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Abstract

Ribosomal RNA genes, known as ribosomal DNA or rDNA, are commonly found
in tandem arrays of hundreds of repeating units. The sequences of each unit in
an array were thought to be near-identical but it is now known that frequent
mutations may occur, causing heterogeneity amongst units. Opposing these
divergent mutational processes, unit sequences are homogenised through concerted
evolutionary processes such as unequal sister chromatid exchange (USCE) and
gene conversion (GC).

In this study Perl software has been used to uncover rDNA sequence variation in
the yeast Saccharomyces paradoxus, using data derived from the Saccharomyces
Genome Resequencing Project. This analysis, in conjunction with a reanalysis of
the Saccharomyces cerevisiae data from the same project, has provided detailed
information regarding rDNA sequence heterogeneity in two contrasting, yet closely-
related yeast species. Additionally, the rDNA flanking sequences of four yeast
strains have been characterised via an analysis of new next generation sequencing
reads, adding to our knowledge of concerted evolutionary processes in these
genomic regions.

Partial Single Nucleotide Polymorphisms (pSNPs) within these datasets are shown
to reflect genome mosaicism within a population, and to identify strains with signs
of genome hybridisation undetectable by other means. This information provides
further insights into the dynamics of the rDNA region in the two yeast species. In
particular, examination of the percentage occupancies of pSNPs reveals U-shaped
distributions which differ between the two species.

Further investigations of rDNA evolutionary dynamics through the development
of two Java simulation tools (SIMPLEX and CONCERTINA), which model USCE
and GC events, follow the fate of both single and multiple pSNPs in one or more
rDNA arrays. Initial simulations show the distribution of pSNPs varies depending
upon the balance between mutations and concerted evolutionary events, and
provide a framework to investigate the mechanisms involved in altered rDNA
dynamics in various cellular processes.
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Haber, 1999). A double stranded break (DSB) is introduced. The
ends are resected in the 5’ to 3’ direction, and then invade the
homologous donor which acts as a template for repair. Two Holliday
junctions are formed, and depending on how they are resolved,
either a crossover or noncrossover product is obtained, in this case
a noncrossover gene conversion product. . . . . . . . . . . . . . . 17

1.8. Outline of method for discovering pSNPs (James et al., 2009). . . 24

2.1. Overview of the flow of data through the TURNIP suite . . . . . 35

2.2. Overview of the workings of the TURNIP suite (A) Sliding window
approach, depicting the central 20mer region anchored by longer
flanking regions. (B) Seed read filtering procedures employed
whereby quality scores are checked across each 20mer and rejected
if any drop below a given threshold. (C) Stacking of reads that
align to a single copy consensus to ascertain SNP, indel and partial
SNP (pSNP) variation. Variation is discarded if it is only resolved
in a single read per 20mer window, e.g. the insertion and deletion
would both be discarded here. Reproduced with permission from
the lead author, (Davey et al., 2010) and by permission of Oxford
University Press. . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3. Comparison of TURNIP run times with different numbers of strains
in each conf file, before and after flushing the hit series array. The
original run with 34 strains in a conf file was cancelled after running
for 2 days, with the run not yet completed. . . . . . . . . . . . . . 40

List of Figures vi



List of Figures

2.4. A screenshot from an example output .xls format file from the
compare files v8.pl script, comparing the generated data summary
to the results from the TURNIP run on this data. A pSNP at
position 695 shows a greater than 1% difference in occupancy from
the expected. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.5. Overall number of pSNPs and SNPs (the latter with 100%
occupancy) in different percentage occupancy bins for the generated
data (blue), default TURNIP output (TURNIP 1 - red) and
TURNIP with different BLAST values (TURNIP 2 - yellow). . . . 47

2.6. The percentage difference between the expected generated data to
default TURNIP output (TURNIP 1 - red), and to non-default
BLAST parameter TURNIP output (TURNIP 2 - yellow). TURNIP
2 results still differ from the generated data but the majority are
within 1% occupancy of the expected values. TURNIP 1 output
has a large number of pSNPs within 1%, but still has some pSNPs
with a difference of over 10%. . . . . . . . . . . . . . . . . . . . . 48

2.7. A representation of a pSNP is shown in the top box, with a
consensus sequence in blue, reads in red, with a C to A pSNP.
If all reads matching to the consensus are false, variation becomes
a SNP. If all reads possessing the variant nucleotide are false, no
variation remains. . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.1. World map with the location of the collection sites for the S.
paradoxus strains indicated by stars. Stars are coloured by
population type. In brackets following each strain are the number
of SNPs and the number of pSNPs identified for that strain in this
study. Used with kind permission from Dr Steve James. . . . . . . 65

3.2. Variable length homopolymeric polyT tract found in the S.
paradoxus N-45 IGS1 region (TURNIP alignment positions 3929 to
3937) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

List of Figures vii



List of Figures

3.3. The distribution of pSNP and SNP variants within the rDNA unit
and their occupancies along the tandem array. a) pSNPs and SNPs
within the S. paradoxus dataset, pSNPs are shown as dark grey bars,
SNPs as black bars, with the boxed areas in light grey highlighting
coding rRNA regions. Representation of an rDNA unit is shown
below. b) pSNPs and SNPs within the S. cerevisiae dataset, pSNPs
are shown as dark grey bars, SNPs as black bars, with the boxed
areas in light grey highlighting coding RNA regions. c) Bar chart
showing unit occupancies of pSNPs in the S. paradoxus and S.
cerevisiae datasets, in occupancy bins of size 10%. For each species
group, pSNP and SNP variants were recoded as changes from the
putative ancestral base, instead of from the base(s) possessed by
the reference strain. . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.4. Pie charts of number of each type of polymorphism in the S.
paradoxus and S. cerevisiae datasets. Numbers of each type are
shown, with the percentage of each polymorphism as part of the
entire dataset given in brackets. . . . . . . . . . . . . . . . . . . . 73

3.5. Average number of polymorphisms per strain, split into S. paradoxus
strains, S. cerevisiae mosaic strains, and S. cerevisiae structured
strains. Number above the coloured bars are rounded to the nearest
integer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.6. a) Venn diagram of the pSNP and SNP locations in strain N-17 when
compared to other SNPs and pSNPs in the European population
group. 16 of the pSNPs in N-17 are not sites of variation in the
other European strains. b) Venn diagram of the pSNP and SNP
locations in strain N-45 when compared to other SNPs and pSNPs
in the Far Eastern population group. 32 of the 36 pSNPs in N-45
are characterised as SNPs in other strains in the Far Eastern group. 76

List of Figures viii



List of Figures

3.7. a) example of output from the script var matrix v3.pl. Each
position which has a pSNP or SNP in any strain is recorded, with
the frequency of each base at that position shown. b) 2 pSNPs
(highlighted in pink) and a SNP (in blue) represented at position
3456. c) example of variation matrix produced by var matrix v3.pl
script, which is in a format compatible with Phylip. A row of 4s
indicates the number of possible alleles at each position (one for
each base), with the gray box highlighting one position . . . . . . 78

3.8. Overview of the different programs used at different stages to
produce the finished phylogenies, shown in figures 3.10 and 3.11,
from the polymorphism frequency data. The programs which are
part of the Phylip suite are shown within the green box. . . . . . 79

3.9. Bar chart of pSNP plus SNP variation in each S. paradoxus strain,
labelled to show the split into distinct populations. The strains
are ordered by increasing number of pSNPs + SNPs, and naturally
split into the three geographical locations. . . . . . . . . . . . . . 81

3.10. S. paradoxus neighbor-joining tree with S. cerevisiae strain S288c as
the nominated root. There is clear separation into groups according
to the geographical location of the strain collection site. Only
bootstrap support values greater than 50 are shown. . . . . . . . . 82

3.11. S. cerevisiae neighbor-joining tree with S. paradoxus strain Q32.3
as the nominated root. Only bootstrap support values greater than
50 are shown. The dotted line is equivalent to a distance of 0.355.
Groups of interest are shown as coloured boxes and mosaic strains
are underlined in red. . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.12. a) The S. cerevisiae network shows a complex network structure,
consistent with existing knowledge of this population. Overview of
the whole network including outgroup. b) A close up of the main
population structure in the network (highlighted in a) by the grey
box), with different groups labelled and indicated with coloured
lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

List of Figures ix



List of Figures

3.13. a) The S. paradoxus network shows a clear separation of each
geographic population. Overview of the whole network including
outgroup. b) A close up of the main population structure in the
network, with different geographical groups labelled and indicated
with coloured lines. . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.14. a) Bar chart of the S. cerevisiae structured strains, with number of
pSNPs against the pSNP occupancy. The boxed section highlights
pSNPs with occupancies greater than 10% and less than 90%. The
Malaysian, North American and West African strains have very
few pSNPs within this boxed area, and these are denoted as clean
structured strains. Those strains with a number of pSNPs within
this boxed area show a degree of mosaicism, and are thus classified
as being structured mosaic strains. b) Bar chart of S. cerevisiae
mosaic strains, where there are a large number of pSNPs within
the 10% to 90% occupancy range. . . . . . . . . . . . . . . . . . . 92

3.15. Reprinted by permission from Macmillan Publishers Ltd: Nature
(Liti et al., 2009), copyright 2009. a) Inference of population
structure using the program Structure (version 2.1) on an S.
paradoxus genome-wide SNP dataset. Each mark on the x axis
represents one strain, and the blocks of colour represent the fraction
of the genetic material in each strain assigned to each cluster. Hw,
Hawaiian isolate, (not analysed in our study). b) Inference of
population structure on S. cerevisiae. NA, North America; WA,
West Africa. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.16. The number of reads for each strain mapped to the representative
rDNA unit. Top line chart refers to S. paradoxus, the lower to S.
cerevisiae. In both datasets there are a small number of strains
where there is no coverage, representing areas where there is either
a great divergence from the consensus sequence, or an area of
variation complexity. . . . . . . . . . . . . . . . . . . . . . . . . . 96

3.17. a) Box plot of S. paradoxus geographical groups and their copy
numbers b) Box plot of S. cerevisiae groups and their copy numbers,
excluding outlying strains YJM981 and DBVPG1106 . . . . . . . 101

List of Figures x



List of Figures

3.18. a) Venn diagram of the different pSNP and SNP positions in strain
N-17 in comparison to the Far Eastern strains. 11 of N-17’s pSNPs
are in the same position as pSNPs or SNPs in one or more Far
Eastern strains. b)Venn diagram of the pSNP + SNP positions in
N-17 compared to the Far Eastern and European strains. 10 sites
of variation overlap with the Far Eastern strains alone, and 2 are
present in all groups. c) Venn diagram of the overlap of pSNP +
SNP positions between the three different geographical groups, and
the number of pSNP or SNP positions that are unique for each group.104

4.1. Overview of the two main processes implicated in concerted
evolution. a) Gene Conversion, b) Unequal Sister Chromatid
Exchange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.2. Overview of each iteration of a simulation in the SIMPLEX program113

4.3. Representation of USCE events in an rDNA array a) representation
of a USCE event, involving a misalignment of 2 units with the two
sister chromatids crossing over. b) representation of the same event
as in a, except looking at the fate of one chromatid only. In this
case one chromatid would show a duplication event, and the other
a deletion. Note that in the deletion event the first unit in the tract
changes (now red/orange), while in the duplication it is the last
unit (orange/red). . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.4. Representation of USCE events in an rDNA array (representing
fate of one chromatid), with a pSNP shown as a purple cross. a)
a duplication event involving a tract of 5 units, resulting in the
spread of a pSNP. b) deletion event involving a tract of 5 units, in
this case resulting in the loss of the pSNP . . . . . . . . . . . . . 117

4.5. Overview of the USCE method . . . . . . . . . . . . . . . . . . . 118

4.6. How to deal with boundary conditions for the size of the rDNA
array in USCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

List of Figures xi



List of Figures

4.7. Overview of a Gene Conversion event in an rDNA array
(representing the fate of one chromatid). The X represents a pSNP
within a unit. In this case, the pSNP frequency increases by one. . 121

4.8. Overview of the twelve different outcomes for units in the rDNA
array during the GC method. In the green boxes, D refers to the
donor unit, A to the acceptor unit, D+1 refers to the donor + 1
unit, and A+1 refers to the unit after the acceptor unit. . . . . . 123

4.9. Line chart example of pSNP frequency changing over the course of
a single run. In this run the initial pSNP is fixed within the array
after ∼23,000 events . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.10. Chart of cumulative frequency of percentage of total simulations
completed within a number of iterations. This is for 20% of events
being USCE, and starting with one unit containing a pSNP. Results
are shown as a percentage of runs finished by number of iterations. 129

4.11. Bar chart representing the mean number of iterations (from
simulations of 10,000 runs) until a single initial pSNP is fixed
or lost from an array, comparing three different ratios of the two
event types, USCE or GC. USCE events greatly reduce the total
number of events needed until fixation/loss compared to GC events.
Error bars show standard deviation across the 10,000 runs. . . . . 130

4.12. Bar charts comparing the average end array size when simulation
runs have completed. 100% GC not shown as this will not alter
from the initial array size. Error bars show standard deviation. . . 131

4.13. Proportion of 10,000 simulation runs in which pSNPs were fixed or
lost, when the percentage of units which start with a pSNP is varied133

4.14. The average number of events taken to fix or lose a pSNP, when
the initial pSNP occupancy varies. . . . . . . . . . . . . . . . . . 134

4.15. Histograms of the number of events taken to fix or lose a pSNP,
when the initial pSNP occupancy varies. Initial occupancies are
shown at the top of each histogram, with each bin showing an
interval of 1000 events . . . . . . . . . . . . . . . . . . . . . . . . 135

List of Figures xii



List of Figures

4.16. Bar chart showing the average number of iterations in SIMPLEX
until a pSNP is lost, varying the starting unit containing a pSNP,
and the position of the pSNP within the unit. Top right shows
the bar chart with a full y-axis, the main chart showing the same
dataset but with a truncated y-axis . . . . . . . . . . . . . . . . . 137

4.17. Bar chart showing the average number of iterations of SIMPLEX
until a pSNP is fixed, varying the starting unit containing a pSNP,
and the position of the pSNP within the unit. Top right shows
the bar chart with a full y-axis, the main chart showing the same
dataset but with a truncated y-axis . . . . . . . . . . . . . . . . . 139

5.1. Illustration of the hierarchical object structure in CONCERTINA.
Blue aUnit objects contain different pSNPs, represented by
different integers within each box. . . . . . . . . . . . . . . . . . . 145

5.2. Overview of the hierarchical object structure in CONCERTINA.
Each box represents an object type, with the states of each object
listed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.3. Surface plots of pSNP occupancies of >10% to 100%, over
50,000 concerted evolutionary events, at different point mutation :
concerted evolutionary event ratios, given at the top of each plot. 154

5.4. Surface plots of pSNP occupancies of >10% to 100% for a point
mutation rate of 3.3 x 10-6, after a) 50,000 concerted evolutionary
events and b) 200,000 concerted evolutionary events. . . . . . . . 155

5.5. Surface plots of a) 6.6 x 10-5 and b) 6.6 x 10-6. Plots on the left are
from >0% to 100% pSNP occupancy, with the red box highlighting
results from >10% to 100%. The plots on the right are subsets of
the plots on the left, restricted to occupancies of >10% to 100%. . 156

List of Figures xiii



List of Figures

5.6. a) Representation of a binary tree showing the results of a 10 node
run, with a point mutation rate of 6.6 x 10-5, and a 50,000 event
distance between nodes. b) Overview of the shape of the tree,
showing the order in which the nodes were added, in the bottom
right. The number of pSNPs in each occupancy bin are shown in
histograms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

5.7. a) Representation of a binary tree showing the results of a 10 node
run, with a point mutation rate of 3.3 x 10-6, and a 50,000 event
distance between nodes. b) Overview of the shape of the tree,
showing the order in which the nodes were added, in the bottom
right. The number of pSNPs in each occupancy bin are shown in
histograms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

5.8. a) Representation of a binary tree showing the results of a 10 node
run, with a point mutation rate of 6.6 x 10-7, and a 50,000 event
distance between nodes. b) Overview of the shape of the tree,
showing the order in which the nodes were added, in the bottom
right. The number of pSNPs in each occupancy bin are shown in
histograms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

6.1. Layout of rDNA in ENSEMBL Fungi (http://fungi.ensembl.org),
S288c rDNA and flanking genes, Chromosome XII co-ordinates
445482-471206 shown. rRNA regions are shown in purple, and
coding genes are shown in red. . . . . . . . . . . . . . . . . . . . . 163

6.2. Schematic diagram representing the position of reads which matched
to both the ACS2 sequence, and the rDNA array. Reads from
strain S288c are shown above the left flank, and those from strain
YIIc17 E5 below. . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

6.3. Schematic diagram representing the position of reads which matched
to both the ACS2 sequence and the rDNA array. Reads from strain
Y12 are shown above the left flank, and the single read from strain
CBS432 below. The CBS432 read exhibits a longer distance (over
4,700 bp compared to approximately 3,900 in the S. cerevisiae
strains) between the ACS2 gene and the rDNA array, represented
as a dotted line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

List of Figures xiv



List of Figures

6.4. Schematic diagram representing the position of reads which matched
to both the ASP3 sequence and the rDNA array. A single read
from strain S288c is shown above the right flank. . . . . . . . . . 169

6.5. Schematic diagram representing the position of reads which matched
to both the MAS1 sequence and the rDNA array. Reads from
strain Y12 are shown above the right flank, and those from strain
YIIc17 E5 below. . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

6.6. Schematic diagram representing the position of reads which matched
to both the MAS1 sequence and the rDNA array. Reads from strain
CBS432 are shown above the right flank. . . . . . . . . . . . . . . 171

List of Figures xv



List of Tables

1.1. Table of different experimentally estimated rDNA recombination
events per generation in Saccharomyces cerevisiae. . . . . . . . . . 18

2.1. S. cerevisiae strain information, including source, geographical
location, genome type and lineage, compiled by Dr Steve James.
S. cerevisiae AReference strain; BLaboratory strain; CClassification
according to (Liti et al., 2009). . . . . . . . . . . . . . . . . . . . . 32

2.2. S. paradoxus strain information, including the source and
geographical location of each strain, compiled by Dr Steve James.
S. paradoxus AReference strain; NTNeotype strain. . . . . . . . . . 33

2.3. Number of pSNPs and SNPs identified by TURNIP 1.2 in
Saccharomyces cerevisiae strain YS4. Strain YS4 was the last
strain to be run in each file. Values differ between analysis order of
strains through TURNIP, but are consistent after TURNIP fix (for
1, 11 or 34 strains per conf file) . . . . . . . . . . . . . . . . . . . 41

2.4. Summary of the subroutines within generate data.pl . . . . . . . . 43

2.5. Summary of the parameters used to generate data for the
experimental runs. Name is the filename of the files with the stated
parameters generated to run through TURNIP. The parameters
used to generate the data for each file are shown in subsequent
columns. The number of pSNPs and SNPs specified are the same as
the strain the run is based on, except ScRead400 and ScRead1000,
where the pSNP and SNP numbers are based upon the average
number of each polymorphism within all of the SGRP S. cerevisiae
strains. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

xvi



List of Tables

2.6. Summary of TURNIP output for S. cerevisiae. The results of run
1 (clipped data, default BLAST) can be compared to those of run
2 (clipped data, non-default BLAST) for each polymorphism type 51

2.7. Summary of TURNIP output for S. paradoxus. The results of run 1
(default BLAST) can be compared with those of run 2 (non-default
BLAST) for each polymorphism type . . . . . . . . . . . . . . . . 52

2.8. S. paradoxus strain CBS432 low frequency variation read check.
Those with question marks were low complexity, or short reads,
that did not match well, and so were classified as uncertain . . . . 55

2.9. Detailed analysis of 126 potentially false pSNPs in 7 S. paradoxus
and 2 S. cerevisiae strains. . . . . . . . . . . . . . . . . . . . . . 57

2.10. Numbers of S. cerevisiae reads before and after filtering . . . . . . 59

2.11. Numbers of S. paradoxus reads before and after filtering . . . . . . 60

3.1. Table of variation for each S. paradoxus strain, compared to the
reference strain CBS 432, as identified using the TURNIP software.
For each strain, the population and estimated rDNA copy number
are also given. Ordering the strains by total polymorphism count
results in the strains being split into their population groups. . . . 66

3.2. Variable length homopolymeric polyT tract found in the S.
paradoxus N-45 IGS1 region (TURNIP alignment positions 3929 to
3937) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.3. The number of polymorphisms of each type split according to
different regions of the rDNA unit for S. paradoxus and S. cerevisiae.
DEL corresponds to deleted positions, INS to inserted, and CX to
complex mutations. . . . . . . . . . . . . . . . . . . . . . . . . . . 68

List of Tables xvii



List of Tables

3.4. Table of variation for each S. cerevisiae strain, compared to the
reference strain S288c, as identified using the TURNIP software.
For each strain, the genome type (mosaic or structured), the
modified genome type (mosaic, structured clean and structure
mosaic) determined in this study, and the estimated rDNA copy
number are also given. . . . . . . . . . . . . . . . . . . . . . . . . 71

3.5. Location and size of the five largest IGS1 poly(dA).(dT) tracts in S.
cerevisiae (S288c) and their equivalent counterparts in S. paradoxus
(CBS 432) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.6. Mantel’s r statistic comparing distance matrices from the SGRP
analysis and our rDNA-based pSNP and SNP distances. . . . . . 87

3.7. S. paradoxus strains which had little or no coverage for small rDNA
regions, and an analysis of the regions surrounding the anomalies . . . 99

4.1. List of static variables in SIMPLEX. gcTract is static in this version
of the software. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.2. Results from testing the GC method with known values of different
units. Unit size was set to 9000 for simplicity. I.d.’s of -1 refer to
consensus units possessing no pSNPs. All results returned were as
expected. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.3. Parameters used in SIMPLEX for the three sets of experiments.
Unit 0 is the first unit in an rDNA array, position 0 is the first
position. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.4. End array size for 100% USCE and both event types (USCE and
GC), comparing when pSNPs are fixed or lost from the array. . . 132

4.5. Average number of iterations until the pSNP is lost for different
starting units and pSNP positions . . . . . . . . . . . . . . . . . . 138

4.6. Average number of iterations until the pSNP is fixed for different
starting units and pSNP positions . . . . . . . . . . . . . . . . . . 140

List of Tables xviii



List of Tables

5.1. Table illustrating an example of rDNA regional weighting for use
in the rDNAregionWeight class. The top row shows the various
rDNA regions, followed by the number of pSNPs + SNPs in each
region. The number of polymorphisms in a given region is then
represented as a percentage of the total number of polymorphisms.
Finally the upper bound of the range that a number would fall
within to generate a pSNP within that region is shown. . . . . . . 150

5.2. Different point mutation rates (assumed to be genomic mutation
rates per generation) for each run of 200,000 concerted evolutionary
events, assuming 1 concerted evolutionary event per generation,
with the equivalent ratio between mutations:concerted evolutionary
events (PM:CE). The occupancies of the pSNPs present in the
array after 200,000 concerted evolutionary events are given in bins
of 10% intervals, with SNPs shown as 100% occupancy. . . . . . . 153

6.1. Details of PacBio corrected reads for each strain. . . . . . . . . . 165

6.2. Details of the number of reads which passed each stage of the filter.
N/A refers to strains where this gene is not the closest to the flank. 166

6.3. Length of matches to the ACS2 gene closest to the left flank, the
terminal partial IGS1 region and the intervening sequence for each
read. Numbers in brackets are the percentage of the IGS1 region
found (as it is a partial region). * denotes a partial match, as the
read ends within this region. . . . . . . . . . . . . . . . . . . . . . 167

6.4. Length of matches to the ASP3 gene closest to the right flank,
the terminal partial 5S region and the intervening sequence for
each read. Numbers in brackets represent the percentage of the 5S
region found (as it is a partial region). . . . . . . . . . . . . . . . 169

6.5. Length of matches to the MAS1 gene closest to the right flank, the
terminal partial 26S region and the intervening sequence for each
read. Numbers in brackets are the percentage of the 26S region
found (as it is a partial region). * denotes a partial match, as the
read ends within this region. . . . . . . . . . . . . . . . . . . . . . 172

List of Tables xix



List of Tables

A.1. S. paradoxus pSNPs lost after filtering, and what they were
identified as . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

A.2. S. paradoxus pSNPs kept after filtering, and what they were
identified as . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

A.3. S. cerevisiae pSNPs lost after filtering, and what they were identified
as . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

A.4. S. cerevisiae pSNPs kept after filtering, and what they were
identified as . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

List of Tables xx



Acknowledgements

I’d first like to acknowledge direct contributions. Dr Steve James, for identifying
and explaining complex mutations, Dr Jo Dicks for the statistical analyses in
section 3.3.2, and performing some of the BLAST alignments in Chapter 7. Finally,
Dr Jo Dicks, Dr Ian Roberts, and Dr Steve James for extensive proof reading and
editing, especially Chapter 4.

More generally, I would like to thank the BBSRC for funding this project. My
supervisor Dr Ian Roberts for his support throughout this project, including some
difficult transition periods, a disheartening case of writer’s block, and helping to
give me the confidence to talk about my work in front of more than 100 people!
Also to my co-supervisor, Dr Jo Dicks, to whom I can attribute my desire to do
a PhD, for editing and extensive proof reading (and patience when my ability
to write seemed to have escaped me!), for explaining logically all plans for the
project, for her support, and for being an inspiring female scientist. Also, the rest
of my supervisory team for their time throughout this project. I’d further like to
thank Dr Rob Davey for his help with his program, although it was impossible to
beat his acronyms! I’d also like to thank the NCYC for being such a welcoming
group, and patiently explaining any yeast related information.

As part of the wider experience, I’d like to thank the CSB department for providing
a home for most of my PhD. The bioinformaticians for the nice coffee breaks, and
making me feel like part of a team, and the systems biologists for stimulating
and occasionally bewildering lunch time conversations, and for making me realise
you are big softies underneath it all. I’d like to acknowledge my lovely friends
Marcus, Jen and Claire for being there for me and many cups of tea. I’d like
to especially thank Antony, for a ton of support, proof-reading, cheering me up,
stopping me worrying (as much as possible!), listening to me talk about this a lot,
and generally being the great person that he is.

Finally I’d like to thank my family, and in particular my parents, for the love,
support and encouragement that they’ve always given. They’ve supported me
through having M.E, anxiety, and now a science PhD! Thanks for always being
there, and none of this would have happened without you. x

xxi



1. Introduction

1.1. Ribosomes and Ribosomal RNA

The central dogma of molecular biology is that DNA is transcribed into mRNA,
which is then translated into protein. Translation of the mRNA into protein
is undertaken by the ribosome, which is therefore an essential part of the cell’s
molecular machinery. A review of the process of translation relating to the
ribosome’s structure is presented in (Ramakrishnan, 2002), and a simplistic view
of the process is shown in figure 1.1. Due to the ribosome’s function it is essential
for the survival of a cell, making it a target of antibiotics to inhibit ribosomal
function in certain pathogens (Yonath, 2005). The importance of a detailed
understanding of the ribosome has recently been recognised by the awarding of
the Nobel Prize in Chemistry 2009 to Venkatraman Ramakrishnan, Thomas A.
Steitz and Ada E. Yonath for their work in studying ribosomal structure and
function by x-ray crystallography (Ramakrishnan, 1986; Ban et al., 2000; Harms
et al., 2001). The background of their work on the ribosome, its importance, and
information on the Nobel prize work can be found in a press release accompanying
the prize (Ehrenberg, 2009).

Due to the size and complexity of the ribosome, a high-resolution structure has
only recently been determined for the eukaryotic 80S yeast ribosome (Ben-Shem
et al., 2011). The sub structure of the eukaryotic ribosome consists of RNA
strands in a small subunit (18S RNA with 33 proteins) and a large subunit (5.8S,
5S and 26S RNA with 46 associated proteins), as illustrated in figure 1.2. The
majority of the structure, about 60%, consists of RNA, and given it’s role in
protein production the structure is much larger than that of most proteins.

1



Chapter 1. Introduction

Large (60S) 

subunit 

Small (40S) 

subunit 

Messenger RNA A  A  A   U  C  G 

U  U  U   A  G  C 

tRNA tRNA 

Polypeptide 

chain 

tRNA 

bound to 

amino acid 

5’ 
3’ 

Movement of 

ribosome 

Figure 1.1.: Illustration of function of the ribosome (shown in green) in polypeptide
synthesis.

Figure 1.2.: Illustration of small subunit (left) and large subunit (right)
of the ribosome, from http://www.rcsb.org/pdb/education_
discussion/molecule_of_the_month. Orange and yellow chains
are RNA strands, blue are proteins. Image from the RCSB PDB
September 2008 Molecule of the Month feature by David Goodsell
(doi:10.2210/rcsb_pdb/mom_2008_9)
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1.1.1. Ribosomal DNA Structure

Due to the essential nature of ribosomes, their sequence and structures are highly
conserved within, and across, species. The genes which encode ribosomal RNA
are referred to as rDNA (ribosomal DNA).

Ribosomal RNA genes are encoded in a tandem array of repeating units, illustrated
in figure 1.3 in yeast. Each unit is separated by non-transcribed regions of DNA,
also called intergenic spacer (IGS) regions (shown in grey in figure 1.3), which
contain sites for a replication fork barrier (RFB, in IGS1) and an autonomous
replicating sequence (ARS, in IGS2). Within the unit itself, there are regions
encoding the RNA components of the small and large subunits of the ribosome,
an external transcribed spacer region (ETS region) at the end of the unit, and
internal transcribed spacers (ITS) between the RNA encoding genes. In the yeast
S. cerevisiae, the rDNA is present as a single array of tandemly repeated units
(approximately 150 copies), accounting for 60% of Chromosome XII. In eukaryotes
the rDNA forms the nucleolus organizer region (NOR), around which the nucleolus
is made, as shown in figure 1.4. If the rDNA is present at more than one locus, each
one comes together within the nucleolus, the site at which rDNA is transcribed.
A three-dimensional model of the yeast genome was created in 2010, by using
experimental techniques including chromosome conformation capture-on-chip and
high-throughput parallel sequencing to detect interactions within and between
chromosomes, which were then used to create a map (Duan et al., 2010). The
authors findings implicated the nucleolus and rDNA in preventing interactions
between the ends of Chromosome XII by forming a barrier between the ends of
the chromosome.

RNA has long been associated with S. cerevisiae, with RNA originally being
named “yeast nucleic acid”. There is far more RNA than DNA in yeast cells, at a
ratio of 50:1, and with most of that RNA (80%) comprising of rRNA, rDNA has
been a natural target for studies in yeast.

Large numbers of ribosomes are needed during phases of rapid growth. In S.
cerevisiae 200,000 ribosomes are present in each cell (Warner, 1999), and so many
copies of the rDNA unit are necessary. Studies have shown that one copy of the
rDNA unit would not be enough to satisfy the amount of ribosomes needed during
high cell growth periods in E. coli (Bremer, 1975). Furthermore, each stage of
transcription of DNA to RNA, then translation of mRNA to protein results in

1.1. Ribosomes and Ribosomal RNA 3
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Figure 1.3.: rDNA repeat structure. The rDNA locus in Chromosome XII in the
yeast Saccharomyces cerevisiae, and an example of an rDNA unit,
including the length, in bases, of each region.

Figure 1.4.: Three-dimensional model of the yeast genome from (Duan et al.,
2010). Chromosomes cluster in the nucleus at one pole, shown as
the dotted oval. The rDNA repeats on Chromosome XII (shown in
green), separate and form the nucleolus, identified by the white arrow.
Reprinted by permission from Macmillan Publishers Ltd: Nature
(Duan et al., 2010), copyright 2010
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amplification in a product of a gene (where one gene is transcribed into many
RNA molecules, each of which is translated many times into many copies of the
protein). Because rRNA is not translated into protein, it does not benefit from
the amplification that would usually occur at this stage. However, the number of
repeats of the rDNA genes varies greatly between organisms. This variation will
be reviewed in the next section.

1.2. rDNA Variation

1.2.1. Genomic Organisation of rDNA Loci

In eukaryotes the number of rDNA repeats varies greatly, as does the number
of loci, for example; humans possess approximately 400 copies of the rDNA unit
across 5 different chromosomes(chromosomes 13, 14, 15, 21 and 22; Henderson
et al., 1972), the model plant Arabidopsis thaliana contains ∼570 copies across
2 chromosomes (chromosome 2 and 4; Weiss and Maluszynska, 2000), and the
model organism Drosophila melanogaster has a few hundred rDNA units on the
X and Y chromosomes (Stage and Eickbush, 2007). As previously mentioned, in
the yeast Saccharomyces cerevisiae the rDNA is present as a single tandem array,
which also contains the 5S locus as part of the array (Hillier et al., 1997). In most
hemiascomycetes the 5S gene is within this array, however in the majority of other
eukaryotes the 5S is dispersed throughout the genome, either as part of another
array (as in Drosophila), or as discrete units (Richard et al., 2008).

Also of interest, although the location of rDNA within a chromosome has been
shown to be important for its function, a recent study using synteny to investigate
the evolution of the location of rDNA in 17 yeast species of Saccharomycetaceae
found that the complete rDNA array has moved around the genome on a number
of occasions (Proux-Wéra et al., 2013).

1.2.2. rDNA Copy Number Variation

The number of repeated elements in the rDNA array varies between species.
There is much interest in copy number variation of rDNA and its implications,

1.2. rDNA Variation 5
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for example how this might affect the use of rDNA in the study of microbial
diversity. Due to this interest and the sizeable amount of variation between
species a publicly available database which collates data on rRNA operon copy
numbers in Bacteria and Archaea, called rrnDB (http://rrndb.mmg.msu.edu;
Klappenbach et al., 2001; Lee et al., 2009), has been developed. Several general
rRNA sequence databases are also available, including the SILVA database; (http:
//www.arb-silva.de/, Pruesse et al., 2007), the Ribosomal Database Project
II (http://rdp.cme.msu.edu/; Cole et al., 2009), and the greengenes project
(http://greengenes.lbl.gov/; DeSantis et al., 2006).

A study by Prokopowich (Prokopowich et al., 2003) to investigate correlations
between genome size and rDNA copy number in eukaryotes looked at 162 species
of plants and animals. They found that copy number varied between 39 and
19,300 in animals, and between 150 and 26,048 repeats in plants. This study
found a positive correlation between genome size and rDNA copy number using a
Pearson product-moment correlation. This result does not appear to hold true for
prokaryotes, as a paper by Fogel et al. in 1999 found that there appeared to be
no correlation between rDNA copy number and genome size in this taxonomic
group (Fogel et al., 1999).

Prokaryotic organisms have much lower copy numbers of ribosomal DNA units
than eukaryotes, many with only one unit. The review by Fogel et al. looked at
101 different prokaryotic taxa, and found the mean copy number to be 3.8 (Fogel
et al., 1999). They found that more than 10% of the prokaryotes investigated had 1
rDNA unit, with the highest copy number (12 units) being found in a small number
of Bacillus cereus strains (ATCC 10987; Johansen et al., 1996). This review also
noted that some Azomonas and Bacillus species possessed strain-specific copy
numbers. A study by Liao also looked at rDNA in bacteria and archea, although
focusing on the mechanism of evolution and whether it may differ from eukaryotes
(Liao, 2000). As part of this study Liao noted that although multiple copy genes
are unusual in prokaryotes, the presence of multiple units of ribosomal RNA genes
is nevertheless necessary due to a high demand for fast protein synthesis in growing
cells. It is also of note that, unlike eukaryotic rDNA, multiple copies of the rRNA
genes are not tandemly arrayed, but are spread throughout the genome. The size
of the repeat unit itself is smaller in prokaryotes, but Liao comments that this
smaller repeat number and gene unit size may mean a more comprehensive analysis
of the repeating gene and its mechanism of evolution is easier in prokaryotes
(Liao, 2000). A more recent review by Tourova considered the effect that multiple
copy number of rDNA in prokaryotes may have on phylogenetic analyses for use
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in identification of prokaryotes in environmental samples (Turova, 2003). This
study noted that genomic separation of the multiple copies meant that the rDNA
copies are transcribed separately, and that approximately half of all prokaryotes
in the rrnDB database had only one or two copies of the operon. Whether there
is an ecological advantage to having a higher rDNA copy number is not well
defined. Klappenbach et al. (Klappenbach et al., 2000) investigated if rDNA copy
number in a community of diverse bacteria correlated to the rate of reaction to the
availability of resources. They found that on average those bacteria with a higher
number of rDNA copies had a faster response time, and copy number correlated
with the rate that soil bacteria formed colonies in response to resources.

It is of note that some researchers believe that the variation in rDNA copy number
between species can introduce bias into estimations of species abundance. Crosby
et al. compared four different rRNA genetic techniques which are regularly used to
assess microbial community diversity. The study found that error was introduced
due to the variation in copy number between species, with a bias towards those
organisms containing a higher copy number (Crosby and Criddle, 2003). Therefore
this bias should be kept in mind in any estimations using these techniques.

Importance and Maintenance of rDNA Copy Number

It is interesting to note that whilst a high rDNA copy number is maintained
within many species, there is an in-built redundancy such that not all units are
actively transcribed. A 1993 study on rDNA chromatin structure within the rDNA
(Dammann et al., 1993) showed that only a proportion of the rDNA regions were
actively transcribed, and furthermore that this proportion could be changed in
response to different growth conditions. However, although only approximately
half of the units are transcribed in the case when there are around 150 copies,
studies have shown yeast strains with lower copy number still produce the same
overall amount of rRNA (French et al., 2003).

A number of studies have been carried out into how the rDNA repeat number is
stabilized and the importance of maintaining it, particularly by the Kobayashi
group, including a recent review (Kobayashi, 2011). The expansion and contraction
of the number of repeats in the rDNA array in the yeast S. cerevisiae has been
investigated (Kobayashi et al., 1998). This study identified that when a subunit of
RNA polymerase I (Pol I) was absent , there was a gradual decrease in the number
of repeats in the rDNA array, dropping to approximately half the original number.
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When Pol I was reintroduced the number of repeats slowly increased back to
the initial number, illustrating how copy number is maintained. This study also
implicated a DNA replication fork blocking protein, Fob1, in maintaining repeat
number, demonstrating that replication fork blocking stimulates recombination by
encouraging Double-Strand Breaks (DSBs). Fob1 is therefore involved in changing
rDNA copy number, and so sequence homogeneity (Kobayashi et al., 1998). The
Fob1 protein has also been suggested as a possible mechanism for movement of
the rDNA to different chromosomes in the evolution of yeast (Proux-Wéra et al.,
2013).

rDNA copy number has also been linked to genome integrity, with large numbers of
rDNA repeats in yeast being shown to protect against DNA damage by mutagens
(Ide et al., 2010). Non-transcriptionally active rDNA units were shown to facilitate
recombinational repair mechanisms by aiding cohesion between sister chromatids,
and so aid efficient repair to damaged DNA. Genome wide effects of rDNA were
also highlighted in a study in Drosophila, which linked changes in copy number
of the rDNA on the Drosophila Y chromosome to changes in gene expression
elsewhere in the genome (Paredes et al., 2011).

The location of the rDNA locus has also been linked to copy number, in S. cerevisiae
(Kim et al., 2006). As described in an earlier section, in S. cerevisiae rDNA is
present as a single locus on Chromosome XII. In this study, a series of truncated
variants of Chromosome XII were created, splitting the chromosome either side
of the rDNA locus, with only one variant containing the rDNA. The authors
observed that those variants containing the left side of the chromosome, or the
left side plus the rDNA, had shorter lifespans and accumulated extrachromosomal
rDNA circles (ERCs). This study indicates that the placement of rDNA within
chromosome XII is pertinent to maintaining copy number and also to the function
of rDNA.

1.2.3. rDNA Sequence Variation

Several studies investigating the level of variability of rDNA sequences within
and between species have been carried out. Ben Ali et al. (1999) constructed a
variability map for one area of the rDNA sequence, that encapsulated the large
RNA subunit. The authors used a Substitution Rate Calibration method to
examine the evolutionary rate of a particular nucleotide in comparison to the
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average evolutionary rate (Ben Ali et al., 1999). They identified conserved and
variable sites within this coding region of rDNA across 77 eukaryotic species.
Their findings indicated that the less variable regions often encode functionally
important structures. However, Lachance et al. found that the large rDNA subunit
in the yeast Clavispora lusitaniae contained polymorphisms, despite its functional
importance, questioning the use of this area in indicating species boundaries
(Lachance et al., 2003).

rDNA variation can be affected by different factors. Stage and Eickbush studied
sequence variation within the rDNA of 12 different Drosophila species using
Whole Genome Shotgun Sequencing (WGSS), and found results consistent with
concerted evolution (discussed in the following section) (Stage and Eickbush,
2007). However, they found fewer polymorphisms than may have been expected
in the 28S gene, which they hypothesize is due to localized gene conversion or
DNA repair within retrotransposable elements specific to that subunit. A study
by Ganley and Kobayashi (Ganley and Kobayashi, 2007) found little sequence
variation within the rDNA arrays of 5 fungal species, and inferred from this that
there must be a mechanism of rapid homogenization. In contrast to this a study
by James et al. found that rDNA was highly variable in 34 different strains of S.
cerevisiae, especially in the IGS regions (James et al., 2009). The authors also
note that many of the polymorphisms were not fully resolved (i.e. that sequence
variation between units within an array exists). A more recent study of the ITS
region of rDNA in Arabidopsis thaliana also found variation within individual
genomes (Simon et al., 2012). An older study of rDNA variation within plant
populations and individual plants by Schaal and Learn found the IGS region to
be variable within both populations and individuals, and of potential use in the
study of microevolution (Schaal and Learn, 1988).

1.3. Uses and Consequences of rDNA Sequences

1.3.1. rDNA Sequences in Phylogenetics

rDNA sequences have been used in molecular phylogenetics for a number of years.
Several reviews on this area have been developed; a comprehensive review by Hillis
and Dixon in 1991 summarized how rDNA has been used to infer phylogenetic
relationships (Hillis and Dixon, 1991), with other reviews by Olsen and Woese in
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1993 (Olsen and Woese, 1993), Woese in 2000 (Woese, 2000), and Turova in 2003
(Turova, 2003), amongst others.

There are many reasons why rDNA sequences have been popular in their use in
phylogenetics. Woese explained that rDNA sequences are resistant to horizontal
gene transfer events, which can complicate phylogenetic inferences (Woese, 2000).
Another review also explained that rDNA sequences vary in size, and rate of
substitution varies across the rDNA unit, which enables rDNA to be used to
infer both distant and fine scale phylogenetic relationships (Olsen and Woese,
1993). Not only are rDNA sequences present in all species, but they have the
same function in each, and are experimentally easy to work with (Woese, 2000).
rDNA has also been studied for a relatively long time as its sequence could
be characterized before DNA cloning and sequencing methods were available
(Eickbush and Eickbush, 2007), meaning methods of analysis are well developed.

There has been criticism on the use of rDNA sequences in phylogenetic studies
however. Many state that trees developed from rDNA information are not truly
organismal as they only represent a small part of a genome. However it is noted
by Woese that there is no consensus as to what would be a more appropriate
alternative (Woese, 2000).

Commercial applications of phylogenies obtained from rDNA variation have
also been made. A phylogenetic analysis of S. cerevisiae by Montrocher et al.
(Montrocher et al., 1998) used polymorphisms within the rDNA spacer regions
to construct phylogenetic relationships in wine yeasts, and suggested that this
method could be used to rapidly characterize yeast strains for the food industry.

1.3.2. rDNA, Disease and Ageing

As well as rDNA being important for phylogenetic studies, there are a number of
other scientific areas which involve the analysis of rDNA sequences. For example,
in humans, overexpression of rDNA has been observed in prostate cancer (Uemura
et al., 2012). rDNA also shows promise as a predictor of disease progression
(Stults et al., 2009), due to it possessing recombinational hotspots and therefore
being a common site of chromosomal aberrations in tumours.

rDNA has also been identified as playing a role in cellular ageing and senescence.
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Extrachromosomal rDNA circles (ERCs) have been shown to accumulate in
old cells and can cause replicative ageing, and are the reason for the nucleolar
enlargement seen in older cells (Sinclair and Guarente, 1997). One study suggested
ERCs reduce the replicative lifespan by inducing instability within the rDNA,
which causes senescence (Ganley et al., 2009). There have been a number of
reviews on ageing in yeast, which discuss other potential mechanisms for ERCs
causing a decrease in replicative lifespan. These include ERCs resulting in more
rRNA within the cell, which could impair ribosome production and function, or
transcription factors which are associated with rDNA interact with ERCs instead,
limiting their normal role with the rDNA (Steinkraus et al., 2008; Kaeberlein,
2010). ERCs are formed by intra-chromatid recombination, when a double-strand
break is repaired by homologous recombination. If the broken end pairs with a
unit on the same chromatid, a circle of one or more rDNA units is formed. A
recent study identified a major quantitative trait locus (QTL) in yeast, linking an
increase of 41% in replicative lifespan to the rDNA region (Kwan et al., 2013). This
QTL was identified as a polymorphism in the origin of replication in rDNA, which
reduced replication starting from within the rDNA, but increased replication
throughout the rest of the genome. Approximately a third of the origins of
replication within yeast are found within the rDNA, so having fewer and weaker
origins in the rDNA allows other, weaker genomic origins of replication to compete.
This offers an alternative explanation to another study which found that origin
activity reduced the number of ERCs, which paradoxically decreased replicative
lifespan, which the authors attributed to increased rDNA instability (Ganley et al.,
2009).

