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Abstract

Let E/F be an unramified quadratic extension of non-archimedean

local fields of odd residue characteristic p and let G be the unitary

group in three variable U(2, 1)(E/F ). In this thesis, we explore the

smooth representation theory of G over a field Ẽ of characteristic p.

The main results are as follows. Firstly, we have classified the simple

modules of the pro-p Iwahori-Hecke algebra of G and described the

so-called supersingular ones, which is one-dimensional character. Sec-

ondly, for the hyperspecial maximal compact open subgroup K0 of G

and any irreducible smooth representation σ of K0, and for any non-

zero λ ∈ Ẽ, we have determined the subquotients of indGK0
σ/(Tσ − λ)

by matching them precisely with the irreducible subquotients of prin-

cipal series of G, where Tσ is some Hecke operator in the spherical

Hecke algebra of G with respect to K0 and σ. The latter result con-

firms a conjecture of Abdellatif. We also include several results aimed

towards proving that supersingular representations of G are not finitely

presented.
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1 Introduction

1.1 Introduction

Representations of p-adic groups over the complex numbers C have been

developed into a rich and fruitful theory during the last forty years, since

Robert Langlands announced his remarkable conjectures on automorphic

forms of adelic groups. These conjectures could be viewed as far reaching

non-abelian generalizations of local and global class field theory. One of

them (the local version), which nowadays is usually known by the name

‘Local Langlands correspondence’, very roughly speaking, aims to interpret

Galois representations ρ : Gal(Qp/Qp) → LG in terms of smooth complex

representations of G, for any reductive p-adic group G. There has been

much significant progress on these conjectures in the last twenty years, by

Harris-Taylor [HT01] & Henniart [Hen00] for p-adic GLn, more recently by

Arthur [Art13] for classical groups over p-adic fields.

However, it is also interesting to study the smooth representations over

a field of positive characteristic and pursue a potential local Langlands cor-

respondence. In this spirit, there is already great interest arising in recent

years to study mod-l (l 6= p) representations ([Vig96], [Vig01]), and mod-

p representations of p-adic groups ([BL95], [BL94], [Bre03]). An excellent

summary on the current development (up to the summer of 2010) of mod-

p representations (and many related topics) is given by Breuil in [Bre10].

Roughly speaking, there is already essential progress on the classification of

irreducible admissible non-supersingular representations of a p-adic connec-

tive reductive group, mainly due to the work of Herzig [Her11], Abe [Abe13],

Henniart–Vignéras [HV12], and their forthcoming joint work. But still very

little is known for the so-called supersingular representations, for any group

other than GL2(Qp). Due to such difficulty, the mod-p local Langlands

correspondence is only known at present for the group GL2(Qp). But for

the groups SL2(Qp) and U(1, 1)(Qp2/Qp), there is already a semi-simple

correspondence established, see [Abd11] and [Koz12].

This thesis is devoted to the study of the mod-p representations of

the unitary group in three variables defined with respect to the unramified

quadratic extension of a non-archimedean local field. In contrast to the

recent method of Satake isomorphism developed by Florian Herzig [Her11]

and Henniart–Vignéras [HV10], the approach in this thesis is mainly that of

Barthel–Livné, where we follow their papers on GL2(F ) [BL95], [BL94] in

most aspects.

In section 1.2, we introduce the most used notations in this thesis. In



1.2 Notations

section 1.4, we present the main results that have been obtained so far,

chapter by chapter.

The intelligence debt of this thesis owed to those classical authors should

be very clear to the readers. But it would be certainly the author’s fault, if

this thesis still contains any mistakes or inaccuracy.

1.2 Notations

Let F be a non-archimedean local field, with valuation ring oF and

maximal ideal pF . Let kF be its residue field of characteristic p. Let q be

the cardinality of kF . Fix a separable closure Fs of F . Assume p 6= 2. Let

E be the unramified and quadratic extension of F in Fs. We have similar

notations oE , pE , kE for E. Denote by E1 (resp. k1
E) the subgroup of E×

(resp. k×E) consisting of elements of norm 1. Let $E be a prime element of

E, lying in F . Given a 3-dimensional vector space V over E, we identify it

with E3 (the usual column space in three variables), by fixing a basis of V .

We equip V with the non-degenerate Hermitian form h:

h : V × V → E, (v1, v2) 7→ vT
1 βv

σ
2 , v1, v2 ∈ V .

Here σ (we will write it as − in the following) is the non-trivial element of

Gal(E/F ), and β is the matrix0 0 1

0 1 0

1 0 0

.
The unitary group G we are going to consider is the subgroup of GL(3, E)

whose elements fix the Hermitian form h:

G = {g ∈ GL(3, E) : h(gv1, gv2) = h(v1, v2), for any v1, v2 ∈ V }.

Let B be the subgroup of upper triangular matrices ofG, then B = HN ,

where N is the unipotent radical of B and H is the diagonal subgroup of G.

Denote an element of the following form in N by n(x, y):1 x y

0 1 −x̄
0 0 1


where (x, y) ∈ E2 satisfies xx̄+ y + ȳ = 0.

Denote by Nk, for any k ∈ Z, the subgroup of N consisting of n(x, y)

with y ∈ pkE .

Let 4 be the tree associated to G. Denote by X0 the set of vertices on

4, which consists of oE-lattices L in E3, such that

9



1.2 Notations

$EL ⊂ L∗ ⊂ L,

where L∗ is the dual lattice of L, under the Hermitian form h, i.e., L∗ =

{v ∈ V : h(v,L) ∈ pE}.
Let v, v′ be two vertices in X0 represented by L and L′. The vertices

v and v′ are said to be adjacent, if:

L′ ⊂ L or L ⊂ L′.

Let {e−1, e0, e1} be the standard basis of E3. We consider the following

two lattices in E3:

L0 = oEe−1 ⊕ oEe0 ⊕ oEe1, L1 = oEe−1 ⊕ oEe0 ⊕ pEe1.

Denote respectively by v0,v1 the two vertices represented by L0 and L1.

They are then adjacent. The group G acts on X0 in a natural way, and X0

consists of two orbits, i.e.,

X0 = {G · v0} ∪ {G · v1}.

The vertices in 41 := {G · v0} is of period one, and that in 42 := {G · v1}
is of period two.

Let K0,K1 be respectively the stabilizers of v0,v1 in G, and let α be

the matrix $−1
E 0 0

0 1 0

0 0 $E

,
and put β′ = βα−1. The groups K0 and K1 could be described explicitly

K0 =

oE oE oE
oE oE oE
oE oE oE

 ∩G, K1 =

oE oE p−1
E

pE oE oE
pE pE oE

 ∩G
For an integer n ∈ Z, put v2n = αnv0,v2n+1 = αnv1. These vertices

together form a standard apartment in4: {vn, n ∈ Z}. A general edge in the

standard apartment is e2n,2n±1 = (v2n,v2n±1), for an integer n ∈ Z§i.e.,

an edge with origin v2n and terminus v2n±1. Let I be the stabilizer of e0,1 in

G, i.e., the intersection of K0 and K1. It is the standard Iwahori subgroup

of G consisting of matrices which are upper triangular mod pE . Denote by

I1 the unique pro-p Sylow subgroup of I. Put H0 = I ∩H, H1 = I1 ∩H.

We have introduced several subgroups of G, say B,N,Nk, I, I1, and

later on we will use the notations B′, N ′, N ′k, I
′, I ′1 for their conjugate sub-

groups of G by the element β. Also, we use the notation n′(x, y) for the

element in N ′:

10



1.2 Notations

1 0 0

x 1 0

y −x̄ 1

 .

Denote by β0 and β1 respectively the following two matrices:0 0 −t−1

0 1 0

t 0 0

 ,

 0 0 −t−1$−1
E

0 1 0

t$E 0 0

,

where t = [u]
q+1
2 §u is a generator of the cyclic group k×E , and [·] denotes

the Teichmüller lift. They lie respectively in K0 and K1, with determinant

1.

Denote by N the normalizer of H in G. For a character χ of H, denote

by χs the character of H, which is the non-trivial conjugate of χ induced

from the action of N on H.

We define the unitary group G(kF ) = U(2, 1)(kE/kF ) over the residue

field kF in the same manner as G. Denote by H(kF ) and U(kF ) respec-

tively the diagonal and upper unipotent subgroup of G(kF ). For simplicity,

sometimes we will write them G,H,U , etc.

There is a natural reduction map from the group K0 to G(kF ), which

is surjective, and we denote the corresponding kernel subgroup by K1
0 .

As a character χ of I is trivial on I1, and I/I1
∼= H(kF ), we will usually

identify characters of I and H(kF ).

Finally, we look at two fundamental equations over oE . The first is

a+ ā = 0, a ∈ oE . (1)

We find inductively a finite set (non-canonically) L1 = {ln, 0 ≤ n ≤ q − 1}:

l0 = 0, and for n ≥ 1 take ln to be any integer a satisfying (1) and

pE - a− lj for all j < n.

The second is

bb̄+ a+ ā = 0, a, b ∈ oE . (2)

Similarly, we find a finite set L2 = {mk, 0 ≤ k ≤ q3 − 1} (non-

canonically) as follows:

m0 = (0, 0), and for k ≥ 1, set mk = (bk, ak), in which (bk, ak) satisfies (2)

and at least one of the relations pE - ak − aj and pE - bk − bj holds for all

j < k.

11
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We don’t assume any further operations on L1 and L2. Put L∗1 =

L1 \ {0} and L∗2 = L2 \ {(0, 0)}.

Finally, we fix a field Ẽ of characteristic p (not necessarily algebraically

closed).

1.3 Preliminary facts

We record some basic decompositions for G and some subgroups.

Proposition 1.1. (1) G = BKi, for i = 0, 1.

(2) G = ∪l≥0Kiα
lKi, for i = 0, 1.

(3) K0 = I ∪ IβI, K1 = I ∪ Iβ′I.
(4) I = (B ∩ I) ·N ′1 = N ′1 · (B ∩ I).

Lemma 1.2. For y ∈ p−lE for some l > 0, we have a BK0-decomposition:

βn(x, y) = n(ȳ−1x, y−1)α−l · k, where k is some matrix in I.

Proof. More explicitly, for y 6= 0, we have

βn(x, y) = n(ȳ−1x, y−1) · diag(ȳ−1,−ȳy−1, y) · n′(−ȳ−1x̄, y−1). (3)

Remark 1.3. There is a natural isomorphism :

E×/F× ∼= E1,

which is induced by the homomorphism ν : x 7→ xx̄−1, for x ∈ E×. By

definition, the kernel of ν is just F×. Applying Hilbert 901 to the quadratic

extension E/F , ν is also surjective. Similarly, we have an isomorphism :

k×E/k
×
F
∼= k1

E.

The natural homomorphism from E× to k×E sending an element $l
Ex ∈ E×

(l ∈ Z, x ∈ UE) to the image of x in k×E induces an isomorphism

E×/F×U1
E
∼= k×E/k

×
F .

In all, there is a canonical quotient map from E1 to k1
E :

1The usual multiplicative form of Hilbert 90 says that any element of norm 1 in a cyclic

field extension L′/L is of the form x · ε(x)−1, for some x ∈ L′×. Here ε is a generator of

the Galois group of L′/L. In fact, it is almost directly to verify Hilbert 90 in the case that

L′ = kE and L = kF . Assume L′ = E and L = F . Fix a root of unity η of order q2 − 1

in E×, which satisfies some quadratic relation. Write an element e of norm 1 in E× as

a1 · η + b1, for some a1, b1 ∈ oF . If a1 = 0, then e = ±1 and −1 = tt̄−1. Otherwise, the

element f = η + (b1 + 1)a−1
1 is as desired: e = f̄f−1.

12
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E1 ∼= E×/F× � E×/F×U1
E
∼= k×E/k

×
F
∼= k1

E .

Hence, the characters of E1 (resp. k1
E) are naturally in bijection with

the characters of E× (resp. k×E) which are trivial on F× (resp. k×F ). From

the quotient map above, we may view a character of k1
E as a character of

E1. However, a character of E× which is trivial on F× is also trivial on

U1
E, i.e., it is indeed a character of E×/F×U1

E, as U1
E is a pro-p group. In

summary, we may identify characters of E1 and k1
E.

Remark 1.4. Let χ be a character of the group H0. We write χ as χ1⊗χ2,

i.e., χ(diag(x, y, x̄−1)) = χ1(x)χ2(y), for diag(x, y, x̄−1) ∈ H0, where χ1 and

χ2 are respectively characters of k×E and k1
E. Then, it is immediate to check

that χ = χs is equivalent to χ1 being trivial on the group k×F ; by Remark 1.3,

it is equivalent to the existence of a unique character χ′1 of k1
E, such that

χ1(x) = χ′1(xx̄−1). Furthermore, χ factors through the determinant if and

only if χ2 = χ′1. We will use this remark in several places later, especially

the existence of χ′1, for a character χ = χ1 ⊗ χ2 such that χ = χs.

1.4 Presentation of main results

We now describe our main results, where the notations and terminolo-

gies are mainly those introduced in 1.2.

1.4.1 The pro-p Iwahori-Hecke algebra of G and its simple mod-

ules

This is the content of chapter 2. We describe the basic structure of the

pro-p Iwahori-Hecke algebra HI1 := EndG(indGI11) of G and determine its

simple modules explicitly (Proposition 2.26, Theorem 2.30).

We briefly mention what we have achieved in this chapter. We mainly

follow the method in [Vig04]. As HI1 is the direct sum of H (I, χ) :=

EndG(indGI χ), for characters χ of I satisfying χ = χs, and H (I, χ⊕ χs) :=

EndG(indGI χ ⊕ χs), for χ satisfying χ 6= χs, we are led to investigate the

structures of the Iwahori-Hecke algebras H (I, χ) for all χ and classify their

simple modules (Proposition 2.6, 2.9, and Proposition 2.16, Proposition 2.22,

2.23).

We also calculate explicitly the natural right action of HI1 on the I1-

invariants of any principal series representation indGBε (Proposition 2.31),

and by excluding them we give the definition of supersingular character of

HI1 (Definition 2.33), which are then exactly those simple modules of HI1

for which some fixed central element acts as zero.

13



1.4 Presentation of main results

1.4.2 The compactly induced representation indGK0
σ

This is the content of chapter 3. We are mainly concerned with some

initial properties of the compactly induced representation indGK0
σ, for an

irreducible smooth representation σ of K0, and the corresponding spherical

Hecke algebra H (K0, σ).

It is known that the I1-invariants of σ is one-dimensional ([CL76], Corol-

lary 6.5), and we fix a basis {v0} of it once and for all. The Iwahori subgroup

I acts on σI1 as a character, and denote it by χσ.

We have first the following, which is indeed a special case of a general

result due to Herzig [Her11], Henniart-Vignéras [HV10]. Our approach is

that of [BL94], i.e., we compute explicitly the convolution relations which

define the multiplicative operation of the algebra.

Corollary 1.5. H (K0, σ) is isomorphic to the polynomial ring in one vari-

able Ẽ[T ], for some T ∈H (K0, σ).

We next describe the action of HI1 on the I1-invariants of indGK0
σ;

more specifically the right action of H (I, χ) on the (I, χ)-isotypic subspace

of indGK0
σ, where χ = χσ or χsσ. The space of I1-invariants of indGK0

σ is

easily described, and it has a canonical basis {fn, n ∈ Z} (3.2, (8)) (up to

a scalar). We then describe clearly the natural action of H (I, χ) on that

space (Proposition 3.9, 3.10).

Before stating the result, we remind the reader that the structure of

the I1-invariants of a compact induction as a module over the pro-p Iwahori-

Hecke algebra has been determined in general (for F -split groups) by Rachel

Ollivier in her recent work on inverse Satake [Oll12].

As a by-product, we have the following key proposition.

Proposition 1.6. Let σ be an irreducible smooth representations of K0. Let

χ = χσ or χsσ. Then, any non-zero H (I, χ)-submodule of (indGK0
σ)I,χ is of

finite co-dimension as a vector space.

We then move to a further consideration of the Hecke operator T in

Corollary 1.5. In Lemma 3.12 and Proposition 3.13, we determine T [Id, v]

explicitly, where [Id, v] is the function in indGK0
σ, supported on K0 and

taking value v at Id.

As an application, we show

Proposition 1.7. indGK0
σ is free over H (K0, σ) if σ is a character or a

twist of St by a character. Here, St is the inflation to K0 of the Steinberg

representation of G(kF ).

14
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Although it is not known to us whether the above Corollary holds or

not for general σ 2, one in any case has the following compromise:

Proposition 1.8. For an irreducible smooth representation σ of K0, the

compactly induced representation indGK0
σ is faithfully flat over the algebra

H (K0, σ).

We remark that Elmar Große-Klönne [GK10] has studied such a topic

in detail for a general F -split group, where he has obtained a sufficient

condition for the universal module to be free over the corresponding spherical

Hecke algebra. But it is not clear to the author whether his result can be

extended to our situation or not.

We finally mention the next two results, which pave the way for some

definitions in chapter 4.

The following Lemma has already been proved in [Abd11].

Lemma 1.9. For a character ε of B and an irreducible smooth representa-

tion σ of K0, the space HomG(indGK0
σ, indGB ε) is at most one-dimensional,

and it is non-zero if and only if

ε0 = χsσ,

where ε0 is the restriction of ε to H0.

Proposition 1.10. The Hecke operator T acts on the one-dimensional space

HomG(indGK0
σ, indGB ε) as a scalar cε, which is given by

cε = ε(α) +
∑

y1∈k×E ; y1+ȳ1=0 ε(−y
−1
1 , 1, y1).

Some refined descriptions of the Bruhat-Tits tree of G are also included

in chapter 3; in particular we have put the definition of height and antecedent

(Definition 3.31) in general. Lemma 3.26 is crucial and will be used essen-

tially in a major argument of chapter 4. We also record some observations

about the actions of I1 on the tree, but they are not used anywhere else in

this thesis.

1.4.3 A parametrization theorem

This is the content of chapter 4, which is a major part of this thesis.

Theoretically, one wants to establish the equivalence between supercuspidal

2But under some natural hypothesis we have indeed verified it in general, see Assump-

tion 3.20 and Proposition 3.22.
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representations and supersingular representations, and the main result pre-

sented below should serve as a main ingredient towards that (see also the

remark after Corollary 1.13). We remind the readers that in a forthcoming

paper of Abe–Henniart–Herzig–Vignéras, they will show admissible super-

singular representations are equivalent to admissible supercuspidal represen-

tations, for any p-adic connected reductive group. Our approach is again

mainly that of Barthel–Livné, but there are indeed some technical differ-

ences in our case to carry out the tree argument. We address a little more

on that at the beginning of chapter 4.

Theorem 1.11. Assume Ẽ is algebraically closed. Let π be an irreducible

smooth representation of G and σ be an irreducible sub-representation of

π|K0. Then,

(1).3 The space

HomG(indGK0
σ, π)

has an eigenvector for the action of the Hecke algebra H (K0, σ).

(2). Let λ be an eigenvalue of T in (1). Assume further that:

λ 6=

{
−χ′1(−1), if χσ = χsσ = χ1 ⊗ χ2,

0, otherwise.

We set a character ε of B such that ε|H0 = χsσ, and

ε(α) =

{
λ+ χ′1(−1), if χσ = χsσ,

λ, otherwise.

Then, we have the following,

(a). The space in (1) is one-dimensional.

(b). If χσ does not factor through the determinant, or λ 6= 1− χ′1(−1),

then we have

π ∼= indGB ε.

(c). If χσ factors through the determinant, i.e., χσ = η ◦ det for some

character of k1
E, and λ = 1− χ′1(−1). Then

π ∼=

{
η ◦ det, if dim σ = 1,

η ◦ det⊗ Sp, otherwise.

Here, Sp is the Steinberg representation of G, defined as indGB1/1.

3This is proved in [Abd11] under the assumption that π is admissible.
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1.4 Presentation of main results

In view of the Theorem above, we can now give the definition of super-

singular representations. Let Tσ be the following refined Hecke operator:

Tσ =

{
T + χ′1(−1), if χσ = χsσ,

T, otherwise.

Definition 1.12. An irreducible smooth representation π of G is called su-

persingular if it is a quotient of indGK0
σ/(Tσ) for some irreducible smooth

representation σ of K0.

As a by-product of the argument of (1) of Theorem 1.11, we have the

following corollary, whose crucial role will become clear soon. Note in this

corollary Ẽ is not necessarily to be algebraically closed.

Corollary 1.13. The submodule of HomG(indGK0
σ, π) over H (K0, σ), which

is generated by a non-zero G-morphism, is of finite dimension.

We remark that in Abdellatif’s thesis [Abd11], a major part (say (b)

and (c) of (2)) of Theorem 1.11 is presented as a conjecture, and assuming

the conjecture (and a completely parallel conjecture for the group K1) she

has proved equivalence of supersingular representations and supercuspidal

representations for G.

We end this part by recording the following Proposition, which is of

independent interest and its argument depends on what we already have

described.

Proposition 1.14. 4 Any non-zero subrepresentation of indGK0
σ is non-

admissible and reducible. Hence, it is always of infinite length.

1.4.4 Canonical diagrams and finite presentation

This is the content of chapter 5. For the group GL2(Qp), it is a result

of Barthel-Livné and Breuil that all the irreducible smooth representations

are finitely presented. However, it seems that is another result only reason-

able for GL2(Qp); in fact, the recent work of Hu [Hu12] and Schraen [Sch12]

on GL2(F ) has verified that supersingular representations are not finitely

presented, when F is either a non-archimedean local field of positive charac-

teristic or a quadratic extension of Qp. Motivated and following closely the

canonical diagrams on GL2, due to Y. Hu ([Hu12]), chapter 5 is intended

to explore similar things for the group G. At the beginning of chapter 5,

4It seems that such result is well-known to experts for some time, at least for the case

of GL2(F ), but we so far have not found a clear statement of that in literatures.
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1.4 Presentation of main results

we have a more detailed description of the underlying motivation and the

strategy of Hu and Schraen.

So far, our results are still a little scattered. We will describe what we

have proved and what is still expected. To do this, we recall some further

notations.

Let σ be an irreducible smooth representation of K0, and let π be a

smooth G-quotient of indGK0
σ. In 3.7, R+

n (σ) (n ≥ 0) is defined as the

subspace of indGK0
σ which consists of functions supported in K0α

nI, and it

is I-stable. One has similar notation R−n (σ) for n ≥ 0, which consists of

functions supported in K0α
−(n+1)I. In terms of the tree of G, there is then

a natural I-decomposition of indGK0
σ:

indGK0
σ = I+(σ)⊕ I−(σ),

where I+(σ) (resp. I−(σ)) is ⊕n≥0R
+
n (σ) (resp. ⊕n≥0R

−
n (σ)). Denote by

I+(σ, π) (resp. I−1(σ, π)) the image of I+(σ) (resp. I−(σ)) in π.

The preliminary results in 5.1 are mainly summarized in Proposition

5.3; besides other things it shows that I+(σ, π) ∩ I−(σ, π) is always non-

zero if π is irreducible. We note that the argument of Proposition 5.3 relies

crucially on results in previous chapters.

Now we focus on the main results that have been proved. The following

two results summarize the contents of 5.2 and 5.3.

Proposition 1.15. Let π be an irreducible smooth representation of G which

is a G-quotient of indGK0
σ. Let R(σ, π) be the corresponding kernel. Then

the following (2) implies (1) :

(1). I+(σ, π) ∩ I−(σ, π) is of finite dimension;

(2). R(σ, π) is of finite type, as an Ẽ[G]-module.

We indeed expect (1) implies (2) too, but there is some difficulty we

have not yet conquered.

From the Hecke operator formula T in chapter 3, for any smooth rep-

resentation π, we define an endomorphism of πN0 as follows.

Definition 1.16. For any v ∈ πN0, Sv is defined as

Sv =
∑

u∈N0/N2
uα−1 · v.

This endomorphism S has some nice properties (Lemma 5.12), for ex-

ample, it preserves I1-invariants of π. Then we may state the next general

result we have arrived at,
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1.4 Presentation of main results

Lemma 1.17. Suppose π is a supersingular representation and a G-quotient

of indGK0
σ. If 0 6= v ∈ I+(σ, π) is fixed by N0, then there is a polynomial P

of degree ≥ 1, such that:

P (S)v = 0.

In 5.5, we explore the N0-invariants of the space R+
k−1(σ) ⊕ R+

k (σ) ⊕
R+
k+1(σ)/T (R+

k (σ)) for k ≥ 1 and the outcome is mainly the following partial

result, see Remark 5.33 for how it would be expected to be interesting.

Denote by CN0 the center of N0, which is also a pro-p group.

Proposition 1.18. When F = Qp, σ is a character of K0, the dimension

of N0-invariants of R+
k−1 ⊕R

+
k ⊕R

+
k+1/Tσ(R+

k ) is at least p(p− 1).

We also expect the Proposition to hold for any irreducible smooth rep-

resentation of K0, but we are currently not able to verify it due to some

technical reason.

1.4.5 Appendix

In Appendix A, we follow [Paš04] to establish that for the group G,

the category of diagrams and that of G-equivariant coefficient systems are

equivalent. This part is a bit of formal, and the details are essentially the

same as that in [Paš04].

In Appendix B, following [ST02], we give a sufficient condition for the

topologically irreducibility of p-adic principal series of U(1, 1)(Qp2/Qp).
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2 The pro-p Iwahori-Hecke algebra and its simple

modules

In this chapter, we describe the basic structures of the pro-p Iwahori-

Hecke algebra HI1 and its component Iwahori-Hecke algebras H (I, χ) of

G, and classify their simple modules up to isomorphism. After that, we

compute the right action of the pro-p Iwahori–Hecke algebra HI1 on the

I1-invariants of the principal series. As a result, we define a simple module

of HI1 as supersingular if it is not isomorphic to a sub-quotient of the I1-

invariants of any principal series.

The structure of the pro-p Iwahori-Hecke algebra HI1 of a connect-

ed reductive group (actually the group of its F -points) are relatively well-

understood now, mainly from the work of Ollivier, Vignéras. Very briefly

speaking, there exists a Bernstein-type basis in HI1 , and the sub-algebra

generated by a such basis is commutative and contains the center of HI1 ,

over which HI1 is finitely generated. The functor from the category of s-

mooth representations of G to that of modules over HI1 , which sends a

smooth representation π to its I1-invariant πI1 , is expected to play a signif-

icant role in the mod-p representation theory. However, also only for very

few cases, say GL2(Qp) and SL2(Qp), the full content of this functor is

understood thoroughly.
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2.1 The structure of H (I, χ)

2.1 The structure of H (I, χ)

Let χ = χ1⊗χ2 be a character of I, and H (I, χ) be the endomorphism

algebra EndGindGI χ. From Frobenius reciprocity H (I, χ) ∼= (indGI χ)I,χ,

where by definition of isotypic, the latter is the subspace of indGI χ consisting

of functions ϕ on G satisfying ϕ(i1gi2) = χ(i1i2)ϕ(g) for all i1, i2 ∈ I and

g ∈ G. From the double coset decomposition of G with respect to I, we deal

with the structure of (indGI χ)I,χ in the following:

Lemma 2.1. (1) Suppose that χ = χs. Then the Ẽ-space (indGI χ)I,χ has

a basis {ϕ2n,2n+1, ϕ2n,2n−1, n ∈ Z}, where ϕ2n,2n+1 (resp. ϕ2n,2n−1) is the

function supported on Iα−nI (resp. Iβα−nI), and is equal to 1 on α−n

(resp. βα−n).

(2) Suppose that χ 6= χs. Then a basis for the space (indGI χ)I,χ is

{ϕ2n,2n+1, n ∈ Z}, where the functions ϕ2n,2n+1 are as described in (1).

Proof. Firstly, we note that the support of a function in (indGI χ)I,χ is a

finite union of double cosets IwI, for some w ∈ G and the restriction of the

function to a single coset IwI is determined by its value at w.

Let ϕ be a function in (indGI χ)I,χ whose support is contained in Iα−nI.

Suppose ϕ(α−n) 6= 0. Then, for any i1, i2 ∈ I satisfying i1α
−ni2 = α−n,

χ(i1i2) must be equal to 1. This is always true under the condition i−1
1 =

α−ni2α
n.

For a function ϕ′ in (indGI χ)I,χ, whose support is contained in Iβα−nI,

suppose ϕ′(βα−n) 6= 0. Then, for any i1, i2 ∈ I satisfying i1βα
−ni2 = βα−n,

χ(i1i2) must be equal to 1. In other words, χ(i1i2) = 1 holds whenever

i−1
1 = βα−ni2α

nβ is satisfied. But this is to say χ = χs.

The Lemma is shown.

In the situation χ = χs, let T2n,2n+1, T2n,2n−1 be the operators in

H (I, χ) which correspond the functions ϕ2n,2n+1, ϕ2n,2n−1 respectively. Then,

(1) of Lemma 2.1 says these operators together form a basis for the space

H (I, χ).

We can also form the operators T2n,2n+1 for any integer n, in the case

that χ 6= χs, which is determined by sending ϕ0,1 to ϕ2n,2n+1. Similarly, (2)

of Lemma 2.1 tells they together form a basis for H (I, χ).

Lemma 2.2. 1. T2n,2n+1 = T0,−1T2n,2n−1, for n ≥ 1.

2. T2n,2n−1 = T2,1T2n−2,2n−1, for n ≥ 1.

3. T−2n,−2n−1 = T0,−1T−2n,−2n+1, for n ≥ 0.

4. T−2n−2,−2n−1 = T2,1T−2n,−2n−1, for n ≥ 0.
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2.1 The structure of H (I, χ)

Proof. We list the formula for computing the four kinds of operators at the

function ϕ0,1:

T2n,2n+1(ϕ0,1) =
∑

i∈N ′1/N ′2n+1

iαn · ϕ0,1, n ≥ 0,

T−2n,−2n+1(ϕ0,1) =
∑

i∈N0/N2n

iα−n · ϕ0,1, n ≥ 0,

T−2n,−2n−1(ϕ0,1) =
∑

i∈N0/N2n+1

iα−nβ · ϕ0,1, n ≥ 0,

T2n,2n−1(ϕ0,1) =
∑

i∈N ′1/N ′2n

iαnβ · ϕ0,1, n ≥ 1.

All these result follows from (11) of [BL94] directly. Then one can check the

relations in the Lemma hold without difficulty. We do the first one as an

example. We begin with the right side product, say, for n ≥ 1,

T0,−1 · T2n,2n−1(ϕ0,1) = T0,−1

 ∑
i∈N ′1/N ′2n

iαnβ · ϕ0,1


=

∑
i∈N ′1/N ′2n

iαnβ
∑

j∈N0/N1

jβ · ϕ0,1

=
∑

i∈N ′1/N ′2n

i
∑

j∈N0/N1

αnβjβα−n · αnϕ0,1

=
∑

i∈N ′1/N ′2n

i
∑

j′∈N ′2n/N ′2n+1

j′αnϕ0,1

=
∑

i∈N ′1/N ′2n+1

i′αnϕ0,1

= T2n,2n+1(ϕ0,1),

we are done.

It is immediate from Lemma 2.2 that

Corollary 2.3. 1. T2n,2n+1 = (T0,−1T2,1)n, for n ≥ 1.

2. T2n,2n−1 = T2,1(T0,−1T2,1)n−1, for n ≥ 1.

3. T−2n,−2n−1 = T0,−1(T2,1T0,−1)n, for n ≥ 0.

4. T−2n−2,−2n−1 = (T2,1T0,−1)n+1, for n ≥ 0.

Remark 2.4. Any element in H (I, χ) is a unique linear combination of

monomials of the forms in Corollary 2.3, i.e., the set

{(T0,−1T2,1)n, T2,1(T0,−1T2,1)n, T0,−1(T2,1T0,−1)n, (T2,1T0,−1)n+1}n≥0
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consists of a basis of H (I, χ); in particular, H (I, χ) is generated by the two

operators T0,−1 and T2,1. As a result, it makes sense to define the degree

of an element in H (I, χ) as the highest degree of the terms in its unique

expression. We emphasize that the degree of an element defined here should

not be viewed as the ‘degree’ of the element as a polynomial in T0,−1 and

T2,1.

To unify many calculations in this section, we record a simple fact in

the following lemma

Lemma 2.5. (1) If βαkiαl ∈ IβαmI for some i ∈ N ′1 or N0, then k+l = m;

(2) If αkiαl ∈ IαmI for some i ∈ N ′1 or N0, then k + l = m.

Proof. We check (1) in detail where (2) follows in the same way. For (1),

we only need to consider two cases: (i) : i ∈ N ′1, k < 0, l > 0; (ii) : i ∈
N0, k ≥ 0, l < 0. For example, for i ∈ N ′1, k ≥ 0, or l ≤ 0, (1) obviously

holds: βαkiαl = (βαkiα−kβ)βαkαl ∈ Iβαk+l.

The assumption means there are elements i1, i2 ∈ I such that

α−kβi1βα
mi2α

−l ∈ I.

In the case (i), from the decomposition I = N ′1·(I∩B) = (I∩B′)·N0, one

could assume further that i2 ∈ N ′1 and i1 ∈ N0; as a result, the product of

elements above is a lower triangular matrix in I and one concludes k+ l = m

immediately from the fact that the diagonal entries of I lie in the units of

E.

The same trick applies to case (ii). We are done.

Proposition 2.6. Let χ = χ1 ⊗ χ2 be a character of I satisfying χ = χs,

and let χ′1 be the character of k1
E given by Remark 1.4.

(1). Suppose χ does not factor through the determinant. Then,

H (I, χ) ∼= Ẽ[T0,−1, T2,1]/(T 2
0,−1, T

2
2,1 + χ′1(−1)T2,1).

