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Abstract 

Calixarenes are versatile macrocycles formed from the condensation of para-tert-

butyl-phenol and formaldehyde. Chapter 1 describes the synthesis of these molecules 

and how conformational control and selective functionalisation can give an array of 

molecules with customised properties; this allows for various applications including 

those of biological relevance. The copper catalysed alkyne-azide cycloaddition 

(CuAAC) reaction is also introduced as a tool for functionalising calixarenes.  

The phenomenon of cell penetration is of interest where a molecule has an 

intracellular target, for example gene therapy, delivery of cytotoxic agents or cellular 

imaging. Chapter 2 introduces the mechanisms of cell uptake and the design and 

applications of cell penetrating peptides. Calixarenes are presented as alternatives to 

cell penetrating peptides and the work published to date on intracellular delivery of 

calixarenes is summarised. A synthetic route for calixarenes with variable fluorescent 

dyes and different functionalities on the upper rim via a common intermediate is 

presented. Synthesis of an analogue featuring guanidinium groups on the upper rim 

was achieved using carboxybenzyl (Cbz) protecting groups as a less labile alternative 

to butoxycarbonyl (Boc) groups. The syntheses of analogues with varied linkers for 

attachment of the dye are also presented. Biological evaluation revealed that the 

dynamics of cellular uptake and the intracellular localisation were sensitive to the 

upper-rim functionalisation and the dye molecule. The linker attaching the dye had 

less impact.  

Chapter 3 describes the suitability of calixarenes as scaffolds to form 

glycoconjugates. These can be used to target Pseudomonas aeruginosa; research 

towards development of novel treatments of infections from this pathogen is 

summarised. A route that has been developed towards bifunctional calixarenes 

featuring a fluorescent tag and points of attachment for sugars via CuAAC reactions is 

presented. The use of alkyne protecting groups to maintain the integrity of the scaffold 

during transformations was found to be particularly important. 
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NRD Nile Red derivative 

Nrf2 Nuclear factor erythroid 2-related factor 2 

NSI Nanospray ionisation 

P3CS Tripalmitoyl-S-glycerylcysteinylserine  

p53 Tumour supressor protein 

PA-IIL Pseudomonas aeruginosa lectin II (LecB) 

PA-IL Pseudomonas aeruginosa lectin I (LecA) 



 
 
 

 
 

 

PBS Phosphate buffered saline 

PC-12 cell Rat pheochromocytoma cell 

PC3 cell Human prostate cancer cell 

PCL Polycaprolactone 

PEG Polyethyleneglycol 

PI3-K Phosphoinositide 3-kinase 

PMS Phenazine methosulfate  

Rac1 Ras-related C3 botulinum toxin substrate 1 

RD-4 cell Rhabdomyosarcoma cell 

RNA Ribonucleic acid 

RPMI Roswell Park Memorial Institute medium 

siRNA Small interfering RNA 

Tat Transactivator of transcription 

Tatp Protein transduction domain of Tat 

TBAF Tetrabutylammonium fluoride 

TBDMS Tert-butyldimethylsilyl 

TBTA Tris[(1-benzyl-1H-1,2,3-triazol-4-yl)methyl]amine 

TFA Trifluoroacetic acid 

THF Tetrahydrofuran 

THP-1 cell Human leukemic monocytic cell 

TLC Thin layer chromatography 

TMS Trimethylsilyl 

TPP Triphenyl phosphine 

UV Ultraviolet 

VEGF Vascular endothelial growth factor 
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1.1 Calixarenes 

Early investigation of the chemistry of phenols with formaldehyde by Baeyer found 

that strong-acid catalysed condensation between the two yielded a resinous, tar-like 

substance.1 Later, Baekeland found that carefully controlling the reaction conditions 

and heating the intermediate resin yielded a more useful substance and led to the 

advent of the plastic Bakelite (1).2 

Following on from this, Zinke and coworkers3 investigated the base-catalysed 

condensation reaction using para-substituted phenol; this left only the ortho-position 

free to react, thus controlling the outcome of the reaction. The products obtained using 

various substituted phenols were proposed to be cyclic tetramers (2) of repeating 

phenol units linked by methylene bridges; although it was later shown by Cornforth et 

al. that the reaction conditions produced multiple products,4 this led to the extensive 

investigation of the synthesis and properties of these molecules.  

These macrocycles have come to be known as calixarenes, a term coined by 

Gutsche,5 derived from the Greek calix, meaning ‘vase’, to describe their basket-like 

shape. The suffix ‘arene’ describes their component aromatic units, with the number 

of units indicated by the number between them; for example, the cyclic tetramer is 

known as calix[4]arene. The synthesis and manipulation of these macrocycles will be 

described in the following sections. 

 
 

Scheme 1.1: Condensation reactions of phenols with formaldehyde to give the cross-

linked polymer Bakelite (1) and the cyclic tetramer calix[4]arene (2). 
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1.1.1 Synthesis 

The problem of multiple products from the procedure used by Zinke et al. was 

approached by investigating the effect of varying the reaction conditions including the 

temperature and the amount of base used. It was found that the latter was a critical 

factor, with 0.03-0.04 equivalents of sodium hydroxide base giving the optimal yield 

of calix[4]arene,6 whilst 0.3 equivalents of base gave calix[6]arene as the major 

product.7 This led to the modified one-pot Zinke-Cornforth procedure for the synthesis 

of tert-butyl-calix[4]arene,8 which is commonly used for the synthesis of this 

derivative due to its high yield and brevity of synthesis (in comparison to multi-step 

procedures; see below).  

Modifications of this procedure have been developed to give other macrocycle 

sizes. High-yielding methods for the synthesis of calix[6]-9 and calix[8]arene10 are 

available; however, the syntheses for calix[5]-11 and calix[7]arene12 are less efficient. 

Larger macrocycles, i.e. calix[9]- up to calix[12]arene have also been synthesised 

using a base-catalysed procedure,13 but acid-catalysis is more effective in producing 

the larger calixarenes, up to calix[20]arene.14 Modified procedures have also yielded 

calixarenes in which the methylene bridge has been replaced with a heteroatom, 

including oxa-,15 aza-16 and thiacalixarenes.17 

As an alternative to the one-pot methods, calixarenes can also be synthesised in a 

multi-step manner via linear intermediates. The non-convergent stepwise synthesis of 

Hayes and Hunter18 had an early role in the confirmation of the cyclic tetramer 

structure and was improved upon by Kammerer.19 Convergent synthesis was later 

developed by Böhmer and co-workers,20 using a fragment condensation approach. 

However, although stepwise synthesis offers the opportunity for diversification by 

using different building blocks in each step, these syntheses are longer and generally 

give poorer yields. The one-pot methods are therefore normally preferred. 

1.1.2 Conformation 

Calixarenes are conformationally mobile due to the ability of individual rings to 

undergo transannular rotation. Although larger calixarenes can adopt a wide range of 

potential conformers, calix[4]arene can adopt just four distinct conformations. These 

are the cone (2), where all of the hydroxyl groups are pointing in the same direction; 

partial cone (3), where one phenol has rotated to point one hydroxyl group towards the 

upper rim; 1,3-alternate (4), where two opposite phenols have rotated; and 1,2-

alternate (5), where two adjacent phenols have rotated (see Figure 1.1).  
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Figure 1.1: Conformations of calix[4]arene: cone (2), partial cone (3), 1,3-alternate 

(4) and 1,2-alternate (5). 

These conformations are interchangeable in solution;21 however the calixarene can 

be locked into a particular conformation by preventing transannular rotation. This can 

be accomplished by functionalisation of the lower rim, either by blocking the 

calixarene cavity with a bridging chain between two phenol groups, or by sterically 

hindering the movement of the phenol through the annulus. The latter can be achieved 

by forming an ether with any aliphatic chain longer than ethyl.22,23 Calixarenes can 

therefore be synthesised in specific conformations by alkylating the lower rim, with 

the base utilised influencing the final conformation via metal templating effects.24,25 

However other factors such as solvent and reaction time can also have an effect.26 

1.1.3 Functionalisation 

Calixarenes can be independently functionalised at either of their rims, the side 

bearing the phenol groups being termed the lower, narrow or endo rim, whilst the 

opposite is referred to as either the upper, wide or exo rim. This, combined with the 

ability to control the conformation, allows for dramatic diversification of the simple 

core molecule. 

 
Figure 1.2: Designation of calixarene rims.  
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1.1.3.1 Lower-rim functionalisation 

As noted previously, the lower rim can be functionalised by alkyl or aryl ether (6) 

formation. Selective partial alkylation is possible by utilising a specific base or 

limiting the amount of alkylating agent available.25 Whilst alkyl chains can be used to 

simply lock the conformation, various functional groups can also be introduced by use 

of suitably functionalised alkylating agents. Furthermore, multiple alkylation events 

can be used to give diverse function on the lower rim.  

Alternatively, the hydroxyl groups of the lower rim can be removed (i.e. replaced 

with H, as in 7) via reductive cleavage of their phosphonate esters.27 The hydroxyl 

groups can also be replaced with a thiol (7),28 or, via a monospirodienone intermediate 

(8), be selectively replaced with amine, azide and halogen functionalities (9).29,30 

 
Scheme 1.2: Routes for functionalisation of lower rim.  

1.1.3.2 Upper-rim functionalisation 

The main method for upper-rim functionalisation involves electrophilic aromatic 

substitution. Nitro groups (10) can be introduced directly by using ipso-nitration to 

replace the tert-butyl groups,31 which can easily be reduced (11) to give access to 

other functionalities, including amines, amides and guanidines (12). Sulphonate 

groups (13) can also be introduced in a single step.32 Other functionalities require the 

prior removal of the tert-butyl groups using a reverse Friedel-Crafts reaction with 

phenol.33 The free positions on the upper rim (14) can subsequently be converted to, 

for example, bromo, cyano and carboxyl functionalities (15).34 Also, 

chloromethylation (15)35 is possible and can be followed by nucleophilic substitution 
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of the chloride to give access to various functionalities with a methylene spacer to the 

aromatic ring of the calixarene. 

Other indirect methods of upper rim functionalisation include the use of tetra-allyl 

ether of calix[4]arene (16), which undergoes heat-induced Claisen rearrangement to 

transfer the allyl moieties to the upper-rim (17) and can be reacted further to give 

various functionalities (18) via ozonolysis of the double bond.36 Alternatively, the 

upper rim can be functionalised using an intermediate calix-quinone (19); an example 

of a product available via this route (20) is shown in Scheme 1.3.37 

 

 
Scheme 1.3: Routes to functionalisation of the upper rim. 

 

1.1.4 Applications in biological systems 

Various potential biological applications of calixarenes have been found, either by 

directly exploiting the properties of functionalised calixarenes or by using them as 

scaffolds for controlled presentation of active groups. Some of these applications will 

be examined in the following sections. 
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1.1.4.1 Artificial Receptors 

Calixarenes can be used to present a binding surface for a target molecule and so 

can mimic receptors. For example, a synthetic lectin (21) was synthesised38 using a 

macrobicyclic calixarene with a peptide bridge between opposite aromatic units and a 

phosphate group in the middle of this bridge to cooperate with the hydrogen bonding 

of the peptide (see Figure 1.3). The lower rim was ester functionalised to provide a 

means to immobilise the scaffold or alternatively could be deprotected to reveal 

charged moieties to increase solubility in water. 

  Lipophilic sugar derivatives were tested for binding to 21 in organic media. The 

receptor displayed good selectivity for β-octylglucoside over its α- form and also 

selectivity over β-octylgalactoside. Replacing the phosphate with an acid or methyl 

ester reduced the association. It was concluded that the phosphate group was most 

important for strength of binding, with hydrogen bonding and steric factors governing 

the selectivity.  

Hamilton and co-workers constructed synthetic receptors for proteins by targeting 

the protein surface to modulate protein-substrate interactions. Protein targets were 

selected that had active sites that were formed of a hydrophobic region surrounded by 

polar areas. This pattern could be matched to a calixarene with polar arms surrounding 

its hydrophobic cavity. These arms took the form of pseudocyclopentapeptides, which 

formed a stable hairpin loop structure, whose residues could be varied to give different 

activities.39–41  

With an anionic GlyAspGlyAsp sequence, the calixarene (22) bound to 

Cytochrome C, complementing a hydrophobic region surrounded by cationic lysine 

residues. This was found to disrupt the interaction of Cytochrome C with reducing 

agents.39 Further investigation found that the interaction was strong enough to 

compete with cytochrome C peroxidase and may be able to disrupt the interaction 

with Apaf-1 (apoptosis protease activating factor-1).40  

By changing Asp to Lys, a peptidomimetic capable of binding to a patch of anionic 

residues in vascular endothelial growth factor (VEGF) was synthesised.41 This 

prevents VEGF from binding to its receptor, Flk-1 (fetal liver kinase 1), thus halting 

the VEGF stimulated tyrosine phosphorylation of the receptor and subsequent 

activation of other protein kinases. Antiangiogenesis, antitumorigenesis and 

antimetastasis activities were found in vivo. Binding to VEGF was highly selective, 

with other growth factors remaining unaffected.  
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Figure 1.3: Calixarene based lectin mimetic (21),38 calixarene with 

pseudocylcopentapeptide upper rim featuring AspGlyAspGly sequence (22)39 and 

amphiphilic calixarenes with anionic (23) and cationic (24 and 25) upper rims.42 

Synthetic receptors can also be constructed using multiple calixarenes incorporated 

into lipid monolayers, which can self-organise to optimise binding of a protein. An 

amphiphilic calixarene with butyl groups on the lower rim and charged phosphonate 

groups at the upper rim (23) was synthesised and incorporated into a lipid monolayer 

in a concentration dependent fashion.43 The calixarenes were distributed evenly in the 

monolayer, but addition of poly-arginine or larger peptides containing arginine or 

lysine residues stimulated self-assembly and multi-point binding. 

Similarly, by adorning the upper rim with cationic moieties (24 and 25), acidic 

proteins could be attracted to the monolayer.42 In both cases it is proposed that binding 

occurs with excess calixarene in the aqueous phase, followed by embedding of the 

ligand-protein complex in the monolayer.  

It has been shown that cationic and anionic ligands can be combined in the 

monolayer to give a combined response to a given protein. A fingerprint can be 

obtained by measuring the response to anionic, cationic, polar and mixed bilayers, 

allowing selective detection at nanomolar concentrations.42  By constructing vesicles 

also containing polydiacetylene, a chromatic polymer, a colorimetric response was 
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observed on protein binding and likewise a fingerprint could be obtained for a given 

protein.44 

Calixarenes can also bind to stabilise protein structures. For example, the protein 

p53, which protects against tumours by either inducing DNA repair or cell apoptosis, 

contains a tetramerisation domain which is mutated in some cancers. The R337H 

mutation destabilises the tetramer, but the integrity can be recovered by using a ‘clip’ 

in the form of a cone calixarene with four guanidinomethyl groups on the upper rim 

and hydrophobic loops on the lower rim (26).45 Two of these bind per tetramer, 

interacting with hydrophobic pockets between monomers and with glutamate residues 

above the pockets (see Figure 1.4b). The loops on the lower rim help to restrict 

conformational freedom, strengthening the binding.   

 
Figure 1.4: a) Tetraguanidinomethylcalixarene ligand (26); b) Interaction of 26 with 

p53 tetramer (© 2008 by the National Academy of Sciences of the United States of 

America).45  

1.1.4.2 Artificial Transporters 

Ion transporters are involved in a number of processes and their malfunction can be 

associated with disease states, for example cystic fibrosis. Synthesis of artificial 

analogues is therefore of interest. 

Transport of alkali metal cations across phospholipid bilayers has been achieved 

using lower-rim ester-functionalised calixarenes (see Figure 1.5).46 Selectivity and 

efficiency was found to be dependent on macrocycle size, with the calix[4]arene 

derivative (27) having the best selectivity and transport efficiency for Na+, whilst 

calix[5]arene and calix[6]/[7]arenes were also able to transport K+ and Cs+, 

respectively.  

Further work47 led to the synthesis of cholic acid derivatives, in both cone and 1,3-

alternate conformations. Though both conformations were able to mediate Na+ and H+ 

transport across a phospholipid bilayer, the latter (28) was found to be more active; 
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this, combined with the similarity in the length of the calixarene and the thickness of 

the vesicle, led to the conclusion that the 1,3-alternate calixarene was able to span the 

bilayer.  

Anion transport has also been achieved. A calixarene in the 1,3-alternate 

conformation with a tetrabutyl amide functionalised lower rim (29)48 was found to 

mediate Cl- transport in liposomes, planar lipid bilayers and in HEK-293 cells, with a 

concomitant change in pH. This may occur by H+/Cl- symport or Cl-/OH- antiport. 

Though this calixarene was not large enough to span the bilayer, it may have been 

able to form aggregates (as observed with a tetramethyl amide derivative in HCl) to 

allow it to form ion channels. 

