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Abstract

We study experimentally the effects of cost structure and prize allocation rules on the performance
of rent-seeking contests. Most previous studies use a lottery prize rule and linear cost, and find
both overbidding relative to Nash equilibrium prediction and significant variation of efforts, which
we term ‘overspreading.’ In a 2 × 2 design, we investigate the effects of allocating the prize
by a lottery versus sharing it proportionally, and of a convex cost function versus linear costs of
effort, while holding fixed the Nash equilibrium prediction for effort. We find that the share rule
results in average effort closer to the Nash prediction and lower variation of effort. Combining the
share rule with a convex cost function further enhances these results. Our findings indicate that a
significant amount of subjects’ non-equilibrium behavior in contests can be explained by features
of the experimental design. These results contribute towards design guidelines for contests based
on behavioral principles that take into account implementation features of a contest that may not
affect the Nash equilibrium prediction.

JEL Classifications: C72, C91, D72
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1 Introduction

Overbidding in rent-seeking contests (Tullock, 1980) is a robust phenomenon in the experimental
literature. This phenomenon was first reported in experimental contest studies by Millner and Pratt
(1989, 1991) and has since been replicated by many other experiments; for a comprehensive review
see the survey of Dechenaux et al. (2012).1 Average effort levels in contests generally exceed the
Nash equilibrium prediction, in some cases by a wide enough margin that total expenditure by all
contest participants exceeds the value of the prize. Moreover, contrary to the theoretical prediction
of a unique pure strategy Nash equilibrium, experimental studies document that individual efforts
are distributed on the entire strategy space, and individual behavior varies substantially across
repeated plays of the game. We refer to this stylized fact as ‘overspreading.’

Over the last decade a number of studies have offered different explanations for overbidding
and overspreading in rent-seeking contests.2 Commonly-cited explanations for overbidding in-
clude noise and errors (Anderson et al., 1998; Shupp et al., 2013; Lim et al., 2014; Sheremeta,
2011); judgmental biases (Amaldoss and Rapoport, 2009; Sheremeta, 2011); a non-monetary util-
ity for winning (Sheremeta, 2010; Price and Sheremeta, 2011); and evolutionarily stable behavior
(Mago et al., 2012; Wärneryd, 2012). Overspreading is usually attributed to heterogeneity in sub-
jects’ preferences towards losses (Kong, 2008), risk (Sheremeta, 2011), spitefulness (Herrman
and Orzen, 2008), or winning (Sheremeta, 2010), as well as demographic differences (Price and
Sheremeta, forthcoming).

In a standard lottery contest, all players exert effort in order to increase their probability of
winning the prize. Higher efforts imply higher probability of winning, but they are also more costly.
In equilibrium, the marginal benefit of effort is equal to the marginal cost. Therefore, a correct best-
response computation requires experimental subjects to assess correctly marginal benefit, which
depends on the probability of winning, and marginal cost, which depends on the convexity of the
cost function. Any non-equilibrium behavior may thus simply come as a consequence of a difficult
computational task (Wright, 1980; Simon, 1992; Rubenstein, 1998; Gigerenzer and Selten, 2001).

It has been well recognized, for example, that subjects may possess distorted perceptions of
probabilities, which may lead to non-equilibrium behavior. As a consequence, many alternative
theories have been proposed to account for such perceptions (Kahneman and Tversky, 1979; Quig-
gin, 1982; Chew, 1983; Tversky and Kahneman, 1992; Wilcox, 2011). Recent studies have tried
to apply some of these theories to explain subject behavior in contests and auctions (Goeree et al.,
2002; Baharad and Nitzan, 2008; Amaldoss and Rapoport, 2009). However, even after accounting
for individual perceptions of probabilities, the aggregate patterns of overbidding and overspreading

1Examples include Davis and Reilly (1998), Potters et al. (1998), Lim et al. (2014), Sheremeta (2010), Sheremeta
(2011), and Sheremeta and Zhang (2010).

2The survey of Sheremeta (2013) discusses these in greater detail.
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in lottery contests cannot be explained.
Another explanation for why subjects’ behavior differs from theoretical predictions is based on

flatness of payoff functions (Harrison, 1989; Goeree et al., 2002; Georganas et al., 2011). Harrison
(1989), for instance, argues that overbidding in private value auctions relative to the Nash equilib-
rium may be due to the fact that the costs of such overbidding are rather small. By manipulating
the cost of overbidding in the first-price and second-price winner pay auctions, Goeree et al. (2002)
and Georganas et al. (2011) find support for this argument. Similarly, Müller and Schotter (2010)
find that subjects overbid in private value all-pay auctions when the cost of bid function is linear
but they actually underbid when the cost function is convex. The design of the experiment reported
in the present study follows this approach by manipulating the relative costs of units of effort above
versus below the equilibrium.

We examine whether the factors listed in the foregoing paragraphs can explain non-equilibrium
behavior in contests, by manipulating design features of the context which do not affect the (risk-
neutral) Nash equilibrium prediction. We consider four contest settings, organized in a 2×2 design.
In one dimension, we vary whether the prize amount is indivisible and allocated stochastically, or
whether it is shared proportionally; this manipulation speaks to hypotheses involving the salience
of winning or limitations in reasoning about probability.3 In the other dimension, we vary whether
the cost function is linear or convex in effort; the convex cost function induces an asymmetry in
the amount of earnings foregone due to efforts in excess of the best response versus those foregone
due to efforts less than the best response.