1.3.3. Problems with rDNA Arrays in Assembly of Genomes

The repeating units of the rDNA in Saccharomyces cerevisiae were found to be on
Chromosome XII by Petes in 1979 (Petes, 1979). However when the yeast whole
genome sequence was published in 1996 only the units at the extreme ends of
the rDNA repeat were published (Goffeau et al., 1996). This reduction was in
part due to the high degree of similarity between repeats leading to difficulties in
distinguishing between them, and thus not allowing full assembly. Furthermore it
may be difficult to distinguish between genuine variation and sequencing errors,
especially in highly similar tandem arrays. Consequently all repeats throughout
the array were assumed to possess identical sequences.
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A study by Stults et al. in 2008 investigated ribosomal RNA gene clusters,
discussing the difficulties in assembling highly repetitive regions of the genome
in the Human Genome Project, and how the human rDNA region was also left
unassembled (Stults et al., 2008). A modest number of programs attempting
to assemble these types of highly repetitive sequence have now been developed.
In 2003 Tammi et al. introduced a program to assemble shotgun sequencing
data, including highly similar repetitive data, called the Tandem Repeat Assembly
Program or TRAP (Tammi et al., 2003). The TRAP method involved five steps:

1. Preparation - sequences scanned against database to remove contamination.
The remaining vector sequences and any poor quality 5’ or 3’ reads are
marked for later removal.

2. Computation of overlaps.
3. Analysis of overlaps from repeated regions - overlaps scored using

error frequencies and false overlaps removed using multiple alignments.
4. Generate fragment layout - using heuristic algorithm.
5. Generate consensus sequence.

Another tool developed more recently by the same research team is called DNP
Trapper. This software is a shotgun sequencing finishing tool which allows manual
estimations and visualizations as well as automatically assigning placements (Arner
et al., 2006). Their paper also notes that the more recent Whole Genome Shotgun
Sequencing (WGSS) technologies can introduce more problems with assembling
repeated regions. This is due to previous sequencing techniques allowing handling
of repeat regions locally, whereas WGSS requires all repeat regions to be handled
at the same time, even if they are spread throughout the genome (Arner et al.,
2006). Although their method aids assembly of repetitive regions, the test data
they used from Trypanosoma cruzi only had a maximum of 8 repeat units, with
most averaging one or two copy number repeats. However, the authors stated
that the software could be used to visualise mammalian size genomes.

1.4. Mechanisms of rDNA Variation

To understand and predict evolutionary relationships between species or strains
using rDNA variation, the mechanisms underlying it need to be understood.
The current consensus of opinion is that concerted evolution is the process by
which variation (usually point mutation) introduced into a single rDNA unit is
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homogenised across the array, either leading to fixation or loss. The concerted
evolutionary processes are explained in more detail in the following sections.

1.4.1. Concerted Evolution - Unequal Crossover and Gene
Conversion

Concerted evolution is a term used to describe the observation that repeated
genes evolve together, “in concert” with each other, with the phrase being in use
since 1980 (Zimmer et al., 1980). Prior to that date, the same process was known
under many names, including “Horizontal Evolution” (Brown et al., 1972) and
“Coincidental Evolution” (Hood et al., 1975).

Although it has been believed for some time that homogenisation of the rDNA array
is due to concerted evolution, the exact contribution of the possible mechanisms
involved has not been resolved. A review by Eickbush and Eickbush summarizes
concerted evolution in relation to rDNA (Eickbush and Eickbush, 2007), with the
two major mechanisms described below.

Unequal Sister Chromatid Exchange

This mechanism, also known as unequal recombination, could explain the ability
of rDNA repeats to evolve in tandem together. Selection pressures alone cannot
explain the uniformity of rDNA sequences within a species (Eickbush and Eickbush,
2007). Instead, a correction mechanism would be needed to spread any mutations
throughout the array to maintain conformity. Furthermore, as we saw in section
1.2.2, the number of repeats in the rDNA array can vary between individuals, a
phenomenon potentially explained by homologous recombination between different
repeats in the array (Eickbush and Eickbush, 2007). Random unequal crossover
could account for chromosomes with differing numbers of repeats harbouring a
polymorphism. Chromosomes with mutations in the transcriptional units would
be selected against generally, whereas those in the noncoding spacer regions would
be under no deleterious selective pressure, and therefore the number of repeats
with mutations in these regions would increase and decrease in a stochastic manner.
This would mean that over time a substitution would become present or absent
from all of the repeated rDNA units, a duration known as the fixation time.
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Unequal
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Chromatid
Exchange

Sister chromatids

Figure 1.5.: Illustration of Unequal Sister Chromatid Exchange (USCE), with
different coloured blocks representing different units within an rDNA
array. Sister chromatids misalign, and can crossover during the DNA
repair process (crossover indicated by the crossed lines), resulting in
sister chromatids being unequal in size. In this way sequences can
proliferate throughout a region, or become lost.

In 1980 Petes inserted the yeast LEU2 gene into the rDNA array of S. cerevisiae
and followed the outcome of meiotic events on the presence of this gene using
tetrad analysis (Petes, 1980). The study found that the presence of the LEU2
marker became unstable during meiosis, and that marker loss in one array was
coupled with duplication in another. Furthermore, this was shown to only occur
as a result of exchange between sister chromatids, not homologous chromosomes.
This provided evidence for unequal recombination between rDNA sequences on
sister chromatids as a major mechanism for homogenisation, as illustrated in
figure 1.5. However, despite the ability of unequal recombination to explain much
of the variation observed within the rDNA array, it became uncertain whether it
could account for all of it.
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Gene
Conversion

Donor unit

Damaged unit

Figure 1.6.: Illustration of gene conversion, the different units within an rDNA
array are represented as different coloured blocks. A double-stranded
break in a sequence can be repaired using a template from a
homologous region, resulting in a section of DNA being copied from
one area to another. In the example above, the orange unit is used as
a template for repair, and so its sequence is spread.

Gene Conversion

The mechanism of gene conversion was demonstrated as a possible contributor
to rDNA variation and homogenization in yeast via mathematical models, most
prominently the model of Nagylaki and Petes in 1982 (Nagylaki and Petes,
1982). Gene conversion is the mechanism in which recombination occurs between
different DNA helices in a non-reciprocal manner, in a “copy-paste type” event,
as demonstrated in figure 1.6. On introducing their program for estimating gene
conversion rates from SNP data (Yin et al., 2009), Yin et al. describe a gene
conversion in a descendant sequence as the result of copying a small segment or
‘conversion tract’ from a particular location in one parent sequence, to the same
position in the other parent sequence. In contrast, Yin et al. describe a crossover
descendant as containing a prefix of one parent with the suffix of the other.

Gene conversion can explain features of concerted evolution over and above those
explained by unequal crossover (Eickbush and Eickbush, 2007):

• how sequence homogeneity of rDNA units on both homologous and non-
homologous chromosomes could occur.

• how the sequence uniformity at the terminal repeats of the rDNA could be
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accounted for.
• how, more generally than the rDNA case, sequence homogeneity of multigene

families dispersed through a genome could be achieved.

However, it has been relatively difficult to gain experimental evidence of the
involvement of gene conversion in concerted evolution of the rDNA sequence. A
study by Hillis et al. (1991) implicated biased gene conversion as the main driver
of concerted evolution in rDNA in asexual parthenogenic lizards (Hillis et al.,
1991). This study also demonstrated that rDNA concerted evolution can be driven
by biased, directional processes as well as stochastic ones. The triploid genome of
the asexual parthenogen is created from two distinct parental haploids, resulting
in three Nucleolar Organising Regions (rDNA) in the resulting triploid, two from
one parent and one from another. When 109 parthenogenic individuals from
the Heteronotia species were investigated, one parental genotype was favoured
and had either fixed or was in a greater proportion than the other genotype,
which indicated biased gene conversion rather than USCE (which would have
resulted in some individuals possessing a fixed rDNA genotype from the other
parent). However, this observation could be limited to the rather specialized case
of parthenogenic species.

Another study implicating gene conversion with rDNA expansion and contraction
was by Gangloff et al. (Gangloff et al., 1996). The authors found that less than
30% of their results in maintaining sequence homogeneity in rDNA within yeast
could be explained by unequal sister chromatid exchange. In prokaryotes, Liao
found ‘striking’ patterns of concerted evolution, and found gene conversion played
a major role in sequence homogenization (Liao, 2000).

One biological model used to explain the process of gene conversion is the
double-stranded break repair (DSBR) model, roughly illustrated in figure 1.7
(Szostak et al., 1983). In the DSBR model, a double-stranded break is repaired
using a homologous sequence as a template. Depending on how the resulting
double Holliday junction is resolved either a crossover or non-crossover product
is produced, with the non-crossover product being a gene conversion, copy-paste
type event as shown in figure 1.6.

Another model very similar to DSBR is the Synthesis-Dependent Strand Annealing
(SDSA) model, which is identical to the that shown in figure 1.7 until the “New
DNA synthesis” section. In SDSA, only one D-loop is formed, and no Holliday
structures are seen. A thorough description of this model, and others involved in
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Figure 1.7.: Simplified model of Gene Conversion (GC) via Double-Stranded Break
Repair (Szostak et al., 1983, adapted from Pâques and Haber, 1999).
A double stranded break (DSB) is introduced. The ends are resected
in the 5’ to 3’ direction, and then invade the homologous donor
which acts as a template for repair. Two Holliday junctions are
formed, and depending on how they are resolved, either a crossover
or noncrossover product is obtained, in this case a noncrossover gene
conversion product.

recombination, including those potentially implicated in concerted evolution, is
given in Pâques and Haber (1999).
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Author Recombination events per Generation
(Szostak and Wu, 1980) 1 x 10−2

(Merker and Klein, 2002) 1.3 x 10−3

(Kobayashi et al., 2004) 7.4-7.5 x 10−4

Table 1.1.: Table of different experimentally estimated rDNA recombination events
per generation in Saccharomyces cerevisiae.

Other Potential Mechanisms of Concerted Evolution

A number of alternative mechanisms are potentially implicated in homogenizing
the rDNA array, and in maintaining its copy number. As well as USCE
and gene conversion, which both have compelling arguments and evidence for
their involvement in concerted evolution, experimental evidence supporting the
involvement of additional processes also exists. These mechanisms include:

• Intrachromatid Recombination - mentioned in an earlier section
on maintaining copy number and ageing, this process produces
extrachromosomal rDNA circles (ERCs) when a chromatid repairs a double-
stranded break by looping over, pairing with itself, and crossing over (Sinclair
and Guarente, 1997).

• Single Strand Annealing (SSA) - after a double-strand break is made
between repeats, the broken ends can resect and anneal to another repeat
further along the array, resulting in deletion of one or more units (Ozenberger
and Roeder, 1991; Pâques and Haber, 1999).

Both of these mechanisms are related to recombination. A number of studies have
been made which estimate the number of recombination events per generation in
rDNA, however no consensus estimate has been determined at present. Examples
of the different rates estimated from these studies are shown in table 1.1, obtained
by investigating the rate of marker loss in the rDNA of Saccharomyces cerevisiae.

The balance between the various mechanisms of concerted evolution in achieving
sequence homogeneity in real datasets is currently unknown. However, a number of
mathematical models have attempted to describe the action of concerted evolution,
which might present a way of estimating such a balance.
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1.4.2. Mathematical and Computational Models

To understand the origins and evolution of rDNA variation in more detail, several
mathematical and computational models have been developed over the past few
decades.

In the 1970s three key papers introduced models of unequal crossover, showing
how this mechanism could homogenise or create tandem arrays of genes. The
first of these papers suggested that tandem repeats are the natural state of DNA
not maintained by selection (Smith, 1976). In this study, a single DNA lineage
undergoing unequal crossover between sister chromatids was computationally
simulated. Simulations began with a 500 base pair sequence, which was
subsequently modified by a random base pair substitution, followed by a series of
attempted crossovers in each evolutionary cycle. Constraints for crossover product
size, and sequence similarity near the crossover point were implemented. Results
from these simulations illustrated that periodic tandem repeats formed from a
starting sequence which contained no repeats. Smith (1976) went on to suggest
that a long repeated sequence is formed from an expansion of small repetitive
sequence arrays. However, the pattern of repeats, or the probability of a particular
repetitive sequence being achieved, remained unknown as it would be dependent
upon the mechanism used for crossover.

A further study that year built upon previous models of “coincidental” evolution
by intrachromosomal unequal recombination, using principles from population
genetics (Ohta, 1976). This model followed the evolution of repetitive units
in a multigene family, allowing crossovers to shift the array by one unit, with
alternating events leading to duplication and deletion. This study concluded
that estimating the frequency of gene lineages becoming fixed in a multigene
family is in principle the same as analysing the fixation of mutant alleles within a
population, a standard population genetics model. Therefore the diffusion model
of Kimura could be applied to this problem. In this study it was estimated that
20000, 4000, 2000, and 800 crossovers were needed for fixation in the case where
the mean number of units duplicated or deleted in a single crossover event was 1,
5, 10 and 25 respectively.

The following year an additional model investigating unequal crossover in multigene
families was developed. As with the previous model, misalignments of one repeat
unit were permitted, but the results were estimated for a greater number of
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units (Perelson and Bell, 1977). The authors constructed four different models
of unequal crossing over between sister chromatids. In those models in which
there was an equal probability of an expanded or contracted chromosome being
kept in future generations, they inferred that if the mutation generation time was
long compared to the gene fixation time a homogenised multigene family would
result, exhibiting coincidental evolution. Another of their models incorporated
the diffusion model, as in Ohta’s model (1976), but again assumed that crossovers
were balanced between duplications and deletions of equal length. This study also
discussed a number of mathematical difficulties in expanding or solving some of
the problems in their models, including placement of repeats across a chromosome,
and in expanding their model to account for crossover between chromosomes in
diploids.

An example of a model devised specifically for rDNA variation was that of Nagylaki
and Petes (Nagylaki and Petes, 1982). This model proposed intrachromosomal
gene conversion as the main mechanism to maintain sequence homogeneity within
repeated genes. The model derives from fixation probabilities, examining the
mean time it takes for a variant to become fixed or lost within a population. The
model made the following assumptions:

• Heteroduplexes can form between a pair of repeated genes either
symmetrically or asymmetrically.

• Interactions occur within an array in a chromatid, between repeats on sister
strands, but not between chromosomes.

• All repeats have an equal probability of interacting.
• All mismatches are corrected.
• There is no reciprocal recombination.
• Sister strand interactions occur once per cell generation. Interactions within

an array can occur multiple times per cell generation, but it is assumed the
interactions do not overlap in time.

Their results imply that gene conversion does act in sufficient time to contribute
to maintaining sequence homogeneity. The authors note that although unequal
recombination is also shown to be involved in concerted evolution and possesses
the necessary attributes to promote sequence homogeneity in repeated genes,
gene conversion has several advantages as a correction mechanism. Firstly, it can
be directional (with certain sequences being more likely to act as a donor than
others). Secondly, it has the possibility of correcting errors without making gene
dosage changes, and thirdly it can act on dispersed repeats as well as those in a
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tandem array (Nagylaki and Petes, 1982). The latter point may be of particular
interest in prokaryotes where repeats are often dispersed throughout the genome
and are not tandemly arrayed.

Other models developed in the 1980s include a further model by Ohta (1985),
building on the previous model (Ohta, 1976). This model assumed that repeats
in a gene family were dispersed throughout a chromosome. It allowed duplicative
transpositions (duplicating a single repeat and then moving it to another
location, an event at that time believed to be important in the concerted
evolution of transposon families) and gene conversions to occur between genomes
within a diploid organism. The model enabled calculation of allelic identity
coefficients, the probabilities that alleles chosen at random from a population are
identical. The model did not incorporate unequal recombination, or examine at
genetic correlations between chromosomal distance or bias in gene conversion or
transposition.

Another study investigated the mechanism of homogenisation of the sub repeats
found in the IGS (here referred to as the Non-Transcribed Spacer or NTS) region of
rDNA units (Dvorák et al., 1987). The resulting model was applied to experimental
data of the pattern of mutations in the NTS region across 7 clones. The results
agreed that the pattern of mutation observed was consistent with a mechanism
where the further away repeats are, the less likely they are to form a heteroduplex,
and the less likely gene conversion is to occur between them.

A generic model for tandemly repeated genes, not specifically rDNA, was proposed
by Elemento et al. (Elemento et al., 2002). Their model assumed unequal
recombination as the main mechanism for variation and change, but also that no
gene conversion events or deletions occurred. After creating a model for unequal
recombination, the authors constructed an algorithm to assess the likelihood of
rooted phylogenetic trees containing a duplication event, and then used these
likelihoods to find the optimal duplication event tree using maximum parsimony
methods. They tested their model using data from human immunoglobulin and
T-cell receptors.

A more recent model was constructed during an investigation of silencing and
recombination in yeast rDNA (O’Kelly, 2008). O’Kelly based his model on the
idea of Unit Recombination Events, or UREs, where one repeat in the rDNA
can randomly overwrite another, and such that polymorphisms can become
incorporated or lost from the whole array over time. O’Kelly noted that although
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unit amplification and deletion events occur in vivo, as the number of repeats
remains the same on average these can be ignored. Another term included in
this model is the ‘complete fixation time’, which is the amount of time taken
for all repeats in a current generation to have arisen from a single repeat of
an ancestor. O’Kelly looked at occupancy ratios of a mutation throughout
the repeats of an array. The occupancy number follows a random walk, with
absorbing barriers at 0 (where the repeat is lost), up to n (the array size) where
it is fixed across the entire array. O’Kelly then simulated this model to determine
occupancy ratios, and tested different models of recombination. A Bayesian
analysis framework was used to assess which model was the most appropriate for
available yeast datasets. After performing these analyses, O’Kelly determined
that a non-uniform recombination model best explained the observed occupancy
ratio distribution. In this model (unlike that of Nagylaki and Petes) some repeats
were more likely to undergo recombination, with the probability of a repeat being
implicated in a URE increasing linearly with distance from the edge of the array.
Subsequent experimental results confirmed this URE model as the best model of
those suggested (O’Kelly, 2008).

A recent attempt to model rDNA variation was also alluded to in a study which
established an experimental evolution approach to studying the rate and dynamics
of concerted evolution (Ganley and Kobayashi, 2011). However, to date no work
has yet been published on the computational model.

A way to experimentally follow the results of concerted evolution would be
beneficial, not just examining copy number but also looking at repeat sequence
variation. In the next section a new type of variation is discussed that may enable
a greater understanding of concerted evolutionary processes to be made.

1.5. Discovery of pSNPs

James et al. (James et al., 2009) analyzed over 35Mbp of rDNA sequences obtained
from a Whole-Genome Shotgun Sequencing (WGSS) project involving 34 different
strains of Saccharomyces cerevisiae. The authors looked for variation within the
rDNA arrays and found that, contrary to previous findings (Ganley and Kobayashi,
2007), significant variation existed within the rDNA arrays of individual genomes.
Furthermore, they found that not all repeats in a genome had fully resolved
SNPs, so that only a subset of the units in the rDNA array contained SNPs at a
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particular position. James et al. termed this new type of variation partial single
nucleotide repeats or pSNPs, further suggesting them as a measure of genome
stability and divergence. James et al. went about classifying variation within the
rDNA arrays using the method outlined in figure 1.8. This method followed three
stages to process the raw sequence reads.

1. Using the rDNA consensus sequence from the S. cerevisiae reference strain
S288c (Goffeau et al., 1996), a number of 100 bp rDNA subsequences were
selected in a sliding window approach at 20bp intervals, and used for gapped
BLAST (Altschul et al., 1997) queries against the S. cerevisiae WGSS
database to identify all rDNA reads. Those sequences which aligned to at
least 70bp of a 100bp query sequence, and with no more than 30 mismatches,
were proposed as rDNA-specific sequences. These selected reads formed a
new database.

2. Less stringent BLAST searches were performed on the new database to
find rDNA reads that may be divergent from the consensus S288c sequence.
False positives from sequencing errors were accepted at this stage to allow
full sampling of rDNA sequence variability. Minimal penalty values for
mismatches and gaps in BLAST scoring were therefore used in alignments.
This time the middle 20bp of the 100 bp rDNA subsequences were used to
look for polymorphisms across the rDNA reads, the flanking 40 bases each
side used to ensure specificity in searches. At this stage reads were accepted
for further analysis if they matched to 62 or more bp of the 100bp window.
These reads were then collected for multiple alignments.

3. Multiple alignments of rDNA reads were performed using MUSCLE (Edgar,
2004) with default parameters, with all redundant reads from the previous
steps excluded. To distinguish polymorphisms arising from sequencing errors,
Phred quality scores that were published with the SGRP WGSS database
were extracted and analyzed, and stringent quality score filtering applied to
the results from the previous step. Base substitutions were only accepted
as true polymorphisms if they had a quality score of 40 or more. Also,
polymorphisms from single reads were only accepted if they were found on
two or more strains. rDNA polymorphisms were then identified and mapped
for each strain, and the frequency of each polymorphism for a given strain
calculated.

When the WGSS data were analyzed using this method, it was found that variation
between strains differed greatly, ranging from 10 to 76 identified polymorphisms per
strain. Polymorphisms identified and analysed were single-base type substitutions
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Figure 1.8.: Outline of method for discovering pSNPs (James et al., 2009).

(transitions and transversions), comprising of SNPs and pSNPs. Polymorphisms
were not found to be evenly distributed across the rDNA repeat, most being found
in the IGS regions. The study found that approximately 70% of the polymorphisms
identified were pSNPs, some of which were only found in particular strains, others
which had different frequencies according to the strain. The majority of pSNPs
were found at low frequency, so when present were only found in less than 10% of
the repeats in a particular array. Of particular interest, it was discovered that
pSNP number correlated with mosaicism of a genome, with mosaic genomes (those
with hybrid origins) having more pSNPs on average than structured genomes.
This discovery led to the possibility of pSNPs being an indicator of genomic origin,
with this idea being used recently in a population genomics study of wild and
domestic yeast (Liti et al., 2009).

Since the James et al. (2009) study, other groups have identified pSNPs within the
rDNA arrays of various organisms. In Arabidopsis thaliana pSNP variation was
found in the ITS region (Simon et al., 2012). ITS intragenomic variation which
affected a resulting phylogenetic analysis was discovered in species of Laetiporus
(Lindner and Banik, 2011). Partially resolved variation within the IGS1 region
was also identified in Rhodocollybia laulaha (Hawaiian mushroom) (Keirle et al.,
2011). pSNPs are in essence a snapshot of concerted evolution in action, and
have considerable potential to enable analysis of concerted evolutionary processes.
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Consequently, efficient automated ways of investigating pSNP diversity would be
beneficial.

1.6. SNP Calling Algorithms and their Limitations
for Identifying pSNPs

Considerable effort has been put into developing computational tools to identify
SNPs from DNA sequences, generally known as ‘SNP calling algorithms’. SNPs
can be used as genotypic markers, for example to identify common polymorphisms
which could be associated, via genome wide analyses, with disease. Selected SNPs
can then be used in microarray screening programs, for example on relatives of
individuals with a particular disease. Two SNP calling algorithms reviewed in
(Hua et al., 2007) and (Liu et al., 2003) cite disease markers as reasons to develop
these tools.

But what are the difficulties in detecting SNPs? Currently no sequencing methods
are error free, and with the depth of sequence coverage also varying between
methods, it can be difficult to discern between a genuine SNP and the result of
a sequencing error. Therefore all SNP calling methods need a way to categorize
which nucleotide polymorphisms are genuine and which are false positives.

An approach by Brockman et al. (Brockman et al., 2008) is aimed at improving
SNP detection in a particular sequencing technique, Sequencing-By-Synthesis
(SBS). The SBS technique results in over and undercalls of indels, rather than the
miscalls prevalent in techniques such as Sanger or Illumina sequencing. Brockman
et al. note that it is still important to be able to compare quality scores between
different sequencing techniques, even though the SBS bases may be lower quality.
The algorithm itself uses Neighbourhood Quality Standard (NQS) windows to
select SNPs after the sequence has been aligned to a reference, by selecting
unambiguous reads to score the SNPs, where unambiguous reads have over 80%
identity to the reference.

Another SNP detecting algorithm which uses NQS in a final step is the ssahaSNP
program developed by Ning et al. (Ning et al., 2001) as part of the SSAHA
database searching algorithm. SSAHA performs searches on large genomes quickly
by building a data structure (hash table) containing 14-base sections of the
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reference genome. For SNP detection in random human genomic reads, it uses the
high quality region of a read as a query sequence, and aligns it to the reference
genome. If it matches to less than 10 locations on the genome, a base by base
alignment is made, and high quality base discrepancies using the Neighbourhood
Quality Score (NQS) are reported as SNPs. This method was used to detect over
one million SNPs that are registered within the dbSNP database.

In all SNP detection methods, allelic variation needs to be distinguished from
sequencing error. Therefore a threshold of quality needs to be used to determine
which of these scenarios is more likely, with low quality scores being more likely
in low sequence coverage datasets. Quinlan et al. developed a Bayesian approach
using ‘Data Likelihoods’, which allowed SNP calling even in the presence of low
sequence coverage (Quinlan et al., 2008). They applied their application, called
Pyrobayes, to datasets in which the base quality score would normally be too low
to detect SNPs for 75% of the data.

Hua et al. use a classification based method for SNP detection, called SNiPer-HD.
The method uses an expectation-maximization algorithm with parameters based
on a sample training set (Hua et al., 2007) to accurately identify genotypes from
thousands of SNPs, which includes steps to assign qualities or confidence in SNPs
and removing those which fall below a threshold. They solve a major problem for
SNP calling, the existence of a low minor allele frequency which could be ignored.
However, training based algorithms require datasets with enough sample points
to establish accurate parameter estimation, so efficient sampling is unlikely for
thousands of SNPs with low frequency.

Liu et al. (2003) developed another SNP calling method, based upon the PAM
classification and dissimilarity matrix (MPAM). Neural network based solutions of
the SNP calling problem have also been devised. For example, Forage, developed
by Unneberg et al. (Unneberg et al., 2005). This method uses neural networks and
Bayesian approaches for SNP discovery, and uniquely uses a dynamic threshold to
distinguish SNPs from sequencing errors by utilizing the non-linear classification
abilities of neural networks. Furthermore, the method uses a dual network approach
which only scores a SNP if both networks classify it as such. In a comparison of
the Forage algorithm with the NQS based and the Pyrobayes approaches outlined
above, Forage found slightly fewer false positives and negatives than PyroBayes,
and considerably fewer than the NQS approach.
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1.6.1. Reference-free SNP Calling

More recently, a number of reference-free SNP calling methods have been developed,
which are important for identifying SNPs in more complex genomes which do
not yet have an assembled genome to use as a reference. With Next-Generation
Sequencing resulting in more genomes being sequenced quickly and cheaply, the
need for reference-free SNP calling has increased.

A pipeline for identifying SNPs (and small indels) between closely related genomes,
called DIAL (De novo Identification of Alleles), was published in 2010 (Ratan
et al., 2010). The main aim of this study was to investigate genetic diversity of
endangered species (the pipeline was tested upon Orangutan sequence data), which
do not yet necessarily have a reference genome. As part of this pipeline, reads are
gathered into “clusters” of similar sequence, and those that are likely to come from
repeat regions, or from duplicate reads due to PCR errors or sequencing artifacts
(such as poly-A reads), are removed. Then micro-assemblies of these clusters are
used to compare between reads and call SNPs, including quality constraints such
as variation being present in more than one read, and the putative SNP having at
least 40-50 bp flanking it either side.

Another approach utilises coloured de Bruijn graphs for de novo assembly and
subsequent SNP calling (Iqbal et al., 2012). The authors implement this in their
software, called CORTEX, and demonstrate its effectiveness in four different
experiments, including calling variants within 10 chimpanzees for which there is
no reference sequence, and estimating genotypes for the highly variable human
leukocyte antigen gene. The different colours within the graph represent different
genomes, allowing multiple genomes to be analysed together in a single graph,
resulting in detecting variants without the need for a reference. De Bruijn graphs
illustrate different lengths of sequence (k-mers), as nodes, with the edges between
the nodes representing k-mers which overlap, and are seen next to each other in
the input sequence. Within the graph, variants are visible as bubbles (or more
complex structures) within the path of the graph.

Another recent implementation of SNP calling in genomes without a reference
used an improved Maximum-Likelihood algorithm (Dou et al., 2012). The
authors describe the improved accuracy of their method, which is implemented by
eliminating false positives that arise from repetitive regions. To identify SNPs
de novo, reads are assembled together in read clusters (as in other reference-free
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methods such as that in Ratan et al. earlier), from which SNPs can be called.
However, repetitive regions form “composite clusters”, where reads from more
than one location are clustered together. The author’s method utilises a mixed
Poisson model to identify these composite clusters, and removes the repetitive
regions from any SNP calling, preventing them from producing “false SNPs”.

Traditional SNP calling, and more recent reference-free SNP detection methods,
are not designed to look for intragenomic variation between multi-copy genes.
In fact, most methods are designed to exclude it. Repetitive sequence is a
confounding factor in SNP calling, and variation within the rDNA is ignored
or removed. Therefore these programs cannot be used to identify pSNP type
variation within repetitive regions, and so although SNP detection in the rDNA
region is possible using some of the aforementioned methods, pSNPs would require
a different method to be identified.

Instead, a method similar to that demonstrated in James et al. must be used. The
Python scripts used by James et al. (2009) were never released, but the approach
they used formed the basis of a pSNP discovery tool called TURNIP, which is
introduced in Chapter 2.

1.7. Chapter Summary

This chapter has described the structure of rDNA, how the copy number of the
rDNA is dynamic, and current understanding of the mechanisms involved in
homogenising the rDNA repeat unit sequence through the process of concerted
evolution. rDNA has been widely used in phylogenetics. The recent identification
of pSNPs has given us the unique opportunity to utilise these polymorphisms to
study rDNA variation, and to begin incorporating them into a model of concerted
evolution. The rest of this thesis will discuss work using the TURNIP software to
identify rDNA sequence variation within two contrasting yeast species. The thesis
goes on to discuss the uncovered variation, and inferences that can be made from
it. Initial work on computational simulation of concerted evolution is described,
incorporating knowledge gained from the earlier identification of variation. Finally
there is a discussion upon the implications of this work, and future directions that
could be taken, building upon the findings presented here.

1.7. Chapter Summary 28



Chapter 2. Identification of rDNA Variation

2. Identification of rDNA Variation

Chapter Abstract

This chapter discusses a study to identify variation within the Saccharomyces
Genome Resequencing Project dataset using the TURNIP software suite, focussing
on the discovery of partial SNP (pSNP) and other polymorphism types in the
rDNA genomic region. It describes bespoke scripts written either to identify a
broader range of variation within the rDNA than included in previous studies, or
to analyse the data in new ways. To ensure accurate identification of variation with
TURNIP a number of bugs were removed in TURNIP resulting in a new version
being released. Further simulated datasets were generated containing known
variation in order to test the TURNIP suite, and the default parameters were
updated in accordance with these results. Lastly the SGRP dataset was filtered
to remove both sequence contamination and falsely identified polymorphisms.
All remaining variation was then assumed to be genuine, and could be analysed
further. The results include the first detailed analysis of rDNA variation in S.
paradoxus, the nearest wild relative of S. cerevisiae.

2.1. Background

2.1.1. The Saccharomyces Genome Resequencing Project

The Saccharomyces Genome Resequencing Project (SGRP) is a collaborative
project to sequence the genomes of multiple strains of two closely related yeast
species: Saccharomyces cerevisiae and its wild relative Saccharomyces paradoxus.
As part of the SGRP project 37 S. cerevisiae and 27 S. paradoxus strains were
sequenced using Sanger sequencing on ABI 3730 DNA sequencers (Liti et al., 2009),
to a depth of between 0.42x and 3.92x, resulting in 1.42 million sequence reads.
In addition, four S. cerevisiae strains and 10 S. paradoxus strains were sequenced
using Illumina Solexa technology, although the resulting data was not used here.
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The SGRP web server, containing downloadable data, documentation on the
project, BLAST servers for the two species and a genome browser for each species
can be found here (www.sanger.ac.uk/research/projects/genomeinformatics/sgrp.
html). A key aim of the SGRP project was to advance understanding of genomic
diversity, variation and evolution within these two species. A population genomics
paper using data from the project was published in 2009 (Liti et al., 2009). The
genome-wide polymorphism data derived from the sequence reads allowed the two
populations to be characterised, showing S. paradoxus to be split into distinct, well
separated geographical populations, as opposed to S. cerevisiae which possessed a
more closely related, mosaic structure, influenced by human intervention. The
SGRP dataset has since been well studied, cited in more than 270 publications
(273 as of 2nd May 2013 according to www.scopus.com) with sequencing data
from the two closely related species providing insights into many evolutionary and
genomics studies.

The different geographical locations, sources and, in the case of S. cerevisiae, uses
of each strain analysed further here (34 S. cerevisiae and 26 S. paradoxus) are
shown in tables 2.1 and 2.2. Four strains (three S. cerevisiae and one S. paradoxus)
were excluded from this analysis, with details of these strains provided in section
2.4. The majority of the S. paradoxus strains originated from exudate from oak
trees (genus Quercus), whereas S. cerevisiae strains covered a more diverse range
of habitats, including clinical samples, soil isolates, brewer’s and baker’s strains.

The rDNA genomic region of the SGRP S. cerevisiae strains has been studied
previously within the group (James et al., 2009), as discussed in the Chapter 1.
The aim here was to analyse the S. paradoxus dataset to allow a comparison of
polymorphisms between the two species, and also to re-analyse the S. cerevisiae
data using a new methodology, including use of a suite of programs to more
stringently identify sequence variation. Furthermore, this analysis attempted
to gain additional insight into possible evolutionary processes involved in the
origins of this variation, and to discover whether there are differences between the
intra-species variation observed within the wild and domestic strains. Finally, the
variation uncovered allows fine-scale phylogenetic inferences to be made between
the closely related strains.

The SGRP dataset was ideal for the proposed study. Firstly it contains a large
number of closely related strains, enabling fine-scale phylogenetic inferences using
only the rDNA region to be demonstrated. Secondly the results can also be
compared to the whole-genome results from (Liti et al., 2009). Thirdly, as both
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yeast species contain a single rDNA locus, key evolutionary features of the rDNA
tandem array could be compared between strains, and findings applied to their
population history. This also reduced any confounding factors of homogenisation
or recombination between multiple rDNA loci. Furthermore the majority of the
data is Sanger sequence data, and so has the longer read-lengths necessary for
input to the TURNIP computer program, which was used to identify variation, as
discussed in the following section.

Strain* Source Geographic
location

Genome
type

LineageC

27361N Clinical isolate
(fecal)

Royal Victoria
Infirmary,
Newcastle, UK

Mosaic NA

322134S Clinical isolate
(Throat-sputum)

Royal Victoria
Infirmary,
Newcastle, UK

Mosaic NA

378604X Clinical isolate
(Sputum)

Royal Victoria
Infirmary,
Newcastle, UK

Mosaic NA

BC187 Barrel fermentation Napa Valley, USA Structured Wine/
European

DBVPG 1106 Grapes Australia Structured Wine/
European

DBVPG 1373 Soil Netherlands Structured Wine/
European

DBVPG 1788 Soil Turku, Finland Structured Wine/
European

DBVPG 1853 White Teff Ethiopia Mosaic NA

DBVPG 6040 Fermenting fruit
juice

Netherlands Mosaic NA

DBVPG 6044 Bili wine, from
Osbeckia
grandiflora

West Africa Structured West African

DBVPG 6765 Unknown Unknown Structured Wine/
European

K11 Shochu sake strain Japan Structured Sake

L 1374 Fermentation from
must Pais

Cauquenes, Chile Structured Wine/
European

NCYC 110 Ginger beer from Z.
officinale

West Africa Structured West African

NCYC 361 Beer spoilage strain
from wort

Ireland Mosaic NA
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Strain Source Geographic
location

Genome
type

LineageC

S288cA,B Rotting fig Merced, California,
USA

Mosaic NA

SK1B Soil USA Mosaic NA

UWOPS03-461-4 Nectar, Bertram
palm

Telok Senangin,
Malaysia

Structured Malaysian

UWOPS05-217-3 Nectar, Bertram
palm

Telok Senangin,
Malaysia

Structured Malaysian

UWOPS05-227-2 Stingless bee
(Trigona sp.)

Telok Senangin,
Malaysia

Structured Malaysian

UWOPS83-787-3 Fruit, Opuntia
stricta

Great Inagua
Island, Bahamas

Mosaic NA

UWOPS87-2421 Cladode, Opuntia
megacantha

Puhelu Road, Maui,
Hawaii

Mosaic NA

W303B Laboratory
generated

NA Mosaic NA

Y12 Palm wine strain Ivory Coast Structured Sake

Y55B Grape France Mosaic NA

Y9 Ragi (similar to
sake wine)

Indonesia Structured Sake

YIIc17 E5 Wine Sauternes, France Mosaic NA

YJM975 Vaginal isolate
from patient with
vaginitis

Ospedali Riuniti di
Bergamo, Italy

Structured Wine/
European

YJM978 Vaginal isolate
from patient with
vaginitis

Ospedali Riuniti di
Bergamo, Italy

Structured Wine/
European

YJM981 Vaginal isolate
from patient with
vaginitis

Ospedali Riuniti di
Bergamo, Italy

Structured Wine/
European

YPS128 Soil beneath
Quercus alba

Pennsylvania, USA Structured North
American

YPS606 Bark of Q. rubra Pennsylvania, USA Structured North
American

YS4 Baker’s strain Netherlands Mosaic NA

YS9 Baker’s strain Singapore Mosaic NA

Table 2.1.: S. cerevisiae strain information, including source, geographical location, genome
type and lineage, compiled by Dr Steve James. S. cerevisiae AReference strain;
BLaboratory strain; CClassification according to (Liti et al., 2009).
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Strain Source Geographic location Population
A4 Bark of Quercus rubra Mont St-Hilaire, Quebec,

Canada
American

A12 Soil beneath Q. rubra Mont St-Hilaire, Quebec,
Canada

American

CBS 432A,NT Bark of Quercus sp. Moscow area, Russia European
CBS 5829 Mor soil (pH 3.6) Denmark European
DBVPG 4650 Fossilized guano in a

cavern
Marche, Italy European

DBVPG 6304 Drosophila pseudoobscura Yosemite, California, USA American
IFO 1804 Bark of Quercus sp. Japan Far Eastern
KPN 3828 Bark of Q. rubra Novosibirsk, Siberia,

Russia
European

KPN 3829 Bark of Q. rubra Novosibirsk, Siberia,
Russia

European

N-17 Exudate of Q. robur Tatarstan, Russia European
N-43 Exudate of Q. mongolica Vladivostok, Russia Far Eastern
N-44 Exudate of Q. mongolica Terney, Russia Far Eastern
N-45 Exudate of Q. mongolica Terney, Russia Far Eastern
Q32.3 Bark of Quercus sp. Windsor Great Park, UK European
Q59.1 Bark of Quercus sp. Windsor Great Park, UK European
Q62.5 Bark of Quercus sp. Windsor Great Park, UK European
Q89.8 Bark of Quercus sp. Windsor Great Park, UK European
Q95.3 Bark of Quercus sp. Windsor Great Park, UK European
S36.7 Bark of Quercus sp. Silwood Park, UK European
T21.4 Bark of Quercus sp. Silwood Park, UK European
UFRJ 50791 Drosophila sp. Catalao Point, Rio de

Janeiro, Brazil
American

UFRJ 50816 Drosophila sp. Tijuca Forest, Rio de
Janeiro, Brazil

American

Y6.5 Bark of Quercus sp. Silwood Park, UK European
Y7.2 Bark of Quercus sp. Silwood Park, UK European
YPS138 Soil beneath Q. velutina Pennsylvania, USA American
Z1.1 Bark of Quercus sp. Silwood Park, UK European

Table 2.2.: S. paradoxus strain information, including the source and geographical
location of each strain, compiled by Dr Steve James. S. paradoxus
AReference strain; NTNeotype strain.
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2.1.2. The TURNIP Software Suite

Due to their recent discovery, there is only one piece of software currently publicly
available for the discovery of partial Single Nucleotide Polymorphisms (pSNPs):
TURNIP (or Tracking UnResolved NucleotIde Polymorphisms). This suite of
software, written in Perl, identifies micro-variation in hard-to-assemble repetitive
DNA sequences such as rDNA. It is available online from the NCYC website
(www.ncyc.co.uk), and is explained further in a 2010 publication (Davey et al.,
2010).

TURNIP carries out the steps necessary for pSNP discovery (for an overview see
figure 2.1) using similar principals to the method discussed in the James et al.
paper (James et al., 2009), and described briefly here in Chapter 1. This previous
method analysed DNA sequence data obtained from Sanger sequencing (which
results in longer reads than the current next-generation sequencing platforms)using
multiple alignment methods to align sequence reads to a consensus rDNA unit,
and scoring pSNPs and SNPs from the resulting alignments. However, TURNIP
makes several improvements over this earlier method, including the ability to
resolve features such as indels of varying lengths and poly-A tracts, in addition to
identification of the desired SNPs and pSNPs.

Another program which examines heterogeneity within repetitive regions is DNP
Trapper (Arner et al., 2006), based on the TRAP algorithm (Tammi et al., 2003).
Although like TURNIP it uses multiple sequence alignments in the assembly
method, the main aim of this program is assembly rather than variation discovery.
However, DNPTrapper would be unlikely to be suitable for the analysis of highly
repetitive rDNA regions with high copy number (it has only been used for relatively
short repetitive regions so far), and for discovery of pSNPs. This is because DNP
Trapper requires assembly of the entire genomic region undergoing analysis which
is currently infeasible for the highly repetitive rDNA. As TURNIP does not require
sequence assembly prior to analysis it is the only currently available program to
identify pSNPs in rDNA.

A summary of the steps involved in identifying variation using TURNIP are shown
in figure 2.1, but a more detailed description is given below:

1. Input - FASTQ files obtained from whole or partial genome sequencing
projects that have been split into FASTA and quality score files (e.g. Phred
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Input – consensus FASTA 
sequence and a set of FASTQ 

Sanger sequence files

A BLAST search automatically 
reduces reads to those matching 

the consensus sequence

Remaining reads are pairwise
aligned to the consensus 
sequence using MUSCLE

Reads possessing bases with 
qualities below a threshold 

value are discarded

Variation including SNPs, indels
and pSNPs are identified 

Output – text file, excel file  and 
GFF file containing details of the 

scored variation
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Figure 2.1.: Overview of the flow of data through the TURNIP suite
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or Solexa depending on sequencing method used) for each genome of interest
(in our case yeast strains), plus a consensus sequence with which to compare
the genomic sequence reads (in our case a reference rDNA sequence). The
names of the files containing these input data are specified in a configuration
(or conf) file.

2. Sequence reads matching the consensus sequence are identified
using BLAST - rDNA specific sequences, a subset of the genomic sequence
reads, are found by a BLAST sequence similarity search (Altschul et al., 1997)
of the input FASTA files against the supplied rDNA consensus sequence.

3. High-scoring reads split into 100-mers and reblasted - All sequence
reads that align to the consensus sequence are temporarily stored. The
high scoring reads are split into 100-mers (maximum length, with a 20bp
sliding window flanked on either side with a region between 10bp and 40bp
i.e. the first read will be 20 + 40 flanking on one side equalling a 60-mer).
A representation of this process is shown in figure 2.2a, where blue boxes
represent the central 20 bases, which is the region of interest. A less stringent
BLAST is performed.

4. Reads with 100% identity to consensus are discarded - In this
optimization step, sequence reads with 100% identity to the consensus
sequence are discarded as the program is only looking for variation within
the repetitive region, not for the full assembly. Only distinct high-scoring
pairs are needed. However, their presence within the dataset is recorded
as this information may be needed at a later point in the analysis when
estimating polymorphism frequencies across the read set.

5. Gapped multiple alignment - a gapped multiple alignment using
MUSCLE (Edgar, 2004) aligns all reads in each 20bp window to the consensus
sequence. This identifies insertions and deletions (indels).

