the stress of being dug 

up from the field as the other lines. 

 

 

1.2.7 Effects of Iw1 on green-canopy duration and yield 

Previous data from a study of doubled-haploid lines showed an extended grain-filling period and an 

increase in yield in non-glaucous Iw1 DH lines compared to the glaucous iw1 DH lines (Simmonds et 

al. 2008). To elucidate whether these effects are caused by the Iw1 introgression field trials using 

BC2F3 NILs were performed over several years in multiple locations in collaboration with the breeding 

companies Limagrain and RAGT. 

 

Unfortunately the weather has been very challenging over the last few years. In the season 

2010/2011 a serious drought in the spring caused the crop to form only one or two small tillers per 

plant: The UK Met Office reported that only 20% of the average rainfall from 1971-2000 was 

recorded in East Anglia, making this the driest spring in England and Wales since 1910 (Met_Office 

2011). This drought had such a large impact that no reliable data could be obtained and thus no 

statistical analysis could be performed. In contrast, the season of 2011/2012 was dominated by 

heavy rain falls and low amounts of sunshine, especially during the months of June and July: The UK 
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Met Office reported that the average UK rainfall of 371 mm was the highest since the summer of 

1912 (Met_Office 2012b). 

 

 

1.2.7.1 Green-canopy duration 

Green-canopy duration (GCD) was measured (see Materials and Methods 1.1.15) during three 

consecutive field seasons at Church Farm using BC2F3 NILs. GCD is correlated to the agronomic trait of 

grain-filling period (GFP), which is believed to have a positive impact on yield, but GFP itself was not 

measured directly. In the season of 2009/2010 the NILs were being bulked up in H90 plots and thus 

only one replicate per stream per NIL existed, i.e. four replicates (three for Einstein NILs) per 

genotype. All lines headed relatively late and senesced quickly, which is reflected in the relatively 

short GCD (see Table 1.4). On average GCD was extended in the glaucous lines by 0.64 days (p-value: 

0.106). The differences between glaucous and non-glaucous lines were not significant in any of the 

pairs. 

 

Table 1.4: Green-canopy duration of BC2 NILs at Church Farm in 2009/2010 
Green-canopy duration was measured in BC2F3 NILs at Church Farm in 2009/2010. Glaucous lines 
showed an extended GCD by 0.64 days on average compared to the non-glaucous NILs. However, 
none of these differences were significant. sem = standard error of the mean; cv = coefficient of 
variation 

2009/2010 average [days] 
Effect 
+Iw1 

sem cv p-value 

AS- 43.3  0.48 2.21% 
0.114 

AS+ 42.3 -1.0 0.25 1.18% 

ES- 46.0  0.58 2.17% 
0.643 

ES+ 45.7 -0.3 0.33 1.26% 

HS- 44.3  0.25 1.13% 
0.207 

HS+ 43.8 -0.5 0.25 1.14% 

MS- 44.0  0.41 1.86% 
0.356 

MS+ 43.5 -0.5 0.29 1.33% 

RS- 46.5  0.65 2.78% 
0.100 

RS+ 44.8 -1.7 0.63 2.81% 

XS- 44.3  0.48 2.16% 
0.670 

XS+ 44.5 0.2 0.29 1.30% 

 

As was mentioned before the season of 2010/2011 did not yield any reliable data because of an 

historical drought during spring. The effects of the drought were so severe for all lines regardless of 

genotype that subtle changes in the microenvironment of a plot had dramatic effects on its 

performance in comparison with other plots. 
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The spring and summer of 2012 were very wet, greatly prolonging the GCD of all wheat lines. Five 

biological replicates of each stream of each NIL were analysed. All non-glaucous lines showed a 

slightly extended GCD when compared to their glaucous counterparts (Table 1.5). The GCD was not 

significantly different between individual BC2 NIL pairs. However, when comparing all glaucous and 

non-glaucous lines a significant difference could be observed. On average the non-glaucous NILs had 

a significantly longer GCD (0.87 days, p-value: 0.048) than the glaucous NILs. In the BC4 NILs however 

we could observe a significant extension of GCD in the non-glaucous NILs of Alchemy, Malacca, 

Robigus and Xi19 over their glaucous siblings. The overall effect was an increase in 1.73 days with p-

value of 0.111. 

 

Table 1.5: Green-canopy duration of BC2 and BC4 NILs at Church Farm in 2011/2012 

Green-canopy duration was measured in BC2F3 NILs as well as BC4F3 NIL at Church Farm in 

2011/2012. Overall the non-glaucous lines had a significantly extended GCD (0.87 days, p-value: 

0.048) compared to the glaucous NILs. When comparing individual pairs of NILs only a non-significant 

trend towards an extended GCD in the non-glaucous NIL could be observed. sem = standard error of 

the mean; CV = coefficient of variation 

 NIL average [days] Effect +Iw1 sem CV p-value 

BC2 AS- 73.15  0.6 3.66% 
0.102 

AS+ 74.35 1.2 0.39 2.36% 

ES- 75.8 
 

0.68 3.46% 
0.464 

ES+ 76.73 0.93 1.06 5.34% 

HS- 75.7 
 

0.4 2.35% 
0.26 

HS+ 76.35 0.65 0.41 2.38% 

MS- 69.5 
 

0.77 4.95% 
0.385 

MS+ 70.4 0.9 0.67 4.28% 

RS- 70.46 
 

0.46 3.36% 
0.128 

RS+ 71.41 0.95 0.4 2.91% 

XS- 70.12 
 

0.33 2.38% 
0.24 

XS+ 70.75 0.63 0.41 2.87% 

BC4 AS- 63.75 
 

0.3 0.80% 
0.019 

AS+ 65.2 1.45 0.4 1.30% 

ES- 72 
 

0.7 2.00% 
0.072 

ES+ 74 2 0.6 2.20% 

HS- 67 
 

0.3 1.10% 
0.407 

HS+ 67.5 0.5 0.5 1.50% 

MS- 63.8 
 

0.2 0.70% 
0.000 

MS+ 65.6 1.8 0.2 0.80% 

RS- 66.2 
 

0.7 2.20% 
0.036 

RS+ 68.67 2.47 0.3 0.80% 

XS- 62 
 

1 2.30% 
0.031 

XS+ 64.14 2.14 0.3 1.40% 
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1.2.7.2 Yield 

Yield was measured in five locations in three consecutive years. The locations included Church Farm, 

two sites run by Limagrain (different locations each year) and two sites run by RAGT (different 

locations each year). Yield trials at Church Farm were performed using all streams of the BC2 or BC4 

NILs (depending on the year) in five blocks, while only one stream of each NIL pair, but always the 

same one, was sent to the breeders for trialing in two blocks (see Materials and Methods 1.1.15). 

 

As was mentioned before, an extreme drought period during the spring of the season 2010/2011 

caused a poor development of the yield plots, especially with regards to the number of tillers (which 

was usually <2) and yield overall. The non-glaucous Alchemy and Hereward NILs yielded ~4.8% more 

than their glaucous counterparts, but the values were not significant (Table 1.6). Overall, the 

coefficient of variation for each NIL was very high, which indicates a high variability between the 

individual replicates. As the drought seemed to affect all NILs equally, the variations are most likely 

due to subtle changes in the microenvironment of each plot, e.g. soil structure, local nutrient 

content, etc. This makes it difficult to derive meaningful conclusions from this experiment.  

 

Table 1.6: Comparison of yield between six BC2 NIL pairs at Church Farm in 2010/2011 

Yield trials for six BC2F3 NIL pairs were grown in one location in the season of 2010/2011. Yield is 

shown here both as the average yield per plot for each NIL as well as a percentage using the yield of 

the glaucous NIL as a baseline (100%) and comparing the yield of the non-glaucous NIL to it. The 

coefficient of variation for each NIL and the p-value for yield comparisons within NIL pairs is given. 

NIL Location Average yield [kg] CV p-value Yield as percentage 

     AS - Church Farm 3.59 15.06% 
0.128 104.87% 

     AS + Church Farm 3.76 17.23% 

     ES - Church Farm 3.31 14.38% 
0.749 98.61% 

     ES + Church Farm 3.27 18.58% 

     HS - Church Farm 2.95 18.16% 
0.09 104.88% 

     HS + Church Farm 3.10 16.62% 

     MS - Church Farm 3.38 9.88% 
0.973 99.91% 

     MS + Church Farm 3.37 12.20% 

     RS - Church Farm 3.45 14.40% 
0.418 97.13% 

     RS + Church Farm 3.35 13.37% 

     XS - Church Farm 3.51 18.70% 
0.553 97.95% 

     XS + Church Farm 3.44 18.90% 

 

The results for the five locations for the season of 2011/2012 are shown below (Table 1.7). The 

Hereward derived non-glaucous NILs display a consistent trend of achieving a higher yield than their 

glaucous counterparts in all five locations. The size of this effect varies from 0.7% at Drinkstone to 9% 

at Ickleton, with a mean effect of 4.1% higher yield in non-glaucous than in glaucous NILs. These 
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differences in yield were only significant in two locations though (Wolverton and Church Farm, Table 

1.7). In contrast, the Einstein derived non-glaucous NILs display a consistent trend of achieving a 

lower yield than their glaucous counterparts in all four out of five locations. Yield was reduced by 

2.9% at Ickleton to 9.8% at Church Farm, with a mean effect of 3.8% lower yield in non-glaucous than 

in glaucous NILs. This reduction in yield was only significant in one location though (Dukes, Table 1.7). 

The remaining four NILs display varying effects of yield increase and decrease in different locations 

with a slightly positive but non-significant yield effect. Interestingly all non-glaucous NILs, except ES1, 

achieved high yields at Ickleton. This effect however was only significant in AS4. 

 

Table 1.7: Comparison of yield between six BC2 NIL pairs at five locations in 2011/2012 

Yield trials for six BC2F3 NIL pairs were grown in five locations in the season of 2011/2012. Yield is 

shown here as a percentage using the yield of the glaucous lines as a baseline (100%) and comparing 

the yield of the non-glaucous NIL to it. Reduced yields are highlighted red, while increases in yield are 

highlighted green. Mean effect is the average yield effect of a non-glaucous NIL over all five 

locations. Asterisks indicate significance at probability <0.05 (*). 

NIL pair Drinkstone Wolferton Dukes Ickleton Church Farm Mean effect 

Alchemy 104.1% 97.9% 97.2%   108.9% * 95.5% 100.7% 

Einstein 94.0% 105.7%    94.1% * 97.1% 90.2% 96.2% 

Hereward 100.7%    107.2% * 102.2% 109.0%   101.4% * 104.1% 

Malacca 99.5% 100.5% 102.1% 107.8% 99.0% 101.8% 

Robigus 105.8% 94.4% 103.3% 105.4% 97.4% 101.3% 

Xi19 103.8% 92.5% 103.0% 107.7% 104.0% 102.2% 

 

 

During the season of 2011/2012 the BC4 generation of NILs had been bulked up in the field and was 

ready to be sown for yield trials in 2012/2013. As in the year before the non-glaucous Hereward NILs 

displayed a positive yield trend in all locations, but the differences between glaucous and non-

glaucous NILs were not significant in any location. Contrary to the previous year, the Einstein derived 

non-glaucous NILs also displayed a positive yield trend, albeit small and not significant in any location 

(Table 1.8). The other four NILs displayed again a mixture of positive and negative yield trends, none 

of which was significant, depending on location. The exception to that is AS4 at Church Farm, where 

the non-glaucous NIL showed a significant 5.7% increase in yield. 
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Table 1.8: Comparison of yield between six BC4 NIL pairs at five locations in 2012/2013 

Yield trials for six BC4F3 NIL pairs were grown in five locations in the season of 2012/2013. Yield is 

shown here as a percentage using the yield of the glaucous lines as a baseline (100%) and comparing 

the yield of the non-glaucous NIL to it. Reduced yields are highlighted red, while increases in yield are 

highlighted green. Mean effect is the average yield effect of a non-glaucous NIL over all five 

locations. 

NIL pair Woolpit Wolferton RAGT1 RAGT2 JIC Mean effect 

Alchemy 101.69% 98.84% 101.04% 98.65% 105.70% 101.18% 

Einstein 101.28% 100.44% 112.66% 99.40% 101.76% 103.11% 

Hereward 103.74% 105.28% 106.93% 105.64% 101.63% 104.64% 

Malacca 99.31% 101.29% 100.57% 98.93% 101.05% 100.23% 

Robigus 100.77% 97.57% 100.11% 102.86% 101.40% 100.54% 

Xi19 98.82% 100.62% 92.03% 102.13% 101.35% 98.99% 

 

In summary the field trials using six BC2 and BC4 NILs displayed mixed results for the two traits in 

question, namely GCD and yield. GCD was only assessed in two years with two different results. For 

the yield trials on the other hand a positive trend was observed in the non-glaucous Hereward NILs 

as well as an overall positive trend over all NILs, with the exception of the non-glaucous Einstein NILs. 

However, it is evident that more trials need to be performed before any clear conclusions can be 

drawn. 
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1.3 Discussion 

 

The results of this chapter demonstrate the molecular effects that Iw1 has on the cuticle and the 

composition of the epicuticular wax layer. The analysis of plant surfaces using cryo-SEM shows that 

Iw1 specifically abolishes production or deposition of rod-like wax crystals onto the epicuticular wax 

layer, while platelet shaped wax crystals remain unaffected. The first type of compound has been 

associated with the presence of β-diketones, while the second one was postulated to consist mostly 

of primary alcohols (Netting and Wettstein-Knowles 1973). These initial results were substantiated 

by an extensive GC-MS analysis of cuticular waxes from different wheat lines. The analysis 

determined the composition of the cuticular waxes of glaucous and non-glaucous varieties and NILs, 

identifying 53 compounds and quantifying 26 of them. The obtained results match previous reports 

on the composition of wheat epicuticular waxes (Tulloch and Hoffman 1973, Tulloch and Hogge 

1978). While numerous quantitative changes between cuticular waxes of glaucous and non-glaucous 

lines exist, the key difference between the two is the presence of large amounts of β-diketone 

aliphatics on the surface of glaucous plants, which are absent from cuticular waxes of non-glaucous 

plants. Instead cuticular waxes from flag leaf blades of non-glaucous plants consist mainly of C28POH, 

a compound which is also highly abundant in cuticular waxes of glaucous flag leaf blades. These 

results are in accordance with previous studies, which reported loss of β-diketones in various non-

glaucous plant species (Hall et al. 1965, Netting and Wettstein-Knowles 1973, Tulloch and Hoffman 

1973). In addition, there is a significant increase in the amount of n-alkanes and C24POH in cuticular 

waxes of non-glaucous plants. 

 

The cuticular waxes of the exposed part of the peduncle from both glaucous and non-glaucous plants 

lacked C28POH and instead showed a high presence of C24POH and C29 primary alkanes. Again, 

cuticular waxes of non-glaucous plants showed a significant increase in these compounds over 

cuticular waxes from glaucous plants, while the total wax load was not changed significantly. This 

consistent increase in C24POH and n-alkanes in Iw1 non-glaucous lines raises the question whether it 

is directly connected with the absence of β-diketone aliphatics: This depends on the point in the 

biosynthetic pathway that is blocked in Iw1 lines. The biosynthetic pathways of C24POH, n-alkanes 

and β-diketone aliphatics diverges very early (Figure 1.2A, B). The precursors for C24POH and n-

alkanes are long carbon chain molecules that are further modified in the case of C24POH (Figure 

1.2A). In contrast, short carbon chain molecules serve as precursors for the β-diketone biosynthetic 

pathway, which are modified to form triketide-CoA intermediates that are subsequently elongated, 

thus yielding a molecule with mid-chain β-diketo groups (e.g. 15,17-β-diketo-C32, Figure 1.2B). The 

presence of alkylresorcinols (ARs) in non-glaucous cuticular waxes suggests that the precursor 
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molecule common to ARs and β-diketone aliphatics is not affected by Iw1. This would argue against a 

direct rechanneling of carbon chains from the β-diketone pathway to the n-alkane/primary alcohol 

pathway. However, the pkKCS that forms the triketide-CoA molecule is different from the pkKCS that 

forms the tetraketide intermediate that is subsequently modified into ARs (Figure 1.2B), which 

suggests that Iw1 affects the formation of triketide-CoA intermediates. 

 

The deposition of wax compounds unto the plant surface appears to be a continuous process. 

Cuticular waxes of early leaf samples that were collected before the switch to the reproductive phase 

consisted solely of C28POH. The composition of waxes became much more complex at anthesis with 

quantitative and qualitative differences in wax composition between flag leaf blades and peduncles 

as well as between glaucous and non-glaucous plants. Wax production and deposition continued 

until at least 42 days post anthesis (last data point collected) when plants were slowly starting to 

senesce. This demonstrates that wheat plants continue to invest into the production and 

maintenance of their cuticular waxes throughout their growth cycle. 

 

The purpose of the cuticle and the cuticular waxes is to reduce the amount of water lost passively 

(outside of the photosynthetic cycle). This is accomplished by (i) forming a passive barrier (cuticle and 

embedded cuticular waxes) and (ii) by reflecting a portion of the incoming light and thus cooling the 

plant (epicuticular waxes). We have measured the thickness of the cuticle via transmission electron 

microscopy and have not found significant differences between our glaucous and non-glaucous 

germplasm. However, it has been argued that the thickness of the cuticle is not positively related to 

its ability to prevent passive water loss (Riederer and Schreiber 2001), which is why in addition we 

also analysed the cuticular conductance of our germplasm. While some of the analysed non-glaucous 

plants had a higher cuticular conductance than their glaucous counterparts in some locations, no 

significant differences could be detected overall. The observed effects were most likely due to 

specific genotype x environment interactions that were not related with the non-glaucous 

phenotype. The lack of a difference in cuticular conductance between glaucous and non-glaucous 

plants contrasts with previous scientific dogma that glaucousness reduces cuticular conductance 

(Blum 2005). 

 

Our analysis of cuticular conductance was further substantiated by our comparison of carbon isotope 

discrimination in glaucous and non-glaucous NILs. The value for Δ can be used as a surrogate 

measurement for the ratio of the intercellular partial pressure of CO2 to the ambient partial pressure 

of CO2, which in turn allows us to predict differences in water-use efficiency (WUE) between samples 

(Farquhar et al. 1989). No significant differences could be observed between glaucous and non-



70 
 

glaucous NILs in two consecutive years. However, the absolute values did differ between years for 

flag leaf and grain samples reflecting the difference in environmental conditions. A severe drought 

dominated most of the spring and summer of 2011 forcing the plants to restrict stomata aperture 

and preventing them from discriminating between C12 and C13. In contrast, the summer of 2012 was 

the wettest summer on record, enabling plants to increase the aperture size of their stomata and 

discriminate against C13. While the absolute values differed significantly between years (p<0.001) no 

difference was detected between glaucous and non-glaucous NILs. This contrasts with previously 

obtained results where glaucousness has been linked to an increase in WUE (Johnson et al. 1983, 

Richards et al. 1986, Premachandra et al. 1994). However, these studies were performed under 

Mediterranean conditions so it is not entirely surprising to discover that the results are conflictive. 

 

We have also measured the reflectance and transmission properties of glaucous and non-glaucous 

germplasm and discovered a consistent reduction in reflectance of PAR in non-glaucous material. 

This is in agreement with previous studies (Johnson et al. 1983, Febrero et al. 1998). The extent of 

this reduction in reflectance of PAR varied between genotypes, field locations and field seasons, but 

the difference was always significant, with the exception of AS4 at Docking in 2011. Surprisingly, it 

appears that flag leaf blades of at least the non-glaucous Alchemy NILs transmit ~2% more light than 

the glaucous NILs. This experiment needs to be repeated before any definitive conclusions can be 

drawn, but it exemplifies the potential benefits of non-glaucousness for non-Mediterranean 

environments. By reflecting less of the (sparse) incoming radiation and instead transmitting excess 

light down into the canopy to other photosynthetically active tissue the amount of carbon fixed in a 

given period of time could be increased. However, whether this would have a direct impact on yield 

is unclear at this stage as yield is a very complex trait. 

 

We have assessed yield in several locations over consecutive years using BC2 (2010-2011 and 2011-

2012) and BC4 (2012-2013) NILs. In 2011 an extreme drought period during the spring resulted in 

very poor yields overall. The yield data for this year shows a high coefficient of variation, which 

indicates a high variability of the yield values, most likely due to differences in the microclimate of 

individual plots. This makes it difficult to conclude anything from the data. In 2012 and 2013, a 

positive yield effect for the non-glaucous Hereward NILs over all locations could be observed. The 

effect varied between the different years and locations from 0.7% to 9%, with an average yield 

increase of 4.37%, which is very close to the yield effect observed in the Shango x Shamrock DH lines 

(Simmonds et al. 2008). In contrast the non-glaucous Einstein NILs showed a variation in yield from -

10% to +12.66% depending on the year and location, with a decrease in yield by -0.34% on average. 

Out of the six winter wheat varieties used to create the NILs Hereward was the lowest yielding one 
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(HGCA 2006). In contrast, out of the six varieties used Einstein had the second highest yield after 

Alchemy, yielding ~12% more than Hereward (HGCA 2006), and has recently achieved a world record 

in New Zealand with a yield of 15.637 t/ha (Limagrain 2011). This leads to the hypothesis that while 

Hereward might benefit from the introduction of the genetic segment containing Iw1 in terms of 

yield, that same introgression might not affect, or even interact negatively with, the high yielding set 

of alleles in Einstein. However, Malacca has a similar yield to Hereward and has not shown such a 

consistent positive effect. This highlights the complexity of the yield trait, which is controlled by a 

multitude of genetic and environmental factors. Since the Hereward NILs responded positively to the 

Iw1 introgression in terms of yield we will pursue the underlying genetic locus using recombinant 

lines in which the 20cM introgression has been broken up into smaller pieces. This will allow us to 

fine-map the yield locus and determine whether it coincides with the Iw1 locus. 

 

We have measured the green-canopy duration (GCD), which serves as an approximation for the 

grain-filling period (GFP); GFP is commonly associated with yield by farmers. We did not observe a 

significant difference in GCD over two different years in any of the six BC2 NIL pairs. In these two 

years the weather had been very different, severely reducing the GCD across all NILs in 2009/2010, 

while increasing GCD in all NILs in 2011/2012. However, we could observe a significant increase in 

GCD in four BC4 NIL pairs in 2011/2012 with an average increase of GCD of ~1.97 days in the non-

glaucous NILs. This value is similar to the effect observed in the Shango x Shamrock DH lines 

(Simmonds et al. 2008). This also highlights the importance of highly isogenic germplasm for 

comparing physiological and agronomic traits. The BC2 NILs used in the present study were ~87.5% 

isogenic, while the BC4 NILs were 96.9% isogenic. This higher similarity reduces the variability of the 

phenotype, thus allowing detection of differences that would be otherwise masked by environmental 

factors. Likewise, the high isogenicity ensures that any effects observed are most likely caused by the 

genetic region under scrutiny. Thus, although the generation of NILs requires a lot of time and effort, 

the quality and reliability of any obtained results will compensate for that effort. Furthermore, it is 

imperative to create NILs as highly isogenic as possible to increase the chances of identifying 

significant effects. 

 

In summary, the physiological effects of Iw1 and thus non-glaucousness on wheat in a UK 

environment are not consistent with previous reports. Based on our results we can hypothesise that 

non-glaucousness is a beneficial trait in UK conditions. By reflecting less of the incoming light the 

plant surface heats up more. As the optimal temperature for photosynthesis in wheat is ~25°C (Kobza 

and Edwards 1987), this might have a beneficial impact on RUBISCO activity with regards to the 

relatively low average temperatures in the summer. With possibly more light being transmitted 
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through the canopy the potential for an enhanced photosynthetic rate is further increased. At the 

same time non-glaucous plants do not have a higher cuticular conductance or reduced WUE 

compared to glaucous plants. This was also recognized by the UK breeding community, where 

recently a non-glaucous winter wheat cultivar (Crusoe) was accepted into the HGCA recommended 

list for its high quality grain, good yield and good disease resistance. This cultivar is a descendant of 

the variety Shamrock and thus also carries Iw1. 

 

Contrary to what the name “Inhibitor of Wax 1” suggests, it is evident that only a discrete type of 

wax is actually affected by this gene. The same observation has been made in a class of barley 

mutants, called eceriferum, which is Latin for “bearing no wax”, where β-diketones are reduced or 

completely abolished, depending on the specific mutant, but other types of wax are still present 

(Wettstein-Knowles and Netting 1976). So while glaucousness can be attributed to the presence of β-

diketones non-glaucousness does not equal non-waxiness. This highlights the need for a more formal 

phenotypic description of “glossy”, “waxless” and “highly waxy” varieties, cultivars and land races in 

order to postulate accurate scientific theories about the interaction of a plant with its environment. 
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Chapter 2 Genetic and physical mapping of the Iw1 locus 

 

Introduction 

In the following paragraphs an overview of genetic loci known to be involved in production or 

inhibition of glaucousness in wheat will be given. Numerous loci have been reported to control 

glaucousness to various extents and in various plant organs. 

 

Non-domesticated grass species, like Aegilops speltoides, Aegilops tauschii and Triticum turgidum 

ssp. dicoccoides (TTD), show a huge range of variation in terms of glaucousness. This variation 

however was not transferred into domesticated species, like Triticum aestivum (common wheat; 

glaucous) or Triticum monococcum subsp. monococcum (Einkorn; non-glaucous), where the level of 

glaucousness is almost completely fixed and there is only little variation. 

 

Glaucousness on a whole plant level in tetraploid wheat is controlled by two distinct loci situated at 

the distal end of the short arm of chromosome 2B (2BS). The first one, designated W1, is a dominant 

gene that promotes glaucousness on all aerial parts of a plant, e.g. the leaf sheath, peduncle, spike, 

etc. (Allan and Vogel 1960, Tsunewaki 1964). Plants lacking W1 or having two copies of a non-

functional version of W1, i.e. genotype w1/w1, are non-glaucous. In contrast, the second locus, 

called Inhibitor of Wax 1 (Iw1), is a dominant inhibitor of glaucousness on all plant aerial surfaces 

(Jensen and Driscoll 1962, Driscoll and Jensen 1964). It is also dominant over W1, i.e. the presence of 

both genes will result in a non-glaucous plant due to the actions of Iw1. It was suggested that W1 and 

Iw1 are allelic, but it was shown that these two loci can recombine, which proves that although they 

are very close to each other they are also distinct from one another (Tsunewaki and Ebana 1999). 

 

Homoeologues of W1 and Iw1, called W2 and Iw2, are present on the distal end of the short arm of 

chromosome 2D (2DS) in a homoeologous position (Tsunewaki 1966). These homoeologues loci work 

in the same way as their 2B counterparts: W2 promotes glaucousness, while Iw2 is dominant over 

W2 (and Iw1) and causes a non-glaucous phenotype. In hexaploid wheat a single copy of either W1 

or W2 is sufficient to elicit a whole-plant glaucous phenotype. Likewise, a single copy of either Iw1 or 

Iw2 is sufficient to repress the action of either or both W1 and W2 and thus cause a non-glaucous 

phenotype (Tsunewaki and Ebana 1999). Functional copies of the W1 and W2 genes are present in 

different combinations in modern wheat germplasm. In contrast the Iw1 and Iw2 loci are non-

functional or perhaps even absent from modern wheat germplasm and only exist in non-

domesticated wheat species (Tsunewaki and Ebana 1999). Exceptions are the synthetic hexaploid 

wheat lines and their derivatives generated by CIMMYT and at the National Institute of Agricultural 
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Botany (NIAB). Most of the almost 400 Aegilops tauschii accessions at NIAB used to make synthetic 

hexaploid wheat are non-glaucous. Only a single accession was found to be glaucous, which indicated 

that most of these accessions carry a functional copy of Iw2 or lack W2 and are thus non-glaucous. 

 

In addition to these major loci, a number of genes controlling glaucousness on a plant organ level 

have been described. 

 

Three loci were reported to affect spike glaucousness. The first one was found at the distal end of the 

short arm of chromosome 1B in a set of chromosome substitution lines. In these lines, chromosome 

1B of durum wheat cultivar Langdon was replaced by chromosome 1B from a TTD accession. The 

non-waxy spike phenotype was noted to be dominant over the waxy spike phenotype, hence the 

locus was named Iw3, in accordance with the two other known inhibitors of wax, Iw1 and Iw2 

(Dubcovsky et al. 1997). The second locus, named WS, was described a few years later by another 

research group who utilized it as a morphological marker in their mapping project (Peng et al. 2000). 

This marker was also mapped to the distal end of the short arm of chromosome 1B (1BS) in a cross 

between durum wheat cultivar Langdon and TTD accession Hermon H52, but no mention was made 

whether the underlying gene is dominant. It is not known whether Iw3 and 1BS WS are allelic or not. 

The third locus, also named WS and also used as a morphological marker for spike glaucousness, 

mapped to the distal end of the short arm of chromosome 1A (1AS) in a population derived from the 

durum wheat cultivars Ciccio and Svevo (Gadaleta et al. 2009). No further mention was made on the 

properties and effects of the 1AS WS locus. Given the similar location it is likely that 1AS WS and 1BS 

WS are homoeologous loci. 

 

Recently, a novel QTL responsible for quantitative variation in flag leaf glaucousness was detected on 

chromosome 3A in a bread wheat doubled-haploid population of Kukri and RAC875 (Bennett et al. 

2012). The QTL was named QW.aww-3A and was shown to be causal for up to 52% of the variation in 

flag leaf glaucousness, i.e. plants carrying the QTL had visibly more wax on their flag leaves than 

plants without it. In addition, two studies using the ‘International Triticeae Mapping Initiative’ 

reference population identified QTL for waxiness on 1DL, 2DL and 4AL (Börner et al. 2002) and on 1A, 

1D, 2B, 2D, 6A, 7A and 7D (Kulwal et al. 2003). No mention was made about their mode of action 

(dominant or recessive), which organ(s) were affected or how big these effect were. 

 

Loci controlling glaucousness were also discovered in other grass and cereal species. A whole 

plethora of loci was detected in Hordeum vulgare (barley) by way of mutagenesis: 1,580 mutants 

affecting epicuticular waxes in barley have been described (Lundqvist and Lundqvist 1988). These so-
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called eceriferum (cer) mutants have been localized into 79 different loci, which in turn were ordered 

into five categories: Leaf blade mutants (25 loci), spike mutants (23 loci), spike and leaf sheath 

mutants (8 loci), spike, leaf blade and leaf sheath mutants (4 loci) and partial mutants (19 loci) 

(Lundqvist and Lundqvist 1988). The loci underlying the cer mutations are also known as glossy 

sheath (gsh). The three mutants cer-c, -q and –u inhibit different steps leading to the production of β-

diketones, hydroxy-β-diketones and esterified alkan-2-ols. Furthermore, these three mutants map to 

barley chromosome arm 2HS and are completely linked, even after screening 26,933 gametes (von 

Wettstein-Knowles and Søgaard 1980), which raises the question whether cer-cqu (gsh6) is a gene 

cluster or a multifunctional gene. Except for one mutation all cer-cqu mutations are recessive (King 

and von Wettstein-Knowles 2000), which together with its location suggests that the cer-cqu locus is 

the barley homolog of W1. Only one cer locus shows a consistent dominant inhibition of 

glaucousness as is seen in Iw1; all 18 cer-yy mutants exhibit a dominant inhibition of spike 

glaucousness, but these mutations map to barley chromosome 1H, making it unlikely that this locus 

is the barley homolog of Iw1 (Lundqvist and Wettstein-Knowles 1982). 

 

Only a single locus controlling glaucous was described in Secale cereale (rye). In a cross between the 

glaucous inbred line N6 and the non-glaucous line SI a mutation of the waxless plant 1 (wa1) locus 

was mapped to the distal end of the long arm of rye chromosome 7 (7RL) (Korzun et al. 1997). The 

wa1 mutation is recessive and it was proposed in the same study that the wa1 is homologous to the 

w1 and w2, as these are also recessive mutants leading to non-glaucousness. 