(2). Suppose χ factors through the determinant. Then as an Ẽ-algebra,

H (I, χ) ∼= Ẽ[T0,−1, T2,1]/(T 2
0,−1 + χ′1(−1)T0,−1, T

2
2,1 + χ′1(−1)T2,1).

Proof. We note that the remark before Lemma 2.2 and Corollary 2.3 tells

that T0,−1, T2,1 generate H (I, χ). We compute first T 2
0,−1(ϕ0,1).

By definition,

T 2
0,−1(ϕ0,1) = T0,−1(

∑
i∈N0/N1

iβϕ0,1) =
∑

i∈N0/N1
iβ · ϕ0,−1.
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In general, the function above is supported on a finite union of double cosets

with a form of IαkI or IβαkI. We recall ϕ0,−1 is supported on IβI. If

αkiβ ∈ IβI for some k ∈ Z and some i ∈ N0, then k = 0 from Lemma

2.5; similarly, if βαk
′
iβ ∈ IβI for some k′ ∈ Z and some i ∈ N0, then

clearly i ∈ N0 \ N1, and then one must have that k′ = 0: if k′ < 0, then

βαk
′
iβ = (βαk

′
iα−k

′
β)βαk

′
β ∈ Iα−k′I; if k′ > 0, using Lemma 1.2, one see

βαk
′
iβ = α−k

′
i1βi2 ∈ Iβαk

′
I, for some i1 ∈ N0, i2 ∈ I ∩ B. In summary,

we have shown the support of T 2
0,−1(ϕ0,1) is contained in I ∪ IβI.

We see first ∑
i∈N0/N1

iβ · ϕ0,−1(Id) =
∑

i∈N0/N1

ϕ0,−1(iβ)

=
∑

i∈N0/N1

1 = 0.

Hence, T 2
0,−1 differs from T0,−1 by a constant factor.

Next, ∑
i∈(N0\N1)/N1

iβ · ϕ0,−1(β) =
∑

i∈(N0\N1)/N1

ϕ0,−1(βiβ)

=
∑

i∈n(L∗2)

ϕ0,−1(βiβ).

Here L∗2 = L2 \ {(0, 0)}.
By writing i as n(x, y), for (x, y) ∈ L∗2, an application of Lemma 1.2 im-

plies βiβ = uhiu
′β for some u ∈ N0, u

′
0 ∈ N ′0 and hi = diag(ȳ−1,−ȳy−1, y),

hence we are led to∑
i∈(N0\N1)/N1

iβ · ϕ0,−1(β) =
∑

(x,y)∈L∗2

χ1(ȳ−1)χ2(−ȳy−1). (4)

We compute at first the part
∑

1 of (4) in which x is zero. In this case,

y = −ȳ, hence ∑
1 =

∑
y∈L∗1

χ1(ȳ−1) =
∑
y∈L∗1

χ1(y).

As χ is trivial on I1, we could identify χ1 and χ2 with respectively

characters of k×E and k1
E . Then from Remark 1.4, the assumption on χ gives

us a unique character χ′1 of k1
E , such that χ1(y) = χ′1(yȳ−1). Then,∑

1 =
∑

y=−ȳ,y∈k×E
χ1(y) =

∑
y=−ȳ,y∈k×E

χ′1(yȳ−1) = −χ′1(−1).
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Denote χ2(χ′1)−1 by χ′, then χ′ is a character of k1
E and it is trivial if

and only if χ factors through the determinant (Remark 1.4). The remaining

part, i.e., the sum over terms in (4) for which x is non-zero, can be written

as ∑
2 = χ′1(−1)

∑
x6=0 χ

′(−ȳy−1),

in which the sum∑
x 6=0

χ′(−ȳy−1) =
∑
t∈k×F

∑
xx̄=−t

∑
y+ȳ=t

χ′(−ȳy−1)

=
∑
t∈k×F

∑
y+ȳ=t

χ′(−ȳy−1)

=
∑

tr(y)6=0

χ′(−ȳy−1).

Now,
∑

tr(y)6=0

χ′(−ȳy−1) = χ′(−1)
∑
y∈k×E

χ′(ȳy−1)−
∑

tr(y)=0, y∈k×E

χ′(−ȳy−1)

= χ′(−1)
∑
l∈k1E

(q − 1)χ′(l)− (q − 1)

= 1− χ′(−1)
∑
l∈k1E

χ′(l).

Now it is well-known that the last sum above is 1 if χ′ is non-trivial;

otherwise it is 1− (q + 1) = 0, where q + 1 is the order of k1
E . We are done

for the argument for the quadratic relations of T0,−1.

We now show T2,1 · T2,1 = −χ′1(−1)T2,1. By definition,

T2,1 · T2,1(ϕ0,1) =
∑

j∈N ′1/N ′2
jαβ · ϕ2,1.

We note that ϕ2,1 is supported on Iβα−1I, and the above function is sup-

ported on double cosets of the form IαkI or IβαkI. That αkjαβ ∈ Iβα−1I

for some k ∈ Z and some j ∈ N ′1, forces k = 0, from Lemma 2.5; similar-

ly, if βαk
′
jαβ ∈ Iβα−1I, for some k′ ∈ Z and some j ∈ N ′1, then clearly

j ∈ N ′1 \N ′2, and an application of Lemma 1.2 reduces the situation to Lem-

ma 2.5, which forces k′ = −1. Therefore, we have shown the support of

T 2
2,1(ϕ0,1) is contained in I ∪ Iβα−1I. Furthermore, we have∑

j∈N ′1/N ′2
jαβ · ϕ2,1(Id) =

∑
j∈N ′1/N ′2

ϕ2,1(jαβ) = 0

and,
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∑
j∈N ′1/N ′2

jαβ · ϕ2,1(βα−1) =
∑

j∈(N ′1\N ′2)/N ′2
ϕ2,1(βα−1jαβ).

An application of Lemma 1.2 to βα−1jαβ for j ∈ (N ′1 \N ′2)/N ′2 reduces the

above sum into ∑
y=−ȳ,y∈k×E

χ1(y)

which is just −χ′1(−1) as we have determined before. This confirms the

quadratic relation for T2,1.

A few words is needed to complete the proof of the Proposition. We will

do (2) for example. There is a natural homomorphism κ from the polynomial

ring Ẽ[T0,−1, T2,1] to H (I, χ), which is surjective by Corollary 2.3. From

the quadratic relations of T0,1 and T2,1 we have just proved, the κ will factor

as

κ : Ẽ[T0,−1, T2,1]/(T 2
0,−1 + χ′1(−1)T0,−1, T

2
2,1 + χ′1(−1)T2,1)→H (I, χ).

For any element f in Ẽ[T0,−1, T2,1]/(T 2
0,−1 +χ′1(−1)T0,−1, T

2
2,1 +χ′1(−1)T2,1),

one could choose its representative in Ẽ[T0,−1, T2,1] as a linear combination

of monomials of the form in Corollary 2.3. By Remark 2.4, it is then clear

that f vanishes if κ(f) = 0. We are done.

Remark 2.7. In the argument of the last proposition, we have determined

the value of the sum ∑
y=−ȳ,y∈k×E

χ1(y)

and the sum ∑
(x,y)∈L∗2

χ1(ȳ−1)χ2(−ȳy−1)

when χ = χ1 ⊗ χ2 satisfies χ = χs. Later on, we will also compute their

values in the remaining case.

We turn to the case that χ 6= χs.

Lemma 2.8. (1). T2,3 · T−2,−1 = 0, T−2,−1 · T2,3 = 0.

(2). For n ≥ 0, T2n,2n+1 = (T2,3)n, T−2n,−2n+1 = (T−2,−1)n.

Proof. We prove first that T2,3 · T−2,−1 = 0. By definition,

T2,3 · T−2,−1(ϕ0,1) =
∑

i∈N0/N2
iα−1ϕ2,3.

We remind the reader that this function will be supported on a union of

double cosets with a form of IαkI, for some integers k. Recall ϕ2,3 is sup-

ported on Iα−1I. If αkiα−1 ∈ Iα−1I, for some k ∈ Z and i ∈ N0, then

k = 0, from Lemma 2.5. We compute
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∑
i∈N0/N2

iα−1ϕ2,3(Id) = 0,

as required.

Similarly,

T−2,−1 · T2,3(ϕ0,1) =
∑

i∈N ′1/N ′3
iα · ϕ−2,−1.

Also, the above function is supported on a union of double cosets with a

form of IαkI, for some integers k. Note that ϕ−2,−1 is supported on IαI. If

αkiα ∈ IαI, for some k ∈ Z and some i ∈ N ′1, then k = 0, from Lemma 2.5.

We compute ∑
i∈N ′1/N ′3

iα · ϕ−2,−1(Id) = 0,

also as required. We are done for (1).

The formulae in the proof of Lemma 2.2 hold if the operators makes

sense. Then (2) follows from those formulae by induction.

We can state the following Proposition:

Proposition 2.9. For a character χ of I which satisfies χ 6= χs, we have

an isomorphism of Ẽ-algebra :

H (I, χ) ∼= Ẽ[T2,3, T−2,−1]/(T2,3 · T−2,−1, T−2,−1 · T2,3).

Proof. This follows from Lemma 2.8 and the remark before Lemma 2.2.

Remark 2.10. In the following sections, sometimes we will use the no-

tations Tχ2,3 and Tχ−2,−1 for T2,3 and T−2,−1 to indicate that they are in

H (I, χ), not in H (I, χs), when χ 6= χs.

2.2 Simple modules over Iwahori-Hecke algebras

After determining the structure of H (I, χ), we turn to the simple mod-

ules over them. We begin to investigate the center Cχ of H (I, χ). We have

shown H (I, χ) is commutative if χ 6= χs. Hence, only the case χ = χs is

need to be considered:

Lemma 2.11. (1). Let χ be a character of I which factors through deter-

minant, then Cχ ∼= Ẽ[c], where c is the operator

1 + χ′1(−1) · T0,−1 + χ′1(−1) · T2,1 + T0,−1 · T2,1 + T2,1 · T0,−1.

(2). Let χ be a character of I which is fixed by s, but it does not factor

through determinant, then Cχ ∼= Ẽ[c′], where c′ is the operator

χ′1(−1) · T0,−1 + T0,−1 · T2,1 + T2,1 · T0,−1.
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Proof. It can easily be checked that the operators c and c′ are in the center.

We will prove (1) in detail. Suppose χ is a character of I which fac-

tors through the determinant, and we see τ : H (I, χ) ∼= H (I, 1). This

isomorphism comes from the isomorphism ι : indGI χ
∼= χ′ ⊗ indGI 1 of repre-

sentations, where the χ′ on the right hand is an extension of χ to G. We

write ι explicitly on the basis elements gϕ0,1:

ι : gϕ0,1 7→ χ′(g)1Ig−1 ,

from which the basis {T2n,2n+1, T2n,2n−1, n ∈ Z} correspond via τ to the

following:

T2n,2n+1 7→ T2n,2n+1, T2n,2n−1 7→ χ′(β)T2n,2n−1,

but, χ′(β) = χ′1(−1) as one can check.

For (1), we then reduce to the case H (I, 1) = HI . It results from the

following Lemma:

Lemma 2.12. Denote by C the center of HI .

(1) Each non-zero element of C is of even degree.

(2) For a non-zero element in C with degree bigger than 0, its coeffi-

cients of the two terms of highest degree are the same.

Proof. We note that the statements make sense from Remark 2.4. Both can

be checked directly.

Given a non-zero t ∈ C , by (2) of Lemma 2.12, one could find some

non-zero a ∈ Ẽ and a non-negative integer n such that t − acn(∈ C ) has

smaller degree than t. If it is zero, we stop. Otherwise, we repeat the former

process for a finite times, which finally leads to zero, i.e., t ∈ Ẽ[c].

We have proved (1) for HI . Via the isomorphism H, we have indeed

shown (1) in general.

For (2), one firstly shows an analogue of Lemma 2.12, then the result

follows from that as above.

Remark 2.13. From Lemma 2.11, H (I, χ) is finite over Cχ as an algebra.

In fact, H (I, χ) admits bigger commutative algebras, for example, Cχ[T2,1],

over which H (I, χ) is of rank two, with the basis {1, T0,−1}. If Ẽ is alge-

braically closed, the simple modules of H (I, χ) are at most two dimensional.

Later on, we assume Ẽ is algebraically closed.

Proposition 2.14. Let χ = χ1⊗χ2 be a character of I which is fixed by s.

The characters of H (I, χ) are the following:

If χ factors through the determinant,
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2.2 Simple modules over Iwahori-Hecke algebras

(1). T0,−1 7→ 0, T2,1 7→ 0;

(2). T0,−1 7→ 0, T2,1 7→ −χ′1(−1);

(3). T0,−1 7→ −χ′1(−1), T2,1 7→ 0;

(4). T0,−1 7→ −χ′1(−1), T2,1 7→ −χ′1(−1).

If χ does not factor through the determinant,

(1′). T0,−1 7→ 0, T2,1 7→ 0;

(2′). T0,−1 7→ 0, T2,1 7→ −χ′1(−1).

Here we understand a character of an algebra as a morphism from itself

to the coefficient field, hence in the above we only specify the values of the

generators.

Let χ = χ1⊗χ2 be a character of I which is fixed by s. Let 〈v1, v2〉Ẽ be

a two dimensional Ẽ-vector space, on which a two dimensional simple right

H (I, χ)-module is defined by:

Definition 2.15. If χ factors through the determinant, λ ∈ Ẽ, λ 6= 0, 1,

(v1, v2) T0,−1 = (v1, v2)

(
0 0

1 −χ′1(−1)

)
,

(v1, v2) T2,1 = (v1, v2)

(
−χ′1(−1) λ

0 0

)
.

The central operator c acts as scalar λ.

If χ does not factor through the determinant, λ ∈ Ẽ, λ 6= 0,

(v1, v2) T0,−1 = (v1, v2)

(
0 0

1 0

)
,

(v1, v2) T2,1 = (v1, v2)

(
−χ′1(−1) λ

0 0

)
.

The central operator c′ acts as scalar λ.

Proposition 2.16. Any two dimensional simple module of H (I, χ), on

which the central operator c (or c′) acts as a scalar λ, is isomorphic to the

corresponding one defined in 2.15.

Proof. We show the first case in detail.

Let M be a two dimensional simple module over H (I, χ), on which

the central operator c acts as some λ ∈ Ẽ. From the quadratic relation for

T0,−1, we can choose a basis {v1, v2} in the underlying space of M , such

that :

29



2.3 Second Iwahori-Hecke algebras and their simple modules

(v1, v2) T0,−1 = (v1, v2)

(
0 0

1 −χ′1(−1)

)
.

Here, it is clear T0,−1 can not act as a scalar, otherwise T2,1 would act as a

scalar too, due to the assumption on the central operation c.

Assume the matrix of T2,1 under the above basis is (aij), then from

the condition that c acts as λ and the quadratic relation for T2,1, we see

immediately:

λ = 1 + a11χ
′
1(−1) + a12, a11 + a22 = −χ′1(−1),

a12a21 = −a11(a11 + χ′1(−1)).

The simplicity of M implies that λ 6= 0, 1, from which we see a12 6= 0.

We choose another basis, say {v′1, v′2}, where

v′1 = v1 + χ′1(−1)(1− a−1
12 λ)v2, v

′
2 = a−1

12 λv2,

then one see that the matrices of T0,−1 and T2,1 under the new basis are

those stated in Definition 2.15. We are done.

The second case could be shown similarly, and we don’t give details

here.

2.3 Second Iwahori-Hecke algebras and their simple modules

Let χ be a character of I which satisfies χ 6= χs. Recall we have shown

in Proposition 2.9 that H (I, χ) ∼= Ẽ[T2,3, T−2,−1]/(T2,3 · T−2,−1, T−2,−1 ·
T2,3). In this section, we use the notation Tχ2,3 and Tχ−2,−1 for T2,3 and

T−2,−1 to avoid confusion. For any integer n, let φn,χs be the function

in indGI χ
s, supported on IβαnI, and φn,χs(βα

n) = 1, and φn,χs(i1gi2) =

χs(i)φn,χs(g)χ(i2), for any i1, i2 ∈ I, g ∈ G. Then {φn,χs , n ∈ Z} is a basis

of (indGI χ
s)I,χ. Via Frobenius reciprocity, we get a basis {ψn,χs , n ∈ Z} for

HomG(indGI χ, indGI χ
s), in which ψn,χs is determined by ψn,χs(ϕχ) = φn,χs ,

where ϕχ is the function in indGI χ, supported on I and taking value 1 at the

identity of G.

Proposition 2.17. The morphisms ψ0,χs , ψ−1,χs generate HomG(indGI χ, indGI χ
s),

as an H (I, χs)-H (I, χ)-bi-module. In more words,

(1)

For n ≥ 0, ψn,χs ◦ Tχ2,3 = 0, ψn,χs ◦ Tχ−2,−1 = ψn+1,χs ,

For n > 0, ψ−n,χs ◦ Tχ2,3 = ψ−(n+1),χs , ψ−n,χs ◦ T
χ
−2,−1 = 0.

(2)
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For n ≥ 0, Tχ
s

−2,−1 ◦ ψn,χs = 0, Tχ
s

2,3 ◦ ψn,χs = ψn+1,χs,

For n > 0, Tχ
s

−2,−1 ◦ ψ−n,χs = ψ−(n+1),χs , T
χs

2,3 ◦ ψ−n,χs = 0.

Proof. We will verify the formulas in (1) in detail, where those in (2) fol-

low completely in the same way, using the formulas in Lemma 2.2 and the

definitions. Note that the first statement follows from the formulas in the

Proposition.

By definition, for n ≥ 0,

ψn,χs ◦ Tχ2,3(ϕχ) = ψn,χs(
∑

i∈N ′1/N ′3
iα · ϕχ) =

∑
i∈N ′1/N ′3

iα · φn,χs .

We recall the above function is supported on a union of double cosets with a

form of IβαkI. Note φn,χs is supported on IβαnI, and βαkiα lies in IβαnI

for some i ∈ N ′1/N ′3 only if k = n− 1, from Lemma 2.5.

When n > 0, we have∑
i∈N ′1/N ′3

iα · φn,χs(βαn−1) =
∑

i∈N ′1/N ′3

φn,χs(βα
n−1iα1−nββαn)

=
∑

i∈N ′1/N ′3

1 = 0.

When n = 0, we also have∑
i∈N ′1/N ′3

φ0,χs(βα
−1iα) =

∑
i∈N ′2/N ′3

φ0,χs(βα
−1iα) = 0,

where we note that βα−1iα ∈ Iα−1I for i ∈ N ′1 \ N ′2 by applying Lemma

1.2.

We have verified ψn ◦ T2,3 = 0, for n ≥ 0.

Similarly, we have from definitions that, for n > 0

ψ−n,χs ◦ Tχ2,3(ϕχ) =
∑

i∈∈N ′1/N ′3
iα · φ−n,χs .

Also, the above function is supported on a union of double cosets with a form

of IβαkI, for some integers k. We remind the reader φ−n,χs is supported on

Iβα−nI. If βαkiα lies in Iβα−nI, for some i ∈ N ′1/N ′3, then k = −(n+ 1),

from Lemma 2.5. We proceed to compute∑
i∈N ′1/N ′3

iα · φ−n,χs(βα−(n+1)) =
∑

i=Id φ−n,χs(βα
−(n+1)iα) = 1,

where we claim that βα−(n+1)iα /∈ Iβα−nI for i ∈ N ′1 \N ′3.

Recall we are in the case that n > 0. Assume there are elements

i1, i2 ∈ I such that

αn+1βi1βα
−ni2α

−1 ∈ N ′1 \N ′3. (5)
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Using the decomposition I = (B ∩ I) · N ′1 and multiplying both sides of

the above identity by some elements in N ′3, one could assume i2 ∈ B ∩ I
and i1 ∈ B′ ∩ I, where a contradiction arises from the fact that an upper

triangular matrix can not be a non-trivial lower unipotent matrix. Hence the

claim. In the following many calculations, the above trick to check something

like (5) does not hold will appear frequently and we will cite it to avoid the

repeated computations.

Also, for n ≥ 0,

ψn,χs ◦ Tχ−2,−1(ϕχ) =
∑

i∈N0/N2
iα−1φn,χs .

We note φn,χs is supported on IβαnI. If βαkiα−1 lies in IβαnI, for some

i ∈ N0/N2, then k = n+ 1, from Lemma 2.5. We compute∑
i∈N0/N2

iα−1φn,χs(βα
n+1) =

∑
i=Id φn,χs(βα

n+1iα−1) = 1,

where one could check that βαn+1iα−1 /∈ IβαnI for i ∈ N0 \ N2, via the

same process used in the first case.

Lastly, for n > 0,

ψ−n,χs ◦ Tχ−2,−1(ϕχ) =
∑

i∈N0/N2
iα−1φ−n,χs .

Note φ−n,χs is supported on Iβα−nI. If βαkiα−1 lies in Iβα−nI, for some

i ∈ N0/N2, then k = −n+ 1, from Lemma 2.5. And we compute∑
i∈N0/N2

iα−1φ−n,χs(βα
−n+1) =

∑
i∈N1/N2

φ−n,χs(βα
−n+1iαn−1ββα−n)

+
∑

i∈(N0\N1)/N2

φ−n,χs(βα
1−niα−1).

In the above, the first sum is clearly zero. We check the second sum is also

zero. When n = 1, we have βiα−1 ∈ Iα−1I for i ∈ N0 \N1. When n > 1, we

see βα−n+1iαn−1β ∈ N ′1 for i ∈ N0 \N1 and the cardinality of (N0 \N1)/N2

is (q3 − 1)q. The claim is then verified.

We are done for the proof of (1).

Remark 2.18. We have a natural isomorphism between the algebra H (I, χ)

and H (I, χs), which is determined by sending Tχ2,3 and Tχ−2,−1 to Tχ
s

−2,−1

and Tχ
s

2,3 respectively. Under this isomorphism, Proposition 2.17 says the

bi-module structures of HomG(indGI χ, indGI χ
s) coincide.

Corollary 2.19. As a right module over H (I, χ), we have

HomG(indGI χ, indGI χ
s) ∼= H (I, χ)/(Tχ2,3)⊕H (I, χ)/(Tχ−2,−1).
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Proof. From the descriptions of the space Hom(indGI χ, indGI χ
s) in Proposi-

tion 2.17, we have a natural surjective H (I, χ)-morphism from H (I, χ) ⊕
H (I, χ) to Hom(indGI χ, indGI χ

s), and the kernel is given by Proposition

2.17. We are done.

Remark 2.20. In contrast to the case of GL2 ([Vig04]), we point out a

corollary from last result that indGI χ is not G-isomorphic to indGI χ
s.

Proposition 2.21.

ψn,χ ◦ ψm,χs =


0, if m ≥ 0, n ≥ 0,

(Tχ−2,−1)m+l, if m ≥ 0, n = −l < 0,

(Tχ2,3)t+n, if m = −t < 0, n ≥ 0,

0, if m < 0, n < 0.

(6)

Proof. In view of Proposition 2.17, the results are reduced to checking some

initial cases.

For n ≥ 0 and m ≥ 0, we have, from Proposition 2.17,

ψn,χ ◦ ψm,χs = ψ0,χ ◦ (Tχ
s

−2,−1)n ◦ (Tχ
s

2,3)m ◦ ψ0,χs ;

hence we only need to treat the case n = m = 0. By definition, we have

F0,0 := ψ0,χ ◦ ψ0,χs(ϕχ) =
∑

j∈N0/N1
jβφ0,χ.

As φ0,χ is supported on IβI, if αkjβ ∈ IβI for some k ∈ Z and some j ∈ N0,

then k = 0, by Lemma 2.5. Hence,

F0,0(Id) =
∑

j∈N0/N1
φ0,χ(jβ) =

∑
j∈N0/N1

1 = 0,

i.e., F0,0 = 0. In all, we have verified ψn,χ ◦ ψm,χs = 0 for n,m ≥ 0.

For n ≥ 0 and m = −t < 0, from Proposition 2.17 and Remark 2.18

ψn,χ ◦ ψ−t,χs = ψ0,χ ◦ (Tχ
s

−2,−1)n ◦ ψ−1,χs ◦ (Tχ2,3)t−1

= ψ0,χ ◦ ψ−1,χs ◦ (Tχ2,3)n ◦ (Tχ2,3)t−1,

hence we will be done in this case if we could show ψ0,χ ◦ ψ−1,χs = Tχ2,3. By

definition,

F0,−1 := ψ0,χ ◦ ψ−1,χs(ϕχ) =
∑

j∈N ′0/N ′2
jαβ φ0,χ.
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Note that φ0,χ is supported on IβI, and if αkjαβ ∈ IβI for some k ∈ Z
and some j ∈ N ′0, then k = −1, from Lemma 2.5. Hence

F0,−1(α−1) =
∑

j∈N ′0/N ′2

jαβ φ0,χ(α−1)

=
∑
j=Id

φ0,χ(α−1jαβ) = 1,

where one may check α−1jαβ /∈ IβI for j ∈ N ′0 \N ′2, using trick (5).

The remaining cases could be proved in the same way and the details

are omitted.

Following [Vig04], we call H (I, χ⊕χs) the second Iwahori-Hecke alge-

bras, for a character χ of I such that χ 6= χs. Then, we show,

Proposition 2.22. Let χ be a character of I such that χ 6= χs. Then,

H (I, χ⊕ χs) ∼=

(
Ẽ[X,Y ]/(XY ) Ẽ[X]⊕ Ẽ[Y ]

Ẽ[Y ]⊕ Ẽ[X] Ẽ[X,Y ]/(XY )

)
,

in which, when the isomorphism is restricted to H (I, χ) (resp. H (I, χs)),

it sends Tχ2,3 (resp. Tχ
s

−2,−1) to X, Tχ−2,−1 (resp. Tχ
s

2,3) to Y .

The algebra on the right side is denoted by MX,Y , where the operations

are those of matrices under the rule that a21a12 = a12a21 = Y f1(Y )f ′2(Y ) +

Xf ′1(X)f2(X), if a12 = (f ′1(X), f ′2(Y )), a21 = (f1(Y ), f2(X)).

The isomorphism depends on the order of the pair (χ, χs).

Proof. The second Iwahori-Hecke algebra is the space of G-homomorphisms

of the direct sum of two representations of G, hence it can be written as

a quasi-matrix algebra with a form in the proposition, see 2.8 of [ASS06].

Now the underlying multiplicative operations of the quasi-matrix algebra are

simply translated from Proposition 2.17, Proposition 2.21, and Proposition

2.9.

The center of MX,Y is C = {diag(f, f), f ∈ Ẽ[X,Y ]/(XY )}. Let D

be the commutative sub-algebra D = C[T0, T1] of MX,Y , where

T0 =

(
0 (0, 1)

(1, 0) 0

)
, T1 =

(
0 (1, 0)

(0, 1) 0

)
.

Then M(X,Y ) is finite over D, with two generators t0, t1:

t0 =

(
1 0

0 0

)
, t1 =

(
0 0

0 1

)
.
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For a pair (x, y) ∈ Ẽ2, such that xy = 0, let χ(x,y) be the character

of C given by χ(x,y)(diag(f, f)) = f(x, y). We extend this to a character

of D by specifying T0 and T1 to square roots of y and x respectively. For

such an extension, say χ(x,y,
√
x,
√
y), we form the standard module of MX,Y :

I(x, y,
√
x,
√
y) = χ(x,y,

√
x,
√
y) ⊗DMX,Y .

Proposition 2.23. (1). For (x, y) = (0, 0), the standard module I(0, 0) is

the direct sum of two different characters:

I(0, 0) = C(1, 0)⊕ C(0, 1),

where

C(1, 0) : Ti 7→ 0, i = 0, 1, t0 7→ 1, t1 7→ 0,

C(0, 1) : Ti 7→ 0, i = 0, 1, t0 7→ 0, t1 7→ 1.

(2). For (x, 0), x 6= 0, the standard modules I(x, 0,
√
x, 0) and I(x, 0,−

√
x, 0)

are simple, two dimensional and isomorphic.

(3). For (0, y), y 6= 0, the standard modules I(0, y, 0,
√
y) and I(0, y, 0,−√y)

are simple, two dimensional and isomorphic.

Proof. As MX,Y is of rank 2 over D, the standard module I(x, y,
√
x,
√
y)

induced from a character χ(x,y,
√
x,
√
y) of D is generated by χ(x,y,

√
x,
√
y)⊗D t0

and χ(x,y,
√
x,
√
y) ⊗D t1 . All the conclusions in the proposition can then be

checked immediately by hand.

Remark 2.24. Any simple module of MX,Y with a central character has

appeared in Proposition 2.23.

The characters of H (I, χ⊕χs) which correspond to C(1, 0) and C(0, 1),

via the isomorphism in Proposition 2.22 are denoted respectively by

Cχ(1, 0) = Cχs(0, 1) and Cχ(0, 1) = Cχs(1, 0).

Similarly, we denote by

Mχ(x, y,
√
x,
√
y) = Mχs(y, x,

√
y,
√
x)

the simple module of H (I, χ ⊕ χs) which corresponds to I(x, y,
√
x,
√
y),

via the isomorphism in Proposition 2.22.
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2.4 The structure of HI1

In this part, we describe the structure of HI1 = EndG(indGI11), i.e., the

pro-p Hecke algebra of G:

The Iwahori decomposition of G leads to a double coset decomposition

of G with respect to I1:

G = ∪n∈N/H1
I1nI1,

from which we see that the space of I1-invariants of indGI11 has a natural basis

{1I1nI1 , n ∈ N/H1}, in which 1I1nI1 ∈ indGI11 is the characteristic function

of I1nI1. Via Frobenius reciprocity, there is a basis {Tn, n ∈ N/H1} of

HI1 , where Tn corresponds to 1I1nI1 , i.e., Tn(1I1) = 1I1nI1 . We would like

to select some generators from these Tn.

As H ∼= I/I1
∼= H0/H1, we will identify the characters of these groups.

For a character χ of H, we define an operator eχ in HI1 :

eχ = |H|−1
∑

h∈H χ(h)Th,

where one notes that |H| = −1 in Ẽ.

Let ϕχ = eχ(1I1), and as we have mentioned before, it is the function

in indGI χ, supported on I, with ϕχ(i) = χ(i), for i ∈ I.

Proposition 2.25. (1). (eχ)2 = eχ; eχ · eχ′ = 0, if χ 6= χ′; eχ(indGI11) =

indGI χ.

(2). For an element n ∈ N \H, we have Tneχ = eχsTn.

(3). If χ factors through the determinant, then

T 2
β0
eχ = −Tβ0eχ; otherwise, T 2

β0
eχ = 0.

(4). If χ = χs, then

T 2
β1
eχ = −Tβ1eχ; otherwise, T 2

β1
eχ = 0.

Proof. (1) and (2) can be computed directly from definitions. (3) and (4)

can be reduced to a special case of Theorem 4.4 in [CL76].

One notes that H is an abelian group of order prime to p, so the char-

acter group H
∧

is isomorphic to H. Then one can always recover each Th
from the expression of eχ, i.e., Th is a linear combination of all the eχ.

Proposition 2.26. The operators Tβ0 , Tβ1 , eχ for all the characters χ of

H, generate HI1 as an Ẽ-algebra.

Proof. This comes from the following Lemma:
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2.4 The structure of HI1

Lemma 2.27. (1). {eχ · Tn; n ∈ N/H0, χ ∈ H
∧} is a basis of HI1.

(2). Tαn = (Tβ′ · Tβ)n, Tβαn = Tβ(Tβ′ · Tβ)n, for n ≥ 0.

Tα−n = (Tβ · Tβ′)n, Tβα−n = (Tβ′ · Tβ)n−1Tβ′, for n ≥ 1.

Proof. For (1), we note firstly that, ThTn = Thn, TnTh = Tnh, for h ∈
H, n ∈ N . As each Th is an Ẽ-linear combination of eχ, we see that the set

{eχ ·Tn; n ∈ N/H0, χ ∈ H∧} spans HI1 . To see the operators in this set are

linearly independent, in view of (1) of Proposition 2.25 we are reduced to see

the functions in the set {eχ · Tn(1I1); n ∈ N/H0} are linearly independent,

for a fixed character χ. This is the case, as the support of eχ · Tn(1I1) is

InI from the definition of Tn, and N/H0 is a set of representatives for the

Iwahori decomposition of G, which tells us that eχ · Tn(1I1) have disjoint

support for n ∈ N/H0. We are done.

For (2), via the same process in Lemma 2.2, one can check similar

induction relations hold in this case. Then the result comes.

Let h0 be the matrix diag(−t−1, 1, t), and Th0 has the inverse Th−1
0

in

HI1 . Then β0 = h0β, β1 = h0β
′. Hence Tβ0 = Th0Tβ, Tβ1 = Th0Tβ′ . In view

of the above Lemma, one see the Proposition is true.

Remark 2.28. Let π be a smooth representation of G. Let v be a non-zero

element in πI1. We see the right action of Th0 on v is

v|Th0 =
∑

j∈I1/I1∩h−1
0 I1h0

jh−1
0 · v = h−1

0 v.

Proposition 2.29. There is an isomorphism of Ẽ-algebras:

HI1
∼= ⊕χ=χsH (I, χ)⊕χ 6=χs H (I, χ⊕ χs),

Proof. As indII11 = ⊕χ χ, we see that indGI11 = ⊕χ indGI χ, where χ goes

through the characters of the group H ∼= I/I1. For two such charac-

ters χ and χ′, from the Frobenius reciprocity and the decomposition of

restriction of induced representation to subgroup, we can conclude that

HomG(indGI χ, indGI χ
′) 6= 0 if and only if χ′ = χ or χ′ = χs. Then the

Proposition follows.