6. 20-mers with low quality bases are discarded - if any 20-mers contain
one or more bases associated with a quality score below a given threshold
(for gaps this is the average score surrounding the gap), they are removed
from the analysis. This process is shown in figure 2.2b.

7. Variation is called - The remaining 20-mers are stacked in a multiple
sequence alignment, compared to the consensus and called for variation i.e.
indels, SNPs or pSNPs. An example of each type of variation in a multiple
sequence alignment is shown in figure 2.2c.

8. Output - The output is stored in txt, Microsoft Excel, SQL and GFF files.
The location, type and frequency of variation is recorded.

Output files are written at each stage to enable simple and efficient repetition of
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the process if only parameters (rather than data) are changed, or if the process is
interrupted mid-way. Parts of the program can be run concurrently on a multi-core
or cluster environment.

TURNIP is the first program to deal effectively with partially resolved SNPs, and
to overcome problems inherent to highly repetitive regions such as the rDNA.
Therefore it is the logical choice of software for our study.

Figure 2.2.: Overview of the workings of the TURNIP suite (A) Sliding window
approach, depicting the central 20mer region anchored by longer
flanking regions. (B) Seed read filtering procedures employed whereby
quality scores are checked across each 20mer and rejected if any
drop below a given threshold. (C) Stacking of reads that align to a
single copy consensus to ascertain SNP, indel and partial SNP (pSNP)
variation. Variation is discarded if it is only resolved in a single read
per 20mer window, e.g. the insertion and deletion would both be
discarded here. Reproduced with permission from the lead author,
(Davey et al., 2010) and by permission of Oxford University Press.
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2.2. Preliminary Analysis using TURNIP: Bug
Fixing

Identification of polymorphisms (comprising SNPs, pSNPs, insertions and
deletions) within the rDNA sequence of the SGRP strains was made using
the TURNIP suite of software (Davey et al., 2010), described in the previous
section (The TURNIP Software Suite). Installation was performed according to
instructions on the website (www.ncyc.co.uk/turnip/turnip-howto.html), and the
following setup was used:

• TURNIP version 1.2 20100818
• BioPerl version 1.6.1
• Perl version 5.10.1 Modules:

– Benchmark
– Data::Dumper
– List::Util
– Parallel::ForkManager
– Set::Scalar
– Spreadsheet::WriteExcel

• BLAST version 2.2.24 (note this is a legacy version, not BLAST+)
• ImageMagick 6.5.1

All of the analyses and programs were run on a desktop PC with an Intel Core 2
Duo 3.16 GHz processor and 4Gb RAM, running the Linux Fedora 11 operating
system.

The raw sequencing reads for S. cerevisiae and S. paradoxus were downloaded
from the SGRP site and formatted using the process fastq.pl script in TURNIP.
This script splits the FASTQ files (containing the combined sequence and quality
scores for each nucleotide along the read) for each strain into .fasta files (sequence
only) and .qual quality files (PHRED scores only) for subsequent use in TURNIP
with the BioPerl SeqIO module.

In order to run the resulting .fasta sequence files through BLAST (and through
TURNIP which calls BLAST), the fasta files were first formatted using formatdb,
with the command # formatdb -i <filename> -o T -p F, where the -o flag
relates to parsing the sequence id, and -p relates to whether or not the sequence
is nucleotide or protein.
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A preliminary TURNIP run was carried out upon the S. cerevisiae data analysed
in a previous study (James et al., 2009). Prior to analysis, the dataset had
been clipped to form an rDNA-only database (i.e. all non-rDNA sequence reads
had been removed) using filters described in the methods section of that article.
Analysis of this dataset enabled a comparison to be made between the variation
identified by TURNIP and the published variation identified by a collaborator’s
software for the same dataset. The run both identified various bugs in the
TURNIP software and discrepancies with the results of the previous study that
were investigated further.

2.2.1. TURNIP Bug 1:Parsing file names

Files with underscores in their names could not be parsed in TURNIP and their
subsequent analysis failed. The regular expression in Hitseries.pm was changed
to the following [$aname =˜ m/(\d+)\_ascriptions\.[n]?dat/] to correctly
parse the file name.

2.2.2. TURNIP Bug 2: Memory Leak

A memory leak in TURNIP was identified. For initial runs of TURNIP the S.
cerevisiae dataset, which comprised 34 strains, was used. Here the first 3-4 strains
were processed relatively quickly (a few minutes per strain). However, despite
both CPUs working at 100% capacity, the software was still running 16 hours
later. To address this problem, bash scripts were written to call TURNIP multiple
times with different conf files (i.e. configuration files which specify which strains
to run through TURNIP, and the parameters to be used), with each conf file
specifying a small number of strains (1, 3 or 11 strains specified per conf file).
The results of the runtimes for these runs are shown in figure 2.3, as the blue
series. A run was cancelled for the case of one conf file containing all 34 strains as
they had not completed after running over a weekend, with the CPUs working
at full capacity. This suggested a memory leak in the TURNIP software. The
output files from TURNIP from each stage of the program were compared, for the
same strain run in different positions in the conf files, using the diff command
in Linux. This showed the HitSeries.out files were different for the same strain
when it was run at varying positions in the strain list, suggesting the part of the
program producing this file (or earlier) contained an error. After looking through
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Figure 2.3.: Comparison of TURNIP run times with different numbers of strains
in each conf file, before and after flushing the hit series array. The
original run with 34 strains in a conf file was cancelled after running
for 2 days, with the run not yet completed.

the code, it appeared that the array hit series was not being reinitialised (flushed)
between analysis of different strains in a single TURNIP run. A line of code was
added to reinitialise this array each time a new strain was analysed, and the runs
were repeated (with 1, 11 and 34 strains specified per conf file), shown as the
red series in figure 2.3. Following the memory leak correction there was a large
reduction in the time to run 34 and 11 strains in TURNIP.

2.2.3. Inconsistency in Identifying Variation In Strains

Upon examination of the results of TURNIP runs with differing numbers of strains
specified per conf file, as noted in section 2.2.2, some differences were noted
between identified polymorphisms in each strain, varying with the order in which
the strain was run. This indicated some variation was being inaccurately recorded.
An example of such differences is shown in table 2.3. After the fix of reinitialising
the hit series array mentioned in section 2.2.2, the number of polymorphisms
identified in each strain were then consistent between different TURNIP runs
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(i.e. whether it was the first strain in the list to be run through TURNIP, or the
3rd or the 11th). Other arrays and hashes within the TURNIP code were also
reinitialised but no further differences to the runtimes or results were observed.
Therefore reinitialising the hit series array was shown to fix a major part of the
memory leak, and to eradicate problems of polymorphism identification due to
strain order.

1 strain 3 strains 11 strains x strains (after fix)
pSNP 30 27 33 30
SNP 39 37 42 39

Table 2.3.: Number of pSNPs and SNPs identified by TURNIP 1.2 in
Saccharomyces cerevisiae strain YS4. Strain YS4 was the last strain
to be run in each file. Values differ between analysis order of strains
through TURNIP, but are consistent after TURNIP fix (for 1, 11 or
34 strains per conf file)

2.3. Validating TURNIP Output

2.3.1. The Problem

As has just been seen, the SGRP S.cerevisiae dataset was analysed with TURNIP
in order to validate its installation and to act as a preliminary test of the program
on a carefully chosen dataset. During this analysis, discrepancies between results
of runs with different numbers of strains were noted. The underlying software
bugs, identified here, were subsequently fixed in a later version of the program
(version 1.3 20110323). However, this process highlighted the need for a systematic
and easy way to validate the results obtained from TURNIP (Davey et al., 2010),
and to provide a quality check for any future versions of the program.

A plan was made to develop a computer script to generate simulated input datasets
for TURNIP, with a known number and position of SNPs and pSNPs (of a known
occupancy). Such a script could provide the means by which the results from a
TURNIP run could be subsequently validated.
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2.3.2. Overview of the Script to Simulate TURNIP Datasets

A decision was made to develop the script in the Perl programming language,
which has a number of advantages for use in this setting. Firstly, generating
variation in sequence reads is a form of text string manipulation, something that
is done simply and efficiently in Perl. Secondly, TURNIP is written in Perl, so
the validation script could easily become part of a future TURNIP version.

The Perl script needed to generate a specified number of reads, with a known
number and position of SNPs and pSNPs from a supplied consensus sequence, to
then be run through TURNIP. The TURNIP results could then be compared to
the known values and the accuracy of the TURNIP output assessed.

The script required certain pre-defined parameters that could be changed between
different experimental runs. These include:

• A consensus sequence
• The desired read length
• The coverage
• Number of repeats
• Number of pSNPs to generate
• Number of SNPs to generate

The number of reads that need to be generated to simulate this coverage can be
easily calculated using the coverage calculation of Lander and Waterman (Lander
and Waterman, 1988). The calculation is shown below, where N is the number
of reads to generate, C is the coverage, r is the rDNA repeat number, G is the
consensus length and L is the read length.

N = CGr

L
(2.1)

The script is laid out in a number of subroutines to aid ease of reading for certain
tasks. The subroutine name and a brief overview of the code is summarised in
table 2.4.

Running the script, called generate data v10.pl results in all of the input files
required for a TURNIP run (a fasta file of reads, a corresponding quality file, and
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a BLAST formatted database of the reads. It also generates a summary text file
containing the known positions, bases involved and reads changed for each SNP
and pSNP generated. This summary gives the expected results that would be
seen if TURNIP is wholly accurate in its analysis.

Subroutine Overview
read in consensus Reads in the consensus sequence from a named file into a string,

removing any whitespace and adding a tail of N’s (tail = half a
read length of N’s) to each flank.

calculate reads Calculates the number of reads to generate given the input
parameters using equation 2.1. If a number of reads is specified,
do not calculate.

generate reads Generates the reads. Each read is represented as an array,
containing an integer referring to its start position within the
consensus sequence, and the sequence of the read (generated by
a substring method from the start position using the consensus
sequence). Each read is stored in an array, creating an array of
arrays (reads).

run polymorphisms Generates an array of random positions in the consensus sequence,
one for each SNP requested, and another array with positions for
pSNPs. Another array is generated for pSNP position occupancies.
This then calls the generate SNP and generate pSNP subroutines,
once for each SNP and pSNP.

generate SNP Compares the SNP position to the starting position of each read
generated. If the starting position results in a read which will
contain the SNP, the relevant base within the read string is
substituted for the SNP, and the read details added to a SNP
summary array.

generate pSNP Compares the pSNP position to the starting position of each read
generated. If the starting position results in a read which will
contain the pSNP, the read is copied to a possible read array.
Depending on the occupancy, a subset of reads in this array are
chosen to have their relevant base within the read string substituted
for the pSNP. The occupancy is then readjusted to be the observed
occupancy, and the read details added to a pSNP summary array.

adjust positions After the SNPs and pSNPs are generated, this method adjusts the
positions to be those of the original consensus, not the position of
the pSNPs and SNPs in the consensus plus the tails. Needed for
correct calling of SNP and pSNP positions in the output.

write summary Writes all of the summary array information to file. This includes
the SNP and pSNP positions and occupancies, plus the identities
of the reads involved. Also includes a header of the parameters
used in generating the file.

write reads Writes all of the generated reads into a fasta formatted file, and a
corresponding quality file with a generated quality score, for each
position in each read.

format fasta Runs formatdb on the generated fasta file to get all of the files
needed for input into TURNIP

Table 2.4.: Summary of the subroutines within generate data.pl
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2.3.3. Overview of Script to Compare Generated Data to
TURNIP output

After running the generate data v10.pl script to generate reads, and running the
reads through TURNIP, it quickly became clear that a simple and systematic
method to compare the output of TURNIP to the summary file from the generated
data would be advantageous. This again was a Perl script, which takes the
summary text file from generate data v10.pl and the pSNP table text file from
TURNIP as input. It then compares the position of each SNP and pSNP, and
the occupancy of the pSNPs, and outputs an .xls file highlighting those instances
where the two results are in disagreement, or if the percentage difference between
the pSNP occupancies is above a certain threshold.

The script is called compare files v8.pl, as it compares the two sets of output
files. It uses the Spreadsheet::WriteExcel Perl module, similarly to the
pSNP table to excel.pl script in TURNIP. The threshold at which the difference
in pSNP occupancy becomes highlighted can be changed, to aid detection of more
divergent results. Part of a small screenshot of a typical .xls output is shown in
figure 2.4.

Figure 2.4.: A screenshot from an example output .xls format file from the
compare files v8.pl script, comparing the generated data summary
to the results from the TURNIP run on this data. A pSNP at
position 695 shows a greater than 1% difference in occupancy from
the expected.
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2.3.4. Validating TURNIP

To test the generate data v10.pl and compare files v8.pl Perl scripts, and to
validate the chosen version of TURNIP, a series of experiments were undertaken.
A number of datasets were generated from the S. cerevisiae and S. paradoxus
consensus sequences, with the number of SNPs and pSNPs chosen as being similar
to those from known strains. Strains from S. cerevisiae and S. paradoxus with
low, average and high numbers of pSNPs and SNPs were chosen as examples to
model realistic numbers for generated strains. A further two generated strains
had an average number of pSNPs and SNPs, but had a smaller and larger read
length respectively, similar to the outer limits of read lengths expected for Sanger
reads. The details of these experiments are shown in table 2.5.

Name Strain based
upon

No.
pSNPs

No.
SNPs

Read
length-
/bp

Consensus
used

ScUW83 UWOP83 787 3 37 9 800 S.cerevisiae
ScSpDB SpDB44 10 14 800 S.cerevisiae
ScYJM975 YJM975 4 6 800 S.cerevisiae
SpUWOP UWOPS91 917 9 345 57 800 S. paradoxus
SpKPN3829 KPN3829 16 6 800 S. paradoxus
SpDBVPG DBVPG4650 5 2 800 S. paradoxus
ScRead400 n/a 12 9 400 S.cerevisiae
ScRead1000 n/a 12 9 1000 S.cerevisiae

Table 2.5.: Summary of the parameters used to generate data for the experimental
runs. Name is the filename of the files with the stated parameters
generated to run through TURNIP. The parameters used to generate
the data for each file are shown in subsequent columns. The number of
pSNPs and SNPs specified are the same as the strain the run is based
on, except ScRead400 and ScRead1000, where the pSNP and SNP
numbers are based upon the average number of each polymorphism
within all of the SGRP S. cerevisiae strains.

Each of the generated data “strains” was created using the generate data v10.pl
script, and run through TURNIP using default parameters. The “pSNP table
summary.txt” TURNIP output files from each strain were compared to the
summary files from the generated data using the compare files v8.pl script
producing an excel file for each dataset. No differences between generated and
estimated numbers of SNPs were identified in any of the eight datasets analysed.
However, some differences were observed for pSNPs, notably in occupancy values.
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For many positions at which there was a greater than 1% difference in pSNP
occupancy, inspection of the TURNIP output files showed that they were covered
by the maximum permitted (according to default TURNIP settings) number of
sequence reads (250). A tandem array with 140 repeats, sequenced to a depth of
2x, might be expected to produce 280 (2 x 140) reads, and therefore an alignment
of depth 280 for variation discovery. By limiting alignment depth to 250, pSNP
occupancy frequencies may have been distorted. To quantify the strength of this
distortion, if indeed one exists, a second TURNIP run was performed on each
generated strain using non-default BLAST parameters. To do this, a line was
added to the BlastFactory.pm module of TURNIP, which set the parameters b
(the number of database sequences with HSPs to the query) and v (the number
of one line descriptions of database sequences) to be 800. This run is referred to
as TURNIP 2, whereas the default parameter run is TURNIP 1.

2.3.5. Results and Discussion

The Microsoft Excel output files for each generated strain, for each run, were
gathered into a single directory. The occupancies for each run from the
generated summary file, together with TURNIP 1 and TURNIP 2 results, were
accumulated into one spreadsheet, so that the differences between the runs could
be amalgamated into one dataset. The results of these runs are shown in figure
2.5.

The bar chart in figure 2.5 is similar to graphs produced in a previous analysis of
the SGRP S. cerevisiae data (James et al., 2009), where the pSNP occupancies
for each strain were placed into frequency bins. Comparing the generated data
to the two different result sets, shown in blue, red and yellow in the figure, there
are differences in the number of polymorphisms per bin between at least two
of the categories in all but the 100% bin, which represents the SNPs, and the
20 - 29.9% bin. In general, the TURNIP 2 run, which does not use the default
parameters for the maximum number of reads aligned to the consensus sequence,
is more similar to the generated data, with regard to the estimated number and
occupancy of pSNPs, than the default TURNIP 1 run, with all of the bins being
within 3 pSNPs of the expected number. As well as the two bins where both
runs identified all pSNPs, there are 5 cases in which the TURNIP 2 parameters
were only 1 value different to the expected, as opposed to only one case where
TURNIP 1 was. The default TURNIP run estimates are within a few pSNPs
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Figure 2.5.: Overall number of pSNPs and SNPs (the latter with 100% occupancy)
in different percentage occupancy bins for the generated data (blue),
default TURNIP output (TURNIP 1 - red) and TURNIP with different
BLAST values (TURNIP 2 - yellow).

identified to the expected values, but a few bins show a larger difference. For
example the 10-19.9% bin has a large difference of 15 pSNPs from the expected
(35 estimated when 50 expected), but there are also three more cases where there
is a 7 pSNP difference (for bins 30-39, 40-49 and 50-59). The large difference
between TURNIP 1 and TURNIP 2 in identifying pSNPs in the 10-19.9% bin,
could be explained by lower occupancy pSNPs being present in fewer reads, and
therefore they may not be represented in the reads when the alignment depth is
limited in the default BLAST parameters.

In theory, the TURNIP 2 run should give identical results to the expected values,
as all of the read alignments are used for variation discovery. To investigate the
observed differences between real and estimated pSNP occupancies more carefully,
the TURNIP 1 and TURNIP 2 runs were compared to the generated data on
an individual polymorphism basis. The differences in their occupancies to the
expected values are summarised in figure 2.6. This figure illustrates more clearly
the effect the differences between the default BLAST parameters has on the
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estimated occupancies. In the TURNIP 1 results, although a large proportion
(approximately 40%) of the calls are within 1% of the expected occupancy, a large
number that show greater differences remain, with 40 calls differing by 10% or
greater. In comparison, although TURNIP 2 still has differences to the expected
occupancies from the generated data, 528 calls (approximately 97%) are within
1% of the expected values, with the remaining 13 being within 2%.
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Figure 2.6.: The percentage difference between the expected generated data to
default TURNIP output (TURNIP 1 - red), and to non-default
BLAST parameter TURNIP output (TURNIP 2 - yellow). TURNIP
2 results still differ from the generated data but the majority are
within 1% occupancy of the expected values. TURNIP 1 output has
a large number of pSNPs within 1%, but still has some pSNPs with a
difference of over 10%.

With the majority of the TURNIP 2 results being within 1% of the expected
values, it would be imagined that there would be fewer differences between its
results and those of the generated data when put into bins, as shown in figure
2.5. The differences between the number of pSNPs called in this run and those
expected could therefore arise when the 1% change in occupancy resulted in the
pSNP being reclassified into the bin above or below, when the expected occupancy
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is near the bin boundary.

These results illustrate that TURNIP , with carefully chosen parameter settings, is
correctly identifying variation, as the SNPs and pSNPs are called in the positions
expected, and at very similar occupancies to those expected. The experimental
run has also highlighted that the default BLAST parameters used in TURNIP
could be changed to slightly improve the accuracy of the pSNP occupancy calling,
and may allow inclusion of a few more low occupancy pSNPs. However, although
the difference in accuracy of results between the default and altered BLAST
parameter runs is notable, small inconsistencies can still occur in the non-default
BLAST runs when compared to the expected values.

2.4. Secondary Analysis using TURNIP: Identifying
Contaminated Data

After the successful bug fixes and validation testing of TURNIP, the SGRP
datasets were run through the new version of TURNIP (version 1.3 20110323),
with the BLAST parameters changed to those noted in the previous section
(TURNIP 2) to enable more accurate pSNP calling. In addition, the SGRP data
was downloaded and the full, unclipped dataset (i.e. all reads, not only those
assigned to the rDNA region) used for analysis with TURNIP. The unclipped
dataset provides a comparison to the filtered dataset, and highlights any effects of
pre-filtering. For example, TURNIP does not require data to be filtered before
use, so it will be helpful to assess the effect of doing so on variation discovery.

A number of SGRP strains were not included in these, and subsequent, analyses.
In S. cerevisiae strain YGPM was excluded due to reasons provided in the
SGRP handbook, as it had an unknown origin and odd characteristics including
unusual read lengths and quality scores. In addition, strains YS2 and L 1528
were excluded from our analyses, and from the James et al analysis (James et al.,
2009), due to previously discovered contamination of the sequence reads (personal
communication with Dr James). In L 1528 this was visible in the results of a
TURNIP run as a few reads consistently possessed variation across the rDNA,
which could be identified as S. paradoxus contamination. In S. paradoxus, 26 of
the 27 SGRP ABI sequenced strains were analysed, with strain UWOPS91-917.1,
a Hawaiian strain, excluded due to contamination. In this case the contamination

2.4. Secondary Analysis using TURNIP: Identifying Contaminated Data 49



Chapter 2. Identification of rDNA Variation

was believed to have originated from an S. cerevisiae strain, making removal
difficult due to many similarities between the rDNA of the two species. This strain
exhibited a large amount of variation when run through TURNIP( 304 pSNPs, 60
SNPs and 61 indels), which suggested a large quantity of contaminated reads was
present.

Additionally, to increase confidence in the final results, the pSNP calls were
manually checked and were only included if more than 2 reads were involved in
a polymorphism identification. Therefore if only one variant read was identified,
the corresponding polymorphism was removed from the results, as the likelihood
that it was derived from sequencing error was deemed to be high.

2.4.1. TURNIP results

Sequence reads for the remaining 34 S. cerevisiae and 26 S. paradoxus strains
were run through the newest version of TURNIP (version 1.3 20110323). Three
analyses were performed on the S. cerevisiae reads, and two on the S. paradoxus
dataset. The first run in S. cerevisiae used the clipped, pre-filtered SGRP dataset
used in the James et al analysis (James et al., 2009), with the aim that our
results could be directly compared to this previous work. The second run was
also performed on the clipped dataset but with the default BLAST parameters in
TURNIP changed to have parameter B, the maximum number of reads aligned to
the consensus sequence at each position, set to 800, as suggested by the validation
results in the previous section. Lastly the unclipped sequence data were run
through TURNIP with the improved BLAST parameters. The results of these
three runs are shown in table 2.6. The S. paradoxus initial run used the default
TURNIP BLAST parameters, and the second run had parameter B changed to
800, a summary of the results being shown in table 2.7. Clipped datasets for S.
paradoxus were not available from the SGRP site.

In S. cerevisiae, very few differences between run 1 and run 2a were observed,
where BLAST parameters were altered. However, far more variation was predicted
when the unclipped dataset was analysed, presumably due to the presence of poor,
non-rDNA matches to the consensus sequence. This was particularly noticeable
for pSNPs, where the total number identified increased by 176 between runs 2a
and 2b. This contrasted with the S. paradoxus data where large differences in
polymorphism counts could be attributed to changes to the BLAST parameters.
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In this case, more pSNPs and INDELS were identified when the parameters were
changed, particularly for pSNPs where the number identified increased from 973
to 1351.

Strain Run
1

pSNP

Run
2a

pSNP

Run
2b

pSNP

Run
1

SNP

Run
2a

SNP

Run
2b

SNP

Run
1

INS

Run
2a

INS

Run
2b

INS

Run
1

DEL

Run
2a

DEL

Run
2b

DEL

273614X 25 25 31 4 4 4 3 3 6 19 19 20
322134S 15 15 14 5 5 5 3 3 3 17 17 13
378604X 20 20 28 0 0 0 4 4 4 20 20 21
BC187 7 7 8 7 7 7 1 1 1 17 17 17
DBVPG1106 1 1 1 8 8 7 0 0 0 11 11 11
DBVPG6040 26 26 40 0 0 0 3 3 3 15 15 17
K11 11 11 15 22 22 22 5 5 6 12 12 15
NCYC110 5 5 12 13 13 12 1 1 3 12 12 12
NCYC361 24 24 31 0 0 0 4 4 4 18 18 22
S288c 13 13 17 0 0 0 1 1 3 12 12 12
DBVPG1853 26 26 26 12 12 12 13 13 9 23 23 23
DBVPG6765 11 11 43 14 14 14 0 0 0 13 13 17
DBVPG1373 9 9 19 6 6 6 1 1 1 14 14 19
DBVPG1788 1 1 7 8 8 8 0 0 0 13 13 15
SK1 12 13 22 15 15 16 2 1 0 12 12 15
L 1374 4 4 4 8 8 6 0 0 0 9 8 10
DBVPG6044 10 10 17 14 14 14 1 1 5 12 12 17
UW03 461 4 8 8 9 21 21 24 0 0 0 16 17 17
UW05 217 3 25 25 32 7 7 6 0 0 0 16 17 19
UW05 227 2 10 10 10 19 19 21 0 0 0 14 14 13
UW83 787 3 37 37 39 5 5 6 1 1 1 22 22 21
UW87 2421 4 4 9 13 13 14 0 0 2 15 15 15
W303 2 9 15 0 0 0 0 0 2 0 1 5
Y9 10 10 12 8 8 8 5 5 5 15 14 18
Y12 14 14 16 8 8 8 5 5 5 18 19 19
Y55 4 12 13 15 15 14 1 2 3 13 12 13
YIIc17 E5 23 23 26 5 5 7 2 2 4 19 18 22
YJM975 4 4 7 6 6 6 0 0 0 15 15 16
YJM978 2 2 11 6 6 8 0 0 0 14 14 15
YJM981 5 5 7 9 9 6 0 0 1 17 16 16
YPS128 0 0 5 14 14 14 0 0 0 12 12 12
YPS606 3 3 3 13 13 13 0 0 0 12 12 12
YS4 30 30 42 9 9 9 6 6 7 19 19 22
YS9 27 27 29 1 1 4 5 5 4 16 16 17
Total 428 444 620 295 295 301 67 67 82 502 501 548

Table 2.6.: Summary of TURNIP output for S. cerevisiae. The results of run
1 (clipped data, default BLAST) can be compared to those of run 2
(clipped data, non-default BLAST) for each polymorphism type

However, on closer examination of individual S. paradoxus strains, variation
inconsistencies were noted. For example, CBS432 is the type strain for S. paradoxus,
and the previously published rDNA sequence for this strain was used as the
consensus sequence upon which to align all of the S. paradoxus reads. However,
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Strain Run
1

pSNP

Run
2

pSNP

Run
1

SNP

Run
2

SNP

Run
1

INS

Run
2

INS

Run
1

DEL

Run
2

DEL
A4 16 26 88 88 14 14 11 12
A12 38 43 70 71 13 13 12 15
CBS432 5 101 5 3 2 8 5 15
CBS5829 3 21 6 4 2 3 3 1
DBVPG4650 5 14 2 2 3 2 4 4
DBVPG6304 20 37 95 93 8 8 10 11
IFO1804 37 36 37 37 4 8 9 12
KPN3828 37 46 5 5 8 6 6 5
KPN3829 16 20 6 6 4 4 5 6
N 17 25 41 0 0 5 5 7 6
N 43 32 56 39 39 6 6 11 13
N 44 35 32 36 36 5 4 9 10
N 45 51 83 2 2 5 6 8 8
Q32 3 1 11 0 0 1 1 1 1
Q59 1 5 22 0 0 3 9 1 1
Q62 5 15 31 2 2 2 9 1 1
Q89 8 0 12 0 0 1 1 1 2
Q95 3 1 18 0 0 2 4 1 2
S36 7 10 10 0 0 2 2 1 1
T21 4 22 35 0 0 3 2 3 4
UFRJ50791 18 18 95 95 15 15 14 14
UFRJ50816 181 194 62 62 14 15 19 22
UWOPS91 917.1 345 367 57 57 37 35 33 36
Y6 5 18 34 0 0 2 4 2 2
Y7 0 8 1 1 1 1 1 4
YPS138 19 15 89 88 12 15 7 6
Z1 1 18 20 1 1 3 4 2 3
Total 973 1351 698 692 177 204 187 217

Table 2.7.: Summary of TURNIP output for S. paradoxus. The results of run 1
(default BLAST) can be compared with those of run 2 (non-default
BLAST) for each polymorphism type
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when the BLAST parameters were changed, this strain had one of the largest
numbers of pSNPs (101), including a number within the highly conserved 18S
region. A number of other strains also achieved large levels of variation, for
example strain UFRJ50816 (over 180 pSNPs in both TURNIP runs).

To check for possible contamination of individual strains, or to further support
the discovered variation, CBS432 reads were examined more closely. For example,
9 pSNPs were identified within region 7752 to 7777, one of which was identified
in the earlier run with stricter BLAST parameters (run1). One of the reads
which contained a pSNP identified within this region, after checking the TURNIP
results directory for file 7760 results.txt, was ‘CBS432-25b09.q1k’. Looking at the
corresponding blast output directory file (7760-tmp blast.out), this read had 87
out of 100 matches to the consensus position. To check the quality of the read,
the trace was checked at the NCBI trace archive (www.ncbi.nlm.nih.gov/Traces),
using the query TRACE NAME IN (’CBS432-25b09.q1k’), but all peaks
seemed distinct and of good quality at this position. The read was then BLASTed
using a standard nucleotide blast (blastn) against the NCBI BLAST nucleotide
collection database, which yielded a 95% maximum identity match, of 1235/1294
hit for Plasmodium falciparum 3D7 chromosome II (Sequence id: gb|AE014186.2|).
This process therefore identified contamination of this strain with Plasmodium
falciparum. To check that the reads which mapped to this position in this strain
were derived from CBS432, this method was repeated with an identified read
which did not contain pSNPs or other polymorphisms (CBS432-10b02.p1k), which
had a top hit of S. cerevisiae 18S rDNA gene, (Sequence ID: dbj|AB594475.1|)
with a 93% identity and 1063/1140 match. Previous runs which had used the
original default parameters were checked for the presence of these reads which
were identified as contaminants, and the contaminant reads were also found in
the earlier runs. This indicated that the data needed to be cleansed of possible
contamination before running through TURNIP. Furthermore, a thorough method
to identify contamination and poor matching reads was needed, as well as a testing
procedure to ensure that identified contaminants were being removed from the
relevant dataset.

2.4.2. Identifying Contamination

The extent of spurious polymorphisms identified within the yeast strain dataset,
potentially the result of contamination, was investigated. The role of potential
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contaminants in inflating estimates of polymorphisms was hinted at in our earlier
discovery of large numbers of polymorphisms in highly conserved coding regions,
areas of the rDNA unlikely to exhibit large quantities of variation. This presented
difficulties in locating other contaminants in regions of the rDNA locus that are
expected to possess more variants, such as spacer regions. A systematic approach
to checking variant reads (within strain CBS432) was needed, to look at the scope
of the problem in a way that could detect all contaminants.

Initially only strain CBS432 was examined. The TURNIP output was manually
checked for low frequency polymorphisms in each text file, and the read i.d.’s
corresponding to these variants were collated, resulting in a set of 387 redundant
reads being identified, which equated to 36 unique read i.d.’s. For each of these
unique i.d.’s the corresponding sequence was found from the fasta input file, and
then blasted on the NCBI server against the nucleotide collection database using
the Mega BLAST search method, with the results of the top hit for each BLAST
analysis shown in table 2.8. Due to the poor similarity of some reads to the
database after using Mega BLAST (for example reads CBS432-11d22.p1k and
CBS432-171a16.p1k), blastn was used for comparison as this latter algorithm
would be expected to find matches with lower similarity to the query sequence.

Of the 36 unique reads, 21 aligned best to Plasmodium falciparum, 5 aligned
well to S. paradoxus or S. cerevisiae, and 10 matched best to S. paradoxus or S.
cerevisiae but were either very short or had hits to other chromosomes (4 of the
10 appear to match to the right chromosome and species, but 6 are on the wrong
chromosome or match to another strain best). Of the 21 reads that matched well
to P. falciparum, 15 had poor matches to S. paradoxus, and the remaining 6 did
not have any hits to S. paradoxus via this method. Furthermore, when these
reads did match S. paradoxus, they were very small hits to the rDNA region in
CBS432, with a high expect value, explaining their inclusion in the subsequent
TURNIP analysis. Although the P. falciparum and S. paradoxus rDNA sequences
are not highly similar, more highly conserved coding regions will possess small
regions of sequence similarity that would result in a small number of reads from
P. falciparum aligning to S. paradoxus. This suggests that filtering sequence read
matches to the consensus sequence by length should be included as part of a
standard TURNIP analysis.

Additional strains, both from S. paradoxus and S. cerevisiae, were then checked
briefly using the same method as for CBS432, for any obvious signs of
contamination, or of potential false positives from hits to the wrong chromosome,
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Unique reads Top blast match Identity e-value Pass
CBS432-11d22.p1k Saccharomyces cerevisiae 699/961 8.00E-137 ?
CBS432-14b06.q1k Saccharomyces cerevisiae 309/380 1.00E-073 ?
CBS432-171a16.p1k Saccharomyces paradoxus 97/112 3.00E-027 ?
CBS432-175h06.p1k Saccharomyces cerevisiae 628/857 7.00E-119 ?
CBS432-19h24.p1k Saccharomyces cerevisiae 408/524 5.00E-101 ?
CBS432-19i01.p1k Saccharomyces cerevisiae 408/524 5.00E-101 ?
CBS432-44m17.p1k Saccharomyces cerevisiae 201/261 2.00E-037 ?
CBS432-67d17.q1k Saccharomyces cerevisiae 185/230 1.00E-034 ?
CBS432-79d05.p1k Saccharomyces cerevisiae 428/512 8.00E-125 ?
CBS432-25a03.q1k Plasmodium falciparum 1087/1227 0.0 no
CBS432-25a19.q1k Plasmodium falciparum 1065/1159 0.0 no
CBS432-25a24.p1k Plasmodium falciparum 463/476 0.0 no
CBS432-25b09.q1k Plasmodium falciparum 1147/1175 0.0 no
CBS432-25e19.q1k Plasmodium falciparum 1086/1197 0.0 no
CBS432-25g05.q1k Plasmodium falciparum 968/994 0.0 no
CBS432-27a23.q1k Plasmodium falciparum 911/982 0.0 no
CBS432-27b11.p1k Plasmodium falciparum 782/808 0.0 no
CBS432-27d11.p1k Plasmodium falciparum 534/577 0.0 no
CBS432-27o05.q1k Plasmodium falciparum 919/924 0.0 no
CBS432-29f07.p1k Plasmodium falciparum 1117/1160 0.0 no
CBS432-29f16.q1k Plasmodium falciparum 519/540 0.0 no
CBS432-29f19.q1k Plasmodium falciparum 940/967 0.0 no
CBS432-29g13.p1k Plasmodium falciparum 1046/1065 0.0 no
CBS432-29g18.p1k Plasmodium falciparum 1186/1269 0.0 no
CBS432-29h21.p1k Plasmodium falciparum 1122/1159 0.0 no
CBS432-29i20.p1k Plasmodium falciparum 794/827 0.0 no
CBS432-29j21.q1k Plasmodium falciparum 858/890 0.0 no
CBS432-29n06.p1k Plasmodium falciparum 1103/1160 0.0 no
CBS432-29n11.p1k Plasmodium falciparum 665/688 0.0 no
CBS432-29n11.q1k Plasmodium falciparum 546/557 0.0 no
CBS432-180m21.q1k Saccharomyces paradoxus 834/839 0 yes
CBS432-170d19.p1k Saccharomyces cerevisiae 852/874 0.0 yes
CBS432-185f22.q1k Saccharomyces cerevisiae 491/593 1.00E-137 yes
CBS432-35d17.q1k Saccharomyces cerevisiae 767/946 0.0 yes
CBS432-181d19.p1k Saccharomyces paradoxus 146/164 1.00E-047 ?
CBS432-94c14.q1k Saccharomyces cerevisiae 974/1222 0.0 yes

Table 2.8.: S. paradoxus strain CBS432 low frequency variation read check. Those
with question marks were low complexity, or short reads, that did not
match well, and so were classified as uncertain
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Figure 2.7.: A representation of a pSNP is shown in the top box, with a consensus
sequence in blue, reads in red, with a C to A pSNP. If all reads
matching to the consensus are false, variation becomes a SNP. If all
reads possessing the variant nucleotide are false, no variation remains.

with results shown in table 2.9. 126 pSNP positions from 9 strains were analysed,
and were identified as either true pSNPs, false positives (by variant reads matching
better to a different chromosome) or SNPs (if the reads matching the consensus
sequence at the polymorphism site were actually false positives leaving only variant
reads), see figure 2.7. None of these strains showed any contamination with P.
falciparum or any other species. Of the 126 positions checked, only 18 were found
to be true pSNPs, and only in two strains (Y9 and Y55). 12 were reclassified as
SNPs, and the remaining 96 were false positives, with the reads contributing to
the original variation call matching well to other areas of the genome.

The results contain a non-negligible number of false positive pSNP polymorphisms
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Strain Positions tested False positives True pSNPs SNPs
Y7 8 8 0 0
S36 7 10 10 0 0
YPS138 15 8 0 7
Q32 3 11 11 0 0
UFRJ50791 18 15 0 3
Z1 1 20 20 0 0
KPN3829 20 19 0 1
Y9 11 1 10 0
Y55 13 4 8 1
Total 126 96 18 12

Table 2.9.: Detailed analysis of 126 potentially false pSNPs in 7 S. paradoxus and
2 S. cerevisiae strains.

(76% of the 126 tested were false positives, with another 9.5% reclassified as SNPs,
leaving only 14.5% correctly identified as pSNPs). Although such a method could
be employed on the entire dataset, it would be too time consuming to be feasible
for this analysis or for analysis of other datasets in the future. Therefore clipping
the data to reads hitting only the rDNA unit, and filtering them to include only
long, high-quality matches, before running through TURNIP was deemed to be
the most pragmatic approach, and a script to filter the data was identified as a
requirement.
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2.4.3. Filtering the data: Methodology and Script

A custom Perl script (filter reads v3.pl), employing BioPerl modules ((Stajich
et al., 2002) version 1.6.9, Perl version 5.12.3), was used to filter the dataset more
stringently. As part of the script, sequencing reads in fasta format from each strain
were aligned to the S. paradoxus or S. cerevisiae consensus sequence (extended on
each side with 600bp duplicated sequence from the other end of the rDNA unit, to
account for reads hitting the overlap between adjacent rDNA units) using blastall
(BLAST version 2.2.27+, and BioPerl module Bio::Tools ::Run::StandAloneBlast
were used). Conditions for reads to pass the filter comprised a minimum read
length of 150 bp, minimum identity of 75%, and minimum percentage of the
original read involved in a High-scoring Segment Pair of 75%. Blast parameters
included an E-value of 1 x 10-10, gap opening penalty of 3, gap extension penalty
of 1 and a nucleotide mismatch penalty of -1. In the final stage of the script, reads
that passed the filter were then converted into a BLAST searchable database
using formatdb, ready for use with TURNIP.

This clipping and filtering process resulted in a total of 36,522 and 44,479 rDNA-
specific sequencing reads for the 26 S. paradoxus and 34 S. cerevisiae strains
respectively, with the number of reads for individual strains shown in table 2.10
and table 2.11.
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Strain Original reads Filtered reads
273614N 11881 834
322134S 12682 1045
378604X 13372 872
BC187 10512 532
DBVPG1106 9123 678
DBVPG1373 19404 1061
DBVPG1788 18549 908
DBVPG1853 15075 1608
DBVPG6040 11476 1136
DBVPG6044 22691 1736
DBVPG6765 55691 2557
K11 11428 431
L 1374 19057 703
NCYC110 11448 1389
NCYC361 9678 1249
Q32 3 21325 1070
Q89 8 16734 820
S288c 21287 1570
SK1 61957 2931
UWOPS03 461 4 12795 853
UWOPS05 217 3 12691 1260
UWOPS05 227 2 13491 705
UWOPS83 787 3 12298 593
UWOPS87 2421 12160 518
W303 32270 4425
Y9 10205 601
Y12 11102 660
Y55 67120 3204
YIIc17 E5 13089 794
YJM975 13314 657
YJM978 13614 651
YJM981 10899 2886
YPS128 19543 863
YPS606 24748 1212
YS4 13653 901
YS9 13505 566
Total 679867 44479

Table 2.10.: Numbers of S. cerevisiae reads before and after filtering
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Strain Original reads Filtered reads
A4 21440 967
A12 22303 666
CBS432 56396 2863
CBS5829 45885 2689
DBVPG4650 28088 1514
DBVPG6304 29693 977
IFO1804 11659 822
KPN3828 11669 710
KPN3829 11412 660
N 17 46055 2569
N 43 25213 1114
N 44 21939 782
N 45 58835 2559
Q32 3 21325 1070
Q59 1 25390 822
Q62 5 24283 1080
Q89 8 16734 820
Q95 3 25189 779
S36 7 14552 486
T21 4 25173 1084
UFRJ50791 10068 477
UFRJ50816 23243 1064
UWOPS91 917 1 27080 1597
W303 32270 4425
Y6 5 17416 747
Y7 23673 1139
YPS138 21792 1137
Z1 1 17541 903
Total 716316 36522

Table 2.11.: Numbers of S. paradoxus reads before and after filtering

2.4. Secondary Analysis using TURNIP: Identifying Contaminated Data 60



Chapter 2. Identification of rDNA Variation

2.4.4. The Final TURNIP Analysis

Polymorphisms, comprising SNPs, pSNPs and indels, were identified within the two
filtered strain datasets using TURNIP. Default parameters were used within the
configuration file, with a minimum quality score of 38, and an allowed shortness of
38. As suggested by our previous analyses (Section 2.4.1), the BLAST parameters
-b and -v within TURNIP were set to 800, higher than the default values, to
allow all reads aligning to specific rDNA regions to be stored and analysed. To
ensure confidence in pSNP discovery, the additional criterion that pSNPs should
be present in more than a single read was asserted. The output was then inspected
visually for complex mutations i.e. nucleotide positions in which there is more than
one type of variation (James et al., 2009). These positions were then annotated
manually.

The results of this modified filter were compared to the previous results. Reads
that were involved in a pSNP in the runs from the unclipped, unfiltered data, but
not in those from the more stringent modified filter, and a random selection of
reads were then manually checked, confirming that the final results were highly
likely to retain all true hits to the rDNA sequence while removing false positive
matches. The i.d. of reads used in this check, the top hits found in the NCBI
database for each read, and other information including whether the pSNP was
assumed to be genuine or what the read matched to, are displayed in the appendix
in tables A.1 and A.2 for S. paradoxus, and tables A.3 and A.4 for S. cerevisiae.

After filtering the S. paradoxus data, 29 reads that were involved in pSNPs across
16 of the 26 strains were investigated to see if they were true positives. The
remaining 10 strains could not be checked as they had no pSNPs remaining after
filtering. All 29 appear to be genuine pSNPs, with a close match to the rDNA
region of S. paradoxus or S. cerevisiae in each case, (table A.2). Note that in a few
strains, such as YPS138 and KPN3828, a number of pSNPs were scored as SNPs
after filtering. In contrast, 59 reads from the S. paradoxus strains which were
implicated in polymorphisms before filtering, but which were no longer present
after filtering, were also checked (table A.1). All 59 of these reads were deemed
to have been correctly removed during filtering, as they matched poorly to the
S. paradoxus rDNA sequence, and were either contaminants, or mapped well to
other regions of the genome. To highlight some specific examples, strain YPS138
position 2617 was previously involved in a pSNP. When BLASTed against the
NCBI database only 268 bases of the query were involved in the top hit, so
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it would not have passed the filtering criterion for length. The BLAST hit is
poor, but it seems to match to many 26S regions in yeasts at approximately 33%
(268/269 match, out of total read length of 812 bases). It is possible that this read
could be part of the rDNA sequence but potentially at the flanking regions where
the sequence is thought to degrade. However, further work would be needed to
check whether or not this was the case, and for now it must be assumed to be a
false positive. Other strains with pSNP positions lost after filtering include Y6 5,
position 4050. In this case a previously identified pSNP has been reclassified as a
SNP, as the consensus read matched the wrong chromosome. In N 44, position
5846 is also an example where the read which previously aligned to the consensus
sequence was mapped elsewhere in the genome (in this case to Sec10p), thereby
reclassifying the pSNP as a SNP after filtering.

