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Abstract

Let E/F be an unramified quadratic extension of non-archimedean
local fields of odd residue characteristic p and let G be the unitary
group in three variable U(2,1)(E/F). In this thesis, we explore the
smooth representation theory of G over a field E of characteristic p.
The main results are as follows. Firstly, we have classified the simple
modules of the pro-p Iwahori-Hecke algebra of G and described the
so-called supersingular ones, which is one-dimensional character. Sec-
ondly, for the hyperspecial maximal compact open subgroup Kg of G
and any irreducible smooth representation o of Ky, and for any non-
zero A € E, we have determined the subquotients of ind%oo/ (T, — N
by matching them precisely with the irreducible subquotients of prin-
cipal series of G, where T, is some Hecke operator in the spherical
Hecke algebra of G with respect to Ky and o. The latter result con-
firms a conjecture of Abdellatif. We also include several results aimed
towards proving that supersingular representations of GG are not finitely
presented.
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1 Introduction

1.1 Introduction

Representations of p-adic groups over the complex numbers C have been
developed into a rich and fruitful theory during the last forty years, since
Robert Langlands announced his remarkable conjectures on automorphic
forms of adelic groups. These conjectures could be viewed as far reaching
non-abelian generalizations of local and global class field theory. One of
them (the local version), which nowadays is usually known by the name
‘Local Langlands correspondence’, very roughly speaking, aims to interpret
Galois representations p : Gal(Q,/Q,) — G in terms of smooth complex
representations of G, for any reductive p-adic group G. There has been
much significant progress on these conjectures in the last twenty years, by
Harris-Taylor | ] & Henniart | | for p-adic GL,,, more recently by
Arthur | ] for classical groups over p-adic fields.

However, it is also interesting to study the smooth representations over
a field of positive characteristic and pursue a potential local Langlands cor-
respondence. In this spirit, there is already great interest arising in recent
years to study mod-l (I # p) representations ([ l, [ ]), and mod-
p representations of p-adic groups (| I, | I, | ). An excellent
summary on the current development (up to the summer of 2010) of mod-
p representations (and many related topics) is given by Breuil in | ].
Roughly speaking, there is already essential progress on the classification of
irreducible admissible non-supersingular representations of a p-adic connec-
tive reductive group, mainly due to the work of Herzig | |, Abe [ ],
Henniart—Vignéras | |, and their forthcoming joint work. But still very
little is known for the so-called supersingular representations, for any group
other than GL3(Qp). Due to such difficulty, the mod-p local Langlands
correspondence is only known at present for the group GL2(Q,). But for
the groups SL2(Qp) and U(1,1)(Q,2/Qp), there is already a semi-simple
correspondence established, see | | and | .

This thesis is devoted to the study of the mod-p representations of
the unitary group in three variables defined with respect to the unramified
quadratic extension of a non-archimedean local field. In contrast to the
recent method of Satake isomorphism developed by Florian Herzig [ ]
and Henniart—Vignéras | ], the approach in this thesis is mainly that of
Barthel-Livné, where we follow their papers on GLo(F') | I, 1 ] in
most aspects.

In section 1.2, we introduce the most used notations in this thesis. In



1.2 Notations

section 1.4, we present the main results that have been obtained so far,
chapter by chapter.

The intelligence debt of this thesis owed to those classical authors should
be very clear to the readers. But it would be certainly the author’s fault, if
this thesis still contains any mistakes or inaccuracy.

1.2 Notations

Let F' be a non-archimedean local field, with valuation ring op and
maximal ideal pp. Let kp be its residue field of characteristic p. Let ¢ be
the cardinality of kp. Fix a separable closure Fs of F. Assume p # 2. Let
FE be the unramified and quadratic extension of F' in Fy;. We have similar
notations og, pg, kg for E. Denote by E! (resp. kL) the subgroup of E*
(resp. k) consisting of elements of norm 1. Let wg be a prime element of
E, lying in F'. Given a 3-dimensional vector space V over E, we identify it
with E3 (the usual column space in three variables), by fixing a basis of V.
We equip V with the non-degenerate Hermitian form h:

h: VXV = E, (v1,v2) = vfBvg,v,ve € V.

Here o (we will write it as — in the following) is the non-trivial element of
Gal(E/F), and $ is the matrix

0
0
1

S = O

1
0
0

The unitary group G we are going to consider is the subgroup of GL(3, E)
whose elements fix the Hermitian form h:

G ={g € GL(3,E) : h(gv1, gva) = h(v1,v2), for any v1,vs € V}.

Let B be the subgroup of upper triangular matrices of G, then B = HN,
where N is the unipotent radical of B and H is the diagonal subgroup of G.
Denote an element of the following form in N by n(z,y):

1 =z y
01 -z
0 0 1

where (z,y) € E? satisfies 27 +y + ¢ = 0.

Denote by Ny, for any k € Z, the subgroup of N consisting of n(zx,y)
with y € pk.

Let A be the tree associated to G. Denote by X the set of vertices on
A\, which consists of og-lattices £ in E3, such that
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wpl C L* C L,

where L£* is the dual lattice of £, under the Hermitian form A, i.e., L* =
{veV :h(v,L)€Epg}.

Let v, v/ be two vertices in X represented by £ and £’. The vertices
v and v’ are said to be adjacent, if:

L'cLorLcC/L.

Let {e_1, e, €1} be the standard basis of E3. We consider the following
two lattices in E3:

Lo=o0gpe_1 DogeyPoger, L1 =0pe_1 Dogeg Dpper.

Denote respectively by vg, vy the two vertices represented by Lo and L.
They are then adjacent. The group G acts on Xy in a natural way, and X
consists of two orbits, i.e.,

Xo = {G'VQ}U{G'Vl}.

The vertices in Al := {G - vo} is of period one, and that in A? := {G - v}
is of period two.
Let Ko, K1 be respectively the stabilizers of vy, vi in G, and let a be

the matrix
wyt 00
o 1 0 [,
0 0 wg

and put 3 = Ba~!. The groups Ky and K; could be described explicitly

—1
0 Ofp Of Or 0p Pgp
Ko=|og op op| NG, Ki=|pg o op |NG
OF OF OF PE PE OE
For an integer n € Z, put vo, = a"vg,vopr1 = avy. These vertices

together form a standard apartment in A: {v,,,n € Z}. A general edge in the
standard apartment is egp 2n+1 = (Vap, Vont1), for an integer n € Z, i.e.,
an edge with origin vo,, and terminus vo,+1. Let I be the stabilizer of eg; in
G, i.e., the intersection of Ky and K. It is the standard Iwahori subgroup
of G consisting of matrices which are upper triangular mod pg. Denote by
I; the unique pro-p Sylow subgroup of I. Put Hp=INH, Hi =1 NH.

We have introduced several subgroups of G, say B, N, N, I, I, and
later on we will use the notations B’, N', N/, I’, I for their conjugate sub-
groups of G by the element 3. Also, we use the notation n'(x,y) for the
element in N':

10
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0 O
1 0
1

< 8 =

-

Denote by By and ;1 respectively the following two matrices:

00 —tt 0 0 —tlwy!
o1 o [, 0 1 0 ;
t 0 0 twp 0 0

1
where ¢t = [u]%, u is a generator of the cyclic group kj, and [-] denotes

the Teichmiiller lift. They lie respectively in Ky and K7, with determinant
1.

Denote by N the normalizer of H in G. For a character x of H, denote
by x?® the character of H, which is the non-trivial conjugate of x induced
from the action of N on H.

We define the unitary group G(kr) = U(2,1)(kg/kr) over the residue
field kp in the same manner as G. Denote by H(kr) and U(kp) respec-
tively the diagonal and upper unipotent subgroup of G(kr). For simplicity,
sometimes we will write them G, H,U, etc.

There is a natural reduction map from the group Ko to G(kp), which
is surjective, and we denote the corresponding kernel subgroup by K&.

As a character x of I is trivial on I, and I/I; = H(kp), we will usually
identify characters of I and H (kp).

Finally, we look at two fundamental equations over og. The first is

a+a=0,a€cop. (1)
We find inductively a finite set (non-canonically) L; = {l,,0 <n <q—1}:

lo =0, and for n > 1 take [,, to be any integer a satisfying (1) and
peta—1;for all j <n.

The second is
bb+a+a=0,a,bcog. (2)
Similarly, we find a finite set Lo = {m;,0 < k < ¢ — 1} (non-

canonically) as follows:

mo = (0,0), and for k > 1, set my = (bg, ag), in which (b, a) satisfies (2)
and at least one of the relations pg { ar, — a; and pg 1 by — b; holds for all
Jj <k.

11
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We don’t assume any further operations on L; and Lp. Put L] =
L\ {0} and LY = Ly \ {(0,0)}.

Finally, we fix a field E of characteristic p (not necessarily algebraically
closed).

1.3 Preliminary facts

We record some basic decompositions for G and some subgroups.

Proposition 1.1. (1) G = BK;, for i=0,1.
(2) G = UZZ()KZ'CMZKZ', for 1=0,1.
(3)Ko=1UIBI, K1 =1TUIpBI.
(4)I=(BnNI)-N;i=N;-(BNI).

Lemma 1.2. Fory € pEl for some I > 0, we have a BKy-decomposition:

Bn(z,y) = n(g 'z, y a~t -k, where k is some matriz in I.
Proof. More explicitly, for y # 0, we have

z,y7h. (3)

O]

/Bn(az, y) = n(g_lxa y—l) : diag(g_la _gy_l’ y) : ’rl/(—’lj_

Remark 1.3. There is a natural isomorphism :
EX/FX o~ El,

which is induced by the homomorphism v : x + xZ~ ', for x € EX. By
definition, the kernel of v is just F*. Applying Hilbert 90" to the quadratic
extension E/F, v is also surjective. Similarly, we have an isomorphism :

ki kg = kL.

The natural homomorphism from E* to kj, sending an element w%x € E*
(leZ, x € Ug) to the image of z in kj induces an isomorphism

EXFXUL = kX k.

In all, there is a canonical quotient map from E' to k‘}g :

!The usual multiplicative form of Hilbert 90 says that any element of norm 1 in a cyclic
field extension L’/L is of the form z - e(z) ™!, for some = € L'*. Here € is a generator of
the Galois group of L'/L. In fact, it is almost directly to verify Hilbert 90 in the case that
L' = kg and L = kp. Assume L' = E and L = F. Fix a root of unity 1 of order ¢* — 1
in E*, which satisfies some quadratic relation. Write an element ¢ of norm 1 in E* as
a1 - n + by, for some a1, b1 € op. If a1 =0, then ¢ = +1 and —1 = tt L. Otherwise, the
element f = 1+ (b + 1)ay ' is as desired: ¢ = ff~ .

12
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E' = EX/F* — E*|F*Up = kj [kp = k.

Hence, the characters of E' (resp. /c}E) are naturally in bijection with
the characters of E* (resp. k) which are trivial on F* (resp. kj.). From
the quotient map above, we may view a character of k}g as a character of
E'. However, a character of E* which is trivial on F* is also trivial on
U};, i.e., it is indeed a character of EX/FXU]g, as U}; s a pro-p group. In
summary, we may identify characters of E* and k}a

Remark 1.4. Let x be a character of the group Hy. We write x as x1® X2,
i.e., x(diag(z,y, 27 1)) = x1(2)x2(y), for diag(z,y, ') € Hy, where x1 and
X2 are respectively characters of kj and k‘}g Then, it is immediate to check
that x = x* is equivalent to x1 being trivial on the group kj; by Remark 1.3,
it is equivalent to the existence of a unique character x| of k}E, such that
x1(z) = xi(xz7Y). Furthermore, x factors through the determinant if and
only if xoa = x}. We will use this remark in several places later, especially
the existence of X}, for a character x = x1 ® x2 such that x = x*.

1.4 Presentation of main results

We now describe our main results, where the notations and terminolo-

gies are mainly those introduced in 1.2.

1.4.1 The pro-p Iwahori-Hecke algebra of G and its simple mod-
ules

This is the content of chapter 2. We describe the basic structure of the
pro-p Iwahori-Hecke algebra 77, := Endg(indgl) of G and determine its
simple modules explicitly (Proposition 2.26, Theorem 2.30).

We briefly mention what we have achieved in this chapter. We mainly
follow the method in [ ]. As 7, is the direct sum of J(I,x) :=
Endg(ind$x), for characters x of I satisfying x = x*, and (I, x ® X°) :=
Endg(ind¥x @ x*), for x satisfying x # x°, we are led to investigate the
structures of the Iwahori-Hecke algebras .#(1, x) for all x and classify their
simple modules (Proposition 2.6, 2.9, and Proposition 2.16, Proposition 2.22,
2.23).

We also calculate explicitly the natural right action of #7, on the I;-
invariants of any principal series representation indgs (Proposition 2.31),
and by excluding them we give the definition of supersingular character of
1, (Definition 2.33), which are then exactly those simple modules of J#7,
for which some fixed central element acts as zero.

13



1.4 Presentation of main results

1.4.2 The compactly induced representation ind%oa

This is the content of chapter 3. We are mainly concerned with some
initial properties of the compactly induced representation ind%oa, for an
irreducible smooth representation o of Ky, and the corresponding spherical
Hecke algebra (K, o).

It is known that the I;-invariants of o is one-dimensional ([ ], Corol-
lary 6.5), and we fix a basis {vg} of it once and for all. The Iwahori subgroup
I acts on o' as a character, and denote it by Y.

We have first the following, which is indeed a special case of a general
result due to Herzig | |, Henniart-Vignéras | ]. Our approach is
that of | ], i.e., we compute explicitly the convolution relations which
define the multiplicative operation of the algebra.

Corollary 1.5. 5 (Ky,0) is isomorphic to the polynomial ring in one vari-
able E[T), for some T € #(Ky,0).

We next describe the action of J#7, on the Ij-invariants of ind%}a;
more specifically the right action of (I, x) on the (I, x)-isotypic subspace
of ind%oa, where x = X, or x,. The space of [j-invariants of ind%oa is
easily described, and it has a canonical basis {f,, n € Z} (3.2, (8)) (up to
a scalar). We then describe clearly the natural action of .#(I, x) on that
space (Proposition 3.9, 3.10).

Before stating the result, we remind the reader that the structure of
the I;-invariants of a compact induction as a module over the pro-p Iwahori-
Hecke algebra has been determined in general (for F-split groups) by Rachel
Ollivier in her recent work on inverse Satake | ].

As a by-product, we have the following key proposition.

Proposition 1.6. Let o be an irreducible smooth representations of Ky. Let
X = Xo or X5. Then, any non-zero (1, x)-submodule of (ind%oa)l’x is of
finite co-dimension as a vector space.

We then move to a further consideration of the Hecke operator T' in
Corollary 1.5. In Lemma 3.12 and Proposition 3.13, we determine 7'[Id, v]
explicitly, where [Id,v] is the function in indIG(OJ, supported on Ky and
taking value v at Id.

As an application, we show

Proposition 1.7. ind%}a is free over (Ko, o) if o is a character or a
twist of St by a character. Here, St is the inflation to Ky of the Steinberg
representation of G(kr).

14
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Although it is not known to us whether the above Corollary holds or
not for general o 2, one in any case has the following compromise:

Proposition 1.8. For an irreducible smooth representation o of Kg, the
compactly induced representation indf(oa 1s faithfully flat over the algebra
(Ko, 0).

We remark that Elmar Grofie-Klonne | | has studied such a topic
in detail for a general F-split group, where he has obtained a sufficient
condition for the universal module to be free over the corresponding spherical
Hecke algebra. But it is not clear to the author whether his result can be
extended to our situation or not.

We finally mention the next two results, which pave the way for some
definitions in chapter 4.

The following Lemma has already been proved in | ].

Lemma 1.9. For a character € of B and an irreducible smooth representa-
tion o of Ky, the space Homg(indg’;oa, indg €) is at most one-dimensional,
and it is non-zero if and only if

€0 = X
where ¢ is the restriction of € to Hy.

Proposition 1.10. The Hecke operator T acts on the one-dimensional space
Homg(indgoa, ind%, €) as a scalar c, which is given by

Ce = E(Q) + Eylekjé; yl—‘,—gl:O 6(_y1_1? 17 yl)

Some refined descriptions of the Bruhat-Tits tree of G are also included
in chapter 3; in particular we have put the definition of height and antecedent
(Definition 3.31) in general. Lemma 3.26 is crucial and will be used essen-
tially in a major argument of chapter 4. We also record some observations
about the actions of I; on the tree, but they are not used anywhere else in
this thesis.

1.4.3 A parametrization theorem

This is the content of chapter 4, which is a major part of this thesis.
Theoretically, one wants to establish the equivalence between supercuspidal

2But under some natural hypothesis we have indeed verified it in general, see Assump-
tion 3.20 and Proposition 3.22.

15
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representations and supersingular representations, and the main result pre-
sented below should serve as a main ingredient towards that (see also the
remark after Corollary 1.13). We remind the readers that in a forthcoming
paper of Abe-Henniart—Herzig—Vignéras, they will show admissible super-
singular representations are equivalent to admissible supercuspidal represen-
tations, for any p-adic connected reductive group. Our approach is again
mainly that of Barthel-Livné, but there are indeed some technical differ-
ences in our case to carry out the tree argument. We address a little more
on that at the beginning of chapter 4.

Theorem 1.11. Assume E is algebraically closed. Let 7 be an irreducible
smooth representation of G and o be an irreducible sub-representation of
7|k, Then,

(1).3 The space

Homg (ind%O o, )

has an eigenvector for the action of the Hecke algebra (K, o).
(2). Let X be an eigenvalue of T in (1). Assume further that:

otherwise.

A4 {;Xﬁ(—l)a if Xo = X5 = X1 ® X2,

We set a character € of B such that ¢|g, = x5, and

B {A+x’1<—1>, if Xo = X5
e(a)

A, otherwise.

Then, we have the following,

(a). The space in (1) is one-dimensional.

(b). If x» does not factor through the determinant, or X # 1 — x}(—1),
then we have

72 ind§ e.

(¢). If xo factors through the determinant, i.e., x, = 1o det for some
character of kl, and A =1 — x(—=1). Then

| modet, ifdimo =1,
m =
nodet ® Sp, otherwise.

Here, Sp is the Steinberg representation of G, defined as indgl/l.

3This is proved in | ] under the assumption that 7 is admissible.

16
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In view of the Theorem above, we can now give the definition of super-
singular representations. Let T, be the following refined Hecke operator:

T _{T+X/1(_1)7 ifXU:Xga

7 T, otherwise.
Definition 1.12. An irreducible smooth representation m of G is called su-
persingular if it is a quotient of indf(oa/(To) for some irreducible smooth
representation o of Ky.

As a by-product of the argument of (1) of Theorem 1.11, we have the
following corollary, whose crucial role will become clear soon. Note in this
corollary E is not necessarily to be algebraically closed.

Corollary 1.13. The submodule ofHomg(ind[G(OU, ) over € (Ko, o), which
is generated by a non-zero G-morphism, is of finite dimension.

We remark that in Abdellatif’s thesis [ |, a major part (say (b)
and (c) of (2)) of Theorem 1.11 is presented as a conjecture, and assuming
the conjecture (and a completely parallel conjecture for the group Ki) she
has proved equivalence of supersingular representations and supercuspidal
representations for G.

We end this part by recording the following Proposition, which is of
independent interest and its argument depends on what we already have
described.

Proposition 1.14. * Any non-zero subrepresentation of ind%oa 1S non-
admissible and reducible. Hence, it is always of infinite length.

1.4.4 Canonical diagrams and finite presentation

This is the content of chapter 5. For the group GL2(Qp), it is a result
of Barthel-Livné and Breuil that all the irreducible smooth representations
are finitely presented. However, it seems that is another result only reason-
able for GL2(Qj); in fact, the recent work of Hu | | and Schraen | ]
on GLy(F) has verified that supersingular representations are not finitely
presented, when F' is either a non-archimedean local field of positive charac-
teristic or a quadratic extension of Q,. Motivated and following closely the
canonical diagrams on GLg, due to Y. Hu ([ ]), chapter 5 is intended
to explore similar things for the group G. At the beginning of chapter 5,

41t seems that such result is well-known to experts for some time, at least for the case
of GL2(F), but we so far have not found a clear statement of that in literatures.

17
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we have a more detailed description of the underlying motivation and the
strategy of Hu and Schraen.

So far, our results are still a little scattered. We will describe what we
have proved and what is still expected. To do this, we recall some further
notations.

Let o be an irreducible smooth representation of Ky, and let w be a
smooth G-quotient of indf(oa. In 3.7, Rf(c) (n > 0) is defined as the
subspace of indf(oa which consists of functions supported in Kga™I, and it
is I-stable. Omne has similar notation R, (o) for n > 0, which consists of
functions supported in Koom D], In terms of the tree of G, there is then
a natural /-decomposition of ind%oa:

ind%, o = I (o) ® I~ (o),

where I (a) (resp. I7(0)) is @p>0R;) (o) (resp. @p>oR;, (0)). Denote by
It (o,7) (resp. I71(o, 7)) the image of I (o) (resp. I~ (o)) in 7.

The preliminary results in 5.1 are mainly summarized in Proposition
5.3; besides other things it shows that I*(o,7) N I~ (o, 7) is always non-
zero if 7 is irreducible. We note that the argument of Proposition 5.3 relies
crucially on results in previous chapters.

Now we focus on the main results that have been proved. The following
two results summarize the contents of 5.2 and 5.3.

Proposition 1.15. Let 7 be an irreducible smooth representation of G which
is a G-quotient of indgoa. Let R(o,m) be the corresponding kernel. Then
the following (2) implies (1) :

(1). It (o,m) NI (o,7) is of finite dimension;

(2). R(o,7) is of finite type, as an E[G]-module.

We indeed expect (1) implies (2) too, but there is some difficulty we
have not yet conquered.

From the Hecke operator formula 7" in chapter 3, for any smooth rep-
resentation 7, we define an endomorphism of 7V as follows.

Definition 1.16. For any v € 70, Sv is defined as

_ -1
Sv = ZUEN()/NQ ua”r .

This endomorphism S has some nice properties (Lemma 5.12), for ex-
ample, it preserves [i-invariants of w. Then we may state the next general
result we have arrived at,
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1.4 Presentation of main results

Lemma 1.17. Suppose w is a supersingular representation and a G-quotient
of ind%oa. If0#wv e It(o,7) is fivred by Ny, then there is a polynomial P
of degree > 1, such that:

P(S)v = 0.

In 5.5, we explore the Ny-invariants of the space R} ,(c) ® R} (c) @
R (0)/ T(R; (o)) for k > 1 and the outcome is mainly the following partial
result, see Remark 5.33 for how it would be expected to be interesting.
Denote by Cl, the center of Ny, which is also a pro-p group.

Proposition 1.18. When F' = Q,,, o is a character of Ky, the dimension
of No-invariants of R,‘:_l @ R: @ R:_H/TU(R,;F) is at least p(p — 1).

We also expect the Proposition to hold for any irreducible smooth rep-
resentation of Ky, but we are currently not able to verify it due to some
technical reason.

1.4.5 Appendix

In Appendix A, we follow [ ] to establish that for the group G,
the category of diagrams and that of G-equivariant coefficient systems are
equivalent. This part is a bit of formal, and the details are essentially the
same as that in | ].

In Appendix B, following [ ], we give a sufficient condition for the
topologically irreducibility of p-adic principal series of U(1,1)(Q2/Qy).
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2 The pro-p Iwahori-Hecke algebra and its simple
modules

In this chapter, we describe the basic structures of the pro-p Iwahori-
Hecke algebra 777, and its component Iwahori-Hecke algebras .7 (I, x) of
G, and classify their simple modules up to isomorphism. After that, we
compute the right action of the pro-p Iwahori-Hecke algebra .77, on the
I;-invariants of the principal series. As a result, we define a simple module
of J#1, as supersingular if it is not isomorphic to a sub-quotient of the I;-
invariants of any principal series.

The structure of the pro-p Iwahori-Hecke algebra .77, of a connect-
ed reductive group (actually the group of its F-points) are relatively well-
understood now, mainly from the work of Ollivier, Vignéras. Very briefly
speaking, there exists a Bernstein-type basis in .%7,, and the sub-algebra
generated by a such basis is commutative and contains the center of 77,
over which .77, is finitely generated. The functor from the category of s-
mooth representations of G to that of modules over .77, which sends a
smooth representation 7 to its I;-invariant /1, is expected to play a signif-
icant role in the mod-p representation theory. However, also only for very
few cases, say GL2(Qp) and SL2(Qp), the full content of this functor is
understood thoroughly.
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2.1 The structure of (1, )

2.1 The structure of (1, )

Let x = x1 ® x2 be a character of I, and (1, x) be the endomorphism
algebra Endgind?x From Frobenius reciprocity (1, x) = (ind?x)l X
where by definition of isotypic, the latter is the subspace of indIG X consisting
of functions ¢ on G satisfying ¢(i1gia) = x(i1i2)¢(g) for all 41,i2 € I and
g € G. From the double coset decomposition of G with respect to I, we deal
with the structure of (ind¥ )X in the following:

Lemma 2.1. (1) Suppose that x = x°. Then the E-space (indIGx)I’X has
a basis {pan ont1, Ponon—1,1 € L}, where Yo on+1 (resp. Yanon—1) is the
function supported on Ia™"I (resp. Ifa™"I), and is equal to 1 on a™"
(resp. Ba™™).

(2) Suppose that x # x°. Then a basis for the space (ind$x)0X is
{p2n2n+1,n € Z}, where the functions @an on+1 are as described in (1).

Proof. Firstly, we note that the support of a function in (ind?x)l X is a
finite union of double cosets Twl, for some w € G and the restriction of the
function to a single coset Twl is determined by its value at w.

Let ¢ be a function in (indfo)I "X whose support is contained in Taa™"1.

n

Suppose @(a~™) # 0. Then, for any i1,io € I satisfying i;a s = ™",

X(7172) must be equal to 1. This is always true under the condition z'l_l =

“oa.

a
For a function ¢’ in (ind¥x)"X, whose support is contained in Ifa "1,
suppose ¢’ (fa~™) # 0. Then, for any i1, i9 € I satisfying i;8a s = Ba™ ",
X(i172) must be equal to 1. In other words, x(iji2) = 1 holds whenever
ifl = fa "ya™ 3 is satisfied. But this is to say x = x°.
The Lemma is shown. O

In the situation x = x*, let T, 9n+1,T2n2n—1 be the operators in
(1, x) which correspond the functions ¢y, 2n41, Y2n,2n—1 respectively. Then,
(1) of Lemma 2.1 says these operators together form a basis for the space
(1, x).

We can also form the operators 75, 2,41 for any integer n, in the case
that x # x*®, which is determined by sending ¢g,1 to @25, 2n41. Similarly, (2)
of Lemma 2.1 tells they together form a basis for (I, x).

Lemma 2.2. 1. T2n,2n+1 = T07_1T2n72n_1, fOT‘ n > 1.
2. Topon—1="To1Ton 2201, forn > 1.
3. T on—on-1="T0-1T 2n,20+1, forn > 0.
4. T 942 on1="T21T 2p, 241, forn > 0.
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2.1 The structure of (1, )

Proof. We list the formula for computing the four kinds of operators at the
function g 1:

Tonon+1(0,1) = Z i - o1, n =0,
i€EN] /N3,
T on,—2n+1(0,1) = Z ia”" o1, n >0,
ieNO/NZn
T on,—2n—1(¢0,1) = Z i "B o1, n >0,
1€No/Nant1
Ton,2n-1(0,1) = Z B o1, n =1
1€N] /NS,
All these result follows from (11) of | | directly. Then one can check the

relations in the Lemma hold without difficulty. We do the first one as an
example. We begin with the right side product, say, for n > 1,

10,1 - Ton2n—1(p0,1) = To,—1 Z i o1
i€N] /NS,
= Y "8 > jB-poa

ieN{ /N, JENo /N1

= Z i Z a"BjBa" - a1

i€N] N}, jENo/N1

= > i Y ja'un

ZEN{/Nén jleNén/Nén-‘—l

-/
= g i'a"po
iEN{/Nén+1

= Ton2n+1(%0,1),

we are done. O

It is immediate from Lemma 2.2 that

Corollary 2.3. 1. T2n,2n+1 == (To,,lTQJ)n, fO’I“ n > 1.
2. Topon—1=To1(To,—1To1)" ', forn > 1.
3. T—2n,—2n—1 = TO,_l(TQ’lT()’_l)n, fO’f’ n > 0.
4. T-op—9_9p-1 = (TonTo—1)""t, forn > 0.

Remark 2.4. Any element in J(1,x) is a unique linear combination of
monomials of the forms in Corollary 2.3, i.e., the set

{(To,-1T21)", To1 (To,—1T21)"™, To,—1(T2.1T0,—1)"™, (T21T0,—1)" T }n0
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2.1 The structure of (1, )

consists of a basis of (1, x); in particular, 7 (1, x) is generated by the two
operators Tp.—1 and Ty1. As a result, it makes sense to define the degree
of an element in S (I,x) as the highest degree of the terms in its unique
expression. We emphasize that the degree of an element defined here should
not be viewed as the ‘degree’ of the element as a polynomial in Ty _1 and
T271.