Theorem 2.30. The simple modules listed in Proposition 2.14, Proposition

2.16, and Proposition 2.23, give all that of HI1 .
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2.5 Non-supersingular modules of HI1

Given a character ε of the standard Borel subgroup B of G and ε0 =

χ1⊗χ2 be the restriction of ε to H0. Let 〈g1, g2〉Ẽ be the basis of (indGB ε)
I1 ,

in which g1 and g2 are respectively supported on BI1 and BβI1, satisfying

that g1(Id) = g2(β) = 1. This space admits a natural right action of HI1 .

Proposition 2.31. The right action of HI1 on (indGB ε)
I1 is as follows:

(g1, g2)Tβ = (g1, g2)

(
0 0

1 a22

)
, where a22 = −χ′1(−1) or 0, depending

on whether ε0 factors through the determinant or not ;

(g1, g2)Tβ′ = (g1, g2)

(
a11 ε(α)

0 0

)
, where a11 = −χ′1(−1) or 0, de-

pending on whether ε0 = εs0 or not.

(g1, g2)eχ = (g1, g2)

(
a11(χ) 0

0 a22(χ)

)
, where a11(χ) = 1 if χ = ε0;

otherwise a11(χ) = 0. a22(χ) = 1 if χ = εs0; otherwise a22(χ) = 0.

Proof. The action of eχ on fi is

gi|eχ = |H|−1
∑

h∈H χ(h)h−1gi,

and the result follows directly from valuating these functions at Id and β.

From Proposition 6 in [BL94], we have

gi|Tβ =
∑

j∈I1/I1∩βI1β
jβ · gi =

∑
j∈N0/N1

jβ · gi,

gi|Tβ′ =
∑

j∈I1/I1∩β′I1β′
jβ′ · gi =

∑
j∈N ′1/N ′2

jβ′ · gi.

Case 1, ε0 = εs0,

Certainly
∑

j∈N0/N1
jβ ·g1(Id) = 0, as g1(jβ) = 0 for all the j ∈ N0/N1.

For
∑

j∈N0/N1
jβ · g1(β), one see the first term for j ∈ N1 is equal to 1. To

see the remaining terms are all zero, for a j = n(x, y) ∈ N0\N1, i.e., y ∈ UE ,

we have from Lemma 1.2 that:

βn(x, y)β = n(ȳ−1x, y−1)diag(ȳ−1,−y−1ȳ, y)βi, for some i ∈ N0,

and this gives the result. Hence, g1|Tβ = g2.∑
j∈N0/N1

jβ · g2(Id) is also zero, as every term is 1 and #N0/N1 = q3.

The term for j ∈ N1 in
∑

j∈N0/N1
jβ ·g2(β) is zero. From the above identity,
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2.5 Non-supersingular modules of HI1

we get ∑
j∈(N0\N1)/N1

jβ · g2(β) =
∑

n(x,y)∈(N0\N1)/N1

ε0(diag(ȳ−1,−y−1ȳ, y))

=
∑

n(x,y)∈(N0\N1)/N1

χ1(ȳ−1)χ2(−y−1ȳ),

where we write ε0 = χ1 ⊗ χ2, and χ1, χ2 are respectively characters of k×E
and k1

E . This is the sum we have dealt with in the argument of Proposition

2.6. By Remark 1.4, the condition ε0 = εs0 implies there is a character χ′1 of

k1
E , such that χ1(x) = χ′1(xx̄−1) for x ∈ k×E . Then, if ε0 factors through the

determinant, ∑
j∈(N0\N1)/N1

jβ · g2(β) = −χ′1(−1);

otherwise, ∑
j∈(N0\N1)/N1

jβ · g2(β) = 0,

In summary, g2|Tβ = 0 or −χ′1(−1)g2. We have shown the first half in Case

1.

The term for j ∈ N ′2 in
∑

j∈N ′1/N ′2
jβ′ · g2(Id) is ε(α), the other terms

are all zero (see the identity for such a jβ′ below). On the other hand,∑
j∈N ′1/N ′2

jβ′ · g2(β) = 0 (βjβ′ ∈ B for j ∈ N ′1/N ′2). Hence g2|Tβ′ = ε(α)g1

Every term in the sum
∑

j∈N ′1/N ′2
jβ′ · g1(β) is ε(α−1), and the sum is

zero as #N ′1/N
′
2 = q. The term for j ∈ N ′2 in the sum

∑
j∈N ′1/N ′2

jβ′ · g1(Id)

is zero. For a n′(0, $Ey) ∈ N ′1 \N ′2, we have

jβ′ = n1diag(ȳ−1,−y−1ȳ, y)n2, for some n1 ∈ N−1, n2 ∈ N ′1,

therefore, ∑
j∈N ′1\N ′2

jβ′ · g1(Id) =
∑
y∈L∗1

χ1(ȳ−1),

which is equal to −χ′1(−1) as we know. We have shown g1|Tβ′ = −χ′1(−1)g1.

Case 2, ε0 6= εs0,

in view of Case 1, we are left to show the following two sums both

vanish: ∑
j∈N0/N1

jβ · g2(β) =
∑

n(x,y)∈N0\N1

χ1(ȳ−1)χ2(−y−1ȳ),

∑
j∈N ′1/N ′2

jβ′ · g1(Id) =
∑
y∈L∗1

χ1(ȳ−1).

For the second sum, in the notation of 1.1, it’s equal to
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2.6 Supersingular characters

∑q−2
l=0 χ1(t)2l+1,

where t = [u]
q+1
2 and u is a generator of k×E , defined in section 1.2. However

the condition ε0 6= εs0 is equivalent to χ1(t)2 6= 1. Then the above sum is

zero, as t2(q−1) = 1.

For the first sum, it can be decomposed into two parts: the first part

for which x vanishes is just the second sum. The remaining part of the first

sum is then reduced to∑
tr(y)6=0

χ1(ȳ−1)χ2(−y−1ȳ) =
∑

tr(y)6=0

χ1(y)χ2(−y−1ȳ).

We note that tr(y) 6= 0 means −y−1ȳ 6= 1. For a x = u(q−1)l ∈ k1
E , 6= 1,

for some l, 1 ≤ l ≤ q, the solutions y of the equation −y−1ȳ = x (over the

finite field kE) are ul+
q+1
2 · u(q+1)m, m = 0, · · ·, q − 2. We can then rewrite

the above sum as:∑q
l=1 χ2(u(q−1)l)

∑q−2
m=0 χ1(ul+

q+1
2

+(q+1)m)

which is just

χ1(t)
∑q

l=1 χ2(u(q−1)l) · χ1(ul)
∑q−2

m=0 χ1(u(q+1)m).

The condition χ1(uq+1) 6= 1 tells the inner sum of the above is zero. We are

done.

Corollary 2.32. The modules (indGB ε)I1 of HI1 in Proposition 2.31 are

reducible, if and only if ε(α) = 1 and ε0 factors through the determinant,

i.e., ε factors through the determinant.

Proof. This can be verified directly, in light of the above Proposition.

2.6 Supersingular characters

In light of the results above, we would like to select those simple modules

of HI1 which does not appear in the I1-invariants of principal series.

Definition 2.33. Let χ be a character of I, satisfying χ = χs. Let 〈v〉Ẽ be

a one-dimensional vector space, on which we define a right HI1-module:

(1) Suppose χ factors through the determinant,

C1 : v · eχ = v, v · Tβ0 = 0, v · Tβ1 = −v;

C2 : v · eχ = v, v · Tβ0 = −v, v · Tβ1 = 0.

(2) Suppose χ does not factor through the determinant,

C3 : v · eχ = v, v · Tβ0 = 0, v · Tβ1 = 0;

C4 : v · eχ = v, v · Tβ0 = 0, v · Tβ1 = −v.
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2.6 Supersingular characters

Definition 2.34. Let χ be a character of I, satisfying χ 6= χs. Let 〈v〉Ẽ be

a one-dimensional vector space, on which we define a right HI1-module:

C5 : v · eχ = v, v · eχs = 0, v · Tβ0 = 0, v · Tβ1 = 0;

C6 : v · eχ = 0, v · eχs = v, v · Tβ0 = 0, v · Tβ1 = 0.

One calls the characters defined in Definition 2.33, 2.34 supersingular,

as they are the simple modules of HI1 which are not from the I1-invariants

of principal series of G, according to Proposition 2.31 and Theorem 2.30.
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3 The compactly induced representation indGK0
σ

The content of this chapter is to understand the compactly induced

representation indGK0
σ for any irreducible smooth representation σ of K0,

for which we have mainly arrived at the following:

We first describe the structure of the spherical Hecke algebra H (K0, σ),

which is the content of section 3.1. The main result is Corollary 3.4.

We next move to describe the action of HI1 on the I1-invariants of

indGK0
σ, which is the main focus of 3.2. Especially, we prove a codimension

result, Proposition 3.11, which is an analogue of a result of Barhel–Livné on

GL2(F ) and crucial to many later arguments of this thesis.

Another major part of this chapter is an explicit formula for the Hecke

operator T , Lemma 3.12 and Proposition 3.13, which takes space in 3.3. As

an application, we show indGK0
σ is free over H (K0, σ) when σ is a character

χ · det of K0, or a twist of St by a character: χ · det ⊗ St, where St is the

inflation of the Steinberg representation of G(kF ). We indeed conjecture this

holds for any irreducible smooth representations σ of K0 and prove it under

a natural assumption. However, based on results we have proved in section

3.1, it is immediate to show that a compromise result holds (Proposition

3.18): indGK0
σ is faithfully flat over H (K0, σ).

In 3.5, we describe the G-Hom space from indGK0
σ to a principal se-

ries, and show that it is at most one-dimensional5. Then we determine the

eigenvalue of the natural action of H (K0, σ) on that space.

In the remaining part of this chapter, we first provide more information

in 3.6 for the Bruhat–Tits tree 4 of G, which is used essentially in Chapter

4.

We end this chapter in 3.7 by some computations on the behaviour of

the I1-invariants of indGK0
σ under the action of the operator T .

5This has been proved firstly in [Abd11].
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3.1 H (K0, σ) as a polynomial ring in one variable

3.1 H (K0, σ) as a polynomial ring in one variable

Let (σ,W ) be an irreducible smooth representations of K0, indGK0
σ be

the compactly induced smooth representation, i.e., the representation of G

with underlying space S(G, σ)

S(G, σ) = {f : G→W : f(kg) = σ(k) · f(g), for any k ∈ K0 and g ∈
G, locally constant with compact support}

and G acting by right translation.

Denote by H (K0, σ) the endomorphism algebra EndG(indGK0
σ).

From Proposition 5 in [BL94], one has H (K0, σ) ∼= HK0(σ), where

HK0(σ) is the algebra defined as:

HK0(σ) = {f : G→ End(W ) : f(kgk′) = σ(k)f(g)σ(k′), for any k, k′ ∈
K0 and g ∈ G, locally constant with compact support}

where the multiplication is defined by convolution: for h1, h2 ∈HK0(σ)

h1 ∗ h2(x) =
∑

g∈G/K0
h1(g)h2(g−1x), for x ∈ G.

As K1
0 acts trivially on the representation σ and G(kF ) ∼= K0/K

1
0 , we

identify σ with the inflation of an irreducible representation G(kF ). As

usual, denote by σN0 the subspace of N0-invariant of σ, and by σN0 the

quotient of σ by the subspace σ(N0) generated by the set {u · v − v : u ∈
N0, v ∈ σ}. We use similar notations for σN

′
0 and σN ′0 .

Lemma 3.1. σN0 and σN ′0 are both one-dimensional. Furthermore, the

image of σN0 is non-trivial in σN ′0, via the natural composition j∗σ: σN0 ↪→
σ → σN ′0. Furthermore, we have

σ = σN0 ⊕ σ(N ′0).

Proof. See [CE04], Theorem 6.12.

Let jσ be the linear map in Hom(σI′1 , σ
I1), which is the inverse of j∗σ

described in Lemma 3.1. Especially, we see jσ(v̄) = v for v ∈ σI1 and it

vanishes on σ(I ′1).

One notes that there is a unique constant λβ,σ ∈ Ẽ, independent of the

choice of non-zero v ∈ σI1 , such that

σ(β) · v − λβ,σv ∈ σ(I ′1).

Remark 3.2. It is known from a recent preprint ([HV12], Proposition 3.17)

of Henniart and Vignéras that λβ,σ is non-zero if and only if σ is one-

dimensional. In fact, it is directly to verify σ = St, see Proposition 4.14.
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3.1 H (K0, σ) as a polynomial ring in one variable

We record the value of λβ,σ as follows

λβ,σ =

{
η(−1), if σ = η ◦ det,

0, otherwise.

Recall the double coset decomposition of G with respect to K0, say

G = ∪n≥0 K0α
nK0.

Let ϕ be a function in HK0(σ), supported on the double coset K0α
nK0.

Then, for any k1, k2 ∈ K0, satisfying k1α
n = αnk2, we are given σ(k1)ϕ(αn) =

ϕ(αn)σ(k2). When n = 0, ϕ(Id) commutes with all σ(k). As σ is irreducible,

we must have that ϕ(Id) is a scalar.

For n > 0, let k1 = n′($n
Ex,$

2n
E y), x, y ∈ oE , then σ(k1) = 1, as k1 ∈

K1
0 . And now k2 = α−nk1α

n = n′(x, y). Hence, ϕ(αn) = ϕ(αn) ·σ(n′(x, y)).

We see ϕ(αn) factorizes through σI′1 . Similarly, for k1 = n(x, y), x, y ∈ oE ,

we get σ(n(x, y))ϕ(αn) = ϕ(αn), which is to say that Im(ϕ(αn)) ∈ σI1 . In

other words, ϕ(αn) should only differ from jσ a scalar. Then we are led to:

For n ≥ 0, let ϕn be the function in HK0(σ), supported on K0α
nK0,

determined by its value on αn: ϕ0(Id) = IdW , ϕn(αn) = jσ, n > 0.

Proposition 3.3. {ϕn}n≥0 consists of a basis of HK0(σ), and they satisfy

the following convolution relations: for n ≥ 1, l ≥ 0,

ϕ1 ∗ ϕn(αl) =


0, l 6= n, n+ 1;

c · jσ, l = n;

jσ, l = n+ 1,

(7)

where c is some constant in Ẽ, dependent on σ (the exact value of c is given

in the final part of the proof).

Proof. By definition, for n ≥ 1, l ≥ 0,

ϕ1 ∗ ϕn(αl) =
∑

g∈G/K0
ϕ1(g)ϕn(g−1αl).

As the support of ϕ1 is K0αK0 = ∪k∈K0/K0∩αK0α−1 kαK0, the sum becomes∑
k∈K0/K0∩αK0α−1 ϕ1(kα)ϕn(α−1k−1αl)

=
∑

k1∈K0/I

∑
k2∈N ′1/N ′2

ϕ1(k1k2α)ϕn(α−1k−1
2 k−1

1 αl).

For further calculation, we split the above sum into two parts, say,∑
1 =

∑
k2∈N ′1/N ′2

ϕ1(βk2α)ϕn(α−1k−1
2 βαl)

and ∑
2 =

∑
k1∈N ′0/N ′1

∑
k2∈N ′1/N ′2

ϕ1(k1k2α)ϕn(α−1k−1
2 k−1

1 αl).
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3.1 H (K0, σ) as a polynomial ring in one variable

Then we claim
∑

1 is always 0. We go into more detail in the following:∑
1 could be simplified as∑

1 =
∑

k2∈N ′1/N ′2
σ(β)jσϕn(α−1k−1

2 βαl).

We note at first that α−1k−1
2 βαl ∈ K0α

−(l+1)K0, hence we only need

to consider the case when l + 1 = n. In this case from the definition of ϕn,

the sum
∑

1 is reduced to∑
1 =

∑
k2
σ(β)jσσ(β)jσ,

which is clearly zero, as it is counted q times.

For the remaining
∑

2, we note the part
∑′

1 for which k1 ∈ N ′0 \N ′1 is

equal to 0. A simple calculation using (3) gives

α−1k−1
2 k−1

1 αl = k′α−(l+1)k′′,

where k′ ∈ N1 and k′′ ∈ K0. As a result, when l 6= n − 1,
∑′

1 = 0. When

l = n− 1, one can re-write
∑′

1 as∑′
1 =

∑
k2

(
∑

k1
f ′),

where f ′ is now a function only related to k1. As the inner sum of
∑′

1

is counted q times, it is zero. For the concrete form of f ′, one needs to

distinguish l = 0 or not, and we don’t record it here as it is not necessary.

The other part depends:

∑
k2∈N ′1/N ′2

ϕ1(k2α)ϕn(α−1k−1
2 αl) =


jσ, l = n+ 1,

c · jσ, l = n,

0, otherwise,

where c is the constant in Ẽ determined from the following:∑
y∈L∗1

jσ · σ(β) · jσ · σ(diag(y, 1,−y−1)) = c · jσ.

From the definition of ϕ1, the above sum, denoted by
∑′′

2, is reduced

to ∑′′
2 =

∑
k2
jσϕn(α−1k−1

2 αl).

We treat an exceptional case first: when l = 0, each term in
∑′′

2 is non-zero

only if n = 1; but in this case, the sum itself is clearly zero. We assume

l ≥ 1. For the term k2 ∈ N ′2, we get jσϕn(αl−1), where we note that jσ is

trivial on σ(I ′1). Hence, it is non-zero if and only if l = n + 1 and in this

case it is equal to j2
σ = jσ. For the remaining terms in

∑′′
2, we use (3) again

α−1n′(0, $E ȳ)αl = n(0, $E ȳ
−1)α−ldiag(y−1, 1, ȳ)u′β,
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3.1 H (K0, σ) as a polynomial ring in one variable

for some u′ ∈ N ′1. Therefore, each term is non-zero if and only if l = n, and

in that case, we get∑
y∈L∗1

jσ · σ(β) · jσ · σ(diag(ȳ, 1, y−1)),

which should be nothing but a copy of jσ, say c · jσ.

Let χ = χσ be the character of I, which is determined by σ, from its

action on σI1 . Then, we can make more clear about c :

c =

{
−λβ,σ · χ′1(−1), if χ = χs,

0, otherwise.

We are done.

From the above Proposition, we see immediately that ϕ1 ∗ϕn = c ·ϕn+

ϕn+1. Let Tn be the operator in H (K0, σ) which corresponds to ϕn, via L,

and put T = T1. Then we have,

Corollary 3.4. H (K0, σ) is isomorphic to Ẽ[T ].

We will use the following variant of last Proposition in some later ar-

gument.

Corollary 3.5. Let σ and σ′ be two irreducible smooth representations of

K0. Denote by T and T ′ respectively the Hecke operators in H (K0, σ) and

H (K0, σ
′), defined from Corollary 3.4. Then we have

(1). The space HomG(indGK0
σ, indGK0

σ′) 6= 0 iff χσ = χσ′.

(2). Assume the condition in (1) is satisfied. Then, the natural H (K0, σ
′)−

H (K0, σ)-bi-module structures coincide in the following sense. More pre-

cisely, there exists a unique constant cσ,σ′, and for any L ∈ HomG(indGK0
σ, indGK0

σ′)

and all polynomial f

L ◦ f(T ) = f(T ′ + cσ,σ′) ◦ L

Proof. As in the case σ = σ′, one can identify H (K0, σ
′)-H (K0, σ)-bi-

module HomG(indGK0
σ, indGK0

σ′) with the HK0(σ′)-HK0(σ)-bi-module HK0(σ, σ′).

Then (1) follows from a variant of remarks before Proposition 3.3.

From the argument of (1), we get a Ẽ-basis {ϕn}n≥0 for HK0(σ, σ′), on

which the left action of HK0(σ′) is described by

φσ′,1 ∗ ϕn = cσ′ · ϕn + ϕn+1

where φσ′,1 ∈ HK0(σ′), i.e., the ϕ1 in last Proposition, whose calculations

could be tracked by the argument of Proposition 3.3. The ∗ is the natural

convolution defined in the same way as usual, see [BL94] for more details.

Similarly, we have
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ϕn ∗ φσ,1 = cσ · ϕn + ϕn+1

Now we put cσ,σ′ = cσ − cσ′ , and then (2) follows.

Remark 3.6. The idea to consider the bi-module structures above is due to

Florian Herzig, who has proved such result in a very general situation, as a

variant of his Satake embedding.

3.2 (indGK0
σ)I1 as an HI1-module

The group I acts on σI1 as a character, and from now on we denote it

by χσ.

Recall we have a double coset decomposition G = ∪n∈Z K0α
nI1. From

[BL94], we see (indGK0
σ)I1 = {f ∈ S(G, σ); f(kgi) = σ(k)f(g), for k ∈

K0, g ∈ G, i ∈ I1}. Let f be a function in (indGK0
σ)I1 , supported in K0α

nI1.

For k ∈ K0, i ∈ I1 such that kαn = αni, f(αn) should satisfy σ(k)f(αn) =

f(αn).

For n ≥ 0, and u = n(x, y), x, y ∈ oE , we get σ(u)f(αn) = f(αn),

which means f(αn) is fixed by N0. Similarly, for negative n, and u′ =

n′(x, y), x, y ∈ oE , we find σ(u′)f(αn) = f(αn), i.e., f(αn) is fixed by N ′0. We

note that σI1 = σN0 and σI
′
1 = σN

′
0 , as I1 = N0·(I1∩B′) and I ′1 = N ′0·(I ′1∩B).

Choose and fix a non-zero v0 ∈ σI1 . Put v′0 = βv0. Let fn be the

function in (indGK0
σ)I1 , supported on K0α

−nI1, such that

fn(α−n) =

{
v′0, n > 0,

v0, n ≤ 0.
(8)

Proposition 3.7. (1). {fn} consists of a basis of the space (indGK0
σ)I1 ;

(2). The action of I on (indGK0
σ)I1 is as follows: For i ∈ I, let h be

the element in H0 such that iI1 = hI1. Then,

i · fn =

{
χσ(h) · fn, n ≤ 0,

χsσ(h) · fn, n > 0.
(9)

Proof. The first part comes from the description before the Proposition, and

the second part can be checked easily.

Corollary 3.8. Let χσ be the character of I on σI1, then we have

(indGK0
σ)I,χσ =

{
〈fn, n ∈ Z〉, if χσ = χsσ;

〈f−n, n ≥ 0〉, if χσ 6= χsσ.
(10)

(indGK0
σ)I,χ

s
σ = 〈fn, n > 0〉, if χσ 6= χsσ. (11)
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We turn to describe the right actions of the Iwahori-Hecke algebras on

(indGK0
σ)I1 . Recall we have determined the structure of H (I, χ), for any

character χ of I, say Proposition 2.6 and Proposition 2.9.

Proposition 3.9. Suppose χ = χs. Then,

(1)6. f0|T0,−1 = c′ · f0, f0|T2,1 = f1.

(2). For n > 0,

fn|T0,−1 = f−n, f−n|T0,−1 = −f−n;

fn|T2,1 = −fn, f−n|T2,1 = fn+1.

Proof. (1). By definition, we have

f0|T0,−1 =
∑

i∈N0/N1
iβf0,

which is a function supported in K0 and hence equals c′f0 for some c′; in

other words
∑

i∈N0/N1
iβv0 = c′v0. Taking the quadratic relation of T0,−1

into account, we see immediately that c′ = 0 when χ does not factor through

the determinant. In the case that χ factors through the determinant, we see

c′ = 0 or −χ′1(−1). A little explicit calculation shows that c′ = 0 if σ is a

character (this is indeed clear), otherwise c′ = −χ′1(−1). In summary, we

have

c′ =

{
−η(−1), if σ = η ◦ det⊗ St,
0, otherwise.

For the second relation in (1), we also have by definition that

f0|T2,1 =
∑

i∈N ′1/N ′2
iαβ · f0,

which is supported in K0α
−1I1. Its value at α−1 is just v′0, as one can check

as follows: ∑
i∈N ′1/N ′2

f0(α−1iαβ) =
∑

i=Id βf0(Id) = v′0,

where we note that α−1iαβ ∈ Iα−1I for i ∈ N ′1 \N ′2. The result follows.

When n > 0, for the formulas in (2), we will check fn | T0,−1 = f−n
and f−n | T2,1 = fn+1 in detail. Note that fn | T0,−1 and f−n | T2,1 are both

I1-invariant and supported on a union of double cosets of the form K0α
kI1.

By definition,

fn | T0,−1 =
∑

i∈N0/N1
iβfn.

6the exact value of c′ is given in the proof.
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As fn is supported on K0α
−nI = Iα−nI∪Iβα−nI, αkiβ ∈ Iβα−nI for some

k ∈ Z and i ∈ N0 forces k = n, using Lemma 2.5; also, αk
′
iβ ∈ Iα−nI for

some k′ ∈ Z and i ∈ N0 implies immediately that i ∈ N0 \ N1 and k′ > 0,

where then a contradiction arises after applying Lemma 1.2 to i. Hence,∑
i∈N0/N1

iβfn(αn) =
∑

i=Id fn(αnβ) = v′0,

where we check that αniβ /∈ Iα−nI for i ∈ N0 \N1: applying Lemma 1.2 to

αiα−1, the situation is reduced to a contradiction from Lemma 2.5.

Also from definition,

f−n | T2,1 =
∑

i∈N ′1/N ′2
iαβf−n.

Recall f−n is supported on K0α
nI, and K0α

nI = IαnI ∪ IβαnI. It is clear

that αkiαβ ∈ IαnI, for some i ∈ N ′1 and k ∈ Z, implies i ∈ N ′1 \ N ′2 and

k < 0, where a contradiction then arises after applying Lemma 1.2 to α−1iα.

Now, αkiαβ ∈ IβαnI for some k ∈ Z and some i ∈ N ′1 forces k = −(n+ 1),

using Lemma 2.5. Now∑
i∈N ′1/N ′2

iαβf−n(α−(n+1)) =
∑

i=Id f−n(α−(n+1)αβ) = v′0,

where we check that α−(n+1)iαβ /∈ IβαnI for i ∈ N ′1 \ N ′2, using the trick

(5) in the argument of Proposition 2.17. We are done.

Proposition 3.10. Suppose χσ 6= χsσ. Write χ for χσ for short. Then,

(1) for n ≥ 0,

f−n|Tχ2,3 = 0, f−n|Tχ−2,−1 = f−(n+1);

(2) for n > 0.

fn | Tχ
s

−2,−1 = 0, fn | Tχ
s

2,3 = fn+1.

Proof. (1) By definition, for n ≥ 0,

f−n|Tχ2,3 =
∑

i∈N ′1/N ′3
iαf−n.

As f−n is supported on K0α
nI = IαnI ∪ IβαnI, αkiα ∈ K0α

nI for some

k ≥ 0 and some i ∈ N ′1 implies clearly that k = n−1. Therefore f0 | Tχ2,3 = 0.

For n ≥ 1 ∑
i∈N ′1/N ′3

iαf−n(αn−1) =
∑

i∈N ′1/N ′3

f−n(αn−1iα)

=
∑

i∈N ′1/N ′3

αn−1iα1−nf−n(αn)

=
∑

i∈N ′1/N ′3

v0 = 0,
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as required.

Also from the definitions,

f−n|Tχ−2,−1 =
∑

i∈N0/N2
iα−1f−n.

As f−n is supported on K0α
nI = IαnI ∪ IβαnI, αkiα−1 ∈ IαnI for some

k ≥ 0 and some i ∈ N0 forces that k′ = n+1 by Lemma 2.5; for some k′ ≥ 0

and some i ∈ N0, αk
′
iα−1 ∈ IβαnI implies clearly that i ∈ N0 \ N2 and

k′ > 0, and a contradiction is then seen from Lemma 2.5, by applying first

Lemma 1.2 to αiα−1. Hence,∑
i∈N0/N2

iα−1f−n(αn+1) =
∑

i∈N0/N2

f−n(αn+1iα−1)

=
∑
i=Id

f−n(αn+1α−1) = v0,

where we need to check that αn+1iα−1 /∈ K0α
nI for i ∈ N0 \N2: an appli-

cation of trick (5) shows that αn+1iα−1 /∈ IαnI. We are done.

The remaining cases in (2) could be treated in the same way, and we

don’t give the details.

Corollary 3.11. Let σ be an irreducible smooth representations of K0. Let

χ be the character of I on σI1. Then, any non-zero H (I, χ)(resp.H (I, χs))-

submodule of (indGK0
σ)I,χ(resp. (indGK0

σ)I,χ
s
) is of finite co-dimension (as a

subspace).

Proof. We verify in detail firstly the regular case χ 6= χs by using Proposition

3.10.

Let M be a non-zero H (I, χ)-submodule of (indGK0
σ)I,χ. Let ψ be a

non-zero vector in M , say ψ =
∑−n

i=−m cifi, where −m ≤ −n ≤ 0, and

c−mc−n 6= 0. We could assume further that n > 0 by considering the non-

zero element ψ | T−2,−1 (see Proposition 3.10).

Now let M ′ be the subspace of (indGK0
σ)I,χ generated by M and the set

of vectors {f0, f−1, ...f−m+1}.
As c−m 6= 0, c−1

−mψ minus a linear combination of f−1, ..., f−m+1 gives

that f−m is in M ′. We turn to look at the element ψ0 = ψ | T−2,−1 =∑−n
i=−m cifi−1. Similarly, c−1

−mψ0 minus a linear combination of f−2, ..., f−m
gives that f−m−1 is in M ′. Repeating the former process, we show induc-

tively that all the f−k, k ≥ 0 is in M ′. Hence, M ′ = (indGK0
σ)I,χ. We are

done in this case.

In the case of (indGK0
σ)I,χ

s
, we note a basis of the former space is

{fn, n > 0}. In view of (2) of Proposition 3.10, we see the argument that

we have just worked out would apply to the current case in the same way.
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The degenerate case is a little more complicated, but essentially the

same manner as the regular case.

Assume in the following that χ = χs. We will use Proposition 3.9

repeatedly.

Let ψ be a non-zero vector in M . We write it as ψ =
∑m

i=n ciψi where

cn · cm ∈ Ẽ 6= 0 (we allow that n = m). We deal with a special case first:

n > 0.

Now we assume that n > 0. Let M ′ be the subspace of (indGK0
σ)I,χ

which is generated by M and the set of vectors {ψl; l = −(m−1), ...,m−1}.
Then we will show that M ′ = (indGK0

σ)I,χ as above. Note that it’s not clear

that M ′ is a submodule.

As cm 6= 0, ψm is just c−1
m ψ minus a linear combination of the elements

ψl (−m + 1 ≤ l ≤ m − 1) in M ′, i.e., ψm ∈ M ′. Now Proposition 3.9

gives ψ | T0,−1 =
∑m

i=n ciψ−i ∈ M (Note that we are in the case all the

i are positive .), from which a similar step to that we have just used tells

us ψ−m ∈ M ′. To proceed, we apply Proposition 3.9 again, we see ψ |
T0,−1 ·T2,1 =

∑m
i=n ciψi+1 ∈M . So ψm+1 is c−1

m ψ | T0,−1 ·T2,1 minus a linear

combination of the elements ψl (−m ≤ l ≤ m) in M ′, which means that

ψm+1 ∈ M ′. Similarly, ψ | T0,−1 · T2,1 · T0,−1 =
∑m

i=n ciψ−(i+1) ∈ M , so by

subtracting from it a linear combination of the elements ψl (−m ≤ l ≤ m)

we get ψ−(m+1) ∈ M ′. We then do induction on the index by considering

the right action of T0,−1 and T2,1 in turn. Then a similar process shows that

the generators ψm+k and ψ−(m+k) are in M ′ for all k ≥ 0, i.e., M ′ contains

the basis {ψn, n ∈ Z} of (indGK0
σ)I,χ.

For the case that n is non-positive, we look at the two elements ψ′ =

ψ | T2,1, ψ
′′ = ψ | T0,−1, which are both in M . We claim that they can

not be both zero. If ψ | T0,−1 = 0, then n < 0, or n = 0 and ψ = cψ0

for some non-zero constant c (we see from Proposition 3.9 the latter case

is excluded when σ = η ◦ det ⊗ St). The latter case can not happen, as

ψ0 | T2,1 = ψ1 6= 0. Assume n < 0, we have n = −m and ci = c−i for

1 ≤ i ≤ m. However, in any case, such an element c0ψ0 +
∑m

i=1 ci(ψi +ψ−i)

(cm 6= 0) won’t become zero under the action of T2,1. Hence the claim is

true. Now if ψ′ 6= 0, we apply the argument in the first case (n > 0) to ψ′;

otherwise, to the element ψ′′ | T2,1. We are done.

3.3 The Hecke operator T

In this part, we will calculate the Hecke operator T (c.f. Proposition

3.4) explicitly and explore some applications of the resulting formula.
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3.3.1 A first calculation on local systems

Let (σ, V ) be an irreducible smooth representation of K0. For g ∈ G,

v ∈ V , denote by [g, v] the function f in the space of indGK0
σ, supported on

the coset K0g
−1 and satisfying f(g−1) = v. We then have the following:

Lemma 3.12. Let v0 be a non-zero vector in σI1. Then

T [Id, v0] =
∑

u∈N1/N2
[uα−1, v0] +

∑
u∈N0/N2

cu[βuα−1, v0],

where cu is given by

cu =

{
λβ,σ, if u ∈ N1/N2;

χσ(diag(ȳ1,−y1ȳ
−1
1 , y−1

1 )), if u = n(x1, y1) ∈ (N0\N1)/N2.

Proof. In general, let v be a vector in V , and it’s known from (8) of [BL94]

that,

T [Id, v] =
∑

u∈N1/N2

[uα−1, jσv] +
∑

u∈N0/N2

[βuα−1, jσσ(u−1β)v]. (12)

Let v be a non-zero vector in σI1 , we then get the first sum, as jσ(v) = v.