Similarly 74 S. cerevisiae reads involved in pSNPs that remained after filtering
were checked and all appear to be genuine, high quality matches to the rDNA
sequence (table A.4). For those reads lost after filtering, 60 were checked (out of
279 pSNPs which were lost in total) (table A.3) and all appear to have been false
positives. Of note, in strain YJM975 at position 4484, two reads were checked, one
of which matched well to rDNA, the other to another chromosome. This resulted
in this pSNP position being lost after filtering, as the resulting variation then fell
below the threshold of more than one read, and could no longer be counted as
genuine. In strain W303 at position 4523 a read was found to hit to the right area
of the chromosome, but matching to the three 5S repeats that are just outside
of the rDNA array. This region is not part of the rDNA array itself and the
resulting variation is now discounted as a false positive. In future, TURNIP could
be extended to work with Next-Generation Sequence data where reads will be
shorter in length. It is important to consider that the reads matching to the 5S
regions outside of the rDNA array could potentially erroneously pass a filtering
step if shorter length thresholds are used to match to the consensus, in addition
to some of the other false positives identified here.

As the filtering appears to have removed a sizeable number of false positives whilst
identifying much of the genuine variation, the resulting polymorphism data are
believed to be of good quality, and are analysed further in the next chapter.
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2.5. Conclusions and Chapter Summary

After TURNIP installation and initial runs highlighted possible bugs and
inconsistencies, a thorough validation of the TURNIP suite and this methodology
was undertaken. A number of bugs were removed, contributing to a new release
of the TURNIP software, and optimised parameters in order to get the most
information from the SGRP dataset. A script was written to produce data with
known variation to test the confidence in results from the methodology, and after
manually checking the results, issues with confidence in the data were discovered.
To address this further scripts were written to filter possible contamination and
reduce the dataset to rDNA specific reads, resulting in more confident identification
of rDNA variation. This process has shown the need to check results manually
at the end of an automated process, as this can lead to the discovery of unusual
results or show possible weaknesses in a methodology. This process has resulted in
a good quality dataset to analyse further, as presented in the following chapter.
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3. Analysis of rDNA Variation

Chapter Abstract

The SGRP dataset was analysed using methods described in the previous chapter,
identifying 978 and 1,168 SNPs, pSNPs and indels within the ribosomal DNA
region of 26 S. paradoxus and 34 S.cerevisiae strains respectively. Although
both species exhibit high levels of within-strain sequence heterogeneity, there is a
difference in the structure of this variation which can be related to their differing
evolutionary dynamics. The variation also allows discrimination of individual
strains, and demonstrates that rDNA datasets can be used as an evolutionary
proxy for the whole genome in terms of strain divergence. As part of this analysis
two S. paradoxus strains were identified as having undergone putative hybridisation
events, and additional levels of genome mosaicism in the S. cerevisiae dataset
were identified. We discuss how patterns of rDNA variation could give insights
into the dynamics of concerted evolution, providing a snapshot of the process
which will be examined further in later chapters.

3.1. Quantifying Variation

3.1.1. Variation within the overall dataset

Venn diagrams of pSNP and SNP variation within selected strain groups were
created using Venny (Oliveros, 2007). Regression and correlation analysis of
variation with strain information were carried out in R (version 2.15.2) (R
Development Core Team, 2011), using standard and MASS libraries (version 7.3-
22). The level of variation identified in each of the 26 S. paradoxus rDNA arrays
was found to vary markedly between strains, ranging from a single polymorphism
in Q89.8 (European strain) to 114 polymorphisms in DBVPG 6304 (American
strain) (see Table 2.2 for strain information). In total, 978 polymorphisms were
identified, comprising SNPs, pSNPs, insertions, deletions and complex mutations.
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Table 3.1 presents a breakdown of the mutations (type and total) found in each
strain, with single nucleotide substitutions (either fully resolved as SNPs, or
partially resolved as pSNPs) representing the most abundant form of mutation
(79.6%). When ordered according to the total number of polymorphisms found in
each rDNA array (Table 3.1), the 26 S. paradoxus strains could be readily split
into the three distinct geographic populations as previously defined by Liti et
al. (Liti et al., 2009), namely American, European and Far Eastern (Figure 3.1).
When comparisons were made with the reference strain CBS 432 (the S. paradoxus
type strain), the 16 European strains were found to have the fewest number of
polymorphisms (129; 8.1 per strain), while the four Far Eastern strains had over
six times as many per strain (196; 49.0 per strain), and the six American strains
were the most diverse with over thirteen times as many polymorphisms per strain
(653; 108.8 per strain).

Population:

American

European

Far Eastern

IFO 1804 (39/0)

N43 (40/1)

N44 (38/1)

N45 (4/36)

KPN3828 (7/1)

KPN3829 (7/1)
CBS 5829 (6/3)

DBVPG 4650 (2/4)

A4 (88/0)

A12 (84/0)

UFRJ 50791 (95/0)

UFRJ 50816 (92/0)

YPS 138 (95/0)
DBVPG 6304 (97/2)

Q32.3 (0/0)

Q59.1 (0/5)

Q62.5 (2/2)

Q89.8 (0/0)

Q95.3 (0/0) 

S36.7 (0/0)

T21.4 (0/0)

Y6.5 (1/0)

Y7.2 (1/0)

Z1.1 (1/0)

N17 (1/17)

CBS 432 (5/0)

Figure 3.1.: World map with the location of the collection sites for the S. paradoxus
strains indicated by stars. Stars are coloured by population type.
In brackets following each strain are the number of SNPs and the
number of pSNPs identified for that strain in this study. Used with
kind permission from Dr Steve James.

In the original analysis of the SGRP S. cerevisiae strain set (James et al., 2009)
the term complex mutation was used to refer to any nucleotide position within
the rDNA array at which different S. cerevisiae strains exhibited different types
of base substitution (i.e. a transition in one strain as opposed to a transversion
in another). This definition has been revised to apply to any site, either a single
nucleotide position or small region, where two or more different mutations have
occurred in separate repeats of the same rDNA array (i.e. present at the same
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location on different covering reads). Only two complex mutations were detected
in the entire S. paradoxus dataset, and these were both found in Far Eastern
strains, namely IFO 1804 (from Japan) and N-45 (from Russia). In both cases the

Strain Population SNP pSNP Dele-
tion

Inser-
tion

Comp-
lex

Total Copy
Num-
ber

Q89.8 European 0 0 0 1 0 1 81
Q32.3 European 0 0 1 1 0 2 74
S36.7 European 0 0 1 1 0 2 57
Q95.3 European 0 0 1 2 0 3 46
Y7.2 European 1 0 1 1 0 3 78
Z1.1 European 1 0 1 1 0 3 83
T21.4 European 0 0 2 3 0 5 66
Y6.5 European 1 0 2 2 0 5 65
Q62.5 European 2 2 1 1 0 6 68
Q59.1 European 0 5 1 4 0 10 52
CBS432 (T) European 5 0 4 2 0 11 68
DBVPG 4650 European 2 4 3 2 0 11 87
CBS 5829 European 6 3 1 2 0 12 88
KPN 3828 European 7 1 3 2 0 13 82
KPN 3829 European 7 1 3 2 0 13 79
N-17 European 1 17 7 4 0 29 78
IFO 1804 Far Eastern 39 0 4 2 1 46 96
N-44 Far Eastern 38 1 5 3 0 47 52
N-43 Far Eastern 40 1 5 4 0 50 64
N-45 Far Eastern 4 36 8 4 1 53 65
A12 American 84 0 10 9 0 103 45
A4 American 88 0 6 11 0 105 66
UFRJ 50816 American 92 0 10 6 0 108 72
YPS138 American 95 0 7 8 0 110 76
UFRJ 50791 American 95 0 8 10 0 113 64
DBVPG 6304 American 97 2 7 8 0 114 52
Total 705 73 102 96 2 978

Table 3.1.: Table of variation for each S. paradoxus strain, compared to the
reference strain CBS 432, as identified using the TURNIP software.
For each strain, the population and estimated rDNA copy number are
also given. Ordering the strains by total polymorphism count results
in the strains being split into their population groups.
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mutation was found at the same location within the IGS1 region (base positions
3,929 to 3,937), and involved a homopolymeric polyT tract. In the reference
strain, this tract comprises of 9 T residues. However, in both IFO 1804 and N-45
this tract appears to be variable in length. For example, in N-45 three different
variants were detected, one identical in length to the reference strain, and two
significantly longer (32 Ts and 33 T s), with the longest length variant (33 Ts)
found in the majority of covering reads (28/33) (Figure 3.2 and Table 3.2). In
contrast, although significantly longer than the reference strain, this tract appears
to be of fixed length in the other two Far Eastern strains (N-43, 23 Ts; N-44, 26
Ts).

CBS 432 GGGGACATAATTTTTTTTT------------------------AAGTAATGGC

N-45_var 1 ...................------------------------..........

N-45_var 2 ...................TTTTTTTTTTTTTTTTTTTTTTT-..........

N-45_var 3 ...................TTTTTTTTTTTTTTTTTTTTTTTT..........

3919 3929 3939

Figure 3.2.: Variable length homopolymeric polyT tract found in the S. paradoxus
N-45 IGS1 region (TURNIP alignment positions 3929 to 3937)

Sequence Type Tract length Trace ID (TI #) Frequency
N-45 var 1 9T 1254238616 6.1% (2 reads)
N-45 var 2 32T 1254241747 9.1% (3 reads)
N-45 var 3 33T 1254229529 84.8% (28 reads)

Table 3.2.: Variable length homopolymeric polyT tract found in the S. paradoxus
N-45 IGS1 region (TURNIP alignment positions 3929 to 3937)

In addition to the varying levels of sequence variation found in the individual S.
paradoxus rDNA array datasets, it was discovered that the detected variation was
not distributed evenly over the rDNA repeat (Figure 3.3a and Table 3.3). Most of
the identified polymorphisms were found in the non-coding ETS2, IGS1 and IGS2
regions, between positions 3500 and 6500 (Figure 3.3a). In contrast, and perhaps
not surprisingly in view of functional constraints, very few of the 778 SNP and
pSNP mutations were found in the rRNA-encoding genes. For instance, none were
detected in either of the highly conserved 5S or 5.8S rRNA genes whilst eight were
found in the 26S rRNA gene. Seven of these polymorphisms were found to be
SNPs, six of which are specific to the American strains (base position 248), with
the remaining variant identified as a low occupancy pSNP (2%) at base position
1174 in the Far Eastern strain N-45. Two additional SNPs were found in the
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Region S. paradoxus S. cerevisiae
pSNP SNP DEL INS CX Total pSNP SNP DEL INS CX Total

26S 1 7 0 0 0 8 18 4 1 2 0 25
ETS2 8 77 34 26 0 145 12 4 23 0 0 39
IGS1 30 237 59 66 2 394 121 110 304 27 6 568
5S 0 0 1 0 0 1 0 0 0 0 0 0
IGS2 19 317 6 4 0 346 111 178 23 11 2 325
ETS1 9 48 1 0 0 58 21 24 79 0 0 124
18S 0 2 0 0 0 2 9 0 1 0 0 10
ITS1 5 15 0 0 0 20 19 19 0 3 2 43
5.8S 0 0 0 0 0 0 0 0 0 0 0 0
ITS2 1 2 1 0 0 4 4 0 24 6 0 34
Total 73 705 102 96 2 978 315 339 455 49 10 1168

Table 3.3.: The number of polymorphisms of each type split according to different
regions of the rDNA unit for S. paradoxus and S. cerevisiae. DEL
corresponds to deleted positions, INS to inserted, and CX to complex
mutations.

18S rRNA gene (position 6742), and these were C to T transitions specific to the
two Brazilian strains UFRJ 50791 and UFRJ 50816 (previously classified as S.
cariocanus (Naumov et al., 2000)). All but one of the 198 insertions and deletions
were only found in non-coding regions, with the majority located in the ETS2 and
IGS1 regions (positions 3397 to 4502).

The variation uncovered in our new TURNIP analysis of the 34 S. cerevisiae strains
(see Table 2.1 for strain information) is summarised in Table 3.4. In total, 1,168
polymorphisms were identified, with pSNPs and SNPs collectively representing
56% of the uncovered variation. Table 3.4 shows some large differences in identified
polymorphisms from the previous study (James et al., 2009), potentially due to
the different software used to uncover them. While many of these differences
were a general decrease in the number of identified pSNPs, for a few strains this
was accompanied by an increase in the number of identified SNPs. However, the
remaining variation was still high, with the number of polymorphisms varying
significantly across the strains, ranging from 4 in the W303 strain to 63 in DBVPG
1853, though the range of variation and the variance in mutation number per
strain was not so large as that seen in the S. paradoxus dataset.
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Figure 3.3.: The distribution of pSNP and SNP variants within the rDNA unit and
their occupancies along the tandem array. a) pSNPs and SNPs within
the S. paradoxus dataset, pSNPs are shown as dark grey bars, SNPs
as black bars, with the boxed areas in light grey highlighting coding
rRNA regions. Representation of an rDNA unit is shown below. b)
pSNPs and SNPs within the S. cerevisiae dataset, pSNPs are shown
as dark grey bars, SNPs as black bars, with the boxed areas in light
grey highlighting coding RNA regions. c) Bar chart showing unit
occupancies of pSNPs in the S. paradoxus and S. cerevisiae datasets,
in occupancy bins of size 10%. For each species group, pSNP and
SNP variants were recoded as changes from the putative ancestral
base, instead of from the base(s) possessed by the reference strain.
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[!htb]

Strain Genome
Type

Modified
Genome
Type

SNP pSNP Dele-
tion

Inser-
tion

Com-
plex

Total Copy
Num-
ber

W303 Mosaic Mosaic 0 3 1 0 0 4 182

L 1374 Structured Structured
mosaic

6 2 8 0 0 16 60

DBVPG
1106

Structured Structured
mosaic

7 1 9 0 0 17 98

DBVPG
1788

Structured Structured
mosaic

8 0 11 0 0 19 67

YJM975 Structured Structured
mosaic

6 4 12 0 0 22 65

YJM978 Structured Structured
mosaic

6 4 12 0 0 22 65

YPS128 Structured Structured
clean

14 0 10 0 0 24 62

YJM981 Structured Structured
mosaic

6 3 16 0 1 26 354

S288c Mosaic Mosaic 0 14 12 1 0 27 111

NCYC
110

Structured Structured
clean

15 2 9 2 0 28 163

YPS606 Structured Structured
clean

14 2 12 0 0 28 67

BC187 Structured Structured
mosaic

7 7 14 1 0 29 71

DBVPG
6765

Structured Structured
mosaic

13 3 13 0 0 29 70

DBVPG
6044

Structured Structured
clean

15 2 11 2 0 30 107

SK1 Mosaic Mosaic 16 3 11 0 0 30 72

DBVPG
1373

Structured Structured
mosaic

8 7 15 1 0 31 75

UWOPS87-
2421

Mosaic Mosaic 14 4 13 0 0 31 57

322134S Mosaic Mosaic 6 12 14 2 0 34 109

Y55 Mosaic Mosaic 15 7 12 1 0 35 78

27361N Mosaic Mosaic 4 15 14 3 0 36 93

Y9 Structured Structured
mosaic

8 10 14 3 1 36 72

3.1. Quantifying Variation 70



Chapter 3. Analysis of rDNA Variation

Strain Genome
Type

Modified
Genome
Type

SNP pSNP Dele-
tion

Inser-
tion

Com-
plex

Total Copy
Num-
ber

Y12 Structured Structured
mosaic

9 11 15 3 2 40 79

UWOPS05-
227-2

Structured Structured
clean

24 7 11 0 0 42 70

378604X Mosaic Mosaic 0 20 19 4 0 43 87

K11 Structured Structured
mosaic

23 2 13 5 0 43 50

UWOPS03-
461-4

Structured Structured
clean

29 0 15 0 0 44 89

DBVPG
6040

Mosaic Mosaic 0 27 16 2 0 45 132

UWOPS05-
217-3

Structured Structured
clean

27 3 15 0 0 45 133

YS9 Mosaic Mosaic 1 27 14 2 2 46 56

YIIc17 E5 Mosaic Mosaic 7 18 18 4 0 47 80

UWOPS83-
787-3

Mosaic Mosaic 8 21 19 1 0 49 64

NCYC
361

Mosaic Mosaic 0 27 20 2 2 51 189

YS4 Mosaic Mosaic 9 24 18 4 1 56 88

DBVPG
1853

Mosaic Mosaic 14 23 19 6 1 63 144

Total 339 315 455 49 10 1168

Table 3.4.: Table of variation for each S. cerevisiae strain, compared to the reference strain
S288c, as identified using the TURNIP software. For each strain, the genome type
(mosaic or structured), the modified genome type (mosaic, structured clean and
structure mosaic) determined in this study, and the estimated rDNA copy number
are also given.

In addition, this new analysis has uncovered significant numbers of insertion
and deletion polymorphisms, which account for nearly 33% of all the variation
detected in the two Saccharomyces species. Indeed, one of the striking differences
between the variation identified in the two species is the large number of deletions
found in S. cerevisiae. In fact 38.9% of all the detected variation in S. cerevisiae
is due to deletions, compared to only 10.4% in S. paradoxus (Figure 3.4). A
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closer inspection reveals the majority of S. cerevisiae deletions (67%) are found in
the non-coding IGS1 region, with 75% of all IGS1 deletions specific to just five
small regions, all of which are homopolymeric poly(dA).poly(dT) tracts. In the S.
cerevisiae reference strain S288c, these five tracts range from 8 to 29 residues in
length (Table 3.5). Some of these tract-specific deletions are found on all covering
reads (i.e. are fully resolved) while others are found on only a proportion of all
covering reads (i.e. are partially resolved). For example, in S288c a 16 residue
poly(dT) tract was observed between base positions 3627 to 3642. In the soil
strain DBVPG 1788, this same tract is shorter at only 13 residues in length,
whereas in the beer spoilage strain NCYC 361, it exists in two variant forms,
one identical in length to S288c (16 T residues) and present on the majority of
covering reads, and a shorter variant (12 T residues) present on only six covering
reads. While Ganley and Kobayashi (Ganley and Kobayashi, 2007) noted that
a high number of deletions may be indicative of genome size reduction (Loftus
et al., 2005), our observation that these mutations tend to occur within a small
genomic area makes this phenomenon less likely in this case.

Tract type
Location Length

S288c CBS 432 S288c CBS 432
polyT 3627-3642 3638-3653 16 16
polyA 3834-3841 3856-3861 8 6
polyT 3914-3935 3930-3938 22 9
polyT 4300-4316 Absent 17 0
polyA 4487-4515 4479-4495 29 17

Table 3.5.: Location and size of the five largest IGS1 poly(dA).(dT) tracts in S.
cerevisiae (S288c) and their equivalent counterparts in S. paradoxus
(CBS 432)

These results indicate that not only can homopolymeric tracts vary in length
between different rDNA arrays of the same species, but they can also vary in
length between individual repeats of the same rDNA array (e.g. NCYC 361).
In contrast in the S. paradoxus reference strain (CBS 432T), there are only four
equivalent poly(dA).poly(dT) tracts in the IGS1 region, and two of these are
significantly shorter in length than their S. cerevisiae counterparts (Table 3.5).
These differences, both in tract number and tract size, appear to be a significant
contributory factor as to why far more deletions are found in S. cerevisiae, and most
notably in the non-coding IGS1 region. Long homopolymeric tracts, particularly
poly(dA).poly(dT) tracts, are known to be unstable and prone to slip-strand
replication errors, which in turn can give rise to (tract) length variation (Strand
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Figure 3.4.: Pie charts of number of each type of polymorphism in the S. paradoxus
and S. cerevisiae datasets. Numbers of each type are shown, with the
percentage of each polymorphism as part of the entire dataset given
in brackets.

et al., 1993).

The other major differences in the mutational profiles, the relative proportions of
each mutation type, of the two species groups (Figure 3.4 and 3.5) are the high
number of SNPs in S. paradoxus and the high number of pSNPs in S. cerevisiae
compared to S. paradoxus. In general, the mutational profiles show that certain
types of polymorphism are favoured in each species and furthermore that these
differ between species. In their earlier analysis, Ganley and Kobayashi (Ganley and
Kobayashi, 2007) also found a biased mutational profile in S. paradoxus, though
they were not able to establish one in S. cerevisiae due to a lack of identified
mutations.

The spread of variation across the rDNA unit was found to be uneven in S.
cerevisiae, as was also evident in S. paradoxus (Figure 3.3b and Table 3.3). While
high, though differing, numbers of polymorphisms were observed for both species
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Figure 3.5.: Average number of polymorphisms per strain, split into S. paradoxus
strains, S. cerevisiae mosaic strains, and S. cerevisiae structured
strains. Number above the coloured bars are rounded to the nearest
integer.

within IGS1 (48.6% in S. cerevisiae and 40.3% in S. paradoxus) and IGS2 (27.8%
in S. cerevisiae and 35.4% in S. paradoxus), greater fold differences were observed
in the numbers observed within the ETS1 (10.6% in S. cerevisiae and 5.9% in S.
paradoxus) and ETS2 (3.3% in S. cerevisiae and 14.8% in S. paradoxus) regions.
Furthermore, the mutation types contributing to these regional proportions differed
markedly between species (e.g. the majority of IGS1 mutations in S. paradoxus
were SNPs but in S. cerevisiae were deletions). Within coding regions, S. cerevisiae
exhibited a higher number of polymorphisms than for S. paradoxus (35 compared
to 11), most of which were pSNPs and most within the 26S rRNA gene.

A total of 10 complex mutations were identified (<0.9% of all detected variation)
in S. cerevisiae. This rare type of mutation was detected in three strains with
structured genomes (YJM981, Y9 and Y12) and four with mosaic-like genomes
(DBVPG 1853, NCYC 361, YS4 and YS9). A closer inspection of the data revealed
these mutations to be specific to just four sites within non-coding regions of the
rDNA array; two in IGS1, one in IGS2 and one in ITS1. In addition, the type of
complex mutation was also found to differ depending upon its location within the
rDNA array. In the IGS1 region, two types of complex mutation were detected; a
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complex insertion (of two or more sequences) between positions 3625 and 3631,
and a complex substitution (A→G; A→T) at position 4484. A hexanucleotide
(TTCCGC) tandem repeat of variable size (3 to 7 copies) was also identified in
the IGS2 region between positions 5632 and 5649, and a variable length polyT
tract (7 to 13Ts) was discovered in the ITS1 region between positions 8413 and
8419. The IGS1 complex insertion occurred most frequently, and was detected
in five of the seven strains (DBVPG 1853, YS4, YS9, Y9 and Y12), although
the actual insertions differed in sequence and size as well as number according
to strain. The highest number of insertions was found in the baking strain YS4
which had three, and these ranged from two to 12 nucleotides in length, possibly
reflecting the hybrid origin of this industrial strain and its resulting mosaic-like
genome (Liti et al., 2009). Overall, more complex mutations were detected in
mosaic strains (6) compared to structured strains (4), although of the latter, two
are fermentation strains (Y9 and Y12) and so conceivably may also be hybrid in
origin.

partial Single Nucleotide Polymorphisms

In total, 73 pSNPs were identified in the S. paradoxus dataset, an average of 2.81
pSNPs per strain. Over half the strains (15/26 strains) were found to have no
pSNPs in their rDNA arrays, with a further six strains having no more than two
pSNPs. Consequently, the previous identification of 8 pSNPs in a single strain
(Ganley and Kobayashi, 2007) is consistent with our findings, falling at the upper
end of our variation range. Notably the majority of the S. paradoxus pSNPs
(72.6%) were detected in just two strains, namely N-17 (European strain; 23.3%)
and N-45 (Far Eastern strain; 49.3%).

In N-17, isolated in Russia (Tatarstan), 16 of the 17 identified pSNPs had less
than 4% occupancy and none of these 16 were shared with other strains within the
European group. The remaining pSNP was found in the ETS1 region (position
6045), and had a 98.6% occupancy. Furthermore, this pSNP was found to be
shared, as a pSNP, with a second European strain isolated in the UK (Q59.1)
(Figure 3.6a).

The other S. paradoxus strain exhibiting a high pSNP count, the Far Eastern
strain N-45, like N-17 was isolated from Russia (albeit from Terney, on the Russian
coast of the Sea of Japan). In contrast to N-17, 32 of the 36 pSNPs identified in
this strain, all with greater than 90% occupancy, were found at the same positions
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a) b)

Figure 3.6.: a) Venn diagram of the pSNP and SNP locations in strain N-17 when
compared to other SNPs and pSNPs in the European population
group. 16 of the pSNPs in N-17 are not sites of variation in the
other European strains. b) Venn diagram of the pSNP and SNP
locations in strain N-45 when compared to other SNPs and pSNPs in
the Far Eastern population group. 32 of the 36 pSNPs in N-45 are
characterised as SNPs in other strains in the Far Eastern group.

as fully resolved SNPs in the other three Far Eastern strains (see Figure 3.6b). The
remaining four pSNPs were not shared with other strains from the Far Eastern
group. Three of these four pSNPs had low occupancy (1-2%) and were found at
positions 1174 (26S rRNA-encoding gene), 5817 (IGS2) and 6045 (ETS1), while
the fourth pSNP had a high occupancy (90.1%) and was found at position 5825
(IGS2). Although N-45 is the only Far Eastern strain to possess the 6045 pSNP,
this A to G base substitution was also found (again as a pSNP) in two European
strains, including N-17 as mentioned previously.

In general, and as illustrated in Figure 3.3c, the S. paradoxus pSNPs could be
subdivided into two categories, those with very low occupancy (fewer than 10% of
reads carrying a SNP), and those with very high occupancy (greater than 90% of
reads carrying a SNP). In total, 36 pSNPs had less than 10% occupancy, 32 had
more than 90%, while just five had intermediate occupancy (28.8 to 43.6%).

In a previous study (James et al., 2009), pSNPs were shown to be a prevalent
type of variation in the rDNA region of S. cerevisiae. As noted above, the greater
stringency used in our present study has removed or reclassified some previously
identified polymorphisms. However, the quantity of pSNPs in strains of this species
is still considerable. In this study, 315 pSNPs were detected in the S. cerevisiae
dataset, an average of 9.26 per strain. Although this number of mutations is
somewhat higher than that uncovered by Ganley and Kobayashi in their analysis
of the RM11-1A strain (Ganley and Kobayashi, 2007), it is of note that this strain
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is of a structured type and would therefore be expected to possess a low number
of pSNPs.

In addition to a much higher pSNP frequency per strain than for S. paradoxus,
this type of mutation was found in most of the S. cerevisiae strains analysed
(31/34 strains). Unlike in S. paradoxus, where two strains possess the majority of
pSNPs, a continuum of pSNP quantities was observed from the lowest strains (0
pSNPs in the structured strains DBVPG 1788, YPS128 and UWOPS03-461-4) to
the highest (27 pSNPs in the mosaic strains DBVPG6040, NCYC361 and YS9).
Furthermore, the occupancy distribution for S. cerevisiae pSNPs is different from
that seen for S. paradoxus (Figure 3.3c). While there are some similarities between
the two distributions, with both following a U-shaped curve, the S. cerevisiae
distribution is much flatter, with a considerably greater number of pSNPs with
occupancies ranging between 10% and 90%.

3.2. Phylogenetic Analysis

3.2.1. Method

Within-species phylogenetic trees were estimated from the combined pSNP/SNP
datasets, rooted with a selected strain from the other species. For the S. paradoxus
tree, the S. cerevisiae reference strain S288c was filtered and run through TURNIP,
as described in the previous chapter, against the S. paradoxus CBS 432 consensus
sequence. This scored variation between the S288c strain and similar regions
within CBS 432. Variation output from TURNIP for the 26 S. paradoxus strains
and the S288c S. cerevisiae strain were then processed using a custom Perl script
(var matrix v3.pl) to construct a variation matrix in Phylip format. Within this
process, each site in the rDNA consequence sequence at which a pSNP or SNP
was found to occur in one or more strains was analysed. The frequency of each
nucleotide base across the 27 strains at each varying site was calculated and
written to the variation matrix, with examples of the output shown in figure 3.7.

The resulting variation matrix was then used as input to selected programs
within the Phylip phylogenetic analysis suite (version 3.69) (Felsenstein, 2004),
with an overview of the method used illustrated in figure 3.8. Specifically, a
distance matrix was produced from the variation matrix using GENDIST with the
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Cavalli-Sforza and Edwards Chord distance (Cavalli-Sforza and Edwards, 1967).
A neighbor-joining tree (Saitou and Nei, 1987) was generated from this matrix
using the NEIGHBOR program. 1,000 bootstrap datasets (Felsenstein, 1985) for
the tree were then produced from the variation matrix using SEQBOOT and
subsequently analysed using GENDIST and NEIGHBOR. The bootstrap trees
were then mapped to the original tree using RAxML (version 7.3.0) (Stamatakis,
2006). This resulted in a bootstrapped S. paradoxus tree using the S. cerevisiae
reference strain S288c as the nominated root. This tree was then visualised using
MEGA 5 (Tamura et al., 2011), with only those bootstrap values greater than 50%

a)

b)

c)

Figure 3.7.: a) example of output from the script var matrix v3.pl. Each position
which has a pSNP or SNP in any strain is recorded, with the frequency
of each base at that position shown. b) 2 pSNPs (highlighted in pink)
and a SNP (in blue) represented at position 3456. c) example of
variation matrix produced by var matrix v3.pl script, which is in a
format compatible with Phylip. A row of 4s indicates the number of
possible alleles at each position (one for each base), with the gray box
highlighting one position
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shown at branch nodes. These steps were repeated for the S. cerevisiae dataset,
where S. paradoxus strain Q32 3 was used as the nominated root as the sequence
of the reference/type strain CBS 432 was potentially contaminated (see Section
2.4.2). Phylogenetic networks for both datasets were produced using SplitsTree4
(version 4.12.3) (Huson and Bryant, 2006), using the Cavalli-Sforza and Edwards
Chord distance matrices within the GENDIST output.

Cavalli-Sforza and Edwards 
Chord distance matrix 

produced using Gendist

Neighbor-joining tree 
produced using Neighbor

Datasets for 1,000 bootstraps 
produced using Seqboot

1,000 Cavalli-Sforza and 
Edwards Chord distance 
matrices produced using 

Gendist

1,000 Neighbor-joining trees 
produced using Neighbor

Bootstrap trees values 
(right) mapped to 
original tree (left) 

using RAxML

Tree visualised using 
MEGA5, only 

bootstrap values > 50 
shown

Matrix of polymorphism 
frequencies for strains, 

produced using 
var_matrix_v3.pl

P
h

y
li

p

Figure 3.8.: Overview of the different programs used at different stages to produce
the finished phylogenies, shown in figures 3.10 and 3.11, from the
polymorphism frequency data. The programs which are part of the
Phylip suite are shown within the green box.
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The estimated trees were compared with phylogenies previously constructed from
genome-wide SNP variation (Liti et al., 2009). S. paradoxus and S. cerevisiae
distance matrices were downloaded from the Saccharomyces Genome Resequencing
Project website (SGRP, 2013). The distance matrices were analysed using
NEIGHBOR to estimate a Neighbor-Joining tree, strains additional to this analysis
were removed using RETREE and the resulting trees were saved in Phylip format.
Subsequent tree comparison was carried out using the software TOPD/FMTS
(Puigbò et al., 2007) with the disagree option. The value of the resulting Split
Distance statistic was compared to those calculated for 100 trees of the same
strain set randomly generated by TOPD/FMTS. Distance matrix comparison
was performed using a Mantel’s test within the QIIME software (Caporaso et al.,
2010).

3.2.2. Results

The SNP and pSNP polymorphisms identified in each of the 26 S. paradoxus
strains were combined into a single dataset. SNPs and pSNPs were found to
occur at 58 and 151 rDNA sites respectively, at 166 unique positions (i.e. 74.1%
pSNPs occurred at sites where SNPs were also identified). The phylogenetic
signal in the dataset appeared to be strong, with raw polymorphism counts highly
correlated to geographical origin (American, European and Far Eastern; Pearson’s
r = 0.987) (Figure 3.9), and with the Far Eastern group of strains (IFO 1804,
N-43, N-44 and N-45) exhibiting remarkably little variation in raw counts. The
resulting rDNA-based phylogenetic tree mirrored this pattern, splitting into three
well-supported groups that directly corresponded to geographical origins (Figure
3.10). The S. paradoxus phylogeny (Figure 3.10) showed little variation within
the European group, particularly within the ten UK strains (Q95.3 to Q59.1).
Likewise, the two Siberian strains (KPN3828 and KPN3829) were found to be
highly similar to one another. In the Far Eastern group, most closely related to
the European group, N-45 was found to be the most divergent of the four strains.
The American strains proved to be most divergent as a group.

Notably, the new rDNA-based phylogeny was highly similar to that previously
produced by Liti et al. (2009), generated from 623,287 SNPs spread across the
nuclear genome. The grouping of strains into European, Far Eastern and American,
and furthermore into UK and non-UK within the European group, was identical
between the two trees. Minor differences in topology were seen within-group, with
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Figure 3.9.: Bar chart of pSNP plus SNP variation in each S. paradoxus strain,
labelled to show the split into distinct populations. The strains are
ordered by increasing number of pSNPs + SNPs, and naturally split
into the three geographical locations.

N-17, CBS 432, N-45 and A12 the clearest examples.

In S. cerevisiae, SNPs and pSNPs were found to occur at 143 and 90 rDNA sites
respectively, at 181 unique positions (i.e. 36.4% pSNPs occurred at sites where
SNPs were also identified). In a previous S. cerevisiae phylogeny based on 235,127
SNPs distributed throughout the genome (Liti et al., 2009), the strains did not
partition cleanly into distinct groups, but rather a subset of the strains grouped
according to either geographic origin or industrial usage, with the remainder
showing no strong grouping structure. Furthermore, the 19 highly-grouped strains
were found to possess structured genomes, with the remaining 15 possessing
mosaic genomes. As expected, phylogenetic analysis of such a dataset results in
conflicting signals of inter-strain relationships.

Indeed, Figure 3.12 and Figure 3.13 show NeighborNets (Bryant and Moulton,
2004) estimated for the S. paradoxus and S. cerevisiae strain sets. It is clear
from these networks that the S. cerevisiae dataset possesses a greater degree
of phylogenetic conflict than that of S. paradoxus. Despite this issue, our new
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Figure 3.10.: S. paradoxus neighbor-joining tree with S. cerevisiae strain S288c as
the nominated root. There is clear separation into groups according
to the geographical location of the strain collection site. Only
bootstrap support values greater than 50 are shown.
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Figure 3.11.: S. cerevisiae neighbor-joining tree with S. paradoxus strain Q32.3
as the nominated root. Only bootstrap support values greater than
50 are shown. The dotted line is equivalent to a distance of 0.355.
Groups of interest are shown as coloured boxes and mosaic strains
are underlined in red.
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rDNA-based phylogeny (Figure 3.11) is highly similar to that estimated by Liti et
al. (Liti et al., 2009). For example, the new tree exhibits identical Malaysian, Sake,
West-African and Wine/European groups (all consisting of structured strains) to
the previous tree. Furthermore, there is an overall consistency in the relationships
between the groups. The major difference between the two topologies is the
location of the YIIc17 E5 strain. In the Liti et al. (2009) tree, this strain can be
found amongst a loose group of mosaic strains adjacent to the Wine/European
group while in our rDNA-based phylogeny, the strain is located closer to the West
African and Sake groups. This difference could potentially be explained by the
putative parentage of this mosaic genome, with different relative contributions of
the parents within the genome-wide SNP and rDNA datasets. Indeed, on closer
examination of the YIIc17 E5 pSNP/SNP polymorphisms, of the 25 rDNA sites
at which this strain varies from the reference strain, two contrasting phylogenetic
signals can be observed. One group of polymorphisms links YIIc17 E5 to the
three Sake strains, while the other group links it to the set of mosaic strains close
to the Wine/European group, in particular the 273614N, DBVPG6040 and S288c
strains.
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Figure 3.12.: a) The S. cerevisiae network shows a complex network structure,
consistent with existing knowledge of this population. Overview of
the whole network including outgroup. b) A close up of the main
population structure in the network (highlighted in a) by the grey
box), with different groups labelled and indicated with coloured
lines.
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Figure 3.13.: a) The S. paradoxus network shows a clear separation of each
geographic population. Overview of the whole network including
outgroup. b) A close up of the main population structure in the
network, with different geographical groups labelled and indicated
with coloured lines.
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3.2.3. Comparing the rDNA-based and genome wide SNP
phylogenetic trees

The distance matrices and phylogenetic trees produced for both datasets were
compared to those estimated for the whole genome SNP datasets in the SGRP
project (Liti et al., 2009). The distance matrices for the SGRP data were obtained
from the misc directory within the SGRP site (SGRP, 2013). The SGRP matrices
are divergences between the strains expressed as polymorphic positions per 1000
nucleotides across the whole genomes of the strains. These positions were only
counted when strains had a nucleotide present in an alignment, not if there was a
gapped position.

Comparing the two S. paradoxus trees using the TOPD/FMTS software (Puigbò
et al., 2007), the disagree statistic exhibited a Split Distance of 0.52 compared
to a random Split Distance (using randomly generated topologies of the same
strain set) of 0.99, reinforcing the closeness of the two phylogenies. When the
two S. cerevisiae trees were compared, the disagree statistic exhibited a Split
Distance of 0.65 compared to a random Split Distance (using randomly generated
topologies of the same strain set) of 0.99. Although the two trees are not as
close as for S. paradoxus, this result supports our observation that there is strong
agreement between them. The SNP and pSNP Cavalli-Sforza and Edwards Chord
distance matrices for each dataset, obtained during analysis with PHYLIP, were
compared to the SGRP matrices using Mantel’s test, as implemented by the
compare_distance_matrices.py module in the QIIME program suite (Caporaso
et al., 2010), version 1.6.0. Matrices were edited to be tab delimited with identical
strain names (although not in the same order), and a header of each name
added, with results shown in table 3.6. From these results both S. cerevisiae
and S. paradoxus show a strong correlation between the two distance matrices,
particularly for S. paradoxus. This suggests that our rDNA-based distances are
highly similar to those estimated from the SGRP whole-genome SNP datasets.

Species Mantel’s r statistic p-value
S. paradoxus 0.99029 0.001
S. cerevisiae 0.64133 0.001

Table 3.6.: Mantel’s r statistic comparing distance matrices from the SGRP
analysis and our rDNA-based pSNP and SNP distances.
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3.2.4. The use of pSNPs in phylogenetic analysis

Sequence heterogeneity within the rDNA unit has long been a problem in
phylogenetic analysis, with numerous studies citing this issue, in particular within
the ITS region (Buckler et al., 1997; Kiss, 2012; Nilsson et al., 2008). Solutions
have included creating consensus sequences suppressing the observed variation, but
such workarounds are still far from ideal. Whole genome sequencing projects offer
the potential to fully characterise the variation across the entire rDNA sequence.
Indeed the only barrier to a full characterisation is the ability to sequence the
whole locus (or loci, in the case of multi-locus rDNA systems). At present,
rDNA sequences cannot be assembled into ordered tandemly arranged units. A
consequence of this is that it is impossible to be sure that the target sequence has
been uniformly sampled across all of its copies, and hence some variation may still
be missing from recent studies. However, current sequencing technologies, where
a sequences of interest can be sampled deeply, suggest that full characterisation
is being approached. Furthermore, promised technological advances mean that
assembly of repetitive sequences may soon be possible, and that the full allelic
variation across the rDNA unit could be characterised.

It has been shown, for the first time, how a detailed characterisation of sequence
variation within the rDNA unit can be coded as a form of allelic variation - in this
case as and inter-connected systems of pSNPs and SNPs - and how this variation
can be analysed with existing tools to estimate phylogenetic trees. In particular,
the well-established Cavalli-Sforza and Edwards Chord distance (Cavalli-Sforza
and Edwards, 1967), a natural choice for variation of this kind, has been used in
conjunction with the Neighbor-Joining method. The resulting phylogenetic trees
(Figures 3.10 and 3.11) are highly similar in topology to those estimated in previous
analyses (James et al., 2009; Liti et al., 2009). For S. paradoxus, this is perhaps
not so unexpected, as the majority of pSNPs either have a high occupancy (over
90%) where they will be treated similarly to SNPs, or low occupancy (less than
10%), where they will not contribute significantly to pairwise distances. However,
there is good agreement between this new phylogeny and previously estimated
trees for S. cerevisiae, where occupancy ranges are much different and network-like
signals resulting from hybridisation events are known to be a problem.

Interestingly, a recent computational study of SGRP S. cerevisiae genomes (plus
additional genome sequences from the Saccharomyces Genome Database (SGD)
(SGD, 2013) for validation) showed that a minimal set of 13 specific genes can
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capture the phylogenetic relationship inherent to these strains (Ramazzotti et al.,
2012). The method was proposed as a simpler alternative to whole-genome
sequencing, and is highly attractive when financial or analytical constraints are a
factor. However, some major challenges were faced by this approach, in particular
the inconsistency of gene content across strains. Conversely, our analysis has
shown that a single, complex locus may satisfy many of the goals of this study
while also being universal across and within species. However, developing datasets
such as the one used in this study would be unachievable for many at the present
time. It would be interesting to see whether future technologies could achieve
full characterisation of the rDNA sequence without the need for whole-genome
sequencing.

Perhaps uniquely, the rDNA unit offers the opportunity to capture sequence
variation before it is fixed as a SNP (or conversely is lost), and therefore is ideal
for understanding the relationships between members within a species, such as
those analysed here. This point, together with the quality of the resulting trees,
leads to the conclusion that the analysis of pSNP and SNP variation within the
rDNA unit offers a valuable phylogenetic opportunity, particularly for fine-scaled
evolutionary scenarios.

3.2.5. Population structure

The population structure of S. paradoxus observed in this analysis is consistent
with that found in previous studies (Liti et al., 2009, 2006), where a split into three
distinct geographical groups (American, European and Far Eastern) is clearly seen.
The American group appears to be the most basal of the three groups investigated,
and more distant to the remaining groups. In the European group, the UK and
mainland Europe strains form two distinct subgroups (bootstrap value 68%),
supporting a similar split seen in previous studies based on genome-wide SNP
differences (Liti et al., 2009). Within this group, and apparently unusually within
this species, strain N-17 displays signs of a putative inter-group hybridisation
event (one of only two such events identified in this dataset, see below).

Compared to S. paradoxus, S. cerevisiae shows significantly lower inter-strain
diversity. The S. cerevisiae population structure is also more difficult to infer,
largely due to the different pattern of variation (more pSNPs and fewer SNPs)
resulting from likely hybridisation between strains. Indeed, a NeighborNet analysis
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of the pSNP/SNP distance matrix indicates a much stronger non-treelike signal in
this species (Figure 3.12), as has been previously suggested (Liti et al., 2006).

Although the S. paradoxus strains possess many more SNPs than pSNPs, their
distribution across the rDNA repeat unit shares some similarities to that of S.
cerevisiae, as seen in Figures 3.3a and b. In both species, as expected, the vast
majority of polymorphisms are found within the non-coding regions. However,
there are a small number of pSNPs, albeit at very low occupancy, in both datasets
within the 26S rRNA-encoding gene, as well as in the 18S rRNA-encoding gene in
the S. cerevisiae dataset (Liti et al., 2006). Indeed the low occupancy of these
polymorphisms is consistent with Ganley and Kobayashi’s idea of a tolerance
threshold (Ganley and Kobayashi, 2007), where a small number of mutations may
be harboured within the rDNA regions without detrimental effect.

SNPs are also present in the variable D1/D2 region of the 26S rRNA-encoding
gene in both datasets, a region of rDNA that is important for yeast identification
(Fell et al., 2000; Kurtzman and Robnett, 1998). In S. paradoxus, the D1/D2 SNP
(position 248) is present in all six American strains, and is the same nucleotide
(T residue) as is present in S. cerevisiae, indicating that this position may have
mutated more recently in the Far Eastern and European groups. In S. cerevisiae,
the D1/D2 SNP (position 253) is present in the two West African strains (DBVPG
6044 and NCYC 110) as well as the laboratory strains SK1 and Y55. The latter
two strains are believed to be derived from crosses between West African and
European/Wine strains (Liti et al., 2009), and both possess the same D1/D2
polymorphism (A to G transition) as is found in DBVPG 6044 and NCYC 110.

3.2.6. pSNPs as a predictor of genomic mosaicism

In a previous study, a high pSNP count was observed in S. cerevisiae strains
possessing mosaic genomes (i.e. resulting from a hybridisation event) (James et al.,
2009). Comparing the two Saccharomyces species within the present study, it was
observed that on average S. cerevisiae strains have 3.25 times more pSNPs in their
rDNA arrays than S. paradoxus strains. The marked difference in these figures
is principally due to the 15 S. cerevisiae mosaic strains, which account for over
78% of the pSNPs (245 out of 315) identified in this strain subset. In contrast,
only 70 pSNPs were detected in the 19 S. cerevisiae structured strains, making
this strain set comparable to S. paradoxus for that polymorphism type. This
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results in the S. cerevisiae mosaic strains having 4.44 times more pSNPs in their
rDNA arrays than the S. cerevisiae structured strains, which supports findings
from our earlier analysis (previously measured as a 2.9 fold difference (James
et al., 2009)). Furthermore, the Pearson’s correlation coefficient was found to be
r = 0.713 between pSNP count and population type (i.e. mosaic or structured)
for this new dataset and p = 5.15× 10−9 for the corresponding negative binomial
regression, indicating the strong relationship between these two variables.