To unify many calculations in this section, we record a simple fact in
the following lemma

Lemma 2.5. (1) If Ba¥ia! € IBa™I for somei € Nj or Ny, then k+1 = m;
(2) If kil € Ia™I for some i € Nj or Ny, then k +1=m.

Proof. We check (1) in detail where (2) follows in the same way. For (1),
we only need to consider two cases: (i) : i € Ni,k < 0,1 > 0; (i1) : i €
No,k > 0,1 < 0. For example, for i € N{,k > 0, or [ < 0, (1) obviously
holds: BaFial = (BaFia=*B)Bakal € IBaFH.
The assumption means there are elements 21,79 € I such that
a~FBi Ba™isat € 1.

In the case (i), from the decomposition I = Nj-(INB) = (INB’)-Ny, one
could assume further that io € Ni and i; € Ny; as a result, the product of
elements above is a lower triangular matrix in I and one concludes k+1 =m
immediately from the fact that the diagonal entries of I lie in the units of
E.

The same trick applies to case (ii). We are done. O

Proposition 2.6. Let x = x1 ® x2 be a character of I satisfying x = x°,
and let x| be the character of k:}E given by Remark 1.4.
(1). Suppose x does not factor through the determinant. Then,

AT, x) = ETo,—1, Toal /(T§ 1, T3y + X4 (=1)T21).-
(2). Suppose x factors through the determinant. Then as an E-algebm,
H(1,X) = E[To,1,Ton]/ (T3 1 + X4 (=1 To,-1, T3, + xi (1) T21).

Proof. We note that the remark before Lemma 2.2 and Corollary 2.3 tells
that To, 1, T generate .7#(I, ). We compute first 75 _ (¢o,1)-
By definition,

TUQ,—l(‘PO,l) = TO,—I(ZZ‘ENO/N1 Zﬂ‘PO,l) = ZieNo/Nl i ¥0,—1-
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2.1 The structure of (1, )

In general, the function above is supported on a finite union of double cosets
with a form of Ia*I or IBa*I. We recall ©0,—1 is supported on I5I. If
aFip e IBI for some k € Z and some i € Ny, then &k = 0 from Lemma
2.5; similarly, if Ba*'i € IBI for some k' € Z and some i € Ny, then
clearly i € Ny \ N7, and then one must have that k¥’ = 0: if ¥ < 0, then
Bak'ip = (Bakia " B)Bak B € Ta=FI; if k' > 0, using Lemma 1.2, one see
Ba¥'iB = a1 Biy € IBaF I, for some i1 € Ny, ia € INB. In summary,
we have shown the support of T027_1(g00,1) is contained in I U IB1.

We see first
Yo iBwoa(Id)= D ¢o-1(iB)
iENQ/Nl iENQ/Nl
= ) 1=0
1€No /N1

Hence, T&_l differs from 7y —1 by a constant factor.
Next,

Y iB-go-1(B) > vo0,—1(Bi3)

iE(N()\Nl)/Nl iE(No\Nl)/Nl

= Z wo,-1(Bip).
i€n(L3)
Here L = Lo \ {(0,0)}.
By writing i as n(z,y), for (z,y) € L}, an application of Lemma 1.2 im-
plies 8i = uh;u'B for some u € Ny, ufy, € N} and h; = diag(y~1, -y, y),
hence we are led to

Z iB-po-1(B) = Z X1 xa(=gy~"). (4)

i€(No\N1)/N1 (zy)eLs;

We compute at first the part ), of (4) in which z is zero. In this case,
y = —¥, hence

Y= 2 a@ =Y xi).

yeLT] yeL]
As x is trivial on I, we could identify yx; and yo with respectively
characters of k, and k}la Then from Remark 1.4, the assumption on y gives
us a unique character X} of k%, such that x1(y) = x| (yy~!). Then,

Y=gy (W) = e XAy = —xa(=1).
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2.1 The structure of (1, )

Denote x2(x})™! by X/, then X’ is a character of k}, and it is trivial if
and only if y factors through the determinant (Remark 1.4). The remaining
part, i.e., the sum over terms in (4) for which z is non-zero, can be written
as

22 = Xll(_l) Zx#O X/(_gy_l)’
in which the sum

SXCayhH=> > > X-w

z#£0 tek§ rT=—t y+y=t

=> > X(-mwh

teky yty=t

= > X(=mwh)

tr(y)#0

Now, > Xy )=xXCD> Xy H- > X

tr(y)#0 yeky tr(y)=0, yek
=X (-1 > (@=DX0) - (¢-1)
lekl
—1-X(-1) Y X,
lek},

Now it is well-known that the last sum above is 1 if x’ is non-trivial;
otherwise it is 1 — (¢ + 1) = 0, where g + 1 is the order of k}. We are done
for the argument for the quadratic relations of Tp _1.

We now show Tb ;1 - To 1 = —x}(—1)T%,1. By definition,

Top - Toa(wo1) = Xjentng JaB - $21.

We note that 91 is supported on 1 Ba~1I, and the above function is sup-
ported on double cosets of the form Ia*I or IBa*I. That o*jaf € IBa~11
for some k € Z and some j € Nj, forces k = 0, from Lemma 2.5; similar-
ly, if Bo¥ jaB € IBa~'I, for some k' € Z and some j € N, then clearly
j € N{\ NJ, and an application of Lemma 1.2 reduces the situation to Lem-
ma 2.5, which forces k' = —1. Therefore, we have shown the support of
T2271(<p0,1) is contained in I U IBa~1I. Furthermore, we have

>jeniyny JoB - p21(Id) =32 5c i ng 20 (jafB) =0

and,
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2.1 The structure of (1, )

Djentyny JaB s @a1(Bah) = 3 5c vy g P21(Ba jaB).
An application of Lemma 1.2 to Ba~tjaf for j € (N} \ N3)/N} reduces the
above sum into

which is just —x}(—1) as we have determined before. This confirms the
quadratic relation for 15 ;.

A few words is needed to complete the proof of the Proposition. We will
do (2) for example. There is a natural homomorphism « from the polynomial
ring E~’[T07,1,T2,1] to H(I,x), which is surjective by Corollary 2.3. From
the quadratic relations of Tp 1 and T5 1 we have just proved, the s will factor
as

k1 ElTo 1, Tonl/(T¢ 1 + X4 (=) To, -1, T3, + x4 (—1)Tan) = A1, X).

For any element f in E[Ty_1, Ton]/(T5 1 + X1 (=1)To,-1, T3, + X1 (=1)T2,1),
one could choose its representative in E [To,—1,T51] as a linear combination
of monomials of the form in Corollary 2.3. By Remark 2.4, it is then clear
that f vanishes if x(f) = 0. We are done. O

Remark 2.7. In the argument of the last proposition, we have determined
the value of the sum

2 y=—gyeky X1(Y)
and the sum
E(z,y)eL’Q‘ Xl(gfl))@(—yy’l)

when x = x1 ® x2 satisfies x = x°. Later on, we will also compute their
values in the remaining case.

We turn to the case that x # x°.

Lemma 2.8. (1) T273 . T*Z*l = 0, T,Q’,l . T2’3 =0.
(2). Forn >0, Topont1 = (123)", T—on,—on+1 = (T—2,—1)".

Proof. We prove first that T53-T_o 1 = 0. By definition,

To3-To2-1(90,1) = Yieng /v, 10 923

We remind the reader that this function will be supported on a union of
double cosets with a form of Io*I, for some integers k. Recall 2,3 is sup-
ported on Ta~'I. If afia~! € Ia~'I, for some k € Z and i € Ny, then
k =0, from Lemma 2.5. We compute
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2.2 Simple modules over Iwahori-Hecke algebras

D ieNo/Ns ia” Yy 3(1d) =0,
as required.
Similarly,
Tog—1-Tos(po1) = Xieni /Ny - P21

Also, the above function is supported on a union of double cosets with a
form of Ia*I, for some integers k. Note that ¢_2,1 is supported on ITol. If
o*ia € Ial, for some k € Z and some i € N{, then k = 0, from Lemma 2.5.
We compute

> ientny o o2 1(Id) =0,
also as required. We are done for (1).

The formulae in the proof of Lemma 2.2 hold if the operators makes
sense. Then (2) follows from those formulae by induction. O

We can state the following Proposition:

Proposition 2.9. For a character x of I which satisfies x # x°, we have
an isomorphism of E-algebra :
H(I,x) = ETy3,T-21]/(To3 - T9,-1, T-a,—1 - Th3).

Proof. This follows from Lemma 2.8 and the remark before Lemma 2.2. [

Remark 2.10. In the following sections, sometimes we will use the no-
tations T2>f3 and Ti{Q,—l for Ty 3 and T_2 _1 to indicate that they are in
H(1,x), not in A (1,x°), when x # x°.

2.2 Simple modules over Iwahori-Hecke algebras

After determining the structure of (I, x), we turn to the simple mod-
ules over them. We begin to investigate the center &, of J#(I,x). We have
shown (I, x) is commutative if x # x°. Hence, only the case x = x* is
need to be considered:

Lemma 2.11. (1). Let x be a character of I which factors through deter-
minant, then € = E[C], where ¢ is the operator

L+ x1(=1) - To,—1 +x1(=1) - Toy + To,—1 - T+ T21 - To, -1

(2). Let x be a character of I which is fized by s, but it does not factor
through determinant, then 6, = E[c'], where ¢ is the operator

X1(=1) - To,—1 +To,—1 - Ton + T2 - To, 1.
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2.2 Simple modules over Iwahori-Hecke algebras

Proof. Tt can easily be checked that the operators ¢ and ¢’ are in the center.

We will prove (1) in detail. Suppose x is a character of I which fac-
tors through the determinant, and we see 7 : J€(I,x) = #(I,1). This
isomorphism comes from the isomorphism ¢ : ind?x >~y ® ind?l of repre-
sentations, where the x’ on the right hand is an extension of y to G. We
write ¢ explicitly on the basis elements gpg 1:

tiogpon = X (911,

from which the basis {Ton 2n+1, T2n2n—1,7 € Z} correspond via 7 to the
following:

/
Ton2n+1 — Tonont1, Ton2n—1 — X (B)Ton2n—1,

but, x'(8) = x}(—1) as one can check.
For (1), we then reduce to the case 7 (I,1) = 7. It results from the
following Lemma:

Lemma 2.12. Denote by € the center of 7.

(1) Each non-zero element of € is of even degree.

(2) For a non-zero element in € with degree bigger than 0, its coeffi-
cients of the two terms of highest degree are the same.

Proof. We note that the statements make sense from Remark 2.4. Both can
be checked directly. d

Given a non-zero t € ¢, by (2) of Lemma 2.12, one could find some
non-zero a € E and a non-negative integer n such that t — ac®(€ %) has
smaller degree than t. If it is zero, we stop. Otherwise, we repeat the former
process for a finite times, which finally leads to zero, i.e., t € E [c].

We have proved (1) for 7. Via the isomorphism H, we have indeed
shown (1) in general.

For (2), one firstly shows an analogue of Lemma 2.12, then the result
follows from that as above. O]

Remark 2.13. From Lemma 2.11, 7(I,X) is finite over €, as an algebra.
In fact, 7€(1,x) admits bigger commutative algebras, for example, €\ [T 1],
over which (1, x) is of rank two, with the basis {1, To _1}. If E is alge-
braically closed, the simple modules of 7 (I, x) are at most two dimensional.
Later on, we assume E is algebraically closed.

Proposition 2.14. Let x = x1 ® x2 be a character of I which is fixed by s.
The characters of (1, x) are the following:
If x factors through the determinant,
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2.2 Simple modules over Iwahori-Hecke algebras

. T07_1 — 0, T271 — 0;

. TO,—l — 0, T271 — _Xll(_l);

. To’,l — —Xll(—l), T271 — O;

4). To—1 = —x1(=1), Toq = —x1(-1).

~ T~
V)
— — — ~—

If x does not factor through the determinant,
(1/). T07,1 —> 0, T2’1 —> O;
(2/). T07,1 — 0, T2,1 — —X’l(—l).

Here we understand a character of an algebra as a morphism from itself
to the coefficient field, hence in the above we only specify the values of the

generators.

Let x = x1®x2 be a character of I which is fixed by s. Let (vi,vs) 5 be
a two dimensional E-vector space, on which a two dimensional simple right

A (1, x)-module is defined by:

Definition 2.15. If x factors through the determinant, A € E, X # 0,1,

0 0
(v1,v2) To,—1 = (v1,v2) (1 ) ,

—xi(=1)
(v1,v2) To 1 = (v1,v2) (Xllél) ())\) )

The central operator ¢ acts as scalar .
If x does not factor through the determinant, A € E,\ # 0,

(v1,v2) To,—1 = (v1,v2) (0 0) 7

1 0
(v1,v2) To 1 = (v1,v2) <_Xll(§_1) g) .

The central operator ¢ acts as scalar \.

Proposition 2.16. Any two dimensional simple module of F(I,x), on
which the central operator ¢ (or c') acts as a scalar \, is isomorphic to the
corresponding one defined in 2.15.

Proof. We show the first case in detail.

Let M be a two dimensional simple module over .7 (I, x), on which
the central operator ¢ acts as some A € E. From the quadratic relation for
To,—1, we can choose a basis {v1, v2} in the underlying space of M, such
that :
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2.3 Second Iwahori-Hecke algebras and their simple modules

-x1(=1)

Here, it is clear Ty —1 can not act as a scalar, otherwise 751 would act as a

(v1,02) T2 = (v1, v2) <(1) 0 ) .

scalar too, due to the assumption on the central operation c.

Assume the matrix of T5; under the above basis is (a;;), then from
the condition that ¢ acts as A and the quadratic relation for 751, we see
immediately:

A=1+anxi(—1)+ a2, a1 +ax =—-xi(-1),
a12a = —aii(an + xj(=1)).

The simplicity of M implies that A # 0, 1, from which we see a5 # 0.
We choose another basis, say {v],v5}, where

v =v +xi(-1)(1 - al_zl)\)vg, vh = al_glx\vg,

then one see that the matrices of Ty 1 and T ; under the new basis are
those stated in Definition 2.15. We are done.

The second case could be shown similarly, and we don’t give details
here. O

2.3 Second Iwahori-Hecke algebras and their simple modules

Let x be a character of I which satisfies x # x*. Recall we have shown
in Proposition 2.9 that J7(I,y) = ENV[TQ,g,szfl]/(TQ’g T o 1, T_9_q -
Ty3). In this section, we use the notation Tyy and T, | for Taz and
T_ 91 to avoid confusion. For any integer n, let ¢, ,s be the function
in ind¥x®, supported on IBa™I, and nys (Ba™) = 1, and ¢y s (i19i2) =
X° (1) Pns (9)x(i2), for any i1,i2 € I,g € G. Then {¢, s, n € Z} is a basis
of (ind¥x*)!X. Via Frobenius reciprocity, we get a basis { s, n € Z} for
Homg (indy, ind¥x®), in which Y,y is determined by 1y, ys(©y) = &n s,
where ¢, is the function in ind?x, supported on I and taking value 1 at the
identity of G.

Proposition 2.17. The morphisms g ys, 1¥_1,ys generate Homg(ind?x, indIGXS),
as an F(1,x°)-H (I, x)-bi-module. In more words,

(1)

Forn >0, ¢n,xs © T2X,3 =0, wn,xs © TEQ’,l = wn+1,xs7
Forn > 0,9_pys 0 T2>f3 = Y_(nt1) x5 Yonxs © Ti(Q,—l =0.

(2)
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2.3 Second Iwahori-Hecke algebras and their simple modules

x° _ X° _
Forn > 07 T72771 o l/JnVXs = 0, T2’3 ¢} wmxs = ¢n+17XS’
x° _ x* _
Forn>0,T% jov_nys =¢_(ny1)xs> To50%—nyxs =0.

Proof. We will verify the formulas in (1) in detail, where those in (2) fol-
low completely in the same way, using the formulas in Lemma 2.2 and the
definitions. Note that the first statement follows from the formulas in the
Proposition.

By definition, for n > 0,

U 0 To3(0x) = Ynxe ient/ng 10 Px) = Dient/ng 10 Gniys-
We recall the above function is supported on a union of double cosets with a
form of I8a*I. Note ¢n,ys is supported on IBa" I, and BaFia lies in IBa™]
for some ¢ € N{/Nj only if k =n — 1, from Lemma 2.5.

When n > 0, we have

Z Q- P s (/Banil) = Z ®n,xs (/Banilialinﬁﬂan)

i€N1 /Ny i€N1{ /Ny

When n = 0, we also have

Dient g o (Balia) = 3o niny Goos (Ba~ tia) = 0,
where we note that Sa~lia € Ia~!I for i € Nj \ N} by applying Lemma
1.2.
We have verified 1, 0o T5 3 = 0, for n > 0.
Similarly, we have from definitions that, for n > 0

Yy © T2X,3(90x) = Zz‘eeN{/Ng - P s
Also, the above function is supported on a union of double cosets with a form
of IBa*I, for some integers k. We remind the reader ®—n,ys is supported on
IBa"I. If Ba¥ia lies in IBa™"1, for some i € Nj/N}, then k = —(n + 1),
from Lemma 2.5. We proceed to compute
ZieN{/Né i popye (Ba V) = 3001y ¢nye (Ba” i) =1,

where we claim that Sa~(""Via ¢ Ifa"I for i € N| \ Nj.
Recall we are in the case that n > 0. Assume there are elements
i1,19 € I such that

"t BiiBa g™t € Nj\ N3, (5)
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2.3 Second Iwahori-Hecke algebras and their simple modules

Using the decomposition I = (B N I)- N{ and multiplying both sides of
the above identity by some elements in N3, one could assume i € BN T
and i1 € B’ N I, where a contradiction arises from the fact that an upper
triangular matrix can not be a non-trivial lower unipotent matrix. Hence the
claim. In the following many calculations, the above trick to check something
like (5) does not hold will appear frequently and we will cite it to avoid the
repeated computations.
Also, for n > 0,

Yy © T§27—1(<Px) = ZieNO/NQ i(flqﬁn,xs'

We note ¢, s is supported on Ifa™I. If Bakia™! lies in IBa™I, for some
i € No/Na, then k =n + 1, from Lemma 2.5. We compute

ZieNo/NQ milén,xs (ﬂanﬂ) =D im1d Pnx (5()‘”“1'0471) =1,

where one could check that Ba™lia~! ¢ IBa™I for i € Ny \ Na, via the
same process used in the first case.
Lastly, for n > 0,

Yonxs O T§2,71(@X) = ZiGNO/NQ m_lqﬁ—mxs-

Note ¢_, s is supported on Ifa™"1. If Bakia~! lies in IBa "I, for some
i € No/Na, then k = —n + 1, from Lemma 2.5. And we compute

Z Z‘Ozflgzs_nyxs (Bafn+1) — Z (;S_mxs (Bafrﬁlian*lﬁﬁafn)

iENo/Nz iGNl/NQ

T Y bape(Bat o),

iG(No\Nl)/NQ

In the above, the first sum is clearly zero. We check the second sum is also
zero. When n = 1, we have fia~! € Ia~I fori € No\ N;. When n > 1, we
see Ba " Tlia""13 € Nj for i € N\ N7 and the cardinality of (Ng\ N1)/N2
is (¢*> — 1)g. The claim is then verified.

We are done for the proof of (1). O

Remark 2.18. We have a natural isomorphism between the algebra 7 (I, x)
and F(1,x*), which is determined by sending T2>f3 and Ti‘2771 to Tf;fl
and T2X; respectively. Under this isomorphism, Proposition 2.17 says the
bi-module structures of Homg(ind$x, ind¥x®) coincide.

Corollary 2.19. As a right module over (1, x), we have

Home (ind§'x, ind¥x*) = (1, %)/ (T)s) & (I, x)/(TX, _y).-
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2.3 Second Iwahori-Hecke algebras and their simple modules

Proof. From the descriptions of the space Hom(ind%y, ind¥x®) in Proposi-
tion 2.17, we have a natural surjective (I, x)-morphism from .7 (I, x) &
A (1,x) to Hom(ind¥y, ind¥x®), and the kernel is given by Proposition
2.17. We are done. O

Remark 2.20. In contrast to the case of GLa ([ /), we point out a
corollary from last result that indIGX is not G-isomorphic to ind?xs.

Proposition 2.21.

, ifm>0,n2>0,
T, )™, ifm >0, n=-1<0,

—~ O

TY) ", ifm=—t<0,n>0,

)

, ifm <0, n<0.

(6)

Uny © Umys =

o /™

Proof. In view of Proposition 2.17, the results are reduced to checking some
initial cases.
For n > 0 and m > 0, we have, from Proposition 2.17,

Vn,x © Ym,xs = Yo,y © (Tf;,—ﬂn o (T2X:Sa)m 0 tho,xs;
hence we only need to treat the case n = m = 0. By definition, we have
Foo = o, 0 Yo (0x) = D jeng/ny JBP0x-

As ¢p, is supported on 131, if a*jB € IBI for some k € Z and some j € Np,
then k£ = 0, by Lemma 2.5. Hence,

FO,O(Id) = ZjeNO/Nl ¢0,x(j5) = ZjENO/Nl 1=0,
i.e., Fpo = 0. In all, we have verified v, \ © 1y, s = 0 for n,m > 0.

For n > 0 and m = —t < 0, from Proposition 2.17 and Remark 2.18

Py © Ytxs = oy © (Tfi_l)” 0150 (T%S)t_l
= o, © P15 © (T2X,3)n ° (Tgfg)tila

hence we will be done in this case if we could show gy 0 9_1 s = T§f3. By
definition,

Fo,fl = wo,x o w—l,xs (‘Px) = ZjeNé/Né jap ¢0,X~
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2.3 Second Iwahori-Hecke algebras and their simple modules

Note that ¢, is supported on 31, and if o*jap € IBI for some k € Z

and some j € Ny, then k = —1, from Lemma 2.5. Hence
Foila) = Y jaBgoy(a™)
JEN{/NY
=) goylajaB) =1,
j=Id

where one may check a~1tjaB ¢ IBI for j € Nj\ Nb, using trick (5).
The remaining cases could be proved in the same way and the details
are omitted. O

Following [ |, we call F2(1, x & x*®) the second Iwahori-Hecke alge-
bras, for a character x of I such that x # x®. Then, we show,

Proposition 2.22. Let x be a character of I such that x # x°. Then,

E[X,Y]/(XY) E[X]@ E[Y] )

H(I,x & x°) = ( ElY]® E[X] E[X,Y]/(XY)

in which, when the isomorphism is restricted to (1, x) (resp. (1, x*)),
it sends TQX,3 (resp. Ti‘;fl) to X, szﬁl (resp. Tﬁf;) toY.

The algebra on the right side is denoted by Mx y, where the operations
are those of matrices under the rule that asia1a = a12a01 =Y f1(Y) f5(Y) +
XAX) fo(X), if a2 = (fi(X), f3(Y)), a21 = (1Y), f2(X)).

The isomorphism depends on the order of the pair (x, x*).

Proof. The second Iwahori-Hecke algebra is the space of G-homomorphisms
of the direct sum of two representations of GG, hence it can be written as
a quasi-matrix algebra with a form in the proposition, see 2.8 of | ].
Now the underlying multiplicative operations of the quasi-matrix algebra are
simply translated from Proposition 2.17, Proposition 2.21, and Proposition
2.9. O

The center of Mxy is C = {diag(f, f), f € E[X,Y]/(XY)}. Let D
be the commutative sub-algebra D = C[Iy, T1] of Mx y, where

(0 (0,1 [0 (1,0
TO_((l,O) 0 )’T1_<(0,1) 0 )

Then M(X,Y) is finite over D, with two generators tg, t1:

L (ro) , _foo
= 1o o) o 1)
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2.3 Second Iwahori-Hecke algebras and their simple modules

For a pair (z,y) € E?, such that zy = 0, let X(z,y) be the character
of C given by (s, (diag(f, f)) = f(z,y). We extend this to a character
of D by specifying Ty and 77 to square roots of y and = respectively. For
such an extension, say X(z,y/7 /7)) WE form the standard module of Mx y:

I($a Y, \/57 \/Zj) = X(;c7y,\/§7\/g) ®D MX,Y-

Proposition 2.23. (1). For (z,y) = (0,0), the standard module 1(0,0) is
the direct sum of two different characters:

1(0,0) = C(1,0) ® C(0,1),
where

C(1,0): T, 0,i=0,1, tg s 1,41 — 0,
C(0,1): T, 0,i=0,1, tg > 0,41 — 1.

(2). For(x,0), x # 0, the standard modules I(x,0,/x,0) and I(x,0, —/x,0)
are simple, two dimensional and isomorphic.
(3). For(0,y), y # 0, the standard modules 1(0,y,0, /y) and 1(0,y,0, —/y)

are simple, two dimensional and isomorphic.

Proof. As Mxy is of rank 2 over D, the standard module I(z,y, /=, \/¥)
induced from a character X(2,y,v/Z/F) of D is generated by X(zy/zy5) ED 1o
and X(z.y,/z,/7) OD t1 . All the conclusions in the proposition can then be
checked immediately by hand. O

Remark 2.24. Any simple module of Mxy with a central character has
appeared in Proposition 2.25.

The characters of 7 (I, x® x®) which correspond to C'(1,0) and C(0, 1),
via the isomorphism in Proposition 2.22 are denoted respectively by

Cy(1,0) = Cys(0,1) and C(0,1) = Cys(1,0).
Similarly, we denote by

Mx(x,y, \/Ev \/ﬂ) = st(y7x7 \/@7 \/E)

the simple module of (I, x @ x*) which corresponds to I(x,y,/x,/¥),
via the isomorphism in Proposition 2.22.
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2.4 The structure of J77,

In this part, we describe the structure of .77, = Endg(indIG1 1), i.e., the
pro-p Hecke algebra of G:

The Iwahori decomposition of G leads to a double coset decomposition
of G with respect to I7:

G = UneN/H1 Iinly,

from which we see that the space of I1-invariants of indg 1 has a natural basis
{111, n € N/H;}, in which 17,7, € indﬁl is the characteristic function
of I1nI. Via Frobenius reciprocity, there is a basis {T},, n € N/H;} of
H1,, where T, corresponds to 17,1, i.e., Tp,(17,) = 111, We would like
to select some generators from these T,.
As H = I/ = Hy/H,, we will identify the characters of these groups.
For a character y of H, we define an operator e, in J,:

ex = [H|7' Xpeq X(B)Th,

where one notes that |H| = —1 in E.

Let ¢y = ey(17,), and as we have mentioned before, it is the function
in ind%y, supported on I, with oy (1) = x(4), for i € I.
Proposition 2.25. (1). (ey)? = ey; ey ey =0, if x # Xs ex(indIG1 1) =
indy.

(2). For an element n € N'\ H, we have Tey = eysTh,.

(3). If x factors through the determinant, then

Tgoex = —Tpg,ey; otherwise, Tgoex =0.
(4). If x = x°, then
T§1 ex = —1p,ey; otherwise, T,62’1 ey = 0.

Proof. (1) and (2) can be computed directly from definitions. (3) and (4)
can be reduced to a special case of Theorem 4.4 in | ]. O

One notes that H is an abelian group of order prime to p, so the char-
acter group " is isomorphic to H. Then one can always recover each T},
from the expression of ey, i.e., T}, is a linear combination of all the e,.

Proposition 2.26. The operators Tp,, Tg,, ey for all the characters x of
H, generate 7, as an E-algebra.

Proof. This comes from the following Lemma:
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2.4 The structure of .77,

Lemma 2.27. (1). {e, -Tn; n € N/Hy, x € ﬁ/\} is a basis of 1, .
(2) Tan = (Tﬁ’ . Tg)n, Tﬁan = Tg(Tﬁ/ . Tg)n, fOT n > 0.
T, = (Tlg . Tﬁ/)n, Tﬁa—n = (Tﬁ/ ~T5)n_1T5/, forn > 1.

Proof. For (1), we note firstly that, T,T,, = Thn, TyIn = Tpp, for h €
H, n € N. As each T}, is an E-linear combination of ey, we see that the set
{ex Tn; n € N/Hy, x € H"} spans #7,. To see the operators in this set are
linearly independent, in view of (1) of Proposition 2.25 we are reduced to see
the functions in the set {e, - T,,(17,); n € N'/Hp} are linearly independent,
for a fixed character x. This is the case, as the support of e, - T}, (1r,) is
InI from the definition of T,,, and N'/Hj is a set of representatives for the
Iwahori decomposition of G, which tells us that e, - T,,(17,) have disjoint
support for n € N'/Hy. We are done.