 

Figure 1.5: Artificial transporters based on ester ((27),46 cholic acid (28),47 amide 

(29)48 and spermidine (30)49 functionalised calixarenes. 

It was also found that the activity of the corresponding partial cone derivatives of 

these tetra-amide calixarenes was influenced by the upper rim functionalisation.50 The 

para-tert-butyl and unfunctionalised calixarenes had different crystal packing, which 

was proposed to be the reason for the inactivity of the former compared with the latter. 
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The non-linear concentration dependence of the transport suggested that the calixarene 

forms aggregates which are responsible for transport. Co-aggregates with the inactive 

tert-butyl derivative inhibited transport. Although it was determined that the single 

inverted amide of the partial cone was not required for transport function, it was 

suggested that this could be exploited for synthesis of dimers or oligomers.   

Another 1,3-alternate calixarene, this time functionalised at the lower rim with 

spermidine (30) was able to span the entire bilayer without forming an aggregate.49 It 

displayed some selectivity towards I- and Br- over Cl-, whilst oxo-anions showed poor 

transport. This calixarene also showed a moderate antiproliferative effect against 

murine monocyte/macrophage J774.A1 cancer cells. 

1.1.4.3 Artificial Enzymes 

The potential for calixarenes to act as enzyme mimics by organising catalytic 

moieties has also been investigated. For example, artificial metallonucleases, which 

cleave phosphodiester bonds in DNA and RNA, can be synthesised by pre-organising 

catalytic Cu(II).  

To investigate this, cone calixarenes with one, two or three copper centres tethered 

to the upper rim via [12]-ane azamacrocyles were synthesised.51 A 104 fold rate 

enhancement was achieved for the 1,2-di- (31) and tri-copper derivatives and it was 

concluded that there was cooperativity between the metal centres in the cleavage of 

the phosphodiester bond; however, the third metal gave no additional rate 

enhancement, excluding simultaneous cooperation between all three. The 1,3-di-

copper species showed no cooperativity, indicating a sensitivity to the distance 

between the metal centres. It was proposed that one metal centre tethers the non-

reacting part of the molecule, whilst the other activates the phosphoryl group for 

cleavage.  

For diribonucleoside monophosphates, it was found that substrates containing a 

uracil base gave the best activity with these catalysts.52 It was proposed that the uracil 

may be deprotonated, providing an electrostatic interaction between the base and the 

metal centre. By contrast, for longer oligonucleoside monophosphates, greater 

selectivity for bonds adjacent to adenosine and cytosine was found, with the most 

scissile bond being 5’-pCpA. This mimics the activity of ribonuclease A. In this case 

the interaction with the terminal phosphate seems to dominate, resulting in the 

preferential cleavage of the naturally more labile CpA bond. 
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A metal-free artificial phosphodiesterase has also been synthesised, in this case 

utilising upper-rim guanidinium moieties for catalytic function.53 In an investigation 

of the catalytic activity towards the transesterification of 2-hydroxypropyl p-

nitrophenylphosphate (HPNP) it was found that a 1,3-diguanidine calixarene (32) 

gave much greater activity than the corresponding monomer, indicating a marked 

synergistic effect, whilst a triguanidine derivative gave no further improvement. A 

mechanism of action was proposed where a neutral guanidine acts as a general base 

catalyst, whilst the other, protonated guanidinium serves to stabilise the negatively 

charged transition state via a bidentate hydrogen bond. A third guanidine only behaves 

as a spectator and functionalisation with four guanidine moieties leads to steric 

repulsion. 

 
Figure 1.6: 1,2-difunctionalised artificial metallonucelease (31)51 and 1,3-diguanidine 

functionalised calixarene catalyst (32) in the catalytically active form.53  

1.1.4.4 Anticancer applications 

In addition to the potential applications covered above, other therapeutic 

applications of calixarenes have been more directly investigated. This includes 

targeting of cancer cells and the use of calixarenes as antimicrobials (see section 

1.1.4.5). 

CD69 is a C-type lectin-like receptor expressed during activation of T-lymphocytes 

and natural killer (NK) cells. This was targeted using a carboxylated thiacalixarene 

(33) to disrupt the process of CD69-induced apoptosis that is involved in tumour 

immunology.54 This calixarene was found to inhibit the binding of CD69 to a 

multivalent mimic of cancer cell sialomucins without affecting another C-type lectin, 

NKR-P1, displaying its potential as a selective ligand. Moreover, it was able to protect 

CD69high lymphocytes from apoptosis induced by the sialomucin mimic. It may 
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therefore be able to intervene in tumour immunology by preventing inactivation or 

apoptosis of CD69-bearing cells.  

Calixarenes could also be utilised in cancer chemotherapy indirectly, by mediating 

delivery of cytotoxic agents. This could be accomplished by using bifunctional 

calixarenes decorated with folic acid moieties.55 These groups bind with high affinity 

to folate receptor, which is a marker for cancer cells and activated macrophages. A 

folic acid functionalised calixarene (34), with triethylene glycol chains on the lower 

rim, was developed to mitigate the poor bioavailability of hydrophobic drug molecules 

and was found to solubilise the drug indomethacin by forming aggregates at 

physiological pH. Such a system could potentially be used to both solubilise a drug 

and to deliver it selectively to cancer cells.  

 
Figure 1.7: CD69-binding carboxylated thiacalixarene (33)54 and multivalent folic 

acid conjugate (34).55 

1.1.4.5 Antimicrobial activity 

Calixarenes can be used as scaffolds to present antibiotic functionalities. One 

example of this is a mimic of the antibiotic vancomycin, synthesised using a 

macrobicyclic calixarene (35) with a bridge between opposite aromatic units.56 The 

bridge was a pseudopeptide, to mimic the glycopeptide antiobiotic, formed of two 

amino acids linked by a 1,3,5-diethylene triamine spacer.  

Vancomycin binds to mucopeptide precursors that form gram positive bacterial cell 

walls. The dipeptide N-Ac-Ala-Ala was used as a model of the peptidoglycan branch 

and binding studies were carried out with this. It was found that the scaffold 

containing two alanine residues bound to the target more strongly than N-acetyl 

alanine alone. It was concluded that the ligand was able to form both electrostatic 
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interactions between its carboxylate group and the ammonium group of the host and 

hydrogen bonds to the pseudopeptide bridge. The calixarene displayed antibacterial 

activity which was selective towards gram-positive bacteria.  

A drug molecule can also be tethered to a calixarene using a labile linker. A tetra-

para-aminoethylcalixarene with a tethered nalidixic acid molecule (36) was found to 

be highly stable as a solid, but released the drug molecule in biological medium.57 

Although the subsequent free alcohol of the calixarene was considerably less active as 

an antibiotic, a synergistic effect was found between the calixarene and nalidixic acid 

against both gram-positive and gram-negative bacterial strains.  

Certain functionalised calixarenes have also been found to have intrinsic 

antimicrobial activity. For example, para-sulfonato and para-phenylazocalixarenes in 

particular were shown by Lamartine et al.58 to have antibacterial and antifungal 

activities. More focussed investigation of agents against tuberculosis has also been 

carried out, based on early observations that macrocylcon, a para-tert-

octylcalix[8]arene functionalised on the lower rim with polyethylene glycol chains, 

could be used to treat pulmonary tuberculosis.59 A polyethylene glycol-functionalised 

calix[6]arene (37) was found to reduce viable counts of mycobacteria in lungs and 

spleens of infected mice by stimulating the host’s antimycobacterial mechanisms. A 

host-mediated mechanism such as this could help to overcome multi drug resistance.  

Guanidine functionalised calixarenes have also been investigated for their 

antimicrobial properties. A para-guanidinoethylcalixarene (38) was found to exhibit a 

significant effect against both gram-positive and gram-negative bacterial strains, with 

much greater activity than the corresponding monomer.60 Later studies indicated that 

interactions of the calixarene with phospholipid bilayers were characterised by a 

combination of electrostatic and apolar interactions and that both are required for 

antibiotic activity; the monomer, lacking the apolar core of the calixarene, is thus 

unable to bring about the same intensity of effect.61 

Anionic calixarenes have been investigated for their potential to treat viral 

infections such as HIV. A set of calixarenes, including those functionalised with 

sulphonate, carboxylate and phosphonate groups, with some featuring bithiazole 

moieties on the lower rim, were tested for their anti-HIV activity.62 Bithiazole 

functionalisation was found to increase activity, with the sulphonated derivative (39) 

giving the best activity by interfering in early stages of infection. They were also 

found to have little or no cytotoxicity, indicating their potential applicability to anti-

HIV therapy. 
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Figure 1.8: Antimicrobial calixarenes: general structure of vancomycin mimic (35) 

where AA = amino acid,56 nalidixic acid prodrug (36),57 macrocyclon analogue 

(37),63 guanidinium antibacterial agent (38),60 anti-HIV agent (39),62 and dual 

function anti-HIV and –HCV agent (40).64 

The problem of co-infection of HIV and hepatitis C virus (HCV) has led to the 

search for anti-virals with activity towards both of these targets. A calixarene-based 

antiviral agent (40)64 has been found which meets this goal, displaying antiviral 

activity in multiple cell lines. The isophthalic acid head groups were found to be 

important for activity, along with the locking into the cone conformation provided by 

either butyl or benzyl ethers on the lower rim. 
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1.1.4.6 Other applications 

Medical diagnostics could be aided through the use of calixarene-based DNA 

chips. Song et al. developed a DNA chip using a monolayer of calixarenes 

functionalised with anionic groups which were able to bind DNA appended with a 

repeat of 9-guanines (9G-DNA chip). The chip was shown to be able to selectively 

bind a Cy5 labelled DNA sequence complementary to that bound to the calixarenes.65 

They subsequently demonstrated the ability of a 9G-DNA chip to detect human 

papillomavirus (HPV) in clinical samples.66 

Other applications include the use of calixarenes as cell penetration agents, for 

example for cellular imaging or their use in DNA transfection. This will be examined 

in Chapter 2. Calixarene-based glycoconjugates have also found a number of potential 

applications and will be examined in Chapter 3.  

1.2 Click chemistry 

Click chemistry is a term coined by Sharpless et al.,67 the requirements for such a 

reaction being that it must be modular, wide in scope, high yielding, produce only 

inoffensive by-products, be stereospecific, have simple reaction conditions, use 

readily available materials and reagents, use benign or easily removed solvent and 

give a product that is stable and easily purified. Reactions that satisfy these criteria 

include nucleophilic ring opening reactions (for example, those of aziridenes),68 

Michael additions (such as thiol-ene coupling)69 and cycloaddition reactions. The 

most well-known example of the latter is a Huisgen 1,3-dipolar cycloaddition70 

reaction between azides and terminal alkynes to give triazoles.71 Although thermal 

activation gives a mixture of regioisomers, this reaction gained renewed interest on 

the discovery that the addition of copper(I) as a catalyst gives specifically the 1,4-

regioisomer (see Scheme 1.4).72,73 This is now known as the copper catalysed azide-

alkyne click (or CuAAC) reaction. 

 

Scheme 1.4: Outcome of the 1,3-dipolar cycloaddition reaction between an azide and 

alkyne under a) thermal conditions, and b) copper catalysed conditions. 
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The copper catalyst can be added directly using a copper salt such as 

copper(I)iodide in combination with a base such as diisopropylethylamine (DIPEA),73 

or can be generated in situ from copper(II) sulphate by adding sodium ascorbate as a 

reducing agent.72 Addition of amine ligands can accelerate the reaction by stabilising 

the active copper(I) species and improving its solubility in organic solvent, with 

tris(benzyltriazolyl)methyl amine (TBTA)74 being particularly effective for this 

purpose. 

Due to experimental challenges the mechanism of the CuAAC reaction has been 

difficult to elucidate. However, recent work75 has provided valuable insight into the 

highly reactive, non-isolable reaction intermediates. Based on the observation that 

halo-acetylides, whilst formally internal alkynes, are still able to undergo 

cycloaddition, the authors tested the reactivity of preformed copper(I)-acetylide and 

found that without addition of exogenous copper the reaction did not proceed. This 

demonstrates the necessity of a second, π-bound copper centre for the reaction.  

Further work using an isotopically enriched copper catalyst on the copper(I)-

acetylide found that, unexpectedly, the copper(I)-triazolide formed from the 

cycloaddition was isotopically enriched 50% of the time. This indicated that the 

second copper centre was not simply acting as a π-bound ligand. After excluding the 

possibility of exchange occurring on the copper(I)-acetylide or after the formation of 

the copper(I)-triazolide, this led to a proposed cyclic intermediate after the first C-N 

bond formation where the two copper centres become equivalent. The subsequent 

oxidation step is then facilitated by the copper centres each acting as a stabilising 

donor ligand for the other. The full proposed mechanism is shown in Scheme 1.5.  

 

Scheme 1.5: Proposed mechanism for the CuAAC reaction.75  
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1.2.1 Click chemistry for calixarene functionalisation 

The CuAAC reaction has been applied to a wide array of different molecules, 

including calixarenes. With their scope for selective functionalisation on both the 

upper and lower rims, these macrocycles lend themselves well to the modular 

synthesis approach provided by click chemistry. Although they can be furnished with 

either azide or alkyne moieties on both upper and lower rims, this section will focus 

on the use of lower-rim alkyne functionalised calixarenes due to their use in the 

syntheses presented in this thesis. 

1.2.1.1 Background 

Prior to the development of the copper-catalysed version of the azide-alkyne 

dipolar cycloaddition, this reaction was used to functionalise calixarenes under 

thermal conditions.76 By combining a lower-rim 1,3-diazido calixarene (41) with 

either lower-rim mono- (42) or 1,3-dipropargyl (43) calixarenes, trimers (44) and 

doubly-bridged dimers (45) were synthesised, respectively. This provides an early 

example of the use of cycloaddition chemistry to provide access to multicalixarenes. 

However, without the copper catalyst, mixtures of regioisomers were obtained.  

 

Scheme 1.6: Products of thermal cycloaddition reactions between azides and 

alkynes.76 
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Interestingly, although all possible isomers of 45 were synthesised, only two 

regiosomers of 44 were obtained. In the latter case the isomers could therefore be 

easily separated. 

Several years later, after the advent of the CuAAC reaction, Ryu and Zhao77 

investigated the potential of this reaction. Their aim was to synthesise water-soluble 

calixarenes through a modular approach that would provide a route to various 

functionalised calixarenes without the need for protection/deprotection steps. 

Although they were able to introduce a variety of functionalities (including sulfonates 

and quaternary amines) to the lower rim via an azide-functionalised calixarene (46), 

attempts to furnish the lower rim with carboxylic acid moieties using tetra-propargyl 

calixarene (47) were unsuccessful (see Scheme 1.7, compounds 48 and 49, 

respectively). The authors suggested that side-reactions between alkyne groups were 

responsible for the observed complex mixture of products and that for this reason, and 

due to the greater ease and safety of storing the various alkyne-based small-molecule 

precursors compared with azides, the azide-functionalised calixarenes were more 

effective precursors.  

 

Scheme 1.7: Lower-rim alkyne vs. lower-rim azide for CuAAC mediated synthesis of 

water soluble calixarenes.77 
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However, in 2006 Chen et al.78 demonstrated the successful use of tetra-propargyl 

calixarene in CuAAC chemistry by functionalising it with triazole-linked aminoethyl 

moieties, showing the applicability of the reaction to lower-rim alkynes. Such 

molecules have since been widely utilised in the CuAAC reaction. 

1.2.1.2 Preparation of Lower-Rim- Alkynes 

Lower-rim alkynes are easily accessible by utilising a Williamson ether formation 

between the phenols of the calixarene and propargyl bromide. The degree of 

functionalisation and the conformation of the calixarene can be controlled to give 

different arrangements of the functionalised scaffold.25 The main methods of 

accessing partially and fully propargylated calixarenes, as described below, are 

summarised in Scheme 1.8. 

Chetcuti et al.79 synthesised several different alkyne-functionalised calixarenes, 

although they did not utilise them in a CuAAC reaction. Mono, 1,3-di and tetra-alkyne 

derivatives were synthesised by refluxing in acetone with K2CO3 as a base to control 

the conformation by forming electrostatic interactions between K+ and the oxygens of 

the lower rim. The degree of functionalisation was controlled by varying the amount 

of alkylating agent, using 1, 3 or 6 equivalents of propargyl bromide respectively, and 

increasing the reaction time. The 1,3-alternate conformation of the tetra-propargyl 

derivative was obtained in a stepwise manner by using the 1,3-dipropargyl calixarene 

and treating it with excess propargyl bromide in the presence of Cs2CO3 as a base.  

