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“The physical laws governing evolution in all probability take

on a simpler form when referred to the system as a whole than to

any portion thereof. It is not so much the organism or the species

that evolves, but the entire system, species and environment. The

two are inseparable.”

– Alfred James Lotka, February 1925.





Abstract

We live in an era of rapid change in ecosystems and their environ-

ments, that all scales up to the global. The contemporary view is that

the interactions between life and the environment are bidirectional: the

environment creates life and life creates the environment. However,

most ecosystem models have an inbuilt rigidity such that the degrees to

which they can mimic structural change in response to environmental

cues is very limited. In an effort to capture the plasticity of life we

present a new theoretical individual-based ecosystem model in the con-

text of previous classical and experimental modelling approaches. The

aim is to develop a deeper understanding of the factors determining

trophic structure. The individual-based approach permits the inclusion

of traits to model heritable attributes. Population-level models imple-

ment a mean-field approximation that led to the competitive exclustion

principle. The addition of a trait to define specific feeding strategy

permits the model exploration of this problem. Life history theory pre-

dicts that reduced juvenile mortality selects for delayed maturity and

decreased reproductive effort, and reduced adult mortality will select

for the opposite. Through the inclusion of a different trait to represent

relative parental investment in offspring, we explore the predictions of

life history theory and hypotheses for clutch size.
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1 Introduction

In the 1920s, the predator-prey equations attributed to Alfred Lotka and Vito

Volterra represented a major contribution to the emerging field of biomath-

ematics (Israel, 1988). The biomathematical approach treats biology as a

deterministic phenomenon in order that it can be described using classical me-

chanics (Israel, 1988). This is apparent when it is considered that the form of

the Lotka-Volterra equations originate in work describing periodic chemical re-

actions (Lotka, 1910, 1920a,b). Volterra (1926b; 1926a) appropriated the work

and applied the mathematical pattern to population interactions. Lotka (1925)

doubted Newtonian dynamics in its potential to describe complex processes,

suggesting that some of the missing detail could be essential to the result. In

the absence of a better tool, the course of scientific development illustrates

that Volterra’s mechanistic view of biology was adopted (Israel, 1988).

1.1 Deterministic Approaches

1.1.1 Riley

During the 1940s, Gordon A. Riley and colleagues collected data on factors

that affected the phytoplankton population on Georges Bank; an area of shal-

low ocean between the United States of America and Canada (Riley, 1941a,b,

1942, 1943). Using the data Riley and Bumpus (1946) defined a set of ex-

plicitly simple assumptions in order to permit the mathematical derivation of

relationships between observed quantities. This led to a differential equation

describing the rate of change of the phytoplankton as a function of the physical

environment, and the zooplankton that graze on them. In the absence of a

computer, results were integrated by hand and were found to correlate with

the data.

Riley and Bumpus (1946) highlighted some limitations of the work. The model

assumed zooplankton feed at a constant rate, despite the presence of different

feeding strategies. Earlier studies had also shown a non-linear relationship

between temperature and zooplankton metabolic rate, implying a correlating

non-linear change to the rate of feeding. In later work, other seasonal cycles

were examined with the model (Riley, 1963). It was found to depict the general

trend of the regional differences in phytoplankton abundance across seasons,
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and years, in the case of one data set.

Riley’s (1963) work represented a method for marine ecosystem modelling,

but he called for more development to be done. The assemblage of species

into broad categories required that physiological trait values were framed in

average terms. Riley (1963) was concerned that critical species detail may

be lost in the process of species aggregation. He (Riley, 1963) considered the

alternative of explicitly representing species to be “impossibly laborious”, and

would likely introduce unsolvable theoretical problems. It was also pointed

out that progress towards models that explicitly represent physiological detail

was restricted by lack of data.

1.1.2 NPZD-type

Starting with rigorous theoretical analysis of ecosystems in general, John H.

Steele (1974) discussed what he considered the most important marine ecosys-

tem components. The vertical mixing of the water brings nutrients to, and

takes phytoplankton away from the euphotic zone. The nutrient cycle in the

upper mixed layer balances supply from mixing and production from zooplank-

ton waste. Grazing by herbivorous zooplankton was considered the main factor

behind reduction of the phytoplankton. This implied the importance of the

determinants of the zooplankton population. Using data from the North Sea,

Steele (1974) aggregated the ecosystem components into just three groups;

nutrient, phytoplankton and zooplankton. He produced a set of coupled dif-

ferential equations to describe their dynamics. The premise for the work was

to start with the most simple description, to discover if it were necessary to

introduce more complex ecosystem processes.

Following earlier work, Steele (1974) made some idealised assumptions between

the components of the model. The thermocline depth was fixed, and there was

a constant rate of mixing between the upper and lower layers. A constant

stoichiometric ratio permitted the elemental content of living matter to be

derived from the amount of any element. The zooplankton were assumed to

be ammonotelic, so that excreted nitrogen was immediately available to the

phytoplankton. Like Riley (1946), Steele (1974) included a single zooplankton

type, but based it on data regarding the life cycle of Calanus copepods. Unlike

Riley (1946) however, Steele (1974) used a variable feeding rate. This was

implemented using a Holling (1965) type 2 functional response, ensuring the
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consumption rate correlated to changes in the zooplankton and phytoplankton

populations (Steele, 1974). There was no explicit representation of carnivorous

heterotrophs. Instead Steele (1974) applied a constant rate of grazing on the

zooplankton to close what was acknowledged to be an open system.

Steele (1974) explained his reservations with the approach. The decision to in-

teract a single phytoplankton, and a single herbivorous zooplankton type was

considered the fundamental defect of the model. He also highlighted the impor-

tance of developing an understanding of the complexities of the ocean system.

His practical concern was with the fraction of photosynthetically produced en-

ergy that goes through us. Steele (1974) called for more data to further refine

his approach. The model provided proof of concept for extension to a more

realistic food web. It became known as a nutrient-phytoplankton-zooplankton

or NPZ (NPZD-type) model.

Nitrogen was regarded the main limiting factor on primary production (Fasham

et al., 1990). Earlier work had shown the importance of vertical mixing of the

water, and grazing by herbivorous zooplankton in determining the nature of

the phytoplankton spring bloom (Eppley and Peterson, 1979). This is because

phytoplankton are able to assimilate nitrogen brought into the system as a

result of vertical mixing and in the various forms produced within the system

as waste products of various metabolisms. Eppley and Peterson (1979) termed

the ratio between these as the f ratio. Such that f would be the probability

that consumed nitrogen came from outside the system, and (1− f) would be

the probability that it was being recycled.

In an effort to describe the annual cycle at station “S” near Bermuda, (Fasham

et al., 1990) extended the NPZD-type approach to include the dynamics of

additional ecosystem processes. The aim of the work was to balance sim-

plicity and complexity. The marine ecosystem was represented using seven

state variables to characterise the natural system. These were phytoplankton,

zooplankton, bacteria, nitrate, ammonium, dissolved organic nitrogen, and

deteritus. The seperation of the inorganic, dissolved organic, and particulate

organic forms of nitrogen permitted distinction between new and regenerated

production.

Eppley and Peterson (1979) had discussed the rate that material sinks from

the upper mixed layer. In the absence of any data for this, Fasham et al.

(1990) assumed a constant rate. This permitted experimentation with different
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parameter values. It was also assumed that the elemental content of biogenic

material followed a constant Redfield ratio. Despite these limitations the model

results reasonably matched observations at the study site, and it was suggested

that more data could improve them. Critiquing the work, Fasham et al. (1990)

pointed out that the model was still highly aggregated, and suggested that

future models may be multi-elemental and differentiate organisms on the basis

of size.

In order to more realistically include some missing physical processes, the

nitrogen-based model was later coupled to a spatial general circulation model

(Fasham et al., 1993; Sarmiento et al., 1993). The results were in broad agree-

ment with the data, and supported the theory that cessation of vertical mix-

ing initiates the spring bloom. However, this interpretation has since been

questioned (Behrenfeld, 2010). One of the difficulties of the approach was dis-

tinguishing erroneous results that could be attributed to the ecosystem model

from those that could be attributed to the physical model (Fasham et al.,

1993). Overestimates of spring bloom were attributed to deficiencies in the

zooplankton representation due to the lack of available data.

1.1.3 Plankton Functional Types

Jorge L. Sarmiento and Corinne Le Quéré (1996) performed experiments with

coupled models of the atmosphere and oceans with a focus on carbon uptake by

the ocean. The model was configured to describe analogue scenarios for more

and less carbon productive worlds. Life was not explicitly represented, except

by the representation of simple chemical and physical processes. Sarmiento and

Le Quéré (1996) stated that uncertainty in the mechanics of biological oceanic

processes could have put their results out by as much as 1000 petagrams of

carbon in the 350 year scenario. They highlighted the lack of consensus on

what determines regional differences in efficiency of primary production and

advocated continued research and long-term satellite observation to improve

the understanding of biological processes in the ocean.

By the early 2000s, projects such as the Joint Global Ocean Flux Study

(JGOFS) and Sea-viewing Wide Field-of-view Sensor (SeaWiFS) began to

produce an abundance of data (Moore et al., 2002). These gave a much

clearer picture of the dynamic interplay between chemistry and biology in

marine ecosystems across the globe. It was at that time that Doney (1999)
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highlighted the debate surrounding biological representation in models. It was

known that under certain conditions, the elemental content of biogenic material

could depart significantly from the often assumed constant Redfield stoichio-

metric ratio. It was still unclear whether explicit species representation was

necessary, or whether the effects of life on global biogeochemical cycles could

be encapsulated by describing life in terms of its functional characteristics.

It was thought that chlorophyll concentrations correlated positively with those

of nitrate and phosphate in the euphotic zone (Aumont et al., 2003). However,

there were data from three major oceanic regions that challenged this com-

monly accepted view. These findings supported the hypothesis that iron and

silicate may also limit the growth of large phytoplankton cells. Earlier NPZD-

type models were not suitable for exploring this hypothesis. To address this,

Aumont et al. (2003) produced a model that split the general phytoplankton

and zooplankton groups into two distinct size-classes, and described them in

terms of their affinity for iron and silicate.

The work of Baretta et al. (1995) on the European Regional Seas Ecosystem

Model (ERSEM) represented a major development for ecological representa-

tion in models. Both this and the work of Aumont et al. (2003) contributed to

a plan for an entire marine ecosystem model that grouped species less arbitrar-

ily, based on their ecological function (Quéré et al., 2005). Initially there were

definitions for ten “key” Plankton Functional Types (PFTs), each representing

species that performed a similar biogeochemical function. For example, large

organic particles sink more readily and so contribute more to export, whereas

smaller particles can be remineralised at the surface (Quéré et al., 2005; Bopp

et al., 2003). This logic provided a basic framework for differentiating species

based on size.

Further distinctions were based on specific nutrient affinities and biochemical

function. Calcifying phytoplankton species assimilate carbon to biogenically

produce calcium carbonate (Quéré et al., 2005). As dense organisms they are a

major sink of atmospheric CO2. Nitrogen fixing phytoplankton can assimilate

atmospheric nitrogen, but can only outcompete other species in warm, nitro-

gen poor waters. Silicifing phytoplankton outcompete other species in colder

waters. Dimethyl sulfide producing phytoplankton are major contributors to

the sulfur cycle. There was also the definition of micro-, meso-, and macro-

zooplankton types. Their grazing on the phytoplankton and subsequent fecal
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pellets provide an indirect route by which small species are exported to the

deep.

Like marine ecosystem models before it, the PFT approach was seen as a

balance between intended simplicity and necessary complexity (Quéré et al.,

2005). Representation of the ten PFTs required an enormous amount of obser-

vational and laboratory data. While a lot of new data were becoming available,

there were still many other ecosystem processes that were not fully understood.

Initially only five of the ten PFTs were implemented. The work of Le Quéré et

al. (2005) better framed ecosystem models in a global biogeochemical context.

As well as providing proof of concept for describing species based on traits.

Despite the increased model complexity, the work has been criticised as an

oversimplification (Anderson, 2005). Anderson (2005) pointed out that species

aggregation still occurs, and that in many cases the choices regarding the PFTs

to include and exclude are arbitrary. Anderson (2005) attributed decisions like

this to a “poorly understood ecology”. He also stated that many models have

parameterizations tuned to fit regional data, but that they are then not able

to respond equally well to new scenarios. It was also noted that much of the

plankton altering physical activity takes place on spatial scales that are thou-

sands of times smaller than those represented in the models. This led to an

appeal for more to be done to improve the accuracy of model parameterisations

and the physicochecmical environment of Ocean General Circulation Models

(OGCMs). He stated that current modelling approaches embrace a reduction-

ist philosophy, whereby the true emergent properties of the complex systems

they seek to describe are ignored.

1.2 Emergent Approaches

1.2.1 Follows

Follows et al. (2007) introduced a new type of emergent marine ecosystem

model. Species were also aggregated based on ecological function However,

instead of basing the trait values on species descriptions, they were drawn ran-

domly from ranges guided by known ecological trade-offs. This was seen as an

explicit attempt at being unbiased about what species to include. The model

was initialised with 78 phytoplankton strains that were uniquely identifiable

by their particular physiological details and coefficients. Each was given the
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same starting biomass value, and the model was integrated forward in time for

ten years allowing the ecosystem structure to emerge. Despite each individual

run having a completely unique set of species it was found that the general

ecosystem patterns were similar between all ten ensemble runs. Follows et

al. (2007) identified from the range of species broad categories of functional

types and analogues for extant species. The model data was then compared

with empirical data for Prochlorococcus collected along the cruise track of the

Atlantic Meridional Transect 13 (AMT13) and there was found to be general

correspondance.

1.2.2 Bruggeman

Bruggeman and Kooijman (2007) presented a prototype example of an en-

tirely new approach to representing phytoplankton in marine ecosystem mod-

els. Phytoplankton species differed in their affinity for nutrient and light. This

was captured by two traits describing relative investment in either nutrient,

or light harvesting cellular machinery. Trait-space was discretised and the full

range of trait values were represented, resulting in populations that maximised

assimilation of both light and nutrients. The total biomass for each species was

partitioned into nutrient harvesting, light harvesting, and structural biomasses.

Each biomass pool represented cellular machinery that required maintenance.

While the trait values could enhance resource availability, it was assumed that

the cellular machinery responsible for this would carry an increased cost for

maintenance. Strains that maximised assimilation of both light and nutrients

would have a proportionally higher metabolic rate than those that maximised

assimilation of one or the other. Instead of predefining the trade-off in the

allocation of trait values, it was an emergent property of the model.

By representing phytoplankton strains with every combination of traits, the

approach was referred to as a System of Infinite Diversity (SID) (Bruggeman

and Kooijman, 2007). The model was proof of concept for extension to an n-

trait system describing any number of biological systems. However, the 2-trait

system was found to be computationally expensive and was not considered a

practical implementation. For this reason Bruggeman (2009) developed an ap-

proximation that represented the populations as distributions across continous

trait-space. These were characterised by distributional moments. Changes to

the populations resulted in corresponding changes to the moments that ap-
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proximated them.

1.2.3 Individual-Based Model

So far, all of the work cited has referred to Population Level Models (PLMs).

The choice of this approach is to aggregate species detail into a single group

with average trait values, or to represent a chosen number of the trait com-

binations in multiple groups. Woods (2005) offered an agent-based plank-

ton modelling approach as an alternative. This later become known as the

Individual-Based Modelling (IBM) approach, due to the explicit representa-

tion of individuals (Woods et al., 2005; Hellweger and Kianirad, 2007). IBMs

permit the simulation of complete life-cycles, life sustaining mechanisms, and

selective events (Hellweger and Bucci, 2009). Species can evolve from discrete

changes at the level of the individual, making it a promising avenue for ex-

ploration of population heterogeneity, behavioural adaptation, and genomic

evolution. The approach often includes the explicit representation of processes

that take place on scales that are often overlooked (Woods, 2005; Woods et al.,

2005). Spatial heterogeneity at the level of the individual has been shown to

influence the state of the entire system (Woods et al., 2005).

The computational expense of modelling discrete individuals and their envi-

ronments increases as the population and model complexity increases (Woods,

2005; Hellweger and Kianirad, 2007). Techniques have been developed to over-

come this. Woods (2005) linked a series of “metamodels” together to describe

a planktonic system at different scales. The output from one model informed

the computation of another. In this way, a complete description of the study

system required more than one model to compute. Another technique com-

bined individuals with the same or similar trait values, potentially permitting

the simulation of millions of individuals with the computational expense of

only a few thousand (Rose et al., 1993). Such model agents were later referred

to as “super-individuals” (Hellweger and Kianirad, 2007; Hellweger, 2008; Hell-

weger and Bucci, 2009). This technique has been implemented in IBM models

of phytoplankton cells (Hellweger and Kianirad, 2007; Hellweger, 2008; Hell-

weger and Bucci, 2009; Clark et al., 2011).

The IBM approach has also been applied to representations of higher trophic

levels. Huse and Giske (1998) used neural-networks and a genetic algorithm to

evolve the spatial movements of individual model fish. The work was used to
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build predictions about predator-prey interactions between and spatial move-

ments of cod (Gadus morhub) and capelin (Mallotus villosus) (Huse et al.,

2004). A later extension was used to predict changes to the spawning be-

haviour of capelin in the Barents Sea as a result of climate change (Huse and

Ellingsen, 2008). Shin and Cury (2001) implemented an IBM designed to

simulate the effects of exploitation on commercial fishing stocks. The popula-

tions were age- and size- structured, and were comprised of super-individuals,

where entities were seen to represent an aggregated group of fish with similar

attributes.

Experiments showed that growth of Pavlova lutheri does not depend directly

upon external nutrient concentration (Droop, 1968). Algal cells take-up nu-

trients and store them internally to fuel growth as required. This work led to

a deterministic, PLM describing growth as a function of this internal nutri-

ent store (Burmaster, 1979; Burmaster and Chisholm, 1979). As with other

PLMs, the parameters controlling growth were constant in any single run; the

population was homogeneous. Clark et al. (2011) published details of an IBM

implementation of this earlier PLM. It was seen as an explicit attempt to model

the genomic evolution of a phytoplankton population. Individuals carried a

“genome” that was passed to clonal offspring, subject to potential mutation

(Clark et al., 2011). It described rates of extracellular and intracellular nutri-

ent uptake, minimum and maximum levels for the internal nutrient store, and

the rate of mutation for each individual. Based on a PLM by Grover (1991),

trade-offs were captured in the assigned trait values (Clark et al., 2011). To

reduce computational costs the model also implemented a version of Rose et

al.’s (1993) super-individual approach.

The IBM model developed by Clark et al. (2011) has been extended and more

recently implemented in a General Circulation Model (GCM) (Clark et al.,

2013). This work adds support to the IBM approach for use in global models,

and forms the core of the the EVolutionary Ecosystem (EVE) model (Lenton,

2012). The aim of EVE is to improve the model representation of marine

ecosystems in order to improve understanding of their role in biogeochemical

cycles. EVE forms an extensible framework of trait-based IBMs. This thesis

concerns the development of a model designed to represent heterotrophic life

within the EVE framework.
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1.2.4 This Project

The model developed as part of this project and presented in this thesis is a

trait-based IBM of heterotrophic life. As an individual-based model, selective

events can be explicitly resolved. This permits the evolution of individuals’

heritable attributes. Model development initially focusses on size as the only

evolvable trait in order that the outcome of predator-prey interactions can be

determined mechanistically as a function of size. The intent is to produce

a model that exhibits Evolutionary Adaptive Trophic Structure. This is the

reason for the acronym EATSM.

Chapter 2 explains the detail of the model construction. Chapter 3 tests the

model sensitivity to the input parameters. This is where the adaptive nature of

the model will be demonstrated. No particular hypothesis will be under test.

However, many results will be presented and comparisons with the literature

made where appropriate.

Life history theory predicts that reduced juvenile survival will select for delayed

maturation and decreased reproductive effort, and reduced adult survival will

select for the opposite (Reznick et al., 1990). The comparative ease with

which data on bird clutch sizes can be collected has resulted in a number of

complimentary and competing hypotheses to explain the mechanisms behind

it. Chapter 4 will review some of the literature on reproductive strategies

and life history theory. The model will be modified to include an additional

evolutionary trait that represents the adult investment in offspring. Model

results will be compared with the literature in order to answer the question

do the predictions of life history theory completely explain the evolution of

reproductive effort?

Planktonic ecosystems contain diverse communities of species that compete

for the same resources (Hutchinson, 1961). The search for the mechanisms

behind the coexistence of plankton began with the work of Hutchinson (1961).

However, there still remain some questions. Pelagic ciliates and heterotrophic

dinoflagellates are observed to occupy a similar ecological niche, yet the mech-

anisms behind their coexistence remain largely unexplored. Unpublished data

suggests a trade-off in their feeding strategy that may yield a clue. EATSM

will be modified to capture this trade-off in the assignment of trait values that

determine individuals’ prey size selectivity. Model results will be discussed in
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an attempt to answer what mechanisms can explain the coexistence of pelagic

ciliates and heterotrophic dinoflagellates?

Chapter 6 summarises the work and draws some overall conclusions.
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2 Method

2.1 Matter

EATSM is materially closed. The material with which the model is initialised

is conserved throughout every model run. All biotic and abiotic material in

EATSM is assumed to be the same density and stoichiometric ratio. This

simplifies the material representation by making volume proportional to mass,

and dispenses with the need for explicit chemical representation. Measures of

volume do not need units, as their magnitude is only relative to others in the

model.

There are two global values representing volumes of pools of matter; nutrient

and phytoplankton. For simplicity detrital organic matter is not explicitly

represented. Instead it is assumed that detritus is instantly remineralised.

The nutrient pool (N) is completely passive and simply serves as a material

buffer between the phytoplankton and heterotrophic population. At every time

step the volume of the phytoplankton pool (P ) is inspected. If it is less than

its initial volume (Pinit), a growth volume (Pgrow) is calculated and added to

the pool.

P = P + Pgrow (2.1.1)

The growth volume is calculated as below:

Pgrow =

{
Pinit − P if (Pinit − P ) ≤ N

N else
(2.1.2)

In this way, the initial phytoplankton volume also serves as its maximum. To

approximate the effect of the volume of phytoplankton (P ) being comprised of

a large number of small individuals, the volume of a single phytoplankton cell

is assumed to take the smallest possible position in volume trait space (vsmall).

The rest of the matter in EATSM is in the bodies of individuals that make up

the population of heterotrophs. Matter enters the heterotrophic population

from the consumption of phytoplankton by secondary producers. This matter

is recycled within the population from consumption by higher trophic levels

(tertiary, quaternary, quinary, etc). To close the material loop, waste and dead
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matter from the population is added directly to the nutrient pool.

Figure 2.1.1: A schematic highlighting the represented pools and fluxes of material
in EATSM. Detrital organic matter and the fluxes to and from it are approximated
by the flux of material from the heterotrophic population directly to the inorganic
nutrient.

The total volume in the model (V ) is defined by summing the initial het-

erotrophic population volume (Hinit), the initial phytoplankton volume (Pinit),

and the initial nutrient volume (Ninit).

V = Hinit + Pinit +Ninit (2.1.3)

2.2 Individuals

Individuals carry with them a set of heritable traits that do not change for

the duration of their lifespan, but are passed to offspring subject to potential

mutation at reproduction. An unprocessed heritable trait (g) takes a value

between 0 and 1. This is mapped onto an appropriate linear scale to define

a processed heritable trait. The individuals that make up the heterotrophic

population all have size, as equivalent spherical volume (ESV) (Jennings and

Parslow, 1988). In this version of the model, the only heritable trait is an

individual’s heritable volume (vh). This can be anywhere between the small-

est (vsmall) and the largest (vlarge). The unprocessed trait value is mapped

onto the logarithm of the range of possible volumes in the system to base 10.

Accordingly, the heritable volume of an individual is defined as:
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vh = 10[g·(log10(vlarge)−log10(vsmall))+log10(vsmall)] (2.2.1)

Individuals have an actual volume (v) set initially to the heritable volume

(vh). The actual volume increases with food consumption, and decreases with

metabolic losses and reproduction. Upper and lower volume thresholds are

set, by reference to vh. If v reaches the upper threshold (vmax), reproduction

occurs. While at the lower threshold (vmin), starvation occurs.

Figure 2.2.1: An idealised plot of an individual’s actual volume over time (blue
line) when compared to its heritable volume (vh) and its reproduction and starvation
thresholds. In this example vmax is set to vh multiplied by 2, and vmin is set to vh
divided by 2.