We find that in contests where the prize is shared proportionally, there is less overbidding and
less overspreading. Average efforts are closer to the Nash equilibrium prediction, and there is lower
variation in individual efforts. A convex cost function enhances these results under the share rule.
However, we find that convex costs actually exacerbate overbidding with probabilistic allocation,
which we attribute to knock-on effects driven by out-of-equilibrium play. These findings illustrate
the importance of considering the behavioral drivers of out-of-equilibrium play for robust design
of contests, and provide some first results for guidance of contest design along these lines.

2 Theoretical background

We study a rent-seeking contest game following Tullock (1980). There are N players, indexed by
i. There is a prize, worth V > 0. Each player i simultaneously and independently chooses an
effort level ei ∈ [0, V ]. In a standard abuse of notation, we will write e−i =

∑
j 6=i ej to denote the

3Another avenue to limiting the role of chance in understanding outcomes is to compare the lottery mechanism
with the all-pay auction, in which the participant with the highest effort wins with certainty. This has been done by, for
example, Potters et al. (1998). Moving to the all-pay auction results in a qualitative change in the strategic structure of
the game, as equilibria in common-value all-pay auctions generally involve randomization.
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sum of efforts of other players. The cost of effort is given by a function c : R+ → R+, which we
assume to be continuous, monotonically increasing, and twice differentiable in effort. Irrespective
of the outcome of the contest, all players forgo the cost of effort.

The contest success function is given by

pi(ei, e−i) =

 ei
ei+e−i

if ei + e−i > 0

1
N
. otherwise

(1)

This function can be interpreted as either the probability that player iwins the prize, if it is allocated
indivisibly to just one player, or the proportion of the prize awarded to player i. In either case, the
expected payoff to player i can be written as

E(πi) = piV − c(ei). (2)

Szidarovszky and Okuguchi (1997) show the existence and uniqueness of equilibrium of this game,
where the equilibrium effort level e? is given by the solution to the equation

c′(e?)e? = V
(N − 1)

N2
. (3)

If the prize is awarded proportionally, then this pure-strategy equilibrium does not depend on the
risk attitude of the players. If the prize is awarded using a lottery, then this is the pure-strategy
equilibrium assuming all players are risk-neutral.4

3 Experimental design and procedures

We implemented a two-dimensional factorial design. In one dimension, we varied the contest
success function, using the probabilistic (P ) or share (S) rules for awarding the prize. In the
second dimension, we varied the cost function, using the standard linear (L) cost function or a
convex (C) cost function. We therefore had four treatments, labeled PL, PC, SL, and SC.

In each treatment, we conducted 3 independent sessions. Sessions consisted of 12 participants,
who participated in 30 contests. Each session investigated only one treatment, so all comparisons

4Theoretically, if players are risk-averse, the direction of the change in equilibrium effort in contests is ambiguous.
Hillman and Katz (1984) and Skaperdas and Gan (1995), for example, show that risk-averse players should exert lower
effort. On the other hand, Konrad and Schlesinger (1997) and Cornes and Hartley (2003) show that the direction of
the change in equilibrium effort caused by an increase in risk aversion may be ambiguous. Experimentally, however,
there is more agreement, since most studies document that risk-averse subjects exert significantly lower effort than
risk-neutral or risk-seeking subjects. (Millner and Pratt, 1991; Anderson and Freeborn, 2010; Sheremeta and Zhang,
2010; Sheremeta, 2011)
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are across subjects. All sessions used student subjects at the Centre for Behavioural and Experi-
mental Social Science at University of East Anglia. The computerized experimental sessions were
run using z-Tree (Fischbacher, 2007).

Participants were matched into groups of N = 4, with random anonymous rematching after
each contest. The value of the prize in all contests was V = 80 experimental francs. In each con-
test, participants simultaneously selected an effort level between 0 and 80. In sessions employing
the linear cost function, the cost of effort was c(e) = e. In sessions with the convex cost function,
the cost function c(e) = e2

30
was used. Both cost functions lead to an equilibrium prediction for

effort of e? = 15. Subjects were informed about the group size, prize value, and the cost structure.
After each period, a summary screen provided information about the one’s own effort and the total
effort of the group, the outcome of the contest (win or loss, or proportion of the prize), and one’s
own payoff in the period.

At the conclusion of the experiment, 5 of the 30 periods were chosen at random for payment.
The earnings were converted into British pounds at the rate of 40 francs to £1. All subjects also
received a participation fee of £15 to cover potential losses. Sessions lasted about an hour inclusive
of instructions and payment. The average amount earned was £15.20, with individual earnings
ranging from £2.00 to £20.40.

In both the linear and convex cost treatments, the choice variable for participants was the
amount of effort, as opposed to the cost of effort. We made this decision to ensure comparabil-
ity of the strategy space between the treatments. We conveyed information about the relationship
between effort choices and costs by means of a table in the instructions5 enumerating each effort
choice and its corresponding cost.6 The use of the table device permitted participants, in principle,
to make decisions either based on the amount of effort to invest, or the amount of cost of effort.
We therefore did not pursue a treatment in which cost rather than effort was framed as the decision
variable.

4 Results

[Table 1 about here.]

Table 1 displays summary statistics on the distribution of efforts by treatment. Table 2 breaks
out the mean and standard deviation of efforts by each session. In terms both of the aggregate
point estimates, and in the ordering of sessions in Table 2, employing the share rule instead of the

5The instructions are available in Appendix A.
6In the linear cost sessions, the presence of this table may have seemed superfluous to participants, insofar as the

effort and cost columns were identical. As a check on whether this device had any behavioral effect, we confirm in
our analysis that we replicate results from a previous experiment.
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probability rule decreases the average effort, both with linear and with convex costs, with the effect
being much more pronounced in the convex cost case. The treatment effect of using the convex
cost structure relative to linear is not as clear. With the share rule, convex costs decrease mean and
median effort levels; however, with the probability rule, convex costs slightly increase the mean
and median effort level, although as will be seen, the effect is not large enough to be statistically
significant.