Matthews and coworkers80 used a different approach to access partially-

propargylated derivatives. Instead of leaving free phenols, the calixarenes were first 

partially alkylated with propyl bromide. Using a mixture of Ba(OH)2 and BaO as a 

base afforded the tripropyl, whilst the 1,3-dipropyl was accessible using K2CO3. The 

1,2-dipropyl was synthesised using NaH as the base with 2.2 equivalents of propyl 

bromide. In contrast with the method used by Chetcuti et al., the mono-propyl 

derivative was obtained using CsF as a weak base and 1.1 equivalents of alkylating 

agent. All of these derivatives were subsequently treated with an excess of propargyl 

bromide in the presence of NaH to exhaustively alkylate the lower rim and lock the 

final calixarene into the cone conformation, with the desired number of alkyne groups 

present.  

Tetra-propargylated derivatives were also synthesised.80 The cone conformer was 

synthesised using the method of Ryu and Zhao,77 utilising NaH as a base instead of 

the K2CO3 used by Chetcuti et al.; the calixarene is held in the cone conformation in a 
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similar manner. The 1,3-alternate conformer was synthesised using the same method 

as Chetcuti; however in this case a mixture of products was obtained, and therefore 

also gave access to the partial cone conformer. Similarly, Puddephatt et al.,81 although 

using K2CO3 as a base, also obtained a mixture of partial cone and 1,3-alternate, in 

ratios of 2:1 and 4:1 after 24 and 48 hours, respectively. This suggests that the 1,3-

alternate conformation can convert into the more stable partial cone with prolonged 

heating.  

 

Scheme 1.8: Summary of main methods that have been used for accessing partially 

and fully propargylated calixarenes, with the latter in different conformations. 
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An alternative method for mono-alkylation was provided by Bonnamour et al.,82 in 

which the 1,3-dialkyl derivative is treated with TiCl4 to furnish the mono-alkylated 

calixarene. This was demonstrated for a number of different functionalities, including 

but-3-ynyl.  

These alkyne-functionalised scaffolds have found a number of applications, which 

will be examined in the following section.  

1.2.1.3 Applications 

As noted in section 1.2.1.1, the work of Chen et al.78 led to the successful 

functionalisation of lower-rim tetra-propargyl calixarene. The triazole-linked 

aminoethyl functionalised calixarene (50) was synthesised in cone and partial cone 

conformers as part of a library of molecules. This was aimed at creating topomimetics 

of amphiphilic α-helices and β-sheets for neutralisation of lipopolysaccharide (LPS) 

endotoxin from Gram negative bacteria. Administration of the cone conformer to mice 

given a lethal dose of LPS from Salmonella resulted in 100% survival, although it was 

less effective against LPS from other strains of bacteria.  

Click chemistry has also been applied to the formation of calixarene-based 

cavitands and nanotubes. Morales Sanfrutos et al.,83 following on from the previous 

work using thermal cycloaddition conditions,76 investigated the use of the CuAAC 

reaction to  react dipropargyl-functionalised calixarenes with diazide-functionalised 

calixarenes or bis-azidomethylbenzenes. In the former case only the tube-like dimer 

(51) was formed. With the latter, in addition to the desired benzene-capped 

calixarenes (52) a doubly-bridged dimer was formed. However, a preference was 

found for the product that formed by the second click reaction being intramolecular, 

such that the doubly-bridged dimer was always the minor product.  

Lower-rim propargylated calixarenes have also been incorporated into co-

polymers. For example, conjugation of 1,3-dipropargyl calixarene to a cyclodextrin 

gave a product that was able to form a complex with adamantyl units on poly-N-

isopropylacrylamide (poly(NIPAAM)).84 In another case the bifunctionality was 

centred on the calixarene itself (53) by using ring-opening polymerisation with ϵ-

caprolactone to give polycaprolactone (PCL) chains followed by click chemistry to 

introduce polyethylene glycol (PEG) chains.85 

 



 
 

Chapter 1: Introduction 

41 
 

 

 
Figure 1.9: Lower-rim triazole linked ethylamine (50), calixarene-based cavitand 

(52), calix-tube (51) and calixarene-centred copolymer (x = 25, y = 22) (53). 

The 1,3-dipropargyl calixarene in particular has found extensive use in the 

synthesis of ion sensors due to the ability of triazole rings to bind cations. These 

sensors commonly exploit a change in conformation of the side-chains on ion-binding 

to give a measureable change in fluorescence properties.  

Chung and coworkers have synthesised a number of calixarene-based molecules 

capable of sensing cations86–90 and anions87 by functionalisation with triazole-linked 

fluorescent moieties, such as anthracene and pyrene. Several of these sensors are 

ditopic, utilising a second functionality to bind another ion, for example combining 

two triazole linked anthracenes with a calix-crown structure (54);86 this example is 

also switchable, with a second binding event reversing the change in fluorescence. A 

1,2-difunctionalised sensor utilising pyrene was also synthesised and was found to 

give superior binding to Ag+ compared with the 1,3-derivative.90 
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Figure 1.10: Examples of ion sensors synthesised by Chung and coworkers (54)86 and 

Pathak et al. (55).91 

Kim and coworkers have also synthesised dipyrene functionalised calixarenes, 

capable of binding Cd2+, Zn2+ and I-.92,93 During the course of developing the latter, a 

mono-pyrene derivative was synthesised with a quaternary amine on the opposite 

calixarene ring; the amine was noted to behave as an intramolecular ligand during the 

CuAAC reaction, enhancing the reactivity.93 

Other work on sensors includes that of Li and coworkers. A calixarene with a 

bridging anthraquinone on the lower rim, linked via triethyleneglycol chains and 

triazole rings, gave a switchable fluorescence response with selective binding of Ca2+ 

and subsequent quenching by interaction of the complex with F-.94 Other ion binding 

calixarenes have also been synthesised that have no fluorescent moiety, but have the 

ability to extract cations from aqueous to organic phase in a biphasic mixture.95,96 

The work of Pathak et al. on calixarene-based sensors has had more of a biological 

focus. The sensors developed by this group are based on a common motif: the 1,3-

dipropargyl calixarene is conjugated to benzaldehyde moieties, which are then used to 

form a Schiff-base to various molecules to diversify the scaffold (for example 

compound 55).91,97–100 This has yielded sensors which bind cations using not the 

triazole moieties as noted previously, but the Schiff-base groups.  

A Zn2+ binding calixarene featuring imine-linked thiophene units has been 

developed99 which gives a switchable response, with increase in fluorescence on Zn2+ 

binding being reversed by addition of cysteine or dithiothreitrol (DTT) due to ligand 

displacement. Release of Zn2+ from its complex with cysteine or DTT by addition of 
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Cd2+ or Hg2+ and concomitant restoration of fluorescence was also demonstrated. 

These two processes mimic metallothionein and metal-detoxification, respectively.  

Similarly, a Zn2+
 complex with a pyridyl-imine derivative provided the means for 

selective recognition of cysteine by fluorescence switching. This was shown to be 

applicable to both the free amino acid and protein-bound cysteine.91 This amino-acid 

sensing application was extended further with a triazole-linked o-iminophenol 

functionalised calixarene.100 The function of this molecule was diversified by forming 

complexes with different metal cations, which were shown to display selective sensing 

properties towards different amino acids depending on the incorporated metal, with 

similarities to amino acid-metal ion pairs found in metalloproteins. 

Other work by Pathak et al. has demonstrated the applicability of switchable 

sensors inside living cells. This will be examined in Chapter 2. 

Click chemistry also provides easy access to glycoconjugates. Galante et al.101 

synthesised lower-rim tetrapropargyl calixarene in cone and partial cone 

conformations as part of a larger library including upper- and lower-rim azide 

functionalised calixarenes, which were then used to form glycoconjugates with 

suitably functionalised lactose moieties for testing as trypanocidal agents. Although 

the partial cone showed little activity, the cone conformer (56) showed activity 

comparable to the established drug benznidazole.  

 

Figure 1.11: Example of glycoconjugate (56)  functionalised with lactose moieties.101 

Chinta and Rao102 used 1,3-dipropargyl calixarene to synthesise galactosyl and 

lactosyl functionalised calixarenes. After testing binding to amino acids, which 

interestingly showed that the triazole ring was involved in the interaction with 

tryptophan, binding to the target protein, Jacilin, was confirmed. 

The various propargylated calixarenes synthesised by Matthews and coworkers80 

were also conjugated to sugars. By performing a click reaction between the calixarene 
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scaffolds and azide-functionalised galactose, linked by triethylene glycol, water-

soluble glycoconjugates were synthesised with different valencies and conformations 

for targeting the PA-IL lectin of Pseudomonas aeruginosa. These, and other 

glycoconjugates, will be examined in more detail in Chapter 3.  

1.3 Overview of thesis 

Chapter 1 has provided an overview of the key themes that are present throughout 

the thesis: calixarenes, their potential biological applications and the use of click 

chemistry in combination with these scaffolds.  

Chapter 2 will examine in more detail the concept of cell penetration, cell 

penetration agents and the use of calixarenes in this context. The present research 

undertaken to add to this body of work will then be presented, including the synthesis 

and biological evaluation of novel calixarene-based cell penetration agents.  

Chapter 3 will explain the glycoside-cluster effect and how multivalent 

glycocongugates can be used to exploit this. The use of calixarenes as a scaffold to 

this end will be examined, particularly in the context of targeting Pseudomonas 

aeruginosa. A synthetic strategy towards bi-functional fluorescent calixarene-based 

glycoconjugates will be presented.  
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2.1 Introduction 

2.1.1 Mechanisms of cell uptake 

Uptake of molecules or larger structures into cells across the largely impermeable 

cell membrane is essential for a number of processes. Foreign bodies such as 

pathogens are removed and destroyed by phagocytosis,1 whilst other endocytosis 

mechanisms are involved in cellular signalling by regulation of the number of 

receptors on a cell’s surface.2 Endocytosis can also be exploited by pathogens to gain 

entry to cells.3 Endocytosis processes can be categorised into three main groups: 

clathrin-mediated, caveolae dependent and clathin- and caveolae-independent (see 

Figure 2.1). These will be examined further in the following sections.  

 
Figure 2.1: Mechanisms of endocytosis. Reprinted by permission from Macmillan 

Publishers Ltd: Nature Reviews Molecular Cell Biology4 © 2007 

2.1.1.1 Clathrin mediated endocytosis 

Clathrin mediated endocytosis is involved in the internalisation of lipids and 

proteins, such as a transmembrane receptor and its ligand, from the cell membrane. It 

is utilised at nerve synapses where it has a role in the recycling of synaptic vesicles 

following the release of neurotransmitters and is important for proper signal 

transmission.5 In the gut, it is involved in the uptake of iron (for example by 

transferrin), lectins and even viruses.6 The endocytosis process is summarised in 

Figure 2.2. 

Clathrin mediated endocytosis requires the protein clathrin to form a coat on the 

cytoplasmic face of the membrane. The structure is a triskelion with each of the three 

arms consisting of a light chain and a heavy chain of clathrin; these molecules then 
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form the lattice that coats the vesicle.7 A number of accessory proteins are also 

required. These include adaptor proteins, such as AP2, which links the clathrin to the 

cell membrane. For example, AP2 recognises the cytoplasmic face of transferrin and 

links it to the nucleating clathrin.8  

The membrane becomes deformed at the site of clathrin nucleation, creating a 

clathrin coated pit. More accessory proteins aid in this deformation of the membrane. 

For example, epsin type proteins partially insert an amphipathic helix into the cell 

membrane, displacing lipid residues in a wedge-like manner to create a curve.9 Further 

polymerisation leads to constriction of the vesicle neck. Dynamin, a GTPase, forms a 

helical polymer around the neck, such that subsequent GTP hydrolysis results in 

scission of the vesicle from the cell membrane to form a clathrin coated vesicle.10 

Recruitment of dynamin is effected by amphiphysin, which also binds to clathrin and 

AP2.11 The protein coat is then removed by auxilin and heat shock cognate protein 70 

kD (HSC70).12 The vesicle can then undergo intracellular trafficking followed by 

fusion to the target membrane. 

 
Figure 2.2: Scheme of key steps in clathrin mediated endocytosis. Reprinted by 

permission from Macmillan Publishers Ltd: Nature7 © 2007 

2.1.1.2 Caveolae 

Caveolae (‘little caves’) are flask-shaped invaginations in the cell membrane, 

forming a microdomain that is a type of lipid raft.  They are particularly abundant in 

smooth muscle, fibroblasts, adipocytes and epithelial cells13, but some cells such as 

lymphocytes lack caveolae.14 Previously associated only with non-specific bulk 

transfer of fluid-phase cargoes, caveolae dependent endocytosis is now implicated in a 

number of processes. These include a role in calcium mediated signalling in 

endothelial cells, both negative and positive regulation of membrane bound receptors 

and cholesterol homeostasis.15  

Caveolae are enriched with caveolin type proteins. Caveolin1 (or caveolin3 in 

muscle cells) is crucial for their formation. Caveolin1 has an intramembrane domain 

that inserts into the cell membrane, forming a hairpin loop with both N- and C-
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terminal domains in the cytoplasm. It is palmitoylated and can bind cholesterol and 

fatty acids to stabilise its oligomers.16 It is thought that caveolin itself effects the 

curvature of the membrane in the formation of the caveolae. The amphipathic 

structure can be seen as analogous to those involved in clathrin mediated endocytosis, 

with the inserted loop deforming the membrane. In addition, the enrichment of 

cholesterol within the membrane envelope may enhance the curvature.9 

Although dynamin is required for scission, it has been shown that not all caveolae 

pinch off from the membrane. Caveosomal structures have been found distant from 

the cell membrane that were still connected to it,17 suggesting that some caveolae are 

stable structures that are not involved in endocytosis.  

2.1.1.3 Clathrin- and caveolin-independent pathways 

It has been found that cells in which clathrin and caveolin have been depleted can 

still undergo cholesterol dependent endocytosis. GPI-anchored proteins (GPI-AP) are 

not usually concentrated into clathrin coated pits or caveolae although the latter play a 

role. Instead, clathrin-independent carriers (CLICs) can form and transfer the 

structures to GPI-AP-enriched early endosomal compartments (GEECs), more tubular 

in shape than typical vesicles. This pathway is regulated by the G-protein cdc42.18 

This is a lipid raft associated process, with the clustering of the GPI-APs dependent on 

cholesterol.19 This does not create sufficient membrane curvature so other proteins 

with Bin–Amphiphysin–Rvs (BAR)-type domains such as GRAF1 are recruited to the 

curved membrane and induce further curvature.9  

Another lipid-raft associated process is macropinocytosis. This occurs when 

protrusions in the cell membrane fuse back to the lipid bilayer to form large, fluid-

filled macropinosomes, which is associated with extensive actin rearrangement to give 

characteristic ruffles.20 It has been shown to be important in class II MHC-positive 

cells in the uptake of antigens.21 A number of enzymes have been shown to be 

important for this process, including phosphoinositide 3-kinase (PI3-K), the GTPase 

Rac1 and ARF6.20,22 The localisation of Rac1 and ARF6 to the membrane seems to be 

cholesterol dependent and cholesterol depletion inhibits macropinocytosis.23 However, 

cholesterol depletion is a non-specific inhibitor. It may be that the observed inhibition 

is a secondary effect, for example due to interference with the actin cytoskeleton at the 

cell membrane.20  
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2.1.2 Cell penetration agents 

Many therapeutic targets lie within cells. As such, it is essential for drugs or other 

therapeutic agents to be able to cross the cell membrane. In some cases this barrier 

prevents the agent being available within the cell, for example in the delivery of 

nucleic acids in gene therapy. Therefore it is important to investigate ways to facilitate 

the delivery of various molecules into cells.  

2.1.2.1 Cell penetrating peptides 

Some naturally occurring peptides are able to cross the cell membrane. One early 

observation of this was the Antennapedia homeodomain, the DNA binding portion of 

a transcription factor from Drosophila, which was found to penetrate cells in culture.24 

Further examples have also been found, including the transactivator of transcription 

(Tat) protein from HIV, from which the protein transduction domain (Tatp) was 

isolated.25 

The potential usage of such peptides as cell penetration agents to deliver cargos 

into cells has led to extensive investigation of the mechanisms of their uptake into 

cells and the essential features that allow them to do so. This has informed the design 

of synthetic cell penetrating peptides and the investigation of potential applications. 

These investigations will be examined in the following sections.  

2.1.2.1.1  Cellular uptake mechanisms 

In order to facilitate the design of cell penetrating peptides, their uptake 

mechanisms into cells have been investigated. Early work seemed to indicate an 

energy-independent, non-endocytotic mechanism of uptake due to the observation that 

at 4 °C there was no inhibition of uptake into cells.24,25 However, subsequent work has 

suggested that this was an artefact of the procedures used to fix the cells.26 Fixation 

using paraformaldehyde resulted in the cellular membranes becoming more leaky, 

leading to release of the peptides from endosomes to give the observed diffuse 

staining. Furthermore, excess peptide associated with the external surface of the 

membrane was able to leak into the cell even at low temperature.  

