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II) Abstract 

 

Triggering receptor expressed on myeloid cells – 2 (TREM-2) is a receptor 

expressed mainly in myeloid cells. TREM-2 is involved in the resolution of 

inflammation through dampening Toll-like receptor (TLR) induced pro-inflammatory 

cytokine secretion and phagocytic functions. It is increased in inflammatory 

conditions including rheumatoid arthritis and stroke and also in wound healing. 

However, little is known about how its expression is regulated. This study analysed 

the expression of TREM-2 in various myeloid and non-myeloid cell types and 

investigated the regulation of TREM-2 expression in myeloid cells. TREM-2 was 

expressed in the Golgi apparatus of microglial cells. Several non-myeloid cell types 

also expressed TREM-2, including bronchial epithelial cells where it was located on 

cilia in healthy and diseased lung tissues. In THP-1 cells, the anti-inflammatory 

cytokines interleukin-4 and transforming growth factor-β1 (TGF-β1) induced TREM-

2 expression through phosphoinositide 3-kinase (PI3K) and PI3K/ p38 MAP kinase 

signalling pathways respectively. TGF-β1-induced TREM-2 also required 

extracellular signal-regulated kinase 1/2 post-translationally for protein expression. 

Interestingly, TREM-2 was required for TGF-β1-induced matrix metalloproteinase 

(MMP)-1 expression, the most characterised MMP in wound healing, suggesting 

that TREM-2 may be required for the beneficial effects of TGF-β1 on wound healing 

by regulating MMP-1. An in vitro model of ischemia in stroke was then established 

to study the mechanisms of TREM-2 regulation in stroke. Oxygen glucose 

deprivation (OGD) had no direct effect on TREM-2 in N9 microglial cells. However, 

co-culture with healthy neurons reduced microglial TREM-2 expression, which was 

abolished in co-culture with OGD neurons, suggesting that in the healthy brain, 

microglial TREM-2 expression is suppressed by neurons, and this suppression is 

lost during ischaemia, increasing TREM-2 expression. In conclusion, this study 

characterised TREM-2 expression in non-myeloid cells and identified novel 

mediators and signalling pathways that regulate TREM-2 expression, which may be 

responsible for TREM-2 overexpression in inflammatory and ischemic conditions. 
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sulfophenyl)-2H-tetrazolium 

MyD88 Myeloid differentiation factor 88 

MyoD Myogenic differentiation 1 

NADPH Nicotinamide adenine dinucleotide phosphate-oxidase  

NFATc Nuclear factor of activated T-cells 

NFκB  Nuclear factor kappa-light-chain-enhancer of activated B cells 

NGF Nerve Growth Factor 

NHD Nasu-Hakola Disease 

NK Natural killer 

NLR Nod-like receptor 

NO Nitric oxide 

OGD Oxygen glucose deprivation  

OCT Optimum cutting temperature 

oxLDL Oxidised low density lipoproteins 

PA-1 Plexin A1 

Pam3Cys (S)-(2,3-bis(palmitoyloxy)-(2RS)-propyl)-N-palmitoyl-(R)-Cys-(S)-

Ser(S)-Lys4-OH, trihydrochloride 

PAMP Pathogen associated molecular patterns 

PBMC Peripheral blood mononuclear cell  

PBS Phosphate buffered saline  

Pen/Strep 100 U/mL penicillin and 100 μg/mL streptomycin (pen/strep) 

PFA Paraformaldehyde  

PG Prostaglandin 

PGN Prostaglandin 

PGN Peptidoglycan  

PI3K Phosphoinositide 3-kinase 
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PLC Phospholipase C 

PLOSL Polycystic lipomembranous osteodysplasia with sclerosing 

leukoencephalopathy 

PMA Phorbol-12 myristate 13-acetate  

PMNs Polymorphonuclear  cells 

PPAR-γ Peroxisome proliferator activated receptor gamma 

PRR Pattern Recognition Receptors 

PS Phosphatidylserine 

PU.1 SPI1; spleen focus forming virus (SFFV) proviral integration oncogene 

PVDF Polyvinylidene difluoride 

Pyk2 Proline rich tyrosine kinase 2 

qRT-PCR Quantitative real time polymerase chain reaction  

RANK Receptor Activator of NFκB 

Rho Ras homolog family member 

RNA Ribonucleic acid 

ROS Reactive oxygen species 

RPMI Roswell Park Memorial Institute medium 

RT Room temperature  

RUNX1 Runt-related transcription factor 1 

SAECs Human Small Airway Epithelial Cells  

SDS Sodium dodecyl sulfate  

SDF-1 Stromal cell-derived factor-1 

Sema6D Semaphorin 

SH2 Src homology 2 

Shc Src homology 2 domain containing 

shRNA Small hairpin RNA 

siRNA Small interfering ribonucleic acid  

SHIP SH2-containing inositol phosphatase 

SIRP β Signal regulatory peptide beta 

SMAD Mothers against decapentaplegic homolog 

SNPs Single nucleotide polymorphisms 

STAT Signal-transducer and activator of transcription protein 

sTREM-2 Soluble TREM-2 

Syk Spleen tyrosine kinase 

TAB TAK1-binding protein 

TAK TGF-beta-associated kinase 
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TEMED Tetramethylethylenediamine  

TGF-β1 Transforming growth factor beta 1 

TGF-β1R Transforming growth factor beta receptor I 

TIMP Tissue inhibitor of metalloproteinase  

TLR Toll like receptor 

TLT TREM like transcript 

TNF-α Tumour necrosis factor alpha 

TRAF6 TNF receptor-associated factor 6 

TREM Triggering receptor expressed on myeloid cells 

TUNEL Terminal deoxynucleotidyl transferase dUTP nick end labelling 

UDP Uridine diphosphate 

VCAM Vascular adhesion molecule 

VIP Vasoactive intestinal peptide 

β-COP  Beta-coatomer-protein  
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1.1. Inflammation and the Immune Response 

Inflammation is the reaction of the body to an immune response initiated by external 

or internal stimuli for example pathogenic organisms, physical damage or oxidative 

stress (Figure 1.1). Ischaemia is one of the major inducers of oxidative stress and 

therefore ischaemic conditions such as cardiovascular disease, age related macular 

degeneration and ischaemic colitis are often associated with inflammation (1-3). The 

classical signs of acute inflammation include redness, swelling, pain and heat. 

 

1.1.1. Initiation of the Inflammatory Response 

Macrophages and dendritic cells resident in the tissues or monocytes in the blood 

identify the stimulus and initiate an immune response. Ischaemia initiates this 

response through production of reactive oxygen species (ROS) which cause the 

release of pro-inflammatory mediators including TNF-α and IL-8, increasing 

inflammation (4, 5). The inflammatory response can also be initiated by binding of 

pattern or damage associated molecular patterns (PAMPS or DAMPS) to pattern 

recognition receptors (PRRs) (6). The toll-like receptors (TLRs) are the major class of 

PRR. PAMP molecules include lipids, DNA and RNA, they are exposed to the host 

cells by infectious organisms and bind and activate TLRs initiating an intracellular 

signalling cascade resulting in the release of pro-inflammatory mediators (Figure 

1.1) (6). Lipopolysaccharide (LPS) is a PAMP found on the surface of gram-negative 

bacteria, this molecule activates TLR4 to initiate the host’s immune response 

against invading bacteria (7). TLR3 on the other hand, recognises double stranded 

RNA molecules, in particular those found in viruses, to alert the host of virus 

infection and initiate the innate immune response (8). Interestingly, DAMPS 

produced endogenously including DNA damage induced by ultraviolet radiation (9) or 

heat shock proteins (HSPs) (10), fibrinogen (11) and hyaluronic acid fragments (12) 

induced by tissue injury also cause the activation of TLRs activating the 

inflammatory response. This causes the initiation of processes to repair the injury or 

cause the clearance of the cause of the DAMPS e.g. dying cells, cell debris or 

pathogens (13, 14). 
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Figure 1.1: DAMPs and PAMPs activate TLR receptors. DAMPs including HSPs 
(15)

 and 

PAMPs including LPS activate TLR receptors resulting in the regulation of pro- and anti- 

inflammatory mediators including MMPs (matrix metalloproteinases), cytokines and chemokines. 

 

1.1.2. Phase I of the Inflammatory Response 

The inflammatory response occurs in two phases. Phase I is the initial inflammatory 

phase and is important for the killing of invading organisms and recruitment of 

inflammatory cells to the damaged area (16). Phase I of the inflammatory response 

results in increased expression of pro-inflammatory mediators including cytokines 

(17, 18), adhesion molecules (19), MMPs (20), prostanoids (21) and chemokines (22) 

(Figure 1.2). Chemokines are small molecules that attract other inflammatory cells 

including polymorphonuclear cells (PMNs) such as eosinophils and neutrophils, 

macrophages, monocytes (23), and lymphocytes (24) to the site of infection or injury. 
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These cells secrete cytokines and chemokines, further increasing the inflammatory 

response (25). The interleukin (IL) family are a major class of cytokines increased 

during inflammation. The key interleukins released during the acute phase of the 

inflammatory response are IL-1β and IL-6 (26). Tumour necrosis factor (TNF)-α is 

also increased during this phase (27, 28). Together, these cytokines are important for 

the progression of the innate immune response, initiating signalling pathways that 

increase activation of immune cells and cause further secretion of pro-inflammatory 

mediators required for pathogen killing (16, 27).  

 

Figure 1.2: Phase I and Phase II of the immune/inflammatory response after infection or 

injury. The first phase of inflammation (Phase I) is characterised by increases in pro-

inflammatory mediators including IL-1β, TNF-α, interferon-γ (IFN-γ), MMPs, intracellular adhesion 

molecules (ICAMs), vascular cellular adhesion molecules (VCAMs), IL-8, the chemokine 

chemokine (C-X-C motif) ligand (CXCL)-1, leukotriene C4 (LTC4) and prostaglandin E2 (PGE2). 

The second phase of inflammation (Phase II) usually occurs days to weeks after initiation and is 

characterised by an increase in mediators including transforming growth factor β1 (TGF-β1), IL-4, 

IL-10, IL-1 receptor antagonist (IL-1RA) and resolvins. 
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MMPs secreted during the inflammatory response can cause tissue damage by 

degrading the extracellular matrix. Tissue damage caused by elevated MMPs is 

present in many inflammatory diseases including asthma and rheumatoid arthritis 

(29, 30). The role of MMPs in inflammation is complex. MMPs have both pro- and anti-

inflammatory effects. MMPs increase the inflammatory response through cleavage 

of pro-inflammatory chemokines and cytokines into their active forms. For example, 

MMP-2 cleaves pro-IL-1β into IL-1β which activates this cytokine (31). They can also 

reduce inflammation by degrading mature forms of cytokines reducing their activity 

e.g. MMP-1 degrades IL-1β (32). Aside from their role in inflammation, MMPs are 

important in tissue repair and regeneration. For example, MMP-1 is important in 

wound healing, it promotes angiogenesis and epithelial migration increasing the 

healing process (33-35). This highlights the importance of the regulation of MMPs for 

the maintenance of tissue homeostasis and in inflammation and injury.  

Adhesion molecules including VCAM-1 and ICAM-1 are also increased during the 

acute phase of the inflammatory response (19). These molecules are found on the 

surface of both immune and non-immune cells and increase immune cell binding 

and translocation across epithelial and endothelial barriers (36). High levels of these 

adhesion molecules increases immune cell influx to the site of injury, increasing 

inflammation. 

Prostanoids are also increased in Phase I of the inflammatory response (37). 

Prostanoids are a group of inflammatory mediators including leukotrienes, 

thromboxanes and prostaglandins. Leukotrienes such as LTC4, increase 

inflammatory cell activation and cytokine secretion increasing the local inflammatory 

response (38). Prostaglandins are also increased in this phase, particularly PGE2 
(39). 

PGE2 acts on sensory neurons resulting in the sensation of pain following injury and 

during inflammation (40). PGE2 also increases blood flow to the site of injury 

increasing immune cell influx and therefore inflammation (41). One of the main anti-

inflammatory drugs, aspirin inhibits cyclooxygenase (COX) enzymes that are 

required for the synthesis of the prostanoids. Inhibition of COX reduces prostanoid 

synthesis and this is how aspirin reduces inflammation further highlighting the 

importance of prostanoids in acute inflammation (42).  

The differentiation of infiltrating monocytes into macrophages or dendritic cells is 

another key stage of the acute phase response. The differentiation fate of the cell is 

governed by the mediators in the surrounding environment (Figure 1.3). For 

example, the presence of LPS and/or IFN-γ will encourage the differentiation of 
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monocytes into M1-type macrophages that secrete high levels of pro-inflammatory 

mediators including IL-1β and TNF-α (Figure 1.3) (43). The presence of IL-4 in the 

environment will encourage differentiation into dendritic cells or M2-type 

macrophages (Figure 1.3) (44). M1 macrophages are the ‘classically activated’ 

macrophages with a more pro-inflammatory phenotype, whereas the M2 type 

macrophages are ‘alternatively activated’ and have a more anti-inflammatory 

phenotype (Figure 1.4) (45, 46). The M2-type macrophages are associated with the 

resolution of inflammation through increased clearance of cell debris, suppression of 

pro-inflammatory cytokine secretion and increased anti-inflammatory cytokine 

secretion (47, 48). Once the inflammatory cascade has been initiated, cytokines 

activate other cells, including endothelial cells (49), eosinophils (50), neutrophils (51) 

and T- lymphocytes (T-cell) (52), which can induce further cytokine secretion and 

inflammation (Figure 1.4). There are a number of different types of T-cell, and 

similarly to macrophages, the mediators in the surrounding environment decide the 

T-cell fate and the inflammatory mediators produced, these are detailed in Figure 

1.4. 

 

 

Figure 1.3: Myeloid differentiation. Differentiation of monocytes into other myeloid cell type 

including macrophages (M1 and M2), dendritic cells and osteoclasts by M-CSF (macrophage 

colony stimulating factor), IFN-γ, IL-4, GM-CSF (granulocyte M-CSF), RANK (receptor activator 

of NFκB (nuclear factor kappa-light-chain-enhancer of activated B cells)) and TGF-β. 
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Figure 1.4: Immune cell types with cytokines secreted. (A) T – lymphocyte (T-cell) subsets, 

(B) Myeloid subsets, (C) mast cells and (D) granulocytes 
(53-57)

. 

 

The major signalling pathway required for the production and activation of these 

pro-inflammatory mediators is the NFκB pathway (Figure 1.5) (58). Activation of this 

transcription factor alters gene expression of many components of the inflammatory 

response including upregulation of pro-inflammatory mediators, including IL-1β, 

TNF-α, IL-6 and IL-8 (58).  NFκB is activated by a variety of stimuli including TLR 

activation, ROS (59) and IL-1β and TNF-α receptor activation (6, 60). Of these 

signalling pathways, TLR mediated NFκB activation is the most characterised. TLR 

activation results in the recruitment and activation of a variety of intracellular 

signalling molecules including myeloid differentiation factor 88 (MyD88), interleukin-

1 receptor-associated kinase (IRAK) 1 and 4, TNF receptor-associated factor 6 
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(TRAF6), TGF-beta-associated kinase 1 (TAK1) and TAK1-binding protein (TAB) 

proteins (Figure 1.5) (61). This signalling pathway results in the activation of 

inhibitor κB (IκB) kinase (IKK) which degrades IκB (62). IκB is the inhibitory molecule 

that associates with NFκB to prevent its activation (62). Degradation of this molecule 

allows NFκB activation and translocation into the nucleus to regulate the expression 

of many genes required for the inflammatory response (62). 

 

 

Figure 1.5: NFκB signalling following TLR activation. TLR activation activates the MyD88 

signalling pathways though IRAK 1 and 4, TRAF6, TAK1 and TAB1 and 2. TAK1 and TAB 1 and 

2 activate IKK phosphorylating IκBα resulting in IκBα proteasomal degradation. This allows NFκB 

components p65 and p50 to bind to NFκB response elements in key genes altering inflammatory 

gene expression. 

Interestingly, NFκB also upregulates anti-inflammatory cytokines including TGF-β 

and indirectly IL-10 via cytokines such as TNF-α (63-66). The release of these anti-

inflammatory cytokines is one of the anti-inflammatory mechanisms put in place to 
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prevent over-activation of the inflammatory response. This inflammatory cascade is 

important for protection from infection and from tissue damage by killing invading 

organisms, protecting the injury site from infection (Phase I) and to initiate the repair 

process and resolution of inflammation (Phase II) (67, 68). Inflammation is the cause 

or a symptom of most diseases including atherosclerosis (69), cancer (70), stroke (71), 

arthritis (72), Alzheimer’s disease (AD) (73), asthma (74), diabetes (75) and many more, 

highlighting the importance of the resolution of inflammation. 

 

1.1.3. Phase II of the Inflammatory Response 

Phase II of the inflammatory response initiates processes that dampen down 

inflammation initiated in the Phase I, to reduce tissue damage caused by 

inflammation (Figure 1.2). One mechanism is through apoptosis of immune cells 

including neutrophils and macrophages to reduce immune cell secretion of pro-

inflammatory mediators (76, 77). However, the presence of apoptotic cells can 

increase inflammation and therefore another important part of this process is 

phagocytosis (78). During this phase, apoptotic and necrotic cells and cell debris are 

cleared up by phagocytes including dendritic cells and macrophages (79). Clearance 

of dying cells reduces the inflammation by preventing the secretion of these pro-

inflammatory mediators and through the secretion of anti-inflammatory cytokines by 

the phagocyte including IL-10 (80, 81). Anti-inflammatory cytokines are released by 

immune cells to reduce pro-inflammatory mediator production (82, 83). Another group 

of anti-inflammatory mediators released during Phase II are the resolvins (84). 

Resolvins reduce inflammatory pain by directly blocking pain pathways and 

reducing pro-inflammatory mediators in the surrounding environment (85, 86). Also 

during this phase, the IL-1RA is released to negatively regulate IL-1β signalling.  IL-

1RA acts as an inhibitor of IL-1β signalling by binding to the IL-1 receptor, blocking 

the access of IL-1β to its receptor (87). Other key anti-inflammatory mediators are the 

thromboxanes which are also increased in Phase II. Thromboxanes increase growth 

factor secretion, stem cell migration and angiogenesis, reduce inflammation and 

increase tissue repair (88-90).  
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1.1.3.1. IL-4 Signalling and Function 

Th2 cytokines including IL-4, IL-5 and IL-13 can also be increased during Phase II 

(91, 92). These cytokines are secreted primarily by Th2 type T-cells and have been 

shown to reduce inflammation induced by Th1 type cytokines including IFN-γ and 

TNF-α (93). IL-4 and IL-13 can signal via the same receptor and therefore have 

similar signalling pathways and functions (94). IL-4 is also produced by mast cells, 

basophils and eosinophils (95). IL-4 acts on leukocytes, in particularly monocytes, to 

reduce proinflammatory cytokine and chemokine production including IL-1β, TNF-α, 

IL-6 and IL-8 (96, 97). This suppression of cytokine secretion induced by IL-4, reduces 

inflammation and reduces symptoms of inflammatory diseases e.g. in an animal 

model of arthritis (97). However, in Th2-type inflammation such as allergy, IL-4 is 

detrimental, increasing inflammation, exacerbating the disease phenotype (98). IL-4 

also plays an important role in the differentiation of monocytes (Figure 1.3). Co-

stimulation of IL-4 with either GM-CSF or M-CSF in monocytes induces 

differentiation into dendritic cells or M2 type macrophages, respectively (99). The 

majority of the literature shows that IL-4 acts on monocytes and macrophages to 

increase differentiation into the M2 type phenotype (46). However, IL-4 alone can 

also induce monocyte differentiation into dendritic cells increasing the expression of 

many surface markers for dendritic cells, along with morphological changes and 

increased phagocytic activity (100, 101).  

In macrophages, IL-4 activates the IL-4 receptor to induce Janus kinase (JAK) 

phosphorylation. Phosphorylated JAK activates signal transducer and activator of 

transcription 6 (STAT6), which activates transcription factor peroxisome proliferator 

activated receptor gamma (PPAR-γ) and upregulates many genes associated with 

the M2 phenotype including chitinase 3–like 3 , jumonji domain-containing protein 3, 

interferon regulatory factor-4 and arginase-1 (arg-1) (Figure 1.6) (102-105). STAT6 is 

also required for the anti-inflammatory actions of IL-4 and binds to the promoters of 

various inflammatory mediators to modulate their expression (106). IL-4 can also 

signal independently of STAT6 through insulin receptor substrate 1/2 (IRS1/2) 

resulting in activation of the phosphoinositide 3-kinase (PI3K) and extracellular 

signal-regulated kinase 1/2 (ERK 1/2) signalling pathways (Figure 1.6) (107).  
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Figure 1.6: IL-4 signalling pathways. IL-4 receptor activation results in JAK STAT6 

phosphorylation/activation. IL-4 receptor activation also activates IRS1/2 which in turn activates 

PI3K and ERK 1/2. 

 

1.1.3.2. TGF-β1 Signalling and Function 

TGF-β1 is another important anti-inflammatory mediator increased during Phase II 

(108). TGF-β is a growth factor and anti-inflammatory cytokine secreted primarily from 

regulatory T-cells (109), macrophages (110) and monocytes (111). TGF-β signals via its 

receptors, TGF-β1 receptor (TGF-β1R) I and II that are present on many immune 

cell types including fibroblasts (112) macrophages (113) and monocytes (114). Activation 

of these receptors reduces inflammation by suppressing Th1 cell activity (115) and 

pro-inflammatory cytokine secretion (116) while increasing anti-inflammatory cytokine 

secretion (117), regulatory T-cell activity (118) and activating signalling to induce tissue 

repair (119). In addition knockout (KO) studies have shown that removal of TGF-

β1 increases inflammation and reduces survival confirming that TGF-β1 is an 

important mediator in the resolution of inflammation (120). However, in monocytes 
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TGF-β1 can also have pro-inflammatory actions, in particular, recruitment of 

monocytes to the site of injury (121). TGF-β1 is also a key inducer of fibrosis by 

causing excessive secretion of extracellular matrix proteins and MMPs, which can 

lead to and exacerbate conditions including pulmonary and hepatic fibrosis (122).  

As well as being an anti-inflammatory mediator, TGF-β also modulates myeloid cell 

differentiation (Figure 1.3). TGF-β alone induces partial differentiation of 

promyelocytic cells into monocytes and macrophages (123, 124). In addition, 

endogenous TGF-β is required for differentiation of CD14+ monocytes into dendritic 

cells and preferentially increases differentiation of CD34+ hematopoietic stem cells 

(HSC) into Langerhans cells, the dendritic cell subtype of the skin (125). Monocytes 

can also be differentiated into osteoclasts, the reabsorbing cells of the bone which 

can also be induced by TGF-β (126). This suggests that endogenous TGF-β plays an 

important role in differentiation of myeloid cells. However, it seems that full 

differentiation requires other factors that are present in the surrounding 

environment, which will change depending on the tissue involved and the degree of 

inflammation. 

TGF-β has a variety of functions in many different cell types, which require the 

activation of multiple signalling pathways. The main signalling pathway activated by 

TGF-β is the SMAD (mothers against decapentaplegic homolog) pathway, in 

particular SMADs 2-4 (Figure 1.7). TGF-β binding to the type II receptor allows 

recruitment of the type I receptor into the complex (127). This receptor activation 

induces phosphorylation and activation of SMAD proteins 2 and/or 3 (128, 129). 

Classically SMADs 2 and 3 will form a complex with SMAD4 and migrate to the 

nucleus and bind to SMAD response elements in the DNA to regulate specific gene 

expression (129, 130). However, TGF-β can also signal independently of SMADs via 

the NFκB, PI3K, ERK1/2 and p38 mitogen activated protein kinase (MAPK) 

pathways (Figure 1.7) (131-134).  
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Figure 1.7: TGF-β1 signalling pathway. TGF-β1 activates the TGF-β1 receptor to activate the 

SMADs 2, 3 and 4. Alternatively, TGF-β1 activates PI3K and Ras/Raf/ERK1/2 signalling 

pathways and TAK1 resulting in JNK (c-Jun N-terminal kinase 1), NFκB and p38 activation. 

 

Despite these anti-inflammatory mechanisms, in some situations, the inflammation 

cannot be resolved. This is called chronic inflammation and leads to uncontrolled 

repair mechanisms resulting in excessive inflammation, fibrosis and scaring (135). 
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arthritis (136), asthma (74) and chronic obstructive pulmonary disease (COPD) (137). 

However, inflammation is now recognised as a critical cause/symptom of many 
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Parkinson’s disease is becoming increasing acknowledged. As in the periphery, 

most diseases of the brain have an inflammatory component including AD (73), 

Parkinson’s disease (139) and stroke (140). Understanding inflammatory mechanisms 

and how the brain resolves inflammation is key to finding much needed, novel 

therapies for neurological disorders. 

 

1.2. Inflammation in the Brain 

Inflammation also plays an important role in the CNS. The CNS has its own immune 

cells, called microglia. These cells are closely associated with neurons, and monitor 

any changes that occur in and around the neuronal environment, with their main 

function being to protect neurons (141). Neurons release or display molecules that 

signal to microglia about the health of the neuron (142). In their resting state, neurons 

display molecules on their surface including CD47 (143) and CD22 (144), to inform the 

microglia of their healthy state and prevent microglial activation. Following neuronal 

damage, neurons release other signals including glutamate (145), purines (146) and 

chemokines (147) that are recognised by microglia and initiate microglia activation. In 

addition, the absence of signals displayed on healthy neurons also causes 

activation of microglial cells (144).  

Microglia are considered the macrophages of the CNS, and play an important role in 

clearance of pathogens (148), apoptotic cells (149) and cell debris (150). Microglia are 

attracted to an area of damage caused by injury or inflammation by signals including 

chemokines and nucleotides e.g. chemokine (C-X3-C motif) ligand (CX3CL)-1 (151) 

and adenosine triphosphate (ATP) (152) released by damaged neurons. Microglia 

sense these stimuli through their chemokine (C-X3-C motif) receptor 1 and 

purinergic receptors on the cell membrane, which initiate microglial migration 

towards the gradient of the stimulus to the damaged area (151, 152). Damaged neurons 

present molecules such as phosphatidylserine on their surface which are 

recognised by microglia to induce phagocytosis of the damaged neuron (153). 

Phagocytosis of apoptotic cells is very important, as the release of chemokines, 

nucleotides and cytokines from damaged neurons can increase inflammation in the 

damaged area (78) and therefore the regulation of microglia activation is critical. 

Although microglia are important for dead cell clearance, they can also increase 

inflammation and tissue damage when over-activated (154). Activation of microglia 

directly by pathogens or indirectly through neuronal injury can cause the release of 
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pro-inflammatory mediators including IL-1β, TNF-α and ROS (155, 156). These 

mediators act on neurons to induce injury and apoptosis which results in further 

secretion of inflammatory mediators, activating microglia further (157, 158). Therefore, 

in many neurological conditions including MS and neurodegeneration, inhibition of 

microglial influx and activation has shown beneficial effects (159-161).  

Another glial cell type in the brain called astrocytes also secrete cytokines and 

chemokines in response to brain damage, but to a lesser extent than microglia (162). 

Similarly to microglia, inflammatory mediators secreted by astrocytes contribute to 

inflammation in the brain during inflammation and disease, but they are also 

important in repair of the brain (162, 163). Astrocytes prevent over-activation of 

microglia, suppressing inflammation by increasing protective genes such as heme 

oxygenase 1 (164). 

In addition to microglia and astrocytes, other cell types in the brain can also 

contribute to inflammation. Endothelial cells, neurons and oligodendrocytes secrete 

inflammatory mediators, activating the surrounding glia, increasing local 

inflammation (165). Endothelial cells secrete cytokines, chemokines and alter 

expression of adhesion molecules, increasing infiltration of peripheral immune cells 

into the CNS (166). Weakening of the blood brain barrier allows leukocytes, 

particularly neutrophils and monocytes, to migrate to the inflamed tissue, through 

the chemical gradient, created by the chemokines secreted by microglia and 

astrocytes in the damaged area (167, 168). Once at the site of inflammation these cells 

can contribute to secretion of pro-inflammatory mediators including cytokines and 

chemokines. Neutrophils also secrete neutrophil elastase and MMPs that cause 

tissue degradation, making it easier for leukocytes get to the site of inflammation 

(169).  

 

1.3. Inflammation and Ischaemia 

As mentioned previously, ischaemia is a key initiator of the inflammatory response. 

Ischaemic conditions including stroke and age related macular degeneration (AMD) 

of the eye are often associated with increased inflammation and a worse clinical 

outcome (170-172). Ischaemia increases inflammation by a variety of different 

mechanisms. The main mechanism of ischaemia-induced inflammation is through 

induction of ROS including H2O2 and ·O2
- through activation of the mitochondrial 

election transport chain and xanthine and nicotinamide adenine dinucleotide 
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phosphate (NADPH) oxidases (173-175). Ischaemia-induced ROS production causes 

the release of a variety of pro-inflammatory mediators including IL-8 and TNF-α 

through regulation of activating protein-1 (AP-1) (4), MAPK (5) and NFκB (59) signalling 

pathways. Ischemia also increases microglial activation and proliferation which can 

be detrimental in ischaemic conditions such as stroke and AMD further linking these 

two processes (176, 177). 

 

1.4. Cerebral Ischaemia 

Cerebral ischaemia, or stroke as it is more commonly known, is the 4th leading 

cause of morbidity in the western world and primary cause of major disability 

worldwide (178). The risk of stroke is associated with common factors including: diet, 

family history and comorbidities e.g. diabetes (179), obesity (180) and hypertension (181). 

There are two major types of stroke: thrombolytic (~80% of stroke cases) and 

haemorrhagic (~20% of stroke cases) (182). A haemorrhagic stroke occurs when a 

blood vessel in the brain bursts and is often due to high blood pressure. This 

reduces the blood supply to certain areas of the brain causing neuronal cell death. A 

thrombolytic/ischaemic stroke occurs when a thrombus, most commonly in the 

carotid artery, brakes off from the lining of the artery into the blood stream forming 

an embolus (183). The embolus is carried via the carotid artery until it blocks the 

smaller arteries of the brain (183). The most common site of obstruction is the middle 

cerebral artery (MCA), this artery supplies blood to the surface of the lateral 

hemispheres of the frontal, parietal and temporal cortices (184). A lack of blood flow 

to these regions results in symptoms associated with the function of the damaged 

area, and therefore symptoms commonly include: motor disturbances (particularly of 

the limbs and face), visual disturbances, headaches, dizziness and speech 

impairment (185).  

Following vessel occlusion, the brain regions supplied by the blocked vessel 

become starved of nutrients essential for neuronal survival, in particular, oxygen 

and glucose (186). Neurons supplied entirely by the blocked artery will form the infarct 

core, in which all the neurons will die, primarily by necrosis (Figure 1.8) (187). The 

area surrounding the core is called the penumbra. Blood flow in this area is reduced 

to around 20% due to a blockage in one of the main arteries that supplies blood to 

this region (188). However, this volume of blood is adequate for neuronal survival for 

a limited time (188). The survival of the neurons in the penumbra is dependent on a 
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number of factors, including the duration of cerebral infarction, the amount and 

diffusion of toxic molecules released from the necrotic core and the effect of 

reperfusion (188). Neurons in the infarct core undergo necrosis, which is a less 

regulated form of cell death in comparison to apoptosis, and this results in release 

of toxic molecules (particularly glutamate), which diffuse towards the penumbra 

causing excitotoxic neuronal cell death (187, 189). Reperfusion is the restoration of 

blood flow to the brain, and although this is essential for survival, it brings with it 

toxicity caused by influx of inflammatory cells and pro-inflammatory mediators from 

the blood (190). These molecules can lead to further cell death of the vulnerable 

neurons in the penumbra (190).  

 

 

Figure 1.8: Thrombotic occlusion of the MCA. Artery occlusion results in an ischaemic core 

highlighted in grey with surrounding penumbra in yellow. Figure modified from Mongia et al 2013 

(191)
. 

 

Much of the damage that occurs in the brain after stroke is caused by inflammation. 

Similarly to peripheral inflammation, recovery of the brain after stroke is also thought 

to occur in two phases (192). The first phase begins immediately after vessel 

occlusion and is characterised by inflammation, ROS production and neuronal cell 

death (192). In the second phase, the brain begins to repair the damage caused by 

the occlusion and Phase I, and this latter phase begins days after vessel occlusion 

(193). During this phase, growth factors, anti-inflammatory mediators and anti-oxidant 



36 
 

molecules are released into the damaged area in an attempt to reduce inflammation 

and increase neuron and vessel repair and regeneration.  

 

1.5. Inflammation in Cerebral Ischaemia 

As mentioned previously, inflammatory mediators released during brain 

inflammation including cytokines and chemokines are also secreted from resident 

cells of the brain including microglia (194), astrocytes (195), oligodendrocytes (196), 

endothelial cells (197) and to some extent neurons (198). Following stroke, nutrient 

deprivation and neuronal cell death initiates the activation of these cells causing the 

release of pro-inflammatory molecules in an attempt to initiate the ‘clear-up ’ or 

repair the damaged cells (199).  

Microglial cells have both neuroprotective and neurotoxic actions in the brain and 

therefore their role in recovery of stroke is controversial. Intravenous transplantation 

of the human microglial cell line HMO6, reduced infarct volume and increased 

neuronal recovery in an animal model of stroke (200). Microglial cells also increase 

neural precursor proliferation (201) and regenerate and increase turnover of 

overactive synapses (202) in stroke, demonstrating their neuroprotective function. On 

the other hand, activated microglia increase production of ROS, proinflammatory 

cytokines, chemokines, cytochrome c and caspase 3 resulting in reduced neuronal 

viability (203, 204). This suggests that microglia play both beneficial and detrimental 

roles in stroke, which is likely to depend on the individual and the duration of 

occlusion and reperfusion. 

Peripheral leukocytes infiltrate the brain following stroke due to the weakening of the 

blood brain barrier that occurs following cerebral ischaemia (205). Leukocytes in 

peripheral arteries undergo a series of attachments to the underlying endothelium, 

by binding to adhesion molecules including integrins, selectins and the 

immunoglobulins (206). ICAM-1 is an adhesion molecule increased following stroke 

(207). ICAM KO mice survive longer when subjected to middle cerebral artery 

occlusion (MCAo) compared to wild type animals highlighting contribution of this 

molecule to cell death in the brain following stroke (208). The main peripheral 

inflammatory cell to infiltrate the brain following stroke is the neutrophil (209). IL-8 is 

the main chemokine responsible for infiltration of neutrophils following stroke (210). 

Neutrophils secrete proteases and pro-inflammatory mediators that increase 

inflammation and neuronal damage further (Figure 1.9) (211). T-cells also infiltrate the 
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brain following stroke and are likely to contribute to the secretion of pro-

inflammatory mediators and inflammatory cell infiltration (212). Leukocyte infiltration 

into the brain following stroke alters the osmolality of the tissue increasing fluid 

uptake into the areas of the brain with increased numbers of leukocytes causing 

brain oedema (205) Oedema increases pressure in the brain, which causes further 

neuronal cell death, and in extreme cases, can be fatal (213). In severe cases, 

external ventricular drainage can be used to reduce oedema to reduce the risk of 

brain damage (213).  

 

Immune cells secrete pro-inflammatory cytokines including TNF-α (214), IL-6 (215) and 

IL-1β (216) which are detrimental in the early phases of stroke (Figure 1.9). TNF-α is 

increased in the brain following stroke and is a major contributor to neuronal cell 

death (214). IL-1β is also increased following stoke where it activates immune cells, 

which in the case of neutrophils, causes the release of MMP-9, which degrades the 

extracellular matrix and increases brain damage after stroke (217). Inhibition of MMP-

9 (218), inflammatory cytokines (219, 220) or neutrophil influx into the brain (221), reduces 

infarct volume after stroke, demonstrating the damaging effects of these molecules. 

However, in the regeneration phase following stroke, MMPs can be beneficial. 

MMPs are required for breakdown of the extracellular matrix within the infarct, which 

allows for growth of new neurons and blood vessels and which should be 

considered when selecting MMPs as therapeutic targets for stoke (222). IL-1RA is 

also increased in stroke where it reduces neuronal damage through inhibition of the 

pro-inflammatory actions of IL-1β (216, 223, 224). IL-6 on the other hand has 

demonstrated both beneficial and detrimental effects in stroke. In an animal model 

of stroke, administration of IL-6 has been shown to reduce cerebral damage (225, 226) 

conversely, serum IL-6 levels are positively correlated with stroke severity, 

suggesting that the role of IL-6 in stroke is likely to be both good and bad depending 

on concentration, time and the nature of the surrounding environment (215, 227).  
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Figure 1.9: Inflammatory protein expression in the brain following stroke. TNF-α, CXCL2, 

IL-1β, ICAM, IL-6, IL-8, nerve growth factor (NGF) and MMPs are increased within the first 24 h 

of stroke. Stromal derived factor -1 (SDF-1), IL-10 and TGF-β1 are increased in the days 

following stroke. 

 

Chemokines are another key group of mediators increased following stroke. 

Chemokines are the primarily responsible for peripheral leukocyte influx into the 

brain following stroke (210, 228). IL-8, CXCL2 and SDF-1 are important chemokines 

that function to increase leukocyte influx into the brain, which as discussed 

previously is a major cause of inflammation and brain damage in stroke  (168, 228, 229). 

However, some chemokines e.g. CX3CL1 have been shown to be beneficial in 

stroke showing that similarly to other inflammatory mediators, chemokines can have 

both protective and detrimental effects in stroke (230). 

Anti-inflammatory cytokines including TGF-β and IL-10 are also upregulated 

following stroke (Figure 1.9) (231-233). IL-10 reduces inflammation via inhibition of IL-

12, IL-6, IL-8 and TNF-α activity (234). In addition, administration of IL-10 in the MCAo 

mouse model reduces infarct volume, further supporting a protective role for this 

cytokine in stroke (235). TGF-β has also demonstrated a protective function after 

stroke. The anti-inflammatory cytokine and growth factor is upregulated in the brain 

tissue peaking 7 days after reperfusion in the MCAo mouse model of stroke (Figure 

1.9) (236). As well as having anti-inflammatory properties, such as suppression of 

immune cell activation and cytokine secretion, TGF-β regulates regeneration of 

neurons and blood vessels following stroke (237-239).  

In summary, immune cell activation causes the release of many pro-inflammatory 

mediators and increases brain damage following stroke, however, some immune 

cells including microglia and astrocytes also play a role in repair and regeneration of 
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the brain following stroke. Much is known about the initial stages of inflammation 

following stroke, however the mechanisms of repair in the later stages of stroke 

require further validation. The identification of new biomarkers for this later phase 

will be a useful tool for the research of inflammation in the brain following stroke. 

 

1.6. TREM-2 and Ischaemia 

Due to the need to identify new biomarkers in inflammation following stroke, our lab, 

in collaboration with Prof. Otto Witte and Dr. Christiane Frahm at the University of 

Jena, investigated gene expression changes in the brains of mice exposed to 

MCAo.  Mice were subjected to MCAo for 30 min followed by reperfusion for 2 or 7 

days (Figure 1.10). Microarray analysis of brain tissue from ipsilateral and 

contralateral hemispheres resulted in the identification of a potential novel 

therapeutic target for stroke, a molecule called triggering receptor expressed on 

myeloid cells -2 (TREM-2). TREM-2 was one of the highest upregulated genes (6-

fold) in the repair phase (7 days) following MCAo. TREM-2 belongs to a family of 

receptors known to play a role in the inflammatory response. TREM-2 itself has 

demonstrated anti-inflammatory properties (240), is regulated by inflammation (241) 

and its expression is altered in various inflammatory conditions (242-244). This 

suggests that TREM-2 is an important regulator of the inflammatory response. 
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Figure 1.10: MCAo mouse model of stroke. Mice were either sham operated (Sham) or had 

their MCA occluded for 30 min. Brain samples were collected for microarray analysis 2 or 7 days 

after reperfusion. 