The change of an individual’s actual volume (v) over time is therefore defined

by the additive effect of food assimilated (va), and the deductive effects of

metabolic loss (vl) and the amount passed to offspring at reproduction (vr).

dv

dt
= v + va(vc)− vl(v)− vr(v) (2.2.2)

2.3 Feeding

The only term from equation 2.2.2 that allows the volume of an individual to

increase is the volume of food assimilated, which is a function of the volume

consumed (vc). The volume consumed is a function of the individual, the

rest of the population, and the environment. Before food can be consumed,

it must be located. The relationship between the rate at which an organism

assimilates and the concentration of its substrate is a well observed ecological

principle (Holling, 1959, 1965; Dowd and Riggs, 1965). Depending on the
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particular context there are three basic forms this response can take. The

general trend of each shows that the rate at which an individual feeds will go

up with the concentration of its food, and will reach a theoretical limit when

the rate of ingestion cannot increase any further. Holling (1965) referred to

this phenomenon as a functional response.
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Figure 2.3.1: An general plot of a functional response showing the basic relation-
ship of resource uptake rate (feeding) to resource (food) concentration.

Population-level models represent life and its food using state variables that

allow the relationship between the two quantities to be easily handled using

an appropriate mathematical function. In this context a functional response

is used to calculate the quantity of food that is consumed by the entire pop-

ulation per unit time. The individual-based phytoplankton models of Clark

et al. (2011; 2013) handle the relationship between food supply and rate of

consumption in a similar way. Here nutrients are represented using state vari-

ables, making the numerical interface between a single individual and its food

equivalent to a population and its food. In EATSM, individuals are required

to find and eat others. A value representing the consumption amount cannot

be directly applied in this context. Since the model is not spatially resolved,

individuals do not literally move around and find their prey. This introduces

subtle, but non-trivial problems.

The difficulties of using a functional response in an individual-based model of

this type can be summarised by the following three questions:

Question 1 What defines prey for a given predator?

Question 2 When feeding, how do individuals select a prey individual?
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Question 3 How does the prey population affect the rate of consumption?

The answers to these questions are collectively addressed with the encounter

algorithm.

2.4 Encounter Algorithm

2.4.1 Preference Function

Following another well observed ecological principle, EATSM uses the volume

of an individual to mechanistically define its relationship to predators and prey

(Brooks and Dodson, 1965; Peters, 1983; Werner and Gilliam, 1984). This is

encapsulated by the use of a preference function, that takes one of two forms.

The first is a log-normal function:

ϕ(v, vp) = a · exp

−
(
ln

(
βvp
v

))2

2c2

 (2.4.1)

The second is an inverse log-parabolic function, taken from Hartvig et al.

(2011):

ϕ(v, vp) = max

0, a · 1−
 log10

(
v/β
vp

)
c

2
 (2.4.2)

Each is a function of predator/grazer volume (v) and prey volume (vp), and

produces a value for the predator preference for the prey. The maximum height

of the function is intended to be no greater than 1, but can be controlled by

the constant a. The constant β defines the preferred prey volume ratio. This

is the distance in volume trait space between a predator and its maximally

preferred prey. There is also a constant to control the width of the function

(c).
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Figure 2.4.1: The predator preference (ϕ) as a function prey equivalent spherical
volume (vp), using the inverse log-parabolic (black), and the log-normal (blue) func-
tions. In both the predator/grazer volume (v) is 10,000, the preferred prey volume
ratio (β) is 100, the function height (a) is 1, and width (c) is 1.

The preference functions determine what is prey for a given predator, and thus

answer question 1 above. The use of either function is mutually exclusive, as

they both serve the same purpose. The reasons for implementing two functions,

and the results that can be achieved with each can be seen in chapter 3.

Questions 2 and 3 are answered as part of the same mathematical process.

EATSM uses a functional response, but instead of calculating the amount an

individual will consume, it produces a probability that an individual will feed.

The feeding probability is determined by the difference between the possible

prey volume, and the volume of prey to which a predator would realistically

respond, hereafter the effective prey volume. The effective prey volume is a

summation of the coupling strengths between a predator and the available prey

items. This can be achieved using a one-dimensional population structure, but

prey selection becomes complicated if more than one predator are coupled to

the same individual. To facilitate the process of prey selection, individuals were

grouped into discrete size classes. This permits an individual to be coupled to

the size class that contains the most viable prey.

2.4.2 Discrete Size Classes

Trait space between vsmall and vlarge was divided into a number (d) of discrete

locations to define the volume mid-point for each size class. This necessitated
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values to define the boundary values for each size class.

A vector of d size class mid-point values was created:

vm = (v1, v2, v3, . . . , vd) (2.4.3)

The value of the ith mid-point is defined by:

vm(i) = 10

[
log10(vsmall)+(i−0.5)

log10(vlarge)−log10(vsmall)

d

]
(2.4.4)

A vector of d+ 1 boundary values was created:

vb = (v1, v2, v3, . . . , vd+1) (2.4.5)

The value of the ith boundary is defined by:

vm(i) = 10

[
log10(vsmall)+(i−1)

log10(vlarge)−log10(vsmall)

d

]
(2.4.6)

These vectors are used to give every individual a size class index (i) based on

their volume (v) such that:

vb(i) ≤ v < vb(i+ 1)

An individual’s size class index value (i) is the same as the size class mid-point

that approximately equals their volume.

v ≈ vm(i)

If an individual’s volume increases such that:

v ≥ vb(i+ 1)

Its size class index (i) is incremented. If its volume decreases such that:

v < vb(i)
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Its size class index (i) is decremented.

These rules permit the creation of a two-dimensional matrix (M) of individuals

that contains d separate size classes where individuals are grouped according

to the volume mid-point (vm) that is nearest their own (v). It is assumed that

the number of individuals in a size class i is given by M(i). Individuals are

moved between each size class as their volume changes. The size classes are

static, the individuals are dynamic.

2.4.3 Effective Prey Volume

In a general sense, either preference function can be used to calculate the

coupling strength (s) between a predator (v) and a potential prey item (vp) as

a function of their volumes.

s(v, vp) = ϕ(v, vp) · vp (2.4.7)

This general concept permits the coupling strength to be used in determining

whether an individual will feed from the phytoplankton pool, or whether it

will consume another individual. The coupling strength (sh) an individual

with volume v has for consuming a heterotroph from size class i is given by:

sh(v, i) =

M(i)∑
j=1

s(v, v(j)) (2.4.8)

Since the phytoplankton pool is comprised of individuals that take the smallest

volume in trait space (vsmall), they are assumed to occupy the first size class.

The coupling strength calculation for the first size class therefore includes

the preference the grazer would have for a single phytoplankton cell, and the

volume of the phytoplankton pool.

sp(v, P ) = ϕ(v, vsmall) · P (2.4.9)

Equations 2.4.8 and 2.4.9 can be used to determine the coupling strength an

individual has to each of the d size classes. The size class that produces the

highest single coupling strength is the one that the individual is coupled to.
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Figure 2.4.2: Plots show: (a) a hypothetical volume distribution across trait space,
and (b) the result of applying equation 2.4.8 to each of the d size classes, where
vsmall is 1, vlarge and the predator volume (v) are 10,000, the preferred prey volume
ratio (β) is 100, the function height (a) is 1, and width (c) is 1.

In order to produce a single value that is used for the calculation of effective

prey volume, the coupling strengths to each of the populations are added

together.

ve(v, P ) = sp(v, P ) +
d∑

i=1

sh(v, i) (2.4.10)

This method explicitly determines the relationship a potential predator has to

each individual within each size class. For this reason it is computationally

expensive. Since individuals are grouped by size, the probability of feeding

can be approximated by combining the preference function with the volume

mid-point and the size of each size class. The approximation starts by assum-

ing a constant size-based relationship (ϕ) set by the input parameters. The

preference size class i has for size class j is therefore defined by:

ϕ̂(i, j) = ϕ(vm(i), vm(j)) (2.4.11)
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Figure 2.4.3: A plot of the preference matrix; the preference of every size class i,
for every size class j using the log-normal preference function (blue line) in figure
2.4.1.

The coupling strength size class i has for consuming a heterotroph from size

class j can be approximated by the product of the preference it has for size class

j, the mid-point volume (vm), and the number of individuals in it (M(j)). The

approximation is in the assumption that the mean size class volume is matched

by the mid-point values.

ŝh(i, j) = ϕ̂(i, j) · vm(j) ·M(j) (2.4.12)

The approximation also assumes that phytoplankton cells take the smallest

volume in trait space (vsmall). The coupling strength between size class i

and the first size class also includes an approximation for the effect of the

phytoplankton:

ŝp(i, P ) = ϕ̂(i, 1) · P (2.4.13)

The coupling strengths are added together to produce the approximate effective

prey volume experienced by size class i.

v̂e(i, P ) = ŝp(i, P ) +
d∑

j=1

ŝh(i, j) (2.4.14)

The approximated method for calculating the effective prey volume also per-
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mits the size class with the highest coupling strength to be determined.

2.4.4 Feeding Probability

Section 2.4.3 describes the calculation of an actual and approximate effective

prey volumes (ve and v̂e). This section describes how these are converted into a

probability that an individual or size class will feed. Since the approximation is

used to generate the majority of the results, this section will refer exclusively

to that version. At this stage the reader is asked to assume that both the

actual and approximate effective prey volumes can be used interchangeably in

the equations that follow. This will be referred to again in chapter 3.

In order that the rate of consumption correlates with the changes to the number

of prey, the effective prey volume is used as part of a functional response to

calculate the probability that an individual or size class will feed. For this

a second value is needed as an upper limit, and to provide context to the

first. Since material is conserved in EATSM, this value is taken to be the total

volume in the system (V ). There are two types of functional response, both are

used as probability functions that calculate the likelihood that an individual

or size class will feed (Pf ). The first follows the linear form of a Holling (1965)

type 1 functional response.

Pf (i, P ) =
v̂e(i, P )

V
(2.4.15)

The second follows a non-linear form of a Holling (1965) type 2 functional

response.

Pf (i, P ) =
v̂e(i, P )

V ·Kfrac + v̂e(i, P )
(2.4.16)

Here Kfrac is a half-saturation constant fraction, which takes a value between

0 and 1. The product of this parameter and the upper limit (V ) produces a

value for the effective prey volume that would result in a fifty percent chance

of and individual drawn from size class i of feeding.
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Figure 2.4.4: Example plots of the linear type 1 (black), and non-linear type 2
(blue) functional responses. The half saturation constant fraction (Kfrac) is set to
0.15 (green), and the maximum volume (V ) is set to 15000 (red).

As with the preference functions, only one of the two functional responses can

be used at a time. The results that can be achieved with both will be explored

in chapter 3.

By grouping similarly sized individuals and calculating the feeding probabilities

for each size class, the approximation for the encounter algorithm is more

computationally efficient by several orders of magnitude. Its accuracy can be

quantified by the amount the mean volume of a size class deviates from the

mid-point (vm).

2.5 Initialisation

The initial population volume (Hinit) sets a maximum budget from which to

build the first population of individuals. There is little computational differ-

ence between individuals at either end of trait space. Since more small than

large individuals can be built from the same volume, applying a fixed initial

volume to the smallest end of trait space would produce a very large, com-

putationally expensive population. The preference matrix (2.4.3) shows that

individuals at the smallest end of trait space would be unlikely to consume

anything.

Currently there is no implementation of Rose et al.’s (1993) method for combin-

ing similar individuals to reduce computational expense. As a way of reducing
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computation at the beginning of the model run, the smallest size classes are

not initialised with individuals. The first size class to be initialised is the one

whose mid-point is closest to the product of the smallest volume and the pre-

ferred prey volume ratio. Members of this size class have the highest preference

for the phytoplankton. We shall refer to the index of this size class is ifirst.

vm(ifirst) ≈ β · vsmall

The number of size classes that are initialised is therefore given by the following

calculation.

dinit = d− ifirst (2.5.1)

The initial population volume is divided between the number of size classes

that will be initialised. The volume budget for each initialised size class is

therefore given by:

Hclass =
Hinit

dinit
(2.5.2)

For reasons that are explained in chapter 3, the largest individuals in the sys-

tem should be a significant distance from the largest volume in trait space

(vlarge). The parameter configuration should therefore meet the following con-

dition:

V ≪ vlarge

Because of this condition, initialisation of the size classes begins at the largest

end of volume trait space and works towards the smallest end. At each size

class the system attempts to create individuals with a heritable and an actual

volume that matches the mid-point for that size class (vm). This continues

until the volume budget for the size class (Hclass) is less than the mid-point.

The remaining volume is then carried over to the next smallest size class,

and the process repeats. If there is any volume from the initial population

volume (Hinit) remaining at the end, it is added to the nutrient pool to ensure

the system always starts with the precise amount configured by the input

constants. By sharing the initial heterotrophic volume between as many size
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classes as possible, this initialisation method effectively forces a trophic system

to occur even if the parameter values result in its subsequent collapse.

2.6 Functions

The model is run forward in time for a specified number of real seconds, and

computes as many abstract time steps (t) as possible. At every time step

growth is calculated and added to the phytoplankton pool, and the matrix

of size classes (M) is updated according to and in order of the four activities

mentioned below.

1. May consume food.

2. Should experience a metabolic loss.

3. May starve.

4. May reproduce.

2.6.1 Size Class Subset

The approximate effective prey volume (v̂e) is calculated based on a snapshot of

the state of the size classes at the beginning of each time step. During the round

of feeding individuals are consumed and are removed from the matrix (M).

This should technically alter the probability of subsequent individuals feeding.

A correct update of the approximated feeding probabilities would result in

d2 calculations for a change in any single individual. Updating the feeding

probabilities every time an individual is consumed would be computationally

expensive. To reduce the need to perform this update, only a subset of each

size class are allowed to feed. The size of the subset is controlled by the subset

fraction parameter (α), which essentially acts as a coefficient on the number

of individuals in the size clas (M(i)). The initial size of the subset from size

class i (m̂(i)) is given by:

m̂(i) = α ·M(i) (2.6.1)

On the condition that:
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0 < α ≤ 1

However, the subset size is defined by an integer value. The size class would

have to contain a number of individuals that was at or above a threshold in

order to produce a subset that was greater than zero. If equation 2.6.1 was

truncated the threshold would be:

M(i) ≥ 1

α

If it was rounded conventionally, the threshold would be:

M(i) ≥ 1/α

2

Size classes higher in volume trait space will generally fall well below both of

these thresholds for reasonable values of α. This is why equation 2.6.1 has

been extended so that the integer subset size from size class i is given by:

m(i) =

{
⌈m̂(i)⌉ with probability = m̂(i)− ⌊m̂(i)⌋
⌊m̂(i)⌋ else

(2.6.2)

This makes use of a probability-based rounding algorithm. The subset size is

rounded up with a probability defined by the initial size of the subset (m̂(i))

with the floored m̂(i) value subtracted. In short, only the fractional part of the

m̂(i) value. Calculating the subset size in this way ensures that size classes

that fall below the thresholds will eventually be permitted to feed. It also

ensures that fewer of the individuals feed in that time step. This reduces the

theoretical difference between the feeding probabilities at the beginning and

the end of feeding, when this is calculated using the approximate effective prey

volume (v̂e).

2.6.2 Food Consumption

Starting at the first size classes, a subset from each (defined by equation 2.6.2)

are selected with a uniform probability to feed. Individuals in the subset feed

with a probability (Pf ) defined by equation 2.4.15 or 2.4.16. If an individual

is coupled to feed from the first size class it is initially assumed to feed from
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the phytoplankton. While phytoplankton is available the volume of a single

phytoplankton cell (vsmall) is subtracted from the pool and consumed by the

individual. If the phytoplankton pool is less than the volume of a single phy-

toplankton cell or if the predator is coupled to feed from any other size class,

it consumes the volume (v) of an individual drawn with a uniform probability

from the size class to which it is coupled. If there are no prey items available

nothing is consumed and the feeding attempt is over. Although under realistic

parameter configurations this is an extremely infrequent event. In both cases

the volume assimilated (va) is function of the consumed volume (vc), and the

assimilation efficiency coefficient (γ):

va(vc) = γ · vc (2.6.3)

At this stage it would be possible to consider more complex internal dynamics,

such as absorption rates (e.g. Atkinson et al. 2012). To simplify the repre-

sentation of individuals, assimilated food is added directly to the individual’s

volume:

v = v + va (2.6.4)

Food consumption produces waste. For material conservation the volume that

is lost during assimilation (vw) is added to the nutrient pool.

vw(vc) = (1− γ) · vc (2.6.5)

Feeding continues for every individual in the subset. Once each individual has

been given an opportunity to feed the process repeats for the next size class in

the same way. When every size class has been handled in the same way, the

round of feeding is over. Please see figure 2.6.1 for a flowchart that illustrates

diagramatically the process of feeding.



28

Figure 2.6.1: A flowchart depicting the model logic and decisions during a round
of feeding. Some boxes are colour-coded according to the pools of matter in figure
2.1.1. See section 2.7.1 for a description of the trophic level update (pink box).



29

2.6.3 Metabolisation and Starvation

Metabolic losses are applied to every individual by subtracting a fraction of

their actual volume and adding it to the nutrient pool at every time step. The

volume subtracted (vl) is a function of the somatic volume (v) of the individual

and a parameter to define the fractional metabolic expense per time step (ϵ).

A power-law relationship is assumed between v and ϵ (Kleiber, 1947; Glazier,

2005). The metabolic scaling exponent (km) specifies the value of the power.

vl(v) = ϵ · vkm (2.6.6)

Not all individuals will consume food. Such individuals would continue to

shrink by metabolic loss unless a threshold for starvation were established.

It’s certainly possible to consider the literature on experiments on zooplankton

under conditions of starvation. A preliminary review suggests that starvation

is a complex process that is intimately related to age (Threlkeld, 1976) and

metabolism (Mayzaud, 1976). For simplicity, a constant threshold for starva-

tion is used that scales with the individuals heritable volume (vh). Individuals

starve if their actual volume (v) is reduced to or below their minimum volume

(vmin). The value of vmin is set at half their heritable volume.

vmin(vh) =
vh
2

(2.6.7)

In addition to this, starvation is probabilistically applied to a subset of individ-

uals from each size class. The subset is created in the same way as the subset

that feed (equation 2.6.2). When an individual’s volume (v) is at or above

its heritable volume (vh) its probability of starving is 0. For simplicity, this

increases linearly to 1 as its volume approaches its minimum volume (vmin).

Ps(v, vh) = 1 +
vmin(vh)− v

vh − vmin(vh)
(2.6.8)

The volume of starved individuals is added to the nutrient pool.
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2.6.4 Reproduction

The reproduction threshold (vmax) sets the level an individual’s volume needs

to reach in order for reproduction by binary fission to occur. The value of vmax

is set at twice the heritable volume.

vmax(vh) = 2 · vh (2.6.9)

Offspring are clones of the parent, subject to potential mutation of the heritable

volume trait. Following the work of McDonald-Gibson et al. (2008) mutation

occurs with probability Pµ per heritable trait. It is modelled with the addition

of a random number drawn from a normal distribution with a mean of 0 and

standard deviation of σ to an unprocessed trait value (g). This ensures that

a mutation of the same value is relatively the equivalent at any point in trait

space. If a mutation would result in a heritable trait (g) being less than 0 or

greater than 1, then the amount outside the trait interval is reflected about

the upper or lower bound respectively. This keeps the trait values within the

allowable range, and ensures that a random mutation results in a change to

the heritable trait.

A fraction of the parent’s volume (vr) is used to initialise its child. The cal-

culation for this takes one of two forms. If the child has a mutation of the

heritable volume trait that does not exceed its parent’s volume, the child is

initialised with a volume that matches its heritable volume (vo).

vr = vo (2.6.10)

If the heritable volume of the child is greater than the volume of the parent or

if the child is a clone of the parent, the volume of the parent is shared evenly

between the parent and child.

vr(v) =
v

2
(2.6.11)
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2.7 Trophic Classification

2.7.1 Tau Attribute

Individuals carry with them an attribute that defines their trophic level (τ).

Since the trophic structure of EATSM is not prescribed, the uninitialised value

of this attribute is zero. Every time food is consumed it is initialised or updated

based on its existing value and the source of food. Consumption from the phy-

toplankton pool results in a different calculation from consumption of another

individual. The calculations produce real values, to account for individuals

that may consume from multiple trophic positions during their lifetime (see

tables 2.7.1 and 2.7.2). The τ attribute has no effect on the model functions,

it is used only as a means of visualising the emergent trophic structure.

At the base of every ecosystem are the primary producers. In the context

of EATSM, they are assumed to occupy the first trophic level, denoted by a

value 1. This concept is extended to higher trophic levels, where the second

is denoted by 2, etc. Individuals may survive between trophic levels by for

example, consuming phytoplankton and other individuals. Such individuals

would have a trophic level value (τ) greater than 2 and less than 3. Since

the individuals in EATSM are exclusively heterotrophic, the value for the first

trophic level is not used, but its position is reserved.

Table 2.7.1: Grazer trophic level update after consuming from the phytoplankton.

Grazer (τ)
0 τ = 2

Not 0 τ = τ+2
2

Individuals that consume phytoplankton for the first time occupy the second

trophic level (top row, table 2.7.1). An individual with a previously initialised

trophic level value may have previously consumed another heterotroph. An

existing τ value is added to the value for the second trophic level, and divided

by two (bottom row, table 2.7.1). This ensures that a mixed feeding strategy

is reflected by the τ value. It also means that some aspect of the individual’s

feeding history is preserved, but is potentially altered by its current feeding

activity.
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Table 2.7.2: Predator trophic level update after consuming another heterotroph.

Prey (τp)

0 Not 0

Predator (τ)
0 τ = 3 τ = τp + 1

Not 0 τ = τ+3
2

τ = τ+τp+1

2

An individual that consumes another individual potentially has its own (τ),

and the trophic level value of its prey (τp) to use in the calculation. An

uninitialised predator consuming an uninitialised prey individual is assumed to

occupy the third trophic level (top left, table 2.7.2). An uninitialised predator,

consuming an initialised prey is set to occupy the trophic level above the prey

(top right, table 2.7.2). For an initialised predator consuming an uninitialised

prey, the trophic level value tends towards the third (bottom left, table 2.7.2).

Initialised predators consuming initialised prey tend towards the trophic level

above their prey (bottom right, table 2.7.2). Children inherit their parent’s

trophic level value, although it will change independently.

When the data are collected, the individuals’ τ values are rounded to the

nearest integer value to assign them to a discrete trophic level (τd).

τd = ∥τ∥ (2.7.1)

Grouping the τ values in this way permits data about the volume and frequency

of each trophic level to be collected more easily.

2.7.2 Trophic Level Count

The number of trophic levels of the artificially evolved system is a useful met-

ric in drawing comparisons with natural trophic systems. While this can be

determined by observation of the model outputs, the process is time consum-

ing and largely subjective. Many parameter configurations produce result sets

that are qualitatively similar to others, while differing in ways that may not be

immediately obvious. In order to avoid the potential to make mistakes it was

necessary to construct an algorithm that counts the number of trophic levels

in any result set in the same way.
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As mentioned in section 2.7.1, individuals start a new model run with an

uninitialised τ value of 0 and can be said to occupy the 0th trophic level (τ0).

For every parameter configuration there is a period at the beginning of each

run where uninitialised τ values disappear from the system. If the model starts

at t0 and the finishes at tmax, uninitialised τ values disappear by tτ .

t0 < tτ < tmax

In the period of model time (t) that comes after tτ , all extant individuals have

either consumed food or are children of those who have. The rest have been

consumed or have died of starvation. Despite this the highest trophic level

does not begin to appear until around 2 · tτ .

The population size of each trophic level is sampled at fixed intervals of model

time (t). The data are converted into a boolean matrix where non-zero popula-

tions are represented with 1 to indicate the presence of that trophic level, and

0 indicate its absence. Depending on the parameter configuration some result

sets can be more oscillatory than others. Under these conditions the number of

individuals in each trophic level fluctuates, and some (usually the top) trophic

levels can phase in and out of existence. A trophic level is therefore counted

as wholly present if it observed to exist for more than a fixed fraction (0.75)

of sampled time between 2 · tτ and tmax.

Counting of the trophic levels only concerns heterotrophic individuals, and

starts with the secondary producers. When a trophic level is found to exist,

1 is added to a running total. This continues for higher trophic levels until

one is found to be absent. The algorithm then adds the fraction of sampled

time that it was present to the running total and stops counting. Any trophic

levels higher than this that may occur transiently are not counted. This is be-

cause trophic levels are found to be generally more unstable than the one that

precedes them. This observation applies to all viable model configurations.

The counting algorithm therefore preserves the information about the most

stable trophic levels, and the point at which the trophic system becomes un-

stable. For example, a count of 3.5 would indicate the presence of secondary,

tertiary, and quaternary producers for over 75 percent of sampled time, and

the presence of quinary producers for 50 percent of sampled time. This count

would disregard any individuals in a senary trophic level. Model configurations
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that do not reach any kind of stable or consistent state collapse in a very short

space of time, and therefore produce a trophic-level count of zero.
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3 Sensitivity Analysis

In this section a default or baseline configuration of the model is illustrated

and the basic dynamics of the model are analysed. The results from this

are used to validate the approximate method for calculating the effective prey

volume (equation 2.4.14). In addition the sensitivity of the outputs to the most

important parameters is investigated. The trophic level counting algorithm is

used as a high-level view of the system to compare results. Discussion takes

place as the results are presented.