Following this, many studies have been carried out on live cells. Nakase et al.27 

suggested that macropinocytosis was the dominant mechanism of uptake based on the 

observation that uptake of Tatp and other arginine rich peptides was associated with 

actin rearrangement. Also, inhibitors of macropinocytosis such as 

ethylisopropylamiloride inhibited their uptake. However, penetratin, a cell penetrating 
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peptide derived from the third helix Antennapedia homeodomain, was not affected by 

the same inhibitors except at high concentrations, suggesting that multiple 

mechanisms may be used by the same peptide.  

They also suggested an important role of heparan sulphate proteoglycan (HSPG). 

Deficiency of this cell surface structure led to decreased uptake efficiency and was 

associated with a lack of induction of macropinocytosis by arginine-rich peptides, 

although this effect was less prominent for the 8 residue arginine oligomer, R8. They 

suggested that HSPG may act as a receptor for macropinocytosis by concentrating the 

cargo at the cell surface and stimulating the endocytosis. 

However, other studies of Tatp have shown colocalisation with transferrin in HeLa 

cells, implicating clathrin mediated processes.28 Consistent with this, treatment with 

chlorpromazine, an inhibitor of clathrin mediated endocytosis, gave 50% inhibition of 

uptake.29 Other studies in the same cell line also found colocalisation with caveolin1,30 

although inhibitors of caveolae such as filipin did not have a significant impact on 

uptake.29  

It has also been shown that a direct translocation mechanism may play a role, even 

in live cells. Fretz et al.31 studied the uptake of octaarginine into cells under varying 

conditions in CD34+ leukaemia cells. It was found that at low temperature there was 

diffuse staining of the cytoplasm and localisation to the nucleus, consistent with the 

original assumptions about endocytosis-independent uptake. At increasing 

temperature, localisation to endocytotic vesicles occurred, whilst at 37 °C this was the 

only staining present. A concentration threshold was implicated by the observation 

that at higher concentrations of peptide diffuse staining became evident once more. 

Cholesterol depletion also gave diffuse staining. This suggests that either cholesterol 

inhibits direct translocation, or that disruption of endocytosis necessitates an 

alternative mechanism.  

Cumulatively, the data suggests that multiple mechanisms may be important, 

perhaps even operating in a concerted manner. Mechanistic studies have been 

complicated by the fact that a number of factors influence the mechanism that a 

peptide is taken up by. The type of cell, cell penetrating peptide and cargo all have an 

effect on the mechanism.32 An example of the latter has been demonstrated by 

Tünnemann et al.33 who found that varying the size of a peptide-based cargo attached 

to Tat from a peptide to a globular protein led to differences in uptake. The globular 

protein cargo was taken up only by endocytosis, whereas the peptide was also taken 

up by an unknown, rapid mechanism of translocation.  
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In summary, the dependence of uptake on a number of variables precludes the use 

of a single universal cell penetrating peptide. On the other hand, it may allow fine 

tuning for selective applications. 

2.1.2.1.2  Design of cell penetrating peptides 

Much work has been carried out to determine which features are essential for 

cellular uptake in order to design optimised cell penetrating peptides. Studies of 

individual segments of the Antennapedia homeodomain found that a 16 amino acid 

stretch corresponding to the third α-helix without its N-terminal glutamate (now 

known as penetratin) was the essential component for its translocation.24 However, the 

α-helical structure is not essential for uptake, since introduction of 1-3 proline residues 

to interrupt the secondary structure did not prevent uptake.34 

In the case of Tatp, studies to determine the key features of the peptide determined 

that translocation was due to a cluster of basic amino acids (six arginines and two 

lysines), whilst the amphipathic α-helix, initially thought to be a key determinant for 

uptake, was not essential.25 It has also been found that deletion of arginine in Tatp is 

more detrimental to its cellular uptake efficiency than deletion of lysine.32  

The difference in acidities between lysine and guanidinium cations has been 

proposed as a reason for this effect.35 Lysine is sufficiently acidic to release a proton 

to water in order to reduce charge repulsion with neighbouring cationic groups; 

however, the guanidinium group of arginine is not sufficiently acidic to do the same. 

Therefore in order to stabilise the positive charge arginine may instead act as an anion 

scavenger. This may increase its tendency to bind to the negatively charged phosphate 

groups on the cell membrane.  

It has also been proposed that arginine can create Gaussian negative curvature in 

the cell membrane, which is associated with the formation of pores, invaginations and 

protrusions. Arginine can form both electrostatic interactions and multiple hydrogen 

bonds, giving a bidentate mode of binding to multiple polar head groups of the cell 

membrane, whereas lysine can only form a hydrogen bond. This allows poly-arginine 

to give Gaussian negative curvature.36 The ability of poly-arginine to do this would 

depend on the degree of intrinsic curvature in the membrane and so depend on the 

composition of the lipid bilayer, including the amount of cholesterol, accounting for 

some differences between cell types.  

The length of an arginine oligomer is also important. Oligomers of 5-20 residues 

are taken up into cells, with maximum efficiency at 15 arginine residues. However the 
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R8 peptide has been most extensively studied as it gives a good compromise between 

uptake efficiency and ease of synthesis.32,37  

Further studies into the effects of modifications of cell penetrating peptides found 

that both D- and L-isomers were efficiently taken up into cells, indicating that the 

backbone conformation of the peptide was not important. This suggests that enzyme 

interactions at the cell surface, which would depend on chirality, are not responsible 

for uptake. The D-isomer of an oligoarginine seemed to have superior uptake, perhaps 

due to its greater stability to proteolysis and longer in vivo lifetime.32  

These observations led to the study of non-peptidic guanidinium-rich transporters, 

such as those based on peptoids and carbamates, which lack secondary structure and 

have greater flexibility. These will be examined further in section 2.1.2.2. 

2.1.2.1.3  Applications 

Cell penetrating peptides have been used to deliver a variety of cargoes into cells 

which would otherwise have poor uptake efficiency, or no uptake at all.  

Peptide-based therapies have great potential but are hampered by the inability of 

most peptides to cross the cell membrane. However, peptides lend themselves to 

improvement with cell penetrating peptides as their incorporation can be included 

during the peptide synthesis. An example of this is the targeting of Nuclear factor 

(erythroid-derived 2)-like 2 (Nrf2).38 This binds to the anti-oxidant response element 

(ARE) when not bound by its regulator Keap1 and so this interaction provides a target 

for treatment of inflammation. A 14-mer peptide, designed to interact with Keap1, 

when combined with Tatp was able to disrupt this interaction in vivo, giving 

downstream expression of heme oxygenase and supressing expression of tumor 

necrosis factor, a pro-inflammatory cytokine.  

 A further example is provided by Psorban, a cell penetrating peptide conjugate that 

is currently undergoing clinical trials. It is based on cyclosporine-A, a cyclic peptide 

with anti-inflammatory effects that is used to treat psoriasis. It was conjugated to R7, 

which allowed it to cross cutaneous barriers and penetrate into the target T-cells in 

inflamed skin, giving an anti-inflammatory response when used topically and avoiding 

the side-effects associated with systemic use.39 

Nucleic acids can also be delivered, with potential applications in transfection and 

gene therapy. One such cargo is siRNA, small sections of double-stranded RNA that 

are capable of affecting the expression of target complementary genes by post-

transcriptional silencing. Both covalent40,41 and non-covalent42 conjugates of cell 
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penetrating peptides with siRNA have been investigated and gave successful gene 

silencing, though vesicular accumulation was identified as a barrier in the latter case. 

This led to the development of PepFect6.43 This transportan 10-based peptide features 

several trifluoromethylquinoline moieties, whose pH buffering capability leads to 

osmotic swelling and subsequent endosomal release. It was internalised into multiple 

cell lines with low toxicity and gave in vivo gene silencing in mouse models. However 

a more simple poly-arginine R15 was also able to internalise siRNA and give gene 

silencing, with cellular localisation suggesting endosomal escape, and gave reduction 

in tumor growth in a mouse model.44  

Another example of their use is aiding in the delivery of small drug molecules by 

improving their properties. For example, polyarginine can be used to improve the 

water solubility and uptake of paclitaxel.45 A different facet of this is improving 

availability of a drug by circumventing the action of efflux pumps which can give 

resistance. To this end a doxorubicin-Tatp conjugate was synthesised, which 

successfully exerted a cytotoxic effect on resistant cell lines.46  

Cell penetrating peptides also have uses in cellular imaging. This is important 

therapeutically for visualising diseased tissue and also for improving understanding of 

biological processes. Jiang et al.47 exploited the increased concentration of 

extracellular proteases in tumour tissue by conjugating a fluorescein peptide hairpin to 

a polyarginine cell penetrating peptide with an associated polyanionic segment. 

Proteolytic cleavage of the anionic domain was most prominent in the tumour tissue, 

allowing internalisation of the probe and selective visualisation of the tumour cells.  

MRI can also be used to visualise cells, relying on the incorporation of MRI 

contrast agents which enhance the magnetic spin coupling of protons in water. Tat-

iron oxide nanoparticles allow delivery of the contrast agents into cells and have been 

used for in vivo, real time tracking of T-cells with no effect on the normal immune 

function.48  

2.1.2.2 Non-peptidic cell penetration agents 

As noted in section 2.1.2.1.2, the ability of a cell penetrating peptide to resist 

proteolysis influences the efficacy of its uptake. The desire to find alternatives that 

will remain stable for longer periods in living cells has led to the investigation of non-

peptidic systems.  

Oligoarginine peptoids have the same 1,4-spacing for their side chains as their 

peptidic counterparts, but instead of the side chain being attached to carbon, it is 
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attached to the nitrogen (see Figure 2.3). This eliminates the secondary structure 

formed by N-H hydrogen bonding and increases flexibility. It was found that these 

structures were superior to Tatp in their uptake and that increasing the chain length 

between the backbone and the guanidinium moieties further increased uptake 

efficiency. This suggests that greater flexibility is important in uptake.49 

Oligocarbamates have also been investigated, which are characterised by 1,6-

spacing between their side chains (see Figure 2.3). Superior uptake was found relative 

to oligoarginine peptides. This shows that 1,4-spacing between side chains is not 

required for cell penetration.50  

 
Figure 2.3: Oligoguanidinium compounds based on peptides (57), peptoids (58) and 

carbamates (59).49,50  

 
Figure 2.4: Cell penetration agents based on a dendrimer (60)51 and an inositol dimer 

(61).52 FITC = fluorescein isothiocyanate. 
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Other systems that have been investigated include guanidinium dendrimers51 and 

carbohydrate based scaffolds52 (see Figure 2.4). Macrocyclic scaffolds have also been 

investigated, including those based on calixarenes, which will be discussed in more 

detail in the following section. 

2.1.2.2.1  Calixarenes as cell penetration agents 

Depending on their functionalisation, calixarenes can have low cytotoxicity and 

immunogenicity;53–55 this, combined with the ability to create a diverse range of 

scaffolds, makes them an attractive choice for cell penetration agents. Their properties 

have been exploited in a number of ways. For example, the ion sensing capabilities of 

appropriately functionalised calixarenes can be put to work inside of living cells. 

Pathak et al. have synthesised several calixarenes based on a common intermediate 

with a linker installed via a CuAAC reaction, diversified by adding different head 

groups with an imine linkage (see Figure 2.5).56–58 

 
Figure 2.5: Cell permeable cation binders based on pyridyl (62, 63), thiophenyl (64) 

and dimethylamino (65) conjugates.56–58 

In all cases the fluorescence properties of the molecule were modulated by cation 

binding. In the absence of binding, the molecules had very weak fluorescence due to 

excited state proton transfer between the salicyl-OH and the imine-N. Cation binding 

supresses this process and results in ‘switch-on’ fluorescence which can then be 

monitored.  

For the pyridyl conjugates,56 selective binding of both compounds 62 and 63 with 

Zn2+ over a variety of other cations was found, with stronger binding of 62 attributed 

to a less distorted binding site. However, in a competitive binding assay the 

fluorescence was quenched in the presence of Cu2+, precluding the use of these 

conjugates as Zn2+ sensors in the presence of Cu2+. In both cases the in vivo 
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fluorescence was demonstrated by incubating HeLa cells first with the calixarene, 

giving only weak observable fluorescence after washing, followed by 1:1 

Zn2+/pyrithione, resulting in intense fluorescence. This showed that the calixarene was 

penetrating inside of the cells and retained its cation binding ability. It was also 

demonstrated that in the case of the more weakly binding compound 63, Zn2+ could be 

removed from the complex by competitive binding to the metal by phosphate-based 

ligands, resulting in loss of fluorescence. However, in this case this process was not 

demonstrated in vivo.  

Similar results were found for the thiophenyl conjugate 64, with selective binding 

to Zn2+ found.57 Fluorescence could be perturbed by addition of phosphate-based 

ligands to the complex, with complete quenching observed with pyrophosphate (PPi) 

due to its strong Zn2+ binding capabilities. The cell permeability was again 

demonstrated in HeLa cells, where fluorescence could be switched on as described 

before and switched off by treating the cells with PPi.  

For the dimethylamino conjugate 65,58 the complex with Cd2+ was investigated to 

develop a sensor for cysteine by exploiting the selective soft ion binding of this amino 

acid with Cd2+. The fluorescence of the metal complex could be switched off by 

adding cysteine, demonstrating binding to and removal of Cd2+ by the amino acid. The 

binding of cysteine was competitive in the presence of all other amino acids, which 

had no significant effect on the fluorescence properties, and the ability of reduced 

dithiothreitol but not its oxidised form to affect fluorescence shows that the thiol on 

the cysteine is used for binding. The applicability to live cells was demonstrated by 

the switch-on fluorescence associated with incubating MCF-7 cells first with free 

ligand, then with Cd2+/pyrithione after washing with buffer. The fluorescence could 

then be switched off by further treatment of these cells with cysteine.  

 
Figure 2.6: Cell permeable thiacalixarene based Fe3+ sensor (66).59 

Similarly, a tetra-pyrene appended thiacalixarene (66) synthesised by Kumar et 

al.59 was shown to selectively bind to Fe3+ out of a number of other metal ions 
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including Fe2+, this time resulting in quenching of fluorescence. Incubation of PC3 

cells with the ligand alone resulted in fluorescence within the cells, demonstrating the 

cell permeability of the thiacalixarene. This fluorescence could then be continuously 

quenched by treating these cells with varying concentrations of Fe3+, showing 

potential application as an in vivo Fe3+ sensor.  

The potential cell permeability of calixarenes has also been demonstrated by their 

ability to effect transfection. This has been accomplished with single calixarenes54,60 

and also multicalixarenes.61 

 
Figure 2.7: Glycine functionalised multicalixarene (67).61 

In a comparison of different multicalixarenes and single calixarenes, Lalor et al.61 

found that a multicalixarene (67) with its core in the 1,3-alternate conformation and 

the pendent calixarenes functionalised with glycine moieties on their upper rims was 

able to promote transfection of the plasmid pDs2-mito, resulting in a fluorescent 

protein inside the mitochondria. By comparison, an analogous multicalixarene with 

aromatic amine functionalization and also a single calixarene appended with glycine 

moieties, whilst able to bind to DNA, were unable to promote transfection. However, 

without a fluorescent marker the uptake and cellular fate of these calixarenes was 

unknown.  
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In other work on single calixarenes, Sansone et al.60 investigated the ability of 

calixarenes functionalised with aromatic guanidinium groups on the upper rim to 

effect transfection. They found that the rigid scaffold provided by calix[4]arene 

coupled with hexyl or octyl chains on the lower rim (68) gave a suitable, pre-

organised amphiphilic molecule capable of driving DNA condensation by a 

combination of electrostatic and hydrophobic interactions, and promoting transfection. 

However, the transfection efficiency of pEGFP-C1, a plasmid coding for green 

fluorescent protein (GFP), was low and the cytotoxicity too high, with cell death 

occurring at a concentration of 40 µM. Further investigation of cell uptake was not 

carried out on this compound.  

Further work54 was carried out on calixarenes with the guanidinium moieties 

placed on the lower rim via a C3 spacer. A calixarene of this form with no upper rim 

functionalization (69) exhibited low cytotoxicity, with 70-75% viable cells at 10 µM 

concentration. However, the presence of tert-butyl or hexyl groups on the upper rim 

gave molecules that, despite having similarly low toxicity to 69 when simply 

incubated with cells, suffered increased cytotoxicity under transfection conditions.  

In contrast with the poor transfection ability of 68, when used with the helper lipid 

DOPE (dioleoylphosphatidylethanolamine) 69 was able to efficiently transfect 

pEGFP-C1 into RD-4 cells. It was rationalised that the greater flexibility of the 

cationic head groups when on the lower rim may improve DNA binding. Also, the 

hydrophobic cavity of 69 may give better interactions with DOPE than its aromatic 

guanidinium counterpart 68 (supported by the lack of any effect of DOPE on 

transfection with the latter), giving an assembly with superior transfection properties 

and lower toxicity.  