 

1.7. Introduction to TREM-2 and the TREM Family 

1.7.1. The TREM Family 

The TREM proteins are transmembrane receptors of the Ig superfamily known for 

their role in modulation of the inflammatory response (245). They are mainly found in 

myeloid cell types, although expression in a limited number of other cell types has 

been documented. The expression of the TREM proteins and their role in 

inflammation in different cell types varies depending on the TREM protein involved 

(245). The TREM gene cluster is found on chromosome 6p21.1 and contains TREMs 

1-5 and the TREM-like transcript (TLT) proteins (Table 1.1) (246). TREMs 4 and 5 

have currently only been identified in the mouse genome and very little is known 

about these receptors (246). The TLT proteins have a degree of homology to the 

TREM proteins and have also demonstrated immune regulatory properties amongst 

other functions (Table 1.1) (245-248).  

TREM-1 is the most characterised TREM protein and is known for its ability to 

exacerbate the inflammatory response (Table 1.1). Activation of TREM-1 by the 
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currently unidentified TREM-1 ligand, initiates a pro-inflammatory response, 

including secretion of IL-1β, TNF-α and IL-8 (249). In addition, LPS stimulation of 

human monocytes (in vitro and in vivo) increases TREM-1 expression, which is 

important for pathogen-induced cytokine secretion, demonstrated using TREM-1 KO 

mice or TREM-1 blocking antibodies, which showed that TREM-1 was in important 

for pro-inflammatory cytokine secretion and increased mortality following in sepsis 

(250-252). TREMs -1 and -2 have been identified in both human and mouse genomes 

(246, 253).  TREM-3, however, is only expressed in the mouse and consists of a single 

exon in humans, with no mRNA or protein yet detected (254). However, the limited 

research on TREM-3 so far suggests the protein has similar pro-inflammatory 

properties to its close family member, TREM-1 (248). 

 

Table 1.1: TREM family expression and function. 

TREM 

family 

member 

Species  Expression Function Refs 

TREM-1 Human, 

mouse 

Neutrophils, monocytes, 

macrophages, endothelial cells and 

some epithelial cell types 

Pro-inflammatory 
(241, 

255, 

256)
 

TREM-2 Human, 

mouse 

Microglia, monocyte derived 

macrophages, hepatic macrophages, 

dendritic cells, subsets of monocytes, 

osteoclasts, genitourinary and 

fallopian tube epithelial cells, 

endothelial cells, fibroblasts  

Low levels: some neurons and 

oligodendrocytes 

Anti-inflammatory, 

phagocytosis,   

osteoclastogenesis 

(240, 

241, 

243, 

244, 

257-265)
 

TREM-3 Mouse Macrophages, endothelial cells Pro-inflammatory 
(241)

 

TREM-4 Mouse Unknown Unknown 
(246)

 

TREM-5 Mouse Unknown Unknown 
(246)

 

TLT-1 Human, 

mouse 

Platelets, megakaryocytes Osteoclastogenesis, 

platelet aggregation 

(266-

269)
 

 

TLT-2 Human, 

mouse 

CD8+ T-cells, B-cells, alveolar and 

peritoneal macrophages, neutrophils 

Pro-inflammatory, 

increases neutrophil 

activity and 

recruitment 

(247, 

270, 

271)
 

TLT-3 Human Monocytes, B-cell subsets,  

fibrosarcoma  

Unknown 
(246)

 



42 
 

 

1.7.2. TREM-2 Expression 

TREM-2 is a 230 amino acid glycosylated receptor of the TREM family, and unlike 

other TREM proteins has anti-inflammatory activity. TREM-2 has been identified on 

the cell surface of myeloid cells including macrophages, microglia, osteoclasts and 

dendritic cells (Table 1.1). Evidence suggests that TREM-2 is mainly expressed on 

amoeboid microglial cells, and that in these cells, TREM-2 is located on both the cell 

surface and intracellularly (274-276). High expression of TREM-2 in these amoeboid 

cells is probably due to the phagocytic and migratory phenotype of these cells, as 

TREM-2 has been shown to be involved in both of these processes in microglia (81). 

TREM-2 expression has also been identified in human fallopian tube and 

genitourinary epithelial cells (257), mouse liver endothelial cells (241), mouse 

oligodendrocytes, low expression in neurons (258, 259) and more recently in human 

fibroblasts (244) (Table 1.1). TREM-2 protein expression is generally low in 

monocytes (246, 262, 277), but has been shown in some conditions to be expressed at 

higher levels, for example, on monocytes isolated from the cerebrospinal fluid (CSF) 

of MS patients (278). This suggests that basal TREM-2 expression is regulated by 

changes in the surrounding environment and possibly also by the differentiation 

state of the cell.  

 

1.7.3. The Role of TREM-2 in Nasu-Hakola Disease 

The current knowledge of TREM-2 function has been supported by studies using 

patients with Nasu-Hakola Disease (NHD) also called polycystic lipomembranous 

osteodysplasia with sclerosing leukoencephalopathy (PLOSL). This is a rare, 

inherited, autosomal recessive disease caused by a deficiency in either the TREM-2 

protein or the TREM-2 adaptor protein TYRO protein tyrosine kinase binding protein 

(DAP12) (279). Table 1.2 details the types of TREM-2 mutations that have been 

identified in NHD and the functional effects observed. The first symptoms of NHD 

most commonly present themselves during adolescence and include: pain and 

swelling of the ankles and feet and bone fractures (280). These symptoms occur as a 

TLT-4 Human, 

mouse 

Macrophages, dendritic cells Apoptotic cell 

recognition, antigen 

presentation 

(272, 

273)
 

 

TLT-5 Human Not expressed  Pseudogene 
(246)
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result of the development of cysts in the bone marrow of long bones caused by a 

lack of TREM-2 signalling, altering osteoclast formation and development. (260, 279). 

The neurological symptoms of NHD include: personality and behavioural changes, 

in particular, social inhibition, unrestrained behaviour and euphoria, alterations in 

speech speed developing onto aphasia of speech, and as the disease develops, 

motor disturbances and memory loss and in some cases epilepsy (280). These 

symptoms occur as a result of the following changes in brain physiology: 

degeneration/atrophy of cortical white matter, demyelination and axon degeneration, 

enlarged brain ventricles, hypoperfusion of the brain, proliferation of microglia and 

astrocytes and basal ganglia calcification (279, 280).  

 

Table 1.2: TREM-2 mutations in NHD 

TREM-2 DNA 
Mutation 

TREM-2 
protein 
change 

Homozygous/
Heterozygous 

Functional effects Refs 

C to T mutation 
at position 97 

Q33Stp Homozygous Actin filament changes. Increased 
expression of genes involved in 
inflammation and immune 
response and reduced expression 
of the GABA family and synaptic 
proteins 

(276, 281)
 

T to G mutation 
at  position 377 

V126G Homozygous Actin filament changes. Increased 
expression of genes involved in 
inflammation and immune 
response and reduced expression 
of the GABA family and synaptic 
proteins 

(276, 281)
 

Splicing 
mutation: T to C 
at the second 
position of intron 
3 in the splice-
donor consensus 
site (482) 

Truncated 
proteins 

Homozygous Astrogliosis, demyelination, 
axonal spheroid formation and 
basal ganglia calcification. 

(282)
 

 

Gene expression studies in NHD patients have improved our understanding of 

TREM-2 function. Analysis of NHD brain cortical tissue showed altered expression 

of hundreds of genes, many of them involved in inflammation, cellular movement 

and immune trafficking (282).  Of the genes downregulated, the gamma-aminobutyric 

acid (GABA) receptor family occurred most frequently (282) which may be why some 

patients with NHD experience epilepsy, through over-excitation of neuronal circuits. 

In addition, IL-18, a member of the IL-1 family, was increased by 10-fold in NHD 

patients (282). This increase in IL-18 signalling may be in part responsible for the 
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changes in brain homeostasis observed in NHD (282). In addition, this study also 

suggests that TREM-2 is important for preventing over-expression of IL-18 

dampening down the inflammatory response in the brain (282). 

NHD patients also have reduced expression of genes involved in neurogenesis and 

synaptogenesis e.g. neuritin 1 and synaptoporin (282), processes that are important 

in the repair of the brain and spinal cord in disease and following injury (283, 284). The 

downregulation of these genes in NHD suggests that the lack of TREM-2 signalling 

reduces neurogenesis and synaptogenesis, reducing the brains natural repair 

mechanisms. This is likely to play a role in the neurodegeneration observed in NHD 

patients and further supports the role of TREM-2 in resolution and repair of the 

brain. Dendritic cells from patients with NHD also have altered gene expression (281). 

The most upregulated genes include: allograft inflammatory factor 1 (AIF1), CCL18, 

CCL2, CCL23, sialic acid binding Ig-like lectin 1, complement component 1qa, 

complement C2 and complement component 1qB (281). All of these genes are 

involved in inflammation and/or phagocytosis, suggesting that TREM-2 regulates 

these genes to mediate its anti-inflammatory and phagocytic effects.  

In summary, the identification of a defect in TREM-2 in NHD has been a useful tool 

to better understand the functions of TREM-2 in health and disease.  

 

1.7.4. TREM-2 Signalling 

1.7.4.1. The TREM-2 Ligand  

The current evidence suggests that TREM-2 has multiple ligands, similar to that of 

the pathogen recognition receptors. A TREM-2 ligand has been identified in 

neurons, macrophages, dendritic cells and astrocytes (149, 265, 285-287). These studies 

measured the TREM-2 ligand using a TREM-2-Fc fusion protein, for this amino 

acids 19-171 of TREM-2 were cloned with an IgG Fc domain and binding of the 

fusion protein to the surface of cells was measured by fluorescent antibody binding 

to the Fc domain (285). Interestingly, TREM-2 ligand expression is increased on the 

surface of apoptotic neurons and initiates TREM-2 mediated phagocytosis of 

apoptotic neurons by microglial cells (149). The presence of the TREM-2 ligand on 

TREM-2 expressing cells including macrophages and dendritic cells suggests that 

these cell types are able to activate TREM-2 independently via ligand secretion or 

direct interaction with the TREM-2 ligand on the cell membrane.  
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HSP60 is one protein that is thought to be an agonist for the TREM-2 receptor. 

HSP60 increased phagocytosis in TREM-2 overexpressing cells, which could be 

suppressed with downregulation of TREM-2 (286). However, its low binding affinity for 

the TREM-2 receptor suggests that it is only effective when microglia are close to 

the source of HSP60 (286). TREM-2 ligands have also been reported on the surface 

of bacteria including E. coli, S. aureus and N. gonorrhoea but the specific molecules 

required for TREM-2 activation have only been recognised on N. gonorrhoea, 

identified as lipooligosaccharides (257, 285). N’Diaye and colleagues also showed that 

TREM-2 was required for binding and phagocytosis of bacteria in Chinese hamster 

ovary (CHO) cells, but identified bacterial ligands have not yet been directly linked 

to TREM-2 phagocytosis (261). This study further suggests a role for TREM-2 in the 

clearance of pathogen infection. However, the lack of a TREM-2 ligand makes it 

more challenging to study its function. The most common way to activate the 

receptor is through cross-linking with antibodies against TREM-2. It seems that at 

least for some functions, both F(ab) fragments of the antibody are required for 

activation, suggesting that more than one receptor is required for TREM-2 activation 

(262). In addition, the function of TREM-2 has also been studied using TREM-2 KO 

animals and has provided great insight into the functions of TREM-2. However, 

altering TREM-2 expression may not correlate to TREM-2 activity and therefore 

more research is required to discover and understand TREM-2 ligands, and this will 

further help understand the diverse functions of TREM-2. 

 

1.7.4.2. TREM-2 Receptor Structure and Signalling 

Similarly to other receptors of the Ig superfamily, TREM-2 is a single 

transmembrane-spanning receptor (246). TREM-2 has a very small cytoplasmic 

domain and so requires the adapter protein DAP12 for signal transduction (288). 

DAP12 is an adaptor protein for multiple cell surface receptors including signal 

regulatory peptide beta (SIRP-β), TREM-1 and myeloid DAP12-associating lectin-1 

(MDL-1) (262). DAP12 is a transmembrane protein with a cytoplasmic tail containing 

an immune tyrosine receptor based activation motif (ITAM), important for 

association with the TREM-2 receptor (Figure 1.11).  The ITAM motif is the site of 

DAP12 tyrosine phosphorylation following TREM-2 receptor activation (265, 289). 

Phosphorylation of tyrosine residues 65 and 76 are important for recruitment, 
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phosphorylation and activation of Src tyrosine kinases, such as spleen tyrosine 

kinase (Syk) which bind to the tyrosine residues through their Src homology 2 (SH2) 

domains (Figure 1.11) (262, 289-291). TREM-2 has also been shown to associate with 

DAP10, a similar adaptor molecule with a tyrosine based motif (YINM) (292). The 

YINM motif is important for association with the SH2 domain of the PI3K p85 

subunit (293). Phosphorylation of PI3K requires both DAP12 and DAP10 and results 

in the activation of AKT, Grb2 and ERK1/2 signalling pathways (292). PI3K activation 

is also required for Syk phosphorylation, suggesting that PI3K is important for the 

recruitment and activation of Syk by DAP12 (292).  

Studies have also shown ERK1/2 activation downstream of TREM-2 signalling 

through direct activation of the TREM-2 receptor. Knocking out the TREM-2 

receptor reduced ERK1/2 phosphorylation induced by TREM-2 activation using a 

TREM-2 antibody (260, 291). Along with protein tyrosine kinases, TREM-2-induced 

ERK1/2 activation has also been linked to the effects of TREM-2 on dendritic cell 

maturation and survival, suggesting that TREM-2 mediates its effects on these 

processes via ERK1/2 (262) 

SH2-containing inositol phosphatase (SHIP) has been identified as an inhibitor of 

these signalling pathways, binding to phosphorylated tyrosines on DAP10 and 

DAP12 to inhibit binding of other SH2 domain containing proteins including PI3K 

and Syk (292). In addition, SHIP-1 KO increases the ability of TREM-2 to potentiate 

osteoclastogenesis, suggesting that SHIP acts as a negative regulator of TREM-2 

signalling (292). Interestingly, activation of TREM-2 increases SHIP-1 

phosphorylation, demonstrating a negative feedback loop to prevent over-activation 

of the TREM-2 receptor (292).  
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Figure 1.11: TREM-2 signalling cascade. TREM-2 activation allows association with, activation 

and phosphorylation of DAP12 and or DAP10. This allows PI3K and Syk to bind, which in turn 

activates other kinases; LAB and ERK1/2, Grb2, PI3K, c-cbl and PLCγ. 

 

The signalling molecule linker for activation of B cells (LAB), also called LAT2 or 

NTAL, is strongly expressed in macrophages, and is required for TREM-2 activation 

of ERK MAP kinase in macrophages (291). Following TREM-2 activation, Syk 

phosphorylates LAB, allowing Grb-2 to associate with the LAB adaptor protein 

(Figure 1.11). LAB-induced Grb-2 aids recruitment of ERK1/2, c-cbl and PI3K to 

LAB. LAB activation of c-cbl acts as a negative feedback mechanism to reduce 

over-activation of TREM-2 by causing ubiquitination and degradation of Syk (291). 

LAB activation also indirectly activates phospholipase C (PLC)-γ, this leads to an 

increase in intracellular calcium via diacylglycerol, which may contribute to, or be 

the initiator of the increased intracellular calcium seen after TREM-2 activation (294). 

In support of this, PLC has been shown to be recruited to the TREM-2 signalling 

complex after ligation of the TREM-2 receptor (292).  

TREM-2 has also been shown to associate with Plexin-A1 (PA-1). The PA-1 

receptor is involved in functions including cell migration, angiogenesis, generation of 

agonist specific T-cells, neuronal out growth, adhesion and spreading (295). 

Semaphorin 6D (Sema6D) is a ligand for PA-1 and requires TREM-2 expression to 

initiate PA-1-induced Rac-1 activation (296). However, DAP12, the adaptor molecule 

‘essential’ for TREM-2 signalling seems not to be required for PA-1 activation by 
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Sema6D, suggesting that in the presence of a co-receptor, TREM-2 can signal 

without DAP12 (296). Rac-1 was also identified as an important signalling molecule 

for TREM-2-induced phagocytosis, in addition to cell division cycle 42 (261). This 

suggests that TREM-2 can signal with PA-1 as co-receptor, and therefore may also 

signal with other receptors. Signalling in this way increases the potential functions of 

TREM-2. 

Peng and colleagues have recently identified the signalling mechanism required for 

suppression of LPS signalling by DAP12 (297). LPS induced phosphorylation of 

docking protein 3 (DOK3) via Src which leads to its translocation to the plasma 

membrane where it associates with DAP12 and Grb2 (297). This interaction is 

required for the ability of DAP12 to supress LPS-induced ERK1/2 activation (297). 

This study suggests that the TREM-2 DAP12 signalling pathway suppresses LPS 

signalling through DOK3 and Grb2 proteins. However, the direct role of TREM-2 in 

this pathway was not investigated in this study. 

Activation of TREM-2 also increases intracellular calcium. Calcium influx induced by 

TREM-2 cross-linking is dependent on the presence of both F(ab’) fragments of the 

antibody linked together, suggesting that TREM-2 requires two receptors for signal 

transduction (262). This increase in intracellular calcium also activates calcineurin, 

initiating translocation of nuclear factor of activated T-cells c1 (NFATc1) to the 

nucleus (260, 298). Similarly to TREM-2, NFATc1 is important in osteoclastogenesis. 

Recent studies have shown that TREM-2 activation increases NFATc1 expression, 

and that RANK-induced NFATc1 expression requires upregulation of TREM-2 (260, 

298), further suggesting that the interaction between NFATc1, TREM-2 and RANK 

are important for the regulation of osteoclastogenesis.  

In summary, TREM-2 has been shown to associate with other receptors including 

plexin-A1 and adaptor molecules including DAP12, DAP10 and LAB. It seems that 

association with different receptors and adaptor molecules alter the downstream 

signalling cascade activated by TREM-2. This is likely to be critical for 

understanding the varied functions of TREM-2 in different cell types. 

  

1.7.5. TREM-2 is Important for Differentiation of Myeloid Cells 

TREM-2 is increased during myeloid cell differentiation into macrophages, dendritic 

cells and osteoclasts (240, 299, 300). TREM-2 is important for proliferation of osteoclasts 
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precursors and therefore deficiency in TREM-2 results in increased bone resorption 

due to reduced proliferation and increased differentiation of osteoclasts resulting in 

bone fragility as observed in NHD (301). TREM-2 is increased following differentiation 

of monocytes into dendritic cells (281) and macrophages, particularly M2-type 

macrophages, which requires IL-4 and M-CSF (240, 302). The high expression of 

TREM-2 on these M2-type macrophages has led to the use of TREM-2 as a marker 

of this cell type (303-305). In addition, KO of TREM-2 and DAP12 in monocytes does 

not affect the ability of monocytes to differentiate into dendritic cells in vitro, but 

does prevent correct differentiation into macrophages (281).  Although TREM-

2/DAP12-deficient monocytes can differentiate into dendritic cells, there are some 

differences in cell morphology such as increases in cell surface area and number of 

processes, highlighting the importance of TREM-2 in myeloid cell maturation (281). 

TREM-2 is also increased in differentiation of primary monocytes into dendritic cells 

with IL-4 and GM-CSF (299). In addition, TREM-2 ligation in dendritic cells induces 

dendritic cell maturation measured through upregulation of molecules required for T-

cell activation including major histocompatibility complex (MHC) class II, CD40 and 

CD86 further supporting a functional role for TREM-2 in dendritic cell maturation 

and differentiation (262). Taken together, this shows that TREM-2 is in important for 

differentiation and maturation of dendritic cells and macrophages, and may also be 

a useful marker for myeloid differentiation (262).  

Macrophages deficient in DAP12 have reduced expression of E-cadherin and 

dendritic cell specific transmembrane protein (DC-STAMP) (306). These molecules 

are dendritic cell markers, further supporting a role for the TREM-2/DAP12 complex 

in dendritic cell maturation. However, these proteins are also important for cell 

fusion and E-cadherin also is plays a role in β-catenin homeostasis, which is 

important in the regulation of the cell cycle (307). In addition, active DAP12 induces 

calcium induced calmodulin activation, which is required for phosphorylation and 

activation of proline rich tyrosine kinase 2 (Pyk2), a kinase important for regulation 

of beta-catenin function by E-cadherin, further linking DAP12 with this signalling 

pathway  (308). TREM-2 may be the receptor that binds to DAP12 for activation of 

this signalling pathway, particularly since TREM-2 activation initiates calcium influx 

which could activate this pathway. This suggests that the effect of TREM-2 on 

dendritic cell maturation may be mediated by this calcium-calmodulin Pyk2 

signalling pathway.  

The upregulation of TREM-2 during monocyte differentiation into macrophages may 

be in part though H3K4me3 histone modification of TREM-2 during differentiation 
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(309). TREM-2 is also regulated by M-CSF, a key mediator in myeloid differentiation 

that increases TREM-2 expression in myeloid cells (240). One transcription factor that 

both M-CSF and GM-CSF activate is PU.1 (SPI1; spleen focus forming virus (SFFV) 

proviral integration oncogene). The effect of M-CSF and GM-CSF on myeloid 

differentiation is inhibited in PU.1 deficient mice (310, 311). Interestingly, PU.1 has two 

predicated binding sites on the TREM-2 promoter, implicating PU.1 as a regulator of 

TREM-2 expression in differentiation (Figure 1.12) (298).  

Predicted binding sites for microphthalmia-associated transcription factor (MITF) 

have also been identified on the TREM-2 promoter (Figure 1.12) (298). MITF is an 

important factor in myeloid cell differentiation and has been particularly associated 

with osteoclast function, differentiation and proliferation (312). The identification of a 

predicted MITF binding site on the TREM-2 promoter suggests that this gene 

regulates TREM-2 expression and this may be how MITF regulates osteoclast 

function.  

GATA binding protein 1 (GATA1), runt-related transcription factor 1 (RUNX1/AML-

1), C/EBPα and myogenic differentiation 1 (MyoD) also have predicted binding sites 

on the TREM-2 promoter (Figure 1.12) (298). These molecules are transcription 

factors that regulate the cell cycle and differentiation (298). This further supports the 

important role of TREM-2 in differentiation and cell cycle regulation.  

 

 

Figure 1.12: Binding sites on the TREM-2 promoter. 

 

In summary, TREM-2 is upregulated during myeloid differentiation. A number of 

transcription factors may be involved in upregulation of TREM-2 in differentiation 

including: PU.1, MITF, GATA1, RUNX1, C/EBPα and MyoD all of which have 

binding sites on the TREM-2 promoter. KO studies in mice have shown the 

importance of TREM-2 in differentiation of monocytes into osteoclasts, 
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macrophages and dendritic cells but further research is required to determine the 

exact role of TREM-2 in these functions.  

 

1.7.6. The Effect of TREM-2 on Phagocytosis 

Phagocytosis is the process of engulfment of apoptotic cells, pathogens or 

unwanted extracellular debris into a cell. Cells that have the ability to phagocytose 

are called phagocytes and include immune cells including: microglia, macrophages 

and dendritic cells (313-318). Phagocytosis of apoptotic cells has been linked to 

inflammation, injury and neurodegeneration (319, 320). It has been shown that when 

this process is diminished, the presence of apoptotic cells and their components 

exacerbate inflammation and therefore the clearance of these cells is very important 

for tissue repair and the resolution of inflammation (78). Apoptotic cells release 

nucleotides including adenosine triphosphate (ATP) (321) and uridine diphosphate 

(UDP) (322) and the chemokine CX3CL1 (160) which are sensed by phagocytes to 

initiate migration towards the dying cells. Identification of apoptotic cells by 

phagocytes occurs by the appearance of signals on the apoptotic cell membrane 

including oxidised low density lipoproteins (oxLDL) (323), phosphatidylserine (PS) (324) 

and collectins (325). These molecules are identified by the phagocyte and allow the 

cell to be targeted for phagocytosis (Figure 1.13) (323-326). The most widely 

acknowledged marker of cell apoptosis or necrosis is PS. PS binds to cell surface 

receptors and integrins on phagocytes, initiating an intracellular signalling cascade 

resulting in the formation of the phagosome resulting in phagocytosis (Figure 1.13) 

(327-329). In the CNS, microglia secrete milk fat globule-EGF factor 8 protein  (MFG-

E8) which aids binding of PS to its receptor on the microglial cell surface to 

encourage phagocytosis (330). Although phagocytosis is generally beneficial, during 

inflammation, phagocytosis can become dysregulated, in these cases, microglia 

have been shown to phagocytose viable neurons increasing neuronal cell death, 

highlighting the importance of regulation of this process (331). 
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Figure 1.13: Phagocytosis of an apoptotic cell. The apoptotic cell is recognised by the 

phagocyte due to the appearance of molecules on its surface including PS, oxLDL and collectins 

signalling to the phagocyte that the cell requires clearance. 

 

There are several lines of evidence showing the importance of TREM-2 in 

phagocytosis. Expression of the TREM-2 receptor in CHO and mouse microglial 

cells is required for phagocytosis of E.coli (261) and apoptotic neurons, respectively 

(81). Phagocytosis of E.coli was reduced by 30% in TREM-2 deficient CHO cells (261). 

In TREM-2 deficient microglia, phagocytosis of apoptotic neurons was reduced by 

58%, suggesting that TREM-2 is involved in phagocytosis, but is not the only 

mechanism in this system (81, 261). Activation of TREM-2 in microglial cells also 

causes f-actin polarisation, suggesting that TREM-2 induces cytoskeletal 

rearrangement, a requirement of phagocytosis (81). TREM-2 increases phagocytosis 

of E.coli in CHO cells by activation of the Ras homolog family member (Rho) family 

GTPase’s: Rac-1 and cell division cycle 42 (cdc-42) and in part by PI3K (261). This 

suggests that activation of these signalling molecules are important for TREM-2 

mediated phagocytosis. Finally, phagocytosis is inhibited in beclin 1 KO mice, which 

have reduced recycling of TREM-2 due to downregulation of retromer receptor 

recycling machinery (332), suggesting that beclin 1 regulates phagocytosis in part 

though TREM-2 receptor recycling (333). 

Altogether, the information summarised here shows that TREM-2 is important in 

phagocytosis of bacteria and apoptotic cells. The presence of apoptotic cells, 

bacteria and cell debris increases inflammation in tissues which highlights the 

importance of TREM-2 in the resolution of inflammation.  
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1.7.7. The Role of TREM-2 in the Inflammatory Response 

1.7.7.1. Inflammatory Changes Induced by TREM-2 Signalling 

TREM-2 has been recognised for its potential to modulate inflammation and the 

immune response (Table 1.3). In macrophages, TREM-2 activation causes nitric 

oxide (NO) release (288). However, in a model of wound recovery and in microglia 

neuronal co-culture, TREM-2 KO mice have increased expression of inducible nitric 

oxide synthase (iNOS) suggesting that NO is in fact reduced following TREM-2 

activation (81, 334). This suggests that the regulation of NO by TREM-2 is varied, 

which is likely to depend on the mediators in the surrounding environment. TREM-2 

has also been shown to regulate ROS, another mediator involved in microbial killing 

(Table 1.3). DAP12 KO and TREM-2 knockdown (KD) macrophages both have 

reduced ROS production induced by the bacterium Salmonella enterica serovar 

Typhimurium which in DAP12 KO macrophages is associated with increased 

bacterial burden and inflammation (335). This suggests that the increase in ROS-

induced by TREM-2/DAP12 activation is important for bacterial killing and that 

reducing the ability of TREM-2 to kill bacteria increases inflammation.   

 

Table 1.3: Effect of TREM-2 expression and activation on inflammation. siRNA, small 

interfering ribonucleic acid; NK, natural killer;  CCR, chemokine (C-C motif) receptor ; KD, 

knockdown; shRNA, small hairpin RNA; NLR, Nod-like receptor; MR, mannose receptor. 

Tissue or 

cell type 

Conditions TREM-2 

activity 

Effect Refs 

Mouse colon 

tissue 

Colonic 

mucosal wound 

repair 

KO Increased iNOS and reduced arg-

1 and MR  

(334)
 

Primary 

murine 

microglia 

Cultured in the 

presence of 

apoptotic 

neurons 

Overexpressed Increased CCR7 and reduced 

iNOS, IL-1β and TNF-α  

(81)
 

MT2 

macrophage 

cell line 

Cell line 

transfected with 

flag tagged 

TREM-2a 

Activated NO release 
(288)
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RAW 264.7 

macrophages 

and  

primary 

murine 

macrophages 

Salmonella 

enterica 

serovar 

Typhimurium 

induced ROS 

TREM-2 

shRNA (RAW 

264.7) 

DAP12 KO 

(primary 

macrophages) 

TREM-2 KD and DAP12 KO; 

reduced ROS.  

DAP12 KO mice: reduced 

bacterial killing and increased 

inflammation (not studied in 

TREM-2 KD) 

(335)
 

Dendritic 

cells 

IL-4 stimulation TREM-Fc to 

block TREM-2 

activation 

Reduced bacterial killing and IL-4-

induced NK cell activation 

(336)
 

Dendritic 

cells  

TLR and NLR 

activation 

TREM-2 KO 

mice 

Reduced IL-12, TNF-α, IL-1β and 

IL-6 secretion and reduced 

dendritic cell induced T-cell 

proliferation, priming and bacterial 

killing  

(337)
 

Dendritic 

cells 

TLR activation TREM-2 KO Increased TLR-induced IL-12, 

TNF-α, IL-10 and IL-6  

(338)
 

Mouse 

macrophages 

TLR and Fc 

activation 

DAP12 KO or 

TREM-

2/DAP12 

chimera 

KD and KO of 

TREM-2 

DAP12 KO: increased TLR and 

FcγR-induced TNF-α secretion. 

Reduced TLR induced TNF-α 

secretion with TREM-2/DAP12 

chimera. 

TREM-2 KO increased TLR 

receptor-induced TNF-α and IL-6 

secretion 

(240, 

265)
 

Alveolar 

macrophages 

LPS stimulation TREM-2 

shRNA KD 

TREM-2 KD increases LPS-

induced TLR4 expression and IL-

10 and TNF-α secretion 

(339)
 

Microglial 

cells 

TREM-2 high or 

low microglia 

added to T-cell 

culture 

shRNA KD of 

TREM-2 

TREM-2 high microglia: increased 

T-cell proliferation, TNF-α and 

CCL2 production 

(340)
 

Dendritic 

cells 

TREM-2 

ligation with 

F(ab’)2 

TREM-2 

activation 

Increases dendritic cell survival 

and maturation and MHC class, 

CD40, CD86 and CCR7 protein 

expression. 

(262)
 

Dendritic 

cells 

LPS stimulation TREM-2 KO Reduced LPS-induced CD86 and 

CXCL10 expression 

(258)
 

Macrophage IL-4 stimulation TREM-2 siRNA 

KD 

DAP12 KO 

macrophages 

TREM-2 KD: reduced IL-4-

induced macrophage fusion. 

DAP12 KO: reduced IL-4-induced 

integrin β3 and cadherin-1 

expression. 

(306)
 

 

Another change observed in TREM-2 KO mice is reduced expression of arginase 1 

(arg1) (Table 1.3) (334). Arg-1 reduces pro-inflammatory cytokine secretion and 

differentiation into the M2-type macrophage (341, 342). TREM-2 is also important for 

M2 type macrophage activation and is even used as a marker of M2 activation in 
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many studies, showing that it is highly expressed in these cells (334). This suggests 

that TREM-2 positively regulates arg-1 expression and that arg-1 may be one of the 

signalling molecules important for the induction of M2 macrophage activation and 

anti-inflammatory properties of TREM-2.  

TREM-2 has demonstrated anti-inflammatory activity through inhibition of TLR-

induced cytokines. TREM-2 activation and TREM-2 KO studies have shown that 

TREM-2 supresses TLR-induced TNF-α, IL-10, IL-12 and IL-6 secretion (240, 265, 338). 

A similar effect was observed with overexpression of TREM-2 in microglia during 

phagocytosis of apoptotic neurons, resulting in reduced IL-1β, TNF-α and iNOS, 

providing further evidence for the role of  TREM-2 in the resolution of inflammation 

(81). The ability of the TREM-2/DAP12 signalling pathway to reduce pro-inflammatory 

cytokine secretion further demonstrates the anti-inflammatory effects of TREM-2. 

However, in contrast to these anti-inflammatory effects of TREM-2, Correale and 

colleagues showed that TREM-2 KO mice had reduced IL-12, TNF-α, IL-1β and IL-6 

secretion following TLR and NLR activation in dendritic cells (337). This suggests that 

in that system, TREM-2 has a pro-inflammatory effect. However, this study also 

showed reduced bacterial killing by dendritic cells, supporting previous reports 

showing the importance of TREM-2 in bacterial killing (Table 1.3) (337). This 

contrasting report of the inflammatory effects of TREM-2 suggests that although 

TREM-2 is anti-inflammatory in many circumstances, in some situations it may be 

pro-inflammatory.  

TREM-2 is also important for dendritic cell function, including IL-4-induced natural 

killer cell activation and bacterial killing (Table 1.3) (336). TREM-2 prolongs dendritic 

cell survival and induces dendritic cell maturation, increasing expression of MHC 

class proteins, CD40, CD86 and CCR7 (262, 336). In addition, TREM-2 activation in 

myeloid cells increases the anti-apoptotic protein, myeloid leukaemia cell 

differentiation protein (MCL-1), which may be how TREM-2 mediates its pro-survival 

effects on dendritic cells (292). The effect of TREM-2 activation on CCR7 expression 

has also been demonstrated in microglial cells and is required for microglial 

migration towards the CCR7 ligands, CCL21 and CCL19 revealing a role of TREM-2 

in microglial migration (81, 262). DAP12 has also been shown to be important for 

migration, in CCL2-induced macrophage recruitment to the lungs following infection, 

further supporting a role for TREM-2/DAP12 signalling in migration (242). TREM-2 KO 

studies have also shown its ability to regulate other chemokines including CD86 and 

CXCL10 suggesting that TREM-2 is important for the increase in these chemokines 

after LPS stimulation (Table 1.3) (281). In addition, CXCL10 increases phagocytosis 
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(343) and both CD86 and CXCL10 regulate T-cell activity, suggesting that TREM-2 

may mediate its effects on T-cell activity, phagocytosis and migration in part by 

upregulation of CXCL10 and CD86 (344, 345).  

Activation of TREM-2 also increases microglial MHC class II protein expression 

(Table 1.3) (81, 340). The primary role of MHC class II molecules is antigen 

presentation. Expression of MHC class II molecules in macrophages allows the 

macrophage to identify and present the antigen to T-cells to initiate an appropriate 

antigen response, suggesting TREM-2 may promote or prime the cell for antigen 

presentation (346).  The role of TREM-2 in T-cell responses is further supported by 

the ability of the TREM-2 co-receptor PA-1 to regulate antigenic T-cell responses 

and the reduced T-cell priming in TREM-2 KO mice following ovalbumin 

sensitisation (Table 1.3)  (296, 337). MR is also involved in antigen processing and is 

reduced in TREM-2 KO mice (Table 1.3) (334). MR is important in IL-4 mediated 

macrophage fusion and antigen capturing (347, 348) two processes that TREM-2 and 

DAP12 are also important for (306, 349). In addition, knocking out TREM-2 reduces IL-

4-induced integrin β3 and cadherin-1 expression, two membrane proteins known to 

regulate macrophage fusion (306),  suggesting that MR and TREM-2 may be part of a 

signalling pathway required for cadherin-1 and integrin β3 expression, controlling IL-

4 mediated macrophage fusion.  

In summary, TREM-2 is important for dampening down pro-inflammatory cytokine 

secretion, increasing migration and macrophage fusion and regulating antigenic 

responses. TREM-2 also regulates mediators important for microbial killing including 

NO and ROS which may help to promote TREM-2-induced phagocytosis. The 

regulation of these mediators by TREM-2 highlights its important role as a mediator 

of inflammation and the immune response. 

 

1.7.7.2. Soluble TREM-2 

As with other transmembrane receptors, TREM-2 also exists in a soluble form 

(sTREM-2) (278). sTREM-2 may originate from a mRNA splice variant that lacks a 

transmembrane domain and/or though proteolytic cleavage of the TREM-2 protein 

at the plasma membrane (350). The sTREM-2 receptor has been identified in CSF of 

healthy humans and is increased in the CSF of MS patients (278). Schmid and co-

workers showed that the ratio of the murine TREM-2 mRNA: soluble TREM-2 
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mRNA was 9:1 in unstimulated microglia and macrophages. Following LPS/IFN-y 

stimulation the concentrations of both sTREM-2 and membrane bound TREM-2 

were reduced, but in macrophages with a ratio of 6:1 and in microglia with a ratio of 

14:1 suggesting that double the amount of sTREM-2 is produced in activated 

macrophages compared to microglia (350), suggesting that sTREM-2 is regulated 

differently in these cell types. Other soluble receptors such as sIL-1RII, bind to 

freely available IL-1, reducing IL-1 signalling through its active receptor (IL-1R1) 

(351). Although it has not yet been proven, it is likely that sTREM-2 also acts in this 

way, and therefore may inhibit the beneficial functions that TREM-2 has 

demonstrated in MS and other diseases.   

 

1.7.7.3. The Role of TREM-2 in Inflammatory Disease 

TREM-2 expression is altered in a number of inflammatory conditions including 

COPD (242), MS (243) and AD (352) (Table 1.4). In AD, this was observed in the APP23 

animal model with increased TREM-2 expression in microglia surrounding amyloid 

beta plaques (352). In addition, Hu and colleagues have shown that AD patients have 

increased TREM-2 expression in peripheral blood mononuclear cells (PBMCs) 

further suggesting that TREM-2 is increased in AD (353). However, TREM-2 has also 

been shown to be reduced in the hippocampus of AD patients, which in this study 

was regulated by mi-RNA-34a (354). This suggests that either different regions of the 

brain have varied TREM-2 expression or that the mouse model of AD does not 

mimic the human disease. In addition, several single nucleotide polymorphisms 

(SNPs) have now been identified in the human TREM-2 gene that are associated 

with an increased risk of AD (Table 1.4) (355). The variant R47H has the most 

significant association with development of AD and patients with this variant of 

TREM-2 have increased levels of tau and phosphorylated tau in their CSF (356-358). In 

addition, a proteolytic cleavage site has been identified on the extracellular domain 

of TREM-2 for the AD associated protease γ-secretase (359). TREM-2 cleavage by γ-

secretase is important to sustain TREM-2 activity, shown by a reduction in TREM-2 

activity with γ-secretase inhibition, despite increasing TREM-2 surface expression 

(359). This study also suggests that the regulation of TREM-2 expression may be 

more complex than surface expression, and that other factors such as receptor 

cleavage may be required for TREM-2 activity. It is likely that the function of TREM-

2 in AD is through phagocytosis of degenerating neurons and amyloid beta and its 

anti-inflammatory effects, though this has not yet been studied.  
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TREM-2 expression is also increased in stroke and MS with opposing effects. In 

stroke, TREM-2 KO mice have reduced inflammation suggesting a pro-inflammatory 

effect of TREM-2, but blockade of TREM-2 in MS exacerbates the disease 

phenotype and increases inflammation suggesting an anti-inflammatory role for 

TREM-2 (243, 360). It seems that the role of TREM-2 in neuroinflammation is more 

complex than originally thought, and that TREM-2 may be pro-inflammatory in 

stroke and anti-inflammatory in MS. However, despite the reduced inflammatory 

response in the TREM-2 KO in the MCAo model of stroke, there was no difference 

in lesion size between wild type and TREM-2 KO mice. Other clinical scores such 

as motor ability were not measured, therefore the effect of TREM-2 on stroke 

outcome remains unknown (360). 