In addition to confirming the previous result, potential mosaic-like features were
found in lineages previously identified as “clean”. Based on pSNP occupancy,
the five S. cerevisiae structured lineages identified by Liti et al. (2009) can be
subdivided into two groups, subsequently referred to as structured mosaic and
structured clean strains (Figure 3.14). In the original set of 15 S. cerevisiae mosaic
strains, 60% of the detected pSNPs (145/245) were found to have occupancies
greater than 10% but less than 90%. In theory, one scenario under which
this type of pSNP could have arisen is if two parental strains from different
populations/lineages, and with differing SNPs, crossed and produced a hybrid.
Using the mid-occupancy class of pSNP as an indicator of genome mosaicism,
the seven strains belonging to the Malaysian, North American and West African
lineages were observed to have only two (out of 16) pSNPs with occupancies
between 10% and 90%, classifying them as structured clean strains. In contrast,
the majority of pSNPs (40 out of 54) in the 12 strains belonging to the Sake and
Wine/European lineages have occupancies within the 10% to 90% range, showing
mosaic-like behaviour and classifying them as structured mosaic strains (Figure
3.14).

Indeed, a re-examination of the Structure diagrams produced by Liti et al. (2009)
and shown in figure 3.15, reveals that apparent genome mosaicism, albeit at a
relatively low level, can be identified in some of the strains originally classified
by these authors as having structured/clean genomes. For example, in the Sake
lineage approximately 10% of the Y12 (palm wine strain) genome appears to
have originated from three other lineages (i.e. Malaysian, West African and
Wine/European). Eleven pSNPs were identified in this strain (Table 3.4), 10 of
which have occupancy values of between 10% and 90%, supporting the possibility
that this class of pSNP might prove useful as a potential indicator of cryptic
genome mosaicism, perhaps the result of hybridisation events older than those
leading to the standard mosaic class. As many of the structured mosaic strains
have a fermentation origin (e.g. sake and wine), it is likely they have undergone
some degree of hybridisation during their respective histories which has left a
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residual signal within their genomes, including within their rDNA arrays.
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Figure 3.14.: a) Bar chart of the S. cerevisiae structured strains, with number of
pSNPs against the pSNP occupancy. The boxed section highlights
pSNPs with occupancies greater than 10% and less than 90%. The
Malaysian, North American and West African strains have very
few pSNPs within this boxed area, and these are denoted as clean
structured strains. Those strains with a number of pSNPs within
this boxed area show a degree of mosaicism, and are thus classified
as being structured mosaic strains. b) Bar chart of S. cerevisiae
mosaic strains, where there are a large number of pSNPs within the
10% to 90% occupancy range.
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Figure 3.15.: Reprinted by permission from Macmillan Publishers Ltd: Nature
(Liti et al., 2009), copyright 2009. a) Inference of population structure
using the program Structure (version 2.1) on an S. paradoxus genome-
wide SNP dataset. Each mark on the x axis represents one strain,
and the blocks of colour represent the fraction of the genetic material
in each strain assigned to each cluster. Hw, Hawaiian isolate, (not
analysed in our study). b) Inference of population structure on S.
cerevisiae. NA, North America; WA, West Africa.

3.2.7. rDNA Dynamics

A detailed characterisation of pSNP and SNP polymorphisms also provides insights
into the dynamics of rDNA evolution and individual strain variation. 74.1% and
36.4% pSNPs were found to occur at sites of SNP variation in S. paradoxus and S.
cerevisiae respectively, showing the clear relationship between the two variation
types. Analysis of individual sites showed that variation could be seen “rippling”
through a phylogeny, from regions of closely-related strains where the ancestral
form was prevalent to more distant strains, where the variation could still be seen,
but now either as a pSNP or fixed as a SNP. Indeed, the manner in which pSNPs
can spread in this fashion through a group of related strains depends on several
factors. One key factor is the size of the tandem array (i.e. the copy number),
and another is the nature of relatedness between members of the group.
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For the cases of S. paradoxus and S. cerevisiae, which differ both in copy number
(averages 69 and 99 respectively per strain) and in relatedness of species members,
major differences in features of pSNP and SNP variation would be expected,
such as relative proportions of mutation types, and pSNP occupancy values.
Indeed, this has been shown to be the case. In S. paradoxus, the majority of
pSNPs (more than 90%) had an occupancy of either less than 10%, or greater
than 90% (Figure 3.3c), and SNP variation is high within the species, suggesting
that many previous pSNPs have become fixed. This is consistent with a species
with a small copy number and treelike evolutionary structure, able to respond
quickly to strong concerted evolutionary pressure. In S. cerevisiae, over half of all
identified pSNPs (187/315) were found to have occupancies within the 10% to
90% range, and the number of pSNPs and SNPs were considerably higher and
lower respectively than those seen in S. paradoxus. Indeed, this occupancy pattern
would be consistent with a species with higher copy number where it had also
been affected by significant quantities of hybridisation events.

Within both datasets, the distributions of related pSNP/SNP occupancies are
found to be U-shaped (Figure 3.3c), though there are clear differences between
the two curves. Indeed, this type of distribution is often observed in biological
datasets, including both allele frequency (Chakraborty et al., 1980) and gene
frequency (Haegeman and Weitz, 2012) datasets within populations, as predicted
by mutation-drift theory. The datasets offer a fascinating snapshot of concerted
evolution in action. For S. paradoxus, observing pSNP variation at a single point in
time is a challenge, as the homogenisation process is rapid throughout this species.
However, whole genome sequencing studies enable variation to be captured in
low quantities. For S. cerevisiae, larger copy numbers and hybridisation between
strains potentially increase mutation number and slow down the homogenisation
process respectively, and so variation spreading across its strains can be captured
more easily. However, other factors such as selection pressures can also affect the
shape of the distribution.

Although some features of pSNP/SNP variation can readily be related to
characteristics of their harbouring species, others are less obvious without a
deeper understanding of strain origins and inter-relationships. From previous
results on the consequences of genome mosaicism (James et al., 2009), S. cerevisiae
strains with structured genomes could perhaps be expected to have pSNPs with
similar occupancy patterns to the S. paradoxus dataset. However, the spread
of pSNP occupancies is unexpectedly maintained when the S. cerevisiae results
are split into mosaic and structured strains (Figure 3.14), as defined in previous
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work (Liti et al., 2009). One explanation for this observation is the more variable
nature of the structured S. cerevisiae strains, where each strain has been subject
to differing levels of hybridisation, when compared to the wild S. paradoxus strain
set. Indeed, as discussed in Section 3.2.6, the current classification of S. cerevisiae
strains into mosaic and structured sets masks a wide range of variation, even
within the latter grouping.

3.3. Coverage Across the rDNA Unit

3.3.1. Method

The coverage across the rDNA unit for each strain was calculated using a custom
Perl script (coverage v2.pl). This used the hit series.out file from the TURNIP
run for each strain, counting the number of reads which were hits in each 20
base pair window along the rDNA reference unit. These counts were written to a
Microsoft Excel file and plotted as line charts, shown in Figure 3.16.

The rDNA copy number per strain was also estimated from these coverage results.
The average read depth across the whole rDNA unit was calculated for each strain
by averaging the number of reads in each 20 base pair window. This value was
then divided by the genome sequencing depth for that strain in the SGRP user
manual (SGRP, 2013), to give an estimate of copy number for each strain, shown
in Tables 3.1 and 3.4.

Relationships between copy number and geographical or geographical/industrial
group were assessed using correlation tests and linear models. In S. paradoxus,
strains were grouped according to their geographical origin, with European, Far
Eastern and American strains. In S. cerevisiae, strains were grouped according to
their geographic/phylogenetic origin or their industrial usage, with mosaic strains
W303, S288c, 322134S, 27361N, 378604X, DBVPG6040, YS9, NCYC361, YS4
and DBVPG1853 coded as other mosaics, structured West African and related
mosaic strains NCYC110, DBVPG6044, SK1 and Y55 coded as West African
+ related mosaics, structured Malaysian strains UWOPS05-227-2, UWOPS03-
461-4 and UWOPS05-217-3 coded as Malaysian, mosaic strain YIIc17E5 as itself,
structured Sake strains Y9, Y12 and K11 coded as Sake, structured Wine/European
strains L1374, DBVPG1106, DBVPG1788, YJM975, YJM978, YJM981, BC187,
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Figure 3.16.: The number of reads for each strain mapped to the representative
rDNA unit. Top line chart refers to S. paradoxus, the lower to S.
cerevisiae. In both datasets there are a small number of strains
where there is no coverage, representing areas where there is either a
great divergence from the consensus sequence, or an area of variation
complexity.
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DBVPG6765 and DBVPG1373 coded as Wine/European, structured North
American strains YPS128 and YPS606 coded as North American, and mosaic
strains UWOPS87-2421 and UWOPS83-787-3 coded as UWOPS mosaics.

3.3.2. Results

The sequence read coverage of each S. paradoxus strain, calculated by mapping
reads to 20bp target windows of the relevant rDNA consensus sequence, was
measured and found to range from 40 to 100 (see Figure 3.16), though with four
strains (CBS432, CBS5829, N-17 and N-45) ranging from 180 to 360. Six American
strains (A4, A12, DBVPG 6304, UFRJ 50791, UFRJ 50816 and YPS138) and two
Far Eastern strains (N-44 and N-45) were found to possess small (up to 20 bp)
sections within the ETS2/IGS1 region that were either not covered or very poorly
covered. The ETS2 and IGS1 regions have been shown to display high quantities
of polymorphism in S. paradoxus (Figure 3.3a and Table 3.3). When the 20 bp
windows flanking these areas of poor/no coverage were examined in detail, it
was discovered that all eight strains had SNPs, insertions and/or deletions on
either side of these coverage anomalies (Table 3.7). This implied that any reads
spanning these areas were either too dissimilar to the reference consensus to pass
the BLAST or multiple alignment filters within the read mapping procedure, or
else carried large deletions. For example, all six American strains have consistently
no coverage over one specific area (ETS2 region, positions 3520 to 3540, and 3560
to 3580), which would appear to be a feature of this group and its diversification
from the (European) type strain. A similar coverage analysis of the 34 S. cerevisiae
strains was also carried out. Here, most strains fell within the range 40 to 200,
although five strains (W303, Y55, YJM981, SK1 and DBVPG6765) were found to
possess a sequence read coverage of between 200 and 480. Two strains (the closely
related YS4 and YS9) both exhibited only two or three mapped reads in a single
small area, positions 5620-5639.

Strain Region No. of
reads

I.D of hits 20bp before 20bp after

A4 3560- 3579 0 n/a 4bp deletion
and 8 SNPs

3 SNPs and
4bp deletion

A12 3560- 3579 2 A12-10i08.q1k,
A12-8n21.q1k

a 5bp and 2bp
deletion, and 2
SNPs

3 SNPs and a
5bp deletion
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Strain Region No. of
reads

I.D of hits 20bp before 20bp after

DBVPG6304 3560- 3579 3 DBVPG6304-
22k14.q1k,
DBVPG6304-
4b20.q1k,
DBVPG6304-
36c11.q1k

5bp insertion
and 8 SNPs

3 SNPs and a
5bp deletion

UFRJ50791 3560- 3579 2 UFRJ50791-
1c04.p1k,
UFRJ50791-
6o15.q1k

5bp insertion
and 8 SNPs

3 SNPs and a
3bp deletion

UFRJ50816 3560- 3579 0 n/a 5bp and a 2bp
deletion, and 4
SNPs

3 SNPs and
4bp deletion

YPS138 3560- 3579 1 YPS138-
32h06.p1k

5bp insertion
and 8 SNPs

3 SNPs and a
5bp deletion

A4 3520- 3539 0 n/a 4bp insertion 4bp deletion
and 8 SNPs

A12 3520- 3539 1 A12-13l16.p1k 2 pSNPs,
partial ins (93%
4bp insertion
and the other
7% a 4 bp and
a 1 bp)

a 5bp and 2bp
deletion, and 2
SNPs

DBVPG6304 3520- 3539 0 n/a SNP and 4bp
insertion

5bp insertion
and 8 SNPs

UFRJ50791 3520- 3539 0 n/a 5bp insertion 5bp insertion
and 8 SNPs

UFRJ50816 3520- 3539 4 UFRJ50816-
25h24.q1k,
UFRJ50816-
6m03.p1k,
UFRJ50816-
28e01.q1k,
UFRJ50816-
22m15.q1k

4 pSNPs and 3
partial
insertions

5bp and a 2bp
deletion, and 4
SNPs

YPS138 3520- 3539 0 n/a 4bp insertion 5bp insertion
and 8 SNPs
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Strain Region No. of
reads

I.D of hits 20bp before 20bp after

N 44 3640- 3659 1 N 44-
19m04.p1k

9 pSNPs (most
of which are
complex), 16
bp deleted,
have been split
into 7 possible,
again some of
which are
complex

none

N 45 3640- 3659 5 N 45-
60a03.q1k,
N 45-60f08.q1k,
N 45-8i09.p1k,
N 45-
60g10.p1k,
N 45-
60d08.q1k

7 pSNPs, most
of which are
complex, 1
partial
insertion, 16 bp
deletion, split
into 7 possible,
most of which
are complex.

none

Table 3.7.: S. paradoxus strains which had little or no coverage for small rDNA regions,
and an analysis of the regions surrounding the anomalies

The number of rDNA repeats (copy number) in each S. paradoxus strain was
estimated by comparing the coverage of the rDNA repeat consensus unit to the
coverage of the whole genome. The estimated copy number was calculated for
each strain and was found to range from 45 (American strain A12) to 96 copies
(Far Eastern strain IFO 1804) (see Table 3.1), with an average of 69 copies per
strain. These estimates were found to be lower and less variable than for S.
cerevisiae, where estimated rDNA copy number ranged from 50 (strain K11) to
354 copies (strain YJM981) (see Table 3.4), with an average of 99 copies per
strain. No significant correlation between rDNA copy number and geographical
origin was identified in S. paradoxus, with Pearson’s r = −0.292. Furthermore, a
Negative Binomial regression of copy number on geographical origin did not give
a significant result at the 5% level in the resulting z-tests on geographical factor
levels or in a Chi-squared analysis of deviance test, with p = 0.283 for the latter
(Figure 3.17a). In S. cerevisiae, although no significant correlation was initially
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discovered between rDNA copy number and either geographical/industrial group
or strain type (structured or mosaic), with r = −0.257 and p = 0.063 respectively,
a clear relationship between copy number and geographical/industrial strain
group could be observed (Figure 3.17b). On removing the outliers YM981 and
DBVPG1106 (both Wine/European strains, with 354 and 98 copies respectively),
the strong relationship between rDNA copy number and geographical/industrial
strain group (r = −0.634) and between copy number and strain type became
apparent (r = 0.310). Furthermore, a Negative Binomial regression of copy number
on geographical/industrial group indicated that the group was an important factor
in the model (p = 1.81× 10−5) and that Sake, Wine/European, North American
and UWOPS mosaics groups were significantly different from the other mosaics
group (with p = 0.001, p = 8.32 × 10−6, p = 0.003 and p = 0.001 respectively,
Figure 3.17b). A Negative Binomial regression of copy number on strain type
also showed this factor to be significant, with p = 0.041. In conclusion, although
S. cerevisiae mosaic genomes tend to possess a higher rDNA copy number than
structured genomes, there are exceptions to this trend. For example, a low copy
number was observed amongst the UWOPS mosaic strains and a high copy number
amongst the West African structured strains. However, a strong relationship
exists between phylogenetic grouping and copy number in S. cerevisiae, but not
in S. paradoxus, and it would be interesting to determine the factors driving copy
number evolution in future studies. In a very recent study (Long et al., 2013)
“massive genomic variation” in 180 lines of the model dicot plant Arabidopsis
thaliana was uncovered, ∼90% of which was attributed to copy number variation
of repetitive sequence, with 45S rDNA the largest contributor by far. Interestingly,
the observed variation was found to be strongly correlated to geographic pattern.
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Figure 3.17.: a) Box plot of S. paradoxus geographical groups and their copy
numbers b) Box plot of S. cerevisiae groups and their copy numbers,
excluding outlying strains YJM981 and DBVPG1106
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3.4. Putative hybrid origins of S. paradoxus strains
N-17 and N-45

The majority of S. paradoxus strains show no strong evidence of mosaicism when
looking at pSNP counts. In a previous study, Liti et al. (Liti et al., 2009)
identified only one candidate S. paradoxus strain (UW0PS91-917.1) as having a
potential mosaic-like genome. This strain, isolated from Hawaii (flux of Myoporum
sandwichense), was not included in the current study as preliminary analysis of
its rDNA sequence reads had revealed potential contamination with S. cerevisiae
sequences. However, the European strain N-17 (from Russia) and the Far Eastern
strain N-45 (also isolated in Russia, albeit in the eastern region of the country)
are atypical of S. paradoxus strains in that they possess high numbers of pSNPs
(Table 3.1), collectively totalling 72.6% of all pSNPs in this dataset.

Strain N-17 was earlier revealed to possess 17 pSNPs within its rDNA array, 16
at low occupancy, by far the most polymorphisms (29) of any of the European
strains (Table 3.1). Despite this, in the pSNP- and SNP-based phylogenetic tree,
N-17 is clearly shown to belong to the mainland European population which also
includes the reference strain CBS 432 (Figure 3.10). Further examination of these
pSNPs, and the strains that share them as pSNPs, SNPs or putative ancestral
states (Figure 3.18), showed that 10 are shared with only Far Eastern (or Far
Eastern and American) strains, albeit at low frequency. A further 6 are unique to
N-17 alone and the remaining pSNP is shared with a single Far Eastern strain
and a single European strain. The most likely hypothesis to reconcile this set of
variation is that N-17 is the result of a hybridisation between a European and
a Far Eastern strain. It is interesting that N-17 possesses many unique pSNPs,
potentially indicating that at least one of N-17’s parents is not found within the
existing strain set.

The Far Eastern strain N-45 was found to possess 36 pSNPs, and like N-17 is
slightly distinct from the rest of its group on the neighbor-joining tree (Figure
3.10). Again examining the co-occurrence of pSNPs across the strain set showed
that 32 are shared only with Far Eastern (or Far Eastern + N-17) or Far Eastern
and American (or Far Eastern + American + N-17), this time at high frequency.
A further two pSNPs are unique to N-45, one is shared with an American strain
and one is shared with two European strains. Again, this set of variation indicates
that N-45 is a putative hybrid of a Far Eastern and a European strain (i.e. the
low-frequency components of the majority of N-45’s pSNPs indicate a European
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origin).

Examination of the NeighborNet for S. paradoxus (Figure 3.13) shows a clear
phylogenetic conflict implicating the American strain UFRJ50791, with a large
box-like structure. Further examination of the source of this conflict shows that it
derives from incompatible sharing of SNPs between different subsets of strains
within the American group, with one explanation being a recent intra-group
hybridisation. It is interesting to contemplate the clarity of this SNP-based
conflict with our two putative pSNP-based mosaics, which are largely invisible
on the NeighborNet. Further research could be carried out to determine whether
pSNP-based conflicts can be easily identified using such tools or whether this is
simply a consequence of potentially old events exhibiting low-frequency pSNPs in
this particular case.

Three of the four Far Eastern strains (N-43, N-44 and N-45) were found on the
same continental land mass as six of the European strains (CBS 432, CBS 5829,
DBVP 4650, KPN 3828, KPN 3829 and N-17) (Figure 3.1). Furthermore, all of
the S. paradoxus strains in these areas were isolated either from oak tree bark or
exudate. The existence of a region in mainland Europe (perhaps Russia) where
European and Far Eastern strains coexist is therefore a possibility, with such
a region a potential source of hybrid strains. While further research would be
needed to confirm the N-17 and N-45 hybridisations, the potential to identify
hybridisation signals from features of rDNA polymorphisms, in organisms with
population structures similar to S. paradoxus, is intriguing.
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Figure 3.18.: a) Venn diagram of the different pSNP and SNP positions in strain
N-17 in comparison to the Far Eastern strains. 11 of N-17’s pSNPs
are in the same position as pSNPs or SNPs in one or more Far
Eastern strains. b)Venn diagram of the pSNP + SNP positions in
N-17 compared to the Far Eastern and European strains. 10 sites
of variation overlap with the Far Eastern strains alone, and 2 are
present in all groups. c) Venn diagram of the overlap of pSNP +
SNP positions between the three different geographical groups, and
the number of pSNP or SNP positions that are unique for each
group.
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3.5. Conclusions and Chapter Summary

A thorough and detailed analysis of rDNA sequence variation in two contrasting
yeast species was achieved. The data were cleansed and examined carefully before
analysis, and the program tested to ensure results were as accurate as possible.
Unlike many preceding studies, the analysis has encapsulated variation across the
whole rDNA unit and has examined a broader range of polymorphism types across
a larger strain set. The resulting datasets have therefore enabled deeper insights
into inter-strain relationships within wild and domestic yeast, and to observe
important differences in the manners in which these two species have evolved.

Within each species, the uncovered variation was shown to be substantial in size
and rich in evolutionary information. Collectively each dataset follows a U-shaped
distribution of allele frequencies predicted under mutation-drift evolutionary theory.
The datasets have been used to successfully infer complex lineage relationships
between strains, at a fine-scaled phylogenetic resolution, and these inferences have
been shown to be consistent with existing knowledge. From this we further infer
that large-scale sequencing of the rDNA locus can overcome at least some of the
documented problems with phylogenetic inference deriving from its use, making
its many advantages more prominent. While the rDNA coverage of the SGRP
datasets was moderately high, deeper sequencing is now possible at a reasonable
cost and it will be interesting to compare whether greater depth leads to better
estimates of polymorphism counts and therefore more accurate phylogenies. In
future, it would be interesting to test formally whether pSNPs within the rDNA
array (or indeed from other repetitive genomic sequences known to be moulded
by concerted evolutionary processes) have greater power to discriminate between
organisms within species than SNPs.

Key differences have also been noted in polymorphism proportions, pSNP
occupancies, rDNA copy numbers, and variation patterns across the rDNA unit
between the species. Furthermore, some of these differences have been linked
to the species’ contrasting population structures. This is important, because it
may be possible to extrapolate this understanding to studies of other species in
the future. In the case of yeast, where a high frequency of genome mosaicism
is inferred in one species, S. cerevisiae, but not the other, S. paradoxus, it is
compelling to speculate that the mosaic strains in S. cerevisiae may be linked to
human traffic and/or industrial processes whereas they are considerably less likely
to arise in the wild S. paradoxus. It is also of note that the hybridisation patterns
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inferred are not inconsistent with the geographical locations of these strains.

It has been hypothesised that some variation patterns may be used to infer key
genomic events. In particular, the numbers of pSNPs across the rDNA array
and the distribution of individual pSNPs across strains may be used to identify
putative hybridisation signals. While this pattern has been previously observed in
S. cerevisiae, it has been refined here to hypothesise the first S. paradoxus mosaic
strains (N-17 and N-45) and, in conjunction with pSNP occupancy values, to
pinpoint potentially older hybridisation events in S. cerevisiae. Furthermore, it
has been shown that many of our inferences are consistent with Structure analyses
of genome-wide SNP datasets gleaned from these strains, confirming the value of
pSNPs as a predictor of genome structure.

This analysis has captured and characterised detailed snapshots of two yeast species
undergoing both similar (concerted evolution, homogenising the sequences within
the rDNA unit) and contrasting (levels of genome hybridisation) evolutionary
processes. It would be interesting to learn more about these processes by modelling
them mathematically. The datasets developed here are a major step in achieving
successful models that can fully exploit the rich source of evolutionary knowledge
held within the rDNA array. Given the ubiquity of this genomic region, the
prospect of using such models to analyse the genomes of a wide range of species is
an attractive one. In the next chapter, early work in formalising concerted
evolutionary processes computationally will be described, and the resulting
software will be used to understand more about the dynamics of concerted
evolution in the rDNA unit.
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4. Simulating rDNA Evolution
using the SIMPLEX Software

Chapter Abstract

To investigate how a single point mutation might be spread throughout or be
lost from an rDNA array, a program, SIMPLEX, was developed in the Java
programming language to simulate the concerted evolutionary process. The
development and testing of this program is discussed. The fate of individual
pSNPs within an rDNA array is followed using SIMPLEX, and the effect of
two concerted evolutionary processes upon the simulations is examined. Finally,
insights into the process of concerted evolution and its constituent mechanisms
gained from these preliminary analyses is discussed.

4.1. Background and Outline

The rDNA tandem array is believed to evolve through the process of concerted
evolution which over time homogenises the sequences between array units, though
as is now known, not perfectly. The term concerted evolution relates here to the
observation that tandem rDNA units are uniform in sequence yet this sequence
can change over time, and so repetitive units evolve “in concert” (Eickbush and
Eickbush, 2007).

Two key mechanisms have been implicated in this process: Unequal Sister
Chromatid Exchange (USCE) and Gene Conversion (GC). The relative
contributions of these two events and their exact modes of action are not yet
known.
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Gene Conversion

Gene conversion is a non-reciprocal transfer of DNA and does not result in a
change in the tandem array size, as events involve an overwriting or “copy paste”
of one unit with another. Many possible mechanisms underly gene conversion
in tandem arrays, such as Synthesis Dependant Strand Annealing (SDSA) or
Double Strand Break Repair (DSBR). A simplified mechanism is shown in figure
4.1a. Unlike USCE, gene conversion can act between chromosomes, making it
a potential mechanism for homogenisation between rDNA arrays on different
chromosomes (Eickbush and Eickbush, 2007).

Unequal Sister Chromatid Exchange

USCE involves crossing over between sister chromatids that are not precisely
aligned, and a non-reciprocal exchange of DNA, resulting in chromatids of unequal
length. This change in chromatid size leads to USCE being experimentally visible.
As a consequence, this process has been implicated in concerted evolution since
the 1980s when a gene inserted into the rDNA array, LEU2, was shown to be
unstable and was lost from the rDNA array due to USCE (Petes, 1980). USCE
either involves an increase in chromatid size due to a duplication of one or more
units, or a decrease due to a deletion, as illustrated in figure 4.1b.
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Figure 4.1.: Overview of the two main processes implicated in concerted evolution.
a) Gene Conversion, b) Unequal Sister Chromatid Exchange

Mathematical Models of Concerted Evolution

As noted in Chapter 1, there have been many attempts to mathematically and
computationally model the processes involved in concerted evolution, including:

- Smith – simulated random unequal crossover computationally, showing
that a repetitive sequence would always be generated and maintained by
this process when the sequence was not under selection (Smith, 1976).
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- Ohta – produced mathematical models of fixation of mutations by random
crossovers (Ohta, 1976).

- Nagylaki and Petes – modelled intrachromosomal gene conversion,
showing that it would be possible to maintain sequence homogeneity with
this mechanism alone. In this model, all units were deemed to be equally
likely to be involved (Nagylaki and Petes, 1982).

- O’Kelly – modelled Unit Recombination Events (URE’s), tried different
models and showed a non-uniform recombination model best fitted observed
data (O’Kelly, 2008).

These models were mainly concerned with inferences about the mechanisms from
experimental evidence of the end products of concerted evolution, namely an
already homogenized array. The identification of pSNPs provides a snapshot
of concerted evolution in action, enabling new models of rDNA evolution to be
developed, and improving understanding of the mechanisms involved. Furthermore,
model-based analysis of pSNPs in large scale genomic and metagenomic datasets
will facilitate fine-scale phylogenetics and provide a new approach to understanding
strain and microbiome dynamics. In order to achieve this, a sensible first step is to
develop a simulation program against which to compare results of computational
analyses of pSNPs in large-scale datasets, such as those produced in Chapter 3.

4.2. The SIMPLEX Tool

A simple simulation tool to simulate the evolution of an rDNA tandem array was
designed and developed using the Java programming language . The tool provided
preliminary results on how concerted evolution moulds an array over time, which
was then built upon by adding more complexity to the mutation events.

Initial simulation runs focussed upon mitotic USCE and GC events, tracking
the spread of a single pSNP through the array to eventual fixation or loss. The
number of pSNPs within the array are recorded after every event, and may be
easily plotted. The mechanisms involved in concerted evolution are simplified to
involve a single chromatid only. Furthermore, the program does not detail finer
intricacies such as distinguishing between different types of gene conversion (i.e.
SDSA or DSBR). In future, increasingly complex selection/mutation layers and
array size variation could be added (Ide et al., 2010).
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The Java tool, called SIMPLEX (SIMulating Partial SNPs Loss or EXpansion),
simulates simplified mechanisms of GC and USCE as described in the following
sections. To start investigating these processes a clear definition of those
mechanisms which are involved, and those which are excluded due to the need for
simplicity, is required.

4.2.1. Assumptions and Parameters

Processes which are simulated by the program, and assumptions made, include:

• Mitotic events only
• USCE - intra locus crossing over. Ignore equal sister chromatid exchange

which will not affect the sequence
• Gene Conversion - based on those used in the double-stranded break

repair system

Processes not included in the program:

• Meiotic events - there is a 70- to 100-fold suppression of meiotic
recombination between rDNA arrays on homologous chromosomes (Casper
et al., 2008). As a result, meiotic recombination will not contribute as much
to observed variation as mitotic events, and therefore it is sensible to exclude
it from preliminary work.

• Horizontal gene transfer, inter strain recombination or hybridisa-
tion - inter strain recombination is not considered

• Gene conversion - frequency of accompaniment with crossover -
gene conversion can be associated with a crossing over event, but crossing
over is only condiered here as part of USCE events

• Extrachromosomal rDNA circles, or ERCs - ERC’s are formed by
homologous recombination (Gangloff et al., 1996; Johnson et al., 1999), but
the program will not include their formation, or possible interaction with
the array

In SIMPLEX, gene conversion is treated as a non-crossover outcome of a USCE
event, therefore allowing the same parameters (and some of the underlying
computer code) to be used for each process. This treatment assumes both
mutations occur after a double-stranded break repair event, where the two sister
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chromatids can misalign by a set amount. In USCE the chromatids crossover,
resulting in a change to a number of units, whereas in gene conversion only a tract
(of the size used as a template to repair) is changed and the chromatids do not
crossover, as shown in figure 4.1. A gene conversion tract is the sequence which is
copied across to the donor, sizes vary but are less than a unit in size.

Specific values chosen for initial parameters include:

- GC tract size initially fixed to be 4000bp, the lower estimate from a paper
investigating this phenomenon (Judd and Petes, 1988).

- USCE tract to be between 1 and 10 units in length, from research on the
LEU2 locus (Szostak and Wu, 1980).

- GC donor and acceptor distance = USCE tract size – misalignment distance,
as these are assumed to be different outcomes of the same process.

- Double-strand breaks are equally likely to occur anywhere within a unit.
- USCE is initially set to occur 20% of the time, as this is the observed ratio

of the crossover product in a study looking at mitotic DSBR events in yeast
(Nickoloff et al., 1999). This ratio can be varied.

- The limits of the array size are set to the approximate minimum and
maximum calculated in different strains of yeast (∼70 and 210 units, see
table 3.4 in Chapter 3 and (James et al., 2009)).

- The starting number of units is 140, the estimated number of units for
S.cerevisiae (Eickbush and Eickbush, 2007). Similarly the number of base
pairs in a unit is 9138, the size of an S.cerevisiae rDNA unit.

4.2.2. SIMPLEX Program Overview

An ArrayList of a specified size is created to represent an array of rDNA units.
A typical size in yeast is ∼140 units. Only one ArrayList is needed to represent
an rDNA array on one chromatid, as eventual homogenisation between sister
chromatids is assumed. The simulation run begins with one polymorphic unit
in the array (a single pSNP), the rest will be referred to as consensus sequence.
The ArrayList is composed of Integer objects (a series of numbers), where each
object represents a single rDNA unit. Each object will either take the value -1, to
represent a consensus unit, or a number to represent the base position of a pSNP
within the rDNA unit. The time until fixation or loss of a polymorphic rDNA unit
will be tracked within a single simulation. The two different concerted evolutionary
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Figure 4.2.: Overview of each iteration of a simulation in the SIMPLEX program

mechanisms are run by calling their equivalent methods within SIMPLEX, in
varying proportions which can be specified. Only USCE events can change the
size of the chromatid array by duplicating or deleting units. The program initially
assumes a basic, simplified model of each process, and each unit involved in a
concerted evolutionary event is chosen entirely at random.

An overview of the loops used within SIMPLEX for each simulation, following
an initial pSNP until loss or fixation, is shown in figure 4.2. At the start of each
loop within a simulation, an rDNA unit is chosen at random from which to start
the event, as well as a random number of units to be involved (equivalent to the
misalignment of chromatids), shown in the red box in figure 4.2. The polarity of
the tract is also chosen, in other words whether the units involved in an event are
a certain number of units upstream or downstream the starting unit. A check is
carried out to ensure all of the units involved are within the array boundaries,
and the misalignment value is re-generated until they are not. For example, if
unit 100 is randomly chosen as the starting unit, and the misalignment or tract
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Variable Description
numSimulations Number of simulations to run
percentUSCE Percentage of events that will be USCE
unitSize Number of bases in one rDNA unit
startingArraySize Number of elements in the array at the start of a simulation
maxArraySize Maximum limit of array size
minArraySize Minimum limit of array size
elementStartpSNP Element in array possessing the initial pSNP
SNP Base position within a unit which is a SNP
maxMisalign Maximum number of units which can misalign
gcTract Number of bases that are copied in a GC event
name Name of the output files
maxIterations Maximum number of iterations allowed in a single

simulation, used if limiting run lengths

Table 4.1.: List of static variables in SIMPLEX. gcTract is static in this version
of the software.

size is 6 units, but the array is only currently 102 units long, the misalignment
value must be changed to be within the array size (in this case to 2 units). A
method is then called to carry out the USCE or GC event on the array, using
the above parameters. The likelihood of each type of method being called is set
globally. If the method is USCE, a limit exists for the minimum and maximum
number of units allowed in the rDNA array, and the units chosen at random need
to maintain the array size within these bounds. Consequently, a method must
check this and alter the relevant values if necessary. Finally a method is called to
check if the most recent event has homogenized the array, so that the pSNP has
either spread to all units or has been lost in all units. If this is the case, results
are written to file, and a new simulation starts. If the units are not identical, the
actions of that iteration of the simulation are written to a file and the loop starts
again.

A number of parameters are set at the beginning of a simulation run, which will
be identical for each simulation within it. These static or constant variables are
shown in table 4.1. They include the percentage of USCE events, and the position
in the unit at which the pSNP is located. In this program, to reduce complexity,
the size of the sequence tract involved in GC events will be static. Lastly, a
maximum number of iterations (one iterative cycle is shown in figure 4.2) can be
set, to limit the run time of the program.
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The methods that simulate USCE and GC events within an rDNA array will now
be described in more detail.

Unequal Sister Chromatid Exchange Method

The USCE method can simulate deletions and duplications, both of which will
effect the size of the rDNA array (see figure 4.3 and 4.4). The program follows
the fate of a single chromatid, which can either grow or reduce in length with
each event (figure 4.3b). Deletions and duplications are assumed to occur at the
same frequency (Ganley and Kobayashi, 2011), so these are chosen randomly in
the USCE method using a boolean (true or false) value.

The method requires the following information, with reference to figure 4.4 to how
this relates to the array:

• An initial unit is chosen at random (the green unit)
• A point within this unit to start a break (the start of the dotted box)
• A misalignment value which will be the number of units involved in the

exchange (the length of the dotted box, in this case 5 units)
• From these three values the last unit in the tract (the orange unit, 5 units

from the green) and the point at which the tract ends (the end of the dotted
box) are calculated

• The tract between the breaks will be duplicated or deleted (with all sequence
within the dotted box copied or removed).

• The initial and last unit could change identity dependent upon the position
of the break and the position of the pSNP (the green and orange split box)

Figure 4.4, where a pSNP is represented as a purple cross, illustrates how pSNPs
are reduced or increased in number throughout the array by this process.

The ArrayList structure in Java has in-built methods to remove objects or to copy
objects and insert them in specified element positions within an ArrayList, which
is essentially the basis of USCE. This makes ArrayLists an ideal data structure
to represent an rDNA array. However, a composite unit will be produced for
each iteration of each simulation run (seen as the split orange and green unit in
figure 4.4). The identity of this unit (whether it has a pSNP or it is consensus) is
dependant on the identities of the two original units of which it consists, the break
position used in the tract, and the position of any pSNPs present. The process
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Figure 4.3.: Representation of USCE events in an rDNA array a) representation
of a USCE event, involving a misalignment of 2 units with the two
sister chromatids crossing over. b) representation of the same event
as in a, except looking at the fate of one chromatid only. In this
case one chromatid would show a duplication event, and the other a
deletion. Note that in the deletion event the first unit in the tract
changes (now red/orange), while in the duplication it is the last unit
(orange/red).

to determine the identity of this unit, and what will happen to the ArrayList, is
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Figure 4.4.: Representation of USCE events in an rDNA array (representing fate of
one chromatid), with a pSNP shown as a purple cross. a) a duplication
event involving a tract of 5 units, resulting in the spread of a pSNP.
b) deletion event involving a tract of 5 units, in this case resulting in
the loss of the pSNP

represented as a flowchart in figure 4.5.

This flowchart forms the basis of a series of nested IF statements which will then
duplicate or delete units which are part of the misalignment tract, and alter the
identity of the composite unit depending upon the path through the flowchart. In
many cases the identity of the composite unit will not need to be changed as the
units involved are identical. It is only if they are not identical that the position
of the break in relation to the pSNP is important. Also of note, depending on
whether the event is a duplication or a deletion, the unit which is composite
changes. In the case of a duplication, the last unit involved in a tract is the
composite (the orange unit in figure 4.4a), because the copied units are inserted
at a point within the unit. In the case of a deletion, the first unit involved in the
break changes (the green unit in figure 4.4b), as a set number of units after this
one are removed from the array. These composite units are dependant upon the
break position within the unit, and the identities of the first and last units in the
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Figure 4.5.: Overview of the USCE method
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tract (green and orange in figure 4.4). The different possible outcomes and their
consequent unit changes are illustrated in figure 4.5, and have been implemented
accordingly in the USCE code.

Another complication with the USCE method is alluded to in figure 4.2, where
the number of units within the array needs to be maintained between reasonable
(experimentally determined) values. This is important as the number of units
in an array varies between species, but is maintained around a certain number
within a species (Ide et al., 2010), as discussed in Chapter 1. Within SIMPLEX
there are a series of IF statements that check whether the USCE event chosen
will break the boundary conditions set for the size of the array, before the USCE
method is called. These are illustrated in the flow chart in figure 4.6. If the event
would cause the array to exceed these bounds, the USCE event is changed to the
opposite, so to a duplication event if a deletion would result in the array being
too small, and vice versa.

The considerations and layout of the methods used for Gene Conversion are
different, as smaller tracts are used, and the array size will not change.
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Figure 4.6.: How to deal with boundary conditions for the size of the rDNA array
in USCE
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Gene Conversion Method

Although the method to simulate a gene conversion event involves a smaller
number of units, in some ways it is more complicated than a USCE event as a
tract can span two units, both of which could both change identity. For a USCE
event, where whole units were added or removed, only one unit could potentially
change in composition.

As discussed at the beginning of this chapter, and in Chapter 1, gene conversion
involves overwriting a section of an acceptor unit with a section from a donor unit,
as illustrated in figure 4.7. This is sometimes described as a copy-paste event.
As in figure 4.7, this sequence could span two units, or be contained within one
unit.

Gene conversion

acceptordonor

Figure 4.7.: Overview of a Gene Conversion event in an rDNA array (representing
the fate of one chromatid). The X represents a pSNP within a unit.
In this case, the pSNP frequency increases by one.

This method uses many of the same variables as USCE:

• The donor unit position, chosen at random
• The misalignment, how many units away the acceptor and donor are.
• The acceptor unit, which may be a misalignment distance away from the

donor in either direction
• Unit size
• Double- stranded break position, this in conjunction with unit size and tract

size will determine if the tract spans 2 units
• pSNP position
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It also includes a number of other parameters:

• The size of the conversion tract (static in this version)
• Overflow tract, this is how far the conversion tract will go into the next unit

(equal to the tract size plus the break position, minus the unit size)

If the overflow tract is >0, then there will also be acceptor+1 and donor+1 units
to consider and compare (blue units within the dotted boxes in figure 4.7).

Similarly to the USCE method, a series of nested IF statements are used to
compare donor and acceptor units, but in this case there will be more of them
due to the possibility of tracts spanning units. There are too many options here
to consider solely diagrammatically, so this is best visualised as a flowchart, as
seen in figure 4.8.
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Figure 4.8.: Overview of the twelve different outcomes for units in the rDNA array
during the GC method. In the green boxes, D refers to the donor
unit, A to the acceptor unit, D+1 refers to the donor + 1 unit, and
A+1 refers to the unit after the acceptor unit.
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Testing the Gene Conversion Method

As in the USCE method, there are a number of scenarios (in this case six) where
a GC event results in no change to the rDNA array. But as there are more
comparisons between unit identities in the gene conversion method, a number
of different parameters to test each of the outcomes was formulated, to ensure
the method was producing the correct results. Ten cases were devised, with all
twelve possible outcomes from figure 4.8 implicitly tested as similar methods were
used for different outcomes. In these tests, pSNP positions were generated before
and after breaks, and in different units. Finally the results were compared to the
expected outcomes. The following runs were undertaken:

1. no overflow, donor and acceptor different, donor with pSNP, differences not
within tract.

2. no overflow, donor and acceptor different, donor with pSNP, differences
within tract.

3. no overflow, donor and acceptor different, acceptor with pSNP, differences
not within tract.

4. no overflow, donor and acceptor different, acceptor with pSNP, differences
within tract.

5. overflow, both sets different, only donor + 1 and acceptor + 1 have pSNP
differences within tract.

6. overflow, both sets different, both sets have differences within the tract.
7. overflow, both sets different, neither set has differences with the tract.
8. overflow, only donor + 1 and acceptor + 1 different, differences within tract.
9. overflow, only donor + 1 and acceptor + 1 different, not within tract.

10. overflow, none different.

Each test case gave the expected results, with the table of results for these runs
shown in table 4.2
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Tract Start Over- Unit i.d I.d after GC
size position flow Donor D+1 Acceptor A+1 Acceptor A+1
4000 4000 0 3000 n/a -1 n/a -1 n/a
4000 2000 0 3000 n/a -1 n/a 3000 n/a
4000 4000 0 -1 n/a 2000 n/a 2000 n/a
4000 2000 0 -1 n/a 3000 n/a -1 n/a
4000 8000 3000 2000 2000 -1 -1 -1 2000
11000 2000 4000 3000 -1 -1 3000 3000 -1
3000 8000 2000 3000 3000 -1 -1 -1 -1
5000 8000 4000 -1 3000 -1 -1 n/a 3000
4000 6000 1000 -1 3000 -1 -1 n/a -1
4000 8000 3000 -1 -1 -1 -1 -1 -1

Table 4.2.: Results from testing the GC method with known values of different
units. Unit size was set to 9000 for simplicity. I.d.’s of -1 refer to
consensus units possessing no pSNPs. All results returned were as
expected.

Program Output

The final aspect of SIMPLEX to be discussed is the output of the program. The
results of each simulation run are saved into a new directory named “simulation” +
the date and time the run started. Each individual simulation is output into a tab
delimited text file, named with its position in the run (i.e simulation 1), suffixed
with “ lost” or “ fixed” depending on whether the pSNP was lost or fixed within
the array during the simulation (for example, the filename “2010-10-12:15-55-
27 simulation 6 lost”, denotes that a pSNP was lost in run 6 (of 10,000), started
at 15:55:27 on the 12th of October 2010). The output file includes:

• A header with the parameter details i.e. starting array size, percentage that
should be USCE events, date and time, max and min array size permitted,
the starting unit containing the pSNP, and the position of the pSNP within
the unit.

• A line for each iteration (concerted evolutionary event), with the current
array size, the number of units containing pSNPs, and the identity of the
event (GC or USCE)

• A final line saying whether the pSNP was fixed or lost, and the number of
iterations carried out in the run.

The output files can be input into spreadsheet software such as Microsoft Excel,
allowing the way in which the number of pSNPs or array size varies over the
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course of a simulation to be visualised easily.