 

At least 18 loci have been found in maize that alter the composition and quantity of cuticular waxes 

on leaves of young maize (Zea mays) seedlings (Neuffer et al. 1997). Note that leaves of young maize 

seedlings are glaucous, while leaves of adult plants are glossy (non-glaucous), which is exactly the 

opposite in wheat and barley where young plants are glossy and become glaucous after the switch to 

the reproductive phase. A number of the genes underlying the so-called glossy loci have been cloned 

in maize: The Glossy 1 (GL1) gene encodes a transmembrane protein with desaturase/hydroxylase 

domains (Sturaro et al. 2005), Glossy 2 (GL2) encodes a protein of the omega-hydroxypalmitate O-

feruloyl transferase superfamily (Tacke et al. 1995), Glossy 8 (GL8) probably encodes a β-ketoacyl 

reductase (Xu et al. 1997), while Glossy 15 (GL15) encodes a member of the Apetala2 transcription 

factor family (Moose and Sisco 1996). 

 

The number and diversity of loci involved in controlling glaucousness highlights the complexity of the 

underlying genetic network. But one part of this genetic network seems to be unique to wheat, the 

presence of dominant inhibitors of glaucousness. None of the described loci in barley, rye or maize 
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fits all the criteria that a true homolog of Iw1 or Iw2 should fulfil. This raises the question whether 

Iw1 and Iw2 are truly unique to wheat, i.e. whether these genes were acquired after the divergence 

from the other grass species. An alternative hypothesis is that a gene common between grass species 

acquired a new function in wheat, a process known as neo-functionalization, which can occur 

frequently in wheat (Teshima and Innan 2008, Bartoš et al. 2012). The apparent absence of a 

homologous locus from other grass species might negatively affect the identification and validation 

process of Iw1, but at the same time it highlights the importance of crop research. Genes of interest 

cannot always be cloned in genetically simple model species, but instead need to be pursued in the 

organism of interest. Prominent examples of this include the domestication locus Q (Faris et al. 

2003), the chromosome pairing locus Ph1 (Griffiths et al. 2006), the grain quality controlling locus 

GPC-B1 (Uauy et al. 2006) or disease resistance genes like mlo (Büschges et al. 1997) or Lr21 (Huang 

et al. 2003) to name a few. 

 

Here, we have performed a large recombinant screen followed by the initiation of a physical map to 

isolate the highly interesting gene Iw1 via a positional cloning approach. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



77 
 

2.1 Materials and Methods 

2.1.1 Plant material 

Shango, Shamrock and the Shango x Shamrock DH population have been described in Chapter 1.1.1. 

Shamrock was used as pollen donor for a cross to Shango to generate a large F2 mapping population. 

TTD140 is a non-glaucous Triticum turgidum ssp. dicoccoides accession from Israel that was shown to 

carry Iw1 (Rong et al. 2000). Langdon (LDN; Triticum turgidum ssp. durum) is a glaucous durum wheat 

cultivar. TTD140 was used as pollen donor for a cross to Langdon to obtain several hundred F2 plants. 

 

2.1.2 96 well DNA extraction from cereal leaves 

The procedure is adapted from Shiaoman Chao and Daryl Somers (Chao and Somers). Briefly, it 

consists of the following steps with catalogue numbers included: 

 

1. Add a 3 mm Tungsten Carbide bead (Qiagen, #69997) to each well of a 96-well 1.2 mL 

storage plate (ABgene, #AB-0564) using a 96 well 3 mm bead dispenser (Qiagen, #69973). 

2. Add 100 mg leaf tissue to each well. 

3. Lyophilise samples in plate overnight. 

4. Preheat extraction buffer (0.1M Tris-HCl pH 7.5, 0.05M EDTA pH 8.0, 1.25% SDS) to 65°C. 

5. Seal plate with a 96 Cap Sealing Mat (Abgene, #AB0674). Transfer plate to Genogrinder 2000 

and disrupt tissue at 800-1,200 rpm for 3-5 min. 

6. Add 500 μL of extraction buffer to each well, seal the plates and shake thoroughly. Incubate 

the plate at 65°C for 30-60 min. 

7. Place the plates in the fridge to cool them down to room temperature (about 15 min) before 

adding 250 μL 6M ammonium acetate, which is stored at 4°C. Shake vigorously to mix in the 

ammonium acetate and then leave to stand for 15 min in the fridge. 

8. Centrifuge the plate for 15 min at 5,000 rpm in a Sigma 4-15 centrifuge to collect the 

precipitated proteins and plant tissue. 

9. Recover 600 μL of the supernatant into new storage plate containing 360 μL of propan-2-ol in 

each well. Mix thoroughly and allow the DNA to precipitate for 5 min. 

10. Centrifuge the samples for 15 min at 5,000 rpm in order to pellet the DNA and then tip off 

the supernatant. Allow the remaining fluid to drain off the DNA pellet by inverting the tubes 

onto a piece of paper towel. 

11. Wash the pellet in 500 μL of 70% ethanol. 

12. Centrifuge the plate for 15 min at 5,000 rpm and discard the supernatant. 

13. Resuspend the pellet in 100 μL of ddH2O and vortex plate. 

14. Place the plate at 65°C for 20 min and vortex again afterwards. 
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15. Spin down the un-dissolved cellular debris by centrifuging the plate for 20 min at 5,000 rpm. 

16. Store DNA at 4°C. 

 

For smaller number of samples, the same protocol was applied but using 1.5 mL Eppendorf tubes 

instead of 96-well plates. 

 

2.1.3 Polymerase chain reaction (PCR) 

Unless otherwise stated, polymerase chain reaction (PCR) was performed using a standard recipe and 

protocol: 

 

PCR recipe: 

Template    50 ng 

Forward Primer   0.5 µL of a 10 µM working stock 

Reverse Primer   0.5 µL of a 10 µM working stock 

5x Promega Reaction Buffer 3 µL 

dNTPs    0.3 µL of 10 mM stock (0.2 mM final concentration) 

MgCl2    1.2 µL of 25 mM stock (2 mM final concentration) 

Taq     0.07 µL 

ddH2O    fill up to total reaction volume of 15 µL 

 

PCR protocol: 

Initial denaturation   94°C for 2 min 

Number of cycles   40 cycles 

Denaturation   94°C for 15 sec 

Annealing    60°C for 20 sec 

Elongation    72°C for X sec (60 sec/1 kb product size) 

Final Elongation   72°C for 2 min 

Store    16°C forever 

 

2.1.4 PCR on bacterial colonies 

Bacterial colonies are picked from LB plates using standard pipette tips. The colonies are used to 

inoculate a so-called master (LB agaorse + 50 µg/mL Carbenicillin) plate and then dipped into a tube 

containing 50 µL of ddH2O. The colonies on the master plate are allowed to grow at 37°C overnight. 

The water containing some of the bacterial colony is used as a template for standard PCR. Positive 

clones can be picked from the master plate on the next day. 

 

2.1.5 DNA sequencing using BigDye 

This protocol uses BigDye Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems) to prepare DNA 

samples for Sanger sequencing. The protocol includes the following steps: 



79 
 

1. Measure DNA concentration of the samples to be sequenced. 

2. Recommended amounts are: 

100-200 ng of standard cloning plasmids (pBluescript, pGemT, etc.) 

500 ng of binary vector 

50 ng of PCR product of 1 kb length; for products of different lengths calculate accordingly 

3. BigDye recipe: 

Template   X µL DNA (see above for recommended amounts) 

5x BigDye sequencing buffer 1.5 µL 

Primer    3.5 µL (1 µM concentration) 

BigDye reagent   1 µL 

ddH2O    4-X µL 

4. PCR protocol: 

Initial denaturation  94°C for 2 min 

Number of cycles  26 cycles 

Denaturation   94°C for 10 sec 

Annealing   55°C for 30 sec 

Elongation   60°C for 4 min 

Store    16°C forever 

5. Submit samples to TGAC for sequencing. 

 

2.1.6 PAGE for SSCP products 

 

Products of single-strand conformation polymorphism (SSCP) markers were visualized using 

polyarcylamide gel electrophoresis (PAGE). The reagents, solutions and steps are outlined below: 

 

Reagents: 

Gel solution mix for one gel: 

MDE gel solution (Cambrex Bio Science) 16.5 mL 

TTE Buffer (National Diagnostics)  2 mL 

50% glycerol solution    12 mL 

ddH2O      35 mL 

 

To polymerise the gel add: 

10% ammonium persulfate (Sigma)  400 µL 

TEMED (Sigma)     36 µL 

 

Denaturing loading dye: 

Formamide     98 mL 

EDTA (0.5M, pH 8.0)    0.4 mL 

Bromophenol Blue    20 mg 



80 
 

Xylene Cyanol FF    20 mg 

 

1x Running buffer: 

20xTTE      50 mL 

ddH2O      950 mL 

 

Staining solutions: 

Fixer:  Mix 200 mL of 10x acetic acid with 1,800 mL of distilled water. 

Silver stain: Add 12 mL Silver nitrate solution (1N) and 3 mL formaldehyde (40%) to 2 L of distilled 

water (this solution can be used 10 times). 

Developer: Dissolve 60 g Sodium carbonate (anhydrous) in 2 L ddH2O, chill to 5°C in cold room. Just 

before use add 3 mL formaldehyde and 300 μL Sodium thiosulphate. 

 

1. Clean large glass plate with Liquinox (Sigma) and water. Rinse and dry using 100% Ethanol. 

Apply approximately 100 μL Repelcote (Fisher Scientific) all over the plate with blue roll. 

Allow this to dry a few minutes, then wipe with more Ethanol and dry. 

2. Clean small glass plate with Liquinox and water. Rinse and dry using 100% Ethanol. Apply 30 

μL Bind Silane (GE Healthcare), spread all over plate with blue roll. Allow to dry, rinse with 

100% Ethanol twice and dry. 

3. Ensure spacers are clean and dry. Align them on the edges of large plate. Place the small 

plate on top and re-align. Ensure there are no spaces between the plate edge and the sponge 

on the spacers. Secure base of plate sandwich with bulldog clips. 

4. Invert mixture gently; pour between plates using a syringe or small plastic squeezy bottle. 

Insert clean dry comb so that teeth lie flush to the edge of large glass plate. Secure edges and 

top of plate with bulldog clips. Allow at least 60 min for polymerisation. 

5. Remove comb, clean to remove all bits of gel. Clean up gel plates with water. Place gel in gel 

rig and secure. Pour cold running buffer into top and bottom reservoirs. Check for leaks. 

There is no need to pre-run the gel. 

6. Prepare PCR samples. Add an equal volume of formamide dye to samples (for 100 well 

combs use 4 μL each). Denature samples in PCR machine for 3 min, and then plunge into an 

ice bath (mixture of ice and water). 

7. Flush out any bubbles or bits of gel from between the plates using a plastic pipette (any bits 

of gel will prevent you loading your samples into the wells). Replace comb, teeth down and 

very carefully so that the points of the teeth are just into the gel. Load samples. Run gel at a 

maximum of 6W overnight at 5°C until the light blue dye (Xylene Cyanol FF) has just run to 

the bottom of the gel. 



81 
 

8. Remove gel from rig. Separate the glass plates using a plastic wedge. Place small glass plate 

with bound gel in grey box. Add Fixer (in fume hood) and place on the shaker for 30 min. 

9. Tip Fixer carefully back into container. Wash gel with distilled water for 15 min until “greasy” 

look disappears, drain and add Silverstain to gel. Shake for 30 min. 

10. Prepare your chilled Developer by adding formaldehyde and sodium thiosulphate. Add 

distilled water to another grey box and set aside. 

11. Lower the gel into the water and agitate for about 6 sec. Drain gel quickly and then lower 

into the Developer. 

12. Agitate the gel in the Developer and stop the reaction by adding the Fixer when the bands 

are clear. Wash gel in water for at least 5 min to remove sodium carbonate. Leave gel to dry. 

13. When dry expose to duplicating film or scan. 

 

2.1.7 KASPar genotyping system 

Unless otherwise stated, KASPar assays were performed using a standard recipe and protocol: 

 

PCR recipe: 

Template    10-20 ng 

Primer mix    0.07 µL 

2x V4 KASPar mix   2.43 µL 

ddH2O    fill up to total reaction volume of 5 µL 

 

PCR protocol: 

Hotstart    95°C for 15 min 

Number of cycles   10 cycles 

Denaturation   95°C for 20 sec 

Touchdown (-1°C per cycle)  65°C for 25 sec 

Number of cycles   30 cycles 

Denaturation   95°C for 10 sec 

Annealing    57°C for 60 sec 

Store    16°C forever 

 

KASPar amplicons are usually smaller than 120 bp and require no extension step in the PCR protocol. 

384-well sample plates (Cat. No. 04729749001, Roche Diagnostics) were read on a Roche Lightcycler® 

II 480. Fluorescence was detected at ambient temperature (20-25°C; RAMP speed 0.05°C per s) with 

four detection steps per °C. Additional amplification cycles (usually five to ten) were applied if the 

signature genotyping groups had not formed after the initial amplification. Data analysis was 

performed manually using the inbuilt Roche Lightcycler® 480 software (Version 1.50.39). 
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2.1.8 Subcloning of PCR amplicons 

PCR products were run on an agarose gel to determine size and intensity and thus correct 

amplification. Bands of desired size were excised under UV light with a razor blade, trying to 

minimize exposure time of bands to UV light. PCR products were recovered from the gel fragments 

by using QIAquick Gel Extraction Kit (Qiagen) and their concentration measured afterwards (Implen 

Nanophotometer). The PCR products were then ligated into pGEM-T vector (Promega) using T4 DNA 

ligase (NEB) at 4°C overnight. 

 

Ligation recipe: 

2X Rapid Ligation Buffer, T4 DNA Ligase  5 μL 

pGEM®-T Vector (50 ng)    0.5 μL 

PCR product (insert:vector molar ratio 3:1) X μL* 

T4 DNA Ligase (3 Weiss units/μL)   1 μL 

Nuclease-free water to a final volume of  10 μL 

 

 

 

The ligation products were transformed into chemically competent E.coli DH5α cells (Invitrogen) 

according to the manufacturer’s protocol. The transformed cells were streaked onto LB Agar plates 

containing 50 µg/mL Carbenicillin and incubated over night at 37°C. 

 

2.1.9 Annotation of wheat genomic DNA 

Genomic sequences of wheat were annotated in a two-step procedure: First, transposable elements 

(TEs) were annotated using TREP (Matthews et al. 2008) and NCBI databases using the default 

settings. Target site duplications were annotated where possible. The orientation and similarity 

scores for the TEs were noted down to allow the orientation of contigs based on TE homology. In the 

second step, the non-repetitive sequences were used to predict open reading frames (ORFs) using 

FGENESH (Salamov and Solovyev 2000) and BLASTX (States and Gish 1994). For FGENESH, “wheat” 

was selected as target organism. Otherwise, default settings were used for both programs. 

 

 

2.1.10 Screening of TTD140/RSL65 BAC library for positive clones by PCR 

The 2D-pools of a BAC library were screened using standard PCR (Materials and Methods 2.1.3) and 

the PCR products were visualized on a 1.5% agarose gel. Positive samples were noted down and the 

1D-pools responsible for the positive signal were screened again by PCR. PCR products were 
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extracted from the agarose gel and purified using QIAquick Gel Extraction Kit (Qiagen, Cat no. 28704) 

and then sequenced (Materials and Methods 2.1.5). Positive clones were picked and streaked out 

unto LB agarose plates containing 17 µg/mL Chloramphenicol for selection. Individual clones were 

picked and screened by colony PCR (using 17 µg/mL Chloramphenicol for the master plate). A single 

positive clone was used to inoculate a 2 mL starter culture (LB + 17 µg/mL Chloramphenicol) and 

incubated over night at 37°C. The starter culture was then used to inoculate 100 mL of LB + 17 µg/mL 

Chloramphenicol and grown at 37°C until it reached an optical density (OD) of 600. The bacteria were 

harvested and plasmid DNA was extracted using QIAGEN Plasmid Midi Kit (Qiagen, Cat no. 12143). 

 

2.1.11 BAC end sequencing (BES) 

BAC end sequencing is a variation of the standard Sanger sequencing method (Materials and 

Methods 2.1.5). A BAC is small in size compared to an entire genome, thus the number of DNA 

molecules per µL is very high. This allows for direct sequencing of BAC DNA using a single primer, 

with no prior amplification needed. The TTD140 and RSL65 BAC libraries use pIndigo-BAC-5 as vector, 

which has a T7-promotor on the left side of the multiple cloning site (MCS) and a M13r-promotor on 

the right side of the MCS. The recipe and protocol are as follows. 

 

BigDye recipe: 

Template   2 µL BAC DNA 

5x BigDye sequencing buffer 2 µL 

Primer     1 µL (10µM concentration) 

BigDye reagent   1 µL 

ddH2O    4 µL 

 

PCR protocol: 

Initial denaturation  94°C for 2 min 

Number of cycles  80 cycles 

Denaturation   94°C for 10 sec 

Annealing   55°C for 30 sec 

Elongation   60°C for 4 min 

Store    16°C forever 

 

 

2.1.12 Screening of TTD140/RSL65 BAC library for positive clones by radioactive hybridization 

A non-repetitive PCR product of approximately 500 bp was amplified and purified via an agarose gel. 

The probe was then send on dry ice to CNRGV in Toulouse, where it was radioactively labeled and 

hybridized to a set of six filter membranes carrying ~55,000 clones each. A film was exposed to each 
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membrane, developed and digitalized. The position and identity of every BAC on each membrane is 

stored digitally, thus allowing for a quick identification of positive clones. 

 

2.1.13 Sequencing of BACs using Roche 454 or Illumina MiSeq 

BACs were sequenced at The Genome Analysis Centre (TGAC) using either Roche 454 or Illumina 

MiSeq technology. High quality BAC DNA (Materials and Methods 2.1.10) was supplied to TGAC, who 

prepared the sequencing library: 350 bp paired-end libraries for Roche 454 sequencing; ~175 bp 

paired end libraries resulting in ~350 bp long pseudo-reads for the MiSeq.  The libraries were 

multiplexed and run on a single 454/MiSeq lane. 

 

2.1.14 BAC assembly parameters 

The obtained reads of a sequenced BAC were mapped to the pIndigo-BAC-5 vector sequence, as well 

as to the E. coli genome to remove unwanted contaminants: Usually 15% of reads (sometimes more) 

would map to these sequences. The unmapped reads were used for a De-novo assembly using CLC 

genomic software (www.clcbio.com). De-novo assembly criteria were kept strict with reads having to 

be 95% similar over 75% of their length in order to be assembled together. These settings usually 

produced good results in terms of stringency, contig size and number. Stricter settings needed to be 

applied to BAC 13N10 though, which contained a lot of small multicopy repeats (99% similarity over 

75% of read length). 

 

 

 

 

 

 

 

 

 

 

  

http://www.clcbio.com/
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2.2 Results 

2.2.1 Previous work 

This section presents previous work by James Simmonds, a senior RA in the Uauy lab. The data was 

acquired prior to the start of my PhD and formed the foundation for all my subsequent work. 

 

2.2.1.1 Vir and Iw1 are identical loci 

In a previous study on a wheat doubled-haploid population a locus causing non-glaucousness was 

mapped to the distal end of the short arm of chromosome 2B (Simmonds et al. 2008). This locus was 

named Viridescence (Vir) because of the bright green colour of Vir plants. The map location coincides 

with the already mentioned Inhibitor of Wax 1 (Iw1) locus, a dominant gene causing non-

glaucousness. To determine whether the two loci are identical, the non-glaucous parent of the 

doubled-haploid population, Shamrock, was crossed to Shango and six other elite UK winter wheat 

varieties (Alchemy, Einstein, Hereward, Malacca, Robigus and Xi19; Material and Methods 2.1.1). The 

F1 plants from all crosses uniformly displayed a non-glaucous phenotype and the F2 progeny of all 

seven lines segregated 3:1 for non-glaucous to glaucous phenotypes, thus strongly supporting the 

hypothesis that Vir and Iw1 are identical (Table 2.1). 

 

 

Table 2.1: Phenotypic segregation in F2 progeny of crosses with Shamrock 
Seven glaucous winter wheat cultivars have been crossed to the non-glaucous cultivar Shamrock. The 

F2 progeny of all lines were phenotyped. Chi-square tests show that the obtained ratio of non-

glaucous to glaucous progeny is not significantly different to the expected ratio. Thus, the null 

hypothesis that all F2 progeny show a 3:1 segregation ratio for non-glaucous to glaucous phenotype 

could not be disproven. Note that the table continues on the next page. 

F2 population Shango x Shamrock 
    

 
Observed Expected 

    
Non-glaucous 69 66.75 

    
Glaucous 20 22.25 

    
Total 89 

     
Chi-square value / 

p-value 
0.3 0.58 

    

       
F2 population Alchemy x Shamrock Einstein x Shamrock Hereward x Shamrock 

 
Observed Expected Observed Expected Observed Expected 

Non-glaucous 40 39.75 42 40.5 51 53.25 

Glaucous 13 13.25 12 13.5 20 17.75 

Total 53 
 

54 
 

71 
 

Chi-square value / 
p-value 

0.01 0.94 0.22 0.64 0.38 0.54 
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F2 population Malacca x Shamrock Robigus x Shamrock Xi19 x Shamrock 

 
Observed Expected Observed Expected Observed Expected 

Non-glaucous 36 37.5 56 57 59 54.75 

Glaucous 14 12.5 20 19 14 18.25 

Total 50 
 

76 
 

73 
 

Chi-square value / 
p-value 

0.24 0.62 0.07 0.79 1.32 0.25 

 

 

2.2.1.2 Anchoring Iw1 to Brachypodium and rice 

The gene order in grass genomes is highly conserved despite up to 65 million years between the last 

common ancestor, differences in haploid chromosome number, high content of repetitive DNA as 

well as genetic inversions and translocations (Moore et al. 1995, Gale and Devos 1998, Sorrells et al. 

2003). This conservation represents a unique tool for marker design in large, unsequenced grass 

genomes like that of common wheat. By establishing the syntenic relationship between a map 

location in wheat and a small sequenced grass genome, like Brachypodium distachyon (International 

Brachypodium Initiative 2010) or rice (Oryza sativa) (Kawahara et al. 2013), it is possible to extract 

relevant gene sequences from these small grass genomes and search for homologous sequences in 

various wheat databases or alternatively to design primers from these sequences to amplify the 

homologous sequences in wheat. Recently, the amount of publicly available DNA sequences of 

common wheat increased vastly, first by the release of a low-coverage draft genome of the spring 

wheat cultivar Chinese Spring (Wilkinson et al. 2012) and later by pre-publication access to survey 

sequences of all chromosomes of Chinese Spring (International Wheat Genome Sequencing 

Consortium 2011). However, a fully sequenced, ordered and annotated genome sequence is still not 

available for common wheat. Thus, anchoring a map location to Brachypodium or rice and exploiting 

synteny between grass species is still a necessity for any map-based cloning strategy. 

 

The map location of the Vir locus (and hence Iw1) was established previously using simple sequence 

repeat (SSR) markers (Simmonds et al. 2008), with Vir mapping closely to marker Xgwm614. Synteny 

is the conservation of gene order between related species, and since SSRs are not based on genes 

their position cannot be used to establish synteny. Instead, single-strand conformation 

polymorphism (SSCP) markers were developed from ten expressed sequence tags (ESTs) (Table 2.2), 

which have previously been mapped to the distal deletion bin of 2BS (2BS3-0.84–1.00) (Conley et al. 

2004). The SSCP markers were mapped unto the existing Shango x Shamrock DH population (87 lines) 

and the results compared to the gene order in Brachypodium and rice. A clear syntenic relationship 

could be observed between the distal end of wheat 2BS and chromosomes 4 and 5 of rice and 

Brachypodium respectively (Table 2.2). 
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Table 2.2: Markers used for fine mapping of Iw1 in Shango x Shamrock and Langdon x TTD140 

This is a list of markers used in the fine-mapping of Iw1. The syntenic relationship between gene-

based markers is shown where possible. (a) indicates a marker for which both SSCP and KASPar 

assays were designed, (b) indicates the genetic map established in (Simmonds et al. 2008). Primer 

sequences can be found in the Appendix (A3). 

Marker 
name 

Wheat 
Sequence 

Initial Evidence 
Brachypodium 

homologue 
Oryza 

homologue 
Marker 

type 

JIC001 CJ522609 bin mapped EST Bradi5g01880 LOC_Os04g02500 SSCP 

JIC002 tplb0034e07 bin mapped EST Bradi5g01730 LOC_Os04g02730 SSCP 

JIC003 CK167138 bin mapped EST Bradi5g01420 LOC_Os04g02900 SSCP 

JIC004a TA69057_4565 bin mapped EST Bradi5g01410 LOC_Os04g02910 SSCP 

   
Bradi5g01410 LOC_Os04g02910 KASPar 

JIC005 TA70616_4565 bin mapped EST Bradi5g01280 LOC_Os04g04020 SSCP 

JIC006 TA76401_4565 bin mapped EST Bradi5g01230 LOC_Os04g04254 SSCP 

JIC007a TA95426_4565 bin mapped EST Bradi5g01220 LOC_Os04g04320 SSCP 

   
Bradi5g01220 LOC_Os04g04320 KASPar 

JIC008 454 5x CS colinearity Bradi5g01210 LOC_Os04g04330 SSCP 

JIC009 TA80162_4565 bin mapped EST Bradi5g01180 LOC_Os04g05010 SSCP 

JIC010a TA105895_4565 colinearity - LOC_Os04g05030 SSCP 

   
- LOC_Os04g05030 KASPar 

JIC011a tplb0015p16 colinearity Bradi5g01160 - SSCP 

   
Bradi5g01160 - KASPar 

JIC012a RFL_Contig2535 bin mapped EST Bradi5g01130 LOC_Os04g05050 SSCP 

   
Bradi5g01130 LOC_Os04g05050 KASPar 

JIC013 wPt-4453 genetic mapb - - SSCP 

JIC014 TA49863_4565 bin mapped EST Bradi5g01020 LOC_Os04g10680 SSCP 

JIC015a RFL_Contig1863 Colinearity Bradi5g01190 LOC_Os04g01240 SSCP 

   
Bradi5g01190 LOC_Os04g01240 KASPar 

   
Bradi5g01190 LOC_Os04g01240 KASPar 

JIC016 
2BS contig 
5198726 

Barley contig 
46434 

Bradi3g18920 LOC_Os08g14620 
presence / 

absence 

Xgwm614  
genetic mapb - - SSR 

Xwmc25  
genetic mapb - - SSR 

 

 

Five additional SSCP markers could be developed from collinear genes in Brachypodium and rice 

(Table 2.2). Using these markers Iw1 was mapped to a ~2.3-cM interval between markers JIC007 and 

JIC012, with markers JIC009, JIC010 and JIC011 completely linked to the Iw1 locus (Figure 2.1). 
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Figure 2.1: 2BS map of wheat anchored on Brachypodium and rice 

SSCP markers were used to establish synteny between wheat 2BS, Brachypodium and rice. Gene 

order is generally well conserved between the three species in this region. The 2.3-cM Iw1 interval 

and the corresponding Brachypodium and rice regions are represented by red lines. The putative 

position of Iw1 is indicated. 
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The mapping data also revealed a recent gene duplication and translocation in Brachypodium; genes 

Bradi5g02380 and Bradi5g02390 have been duplicated in Brachypodium and these paralogous copies 

(Bradi5g01200 and Bradi5g01190; >95% similarity to Bradi5g02380 and Bradi5g02390) have been 

translocated to a position between genes Bradi5g01210 and Bradi5g01180. This duplication seems to 

be limited to these two genes only as the flanking genes Bradi5g02370 and Bradi5g02400 both exist 

as single-copies in Brachypodium. In the DH population JIC015 (Bradi5g01190) mapped proximal to 

JIC009 (Bradi5g01180) (Figure 2.1). 

 

The results from this section suggest that Iw1 is very likely identical to the previously mapped Vir 

locus. The locus segregates in a clear Mendelian fashion in seven different test crosses. Development 

of markers from genes (SSCP markers) allowed anchoring of the map location to Brachypodium and 

rice, two grass species with small, sequenced genomes. Furthermore, additional markers could be 

developed by exploiting the existing collinearity between these three grass species. This data 

represents a robust framework to start a map-based cloning approach. 

 

 

2.2.2 Conversion of SSCP markers into KASPar markers for high-throughput recombinant screen 

Recently a new low-cost high-throughput genotyping system was developed by KBiosciences Ltd 

(now LGC Genomics). This genotyping system distinguishes single nucleotide polymorphisms (SNPs), 

but can also be used with small insertions/deletions (InDels). The principle behind the method is a 

variation of polymerase chain reaction (Materials and Methods 2.1.7). 

 

If the KASPar genotyping platform could be adapted to work on wheat it would speed up the genetic 

mapping of Iw1 tremendously. In the Shango x Shamrock DH population Iw1 was mapped between 

the two SSCP markers JIC007 and JIC0012 (2.3-cM), while the increased yield and delayed senescence 

traits were mapped between SSCP markers JIC004 and JIC015 (~11-cM). Converting these four SSCP 

markers into KASPar markers would allow screening for recombinants for all three traits. 

 

To simplify this task group 2 chromosomes of winter wheat variety Chinese Spring were sorted (>95% 

purity) by Jaroslav Doležels group using a flow cytometry approach (Vrána et al. 2000). SSCP primers 

for the four genes Ta_1410, Ta_1220, Ta_1130 and Ta_1190 were tested for genome specificity on 

these chromosome suspensions (Table 2.2). Amplicons of non-genome-specific primers were Sanger 

sequenced and genome-specific primers were designed from these. No genome-specific primers 

could be developed for Ta_1190, so instead non-genome-specific PCR products of Shango and 

Shamrock were subcloned into competent E. coli DH5α cells (Invitrogen Catalogue Number 18265-
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017) (Materials and Methods 2.1.8). Sixteen clones per genotype were Sanger sequenced to obtain 

amplicons from all three genomes. Sequences from each marker were aligned using BioEdit software 

(Wessler et al. 1995) and analysed for the presence of SNPs between the three genomes as well as 

between the B-genome copies of Shango and Shamrock. 

 

 

 

Figure 2.2 KASPar markers used for Iw1 recombinant screen 

Chromosome 2A, 2B and 2D sequence of Shango and Shamrock used to design KASPar assays JIC004, 

JIC007, JIC012, and JIC015. The allele-specific primers are shown in light and dark green highlight, 

whereas the common primer is in brown. Allelic SNPs are in blue and purple highlight, whereas 

homoeologous SNPs between the B and A/D genomes are highlighted red. The VIC and FAM tails of 

the allele specific primers are not shown.  
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Figure 2.3 KASPar markers scores  

Representative scores of a 96 samples from the Iw1 recombinant screen using KASPar assays JIC004 

(A), JIC007 (B), JIC012 (C), and JIC015 (D). The X and Y axis represent the relative fluorescence of the 

FAM and VIC fluorophores, respectively. 

 

 

After obtaining sequences for genomic copies of the four genes from both genotypes, KASPar 

markers were designed based on allelic SNPs between the parental genotypes and homoeologous 

polymorphisms where possible (Figure 2.2). These markers were then tested on twenty lines of the 

Shango x Shamrock DH population. KASPar genotyping scores were compared with previously 

obtained SSCP genotyping scores and B-genome-specific KASPar markers were obtained for all four 

genes (Table 2.2). 

 

 

 

 



92 
 

2.2.3 Genetic mapping of Iw1 in hexaploid wheat 

As was mentioned before, the Inhibitor of wax 1 (Iw1) had been mapped to a ~2.3-cM region on the 

short arm of chromosome 2B. To fine-map the Iw1 locus 2,350 F2 plants of a Shango x Shamrock 

cross were screened for recombinants with four KASPar markers (previous section, Figure 2.2 and 

2.3). For 2,073 plants good genotyping calls were obtained and 43 recombinants were discovered 

between markers JIC007 and JIC012. The recombinants were transferred to new pots and genotyped 

again using new DNA extractions. Out of the 43 recombinants only 36 showed the same genotyping 

scores as before and were kept, while the seven false positive lines were discarded. 