The mechanism of uptake of the assembly was investigated by using inhibitors of 

different pathways of endocytosis. It was found that inhibitors of macropinocytosis 

(wortmannin and amiloride) and caveolae (filipin) had the most effect on supressing 

transfection, suggesting that these are the primary and secondary uptake mechanisms, 

respectively. No suppression of transfection was found with inhibitors of clathrin 

mediated endocytosis. 

It was also found that replacing the guanidinium groups with amino moieties gave 

poor DNA binding properties, an inability to condense DNA and a loss of transfection 

capabilities. However the cellular uptake of this derivative is unknown.  
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Figure 2.8: Upper rim (68)60 and lower rim (69)54 guanidinium functionalised 

calixarenes. 

Recent work by Bagnacani et al.62 further investigated the use of cationic 

calixarenes as transfection agents, this time using conjugation to amino acids to give 

arginine or lysine functionalisation on the upper and lower rims; the upper rim (70) 

and lower rim (71) arginine appended calixarenes are shown in Figure 2.9. In 

comparison with 68 and 69, these derivatives bear an additional primary amino group 

on each side-chain. 

 
Figure 2.9: Upper rim (70) and lower rim (71) arginine functionalised calixarenes.62 

Once again the DNA transfection ability seemed to be related to the ability to 

condense DNA. The lower-rim derivatives gave poor transfection due to the lack of 

amphiphilicity in comparison with the upper-rim derivatives, which were 

functionalised with hexyl groups on the lower rim. Comparison with non-cyclic 

derivatives showed the importance of the cyclic structure. The guanidinium function 

was also again shown to be important for efficient transfection: whilst the upper-rim 

lysine was able to give some transfection in the presence of DOPE, 70 gave superior 

transfection without the adjuvant, interestingly with a loss in efficiency when DOPE 
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was used. Remarkably, 70 was superior or at least comparable with commercially 

available LTX lipofectamine in most cell lines tested, with similar impact on cell 

viability under transfection conditions.  

Another example of a cell permeable calixarene is an amphiphilic cationic 

calixarene that was synthesised as part of a synthetic membrane.63 A combination of 

calixarenes functionalised at the upper rim with trimethylamine (cationic) or 

phosphate (anionic) groups, with dodecyl chains on the lower rim, were used to form 

vesicles that were stabilised by electrostatic interactions. Although the cationic 

calixarenes on their own formed only micelles, a dye appended analogue (72, see 

Figure 2.10), with one cationic group replaced with a triazole linked dye, was 

synthesised and the cell permeability evaluated. It was found to penetrate into PC-12 

cells efficiently and localise within the cytoplasm. However, the mechanism of uptake 

was not investigated. The cytotoxicity of both the cationic and anionic forms of these 

calixarenes was relatively high. It was therefore decided that the less toxic octyl-

appended derivatives would be more suitable, although the toxicity of the dodecyl 

derivatives could potentially be exploited if the vesicles stayed intact until reaching 

their target. 

 
Figure 2.10: Amphiphilic dye-appended calixarene (72),63 amphiphilic micelle-

forming calixarene (73),64 vanadyl sulfonylcalixarene (74),65 nitrobenzoxadiazole-

(NBD)-appended cationic calixarene (75).55,66 
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A similar calixarene was synthesised by Rodik et al.64 with octyl chains on the 

lower rim and hydroxylethylammonium moieties on the upper rim (73). These, too, 

formed micelles, but in this case the utility of the cationic micelles as transfection 

agents was demonstrated. Octyl chains gave superior micelle formation as well as 

better DNA binding and condensation properties. When DNA was bound, the micelles 

were preserved, even in the presence of DOPE. It was proposed that nanoparticles are 

formed with the DNA molecules wrapped around and within the micelles. These 

nanoparticles were able to transfect DNA and the process was followed with a 

fluorescent DNA marker, showing slow adhesion to the cell membrane, followed by 

internalisation and ultimately accumulation around the nucleus. The slow uptake and 

relatively low transection efficiency however showed a need for optimisation of the 

structure in the future.  

Vanadyl calixarenes have also been investigated due to the potential apoptotic and 

anti-tumour activities of vanadium complexes.65 A fluorescent vanadyl 

sulfonylcalixarene complex (74) was found to penetrate into CHO cells with slow 

uptake over 3-4 hours. Incubation with various endocytotic inhibitors (sucrose, 

nystatin, monensin and methyl-β-cyclodextrin) found no inhibition of uptake, 

suggesting direct translocation across the cell membrane. The complex localised 

within the cytoplasm. This particular complex showed low toxicity in all cell types 

screened, but other complexes investigated displayed different cytotoxicities in 

different cell lines, suggesting that vanadyl calixarenes may have potential use as 

selective cytotoxic agents. 

A more detailed analysis of cell uptake and localisation was carried out in the case 

of 75, a dye-appended cationic calixarene derivative synthesised as a mimic for cell 

penetrating peptides with the cationic moieties clustered on a single face of a rigid 

scaffold. Preliminary work55 on the this molecule, named NBDCalAm, investigated 

the cellular uptake of the calixarene in formaldehyde-fixed cells. It was found that 

cellular uptake was rapid, with images available in 10 minutes, and the fluorescence 

from the probe was stable, with images still available after 60 minutes. Furthermore 

there was no cytotoxic effect from the probe at the concentrations required for the 

study. 

The mechanism of cellular uptake was investigated with inhibitors of caveolae-

linked endocytosis and lipid raft processes (filipin, β-cyclodextrin) and clathrin 

mediated endocytosis (sucrose). None of these gave inhibition of uptake, indicating 

that the main endocytotic pathways were not responsible for uptake. Using a 
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counterstain against a receptor localised on the cell membrane, it was found that the 

probe accumulates in the cytoplasm and not in the cell membrane. It was also shown 

that there was no accumulation in the nucleus. 

 Following on from this, studies were carried out on live cells to ensure that the 

uptake mechanism and localisation were not artefacts of the fixing process.66 The 

rapid uptake (1-3 minutes), stable fluorescence (even after 72 hours) and low 

cytotoxity were confirmed with live cells. Again inhibitors of clathrin mediated 

endocytosis (sucrose) and caveolae mediated processes (filipin, methyl-β-

cyclodextrin) failed to inhibit uptake, implicating direct translocation across the cell 

membrane. 

Co-localisation studies with Golgi apparatus and lysosome stains showed that the 

probe initially localised to the Golgi apparatus (after 2-3 hours) then showed 

localisation to the lysosomes (from 2-3 hours up to 72 hours). The route of transfer to 

the lysosomes via the Golgi apparatus was confirmed by the inhibition of the process 

by brefeldin A and its lack of effect when the probe was already localised within the 

lysosomes prior to brefeldin A treatment. Further studies with monensin (which 

affects endosomal pH), bafilomycin (an inhibitor of vacuolar ATPases) and sodium 

azide (which depletes the available ATP pool) both prevented localisation in the 

lysosomes and stimulated release of the probe from within them. This indicates that 

these three factors are important both for the transfer to and the retention within the 

lysosomes. 

To further this work, the effect of using different cationic groups on the upper rim 

and introducing different dye molecules was investigated. This will be the subject of 

the remainder of Chapter 2. 

 

2.2 Aims 

Based on the previous work of our research group on NBDCalAm (as described in 

Section 2.2.2.1), further investigation was required as to the effects of different 

functionalization of the calixarene scaffold, both in the cationic groups on the upper 

rim and in the cargo attached to the lower rim.  

To alter the properties of the upper rim, two targets were proposed in addition to 

the original aromatic amine: an aliphatic amine, accessible by furnishing the upper rim 

with glycine residues, and a guanidinium derivative as a mimic of poly-arginine cell 

penetrating peptides. Although the syntheses of both were previously attempted (R. 
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Lalor, unpublished work), problems were met, particularly with the synthesis of the 

guanidinium derivative.  

The synthesis of NBDCalAm analogues required a masked amine on the lower rim 

of the calixarene in the form of propylphthalimide. For the synthesis of the 

guanidinium derivative, this gave the intermediate compound 76 (see Figure 2.11). 

The next step required removal of the phthalimide protecting group in order to react 

the free amine with NBD-chloride. However, reaction with hydrazine to effect this 

transformation also removed half of the Boc protecting groups from the upper rim. 

 
Figure 2.11: Intermediate in the synthesis of tetra-guanidinium calix[4]arene with 

NBD labelled lower rim. 

In order to avoid this loss of integrity in the upper rim, it was decided to use a 

different method to attach the dye. The CuAAC reaction (as described in Chapter 1) 

was selected as a means of attachment that would require no protecting group during 

the functionalization of the amines on the upper rim and that would facilitate variation 

of the lower rim cargo. Furthermore, the use of this reaction results in 1,2,3-triazole 

linkers. These have topological and electronic similarities with amide bonds and can 

therefore be potentially used as bioisosteres of this functionality, but with greater 

chemical stability.67 For example, they have been shown to be an effective 

replacement for the amide bond in amprenavir, an HIV-1 protease inhibitor.68 

Since use of the CuAAC reaction would give a different linker to the dye compared 

with the original NBDCalAm, a pair of analogues with identical upper rims and 

linkers but with two different dye molecules would also be required. This would allow 

the effect of changing the linker to be evaluated.  
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In summary, the aims for this project were as follows: 

• To synthesise three analogues with variation in the upper rim, i.e. aromatic 

amine, aliphatic amine and guanidine functionalization, with a dye 

molecule added to the lower rim by click chemistry; 

• To synthesise analogues of the aromatic amine with different dye molecules 

added to the lower rim by click chemistry; 

• To synthesise a pair of analogues with aromatic amine functionalised upper 

rims, with an identical linker on the lower rim but with two different dye 

molecules, one of which would preferably be the original NBD dye to allow 

for comparison with NBDCalAm.  

2.3 Results and Discussion 

2.3.1 Synthesis of water soluble click conjugates 

In order to add a dye molecule by the CuAAC reaction, either an alkyne or an azide 

was required on the calixarene to react with either an azide or alkyne functionalised 

dye. Since an alkyne could be easily added to the calixarene in a single step using 

readily available propargyl bromide and azide derivatives of several dye molecules 

could be synthesised,69–71 this is the route that was taken.  

2.3.1.1 Synthesis of common intermediate 

To introduce the required single propargyl group to the lower rim of calix[4]arene, 

two routes could have been followed. The first is to mono-propargylate the lower rim, 

then add the three propyl chains to lock the conformation. However, this method is not 

ideal as some of the 1,3-dialkyl species can be formed.72 Therefore it was decided to 

use a selective tri-alkylation method, followed by introduction of the propargyl 

group.73 For both alkylations, the Williamson ether synthesis can be used. This 

involves treating an alcohol with a base to produce an alkoxide anion, then addition of 

an alkyl halide, which reacts via an SN2 type reaction. 

The first step was to form the calix[4]arene starting material using the method of 

Gutsche et al.74 A mixture of para-tert-butyl-phenol, formaldehyde solution in water 

and sodium hydroxide were heated to 120 °C and mechanically stirred until the 

intermediate polymer was formed. This was dissolved in diphenyl ether, the water of 

condensation driven off and the mixture heated to reflux to form the cracked product. 

Precipitation with ethyl acetate gave 2 as off-white crystals in 67% yield, which was 

used without further purification.  



 
 

Chapter 2: Calixarene-Based Cell-Penetration Agents 

70 
 

 

 
Scheme 2.1: Synthesis of tert-butyl-calix[4]arene (2). 

In order to tripropylate 2, a mixture of barium hydroxide with barium oxide was 

used as a base. The phenoxide anions that are formed on the calixarene interact with 

Ba2+ and in order to optimise these interactions the calixarene is held in the cone 

conformation. Subsequent addition of n-propyl bromide resulted in alkylation. The 

formation of the tetrapropyl product was suppressed as the final phenoxide is too 

strongly coordinated to react.73 Aqueous workup and precipition from DCM with 

methanol gave 77 as white crystals in 79% yield.   

 
Scheme 2.2: Selective tripropylation (77) and subsequent alkylation (78) of tert-butyl-

calix[4]arene (2). 

To introduce the propargyl group to 77, sodium hydride was used as a base. The 

Na+ coordinates the phenoxide anions and holds the calixarene in the cone 

conformation as before; however, the coordination to Na+ is weaker than Ba2+ 

allowing the final phenoxide to react. Propargyl bromide was added as the alkylating 

agent. With the four alkyl chains in place, the steric bulk prevents transannular 
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rotation, locking the conformation. Aqueous workup and column chromatography 

over silica gel (eluting with 2:1 DCM/hexane) gave 78 as off-white crystals in 95% 

yield.  

The 1H-NMR spectrum of compound 78 (see Figure 2.12) confirms that the 

product is in the cone conformation. Two pairs of doublets for the methylene bridge 

protons are characteristic of this conformation and symmetry and can be seen at 4.4 

and 3.1 ppm; the latter pair is overlapping to give a single doublet. These peaks arise 

from the axial and equatorial hydrogens on the methylene bridges being in different 

environments (see Figure 2.12b), resulting in geminal coupling in the NMR with a 

splitting of 13 Hz. Taking into account the symmetry of the molecule (see Figure 

2.12a), this gives the observed four doublets.  

 

 
Figure 2.12: a) Two dimensional model of compound 78, showing rotational 

symmetry plane, b) Positions of axial and equatorial methylene bridge hydrogens, c) 
1H-NMR spectrum of 78 (CDCl3). 

The presence of three propyl groups is confirmed by the presence of two peaks for 

each position on the C3 chain as there are two environments for each: the two chains 

adjacent to the propargyl group and the one opposite (see Figure 2.12a). These peaks 

lie around 3.9-3.7 ppm, 2.2-1.9 ppm and 1.0 ppm. The propargyl peaks are at 5.0 and 

2.4 ppm, corresponding to the CH2 and terminal carbons, respectively. Long range 

coupling over the triple bond results in a doublet and a triplet with a J value of 2 Hz.  

OCH2CCH OCH2CCH 

ArCH2Ar 
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With the conformation of the calixarene now locked and the propargyl chain 

introduced, the upper rim was next modified to install the amine groups that would be 

required to confer water solubility or be available for further functionalisation. To this 

end, nitro groups were first introduced to the upper rim, which could subsequently be 

reduced to give the desired amino derivative.  

To carry out the ipso nitration which would replace the tert-butyl groups para to 

the alkyl ethers with nitro groups, a number of methods for exhaustive nitration were 

available. Kumar et al.75 evaluated a number of different nitrating mixtures, including 

HNO3/Ac2O, KNO3/AlCl 3 and HNO3/CH3COOH for the exhaustive ipso-nitration of 

calixarenes and found HNO3/CH3COOH to give the best yields.  This method and a 

variation using TFA instead of acetic acid were attempted. Although TFA gave a 

reasonable yield of 61%, the reaction was slower than with acetic acid. It was 

therefore decided to use the HNO3/CH3COOH method. 

 Compound 78 was stirred with excess glacial acetic acid and 100% nitric acid, 

giving a characteristic colour change first to blue-black, then over time to bright 

orange. Aqueous work up and precipitation from DCM with methanol gave 79 as light 

yellow crystals in yields up to 85%, sometimes with the need to purify by column 

chromatography over silica gel (eluting with DCM).  

 
Scheme 2.3: Ipso-nitration of 78 and reduction to 80. 
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A number of methods were available for reduction of the nitro groups on the upper 

rim. Methods previously used on calixarenes include the use of hydrazine with Raney 

nickel,76 palladium with either hydrazine or hydrogen77 or heating at reflux with tin 

(II) chloride in ethanol.78 The latter, being the favoured method of the group, was the 

first method that was attempted and gave good results.  

Reduction of 79 was carried out by heating at reflux with tin chloride in ethanol for 

24 hours, followed by aqueous work up with sodium hydroxide. Compound 80 was 

obtained as orange-brown glass in 98% yield, which was used with no further 

purification.  

 
Figure 2.13: 1H-NMR spectra of a) tBu (78), b) nitro (79) and c) amino (80) 

functionalised calixarenes in CDCl3. Peaks corresponding to aromatic protons are 

marked with an asterisk.  
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The 1H-NMR spectra of 78, 79, and 80 are shown in Figure 2.13. The peaks 

corresponding to the aromatic protons (marked with an asterisk) clearly show the 

effect of the changing environment on the upper rim, with the electron-withdrawing 

nitro groups of 79 resulting in deshielding and a downfield shift in ppm relative to the 

tert-butyl groups and the amino groups of 80 giving the opposite effect.  

This amine was the common intermediate from which the syntheses of the dye-

conjugates diverged. It was either furnished with amine protecting groups for the 

aromatic amine derivatives or functionalised further for variation of the upper rim.  