Furthermore, a summary file is also produced for each run, which includes a
header of all of the parameters set for that run, and the following information
summarised for each simulation:

• The simulation number to identify the run
• The numbers of each type of event carried out in the run
• The maximum and minimum number of units reached
• The maximum number of pSNPs reached
• The maximum percentage occupancy of pSNPs reached
• Whether the pSNP was fixed or not
• The size of the array at the end of the simulation
• The total number of iterations reached

4.3. Preliminary SIMPLEX Experiments

A series of experiments was designed to evaluate the utility of the SIMPLEX
program in shedding light on the concerted evolutionary process. Simulations of
10,000 runs were undertaken for each set of parameters, and the results compared.
In Experiment 1, three different sets of event parameters were used. In the first set,
runs only performed USCE events, in the second only GC events were undertaken,
and in the third a ratio of 80% USCE and 20% GC events were run. The latter
parameter set was chosen as this was the estimated balance between crossover
and non-crossover events in previous research, although not on rDNA (Nickoloff
et al., 1999). In the GC method, the tract size was constant at 4000 bases, the
lower estimate of tract size (Judd and Petes, 1988). The minimum array size and
maximum array size were set to be 70 and 200 respectively, the approximate range
of array sizes estimated in the SGRP dataset (James et al., 2009). The size of the
unit was set to be 9138bp, the size of a unit shown in the S. cerevisiae reference
strain at the SGD. The pSNP position within the unit was set to be 4000, and
the unit starting with a pSNP was set to be unit 70, both chosen as they are near
the mid point of a unit, and the array respectively.

The proportion of simulations runs in which the initial pSNP was fixed or lost
can be compared, as can the time (or number of iterations) that each run takes
to fix or lose a pSNP and changes in the array size.
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In Experiment 2 the effect of changing the pSNP occupancy at the start of a
simulation was examined. In Experiment 3 the effect of the position of the initial
pSNP in a unit and the unit within the array was examined. The parameters
used in Experiment 1-3 are shown in table 4.3. In the following experiments the
positions of pSNPs and units are zero-indexed, so the first base position within a
unit is referred to as position 0, and the first unit within an array as unit 0.

Parameter Experiment 1 Experiment 2 Experiment 3
Starting Array Size 140 140 140
Minimum Array
Size

70 for most runs,
20 for end array
size experiment

70 70

Maximum Array
Size

200 for most runs,
270 for end array
size experiment

200 200

USCE/GC Event
ratio

100% USCE, 100%
GC and 20%:80%

USCE:GC

20% USCE:80%
GC

20% USCE:80%
GC

pSNP position
within a unit

4000 4000 0, 1, 10, 50, 250,
1000 ,4000, 8000,
9080, 9120 ,9126,

and 9127
Number of Units
Starting with a
pSNP

1 1, 14, 28, 42, 56,
70, 84, 98, 112, 126

and 139 units

1

Unit starting with
a pSNP

Unit 70 Varies with
number of units.

Unit 0, 1, 10, 80,
100, 138 and 139

Table 4.3.: Parameters used in SIMPLEX for the three sets of experiments. Unit
0 is the first unit in an rDNA array, position 0 is the first position.

4.3.1. Test Runs and Visualisation of Results

In test runs of 10,000 simulations at starting array size of 140, 20% USCE events,
max array size of 200, minimum array size of 70, and misalignment of 10, a run
took approximately 40 seconds, the output directory was 76 MB in size, and SNPs
were fixed in ∼70 out of 10,000 runs.

A single simulation run can be visualised as a line chart illustrating how the
percentage of units which contain a pSNP varies as the run progresses. An
example is shown in figure 4.9. In this example, an initial pSNP is fixed within the
array (as the percentage of units with a pSNP reaches 100% and the simulation
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Figure 4.9.: Line chart example of pSNP frequency changing over the course of a
single run. In this run the initial pSNP is fixed within the array after
∼23,000 events

run ends), after approximately 23,000 events. However, note that fixation was
almost reached at various points along the run, particularly after ∼17,000 events.
As expected with only one unit out of 140 containing a pSNP, the majority of
runs result in the pSNP being lost from the array, with only 50-70 simulation runs
out of 10,000 resulting in fixation for this parameter set.

Also, as expected, on average it takes considerably longer to fix a pSNP than to
lose it, as illustrated in the cumulative frequency chart in figure 4.10. Taking
the case where 20% of events are USCE, in those runs in which the pSNP was
lost, approximately 90% had lost the pSNP within 1,500 concerted evolutionary
events. However, in runs in which the pSNP was fixed, only 50% had completed
after 6,500 events. This result is expected as only one unit out of 140 contains a
pSNP, and therefore changing just this one unit will lead to loss of the pSNP, as
opposed to fixation which will require all units to have been affected by one or
more concerted evolutionary event.
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Figure 4.10.: Chart of cumulative frequency of percentage of total simulations
completed within a number of iterations. This is for 20% of events
being USCE, and starting with one unit containing a pSNP. Results
are shown as a percentage of runs finished by number of iterations.

4.3.2. Experiment 1: Varying the ratios of USCE to GC events

Simulation of 10,000 runs were carried out for three different proportions of the two
concerted evolutionary events, with the parameters shown in table 4.3. Comparing
the effects that the different concerted evolutionary events have on the fixation
and loss times, it can be seen that USCE events have a disproportionate effect on
the rate of pSNP fixation, as shown in figure 4.11. Fixation takes more events to
achieve than loss with all three event ratios examined: 100% GC, 100% USCE,
and 20%USCE/80% GC. The number of events until fixation or loss is reached is
smallest when only USCE events occur, and largest with 100% gene conversion.
However, on average gene conversion takes 31 times more events to fix a pSNP,
and 14 times more events to lose a pSNP, than USCE alone. This is to be expected
to a certain degree, as gene conversion has a tract size of 4000 bases, whereas
USCE can involve between 9,137 and 91,370 bases (2 to 22 times longer tract
sizes than GC). Furthermore, USCE can alter the array size, influencing pSNP
occupancy across the array. When only 20% of events are USCE, the number
of events needed until fixation or loss is achieved is still drastically reduced in
comparison to the 100% GC runs. Approximately 10 times fewer events are needed
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Figure 4.11.: Bar chart representing the mean number of iterations (from
simulations of 10,000 runs) until a single initial pSNP is fixed or
lost from an array, comparing three different ratios of the two event
types, USCE or GC. USCE events greatly reduce the total number
of events needed until fixation/loss compared to GC events. Error
bars show standard deviation across the 10,000 runs.

for fixation, and 4 times fewer for loss. In all cases but 100% USCE there is a
large variation in the number of events needed, illustrated in figure 4.11 by the
large error bars. Event number variation is particularly large for the 100% gene
conversion case.

The number of units in the rDNA array at the end of the simulation runs are very
different between those in which pSNPs are lost or fixed, but show little difference
between event ratios, as shown in figure 4.12. For this experiment, the minimum
array size was set to be 20, and the maximum to be 270 units, to allow a larger
variation. The similarity between event ratios is likely due to USCE being the
only event which changes the array size, and because despite there being more
total events in the 20% USCE simulations, the number of USCE events within the
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Figure 4.12.: Bar charts comparing the average end array size when simulation
runs have completed. 100% GC not shown as this will not alter from
the initial array size. Error bars show standard deviation.

100% USCE and 20% USCE/ 80% GC simulation runs are very similar. However,
in both cases rDNA array sizes are on average much smaller when a pSNP is
fixed than when it is lost. The average number of units when a pSNP is lost is
very close to the starting array size of 140, whereas the array size is closer to
the minimum when the pSNP is fixed. This could be accounted for by far fewer
events being needed to lose a pSNP than to fix one, as far fewer units need to
change state, shown previously in figure 4.10, where a large number of pSNPs are
lost in a relatively small number of events. This would mean that many times
there would be few events until pSNP loss, and the array size will be close to the
starting size in many cases. Looking at the results for the spread of the array size
data, shown in table 4.4, the maximum and minimum end array sizes are similar
for each case. However, in those cases where a pSNP is fixed, it could be more
likely to occur at a smaller array size as there are fewer units which need to gain
the pSNP.
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100% USCE
fixed

100% USCE
lost

20%USCE/
80%GC fixed

20%USCE/
80%GC lost

minimum 22 21 21 21
maximum 246 265 253 270
median 55 131 46.5 135
average 80 131 76 135
standard deviation 58 45 62 40

Table 4.4.: End array size for 100% USCE and both event types (USCE and GC),
comparing when pSNPs are fixed or lost from the array.

4.3.3. Experiment 2: Changing Proportions of Units
Containing a pSNP at the Start of a Simulation

The effect of changing the number of units which start with a pSNP was
investigated. pSNPs, at position 4000, were included in a series of different
units, equating to approximately 1%, 10, 20, 30, 40, 50, 60, 70 ,80, 90 and 99% of
the units, see table 4.3. Each case was simulated for 10,000 runs.

The number of simulation runs to either fix or lose pSNPs related linearly to
the number of units which started with a pSNP, with a correlation coefficient
of -0.99 and 0.99 for loss and fixation respectively, as shown in figure 4.13. The
symmetrical pattern in figure 4.13 further indicates the program is working
correctly, as containing or not containing a pSNP could be seen as two different
alleles in a population, and at 50% pSNP occupancy an approximately equal
number of simulation runs should result in fixation and loss.

As the starting percentage of array units possessing a pSNP varies across the
simulation runs, the number of events until fixation or loss occurs also varies,
as shown in figure 4.14. Although there is a large degree of variation in event
number between individual simulation runs in each percentage bin (not shown in
figure 4.14), the average number of events over the 10,000 simulations shows a
distinctive pattern. The pattern is again symmetrical but in this case shows a
polynomial relationship between pSNP occupancy and number of events (second
order with an R-squared value of approximately 0.98 in both fixation and loss).

The distribution of the number of events observed for fixation and loss at different
starting percentages is shown in figure 4.15, for starting occupancies of 50% and
below. The data appear to follow Poisson distributions, a natural distribution
for independent counts occurring at an identical rate. At 50% occupancy the
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Figure 4.13.: Proportion of 10,000 simulation runs in which pSNPs were fixed or
lost, when the percentage of units which start with a pSNP is varied

distribution is the same for those simulation runs in which the pSNPs are fixed and
lost. At all starting occupancies, similar numbers of runs are fixed and lost after
approximately 9000 events. Runs which complete after 9000 events contribute
more towards the value of the average number of events until pSNP fixation
when starting occupancies of pSNPs are low, (and similarly average number of
events until loss when starting occupancies are high) as they account for a greater
proportion of the total number of runs, as seen as the shallower distributions in
figure 4.15.
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initial pSNP occupancy varies.
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Figure 4.15.: Histograms of the number of events taken to fix or lose a pSNP, when
the initial pSNP occupancy varies. Initial occupancies are shown at
the top of each histogram, with each bin showing an interval of 1000
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4.3.4. Experiment 3: pSNP Position Within the Array

This experiment aims to assess the effects of pSNP location within a unit, and
unit position within an array, on the number of events to fixation or loss. A series
of simulations were undertaken using 20% USCE and 80% GC with 10,000 runs
for each simulation. The pSNP position within a unit, and the position of this
unit within the rDNA array were varied. The positions are zero-indexed, so the
first base position within a unit is referred to as position 0, and the first unit
within an array as unit 0. Within the 140 units in the starting array, units 0, 1,
10, 80, 100, 138 and 139 were each tested. pSNPs were tested in each of those
units, at base positions 0, 1, 10, 50, 250, 1000, 4000, 8000, 9080, 9120, 9126 and
9127. The results of the 84 simulations were split according to whether the pSNP
was lost or fixed.

The results of runs in which pSNPs were lost are shown in table 4.5 and figure
4.16. In all units tested except unit 0, the position of the pSNP within the unit
does not greatly effect the average number of concerted evolutionary events taken
to lose a pSNP in the majority of positions. This is illustrated in figure 4.16 where
the number of iterations is fairly flat for all but the first positions in these units,
being under 1000 events in almost all cases. When pSNPs were at position 0 or 1
modest increases in the average number of events were seen, in particular in units
1 and 100. There was also a slight elevation in the number of events in the last
unit in the array (139), for pSNP positions over 8000. However, when looking at
unit 0 (the first unit within the array), pSNP positions under 1000 bases show
considerably elevated average numbers of events, with values for pSNP positions
under base 4000 not able to fit within the same axis of the bar chart in the figure
(the full y-axis is shown in the top right of figure 4.16). It might be expected
that the ends of the array are ‘mirrored’, with both ends proving more difficult to
“access” via mutation, however the first unit seems to be more resistant to change.

However, these are very different results to those found when investigating the
average number of events for different units and pSNP positions in those simulation
runs where pSNPs are fixed, as shown in table 4.6 and figure 4.17. As in previous
results, the number of events required to fix a pSNP is much greater than to lose
it. Furthermore, for all pSNP positions above 1000 at most unit positions the
number of events is relatively constant. The only exception to this is in the case
of unit 139, where base position 9080 has a slightly higher average, and pSNPs
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pSNP unit
position 0 1 10 80 100 138 139

0 2171821 1068 603 680 1006 453 439
1 1085915 1318 495 461 644 450 462
10 197451 843 523 512 442 460 437
50 42751 944 554 481 445 506 469
250 8728 844 528 456 478 458 464
1000 2437 837 524 438 449 444 462
4000 880 721 513 463 441 463 445
8000 760 677 480 444 450 481 599
9080 773 652 488 449 453 471 708
9120 773 667 479 460 457 472 723
9126 758 643 487 444 464 483 721
9127 768 639 489 453 458 479 721

Table 4.5.: Average number of iterations until the pSNP is lost for different starting
units and pSNP positions

at base positions 9120 and above are never fixed. The absence of terminal base
positions fixing in this unit could be linked to the increased number of iterations
needed to lose a pSNP in the last unit, seen in figure 4.16. However, for all unit
positions tested, as pSNP positions decrease from 1000 downwards increasing
numbers of iterations are required to fix the pSNP, unlike the cases for loss where
only position 0 was affected. This is illustrated in figure 4.17 where there are
a very large number of iterations at the start of each unit, and also by looking
across the rows of table 4.6, where the number of events at each pSNP position is
similar across all units tested.

This difference in pattern, where a large number of events is required to lose a
pSNP in the first unit only whereas large numbers of events are required in all
units to fix a pSNP at the start of a unit, can be explained at different levels. Here
rDNA units are set to be 9127 bases long, and there are 140 units. Consequently
there is only one chance to choose the first base in the first unit by either method,
as tracts go in the downstream direction. This translate to a chance of one
in 1,277,780 events on average, the same magnitude as the average number of
iterations to fixation and loss in the first base position (table 4.6). This also
relates to the magnitude of the decrease in the average number of iterations for
subsequent positions in the first unit. For example pSNP position 50 in unit 0
has approximately 50 times fewer iterations on average needed for fixation than
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Figure 4.17.: Bar chart showing the average number of iterations of SIMPLEX
until a pSNP is fixed, varying the starting unit containing a pSNP,
and the position of the pSNP within the unit. Top right shows the
bar chart with a full y-axis, the main chart showing the same dataset
but with a truncated y-axis
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pSNP unit
position 0 1 10 80 100 138 139

0 2262225 2019050 2498029 2121235 2455907 2195744 2236025
1 1187652 1206765 1228112 913174 1139146 976316 1159920
10 233028 206603 174881 164307 191106 208808 216708
50 55798 38325 46607 46321 49245 48668 36244
250 20100 14975 15777 15318 13215 15739 16676
1000 12459 11313 9859 10693 10575 9151 12130
4000 9296 9027 9455 9300 9840 8918 9354
8000 8878 9381 10105 9248 9133 8487 10614
9080 8436 9615 8595 9001 8533 8774 16983
9120 8821 9357 9579 9000 9547 8168 0
9126 9864 9105 9023 9416 9267 8709 0
9127 9943 9436 10558 9045 8790 8283 0

Table 4.6.: Average number of iterations until the pSNP is fixed for different
starting units and pSNP positions

position 1.

SIMPLEX assumes that concerted evolutionary events do not go beyond the
boundaries of the array so that the array ends are left tidy as whole rDNA units.
But is this biologically realistic? Well, just as the array cannot go out of bounds
in this simulation, an rDNA unit would presumably be unlikely to pair with a
region outside the array. In the simple representation of misaligning chromatids in
figure 4.1, the first unit (blue in the figure) will not be able to pair with anything
“above” it. The other end of the array will be similar. When the ends of the array
do undergo any concerted evolutionary processes, if the sequence which flanks the
rDNA is changed, this would result in degradation of the rDNA sequence at the
end of the array, as rDNA would become interspersed with sequence from the
flanking regions. Although there are some indications of partial terminal rDNA
units in nature, for example in S. cerevisiae strain S288c where the rightmost
rDNA unit is believed to possess a variant 5S region which is truncated, along with
a partial IGS region (McMahon et al., 1984; Hillier et al., 1997), recent genome
sequencing projects have yet to confirm this finding.

In future the flanking sequence of rDNA should be examined to increase knowledge
of concerted evolution in these regions. This could result in different approaches
for modelling the boundaries between the ends of the array and the flanks. Such
a change was not undertaken here, but with some modifications, SIMPLEX could

4.3. Preliminary SIMPLEX Experiments 140



Chapter 4. Simulating rDNA Evolution using the SIMPLEX Software

be used to investigate evolutionary processes at the ends of the rDNA array in
more detail.

4.4. Chapter Summary

A computer program, SIMPLEX, was written to computationally model the
evolution of a single pSNP in a single rDNA array. SIMPLEX was used to
generate initial results on the behaviour of pSNP fixation and loss, according to
various parameter sets.

USCE was found to be more influential than GC in homogenising a pSNP
within an array. A linear relationship was found between the number of runs
which fixed a pSNP, and the percentage of units which already contained one.
However, a polynomial relationship was discovered for the average number of
events until fixation or loss, and the percentage of units which already contained
one. Furthermore, the data followed a Poisson distribution for the number of
events taken until fixation and loss of a pSNP in simulation runs at different
starting pSNP occupancies. Lastly, the effect of position of a pSNP within a unit,
and the effect of the position of a unit containing a pSNP upon number of events
until fixation and loss was investigated. It was found that large numbers of events
were needed to fix a pSNP in the first 1000 bases of all units, but large numbers
of events were needed to lose pSNP in first unit only.

Some departures from these results are to be expected with refinement of the
simulation program, in particular when allowing different selection schemes, and
altering how the ends and flanking regions of the array are dealt with. However,
clear differences between the two simplified event types (USCE and GC) are still
evident, and the balance between them is seen to have a strong effect on the
evolutionary trajectory of the rDNA array.

It is currently difficult to place these fixation and loss times in a biological context
without knowing the ratio between the two mechanisms, or the ratio of “visible”
events to double-strand break repair events which do not affect the order or size
of an array. However, a rough guideline could be inferred from a 2008 study on
mitotic and meiotic instability in the rDNA array of S.cerevisiae, which estimated
that 1.2× 10−3 USCE recombination occurred events between sister chromatids
in rDNA per cell generation (Casper et al., 2008).
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5. Simulating rDNA Evolution
Across Species using the
CONCERTINA Software

Chapter Abstract

Although preliminary data obtained from SIMPLEX simulation runs yielded
interesting results and potential insights into concerted evolutionary dynamics, the
software was limited in terms of the questions it could be used to answer. Instead
of following the fate of a single pSNP within an rDNA array, it would be beneficial
to follow a continual process of pSNPs being introduced at a set mutation rate over
many generations, examining the frequencies of pSNPs and SNPs which result.
Furthermore, a tree-like process where rDNA arrays split after a certain number
of generations could also give information into looking at “distances” between
the respective species/strains in which they reside. Therefore a new simulation
program was written to incorporate these new features, named CONCERTINA
(CONCERTed evolution IN rDNA tandem Arrays). The development and testing
of this program is discussed, as is its use in two experiments, tracking pSNP
numbers and occupancies in a single rDNA array and in a set of ten diverging
taxa respectively. Finally, the possibility of using and extending the software
in future to learn more about concerted evolutionary processes in both real and
simulated datasets is discussed.

5.1. The CONCERTINA Tool

CONCERTINA implements computational models that enable a progressive
process of pSNP mutation and evolution. It also models a series of rDNA arrays
diverging over time in a tree-like fashion. To implement these new features and
their inherent additional complexities, CONCERTINA treats the rDNA array
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as an object rather than just a data structure (an ArrayList in SIMPLEX). In
object oriented programming, objects have attributes to describe themselves (for
example, the size of an array could be an attribute), and methods which can
change the values of these attributes. Treating the separate elements as different
objects also increases the extensibility of the code, and allows further updates to
be more simply achieved. Many copies of each object may exist, referred to as
“instances” of the corresponding class. So, for example, there are many rDNAarray
objects in a simulation, each of which is a different instance of the rDNAarray
class. Each object has different values for the variables or attributes associated
with it, for example different sizes or pSNPs, and there are methods within the
rDNAarray class which can change these values. Like SIMPLEX, CONCERTINA
is written in Java, an object-oriented programming language.

A number of different objects represent different levels of complexity within the
concerted evolutionary process, as illustrated in figures 5.1 and 5.2. Each object
will now be described, following these figures from the bottom up. Each rDNA
unit is represented in CONCERTINA as an object, aUnit, each of which has a
number of bases (i.e. sequence length), and a list of pSNP positions which are
found in that unit. The class also contains a number of methods associated with
the object, which include a number of constructors to create a new aUnit object,
either with no pSNPs or with a pre-existing list of pSNP positions. A method
also exists to add a pSNP to an aUnit object’s ArrayList of polymorphisms.

The aUnit objects are contained within rDNAarray objects. rDNAarray objects
possess an ArrayList containing many different aUnit objects. This is illustrated
in figure 5.1, where each blue aUnit has a potentially unique set of pSNP positions
represented as integers. rDNAarray objects also contain values for the current
number of aUnit objects within theArray, and the minimum and maximum size
that the array is allowed to reach. Methods include those to add or remove aUnit
objects at given positions from an rDNAarray, and to access an aUnit in a given
position within an rDNAarray to allow a pSNP to be added or removed. A method
to print the details of the array to file, which includes the array size and the
polymorphisms within the array and their occupancies is also included.

The next higher level object is a BinaryNode object. This object forms part of the
uppermost data structure within CONCERTINA, which is a binary tree. Binary
trees are themselves a hierarchical data structure, represented as the red and
green nodes in a tree-like structure shown in figure 5.1. A binary tree contains
nodes, each of which will itself contain between zero and two nodes, which can be
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denoted as left and right child nodes. The binary tree has a root node, (shown as
red in figure 5.1), which is the ancestor of all following nodes. Each node can be
reached by following a path from this root node, with each step either going to a
subsequent left or right child node. Binary trees are an appropriate choice of data
structure for the rDNAarray objects due to their hierarchical nature, and ease in
relating position within the tree to relationships between nodes. Traversal of a
binary tree, in a number of different ways, is also a rapid process. In this case
each BinaryNode contains a reference to its child BinaryNodes (left and right),
but also contains an rDNAarray object. Furthermore, a BinaryNode contains
a distance to its parent node, which is equivalent to the number of concerted
evolutionary events separating the two. The final object is the BTree object, which
only contains one BinaryNode object, the root of the tree. However, this class
contains a number of methods to create the tree by inserting BinaryNodes, as well
as a method to print the tree. To print the tree, as BinaryNode objects contain
BinaryNode objects, a BinaryTree can be traversed in a recursive manner, where
the method calls itself. In this case the tree is traversed in a pre-order manner,
where the root is visited first, then the left subtree, and then the right subtree.
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Figure 5.1.: Illustration of the hierarchical object structure in CONCERTINA.
Blue aUnit objects contain different pSNPs, represented by different
integers within each box.
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aUnit

int  unitSize Length of a single unit (static) in 

bases

ArrayList<Integer> 

polymorphisms

ArrayList of pSNP positions

rDNAarray

int currentSize Current number of units in rDNA 

array

int max_size Maximum allowed size 

int min_size Minimum allowed size 

ArrayList<aUnit> 

theArray

ArrayList of rDNA units

BinaryNode

int Key Unique i.d. of node

rDNAarray Data rDNAarray at this node

BinaryNode left Child node to the left of this node

BinaryNode right Child node to the right of this 

node

int distance Number of events between this 

node and parent

BTree

BinaryNode root Node at the root of the tree

Has one

Has one

Has many

Has 0 - 2

Figure 5.2.: Overview of the hierarchical object structure in CONCERTINA. Each
box represents an object type, with the states of each object listed.

5.1. The CONCERTINA Tool 146



Chapter 5. Simulating rDNA Evolution Across Species using CONCERTINA

5.1.1. Changes to the Gene Conversion and USCE Methods
within CONCERTINA

With the increase in complexity of code between SIMPLEX and CONCERTINA,
moving from comparing rDNA array units in which there may be only one pSNP
to those which could contain many polymorphisms necessitated changes to the
gene conversion and USCE methods. Although the new methods follow the general
flow of those used in SIMPLEX, as illustrated in figures 4.4 - 4.8, the details have
changed to account for the possibility of multiple pSNPs within a unit.

The gene conversion class now contains two methods, gcOverwrite and
compareUnits. The former accesses donor and acceptor units, determines whether
the conversion tract will result in a subsequent unit being involved, and calls
the compareUnits method. The compareUnits method first iterates through the
polymorphisms in the donor unit, and checks if they are in the acceptor unit. If
a pSNP is in the acceptor unit, but not in the donor, and is between the break
position (start of the tract) and the end of the tract, this pSNP is removed from
the acceptor unit. Each pSNP in the donor unit is then iterated through, and
if the pSNP is in the donor, but not in the acceptor, and is within range of the
tract, it is added to the acceptor.

The USCE methods are still split into deletions and duplications. Within the
deletion method, pSNPs in the first unit’s polymorphism list are removed if they
are after the break, and pSNPs in the last unit’s polymorphism list are removed
if they are before the break. Then all of the remaining first unit’s polymorphisms
are added to the last unit, and all units from the first to the unit before the last
are removed. Conversely, with the duplication method, all units from the second
to the last are copied and added to the array of units, directly after the last unit.
The original last unit is then altered, so that any pSNPs after the break in the
first unit are copied to the end of the last unit. This is still essentially the same
process as that shown in figure 4.4, except that as there are potentially a number
of pSNPs to consider instead of just one, more loops are required to compare
polymorphisms between the affected units.
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5.1.2. Additional Classes in CONCERTINA

As well as the aforementioned objects and pre-existing, if altered, GCevents and
USCEevents classes, a few extra classes have been added to CONCERTINA. As
in SIMPLEX, the main class sets up the simulation and contains the variables
for parameters such as the ratio of the different events, and the initial size of an
rDNA array. In this case a simulation runs until a specified number of nodes have
been added to the BinaryTree (rather than until a certain number of pSNPs have
been lost or fixed). However, CONCERTINA also contains a few extra methods
and classes which are now described.

Evolve Class

This class contains methods which determine the evolution of the array, both to
choose whether a gene conversion or USCE event is undertaken for a particular
step given earlier parameters (the evolve method), and to determine when a
new mutation is added and where it is located (the mutate method). Although
much of the code was present in SIMPLEX, it has been greatly reorganised in
CONCERTINA, making future changes more easy to achieve.

The evolve method creates a loop to cause an array to undergo a certain number of
concerted evolutionary events, and will call the GCevent and USCEevent methods
according to the percentage of each event given as a parameter. It also implements
the checks in the USCEevent method to ensure that the array size is maintained
within the given limits.

The mutate method adds new functionality to the CONCERTINA program, by
adding the ability to insert new pSNPs within the array at a chosen rate. Mutate
is called from within the evolve method each time a concerted evolutionary event is
undertaken. Parameters are set in the main CONCERTINA class for the mutation
rate per base per generation, and for the number of concerted evolutionary events
in the rDNA array per generation. The number of events until a point mutation
is introduced is then calculated, where

• µ is the point mutation rate per base per generation
• n is the number of units of an rDNA array
• l is the length (number of bases) of an rDNA unit
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• c is the number of concerted evolutionary events in an rDNA array per
generation

• e is the number of events until a mutation within the rDNA array

The number of events is then simply:

e = c

µ× n× l
(5.1)

The mutate method then checks if the current event should be accompanied by
a point mutation (by dividing the current number of events by the calculated
number of events until a mutation, and checking if the remainder is equal to zero).
This results in point mutations occurring in a clock-like manner after a certain
number of events. Alternatively, if the mutation rate is high compared to the
number of concerted evolutionary events, more than one mutation could occur
at each event. If a mutation is chosen to occur, a unit is chosen at random from
the ArrayList. However, the position of the new pSNP within the selected unit is
chosen by calling the rDNAregionWeight method.

rDNAregionWeight Class

The number of polymorphisms varies between distinct regions of an rDNA unit,
as shown in earlier work (James et al., 2009), and in the rDNA analysis presented
here of S. cerevisiae and S. paradoxus in Chapter 3, table 3.3. To emulate this
variation in CONCERTINA a class, rDNAregionWeight, was written to weight
the likelihood of a point mutation (pSNP) occurring in a region according to a
given distribution, in this case that seen in the analysis of the SGRP data.

The size of each rDNA region (for example ETS1, 18S) in bases is input, as is
the total number of pSNPs plus SNPs for each region, with the values as in table
3.3. These values can be changed in different runs of the program to allow for
new knowledge or to compare different distributions. The percentage of pSNPs
plus SNPs (from here on referred to as polymorphisms) found in each region is
calculated (100 divided by the total number of polymorphisms across all regions
multiplied by polymorphisms in the region in question) and added to an ArrayList.
These percentages are then added together successively in a loop, and a random
number between 1 and 100 is generated. If the resulting number falls within
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Region ETS1 18S ITS1 5.8S ITS2 26S ETS2 IGS1 5S IGS2
Polymorphisms 17 5 11 0 0 35 10 83 3 63
Weights 7.49 2.20 4.84 0.00 0.00 15.42 4.41 36.56 1.32 27.95
Range 7.49 9.69 14.54 14.54 14.54 29.96 34.36 70.93 72.25 100

Table 5.1.: Table illustrating an example of rDNA regional weighting for use in
the rDNAregionWeight class. The top row shows the various rDNA
regions, followed by the number of pSNPs + SNPs in each region. The
number of polymorphisms in a given region is then represented as a
percentage of the total number of polymorphisms. Finally the upper
bound of the range that a number would fall within to generate a
pSNP within that region is shown.

a certain range, a mutation will be generated within that region. This process
is illustrated in table 5.1, with test data from earlier work (James et al., 2009).
Using the data in table 5.1 as an example, if the random number 12 were to be
generated, it would result in a pSNP within the ITS1 region, as it is greater than
9.69 (the upper limit of the range for 18S), but below 14.54, the upper limit for
ITS1 in the table.

Once a region has been selected at random according to the weighting scheme, the
location of a point mutation within the selected region then needs to be chosen.
Another array is generated with the upper ranges of the position of each region.
So for example, ETS1 is 699 bases long and is the first region in the unit. 18S
is the second region and is 1799 bases long. Therefore its upper range position
is (699+1799 =) 2498. The mutation position is then assigned by generating a
random number between 1 and the size of the region chosen, and then subtracting
it from the equivalent upper range in the array element containing that region.
So, again using table 5.1 as an example, the region could be chosen by a random
number generated as 12 (as in the previous paragraph), resulting in region ITS1
undergoing a point mutation. A random number is then chosen between 1 and
360 (the size of this region), for example 200. This number is then subtracted
from the limit of the ITS1 region, 2858 (which is the ETS1 + 18S + ITS1 size),
giving a final pSNP position of 2658.

This method is called for each new pSNP introduced to an rDNA array within
CONCERTINA, to give a weighting to any pSNPs introduced.
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5.2. CONCERTINA Experiments

Two sets of experimental simulation runs were undertaken using CONCERTINA.
In all of these runs the mutation rate was varied, to investigate the dynamics of a
pSNP’s spread and loss from an rDNA array. The remaining variables were kept
static:

• The ratio between USCE and GC remained at 20% and 80% respectively
• The gene conversion tract was static at 4000 bases in length
• The misalignment (the number of units between donor and acceptor, or

number of units copied or deleted in USCE) was randomly selected between
1 and 10 units

• The number of events until the array is printed, set to be every 1000 events
plus the first and last event.

• The unit in which a pSNP was introduced was chosen at random from
the array. The base position possessing the pSNP was determined by the
rDNAregionWeight class, using the pSNP and SNP weightings derived from
the earlier S. cerevisiae results in table 3.3.

• The initial rDNA array size is 140, the maximum and minimum sizes are
set to be 200 and 50 respectively. The unit length is 9137bp.

• The number of concerted evolutionary events per generation was kept static
at 1 event per generation. This value is not experimentally known, but as it
is the ratio between the point mutation and concerted evolutionary event
rates that is under investigation, this value can be kept static and points
mutation rates varied instead.

Although the point mutation rate is not uniform across the genome (Lang and
Murray, 2008), one study estimated it to be 3.3 x 10-9 per base per cell division
(Lynch et al., 2008). The mutation rate was set to vary between 6.6 x 10-5 and
3.3 x 10-10 mutations per base per generation, at rates shown in table 5.2. For
each of the selected point mutation rates two sets of simulations were undertaken.
In the first simulation, only one node was analysed, which would undergo 200,000
events. Any patterns of pSNP spread throughout the rDNA array could then be
compared across the different rates. Each simulation was run three times, and the
number of pSNPs (in bins of 0-<10% occupancy, 10-<20% and so on until 100%
occupancy) was recorded every 1000 events. In the second set of experiments a
random 10 node binary tree was generated for each point mutation rate, with a
distance of 50,000 events between each node. In both experiments, a text file is

5.2. CONCERTINA Experiments 151



Chapter 5. Simulating rDNA Evolution Across Species using CONCERTINA

produced for each simulation run. The file contains a header with values for all of
the variables, followed by a summary of the array at different points throughout
the run. This summary consists of the current number of events undertaken, the
array size, and the number of pSNPs in the occupancy bins. In the case of the 10
node binary tree runs, each node is numbered, with its placement within the tree
noted (for example, “Node 1 added to the left of Node 0”).

5.2.1. Experiment 1: Varying Mutation Rates Ratios for a
Single rDNA Array

The results of the simulation runs involving a single node (rDNA array) undertaking
200,000 concerted evolutionary events are summarised in table 5.2. This table
shows the numbers and occupancies of pSNPs in an rDNA array at the end of the
run. Only point mutation rates of 10-7 or greater resulted in pSNPs which became
fixed. The pattern of pSNP occupancies is similar for every mutation rate above
10-7. The majority of pSNPs are found in the 0-20% and 90-100% bins, with very
few pSNPs being found in the 30-80% bins, table 5.2. At rates less than 3.3 x
10-9, no pSNP occupancies greater than 10% are seen. When the mutation rate
was set to be 10-8 no pSNPs were fixed, but some higher occupancy pSNPs were
observed.

The pattern of pSNPs spreading throughout the rDNA array to form the
distribution shown in table 5.2 can be visualised in surface plots, by inputting
the simulation run data into R and calling the persp function (R Development
Core Team, 2011). Surface plots for those runs which resulted in a broad spread
of pSNP occupancies, i.e. those with point mutation rates of 10-7 or greater, are
shown in figure 5.3. The general pattern in all of these runs is that the 10 to 20%
occupancy bin contains more pSNPs than those of the other, higher occupancies.
Furthermore the occupancy bin frequencies are already established by 1000 events,
being maintained throughout the rest of the simulation run, shown as a fairly
steady value from 1000 to 50,000 events in all plots within figure 5.3. In those runs
where the mutation rate is highest, a U-shaped distribution, skewed to the left, is
established at 1000 events (the first recorded event), and is maintained thereafter.
However, although this distribution is also established by 50,000 events for lower
mutation rate runs, the number of events to establish it vary. This variation can
be visualised when comparing the rightmost edges of these plots, which represent
occupancies of 100%, such that the flat profile at this occupancy appears to change
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Muta-
tion
Rate

Ratio
PM:CE

<10 <20 <30 <40 <50 <60 <70 <80 <90 <100 100

6.6×10-5 90:1 1552 700 670 639 503 326 180 72 37 33 289
3.3×10-5 45:1 1526 892 507 280 230 150 86 32 49 83 262
6.6×10-6 9:1 1265 212 125 47 19 35 38 22 10 50 145
3.3×10-6 5:1 1058 134 40 12 13 16 4 6 2 23 50
6.6×10-7 1:1 294 19 9 3 1 4 1 1 8 15 7
3.3×10-7 1:2 110 12 5 3 1 1 0 0 1 11 7
6.6×10-8 1:11 28 1 0 0 0 0 0 0 0 3 0
3.3×10-8 1:22 11 1 1 0 0 0 0 0 0 1 0
6.6×10-9 1:111 2 0 0 0 0 0 0 0 0 0 0
3.3×10-9 1:221 0 0 0 0 0 0 0 0 0 0 0
6.6×10-10 1:1106 0 0 0 0 0 0 0 0 0 0 0
3.3×10-10 1:2211 0 0 0 0 0 0 0 0 0 0 0

Table 5.2.: Different point mutation rates (assumed to be genomic mutation
rates per generation) for each run of 200,000 concerted evolutionary
events, assuming 1 concerted evolutionary event per generation, with
the equivalent ratio between mutations:concerted evolutionary events
(PM:CE). The occupancies of the pSNPs present in the array after
200,000 concerted evolutionary events are given in bins of 10% intervals,
with SNPs shown as 100% occupancy.

more gradually in plots representing lower mutation rates. Roughly triangular
flat regions can also be seen in the bottom right hand corners, where the higher
pSNP occupancies are slowly populated after increasing numbers of concerted
evolutionary events.

In those runs where the spread of pSNPs across occupancies is more gradual, the
U-shape continues to become more pronounced with increasing numbers of events.
For example, this is illustrated in the surface plots for 50,000 and 200,000 events
in figure 5.4 for a mutation rate of 3.3 x 10-6, which is a ratio of 5 point mutations
to every concerted evolutionary event. In the plot after 50,000 events, the number
of pSNPs at 100% occupancy appears to have plateaued. However, completing
the full run until 200,000 events have taken place shows the number of pSNPs at
100% has increased further.

The two previous figures (figures 5.3 and 5.4) only illustrate pSNP occupancies
between 10% and 100%, to allow the patterns that form the end distributions to
be visualised. The majority of pSNPs have occupancies of less than 10%, and
are lost within 1000 events, as shown within the earlier SIMPLEX experimental
simulations. When the point mutation rate is very high, many pSNPs are formed

5.2. CONCERTINA Experiments 153



Chapter 5. Simulating rDNA Evolution Across Species using CONCERTINA

45:1

5:1

1:2

9:1

90:1

1:1

100%10% Occupancy

100%10% Occupancy

100%10% Occupancy 100%10% Occupancy

100%10% Occupancy

100%10% Occupancy

a) b)

c)

e)

d)

f )

Figure 5.3.: Surface plots of pSNP occupancies of >10% to 100%, over 50,000
concerted evolutionary events, at different point mutation : concerted
evolutionary event ratios, given at the top of each plot.
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a)

b)
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Figure 5.4.: Surface plots of pSNP occupancies of >10% to 100% for a point
mutation rate of 3.3 x 10-6, after a) 50,000 concerted evolutionary
events and b) 200,000 concerted evolutionary events.
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0.1% Occupancy            100%

a)

b)
10% Occupancy            100%

0.1% Occupancy            100% 10% Occupancy            100%

Figure 5.5.: Surface plots of a) 6.6 x 10-5 and b) 6.6 x 10-6. Plots on the left are
from >0% to 100% pSNP occupancy, with the red box highlighting
results from >10% to 100%. The plots on the right are subsets of the
plots on the left, restricted to occupancies of >10% to 100%.

within the rDNA array. Many of these polymorphisms will spread throughout the
array as there are few concerted evolutionary events to remove them. However, as
the ratio between point mutations and concerted evolutionary events decreases,
it takes longer for the smaller numbers of pSNPs generated to increase their
occupancies. This is illustrated in figure 5.5, where at the higher point mutation
rate (top row, a)), the U-shaped distribution is visible when viewing all pSNP
occupancies. However, for the lower mutation rate, the emerging, flatter, U-shaped
distribution is not visible until the lower occupancy pSNPs (<10%) are removed
(right plot of bottom row, b)).
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5.2.2. Experiment 2: Varying Mutation Rate Ratios for Ten
Diverging rDNA Arrays

The distribution of pSNP occupancies, as the ratio of point mutation to concerted
evolutionary events was varied, was investigated in simulation runs with 10 node
binary trees. Examples of three point mutation rates which resulted in a broad
range of pSNPs occupancies are described below. As shown in table 5.2, any
mutation rate less than 10-7, results in a sparse pSNP occupancy distribution,
and results for these mutation rates are not shown for the 10 node runs. The
results for the highest mutation rate run (6.6 x 10-5) is shown in figure 5.6. The
first node shows the shape of the distribution after 50,000 concerted evolutionary
events, which is maintained in all subsequent nodes, and is highly similar to that
shown in figure 5.3. The distribution is highly skewed to the left, with a peak at
100% for all but the first node. For many nodes, the occupancies of the first two
bins are more similar than those of other runs (see figures 5.7 and 5.8). 100%
pSNP occupancies are also highly variable between nodes, ranging from just 50 at
node 9, to 611 at node 0.

The trees in figures 5.7 and 5.8, for point mutation rates of 3.3 x 10-6 and 6.6 x
10-7 respectively, show very different pSNP distributions to those in figure 5.6.
These two trees both exhibit a deeper U-shape than figure 5.6, with the least
frequent bin (i.e. with fewest pSNPs) showing a slightly smaller occupancy value.
Furthermore, the time taken to establish the U-shaped distribution (equilibrium
distribution) varies between plots, being approximately 100,000 events in figure
5.7, and 150,000 events in figure 5.8. The plots also illustrate the stochastic nature
of pSNP frequency. For example, in figure 5.7, nodes 2 and 6 are derived from
the same parent node or rDNA array, but one has 70 pSNPs at 100%, whereas
the other has only 12.
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Figure 5.6.: a) Representation of a binary tree showing the results of a 10 node
run, with a point mutation rate of 6.6 x 10-5, and a 50,000 event
distance between nodes. b) Overview of the shape of the tree, showing
the order in which the nodes were added, in the bottom right. The
number of pSNPs in each occupancy bin are shown in histograms.
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Figure 5.7.: a) Representation of a binary tree showing the results of a 10 node
run, with a point mutation rate of 3.3 x 10-6, and a 50,000 event
distance between nodes. b) Overview of the shape of the tree, showing
the order in which the nodes were added, in the bottom right. The
number of pSNPs in each occupancy bin are shown in histograms.
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Figure 5.8.: a) Representation of a binary tree showing the results of a 10 node
run, with a point mutation rate of 6.6 x 10-7, and a 50,000 event
distance between nodes. b) Overview of the shape of the tree, showing
the order in which the nodes were added, in the bottom right. The
number of pSNPs in each occupancy bin are shown in histograms.
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5.3. Conclusions and Chapter Summary

The CONCERTINA software builds on the software framework of SIMPLEX to
enable a continual process of point mutation balanced against the GC and USCE
concerted evolutionary processes. Furthermore, CONCERTINA can simulate the
evolution of both a single rDNA array, or sets of arrays, the latter related by a
tree-like structure.

CONCERTINA was used to investigate the nature of the balance between divergent
and concerted evolutionary rates. This balance of rates was found to strongly
affect the shape of the pSNP occupancy distribution and the time taken to reach
an equilibrium distribution. In particular, when concerted evolution was frequent
compared to point mutation, few pSNPs were found. When the situation was
reversed, a shallow U-shaped distribution resulted. For similar rates, a deep
U-shaped distribution could be seen, with several pSNPs at very low or very high
occupancy.

Based on these preliminary results and those presented in Chapter 3 for S.
paradoxus, which exhibits tree-like evolution, it seems likely that the two rates
are of a similar order, resulting in a deep U-shaped pSNP occupancy distribution
with few pSNPs at intermediate frequencies.
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6. rDNA Flanking Regions

Chapter Abstract

The concerted evolutionary process USCE, which can shorten or lengthen an rDNA
array, is believed to result in an array consisting of complete rDNA units. However,
the S. cerevisiae type strain S288c is thought to possess partial terminating rDNA
units on each side of its array (SGD, 2013). The DNA sequence at the flanks of the
rDNA array has been investigated in four yeast strains, using Pacific Biosciences
SMRT sequencing. The left flank is conserved between the four strains, whereas
the right flank varies between the industrial yeast strain S288c and the other three
strains, two from S. cerevisiae and one from S. paradoxus. Furthermore, all eight
flanking regions of the four rDNA arrays terminate in partial rDNA arrays.

6.1. Background

The sequences flanking the rDNA array, also referred to as the junctions, have
been of interest for a number of years. In 1982 a study found single copy genes
flanked the yeast rDNA, but that different strains had one of two alternative
genes on the right flank (closest to the telomere) (Zamb and Petes, 1982). When
the genome of S. cerevisiae type strain S288c was sequenced in 1997, the right
junction proved difficult to sequence and was not present in the cosmid closest
to the right end of the rDNA array, nor in phage lamda clones mapped to this
region (Hillier et al., 1997). Ultimately, the right flank was inferred from PCR
products close to the rightmost 5S rDNA subunit. The right flanking sequence
was found to be similar to that discovered in earlier work (McMahon et al., 1984).
The order of rDNA units and genes flanking them are shown in figure 6.1.