 

A further 2,350 Shango x Shamrock F2 plants screened for recombinants, but initially only with two 

KASPar markers (JIC007 and JIC012). Good genotyping calls were obtained for 2,304 plants, resulting 

in the identification of 60 recombinants. The recombinants were transferred to new pots and 

genotyped with all four KASPar markers using new DNA extractions. Out of the 60 initial 

recombinants only 34 proved to be true recombinants between JIC007 and JIC012. 

 

The 70 recombinants were genotyped with four additional SSCP markers (JIC005, JIC009, JIC010 and 

JIC011) showing that the majority of lines (56) have a recombination event between JIC007 and 

JIC009 (0.64-cM distance), while the remaining 14 lines have a recombination event between the 

three linked markers JIC009/010/011 and JIC012 (0.16-cM distance). The phenotype of the 70 

recombinants, which is a dominant morphological marker in itself, agreed in all cases with the 

genotyping scores of JIC009/010/011. The three markers JIC009, JIC010 and JIC011 remained 

completely linked between each other and with the phenotype, even after analysing 4,377 plants 

(8,754 gametes). 

 

DNA was extracted from twelve F3 seeds of each recombinant line and genotyped with five KASPar 

markers (JIC004, JIC007, JIC010, JIC011 and JIC012) and one SSCP marker (JIC009). Two homozygous 

recombinants were selected from each set of twelve, one as the main recombinant line to be used 

for all future experiments and the other one as a backup. The phenotypes of all homozygous 

recombinants matched the genotyping scores for JIC009/010/011. 

 

 

 

 

 

 



93 
 

Table 2.3: Recombinants obtained from the screen of Shango x Shamrock F2 plants 

This table summarizes the results of the large recombinant screen in a Shango x Shamrock F2 

mapping population, from which 70 recombinants were obtained that can be distinguished into six 

types. Note that markers obtained after the initiation of the physical maps are also included here (a). 

Marker Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 

JIC004 Shr Shr Shr Sgo Sgo Sgo 

JIC005 Shr Shr Shr Sgo Sgo Sgo 

JIC006 Shr Shr Shr Sgo Sgo Sgo 

JIC007 Shr Shr Shr Sgo Sgo Sgo 

JIC008 Shr Shr Shr Sgo Sgo Sgo 

JIC016 Shr Shr Sgo Shr Sgo Sgo 

JIC033a Shr Shr Sgo Shr Sgo Sgo 

JIC035a Shr Shr Sgo Shr Sgo Sgo 

JIC009 Shr Sgo Sgo Shr Shr Sgo 

JIC023a Shr Sgo Sgo Shr Shr Sgo 

Iw1 non-glaucous glaucous glaucous non-glaucous non-glaucous glaucous 

JIC010 Shr Sgo Sgo Shr Shr Sgo 

JIC011 Shr Sgo Sgo Shr Shr Sgo 

JIC012 Sgo Sgo Sgo Shr Shr Shr 

JIC015 Sgo Sgo Sgo Shr Shr Shr 

       
No. of 

recombinants 
7 24 4 12 16 7 

 

 

2.2.4 Genetic mapping of Iw1 in tetraploid wheat 

At the same time that the hexaploid Shango x Shamrock F2 population was screened for 

recombinants, James Simmonds started to map five 2BS-specific SSCP markers (JIC004, JIC008, 

JIC010, JIC012 and JIC015) on 94 F2 lines of a cross between Langdon and TTD140 (Materials and 

Methods 2.1.1). One of the 94 lines (LDNxTTD-69) had a recombination event between the Iw1 

phenotype (morphological marker) and the two linked markers JIC010/011. This recombination event 

was confirmed in the F3 progeny of LDNxTTD-69, thus showing that the Iw1 locus is more closely 

linked to JIC009 but not to JIC010/011 (Figure 2.4). This has implications for the 70 recombinants 

from the hexaploid mapping population. The 14 lines with recombination events between 

JIC010/011 and JIC012 (Type 1 and Type 6; Table 2.3) have essentially become parental lines, as their 

recombination events are outside of the Iw1 interval. 

 

To obtain more recombinants inside the Iw1 interval all remaining F2 lines of the Langdon x TTD140 

population were screened with two KASPar markers (JIC007 and JIC011). Out of the initial 94 F2 lines 

screened above, 39 lines showed heterozygosity between JIC004 and JIC015. Their F3 progeny can 

thus still recombine in the Iw1 interval, essentially behaving like a regular F2 population in this 
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genomic region. In total, 850 plants (1,700 gametes) were screened and 29 recombinants identified, 

indicating a genetic distance between JIC007 and JIC011 of 1.7-cM. The majority of plants (25) had a 

recombination event between JIC007 and JIC009, while four plants had a recombination event 

between JIC010/011 and JIC009. One of these four plants died prematurely before setting seed, 

reducing the number of recombinants to 28. Homozygous recombinants were obtained for all 28 

lines as described for the Shango x Shamrock recombinants (Section 2.2.3). This work was performed 

in coordination with Dr. Adrian Turner. 

 

Table 2.4: Recombinants obtained from the screen of Langdon x TTD140 F2 plants 

This table summarizes the results of the large recombinant screen in a Langdon x TTD140 F2 mapping 

population, from which 28 recombinants were obtained that can be distinguished into six types. Note 

that markers obtained after the initiation of the physical maps are also included here (a). 

Marker Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 

JIC007 TTD140 TTD140 Lgd Lgd Lgd Lgd 

JIC016 Lgd TTD140 Lgd Lgd Lgd TTD140 

JIC034 a Lgd TTD140 Lgd Lgd Lgd TTD140 

JIC035 a Lgd TTD140 Lgd Lgd Lgd TTD140 

JIC036 a Lgd TTD140 Lgd Lgd TTD140 TTD140 

JIC024 a Lgd TTD140 Lgd Lgd TTD140 TTD140 

JIC023 a Lgd TTD140 Lgd Lgd TTD140 TTD140 

JIC033 a Lgd TTD140 Lgd Lgd TTD140 TTD140 

JIC009 Lgd TTD140 Lgd Lgd TTD140 TTD140 

Iw1 glaucous 
non-

glaucous 
glaucous glaucous 

non-
glaucous 

non-
glaucous 

JIC022 a Lgd TTD140 Lgd Lgd TTD140 TTD140 

JIC020 a Lgd TTD140 Lgd Lgd TTD140 TTD140 

JIC019 a Lgd TTD140 Lgd Lgd TTD140 TTD140 

JIC018 a Lgd TTD140 Lgd Lgd TTD140 TTD140 

JIC017 a Lgd TTD140 Lgd Lgd TTD140 TTD140 

JIC032 a Lgd TTD140 Lgd Lgd TTD140 TTD140 

JIC031 a Lgd TTD140 Lgd TTD140 TTD140 TTD140 

JIC011 Lgd Lgd TTD140 TTD140 TTD140 TTD140 

JIC010 Lgd Lgd TTD140 TTD140 TTD140 TTD140 

       
No. of 

recombinants 
11 1 1 1 1 13 
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2.2.5 A contig from Hordeum vulgare cultivar Morex 

Barley (Hordeum vulgare) diverged from wheat approximately twelve million years ago (Chalupska et 

al. 2008) and thus is very similar to wheat in genetic terms, making it a good model species for the 

Triticeae tribe. In an international effort, a gene-rich scaffold of the barley genome (Mayer et al. 

2011) was created and Dr. Nils Stein gave us pre-publication access to barley contig 46434, which has 

an approximate size of 685 kb. The Bacterial Artificial Chromosomes (BACs) making up the contig 

were arranged using fingerprinted contig (FPC) data (Soderlund et al. 1997) and contained the 

Ta_1180 gene. All BACs were annotated by hand (Material and Methods 2.1.9) to identify putative 

barley genes within contig 46434 (Table 2.5). This analysis was followed by a BLASTN search against 

the wheat survey sequence (International Wheat Genome Sequencing Consortium 2011) database 

using all putative barley genes as query. 

 

Primer pairs were designed for the MU-homology domain gene, the Cox2 genes and the Transferase 

gene. No sequences with clear homology to Cytochrome P450 and Haemolysin-III related genes were 

detected in the wheat survey sequence. Primer pairs in the Cox2 and Transferase genes only 

amplified products in Shango and Shamrock, but not in Langdon or TTD140, which suggests that they 

are present in the D-genome only. Primer pairs for the Mu-Homology domain gene (JIC016) amplified 

only in Shango and Langdon, but when tested on the Shango x Shamrock and Langdon x TTD140 F3 

homozygous recombinants, JIC016 mapped inside the Iw1 interval between JIC007 and JIC009 (Table 

2.3 and Table 2.4). Out of the 84 recombinants 40 lines had a recombination event between JIC007 

and JIC016, essentially reducing the number of recombinant lines by half and thus reducing the size 

of the Iw1 interval to 0.42-cM. However, this new marker is a dominant presence/absence marker, 

i.e. one parent lacks the sequence that the primer amplifies. Both Shamrock and TTD140 lack this 

sequence, so the new marker cannot be used in the construction of the physical map of the Iw1 

locus. 
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Table 2.5: List of BACs allocated to contig 46434 and the genes detected within 

This table lists the BACs allocated to barley contig 46434 by FPC. BACs were annotated by hand and 

genes were detected in almost every BAC. Primers were designed for several of the genes and the 

MU-homology domain gene appears to have a homologue on the short arm of chromosome 2B. Note 

that the 2BS copy of Ta_1180 in wheat is split into two contigs. 

BAC name genes Wheat homologue / marker 

HVVMRXALLmA0018H15 none - 

HVVMRXALLhA0692E09 MU-homology domain gene 2BS contig 5198726 / (JIC016) 

HVVMRXALLhA0692E09 Cytochrome P450 - 

HVVMRXALLhA0692E09 Cytochrome P450 - 

HVVMRXALLhA0036B08 Multicopper oxidase Cox2 genes 2DS contigs 5340809 and 5344521 

HVVMRXALLeA0092B21 Transferase gene 2DS contig 5294824 

HVVMRXALLhA0085J09 Multicopper oxidase Cox2 genes 2DS contigs 5340809 and 5344521 

HVVMRXALLhA0612N23 CBS domain gene (Hv_1180) 
2BS 5007649 and 5182000 

(Ta_1180) / JIC009 

HVVMRXALLrA0131J23 Cytochrome P450 - 

HVVMRXALLrA0131J23 Cytochrome P450 - 

HVVMRXALLrA0242M21 none - 

HVVMRXALLeA0241J02 Haemolysin III-related - 

 

 

Concluding remarks on the genetic mapping process 

In total, by screening 5,227 plants (10,454 gametes) from two mapping populations 44 recombinants 

inside the Iw1 interval between the markers JIC016 and JIC010 were obtained, representing a genetic 

distance of 0.42-cM (Figure 2.4). Physical maps are usually initiated after narrowing down the genetic 

distance to ~0.3-cM or below by screening large numbers of plants from a mapping population in 

order to reduce the physical size of the map (Konishi et al. 2006, Li et al. 2006). However, there 

appears to be a lack of recombination inside the Iw1 interval as even after screening more than 

10,000 gametes the genetic distance could not be narrowed down further than 0.42-cM. Out of the 

44 recombinants obtained in total, 41 lines had a recombination event between JIC016 and JIC009, 

which means that 93.2% of all recombination events occurred between JIC016 and JIC009. This 

indicates that JIC016 is still quite distal from the actual Iw1 gene, with at least some genes in 

between allowing for recombination to happen. However, neither Brachypodium, rice nor barley 

have syntenic genes in this region that have not been already exploited for marker development, 

thus making it impossible to develop markers closer to the Iw1 interval. In contrast, only three plants 

had a recombination event between Iw1/JIC009 and JIC010/011 and all of these came from the 

Langdon x TTD140 population. This imbalance between the two flanks of the genetic map could be 

due to differences in recombination frequencies (so-called hot- and cold spots of recombination) 
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(Lichten and Goldman 1995, Sidhu and Gill 2005) or due to a deletion within the modern germplasm, 

thus making recombination in this region impossible. Regardless of which of these is true, it seems 

that screening more plants for recombination events inside the Iw1 interval will yield little new 

information, which is why at this point the physical map of the Iw1 interval was initiated. 

 

 

 

Figure 2.4: Updated genetic map of the Iw1 interval 

After screening 10,454 gametes from two mapping populations, 44 recombinant lines were obtained. 

The numbers in red represent the number of recombinants between two adjacent markers. The red 

line represents the Iw1 interval, which is 0.42-cM in size in wheat. The location of the centromere is 

indicated. 

 

 

2.3 Construction of a physical map of the Iw1 locus 

This section will summarize the ongoing and not yet completed effort to create a physical map of the 

Iw1 interval using two BAC libraries. 

 

2.3.1 TTD140 BAC library construction 

By screening more than 10,000 gametes the Iw1 interval has been narrowed down to a sub-cM 

distance (0.42-cM), thus allowing construction of a physical map of this genomic region to start. Since 

all available bacterial artificial chromosome (BAC) libraries were made from glaucous plants a new 

BAC library needed to be constructed. The decision was made to create a BAC library from TTD140 

rather than Shamrock as it is a tetraploid, thus simplifying the physical map construction and in 

addition it would represent the first BAC library of a TTD accession, thus making it useful for other 
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projects in addition to this one. Rather than constructing the library at JIC, dark-grown leaf material 

of TTD140 was sent to the group of Dr. Hélène Bergès at CNRGV (Toulouse) as they have the 

necessary skills and equipment for constructing BAC libraries as well as a proven track record of 

doing so. The library was shipped to JIC at the beginning of January 2012. The library consists of 

331,776 gridded clones organized in 864 384-well plates. The average size of each clone is ~120 kb 

giving the library a size of 39,813,120 kb, which covers every part of the TTD genome (11,000,000 kb) 

three and a half times on average. DNA from each clone was extracted at CNRGV and the DNA from 

an entire 384-well plate was pooled into a single well of a 96-well plate, thus the entire library is 

represented by nine 96-well plates. These so-called one-dimensional pools (1D-pools) were further 

pooled by row and column into three 96-well plates, thus creating so-called two-dimensional pools 

(2D-pools) which allow screening of the entire BAC library on a single 384-well plate (Figure 2.5). 

 

 

Figure 2.5: Pooling strategy for the TTD140 BAC Library 
Layout of the pooling strategy for the DNA pools of the TTD140 BAC library. DNA is extracted from all 
clones of a single 384-well plate and pooled into one well of a 96-well plate (1D-pool). Individual 
rows of the 1D-pool plate are pooled into a single well of a new 96-well plate and the same is done 
for individual columns (2D-pools). Thus the entire library is encompassed within 180 wells. 
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2.3.2 Construction of a physical map of the Iw1 interval in TTD140 

In section 2.2.3 it was mentioned that the recombination frequency at the two ends of the Iw1 

interval is drastically different, with 93.2% of recombination events lying between JIC016 and JIC009. 

This could indicate a big physical distance between JIC016 and JIC009 with many genes present 

between them that are non-syntenic with Brachypodium or rice. In contrast only three 

recombination events were discovered between JIC009 and JIC011, indicating a small distance 

between these genes (Figure 2.4). Thus it was decided to start the construction of the physical map 

using these two markers.  

 

Table 2.6: List of markers used in physical map construction 

This is a list of markers used in the physical map construction in TTD140 and RSL65. (a) indicates 

markers based on non-repetitive sequence, (b) indicates markers based on junctions between two 

repetitive elements, (c) indicates markers based on single repetitive elements, (d) indicates BACs 

identified in non-gridded pools at CNRGV Toulouse. Primer sequences can be found in the Appendix 

(A4). Note that the table continues on the next page. 

Marker 
name 

Wheat Sequence Marker type TTD140 BACs detected RSL65 BACs detected 

JIC009a TA80162_4565 InDel 
321F24, 529K13, 
551I08, 784K20 

264M08 

JIC011a tplb0015p16 InDel 
305N15, 370A02, 

427A02 
91G23 

JIC016a 
2BS contig 
5198726 

presence / 
absence 

97O06, 305G20 - 

JIC017b 
TTD140 BAC 

305N15 
presence / 

absence 
190O12, 305N15, 
427A02, 774P06 

- 

JIC018b 
TTD140 BAC 

774P06 
presence / 

absence 
13N10, 412O05, 

774P06 
- 

JIC019b TTD140 BAC 13N10 
presence / 

absence 
13N10, 23N19, 412O05 - 

JIC020b TTD140 BAC 23N19 
presence / 

absence 

23N19, 83F21, 158I09, 
363M21, 571B20, 
802A16, 807A06 

- 

JIC021c TTD140 BAC 83F21 non-specific 83F21, 170H13 not tested 

JIC022b 
TTD140 BAC 

170H13 
presence / 

absence 
170H13, 68G17d - 

JIC023b 
TTD140 BAC 

321F24 
presence / 

absence 
321F24, 577P12, 

784K20 
- 

JIC024b 
TTD140 BAC 

529K13 
presence / 

absence 

274M11, 329M10, 
478J01, 529K13, 
551I08, 636L08 

- 

JIC025b 
TTD140 BAC 

329M10 
presence / 

absence 
329M10 - 

JIC026b 
TTD140 BAC 

636L08 
presence / 

absence 
274M11, 329M10, 

478J01, 636L08 
- 

JIC027a 
TTD140 BAC 

478J01 
presence / 

absence 

274M11, 329M10, 
478J01, 529K13, 
551I08, 636L08 

- 
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Table 2.6 continued 

Marker 
name 

Wheat Sequence Marker type TTD140 BACs detected RSL65 BACs detected 

JIC028b TTD140 BAC 551I08 
presence / 

absence 
551I08, 32C13d - 

JIC029a 
TTD140 BAC 

577P12 
presence / 

absence 
321F24, 551I08, 
577P12, 784K20 

- 

JIC030a 
TTD140 BAC 

577P12 
presence / 

absence 
577P12, 784K20, 

85B11d 
- 

JIC031a RSL65 BAC 91G23 
presence / 

absence 
- 91G23 

JIC032b 
2BS contig 
5157821 

presence / 
absence 

- 1041P07 

JIC033a RSL65 BAC 264M08 
presence / 

absence 
- 

119H03, 264M08, 
294I15, 304G05, 
618L11, 1326P06 

JIC034a RSL65 BAC 97O06 
presence / 

absence 
- 

97O06, 374D10, 
634B01 

JIC035a RSL65 BAC 305G20 
presence / 

absence 
- 

305G20, 784L08, 
1031F12, 1150M10 

JIC036a 
2BS contig 
5204867 

InDel not tested yet not tested yet 

 

 

2.3.2.1 TTD140 physical map starting at JIC011 

2.3.2.1.1 JIC011 

The TTD140 BAC library 2D-pools were screened by PCR with marker JIC011 (Materials and Methods 

2.1.10). Three positive clones (305N15, 370A02, 427A02) were identified by this screen (Table 2.6). 

BAC end sequences (BES) were obtained from all three clones (Materials and Methods 2.1.11). The 

T7-end of 305N15 consisted of two exons and an intron from Ta_5030, while the M13r-end consisted 

of a long terminal repeat (LTR) retrotransposon (TREP3530: RLC_Angela_B_consensus-1) that had 

inserted itself into a different LTR retrotransposon (TREP3457: RLG_Danae_consensus-1). 

 

The junctions between transposable elements (TEs) are virtually unique because of the high turnover 

rate of the repetitive portion of the wheat genome (Wicker et al. 2003, Dubcovsky and Dvorak 2007), 

thus making them ideal sites for marker development (Paux et al. 2006). The drawback of these 

markers is their dominant nature; due to their high specificity, they often only amplify the correct 

product in the genotype they were designed on (here TTD140), but usually not in other genotypes 

(e.g. Langdon, Shango or Shamrock). Primer pairs were designed with one primer sitting inside one 

TE and the other primer inside the adjacent TE (insertion site based polymorphism (ISBP) (Paux et al. 

2006)). The primer pairs were tested on the Langdon x TTD140 F3 homozygous recombinants to 

verify their specificity. The mapping data revealed three recombination events between JIC011 and 
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the new marker JIC017 (Table 2.4). This result orientated BAC clone 305N15 relative to the 

centromere. However, there are no more recombination events left on the proximal side of the 

physical map, which means that new BAC clones can only be orientated by physical overlap with 

existing clones (Figure 2.6). 

 

2.3.2.1.2 JIC017 

The TTD140 BAC library 2D-pools were screened by PCR with marker JIC017. Four positive BAC clones 

were identified, two of which were already known (305N15 and 427A02) and two new BAC clones 

(190O12 and 774P06) (Table 2.6). Primer pairs were designed from the BES of the new clones. 

Markers from the M13r-end of clone 774P06 yielded PCR products of correct size and sequence from 

BACs 305N15, 427A02 and 190O12; while a marker from the T7-end of 774P06 (JIC018) did not 

amplify DNA from any of these three BACs. Marker JIC018 was tested on the Langdon x TTD140 F3 

homozygous recombinants and proved to correctly map to 2BS within the Iw1 interval (Table 2.4). 

 

2.3.2.1.3 JIC018 

The TTD140 BAC library 2D-pools were screened by PCR with marker JIC018. Three positive BAC 

clones were identified, one of which was already known (774P06) and two new BAC clones (13N10 

and 412O05) (Table 2.6). Primer pairs were designed from the BES of the new clones. Markers from 

the T7-end of clone 13N10 yielded PCR products of correct size and sequence from BACs 774P06 and 

412O05, while a marker from the M13r-end (JIC019) did not amplify DNA from BAC 774P06. Marker 

JIC019 was tested on the Langdon x TTD140 F3 homozygous recombinants and proved to correctly 

map to 2BS within the Iw1 interval (Table 2.4). 

 

2.3.2.1.4 JIC019 

The TTD140 BAC library 2D-pools were screened by PCR with marker JIC019. Three positive BAC 

clones were identified, two of which were already known (13N10 and 412O05) and the other one 

was a new BAC clone (23N19) (Table 2.6). Primer pairs were designed from the BES of the new clone. 

Markers from the T7-end of clone 23N19 yielded PCR products of correct size and sequence from 

BAC 13N10, while a marker from the T7-end (JIC020) of clone 23N19 did not amplify DNA from BAC 

13N10. Marker JIC020 was tested on the Langdon x TTD140 F3 homozygous recombinants and proved 

to correctly map to 2BS within the Iw1 interval (Table 2.4). 

 

2.3.2.1.5 JIC020 

The TTD140 BAC library 2D-pools were screened by PCR with marker JIC020. Seven positive BAC 

clones were identified, one of which was already known (23N19) and six new BAC clones (83F21, 
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158I09, 363M21, 571B20, 802A16 and 807A06) (Table 2.6). Primer pairs were designed from the BES 

of the new clones. Markers from the M13r-end of clone 83F21 yielded PCR products of correct size 

and sequence from all seven BACs (23N19, 83F21, 158I09, 363M21, 571B20, 802A16 and 807A06), 

while a marker from the T7-end (JIC021) did not amplify DNA from any of these seven BACs. 

However, marker JIC021, and all other primer pairs from the T7-end of BAC 83F21, could not be 

tested on the Langdon x TTD140 F3 homozygous recombinants, as the primer pairs lacked specificity: 

The T7-end of BAC 83F21 consisted of a single LTR retrotransposon (TREP3254: RLG_Sakura_10k23-

4), which did not allow for the development of specific primers. 

 

2.3.2.1.6 JIC021 

The TTD140 BAC library 2D-pools were screened by PCR with marker JIC021, despite its lack of 

specificity. Two positive clones were identified, one of which was already known (83F21) and the 

other was a new BAC clone (170H13) (Table 2.6). Another plate was identified several times in the 

2D-pools (plate 144) but even after screening the plate numerous times no positive clone could be 

detected. Primer pairs were designed from the BES of the new clone 170H13. Markers from the 

M13r-end of clone 170H13 yielded PCR products of correct size and sequence from BAC 83F21, while 

primer pairs from the T7-end of clone 170H13 did not amplify DNA from BAC 83F21. The T7-end of 

BAC 170H13 consisted of a single LTR retrotransposon (TREP3457: RLG_Danae_consensus-1), which 

did not allow for the development of specific primers. Furthermore, the various T7 primer pairs only 

detected clone 170H13 and plate 144 when used to screen the TTD140 2D-pools, but no other BACs. 

After sequencing BAC 170H13 (see below) specific primer pairs were designed as close as possible to 

the T7-end of BAC 170H13. Marker JIC022 was tested on the Langdon x TTD140 F3 homozygous 

recombinants and proved to correctly map to 2BS within the Iw1 interval (Table 2.4). 

 

2.3.2.1.7 JIC022 

The TTD140 BAC library 2D-pools were screened by PCR with marker JIC022, but no new clones were 

detected (Table 2.6). A probe made from JIC022 was sent to the lab of Dr. Hélène Bergès at CNRGV in 

Toulouse where the TTD140 BAC library was created. This probe was then used to detect clones on 

filter membranes of the BAC library by radioactive hybridization (Materials and Methods 2.1.12). No 

new clones were detected even after several different screens. As a last option non-gridded pools 

were prepared from the original BAC library plugs and screened by PCR. After screening several 

plates of pools a positive clone (68G17) was detected using primer JIC022 (Table 2.6). The BES of 

68G17 consisted of single retroelements on both ends and could not be used to design new specific 

markers. Sequencing of this BAC clone is underway. 
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2.3.2.1.8 Sequencing of the minimum tiling path (MTP) 

In the seven chromosome walking steps starting from JIC011 sixteen BACs were identified (Figure 

2.6). A minimum tiling path (MTP) of seven clones was selected and sequenced using Roche 454 

(305N15, 774P06 and 13N10) and Illumina MiSeq (23N19, 68G17, 83F21 and 170H13) (Materials and 

Methods 2.1.13). The sequencing data for each BAC was filtered from contaminants and then 

assembled using CLC Genomics (Materials and Methods 2.1.14). Sequence reads from adjacent BACs 

were mapped against the assemblies to verify their position in the MTP and to elucidate by how 

much they overlap with each other. This process verified that the supposed MTP obtained by 

chromosome walking was correct, with every BAC in the MTP overlapping several thousand base 

pairs with its neighbouring BACs with more than 99.9% similarity. The size of the MTP is 

approximately 560.9 kb (excluding 68G17). 

 

 

Figure 2.6: Physical map starting at JIC011 

This diagram depicts the progress on the physical maps of TTD140 and RSL65 on the proximal side of 

the Iw1 interval. BACs labelled green have been sequenced. The orange line represents the 2BS 

contig 5157821. The numbers in red represent the number of recombinants from both mapping 

populations between two adjacent markers. The bifurcation of the map represents an hypothesized 

set of two different haplotypes in TTD140 and RSL65. The location of the centromere is indicated. 

Note that BAC overlap and scale is only approximate for the purpose of clarity. 
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2.3.2.2 TTD140 physical map starting at JIC009 

2.3.2.2.1 JIC009 

The TTD140 BAC library 2D-pools were screened by PCR with marker JIC009. Four positive clones 

(321F24, 529K13, 551I08 and 784K20) were identified by this screen (Table 2.6; Figure 2.7). BAC end 

sequences (BES) were obtained from all four clones and from these primer pairs were designed to 

orientate the BACs relative to each other (Table 2.6). A specific marker from the M13r-end of BAC 

321F24 (JIC023) overlapped only with BAC 784K20 and was tested on the Langdon x TTD140 F3 

homozygous recombinants as well as the Shango x Shamrock F3 homozygous recombinants and 

proved to correctly map to 2BS. Similarly, a marker from the T7-end of BAC 529K13 (JIC024) 

overlapped only with BAC 551I08 and was mapped on the Langdon x TTD140 F3 homozygous 

recombinants and proved to correctly map to 2BS within the Iw1 interval (Table 2.4). 

 

2.3.2.2.2 JIC024 

The TTD140 BAC library 2D-pools were screened by PCR with marker JIC024. Six positive BAC clones 

were identified, two of which were already known (529K13 and 551I08) and four new BAC clones 

(274M11, 329M10, 478J01, 636L08) (Table 2.6). Primer pairs were designed from the BES of the new 

clones. A marker from the T7-end of BAC 329M10 (JIC025) did not amplify DNA from any of the other 

BACs. Apart from that the new markers (JIC026, JIC027) did not enable us to orientate the new BACs 

relative to each other, as they amplified PCR products of correct size in all four BACs. Sequencing of 

the PCR products showed that they consisted of mixed traces, indicating that more than one product 

was amplified. Subcloning of PCR products showed that most markers amplified at least two different 

sequences, if not more. 

 

After sequencing BACs 529K13, 551I08, 274M11 and 329M10 it became clear that BACs 529K13 and 

551I08 overlap extensively with greater than 99.9% similarity and likewise BACs 274M11 and 

329M10 overlapped extensively with greater than 99.9% similarity. However, the similarity between 

seemingly overlapping contigs of BACs 529K13/551I08 and 274M11/329M10 was only 98%, which 

indicated a recent duplication event. Specific PCR markers were developed using the fully sequenced 

BACs, but no new clones adjacent to 274M11 or 329M10 could be detected. Probes made from these 

specific primers (Appendix, A5) were sent to the lab of Dr. Hélène Bergès at CNRGV in Toulouse 

where the TTD140 BAC library was created. These probes were then used to detect clones on filter 

membranes of the BAC library by radioactive hybridization (Materials and Methods 2.1.12). No new 

clones were detected even after several different screens. As a last option non-gridded pools were 

prepared from the original BAC library plugs and screened by PCR, but again no new clones could be 

detected. 
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2.3.2.2.3 JIC028 

The TTD140 BAC library 2D-pools were screened by PCR with marker JIC028, but no new clones were 

detected (Table 2.6). A probe made from JIC028 was sent to the lab of Dr. Hélène Bergès at CNRGV in 

Toulouse where the TTD140 BAC library was created. This probe was then used to detect clones on 

filter membranes of the BAC library by radioactive hybridization (Materials and Methods 2.1.12). No 

new clones were detected even after several different screens. As a last option non-gridded pools 

were prepared from the original BAC library plugs and screened by PCR. After screening several 

plates of pools a positive clone (32C13) was detected using primer JIC028 (Table 2.6). The BES of 

32C13 consisted of single retroelements on both ends and could not be used to design new specific 

markers. Sequencing is currently underway for this BAC which will hopefully help resolve the putative 

duplication in this region.  

 

2.3.2.2.4 JIC023 

The TTD140 BAC library 2D-pools were screened by PCR with marker JIC023. Three positive BAC 

clones were identified, two of which were already known (321F24 and 784K20) and the other one 

was a new BAC clone (577P12) (Table 2.6). Primer pairs were designed from the BES of the new 

clone. A specific marker from the M13r-end of clone 577P12 (JIC029) yielded PCR products of correct 

size and sequence from BACs 321F24 and 784K20, while no specific markers could be developed 

from the T7-end because it consisted of a single LTR retrotransposon (TREP3529: 

RLC_Angela_A_consensus-1). After sequencing BAC 577P12 specific primer pairs were designed close 

to T7-end of the BAC. Marker JIC030 was tested on the Langdon x TTD140 F3 homozygous 

recombinants and proved to correctly map to 2BS within the Iw1 interval (Table 2.4). 

 

2.3.2.2.5 JIC030 

The TTD140 BAC library 2D-pools were screened by PCR with marker JIC030, but no new clones were 

detected (Table 2.6). A probe made from JIC030 was sent to the lab of Dr. Hélène Bergès at CNRGV in 

Toulouse where the TTD140 BAC library was created. This probe was then used to detect clones on 

filter membranes of the BAC library by radioactive hybridization (Materials and Methods 2.1.12). No 

new clones were detected even after several different screens. As a last option non-gridded pools 

were prepared from the original BAC library plugs and screened by PCR. After screening several 

plates of pools a positive clone (85B11) was detected using primer JIC030 (Table 2.6). The BES of 

85B11 consisted of single TEs on both ends and could not be used to design new specific markers. 

However, the BES of the T7-end is identical (identities: 907/907) to BACs 784K20 and 577P12, 

suggesting that this is a genuine connection. 
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2.3.2.2.6 Sequencing of the minimum tiling path (MTP) 

In the five chromosome walking steps starting from JIC009 eleven BACs were identified (Figure 2.7). 