For the terms with u ∈ N1/N2, we know σ(u−1) acts trivially, as u−1 is

now in K1
0 . By writing σ(β)v as the sum of λβ,σv with some vector in σ(I ′1),

we have shown cu is the case, when u ∈ N1/N2.

For the terms with u ∈ (N0\N1)/N2, one needs some calculations to

simplify the vector jσ · σ(u−1β)v. We write u−1 as n(x1, y1), and the condi-

tion on u implies that y1 ∈ UE , and then Lemma 1.2 gives

u−1β = βn(ȳ−1
1 x1, y

−1
1 )β · diag(y1,−ȳ1y

−1
1 , ȳ−1

1 ) · nu,

where nu is some element in N0(⊂ I1). Put n′u = βn(ȳ−1
1 x1, y

−1
1 )β, which is

an element in N ′0(⊂ I ′1).

Hence,

jσ · σ(u−1β)v = jσ · σ(n′u · diag(y1,−ȳ1y
−1
1 , ȳ−1

1 ))v

=χσ(diag(y1,−ȳ1y
−1
1 , ȳ−1

1 ))jσ · σ(n′u)v

=χσ(diag(y1,−ȳ1y
−1
1 , ȳ−1

1 )) · v,

where the last equality holds as σ(n′u)v − v ∈ σ(I ′1). We are done.
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3.3.2 A second calculation on local systems

In the case that σ is one-dimensional, we have a formula for the Hecke

operator T , Lemma 3.12. For later applications, we would like to make it

more explicit.

From a recent result of Henniart-Vignéras ([HV12], Proposition 3.17),

we know λβ,σ = 0 for any irreducible representations σ with dimension

bigger than 1, as β is not in B′B. In other words, this means β · v0 lies in

σ(I ′1). This is our start point.

Let σ be an irreducible representation of K0. From now on, we assume

dim σ = r > 1. Also, we know r ≤ q3. Fix a non-zero vector v0 in

σI1 . Therefore, from what we have just described, there are r elements

{ui, 1 ≤ i ≤ r} in N ′0/N
′
1 such that

N ′σ = {ni · v0, 1 ≤ i ≤ r} is a basis for the space W of σ.

Furthermore, we always assume that v0 is in the above set.

To state the following Proposition, we need to introduce some notations.

Denote by Sv0 the following linear functorial on W :

Sv0 : W → Ẽ

v 7→
∑

n∈N ′0/N ′1
ln(v),

where we write v =
∑

ni∈N ′0/N ′1
lni(v)ni · v0 and put ln(v) = 0 for n outside

the finite set {ni} chosen above. As before, let χσ = χ1⊗χ2 be the character

of I acting on the σI1 . Then:

Proposition 3.13. For a vector v ∈W ,

T ([Id, v]) =
∑

u∈N1/N2

[uα−1, Sv0(v)v0] +
∑

u∈N0/N2

[βuα−1, Lv0,u(v)v0],

where Lv0,u is the linear functional on W defined by

Lv0,u(v) =
∑

n∈N ′0/N ′1
cn−1

s u · ln(v),

where we denote βnβ by ns.

Proof. It is just direct calculation. We insert v =
∑

n∈N ′0/N ′1
ln(v)n · v0 into

the formula T ([Id, v]). Combining with Lemma 3.12, we see

T ([Id, v]) =
∑

n∈N ′0/N ′1

ln(v)n · T ([Id, v0])

=
∑

n∈N ′0/N ′1

ln(v)

 ∑
u∈N1/N2

[nuα−1, v0] +
∑

u∈(N0\N1)/N2

cu[nβuα−1, v0]

 .
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We begin to simplify each term in the above sum, according to their

nature.

For the term u ∈ N2, we see αuα−1 ∈ N0 and αnα−1 ∈ N ′1.

For the terms u ∈ (N1 \ N2)/N2, which we write as n(0, $Ey1), an

application of Lemma 1.2 to βu gives

nuα−1 = βnsβuα
−1 = βn(0, $−1

E y−1
1 )nslh,

where l is some element in N ′1, and h is the diagonal matrix−y−1
1 0 0

0 1 0

0 0 y1

.

Hence, noting nslh ∈ K0, and applying Lemma 1.2 again to βn(0, $−1
E y−1

1 ),

we came to the first sum in the Proposition.

Before dealing with the remaining terms where u goes through (N0 \
N1)/N2, we note firstly that the constant cu indeed depends only on the

class uN1. We will use this without comment in the following. Secondly, as

cu = 0 for u ∈ N1/N2, the corresponding part resulting from the original

formula T ([Id, v0]) vanishes.

We now exchange the order of the sum:∑
u∈(N0\N1)/N2

∑
n∈N ′0/N ′1

[nβuα−1, culn(v)v0].

For n ∈ N ′1, we get ∑
u∈(N0\N1)/N2

[βuα−1, culId(v)v0].

For n ∈ (N ′0 \N ′1)/N ′1, we split u as u1u2, where u1 ∈ (N0 \N1)/N1 and

u2 ∈ N1/N2. Then we decompose the remaining part of the above sum as∑
n∈(N ′0\N ′1)/N ′1

∑
u2∈N1/N2

(
∑

u1 6=n−1
s

+ remaining term).

In the above, the sum over u1 = n−1
s gives us directly the part in the

sum of Proposition where u goes through N1/N2:

∑
u∈N1/N2

[
βuα−1,

( ∑
n∈(N ′0\N ′1)/N ′1

cn−1
s
ln(v)

)
v0

]
.
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For the part in which u1 6= n−1
s , we note that u3 := nsn1 goes through

(N0 \ N1)/N1 − nsN1, when u1 goes through (N0 \ N1)/N1 − n−1
s N1. We

note that cId = 0. Therefore, we get∑
n∈(N ′0\N ′1)/N ′1

ln(v)
∑

u2∈N1/N2

∑
u3∈(N0\N1)/N1

[βu3u2α
−1, cn−1

s u3
v0]

=
∑

u3∈(N0\N1)/N1

∑
u2∈N1/N2

βu3u2α
−1,

 ∑
n∈(N ′0\N ′1)/N ′1

cn−1
s u3

ln(v)

 v0


=

∑
u∈(N0\N1)/N2

βuα−1,

 ∑
n∈(N ′0\N ′1)/N ′1

cn−1
s uln(v)

 v0

 .
Finally, we put all the terms together and the formula comes out.

Remark 3.14. As the choice of v0 is only up to a scalar, we see Sv0(v)v0

and Lv0,u(v)v0 only depend on the vector v. We also note that the functional

Lv0,u only depends on the residue class uN1.

We already know from the definition that jσ is close to the projection

from σ to σI1 , and the following corollary makes this precise:

Corollary 3.15. Let (σ,W ) be an irreducible smooth representation of K0

such that dim σ > 1, and v0 be a non-zero vector in σI1. For any vector

v ∈W , we have the following

jσv = Sv0(v)v0, jσσ(u−1β)v = Lv0,u(v)v0, for u ∈ N0/N2.

In the case that σ = St, we have a simplified version of the Hecke

operator.

Corollary 3.16. Let σ be the inflation of St, we then have

T ([Id, v]) =
∑

u∈N1/N2

[uα−1, Sv0(v)v0]+
∑

u∈N0/N2

[βuα−1, (Sv0(v)− lys(v))v0].

Proof. In this case, χσ = 1, cId = 0.

3.4 Is indGK0
σ free over H (K0, σ) ?

In this section, we pursue an application of the Hecke operator formula

T . It seems reasonable to propose the following:

Conjecture 3.17. For an irreducible smooth representation σ of K0, the

compactly induced representation indGK0
σ is a free module of infinite rank

over the algebra H (K0, σ).
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However, we have the following weaker result in general.

Proposition 3.18. For an irreducible smooth representation σ of K0, the

compact induced representation indGK0
σ is faithfully flat over the algebra

H (K0, σ).

Proof. Recall we have shown H (K0, σ) is a polynomial algebra in one vari-

able over Ẽ, especially it is a Dedekind domain. As it is well-known that

flatness is equivalent to torsion-free over a Dedekind domain, we will be done

if the latter point is checked in our case.

In her thesis [Abd11], Abdellatif has shown that T is injective (Théorème

4.5.14), which in particular implies that indGK0
σ is torsion-free over H (K0, σ).

The result follows.

Remark 3.19. Florian Herzig [Her11] has proved maximal compact induc-

tion is torsion-free over the corresponding spherical Hecke algebra, when G

is F -split.

We start with some general setting, and then prove some special cases

of 3.17.

For n ≥ 0, denote by Bn,σ the set of sections in indGK0
σ which are

supported in the ball of the tree of radius 2n around the vertex v0. Let Cn,σ
be the set of sections in indGK0

σ which are supported in the circle of radius

2n around the vertex v0.

Assumption 3.20. Let f ∈ Bn+1,σ. If Tf ∈ Bn+1,σ, then f ∈ Bn,σ.

We note that, after a simple consideration on the tree, the Assumption

3.20 is equivalent to the statement that: In the following q4 + q linear func-

tional, say, q copies of jσv and the q4 linear functional jσσ(u−1β)v for all

u ∈ N0/N2, any q4 vanishing of them implies the vanishing of v.

Lemma 3.21. The Assumption 3.20 is true in the cases that σ = η ◦ det or

η ◦ det⊗ St for any character η of k1
E.

Proof. The statement prior to the Lemma is trivial when σ is a one-dimensional

character.

Next, we consider the case that σ = η ◦ det ⊗ St. After a twist, we

are reduced to consider σ = St. It is pleasant to verify the above statement

in this case, using Corollary 3.16. Assume firstly, for all the u ∈ N0/N2,

Sv0(v) − lus(v) = 0. Adding these equations together, we see immediately

that Sv0(v) = 0. Hence, all the lus(v) are zero. Therefore, we only need to

consider the case of Sv0(v) and any q3 − 1 of the Sv0(v)− lus(v) being zero.

This forces all lus(v) being vanishing clearly. We are done in this case.

56



3.5 The right action of H (K0, σ) on the (K0, σ)-isotypic component of
principal series representations

Proposition 3.22. Assumption 3.20 implies Conjecture 3.17.

Proof. Using Assumption 3.20, by induction we can follow [BL94] to find a

subset An of Cn,σ, satisfying that t2k+2i≤2n T
iAk forms a basis of Bn,σ.

For n = 0, take A0 = {[Id, uj ]}, where {uj} is a basis of the underlying

space of σ. Assume the former statement is done for n. Then we need to

show the set t2k+2i≤2n+2,
k≤n

T iAk is linearly independent.

Assume the claim is false and we have a linear combination of elements

from t2k+2i≤2n+2,
k≤n

T iAk. As t2k+2i≤2n+2,
k≤n

T iAk is the union of tk+i=n+1,
k≤n

T iAk

and tk+i≤n T
iAk, we get an element f , lying in the ball Bn,σ, and also

Tf ∈ Bn,σ. Now Assumption 3.20 ensures that f ∈ Bn−1,σ. This means

that the projection of f to the circle of radius 2n around the vertex v0 is zero.

We recall that f is a linear combination of elements from tk+i=n T
iAk and

the projection of any non-zero element in tk+i=n T
iAk is non-zero. The in-

duction hypothesis for n already implies that the projection of tk+i=n T
iAk

is a basis for Cn,σ, hence the former statement forces the vanishing of f . We

are done for the claim in the last paragraph. We then proceed to choose a

subset An+1 of the form {[g, u]}g,u, supported in the circle of radius 2n+ 2,

and complete t2k+2i≤2n+2,
k≤n

T iAk to a basis of Bn+1,σ. This is possible, and

we only need to complete the projection of tk+i=n+1,
k≤n

T iAk to a basis of

Cn+1,σ.

In summary, we have chosen a family ofAn ⊂ Cn,σ satisfying ∪n≥0t2k+2i≤2n

T iAk is basis of the compact induction indGK0
σ. In particular, the set ∪n≥0An

is a basis of indGK0
σ over H (K0, σ).

3.5 The right action of H (K0, σ) on the (K0, σ)-isotypic com-

ponent of principal series representations

Lemma 3.23. For a character ε of B and an irreducible smooth representa-

tion σ of K0, the space HomG(indGK0
σ, indGB ε) is at most one-dimensional,

and it is non-zero if and only if

ε0 = χsσ,

where ε0 is the restriction of ε to H0.
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3.5 The right action of H (K0, σ) on the (K0, σ)-isotypic component of
principal series representations

Proof. We have:

HomG(indGK0
σ, indGB ε)

∼= HomK0 (σ, indGBε|K0)

∼= HomK0 (σ, indK0
B∩K0

ε)

∼= HomK0 (σ, (indK0
B∩K0

ε)K
1
0 )

∼= HomG (σ, indΓ0
B0
ε0)

∼= HomB0 (σ|B0 , ε0).

The first and the last isomorphism are from Frobenius reciprocity. The

second is by the decomposition G = BK0. The third is true because the

group K1
0 acts trivially in the irreducible representation σ. As B ∩K0/B ∩

K1
0
∼= B0, the character ε is a lift of ε0, via this isomorphism. Hence, we can

identify (indK0
B∩K0

ε)K
1
0 with indGB0

ε0 (as representations of G(kF )), which

gives the fourth isomorphism.

We proceed to deal with the last space, and we see

HomB0 (σ|B0 , ε0) ∼= HomU0 (σ|B0 , ε0)B0/U0 .

Put v′0 = βv0 ∈ σU
′
0 . Lemma 3.1 implies that v′0 generates the space

σU0 . Let lv′0 be the U0-map

lv′0 : σU0 → Ẽ

v′0 7→ 1.

Then lv′0 generates the space HomU0 (σ|B0 , ε0).

Hence HomU0 (σ|B0 , ε0)B0/U0 6= 0, if and only if

lv′0 is B0/U0-invariant.

But this is just

χsσ = ε0,

and we are done.

We would like to specify a non-zero G-morphism in the above argument,

relative to v0. Let g ∈ G, and we write it as bk, where b ∈ B, k ∈ K0. Define

Pv′0,0 as the map in HomK0 (σ, indGBε) :

Pv′0,0(v)(g) = ε(b)lv′0(k̄v),

where v ∈ V, k̄ is the image of k in G(kF ). Put f0 = Pv′0,0(v0). We note that

Pv′0,0 is well-defined, by the definition of lv′0 . Then, by Frobenius reciprocity,

we get a map Pv′0,1 ∈ HomG(indGK0
σ, indGB ε), which corresponds to Pv′0,0,

determined by the condition that
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3.5 The right action of H (K0, σ) on the (K0, σ)-isotypic component of
principal series representations

Pv′0,1([Id, v]) = Pv′0,0(v), for any v ∈ V .

We determine explicitly the constant c, such that Pv′0,1|T = c · Pv′0,1

Proposition 3.24. The G-morphism Pv′0,1 generates the space HomG(indGK0
σ, indGB ε),

and the operator T in Corollary 3.4 acts as the scalar cε on it, i.e.,

Pv′0,1|T = cε · Pv′0,1,

where cε is

cε = ε(α) +
∑

y1∈k×E ; y1+ȳ1=0 ε0(−y−1
1 , 1, y1).

Proof. We verify by definition that f0(Id) = λβ,σ, f0(β) = 1. Hence, cε =

Pv′0,1|T ([Id, v0])(β). As Pv′0,1|T ([Id, v0]) is just Pv′0,1(T ([Id, v0])), for which

we can use Proposition 3.12 to calculate explicitly.

We compute the first partial sum, say:∑
u∈N1/N2

f0(βuα−1).

The term with u ∈ N2 contributes ε(α), as f0(β) = 1. For the remaining

terms u ∈ (N1 \ N2)/N2, we write u as n(0, $Ey1), where y1 goes through

the set L∗1 = L1 \ {0}. An application of Lemma 1.2 gives that:

βuα−1 = n(0, $−1
E y−1

1 )diag(−y−1
1 , 1, y1)n′(0, $Ey

−1
1 ).

Note that f0 is I1-invariant, as v0 is. In summary, we get∑
u∈N1/N2

f0(βuα−1) = ε(α) +
∑

y1∈L∗1
ε0(−y−1

1 , 1, y1).

For the second partial sum, it is immediate to see,

λβ,σ
∑

u∈N1/N2
f0(uα−1) = λβ,σ · ε(α−1)

∑
u∈N1/N2

f0(Id) = 0.

For the last partial sum, with u ∈ (N0 \N1)/N2, we simplify it as∑
u∈(N0\N1)/N2

cu · f0(uα−1) = λβ,σ · ε(α−1)
∑

u∈(N0\N1)/N2
cu.

Hence, we are reduced to compute∑
u∈(N0\N1)/N2

χσ(diag(y1,−ȳ1y
−1
1 , ȳ−1

1 )),

where u−1 = n(x1, y1). But it vanishes in any case, as one can check as

follows:

Write ε0 as χ1 ⊗ χ2 and hence we need to determine∑
u∈(N0\N1)/N2

χ1(ȳ−1
1 )χ2(−ȳ1y

−1
1 ),

where we have used Lemma 3.23.

We write furthermore u = n(x1, y1 + $Ey2), where y2 ∈ L1, and

(x1, y1) ∈ L2 with y1 ∈ o×E . Hence, the above sum is changed into
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3.6 The Bruhat-Tits tree of G

∑
y2∈L1

∑
(x1,y1)∈L2,pE

χ1((y1 +$Ey2)−1)χ2(−(y1 +$Ey2)(ȳ1 +$E ȳ2)−1),

where L2,pE is the subset of L2 with elements n(x, y) satisfying y ∈ o×E .

As the character χσ is defined from the action of I on the line σI1 , χ1

is trivial on U1
E and χ2 is trivial on E1 ∩ U1

E ; hence we get∑
y2∈L1

∑
(x1,y1)∈L2,pE

χ1(y−1
1 )χ2(−y1ȳ

−1
1 ) = 0.

We have shown the claim.

The constant cε above is explicit in the following sense:

Corollary 3.25. We determine cε as :

cε =

{
ε(α)− χ′1(−1), if ε0 = εs0;

ε(α), otherwise.

Proof. We have already done this calculation in detail, say the argument of

Proposition 2.6, and Proposition 2.31.

3.6 The Bruhat-Tits tree of G

3.6.1 Height and antecedent

Recall we have fixed a standard apartment {vk, k ∈ Z}. Denote by ∞
the positive end of this standard apartment. For any vertex v, let v∞ be

the geodesic ray (i.e., the unique path between v and ∞) from v to ∞. So

we can find an integer k such that vk ∈ v∞. Define the height h(v) of v as

k− d(vk,v). Note that this definition is independent of the choice of k and

that h(vk) = k.

Given any two vertices v and v′, we say v is under v′, if v′ ∈ v∞. The

following two lemmas will be used later:

Lemma 3.26. (N/N−r)vr = {v ∈ X0 : h(v) = r}

Proof. Firstly, we note that the stabilizers of v2k and v2k+1 in G are respec-

tively αkK0α
−k and αkK1α

−k for any integer k. Therefore the stabilizers of

v2k and v2k+1 in N are respectively N ∩ αkK0α
−k and N ∩ αkK1α

−k. But

these are exactly N−2k and N−(2k+1).

Secondly, we are going to show: for a non-negative integer l and an

integer r, (N−(r+l)/N−r)vr = {v ∈ X0 : h(v) = r, vr+l ∈ v∞}. There are

two steps:

Step 1 For u ∈ N , uvr is also of height r. Take an integer k such

that u fixes vk and vk ∈ uvr∞. So by definition, h(uvr) = k − d(vk, uvr),

which equals r by the choice of k. As we have fixed ∞, we understand that
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3.6 The Bruhat-Tits tree of G

uvr+l ∈ uvr∞ for all non-negative integers l. In particular, when we restrict

to u ∈ N−(r+l), we get vr+l ∈ uvr∞. We have shown that (N−(r+l)/N−r)vr
is contained in {v ∈ X0 : h(v) = r, vr+l ∈ v∞}.

Step 2 We finish this step by counting. For a non-negative integer l and

an integer r, denote respectively by nlr andml
r the cardinality ofN−(r+l)/N−r

and that of the set M l
r, where M l

r is {v ∈ X0 : h(v) = r, vr+l ∈ v∞}. The

list for nlr is as follows:

nlr =

{
q2l, if l is even,

q2l+(−1)r−1
, if l is odd.

(13)

To see this, we reduce the above to two special cases by conjugating by some

power of α: nl−l and nl1−l, namely the cardinality of N0/Nl and N−1/Nl−1.

We deal with nl−l in detail. Given an even l, we have nl−l = (n2
−2)

l
2 .

But n2
−2 = n1

−1 · n1
−2 = q3 · q = q4. So in this case nl−l = q2l. When l is

odd, n1
−l = n1

−1 = q3. Now l − 1 is even, and from the even case we get

nl−l = q2(l−1) · q3 = q2l+1. Similarly we can show nl1−l as required in (13).

To compute ml
r, we firstly note that there exists an induction relation

between them by observing the tree: ml+1
r = ml

r · cr+l+1, where we denote

by ct the number of vertices adjacent to and under vt for any integer t. We

know that it equals q or q3, depending on whether t is odd or not. So we

only need to compute some initial cases. The result is: m0
r = 1 for any r,

m1
r = q or q3, depending on whether r is even or not. Combining the initial

cases and the induction relation, we have finally shown that ml
r is exactly

given by the formula in (13).

We have finished the proof of the Lemma.

Definition 3.27. For a vertex v ∈ X0 and a positive integer n, the n-

antecedent an(v) of v is the unique vertex of height h(v) + n which is of

distance n from v.

Remark 3.28. The definition above is well-defined because there exists a u-

nique path from v to∞. From that we naturally have v∞ = (v, ..., an(v), ...)

for any vertex v ∈ X0.

Lemma 3.29. al(uvk) = uvk+l for all positive integers l and all k ∈ Z, and

all u ∈ N .

Proof. The l-antecedent of vk is vk+l by definition above. As the action

of N preserves height (as we have already observed in the proof of Lemma

3.26) and distance, we are done.
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3.7 The image of (indGK0
σ)I1 under the Hecke operator T

Remark 3.30. Formally, al(g ·v) = g ·al(v) holds for any l ≥ 0 and g ∈ G,

and any v ∈ X0.

In view of Proposition 3.13, we could generalize the 2-antecedent as

follows

Definition 3.31. A[n0α
k, v] =

{
[n0α

k+1, η(−1)v], if σ = η ◦ det,
[n0α

k+1, Lv0,Id(v)v′0], otherwise.

Remark 3.32. One can check directly from the definition of Lv0,Id that

A[n0α
k, v] is independent of the choice of v0.

3.6.2 A rough estimation of I1-actions on the tree

Recall again we have fixed a standard apartment on the tree of G, say

{vk, k ∈ Z}. For any vertex v, we have mentioned before that v is under

some vk, for some integer k, i.e., there is a vertex vk such that vk ∈ v∞.

As a result, one can associate any vertex v a unique integer nv which is the

least integer satisfying the former property. In our former notation, we have

clearly

nv = h(v) + d(vnv ,v)

Following is the main property known to us about nv and a rough

estimation of the distance between v and u′ · v, for a u′ ∈ N ′1.

Proposition 3.33. Let v be a vertex under v0, such that d(v,v0) = 2r(>

0). Then we have for u′ ∈ N ′1,

nu′·v = nv and d(u′ · v,v) < 2(2r + nv)

where 2r + nv is the distance from v to vnv .

Proof. The proof is simple matrix calculation.

Remark 3.34. It seems to the author not much could be said beyond the

inequality of the last Proposition.

3.7 The image of (indGK0
σ)I1 under the Hecke operator T

In subsection 3.2, we have investigated the I1-invariants of indGK0
σ. As

the Hecke operator T respects the group action, it is reasonable to know

how (indGK0
σ)I1 behaves under the map T . In the following proposition, we

re-write the basis {fn, n ∈ Z} in terms of local systems.

Proposition 3.35. With the same notations as before, we have
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3.7 The image of (indGK0
σ)I1 under the Hecke operator T

fn =

{∑
i∈N0/N2m

[iα−m, v0], n = −m ≤ 0∑
j∈N ′1/N ′2n

[jαn, v′0], n > 0

Proof. Directly from the definitions of fn in last subsection.

Definition 3.36. R+
n (σ) = [N0α

−n, σ], n ≥ 0; R−n−1(σ) = [N ′1α
n, σ], n ≥ 1

We also put R0(σ) = R+
0 (σ) = R−−1(σ).

We have an initial estimation then:

Proposition 3.37. (1).

T (R0(σ)) ⊆ R+
1 (σ)⊕R−0 (σ),

T (R+
n (σ)) ⊆ R+

n−1(σ)⊕R+
n (σ)⊕R+

n+1(σ), n ≥ 1.

(2). T (R−n (σ)) ⊆ R−n−1(σ)⊕R−n (σ)⊕R−n+1(σ), n ≥ 0.

Proof. Actually, this Proposition could be seen from the tree of G if one

keeps the action of T in mind.

The first inclusion in (1) follows directly from (12) and our defini-

tion. For the second inclusion, it is clear that α−nuα−1 ∈ N0α
−(n+1) for

u ∈ N1/N2, as n ≥ 1. Then we check the following, which completes the

argument of (1):

α−nβuα−1 =


α1−n(βαyα−1), if u ∈ N2,

n(0, $2n−1
E y−1

1 )α−ni1, if u ∈ N1 \N2,

n1α
−(n+1) · i2, u ∈ N0 \N1,

for some i1, i2 ∈ I and n1 ∈ N2n.

For (2), let n be a non-negative integer. At first, it is easy to see αn+1 ·
βuα−1 ∈ N ′1α

n+2β. Then we check the following after some calculations,

which finishes the proof of (2):

N ′1α
n+1uα−1 =

{
N ′1α

n · (αuα−1), if u ∈ N2,

N ′1α
n+1βi3, if u ∈ N1 \N2,

for some i3 ∈ I.

The following result is a refinement of Proposition 3.7, and it will play

a role later.

Lemma 3.38. (1). For n ≥ 0, the N0-invariants of the space R+
n (σ) is

one-dimensional and generated by f−n.

(2). For n ≥ 1, the N ′1-invariants of the space R−n−1(σ) is one-dimensional

and generated by fn.
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3.7 The image of (indGK0
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Proof. (1). Firstly, we note that K0α
nI1 = K0α

nN0. Hence, a non-zero

function f in R+
n (σ)N0 would indeed have support on K0α

nI1. We need

to look at f(αni) for i ∈ N0, which is indeed f(αn) as f is fixed by N0.

However, being a vector in the underlying space of σ, it is fixed by the

lower-triangular subgroup of I1. Therefore, f(αn) ∈ σI1 . Then again the

condition f is fixed by N0 will force f to differ from f−n only by a scalar.

We are done.

The proof of (2) is similar, and we omit the details.

From Proposition 3.37, we see T |R+
n (σ) is the sum of I-morphisms

T− : R+
n (σ) → R+

n−1(σ) and T+ : R+
n (σ) → R+

n (σ) ⊕ R+
n+1(σ), for n ≥ 1.

Similarly, T |R−n (σ) is the sum of I-morphisms T− : R−n (σ) → R−n−1(σ) and

T+ : R−n (σ)→ R−n (σ)⊕R−n+1(σ), for n ≥ 0.

Corollary 3.39. T− is surjective and T+ is injective.

Proof. The first half is directly from the argument of Proposition 3.37. Now

we verify that T+ : R+
n (σ) → R+

n (σ) ⊕ R+
n+1 is injective, for n ≥ 1. It is

easy to see T−(f−n) = 0 from the argument of Proposition 3.37 and (12),

hence T+(f−n) 6= 0 because we know T is injective from Theorem 4.5.14 in

[Abd11]. We are done in this case. The remaining case could be treated in

the same way.

Remark 3.40. We have indeed determined T+(f−n) in the next Proposi-

tion.

We come to the main result of this subsection:

Proposition 3.41. (1). If dim σ > 1, then

Tf−m = f−(m+1), m ≥ 0;

Tfn = fn+1, n ≥ 1.

(2). If dim σ = 1, say σ = η ◦ det for some character η of k1
E, then,

Tf0 = f−1 + η(−1)f1;

Tf−m = −f−m + f−(m+1), m ≥ 1;

Tfn = −fn + fn+1, n > 0.

Proof. The proof are tedious calculations, based on Proposition 3.37 and (1)

of Proposition 3.7.

We recall the definitions of fn, for n ∈ Z,

f−m =
∑

i∈N0/N2m
iα−m · f0, for m ≥ 0;

fn =
∑

j∈N ′1/N ′2n
jαnβ · f0, for n > 0.
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3.7 The image of (indGK0
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We need to know the initial case, which is already known:

Tf0 = f−1 + λβ,σf1, (14)

say Lemma 3.12, as one can check immediately.

We will show the formula for Tf−m in detail for m ≥ 1. The Hecke

operator respects the I1-invariants, and from Proposition 3.37, we see there

are constants such that

Tf−m = c−m,−m+1f−m+1 + c−m,−mf−m + c−m,−m−1f−m−1.

Let m be an integer bigger than zero. We see at first that:

iα−mf1(αm−1) =

{
v′0, i ∈ N2m−2/N2m,

0, otherwise.

We also have f−1(αm−1iα−m) = 0: when i ∈ N2m−2/N2m it is clear from the

definition of support of f−1; for i ∈ N0\N2m−2/N2m, because d(v0, α
m−1iα−mv0) >

2 for m > 1, αm−1iα−m is not in the support of f−1. In summary, we have

c−m,−m+1 is zero.

Next, we calculate c−m,−m. Firstly, we have f−1(αmiα−m) = 0, for

any i ∈ N0: for i ∈ N2m, it is clear. For the remaining i ∈ N0 \ N2m, a

simple calculation shows that αmiα−m ∈ K0α
−lI1 for some positive l, hence

the claim. Secondly, f1(αmiα−m) vanishes outside of N2m−1 \ N2m. For

i ∈ N2m−1 \ N2m, f1(αmiα−m) = civ0, where ci is the value of χσ at some

specific diagonal element. We write c =
∑

i ci, then

c =

{
−χ′1(−1), if χsσ = χσ = χ1 ⊗ χ2,

0, otherwise.

In all, we see c−m,−m = c · λβ,σ.

Lastly, we come to c−m,−m−1. We have in general f1(αm+1iα−m) = 0.

Also,

f−1(αm+1iα−m) =

{
v0, if i ∈ N2m,

0, otherwise.

We see c−m,−m−1 = 1.

The calculations for T · fn, n ≥ 1 work in the same manner, and we get

finally that cn,n−1 = 0, cn,n = cλβ,σ, and cn,n+1 = 1.

As we already know the exact value of λβ,σ, we have finished the proof.
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4 A parametrization theorem

The main concern of this chapter is to prove the following Theorem 4.1.

Its content is to match the compactly induced representations and principal

series in a precise way. As already mentioned in the Introduction, in the

forthcoming work of Abe–Henniart–Herzig–Vignéras, comparison between

compact induction and parabolic induction is a major ingredient in their

classification of irreducible admissible smooth representations of any p-adic

reductive connective group, where their tools are the Satake isomorphism,

developed by Herzig and Henniart–Vignéras.

Our approach is again that of Barthel–Livné, i.e., the analysis on the

tree is essentially used in our argument, which is the reason that there are

some technical difficulties at some places. For simplicity, assume the weight

is the trivial representations. After fixing an apartment on the tree, one can

associate canonically a unique integer h(v) to any vertex v, which is called

the height of the vertex. The Hecke operator T , in the case of GL2, maps

a vertex v to the sum of vertices which are of distance one from the vertex

itself. As a result, the unique vertex on the tree, which is of height h(v) + 1

and adjacent to v, is congruent modulo T to the sum of vertices which are

of height h(v) − 1 and adjacent to v. In the case of U(2, 1), the Hecke

operator maps a vertex v of period one to the sum of vertices which are of

distance two from v, therefore there are several extra vertices appearing in

the formula Tv which share the same height as v; as a result, it is not clear

in advance one could conclude similarly that the unique vertex, which is of

height h(v)+2 and of distance two from v, is also congruent modulo T to the

sum of some vertices which are of height strictly smaller than h(v). A naive

way of saving us from this trouble is to use the Hecke operator repeatedly

with respect to all the vertices adjacent to and under v. We have carried

out the final point in most cases, and in the remaining cases we manage to

reduce them to already known cases, hence finally we are done.

We now repeat a little more from the Introduction, as a guide to this

chapter.

In 4.2, we reproduce several results on the principal series of G, most

of which were proved first in [Abd11], where we mainly follow again the

approach of [BL95] and [BL94].

Next, in section 4.3, we prove (1) of Theorem 4.1. As a natural by-

product, we have Corollary 4.16. Then in the section 4.4, we show that

the compactly induced representation indGK0
σ has only irreducible quotients,

Proposition 4.17.

We prove the first half of (c) in section 4.5, and in section 4.6 we arrive
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at a special case of Theorem 4.1, when π has non-trivialK0-invariant vectors,

i.e., π is unramified.

In section 4.7, we modify the strategy of the unramified case to prove

a general injective result (Proposition 4.24), which will simplify several ar-

guments in the proofs of (b) and the second half of (c), in the last two

sections.

Theorem 4.1. Assume Ẽ is algebraically closed. Let π be an irreducible

smooth representation of G and σ be an irreducible sub-representation of

π|K0. Then,

(1).(Abdelatif 2011)7 The space

HomG(indGK0
σ, π)

has an eigenvector for the action of the Hecke algebra H (K0, σ).

(2). Let λ be an eigenvalue of T in (1). Assume further that :

λ 6=

{
−χ′1(−1), if χσ = χsσ = χ1 ⊗ χ2,

0, otherwise.