[Table 2 about here.]

The average costs of effort in Table 1 imply that on average participants were making losses in
expectation in PL, PC, and SL. As this implies that there were opportunities in the experiment for
participants to significantly increase their earnings, a next question is whether there is any evidence
of a change in behavior based on experience over time in the experiment. Figure 1 displays the
time series of average effort levels for each of the four treatments. There is a modest decrease in
the average effort over time, but not a strong convergence towards the equilibrium prediction. The
ordering of the treatments in terms of average efforts is stable throughout the experiment.

[Figure 1 about here.]

We formalize the analysis of treatment effects and time trends on average bidding levels by
estimating a panel regression model

oit = eit − 15 = β0 + β1S + β2C + β3t+ ui + εit. (4)

The dependent variable, oit, is the excess effort relative to the Nash equilibrium prediction. We
include indicator variables for whether the share rule is employed, S = 1, and whether the convex
cost structure is employed, C = 1. We use a random-effects error structure by subject, to account
for the multiple decisions made by individual subjects. Standard errors are clustered at the session
level to account for session effects.

[Table 3 about here.]

Table 3 reports the estimation results of the models. We report four specifications. Each spec-
ification focuses on comparing treatment pairs which differ only in one dimension. Each specifi-
cation is estimated separately for the first 15 periods and last 15 periods, respectively. Based on
these regressions, we can formally support the following results on average overbidding levels.

Result 1. The share rule significantly reduces average overbidding when using convex costs. When

using linear costs, overbidding is not significantly different under the share rule versus probability

rule.
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Support. In specification (1) comparing PC and SC, average overbidding is lower by more than
11 in SC in both halves of sessions; this is significant at the 1% level. PC is roughly three times
farther, in effort choice terms, from the equilibrium than SC. Turning to specification (2), average
overbidding is lower in PL than SL, but the difference is not significant at the 5% level.

Result 2. When using the share rule, overbidding is significantly lower with convex costs. When

using the probability rule, there is no significant difference in overbidding between the linear cost

and convex cost treatments.

Support. In specification (4) comparing SC and SL, convex costs significantly decrease effort
levels in both halves of the experiment. Specification (3) comparing PC and PL reveals the
opposite pattern; the treatment effect of convex costs is not statistically significant, and moreover
the sign of the point estimate changes to indicate convex costs increase average efforts.

Result 3. There is evidence of learning and adjustment over time towards lower overbidding in all

treatments at the aggregate level, with most of the adjustment occurring within the first half of the

experiment.

Support. In all four regression model specifications using all data, we find that in the first half of
the experiment, the coefficient on the period number is negative in sign and statistically significant
at the 1% level, with magnitudes ranging from -0.27 to -0.65. In the second half of the experiment,
the point estimates are generally smaller in magnitude, and are not significantly different from zero
at the 5% level.

We now turn to examining the variability of effort choices, which we term ‘overspreading,’
both within and across subjects. Figure 3 displays the histograms of effort levels in the second
half of the experiment for each treatment. The histograms illustrate that focusing only on average
levels misses out on much of the richness of the observed behavior. In addition, both factors in
the experimental design have a qualitative effect on the distribution of effort choices. Subjects do
respond both to changes in the allocation rule and changes in the cost structure, indicating both are
taken into account in the subjects’ decision-making processes.

[Figure 2 about here.]

We now decompose the extent to which heterogeneity in effort choices arises from variation
in how individual subjects behave, versus systematic differences across subjects. In view of the
regressions in Table 3, by the second half of sessions, subjects have settled down into patterns of
behavior that do not demonstrate a significant time trend. Whatever learning takes place about the
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rules of the game and the possible behavior of others appears to be complete, at least in aggregate,
by this time. Therefore, we consider choices in periods 16-30 only in the analysis below.7

To visualize the data in a way that captures both these sources of variation, Figure 2 presents
a collection of boxplots, one for each subject, capturing the distribution of effort choices over the
last half of the experiment.8 Subjects are ordered by increasing median effort choices, which are
indicated by diamonds. Therefore, by focusing on the diamonds, one can read off the cumulative
empirical distribution of the median choices across subjects, while by focusing on the boxplots
themselves, one can get a sense of the degree of within-subject variation in behavior.

The boxplots suggest that the effects of the share rule and of convex costs on variability in
efforts parallel the treatment effects on averages established earlier. We construct two measures to
capture variation across subjects and within subjects. Let mij denote the median effort of subject
j in session i.9 Then, our across-subject measure of variability in session i, V A

i , is the standard
deviation of mij over all subjects j in session i. Alternatively, let sij denote the standard deviation
of effort of subject j in session i. Then, our within-subject measure of variability in session i, V W

i ,
is the median of sij over all subjects j in session i. Table 2 reports these measures for each session.

As a starting point, the procedures and instructions used in the current study were adapted
from those used by Sheremeta (2010). We therefore compare the results of the PL treatment to
the results reported therein. The experiments differed in the subject pool (undergraduate students
at Purdue University in the United States versus students at the University of East Anglia in the
United Kingdom) and the number of experimental francs in the endowment and value of the prize
(120 versus 80). The instructions in the current study differed only in the use of an explicit table
summarizing the cost of each level of effort.

Result 4. The PL treatment replicates the results of Sheremeta (2010) in terms of effort levels and

variability of efforts both across subjects and within subjects.