For (2), via the same process in Lemma 2.2, one can check similar
induction relations hold in this case. Then the result comes. O

Let hg be the matrix diag(—t~1,1,¢), and T}, has the inverse Th51 in
jﬁl. Then ﬁo = hoﬁ, ﬂl = hoﬂ,. Hence Tﬁo = ThoTﬂv T@l = ThoTB" In view
of the above Lemma, one see the Proposition is true. O

Remark 2.28. Let w be a smooth representation of G. Let v be a non-zero

Iy

element in w''. We see the right action of Ty, on v is

-1 —1
v|Th, = > Jhy* v =hy v.
jeh/Linhy  T1ho

Proposition 2.29. There is an isomorphism of E—algebms:
<%011 = @xsz%(Iv X) Dxxs <%’ﬂ(LX S5 Xs)a

Proof. As indfll = @, X, we see that inlell = Dy indlcx, where x goes
through the characters of the group H = I/I;. For two such charac-
ters x and X/, from the Frobenius reciprocity and the decomposition of
restriction of induced representation to subgroup, we can conclude that
Homg(ind¥x,ind¥y’) # 0 if and only if ' = x or ¥’ = x*. Then the
Proposition follows. O

Theorem 2.30. The simple modules listed in Proposition 2.14, Proposition
2.16, and Proposition 2.25, give all that of 77, .
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2.5 Non-supersingular modules of J77,

Given a character ¢ of the standard Borel subgroup B of G and gy =
X1®x2 be the restriction of e to Hy. Let (g1, g2) z be the basis of (ind§ )1,
in which g; and gy are respectively supported on BI; and BB, satisfying
that gi(Id) = g2(B8) = 1. This space admits a natural right action of 7.

Proposition 2.31. The right action of 71, on (ind$ &)t is as follows:
0
1
on whether €y factors through the determinant or not;

(91, 92)Ts = (g1, 92) (a(1)1 5((;)4)

pending on whether ey = €; or not.

(91, g2)ex = (915 92) (allo(X) agzo(x)) where an(x) = 1 if X = €o;

otherwise a11(x) = 0. a2 (x) = 1 if x = €§; otherwise aza(x) = 0.

(91, 92)T5 = (91, 92) , where aze = —x(=1) or 0, depending

), where a;n = —x1(—=1) or 0, de-

Proof. The action of e, on f; is

gi‘ex = ’F|71 Zheﬁ X(h)hilglﬁ

and the result follows directly from valuating these functions at Id and S.

From Proposition 6 in [ ], we have
9i|Ts = > jﬂ'gi:ZjeNo/Nl JB - g,
jel/hinNBh B
9il Ty = > iB - gi = ZjeN{/Né iB" - gi.

JjeEL/IinB 1B
Case 1, g9 = ¢,
Certainly ZjeNo/Nl jB-g1(Id) =0, as g1(jB) = 0 for all the j € Ny/Ny.
For szNO/Nl jB - g1(B), one see the first term for j € Ny is equal to 1. To
see the remaining terms are all zero, for a j = n(z,y) € No\ Ny, i.e.,y € Ug,
we have from Lemma 1.2 that:

Bn(z,y)8 =n(y 'z,y )diag(y", -y~ 'y, y)Bi, for some i € No,

and this gives the result. Hence, g1|Ts = go.
ZjeNo/Nl jB-g2(Id) is also zero, as every term is 1 and #No /N1 = ¢°.
The term for j € Ny in ZjeNo/Nl jB-g2(p) is zero. From the above identity,
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2.5 Non-supersingular modules of 77,

we get

Z j/B ' gQ(ﬂ) Z EO(diag(y_lv _y_lga y))

JE€(No\N1)/N1 n(z,y)€(No\N1)/N1

= > X1 Hxa(-y'9),

n(z,y)€(No\N1)/N1

where we write g = x1 ® x2, and X1, x2 are respectively characters of kj
and k}la This is the sum we have dealt with in the argument of Proposition
2.6. By Remark 1.4, the condition £y = &f) implies there is a character x} of
k},, such that x1(z) = X (z27!) for x € k. Then, if gy factors through the
determinant,

Zje(NO\Nl)/Nl JB - g2(8) = =x1(—1);

otherwise,

Zje(No\Nl)/Nl iB - g2(B) =0,
In summary, g2|T3 = 0 or — x}(—1)g2. We have shown the first half in Case
1.

The term for j € NJ in ZjeN{/Né jB' - g2(Id) is e(«), the other terms
are all zero (see the identity for such a j3 below). On the other hand,
ZjeN{/Ng JB - g2(8) =0 (Bjp" € B for j € N{/N3). Hence g2|Tp = (a)g1

Every term in the sum EjeN{/Né iB - g1(B) is e(a1), and the sum is

!/ ! - AR -l

zero as #Nj/Nj = q. The term for j € Ny in the sum 3, yo /g 36"+ 91(1d)
is zero. For a n/(0,wgy) € Ny \ N}, we have

iB = nidiag(g~t, —y~1¥, y)na, for some ny € N_1, ng € Ny,
therefore,

Yjenpg 38 g1Id) = 30 xa(g ),
yeL]

which is equal to —x/ (—1) as we know. We have shown g;|Tg = —x}(—1)g1.

Case 2, gg # €y,

in view of Case 1, we are left to show the following two sums both
vanish:

o iBe®B =Y. @ Hxel-y 'y,

jENo/Nl n(w,y)ENo\Nl
Yo i aId)y = xam ).
JENT/Ng yeLy

For the second sum, in the notation of 1.1, it’s equal to
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—2
;1:0 X1 (t)2l+1,

where t = [u]qTJrl and u is a generator of k};, defined in section 1.2. However
the condition gy # & is equivalent to x1(t)> # 1. Then the above sum is
Z€ro, as t2(a=1) = 1,

For the first sum, it can be decomposed into two parts: the first part
for which x vanishes is just the second sum. The remaining part of the first
sum is then reduced to

> oxi@ ey ) = X xaw)xe(—y'y).
()0 ()0

We note that tr(y) # 0 means —y~'§ # 1. Foraz = w0 € kL, #1,
for some I, 1 <1 < g, the solutions y of the equation —y =1y = z (over the
finite field kg) are Mane ol watm gy = 0,. .. g — 2. We can then rewrite
the above sum as:

Z?Zl XQ(U(q_l)l) Z?n_:zo Xl(ulJrqgiJr(qul)m)
which is just
X1 () S0y xa(ul=Dh) - x (ul) I xa (ulrtDm),

The condition y1(ud™!) # 1 tells the inner sum of the above is zero. We are
done. O

Corollary 2.32. The modules (ind% €)'t of 3, in Proposition 2.31 are
reducible, if and only if e(a) = 1 and e factors through the determinant,
i.e., € factors through the determinant.

Proof. This can be verified directly, in light of the above Proposition. [

2.6 Supersingular characters

In light of the results above, we would like to select those simple modules
of 77, which does not appear in the I;-invariants of principal series.

Definition 2.33. Let x be a character of I, satisfying x = x°. Let (v) be
a one-dimensional vector space, on which we define a right 77, -module:
(1) Suppose x factors through the determinant,

CI: U‘€X:U,U-T50:O,U~T51:—v;
Co: veey=v,v-Tg,=—-v,v-Tp =0.

(2) Suppose x does not factor through the determinant,
Cs: v'eX:U7U'T50:Ovv'T51:O;
Cy: veey =v, v-Tg, =0, v-Tg = —v.
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Definition 2.34. Let x be a character of I, satisfying x # x°. Let (v)z be
a one-dimensional vector space, on which we define a right 77, -module:

Cs: veey=v,0-eps=0,v-Tg =0, v-Tp =0;
C : U'GX:()’U'GXS:UvU'TﬁO:OvU'Tﬁlzo‘

One calls the characters defined in Definition 2.33, 2.34 supersingular,
as they are the simple modules of .77, which are not from the I;-invariants
of principal series of GG, according to Proposition 2.31 and Theorem 2.30.
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3 The compactly induced representation indIG(OJ

The content of this chapter is to understand the compactly induced
representation indﬁoa for any irreducible smooth representation o of Kj,
for which we have mainly arrived at the following:

We first describe the structure of the spherical Hecke algebra 7 (K, o),
which is the content of section 3.1. The main result is Corollary 3.4.

We next move to describe the action of #7, on the I;-invariants of
ind%oa, which is the main focus of 3.2. Especially, we prove a codimension
result, Proposition 3.11, which is an analogue of a result of Barhel-Livné on
GL5(F) and crucial to many later arguments of this thesis.

Another major part of this chapter is an explicit formula for the Hecke
operator T', Lemma 3.12 and Proposition 3.13, which takes space in 3.3. As
an application, we show ind%oa is free over ¢ (K, o) when o is a character
x - det of Ky, or a twist of St by a character: x - det ® St, where St is the
inflation of the Steinberg representation of G(kr). We indeed conjecture this
holds for any irreducible smooth representations o of Ky and prove it under
a natural assumption. However, based on results we have proved in section
3.1, it is immediate to show that a compromise result holds (Proposition
3.18): indfG(Oa is faithfully flat over (Ko, o).

In 3.5, we describe the G-Hom space from ind%oa to a principal se-
ries, and show that it is at most one-dimensional®. Then we determine the
eigenvalue of the natural action of J#(Kj, o) on that space.

In the remaining part of this chapter, we first provide more information
in 3.6 for the Bruhat—Tits tree A of (G, which is used essentially in Chapter
4.

We end this chapter in 3.7 by some computations on the behaviour of
the I;-invariants of ind%’goa under the action of the operator 7'

®This has been proved firstly in | ].
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3.1 (Ky,o) as a polynomial ring in one variable

3.1 J?(Ky,o0) as a polynomial ring in one variable

Let (o, W) be an irreducible smooth representations of Ky, ind[G(OG be
the compactly induced smooth representation, i.e., the representation of G
with underlying space S(G, o)

S(Gyo)={f:G—=>W: f(kg)=0(k)- f(g), forany k € Kyand g €
G, locally constant with compact support }

and G acting by right translation.

Denote by ¢ (Ko, o) the endomorphism algebra Endg (ind%oa).

From Proposition 5 in [ ], one has J(Ky,0) = Hk,(0), where
Hu, (o) is the algebra defined as:

Hi,(0) ={f: G — End(W) : f(kgk') = o(k)f(g)o(K'), for any k,k’ €
Ky and g € G, locally constant with compact support}

where the multiplication is defined by convolution: for hy, he € #%,(0)

ha xha(x) = 3 eq/x, hi(g)he(g~ ), for x € G.

As K} acts trivially on the representation o and G(kp) & Ko/K§, we
identify o with the inflation of an irreducible representation G(kr). As
usual, denote by oo the subspace of Ny-invariant of ¢, and by on, the
quotient of o by the subspace o(Ny) generated by the set {u-v —v:u €

N,

. . . !
No,v € o}. We use similar notations for ™o and ON-

Lemma 3.1. o™ and on; are both one-dimensional. Furthermore, the
image of o™° is non-trivial in ONg, via the natural composition j%: oo —
o= OoNg- Furthermore, we have

o=ocNo@o(N)).
Proof. See | |, Theorem 6.12. O

Let j, be the linear map in Hom(aq,all), which is the inverse of jX
described in Lemma 3.1. Especially, we see j,(0) = v for v € ot and it
vanishes on o (I7).

One notes that there is a unique constant A\g, € E, independent of the
choice of non-zero v € ¢/, such that

a(B)-v—Agev e a(lf).

Remark 3.2. It is known from a recent preprint (| |, Proposition 3.17)
of Henniart and Vignéras that Ag, is non-zero if and only if o is one-
dimensional. In fact, it is directly to verify o = St, see Proposition 4.1/.
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3.1 (Ky,o) as a polynomial ring in one variable

We record the value of g, as follows

n(—1), if o =nodet,
Aso =
0, otherwise.

Recall the double coset decomposition of G with respect to Ky, say
G = Un>0 Koo Ky.

Let ¢ be a function in 7%, (o), supported on the double coset Koo K.
Then, for any k1, ko € Ko, satisfying k1a™ = ok, we are given o(k1)p(a™) =
p(a™)o(kz). Whenn = 0, p(Id) commutes with all (k). As o is irreducible,
we must have that ¢(Id) is a scalar.

For n > 0, let k1 = n/(@'hz, w2'y),z,y € op, then o(k1) = 1, as ky €
K}. And now ke = a k1™ = n'(z,y). Hence, p(a™) = p(a") - o(n'(z,y)).
We see p(a") factorizes through oy, Similarly, for k1 = n(z,y), 2,y € og,
we get o(n(z,y))p(a™) = @(a™), which is to say that Im(p(a”)) € o't. In
other words, ¢(a™) should only differ from j, a scalar. Then we are led to:

For n > 0, let ¢, be the function in %k, (o), supported on Kpa" K,
determined by its value on a™: po(Id) = Idw, pn(a™) = j,, n > 0.

Proposition 3.3. {¢,}n>0 consists of a basis of #%,(c), and they satisfy
the following convolution relations: forn >1,1> 0,

0, l#n, n+1;
p1xon(d) =1 c jo, 1=mn; (7)
jm l:n+17

where ¢ is some constant in E, dependent on o (the exact value of ¢ is given
in the final part of the proof).

Proof. By definition, forn > 1, 1 > 0,

p1#pn(al) = Yoeak, P1(9)enlg o).

As the support of @1 is KoaKo = Uek,/Konakoa—1 kKo, the sum becomes

2 ke Ko/ KonaKoa—! o1(ka)p,(a Tk~ 1at)
= Z’ﬁEKo/f ZkgeN{/Né ‘pl(kll’@a)%pn(a_lk;lk’flal).

For further calculation, we split the above sum into two parts, say,

Si= Y e1(Bkaa)on(alky ! Bal)

ka€N; /N

and

Yo = Dieny/Ny Sksentyng P1(kikea)on(a” by ko).
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3.1 (Ky,o) as a polynomial ring in one variable

Then we claim ), is always 0. We go into more detail in the following:
> 1 could be simplified as

o= X o(Bjevnlahy Bal).

ko€ N /N}

We note at first that a‘lkz_lﬁal e KooK, hence we only need
to consider the case when [ + 1 = n. In this case from the definition of ¢,
the sum ), is reduced to

21 = ZkQ U(B)j00</8)jav
which is clearly zero, as it is counted ¢ times.
For the remaining Y _,, we note the part Y ] for which k1 € Nj\ N7 is
equal to 0. A simple calculation using (3) gives
a*lkglkl—lal — k./a*(lJrl)k,//,
where k' € Ny and k" € Ky. As a result, when [ #n —1, Y] = 0. When
[l =mn —1, one can re-write 2,1 as

/
Zl = Ekjg (Zkl f/)7
where f’ is now a function only related to ki. As the inner sum of 2,1
is counted ¢ times, it is zero. For the concrete form of f’, one needs to
distinguish = 0 or not, and we don’t record it here as it is not necessary.
The other part depends:

Jo l=n+1,
Skenyng P1(kaa)pn(akyal) = S e o, 1=,

0, otherwise,

where ¢ is the constant in E determined from the following:
ZyeL’{ Jo - 0—(5) “Jo - J(diag(y7 7_y71)) =cJo-

From the definition of ¢;, the above sum, denoted by Zg, is reduced
to

/2/ = Zkg ja@n(a_lkglal)-
We treat an exceptional case first: when [ = 0, each term in 3} is non-zero
only if n = 1; but in this case, the sum itself is clearly zero. We assume
I > 1. For the term ko € N}, we get jyon(al™!), where we note that j, is
trivial on o(I]). Hence, it is non-zero if and only if [ = n + 1 and in this
case it is equal to j2 = j,. For the remaining terms in Y 5, we use (3) again

a (0, wpg)a! = n(0,wpy o diag(y !, 1,5)u’'B,
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3.1 (Ky,o) as a polynomial ring in one variable

for some u’ € Nj. Therefore, each term is non-zero if and only if [ = n, and
in that case, we get

ZyGL’l‘ jo’ : 0-(16) : jO’ : U(dla‘g(gv 17 y_l))a
which should be nothing but a copy of j,, say ¢ - j,.

Let x = x, be the character of I, which is determined by o, from its
action on o', Then, we can make more clear about c¢ :

PR Rt xi(=1), ifx = x%,
0, otherwise.

We are done. O

From the above Proposition, we see immediately that o1 * @, = ¢-@n +
©n+1. Let T, be the operator in 57 (Ky, o) which corresponds to ¢,, via L,
and put 7= T;. Then we have,

Corollary 3.4. (K, o) is isomorphic to E[T).

We will use the following variant of last Proposition in some later ar-
gument.

Corollary 3.5. Let o and o' be two irreducible smooth representations of
Ky. Denote by T and T' respectively the Hecke operators in A (Ko, o) and
H (Ko, o), defined from Corollary 3.4. Then we have

(1). The space Homg(ind%)a, ind]G(OU') # 0 iff Xo = Xo'-

(2). Assume the condition in (1) is satisfied. Then, the natural 7 (Ko, o')—
(Ko, 0)-bi-module structures coincide in the following sense. More pre-
cisely, there exists a unique constant ¢, o, and for any L € Homg(inle(oa, ind%)o" )
and all polynomial f

Lo f(T) = J(T' + o) o L

Proof. As in the case ¢ = o/, one can identify 7 (Ky,0o')-#(Ky,o)-bi-
module Homg(indf(0 o, ind?{O o') with the %, (0')-#%, (o)-bi-module i, (o, o').
Then (1) follows from a variant of remarks before Proposition 3.3.

From the argument of (1), we get a E-basis {(¢y, }n>0 for #%,(o,0"), on
which the left action of J#%,(0") is described by

¢J’,1 * Pp = Co/ - Pn + Ontl

where ¢, 1 € H,(0'), i.e., the @1 in last Proposition, whose calculations
could be tracked by the argument of Proposition 3.3. The * is the natural
convolution defined in the same way as usual, see | ] for more details.
Similarly, we have
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3.2 (indIG(OU)Il as an ##7,-module

Pn * ¢U,1 =Co " Pn + ©n+1

Now we put ¢, = co — ¢o, and then (2) follows. O

Remark 3.6. The idea to consider the bi-module structures above is due to
Florian Herzig, who has proved such result in a very general situation, as a
variant of his Satake embedding.

3.2 (ind% 0)" as an #,-module

The group I acts on o/ as a character, and from now on we denote it

by Xo-

Recall we have a double coset decomposition G = Uz Kga™I. From
[ ], we see (indf(oa)ll = {f € S(G,0); f(kgi) = o(k)f(g), for k €
Ky, g € G, i € I;}. Let f be a function in (ind[G(OU)Il, supported in Kga™I;.
For k € Ky, i € I such that ka™ = a"i, f(a™) should satisfy o(k)f(a”) =
7).

For n > 0, and v = n(z,y),z,y € og, we get o(u)f(a") = f(a™),
which means f(a™) is fixed by Np. Similarly, for negative n, and v =
n'(z,y),x,y € o, wefind o(u') f(a™) = f(a™), i.e., f(a™)is fixed by N|. We
note that ot = ¢V and ¢/t = o™o, as I} = Ny-(I;NB’) and I, = N}-(I|NB).

Choose and fix a non-zero vy € ot. Put vy = Pvg. Let f, be the
function in (indIG(OJ)Il, supported on Kga "I, such that

(™) = {UO, n >0, (8)

vy, n < 0.

Proposition 3.7. (1). {f.} consists of a basis of the space (ind%oa)h;
(2).  The action of I on (ind%)a)l1 is as follows: Fori € I, let h be
the element in Hy such that il = hli. Then,

. {Xﬂ(h)'fna TLSO,
Z'fn:
X5(h) - fn, n>0.

Proof. The first part comes from the description before the Proposition, and

9)

the second part can be checked easily. O

Corollary 3.8. Let x, be the character of I on o't then we have

indG o) xe — (fasm €Z), ifXo = X5 10
(indFy) {<fn,n > 0), ifxo £ X (10
(ind%, o)X = (fu,n > 0), if xo # X5 (11)
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3.2 (indIG(OU)Il as an ##7,-module

We turn to describe the right actions of the Iwahori-Hecke algebras on
(indIG(OJ)Il. Recall we have determined the structure of J#(I, ), for any
character x of I, say Proposition 2.6 and Proposition 2.9.

Proposition 3.9. Suppose x = x°. Then,

(). folTo,—1 = - fo, folTon = fr.
(2). Formn >0,

fnlTo—1 = f-ns f=nlTo,—1 = —f=n;
T2 = —fns f=nlTon = frs1-

Proof. (1). By definition, we have
JolTo,—1 = >y, @B 0,

which is a function supported in Ky and hence equals ¢ fo for some ¢/; in
other words Zie No/Ni iBug = cvg. Taking the quadratic relation of Tp _1
into account, we see immediately that ¢ = 0 when x does not factor through
the determinant. In the case that y factors through the determinant, we see
d =0 or —xj(—1). A little explicit calculation shows that ¢ = 0 if o is a
character (this is indeed clear), otherwise ¢ = —x{(—1). In summary, we
have

cC =

, —n(—1), ifoc =nodet ® St,
0, otherwise.

For the second relation in (1), we also have by definition that

JolTon = X ientyny 1B - fo,

which is supported in Koo~ 1I;. Its value at o~ is just v}, as one can check
as follows:

Dientyny Jola™liaB) = 37,1y Bfo(1d) = vp,
where we note that a lia8 € Ia~'I for i € Nj \ Nj. The result follows.
When n > 0, for the formulas in (2), we will check f,, | To—1 = f-n
and f_, | To.1 = fn41 in detail. Note that f,, | Tp—1 and f_, | T2 are both
I -invariant and supported on a union of double cosets of the form Kya*I.
By definition,

fn ‘ TO,—l = ZieNo/N1 Zﬁfn

Sthe exact value of ¢’ is given in the proof.
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3.2 (ind%p)l1 as an ##7,-module

As f,, is supported on Koo "I = Ia~"IUIBa "I, o*if3 € Ifa"I for some
k € Z and i € Ny forces k = n, using Lemma 2.5; also, a¥ip e Ia="I for
some k' € Z and i € Ny implies immediately that ¢« € Ny \ N1 and k&’ > 0,
where then a contradiction arises after applying Lemma 1.2 to 7. Hence,

ZieNg/Nl iBfa(a™) =3 1q fa(a”B) = V)
where we check that o™i ¢ Ia~"1I for i € Ny \ N1: applying Lemma 1.2 to

aia~ !, the situation is reduced to a contradiction from Lemma 2.5.
Also from definition,

fon | Toq = 2ient vy 1B fn.

Recall f_, is supported on Koa"I, and Kool = Ia™I U 1Ba™]. 1t is clear

that a¥iaf € Ia"I, for some i € N| and k € Z, implies i € N| \ Nj and

k < 0, where a contradiction then arises after applying Lemma 1.2 to o liav.

Now, a¥iaf € I3a"I for some k € Z and some i € N} forces k = —(n + 1),
using Lemma 2.5. Now

2ieN] /Ny i0ffn(a” V) =35, 1y fonla” " DaB) = v,

where we check that o~ ("*Diaf ¢ Ifa™I for i € NI\ Nj, using the trick
(5) in the argument of Proposition 2.17. We are done. O

Proposition 3.10. Suppose x» # x5. Write x for x, for short. Then,
(1) form >0,

f—n’Tgfg =0, f—n‘TEQ,—l = f-m+1);
(2) forn > 0.
In | Ti(;—l =0, ful T2X; = fnt1-
Proof. (1) By definition, for n > 0,
f—n‘T2>f3 = ZieN{/Né iofn.

As f_, is supported on Koa"I = Ia™I UIBa"I, o¥ia € Koa™I for some
kE > 0 and some i € Nj implies clearly that k = n—1. Therefore fj | T2X73 =0.
Forn>1

Y daf ™= > fale™ i)

iEN] /N4 iEN] /N
— § : anflialfnf_n(an)
1€N{ /Ny
= E ’UO = O’
i€N]/Nj
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3.2 (ind%p)l1 as an ##7,-module

as required.
Also from the definitions,

— i —1
f—n’Ti<27_1 - ZiGNO/NQ (10 f_n

As f_, is supported on Koa™I = Ia™I U IBa™I, o¥ia~! € Ia"I for some
k > 0 and some ¢ € Ny forces that &’ = n+1 by Lemma 2.5; for some k' > 0
and some ¢ € Ny, ool e IBa™I implies clearly that i € Ny \ N2 and
k' > 0, and a contradiction is then seen from Lemma 2.5, by applying first
Lemma 1.2 to aio™!. Hence,

Z ia_lf_n(oznﬂ) _ Z f_n(oz”Hia_l)
iENo/NQ iENo/NQ
— Z f,n(()én—i_loz_l) = o,
i=Id
where we need to check that a"*lia=! ¢ Kqa™I for i € Ny \ Na: an appli-
cation of trick (5) shows that a"*lia~! ¢ Ia™I. We are done.

The remaining cases in (2) could be treated in the same way, and we
don’t give the details. O

Corollary 3.11. Let o be an irreducible smooth representations of Kg. Let
X be the character of I on ot Then, any non-zero (I, x)(resp. # (I, x*))-
submodule of (indIG(OU)I’X(resp. (ind%oa)[’xs) is of finite co-dimension (as a
subspace).

Proof. We verify in detail firstly the regular case x # x® by using Proposition
3.10.

Let M be a non-zero . (I, x)-submodule of (indIG(OJ)I’X. Let ¢ be a
non-zero vector in M, say ¢ = .. ¢ f;, where —m < —n < 0, and
C—mC—n # 0. We could assume further that n > 0 by considering the non-
zero element ¢ | T_o _1 (see Proposition 3.10).

Now let M’ be the subspace of (ind%)a)] X generated by M and the set
of vectors { fo, f-1, - fom+1}-

Asc_p, #0, c:}nd} minus a linear combination of f_1,..., f_41 gives
that f_,, is in M’. We turn to look at the element ¢g = ¢ | T_o_1 =

—n
=—m

gives that f_,,_1 is in M’. Repeating the former process, we show induc-
tively that all the f_,,k > 0is in M’. Hence, M’ = (ind% o)/X. We are
done in this case.

¢ fi—1. Similarly, c:}n@bo minus a linear combination of f_o, ..., f_,

In the case of (ind]G(OO')I X° we note a basis of the former space is
{fn,n > 0}. In view of (2) of Proposition 3.10, we see the argument that
we have just worked out would apply to the current case in the same way.
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3.3 The Hecke operator T

The degenerate case is a little more complicated, but essentially the
same manner as the regular case.

s

Assume in the following that x = x°. We will use Proposition 3.9
repeatedly.

Let 1 be a non-zero vector in M. We write it as ¢ = Y ;" ¢;1); where
Cn-Ccm € E # 0 (we allow that n = m). We deal with a special case first:
n > 0.

Now we assume that n > 0. Let M’ be the subspace of (ind%)a)l’x
which is generated by M and the set of vectors {¢;;l = —(m—1),....,m—1}.
Then we will show that M’ = (ind%oo)l X as above. Note that it’s not clear
that M’ is a submodule.

As ¢y # 0, 1y, is just ¢} minus a linear combination of the elements
P (—m+1 <1< m-=1)in M, ie., ¢,, € M'. Now Proposition 3.9
gives ¢ | To—1 = >t citp—; € M (Note that we are in the case all the
i are positive .), from which a similar step to that we have just used tells
us ¢Y_,, € M'. To proceed, we apply Proposition 3.9 again, we see 1 |
T07,1 'T271 = Zﬁn c;iy1 € M. So Um+1 18 Cr_nli/J | T07,1 . T271 minus a linear
combination of the elements ¢; (—m < I < m) in M’, which means that
Yms1 € M'. Similarly, v | To,—1-T21-Tp,—1 = Z;in Cid}—(i-i-l) € M, so by
subtracting from it a linear combination of the elements ¢; (—m <1 < m)
we get Y_(41) € M . 'We then do induction on the index by considering
the right action of Ty —1 and 751 in turn. Then a similar process shows that
the generators ¢y, and ¥_ (44 are in M’ for all k > 0, i.e., M’ contains
the basis {¢y,, n € Z} of (indf(oa)l’x.

For the case that m is non-positive, we look at the two elements 1)/ =
Y | Toa, 9" = 1 | Tp,—1, which are both in M. We claim that they can
not be both zero. If ¢ | Tp —1 = 0, then n < 0, or n = 0 and ¢ = i)y
for some non-zero constant ¢ (we see from Proposition 3.9 the latter case
is excluded when o = 7o det ® St). The latter case can not happen, as
o | Ton = ¢n # 0. Assume n < 0, we have n = —m and ¢; = c_; for
1 <4 < m. However, in any case, such an element cotbo + > ;- ¢i(¥i + ;)
(¢m # 0) won’t become zero under the action of T5 ;. Hence the claim is
true. Now if ¢’ # 0, we apply the argument in the first case (n > 0) to ¢/;
otherwise, to the element ¢ | T 1. We are done. d

3.3 The Hecke operator T

In this part, we will calculate the Hecke operator T' (c.f. Proposition
3.4) explicitly and explore some applications of the resulting formula.
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3.3 The Hecke operator T

3.3.1 A first calculation on local systems

Let (o, V) be an irreducible smooth representation of Ky. For g € G,
. . . G
v € V, denote by [g,v] the function f in the space of ind} o, supported on

1

the coset Kog~! and satisfying f(g~!) = v. We then have the following:

Lemma 3.12. Let vy be a non-zero vector in o'*. Then

T [Id,vo] = 3" yen, /N, [ua™t, vo] + 2 _ueNo /N5 Cu [Bua™!, vy,

where ¢, s given by

{Aﬂ,m if u € Ny /Ny
Cy = )
Yo (diag(g, =y 5y D), if u=n(z1,y1) € (No\N1)/No.