 

Table 1.4: Expression and effect of TREM-2 in inflammatory diseases. Positive (+ve) or 

negative (-ve) effect on inflammation and/or disease symptoms. FTD, Frontal Temporal 

dementia; RA, rheumatoid arthritis. 

Disease TREM-2 +ve or -ve 

effect of 

TREM-2 in 

disease  

Comments Refs 

Alzheimer’s 

Disease 

↑ 

↓ 

+ve APP23 mouse model: 14.1 fold increase 

on microglia surrounding plaques 

Cleaved by γ-secretase 

Reduced in hippocampus of AD patients 

R47H TREM-2 mutation associated with 

AD and increased tau in CSF 

Increased expression on PBMCs in AD 

(352-

354, 

359)
 

Fronto-

temporal 

Dementia 

↑ +ve R47H TREM-2 mutation associated with 

FTD  

(357, 

358)
 

Parkinson’s 

disease 

- +ve R47H TREM-2 mutation associated with 

FTD  and Parkinson’s disease 

(361)
 

Prion Protein 

Disease 

↑ N/A ME7 mouse model 
(362)

 

Multiple 

Sclerosis 

↑ +ve In microglia and macrophages surrounding 

lesions. 

(243)
 

Peripheral 

Nerve Injury 

↑ N/A Caused by increased M2 macrophage 

activation 

(303)
 

Stroke ↑ -ve Increased 7 and 28 days after MCAo. 

TREM-2 KO mice: reduced microglial 

activation and pro-inflammatory cytokines 

Increased TREM-2 positive macrophages 

in rat MCAo 

(360, 

363)
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Colonic Wound 

Repair 

↑ +ve Increased 2 days following injury 
(334)

 

Diabetes ↑ N/A Db/db mouse: increased H3K4 

dimethylation on TREM-2 promoter 

(364)
 

COPD ↑ N/A Associated with macrophages 
(242)

 

Pulmonary 

Sarcoidosis 

↑ N/A On bronchial alveolar lavage myeloid cells 
(365)

 

Infection ↑ N/A Taenia crassiceps infection 
(366)

 

Rheumatoid 

Arthritis  

↑ N/A Throughout RA joint 
(244)

 

IBD and Colitis ↑ -ve TREM-2 KO: reduced disease symptoms, 

pro-inflammatory cytokines and bacterial 

killing 

(337)
 

Allergy ↑ N/A Ovalbumin and house dust mite mouse 

models of allergy 

(240, 

367)
 

Pseudomonas 

aeruginosa 

corneal 

infection 

↑ +ve TREM-2 KD: increased bacterial burden 

and corneal inflammation. PI3K/AKT 

pathway required for protective effect of 

TREM-2  

(368)
 

Experimental 

autoimmune 

uveitis 

↑ N/A In eye following experimental autoimmune 

uveitis 

(369)
 

Polymicrobial 

sepsis 

↑ +ve In peritoneal fluid, lung, spleen and liver of 

sepsis patients. TREM-2 blockade: 

increased bacterial burden and reduced 

survival.  TREM-2 beneficial in model of 

sepsis 

(370)
 

 

TREM-2 is also increased in smokers and in patients with inflammatory conditions 

including COPD (242), rheumatoid arthritis (244), acute peripheral nerve injury (303), 

Taenia crassiceps larvae infection (366), diabetes (364), inflammatory bowel disease 

(337) and wound healing (334) (Table 1.4). Similarly to that seen in the stroke, 

inflammatory bowel disease patients and animal model of colitis also show a pro-

inflammatory effect of TREM-2 (Table 1.4) (337). TREM-2 KO mice had reduced IL-

1β, TNF-α, MMP-3 and MMP-9 secretion after dextran sodium sulphate and 2,4,6-

trinitrobenzene sulfonic acid-induced colitis (337).  In contrast, an animal model of 

colonic mucosal wound repair showed that TREM-2 is required for efficient wound 

healing (334). TREM-2 KO in this model of wound repair resulted in dysregulation of 

the stromal-epithelium interface, which is often associated with inflammatory bowel 

conditions e.g. Crohn’s disease (371). The pro-inflammatory cytokines IFN-γ and 
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TNF-α were also increased in the wound bed of TREM-2 KO mice (334). Interestingly 

antibodies for IFN-γ and TNF-α showed that the ability for TREM-2 to suppress 

these cytokines was important for the protective effects of TREM-2 in this model, 

demonstrating that in this model, TREM-2 is important for dampening down pro-

inflammatory cytokine secretion in response to injury. The differences between 

these two models of gastrointestinal inflammation highlight the importance and 

complexity of TREM-2 in gastrointestinal homeostasis. 

TREM-2 is also increased in the peritoneal fluid, lungs, liver and spleen of patients 

with polymicrobial sepsis (370). Chen and colleagues also showed that 

overexpression of TREM-2 in bone marrow derived macrophages increased IL-10 

expression and bacterial phagocytosis, and that TREM-2 regulated phagocytosis 

was dependent on AKT (370). TREM-2 was also increased in a model of 

polymicrobial sepsis (370). In this model, TREM-2 overexpressing bone marrow 

derived macrophages reduced bacterial burden and increased survival in this model 

of sepsis, suggesting that TREM-2 is important for bacterial clearance in sepsis (370).  

In summary, the expression of TREM-2 is upregulated in many inflammatory 

diseases. The conflicting evidence between a protective or detrimental role for 

TREM-2 in these conditions demonstrates the importance of TREM-2 in disease. 

The disease modifying actions of TREM-2 are likely to be though its ability to 

modulate the immune response and its role in phagocytosis. However, due to the 

wide range of conditions TREM-2 has been implicated in, it is likely to have other 

functions that are yet to be discovered. 

 

1.7.7.4. Regulation of TREM-2 by Inflammatory Mediators 

Little is known about the regulation of TREM-2, aside from the ability of particular 

inflammatory mediators to alter its expression. As shown in Table 1.5, many pro-

inflammatory mediators are known to reduce TREM-2 expression including LPS (240, 

243), IL-1β, TNF-α (241) and IFN-γ (372). Vitamin D has also been shown to reduce 

TREM-2 gene expression in human myometrial smooth muscle cells (373). In 

contrast, vasoactive intestinal peptide (VIP) has been shown to increase TREM-2 

expression by reversing LPS-induced TREM-2 suppression (374). VIP inhibits the 

binding of NFκB to DNA thereby inhibiting the signalling cascade activated following 

TLR4 activation by LPS (374). This suggests that the effect of LPS on TREM-2 

expression may be dependent on the actions of NFκB. TREM-2 is also increased in 
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murine microglia cells by the chemokine CX3CL1 secreted from mesenchymal stem 

cells (375). Interestingly, the hormones 17β-estradiol and progesterone that have 

demonstrated neuroprotective properties have also been shown to increase TREM-

2 under hypoxic conditions (376).  

 

Table 1.5: Known mediators of TREM-2 expression. 

Mediator Change in 

TREM-2  

Cell type Refs 

IL-27 ↓ expression Human osteoclast precursors 
(377)

 

IL-10 ↓ expression Human CD14
+
 monocytes 

(260)
 

IL-1β ↓ expression Murine hepatic endothelial cell and macrophages 
(241)

 

TNF-α ↓ expression Murine hepatic endothelial cells and 

macrophages 

(241)
 

IFN-γ ↓ expression RAW264.7 murine macrophages and human 

osteoclast precursors 

(240, 

372)
 

LPS ↓ expression RAW264.7 murine macrophages 
(240, 

263)
 

Pam3Cys ↓ expression Human CD14
+
 monocytes 

(372)
 

VIP ↑ expression RAW264.7 murine macrophages 
(374)

 

IL-4 ↑ expression Murine peritoneal macrophages 
(240)

 

M-CSF ↑ expression Murine peritoneal macrophages 
(240)

 

CX3CL1 ↑ expression N9 murine microglial cells 
(375)

 

Ionomycin ↑ expression Human CHME-5 microglia and  T98G 

glioblastoma cells 

(259)
 

sTLT-1 ↓ activation Murine bone marrow-derived macrophages  
(266)

 

Aluminium ↓ expression CB-84 murine microglial cells 
(378)

 

Vitamin D  ↓ expression human myometrial smooth muscle 
(373)

 

17β-estradiol ↑ expression Murine BV2 microglial cells 
(376)

 

Progesterone ↑ expression Murine BV2 microglial cells 
(376)

 

Phosphatidylcholine 

liposome 

↑ expression Murine tumour bearing skin 
(379)

 

 

As previously discussed, the anti-inflammatory cytokine IL-4 and M-CSF increase 

TREM-2 expression in monocytes (Table 1.5) (240). M-CSF is commonly used to 

differentiate myeloid precursors into macrophages, and evidence suggests that 

these macrophages have more of an M2 like phenotype than an M1 phenotype (380). 

Interestingly, M-CSF alone increased TREM-2 expression in bone marrow derived 
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macrophages (240). This may be due to the change in macrophage phenotype 

towards the M2-type fate particularly since TREM-2 has been used in the literature 

as a marker of M2 activation (275, 303-305).  

The calcium ionophore, ionomycin also increases TREM-2 expression. This was 

observed on the cell surface of human glioblastoma and microglial cell lines (259). 

Ionomycin increases intracellular calcium concentration in the cell through 

mobilisation of intracellular calcium stores (259). Interestingly, the increase in TREM-2 

expression is calcium dependent, suggesting that calcium influx activates a 

signalling cascade that regulates TREM-2 surface expression (259). Signalling 

molecules activated by intracellular calcium include calmodulin, protein kinase C 

and calcineurin and therefore may also be involved in TREM-2 regulation.  

Aluminium stimulation of microglia also reduces TREM-2 expression (378). This is 

particularly interesting as aluminium has been linked to AD risk, further suggesting 

that TREM-2 function reduces the risk of dementia (381). In addition, the TREM family 

member TLT-1 has also been shown to reduce activation of TREM-2 (266). TLT-1 has 

a negative effect on osteoclastogenesis and bone reabsorption by inhibiting of AKT 

phosphorylation after TREM-2 activation by recruiting SHIP-1 to the TREM-2 

complex (266). This may be one of the mechanisms by which TLT-1 negatively 

regulates osteoclastogenesis.  

In summary, TREM-2 is regulated by inflammatory mediators. However, most 

inflammatory mediators reduce TREM-2 expression and more research is required 

to understand what mediators cause an increase in TREM-2 expression in disease. 

 

1.7.8. Signalling Pathways Involved in Regulation of TREM-2 Expression 

The TREM-2 receptor is thought to be regulated, in part through recycling at the 

plasma membrane. The TREM-2 receptor is stored in exocytic vesicles that fuse 

with the plasma membrane after stimulation with mediators known to increase 

TREM-2 surface expression e.g. ionomycin (264). The presence of this regulatory 

activity suggests that the function of TREM-2 is very important and is brought to the 

membrane quickly following stimulation. 

Although TREM-2 is increased in many inflammatory conditions and there are 

several inflammatory mediators known to regulate its expression, very little is known 
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about the mechanisms involved in TREM-2 regulation by inflammatory mediators. 

Inhibition of PI3K has been shown to reduce basal levels of TREM-2, but had no 

effect on the ability of IL-1β and TNF-α to reduce TREM-2 expression (241). In 

addition, Alexandrov and colleagues showed that suppression of TREM-2 with 

aluminium required NFκB and miRNA-34a (378). A similar observation was also 

demonstrated by Zhao and colleagues showing that in microglial cells, miRNA-34a 

supressed TREM-2 gene expression (354). However, aside from these signalling 

molecules, the mechanisms of regulation of TREM-2 remain unknown.   

In conclusion, the immunomodulatory and phagocytosis inducing properties of 

TREM-2 make it a potential candidate as a therapeutic agent for inflammatory 

conditions. However, although TREM-2 is known to be increased in many 

inflammatory conditions, most inflammatory mediators have been shown to reduce 

TREM-2 expression and few are known to increase it. Understanding what induces 

TREM-2 expression in disease is vital to understand the many functions of TREM-2 

in these conditions. Analysing the mechanisms of TREM-2 regulation will also be 

useful when considering TREM-2 as therapeutic target for inflammatory conditions.  
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1.8. Aims 

The main aims of this study were to: 

1. Characterise the expression of TREM-2 in myeloid and non-myeloid cell 

types.  

2. Investigate the effects of pro- and anti-inflammatory mediators on TREM-2 

expression in myeloid cells. 

3. Examine the mechanisms involved in activation of TREM-2 expression by 

inflammatory mediators and the functional effects of induced TREM-2 

expression. 

4. Establish an in vitro model of ischaemia to investigate the mechanism of 

TREM-2 induction following stroke. 
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2. Materials and Methods 
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2.1. Reagents  

2.1.1. General Reagents 

Dimethyl sulfoxide (DMSO), bovine serum albumin (BSA) was purchased from 

Sigma (Dorset, UK), sterile phosphate buffered saline (PBS) from PAA (Somerset, 

UK) and paraformaldehyde (PFA) from Fisher (Loughborough, UK). Fibronectin and 

Vitrogen were purchased from BD Biosciences (Oxford, UK) and deionised H2O 

(dH2O) was collected from the ultrapure water system NANOpure Diamond 

D11911 (pore size: 0.2 µm) purchased from Fisher. 

 

2.1.2. Stimulators 

LPS from  E. coli O111: B4, peptidoglycan (PGN) and (S)-(2,3-bis(palmitoyloxy)-

(2RS)-propyl)-N-palmitoyl-(R)-Cys-(S)-Ser(S)-Lys4-OH, trihydrochloride (Pam3Cys)  

were all purchased from Merck Millipore and dissolved in dH2O. Recombinant 

human TNF-α and TGF-β1 were purchased from R&D Systems (Abingdon, UK) and 

diluted in PBS and dH2O containing 4 mM hydrochloric acid (HCL) and 1 mg/mL 

BSA respectively. Human IL-4 and IL-13 were purchased from Peprotec Ltd 

(London, UK) and dissolved in 1 mg/mL BSA. Human M-CSF recombinant protein 

was purchased from eBioscience and made up in PBS containing 1% BSA. 

Phorbol-12 myristate 13-acetate (PMA) was made up in DMSO and purchased from 

Merck Millipore. 

 

2.1.3. Inhibitors 

The PI3K inhibitor LY294002 (440202), mitogen-activated protein kinase 1 (MEK1)/ 

ERK1/2 signalling pathway inhibitor PD98059 (513000), p38 inhibitor SB203580 

(559389) and pan-PKC inhibitor bisindolylmaleimide I (203290) were purchased 

from Merck Millipore and diluted in DMSO. The PPAR-γ inhibitor GW9662 was 

purchased from Cambridge Bioscience Ltd (Cambridge, UK) and diluted in DMSO. 
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2.1.4. siRNA 

Plus smart pool siRNA for TREM-2, STAT-6, activating factor 2 (ATF2) and non-

target control were purchased from Thermofisher (Pittsburgh PA, US). SMAD3 

siRNA experiments used siRNA Silencer® Negative Control No. 1 siRNA 

(scrambled) or SMAD3 Duplex2 (Life Technologies, Paisley, UK). 

2.2. Cell Culture 

2.2.1. Heat Inactivation of Fetal Calf Serum 

Fetal calf serum (FCS) (PAA) was inactivated by heating to 56°C in a water bath for 

50 min before aliquoting into 50 mL Falcon tubes and storing at -20°C. 

 

2.2.2. Cell Media 

Cell culture media containing FCS was made by adding 0.45 µm of filtered pre-

warmed (37°C) FCS to the media. After the addition of the FCS, all other solutions 

were added. Unless otherwise stated Roswell Park Memorial Institute medium 

(RPMI) 1640, Dulbecco's modified Eagle's medium (DMEM, with 4.5g/L glucose) 

and Iscove's modified Dulbecco's media (IMDM) media were complete i.e. 

contained 10% heat-inactivated FCS, 100 U/mL penicillin and 100 μg/mL 

streptomycin and 2 mM L-glutamine, all from PAA. The media was stored at 4°C 

and heated to 37°C before use.  
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2.2.3. Cells 

Full details of the cells types used in this study and their maintenance requirements 

are detailed in Table 2.1. 

Table 2.1: Primary cells and cell lines used. All cells were maintained at 37°C in the presence 

of 5% CO2 in high humidity. P No. = passage number. All cell culture plastics were obtained from 

Fisher. 

Cell type Source Media Splitting 
procedure 

P 
No. 

For 
experimentation 

Refs 

THP-1  Peripheral blood of a 
1 year old male with 
myeloid leukaemia. 
Purchased from 
ECACC*. 

Complete 
RPMI. 

1 in 2 every 3.5 
days. 
Maintained 
between 2-7 x 
10

5
 cells/ml. 

3-30 1 x 10
6
 cells/ml, 1 

mL media in 24-well 
plates 16 h before 
treatment. In some 
experiments cells 
were treated as 
above but in RPMI 
media without FCS. 

(382)
 

RAW 
264.7 

Mouse leukemic 
monocyte 
macrophage cell line 
from a tumour 
induced by Abelson 
murine leukaemia 
virus. Purchased from 
ECACC*. 

Complete 
DMEM.  

1 in 5 - 1 in 10 
every 3.5 days 
at 70-80% 
confluency 
using a 
scraper.  

5-20 Seeded into 6-well 
plates until 70-80% 
confluency in  
DMEM media 
without FCS at least 
24 h before 
experimentation. 

(383)
 

HL60 Human myeloid cell 
line isolated from the 
peripheral blood of a 
6-year-old Caucasian 
female with acute 
promyelocytic 
leukaemia. 
Purchased from 
ECACC*. 

Complete 
RPMI . 
 
 

1 in 25 every 
3.5 days.  
Maintained 
between  1-9 x 
10

5
 cells/ml. 

≤30 1 x 10
6
 cells/ml, 1 

mL media in 24-well 
plates 16 h before 
treatment.  

(384)
. 

A549  Human airway type II 
alveolar-like epithelial 
cells derived from a 
lung carcinoma from 
a 58-year old 
Caucasian male. 
Purchased from 
ECACC*. 

Complete 
DMEM. 

1 in 3 – 1 in 6 
at 70-80% 
confluency 
using 0.25% 
trypsin/EDTA. 

90-
120. 

Seeded into 6-well 
plates until 70-80% 
confluency, at least 
24 h before 
experimentation. 

(385)
. 

3T3-L1  Murine fibroblast cell 
line. Purchased from 
ECACC*. 

Complete 
DMEM. 

1 in 50 at 70-
80% 
confluency 
using 0.25% 
trypsin/EDTA. 

≤13 Seeded into 6-well 
plates and left until 
70-80% confluency, 
at least 24 h before 
experimentation. 

(386)
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SAECs Human Small Airway 
Epithelial Cells. 
Purchased from 
Lonza (Slough, UK). 

BulletKits 
basal 
media with 
SingleQuot
s growth 
factors 
(Lonza). 

Maintained 
between 4 x 
10

5 
– 1 x 10

6
 

cells/mL when 
70-80% 
confluent. 
Media changed 
every 2 days. 
Protocol 
detailed in 
section 2.2.6. 

1-3 Seeded into 96 well 
plates and left until 
70-80% confluency, 
at least 24 h before 
experimentation. 

 

16HBE  16HBE14o SV-40 
transformed human 
malignant 
differentiated 
bronchial 
epithelial cell line. 
Obtained from Dr. 
Gruenert at The 
University of Vermont. 

Complete 
MEM (Life 
Technologi
es). 

1 in 30 every 
3.5 days at 70-
80% 
confluency 
using 0.25% 
trypsin/EDTA. 
Grown on 
fibronectin 
coated flasks 
(see Appendix 
Section 8.1.1).  

11-
33 

Seeded into 6-well 
plates and left until 
70-80% confluency, 
at least 24 h before 
experimentation. 

(387)
 

ARPE-
19 
 

Human retinal 
epithelial cell line 
derived from the 
normal eyes of a 19-
year-old male. 
Purchased from 
ATCC*. 

Complete 
DMEM/F12 
(Invitrogen). 

1 in 10 every 7 
days at 70-
80% 
confluency 
using 0.25% 
trypsin/EDTA 
and media 
changed every 
3.5 days. 

≤20 Seeded into 6-well 
plates and left until 
70-80% confluency, 
at least 24 h before 
experimentation. 

(388)
. 

NCI-
H292 

Human airway 
bronchial epithelial 
cells derived from a 
lymph node 
metastasis of a 
pulmonary 
mucoepidermoid 
carcinoma. 
Purchased from 
ATCC*. 

Complete 
RPMI . 
 

Passaged 1 in 
30 every 3.5 
days at 70-
80% 
confluency 
using 0.25% 
trypsin/EDTA. 

11-
33 

Seeded into 6-well 
plates and left until 
70-80% confluency, 
at least 24 h before 
experimentation. 

(389)
. 

MIO-M1 The 
Moorfields/Institute of 
Ophthalmology-
Müller-1 (MIO-M1) 
cell line is a 
spontaneously 
immortalised cell line 
isolated from the 
cornea of a 68 year 
old female. Obtained 
from Dr. A. Limb from 
the Institute of 
Ophthalmology at 
University College 
London. 

Complete 
DMEM 
Glutamax 
media 
(Invitrogen). 

1 in 5 every 7 
days at 70-
80% 
confluency 
using 0.25% 
trypsin/EDTA 
and media 
changed every 
3.5 days. 

≤33 Seeded into 6-well 
plates and left until 
70-80% confluency, 
at least 24 h before 
experimentation. 

(390)
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CHME-5 Human fetal 
microglial cell line 
transfected with SV40 
large T antigen. 
Obtained from Prof. 
Pierre Talbot, INRS-
Institut Armand-
Frappier (Canada). 

Complete 
DMEM. 

1 in 10 - 1 in 
20 every 3 
days at 70-
80% 
confluency 
using 0.25% 
trypsin/EDTA. 

15-
25 

Seeded into 6-well 
plates and left until 
70-80% confluency, 
at least 24 h before 
experimentation. 

(391)
 

(392)
. 

RGC-5 Murine neuronal 
precursor cell line 
obtained from Dr. 
Neeraj Agarwal from 
the University of 
North Texas (US). 

Complete 
DMEM. 

1 in 5 every 3 
days at 70-
80% 
confluency 
using 0.25% 
trypsin/EDTA. 

9-13 Seeded into 6-well 
plates and left until 
70-80% confluency, 
at least 24 h before 
experimentation. 

(393)
 

N9 Murine microglial cell 
line. Obtained from 
Dr. Ji Ming Wang at 
The Center for 
Cancer Research, 
National Cancer 
Institute at Frederick 
(US). 
 

Complete 
IMDM.  

1 in 10 at 70-
80% 
confluency 
using a cell 
scraper every 
3-5 days. 

≤20 Seeded into 6-well 
plates and left until 
70-80% confluency, 
at least 24 h before 
experimentation. 
For oxygen glucose 
deprivation 
experimentation, N9 
cells were 
maintained in 
DMEM with or 
without glucose and 
with 10% or 1% 
FCS as indicated. 

(394)
. 

SH-
SY5Y 

Human 
neuroblastoma cell 
line and were kindly 
donated by Prof. 
Marcus Rattray, 
University of Bradford 
(UK). 
 

Complete 
DMEM. 

1 in 10 every 3 
days at 70-
80% 
confluency 
using 0.25% 
trypsin/EDTA 
ensuring both 
suspension 
and adherent 
cells were 
maintained. 

≤20 Seeded into 6-well 
plates and left until 
70-80% confluency, 
at least 24 h before 
experimentation. In 
some experiments 
cells were 
maintained in 
DMEM containing 
1% FCS.  

(395)
. 

Caco-2 Human colon 
adenocarcinoma cell 
line, purchased from 
ECACC*.  
 

DMEM 
containing 
10% FCS, 
1% non-
essential 
amino acids 
and 1 mM 
sodium 
pyruvate. 

1 in 3 every 2-
3 days at 70-
80% 
confluency 
using 0.25% 
trypsin/EDTA. 

50-
70 

Seeded into 6-well 
plates and left until 
70-80% confluency, 
at least 24 h before 
experimentation. 

(396)
 

UACC 
1273 

Isolated from the 
lymph node of a 54 
year old male with 
malignant melanoma. 
Obtained from Dr. 
Antoni Ribas from 
University of 
California, Los 
Angeles (US).  

Complete 
RPMI. 

At 80% 
confluency with 
0.25% 
trypsin/EDTA. 

≤10 Seeded into 6-well 
plates and left until 
70-80% confluency, 
at least 24 h before 
experimentation. 

(397)
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SK-
MEL28 

Isolated from the skin 
of a 51 year old male 
with malignant 
melanoma. Obtained 
from Dr. Antoni Ribas 
from University of 
California, Los 
Angeles (US). 

Complete 
RPMI. 

At 80% 
confluency with 
0.25% 
trypsin/EDTA. 

≤10 Seeded into 6-well 
plates and left until 
70-80% confluency, 
at least 24 h before 
experimentation. 

(398)
 

A2058 Isolated from the 
lymph node of a 43 
year old male with 
malignant melanoma. 
Obtained from Dr. 
Antoni Ribas from 
University of 
California, Los 
Angeles (US). 

Complete 
RPMI. 

At 80% 
confluency with 
0.25% 
trypsin/EDTA. 

≤10 Seeded into 6-well 
plates and left until 
70-80% confluency, 
at least 24 h before 
experimentation. 

(399)
 

M202 Isolated from the 
lymph node of a 
patient with malignant 
melanoma. Obtained 
from Dr. Antoni Ribas 
from University of 
California, Los 
Angeles (US). 

Complete 
RPMI. 

At 80% 
confluency with 
0.25% 
trypsin/EDTA. 

≤10 Seeded into 6-well 
plates and left until 
70-80% confluency, 
at least 24 h before 
experimentation. 

(400)
 

Mel-501 Isolated from the 
lymph node of a 
patient with malignant 
melanoma Obtained 
from Dr. Antoni Ribas 
from University of 
California, Los 
Angeles (US). 

Complete 
RPMI. 

At 80% 
confluency with 
0.25% 
trypsin/EDTA. 

≤10 Seeded into 6-well 
plates and left until 
70-80% confluency, 
at least 24 h before 
experimentation. 

(401)
 

HUVEC Pooled human 
umbilical vein 
endothelial cells. 
Purchased from TCS 
Cellworks 
(Buckingham, UK).  
 

Large 
vessel 
endothelial 
cell media 
(plus **) 

At 70-80% 
confluency with 
0.25% 
trypsin/EDTA 
every 2 days 
Grown on 
fibronectin 
coated flasks 
(see Appendix 
Section 8.1.1).  

2-4 Seeded into 6-well 
plates coated with 
fibronectin and left 
until 70-80% 
confluency, at least 
24 h before 
experimentation. 

(402)
. 

MRC-5 Human lung fibroblast 
cell line. Purchased 
from ECACC*.  

Complete 
DMEM 
media 

1 in 4 every 3 
days at 70-
80% 
confluency 
using 0.25% 
trypsin/EDTA.  

≤20 Seeded into 6-well 
plates and left until 
70-80% confluency, 
at least 24 h before 
experimentation. 

(403)
 

 

* European Collection of Cell Cultures (ECACC) (Salisbury, UK), American Type Culture 

Collection (ATCC). 

** Supplemented with hydrocortisone, epidermal growth factor, fibroblast growth factor, Heparin, 

FBS (2% v/v) and 25 µg/mL gentamicin & 50 ng/mL amphotericin (TCS Cellworks)  
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2.2.4. Cell Counting and Viability 

Trypan Blue solution (0.4%) (Sigma) was added to an aliquot of cells to assess cell 

viability, according to manufacturer’s instructions. Viable cells do not allow the dye 

to permeate the membrane and therefore, cells that take up the blue dye were 

excluded from the cell count using light microscopy. Cells were counted under a 

light microscope using a Neubauer haemocytometer (Superior, Germany). 10 μL of 

cells were added to the haemocytometer chamber and the average number of cells 

per square counted. Each square corresponds to 0.1 μL volume, the following 

calculation was used to measure the number of cells in 1 mL: 

 

Number of cells (cells/mL) = Average count per section x Dilution Factor x 104  

 

2.2.5.  Cell Passaging using 0.25% Trypsin/EDTA 

The 0.25% trypsin/ethylenediaminetetraacetic acid (EDTA) solution (Sigma) was 

used for passaging specific adherent cell lines (Table 2.1). The media was removed 

and the cells washed in PBS followed by 5 mL of 0.25% trypsin/EDTA for up to 1 

min (depending on cell type) then discarded. The cells were put back into the 

incubator (37°C) until the adherent cells had lifted from the base of the flask (no 

longer than 5 min). The cells were then resuspended in the correct media for the 

particular cell type (Table  2.1). 

 

2.2.6. Cell Passaging of SAECs 

The excess media was removed and the cells washed with 5 mL of HEPES-BSS 

(Lonza) before the addition of 2 mL of trypsin/EDTA solution (Lonza). Once the cells 

had lifted from the base of the flask, 4 mL of Trypsin Neutralising Solution (Lonza) 

was added and the cells centrifuged at 220 x g for 5 min. The supernatant was 

removed and the pellet resuspended in 2-3 mL of growth media. The media was 

replaced the day after cell seeding and every other day after that. 

 



73 
 

2.2.7. Freezing and Thawing Cells 

Freezing cells: 5 x 106adherent or suspension cells, in logarithmic phase of growth, 

were centrifuged at 1200 rpm for 7 min. The cell pellet was resuspended in 1 mL of 

freezing media (1 mL of HYBRI-MAX DMSO (Sigma) plus 9 mL sterile filtered FCS). 

The cells were initially frozen in cryovials (Fisher) at -80°C, insulated in cotton wool 

to allow for gradual freezing. After at least 16 h the cryovials containing the cells 

were transferred to liquid nitrogen for long-term storage.  

Thawing cells: Both suspension and adherent cells were defrosted in a 37°C water 

bath, and once defrosted, diluted in complete media specific for the cell type (Table 

2.1) and centrifuged at 1200 rpm  for 7 min. After centrifugation, the supernatant 

was removed and the cell pellet resuspended in fresh media in a T75 cell culture 

flask. The cells were placed in an incubator at 37 °C in the presence of 5% CO2 in 

high humidity.  

 

2.2.8. Autologous Serum and PBMC Isolation from Whole Blood 

2.2.8.1. Ficoll Method 

Ethical approval for the use of human blood in these experiments was obtained from 

the University of East Anglia’s Faculty of Health Research Ethics Committee 

(Reference 2012/2013 – 25 HT). Healthy volunteers donated 20-100 mL of blood. 

The blood was collected in Falcon tubes containing 3.2% BioReagent Citrate 

Concentrated Solution (Sigma), at a ratio of 1:9 (citrate:blood). 25 mL of blood was 

layered on top of 15 mL Ficoll Paque Plus (GE Healthcare, Buckinghamshire, UK) 

and centrifuged at 400 x g for 35 min, with the brake off (404). This caused the blood 

to separate into erythrocyte/granulocyte, Ficoll, plasma and PBMC layers (Figure 

2.1). The top plasma layer was discarded and the PBMC layer collected into 

another tube and diluted to three times its volume in Hanks buffered salt solution 

(HBSS) and centrifuged at 60-100 x g for 10 min at 18-20˚C. The pelleted cells were 

resuspended in HBSS and centrifuged again at 60-100 x g for 10 min at 18-20˚C 

before resuspension in complete RPMI media. 8 x 106 PBMCs were seeded into 

each well of a 24-well plate and left for 1 h to adhere. The majority of monocytes 

adhered to the plate after this time, while all other cells (pooled lymphocyte fraction) 
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were removed and cells washed with PBS. Complete RPMI media (1 mL) was 

added to the monocytes and they were left in culture overnight before stimulation.  

 

 

 

 

Figure 2.1: Isolation of PBMCs from whole blood. The PBMCs 

form a layer between the Percoll or Ficoll layer (either can be used) 

and the plasma layer. The cells with the highest density 

(erythrocytes and granulocytes) are found at the bottom of the 

tube, the least dense fraction at the top (plasma) and the 

Percoll/Ficoll layer in the middle. 

 

 

 

2.2.8.2. Percoll Method 

Whole blood was collected into sodium citrate tubes as detailed above (2.2.8.1) and 

centrifuged at 300 x g for 20 min. The solution at the bottom of the tube containing 

the blood cells was resuspended in HBSS up to the original volume of blood. This 

solution was gently layered over 10 mL 68% isotonic Percoll (GE Healthcare), 

containing 1 mL 10X PBS, 6.8 mL Percoll and 2.2 mL dH2O. The tubes were 

centrifuged at 700 x g for 20 min with the brake off. After this time the PBMCs were 

removed and treated as above (2.2.8.1).   

After isolation, PBMCs were either immediately processed, incubated with a 

differentiation inducer, e.g. M-CSF or left overnight before stimulation.  

 

2.2.9. Peripheral Blood Monocyte and THP-1 Cell Differentiation 

THP-1 monocytic cells were differentiated into macrophage-like cells in the 

presence of 100 nM PMA for 3 days (405, 406). Primary monocytes were differentiated 

into monocyte derived macrophages with 50 ng/mL M-CSF for 7 days (407). 

PBMCs

Ficoll

Plasma

Erythrocytes, 
Granulocytes
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2.2.10. siRNA Transfections 

THP-1 cells were seeded at 2 x 105 cells/mL into T75 flasks 48 h before 

electroporation. For transfection, 2 x 106 cells at a density of 3 - 4 x 105 cells/mL 

were centrifuged at 90 x g for 10 min and the pellets resuspended in 100 μL of 

RPMI 1640 (Life Technologies) (no FCS or pen/strep or L-glutamine) with or without 

250 nM On Target Plus Smartpool siRNA (ATF-2, TREM-2 or STAT-6) or On Target 

Plus Non-Targeting Pool (Thermofisher Scientific, CO, US). The cells were 

electroporated in 0.2 cm electroporation cuvettes (Sigma) on programme V-001 on 

the Amaxa Nucleofector II Device (Lonza, Basel, Switzerland) and placed into 1.5 

mL of RPMI media containing 10% FCS and pipetted into a 24-well plate.  After 24 h 

the cells were centrifuged at 5000 rpm for 5 min and resuspended in 1 mL TRI 

Reagent (Invitrogen) or 1X sodium dodecyl sulfate (SDS) sample buffer (Invitrogen) 

for RNA or protein analysis (respectively). In some experiments, after 24 h the cells 

were stimulated with either TGF-β1 or IL-4 for up to 48 h as indicated in the figure 

legends. 

 

2.2.11. SMAD3 KD 

SMAD3 KD experiments were performed by Thomas Davies from The University of 

Cardiff in Dr. Dipak Ramji’s research group. SMAD3 was knocked down using 

SMAD3 Duplex2 siRNA using Interferin (Polyplus, Nottingham, UK). THP-1 cells 

were seeded into 12-well plates at 2 x 105 cells/mL in 1 mL for real time polymerase 

chain reaction (RT-PCR) or 2.5 mL into 6-well plates at 1.25 x 106 cells for western 

blot analysis. Interferin was added to the cells for 4 h, 9 µL into the 12-well plate and 

12 µL into the 6-well plate. Scrambled siRNA or SMAD3 Duplex2 siRNA were 

added to 100 µL (RT-PCR) or 250 µL (western blot) of RPMI (no penicillin, 

streptomycin or FCS) to make a concentration of 105 nM for 15-20 min and then 

added to the wells containing the THP-1 cells and incubated for 24 h resulting in a 

siRNA concentration of 9.55 nM. After 24 h, the cells were stimulated with TGF-β1 

for 16 or 48 h. THP-1 cells were centrifuged at 150 x g for 5 min. The pellets were 

washed in PBS by centrifugation. Cell pellets were lysed in 50 µL 

radioimmunoprecipitation assay lysis buffer (Sigma) and a protease inhibitor cocktail 

(1 µL in 100 µL) (Sigma) for protein analysis and lysed on ice for 10 min. The cell 

debris was removed by centrifugation at 12,000 x g for 5 min and the supernatants 
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collected and stored at -80 °C until use. The pellets from the RT-PCR samples were 

resuspended in 0.75 mL TRIzol (Life Technologies, Paisley, UK) and incubated for 5 

min.  

THP-1 cells lysed in TRIzol were incubated with 200 µL chloroform, shaken 

vigorously for 15 sec then incubated at room temperature (RT) for 2-3 min. The rest 

of the steps were performed the same as the TRI Reagent protocol as described 

below (2.4.1). RNA was converted to complimentary DNA (cDNA) using Promega 

RT-PCR reagents (Promega, Southampton, UK). RT-PCR was performed as 

described below (2.4.5). 

Protein samples were delivered on ice to the University of East Anglia and analysed 

by western blot analysis as described below (2.5.2). 

 

2.2.12. Stimulation and Inhibitor Experiments 

THP-1 cells were seeded at 1 x 106 cells/ml in 1 mL media in a 24-well plate, 16 h 

before experimentation. Cells were stimulated with 10 μg/mL LPS, 10 μg/mL PGN, 

100 ng/mL Pam3Cys, 10 ng/mL TNF-α, 5 ng/mL TGF-β1, 10 ng/mL IL-4 or 10 

ng/mL IL-13 for up to 7 days (time points indicated in figure legends). The following 

inhibitors were used to analyse cell signalling mechanisms: PKC inhibitor 

(bisindolylmaleimide I), p38 MAP kinase inhibitor (SB203580), MEK1/ERK1/2 

signalling pathway inhibitor (PD98059), PI3K inhibitor (LY294002), or the PPAR-γ 

inhibitor (GW9662) (see figure legends for concentrations). The cells were pre-

incubated with the inhibitor 30 min prior to addition of stimulus. Suspension cells 

were centrifuged at 2000 rpm for 5 min and the supernatant removed. The cell pellet 

was resuspended in 1 mL TRI Reagent (Invitrogen) for RNA isolation or 100 µL 1X 

Novex Tris-Glycine SDS sample buffer (diluted from 2X Tris-Glycine SDS in PBS) 

(Life Technologies) for Western blotting (see Section: 2.5). For adherent cells, the 

media was removed and the cells lysed in 1 mL TRI Reagent for RNA isolation or 

200 µL 1X Novex Tris-Glycine SDS sample buffer. For detection of secreted 

proteins, the supernatants were collected on ice and stored at -80°C and analysed 

by western blotting.  
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2.3. MTS Assay 

The CellTiter 96® AQueous One Solution Cell Proliferation Assay (Promega) was 

used to measure cell viability. Cells were seeded into a 96-well plate at the cell 

density required for the cell type and either left to adhere (adherent cells) for at least 

16 h or immediately exposed to the stimulus (suspension cells) for various times as 

indicated in figure legends. Once the experiment had finished, 10 µL of CellTiter 

96® AQueous One Solution was added to each well and left for 1-8 h depending on 

cell type at 37˚C. The CellTiter 96® solution contains 3-(4,5-dimethylthiazol-2-yl)- 5-

(3-carboxymethonyphenol)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) and phenazine 

ethosulfate (electron coupling reagent). In living cells, the reducing agent NADPH, 

reduces MTS into formazan (absorbance 490 nm), a water soluble dye. Increased 

cell viability was recognised by increased absorbance at 490 nm, due to increased 

metabolism of the substrate. 