3.1 Default Configuration

EATSM takes a number of input parameters and control switches. A parame-

ter controls the length of the model run (in seconds), and another adjusts the

rate (in time steps) at which the data are sampled. Three control switches

select either of the two preference functions (see equations 2.4.1 and 2.4.2),

either a type 1 or type 2 (see equations 2.4.15 and 2.4.16) functional response,

and whether or not the model uses the approximated encounter algorithm

(see equation 2.4.14). The default model configuration uses of the log-normal

preference function, the type 2 functional response, and makes use of the ap-

proximate calculation of effective prey volume. Beyond these controls there

are 16 constants that have configurable values. The default values for these

can be seen in table 3.1.1 below.
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Table 3.1.1: The default parameter values for the current EATSM model.

Symbol Value Description

d 100 Number of heterotrophic size classes.
Ninit 0 Initial nutrient volume.
Pinit 1e+06 Initial phytoplankton volume.
Hinit 1e+06 Initial heterotrophic population volume.
vsmall 1 Smallest individual volume.
vlarge 1e+10 Largest individual volume.
β 15 Preferred prey volume ratio.
c 0.75 Feeding kernel width.
a 1 Feeding kernel height.
α 0.01 Size class subset fraction.

Kfrac 0.15 Half-saturation constant fraction.
γ 0.5 Assimilation efficiency.
ϵ 1e–05 Fractional metabolic expense per time step.
km 0.67 Metabolic scaling exponent.
Pµ 0.001 Probability of mutation.
σ 0.01 Standard deviation of mutation distribution.

Using the default parameter values in table 3.1.1 the following results were

generated. Note that plots that show cumulative quantities between times the

data are sampled, whereas others show quantities at the time of sampling.
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Figure 3.1.1: The changes in volumes of and fluxes between the pools of matter
over time on the x-axis. Plots show: (a) a stacked bar chart showing the volumes of
each of the pools of matter, (b) the volume fluxes from consumption of phytoplank-
ton by the herbivores, (c) from consumption of prey individuals by carnivores, (d)
and from the heterotrophic population to the nutrient pool through waste produc-
tion, assimilatory losses, and death by starvation.

As described in section 2.1, EATSM is a materially closed system. The total

volume is preserved, but is moved between the pools of matter. The way in

which the volumes of the pools of matter change over time can be seen in figure

3.1.1a. These changes are determined by the fluxes between the pools (figures

3.1.1b, 3.1.1c, and 3.1.1d).

In this version of EATSM the growth of the phytoplankton is implemented

simply to close the material loop. The most influential factor in determining

the volumes of and fluxes between the pools of matter is the population of

individual heterotrophs that can eat, be eaten, reproduce, and starve. This is
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evident by the plot of the total number of heterotrophic individuals over time

in figure 3.1.2 below.
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Figure 3.1.2: The total number of heterotrophic individuals over time.

The spikes in both pool volumes and fluxes directly correlate with the total

number of heterotrophic individuals. Each individual from figure 3.1.2 is a

member of one of the d size classes. Figure 3.1.3 illustrates this correlation in

more detail by showing the evolution of the size classes of heterotrophs over

time.
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Figure 3.1.3: The evolution of the d size classes on the y-axis, over time on
the x-axis. Plots show: (a) the number of all individuals, (b) the mean trophic
classification, (c) the volume, (d) and the feeding probability of each size class, (e)
the index to which each size class is coupled, and the (f) numbers of herbivores,
(g) carnivores, (h) corresponding prey individuals, (i) children, (j) and starved
individuals.
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The calculation of approximate effective prey volume (v̂e) leads to each size

class being coupled to consume from their preferred size class (fig. 3.1.3e).

This means that some size classes behave as herbivores by feeding from the

phytoplankton (fig. 3.1.3f), and others behave carnivorously (fig. 3.1.3g) by

consuming other individuals as prey (fig. 3.1.3h). Those who consume enough

food to reach twice their heritable volume produce children (fig. 3.1.3i). Those

individuals who are not able to cover their metabolic expense fall below their

heritable volume and may starve (fig. 3.1.3j).

It can be seen from figure 3.1.3a that the trophic structure finds a stable

state that reproduces Charles S. Elton’s “pyramid of numbers” (Elton, 1927).

Elton’s general observation was that individuals at the base of a trophic system

will be more numerous when compared to those at the top. He described this

as a consequence of a “system of territories”, whereby individuals will have an

area that is sufficiently large to supply their food requirements. EATSM has no

explicit representation of space, but the treatment of volume implies it. This

introduces the possibility that the classical trophic pyramid may be a result of

a mechanistic size-based predator-prey relationship, and allometrically scaled

metabolic rate. The system of territories may therefore be a consequence of

lower-level processes.

The rate at which each size class consumes correlates with the rate at which

they reproduce. This can be seen by the number of children over time (fig.

3.1.3i). The rates of both consumption and reproduction correlates negatively

with individual size. This again reinforces the comparision with the Eltonian

ecological pyramid, as this implies that smaller individuals are able to increase

faster than larger ones (Elton, 1927). This permits a stable system where a

certain fraction of smaller size classes serve as food for larger ones.

Individuals’ trophic level attribute (τ) values were averaged for each size class

and plotted in figure 3.1.3b. They were also rounded to the nearest integer

value to assign each to a single trophic level (τd) (equation 2.7.1). This per-

mitted the data to be viewed in terms of individual contributions to a discrete

trophic level.
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Figure 3.1.4: Plots show: (a) the numbers and (b) the volumes of the secondary
(blue), tertiary (cyan), quaternary (yellow), and quinary producers (red) over time.

The results above show a population cycling between the trophic levels that

is characteristic of Lotka and Volterra’s work (Lotka, 1920b; Volterra, 1926a).

Pimm and Lawton (1977) make the assumption that organisms occupy a dis-

crete trophic level. When comparing these to the results in figure 3.1.3b, it can

be seen that the trophic levels are roles that individuals can dynamically fulfil.

This reflects the suggestion made by Shurin (2006); that the lines between

trophic levels are blurred.

Model configurations that start with a high initial phytoplankton volume all

show a rapid reduction of the phytoplankton when faced with a productive

population of heterotrophic individuals. After the reduction in phytoplank-

ton, some configurations do not show any oscillations. All of the plots in this

section show a period of damped oscillations, leading to a consistent periodic

oscillation. It is concluded that both are influenced by the parameter config-

uration, and can be attributed to two distinct mechanisms within the model.

3.1.1 Damped Oscillation

A sufficiently high initial volume of phytoplankton provide size classes with low

vm values an immediately high probability of consuming. These individuals

rapidly assimilate phytoplankton, converting it to heterotrophic volume. This

is evident in figure 3.1.4b where the volume of secondary producers peaks at

2,600 time steps, by which time it comprises over 56% of the total volume.

This is the cause of the commonly observed reduction in phytoplankton (fig.
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3.1.1a). The rate of phytoplankton consumption slows as the reduction of its

volume impacts the probability of herbivores feeding (fig. 3.1.3d).

As described in section 2.5, the initialisation method divides the initial het-

erotrophic volume between as many viable size classes as possible. If the model

was initialised with only small initial heterotrophic volume there would not be

many individuals higher in volume trait space. The phytoplankton would be

grazed and the system would transition smoothly to steady state. Since the de-

fault model configuration uses a high initial heterotrophic volume, a wide range

of size classes are initialised with individuals occupying viable positions higher

in the trophic system. In this situation the number of secondary producers is

reduced shortly after their probability of feeding drops. This is because their

high volume results in potential tertiary producers having a high probability

of feeding.

This dynamic produces population cycles that continue higher in the trophic

system until they reach the top-level carnivore. Larger individuals require

more volume, and assimilatory and metabolic losses ensure that there is less

volume available to the higher trophic levels each time. This is confirmed

by figure 3.1.1b that shows the flux from consumption by herbivores to be

generally larger than the flux of consumption by carnivores (figure 3.1.1c).

The large spikes in figure 3.1.1c exceed the input to the heterotrophs from the

phytoplankton. This must mean they are the result of volume recycling by

higher trophic levels. Figure 3.1.4b shows that the volume of the quaternary

producers is greater than the others. This is believed to be a consequence of

the heterotroph initialisation method (see the experiments withHinit in section

3.3.5).

Waste volume is put back in to the nutrient pool, which drives phytoplankton

growth. The secondary producers grow. The population cycle repeats, and is

intense enough that the fluxes drive subsequent cycles. Each time the cycle

occurs, the amplitude is reduced as volume is assimilated and redistributed

throughout the size classes. The initial set of damped oscillations can be

understood as a consequence of the method by which the size classes are ini-

tialised and the high initial heterotrophic volume. A reduced initial/maximum

phytoplankton volume also serves to reduce the amplitude of the oscillations

by reducing the rate of the secondary production, potentially to the point of

a collapse of the trophic system. If the system does not collapse during this
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phase, the system transistions into steady state. Following the definition of

Steele (1974) this represents the point at which the form or pattern of the

trophic structure remains consistent.

3.1.2 Periodic Oscillation

The periodic oscillation is related to the initialisation method and the high

initial heterotrophic volume, but they are not present in all result sets. The

four spikes in volumes and fluxes that form part of the periodic oscillation

correlate with the times one of the largest individuals is consumed as prey.

This can be seen in figure 3.1.3h as the four blue dots. The predator for these

large prey individuals is an individual that is very similar in size. This can be

seen in figure 3.1.3e that show five cyan dots, indicating the times when the

highest trophic level was coupled to feed from a size class very near its own.

It can also be seen that this process has a relationship to the number of times

the highest trophic level reproduces. This is shown as the five blue dots in

figure 3.1.3i. Figure 3.1.4b illustrates that during the initial period of damped

oscillations the rate of assimilation in quinary producers gain exceeds that

of metabolism. This permits them to reproduce for the first time at around

173,000 time steps. Beyond this point, the model dynamics are significantly

altered.

When reproduction occurs, the parent’s volume is divided and shared evenly

between parent and child. This results in both parent and child occupying a

slightly lower position in trait space. This provides them with an increased

probability of consuming from the quaternary producers. By 200,000 in model

time the largest quaternary producers have been consumed. This is evidenced

by the drop in the quaternary volume and an increased rate of quinary volume

growth between around 173,000 and 200,000 time steps. The quinary producers

continue to grow until around 259,000 time steps when they reproduce for a

second time.

By the next time step and in the face of reduced prey, the largest quinary

producers are coupled to the size class containing their most recent parent and

child. Having to share the food supply means the parent and child are not able

to grow sufficiently quickly to escape their new predators, and either one of

them is inevitably consumed. This event can be seen as the large spikes in the

fluxes from consumption by carnivores (figure 3.1.1c) and waste added to the
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nutrient pool (fig. 3.1.1d). It is also visible as the sharp drop in quinary volume

3.1.4b. From this point onwards the volumes and fluxes oscillate periodically.

The removal of a quinary producer causes a trophic cascade throughout the en-

tire system. With predation reduced, the population of quaternary producers

recovers slightly. This allows the remaining quinary parent or child to assimi-

late more quickly and grow to rejoin its counterparts. The quinary individuals

are recoupled to a quaternary population, and resume a steady consumption

that exceeds their metabolic rate. This allows them to grow until they repro-

duce again.

Different parameter configurations can produce varying results. Those that

allow the largest individuals to assimilate in excess of their metabolic rate

show a pattern of consumption and reproduction. The constants in table 3.1.1

were selected as the default due to the periodicity with which this cycle oc-

curs. The initial heterotrophic volume and initialisation method populates the

system with individuals that permit the trophic cascades to occur. However,

it is concluded that the primary driver behind the periodic oscillation are the

parameters that control the rate of assimilation and metabolic deduction.

3.2 Unapproximated Configuration

The results in all other sections of this chapter make use of the approximate

calculation of effective prey volume (see section 2.4.3). To validate this ap-

proach, this section presents results from a model configuration that uses the

actual calculation of effective prey volume.
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Figure 3.2.1: The evolution of the d size classes on the y-axis, over time on
the x-axis. Plots show: (a) the number of all individuals, (b) the mean trophic
classification, (c) the volume, (d) and the feeding probability of each size class, (e)
the index to which each size class is coupled, and the (f) numbers of herbivores,
(g) carnivores, (h) corresponding prey individuals, (i) children, (j) and starved
individuals.
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The results in figure 3.2.1 took more than 3 weeks to produce, whereas the

approximated model took around 2 hours 30 minutes. They show that the pe-

riodic oscillation discussed in section 3.1.2 has a lower frequency. Figure 3.2.1i

shows that the largest individuals are not reproducing as quickly. This is likely

due to fact that in this configuration the feeding probability of each individual

is calculated before it feeds. This means that the probability of an individ-

ual feeding slightly decreases as the smaller individuals are eaten. However,

in general there is broad correlation with the results in figure 3.1.3. For this

reason the approximated calculation for effective prey volume is considered to

be valid.

3.3 Ensemble Configuration

3.3.1 Parameter Evaluation

Altering the parameter values can produce significantly different results. In

order to better understand in what ways, some of the parameters have been

selected for experimentation. Not all of the parameters will be subject to

experimentation. Under certain parameter configurations it may be possible

for the system to produce a top-level predator whose volume is the same or very

near to vlarge. This can produce a situation where the growth of the largest

individuals is limited by the width of trait space and not by the dynamics

of the model. This is the reason for the initialisation condition mentioned

in section 2.5; the total volume in the system should be much less than the

largest individual volume (V ≪ vlarge). The default width of trait space is wide

enough to prevent the condition from being broken, even under high volume

configurations. The parameters controlling trait space (vsmall and vlarge) will

therefore not be investigated. This has the added benefit of making the results

from each experiment directly comparable.

The model includes a half-saturation constant fraction (Kfrac) parameter that

is used with a type 2 functional response (equation 2.4.16). Since the model

also includes the use of a type 1 functional response (equation 2.4.15) for com-

parison, Kfrac will remain fixed at its default value. In addition, the model

makes use of a size class subset (α) parameter that helps define the subset

of individuals that will feed, and those that will be subject to a probabilistic

starvation mortality (see equation 2.6.2). Because of this α has a relation-
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ship to the metabolic rate (by operating in equivalence to a coeffcient on the

feeding probability). As mentioned in section 2.6.1 the α value is kept suffi-

ciently low to reduce the theoretical difference between feeding probabilities

at the beginning and the end of feeding, when these are calculated using the

approximate effective prey volume. For this reason it is not considered to be

an experimental parameter.

The number of heterotrophic size classes (d) was tested and the number of

trophic levels in the system were not found to be sensitive to its value. However,

different values of d were found to affect the frequency of reproductive events

for the highest trophic level over the same period of model time. A lower

number of size classes increases the variance of individual volumes in each.

Overall this was found to have a similar effect on the outputs as running the

model with slightly lower β values. In both cases the rate of reproduction

for the highest trophic levels is reduced. Since varying the value of d has no

obvious experimental merit, it will remain fixed at its default.

The parameters that are left for experimentation are those that directly alter

the rate at which individuals gain and lose volume (γ, ϵ, and km), those that

control the shape and relative position of the preference function (β, c, and

a), those that determine the rate and degree of mutation of heritable traits

at reproduction (Pµ, and σ), and those that determine the amount and dis-

tribution of volume when the model is initialised (Ninit, Pinit, and Hinit). In

addition to these, the model has three switches: one to select either the log-

normal or inverse parabolic preference function, one for the type 1 or type

2 functional response, and one to select between the actual or approximated

calculation of effective prey volume. Since the unapproximated calculation for

effective prey volume has been evaluated against the default model configura-

tion (section 3.2), all experiments hereafter will make use of the approximate

calculation of effective prey volume. Experiments will therefore include the

four permutations of preference function and functional response.



48

Table 3.3.1: Tested control switch combinations

Figure Label Preference Function Functional Response

a Log-normal Type 1
b Log-normal Type 2
c Inverse parabolic Type 1
d Inverse parabolic Type 2

For each parameter that is being investigated, a range of values have been

chosen with minimum and maximum values that straddle the default. Each

experiment will focus on just two of the parameters and will run the model

with every combination values from its prespecified range. The trophic level

count, detailed in section 2.7.2 has been chosen as the high-level metric for the

model outputs. As a stochastic model, EATSM can produce slightly different

results each time (see section 7.2.3). To smooth out stochastic effects on the

trophic level count, each experiment will be run three times and averaged to

produce the final result.

Isolating and testing just two of the parameters permits the creation of two-

dimensional plots, where the x and y-axes represent the range of tested pa-

rameter values, and the colour scale will show the mean number of trophic

levels from the three sets of results. All other parameter values will be kept at

their default. Each experiment will be run for about ten times longer than is

required for the initial period of damped oscillation to subside (section 3.1.1).

This allows enough time for the system to approximate steady state.

3.3.2 Metabolism

This set of experiments investigate the effect of altering the rates at which

individuals gain and lose volume. These are controlled by the parameters that

change the flows of energy with an individual, irrespective of food consumed.

They are the assimilation efficiency coefficient (γ), the fractional metabolic ex-

pense per time step (ϵ), and the metabolic scaling exponent (km). Since ϵ uses

very small values, it is the only parameter that is tested across a logarithmic

range. All others use a linear range of values.

The first set of experiments alters the values of ϵ and γ.
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Figure 3.3.1: The mean number of trophic levels from an ensemble of three runs,
varying the fractional metabolic expense (ϵ) against the assimilation efficiency (γ)
across a range of values. The top two plots use a log-normal preference function
with (a) a type 1 and (b) a type 2 functional response. The bottom two plots use
an inverse parabolic preference function with (c) a type 1 and (d) type 2 functional
response.

From the results it is clear that for all combinations of preference function and

functional response there are combinations of ϵ and γ values that produce a

productive trophic system, and others that cause it to collapse. All plots illus-

trate that ϵ has the greatest influence on the stability of the system. Despite

the small default for ϵ, there is still a narrow range of values that produce

stable systems with less than four trophic levels. In general it can be seen that

the system either produces four trophic levels, or none at all. Very low epsilon

values have no continued additive effect on the number of trophic levels. This

suggests that metabolism can permit a stable system, but has a limited effect

on the number of trophic levels.

The probability of an individual feeding in a given time step is approximately

given by:

α · Pf

The probability of an individual or size class feeding (Pf ) is always going to
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be less than one, so individuals will never feed every time step. The default

α value means that even with a certain probability of feeding and abundant

prey, individuals would still consume only once every 100 time steps. The

slight vertical structuring in the plots from figure 3.3.1 can be explained by

the fact that individuals generally consume prey whose volume is many orders

of magnitude larger than the volume that is lost by metabolism. Metabolic

losses are taken at every time step, whereas the assimilatory loss is applied

only when food is consumed. The number of trophic levels therefore has a

weak positive correlation with the assimilation efficiency, but it only has a

major influence in the region of parameter space where it is balanced against

metabolisms, i.e. where ϵ is ∼ 10−4 timestep−1.

When the metabolic rate is high, less energy is available to individuals higher in

the trophic system. Even though larger individuals have a proportionally lower

metabolic rate, too much energy is lost by the metabolisms of the individuals

lower in the food chain. This can be seen in figure 3.3.2 that show the volume

fluxes from herbivory and carnivory from one of the three runs using ϵ set at

3.1623e–04 and γ set at 0.5 in figure 3.3.1b above.
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Figure 3.3.2: The volume fluxes from (a) consumption of phytoplankton by her-
bivores and from (b) consumption of prey individuals by carnivores, from a single
run configured with a log-normal preference function, a type 2 functional response,
ϵ set at 3.1623e–04 and γ set at 0.5.

All of the three runs for the parameter combination used for the plots in figure

3.3.2 above show a similar pattern of fluxes from consumption by herbivores

and carnivores. When these are compared to those for the same fluxes using

the default parameter values (figures 3.1.1b and 3.1.1c) the flux from herbivory
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is much greater, and disproportionate to the flux from carnivory. The fluxes

here are much more oscillatory and have periods of stopping almost entirely.

The configuration produces a two-tier trophic system comprised of secondary

and tertiary producers (see figure 3.3.1b). The fluxes in figure 3.3.2 correlate

with strong population cycles.

To better compare the results in figure 3.3.2 some additional plots show the

same fluxes in a model that uses slightly lower ϵ value of 1e–04 and γ set to

0.5. These are shown in figure 3.3.3 below:
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Figure 3.3.3: The volume fluxes from consumption of phytoplankton by herbivores
(a) and from consumption of prey individuals by carnivores (b). from a single run
configured with a log-normal preference function, a type 2 functional response, ϵ set
at 1e–04 and γ set at 0.5.

This plots in figure 3.3.3 show the same fluxes as before, in a configuration

that produced four trophic levels (see figure 3.3.1b). Comparison with those in

figure 3.3.2 emphasises that they are in proportion with each other. If cycling

occurs, it is too small to appreciate at the scales of volume shown. Around

a third of the assimilated phytoplankton volume is lost to the higher trophic

levels. The metabolism is low enough to permit the quaternary and quinary

producers to survive, but too high for the largest individuals to reproduce. The

dynamics of reproduction that caused the periodic oscillation in the default

configuration are not present here. Some configurations in this set supported

slightly more than four trophic levels.

The next set of metabolic experiments vary the values of ϵ and km.
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Figure 3.3.4: The mean number of trophic levels from an ensemble of three runs,
varying the fractional metabolic expense (ϵ) against the metabolic scaling exponent
(km) across a range of values. The top two plots use a log-normal preference function
with (a) a type 1 and (b) a type 2 functional response. The bottom two plots use
an inverse parabolic preference function with (c) a type 1 and (d) type 2 functional
response.

These results are similar to those in figure 3.3.1. The fractional metabolic ex-

pense per time step (ϵ) again has the greatest influence in determining whether

the trophic system survives or not. Lower values of km give larger individuals

a smaller metabolic cost. This promotes the emergence of more trophic levels,

but figure 3.3.4 illustrates that it is less effective than ϵ. The efficacy of ϵ at

promoting more trophic levels is attributed to the comparatively large range

of values tested. However, the results show that there is a significant range of

viable km values. This is an observation reflected in the contemporary litera-

ture on the topic (Glazier, 2005, 2006). Four trophic levels is again the highest

for this configuration.

The next set of experiments vary the values of km and γ.
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Figure 3.3.5: The mean number of trophic levels from an ensemble of three runs,
varying the the metabolic scaling exponent (km) against the assimilation efficiency
(γ) across a range of values. The top two plots use a log-normal preference function
with (a) a type 1 and (b) a type 2 functional response. The bottom two plots use
an inverse parabolic preference function with (c) a type 1 and (d) type 2 functional
response.

From the results in figure 3.3.5 it appears that km and γ have a proportional

power to determine the number of trophic levels in the system. Both of these

parameters were shown to have a weak influence on the number of trophic

levels in the earlier experiments. This observation is reinforced by the results

in figure 3.3.5d as this was the only one of the four sets of configurations that

caused the system to collapse. All of the others at least had a population of

secondary producers. Despite this, just over four trophic levels was again the

highest.

Four trophic levels is about the maximum for all the combinations of param-

eters in this section. This suggests that the number of trophic levels inversely

correlates with metabolism to a limit, and that this upper limit cannot be

exceeded by only reducing the metabolic rate.
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3.3.3 Preference Function

These experiments test the effect of altering the parameters that control the

size, shape, and relative position of the preference function. These are the

preferred prey volume ratio (β), and the width (c) and the height of the feeding

function (a). The first set of experiments vary β and c.
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Figure 3.3.6: The mean number of trophic levels from an ensemble of three runs,
varying the preferred prey volume ratio (β) against the preference function width
(c) across a range of values. The top two plots use a log-normal preference function
with (a) a type 1 and (b) a type 2 functional response. The bottom two plots use
an inverse parabolic preference function with (c) a type 1 and (d) type 2 functional
response.

Figure 3.3.6 shows that the number of trophic levels in the system is strongly

determined by the value of β. This is reinforced by the empirical results of

Jennings and Warr (2003) who found longer food chains in systems where

predator-prey body size ratios were smaller. There is some structure to the

results that change with different values of c. For certain model configurations

there are combinations of β and c values that cause the system to collapse

entirely. To examine this further, two of the three runs for a single parameter

combination were isolated. The first plots show the numbers of individuals

from each of the d size classes over time.
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Figure 3.3.7: The number of individuals from each size class over time from two of
the three runs configured with a log-normal preference function, a type 2 functional
response, β set at 35, and c set at 0.75.

The second set shows the numbers of individuals from each trophic level over

time.
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Figure 3.3.8: The numbers of the secondary (blue), tertiary (cyan), and quaternary
producers (yellow) over time from two of the three runs configured with a log-normal
preference function, a type 2 functional response, β set at 35, and c set at 0.75.