Proof. In general, let v be a vector in V', and it’s known from (8) of | ]
that,

T(Idovl= Y [we ' geol+ > [Bua ' jeo(u B8] (12)

u€N1/No w€No /N2

Iy

Let v be a non-zero vector in o'!, we then get the first sum, as j,(v) = v.

For the terms with u € Ny /N2, we know o(u~!) acts trivially, as u™! is
now in K¢. By writing o(8)v as the sum of Ag ,v with some vector in o(I}),
we have shown ¢, is the case, when u € N;/Na.

For the terms with u € (No\NN1)/Na2, one needs some calculations to
simplify the vector j, - o(u™!3)v. We write u~! as n(z1,y1), and the condi-

tion on w implies that y; € Ug, and then Lemma 1.2 gives
u™'B = By er,yy B - diag(yr, —guyr o) s
where n,, is some element in No(C I). Put n!, = Bn(y; ‘1, y; )3, which is
an element in Nj(C I7).
Hence,
Jo - o(u™ B0 = jo - o (m, - diag(y, —gry; 75 )y
=Xo (diag(y1, _glyl_la gl_l))ja - o (n,)v
:Xo(diag(yla _ylyl_la gl_l)) "V,

where the last equality holds as o(n!)v — v € o(I]). We are done. O
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3.3 The Hecke operator T

3.3.2 A second calculation on local systems

In the case that o is one-dimensional, we have a formula for the Hecke
operator T, Lemma 3.12. For later applications, we would like to make it
more explicit.

From a recent result of Henniart-Vignéras ([ |, Proposition 3.17),
we know Mg, = 0 for any irreducible representations o with dimension
bigger than 1, as 8 is not in B’B. In other words, this means /3 - vq lies in
o(I{). This is our start point.

Let o be an irreducible representation of K. From now on, we assume
dim ¢ = r > 1. Also, we know r < ¢3. Fix a non-zero vector vy in
olt. Therefore, from what we have just described, there are r elements
{u;, 1 <i <r}in Nj/Nj such that

N! ={n;-vg, 1 <i <r}is a basis for the space W of o.

Furthermore, we always assume that vy is in the above set.
To state the following Proposition, we need to introduce some notations.
Denote by Sy, the following linear functorial on W:

Sy : W—E
v = ZneN(’)/N{ In(v),

where we write v = EniEN(’)/N{ ln, (0)n; - vy and put I, (v) = 0 for n outside
the finite set {n;} chosen above. As before, let x, = x1® x2 be the character
of I acting on the ¢/t. Then:

Proposition 3.13. For a vectorv e W,

T = 5 et St e Lyl
uEN1/Na ucNo /N2

where Ly, o, 5 the linear functional on W defined by
Lv07u(v) = ZnGN(’]/N{ Cnslu ln(v)7
where we denote BnfB by ng.

Proof. 1t is just direct calculation. We insert v =73 Nj/N1 ln(v)n - v into
the formula T'([/d, v]). Combining with Lemma 3.12, we see

T(Idv])= Y In(v)n-T([Id,v))

neN{| /N
= Z ln(v) Z [nua™t, vo] + Z cu[nBua, vl
nGN(’)/N{ ’MGNl/NQ ’uG(No\Nl)/NQ
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3.3 The Hecke operator T

We begin to simplify each term in the above sum, according to their
nature.

For the term u € N, we see aua™ ! € Ny and ana™! € Nj.

For the terms u € (Nj \ N2)/N2, which we write as n(0,wgy1), an
application of Lemma 1.2 to Su gives

nua~! = BngBuat = ﬁn(O,wElyfl)nslh,

where [ is some element in N7, and h is the diagonal matrix

—y;t 00
0 1 0
0 0wy

Hence, noting nslh € Ky, and applying Lemma 1.2 again to Sn(0, wglyfl),
we came to the first sum in the Proposition.

Before dealing with the remaining terms where u goes through (Np \
N7p)/Na2, we note firstly that the constant ¢, indeed depends only on the
class uN1. We will use this without comment in the following. Secondly, as
¢y = 0 for u € N1/Na, the corresponding part resulting from the original
formula T'([Id, vg]) vanishes.

We now exchange the order of the sum:

Z ZTLEN()/N{ [nﬁua_la Culn(v)’l}o].
ue(No\Nl)/Ng

For n € Ny, we get
> [ﬁua_l, culra(v)vg).

uE(N()\N1)/N2
For n € (N} \ Ny)/Nj, we split u as ujugz, where u; € (No\ N1)/N; and

ug € N1/Ns. Then we decompose the remaining part of the above sum as

> Zu2€N1/N2 (Zul¢n§1 + remaining term).
n€(NH\N7)/Nj

In the above, the sum over u; = n; ! gives us directly the part in the
sum of Proposition where u goes through Nj/Nj:

ZueNl/NQ [ﬂua—l, ( > cns—1ln(v)> 1)0]_
)/NT

ne(Nj\N
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3.4 Is ind%)a free over (Ko, o) 7

For the part in which u; # n; !, we note that ug := ngnj goes through
(No \ N1)/N1 — nsN1, when u; goes through (No \ N1)/Ni — ng Ny, We
note that c¢jqg = 0. Therefore, we get

Yo k) ) > [Bususa™, ¢,1,,, 0]

nG(Né\N{)/N{ uQENl/NQ ugE(No\Nl)/Nl
S SR Sl S (D S E) It
ugE(No\Nl)/Nl quNl/NQ L nG(Né\N{)/N{
= Z Buat, Z Cp=1ubn (V) | vo
uE(No\N1) /N2 ne(Ng\N1)/Ny
Finally, we put all the terms together and the formula comes out. O

Remark 3.14. As the choice of vy is only up to a scalar, we see Sy, (v)vy
and Ly, ,(v)vg only depend on the vector v. We also note that the functional
Loy only depends on the residue class ulNy.

We already know from the definition that j, is close to the projection
from o to o1, and the following corollary makes this precise:

Corollary 3.15. Let (o, W) be an irreducible smooth representation of Ky

Iy

such that dim o > 1, and vy be a non-zero vector in o''. For any vector

v € W, we have the following
JoU = Svo ('U>U0; joa(uilﬁ)v = Lvo,u(v)vo; fOT’ u € NO/NQ-
In the case that o = St, we have a simplified version of the Hecke

operator.

Corollary 3.16. Let o be the inflation of St, we then have

T([1d,v]) = egi/N [ua™t, Sy, (v)vo] + ENZ/N [Bua™, (Su(v) =1y, (v))vo].

Proof. In this case, xo =1, ¢jqg = 0. ]

3.4 Is indf o free over J(Ky, o) ?

In this section, we pursue an application of the Hecke operator formula
T. It seems reasonable to propose the following:

Conjecture 3.17. For an irreducible smooth representation o of Ky, the
compactly induced representation ind%oa 1s a free module of infinite rank
over the algebra 7 (Ko, o).
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3.4 Is ind%)a free over (Ko, o) 7

However, we have the following weaker result in general.

Proposition 3.18. For an irreducible smooth representation o of Kg, the
compact induced representation ind%oa is faithfully flat over the algebra

H (Ko, 0).

Proof. Recall we have shown (K, o) is a polynomial algebra in one vari-
able over E, especially it is a Dedekind domain. As it is well-known that
flatness is equivalent to torsion-free over a Dedekind domain, we will be done
if the latter point is checked in our case.

In her thesis [ ], Abdellatif has shown that T is injective (Théoréme
4.5.14), which in particular implies that ind]G(OU is torsion-free over (Ko, o).
The result follows. O

Remark 3.19. Florian Herzig [ | has proved maximal compact induc-
tion is torsion-free over the corresponding spherical Hecke algebra, when G
1s F-split.

We start with some general setting, and then prove some special cases
of 3.17.

For n > 0, denote by B, , the set of sections in indIG(OJ which are
supported in the ball of the tree of radius 2n around the vertex vo. Let C), »
be the set of sections in ind[G(Oa which are supported in the circle of radius
2n around the vertex vy.

Assumption 3.20. Let f € By y15. If Tf € Byt1,6, then f € By 5.

We note that, after a simple consideration on the tree, the Assumption
3.20 is equivalent to the statement that: In the following ¢* + ¢ linear func-
tional, say, q copies of jov and the q* linear functional jy,o(u='B)v for all
u € No/Na, any q* vanishing of them implies the vanishing of v.

Lemma 3.21. The Assumption 3.20 is true in the cases that o = no det or
no det® St for any character n of k}z

Proof. The statement prior to the Lemma is trivial when o is a one-dimensional
character.

Next, we consider the case that ¢ = n o det ® St. After a twist, we
are reduced to consider o = St. It is pleasant to verify the above statement
in this case, using Corollary 3.16. Assume firstly, for all the u € Ny/Na,
Syo (V) — Iy, (v) = 0. Adding these equations together, we see immediately
that Sy, (v) = 0. Hence, all the [, (v) are zero. Therefore, we only need to
consider the case of S, (v) and any ¢® — 1 of the S,,(v) — I, (v) being zero.
This forces all [, (v) being vanishing clearly. We are done in this case. [
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3.5 The right action of J#(Ky, o) on the (Ko, o)-isotypic component of
principal series representations

Proposition 3.22. Assumption 3.20 implies Conjecture 3.17.

Proof. Using Assumption 3.20, by induction we can follow | ] to find a

subset A,, of C), 4, satisfying that Lagi2i<on T' Ay, forms a basis of B s.
For n =0, take Ag = {[/d, u;]}, where {u;} is a basis of the underlying

space of o. Assume the former statement is done for n. Then we need to

show the set Llogyoi<ant2, 1" Ay is linearly independent.
k<n
Assume the claim is false and we have a linear combination of elements

from |_|2k+2i§2n+27TiAk. As |_|2k+2i§2n+2’TiAk is the union of Uk+i=n+1, TiAk
k<n ] k<n k<n
and Upyi<p T"Ag, we get an element f, lying in the ball B, ,, and also

Tf € Bpo,. Now Assumption 3.20 ensures that f € B,_1,. This means
that the projection of f to the circle of radius 2n around the vertex vy is zero.
We recall that f is a linear combination of elements from L y;—, 7% A} and
the projection of any non-zero element in L ;—, 7% A}, is non-zero. The in-
duction hypothesis for n already implies that the projection of Ly ;—, T* Ay
is a basis for C), , hence the former statement forces the vanishing of f. We
are done for the claim in the last paragraph. We then proceed to choose a
subset A,1 of the form {[g, u]}¢., supported in the circle of radius 2n+ 2,

and complete U2k+2i§2n+27TiAk to a basis of Bj41,,. This is possible, and
k<n .
we only need to complete the projection of Ujij—py1, T*Aj to a basis of
k<n
Cn+1,¢7'
In summary, we have chosen a family of A4,, C C,, , satisfying U, >olUak42i<2n
T" Ay, is basis of the compact induction indf(oa. In particular, the set U,,>0A4,

is a basis of ind%oa over (Ko, o). O
3.5 The right action of 7 (Kj, o) on the (K, o)-isotypic com-
ponent of principal series representations

Lemma 3.23. For a character € of B and an irreducible smooth representa-
tion o of Ky, the space Homg(ind%)a, ind% €) is at most one-dimensional,
and it is non-zero if and only if

€0 = Xi;

where ¢ is the restriction of € to Hy.
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3.5 The right action of J#(Ky, o) on the (Ko, o)-isotypic component of
principal series representations

Proof. We have:

Homg(inle(oa, ind% ) = Homg, (o, indGe|g,)
=~ Homg, (o, indggKoe)
. 1
= Homg, (o, (mdg%Kos)KO)
= Homg (o, ind%%so)

= HOIIIBO (O‘|BO,€0).

The first and the last isomorphism are from Frobenius reciprocity. The
second is by the decomposition G = BKjy. The third is true because the
group Kol acts trivially in the irreducible representation 0. As BN Ky/B N
K& = By, the character ¢ is a lift of ¢, via this isomorphism. Hence, we can
identify (indg%Koe)Ké with indgoeo (as representations of G(kp)), which
gives the fourth isomorphism.

We proceed to deal with the last space, and we see

HomBO <O—’B0’€0> = HomUo (J’B()ng)BO/UO.

Put v) = Bvg € oY0. Lemma 3.1 implies that v} generates the space
oy, Let lv() be the Up-map

l"’(l): OUy — F
vy > 1.

Then [,; generates the space Homy, (o|g,,€0)-
Hence Homyy, (0|p,,€0)50/Y0 # 0, if and only if

lv(/) is By/Up-invariant.
But this is just
Xo = €0,

and we are done. O

We would like to specify a non-zero G-morphism in the above argument,
relative to vg. Let g € G, and we write it as bk, where b € B, k € K. Define
P, o as the map in Homg, (o, indGe) :

Py 0(v)(9) = e(b)ly (kv),

where v € V, k is the image of k in G(kr). Put fo = Py o(vo). We note that
Py o s well-defined, by the definition of ly;- Then, by Frobenius reciprocity,
we get a map Py, € Homg(ind[G(OU, indg e), which corresponds to Py 0,
determined by the condition that
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3.5 The right action of J#(Ky, o) on the (Ko, o)-isotypic component of
principal series representations

Py a([Id,v]) = Py o(v), for any v € V.
We determine explicitly the constant ¢, such that Pv(’),1|T =c- Py,

Proposition 3.24. The G-morphism Py, | generates the space Homg(ind?(()a, ind% ¢),
and the operator T in Corollary 3.4 acts as the scalar c. on it, i.e.,

Pv6,1|T = Ce- Pv6,17
where ¢ s

Ce = 6(0&) + Zmeké; y1+§1=0 50(_y1_17 17 yl)'

Proof. We verify by definition that fo(/d) = Mg, fo(8) = 1. Hence, ¢, =
Py A|T([Id,v0])(B). As Py 1|T([Id, vo)) is just Py 1(T'([Id, vo])), for which
we can use Proposition 3.12 to calculate explicitly.

We compute the first partial sum, say:

ZUGNl/NQ fO (/Bua_l)'

The term with u € Ny contributes (), as fo(8) = 1. For the remaining
terms u € (N1 \ Na)/Na, we write u as n(0,wgy;), where y; goes through
the set L7 = L; \ {0}. An application of Lemma 1.2 gives that:

Bua™t =n(0,@gy; diag(—yr ' 1, y0)n'(0, @ry; ).

Note that fg is I[;-invariant, as vg is. In summary, we get

ZuENl/N2 fo(,B’LLO[_I) = 5(0{) + ZyIELT 50(—91_1, 1)?/1)-

For the second partial sum, it is immediate to see,

Moo Duen N, To(ua™) = Ag o - (@) 30, cny i, FoId) = 0.
For the last partial sum, with u € (Ny \ N1)/N2, we simplify it as

Z’LLG(NO\Nl)/NQ Cu - fo(ua_l) = )\570' : 5(0[_1) ZUG(NO\Nl)/NQ Cu-

Hence, we are reduced to compute

> ue(No\N1) /N, Xo(diag(y, —gnyy 77 1),

where u=! = n(x1,91). But it vanishes in any case, as one can check as

follows:
Write £¢ as x1 ® x2 and hence we need to determine

z:ue(]\/ovvl)/]\/2 Xl(gfl)XQ(_glyfl)a

where we have used Lemma 3.23.
We write furthermore v = n(z1,y1 + wgy2), where yo € Li, and
(x1,y1) € Ly with y1 € 0},. Hence, the above sum is changed into
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3.6 The Bruhat-Tits tree of G

Y oaeLn Xo(ergn)eLa,, X1 (W1 + @ry2) " xe(—(y1 + wey2) (11 + @weg2) ),

where Ly, is the subset of Ly with elements n(xz,y) satisfying y € 0.

As the character y, is defined from the action of I on the line o't, x1
is trivial on Ué and 2 is trivial on E' N U};; hence we get
-1 ——1
D peln 2a(@rgn)elay, X1W1 )x2(=1y ) = 0.
We have shown the claim. O

The constant c. above is explicit in the following sense:

Corollary 3.25. We determine c. as:

" {e<a>—xa<—1>, ifeo = e

e(a), otherwise.

Proof. We have already done this calculation in detail, say the argument of
Proposition 2.6, and Proposition 2.31. O

3.6 The Bruhat-Tits tree of ¢
3.6.1 Height and antecedent

Recall we have fixed a standard apartment {vy, k € Z}. Denote by oo
the positive end of this standard apartment. For any vertex v, let Voo be
the geodesic ray (i.e., the unique path between v and oo) from v to co. So
we can find an integer k such that v, € ¥vo0. Define the height h(v) of v as
k — d(vg,v). Note that this definition is independent of the choice of k and
that h(vy) = k.

Given any two vertices v and v/, we say v is under v', if v/ € voo. The
following two lemmas will be used later:

Lemma 3.26. (N/N_,)v, ={ve Xo: h(v)=r}

Proof. Firstly, we note that the stabilizers of vor and vor41 in G are respec-
tively a* Koo and o K1a~F for any integer k. Therefore the stabilizers of
vor and vopy1 in N are respectively N N afFKoa=* and N NaFKia~*. But
these are exactly N_gr and N_(ox11).

Secondly, we are going to show: for a non-negative integer ! and an
integer 7, (N_(p41)/N—r)vr = {v € X¢o : h(v) =1, v;4; € voo}. There are
two steps:

Step 1 For u € N, uv, is also of height r. Take an integer k such
that u fixes v and vy € uv,00. So by definition, h(uv,) = k — d(vg, uv,),
which equals r by the choice of k. As we have fixed co, we understand that
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3.6 The Bruhat-Tits tree of G

uvyy € uv,00 for all non-negative integers [. In particular, when we restrict

to u € N_(4q), we get v,y € uv,00. We have shown that (N_(,.y)/N_) vy,
is contained in {v € Xy : h(v) =7, v,4; € V&3}.

Step 2 We finish this step by counting. For a non-negative integer [ and

an integer 7, denote respectively by nlr and mf, the cardinality of N_ (1 /N_,

and that of the set M!, where M! is {v € Xo: h(v) =7, v, € voo}. The

list for nl is as follows:
o {qu, ) if [ is even, (13)
PN i s odd.

To see this, we reduce the above to two special cases by conjugating by some
power of a: nl_l and nll_l, namely the cardinality of Ny/N; and N_1/N;_.

l

We deal with n! , in detail. Given an even [, we have n! ; = (n2,)2.
But n?2, = n!; -nly = ¢®- ¢ =¢* So in this case nl_l = ¢*. When [ is
odd, nl_l =n'; = ¢® Now [ — 1 is even, and from the even case we get

nﬁl = ¢2=1 . g3 = g%+, Similarly we can show nllfl as required in (13).

l

-, we firstly note that there exists an induction relation

H1 = ml - ¢4 1, where we denote

To compute m
between them by observing the tree: m
by ¢; the number of vertices adjacent to and under v; for any integer t. We
know that it equals ¢ or ¢, depending on whether ¢ is odd or not. So we
only need to compute some initial cases. The result is: mQ = 1 for any r,

m! = qor ¢?, depending on whether r is even or not. Combining the initial

L=
cases and the induction relation, we have finally shown that m! is exactly
given by the formula in (13).

We have finished the proof of the Lemma. O

Definition 3.27. For a vertex v. € Xg and a positive integer n, the n-
antecedent a™(v) of v is the unique vertex of height h(v) + n which is of
distance n from v.

Remark 3.28. The definition above is well-defined because there exists a u-
nique path from v to co. From that we naturally have voo = (v, ...,a™(v), ...)
for any vertex v € Xj.

Lemma 3.29. al(uvk) = uvgy for all positive integers | and all k € Z, and
allu € N.

Proof. The [-antecedent of vy is vi4; by definition above. As the action
of N preserves height (as we have already observed in the proof of Lemma
3.26) and distance, we are done. O
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3.7 The image of (indf(oa)h under the Hecke operator T

Remark 3.30. Formally, a'(g-v) = g-a'(v) holds for anyl >0 and g € G,
and any v € Xj.

In view of Proposition 3.13, we could generalize the 2-antecedent as
follows

M (-1 if o = nodet
Definition 3.31. A[noak7v] _ {[nOOé >77( )U]a 1o =mnoaet,

[noa® 1, Ly 1a(v)vp], otherwise.
Remark 3.32. One can check directly from the definition of Ly, rq that
Alnoa®, v] is independent of the choice of vg.

3.6.2 A rough estimation of [;-actions on the tree

Recall again we have fixed a standard apartment on the tree of G, say
{vk, k € Z}. For any vertex v, we have mentioned before that v is under
some vy, for some integer k, i.e., there is a vertex vy such that vi € voo.
As a result, one can associate any vertex v a unique integer n., which is the
least integer satisfying the former property. In our former notation, we have
clearly

ny = h(v) + d(vy,, V)

Following is the main property known to us about n, and a rough
estimation of the distance between v and v’ - v, for a v’ € Nj.

Proposition 3.33. Let v be a vertex under vy, such that d(v,vo) = 2r(>
0). Then we have for u' € N{,

Nyrw =Ny and d(u' - v, v) < 2(2r + ny)
where 2r + ny is the distance from v to v, .
Proof. The proof is simple matrix calculation. O
Remark 3.34. It seems to the author not much could be said beyond the
inequality of the last Proposition.
3.7 The image of (indf c)" under the Hecke operator T

In subsection 3.2, we have investigated the I1-invariants of ind%oa. As
the Hecke operator T respects the group action, it is reasonable to know
how (indIG(OJ)Il behaves under the map 7. In the following proposition, we
re-write the basis {f,, n € Z} in terms of local systems.

Proposition 3.35. With the same notations as before, we have
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3.7 The image of (indf(oa)h under the Hecke operator T

;= {ZiGNo/NQm [ia™™ vo], n=—m <0
n - .
ZjeN{/Nén o™, vp), n>0

Proof. Directly from the definitions of f, in last subsection. O
Definition 3.36. R} (c) = [Noa ", 0], n > 0; R, (o) = [N{a™, 0], n>1

We also put Ry(0) = R (o) = R_,(0).
We have an initial estimation then:

Proposition 3.37. (1).

T(Ro(0)) C Ry (0) & Ry (0),
T(R{(0)) C R}_,(0) ® R (0) ® Riyy (o) > 1

(2). T(R;(0)) € Ry_1(0) & Ry (0) & Ry yy(0).m = 0

Proof. Actually, this Proposition could be seen from the tree of G if one
keeps the action of T" in mind.

The first inclusion in (1) follows directly from (12) and our defini-
tion. For the second inclusion, it is clear that a "ua~! € Nya~ "+ for
u € N1/Na, as n > 1. Then we check the following, which completes the
argument of (1):

o= (Bayat), ifu € No,
o "Buat = n(O,wQE"_lyl_l)a*”il, ifu e Ny \ Na,
nla_(”'H) - 19, u € Ny \ Nl,

for some i1, io € I and n; € Noy,.
For (2), let n be a non-negative integer. At first, it is easy to see a1 .
Bua~! € N{a"23. Then we check the following after some calculations,

which finishes the proof of (2):
Nam a1 — Ni{a™ - (aua™?), ifu € Ny,
Nl Big, ifu € Ny \ N,

for some i3 € I. O

The following result is a refinement of Proposition 3.7, and it will play
a role later.

Lemma 3.38. (1). For n > 0, the Ny-invariants of the space R} (o) is
one-dimensional and generated by f_,,.

(2). Forn > 1, the N{-invariants of the space R_,(0) is one-dimensional
and generated by f.

63



3.7 The image of (indf(oa)h under the Hecke operator T

Proof. (1). Firstly, we note that Koa"Il; = Kpa™Ny. Hence, a non-zero
function f in R} (o)™ would indeed have support on Koa™l;. We need
to look at f(a"i) for ¢ € Np, which is indeed f(a™) as f is fixed by Np.
However, being a vector in the underlying space of o, it is fixed by the
lower-triangular subgroup of I;. Therefore, f(a™) € o''. Then again the
condition f is fixed by Ny will force f to differ from f_, only by a scalar.
We are done.

The proof of (2) is similar, and we omit the details. O

From Proposition 3.37, we see T | RY(0) is the sum of I-morphisms
T~ : Rf(0) - R}_,(0) and T : R}(c) = R}l (0) ® R}, (o), for n > 1.
Similarly, T |R;(a) is the sum of I-morphisms T~ : R, (0) = R, (o) and
Tt :R,(0) = R, (0)® R, (o), for n > 0.

Corollary 3.39. T is surjective and T is injective.

Proof. The first half is directly from the argument of Proposition 3.37. Now
we verify that T : R} (0) — R}(0) ® Ry, is injective, for n > 1. It is
easy to see T~ (f_,) = 0 from the argument of Proposition 3.37 and (12),
hence T (f_,) # 0 because we know 7' is injective from Theorem 4.5.14 in
[ |]. We are done in this case. The remaining case could be treated in

the same way. O

Remark 3.40. We have indeed determined T (f—,) in the next Proposi-
tion.

We come to the main result of this subsection:

Proposition 3.41. (1). Ifdim o > 1, then

Tf*m = f—(m+1)7 m > Oa
Tfn = fn+1, n Z 1

(2). If dim o = 1, say o = nodet for some character n of kL, then,

Tfo= f-1+n(-1)f;
Tfom=—f-m+ f—(m+1)7 m > 1
Tfn=—fn+ far1, n>0.

Proof. The proof are tedious calculations, based on Proposition 3.37 and (1)
of Proposition 3.7.
We recall the definitions of f,, for n € Z,

fom = ZiENo/Ngm ia”™ - fy, for m > 0;
fo=2jentny 3B+ fo, for n.> 0.
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3.7 The image of (indf(oa)h under the Hecke operator T

We need to know the initial case, which is already known:

Tfo= f-1+ Agof1, (14)

say Lemma 3.12, as one can check immediately.

We will show the formula for T'f_,, in detail for m > 1. The Hecke
operator respects the I1-invariants, and from Proposition 3.37, we see there
are constants such that

Tfm= C—m,—m-‘,—lf—m—i—l + C—m,—mf—m + C—m,—m—lf—m—l-
Let m be an integer bigger than zero. We see at first that:

0, otherwise.
We also have f_1(a™ tia™™) = 0: when i € No,,_o/Nay, it is clear from the
definition of support of f_1; for i € No\Nam_2/Nom, because d(vg, o™ tia=™wvg) >
2 for m > 1, @™ lia ™™ is not in the support of f_;. In summary, we have
C—m,—m+1 18 zero.

Next, we calculate c_y, —,. Firstly, we have f_i(a™ia™™) = 0, for
any ¢ € Np: for i € Nay,, it is clear. For the remaining i € Ny \ Ny, a
simple calculation shows that a™ia~™ € Koa~'I; for some positive I, hence
the claim. Secondly, fi(a™ia~™) vanishes outside of No,,—1 \ Naj,. For
i € Nopm—1\ Nom, f1(a™ia™™) = c;up, where ¢; is the value of x, at some
specific diagonal element. We write ¢ = ). ¢;, then

o XD G = Xe = X1 ® X2,
0, otherwise.

In all, we see c_py,—m = C- Ago.
Lastly, we come to ¢_,, —m—1. We have in general fi(a™lia™™) = 0.
Also,
vg, if 1 € Noy,,
I R I
0, otherwise.
We see c_p,—m-1 = 1.
The calculations for T - f,,, n > 1 work in the same manner, and we get
finally that ¢, n—1 =0, chn = cAgo, and cp i1 = 1.
As we already know the exact value of A\g,, we have finished the proof.

O]
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4 A parametrization theorem

The main concern of this chapter is to prove the following Theorem 4.1.
Its content is to match the compactly induced representations and principal
series in a precise way. As already mentioned in the Introduction, in the
forthcoming work of Abe-Henniart—Herzig—Vignéras, comparison between
compact induction and parabolic induction is a major ingredient in their
classification of irreducible admissible smooth representations of any p-adic
reductive connective group, where their tools are the Satake isomorphism,
developed by Herzig and Henniart—Vignéras.