We set a character ε of B such that ε|H0 = χsσ, and

ε(α) =

{
λ+ χ′1(−1), if χσ = χsσ,

λ, otherwise.

Then, we have the following,

(a). The space in (1) is one-dimensional.

(b). If χσ does not factor through determinant, or λ 6= 1−χ′1(−1), then

we have

π ∼= indGB ε.

(c). If χσ factors through the determinant, i.e., χσ = η ◦ det for some

character of k1
E, and λ = 1 − χ′1(−1), we view η as a character of E1, by

Remark 1.3. Then

π ∼=

{
η ◦ det, if dim σ = 1,

η ◦ det⊗ Sp, otherwise.

Here, Sp is the Steinberg representation of G, defined as indGB1/1.

7This is proved in [Abd11], under the assumption that π is admissible.
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In view of Theorem 4.1, we give the definition of so-called supersingular

representation. Before doing that, we modify T by a constant:

Let Tσ be the following refined Hecke operator: assume χσ is the char-

acter of I acting on σI1 and put

Tσ =

{
T + χ′1(−1), if χσ = χsσ,

T, otherwise.

Definition 4.2. An irreducible smooth representation π of G is called su-

persingular if it is a quotient of indGK0
σ/(Tσ), for some irreducible smooth

representation σ of K0.
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4.1 Twisting indGK0
σ/(T − λ) by characters

4.1 Twisting indGK0
σ/(T − λ) by characters

Let σ be an irreducible smooth representation of K0, λ be a scalar

in Ẽ. In this section, we record a useful and simple fact, which tells how

indGK0
σ/(T −λ) is changed when twisted by a character of G. Before stating

the result, we recall a little more notation as follows.

Write χσ = χ1,σ ⊗ χ2,σ, which is the character of I acting on σI1 . Let

σ1 be a twist of σ, i.e., σ1 = η ◦ det ⊗ σ, for some character η of k1
E . It is

clear χσ1 = χσ · (η ◦ det). By Remark 1.3, we may view η as a character of

E1. Therefore, the character η ◦ det of K0 extends to a character η ◦ det of

G. Also from Remark 1.3, a character of E1 can be viewed as a character of

k1
E ; for a character η′ of E1, the restriction of the character η′ ◦ det of G to

K0 is just η′ ◦ det. In the definition below, we take another scalar λ1, with

respect to σ and λ.

Definition 4.3. λ1 =

{
λ+ χ′1,σ(−1)− χ′1,σ1(−1), if χσ = χsσ,

λ, otherwise.

Lemma 4.4. We have an isomorphism of G-representations

indGK0
σ1/(T

′ − λ1) ∼= η ◦ det⊗ indGK0
σ/(T − λ),

where T and T ′ are respectively the Hecke operator in H (K0, σ) and H (K0, σ1),

defined in Corollary 3.4.

Proof. Any non-zero polynomial f(T ) is injective ([Abd11], Théorème 4.5.14)

on the compact induction indGK0
σ. Then the Lemma results from the fact

that the following diagram of G-representations is commutative.

indGK0
σ1

τ−−−−→ η ◦ det⊗ indGK0
σ

T ′−λ1
y y1⊗(T−λ)

indGK0
σ1

τ−−−−→ η ◦ det⊗ indGK0
σ

where τ is the isomorphism sending a function [g, v] to the function [g, η ◦
det(g)v], for g ∈ G, v ∈ σ.

4.2 Some results on principal series

Let χ1 be a character of E× and χ2 be a character of E1. Let I (χ1⊗χ2)

be the underlying space of indGB χ1 ⊗ χ2, where χ1 ⊗ χ2 is the character of

H, defined by

χ1 ⊗ χ2 : H → Ẽ×,

diag(x, y, x̄−1) 7→ χ1(x)χ2(y).
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4.2 Some results on principal series

An application of Lemma 1.2 shows that, for f ∈ I (χ1 ⊗ χ2),

f(βn(x, y)) = χ1(ȳ−1)χ2(−ȳy−1)f(Id),

for y large enough, as f is locally constant.

Let N∗ be the subset of E×E, which consists of elements (x, y) ∈ E×E
such that y + ȳ + xx̄ = 0. Under the operation that (x, y) · (x1, y1) :=

(x+x1, y+y1−xx̄1), N∗ becomes a group, which is naturally isomorphic to

N . Denote by N∗k the image of Nk in N∗, via the former isomorphism, i.e.,

the subgroup of N∗ consisting of elements (x, y) such that y ∈ pkE , for any

integer k ∈ Z. Let J (χ1 ⊗ χ2) be the space of locally constant functions ϕ

from N∗ to Ẽ, such that

ϕ((x, y)) = c · χ1(ȳ−1)χ2(−ȳy−1),

for some c = c(ϕ), when y is large enough.

Then we have an isomorphism i of Ẽ-spaces from I (χ1⊗χ2) to J (χ1⊗
χ2), which sends f to i(f):

i(f)((x, y)) = f(βn(x, y)).

The inverse j of i is defined as following. For ϕ ∈ J (χ1 ⊗ χ2), j(ϕ) ∈
I (χ1 ⊗ χ2) is:

j(ϕ)(g) =

{
c(ϕ)χ1 ⊗ χ2(b), for g = b ∈ B,
χ1 ⊗ χ2(b)ϕ((x, y)), for g = bβn(x, y), b ∈ B, n(x, y) ∈ N.

For further application, we specify two special functions in J (χ1⊗χ2),

which consist of a basis of the I1-invariants of indGBχ1 ⊗ χ2. Let g1 and g2

be the function in I (χ1⊗χ2), supported respectively on BI and BβI, and

g1(Id) = 1, g2(β) = 1.

Then the images ϕ1 = i(g1), ϕ2 = i(g2) under the map i are given by;

ϕ1((x, y)) =

{
0, if val(y) ≥ 0,

χ1(ȳ−1)χ2(−ȳy−1), if val(y) < 0.

ϕ2((x, y)) =

{
0, if val(y) < 0,

1, if val(y) ≥ 0.

In our former notations, ϕ2 = 1N∗0 .

The space J (χ1 ⊗ χ2) then inherits a G-representation via the above

identification.
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4.2 Some results on principal series

Lemma 4.5. Write ε for χ1 ⊗ χ2. For ϕ ∈J (χ1 ⊗ χ2),

(1). n(x′, y′)ϕ((x, y)) = ϕ((x+ x′, y + y′ − xx̄′))
(2). αϕ((x, y)) = ε(α)−1ϕ(($Ex,$

2
Ey))

(3). α−1ϕ((x, y)) = ε(α)ϕ(($−1
E x,$−2

E y))

Proof. All can be checked easily, by pulling-back to the space I (χ1 ⊗ χ2).

Proposition 4.6. The functions ϕ1 and ϕ2 generate the whole space J (χ1⊗
χ2).

Proof. This is from direct calculations.

To be precise, let S (N∗, Ẽ) be the space of locally constant functions

on N∗, with compact support. By definition, S (N∗, Ẽ) is a subspace of

J (χ1 ⊗ χ2), and furthermore, we see

J (χ1 ⊗ χ2) = S (N∗, Ẽ)⊕ Ẽϕ1.

Also, ϕ2 generates the space S (N∗, Ẽ), using the lemma above to see

a basis of that is obtained by the G-translates of ϕ2. We are done.

Remark 4.7. In fact, ϕ2 is a K0-translate of ϕ1, but the converse is not

true. See (2) of Proposition 4.14.

Remark 4.8. Of course, regarding the result above, one indeed knows that

the whole space is generated by any linear combination of ϕ1 and ϕ2 except

the obvious case that ε = χ1 ⊗ χ2 factors through the determinant and the

generator is the unique combination of ϕ1 and ϕ2 (up to a scalar) on which

G acts as the character ε, as the principal series is at most length two.

The following Theorem 4.9 and Proposition 4.10 are already obtained

in [Abd11].

Theorem 4.9. For a character ε of H, which we view as a character of B

trivial on N , the principal representation indGB ε is irreducible if and only if

ε does not factor through the determinant.

Proof. The ‘only if’ part is clear. To show the ‘if’ part, there are mainly

two steps. Suppose ε does not factor through determinant. First of all,

one shows the I1-invariants (indGB ε)I1 is simple as a natural right HI1-

module. Secondly, one shows the I1-invariants (indGB ε)I1 indeed generate

the representation indGB ε itself. Then the desired result follows.

The first step is provided by Corollary 2.32. The second step is from

Proposition 4.6.
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4.2 Some results on principal series

Proposition 4.10. (1) Sp is irreducible.

(2) SpK0 = 0.

Proof. To prove (1), we look at the I1-invariants of Sp. What we need is

to show Sp is generated by the one-dimensional SpI1 . We analyze firstly

the right translation action of I1 on the coset space B \G. To simplify the

process, we identify B \G with the set {∞} ∪N∗, which we denote by N̄∗.

Explicitly, B corresponds to∞, and Bβn(x, y) corresponds to (x, y), for any

(x, y) in N∗. Then N̄∗ inherits the right translation action of G on B \ G.

We note furthermore that a function ϕ ∈J (1⊗1) can be extended uniquely

to a function (which we also denote by ϕ) in S (N̄∗), by ϕ(∞) = const(ϕ).

Here S (N̄∗) is the space of locally constant functions from N̄∗ to Ẽ and

of compact support. We therefore realize the representation indGB(1⊗ 1) on

the space S (N̄∗) = S (B \ G), and also realize the special series Sp on

S (N̄∗)/Ẽϕ0, where ϕ0 = i(g0) for g0 = g1 +g2. Denote by 0 the point (0, 0)

in N∗.

Lemma 4.11. (1). The right translation action of I1 on N̄∗ has two orbits,

O∞ and O0, i.e., the orbits of ∞ and the element (0, 0), where

O0 = {(x, y) ∈ N∗ : val(y) ≥ 0},
O∞ = {∞, (x, y) ∈ N∗ : val(y) < 0}.

(2). The stabilizer of (0, 0) in I1 is the subgroup of I1 which consists

of lower triangular matrices and it acts transitively on O∞. The stabilizer

of ∞ in I1 is the subgroup of I1 which consists of upper triangular matrixes

and it acts transitively on O0.

Proof. In view of the decomposition G = BI1 ∪BβI1, we see that the orbit

of ∞ (resp. (0, 0)) is the subset O′∞ (resp. O′0) of N̄∗ which corresponds

to the coset space B \BI1 (resp. B \BβI1) in the identification mentioned

above. Certainly, Bβn ∈ B \BβI1, for any n = n(x, y), in which val(y) ≥ 0.

But, from Lemma 1.2, we see Bβn ∈ BI1, for any n = n(x, y) in which

val(y) < 0. Secondly, we also note another decomposition G = B ∪ BβN ,

and furthermore BβN = BβN<0 ∪ BβN0, where N<0 = {n = n(x, y) :

val(y) < 0}. Then (1) is done.

The statements on the stabilizers in (2) are immediate: for i ∈ I1, Bi =

B if and only if i is upper triangular. Also, for an i ∈ I1, Bβi = Bβ if and

only if i is lower triangular. Note that BI1 = BN ′1, and that BβI1 = BβN0.

We are done.

Lemma 4.12. There is a short exact sequence of I1-modules :
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4.2 Some results on principal series

0→ Ẽϕ0 → (S (N̄∗))I1 → (S (N̄∗)/Ẽϕ0)I1 → 0,

where I1 acts trivially on ϕ0.

Proof. As the I1-invariant functor is left exact, we only need to show the

last map is surjective. Let ν ∈ (S (N̄∗)/Ẽϕ0)I1 and let µ be a pull back

of ν in S (N̄∗). We will show µ is also I1-invariant; in other words, µ is

constant on O∞ and O0. By definition of pull back, for any i ∈ I1, there

exists a constant c = c(i) ∈ Ẽ, such that i · µ − µ = c. Let (x, y) be any

element in O0. Then from Lemma 4.11, there exist i ∈ B ∩ I1, such that

(x, y) = 0 · i. By evaluating the former identity at ∞, we see firstly that

c = 0, which gives us further that µ((x, y))− µ(0) = iµ(0)− µ = 0, i.e., µ is

constant on O0. Similarly, we can show µ is also constant on O∞. We have

finished the argument.

We now prove (1) of Proposition 4.10. Let Y be a non-zeroG-submodule

of S (N̄∗)/Ẽϕ0. Denote by Y ′ the pull back of Y to S (N̄∗). As I1 is a

pro-p group, Y I1 6= 0. From Lemma 4.12, we also have an exact sequence :

0→ Ẽϕ0 → (Y ′)I1 → Y I1 → 0,

from which we have dim (Y ′)I1 = 1 + dim Y I1 ≥ 2. Now from

2 = dim S (N̄∗)I1 ≥ dim (Y ′)I1 ≥ 2,

we conclude that S (N̄∗)I1 = (Y ′)I1 . In particular, (Y ′)I1 contains 1O0

and 1O∞ . In our former notation, 1O0 and 1O∞ are just respectively the

extensions of ϕ1 and ϕ2, hence Y ′ contains the subspace of S (N̄∗) which is

extended from the subspace of J (1⊗ 1) generated by ϕ1 and ϕ2, which is

nothing but J (1⊗ 1) by Proposition 4.6. Therefore, Y = S (N̄∗)/Ẽϕ0.

We continue to prove (2) of Proposition 4.10. We note that I (1⊗1)I1 =

I (1⊗1)I and I (Sp)I ⊂ I (Sp)I1 , then Lemma 4.12 tells that the following

short sequence is exact :

0→ Ẽg0 → I (1⊗ 1)I → I (Sp)I → 0, (15)

which gives dimI (Sp)I = 1. We can conclude that dimI (Sp)K0 ≤ 1.

Suppose that f̄ ∈ I (Sp)K0 and f̄ 6= 0. Let f be a pull back of f̄ in

I (1 ⊗ 1)I (via (15)), so f 6= 0. Without loss of generality, we can assume

that f = g1. As β ∈ K0, by our assumption, there exists a constant c ∈ Ẽ,

such that βg1 = g1 + c · g0. But this is impossible: By evaluating the former

equation firstly on the matrix Id, we get that c 6= 0. However, when we

evaluate the equation at k = βn(0, y), where y is an element of L1 \{0}, the

constant c turns out to be zero, as for the matrix k we have chosen we have
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4.2 Some results on principal series

k /∈ BI and kβ /∈ BI. Contradiction ! We have finished the proof of (2) of

Proposition 4.10.

Remark 4.13. From the argument above, SpI1 is generated by the image

of g1.

Denote by ḡ1, ḡ2 the image of g1 and g2 in the underlying space indGB1/(1)

of the special series Sp.

Proposition 4.14. (1). The q3 dimensional space generated by {n′ḡ1, n
′ ∈

N ′0/N
′
1}, as a representation of K0, is isomorphic to the inflation of St.

(2). We have the identity :

−
∑

n∈N ′0/N ′1
nḡ1 = βḡ1.

Proof. First, we show the vectors in {n′ḡ1, n
′ ∈ N ′0/N ′1} are indeed linearly

independent. But this is immediate: suppose we have constants ln′ and a

constant c such that ∑
n′∈N ′0/N ′1

ln′n
′g1 = c(g1 + g2).

Comparing the values of the above equation at n′ and β respectively, we see

all the ln′ and c must be 0.

We turn to show the space generated by {n′ḡ1, n
′ ∈ N ′0/N

′
1} is K0-

stable. We note that ḡ1 is I1-invariant. As {n′, n′ ∈ N ′0/N ′1 ∪ {β}} consists

of a set of representatives for K0/I, the K0-representation {K0·ḡ1} is linearly

generated by {n′ḡ1, n
′ ∈ N ′0/N

′
1, βḡ1}. Hence, we finish the claim, if we

could verify the identity in (2):

−
∑

n∈N ′0/N ′1
nḡ1 = βḡ1.

Assume there are constants ln′ , cβ and d, such that,∑
n′∈N ′0/N ′1

ln′n
′g1 + cββg1 = d(g1 + g2)

We see the only possibility is that d = cβ = ln′ . In fact, we have the following

identity, which holds in general:∑
n′∈(N ′0\N ′1)/N ′1

n′g1 + βg1 = g2.

To verify the above equality, we note firstly that both sides of the above

equality have the same value at Id and β. Hence, one only needs to verify

that the left hand side is also I1-invariant. This is done by a case by case

checking.

In all, we have shown that the space generated by {n′ḡ1} is K0-stable

and of dimension q3. We denote this K0-representation by R0. It is easy to

74



4.3 Proof of (1) of Theorem 4.1

see RI10 = 〈ḡ1〉, also the group I acts trivially on ḡ1. Hence R0 is irreducible

and isomorphic to the inflation of St.

Corollary 4.15. SocK0(Sp) ∼= St

Proof. By the last Proposition, we have a natural K0-inclusion i from St

to Sp, i.e., i ∈ HomK0(St, Sp). Hence St is contained in SocK0(Sp). From

Frobenius reciprocity, HomK0(St, Sp) is isomorphic to HomG(indGK0
St, Sp).

The compactly induced representation indGK0
St is generated the I1-invariant

function [Id, v0]. Hence, the space HomG(indGK0
St, Sp) is one-dimensional,

as we have already shown that SpI1 is one-dimensional in the argument of

(2) of Proposition 4.10. Therefore, St appears only once in SocK0(Sp).

Let σ be another smooth irreducible representation of K0, contained

in SocK0(Sp). Hence it is isomorphic to its K0-image in Sp. The image is

generated by a non-zero vector in SpI1 , as σ is generated by σI1 . But (1) of

Proposition 4.14 gives that the image is nothing but St. We are done.

4.3 Proof of (1) of Theorem 4.1

Proof. Before giving the details, we note that the assumption that π is

admissible in [Abd11] can be removed. The reason here is the key Corollary

3.11 which means we can modify the process of [BL94].

By assumption, we are given a non-zero K0-embedding ι from σ to

π|K0. Let φι be the corresponding G-morphism in HomG(indGK0
σ, π) via

Frobenius reciprocity.

As indGK0
σ is not irreducible, φι is not injective, i.e., kerφι 6= 0. Hence,

(kerφι)
I1 6= 0. From the description of Corollary 3.8, there is a character χ

(χσ or χsσ) such that

(kerφι)
I, χ 6= 0,

in other words, HomG(indGI χ, kerφι) 6= 0. Denote by φ∗ι the map given by

the composition with φι,

φ∗ι : HomG (indGI χ, indGK0
σ)→ HomG (indGI χ, π).

Of course, φ∗ι annihilates HomG(indGI χ, kerφι), and applying Corollary

3.11 we conclude that the image of φ∗ι in HomG (indGI χ, π) is a finite dimen-

sional H (I, χ)-submodule in HomG (indGI χ, π).

For simplicity, we also denote by φ∗ι the map,

φ∗ι : HomG (indGK0
σ, indGK0

σ)→ HomG (indGK0
σ, π).
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4.4 indGK0
σ has only irreducible quotients

Let40 be the K0-morphism in HomK0(indK0
I χ, σ), corresponding to the

morphism in HomI(χ, σ) which maps 1 to v0. We note that 40 is surjective,

as σ is irreducible. Inducing these K0-representations to G, we then get a

G-morphism 4 in HomG (indGI χ, indGK0
σ) from 40. It is also surjective (for

example, see 2.1 of [BL94]).

Then, 4 induces two composition maps, both denoted by 4∗:

4∗ : HomG (indGK0
σ, indGK0

σ)→ HomG (indGI χ, indGK0
σ),

4∗ : HomG (indGK0
σ, π)→ HomG (indGI χ, π).

Therefore, 4∗ are injective.

It is immediate from the definitions of 4∗ and φ∗ι that we have the

following commutative diagram:

HomG (indGI χ, indGK0
σ)

φ∗ι−−−−→ HomG (indGI χ, π)

4∗
x x4∗

HomG (indGK0
σ, indGK0

σ)
φ∗ι−−−−→ HomG (indGK0

σ, π)

From all this, we conclude that φ∗ι (EndG(indGK0
σ)) must be a finite

dimensional H (K0, σ)-submodule in HomG (indGK0
σ, π). As we have shown

H (K0, σ) is a polynomial algebra (Proposition 3.4) , (1) follows.

We will use the following corollary later:

Corollary 4.16. Let π be an irreducible smooth representation of G, which

is a quotient of some compact induction indGK0
σ, via the projection θ. Then

the H (K0, σ)-submodule 〈θ · H (K0, σ)〉 of HomG (indGK0
σ, π) is a finite

dimensional Ẽ-space.

Proof. Directly from the argument of the last result.

It will take a while to prove (2) of Theorem 4.1 completely. In the next

section, we insert an interesting by-product of the last corollary.

4.4 indGK0
σ has only irreducible quotients

In this section, we record a simple observation on the subrepresentations

of indGK0
σ. The main result is the following proposition, whose analogue

for GL(2) seems to be well-known to experts, though we didn’t find it in

literature.

Proposition 4.17. Any non-zero subrepresentation of indGK0
σ is non-admissible

and reducible, of infinite length.
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4.5 The subquotients of V0

Proof. The first half is indeed a corollary of Proposition 3.11. Let π be a

non-zero subrepresentation of indGK0
σ. Then πI1 is a non-zero submodule

of (indGK0
σ)I1 over HI1 . Hence, we are given a non-zero submodule πI,χ

of (indGK0
σ)I,χ over H (I, χ), for some character χ of I (One certainly can

say what the character χ is). Now Proposition 3.11 tells that πI,χ is of

finite codimension in (indGK0
σ)I,χ, and it follows that dim πI,χ = ∞ from

the infinitude of dim(indGK0
σ)I,χ.

Now we prove the second half of the Proposition. Assume π is an

irreducible subrepresentation of indGK0
σ. Denote the inclusion by ι. As a

smooth representation of G, π contains an irreducible smooth representation

σ′ of K0. Frobenius reciprocity gives a non-zero G-morphism θ from indGK0
σ′

to π. In particular, the composition ι ◦ θ is non-zero. Now θ will factorize

through a non-constant polynomial P (T ′), i.e., θ◦P (T ′) = 0, where P (T ′) ∈
H (K0, σ

′), by Corollary 4.16 (It is here that we really use the assumption

that π is irreducible). We have now (ι ◦ θ) ◦P (T ′) = ι ◦ (θ ◦P (T ′)) = 0. But

this is impossible because P (T ′) and ι ◦ θ are both non-zero, and we have

(ι ◦ θ) ◦P (T ′) = P ′(T ) ◦ (ι ◦ θ) for another non-zero polynomial P ′, from (2)

of Corollary 3.5. Now a contradiction arises from the injectivity of T (hence

of any non-zero f(T )) ([Abd11], Théorème 4.5.14)8.

4.5 The subquotients of V0

Assume σ is the trivial representation of K0. Hence, we identify the

underlying space I (K0) of the compact induction indGK0
1 with the space

C0(41) of 0-chains of period one, i.e., the space of all finite linear combina-

tion
∑
tvv for period one vertices. Let Deg be the map from C0(41) to Ẽ:

Deg(c) =
∑
αv, for c =

∑
v αv · v, where αv ∈ Ẽ. This map is a surjective

G-morphism and trivial on T (I (K0)). We denote by Deg the induced map.

The following proposition is already stated without proof in [Abd11].

Proposition 4.18. (1). The kernel of Deg is isomorphic to the special

series Sp.

(2). The induced short exact sequence is non-split :

0→ Sp→ V0 → Triv→ 0,

where we write I (K0)/(T ) as V0.

Proof. We prove (2) at first. The method here follows [BL95].

8One can indeed conclude a contradiction from the argument of Corollary 3.5: the

bimodule structures described there guarantee that there is no non-trivial annihilator.
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4.5 The subquotients of V0

Suppose the sequence is split. Then by definition, we have a pull-back

c̄ of 1 ∈ Ẽ, which is G-invariant. Let c ∈ I (K0) be a representative of

c̄. Hence, g · c − c ∈ T (I (K0)) for any g ∈ G. Assume the support

of c is contained in the ball B2k(v0) (= ∪0≤l≤k Cl) for some integer k ≥
0. Take g = α2k+1. For a 0-chain a ∈ C0(41), let supp a be the set of

period one vertices of the minimal subtree of 4 containing supp a. We see

supp (g · c− c) ⊂ B2k(v0) ∪ α2k+1B2k(v0) = B2k(v0) ∪ B2k(v4k+2), which

we denote by X. Write g · c − c = T b for some 0-chain b ∈ C0(41). We

then claim that supp b ⊂ X − {v2k, v2k+2}. We observe firstly that it is

contained in X, from the definition of T and that of the minimal subtree.

Secondly, for v = v2k, or v2k+2, there is some vertex v′ which is distance 2

from v, and is not in X. However, we can always choose such a v′ which

is not a neighbour of v2k+1. Then If v is in supp b, v′ would definitely

lie in supp (g · c − c), a contradiction. Therefore, it is safe to write b as a

unique sum b1 +b2 of two 0-chains, where supp b1 ⊂ X1 = B2k(v0)−v2k and

supp b2 ⊂ X2 = B2k(v4k+2) − v2k+2. As now d(X1, X2) ≥ 6, supp (T b1)

and supp (T b2) are disjoint. Hence, by comparing the supports, T b1 = −c,
i.e., c̄ = 0.

To prove (1), we need some preparation, which also paves the way to

the proof of the unramified case of Theorem 4.1.

Let Λ be a variable, and set R = Ẽ[Λ,Λ−1]. Define an unramified

character X : E× → R×, by X($E) = Λ−1. We form the character X ⊗ 1

of T by: X ⊗ 1(t) = X(x), where t is the matrix:x 0 0

0 y 0

0 0 x̄−1

.
Then we view X ⊗ 1 as a character of B which is trivial on the subgroup

N . The character we choose above guarantees the existence of a non-trivial

function f0 in the former space which is K0-invariant, i.e., by writing an

element g as bk, f0(bk) = X ⊗ 1(b), where b ∈ B, k ∈ K0. Now we transfer

the result of first subsection to our situation. Define J (X⊗1) as the space of

locally constant functions ϕ from N∗ to R which satisfy ϕ((x, y)) = c ·Λval(y)

for some constant c = const(ϕ) ∈ R, when y is large enough. Therefore

by the above, the map i which maps a f to i(f), where i(f)((x, y)) =

f(βn(x, y)), is an isomorphism from I (X ⊗ 1) to J (X ⊗ 1). The inverse

j of i explicitly: for a function ϕ in J (X ⊗ 1)

j(ϕ)(g) =

{
const(ϕ)X ⊗ 1(b), when g = b ∈ B,
X ⊗ 1(b)ϕ((x, y)), when g = bβn(x, y).

(16)
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4.5 The subquotients of V0

The space J (X⊗ 1) then inherits a structure of G-module. We record

the function ϕ0:

ϕ0((x, y)) =

{
Λval(y), if val(y) ≤ 0,

1, if val(y) ≥ 0.

Let S (N∗, R) be the space of locally constant functions on N∗, which

take values in R and have compact support. By definition, S (N∗, R) is a

subspace of J (X ⊗ 1), which has a set {1N∗k ·(x,y); k∈Z, (x,y)∈N∗} of charac-

teristic functions as generators, and there exists a direct sum decomposition:

J (X ⊗ 1) = S (N∗, R)⊕Rϕ0.

Lemma 4.19. For ϕ ∈J (X ⊗ 1),

(1). n(x′, y′)ϕ((x, y)) = ϕ((x+ x′, y + y′ − xx̄′)).
(2). αϕ((x, y)) = Λ−1ϕ(($Ex,$

2
Ey)).

(3). α−1ϕ((x, y)) = Λϕ(($−1
E x,$−2

E y)).

Proposition 4.20. ϕ0 | T = (Λ− 1)ϕ0

Proof. This is in fact a simpler variant of Proposition 3.24.

As f0 is K0-invariant, ϕ0 is also K0-invariant. This K0-invariant vector

gives rise to a G-morphism φK0
ϕ0

from indGK0
1 to indGBX⊗1 which corresponds

to ϕ0 by Frobenius reciprocity, i.e., φK0
ϕ0

(1K0) = ϕ0. This morphism extends

to an R-linear morphism from the representation space V of indGK0
1 ⊗Ẽ R

to J (X ⊗ 1), which we also denote by φK0
ϕ0

.

We are interested in the properties of φK0
ϕ0

. Firstly, we determine its

image in J (X ⊗ 1). Before doing this, we compute a special G-translation

of ϕ0.

Proposition 4.21.
∑
y∈L1

n(0, $−1
E y)ϕ0 = (1− Λ−1)1N∗−1

Proof. For (x1, y1) ∈ N∗,
∑
y∈L1

n(0, $−1
E y)ϕ0((x1, y1))

=
∑
y∈L1

f0(βn(x1, y1 +$−1
E y)).

Now we apply Lemma 1.2. When val(y1) ≥ 0, n(x1, y1) ∈ K0. In this

case, the term y = 0 gives value 1, and for other terms Lemma 1.2 gives

that each f0(βn(0, $−1
E y)) is Λ−1. So the sum is 1 + (q − 1)Λ−1 = 1− Λ−1.

When val(y1) ≤ −2, Lemma 1.2 again gives that each f0(βn(x1, y1 +

$−1
E y)) is Λval(y1). So in this case, the sum is zero.

For the remaining case of val(y1) = −1, there exists a unique y ∈ L1 so

that y + $Ey1 is in pE . This term gives value 1. For other terms, Lemma
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4.5 The subquotients of V0

1.2 also gives that each f0(βn(x1, y1 + $−1
E y)) is Λ−1. The sum turns out

to be 1− Λ−1. We are done.

Theorem 4.22. (1). The image of V under φK0
ϕ0

is (1− Λ−1)S (N∗, R)⊕
Rϕ0.

(2). The kernel of φK0
ϕ0

is (T − Λ + 1)V .

Proof. We deal with (1) first. From (3) of Lemma 4.19, we get α−n1N∗−1
=

Λn1N∗2n−1
. Then for any integer n, (1 − Λ−1)1N∗2n−1

is in the image of φK0
ϕ0

by Proposition 4.21.

By (1) of Lemma 4.19, n(x, y)1N∗l = 1N∗l (x,y)−1 . This shows that, for

any (x, y) ∈ N∗ and any integer n, (1−Λ−1)1N∗2n−1·(x,y) lies in the image of

φK0
ϕ0

. Furthermore, we have

1N∗2n =
∑

(x,y)∈L2

n($n
Ex,$

2n
E y)1N∗2n+1

, (17)

and using (1) of Lemma 4.19 again, we see that, for any (x, y) ∈ N∗ and

any integer n, (1− Λ−1)1N∗2n·(x,y) lies in the image of φK0
ϕ0

. We have proved

(1− Λ−1)S (N∗, R)⊕Rϕ0 is contained in the image of φK0
ϕ0

.

Now for a vertex v ∈ 41, there is a unique path from v to v0; as a

result we could express v as
∑

l tl(vl − Λ−1a2(vl)) + t0v0, where t ∈ R and

a2(vl) is the unique vertex which is of distance 2 from vl and with height

h(vl) + 2. This expression of v changes into
∑

l tlgl(v0 − Λ−1v2) + t0v0 for

some gl in G (we have used Remark 3.30 here). Then φK0
ϕ0

(v) =
∑

l tlgl(ϕ0−
Λ−1αϕ0) + t0ϕ0.

By the definition of ϕ0 and (2) of Lemma 4.19. we compute ϕ0 −
Λ−1αϕ0 = (1−Λ−1)(Λ−11N∗−1

+1N∗0 ). We also note that gϕ is in S (N∗, R)⊕
Rϕ0, for any g ∈ G and ϕ ∈ S (N∗, R). This shows that φK0

ϕ0
(v) is in the

space (1− Λ−1)S (N∗, R)⊕Rϕ0. This finishes our argument.

We now prove (2). Firstly, by Proposition 4.20, we have φK0
ϕ0

((T − Λ +

1)(1K0)) = 0. As the G-translates of 1K0 generate V , we conclude that φK0
ϕ0

vanishes on (T − Λ + 1)V .

Given c ∈ V such that φK0
ϕ0

(c) = 0, we write c as
∑

v∈S tv · v, where S

is a finite set of 41. So we can find a vertex v2r in the standard apartment

such that v2r ∈ ∩v∈S v∞, i.e., all the vertices in S are under v2r. Put

2s = minv∈S h(v). Then if we allow some tv to be zero, we can assume S to

be the finite subset of 41 consisting of all the vertices under v2r and with

height greater than or equal to 2s.

Step 1 There is an equality:

v = Λ−1a2(v)− Λ−1(a2(v)− Λv).
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Replacing each v ∈ S in the expression of c by the right side of the equality

above (doing this from the vertices of least height and moving up), we get:

c = P · v2r +
∑

v∈S,v 6=v2r

Pv · (a2(v)− Λv), (18)

where P and Pv are polynomials in Λ, Λ−1.

Step 2 Recall that for v ∈ 41, Tv =
∑

d(v′,v)=2 v′. Then we get that

for such a v,

Tv + v = a2(v) +
∑

a(v′)=a(v)

v′ +
∑

a2(v′)=v

v′.

Note that the numbers of terms appearing in the second and the third sum

above are respectively q and q4. Then a rearrangement gives

Tv+v−Λv = a2(v)−Λv+Λ−1
∑

a(v′)=a(v)

(Λv′−a2(v′))+Λ−1
∑

a2(v′)=v

(Λv′−a2(v′)).

(19)

Equivalently ,

a2(v)−Λv ≡ Λ−1
∑

a(v′)=a(v)

(a2(v′)−Λv′) + Λ−1
∑

a2(v′)=v

(a2(v′)−Λv′). (20)

where the congruences appearing above and below are all mod(T −Λ+1)V .