Support. We renormalize the effort levels in Sheremeta (2010) from the original [0, 120] scale onto
our [0, 80] scale. We take the session as the unit of independent observation; Sheremeta (2010)
conducted 6 sessions and our data contains 3. A Mann-Whitney-Wilcoxon (MWW) test on the
null hypothesis that the median effort by session is equal between the studies cannot be rejected
(p-value 0.36), and a MWW test on the null hypothesis that the standard deviation of effort by
session is equal between the studies also cannot be rejected (p-value 0.20).

7Cutting the experiment in two at the midpoint here, and in the earlier regressions, is arbitrary. Moving the cut-point
a few periods in either direction does not affect the conclusions.

8In these boxplots, the boxes cover the range from the lower quartile to the upper quartile of efforts. The “whiskers”
indicate the adjacent values, as defined by Tukey (1977). The upper whisker is the highest observed effort which is no
more than 1.5 times the interquartile range above the upper quartile; the lower whisker is defined analogously. Dots
outside the whiskers indicate outliers.

9For these measures, we report statistics using data from the second half of the sessions.

8



Examining the underlying sources of variability in efforts, a MWW test on the null hypothesis
that the across-subject measure V A

i is equal between the studies cannot be rejected (p-value 0.20),
and a MWW test on the null hypothesis that the within-subject measure V W

i is equal between the
studies cannot be rejected (p-value 0.44).

We now turn to the analysis of treatment effects within our experiment on across-subject and
within-subject variability.

Result 5. The share rule reduces variability both within subjects and across subjects.

Support. Using a MWW test, we test the null hypothesis that the across-subject variability measure
V A
i is equal in sessions using the share rule and sessions using the probability rule. This null

hypothesis is rejected (p-value 0.02). Also using a MWW test, we test the null hypothesis that the
within-subject variability measure V W

i is equal in sessions using the share rule and sessions using
the probability rule. This null hypothesis is also rejected (p-value 0.03).

As with the results on average efforts, the effect of convex costs on variability in efforts is less
clear-cut.

Result 6. Point estimates indicate the use of convex costs tends to reduce variability both within

subjects and across subjects, although the effect is not statistically significant. Sessions using both

convex costs and the share rule tend to exhibit the lowest variability by both measures.

Support. Using a MWW test, we test the null hypothesis that the across-subject variability measure
V A
i is equal in sessions using convex costs and those using linear costs. The sign of the MWW test

statistic indicates variability is lower in the convex costs sessions, but the result is not significant
at standard levels (p-value 0.11).

For the within-subject variability test, again we use a MWW test, with the null hypothesis that
the within-subject measure V W

i is equal in sessions using convex costs and those using linear costs.
The sign of the test statistic indicates lower variability with convex costs, but again the test is not
significant (p-value 0.34).

Treatment SC exhibits the lowest variability by both measures. The three SC sessions have the
lowest across-subject variability, and the lowest, second-lowest, and fourth-lowest within-subject
variability (with a SL session ranking third). Convex costs have a more clear-cut behavioral impact
in the share rule setting, compared to the probability rule.

[Figure 3 about here.]

Nash equilibrium predictions rest crucially on the assumptions that players have correct be-
liefs about the distributions of strategy choices, and, given these beliefs, choose responses which
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maximize their own payoffs. The non-degenerate distributions of effort levels observed in contests
provide prima facie evidence that indeed subjects are not best-responding expected-earnings max-
imizers who have correct beliefs about the behavior of other participants in their cohort. While
our rejection of point predictions of Nash equilibrium is neither novel nor surprising, our design
allows us to look more closely at the Nash equilibrium assumptions to infer whether and how they
fail.

In our design, subjects get feedback about the overall spending in their group in each period.
Therefore, we begin by supposing that subjects have at least an approximate sense of the distribu-
tion of effort levels being chosen, therefore retaining the correct beliefs assumption, while relaxing
the assumption of expected earnings maximization. One commonly-used model which captures
these assumptions is the quantal response equilibrium (QRE) of McKelvey and Palfrey (1995). In
a QRE, a player evaluates the expected payoff of each strategy choice inclusive of an additive noise
term. We follow the standard in random-utility models by using the logit form of QRE. This form
has one free parameter, λ ∈ [0,∞), which is a precision parameter; larger values of λ correspond
to a smaller variance in the noise term in payoff evaluation.

To take logit QRE to the data, we again focus on the last 15 periods of the experiment, both
because QRE assumes players have accurate beliefs about the play of others, and because we treat
QRE as a static concept, so we avoid a confound with any early-period learning and adjustment.
We estimate λ by maximum likelihood, pooling across all subjects across all sessions.10

Figure 3 displays the QRE fits superimposed over the histogram of choices, and reports the
corresponding values of λ for each. Table 4 reports the fitted λ values and corresponding log-
likelihoods for each treatment individually, as well as fits in which we estimate QRE fits restricting
λ to be identical for pairs of treatments with a common factor, and finally a restriction with a
common λ for all treatments combined.