In both cases the system initially exhibits a strong population cycling. The

largest individuals in figures 3.3.7a and 3.3.8a are largely inactive. This leaves

just the secondary and tertiary producers locked in a boom bust population

dynamic. The results in figures 3.3.7b and 3.3.8b illustrate a stochastic varia-

tion where the boom bust cycle continues for longer. This allows enough time

for the largest individuals to reduce in volume as a result of their metabolic

rate and establish their role as quaternary producers before the system col-
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lapses. This reduces the grazing on the secondary producers allowing them to

reproduce more rapidly. Mutant secondary producers appear that are farther

away in volume trait space and are therefore less grazed by the tertiary pro-

ducers. This ultimately stablises the system. Because the system collapsed

after a short space of time, the first set of results have a trophic level count of

0 and the second has 3. The third in the set was much like the first, accounting

for the count of 1 in figure 3.3.6b.

Certain β and c values introduce intense population cycling that destabilises

some runs. Identical configurations from this section are subject to striking

differences in trophic structure as a result of stochastic variation. The results

shown in figure 3.3.6 indicate that some parameter combinations are ultimately

less stable than others. This instability appears to be a function of both the

preferred prey volume ratio and preference function width.

The next set of experiments varies the values of c and a.
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Figure 3.3.9: The mean number of trophic levels from an ensemble of three runs,
varying the preference function width (c) and height (a) across a range of values
in a model configuration that uses a log-normal preference function and a type 2
functional response.

While varying the height of the preference function changes the character of the

trophic system, it can be seen that there appears to be no relationship between

the number of trophic levels and the preference function height (a). There is a

slight relationship between the c values and the number of trophic levels. This

shows that the highest number of trophic levels come from configurations that

use the lowest c values.

The preference function alters the effective prey volume experienced by the

individual or size class, and therefore affects the probability of feeding. Figure
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3.3.9 implies that the metabolic rate is low enough that a reduced probability

of feeding has no significant effect on the survival of the trophic levels. How-

ever, the turnover in the model is slower. While the higher trophic levels do

occasionally consume food they only assimilate enough to cover their metabolic

expenses and so do not reproduce. Their reduced grazing also affects the lower

trophic levels. This allows smaller individuals to grow more before they are

consumed, and appears to create a more competitive element of predation in

the system.
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Figure 3.3.10: The numbers of the secondary (blue), tertiary (cyan), quaternary
(green), quinary (yellow), and senary producers (orange) over time in a model con-
figured with a log-normal preference function, a type 2 functional response, c set at
0.5, and a set at 0.5.

Figure 3.3.10 shows a run in which largest individuals barely consume at all.

The quinary producers are comprised of individuals that are grouped with the

quaternary and tertiary producers in volume trait space. Eventually one of

the largest individuals consumes a quinary producer, and is calculated to be

a senary producer. This senary trophic level persists until the individual that

established it consumes from the quaternary trophic level. Since varying the

value of a appears to contribute nothing to the model, it will not be investigated

any further in this chapter.
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3.3.4 Mutation

These experiments test the effect of varying the parameters that control the

rate (Pµ) and degree (σ) of mutation of the heritable volume trait.
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Figure 3.3.11: The mean number of trophic levels from an ensemble of three
runs, varying the probability of mutation (Pµ) against the standard deviation of the
mutation distribution (σ) across a range of values. The top two plots use a log-
normal preference function with (a) a type 1 and (b) a type 2 functional response.
The bottom two plots use an inverse parabolic preference function with (c) a type
1 and (d) type 2 functional response.

It appears from figure 3.3.11 that changing the rate and degree of mutation

has little effect on the number of trophic levels. The results show a lot of

noise, and the range of trophic level counts is very narrow when compared

to the other results in this section. As with the discussion of the results in

figure 3.3.7, it is likely that the rate and degree of mutation may only make a

difference when the system is stressed. When pushed to the edge of stability,

a mutant can make a substantial difference to the number of trophic levels in

the system. In the absence of any such stress, most mutations are probably

not viable.

3.3.5 Volume

These experiments test the effect of altering the parameters that control the

initial, and therefore total volume in the system. Any individual that exists
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in a configuration of EATSM is ultimately comprised out of a fraction of this

initial volume. For this reason the trajectory of the system evolution is con-

sidered to be very sensitive to the values that determine the initial nutrient

volume (Ninit), the initial and maximum phytoplankton volume (Pinit), and

the initial heterotrophic volume (Hinit). Higher initial volumes can produce

larger populations, which is more computationally expensive. For this reason

the model configurations in this section were run for just under 24 hours. Also,

In the previous examples different parameter values were varied one against

the other. This set of experiments will perform a higher resolution space search

of each parameter in isolation.

The first set experiment with the Ninit value.
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Figure 3.3.12: The minimum, maximum, and mean (blue line) number of trophic
levels from an ensemble of three runs, varying the initial nutrient volume (Ninit).
The top two plots use a log-normal preference function with (a) a type 1 and (b) a
type 2 functional response. The bottom two plots use an inverse parabolic preference
function with (c) a type 1 and (d) type 2 functional response.
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The results from these experiments highlight an important aspect of the cal-

culation of the feeding probability (Pf ). Both the linear (equation 2.4.15)

and non-linear (equation 2.4.16) probability functions use the total volume in

the system to provide context to the effective prey volume (v̂e). High initial

nutrient volumes have no immediate impact on the probability of individuals

consuming because N is not counted during the calculation for effective prey

volume. However, both equations 2.4.15 and 2.4.16 use the total volume in

the system (V ) to add context to v̂e and so Pf decreases with higher values

of Ninit. For this reason the system becomes unstable or collapses completely.

The results in figure 3.3.12 therefore contribute to a deeper understanding of

the model performance when using the different combinations of preference

function and functional response types.

The most stable combination of model functions appears to be the log-normal

preference function and the type 2 functional response (figure 3.3.12b). It is

the only configuration that does not produce less than 4 trophic levels. Figure

3.3.12d illustrates that the inverse parabolic preference function with the longer

run time is enough to see the system become unstable. The log-normal pref-

erence function produces an extremely small possibility that individuals will

consume others that are near their own volume. This occurs (see section 3.1.2)

if the ‘preferred’ prey is not available. Since the only thing that distinguishes

one individual from another is volume, this can be seen to represent cannibal-

ism. Vijendravarma et al. (2013) published evidence for predatory cannibalism

when populations of fruit fly experienced a reduction in food availability. This

experimental result suggests that cannibalism could be a mechanistic response

to food availability. The use of the inverse parabolic function and the default

parameter values prevent ‘cannibalism’, and that ultimately causes increased

rates of starvation in some model configurations.

These results also illustrate the differences between the type 1 and 2 functional

response. Figure 2.4.4 shows a direct comparison of each functional response.

The type 1 functional response generally provides a lower relative chance of

feeding, except for higher effective prey volumes. Both figures 3.3.12a and

3.3.12c show a point between Ninit values of 2e+7 and 3e+7 where the prob-

ability of consuming becomes low enough to push the system to the edge of

stability. Higher nutrient volumes provide enough volume for the system to

sustain itself when it is later converted to heterotrophic volume. However,

the period when that volume was unavailable to the heterotrophs reduces the
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number of trophic levels exhibited by the system. The rigid mechanisms of this

version of EATSM mean that once a trophic level collapses, it is very unlikely

to return.

These experiments vary the Pinit value.
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Figure 3.3.13: The minimum, maximum, and mean (blue line) number of trophic
levels from an ensemble of three runs, varying the initial/maximum phytoplankton
volume (Pinit). The top two plots use a log-normal preference function with (a) a
type 1 and (b) a type 2 functional response. The bottom two plots use an inverse
parabolic preference function with (c) a type 1 and (d) type 2 functional response.

All the results above show a counter-intuitive drop in the number of trophic

levels as the phytoplankton is increased. This reflects the fact that higher vol-

umes provide more material to build new individuals. Since the phytoplankon

is immediately accessible, it is rapidly assimilated by the herbivores. This pro-

duces many new individuals. When combined with the log-normal preference

function and type 2 functional response, the number of heterotrophs exceeds

6e+06. Computation runs extremely slowly with populations that large, even
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with the approximated calculation of effective prey volume. The system is not

able to compute enough time steps to show the stable emergence of higher

trophic levels, even though they do begin to appear. For this reason, the

trophic level count is constrained by the amount of real time the model was

run for.

This set of experiments varies the value of Hinit.
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Figure 3.3.14: The minimum, maximum, and mean (blue line) number of trophic
levels from an ensemble of three runs, varying the initial heterotrophic volume
(Hinit). The top two plots use a log-normal preference function with (a) a type 1
and (b) a type 2 functional response. The bottom two plots use an inverse parabolic
preference function with (c) a type 1 and (d) type 2 functional response.

The results here show that higher initial heterotroph volumes seed the size

classes with a higher number of individuals occupying a greater range of vi-

able trophic positions. This causes an initially high probability of consuming

for Hinit values above zero. The aggressive rates of predation cause a desta-
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bilisation of the trophic levels. A sudden drop in heterotroph volume causes

a sharp rise in the nutrient volume. This produces reduced probabilities of

feeding. The rate of material flow through the trophic levels is reduced. For

some configurations one or more trophic levels disappear completely. Some

continue to function with a reduced number of trophic levels, others collapse.

The specific pattern of the results shown in figure 3.3.14 are again seen to

be a reflection on the combinations of preference function and functional re-

sponse, and the rates of feeding. The type 1 functional response appears to

produce a decreasing probability of feeding for higher Hinit values. Use of

the inverse parabolic function and type 2 functional response with increas-

ing Hinit values (figure 3.3.14d) appears to cause aggressive rates of predation

that destabilise the system. However, there are Hinit values beyond which the

system is prevented from driving itself into extinction. The combination of

log-normal preference function, and type 2 functional response appears to be

the most stable across the tested Hinit values.

In the set of experiments below the initial heterotrophic volume (Hinit) was

reduced from its default value in increments, and the difference added to the

nutrient pool. This kept total volume in the system fixed at 2e+06.
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Figure 3.3.15: The number of individuals from each size class over time from
models configured with initial heterotrophic volumes of (a) 1e+06, (b) 7e+05, (c)
4e+05, and (d) 1e+05. All used a log-normal preference function and a type 2
functional response.
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The results in figure 3.3.15 show that the trophic systems function in a sim-

ilar way, but with a different dynamic. Each configuration shows variation

in structure where those that use less initial heterotrophic volume occupy a

narrower region of volume trait space. The volume of the largest individuals

appears to determine a ceiling for the rest of the system. It is considered that

the model itself restricts the trophic system from evolving to occupy a greater

width of volume trait space.

This limitation was noticed during development of the model and is the reason

for the initialisation method described in section 2.5. This spread the initial

volume across trait space, seeding the first size classes with sufficient trait

variation to produce a system that worked. This was at the cost of determining

the nature of the trophic system. Despite this, the four model configurations

that produced the results in figure 3.3.14 all had a trophic level count of about

4. This demonstrates the adaptive potential of the individuals, and how that

contributes to an adaptive whole. It also highlights that in this version of the

model, the emergent trophic structure is strongly determined by the initial

conditions.

The cause behind this is considered to be the current abstract method of using

constant thresholds for reproduction (see section 2.6.4) and starvation (see

section 2.6.3). These introduce an element of rigidity to the system that have

repercussions in terms of its evolvability. The materially closed and conserved

nature of the model means that the volume of the parent has to be shared with

a child. The imposed, mechanistic point of starvation implied a basic method

for reproduction. One in which parents grow to twice their heritable volume

in order that a clonal child start life with zero probability of starvation. This

means that parent and child would be unlikely to have more than twice the

heritable volume of the parent to share.

Mutations that increase the heritable volume trait a significant distance from

the parent would also increase the chance of the child starving. The only way

such a mutant may survive is if it manages to assimilate enough to sufficiently

reduce its chances of starving on the next time step. There is little likelihood

of this happening. However, children can mutate lower in volume trait space.

Doing so would increase their reproductive fitness. It would provide a child

with an excess of volume that would bring them instantly nearer to their

reproduction threshold. However, the preference matrix (figure 2.4.3) shows
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that small individuals would have a very low probability of feeding. For certain

parameter combinations EATSM would undoubtedly expose small individuals

to a trade-off between the rate of assimilation and metabolism.

There may also be additional predatory controls that prevent mutations higher

in volume trait space. For individuals not in the highest trophic level, growth

within an active trophic system would likely increase the chance of being con-

sumed by larger individuals. Growth of individuals in the highest trophic level

would reduce the probability of consuming as the available prey would be rel-

atively more distant from the middle of their preference function. In this way

mutations of the heritable volume carries trade-offs.

3.3.6 Size Spectra

Sheldon et al. (1972) collected data on the concentration of particles in the

surface and deep waters of the Atlantic and Pacific Oceans within size classes

approximately in the range 1–100 µm. They found variation between geo-

graphic locations and depths, but that there was similar amounts of material

in logarithmic size classes. The consistency in the data led to the hypothesis

that roughly equal concentrations of material occurs at all particle sizes in

the range 1–106µm. They extended this hypothesis to the pelagic ecosystem

and reinforced Elton’s (1927) ecological pyramid by proposing that there were

more smaller organisms than large ones, and the volumes of each would be

approximately the same. Sheldon et al. (1972) acknowledged that organisms

generally feed on smaller prey, and that for a species to maintain a constant

volume the rate of production must vary inversely with somatic size.

Platt and Denman (1977) challenged the conjecture of Sheldon et al. (1972)

and asserted that at steady-state the total biomass in each size class decreases

with body size. They defined the “normalised size spectrum” (β(w)) as the

total biomass (b(w)) in the size class characterised by weight (w), divided by

the width of that size class (∆w):

β(w) =
b(w)

∆w

Since volume is used interchangably with mass (and weight) here, Platt and

Denman’s (1977) equation can be redefined in terms of volume. If we say that
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the total volume of size class i is given by v(i), and use the discrete size class

vectors defined in section 2.4.2, the normalised size spectrum of EATSM can

be redefined as:

β(i) =
v(i)

vb(i+ 1)− vb(i)
(3.3.1)

Equation 3.3.1 has been used with the data shown in figure 3.1.3c at the end

of the model run (at 1e+06 time steps), and the result is shown in figure 3.3.16

below.
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Figure 3.3.16: The normalised size spectra of EATSM based on Platt and Den-
man’s (1977) method. Data were taken for the volume in each size class at 1e+06
time steps from those plotted in figure 3.1.3c.

The data in figure 3.3.16 certainly exhibits a negative gradient, as Platt and

Denman (1977) suggested. However, it should be noted that their method for

viewing the size spectra is not the only one. Sheldon et al.’s (1972) hypothesis

established an approach for viewing data on the size distribution of individuals

in an ecosystem that has been adapted by many authors over the years (Dickie

et al., 1987; Gaedke, 1993; Quinones et al., 2003; Benôıt and Rochet, 2004;

Rossberg, 2012).

Dickie et al. (1987) found two size-dependent processes that determined the

size-spectra. They acknowledged the well established body-size-metabolism

relationship, but also presented analysis that showed the spatio-temporal dis-

tribution of species is critical to the state of the whole system. This led to

the conclusion that populations cannot be described as sums of individual
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attributes. Gaedke (1993) used seasonal changes in the size spectra of a phy-

toplankton community and a metabolic scaling law to estimate the efficiency

of energy transfer between trophic levels. The slope of the ‘size distribution of

metabolic activity’ indicated transfer efficiency, and was therefore a measure

of how productive the system was. This approach has been extended for use in

ecosystem management to assess the state of commercially exploited systems

(Rossberg, 2012).

Jennings and Blanchard (2004) constructed size spectra of a North Sea fish

community. The data were collected at 74 locations during a period from

August to September 2001. The size spectra was plotted as the logarithm of

the body mass, against the logarithm of the average biomass of that size class.

This approach has been appropriated here and the results are plotted in figure

3.3.17 below.
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Figure 3.3.17: The size spectra of EATSM based on Jennings and Blanchard’s
(2004) method. Data were taken for the volume in each size class and averaged
from 5e+05 to 1e+06 time steps from those plotted in figure 3.1.3c.

As before the volume data are taken from figure 3.1.3c. However, Jennings

and Blanchard (2004) used a more rigorous data sampling progress. To ap-

proximate this and instead of plotting the data from a particular time step,

the average volume from each size class within a range of time steps is plotted

in figure 3.3.17 above. The gradient of this size spectra is closer to zero. This

is in contrast to the results of Jennings and Blanchard (2004) who showed a

negative gradient for their data.

Rossberg (2012) established a slightly different method for plotting a size spec-
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tra. Reviewing several sets of published data from natural systems, the size

spectra (β(i)) calculation for each size class i was described as the product

of the biomass in size class i (b(i)) and the mid-point of that size class (mi)

divided by the linear width of the mass interval (∆mi).

β(i) =
b(i) ·mi

∆mi

As before, this method has been redefined for use with volume data from

EATSM.

β(i) =
v(i) · vm(i)

vb(i+ 1)− vb(i)
(3.3.2)

Much like the approach of Jennings and Blanchard (2004), Rossberg (2012)

used averages of data taken over a period of time. For that reason data from

each size class were again taken from those plotted in figure 3.1.3c and were

averaged from 5e+05 to 1e+06 time steps. The result of this is shown in figure

3.3.18 below.
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Figure 3.3.18: The size spectra of EATSM based on Rossberg’s (2012) method.
Data were taken for the volume in each size class and averaged from 5e+05 to 1e+06
time steps from those plotted in figure 3.1.3c.

Some size spectra plots in Rossberg (2012) showed peaks and trophs, and some

showed gaps in the data. These patterns superficially appeared to mark the

positions and boundaries between trophic levels. However, all the plots showed

a general gradient of zero. The size spectra plot in figure 3.3.18 also gestures
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to the positions and boundaries between trophic levels, but with a positive

gradient.

The differences between the size spectra plots from the literature and those pre-

sented here may be due to the method by which the size classes are initialised

(see section 2.5). However, it is considered more likely that the assumption

that all material has a constant density is the cause. This assumption was

made in order that volume can be directly comparable with mass. In pelagic

ecosystems phenotypic density appears to evolve in order to balance feeding

strategy (see chapter 5) and metabolic rate (Kiørboe, 2011). In addition,

Gaedke (1993) pointed out that allometric scaling and the often assumed rules

of a size-structured trophic system break down at bacterial scales. While it

may be convenient to use simplistic descriptions of life, it seems that there is

always something in the missing detail. Despite this, the plots in this section

at least provide a way to qualitatively compare the results from EATSM with

data from the natural world.

3.3.7 Conclusions

There were several key observations in two major categories from the results

in this section. The science conclusions are summarised below:

1. Dynamic trophic levels.

2. Lotka-Volterrra population cycling between the trophic levels.

3. ‘Cannibalism’ appears when populations experience reduced food.

4. The metabolic rate significantly affects the number of trophic levels.

5. The assimilation efficiency more weakly affects the number of trophic

levels.

6. There is a wide range of viable metabolic scaling exponent values.

7. There is a limit to the number of trophic levels that cannot be exceeded

with altering the metabolic rate or the assimilation efficiency.

8. The preferred prey volume ratio strongly determines the number of trophic

levels.
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9. The height of the preference function has very little effect on the number

of trophic levels, but does influence the rate of turnover.

10. The rate of mutation has a negligible effect on the system.

11. High initial nutrient volumes increase the time that is needed to reach a

stable/repeatedly oscillation trophic structure.

12. High initial/maximum phytoplankton volumes slightly reduce the num-

ber of trophic levels.

13. High inital heterotrophic volumes cause more aggressive predation that

destabilises the system.

14. A combination of log-normal preference function, and type 2 functional

response was the most stable across the ranges of parameters tested.

The conclusions of the model are listed below:

1. The approximate calculation of effective prey volume is sufficiently like

the unapproximated calculation to justify its use.

2. Outputs from configurations that push the system to the boundary of

survival can produce stochastic variation.

3. The heterotroph initialisation method sets the variety of heritable volume

trait values in the system.
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4 The Evolution of Reproductive Invesment

in Offspring

4.1 Introduction

Interspecies comparisons can reveal enormous phenotypic variation (Roff, 1992;

Stearns, 1992). These differences are in some cases matched by intraspecies

comparison of individuals at different ages and points of development. The

ways in which organisms change over time refer to their specific life history.

Life history theory has been developed alongside work on trade-offs (Stearns,

1989). A trade-off refers to the costs paid in the currency of fitness when a

beneficial change in one attribute is causally linked to a detrimental change

in another (Reznick, 1985; Stearns, 1989; Roff, 1992). Life history analysis

reveals that the schedule of development is intimately related to the timing of

reproduction and mortality. For example, theory predicts that reduced juvenile

survival will select for delayed maturation and decreased reproductive effort,

and reduced adult survival will select for the opposite (Reznick et al., 1990). For

most organisms, reproduction represents the exchange of a set of capable adult

individuals for a different set of resource deplete and vulnerable individuals

(Roff, 1992). It is therefore no surprise that the evolved reproductive strategy

requires some form of obligate compromise. In addition to the age and size at

maturity, organims can vary significantly in their brood size and relative size

at birth (Stearns, 1977, 1992).

David Lack (1947) published a thorough review of the literature and data on

bird clutch-sizes in an attempt to find the ecological drivers of the parental

investment in offspring. Latitudinal patterns in species’ reproductive strate-

gies prompted the suggestion of a causal link between the evolution of life

history traits and the environmental conditions. General correlations between

disparate species experiencing similar ecological conditions prompted Lack to

propose his ‘food-limited’ hypothesis. This treats food availability, or the rate

at which it can be gathered as the force that determines clutch size. More than

20 years later, Ricklefs (1970) challenged this idea and offered an alternative

model that placed predator-prey interactions at the centre of the evolution of

clutch size. He pointed out that organisms evolve to maximise their resource

gathering and reproductive success, whilst minimising that of their predators.
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This process gives rise to an ‘arms race’, where a change in predator strat-

egy selects for an evolutionary response in the prey. The balance between the

two would ultimately be determined by potential rates of evolutionary change,

which may be constrained by the adaptability of predator and prey. This led

to the ‘counteradaptation’ hypothesis, that asserts that clutch size represents

a single facet of a coevolutionary dynamic.

There is evidence that for a number of species, the genotype can express a

range of phenotypes depending on the environmental conditions (Stearns and

Koella, 1986; Stergiou, 1999). This concept is referred to as a reaction norm.

There is also evidence that the schedule of development is tied to interactions

with predators (Beckerman et al., 2010). Collectively, this work implies that

an organism’s size can be due to epigenetic changes. Stearns and Koella (1986)

acknowledged this phenotypic plasticity and produced a model that attempted

to predict an organism’s schedule of development as a function of a dynamic

environment. This work necessarily included assumptions about fitness, age

distribution, and the conditions for juvenile mortality. The predictions it gen-

erated were found to correlate with data for fish. However, Day and Rowe

(2002) questioned this work. They asserted that current life history theory

failed to satisfactorily explain why for example, many species mature earlier

when experiencing high-growth. They emphasised the fact that many species

need to make certain ontogenetic tranisitions before being able to reproduce.

This work led Day and Rowe (2002) to propose an alternative model that

predicted that individuals may mature sooner or later when exposed to poor

growth conditions, depending on how close they are to any such threshold.

However, it was found that the model did not apply generally. This was at-

tributed to a lack of data regarding the physiological mechanisms underlying

ontogeny.

Despite the literature that acknowledges the plasticity in the life history of

an organism, there is a parallel thread of research that considers life history

evolution to have genetic, rather than an epigenetic basis. One experimental

study on life history evolution was carried out on Daphnia magna (Edley and

Law, 1988). Two cloned populations were exposed to two culling regimes. One

targetted small individuals, and the other targetted large individuals. After

150 days of applying the culling regimes it was found that individuals from

each population expressed differing life histories. The population exposed to

selection of small individuals grew rapidly to adulthood. Constrasting this,
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the population exposed to increased adult mortality exhibited slow growth. In

both cases it was found that the evolved life history resulted in minimal time

spent in the life stage when individuals were most at risk of selection. Edley

and Law (1988) acknowledged that culling at least temporarily reduced the

population densities, but they saw no reason to consider that significant to

their results. They were certain that their subject species had undergone a

genetic change as a result of size selective mortality. Edley and Law (1988)

considered their experiment analogous to commercially exploited systems and

stressed the importance of effective ecosystem management.

Reznick et al., (1990) published details of a long-term study that confirmed

how the general age of mortality affects reproductive investment. The exper-

iment was performed on guppies (Poecilia reticulata) as earlier research had

illustrated a relationship between the specific life history and the type of preda-

tor with which the guppies live (Reznick et al., 1990). At one location the main

predator was Crenicichla alta. This particular species consumes large, sexu-

ally mature guppies. At another site the main predator was Rivulus hartii ; a

species that consumes smaller, sexually immature guppies. In 1976, a popu-

lation of guppies that had previously experienced predation from Crenicichla

alta were introduced to a site that previously contained Rivulus hartii and no

guppies (Reznick et al., 1990).