Note that in the first sum on the right of (20), v′ goes through all the

vertices under and adjacent to a(v), which particularly means that these v′

are of the same height. So the height is not reduced if we insert (20) directly

into the expression (18) of c that we got in step one.

Now write a(v) as u. Viewing u as fixed, we sum (20) over the vertices

v′′ which are under and adjacent to u. Then the first sum on the right of

(20) disappears as it becomes a constant and is counted q times. We get∑
a(v′′)=u

(a2(v′′)− Λv′′) ≡
∑

a(v′′)=u

Λ−1
∑

a2(v′)=v′′
(a2(v′)− Λv′)

≡ Λ−1
∑

a3(v′)=u

(a2(v′)− Λv′)

Then by inserting the above into the right hand of (20), we finally obtain

a2(v)−Λv ≡ Λ−2
∑

a3(v′)=a(v)

(a2(v′)−Λv′)+Λ−1
∑

a2(v′)=v

(a2(v′)−Λv′). (21)

We also note that the right hand of (21) can be written as∑
a3(v′)=a(v)

Qv′ · (a2(v′)− Λv′),
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where Qv′ is some polynomial in Λ and Λ−1 (depending on v′).

Using (21) for all v ∈ S except v2r (starting from the top and going

down, in (18)), we get

c ≡ P · v2r +
∑

v∈S, h(v)=2s

P ′v · (a2(v)− Λv).

Our assumption is φK0
ϕ0

(c) = 0. Then by Proposition 4.20, the congru-

ence above gives

0 = P · φK0
ϕ0

(v2r) +
∑

v∈S, h(v)=2s

P ′v · φK0
ϕ0

(a2(v)− Λv). (22)

We need to compute the right hand side of the equation more explicitly.

Firstly,

φK0
ϕ0

(v2r) = φK0
ϕ0

(αrv0) = αrϕ0.

Secondly, from the proof of Lemma 3.26, we know that

{v ∈ S|h(v) = 2s} = (N−2r/N−2s)v2s.

Then given n = n(x, y) ∈ N−2r, which means that y ∈ p−2r
E , from Lemma

3.29 and Lemma 4.19 we see that

φK0
ϕ0

(a2(nv2s)− Λnv2s) = φK0
ϕ0

(nv2s+2 − Λnv2s)

= φK0
ϕ0

(nαs(αv0 − Λv0))

= nαs(αϕ0 − Λϕ0)

= (Λ−1 − 1)Λ−s(1N∗−2s−1·(x,y)−1 + Λ · 1N∗−2s·(x,y)−1),

from which it turns out that the supports of the functions φK0
ϕ0

(a2(nv2s) −
Λnv2s) may intersect as n = n(x, y) goes through N−2r/N−2s.

One observes from these computations that φK0
ϕ0

(v2r) is of non-compact

support, but all the other φK0
ϕ0

(a2(v)−Λv) have compact support. Therefore

we can conclude that P ≡ 0. Then by substituting the display above, (22)

turns into ∑
n=n(x,y)∈N−2r/N−2s

P ′n(x,y) · (1N∗−2s−1·(−x,ȳ) + Λ · 1N∗−2s·(−x,ȳ)) = 0,

where we write P ′n(x,y) for P ′v, for v = n(x, y)v2s. Note that (0, $−2s−1
E a)

commutes with (x, y)(as elements in N∗). When decomposing N∗−2s−1 into
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4.5 The subquotients of V0

∪l∈L1 N
∗
−2s(0, $

−2s−1
E l), and re-writing the sum over the left cosets, the

above equation turns into

∑
n∈N−2s\N−2r,
n=n(x,y)

P ′n(−x,ȳ) ·

(
(1 + Λ)1N∗−2s·(x,y) +

q−1∑
i=1

1N∗−2s·(x,y+$−2s−1
E li)

)
= 0,

(23)

in which {li, 1 ≤ i ≤ q − 1} = L1 \ {0}.
For simplicity, we will rewrite P ′n(−x,ȳ) above as P ′′n(x,y). To deal with

(23), we note first that n(x′, y′ + $−2s−1
E l) goes through N−2s\N−2r when

n(x′, y′) and l go through N−2s−1\N−2r and L1 respectively.

Then another observation we need is that: for a given n = n(x, y) ∈
N−2s\N−2r, N

∗
−2s−1 · (x, y) is fixed by (0, $−2s−1

E l) for l ∈ L1, and moreover

when l goes through L1, N∗−2s · (x, y + $−2s−1
E l) also goes through N∗−2s ·

(x, y)\N∗−2s−1 · (x, y).

With these in mind, we can see that for a fixed (x′, y′) ∈ N∗−2s−1\N∗−2r,

the coefficient of a characteristic function 1N∗−2s·(x′,y′+$
−2s−1
E ti)

(appearing

in (23)) is (1 + Λ)P ′′i +
∑

j 6=i P
′′
j , where P ′′i (relative to (x′, y′)) is short for

P ′′
n(x′,y′+$−2s−1

E li)
. Therefore we can rewrite (23) as:

∑
n∈N−2s−1\N−2r,
n=n(x′,y′)

q−1∑
i=0

((1 + Λ)P ′′i +
∑
j 6=i

P ′′j ) · 1N∗−2s·(x′,y′+$
−2s−1
E li)

= 0. (24)

Now from (24) we arrive to conclude that for a fixed (x′, y′) ∈ N∗−2s−1\N∗−2r,

(1 + Λ)P ′′i +
∑
j 6=i

P ′′j = 0, 0 ≤ i ≤ q − 1. (25)

Then it is a matter to solve for P ′′i from (25). In fact, by adding together

all the equations in (25), we get
∑q−1

i=0 (1 + Λ + q − 1)P ′′i = 0, which is just

q−1∑
i=0

P ′′i = 0. (26)

Subtracting (26) from every equation in (25), we obtain that all the P ′′i are

0.

Changing back the notations, we have indeed shown that P ′′n(x,y) are all

0, for n(x, y) ∈ N−2s\N−2r, i.e., P ′n(x,y) are all 0, for n(x, y) ∈ N−2r/N−2s.

We have finally proved c ≡ 0, i.e., c ∈ (T − Λ + 1)V . We are done.

Now we are ready to prove (1) of Proposition 4.18.
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4.6 Unramified case

Let V ′ be the underlying space of the representation indGK0
1 ⊗HK0

R.

Then we have an isomorphism

V ′/TV ′ ∼= V0 = I (K0)/TI (K0).

Hence, we are given a degree map:

Deg : V0 = V ′/TV ′ → Ẽ. (27)

We now apply the Lemma 31 of [BL95] to our situation: D = R, P =

(Λ − 1), S = the group algebra Ẽ[G], Y ′ = V ′, Y = J (X ⊗ 1), hence we

view both Y and Y ′ as a (S, R)-bi-module. Then, we use Theorem 4.22:

We indeed have V ′/TV ′ = V ′/(Λ − 1)V ′, from Proposition 4.20 . On

the other hand, (Λ − 1)J (X ⊗ 1) is contained in the image of V ′ under

the injection φK0
ϕ0

by (1) of Theorem 4.22. So the condition of Lemma 31

of [BL95] is satisfied. As an Ẽ[G]-module, V ′/TV ′ and J (X ⊗ 1)/(Λ −
1)J (X ⊗ 1) have the same length and the same Jordan-Hölder factors.

However, J (X ⊗ 1)/(Λ − 1)J (X ⊗ 1) is just J (1 ⊗ 1), i.e., the space of

the representation indGB1 ⊗ 1, which is of length 2 from Proposition 4.10,

with two Jordan-Hölder factors: Triv, Sp. Hence, the Kernel of Deg, as

an Ẽ[G]-module, must be irreducible and isomorphic to the special series

Sp.

4.6 Unramified case

For a non-zero λ ∈ Ẽ, let χλ be the unramified character of E×, which

takes value λ−1 at $E . The preparation in last subsection leads to a special

case of Theorem 4.1.

Theorem 4.23. Let (π, V ) be an irreducible smooth representation of G

such that V K0 6= 0. Then,

(1). There exist a vector v 6= 0 in V K0 which is an eigenvector for HK0 .

(2). Let v be an eigenvector in (1), and denote by λ the corresponding

eigenvalue, i.e., v | T = λv. Suppose λ 6= −1. Then,

(a). If λ 6= 0, then dimV K0 = 1 and (π, V ) ∼= indGBχλ+1 ⊗ 1;

(b). If λ = 0, then dimV = 1, and (π, V ) ∼= Triv.

Proof. (1). We have indeed proved this in general.

(2). For v as in (1), denote by λ the corresponding eigenvalue, i.e.,

v | T = λv. Assume that λ 6= −1. By the definition of the right action,

φK0
v is trivial on (T − λ)I (K0). So (π, V ) is equivalent to an irreducible

quotient of

indGK0
1/(T − λ)indGK0

1
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4.7 Injectivity from indGK0
σ/(T − λ) to principal series indGBε: λ 6= 0

via the map φK0
v .

For (b), where λ = 0. By Proposition 4.18, indGK0
1/(T )indGK0

1 contains

the special series Sp, with quotient Triv. As Sp is the unique subrepresen-

tation of indGK0
1/(T )indGK0

1 (from (2) of 4.18), we conclude that π ∼= Triv.

For (a), where λ 6= 0. As λ + 1 6= 0, we can form the principal series

indGB(χλ+1 ⊗ 1) with underlying space J (χλ+1 ⊗ 1), and it is irreducible

as λ + 1 6= 1. The K0-invariant function ϕ0 in J (χλ+1 ⊗ 1) gives rise to

a G-morphism φK0
ϕ0

from indGK0
1 to indGB(χλ+1 ⊗ 1). From Proposition 4.20,

we see ϕ0 | T = λϕ0. Hence φK0
ϕ0

is trivial on (T − λ)indGK0
1 and we get an

induced morphism:

φK0
ϕ0

: indGK0
1/(T − λ)indGK0

1→ indGB(χλ+1 ⊗ 1). (28)

Now the right side of the above is irreducible. From the conditions that

λ + 1 6= 1 and λ + 1 6= 0, the same argument (changing Λ into λ + 1) in

proving (2) of Theorem 4.22 will imply that the φK0
ϕ0

above is injective. But

it is surely non-zero. Therefore φK0
ϕ0

is an isomorphism. We conclude (π, V )

is equivalent to indGB(χλ+1 ⊗ 1).

4.7 Injectivity from indGK0
σ/(T − λ) to principal series indGBε:

λ 6= 0

Let σ be an irreducible smooth representation of K0, and ε be a char-

acter of the Borel subgroup B. In section 3.5, we have shown that the space

HomG(indGK0
σ, indGBε) is at most one-dimensional, and it is non-zero if and

only if the restriction of ε to B ∩K0 (i.e., ε0 in the notation of 3.5) is equal

to χsσ. From now on, assume it is in this case. We have also defined a non-

zero G-morphism Pv′0,1 in HomG(indGK0
σ, indGBε), where v′0 = βv0, and v0 is

a non-zero fixed vector in σI1 . By Proposition 3.24, Pv′0,1 will factor through

the quotient indGK0
σ/(T−cε), where cε is the value discovered in Proposition

3.24. Denote also by Pv′0,1 the reduced morphism from indGK0
σ/(T − cε) to

indGBε.

The main result of this section is

Proposition 4.24. When dim σ > 1 and cε 6= 0, Pv′0,1 is injective.

Proof. In the argument of Proposition 3.24, we have determined cε explic-

itly, which only depends on the character ε. Denote cε by λ. Under the

assumption λ 6= 0, we proceed from Proposition 3.13 and have the following

lemma, where we take the antecedent (Definition 3.31) into account.
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4.7 Injectivity from indGK0
σ/(T − λ) to principal series indGBε: λ 6= 0

Lemma 4.25. T [n0α
k, v]− λ[n0α

k, v]

= A[n0α
k, v]− λ[n0α

k, v] + λ−1
∑

y∈L1\{0},uy=n(0,$Ey)

(λ · f0,uy −A · f0,uy)

+ λ−1
∑

u∈(N0\N1)/N2

(λ · f1,u −A · f1,u) + λ−1
∑

uy=n(0,$Ey), y∈L1

(λ · f2,uy −A · f2,uy)

where :

f0,uy = [n0 · n(0, $
−(2k+1)
E y)αk, χ1(ȳ−1

0 )Lv0,y(v)v0],

for uy = n(0, $Ey), y ∈ L1 \ {0};

f1,u = [n0 · n($−kE x1ȳ
−1
1 , $−2k

E y−1
1 )αk−1, χ1(ȳ−1

1 )χ2(−ȳ1y
−1
1 )Lv0,y(v)v0],

for u = n(x1, y1) ∈ (N0 \N1)/N2;

f2,uy = [n0n(0, $1−2k
E y)αk−1, Sv0(v)v0],

for uy = n(0, $Ey), y ∈ L1.

Proof. We begin with the formula in Proposition 3.13. For u ∈ N1/N2,

n0α
kuα−1 = n0 · αkuα−k · αk−1. For u ∈ N2, n0α

kβuα−1 = n0α
k+1βl for

some l ∈ N0.

For u ∈ (N1 \N2)/N2, written as n(0, $Ey0), we have

n0α
kβuα−1 = n0n(0, $

−(2k+1)
E y0)αkdiag(ȳ−1

0 , 1, y0)n′(0, $Ey
−1
0 ).

For u ∈ (N0 \N1)/N2, written as n(x1, y1), we then have

n0α
kβuα−1 = n0n($−kE x1ȳ

−1
1 , $−2k

E y−1
1 )αk−1diag(ȳ−1

1 , −ȳ1y
−1
1 , y1)l′

for some l′ ∈ N ′1.

We note that A[nαk, v0] is zero by our definition. Then we obtain the

required formula in the Lemma by combining the above calculations.

Using the above Lemma repeatedly, we get the following Corollary

(compare with (19) in the proof of Theorem 4.22).

Corollary 4.26. For any n0 ∈ N , k ∈ Z, and v ∈W , we have

A[n0α
k, v]− λ[n0α

k, v] ≡
∑

j fj(A[njα
k−1, vj ]− λ[njα

k−1, vj ])

for some fj ∈ Ẽ and some vectors vj ∈ W . The elements nj are all in N ,

satisfying that the vertices njα
k−1v0 are distinct from each other. Here the

congruence is taken modulo (T − λ).

Proof. Apply Lemma 4.25 to the terms where y goes through (N1 \N2)/N2,

observing that Lv0,y(v0) = 0.
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4.8 Proof of (c) of (2) of Theorem 4.1

After the previous preparation, we follow the process of Theorem 4.23

to prove Pv′0,1 is indeed injective.

Let c ∈ S(G, σ) such that Pv′0,1(c) = 0. We write c as
∑

j∈S [njα
j , uj ],

where nj ∈ N, uj ∈ W . Let s be 1
2minj∈S{h(njα

jv0)} − 1, and assume all

the vertices njα
jv0 are under v2r−2. Also, by setting some uj to be 0, we

may enlarge S so that the vertices njα
jv0 go through all the vertices strictly

under v2r and with height at least 2s. Using the following identity

[nαk, u] = λ−1A[nαk, u]− λ−1(A[nαk, u]− λ[nαk, u]),

we rewrite c as:

c = P · [nαr, v′0] +
∑
s<j<r

Pj · (A[njα
j , uj ]− λ[njα

j , uj ]), (29)

where P, Pj are some constants in Ẽ.

Combining the above equation with Corollary 4.26, we obtain

c ≡ P · [nαr, v′0] +
∑

n∈N−2r/N−2s
Pn · (A[nαs, v0]− λ[nαs, v0]).

By definition of antecedent, A[nαs, v0] = 0 for all n.

We recall we are in the case of dim σ > 1, the constant λβ,σ vanishes.

Hence the function f0, which is Pv′0,1[Id, v0], is 0 at Id and 1 at β. In our

former notations, it is then just g2. For simplicity, we would like to use

ϕ2 = 1N∗0 , which corresponds to g2.

We compute first Pv′0,1([nαr, v′0]) = nαrβf0 = nαrβϕ2, for which we un-

derstand it has non-compact support by pulling-back (also see Remark 4.7 ).

Secondly, we compute Pv′0,1([nαs, v0]) = nαsf0 = nαs1N∗0 = ε(α)−s1N∗−2s·(−x,ȳ)

for n = n(x, y) ∈ N−2r/N−2s which is compactly supported. Hence, we con-

clude that P = 0. For the remaining terms, their supports N∗−2s · (−x, ȳ)

are disjoint when n = n(x, y) goes through N−2r/N−2s. We then conclude

all the Pn are 0. We therefore have shown c ∈ (T −λ). In all, the injectivity

of Pv′0,1 is shown.

4.8 Proof of (c) of (2) of Theorem 4.1

Proposition 4.27. We have an isomorphism of G-representations:

indGK0
St/(T ) ∼= indGB 1

Proof. We fix a non-zero vector v0 in StI1 . Now from section 3.5, the G-

morphism Pv′0,1 ∈ HomG(indGK0
St, indGB1) is well-defined.
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4.8 Proof of (c) of (2) of Theorem 4.1

The image of Pv′0,1 is generated by the function Pv′0,1([Id, v0]) = f0,

which is just g2 in our former notation. As g2 is clearly not fixed by K0,

Pv′0,1 must be surjective due to the fact that indGB 1 has trivial character as

the unique proper subrepresentation (see [Abd11]). From Proposition 3.24,

Pv′0,1 is killed by T ; actually one can simply check Pv′0,1(T [Id, v0]) = 0. It

suffices to prove Pv′0,1 is injective. However, it seems the strategy used in

section 4.7 does not work when λ = 0.

We note that Pv′0,1 is surjective when restricted to the subspace of I1-

invariants. In fact, one can check Pv′0,1(f1) = g1, which is reduced to check∑
u∈N ′1/N ′2

uαβ · g2 = g1.

We choose a proper character η of k1
E , so that η(−1) 6= 1. Let σ1 =

η ◦ det⊗St. The I1-invariants of σ1 are generated by v0, on which I acts as

character χσ1 . Hence, we may use the same notation Pv′0,1 as the non-zero

G-morphism in HomG(indGK0
σ1, indGB η◦det). In the same manner as we have

just done, Pv′0,1 is surjective. By Proposition 3.24, Pv′0,1 factors through the

quotient indGK0
σ1/(T

′ − (1 − η(−1))). As 1 − η(−1)) 6= 0 and dim σ1 > 1,

Pv′0,1 is injective, by Proposition 4.24. We are done, by applying Lemma

4.4.

We need the following analogue of Proposition 4.18, which is conjec-

tured in [Abd11].

Proposition 4.28. We have the following non-split short exact sequence:

0→ Triv→ indGK0
St/(T )→ Sp→ 0, (30)

where St is inflation of the Steinberg representation of G(kF ) to K0.

Proof. It is implied by Proposition 4.27, and the fact that indGB 1 is the

non-split extension of Sp by trivial representation ([Abd11]).

We proceed to complete the proof of (c) of (2) of Theorem 4.1. In this

case χσ factors through the determinant, i.e., χσ = η◦det for some character

η of k1
E , and λ = 1 − χ′1(−1). From the theory of Carter-Lusztig ([KX12],

(i) of Lemma 5.8), σ ∼= η ◦ det or σ ∼= η ◦ det⊗ St, where St is the inflation

of Steinberg representation of G(kF ) to K0. In the first case indGK0
σ ∼=

η◦det⊗indGK0
1, and in the second case, indGK0

σ ∼= η◦det⊗indGK0
St. However,

from Proposition 4.18 and Proposition 4.28, we conclude that η ◦ det (resp.

η ◦ det⊗ St) is the unique quotient of indGK0
η ◦ det/(T − (1− η(−1))) (resp.

indGK0
η ◦ det⊗ St/(T − (1− η(−1))). Hence, we are done.
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4.9 Proof of (b) of (2) of Theorem 4.1

4.9 Proof of (b) of (2) of Theorem 4.1

We start to prove (b) of (2) in this section.

Before going into details, we recall a little more about the situation of

(b). Under the assumption of (b), the principal series indGBε is irreducible

nd there is a non-zero G-surjective morphism from indGK0
σ to indGBε, which

factors through indGK0
σ/(T − λ). We will prove that indGK0

σ/(T − λ) is

irreducible, which completes the argument that π is isomorphic to indGBε.

For (b), we separate it into two cases:

Case 1 : σ is a character and λ 6= 1− χ′1,σ(−1).

We repeat that indGBε is irreducible and is a quotient of indGK0
σ/(T −λ).

We reduce it to the unramified case which is already known. Write σ =

η ◦ det for a character η of k1
E . Consider the principal series indGBε1, where

ε1 |H0= (η−1 ◦ det) · ε |H0 , ε1(α) = ε(α). Hence, indGBε1 is a quotient of

indGK0
1/(T −λ1), where λ1 = λ+χ′1,σ(−1)−1, by Proposition 3.24. The as-

sumption on λ is translated into that λ1 6= 0,−1. Hence, from the argument

of Theorem 4.23 (2) (a), we have shown indGK0
1/(T −λ1) ∼= indGB(χλ1+1⊗1).

We are done in this special case by twisting the character η ◦ det back,

applying Lemma 4.4.

Case 2 : The remaining cases of (b). Recall ε(α) 6= 0 by our definition.

In this case dim σ > 1 and the principal series indGB ε is indeed irreducible

by Theorem 4.9.

Subcase 1 : χ′1,σ(−1) = 1

In the case that χ′1,σ(−1) = 1, we are already done, as now the assump-

tion of Case 2 satisfies the conditions of Proposition 4.24.

Subcase 2 : χ′1,σ(−1) = −1

Choose a proper character η of k1
E , so that χ′1,σ1(−1) = 1, where

σ1 = η ◦ det ⊗ σ. There is then a non-zero G-morphism from the compact

induction indGK0
σ1 to the principal series indGBε1, where ε1 is the character

of B: ε1 |H0= ε |H0 ·(η ◦ det), and ε1(α) = ε(α). By Proposition 3.24, such

a G-morphism factors through indGK0
σ1/(T

′−λ1), where λ1 is equal to λ−2

and is non-zero by the assumption on λ in this case.

Now, we can apply Proposition 4.24; as a result, we conclude that

indGK0
σ1/(T

′ − λ1) ∼= indGBε1.

Finally, we twist both sides of the above isomorphism by the character η−1 ◦
det, using Lemma 4.4.
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5 Canonical diagrams and finite presentation

This chapter is motivated by [Hu12] and [Sch12], as reflected from the

title. In the case of GL2(Qp), all the irreducible smooth representations are

finitely presented9, which is a result of Barthel-Livné and Breuil. However,

recent work of Hu [Hu12] and Schraen [Sch12] on GL2(F ) has shown that

supersingular representations are not finitely presented any more, when F is

either a non-archimedean local field of positive characteristic or a quadratic

extension of Qp.

The purpose of this chapter (and part of Appendix B) is to pursue some

ideas underlying their work. Especially we follow Hu’s canonical diagram

[Hu12] closely and intend to arrive at some analogous results which are

essentially used in Schraen’s work [Sch12]. So far, we have achieved only

part of the goal.

We now go into some details and explain the underlying motivations.

Let σ be an irreducible smooth representation of K0, and let π be a smooth

G-quotient of indGK0
σ. In 3.7, R+

n (σ) (n ≥ 0) is defined as the subspace of

indGK0
σ which consists of functions supported in K0α

nI, and is I-stable. One

has similar notation R−n (σ) for n ≥ 0, which consists of functions supported

in K0α
−(n+1)I. There is then a natural I-decomposition of indGK0

σ:

indGK0
σ = I+(σ)⊕ I−(σ),

where I+(σ) (resp. I−(σ)) is ⊕n≥0R
+
n (σ) (resp. ⊕n≥0R

−
n (σ)). Denote by

I+(σ, π) (resp. I−1(σ, π)) the image of I+(σ) (resp. I−(σ)) in π.

In the preliminary section 5.1, we have proved Proposition 5.3, following

[Hu12] and combined with some result in previous chapters. It at least

implies that the I-subrepresentation I+(σ, π) ∩ I−(σ, π) of π is non-zero, if

π is irreducible. We remark in the case of GL2, this I-representation is the

most basic ingredient in Hu’s definition of canonical diagrams, and he has

managed to show that it does not depend on the choice of the underlying

weight σ, confirming the name of canonical. In our group G = U(2, 1)(E/F ),

we have not really pursued this seriously in this thesis, but only keep it in

mind as a general guide.

In the second section 5.2 of this chapter, we aim to prove an analogue of

a main result in [Hu12]. Assume π is an irreducible smooth representation

of G and that it is the quotient of some compact induction indGK0
σ, via a

projection θ. Generally speaking, to understand π it suffices to understand

9An irreducible smooth representation π is said to be finitely presented, if there is a

non-zero G-morphism from some compact induction to π with the kernel finitely generated

as a G-representation.
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5.1 Preliminary results

the corresponding kernel R(σ, π). In view of Hu’s idea, there is indeed a

close relation between the I-representation I+(σ, π) ∩ I−(σ, π) and R(σ, π);

in principle, I+(σ, π) ∩ I−(σ, π) should inherit essential information from π

itself. However, due to some technical difficulty, we have only been able to

show the easy side, i.e., I+(σ, π)∩ I−(σ, π) is finite dimensional if R(σ, π) is

finitely generated (Proposition 5.6). Hence, π could not be finitely presented

if one could show I+(σ, π) ∩ I−(σ, π) is infinite dimensional. This is what

Schraen has indeed proved for GL2(F ) in [Sch12], when F is a quadratic

extension of Qp. We also discuss informally, in the final part of this section,

about the difficulty we have had in proving the converse (Remark 5.9).

In the section 5.3, we have mainly arrived at an analogue (Lemma 5.17)

of a major technical result of Hu on GL2(F ) ([Hu12], (i) of Proposition 4.11).

It says that any N0-invariant of I+(σ, π) is annihilated by some polynomial

of S, where S is a canonically defined I1-linear endomorphism of πN0 , for

an irreducible smooth supersingular representation π. However, at present

it is not clear to us how to find interesting applications of this result.

In the section 5.4, using an argument of Paškūnas, we record a formal

sufficient condition (Proposition 5.20) for the restriction to the Borel sub-

group of an irreducible smooth representation to remain irreducible. How-

ever, in contrast to the case of GL2, we don’t expect the condition holds in

general for supersingular representations of G.10

In the last section 5.5, we carry out some computations on the tree of

G and prove that the dimension of the N0-invariants of the space 4(k, σ) :=

(R+
k−1(σ) ⊕ R+

k (σ) ⊕ R+
k+1(σ))/Tσ(R+

k (σ)) (k ≥ 1) is no less than p(p − 1)

(Corollary 5.31), when F = Qp. The purpose that we do such thing is

two-fold. On one side, the I-space 4(k, σ) could be imagined as a finite

piece of indGK0
σ/(Tσ). In view of that, it is reasonable to believe one should

get some interesting information of indGK0
σ/(Tσ) by piecing together that of

4(k, σ). On the other side, in the argument of a major result of Schraen

([Sch12], Proposition 13), a key point is reduced to checking the connect-

ing homomorphism of some cohomology groups is not injective. The lower

bound proved in this section could be used to verify a similar non-injective

result (Remark 5.33). Hopefully, our result will also play a similar role in

further considerations.

5.1 Preliminary results

We start by recalling some notations introduced in 3.7.

10Paškūnas proved in [Paš07] that a similar condition holds for supersingular represen-

tations of GL2(F ).
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5.1 Preliminary results

Let σ be an irreducible smooth representation of K0. We have set

R+
n (σ) = [N0α

−n, σ], n ≥ 0; R−n−1(σ) = [N ′1α
n, σ], n ≥ 1;

R0(σ) = R+
0 (σ), Rn(σ) = R+

n (σ)⊕R−n−1(σ), n ≥ 1.

We also set

I+(σ) = ⊕n≥0R
+
n (σ), I−(σ) = ⊕n≥0R

−
n (σ).

There is an I-decomposition

indGK0
σ = I+(σ)⊕ I−(σ)

Any f ∈ indGK0
σ is therefore uniquely written as f+ + f−, for some f+ ∈

I+(σ), f− ∈ I−(σ).

For u ∈ U , let [u] be a chosen element in N0, satisfying that the re-

duction of [u] is u. In the following, we will usually take [u] as n(x, y), for

(x, y) ∈ L2.

Lemma 5.1. For n ≥ 1, the space Rn(σ), as a K0-subrepresentation of

indGK0
σ, is generated by R−n−1(σ).

Proof. Indeed, we have the following

R+
n (σ) = ⊕k∈U [k]βR−n−1(σ),

which is directly from calculation.

Recall we have shown in Proposition 3.37 that

T (R−n (σ)) ⊆ R−n−1(σ)⊕R−n (σ)⊕R−n+1(σ),

and T |R−n (σ) is the sum of I-morphism T− |R−n (σ): R−n (σ) � R−n−1(σ)

and the injective I-morphism T+ |R−n (σ): R
−
n (σ) → R−n (σ) ⊕ R−n+1(σ) from

Corollary 3.39.

Lemma 5.2. Let k ≥ 0, f ∈ ⊕n≥kR−n (σ), and P (x) any polynomial of

degree at least one. Then there is f ′ ∈ ⊕n≥k+1R
−
n (σ), depending on f and

P (x), such that

f − f ′ ∈ P (T )(⊕n≥k+1R
−
n (σ)).

Proof. One can write P (x) = (x − λ)P1(x) for some polynomial P1(x) of

degree strictly smaller that of P (x), and for some λ ∈ Ẽ. By the comment

before the Lemma, we find some f1 ∈ ⊕n≥k+1R
−
n (σ), such that T−(f1) = f .

If P1(x) is a constant, then the function −T+(f1) + λf1 is as desired. If

not, we do induction on the degree of P (x). Then, we are given f2, f3 ∈
⊕n≥k+2R

−
n (σ), such that f1 − f2 = P1(T )(f3). Then, one can check the

function
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−T+(f1) + λf1 + (T − λ)f2

lies in ⊕n≥k+1R
−
n (σ) and satisfies the requirement.

Let π be a G-quotient of the compact induction indGK0
σ. Denote by

Rn(σ, π) (resp. R+
n (σ, π), R−n (σ, π)) the image ofRn(σ) (resp. R+

n (σ), R+
n (σ))

in π. Denote by f̄ the image of f in π, for a f ∈ indGK0
σ. Similarly, I+(σ, π)

(resp. I−(σ, π)) is the image of I+(σ) (resp. I−(σ)) in π.

Proposition 5.3. Assume π is an irreducible smooth representation and a

G-quotient of indGK0
σ, and v0 is a non-zero vector in σI1. Then

(1). [Id, v0] ∈
∑

n≥0R
−
n (σ, π);

(2). R0(σ, π) ⊂
∑

n≥1Rn(σ, π).

We note (1) in particular implies I+(σ, π) ∩ I−(σ, π) 6= 0.

Proof. (1). From Corollary 4.16, we see the givenG-surjective map indGK0
σ �

π will factor as

indGK0
σ � indGK0

σ/P (T ) � π

for some polynomial P (x) of degree greater than zero. Then the following

claim will finish the proof of (1):

[Id, v0] ∈ P (T )(indGK0
σ) +⊕n≥0R

−
n (σ). (31)

We pick a root λ of P (x) and write P (x) = (x − λ)P1(x) for some

polynomial P1(x). Let f be the function [α, v0] ∈ R−0 (σ). A little calculation

based on Proposition 3.41 shows that

(T − λ)f = [Id, v0] + f1 (32)

for some f1 ∈ ⊕n≥0R
−
n (σ). If P1(x) is a constant, then the preceding identity

(32) already gives us (31). Otherwise, using Lemma 5.2, we find some f2 ∈
⊕n≥1R

−
n (σ) such that

f − f2 ∈ P1(T )(⊕n≥1R
−
n (σ)),

which gives that [Id, v0] = (T−λ)f2−f1+P (T )f ′ for some f ′ ∈ ⊕n≥1R
−
n (σ),

as desired for (31). We are done for (1) .

(2). The second part indeed follows from (1) directly, as one notes that

R0(σ, π) is generated by [Id, v0] as a K0-representation.

Let φσ be the following I-morphism:

φσ : indGK0
σ � I−(σ) � I−(σ, π) ↪→ π,

93
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where the first surjection on the left is the natural projection from indGK0
σ

to I−(σ).

Then, one has

Lemma 5.4. I+(σ, π) ∩ I−(σ, π) is the image of R(σ, π) under φσ.

Proof. This is indeed a formal result of Y.Hu, Lemma 3.11 in [Hu12].

Recall we have the coset decomposition:

K0 = ∪u∈N0/N1
[u]βI ∪ I

Now we apply Lemma 2.10 in [Hu12]: take M to be the I-representation

I−(σ, π), which generates π as a K0 representation by Lemma 5.1. Consider

the induced representation W = IndK0
I M , and from Frobenius reciprocity

we are then given a surjective K0-morphism Pr : IndK0
I M � π, explicitly

sending [g, v] in IndK0
I M to gv in π. Denote by W1(σ, π) be the kernel of

Pr. As an I-representation, the following decomposition holds:

W = M ⊕W+.

The underlying space of W+ is generated by

{[uβ, v] : u = n(x, y), (x, y) ∈ L2, v ∈M}.

Denote by Q+ the image of W+ in π. Then, from Lemma 5.1 again, we see

it is just
∑

n≥1R
+
n (σ, π). Lemma 2.10 of [Hu12] gives

W1(σ, π) ⊆ IndK0
I (I−(σ, π) ∩

∑
n≥1R

+
n (σ, π))

Lemma 5.5. Assume we have an identity in π of the following form:∑
u=n(x,y),(x,y)∈L2

uβvu + v′ = 0

for some vu, v
′ ∈ I−(σ, π). Then all the vectors vu, v

′ lie in I+(σ, π) ∩
I−(σ, π).