 

2.4. Analysis of mRNA Expression 

2.4.1. RNA Isolation 

For RNA isolation, 0.5 - 1 x 106 cells were resuspended in 1 mL TRI Reagent 

Solution (Life Technologies) and incubated at RT for 5 min (408). At this stage the 

samples were either stored at -80°C for up to three weeks or used immediately for 

RNA extraction. For RNA extraction, 100 μL of bromo-chloropropane (Sigma) was 

added to the TRI Reagent sample and the tubes shaken vigorously for 10 sec. The 

samples were then incubated for 10 min at RT and centrifuged  (12,000 x g, 20 min, 

4°C), forming layers in the samples. The upper aqueous phase was removed and 

placed into a new tube containing 500 μL 2-propanol (Sigma) and vortexed for 10 

sec. The samples were incubated at RT for 10 min before centrifuging at 12,000 x g 

for 15 min at 4°C. The supernatant was removed and the pellet resuspended in 70% 

molecular grade ethanol (Sigma). The samples were then gently vortexed for 5 sec 

and centrifuged at 12,000 x g for 10 min at 4°C. After centrifugation, the ethanol was 

removed (as much as possible without disturbing the pellet) leaving the rest to 

evaporate. Once all the ethanol had evaporated the RNA was resuspended in 10-20 

μL distilled RNase, DNase free H2O (Fisher) depending on quantity of RNA 

expected and put into the -80°C freezer overnight before the next step. Alternatively, 

the RNA could be stored at -80°C for at least one year. 
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2.4.2. RNA Quantification and Reverse Transcription 

Total RNA was quantified using the Nanodrop 1000 Spectrophotometer (Lab Tech, 

Uckfield, UK) and diluted with distilled RNase, DNase free dH2O to 100-200 ng/μL. 

The Nanodrop measured the quantity of RNA using the Beer-Lambert Law: 

OD = εCb 

OD = absorbance at 260 nm 

ε = extinction coefficient 

C = concentration 

b = path length 

The extinction coefficient for RNA is 40 µg/mL. With this information and the 

absorbance of the sample at 260 nm the Nanodrop calculates the concentration of 

RNA in the sample in ng per µL. To ensure high quality of RNA, the ratio of 

absorbance at 260/280 and 260/320 shown the degree of contamination of the 

sample. Values between 1.8 – 2 indicate that the sample is pure and free of 

contamination. 

For cell expression studies, samples were diluted to 150 ng/μL. 100-200 ng (150 ng 

for cell expression studies) of RNA was added to 0.2 mL eppendorf tubes up to a 

volume of 4.5 μL in distilled RNase, DNase free dH2O. RNA was converted to cDNA 

by adding 5.5 μL of RT Master Mix (Life Technologies, see Appendix Section 8.1.2) 

to each sample. All the samples were placed in a PTC-100 thermocycler (Bio-Rad, 

Herts, UK) and incubated for 10 min at 21°C, 15 min at 42°C, 5 min at 99°C and 5 

min at 4°C. After this time, the samples were diluted with 15-20 μL distilled RNase, 

DNase free dH2O and used immediately or frozen for future use in quantitative RT-

PCR experiments. 

 

2.4.3. cDNA Direct from Cell Culture 

Due to the limited number of passages and slow proliferation of the SAECs, the 

Cells-cDNA II kit (Life Technologies) was used to obtain cDNA directly from cell 

extracts so that fewer cells could be used to obtain similar amounts of cDNA. The 

cells were washed twice in ice cold PBS, then resuspended in 50 μL of Cells-to 
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cDNA lysis buffer and incubated for 10 min at 75°C. At this point, samples could be 

frozen and the protocol continued at a later date. Once samples had cooled (or 

thawed) to RT, 1 μL of DNase I was added to each sample and incubated for 15 

min at 37C then a further 5 min at 75°C. 8 μL from each sample was transferred 

into a new tube and the remaining sample stored at -20°C. At this point, 1 μL of 

Random Hexamers (pd(N)6) and 3 μL of Deoxynucleotide Triphosphates (dNTPs) 

were added and the sample incubated for 5 min at 70°C. The samples were chilled 

on ice before the addition of: 2 μL of 10X RT buffer, 2 μL 0.1 M dithiothreitol (DTT), 

3 μL ddH20, 0.5 μL Moloney Murine Leukaemia Virus reverse transcriptase and 1 

μL RNaseOUT. The samples were then incubated for 50 min at 37°C, followed by 

15 min at 75°C. After this time the samples were diluted with 30 μL of double 

distilled RNase, DNase free dH2O. The cDNA samples were now used for 

quantitative real time-polymerase chain reaction (qRT-PCR) (see below) or stored 

at -20°C until required (no longer than 1 month).  

 

2.4.4. Primer Synthesis 

Primers were designed for specific exon-spanning regions using NCBI primer 

BLAST to ensure the primer would not bind to cDNA other than the gene of interest 

(Table 2.2). 

Table 2.2: Primer sequences: Unless otherwise stated, all custom designed primers were 

purchased from Life Technologies. GAPDH, glyceraldehyde 3-phosphate dehydrogenase. 

Gene Primer Sequence 

Human GAPDH Forward: 5’ AAC AGC CTC AAG ATC ATC AGC A 3’ 

Reverse: 5’ TGC TAA GCA GTT GGT GGT GC 3’ 

Mouse GAPDH Forward: 5’ AGC TTG TCA TCA ACG GGA AG 3’ 

Reverse: 5’ TTT GAT GTT AGT GGG GTC TCG 3’ 

Human  TREM-2 Forward: 5’ TCT GAG AGC TTC GAG GAT GC 3’ 

Reverse: 5’ GGG GAT TTC TCC TTC CAA GA 3’ 

Human  TREM-2 

(used for SMAD3 KD 

study) 

Forward: 5’ TCT GAG AGC TTC GAG GAT GC 3’ 

Reverse: 5’ GGG GAT TTC TCC TTC CAA GA 3’ 

Mouse TREM-2 Forward: 5’ TGG GAC CTC TCC ACC AGT T 3’ 

Reverse: 5’ GTG GTG TTG AGG GCT TGG 3’ 
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Human IL-1β Forward: 5’ GGA CAA GCT GAG GAA GAT GC 3’ 

Reverse: 5’ TCG TTA TCC CAT GTG TCG AA 3’ 

Human STAT-6 Forward: 5’ GTT CCG CCA CTT GCC AAT G 3’ 

Reverse: 5’ TGG ATC TCC CCT ACT CGG TG 3’  

Human MMP-1 Forward: 5’ GCT AAC CTT TGA TGC TAT AAC TAC GA 3’  

Reverse: 5’ TTT GTG CGC ATG TAG AAT CTG 3’   

Human IL-8 Pre-designed by Qiagen   

Human ATF2 Forward: 5’ TTT CCT CCA GGG GTG CTT TG   3’  

Reverse: 5’ GCA GTC CTT TCT CAA GTT TCC  3’   

Human SMAD3 Forward: 5’ GAG CAA TAT TCC AGA GAC CCC ACC C 3’ 

Reverse: 5’ TTT GGA GAA CCT GCG TCC ATG CT 3’ 

Human  GAPDH (used 

for SMAD3 KD study) 

Forward; 5’ CTT TTG CGT CGC CAG CCG AG  3’ 

Reverse: 5’ GCC CAA TAC GAC CAA ATC CGT TGA CT 3’ 

Mouse IL-1β Forward: 5’ TGT AAT GAA AGA CGG CAC ACC 3’ 
Reverse: 5’ TCT TCT TTG GGT ATT GCT TGG 3’ 

Mouse TGF-β1 Forward: 5’ TGG AGC AAC ATG TGG AAC TC 3’ 

Reverse: 5’ CAG CAG CCG GTT ACC AAG 3’ 

 

 

2.4.5. qRT-PCR 

For qRT-PCR (409), 5 μL of cDNA and 15 μL PCR Mix (see Appendix Section 8.1.2) 

were transferred into 200 μL PCR tubes. Standards made using equal quantities of 

cDNA from each sample, using a one in two serial dilution in distilled RNase, DNase 

free dH2O to produce five standards. The samples were added to tubes containing 

15 μL PCR Mix (see Appendix Section 8.1.2). A separate tube was set up with 5 μL 

distilled RNase, DNase free dH2O and 15 μL PCR Mix as a No Template Control 

(NTC) to check for DNA or RNA contamination. The samples were placed in the 

Qiagen Rotor-Gene Q machine for one cycle at 95°C for 120 sec followed by 40 

cycles where each cycle ran for 15 sec at 95°C and 40 sec at 40°C. The samples 

and standards for the gene of interest were normalised to a control gene (GAPDH) 

for each sample/standard. Results were analysed using the Rotor-Gene 600 Series 

Software 1.7. Relative concentrations were produced using the standard curve 

method. However, since the concentration of the gene of interest in the standards is 

unknown, this was based on the knowledge that standard two has half the 
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concentration of the gene of interest than standard one and so on. In addition, a 

melt analysis was performed to analyse the quality of the PCR reaction and the 

effectiveness of the primers. 

 

2.5. Western Blotting 

2.5.1. Sample Preparation 

Whole Cell Extracts: For whole cell extracts, 1 x 106 suspension cells were 

centrifuged at 2000 rpm for 5 min and resuspended in 100 μL 1X Novex Tris-

Glycine SDS (see Appendix Section 8.1.3) (Life Technologies). For adherent cells, 

100 or 200 μL 1X Tris-Glycine SDS was added to each well in a 24-well plate or 6-

well respectively and the sample placed into eppendorf tubes. The samples were 

boiled for 5 min, then pulse centrifuged. At this stage samples could be stored at -

80°C for future use. Protein concentration was measured using absorbance at 280 

nm with the Nanodrop 1000 Spectrophotometer using the Beer Lambert Law as 

detained above (Section 2.4.2) (extinction coefficient 1 mg/mL). The amount of 

sample loaded onto the gel was altered, depending on protein concentration so 

each sample was loaded onto the gel with equal concentration. This was particularly 

important for the cell expression studies. In addition, for the cell expression studies, 

PMA-differentiated THP-1 cells were run on each gel so that the expression in each 

cell type could be compared to the same control. 

Nuclear and Cytosolic Extracts: For nuclear and cytosolic extracts, 5 x 106 cells 

were centrifuged at 1200 rpm for 7 min at 4°C and resuspended in 1 mL ice-cold 

PBS. The cells were then centrifuged at 5000 rpm for 1 min at 4°C and 

resuspended in 50 µL Buffer A (see Appendix Section 8.1.3) and incubated on ice. 

After 5 min the solution was centrifuged at 13,000 rpm for 8 sec and the supernatant 

collected as the cytosolic fraction and stored on ice until the end of the procedure. 

The pellet was resuspended in 100 µL Buffer A, and centrifuged at 13,000 rpm for 8 

sec. The supernatant was discarded and the pellet was resuspended in 50 µL 

Buffer B (see Appendix Section 8.1.3). The pellet was sonicated for 10 sec, using a 

Heilscher UP50H Ultrasonic Processor (Teltow, Germany), followed by 

centrifugation at 13,000 rpm for 8 sec. The supernatant was collected and pipetted 

into a new eppendorf tube, and this was the nuclear fraction. The nuclear and 

cytosolic fractions were snap-frozen using dry ice and ethanol and stored at -80°C.  
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Two different methods were used for western blotting, the Bio-Rad system which 

used polyacrylamide gels made in the lab and semi-dry transfer and the Novex 

system (Invitrogen, Paisley, UK) that used pre-cast gels and a wet transfer system. 

 

2.5.2. Gel Electrophoresis: Bio-Rad 

To make 10% polyacrylamide gels, 30% acrylamide, dH2O, 

tetramethylethylenediamine (TEMED) and 10% ammonium persulfate (APS) (in 

dH2O) (all purchased from Fisher) were all added to the resolving gel stock (see 

Appendix Section 8.1.3). The solution was added to clean gel casting glass plates 

(Bio-Rad), leaving a gap at the top for the stacking gel. The stacking gel was made 

up by adding 30% acrylamide, dH2O, TEMED and 10% APS (in dH2O) to the 

stacking gel stock (see Appendix Section 8.1.3). This solution was added to the set 

resolving gel and a 10 or 15-well comb inserted and left to set for up to 30 min. The 

gels were stored at 4°C for up to 3 days. 

One or two gels were placed into the Bio-Rad mini protein gel rig and filled with 

running buffer (see Appendix Section 8.1.3). For cell supernatants, 6.5 μL of the cell 

culture supernatant was added to 2.5 μL 1X lithium dodecyl sulfate (LDS) sample 

buffer (see Appendix Section 8.1.3) (Life Technologies) and 1 μL 10X NuPAGE 

Reducing Agent (Life Technologies). For cell lysates, 10X NuPAGE Reducing Agent 

was added to each sample at a ratio of 1:9 (reducing agent: sample).  All samples 

containing reducing agent were boiled for 5 min and pulse centrifuged before 

loading onto the gel. Gel loading varied depending on cell type and 5 μL of Pre-

stained broad range SDS PAGE Standards (Bio-Rad) was used as a molecular 

weight marker. Electrophoresis was performed at 150 V for 1 h (410). 

 

2.5.3. Gel Transfer: Bio-Rad 

The PVDF (polyvinylidene difluoride) membranes (Bio-Rad) were cut to the same 

size as the gel and washed in methanol (Fisher) for 30 sec to activate the 

membrane. The membrane was then rinsed in dH20 and soaked in 1X transfer 

buffer (see Appendix Section 8.1.3) for at least 15 min on a shaker. Prior to transfer, 

blot pads (Life Technologies) were soaked in 1X transfer buffer, compressing the 
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pads in the buffer to ensure there were no bubbles. When electrophoresis was 

complete, the casts were opened so that the gel remained on the back glass plate. 

For transfer of one gel (see Figure 2.2A), three pieces of soaked filter paper were 

placed on top of the gel and the membrane placed underneath the gel, followed by 

three more pieces of filter paper under that. The gel/membrane stack was placed 

onto the semi-dry blotter (Sigma) inside two pre-soaked blot pads, with the gel on 

top, nearest the cathode.    

To transfer two gels (see Figure 2.2B), as with one gel, each gel was opened 

leaving the gel on the small back pate. There were nine pieces of filter paper on 

either side of the stack touching the blot pad and three pieces separating the two 

gels and membranes. As with one gel, the membranes were closer to the anode 

and the gels closer to the cathode. Transfers were run at 15 V for 45 min.  
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Figure 2.2: Semi-dry blotting system: A) Transfer of proteins from one gel to one membrane. 

B) Transfer of two gels to two membranes. 

 

 

2.5.4. Gel Electrophoresis: Novex 

A pre-cast Novex 4-12% Bis-Tris Gel (Life Technologies) was placed into the Novex 

X-cell Sure-lock gel rig (Life Technologies) and the surrounding areas were filled 

with 1X MOPS or MES running buffer (see Appendix Section 8.1.3 ) (Invitrogen). 

Sample loading and preparation was the same as the Bio-Rad gel electrophoresis 

(Section 2.5). Gel electrophoresis was performed at 150 V for 1 hr. 
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2.5.5. Gel Transfer: Novex 

The PVDF membrane and blot pads were prepared as described above (Section 

2.5.2). Following electrophoresis, the foot of the gel was cut and the gel casing 

opened, leaving the gel on the back plate. The soaked filter paper was placed on 

top of the gel and the wells and foot of the gel trimmed to fit the filter paper. The 

membrane and filter paper were transferred to a glass plate with the filter paper on 

the bottom and gel on top. A piece of PVDF membrane soaked in 1X transfer buffer 

(see Appendix Section 8.1.3) was added on top of the gel followed by another piece 

of soaked filter paper. Two pre-soaked blot pads were added to the gel rig and the 

gel/membrane assembly placed on top with the gel closest to the cathode. The 

remaining pads were used to fill the gel rig and the rig locked in place so transfer 

could begin. The surrounding areas were filled with 1X transfer buffer and the 

transfer run at 30 V for 1 h.  

 

2.5.6. Membrane Blocking and Staining Procedure 

The membrane was incubated in blocking solution (see Appendix Section 8.1.3) for 

1 h on a shaker (or left overnight at 4˚C). Primary antibodies (see Table 2.3) were 

made up in blocking solution and placed into 50 mL Falcon tubes, with the 

membrane facing inwards, then left on a rotator for 1 h at RT or overnight at 4˚C.  

After this time, the membrane was washed briefly in 1X Tris-Buffered Saline with 

Tween 20 (TBST) (see Appendix Section 8.1.3),  then washed three times in 

blocker followed by three washes in 1X TBST (5 min each). The membrane was 

then incubated with secondary antibody (in blocker) (see Table 2.3) in a Falcon tube 

on the rotator for 30 min. After incubation, membranes were washed as before 

(three times in blocker, three times in 1X TBST). After washing, the excess TBST 

was removed by blotting with filter paper and the Amersham ECL prime reagent 

(GE Healthcare) added onto the membrane for 5 min. The membrane was either 

immediately viewed on the G:BOX SynGene imager using the GeneTools and 

GeneSnap Software or placed in a RPN 18 x 24 cm Amersham autoradiography 

cassette (G E Healthcare) containing a 12.7 x 17.8 cm CL-XPosure Film 

(Fisher) and left for up to 5 min depending on the strength of the protein band 

expected. With this detection method, the film was developed using an X-Ograph 

X4 imager (X-Ograph, Gloucestershire, UK). β-actin was used to control for protein 
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loading in whole cell extracts and β-actin and histone H3 for cytosolic and nuclear 

fractions (respectively) in nuclear and cytosolic extracts. 

 

Table 2.3: Antibodies used for western blot analysis or immunofluorescence 

 

Abbreviations: WB; Western Blot. IF; Immunofluorescence. 

 

 

Antibody Target 

species 

Host 

Species 

Concentration Type Company 

TREM-2 Human Goat 0.2 µg/mL (WB), 

10 μg/mL (IF) 

Polyclonal R&D Systems 

TREM-2 Mouse Sheep 10 μg/mL (IF) Polyclonal R&D Systems 

SMAD3 Human Rabbit 1:1000 Monoclonal New England Biolabs 

Phosphorylated 

p38-MAPK 

(Thr180/Tyr182)  

Human Rabbit 1:1000 Monoclonal New England Biolabs 

p38-MAPK Human Mouse 1:1000 Monoclonal New England Biolabs 

IBA-1 Human Goat 3.33 μg/mL (IF) Polyclonal Abcam (Cambridge, 

UK) 

Histone H3 Human Rabbit 1:5000 Polyclonal Abcam 

Βeta-actin Multiple Mouse 1:500,000 Monoclonal Sigma 

Beta-COP Mouse 

and 

Monkey 

Rabbit 1:200 Polyclonal In house- from Tom 

Wileman (UEA) 
(411)

 

MMP-1 Human Rabbit 1:1500 Polyclonal In house- from Ian 

Clarke (UEA) 
(412)

 

Alexa 594 Sheep Donkey 1:100 Polyclonal Stratech (Suffolk, UK) 

Alexa 488 Goat Rabbit 1:200 Polyclonal Invitrogen 

HRP  Mouse Goat 1:5000 Polyclonal Dako (Cambridge, 

UK) 

HRP Goat Donkey 1:1000 Polyclonal Santa Cruz 

Biotechnology 

(Heidelberg, 

Germany) 

HRP  Rabbit Goat 1:1000 Polyclonal Santa Cruz 

Biotechnology 

IgG Control Goat Goat Same as test 

antibody 

Whole 

antibody 

Sigma 
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2.5.7. Re-probing of Membranes 

Membranes were re-probed for β-actin to check for protein loading. The membranes 

were stripped using 20 mL of 1X Reblot Plus Strong Solution (Millipore) (see 

Appendix Section 8.1.3) by incubation for 30 min on a shaker. After rinsing in 

blocker, the membrane was washed three times in blocker and left for 5 min on a 

shaker between washes. After this step the membrane could be re-blotted by 

following the protocol above starting at the step with the addition of a primary 

antibody. 

 Alternatively, the membrane was stripped with stripping solution made ‘in house’ 

(see Appendix Section 8.1.3). The membrane was incubated in the shaker for 10 

min with the ‘in house’ stripping solution and then replaced with fresh stripping 

solution for a further 10 min. The membrane was washed twice in PBS for 10 min 

and twice in TBST for 5 min. The membrane was incubated on the shaker in blocker 

for 30 min before adding the primary antibody from here the procedure continued as 

described previously. 

 

2.5.8. Densitometry 

In some cases, densitometry was used to represent changes in protein expression 

observed by western blot analysis. Bands were measured using gel analysis 

software in Image J. Densitometry values used in Section 3.3.2 for protein 

expression in different cell types used PMA-differentiated THP-1 cells as a 

reference cell line for TREM-2 expression and divided the mean densitometry 

values of each cell line by that of the PMA-differentiated THP-1 cells to get values of 

mean fold change relative to PMA-differentiated THP-1 cells ± SEM. 

 

2.6. Immunofluorescence 

2.6.1. Cells 

Adherent cells were grown on 22 mm sterile cover slips (Fisher) in 6-well cell culture 

plates (Fisher) at various seeding densities and durations depending on cell type. 
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Suspension cells were added to BioCoat 12mm poly-L-lysine coated coverslips 

(Scientific Laboratory Supplies, Hessle, UK) and left to adhere overnight. Following 

treatment, the media was removed from the wells and the cells washed three times 

in PBS then fixed with 4% PFA (see Appendix Section 8.1.4) for 30 min at RT. The 

cells were washed three times for 5 min in PBS. To permeabilize the cells, 0.1% 

Triton X-100 (Fisher) in PBS was added for 15 min at RT. The cells were then 

washed with 0.5 % BSA in PBS at least six times on a plate shaker at low speed. 

Alternatively, the cells were washed in PBS when using the donkey anti-sheep 

antibody, as sheep is too similar to bovine and therefore all washes and antibody 

dilutions were in PBS. To reduce non-specific binding of the secondary antibody the 

cells were incubated in the serum of secondary antibody host species, 10% in PBS 

for 1 h at RT. The cells were washed again as before, six times with 0.5% BSA in 

PBS. Primary antibodies (see Table 2.3) were diluted in a 1% BSA in PBS and 100 

μL placed over the coverslip, covered with a plastic cover to prevent evaporation 

and incubated overnight at 4˚C. After 16 h the cells were washed in PBS as 

previously described, then incubated with the fluorescence-coupled secondary 

antibody (see Table 2.3), made up in 0.5% BSA in PBS. The cells were incubated 

with 100 μL of secondary antibody for 1 h at RT in the dark (413). After this time, the 

cells were washed as described previously in PBS before the addition of 100 μL 

DAPI stain (1:400 in PBS, purchased from Sigma) for 10 min. The cells were 

washed again three times in PBS followed by one wash in water and mounted on a 

glass microscope slide using Hydromount mounting medium (National Diagnostics, 

Hessle, UK). For confocal microscopy, the slides were mounted with Citifluor AF1 

(Citifluor Ltd, London, UK), which reduced photo-bleaching of the samples when 

used for long periods of time on the confocal microscope. Clear nail varnish was 

applied around the edges of the slide to keep the slide in place and preserve the 

sample. The cells were mounted facing downwards placing mounting medium onto 

the glass slide and slowly placing the coverslip onto it, ensuring there were no 

bubbles, and left to dry. Slides were imaged using Leica Microsystems CMS GmbH 

Fluorescence Microscope and Leica Application Suite software (Leica, Mannheim, 

Germany) or a Zeiss LSM510 META laser scanning confocal microscope (Carl 

Zeiss Ltd, Cambridge, UK) and analysed using Velocity 3D Image Analysis software 

(PerkinElmer, Massachusetts, US). 
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2.6.2. Human Organotypic Retinal Culture Sectioning, Oxygen Glucose 

Deprivation and Immunofluorescence 

Ethical approval for the use of human tissue in these experiments was obtained 

from the University of East Anglia’s Faculty of Health Research Ethics Committee 

(Reference 2012/2013 – 25 HT). Eye tissue was obtained from the East Anglian 

Eye Bank. The tissue was obtained and processed by Dr. Julie Sanderson’s 

laboratory. The eyes were transported to the University of East Anglia (UEA) in 

EMEM (Sigma) containing 50 µg/mL gentamycin (Sigma), 10,000 U/mL penicillin G, 

10,000 µg/mL streptomycin sulphate and 25 µg/mL amphotericin B (Life 

Technologies). The human organotypic retinal culture (HORC) tissue was dissected 

as previously described (414). The eye tissue was cut between the ciliary body and 

the sclera (10 mm) and the tissue cut around the circumference of the globe under 

the ciliary body at the ora serrate. The HORC tissue was removed by rotating the 

globe and the neural retina removed by making a cut at the optic nerve head. The 

neural retina was put into a sterile petri-dish containing DMEM/HamF12 (Life 

Technologies) containing 2 mM L-glutamine and 50 µg/mL gentamycin (complete 

DMEM/HamF12). The vitreous humour was removed from the HORC tissue and 

discarded. The HORC tissue was cut into sections using a 4 mm diameter micro-

dissecting trephine (Biomedical Research Instruments, MD, USA). The sections 

were placed into individual petri-dishes containing serum free complete 

DMEM/HamF12 media. The sections were incubated for 1 h before 

experimentation. 

At the start of the experiment the media was changed to either control or glucose 

free DMEM (serum free) (Life Technologies).  Immediately after the media change, 

the HORCs were placed into the modular incubator chamber (Billups-Rothenberg 

Inc) (Wolf Laboratories Limited, York, UK) and flushed through with N2 containing 

5% CO2 for 10 min to remove any remaining oxygen. The chamber was sealed and 

the oxygen glucose deprivation (OGD) and control HORCs were placed back into 

the 37°C (times indicated in figures).  

After treatment the HORCs were fixed in 4% PFA for 24 h at 4°C. The tissue was 

then immersed in 30% sucrose in PBS for 24 h at 4°C. The tissue was removed and 

mounted vertically in optimum cutting temperature (OCT) blocks followed by 

freezing using dry ice. Retinal tissue was sectioned into 13 µm slices using the 

Bright OTF 5000 cryostat) (Bright Instruments, Huntington, UK) and placed onto 

slides (Sigma) coated with 3-aminopropyltriethoxysilane (Sigma) to adhere and 
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stored at -20°C until use.  For immunostaining (414), retinal tissue mounted slides 

were first washed in PBS three times for 10 min then incubated in blocking solution 

(see Appendix Section 8.1.4) for 90 min. After this time, the excess moisture from 

around the sections were removed before incubation with 50 µL primary antibody (in 

blocking solution without Triton X, Table 2.3) overnight at 4°C, covered in plastic to 

prevent evaporation. The sections were then washed three times in PBS for 5 min 

and the secondary antibody (in blocking solution without Triton X) added for 2 h at 

RT in the dark. The cells were washed again, three times in PBS (5 min each) then 

incubated with the nuclear stain DAPI (1:100 in PBS) for 10 min at RT in the dark. 

The sections were washed for the final time (three times in PBS for 5 min each), 

mounted onto a coverslip using Hydromount and left in the dark at RT overnight. 

The slides were viewed using Leica Microsystems CMS GmbH Fluorescence 

Microscope and Leica Application Suite software. 

 

2.6.3. Immunostaining of Lung Tissue 

Ethical approval for the use of human lung tissue in these experiments was 

obtained from the University of East Anglia’s Faculty of Health Research Ethics 

Committee (Reference 2012/2013 – 25 HT). The paraffin embedded lung tissue was 

obtained from the Norwich and Norfolk Human Tissue Bank. Post-mortem tissue 

samples were obtained from healthy, asthmatic or COPD patients who had given 

authorised consent for research. Patient information was obtained in a linked 

anonymised way. Paraffin embedded blocks were cut into 4 µm sections using a 

Spencer 820 microtome (American Optical). Surgipath Sta-On Tissue Section 

Adhesive solution (diluted in water 10 mL in 1 L) (Leica Biosystems, Milton Keynes 

UK) was put on a glass slide and the sections placed on top, the glass slides were 

then briefly heated to 60°C to flatten the sections. The excess solution was removed 

using tissue and the slides left to dry at RT overnight. The sections were rehydrated 

by immersing the sections in xylene (Sigma) 2 x for 5 min and then in a decreasing 

ethanol (Sigma) gradient (5 min in 100%, 3 min in 90%, 2 min in 75%, 1 min in 

50%). After the ethanol gradient, the sections were immersed in distilled water for 5 

min. 

The antigen retrieval step was optimised to analyse which buffer (EDTA or citric 

acid) resulted in the highest specific antibody binding. This optimisation found that 

the citric acid buffer (see Appendix Section 8.1.4) was the best buffer for antigen 
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retrieval, which took place in a water bath at 85°C for 20 min followed by 20 min to 

allow the sections to cool to prevent the sections drying out in the next step. To 

quench endogenous peroxidase activity, this study used dH2O2. 100 µL 0.3% dH2O2 

(in methanol) was added to the sections and covered with plastic to prevent 

evaporation for 30 min. After this time, the cells were washed three times in 1X 

immuno TBST (see Appendix Section 8.1.4) for 5 min each on a shaker at low 

speed. The sections were then incubated with 2.5 % horse serum (included in the 

ImmPRESS Anti-Goat Ig (peroxidase) Polymer Detection Kit (Vector Laboratories, 

Peterborough, UK) for 1 h at RT. 10 µg/mL TREM-2 primary antibody (see Table 

2.3) or goat IgG isotype control (see Table 2.3) were made up in 1.5% horse serum 

in 1X TBS (see Appendix Section 8.1.4). Excess 2.5% horse serum was removed 

from the sections using tissue and 100 µL TREM-2 antibody or isotype control 

added to the sections, covered in plastic and incubated overnight at 4°C. 

The sections were washed six times for 5 min each in 1X immuno TBST on a low 

speed shaker. The sections were then incubated in the IMPRESS REAGENT anti-

goat IgG provided by the ImmPRESS Anti-Goat Ig (peroxidase) Polymer Detection 

Kit for 30 min at RT. After this time, the ImmPACT NovaRED Peroxidase Substrate 

(Vector Laboratories) (see Appendix Section 8.1.4) was added for 15 min. The 

sections were then washed in distilled water for 5 min and then mounted using 

Hydromount and left to dry at 4°C overnight. The images were visualised using the 

L Microscope Leica DMR and Nikon digital sight DSi1 microscope camera and 

analysed with the NIS elements Software. The presence or absence of structures 

within the lungs and TREM-2 positive cells were confirmed by Dr. Mark Wilkinson, a 

pathologist at Norfolk and Norwich Hospital. 

 

2.7. Statistics 

qRT-PCR data and MTS data were analysed using one way ANOVA followed by 

Dunnett’s or Bonferroni post hoc tests as indicated in figure legends. When only two 

samples were analysed and the samples were normally distributed, a two-sample 

student’s t-test was performed. * = p≤0.05, ** = p≤0.01, *** = p≤0.001. Values are 

expressed as mean ± SEM where appropriate. GraphPad Prism 5 (GraphPad 

Software Inc, CA, USA) and SPSS Statistics 22 (IBM Software, Portsmouth, UK) 

were used for the statistical tests. See figure legend for experimental replicates. 
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3. Characterisation of TREM-2 

Expression in Cells and Tissues 
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3.1. Introduction  

TREM-2, or Triggering receptor expressed on myeloid cells – 2, as the name 

suggests, is largely expressed in myeloid cells, including dendritic cells, 

macrophages, osteoclasts and microglia (240, 243, 260, 338). TREM-2 is a glycosylated 

transmembrane receptor protein, which has been confirmed by removal of N- and 

O- linked glycosylation in COS7 cells transfected with TREM-2 and in dendritic cells 

(278, 298). The glycosylated forms of TREM-2 appear between 28 and 40 kDa by 

western blot analysis (278, 298, 359). In myeloid cells, TREM-2 has mainly been studied 

on the cell surface due to its known functions in phagocytosis and suppression of 

TLR-mediated signalling (81, 240). However, TREM-2 is also known to be expressed 

intracellularly, and is continuously transported to and from intracellular stores to the 

plasma membrane, though its intracellular functions are unknown (264). 

In addition to its expression in myeloid cells, TREM-2 expression has also been 

observed in a small number of non-myeloid cell types including epithelial cells of the 

genitourinary tract and hepatic endothelial cells (241, 257). The expression of TREM-2 

in these non-myeloid cell types suggests that TREM-2 may also be expressed on 

other non-myeloid cells. Understanding the range of cells and tissues that express 

TREM-2 will aid the discovery of new functions of TREM-2 in health and disease. 

TREM-2 expression is increased in diseases of the lung including COPD and 

allergy, in cerebral ischaemia and in infections of the eye (242, 360, 367, 368). The 

mechanisms of TREM-2 induction in these conditions are unknown and whether 

non-myeloid cell types contribute to the change in TREM-2 expression in these 

conditions is yet to be investigated. Understanding the cell types that express 

TREM-2 and the localisation of this expression may lead to the discovery of 

previously unknown functions of TREM-2 in health and disease. 
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3.2.   Aims 

The aims of this study were to: 

 Characterise the expression and localisation of TREM-2 in myeloid cells 

 Screen myeloid and non-myeloid cells for TREM-2 expression 

 Investigate the expression of TREM-2 in the human retina and lung in health 

and disease states 
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3.3. Results 

3.3.1. TREM-2 Protein Expression in Myeloid Cells 

The first aim of this study was to confirm TREM-2 expression in myeloid cells. The 

expression of TREM-2 in macrophages and microglial cells has been widely 

documented and therefore these cell types were chosen to validate TREM-2 

expression (81, 149, 240, 241, 261, 264, 265). Immunofluorescent labelling of TREM-2 

demonstrated expression in both the murine N9 (Figure 3.1A) and human CHME-5 

microglial cell lines (Figure 3.1B). Interestingly, TREM-2 expression was particularly 

high in the nuclear region in both CHME-5 and N9 microglial cell lines. However, the 

CHME-5 microglial cell line showed more expression of TREM-2 throughout the cell 

compared to the N9 cell line (Figure 3.1B). This confirms that TREM-2 expression is 

expressed in microglial cells and suggests that TREM-2 is located in a peri-nuclear 

region in these cells. 
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Figure 3.1: TREM-2 protein expression in microglial cell lines by immunofluorescence. 

TREM-2 protein expression was measured by immunofluorescence in (A) N9 murine microglial 

cells (RED) and (B) CHME5 human microglial cells (GREEN). DAPI (BLUE) was used to stain the 

nucleus to help to view localisation of TREM-2 in the cell (n = 3). Scale bar 50 μm. 

 

This interesting pattern of TREM-2 expression led to the use of confocal microscopy 

to study TREM-2 localisation in N9 cells in more detail. Confocal microscopy 

analysis showed that although TREM-2 was expressed throughout the cell, the 

A

B DAPITREM-2 DAPI /TREM-2

TREM-2

Secondary 
Antibody 
Control

TREM-2

Secondary
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highest concentration of TREM-2 was localised in dense patches around the 

nucleus (Figure 3.2). This suggests that in N9 microglial cells, TREM-2 expression 

is localised to a membrane-bound organelle close to the nucleus and in vesicles or 

other small membrane bound organelles throughout the cytoplasm. 

 

Figure 3.2: Confocal analysis of TREM-2 expression in N9 microglial cells. (A) and (B) Z-

stack image showing TREM-2 expression (RED) overlaid with DAPI nuclear staining (BLUE) by 

immunofluorescence, analysed by confocal microscopy. Scale bar = 10 µm. 

 

To investigate the expression of TREM-2 in myeloid cells further, Figure 3.3 used 

PMA-differentiated THP-1 cells as a model of macrophages and measured TREM-2 

expression throughout the cell. TREM-2 expression and localisation was measured 

using confocal microscopy. Similarly to the observations in the microglial cell lines, 

TREM-2 expression was found in a dense circular patch around the nucleus (Figure 

3.3). The localisation of TREM-2 around the nucleus in both microglial and 

macrophage cell lines suggests that TREM-2 may be expressed in membrane 

bound organelles close to the nucleus. 

A B
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Figure 3.3: Confocal analysis of TREM-2 expression in PMA-differentiated THP-1 cells. (A) 

and (B) Z-stack image showing TREM-2 expression (GREEN) overlaid with DAPI nuclear staining 

(BLUE) by immunofluorescence, analysed by confocal microscopy. Scale bars (A) = 20 µm (B) = 

2 µm. 

 

To further investigate the high expression of TREM-2 around the nucleus, the 

absence of TREM-2 in the nucleus was confirmed. Nuclear and cytosolic extracts 

from N9 cells were compared to total TREM-2 protein expression. As expected, the 

TREM-2 antibody did not detect TREM-2 expression in the nuclear fraction and very 

little in the cytoplasmic fraction which may be due to membrane contamination 

suggesting that TREM-2 is restricted to membrane bound organelles (Figure 3.4). 

 

 

 

A B



99 
 

 

Figure 3.4: TREM-2 protein expression in the cytosol and nucleus of N9 microglial cells. 

TREM-2 protein expression was measured by western blot analysis for the expression of TREM-

2 in the nuclear and cytosolic fractions of N9 cells. Nuclear and cytosolic fractions were 

compared to total protein. Histone was used as a control for the nuclear fraction and β-actin for 

the cytosolic fraction (n = 3). 

 

These results suggest that TREM-2 expression is localised around the nucleus in 

both PMA-differentiated THP-1 macrophages and N9 microglial cells. Two key 

membrane-bound organelles found close to the nucleus are the endoplasmic 

reticulum (ER) and the Golgi apparatus. The TREM-2 staining observed in the 

macrophage and microglial cell lines resembled that of the Golgi apparatus or the 

centrosome due to its circular shape and location close to the nucleus, therefore a 

Golgi marker, beta-coatomer-protein (β-COP), was used for dual antibody staining 

with TREM-2 to analyse TREM-2 expression in the Golgi apparatus. Firstly, TREM-

2 and β-COP expression were measured individually to ensure that there was no 

antibody cross-reactivity in the dual antibody staining experiment (Figure 3.5A and 

B). As previously shown, TREM-2 expression was observed around the nucleus, 

with a dense spot of TREM-2 staining on the periphery of the nucleus (Figure 3.5B). 

This expression pattern was also observed with the β-COP antibody, localised 

around the nucleus with areas of brighter staining on the periphery of the nucleus 

(Figure 3.5A). 
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Figure 3.5: TREM-2 and β-COP expression in N9 murine microglia. Expression of (A) TREM-

2 (RED) and (B) the Golgi marker β-COP (GREEN) were overlaid with DAPI nuclear stain 

(BLUE), measured by immunofluorescence in the permeabilized N9 murine microglial cell line (n 

= 3). 50 µm scale bar. 

 

To observe the co-localisation of TREM-2 and β-COP, immunofluorescence was 

performed using dual antibody staining for both proteins. The secondary antibody 

controls showed no non-specific staining after incubation with the secondary 

antibodies alone (Figure 3.6B). TREM-2 and the Golgi marker β-COP showed some 

co-localisation in the N9 microglial cells, particularly in the dense spot localised on 

the periphery of the nucleus (Figure 3.6A). However, TREM-2 expression in some 

N9 cells was bright throughout the nucleus, a pattern that was not observed with the 
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Antibody 
Control

β-COP

Secondary 
Antibody 
Control



101 
 

β-COP Golgi marker, suggesting that TREM-2 may also be expressed in another 

organelle near the nucleus such as the ER or centrosome (Figure 3.6A). 

 

Figure 3.6: Co-localisation of TREM-2 and β-COP expression in N9 murine microglia. (A) 

Expression of TREM-2 (RED) and the Golgi marker β-COP (GREEN) were overlaid with DAPI 

β-COPDAPI

β-COP/TREM-2 / DAPITREM-2

β-COPDAPI

β-COP/TREM-2 / DAPITREM-2

A

B
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nuclear stain (BLUE), measured by immunofluorescence in permeabilized N9 cells. (B) N9 cells 

without incubation in primary antibody to control for non-specific binding of the secondary 

antibody (n = 3). 50 µm scale bar. 

 

Figure 3.7 demonstrates a close-up of the N9 cells in Figure 3.6. The arrows show 

areas with particularly strong co-localisation of TREM-2 and the Golgi marker β-

COP. Together these results confirm the expression of TREM-2 in macrophage and 

microglial cells and have identified localisation of TREM-2 in the Golgi apparatus in 

N9 cells. 

 

 

Figure 3.7: Higher magnification of Figure 3.6: Co-localisation of TREM-2 and β-COP 

expression in N9 microglial cells. Expression of TREM-2 (RED) and the Golgi marker β-COP 

(GREEN) were overlaid with DAPI nuclear stain (BLUE), measured by immunofluorescence in 

permeabilized N9 cells. 10 µm scale bar. Arrows highlight good co-localisation of TREM-2 and β-

COP. 