Our approach is again that of Barthel-Livné, i.e., the analysis on the
tree is essentially used in our argument, which is the reason that there are
some technical difficulties at some places. For simplicity, assume the weight
is the trivial representations. After fixing an apartment on the tree, one can
associate canonically a unique integer h(v) to any vertex v, which is called
the height of the vertex. The Hecke operator T', in the case of GLg, maps
a vertex v to the sum of vertices which are of distance one from the vertex
itself. As a result, the unique vertex on the tree, which is of height h(v)+1
and adjacent to v, is congruent modulo 7" to the sum of vertices which are
of height A(v) — 1 and adjacent to v. In the case of U(2,1), the Hecke
operator maps a vertex v of period one to the sum of vertices which are of
distance two from v, therefore there are several extra vertices appearing in
the formula T'v which share the same height as v; as a result, it is not clear
in advance one could conclude similarly that the unique vertex, which is of
height h(v)+2 and of distance two from v, is also congruent modulo 7" to the
sum of some vertices which are of height strictly smaller than h(v). A naive
way of saving us from this trouble is to use the Hecke operator repeatedly
with respect to all the vertices adjacent to and under v. We have carried
out the final point in most cases, and in the remaining cases we manage to
reduce them to already known cases, hence finally we are done.

We now repeat a little more from the Introduction, as a guide to this

chapter.

In 4.2, we reproduce several results on the principal series of G, most
of which were proved first in [ |, where we mainly follow again the
approach of | ] and [ ].

Next, in section 4.3, we prove (1) of Theorem 4.1. As a natural by-
product, we have Corollary 4.16. Then in the section 4.4, we show that
the compactly induced representation ind%)a has only irreducible quotients,
Proposition 4.17.

We prove the first half of (¢) in section 4.5, and in section 4.6 we arrive
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at a special case of Theorem 4.1, when 7 has non-trivial Ky-invariant vectors,
i.e., m is unramified.

In section 4.7, we modify the strategy of the unramified case to prove
a general injective result (Proposition 4.24), which will simplify several ar-
guments in the proofs of (b) and the second half of (¢), in the last two
sections.

Theorem 4.1. Assume E is algebraically closed. Let m be an irreducible
smooth representation of G and o be an irreducible sub-representation of
7|k, Then,

(1).(Abdelatif 2011)7 The space

Homg (ind%) o, )

has an eigenvector for the action of the Hecke algebra (K, o).
(2). Let A be an eigenvalue of T in (1). Assume further that:

A#{fﬁFU,Mm=X§=m®X%

0, otherwise.

We set a character € of B such that €|, = x5, and

A +ExA(=1), i xe = xG,
e(a) =
A, otherwise.

Then, we have the following,

(a). The space in (1) is one-dimensional.

(b). If x5 does not factor through determinant, or X # 1 —x (—=1), then
we have

72 ind§ e.

(¢). If xo factors through the determinant, i.e., x, = 1o det for some
character of k};, and A = 1 — x4 (—1), we view n as a character of E*, by
Remark 1.3. Then

m =

| modet, ifdimo =1,
nodet ® Sp, otherwise.

Here, Sp is the Steinberg representation of G, defined as indgl/l.

"This is proved in | ], under the assumption that 7 is admissible.

67



In view of Theorem 4.1, we give the definition of so-called supersingular
representation. Before doing that, we modify T by a constant:

Let T, be the following refined Hecke operator: assume Y, is the char-
acter of I acting on ¢/t and put

T — T+X/1<_1)7 leO' :ng
T, otherwise.

Definition 4.2. An irreducible smooth representation © of G is called su-
persingular if it is a quotient of ind[G(Oa/(Tg), for some irreducible smooth
representation o of K.
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4.1 Twisting inIG(OU/(T — A) by characters

4.1 Twisting ind¥ o/(T — \) by characters

Let o be an irreducible smooth representation of Ky, A be a scalar
in E. In this section, we record a useful and simple fact, which tells how
ind%)a /(T — ) is changed when twisted by a character of G. Before stating
the result, we recall a little more notation as follows.

Write Xs = X1,0 ® X2,0, Which is the character of I acting on ol Let
o1 be a twist of o, i.e., 01 = nodet ® o, for some character n of k}E It is
clear x4, = X - (n o det). By Remark 1.3, we may view 7 as a character of
E'. Therefore, the character 1 o det of Ky extends to a character 7 o det of
G. Also from Remark 1.3, a character of E' can be viewed as a character of
k‘}E; for a character i’ of E', the restriction of the character 7’ o det of G to
Ky is just 1/ o det. In the definition below, we take another scalar A\, with
respect to o and .

A+ Xll,a(_l) - Xllpl(_l): ifXO’ = Xga

A, otherwise.

Definition 4.3. A\ = {

Lemma 4.4. We have an isomorphism of G-representations
indIG(()al/(T’ — A1) Znodet® ind%)a/(T —A),

where T and T" are respectively the Hecke operator in 7 (Ko, o) and 7 (Ko, 01),
defined in Corollary 3.4.

Proof. Any non-zero polynomial f(7') is injective ([ |, Théoreme 4.5.14)
on the compact induction ind%)o*. Then the Lemma results from the fact
that the following diagram of G-representations is commutative.

indf(oal —" 5 nodet® indIG(OU
T’—)\ll ll@(T—A)
indf(oal —" 5 nodet® ind%)a
where 7 is the isomorphism sending a function [g,v] to the function [g,7n o
det(g)v], for g € G,v € 0. O
4.2 Some results on principal series

Let x1 be a character of EX and 2 be a character of E'. Let . (x1®x2)

be the underlying space of indg X1 ® X2, where x1 ® xo is the character of
H, defined by

X1®x2: H— EX,
diag(z,y, 1) = x1(z)x2(y)-
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4.2 Some results on principal series

An application of Lemma 1.2 shows that, for f € #(x1 ® x2),

FBr(z,y)) = x1(7xa(=gy~ ") f(Id),

for y large enough, as f is locally constant.

Let N* be the subset of E'x E, which consists of elements (z,y) € Ex E
such that y + g + zz = 0. Under the operation that (z,y) - (x1,y1) =
(r+x1,y+y1 —x&1), N* becomes a group, which is naturally isomorphic to
N. Denote by N/ the image of N in N*, via the former isomorphism, i.e.,
the subgroup of N* consisting of elements (x,y) such that y € p]ﬁ;, for any
integer k € Z. Let _# (x1 ® x2) be the space of locally constant functions ¢
from N* to E, such that

o((z,9) = c-xa@ )xa(=gy™ ),

for some ¢ = ¢(p), when y is large enough.
Then we have an isomorphism i of E-spaces from % (x1®Yz2) to Ja®
X2), which sends f to i(f):

i(N)((z,y) = f(Br(z,y)).

The inverse j of ¢ is defined as following. For ¢ € _Z(x1 ® x2), j(¢) €
S (x1 ® x2) is:

i(0)(g) = {C(w)xl ® x2(b), forg =10 € B,
x1 @ x2(0)e((z,y)), forg=bsn(x,y), b€ B, n(z,y) € N.

For further application, we specify two special functions in _# (x1 ® x2),
which consist of a basis of the Ij-invariants of indgxl ® xo. Let g1 and go
be the function in #(x1 ® x2), supported respectively on BI and BSI, and

gl(ld) =1, g2(ﬁ) =1

Then the images ¢1 = i(g1), p2 = i(g2) under the map i are given by;

0, if val(y) > 0,
x1 (T xa(—gy™h), ifval(y) < 0.

e1((z,y)) = {

0, ifval(y) <0,

(@) = {1, if val(y) > 0.

In our former notations, po =1 Ng-
The space _Z(x1 ® x2) then inherits a G-representation via the above
identification.
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4.2 Some results on principal series

Lemma 4.5. Write € for x1 ® x2. For p € 7 (x1 ® x2),
(D). n@",y)e((x,y) = p((x + 2",y +y —x2’))
(2). ap((z,y) = e(a)  p(wpz, why))
(3). ale((z,y)) = ela)p((wp's, @wpy))

Proof. All can be checked easily, by pulling-back to the space .#(x1 ® x2).
O

Proposition 4.6. The functions @1 and @2 generate the whole space Z (x1®
X2)-

Proof. This is from direct calculations.

To be precise, let S (N*, E) be the space of locally constant functions
on N*, with compact support. By definition, .(N*, E) is a subspace of
J (x1 ® x2), and furthermore, we see

F(x1®x2) =-L(N*,E) ® Eg;.

Also, @9 generates the space .(N*, E), using the lemma above to see
a basis of that is obtained by the G-translates of 2. We are done. O

Remark 4.7. In fact, po is a Ko-translate of o1, but the converse is not
true. See (2) of Proposition J.1/.

Remark 4.8. Of course, regarding the result above, one indeed knows that
the whole space is generated by any linear combination of 1 and s except
the obvious case that € = x1 ® X2 factors through the determinant and the
generator is the unique combination of 1 and 2 (up to a scalar) on which
G acts as the character €, as the principal series is at most length two.

The following Theorem 4.9 and Proposition 4.10 are already obtained

in [ .

Theorem 4.9. For a character € of H, which we view as a character of B
trivial on N, the principal representation indg € 1s irreducible if and only if
€ does not factor through the determinant.

Proof. The ‘only if’ part is clear. To show the ‘if’ part, there are mainly
two steps. Suppose € does not factor through determinant. First of all,
one shows the I -invariants (ind$ €)'t is simple as a natural right .#7,-
module. Secondly, one shows the I-invariants (ind% )/t indeed generate
the representation ind$ ¢ itself. Then the desired result follows.

The first step is provided by Corollary 2.32. The second step is from
Proposition 4.6. O
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4.2 Some results on principal series

Proposition 4.10. (1) Sp is irreducible.
(2) Spfe =o.

Proof. To prove (1), we look at the Ij-invariants of Sp. What we need is
to show Sp is generated by the one-dimensional Sp’t. We analyze firstly
the right translation action of I; on the coset space B\ G. To simplify the
process, we identify B\ G with the set {oo} U N*, which we denote by N*.
Explicitly, B corresponds to oo, and Bfn(z,y) corresponds to (z,y), for any
(z,y) in N*. Then N* inherits the right translation action of G on B\ G.
We note furthermore that a function ¢ € ¢ (1®1) can be extended uniquely
to a function (which we also denote by ) in . (N*), by ¢(00) = const(¢p).
Here .(N*) is the space of locally constant functions from N* to E and
of compact support. We therefore realize the representation indg(l ® 1) on
the space .7 (N*) = (B \ G), and also realize the special series Sp on
S (N*)/Eqpq, where @o = i(go) for go = g1 +g2. Denote by 0 the point (0, 0)
in N*.

Lemma 4.11. (1). The right translation action of Iy on N* has two orbits,
Os and Oy, i.e., the orbits of oo and the element (0,0), where

Op = {(z,y) € N*: val(y) > 0},
Os = {00, (z,y) € N*: val(y) < 0}.

(2). The stabilizer of (0,0) in I is the subgroup of Iy which consists
of lower triangular matrices and it acts transitively on Os. The stabilizer
of oo in I is the subgroup of I1 which consists of upper triangular matrizes

and it acts transitively on Oyg.

Proof. In view of the decomposition G = BI; U BSI;, we see that the orbit
of oo (resp. (0,0)) is the subset O’ (resp. Of) of N* which corresponds
to the coset space B\ BI; (resp. B\ Bfl;) in the identification mentioned
above. Certainly, Bfn € B\ BfI;, for any n = n(z,y), in which val(y) > 0.
But, from Lemma 1.2, we see Bfn € BI;, for any n = n(z,y) in which
val(y) < 0. Secondly, we also note another decomposition G = B U BN,
and furthermore BSN = BNy U BBNy, where Nog = {n = n(z,y) :
val(y) < 0}. Then (1) is done.

The statements on the stabilizers in (2) are immediate: for i € I, Bi =
B if and only if ¢ is upper triangular. Also, for an ¢ € I;, Bfi = B if and
only if ¢ is lower triangular. Note that BI} = BN{, and that BSI; = BSNp.
We are done. O

Lemma 4.12. There is a short exact sequence of I1-modules :
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4.2 Some results on principal series

0— Epg — (L (N*)' = (S (N*)/Ego)™ — 0,
where I acts trivially on ¢q.

Proof. As the Ij-invariant functor is left exact, we only need to show the
last map is surjective. Let v € (Z(N*)/Epo)™ and let p be a pull back
of v in Z(N*). We will show p is also Ij-invariant; in other words, u is
constant on Oy and Op. By definition of pull back, for any ¢ € I, there
exists a constant ¢ = ¢(i) € E, such that i - 4 — g = ¢. Let (z,y) be any
element in Op. Then from Lemma 4.11, there exist ¢ € B N I, such that
(z,y) = 0-1i. By evaluating the former identity at oo, we see firstly that
¢ = 0, which gives us further that p((z,y)) — ©(0) = iu(0) — p =0, ie., p is
constant on Og. Similarly, we can show p is also constant on O,,. We have
finished the argument. O

We now prove (1) of Proposition 4.10. Let Y be a non-zero G-submodule
of .7(N*)/Epq. Denote by Y’ the pull back of Y to .7(N*). As I; is a
pro-p group, Y1 #£ 0. From Lemma 4.12, we also have an exact sequence :

0— Epo— (Y = Yh -0,
from which we have dim (Y’)"t = 1 + dim Y/t > 2. Now from
2 = dim . (N*)1t > dim (Y')I* > 2,

we conclude that .7(N*)t = (Y')I1. In particular, (Y’)!* contains 1¢,
and 1p_. In our former notation, 1p, and 1o are just respectively the
extensions of ¢ and (9, hence Y contains the subspace of .7 (N*) which is
extended from the subspace of # (1 ® 1) generated by ¢ and ¢, which is
nothing but # (1 ® 1) by Proposition 4.6. Therefore, ¥ = S (N*)/Egpo.

We continue to prove (2) of Proposition 4.10. We note that .#(1®1)t =
Z(1®1)! and .#(Sp)! € #(Sp)", then Lemma 4.12 tells that the following
short sequence is exact :

0— Ego— (1o - 7(Sp)! =0, (15)

which gives dim.#(Sp)! = 1. We can conclude that dim.# (Sp)&o < 1.
Suppose that f € #(Sp)X0 and f # 0. Let f be a pull back of f in
F(1@ 1) (via (15)), so f # 0. Without loss of generality, we can assume
that f = g1. As 8 € Ko, by our assumption, there exists a constant ¢ € E,
such that 8g1 = g1 + ¢ go. But this is impossible: By evaluating the former
equation firstly on the matrix Id, we get that ¢ # 0. However, when we
evaluate the equation at k = n(0,y), where y is an element of L; \ {0}, the
constant ¢ turns out to be zero, as for the matrix £ we have chosen we have
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4.2 Some results on principal series

k ¢ BI and k5 ¢ BI. Contradiction ! We have finished the proof of (2) of
Proposition 4.10. [

Remark 4.13. From the argument above, Sp™' is generated by the image
of g1.

Denote by g1, g2 the image of g; and gy in the underlying space ind%1/(1)
of the special series Sp.

Proposition 4.14. (1). The ¢ dimensional space generated by {n'gy, n' €
N{/Ni}, as a representation of Ky, is isomorphic to the inflation of St.
(2). We have the identity :

- ZneNé/N{ ng1 = Bg1-

Proof. First, we show the vectors in {n'gi, n’ € NJ/Ni} are indeed linearly
independent. But this is immediate: suppose we have constants [,; and a
constant ¢ such that

aneNé/N{ lyn'g1 = c(g1 + g2)-
Comparing the values of the above equation at n’ and 3 respectively, we see
all the [,y and ¢ must be 0.

We turn to show the space generated by {n'gi, n’ € Nj/Ni} is Ko-
stable. We note that g is I;-invariant. As {n’, n’ € NJ/N{ U{B}} consists
of a set of representatives for Ky /I, the Ky-representation { Ky-g; } is linearly
generated by {n'gi, n’ € N[/N{, Bg1}. Hence, we finish the claim, if we
could verify the identity in (2):

= 2neny/n; 91 = B
Assume there are constants [/, cg and d, such that,
Y owent v ' g1 + cgBgr = d(g1 + g2)
0/Ny
We see the only possibility is that d = cg = [,,. In fact, we have the following
identity, which holds in general:
Dowe(Np\N)/N 91+ BgL = g2

To verify the above equality, we note firstly that both sides of the above
equality have the same value at Id and 8. Hence, one only needs to verify
that the left hand side is also Ij-invariant. This is done by a case by case
checking.

In all, we have shown that the space generated by {n'g;} is Ky-stable
and of dimension ¢3. We denote this Ky-representation by Ry. It is easy to
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4.3 Proof of (1) of Theorem 4.1

see Rél = (g1), also the group I acts trivially on g;. Hence Ry is irreducible
and isomorphic to the inflation of St. 0

Corollary 4.15. Socg,(Sp) = St

Proof. By the last Proposition, we have a natural Kp-inclusion ¢ from St
to Sp, i.e., i € Homg,(St, Sp). Hence St is contained in Sock,(Sp). From
Frobenius reciprocity, Homg, (St, Sp) is isomorphic to Homg(indg0 St, Sp).
The compactly induced representation imd%0 St is generated the I;-invariant
function [Id, vo]. Hence, the space Homg(ind%OSt, Sp) is one-dimensional,
as we have already shown that Sp’t is one-dimensional in the argument of
(2) of Proposition 4.10. Therefore, St appears only once in Socg, (Sp).

Let o be another smooth irreducible representation of Ky, contained
in Sock,(Sp). Hence it is isomorphic to its Ko-image in Sp. The image is
generated by a non-zero vector in Spt, as o is generated by ¢’*. But (1) of
Proposition 4.14 gives that the image is nothing but St. We are done. [J

4.3 Proof of (1) of Theorem 4.1

Proof. Before giving the details, we note that the assumption that 7 is
admissible in | | can be removed. The reason here is the key Corollary
3.11 which means we can modify the process of | ].

By assumption, we are given a non-zero Ky-embedding ¢ from o to
m|Ky. Let ¢, be the corresponding G-morphism in Homg(ind%)a, ) via
Frobenius reciprocity.

As ind%oo is not irreducible, ¢, is not injective, i.e., ker¢, # 0. Hence,
(kerg, )t # 0. From the description of Corollary 3.8, there is a character
(xo or x%) such that

(kerg, )T X £ 0,

in other words, Homg(indIGx, ker¢,) # 0. Denote by ¢ the map given by
the composition with ¢,,

¢* : Homg (ind%y, ind[G(OU) — Homg (ind$x, ).

Of course, ¢; annihilates Homg(indgx, kerg,), and applying Corollary
3.11 we conclude that the image of ¢ in Hom¢ (ind¥y, 7) is a finite dimen-
sional # (I, x)-submodule in Homg (indy, ).

For simplicity, we also denote by ¢; the map,

¢ : Homg (ind%oo7 indIG(OJ) — Homg (ind?(()a, ).
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4.4 indf(oa has only irreducible quotients

Let Ag be the Ko-morphism in Homp, (indf‘)x, o), corresponding to the
morphism in Hom;(x, o) which maps 1 to vg. We note that A is surjective,
as o is irreducible. Inducing these Ky-representations to GG, we then get a
G-morphism A in Homg (ind%y, ind%}o) from Ag. It is also surjective (for
example, see 2.1 of | ).

Then, A induces two composition maps, both denoted by A*:

A*: Homg (indIG(O o, ind[G(O o) — Homg (ind%y, ind?(oa),
A* . Homg (ind%}a, 7) = Homg (ind¥y, 7).
Therefore, A* are injective.
It is immediate from the definitions of A* and ¢; that we have the
following commutative diagram:

Homg (ind%y;, inle(Oa) NN Homg (ind%y, =)

A*T TA*

Homg (ind%)a, ind?(()a) L Homg (indﬁoa, )

From all this, we conclude that qﬁf(Endg(ind?{Oa)) must be a finite
dimensional .7’ (K, o)-submodule in Homg (ind?(oa, 7). As we have shown
A (Kp, o) is a polynomial algebra (Proposition 3.4) , (1) follows. O

We will use the following corollary later:

Corollary 4.16. Let m be an irreducible smooth representation of G, which

is a quotient of some compact induction indf(oa, via the projection 0. Then
the %(Ko,a)N—submodule (0 - H(Ky,0)) of Homg (ind%’goa, ) is a finite
dimensional E-space.

Proof. Directly from the argument of the last result. O

It will take a while to prove (2) of Theorem 4.1 completely. In the next
section, we insert an interesting by-product of the last corollary.

4.4 ind%}a has only irreducible quotients

In this section, we record a simple observation on the subrepresentations
of ind%oa. The main result is the following proposition, whose analogue
for GL(2) seems to be well-known to experts, though we didn’t find it in
literature.

Proposition 4.17. Any non-zero subrepresentation ofindf(oa 15 non-admissible
and reducible, of infinite length.
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4.5 The subquotients of Vj

Proof. The first half is indeed a corollary of Proposition 3.11. Let 7 be a
non-zero subrepresentation of ind%oa. Then 7't is a non-zero submodule
of (ind?(oa)l1 over #7,. Hence, we are given a non-zero submodule !X
of (indg{oa)l’x over . (I, x), for some character x of I (One certainly can
say what the character y is). Now Proposition 3.11 tells that 7/X is of
finite codimension in (ind%)a)l X, and it follows that dim /X = oo from
the infinitude of dim(ind%)a)l’x.

Now we prove the second half of the Proposition. Assume 7 is an
irreducible subrepresentation of indg;(oa. Denote the inclusion by ¢. As a
smooth representation of G, 7 contains an irreducible smooth representation
o’ of K. Frobenius reciprocity gives a non-zero G-morphism 6 from ind%0 o’
to w. In particular, the composition ¢ o 6 is non-zero. Now 6 will factorize
through a non-constant polynomial P(7”), i.e., o P(T") = 0, where P(T") €
H (Ko, o'), by Corollary 4.16 (It is here that we really use the assumption
that 7 is irreducible). We have now (t08)o P(T') =10 (8o P(T")) = 0. But
this is impossible because P(T”) and ¢ o § are both non-zero, and we have
(tof)o P(T") = P'(T) o (t08) for another non-zero polynomial P’, from (2)
of Corollary 3.5. Now a contradiction arises from the injectivity of 7' (hence
of any non-zero f(7T)) ([ ], Théoréme 4.5.14)%. O

4.5 The subquotients of 1

Assume o is the trivial representation of Ky. Hence, we identify the
underlying space .#(Kj) of the compact induction ind%ol with the space
Co(A) of 0-chains of period one, i.e., the space of all finite linear combina-
tion 3 t,v for period one vertices. Let Deg be the map from Co(A!) to E:
Deg(c) = 3" ay, for ¢ = 3, a, - v, where o, € E. This map is a surjective
G-morphism and trivial on T'(.# (Kj)). We denote by Deg the induced map.
The following proposition is already stated without proof in | ].

Proposition 4.18. (1). The kernel of Deg is isomorphic to the special
series Sp.
(2). The induced short exact sequence is non-split :

0—Sp—Vog— Triv— 0,
where we write I (Ky)/(T) as V.

Proof. We prove (2) at first. The method here follows | ).

80ne can indeed conclude a contradiction from the argument of Corollary 3.5: the
bimodule structures described there guarantee that there is no non-trivial annihilator.
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4.5 The subquotients of Vj

Suppose the sequence is split. Then by definition, we have a pull-back
of 1 € E, which is G-invariant. Let ¢ € .#(Kj) be a representative of

Hence, g - ¢ — ¢ € T(HF(Kp)) for any ¢ € G. Assume the support
of ¢ is contained in the ball By(vo) (= Up<i<k C;) for some integer k >
0. Take g = o?**!. For a O-chain a € Co(Al), let suppa be the set of
period one vertices of the minimal subtree of A containing supp a. We see
supp (g - ¢ —¢) C Bap(vo) U a® T Boy(vo) = Bop(vo) U Bog(Vari2), which
we denote by X. Write g- ¢ — ¢ = T b for some O-chain b € Cy(A'). We
then claim that supp b C X — {va, vorio}. We observe firstly that it is

Qoo

contained in X, from the definition of T and that of the minimal subtree.
Secondly, for v = voi, or voi 9, there is some vertex v/ which is distance 2
from v, and is not in X. However, we can always choose such a v/ which
is not a neighbour of vory;. Then If v is in supp b, v/ would definitely
lie in supp (g - ¢ — ¢), a contradiction. Therefore, it is safe to write b as a
unique sum by + bg of two 0-chains, where supp by C X1 = By (v() — vor and
supp by C X = ng(V4k+2) — V2L49. As now d(Xl, XQ) > 6, supp (T bl)
and supp (T bs) are disjoint. Hence, by comparing the supports, T b; = —e¢,
ie.,, c=0.

To prove (1), we need some preparation, which also paves the way to
the proof of the unramified case of Theorem 4.1.

Let A be a variable, and set R = E[A,A™!]. Define an unramified
character X : EX — R*, by X(wg) = A~!. We form the character X ® 1
of T'by: X ® 1(t) = X (), where ¢ is the matrix:

0

0
-1

o o 8
ow O

z
Then we view X ® 1 as a character of B which is trivial on the subgroup
N. The character we choose above guarantees the existence of a non-trivial
function fp in the former space which is Ky-invariant, i.e., by writing an
element g as bk, fo(bk) = X ® 1(b), where b € B, k € Ky. Now we transfer
the result of first subsection to our situation. Define # (X ®1) as the space of
locally constant functions ¢ from N* to R which satisfy o((x,y)) = ¢-Av2l®)
for some constant ¢ = const(p) € R, when y is large enough. Therefore
by the above, the map ¢ which maps a f to i(f), where i(f)((z,y)) =
f(Bn(z,y)), is an isomorphism from (X ® 1) to # (X ® 1). The inverse
j of i explicitly: for a function ¢ in 7 (X ® 1)

i(0)(g) = {const(go)X ® 1(b), wheng=10b¢€ B, (16)

X ®1(b)e((x,y)), wheng=>bpn(x,y).
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The space # (X ®1) then inherits a structure of G-module. We record
the function ¢q:

AW if val(y) <0,

eo((z,y)) = {1’ if val(y) > 0.

Let Z(N*, R) be the space of locally constant functions on N*, which
take values in R and have compact support. By definition, .(N*, R) is a
subspace of _# (X ® 1), which has a set {1n+.(zy); kez, (zy)en+} Of charac-
teristic functions as generators, and there exists a direct sum decomposition:
J(X®1)=(N*R)® Ryo.

Lemma 4.19. Forp e (X ®1),

(D). n(@’, y)e((z, ) = ((z+ 2",y +y —2z’)).

(2). ap((z,y)) = A o((wpr, @hy)).-

(3)- al((x,y)) = Ap((@g' 2, @5"Y)).

Proposition 4.20. ¢y | T = (A — 1)

Proof. This is in fact a simpler variant of Proposition 3.24. O

As fo is Kg-invariant, ¢q is also Kg-invariant. This Ky-invariant vector
gives rise to a G-morphism cbg(? from indg;(o 1 to ind% X @1 which corresponds
to ¢ by Frobenius reciprocity, i.e., qﬁfoo (1x,) = ¢o. This morphism extends
to an R-linear morphism from the representation space ¥ of ind%ol Qg R
to #Z (X ® 1), which we also denote by gbfoo.

We are interested in the properties of gbgoo. Firstly, we determine its
image in _# (X ® 1). Before doing this, we compute a special G-translation
of @0-

Proposition 4.21. Y~ n(0, @ y)po = (1 — A1y

yely
P’FOOf. For (xlvyl) € N*a Z n(O,wEly)goo((xl,yl))
yely
= Y fo(Bn(z1,y1 + wp'y)).
yelq

Now we apply Lemma 1.2. When val(y;) > 0, n(x1,y1) € Ko. In this
case, the term y = 0 gives value 1, and for other terms Lemma 1.2 gives
that each fo(8n(0,w5'y)) is A™!. So the sumis 1+ (¢ — 1)A™' =1 - AL

When val(y;) < —2, Lemma 1.2 again gives that each fo(8n(z1,y1 +
wgly)) is Av(¥1) So in this case, the sum is zero.

For the remaining case of val(y;) = —1, there exists a unique y € L so
that y + wpgyp is in pp. This term gives value 1. For other terms, Lemma
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4.5 The subquotients of Vj

1.2 also gives that each fo(Bn(z1,y1 + @wz'y)) is A~L. The sum turns out
to be 1 — A~!. We are done. O

Theorem 4.22. (1). The image of ¥ under gbgoo is (1 — A1).7(N*,R) @
Rg@o.
(2). The kernel of qﬁf(? is (T—A+1)7.

Proof. We deal with (1) first. From (3) of Lemma 4.19, we get a™"1y= =
A™y; . Then for any integer n, (1 — A’l)l]\/;n_1 is in the image of qﬁgg
by Proposition 4.21.

By (1) of Lemma 4.19, n(z,y)1n;y = 1y#(sy)-1- This shows that, for
any (z,y) € N* and any integer n, (1 — A_l)lNgn,y(r,y) lies in the image of

¢£)0. Furthermore, we have

Iy; = Z n(w%z,w%”y)lj\@nﬂ, (17)
(x7y)€L2

and using (1) of Lemma 4.19 again, we see that, for any (z,y) € N* and
any integer n, (1 — A_l)lN;n,(%y) lies in the image of gbgoo. We have proved
(1 - AH.7(N*, R) @ Ry is contained in the image of qbgg.