Proof. This is implied by the preceding remarks.

5.2 An equivalent criteria for finiteness of R(σ, π)

Proposition 5.6. Let π be an irreducible smooth representation of G and

is a G-quotient of indGK0
σ. Let R(σ, π) be the corresponding kernel. Then

the following condition (2) implies (1) :

(1). I+(σ, π) ∩ I−(σ, π) is of finite dimension ;

(2). R(σ, π) is of finite type, as a Ẽ[G]-module.
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Proof. Assume {f1, f2, · · · , fl} is a finite set in R(σ, π) which generates it

over Ẽ[G]. For a large enough m ≥ 1, all the fi lie in ⊕0≤k≤mRk(σ). Let

M be the image of ⊕0≤k≤mRk(σ) in π. From Lemma 5.4, we only need to

show φσ(gfi) ∈ M for all g ∈ G, as M is of finite dimension. Of course, it

is the case for g ∈ K0, as ⊕0≤k≤mRn(σ) is stable under K0. We are then

reduced to the following simple lemma:

Lemma 5.7. For any n ≥ 1, φσ(αnfi) ∈M .

Proof. This results from some simple calculations. For n ≥ 1, αnf ∈ I−(σ)

when f ∈ I−(σ). Suppose k is an integer such that 0 ≤ k ≤ m; then, for

v ∈ σ, n(x, y) ∈ N0, we have

[αn · n(x, y) · α−k, v]
= [αn · n(x, y) · α−n · α−(k−n), v] ∈ I+(σ), for y ∈ p2n

E , n ≤ k;

∈ I−(σ), for y ∈ oE \ p2n
E , n ≤ k;

∈ I−(σ), n > k.

Hence, we can conclude, for f ∈ ⊕0≤l≤kRl(σ), when n > k, we have

(αnf+)+ = 0, which gives (αnf)+ = 0. When n ≤ k, we also have

(αnf)+ ∈ ⊕0≤l≤kRl(σ). For fi ∈ R(σ, π)∩⊕0≤k≤mRk(σ), we see φσ(αnfi) =

−(αnfi)+ ∈M immediately.

Remark 5.8. We have indeed shown that (αnf)+ ∈ ⊕0≤k≤mRk(σ), for any

f ∈ ⊕0≤k≤mRk(σ) and any n ≥ 1. In particular, φσ(αnf) ∈ M , for any

f ∈ R(σ, π) ∩ ⊕0≤k≤mRk(σ) and any n ≥ 1.

We turn to complete the proof from (2) to (1). As the ⊕0≤k≤mRk(σ)

is stable under K0, we only need to show: if f ∈ ⊕0≤k≤mRk(σ) ∩ R(σ, π),

then for any n ≥ 1, g ∈ K0, φσ(gαnf) ∈ M . Clearly, by Remark 5.8, the

claim is true if g ∈ I, as M is K0-stable and φσ is I-map. Assume g ∈
IβI. Recall that gαnf = g(αnf)+ + g(αnf)− and φσ(gαnf) = (gαnf)− =

−(gαnf)+. We only need to consider the case that g = β. But, by definition,

φσ(βαnf) = (β(αnf)+)−, and the claim results from Remark 5.8. We are

done.

Remark 5.9. We fail to prove (1) also implies (2). A simple reason we

are not able to carry out the strategy in [Hu12] is the lack of an element

in G which exchanges I+(σ) and I−(σ), which is due to the fact that the

normalizer of I is itself; in the case of GL2, the normalizer of the standard
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Iwahori subgroup contains an extra element11 which is not in the maximal

compact open subgroup, and this element plays a very crucial role in Hu’s

argument.

5.3 On the N0-invariants of I+(σ, π)

Lemma 5.10. Let π be a supersingular representation of G, and assume θ

is a non-zero G-morphism in HomG(indGK0
σ, π) for some compactly induced

representation indGK0
σ. Then, for large enough k ≥ 1, we have

θ ◦ T kσ = 0.

Proof. From Corollary 4.16, there is a polynomial f(Tσ) ∈ H (K0, σ) such

that θ ◦ f(Tσ) = 0. Assume f(Tσ) is such a polynomial of minimal degree.

As π is supersingular, any root of f(Tσ) must be zero, by Theorem 4.1.

In view of the Hecke operator Tσ, we define the following S, viewed as

an operator on the non-zero space πN0 for any smooth representation π.

Definition 5.11. For any v ∈ πN0, Sv is defined as

Sv =
∑

u∈N0/N2
uα−1 · v.

Proposition 5.12. (1). Sv is well-defined and lies in πN0.

(2). For any h ∈ H1, we have h · Sv = S(hv).

(3). If further v is fixed by I1, the same is true for Sv.

Proof. (1) is clear from the definition of S, which is well-defined as v ∈ πN0 .

For the proof of (2), we note first that h · v ∈ πN0 , as H1 normalizes N0.

Then,

S(hv) =
∑

u∈N0/N2
uhα−1v = h(

∑
u∈N0/N2

(h−1uh)α−1v)

which is just h(Sv) as required.

For (3), one needs some calculation as follows: from the Iwahori decom-

position and (1), (2) just proved, we are reduced to check, for n′(x, y) ∈ N ′1
n′(x, y)Sv = n′(x, y)

∑
u∈N0/N2

uα−1v =
∑

u∈N0/N2
n(x2, y2)−1α−1αb′α−1v,

where, writing u = n(x1, y1) ∈ N0, b′ is a lower triangular matrix as follows:
1

1+x1x+y1y
0 0

x−x1y
1+xx1+yy1

1+xx1+yy1
1+xx1+yy1

0

y yx1 − x̄ 1 + xx1 + yy1

 ,

11That is

(
0 1

$F 0

)
.
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and x2, y2 are then respectively

y1x−x1
1+y1y+x1x

, ȳ1
1+y1y+x1x

.

As v is fixed by I1, αb′α−1v = v. Now we only need to see n(x2, y2)−1 goes

through N0/N2 when u does so. This is indeed the case.

To use S in a more efficient way, we also involve another linear map S1

from πN0 to πN
′
1 for a smooth representation π of G.

Definition 5.13. For any v ∈ πN0, S1v is defined as

S1v =
∑

u′∈N ′1/N ′2
u′βα−1v.

Proposition 5.14. (1) S1 is well-defined and S1v ∈ πN
′
1 for v ∈ πN0.

(2) S1 · hv = hs · S1v, for a diagonal h in I.

(3) S1v ∈ πI1 if v ∈ πI1.

Proof. Assertions in (1) and (2) are easily checked from the definition of S1.

Now a similar calculation to that of Proposition 5.12, combined with (1)

and (2), confirms (3).

Lemma 5.15. Let π be a smooth representation of G. Given 0 6= v ∈ πI1,

such that I acts on v as a character, either Sv = 0 or 〈K0 · Sv〉 is an

irreducible representation of K0 of dimension bigger than 1.

Proof. Assume Sv 6= 0. Then by definition of S and S1, v′ = S1v is also

non-zero. Consider the K0-representation κ = 〈K0 · v′〉. As I acts on v by

a character χ, I acts on v′ by χs, from (2) of Proposition 5.14. Hence, from

Frobenius reciprocity there is a surjective K0-morphism from IndK0
I χs to κ,

which sends ϕχs to v′. From the definition of S, one has

Sv =
∑

u=n(x,y),(x,y)∈L2
uβv′;

As a result, 〈K0 · Sv〉 is the image of 〈K0 ·
∑

u=n(x,y),(x,y)∈L2
uβϕχs〉, which

is an irreducible representation of K0 of dimension bigger than one, due to a

general result of Carter-Lusztig, see (i) of Proposition 5.7 of [KX12]. Hence

the assertion.

Corollary 5.16. Assume π is a supersingular representation of G and v is

a non-zero vector in πI1. Then there exists a family of ci ∈ Ẽ and integer

k ≥ 0 such that, ∏
i(S + ci)

kSv = 0.
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Proof. We assume first I acts on v as a character χ.

From Lemma 5.15, the K0-representation σ generated by Sv is irre-

ducible of dimension bigger than one, if Sv 6= 0.

Assume Sv 6= 0. We are then given aG-morphism θ in HomG(indGK0
σ, π),

determined by θ([Id, Sv]) = Sv. From Lemma 5.10 and (14), there is some

constant c ∈ Ẽ and some k ≥ 1 such that

(S + c)kSv = 0,

and we are done in this special case.

As I/I1 is an abelian group of finite order prime to p, for any non-zero

v ∈ πI1 , the I-representation < I · v > is just a sum of characters, therefore

one may write v as a sum
∑
vi, where I acts on vi by some character χi of

I/I1. We then apply the former process to each vi, hence the result.

Lemma 5.17. Suppose π is a supersingular representation and a G-quotient

of indGK0
σ. If 0 6= v ∈ I+(σ, π) is fixed by N0, then there is a polynomial P

of degree ≥ 1, such that :

P (S)v = 0.

Proof. Based on Corollary 5.16, the result follows by an induction argument,

due to Y. Hu [Hu12].

Denote by mv the dimension of the I1-representation 〈I1 · v〉, for v ∈
I+(σ, π)N0 .

When mv = 1, i.e., v is fixed by I1, the assertion is just the content

of Corollary 5.16. Assume mv ≥ 2 and the Lemma is true for any v′ ∈
I+(σ, π)N0 such that mv′ < mv. Then for any h ∈ I1∩H, m(h−1)v is strictly

smaller than mv, from Lemma 4.12 of [Hu12]. By the induction hypothesis,

there is a non-constant polynomial Ph such that

Ph(S)(h− 1)v = 0.

However, as 〈(I1 ∩ H)v〉 is of finite dimension, one could then choose a

non-constant polynomial P ′ such that

P ′(S)(h− 1)v = 0

for all h ∈ I1 ∩H. This just says h ·P ′(S)v = P ′(S)v, by (2) of Proposition

5.12. In other words, by replacing v with P ′(S)v, for some non-constant

polynomial P ′, one may assume further that v is fixed H ∩ I1.

Next, v is fixed by N ′2k+1 for some k ≥ 1, as π is a smooth representa-

tion. Now, the same calculation used in Proposition 5.12 gives us that, for

a u′ ∈ N ′2k−1,

98



5.4 Restriction to Borel subgroup

u′ · Sv = u′
∑

u∈N0/N2
uα−1v =

∑
u∈N0/N2

u1α
−1αb′α−1v,

where u1 goes through N0/N2 when u goes through N0/N2, and αb′α−1 is

lower triangular matrix in N ′2k+1, as u′ ∈ N ′2k−1 (from the explicit descrip-

tion of b′ in the argument of Proposition 5.12). Therefore, one concludes

that Sv is fixed by N ′2k−1 . Repeating the process for enough times, we have

shown Skv is fixed by N ′1. Hence Skv is fixed by I1, and the Lemma follows

then by using Corollary 5.16 again. We are done.

We record the following observation as a corollary, in which we assume

π is smooth irreducible and that there is a G-morphism from a compact

induction indGK0
σ to π.

Corollary 5.18. Let 0 6= v ∈ I+(σ, π)N0, and Sv = 0. Then S1v ∈
I+(σ, π) ∩ I−(σ, π).

Proof. By (1) of Proposition 5.14, S1v is well-defined. As v ∈ I+(σ, π), a

simple calculation shows that S1v ∈ I−(σ, π). Now from the assumption

that Sv = 0, the result follows from Lemma 5.5.

Conjecture 5.19. Let π be an irreducible supersingular representation.

Then one has the following inclusion:

S1(I+(σ, π)N0) ⊆
∑

k≥0 S
k(I+(σ, π) ∩ I−(σ, π))

5.4 Restriction to Borel subgroup

The following formal result, whose proof is due to V. Paškūnas([Paš07]),

provides some evidence that the definition of S is reasonable.

Proposition 5.20. Let π be an irreducible smooth representation of G. If,

for any non-zero vector w ∈ π, there is a non-zero vector v ∈ πI1 ∩ 〈B · w〉
such that

Sv = 0,

then π |B is irreducible.

Proof. Let w be a non-zero vector in π. As π is a smooth representation,

there exists a k ≥ 0 such that w is fixed by N ′2k+1. Hence, w1 = α−kw is

fixed by N ′1. From the Iwahori decomposition I1 = (I1 ∩B) ·N ′1, we see

〈I1 · w1〉 = 〈(I1 ∩B) · w1〉.
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As I1 is a pro-p group, the I1-invariants of above smooth representation is

non-zero. We have shown πI1 ∩ 〈B · w〉 6= 0.

We record the following lemma, which makes the whole thing more

apparent.

Lemma 5.21. If Sv = 0, then βv ∈ 〈B · v〉.

Proof. Assume Sv = 0. Hence, we get

v = α ·
∑

u∈(N0\N2)/N2
uα−1v

Therefore, βv =
∑

(N0\N1)/N2
βαuα−1v+

∑
(N1\N2)/N2

βαuα−1v. Repeatedly

using of Lemma 1.2, one see both sums in the former equation lie in 〈B ·
v〉.

We continue with proof of Proposition 5.20. Choose 0 6= v ∈ πI1∩〈B ·w〉
such that Sv = 0. The above lemma says βv ∈ 〈B · v〉. As π is irreducible,

from the decomposition G = BI1 ∪BβI1, we see

π = 〈G · v〉 = 〈B · v〉 ⊆ 〈B · w〉.

Hence, we have shown π = 〈B · w〉 for any w ∈ π. We are done.

Remark 5.22. Clearly from the argument, the above proposition still holds

if the condition that Sv = 0 is replaced by βv ∈ 〈B · v〉.

Remark 5.23. Of course, the condition in Proposition 5.20 is only suffi-

cient. For example, one may check easily Sp |B is irreducible : We have

shown ḡ1 generates SpI1. In fact, a further look of the identity in (2) of

Proposition 4.14 gives immediately that βḡ1 ∈ 〈B · ḡ1〉, hence the claim by

last remark. But one can check S · ḡ1 6= 0.

Certainly, the most interesting case is to check what happens for super-

singular representations π, which is also the goal of this section. However,

in view of Proposition 5.20, we only have the following embarrassing result:

Corollary 5.24. Let π be a supersingular representation of G. If all the

underlying weights σ of π with dim σ > 1 satisfy χσ 6= χsσ, then π |B is

irreducible.
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+
k ) for

k ≥ 1 when F = Qp

It is very likely that indGK0
σ/(Tσ) is non-admissible, and one goal of the

section is to provide some evidence on that. We carry out some local com-

putations on the tree, some of which work for any field. But for simplicity,

in the main result Proposition 5.27 we pursue it under the assumption that

F = Qp. See Remark 5.33 for more details that how it would be applied.

The group Nk is non-commutative, and we denote its center by CNk .

Lemma 5.25. The u(y)-translations of uk,v consist of a basis of the CN0-

invariants of R+
k (σ), where y goes through oE/p

k
E, v goes through a basis of

σCNk , and uk,v is the following function :

uk,v =
∑

u∈CN0
/CN2k

[uα−k, v].

Proof. First recall the double coset decomposition

K0α
kN0 = ∪y∈oE/pkE K0α

ku(y)CN0 .

It is clear that the functions uk,v and their translations by u(y) are CN0-

invariant and linearly independent, and we only need to show any CN0-

invariant function in R+
k (σ) is a linear combination of them.

Let f be a CN0-invariant function in R+
k (σ), supported on K0α

kCN0 .

The value of f at αku for u ∈ CN0 is then a CN0-invariant vector in σ, and

the Lemma follows.

Fix a non-zero vector v0 ∈ σI1 , and write uk for uk,v0 . Denote by Dk(σ)

the subspace of R+
k (σ) which is generated by the u(y)-translation of uk, for

all y ∈ oE/p
k
E . Recall that the T+ respects the action of N0, in particular

it preserves CN0-invariants. Then, we have,

Proposition 5.26. T+(uk) = λβ,σcσ · uk +
∑

y∈pkE/p
k+1
E

u(y) · uk+1, where

u(y) = n(y,−yȳ
2 ), and cσ is described in the proof.

Proof. This is from explicit calculations. As T is G-equivalent, we have from

the argument of Proposition 3.37 for a u ∈ CN0

T+([uα−k, v0]) =

uα−k
∑

v∈N0/N2
[vα−1, v0] + uα−kλβ,σ

∑
w∈(N ′1\N ′2)/N ′2

[wα, v′0],

where the first sum is in R+
k+1(σ) and the second sum is R+

k (σ). Hence, we

have
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T+(uk) =
∑

v∈N0/N2

∑
u∈CN0

/CN2k
[uα−kvα−1, v0] +∑

w∈(N ′1\N ′2)/N ′2

∑
u∈CN0

/CN2k
[uα−kwα, v′0].

When v goes through N0/N2, v1 = α−kvαk goes through N2k/N2k+2. We

split v1 into v2 · u(y), where v2 ∈ C2k/C2k+2 and y ∈ pkE/p
k+1
E . We are done

for the second sum in the Proposition, by the definition of uk+1.

Write w = n′(0, $Ey) where y ∈ L∗1. We have by Lemma 1.2 that

α−kwαk = βn(0, $
−(2k−1)
E y)β =

n(0, $2k−1
E y−1)α−(2k−1)n′(0, $2k−1

E y−1)hwβ,

where hw = diag(y, 1, ȳ−1). As h · v0 = χσ(h)v0, and βv′0 = v0, which is

fixed I1, we obtain∑
w∈(N ′1\N ′2)/N ′2

∑
u∈CN0

/CN2k
χσ(hw)[u · n(0, $2k−1

E y−1)α−k, v0].

By noting n(0, $2k−1
E y−1) ∈ CN0 , we finally get∑
w∈(N ′1\N ′2)/N ′2

χσ(hw)
∑

u∈CN0
/CN2k

[uα−k, v0]

as required, where the sum
∑

w∈(N ′1\N ′2)/N ′2
χσ(hw) is the constant cσ. We

are done.

Based on last Proposition, we are led to the main result of this section.

Proposition 5.27. When F = Qp, the subspace of the functions in Dk(σ)⊕
Dk+1(σ) which are N0-invariant in the quotient R+

k ⊕ R
+
k+1/T

+(R+
k ) is at

least of dimension p(p− 1) + 1.

Proof. When q = p, the group N0 is generated (topologically) by three

elements, say n(1,−1
2), n(η,−ηη̄

2 ) and n(0, η − η̄). Hence by restricting to

CN0-invariant functions, we only need to consider the actions of first two

elements.

Assume f =
∑

y∈oE/pkE
l′yu(y) ·uk+

∑
y∈oE/pk+1

E
lyu(y) ·uk+1 is a function

in Dk(σ) ⊕ Dk+1(σ) whose image in R+
k ⊕ R

+
k+1/T

+(R+
k ) is N0-invariant.

Therefore, we are reduced to looking for functions g1, g2 ∈ R+
k , such that

u(1) · f − f = T+ · g1, u(η) · f − f = T+ · g2.

We note that the existence of gi implies that it must be a CN0-invariant

function, as T+ is injective. In the following we will show gi could be chosen

in Dk(σ); as a result they are uniquely determined.

Now we could in principle apply Proposition 5.26 and compare the

coefficients to solve out the involved parameters. However, as we don’t

really need to determine all of the solutions, we restrict to those satisfying
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∗ l′y = l′y′ and ly = ly′ if y ≡ y′ mod pE .

We now re-write both side of the equation u(1) · f − f = T+ · g1 as

u(1) · f − f =
∑

y∈oE/pkE
(l′y−1 − l′y)u(y)uk +

∑
y∈oE/pk+1

E
(ly−1 − ly)u(y)uk+1

T+(
∑

y∈oE/pkE
d1,yu(y)uk) =∑

y∈oE/pkE
d1,yu(y)(λβ,σcσuk +

∑
y1∈pkE/p

k+1
E

u(y1)uk+1) =∑
y∈oE/pkE

λβ,σcσd1,yu(y)uk +
∑

y∈oE/pk+1
E

d1,yu(y)uk+1.

In the above we note that y + y1 goes through oE/p
k+1
E when y and y1 go

through respectively oE/p
k
E and pkE/p

k+1
E , and that u(y)u(y1) = u(y+ y1) · c

for some c ∈ CN0 (c depends on y and y1). Hence, we are lead to

l′y−1 − l′y = λβ,σcσd1,y, y ∈ oE/p
k
E . (33)

and

ly−1 − ly = d1,y, y ∈ oE/p
k+1
E . (34)

From the second equation u(η) · f − f = T+ · g2, we have similarly

l′y−η − l′y = λβ,σcσd2,y, y ∈ oE/p
k
E . (35)

and

ly−η − ly = d2,y, y ∈ oE/p
k+1
E . (36)

Then under the assumption ∗, we are required to look those l′y (resp. ly)

for y ∈ oE/p
k
E (resp. y ∈ oE/p

k+1
E ), which makes the families of equations

in (33) and (35) (resp. (34) and (36)) compatible. We recall that in most

cases λβ,σ and cσ are just zero. In that situation, we simply take all the l′y
to be zero (i.e., we throw all the other non-trivial solutions). In the cases

that λβ,σcσ 6= 0, the assumption ∗ reduces (33) and (35) as

l′y−1 − l′y = λβ,σcσd1,y, y ∈ oE/pE . (37)

and

l′y−η − l′y = λβ,σcσd2,y, y ∈ oE/pE . (38)

Now we identify η with a generator of kE over kF , hence we identify kE with

kF ⊕ kF η.

Then the families of equations (37) and (38) could be re-written as,

l′a−1+bη − l′a+bη = λβ,σcσd1,a+bη, a, b ∈ kF . (39)

l′a+(b−1)η − l
′
a+bη = λβ,σcσd2,a+bη, a, b ∈ kF . (40)
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In the families of (39) or (40), for a fixed b, we look at those p equations for

which a goes through kF . Immediately, we see the following conditions are

necessary: ∑
a∈kF

d1,a+bη = 0,
∑
a∈kF

d2,a+bη = 0. (41)

We note for a fixed b ∈ kF , the solutions {di,a+bη}a∈kF in former equation

consist of a linear space over kF of dimension p − 1. Then given a such

(non-trivial) solution {di,a+bη}a∈kF , the solutions of those p equations (more

precisely) are uniquely determined up to adding a one-dimensional vector

space, as the underlying matrix of the coefficients is of rank p − 1. We

need to make the former description more precisely. By identifying kF with

Fp = {i; 0 ≤ i ≤ p− 1}, for a fixed j satisfying 0 ≤ j ≤ p− 1, we have from

(39)

l′i+jη = l′jη − λβ,σcσ
∑

0<i′≤i d1,i′+jη for i > 0;

Similarly, for a fixed i satisfying 0 ≤ i ≤ p− 1, we have from (40) that

l′i+jη = l′i − λβ,σcσ
∑

0<j′≤j d2,i+j′η for j > 0.

Putting them together, we have uniformly for ij 6= 0 (the case that ij = 0

is already covered in last two equations) that,

l′i+jη = l′0 − λβ,σcσ
∑

0<j′≤j
d2,j′η − λβ,σcσ

∑
0<i′≤i

d1,i′+jη. (42)

In summary, for a given family of {d1,a+bη, d2,a+bη}0≤a,b≤p−1 satisfying

condition (41), the solution {l′i+jη}0≤i,j≤p−1 is uniquely determined by l′0.

We repeat the whole process to treat the equations (34) and (36) and

conclude similarly that for a given family of {d1,a+bη, d2,a+bη}0≤a,b≤p−1 sat-

isfying condition (41), the solution {li+jη}0≤i,j≤p−1 is uniquely determined

by l0.

Hence the dimension of the space of the solutions {li+jη, l′i+jη; 0 ≤
i, j ≤ p− 1} is at least p(p− 1) + 1.

We are done for the proof of the Proposition.

Corollary 5.28. When F = Qp, σ is a character, the N0-invariant of

R+
k (σ)⊕R+

k+1(σ)/T+(R+
k (σ)) is at least of dimension p(p− 1).

Proof. We need to estimate those solutions described in Proposition 5.27

which lie in the image of T+. Recall the solutions in 5.27 are all CN0-

invariant, and as T+ is injective we see the solutions with a form T+(f) for

some f ∈ R+
k (σ)CN0 is at most one-dimensional, by comparing the support

of the solution and that of T+f , using Lemma 5.25.
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5.5 Estimation of N0-invariants of R+
k−1 ⊕R

+
k ⊕R

+
k+1/T (R+

k ) for k ≥ 1

when F = Qp

In view of the above corollary, it is reasonable to hope its generalization

holds, although currently we are not able to verify it:

Conjecture 5.29. Those solutions described in Proposition 5.27 which be-

come zero in R+
k (σ)⊕R+

k+1(σ)/T+(R+
k (σ)) are at most one dimensional and

the N0-invariant of R+
k (σ) ⊕ R+

k+1(σ)/T+(R+
k (σ)) is at least of dimension

p(p− 1), for any irreducible smooth representation σ of K0.

Remark 5.30. Assume Conjecture 5.29 holds. It is directly to check that

the solutions from Proposition 5.27 are killed by T−; as a result we see

f−(k−1) + gk + gk+1 is a function in R+
k−1 ⊕ R+

k ⊕ R+
k+1 whose image in

the quotient R+
k−1 ⊕ R

+
k ⊕ R

+
k+1/T (R+

k ) is N0-invariant, for any function

gk + gk+1 in R+
k ⊕ R+

k+1 found in the proposition satisfying its image in

R+
k ⊕R

+
k+1/T

+(R+
k ) is N0-invariant. Such process is indeed injective, hence

we have shown the following corollary.

Corollary 5.31. Assume Conjecture 5.29 holds. The dimension of N0-

invariants of R+
k−1 ⊕R

+
k ⊕R

+
k+1/T (R+

k ) is bigger or equal than p(p− 1).

Remark 5.32. In the statement of Corollary 5.31, one may replace T by

T − λ, for any λ ∈ Ẽ.

Remark 5.33. We briefly comment on how the above Proposition is expect-

ed to be used. We begin with the following short exact sequence of smooth

N0-representations induced by the Hecke operator T :

0→ R+
1

T−→ R+
0 ⊕R

+
1 ⊕R

+
2 → Coker(T |R+

1
)→ 0

Then the derived long exact sequence will give rise to a H1(T ) map :

H1(T ) : H1(R+
1 )→ H1(R+

0 ⊕R
+
1 ⊕R

+
2 ).

Then the result from last Corollary (combining Lemma 3.38) will guarantee

H1(T ) is not injective.
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6 Appendix A: Coefficient systems and Diagrams

In this appendix, besides other things, we follow [Paš04] to prove some

formal results which interpret G-equivariant coefficient systems on 4 in

terms of diagrams, which is the content of Theorem 6.2.

We remind the readers that, the concept of equivariant coefficient sys-

tems on the Bruhat–Tits building of a p-adic connected reductive group is

given by Schneider and Stuhler in [SS97], in which it is in the context of com-

plex representations. However, the concept also works for fields of positive

characteristic. In [Paš04], Paškūnas firstly used it to construct supersingular

representations of GL2(F ). Clearly, our presentation in this chapter is close

to that in [Paš04]. It is believable that Theorem 6.2 should hold in much

more general settings, if one has the right definition of diagrams.

6.1 Coefficient systems and Diagrams

Assume Ẽ is an algebraically closed field of characteristic p. Let X0

be the set of all vertices on the tree 4, and X1 be the set of all edges on

X. In this chapter, we will denote the two vertices v0 and v1 respectively

by σ0 and σ1, and the edge e0,1 by τ0,1. The stabilizers of σ0, σ1, τ0,1 are

respectively R(σ0) = K0, R(σ1) = K1, R(τ0,1) = I.

Let V = (Vσ)σ be a coefficient system on 4, i.e., for each simplex σ,

Vσ is a given Ẽ-vector space; for each pair σ ⊆ τ of simplices, there is a

given linear map rστ from Vτ to Vσ, satisfying rσσ = Idσ; for each g ∈ G

and each simplex σ, there is a given linear map gσ from Vσ to Vgσ, which is

compatible with the action of G on 4 and commutes the restriction maps in

the obvious way. For each simplex σ, the stabilizer R(σ) of σ acts linearly

on Vσ. An G-equivariant coefficient system (Vσ)σ is a coefficient system,

satisfying that the action of R(σ) on Vσ is smooth, for any simplex σ.

Denote by COEFG the category of G-equivariant coefficient systems on

4, with the natural morphisms. Before going into more details, we record

the following useful fact.

Let V = (Vσ)σ be a G-equivariant system, and let τ = (σ, σ′) be an

edge, then there is g ∈ G such that, τ = gτ0,1, in other words, σ = gσ0,

σ′ = gσ1. Without difficulty, we see

Vσ = gσ0Vσ0 , Vσ′ = gσ1Vσ1 , Vτ = gτ0,1Vτ0,1 .

From these translation relations, we have the following relations on the re-

striction maps:

rτσ = gσ0 · r
τ0,1
σ0 · (g−1)τ , r

τ
σ′ = gσ1 · r

τ0,1
σ1 · (g−1)τ . (43)
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6.1 Coefficient systems and Diagrams

Definition 6.1. A diagram is a quintuple D = (D0, D1, D0,1, r0, r1), in

which (ρi, Di) is a smooth Ẽ-representation of R(σi), and (ρ0,1, D0,1) is a

smooth Ẽ-representation of R(τ0,1), and ri ∈ HomI(D0,1, Di), i = 0, 1.

A morphism between two diagrams D = (D0, D1, D0,1, r0, r1) and D′ =

(D′0, D
′
1, D

′
0,1, r

′
0, r
′
1) is a triple (ψ0, ψ1, η0,1), where ψi ∈ HomR(σi)(Di, D

′
i),

and η0,1 lies in HomI(D0,1, D
′
0,1), and they together make the following

diagrams commute as I-representations:

Di
ψi−−−−→ D′i

ri

x xr′i
D0,1

η0,1−−−−→ D′0,1

We see the set of diagrams with the morphisms defined above becomes

a category, which we denote by DIAG. The main result of this chapter can

be briefly stated as:

Theorem 6.2. The categories DIAG and COEFG are equivalent.

6.1.1 Homology

Let V = (Vτ )τ be aG-equivariant coefficient system. Denote by Cc(X0,V)

the Ẽ-vector space of all maps:

ω : X0 → ∪
σ∈X0

Vσ,

such that:

- ω has finite support;

- ω(σ) ∈ Vσ for every vertex σ.

Denote by Cc(X1,V) be the Ẽ-vector space of all maps:

ω : X1 → ∪
(σ,σ′)∈X1

V(σ,σ′),

such that

- ω has finite support;

- ω((σ, σ′)) ∈ V(σ,σ′).

There is an action of G on the two spaces above, induced from that of

G on the tree X and V. In more words, for an element g ∈ G,

g · ω(σ) = gg−1σ(ω(g−1σ)), for ω ∈ Cc(X0,V);

g · ω(τ) = gg−1τ (ω(g−1τ)), for ω ∈ Cc(X1,V).

The boundary map ∂ is defined as:
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6.1 Coefficient systems and Diagrams

∂ : Cc(X1,V)→ Cc(X0,V)

ω 7→ (σ 7→
∑
τ
rτσ(ω(τ))),

where τ goes through the edges which contain the vertex σ. It could be

checked that ∂ is a G-map. Define H0(X,V) as the cokernel of ∂, which

inherits a smooth representation of G.

6.1.2 First properties of H0(X,V)

We fix a G-equivariant coefficient system V = (Vτ )τ in this subsection.

Lemma 6.3. Let ω be a 1-chain, supported on a single edge τ = (σ, σ′).

Then

∂(ω) = ωσ + ωσ′,

where ωσ and ωσ′ are two 0-chains, supported respectively on σ and σ′. In

more words, let v = ω(τ), then

ωσ = rτσ(v), and ωσ′ = rτσ′(v).

Proof. This comes from the definition of boundary map ∂ directly.

Lemma 6.4. Let ω be a 0-chain, supported on a single vertex σ. Suppose

that the two restriction maps r
τ0,1
σ0 and r

τ0,1
σ1 are both injective. Then the

image of ω in H0(X,V) is non-zero.

Proof. From the assumption and (43) above, we see every restriction map

is injective. Given a non-zero 1-chain ω. If the support of ω consists of a

single edge τ , then Lemma 6.3 and the injectivity of restriction maps tell

that ∂(ω) is supported on the origin and terminus of τ . Otherwise, we can

find at least two edges, say τ ′ and τ ′′, which are in the support of ω, and

they are both the boundary of the support ω; for one endpoint σ′ of τ ′ and

another σ′′ of τ ′′, they appear only one time as an endpoint of some edge in

the support of ω. We then compute by definition the ∂(ω)(σ′) and ∂(ω)(σ′′).

The injectivity of restriction maps guarantee they are both non-zero, i.e.,

∂(ω) is supported at least at σ′ and σ′′. We are done.

Lemma 6.5. Let ω be a 0-chain. Suppose the two restriction maps r
τ0,1
σ0

and r
τ0,1
σ1 are both surjective. Then, for any vertex σ, there is a 0-chain ωσ,

supported on the single vertex σ, such that,

ω + ∂Cc(X1,V) = ωσ + ∂Cc(X1,V)

108



6.1 Coefficient systems and Diagrams

Proof. As r
τ0,1
σ0 and r

τ0,1
σ1 are surjective, we see every restriction map is sur-

jective from (43). It is enough to prove the Lemma for a 0-chain which is

supported on a single vertex, as every ω is a finite sum of such one.