 

3.3.2. TREM-2 Expression Screen 

In addition to myeloid cells, TREM-2 has also been identified in non-myeloid cell 

types including genitourinary epithelial cells and liver endothelial cells (241, 257). After 

confirming the expression of TREM-2 in myeloid cells by immunofluorescence, 

myeloid expression of TREM-2 was confirmed by RT-PCR and western blotting, and 

non-myeloid cells screened for TREM-2 expression. PMA- differentiated THP-1 cells 

were used as a reference for TREM-2 protein expression and equal concentrations 

of protein were loaded onto each gel. To compare cells on different western blots, 

β-COP/TREM-2 / DAPITREM-2 β-COP
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Figure 3.8 used densitometry analysed by Image J and showed human TREM-2 

expression relative to PMA-differentiated THP-1 cells (PMA-THP-1) (Figure 3.8 E 

and F). Th TREM-2 protein is glycosylated and therefore appears at different 

weights depending on glycosylation status (278, 298, 359). The unglycosylated form is 

believed to be ~28 kDa, as demonstrated in Figure 3.8E. A band was also observed 

at 32 kDa that is believed to be a glycosylated form of TREM-2 represented in 

Figure 3.8F. There was also a non-specific band observed at 110 kDa which was 

confirmed using an IgG control antibody which could be an Fc receptor dimer. 

TREM-2 protein expression in the mouse cell lines appears around 34 kDa (Figure 

3.8D). As expected, myeloid cells including PMA-differentiated THP-1 cells and 

primary monocyte-derived macrophages expressed high levels of TREM-2 mRNA 

and protein (Table 3.1 and Figure 3.8A, C and F). High TREM-2 mRNA expression 

and moderate protein expression was observed in THP-1 monocytes and primary 

monocytes derived from peripheral blood (Table 3.1). At the protein level, the height 

and exact weight of the band differed slightly between myeloid cells suggesting that 

different glycosylated forms of TREM-2 are present (Figure 3.8). The pooled 

lymphocyte fraction isolated from peripheral blood expressed low levels of TREM-2 

mRNA and protein expression. 

 

Table 3.1: TREM-2 mRNA expression in multiple cell types. qRT-PCR analysis of TREM-2 

mRNA expression in various primary cells and cell lines. 150 nM cDNA was used for each cell 

line. mRNA values are expressed as comparative threshold (CT) values for TREM-2 and the 

control gene (GAPDH) (n = 3).  

Cell Type Average CT GAPDH Average CT TREM-2 

THP-1 16.28 19.97 

Primary monocytes 16.92 21.58 

PMA-THP-1 cells 18.68 16.08 

RAW 264.7 11.38 20.18 

HL60 14.42 ND 

N9 20.62 19.46 

Primary lymphocytes 19.90 32.45 

HUVEC 16.93 ND 

NCI-H292 13.85 31.84 

A549 13.82 ND 
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16-HBE 14.94 ND 

SAEC 13.50 20.97 

Caco-2 13.57 ND 

M202 12.64 ND 

SK-MEL28 13.46 ND 

MEL-501 14.58 ND 

A2058 14.34 ND 

UACC-1273 14.17 ND 

3T3-L1 14.54 30.82 

MRC-5 13.35 31.96 

ARPE-19 20.48 ND 

MIO-M1 14.78 ND 

SH-SY5Y 13.28 ND 
 

Cells: THP-1, human monocytic cell line; RAW264.7, murine macrophage cell line; PMA-THP-1, 

PMA differentiated THP-1 cells; HL60, human promyelocytic cell line; N9, murine microglial cell 

line; primary human lymphocytes and monocytes isolated from PBMCs; HUVECs, human 

umbilical vascular endothelial cells; NCI-H292 and 16HBE, human airway bronchial epithelial cell 

lines; A549, human airway type-II alveolar-like epithelial cell line; SAECs, human primary small 

airway epithelial cells; Caco-2, human epithelial colorectal adenocarcinoma cell line;SK-MEL28, 

UACC1273, M202, A2058 and MEL-501, human melanoma cell lines; 3T3-L1, murine fibroblast 

cell line; MRC-5, human fetal lung fibroblast cell line; ARPE19, human retinal epithelial cell line; 

MIO-M1, human Müller cell line; SH-SY5Y, human neuroblastoma cell line; ND, not detected. 
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Figure 3.8: TREM-2 protein expression across cell types. (A-D) TREM-2 protein expression 

was measured by western blot analysis. (A-C) PMA-differentiated THP-1 cells were used as a 

control for human TREM-2 protein expression represented by the dotted line (……). (D) Mouse 

TREM-2 protein expression. (E and F) Densitometry values of TREM-2 protein expression, 

expressed as fold change of the mean densitometry value relative to PMA-differentiated THP-1 

cells ± SEM. (E) Represents the band appearing at 28-30 kDa and (F) represents the band 
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appearing at ~32 kDa. 1° Monos, primary monocytes; 1° MDMs, primary monocyte-derived 

macrophages; PMA-THP-1, PMA-differentiated THP-1 cells; lymphs, lymphocytes (n = 3). 

 

Since TREM-2 expression has been observed in genitourinary epithelial cells, other 

epithelial cell types were also investigated for TREM-2 expression. Table 3.1 

suggests that the SAECs of the lung express high levels of TREM-2 mRNA (Table 

3.1). However, of the airway epithelial cell lines, only the pulmonary bronchial 

mucoepidermoid carcinoma cell line (NCI-H292) had detectable levels of TREM-2 

mRNA (Table 3.1). In contrast, at the protein level, only the human alveolar basal 

epithelial cell line (A549) seemed to express TREM-2 protein (Figure 3.8 C and F). 

In this cell line, TREM-2 protein was present at the predicted glycosylated form of 

TREM-2 (Table 3.1 and Figure 3.8C and F). However, due to the lack of availability 

of the SAECs, TREM-2 protein expression could not be studied in these cells.  

TREM-2 mRNA and protein expression were also analysed in a colon epithelial cell 

line (Caco-2), which showed no detectable levels of TREM-2 mRNA or protein 

(Figure 3.8B, E and F). This pilot study suggests that TREM-2 may be present in the 

glycosylated form in some subtypes of airway epithelial cells.  

None of the melanoma cell lines had detectable levels of TREM-2 mRNA. However, 

at the protein level, the A5028 and UACC-1273 cell lines seemed to express high 

levels of the predicted glycosylated form of TREM-2 (Figure 3.8B and E and F). 

Western blot analysis suggested that the M202, SK-Mel28 and Mel-501 melanoma 

cell lines expressed moderate to low levels of TREM-2 in both glycosylated and 

non-glycosylated forms (Figure 3.8B, E and F). Expression of TREM-2 in the 

melanoma cell lines were not expected as TREM-2 was not detected at the mRNA 

level.  

The human fibroblast cell line, MRC-5 seemed to express low levels of TREM-2 

mRNA (Table 3.1) and moderate levels of TREM-2 protein expression (Figure 3.8B, 

E and F) suggesting that TREM-2 is expressed in human fibroblasts. 

The Müller and retinal pigment epithelial cell lines of the eye (MIO-M1 and ARPE-19 

respectively) seemed to express low levels of TREM-2 in both glycosylated and 

non-glycosylated forms, despite being undetectable at the mRNA level (Table 3.1 

and Figure 3.8A, E and F). However, TREM-2 was not detected in the HORC tissue, 

suggesting that the low levels of TREM-2 predicted in the Müller and pigment 

epithelial cells of the eye maybe diluted by cells that do not express TREM-2. The 
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human neuroblastoma cell line SH-SY5Y had no detectable TREM-2 mRNA or 

protein expression suggesting that TREM-2 is not expressed in these cells.  

TREM-2 expression has been previously observed in mouse liver endothelial cells 

(241). Figure 3.8E and F suggest that low levels of both glycosylated and non-

glycosylated forms of TREM-2 are expressed in HUVECs. However, no TREM-2 

mRNA expression was detected by RT-PCR further suggesting that TREM-2 mRNA 

and protein expression do not always correlate. 

Of the few mouse cell lines tested, the N9 microglial and RGC-5 cell lines seemed 

to express high levels of TREM-2 protein but the 3T3-L1 mouse fibroblast cell line 

had almost undetectable TREM-2 protein expression (Figure 3.8D-F).  The high 

TREM-2 expression in the murine neuronal precursor cell line, RGC-5 suggests that 

TREM-2 may be expressed in mouse neuronal precursor cells which contradicts the 

observations from the SH-SY5Y human neural precursor cell line. In combination 

with the fact that the mouse fibroblast cell line (3T3-L1) had almost undetectable 

TREM-2 expression, this suggests that these cell lines are from different origins or 

that there is a difference in TREM-2 expression in human and mouse neural 

precursor and fibroblast cells. 

Together, this pilot study has shown that non-myeloid cells including melanoma 

cells, non-myeloid cells of the eye and epithelial cells of the lung may express 

TREM-2. However, future studies are required to confirm the presence of the 

glycosylated form of TREM-2 in these cells. 

 

3.3.3. TREM-2 Expression in Human Organotypic Retinal Cultures 

Microglia are the main source of TREM-2 expression in the brain. However, 

microglia are also located in the eye, suggesting that TREM-2 may also function 

here. There is little evidence regarding TREM-2 expression in the eye. Sun and 

colleagues demonstrated that TREM-2 is important in corneal inflammation, with 

increased inflammation and reduced resistance to infection in the absence of 

TREM-2, but this study did not detail the cell types that express TREM-2 in the eye 

(368). Low TREM-2 expression was observed in MIO-M1 and ARPE-19 cell lines by 

western blot analysis, therefore immunofluorescence was used to analyse TREM-2 

expression in primary retinal cultures. In addition, since TREM-2 is increased in 

cerebral ischaemia, and ischaemia in the eye contributes to the pathogenesis of 
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ocular conditions including diabetic retinopathy and age-related macular 

degeneration, the effect of ischaemia on TREM-2 expression in the eye was also 

studied.  

TREM-2 is known to be expressed in microglia and therefore the abundance of 

microglia in the retina was investigated using the microglial cell marker IBA-1. 

Figure 3.9 shows the different cell layers of the retina with the nucleus stained blue 

with DAPI and microglia in green. Microglia are dispersed in the ganglion and 

Muller/bipolar/horizontal/amacrine cell layers. 

 

 

Figure 3.9: Cell types in the HORCs. Immunofluorescence showing the different cell layers of 

the HORCs. Microglia are highlighted in bright green (IBA-1). DAPI (BLUE) is used to stain the 

nucleus. 

 

Low TREM-2 mRNA expression (CT value 28.50) was detected in the HORC 

tissues using qRT-PCR. In addition, 30 min OGD had no significant effect on 

TREM-2 mRNA expression in this tissue suggesting that TREM-2 is not induced by 

ischaemia at these time points (Figure 3.10). 

Photoreceptors

Ganglion
cell layer

Axons of bipolar and amacrine cells
and dendrites of ganglion cells Rod and cone axons, horizontal cell

dendrites, bipolar dendrites

Nuclei horizontal, bipolar, amacrine cells and muller cells
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Figure 3.10: TREM-2 expression in HORCs during normal or OGD conditions. HORCs were 

subjected to OGD or control conditions for 30 min and TREM-2 mRNA expression measured by 

qRT-PCR. mRNA values are expressed as fold change (relative to the control) normalised to 

GAPDH (n = 2). 

 

To confirm this effect at the protein level, TREM-2 protein expression was measured 

in the HORCs using immunofluorescence. TREM-2 expression was low in these 

tissues and seemed to be expressed in only a few cells (white arrow, Figure 3.11), 

which are likely to be microglial cells due to the low number present in the tissue. 

Figure 3.11 also assessed the effect of 3 h ischemia on TREM-2 expression in 

these samples. Similarly to the mRNA results, ischemia had little to no effect of 

TREM-2 expression in the HORCs, suggesting that ischemia has no effect on 

TREM-2 is expression in the eye. 
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Figure 3.11: TREM-2 expression in the human retina. HORCs subjected to control or OGD 

conditions for 3 h. TREM-2 expression (GREEN) was analysed by immunofluorescence, DAPI 

was used to stain the nucleus (BLUE) (n = 3). 

 

3.3.4. TREM-2 Expression in Human Lung Tissue 

In addition to the cell lines of the eye, Table 3.1 and Figure 3.8 demonstrate that 

TREM-2 is expressed in airway epithelium, therefore expression of TREM-2 in 

human lung tissue was investigated. Paraffin-embedded human lung tissue sections 

from COPD and asthma patients and healthy controls were assessed for TREM-2 

protein expression. The paraffin-embedded post-mortem lung tissue was obtained 

from Norfolk and Norwich Hospital Pathology Centre. Ethical approval was obtained 

from the University of East Anglia’s Faculty of Health Research Ethics Committee. 

Of the 14 lungs tested, six were healthy, four were asthmatic, three were COPD and 

one was both asthmatic and COPD. Table 3.2 shows specific patient details for the 

2° Antibody
Control:
OGD

2° Antibody
Control:
Control

TREM-2:
Control

TREM-2:
OGD

TREM-2 DAPI TREM-2/DAPI



111 
 

lungs used in this study. Due to the limited availability of lung tissue, there were a 

variety of causes of death, in particular five of the 14 patients also had pneumonia, 

which may complicate the results observed in this pilot study (Table 3.2).   

 

Table 3.2: Lung tissue patient information 

Patient 

number 

Condition Cause of death Age at 

death 

Gender Other known 

conditions/factors 

1 Healthy Aspiration of gastric 

contents 

22 Female - 

2 Healthy Aspiration of gastric 

contents 

35 Female Non-smoker 

3 Healthy Drug overdose 35 Female - 

4 Healthy Pneumonia 83 Female - 

5 Healthy Left ventricular 

hypertrophy 

62 Male - 

6 Healthy Drug overdose 42 Female - 

7 COPD Collapsed lung 79 Male Smoker, 

bronchopneumonia, 

malignant 

mesothelioma. 

8 COPD Drug overdose 52 Male - 

9 COPD Bronchopneumonia 72 Male  

10 Asthma and 

COPD 

Respiratory failure 

Bronchopneumonia 

74 Male - 

11 Asthma Meningitis 42 Male Broncho pneumonia 

12 Asthma Drug overdose 31 Male - 

13 Asthma Churg-Strauss 

syndrome 

79 Female - 

14 Asthma Cardiac arrhythmia  

Myotonic dystrophy 

65 Male - 
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Figure 3.12 shows immunohistochemical staining of TREM-2 in healthy tissue. 

Tissue positively stained for TREM-2 is orange/brown. To control for non-specific 

binding of the primary or secondary antibodies to the tissue, an IgG antibody control 

was included. The IgG control showed little background staining, whereas 

incubation with the TREM-2 antibody showed that one out of six of the healthy lungs 

expressed TREM-2 in what was thought to be the ciliated bronchial epithelium 

(Patient 5 in Figure 3.12). TREM-2 expression could be found throughout the cell, 

but seemed to be particularly highly expressed in the cilia. Some ciliated bronchial 

epithelium expressed TREM-2 along the length of the bronchial lumen (Figure 

3.12B), whereas others seemed to express TREM-2 on selected ciliated epithelium 

and not others (Figure 3.12A). In addition, there were areas that resembled ciliated 

bronchial epithelium that had no TREM-2 expression, suggesting that TREM-2 is 

selectively expressed in the ciliated bronchial epithelium of healthy lungs. 

Unfortunately, the lung sections from four out of six of the healthy patients had no 

visible ciliated bronchial epithelium and therefore the expression of TREM-2 in 

ciliated epithelium in these patients could not be studied. 
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Figure 3.12: TREM-2 is expressed on ciliated bronchial epithelial cells in the healthy 

human lung. Ciliated epithelium in healthy lung tissue was examined by immunohistochemistry 

using TREM-2 or IgG control antibodies. Orange/brown staining indicates TREM-2 expression. 

Healthy lungs from six patients were analysed, ciliated epithelium could only be detected in two 

out of the six patients. Arrows highlight ciliated epithelium. Scale bar: 30 µm. 

 

Analysis of TREM-2 expression in the lungs of asthmatic patients also suggested 

that TREM-2 was expressed on ciliated bronchial epithelium in four out of five 

patients (Figure 3.13). As seen in healthy patients, TREM-2 looked to be expressed 

most highly on the cilia of these cells (Figure 3.13A). In lungs where ciliated 

bronchial epithelium could be identified, TREM-2 expression was present (Figure 

3.13). However, similarly to the healthy patients, there were some ciliated bronchial 

epithelial cells that expressed high levels of TREM-2 and others that expressed low 

Patient 5

IgG TREM-2

Patient 5

Patient 1

A

B

C
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or no TREM-2 suggesting that TREM-2 expression varies depending on the state of 

the cell. 

 

 

Figure 3.13: TREM-2 is expressed on ciliated bronchial epithelial cells in the asthmatic 

human lung. Ciliated epithelium in asthmatic lung tissue was examined by 

immunohistochemistry using TREM-2 or IgG control antibodies. Orange/brown staining indicates 

TREM-2 expression. Asthmatic lungs from five patients were analysed, ciliated epithelium could 

be detected in four out of the five patients. Arrows highlight ciliated epithelium. Scale bar: 30 µm. 

 

Koth and colleagues have previously reported increased TREM-2 expression on 

alveolar macrophages from COPD patients. However, all of the COPD patient 

samples had denuded epithelium, as shown by Haematoxylin and Eosin staining in 

Figure 3.14 and therefore TREM-2 expression could not be examined on epithelium 

of the COPD lungs. COPD patients had many macrophages in the tissue (arrows) 

that appeared brown due to the high iron content in these cells (415). Macrophages 

stained for both the IgG control and TREM-2 antibody (arrows), suggesting that this 

binding to macrophages was non-specific and therefore TREM-2 expression could 

not be measured in these cells either (data not shown). 

Patient 12

IgG TREM-2

Patient 14

A

B



115 
 

 

Figure 3.14: Stripped bronchial epithelium in the lung of COPD patients. Haematoxylin and 

Eosin staining shows a bronchiole where the epithelium has been stripped off. In all three of the 

COPD cases, no epithelium was identified. Scale bar: 30 µm. 

 

Due to the presence TREM-2 in small airway epithelial cells, TREM-2 expression 

was also studied in alveolar epithelium. Alveoli were difficult to identify in COPD 

patients due to denuded epithelium and emphysema-like tissue breakdown and 

therefore TREM-2 expression could not be assessed in these patients. TREM-2 was 

not detected on the alveolar epithelium in either asthmatic tissue or normal healthy 

lung tissue, suggesting that TREM-2 is limited to the ciliated bronchial epithelial 

cells of the small airways in these patients (Figure 3.15).  

Patient 8
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Figure 3.15: TREM-2 is not expressed in alveolar epithelial cells. TREM-2 expression in 

alveolar epithelium of healthy or asthmatic lung tissue was examined by immunohistochemistry 

using TREM-2 or IgG control antibodies. Represents five asthmatic lungs and 6 healthy lungs. 

Scale bar: 30 µm. 

 

In addition to the epithelium, the lung tissue was also analysed for TREM-2 

expression in other cells including fibroblasts, smooth muscle cells and endothelial 

cells. However, TREM-2 was not detected in any lung tissue where the vascular 

endothelium could be clearly identified (Figure 3.16). In addition, aside from the 

non-specific staining in the macrophages, TREM-2 expression was not identified in 

any other areas of the lung. This suggests that TREM-2 expression is not found in 

smooth muscle cells, endothelial cells or fibroblasts in the human lung.  

Patient 12

IgG TREM-2

Patient 1
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Figure 3.16: TREM-2 is not expressed on lung endothelial cells. TREM-2 expression was 

measured in the vascular endothelium in asthmatic lung tissue by immunohistochemistry using 

TREM-2 or IgG control antibodies. Scale bar: 30 µm. 

 

The table below summarises the findings from this study detailing bronchial 

epithelial denudation and TREM-2 expression from the tissues of each patient 

(Table 3.3). This study shows that of the two healthy lungs where ciliated epithelium 

could be identified, TREM-2 expression was identified in one. In asthmatic patients, 

4 out of 5 lungs had ciliated bronchial epithelium and all of those expressed TREM-

2. Finally, the bronchial epithelium of COPD patients could not be identified due to 

denudation and therefore TREM-2 expression could not be studied in these 

patients. Together, these results indicate that TREM-2 is expressed on the cilia of 

bronchial epithelial cells in healthy and asthmatic lungs.  

 

 

 

 

 

 

 

IgG TREM-2

Patient 13
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Table 3.3: TREM-2 expression in healthy, asthma and COPD lung tissue. Overview of 

TREM-2 expression and presence or absence of bronchial epithelium in the lung tissue samples 

from each patient. 

 

 

 

 

 

 

 

 

 

 

 

Patient 

Number 

Disease Bronchial ciliated 

epithelium 

present? 

TREM-2 

expression 

1 Healthy Yes No 

2 Healthy None No 

3 Healthy None No 

4 Healthy None No 

5 Healthy Yes Yes 

6 Healthy None No 

7 COPD None No 

8 COPD None No 

9 COPD None No 

10 Asthma Yes Yes 

11 Asthma and 

COPD 

Yes Yes 

12 Asthma Yes Yes 

13 Asthma None NA 

14 Asthma Yes Yes 
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3.4. Discussion 

TREM-2 expression is mostly reported in myeloid cells, but has also been identified 

in non-myeloid cells including some epithelial cell types (81, 240, 241, 257). This study 

found that TREM-2 was located in the Golgi apparatus in microglia with similar 

staining observed in the macrophages. As expected, TREM-2 mRNA and protein 

expression were high in the myeloid cell lines. However, the pilot study suggested 

that TREM-2 may also be expressed in non-myeloid cells, including cell lines and 

primary epithelial cells of the lower respiratory tract and for the first time on cilia of 

bronchial epithelial cells in healthy and asthmatic lung tissue. The melanoma cell 

lines also seemed to express TREM-2, suggesting that TREM-2 may function in 

melanoma. TREM-2 expression in the retina was low apart from a few positive cells 

in the primary retinal cultures (HORCs) which are predicted to be microglia. 

Altogether, this study shows that TREM-2 expression is not restricted to myeloid 

cells and that it may be expressed in melanoma and airway epithelial cells.  

This study confirmed TREM-2 expression in microglia and macrophage cell lines by 

immunofluorescence before studying the localisation of TREM-2 expression. Most 

studies to date have focused on the expression of TREM-2 on the cell surface. 

However, this study and others have shown that TREM-2 is also expressed 

intracellularly (259, 264). Immunofluorescence showed TREM-2 expression in PMA-

differentiated THP-1 cells (model of macrophages) and murine N9 microglial cells, 

showing a high expression of TREM-2 intracellularly around/over the nucleus. Since 

TREM-2 can also act as a soluble receptor, this study used fractionation and 

confirmed that TREM-2 was not in the nucleus but showed some co-localisation 

with the Golgi marker β-COP in the microglial cell line, suggesting that TREM-2 is 

expressed in the Golgi apparatus. Confocal microscopy of TREM-2 expression in 

the macrophage cell line also suggests that TREM-2 is expressed in the Golgi 

apparatus, as the localisation is similar to that in N9 cells. In addition, there was also 

expression of TREM-2 in other locations around the nucleus other than the Golgi 

apparatus in the microglial cell line, suggesting that TREM-2 is also expressed in 

other organelles around the nucleus including the ER and centrosome. This 

centrosomal-looking staining was most apparent in the PMA differentiated THP-1 

cell line. This is particularly interesting since TREM-2 has been shown to alter cell 

shape and morphology through actin dynamics and therefore may also play a role in 

microtubule dynamics. To test this theory, future studies will use centrosome 

markers such as ninein and use confocal microscopy to investigate the expression 
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of TREM-2 in the centrosome in PMA-differentiated THP-1 cells and primary 

macrophages. Whether TREM-2 plays a role in the Golgi apparatus or is merely 

stored there is not yet known. However, the Golgi apparatus is important in 

phagocytosis, a process where TREM-2 plays an important role (81, 416). The Golgi 

apparatus is required for the trafficking of proteins required for efficient phagocytosis 

from the ER and Golgi apparatus via endosomes and lysosomes to the phagosome 

(416-418). The expression of TREM-2 in the Golgi apparatus may be, in part, how the 

Golgi apparatus regulates phagocytosis, by regulating phagocytic proteins such as 

TREM-2 at the phagocytic cup. TREM-2 may also regulate the other proteins in the 

phagocytic cup through its location in the Golgi apparatus. Future work aims to 

investigate the role of TREM-2 and the Golgi apparatus in the formation and 

composition of the phagocytic cup and how this effects phagocytosis.  

This study also showed high levels of TREM-2 expression in the macrophage and 

microglia cell lines by western blot analysis and qRT-PCR, which supports the 

immunofluorescence data and the observations in the literature (240, 243). However, 

not all myeloid cells have been shown to express TREM-2. Turnbull and colleagues 

reported that peripheral blood monocytes do not express TREM-2 (240). In contrast, 

this study showed that primary monocytes and the monocyte THP-1 cell line 

expressed TREM-2 protein and contained comparable TREM-2 mRNA expression 

to microglia and macrophages. The differences observed in this study compared to 

Turnbull and colleagues are likely to be due to the different methods of protein 

detection, as Turnbull and colleagues analysed cell surface TREM-2expression, 

whereas this study analysed total TREM-2 protein in the cell and since TREM-2 

expression is high in the Golgi apparatus of myeloid cells, this may be the main 

source of TREM-2 in monocytes. Interestingly, the pre-myelocytic HL60 cell line 

contained no detectable TREM-2 mRNA expression and low protein expression, 

suggesting that TREM-2 expression increases with differentiation and that there 

may be a mechanism in monocytes that prevents TREM-2 mRNA translation that 

can be switched off with differentiation. In agreement with our results, other groups 

have observed increased TREM-2 protein expression after differentiation of 

peripheral monocytes into osteoclasts, dendritic cells and macrophages (299, 309). This 

increase in TREM-2 expression is thought to be important for differentiation into 

macrophages and dendritic cells, suggesting that TREM-2 plays an important role in 

differentiation (281). The lymphocyte fraction of PBMCs was also assessed for 

TREM-2 expression, which was only just detectable at both the protein and mRNA 

level. Piccio and colleagues showed no TREM-2 expression in CD14 negative cells 
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(predominantly lymphocytes), suggesting that the low TREM-2 expression may be 

due to low level contamination with myeloid cells (278).  

Fibroblasts are another key cell type important for the regulation of tissue 

homeostasis and the regulation of inflammation (419-421). MRC-5 cells seemed to 

express moderate levels of both the glycosylated and non-glycosylated forms of 

TREM-2 protein. TREM-2 expression has also been observed in fibroblasts from 

rheumatoid arthritis joints and at the mRNA level in the 3T3-L1 cell line, further 

suggesting that TREM-2 is expressed in some fibroblast cell types (244, 374). To 

understand this further, future studies will analyse TREM-2 expression in primary 

fibroblasts in cell culture or in human or mouse tissue identifying the fibroblasts 

using a cell marker for example fibroblast-specific protein 1 (422). 

TREM-2 expression was also investigated in melanoma cell lines, including UACC-

1273, SK-Mel-28, Mel-501, M202 and A2058. Although TREM-2 mRNA was not 

detected in any of the melanoma cell lines tested, the protein data suggested that 

the predicted glycosylated form of TREM-2 was highly expressed in the UACC-1273 

and A5028 cell lines and moderately expressed in M202, A2058, SK-Mel-28 and 

Mel-501 cell lines. In addition, the non-glycosylated form of TREM-2 was also 

expressed in these cells but at lower levels. This mismatch between TREM-2 

protein and mRNA expression could be for four reasons: (i) low TREM-2 turnover 

(423), (ii)  mutations in the TREM-2 gene in these cell lines preventing primer binding, 

(iii) TREM-2 primers bind only transcripts 1 and 1x and not transcript 2 and 

therefore the cells that express TREM-2 protein but not mRNA may only express 

TREM-2 mRNA transcript 2, (iv) non-specific binding of the TREM-2 antibody at the 

predicted glycosylated weight. Future work will use TREM-2 siRNA to confirm that 

the band at the higher weight is in fact TREM-2. Following this, these cells could be 

sequenced for mutations in the TREM-2 gene. Despite these limitations, the protein 

data from this study suggests that melanoma cells may express high levels of 

TREM-2 suggesting that TREM-2 may play be important in melanoma. Since 

TREM-2 has not been previously studied in cancer, this research suggests that this 

may be an interesting area to pursue in the future. 

TREM-2 has also been identified in endothelial cells of the liver and in the 

microvasculature around arthritic joints (241, 244).  However, this study found no 

detectable TREM-2 mRNA in HUVECs and only low levels of protein. In addition, 

TREM-2 was not expressed on endothelial cells of the vasculature in the lung as 
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identified by immunohistochemistry suggesting that TREM-2 is only expressed on 

specific types of endothelial cells. 

TREM-2 expression has been previously identified in genitourinary epithelial cells, 

which led us to investigate TREM-2 expression in other epithelial cell types (257).  

TREM-2 expression has been identified in the gastrointestinal tract (GIT), but its 

expression in epithelium has not been measured (337). TREM-2 mRNA was not 

detectable in the colon epithelial cell line, Caco2. This was also the case at the 

protein level, suggesting that TREM-2 is not expressed in colon epithelium. 

However, future work is required to confirm this finding in human or mouse primary 

cells, as this cell line may not be a true representative of the colon epithelium. It 

would also be interesting to measure TREM-2 expression in other parts of the GIT 

epithelium as well as in different cell types including paneth cells, goblet cells and 

entero-endocrine cells, as these carry out very different functions and therefore may 

vary in TREM-2 expression.  

The lung epithelium is becoming increasingly recognised for its similarities to the 

GIT epithelium (424). However, despite the role of these cell barriers in immune 

functions, very few studies have investigated TREM-2 expression in these cell 

types.  Rigo and colleagues reported TREM-2 expression in normal bronchial 

epithelial (NBE) cells in in vitro culture (425). A similar finding was also observed by 

Sun and colleagues at the mRNA level in a human bronchial epithelial cell line 

(HBEC), but aside from this, there is very little information regarding cellular 

expression of TREM-2 in the lung (374). This study showed that human SAECs 

express TREM-2 mRNA. The A549 type II alveolar-like epithelial cell line had no 

detectable TREM-2 mRNA but Western blot analysis suggested that the predicted 

glycosylated form TREM-2 was highly expressed in this cell line but the NCI-H292 

mucoepidermoid carcinoma and 16-HBE bronchial epithelial cells lines had no 

TREM-2 protein expression. This varied expression of TREM-2 in these cells 

suggests that either TREM-2 expression is altered in lung cancer or that TREM-2 

expression varies throughout the lung and therefore varies between types of 

epithelial cells. It is unusual to see that the A549 cells have no detectable TREM-2 

mRNA but such high expression of TREM-2 protein. However, Sun and colleagues 

showed that the A549 cell line has low levels of TREM-2 mRNA and therefore it 

may be that these levels are below the detection limit of this system but are 

adequate for TREM-2 protein expression (374). No detectable mRNA but moderate 

protein expression was also observed in the melanoma cell lines and therefore this 

may also be due to a number of other reasons discussed above. Again, similarly to 
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the melanoma cell lines, future work on this study will use TREM-2 KD to confirm 

TREM-2 protein expression and gene sequencing will be performed to identify any 

mutations.  

TREM-2 is increased in the lung of COPD patients and in the house dust mite 

model of allergy, but has only been measured in macrophages (242, 367). To further 

validate TREM-2 protein expression in the human lung, TREM-2 expression was 

measured using immunohistochemistry staining of human lung tissue from healthy, 

COPD and asthmatic patients. This study suggests that TREM-2 expression was 

located on the bronchial epithelium of the small airways, which supports the mRNA 

data showing that the SAECs express TREM-2, and published data showing that 

TREM-2 is expressed in the HBEC and NBE cells (374, 425). In all cases, TREM-2 

expression seemed to be particularly high on structures resembling the cilia of 

bronchial epithelial cells. A similar observation was observed on genitourinary 

epithelial cells by Quan and colleagues, suggesting that TREM-2 may have a role in 

ciliary functions (257). Cilia are hair-like projections on the luminal surface of bronchial 

epithelial cells. These structures increase the surface area for gas exchange in the 

lung, and clear mucus, unwanted debris and pathogens from the lung (426). Cilia beat 

frequency can be enhanced by TLR ligands: LPS, CpG, flagellin and Pam3CSK4, to 

mediate pathogen removal from the lungs (426). TREM-2 is also important for 

pathogen clearance by binding to PAMPs on the surface of bacteria and increasing 

NO production, two mediators that enhance cilia beat frequency (261, 288, 426). In 

addition, cilia beating is regulated by intracellular calcium oscillations and since 

TREM-2 activation increases intracellular calcium, this may be another reason for 

the location of TREM-2 in the cilia (259, 427). 

Despite the high TREM-2 expression in the A549 alveolar cell line, TREM-2 

expression was not found on the alveolar epithelium of primary human lung tissue in 

any of the patients tested. This suggests that TREM-2 expression in the A549 

adenocarcinomic cell line is due to the cancerous nature of the cells. This also 

suggests that TREM-2 may be increased in lung cancers, which is an area that has 

not been previously studied and therefore would be an area of interest. 

Unfortunately, epithelium could not be detected in any of the three COPD patient 

lungs and therefore TREM-2 expression in the epithelium of COPD patients could 

not be assessed. Denudation of the airway epithelium is a common occurrence in 

both asthma and COPD and therefore the absence of epithelium could have been 

predicted (428). In addition, emphysema, a common pathology of COPD, causes 

alveolar destruction making it very difficult to identify any alveoli in these patients. It 
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is also likely that the tissue processing also caused epithelial denudation, since the 

healthy controls also had denuded epithelium, therefore, future studies will optimise 

the protocol to reduce epithelial shedding during the procedure. In addition, TREM-2 

expression was not found in any other location in the lung suggesting that neither 

smooth muscle cells, fibroblasts nor endothelium express TREM-2 in the lung. 

Several studies have reported TREM-2 expression in the brain (259, 274, 429). However, 

the expression of TREM-2 in the brain is high in microglial cells although low 

expression has been observed in hippocampal neurons (81, 149, 258, 259). In agreement 

with this, this study found that TREM-2 was not expressed in the human SH-SY5Y 

neuroblastoma cell line. The eye is heavily innervated by the CNS and contains 

unique cells similar to those found in the brain including photoreceptors, ganglion 

cells and Müller cells (430). TREM-2 has been previously been shown to be increased 

in the eye after infection (368). However, very little is known about cell types in the 

eye that express TREM-2. This study found that there was no detectable TREM-2 

mRNA in the MIO-M1 and ARPE-19 cells, and TREM-2 mRNA expression in the 

HORCs was low but detectable. MIO-M1 and ARPE-19 cells seemed to express low 

levels of TREM-2 protein comparable to that of HL60 and THP-1 cells. Observing 

TREM-2 protein expression by immunofluorescence, the HORCs contained little 

TREM-2 expression matching the western blot data. However, there were some 

TREM-2 expressing cells present in the HORC tissue which are likely to be 

microglia. There are many eye diseases associated with dysfunction of the retina, 

many of which are caused by or lead to ischaemia e.g. age-related macular 

degeneration (431). Ischaemia had no effect on TREM-2 expression at the time points 

observed. However, TREM-2 expression may be increased over longer time points, 

over which fresh HORC tissue is difficult to maintain. In addition, it may be that in 

vivo, TREM-2 is increased during ischaemia due to an influx of cells including 

microglia or macrophages which cannot be seen in this model.  

Of the mouse cell lines tested, this study suggested that TREM-2 was highly 

expressed in the N9 microglial and RGC-5 neural precursor cell lines, and almost 

undetectable in the 3T3-L1 fibroblast cell line. This low expression in the fibroblast 

cell line may be in part due to the high expression of TREM-2 in the other cell lines, 

reducing the ability to detect the 3T3-L1 band using the G:BOX Imager and 

therefore it is difficult to directly compare the 3T3-L1 cell line to the human fibroblast 

cell line. The high expression of TREM-2 in the RGC-5 cell line was unexpected, 

since the human neuroblastoma cell line expressed no TREM-2. However, the 

RGC-5 cells were originally thought to be rat retinal ganglion cells, but Van Bergen 
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and colleagues later identified them as mouse neuronal precursor cells, therefore 

since this has not been tested in this lab, the exact origin of these cells cannot be 

confirmed and therefore must be treated with caution and may be the reason for the 

species differences observed here (393).  

This study has shown TREM-2 expression in both glycosylated and non-

glycosylated forms. Chapter 5 shows that the non-glycosylated form can be 

knocked out with TREM-2 siRNA in THP-1 cells. However, THP-1 cells do not 

express the 32 kDa form and therefore this form has not been knocked down. 

Despite the evidence in the literature for glycosylated and non-glycosylated forms of 

TREM-2 (278, 298, 359) and TREM-2 validation around this weight (432), the expression of 

TREM-2 at 32 kDa should be validated in future studies using siRNA KD to confirm 

this band as TREM-2. In addition, mouse TREM-2 was identified at the higher 

molecular weight of ~34 kDa, this weight is supported by previous studies who have 

identified mouse TREM-2 around this weight (259). 

 

3.5. Summary 

In summary, this study has shown that TREM-2 expression is not limited to myeloid 

cells. TREM-2 expression was found in a number of cell types but, of particular 

interest, in melanoma and lung cells. TREM-2 in the lung was found in ciliated 

bronchial epithelial cells with high levels located on the cilia, suggesting that TREM-

2 may be required for cilia function in the lung. In microglial and macrophage cell 

lines, TREM-2 expression was localised to the Golgi apparatus, which has an 

important role in phagocytosis. In addition, the identification of TREM-2 in non-

myeloid cell types including melanoma and lung cells reveals the potential to 

discover more functions of TREM-2 in these cell types in health and disease. 
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4. Regulation of TREM-2 Expression by 

Inflammatory Mediators in Myeloid Cells 
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4.1. Introduction  

Monocytes circulate in the blood stream until a chemokine gradient attracts them to 

a site of injury or inflammation (23). In response to pro-inflammatory stimuli, 

monocytes become activated and release numerous pro-inflammatory mediators 

that contribute to the response to infection or to the disease process (433). They also 

migrate into inflamed tissues and differentiate into macrophages and dendritic cells, 

depending on the surrounding environment. However, monocytes can also function 

in tissues in their undifferentiated forms e.g. in animal models of obesity and 

atherosclerosis (434, 435) and in the lung (436) and therefore contribute to inflammation 

in tissues as well as in the blood.  

Some of the most potent activators of monocytes are TLR ligands (28). These include 

LPS, peptidoglycan and Pam3Cys, which activate TLR receptors and the NFκB 

pathway, resulting in the secretion of a multitude of inflammatory mediators 

including TNF-α, IL-1β, IL-6, IL-8 and anti-inflammatory mediators such as IL-10 (28, 

437-439). These inflammatory mediators are also present during inflammation in 

disease and following injury (440-442). These pro-inflammatory mediators cause influx 

of many other cell types to the site of injury including T-cells and neutrophils, 

increasing inflammation and tissue damage (228).  

Immune cells also secrete anti-inflammatory cytokines including IL-10, IL-4 and IL-

13. These cytokines can reduce the secretion of pro-inflammatory mediators 

including IL-1β and TNF-α, and drive macrophages into a more anti-inflammatory 

M2-type phenotype, promoting the resolution of inflammation (443, 444). The process of 

resolution of inflammation is very important to prevent chronic inflammation, which 

is a major cause and consequence of many inflammatory diseases. 