Now for a vertex v € Al, there is a unique path from v to vg; as a
result we could express v as Y, t;(v; — A" ta?(v;)) + tovo, where t € R and
a®(vy) is the unique vertex which is of distance 2 from v; and with height
h(v;) + 2. This expression of v changes into Y, t;g:(vo — A~ va) + tgvo for
some g; in G (we have used Remark 3.30 here). Then qbg(? (v) = tigi(po —
A~ owpo) + togo.

By the definition of ¢y and (2) of Lemma 4.19. we compute @y —
A tapy = (1-=A71) (A M y= +1y;). We also note that go is in . (N*, R) &
Ry, for any g € G and ¢ € /(N*, R). This shows that gbgoo (v) is in the
space (1 — A1).7(N*, R) @ Rypo. This finishes our argument.

We now prove (2). Firstly, by Proposition 4.20, we have ¢£§)((T — A+
1)(1k,)) = 0. As the G-translates of 1k, generate #', we conclude that qﬁgoo
vanishes on (T'— A+ 1)7.

Given ¢ € ¥ such that d)goo (c) =0, we write c as Y gty -V, where S
is a finite set of A'. So we can find a vertex vo, in the standard apartment
such that vg, € Nyeg Voo, i.e., all the vertices in S are under vo,. Put
2s = minyeg h(v). Then if we allow some ¢y to be zero, we can assume S to
be the finite subset of A consisting of all the vertices under vo, and with
height greater than or equal to 2s.

Step 1 There is an equality:

v =A"1a?(v) — A" 1(a?(v) — Av).
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4.5 The subquotients of Vj

Replacing each v € S in the expression of ¢ by the right side of the equality
above (doing this from the vertices of least height and moving up), we get:

c=P- vy + Z Py - (a*(v) — Av), (18)

VES, V#£VY,

where P and P, are polynomials in A, A~1.
Step 2 Recall that for v € Al, Tv = Zd(v’,v):Q v/. Then we get that
for such a v,
Tv+v=a*vV)+ Y v+ > V.
a(v')=a(v) a?(v')=v
Note that the numbers of terms appearing in the second and the third sum
above are respectively ¢ and ¢*. Then a rearrangement gives

Tviv—-Av =d*(v)-Av+A~" ) (AV-a(V)+A" Y (AV-d*(V)).
a(v')=a(v) a?(v')=v
(19)
Equivalently ,

A?(v)-Av=A"" D (@) -AV) AT DT (@A) - AV). (20)

a(v')=a(v) a?(v')=v

where the congruences appearing above and below are all mod(T'—A+1)¥".

Note that in the first sum on the right of (20), v’ goes through all the
vertices under and adjacent to a(v), which particularly means that these v/
are of the same height. So the height is not reduced if we insert (20) directly
into the expression (18) of ¢ that we got in step one.

Now write a(v) as u. Viewing u as fixed, we sum (20) over the vertices
v which are under and adjacent to u. Then the first sum on the right of
(20) disappears as it becomes a constant and is counted ¢ times. We get

> (@) -Av) = 3 AT 3 (@(V) - AY)

a(v'")=u a(v')=u a?(v')=v"
= A1 Y (dP(V) - AV)
a3(v')=u

Then by inserting the above into the right hand of (20), we finally obtain

A(v)—Av=A" Y (@P(V)-AV)+HATT D) (@ (V) - AV). (21)

a3(v)=a(v) a?(v)=v
We also note that the right hand of (21) can be written as
Qv - (a*(V') — AV'),

a3(v')=a(v)
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4.5 The subquotients of Vj

where Q- is some polynomial in A and A~! (depending on v').
Using (21) for all v € S except vy, (starting from the top and going
down, in (18)), we get
¢c=P vy + S PL(a®(v) — Av).
veS, h(v)=2s
Our assumption is gi)foo (¢) = 0. Then by Proposition 4.20, the congru-
ence above gives

0=P-¢(va)+ S PB-ofo@(v)-Av).  (22)

vES, h(v)=2s

We need to compute the right hand side of the equation more explicitly.
Firstly,

P50 (var) = 950 (a"vo) = "¢y,
Secondly, from the proof of Lemma 3.26, we know that
{v e Sh(v) =2s} = (N_gr/N_25)Vas.

Then given n = n(x,y) € N_,, which means that y € p.*", from Lemma
3.29 and Lemma 4.19 we see that

fg(aQ(ans) — Anvyg) = ¢<p0 nvasto — Anvag)

(
(n *(avg — Avyp))
= na’(apo — Ayp)

= (A T 1)A (1Ni2871-(z,y)_1 +A- 1Nj23-(x,y)—1)7

from which it turns out that the supports of the functions gi)foo(cﬂ (nvag) —
Anvss) may intersect as n = n(x,y) goes through N_o, /N_o;.

One observes from these computations that (bg{? (var) is of non-compact
support, but all the other qbgoo (a%(v) — Av) have compact support. Therefore
we can conclude that P = 0. Then by substituting the display above, (22)
turns into

2 Priay) (Nt czg) A Ine, (cap) =0,
n=n(z,y)EN_2,/N_2s

where we write P’ 22 1)
n(z,y

commutes with (z,y)(as elements in N*). When decomposing N*,, ; into

) for P, for v = n(z,y)ves. Note that (0,w
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4.5 The subquotients of Vj

Uier, N*95(0,05%7 1), and re-writing the sum over the left cosets, the
above equation turns into

qg—1
/ J—
> n(—ag) <(1 AN, ) D 1N*25-(a:,y+w;23‘1l¢)> =0,
nEN_2s\N_2, 1=1
n=n(z,y)
(23)
in which {l;,1 <i<qg—1} =L;\{0}.

For simplicity, we will rewrite P/ (_g) above as PT’L’(x ,)- To deal with

(23), we note first that n(z’,y’ + wz>* ') goes through N_ss\N_s, when

/

n(2’,y') and [ go through N_o5_1\N_g,. and L1 respectively.
Then another observation we need is that: for a given n = n(z,y) €
N_9s\N_g,, N*5. - (,y) is fixed by (0,w** 1) for | € Ly, and moreover

when [ goes through L;, N*,, - (z,y + w;JQS_ll)

(l’, y)\Nj2371 : (‘T? y)‘

With these in mind, we can see that for a fixed (2/,y') € N*,, | \N*,,,
the coefficient of a characteristic function 1 N* (@ 52 ) (
in (23)) is (L + AP + 32, P/, where P/ (relative to (2',y')) is short for

/!
n(m’,y’—&-wg%‘lli) .

also goes through N*,_ -

appearing

Therefore we can rewrite (23) as:

qg—1
> DACHMNE +D P Ly ity = 0. (24)
neN72571\N72T7 1=0 ]751
n=n(z’y’)

Now from (24) we arrive to conclude that for a fixed (2/,y') € N*o, |\N*,,,

1+M)P/'+) P/'=0, 0<i<q-1. (25)

J#i
Then it is a matter to solve for P! from (25). In fact, by adding together
all the equations in (25), we get Zg:_&(l + A+ q—1)P/ =0, which is just

qg—1

S P =o. (26)

i=0
Subtracting (26) from every equation in (25), we obtain that all the P! are
0.

Changing back the notations, we have indeed shown that Pé’(x y) are all

0, for n(x,y) € N_os\N_g,, i.e., P;L(z y) are all 0, for n(z,y) € N_g,/N_os.

We have finally proved ¢ =0, i.e., c € (T'— A+ 1)¥". We are done. O

Now we are ready to prove (1) of Proposition 4.18.
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4.6 Unramified case

Let 7’ be the underlying space of the representation indﬁol Oy, B-
Then we have an isomorphism

VTV = Vy = 7 (Ko)/TI (Ko).

Hence, we are given a degree map:
Deg: Vo=7"/TYV" - E. (27)

We now apply the Lemma 31 of | | to our situation: D = R, P =
(A —1), S = the group algebra E[G], Y' = ¥’ Y = #(X ® 1), hence we
view both Y and Y’ as a (S, R)-bi-module. Then, we use Theorem 4.22:

We indeed have ¥/ /T¥" = ¥'/(A — 1)¥’, from Proposition 4.20 . On
the other hand, (A — 1) _# (X ® 1) is contained in the image of ¥’ under
the injection d)foo by (1) of Theorem 4.22. So the condition of Lemma 31
of | | is satisfied. As an E[G]-module, ¥’/T¥%" and #(X ® 1)/(A —
1) Z(X ® 1) have the same length and the same Jordan-Holder factors.
However, Z(X®1)/(A—-1) Z(X ®1)is just #(1® 1), i.e., the space of
the representation indgl ® 1, which is of length 2 from Proposition 4.10,
with two Jordan-Holder factors: Triv, Sp. Hence, the Kernel of Deg, as
an E[G]-module, must be irreducible and isomorphic to the special series
Sp. O

4.6 Unramified case

For a non-zero \ € E, let xa be the unramified character of E*, which
takes value A\™! at wpy. The preparation in last subsection leads to a special
case of Theorem 4.1.

Theorem 4.23. Let (w,V) be an irreducible smooth representation of G
such that VEo £ 0. Then,

(1). There exist a vector v # 0 in VEO which is an eigenvector for i, .

(2). Let v be an eigenvector in (1), and denote by \ the corresponding
eigenvalue, i.e., v | T = Av. Suppose X # —1. Then,

(a). If X # 0, then dimVEo =1 and (7, V) = indGxay1 @ 1;

(b). If \ =0, then dimV =1, and (7, V) = Triv.
Proof. (1). We have indeed proved this in general.

(2). For v as in (1), denote by A the corresponding eigenvalue, i.e.,
v | T = Av. Assume that A # —1. By the definition of the right action,
#Ko is trivial on (T' — \).#(Kp). So (m, V) is equivalent to an irreducible
quotient of

ind%,1/(T — \)ind§, 1

84



4.7 Injectivity from ind%}a /(T — ) to principal series indGe: A # 0

via the map ¢X°.

For (b), where A = 0. By Proposition 4.18, ind%ol / (T)ind%)l contains
the special series Sp, with quotient Triv. As Sp is the unique subrepresen-
tation of ind%ol/(T)ind?(ol (from (2) of 4.18), we conclude that = = Triv.

For (a), where A # 0. As A+ 1 # 0, we can form the principal series
indg(x)\ﬂ ® 1) with underlying space _# (xa+1 ® 1), and it is irreducible
as A+ 1 # 1. The Kp-invariant function ¢g in _# (xa41 ® 1) gives rise to
a G-morphism ¢g00 from indf(ol to ind%(xa+1 ® 1). From Proposition 4.20,
we see @g | T = Agg. Hence gbgoo is trivial on (7" — A)indﬁol and we get an
induced morphism:

¢h0 +indF,1/(T — A)ind%, 1 — indF(xas1 @ 1). (28)

Now the right side of the above is irreducible. From the conditions that
A+1#1and A+ 1 # 0, the same argument (changing A into A + 1) in
proving (2) of Theorem 4.22 will imply that the ¢§00 above is injective. But
it is surely non-zero. Therefore ¢g00 is an isomorphism. We conclude (, V')
is equivalent to ind%(yxy1 @ 1). O

4.7 Injectivity from indgoa/(T — )\) to principal series ind$e:
A#0

Let o be an irreducible smooth representation of Ky, and ¢ be a char-
acter of the Borel subgroup B. In section 3.5, we have shown that the space
Homg(indﬁoa, indGe) is at most one-dimensional, and it is non-zero if and
only if the restriction of € to BN Ky (i.e., £¢ in the notation of 3.5) is equal
to x;. From now on, assume it is in this case. We have also defined a non-
zero G-morphism P, ; in Homg(ind%) 0,ind%e), where v) = Bug, and vy is
a non-zero fixed vector in o’'. By Proposition 3.24, Py 1 will factor through
the quotient ind%ocr /(T —c¢), where c. is the value discovered in Proposition
3.24. Denote also by P, ; the reduced morphism from i]rld?(O o/(T —¢c) to
indgs.

The main result of this section is

Proposition 4.24. When dim o > 1 and c. # 0, Pv(’),l 18 injective.

Proof. In the argument of Proposition 3.24, we have determined c. explic-
itly, which only depends on the character . Denote c. by A. Under the
assumption A # 0, we proceed from Proposition 3.13 and have the following
lemma, where we take the antecedent (Definition 3.31) into account.
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4.7 Injectivity from ind%}a /(T — ) to principal series indGe: A # 0

Lemma 4.25. T[nga*,v] — A[nga®, v]

= A[noak, v] — )\[noak, v] + A1 Z (A fouy — A~ fo,u,)
y€L1\{0},uy=n(0,wpy)

+A70 Y A ha— A ha) HAT > A\ foy — A+ F2u,)

u€(No\N1)/N2 uy=n(0,wpy), y€L1

where :

fouy, = [no - n(07w5(2k+1)

for uy =n(0,wpy),y € L1\ {0};

y)@ka X1 (go_l)Lvo,y(v)UO]v

Fru = [no - n(@g a9, @™y Db xa @ Hxe (=191 ) Lug,y (v)vo),
for w=mn(z1,y1) € (No \ N1)/No;
fou, = [ngn(O,w}E_Qky)ozk_l, S (V)vo],
for uy =n(0,wpy),y € L.

Proof. We begin with the formula in Proposition 3.13. For u € Nj/No,
nocfuat = ng - aFuaF - aF~1. For u € Na, nga®Bua=! = nga*+1 41 for

some [ € Nj.
For u € (N7 \ N2)/Na, written as n(0, wgyp), we have
_ —(2k+1 L _
noakfua~! = non(O,wE( + )yo)akdlag(yo 1, yo)n' (0, wry, 1).

For u € (Np \ N1)/Na, written as n(z1,y1), we then have
nock Bua = non(wg eyt @y ek diag (T, —yr s y)lf

for some I" € Nj.
We note that A[na®, v is zero by our definition. Then we obtain the
required formula in the Lemma by combining the above calculations. O

Using the above Lemma repeatedly, we get the following Corollary
(compare with (19) in the proof of Theorem 4.22).
Corollary 4.26. For anyng € N, k€ Z, and v € W, we have

Alnga®, v] = Anoa®, v] = 30, fi(Alnga* ™!, vj] = Alnja® ™!, vj])

for some f; € E and some vectors v; € W. The elements nj are all in N,

satisfying that the vertices njozk_lvo are distinct from each other. Here the

congruence is taken modulo (T — \).

Proof. Apply Lemma 4.25 to the terms where y goes through (N7 \ N3)/No,
observing that Ly, ,(vo) = 0. O
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After the previous preparation, we follow the process of Theorem 4.23
to prove Pv6,1 is indeed injective.

Let ¢ € S(G,0) such that Py 1(c) = 0. We write ¢ as 3 cq [n;07,u5],
where nj; € N, u; € W. Let s be iminjcg{h(njaivo)} — 1, and assume all
the vertices njozjvo are under vo,._o. Also, by setting some u; to be 0, we
may enlarge S so that the vertices n; alvg go through all the vertices strictly
under va, and with height at least 2s. Using the following identity

[na®, u] = A" Ana® u] — AN (A[nak, u] — A\[na, u)),

we rewrite ¢ as:

c=P-[na", vl + Y P (Alnjod,uj] = Alnjo?, uj), (29)
s<j<r

where P, P; are some constants in E.
Combining the above equation with Corollary 4.26, we obtain

c=P - [na”, 0] + 3 en Ny, Do (Alne®,vo] — Alna®, vo)).

By definition of antecedent, A[na®, vg] = 0 for all n.

We recall we are in the case of dim o > 1, the constant A\g, vanishes.
Hence the function fy, which is Pvé,l[I d,vg], is 0 at Id and 1 at 8. In our
former notations, it is then just go. For simplicity, we would like to use
po =1 Ngs which corresponds to gs.

We compute first Py 1 ([na”, v]) = na”Bfo = na’”Bes, for which we un-
derstand it has non-compact support by pulling-back (also see Remark 4.7 ).
Secondly, we compute Py 1 ([na®, vo]) = na’fo = na’ly; = (@) *1n+, (—uy)
for n = n(x,y) € N_g,/N_ss which is compactly supported. Hence, we con-
clude that P = 0. For the remaining terms, their supports N*,, - (—z,7)
are disjoint when n = n(z,y) goes through N_s,/N_s,. We then conclude
all the P,, are 0. We therefore have shown ¢ € (T'— \). In all, the injectivity
of Py 1 is shown. O

4.8 Proof of (¢) of (2) of Theorem 4.1

Proposition 4.27. We have an isomorphism of G-representations:
ind% St/(T) = ind% 1

Proof. We fix a non-zero vector vy in St/'. Now from section 3.5, the G-
morphism P, | € Homg(ind%} St, ind§1) is well-defined.

Vg
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4.8 Proof of (¢) of (2) of Theorem 4.1

The image of P, ; is generated by the function P ([Id,vo]) = fo,
which is just g» in our former notation. As g, is clearly not fixed by Ky,
Pv(’),l must be surjective due to the fact that indg 1 has trivial character as
the unique proper subrepresentation (see [ |). From Proposition 3.24,
P, 1 is killed by T’ actually one can simply check P 1 (T[Id, vo]) = 0. It
suffices to prove Pv6,1 is injective. However, it seems the strategy used in
section 4.7 does not work when A = 0.

We note that Pv[/),l is surjective when restricted to the subspace of I;-
invariants. In fact, one can check P%J( f1) = g1, which is reduced to check
ZueN{/Né uaf - g2 = gu.

We choose a proper character 7 of kL, so that n(—1) # 1. Let o1 =
nodet ® St. The Ij-invariants of o1 are generated by vg, on which I acts as
character x,,. Hence, we may use the same notation P%,l as the non-zero
G-morphism in Homg(indIG{Oo—l, ind% nodet). In the same manner as we have
just done, P, 1 is surjective. By Proposition 3.24, P%’l factors through the
quotient indy o1 /(T" — (1 —n(—=1))). As 1 —n(=1)) # 0 and dim oy > 1,
P%’l is injective, by Proposition 4.24. We are done, by applying Lemma
4.4. O

We need the following analogue of Proposition 4.18, which is conjec-
tured in | ]

Proposition 4.28. We have the following non-split short exact sequence:
0 — Triv— ind%, St/(T) — Sp — 0, (30)
where St is inflation of the Steinberg representation of G(kr) to K.

Proof. Tt is implied by Proposition 4.27, and the fact that indg 1 is the
non-split extension of Sp by trivial representation (] D). O

We proceed to complete the proof of (¢) of (2) of Theorem 4.1. In this
case X, factors through the determinant, i.e., x, = nodet for some character
n of kl, and A = 1 — xj(—1). From the theory of Carter-Lusztig (| ],
(7) of Lemma 5.8), 0 2 nodet or 0 = nodet® St, where St is the inflation
of Steinberg representation of G(kr) to Ky. In the first case ind%)a =
nodet®indf<01, and in the second case, ind%)a = nodet®indIG(O St. However,
from Proposition 4.18 and Proposition 4.28, we conclude that n o det (resp.
nodet ® St) is the unique quotient of ind%’gon odet/(T"— (1 —n(—1))) (resp.
ind%on odet ® St/(T — (1 —n(—1))). Hence, we are done.
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4.9 Proof of (b) of (2) of Theorem 4.1

4.9 Proof of (b) of (2) of Theorem 4.1

We start to prove (b) of (2) in this section.

Before going into details, we recall a little more about the situation of
(b). Under the assumption of (b), the principal series indGe is irreducible
nd there is a non-zero G-surjective morphism from ind%}a to indgg, which
factors through indf(oa/ (T — X). We will prove that ind[G(OU/ (T — A) is
irreducible, which completes the argument that 7 is isomorphic to indga.

For (b), we separate it into two cases:

Case 1: o is a character and A # 1 — x} ,(—1).

We repeat that ind%e is irreducible and is a quotient of indgoo /(T —=N).
We reduce it to the unramified case which is already known. Write o =
no det for a character n of kj,. Consider the principal series indgsl, where
1 o= (n~' odet) - € |m,, e1(a) = (). Hence, indGe; is a quotient of
ind%)l/(T — A1), where \; = A+x} ,(—1) —1, by Proposition 3.24. The as-
sumption on A is translated into that Ay # 0, —1. Hence, from the argument
of Theorem 4.23 (2) (a), we have shown ind%‘gol/(T—)\l) >~ ind%(xy, 41 ®1).
We are done in this special case by twisting the character n o det back,
applying Lemma 4.4.

Case 2: The remaining cases of (b). Recall () # 0 by our definition.
In this case dim ¢ > 1 and the principal series indg ¢ is indeed irreducible
by Theorem 4.9.

Subcase 1: x} ,(—1) =1

In the case that Xll,a(_l) = 1, we are already done, as now the assump-
tion of Case 2 satisfies the conditions of Proposition 4.24.

Subcase 2: Xy ,(—1) = —1

Choose a proper character n of k};, so that X’lm(—l) = 1, where
01 = nodet ® o. There is then a non-zero G-morphism from the compact
induction ind%’goal to the principal series indgsl, where £ is the character
of B: €1 |g,= € |n, -(nodet), and 1(a) = e(ar). By Proposition 3.24, such
a G-morphism factors through inle(Oal /(T"— A1), where A; is equal to A —2
and is non-zero by the assumption on A in this case.

Now, we can apply Proposition 4.24; as a result, we conclude that

indf(oal/(T’ - )\1) = indgsl.

Finally, we twist both sides of the above isomorphism by the character ' o

det, using Lemma 4.4.
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5 Canonical diagrams and finite presentation

This chapter is motivated by [ ] and | |, as reflected from the
title. In the case of GL2(Q)), all the irreducible smooth representations are
finitely presented”, which is a result of Barthel-Livné and Breuil. However,
recent work of Hu | | and Schraen | | on GLy(F') has shown that
supersingular representations are not finitely presented any more, when F' is
either a non-archimedean local field of positive characteristic or a quadratic
extension of Q.

The purpose of this chapter (and part of Appendix B) is to pursue some
ideas underlying their work. Especially we follow Hu’s canonical diagram
[ | closely and intend to arrive at some analogous results which are
essentially used in Schraen’s work [ . So far, we have achieved only
part of the goal.

We now go into some details and explain the underlying motivations.
Let o be an irreducible smooth representation of Ky, and let = be a smooth
G-quotient of indIG(OU. In 3.7, R} (o) (n > 0) is defined as the subspace of
ind%)a which consists of functions supported in Ko™ I, and is I-stable. One
has similar notation R, (o) for n > 0, which consists of functions supported
in Koo~ (1], There is then a natural I-decomposition of ind[G(Oa:

ind%, o = I (o) ® I~ (o),

where I (o) (resp. I (0)) is @R} (o) (resp. @n>0R;, (0)). Denote by
It (o,7) (resp. I71(o,7)) the image of I () (resp. I~ (o)) in 7.

In the preliminary section 5.1, we have proved Proposition 5.3, following
[ | and combined with some result in previous chapters. It at least
implies that the I-subrepresentation I (o, 7) N I~ (o, 7) of 7 is non-zero, if
7 is irreducible. We remark in the case of GGLs, this I-representation is the
most basic ingredient in Hu’s definition of canonical diagrams, and he has
managed to show that it does not depend on the choice of the underlying
weight o, confirming the name of canonical. In our group G = U(2,1)(E/F),
we have not really pursued this seriously in this thesis, but only keep it in
mind as a general guide.

In the second section 5.2 of this chapter, we aim to prove an analogue of
a main result in [ ]. Assume 7 is an irreducible smooth representation
of G and that it is the quotient of some compact induction ind%}a, via a
projection 6. Generally speaking, to understand 7 it suffices to understand

9An irreducible smooth representation 7 is said to be finitely presented, if there is a
non-zero G-morphism from some compact induction to 7 with the kernel finitely generated
as a G-representation.
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the corresponding kernel R(o, 7). In view of Hu’s idea, there is indeed a
close relation between the I-representation I* (o, m) NI~ (o, 7) and R(o,);
in principle, I (o, 7) N I~ (o, ) should inherit essential information from
itself. However, due to some technical difficulty, we have only been able to
show the easy side, i.e., IT(o,7) NI~ (o, ) is finite dimensional if R(c,7) is
finitely generated (Proposition 5.6). Hence, 7 could not be finitely presented
if one could show I (o, 7) NI~ (o, 7) is infinite dimensional. This is what
Schraen has indeed proved for GLy(F) in | ], when F' is a quadratic
extension of Q,. We also discuss informally, in the final part of this section,
about the difficulty we have had in proving the converse (Remark 5.9).

In the section 5.3, we have mainly arrived at an analogue (Lemma 5.17)
of a major technical result of Hu on GLo(F') ([ ], (i) of Proposition 4.11).
It says that any Ny-invariant of I (o, ) is annihilated by some polynomial
of S, where S is a canonically defined I;-linear endomorphism of 7™V0, for
an irreducible smooth supersingular representation 7. However, at present
it is not clear to us how to find interesting applications of this result.

In the section 5.4, using an argument of Pasktinas, we record a formal
sufficient condition (Proposition 5.20) for the restriction to the Borel sub-
group of an irreducible smooth representation to remain irreducible. How-
ever, in contrast to the case of GLo, we don’t expect the condition holds in
general for supersingular representations of G.'°

In the last section 5.5, we carry out some computations on the tree of
G and prove that the dimension of the Ny-invariants of the space A(k, o) :=
(Ry_,(0) ® R (0) & R}, 1(0))/T-(R{ (0)) (k > 1) is no less than p(p — 1)
(Corollary 5.31), when F' = Q,. The purpose that we do such thing is
two-fold. On one side, the I-space A(k,o) could be imagined as a finite
piece of ind%)a /(T,). In view of that, it is reasonable to believe one should
get some interesting information of indf(o 0/(Ty) by piecing together that of
A(k,o). On the other side, in the argument of a major result of Schraen
( |, Proposition 13), a key point is reduced to checking the connect-
ing homomorphism of some cohomology groups is not injective. The lower
bound proved in this section could be used to verify a similar non-injective
result (Remark 5.33). Hopefully, our result will also play a similar role in
further considerations.

5.1 Preliminary results

We start by recalling some notations introduced in 3.7.

10Pagkiinas proved in | ] that a similar condition holds for supersingular represen-
tations of GLa(F).
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Let o be an irreducible smooth representation of Ky. We have set
R (o) = [N
Ro(o) =
We also set

b "ol > 0; Ry (o) = [Nja",o].n > 1
R (o), Ru(0) = R (0)® R,_,(0)in > 1.

I*(0) = ®nx0 Ry} (0), I7(0) = BpzoRy (0).
There is an I-decomposition
ind%)a =It(o)®I (o)

Any f € ind]G(OJ is therefore uniquely written as f* + f—, for some f™ €
It (o), f~ eI (o).

For u € U, let [u] be a chosen element in Ny, satisfying that the re-
duction of [u] is u. In the following, we will usually take [u] as n(z,y), for
(z,y) € Lo.

Lemma 5.1. For n > 1, the space R,(0), as a Ko-subrepresentation of
ind%oa, is generated by R, (o).
Proof. Indeed, we have the following

Rf(0) = &plklBR,_1(0),

which is directly from calculation. O

Recall we have shown in Proposition 3.37 that
T(R,(0)) C R,_,(0) ® R, (0) ® R, ;,(0),

and T |R;(G) is the sum of I-morphism 7~ ]R;(U): R, (0c) - R, _,(0)
and the injective I-morphism T |- (0) Bnl(o) = R (0) ® R, (o) from
Corollary 3.309.

Lemma 5.2. Let k > 0, f € ®,>1R;, (0), and P(x) any polynomial of
degree at least one. Then there is f' € @p>k+1R;, (0), depending on f and
P(z), such that

f =1 € P(T)(&nzk1Ry (0)).

Proof. One can write P(z) = (r — \)Pi(x) for some polynomial P;(z) of
degree strictly smaller that of P(x), and for some A € E. By the comment
before the Lemma, we find some fi € @,>41R,, (o), such that T~ (f1) = f.
If Pi(z) is a constant, then the function —TT(f1) + Af1 is as desired. If
not, we do induction on the degree of P(z). Then, we are given fo, f3 €
@n>k+2R;, (o), such that fi — fo = Pi(T)(f3). Then, one can check the
function
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=TT (f1) + M1+ (T =N fa

lies in ®p,>,4+1R;, (o) and satisfies the requirement. O

Let m be a G-quotient of the compact induction inle(oa. Denote by
R, (o,7) (resp. R (o, 7), R, (o, 7)) the image of R, (o) (resp. R (o), R} (o))
in 7. Denote by f the image of f in 7, for a f € ind%}a. Similarly, It (o, )
(resp. I~ (o,)) is the image of It (o) (resp. I~ (o)) in 7.

Proposition 5.3. Assume 7 is an irreducible smooth representation and a
G-quotient of ind?{OU, and vy is a non-zero vector in o'*. Then

(1). [Id,vo] € 3,50 Ry, (0, 7);
(2). Ro(o,m) C En21 R, (o, ).