Data collected over the subsequent years revealed persistent changes in the life

history attributes of the guppies at the introduction site (Reznick and Endler,

1982; Reznick, 1982a). Females initiated reproduction at a larger size and

produced larger offspring. In dry seasons there was a trend toward lower re-

productive effort and smaller brood sizes, but not in wet seasons. Subsequent

generations from both populations were later reared in a common laboratory

environment (Reznick, 1982a,b). The phenotypic differences were found to

persist, but the brood size increased after two generations. Reznick et al.

(1990) considered this enough evidence to conclude that the guppies experi-

enced genetic evolution of their reproductive strategy.

Martinez-Garmendia (1998) constructed an individual-based, evolutionary model

that was parameterised for cod (Gadus morhua). The purpose was to test for

genetic changes in response to, and set bounds on selective fishing mortality.

With the benefit of data the model was parameterised to describe different

fishing scenarios. The results showed that evolution of fish populations could
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be brought about by fishing, but that it might be too slight to be noticed by

empirical study. Dunlop et al. (2007) produced a model that attempted to

ascertain the impact of fishing on smallmouth bass (Micropterus dolomieu) at

two separate lakes. It was parameterised with empirical data collected since the

1900s. The model predicted that populations exposed to high size-dependent

mortality will evolve toward smaller sizes and younger ages of maturation. De-

spite this, the data showed that the lakes experienced different rates of fishing

yet produced no detectable evolutionary divergence in the subject species.

Both of these model studies attempted to answer questions about the poten-

tial evolutionary response of specific species experiencing significant rates of

size-specific mortality. With the benefit of data with which to parameterise

the models they were able to produce quantiative, measureable predictions.

However, both studies took a very reductionist view of evolution. The prey

were not represented, and neither were the effects of non-human predators.

The species were thereby decoupled from the environment on which their evo-

lution intrinsically relies. While predator-prey interactions may still be viewed

as central to the trade-offs surrounding a reproductive strategy, it is consid-

ered that modelling only one species and one source of predation undermines

any attempt to deliver robust predictions. The reproductive strategy adopted

by a species may very well be a function of its relationship to its predators

and prey. This suggests there may still be value in Lack’s (1947) food limited

hypothesis.

Abrams and Rowe (1996) acknowledged that previous experimental work had

revealed evolutionary change that could be attributed to both genetic change

and phenotypic plasticity. They set out to describe the effects of non-selective

predation on a population. A number of mechanisms were identified by which

it was suggested that life history evolution could be brought about, without

imposing a size-dependent mortality regime. To explore and test these ideas

a theoretical model was constructed. The results highlighted that life history

evolution could be brought about through indirect effects, and that often this

would oppose and be larger in magnitude than the direct effect. Contradicting

the assertion made by Edley and Law (1988), they found that a reduction

in prey population density brought about by predation has density depen-

dent consequences that can significantly influence life history evolution. Their

findings reflect the work of Dickie et al. (1987) who pointed out the “homeo-

static” mechanisms in a community structure that are emergent properties of
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the spatial interactions between individuals.

Life history theory predicts: reduced juvenile survival will select for delayed

maturation and decreased reproductive effort, and reduced adult survival will

select for the opposite. It is considered that the relative size of offspring will

change depending on the trophic position of both parent and child. Top-

level predators will likely harm their reproductive success by producing many

small children, as doing this would place offspring among individuals expe-

riencing higher levels of predation. Conversely, heavily predated individuals

would likely lower the cost of child mortality by spreading the risk over a

larger number of smaller offspring. To investigate this hypothesis EATSM will

be modified to permit the evolution of parental investment in offspring in a

trophic context. It is hoped that this may yield insights into the ways in which

the reproductive strategy employed by an organism is balanced by the effects

of predation, and the availability of prey. We are effectively asking do the pre-

dictions of life history theory completely explain the evolution of reproductive

effort? In asking this question, we are also evaluating the validity of Lack’s

and Ricklefs’ hypotheses.

4.2 Method

EATSM is founded on the principle that individuals are materially coupled

to their environment. The use of a functional response makes the rate of

consumption, and subsequent growth a function of prey population density.

Similarly, individuals are at risk of predation by others. Thereby making their

reproductive success a function of prey and predator population densities, as

well as their own. However the current representation of reproduction and

starvation described in chapter 2 is too rigid to permit the evolution of life

histories. This section therefore describes a number of changes that refine

some of the earlier methods. All other methods are unchanged.

4.2.1 Individuals

In the previous version of the model, individuals were generally initialised with

a volume that was the same or near their heritable volume. Reproduction oc-

cured when they reached twice their heritable volume, at which time their

volume was divided between parent and child (see section 2.6.4). In this ver-
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sion individuals can start life much smaller than their heritable volume, and

reproduction occurs when they grow to exceed a specific fraction of it. To

model this individuals carry an additional heritable trait. It controls the frac-

tion of volume that is subtracted from a parent and given to a new child, when

and if that individual should reproduce. This trait is referred to as the child

volume fraction and is given the symbol Ω. There is a constraint on the value

a child volume fraction can take.

Allowing the trait to take any value between 0 and 1 introduces a mathematical

inconsistency that would allow the smallest individuals to continue producing

smaller and smaller children, potentially to the maximum extent allowable by

the numerical precision of the model. In addition, there must be a minimum

size, below which an organism can not include all the necessary machinery

for feeding, metabolism and reproduction. In the model this minimum size is

represented by vsmall.

To keep the model from producing children that are smaller than vsmall, Ω

has a minimum value (Ωmin) that is the multiplicative inverse of the heritable

volume (vh).

Ωmin(vh) =
vsmall

vh
(4.2.1)

The range of possible Ω values is therefore limited by the heritable volume

(vh).
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Figure 4.2.1: Minimum child volume fraction trait (Ωmin) values as a function
heritable volume (vh).
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Using an unprocessed heritable trait (g - a value between 0 and 1), Ω is defined

by:

Ω = g · (1− Ωmin) + Ωmin (4.2.2)

4.2.2 Starvation

Empirical evidence shows that many marine organisms continue to grow to-

ward an asymptotic size after reaching sexual maturity (Andersen and Beyer,

2006). Some population-level models have included representations of this

pattern of growth (Andersen and Beyer, 2006; Hartvig et al., 2011). However,

as explained in section 2.6.2, somatic growth of individuals in EATSM is a

mechanistic function of volume consumed. A solution that would reconcile the

mechanistic representation of growth and reproduction, with growth toward

an asymptotic volume is considered to be unnecessarily complex. For this rea-

son the heritable volume (vh) will continue to serve as a fixed threshold for

reproduction in the context of individuals potentially starting life well below

it. The change in perspective of this trait means that it is now referred to as

the volume at maturation.

The potentially large change in somatic volume over time means that the prob-

ability of starvation can no longer be calculated against a constant value, else

children would likely starve immediately after being born (see section 2.6.3). A

growth function is used to calculate a dynamic threshold for starvation that fol-

lows an expected growth trajectory. Classical models consider somatic growth

to be a function of time (Essington et al., 2001). An example such as the von

Bertalanffy growth function can be fitted to size-at-age data and incorporated

into predictive models. However, these functions are based on empirical ob-

servation of natural organisms. The simplistic representation of individuals in

EATSM ignores details of complex internal dynamics, such as absorption rates

(e.g. Atkinson et al. 2012). It is believed that these are at the centre of why

biological organisms can exhibit smooth and consistent growth under variable

conditions. The mechanistic representation of growth in EATSM means that

surviving individuals often exhibit stochastic growth, or they enter a consis-

tent pattern of growth and reproduction in which changes to volume over time

take the form of a sawtooth wave. To avoid these complexities, a linear growth

trajectory is used as the simplest starting point.
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In the absence of a mechanistic model of growth and starvation, the approach

here is to assume that for any age there is an ideal volume that an individual

should be at. The ideal volume (vt) necessitates that individuals’ volumes at

birth (vr) and ages in abstract time steps (ta) are recorded. An additional

parameter (λ) is introduced to control the rate of expected growth over time.

The expected age at maturation (te) is therefore defined by:

te =
vh − vr

λ
(4.2.3)

Following a linear form, the expected volume of an individual (vt), born with

a volume vr and age ta is defined by:

vt =

{
vt = vr + λ · ta if ta < te

vh else
(4.2.4)

In equation 4.2.4 the value of λ represents the gradient of the expected change

in an individual’s volume over time when ta < te. The expected volume is

truncated at the heritable volume, as it produces unrealistic values of vt for

individuals with age (ta) in excess of te.

A dynamic minimum volume (vmin) is calculated with reference to the expected

volume (vt). This is controlled by the minimum volume fraction parameter (δ)

on the condition that:

0 < δ < 1

The starvation threshold is therefore defined by:

vmin(vt) = δ · vt (4.2.5)

A graphical representation of the growth trajectory can be seen in figure 4.2.2.
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Figure 4.2.2: The expected volume (vt - green line) and minimum volume (vmin

- red line) as a function of age (ta) for an individual with vr of 1,000, and vh of
10,000 (black dotted line) when using a growth coefficient (λ) value of 0.001 and a
minimum volume fraction (δ) value of 0.5.

Equation 4.2.4 makes the assumption that the rate of growth to vh is constant

through volume space. A smaller individual is therefore assumed to take longer

to reach its size at maturation than one with the same volume at maturation

born with a higher volume (vr).

The dynamic expected and minimum volumes imply a change to equation

2.6.8. In an effort to introduce an increased phenotypic plasticity in terms of

resistance to starvation, a beta function in form published by Yin et al. (2003)

was utilised to produce a new definition for the probability of an individual

starving. Individuals with a volume (v) greater than or equal to their expected

volume (vt) have Ps set to 0. Individuals that reach or fall below their minimum

volume vmin have Ps set to 1. The beta function is used for individuals with v

between these thresholds.

Ps(v, vt) =


0 if v ≥ vt

1 if v ≤ vmin(vt)

1−
(
1 + (vt−vmin(vt))−(v−vmin(vt))

vt−vmin(vt)

)
·
(

v−vmin(vt)
vt−vmin(vt)

)
else

(4.2.6)

The calculations for the probability of starvation across a range of volumes (v)

that intersect minimum volume (vmin) and the expected volume (vt) can be
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seen below.
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Figure 4.2.3: A plot showing the probability of starving (Ps - blue line) with
respect to changes in volume (v) relative to their expected volume (vt). Individuals
do not starve if they are at or above their expected volume (vt - green dotted line).
This example uses a δ value of 0.5 used to calculate the minimum volume (vmin -
red dotted line).

4.2.3 Reproduction

Individuals cannot reproduce while they are below their volume at maturation

(vh). Until they are, assimilated volume is used to cover metabolic expense

with any excess contributing toward growth. Once an individual reaches ma-

turity surplus volume can be used to produce a child. Reproduction occurs

when an individual (v) reaches its reproduction threshold (vmax). Using the

child volume fraction trait (Ω) this is redefined as:

vmax(vh) = vh + (Ω · vh) (4.2.7)

The Ω trait also implies a change that supercedes equations 2.6.10 and 2.6.11.

The volume subtracted from the parent and given to a child at birth is a

function of the child volume fraction and volume at maturation trait values.

vr = vh · Ω (4.2.8)

In constrast to section 2.6.4, mutations that go out of bounds in this version

of the model are truncated at their minimum or maximum value. This is to
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prevent a large mutation of a small child fraction trait from being reflected

outside the opposite bound.

The potentially large change in individuals’ volume over time means that they

may move through some or all of the trophic levels during the course of their

life. For this reason offspring no longer inherit their parent’s τ attribute. Each

new child starts with an uninitialised τ value of 0.

4.2.4 Maturation Factor Attribute

In order to test the predictions of life history theory there needs to be some

measure of how mature an individual is when and if it becomes prey. For this,

individuals carry an additional attribute referred to as the maturation factor.

It is represented with the symbol ρ and defined by:

ρ(v, vr, vh) =


0 if v ≤ vr

1 if v ≥ vmax(vh)
v−vr

vmax(vh)−vr
else

(4.2.9)

An individual’s maturation factor changes according to the volume of and

relative position to vmax. When an individual is at its birth volume ρ takes

the value 0, when at vmax it takes the value 1. Because of the way growth

and reproduction are modelled here, the maturation factor can decrease if an

individual loses volume. However, once an individual has reproduced it is

assumed to have reached maturity and so ρ will take the value 1 thereafter.

4.2.5 Initialisation

As explained in section 2.5, individuals are given a volume that matches their

heritable volume. This means that in this version of the model, the size classes

are initialised with mature individuals. The child fraction traits are assigned

a random value in the range Ωmin to 1.

4.3 Results

The results presented in this section used the parameter values defined table

4.3.1.
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Table 4.3.1: The default parameter values for this version of EATSM.

Symbol Value Description

d 100 Number of heterotrophic size classes.
Ninit 0 Initial nutrient volume.
Pinit 1e+06 Initial phytoplankton volume.
Hinit 1e+06 Initial heterotrophic population volume.
vsmall 1 Smallest individual volume.
vlarge 1e+10 Largest individual volume.
β 10 Preferred prey volume ratio.
c 0.85 Feeding kernel width.
a 1 Feeding kernel height.
α 0.01 Size class subset fraction.

Kfrac 0.15 Half-saturation constant fraction.
γ 0.5 Assimilation efficiency coefficient.
ϵ 1e–05 Fractional metabolic expense per time step.
km 0.67 Metabolic scaling exponent.
λ 1e–05 Growth coefficient.
δ 0.2 Individuals’ minimum fraction of expected volume.
Pµ 0.001 Probability of mutation.
σ 0.01 Standard deviation of mutation distribution.
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Figure 4.3.1: The evolution of the d size classes on the y-axis, over time on the
x-axis. Plots show: (a) the number of all individuals, and (b) the mean trophic
classification of each size class.

The creation of individuals in many viable positions in volume trait space pro-

vides a foundation on which to reorganise and establish a stable system. Using

the method described in section 2.7.2, this configuration produced a trophic

level count of 5. There are dynamics of damped and periodic oscillations that

are similar to those described in sections 3.1.1 and 3.1.2. From around 750,000
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in model time the trophic structure is largely realised, and the system enters

a periodic oscillation.
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Figure 4.3.2: Plots show: (a) the total number of heterotrophic individuals, and
(b) the volumes of each of the pools of matter over time.

Figure 4.3.2a illustrates the periodic oscillation in the total number of het-

erotrophs in the system. Figure 4.3.2b shows that the volume in the system is

almost entirely comprised of heterotrophic individuals. The transiently occur-

ing volumes of nutrient and phytoplankton are too small to be seen in this plot.

This suggests that a greater number of smaller individuals are in competition

with each other.
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Figure 4.3.3: The evolution of the d size classes on the y-axis, over time on the x-
axis. Plots show the numbers of: (a) herbivores, (b) carnivores, (c) corresponding
prey, and (d) the actual predator-prey volume ratios from each size class.

Figure 4.3.3a shows the numbers of herbivores. It also illustrates that the

phytoplankton is accessed by larger herbivores at times that correlate with

the periodicity observed in the system. Figure 4.3.3b shows the number of

carnivores. From looking at the number of prey individuals (figure 4.3.3c)

it can be seen that the periodicity of the system correlates with times when

a very large individual is consumed. Figure 4.3.3d shows the average actual

predator-prey volume ratio. This is defined as the predator volume divided by

the prey volume. It illustrates that individuals in most of the occupied size

classes consume individuals that consistently deviate in either direction from

the constant predator-prey volume ratio of log10(β) = 1 because smaller or

larger prey are more numerous and therefore preferred.
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Figure 4.3.4: The evolution of the d size classes on the y-axis, over time on the
x-axis. Plots show the numbers of: (a) parent, and (b) child individuals from each
size class.

Figure 4.3.4a shows the numbers and position in volume trait space of parents,

and figure 4.3.4b provides the same information of children. These plots illus-

trate that evolution of the Ω trait generally produces children that are smaller

than their parents. Comparing these plots with those for carnivore (figure

4.3.3b) and prey individuals (figure 4.3.3c) shows the overall periodicity of the

system is the result of a trophic cascade and correlates with times when the

top-level carnivores produce a child and soon after consume it, or the parent as

a result of its reduced volume. This is the same mechanism for the periodicity

discussed in section 3.1.2.
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Figure 4.3.5: The evolution of the d size classes on the y-axis, over time on the
x-axis. Plots show the (a) volume of, and (b) numbers of starved individuals from
each size class.

Figure 4.3.1a illustrates that the frequencies of individuals illustrate an Elto-

nian trophic pyramid, whereas figure 4.3.5a shows that the majority of the

volume is concentrated in the largest and smallest individuals.
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Figure 4.3.6: Plots show: (a) the numbers of, and (b) total volume of the sec-
ondary (blue), tertiary (cyan), quaternary (green), quinary (yellow), and senary
(orange) producers over time.

This observation is confirmed in plots of the data contributing to each trophic

level. Figure 4.3.6a shows that the number of individuals in each trophic level

inversely correlates with their position in the ecological hierarchy. This is a

similar result to the plot in figure 3.1.4a. However, there are many more small

individuals in this configuration. The increased number of secondary producers

means that at times their volume exceeds that of the quinary producers (figure

4.3.6b). This is the cause of the heavily grazed phytoplankton shown in figure

4.3.2b.

Figure 4.3.5b shows that the majority of the starvation events are confined to

individuals in size classes with vm < 10. This is seen to be a product of the

way in which growth is assumed to take a linear trajectory through volume

space. The results being discussed in this section took place over little more

than 15e+05 time steps, with λ set to 1e–05. This configuration implies the

assumption that an individual of any size would have added 15 to their volume

during that time. This expected growth trajectory therefore has decreasing

significance for individuals higher in volume trait space.
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Figure 4.3.7: The expected volume (vt - green line), and minimum volume (vmin -
red line) as a function of age (ta) for individuals with (a) vr = 1 and vh = 10 (black
dotted line), and (b) vr = 10 and vh = 100 (black dotted line) over 15e+05 time
steps, with λ = 1e–05 and δ = 0.2.

To emphasise this point, figure 4.3.7 shows two example growth trajectories

for individuals born and reproducing at different volumes. It is clear that

the expected volumetric change as a function of time is comparatively less

for a larger individual. In this configuration, the threshold for starvation for

individuals with vr ≥ 10 was effectively little more than their birth volume.
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Figure 4.3.8: The evolution of the d size classes on the y-axis, over time on the
x-axis. Plots show the mean (a) child fraction trait, (b) growth ratios, (c) prey
maturation factors, and (d) volume flux of prey individuals from each size class.

Figure 4.3.8a shows the average Ω trait values in each size class. The other

three plots in figure 4.3.8 introduce previously unseen views of the system.

These will be explained before the outputs are discussed. Figure 4.3.8b shows

the mean growth ratio from each size class. The growth ratio is an individ-

ual’s actual volume relative to its volume at maturation ( v
vh
). It provides a

normalised measure of how much volume individuals have lost or gained, re-

gardless of their Ω trait values. Figure 4.3.8c shows the mean maturation

factor (ρ) attribute (equation 4.2.9) of prey individuals. The definition of ρ is

in section 4.2.4. Figure 4.3.8d shows the total volume flux of prey from each

size class.

The set of heterotrophs occupy almost the full width of Ω trait space, and there

is significant structuring of the Ω trait values (figure 4.3.8a). The emergence

of, and maintenance of extremes of Ω trait values after the model enters the

periodic oscillation phase indicates the presence of strong selective pressures.

If the predictions of life history theory completely explain the evolution of

reproductive effort, we would expect the Ω trait values to correlate only with
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the maturation factor of prey individuals (figure 4.3.8c).

Comparison of figures 4.3.8a and 4.3.8c illustrates some correlation. Size

classes that generally lose mature prey have higher Ω trait values, and those

that lose immature prey show lower Ω values. However, there are size classes

where the general age of prey does not correlate linearly with the mean Ω

trait value for that size class. Figure 4.3.8a appears to most closely correlate

with the growth ratio (figure 4.3.8b). However, this could be due to fact that

there are gaps in figure 4.3.8c as a result of data resampling, and times where

no predation too place. Figure 4.3.8d shows a complete record of data from

predation, and so is illustrative of the gaps in figure 4.3.8c.

The general observation is that individuals with v > vh have Ω > 0.5. In

addition, both the child fraction trait and growth ratio values correlate with

size classes where the highest number of children are being born (figure 4.3.4b).

To evaluate the correlation, points in volume trait space where there were data

for Ω and the growth ratio, and Ω and the maturation factor were extracted

from the end of model time and a linear regression performed on them.
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Figure 4.3.9: Linear regressions of (a) Ω and the growth ratio, and (b) Ω and the
maturation factor.

There were 39 common data points for Ω and the growth ratio, and only 22 for

Ω and the maturation factor. This is because the growth ratios were recorded

each time the data were sampled, and the prey maturation factor was only

captured when a predation event occured. Comparison of the linear regressions

in figures 4.3.9a and 4.3.9b show that at the end of model time there is indeed

a positive relationship between both Ω and the prey maturation factor, and

between Ω and the growth ratio. The correlations illustrate the nature of
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the selection pressures within the model. A high Ω trait value imposes a

larger reproductive effort on an individual. This strategy is only viable in

size classes where there is high growth. If an individual finds itself in a size

class with high growth, it has an increased chance of meeting the higher cost

of reproduction. Individuals with a high Ω trait value in size classes that

experience low growth are not able to reproduce. A more stringent starvation

function would increase the selection pressure against slow growing individuals.

However, the configuration for the starvation threshold in this model has a

negligible deductive effect on the individuals. In this way, selection only has

an additive influence.

4.4 Discussion

These results show that the predictions of life history theory are generally

correct, but they do not completely explain the evolution of reproductive in-

vestment. The results presented in section 4.3 indicate that in a materialist

view of the natural world, reproduction and food consumption are part of the

same overall process. This suggests Lack’s (1947) food limited hypothesis, and

Ricklefs’ (1970) counteradaptation hypothesis are two perspectives of the same

system. The food limited hypothesis cannot completely explain the evolution

of reproductive strategies because it considers the response of a single species

to an environment composed of varying resources. The counteradaptation hy-

pothesis considers the adaptive potential of a predator, but it considers just a

single predator and prey in isolation. Neither of these hypotheses can explain

the evolution of reproductive strategies in their entireity because they fail to

consider the evolution of species in a whole systems context. In a trophic

system, predators may also be prey for other species. Individuals may evolve

their reproductive strategy to balance the effects of predation risk, but selec-

tion would ensure this strategy is also balanced against those of their prey. It is

therefore likely that the evolutionary response of a single individual could have

a cascading effect throughout the entire system, as appears to occur with the

consecutive evolution of higher Ω values in small secondary producers around

timestep 3.5e+05, small tertiary procucers around 5e+05 and large tertiary

procucers around 6e+05 (figure 4.3.8b).

This study allowed individuals to start life much smaller than their size at mat-

uration. The method described in section 4.2.2 produced a probability of an
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individual starving that changed as a linear function of time. An individual’s

somatic growth was a function of assimilated volume. Growth and starvation

were thereby decoupled. Despite the apparent scarcity of literature that links

models of growth and starvation, it is considered reasonable to assert that these

are not independent processes. The classical perspective considers growth to

be a simple function of time. Contemporary literature illustrates promising

work that considers growth to be a function of the environmental conditions.

However, all of these models necessarily include a point beyond which the

description ends and assumptions begin. This unfortunately made them un-

suitable for use in EATSM. It is considered that growth and starvation cannot

be disentangled from each other. The link between food consumption and

reproduction is a topic already discussed in the literature (Ginzburg, 1998).

However, the findings from this study suggest the general conclusion that food

consumption, growth, starvation, and reproduction are all part of the same

process.

Material conservation necessitated that growth be some function of assimila-

tion. The approach described in section 2.6.2 was to simply add assimilated

volume to an individuals somatic volume. In reality growth is a function

of a nested hierarchy of metabolic processes operating at the interface be-

tween physiology and chemistry (Braakman and Smith, 2013). It is therefore

considered that a model of growth would require explicit representation of

metabolisms, and internal physiological dynamics. However, the only practi-

cal way to include such descriptions in EATSM would be to include a more

realistic selective pressure from starvation, which it has been argued above

might drive evolution of child investment in the same direction as food short-

age.

It is considered that the adaptability of species may be constrained by the

potential rates of reproduction. Under constant growth conditions in EATSM,

a lower parental investment in offspring can increase the rate of reproduction.

If it is assumed that there is a proportional probability of mutation at each

reproductive event, then evolution of lower parental investment in offspring

represents a mechanism by which a less numerous or generally food limited

organism can increase its evolvability. Evolvability itself may be an evolvable

trait. If it were not, selection would likely favour more rapidly reproducing or-

ganisms. There may be cases of this, but the general coevolutionary examples

of predator and prey lend themselves to the ‘arms race’ metaphor. This may
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be one of the reasons why many fish species produce offspring that start life in

a low trophic position, and have to grow through several orders of magnitude

to reach their mature size (Hartvig et al., 2011).