2.3.1.2 Synthesis of dye molecules 

3-Azido-7-hydroxycoumarin 

In order to add the dye molecules to the calixarene scaffold by click chemistry, it 

was necessary to synthesise azido derivatives of the selected dyes. The first was an 

azido derivative of 7-hydroxy-coumarin, which does not exhibit fluorescence until the 

click reaction has taken place, giving a dye-conjugate with an emission wavelength of 

around 500 nm.69 

 
Scheme 2.4: Synthesis of 3-acetamido7-acetoxy-coumarin (81) and 3-azido-7-hydroxy 

coumarin (82). 

The 3-azido-7-hydroxycoumarin (82) was synthesised in two stages, via 3-

acetamido-7-acetoxycoumarin (81). The intermediate was synthesised according to 

Kudale et al.79 from 2,4-dihydroxy benzaldehyde, N-acetyl glycine and sodium acetate 

by heating at reflux in acetic anhydride. Using the proportions directed, the mixture 

turned solid and the colour changed from salmon pink to orange-brown over the 

course of 3.5 hours. Slightly increasing the volume of acetic anhydride used relative to 

the published procedure prevented solidification and facilitated stirring.   

Water was added, the solid was filtered and washed with water, then triturated with 

ethyl acetate and filtered, giving 81 as a yellow powder in 46% yield. The synthesis of 

82 was then completed according to Sivakumar et al.69 After heating 81 at reflux in 
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2:1 concentrated HCl/ethanol for 1 hour, water was added to the now red mixture, 

which was cooled then treated with sodium nitrite. At this stage it was important to 

keep the temperature below 5 °C as the diazonium intermediate could react with water 

to form the undesired phenol.  

After 10 minutes sodium azide was added, then stirred for 15 minutes. Subsequent 

filtration and washing with water gave 82 as a brown amorphous solid. Purification by 

column chromatography over silica gel (eluting with 3:2 hexane/ethyl acetate) was 

sometimes necessary, giving light-brown needles, which darkened over time. Yields 

of up to 41% were obtained.  

 

1-Azidomethylpyrene 

The second dye that was synthesised was an azido methyl pyrene, which has an 

emission wavelength of around 400 nm.70 It is also bulkier and less polar, allowing for 

the comparison of potentially different dynamics within cells.  

 
Scheme 2.5: Synthesis of 1-bromomethyl-pyrene (83) and 1-azidomethyl-pyrene (84) 

The required 1-azido methyl pyrene (84) was synthesised from 1-pyrene 

methanol70 by treating it with phosphorous tribromide. The resulting solid was filtered 

and washed with diethyl ether to afford the intermediate 1-bromo methyl pyrene (83) 

as light yellow crystals in 87% yield. This was then treated with sodium azide at 60 °C 

for 12 hours. Aqueous work up gave 84 as a waxy yellow solid in 88% yield.  

 

9-Azidomethyl-10-bromoanthracene 

Informed by results later obtained from the pyrene conjugate (See section 2.5.5) a 

second non-polar dye was synthesised. An anthracene derivative was selected to 

provide a dye with slightly less steric bulk that could be compared with pyrene. The 

starting material, 9-bromo-10-bromomethyl-anthracene (85) was kindly provided by 

the research group of Professor Ganesan. 
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Scheme 2.6: Synthesis of 9-azidomethyl-10-bromo-anthracene (86). 

The aliphatic halogen was displaced by an SN2 reaction with sodium azide in the 

same way as in the synthesis of 84. Compound 85 was heated with sodium azide at 60 

°C for 18 hours, followed by aqueous workup to give 86 as a yellow solid in 70% 

yield. This was used directly in the subsequent CuAAC reaction.  

Following the synthesis of the various dye molecules, the different dye-appended 

aromatic amine calixarene derivatives were synthesised, as well as a non-cationic 

control. 

2.3.1.3 Coumarin-appended neutral calixarene 

To provide a non-cationic control, the coumarin dye was first added to compound 

78. In order to carry out the CuAAC reaction, copper (I) is required as the catalyst. 

This can be provided directly as a copper (I) salt such as copper iodide (which also 

requires a base such as DIPEA), or generated in situ from copper (II) sulphate by 

maintaining reducing conditions with sodium ascorbate.80 The latter method was 

selected as it is easier to maintain the copper in the catalytic form in the presence of a 

reducing agent.  

 

 
Scheme 2.7: Click reaction of 78 with 82 to give conjugate 87. 
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A solution of 78 and 82 in DMF was treated with catalytic copper (II) sulphate with 

one equivalent of sodium ascorbate. The mixture was heated for 3 hours at 90 °C. 

Aqueous work up followed by purification by column chromatography over silica gel 

(eluting with 49:1 DCM/methanol) gave 87 as yellow glass in 60% yield. 

 
Figure 2.14: a  1H-NMR spectrum and b) 2D-HMBC of 87 (CDCl3). 

The 1H-NMR spectrum of 87 (see Figure 2.14a) confirms the successful click 

reaction between 78 and 82. The peak that corresponds to the methylene group that 

was previously part of the alkyne is now a singlet at 5.2 ppm, indicating the loss of the 

long range coupling. This is consistent with the conversion from a triple bond to the 

double bond that is now part of the triazole ring. 

Triazole proton 

CH2 adjacent to 
triazole 
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In addition the peak arising from the proton on the triazole ring can be identified. 

There are two peaks downfield at 8.60 and 8.55 ppm, one of which is the proton on 

the triazole ring, whilst the other corresponds to the uncoupled proton on the coumarin 

dye. They can be differentiated by examining the 2D-HMBC spectrum (see Figure 

2.14b). The proton peak at 8.60 ppm has a long-range interaction with a carbon peak 

at 145.19 ppm, which in turn interacts with the proton peak at 5.22 ppm that 

corresponds to the methylene adjacent to the triazole ring. This confirms that the peak 

at 8.60 ppm is the proton on the triazole ring. By contrast, the proton peak at 8.55 ppm 

has a long range interaction to a carbon peak at 155 ppm, which shares long range 

interactions with proton peaks corresponding to protons on the coumarin around 7.5 

and 7.0 ppm. This confirms that the peak at 8.55 ppm is an aromatic proton on the 

coumarin dye. 

2.3.1.4 Coumarin-appended tetra-amino calixarene 

With the structure of the non-cationic control confirmed, the water-soluble 

derivatives were now synthesised. In preparation for the addition of the dye and to 

protect it from degradation over time, for example by reaction with atmospheric 

CO2,
81 the amino groups of 80 were protected by introducing Boc groups. 

Methodology based on work by Saadioui et al.82 was used, using 10 equivalents of 

Boc anhydride with the addition of a non-nucleophilic base to improve the yield.  

 

 
Scheme 2.8: Protection of tetra amino calixarene (80). 

Tetra amino calixarene (80) was protected by stirring in DCM with Boc anhydride 

in the presence of DIPEA. The crude mixture was purified by column chromatography 

over silica gel (eluting with 15:1 DCM/ethyl acetate), giving 88 as off-white glass in 

83% yield.  
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Figure 2.15: 1H-NMR spectrum of 88 (CDCl3).  

The 1H-NMR spectrum of 88 (see Figure 2.15) confirms the successful Boc 

protection. Tert-butyl peaks, absent after the ipso-nitration, are present once more with 

the correct integration heights for tetra functionalisation. However, the Boc tert-butyl 

peaks are at slightly higher chemical shift (around 1.5 ppm) compared with the 

original tert-butyl peaks (1.2 and 0.9 ppm) indicating proximity to the electron 

withdrawing carbamate group. The four singlets corresponding to the aromatic 

hydrogens (around 7.0 and 6.25 ppm) are slightly deshielded relative to the amino 

derivative. The slightly broadened peaks corresponding to N-H (6.4 and 5.9 ppm) are 

also visible.  

 
Scheme 2.9: Click reaction of 88 with 82. 

In order to add the dye to the Boc protected tetra amino calixarene, the same 

method as in section 2.3.1.3 was used. A solution of 88 and 82 in DMF was treated 

with catalytic CuSO4 and one equivalent of sodium ascorbate. The mixture was heated 
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for 20 hours at 90 °C. Aqueous work up followed by purification by column 

chromatography over silica gel (eluting with 49:1 DCM/methanol) gave 89 as light 

yellow glass in 65% yield.  

 
Figure 2.16: 1H-NMR spectrum of 89 (CDCl3). 

 The 1H-NMR spectrum of 89 (see Figure 2.16) confirms the successful click 

reaction between 88 and 82. The peak that corresponds to the methylene group that 

was previously part of the alkyne is now a singlet at 5.2 ppm and the peak arising 

from the proton on the triazole ring can be seen at 8.50 ppm, whilst the dye peaks lie 

at 8.48, 7.5 and 6.8 ppm.  

2.3.1.5 Pyrene-appended tetra-amino calixarene 

For the CuAAC reaction to add the pyrene dye to 88, the same conditions as in 

section 2.3.1.3 were used. A solution of 88 and 84 in DMF was treated with catalytic 

CuSO4 and one equivalent of sodium ascorbate. The mixture was heated for 3 hours at 

90 °C. Aqueous work up followed by purification by column chromatography over 

silica gel (eluting with 97:3 DCM/acetone) gave 90 as light yellow glass in 32% yield. 

Some of the starting materials were also recovered, with approximately 20% of the 

yield lost due to incomplete reaction. 
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Scheme 2.10: Click reaction of 88 with 84. 

The 1H-NMR spectrum of 90 is shown in Figure 2.17. It is worthy of note that in 

this case the pairs of doublets corresponding to the methylene bridges (4.28 and 3.86 

ppm, 3.00 and 2.41 ppm) have greater spacing between them compared with, for 

example, compound 78 (see Figure 2.12). This suggests a more dramatic difference 

between the environments of the methylene bridges proximal to the pyrene and those 

distant from it.  

 

Figure 2.17: 1H-NMR spectrum of 90 (CDCl3). 

Identification of the methylene that was previously part of the alkyne was less 

straightforward in this case compared with 87 and 89 since in this case there is an 

additional methylene group on the other side of the triazole ring, linking it to the 

pyrene. Additional information from 2D-NMR spectra was required to differentiate 

the two methylene groups.  

 

5
.0

26
.1

7

6
.9

0

CH2 adjacent to 
triazole 

CH2 adjacent to 
pyrene Triazole proton 



 
 

Chapter 2: Calixarene-Based Cell-Penetration Agents 

82 
 

 

 
Figure 2.18: a) 2D-HSQC and b) 2D-HMBC of 90 (CDCl3). 

A 2D-HSQC spectrum identified two secondary carbon environments, at 52.29 and 

66.00 ppm, that correlated to peaks in the aromatic region (6.17 and 5.02 ppm, 

respectively) in the 1H-NMR spectrum (see Figure 2.18a). These are likely to be the 

two methylene groups in question. These carbon peaks were then examined in the 2D-

HMBC spectrum (see Figure 2.18b). The carbon peak at 52.29 ppm has a long range 

coupling to a proton peak at 7.9 ppm which corresponds to a proton on the pyrene dye. 

This suggests that the carbon peak at 52.29 ppm, and so the proton peak at 6.17 ppm, 

corresponds to the methylene group adjacent to the pyrene ring.  
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The proton peak at 5.02 ppm should, by elimination, be the methylene group 

between the calixarene core and the triazole ring. Further information from the 2D-

HMBC shows a long range interaction between this proton environment and a carbon 

at 149.96 ppm, which in turn has an interaction with a proton peak at 6.14, which 

corresponds to an aromatic proton on the calixarene. This mutual interaction supports 

this assignment of the peak at 5.02 ppm.  

Finally, the 2D-HMBC also allows the peak corresponding to the proton on the 

triazole ring to be confirmed. The proton peak at 6.90 ppm which corresponds to a 

single proton is a likely candidate. This peak has a long range interaction to the carbon 

peak at 144.26 ppm. Since the proton peak at 5.02 ppm also has an interaction with 

this carbon, the peak at 6.90 ppm must correspond to the triazole proton.  

2.3.1.6 Anthracene-appended tetra-amino calixarene 

For the CuAAC reaction to add the anthracene dye to 88, the same conditions as in 

section 2.3.1.3 were used. A solution of 88 and 86 in DMF was treated with sodium 

ascorbate and catalytic CuSO4. The mixture was heated for 3 hours at 90 °C. Aqueous 

work up followed by purification by column chromatography over silica gel (eluting 

with 2:1 hexane/ethyl acetate) gave 91 as yellow glass in 36% yield. 

 
Scheme 2.11: Click reaction of 88 with 86. 

The 1H-NMR spectrum of 91 (see Figure 2.19) shows that, as with the pyrene 

derivative (90), the methylene bridges of the calixarene core give pairs of doublets 

that are relatively widely spaced (4.3 and 3.7 ppm, 3.0 and 2.5 ppm). This suggests 

that this feature arises from having a non-polar aromatic moiety on the lower rim, 

perhaps resulting from π-stacking interactions between the dye and the calixarene 

core.  
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Using 2D-NMR, the success of the click reaction was confirmed by identifying the 

methylene bridge that was previously part of the alkyne as a singlet at 4.99 ppm, 

whilst the methylene bridge connecting the triazole ring to the anthracene was found 

at 6.32 ppm. The proton on the triazole ring itself was found at 6.60 ppm. The level of 

deshielding experienced by the latter proton in 90 and 91 is relatively low compared 

with the coumarin derivative (89), where the triazole ring forms part of the conjugated 

system of the dye.  

 

Figure 2.19: 1H-NMR spectrum of 91 (CDCl3). 

2.3.1.7 Coumarin appended tetra-glycine calixarene 

With the Boc-protected aromatic amine derivatives in hand, attention was turned 

towards modification of the upper rim. In order to synthesise an aliphatic amine 

derivative, it was decided to use glycine as a simple spacer that is easy to introduce 

via an amide bond.  

Multiple methods are available for amide bond formation that can be applied to 

calixarenes, including converting the acid to an acid chloride83 or an activated ester,84 

or using a coupling reagent.85 The latter was selected as a simple, one pot method with 

good tolerance to water and no requirement for isolation of the activated intermediate. 

Dicyclohexylcarbodiimide (DCC) was tried first as it is a relatively cheap coupling 

reagent, the by-product of which can be removed by simple filtration.  
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Scheme 2.12: Coupling reaction of 80 with Boc glycine. 

Compound 80 was coupled to commercial Boc-glycine using DCC by stirring them 

together in DCM, with concomitant production of insoluble dicyclohexylurea as the 

side product. The latter was removed by filtration and the crude product purified by 

column chromatography over silica gel (eluting with 19:1 DCM/methanol), giving 92 

as a light yellow glass in 61% yield.  

The 1H-NMR spectrum of 92 (see Figure 2.20) shows that the upper rim has 

successfully been functionalised with Boc-glycine. The methylene groups of the 

glycine moieties are visible at 3.85 and 3.64 ppm. The amide and carbamate protons 

are involved in hydrogen bonding interactions with the deuterated methanol and so 

cannot be seen in the NMR; this also eliminates any possibility of seeing splitting 

arising from coupling between the amide proton and the adjacent methylene group. 

The singlets from the tert-butyl groups can be seen around 1.5 ppm.  

 
Figure 2.20: 1H-NMR spectrum of 92 (CD3OD). 
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In order to add the dye to 92, the same method as in section 2.3.1.3 was used. A 

solution of 92 and 82 in DMF was treated with catalytic CuSO4 and one equivalent of 

sodium ascorbate, heating to 90 °C for 18 hours. Aqueous work up in DCM/methanol 

followed by purification by column chromatography over silica gel (eluting with 97:3 

DCM/methanol) gave 93 as light yellow glass in 33% yield. 

The 1H-NMR of 93 (see Figure 2.21) confirms the successful click reaction. The 

peak that corresponds to the methylene group that was previously part of the alkyne is 

now a singlet around 5.2 ppm. In this spectrum, the peaks corresponding to the dye are 

more clearly resolved. The spectrum of the dye features, starting from high ppm, a 

singlet, a doublet, a doublet of doublets and another doublet. These can be seen at 

8.54, 7.67, 6.87 and 6.79 ppm, respectively. The singlet at 8.55 ppm corresponds to 

the triazole proton. The relatively broad peaks that overlap with the dye peaks 

correspond to the aromatic protons on the calixarene itself.  

 
Scheme 2.13: Click reaction of 92 with 82.  

 
Figure 2.21: 1H-NMR spectrum of 93 (CD3OD). 
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2.3.1.8 Removal of Boc protecting groups 

To remove the acid-labile Boc protecting group, the same method as employed in 

the synthesis of NBDCalAm was used.55 Instead of stirring directly in a mixture of 

solvent and acid, such as aqueous HCl and dioxane,60 gaseous HCl can be bubbled 

through a solution of the compound to rapidly remove the Boc groups from the 

compound. The solvent can be very easily removed once the reaction is complete.  