TREM-2 expression is increased in many inflammatory conditions, including COPD, 

MS and pathogen infections (242, 243, 366). As shown in Chapter 3 Section 3.3.2, basal 

TREM-2 protein expression in monocytes is low and is increased upon 

differentiation into macrophages (240, 281, 302). However, monocytes expressing high 

levels of TREM-2 have been identified in the CSF of MS patients, demonstrating 

that TREM-2 is increased on monocytes in inflammatory conditions (278). Despite this 

increase in TREM-2 expression in inflammatory conditions, pro-inflammatory 

mediators including LPS and IL-1β have been shown reduce TREM-2 expression in 

macrophages (240, 241), while mediators responsible for increasing TREM-2 

expression are currently unclear. The potential role of TREM-2 in the resolution of 

inflammation and the reduction in TREM-2 expression by pro-inflammatory 
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mediators suggest that anti-inflammatory mediators may cause the increase in 

TREM-2 expression observed in disease. 

 

4.2. Aims 

The aims of this study were to: 

 Analyse the effect of various pro- and anti-inflammatory mediators on 

TREM-2 expression in primary human monocytes and monocytic and 

macrophage cell lines 

 Investigate the signalling pathways required for TREM-2 regulation in these 

cells. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



129 
 

4.3. Results 

4.3.1. TREM-2 Regulation by TNF-α and TLR ligands  

To understand the regulation of TREM-2 expression in inflammatory conditions, the 

effect of various pro-inflammatory mediators on TREM-2 expression in RAW 264.7 

murine macrophages and THP-1 monocytes were studied. RAW 264.7 

macrophages are a well-characterised model of murine blood monocyte-derived 

macrophages and THP-1 cells have previously been characterised in our laboratory 

as a good model of LPS and TNF-α signalling pathways in monocytes (445, 446).  

Figure 4.1 demonstrates that LPS downregulates TREM-2 mRNA expression in 

RAW 264.7 murine macrophages (p ≤ 0.05), demonstrating the ability of this pro-

inflammatory mediator to reduce TREM-2 expression in macrophages. 

 

 

Figure 4.1: LPS reduces TREM-2 mRNA expression in RAW 264.7 macrophages. RAW 

264.7 murine macrophages were incubated with 10 μg/mL LPS (TLR4) for 4-48 h. TREM-2 

mRNA was measured by qRT-PCR. mRNA values are expressed as fold change (relative to the 

control) normalised to GAPDH ± SEM (n = 3). *p ≤ 0.05 (one-way ANOVA with post hoc 

Dunnett’s test).  

 

In THP-1 monocytes, LPS significantly increased TREM-2 mRNA expression after 8 

h of stimulation (p ≤ 0.05) but significantly reduced TREM-2 expression (p ≤ 0.05) 

after 24 h (Figure 4.2A). The TLR2 agonists Pam3Cys and peptidoglycan regulated 

TREM-2 mRNA expression with similar kinetics, showing an increase at 8-16 h and 

a reduction at 24 h (Figure 4.2C and D). TREM-2 mRNA expression was 
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moderately reduced at 4 h, to varying degrees between TLR agonists (Figure 4.2). 

TNF-α treatment resulted in a non-significant reduction in TREM-2 expression by 4 

h (p = 0.077), similar to the TLR agonists (Figure 4.2B). However, in contrast, the 

reduction remained for at least 24 h following TNF stimulation.  These results 

support the current evidence showing that pro-inflammatory mediators reduce 

TREM-2 mRNA expression. 

 

Figure 4.2: Regulation of TREM-2 mRNA expression by TNF-α and TLR agonists in THP-1 

monocytes. THP-1 cells were incubated with (A) 10 μg/mL LPS (TLR4), (B) 10 ng/mL TNF-α, 

(C) 100 ng/mL Pam3Cys (TLR2), or (D) 10 μg/mL PGN (TLR2) for 4-24 h. TREM-2 mRNA 

expression was measured by qRT-PCR. mRNA values are expressed as fold change (relative to 

the control) normalised to GAPDH, mean ± SEM (n = 3), *p ≤ 0.05 (one-way ANOVA with post 

hoc Dunnett’s test).  
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4.3.2. TREM-2 Regulation by the Anti-inflammatory Mediators IL-4 and IL-13 

IL-4 and IL-13 are increased in various inflammatory conditions, including MS, RA 

and COPD and can dampen down the inflammatory response in conditions, 

including pathogen infection and RA (447-451). Since TREM-2 is also increased in 

these inflammatory conditions (242-244), this study investigated IL-4 and IL-13 for their 

ability to increase TREM-2 mRNA and protein expression in THP-1 monocytes. 

THP-1 cells were incubated for up to 24 h with 10 ng/mL IL-4  and TREM-2 mRNA 

expression measured by qRT-PCR. IL-4 increased TREM-2 mRNA expression in 

THP-1 monocytes between 4 and 24 h which was significant at 8 h (p ≤ 0.05) 

(Figure 4.3A). Despite utilising the same receptor, IL-13 did not show a significant 

increase in TREM-2 mRNA expression, although there was a trend towards a small 

increase (Figure 4.3B). 

 

 

Figure 4.3: Regulation of TREM-2 expression by IL-4 and IL-13. THP-1 cells were incubated 

with (A) 10 ng/mL IL-4 or (B) 10 ng/mL IL-13 for 4-24 h. TREM-2 mRNA was measured by qRT-

PCR. mRNA values are expressed as fold change relative to the control, normalised to GAPDH ± 

SEM (n = 3), *p ≤ 0.05 (one-way ANOVA with post hoc Dunnett’s test). 
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change (Figure 4.4B). IL-4 also increased TREM-2 protein expression in primary 

human monocytes derived from peripheral blood, confirming the ability of IL-4 to 

induce TREM-2 expression in this cell type (Figure 4.4C).  

 

 

Figure 4.4: IL-4 increases TREM-2 protein expression in THP-1 cells. (A) THP-1 cells, (B) 

serum starved THP-1 cells or (C) primary monocytes isolated from peripheral blood were 

incubated with 10 ng/mL IL-4 for 4-24 h. TREM-2 protein expression was analysed by western 

blot analysis. β-actin was used as a loading control (n = 3).  

 

In addition to its anti-inflammatory actions, IL-4 plays a role in differentiation of 

monocytes into other myeloid cell types including dendritic cells and macrophages 

(452). In pilot experiments to investigate the effect of differentiation on IL-4-induced 

TREM-2 expression, THP-1 monocytes were differentiated into a macrophage-like 

cell line by treatment with 100 nM PMA for 72 h. IL-4 had no significant effect on 

TREM-2 mRNA expression in PMA-differentiated THP-1 cells (Figure 4.5A). 

However, at the protein level, IL-4 increased TREM-2 expression at 8, 16 and 24 h 

(Figure 4.5B). Incubation in culture also increased basal levels of TREM-2 following 

PMA differentiation suggesting that TREM-2 expression is increased further during 

the 48 h after PMA differentiation (Figure 4.5B). This suggests that IL-4 also 

increases TREM-2 expression in PMA-differentiated THP-1 cells but through a 

different mechanism that does not require de novo synthesis of TREM-2 mRNA.  
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Figure 4.5: IL-4 increases TREM-2 expression in PMA-differentiated THP-1 cells. THP-1 

cells differentiated with 100 nM PMA were stimulated with 10 ng/mL IL-4 for 8-48 h. (A) TREM-2 

mRNA was measured by qRT-PCR. mRNA values are expressed as fold change (relative to the 

control) normalised to GAPDH ± SEM. (B) TREM-2 protein expression was measured by western 

blot analysis. β-actin was used as a loading control (n = 3). 

 

4.3.3. IL-4-Induced TREM-2 Expression is STAT6 Independent 

The mechanism by which IL-4 increases TREM-2 expression is currently unknown. 
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STAT6 siRNA resulted in a 61.9% KD of STAT6 mRNA expression analysed by RT-

PCR ( p≤ 0.05) (Figure 4.6A). STAT-6 siRNA had no effect on IL-4-induced TREM-2 

mRNA (Figure 4.6B) or protein (Figure 4.6C) expression in THP-1 monocytes, 

suggesting that STAT6 is not required for IL-4-induced TREM-2 expression.  
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Figure 4.6: IL-4-induced TREM-2 expression is STAT-6 independent. THP-1 cells were non-

transfected or transfected with 250 nM STAT6 siRNA or scrambled control for 24 h. A) STAT6 

mRNA expression was measured 24 h after transfection. (B) 24 h after transfection, THP-1 cells 

were stimulated with IL-4 (10 ng/mL) for 8 h and TREM-2 mRNA expression was measured. 

mRNA was measured by qRT-PCR, values are expressed as % (A) or fold (B) change relative to 

the control, normalised to GAPDH ± SEM, *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001 (one-way ANOVA 

with post hoc Bonferroni test). (C) TREM-2 protein expression, measured by western blot 

analysis, following 8 h stimulation with IL-4 (10 ng/ml). β-actin was used as a loading control (n = 

3). 
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induced TREM-2 expression, THP-1 cells were pre-incubated with inhibitors for 30 

min prior to stimulation with IL-4 for 8 h. PD98059 (10 μM) had no effect on IL-4-

induced TREM-2 mRNA expression, suggesting that the ERK1/2 signalling pathway 

is not involved in IL-4-induced TREM-2 mRNA expression (Figure 4.7A). However, 

10 μM LY294002 resulted in a significant inhibition (p ≤ 0.01) of IL-4-induced TREM-

2 mRNA expression (Figure 4.7B). Furthermore, this effect was dose-dependent 

(Figure 4.7C), suggesting that PI3K is required for IL-4-induced TREM-2 mRNA 

expression. These inhibitors were also assessed for their cytotoxicity by MTS assay. 

The ERK1/2 signalling pathway inhibitor PD98059 and PI3K inhibitor LY294002 

were not toxic at 5 or 10 µM but cell viability was reduced by 22.6% and 13.8% at 

20 µM respectively (see Appendix Figure 8.1). 

 

 

Figure 4.7: Inhibition of PI3K suppresses IL-4-induced TREM-2 mRNA expression. THP-1 

cells were pre-incubated with (A) 10 μM PD98059 (PD) or (B) LY294002 (LY) 30 min prior to 

stimulation with 10 ng/mL IL-4 for 8 h. TREM-2 mRNA expression was measured by qRT-PCR. 

(C) THP-1 cells were pre-incubated with 5, 10 or 20 μM LY294002 30 min prior to 8 h stimulation 
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with IL-4 (10 ng/mL). TREM-2 mRNA expression was measured by qRT-PCR. mRNA values are 

expressed as fold change (relative to the control) normalised to GAPDH ± SEM, *p ≤ 0.05, **p ≤ 

0.01, ***p ≤ 0.001 (one-way ANOVA with post hoc Bonferroni test) (n = 3). 

 

Similarly, PD98059 had little effect on IL-4-induced TREM-2 protein but slightly 

reduced basal TREM-2 expression (Figure 4.8). Incubation with the PI3K inhibitor 

LY294002 corresponded to the mRNA results, showing a reduction in IL-4-induced 

TREM-2 protein expression (Figure 4.8). Similarly to the effect of the ERK1/2 

inhibitor on TREM-2 protein expression alone, incubation with the PI3K inhibitor 

LY294002 also reduced basal TREM-2 protein expression. Although this image was 

representative of each of the biological replicates showing a consist suppression of 

IL-4 induced TREM-2 expression with LY294002, doing densitometry on the blots 

showed too much variation to produce a significant change. These results suggest 

that IL-4 activates PI3K to induce de novo synthesis of TREM-2 mRNA and 

therefore increase TREM-2 protein expression. 

 

 

Figure 4.8: PI3K reduces IL-4-induced TREM-2 protein expression. THP-1 cells were pre-

incubated with 10 μM MEK1/ERK1/2 signalling pathway inhibitor PD98059 (PD) or the PI3K 

inhibitor LY294002 (LY) 30 min prior to stimulation with IL-4 (10 ng/mL) for 8 h. TREM-2 protein 

expression was measured by western blot analysis. β-actin was used as a loading control (n = 3). 
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4.4. Discussion 

TREM-2 is increased in patients and animal models of chronic inflammatory disease 

including COPD, diabetes and MS (242, 243, 364). However, current knowledge of 

TREM-2 suggests that in macrophages, dendritic cells, microglial cells and 

endothelial cells, pro-inflammatory mediators actually reduce TREM-2 expression 

(81, 240, 241). This study reported that TLR 2 and 4 agonists modulate TREM-2 

expression in THP-1 cells for the first time. More interestingly, IL-4 an important 

mediator present in inflammatory conditions including MS, arthritis and COPD (448, 

449, 455) was found to induce TREM-2 expression in monocytic cells via a PI3K 

dependent, STAT6-independent pathway.  These data suggest that IL-4 may be, in 

part, responsible for the increase in TREM-2 expression observed in inflammatory 

conditions and shows for the first time the role of PI3K in IL-4-induced TREM-2 

expression. 

In this study, THP-1 monocytes, previously characterised in the laboratory as a 

model of monocytes, were used to study the effect of pro- and anti-inflammatory 

mediators on TREM-2 expression. Suppression of TREM-2 expression by pro-

inflammatory mediators including TNF-α and LPS has been previously observed in 

hepatic macrophages, endothelial cells and microglia (240, 241, 243). In this study, a 

similar effect was seen in a murine monocyte-derived macrophage cell line and in 

THP-1 monocytes. In addition, a biphasic regulation of TREM-2 by TLR 2 and 4 

agonists was seen at the mRNA level in monocytes with TREM-2 expression being 

reduced at 4 and 24 h, but returned to baseline levels, or in some cases increased, 

by 8 h. This suggests that there may be multiple pathways regulating TREM-2 

expression following TLR stimulation. This may be, in part, via NFκB, as it is a key 

signalling pathway activated after TLR activation. In addition, VIP has been shown 

to reduce LPS-induced TREM-2 supression, which is likely to occur via its ability to 

inhibit NFκB binding to DNA (374). In addition, TLR2 and 4 agonists show very similar 

kinetics for regulating TREM-2 mRNA expression and therefore are also likely to 

signal via similar pathways. TNF-α on the other hand, demonstrated different 

kinetics, with a non-significant reduction in TREM-2 expression and no differences 

between the time points observed, suggesting that TNF-α may not be acting in the 

same way as the TLR agonists to regulate TREM-2 expression.  

IL-4 is important for differentiation of monocytes and macrophages into M2-type 

macrophages. M2-type macrophages are known for their anti-inflammatory 

properties reducing the secretion of pro-inflammatory cytokines and increasing the 
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secretion of anti-inflammatory cytokines, resulting in the suppression of the 

inflammatory response (46). More recently, TREM-2 has been used as a marker of 

M2 macrophage activation, due to its high expression on this cell type (303-305). Taken 

together, this suggests that TREM-2 may have an important function in this cell type 

by mediating some of the anti-inflammatory properties of M2-type macrophages. IL-

4 in combination with either M-CSF or GM-CSF has previously been shown to 

induce TREM-2 expression in monocytes by inducing differentiation into M2-type 

macrophages and dendritic cells (336). However, M-CSF has been previously shown 

to increase TREM-2 expression (240). In this study, IL-4 increased TREM-2 

expression independently of M-CSF or other growth factors in THP-1 cells and 

primary monocytes which is supported by a study from Cella and colleagues who 

showed that IL-4 alone increased TREM-2 expression in CD14+ monocytes (299). 

This also suggests that there may be other functions for IL-4-induced TREM-2 

expression other than as a marker of differentiation. Interestingly, this induction of 

TREM-2 was observed at a later time point in primary monocytes. This may be due 

to the fact that primary monocytes derived from peripheral blood start to differentiate 

in culture, which may alter the kinetics of IL-4-induced TREM-2 expression. On the 

other hand, in allergy, IL-4 is a pro-inflammatory cytokine, increasing Th2 cell 

proliferation and inducing class-switching to IgE, increasing airway remodelling and 

promoting allergic inflammation (456). TREM-2 is also upregulated during allergic 

inflammation, in the ovalbumin model of allergy in dendritic cells and in the murine 

house dust mite model of airway inflammation (240, 367). This study shows that IL-4, 

which is highly expressed in allergic inflammation, increases TREM-2 expression, 

suggesting that IL-4 may be a key player in the induction of TREM-2 expression in 

allergy.  In contrast, using PMA-differentiated THP-1 cells as a model of 

macrophages, IL-4 had no effect on TREM-2 mRNA expression, but increased 

TREM-2 protein expression suggesting that IL-4 increases TREM-2 expression 

post-translationally in these cells. Therefore, IL-4 increases TREM-2 expression in 

THP-1 cells and PMA-differentiated THP-1 cells through different mechanisms, 

suggesting that differentiation of these cells alters the mechanisms of TREM-2 

regulation. 

IL-4 and IL-13 signal through a shared receptor, and therefore have similar actions 

to each other (107). This study also investigated the effect of IL-13 on TREM-2 

expression in THP-1 cells. In contrast to IL-4, IL-13 had no significant effect on 

TREM-2 mRNA expression, although there was a trend that suggested a small 

increase in TREM-2 at all time points studied with similar kinetics to IL-4. This is 
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likely to be due to different binding affinities of IL-13 and IL-4 to the receptors 

expressed. IL-4 and IL-13 can bind to IL-4R(α)/IL-13R(α)1 receptor complex, but IL-

4 can also bind to the IL-4R(α)/γc receptor complex (457). This suggests that IL-4 

alone has more available receptors for activation and signal transduction in this 

system compared to IL-13, which may be why very little response was observed 

with IL-13 alone (458). 

There is very little known about the signalling pathways that regulate TREM-2 

expression. This area was a key focus due to the lack of current understanding and 

the emerging importance of increased TREM-2 expression in inflammatory 

diseases. STAT6 is a major signalling mediator for IL-4, particularly in IL-4-induced 

alternative activation. However, in this study, IL-4-induced TREM-2 was 

independent of STAT6. In support of our findings, Turnbull and co-workers 

demonstrated that the increase in TREM-2 induced by thioglycollate 

inflammation was independent of STAT6 signalling (240).  

More recently, PI3K has also been identified as an important mediator in alternative 

activation (453, 459). Here, the PI3K inhibitor LY294002 suppressed IL-4-induced 

TREM-2 expression, suggesting that PI3K is important for its regulation. PI3K is an 

important signalling protein in inflammation and the immune response including 

leukocyte migration and B- and T-cell activation (460). Activation of the AKT/PI3K 

signalling pathway suppresses LPS signalling, leading to a reduction in pro-

inflammatory cytokine secretion (461). TREM-2 also suppresses LPS signalling and 

therefore PI3K may increase TREM-2 expression for its inhibitory effects on LPS-

induced cytokine secretion. In addition to the effects of PI3K inhibition on induced 

TREM-2 expression, the PI3K inhibitor LY294002 also suppressed basal levels of 

TREM-2 protein expression, although no significant effect was observed at the 

mRNA level. This effect has also been observed by Chen and co-workers in hepatic 

macrophages and endothelial cells (241). However, Chen and co-workers showed 

that suppression of TREM-2 expression observed by IL-1β and TNF-α was not 

through the PI3K signalling pathway (241). Interestingly, this study found that PI3K 

not only regulates basal expression of TREM-2 but also regulates induced TREM-2 

expression by IL-4. 

Future studies will investigate the transcription factor and other members of the 

signalling pathway required for IL-4-induced TREM-2 expression. The PI3K/AKT 

signalling pathway inhibits GSK3 (462). Active GSK3 inhibits transcription factor 

activity including GATA-4, NFATc and β-catenin and therefore these transcription 
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factors are targets for future studies of the IL-4-induced TREM-2 expression (463-465). 

Future studies also aim to investigate the effect of other inflammatory mediators on 

TREM-2 expression including prostaglandins, chemokines and a variety of 

cytokines not studied here including IL-17, IL-22, IL-10, and IL-6 and to confirm 

regulation of TREM-2 in primary cells. 

 

4.5. Summary 

This study has identified IL-4 as an inducer of TREM-2 expression in monocytes. As 

IL-4 is increased in many inflammatory conditions, IL-4 is likely to contribute to the 

increased TREM-2 expression observed in conditions including MS and asthma. In 

addition, IL-4-induced TREM-2 expression was independent of STAT6, a major IL-4 

signalling pathway, but dependent on PI3K. These results demonstrate for the first 

time, the role of PI3K in IL-4-induced TREM-2 regulation.
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5. Regulation of TREM-2 Expression by 

TGF-β1 in Myeloid Cells 
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5.1. Introduction 

TGF-β1 is another cytokine known for its ability to resolve inflammation. TGF-β1 is 

increased in inflammatory conditions including COPD and MS and in wound healing 

(466-468). In MS and wound healing, TGF-β1 has demonstrated beneficial effects (119, 

469). These effects of TGF-β1 are due to its role in tissue repair and regeneration (119, 

238, 470). TGF-β1 KO mice demonstrate inefficient wound healing following injury (119). 

TGF-β1 mediates its repair functions by encouraging epithelial migration and 

regulation of the extracellular matrix (466, 471). One of the main ways TGF-β1 

regulates the extracellular matrix is through the regulation of MMPs. MMPs are a 

family of proteases that degrade extracellular matrix proteins including fibronectin, 

collagen and gelatin (472). TGF-β1 induces and suppresses MMPs both directly and 

indirectly through the regulation of inhibitors for example tissue inhibitor of 

metalloproteinases (TIMPs) (473-475). The regulation of these proteases is thought to 

be important for the regeneration and repair functions of TGF-β1. TGF-β1 is also 

important for dampening down the immune response by reducing Th1 type T-cell 

responses and pro-inflammatory cytokines such as IL-12 and increasing regulatory 

T-cell activity and anti-inflammatory cytokines such as IL-10, driving the resolution 

of inflammation. These anti-inflammatory functions are another reason for its 

beneficial effects in wound healing and diseases including MS and stoke (119, 476, 477). 

These functions of TGF-β1 require the activation a variety of signalling pathways. 

The two most characterised are the SMAD and MAPK signalling pathways. TGF-β1 

activates the TGF-β receptor I/II dimer, initiating phosphorylation of SMAD2 and/or 

SMAD3 (478). Classically, the SMAD2/3 complex dimerises with SMAD4 and is 

transported to the nucleus where it binds to SMAD response elements (SRE) on 

gene promoters altering gene expression (130). However, TGF-β1 also signals 

independently of SMADs activating signalling molecules including TAK-1, Ras and 

Raf and PI3K (131, 132). Phosphorylation of Ras and Raf leads to the activation of the 

MEK1/ERK1/2 signalling pathway which regulates some of the functions of TGF-β1 

in fibrosis and migration (479, 480). In addition, TGF-β-induced phosphorylation of TAK-

1 leads to the activation of several other kinases including p38 and JNK which 

signal independently to induce a variety of different functions of TGF-β (133, 134, 481). 

TREM-2 is important for resolution of inflammation and in tissue repair. TREM-2 is 

also increased in many inflammatory conditions, however there are still only a few 

mediators known to increase its expression (242, 243, 334). Chapter 3 showed that the 

anti-inflammatory cytokine IL-4 increases TREM-2 expression. Due to the role of 
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TGF-β1 in the tissue repair and the resolution of inflammation (119, 476), this cytokine 

was investigated for its effects on TREM-2 expression along with the mechanisms 

required for its regulation of TREM-2. 

 

5.2. Aims 

The aims of this study were to: 

 Investigate the effect of TGF-β1 on TREM-2 expression in primary 

monocytes, monocyte and macrophage cell lines. 

 Study the mechanisms of TREM-2 regulation by TGF-β1 in the THP-1 

monocyte cell line. 

 Explore the functional role of TGF-β1-induced TREM-2 in THP-1 monocytes. 
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5.3. Results 

5.3.1. TGF-β1 Increases TREM-2 mRNA and Protein Expression in THP-1 cells 

and Primary Monocytes 

The effects of TGF-β1 on TREM-2 expression in monocytes and macrophage cell 

lines were investigated. TREM-2 mRNA and protein expression were measured by 

qRT-PCR and western blot, respectively. In the presence of TGF-β1, TREM-2 

mRNA expression was increased, peaking at 16 h in THP-1 cells (p ≤ 0.05) (Figure 

5.1A). TGF-β1 also increased TREM-2 expression at the protein level, peaking at 48 

h (Figure 5.1B). This experiment was also performed in primary monocytes derived 

from peripheral blood which also showed an increase in TREM-2 following TGF-β1 

stimulation, confirming that this signalling pathway in THP-1 cells is also present in 

primary monocytes (Figure 5.1C).   

 

 

Figure 5.1: TGF-β1 increases TREM-2 expression in THP-1 cells and primary monocytes. 

(A) THP-1 cells were incubated with or without 5 ng/mL TGF-β1 for 4-24 h and TREM-2 mRNA 

expression measured by qRT-PCR. mRNA values are expressed as fold change relative to the 0 

h control normalised to GAPDH ± SEM, *p ≤ 0.05 (one-way ANOVA with post hoc Dunnett’s test). 

(B) THP-1 cells or (C) primary monocytes were stimulated with or without TGF-β1 (5 ng/mL) for 

8-48 h and TREM-2 protein expression measured by western blot analysis. β-actin was used as 

loading control (n = 3). 
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To analyse the kinetics of TGF-β1-induced TREM-2 protein expression, TGF-β1 

was added to THP-1 cells for up to 7 days. The increase in TREM-2 protein induced 

by TGF-β1 remained high up to 7 days of stimulation, suggesting that this increase 

in TREM-2 may be permanent (Figure 5.2A). However, removing TGF-β1 after 48 h 

reduced TREM-2 expression at 6 days, showing that the change in TREM-2 protein 

expression after TGF-β1 can be reversed by removing TGF-β1. This suggests that 

this increase in TREM-2 is not due to a permanent change in cell type (Figure 5.2B).  

 

 

 

Figure 5.2: Upregulation of TREM-2 by TGF-β1 is not a permanent change. THP-1 cells were 

incubated with or without 5 ng/mL TGF-β1 for (A) 48 h, 5 days (d) or 7 days or (B) 48 h, 72 h or 6 

days. In (B) samples cultured longer than 48 h had TGF-β1 removed at 48 h. TREM-2 protein 

expression was measured by western blot analysis. β-actin was used as loading control (n = 3).  

 

5.3.2. TGF-β1 had no Effect on TREM-2 Expression in PMA-Differentiated 

THP-1 Cells 

TGF-β1 also exhibits important functions in macrophages including suppression of 

inflammation by reducing pro-inflammatory cytokine secretion (475). To assess the 

effect of TGF-β1 on TREM-2 expression in macrophages, this study used the 

murine macrophage cell line RAW 264.7 and PMA-differentiated THP-1 cells to 

measure TREM-2 mRNA and protein expression. Unlike monocytes, stimulation of 
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RAW264.7 macrophages had no effect on TREM-2 mRNA expression (Figure 

5.3A). Similar results were also seen in the PMA-differentiated THP-1 cells (Figure 

5.3B). In addition, TGF-β1 did not increase TREM-2 protein expression in PMA-

differentiated THP-1 cells, indeed it seemed to decrease it at 48 h (Figure 5.3C). 

 

 

Figure 5.3: Effect of TGF-β1 on TREM-2 mRNA and protein expression in RAW 264.7 and 

PMA-differentiated THP-1 cells. (A) RAW 264.7 cells or (B) PMA-differentiated THP-1 cells 

were incubated with or without 5 ng/mL TGF-β1 for 4-24 h and TREM-2 mRNA expression 

measured by qRT- PCR. mRNA values are expressed as fold change relative to the control, 

normalised to GAPDH, mean ± SEM (n = 3). (C) PMA-differentiated THP-1 cells were stimulated 

with or without 5 ng/mL TGF-β1 for 16-48 h and TREM-2 protein measured by western blot  

analysis (n = 2). β-actin was used as a loading control.  
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5.3.3. TGF-β1-Induced TREM-2 Expression Requires p38 and ERK1/2 

TGF-β1 has been shown to activate several kinase pathways including PKC, PI3K 

and MAPK (132, 133, 482). The effect of the inhibitors of p38 MAP kinase (SB203580), 

PI3K (LY294002), the ERK1/2 signalling pathway (PD98059) and PKC 

(bisindolylmaleimide I) on TGF-β1-induced TREM-2 mRNA expression were then 

studied. SB203580 significantly reduced TGF-β1-induced TREM-2 mRNA 

expression at 16 h (p ≤ 0.001) (Figure 5.4A). A small but significant reduction in 

TGF-β1-induced TREM-2 mRNA was also observed in the presence of LY294002 

(p ≤ 0.01) (Figure 5.4C). In contrast, PD98059 and bisindolylmaleimide I had no 

effect on TGF-β1-induced TREM-2 mRNA expression (Figure 5.4A and B). 

SB203580 showed a trend of dose-dependent inhibition of TGF-β1-induced TREM-

2 mRNA expression (not significant) (Figure 5.4D). Together, this data suggests that 

p38 MAP kinase and PI3K are important for TGF-β1-induced TREM-2 mRNA 

expression. The effects of the inhibitors on cell viability were tested by MTS assay 

to ensure that they were not cytotoxic at the concentrations used in this study. THP-

1 cells were incubated with inhibitors for 16 h and cell viability was then measured. 

The p38 MAP kinase and PKC inhibitors SB203580 (SB) and bisindolylmaleimide I 

(BIS) were not toxic at any concentration (see Appendix Figure 8.2). In addition, 

Figure 8.1 (see Appendix) demonstrates that the MEK1/ERK1/2 and PI3K signalling 

pathway inhibitors PD98059 (PD) and LY294002 (LY) (respectively) were not toxic 

up to 10 µM so this concentration was used for both inhibitors. 
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Figure 5.4: p38 MAP kinase and PI3K regulate TGF-β1-induced TREM-2 mRNA expression. 

THP-1 cells were pre-incubated for 30 min with (A) 10 µM SB203580 (SB) or 10 µM PD98059 

(PD), (B) 10 µM bisindolylmaleimide I (BIS) or (C) 10 µM LY294002 (LY) followed by 16 h 

treatment with 5 ng/mL TGF-β1 and TREM-2 mRNA measured by qRT-PCR. (D) THP-1 cells 

were incubated with or without 5 ng/mL TGF-β1 in the presence or absence of 5 µM, 10 µM or 20 

µM SB for 16 h. mRNA values are expressed as fold change relative to the control, normalised to 

GAPDH ± SEM, **p ≤ 0.01, ***p ≤ 0.001 (one-way ANOVA with post hoc Bonferroni test) (n = 3). 

 

To confirm the effects of these inhibitors on TREM-2 expression at the protein 

levels, these inhibitors were analysed for their effects on TGF-β1-induced TREM-2 

protein expression measured by western blot analysis. The PKC inhibitor, 

bisindolylmaleimide I, had no effect on TGF-β1-induced TREM-2 expression (Figure 

5.5A). Similarly to the observation at the mRNA level, the PI3K inhibitor LY294002 

reduced TGF-β1-induced TREM-2 protein expression (Figure 5.5B).  
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Figure 5.5: The effect of PKC and PI3K inhibition on TGF-β1-induced TREM-2 protein 

expression. THP-1 cells pre-incubated for 30 min with (A) 10 µM bisindolylmaleimide I (BIS) or 

(B) 10 µM LY294002 (LY) followed by 48 h treatment with 5 ng/mL TGF-β1 and TREM-2 protein 

expression measured by western blot analysis. β-actin was used as a loading control (n = 3). 

 

In agreement with the observations at the mRNA level, SB203580 also reduced 

TGF-β1-induced TREM-2 protein expression (Figure 5.6A). However, in contrast to 

the effects of PD98059 at the mRNA level, PD98059 almost completely abolished 

TGF-β1-induced TREM-2 protein expression, suggesting that this signalling 

pathway is required post-translationally for TGF-β1-induced TREM-2 protein 

expression (Figure 5.6A). TGF-β1-induced p38 MAP kinase activation was 

confirmed by investigating p38 MAP kinase phosphorylation by western blot 

analysis. TGF-β1-induced p38 phosphorylation after 1 h of stimulation in THP-1 

cells (Figure 5.6B). The effect of these inhibitors on cell viability was measured over 

48 h to confirm the effects observed were not due to cytotoxicity. THP-1 cells 

incubated with bisindolylmaleimide I or SB203580 for 48 h did not demonstrate 

reduction in cell viability (see Appendix Figure 8.3). PD98059 reduced cell viability 

by 28.3%, 33.2% and 33.2% at 5, 10 and 20 µM respectively and LY294002 by 

29.4%, 27.3% and 36.4% at 5, 10 and 20 µM respectively (see Appendix Figure 

8.3). However, this small reduction in cell viability observed with LY294002 and 

PD98059 are unlikely to affect these results. Together, these experiments suggest 

that PI3K and the p38 and ERK1/2 MAP kinase pathways are important for TGF-β1-

induced TREM-2 expression. 
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Figure 5.6: The p38 and ERK1/2 MAP kinase signalling pathways are required for TGF-β1-

induced TREM-2 protein expression. (A) THP-1 cells were pre-incubated for 30 min with 10 µM 

SB203580 (SB) or PD98059 (PD) followed by 48 h treatment with 5 ng/mL TGF-β1 and TREM-2 

protein expression measured by western blot analysis. (B) THP-1 cells were stimulated with 5 

ng/mL TGF-β1 for 1-8 h and phosphorylated p38 (P-p38) and basal p38 protein expression 

measured in by western blot analysis. β-actin and p38 were used as loading controls for TREM-2 

(A) and (B) P-p38 respectively (n = 3). 

 

5.3.4. TGF-β1-Induced TREM-2 Expression is Independent of SMAD3, ATF2 

and PPARγ 

Several transcription factors are known to be activated by TGF- β1, including the 

SMAD family, ATF2 and PPARγ (130, 482, 483). SMAD3 is central to SMAD signalling as 

it binds to SMADs 2 and 4 and also cross-talks with other signalling pathways 

including the p38 MAP kinase pathway (484, 485). Since p38 MAP kinase is also 

required for TGF-β1-induced de novo synthesis of TREM-2 mRNA, the effects of 

SMAD3 on TGF-β1-induced TREM-2 expression was examined using SMAD3 

siRNA. THP-1 cells transfected with SMAD3 siRNA resulted in a 62.1% KD in 

SMAD3 mRNA expression and complete inhibition of SMAD3 protein when 

compared with scrambled control (Figure 5.7 A and B). 
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Figure 5.7: siRNA KD of SMAD3 in THP-1 cells. THP-1 cells were transfected with 9.55 nM 

SMAD3 siRNA or scrambled control for 24 h.  24 h after transfection, the cells were incubated for 

a further 16 h (A) alone or (B) with or without 5 ng/mL TGF-β1. SMAD3 (A) mRNA or (B) protein 

was measured by qRT-PCR and western blot analysis respectively. mRNA values are expressed 

as % change relative to the control and normalised to GAPDH ± SEM, *p ≤ 0.05 (unpaired 

Student’s t test). For western blot analysis β-actin was used as a loading control (n = 3). 

 

SMAD3 siRNA had no effect on TGF-β1-induced TREM-2 mRNA or protein 

expression (Figure 5.8A and B). Together, these results suggest that TGF-β1-

induced TREM-2 expression is independent of SMAD3 signalling.  
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Figure 5.8: TGF-β1-induced TREM-2 expression is independent of SMAD3. THP-1 cells were 

transfected with 9.55 nM SMAD3 siRNA or scrambled control for 24 h. 24 h after transfection, the 

cells were stimulated with 5 ng/mL TGF-β1 for a further (A) 16 h for TREM-2 mRNA or (B) 48 h 

for TREM-2 protein. mRNA expression was measured by qRT-PCR, values are expressed as fold 

change relative to the control, normalised to GAPDH ± SEM, *p ≤ 0.05 (one-way ANOVA with 

post hoc Bonferroni test). TREM-2 protein expression was measured by western blot analysis. β-

actin was used as a loading control (n = 3). NS, not significant. 

 

The transcription factor ATF-2 is another key regulator of the TGF-β1 signalling 

pathway. ATF2 is increased following TGF-β1-induced p38 activation, and alters 

gene expression by binding to cyclic adenosine monophosphate (cAMP) response 

elements in gene promoters (482).  ATF-2 siRNA was therefore used to investigate 

the role of ATF-2 in TGF-β1/p38-induced TREM-2 expression. ATF-2 siRNA 

reduced ATF2 mRNA expression at 24 h by 60.8% (Figure 5.9A). ATF-2 siRNA had 

no effect on TREM-2 expression induced by TGF-β1 at either the mRNA (Figure 

5.9B) or protein (Figure 5.9C) level. This study demonstrates that TGF-β1-induced 

TREM-2 expression is also independent of ATF2. 
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Figure 5.9: TGF-β1-induced TREM-2 expression is independent of the transcription factor 

ATF-2. THP-1 cells were non-transfected or transfected with 250 nM ATF-2 siRNA or scrambled 

control for 24 h. (A) ATF-2 mRNA expression measured 24 h after transfection. Alternatively, 24 h 

after transfection, the cells were stimulated with 5 ng/mL TGF-β1 for a further (B) 16 h for TREM-

2 mRNA or (C) 48 h for TREM-2 protein expression. mRNA expression was measured by qRT-

PCR, values are expressed as either % (A) or fold (B) change relative to the control, normalised 

to GAPDH ± SEM, *p ≤ 0.05 (one-way ANOVA with post hoc Bonferroni test). TREM-2 protein 

expression was measured by western blot analysis. β-actin was used as a loading control (n = 3). 

 

PPARγ is also activated by TGF-β1 and the ERK1/2 and p38 MAPK kinase 

signalling pathways (483, 486, 487). In addition, analysing the TREM-2 promoter using 

TRANSFAC® identified two predicted binding regions for PPARγ, suggesting that 

this transcription factor may regulate TREM-2 expression (Figure 5.10).  
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Figure 5.10: Predicted PPARγ binding sites in the TREM-2 promoter. Predicted PPARγ 

binding sites were identified in the TREM-2 promoter identified by TRANSFAC.  The TREM-2 

gene start site is indicated by the arrow the bases of the ATG start codon are numbered 0, 1 and 

2 respectively. 

 

The effects of GW9662, an inhibitor of PPARy, on TGF-β1-induced TREM-2 

expression were then investigated. GW9662 had no effect on TGF-β1-induced 

TREM-2 mRNA or protein expression (Figure 5.11A and B), and was confirmed to 

have no effect on THP-1 cell viability (see Appendix Figure 8.4). This study has 

eliminated the transcription factors SMAD3, ATF2 and PPARy from the possible 

transcription factors required for TGF-β1-induced TREM-2 expression. 
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Figure 5.11: Inhibition of PPAY-γ had no effect on TGF-β1-induced TREM-2 expression. 

THP-1 cells were pre-incubated for 30 min with 10 µM GW9662 (GW) followed by (A) 16 h 

stimulation with 5 ng/mL TGF-β1 and TREM-2 mRNA measured (n = 3) or (B) 48 h stimulation 

with 5 ng/mL TGF-β1 and TREM-2 protein measured by western blot analysis (n = 1). TREM-2 

mRNA was measured by qRT-PCR, values are expressed as fold change relative to the control, 

normalised to GAPDH ± SEM, **p ≤ 0.01 (one-way ANOVA with post hoc Bonferroni test), β-actin 

was used as a loading control.  

 

5.3.5. Effect of TREM-2 KD on TGF-β1 Functions 

After observing TGF-β1-induced TREM-2 expression, the roles of TREM-2 in the 

functions of TGF-β1 were then investigated. In monocytes, TGF-β1 is both pro- and 

anti- inflammatory and is also thought to be involved in repair and regeneration of 

tissue (114, 488-490). TREM-2 siRNA was used to KD TREM-2 expression in THP-1 

cells and the effects on TGF-β1-induced cytokine mRNA expression investigated. 

TREM-2 siRNA inhibited TREM-2 mRNA expression by 73.8% 24 h after 

transfection (Figure 5.12A). In addition, TREM-2 KD also reduced TGF- β1-induced 

TREM-2 protein expression (Figure 5.12B).  
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Figure 5.12: TREM-2 siRNA KD in THP-1 cells. THP-1 cells were non-transfected or 

transfected with 250 nM TREM-2 siRNA or scrambled control for 24 h. (A) TREM-2 expression 

was analysed by qRT-PCR, values are expressed as % change relative to the control, normalised 

to GAPDH  ± SEM, *** p ≤ 0.001 (one-way ANOVA with post hoc Bonferroni test). (B) 24 h after 

transfection, 5 ng/mL TGF-β1 was added for a further 24 h and TREM-2 protein expression 

measured by western blot analysis, β-actin was used as loading control (n = 3). 