4.5 Conclusions

1. The predictions of life history theory do not completely explain the evo-

lution of reproductive investment. Lack’s (1947) food limited hypothesis

and Ricklefs’ (1970) counteradaptation hypothesis are two perspectives

of the same system. The evolution of reproductive investment is a func-

tion of prey and predators, and the strategies employed by all species in

the system.

2. Evolution of the reproductive strategy represents a mechanism by which

evolvability can become an evolvable trait.

3. Parental investment in offspring provides a way in which less numerous

individuals can increase their evolvability.
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5 On The Coexistence of Planktonic General-

ists and Specialists

5.1 Introduction

It is estimated that phytoplankton are responsible for up to 50 percent of global

primary production yet account for only 0.2 percent of the global autotroph

biomass (Field et al., 1998). Primary production is the natural process to con-

vert carbon dioxide into organic compounds. It therefore serves as the energetic

and material bridge to heterotrophic life (Calbet, 2008). Haldane (1926) noted

how “the most obvious differences between different animals are differences of

size”. Terrestrial organisms necessarily invest comparatively more energy in

structural biomass to resist gravity in the reduced buoyancy of air. Since phy-

toplankton do not have to do this, they can remain very small. This permits

some similarly small heterotrophs.

The general term “plankton” refers to many phylogenetic groups that span

several orders of magnitude in size. Table 5.1.1 has been taken from Omori

and Ikeda (1984) and shows the size ranges in equivalent spherical diameter

(ESD), and classifications of plankton found globally.

Table 5.1.1: The range of sizes and categories of plankton found globally in aquatic
environments (from Omori and Ikeda, 1984)

Category Size (ESD) Major Organisms

Ultrananoplankton < 2 µm Viruses and free living bacteria.
Nanoplankton 2–20 µm Fungi, small flagellates, small diatoms.
Microplankton 20–200 µm Most phytoplankton species, foraminifer-

ans, ciliates, rotifers, copepod nauplii.
Mesoplankton 0.2–2 mm Cladocerans, copepods, larvaceans.
Macroplankton 2–20 mm Pteropods, copepods, euphausiids, chaetog-

naths.
Micronekton 2–20 cm Cephalopods, euphausiids, sergestids, myc-

tophids.
Megaloplankton > 2 cm Scyphozoans, thaliaceans.

Pelagic heterotrophs determine the fluxes and flows of organic material in

marine food webs as a result of their feeding habits (Hansen et al., 1994). There

are several factors that determine what prey a predator selects. A constant
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predator-prey size (ESD) ratio of 10:1 has historically been assumed. This

facilitated the construction of trophic models (Hansen et al., 1994; Moloney

and Field, 1991). Hansen et al. (1994) reviewed this assumption for pelagic

predators of 5–1,000µm in length (nano-, micro-, and mesozooplankton). They

found a range of predator-prey ESD ratios of 1:1 to ∼100:1. These differences

are due to the variety of ways that species have evolved to find and capture

their prey. They suggested that more quantitative data on size selectivity

would permit the classification of heterotrophic plankton based on feeding

mechanism instead of taxonomy. This lead to the definition of zooplankton

functional types.

Kiørboe (2011) published a comprehensive review of zooplankton feeding mech-

anisms and established a contemporary nomenclature for them. Of the ob-

served data there were found to be four major strategies: passive ambush,

active ambush, feeding-current, and cruise feeding. Predators that adopt the

passive ambush feeding strategy cannot detect prey remotely. They remain

motionless and wait for the motile prey to collide with them. There are two

subdivisions within this strategy, depending on prey motility. Diffusion feeders

consume prey that move diffusively, either by Brownian motion or by actively

swimming. Ballistic feeders consume prey that move only by the force of grav-

ity. They exist deeper in the water column and have specialised structures to

capture falling particles of marine snow. The active ambush feeding strategy

differs from the passive ambush strategy in that the prey particle is perceived

and attacked before physical contact is made.

Grazers that adopt the feeding-current strategy actively generate a flow into

which prey particles are susceptible to being pulled (Kiørboe, 2011). There

are three subdivisions of this strategy, depending on how the generated current

serves the predator. Filter feeders have specially developed structures through

which the current is directed. These sieve out prey particles for consumption.

Direct interception feeders do not have any such filtering structure. They

perceive and intercept prey caught in the feeding current once physical contact

is made. Scanning current feeders perceive individual prey items caught in

their current before contact is made. Feeding in this way can cause the grazer

to move through the water as the current is generated. Some plankters have

adopted strategies or evolved structures to prevent or limit this. The cruise

feeding strategy is opportunistic, whereby zooplankton actively swim in search

of their prey. There are two specialisations of this strategy depending on the
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preferred prey size. There are predators that hunt for motile prey smaller than

themselves, and those that actively search for marine snow aggregates that can

be much larger.

The viability or efficiency of each feeding strategy changes depending on the

size scale it is required to function. At sufficiently small scales water behaves

with an increased viscosity (Kiørboe, 2011). This is due to a decrease in the

ratio of inertial to viscous forces, and is termed a lower Reynolds number.

Kiørboe (2011) points out that the direct interception feeding strategy is less

efficient at lower Reynolds numbers. The increased viscous boundary layer will

force small prey particles to move with the flow field around an approaching

predator. Physical constraints for the active ambush strategy limit modes

of detection to vision and changes in hydrodynamic pressure. Chemical or

olfactory detection is not possible since leaked substances will form a plume

behind a motile prey particle. However, the refractory indices of water restrict

true vision to eyes above a certain size. Otherwise visual organs can only

detect movement and changes in light.

There are evolutionary trade-offs with all feeding strategies (Kiørboe, 2011).

For example, the passive ambush feeding strategy is one of the least efficient in

terms of finding food. The reduced metabolic pay-off means that this strategy

is only viable for smaller species. However, those that adopt it have been found

to have rates of respiration that are around eight times lower than similar sized

organisms that take more active feeding strategies (Castellani et al., 2005).

Being smaller and less active also makes visual or hydrodynamic detection by

predators more difficult. Passive strategies therefore confer a decreased rate

of predation mortality (Eiane and Ohman, 2004). There are also trade-offs

associated with mate finding. This is likely the reason why males of species

that adopt passive feeding strategies tend to be smaller than females.
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(a) (b)

(c) (d)

Figure 5.1.1: Photo images of four example species from the phylogenetic subclass
Copepoda that represent the major zooplankton feeding strategies. (a) Haloptilis
plumosa employs the passive ambush strategy (image: R. Hopcroft). (b) Oithona
davisae uses the active ambush strategy (image: A. Calbet). (c) Acartia tonsa is a
feeding current feeder (image: W. van Egmond). (d) Temora longicornis employs
the cruise feeding strategy (image: K. Embleton). In each case the species has
evolved structures that facilitate the particular method of feeding.

Figure 5.1.1 shows four example zooplankton species from the phylogenetic

subclass Copepoda. Each has adopted different feeding strategies resulting

in the evolution of structures to facilitate prey finding and consumption. The

morphology of the feeding apparatus places mechanistic limits on the size range

of prey that can be ingested (Hansen et al., 1994). For example, a maximum

prey size may be set by the opening width of the mouth. Species adopting

filter feeding strategies will have a minimum prey size set by the gaps between

their filtration structures. In addition to the mechanistic constraints, species

also exhibit size preferences for prey.

The ingestion rate of zooplankton is usually expressed as the biovolume con-

sumed per unit time (e.g. µm3 h−1) as a function of prey density (Fenchel,

1980). This takes the form of a functional response (figure 5.1.2a). Prey size

selectivity of zooplankton means that they have different functional responses

to varying concentrations of different sized particles. The clearance rate of a
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plankter is defined as the ratio of ingestion rate to prey density (Hansen et al.,

1994). Figure 5.1.2b illustrates that the maximum clearance rate occurs at low

prey densities (Fenchel, 1980; Hansen et al., 1994).
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Figure 5.1.2: Plots show: (a) example ingestion rates, and (b) clearance rates
as functions of prey density and prey of maximal (blue), three quarters (cyan), half
(yellow), and quarter (red) preference.

Zooplankton particle size discrimination can be expressed as the maximum

clearance rate as a function of prey size (Fenchel, 1980; Hansen et al., 1994).

Morphological variations within species mean that data on the maximum clear-

ance rate for a wide range of prey sizes will begin to take on a “bell-shaped

distribution” (Hansen et al., 1994). This reveals the origin of functions fre-

quently used to determine the size selectivity of marine organisms (see figure

2.4.1). Unpublished work by Sailley et al. (2009) illustrated curves fitted

to data for the maximum grazing rate of pelagic ciliates and heterotrophic

dinoflagellates. A copy of this plot shown in figure 5.1.3.
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Figure 5.1.3: The maximum grazing rate (in units of µm−3 predator−1 hour) as a
function of predator-prey ESD ratio for pelagic ciliates (blue line) and heterotrophic
dinoflagellates (red line).

At between 20 and 200 µm in size, ciliates and dinoflagellates are two major

groups of microplankton species (Sherr and Sherr, 2007; Kiørboe, 2008). Both

contain heterotrophic species that share a similar biogeography (Levinsen and

Nielsen, 2002; Sherr and Sherr, 2007; Buitenhuis et al., 2010). Empirical ob-

servations show that at certain locations and points in the year the biomass

of species belogining to each group is approximately the same. This contra-

dicts a suggestion made by Hansen (1994) that the plankton functional groups

rarely coexist. Despite the contemporary knowledge that these two species do

coexist, the mechanisms behind their coexistence remain largely unexplored.

The observation that plankton species often compete for the same resources

has raised questions of coexistence (Hutchinson, 1961). Hutchinson (1961) ad-

dressed the problem of plankton coexistence in an apparently homogeneous

environment. He said that two prey species competing for the same resource

can coexist if each experiences different pressures from predators. This con-

cept is referred to as “predator-mediated coexistence” (Caswell, 1978). While

there are several empirical studies that show evidence of predator-mediated

coexistence, there is also evidence to show that predation can decrease the

number of competing prey species (Caswell, 1978).

Ciliates and dinoflagellates have evolved different methods of feeding. This

results in very different mechanical constraints on the types of prey they can

exploit (Kiørboe, 2008). For example, heterotrophic dinoflagellates can either
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suck out the contents of their prey through a proboscis, or digest them ex-

ternally by means of a pallium. This negates the need to engulf the prey

individual and so enables species with such adaptations to consume prey that

may be larger than themselves. Ciliates do not have such feeding adaptations

and so generally consume smaller prey (Kiørboe, 2008, 2011). This suggets

that species belonging to each group are not necessarily in direct competition.

Since both are prey for the same predators, the situation becomes the opposite

of predator mediated coexistence (Sherr and Sherr, 2007).

It is considered that the data summarised in figure 5.1.3 shows that the feeding

strategies adopted by pelagic ciliates and heterotrophic dinoflagellates are the

result of a trade-off. The ciliates appear to specialise in consuming smaller

prey, and the dinoflagellates generalise by consuming a wider range of prey

sizes less efficiently. Generalists and specialists may coexist as a result of the

relative ease with which they can exploit different prey. In order to explore

this further EATSM will be modified to capture a similar trade-off.

5.2 Method

The method outlined here is an extension of that outlined in chapter 2.

5.2.1 Individuals

The preference function defined in chapter 2 is set by parameters that remain

constant for the duration of the model run. In this version of the model the

distance in volume trait space between the predator and prey is still defined by

a constant parameter, but the height and width of the preference function can

now differ between individuals. The value is set by an additional, independent

heritable trait. The width of preference trait space is set by minimum (cmin)

and maximum (cmax) function width values. As with other heritable traits the

heritable preference trait is passed to offspring subject to potential mutation.

Using an unprocessed heritable trait value (g), the heritable preference function

width (ch) is defined as:

ch = g · (cmax − cmin) + cmin (5.2.1)
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To capture the empirical trade-off described in section 5.1 there is an inverse

relationship between the width of the preference function, and its height. Indi-

viduals benefitted by having the widest preference function, are disadvantaged

by it also being the least tall. An individual’s heritable preference function

height (ah) is a function of the same unprocessed trait value (g) as used in

equation 5.2.1.

ah = 1− g (5.2.2)

The trade-off between ch and ah can be seen in figure 5.2.1 below.
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Figure 5.2.1: A plot of the trade-off between heritable preference function width
(ch) and height (ah). In this example the minimum (cmin) and maximum (cmax)
preference function widths are set to 0.25 and 3 respectively.

The inclusion of a heritable trade-off implies a modification to the preference

functions. One of the conclusions from the sensitivity analysis (chapter 3) was

that the combination of log-normal preference function and non-linear (type

2) functional response was the most stable. The empirical observations in

the zooplankton literature reviewed here suggest that these are more realistic.

This model will make exclusive use of the type 2 functional response, but since

it addresses evolution of the predator preferences both the log-normal and

inverse parabolic preference functions will be used. The log-normal preference

function is redefined as:



101

ϕ(v, ah, ch, vp) = ah · exp

−
(
ln

(
βvp
v

))2

2c2h

 (5.2.3)

The inverse parabolic preference function is redefined as:

ϕ(v, ah, ch, vp) = max

0, ah · 1−
 log10

(
v/β
vp

)
ch

2
 (5.2.4)

The result of the trade-off on the height and width of the preference function

can be seen in figure 5.2.2 below.



102

.....
100
.

101
.

102
.

103
.

104
.0 .

0.2

.

0.4

.

0.6

.

0.8

.

1

.

vp

.

ϕ

.. ...
0.5

.

1

.

1.5

.

2

.

2.5

.

3

.

c h

(a)

.....
100
.

101
.

102
.

103
.

104
.0 .

0.2

.

0.4

.

0.6

.

0.8

.

1

.

vp

.

ϕ

.. ...
0.5

.

1

.

1.5

.

2

.

2.5

.

3

.
c h

(b)

Figure 5.2.2: Plots show: (a) the log-normal, and (b) inverse parabolic predator
preference (ϕ) as a function prey volume (vp) for a range of preference function
widths (ch) and corresponding heights (ah). In both the predator/grazer volume (v)
is 10,000, the preferred prey volume ratio (β) is 100, cmin is 0.25, and cmax is 3.

The preference functions in figure 5.2.2 are centred above a vp value of 10
2; the

volume of the maximally preferred prey. Individuals that have a preference

function width (ch) that reaches the maximum (cmax) also have an ah value of

0. It is also apparent that both functions carry caveats. For high ch values, the

log-normal function offers a significant probability of an individual consuming

another the same size or larger than itself. If the value of β is decreased, the

distance between the predator and the centre of the plots in figure 5.2.2 is also

decreased. This will confer an increased probability of a predator consuming

prey that could be larger than itself. In addition, the inverse parabolic func-
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tion can only reproduce the trade-off for the lower two thirds of trait space.

Individuals with g > 0.67 experience a reduction in their chances of consuming

anything.

5.2.2 Preference Trait Discretisation

Reflecting the approach of section 2.4.2, preference space for an unprocessed

trait g was divided into d discrete locations. This again necessitated vectors

for the preference function heights (am) and widths (cm). They are used to

give each individual a preference index (i) such that the ith position of each

preference vector approximately equals their heritable traits. This applies to

the preference function height:

ah ≈ am(i)

And width:

ch ≈ cm(i)

The preference index is set by a heritable trait. Therefore it does not change

during the life of the individual. In addition, individuals remain grouped by

volume. Their preference traits have no effect on whether they are selected

as prey. The purpose of discretising preference trait space is to facilitate the

calculation of effective prey volume.

5.2.3 Effective Prey Volume

The approximated method of calculating effective prey volume (see equation

2.4.14) has been tested and shown to differ only slightly from an explicit cal-

culation (see section 3.2). For that reason this version of EATSM will make

use of a modified version of the approximation. This was facilitated by the

preference matrix. Using a constant preference function, the preference each

size class had for every other was pre-calculated based on the predator and

prey size class mid-point values. The result was a two-dimensional matrix

(see figure 2.4.3). In this version of the model, individuals remain grouped

by volume, but now carry a preference index that can potentially specify one
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of d slightly different preference functions. The preference matrix therefore

becomes three-dimensional (d-by-d-by-d). It contains the preference each size

class has for every other as a function of their mid-point values, for each of the

d preference functions.

ϕ̂(i, j, k) = ϕ(vm(i), am(j), cm(j), vm(k)) (5.2.5)

In much the same way, the equations from section 2.4.3 are given an extra

dimension to account for the effective prey volume being a function of an

additional variable. However, in that section the term “coupling strength”

was used to describe the effecive prey volume experienced by one size class

of another. This was because size classes were coupled to feed from the one

that produced the highest effective prey volume. Since coupling is performed

differently here the use of the term has been dropped, but the equations are

functionally equivalent. The approximate effective prey volume experienced by

size class i with preference function j of size class k is therefore approximated

by the product of the preference (j) it has for, by the mid-point value (vm)

and the number of individuals in size class k (M(k)).

ŝh(i, j, k) = ϕ̂(i, j, k) · vm(k) ·M(k) (5.2.6)

Phytoplankton cells are assumed take the smallest volume in trait space (vsmall).

The calculation of effective prey volume of the first size class for size class i

with preference j also includes the effect of the phytoplankton population:

ŝp(i, j, P ) = ϕ̂(i, j, 1) · P (5.2.7)

These are added together to produce the approximate effective prey volume

experienced by size class i with preference j.

v̂e(i, j, P ) = ŝp(i, j, P ) +
d∑

k=1

ŝh(i, j, k) (5.2.8)

The calculated value of v̂e is plugged into a type 2 functional response to

produce the probability that an individual from size class i with preference

index j will feed.
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Pf (i, j, P ) =
v̂e(i, j, P )

V ·Kfrac + v̂e(i, j, P )
(5.2.9)

The approximate effective prey volume is calculated every time step. To reduce

computation further these calculations are only applied to size classes that are

occupied and preference indices that are owned by individuals that size class.

5.2.4 Prey Selection

The purpose of the trade-off (figure 5.2.1) is to model generalists and spe-

cialists. In the previous versions of EATSM, the calculation of effective prey

volume resulted in each predator size class being coupled to feed from the prey

size class that produced the highest value. This is certainly possible here, but

coupling size classes in this way would mean that individuals from the same

size class would be coupled to feed from the same prey size class regardless

of their preference trait. This outcome would negate the purpose of including

evolvable preference functions. To include the effect of a wide or tall preference

function, the coupled size class is now selected probabilistically. This is made

possible by calculating the probability of an individual consuming prey from

each size class (Pc).

Each predator size class i with preference index j has a total effective prey

volume (v̂e) and an effective prey volume for each size class (ŝp and ŝh). The

effective prey volume of each size class (k) is divided by the total for that

predator size class. This puts each into a relative context and produces the

total prey volume fraction that is from that size class. The fraction is used

as the probability of that size class being selected. The probability of an

individual from size class i with preference index j being coupled to feed from

size class k (where k ̸= 1) is therefore given by:

Pc(i, j, k, P ) =
ŝh(i, j, k)

v̂e(i, j, P )
(5.2.10)

Because the result of the phytoplankton is included when calculating the effec-

tive prey volume for the first size class, equation 5.2.10 is slightly different when

calculating the probability of an individual from size class i with preference

index j being coupled to feeding from size class where k = 1:
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Pc(i, j, 1, P ) =
ŝh(i, j, 1) + ŝp(i, j, P )

v̂e(i, j, P )
(5.2.11)

The probabilities of each size class (k) being selected for prey by every other

size class (i), and for every preference (j) index (where i ∈ [1, d], j ∈ [1, d],

and k ∈ [1, d]) are calculated. The round of feeding starts in the same way

as described in section 2.6.2, but this time the coupled size class index is

determined probabilistically. Each time an individual is selected to feed, a

unique random number (∈ [0, 1]) is drawn. An algorithm steps through each

of the prey indices and compares the random value with a running total of

the probabilities. The prey size class that produces a running probability sum

that exceeds the random value is the one that is picked. After determining the

prey size class, everything else continues as described in section 2.6.2.

5.2.5 Initialisation

The method for initialising the size classes is the same as described in section

2.5. The only change is that the first generation of individuals are given a

random trait value (g) to specifiy their preference function height (ah) and

width (ch).
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5.3 Results

Table 5.3.1: The default parameter values for this version of EATSM.

Symbol Value Description

d 100 Number of size classes/trait indices.
Ninit 0 Initial nutrient volume.
Pinit 1e+06 Initial phytoplankton volume.
Hinit 1e+06 Initial heterotrophic population volume.
vsmall 1 Smallest individual volume.
vlarge 1e+10 Largest individual volume.
β - Preferred prey volume ratio.

cmin 0.1 Minimum feeding kernel width.
cmax - Maximum feeding kernel width.
α 0.01 Size class subset fraction.

Kfrac 0.15 Half-saturation constant fraction.
γ 0.5 Assimilation efficiency.
ϵ 1e-05 Fractional metabolic expense per time step.
km 0.67 Metabolic scaling exponent.
Pµ 0.001 Probability of mutation.
σ 0.01 Standard deviation of mutation distribution.

5.3.1 Sensitivity

The method described in chapter 3 for testing the model sensitivity was utilised

here. The model was run for range of β and cmax values four times. The mean

and the standard deviation of the number of trophic levels produced for each

combination is shown in figure 5.3.1.
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Figure 5.3.1: The mean number of trophic levels and the standard deviation
from an ensemble of four runs (top) using the log-normal preference function, and
(bottom) the inverse parabolic preference functions. The preferred prey volume
ratio (β) is varied against the maximum preference function width (cmax) across a
range of values. All other parameters took the values specified in table 5.3.1.

The model configurations on which figure 5.3.1 is based were run for 2 days.

Some produced reasonable results in a much shorter time than that, whereas

others ran slowly due to large populations. The different combinations β and

cmax produced some dynamic behaviours. The sensitivity analysis reveals that

some parameter combinations produced a wider range in the number of trophic

levels. These are considered to be the result of stochastic fluctuation rather

than a robust property of the model. Understandably, it is not possible to

explore all the results. Those that are presented produced a low standard

deviation.

5.3.2 Exponential Population Growth

Many of the tested β and cmax parameter values produced population num-

bers that reach in excess of one million. It was found that for higher cmax

values there was a tendency for the smallest individuals to evolve toward even

smaller volumes. Once there, their size classes grew exponentially until the
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phytoplankton was exhausted. This result was common for both preference

functions although there were differences. Using the log-normal preference

function with values of cmax above 1.5 produced populations that were too

large to compute sufficient data, despite running the model for two days. Some

of these configurations demonstrated that the rate of growth of the smallest

individuals was so great that it resulted in the collapse of the higher trophic

levels. This provided more volume for the smaller individuals to grow even fur-

ther. Use of the inverse parabolic function also illustrated this dynamic, but

the growth was not so aggressive. The higher trophic levels did not collapse

and the model remained stable with comparatively higher values of cmax.

This section presents two sets of results side-by-side for comparison. Each

configuration uses different values for the predator-prey volume ratio (β) and

the maximum preference function width (cmax), and preference functions. In

the figures that follow those on the left use the log-normal preference function,

a β value of 25, and a cmax value of 2. The figures on the right use the inverse

parabolic preference function, a β value of 10, and a cmax value of 3. All other

parameter values are defined table 5.3.1.

The first thing to note is that both sets illustrate a rapid increase in the number

of individuals.
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Figure 5.3.2: The total number of heterotrophic individuals with use of the (a)
log-normal, and (b) inverse parabolic preference function over time.

The population growth is coupled to a rise of the inward flux of material and

the coversion of all the phytoplankton into heterotrophic volume (figure 5.3.3).
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Figure 5.3.3: The top row shows the volumes of each of the pools of matter, and
the bottom row shows the flux from consumption of phytoplankton over time, with
use of the (left) log-normal, and (right) inverse parabolic preference functions.

Viewing the system in terms of contributions to each size class illustrates that

the increase in the number and volume of heterotrophs is due almost entirely

to the smallest individuals in the system (top two rows, figure 5.3.4). The

rate of consumption of both phytoplankton and other individuals goes up for

the smallest individuals, and down for the larger individuals (bottom row,

figure 5.3.4). This is also visible as a drop in the number and volume of larger

individuals (top two rows, figure 5.3.4).
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Figure 5.3.4: The evolution of the d size classes on the y-axis, over time on the
x-axis. Plots show: (top) the number of all individuals, (second row) the volume
of each size class, and (third row) the numbers of herbivores and (bottom) car-
nivores, with use of the (left) log-normal, and (right) inverse parabolic preference
functions.

This large change to the feeding dynamics alters other attributes of the system.

The top row in figure 5.3.5 shows that the average trophic classification of the

smaller individuals goes up, thereby increasing the number of trophic levels

in the system. This happens because the smallest individuals are taking a
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mixed feeding strategy by consuming the phytoplankton (if available) and

other individuals. A plot of the average preference trait values (bottom row,

figure 5.3.5) illustrates that there are sustained periods where there is a range

of feeding strategies in each trophic level.
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Figure 5.3.5: The evolution of the d size classes on the y-axis, over time on the
x-axis. Plots show: (top) the mean trophic classification and (bottom) preference
trait value of each size class, with use of the (left) log-normal and (right) inverse
parabolic preference functions.