Let ωσ′ be a 0-chain, supported on a single vertex σ′, and let σ be

any vertex. If σ′ = σ, the Lemma to be proved is certainly true. Suppose

we have shown the Lemma holds for the vertices whose distance from σ is

smaller than m, and the path from σ′ to σ is of length m ≥ 1. Denote by

τ the edge that contains the vertex σ′, and which lies in the path from σ′

to σ, let σ′′ be the other vertex of τ . Let ω′ be the 1-chain supported on

τ , say ω′(τ) = v for some v ∈ Vτ which satisfies rτσ′(v) = ωσ′(σ
′). This is

possible because rτσ′ is surjective. Let ωσ′′ be the 0-chain, supported on the

vertex σ′′, and ωσ′′(σ
′′) = rτσ′′(v). Then Lemma 6.3 says ∂(ω′) = ωσ′ + ωσ′′ .

Equivalently, ωσ′ + ∂Cc(X1,V) = −ωσ′′ + ∂Cc(X1,V). Now, −ωσ′′ is a

0-chain supported on the vertex σ′′ which is of distance m − 1 from σ.

By induction assumption, there is 0-chain ωσ supported on σ, such that

−ωσ′′ + ∂Cc(X1,V) = ωσ + ∂Cc(X1,V). We are done.

Remark 6.6. It is worth to note that the surjectivity of both r
τ0,1
σ0 and r

τ0,1
σ1

is essential here. One does not get enough information required if only one

of them is surjective. In other words, there are then many 0-chains which

are not necessarily congruent to a 0-chain supported on a single vertex.

Proposition 6.7. Suppose r
τ0,1
σ0 and r

τ0,1
σ1 are both isomorphisms of vector

spaces.

(1) H0(X,V) |K0
∼= Vσ0 , H0(X,V) |K1

∼= Vσ1, H0(X,V) |I ∼= Vτ0,1
(2) The following diagrams commute as I-representations:

Vσi
i·(evi)−1

−−−−−−→ H0(X,V)

r
τ0,1
σi

x xId
Vτ0,1

ι−−−−→ H0(X,V)

where i = 0, 1.

Proof. For i = 0, 1, denote by Cc(σi,V) the vector space of 0-chains which

are supported on the single vertex σi. We then have an evaluation map evi,

which is an isomorphism of R(σi)-representations:

evi : Cc(σi,V)→ Vσi
ω 7→ (−1)δ(σi)−1ω(σi),
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6.1 Coefficient systems and Diagrams

where δ(σi) is the period of σi.

Let i be the composition of the inclusion Cc(σi,V) → Cc(X0,V) and

the canonical map Cc(X0,V) → H0(X,V). It’s certainly an R(σi)-map.

Moreover, Lemma 6.4 and Lemma 6.5 imply that i is indeed an isomorphism

of vector spaces. We get the isomorphism i ·(evi)−1 : Vσi → H0(X,V) |R(σi)

. As r
τ0,1
σi are isomorphisms of I-representations, and I ⊂ Ki, we see ι =

i ·(evi)−1 ·rτ0,1σi : Vτ0,1 → H0(X,V) |I is an isomorphism of I-representations.

We have shown (1)

(2) follows from the construction of (1).

6.1.3 Constant functor

Let RepG be the category of smooth Ẽ-representations of G. Let π be

a smooth representation of G, with underlying space W . Let σ be a simplex

on the tree X, and we set

(Kπ)σ = W .

If σ ⊆ σ′ are two simplices, the restriction map rσ
′
σ is defined as IdW . For

every g ∈ G, and every simplex σ in X, the linear map gσ is defined by:

gσ : (Kπ)σ → (Kπ)gσ
v 7→ π(g) · v.

This G-equivariant coefficient system defined on X is denoted by Kπ.

Lemma 6.8. Let π be a smooth representation of G. Then

H0(X,Kπ) ∼= π

as G-representations.

Proof. Define an evaluation map ev from Cc(X0,Kπ) to π:

ev : Cc(X0,Kπ)→ π

ω 7→
∑
σ∈X0

(−1)δ(σ)−1 · ω(σ),

where δ(σ) is the period of σ. ev is well-defined as every ω is of finite

support. It’s easy to check that ev is a G-map.

As the restriction maps are IdW , we see from Lemma 6.3 that, ev is

trivial on the image of the boundary map ∂. Hence ev induces a G-map:

ev : H0(X,Kπ)→ π.
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6.1 Coefficient systems and Diagrams

We need to show the above G-map is also an isomorphism of vector

spaces. We note that (Kπ)σi = W , then we see

ev | Cc(σi,Kπ) = evi

by our definitions, i.e., evi = ev ◦ i, i = 0, 1. Here evi and i are the maps

defined in the last subsection (for V = Kπ). As the restriction maps are IdW ,

we have observed that i is an isomorphism of vector space in the argument

of Proposition 6.7, which gives us ev = evi ◦ −1
i : H0(X,Kπ)→ (Kπ)σi is as

desired.

Proposition 6.9. Let V = (Vσ)σ be a G-equivariant coefficient system. Let

(π,W ) be a smooth representation of G. Then

HomCOEFG(V,Kπ) ∼= HomG(H0(X,V), π)

Proof. By Lemma 6.8, H0(X,Kπ) ∼= π. Any morphism betweenG-equivariant

coefficient systems induces a homomorphism between the corresponding 0-

homology which is compatible with the action of G, i.e., there is a map:

HomCOEFG(V,Kπ)→ HomG(H0(X,V), π),

and we need to construct an inverse of this map.

Let φ ∈ HomG(H0(X,V), π). Given a vertex σ and a vector v in Vσ, let

ωσ, v be the 0-chain, such that

Supp ωσ, v ⊆ σ, ωσ, v(σ) = v.

For the simplex σ, we then define

φσ : Vσ →W

v 7→ φ(ωσ, v + ∂Cc(X1,V)).

For an edge τ on the tree X, with endpoints σ and σ′, we define

φτ : Vτ →W

v′ 7→ (−1)δ(σ)−1φσ(rτσ(v′)).

The independence of the choice of the vertex σ in the definition of φτ
comes from Lemma 6.3, i.e.,

φ(ωσ, rτσ(v′) + ∂Cc(X1,V)) = φ(−ωσ′, rτ
σ′ (v

′) + ∂Cc(X1,V)).

Then this variety of linear maps (φσ)σ consists of a morphism from the

coefficient system V to Kπ, furthermore it respects the actions of G on them.

One can check that it induces φ on the 0-homology without difficulty.

111



6.1 Coefficient systems and Diagrams

There is a natural functor from the category of coefficient systems to

that of diagrams:

Definition 6.10. Let D be the functor from COEFG to DIAG:

D : COEFG → DIAG
V = (Vσ)σ 7→ (Vσ0 , Vσ1 , Vτ0,1 , r

τ0,1
σ0 , r

τ0,1
σ1 )

We will construct an inverse C of D in the following subsections. Fix

an object D = (D0, D1, D0,1, r0, r1) in DIAG.

6.1.4 Underlying vector space

From the diagram D above, we can form the following compactly in-

duced representations:

indGK0
ρ0, indGK1

ρ1, indGI ρ0,1.

For a vertex σ ∈ X0, with period δ(σ), there is g ∈ G, such that

σ = gσδ(σ)−1. We then define

Fσ = {f ∈ indGKδ(σ)−1
ρδ(σ)−1 : Supp f ⊆ Kδ(σ)−1g

−1}

For an edge τ ∈ X1, there is a g ∈ G, such that τ = gτ0,1. We define

Fτ = {f ∈ indGI ρ0,1 : Supp f ⊆ Ig−1}

6.1.5 Restriction maps

To define the restriction maps, we start with two fundamental ones,

r
τ0,1
σi , i = 0, 1, and then we extend them to the general case by translations.

For i = 0, 1, the evaluation map evi from Fσi to Di is naturally an

isomorphism of Ki-representations, defined by

evi : Fσi → Di

f 7→ f(1),

whose inverse ev−1
i is

ev−1
i : Di → Fσi
v 7→ fv,

where fv is supported on Rσi , and fv(k) = ρi(k)v, for k ∈ Rσi .
Similarly, we have isomorphisms ev0,1 and ev−1

0,1 of I-representations,
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6.1 Coefficient systems and Diagrams

ev0,1 : Fτ0,1 → D0,1

f 7→ f(1),

and

ev−1
0,1 : D0,1 → Fτ0,1

v 7→ fv,

where fv is supported on I, and fv(i) = ρ0,1(i)v for i ∈ I.

Let r
τ0,1
σi = ev−1

i ◦ri ◦ev0,1, for i = 0, 1. It is an I-map from Fτ0,1 to Fσi .

For later application, we write down r
τ0,1
σi explicitly: on fv, for any v ∈ D0,1,

we have

r
τ0,1
σi (fv) = fri(v). (44)

In summary, we get a diagram D̃ = (Fσ0 , Fσ1 , Fτ0,1 , r
τ0,1
σ0 , r

τ0,1
σ1 ), and D

is isomorphic to D̃ via the morphism ev = (ev0, ev1, ev0,1).

Let τ be an edge, containing a vertex σ. Then there exists g ∈ G such

that

τ = gτ0,1, σ = gσδ(σ)−1, (45)

in which we note that the choice of g is up to right multiplication by an

element of I.

Define the restriction map rτσ from Fτ to Fσ as:

rτσ : Fτ → Fσ
f 7→ g · rτ0,1σδ(σ)−1

(g−1 · f).

We need to verify the definition above is independent of the choice of g. But

this is immediate: any other choice g′ differs from g by an element i ∈ I,

and the result comes from the fact that r
τ0,1
σδ(σ)−1

is an I-map. We conclude

from (44) that rτσ(f) = g · frδ(σ)−1(v), where v = f(g−1).

For any simplex τ , let rττ = IdFτ .

6.1.6 G-action

In 6.1.4, for any simplex τ , g · f has been defined, for any g ∈ G and

f ∈ Fτ , from which there is a linear map:

gτ : Fτ → Fgτ
f 7→ gf

Certainly, 1τ is the identity map and ghτ ◦ hτ = (gh)τ . We still need

to check the linear maps above are compatible with the restriction maps in

6.1.5. In other words, for an edge τ , containing a vertex σ, the following

diagram is commutative
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6.1 Coefficient systems and Diagrams

Fσ
gσ−−−−→ Fgσ

rτσ

x xrgτgσ
Fτ

gτ−−−−→ Fgτ

for any g ∈ G.

On the one hand, from (44), for a chosen g′ satisfying the condition

in (45), gτ · rτσ(f) = gg′ · frδ(σ)−1(v), where v = f(g′−1). On another hand,

rgτgσ · gτ (f) = rgτgσ(g · f) = gg′frδ(σ)−1(v′), where v′ = g · f((gg′)−1) = v. We

are done.

In summary, we have associated a G-equivariant system F = (Fσ)σ to

a diagram D.

6.1.7 Morphisms

Let D = (D0, D1, D0,1, r0, r1) and D′ = (D′0, D
′
1, D

′
0,1, r

′
0, r
′
1) be two

diagrams, and ψ = (ψ0, ψ1, η0,1) be a morphism between them. Let F =

(Fσ)σ and F ′ = (F ′σ)σ be the coefficient systems associated to D and D′.

Let σ be a vertex, and let g ∈ G be such that σ = gσδ(σ)−1. For f ∈ Fσ,

let v = f(g−1), then we define

ψσ : Fσ → F ′σ
f 7→ g · fψδ(σ)−1(v),

where fψδ(σ)−1(v) is the unique function in F ′σ such that fψδ(σ)−1(v)(1) =

ψδ(σ)−1(v).

Let τ be an edge, and let g ∈ G be such that τ = gτ0,1. Similarly, for

f ∈ Fτ , let v = f(g−1), and we define:

ψτ : Fτ → F ′τ
f 7→ g · fη0,1(v),

where fη0,1(v) is the unique function in F ′τ such that fη0,1(v)(1) = η0,1(v). It

is immediate to check the definition does not depend on the choice of g.

In summary, we have a collection of linear maps (ψτ )τ . We need to

verify they are compatible with the restriction maps and the G-actions, i.e.,

the following two diagrams commute: in the first one, τ is an edge containing

a vertex σ, and in the second, τ is any simplex, h ∈ G.

Fσ
ψσ−−−−→ F ′σ

rτσ

x x(r′)τσ

Fτ
ψτ−−−−→ F ′τ

Fhτ
ψhτ−−−−→ F ′hτ

hτ

x xhτ
Fτ

ψτ−−−−→ F ′τ
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We begin with the first. Given f ∈ Fτ , ψσ ◦ rτσ(f) = ψσ(g · frδ(σ)−1(v)),

where v = f(g−1), for a chosen g satisfying (45). As g · frδ(σ)−1(v)(g
−1) =

rδ(σ)−1(v), we get ψσ ◦ rτσ(f) = g · fψδ(σ)−1·rδ(σ)−1(v). On the other hand,

(r′)τσ ◦ψτ (f) = (r′)τσ(g ·fη0,1(v)). As g ·fη0,1(v)(g
−1) = η0,1(v), we see (r′)τσ(g ·

fη0,1(v)) = g · fr′
δ(σ)−1

(η0,1(v)). We note that v ∈ D0,1. It’s then certainly

ψδ(σ)−1 · rδ(σ)−1(v) = r′δ(σ)−1(η0,1(v)), as ψ is a morphism of diagrams.

For the second diagram, given f ∈ Fτ , we note that h · f((hg)−1) =

f(g−1) = v, then its commutativity comes directly from definitions.

We have constructed a functor C from the category of diagrams to that

of G-equivariant systems. We write as a definition:

Definition 6.11. Let C be the functor:

C : DIAG → COEFG
D 7→ the coefficient system C(D) = (Fτ )τ constructed above.

6.1.8 The equivalence of Diagrams with Coefficient systems

We begin to prove Theorem 6.2, in which the equivalence is induced

from the functors D and C.

We verify first the functor C preserves the composition of morphisms of

objects.

Let ψ : D → D′ and ψ′ : D′ → D′′ be two morphisms of diagrams. We

have to check C(ψ′ ◦ ψ) = C(ψ′) ◦ C(ψ).

For a vertex σ, let g ∈ G be such that σ = gσδ(σ)−1. For f ∈ Fσ, let v =

f(g−1). Then we have (ψ′◦ψ)σ(f) = g·f(ψ′◦ψ)δ(σ)−1(v) = g·fψ′
δ(σ)−1

·(ψδ(σ)−1)(v).

As g ·fψδ(σ)−1(v)(g
−1) = ψδ(σ)−1(v), we see ψ′σ ·(ψσ(f)) = ψ′σ(g ·fψδ(σ)−1(v)) =

g · fψ′
δ(σ)−1

·(ψδ(σ)−1)(v). Hence (ψ′ ◦ ψ)σ = ψ′σ · ψσ.

For an edge τ , (ψ′ ◦ ψ)τ = ψ′τ · ψτ holds similarly.

It remains for us to verify that D ◦ C (resp, C ◦ D) is isomorphic to

IdDIAG (resp, IdCOEFG) as functors of categories.

For a diagram D = (D0, D1, D0,1, r0, r1), from the definition of the

functors D and C, we see

D ◦ C(D) = D̃ = (Fσ0 , Fσ1 , Fτ0,1 , r
τ0,1
σ0 , r

τ0,1
σ1 ),

and we have already seen that ev = (ev0, ev1, ev0,1) is an isomorphism from

D̃ to D.

We now verify that ev induces an isomorphism from the functor D ◦ C
to IdDIAG .
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LetD′ = (D′0, D
′
1, D

′
0,1, r

′
0, r
′
1) be another diagram, and let ψ = (ψ0, ψ1, η0,1)

be a morphism from D to D′. Let D̃′ = D ◦ C(D′) =

(F ′σ0 , F
′
σ1 , F

′
τ0,1 , (r

′)
τ0,1
σ0 , (r

′)
τ0,1
σ1 )

We are reduced to check the following diagrams are commutative: for i = 0, 1

Fσi
D◦C(ψi)−−−−−→ F ′σi

evi

y yev′i
Di

ψi−−−−→ D′i

Fτ0,1
D◦C(η0,1)
−−−−−−→ F ′τ0,1

ev0,1

y yev′0,1
D0,1

η0,1−−−−→ D′0,1

We do the first as an example. Given f ∈ Fσi , we see ψi · evi(f) =

ψi(f(1)). By our definition of C(ψ) in 6.1.7 and that of D, we know D ◦
C(ψ)(f) = fψi(f(1)), therefore ev′i(D ◦ C(ψ)(f)) = ψi(f(1)). The second

follows similarly.

Let V = (Vτ )τ be a G-equivariant system, with restriction maps tτσ.

Let F = (Fτ )τ be the coefficient system C ◦ D(V), with restriction maps rτσ.

We are going to construct an isomorphism ev = (evτ )τ from F to V, which

induces an isomorphism of functors from C ◦ D to IdCOEFG .

Let τ be an edge containing a vertex σ. There exists g ∈ G such that

τ = gτ0,1 and σ = gσδ(σ)−1.

For the vertex σ, define evσ:

evσ : Fσ → Vσ
f 7→ gσδ(σ)−1

· v,

where v = f(g−1) ∈ Vσδ(σ)−1
.

For the edge τ , define evτ :

evτ : Fτ → Vτ
f 7→ gτ0,1 · v,

where v = f(g−1) ∈ Vτ0,1 . Certainly, evσ and evτ are both linear maps of

vector spaces. However, they are indeed isomorphisms of vector spaces, as

one notes that evσi = evi, evτ0,1 = ev0,1 are isomorphisms.

We need to verify the definition above is independent of the choice

of g. Let g′ = g · i for some i ∈ I, v′ = f(g′−1). Then g′σδ(σ)−1
· v′ =

gσδ(σ)−1
· iσδ(σ)−1

v′. But, as f ∈ Fσ, we see iσδ(σ)−1
f(i−1g−1) = f(g−1) = v.

Similarly, evτ is also independent of the choice of g.

We turn to show (evτ )τ is compatible with the G-actions. For an el-

ement g′ ∈ G and f ∈ Fσ, evg′σ · g′σ(f) = evg′σ(g′ · f) = (g′g)σδ(σ)−1
· v,

where v = f(g−1). On the other hand, g′σ · evσ(f) = g′σ(gσδ(σ)−1
v). But
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(g′g)σδ(σ)−1
= g′σ ·gσδ(σ)−1

, as σ = g ·σδ(σ)−1. For an edge τ , evg′τ ·g′τ = g′τ ·evτ
follows in the same way.

It remains for us to show (evτ )τ are compatible with the restriction

maps, i.e., in the same notations above, to check the following diagram is

commutative:

Fτ
evτ−−−−→ Vτ

rτσ

y ytτσ
Fσ

evσ−−−−→ Vσ

Given f ∈ Fτ , let v = f(g−1). Hence tτσ · evτ (f) = tτσ · (gτ0,1 · v). On the

other hand, as F comes from the diagram (Vσ0 , Vσ1 , Vτ0,1 , t
τ0,1
σ0 , t

τ0,1
σ1 ), we see

evσ · rτσ(f) = evσ(g · f
t
τ0,1
σδ(σ)−1

(v)
) = gσδ(σ)−1

· tτ0,1σδ(σ)−1
(v), where we have used

the remark at the end of 6.1.5 and the definition of evσ. But tτσ · gτ0,1 =

gσδ(σ)−1
· tτ0,1σδ(σ)−1

is certainly true, as the G-actions and the restriction maps

are compatible on a coefficient system by definition.

We arrive at the final step, i.e., to show ev induces an isomorphism of

functors from C ◦ D to IdCOEFG .

Let V ′ = (V ′τ )τ be another G-equivariant system. Let (φτ )τ be a mor-

phism from V to V ′. Therefore, we get a new coefficient system F ′ =

C ◦ D(V ′) = (F ′τ )τ , with restriction maps rτσ. We are reduced to check

the following two diagrams are commutative:

Fσ
(D(φ))σ−−−−−→ F ′σ

evσ

y yev′σ
Vσ

φσ−−−−→ V ′σ

Fτ
(D(φ))τ−−−−−→ F ′τ

evτ

y yev′τ
Vτ

φτ−−−−→ V ′τ

Here D(φ) is the morphism of diagrams from D(V) to D(V ′), induced from φ.

There is no essential difference with that we have just done in the converse

direction, so we don’t show details again.

We have proved Theorem 6.2.
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7 Appendix B: Some p-adic principal series

In the appendix, with an eye on the mysterious p-adic Banach space

representation theory, we collect some observations obtained so far in the

course of this thesis. In the first section, using a result of Ardakov, we

verify the Iwasawa algebra of N1 has the same global dimension and Krull

dimension, when F is an unramified extension of Qp. In the second section,

we prove a sufficient condition for the irreducibility of p-adic principal series

of U(1, 1)(Qp2/Qp), by modifying a method of Schneider and Teitelbaum.
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7.1 The Iwasawa algebra of N1

7.1 The Iwasawa algebra of N1

In this section we assume F is the unramified extension of Qp of degree

d. We define another filtration {Mk}k∈Z on the upper unipotent subgroup

N , say,

Mk = {n(x, y) : x, y ∈ pkE}

One notes that M1 = N1 in our previous notation, and Mk is an open normal

subgroup of M0, when k ≥ 1. In all, they together form a filtration of open

normal neighbourhoods of the identity of M0, but M1 has clearly many more

open normal subgroups.

All the unexplained terminologies appeared in this section can be found

in the book [DdSMS99], or in the survey paper [AB06]. We also give more

precise references in the following.

Proposition 7.1. M1 is a uniform pro-p group of dimension 3d.

Proof. For the purpose of later calculation, we record the following lemma

whose proof is a simple calculation.

Lemma 7.2. (1). [n(x, y), n(x1, y1)] = n(0, x̄1x− x̄x1)

(2). n(x, y)k = n(kx, ky − k(k−1)
2 xx̄), for k ≥ 0.

Based on the above Lemma, we can check the lower p-series of M1 is

exactly the filtration {Mk}k≥1 and M1 is powerful (p 6= 2 !), noting that

any element in Mk+1 could lift uniquely to a p-th root in Mk. Using the

decomposition that

n(x, y) = n(x,−xx̄
2 ) · n(0, y + xx̄

2 )

we see immediately that M1 is topologically finitely generated (see Lemma

7.5 below). The following observation completes the proof of our proposition.

Lemma 7.3. The index of Mk+1 in Mk is q3, for k ≥ 1.

Proof. This is just simple counting.

Remark 7.4. The group M0 is not powerful and M1 is indeed nilpotent but

non-commutative. When d = 1, M1 is also Heisenberg.

Lemma 7.5. A minimal set S of generators (topologically) for M1 is given

by

{ci = n(0, p(η − η̄)ηi1), di = n(pηi1,−
p2η2i1

2 ), d′i = n(pηηi1,−
p2η2i+1

1
2 )}0≤i≤d−1,
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7.2 Irreducibility of p-adic principal series of U(1, 1)(Qp2/Qp)

where η is a root of unity of order q2 − 1 in E and η1 = NE/F (η).

Proof. This is from n(x, y) = n(x,− x̄x
2 ) · n(0, y + x̄x

2 ) and the structure of

local fields.

Proposition 7.6. The Qp-Lie algebra L(M1) 12 of M1 has length at least

3d.

Proof. We construct a filtration of sub-Lie algebras of length 3d for the

Zp-Lie algebra L(M1) ([DdSMS99], 4.29), which is provided by last Lem-

ma. We start with description of operations of L(M1), which involves some

calculations.

Addition : n(x, y) + n(x1, y1) = n(x+ x1, y + y1 − 1
2(xx̄1 + x̄x1))

Lie bracket : [n(x, y), n(x1, y1)] = n(0, x1x̄− x̄1x)

Let S be the set given in Lemma 7.5 and S′ be a subset of S which

contains C(S) = {n(0, p(η− η̄)ηi1)}0≤i≤d−1. We then claim the sub-Lie alge-

bra of L(M1) generated by S′ is just the Zp-submodule of L(M1) generated

by S′. Firstly the square of any element in S is zero, which is directly

from the definition of the Lie bracket. Secondly, C(S) lies in the center of

L(M1). Now the product of any two elements in S\C(S) is in the submodule

generated by C(S). The claim is done.

Let Sk = {ci : 1 ≤ i ≤ k} for 1 ≤ k ≤ d. Next, for d + 1 ≤ k ≤ 2d, let

Sk = Sd ∪ {di : 1 ≤ i ≤ k − d}. For 2d + 1 ≤ k ≤ 3d, let Sk = S2d ∪ {d′i :

1 ≤ i ≤ k − 2d}. Clearly Sk ⊂ Sk′ when k ≤ k′ and we denote by 〈S′′〉
the sub-Lie algebra generated by S′′. Then the claim above guarantees the

filtration 0 ⊂ 〈S1〉 ⊂ . . . ⊂ 〈S3d〉 = L(M1) is of length 3d. We are done.

From the argument of last proposition we see L(M1) is indeed soluble.

Corollary 7.7. The completed group ring Fp[[M1]] has the same Krull di-

mension and global dimension, which is just the dimension 3d of M1 as a

compact p-adic Lie group.

Proof. This is from Theorem A in [Ard04], with the last Proposition.

7.2 Irreducibility of p-adic principal series of U(1, 1)(Qp2/Qp)

In this section, we investigate briefly some example in which we form a

sufficient condition for the irreducibility (topologically) of principal series for

the group G = U(1, 1)(Qp2/Qp). It satisfies the Iwasawa decomposition, say

G = BK, where B is the subgroup of upper triangular matrices, and K is

12[DdSMS99], 9.5
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the hyperspecial maximal compact subgroup of G (unique up to conjugacy).

Then we are reduced to looking at the principal series representations of

K. Actually, what we have really done is to prove a sufficient condition

for simplicity of induced modules Mχ (defined below) of L[[K]], where we

follow [ST02] closely. Then, by duality of Schneider and Teitelbaum ([ST02],

Corollary 3.6), we obtain irreducibility result for principal series of K.

We start by recalling some notations. Let I be the standard Iwahori

subgroup of G, and let N ′1 be the lower unipotent subgroup of I, i.e., it

consists of matrices of the form:

n′(x) =

(
1 0

x 1

)
,

where, x = −x̄ ∈ pQp2
. Hence, N ′1 is a pro-cyclic group generated by a

single element γ = n′(p(η− η̄)), where η is a root of unity of order p2− 1 in

Qp2 . Fix a finite extension L of Qp which contains Qp2 . Then the Iwasawa

algebra L[[N ′1]] = L ⊗oL oL[[N ′1]] is isomorphic to the ring of formal power

series in γ − 1 with bounded coefficients in L.

Denote by H0 and N0 respectively the diagonal and upper unipotent

subgroups of I. The upper triangular subgroup B0 of I is the semi-direct

product of H0 and N0. Let χ be a continuous character of UQp2
, taking

values in L× (hence indeed in o×L ). Up to a symbol, χ is determined by

c1 = χ(1 + p) and c2 = χ(1 + ηp). The restriction of χ to 1 + pZp is then

determined by c1, and there exists a constant c(χ) ∈ L such that

χ(1 + x) = (1 + x)c(χ),

for a small enough integer x ∈ Zp.

The character χ extends uniquely to a continuous homomorphism of

L-algebras χ : L[[H0]] → L. The projection from B0 to H0 induces a

continuous algebra epimorphism from L[[B0]] to L[[H0]]. Denote by LB0,χ

the composite homomorphism from L[[B0]] to L. Form the induced modules

Nχ of L[[I]] and Mχ of L[[K]]:

Nχ = L[[I]]⊗L[[B0]] LB0,χ, Mχ = L[[K]]⊗L[[B0]] LB0,χ.

The product homeomorphism N ′1 ×B0 → I gives rise to an isomorphism of

Iwasawa algebras, where the right-hand side is the completed tensor product

of linear topologically o-modules ([SGA70], VIIB(0.3)):

oL[[I]] ∼= oL[[N ′1]]⊗̂oL[[B0]].

Therefore, Nχ
∼= L[[N ′1]] as an L[[N ′1]]-module. By the inclusion L[[N ′1]] ⊆

L[[I]], any L[[I]]-submodule of Nχ then corresponds to some ideal of L[[N ′1]].
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We note that L[[N ′1]] is a PID as N ′1 is generated by γ, and every ideal is

generated by a polynomial whose zero lies in the open unit disk.

The following is main result of this section:

Proposition 7.8. If c(χ) /∈ Z≥0, Nχ is a simple L[[I]]-module.

Proof. Let If be the ideal of L[[N ′1]] which corresponds to an L[[I]]-submodule

M of Nχ, where f is a polynomial which generates If .

Let tx be the diagonal matrix(
x 0

0 x̄−1

)
.

Then the action of tx changes f into

χ(tx)f(γN(x−1) − 1).

Write ωa(x) = (x+ 1)a − 1 and we could re-write the former as

tx : f(γ − 1) 7→ χ(tx)f(ωN(x−1)(γ − 1))

But the ideal If is stable under the above action by assumption. Hence,

if z is a zero of f , ωu(z) is also a zero of f for any u ∈ Z×p , which forces

that z + 1 must be a pm-th root of unity for some m ∈ N. Therefore, f is

divisible (as a polynomial) by ωpm0 (x)l for some m0, l ∈ N. In particular,

when k ≥ m0 is large enough, the polynomial ωpk(x)l lies in I.

Next, we look at the action of n(η − η̄). We start with the following

identity of matrices

n(η − η̄)n′(np(η − η̄)) = n′(u−1
n np(η − η̄))diag(un, u

−1
n )

for n ∈ Z≥0, where un is the unit 1 + np(η − η̄)2 in Z×p . In L[[N ′1]], we have

n(η − η̄) · γn = χ(diag(un, u
−1
n ))γn/un . Hence,

n(η − η̄) · (γpk − 1)l =
∑l

j=0 (−1)(l−j)(l
j

)
χ(diag(ujpk , u

−1
jpk

))γ
jpku−1

jpk .

Combining that we have just described, we see when k ≥ m0, the polynomial

ωpk(x)l and its image under n(η−η̄) both lie in the ideal If . We are certainly

done if for some k ≥ m0 the two polynomials don’t have common zeros, as

in that case the ideal If would be the whole ring. On the other hand, one

has, for any large enough k,∑l
j=0 (−1)j

(
l
j

)
χ(diag(ujpk , u

−1
jpk

)) = 0,

i.e., ∑l
j=0 (−1)j

(
l
j

)
exp(c(χ) · log(1 + jpk(η − η̄)2)) = 0.
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As a function (in variable y) analytic in a small ball around zero,∑l
j=0 (−1)j

(
l
j

)
exp(c(χ) · log(1 + jy))

has infinitely many zeros in that region which forces it to vanish. To com-

plete the proof, we only need to show this is not possible when c(χ) /∈ Z≥0.

Assume c(χ) /∈ Z≥0. Then a little inductive calculation of the higher deriva-

tives of the former function and its values at zero gives:∑l
j=0 (−1)j

(
l
j

)
jm = 0, for any m ∈ N.

This is absurd.

Remark 7.9. The limitedness of the above argument is obvious, as the nice

property of L[[N ′1]] from our assumption is crucially used, which does not

make sense in general.

Corollary 7.10. When c(χ) /∈ Z≥0, Mχ is a simple L[[K]]-module.
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ics, vol. 137, Birkhäuser Boston Inc., Boston, MA, 1996. MR

1395151 (97g:22007)



7.2 Irreducibility of p-adic principal series of U(1, 1)(Qp2/Qp)

[Vig01] , Correspondance de Langlands semi-simple pour

GL(n, F ) modulo l 6= p, Invent. Math. 144 (2001), no. 1, 177–

223. MR 1821157 (2003f:11182)

[Vig04] , Representations modulo p of the p-adic group GL(2, F ),

Compos. Math. 140 (2004), no. 2, 333–358. MR 2027193

(2004m:22028)

127


	Introduction
	Introduction
	Notations
	Preliminary facts
	Presentation of main results
	The pro-p Iwahori-Hecke algebra of G and its simple modules
	The compactly induced representation indGK0 
	A parametrization theorem
	Canonical diagrams and finite presentation
	Appendix


	The pro-p Iwahori-Hecke algebra and its simple modules
	The structure of H (I, )
	Simple modules over Iwahori-Hecke algebras
	Second Iwahori-Hecke algebras and their simple modules
	The structure of HI1
	Non-supersingular modules of HI1
	Supersingular characters

	The compactly induced representation indGK0 
	H(K0, ) as a polynomial ring in one variable
	(indGK0)I1 as an HI1-module
	The Hecke operator T
	A first calculation on local systems
	A second calculation on local systems

	Is indGK0  free over H(K0, ) ?
	The right action of H(K0, ) on the (K0, )-isotypic component of principal series representations
	The Bruhat-Tits tree of G
	Height and antecedent
	A rough estimation of I1-actions on the tree

	The image of (indGK0)I1 under the Hecke operator T

	A parametrization theorem
	Twisting indG K0 / (T-) by characters
	Some results on principal series
	Proof of (1) of Theorem 4.1
	indGK0 has only irreducible quotients
	The subquotients of V0
	Unramified case
	Injectivity from indG K0 /(T- ) to principal series indG B : =0
	Proof of (c) of (2) of Theorem 4.1
	Proof of (b) of (2) of Theorem 4.1

	Canonical diagrams and finite presentation
	Preliminary results
	An equivalent criteria for finiteness of R(, )
	On the N0-invariants of I+ (, )
	Restriction to Borel subgroup
	Estimation of N0-invariants of R+k-1R+kR+k+1/T (R+k) for k1 when F=Qp

	Appendix A: Coefficient systems and Diagrams
	Coefficient systems and Diagrams
	Homology
	First properties of H0(X, V)
	Constant functor
	Underlying vector space
	Restriction maps
	G-action
	Morphisms
	The equivalence of Diagrams with Coefficient systems


	Appendix B: Some p-adic principal series
	The Iwasawa algebra of N1
	Irreducibility of p-adic principal series of U(1, 1)(Qp2/Qp)