A MTP of seven clones was selected and sequenced using Roche 454 (274M11, 329M20, 551I08 and 

784K20) and Illumina MiSeq (32C13 and 577P12). The sequencing data for each BAC was filtered 

from contaminants and then assembled using CLC Genomics (Materials and Methods 2.1.14). 

Sequence reads from adjacent BACs were mapped against the assemblies to verify their position in 

the MTP and to elucidate by how much they overlap with each other. This process verified that the 

supposed MTP obtained by chromosome walking was correct, with every BAC in the MTP 

overlapping several kb with its neighbouring BACs on both sides with more than 99.9% similarity. The 

size of the MTP is approximately 381.7 kb (excluding 32C13). 

 

 

Figure 2.7: Physical map starting at JIC009 

This cartoon depicts the progress on the physical maps of TTD140 and RSL65 on the central part of 

the Iw1 interval. BACs labelled green have been sequenced. The dotted blue line represents the 

paralogous Ta_1180 locus. The numbers in red represent the number of recombinants from both 

mapping populations between two adjacent markers. Note that the location of the centromere is 

unknown due to lack of recombination inside this region. The blue filled dots represent a putative 

overlap based on BES. The yellow filled dots represent a possible duplication. The parallel lines 

represent a hypothesized set of two different haplotypes in TTD140 and RSL65. Note that BAC 

overlap is only approximate for the purpose of clarity. 
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2.3.2.3 Concluding remarks on the TTD140 physical map 

Before initiating the construction of the TTD140 physical map an extensive recombinant screen was 

performed to reduce the size of the Iw1 interval to sub-cM size. The physical map was initiated at a 

marker flanking the target region proximally (JIC011) and at a marker that is completely linked to Iw1 

(JIC009). Construction of the distal end of the physical map was not started, as 81 recombinants were 

detected between the Iw1 interval and the next closest marker (JIC007). 

 

After numerous chromosome walking steps, two MTPs with a combined size of >1 Mb were 

obtained. Unfortunately, due to technical errors from the sequencing service provider a number of 

BACs could not be sequenced in time to include them in this thesis (68G17, 32C13, 85B11). These 

two MTPs do not overlap and the 0.42-cM interval is also not completely covered yet (Figures 2.6 

and 2.7). Genomic sequence contigs from both MTPs were used for BLASTN searches in various 

wheat databases, including the Chinese Spring wheat survey sequence database. Apart from contigs 

containing known genes like Ta_1160 and Ta_1180, these database queries did not yield positive 

hits. This suggests a possible deletion of the Iw1 interval in Langdon and other modern day wheat 

varieties, which could not be uncovered by the genetic mapping but becomes apparent at the 

physical map stage. We further hypothesise that because of this deletion the Iw1 interval in RSL65 

will be small compared to TTD140, thus facilitating the creation of the RSL65 physical map. This new 

physical map could yield new marker information that would allow us to start construction of the 

distal end of the TTD140 physical map. 

 

2.3.3 Construction of a physical map of the Iw1 interval in RSL65 

A copy of the 5x RSL65 BAC library (Cenci et al. 2003) is present at JIC. This library is a based on a 

recombinant substitution line of durum wheat cultivar Langdon, which carries a 30-cM introgression 

from a wild emmer wheat accession on the short arm of chromosome 6B. It has been used 

successfully to clone the GPC-B1 gene (Uauy and University of California 2007). The library has been 

pooled in the same way as the TTD140 BAC library (Section 2.3.1). Here we want to use this library to 

create a physical map of the Iw1 interval from a glaucous wheat cultivar. We hypothesise that Iw1 

was deleted in RSL65 and other glaucous germplasm. This is based on the results of the TTD140 

physical map, where we discovered a large segment of genomic DNA (>1 Mb), most of which was not 

represented in public databases including the Chinese Spring survey sequence. If our hypothesis is 

correct, the Iw1 interval in RSL65 will be small compared to TTD140. We hope that this map will help 

us in our efforts of constructing a complete physical map of the Iw1 interval in TTD140. 
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2.3.3.1 RSL65 physical map starting at JIC011 

2.3.3.1.1 JIC011 

The RSL65 BAC library 2D-pools were screened by PCR with marker JIC011 (Materials and Methods 

2.1.10). One positive clone (91G23) was identified (Table 2.6) and its BES was obtained. The BES 

consisted of unique sequence and was thus used for a BLASTN query of the wheat survey sequence 

database. The T7-end was 99.8% (identities: 841/843) identical to 2BS contig 5226543, while the 

M13r-end was 99.9% (identities: 785/786) identical to 2BS contig 5157821. The latter contig 

contained the two genes Ta_1160 and Ta_1170 and based on the orientation of these genes relative 

to the BES of 91G23 it was concluded that the M13r-end points towards gene Ta_1180 (compare 

with section 2.3.2.1 JIC011). Several specific primer pairs were designed from the M13r-end of 91G23 

and used to screen the RSL65 2D-pools, but no positive clone could be identified. 

 

The 2BS contig 5157821 from the wheat survey sequence extends 6,447 bp from the M13r-end of 

BAC 91G23. Several markers were designed along this part of contig 5157821, tested on the Langdon 

x TTD140 F3 homozygous recombinants and JIC032 proved to correctly map to 2BS within the Iw1 

interval (Figure 2.6; Table 2.4). 

 

2.3.3.1.2 JIC032 

The RSL65 BAC library 2D-pools were screened by PCR with marker JIC032. One positive BAC clone 

(1041P07) was identified (Table 2.6) and its BES obtained. The M13r-end of BAC 1041P07 was 99.4% 

(identities: 960/966) identical to 2BS contig 5157821, while the T7-end did not match with the 

contig’s sequence. The T7-end consists of a single LTR retrotransposon (TREP: 1435; 

RLC_Inga_AY268139-1) and could not be used to design specific primer pairs. 

 

2.3.3.1.3 Sequencing of the minimum tiling path (MTP) 

In the two chromosome walking steps starting from JIC011 two BACs and one wheat survey 

sequence contig were identified (Figure 2.6). The BACs were sequenced using Illumina MiSeq. The 

sequencing data for each BAC was filtered from contaminants and then assembled using CLC 

Genomics (Materials and Methods 2.1.14). Sequence reads from the BACs were mapped against the 

assemblies to verify their position in the MTP and to elucidate by how much they overlap with each 

other. The two BACs 91G23 and 1041P07 do not overlap with each other: There is a gap of 2,397 bp 

between them, which is spanned by the WSS 2BS contig 5157821, resulting in a continuous MTP 

(Figure 2.6). The size of the MTP is approximately 205 kb (excluding 1041P07). 
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2.3.3.2 RSL65 physical map starting at JIC009 

2.3.3.2.1 JIC009 

The RSL65 BAC library 2D-pools were screened by PCR with marker JIC009. One positive clone 

(264M08) was identified (Table 2.6) and its BES was obtained. The entire BAC was sequenced shortly 

after its identification using Illumina MiSeq (Materials and Methods 2.1.13). The T7-end of the BAC 

was assembled into a ~7 kb contig, from which a specific primer pair was designed (JIC033), tested on 

the Langdon x TTD140 F3 homozygous recombinants and proved to correctly map to 2BS within the 

Iw1 interval (Table 2.4). The M13r-end of the BAC was only assembled into a ~1 kb contig, which 

consisted of a single DNA transposon (TREP: 771; DTC_Clifford_TREP771-1) and was not suitable to 

design specific primer pairs from. The assemblies from both ends of BAC 264M08 were queried 

against the wheat survey sequence database, but either did not yield significant hits (M13r-end) or 

only matched contigs that did not extend beyond the assembled contig (T7-end). 

 

2.3.3.2.2 JIC033 

The RSL65 BAC library 2D-pools were screened by PCR with marker JIC033. Six positive BAC clones 

were identified, one of which was known already (264M08) and five of which were new clones 

(119H03, 294I15, 304G05, 618L11, 1326P06) (Table 2.6). BES was obtained for all new clones and 

primer pairs were designed from them. The BES of the five clones (119H03, 294I15, 304G05, 618L11 

and 1326P06) did either only overlap in parts with 264M08 (119H03, 304G05 and 1326P06) or 

showed a consistent pattern of SNPs with 264M08 but not between themselves (294I15 and 618L11). 

Thus it seems that actually none of these BACs truly overlaps with 264M08. Furthermore, it seems 

that 618L11 and 1326P06, although identified using the same marker (JIC033) are not overlapping 

either. Only two small contigs (5 kb and 7 kb) overlap with <99% similarity, which suggests recently 

duplicated sequences. BAC 119H03 could be a link between 618L11 and 1326P06 as its M13r BES is 

almost identical with 618L11 (identities: 1012/1013), while its T7 BES is identical with 1326P06 

(identities: 930/930) (Figure 2.7). New markers need to be developed to screen the RSL65 library 

again and recover overlapping BACs on both sides of BAC 264M08. 

 

2.3.3.2.3 Sequencing of the minimum tiling path (MTP) 

In the two chromosome walking steps starting from JIC009 six BACs were identified (Figure 2.7). A 

minimum tiling path (MTP) of four clones was selected and sequenced using Illumina MiSeq (119H03, 

264M08, 618L11 and 1326P06). The sequencing data for each BAC was filtered from contaminants 

and then assembled using CLC Genomics (Materials and Methods 2.1.14). Sequence reads from 

adjacent BACs (apart from 119H03) were mapped against the assemblies to verify their position in 

the MTP and to elucidate by how much they overlap with each other. This process revealed that two 
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separate contigs were created during the chromosome walking steps. The three BACs 119H03, 

618L11 and 1326P06 form one MTP, which is not yet physically connected to BAC 264M08, but 

markers from both MTPs map to the Iw1 interval on 2BS (Figure 2.7). 

 

 

2.3.3.3 RSL65 physical map starting at JIC016 

2.3.3.3.1 JIC016 

The marker JIC016 is based on a gene that is predicted to encode a MU-homology domain gene 

(MU). This gene was absent from the syntenic intervals in Brachypodium and rice and was discovered 

on a barley contig. This MU-gene appears to be missing from TTD140 and Shamrock, but is present in 

Langdon and Shango. 

 

The RSL65 BAC library 2D-pools were screened by PCR with marker JIC016. Two positive BAC clones 

(97O06 and 305G20) were identified (Table 2.6) and their BES was obtained, which consisted for both 

BACs on both ends of single LTR retrotransposons. All BES were queried against the wheat survey 

sequence database using BLASTN. The T7-end of BAC 97O06 matched a 2BS contig from the wheat 

survey sequence (contig 5247170) with 100% (identities: 937/937), while the next best hit was only 

88.1% similar to it. Contig 5247170 extended 4,212 bp further away from BAC 97O06. A marker was 

designed (JIC034), tested on the Langdon x TTD140 F3 homozygous recombinants and proved to 

correctly map to 2BS within the Iw1 interval (Table 2.4). 

 

Likewise, the M13r-end of BAC 305G20 hit 2BS contig 5194426 with 99.8% similarity (identities: 

999/1001), while the next best hit was only 88.8% similar to it. Contig 5194426 extended 700 bp 

further into BAC 305G20. A marker was designed (JIC035), tested on the Langdon x TTD140 and 

Shango x Shamrock F3 homozygous recombinants and proved to correctly map to 2BS within the Iw1 

interval (Table 2.3 and Table 2.4). 

 

The mapping data did not uncover any recombination events, which prevented the orientation of the 

two BACs relative to the physical map. As such, chromosome walking steps needed to be performed 

for both ends (Figure 2.8). 

 

2.3.3.3.2 JIC034 

The RSL65 BAC library 2D-pools were screened by PCR with marker JIC034. Four positive BAC clones 

were identified, two of which were already known (97O06 and 305G20) and two new clones (374D10 

and 634B1) (Table 2.6). BES was obtained from the new clones and used to design primer pairs. The 
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primers for both BACs were tested on the Langdon x TTD140 F3 homozygous recombinants and 

proved to correctly map to 2BS within the Iw1 interval (Table 2.4). However, no recombination event 

was detected with any of the markers. 

 

2.3.3.3.3 JIC035 

The RSL65 BAC library 2D-pools were screened by PCR with marker JIC035. Four positive BAC clones 

were identified, one of which was already known (305G20) and three new clones (784L08, 1031F12 

and 1150M10) (Table 2.6). BES was obtained from the new clones and used to design primer pairs. 

The T7-end of BAC 1031F12 was 99.9% similar (identities: 885/886) to 2BS contig 5204867, while the 

next best hit was only 81.2% similar to it. Contig 5204867 extended 21,494 bp further away from BAC 

1031F12. A marker was designed (JIC036), tested on the Langdon x TTD140 and Shango x Shamrock 

F3 homozygous recombinants and proved to correctly map to 2BS within the Iw1 interval (Table 2.3 

and Table 2.4). A recombination event was detected in the Langdon x TTD140 population that 

orientated this end of the physical map towards Ta_1180 (Figure 2.8). Furthermore, JIC036 is an 

InDel marker and can thus be used to screen the TTD140 BAC library for BAC clones on the distal end 

of the TTD140 physical map. 

 

 

2.3.3.3.4 Sequencing of the minimum tiling path (MTP) 

In the three chromosome walking steps starting from JIC016 seven BACs and two wheat survey 

sequence contigs were identified (Figure 2.8). A minimum tiling path (MTP) of three clones was 

selected and sent for sequencing using Illumina MiSeq (97O06, 305G20, 1031F12). Unfortunately, 

due to technical difficulties none of these BACs could be sequenced in time to include them in this 

thesis. 
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Figure 2.8: Physical map starting at JIC016 
This cartoon depicts the progress on the physical maps of RSL65 on the distal side of the Iw1 interval. 
BACs labelled green have been sequenced. The orange line represents the 2BS contig 5204867. The 
numbers in red represent the number of recombinants from both mapping populations between two 
adjacent markers. The bifurcation of the map represents a hypothesized set of two different 
haplotypes in TTD140 and RSL65. The location of the centromere is indicated. Note that BAC overlap 
is only approximate for the purpose of clarity. 
 

 

2.3.3.4 Concluding remarks on the RSL65 physical map 

The construction of the RSL65 physical map was started to elucidate the extent of a possible deletion 

event inside the Iw1 interval in glaucous cultivar Langdon. This work is still ongoing, but is facilitated 

by the readily available wheat survey sequence, which at several points helped to extend the physical 

map and thus identify new BAC clones or detect recombination events in our mapping populations. 

This suggests that the Iw1 interval is well conserved between RSL65 (cultivar Langdon) and cultivar 

Chinese Spring. Although not yet complete the construction of the RSL65 map already helped to 

discover a new marker, which is also present in TTD140, on the distal side of the Iw1 interval. So far 

the closest marker on the distal side of the Iw1 interval was JIC016, but the gene that it was designed 

on is not present in TTD140. As a consequence JIC016 could not be used to screen the TTD140 BAC 

library. The new marker JIC036 is co-dominant between Langdon and TTD140 and allows us now to 

start the construction of the distal end of the TTD140 physical map. 
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2.3.4 Preliminary comparison of the TTD140 and RSL65 physical maps 

A comparison between the TTD140 and RSL65 physical maps, although both are still unfinished, will 

help our understanding of the Iw1 interval. Here, we take a preliminary look (maps unfinished yet) at 

the sequence similarity between TTD140 and RSL65 MTPs to try and understand the apparent 

presence of two different haplotypes at the Iw1 interval. 

 

2.3.4.1 JIC011 MTP 

The MTP from RSL65 is short compared to its TTD140 equivalent, but already a stark difference in 

similarity can be observed. Three closely linked genes, Ta_5030, Ta_1160 and Ta_1170, are present 

in both MTPs. The coding sequence (CDS) of gene Ta_5030, which encodes a protein of unknown 

function, is highly conserved (99.8%; identities: 1,782/1,786) between TTD140 and the wheat survey 

sequence contig 2BS 5186802 (i.e. Chinese Spring), but less conserved between TTD140/Chinese 

Spring and RSL65 (96.9%; identities: 1,731/1,786). The gene Ta_1160, which also encodes a protein 

of unknown function, was used as proximal flank in both physical maps. The CDS of Ta_1160 was 

99.4% (identities: 1,215/1,222) similar between TTD140 and RSL65 and 100% similar (identities: 

1,222/1,222) between TTD140 and the wheat survey sequence contig 5157821. 

 

In contrast the CDS of Ta_1170, which is predicted to encode a NB-ARC domain protein, is only 98.5% 

similar between TTD140 and RSL65/Chinese Spring. This difference in sequence mostly stems from a 

25-bp deletion in TTD140_1170, which leads to a premature STOP codon in the predicted protein 

after 192 amino acids (aa). In contrast, RSL65_1170 is 99.7% similar to the corresponding open 

reading frame (ORF) in Chinese Spring. 

 

The similarity of the non-repetitive region following Ta_1170 drops to 96% (identities: 2,523/2,628) 

between TTD140 and RSL65 and 94.8% (identities: 2,737/2,887) between TTD140 and Chinese Spring 

and decreases to ~85% at the end of Chinese Spring contig 2BS 5157821. At this position a gene is 

predicted in TTD140, RSL65 and Chinese Spring by both FGENESH and BLASTX algorithms, which here 

will be called Ta_Lectin-Pkc after the domains it is predicted to encode. The similarity at this gene is 

99.7% between RSL65 and Chinese Spring, but only ~88% between TTD140 and RSL65/Chinese 

Spring. This suggests that a split into two different haplotypes has occurred at this point between 

TTD140 and RSL65/Chinese Spring (Figure 2.9). 
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Figure 2.9: Comparison between the physical maps of TTD140 and RSL65 starting at JIC011 
The physical maps of TTD140 (green line) and RSL65 (red line) are compared with contigs from the 
wheat survey sequence (blues lines labeled Chinese Spring). The ovals represent the four predicted 
genes. Gene Ta_5030 from RSL65 is different from TTD140/Chinese Spring (red oval), while gene 
Ta_1160 is equally conserved among the three genotypes (white oval). Genes Ta_1170 and 
Ta_Lectin-Pkc are different between TTD140 and RSL65/Chinese Spring (green ovals). Ta_Lectin-Pkc 
is only partly present on the RSL65 map, because BAC 91G23 ends at that point (half oval). 
 

 

2.3.4.2 JIC009 MTP 

The MTPs from TTD140 and RSL65 surrounding JIC009 are very different from each other in terms of 

gene content and sequence similarity. Apart from Ta_1180, the MTPs from TTD140 and RSL65 have 

no genes in common: Predicted genes encoding Cytochrome P450 enzymes differ in exon-intron 

structure and sequence and cannot be homologous to each other. Overlaps in sequence outside of 

repetitive elements are small in size (less than 1 kb) and low in similarity (92% and below). The only 

real commonality between the MTPs was the gene Ta_1180, which encodes a protein with a 

CBS_pair domain. The CDS of Ta_1180 is only 97.1% similar (identities: 647/666) between TTD140 

and RSL65, while it is 99.4% (identities: 671/675) similar between RSL65 and Chinese Spring. The 

genomic sequence of Ta_1180 is even less conserved between TTD140 and RSL65/Chinese Spring: 

While the first two exons, including the intron between them, is 98% similar (identities: 579/591) 

between TTD140 and RSL65/Chinese Spring, the last three exons, including the introns, are only 

82.2% similar (identities: 722/878) between them. Therefore it is difficult to establish with absolute 

certainty if the TTD140 and RSL65/Chinese Spring genes are indeed homoeologues. 

 

In addition, a DNA transposon (DHH_Helios_42j2-1) with >7 kb in size has inserted 2,324 bp 

downstream of the second exon of Ta_1180 in RSL65 and 2BS contig 5007649, but not in TTD140. 

The intron between exons 2 and 3 is only 992 bp in size in TTD140, suggesting that the DNA 

transposon inserted some extra sequence into the intron. 
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While it is possible that the MTPs were unknowingly constructed in opposite directions, as there are 

no recombinants at this position to orientate the two maps relative to the centromere, the 

differences are too numerous to assume that the MTPs are of the same haplotype. 

 

Interestingly, a number of genes predicted in the RSL65 MTPs are very similar to the genes found in 

barley 2HS contig 46434. A Haemolysin-III encoding gene is 91.5% similar (identities: 910/994) 

between RSL65 and barley, while one of the four Cytochrome P450 encoding genes in barley is 89.3% 

similar (identities: 1,391/1,557) to the ones identified in the RSL65 MTPs. A difference between the 

RSL65 MTPs and barley is the absence of DNA transposon DHH_Helios_42j2-1 inside Hv_1180, 

suggesting that the insertion occurred after the divergence from barley. 

 

These results suggest that two different haplotypes exist in TTD140 and RSL65/Chinese Spring and 

highlights the divergence between modern cultivars (RSL65 and Chinese Spring) and wild emmer 

accession TTD140. 

 

 

2.3.4.3 JIC016 MTP 

The gene that marker JIC016 is based on is absent from TTD140/Shamrock, which has prevented the 

use of JIC016 to screen the TTD140 BAC library. As a consequence this part of the physical map is 

only represented by a MTP from RSL65. However, in the process of constructing the RSL65 physical 

map at the distal end of the Iw1 interval a co-dominant marker (JIC036) was discovered. This enables 

us to start construction of the TTD140 physical map on the distal side of the Iw1 interval. Forty 

recombinants are left between JIC036 and JIC009, suggesting that there are a number of genes 

shared between Langdon and TTD140 in this in region. However, based on the results from the 

proximal and central parts of the physical map we would expect Langdon and TTD140 to diverge at 

some point. 
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2.4 Discussion 

This chapter described the progress that was made in trying to clone the dominant inhibitor of 

glaucous Iw1. A lot of work has been done prior to the start of my PhD to demonstrate that a single 

locus from a wild emmer wheat accession is responsible for inhibiting glaucousness in seven different 

UK winter wheat varieties. Furthermore, this locus had been mapped to a discrete location on the 

short arm of chromosome 2B between markers JIC007 and JIC012. In addition, the distal end of 

wheat chromosome 2B had been anchored to the Brachypodium and rice genomes, which allowed 

the design of new markers based on syntenic genes in this interval. Lastly, a big F2 population of the 

cross Shango x Shamrock had been prepared as well as a smaller F2 population of the cross Langdon x 

TTD140. 

 

It is at this point that I started my PhD project by converting existing SSCP markers into KASPar 

markers. This new type of marker promised low-cost and high-throughput screening of wheat 

populations and over the course of my PhD established itself as the new standard genotyping 

method across several wheat laboratories worldwide. Screening 4,377 F2 plants (8,754 gametes) of 

the hexaploid Shango x Shamrock population was accomplished in approximately two weeks 

(including the preparation of DNA), whereas this would have taken up at least half a year using SSCP 

and SSR markers. This exemplifies the power that KASPar markers offer to a geneticist. From this 

screen 70 recombinants were identified. Shortly afterwards 850 plants (1,700 gametes) of the 

tetraploid Langdon x TTD140 population were screened with KASPar markers as well. From these, 28 

recombinants were discovered, including three lines that showed recombination events between 

two previously linked markers, thus rendering 14 recombinants from the hexaploid Shango x 

Shamrock population redundant. 

 

These recombinants were developed to the F3 generation and homozygous lines were obtained. The 

homozygous recombinants were screened with all available markers, completely exhausting the 

syntenic genes from Brachypodium and rice. At this time an international consortium had been 

working on a draft sequence of barley and we were granted pre-publication access to a barley contig 

with syntenic relationship to the Iw1 interval. This contig was annotated by hand and the predicted 

genes from this contig were queried against various wheat databases. Primer pairs were designed 

from homologous wheat contigs, one of which mapped to the short arm of wheat chromosome 2B. 

This marker was positioned much closer to the Iw1 interval than the previously used marker JIC008 

and reduced the number of recombinants on the distal side of the interval by half. In total, 5,227 

plants (10,454 gametes) from two mapping populations were screened and 44 recombinants inside 

the Iw1 interval were obtained, which equals a genetic distance of 0.42-cM. 
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The distribution of recombinants is heavily skewed though, with only three recombination events on 

the proximal side of the Iw1 interval and the remaining 41 on the distal side. This could be due to a 

recombination cold spot on the proximal side or a recombination hotspot on the distal side of the 

Iw1 interval. Alternatively, it could be that this genomic region contains many genes that are unique 

to wheat and absent from the syntenic intervals in barley, Brachypodium and rice. 

There is also an imbalance of recombination events between the two mapping populations. Out of 

the 41 recombination events on the distal side of the Iw1 interval, 40 are present in the lines 

obtained from the Shango x Shamrock population. Likewise, the three recombination events on the 

proximal side of the Iw1 interval are exclusive to progeny from the Langdon x TTD140 population. 

The imbalance on the distal side could be due to the vastly different amount of plants screened 

between the two populations (4,377 vs. 850), but the number of screened plants does not explain 

the imbalance of recombination events on the proximal side. 

A possible explanation is gene content; genetic recombination can only take place between genes 

and if the parents of the two mapping populations differ in gene content this could result in the 

observed imbalance. Shango and Langdon are both modern domesticated cultivars, which means 

that they are very similar to each other. In contrast the other two parents are likely to be very 

different. The wild emmer wheat accession used in the cross yielding cultivar Shamrock is different 

from TTD140. The non-domesticated wild emmer wheat accessions in the Fertile Crescent display a 

huge array of genetic diversity (Luo et al. 2007), so it is possible to assume a different genetic 

diversity and thus gene content for the wild emmer wheat introgression in Shamrock and the 

accession TTD140. Another explanation could be again hot- and cold spots of recombination present 

in one but not the other population (Faris et al. 2000, Sidhu and Gill 2005). 

 

Screening large numbers of plants is vital for any positional cloning effort (Konishi et al. 2006, Li et al. 

2006), especially for species with large genomes. A high number of plants screened will increase the 

chance to find recombination events on either side of the locus of interest and also in close proximity 

to it. Formulas have been derived that estimate the number of plants or gametes needed to achieve 

this (Durrett et al. 2002). These formulas depend on estimates of the physical to genetic distance 

(Mb/cM) in order to be accurate. Cytogenetic studies have shown an exponential decrease in 

recombination with distance from the telomere (Dvořák et al. 1984, Lukaszewski and Curtis 1993) 

and a rapid increase in the physical to genetic distance ratios closer to the centromere. The genome-

wide estimate is 3 Mb/cM (Bennett and Smith 1991), but smaller ratios than that are common for 

distal chromosomal regions (Stein et al. 2000). The genetic map of Iw1 has a size of 0.42-cM, which 

would translate to a physical size of approximately 480 kb to 1,200 kb, if the physical to genetic 

distance is constant along the interval. 
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In previous map-based cloning projects a wide range of physical to genetic distance ratios has been 

discovered. In some cases this ratio could be as little as 0.09 Mb/cM (mlo (Büschges et al. 1997)), 

whereas in other instances the ratio was much bigger than the genome-wide estimate by Bennett 

and Smith, ranging from 7.4 Mb/cM (Vrs1 (Komatsuda et al. 2007)) to 13.5 Mb/cM (VRN1 (Yan et al. 

2003)). However, in all these cases the size of the genetic interval of the gene of interest had been 

small, ranging from 0.04 cM (VRN1) to 0.36 cM (mlo). This was achieved by screening large numbers 

of gametes (4,044 for mlo; 6,190 for VRN1; 9,831 for Vrs1) for recombinants. The final size of the 

physical amps from which these genes were identified ranged from only 30 kb for mlo to 550 kb for 

VRN1. 

 

We have screened 10,454 gametes from two mapping populations with the size of the genetic 

interval of Iw1 being 0.42-cM. We have also created several BAC contigs with a combined size of 

1,200 kb and are still adding more clones to these contigs. This highlights the complexity of the Iw1 

interval, which we hypothesise is caused by the existence of different haplotypes of the Iw1 interval. 

The comparison of physical maps between TTD140 and RSL65, although yet limited, suggests a high 

level of divergence in terms of gene content and general sequence similarity. Interestingly, we found 

that the RSL65 map showed great similarity in terms of gene content with a contig from the glaucous 

barley cultivar Morex. Because of the lack of dominant inhibitors of glaucousness in barley, we 

hypothesise that an ancestral “glaucous” haplotype existed, which diverged at least in some wild 

emmer species and creating Iw1 in the process. The existence of at least two haplotypes would 

explain the lack of recombination in the Iw1 interval and it would also mask the interval’s genetic 

size. This is reminiscent of another map-based cloning project which suffered from lack of 

recombination and allelic diversity. The Ph1 locus was mapped to a physical interval of 2.5 Mb and 

was eventually validated using a set of deletion mutants (Griffiths et al. 2006). This highlights the fact 

that although positional cloning in polyploid species with large genomes is a challenge, it is feasible. 

In addition, new genetic resources like the wheat survey sequence (International Wheat Genome 

Sequencing Consortium 2011) or the barley genome (Mayer et al. 2011) have already proven to be 

valuable for map-based cloning and will facilitate future cloning efforts. 

 

In summary, Iw1 was fine-mapped to a sub-cM position on the short arm of wheat chromosome 2B. 

Physical maps for TTD140 and RSL65 were started, but not completed yet. Based on a limited 

comparison of the two physical maps it appears as though the Iw1 interval is quite different between 

TTD140 and RSL65. We hypothesise the existence of two haplotypes of the Iw1 interval, which 

prevent recombination inside the interval. We further hypothesise that the “glaucous” haplotype is 

the ancestral form as there is no evidence for the existence of Iw1 so far in rye, barley or other grass 
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species. Instead Iw1 has possibly emerged within a new “non-glaucous” haplotype in wild emmer 

wheat. It is possible to assume the existence of a glaucous accession within wild emmer wheat, 

which carries the “non-glaucous” haplotype or at least a haplotype that is more closely related to it. 

We have acquired a set of >100 wild emmer wheat accessions and are currently screening the 

glaucous ones for similarity to the “non-glaucous” haplotype. This would create an alternative for 

cloning Iw1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



120 
 

Chapter 3 Validation of Iw1 candidate genes 

 

Introduction 

The genomes of members of the Triticeae tribe range in size from >3 Mb to 8 Mb (Bennett and Smith 

1976, Arumuganathan and Earle 1991, Doležel et al. 1998, Jakob et al. 2004) in diploid species and to 

multiples of that in polyploid species. These immense genomes exist because of the exceedingly high 

presence of repetitive DNA, accounting for 76, 80 and 92% of the genome size in Hordeum vulgare, 

Triticum monococcum and Secale cereale respectively (Flavell et al. 1974, Bennetzen et al. 1998, 

Shirasu et al. 2000, Lagudah et al. 2001). This high amount of repetitive elements is associated with a 

very dynamic genome, with transposable elements (TEs) causing an altered expression of genes 

(Kloeckener-Gruissem and Freeling 1995, Fu et al. 2005, Zhang and Saier 2009), gene deletions 

(Harberd et al. 1987, Chopra et al. 1999), gene duplications (Akhunov et al. 2007) or increases in 

genome size (SanMiguel et al. 1998, Kalendar et al. 2000), thus being a major driver for evolution. 

One would assume that because of this plasticity the genomes of the Triticeae would be highly 

different, but it was discovered that genes and gene order are well conserved among grass species 

(Casacuberta and Santiago 2003). Genes in grasses are organized into so-called gene islands (Barakat 

et al. 1997) that are highly conserved, while the surrounding intergenic regions turn over at a fast 

pace (in evolutionary terms) (Wicker et al. 2003, Dubcovsky and Dvorak 2007). However, this concept 

only refers to the structure of gene islands in general, but not to their content. 

 

The genome structure of grass species makes the identification of genes quite challenging, but 

because of the high academic and agronomic interest in these species new ways to cope with these 

difficulties are being created. Transposable elements are discovered and stored in large databases 

like the Triticeae Repeat Sequence Database (TREP, (Wessler 1998) or the MIPS Repeat Element 

Database (Nussbaumer et al. 2013) to allow plant scientists to correctly annotate and interpret 

genomic sequences. After annotating the repetitive portion of a given sequence the search for open 

reading frames (ORFs) can begin. Tools like FGENESH (Salamov and Solovyev 2000) and BLASTX 

(States and Gish 1994) have been used widely for their ease of use (can be run in a browser window) 

and good “accuracy” in predicting ORFs. These ORFs or candidate genes can be validated in silico by 

exploring expressed sequence tag (EST) databases (Kawaura et al. 2005), but ultimately they need to 

be validated by wet lab experiments. 