We also construct a measure Q of the quality of the QRE fit obtained. QRE generates uniform
randomization over all strategies when λ = 0; therefore, the worst possible log-likelihood that can
result from a QRE fit is the log-likelihood of the data against the uniform distribution; call this
log-likelihood lnLu. The best possible log-likelihood would occur if the distribution of choices
were exactly a QRE distribution for some parameter λ; call this log-likelihood lnLm. Then, we
define Q as

Q =
lnL− lnLu

lnLm − lnLu

. (5)

Q will always be a number in the interval [0, 1], with higher values of Q corresponding to better
fits. Values for Q for the fits are also included in Table 4. We use Q as a convenient summary to

10As in all logit models, λ is cardinal, having units equal to the unit of measurement of payoffs. To facilitate
comparison with other papers reporting logit QRE estimates, we express λ in units of US dollars, using the exchange
rate £1 = $1.60 in force at the time of the experiments.
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compare the relative quality-of-fit for each treatment.
The values of Q and λ communicate different information. Q captures the extent to which

the empirical distribution of the data match with the predictions of QRE; roughly, this indicates
how good the QRE model is at organizing the overall features of the distribution. The value of λ
quantifies the relationship between the frequency with which non-best-response efforts are played,
and the earnings foregone due to that suboptimal play relative to the best response. Because the
game has a unique Nash equilibrium which is in pure strategies, as λ becomes large, QRE predicts
play will be concentrated at effort levels very close to the Nash equilibrium. Therefore, if one
obtains a large value of λ from the fit, this entails that Q is likely also to be large. However, the
relationship for smaller λ is less clear. For example, in treatment PL, we obtain a best-fit λ = 0.267

and Q = 0.463, while in treatment PC, we obtain λ = 0.099 and Q = 0.525. Interpreted
qualitatively, this suggests that QRE is a slightly more satisfactory model in PC than in PL for
capturing the features of the distribution of play; however, in order for QRE to accommodate this,
players in PC must be making larger average optimization errors than in PL.

[Table 4 about here.]

Result 7. Logit QRE organizes behavior in the share rule treatments better than in the probability

rule treatments. In addition, the precision estimates for the share rule treatment QRE are larger,

capturing that effort levels are clustered more closely to the Nash equilibrium.

Support. In Table 4, the quality-of-fit measure Q is higher by a substantial margin for each fit
using share rule data than for the corresponding fit using the probability rule. The share rule data
are much more consistent with the hypothesis underlying QRE relating the frequency of an effort
choice to its expected payoff.

The fitted λ values for QRE in the share rule are also large. The fit for SC has λ = 2.488 and
that for SL has λ = 0.807, which indicates a high degree of precision in best responses. By way
of comparison, Lim et al. (2014) report λ ≈ 0.57 for four-player probability-rule contests, which
figure is comparable insofar as both estimates use US dollars as the unit of payoff.11

There is a correlation between the characteristics of the QRE fits and design features of each
treatment. QRE is an equilibrium concept, in that players are assumed to have correct beliefs about
the distribution of other players’ decisions; it relaxes the assumption that players always choose a
best reply and instead allows deviations from the best reply, with “mistakes” having larger payoff
consequences being made less frequently. In the share rule, feedback about payoff implications of
behavior is received without noise, whereas in the probability rule the ex-post realized payoffs have

11Both the estimated λ and the correspondingQ are lowered because of the frequency of efforts of 80 in SL. Figure
2 illustrates that one participant accounts for the majority of instances in which 80 was chosen.
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a substantial random component; this would be one explanation why the estimated λ values under
the share rule are larger. In addition, the random component of the outcome in the probability
rule gives scope for other motivations to operate in the decision-making process of participants,
including attitudes towards risk, loss aversion, or a motivation to win the contest. This would make
the expected payoff a less salient factor in determining effort choices, which would be captured by
a smaller λ value.

The effect of convex costs relative to linear costs is more subtle. The fits reported in Table
4 show that the PC has a better quality-of-fit than PL, and SC a better quality-of-fit than SL.
However, if we impose a common λ on PL and SL, and on PC and SC, the quality-of-fit for
the linear cost treatment is better. This is driven by some characteristics of behavior in PC which
cannot be accommodated by a simple QRE model. In treatment PC, convex costs eliminate high
effort choices, as effort choices above 49 result in a certain loss. However, there is evidence of a
knock-on effect of also removing very low effort choices. In treatment PL, 8 of the 36 subjects
have median choices below 1, so that in effect they choose not to enter the contest a majority of the
time. Conversely, in treatment PC most participants make effort choices in the interval between
20 and 30. This behavior cannot be accommodated by QRE; with both the linear and convex cost
functions, QRE predicts the modal effort level will be below the Nash equilibrium level of 15.

5 Discussion

Experimental studies of rent-seeking contests find both overbidding and overspreading: efforts are
on average significantly higher than the risk-neutral Nash equilibrium prediction, and there is sig-
nificant variation in effort levels within and across subjects. A number of studies suggest that over-
bidding in contests can be explained by noise and errors, judgmental biases, a non-monetary utility
of winning, and/or evolutionarily stable behavior. Overspreading has been attributed to subjects
heterogeneous preferences towards losses, risk, spitefulness, and winning, as well as demographic
differences.

In this study, we show how features of the contest environment which do not change the Nash
equilibrium prediction nevertheless have significant implications for both overbidding and over-
spreading in the contest. Specifically, in a 2× 2 design, we investigate the effects of allocating the
prize by a lottery versus sharing it proportionally, and of a convex cost function versus a linear cost
of effort, while holding fixed the Nash equilibrium. We find that the share rule results in average
efforts closer to the Nash prediction, and lower variation in individual efforts. Combining the share
rule with a convex cost function further enhances these results.

Our findings speak to several puzzles in the literature. First, experimental studies on rank-order
tournaments (Lazear and Rosen, 1981) find that there is almost no overbidding and average efforts
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are usually consistent with Nash equilibrium (Bull et al., 1987). This is in sharp contrast to the
findings from lottery contests (Sheremeta, 2013). Our results suggest that this disparity can be
explained by the fact that experiments on rank-order tournaments employ convex cost of effort
– which, in that setting, is often needed to obtain a Nash equilibrium in pure strategies (Lazear
and Rosen, 1981; Cason et al., 2012) – while experiments on lottery contests employ linear cost
of effort. Specifically, we find significant overbidding with linear costs (as in most experiments
on lottery contests), but that convex costs can contribute to lowering bidding levels. Second, our
findings help to clarify why a subset of studies on rent-seeking contests, including Baik et al.
(1999), and Linster et al. (2001) find little to no overbidding. While the majority of experimental
studies employ lottery rule to determine the winner of the contest (Dechenaux et al., 2012), the
two aforementioned studies employ a share rule. The results of our experiment show that the share
rule results in average efforts closer to the Nash equilibrium prediction, although overbidding is
not entirely eliminated.