Coexistence is both more pronounced, and apparently more fragile with use of

the log-normal over the inverse parabolic preference function, as figure 5.3.5c

shows that coexistence disappears when the exponential increase of small in-

dividuals occurs. Figure 5.3.5d shows that the largest individuals have a pref-

erence trait value of around 0.67. Figure 5.3.4h shows that these individuals

do not consume anything for most of the model run. This confirms the obser-

vation made in section 5.2.1; that trait values in the top third of trait space

are not viable. The reduction in viable trait space with the inverse parabolic

function may be the reason why coexistence of individuals of the same trophic

level and different feeding strategies is not apparent in these plots. However,

it is less affected by the exponential increase of small individuals.
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The exponential growth of the small individuals is not so pronounced when

using the inverse parabolic preference function. This is evident by compar-

ing the plots of the number of heterotrophs. Figure 5.3.2a shows that the

population reaches almost 1e+6, whereas figure 5.3.2b shows that it reaches

around 8e+5. The lower total number of individuals is the reason that use of

the inverse parabolic function permits the computation of a greater number

of abstract time steps when running the model for the same amount of real

time. In additon, the system remained stable and avoided exponential growth

of the smallest individuals for higher values values of cmax when using the in-

verse parabolic function. However, figure 5.3.3d shows that the material flux

into the heterotrophs is greater with the use of the inverse parabolic prefer-

ence function. The fact that the number of heterotrophs is lower must mean

the volume is spread over a smaller number of larger herbivores than in the

configuration that makes use of the the log-normal preference function.

5.3.3 Coexistence

Fortunately not all of the combinations of β and cmax values tested produced

the exponential population growth illustrated in section 5.3.2. Many parameter

combinations produced trophic systems that remained stable. The results in

this section were selected as they exhibited sustained periods where a range of

preference functions coexisted in the same trophic level.

The first set of results use the log-normal preference function, a β value of 10,

and a cmax value of 1.5. All other parameter values are defined table 5.3.1.
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Figure 5.3.6: Plots show: (a) the total number of heterotrophic individuals, (b)
the volumes of each of the pools of matter, (c) the flux from consumption of phyto-
plankton, and (d) the frequencies of secondary (blue), tertiary (cyan), quaternary
(green), quinary (yellow), and senary (orange) producers over time.

The first obvious result from figure 5.3.6a is that the total number of het-

erotrophs is much more stable, and actually decreases slightly. This is re-

flected in the plot of the volume in the system (figure 5.3.6b) and the flux

from consumption by herbivores (figure 5.3.6c). However, figure 5.3.6d illus-

trates that the decrease in heterotroph frequency is consistent, and therefore

divided across the trophic levels.
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Figure 5.3.7: The evolution of the d size classes on the y-axis, over time on the
x-axis. Plots show: (a) the number of all individuals, and the mean (b) trophic
classification, (c) preference trait values, and (d) actual predator-prey volume ratio
of each size class over time in a configuration that uses the log-normal preference
function, a β value of 10, and a cmax value of 1.5.

The size class view of the system (figure 5.3.7a) confirms the stability of the

system. Figure 5.3.7b shows there are a comparatively large number of trophic

levels that are near to each other in volume trait space. This is a function

of the relatively low β value of 10. Figure 5.3.7c shows that from around

8e+05 time steps the tertiary producers have been selected to use two distinct

feeding strategies. The larger tertiary producers have a preference trait value of

around 0.65 (generalist), and the smaller individuals’ trait value is around 0.5

(specialist). From 2.7e+06 time steps onwards, the generalists slowly replace

the specialists.

The apparent disappearance of this coexistence and the decrease in the number

of heterotrophs (figure 5.3.6a) is believed to be the result of a trophic cascade.

At around 2.5e+06 time steps the quaternary producers move slightly higher in

trait space. In doing this they exert a reduced grazing pressure on the tertiary

producers. This is apparent at around 2.7e+06 time steps when they move
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higher in volume trait space. At the same point in time the coexistence of

feeding strategies in the tertiary producers apparently disappears. From that

point until the end of the model time the secondary producers move towards

larger volumes and evolve toward a more generalist feeding strategy. This is

illustrated in figure 5.3.7c by the gradual change from an average preference

trait of around 0.5 to 0.6. However, it should be emphasised that the plot in

figure 5.3.7c shows the mean preference trait value for the size class. The pres-

ence or absence of coexistence within a single size class cannot be determined

from that plot alone. An individual-level view of the system should illustrate

the detail of what happens in the model during this time.
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Figure 5.3.8: A stacked bar chart showing the frequencies of preference trait values
in the range 0.3–0.8 within each trophic level at 2.5e+06 time steps.

The first thing to note from figure 5.3.8 is that it does not show the largest

individual that drifts between the quinary and senary trophic level because the

plot shows log10 of the numbers of individuals. Figure 5.3.8 illustrates that

there is much more variation in trait values within each trophic level than is

shown in figure 5.3.7c. The tertiary specialists are comprised of more than

two hundred individuals that have a preference trait value of 0.47–0.5. The

rest of the tertiary producers make up the group previously referred to as the

“tertiary generalists”. It is clear in figure 5.3.8 that they occupy a much wider

range of preference trait space than is apparent from figure 5.3.7c.
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Figure 5.3.9: A stacked bar chart showing the frequencies of trait values in the
range 0.3–0.8 within each trophic level at 3.05e+06 time steps.

Figure 5.3.9 confirms that by 3.05e+06 time steps the tertiary specialists are

no longer present. It also shows that a group of secondary specialists have

disappeared. There is a general shift of the secondary, tertiary and quaternary

producers toward a more generalist feeding strategy. This can only have hap-

pened because a generalist feeding strategy was selectively beneficial. This is

seen to be due to the spread of the trophic levels over a wider region of volume

trait space. Having a wider preference function in that situation enables easier

access to more distant prey.

The results suggest that the period of coexistence in the tertiary producers

between 0.8e+06 and 2.7e+06 time steps was brought about by the strategy

adopted by the secondary producers. Figure 5.3.7c shows that during that time

the secondary producers are very near in volume to the tertiary specialists.

Figure 5.3.7a shows that the specialists are less numerous than the generalists.

It appears that the secondary producers had been selected to exploit the lower

evolvability of the less frequently reproducing tertiary producers. The larger

secondary producers were easy prey for the tertiary specialists. However, the

lower numbers of tertiary specialists permitted greater reproductive success for

the secondary producers. Coexistence in this situation was an anti-predator

adaptation to avoid the more numerous tertiary generalists.
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Figure 5.3.10: A stacked bar chart showing the frequencies of trait values in the
range 0.3–0.8 within each trophic level at 5e+06 time steps.

By 5e+06 time steps, figure 5.3.10 illustrates that nearly all the heterotrophs

have converged in a preference that reflects a generalist strategy.
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Figure 5.3.11: The evolution of the d size classes on the y-axis, over time on the
x-axis. Plots show: the number of mutations of the (a) volume, and (b) preference
heritable traits in each size class over time in a configuration that uses the log-normal
preference function, a β value of 10, and a cmax value of 1.5.

The anti-predator adaptation explained above is only possible due to the re-

duced rate at which larger individuals reproduce, and therefore the reduced

rate at which they mutate. Any strategy that is successful for a prey individ-

ual, is likely to be undermined by a mutant predator at some point. Figure

5.3.11 shows the number of mutations of each trait occuring in each size class

over time. It is apparent that this configuration has a high turnover and so

the tertiary, quaternary, and even quinary producers show mutations during
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the time it was run for.

The second set of results use the inverse parabolic preference function, a β

value of 25, and a cmax value of 2.5. All other parameter values are defined

table 5.3.1.
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Figure 5.3.12: Plots show: (a) the total number of heterotrophic individuals, (b)
the volumes of each of the pools of matter, (c) the flux from consumption of phyto-
plankton, and (d) the frequencies of secondary (blue), tertiary (cyan), quaternary
(yellow) producers over time.

The first thing to note from from figure 5.3.12a is that the number of het-

erotrophs in the system is lower, but after 5e+06 time steps it is generally

more stable than in the previous configuration. Figure 5.3.12c shows relatively

constant grazing on the phytoplankton. This is reflected in figure 5.3.12b that

illustrates almost all of the volume in the system exists in the heterotrophs for

most of the model run. Figure 5.3.12d shows that the high β value provides
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only enough niche space for three trophic levels. The change in the numbers

of heterotrophs suggests there are changes in trophic structure, despite the

consistent net effect of the individuals.
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Figure 5.3.13: The evolution of the d size classes on the y-axis, over time on the
x-axis. Plots show: (a) the number of all individuals, and the mean (b) trophic
classification, (c) preference trait values, and (d) actual predator-prey volume ra-
tio of each size class over time in a configuration that uses the inverse parabolic
preference function, a β value of 25, and a cmax value of 2.5.

The size class view of the system confirms three well spaced trophic levels (fig-

ure 5.3.13b). This is seen to be a function of the comparatively high values of

cmax and β. Figure 5.3.13c shows sustained coexistence of feeding strategies

in the tertiary producers over a narrow range of volumes. The tertiary pro-

ducers are comprised of generalists that are larger and smaller in volume than

a group of individuals that take a more specialist feeding strategy. Reflecting

the observation of figure 5.3.12a, after 5e+06 time steps figure 5.3.13a shows

that the larger generalists are the most numerous, the specialists are less so,

and the number of smaller generalists is dwindling.
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Figure 5.3.14: The evolution of the d size classes on the y-axis, over time on the
x-axis. Plots show: the number of (a) prey, and the (b) volume of each size class
over time, in a configuration that uses the inverse parabolic preference function, a
β value of 25, and a cmax value of 2.5.

Figure 5.3.14a illustrates that the quaternary producers are only just able to

reach the tertiary producers. Before 5e+06 time steps they feed exclusively

on the largest tertiary producers. The reason why these individuals disappear

from the system is because the grazing pressure exerted on them was not

matched by their ability to assimilate. Once they have disappeared from the

system the competition amongst the tertiary producers is reduced. It is shown

in figure 5.3.14b that the larger generalists become the most volumous when

that occurs. The quaternary producers are not able to feed until they shrink

slightly as a result of their metabolism. This is shown in figure 5.3.14a as the

break in feeding on the tertiary producers, and figure 5.3.14b that shows the

quaternary producers move to a size class with a lower vm value.

This new trophic structure is more sustainable. Despite being grazed con-

sistently, the larger tertiary generalists are able to assimilate at a rate that

balances all material losses. This is shown in figure 5.3.14b as the near con-

stant volume of these individuals. The tertiary specialists are not being pre-

dated upon, but their volume also remains consistently in the same order of

magnitude as their larger generalist counterparts. This suggests that the ter-

tiary specialists’ feeding strategy was selected as a result of its lower efficiency.

When contrasted against the more successful, larger generalists, the tertiary

producers avoid being predated upon.

To investigate this configuration further an individual-level view of the system

is taken.
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Figure 5.3.15: A stacked bar chart showing the frequencies of trait values in the
range 0.2–0.8 within each trophic level at 2.7e+06 time steps.

There is only a single tertiary producer, and so it does not show in figure 5.3.15.

However, the plot confirms that at 2.7e+06 time steps both the secondary and

tertiary producers take a range of feeding strategies. This is most significant

in the tertiary producers because figure 5.3.15 shows that the individuals oc-

cupying the distinct points in preference trait space are approximately equally

abundant.
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Figure 5.3.16: A stacked bar chart showing the frequencies of trait values in the
range 0.2–0.8 within each trophic level at 7.5e+06 time steps.

Figure 5.3.16 shows that by 7.5e+06 time steps the secondary producers have

converged on a narrower range of trait values that reflect a specialist strategy.

Conversely, the tertiary producers have maintained their diversity. It also
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appears the tertiary generalists with preference trait g = 0.75 have increased

in number. This is despite the observation that the trade-off is only captured

with g < 0.67 (figure 5.2.2b). This suggests these individuals were selected,

but are now unable to evolve to a more efficient feeding strategy due to their

low numbers. The trait frequencies stay this way until the end of the model

run.

The mechanism behind these results are more intuitive. The tertiary general-

ists are larger than the specialists in this configuration. Being higher in volume

trait space they are more distant from their prey, so a wider preference func-

tion gives them a greater ability to feed. Conversely, the tertiary specialists

are nearer to their prey and so are benefitted by their feeding strategy. Fig-

ure 5.3.13c shows that there are also some smaller generalists. However, this

strategy is not very effective as figure 5.3.13a illustrates their numbers to be

very low. They are hanging on to a tenuous existence by feeding on smaller

secondary producers.
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Figure 5.3.17: The evolution of the d size classes on the y-axis, over time on the
x-axis. Plots show: the number of mutations of (a) the volume, and (b) preference
heritable traits in each size class over time in a configuration that uses the inverse
parabolic preference function, a β value of 25, and a cmax value of 2.5.

Figure 5.3.17 shows the number of mutations of the volume and preference

traits over time. Reflecting the conclusion of chapter 4, the rate of reproduction

of the tertiary and quaternary producers is too low to produce mutants. This

means that the trait values of the tertiary and quaternary producers in this

configuration entered the population during initialisation, and were reinforced

only through reproduction and starvation.

The two sets of results presented used different parameter combinations and
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preference functions. However, the results produced with the log-normal pref-

erence function show a tendency of the system to converge on a preference

trait value of ∼0.64 (figure 5.3.10). Aside from the individuals stuck with a

less efficient feeding strategy, use of the inverse parabolic function shows a ten-

dency of the system to converge on a preference trait of ∼0.36 (figure 5.3.16).

To investigate this contrast between the tendency towards generalism in the

first case, and specialism in the second case, the convergent trait values are

used to visualise their resultant feeding strategy.
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Figure 5.3.18: A comparison of the convergent log-normal (blue - g = 0.64, β = 10
and cmax = 1.5), and inverse parabolic (red - g = 0.36, β = 25 and cmax = 2.5)
preference functions using their respective parameter configurations and a constant
predator volume of 1000.

Figure 5.3.18 shows the convergent log-normal and inverse parabolic prefer-

ence functions from the model configurations that produced the results in this

section. In both cases, the convergence of trait values was most apparent in

the secondary producers. Their high numbers and comparative rapidity of re-

production and mutation suggest that the preference functions in figure 5.3.18

may represent an optimal solution for each system. However, contrary to what

might have been expected, the log-normal preference function, which is widest

and could be classified as more generalist to begin with, converged towards

even more generalist gene values, and vice versa for the inverse parabolic func-

tion. The mechanism behind the convergence of trait values is not obvious and

would require further investigation.
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5.4 Discussion

5.4.1 Exponential Population Growth

The exponential growth of the smallest individuals that was exhibited for many

combinations of cmax and β can be explained as a feature of both preference

functions for individuals at the smallest end of volume trait space. Figure 5.4.1

below shows plots of both preference functions for a range of ch values with

cmax set to 1.5.
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Figure 5.4.1: The (left) log-normal and (right) inverse parabolic predator pref-
erence (ϕ) as a function prey volume (vp) for a range of preference function widths
(ch) and corresponding heights (ah) for cmax set to 1.5. In both the predator/grazer
volume (v) is vsmall, the preferred prey volume ratio (β) is 10, and cmin is 0.1.
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Figure 5.4.2 below shows plots of both preference functions for a range of ch

values with cmax set to 3.
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Figure 5.4.2: The (left) log-normal and (right) inverse parabolic predator pref-
erence (ϕ) as a function prey volume (vp) for a range of preference function widths
(ch) and corresponding heights (ah) for cmax set to 3. In both the predator/grazer
volume (v) is vsmall, the preferred prey volume ratio (β) is 10, and cmin is 0.1.

As shown in figures 5.4.1 and 5.4.2, sufficiently high cmax and low β values

provide individuals at the smallest end of volume trait space with some possi-

bility of consuming from their own size class. This probability is higher for the

log-normal function than with the inverse parabolic function. As explained in

section 2.6.2, despite phytoplankton being represented with a single value for

its volume, it is treated as though it were comprised of discrete particles. Her-
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bivores consume the volume of a single phytoplankton cell, set at vsmall. For

individuals at the smallest end of volume trait space, this single event would

put them much closer to their reproduction threshold.

Combining these observations of the preference function with the results, it

seems apparent that certain combinations of cmax and β provide an evolution-

ary attractor that can get size classes with low vm values caught in runaway

growth. Their chances of consuming increase as their numbers grow. The

reason for the comparatively low β value is due to issues of computation and

Elton’s “pyramid of numbers” (Elton, 1927). High β values would require a

vast number of small individuals just to sustain a low number of trophic levels.

Since the purpose of EATSM is to explore evolution in a trophic context, the

choice of parameter values is a greater reflection on pragmatism than realism.

Exponential growth of the smallest individuals also occurred during the de-

velopment of the model in chapter 4. Since this was due to the relative size

of children it happened immediately, and consistently for all parameter con-

figurations. This was the reason for constraining the size of the Ω trait based

on the size of the individual. Because the exponential growth of the smaller

size classes in this model did not always appear, understanding how and why

it happened became a large part of the work. The plots in figure 5.1.3 sum-

marised size selectivity data of heterotrophic dinoflagellates and pelagic cili-

ates. The literature revealed that the wider (generalist) preference curve of

the dinoflagellate was a function of complex feeding structures that are smaller

than the body of organism. The model uses vsmall to set the size below which

an organism would be unable to contain the machinery required to maintain

its substance. Allowing the smallest individuals to take any preference trait

value effectively violates this assumption. It is therefore concluded that the

preference traits should be constrained for the smaller individuals, in a similar

way to the previous chapter.

This conclusion illustrates that trade-offs are not universal. A biological trade-

off carries rules that may seem to apply generally, but in reality there are likely

to exist scales at which some of them can be bent, others can be broken. Or as

in this case, scales at which the trade-off does not apply. This implies that an

identified trade-off may require careful consideration of its general applicability.
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5.4.2 Coexistence

This study aimed to determine the mechanisms behind the coexistence of gen-

eralists and specialists in planktonic ecosystems. The results showed that co-

existence of different feeding strategies in the same trophic level was possible,

and that it fell into two regimes. The less stable form of coexistence (shown

in figure 5.3.7) was reinforced by the prey of the coexisting individuals. It was

selectively advantageous for them to be an easier target for their less numerous

specialist predators and avoid predation from their more numerous generalists.

This outcome is only possible due to the reduced evolvability of the tertiary

producers. This was not a sustainable form of coexistence because with enough

time a mutant predator would appear and exploit the strategy adopted by the

prey.

Figure 5.3.7 illustrated a stable form of coexistence where a generalist strat-

egy benefitted larger individuals who were more distant from their prey. The

mechanism of coexistence in this case was the result of predators who were

only just able to reach coexisting individuals. In this scenario the group was

comprised of larger, more successful generalists and smaller, less efficient spe-

cialists. The less efficient specialists were selected because of their slightly

smaller size, and their lower efficiency. When constrasted against their more

successful counterparts they experienced a reduced rate of predation. This

suggests that coexistence can occur even if similar individuals are exploiting

the same sources of prey. It also shows that predator mediated coexistence

does not have to include two predators, as long as the efficiency of the prey’s

feeding strategy results in some change in the rates of predation.

5.4.3 Unexplored Detail

As highlighted in the literature, a plankter’s size selectivity is a mechanistic

function of evolved phenotypes. The approach of this model was to approx-

imate those structures by allowing evolution of the width of the preference

function. The reviewed literature suggests that one of the most measured

features of a plankter’s feeding strategy is the preferred prey volume ratio,

characterised in this model by the parameter β. This study chose to keep the

value of β fixed, and evolve only the width of the preference function in isola-

tion. This work has paved the way for the introduction of β as an additional
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evolutionary trait. However, it is worth noting from the plots of the actual

predator-prey volume ratios (figures 5.3.13d and 5.3.7d) that the changes to

this model permitted predators to consume prey that were significantly differ-

ent from the constant β value.

As suggested in section 5.1, a plankter’s feeding strategy introduces many

trade-offs that are not exclusively related to prey finding. Gerritsen and Strick-

ler (1977) produced some early mathematical models of predator-prey encoun-

ters between zooplankton. They discussed the concept of a “detection sphere”

that provides both predator and prey with a early indication of approaching

targets or threats. Later work by Costello et al. (1999) analysed high-speed

footage of encounters between copepods and a common predator. Combining

their findings with those of other researchers they found that encounters be-

tween planktonic predators and prey fell into a general pattern they referred

to as the “predation cycle”:

Figure 5.4.3: Costello et al.’s (1999) “predation cycle”.

Individuals in this version of EATSM have no evasive or defensive capability.

Benefit comes only from an individual’s ability to capture prey. However,

the literature suggests that detection and detectability are intimately related

to the strategy a plankter has adopted to feed. In addition, the literature

revealed evidence of metabolic trade-offs associated with predator avoidance.

The model presented here made no link between the feeding strategy and the

metabolic rate. However, such a link could realistically be established as part

of some future work.

5.5 Conclusions

The conclusions of the model:

1. The preference needs to be constrained for small individuals.

The science conclusions:
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1. Not all trade-offs are universal.

2. Prey mediated coexistence is possible, although transient by nature.

3. Stable coexistence can occur even if similar individuals are exploiting the

same sources of prey.

4. Individuals can be selected to take a less efficient feeding strategy, if it

makes their more successful competitors the target for predators.

5. Preference function width viability is a function of prey availability.

The future work suggestions:

1. Individuals could carry β as an evolvable trait.

2. Individuals could be adapted to include some form of evasive or defensive

capability.

3. The feeding strategy could be associated with a metabolic cost.
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6 Discussion

Chapters 4 and 5 are summarised in this chapter. Each summary contains some

higher-level discussion not previously seen. A wider context section looks at

broader considerations that came out of this study, as well as evaluates some of

the problems faced with the modelling approach. Some suggestions for future

work are made. The chapter finishes with the main conclusions of the thesis.

6.1 Chapter Summaries

6.1.1 Chapter 4

Life history theory predicts that a reduced juvenile survival will select for

delayed maturation and decreased reproductive effort, and reduced adult sur-

vival will select for accelerated maturation and increased reproductive effort.

This prediction was considered to reflect Ricklefs’ counteradaptation hypothe-

sis (1970) from the perspective of prey. The counteradaptation hypothesis was

written to describe the mechanism behind the variation in frequency and size

of bird clutches observed. Individuals in EATSM did not lay clutches, and so

there was no immediate connection with clutch size. However, it was found

that clutch production is tied to lifecycles of other organisms in the community

and is therefore a phenological process (Phillimore et al., 2013). EATSM does

not represent physical conditions, and so ignores seasonality. It was therefore

assumed that the size and number of clutches laid by a bird could be seen sim-

ply as a material investment over time. The approach of including the Ω trait

was to model the fraction of the adult volume invested in offspring. Under

constant growth conditions and over a fixed period of time, individuals with

a low Ω trait value would produce a greater number of small children than

one with a high Ω trait, yet the material investment would be the same. This

was considered analgous to clutch size, and was therefore seen as a method for

describing a reproductive strategy.

Despite the literatue on reaction norms and plasticity in growth exhibited by

many species, time to maturation was also viewed in a materialist way. A large

and a small child experiencing the same conditions in EATSM, with the same

vh and Ω trait values would exhibit different growth trajectories. The small

child would be disadvantaged because it would take longer to reach its size
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at maturity, but also because km < 1 it would have a proportionally higher

metabolic cost. This was seen to represent delayed maturation. Conversely,

a large child would require less time to reach its adult size, and may also

benefit from a relatively lower metabolic rate. This was considered analogous

to accelerated maturation.

Classical models of growth were found to be a function of time. However the

contemporary literature on the subject illustrated a move towards considering

growth to be a more dynamic process that is ultimately a function of envi-

ronmental conditions. Individuals in EATSM are linked to their environment

through their interactions with predators and prey. In addition to a measure

of growth, an individual’s actual volume was also seen as an adequate metric

to determine how mature it is. The trajectory from birth volume to volume

at maturation was mapped onto a linear scale from 0 to 1, on the assumptions

that this value could not become negative and that it would never become less

than 1 once the individual had reproduced. Although abstract, this provided

a way of testing the results against the predictions of life history theory. The

incorporation of a single trait to represent the fraction of adult volume above

vh given to a child enabled investigation of “clutch size”.

The results presented in chapter 4 showed that individuals’ Ω trait values

correlated positively with the general age at which they became prey. This

represented confirmation of the predictions of life history theory and by exten-

sion, Ricklefs’ (1970) counteradaptation hypothesis. However, the results also

revealed there was strong positive correlation between the Ω trait values and

the growth conditions. This was seen to confirm Lack’s (1947) food limited

hypothesis. This conclusion implied these hypotheses do not contradict each

other, despite the fact that Ricklefs set out specifically to offer an alternative

explanation for clutch size.