In S. cerevisiae strain S288c, the ACS2 gene is approximately 4kb from the
left junction, on the centromeric side of the rDNA array (Hillier et al., 1997).
The Acs2p protein is located mainly in the nucleus, and mediates synthesis of
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Figure 6.1.: Layout of rDNA in ENSEMBL Fungi (http://fungi.ensembl.org),
S288c rDNA and flanking genes, Chromosome XII co-ordinates 445482-
471206 shown. rRNA regions are shown in purple, and coding genes
are shown in red.

acetyl-CoA. ACS2 deletion strains contain more ERCs within their nucleus, and
so there are indications that this protein is involved in promoting rDNA silencing,
reducing ERCs and so increasing replicative lifespan in yeast (Falcón et al., 2010).
The rDNA array at this junction ends in a partial rDNA unit, terminating in a
partial IGS1 sequence.

In some S. cerevisiae strains, including S288c, the ASP3 locus is closest to the
right junction. In S288c the locus comprises a cluster of four identical ASP3
genes interspersed with variant forms of the 5S sequence. ASP3 encodes cell-wall
associated L-asparaginase II, and is switched on during limited nitrogen conditions.
A recent study investigated the origins of ASP3, and found it present in differing
copy number in industrial or laboratory strains only, hypothesizing it was passed
from the wine yeast Wickerhamomyces anomalus via horizontal gene transfer,
conferring an advantage to harbouring strains in artificial environments (League
et al., 2012). The rDNA array at this junction again ends in a partial rDNA unit,
here terminating in a partial 26S sequence.

Upstream of the ASP3 gene cluster, the next gene of known function is MAS1,
approximately 1.5kb from the final variant 5S sequence in the ASP3 locus. Mas1p
is part of the mitochondrial processing protease, and cleaves targeting sequences
from proteins which have been imported into mitochondria (Witte et al., 1988).

Earlier work investigating rDNA flanking sequences within the SGRP dataset
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was carried out by MSc student Prashanth Kumar (Kumar, 2011). He sought
to identify flanking reads via sequence matching to the S288c flanking sequence
downloaded from SGD (SGD, 2013). Using this approach he successfully identified
putative reads covering the left flank for 12 out of the 38 strains investigated.
However, he was unable to identify the left flanking sequences of the remaining
strains or the right flanking sequences of any of the strains. This suggested
that variability of the flanking sequence between strains necessitated a different
approach to their discovery.

We decided to investigate the rDNA flanking sequences of four strains. Any
uncovered sequence variability at the rDNA junctions might then inform future
modelling of the dynamics of rDNA arrays. Some recently developed Next-
Generation Sequencing technologies are capable of producing long read lengths
(several kb). Applying such a technology to these yeast strains should result in a
few reads covering both a large proportion of the rDNA terminal units and the
start of the flanking sequence, enabling a comparison between these sequences
across the four strains to be made.

6.2. Methods

6.2.1. Data

Three S. cerevisiae strains were selected for analysis: the S. cerevisiae reference
strain S288c; YIIc17 E5, a mosaic wine strain; and Y12, a structured mosaic wine
strain. YIIc17 E5 and Y12 were chosen as examples of mosaic and structured
strains, as earlier analysis had revealed both to contain a moderate number of
SNPs and pSNPs. One S. paradoxus strain, CBS432, the European reference
strain, was also chosen.

These four strains were sequenced by a single molecule real time sequencing method
(also known as SMRT), using a Pacific Biosciences (PacBio) RS sequencer, with an
8-12 kb insert library, and 6 SMRT cell runs per strain. Sequencing was undertaken
by GATC Biotech. The PacBio SMRT technology provides long sequence reads,
which overcome some of the limitations of other NGS technologies (Roberts et al.,
2013). Although error rates are high, errors are randomly distributed and unbiased
to particular sequence motifs. These frequent but random errors might prove
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Strain Number of
Reads

N50 (bp) GC%

S288c 36,013 6,392 38.58
YIIc17 E5 36,357 6,641 38.15
Y12 33,902 6,642 38.43
CBS432 37,802 6,371 38.86

Table 6.1.: Details of PacBio corrected reads for each strain.

difficult for detecting pSNPs, but for examining variation at the end of the rDNA
array, rather than individual polymorphisms within it, PacBio sequencing is a
good approach.

Details of the sequence reads produced from the SMRT cell runs are shown in table
6.1. In the subsequent analysis, unassembled, corrected reads were used, which
had been filtered using a Hierarchical Genome-Assembly Process (or HGAP). This
process used subreads (filtered for quality), that were below a length threshold,
to correct filtered reads above the length threshold. This correction process
is believed to improve read accuracy, reducing some of the inherent unbiased
sequencing errors outlined above.

6.2.2. Analysis

Corrected reads from each strain were filtered using an adapted version of the
Perl script filter reads v3.pl, introduced in Chapter 2. The read names were
first systematically altered to remove any forward slashes, which were parsed
incorrectly by the script.

Genomic sequences of a single rDNA unit, and of the ASP3, ACS2 and MAS1
genes in yeast strain S288c were downloaded from the SGD database (SGD, 2013),
in FASTA format. For processing of the S. paradoxus strain CBS432, an additional
FASTA sequence of the MAS1 gene for that strain was downloaded from the
SGRP website (SGRP, 2013). A blast database was constructed from each of
these FASTA files using the makeblastdb command (BLAST version 2.2.27+).
Each strain was first filtered with filter reads v3.pl by blast-ing against the rDNA
database, such that reads passed the filter if they had more than 90% identity
(sequence similarity) with the rDNA sequence in greater than 25% of the read
length. The subset of reads that passed this filter was then re-run through the
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Strain vs rDNA + ACS2 + ASP3 + MAS1
S288c 2485 3 1 N/A
YIIc17 E5 1535 6 N/A 8
Y12 2226 3 N/A 10
CBS432 1378 1 N/A 13

Table 6.2.: Details of the number of reads which passed each stage of the filter.
N/A refers to strains where this gene is not the closest to the flank.

script, this time blast-ing against the ACS2 (left flank) and ASP3 or MAS1 (right
flank) genes. The number of reads to pass each filtering step are shown in table 6.2.
No length requirements were made in the second filtering step, but a threshold of
90% sequence similarity was still enforced.

Reads passing this double filter were then blast-ed against individual regions of
the rDNA unit to identify the composition of the terminal rDNA units. This
process comprised of creating a blast database of all ten of the individual regions
of an rDNA unit. Finally, each filtered read was blast-ed against the ACS2 (13 left
flank sequences) or ASP3/MAS1 (32 right flank sequences) databases, resulting
in a characterisation of the flanking sequences with regard to both the rDNA
sequence and the flanking genes.

6.3. rDNA Left Flank: ACS2 Gene

All thirteen of the left flank sequences derived from the four analysed strains
matched to the ACS2 gene at the left flank of the rDNA. In all cases, the rDNA
terminates in a partial rDNA unit, ending with a partial IGS1 region (between
144 and 161 base pairs in length), approximately 16% of the usual IGS1 size (see
table 6.3).

An illustration of the placement of the nine reads from strains S288c and YIIc17 E5
matching this flanking region is shown in figure 6.2. All reads span a region from
the ACS2 gene to the 26S region of the leftmost (partial) rDNA unit. The
distance between ACS2 and the partial IGS1 region varied between 2,862 and
3,916 bp in length. The placement of the four filtered reads from strains Y12 and
S. paradoxus strain CBS432 are shown in figure 6.3. These reads extend further
into the leftmost rDNA unit, with the CBS432 read matching to part of the 18S
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Strain Read ACS2 match
(bp)

ACS2 to IGS1
Distance (bp)

IGS1 Match
(bp (%))

S288c
1 153* 3862 156 (17%)
2 1528* 3914 160 (17%)
3 2070 3888 156 (17%)

YIIc17 E5

1 2110 3901 150 (16%)
2 2070 3879 154 (17%)
3 2078 3900 158 (17%)
4 87* 3886 146 (16%)
5 729* 3890 144 (16%)
6 2078 3916 148 (16%)

Y12
1 1280* 3975 151 (16%)
2 83* 3902 152 (16%)
3 1065* 3925 158 (17%)

CBS432 1 332* 4768 161 (17%)

Table 6.3.: Length of matches to the ACS2 gene closest to the left flank, the
terminal partial IGS1 region and the intervening sequence for each
read. Numbers in brackets are the percentage of the IGS1 region found
(as it is a partial region). * denotes a partial match, as the read ends
within this region.

region. Y12 possesses a longer sequence between ACS2 and the rDNA array than
the other two S. cerevisiae strains, of approximately 3,902-3,975 bp. However, S.
paradoxus appears to have the longest intervening sequence of the four strains, of
approximately 4,768 bp in length (table 6.3). This left flanking sequence structure
is the same as that previously described in earlier studies (Hillier et al., 1997),
as illustrated in figure 6.1, and is conserved between the wild yeast S. paradoxus,
and the mosaic and structured strains of S. cerevisiae.
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Figure 6.2.: Schematic diagram representing the position of reads which matched
to both the ACS2 sequence, and the rDNA array. Reads from strain
S288c are shown above the left flank, and those from strain YIIc17 E5
below.
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Figure 6.3.: Schematic diagram representing the position of reads which matched
to both the ACS2 sequence and the rDNA array. Reads from strain
Y12 are shown above the left flank, and the single read from strain
CBS432 below. The CBS432 read exhibits a longer distance (over
4,700 bp compared to approximately 3,900 in the S. cerevisiae strains)
between the ACS2 gene and the rDNA array, represented as a dotted
line.
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6.4. Right Flank: ASP3 and MAS1

The right flank was found to be more variable in sequence between the four strains.
S. cerevisiae S288c was the only strain to contain the ASP3 gene cluster, with
only one read passing the dual rDNA/ASP3 filter. This read spanned all of the
(leftmost) ASP3 gene, and extended to cover most of the rightmost rDNA unit,
from the partial 5S region at the terminal end of the unit to the 5.8S region, as
illustrated in figure 6.4. The distance between the partial 5S region and the ASP3
gene (shown in table 6.4) is slightly longer than that shown in the SGD (SGD,
2013) (413 bp compared to 386), but whether this is the result of sequencing error
or sequence variation is currently uncertain.

ASP3 5S IGS2 

1 

ETS1 18S ITS1 

5.8S 

Figure 6.4.: Schematic diagram representing the position of reads which matched
to both the ASP3 sequence and the rDNA array. A single read from
strain S288c is shown above the right flank.

The other two S. cerevisiae strains analysed (Y12 and YIIc17 E5) did not contain
the ASP3 cluster, instead possessing the MAS1 gene closest to the rightmost
rDNA unit. The location of the reads covering the right flank are shown in figure
6.5, some extending to span most of the terminal rDNA unit (only missing the
ITS2 region), and others extending past the MAS1 gene. In both strains the
rightmost end of the rDNA array terminates in a partial rDNA unit, ending with
a small fragment of the 26S region (approximately 24% of a full 26S sequence, see
table 6.5).

Strain Read ASP3 match
(bp)

ASP3 to 5S
Distance (bp)

5S match
(bp(%))

S288c 1 1111 413 115 (95%)

Table 6.4.: Length of matches to the ASP3 gene closest to the right flank, the
terminal partial 5S region and the intervening sequence for each read.
Numbers in brackets represent the percentage of the 5S region found
(as it is a partial region).
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Figure 6.5.: Schematic diagram representing the position of reads which matched
to both the MAS1 sequence and the rDNA array. Reads from strain
Y12 are shown above the right flank, and those from strain YIIc17 E5
below.
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This structure of the right flanking sequence is also seen in S. paradoxus, where
the rightmost unit is again a partial rDNA unit terminating in a small fragment
of the 26S region (figure 6.6). The CBS432 reads do not extend as far into the last
unit as those in Y12 or YIIc17 E5, but still reach the tip of the 18S region, and
beyond the MAS1 gene. The distance between the rDNA array and the MAS1
gene appears to be longer in this strain than in the two S. cerevisiae strains, at
approximately 1,500 bp in length, see table 6.5.

3 

2 

1 

MAS1 
IGS1 

ETS2 IGS2 ETS1 

Partial 

26S 5S 18S 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

Figure 6.6.: Schematic diagram representing the position of reads which matched
to both the MAS1 sequence and the rDNA array. Reads from strain
CBS432 are shown above the right flank.
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Strain Read MAS1 match
(bp)

MAS1 to 26S
distance (bp)

26S match
(bp(%))

YIIc17 E5

1 1407 1319 797 (23%)
2 1157 1322 796 (23%)
3 534* 1319 801 (24%)
4 411* 1350 817 (24%)
5 1417 1338 811 (24%)
6 343* 1317 797 (23%)
7 74* 1326 804 (24%)
8 334* 1283 866 (26%)

Y12

1 1403 1344 801 (24%)
2 1398 1342 800 (24%)
3 332* 1346 801 (24%)
4 1413 1360 819 (24%)
5 231* 1328 798 (23%)
6 1071 1336 803 (24%)
7 221* 1343 789 (23%)
8 1408 1350 801 (24%)
9 1062 1366 824 (24%)
10 1402 1336 802 (24%)

CBS432

1 1424 1507 809 (24%)
2 1412 1499 816 (24%)
3 1414 1499 811 (24%)
4 369* 1530 824 (24%)
5 1422 1506 820 (24%)
6 1412 1492 811 (24%)
7 1410 1490 810 (24%)
8 1472 1513 245* (7%)
9 1429 1497 810 (24%)
10 366* 1494 809 (24%)
11 1413 1518 818 (24%)
12 1426 1493 817 (24%)
13 507* 1509 814 (24%)

Table 6.5.: Length of matches to the MAS1 gene closest to the right flank, the
terminal partial 26S region and the intervening sequence for each read.
Numbers in brackets are the percentage of the 26S region found (as it
is a partial region). * denotes a partial match, as the read ends within
this region.
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6.5. Analysis of the rDNA Boundaries

In all of the four strains analysed, the left flank of the rDNA terminated in a
partial rDNA unit, ending in a partial IGS1 region. This structure was consistent
with that found previously, although the distance between the rDNA array and
the ACS2 gene appears to be slightly longer in strain Y12, and longer still in S.
paradoxus strain CBS432.

However, the right flank varies between the four strains. S. cerevisiae reference
strain S288c possesses the ASP3 gene cluster upstream of a partial rDNA unit
terminating in a variant 5S region. In contrast, strains Y12, YIIc17 E5, and
CBS432 each possess a partial rDNA unit ending in a fragment of the 26S region,
with the closest gene being MAS1. This right flank is likely to be the ancestral
structure for this region as it is shared by Y12, basal to S288c in the S. cerevisiae
phylogenetic tree, and S. paradoxus strain CBS432. The ends of the rDNA array
also appear to be maintained across these strains, with the 26S fragment being of
a similar size in all three. As discussed in a previous study (League et al., 2012),
the ASP3 gene cluster is present in varying copy number within industrial and
laboratory strains of S. cerevisiae, likely resulting from a horizontal gene transfer
event from the yeast Wickerhamomyces anomalus. The insertion of this gene
cluster (or part of it if it subsequently expanded in situ) may have removed part of
the rDNA array, potentially explaining the presence of an alternative partial rDNA
unit in the right flank of S288c. A comparison of the flanking sequences of other
industrial strains would be interesting in this regard, to investigate whether the
right flank of the rDNA array in ASP3 -containing strains always terminates in a
variant 5S region. Although this variant 5S region is thought to be transciptionally
active (McMahon et al., 1984), it would be unlikely that the partial 26S region in
the other strains could be actively transcribed or used, particularly as only ∼50%
of rDNA units are thought to be transcribed (McStay and Grummt, 2008). If that
is the case, the conservation of the 26S regions across the strains is intriguing.

A multiple sequence alignment of reads from a single strain was attempted using
the MAFFT (Katoh and Standley, 2013) software. Surprisingly, the alignment
suggested a high number of sequencing errors in the PacBio reads, many of which
appear to be slippage type errors, resulting in the duplication of a single base one
or more times in a single read only. In future, multiple sequence alignments of
the 13 left flanking sequences and the 32 right flanking sequences will characterise
sequence variation between strains within these regions at a finer level of detail.
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However, it would be helpful to resolve the slippage errors before carrying this
out. To do this a consensus sequence of these reads could be attempted, or further
correction of the reads could be undertaken, for example by correcting the PacBio
reads using Illumina sequencing reads.

Lastly, the differences between the right flanks of industrial strains containing
the ASP3 cluster, and the conserved nature of those without it, could present an
opportunity to create a rapid screening assay for ASP3, by designing primers to this
MAS1/26S flank. However, a detailed assessment of sequence variability across a
broader number of strains would be needed first, and the current prevalence of
slippage errors in the PacBio sequence reads would need to be resolved.

6.6. Conclusions and Chapter Summary

The terminal sequences of the rDNA array across four selected yeast strains are
confirmed to be partial rDNA units, some of which are conserved between strains.
The left flank terminates in a partial IGS1 sequence, with the ACS2 gene falling
approximately 3,900 bp away. The right flank varies between S288c, in which the
rDNA terminates in a variant 5S region followed by the ASP3 cluster, and the
other three strains, which terminate in a partial 26S sequence and the MAS1 gene.
This latter organisation of the right flank is likely to be the ancestral state.

This analysis has created a broad framework for the structure of the rDNA array
flanking regions in S. cerevisiae and S. paradoxus. Further work on flanking region
sequence variation between the four selected strains, and new investigations on
the structure of the flanking regions in other related strains, will provide valuable
new knowledge on the dynamics of this important genomic region.
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7. Discussion

Ribosomal DNA is a highly dynamic area of the genome, upon which the
mechanism of concerted evolution acts quickly to homogenize introduced variation.
Micro-heterogeneity between different repeats of an rDNA array, such as
partial Single Nucleotide Polymorphisms (pSNPs), provides a snapshot of these
homogenising processes in action. Patterns of variation were identified both
within and between the rDNA of two closely related yeast species. This variation
then provided a focus for a series of simulation experiments that investigated the
dynamics of concerted evolutionary processes.

Variation in rDNA was discovered within 34 strains of S. cerevisiae and 26 strains
of S. paradoxus using the TURNIP software. Subsequent analysis revealed varying
levels of sequence heterogeneity both within and between the rDNA arrays of
individual yeast strains, including the recently discovered pSNP variation type.
Phylogenetic relationships inferred from the identified rDNA polymorphisms have
been shown to mirror those of previous whole-genome wide analyses, and distinct
distributions of pSNPs have been discovered within the two species datasets. The
results from this analysis of the yeast datasets informed preliminary work on
the development of software tools to simulate concerted evolutionary processes.
Subsequent simulation experiments suggest similar rates of point mutations to
concerted evolutionary events may have led to the pSNP patterns observed in the
yeast datasets.

7.1. Variation Discovery

Initial work on identifying and removing software bugs from the TURNIP variation
discovery software, and on discovering and eliminating potential contamination
from the yeast datasets emphasized the need for methods to assess the different
steps of the variation discovery pipeline. At present, the first step in the pipeline
is a script that filters yeast sequencing reads to those which contain rDNA
sequence (known as read clipping). It relies upon choosing appropriate BLAST
parameters that remove non-rDNA reads, whilst retaining potentially divergent
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rDNA sequences. This filtering step necessarily includes manually checking the
rDNA status of a subset of reads that are retained or lost after filtering, a
process which is hugely time consuming. An alternative filtering procedure,
or an automated checking process, would be a priority for future TURNIP
development.

A new validation script was developed to assess TURNIP’s performance and
sensitivity. The script produces a simulated rDNA sequence read dataset
containing known variation. This enables the modification of TURNIP’s
parameters for rDNA variation discovery, increasing confidence that TURNIP
analyses are capable of capturing true rDNA variation while removing false
positive polymorphisms. Testing suites have also been developed for other software,
including reference-free SNP detection tools (Dou et al., 2012). However, these
testing suites are unsuitable for rDNA sequence, as indeed are the tools themselves.
Hence, a slightly different approach and script was needed to generate appropriate
datasets for the case of rDNA.

Using these scripts in tandem with the TURNIP software, 1,168 and 978
polymorphisms were identified within the S. cerevisiae and S. paradoxus datasets
respectively. In S. cerevisiae, fewer single point mutations in strains were identified
than in one previous study of the same dataset (James et al., 2009). The
discrepancy in number of identified pSNPs between these results and the former
study were attributed to different software tools (that used in the previous study
is not publicly available to our knowledge) and to the stricter filtering parameters
in this study. However, in S. paradoxus similar levels of variation were identified
to that of another analysis of a single, distinct strain (Ganley and Kobayashi,
2007).

Although our methods successfully identified rDNA variation within the SGRP
datasets, very few studies now use Sanger sequencing. In future, the methodology
and software would need to be updated for use with the more common Next-
Generation Sequencing (NGS) datasets. This would enable many more datasets
to be analysed, including publicly available data such as mutation accumulation
lines (e.g. Nishant et al., 2010) to discover changes in rDNA variation over time.
To achieve NGS analysis using TURNIP, a number of technical issues would need
to be overcome.

Firstly, the manual checking step that currently follows read clipping presents a
barrier to TURNIP analysis of short-read NGS datasets, due to the large number
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of reads. The choice of appropriate BLAST parameters for short reads would also
be a problem. In addition, TURNIP currently possesses a sequence read length
requirement, added to increase specificity to the rDNA region. This would need
to be removed or greatly reduced for short read lengths, potentially lowering the
quality of results.

The TURNIP validation script would need to be altered to produce short length
reads, a change which should be simple to enact. However, validation should
also include assessing the effect of the different sequencing errors that can be
introduced using different NGS technologies. For example, Illumina sequencing
reads contain few biased errors, whereas PacBio sequencing reads contain many
uniformly distributed errors. Adding an error profile to the validation script would
enable a user to test whether the variation have uncovered would be detectable
by the extended TURNIP software.

Currently, any variation detected by TURNIP is treated as a sequencing error
if it is only found in a single read. This may mean some genuine variation is
discarded, presumably particularly low occupancy unresolved polymorphisms.
This is especially important given the results of simulation experiments, which
show the majority of any variation present is likely to be at a low or high occupancy.
Introducing simulated sequencing errors into the validation script, altered for the
known error profiles of each technology type (Ross et al., 2013), would allow an
indication of the types and quantities of variation that could be missed by each
sequencing technology. This knowledge could then be used to tailor the technology
used to the type of outcome required.

To extend TURNIP for the analysis of NGS datasets further considerations would
need to be made. Firstly, memory requirements would be considerably more
demanding for NGS short read length data as the datasets are much larger, with
more reads at a higher depth of sequencing. This could present difficulties if
the data are to be held in memory and processed. Input FASTQ files should be
converted to an NGS format such as the BAM format (Li et al., 2009). Furthermore,
a read mapping rather than a multiple alignment approach, using programs such
as BWA or Stampy (Li and Durbin, 2009; Lunter and Goodson, 2011) might
be more appropriate for short read datasets. Finally, consideration should be
given to implementing a reference-free variation calling approach. As noted in the
introduction, a number of software tools that use such an approach are already
available, though none of them applicable to repetitive sequence data (Ratan
et al., 2010; Iqbal et al., 2012; Dou et al., 2012). Of course, the efficacy of any
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reference-free approach could be tested with an updated version of the validation
script.

7.2. Analysing Variation

Analysis of the variation uncovered by TURNIP inferred evolutionary relationships
between yeast strains consistent with previous research. It also gave insights into
interesting or unexpected relationships which could be followed up in future.

S. cerevisiae mosaic genome types were found to have, on average, 4.4 times more
pSNPs than structured genome types, agreeing with a previous study (James et al.,
2009). Within both datasets pSNP occupancies were found to follow a U-shaped
distribution. This U-shaped distribution is predicted by mutation-drift theory,
and is seen in datasets of allele frequency (Chakraborty et al., 1980) and gene
frequency (Haegeman and Weitz, 2012) within populations. However, and perhaps
unexpectedly, clear differences were observed between the U-shaped distributions
of the S. paradoxus and structured genome type S. cerevisiae strains. Within S.
cerevisiae over half of the observed pSNPs were found to have occupancies between
10 and 90%, whereas in S. paradoxus less that 10% of pSNPs had occupancies in
that range. These differences in shape were hypothesised to be due to S. cerevisiae
strains having higher copy numbers and having undergone frequent hybridisation.
Furthermore, a number of S. cerevisiae strains which were previously assigned to
structured groups were re-classified into additional subdivisions (structured-clean
and structured-mosaic) to explain the evolutionary histories of these strains.

Phylogenetic trees derived from combined SNP+pSNP rDNA datasets were found
to be highly similar to previous whole-genome SNP-based trees for the two
yeast species (Liti et al., 2009), with S. paradoxus strains splitting clearly into
geographical groups. Comparison of NeighborNets to these phylogenetic trees
illustrated the existence of conflict within the phylogenetic signal of the S. cerevisiae
dataset. This is likely to be a consequence of genomic mosaicism that arose from
the hybrid origins of the S. cerevisiae strains. In contrast, the phylogenetic
structure of the S. paradoxus strains appeared to be more tree-like.

This analysis also suggests that pSNPs could potentially be used to identify
hybridisation signals within genomes. As already noted, mosaic genomes possess
more pSNPs than structured ones. The S. paradoxus analysis led to the hypothesis
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that the strains N-17 and N-45 resulted from hybridation between presently
unknown European and Far Eastern strains. N-17 and N-45 were shown to possess
low occupancy pSNPs normally associated with the other geographical group.
Further analysis on these and closely related strains would be needed to confirm
this hypothesis, including checking if the variation could be the result of low level
sequence contamination from another strain.

7.3. Simulating rDNA Dynamics

Two Java programs, SIMPLEX and CONCERTINA, were developed to simulate
“idealised” versions of mutational processes thought to be involved in concerted
evolution. A series of preliminary simulation experiments were devised using a
core set of parameters taken from previous studies, enabling some of the patterns
observed in earlier rDNA variation analysis to be investigated.

The SIMPLEX program followed the fate of a single pSNP whilst it was spread
across or lost from an rDNA array. Varying parameters for simplified USCE and
GC events revealed preliminary insights into the dynamics of concerted evolution.
USCE was found to more rapidly homogenize an rDNA array than GC, and on
average the size of the array was smaller when a pSNP was fixed than when it was
lost. A polynomial relationship was identified between the pSNP occupancy at the
beginning of a simulation run and the average number of concerted evolutionary
events until fixation or loss was achieved. Delving deeper into this latter case,
for each pSNP occupancy bin a Poisson distribution for rapidity of fixation and
loss was found, a natural distribution for data of this type. The position of the
pSNP-possessing unit within the rDNA array was not found to effect the spread
of the pSNP, except if it was within the first unit. Furthermore, a positional effect
existed whereby greater numbers of events were needed to fix a pSNP if it was
located within the first 1,000 bases of an rDNA unit.

The second of the two programs, CONCERTINA, expanded on the processes
introduced in SIMPLEX. It allowed a continual process of pSNP birth (point
mutation) within an rDNA array balanced against the previous USCE and GC
processes of concerted evolution. CONCERTINA also modelled the divergence
of strains (rDNA arrays) over a phylogenetic tree. These two enhancements
enabled differences in pSNP dynamics to be investigated by varying the balance
between point mutation and concerted evolution, both in a single rDNA array
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and across sets of rDNA arrays related by a tree-like structure. The shape of
pSNP occupancy distributions was found to vary with the underlying parameters.
In particular, a deep U-shaped distribution resulted for similar rates of point
mutation to concerted evolutionary events.

This preliminary research in the computational simulation of concerted
evolutionary processes could be built upon in a number of ways. For example,
at present values drawn from (discrete) uniform distributions are used for many
of the parameter values (e.g. USCE tract lengths are currently distributed as
U{1, ..., 7}), when a (discretised) Gaussian distribution might provide a better fit
to the biological processes involved. Furthermore, in the current model, all units
in the rDNA array are equally likely to be chosen to start a USCE or GC event.
However, previous research has suggested that the innermost, central units within
an rDNA array are more likely to be involved in a concerted evolutionary mutation
event (O’Kelly, 2008). Again a Gaussian, rather than a uniform, distribution
could be used to choose the units for each event. Other parameters could also be
updated, such as the GC tract length. This parameter is currently static but it
could also become a variable in future.

In addition to incorporating more natural variation within the SIMPLEX
or CONCERTINA parameters, recently discovered features of the concerted
evolutionary process could also lead to model changes. For example, large deletion
events, where an rDNA array rapidly decreases in copy number, have been
discovered experimentally (Ganley and Kobayashi, 2011). Adding such an event to
SIMPLEX would likely result in significant changes to the results of the simulation
runs, as low rDNA copy number and hence fixation of a pSNP could be achieved
much more rapidly. Mathematically, this new event is reminiscent of a particular
type of random walk known as a Lévy flight, whereas the current model treats
rDNA copy number more similarly to a standard random walk. Lévy flights are
often seen in larger scale biological processes, for example in foraging strategies of
animals such as albatross and marine predators (Humphries et al., 2010, 2012).

A priority for future CONCERTINA development is the addition of a hybridisation
process. This could be incorporated as part of the current tree structure, with
different nodes having sections of their rDNA array cross over at a certain
rate. Hybridisation would be expected to have a large effect on the results
of simulations, as such an event would immediately inject a number of pSNPs
at greater than 1% occupancy into an rDNA array. Furthermore, hybridisation
has been linked by variation analysis to a shallow U-shaped pSNP occupancy
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distribution in S. cerevisiae strains. By carrying out simulation runs varying
the rates of hybridisation, it could be formally tested whether such variation
could distinguish between pSNP occupancy distributions similar to those of S.
cerevisiae and S. paradoxus. To implement hybridisation, a change to the main
CONCERTINA data structure to a more biologically representative structure,
such as a balanced bifurcating tree, could also be included at this point. This
change would allow inferences to be made between different time points on a tree,
and to track hybridisation events more clearly.

To more rigorously make inferences from simulations about parameter values acting
on real datasets, the software would need to be extended to include methods to
measure the goodness-of-fit (for example, sum-of-squares or Chi-squared statistics)
between experimentally observed and simulated data points. Indeed, updating
the TURNIP software and other scripts for the analysis of NGS data would
immediately generate a new raft of experimental datasets that could be used to
explore a greater portion of parameter space than is currently possible. This
might in turn lead to updating of the core model parameters. The preliminary
simulation runs made many assumptions about parameter values based on the
current literature. In future, some of these values are likely to change in the light
of further research. Ultimately, only by the analysis of real experimental datasets
can any meaningful conclusions regarding concerted evolutionary mechanisms be
drawn.

Other extensions to CONCERTINA should include simulating concerted evolution
in multi-locus systems. Such systems are present in many organisms, and here
processes such as gene conversion are thought to have a greater importance than
in single-locus systems, as they are required to homogenise the rDNA sub-arrays
scattered across the genome. Furthermore, concerted evolutionary processes such
as intra-chromatid recombination, resulting in ERCs, and the effect of meiotic
recombination could also be simulated. Including other polymorphism types, such
as indels, might also refine knowledge of rDNA array evolution. Based upon this
variation analysis, such mutations are more likely to occur in specific regions of an
rDNA unit, such as homopolymeric tracts found in IGS regions, and this would
need to be reflected in a computational model.
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7.4. Analysis of rDNA flanking regions

The rDNA flanking regions of one S. paradoxus and three S. cerevisiae strains
were analysed. The broad structure of the left flank was found to be conserved
across all four strains, with a partial rDNA unit beginning the array, confirming
the previously defined structure for S288c (SGD, 2013). However, the right flank
was identical only in the S. paradoxus strain and two of the S. cerevisiae strains.
Given the phylogenetic relationships of these strains, this structure is likely to
be the ancestral arrangement of S. cerevisiae, and potentially further across the
sensu stricto group. In the S. cerevisiae type strain S288c, a different partial
rDNA unit is found, along with tandemly arranged groups of ASP3 and 5S
sequences. It is likely that the insertion of ASP3 into chromosome XII of S288c
(or its ancestor) via horizontal gene transfer from Wickerhamomyces anomalus
(League et al., 2012) has deleted a section of the rDNA array, giving rise to the
different (partial) terminating units. It is known that other yeast strains from
laboratory or industrial environments also contain ASP3. This member of the
asparagine degradation pathway is induced in response to nitrogen starvation,
and may have enabled these strains to adapt to artificial environments. It would
be interesting in future to examine the structures of right flanking rDNA units
in other Asp3p-containing strains, to see whether they are arranged similarly to
S288c.

The presence of partial rDNA units at the end of rDNA arrays poses an interesting
question. How have such units arisen? Given our current understanding of the
way in which the rDNA array evolves, it would seem that partial rDNA units
could be acquired in three ways. Firstly, an intact terminal unit could degrade,
for example, via deletion. This is certainly a likely event in the case of the right
terminal unit of S288c (although it was likely to have been a different partial unit
even prior to this event). Secondly, the USCE process may tolerate a certain level
of inexact pairing, giving rise to partial units only at the end of rDNA arrays.
Thirdly, currently unknown mechanisms of concerted evolution may allow partial
rDNA units to be added to the ends of an array. Further research in this area,
including sequence analysis of rDNA arrays, will enable evidence to be gathered in
support of one or more of these scenarios. Ultimately, this could lead to an update
of the CONCERTINA and SIMPLEX models for dealing with terminal rDNA
units, which are currently treated no differently from all other rDNA units.
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7.5. Conclusion

Significant new knowledge on rDNA variation, structure and evolution has been
presented. A range of new software tools for variation discovery, validation,
analysis and modelling has been introduced. Together this knowledge and toolkit
form a framework for further investigation of this key genomic region and of the
concerted evolutionary processes that mould it. Finally, many aspects of further
experimentation have been identified, both laboratory- and computer-based, which
would be highly interesting to explore further.
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A. rDNA Variation

Strain Position Read NCBI SGRP Other info

A12 3617 A12-
1f02.p1k

Saccharomyces
cerevisiae YJM789
mitochondrion
851/863 (99%)

N 45 chr 13
360/635
(56%)

likely
contamination

A4 3622 A4-
13m20.q1k

Saccharomyces
cerevisiae EC1118
chromosome XI
566/638 (89%)

A12 . chr11
671/698
(96%)

wrong chromosome

A4 5929 A4-
13n11.p1k

Saccharomyces
paradoxus NRRL
Y-17217 genes for
25S rRNA, 5S
rRNA, 18S rRNA,
5.8S rRNA,
complete sequence
229/239 (96%)

A12. chr15
863/872
(98%)

wrong chromosome,
lookes like small
subsection (a
couple hundred nt)
match rDNA

CBS432 3072 CBS432-
171a16.p1k

Saccharomyces
paradoxus Ty3-like
retrotransposon,
partial sequence
97/112 (87%)

KPN3829.
chr07
182/252
(72%)

only a couple of
reads, doesn’t
match well

CBS432 7547 CBS432-
25b09.q1k

Plasmodium
falciparum 3D7
chromosome 11,
complete sequence
1147/1175 (98%)

REF. chr12
264/320
(82%)

Plasmodium
contamination,
matches poorly to
subsection of rDNA
only a couple of
reads

CBS5829 3601 CBS5829-
32m04.p1k

Saccharomyces
cerevisiae S288c
chromosome XVI,
complete Sequence,
Features in this
part of subject
sequence: Vma13p
764/845 (90%)

CBS5829
chr16
743/823
(90%)

wrong chromosome
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Strain Position Read NCBI SGRP Other info

DBVPG
4650

3607 DBVPG4650-
27g05.q1k

Saccharomyces
cerevisiae S288c
chromosome II,
complete Sequence,
hypothetical
protein 1044/1196
(87%)

Q95 3.
chr02
1123/1227
(91%)

wrong chromosome

DBVPG
4650

4029 DBVPG4650-
27a11.p1k

Saccharomyces
cerevisiae S288c
chromosome XV,
complete sequence
Hypothetical
protein 188/261
(72%)

REF. chr13
967/993
(97%)

wrong chromosome,
very poor hit in
NCBI

DBVPG
6304

3606 DBVPG6304-
22m16.p1k

Saccharomyces
cerevisiae S288c
chromosome XVI,
complete Sequence,
Vma13p, 605/679
(89%)

DBVPG6304.
chr16
636/668
(95%)

wrong chromosome

DBVPG
6304

5945 DBVPG6304-
41m13.q1k

Saccharomyces
cerevisiae EC1118
chromosome XII,
EC1118 1L7
genomic scaffold,
whole genome
shotgun sequence
Sec10p, 532/628
(85%)

A4. chr12
716/718
(99%)

wrong part of
chromosome, Sec10
protein

IFO1804 3070 IFO1804-
13a18.p1k

Saccharomyces
paradoxus Ty3-like
retrotransposon
long terminal
repeat, partial
sequence 292/372
(78%)

IFO1804.
chr07
285/362
(78%)

no good hits.
SGRP Gbrowse
aligned to Chr 7, no
protein coding area

IFO1804 3639 IFO1804-
5o03.p1k

Saccharomyces
cerevisiae S288c
chromosome XIV,
complete Sequence,
hypothetical
protein, 696/826
(84%)

N 45. chr16
419/419
(100%)

wrong chromosome
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IFO1804 4022 IFO1804-
14n20.q1k

S.cerevisiae
proline-specific
permease (PUT4)
gene, complete Cds,
745/866 (86%)

IFO1804.
chr15
777/862
(90%

wrong chromosome,
matches part of
PUT4 gene

KPN3828 5951 KPN3828-
14o01.q1k

Saccharomyces
cerevisiae S288c
chromosome XII,
complete Sequence,
Sec10p, 528/628
(84%)

REF. chr12
908/912
(99%)

wrong part of
chromosome, Sec10
protein

KPN3828 4470 KPN3828-
4j09.q1k

Saccharomyces
cerevisiae S288c
chromosome II,
complete, Ubc4p
Sequence 776/862
(90%

REF. chr02
769/806
(95%)

wrong chromosome,
Ubc4 protein

KPN3828 3605 KPN3828-
3e13.q1k

Saccharomyces
cerevisiae S288c
chromosome XVI,
complete sequence ,
Vma13, 803/892
(90%)

KPN3828.
chr16
849/890
(95%)

wrong chromosome,
Vma13 protein

KPN3829 3629 KPN3829-
17n22.q1k

Saccharomyces
douglasii
mitochondrial
cytochrome c
oxidase subunit I
(COXI) gene,
complete cds
863/872 (99%)

DBVPG6304.
chr15
137/221
(61%)

Possible
contamination? Or
very poor hit to
SGRP, cannot find
read in SGRP
gbrowse

KPN3829 4139 KPN3829-
14d18.q1k

Saccharomyces
cerevisiae S288c
chromosome XVI,
complete Isr1 Yth1
genes Sequence
790/898 (88%)

REF. chr16
895/897
(99%)

wrong chromosome,
matches ISR1 and
YTH1 region

N 17 3067 N 17-
11g12.p1k

Saccharomyces
cerevisiae S288c
chromosome VII,
complete sequence
Tim13476/686
(69%)

CBS432.
chr07
874/879
(99%)

wrong chromosome,
match to just
before Tim13 gene
(looking at SGRP
gbrowse
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N 17 3601 N 17-
10b07.q1k

Saccharomyces
paradoxus NRRL
Y-17217 genes for
25S rRNA, 5S
rRNA, 18S rRNA,
5.8S rRNA,
complete sequence
897/924 (97%)

N 45. chr12
897/905
(99%)

TRUE positive,
filtered out because
other read was false
positive, see below

N 17 3601 N 17-
61g16.q1k

Saccharomyces
cerevisiae EC1118
chromosome VII,
712/902 (79%)

REF. chr07
830/884
(93%)

wrong chromosome

N 43 3086 N 43-
15b14.p1k

Saccharomyces
cerevisiae EC1118
chromosome VII,
418/608 (69%)

N 43. chr07
110/130
(84%)

wrong chromosome,
poor match to
SGRP, near Tim13

N 43 3616 N 43-
21n22.p1k

Saccharomyces
cerevisiae S288c
chromosome
VII729/772 (94%)

N 45. chr07
650/671
(96%)

wrong chromosome,
Pfk1 gene

N 43 5967 N 43-
34f22.q1k

Saccharomyces
cerevisiae S288c
chromosome XI,
complete Sequence
468/595 (79%

N 45. chr11
845/854
(98%)

wrong chromosome

N 43 4072 N 43-
25n19.q1k

Saccharomyces
cerevisiae EC1118
chromosome XV
Irc23p Tom6p
768/949 (81%)

N 45. chr15
876/908
(96%)

wrong chromosome,
near IRC23 and
TOM6 genes

N 44 3096 N 44-
32h13.q1k

Saccharomyces
cerevisiae EC1118
chromosome I
307/404 (76%)

IFO1804.
chr07
284/362
(78%)

poor matches
generally, wrong
chromosome, SGRP
matches it to chr7

N 44 3616 N 44-
12f23.p1k

gb—DQ115391.1—
777/954 (81%)

N 45. chr07
868/919
(94%)

wrong chromosome,
possibly some
putative non
essential genes
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N 44 5846 N 44-
12c15.p1k

Saccharomyces
paradoxus NRRL
Y-17217 genes for
25S rRNA, 5S
rRNA, 18S rRNA,
5.8S rRNA,
complete sequence
907/922 (98%)

N 44. chr12
904/922
(98%)

TRUE positive, was
filtered into a SNP
(as consensus reads
were actually from
Sec10p)

N 45 3067 N 45-
10g02.p1k

Saccharomyces
paradoxus Ty3-like
retrotransposon,
partial sequence
230/275 (84%)

N 45. chr07
235/267
(88%)

doesn’t match well
to anything, but
SGRP matches it
to chr 7

N 45 3621 N 45-
10k20.p1k

Saccharomyces
cerevisiae EC1118
chromosome VII,
707/860 (82%)

N 45. chr07
836/883
(94%)

wrong chromosome,
see N 44 3616
description

N 45 4056 N 45-
10d11.p1k

Saccharomyces
paradoxus NRRL
Y-17217 genes for
25S rRNA, 5S
rRNA, 18S rRNA,
5.8S rRNA,
complete sequence
695/712 (98%)

N 45. chr12
866/975
(88%)

TRUE positive,
filtered out because
consensus read
matched to another
chr, but not put as
SNP, and read did
pass filtering. A
change in MUSCLE
alignment perhaps?