 

Scheme 2.14: Deprotection reactions on 89, 90, 91 and 93 to give 94, 95, 96 and 97. 

Gaseous HCl, generated by dropwise addition of concentrated sulphuric acid to 

solid sodium chloride, was bubbled through solutions of the compounds in DCM, with 

the exception of 93, which required some methanol to dissolve. After approximately 

10 minutes, the hydrochloride salts of the free amines began to precipitate from 

solution; at this stage, methanol was added to redissolve the compounds, and the 

reaction continued for a further 5 minutes.  

Solvent was removed under reduced pressure to give the hydrochloride salts of the 

compounds in quantitative yields. Compounds 94 and 97 were isolated as amorphous 

solids that were light orange-brown and beige in colour, respectively. Both 95 and 96 

were isolated as brown amorphous solids. 

2.3.2 Synthesis of the guanidinium click conjugate 

The next target to be synthesised was the guanidinium derivative. This was an 

important target since, as described previously, poly-arginine-type cell penetration 

agents have been shown to be superior to poly-amines in their ability to cross the cell 

membrane. However, the synthesis posed various challenges. These will be examined 

in this section.  
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2.3.2.1 Synthesis of common intermediate – TBDMS route 

The first issue to be addressed was a problem that was found in the synthesis of the 

tetra-amine intermediate. At the ipso-nitration stage, although the desired product 

could normally be isolated in reasonable yields, there was sporadically an impurity 

present that was very difficult to separate by column chromatography. This reduced 

the yield and was costly in terms of time spent on this step. In addition, the purity of 

the product obtained in the reduction step was inconsistent.  

Other work within the group on tetra-alkyne derivatives turned up similar issues 

with the ipso-nitration, although in this case the efficiency of the transformation was 

even lower. The problem was addressed by use of alkyne protecting groups. It was 

therefore decided to apply this to the current synthesis.  

The mono-alkyne (78) was synthesised as before. At this stage, the protecting 

group was installed to improve the efficiency of the following steps. Tert-butyl-

dimethylsilane (TBDMS) was selected for its resistance to hydrolysis. It can be put in 

place using TBDMS-chloride via an SN2 reaction by removing the mildly acidic 

terminal proton on the alkyne with a strong base. Compound 78 was stirred with 

lithium hexamethyldisilazane (LiHMDS) in THF at -70 °C to remove the terminal 

proton. TBDMSCl was added and the reaction continued at room temperature for 18 

hours. Aqueous work-up followed by trituration of the residue with methanol to 

remove excess reagent gave the protected form 98 as white crystals in 93% yield.  

Successful protection of the alkyne was confirmed by the 1H-NMR spectrum (see 

Figure 2.22).  The doublet that was previously generated by the methylene group of 

the alkyne has changed to a singlet with the loss of the long-range coupling, whilst the 

triplet from the terminal proton is absent. In addition, the integrals of the TBDMS 

peaks (not shown) are of the correct proportion for a single protecting group. 

 
Figure 2.22: 1H-NMR spectrum of a) 78 and b) 98 (CDCl3) showing loss of terminal 

alkyne triplet (circled) and conversion of methylene doublet to singlet. 
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Scheme 2.15: Synthesis of 80 from 78 via TBDMS protected route. 

The nitration was carried out the same as before. Compound 98 was stirred with 

excess glacial acetic acid and 100% nitric acid, giving a characteristic colour change 

first to blue-black, then over time to bright orange. Aqueous work up and trituration of 

the residue with methanol gave the tetra-nitrated product 99 as light yellow crystals in 

86% yield. No further purification was necessary. 

For the reduction, 99 was heated to reflux with tin (II) chloride in ethanol for 24 

hours, followed by aqueous work up with sodium hydroxide. Tetra-amino compound 

100 was obtained as orange-brown glass in 90% yield, which was used with no further 

purification. 

To carry out the desilylation of 100, a source of fluoride is needed. 

Tetrabutylammonium fluoride (TBAF) was selected as a mild fluoride source that 

does not preclude the use of glass reaction vessels. The compound was stirred with a 

solution of TBAF in THF for 18 hours, followed by aqueous work-up. In this case the 

cleaved TBDMS cannot be separated from the deprotected compound using methanol, 
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since both are soluble in this solvent. The broad solubility of TBDMS was exploited 

instead. By triturating with hexane, the TBDMS was separated from the amine. The 

deprotected compound, now identical to 80, was isolated as light brown powder in 

quantitative yield.  

2.3.2.2 Guanidinylation – Boc protection route 

A number of methods for guanidinylation of amines are available which have been 

utilised in synthesis of guanidinium calixarenes. These include: the use of Boc-

protected triflyl guanidine on its own,86 relying on a good leaving group to drive the 

reaction; Boc-protected thiourea with an activating reagent such as Mukaiyama 

reagent (2-chloro-1-methylpyridinium iodide) or mercury chloride;60 or the use of a 

Boc-protected isothiourea with mercury chloride.87 The latter method was selected for 

the commercial availability and relatively low cost of the reagents. 

Compound 80 was stirred with a mixture of N,N’-di-Boc-S-methylisothiourea, 

HgCl2 and triethylamine in dry DMF for 48 hours. The byproduct, HgSMe, appeared 

as a white precipitate over this time and was subsequently removed by filtration. 

Recrystallisation from hexane allowed the majority of the excess reagent to be 

removed prior to purification by column chromatography over silica gel.  

However, the purification of this compound revealed a problem: the Boc protecting 

groups were surprisingly labile, leading to degradation on the mildly acidic silica. This 

could be mitigated by use of triethylamine in the eluent (8:1:1 hexane/diethyl 

ether/triethylamine), allowing 101 to be isolated as white solid, but in poor yield 

(13%). 

 
Scheme 2.16: Synthesis of 101 from 80.  

With the addition of the coumarin dye, an acidic phenolic proton is introduced into 

the molecule. Triethylamine would therefore not be suitable as a component of the 

eluent for purification of the dye conjugate as it would form a salt with the dye and 
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cause the compound to stick to the silica. Neutral alumina was another option for 

column chromatography; however, TLC with this matrix for compound 101 also 

showed degradation.  

An alternative approach was therefore investigated. Removal of the Boc groups 

after guanidinylation would yield a stable compound and prevent loss of product due 

to degradation. The CuAAC reaction could then be performed in aqueous medium. 

With this in mind, it was decided to use the TBDMS protected tetra amine (100) 

instead, since this could improve the integrity of the molecule during the 

guanidinylation reaction. The synthesis could therefore take two routes: 

1. Guanidinylation, followed by removal of the TBDMS group then the Boc 

groups; 

2. Guanidinylation, followed by removal of the Boc groups then the TBDMS 

group. 

Both of these routes were attempted.  

 

Route 1: 

Compound 100 was stirred with a mixture of N,N’-di-Boc-S-methylisothiourea, 

HgCl2 and triethylamine in dry DMF for 48 hours. The byproduct was removed by 

filtration. At this stage the correct product was confirmed by NMR spectroscopy.  

The 1H-NMR spectrum is shown in Figure 2.23. The methylene bridges of the 

calixarene around 4.5 and 3.2 ppm show that the major product is a single calixarene, 

rather than a mixture with different symmetries. Both the guanidinium N-H peaks 

(around 11.6 ppm) and the aryl N-H peaks (around 10.2 and 9.5 ppm) can be seen, 

with the peak pattern showing correct symmetry and the integrals showing the correct 

number of protons for tetra-functionalisation, confirming that the tetra-guanidinium 

derivative (102) has been synthesised. 

Although excess reagent can be seen in the NMR, the crude compound was of high 

purity compared with the crude compound 101. This displays the utility of keeping the 

TBDMS group in place during guanidinylation. This crude material was carried 

through to the next step with a view to removing the excess reagent at a later stage, 

rather than losing material due to degradation during purification at this stage. 
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Figure 2.23: 1H-NMR spectrum of crude 102 (CDCl3).  

The TBDMS group was removed from 102 by stirring it with TBAF in THF for 18 

hours. Aqueous work-up grave the crude desilylated product 103. The cleaved 

TBDMS group could not be separated from the product by trituration with either 

methanol or hexane, since the product was soluble in both of these solvents. After 

confirming that the free alkyne was present by 1H-NMR spectroscopy, the crude 

product was taken through to the next reaction, once again avoiding subjecting it to 

column chromatography over silica gel.  

Finally, gaseous HCl was bubbled through a solution of 103 in DCM, adding 

minimal methanol when the product began to precipitate. In contrast with the previous 

Boc-deprotection reactions carried out in this way, a much longer reaction time was 

needed; it took around 2 hours before there were no more tert-butyl peaks present in 

the 1H-NMR spectrum. This was unexpected from the apparent lability of the Boc-

protecting groups in previous steps. It could be that the second Boc protecting group 

on each guanidinium group is more difficult to remove than the first, which is 

supported by finding of R. Lalor that treatment of the guanidinium intermediate 76 

with hydrazine removed half of the Boc-protecting groups from the molecule in a 

symmetrical fashion, i.e. one from each position.  
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Scheme 2.17: Two possible routes for the synthesis of 104, via 102 followed by 103 or 

105. 

Due to the high polarity of this compound, even in neutral form, it is unsuitable for 

purification by column chromatography over silica gel. Therefore to remove the 

excess thiourea reagent (now also deprotected) and the cleaved TBDMS, reverse-

phase column chromatography was used, eluting with a gradient of methanol in water. 

Pure fully deprotected compound 104 was obtained as off-white solid in 21% yield 

over 3 steps. This is favourable when compared with the synthesis of compound 101, 

which was isolated pure in only 13% yield in a single step.  
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Route 2: 

The first step in this route required removal of the Boc groups. Gaseous HCl was 

bubbled through a solution of compound 102 in DCM, with methanol added to 

redissolve any precipitate that was formed. As with the Boc-deprotection of 

intermediate 103, complete removal of all Boc groups to give 105 took around 2 

hours. Although the compound could be subjected to reverse-phase chromatography at 

this stage to remove the deprotected reagent, the compound was otherwise pure, with 

only a single calixarene species apparent. It was decided therefore to limit the 

purification to a single step to maximise the efficiency of the process.  

Crude 105 was stirred with TBAF in THF for 18 hours. After quenching the 

reaction with saturated ammonium chloride, some of the ammonium chloride 

precipitated and could be removed by filtration. However, at this stage the presence of 

the water-soluble guanidinium compound precluded the use of aqueous work-up to 

remove excess reagent. The crude residue was therefore subjected to reverse-phase 

column chromatography to purify the product and remove all excess reagents and 

cleaved TBDMS, eluting with a gradient of methanol in water. Pure fully deprotected 

compound 104 was obtained as off-white solid in 23% yield over 3 steps. 

Although this is a higher yield than obtained from route 1, such a small difference 

in yield may not be significant. Route 2 posed more problems, particularly with not 

being able to remove the excess tetrabutylammonium except by reverse phase column 

chromatography. However, the crude final product by this route was more pure than 

that of route 1. Therefore both routes have both problems and merits, but 

fundamentally both gave the desired product pure and in better yield than could be 

obtained by attempting to manipulate the Boc-protected form.  

2.3.2.3 Attempted CuAAC reaction with deprotected guanidinium 

derivative 

In order to add the dye to 104, it was hoped to use a similar strategy to the previous 

CuAAC reactions. A mixture of 104 and 82 was stirred with sodium ascorbate and 

catalytic copper sulphate at 90 °C in several different solvent systems to test which 

was most effective. Ethanol, DMF, tert-butanol and 1:1 ethanol/water were tested; the 

latter gave the best conversion to product 106 according to the crude NMR (see Figure 

2.24). Confirmation of the reaction was given by the loss of the alkyne triplet around 3 

ppm and the conversion of the alkyne doublet around 5 ppm to the singlet of the 

methylene adjacent to the triazole ring. Dye peaks can also be seen downfield. 
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Scheme 2.18: Click reaction of 104 with 82. 

 
Figure 2.24: 1H-NMR-spectrum of a) 104 and b) crude 106 (CD3OD) showing loss of 

terminal alkyne triplet (circled) and conversion of methylene doublet to a singlet. 

At this stage there was brown, amorphous solid present that was poorly soluble in 

both organic solvent and water unless treated with dilute HCl. Reverse-phase column 

chromatography was attempted, but solubility problems led to blockage of the 

column. No fractions were recovered that resembled the product.  

Attention was turned to an alternative method for purifying the product. Since there 

should only be a single product from the CuAAC reaction, the presence of multiple 

products in the NMR could be attributed to the potential of the guanidinium groups to 
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interact with copper in the reaction, as well as the different anions present, resulting in 

a mixture of different species. The use of an anionic resin to bind the guanidinium 

product would allow the excess dye and the ascorbic acid to be readily removed as 

these would not bind to the resin. The product could then be separated from the copper 

catalyst, which would also bind to the matrix, by exploiting their different binding 

strengths. The compound would be eluted from the column in a single salt form with 

only one type of counter-anion (see Scheme 2.19).  

 
Scheme 2.19: Principle of purification by ion-exchange chromatography (X = 106). 

Commercially available cation-binding resins include those featuring strongly 

acidic groups such as sulphonic acid and weakly acidic groups such as carboxylic 

acid. Since four guanidinium moieties are clustered on each molecule, it would be 

expected that a strong-cation binder such as a sulphonic acid resin would bind the 

compound too strongly leading to harsh conditions to elute it. Therefore it was 

decided to use a carboxylic acid resin (Amberlite IRC-50) as a weak cation binder.  

The crude product was applied to the sodium form of the resin. After washing with 

water, increasing concentrations of HCl solution were applied to the column to 

displace cations from the resin. However, even 2 M HCl failed to elute the product. 

Increasing concentrations of first ammonium chloride, then sodium chloride, up to 

saturated solutions of each, also failed to displace the product. The strength in binding 

could be attributed to a combination of the inherent tendency of guanidinium moieties 

to bind anions, as described previously, along with the clustering of four of these 

groups onto a single face of a molecule, with the potential to give binding that is 

greater than the sum of its parts.  

Since applying cations to displace the product was not sufficient, it was reasoned 

that if the guanidinium groups of the compound could be deprotonated, then the 

binding strength could be lessened, allowing the product to be eluted. By using dilute 

sodium hydroxide, fluorescent fractions were indeed eluted from the column; 

however, the material recovered was a complex mixture by 1H-NMR with no major 

species, suggesting significant degradation of the product. At this stage an alternative 

route to the product was sought.  
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2.3.2.4 Guanidinylation – Cbz protection route 

Since the deprotected compound gave unforeseen problems and the Boc protecting 

groups were too labile for the synthesis, the possibility of using alternative protecting 

groups was investigated. A check of the commercially available thiourea- and 

isothiourea-type guanidinylation reagents turned up two additional possibilities in the 

form of carboxybenzyl (Cbz) and benzoyl (Bz) protected derivatives, both of which 

should have superior stability to the reaction and purification conditions than the Boc 

form. Since Cbz protecting groups have more options available for their cleavage 

compared with Bz groups, it was decided to follow this route.  

Compound 80 was stirred with a mixture of N,N’-di-Cbz-S-methylisothiourea, 

HgCl2 and triethylamine in dry DMF for 24 hours. The byproduct, HgSMe, appeared 

as a white precipitate over this time and was subsequently removed by filtration. The 

crude product was purified by column chromatography over silica gel, eluting with 

hexane/ethyl acetate (4:1 then 3:1) to give 107 as white crystals in 26% yield. 

Although the yield was relatively low, it is still higher than in the synthesis of pure 

101, which gave only 13% yield. This demonstrates the validity of this approach in 

increasing the stability of the fully protected species.  

 
Scheme 2.20: Synthesis of 107 from 80. 

Confirmation of the correct product was provided by the 1H-NMR spectrum (see 

Figure 2.25). The guanidinium N-H peaks can be seen around 11.8 ppm whilst the 

aryl N-H peaks are further upfield around 10.0 and 9.5 ppm. The aromatic hydrogens 

of the protecting groups give a complicated group of peaks around 7.2 ppm, whilst the 

methylene groups joining them to the carbamate are around 5 ppm, slightly downfield 

of the methylene of the alkyne.  
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Figure 2.25: 1H-NMR spectrum of 107 (CDCl3). 

2.3.2.5 Coumarin appended tetra-guanidine 

With the stable guanidine compound in hand, the CuAAC reaction was 

implemented. A solution of 107 and 82 in DMF was treated with sodium ascorbate 

and catalytic CuSO4, heating at 70 °C for 2 hours. Aqueous work up followed by 

purification by column chromatography over silica gel (eluting with 5-10% ethyl 

acetate in DCM) gave 108 as light yellow solid in 32% yield.  