 

In monocytes, TGF- β1 exerts both pro- and anti- inflammatory activities (117, 488), 

therefore after confirming TREM-2 KD in the THP-1 cells, this study analysed the 

effect of TREM-2 on TGF-β1-induced proinflammatory gene expression. TGF-β1 

caused a moderate increase in the pro-inflammatory cytokines IL-8 and IL-1β (p ≤ 

0.001 and p ≤ 0.05 respectively) (Figure 5.13A and B). However, TREM-2 KD had 

no effect on TGF-β1-induced IL-8 and IL-1β expression, suggesting that TREM-2 is 

not involved in this pro-inflammatory effect of TGF-β1 (Figure 5.13A and B). 

 

 

Figure 5.13: TREM-2 is not required for TGF-β1-induced IL-8 or IL-1β in monocytes.  THP-1 

cells were non-transfected or transfected with 250 nM TREM-2 siRNA or scrambled control, after 

A B

+Scrambled siRNA - -

TREM-2 siRNA -- +

β-Actin

TREM-2

+Scrambled siRNA - -

TREM-2 siRNA -- +

E
le

ct
ro

pora
tio

n c
ontr

ol

S
cr

am
ble

d 

TR
E
M

-2
 s

iR
N
A
 

0

50

100

150

***

P
e
rc

e
n

ta
g

e
 c

h
a
n

g
e
 i
n

 T
R

E
M

-2

m
R

N
A

 e
x
p

re
s
s
io

n
 r

e
la

ti
v
e
 t

o

s
c
ra

m
b

le
d

 c
o

n
tr

o
l 
n

o
rm

a
li
s
e
d

 t
o

  
G

A
P

D
H

28 kDa

+TGF-β1 + +

- +

+- -

TREM-2 siRNA -- +
+- -

-- +
TGF-β1 + +- -

B

E
le

ct
ro

pora
tio

n c
ontr

ol -

S
cr

am
ble

d -

TR
E
M

-2
 s

iR
N
A
 -

E
le

ct
ro

pora
tio

n c
tr
l +

 T
G
F-b

1

S
cr

am
ble

d +
 T

G
F-b

1

TR
E
M

-2
 s

iR
N
A
 +

 T
G
F-b

1

0

5

10

15

20

25 *

F
o

ld
 c

h
a
n

g
e
 i
n

 I
L

-1


 m
R

N
A

e
x
p

re
s
s
io

n
 n

o
rm

a
li
s
e
d

 t
o

G
A

P
D

H
 r

e
la

ti
v
e
 t

o

e
le

c
tr

o
p

o
ra

ti
o

n
 c

o
n

tr
o

l 
-

- +

+- -
TREM-2 siRNA -- +

+- -
-- +

TGF-β1 + +- -

E
le

ct
ro

pora
tio

n c
ontr

ol -

S
cr

am
ble

d -

TR
E
M

-2
 s

iR
N
A
 -

E
le

ct
ro

pora
tio

n c
tr
l +

 T
G
F-b

1

S
cr

am
ble

d +
 T

G
F-b

1

TR
E
M

-2
 s

iR
N
A
 +

 T
G
F-b

1

0

5

10

15 ***

F
o

ld
 c

h
a
n

g
e
 i
n

 I
L

-8
 m

R
N

A

e
x
p

re
s
s
io

n
 n

o
rm

a
li
s
e
d

 t
o

G
A

P
D

H
 r

e
la

ti
v
e
 t

o

e
le

c
tr

o
p

o
ra

ti
o

n
 c

o
n

tr
o

l 
-

A

Scrambled siRNA Scrambled siRNA



157 
 

24 h, the transfected cells were stimulated with 5 ng/mL TGF-β1 24 h. (A) IL-8 and (B) IL-1β gene 

expression measured by qRT-PCR, values are expressed as fold change relative to the control, 

normalised to GAPDH ± SEM, *p ≤ 0.05, ***p ≤ 0.001 (one-way ANOVA with post hoc Bonferroni 

test)  (n = 3). 

 

As well as its effects in inflammation, TGF-β1 is also important for tissue repair and 

remodelling. Both TREM-2 and TGF-β1 have been shown to be important for 

efficient wound repair in animal models of wound healing (119, 334). TGF-β1 mediates 

tissue repair in part though the regulation of MMPs. MMP-1 is the most 

characterised MMP for its positive effects on wound healing and repair (33, 491), 

therefore this study also investigated the effect of TREM-2 KD on TGF-β1-induced 

MMP-1 expression. TGF-β1 significantly increased MMP-1 mRNA expression in 

THP-1 monocytes after 24 h stimulation (Figure 5.14A). Interestingly, siRNA KD of 

TREM-2 significantly reduced TGF-β1-induced MMP-1 by 73.0% suggesting that 

TREM-2 is required for this change (p ≤ 0.001) (Figure 5.14A).  

 

 

Figure 5.14: TREM-2 is required for TGF-β1-induced MMP-1 expression. THP-1 cells were 

non-transfected or transfected with 250 nM TREM-2 siRNA or scrambled control. After 24 h, the 

transfected cells were stimulated with 5 ng/mL TGF-β1 for 24 h. MMP-1 gene expression was 

measured by qRT-PCR. Values are expressed as fold change relative to the control, normalised 

to GAPDH ± SEM, *** p ≤ 0.001 (one-way ANOVA with post hoc Bonferroni test) (n = 3). 

 

To confirm that this effect was also found at the protein level, MMP-1 protein 

expression in THP-1 supernatants were also examined. TGF-β1 increased secreted 

active MMP-1 protein 48 h after stimulation (Figure 5.15). Active MMP-1 was 
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detected at 45 and 47 kDa both showing the same pattern of regulation. The 47 kDa 

band is likely to be the glycosylated form of MMP-1 which has been well 

documented (492). This was slightly inhibited in the presence of the control scrambled 

siRNA, but completely inhibited in the presence of TREM-2 siRNA (Figure 5.15). 

This study confirms that TREM-2 mediates the increase in active MMP-1 following 

TGF-β1 stimulation in THP-1 cells. 

 

 

Figure 5.15: TREM-2 is required for TGF-β1-induced secreted MMP-1 protein. THP-1 cells 

were non-transfected or transfected with 250 nM TREM-2 siRNA or scrambled control. After 24 h, 

the transfected cells were stimulated with 5 ng/mL for TGF-β1 48 h. MMP-1 protein expression 

was measured in (A) supernatants by western blot analysis (n = 3).  

 

To analyse the role of TREM-2 and TGF-β1 in MMP-1 regulation and inflammation, 

the effect of TGF-β1 and TREM-2 KD on LPS-induced MMP-1 expression was 

examined.  MMP-1 was significantly increased up to over 600 fold 24 h after LPS 

stimulation (Figure 5.16). Co-incubation of LPS and TGF-β1 significantly reduced 

LPS-induced MMP-1 mRNA expression by 53.0% (Figure 5.16). However, the 

presence of either the scrambled control or TREM-2 siRNA reduced LPS-induced 

MMP-1 mRNA similarly to the LPS and TGF-β1 co-stimulation (Figure 5.16) and 

therefore the role of TREM-2 in this system could not be studied. However, this 

study does highlight the difference between LPS and TGF-β1-induced MMP-1 

mRNA expression.  
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Figure 5.16: TGF-β1 reduces LPS-induced MMP-1 expression. THP-1 cells were non-

transfected or transfected with 250 nM TREM-2 siRNA or scrambled control. After 24 h, the 

transfected cells were stimulated with 10 µg/mL LPS in the presence or absence of 5 ng/mL 

TGF-β1 for 24 h. MMP-1 gene expression was measured by qRT-PCR, values are expressed as 

fold change relative to the control, normalised to GAPDH ± SEM, ***p ≤ 0.001 (one-way ANOVA 

with post hoc Bonferroni test) (n = 3). 
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5.4. Discussion 

TREM-2 expression is increased in inflammatory conditions, including COPD and 

MS (242, 243).  Similarly to TREM-2, TGF-β1 regulates the inflammatory response and 

the repair and resolution of tissue following injury and therefore TGF-β1 was 

investigated for its effects on TREM-2 expression in this study (119, 121, 488). TGF-β1 

was identified as a novel inducer of TREM-2 expression. TGF-β1-induced TREM-2 

expression in THP-1 cells was independent of SMAD3 but required the 

MEK1/ERK1/2, p38 MAP kinase and PI3K signalling pathways. The ERK1/2 MAP 

kinase signalling pathway was required for TGF-β1-induced TREM-2 protein but not 

mRNA expression, identifying a post-translational mechanism of TREM-2 regulation 

by TGF-β1. TGF-β1 activated p38 MAP kinase and PI3K were important for TGF-

β1-induced TREM-2 mRNA and protein expression, suggesting that these 

mediators are upstream of ERK1/2 in the pathway. Furthermore, TREM-2 KD had 

no effect on TGF-β1-induced IL-1β or IL-8 expression but significantly reduced 

TGF-β1-induced MMP-1 mRNA and secreted protein expression. Together, these 

results suggest that TGF-β1 may be in part responsible for the increase in TREM-2 

expression observed in inflammatory conditions and in wound healing and that the 

repair functions of TGF-β1 may require TREM-2. 

This study showed that TGF-β1 increased TREM-2 expression in THP-1 cells and 

primary monocytes and this may be responsible for the increase in TREM-2 seen in 

inflammatory conditions. To investigate this theory further, future experiments will 

use TGF-β1 KO mice to investigate the role of this cytokine in TREM-2 upregulation 

in animal models of disease. Although TGF-β1 plays an important role in 

immunomodulation, TGF-β1 is also involved differentiation of macrophage dendritic 

cell progenitors (MDPs) into osteoclasts, dendritic cells or macrophages (123, 125, 126). 

TGF-β1 is required for differentiation of MDPs into these cell types, but requires 

other growth factors including M-CSF for this change, therefore TGF-β1 may be 

increasing TREM-2 expression in monocytes by inducing differentiation into another 

cell type. However, although TREM-2 expression remained high up to 7 days in the 

presence of TGF-β1, removing TGF-β1 after 48 h reduced TREM-2 expression 

back to basal levels, suggesting that if the increase in TREM-2 expression is due to 

a change in cell type, it is not due to a permanent change. 

In contrast to its effects in monocytes, TGF-β1 did not increase TREM-2 expression 

in PMA-differentiated THP-1 cells. Perhaps TGF-β1 can only induce TREM-2 

expression in macrophages expressing low levels of TREM-2 e.g. M1 type (240). This 
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is also supported by the fact that PMA increases TREM-2 expression in THP-1 cells 

as shown in Section 3.3.2 and TGF-β1 cannot increase TREM-2 expression further 

than this. Future work will aim to assess the ability of TGF-β1 to induce TREM-2 

expression in alveolar and peritoneal macrophages and other primary monocyte-

derived macrophages types such as the classical M1-type. 

The mechanisms of TREM-2 upregulation are currently unknown. TGF-β1 signals 

via a variety of pathways including the SMAD, PI3K and MAPK pathways (133). 

Inhibition of PI3K significantly inhibited TGF-β1-induced TREM-2 mRNA expression. 

A similar effect was also observed at the protein level, suggesting that PI3K is in 

part required for TGF-β1-induced TREM-2 expression. However, PI3K inhibition has 

been previously shown to reduce basal levels of TREM-2 expression and therefore 

this effect may be in part due to the effect of PI3K inhibition on basal TREM-2 

expression (241). Inhibition of the MEK1/ERK1/2 signalling pathway revealed a post-

translational mechanism of TREM-2 regulation by TGF-β1, suppressing TGF-β1-

induced TREM-2 protein but not mRNA expression. ERK1/2 has been previously 

been shown to affect mRNA stability following TGF-β1 activation by binding to CU-

rich elements in mRNA sequences such as iNOS (493) and therefore this may explain 

how the ERK1/2 signalling pathway regulates TGF-β1-induced TREM-2 expression. 

Interestingly, inhibition of p38 MAP kinase inhibited both TREM-2 mRNA and 

protein induced by TGF-β1, suggesting that this kinase is required upstream of 

TREM-2 mRNA in the pathway. PI3K, ERK and p38 MAP kinases have all been 

shown to signal together previously following TGF-β1 activation, for example in 

TGF-β1-induced keratinocyte migration (494). In addition, both PI3K and p38 MAP 

kinase are required for TGF-β1-induced monocyte migration, confirming the 

importance of these signalling pathways in monocytes (488). Future studies will 

investigate if TREM-2 is also required for migration in these cell types.  

To further understand how TGF-β1 increases TREM-2 expression, p38 MAP 

kinase-induced transcription factors were examined. The SMAD pathway is the 

most characterised signalling pathway activated following TGF-β receptor activation. 

The SMAD cascade primarily involves SMADs 2 and 3 that dimerise and form a 

complex with SMAD4, which initiates translocation into the nucleus and binding to 

SRE in gene promoters (130). In addition, p38 MAP kinase has been shown to 

increase SMAD3 signalling, which supported the investigation of SMAD3 signalling 

in TGF-β1-induced TREM-2 expression (484). SMAD3 expression was knocked down 

to analyse the role of this transcription factor in TGF-β1-induced TREM-2 

expression. However, siRNA KD of SMAD3 had no effect on TGF-β1-induced 
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TREM-2 expression in THP-1 cells, showing that this pathway is SMAD3 

independent. However, KO of SMAD3 alone does not eliminate the requirement for 

the SMAD pathway altogether. Although SMAD3 is required for some of the actions 

of TGF-β1, in some cases either SMAD2 or 3 can be used (495), therefore to 

eliminate SMAD signalling, future studies will use a SMAD2/3 double KO to confirm 

that TGF-β1-induced TREM-2 expression is SMAD independent.  

ATF2 is also activated by TGF-β1 and has been shown to be increased by p38 MAP 

kinase following TGF-β receptor activation (482, 496, 497). In addition, ATF2 signals with 

SMAD3 following TGF-β1 activation (498). However, ATF2 also forms homodimers 

and heterodimers with other AP-1 family members including Jun, Maf and Fos 

proteins (499). The protein that ATF2 dimerises with affects the target response 

element in promoter regions which include cAMP, stress and ultraviolet response 

elements, altering transcriptional regulation (498, 500). However, this study found that 

ATF2 was not involved in TGF-β1-induced TREM-2 mRNA or protein production. 

Another transcription factor activated by TGF-β receptor activation is PPARγ (483). 

PPARγ is activated by ERK1/2 and p38 MAP kinase (depending on cell type), 

following TGF-β receptor activation (486, 487). TGF-β1-induced PPARγ expression has 

previously been observed in THP-1 cells and has been shown to be responsible for 

reducing cytotoxic T-cell stimulation and therefore may be responsible for some of 

the anti-inflammatory effects of this cytokine (483, 501). In addition, TRANSFAC 

analysis identified 2 potential PPARγ binding sites on the TREM-2 promoter, 

suggesting that this transcription factor regulates TREM-2 expression. However, this 

study shows that this pathway is not involved in TGF-β1-induced TREM-2 

expression. This suggests that there is another p38 MAP kinase-induced 

transcription factor responsible for TREM-2 gene regulation in these cells. 

Although this study did not identify the transcription factor(s) required for 

transcriptional regulation of TREM-2 by TGF-β1, there are still many that could be 

investigated. AP-2 and the AP-1 transcription factors Jun and c-fos have been 

shown to be increased following TGF-β1-induced p38 MAP kinase activation and 

therefore could also be investigated for their role in TREM-2 regulation (502, 503). In 

addition, although this study suggests that SMAD3 is not involved, it has been 

shown that SMAD2 can compensate for SMAD3 in some situations and as 

previously discussed is important to consider this in our system (504). 

The functional role of TGF-β1-induced TREM-2 expression was investigated in this 

study. If TGF-β1 does in fact increase TREM-2 expression in disease, then perhaps 
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TREM-2 is required for the effects of TGF-β1 in the tissue repair or the inflammatory 

response. As previously discussed TGF-β1 has several anti-inflammatory effects.  

However, in monocytes, TGF-β1 has also been shown to exert some pro-

inflammatory effects, including increased monocyte infiltration in inflamed tissues 

(488, 505). This study looked at the effect of TREM-2 KD on TGF-β-induced pro-

inflammatory cytokine induction. TGF-β1 increased IL-8 and IL-1β expression in 

THP-1 cells. However, KD of TREM-2 showed that TREM-2 was not required for 

this process, showing that TREM-2 is not responsible for these pro-inflammatory 

functions of TGF-β1.  

Aside from the immunomodulatory functions of TGF-β1, this cytokine also has many 

other important properties. TGF-β1 is well recognised for its ability to cause fibrosis 

and increase tissue remodelling (506, 507). Although these processes exacerbate some 

inflammatory conditions such as pulmonary fibrosis, they are caused by the 

exaggerated repair functions of TGF-β1 (508). TGF-β1 has been shown to increase 

epithelial cell migration and angiogenesis, which are both required for wound repair 

(466, 470). In addition, TGF-β1-KO mice have inefficient wound repair, further 

highlighting its importance in this process (119).  The repair functions of TGF-β1 are 

due to the regulation of extracellular matrix proteins e.g.  MMPs (509). MMP-1 is a 

well characterised MMP in wound repair. Like TGF-β1, MMP-1 is essential for 

efficient wound healing (33, 491). However, the effect of TGF-β1 on MMP-1 expression 

in monocytes has not been published previously and therefore this study measured 

the effect of TGF-β1 on MMP-1 expression in the THP-1 monocytic cell line. 

Interestingly, MMP-1 mRNA expression and protein secretion were increased by 

TGF-β1 stimulation. TGF-β1 has been shown previously to regulate MMP-1 in 

fibroblasts, but in contrast to the effects observed here in THP-1 cells, TGF-β1 has 

an inhibitory effect (510-512). Since both TGF-β1 and MMP-1 have important functions 

in tissue repair and remodelling, it is likely that in THP-1 cells, TGF-β1-induced 

MMP-1 secretion is important for these functions of TGF-β1. To investigate the role 

of TREM-2 in this process, THP-1 cells were transfected with TREM-2 siRNA to KD 

gene expression. TGF-β1-induced MMP-1 mRNA expression and protein secretion 

was significantly inhibited with TREM-2 KD, suggesting that TREM-2 is required for 

TGF-β1-induced MMP-1 expression.  

TGF-β1 has demonstrated both pro- and anti-inflammatory properties in monocytes. 

To understand which role TGF-β1 is playing in this system, this study analysed the 

effect of TGF-β1 on LPS-induced MMP-1 and compared TGF-β1-induced MMP-1 to 

that of LPS. MMP-1 mRNA expression was significantly higher with LPS than with 
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TGF-β1 alone. In addition, co-stimulation of TGF-β1 and LPS significantly reduced 

LPS-induced MMP-1 expression, suggesting that TGF-β1 is exerting an anti-

inflammatory effect in this system, further suggesting that TGF-β1 increases MMP-1 

expression for its repair functions. Unfortunately, the role of TREM-2 in this process 

could not be studied, because adding either TREM-2 or scrambled control siRNA, 

suppressed LPS-induced MMP-1 levels to that of LPS and TGF-β1 co-stimulation, 

which may be due to the effect of the siRNA on TLR activation. Despite this, this 

study suggests that in pro-inflammatory environments, TGF-β1 reduces MMP-1 

expression, but in non-inflammatory conditions, increases MMP-1 it due to its 

requirement for the repair and resolution functions of TGF-β1. Studies have shown 

that both TREM-2 and MMP-1 are important for efficient wound healing (119, 491). 

MMP-1 and TGF-β1 increase wound healing by regulating the extracellular matrix to 

increase angiogenesis and epithelial migration, but these two proteins have not 

been previously linked for these functions (34, 513-515). This study suggests that the 

repair functions of TGF-β1 may be in part through TREM-2-induced MMP-1 

secretion.  

To continue this project, future work will analyse the role of SMAD2 and 4 in TGF-

β1-induced TREM-2 expression in THP-1 cells. After ruling out these transcription 

factors, this study will analyse the TREM-2 promoter sequence to identify other 

transcription factors that may be required for this process. Another aim is to 

understand more about the functional roles of TGF-β1-induced TREM-2 expression. 

Future studies will aim to confirm the evidence shown here that TREM-2 is not 

exerting an inflammatory effect, by analysing the effect of TGF-β1 on the secretion 

of other cytokines in THP-1 cells. Future studies will also investigate the effect of 

TREM-2 KD on TGF-β1-induced MMPs and their regulators including TIMPs and 

the relationship between TGF-β1, MMP-1 and TREM-2 in relation to wound repair.  

Monocyte-epithelium co-culture models and scratch assays will be used to measure 

the effects of TREM-2 in TGF-β1 and MMP-1-induced epithelial cell migration. In 

addition, 3D culture models and gene expression of angiogenic factors will be used 

to measure the effects of TREM-2 in TGF-β1 and MMP-1-induced angiogenesis. If 

TGF-β1 is in fact signalling via TREM-2 and MMP-1 to improve epithelial migration 

and angiogenesis in vitro, the next stage would be to test this hypothesis in vivo. 
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5.5. Summary 

In conclusion, this study revealed that TGF-β1 increased TREM-2 expression in 

THP-1 monocytes though a p38/ERK1/2 MAP kinase-dependent signalling pathway, 

suggesting that TGF-β1 may in part be responsible for the increase in TREM-2 

expression observed in inflammatory conditions. In addition, this study showed a 

novel activity of TREM-2 in the regulation of TGF-β1-induced MMP-1. Due to the 

role of MMP-1, TGF-β1 and TREM-2 in wound repair, this study suggests that TGF-

β1 improves wound repair through MMP-1 by a mechanism that requires TREM-2. 
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6. Investigating TREM-2 Expression in 

Ischemia Using an In Vitro Oxygen 

Glucose Deprivation Co-Culture Model 
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6.1. Introduction 

TREM-2 is increased in inflammatory conditions including MS where it is thought to 

play a role in the resolution of inflammation and injury (243). Through a collaboration 

with Prof. Otto Witte and Dr. Christiane Frahm from the University of Jena, 

Germany, our laboratory has previously investigated gene expression changes in 

the brain following stroke, which suggested that TREM-2 may also be involved in 

the resolution of inflammation in stroke. In this experiment, C57Bl6 mice were sham 

operated or had the middle cerebral artery occluded for 30 min and then the vessel 

released to allow reperfusion of blood back into the brain. Ipsilateral and 

contralateral brain hemispheres were collected 2 and 7 days after reperfusion 

(Figure 6.1) and microarray analysis performed to identify any changes in 

inflammatory gene expression. TREM-2 was identified as one of the most highly 

upregulated genes (6-fold increase over both controls) 7 days after reperfusion. At 

this time, the brain begins to resolve the inflammation and repair the damage 

caused by occlusion, thereby identifying TREM-2 as a possible mediator during the 

resolution phase following stroke (516). Since TREM-2 has important roles in 

dampening down inflammation and in phagocytosis, the increase in TREM-2 in this 

model suggests that these functions of TREM-2 may be required for repair of the 

brain following stroke.  
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Figure 6.1: MCAo mouse model of stroke. Mice were either sham operated (Sham) or had 

their MCA occluded for 30 min. Ipsilateral and contralateral brain hemispheres were collected for 

microarray analysis 2 and 7 days after reperfusion. 

 

TREM-2 is mainly expressed in microglia in the brain and therefore it is likely that 

the functions of TREM-2 are mediated by these cells. Microglia are the immune 

cells of the brain that become activated in inflammation and during ischaemia, by 

changes in the surrounding environment, including inflammatory mediators and high 

levels of glutamate (517). Microglia are closely associated with neurons. In healthy 

conditions, neurons send signals to microglia to suppress their activation, for 

example expression of CD200 on healthy neurons is detected by the CD200 

receptor on microglia, and this ligand receptor interaction results in suppression of  

microglial activation (518-520). When neurons become damaged or stressed, for 

example in ischaemia, the neurons stop sending these signals and produce other 

signals e.g. ATP and UDP that bind to receptors on the surface of microglia to 

induce microglial activation (521-523).  

Chapters 4 and 5 have shown that IL-4 and TGF-β1 increase TREM-2 expression in 

monocytes. However, the reason for the increase in TREM-2 expression in stroke is 

unknown. Identifying the cause of this increase and the cell types involved is 

important to understand how TREM-2 is regulated, which will be useful information 
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when considering TREM-2 as a therapeutic target. To study further the increase in 

TREM-2 expression observed in cerebral ischaemia, this study established an in 

vitro model of ischaemia to investigate the changes in TREM-2 expression observed 

in the in vivo model of stroke.  

 

6.2. Aims 

The aims of this study were to: 

 Establish an in vitro model of ischaemia reperfusion. 

 Use this model to study the increased TREM-2 expression seen in vivo with 

ischaemia reperfusion and determine the mechanisms involved. 
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6.3. Methods 

6.3.1. Cell Culture 

The N9 murine microglial cell line was kindly donated by Dr. Ji Ming Wang at The 

Center for Cancer Research, National Cancer Institute at Frederick (US) (394). The 

cells were grown in IMDM media (PAA) with 4.5 g/L glucose, 100 U/mL penicillin, 

100 μg/mL streptomycin, 2 mM L-glutamine and 10% FCS. For OGD 

experimentation, N9 cells were maintained in DMEM with or without glucose and 

with 1% FCS, 100 U/mL penicillin, 100 μg/mL streptomycin and 2 mM L-glutamine. 

The cells were passaged one in ten using a cell scraper every 3-5 days. N9 cells 

were used up to passage 20. 

SH-SY5Y cells are a human neuroblastoma cell line and were kindly donated by Dr. 

Marcus Rattray, The University of Reading (UK) (395). The cells were grown in 

DMEM media containing 10% FCS, 100 U/mL penicillin, 100 μg/mL streptomycin, 2 

mM L-glutamine and 4.5 g/L glucose. For OGD experimentation, SH-SY5Y cells 

were maintained in DMEM with or without glucose and with 10% or 1% FCS as 

indicated. The cells were passaged one in ten every 3 days, the suspension cells 

were centrifuged at 1200 rpm for 5 min and adherent cells removed using 0.25% 

trypsin/EDTA ensuring both suspension and adherent cells were maintained. In 

some experiments, SH-SY5Y cells were differentiated with 10 µM all-trans retinoic 

acid (Sigma) for 9 days, the media was replaced and all-trans retinoic acid removed 

24 h before experimentation. Cells were used up to passage 20 (524). 

 

6.3.2. OGD 

N9 and SH-SY5Y cells were seeded into 6-well plates until they reached 80% 

confluency (1 x 106 cells/well). The media was then changed to either control or 

glucose free DMEM (PAA). For OGD conditions, the cells were placed into the 

modular incubator chamber (Billups-Rothenberg Inc) (Wolf Laboratories Limited, 

York, UK) and flushed through with N2-containing 5% CO2 for 10 min to remove any 

remaining oxygen and the chamber sealed. Control cells were left at RT whilst the 

oxygen was removed from the OGD cells, then the control and OGD cells were 

placed back into the 37°C incubator for 30 min or 2 h (N9 cells) or 24 h (SH-SY5Y 

cells). For the N9 OGD experiments the cells were reperfused for up to 5 days, for 

this, the cells were removed from the oxygen-free modular incubator chamber and 
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the media was changed to DMEM (1% FCS) with glucose and left in culture for up 

to 5 days and a media change every other day. 

 

6.3.3. Co-culture Experiments 

N9 cells were cultured alone in IMDM containing 10% FCS or with control (non-

OGD) SH-SH5Y cells or SH-SY5Y cells 24 h after OGD (Figure 6.2). SH-SY5Y cells 

and supernatant, cells only or supernatant only were added to N9 cells for 4 h 

(Figure 6.2).  Samples were also included to control for the SH-SY5Y supernatant 

samples, by adding DMEM media with or without glucose to the N9 cells (in IMDM). 

The SH-SY5Y cells were removed from cell culture plates using a cell scraper and 

either added directly in suspension to N9 cells or centrifuged at 300 x g for 5 min 

and the supernatant or cell pellet added separately. In all cases where media was 

added, 900 μL of media was removed from the N9 cells and replaced with 900 μL of 

SH-SY5Y supernatant, cells with supernatant or DMEM media. Where SH-SY5Y 

cell pellets were added, the cell pellet from one well of SH-SY5Y cells (~one million 

cells) was resuspended in 900 μL of N9 media from the corresponding well and 

added back into the well containing the N9 cells (Figure 6.2). To collect the protein 

samples, the N9 cells were washed with PBS to remove the SH-SY5Y cells and the 

samples lysed using 1X SDS sample buffer as described (Section 8.1.3). Protein 

samples were analysed for TREM-2 expression using western blot analysis as 

described (Section 2.5). 
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Figure 6.2: Method for analysing the effect of adding control or OGD SH-SY5Y cells on 

TREM-2 expression in N9 microglial cells. After 24 h in control or OGD conditions, the SH-

SY5Y cells were removed using a cell scraper. 900 µL of SH-SY5Y cells plus supernatant were 

added to the corresponding N9 well. 900 µL of control or glucose free DMEM was added to the 

N9 cells to control for the addition of the media to the N9 cells. SH-SY5Y cells and supernatants 

were separated and 900 µL of supernatant added to the corresponding N9 cell. The SH-SY5Y 

cell pellets were resuspended in the IMDM media from the corresponding N9 well and added into 

the N9 well. 

To optimise the change in TREM-2 expression observed in N9 cells following the 

addition of control SH-SY5Y cells, different amounts of SH-SY5Y cell pellets were 

added to N9 cells from 1-4 x 106 cells (1-4 wells of a 6 well plate) for 4 h. After this 

time the cells were lysed as described above and cell lysates measured for TREM-2 

expression by western blot analysis as described in (Section 2.5) or by 

immunofluorescence. For immunofluorescence, the SH-SY5Y cells were stained 

with 10 µM carboxyfluorescein succinimidyl ester (CFSE) (AAT Bioquest, CA, US)  

for 10 min at 37°C followed by three washes in warmed PBS by centrifugation at 

300 x g for 10 min. After the washing, they were added to the N9 cells as above. 

Immunofluorescence was performed as previously described (Section 2.6.1). 

 

6.3.4. Measurement of SH-SY5Y Cell Death 

The cell viability of SH-SY5Y (1 x 105 cells undifferentiated or 1.4 x 105 cells 

differentiated) was measured by MTS assay following 24 h OGD or control 

conditions (as described in section 2.3). Each run was performed in triplicate. 

IMDM

N9

N9 only + SH-SY5Y cells + 
supernatant

+ SH-SY5Y 
supernatant

+ DMEM control 
media

+ SH-SY5Y cells 
only

900 µL   
added

900 µL
added

Cells  from 
1 well  added

SH-SY5Y cells

Control or OGD 
SH-SY5Y

Fig 6.8 lanes: 1 2 + 3 4 + 5 6 + 7 8 + 9

Fig 6.9 lanes: 1 2 + 3 4 + 5 6 + 7
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SH-SY5Y cell apoptosis was measured by Terminal deoxynucleotidyl transferase 

dUTP nick end labelling (TUNEL) assay. For these experiments, SH-SY5Y cells 

were seeded at 1 x 106 cells/well onto ethanol-sterilised, poly-L-lysine coated 

coverslips 16-24 h before experimentation. Following cell treatment (24h OGD or 

non-OGD) SH-SY5Y cell apoptosis was measured using TUNEL. The DeadEnd™ 

Fluorometric TUNEL Assay Kit (Promega) measures DNA damage produced in 

apoptotic cells by binding and fluorescently labelling fragmented DNA. The cells 

were fixed and permeabilized as described in the immunofluorescence protocol 

(Section 2.6.1) then incubated at room temperature in equilibration buffer for 5-10 

min. The excess equilibration buffer was removed and replaced with 50 µL of 

terminal deoxynucleotidyl transferase recombinant enzyme (rTdT) incubation buffer 

(1 µL rTdT enzyme, 5 µL nucleotide mix and 45 µL equilibration buffer) for 1 h at 

37°C. The reaction was stopped by adding 1 mL of the SSC solution (NaCl, sodium 

citrate solution) for 15 min. The slides were washed in PBS two times for 10 min 

each and then mounted as stated in the immunofluorescence protocol previously 

described (Section 2.6.1). 

Cell culture media was removed from the adherent cells and Trypan Blue (diluted 

one in ten in PBS) was added and left for one minute to allow staining of the dead 

cells. The Trypan Blue was washed off with PBS and 2 mL of PBS added to the 

wells and the cells viewed by light microscopy. 
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6.4. Results 

6.4.1. The Effect of OGD on TREM-2 Expression in the Murine N9 Microglial 

Cell Line 

TREM-2 is expressed in the N9 microglial cell line but not in the SH-SY5Y 

neuroblastoma cell line (see Chapter 3 Figure 3.8). The high expression of TREM-2 

in microglial cells but little to no expression in other CNS cell types has also been 

shown by other groups and therefore any changes in TREM-2 expression observed 

in cerebral ischaemia are most likely to be due to changes in TREM-2 expression in 

microglial cells (81, 149, 258). This study used OGD to mimic ischaemic conditions in the 

brain following stroke. Preliminary data confirms the effectiveness of the ischaemia 

chamber showing that IL-1β and TGF-β1 mRNA are increased during the 

reperfusion phase following hypoxia which is also seen in the literature (see 

Appendix Figure 8.5) (525, 526). The effectiveness of the ischaemia chamber was 

assessed by aThe process of reperfusion was mimicked by the re-introduction of 

oxygen and glucose into the media. The effect of OGD on TREM-2 expression in N9 

microglial cells was analysed by western blot analysis. N9 cells were in a control 

environment (in the presence of oxygen and media containing glucose) or exposed 

to OGD for 30 min or 2 h and oxygen and glucose re-introduced (simulating 

reperfusion) for up to 5 days. Figure 6.3 demonstrates that OGD had no effect on 

TREM-2 expression in N9 cells at any of the time points tested. Any small changes 

observed were not consistent between the replicates, suggesting that the increase 

in TREM-2 expression in the MCAo model is not due to the direct effect of 

ischaemia on microglial cells alone. 
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Figure 6.3: OGD does not affect TREM-2 protein expression in N9 murine microglial cells. 

N9 microglial cells were subjected to either (A and B) 30 min or (C and D) 2 h OGD or control 

conditions followed by reperfusion (4 h, 24 h, 48 h or 5 days) or no-reperfusion (0 h). TREM-2 

expression was measured by western blot analysis. β-actin was used as a loading control.  (B 

and D) Densitometry values of TREM-2 protein expression relative to β-actin. Values are 

expressed as mean ± SEM (n = 3). 

 

6.4.2. OGD-Induced Cell Death in Differentiated and Undifferentiated SH-

SY5Y Cells 

The ligand for TREM-2 is present on the surface of apoptotic neurons and binding of 

the ligand to TREM-2 on microglia leads to phagocytosis (149). The clearance of 

neurons by TREM-2 may be very important to repair the brain following stroke and 

minimise inflammation and further damage and therefore, the next stage of this 

study was to determine if neurons were required for ischaemia-induced TREM-2 

expression. SH-SY5Y cells are a cell line frequently used as a neuronal model since 

they possess many characteristics of primary neurons (527). SH-SY5Y were left un-

differentiated or differentiated with 10 µM all-trans retinoic acid for 9 days (528). OGD 
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was used to simulate ischaemia. The effects of 24 h OGD on undifferentiated and 

differentiated SH-SY5Y cell death were examined. In undifferentiated SH-SY5Y 

cells, cell viability was reduced by 82.4% following 24 h OGD, suggesting that OGD 

increases cell death in this cell type (Figure 6.4). 

 

 

Figure 6.4: OGD reduces undifferentiated SH-SY5Y cell viability. SH-SY5Y cells were 

cultured alone or OGD conditions for 24 h and cell viability measured by MTS assay. Values are 

expressed as a percentage of the control absorbance. Mean + SEM, ***p ≤ 0.001 (unpaired 

Student’s t test) (n = 3).  

 

TUNEL assay was then performed to analyse the type of cell death that occurred 

following 24 h OGD. TUNEL binds to fragmented DNA present in apoptotic cells. In 

control conditions, 14.0% of undifferentiated SH-SY5Y cells were TUNEL positive, 

whereas following OGD, 76.7% of cells were TUNEL positive (Figure 6.5). This 

suggests that OGD increases apoptosis in undifferentiated SH-SY5Y cells. 
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Figure 6.5: TUNEL staining in undifferentiated SH-SY5Y cells after 24 h OGD. SH-SY5Y cell 

apoptosis was measured after 24 h OGD. Immunofluorescence measured TUNEL staining 

(GREEN) and the nuclear stain DAPI (BLUE) which allowed identification of TUNEL negative and 

positive cells. (A) Immunofluorescence image of TUNEL and DAPI labelling in SH-SY5Y cells. (B) 

The percentage of TUNEL positive cells were measured by counting the number of TUNEL 

positive (GREEN) cells in 100 cells, ***p ≤ 0.001 (unpaired Student’s t test) (n = 3). Scale Bar 50 

µm. 

 

After observing the effect of OGD on SH-SY5Y neuroblastoma cells, they were 

differentiated into a more neuronal-like cell with 10 µM all-trans retinoic acid for 9 
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days. Differentiation was confirmed by observation of altered morphology including 

elongated neurites and by suppression of proliferation (529).  The effects of OGD-

induced apoptosis were compared to that of undifferentiated cells. OGD reduced 

differentiated SH-SY5Y cell viability by 76.8% (p ≤ 0.001), similarly to the 

undifferentiated cells (Figure 6.6). 

 

 

Figure 6.6: OGD reduces cell viability in differentiated SH-SY5Y cells. Cells were 

differentiated for 9 days with 10 µM all-trans retinoic acid. They were then cultured alone or in 

OGD conditions for 24 h and cell viability measured by MTS assay. Values are expressed as a 

percentage of the control absorbance. Mean + SEM, ***p ≤ 0.001 (unpaired Student’s t test) (n = 

3). 

 

To further assess SH-SY5Y cell viability, the differentiated cells were also stained 

for TUNEL 24 h after OGD. The basal numbers of TUNEL-positive cells were lower 

in differentiated SH-SY5Y cells (3.7%) compared to undifferentiated cells (14.0%) 

(Figure 6.7). In addition, in differentiated cells, OGD had no significant effect on 

TUNEL staining, suggesting that there are inconsistencies between the TUNEL and 

MTS assays in this experiment. This is likely to be due to the different mechanisms 

of assessing cell death in these assays. However, TUNEL analysis suggests that 

OGD induces significant apoptosis in undifferentiated cells but not in differentiated 

cells (Figure 6.7). 

C
ontr

ol

O
G
D

0

20

40

60

80

100

120 ***

%
 C

e
ll
 V

ia
b

il
it

y

R
e
la

ti
v
e
 t

o
 C

o
n

tr
o

l



179 
 

 

Figure 6.7: TUNEL staining in differentiated SH-SY5Y cells after 24 h OGD. Apoptosis of SH-

SY5Y cells differentiated for 9 days with 10 µM all-trans retinoic acid was measured 24 h after 

OGD. Immunofluorescence measured TUNEL staining (GREEN) and the nuclear stain DAPI 

(BLUE) which allowed identification of TUNEL negative and positive cells. (A) 

Immunofluorescence image of TUNEL and DAPI labelling in SH-SY5Y cells. (B) The percentage 

of TUNEL positive cells were measured by counting the number of TUNEL positive (GREEN) 

cells in 100 cells. ***p ≤ 0.001 (unpaired Student’s t test) (n = 3). Scale Bar = 50 µm.  
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6.4.3. SH-SY5Y and N9 Co-Culture Following SH-SY5Y Cell OGD 

To observe the effects of OGD-treated SH-SY5Y cells on TREM-2 expression in 

microglia, a co-culture system was designed (Figure 6.2). Undifferentiated SH-SY5Y 

cells were exposed to 24 h OGD and then co-incubated with N9 cells and TREM-2 

measured by western blot analysis. Lane 1 contains N9 cells alone, lanes 2 and 3 

are co-incubated with control or OGD SH-SY5Y cells and supernatant which 

showed a small reduction with co-culture with the control SH-SY5Y cells and 

supernatant (Figure 6.8 lane 2 compared to lane 1). N9 co-culture with control or 

OGD undifferentiated SH-SY5Y cell supernatants had no effect on TREM-2 

expression compared to N9 adding control or glucose free DMEM media (Figure 6.8 

lanes 6 and 7 compared to lanes 4 and 5). However, co-culture of N9 cells with 

control undifferentiated SH-SY5Y cells only (without the media) caused a modest 

reduction in TREM-2 expression compared to N9 cells alone (Figure 6.8 lane 8 

compared to lane 1). There was also a trend showing a small increase in TREM-2 

expression with the addition of OGD SH-SY5Y cells compared to adding control SH-

SY5Y cells (Figure 6.8 lane 9 compared to lane 8). This suggests that the presence 

of non-ischaemic SH-SY5Y cells reduces TREM-2 expression in N9 cells.  