Our study also contributes to a rapidly growing literature on proportional-prize contests. For
example, Cason et al. (2010, 2012) examine entry into proportional-prize and single-prize contests,
as well as their performance. In contrast to our study, their main focus is on the contest design
aspects of different compensation schemes. Morgan et al. (2012) also examine entry into different
contests, and find that subjects sort themselves into risky types and safe types. Moreover, subjects’
entry decisions are more consistent with theory in contests employing a share rule. Most closely
related to our study are working papers by Fallucchi et al. (2013), Masiliunas et al. (2012), and
Shupp et al. (2013), who examine how the use of the share rule affects individual behavior in
contests. Consistent with those studies we find the share rule encourages behavior which is closer
to the Nash prediction. We find additionally that the presence of the convex cost function alongside
the share rule is most effective in reducing both overbidding and overspreading.

Finally, our findings contribute to the literature on contest design. Some contest settings arise
naturally and are not amenable to design in the implementation of the prize allocation or cost rules.
However, when design is possible, our results provide guidance on design from behavioral princi-
ples. The experimental literature has shown that behavior in games can vary as a function of design
parameters, even when the Nash equilibrium is independent of those parameters (see the elegant
review of Goeree and Holt (2001) for a selection of examples). In contests with the probability rule
and linear costs, behavior does not appear to be well-organized by equilibrium. Effective design
of a contest game in which behavior in the baseline is inconsistent with equilibrium requires an
understanding of the drivers of non-equilibrium play. Our results in the PC treatment illustrate
this. An obvious hypothesis would be that making very aggressive effort choices prohibitively
expensive would rein in aggressive play. But equally, the convex cost function lowers the cost of
smaller effort levels; participants who might otherwise sit out a contest in the face of aggressive
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co-players may now find it worthwhile to choose positive levels of effort. These effects operate in
opposite directions, and in our data we find that the effect of increased participation is at least that
of the reined-in aggressive players. Our results, then, illustrate that work on design in contests, in
the lab and the field, should be informed by an account of the determinants of (non-equilibrium)
behavior.

The structure of our design is not able to tease out specifically why the combination of the
share rule and a convex cost function reduces overbidding and overspreading. With a proportional
prize, there is no longer a clear winner; this would reduce the impact of any non-monetary utility
of winning. The proportional prize eliminates a potentially significant amount of objective risk.12

Proportional prizes may enhance learning incentives, as adjustments in effort choices map con-
cretely to earnings through the share rule, rather than the more abstract probability distribution
over earnings implied by the probability rule. Each of these explanations would suggest we would
observe less overbidding and less overspreading under the share rule, but our design cannot distin-
guish to what degree each consideration is playing a role. All these explanations would suggest that
the manipulation of using convex costs, which are intended to make more expensive efforts greater
than the earnings-maximizing best reply, might be more effective with the share rule, insofar as the
share rule eliminates other potentially salient motivators (winning), lowers considerations due to
risk, and provides more direct feedback. Our results indicate that further work to understand how
these behavioral factors interact would be interesting and useful.
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A Instructions

We present as a baseline the instructions for convex costs with each rule. Relative to these in-

structions, the only change for linear costs was the formula for the cost of each bid, and the

corresponding bid cost table.

PC treatment

GENERAL INSTRUCTIONS

This is an experiment in the economics of strategic decision making. Various research agencies
have provided funds for this research. The instructions are simple. If you follow them closely and
make appropriate decisions, you can earn an appreciable amount of money.

The currency used in the experiment is francs. Francs will be converted to British Pounds at
a rate of 20 francs to 1 pound. You have already received a £15.00 participation fee. At the
end of todays experiment, you will be paid in private and in cash. 12 participants are in todays
experiment.

It is very important that you remain silent and do not look at other peoples work. If you have
any questions, or need assistance of any kind, please raise your hand and an experimenter will
come to you. If you talk, laugh, exclaim out loud, etc., you will be asked to leave and you will not
be paid. We expect and appreciate your cooperation.
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YOUR DECISION

The experiment consists of 30 decision-making periods. At the beginning of each period, you will
be randomly and anonymously placed into a group of 4 participants. The composition of your
group will be changed randomly every period. Each period, you may bid for an 80 francs reward.
You may bid any number between 0 and 80 (including 0.1 decimal points). An example of your
decision screen is shown below.

YOUR EARNINGS

For each bid there is an associated cost. A table is attached to these instructions: each possible bid
is given in column A, and its cost is given in column B. Note that as bids rise from 0 to 80, costs
rise. The cost of a bid can be also calculated using the following formula:

Cost of your bid =
(Your bid)2

30
.

The more you bid, the more likely you are to receive the reward. The more the other participants
in your group bid, the less likely you are to receive the reward. Specifically, your chance of
receiving the reward is given by your bid divided by the sum of all 4 bids in your group:

Chance of receiving the reward =
Your bid

Sum of all 4 bids in your group
.