N 45 8671 N 45-
46n03.q1k

Saccharomyces
cerevisiae S288c
chromosome XVI,
complete
Sequence,Hat1p
525/613 (86%)

N 45. chr16
825/925
(89%)

wrong chromosome,
part matches to
Hat1

Q32 3601 Q32 3-
3b24.p1k

TPA inf:
Saccharomyces
cerevisiae S288c
chromosome IX
Syg1p hypothetical
protein 782/911
(86%)

KPN3828.
chr09
820/883
(92%)

wrong chromosome
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Q32 4038 Q32 3-
20a12.p1k

Saccharomyces
cerevisiae S288c
chromosome XV,
complete sequence
Hypothetical
protein 188/261
(72%)

REF. chr13
799/819
(97%)

wrong chromosome

Q59 3601 Q59 1-
1o22.q1k

Saccharomyces
cerevisiae S288c
chromosome XVI,
complete sequence
,Gln1p Vma13p
735/816 (90%

N 17. chr16
701/799
(87%)

wrong chromsome,
Vma13 gene again

Q59 4469 Q59 1-
9d13.p1k

Saccharomyces
cerevisiae BIO6
gene for biotin
biosynthesis
enzyme, partial cds,
strain:Sake yeast
kyokai No.7, 38 Kb
cosmid 450/668
(67%)

Q74 4.
chr02
896/914
(98%)

wrong chromosome

Q62 3610 Q62 5-
17e20.q1k

Saccharomyces
cerevisiae S288c
chromosome VII,
complete sequence
Npp2p Edc3p
739/840 (88%

Z1 1. chr05
820/835
(98%

wrong chromosome

Q62 4037 Q62 5-
11d05.p1k

Saccharomyces
cerevisiae S288c
chromosome XV
hypothetical
protein 134/188
(71%

REF. chr13
967/993
(97%)
881/900
(97%)

wrong chromosome,
poor blast match

Q89 4040 Q89 8-
10h01.p1k

Saccharomyces
cerevisiae S288c
chromosome XII,
120/150 (80%)

Ref. chr12
845/884
(95%)

right chromosome,
wrong part

Q89 4479 Q89 8-
8n23.q1k

Saccharomyces
cerevisiae S288c
chromosome II,
complete Sequence,
Ubc4p 743/826
(90%)

REF. chr02
730/761
(95%)

wrong chromosome,
Ubc4 protein
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Q95 3604 Q95 3-
38k03.q1k

Saccharomyces
cerevisiae EC1118
chromosome VII
586/701 (84%)

Q95 3.
chr07
762/808
(94%)

wrong chromosome

Q95 4046 Q95 3-
48g10.q1k

Saccharomyces
cerevisiae S288c
chromosome XV
467/571 (82%)

REF. chr15
476/492
(96%)

wrong chromosome
and poor match

S36 3608 S36 7-
10f16.p1k

Saccharomyces
cerevisiae EC1118
chromosome I
829/938 (88%)

REF. chr01
905/923
(98%)

wrong chromosome

T21 3607 T21 4-
14p12.q1k

Saccharomyces
cerevisiae EC1118
chromosome VII
739/877 (84%)

Z1 1. chr07
835/882
(94%)

wrong chromosome

T21 5920 T21 4-
21k03.p1k

Saccharomyces
cerevisiae S288c
chromosome XII,
Sec10p 331/402
(82%)

Ref. chr12
647/649
(99%)

right chromosome,
wrong part

UFRJ50791 3608 UFRJ50791-
14d07.q1k

Saccharomyces
paradoxus BUD3p
(BUD3) gene,
partial cds;
YCL012Cp
(YCL012C) gene,
complete cds; and
GBP2p (GBP2)
gene, partial
798/831 (96%)

UFRJ50791.
chr03
821/836
(98%)

wrong chromosome

UFRJ50791 5225 Non
consensus
read
UFRJ50791-
10g03.q1k

Saccharomyces
paradoxus NRRL
Y-17217 genes for
25S rRNA, 5S
rRNA, 18S rRNA,
5.8S rRNA,
924/967 (96%)

UFRJ50816.
chr12
950/973
(97%)

right chromosome
for non consensus
reads, but wrong
one for consensus,
therefore actually a
SNP

UFRJ50791 5225 Consensus
read
UFRJ50791-
14h21.q1k

Saccharomyces
cerevisiae S288c
chromosome III
Csm1p 813/1023
(79%

A12. chr03
709/774
(91%)

as above
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UFRJ50816 3617 UFRJ50816-
18e22.p1k

Saccharomyces
cerevisiae S288c
chromosome XIV,
complete Sequence,
Bni1p 629/761
(83%)

UFRJ50816.
chr14
719/765
(93%)

wrong chromosome

UWOPS91
917 3

3601 UWOPS91
917 1-
10c10.p1k

Saccharomyces
cerevisiae YJM789
mitochondrion,
complete genome
1020/1040 (98%)

IFO1804.
chr11
316/566
(55%)

contamination

UWOPS91
917 3

5948 UWOPS91
917 1-
13c09.p1k

Saccharomyces
paradoxus NRRL
Y-17217 genes for
25S rRNA, 5S
rRNA, 18S rRNA,
5.8S rRNA,
complete sequence
Length=9103
229/239 (96%)

UWOPS91
917 1.
chr15
986/995
(99%)

wrong chromosome,
but poor match to
rDNA in NCBI was
top hit

Y6 5 3086 Y6 5-
23d22.p1k

Saccharomyces
cerevisiae S288c
chromosome V
186/230 (81%)

Q69 8.
chr07
897/900
(99%)

wrong chromosome

Y6 5 4050 Non consen-
susY6 5-
19h05.p1k

Saccharomyces
paradoxus NRRL
Y-17217 genes for
25S rRNA, 5S
rRNA, 18S rRNA,
5.8S rRNA,
complete sequence
822/826 (99%)

REF. chr12
753/813
(92%)

the only consensus
read actually
matched wrong
chromosome
therefore is actually
a SNP

Y6 5 4050 consensus
Y6 5-
8e12.q1k

Saccharomyces
cerevisiae S288c
chromosome XV
596/750 (79%)

REF. chr15
710/764
(92%)

as above

Y7 3602 Y7-
1p03.p1k

Saccharomyces
cerevisiae EC1118
chromosome II
776/854 (91%)

REF. chr02
617/651
(94%)

wrong chromosome
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YPS138 2617 YPS138-
3o07.p1k

Saccharomyces
cerevisiae S288c
chromosome XII
268/269 (99%)

YPS138.
chr12
807/811

poor blast match,
but does to rDNA.
SGRP Gbrowse
matches it to
YLR162W-A

YPS138 4072 YPS138-
32b24.p1k

Saccharomyces
cerevisiae RF1095,
RF435, and inner
membrane protease
1 (PET2858) genes,
complete cds
782/886 (88%)

DBVPG6304.
chr13
857/899
(95%)

wrong chromosome,
matched to IMP1
protein on SGRP?

Z1 1 3600 Z1 1-
11f09.p1k

Saccharomyces
cerevisiae S288c
chromosome XVI
Vma13p 866/965
(90%

Z1 1. chr16
901/950
(94%)

wrong chromosome,
Vma13?

Z1 1 4123 Z1 1-
26f23.q1k

Saccharomyces
cerevisiae S288c
chromosome XVI
Isr1p Yth1p
761/843 (90%)

REF. chr16
842/844
(99%)

wrong chromosome

Table A.1.: S. paradoxus pSNPs lost after filtering, and what they were identified as

Strain Position Read NCBI SGRP Other info

A12 3612 A12-
29c18.p1k

891/899 (99%)Sac-
charomyces
cerevisiae EC1118
chromosome XII

YPS138.
chr12
655/911
(71%)

YJM975. chr12
856/896 (95%) in
SGRP Sc blast
though

A12 5029 A12-
10g12.p1k

Saccharomyces
paradoxus NRRL
Y-17217 genes for
25S rRNA, 5S
rRNA, 18S rRNA,
5.8S rRNA,
complete sequence
1049/1125 (93%)

A4. chr12
1050/1106
(94%)

Likely a genuine
pSNP
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A4 4068 A4-
25e07.p1k

Saccharomyces
paradoxus NRRL
Y-17217 genes for
25S rRNA, 5S
rRNA, 18S rRNA,
5.8S rRNA,
complete sequence
781/811 (96%)

A4. chr12
764/785
(97%)

only one kept,
seems genuine

CBS432 5655 CBS432-
10d18.q1k

780/786 (99%)Sac-
charomyces
paradoxus NRRL
Y-17217 genes for
25S rRNA, 5S
rRNA, 18S rRNA,
5.8S rRNA,
complete sequence

CBS5829.
chr12
773/786
(98%)

possibly SNP as
high occupancy?
Also the one
consensus read
matches better to
Sc than Spd
strains?

CBS5829 4052 CBS5829-
10b10.q1k

Saccharomyces
paradoxus NRRL
Y-17217 genes for
25S rRNA, 5S
rRNA, 18S rRNA,
5.8S rRNA,
complete sequence
878/889 (99%)

CBS5829.
chr12
809/895
(90%)

genuine

DBVPG
4650

4050 DBVPG4650-
10i17.q1k

Saccharomyces
paradoxus NRRL
Y-17217 genes for
25S rRNA, 5S
rRNA, 18S rRNA,
5.8S rRNA,
complete sequence
866/874 (99%)

KPN3828.
chr12
816/881
(92%)

genuine

DBVPG
6304

4067 DBVPG6304-
40j24.q1k

Saccharomyces
paradoxus NRRL
Y-17217 genes for
25S rRNA, 5S
rRNA, 18S rRNA,
5.8S rRNA,
complete sequence
730/759 (96%)

DBVPG6304.
chr12
707/727
(97%)

genuine
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DBVPG
6304

3645 DBVPG6304-
13c17.q1k

Saccharomyces
paradoxus NRRL
Y-17217 genes for
25S rRNA, 5S
rRNA, 18S rRNA,
5.8S rRNA,
complete sequence
768/834 (92%)

A4. chr12
408/409
(99%)

probably genuine

IFO1804 N/A N/A N/A N/A 3 changed to SNP,
4050, 4052, 4054

KPN3828 5011 KPN3828-
16o24.p1k

Saccharomyces
paradoxus strain
BY20111 35S
ribosomal cistron
external transcribed
spacer, partial
sequence; ribosomal
DNA intergenic
spacer 2, complete
sequence; and 5S
ribosomal RNA
gene, partial
sequence951/984
(97%)

CBS5829.
chr12
895/910
(98%)

genuine, Also note
position 4050 and
4067 changed to
SNP from pSNP

KPN3829 6436 KPN3829-
7i01.p1k

Saccharomyces
paradoxus NRRL
Y-17217 genes for
25S rRNA, 5S
rRNA, 18S rRNA,
5.8S rRNA,
complete sequence
911/926 (98%)

KPN3829.
chr12
909/924
(98%)

genuine

N 17 3456 N 17-
10b07.q1k

Saccharomyces
paradoxus NRRL
Y-17217 genes for
25S rRNA, 5S
rRNA, 18S rRNA,
5.8S rRNA,
complete sequence
897/924 (97%)

N 45. chr12
897/905
(99%)

genuine
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N 17 3818 N 17-
10d24.q1k

Saccharomyces
paradoxus NRRL
Y-17217 genes for
25S rRNA, 5S
rRNA, 18S rRNA,
5.8S rRNA,
complete sequence
621/679 (91%)

N 45. chr12
830/961
(86%)

genuine

N 17 8951 N 17-
23n09.p1k

Saccharomyces
cerevisiae strain
CHY1011 18S
ribosomal RNA
gene, partial
sequence; internal
transcribed spacer
1, 5.8S ribosomal
RNA gene, and
internal transcribed
spacer 2, complete
sequence; and 26S
ribosomal RNA
gene, partial
sequence 690/695
(99%)

REF. chr12
691/694
(99%)

genuine

N 43 4041 N 43-
28a05.q1k

Saccharomyces
paradoxus NRRL
Y-17217 genes for
25S rRNA,
1079/1188 (91%)

N43. chr12
1059/1156
(91%)

genuine

N 44 6510 N 44-
10f05.p1k

Saccharomyces
paradoxus NRRL
Y-17217 genes for
25S rRNA, 5S
rRNA, 18S rRNA,
5.8S rRNA,
complete sequence
923/936 (99%)

N 44. chr12
917/926
(99%)

genuine
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N 44 8377 N 44-
13k07.p1k

Saccharomyces
paradoxus NRRL
Y-17217 genes for
25S rRNA, 5S
rRNA, 18S rRNA,
5.8S rRNA,
complete sequence
761/763 (99%)

N 45. chr12
762/763
(99%)

genuine

N 45 3456 N 45-
10b02.q1k

Saccharomyces
paradoxus strain
BY20111 5S
ribosomal RNA
gene, partial
sequence; ribosomal
DNA intergenic
spacer 1, complete
sequence; and 25S
ribosomal RNA
gene, partial
sequence 972/1117
(87%)

N 45. chr12
953/1087
(87%)

genuine

N 45 4296 N 45-
10f11.q1k

Saccharomyces
paradoxus NRRL
Y-17217 genes for
25S rRNA, 5S
rRNA, 18S rRNA,
5.8S rRNA,
complete sequence
761/763 (99%)

N 45. chr12
740/765
(96%)

genuine

N 45 5817 N 45-
42c24.p1k

Saccharomyces
paradoxus NRRL
Y-17217 genes for
25S rRNA, 5S
rRNA, 18S rRNA,
5.8S rRNA,
complete sequence
951/970 (98%)

N 45. chr12
949/968
(98%)

genuine

Q32 N/A N/A N/A N/A N/A
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Q59 3558 Q59 1-
30h04.q1k

Saccharomyces
paradoxus NRRL
Y-17217 genes for
25S rRNA, 5S
rRNA, 18S rRNA,
5.8S rRNA,
808/812 (99%)

REF. chr12
818/821
(99%)

genuine

Q59 6104 Q59 1-
10a13.p1k

Saccharomyces
paradoxus NRRL
Y-17217 genes for
25S rRNA, 5S
rRNA, 18S rRNA,
5.8S rRNA,
complete sequence
945/960 (98%)

943/957
(98%)943/957
(98%)

genuine

Q62 3558 Q62 5-
18l17.p1k

Saccharomyces
paradoxus NRRL
Y-17217 genes for
25S rRNA, 5S
rRNA, 18S rRNA,
5.8S rRNA,
complete sequence
789/791 (99%)

REF. chr12
801/801
(100%)

genuine

Q89 N/A N/A N/A N/A N/A

Q95 N/A N/A N/A N/A N/A

S36 N/A N/A N/A N/A N/A

T21 4050 T21 4-
1b07.p1k

Saccharomyces
paradoxus NRRL
Y-17217 genes for
25S rRNA, 5S
rRNA, 18S rRNA,
5.8S rRNA 888/898
(99%)

T21 4.
chr12
821/898
(91%)

genuine

UFRJ50791 N/A N/A N/A N/A N/A

UFRJ50816 543 UFRJ50816-
15i03.p1k

Saccharomyces
cerevisiae S288c
chromosome XII
723/723 (100%)

N 43. chr12
719/723
(99%)

genuine

UFRJ50816 4837 UFRJ50816-
15e09.q1k

S. carlsbergensis
rDNA not
transcribed spacer
(NTS) sequence
832/839 (99%)

N 44. chr12
702/844
(83%)

genuine
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UFRJ50816 6076 UFRJ50816-
15i03.q1k

Saccharomyces
cerevisiae S288c
chromosome XII
rRNA-RDN37-1
rRNA-ETS1-1
958/960 (99%)

N 44. chr12
842/969
(86%)

genuine

UFRJ50816 9098 UFRJ50816-
10e07.q1k

Saccharomyces
cerevisiae S288c
chromosome XII
rRNA-RDN37-1
rRNA-ETS1-1
870/876 (99%)

UFRJ50816.
chr12
876/876
(100%)

genuine

UWOPS91
917 3

3493 UWOPS91
917 1-

13b03.q1k

Saccharomyces
cerevisiae EC1118
chromosome XII
rRNA-NTS1-2
rRNA-RDN37-2
558/568 (98%)

N 45. chr12
481/582
(82%)

genuine

UWOPS91
917 3

9040 UWOPS91
917 1-
12n15.p1k

Saccharomyces
cerevisiae strain
CHY1011 18S
ribosomal RNA
gene, partial
sequence; internal
transcribed spacer
1, 5.8S ribosomal
RNA gene, and
internal transcribed
spacer 2, complete
sequence; and 26S
ribosomal RNA
gene, partial
sequence 872/885
(99%)

A4. chr12
861/886
(97%)

genuine

Y6 5 N/A N/A N/A N/A N/A

Y7 N/A N/A N/A N/A N/A

YPS138 N/A N/A N/A N/A most pSNPs
changed into SNPs

Z1 1 N/A N/A N/A N/A N/A

Table A.2.: S. paradoxus pSNPs kept after filtering, and what they were identified as
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273614N 1897 273614N-
10k10.q1k

Saccharomyces
cerevisiae EC1118
chromosome X
Vps55p 991/1024
(97%)

273614N.
chr10
952/994
(95%)

wrong chromsome

273614N 4461 273614N-
27p17.p1k

Saccharomyces
cerevisiae S288c
chromosome IV
Tmn2p 932/939
(99%)

YPS606.
chr04
891/938
(94%)

wrong chromsome

322134S 6089 322134S-
2n11.q1k

Saccharomyces
cerevisiae EC1118
chromosome XII
rRNA-RDN37-1
rRNA-RDN18-1
1153/1244 (93%)

NCYC110.
chr12
1048/1111
(94%)

both reads were for
same pSNP.
However, only one
is a true pSNP,
therefore when false
one was lost, it
failed threshold of
>1 variant position

322134S 6089 322134S-
4d03.p1k

Saccharomyces
cerevisiae S288c
chromosome XIII
hypothetical
protein 572/574
(99%

RM11 1A.
chr13
593/615
(96%)

both reads were for
same pSNP.
However, only one
is a true pSNP,
therefore when false
one was lost, it
failed threshold of
>1 variant position

378604X 3614 378604X-
13g08.q1k

Saccharomyces
cerevisiae EC1118
chromosome IV
Tsc13p Nop1p
1054/1086 (97%)

DBVPG1106.
chr04
1040/1117
(93%)

wrong chromsome

BC187 3615 BC187-
22k24.p1k

Saccharomyces
cerevisiae EC1118
chromosome VII
891/891 (100%)

DBVPG1373.
chr07
870/891
(97%)

wrong chromsome

DBVPG1106 none

DBVPG1373 4483 DBVPG1373-
21d08.q1k

Saccharomyces
cerevisiae EC1118
chromosome VII
Rps2p Nab2p
813/814 (99%)

wrong chromsome
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DBVPG1373 4995 DBVPG1373-
25d13.p1k

Saccharomyces
cerevisiae EC1118
chromosome VI
1135/1172 (97%)

wrong chromsome

DBVPG1788 3601 DBVPG1788-
15p24.q1k

Saccharomyces
cerevisiae S288c
chromosome V,
complete sequence
Tca17p
hypothetical
protein 897/932
(96%)

wrong chromsome

DBVPG1788 4930 DBVPG1788-
20f14.p1k

Saccharomyces
cerevisiae EC1118
chromosome
VI210/213 (99%)

wrong chromsome

DBVPG1853 none, in
fact some

gained

DBVPG6040 3580 DBVPG6040-
19i15.p1k

Saccharomyces
cerevisiae EC1118
chromosome
XRnr2p Rrn7p
829/832 (99%)

wrong chromsome

DBVPG6040 3614 DBVPG6040-
13b22.p1k

Saccharomyces
cerevisiae EC1118
chromosome IV
Tsc13p 825/853
(97%)

wrong chromsome

DBVPG6044 1895 DBVPG6044-
29f13.p1k

Saccharomyces
cerevisiae EC1118
chromosome X
Vps55p 856/884
(97%)

wrong chromsome

DBVPG6044 4484 DBVPG6044-
33n10.p1k

Saccharomyces
cerevisiae S288c
chromosome IV,
complete sequence
Tmn2p 674/680
(99%)

wrong chromsome
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DBVPG6044 3607 DBVPG6044-
30j11.q1k

Saccharomyces
cerevisiae EC1118
chromosome XIV
Nrk1p Tep1p
892/902 (99%)

wrong chromsome

DBVPG6765 3580 DBVPG6765-
34i05.q1k

Saccharomyces
cerevisiae EC1118
chromosome Xrnr2p
EC1118 1J11 2322p
1118/1155 (97%)

wrong chromsome

DBVPG6765 4478 DBVPG6765-
24m23.p1k

Saccharomyces
cerevisiae EC1118
chromosome VII
Nab2p 802/803
(99%)

wrong chromsome

DB-
VPG6765

7468 DBVPG6765-
21l03.q1k

Saccharomyces
cerevisiae EC1118
chromosome I
941/952 (99%)

wrong chromsome

K11 1895 K11-
19c02.q1k

Saccharomyces
cerevisiae S288c
chromosome X
Vps55p 900/912
(99%)

wrong chromsome

K11 3607 K11-
13l04.p1k

Saccharomyces
cerevisiae EC1118
chromosome IV
Tsc13p Nop1p
906/916 (99%)

wrong chromsome

K11 4317 Non
consensus
readK11-
10n20.q1k

Saccharomyces
cerevisiae strain
BY2986 5S
ribosomal RNA
gene, partial
sequence; ribosomal
DNA intergenic
spacer 1, complete
sequence; and 25S
ribosomal RNA
gene, partial
sequence 935/947
(99%)

genuine, but turned
into a SNP in the
filtered as
consensus reads
actually match
something else
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K11 4317 Consensus
read K11-
7j06.p1k

Saccharomyces
cerevisiae S288c
chromosome XIII
Tub1p 970/980
(99%)

genuine, but turned
into a SNP in the
filtered as
consensus reads
actually match
something else

L 1374 4930 L 1374-
3h19.p1k

Saccharomyces
cerevisiae EC1118
chromosome VI
851/852 (99%)

wrong chromsome

NCYC110 6563 NCYC110-
12d18.p1k

Saccharomyces
cerevisiae S288c
chromosome XIII,
complete sequence
Msn2p 937/950
(99%)

wrong chromsome

NCYC110 3609 NCYC110-
12k05.q1k

Saccharomyces
cerevisiae S288c
chromosome IV,
complete sequence
Knh1p 882/891
(99%)

wrong chromsome

NCYC361 3615 NCYC361-
23n19.p1k

Saccharomyces
cerevisiae YJM789
mitochondrion,
983/1034 (95%)

mitochondrial
DNA?

NCYC361 3603 NCYC361-
16j12.p1k

Saccharomyces
cerevisiae YJM789
mitochondrion
922/946 (97%)

mitochondrial
DNA?

S288c 3603 S288c-
27n23.q1k

Saccharomyces
cerevisiae complete
mitochondrial
genome 892/898
(99%)

mitochondrial
DNA?

SK1 1895 SK1-
59n20.q1k

Saccharomyces
cerevisiae S288c
chromosome X
Vps55p 828/829
(99%)

wrong chromsome

SK1 4951 SK1-
5d05.p1k

Synthetic construct
clone Semi-SynVIL
1145/1203 (95%)

wrong, second hit is
Sc chr 6
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SK1 3615 SK1-
33p10.p1k

Saccharomyces
cerevisiae S288c
chromosome V
Tca17p
hypothetical
protein 702/711
(99%)

wrong chromsome

UWOPS03
461 4

4465 UWOPS03
461 4-

15h14.q1k

Saccharomyces
cerevisiae EC1118
chromosome VII
Rps2p Nab2p
892/902 (99%)

wrong chromsome

UWOPS03
461 4

4925 UWOPS03
461 4-

10j20.q1k

S. carlsbergensis
rDNA not
transcribed spacer
(NTS) sequence
854/866 (99%)

Consensus read,
wrong, second hit is
Sc chr 6, is changed
to a SNP in filtered
version

UWOPS03
461 4

4925 consensus
UWOPS03
461 4-

4n08.q1k

Synthetic construct
clone Semi-SynVI
941/973 (97%)

Consensus read,
wrong, second hit is
Sc chr 6, is changed
to a SNP in filtered
version

UWOPS05
217 3

3600 UWOPS05
217 3-

11j14.q1k

Saccharomyces
cerevisiae S288c
chromosome IV
Tsc13p Nop1p
915/923 (99%)

wrong chromsome

UWOPS05
227 2

none

UWOPS83
787 3

3610 UWOPS83
787 3-

15m18.p1k

Saccharomyces
cerevisiae EC1118
chromosome II
EC1118 1B15 4181p
Thi2p 879/911
(96%)

wrong chromsome

UWOPS83
787 3

3795 UWOPS83
787 3-

1b09.p1k

Saccharomyces
paradoxus NRRL
Y-17217 genes for
25S rRNA, 5S
rRNA, 18S rRNA,
5.8S rRNA,
complete sequence
752/854 (88%)

right area, but
matches much
better to paradoxus.
Contamination?
Actually, if go to
SGRP gbrowse it
matches chr 15
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UWOPS87
2421

3609 UWOPS87
2421-

18i19.q1k

Saccharomyces
cerevisiae S288c
chromosome I,
complete sequence
951/983 (97%)

wrong chromsome

W303 3233 W303-
2c24.p1k

Saccharomyces
cerevisiae S288c
chromosome XII
hypothetical
protein Rrt15p
895/901 (99%)

wrong part of
chromsome

W303 6567 W303-
15f02.q1k

Saccharomyces
cerevisiae S288c
chromosome XIII
Msn2p 897/899
(99%)

wrong chromsome

W303 4523 W303-
11g03.p1k

Saccharomyces
cerevisiae S288c
chromosome XII
hypothetical
protein
rRNA-RDN5-3
881/892 (99%)

right area, but
matches the 5s
repeats that are
outside the rDNA
array

Y9 3639 Y9-
20j17.q1k

Saccharomyces
cerevisiae EC1118
chromosome XIV
Nrk1p Tep1p
971/984 (99%)

wrong chromsome

Y12 3593 Y12-
1i01.p1k

Saccharomyces
cerevisiae S288c
chromosome XI
964/976 (99%)

wrong chromsome

Y55 4951 Y55-
57b02.q1k

Synthetic construct
clone Semi-SynVIL
700/708 (99%)

wrong chromsome
for second hit

Y55 6565 Y55-
1f08.p1k

Saccharomyces
cerevisiae S288c
chromosome XIII
785/791 (99%)

wrong chromsome
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YIIc17 E5 4484 YIIc17 E5-
2k07.p1k

Saccharomyces
cerevisiae EC1118
chromosome XI
Lap4p 1019/1036
(98%)

wrong chromsome

YIIc17 E5
6564 YIIc17 E5-

7h21.q1k
Saccharomyces
cerevisiae EC1118
chromosome XIII
Msn2p 1072/1089
(98%)

wrong chromsome

YJM975 4482 YJM975-
14n17.q1k

Saccharomyces
cerevisiae S288c
chromosome XV
Vma4p Mrs2p
838/848 (99%)

wrong chromsome

YJM975 4484 YJM975-
20f06.q1k

Synthetic construct
clone pNOY373 35S
ribosomal RNA,
18S ribosomal RNA,
5.8S ribosomal
RNA, 25S
ribosomal RNA,
and 5S ribosomal
RNA, complete
sequence 989/1038
(95%)

one is right, but the
other is from wrong
chromosome,
therefore is lost as
only 1 read covers
polymorphism

YJM975 4484 YJM975-
20f06.q1k

Saccharomyces
cerevisiae EC1118
chromosome XI
Lap4p 871/882
(99%)

one is right, but the
other is from wrong
chromosome,
therefore is lost as
only 1 read covers
polymorphism

YJM978 6560 YJM978-
2c22.q1k

Saccharomyces
cerevisiae S288c
chromosome XIII
Msn2p 875/880
(99%)

wrong chromsome

YJM978 4484 YJM978-
13i01.p1k

Saccharomyces
cerevisiae S288c
chromosome IV
Tmn2p 988/1012
(98%)

wrong chromsome
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YJM981 4485 YJM981-
16e20.q1k

Saccharomyces
cerevisiae EC1118
chromosome XI
Gfa1p Lap4p
908/929 (98%)

wrong chromsome

YJM981 4497 YJM981-
7g08.p1k

Saccharomyces
cerevisiae EC1118
chromosome XI
Gfa1p Lap4p
934/944 (99%)

wrong chromsome

YPS128 4482 YPS128-
10m02.p1k

Saccharomyces
cerevisiae EC1118
chromosome XIV
Rpc19p Dbp2p
800/808 (99%)

wrong chromsome

YPS128 4503 YPS128-
2j22.p1k

Saccharomyces
cerevisiae EC1118
chromosome XIV
EC1118 1N9 2465p
Rpc19p 782/787
(99%)

wrong chromsome

YPS606 4991 consensus
YPS606-
35g15.q1k

Synthetic construct
clone Semi-
SynVIL,896/901
(99%)

second hit is to chr
6, this was the only
consensus read
therefore becomes a
SNP in rerun

YS4 7468 YS4-
12e16.p1k

Saccharomyces
cerevisiae EC1118
chromosome I
1114/1168 (95%)

wrong chromsome

YS4 3601 YS4-
10b22.q1k

Saccharomyces
cerevisiae S288c
chromosome I
Saw1p Drs2p
929/952 (98%)

wrong chromsome

YS9 none

Table A.3.: S. cerevisiae pSNPs lost after filtering, and what they were identified as

Strain Position Read NCBI SGRP Other info
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273614N 7322 273614N-
27p06.q1k

Saccharomyces
cerevisiae strain
CICC1308 18S
ribosomal RNA
gene 964/966 (99%)

YIIc17 E5.
chr12
966/970
(99%)

genuine

273614N 4763 273614N-
10g02.p1k

S. carlsbergensis
rDNA not
transcribed spacer
(NTS) sequence
981/1010 (97%)

YPS128.
chr12
956/984
(97%)

genuine

273614N 3096 273614N-
30c14.p1k

Saccharomyces
cerevisiae S288c
chromosome XI
rRNA-RDN37-1
rRNA-ETS2-1
1044/1054 (99%)

YS2. chr12
1041/1052
(98%)

genuine

322134S 4664 322134S-
10d18.p1k

Synthetic construct
clone pNOY373 35S
ribosomal RNA,
18S ribosomal RNA,
5.8S ribosomal
RNA, 25S
ribosomal RNA,
and 5S ribosomal
1117/1152 (97%

YPS128.
chr12
1048/1101
(95%)

genuine

322134S 3154 322134S-
19i22.p1k

Saccharomyces
cerevisiae S288c
chromosome XII
915/926 (99%)

YJM981.
chr12
913/924
(98%),

genuine

378604X 3902 378604X-
10d17.p1k

Saccharomyces
cerevisiae EC1118
chromosome XII
rRNA-NTS2-1
RRNA-RDN5-1
1084/1160 (93%)

378604X.
chr12
1036/1159
(89%)

genuine

378604X 4166 378604X-
10d05.q1k

Synthetic construct
clone pNOY373 35S
ribosomal RNA,
18S ribosomal RNA,
5.8S ribosomal
RNA, 25S
ribosomal RNA,
and 5S ribosomal
909/932 (98%)

378604X.
chr12
875/929
(94%)

genuine
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BC187 3871 BC187-
22a03.p1k

Saccharomyces
cerevisiae EC1118
chromosome XII
rRNA-NTS2-1
RRNA-RDN5-1
866/872 (99%)

DBVPG6765.
chr12
830/870
(95%)

genuine

BC187 5457 BC187-
25i17.p1k

Saccharomyces
cerevisiae partial 5S
rRNA gene, NTS2
and ETS1641/644
(99%)

genuine

DBVPG1106 3659 DBVPG1106-
10m13.p1k

Saccharomyces
cerevisiae EC1118
chromosome XII
rRNA-NTS1-2
rRNA-RDN37-2
1055/1099 (96%)

genuine

DBVPG1373 1426 DBVPG1373-
13c12.q1k

Saccharomyces
cerevisiae S288c
chromosome XII
rRNA-RDN37-1
rRNA-RDN25-1
887/890 (99%)

genuine

DBVPG1373 8462 DBVPG1373-
26g06.q1k

Saccharomyces
cerevisiae S288c
chromosome XII
rRNA-RDN37-1
rRNA-ITS2-1
868/869 (99%)

genuine

DBVPG1788 none

DBVPG1853 3612 DBVPG1853-
11a02.p1k

Saccharomyces
cerevisiae strain
BY21391 5S
ribosomal RNA
gene, partial
sequence; ribosomal
DNA intergenic
spacer 1, complete
sequence; and 25S
ribosomal RNA
gene, partial
sequence 995/1035
(96%)

genuine
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DBVPG1853 1887 DBVPG1853-
10b20.q1k

Saccharomyces
cerevisiae S288c
chromosome XII
rRNA-RDN37-1
rRNA-ITS2-1
848/849 (99%)

genuine

DBVPG1853 9067 DBVPG1853-
10p07.q1k

Uncultured
Ascomycota clone
asc07069 5.8S
ribosomal RNA
gene, partial
sequence; internal
transcribed spacer
2, complete
sequence; and 28S
ribosomal RNA
gene, partial
sequence 577/579
(99%)

genuine

DBVPG6040 524 DBVPG6040-
11a08.p1k

Saccharomyces
cerevisiae S288c
chromosome XII,
complete sequence
rRNA-RDN37-1
rRNA-RDN25-1
781/796 (98%)

genuine

DBVPG6040 3697 DBVPG6040-
11i14.p1k

Saccharomyces
cerevisiae EC1118
chromosome XII
rRNA-NTS1-2
rRNA-RDN37-2
787/827 (95%)

genuine

DBVPG6040 5064 DBVPG6040-
10b15.p1k

Synthetic construct
clone pNOY373 35S
ribosomal RNA,
18S ribosomal RNA,
5.8S ribosomal
RNA, 25S
ribosomal RNA,
and 5S ribosomal
RNA 973/1026
(95%)

genuine
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DBVPG6040 8738 DBVPG6040-
10c15.p1k

Saccharomyces
cerevisiae strain
CHY1011 18S
ribosomal RNA
gene, partial
sequence; internal
transcribed spacer
1, 5.8S ribosomal
RNA gene, and
internal transcribed
spacer 2, complete
sequence; and 26S
ribosomal RNA
gene, partial
sequence 778/803
(97%)

genuine

DB-
VPG6044

679 DBVPG6044-
13h01.p1k

Saccharomyces
cerevisiae S288c
chromosome XII
rRNA-RDN37-1
RRNA-RDN25-1
936/946 (99%)

genuine

DBVPG6044 5524 DBVPG6044-
13a08.p1k

Saccharomyces
cerevisiae partial 5S
rRNA gene, NTS2
and ETS1, strain
HD4 838/847 (99%)

genuine

DBVPG6765 1852 DBVPG6765-
21e09.p1k

Saccharomyces
cerevisiae S288c
chromosome XII,
complete sequence
rRNA-RDN37-1
rRNA-RDN25-1
887/893 (99%)

genuine

DBVPG6765 3012 DBVPG6765-
12c03.p1k

Saccharomyces
cerevisiae S288c
chromosome XII
rRNA-RDN37-1
rRNA-RDN25-1
792/794 (99%)

genuine
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DBVPG6765 4652 DBVPG6765-
10i10.p1k

S. carlsbergensis
rDNA not
transcribed spacer
(NTS) sequence
829/834 (99%)

genuine

K11 4484 K11-
12m21.p1k

S. carlsbergensis
rDNA not
transcribed spacer
(NTS) sequence
918/950 (97%)

genuine

K11 8686 K11-
10j23.q1k

Saccharomyces
cerevisiae S288c
chromosome XII,
complete sequence
rRNA-RDN37-1
rRNA-RDN25-1
1034/1091 (95%)

genuine

L 1374 4484 L 1374-
12h10.q1k

Synthetic construct
clone pNOY373 35S
ribosomal RNA,
18S ribosomal RNA,
5.8S ribosomal
RNA, 25S
ribosomal RNA,
and 5S ribosomal
RNA 878/898
(98%)

genuine

L 1374 4657 L 1374-
12j16.p1k

S. carlsbergensis
rDNA not
transcribed spacer
(NTS) sequence
863/872 (99%)

genuine

NCYC110 253 NCYC110-
10b20.q1k

Saccharomyces
cerevisiae S288c
chromosome XII,
complete sequence
rRNA-RDN37-1
rRNA-RDN25-1
595/647 (92%)

genuine
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NCYC110
8686 NCYC110-

10b16.p1k
Saccharomyces
cerevisiae strain
Z614 internal
transcribed spacer
1, partial sequence;
5.8S ribosomal
RNA gene and
internal transcribed
spacer 2, complete
sequence; and 26S
ribosomal RNA
gene, partial
sequence 890/899
(99%)

genuine

NCYC361 3590 NCYC361-
13j14.q1k

Saccharomyces
cerevisiae EC1118
chromosome XII,
EC1118 1L10
genomic Scaffold
rRNA-NTS1-2
rRNA-RDN37-2
942/956 (99%)

genuine

NCYC361 4854 NCYC361-
22p04.p1k

Saccharomyces
cerevisiae S288c
chromosome XII
rRNA-NTS2-1
rRNA-RDN5-1
614/626 (98%)

genuine

NCYC361 524 NCYC361-
33b08.p1k

Saccharomyces
cerevisiae S288c
chromosome XII,
complete sequence
rRNA-RDN37-1
rRNA-RDN25-1
1082/1121 (97%)

genuine

S288c 4307 S288c-
1d19.q1k

Saccharomyces
cerevisiae EC1118
chromosome XII
rRNA-NTS2-1
RRNA-RDN5-1
1091/1156 (94%)

genuine
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S288c 6089 S288c-
18c09.q1k

Saccharomyces
cerevisiae EC1118
chromosome XII
rRNA-RDN37-1
RRNA-RDN18-1
828/831 (99%)

genuine

SK1 3177 SK1-
16p22.q1k

Saccharomyces
cerevisiae EC1118
chromosome XII
rRNA-NTS1-2
rRNA-RDN37-2
865/875 (99%)

genuine

SK1 8568 SK1-
10h11.p1k

Saccharomyces
cerevisiae S288c
chromosome XII
rRNA-RDN37-1
rRNA-ITS2-1
776/782 (99%)

genuine

UWOPS03 461
4

5526 UWOPS03 461
4-

11b06.p1k

Saccharomyces
cerevisiae partial 5S
rRNA gene, NTS2
and ETS1,
989/1008 (98%)

genuine

UWOPS05
217 3

3517 UWOPS05
217 3-

10c23.q1k

Saccharomyces
cerevisiae EC1118
chromosome XII
rRNA-NTS1-2
rRNA-RDN37-2
1049/1092 (96%)

genuine

UWOPS05
217 3

5131 UWOPS05
217 3-

10a18.p1k

Synthetic construct
clone pNOY373 35S
ribosomal RNA,
18S ribosomal RNA,
5.8S ribosomal
RNA, 25S
ribosomal RNA,
and 5S ribosomal
905/930 (97%)

genuine

UWOPS05
227 2

3517 UWOPS05
227 2-

10b15.q1k

Saccharomyces
cerevisiae EC1118
chromosome XII
rRNA-NTS2-1
RRNA-RDN5-1
1050/1131 (93%)

genuine
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UWOPS05
227 2

4854 UWOPS05
227 2-

10a14.q1k

Synthetic construct
clone pNOY373 35S
ribosomal RNA,
18S ribosomal RNA,
5.8S ribosomal
RNA, 25S
ribosomal RNA,
and 5S ribosomal
RNA 1038/1106
(94%)

genuine

UWOPS83
787 3

3517 UWOPS83
787 3-

15p17.q1k

Saccharomyces
cerevisiae EC1118
chromosome XII
rRNA-NTS1-2
rRNA-RDN37-2
885/902 (98%)

genuine

UWOPS83
787 3

4270 UWOPS83
787 3-

10l08.p1k

Synthetic construct
clone pNOY373 35S
ribosomal RNA,
18S ribosomal RNA,
5.8S ribosomal
RNA, 25S
ribosomal RNA,
and 5S ribosomal
RNA 889/917
(97%)

genuine

UWOPS83
787 3

5818 UWOPS83
787 3-

18i11.p1k

Saccharomyces
cerevisiae S288c
chromosome XII
rRNA-RDN37-1
rRNA-ETS1-1
427/432 (99%)

genuine

UW87
2421

1112 UWOPS87
2421-

3o08.p1k

Saccharomyces
cerevisiae S288c
chromosome XII
rRNA-RDN37-1
rRNA-RDN25-1
1006/1014 (99%)

genuine

UW87
2421

3517 UWOPS87
2421-

12k17.q1k

Saccharomyces
cerevisiae EC1118
chromosome XII
rRNA-NTS1-2
rRNA-RDN37-2
847/870 (97%)

genuine
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W303 4431 W303-
12k13.p1k

Saccharomyces
cerevisiae S288c
chromosome XII
rRNA-NTS2-1
rRNA-RDN5-1
1032/1045 (99%)

genuine

W303 5601 W303-
16b13.p1k

Saccharomyces
cerevisiae partial 5S
rRNA gene, NTS2
and ETS1, strain
HD4 941/950 (99%)

genuine

Y9 3538 Y9-
10b11.q1k

Saccharomyces
cerevisiae EC1118
chromosome XII,
EC1118 1L10
genomic Scaffold
rRNA-NTS1-2
rRNA-RDN37-2
1048/1083 (97%)

genuine

Y9 8295 Y9-
11b13.q1k

Saccharomyces
cerevisiae S288c
chromosome
XIIrRNA-RDN37-1
rRNA-ITS2-1
878/882 (99%)

genuine

Y12 8295 Y12-
10d12.q1k

Saccharomyces
cerevisiae S288c
chromosome XII
rRNA-RDN37-1
rRNA-ITS1-1
916/932 (98%)

genuine

Y12 4484 Y12-
14i23.p1k

Synthetic construct
clone pNOY373 35S
ribosomal RNA,
18S ribosomal RNA,
5.8S ribosomal
RNA, 25S
ribosomal RNA,
and 5S ribosomal
RNA 868/905
(96%)

genuine
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Y55 8568 Y55-
10b14.p1k

Saccharomyces
cerevisiae S288c
chromosome XII
rRNA-RDN37-1
RRNA-ITS2-1
890/903 (99%)

genuine

Y55 3177 Y55-
1h09.p1k

Saccharomyces
cerevisiae EC1118
chromosome XII
rRNA-NTS1-2
rRNA-RDN37-2
779/792 (98%)

genuine

YIIc17 E5 3612 YIIc17 E5-
4f08.q1k

Saccharomyces
cerevisiae S288c
chromosome XII
rRNA-RDN37-1
rRNA-ETS2-1
883/891 (99%)

genuine

YIIc17 E5
8738 YIIc17 E5-

12g04.p1k
Saccharomyces
cerevisiae S288c
chromosome XII
rRNA-RDN37-1
rRNA-RDN25-1
970/998 (97%)

genuine

YJM975 4484 YJM975-
13f12.q1k

Saccharomyces
cerevisiae EC1118
chromosome XII
rRNA-NTS2-1
rRNA-RDN5-1
1279/1379 (93%)

genuine

YJM975 3659 YJM975-
11b01.q1k

Saccharomyces
cerevisiae EC1118
chromosome XII
rRNA-NTS1-2
RRNA-RDN37-2
960/967 (99%)

genuine

YJM975 6595 YJM975-
19f06.p1k

Saccharomyces
cerevisiae EC1118
chromosome XII
rRNA-RDN37-1
rRNA-RDN18-1
945/963 (98%)

genuine
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YJM978 3659 YJM978-
10d16.q1k

Saccharomyces
cerevisiae EC1118
chromosome XII
rRNA-NTS1-2
rRNA-RDN37-2
1014/1025 (99%)

genuine

YJM978 9026 YJM978-
15h13.q1k

Saccharomyces
cerevisiae S288c
chromosome XII
rRNA-RDN37-1
rRNA-RDN25-1
1015/1039 (98%)

genuine

YJM978 5554 YJM978-
13b08.p1k

Saccharomyces
cerevisiae partial 5S
rRNA gene, NTS2
and ETS1, strain
HD4 868/875 (99%)

genuine

YJM981 2017 YJM981-
14b16.p1k

Saccharomyces
cerevisiae S288c
chromosome XII
rRNA-RDN37-1
rRNA-RDN25-1
891/896 (99%)

genuine

YJM981 5554 YJM981-
10m13.p1k

Saccharomyces
cerevisiae S288c
chromosome XII
rRNA-NTS2-1
rRNA-RDN5-1
1059/1095 (97%)

genuine

YPS128 none

YPS606 2996 YPS606-
15k22.q1k

Saccharomyces
cerevisiae S288c
chromosome XII
rRNA-RDN37-1
rRNA-RDN25-1
873/875 (99%)

genuine

YPS606 5473 YPS606-
15j03.q1k

Saccharomyces
cerevisiae partial 5S
rRNA gene, NTS2
and ETS1, strain
HD4 833/840 (99%)

genuine
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YS4 3430 YS4-
17a07.p1k

Synthetic construct
clone pNOY373 35S
ribosomal RNA,
18S ribosomal RNA,
5.8S ribosomal
RNA, 25S
ribosomal RNA,
and 5S ribosomal
RNA 1149/1204
(95%)

genuine

YS4 4070 YS4-
12d23.q1k

Saccharomyces
cerevisiae strain
BY21391 5S
ribosomal RNA
gene, partial
sequence; ribosomal
DNA intergenic
spacer 1, complete
sequence; and 25S
ribosomal RNA
gene, partial
sequence 833/848
(98%)

genuine

YS4 8702 YS4-
10g18.p1k

Synthetic construct
clone pNOY373 35S
ribosomal RNA,
18S ribosomal RNA,
5.8S ribosomal
RNA, 25S
ribosomal RNA,
and 5S ribosomal
RNA 893/903
(99%)

genuine

YS9 1813 YS9-
13c06.p1k

Saccharomyces
cerevisiae S288c
chromosome XII
rRNA-RDN37-1
rRNA-RDN25-1
908/911 (99%)

genuine
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YS9 3989 YS9-
14g13.p1k

Synthetic construct
clone pNOY373 35S
ribosomal RNA,
18S ribosomal RNA,
5.8S ribosomal
RNA, 25S
ribosomal RNA,
and 5S ribosomal
RNA 1126/1201
(94%)

genuine

YS9 5329 YS9-
11m17.p1k

Saccharomyces
cerevisiae strain
BY2986 35S
ribosomal cistron
external transcribed
spacer, partial
sequence; ribosomal
DNA intergenic
spacer 2, complete
sequence; and 5S
ribosomal RNA
Gene 907/951
(95%)

genuine

YS9 8702 YS9-
12g21.p1k

Synthetic construct
clone pNOY373 35S
ribosomal RNA,
18S ribosomal RNA,
5.8S ribosomal
RNA, 25S
ribosomal RNA,
and 5S ribosomal
RNA 930/948
(98%)

genuine

Table A.4.: S. cerevisiae pSNPs kept after filtering, and what they were identified as
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