 

Numerous methods for the validation of candidate genes have been developed over the years. One 

of the most widespread methods is expression profiling (Uzarowska et al. 2009), in which the 

expression of candidate genes is compared between a panel of lines differing in the phenotype of 
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interest. The rationale behind this method is that expression of the causal candidate gene should be 

correlated with the presence of the phenotype of interest. 

Similar to that, candidate genes can be tested in a high-throughput manner by inhibiting their 

expression via post-transcriptional gene silencing (PTGS) (Waterhouse and Helliwell 2003). The PTGS 

assays can be designed to knock down the expression of a range of related genes, which is very 

useful in polyploid species like wheat, which can have three or more homoeologous copies of a single 

locus (Uauy et al. 2006). The knockdown of a causal candidate gene by PTGS should mimic a loss-of-

function phenotype. 

In recent years Targeting Induced Local Lesions IN Genomes (TILLING) has established itself as a 

viable method for high-throughput validation of candidate genes in both model organisms and 

polyploid species like wheat (McCallum et al. 2000, Slade et al. 2005, Uauy et al. 2009). In fact, a 

polyploid species has a much higher mutational density than a diploid species because of its genetic 

redundancy in form of homoeologous gene copies. It is estimated that a TILLING population of 

hexaploid wheat has on average one mutation per 32 kb of sequence, compared to one mutation per 

380 kb of sequence for a diploid (Wang et al. 2012). This high mutation density significantly reduces 

the size of the population that needs to be screened in order to obtain a knock-out mutant for the 

gene-of-interest in a polyploid species compared to a diploid species. However, the genes of interest 

obviously need to be present within the TILLING population, which could be problematic for rare 

alleles. 

Another method to validate candidate genes is the analysis of allelic diversity for the trait of interest 

within a natural population (Peleg et al. 2008). Analysing the nucleotide sequence of candidate genes 

within a number of accessions from a broad geographic range should yield a good correlation 

between candidate ORFs and the phenotype of interest. It is also possible that candidate genes are 

not present at all in some members of a diversity panel. Allelic diversity studies can easily be 

combined with expression analysis to increase the robustness of the correlations. 

Genetic complementation is regarded as one of the best methods for validating candidate genes. By 

transforming a single gene into another organism the effect of this gene can be readily studied in 

stable transgenic individuals. This method is often used to complement mutants with a functional 

gene copy or to transfer a single gene with a clear phenotype as resistance against a pathogen 

(Huang et al. 2003) or grain hardness (Beecher et al. 2002). However it is still difficult and expensive 

to stably transform many crop species like wheat as it requires regeneration of transformed callus 

tissue into mature plants and at the same time to ensure the correct expression pattern of the 

transgene (Harwood 2012). 

The method of choice for validation depends on the function of the gene of interest, the ease of 

distinguishing the phenotype caused by the gene of interest and on the budget. Usually several 



122 
 

methods are used in a complementary way in candidate gene validation to achieve the strongest 

correlation possible. 

 

We hypothesized that Iw1 is either non-functional, not expressed or even deleted in modern 

germplasm due to its clearly observable phenotype, its dominant nature and the lack of it across 

modern varieties. This hypothesis was underlined by the results of our physical maps (Chapter 2.3), 

which suggested the existence of two different haplotypes at the Iw1 locus. We have acquired over 

100 accessions of Triticum turgidum ssp. dicoccoides (TTD) differing in their glaucous phenotype. 

These lines were used to test the expression profile of candidate genes and to understand their 

allelic diversity. Candidate genes that passed these tests were transformed into the glaucous spring 

wheat cultivar Fielder at the National Institute of Agricultural Botany (NIAB). We were not aware of 

the existence of a TILLING population containing Iw1, so instead we created EMS populations of 

Shamrock and TTD140 to knock out Iw1. In addition, we have used our BC4 NILs in an RNA-seq 

experiment to identify Iw1. 
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3.1 Materials and Methods 

3.1.1 Plant material 

Shamrock, Shango and the Shango x Shamrock DH population have been described in Chapter 1.1.1. 

Shamrock was used as pollen donor for a cross to Shango to generate a large F2 mapping population. 

TTD140 is a non-glaucous wild emmer wheat (Triticum turgidum ssp. dicoccoides, TTD) accession 

from Israel that was shown to carry Iw1. Langdon (Triticum turgidum ssp. durum) is a glaucous durum 

wheat cultivar. TTD140 was used as pollen donor for a cross to Langdon to obtain several hundred F2 

plants. 

We have acquired 124 TTD accessions from the National Institute of Agricultural Botany (NIAB). We 

have passport information for 96 of these accessions. 

 

3.1.2 Total RNA extraction 

Tissue was collected and immediately frozen in liquid nitrogen and stored at -80°C until needed. 

Approximately 1 mg of tissue was homogenized in 0.5 mL of TriReagent (15596-018, Ambion) and 

incubated for 5 min to separate the nucleoprotein complex. Then 0.1 mL of Chloroform was added, 

the sample was shaken vigorously and incubated it at room temperature (RT) for 3 min. Samples 

were centrifuged for 10 min at 10,000 x g. The upper aqueous layer was transferred to a new tube 

and 0.25 mL of propan-2-ol were added to precipitate the RNA. The sample was incubated for 10 min 

at RT and then centrifuged for 10 min at 10,000 x g. The supernatant was removed carefully, 

followed by the addition of 0.5 mL of 70% Ethanol. The samples were centrifuged for 10 min at 

10,000 x g and the supernatant was removed. Excess liquid was removed with a pipette. The pellet 

was then immediately resuspended in 20 µL of nuclease-free H2O. RNA was stored at -80°C. 

 

3.1.3 DNase treatement of RNA 

Prior to cDNA synthesis the RNA was treated with RQ1 DNase (M6101, Promega). 

 

1. DNase recipe: 

RNA      5 µL 

RQ1 RNase-Free DNase 10X Reaction Buffer 1 µL 

RQ1 RNase-Free DNase    1 µL 

Nuclease-free water to a final volume of 3 µL 

 

2. Incubate samples for 30 min at 37°C. 

3. Add 1 µL of RQ1 DNase Stop Solution to each sample to terminate the reaction. 

4. Incubate samples for 10 min at 65°C to inactivate DNase. 

5. Store at -80°C. 
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3.1.4 cDNA synthesis from total RNA 

Reagents: 

- M-MLV Reverse Transcriptase (28025-013, Invitrogen) 

- Oligo(dT) Primers (AM5730G , Invitrogen) 

- RNaseOUT™ Recombinant Ribonuclease Inhibitor (10777-019, Invitrogen) 

- dNTP mix (U1511, Promega) 

 

1. Mix the following: 

 DNase treated RNA  6 µL 

 dNTPs (10 mM)   1 µL 

 Oligo(dT) Primers  1 µL 

 

2. Incubate at 65°C for 5 min, then quick chill on ice. 

3. Add the following to the mix: 

 5x First-Strand Buffer  4 µL 

 0.1 M DTT   2 µL 

 RNaseOUT   1 µL 

M-MLV RT   1 µL 

 

4. Incubate for 50 min at 37°C. 

5. Incubate for 15 min at 70°C to inactivate reverse transcriptase. 

6. Store cDNA at -20°C for short term and at -80°C for long term. 

 

3.1.5 Ethyl methanesulfonate (EMS)-mediated mutagenesis 

The following protocol was used to mutagenise wheat seeds with EMS. 

1) Mix 91 mL of Tween 20 with 819 mL H2O = 910 mL to obtain a 10% solution in a 1 L bottle. 

2) Weigh 150 mL of seeds (~3,000 seeds) and add to each 1 L bottle. 

3) Agitate on roller bar shaker at setting 7-8 for 15 min. 

4) Take out 10% Tween 20 solution and rinse with water. Then add 910 mL H2O and place on 

roller bar shaker at setting 7-8 for 5 min. 

5) Repeat three more times. 

6) Add 910 mL of H2O and proceed to add EMS. For 0.85% EMS concentration 6.4269 mL EMS 

was added (MW 124.16 g/mol). 

7) Agitate on roller bar shaker at setting 3-4 for 18 hours. 

8) Eliminate EMS solution in NaOH (40 g/L) + Thioglycolic acid (12.5 mL/L) and add fresh H2O. 

Rinse 5 times changing the water each time. Then agitate on roller bar shaker for 15 min at 

setting 4. 
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9) Combine all seeds into one bucket and place under running water for 3 hours. Place 

cheesecloth on top to be sure that seeds do not float out. 

 

3.1.6 Sequencing Total RNA using Illumina HiSeq 

Total RNA was extracted from 100 mg of tissue using twice the amount of volumes described in 

Materials and Methods 3.1.2. Total RNA was quantified using (Implen Nanophotometer) and 50 ng of 

total RNA were handed to TGAC for preparation of a paired-end 100 bp library. Libraries were 

multiplexed in sets of two to be run on a single lane; a leaf sheath sample was always paired with a 

peduncle sample from the same plant. The subsequent sequencing was performed using an Illumina 

HiSeq 2500 in ‘Output Run’ mode to generate >100,000,000 reads per lane. 
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3.2 Results 

3.2.1 Phenotypic analysis of the TTD diversity panel 

The 124 TTD accessions were sown out in pairs, grown for a complete growth cycle and the seeds 

were recovered. Only 43 accessions have a spring growth habit, while the remaining 81 accessions 

have a requirement for vernalization. The accessions showed a range of glaucous phenotypes 

summarized in Table 3.1. Apart from their glaucous phenotype the TTD accessions displayed a wide 

range of phenotypes for many agriculturally important traits like flowering time, height, tiller 

number, seed size and glume size. 

 

 

Table 3.1: Glaucous phenotypes of the TTD diversity panel 

This table summarizes the glaucous phenotypes observed in the 124 accessions of TTD. Glaucousness 

was recorded as visible wax on four plant organs: Leaf sheath, flag leaf, peduncle and spike. Presence 

of a waxy bloom is represented by (+), while (-) denotes absence of glaucousness. 

Leaf Sheath Flag leaf Peduncle Ear No. of accessions Origin 

+ + + + 26 South/North 

+ + + + 22 No passport information 

+ + + - 2 South/North 

+ + - - 2 South/North 

+ - - + 2 North 

+ - - - 10 South/North 

- - - - 55 South 

- - - - 5 No passport information 

 

 

Wild emmer wheat grows in a discontinuous arc from southern Levant to northwestern (NW) Syria, 

southeastern (SE) Turkey, northern Iraq, and NW Iran (Figure 3.1). It was shown by AFLP analysis that 

wild emmer wheat formed two populations (Ozkan et al. 2002); a northern population (Turkey, Iraq, 

Iran, Armenia and Azerbaijan) and a southern population (Jordan, Israel, Palestine, Lebanon, and 

southwestern Syria). Emmer, like einkorn, was domesticated west of the Diyarbakir region in 

southeastern (SE) Turkey (Figure 3.2), and the domesticated emmer expanded to the southern 

Levant, where it inter-crossed with wild emmer, forming a second centre of diversity (Luo et al. 

2007). 
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Figure 3.1: Map of the Fertile Crescent 

The green shaded area is known as the Fertile Crescent, where cereals like einkorn, emmer wheat 

and barley have been grown by early farmers. Wild relatives of these species still grow in this area 

and represent a huge source for genetic diversity. Figure taken from Feuillet et al. (2008). 

 

 

 

Figure 3.2: Distribution of wheat species in the Fertile Crescent 
Emmer wheat was domesticated west of the Diyarbakir region (full red circle) and expanded 
southwest, where it mixed with wild emmer wheat (dotted red circle) forming a southern centre of 
diversity. Northeastern expansion of domesticated emmer led to hybridization with Aegilops tauschii 
(purple ring) and the emergence of common wheat (T. aestivum). Figure taken from Dubcovsky and 
Dvorak (2007). 
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The 96 accessions, for which we have information about their collection site for, seem to fall into two 

groups when analysing their phenotype for glaucousness. We considered a glaucous phenotype 

when at least one aerial plant organ of an accession showed a waxy bloom. Accessions originating 

from the northern population (24 in total) exclusively display a glaucous phenotype, while accessions 

from the southern population of wild emmer (72 in total) display both glaucous and non-glaucous 

phenotypes (Table 3.2). From these 72 southern accessions, 55 display a non-glaucous phenotype, 

while 17 display a glaucous phenotype. Test-crosses between 22 non-glaucous TTD accessions and 

the glaucous durum wheat cultivar Langdon have been made already, with the F1 generation 

currently being grown in the glasshouse. The remaining non-glaucous TTD accessions will also be 

crossed with Langdon. This will elucidate whether the inhibitor Iw1 or the absence of wax-producing 

gene W1 is responsible for the non-glaucousness in these accession. 

 

These preliminary results suggest that glaucousness is the ancestral phenotype of wild emmer wheat 

and that non-glaucousness controlled by Iw1 only developed in the southern population, but not in 

the northern one. Examining more accessions from the northern wild emmer population would be 

necessary to confirm these results. 

 

 

Table 3.2:  Geographic distribution of glaucous and non-glaucous phenotypes among 96 TTD 

accessions for which passport information is available 

Country glaucous non-glaucous Population 

Turkey 20 - Northern 

Iraq 2 - Northern 

Iran 1 - Northern 

Armenia 1 - Northern 

Jordan - 10 Southern 

Israel 6 30 Southern 

Lebanon 5 3 Southern 

SW Syria 6 12 Southern 
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3.2.2 Summary of genes predicted in the physical maps of TTD140 and RSL65 

We have started construction of two physical maps for the Iw1 interval, one in the non-glaucous 

TTD140 and another in the glaucous RSL65. The TTD140 map is comprised of two contigs made from 

eleven BAC clones with a total size of 942 kb, excluding overlap between BACs. Out of these 942 kb 

approximately 684 kb (~73%) correspond to known TEs while the remaining 258 kb (27%) correspond 

to low copy number sequence. Nine genes were predicted inside these 258 kb using FGENESH and 

BLASTX, which equals 1 gene every 29 kb. The predicted genes are listed in Table 3.3 based on their 

position in the physical map from proximal to distal of the Iw1 interval. 

 

 

Table 3.3: List of predicted genes in TTD140 

The genes predicted in the TTD140 physical map are listed here in the approximate order from 

proximal to distal of the Iw1 interval. (+) denotes presence of a predicted gene in a genotype, (-) 

denotes absence of a predicted gene in a genotype, (?) denotes an unclear status. (+) and (-) with a 

(?) next to them denotes hypothesized presence or absence. Chinese Spring information is based on 

the 2BS flow sorted survey sequence assemblies. 

  
predicted gene 

Langdon Shango TTD140 Shamrock Chinese Spring 

Glaucous Glaucous Non-glaucous Non-glaucous Glaucous 

   305N15_CYP450 - - + + - 

   305N15_CHS ? - + ? - 

   774P06_WPK - - + + - 

   23N19_FAE1 - - + + - 

   23N19_CYP450 - - + + ? - 

   23N19_LRR - - + - - 

   551I08_PGG - - + - - 

   784K20_1180 - ? - ? + - ? - 

   784K20_PFF - ? - ? + - ? - 
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The physical map of RSL65 is comprised of three contigs made from eight BAC clones. However, only 

four of these BAC clones have been sequenced so far, resulting in a total map size of just 388 kb. Out 

of these 388 kb approximately 209 kb (54%) correspond to known TEs while the remaining 179 kb 

(46%) correspond to low copy number sequence. This is a much lower ratio of repetitive elements 

than would be expected. However, the map is small and might depict a particularly gene-rich region. 

Seven genes were predicted inside the 179 kb of low copy number sequence using FGENESH and 

BLASTX, which equals 1 gene every 26 kb. The predicted genes are listed in Table 3.4 based on their 

position in the physical map from proximal to distal of the Iw1 interval. 

 

Table 3.4: List of predicted genes in RSL65 

The genes predicted in the RSL65 physical map are listed here in the approximate order from 

proximal to distal of the Iw1 interval. (+) denotes presence of a predicted gene in a genotype, (-) 

denotes absence of a predicted gene in a genotype, (?) denotes an unclear status. (+) and (-) with a 

(?) next to them denotes hypothesized presence or absence. Chinese Spring information is based on 

the 2BS flow sorted survey sequence assemblies. 

  
predicted gene 

Langdon Shango TTD140 Shamrock Chinese Spring 

Glaucous Glaucous Non-glaucous Non-glaucous Glaucous 

   264M08_PKc + + - + + 

   264M08_CYP450 + + - - + 

   264M08_1180 + + - - + 

   618L11_CYP450 + + ? - ? - ? + 

   618L11_HlyIII + ? ? ? + 

   1326P06_CYP450 + + ? - ? - ? + 

   1326P06_HlyIII + ? ? ? + 
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3.2.3 Analysis of predicted genes in TTD140 

The following section covers an initial analysis of the genes predicted within the TTD140 physical 

map. The aim is to characterize the putative candidate genes among the four parental lines of the 

genetic maps, namely TTD140, Langdon, Shamrock and Shango. This should yield and initial estimate 

whether the predicted gene is a likely candidate gene of Iw1, in which case further validation efforts 

will be undertaken. The sequences of the primers mentioned here can be found in the Appendix (A6). 

For the BLASTN queries against the wheat survey sequence database described here, hits with a 

similarity below 90% were ignored. 
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3.2.3.1 305N15_CYP450 

FGENESH and BLASTX predicted a gene with two exons (CDS: 1,542 bp; genomic: 1,981 bp), which 

encodes a member of the Cytochrome P450 (PLN02687 (Marchler-Bauer et al. 2011), P450) family. A 

BLASTN query against the wheat survey sequence database yielded one hit with 93.7% similarity 

(identities: 2,321/2,477) from 2AS (contig 387072), while hits to 2BS and 2DS contigs had  <85% 

similarity. BLASTN queries against several EST databases resulted in a single hit (BJ256128) with 94% 

similarity (identities: 561/591), but which was 100% identical with 2AS contig 387072. This in silico 

analysis suggested that Chinese Spring has a homoeologue of 305N15_CYP450 in the A genome, but 

no homologue of the TTD140 2BS gene could be identified. 

 

Two primer pairs were designed to amplify the first (F1+R1) and the second (F2+R2) exon (Figure 

3.3). PCR products of expected size were amplified and sequenced for both primer pairs in Langdon, 

Shango, TTD140 and Shamrock. The sequence of the Langdon and Shango F1+R1 amplicons was 

>99% similar to wheat 2AS contig 387072, but 97% (identities: 855/881) and 98% (identities: 

803/823) similar to 305N15_CYP450 respectively. The sequence of the F2+R2 amplicons however 

was only 92% similar to 2AS contig 387072, but 95% to 305N15_CYP450. A comparison between 

305N15_CYP450 and contig 2AS 387072 revealed that SNPs are present at the 3’ end of both F2 and 

R2, which prevented amplification of the A-genome homoeologue of 305N15_CYP450. Surprisingly 

though, 2AS contig 387072 remained the top hit in the wheat survey sequence database using the 

Langdon and Shango F2+R2 amplimers as queries. 

 

The sequence of both amplicons from TTD140 and Shamrock was >99.9% similar to 305N15_CYP450. 

This suggested that this gene is present in both non-glaucous varieties while absent from the 

glaucous varieties, which supports the hypothesis that 305N15_CYP450 is a candidate gene of Iw1. 

Further experiments including expression analysis are necessary to test this hypothesis. 

 

 

Figure 3.3 Genomic interval of 305N15_CYP450 

The figure represents the genomic interval of the predicted gene 305N15_CYP450. Labelled blue 

boxes represent the exons, the red line represents the intron and arrows indicate the position of 

primers used to amplify the gene in Langdon, Shango, TTD140 and Shamrock. The green bar 

indicated the scale. 
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3.2.3.2 305N15_CHS 

FGENESH and BLASTX predicted a gene with two exons (CDS: 1,203 bp; genomic: 1,289 bp) and 

encodes a CHS-like domain (cd00831) protein. A BLASTN query against the wheat survey sequence 

database yielded one hit (contig 5273836) from 2AS with 98.1% similarity (identities: 1,264/1,289), 

while hits to 2BS and 2DS contigs had <85% similarity. 

 

Two primer pairs were designed to amplify the first (F3+R3) and second (F4+R4) exon (Figure 3.4). 

PCR products of expected size were amplified and sequenced for Langdon, Shango, TTD140 and 

Shamrock. The sequence of the F4+R4 amplicon from Shango was 99.5% similar (identities: 874/878) 

to wheat 2AS contig 5273836. The sequencing of all the other amplicons failed though. The 

experiment needs to be repeated, possibly with new primer pairs. Until then 305N15_CHS remains a 

candidate gene of Iw1. 

 

 

Figure 3.4 Genomic interval of 305N15_CHS 
The figure represents the genomic interval of the predicted gene 305N15_CHS. Labelled blue boxes 
represent the exons, the red line represents the intron and arrows indicate the position of primers 
used to amplify the gene in Langdon, Shango, TTD140 and Shamrock. The green bar indicated the 
scale. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



134 
 

3.2.3.3 774P06_WPK 

FGENESH and BLASTX predicted a gene with five exons (CDS: 654 bp; genomic: 1,530 bp) that 

encodes a protein with a partial SRPBCC_11 domain (cd08866) and a partial FR_SDR_e domain 

(cd08958). A BLASTN query against the wheat survey sequence database yielded one hit (contig 

4362786) from 6BL with 96.6% similarity (identities: 1,096/1,134), but no hits to any group 2 contigs. 

The 6BL contig is truncated though and starts only in the middle of the second exon. Apart from this 

6BL contig, no nucleic acid database yielded a hit to the entire 774P06_WPK gene, but only either to 

the first two or the last two exons. 

 

Two primer pairs were designed to amplify the entire gene (Figure 3.5). PCR products of expected 

size were sequenced for Langdon, Shango, TTD140 and Shamrock. The sequence of F5+R6 amplicons 

from Langdon and Shango was 99.9% similar (identities: 1,133/1,134) to wheat 6BL contig 4362786, 

while the sequence of F5+R6 amplicons from TTD140 and Shamrock was 100% (identities: 

1,530/1,530) and 98% (identities: 1,499/1,528) similar to 774P06_WPK, respectively. These results 

suggest that 774P06_WPK is present in both non-glaucous varieties, whereas a paralogous copy is 

present in the glaucous varieties on 6BL. The expression of 774P06_WPK and its allelic diversity in the 

TTD panel need to be tested to validate or rule out 774P06_WPK as a candidate gene for Iw1. 

 

 

Figure 3.5 Genomic interval of 774P06_WPK 
The figure represents the genomic interval of the predicted gene 774P06_WPK. The green boxes 
represent the SRPBCC_11 domain encoding exons, while the blue boxes represent the FR_SDR_e 
domain encoding exons. The orange box represents an exon that does not seem to belong to either 
of the two domains. The red lines represent introns and arrows indicate the position of primers used 
to amplify the gene in Langdon, Shango, TTD140 and Shamrock. The green bar indicated the scale. 
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3.2.3.4 23N19_FAE1 

FGENESH and BLASTX predicted a gene with one exon and a LTR retrotransposon (Ale_391M13_1, 

Copia family) of 6,884 bp in size inserted at position 1,049 counting from the ATG (target site 

duplication: GCCCG). The uninterrupted coding sequence is 1,512 bp in length and encodes a CHS-

like domain (cd00831) protein, which consists of two domains itself: A FAE1_CUT1_RppA domain 

(pfam08392) and an ACP_syn_III_C domain (pfam08541). The inserted retrotransposon leads to a 

premature STOP codon at position 1,059 counting from the ATG. This is predicted to abolish the 

ACP_syn_III_C domain, but leaves the FAE1_CUT1_RppA domain intact. 

 

A BLASTN query against the wheat survey sequence database using the uninterrupted CDS yielded 

one hit (contig 5275619) from 2AS with 97.8% similarity (identities: 1,449/1,481), but no hits from 

2BS or 2DS. Using the sequence with the inserted retrotransposon for the BLASTN yielded the same 

2AS contig in addition to multiple hits to the Ale_391M13_1 sequence. Two primer pairs were 

designed to amplify the putative gene, with primers inside the top part of the CDS, inside the 

repetitive sequence and inside the lower CDS (Figure 3.6). Using primer pair F7+R8, PCR products of 

1500 bp size (size of the uninterrupted CDS) were amplified and sequenced from Langdon, Shango, 

TTD140 and Shamrock. These sequences were >99.5% similar to the wheat 2AS contig 5275619. 

 

Primer R7 was designed with its 3’ end inside the 23N19_FAE1 CDS but with half of the primer inside 

the retrotransposon. The sequence of F7+R7 PCR products from Langdon and Shango was 99.9% 

similar to the wheat 2AS contig 5275619. In contrast, the sequence trace files of the TTD140 F7+R7 

amplicon showed the presence of overlapping single peaks, suggesting that both homoeologues of 

the gene had been amplified, as these overlapping peaks coincided with SNPs between 23N19_FAE1 

and 2AS contig 5275619. 

 

The sequence trace file of the Shamrock F7+R7 amplicon also shows overlapping single peaks, but is 

much more complicated than in TTD140. The Shamrock sequence trace file clearly shows that two 

products have been amplified with 17 SNPs between them and 23N19_FAE1. Nine of these SNPs can 

be explained by homoeologous SNPs between 23N19_FAE1 and 2AS contig 5275619. Three further 

SNPs are present in one or the other amplicon, but they seem to be specific to the Shamrock 

genotype as 23N19_FAE1 and 2AS contig 5275619 are identical at these positions. The remaining five 

SNPs are polymorphic with 23N19_FAE1, but identical with 2AS contig 5275619. This suggested that 

Shamrock carries the 2AS homoeologue of 23N19_FAE1, but the identity of the other amplicon is 

unclear. 
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These results suggest that although half of primer R7 lies inside the retrotransposon the primer can 

still bind to the 2AS homoeologue. New primers need to be designed or the PCR products using the 

existing primer pairs need to be subcloned to disentangle the different amplicons. Until then 

23N19_FAE1 remains a valid candidate for Iw1. 

 

 

Figure 3.6 Genomic interval of 23N19_FAE1 

The figure represents the genomic interval of the predicted gene 23N19_FAE1. The yellow box 

indicated the first half of the CDS, which encodes the FAE1_CUT1_RppA domain, while the blue box 

represents the ACP_syn_III_C domain encoding exon. The grey box represents the inserted 

transposable element and arrows indicate the position of primers used to amplify the gene in 

Langdon, Shango, TTD140 and Shamrock. The green bar indicated the scale. 
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3.2.3.5 23N19_CYP450 

FGENESH and BLASTX predicted a gene with six exons (CDS: 1,695 bp; genomic: 2,306 bp), which 

encodes a member of the Cytochrome P450 (pfam00067 (Finn et al. 2010)) family. A BLASTN query 

against the wheat survey sequence database yielded one hit with 97.7% similarity (identities: 

2,254/2,306) from 2AS (contig 5275619),  five hits with <85% similarity from 2BS and no hits from 

2DS. 

 

Two primer pairs were designed; one to amplify the first three exons (F9+R9) and the other to 

amplify the remaining three exons (F10+R10) of 23N19_CYP450 (Figure 3.7). PCR products of 

expected size from both primer pairs were obtained and sequenced for Langdon, Shango, TTD140 

and Shamrock. The sequence of the Langdon and Shango amplicons was 99.7% similar to wheat 2AS 

contig 5275619 for both primer pairs. 

 

The TTD140 sequence trace files for both primer pairs showed the presence of overlapping single 

peaks, suggesting two very similar but nonetheless different products having been amplified. These 

overlapping peaks coincide with SNPs between 23N19_CYP450 and the 2AS contig 5275619, 

suggesting that both homoeologues of the gene have been amplified in TTD140. 

 

The sequence of the F10+R10 amplicon from Shamrock matches the 2AS contig 5275619 100% 

(identities: 1393/1393). In contrast the trace files of the F9+R9 amplicon showed the presence of 

overlapping single peaks, suggesting two very similar but nonetheless different products having been 

amplified, suggesting that both 23N19_CYP450 and its 2A homoeologue have been amplified. The 

lack of 2BS sequence in the F10+R10 amplicon of Shamrock might be caused by SNPs overlapping 

with the primer pair. This gene seems to be present in TTD140 and Shamrock and absent from 

Langdon and Shango, making it a viable candidate for Iw1. 

 

 

Figure 3.7 Genomic interval of 23N19_CYP450 

The figure represents the genomic interval of the predicted gene 23N19_CYP450. Labelled blue boxes 

represent the exons, red lines represent introns and arrows indicate the position of primers used to 

amplify the gene in Langdon, Shango, TTD140 and Shamrock. The green bar indicated the scale. 
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3.2.3.6 23N19_LRR 

FGENESH and BLASTX predicted a gene with three exons (CDS: 666 bp; genomic: 1,073 bp), which 

encodes a partial LRR-domain (COG4886 (Tatusov et al. 2000)) protein. A BLASTN query against the 

wheat survey sequence database yielded no hits from 2AS, 2BS or 2DS. BLASTN queries of several EST 

databases also did not yield any hits. Two primer pairs were designed to amplify the putative gene 

(Figure 3.8). A PCR product could only be obtained from TTD140 using primer pair F11+R12, the 

sequence of which was 100% similar (identities: 1,218/1,218) to 23N19_LRR. The absence of a PCR 

product in Shamrock suggested that this gene is not Iw1. However, this hypothesis needs to be 

verified by several more independent primer pairs or preferably by Southern Blot. Until then 

23N19_LRR remains a candidate gene of Iw1. 

 

 

Figure 3.8 Genomic interval of 23N19_LRR 

The figure represents the genomic interval of the predicted gene 23N19_LRR. Labelled blue boxes 

represent the exons, red lines represent introns and arrows indicate the position of primer pairs used 

to amplify the gene in Langdon, Shango, TTD140 and Shamrock. The green bar indicated the scale. 
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3.2.3.7 551I08_PGG 

FGENESH and BLASTX predicted a gene with two exons (CDS: 2,514 bp; genomic: 2,780 bp) that 

encodes a protein of unknown function with five PGG domains (pfam13962). A BLASTN query against 

the wheat survey sequence database yielded one hit (contig 5167874) from 2BS with 89.3% similarity 

(identities: 2,149/2,407), several partial hits with >92% similarity to 2DS and no hits to 2AS. 

 

Two primer pairs (F13+R13 and F14+R14) were designed to amplify both exons (Figure 3.9). Both 

primer pairs amplified PCR products of expected size in TTD140, but not in the other three 

genotypes. The sequence from both TTD140 amplicons was 99.9% similar to 551I08_PGG. This gene 

appears to be unique to TTD140. Since this gene could not be amplified from Shamrock repeatedly it 

was thus concluded that 551I08_PGG is not Iw1. 

 

 

Figure 3.9 Genomic interval of 551I08_PGG 

The figure represents the genomic interval of the predicted gene 551I08_PGG. The blue boxes 

represent exons, the red line represents the intron and arrows indicate the position of primers used 

to amplify the gene in Langdon, Shango, TTD140 and Shamrock. The green bar indicated the scale. 
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3.2.3.8 784K20_PFF 

FEGENESH and BLASTX predicted a gene with six exons (CDS: 1,146 bp; genomic: 4,681 bp) that 

encodes a protein of unknown function with no conserved domains. A BLASTN query against the 

wheat survey sequence database yielded one hit (contig 5198780) to 2AS with 92.9% similarity 

(identities: 4,277/4,604), but no hits to 2BS or 2DS. 

 

Two primer pairs were designed to amplify the first three (F15+R15) and the last three (F16+R16) 

exons (Figure 3.10). The sequence trace files of the F15+R15 amplicon from TTD140 showed the 

presence of overlapping single peaks, suggesting two very similar but nonetheless different products 

having been amplified. These overlapping peaks coincide with SNPs between 784K20_PFF and the 

2AS contig 5198780, suggesting that both sequences have been amplified in TTD140. The sequence 

of F15+R15 amplicons from Langdon, Shango and Shamrock was >99% similar to the 2AS contig 

5198780. 