133

Figure 6.1.1: A visualisation of an individual’s growth trajectory (v - light blue)
from its volume at birth (vr) to its reproduction threshold (vmax - green) relative
to its volume at maturation (vh - grey) over time. Representations for the scales of
the maturation factor (ρ - purple) and growth ratio (dark blue) relative to volume
space are also marked.

Figure 6.1.1 is a visualisation that illustrates the relationship between Ω and

ρ, and Ω and the growth ratio. It highlights that the correlation between

them was due to the fact that they were mapped into the same numerical

space. The only exception to this that ρ was fixed at 1 when an individual

reproduced, and could not go lower than 0. As discussed following figure

4.3.7, even the very relaxed starvation function used in this model would be

unlikely to allow individuals to fall below their birth volume. This suggests

the method of determining an indvidual’s maturity is invalid. However, ρ was

introduced simply to test the predictions of life history theory. Edley and Law

(1988), and Reznick et al. (1990) have proven these predictions experimentally.

Subsequent modelling approaches have produced similar results (Mart́ınez-

Garmendia, 1998; Dunlop et al., 2007). The predictions of life history theory

are robust. The primary conclusion from chapter 4 is to reconcile Lack’s (1947)

and Ricklefs’ (1970) hypotheses as two descriptions of the same system. It is

believed that this conclusion holds, inspite of the problems with ρ.

It is suggested that the work from chapter 4 could be better integrated into

life history theory if an improved method for measuring the maturity of an

individual was established. As explained in section 4.2.4, mapping the mea-

sure of an individuals maturity onto volume permits an individual to become

less ‘mature’ if it were to lose volume. This approach could be improved by
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changing the calculation of ρ so that it only increases. However, even this

approach would permit an individual to apparently stay young if it were only

able to cover metabolic cost. We would expect an individual in such a situ-

ation to starve with the passing of time. There may be a way of calculating

the maturity of an individual as a function of age and volume. Although this

remains unexplored.

6.1.2 Chapter 5

Ciliates and dinoflagellates are two groups of microzooplankton that both con-

tain heterotrophic species that share a similar biogeography, and are known

to exhibit proportional biomasses. Despite the contemporary knowledge that

species from each group do coexist, the mechanisms behind their coexistence

remain largely unexplored. Data collected by Sailley et al. (2009) showed that

pelagic ciliates generally consumed smaller prey, and heterotrophic dinoflag-

ellates less efficiently consumed a wider range of prey sizes (see figure 5.1.3).

The data were seen to reflect a feeding strategy trade-off illustrating that cil-

iates specialise, and dinoflagellates generalise. The hypothesis examined was

the possibility that generalists and specialists may coexist as a result of the

relative ease with which they can exploit different prey. EATSM was modified

to capture the observed trade-off in the individuals’ preference function.

The results presented in chapter 5 showed evidence that stable coexistence of

feeding strategies could occur, despite individuals consuming the same prey.

This outcome may be a product of the individual-based modelling approach.

The classical approach to modelling ecological systems is to ignore space and

assume that each individual has equal access to a universal or “mean-field”

environment (Levin and Pacala, 1997). The results from models of this type

suggested that two or more competing species were not able to coexist on

the same resource (Lotka, 1925; Lehman and Tilman, 1997). This prompted

Hardin (1960) to introduce the competitive exclusion principle; a concept that

was generalised with the statement that “n species could not coexist on fewer

than n resources or limiting factors” (Lehman and Tilman, 1997). Despite

model predictions, Hutchinson (1961) found diverse communities of coexisting

phytoplankton competing for the same resources in an apparently homoge-

neous environment. He observed that the cause was spatial heterogeneity on

scales previously overlooked. Individuals are situated in, and compete for dis-
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parate resources in space. EATSM does not explicitly represent space, but as

an individual-based model it does incorporate some of the rules that apply to

interactions in space. This includes the principle that not all individuals inter-

act with the model environment in the same way. Discretisation of encounters

alone may provide a mechanism for coexistence.

Some of the results (see discussion following figure 5.3.9) show evidence of a

more rapidly producing group of individuals exploiting the comparatively low

evolvability of another group. In this particular case it was concluded that

the secondary producers had been selected to become an easier target for a

group of tertiary specialists. Since the tertiary specialists were less numerous,

the secondary producers’ rate of assimilation was more easily balanced against

the rate of predation. This promoted the coexistence of feeding strategies in

the tertiary producers. However, instabilities arose and the coexistence ended

before the model did. The tertiary predators in this example were reproducing

at a comparatively a high rate. The change in the system may have been due to

the emergence of a new tertiary mutant that could exploit the strategy adopted

by the secondary producers (see figure 5.3.11). It was therefore concluded that

this form of prey mediated coexistence is inherently unstable.

Hutchinson (1961) said that two prey species competing for the same resource

can coexist if each experiences different pressures from predators. This concept

became known as predator mediated coexistence (Caswell, 1978). Some results

(see discussion following figure 5.3.14) were suggestive of this mechanism, the

difference being that one group of individuals were experiencing predation and

the others were not. Analysis of the data suggested that the group avoiding

predation had been selected to take a less efficient feeding strategy, leaving the

more successful competitors as the sole target for predators. This was stable,

and continued throughout the the long model run. However, in this example

the population levels remained consistently low. This resulted in a low rate

of reproduction where few mutants were produced. It is therefore seen as an

unfair test of the true stability of this form of coexistence.

The model produced for chapter 5 made use of two different preference func-

tions in order to better understand the exponential population increase pre-

sented (see section 5.3.2). Results that were suggestive of coexistence from a

high-level perspective were selected from among hundreds (see section 5.3.1 for

the parameter combinations tested). This is the reason for the choice of signif-
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icantly different parameter configurations in each configuration. Results like

those presented in section 5.3.3 were uncommon. This leads to four possible

reasons for this rarity. These are presented below with a current evaluation of

each.

1. High-level level views of the system may not be the best way

to determine if coexistence occurs. Data were observed for each

size class, trophic level, and preference trait space for hundreds of seper-

ate model runs that took a range of parameter values. Those that did

not exhibit the exponential population increase illustrated a convergence

that appeared characteristic of selection balancing a sustainable flow of

incoming energy (volume) with the spacing between the trophic levels.

It has been suggested that there is a tendency of the system to produce

generalists with the log-normal preference function, and specialists with

the inverse parabolic. The fact that the log-normal preference function

is already wide, and the inverse parabolic function is already narrow

suggests this is a viable avenue for investigation.

2. The encounter algorithm or the parameter configuration may

not be tuned sufficiently to confer significant cost or benefit to

the individuals as a result of a wide or tall preference function.

The fact that coexistence occurs at all suggests that tuning the model

parameters or encounter algorithm is not an issue. The selective forces

apparent from the results presented were powerful enough to generate

dynamics that suggest this is not the cause for the rarity of coexistence.

3. The unconstrained allocation of preference traits to individuals

of any size affects the model outputs even when no exponential

population increase occurs. It was concluded at the end of chapter 5

that both preference functions should be constrained for small individ-

uals. Fixing this would negate the need to use the less efficient inverse

parabolic function (see section 3.3.7), particularly as it does not repro-

duce the trade-off with g > 0.67. Constraining the preference functions

would be a comparatively short task. Running a full sensitivity analysis

with the updated model would serve the evaluation of response 1 and 2.

4. Capturing the trade-off in the assigned trait values may be

incorrect in this case. The literature revealed that plankters feeding
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strategies are tied to metabolic costs (Kiørboe, 2011; Castellani et al.,

2005), and to prey detectability and detection by predators (Gerritsen

and Strickler, 1977; Eiane and Ohman, 2004). It is therefore considered

possible that the data in figure 5.1.3 may be an incidental outcome of a

more complex set of metabolic and/or predatory trade-offs.

It is considered that 1, 2, and 3 could be completed in a comparatively short

space of time. If no obvious mechanism for coexistence is determined after

that, the likelihood of 4 being the explanation would be increased. However,

investigating it would represent a significant amount of additional work.

6.2 Wider Context

6.2.1 Evolvability

Kirschner and Gerhart (1998) defined evolvability as “an organism’s capacity

to generate heritable phenotypic variation.” They went on to discuss the crit-

icality of time in the processes of evolution. Selection operates only on what

is present at the time, not what was or could be. Gould and Eldredge (1977)

noted that on geological timescales life exhibits the capacity for comparatively

instantaneous change. Yet there is also evidence for periods where little evo-

lutionary change occurs. They referred to the stepwise nature of evolution on

geological timescales as “punctuated equilibria”. This suggests a time depen-

dent element in evolution. If we assume that the likelihood of producing novel

variation in a reproductive event is approximately constant for all organisms,

we could generalise the findings of the results by saying that species that re-

produce the most rapidly are likely to be the most ‘evolvable’, according to

Kirschner and Gerhart’s (1998) definition.

It should be emphasised that aside from the potential to allometrically scale

the metabolic rate, all individuals in EATSM are handled in the same way.

What seperates big individuals from smaller ones is the fact that there are

more small individuals and fewer large ones. The rate of turnover in the size

classes of small individuals is much higher compared to the large individuals.

All individuals have the same probability of mutation at reproduction, but

there is a decreasing number of reproductive events for individuals higher in

the trophic pyramid. This ultimately makes the smaller individuals the most
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evolvable. This was the reason for suggesting at the end of chapter 4 that

evolution of the Ω trait values represents a mechanism by which evolvability

can become an evolvable trait.

The contemporary view is that the relationship between life and the environ-

ment is bidirectional (Kirchner, 2002). Understanding the potential rates of

change in both is therefore paramount if we wish to mitigate the erosion of

biodiversity in the face of climate change. The most generally applicable con-

clusion we can make from these results is to say that more work needs to be

done to bridge the epistemic cut described by Pattee (1995). Many current

population-level models are integrated until they reach steady-state. If the

natural world is considered a mathematically definiable system and if anthro-

pogenic effects may push the system into a new steady-state, then we will

need models that do more to describe the transitional states between stable

equilibria.

6.2.2 Trade-Offs

Selection has been operating for long enough to produce many beautifully

complex phenotypes. All are constructed out of parts the physical world. They

therefore intrinsically conserve mass and obey the laws of thermodynamics.

This means they cannot maximise everything. Investment in armour plating,

negates the ability to fly; an enhanced power of vision implies that ability

be used to find food to cover the elevated metabolic cost. A trade-off is the

product of inescapable physical laws. The literature illustrates that capturing

a trade-off is integral to the development an adaptive model (Follows et al.,

2007; Bruggeman and Kooijman, 2007; Kylafis and Loreau, 2008; Menge et al.,

2008, 2009). However, it is considered that implementation of trade-off falls

into three known categories.

The term environmental is suggested for a trait that captures no trade-off

in the value assigned, and only confers cost or benefit when interacting with

the model environment. The work of chapter 4 uses this type of trade-off.

The term extrinsic is recommended for the use of empirical data in capturing

trade-offs. This approach takes an observed trade-off and reproduces it in the

assignment of trait values. This is illustrated in the work of Follows et al.

(2007), and in the approach taken with chapter 5. The third form of trade-

off is not represented in this thesis, but appears in the work of Bruggeman
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and Kooijman (2007), and Menge et al. (2008). It imposes no restriction

on the trait value, but is assumed to represent varying investment in cellular

machinery and so carries a corresponding cost. The trade-off is then apparent

in the balance of incoming and outgoing energy. We refer to this form of

trade-off as intrinsic.

There is no reason to consider any one trade-off model better than others. In

general trade-offs are universal, but as concluded at the end of chapter 5, a

specific trade-off is not. This is seen to be the product of implementations

that are functionally independent of their model environment. Current com-

putational constraints mean that this applies to models that have relevance

for macro-scale systems. If we wish to produce models that aspire to Maynard

Smith’s (1992) “comparative biology”, we are presently confined to wholly ab-

stract models (e.g. Ray, 1991). The trade-off in modelling trade-offs remains

realism versus generality (Levins, 1966).

6.2.3 Epistemic Cuts

This study aspired to the inclusion of the selection pressures and trade-offs

brought about by a whole trophic system. This led to the various model in-

carnations presented in each of the results chapters. By its nature the model

attempted to span several scientific domains, including areas where it became

apparent that there is a lack knowledge. Abstract descriptions were used to

overcome areas where there there are epistemic cuts. Notably were the repre-

sentations of heritable traits, and starvation in chapter 4 that was decoupled

from growth. Pattee (1995) identified an epistemic cut between the genotype

and phenotype. He attributed this to the constraints of the tools available

to us that prevent experimentation at the scales required in order to under-

stand how living matter can emerge from a non-living substrate. Bridging this

knowledge gap will take time, either in the stepwise use of existing approaches,

or in the development of a new piece of measurement technology (Rockman,

2008). Until then, trait-based models are confined to idealised numerical rep-

resentations.

It was identified in chapter 4 that are were two threads of research concern-

ing evolutionary changes as a result of size-specific mortality. The potential

for epigenetic changes is acknowledged, but it is assumed this represents a

reversable change. In contrast, the observation of heritable changes in size
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have led some authors to conclude that such changes are genetic. Dunlop et

al. (2007) acknowledged the importance of distinguishing between genetic or

plastic changes in fish size for management fisheries and aquaculture. It is con-

sidered that a plastic phenotypic change would disappear in the presence of

previous conditions (Law, 2000). While the word “plastic” is definitive of this

kind of response, it yields no information about the mechanisms that underlie

such a change. Work by Ayannathan et al. (2003) shows that the genus of

fly Drosophila can exhibit stable hertiable epigenetic changes. The literature

reveals no attempt to find such mechanisms in fish. It is therefore concluded

that fisheries management may be benefitted by efforts to determine if fish

can inherit epigenetic changes. This study makes no assumptions about the

mechanisms of heredity. This is why what is often referred to as a ‘genome’ is

simply called a “heritable trait” here.

It was discussed at the end of chapter 4 that food consumption, reproduc-

tion, growth and starvation can be seen as different facets of the same system.

The explicitly simple representation used in EATSM linked food consump-

tion, reproduction and growth, but no method was found to incorporate a

dynamic representation of starvation that changed as individuals grew older.

The work on reaction norms was suggestive of a solution, but common in these

approaches is the consideration of ‘fitness’ as a possessed attribute, instead of

it being simply the quality of existence. When a biological organism’s wider

context is considered, “fitness” becomes a meaningless word projected onto

a complex system as a handle for myriad possible selective events. These

boundaries of description made the contemporary work on reaction norms too

narrow for use in EATSM. Metabolism is the only process that unites food

consumption, reproduction, growth and starvation with each other, and with

the physical environment (Braakman and Smith, 2013). Therefore, a more

explicit representation of metabolism may be a solution. When and if new

models of genetics, growth, and reproduction are made available frameworks

like EATSM can unify and test them.
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6.3 Future Work

6.3.1 Inclusion in a Physical Model

As a model of heterotrophic life, EATSM has been written to ‘eat’ the individual-

based phytoplankton cells that are part of the EVolutionary Ecosystem (EVE)

model eveloped by colleagues at the University of Exeter (Clark et al., 2011,

2013; Lenton, 2012). EVE is a individual-based phytoplankton model that

integrates with the MITgcm, where cell-size emerges as a result of strategies

for internal resource allocation. The approach of representing individuals with

size, and the method of programming in the EATSM model is the same as

that used in the EVE model. This approach was taken with the intention of

integrating EATSM into the EVE framework in order to produce an end-to-

end model that could theoretically provide results for carbon flows through

the global marine ecosystem.

6.3.2 Super-Individual

In order to remain consistent with the future goal of including the model in

the MITgcm (see section 6.3.1) the model had to be written to run in a sin-

gle processor core (see appendix 7.2). One of the biggest obstacles towards

completion of this model has therefore been the constraints of even today’s

most powerful computer processors. Many commonly used parameter configu-

rations produced populations of around 1e+06 in size, and take several days to

produce some of the results shown in this thesis. The development of the ap-

proximated encounter algorithm took place alongside the development of the

approach itself (see section 2.4). In fact, the unapproximated encounter algo-

rithm as written was reverse engineered after the final approximated solution

was produced.

Rose et al.’s (1993) method for combining individuals with similar trait val-

ues into a single “super-individual” (Hellweger and Kianirad, 2007; Hellweger,

2008; Hellweger and Bucci, 2009) was briefly investigated. However, the at-

tempt ran into technical difficulties in the process of combining two different

methods for approximation. Time constraints meant the work was dropped,

but the technical difficulties are known to be solvable. It is believed that no

more two weeks work would be required to successfully combine the two meth-
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ods of approximation. However, preliminary tests suggested that the over-

heads of the super-individual method may confer little computational benefit

if it were not implemented elegantly. It may take more time to refine after the

completion of a prototype.

6.4 Concluding Remarks

1. Chapter 4 set out to discover whether the predictions of life history theory

completely explain the evolution of reproductive effort. It was concluded

that the answer is no, and that Lack’s (1947) food limited hypothesis and

Ricklefs’ (1970) counteradaptation hypothesis are different perspectives

of the same system.

2. Chapter 5 set out to explain mechanisms behind the coexistence of

pelagic ciliates and heterotrophic dinoflagellates. Unfortunately the re-

sults were inconclusive. Section 6.1.2 above offers four reasons why that

could be. The favourite of the four was the suggestion that the coexis-

tence of generalist and specialist feeding strategies in microzooplankton

ecosystems may be the result of more complex metabolic and predatory

trade-offs that the model presented failed to capture. However, more

work needs to be done to determine if that is the case.
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7 Appendices

7.1 Appendix 1 - Table of Symbols

Table 7.1.1: Table of Symbols

Symbol Description
a Height of the preference function.
ab Preference function height boundary vector.
ab Preference function height boundary value.
ah Heritable preference function height.
am Preference function height mid-point vector.
am Preference function height mid-point value.
α Size class subset fraction.
b(i) Biomass in size class i.
b(w) Biomass in size class characterised by weight w.
β Preferred prey volume ratio.

β(i) Size spectra calculation for size class i.
β(w) Size spectra calculation for size class characterised

by weight w.
c Width of the preference function.
cb Preference function width boundary vector.
cb Preference function width boundary value.
ch Heritable preference function width.
cm Preference function width mid-point vector.
cm Preference function width mid-point value.
cmin Minimum width of the preference function.
cmax Maximum width of the preference function.
d Number of discrete locations in trait space.

dinit Number of initialised heterotrophic size classes.
δ Minimum fraction of expected volume.
ϵ Fractional metabolic expense per time step.
g An unprocessed heritable trait value (between 0

and 1).
γ Assimilation efficiency coefficient.

Hclass The volume budget for a single size class.
Hinit Initial volume of the heterotrophic population.
i Index of a size class, vector position, or an indi-

vidual.
ifirst Index of the smallest initialised heterotrophic size

class.
ih Hertibale trait index.

Continued on Next Page. . .
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Table 7.1.1 – Continued

Symbol Description
j Index of a size class, vector position, or an indi-

vidual.
k Index of a size class, vector position, or an indi-

vidual.
km Metabolic scaling exponent.

Kfrac Half-saturation constant fraction.
λ Growth rate/coefficient.

M(i) Number of individuals in the ith size class.
mi Mid-point of body mass interval.
m(i) Number of individuals the subset from size class

i.
m̂(i) The initial subset size from size class i.
M Matrix containing d size classes.
∆mi Linear width of body mass interval.
N Volume of the nutrient pool.

Ninit Initial volume of the nutrient pool.
n The population size.
P Volume of the phytoplankton pool.
Pc Probability of a prey size class being coupled to a

predator size class.
Pf Probability of an individual or size class feeding.

Pgrow Phytoplankton growth volume.
Pinit Initial and maximum phytoplankton volume.
Pµ Probability of mutation.
Ps Starvation probability.
ϕ Predator preference for prey item.

ϕ̂ Size class i preference for size class j.
ρ The maturation factor of an individual.
s General coupling strength between predator and

prey item.
sh The coupling strength for/effective prey volume

of size class i.
ŝh Approximate coupling strength for size class i.
sp The coupling strength for the phytoplankton pool.
ŝp Approximate coupling strength for/effective prey

volume of the phytoplankton.
σ Standard-deviation of mutation.
t Model time.
ta The age of an individual.
te Age of an individual at maturation.
tm The age of an individual when half grown.
tmax End of model time.

Continued on Next Page. . .
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Table 7.1.1 – Continued

Symbol Description
tτ The point in time when uninitialised τ values dis-

appear.
t0 Beginning of model time.
τ Trophic level value.
τd Discrete trophic level value.
τp Prey trophic level value.
V Total volume in the model.
v The actual volume of an individual.

v(i) The total volume in size class i.
va Volume assimilated following food consumption.
vb Vector of size class boundary values.
vb(i) The ith size class boundary value.
vc Volume consumed.
ve Effective prey volume.

v̂e(i) Approximate effective prey volume.
vh The heritable volume/volume at maturation of an

individual.
vl Metabolic loss volume.

vlarge Largest volume in trait space.
vm Vector of size class mid-point values.
vm(i) The ith size class mid-point value.
vmax Reproduction volume threshold.
vmin Starvation volume threshold.
vo The heritable volume of a child.
vp Volume of a prey item.
vr Volume at birth, or that passed to child.

vsmall Smallest volume in trait space.
vt Expected volume.
vw Unassimilated waste volume.
w Weight.
∆w Width of weight size class.
Ω Child volume fraction heritable trait.

Ωmin Minimum child volume fraction value.

7.2 Appendix 2 - Computing Resources

7.2.1 Program Code

EATSM is written in ANSI/ISO C++ and does not use any external libraries.

The code can be downloaded from https://github.com/phlndrwd/eatsm.

It was developed using the NetBeans IDE with the C++ add-on feature
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(http://netbeans.org). It is recommended that the project directories are

opened with NetBeans as the makefile has been generated by this software for

execution with it.

7.2.2 Compilation and Execution

EATSM was compiled with the GNU Compiler Collection (GCC) on 64-bit

(x86-64) platforms running Linux, and Mac OS X. Compilation on Windows

should not be a problem, but it has not been tested. It is anticipated that

there may be problems with the function that creates directories for data out-

put. Results were obtained by running the executable on the University of

East Anglia’s High Performance Computing Cluster “Grace”. A summary

of Grace’s system architecture can be seen here http://rscs.uea.ac.uk/

high-performance-computing/. Due to the nature of the job queuing sys-

tem, the precise details of the execution nodes cannot easily be determined.

However, processor cores are known to run at around 2.6GHz with access to

2GB of dedicated system memory.

Some chapters make use of a slightly different versions of EATSM that take

varying amounts of real time to produce the results shown. Although the

model was set running for a precise amount of real time, some result sets were

truncated and resampled for the sake of presentation. Execution times are

therefore best estimates only. The results in section 3.1 took around 2 hours 30

minutes to run. A run using a single parameter combination in the sensitivity

analysis in section 3.3 was completed in just under 2 hours 47 minutes.

Execution takes place on a single processor core.

7.2.3 Random Number Generation

EATSM is a stochastic model. There are several things that occur probabilisti-

cally, and others that are stated to occur ‘randomly’. These are achieved with

use of a pseudo-random number generator (PRNG). For simplicity and speed,

EATSM makes use of C++’s standard PRNG (rand) that generates numbers

with a uniform probability in the range 0 to 2,147,483,647 (or the value speci-

fied by the constant RAND_MAX - see http://www.cplusplus.com/reference/

cstdlib/rand/). The code implements a series of transformations that en-

ables numbers to be generated with a uniform probability in different ranges,
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including real numbers in the range 0 to 1. A Box-Muller transform was used to

convert uniformly distributed random numbers into those drawn from a normal

distribution (Box and Muller, 1958). The code to do this was based on a C im-

plementation by Carter (see ftp://ftp.taygeta.com/pub/c/boxmuller.c).

EATSM was tested with a PRNG based on the Mersenne twister algorithm

originally developed by Makoto Matsumoto and Takuji Nishimura (1998).

The “SIMD-oriented Fast Mersenne Twister” implementation used was by

Agner Fog and was so called because it utilised the Streaming SIMD Exten-

sions 2 (SSE2) instruction set common in most modern processors (see http:

//www.agner.org/random/). This made execution faster relative to a stan-

dard implementation. Although statisically speaking the Mersenne Twister

algorithm has better randomness than the C++ standard PRNG, it was found

to increase computational expense whilst producing results that were indistin-

guishable from those generated with the standard PRNG. For this reason its

use was abandoned.

The PRNG generates a sequence of numbers that approximate the statistical

properties of random numbers. Initialising the PRNG with a unique seed

starts the sequence from a different position. EATSM can seed the PNRG

with a user configured value, it can produce a random one from the system

time when the model begins, or it can avoid seeding all together (by effectively

seeding with 0). Different seed values can produce slightly different results for

constant parameter values. For example, the results in section 3.1 are only

periodic when the PRNG is seeded with 0. This is the reason that the phase

plots in section 3.3 are based on three seperate results generated with the same

parameter values; to reinforce the output as a product of the parameter values

and not a stochastic event.
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