You can consider the amounts of the bids to be equivalent to numbers of lottery tickets. The
computer will draw one ticket from those entered by you and the other participants, and assign the
reward to one of the participants through a random draw. If you receive the reward, your earnings
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for the period are equal to the reward of 80 francs minus the cost of your bid. If you do not receive
the reward, your earnings for the period are equal to 0 francs minus the cost of your bid. In other
words, your earnings are:

If you receive the award: Earnings = Reward - Cost of your bid = 80 - Cost of your bid

If you do not receive the award: Earnings = 0 - Cost of your bid

AN EXAMPLE

Lets say participant 1 bids 10 francs, participant 2 bids 15 francs, participant 3 bids 0 francs, and
participant 4 bids 40 francs. Therefore, the computer assigns 10 lottery tickets to participant 1, 15
lottery tickets to participant 2, 0 lottery tickets to participant 3, and 40 lottery tickets for participant
4. Then the computer randomly draws one lottery ticket out of 65 (10 + 15 + 0 + 40). As you can
see, participant 4 has the highest chance of receiving the reward: 0.62 = 40/65. Participant 1 has
a 0.15 = 10/65 chance, participant 2 has a 0.23 = 15/65 chance, and participant 3 has a 0 = 0/65
chance of receiving the reward.

Assume that the computer assigns the reward to participant 4, then the earnings of participant
4 for the period are 26.67 = 80 - 53.33, since the reward is 80 francs and the cost of bid of 40 is
53.33 as shown on your Cost of Bid table. Similarly, the earnings of participant 1 are -3.33 = 0 -
3.33, participant 2 are -7.5 = 0 - 7.5, and participant 3 are 0 = 0 - 0.

At the end of each period, your bid, the sum of all 4 bids in your group, your reward, the
cost of your bid, and your earnings for the period are reported on the outcome screen as shown
below. Once the outcome screen is displayed you should record your results for the period on your
Personal Record Sheet under the appropriate heading.
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IMPORTANT NOTES

You will not be told which of the participants in this room are assigned to which group. At the
beginning of each period you will be randomly re-grouped with other three participants to form a
4-person group.

For calculation purposes, you can use the “Calculator” button at the lower left side of your
screen. A calculator will appear in your screen after clicking the button.

At the end of the experiment we will randomly choose 5 of the 30 periods for actual payment
for this experiment using a computer program. You will sum the total earnings for these 5 periods
and convert them to a British pound payment.

Are there any questions?

SC treatment

GENERAL INSTRUCTIONS

This is an experiment in the economics of strategic decision making. Various research agencies
have provided funds for this research. The instructions are simple. If you follow them closely and
make appropriate decisions, you can earn an appreciable amount of money.

The currency used in the experiment is francs. Francs will be converted to British Pounds at
a rate of 20 francs to 1 pound. You have already received a £15.00 participation fee. At the
end of todays experiment, you will be paid in private and in cash. 12 participants are in todays
experiment.

It is very important that you remain silent and do not look at other peoples work. If you have
any questions, or need assistance of any kind, please raise your hand and an experimenter will
come to you. If you talk, laugh, exclaim out loud, etc., you will be asked to leave and you will not
be paid. We expect and appreciate your cooperation.

YOUR DECISION

The experiment consists of 30 decision-making periods. At the beginning of each period, you will
be randomly and anonymously placed into a group of 4 participants. The composition of your
group will be changed randomly every period. Each period, you may bid for a share of an 80
francs reward. You may bid any number between 0 and 80 (including 0.1 decimal points). An
example of your decision screen is shown below.
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YOUR EARNINGS

For each bid there is an associated cost. A table is attached to these instructions: each possible bid
is given in column A, and its cost is given in column B. Note that as bids rise from 0 to 80, costs
rise. The cost of a bid can be also calculated using the following formula:

Cost of your bid =
(Your bid)2

30
.

The more you bid, the higher is your share of the reward. The more the other participants in
your group bid, the lower is your share of the reward. Specifically, the computer will allocate to
you a share of the 80 francs reward according to your share of the sum of all 4 bids in your group.
In other words, your share is:

Share = 80× Your bid
Sum of all 4 bids in your group

Your earnings for the period are equal to the share of the 80 francs reward minus the cost of
your bid. In other words, your earnings are:

Earnings = Share - cost of your bid

AN EXAMPLE

Lets say participant 1 bids 10 francs, participant 2 bids 15 francs, participant 3 bids 0 francs, and
participant 4 bids 40 francs. Then the sum of all 4 bids is 65 (10 + 15 + 0 + 40). As you can
see, participant 4 receives the highest share of 80 francs reward: 49.2 = 80×40/65. Participant 1
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receives a share of 12.3 = 80×10/65, participant 2 receives 18.5 = 80×15/65, and participant 3
receives 0 = 80×0/65.

The earnings of participant 1 for the period are 8.97 = 12.3 - 3.33, since the share of the reward
is 12.3 and the cost of bid of 10 is 3.33 as shown on your Cost of Bid table. Similarly, the earnings
of participant 2 are 11 = 18.5 - 7.5, participant 3 are 0 = 0 - 0, and participant 4 are -4.1 = 49.2 -
53.33.