 

 

 

Figure 3.10 Genomic interval of 784K20_PFF 

The figure represents the genomic interval of the predicted gene 784K20_PFF. The blue boxes 

represent the exons, red lines represent introns, while arrows indicate the position of primers used 

to amplify the gene in Langdon, Shango, TTD140 and Shamrock. The intron between exon 3 and 4 is 

2.8 kb in size and was shortened here for the purpose of clarity. The green bar indicated the scale. 

 

 

The F16+R16 primer pair however amplified two different products in all four genotypes (overlapping 

peaks in the trace files), but none of these was identical with 784K20_PFF. A simple sequence repeat 

(SSR) within the 784K20_PFF sequence was different to the amplified products: 784K20_PFF has ten 

repeats of the base pair sequence TA, while all amplified products only had five repeats of TA (Figure 

3.11). 
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Figure 3.11: Alignment of PCR products of 784K20_PFF 

The F16+R16 primers pair amplified products from Langdon, Shango, TTD140 and Shamrock. None of 

these products was identical to 784K20_PFF, as can be seen from the reduced copy number of the 

simple sequence repeat TA in the trace files of all PCR products. Lgd = Langdon, Sgo = Shango, Shr = 

Shamrock 

 

The F16+R16 primer pair failed to amplify the correct sequence even from TTD140 even though there 

are no SNPs underlying the primers. From the F15+R15 amplification we would hypothesise that 

784K20_PFF is unique to TTD140 and thus cannot be Iw1, as appears to be missing from Shamrock. 

However, this hypothesis needs to be verified by several more independent primer pairs, as we 

cannot exclude the possibility that the lack of amplification using F15+R15 did not result from SNPs 

coinciding with the primer pairs. Until then 784K20_PFF remains a candidate gene of Iw1. 
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3.2.4 Analysis of predicted genes in RSL65 

3.2.4.1 264M08_PKc 

FGENESH and BLASTX predicted a gene with seven exons (CDS: 1,044 bp; genomic: 5,348 bp), which 

encodes a PKc (cd00180) protein kinase. A BLASTN query against the wheat survey sequence 

database yielded one hit with 99.9% similarity (identities: 5,344/5,348) from 2BS (contig 5208300), 

but no contig was hit from 2AS or 2DS. A large intron (3,279 bp) separates the first four exons from 

the remaining three exons. 

 

Two primer pairs were designed to amplify the first three exons (F17+R17) and the last three exons 

(F18+R18)(Figure 3.12). PCR products of expected size were obtained from both primer pairs for 

Langdon, Shango and Shamrock. The sequence of the F17+R17 amplicon from Langdon, Shamrock 

and Shango was 100% (identities: 1,034/1,034), 99.9% (identities: 975/976) and 100% (identities: 

1,026/1,026) similar to 264M08_PKc, respectively. The sequence of the F18+R18 amplicon from 

Langdon, Shamrock and Shango was 100% (identities: 907/907), 99.8% (identities: 912/914) and 

100% (identities: 921/921) similar to 264M08_PKc, respectively. The SNPs between 264M08_PKc and 

Shamrock are predicted to cause a non-synonymous change in two amino acids: Glutamatic acid is 

replaced by Lysine at position 46 and Serine is replaced by Isoleucine at position 324. Several active 

sites are present in the predicted protein around position 50, but as Glutamatic acid and Lysine both 

belong to the same amino acid group (amino acids with electrically charged side chains) it seems 

unlikely that this exchange would affect protein function in Shamrock. No active sites are predicted 

at position 324 and in fact the catalytic domain of PKc ends at position 300, which makes it unlikely 

that the change from Serine to Isoleucine would affect protein function in Shamrock. 

 

No PCR products could be amplified from TTD140 repeatedly. 264M08_PKc was also not identified in 

any of the sequenced TTD140 BACs, although this could be due to the fact that the TTD140 physical 

map is not yet complete. Several more primer pairs will be designed to try and amplify the gene from 

TTD140, but it appears that 264M08_PKc is not Iw1. 

 

 

Figure 3.12 Genomic interval of 264M08_PKc 

The figure represents the genomic interval of the predicted gene 264M08_PKc. The blue boxes 

represent exons, red lines represent introns, while arrows indicate the position of primers used to 

amplify the gene in Langdon, Shango, TTD140 and Shamrock. The intron between exon 4 and 5 is >3 

kb in size and was shortened here for the purpose of clarity. The green bar indicated the scale. 
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3.2.4.2 264M08_CYP450 

FGENESH and BLASTX predicted a gene with one exon (CDS: 1,557 bp; genomic: 1,557 bp), which 

encodes a member of the Cytochrome P450 (PLN02169) family. A BLASTN query of the CDS against 

the wheat survey sequence database yielded three hits with 99.9% similarity (identities: 1,555/1,557 

for all three hits) from 2BS (contigs 5201145, 5230436 and 5245086), two contigs with 95.1% (2DS 

contig 5389765) and 95.9% (2DS contig 27654) similarity (identities: 562/591 and 610/636, 

respectively) from 2DS, but no contigs from 2AS. The three contigs from 2BS likely represent one 

gene that was assembled into three different contigs, as the two SNPs between each of them and 

268M08_CYP450 are at the exact same positions. 

 

Two primer pairs were designed to amplify the CDS (Figure 3.13). PCR products of expected size were 

amplified in Langdon, Shango, and Shamrock. The sequence of the F19+R19 amplicon from Langdon 

was 100% (identities: 652/652) identical to 264M08_CYP450. The sequence trace files of the F19+R19 

amplicons from Shango and Shamrock are heavily contaminated. A BLASTN query of the Shango 

sequences against the wheat survey sequence database yields the three 2BS contigs (contigs 

5201145, 5230436 and 5245086) as the top hits, while for the Shamrock sequences 2DS contig 

5389765 is the top hit. This suggested that 264M08_CYP450 was not amplified in Shamrock. 

 

The sequence of the F20+R20 amplicons from Langdon, Shango and Shamrock was 99.9% (identities: 

1,030/1,031), 99.7% (identities: 1,016/1,019) and 96.6% (identities: 978/1,012) similar to 

264M08_CYP450, respectively. The sequence of the F20+R20 amplicons from Shango and Shamrock 

are 95.8% (identities: 609/636) and 99.9% (identities: 635/636) similar to 2DS contig 27564, 

indicating that the F20+R20 primer pair did not amplify 264M08_CYP450 in Shamrock. 

 

No PCR products could be amplified from TTD140 repeatedly and the 264M08_CYP450 sequence was 

not identified in any of the sequenced TTD140 BACs, although this could be due to the fact that the 

TTD140 physical map is not yet complete. Several more primer pairs will be designed to try and 

amplify the gene from TTD140 and Shamrock, but it appears that 264M08_PKc is not Iw1 as it is 

absent from both non-glaucous varieties which contradicts the dominant nature of the Iw1 

phenotype. 
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Figure 3.13 Genomic interval of 264M08_CYP450 

The figure represents the genomic interval of the predicted gene 264M08_CYP450. The blue 

rectangle represents the single exon, while arrows indicate the position of primer pairs used to 

amplify the gene in Langdon, Shango, TTD140 and Shamrock. The green bar indicated the scale. 
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3.2.4.3 618L11_CYP450 and 1326P06_CYP450 

FGENESH and BLASTX predicted a gene with one exon (CDS: 1,557 bp; genomic: 1,557 bp), which 

encodes a member of the Cytochrome P450 (P450) family (PLN02169) on the two BACs 618L11 and 

1326P06 (gene model identical to Figure 3.13). The sequence of these predicted P450s is 99.9% 

(identities: 1,555/1,557) and 99.7% (identities: 1,553/1,557) similar to 264M08_CYP450. No SNPs 

could be detected between the sequences of the primer pairs F19+R19 and F20+R20 used to amplify 

264M08_CYP450 from Langdon, Shango, TTD140 and Shamrock. As a result it can be hypothesized 

that 618L11_CYP450 and 1326P06_CYP450 are not present in TTD140 or Shamrock because they 

would have been amplified otherwise beforehand. In addition, as with 264M08_CYP450, none of 

these two P450s was detected in any of the sequenced TTD140 BACs, although this could be due to 

the fact that the TTD140 physical map is not yet complete. However, the three RSL65 P450s 

(264M08_CYP450, 618L11_CYP450 and 1326P06_CYP450) are 89.2% (identities: 1,389/1,557) similar 

to a P450 from barley contig 46434 (Section 2.2.5), which indicated a syntenic relationship. 
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3.2.4.4 618L11_HlyIII and 1326P06_HlyIII 

FGENESH and BLASTX predicted a gene with two exons (CDS: 936 bp; genomic: 1,019 bp), which 

encodes a member of the Haemolysin III family (pfam03006) on the two BACs 618L11 and 1326P06 

(Figure 3.14). The CDS of 618L11_HlyIII is 99.9% similar (identities: 935/936) to 1326P06_HlyIII, while 

the complete 618L11_HlyIII genomic contig is 99.7% similar (identities: 10,979/11,021) to the 

1326P06_HlyIII genomic contig. The two genes and the contigs around them are very similar between 

the two BACs, but not as similar as would be expected (99.9%), suggesting a very recent duplication. 

 

A BLASTN query against the wheat survey sequence database yielded one hit with 99.7% similarity 

(identities: 1,016/1,019) from wheat 2BS (contig 5189448); three more 2BS contigs were hit, but they 

were all truncated. Only a small contig (217bp) was hit from 2DS, while no 2AS contigs were hit. The 

CDS of both 618L11_HlyIII and 1326P06_HlyIII is also 91.8% similar to Hv_HlyIII, a gene from barley 

2HS contig 46434 (Section 2.2.5). This suggested a syntenic relationship between the wheat and 

barley genes. 618L11_HlyIII and 1326P06_HlyIII were not tested yet for presence/absence in Shango, 

TTD140 and Shamrock. 

 

 

Figure 3.14 Genomic interval of 618L11_HlyIII 
The figure represents the genomic interval of the predicted gene 618L11_HlyIII. The blue boxes 
represent the two exons, while the red line represents the single intron. The gene model is identical 
to 1326P06_HlyIII and Hv_HlyIII, a gene from the 2HS barley contig 46434. The green bar indicated 
the scale. 
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3.2.5 Analysis of Ta_1180 

The distal end of the short arm of chromosome 2B has been anchored to Brachypodium and rice 

(Section 2.21.2) and the wheat homolog of Bradi5g01180 has been linked in all screens to the Iw1 

phenotype. A full length EST contig was obtained for Ta_1180 from the Triticeae Full-Length CDS 

Database (TriFLDB (Mochida et al. 2009)). The gene consists of five exons (CDS: 666) and is predicted 

to encode a CBS_pair domain (cd02205) in the second half of its protein. 

 

A BLASTN query of the full-length EST contig against the wheat survey sequence database yielded 

two hits to 2BS with 95.6% (identities: 453/474) and 98.4% (identities: 189/192) similarity. One of 

these hits covers the first two exons (contig 5007649), while the second hit covers the last three 

exons (contig 5182000). In addition one hit from 2AS (contig 5304717, 94.7% similarity, identities: 

631/666) and one hit from 2DS (contig 5208300, 99.8% similarity, identities: 471/472) were 

obtained; the 2DS contig is truncated inside the first exon. 

 

The combined CDS of the two 2BS contigs (CS_2BS_1180) is 99.5% similar (identities: 663/666), 

96.9% (identities: 646/666) and 94.6% (630/666) similar to the CDS of 264M08_1180 (RSL65), the 

CDS of 784K20_1180 (TTD140) and the CDS of Hv_1180, respectively. The similarity between the 

Chinese Spring/RSL65 and TTD140 copies is much lower than would be expected for true 

homologues from different varieties (>99%). A possible explanation could be the insertion of a large 

(>7 kb) DNA transposon (DHH_Helios_42j2-1) into the sequence of both CS_2BS_1180 and 

264M08_1180. The insertion site is 2,324 bp downstream of the second exon of Ta_1180 and it 

explains why two separate 2BS hits were obtained from the wheat survey sequence database (Figure 

3.15A). It is possible that this insertion disrupted the function of the gene, which is now no longer 

being conserved in Chinese Spring and RSL65 (Langdon). Both 784K20_1180 (Figure 3.15B) and the 

barley homologue of Ta_1180 lack this insertion event, the latter suggesting that the insertion 

happened after the divergence of wheat and barley. 

 

We have used the InDel marker JIC009 (identical with F21+R21), which was used to identify BAC 

784K20 and BAC 264M08 from the TTD140 and RSL65 BAC libraries respectively, to correlate the 

phenotypes of the TTD diversity panel with the genetic polymorphism seen between TTD140 and 

Langdon. The phenotypic scores did not correlate with the InDel polymorphism between TTD140 and 

Langdon. Only twelve accessions shared the TTD140 polymorphism, eight of which originate from the 

southern TTD population and four with no passport information, but presumably also from the 

southern population based on their non-glaucous phenotype. The majority of accessions (87) share 

the Langdon polymorphism but show no correlation regarding phenotype or population. This 
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suggested that Ta_1180 is not correlated with the Iw1 phenotype. However, the polymorphism that 

JIC009 is based on is not present in Shamrock, thus we cannot conclude that Ta_1180 is not linked 

with the phenotype of the TTD diversity panel, but only that marker JIC009 is not linked with it. We 

will clone the entire Ta_1180 gene from all members of the TTD diversity panel to elucidate whether 

it is a valid candidate of Iw1. Interestingly we have discovered four accessions that show 

heterozygosity for marker JIC009. We will test the progeny to elucidate whether these were merely 

heterozygous plants or whether these accessions possess the two hypothesised haplotypes of the 

Iw1 interval. 

 

Table 3.5: Screen of TTD diversity panel using marker JIC009 

The InDel marker JIC009 (F21+R21) was used to screen the TTD diversity panel. The phenotypic 

scores did not correlate with the InDel polymorphism between TTD140 and Langdon. Six accessions 

were found to be heterozygous. Note that genotypic scores were not obtained for all accessions. 

Population Phenotype 
Langdon 

polymorphism 
TTD140 

polymorphism 
Heterozygotes 

northern       Glaucous 17 - 2 
      Non-glaucous - - - 

southern       Glaucous 14 2 1 
      Non-glaucous 38 6 3 

no passport 
information 

      Glaucous 16 - 
       Non-glaucous 2 4 
 

 
      Total 87 12 6 

 

 

A translation of the CDS from CS_2BS_1180, 264M08_1180, 784K20_1180 and Hv_1180 revealed 

that the predicted CS_2BS_1180 and 264M08_1180 (RSL65) proteins are identical (identities: 

221/221), while the translated 784K20_1180 (TTD140) sequence has three non-synonymous SNPs 

with both of them (identities: 218/222). None of these three substitutions is a positive exchange of 

amino acids (positives: 218/221), but since none of them fall inside the CBS_pair domain there is no 

evidence that the substitutions would disrupt the protein’s function. The translated sequence from 

Hv_1180 shows a number of amino acid substitutions in the first third of the predicted protein, but 

the CBS_pair domain is completely conserved between barley and the three predicted proteins from 

wheat. This conservation of the key domain (CBS_pair) suggested that the protein can fulfil its normal 

function in all analysed genotypes, if it is expressed. 

 

We have tested expression of Ta_1180 via RT-PCR of cDNA gained from flag leaf tissue of Shango and 

Shamrock after anthesis (after the appearance of the glaucous phenotype in Shango). Bands of 

correct size were amplified, but sequencing revealed that these bands consisted solely of the A-
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genome homoeologue of Ta_1180. We will repeat this experiment and include the TTD diversity 

panel to obtain stronger evidence for the expression pattern of Ta_1180. 

 

The results obtained so far do not allow us to rule out Ta_1180 as a candidate for Iw1; however they 

also do not provide over-whelming evidence for its involvement in the phenotype. We will perform 

additional experiments as described above to elucidate the role of this gene. 

 

 

 

Figure 3.15 Genomic intervals of Ta_1180 in RSL65 and TTD140 

The figure represents the two different genomic intervals of the gene Ta_1180. (A) A DNA 

transposon inserted inside the second intron of Ta_1180 in RSL65, while (B) the ORF of Ta_1180 in 

TTD140 is uninterrupted. Labelled blue boxes represent the exons, red lines represent introns and 

arrows indicate the position of a primer pair used to identify BAC 784K20 in the TTD140 BAC library 

and BAC 264M08 in the RSL65 BAC library. The sequence between exons 2 and 3 was shortened here 

for the purpose of clarity. The green bar indicated the scale. 
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3.2.6 Analysis of 774P06_WPK 

As was mentioned in the initial analysis of 774P06_WPK, the gene is predicted to encode two 

domains that were not found together on one sequence in any public nucleotide or protein database. 

This uniqueness was reminiscent of the Iw1 locus, which seems to be missing from other grass and 

cereal species. Interestingly, 774P06_WPK is surrounded by an old DNA transposon 

(DTC_Vincent_42j2-1; CACTA) that has less than 90% similarity to the best hit in TREP. This could 

explain the unique combination of the two domains. Some transposable elements are known to 

“acquire” additional sequence during a transposition, which can become fixed if the new 

combination proves to be beneficial: This is especially true for DNA transposons of the CACTA family 

(Takahashi et al. 1999, Finn et al. 2010). The two domains predicted to be encoded by 774P06_WPK 

are a partial SRPBCC_11 domain (cd08866) and a partial FR_SDR_e domain (cd08958); both domains 

lack a part of their 3’ ends, hence they are being called partial here. 

 

The SRPBCC_11 domain is part of the uncharacterised group of 

START/RHO_alpha_C/PITP/Bet_v1/CoxG/CalC (SRPBCC) domain superfamily. SRPBCC domains have a 

deep hydrophobic ligand-binding pocket and bind diverse ligands. The SRPBCC domain here has a 

high similarity to a Polyketide cyclase / dehydrase and lipid transport family, which is involved in 

polyketide synthesis as well as lipid binding and transport. The FR_SDR_e domain is a member of the 

NADB_Rossmann superfamily. The NADB domain is present in numerous dehydrogenases of 

metabolic pathways and NADB domains often occur together with other domains that are 

responsible for specifically binding a substrate and catalyzing a particular enzymatic reaction. These 

are all plausible functions for a protein that involved in the biosynthetic pathway of β-diketones (a 

class of lipids) or their transport to the plant surface. We hypothesise that one or both of the partial 

domains of 774P06_WPK act in a dominant-negative manner by competing for ligands or forming 

non-functional homo- or heterodimers. 
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3.2.6.1 Cloning 774P06_WPK from genomic DNA 

Our initial analysis of the 774P06_WPK gene has revealed that it is present in the non-glaucous 

varieties TTD140 and Shamrock, but absent from the glaucous cultivars Langdon and Shango; we 

could not detect homoeologous copies of 774P06_WPK, so we conclude that there is only one copy 

of this gene present among our germplasm. However, a paralogue of 774P06_WPK is present on the 

long arm of chromosome 6B in Langdon and Shango. We have cloned the entire 774P06_WPK from 

TTD140 and Shamrock and also the entire 6BL paralogue from Langdon and Shango using two primer 

pairs (F22+R22 and F23+R23)(Figure 3.16). The 6BL paralogue could not to be amplified in TTD140 or 

Shamrock, suggesting that it is absent from these genotypes. The 6BL paralogue contains a STOP 

codon (TAG) 27 bp before the end of exon 1, indicating a truncated and most likely non-functional 

protein. The 774P06_WPK gene from TTD140 and Shamrock contains no premature STOP codon. 

 

The genomic sequence of 774P06_WPK is 97.7% (identities: 2,182/2,234) similar between TTD140 

and Shamrock, while the CDS is 97.9% (identities: 734/750) similar between the two. Shamrock has a 

31 bp insertion 147 bp upstream of the transcriptional start site predicted by FGENESH; this 31 bp 

insertion is also present in the 6BL paralogue of Langdon and Shango. In addition, the 774P06_WPK 

sequence from Shamrock indicated a different splice site for the 4th exon (AC instead of AG, Figure 

3.16), thus eliminating eleven base pairs from the putative Shamrock transcript. This in turn leads to 

a frameshift and a premature STOP codon which is predicted to abolish the FR_SDR_e domain, but to 

leave the partial SRPBCC_11 domain intact. Of the 26 SNPs between the CDS of 774P06_WPK in 

TTD140 and Shamrock six SNPs are predicted to cause a non-synonymous exchange of amino acids 

(identities: 126/132), with three of these amino acid changes being positive substitutions (positives: 

129/132). None of the amino acid changes occurs at a predicted ligand-bigand site though, 

suggesting that the function of the partial SRPBCC_11 domain remains unchanged. The premature 

STOP codon in Shamrock suggested that if 774P06_WPK is Iw1, then its function stems solely from 

the SRPBCC domain. 

 

 

Figure 3.16 Genomic interval of 774P06_WPK 
The figure represents the extended genomic interval of the predicted gene 774P06_WPK. The green 
boxes represent the SRPBCC_11 domain encoding exons, while the blue boxes represent the 
FR_SDR_e domain encoding exons. The orange box represents an exon that does not seem to belong 
to either of the two domains. The red lines represent introns and arrows indicate the position of 
primers used to clone the gene in Shango, Langdon, TTD140 and Shamrock. The green bar indicated 
the scale. 
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3.2.6.2 RT-PCR expression analysis of 774P06_WPK 

We have tested expression of 774P06_WPK in TTD140, Shamrock, Shango and Langdon via RT-PCR 

using primer pair F5+R5 (Figure 3.16) using cDNA generated from leaf sheath tissue after anthesis 

(Materials and Methods 3.1.2 – 3.1.4). TTD140, Shamrock and Shango showed expression, while 

Langdon did not, even after repeated attempts. The TTD140, Shamrock and Shango bands were 

excised and sequenced. This revealed that exon 3, which was predicted by FGENESH, did not exist in 

the transcript (Figure 3.17 and Figure 3.18). The consequence was that the TTD140 protein was 

predicted to lose its FR_SDR_e domain, while the same domain was now restored to the predicted 

Shamrock protein. Furthermore, the absence of “exon 3” has caused STOP codon in Shamrock to 

disappear; it is unclear where the Shamrock transcript ends now. However, these results suggest that 

if 774P06_WPK is Iw1, then its function stems solely from the SRPBCC domain. 

 

The Shango transcript appeared to lack the STOP codon inside the first exon, which was identified in 

the genomic sequence. Furthermore, the Shango transcript had a 99 bp insertion between exons 2 

and 3, which truncated exon 2 (Figure 3.17). This insertion led to a premature STOP codon in the 

Shango transcript, which was predicted to abolish the SRPBCC domain. This Shango transcript was 

unexpected and its sequence did not match that of the 6BL paralogue. 

 

 

Figure 3.17 Updated genomic interval of 774P06_WPK 
After RT-PCR expression analysis it became clear that the predicted gene model from FGENESH was 
wrong and that 774P06_WPK has only four exons. The green boxes represent the SRPBCC_11 domain 
encoding exons, while the blue boxes represent the FR_SDR_e domain encoding exons. The pink 
triangle represents an insertion in the transcript of Shango. The red lines represent introns and 
arrows indicate the position of primers used to amplify the gene in Langdon, Shango, TTD140 and 
Shamrock. The green bar indicated the scale. 
 

Primer pair F5+R5 was used to amplify this new sequence from genomic Shango DNA. The PCR 

products were subcloned and two different products were discovered. One was the already known 

6BL paralogue, while the other product was similar to 774P06_WPK from Shamrock, but contained 

the 99 bp insertion seen in the Shango transcript. This suggested that Shango has two paralogues of 

774P06_WPK (Figure 3.18). We hypothesise that this new paralogue was not discovered before 

because primer R22 falls inside the 99 bp insertion, the sequence of which is completely dissimilar to 

the R22 primer sequence. We further hypothesise that the similarity of this new paralogue ends at 

some point downstream of exon 3 and that primer R23 could not amplify it either. 
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Figure 3.18 Transcripts in TTD140, Shamrock and Shango 
This figure represents the transcripts discovered in TTD140, Shamrock and Shango. TTD140 and 

Shamrock transcripts diverge after exon 2, indicating that the first two exons are essential, but not 

the remaining exons. Shango has two transcripts; a very short one with a premature STOP codon 

inside exon 1 and a second transcript with a 99 bp insertion in exon 2, also leading to a premature 

STOP codon. Phenotypes and expression status are indicated. Note that transcripts were cut off at 

their STOP codons, represented by (*). 

 

 

3.2.6.3 Transcriptional start site of 774P06_WPK 

The gene model initially predicted by FGENESH had turned out to be wrong as “exon 3” (Figure 3.16) 

could not be detected in TTD140, Shamrock, or Shango transcripts. The sequence upstream of the 

transcriptional start site predicted by FGENESH contains eight ATG codons, which could be 

alternative transcriptional start sites not correctly predicted by FGENESH. However, seven of these 

upstream ATG codons are out of frame with the 774P06_WPK ORF. The remaining ATG codon 

though, which is located 252 bp upstream of the predicted start site in TTD140, would cause a 

premature STOP codon in Shamrock and Shango transcripts due to a 31-bp insertion in these two 

genotypes (Figure 3.19)(section 3.2.4.1). We have tried to design primers upstream of the FGENESH 

ATG codon, but due to a very high GC content around the alternative ATG, we could not design 

primers adjacent to it. Thus, we would not be able to distinguish the 5 ’UTR of the transcript from an 

alternative “real” transcript. 

 

 

Figure 3.19 Alternative transcriptional start site of 774P06_WPK 
An alternative start site to the one predicted by FGENESH would not affect the TTD140 transcript but 

lead to a premature STOP codon in Shamrock and Shango transcripts. The yellow box indicated the 

putative sequence belonging to exon 1 if the alternative start site is the correct one. The red triangle 

represents the location of the premature STOP codon in Shamrock and Shango using the alternative 

transcriptional start site. 
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Instead, we used the first two exons of 774P06_WPK, which encode the partial SRPBCC_11 domain, 

to query the IPK barley database using BLASTN. The idea was to find genes with a similar domain and 

exon/intron structure and compare the transcriptional start sites between wheat and barley. We 

identified one expressed sequence on chromosome 3HL with 93.3% (identities: 336/360) similarity 

that is predicted to encode a complete SRPBCC_11 domain. Using this information, we also identified 

the corresponding homologues in wheat on chromosomes 3AL (96.1% similar, identities: 346/360), 

3BL (96.1% similar, identities: 346/360) and 3DL (95% similar, identities: 342/360). The alternative 

transcriptional start site was not conserved in any of these four genes. The transcriptional start site 

predicted by FGENESH however was also the predicted and conserved start site in all these genes. 

This suggested that the transcriptional start site predicted by FGENESH for 774P06_WPK is the 

correct start site. 

 

 

3.2.6.4 Allelic diversity of 774P06_WPK 

To assess the allelic diversity of 774P06_WPK in the TTD diversity panel we used primers F5+R5 

(Figure 3.16) to clone the first two exons of the gene in all TTD accessions. Nine different alleles of 

774P06_WPK were detected in the TTD diversity panel (Figure 3.20). Note that the terms TTD and 

DIC are used interchangeably in this section, but refer to the same species (Triticum turgidum ssp. 

dicoccoides). 

 

The majority of accessions (51) shared the allele present in Shamrock, whereas the TTD140 allele is 

much more rare (present in 13 accessions), although this result could be biased by the composition 

of the population (Table 3.6). Four alleles were similar to the 6BL paralogue present in Shango and 

Langdon, with a premature STOP codon at the end of exon 1, but also with characteristic SNPs 

(DIC55, DIC64, DIC117 and DIC119). The second allele present in Shango was also found in the 

diversity panel (DIC21), but none of these accessions possessed the 6BL paralogue as well. A single 

accession with an allele very similar to Shamrock, but not identical with it, was discovered (DIC28b). 

 

However, no clear pattern between the distribution of alleles and the affiliation with either of the 

two TTD populations (northern and southern) can be observed. The Shamrock allele for example is 

mostly present in non-glaucous accessions (46), but also in five glaucous accessions (Table 3.6). The 

same is true for the TTD140 allele. This indicated that allelic diversity alone was not enough to 

validate 774P06_WPK, but that we need to look at its expression pattern as well. 
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Figure 3.20 774P06_WPK alleles 
This figure represents the alleles discovered in 117 accessions of the TTD diversity panel. Only the 

first two exons were sequenced for each accession. The allele from Langdon is identical with the 6BL 

allele in Shango. Expression status for each allele is indicated. Note that alleles were cut off at their 

STOP codons, represented by (*). 
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Table 3.6: Allelic diversity of 774P06_WPK in the TTD diversity panel 

The first two exons of 774P06_WPK were cloned in 117 TTD accessions. Nine different alleles were 

detected, with the Shamrock allele being the most widely distributed one. The phenotype of 

accessions is indicated at the top, while affiliation to the different TTD populations is indicated at the 

bottom. Note that Shango type refers to the 6BL paralogue only. 

 
northern southern no passport  

 

Phenotype Glaucous 
Non-

glaucous 
Glaucous 

Non-
glaucous 

Glaucous 
Non-

glaucous 
Total 

TTD140 tpye 1 - 1 8 - 3 13 

Shamrock type 1 - 2 42 2 1 48 

Shango type 5 - - - 7 - 12 

DIC 2 type - - 5 - 3 - 8 

DIC 21 type - - 1 - 6 - 7 

DIC 28b type - - - - - 1 1 

DIC 55 type 13 - 2 1 3 - 20 

DIC 64 type - - 1 - - - 1 

DIC 117 type - - 2 - - - 2 

DIC 119 type 2 - 4 - - - 6 

 

 

To test the expression pattern of the various 774P06_WPK alleles we performed RT-PCR on cDNA 

generated from leaf sheath tissue after anthesis. To reduce background noise from other transcripts 

and from genomic DNA, we used a new primer pair (WPK_01) that was designed at the junctions 

between exons 1 and 2 and between exons 3 and 4. The different 774P06_WPK alleles were grouped 

into two categories: Functional alleles have no STOP codon within the first two exons (TTD140, 

Shamrock, DIC28b), while non-functional alleles do (Shango, DIC2, DIC21, DIC55, DIC64, DIC117, 

DIC119). The term “functional” and “non-functional” are used loosely to describe the putative status 

of the SRPBCC_11 domain (exons 1 and 2). 

 

Table 3.7: RT-PCR expression analysis of 774P06_WPK alleles 

Expression was tested on cDNA generated from leaf sheath tissue after anthesis using RT-PCR. 

774P06_WPK alleles were grouped into two categories: Functional alleles have no STOP codon within 

the first two exons, while non-functional alleles do. (+) indicated expression while (-) indicated lack of 

expression. 

Phenotype Allele Expression Total 

Glaucous 
Non-functional - 44 

Functional - 7 

Glaucous 
Non-functional + 3 

Functional + - 

Non-glaucous 
Non-functional - - 

Functional - 7 

Non-glaucous 
Non-functional + 1 

Functional + 39 
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The correlation between phenotype, allele and expression status was very good (Table 3.7). Out of 

54 glaucous accessions analysed, 44 showed no expression of their non-functional alleles and more 

importantly seven glaucous lines with functional alleles lacked expression. Three glaucous lines 

showed expression of their non-functional alleles; all three accessions carried the DIC21 allele (Figure 

3.20). Of the 47 non-glaucous accessions, 39 accessions with functional alleles showed expression, 

while seven accessions with functional alleles lacked expression. This correlation is almost perfect 

with the exception of a single non-glaucous accession that showed expression of a non-functional 

allele. No glaucous accession with an expressed copy of a functional allele was discovered. We 

hypothesise that the seven non-glaucous accessions with functional alleles lacking expression are 

likely also lacking wax-producing genes. We are in the process of making test crosses with these 

accessions (and all other non-glaucous accessions); by crossing these accessions to a glaucous 

cultivar like Langdon we should be able to tell by the phenotype of the F1 generation whether these 

accessions carry Iw1 or lack wax-producing genes. 