 

 

Figure 6.8: Effect of OGD SH-SH5Y cells on TREM-2 expression in N9 cells. N9 cells were 

cultured for 4 h, alone or in the presence of control (C) or 24 h OGD SH-SY5Y cells + 

supernatants. N9 cells were also cultured in the presence of control or OGD SH-SY5Y cell 

supernatants or cell pellets only (1 million cells per sample). To account for the different media 

required for N9 and SH-SY5Y cell cultures, SH-SY5Y control or glucose free media were added 

to N9 cells to ensure this alone did not affect TREM-2 expression. TREM-2 protein expression 

was measured by western blot analysis, with β-actin used as a loading control (n = 3). 
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To see if the differentiation state of SH-SY5Y cells affected TREM-2 regulation in 

this model, SH-SY5Y cells, differentiated with all-trans retinoic acid, were co-

cultured with N9 cells following 24 h OGD or control conditions. Similarly to 

undifferentiated SH-SY5Y cells, addition of control cells caused a small but 

consistent reduction in TREM-2 expression that was not observed with the addition 

of OGD cells (Figure 6.9 lane 6 and 7). In addition, differentiated SH-SY5Y cell 

supernatants (lanes 4 and 5) had no effect on TREM-2 expression (Figure 6.9). 

These results suggest that this effect is independent of differentiation status. 

  

 

Figure 6.9: The effect of differentiated OGD SH-SH5Y cells on TREM-2 expression in N9 

cells. N9 cells were cultured for 4 h, alone or in the presence of control (C) or 24 h OGD SH-

SY5Y cells + supernatants differentiated for 9 days with 10 µM all-trans retinoic acid. N9 cells 

were also cultured in the presence of control or OGD differentiated SH-SY5Y cell supernatants or 

cell pellets only (1 million cells per sample). To account for the different media required for N9 

and SH-SY5Y cell cultures, SH-SY5Y control or glucose free media was added to control N9 

cells. TREM-2 protein expression was measured by western blot analysis, β-actin was used as a 

loading control (n = 3). 

 

To confirm that the addition of SH-SY5Y cells resulted in a reduction in microglial 

TREM-2 expression, increasing numbers of undifferentiated SH-SY5Y cells co-

incubated with N9 cells. Increasing the number of undifferentiated SH-SY5Y cells 

reduced TREM-2 expression in N9 cells further up to a 3:1 ratio (three million 

neurons: one million microglial cells) (Figure 6.10). To confirm that this effect did not 

cause cell death of N9 cells, cell viability was analysed using Trypan Blue exclusion 

(as described in Section 6.3.4). The increase in cell number had no effect of N9 cell 
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viability (see Appendix Figure 8.6) therefore three million cells were chosen for 

future studies. 

 

 

Figure 6.10: Increasing numbers of SH-SH5Y cells reduces TREM-2 expression in N9 cells. 

N9 cells were cultured for 4 h, alone (0) or in the presence of 1, 2, 3 or 4 million healthy (control) 

undifferentiated SH-SY5Y cells. After removal of SH-SY5Y cells, N9 cells were analysed by 

western blot analysis for TREM-2 protein expression. β-actin was used as loading control (n = 3). 

 

Since the increased ratio of undifferentiated neurons: microglial cells resulted in a 

clear reduction in microglial TREM-2 expression, the effect of increasing control or 

OGD neurons in the model was investigated.  A 3:1 ratio of cells was used, with 

three million differentiated neurons co-incubated with one million microglial cells and 

compared with undifferentiated cells. To control for the effect of reduced 

proliferation in OGD conditions, the SH-SY5Y cells were counted after the 

experiment and equal numbers of control or OGD cells were co-incubated with N9 

cells. The addition of control differentiated SH-SY5Y cells reduced TREM-2 

expression in N9 cells more than undifferentiated SH-SY5Y cells after 4 h (Figure 

6.11). In addition, adding OGD SH-SY5Y cells demonstrated similar expression to 

the N9 only sample in both differentiated and undifferentiated cells (Figure 6.11). In 

addition, since equal numbers of SH-SY5Y cells were added to each well, this 

change is not due to reduced cell numbers following OGD. This suggests that the 

presence of neurons maintains low TREM-2 expression in microglia, that TREM-2 is 

increased following ischaemic injury of neurons and that differentiated neuronal 

cells have more capability to reduce TREM-2 expression.   
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Figure 6.11: Addition of control but not OGD SH-SY5Y cells reduces TREM-2 expression in 

N9 cells. N9 cells were cultured in the presence or absence of control or OGD differentiated or 

undifferentiated SH-SY5Y cells. Cell pellets from 3 million SH-SY5Y cells were co-incubated with 

N9 cells for 4 h. Differentiated SH-SY5Y cells were differentiated with 10 µM all-trans retinoic acid 

for 9 days. TREM-2 protein expression was measured by western blot analysis, β-actin was used 

as loading control (n = 2). 

 

To confirm these changes in TREM-2 expression in microglial cells, differentiated 

control or OGD SH-SY5Y cells were left in co-culture with N9 cells for 4 h, and 

following SH-SY5Y removal, TREM-2 expression measured by immunofluorescence 

using CFSE stain to label neurons. The absence of CFSE-stained cells (green) 

confirms the ability of the wash steps to remove SH-SY5Y cells and therefore all 

changes in TREM-2 expression were specific to the N9 cells. Figure 6.12 

demonstrates that the addition of healthy (control) SH-SY5Y cells results in a 

reduction in TREM-2 expression in N9 cells compared to N9 cells alone. However, 

differentiated OGD-treated neuronal cells did not reduce TREM-2 expression, if 

anything, these cells increased TREM-2 expression in N9 cells (Figure 6.12). These 

results confirm that OGD treatment of SH-SY5Y cells inhibits their ability to reduce 

microglial TREM-2 expression. 
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 Figure 6.12: TREM-2 expression measured by immunofluorescence in N9 cells following 

incubation with OGD or control differentiated SH-SY5Y cells. Differentiated SH-SY5Y cells 

were incubated in control or OGD conditions and stained with CFSE (GREEN). N9 cells were 

cultured in the presence or absence of control or OGD differentiated SH-SY5Y cell pellets for 4 h. 

TREM-2 protein expression (RED) was analysed by immunofluorescence in permeabilized N9 

cells. DAPI (BLUE) was used to stain the nucleus (n = 3). 
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6.5. Discussion 

TREM-2 expression is increased in the brain following stroke and in other 

neurological conditions including neurodegeneration and MS (243, 352). In the CNS, 

TREM-2 is mainly expressed in microglia and is involved in anti-inflammatory and 

phagocytic activities (81, 149, 240). However, the mechanisms of TREM-2 upregulation 

in cerebral ischaemia are not known, therefore the aim of this study was to observe 

changes in TREM-2 expression in microglia following ischaemia by establishing an 

in vitro model of ischaemia. Interestingly, OGD had no direct effect on TREM-2 

expression in N9 microglia in culture. However, using a co-culture system of 

neuronal and microglial cells, microglial TREM-2 expression was reduced by the 

addition of healthy control neurons but not OGD-treated neurons. No apoptosis 

occurred following OGD in the differentiated neuronal cells suggesting that this 

effect is not dependent on neuronal apoptosis. These results suggest that TREM-2 

expression in microglia is generally low when surrounded by neurons but that 

damage or stress of neurons causes an increase in TREM-2 expression, likely to be 

due to the removal of an inhibitory signal that suppresses its expression in the 

presence of healthy neurons. This suggests that in situations such as stroke where 

neurons are subjected to ischemia, TREM-2 expression is increased.  

Most studies demonstrate that TREM-2 is most highly expressed in microglia in the 

brain (81, 149), therefore these cells are likely to be the cells that express changes in 

TREM-2 expression following ischaemia. N9 microglia were exposed to OGD for 30 

min or 2 h and then reperfused for up to 5 days, but OGD had no effect on TREM-2 

expression in microglia at any time point. This suggests that regulation of TREM-2 

in ischaemia requires other cells. This has been observed with other inflammatory 

mediators, for example the suppression of pro-inflammatory cytokine expression in 

microglia by apoptotic neurons (199). In addition, TREM-2 expression in microglia has 

been previously shown to be altered by co-culture with mesenchymal stem cells 

through CX3CL1, further suggesting that TREM-2 expression in microglia is 

regulated by other cell types (375). Neurons are the main cell type of the brain. The 

health of these cells is heavily monitored by microglia, and when neurons in the 

surrounding environment are damaged or stressed e.g. during ischaemia, microglia 

become activated (159). In addition, the role of TREM-2 in the phagocytosis of 

apoptotic neurons led to the investigation of the effect of ischaemic neurons on 

TREM-2 expression in microglia (81, 530). This study used the SH-SY5Y 

neuroblastoma cell line, a neuronal model that has been previously well 

characterised (527). SH-SY5Y cells were left undifferentiated or differentiated with all-
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trans retinoic acid to form a more neuronal cell type (524). Both differentiated and 

undifferentiated SH-SY5Y cells have been tested in this study for their effects on 

TREM-2 expression in microglia. Undifferentiated SH-SY5Y cells are more stem-cell 

like and therefore may have different effects on TREM-2 regulation to differentiated 

SH-SY5Y cells (531, 532). Stem cells have been previously shown to increase TREM-2 

expression in microglia, and therefore the effect of these cells on TREM-2 

expression was also of interest (375). In addition, more stem cell-like neuronal cells 

are present in the repair phase following stroke when TREM-2 expression is also 

increased and therefore these cells may increase TREM-2 expression following 

stroke (375). There was a significant reduction in cell viability, by MTS assay, 

following 24 h OGD in both differentiated and undifferentiated cells. On the other 

hand, the TUNEL assays showed that in undifferentiated cells, apoptotic cells were 

increased by 62.7%, but in differentiated SH-SY5Y cells, OGD had no significant 

effect. In addition, basal levels of TUNEL positive cells were higher in 

undifferentiated cells compared to differentiated SH-SY5Y cells, suggesting that 

undifferentiated cells in culture are more susceptible to cell death than differentiated 

cells. This suggests some discrepancy between the two assays. After further 

consideration, it is likely that the MTS assay showed a reduction in cell viability in 

both differentiated and undifferentiated cells because of the lack of oxygen and 

glucose in the media, as this will have slowed down the metabolism of the SH-SY5Y 

cells and so this assay was not used in future ischaemia experiments. On the other 

hand, the TUNEL assay binds to fragmented DNA produced in apoptosis, and 

therefore is the most reliable measure of cell death shown here.  The TUNEL assay 

suggests that differentiated SH-SY5Y cells are resistant to OGD-induced apoptosis 

but undifferentiated cells are not. This finding confirms previous studies comparing 

differentiated and undifferentiated SH-SY5Y cells, which showed  that differentiated 

cells are resistant to 1-methyl-4-phenylpyridinium and 6-hydroxydopamine-induced 

cell death but undifferentiated cells are not (524). It is important to note that the 

TUNEL assay can also detect some necrotic cells, therefore future studies would 

aim to confirm the type of cell death that occurs here using other methods of 

apoptotic and necrotic cell detection including annexin V, active caspase 3 and 

propidium iodide (533).  

After measuring the effects of OGD on SH-SY5Y cell death, these cells were co-

cultured with N9 cells to observe their effects on TREM-2 expression. Adding the 

supernatants from either differentiated or undifferentiated SH-SY5Y cultures from 

control or OGD neurons had no effect on TREM-2 expression in N9 cells. However, 
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co-incubation of control SH-SY5Y cells only (without supernatant) with N9 cells 

showed a small reduction in TREM-2 expression in both differentiated and 

undifferentiated cells. Interestingly, adding OGD SH-SY5Y cells caused a small but 

consistent increase in TREM-2 expression compared to adding control SH-SY5Y 

cells. A moderate change in TREM-2 expression was seen when equal numbers 

(one million) of SH-SY5Y and N9 cells were incubated together for 4 h. However, 

many studies with microglia and neuronal co-cultures use neuron:microglial ratios 

between 2:1 and 5:1 (534, 535). In addition, the ratio of microglia to neuronal cells 

throughout the brain is varied, and therefore this study analysed the effect of adding 

increasing numbers of undifferentiated SH-SY5Y cells on TREM-2 expression in N9 

cells (536). Increasing the number of neuronal cells enhanced the effect of these cells 

on the suppression of TREM-2 expression in microglial cells. This finding suggests 

that TREM-2 expression in microglia is partially regulated by the number of neurons 

present. This suggests that as neuronal cell numbers increase, the expression of 

TREM-2 in microglia in the region decreases. Forabosco and colleagues have 

shown that TREM-2 expression throughout the brain is varied, and that TREM-2 is 

highly expressed in particular brain regions including the hippocampus, medulla and 

substantia nigra (429). In addition, expression of TREM-2 in the brain was mainly 

found in regions expressing low or no neuronal markers confirming observations 

seen here (429). These initial studies suggest that TREM-2 expression is low in 

microglial cells in the presence of healthy neurons and that the absence of these 

cells, for example. N9 cell culture alone, allows a high expression of TREM-2 to be 

maintained that may not be observed in all areas of the CNS in vivo. This is an 

important point to consider when carrying out in vitro studies of TREM-2 expression 

in disease, particularly since individual microglial cell cultures have constitutively 

high levels of TREM-2 that would usually be suppressed in their natural 

environment. This may partially explain why TREM-2 expression is increased in 

many inflammatory diseases, yet so little is known about how this is regulated.  

After optimising the ratio of neuronal:microglial cells required to observe an optimal 

change in TREM-2 expression (3:1), the effect of control and OGD neurons on 

microglial TREM-2 expression was studied by both western blot analysis and 

immunofluorescence. Both differentiated and undifferentiated control (healthy) SH-

SY5Y cells reduced TREM-2 expression, and this effect was lost following OGD. 

The differentiated cells suppressed TREM-2 expression to a greater degree than 

undifferentiated cells. Although more experiments are required to validate these 

results, the difference observed after differentiation of SH-SY5Y cells may be 
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because expression of the molecules required for suppression of TREM-2 

expression are increased on differentiated cells, including CD22 and CD47, which 

are cell surface antigens that suppress myeloid cell activation (144, 537). Future studies 

will use immunofluorescence to view the changes in cell surface marker expression 

on SH-SY5Y cells following differentiation, focusing on molecules involved in 

suppression of microglial activation. This study suggests that regulation of TREM-2 

expression in the animal model of stroke requires cell contacts between neurons 

and microglia to regulate TREM-2 expression. This hypothesis is confirmed by 

studies showing that healthy neurons express molecules on their cell surface 

including  CD200 and CD47 that inform microglial cells that the neuron is healthy, 

activating signalling pathways in the microglial cell to inhibit microglial activation (142). 

These signals are lost in damaged or stressed neurons, removing the suppression 

on microglial activation (142). From this study, we hypothesise that TREM-2 

expression in microglia is suppressed by the presence of healthy neurons and the 

removal of this suppressive signal following ischaemia causes an increase in 

TREM-2 expression. To confirm this hypothesis, future work will use cell culture well 

inserts to separate SH-SY5Y cells to allow them to be in culture together but not 

make cell contact. 

The effects of differentiated and undifferentiated SH-SY5Y cells on TREM-2 

regulation in microglia were compared. Differentiated SH-SY5Y cells had a greater 

ability to reduce TREM-2 expression in N9 cells than undifferentiated cells, which is 

most likely due to increased neuronal markers on the cell surface for regulation of 

microglial activity. However, when considering the mechanism of TREM-2 regulation 

in ischaemia, this study first hypothesised that the increase in TREM-2 expression 

was due to an increase in apoptotic cells due to the role of TREM-2 in phagocytosis. 

However, this study shows that this is not the case, as there was no significant 

increase in apoptotic differentiated SH-SY5Y cells after OGD. This suggests that in 

OGD, TREM-2 expression is increased by a change in markers on neuronal 

membranes triggered prior to apoptosis.  

TREM-2 upregulation on day 7 in the MCAo mouse model of stroke and the anti-

inflammatory and phagocytic functions of TREM-2 led us to hypothesise that TREM-

2 was beneficial in stroke. Towards the end of this study, colleagues at the 

University of Jena confirmed that TREM-2 was upregulated 7 days following stroke 

in this model. However, using TREM-2 KO mice, they found that these mice had 

reduced inflammation in the brain measured by reduced microglial activation and IL-

1α, IL-1β, TNF-α CX3CR1, CCL2 and CCL3 expression. These results suggest that 
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TREM-2 is pro-inflammatory in stroke (360). TREM-2 deletion had no effect on infarct 

volume at either 7 or 28 days after occlusion, suggesting that the increase in 

inflammation did not affect stroke outcome (360). This suggests that TREM-2 is 

increased in stroke which matches the observations from the in vitro model of 

ischaemia established in this study.  

One key limitation of this study is that the work is performed in cell lines. To address 

this limitation, future work aims to isolate primary mouse neuronal and microglial 

cells to repeat key experiments. In addition, future studies will use mouse brain 

slices in culture to view the effect of ischaemia on TREM-2 expression in the brain 

slices, measured by immunofluorescence. The main limitation with slice culture is 

the duration of the culture required. In vivo, TREM-2 was increased 7 days after 

ischaemia, and if similar time points are expected ex vivo, the slices are unlikely to 

be healthy in culture for that length of time after dissection. Another limitation is the 

use of mouse:human co-cultures, although these co-cultures have been previously 

used (538-541), there may be some species differences, therefore future studies should 

use human or mouse only co-cultures to confirm these changes. 

 

6.6. Summary 

In summary, this study has established an in vitro model of ischaemia to study the 

role of microglia and neurons in the regulation of TREM-2 expression. This model 

shows that ischaemia simulation does not alter TREM-2 expression in microglial 

cultures alone, but that the increase in TREM-2 expression in ischaemia is likely to 

depend on neurons. The addition of healthy neurons reduced basal TREM-2 

expression in microglial cells, which is confirmed by another report showing low 

TREM-2 expression in microglia in areas of the brain where high levels of neuronal 

markers are found (429). In addition, this study suggests that TREM-2 expression is 

increased in the presence of ischemic neurons and therefore this may explain how 

TREM-2 is increased in stroke.  
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TREM-2 has been identified as an important mediator in the resolution of 

inflammation though its anti-inflammatory and pro-phagocytic functions (81, 240). 

TREM-2 is also known to be increased in inflammatory diseases including COPD, 

rheumatoid arthritis and MS (242-244). The expression of TREM-2 in myeloid cells is 

widely acknowledged, however, information regarding its expression in non-myeloid 

cells was limited. (81, 240, 262). This study showed that TREM-2 expression is not 

restricted to myeloid cells types and may be expressed in some melanoma and 

epithelial cell lines and in primary cells of the lung. TREM-2 was expressed on 

ciliated bronchial epithelial cells of respiratory bronchioles in healthy and asthmatic 

lungs. TREM-2 expression was highly expressed on the cilia of these cells 

suggesting that TREM-2 may be involved in cilia function. Cilia are important for the 

clearance of debris and mucus from the lungs, and TREM-2 is also important for 

clearance of pathogens, therefore enhancing cilia function may be another way 

TREM-2 increases pathogen clearance (426). The function of TREM-2 on these 

ciliated epithelial cells in the lung requires further research and may uncover new 

functions for TREM-2. To test this, an in vitro model of cilia movement will be 

developed as described by Milara and colleagues, where an air-liquid cell culture 

model is established using bronchial epithelial cells from human lung biopsies (542). 

In myeloid cells, TREM-2 is downregulated by inflammatory mediators including IL-

1β, TNF-α and LPS (241). However, few inflammatory mediators have been shown to 

increase TREM-2 expression and there are no known signalling molecules shown to 

regulate induced expression of TREM-2. This study found that IL-4 but not IL-13 

increases TREM-2 expression in monocytes and identified a novel mechanism of 

TREM-2 upregulation which required PI3K. In addition, the immunomodulatory 

cytokine TGF-β1 is identified as a novel inducer of TREM-2 expression in 

monocytes. Furthermore, TGF-β1-induced TREM-2 protein expression required 

PI3K, p38 MAP kinase and MEK1/ERK1/2 signalling pathways. This novel 

mechanism of TREM-2 regulation required PI3K and p38, but not ERK1/2 activity 

for TREM-2 gene expression, suggesting that ERK1/2 is required post-

translationally for this increase in TREM-2 expression. This study has shown for the 

first time that PI3K, p38 and the ERK1/2 signalling pathways regulate induced 

expression of TREM-2 (Figure 7.1). Future studies will focus on the transcription 

factors required for TGF-β1-induced TREM-2 expression and study the post-

translational mechanism by which the ERK1/2 signalling pathway mediates its 

effects on TREM-2 protein expression. In addition, the identification of IL-4 and 

TGF-β1 as mediators of TREM-2 expression, suggests that these mediators may be 
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required for the upregulation of TREM-2 expression observed in inflammatory 

conditions including allergic rhinitis, rheumatoid arthritis and MS where these 

mediators are upregulated (448, 543-546). To test this hypothesis, future studies will 

investigate the effect of knocking out TGF-β1 and IL-4 on TREM-2 expression in 

animal models of inflammatory diseases. In addition, future studies will also 

investigate the effect of other inflammatory mediators on TREM-2 expression 

including a variety of chemokines and cytokines that were not tested in this study. 

These studies will also be carried out in macrophages and/or microglial cells, as 

these cells are the most likely to be present and have functional effects in inflamed 

tissues in inflammatory diseases.  

 

 

Figure 7.1: Mechanism of TGF-β1-induced TREM-2 expression. 
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monocytes. Interestingly, MMP-1, TGF-β1 and TREM-2 have all been shown to be 

important for efficient wound healing (33, 119, 334, 491). MMP-1 and TGF-β1 increase 

angiogenesis and epithelial migration, two activities vital for wound healing (34, 466, 470, 

513), and therefore, since TGF-β1-induced MMP-1 requires TREM-2, this may 

partially explain how these signalling molecules mediate their positive effects on 

wound healing. To test this hypothesis, future studies aim to investigate the effects 

of TREM-2 on epithelial migration and angiogenesis. Epithelial migration and 

angiogenesis will be measured using endothelial and epithelial scratch migration 

assays, measuring angiogenic factors including VEGF and FGF and using a 3D 

Matrigel model to analyse tube formation. In addition, this is the first time that 

TREM-2 has been linked to MMP-1 regulation and therefore this area requires 

further investigation. Future studies will investigate the effect of TREM-2 KD, over-

expression and activation, on the expression and activity of a wide range of MMPs 

and their inhibitors (e.g. TIMPS) which may reveal new functions for TREM-2. 

These studies will be carried out in macrophages, as MMPs have a variety of 

functions in these cells which have been widely published and therefore can more 

easily be investigated (547-549). 

Most studies suggest that TREM-2 has anti-inflammatory effects due to its ability to 

reduce pro-inflammatory cytokine secretion and increase anti-inflammatory cytokine 

secretion in a variety of models (81, 240). However, a few studies have shown that 

TREM-2 may not be anti-inflammatory in all circumstances. For instance Correale 

and colleagues showed that KO of TREM-2 in an animal model of colitis reduced 

disease severity, pro-inflammatory cytokine secretion and bacterial killing 

suggesting that in this case, TREM-2 is pro-inflammatory (337). Although this study 

has focused on the regulation of TREM-2 expression, the identification of IL-4 and 

TGF-β1 as inducers of TREM-2 expression provides us with more insight into the 

functions of TREM-2. IL-4 and TGF-β1 have both pro- and anti-inflammatory 

functions. IL-4 is increased in asthma and allergy and in these circumstances, 

increases inflammation (550). However during rheumatoid arthritis and wound healing 

IL-4 is beneficial in promoting the resolution of inflammation (97, 551). Similarly, TGF-

β1 has many anti-inflammatory functions reducing inflammation in models of MS, 

rheumatoid arthritis and others (469, 476, 552). However, in other conditions including 

pulmonary fibrosis, TGF-β1 can increase inflammation due to pro-fibrotic functions 

(553, 554), and since these diverse cytokines increase TREM-2 expression, it is likely 

that similarly to its inducers, TREM-2 is also anti-inflammatory in some 

environments and pro-inflammatory in others. 
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The anti-inflammatory mechanisms of TREM-2 have recently been studied in 

BMDMs showing that TREM-2 inhibits TLR induced ERK activation to supress 

inflammatory cytokine secretion (Figure 7.2) (297). This finding was unexpected since 

TREM-2 activation has been previously shown to active ERK1/2 in myeloid cells 

(291). This suggests that different mechanisms of TREM-2 activation result in different 

signalling pathways and functions. It may also be that activation of TREM-2 

intracellularly results in activation of a different signalling cascade compared to if 

TREM-2 is activated by its ligand extracellularly. 

 

Figure 7.2: Proposed mechanism for TREM-2 suppression of TLR induced inflammatory 
cytokine secretion. 

 

This pro- and anti- inflammatory effect is also demonstrated in the CNS. In MS, 

TREM-2 is anti-inflammatory (243). However, in stroke, evidence from KO mice 

suggests that it is pro-inflammatory, therefore further information regarding the 

functions of TREM-2 in different conditions is required (360). It is likely that TREM-2 

function is regulated by mediators in the surrounding environment that differ 

between diseases, resulting in either pro- or anti- inflammatory effects depending on 

the condition. However, despite the contrasting roles of TREM-2 in inflammatory 

conditions, TREM-2 is consistently increased, for example in MS and stroke (278, 360). 

However, the mechanisms of TREM-2 regulation in stroke are unknown. This study 

characterised an in vitro model of stroke using OGD to discover the mechanisms of 

TREM-2 upregulation in stroke. OGD alone was not sufficient to induce TREM-2 
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expression in N9 murine microglia, but the regulation of TREM-2 required the 

presence of neurons. Basal expression of TREM-2 in the microglial cell line was 

reduced in co-culture with the neuronal SH-SY5Y cell line, suggesting the presence 

of neurons supresses TREM-2 expression. This finding is confirmed by a recent 

study by Forabosco and colleagues showing high expression of TREM-2 in areas 

without neurons (429). Interestingly, after OGD treatment of the neuronal cell line, co-

culture with N9 microglial cells prevented the suppression of microglial TREM-2 by 

the neurons. This suggests that when neurons of the brain become ischaemic e.g. 

in stroke, the microglia in a neuron-rich environment express higher levels of TREM-

2. High TREM-2 expression in these microglia may be important for priming of the 

cell for efficient phagocytosis of apoptotic cells and cell debris. The ability of healthy 

but not ischaemic neurons to reduce TREM-2 expression and the requirement of co-

culture suggests that this event is mediated by changes in cell surface protein 

expression in neurons following ischaemia. Healthy neurons express signalling 

molecules on their surface including CD200 and CD47 that inform the surrounding 

microglia that the neuron is healthy (142, 519, 520). However, when the neuron becomes 

stressed or damaged, these signals are lost and they also express other signals 

including ATP and together, this informs the microglia of the damaging environment, 

initiating microglial activation (523). From this study we hypothesise that TREM-2 is 

reduced by a molecule on the surface of neurons including CD47 or CD200 and that 

the loss of this molecule or the gain of other molecules on the surface of the cell 

during ischaemia causes the upregulation of TREM-2 expression. To test this 

hypothesis, future studies will investigate changes in surface expression on neurons 

with ischaemia to understand the molecules required for TREM-2 regulation.  

In conclusion, prior to this study there was little known about the expression of 

TREM-2 in non-myeloid cells. This pilot study suggests that TREM-2 may also be 

expressed in melanoma cells and on the cilia of airway epithelial cells, revealing 

potential new functions for TREM-2 in cancer and cilia function. TREM-2 expression 

was also confirmed in myeloid cells where it was located in the Golgi apparatus. In 

addition, few mediators were known to increase TREM-2 expression, and this study 

has revealed both IL-4 and TGF-β1 as key inducers of TREM-2 expression in 

monocytes, suggesting that these cytokines may contribute to increased TREM-2 

expression in inflammatory diseases. The intracellular signalling pathways required 

for induced expression of TREM-2 were unclear, and therefore this study also 

demonstrated the involvement of PI3K, p38 MAP kinase and MEK1/ERK1/2 MAP 

kinase signalling pathways in TREM-2 regulation by TGF-β1 and IL-4. Furthermore, 
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TREM-2 was linked to the regulation of MMPs for the first time. Finally, the 

mechanisms of TREM-2 regulation in stroke were unknown and this study suggests 

that ischaemia-induced changes on neurons are required for the increase in TREM-

2 expression on microglia following stroke. Together, this research has advanced 

the field of TREM-2 by revealing new mechanisms of regulation and expression 

which indicate new functions for TREM-2 that are yet to be discovered. This 

research further supports the role of TREM-2 in the resolution of inflammation but 

also indicates a role for TREM-2 in tissue repair. These results suggest that TREM-

2 may have potential as a therapeutic target in inflammatory diseases.  
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8.1. Buffers and Solutions 

 

8.1.1. Fibronectin Coating:  

Flasks were pre-coated with 2 mL coating media and stored at RT until use.  

Coating media: 88 mL LHC basal medium, 10 mL 0.1% BSA, 1 mL Vitrogen and 1 

mL human fibronectin. 

 

8.1.2. qRT-PCR: 

RT Master Mix: 2.5 μL 25 μM MgCl2, 1 μL 10 x RT Buffer, 1 μL 2.5 μM dNTPs, 1μL 

50 μM Random Hexomers (diluted 1/4 in analytical reagent grade water (Fisher 

Scientific)), 4 μL Reverse Transcriptase and 4 μL RNase inhibitor; per sample, all 

reagents were obtained from Applied BioSystems.  

PCR Mix: 10 μL SYBR Green JumpStart Taq ReadyMix (20 mM Tris-HCl, pH 8.3, 

100 nM KCl, 7 nM MgCl2, 0.4 mM of each dNTP (dATP, dGTP, dCTP and dTTP), 

stabilisers, Taq DNA Polymerase, Jump Start Taq antibody and SYBR Green I), 4 

μL RNase DNase free dH2O, 1 μL F/R primer mix (5% Forward Primer (5 µM) 5% 

Reverse Primer (5 µM) in RNase DNase free dH2O) per sample. 

 

8.1.3. Western Blotting 

General Western Blot Protocol Recipes: 

Nuclear Cytosolic Fractionation Buffer A: 100 µL 1 M HEPES (pH 7.9) (Fisher), 

100 µL 1M KCl (Fisher), 3 mL sucrose (Fisher), 15 µL 1M MgCl2 (Fisher), 5 µL 1M 

DTT (Sigma), 10 µL NP-40 and 6.77 mL distilled water. 

Nuclear Cytosolic Fractionation Buffer B: 200 µL 1 M HEPES (pH 7.9), 1 mL 1M 

KCl, 200 µL 5M NaCl, 5 µL, 1 M DTT, 2 mL glycerol (Fisher), 6.6 mL distilled water. 

Both buffers were stored at -20°C for future use. 

4X LDS sample buffer (Life Technologies): diluted to 1X with PBS. 

2X Novex Tris-Glycine SDS: Diluted to 1X using PBS. 
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20X TBST: 20 mM Tris base, 137 mM NaCl (Fisher), 1 M HCl (Fisher) and 0.1% 

Tween 20 (Fisher) in 1 L dH2O to pH 7.6. 

1X TBST: diluted in dH2O from 20X TBST  

Blocking solutions: 20 g Marvel milk powder plus 400 mL 1X TBST. Alternatively 

1% BSA in 1X TBST was filtered and used for the MMP-1 antibody staining for all 

wash steps and primary and secondary antibody incubations. 

1X Reblot Plus Strong Solution (Millipore Merck): Diluted 10X Reblot Plus Strong 

Solution one in ten in dH2O. 

Stripping solution (‘in house’ recipe): 15 g glycine, 1 g SDS, 10 mL Tween 20, top 

up to 1 L with dH2O and make to pH 2.2. 

 

Novex System: 

10X Transfer buffer: 24.26 g tris base (Formedium, Norfolk, UK), 112.6 g glycine 

(Fisher) and 1 g SDS (Fisher) in 1 L dH2O. 

1X Transfer buffer: 100 mL 10X transfer buffer, 200 mL methanol (Fisher) and 700 

mL dH2O. 

1X MOPS buffer: made from 20X by diluting in dH2O (Life Technologies). 

1X MES buffer: made from 20X by diluting in dH2O (Life Technologies). 

 

BIO-RAD System: 

Resolving gel stock: 90.75 g tris base, top up to 500 mL with dH2O and pH to pH 

8.8 then add 2 g SDS. 

Stacking gel stock: 12.11 g tris base, top up to 200 mL dH2O and pH to pH 6.8 

then add 0.8 g SDS. 

10% SDS-PAGE Acrylamide Resolving Gel: 3.7 mL resolving gel stock, 5 mL 

30% acrylamide (diluted from 40% in dH2O, from Fisher), 6 mL dH2O, 130 µL 10% 

APS (Fisher) (in dH2O) and 13 µL TEMED (Fisher). 



200 
 

Stacking Gel: 600 µL of stacking gel stock, 1 mL 30% acrylamide, 4.25 mL dH2O, 

75 µL 10% APS and 7.5 µL TEMED 

5X Running buffer: 30 g tris base, 140 g glycine, 5 g SDS (Sodium dodecyl 

sulphate) top up to 1 L with dH2O. 

1X Running buffer: 200 mL 5X running buffer, 800 mL H2O. 

Coomassie Blue stain: 0.25% Coomassie brilliant blue R (Sigma), 40% methanol, 

7% acetic acid (Fisher) in ddH2O.  

Destain: 10% acetic acid, 40% methanol in dH2O. 

1X Transfer buffer: 3.03 g tris base, 14.41 g glycine, top up to 900 mL with dH2O 

then add 100 mL methanol. 

 

8.1.4. Immunohistochemistry Recipes: 

4% Paraformaldehyde: 4 g PFA (Fisher) was dissolved in 100 mL dH2O. The 

solution was warmed until the PFA dissolved. 

10X PBS: 80 g NaCl, 2 g KCl, 14.4 g Na2HPO4·H2O, 2.4 g KH2PO4·H2O (all from 

Fisher) at pH 7.4 and fill up to 1 L in Millipore H2O.  

1X PBS: diluted in dH2O from 10X stock.  

10X TBS: 90 g NaCl and 61 g Tris Base in 1 L dH2O. Adjust pH to 7.6.  

1X TBST: Dilute 10X TBS 1:10 with dH2O and add 1 mL Tween 20 and mix well. 

Citrate Buffer: 1.92 g Citric acid (anhydrous) in 1 L dH2O, adjust to pH 6.0 then 0.5 

mL of Tween 20 and mix well.  

ImmPACT NovaRED Peroxidase Substrate (Vector Laboratories): To 5 mL of 

dH2O, add three drops of Reagent one and mix well, add two drops of Reagent two 

and mix well, add two drops of Reagent three and mix well add two drops of the 

Hydrogen Peroxide Solution (reagent three) and mix well. 

 

Blocking solution (to make 100 mL): add 5 mL of the serum (of the secondary 

antibody host species) to 95 mL PBS containing 0.2% Triton X. 
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8.2. Results  

8.2.1. Cell Viability Assays 

 

 

Figure 8.1: Effect of ERK1/2 and PI3K inhibitors on cell viability over 16 h in THP-1 cells. 

THP-1 monocytes were incubated with various concentrations of PI3K inhibitor LY294002 (LY), 

and ERK1/2 pathway inhibitor PD98059 (PD) for 16 h. Cell viability was measured by MTS assay, 

values show absorbance at 490 nm expressed as a percentage of the DMSO control. All 

inhibitors were dissolved in DMSO (n = 3). 

 

 

 

Figure 8.2: Effect of p38 and PKC inhibitors on cell viability over 16 h in THP-1 cells. THP-1 

monocytes were incubated with various concentrations of the p38 MAP kinase inhibitor 

SB203580 (SB) and the pan-PKC inhibitor bisindolylmaleimide I (BIS) for 16 h. Cell viability was 

measured by MTS assay. Values show absorbance at 490 nm expressed as a percentage of the 

DMSO control.  All inhibitors were made up in DMSO (n = 3). 
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Figure 8.3: Effect of cell signalling inhibitors on cell viability over 48 h in THP-1 cells. THP-

1 monocytes were incubated with various concentrations of the PI3K inhibitor LY294002 (LY), 

ERK1/2 pathway inhibitor PD98059 (PD), MAPK/p38 pathway inhibitor SB203580 (SB) and the 

PKC inhibitor bisindolylmaleimide I (BIS) for 48 h. Cell viability was measured by MTS assay, 

values show absorbance at 490 nm expressed as a percentage of the DMSO control.  All 

inhibitors were made up in DMSO. MTS samples run in triplicate (n=1).  

 

 

 

 

Figure 8.4: Effect of GW9662 on cell viability in THP-1 cells. THP-1 cells were incubated with 

the PPARγ inhibitor GW9662 (GW) (A) at 0.1, 1, 5, 10 or 20 µM for 16 or 48 h and cell viability 

measured by MTS assay. Cell viability values are absorbance at 490 nm and expressed as a 

percentage of the DMSO control. GW9662 was made up in DMSO, samples in triplicate (n = 1).  

 

 

 

 

A B

0 2 4 6 8 10
0

20

40

60

80

100

[MG132] (M)

%
 C

e
ll

 V
ia

b
il

it
y

R
e
la

ti
v
e
 t

o
 V

e
h

ic
le

C
o

n
tr

o
l

48h THP-1

0 5 10 15 20 25

20

40

60

80

100

120

SB

PD

LY

BIS

[Inhibitor] (M)

%
 C

e
ll

 V
ia

b
il

it
y

R
e
la

ti
v
e
 t

o
 V

e
h

ic
le

 C
o

n
tr

o
l

0 5 10 15 20
0

50

100

48hr

16hr

[GW9662] (M)

%
 C

e
ll

 V
ia

b
il

it
y

R
e
la

ti
v
e
 t

o
 V

e
h

ic
le

 C
o

n
tr

o
l



203 
 

 

Figure 8.5: Hypoxia increases IL-1β and TGF-β1 in N9 murine microglial cells. N9 microglial 

cells were subjected to 6 h hypoxia or control conditions and reperfused for (1 h, 12 h, 2 days or 

5 days) or not-reperfused (0 h) and samples taken for qRT-PCR analysis. IL-1β and TGF-β 

mRNA expression was measured by qRT-PCR. mRNA values are expressed as fold change 

relative to the non-hypoxic control and normalised to GAPDH (n = 1). 

 

 

Figure 8.6: Effect of SH-SY5Y cells on N9 cell viability. 3 x 10
6
 undifferentiated SH-SY5Y cells 

were added a 0.4 µm culture insert into a transwell containing 1 x 10
6
 N9 cells and incubated for 

4 h. After incubation the N9 cells were viewed under the microscope and stained with Trypan 

Blue to measure dead cells. Scale bar = 200 µm. 
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