We note (1) in particular implies It (o, m) NI~ (o, 7) # 0.
Proof. (1). From Corollary 4.16, we see the given G-surjective map indIG(OU —»
m will factor as
ind[G(OcT — ind%)a/P(T) — T
for some polynomial P(x) of degree greater than zero. Then the following
claim will finish the proof of (1):

[Id,vo] € P(T)(ind%,0) + @n>o Ry, (o). (31)

We pick a root A of P(x) and write P(x) = (z — A)Pi(z) for some
polynomial Py (z). Let f be the function [o,vg] € Ry (o). A little calculation

based on Proposition 3.41 shows that
(T — N f =[Id,v] + f1 (32)

for some f1 € ®p>0R;, (o). If Pi(x) is a constant, then the preceding identity
(32) already gives us (31). Otherwise, using Lemma 5.2, we find some f> €
@n>1R;, (o) such that

[ = foe P(T)(@®n>1R,, (o)),

which gives that [Id,vo] = (T'—\) fa— f1+P(T) f' for some [’ € &,>1R;, (o),
as desired for (31). We are done for (1) .
(2). The second part indeed follows from (1) directly, as one notes that

Ry (o, ) is generated by [Id, vg] as a Ky-representation. O
Let ¢, be the following I-morphism:

Go ind%}a — I~ (o) » I~ (o,m) <,
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where the first surjection on the left is the natural projection from indgoa
to I~ (o).
Then, one has

Lemma 5.4. I[1(o,7) NI (0,7) is the image of R(o, ) under ¢,-.
Proof. This is indeed a formal result of Y.Hu, Lemma 3.11 in | . O

Recall we have the coset decomposition:

Ko = Uueng/n [W]BTUT

Now we apply Lemma 2.10 in | |: take M to be the I-representation
I~ (o,7), which generates 7 as a K representation by Lemma 5.1. Consider
the induced representation W = IndfOM , and from Frobenius reciprocity
we are then given a surjective Ky-morphism Pr : IndfOM — 1, explicitly
sending [g,v] in Indf‘)M to gv in . Denote by Wi (o, ) be the kernel of
Pr. As an I-representation, the following decomposition holds:

W=MeWT.
The underlying space of W is generated by
{[Uﬂ,’l}] U= n(m,y), (:E?y) € L27U € M}

Denote by Q% the image of W+ in 7. Then, from Lemma 5.1 again, we see
it is just >, Ry (0, 7). Lemma 2.10 of | ] gives

Wi(o,m) C Indf (I~ (0,m) N Y51 R (0,7))
Lemma 5.5. Assume we have an identity in w of the following form:

Z“:”(ﬂcayh(w,y)eLz ufv, +v' =0

for some vy, v € I~ (o,7). Then all the vectors vy,v' lie in I*(o,7) N
I~ (o,m).

Proof. This is implied by the preceding remarks. O

5.2 An equivalent criteria for finiteness of R(o, )

Proposition 5.6. Let m be an irreducible smooth representation of G and
is a G-quotient of indf(oo. Let R(o,m) be the corresponding kernel. Then
the following condition (2) implies (1) :

(1). I (o,m) NI (o,7) is of finite dimension ;

(2). R(o,7) is of finite type, as a E[G]-module.
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Proof. Assume {f1, fa, -, fi} is a finite set in R(o,7) which generates it
over E[G]. For a large enough m > 1, all the f; lie in @o<p<mRi(0). Let
M be the image of Go<p<mRi(c) in 7. From Lemma 5.4, we only need to
show ¢, (gfi) € M for all g € G, as M is of finite dimension. Of course, it
is the case for g € Ky, as @o<k<mPRn(0) is stable under Ky. We are then
reduced to the following simple lemma:

Lemma 5.7. For anyn > 1, ¢o(a"f;) € M.

Proof. This results from some simple calculations. For n > 1,a"f € I~ (o)
when f € I~ (o). Suppose k is an integer such that 0 < k < m; then, for
v € o,n(z,y) € Ny, we have

k

[an ’ n(xa y) Qs ,’U]

=[a" - n(z,y)-a " a"* ") y] € IT(0), fory e pan < k;
I~ (o), fory € op \ p2t,n < k;
eI (o), n > k.

Hence, we can conclude, for f € @o<i<xRi(0), when n > k, we have
(a™fT)* = 0, which gives (a"f)* = 0. When n < k, we also have
(" f)" € Go<i<kRi(0). For f; € R(o, m)N@o<k<m Ri(0), we see ¢, (a” fi) =
—(anf;)T € M immediately. O

Remark 5.8. We have indeed shown that (™ )T € ®o<p<mRi(0), for any
f € ®o<k<mBRi(0) and any n > 1. In particular, ¢,(a"f) € M, for any
f € R(o,m) N @o<k<mBir(0) and any n > 1.

We turn to complete the proof from (2) to (1). As the Go<rp<mRi(0)
is stable under Ky, we only need to show: if f € @o<r<mRi(0) N R(o,7),
then for any n > 1,9 € Ko, ¢,(ga™f) € M. Clearly, by Remark 5.8, the
claim is true if ¢ € I, as M is Kg-stable and ¢, is I-map. Assume g €
IBI. Recall that ga"f = g(a"f)* + g(a™f)” and ¢, (ga"f) = (ga”f)~ =
—(ga™f)*. We only need to consider the case that ¢ = 8. But, by definition,
¢o(Ba™f) = (B(amf)T)~, and the claim results from Remark 5.8. We are
done. O

Remark 5.9. We fail to prove (1) also implies (2). A simple reason we
are not able to carry out the strategy in | | is the lack of an element
in G which exchanges I (o) and I~ (o), which is due to the fact that the
normalizer of I is itself; in the case of GLa, the normalizer of the standard
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Twahori subgroup contains an extra element'' which is not in the maximal
compact open subgroup, and this element plays a very crucial role in Hu’s

argument.

5.3 On the Ny-invariants of I (o, )

Lemma 5.10. Let w be a supersingular representation of G, and assume 6
is a non-zero G-morphism in Homg(ind?((]a, ) for some compactly induced
representation ind%)o. Then, for large enough k > 1, we have

foTF=0.

Proof. From Corollary 4.16, there is a polynomial f(7,) € (Ko, o) such
that 6 o f(T,) = 0. Assume f(7,) is such a polynomial of minimal degree.
As 7 is supersingular, any root of f(7,) must be zero, by Theorem 4.1. [

In view of the Hecke operator T,, we define the following S, viewed as
an operator on the non-zero space 7N for any smooth representation .

Definition 5.11. For any v € 70, Sv is defined as

— —1
SU - Z’LLENO/NQ uo " v.

Proposition 5.12. (1). Sv is well-defined and lies in 7o,

(2). For any h € Hy, we have h - Sv = S(hv).
(3). If further v is fized by I, the same is true for Sv.

Proof. (1) is clear from the definition of S, which is well-defined as v € 7V,
For the proof of (2), we note first that h-v € 70, as H; normalizes Np.
Then,

S(hv) = ZUEN()/NQ whalv = h(ZueNO/NQ(h_luh)a_lv)

which is just h(Sv) as required.
For (3), one needs some calculation as follows: from the Iwahori decom-
position and (1), (2) just proved, we are reduced to check, for n’(x,y) € N{

n/(x7 y)SU = n/(ZC, y) ZueNO/NQ uailv = 2ueN0/N2 n(l'g, y2)71a71ab/ailvv

where, writing u = n(x1,y1) € No, b’ is a lower triangular matrix as follows:

1
I+aiz4y1y 0 - 0
T—T1Y 1+zx1+yy1 0
1+zz1+yy 1+zT1+Yy1 ’
Yy yr1 —x  1+7TT1+yn

HThat is ( 0 1) .
wrp 0
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and xg,y2 are then respectively

YiT—r] Y1
I+yiy+ziz’ 1+yiy+ziz’

As v is fixed by I, ab’'a™'v = v. Now we only need to see n(z2,y2)~! goes
through Ny/N2 when u does so. This is indeed the case. ]

To use S in a more efficient way, we also involve another linear map Sy
!/ .
from 7o to 7M1 for a smooth representation 7 of G.

Definition 5.13. For any v € 7™, Siv is defined as
_ -1
S10= 2 went /N, o Ba .

Proposition 5.14. (1) Sy is well-defined and Syv € ™1 for v e 7o,
(2) Sy - hv = h®-Siv, for a diagonal h in I.
(3) Syv €l ifv e nlt,

Proof. Assertions in (1) and (2) are easily checked from the definition of S;.
Now a similar calculation to that of Proposition 5.12, combined with (1)
and (2), confirms (3). O

Lemma 5.15. Let 7 be a smooth representation of G. Given 0 # v € wlt,
such that I acts on v as a character, either Sv = 0 or (Ky - Sv) is an
irreducible representation of Ky of dimension bigger than 1.

Proof. Assume Sv # 0. Then by definition of S and S, v' = Sjv is also
non-zero. Consider the Ky-representation k = (Ko -v'). As I acts on v by
a character x, I acts on v’ by x*, from (2) of Proposition 5.14. Hence, from
Frobenius reciprocity there is a surjective Kp-morphism from Imdﬁ(0 x° to k,
which sends ¢ys to v’. From the definition of S, one has

Sv = Eu:n(x,y),(x,y)ELg uﬁv’;

As a result, (Ko - Sv) is the image of (Ko * 3 ,_(z.4),(s.9)eL, WPye), Which
is an irreducible representation of K of dimension bigger than one, due to a
general result of Carter-Lusztig, see (i) of Proposition 5.7 of | ]. Hence
the assertion. O

Corollary 5.16. Assume 7 is a supersingular representation of G and v is

I

a mon-zero vector in w'i. Then there exists a family of ¢; € E and nteger

k > 0 such that,

[1,(S +¢i)kSv =0.
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Proof. We assume first I acts on v as a character Y.

From Lemma 5.15, the Kjy-representation o generated by Sv is irre-
ducible of dimension bigger than one, if Sv # 0.

Assume Sv # 0. We are then given a G-morphism 6 in Homg(indIG{O o,T),
determined by 6([Id, Sv]) = Sv. From Lemma 5.10 and (14), there is some
constant ¢ € E and some k > 1 such that

(S +c)kSv =0,

and we are done in this special case.

As I/1; is an abelian group of finite order prime to p, for any non-zero
v € w1, the I-representation < I -v > is just a sum of characters, therefore
one may write v as a sum »_, v;, where I acts on v; by some character y; of
I/1;. We then apply the former process to each v;, hence the result. ]

Lemma 5.17. Suppose 7 is a supersingular representation and a G-quotient
of ind%}o. If 0 #£ v € I't(o,7) is fived by Ny, then there is a polynomial P
of degree > 1, such that :

P(S)v =0.

Proof. Based on Corollary 5.16, the result follows by an induction argument,
due to Y. Hu | ].

Denote by m, the dimension of the Ij-representation (I; - v), for v €
It (o, m)No.

When m, = 1, i.e., v is fixed by I, the assertion is just the content
of Corollary 5.16. Assume m, > 2 and the Lemma is true for any v’ €
It (o, 7)Mo such that m,s < m,. Then for any h € [N H, M(p—1)p is strictly
smaller than m,, from Lemma 4.12 of | ]. By the induction hypothesis,
there is a non-constant polynomial P} such that

Pu(S)(h —1)v = 0.

However, as ((I; N H)v) is of finite dimension, one could then choose a
non-constant polynomial P’ such that

P(S)(h—1)v =0

for all h € I; N H. This just says h- P'(S)v = P'(S)v, by (2) of Proposition
5.12. In other words, by replacing v with P’(S)v, for some non-constant
polynomial P’, one may assume further that v is fixed H N I;.

Next, v is fixed by Nj, 41 for some k > 1, as 7 is a smooth representa-
tion. Now, the same calculation used in Proposition 5.12 gives us that, for
au €Ny,
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/ — -1, — —1.7/,—1
uSv =Y N N, WU =D e N, Wi e a T,

where u; goes through Ny/No when u goes through No/Na, and ab'a™! is
lower triangular matrix in Ny, ,, as v’ € Ny, _; (from the explicit descrip-
tion of b in the argument of Proposition 5.12). Therefore, one concludes
that Sv is fixed by NJ, _, . Repeating the process for enough times, we have
shown S*v is fixed by N{. Hence Sky is fixed by I7, and the Lemma follows
then by using Corollary 5.16 again. We are done. O

We record the following observation as a corollary, in which we assume
7 is smooth irreducible and that there is a G-morphism from a compact
induction ind%oa to .

Corollary 5.18. Let 0 # v € It (o, 7)Mo, and Sv = 0. Then Siv €
It(o,m)NI (o,7).

Proof. By (1) of Proposition 5.14, Syv is well-defined. As v € I (o, 7), a
simple calculation shows that Siv € I~ (o, 7). Now from the assumption
that Sv = 0, the result follows from Lemma 5.5. O

Conjecture 5.19. Let m be an irreducible supersingular representation.
Then one has the following inclusion:

S1(I* (0, m)N0) € 3opsg SH(IH (o, m) NI (0, 7))

5.4 Restriction to Borel subgroup

The following formal result, whose proof is due to V. Pagkunas([ D,
provides some evidence that the definition of S is reasonable.

Proposition 5.20. Let m be an irreducible smooth representation of G. If,
for any non-zero vector w € , there is a non-zero vector v € 7t N (B -w)
such that

Sv =0,
then m |p is irreducible.

Proof. Let w be a non-zero vector in w. As m is a smooth representation,

there exists a k > 0 such that w is fixed by N§k+1- Hence, w; = a *w is

fixed by Nj. From the Iwahori decomposition I1 = (I; N B) - Ny, we see
<Il . w1> = <(I1 N B) . 'w1>.
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As I is a pro-p group, the I1-invariants of above smooth representation is
non-zero. We have shown 7/t N (B - w) # 0.

We record the following lemma, which makes the whole thing more
apparent.

Lemma 5.21. If Sv =0, then Sv € (B -v).
Proof. Assume Sv = 0. Hence, we get

U= 0 D e (Np\Ng) Ny U
Therefore, fv = Z(No\Nl)/Ng Bauailv—l—Z(NI\Nz)/NQ Baua~'v. Repeatedly

using of Lemma 1.2, one see both sums in the former equation lie in (B -
v). O

We continue with proof of Proposition 5.20. Choose 0 # v € 7/t N (B-w)
such that Sv = 0. The above lemma says fv € (B -v). As 7 is irreducible,
from the decomposition G = BI; U BBI;, we see

7= (G-v)=(B-v) C(B-w).
Hence, we have shown 7 = (B - w) for any w € 7. We are done. O

Remark 5.22. Clearly from the argument, the above proposition still holds
if the condition that Sv = 0 is replaced by Pv € (B - v).

Remark 5.23. Of course, the condition in Proposition 5.20 is only suffi-
cient. For example, one may check easily Sp |p is irreducible : We have
shown g1 generates Sp™*. In fact, a further look of the identity in (2) of
Proposition 4.1} gives immediately that fg1 € (B - g1), hence the claim by
last remark. But one can check S - g1 # 0.

Certainly, the most interesting case is to check what happens for super-
singular representations 7, which is also the goal of this section. However,
in view of Proposition 5.20, we only have the following embarrassing result:

Corollary 5.24. Let m be a supersingular representation of G. If all the
underlying weights o of m with dim o > 1 satisfy xo # X5, then 7 |p is
irreducible.
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5.5 Estimation of Ny-invariants of R}, & R ® R, /T(R;") for
k>1 when F' = Q,

It is very likely that ind?(o 0/(Ty) is non-admissible, and one goal of the
section is to provide some evidence on that. We carry out some local com-
putations on the tree, some of which work for any field. But for simplicity,
in the main result Proposition 5.27 we pursue it under the assumption that
F = Q. See Remark 5.33 for more details that how it would be applied.

The group N}, is non-commutative, and we denote its center by Cy, .

Lemma 5.25. The u(y)-translations of uy, consist of a basis of the Cyy-
invariants of R,j(o*), where y goes through og/pk, v goes through a basis of
oMk and Uk, 45 the following function :

—k
Ukw = ZueCNO/CN2k [ua™", v].
Proof. First recall the double coset decomposition

Kook Ny = U k KooFu(y)Chy,.

yEop/p
It is clear that the functions uy, and their translations by u(y) are Cp,-
invariant and linearly independent, and we only need to show any Cy,-
invariant function in R;(o) is a linear combination of them.

Let f be a Cy,-invariant function in R;:(O’), supported on Koa*Cyy,.
The value of f at a*u for u € Cn, is then a Cy,-invariant vector in o, and
the Lemma follows. O

Fix a non-zero vector vg € o', and write wuy, for Uk, Denote by Dy (o)
the subspace of R} () which is generated by the u(y)-translation of uy, for
all y € oE/pIﬁJ. Recall that the 7" respects the action of Ny, in particular
it preserves C'ny,-invariants. Then, we have,

o, . + _ .
Proposition 5.26. T (uy) = A\goCo - ug + Zygp’}i;/p

u(y) = n(y, —%2), and c, is described in the proof.

k1 u(y) - ugs1, where

Proof. This is from explicit calculations. As T is G-equivalent, we have from
the argument of Proposition 3.37 for a u € Ch,

TH([ua=", vg]) =
ua ™k > veNo /N [va™, vl +uaF g Zwe(N{\Né)/Né [wav, v,

where the first sum is in R:_H(a) and the second sum is R (o). Hence, we
have
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T"‘(uk) = Z’UGNU/NQ EUECNO/CNQk [ua—kvoﬁl, Uo] +
—k
Zwe(N{\Né)/Né ZUGCNO/CN% [ua™ wa, vg).

When v goes through Ny/Na, v1 = a Fva® goes through Naj/Nojio. We
split v1 into vy - u(y), where vy € Co/Coxyo and y € p%/p%ﬂ. We are done
for the second sum in the Proposition, by the definition of wujy;.

Write w = n/(0, wgy) where y € L. We have by Lemma 1.2 that

a Fwak = Bn((),w;(%_l)y)ﬁ =

n(0, @n Y P/ (0, @iy he B,

where h,, = diag(y,1,571). As h-vy = xo(h)vo, and Bvfy = vy, which is
fixed I, we obtain

k

DD we(N{\N) NG ey [y Xo () - (0, 5Ty~ )a ™, o).

By noting n(O,w,%;k_lyfl) € Ch,, we finally get
ZwG(N{\Né)/Né XU(hw) ZUGCNO/CN% ['LLO[ﬁk, 1)0]

as required, where the sum -, NI\NL)/N, Xo(hw) is the constant ¢,. We
are done. O

Based on last Proposition, we are led to the main result of this section.

Proposition 5.27. When F' = Q,, the subspace of the functions in Dy(o)®
Dy+1(0) which are No-invariant in the quotient R; & R:H/T*'(R;:) is at
least of dimension p(p — 1) + 1.

Proof. When ¢ = p, the group Nj is generated (topologically) by three
elements, say n(1,—3),n(n, —%) and n(0,n — 7). Hence by restricting to
Cn,-invariant functions, we only need to consider the actions of first two
elements.

Assume f = ZyEUE/p% lyu(y) ‘uk—I—ZyEoE/ngﬂ lyu(y) - ug+1 is a function
in Di(c) & Dy11(0) whose image in R, & Rz_i_l/T‘*'(R;) is Np-invariant.
Therefore, we are reduced to looking for functions g1, go € R;, such that

u(l)- f=f=T g, uln)-f—f=T" g

We note that the existence of g; implies that it must be a C)y,-invariant
function, as T is injective. In the following we will show g; could be chosen
in Dy (0); as a result they are uniquely determined.

Now we could in principle apply Proposition 5.26 and compare the

coefficients to solve out the involved parameters. However, as we don’t
really need to determine all of the solutions, we restrict to those satisfying
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x [ =1

y=lyand ly =1y if y = y' mod pg.

We now re-write both side of the equation (1) - f — f =T% - g1 as
w) - f = F =2 yeopwt ly—1 = Lu@)un + 30 e i (ly—1 = Ly)u(y)ups

T (X ycoppt dryuly)ur) =
2yeop /o, Dy(y)(AsoCottr + 30, cpp phsr w(y1)ukr1) =
2 yeon ok MoCodiyuly)un + 30 e diyuy)uppr.

In the above we note that y + y; goes through oE/p]fEJrl when y and y; go

through respectively oz /pk and p%/p]f;l, and that u(y)u(y1) = u(y+y1)-c

for some ¢ € Cy, (c depends on y and y;). Hence, we are lead to

I — U, = NgoCodiy, y € op/ph. (33)

and
lyfl — ly = dlyy, Yy E OE/]J’;S+1. (34)

From the second equation u(n) - f — f = T - go, we have similarly

Ly = Uy = Ag.oCoday, y € o /ph. (35)

and
Ly —ly = day, y € op/pi. (36)
Then under the assumption *, we are required to look those [ (resp. )

for y € op/pk (vesp. y € op /p]kEH), which makes the families of equations

in (33) and (35) (resp. (34) and (36)) compatible. We recall that in most
cases A\g, and ¢, are just zero. In that situation, we simply take all the l;
to be zero (i.e., we throw all the other non-trivial solutions). In the cases
that Ag,c, # 0, the assumption * reduces (33) and (35) as

ly—1 = ly = As.oCodiy, Y € 05/Pp- (37)
and
ly—y =y = As.oCoday, Y € 05/PE. (38)

Now we identify 1 with a generator of kg over kr, hence we identify kg with
kp @ kpn.
Then the families of equations (37) and (38) could be re-written as,

Zz—l—i-bn — l:H-bn = Agvgcgd17a+bn, a,b € kp. (39)

l;—‘r(b—l)n — :z—l—bn = Aﬁ,UCO'dQ,CL‘Fb"’]? a, b € kF (40)
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In the families of (39) or (40), for a fixed b, we look at those p equations for
which a goes through kr. Immediately, we see the following conditions are
necessary:

> diarin =0, dagpen=0. (41)

a€kp a€kp
We note for a fixed b € kp, the solutions {d; otin}ack, in former equation
consist of a linear space over kr of dimension p — 1. Then given a such
(non-trivial) solution {d; q4tn tacky, the solutions of those p equations (more
precisely) are uniquely determined up to adding a one-dimensional vector
space, as the underlying matrix of the coefficients is of rank p — 1. We
need to make the former description more precisely. By identifying kr with
F, ={i;0 <i < p—1}, for a fixed j satisfying 0 < j < p — 1, we have from
(39)

/ —J/ . . y .
i+jn = iy = A.oCo 2o<ir<i ity jn for i > 0;

Similarly, for a fixed i satisfying 0 <i < p — 1, we have from (40) that

/ _ 7! .

Putting them together, we have uniformly for ij # 0 (the case that ij = 0
is already covered in last two equations) that,

’/H‘j’] = l6 - )\570—60 Z d27j/,,7 — )\BvUCU Z dl,i’-i—j??‘ (42)

0<j'<j 0<i'<i

In summary, for a given family of {d1 g4y, d2,a+bno<ap<p—1 satisfying
condition (41), the solution {l, ;, }o<i,j<p—1 is uniquely determined by .

We repeat the whole process to treat the equations (34) and (36) and
conclude similarly that for a given family of {d1 a4y, d2,a+by}o<ap<p—1 sat-
isfying condition (41), the solution {l;y;,}o<i j<p—1 is uniquely determined
by lo.

Hence the dimension of the space of the solutions {l;jy, I 4 0 <
i,7 <p—1}isatleast p(p — 1) + 1.
We are done for the proof of the Proposition. O

Corollary 5.28. When F' = Q,, o is a character, the Ng-invariant of
R (o) @ R, (0)/TH (R (o)) is at least of dimension p(p — 1).

Proof. We need to estimate those solutions described in Proposition 5.27
which lie in the image of 7. Recall the solutions in 5.27 are all Cy,-
invariant, and as T is injective we see the solutions with a form TF(f) for
some f € Rg(a)CNo is at most one-dimensional, by comparing the support
of the solution and that of T f, using Lemma 5.25. O
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In view of the above corollary, it is reasonable to hope its generalization
holds, although currently we are not able to verify it:

Conjecture 5.29. Those solutions described in Proposition 5.27 which be-
come zero in R:(U)®R;+1(J)/T+(Rz(a)) are at most one dimensional and
the No-invariant of R} (o) @ Rz_H(O')/T—F(Rg(O')) is at least of dimension
p(p — 1), for any irreducible smooth representation o of K.

Remark 5.30. Assume Conjecture 5.29 holds. It is directly to check that
the solutions from Proposition 5.27 are killed by T~; as a result we see
J—(k=1) + 9k + gk+1 i a function in R,j_l S5 R,j &) Rk++1 whose image in
the quotient R;‘_l &) R;‘ S Rg‘H/T(Rz) is No-invariant, for any function
gk + Gk+1 0 R,j &) RZ;_I found in the proposition satisfying its image in
R} EBR;_H/T‘*'(R,j) is No-invariant. Such process is indeed injective, hence
we have shown the following corollary.

Corollary 5.31. Assume Conjecture 5.29 holds. The dimension of Ny-
invariants of R | & R @ RLI/T(RZ) is bigger or equal than p(p —1).

Remark 5.32. In the statement of Corollary 5.51, one may replace T by
T —\, forany A€ E.

Remark 5.33. We briefly comment on how the above Proposition is expect-
ed to be used. We begin with the following short exact sequence of smooth
Ny-representations induced by the Hecke operator T :

0 Rf = R{ & R{ @ R} — Coker(T | ) =0
Then the derived long exact sequence will give rise to a H'(T) map :
HYT): HYR}) - HY(R{ @ R} @ RY).

Then the result from last Corollary (combining Lemma 3.58) will guarantee
H(T) is not injective.
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6 Appendix A: Coefficient systems and Diagrams

In this appendix, besides other things, we follow | ] to prove some
formal results which interpret G-equivariant coefficient systems on A in
terms of diagrams, which is the content of Theorem 6.2.

We remind the readers that, the concept of equivariant coefficient sys-
tems on the Bruhat—Tits building of a p-adic connected reductive group is
given by Schneider and Stuhler in | ], in which it is in the context of com-
plex representations. However, the concept also works for fields of positive
characteristic. In [ |, Paskunas firstly used it to construct supersingular
representations of GLa(F). Clearly, our presentation in this chapter is close
to that in [ ]. It is believable that Theorem 6.2 should hold in much
more general settings, if one has the right definition of diagrams.

6.1 Coefficient systems and Diagrams

Assume E is an algebraically closed field of characteristic p. Let X,
be the set of all vertices on the tree A, and X; be the set of all edges on
X. In this chapter, we will denote the two vertices vy and v; respectively
by oo and o1, and the edge eg1 by 70,1. The stabilizers of 09,01, 79,1 are
respectively R(og) = Ko, R(o1) = K1, R(m0,1) = 1.

Let V = (V,), be a coefficient system on A, i.e., for each simplex o,
V, is a given E-vector space; for each pair o C 7 of simplices, there is a
given linear map rZ from V; to V,, satisfying rJ = Id,; for each g € G
and each simplex o, there is a given linear map g, from V,; to V., which is
compatible with the action of G on A and commutes the restriction maps in
the obvious way. For each simplex o, the stabilizer R(o) of o acts linearly
on V. An G-equivariant coefficient system (V). is a coefficient system,
satisfying that the action of R(o) on V, is smooth, for any simplex o.

Denote by COE Fg the category of G-equivariant coefficient systems on
A, with the natural morphisms. Before going into more details, we record
the following useful fact.

Let V = (V,), be a G-equivariant system, and let 7 = (0,0’) be an
edge, then there is g € G such that, 7 = ¢79,1, in other words, o = goy,
o' = goy. Without difficulty, we see

Vo = gUOVUm Vo = 9oy Vo'l? Vi = .gTo,lvTo,l'

From these translation relations, we have the following relations on the re-
striction maps:

70,1 70,1

Te = Goo *Too - (9_1)77 T;’ = Yo, " Tor - (9_1)7" (43)
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6.1 Coefficient systems and Diagrams

Definition 6.1. A diagram is a quintuple D = (Do, D1,Do1,70,71), in
which (p;i, D;) is a smooth E-representation of R(o;), and (po,1, Do) is a
smooth E-representation of R(70.1), and r; € Homy(Dog 1, D;), i =0, 1.

A morphism between two diagrams D = (Dg, D1, Do 1,70,71) and D' =
(Dg, Dy, Dg 4, m,71) is a triple (1o, %1,70,1), where ¢; € Homp,,)(Di, D;),
and no1 lies in Hom;(Do1, D), and they together make the following
diagrams commute as [-representations:

p, % D

1T

70,1 ,
Doy —— Dy,

We see the set of diagrams with the morphisms defined above becomes
a category, which we denote by DZ.AG. The main result of this chapter can
be briefly stated as:

Theorem 6.2. The categories DIAG and COEFq are equivalent.