 

 

3.2.6.5 Genetic complementation of Fielder with 774P06_WPK 

Because of the strong body of evidence obtained via the allelic diversity and RT-PCR expression 

analysis we decided to validate 774P06_WPK via genetic complementation. The glaucous spring 

wheat cultivar Fielder is used regularly and with high efficiency for transformation experiments at 

NIAB. A set of vectors exist at NIAB into which constructs can be inserted via homologous 

recombination (Gateway cloning). We decided to send two constructs for complementation. One 

would be the genomic construct with as much sequence upstream of the transcriptional start site as 

was at our disposal (1,115 bp); this was to improve our chances of including the native promoter 

within the construct. The second construct would be the CDS of 774P06_WPK, which would be 

recombined behind the actin promoter of rice in the transformation vector. Primers were designed 

to amplify the required DNA/cDNA sequences, with five extra base pairs in front of the CDS construct 

to ensure that it is in frame with the actin promoter. The constructs were sent to NIAB where the 

team led by Dr. Emma Wallington performed the transformation and the subsequent steps to 

recover primary transformants from transformed callus cells. 
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Figure 3.21 Primary transformants of 774P06_WPK 
Two constructs, one genomic and one CDS construct, were sent for transformation into glaucous 
spring wheat cultivar Fielder at NIAB. Primary transformants were sent back to JIC. All transformants 
displayed a glaucous phenotype on the leaf sheath (marked by red box), the exposed of the peduncle 
and the spike. From left to right in this picture: Primary transformant with no insert (“Control”), 
primary transformant with genomic construct (“Native promoter”), primary transformant with CDS 
construct (“Actin promoter”). 
 

 

Approximately 20 primary transformants for each construct were generated and sent back to us. The 

insert copy number was assessed by qPCR at NIAB and all transformants had a least one copy of the 

respective insert. The plantlets were grown up in a controlled environment room (CER). However, 

after anthesis all plants were displaying a strong glaucous phenotype (Figure 3.21). We collected leaf 

sheath and flag leaf tissue; the leaf sheath tissue for RNA extraction and the flag leaf tissue for wax 

extraction. Using the same primers as for the RT-PCR analysis of the TTD diversity panel (WPK_01), 

we tested the expression of twelve primary transformants from each construct. Only two 

transformants carrying the native construct did not show expression, while all other transformants 

did show expression (Figure 3.22). One out of seven control plants (no insert as determined by qPCR) 

also displayed expression of 774P06_WPK (Figure 3.22, Lane 29). We are going to extract leaf wax 

from these transformants in the coming weeks to test the composition of the surface wax layer. This 

is done to ensure that all β-diketones aliphatics and other waxes, which are present on wild type 

Fielder plants, are also present on the transformants. However, the lack of a non-glaucous 

phenotype coupled with expression of the constructs in most cases indicated that 774P06_WPK is 

not Iw1. 
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Figure 3.22 Expression of 774P06_WPK in primary transformants 
Expression of 774P06_WPK was tested in the primary transformants using RT-PCR. CDS-construct (1-
5, 8-14), genomic construct (16-19, 22-28), Control without insert (6-7, 15, 20-21, 29-30), TTD140 
(31), Langdon (32). 
 

 

3.2.7 Candidate gene discussion 

This section will revisit the predicted genes from the Iw1 interval that are still considered as 

candidate genes and elucidate their potential to fit in with the role of Iw1. 

 

 

3.2.7.1 305N15_CYP450 

305N15_CYP450 is predicted to encode a member of the Cytochrome P450 (P450) monooxygenase 

superfamily, specifically a flavonoid 3’-monooxygenase. P450s are present in all living organisms and 

are known to be active in a wide range of biosynthetic and detoxicative pathways. P450s in plants 

participate in the synthesis of lignins, UV protectants, pigments, defense compounds, fatty acids, 

hormones, and signaling molecules (Schuler and Werck-Reichhart 2003). Several hundred P450 

species are known to be present in mono- and dicot plants, which has hampered the identification 

and functional characterization of P450s due to protein redundancies (Nelson et al. 2004). 

 

P450s in plants have been discovered to form operon-like clusters that are involved in species-

specific metabolic functions like the production of benzoxazinoids in maize (Frey et al. 1997) or 

avenacin in oat (Qi et al. 2004). Due to the wide range of metabolic functions performed by P450s it 

is easy to envisage Iw1 to be a P450. 

 

The most likely scenario to inhibit β-diketone production or transport would be the synthesis of a 

signaling molecule or hormone that triggers the inactivation of the genes/proteins involved with β-

diketone production or transport. Alternatively, mutations at key ligand binding sites or within the 

catalytic domain of the enzyme might change or abolish its function or it could compete for 

precursor molecules and ligands with the genes/proteins involved in β-diketone production, although 
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based on the dominant effect of Iw1 and the absolute lack of β-diketone aliphatics in non-glaucous 

Iw1 lines these scenarios seem less likely. 

 

We will perform more experiments to validate or rule out this candidate in the coming weeks. It is 

also possible to imagine this enzyme as a target of Iw1. 

 

 

Figure 3.23 Biosynthetic pathways of lipid components 

Acyl chains from the FAS pathway get exported to the ER where they become targets for various 
types of FAE complexes. This figure displays a pathway present in many Gramineae species, 
producing amongst others β- and hydroxy-β-diketones. Figure taken from von Wettstein-Knowles 
(2012). 
 

 

3.2.7.2 305N15_CHS 

305N15_CYP450 is predicted to encode a member of the Chalcone and stilbene synthases (CHS) 

family, which are plant-specific polyketide synthases (KCSs), also called type III PKSs. This is a class of 

proteins produces different compounds dependent on the starter molecule. They act by performing 

carboxylative condensation reactions to extend polyketide chains. 

 

This type of enzyme was mentioned in the Introduction to chapter 1, where they were described to 

perform the same function as fatty acid elongase (FAE) multienzyme complexes, but that in doing so 

they were taking ‘shortcuts’ resulting in carbon chains with double bonds, hydroxy- or keto-groups 

remaining inside the carbon chain. These molecules act as precursors for a three-branch pathway, 
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which either leads to alkylresorcinols, alkan-2-ols, alkan-2-ol-esters or to β-diketones and hydroxy-β-

diketones (Figure 3.23). The type of ‘shortcut’ taken by individual KCSs and the resulting change to 

the carbon chain (double bond, hydroxy- or keto-group) depends on the enzyme (von Wettstein-

Knowles 2012). 

 

While this gene is likely involved in the biosynthetic pathway of β-diketone aliphatics, it is difficult to 

imagine how this gene could be Iw1. A change in expression or the mutation of a ligand binding or 

catalytic site would not explain the dominant nature of the Iw1 phenotype or the complete absence 

of β-diketone aliphatics in cuticular waxes. KCSs are single enzymes that do not form homo- or 

heterodimers, so we also can exclude the possibility of the formation of non-functional dimers. This 

gene is in fact more likely to be a target of Iw1 function rather than Iw1 itself. We will test this 

candidate further over the coming weeks. 

 

 

3.2.7.3 23N19_CYP450 

23N19_CYP450 is predicted to encode a member of the Cytochrome P450 (P450) superfamily, 

specifically a member of the fatty acid (omega-1)-hydroxylase/midchain alkane hydroxylase family. 

This protein here predicted to have a homologous function to the MAH1 gene from Arabidopsis 

thaliana. MAH1 is involved in converting alkanes into secondary alcohols and possibly even ketones 

(von Wettstein-Knowles 2012). The MAH1 pathway is not directly related to β-diketone synthesis; in 

fact β-diketones have not been identified in Arabidopsis at all. However, we do not know the targets 

of this P450, which could be involved in a different biosynthetic pathway in wheat than in 

Arabidopsis. This has been observed for the VRN genes in wheat, which are homologous to genes in 

Arabidopsis but function in a different manner (Yan et al. 2003, Yan et al. 2004). Thus 23N19_CYP450 

is still a valid and good candidate for Iw1. 

 

As was mentioned for 305N15_CYP450, mutations at key ligand binding sites or within the catalytic 

domain of the enzyme might change or abolish its function in non-glaucous lines. Likewise, this 

enzyme could compete with the genes/proteins involved in β-diketone production for ligands. 

However, these scenarios are not very likely considerin the dominant effect of Iw1 and the absolute 

lack of β-diketone aliphatics in non-glaucous Iw1 lines. Again, this gene seems more likely to be a 

target for Iw1 function rather than Iw1 itself. 
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3.2.7.4 23N19_FAE1 

23N19_FAE1 is predicted to encode a CHS-like domain similar to 305N15_CHS. The CHS-like domain 

consists of two domains; a FAE1_CUT1_RppA domain and an ACP_syn_III_C domain. The insertion of 

a LTR retrotransposon of the Copia family disrupts the CDS and is predicted to abolish the 

ACP_syn_III_C domain, but leaving the FAE1_CUT1_RppA domain intact. The latter is a member of 

the type III polyketide synthases, fatty acid elongases and fatty acid condensing enzymes and likely to 

be involved in the biosynthetic pathway of β-diketone aliphatics. 

 

But as was mentioned for 305N15_CHS it seems unlikely that an enzyme of the β-diketone pathway 

is Iw1 itself, as mutations in the catalytic domain or ligand binding sites cannot explain the dominant 

nature of the gene. However, the insertion of a LTR retrotransposon inside 23N19_FAE1 might 

explain the Iw1 phenotype. We would hypothesise that expression of 23N19_FAE1 would lead to 

transcription of the reverse transcriptase encoded in the retrotransposon. These transcripts might be 

targeted by small RNAs, resulting in transcriptional gene silencing (TGS). We would further 

hypothesise that this leads to the silencing of homologous promoters, which control genes of the β-

diketone biosynthetic pathway, via trans-TGS (Mette et al. 2000). 

 

We would need to test expression and the methylation status of 23N19_FAE1 to determine whether 

it is active or not and whether it might be inactive due to TGS-induced methylation. We could also 

test the TTD diversity panel for presence or absence of the inserted retrotransposon inside 

23N19_FAE1 to try and correlate the geno- and phenotypes. We will pursue this gene more over the 

coming weeks. 

 

 

3.2.7.5 23N19_LRR 

23N19_LRR1 is predicted to encode a partial Leucine Rich Repeat (LRR) domain, which is usually 

associated with Nucleotide Binding Site (NBS) domains in disease resistance proteins (DeYoung and 

Innes 2006). These proteins detect conserved pathogen-associated molecular patterns (PAMPs) of 

pathogens and elicit a number of defense response including hypersensitive response (HR) triggered 

cell death. 

 

It is difficult to imagine how such a protein is involved in the non-pathogen elicited production or 

inhibition of β-diketone aliphatics. In addition, this predicted gene only encodes a partial LRR 

domain, suggesting that it might be a pseudogene with no function. We will perform a few more 
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experiments, but it seems that this sequence can only be amplified from TTD140, so it seems likely 

that this gene is not Iw1. 

 

 

3.2.7.6 784K20_PFF 

784K20_PFF is predicted to encode a protein of unknown no similarity to other proteins, which 

makes it impossible to say anything about the putative function of this gene. However, since we 

hypothesise that since Iw1 is unique to wheat but absent from modern cultivars we will not 

necessarily be able to find homologous proteins in any public database. However, it seems that 

784K20_PFF is only present in TTD140, but not in Shamrock, which suggests that it is not Iw1. We will 

test this hypothesis in the coming weeks. 

 

 

3.2.7.7 Ta_1180 

Ta_1180 is predicted to encode a cystathionine-β-synthase (CBS)_pair or Bateman domain. This 

domain consists of two single CBS domains that associate and form a cleft for ligand binding of 

adenosyl containing molecules like adenosyl monophospate (AMP) or adenosyl triphosphate (ATP) 

(Scott et al. 2004, Ignoul and Eggermont 2005). 

 

CBS domains usually occur in conjunction with other functional domains, but five CBS-pair encoding 

genes with no other attached domains have been reported in rice (Kushwaha et al. 2009). The 

function of these CBS_pair domains in plants remains unclear. Single CBS domains have been 

associated with the homeostasis of the cell’s redox status by regulating H2O2 levels inside the cell 

(Yoo et al. 2011). 

 

It is unclear how this gene might be affecting the synthesis or inhibition of β-diketone aliphatics. A 

possible explanation might be the binding of an adenosyl containing signal molecule or the triggering 

of a signal molecule cascade by binding adenosyl containing molecules. Nonetheless, this gene was 

always linked to the Iw1 phenotype. 

 

We have performed a set of experiments but we cannot rule out Ta_1180 yet. We will clone the gene 

from the TTD diversity panel and perform a thorough analysis of its expression pattern via RT-PCR in 

the coming weeks. 
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3.2.8 EMS mutagenesis of TTD140 and Shamrock 

To create an alternative approach for identifying Iw1, 3,000 seeds of both TTD140 and Shamrock 

were treated with 0.85% Ethyl methanesulfonate (EMS, Materials and Methods 3.1.5). Plants were 

developed to the M2 generation, but due to severe sterility in the M1 of TTD140, no mutants were 

detected in the few M2 families. We have obtained seed from 1,985 M2 families of the mutagenised 

Shamrock population. These were sown out in the field in 2012 and phenotyped in the summer of 

2013 for the presence of glaucous plants. 

 

We could detect glaucous plants in 35 M2 families. Tissue was collected from these putative mutants 

for RNA and DNA extraction. Tissue from non-glaucous siblings that would act as control plants was 

also collected. We used the two presence/absence markers JIC018 and JIC019 (Table 2.6) to test 

whether the putative mutants are truly of Shamrock genotype or whether they are contaminants. 

Only family 33, which consists of a single mutant plant, showed amplification for both markers, while 

no products from either marker could be amplified from the remaining 34 putative mutants. We 

have performed RT-PCR on cDNA extracted from flag leaf tissue of the single family 33 plant using 

marker WPK_01 and confirmed expression of this Shamrock specific gene. We will now have to wait 

for the phenotype of the putative mutant for the final confirmation. 

 

If the mutant is glaucous it will be crossed to Shamrock to generate a F2 population that is 

segregating for glaucousness. We will use the EMS-induced mutations that should occur at an 

approximate interval of 40 kb (Uauy et al. 2009) to generate markers and map the glaucous trait. This 

should allow us to reduce the size of the Iw1 interval and thus reduce the size of candidate genes 

that we need to test. Parallel to this, the sequence of candidate genes inside the Iw1 interval will be 

obtained from the mutant line to compare with the TTD140 and Shamrock sequences and identify 

potential EMS mutations that could underlie the loss of the non-glaucous phenotype. 

 

 

3.2.9 RNA-seq of BC4 Robigus NILs 

Based on the physical map so far and the dominant nature of Iw1, we hypothesise that the gene is 

either not expressed (or only to a low level) or absent from glaucous germplasm. By sequencing the 

transcriptome of highly isogenic BC4 NILs we should be able to detect differences in transcript 

abundance between a glaucous and non-glaucous NIL pair to address the question of expression in 

our hypothesis. A BC4 NIL pair of Robigus was selected and tissue from the leaf sheath and peduncle 

was collected four weeks after anthesis. Total RNA was extracted from these tissues (Materials and 
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Methods 3.1.2) and handed to TGAC for library preparation and subsequent sequencing on an 

Illumina HiSeq to generate 100 bp paired end reads (Materials and Methods 3.1.6). 

 

The run finished only recently and we did not have time to analyse the data before submission of this 

thesis. We plan to map the reads of the glaucous and non-glaucous lines to the predicted ORFs and 

genomic sequences inside the Iw1 interval. This relatively simple analysis should reveal whether the 

predicted genes are expressed at all (in these tissues and at that point in time) and should also reveal 

differences in expression. We have used three biological samples per genotype/tissue allowing us to 

test these differences statistically. As the physical map expands new gene models will be analysed 

using these criteria. 

 

We also plan to map our RNA-seq reads to transcriptome data from durum wheat cultivar Kronos 

(Krasileva et al. 2013) with a high specificity (>99%) to distinguish reads from the A- and B-genome: 

Kronos is a glaucous variety and following our hypothesis from above its transcriptome should not 

contain Iw1 transcripts. The unmapped reads can be mapped to Kronos a second time, but with only 

95% similarity requirement to eliminate homoeologous reads from the D-genome. The remaining 

unmapped reads will be assembled de novo for both glaucous and non-glaucous NILs, followed by 

reciprocal mapping of reads against the assemblies. This should hopefully identify transcripts that are 

either unique to the non-glaucous NIL or that are significantly more abundant in the non-glaucous 

NIL than in the glaucous NIL. These transcripts represent candidates of Iw1, which will then be 

mapped and further validated. 
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3.2.10 Discussion 

This chapter described the continuing efforts in the identification and validation of candidate genes 

for Iw1. A panel of 124 Triticum turgidum ssp. dicoccoides (TTD) accessions was phenotyped for 

glaucousness. For 96 of these accessions we have information on their collection site. Out of these, 

all 24 accessions from the northern wild emmer population were glaucous, whereas the 72 

accessions from the southern population were either glaucous or non-glaucous. This suggested that 

non-glaucousness controlled by Iw1 emerged in the southern wild emmer population only. 

Glaucousness was defined here as showing a waxy bloom on at least one aerial plant organ. It is 

possible that weak alleles of Iw1, which inhibit glaucousness only in a defined tissue, exist in the 

northern and southern populations, although it is equally possible that these partial phenotypes are 

caused by misexpression of W1 or genes of the network. Test crosses of 22 non-glaucous TTD 

accessions with glaucous cultivar Langdon were made already and the F1 generation is currently 

growing. The remaining non-glaucous lines will be crossed to Langdon as well. By analysing the F1 

phenotype we will be able to tell which accession carries the dominant inhibitor Iw1 and which ones 

are mutants of genes controlling glaucousness. The latter will be useful for studying cuticular wax of 

non-glaucous plants lacking Iw1, as well as for the cloning and functional assessment of glaucousness 

producing genes like W1. 

 

The TTD diversity panel will serve as a validation tool for the genes predicted inside the Iw1 interval 

of TTD140 and RSL65. We know that both TTD140 and Shamrock contain Iw1, so all candidate genes 

are first tested for presence/absence in these two genotypes. We have possibly ruled out two genes 

with this method and hope to rule out two more using more independent primer pairs. However, six 

genes could not be ruled out by this method and we need to perform additional experiments to 

assess their validity as candidate genes. 

 

One of these six candidate genes, 774P06_WPK, was already tested further. The juxtaposition of two 

domains that could not be found together in any public database was reminiscent of the apparent 

uniqueness of Iw1 among grass and cereal species. In addition, these two domains were likely to 

influence the biosynthetic pathway of β-diketones. The 774P06_WPK gene was less well conserved 

between TTD140 and Shamrock (97.8%) than expected (>99%). However, by comparing the putative 

proteins the SNPs were shown to be outside of any ligand-binding or catalytic sites. An initial 

expression analysis via RT-PCR revealed that the initial gene model predicted by FGENESH was 

wrong, which ruled out the second predicted domain of 774P06_WPK to be essential for its function. 

An alternative transcriptional start site was ruled out by comparing the remaining domain 

(SRPBCC_11) to homologous sequences from wheat and barley. The allelic diversity of 774P06_WPK 
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among the TTD diversity panel correlated very well with the phenotypes (Figure 3.20 and Table 3.6), 

as did the expression analysis via RT-PCR (Table 3.7). This was a strong body of evidence so we 

decided to test 774P06_WPK via genetic complementation and sent two constructs to NIAB to be 

transformed into the glaucous spring wheat cultivar Fielder. One of these constructs consisted of the 

genomic 774P06_WPK sequence. This construct also contained 1,115 bp of sequence upstream of 

the transcriptional start site to encompass the native promoter. The second construct consisted of 

the 774P06_WPK CDS, which would be expressed the actin promoter of rice. Both constructs were 

successfully transformed at NIAB by the team of Dr. Emma Wallington. Twenty primary 

transformants for each construct were sent back to JIC. However, all of the transformants displayed a 

glaucous phenotype, suggesting that 774P06_WPK is not Iw1. This was further confirmed by RT-PCR 

expression analysis, which showed the constructs to be expressed in 22 out of 24 primary 

transformants tested. We will extract cuticular waxes from these transformants to elucidate whether 

they produce the entire set of β-diketone aliphatics observed in ‘regular’ glaucous lines or maybe just 

a subset. This is to ensure that we transformed the fully functional 774P06_WPK gene and not just 

one part of it which only inhibits production of a single wax class. This is also important based on the 

hypothesis that Iw1 might be composed of several genes, similar to the cer-cqu locus from barley but 

with opposite function, which would require two or more transgenic events. 

 

The apparent failure of 774P06_WPK as a candidate gene of Iw1 was very disappointing, especially 

after all the evidence that was collected beforehand. This highlights a specific problem with the Iw1 

interval. It was proposed in chapter 2 that two distinct haplotypes exist for the Iw1 interval. This was 

hypothesised based on a lack of recombination across the Iw1 interval and an apparent divergence in 

gene content between the TTD140 and RSL65 physical maps. A consequence of the haplotype theory 

is that allelic diversity and expression profiles of genes in non-glaucous TTD accessions will probably 

be highly similar because of linkage to the haplotype and vice versa for glaucous accessions. This 

problem has already been identified in genes from the TTD140 physical map that are absent from the 

glaucous Langdon and Shango cultivars, while genes from the RSL65 map are absent from the non-

glaucous TTD140 and Shamrock (Table 3.3 and 3.4). 

 

One way to circumvent this problem was the mutagenesis of 3,000 seeds each from TTD140 and 

Shamrock using EMS. The idea was to knock out Iw1 and recover glaucous plants in the M2 

generation. However, the TTD140 population suffered from severe sterility and did not yield any 

glaucous M2 mutants. In the Shamrock population 35 glaucous M2 families were detected out of 

1,985 M2 families. However, only a single family, which also consisted of a single plant, showed 

Shamrock specific amplification of two presence / absence markers inside the Iw1 interval. This 
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suggested that either the dosage of EMS was too low (0.85%), which is unlikely as we observed 

multiple developmental phenotypes inside the population, or that something about the structure of 

Iw1 makes its’ mutagenesis more difficult; the gene could be quite small, making it harder to “hit” or 

alternatively, Iw1 could be tandem-duplicated. The latter would require a mutation event in two 

adjacent genes in a single plant, which has a very low chance of occurring. The lack of glaucous 

mutants was observed before with another EMS mutagenised Shamrock population. However, that 

population only consisted of 1,200 M2 families so the failure of the experiment was assigned to the 

low number of families. Whatever the reason for the low number of glaucous mutants in these two 

EMS populations, we seem to have identified one glaucous mutant. This mutant will be crossed to 

Shamrock to generate a F2 population that is segregating for glaucousness. We will use the EMS-

induced mutations that should occur at an approximate interval of 40 kb (Uauy et al. 2009) to 

generate markers and map the glaucous trait. Candidate genes will be sequenced from the mutant 

line and compared with sequences from TTD140 and Shamrock to identify EMS mutations that might 

be causative of the glaucous phenotype. 

 

Seven genes are still candidates for Iw1, although in two cases (23N19_LRR and 784K20_PFF) it is 

unclear how these genes could function as inhibitors of β-diketone production. The function of 

Ta_1180, which encodes a CBS-pair domain, is also unclear as there is little information about the 

putative role of these proteins in plant. The CBS_pair domain is known to bind adenosyl containing 

molecules, so it might be implicated in some form of signaling cascade that triggers the inactivation 

of the β-diketone biosynthetic pathway. 

 

Two of the other candidates are predicted to encode Cytochrome P450 (P450) proteins. This class of 

proteins is involved in a wide range of metabolic pathways. One of these P450s (23N19_CYP450) has 

similarity to a known protein from Arabidopsis (MAH1) which is involved in synthesis of secondary 

alcohols and ketones from alkanes. This pathway is not related to the β-diketone pathway, making 

this P450 a less likely candidate. Little information exists for the other P450 (305N15_CYP450), but a 

possible mechanism could be the synthesis of a signal molecule or hormone that triggers the 

deactivation of the β-diketone biosynthetic pathway. 

 

The remaining two candidate genes are predicted to encode CHS-like domains, but only 305N15_CHS 

encodes a complete domain. This gene is likely to be involved somewhere in the β-diketone pathway, 

as it encodes a type III polyketide synthase (PKS). These enzymes extend carbon chains, but take 

‘shortcuts’ in doing so, which results in double bonds, hydroy- or keto-groups to be left inside the 

chain, which leads, amongst others, to the production of β-diketones. However, it is unclear how a 
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mutation in this gene could cause the dominant Iw1 phenotype as it has no apparent regulatory 

functions. 

 

The other candidate gene predicted to encode a CHS-like domain (23N19_FAE1) has a LTR 

retrotransposon inserted. This insertion is predicted to abolish a sub-domain of the CHS-like domain 

(ACP_syn_III_C), while the other sub-domain (FAE1_CUT1_RppA) is predicted to stay intact. The 

FAE1_CUT1_RppA domain is a member of the type III polyketide synthases, fatty acid elongases and 

fatty acid condensing enzymes and likely to be involved in the biosynthetic pathway of β-diketone 

aliphatics. However, the same applies for this protein as for the one encoded by 305N15_CHS: It 

lacks a regulatory domain that sufficiently explains the dominant Iw1 phenotype. However, it is 

possible that not the gene itself is performing that function, but rather the retrotransposon inserted 

in it. Expression of the 23N19_FAE1 promoter would lead to transcription of the reverse 

transcriptase gene encoded in the retrotransposon, which could trigger a transcriptional gene 

silencing (TGS) response in which the locus becomes methylated and silenced. Furthermore, 

promoters homologous to the 23N19_FAE1 promoter could be silenced via trans-TGS (Mette et al. 

2000). Since 23N19_FAE1 is likely involved in the β-diketone pathway based on its PKS encoding 

domain, homologous promoters would belong to other PKSs which would trigger the methylation of 

these specific loci and thus the inhibition of β-diketone synthesis. This hypothesis would explain the 

dominant nature of Iw1 and its uniqueness among other grass and cereal species. To test this 

hypothesis we would need to investigate the pattern of transcripts from glaucous (iw1) and non-

glaucous (Iw1) plants. 

 

With the creation of highly isogenic BC4 NILs it is now possible for us to analyse the transcriptome of 

glaucous and non-glaucous NIL pairs, which should only differ in the Iw1 interval. Various different 

ways of analysing this vast amount of data are conceivable and some have been outlined in section 

3.2.4. The highly isogenic background of the NILs would make it even possible to “simply” perform a 

De-novo assembly of the reads from glaucous and non-glaucous lines (also separated by tissues) and 

identify unique transcripts by reciprocal mapping of reads to the assemblies. This would also allow us 

to test the TGS-hypothesis for 23N19_FAE1, as transcripts with a 5’ UTR homologous to the one from 

23N19_FAE1 should be less abundant in the Iw1 NIL. 

 

To summarize, we have identified and started to validate predicted candidate genes from the 

TTD140 and RSL65 physical maps and will continue to do so as the maps are further expanding. We 

have examined one particular gene that seemed promising based on its allelic diversity and 

expression profile more closely, but which did not confer a non-glaucous phenotype upon 
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transformation into glaucous wheat. This highlights the need for additional validation methods. We 

have likely obtained a single EMS-induced mutant of Iw1 in hexaploid wheat that, should it be proven 

to be true, will be of immense value for future validation efforts of candidate genes and to reduce 

the size of the Iw1 interval via recombination. In addition, the transcriptome of a pair of highly 

isogenic BC4 NILs has just been sequenced and will be assembled and analysed over the coming 

weeks to predict and validate candidate genes of Iw1. 

 

The combination of these approaches should lead to the successful cloning of Iw1 in the near future. 
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General Discussion 

The aim of this study was to clone and validate the Inhibitor of wax 1 (Iw1) locus and to characterize 

its effects on the composition of surface waxes in wheat, as well as its effects on yield, green-canopy 

duration and several other physiological traits. 

 

Aerial surfaces of Iw1 lines lack tubular waxes 

We have studied the effects that Iw1 has on the composition and quantity of the epicuticular wax 

layer using scanning electron microscopy combined with a detailed biochemical analysis. The flag leaf 

and peduncle surfaces of glaucous varieties like Shango or Langdon are covered with tubular shaped 

wax crystals, which almost completely obscure the stomata and other types of wax crystals. There is 

also some variation in the distribution of wax crystals on the adaxial side of the flag leaves, where 

alternating strips of thicker and thinner layers of wax, mostly consisting of a platelet shaped wax, are 

visible. This is reminiscent of the arrangement of mesophyll and vascular tissue, which are also 

organized in alternating strips along the long axis of the leaf (Esau 1953). This suggests that the thick 

layers of platelet shaped wax coincide with the vascular tissue running underneath, possibly 

providing added insulation. In contrast, flag leaves and peduncles of non-glaucous varieties like 

Shamrock and TTD140 completely lack the tubular shaped wax crystals seen so abundantly on 

glaucous plant surfaces. Instead, the non-glaucous plant surfaces are almost completely devoid of 

visible wax crystals apart from the adaxial side of flag leaves. Here, as in the glaucous varieties, 

alternating strips of thick and thin layers of platelet shaped wax can be observed running along the 

leaf axis parallel to the rows of stomata and thus to the vascular tissue of the leaf. 

 

Iw1 prevents formation of β-diketone aliphatics 

The tubular and platelet shaped wax crystals had been observed already 50 years ago and the 

presence of the tubular shaped wax was linked to the occurrence of β-diketones (Hall et al. 1965). 

The platelet shaped wax on the other hand was hypothesized to be linked to the presence of primary 

alcohols (Netting and Wettstein-Knowles 1973). We have performed a preliminary analysis of flag 

leaf wax extracts obtained from glaucous (Shango) and non-glaucous (Shamrock) varieties using thin 

layer chromatography (TLC) and spectrophotometry; we have found a significant and severe 

reduction in the amount of β-diketones in wax extracts from non-glaucous flag leaves. This was 

followed by an extensive gas chromatography/mass spectrometry (GC-MS) analysis of flag leaf and 

peduncle wax extracts from Shango and Shamrock. In total, 53 compounds were identified in the wax 

extracts and 26 of these were quantified. Wax extracts from flag leaves and peduncles of Shango 

consisted mostly of β-diketones and hydroxy-β-diketones, which could not be discovered, not even in 

traces, in the analogous wax extracts of Shamrock. Wax extracts from flag leaves also contained high 
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amounts of C28-primary alcohols (C28POHs) in both Shango and Shamrock, which was not observed in 

wax extracts from peduncles. These results were confirmed by analysing wax extracts from glaucous 

and non-glaucous pairs of BC2 NILs using GC-MS. This indicates that the rod-like tubes seen on 

glaucous plant surfaces are indeed β-diketone aliphatics. The high abundance of C28POHs in wax 

extracts from flag leaves of both varieties indicates that these compounds form the platelet shaped 

wax observed mainly on the adaxial side of flag leaves. 

 

The timing of glaucousness 

We performed a time-course experiment where we followed wax deposition in pairs of glaucous and 

non-glaucous BC2 NILs over the course of their growing cycle. This analysis showed that prior to stem 

extension wax of vegetative leaves is primarily composed of C28POHs. After stem extension and 

before the emergence of the flag leaf the composition of wax diversifies and already all compounds 

observed in the previous GC-MS experiment could be detected. The composition of the wax extracts 

did not change qualitatively from this point in the wheat growth cycle, but quantitative changes were 

observed with all compounds increasing in amount over time. This suggests a possible activation of 

wax producing genes like W1 after the transition from the vegetative to the reproductive growth 

cycle. This in turn suggests that Iw1 is also activated after the transition to the reproductive phase, 

although a constitutive activity of Iw1 or a switch-like mechanism, which inactivates wax producing 

genes for example via chromatin remodeling, would be also feasible. Based on the complete lack of 

β-diketone aliphatics in Shamrock it seems unlikely that Iw1 and wax producing genes are competing 

for substrates or otherwise engaged in a competitive interaction, as Iw1 is completely dominant. 