At the end of each period, your bid, the sum of all 4 bids in your group, your share, the
cost of your bid, and your earnings for the period are reported on the outcome screen as shown
below. Once the outcome screen is displayed you should record your results for the period on your
Personal Record Sheet under the appropriate heading.
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Cost table (common to both treatments)

Table – Cost of Bid 

Column A Column B  Column A Column B  Column A Column B
Bid Cost of Bid  Bid Cost of Bid  Bid Cost of Bid
0 0.00  30 30.00  60 120.00
1 0.03 31 32.03 61 124.03
2 0.13 32 34.13 62 128.13
3 0.30 33 36.30 63 132.30
4 0.53 34 38.53 64 136.53
5 0.83 35 40.83 65 140.83
6 1.20 36 43.20 66 145.20
7 1.63 37 45.63 67 149.63
8 2.13 38 48.13 68 154.13
9 2.70 39 50.70 69 158.70
10 3.33 40 53.33 70 163.33
11 4.03 41 56.03 71 168.03
12 4.80 42 58.80 72 172.80
13 5.63 43 61.63 73 177.63
14 6.53 44 64.53 74 182.53
15 7.50 45 67.50 75 187.50
16 8.53 46 70.53 76 192.53
17 9.63 47 73.63 77 197.63
18 10.80 48 76.80 78 202.80
19 12.03 49 80.03 79 208.03
20 13.33 50 83.33 80 213.33
21 14.70 51 86.70
22 16.13 52 90.13
23 17.63 53 93.63
24 19.20 54 97.20
25 20.83 55 100.83
26 22.53 56 104.53
27 24.30 57 108.30
28 26.13 58 112.13
29 28.03  59 116.03    

4
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Figure 1: Average efforts over time, by treatment
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Figure 2: Boxplot of effort choices by subject, last 15 periods. Subjects are sorted in increasing
order by median effort, which are indicated by diamonds. The vertical line at an effort of 15 marks
the Nash equilibrium prediction. The numbers labeling the vertical axis indicate the session in
which the subject participated.
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Figure 3: Histogram of all effort choices, last 15 periods. The curved lines represent the best logit
quantal response equilibrium fit to the respective empirical distributions.
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Linear Convex
Effort Nash PL SL Nash PC SC

Mean 15.0 26.2 23.0 15.0 29.0 17.7
Median 15.0 20.0 17.5 15.0 26.0 16.3

SD 0.0 24.1 20.0 0.0 18.6 8.6

Linear Convex
Cost Nash PL SL Nash PC SC

Mean 15.0 26.2 23.0 7.5 39.4 12.9
Median 15.0 20.0 17.5 7.5 22.5 8.8

SD 0.0 24.1 20.0 0.0 48.0 19.9

Table 1: Summary statistics on effort and cost for each of the four treatments
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Effort Variability
Session Treatment Mean SD V A V W

7 SC 16.8 8.6 2.6 4.0
9 SC 17.1 5.8 3.4 2.1

11 SL 18.6 13.6 8.1 3.1
8 SC 19.1 10.6 4.1 1.8
6 PL 20.5 22.9 22.5 7.1

12 SL 24.4 23.1 21.6 8.1
1 PC 25.4 12.0 9.7 7.4

10 SL 25.9 21.3 8.7 7.6
4 PL 28.0 25.0 18.1 19.4
2 PC 29.1 14.5 10.4 9.4
5 PL 30.1 23.3 23.5 13.8
3 PC 32.3 25.6 22.4 15.9

Table 2: Summary statistics by session, sorted by mean effort, for all participants and all periods.
SD is the standard deviation of all effort choices, irrespective of participant. V A is a measure of
across-subject variability in effort, and V W a measure of within-subject variability in effort, as
defined in the text, for the second half of the experiment.
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Dependent variable, oit = eit − 15 PC & SC PL & SL PC & PL SC & SL

Periods 1-15 - Specification (1) (2) (3) (4)

S (share) -11.50*** -1.39
(1 if share and 0 if probability) (2.39) (4.15)

C (convex costs) 3.25 -6.87***
(1 if convex and 0 if linear) (3.76) (2.96)

period -0.28*** -0.64*** -0.27*** -0.65***
(period trend) (0.07) (0.14) (0.06) (0.14)

constant 17.66*** 17.26*** 14.30*** 15.99***
(1.99) (3.33) (3.17) (2.63)

Observations 1080 1080 1080 1080

Dependent variable, oit = eit − 15 PC & SC PL & SL PC & PL SC & SL

Periods 16-30 - Specification (1) (2) (3) (4)

S (share) -11.04*** -5.00*
(1 if share and 0 if probability) (1.56) (2.61)

C (convex costs) 2.34 -3.71**
(1 if convex and 0 if linear) (2.64) (1.51)

period -0.18* -0.11 -0.35 0.05
(period trend) (0.11) (0.27) (0.25) (0.09)

constant 16.74*** 12.78 18.22*** 3.97*
(3.54) (8.02) (7.63) (2.05)

Observations 1080 1080 1080 1080

Table 3: Panel estimation of treatment effects. Robust standard errors in parentheses. *** indicates
significance at the 1% level, ** at 5%, * at 10%. All models included a random effects error
structure, with the individual subject as the random effect; standard errors were clustered at the
session level.
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L C L&C

P
λ = 0.267 λ = 0.099 λ = 0.123

lnL = −1453.37 lnL = −1420.38 lnL = −2895.88
Q = 0.463 Q = 0.525 Q = 0.438

S
λ = 0.807 λ = 2.488 λ = 1.298

lnL = −1299.52 lnL = −768.95 lnL = −2138.70
Q = 0.705 Q = 0.961 Q = 0.823

P&S
λ = 0.429 λ = 0.210 λ = 0.265

lnL = −2796.73 lnL = −2592.03 lnL = −5424.54
Q = 0.535 Q = 0.467 Q = 0.466

Table 4: Summary of QRE fits. The body of the table reports fitted λ values, corresponding
log-likelihoods, and a measure of quality-of-fit Q for each of the four individual treatments. The
margins report fits where λ is constrained to be the same for both treatments in the corresponding
row or column. The lower-right cell reports the QRE fit pooling all data from all treatments.
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