6.1.1 Homology

Let V = (V;); be a G-equivariant coefficient system. Denote by C.(Xo, V)
the E-vector space of all maps:

w:Xg— U Vg,
oeXo

such that:
- w has finite support;
- w(o) €V, for every vertex o.
Denote by C.(X1,V) be the E-vector space of all maps:

w: X — U V(U o)
(o,0")EX1 ’

such that

- w has finite support;

- w((0,0")) € Vig,o1.-

There is an action of G on the two spaces above, induced from that of
G on the tree X and V. In more words, for an element g € G,

(o) = ggqo(w(g*la)), for w € C.(Xo,V);
9911

w
w (w(g™17)), for w € Co(X71, V).

The boundary map 0 is defined as:
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6.1 Coefficient systems and Diagrams

where 7 goes through the edges which contain the vertex o. It could be
checked that J is a G-map. Define Hy(X,V) as the cokernel of 9, which
inherits a smooth representation of G.

6.1.2 First properties of Hy(X,))

We fix a G-equivariant coefficient system V = (V) in this subsection.

Lemma 6.3. Let w be a 1-chain, supported on a single edge T = (o,0").
Then

(W) = we + we,

where w, and wyr are two 0-chains, supported respectively on o and o’. In
more words, let v = w(T), then

We =15(v), and wer =17, (v).

Proof. This comes from the definition of boundary map 9 directly. O

Lemma 6.4. Let w be a 0-chain, supported on a single vertex o. Suppose
that the two restriction maps Ty and roy' are both injective. Then the

image of w in Ho(X,V) is non-zero.

Proof. From the assumption and (43) above, we see every restriction map
is injective. Given a non-zero l-chain w. If the support of w consists of a
single edge 7, then Lemma 6.3 and the injectivity of restriction maps tell
that O(w) is supported on the origin and terminus of 7. Otherwise, we can
find at least two edges, say 7" and 7”, which are in the support of w, and
they are both the boundary of the support w; for one endpoint o’ of 7/ and
another o” of 77, they appear only one time as an endpoint of some edge in
the support of w. We then compute by definition the (w)(o’) and d(w)(c”).
The injectivity of restriction maps guarantee they are both non-zero, i.e.,
J(w) is supported at least at o’ and ¢”. We are done.

O

Lemma 6.5. Let w be a 0-chain. Suppose the two restriction maps row’
and roy" are both surjective. Then, for any vertex o, there is a 0-chain w,,
supported on the single vertex o, such that,

w + 8CC(X1, V) = Wy + 8CC(X1,V)
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Proof. As 7“;%’1 and rg(i’l are surjective, we see every restriction map is sur-
jective from (43). It is enough to prove the Lemma for a 0-chain which is
supported on a single vertex, as every w is a finite sum of such one.

Let w,s be a 0-chain, supported on a single vertex ¢/, and let o be
any vertex. If o/ = o, the Lemma to be proved is certainly true. Suppose
we have shown the Lemma holds for the vertices whose distance from o is
smaller than m, and the path from ¢’ to o is of length m > 1. Denote by
7 the edge that contains the vertex o/, and which lies in the path from o’
to o, let o” be the other vertex of 7. Let w’ be the 1-chain supported on
7, say w'(7) = v for some v € V; which satisfies r7,(v) = wy/(0’). This is
possible because r, is surjective. Let w,» be the O-chain, supported on the
vertex 0", and w,(0”) = r7,(v). Then Lemma 6.3 says O(w') = wyr + wyr.
Equivalently, wyr + 0C.(X1,V) = —wer + 0C(X1,V). Now, —wyr is a
0-chain supported on the vertex ¢’ which is of distance m — 1 from o.
By induction assumption, there is 0-chain w, supported on o, such that
—werr + 0C(X1,V) = ws + 0C:(X1,V). We are done.

O

70,1

Remark 6.6. It is worth to note that the surjectivity of both 7“;%’1 and 14,
is essential here. One does not get enough information required if only one
of them is surjective. In other words, there are then many 0-chains which
are not necessarily congruent to a 0-chain supported on a single vertex.

o . T T . .
Proposition 6.7. Suppose roy' and rg' are both isomorphisms of vector

spaces.
(1) HO(Xv V) ‘Kog Voov Ho(X, V) |K1g V017 HO(X’ V) |I = VTo,l
(2) The following diagrams commute as I-representations:

Voo 20 Hy(X,V)
TZ‘Z?JT de
Vi, ——— Ho(X,V)
where 1 =0, 1.

Proof. For i = 0,1, denote by C.(0;,V) the vector space of 0-chains which
are supported on the single vertex o;. We then have an evaluation map ewv;,
which is an isomorphism of R(o;)-representations:

ev; . CC(Ji,V) — Vgi
w (—1)5(01)*1w(ai),
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where §(0;) is the period of o;.

Let 7; be the composition of the inclusion C.(0;,V) — C.(Xo,V) and
the canonical map C.(Xo,V) — Ho(X,V). It’s certainly an R(o;)-map.
Moreover, Lemma 6.4 and Lemma 6.5 imply that 7; is indeed an isomorphism
of vector spaces. We get the isomorphism ;- (ev;) ™! : Vo, = Ho(X, V) |r(oy)
. As 7’;3’1 are isomorphisms of I-representations, and I C K;, we see t =
gi-(evi)~tergrt o Voo — Ho(X,V) |1 is an isomorphism of I-representations.
We have shown (1)

(2) follows from the construction of (1).

6.1.3 Constant functor

Let Rep be the category of smooth E-representations of G. Let 7 be
a smooth representation of G, with underlying space W. Let ¢ be a simplex
on the tree X, and we set

(K)o =W.

If 0 C ¢’ are two simplices, the restriction map 7“(;‘/ is defined as Idy . For
every g € GG, and every simplex ¢ in X, the linear map ¢, is defined by:

9o : (Kx)o = (Kx)go
v m(g) - v.

This G-equivariant coefficient system defined on X is denoted by ;.

Lemma 6.8. Let m be a smooth representation of G. Then
Ho(X,Kr) =7

as G-representations.

Proof. Define an evaluation map ev from C.(Xo, K;) to m:

ev: Co(Xo,Kr) =7
w3 (1) w(o),
g€eXy
where 0(o) is the period of o. ev is well-defined as every w is of finite
support. It’s easy to check that ev is a G-map.
As the restriction maps are Idy,, we see from Lemma 6.3 that, ev is
trivial on the image of the boundary map 9. Hence ev induces a G-map:

ev: Ho(X,Kr) = 7.
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We need to show the above G-map is also an isomorphism of vector
spaces. We note that (KCr),, = W, then we see

ev | Ce(oi, Kr) = ev;

by our definitions, i.e., ev; = ev o 3;, ¢ = 0,1. Here ev; and j; are the maps
defined in the last subsection (for V = K). As the restriction maps are Idyy,
we have observed that j; is an isomorphism of vector space in the argument
of Proposition 6.7, which gives us ev = ev; ogi_l : Ho(X,Kz) = (Kx)o, s as
desired. O

Proposition 6.9. Let V = (V,), be a G-equivariant coefficient system. Let
(m, W) be a smooth representation of G. Then

Homcoer, (V, Kr) = Homg(Ho(X, V), )

Proof. By Lemma 6.8, Hy(X, K,) = m. Any morphism between G-equivariant
coefficient systems induces a homomorphism between the corresponding 0-
homology which is compatible with the action of G, i.e., there is a map:

Homeoer, (V, Kr) — Homg(Ho(X, V), ),

and we need to construct an inverse of this map.
Let ¢ € Homg(Ho(X,V),n). Given a vertex o and a vector v in V, let
Wg, v be the 0-chain, such that

SUpp we, » € 0, We, v(0) = 0.
For the simplex o, we then define

G5 : Vo =W
V= P(we, » + 0C(X1,V)).

For an edge 7 on the tree X, with endpoints o and ¢/, we define

Or: Ve > W
s (C1P 6, (7 (0).

The independence of the choice of the vertex ¢ in the definition of ¢,
comes from Lemma 6.3, i.e.,

qb(wg’ Tg(v’) + 8CC(X1, V)) == (;5(—&}0./’ r7,(v') + aCC(X17 V))

Then this variety of linear maps (¢ ), consists of a morphism from the
coefficient system V to K, furthermore it respects the actions of G on them.
One can check that it induces ¢ on the 0-homology without difficulty. [
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There is a natural functor from the category of coefficient systems to
that of diagrams:

Definition 6.10. Let D be the functor from COEFg to DIAG:

D: COEFq — DIAG
V= (VU)G — (Voov lea VTo,1 ) rg%l ) 7467;(;’1)

We will construct an inverse C of D in the following subsections. Fix
an object D = (D(), Dy, Doyl,’l”(), 7‘1) in DTAG.
6.1.4 Underlying vector space

From the diagram D above, we can form the following compactly in-

duced representations:
G i AG i AG
ind%, po, ind%, p1, ind7 po 1.

For a vertex o € Xy, with period d(c), there is g € G, such that
0 = g0s5(o)—1- We then define

F,={f¢€ ind%((,)_lpa(a)q : Supp f C Ks(o)—19" '}

For an edge 7 € X, there is a g € G, such that 7 = gr9,1. We define
Fy={f€indfpo;: Supp f C Ig~'}

6.1.5 Restriction maps

To define the restriction maps, we start with two fundamental ones,

revt, i =0,1, and then we extend them to the general case by translations.

For ¢ = 0,1, the evaluation map ev; from Fy, to D; is naturally an
isomorphism of K;-representations, defined by

ev; : Iy, — Dy

f= fQ),
whose inverse ev; Lis

-1 .
ev,  : Dj = Fy,
v fy,

where f, is supported on R,., and f,(k) = pi(k)v, for k € R,,.
Similarly, we have isomorphisms evg ; and evy, % of I-representations,
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evp 1 : FTO,1 — Do
f=f(),

and

—1
62)071 : D(),l — FTo,l
v fy,

where f, is supported on I, and f, () = po,1(i)v for i € I.
Let r;(;’l = 62};1 orjoevy,, for ¢ = 0,1. It is an I-map from Fy, to Fy,.
For later application, we write down 7o, explicitly: on f,, for any v € Dg 1,
we have
o (fo) = Fri(w)- (44)

. ~ T T0.1
In summary, we get a diagram D = (F,,, Fy,, Fry 1,70y s Tor" ), and D

is isomorphic to D via the morphism ev = (evp, evi, evg 1).
Let 7 be an edge, containing a vertex o. Then there exists g € G such
that
T =gT701, 0 = 0s(e)—15 (45)
in which we note that the choice of g is up to right multiplication by an
element of I.
Define the restriction map r] from F; to F, as:

ris Fr = Fy
f = g- T;?S’(ir)—l(g_l : f)

We need to verify the definition above is independent of the choice of g. But
this is immediate: any other choice ¢’ differs from ¢g by an element i € I,
and the result comes from the fact that rg%’(la)A is an I-map. We conclude
from (44) that r7(f) =g - fra(a)_1(v)v where v = f(g7!).

For any simplex 7, let r7 = Idp, .

6.1.6 G-action

In 6.1.4, for any simplex 7, g - f has been defined, for any g € G and
f € F., from which there is a linear map:

gr - FT—>FgT
f=gf

Certainly, 1, is the identity map and gpn; o hy = (gh);. We still need
to check the linear maps above are compatible with the restriction maps in
6.1.5. In other words, for an edge 7, containing a vertex o, the following
diagram is commutative

113



6.1 Coefficient systems and Diagrams

9o
F, —— Fy

g e
gr
P~ F,,

for any g € G.
On the one hand, from (44), for a chosen ¢’ satisfying the condition
n (45), gr - r2(f) = g4’ - fr(;(a _,(v)> Where v = f( =1y, On another hand,
e - 97(f) = 195(9 - ) = 99 frs(y_y(wr)» Where o' = g f((gg") ") = v. We
are done.

In summary, we have associated a G-equivariant system F = (F,), to
a diagram D.

6.1.7 Morphisms

Let D = (Do, D1, Do1,70,71) and D" = (D, Dy, Dy 1,70,71) be two
diagrams, and ¢ = (¢o,%1,70,1) be a morphism between them. Let F =
(F,)s and F' = (F.), be the coefficient systems associated to D and D’.

Let o be a vertex, and let g € G be such that o = gos(,)_;. For f € Fy,
let v = f(g~!), then we define

Vo Fy — F)
f=g- fwa(g)—l(”)’

where f%(a)il(v) is the unique function in F), such that fw5<a>71(v)(1) =

Vs(o)—1(v).
Let 7 be an edge, and let ¢ € G be such that 7 = grg 1. Similarly, for
fE€Fletv=f(g"), and we define:

by i Fr— F
f = g- fno’l(v)

where f, (. is the unique function in F} such that f, ) (1) =no1(v). It
is immediate to check the definition does not depend on the choice of g.

In summary, we have a collection of linear maps (¢;),. We need to
verify they are compatible with the restriction maps and the G-actions, i.e.,
the following two diagrams commute: in the first one, 7 is an edge containing
a vertex o, and in the second, 7 is any simplex, h € G.

Yhr

F, Y2 F! P —2y Bl
@T ez ] [or
JoRA o/ F - R
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We begin with the first. Given f € F;, ¢y orl(f) = s (g - fra<a>71(v))’
where v = f(g~!), for a chosen g satisfying (45). As g - fr(;((,),l(v)(gil) =
T5(0)-1(v), we get Y, o7 (f) = g- f%(d>71.r6(0)71(v). On the other hand,
(T/)gowT(f) = ( /)T(g fno 1( v)) As g'fno,1(v)(gil> = 770,1<U)7 we see (T/)g(g'
Troaw) = 9- de(U) (o1 (v))- We note that v € Dgy. It’s then certainly
Vs(o)—1 * T5(0)—1(v) = 7"5(0)—1(770,1(”))7 as 1) is a morphism of diagrams.

For the second diagram, given f € F,, we note that h - f((hg)™!) =
f(g~!) = v, then its commutativity comes directly from definitions.

We have constructed a functor C from the category of diagrams to that
of G-equivariant systems. We write as a definition:

Definition 6.11. Let C be the functor:

C: DIAG — COEFq
D > the coefficient system C(D) = (F;), constructed above.

6.1.8 The equivalence of Diagrams with Coefficient systems

We begin to prove Theorem 6.2, in which the equivalence is induced
from the functors D and C.

We verify first the functor C preserves the composition of morphisms of
objects.

Let ¢ : D — D" and ¢/ : D’ — D" be two morphisms of diagrams. We
have to check C(¢)' o 9) = C(¢") o C(v).

For a vertex o, let g € G be such that o = gos,)—1. For f € Fy, let v =
f(g™"). Thenwe have (¢/01)o(f) = g flprop)smy_1(v) = 9° ol )y (hs(oy—1) ()
As g-f%(o)_l(v)(g_l) = @Z)é(a)—l( )7 we see ¢é (d}a(f)) 7!)/ (g fwé((,) 1( ) =
9 J45 )y Ws(o)-1) () Hence (W o )o =1 Yo

For an edge 7, (¢' 0 9); = 9. - 1, holds similarly.

It remains for us to verify that D o C (resp, C o D) is isomorphic to
Idprag (resp, Idcosr,) as functors of categories.

For a diagram D = (Dg, D1, Dg1,70,71), from the definition of the
functors D and C, we see

DoC(D) =D = (Fyy, Fyyy Fry s 7ot o0 ),

7'017

and we have already seen that ev = (evy, ev1, evp 1) is an isomorphism from
D to D.

We now verify that ev induces an isomorphism from the functor D o C
to Idpz.ag.
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6.1 Coefficient systems and Diagrams

Let D" = (Dyg, Dy, Dy 1,75, 71) be another diagram, and let ¢ = (vo, 11,70,1)
be a morphism from D to D’. Let D' =D oC(D') =
F/

g1 F’T/'()’l? (7“/);%’1, (7,./);01;1)

We are reduced to check the following diagrams are commutative: fori = 0, 1

(F5

ago?

DoC(:) , DoC(mo,1) ,
By, W, P, —,
evil leyg evoAl lev(’),l
) 70,1
D; L Dg Dy 1 D671

We do the first as an example. Given f € F,,, we see ¢ - ev;(f) =
¥i(f(1)). By our definition of C(¢) in 6.1.7 and that of D, we know D o
C()(f) = fui(r(1)), therefore evi(D o C(¢)(f)) = vi(f(1)). The second

follows similarly.

Let V = (V;)r be a G-equivariant system, with restriction maps ¢].
Let F = (F:)r be the coefficient system C o D(V), with restriction maps r7.
We are going to construct an isomorphism ev = (ev;), from F to V, which
induces an isomorphism of functors from C o D to Idcoe 7, -

Let 7 be an edge containing a vertex o. There exists ¢ € G such that
T =g701 and 0 = gos(5)-1-

For the vertex o, define ev,:

evy : Fyp —V,
[ Josy-1 " Vs

where v = f(g7!) € V,

Os(o)—1"

For the edge 7, define ev;:

ev, . Fr =V,
[ 901 " V)

where v = f(g7!) € V1. Certainly, ev, and ev; are both linear maps of
vector spaces. However, they are indeed isomorphisms of vector spaces, as
one notes that evy, = ev;, evy,, = evg1 are isomorphisms.

We need to verify the definition above is independent of the choice
of g. Let ¢ = g-i for some i € I, v = f(g'"!). Then 9:75(@4 v =
9o5i0y-1 oy, But, as f € Fy, we see ioé(a)_lf(iflgfl) = f(g7h) = .
Similarly, ev;, is also independent of the choice of g.

We turn to show (ev;), is compatible with the G-actions. For an el-
ement ¢ € G and f € Fy, evgy - o(f) = evgold - £) = (9 Q)rsny 1 - 0
where v = f(g~!). On the other hand, ¢/ - ev,(f) = 9o (9osiy_,v)- But
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6.1 Coefficient systems and Diagrams

(9'D)o5i0)1 = 9o Go5()-12 85 T = §05(5)—1- For an edge 7, evgr- gy = gy -evy
follows in the same way.

It remains for us to show (ev;); are compatible with the restriction
maps, i.e., in the same notations above, to check the following diagram is
commutative:

E. sV,

a |

eVy
F, ——V,

Given f € Fy, let v= f(g'). Hence t7] - ev,(f) =t - (gr,, - v). On the

. 70,1 ,70,1
other hand, as F comes from the diagram (Vo,, Vo, Vi 1y toy toy ), We see

evy - 1o (f) = evy(g - ft;?s’(lﬂ_l(”)) = 9o5(0)1 -t;(;’(lv)_l(v), where we have used
the remark at the end of 6.1.5 and the definition of ev,. But t7 - g, =
9050y 1 -tg%*(la)_l is certainly true, as the G-actions and the restriction maps

are compatible on a coefficient system by definition.

We arrive at the final step, i.e., to show ev induces an isomorphism of
functors from C o D to Idcosr,-

Let V' = (V!); be another G-equivariant system. Let (¢,), be a mor-
phism from V to V'. Therefore, we get a new coefficient system F' =
CoD(V) = (F.);, with restriction maps 7. We are reduced to check
the following two diagrams are commutative:

(D(¢))

F, PO, F, PO
evo J{ leul’f evr l lev,’r

¢ / P+ /

Vo — V, Ve — V;

Here D(¢) is the morphism of diagrams from D(V) to D(V'), induced from ¢.
There is no essential difference with that we have just done in the converse
direction, so we don’t show details again.

We have proved Theorem 6.2.
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7 Appendix B: Some p-adic principal series

In the appendix, with an eye on the mysterious p-adic Banach space
representation theory, we collect some observations obtained so far in the
course of this thesis. In the first section, using a result of Ardakov, we
verify the Iwasawa algebra of N7 has the same global dimension and Krull
dimension, when F' is an unramified extension of Q. In the second section,
we prove a sufficient condition for the irreducibility of p-adic principal series
of U(1,1)(Qp2/Qp), by modifying a method of Schneider and Teitelbaum.
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7.1 The Iwasawa algebra of N;

7.1 The Iwasawa algebra of N;

In this section we assume F' is the unramified extension of Q, of degree
d. We define another filtration { My }rez on the upper unipotent subgroup
N, say,

My = {n(z,y) : =,y € pk}

One notes that M; = Nj in our previous notation, and My, is an open normal
subgroup of My, when k£ > 1. In all, they together form a filtration of open
normal neighbourhoods of the identity of Mg, but M; has clearly many more
open normal subgroups.

All the unexplained terminologies appeared in this section can be found
in the book | |, or in the survey paper | |. We also give more
precise references in the following.

Proposition 7.1. My is a uniform pro-p group of dimension 3d.

Proof. For the purpose of later calculation, we record the following lemma
whose proof is a simple calculation.

Lemma 7.2. (1). [n(z,y), n(x1,y1)] = n(0,z12 — Tx1)

(2). n(z,y)* = n(kz, ky — @xi), for k> 0.

Based on the above Lemma, we can check the lower p-series of M is
exactly the filtration {M}}r>1 and M is powerful (p # 2 !), noting that
any element in My could lift uniquely to a p-th root in M. Using the
decomposition that

we see immediately that M; is topologically finitely generated (see Lemma
7.5 below). The following observation completes the proof of our proposition.

Lemma 7.3. The index of My in My, is ¢3, for k > 1.
Proof. This is just simple counting. O
O

Remark 7.4. The group My is not powerful and My is indeed nilpotent but
non-commutative. When d =1, My s also Heisenberyg.

Lemma 7.5. A minimal set S of generators (topologically) for My is given
by

(0 Y. d = ity i Pt ,
/ <i<d-
{ci =n(0,p(n—Mn}), di = n(pn}, ——=>), n(pnmy, — ) o<i<d—1,
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7.2 Irreducibility of p-adic principal series of U(1,1)(Q,2/Qp)

where 1 is a root of unity of order ¢*> — 1 in E and n = Ng/r(n)-

Proof. This is from n(z,y) = n(z, %) - n(0,y + &F) and the structure of

local fields. O

Proposition 7.6. The Q,-Lie algebra L(M;) ** of My has length at least
3d.

Proof. We construct a filtration of sub-Lie algebras of length 3d for the
Z,-Lie algebra L(M;) (] ], 4.29), which is provided by last Lem-
ma. We start with description of operations of L(Mj), which involves some
calculations.

Addition : n(z,y) + n(z1,y1) = n(z + z1,y +y1 — %(wil + Zx1))
Lie bracket : [n(z,y), n(z1,y1)] = n(0,21Z — T12)

Let S be the set given in Lemma 7.5 and S’ be a subset of S which
contains C(S) = {n(0,p(n —7)n%) bo<i<a—1. We then claim the sub-Lie alge-
bra of L(M;) generated by S’ is just the Z,-submodule of L(M;) generated
by S’. Firstly the square of any element in S is zero, which is directly
from the definition of the Lie bracket. Secondly, C'(S) lies in the center of
L(M,). Now the product of any two elements in S\ C(SS) is in the submodule
generated by C(S). The claim is done.

Let Sy ={c;: 1 <i<k}for1l<k<d Next,ford+1<k<2d,let
Sk:SdU{di 01 SZSI{J—C[} For 2d +1 < k < 3d, let Sk :SQdU{d;:
1 <i<k-—2d}. Clearly Sy C Sy when k < £’ and we denote by (S”)
the sub-Lie algebra generated by S”. Then the claim above guarantees the
filtration 0 C (S1) C ... C (S3q) = L(M;) is of length 3d. We are done. [J

From the argument of last proposition we see £(M;) is indeed soluble.

Corollary 7.7. The completed group ring Fp[[Mi]] has the same Krull di-
mension and global dimension, which is just the dimension 3d of M as a
compact p-adic Lie group.

Proof. This is from Theorem A in | |, with the last Proposition. [

7.2 Irreducibility of p-adic principal series of U(1,1)(Q,2/Q,)

In this section, we investigate briefly some example in which we form a
sufficient condition for the irreducibility (topologically) of principal series for
the group G = U(1,1)(Q,2/Qp). It satisfies the Iwasawa decomposition, say
G = BK, where B is the subgroup of upper triangular matrices, and K is

12 ],9.5
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7.2 Irreducibility of p-adic principal series of U(1,1)(Q,2/Qp)

the hyperspecial maximal compact subgroup of G (unique up to conjugacy).
Then we are reduced to looking at the principal series representations of
K. Actually, what we have really done is to prove a sufficient condition
for simplicity of induced modules M, (defined below) of L[[K]], where we
follow | | closely. Then, by duality of Schneider and Teitelbaum ([ ],
Corollary 3.6), we obtain irreducibility result for principal series of K.

We start by recalling some notations. Let I be the standard Iwahori
subgroup of G, and let N be the lower unipotent subgroup of I, i.e., it
consists of matrices of the form:

() = (1 ‘f) ,

where, x = —x € PQ,.- Hence, Ni is a pro-cyclic group generated by a
single element v = n/(p(n — 7)), where 7 is a root of unity of order p? — 1 in
Q2. Fix a finite extension L of Q, which contains Q2. Then the Iwasawa
algebra L[[N{]] = L ®,, or[[Ni]] is isomorphic to the ring of formal power
series in v — 1 with bounded coefficients in L.

Denote by Hy and Ny respectively the diagonal and upper unipotent
subgroups of I. The upper triangular subgroup By of I is the semi-direct
product of Hy and Ny. Let x be a continuous character of Usz, taking
values in L* (hence indeed in 0}). Up to a symbol, x is determined by
c1 = x(1+p) and ¢ = x(1 + np). The restriction of x to 1+ pZ, is then
determined by ¢1, and there exists a constant ¢(y) € L such that

x(1+z) = (14 z)0),

for a small enough integer x € Z,,.

The character x extends uniquely to a continuous homomorphism of
L-algebras x : L[[Ho]] — L. The projection from By to Hp induces a
continuous algebra epimorphism from L[[By|] to L{[Ho]]. Denote by Lp,
the composite homomorphism from L[[Bo]] to L. Form the induced modules
N, of L[[I]] and M, of L[[K]]:

Ny = LI @By LBox: My = L{[K]] ®L(Bo]) LBox-

The product homeomorphism N{ x By — I gives rise to an isomorphism of
Iwasawa algebras, where the right-hand side is the completed tensor product
of linear topologically o-modules (| |, VII5(0.3)):

oL[[1]) 22 o [[N{)®oL[[Bo]l-

Therefore, N, = L[[N7]] as an L[[N{]]-module. By the inclusion L[[N7]] C
L[[I]], any L[[I]]-submodule of N, then corresponds to some ideal of L[[N{]].

121



7.2 Irreducibility of p-adic principal series of U(1,1)(Q,2/Qp)

We note that L[[N7]] is a PID as Nj is generated by ~, and every ideal is
generated by a polynomial whose zero lies in the open unit disk.
The following is main result of this section:

Proposition 7.8. If c¢(x) & Z>o, Ny is a simple L[[I]]-module.

Proof. Let Iy be the ideal of L[[N{]] which corresponds to an L[[I]]-submodule
M of N,, where f is a polynomial which generates Iy.
Let t; be the diagonal matrix

Then the action of t, changes f into

X(ta) FANETD — 1),

Write wy(x) = (2 + 1) — 1 and we could re-write the former as

te: f(v = 1) = x(te) f(Wn 1) (v — 1))

But the ideal Iy is stable under the above action by assumption. Hence,
X
p )
that z + 1 must be a p™-th root of unity for some m € N. Therefore, f is

if z is a zero of f, wy,(2) is also a zero of f for any u € Z, which forces

divisible (as a polynomial) by wymo(z)! for some mg,l € N. In particular,
when k > my is large enough, the polynomial w, (z)! lies in I.

Next, we look at the action of n(n — 7). We start with the following
identity of matrices
n(n —m)n' (np(n — 7)) = ' (uy 'np(n — 7))diag(un, uy, ")
for n € Z>¢, where u,, is the unit 1 +np(n —7)? in Z;. In L[[N{]], we have
n(n — 1) - 7" = x(diag(un, uy "))y *". Hence,

_ k 1 o . _ -k '—1
n(n—17) - (" = 1) = Shg (=)D (D) x(diag(uge, uz k)" k.
Combining that we have just described, we see when k& > my, the polynomial

Wpk (z)! and its image under n(n—1) both lie in the ideal I;. We are certainly

done if for some k > mg the two polynomials don’t have common zeros, as
in that case the ideal Iy would be the whole ring. On the other hand, one
has, for any large enough k,

im0 (=17 () x(diag(ujy, u)) = 0,
i.e.,

Yo (=1 () exp(e(x) - log(1 + jp*(n — m)?)) = 0.
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7.2 Irreducibility of p-adic principal series of U(1,1)(Q,2/Qp)

As a function (in variable y) analytic in a small ball around zero,

Sy (19 (Yexp(ex) - log(1 + i)
has infinitely many zeros in that region which forces it to vanish. To com-
plete the proof, we only need to show this is not possible when ¢(x) ¢ Z>o.

Assume ¢(x) ¢ Z>o. Then a little inductive calculation of the higher deriva-
tives of the former function and its values at zero gives:

Zé’:o (1) (;)jm =0, for any m € N.
This is absurd. O

Remark 7.9. The limitedness of the above argument is obvious, as the nice
property of L[[N7]] from our assumption is crucially used, which does not
make sense in general.

Corollary 7.10. When c(x) ¢ Zxo, My is a simple L[[K]]-module.
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