 

Iw1 does not affect the thickness or composition of the cuticle 

We have compared the thickness of the cuticle and the cuticular conductance of Iw1 and iw1 

germplasm and could not detect significant differences in either trait, suggesting that the structure 

and thickness of the cuticle is not affected by Iw1. The lack of differences in cuticular conductance 

between Iw1 and iw1 germplasm ties in with the presence of platelet shaped wax (C28POHs) on the 

flag leaf surface of both glaucous and non-glaucous lines and their hypothesised function of 

insulating vascular tissue. To test this hypothesis we would need to compare the cuticular 

conductance of a wheat variety with a severe reduction or complete lack of the platelet shaped wax 

to glaucous and/or non-glaucous lines. Alternatively, gum arabic could be used to remove all 

epicuticular wax, thus producing an artificial ‘waxless mutant’ which can be used to assess these 

effects (Vogg et al. 2004). 
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Non-glaucousness reduces reflectance of light 

We have analysed the light reflectance properties of flag leaves from glaucous and non-glaucous BC2 

NILs. The ratio of incident to reflected light was significantly lower (on average 13.73%) in all non-

glaucous lines. Flag leaves of two pairs of BC2 NILs were also tested for their light transmission 

properties, with the non-glaucous Alchemy NILs showing a higher transmission of light than their 

glaucous counterparts. However, this effect was not observed in the other NIL pair. These effects are 

very interesting as light is generally sparser in a UK-like environment compared with Mediterranean 

conditions. By reflecting less light non-glaucous plants could utilize more of the incoming light, 

especially if more of it can pass through the canopy where it can be intercepted by other 

photosynthetically active tissue. In addition, the reduced reflection of incoming light will likely 

increase the temperature inside the canopy leaves, which could be beneficial given the relatively low 

temperatures in the UK even in summer (~20°C in July and August (Met_Office 2012a)), as RUBISCO 

activity is optimal at ~25°C in wheat (Kobza and Edwards 1987). The reduced light reflection and 

suspected increase in leaf temperature does not lower water-use efficiency (WUE) in non-glaucous 

lines, as was demonstrated by carbon isotope discrimination. 

 

The effects of Iw1 on yield and green-canopy duration 

One of the major aims of this study was to reproduce the increased yield and green-canopy duration 

effects seen in the DH population of Shango and Shamrock (Simmonds et al. 2008) in a set of NILs. If 

the yield and green-canopy duration effects could be observed in the NILs the causal genes would be 

have to originate from the distal 2BS segment introduced from T. dicoccoides, rather than being 

caused by a unique juxtaposition of alleles from Shamrock and Shango. In the end we could not 

observe a significant increase in yield in any of the NILs. The erratic weather over the last years did 

not help to achieve consistent field results either. However, out of the six NIL pairs tested one pair 

did show an effect on yield in every year, although this effect was not always significant. The non-

glaucous Hereward NILs repeatedly out-competed their glaucous siblings for yield with a mean effect 

of ~4% across all years and locations. The size of the effect is reminiscent of the one observed in the 

DH population. We have created recombinant lines from the Hereward NILs and will fine map the 

yield effect using these lines. This analysis should reveal whether the yield effect coincides with Iw1. 

As for green-canopy duration, we did not observe a significant effect in the BC2 NILs, but we did 

detect a significant effect in four out of six BC4 NIL pairs in 2011/2012. This highlights the gain in 

accuracy obtained this highly isogenic material. Whether this increase in green-canopy duration has 

an effect on yield or not is not clear. Reports on the effects of the functional GPC-B1 allele suggest 

that these two traits are not necessarily linked (Uauy et al. 2006, Waters et al. 2009), as plant 

senescence and grain-filling are two uncoupled processes. 
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On the usefulness of NILs 

A set of six near isogenic lines was developed prior to the start of this project and continually 

developed until the BC4 stage. These NILs have been used in all physiological and field-related 

experiments and have proven to be an extremely useful tool. The phenotype of an organism is 

determined by genotype, the environment and the interaction between them. We cannot control the 

latter but we can control the first. Over the last few years we have experienced a number of extreme 

weather events here in Norfolk and the UK; from the driest winter and spring on record to the 

wettest and dullest summer on record and unto the coldest spring on record. Despite this we 

managed to obtain reliable field data for most seasons with a low coefficient of variation, which 

enabled us to assign the observed effects to specific genetic intervals or dismiss them as 

environmental noise. This was all due to the isogenic nature of the NILs, which allowed us to make 

reliable comparisons in an unreliable environment. The production of NILs takes up a lot of time in 

wheat, but based on the results from the previous years it is time and effort well spent. Collecting 

data from six NIL pairs, plus their biological replicates, constituted a lot of work, but it is prudent to 

have more than one NIL pair at hand as long as the genetic interactions between the respective 

cultivar and the introgression are not clear. This is especially true when analysing complex traits like 

yield or plant-water relations. 

 

The Iw1 interval 

At the start of my PhD the Iw1 interval was approximately 2.3-cM in size. After screening 10,454 

gametes from two mapping populations for recombinants the interval was reduced in size to 0.42-

cM. This is still a comparatively large genetic interval considering the amount of gametes screened. 

Other map-based cloning projects achieved genetic intervals of 0.04-cM (6,190 gametes, VRN1 (Yan 

et al. 2003)), 0.07-cM (9,831 gametes, Vrs1 (Komatsuda et al. 2007)) or 0.34-cM (4,044 gametes, mlo 

(Büschges et al. 1997)) with comparable or even lower amounts of gametes. This comparatively large 

size is likely partly due to a lack of markers on the distal side of the Iw1 interval, where most of the 

recombination events are located. But after starting the construction of physical maps in the non-

glaucous variety TTD140 and the glaucous recombinant substitution lines RSL65 (cultivar Langdon) 

we started to suspect the presence of two distinct haplotypes across the Iw1 interval. This was 

concluded from the lack of similarity between the two physical maps in terms of gene content and 

would explain the lack of recombination inside the Iw1 interval. However, neither of the two physical 

maps is complete and especially the RSL65 map is still a lot smaller than the TTD140 map. Thus we 

cannot exclude the possibility that the observed differences in gene content are merely the result of 

incomplete maps rather than the presence of two distinct haplotypes. Likewise, the lack of 
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recombination could be due to a recombination cold-spot inside the Iw1 interval (Lichten and 

Goldman 1995, Sidhu and Gill 2005). We will shortly receive the sequences of a great number of 

BACs from the physical maps, especially from RSL65. These sequences were unfortunately delayed by 

technical difficulties and could not be incorporated in this thesis. These BAC sequences should give us 

a better understanding of the relationship between TTD140 and RSL65 in the Iw1 interval and will 

help us decide on the next steps. 

 

Deletion mutants to break the recombination dead-lock 

Whichever of the two above-mentioned hypotheses is true, the lack of recombination inside the Iw1 

interval cannot be ignored. We have started to predict genes from sequenced BACs of the physical 

map and will validate them with a mix of expression analysis and allelic diversity, followed by genetic 

complementation. However, with no recombination inside the Iw1 interval we will likely be faced 

with a plethora of candidate genes that are expressed in the correct pattern and will also show a 

matching pattern of allelic diversity, which would make genetic complementation too expensive. A 

solution for this would be the creation of deletion mutants. This approach has been used successfully 

for the Ph1 locus, which was also suffering from a lack of recombination (Griffiths et al. 2006). By 

using for example γ-irradiation a set of deletion mutants, missing defined segments of the Iw1 

interval, could be developed and phenotyped. Candidate genes mapping to deletion bins essential 

for Iw1 function could then be further tested by genetic complementation. 

 

Knocking out Iw1 via EMS mutagenesis 

We have also explored other routes for the validation of candidate genes. One of these is the 

attempt to knock out Iw1 via EMS mutagenesis in Shamrock and TTD140. Unfortunately however the 

mutagenised TTD140 population suffered from extreme sterility, which resulted in a very low 

number of M2 plants, none of which was glaucous as would be expected. For the mutagenised 

Shamrock population we discovered a single plant out of 1,985 M2 families to be glaucous. We have 

confirmed this putative mutant to be of Shamrock genotype using Shamrock-specific PCR and RT-PCR 

markers. However, the low number of glaucous mutants inside the EMS population is worrying, 

especially since many other defects and mutant phenotypes have been observed in the population, 

suggesting that the lack of glaucous mutants is not due an insufficient dose of EMS. Possible 

explanations could be that Iw1 is a small coding region that is hard to mutagenise due to its intrinsic 

small size or has a relatively low GC content which would make it less amenable to the G>A/C>T 

transitions characteristic of EMS in wheat. Alternatively, Iw1 could be encoded by a pair of tandemly 

duplicated genes in which the probability of simultaneously changing amino acids critical to their 

function is essentially non-existent. Whatever the reasons, if the progeny of the putative mutant 
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display a glaucous phenotype it means that we have essentially tagged Iw1. This would allow us to 

create a new mapping population between Shamrock and the EMS-induced iw1 Shamrock mutants. 

This population should be able to recombine inside the Iw1 interval, assuming that the lack of 

recombination observed in the other populations is due to the presence of two distinct haplotypes. 

Mutations induced by the EMS treatment could serve as the basis for markers between the 

otherwise isogenic lines (Abe et al. 2012). These EMS-induced SNPs should be present at ~40 kb 

intervals based on the observed mutation frequencies using endonuclease digestion (Uauy et al. 

2009). Alternatively, we could sequence the mutant line using Illumina HiSeq: A paired-end 100 bp 

library run on three sequencing lanes should produce more than 300 million reads, which would 

result in a 3.75-fold coverage of the genome. This would allow us to compare our gene models with 

the genomic sequence and identify SNPs that cause deleterious effects. 

 

Candidate gene evaluation 

The last two examples for the identity of Iw1 are extreme scenarios, while it is just as likely that Iw1 

is a ‘regular’ gene. We have identified a number of possible candidate genes inside the TTD140 

physical map that we are currently pursuing; these genes could be implicated in the inhibition of β-

diketone production based on the domains they are predicted to encode. One gene in particular 

(774P06_WPK) had caught our interest because of its unique juxtaposition of domains, which were 

not found together in any nucleotide or protein databases. This tied in with the uniqueness of the 

Iw1 locus, for which no homologues in other grass species are known. After acquiring a great body of 

evidence for this gene we decided to test it by genetic complementation. Two constructs, one with a 

native promoter and one CDS construct regulated by an Actin promoter, were transformed into the 

glaucous spring wheat cultivar Fielder. However, all primary transformants remained glaucous even 

though the constructs were expressed. We will extract cuticular wax from the transformants to 

assess whether they contain all wax classes associated with glaucousness. We are also currently 

crossing Shamrock to Fielder to ensure that Iw1 is active in this genetic background, but it appears 

that 774P06_WPK is not Iw1. 

 

Using RNA-seq to identify Iw1 

Another strategy for the validation, or even identification, of candidate genes is RNA-seq. By 

sequencing total RNA from a pair of BC4 NILs, which are ~96.9% isogenic, we hope to identify 

transcripts that are unique to the non-glaucous NILs or highly overrepresented in them. These 

transcripts can be mapped by PCR to verify that they originate from the Iw1 interval. We have 

received this data only recently and will start to analyse it over the coming weeks. However, the 

prerequisite for success with this approach lies in the expression pattern and mode of action of Iw1. 
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We would expect Iw1 to be expressed after the switch to the reproductive phase when the wax 

producing genes are supposed to become active as well. However, we cannot exclude that Iw1 is 

only expressed in a discrete developmental window at the top of a regulatory network where it sets 

of a self-regulating gene cascade. Likewise, we cannot exclude the possibility that Iw1 is in fact not a 

gene but a regulatory non-coding RNA. However, the multitude of approaches that we are 

performing should cover these eventualities. 

 

Identifying Iw1 via its 2D homoeologue 

Because of the difficulties in cloning Iw1, we have recently started to collaborate with another 

research group that has created a mapping population between a glaucous and a non-glaucous 

Aegilops tauschii accession. The F1 generation was completely non-glaucous, suggesting that the 

phenotype is caused by Iw2. We will provide markers for the F2 progeny of this population obtained 

from our physical maps. This approach allows us to work in a diploid organism and offers the 

possibility to identify Iw1 via its 2D homoeologue. 

 

Identifying possible targets of Iw1 

Another possibility to clone Iw1 is to identify some of its putative targets, specifically the wax 

producing gene W1 which is located closely to Iw1. For this we have obtained a non-glaucous 

tetraploid line with a non-functional copy of W1. This line, called AUS2499 (Johnson et al. 1983), was 

crossed with glaucous tetraploid cultivars Kofa+Lr19, Langdon and Cappelli. The F1 progeny of all 

crosses was completely glaucous, indicating that AUS2499 has indeed genotype w1. We have started 

screening a few hundred F2 lines of the Kofa+Lr19 x AUS2499 cross using KASPar markers and could 

confirm that the glaucous trait maps close to Iw1 on to the short arm of chromosome 2B. We have to 

increase the marker density next to elucidate whether W1 maps inside the Iw1 interval. Our 

hypothesis is that W1 maps inside the Iw1 interval, which would possibly allow us to identify W1 

using the steadily growing RSL65 physical map. We further hypothesise that W1 might give us a clue 

as to the identity of Iw1, based on the assumption that the first is regulated by the latter. 

 

In addition, we have detected a previously undescribed locus for glaucousness on the long arm of 

chromosome 7A in a small F2 population from CIMMYT. This locus is homologous to the wa1 locus 

from rye on chromosome 7RL (Korzun et al. 1997) and is a dominant elicitor of glaucousness. This 

locus is present in a number of tetraploid spring wheat cultivars from CIMMYT, which we have 

crossed to the non-glaucous accession AUS2499. We will fine-map the gene using KASPar markers 

once we can harvest the F2 seeds of our crosses. We hypothesise that this locus is also a potential 

target for Iw1, although we have not made that cross yet. 
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Identifying quantitative regulators of glaucousness 

Most loci described in wheat that affect glaucousness are dominant, either producing or inhibiting it. 

A single locus on chromosome 3A was reported to be quantitatively affecting the glaucosity on flag 

leaves (Bennett et al. 2012). We have crossed the glaucous cultivar Shango with the UK winter wheat 

cultivar Stigg. The latter is completely glaucous, apart from the spike which is completely non-

glaucous. Surprisingly, the F1 generation showed an easily distinguishable intermediate level of 

glaucousness on the spike. This dosage-dependent phenotype is very interesting as it was not 

described before and thus might constitute a previously unknown player in the β-diketone pathway. 

We will extract cuticular wax from the spikes of F1 plants to analyse the composition of waxes and we 

will map this trait in the F2 generation using KASPar markers. 
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Personal statement 

Over the course of my PhD I have witnessed an unprecedented rise in the number of tools and 

resources available to cereal geneticists. Having worked for several years on the model species 

Arabidopsis thaliana with its readily accessible genome sequence, large collection of knock-out 

mutants and easy-to-use agarose gel based markers, my start into wheat research was equal to a 

step back in time. Sequence databases held only EST data, knock-out mutants were few in number 

and the SSCP marker system required to be run over night. 

 

But already shortly afterwards the KASPar marker system was introduced, followed by the release of 

a 5x coverage shotgun sequence of the wheat genome, which enabled us to convert an EST sequence 

into a full-length sequence of a (small) gene for all three genomes. Having access to genome-specific 

intron sequence, which harbours many SNPs, simplified and also accelerated the design of KASPar 

markers. Soon afterwards we could start to access the wheat survey sequence database and the 

barley genome sequence. TILLING populations for tetraploid and hexaploid wheat were created and 

released. The number of SNPs identified between different genotypes increased dramatically and so 

did the number of available genome-specific KASPar markers. Genetic maps of new varieties were 

created in a matter of weeks rather than years. Draft sequences of the A- and D-genome progenitors 

were released. A transcriptome database was created for tetraploid and hexaploid wheat to replace 

the incomplete and collated set of wheat UniGenes. 

 

Virtually overnight wheat genetics had entered the 21st century. These changes will surely attract 

more young researchers that were previously put off by the unwieldy wheat genome and the lack of 

tools and resources for it. It was a privilege and an exciting experience to witness all these changes in 

such a short amount of time first hand. 
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Appendix 
 

A1 Additional cryo-SEM images of BC2F3 NILs 

 

A1.1: SEM images of Alchemy NILs 

A NIL pair of Alchemy background, with genotype Iw1 (A, C, E) and genotype iw1 (B, D, F), was 

analysed using cryo-SEM. Tubular shaped wax crystals are absent from Iw1 lines, mimicking the 

Shamrock phenotype. 
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A1.2: SEM images of Einstein NILs 

A NIL pair of Einstein background, with genotype Iw1 (A, C, E) and genotype iw1 (B, D, F), was 

analysed using cryo-SEM. Tubular shaped wax crystals are absent from Iw1 lines, mimicking the 

Shamrock phenotype. 
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A1.3: SEM images of Hereward NILs 

A NIL pair of Hereward background, with genotype Iw1 (A, C, E) and genotype iw1 (B, D, F), was 

analysed using cryo-SEM. Tubular shaped wax crystals are absent from Iw1 lines, mimicking the 

Shamrock phenotype. 

 

 

 

 

 

 

 

 

 

 



193 
 

A1.4: SEM images of Malacca NILs 

A NIL pair of Malacca background, with genotype Iw1 (A, C, E) and genotype iw1 (B, D, F), was 

analysed using cryo-SEM. Tubular shaped wax crystals are absent from Iw1 lines, mimicking the 

Shamrock phenotype. 
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A1.5: SEM images of Robigus NILs 

A NIL pair of Robigus background, with genotype Iw1 (A, C, E) and genotype iw1 (B, D, F), was 

analysed using cryo-SEM. Tubular shaped wax crystals are absent from Iw1 lines, mimicking the 

Shamrock phenotype. 
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A1.6: SEM images of Xi19 NILs 

A NIL pair of Xi19 background, with genotype Iw1 (A, C, E) and genotype iw1 (B, D, F), was analysed 

using cryo-SEM. Tubular shaped wax crystals are absent from Iw1 lines, mimicking the Shamrock 

phenotype. 
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A2 Wax components identified in the GC-MS analysis of Shango and Shamrock 

 

Number Wax component Quantified Number Wax component Detected 

1 C27 Alkane Quantified 27 C22 Alkane Detected 

2 C29 Alkane Quantified 28 C23 Alkane Detected 

3 C31 Alkane Quantified 29 C24 Alkane Detected 

4 C24POH Quantified 30 C25 Alkane Detected 

5 C26POH Quantified 31 C26 Alkane Detected 

6 C28POH Quantified 32 C28 Alkane Detected 

7 C30POH Quantified 33 C33 Alkane Detected 

8 C32POH Quantified 34 C18POH Detected 

9 C16 FA Quantified 35 C20POH Detected 

10 C18 FA Quantified 36 C22POH Detected 

11 C22 FA Quantified 37 C34POH Detected 

12 C24 FA Quantified 38 C17 FA Detected 

13 C26 FA Quantified 39 C20 FA Detected 

14 C28 FA Quantified 40 C21 FA Detected 

15 C30 FA Quantified 41 C23 FA Detected 

16 C32 FA Quantified 42 C25 FA Detected 

17 β-DK Quantified 43 C24 aldehyde Detected 

18 OH-β-DK Quantified 44 C26 aldehyde Detected 

19 C28 aldehyde Quantified 45 C32 aldehyde Detected 

20 C30 aldehyde Quantified 46 C34 aldehyde Detected 

21 C23 AR Quantified 47 C19 AR Detected 

22 MAR19 Quantified 48 C21 AR Detected 

23 MAR21 Quantified 49 C25 AR Detected 

24 MAR23 Quantified 50 C27 AR Detected 

25 MAR25 Quantified 51 unknown-1 Detected 

26 MAR27 Quantified 52 unknown-2 Detected 

   
53 unknown-3 Detected 
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A3 Markers used for fine mapping Iw1 in Shango x Shamrock and Langdon x TTD140 

 

Marker 

name 
Forward Primer (5'-3') Reverse Primer (5'-3') 

JIC001 AACTTGAGGAGACTGAAGAGC GCTTTGCATCTCTTTCATTTC 

JIC002 GCCAGTGAGCAGATCAAACA CGCTCCGATCTTCAGCTAAT 

JIC003 GGCAAGGAGAGGTGAAGGA CGAGGTTCTGCTCGATGATG 

JIC004 TGGACGCACATGATGGAC TCCTGCGACCGATAACATACT 

JIC004-

KASPar 
TTGTTCCATTCCAGAACGG[A/C] GAAGAAATCCCTGACGACATCG 

JIC005 GCAAGAAGGCTGCTCAATTT CCAACCATACTAGGAAGGTGAA 

JIC006 GGATACATCTGGAGCCCTCA TCGAGGAAGCAAAATCCAAC 

JIC007 TGGAAAGCATTAGTCAGTCTTCTTT AAAGCCATGCTTGAACTGGT 

JIC007-

KASPar 
TCGTGTCCAGGCTAGGAAACT[T/G] AACGTGGTCTCCAGGAGCGT 

JIC008 CTCCATCCGGCACAAGAA CTTCCCCGTCAGCACCTC 

JIC009 CGTCTCCAAGAAGGACAAGG TTGAGCATCAATGCAGCAG 

JIC010 TCCTGAAGAAACACATGCAGA CCTTTTCTCCAGCTCAATCG 

JIC010-

KASPar 
GCTGCCGATTGCTTCTGCTAA[T/C] ATATCACCTTGAACGGTGGTG 

JIC011 GGAACACAGAAAACCAAAGGA TCTTGCCAGTTGTTCATCCTC 

JIC011-

KASPar 
GAAACAGGTTAGTATTGTATCTATTACA[T/C] GAAGAATATAAGAGGATAAACACCG 

JIC012 ACTTCACCCACCACAATGAG CTGCATTGCCTTGTCCTTG 

JIC012-

KASPar 
CCGAAATGGTTGAAAGCAAT[G/T] AGGTGATGCTCCTGGGTCA 

JIC013 CATTTCTGCATCAGGCCTTT GGCAATGAGTTGGTGGTCTT 

JIC014 CAAATTCGTCAGGGGAGAAG TATCCACATCAAGCCGCATT 

JIC015 GAGAAGGATGAGCCCTTTGT AATCATCCACGTGCAGTTTCT 
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JIC015-

KASPar 
AGCGACAAATCTGAAGAATCC[A/G] TAATGACATCCTGTGGTGTGGTGT 

JIC016 CAAATTCATACCCTTGGAGAGCA CTTCCAACTGTACCATACATATTTCA 

Xgwm614 GATCACATGCATGCGTCATG TTTTACCGTTCCGGCCTT 

Xwmc25 TCTGGCCAGGATCAATATTACT TAAGATACATAGATCCAACACC 

 

 

A4 Markers used in physical map construction 

 

Marker 

name Product size Forward Primer (5'-3') Reverse Primer (5'-3') 

JIC009a 
TTD140: 695 bp, 

Langdon: 724 bp 
TCACAGGATACCAGTTGTGAATG CAAGGCCTGGAACACGTC 

JIC011a 
TTD140: 115 bp, 

Langdon: 127 bp 
GCTTTGTCATCGGTGTTTATCCTCT CCAAGAATAATCTGCAATAAACTAGC 

JIC016a Langdon: 437 bp CAAATTCATACCCTTGGAGAGCA CTTCCAACTGTACCATACATATTTCA 

JIC017b TTD140: 178 bp CATGAGGTGAGGAAGCTGGAG ATTACTATGTTCCCCAGCAAACG 

JIC018b TTD140: 89 bp CAGGACTCCCTCAGAGACCTGT TGTGCCAAAGTAAAAGAAAAATG 

JIC019b TTD140: 539 bp GGCTCCATCCATACATATTTCATT GAGAGACAATCACAATCATAATCATCAT 

JIC020b TTD140: 430 bp ACCCCTTAATCCAGGACTCCCTCACC AGTTACTGTCCTCTGAGTCCTCGTA 

JIC021c 263 bp GAAATCTCATAAGCTCCGTTAGCG GATACTAGACAAATTCCATGAAGTTTG 

JIC022b TTD140: 503 bp GTCCTGCCAGAGTCTATCGCTAT CGGAGAGCACCTCAAGTATGTAG 

JIC023b TTD140: 266 bp CACCCTCGTGGACACGATGT GTGTGTGCATGGAAGGTTGATG 

JIC024b TTD140: 452 bp TATACAAAAATGGAGGGAGTATTG GCCGTACACCATGCCTATCT 

JIC025b TTD140: 486 bp ACTCCCTCACCTACCAATCCCT CAGGATCAATCTCTTCAGTGATG 

JIC026b TTD140: 355 bp TGGGGACGCTAACAGAAGTC ACGTGATGAACCAGAAGACAAG 
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JIC027a TTD140: 600 bp AATTTAAGCACGCCTGATCG GGAGCTTCCTTGAATACCAACC 

JIC028b TTD140: 482 bp ACGCCGCTGGGAACAGCACA AGTAGGCATTTTCCTAATAGTGTCATC 

JIC029a TTD140: 379 bp CAAGTTAGCATGAAGAATGAATTG CCACTGATAAAAGGAAAGTTTTCTTG 

JIC030a TTD140: 399 bp TCCCAACAAGTAGACCACATATCAC CATGTCTGGTACACCATTAGTGGC 

JIC031a Langdon: 1,009 bp GATCGGCAACCAGGACAAT ATGACCTGGTTCGCTGGTTCTA 

JIC032b Langdon: 307 bp TGACAAGCATCCTCAAGGTAGTCT GAAGCAAACATGATGATTCGG 

JIC033a Langdon: 529 bp TCTTGGGAGAACAGAATTGACAT ATATGTTCACGCTAACGGGTAGCA 

JIC034a Langdon: 465 bp CGAGGATACACGCTACTGGTAAGT AGGACCAATGGTAACAATGGAGAAG 

JIC035a Langdon: 405 bp GTACCAACTATCATCGGATACAAGG ATAGGGCTCAAACATAACGGAAGA 

JIC036a 
TTD140: 490 bp, 

Langdon: 515 bp 

TGTAACATACATTTCTTTTGAATGGT

AC 
CAGAACTCTCTCGTTACTAGGCTG 

 

 

A5 Markers used to creates probes for radioactive hybridization 

 

Marker 

name 
5' - 3' sequence Orientation Product size 

Designed on 

BAC 

Iw614 TATCGTCATCATCATCGTCGCAG Left primer 
TTD140: 305 bp 329M10 

Iw666 CAAAGTTTGAGGACCAGGCTC Right primer 

Iw663 TGATGGCGAACACGGCTCAG Left primer 
TTD140: 450 bp 329M10 

Iw625 CAATGAGTTTGCACCGTTCATA Right primer 

Iw626 CACCTTAATCTCATAATTGCGGT Left primer 
TTD140: 361 bp 329M10 

Iw627 ATCCATTTTGAAGACAAGTATTTCC Right primer 

Iw1086 GTCCTGCCAGAGTCTATCGCTAT Left primer 
TTD140: 503 bp 170H13 

Iw1087 CGGAGAGCACCTCAAGTATGTAG Right primer 

Iw1107 CCATAGGTGCGGCTCTGACT Left primer 
TTD140: 383 bp 170H13 

Iw994 AGAATAGGTAGCTCCGACGTGC Right primer 
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Iw1107 CCATAGGTGCGGCTCTGACT Left primer 
TTD140: 213 bp 170H13 

Iw993 ATGGACGTATCACGATCTACATCAAC Right primer 

Iw1108 TCCTGAGACTTGGTTCCAATGTG Left primer 
TTD140: 373 bp 170H13 

Iw993 ATGGACGTATCACGATCTACATCAAC Right primer 

Iw614 TATCGTCATCATCATCGTCGCAG Left primer 
TTD140: 305 bp 329M10 

Iw666 CAAAGTTTGAGGACCAGGCTC Right primer 

Iw663 TGATGGCGAACACGGCTCAG Left primer 
TTD140: 450 bp 329M10 

Iw625 CAATGAGTTTGCACCGTTCATA Right primer 

Iw626 CACCTTAATCTCATAATTGCGGT Left primer 
TTD140: 361 bp 329M10 

Iw627 ATCCATTTTGAAGACAAGTATTTCC Right primer 

Iw497 ACGCCGCTGGGAACAGCACA Left primer 
TTD140: 482 bp 551i08 

Iw447 AGTAGGCATTTTCCTAATAGTGTCATC Right primer 

Iw1175 TTTGGATGTAACTTTTTGAGTAGATG Left primer 
TTD140: 399 bp 784K20/577P12 

Iw1176 CATGTCTGGTACACCATTAGTGGC Right primer 

Iw1174 TCCCAACAAGTAGACCACATATCAC Left primer 
TTD140: 262 bp 784K20/577P12 

Iw1176 CATGTCTGGTACACCATTAGTGGC Right primer 

 

 

A6 Markers used for the analysis of candidate genes 

 

Marker 

name 
5' - 3' sequence Product size 

F1 AGGACTTCACGATACCACACTAACTC 
984 bp 

R1 TCATCTGAGCTACACCAAGGG 

F2 ACTTCTCCATTATCCACATGCA 
709 bp 

R2 CTTGTTTGATGAGCTTGCTTCC 

F3 CGATAATGTAATACTGCCGAGTACA 701 bp 
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R3 CACTTTGTGATGCCTTCCTTG 

F4 ACCACTCGGAGGAACTACTCAAC 
989 bp 

R4 TGTTCTTATTCTCCCATTTGTGCT 

F5 CAGGGAAGAAGAACCACCG 
1,225 bp 

R5 AAGGGAGAAGCCGTGCGGAACACA 

F6 GTTCAAGTTCAACGCCAAGG 
1,176 bp 

R6 ACATTGAGTGTTCCATTGACTGCTG 

F7 CACCCGAATTGTCTTTCACCTC 
1,096 bp 

R7 ATTGTCTTACACGGGCAAGCTC 

F8 CCATCGCTTAGGCAGAGGTT 
1,149 bp 

R8 CTACACTGCAATTATGGGGTCA 

F9 CAAAACAGCTAACGGAGAACACTG 
904 bp 

R9 CAAACTCGTAATGCTCTCTTGAGAT 

F10 ATCTCAAGAGAGCATTACGAGTTTG 
1,504 bp 

R10 GCTCCAGTATGATGTCGTAGGATG 

F11 ATCAGCCTCTCACCTAGCCTG 
1397 bp 

R11 ATGTGGTCAAGATCATCATTGC 

F12 ATTAGCAGAACCGACATTGTTG 
1,200 bp 

R12 GCGAAAGTACCCTTGTGAGCT 

F13 GATTTTTAAGAGGATGCCATCAAG 
763 bp 

R13 GGAGTTGCAGATGAAGAAGG 

F14 GTGTCAGCAGGAATATAAGCAC 
1,234 bp 

R14 GAAAGAACCTCCGACAAACTG 

F15 TATGCTTGTGGTGGATGGCG 
884 bp 

R15 TCGAGCTGACAAGGCTTAATACG 

F16 GAACTACTAAAGAAGCTGAAGGTTGG 
917 bp 

R16 CAAATATGGAGGTCAGAAAGAGGA 



202 
 

F17 CAAATGGATTGCCTATCAAGTATGAC 
1,085 bp 

R17 GTATGTGATTACACCATTACCAAATTC 

F18 CTCACTAATTCAATTCACAGGTAGTTC 
949 bp 

R18 TGTGTTGGAATATGACTAAATCAGTTC 

F19 CATGGCTCGCTGCTAGTATAGTAC 
673 bp 

R19 GTCAAATGGAGTGCCAGTGC 

F20 GCACTGGCACTCCATTTGAC 
1,114 bp 

R20 AATAGTGCGACTGTGTGTGTCCTA 

 

F21 

 

TCACAGGATACCAGTTGTGAATG 

 

TTD140: 691 bp / Langdon: 724 

bp R21 CAAGGCCTGGAACACGTC 

F22 GCGTTCTGATTGGTTCATGG 
979 bp 

R22 GAGAATGACCAACAGGGTATGATC 

F23 GTTCAAGTTCAACGCCAAGG 
1,547 bp 

R23 GCATCATTGGACTCGACCTACA 

WPK_01 
TTCaCCCaCCTCTACCAGGTCG 

381 bp 
GGTCAAGTAACTCAGCCTTGGG 
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