It was thought that the low yield was due to degradation of the product, so the 

reaction was repeated at room temperature for 24 hours. A modified work-up was 

used. Following removal of the DMF under reduced pressure, the solid was triturated 

with water and filtered to remove the catalyst, followed by washing with methanol to 

remove excess dye, exploiting the poor solubility of the Cbz protected compound in 

this solvent. After verifying that no product had been lost in the methanol wash, the 

product was purified by column chromatography over silica gel, eluting with 19:1 

DCM/ethyl acetate to give 108 in 74% yield.  

The correct product was confirmed by 1H-NMR (see Figure 2.26). The methylene 

group adjacent to the triazole ring can no longer be differentiated from those of the 

Cbz groups around 5.1 ppm. However, the proton on the triazole ring itself can be 

seen at 8.54 ppm, confirmed by 2D-NMR. The dye peaks are also in evidence around 

8.35 and 6.6 ppm, with the remaining dye peak obscured by the aromatic protons of 

the Cbz groups.  In this case the guanidinium N-H protons give rise to one broad 

singlet, in contrast with 107, possibly due to intermolecular interactions with the 

coumarin dye.  
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Scheme 2.21: Click reaction of 107 with 82. 

 
Figure 2.26: 1H-NMR spectrum of 108 (CDCl3).  

2.3.2.6 Deprotection of Cbz protected guanidine derivative 

A number of methods are available for cleavage of Cbz protecting groups. For 

aromatic Cbz-protected guanidines, catalytic hydrogenolysis with palladium on 

carbon88 is the dominant literature method. However, this is unsuitable in this case due 

to the presence of the coumarin dye, which can be reduced under these conditions.89 

For aliphatic Cbz-protected guanidines, methods that have been applied for 

removal of the protecting groups include the use of HBr in acetic acid90 or thioanisole 

in TFA,91 both of which utilise a combination of acidic conditions to protonate the 

carbonyl of the carbamate and a nucleophile to attack the methylene of the benzyl 

group. Another method simply heated the protected compound to reflux in 6 M HCl to 

remove the Cbz groups;92 however it was decided to avoid such harsh conditions.  
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The first attempt at removal of the protecting groups from 108 was made by 

stirring the compound with HBr in acetic acid. After 18 hours, DCM was added to 

precipitate the product to separate it from the cleaved benzyl groups. However, the 

solid that precipitated was found to be a complex mixture of products by 1H-NMR, 

suggesting considerable degradation of the product.  

Following this, deprotection was attempted by stirring 108 with thioanisole in TFA. 

The colour of the solution immediately changed from yellow to green. After 24 hours 

the solvent was removed under reduced pressure and the residue triturated with diethyl 

ether. The progress of the reaction was assessed by 1H-NMR, which showed a mixture 

of products with benzyl peaks still present, suggesting incomplete deprotection. After 

a further 48 hours under the same conditions the reaction still seemed to be 

incomplete, so the reaction mixture was heated to 40 °C for 48 hours, during which 

time the colour changed to grey-blue. This time the 1H-NMR spectrum showed 

decomposition of the product.  

At this stage, an alternative method was investigated which uses 

iodotrimethylsilane (TMSI), where TMS acts as a Lewis acid instead of a Brønsted 

acid, with iodide as a nucleophile.93 Although TMSI is commercially available, it is 

commonly stabilised with copper, which could bind to the free guanidinium groups 

and cause problems with purification. TMSI can however be easily generated in situ 

from TMSCl and anhydrous sodium iodide,94 with concomitant generation of sodium 

chloride. Anhydrous conditions are desirable for this reaction as TMSI is readily 

hydrolysed, generating HI, which could lead to undesired side-reactions.  

The reaction was first attempted on 108 by stirring the compound with sodium 

iodide in acetonitrile under argon, followed by addition of TMSCl, resulting in a 

colour change to yellow-orange and precipitation of sodium chloride. After stirring at 

room temperature for 4 hours, methanol and dilute aqueous HCl were added to cleave 

the TMS still bound to the carbamate to allow decarboxylation to take place.  

After removing the solvent under reduced pressure and triturating with diethyl 

ether, the 1H-NMR spectrum showed that the integration height of the benzyl peaks 

had been halved, whilst the symmetry of the molecule was the same, suggesting that 

one Cbz had been removed from each guanidine. This is consistent with previous 

observations suggesting that the half-deprotected species is more stable than the fully 

protected compound. 
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Scheme 2.22: Deprotection of 108. 

In an attempt to push the deprotection through to completion, two modified 

procedures were used. First, thioanisole was added to the reaction mixture to provide 

an additional nucleophile and a cation scavenger. However, after stirring overnight at 

room temperature the reaction still proceeded only halfway. 

Second, the reaction was heated to 60 °C for 24 hours; this gave a complex mixture 

of products by NMR, suggesting decomposition of the product. This is likely due to 

side-reactions stemming from the variety of potential reactions that TMSI can carry 

out, including cleavage of lactones and ethers.93 The cleavage of ethers on calixarenes 

by TMSI has in fact previously been investigated as a route towards mono-alkyl 

derivatives.95 Therefore more caution is required to prevent undesired side-reactions.  

Although it has been reasoned that acetonitrile participates in the reaction by 

forming a complex with the TMSI,93 resulting in the observed colour-change, it was 

decided to investigate DMF as an alternative solvent. The deprotection was attempted 

at different temperatures and varying reaction times. Although reaction at room 

temperature gave only half-deprotected product after 24 hours, heating to 50 °C gave 

the fully-deprotected product that could, for the first time in this synthesis, be 

distinguished in the 1H-NMR spectrum.  
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Stirring for 8 hours or 24 hours both gave fully-deprotected product as the major 

species, but longer reaction times generally gave a more complex mixture of products 

due to side-reactions. Reacting for 24 hours seemed to give the best compromise 

between maximising the desired product and avoiding side-products. The conditions 

that were tested for this deprotection are summarised in Table 2.1. 

 

Table 2.1: Conditions used in the deprotection of 108 with TMSCl/NaI 

Solvent Temperature / 

°C 

Time / 

h 

Result 

Acetonitrile 25 4 Half deprotected 

Acetonitrile (with thioanisole) 25 18 Decomposition 

Acetonitrile 60 24 Decomposition 

DMF 25 24 Half deprotected 

DMF 50 8 Fully deprotected 

DMF 50 24 Fully deprotected 

DMF 50 96 Fully deprotected, some 

decomposition 

 

It is clear that DMF is a more appropriate solvent in this case than acetonitrile. It is 

possible that the complex that is formed between TMSI and acetonitrile activates the 

reagent, so that when it is heated to allow the more stable half-protected species to 

react, the incidence of side-reactions increases considerably. Without this activation, 

as with DMF, the reaction barrier of the half-protected species can be overcome with 

heating without compromising the rest of the molecule.  

To obtain pure product, reverse-phase column chromatography was necessary to 

remove any side-products. To avoid loss of product during work-up, it was therefore 

decided to proceed to purification directly after removal of solvent under reduced 

pressure, so that impurities and cleaved protecting groups could be removed in the 

same step. Iodine also seemed to be generated during removal of the solvent and this 

could also be removed during purification. The product was purified by reverse-phase 

column chromatography, eluting with a gradient of methanol in 60 mM aqueous HCl. 

Pure deprotected compound 109 was isolated as off-white solid in 22% yield.  

The 1H-NMR of 109 is shown in Figure 2.27. The methylene adjacent to the 

triazole ring can now be resolved and is around 5.3 ppm. One methylene bridge 

doublet of the calixarene core is obscured by the residual methanol peak and was 
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found using 2D-COSY NMR to be at 3.3 ppm. In this case the peaks around 8.6 ppm 

corresponding to the proton on the triazole ring and one of the dye protons can barely 

be resolved as separate peaks and so cannot be differentiated due to the insufficient 

resolution of the 2D-NMR experiments.  

 
Figure 2.27: 1H-NMR spectrum of 109 (CD3OD). 

2.3.3 Synthesis of dye-conjugates with variable linkers 

In order to investigate the potential effect of changing the linkage method to a 

triazole ring, two compounds that were identical except for the type of linker were 

required. This gave two immediate possibilities as shown in Figure 2.28.  

 

Figure 2.28: Analogues with NBD and coumarin dyes linked by a) triazole rings and 

b) secondary amines. 

In order to make an analogue to a previously synthesised molecule with a different 

dye but the same linker, a triazole-linked NBD could be synthesised to compare with 

compound 94, or an amine-linked coumarin to compare with NBDCalAm. 
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Investigation of the former showed that, whilst a derivative of NBD with an azide 

para to the nitro group can be synthesised, upon formation of the triazole ring the 

fluorescence is considerably quenched.96 It was therefore decided to pursue the latter 

route.  

Whilst the synthesis of the amine-linked NBD is straightforward due to the para-

nitro group activating NBD-chloride to an SNAr reaction, the analogous reaction with 

3-halo-coumarin would require palladium catalysis.97 Furthermore, there is no 

apparent evidence of such a reaction being carried out on 7-hydroxy-coumarin 

derivatives. A more straightforward synthesis would use 3-amino-7-hydroxycoumarin, 

which can easily be made from the previously synthesised 81.79 This could then be 

reacted with an alkyl halide (via an SN2 reaction) or an acid (to give an intermediate 

amide bond) attached to the calixarene core to give the desired amine linkage.  

2.3.3.1 Amine-linked coumarin via alkyl halide 

The first route that was attempted was the formation of an amine-linked coumarin 

via an SN2 reaction. This required an alkyl halide on the calixarene core, which could 

easily be installed on compound 77 using 1,3-dibromopropane in the ether formation 

reaction. In order to minimise dimerization of the calixarenes by reaction of the 

starting material with the product, a large excess of alkylating agent was used.  

Compound 77 was treated with sodium hydride followed by 1,3-dibromopropane. 

After 24 hours, aqueous work-up followed by purification by column chromatography 

over silica gel, eluting with 8:3 hexane/DCM. Co-elution with an unknown impurity, 

even with varying eluents, made for inefficient purification, giving 110 as a powder in 

39% yield. 

 

 
Scheme 2.23: Alkylation of 77 to give 110. 
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Figure 2.29: 1H-NMR spectrum of 110.  

The 1H-NMR spectrum of 110 is shown in Figure 2.29. In contrast to 77, there is 

now an extra propyl chain, but since this is capped with an electron-withdrawing 

halide there are now two extra triplets in the spectrum around 3.75 ppm. Examination 

of the 2D-COSY spectrum allows these to be differentiated. It shows a mutual 

interaction of the peaks at 3.89 and 3.76 ppm with the multiplet around 2.0 ppm, 

which in turn shares a cross-peak with the CH3 triplets obscured by the tert-butyl 

peaks around 1.0 ppm. These must therefore correspond to the three unfunctionalised 

propyl chains.  

The triplets at 4.01 and 3.70 ppm have a mutual interaction with the multiplet 

around 2.7 ppm. These must correspond to the peaks of the bromopropyl group. Since 

the protons closest to the oxygen will be more deshielded compared with those 

adjacent to the bromine, the triplet at 3.7 ppm must correspond to the latter. 

 The conversion to the Boc-protected amine species was carried out the same as in 

the synthesis of 88. Compound 110 was first nitrated by stirring with glacial acetic 

acid and 100% nitric acid for 6 hours, followed by aqueous work-up and trituration 

with methanol to give sufficiently pure tetra-nitrated product 111 as a light-orange 

powder in 87% yield.  

This was then reduced by heating it to reflux in ethanol with tin chloride for 48 

hours, followed by aqueous work-up with sodium hydroxide. The tetra-amine product 

112 was isolated as brown-glass in 90% crude yield. Although the purity of this 

product was less than in previous reductions using this method, the crude material was 

taken through to the next reaction, after which it could be more easily purified.  
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Compound 112 was stirred with Boc-anhydride and DIPEA in DCM for 18 hours. 

The product was purified by column chromatography over silica gel, eluting with 19:1 

DCM/ethyl acetate, giving the protected tetra-amine 113 as off-white glass in 59% 

yield.  

 

Scheme 2.24: Conversion of 110 to 113 via nitration, reduction and Boc protection. 

With the alkyl-halide functionalised calixarene core in hand, the amino-coumarin 

was next synthesised. This was available in two steps from compound 81 using the 

hydrolysis-free synthesis of Kudale et al., which avoids the formation of 3-

hydroxycoumarin which can occur under aqueous conditions.79  

Compound 81 was first stirred with Boc-anhydride and DMAP in THF to afford an 

intermediate N-Boc imide, during which time the yellow suspension turned to a 

clearer brown solution. Hydrazine and methanol were then added to selectively 

hydrolyse the acetyl moieties whilst leaving the Boc group in place. Aqueous work-up 

followed by column chromatography over silica gel, eluting with 3:2 hexane/ethyl 

acetate gave the Boc-protected intermediate 114 as light yellow solid in 62% yield.  

The Boc protecting group was then removed by stirring 114 in a mixture of TFA in 

chloroform for 6 hours. The product was purified by column chromatography over 

silica gel, eluting with 1:1 hexane/ethyl acetate, giving 115 as light orange-brown 

solid in 81% yield.  
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Scheme 2.25: Synthesis of 115 from 81 using a hydrolysis-free method. 

The conjugation of the dye with the alkyl-halide functionalised calixarene to form 

the amine-linked coumarin (116) could now be attempted. First, a similar method to 

that used for the conjugation of NBD-chloride to an amino-calixarene55 was 

attempted. Compounds 113 and 115 were stirred together at 70 °C in ethyl acetate, 

with pyridine added as a mild base. However, after 18 hours only the starting 

materials were present. It was reasoned that a stronger base may be required. 

However, due to the acidity of the phenolic proton on the coumarin dye, use of a 

stronger base could lead to deprotonation of this position and subsequent ether 

formation. Therefore it was decided to add a silyl protecting group to this phenol.  

First, the same method used in the silylation of 78 was attempted. However, 

stirring 115 with LiHMDS gave an instant colour change to a brown solution. After 

stirring with TBDMSCl for 18 hours, followed by aqueous work up, no coumarin 

peaks could be discerned in the 1H-NMR spectrum. It was reasoned that the pyrone 

portion of the coumarin could be acting as a Michael acceptor, giving rise to side-

products.  

The reaction was attempted again with a single equivalent of base added to a pre-

mixed solution of 115 with TBDMSCl, so that the deprotonated phenol could 

immediately react with the silylating reagent rather than with the coumarin itself. This 

however gave no reaction. The same method with multiple equivalents of base gave a 

mixture of products.  

 
Scheme 2.26: Silylation of 115 using TBDMSCl. 
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Examination of the literature revealed that silylation of 7-hydroxy coumarin had 

been accomplished, but with milder bases such as triethylamine.98 It could be that 

LiHMDS is simply too strong a base for this reaction and is deprotonating the 

aromatic amine, allowing additional side-reactions. The protection was attempted 

once more by adding triethylamine to a solution of 115 and TBDMSCl, this time 

giving no colour change. After stirring for 24 hours, aqueous work-up followed by 

purification by column chromatography over silica gel, eluting with 1:1 hexane/ethyl 

acetate, gave 117 as yellow needles in 79% yield.  

Further attempts were now made at reacting the aminocoumarin with the calixarene 

core. A solution of 113 and 117 in acetone was heated to reflux with potassium 

carbonate for 18 hours, followed by removal of excess base by filtration and aqueous 

work-up. Only starting materials were recovered.  

Finally, it was decided to attempt the alkylation using LiHMDS, based on the 

observation that this seemed to be able to deprotonate the amine of the coumarin and 

may therefore provide a stronger nucleophile. To a solution of 113 and 117 in THF 

was added LiHMDS and the mixture stirred for 18 hours. Once again, after aqueous 

work up there proved to have been no reaction. 

It was concluded that the lone pair of the nitrogen on the coumarin is too 

delocalised over the ring system to be an effective nucleophile. At this stage it was 

decided to try an alternative approach.  

 
Scheme 2.27: Conditions for the attempted synthesis of 116 or 118 by reaction of 113 

with 115 or 117. 
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2.3.3.2 Amine-linked coumarin via amide 

Although carrying out a simple SN2 reaction with the aminocoumarin proved to be 

problematic, the formation of amide bonds with this type of compound has been 

accomplished.99,100 This could be reacted with an acid moiety on the calixarene core 

and the intermediate amide bond could then be reduced to the desired secondary 

amine. 

To form an end product with the correct length of linker, a C3-acid was required on 

the calixarene. Initial attempts at installing this group were made using ethyl 3-

bromopropanoate. Compound 77 was stirred with sodium hydride in DMF for 1 hour 

before adding the alkylating agent; at this stage, effervescence was observed. After 4 

hours only starting material was present in the reaction mixture and the odour of ethyl 

acrylate could be detected. It was concluded that an acidic hydrogen adjacent to the 

carbonyl in the alkylating reagent was being removed by the sodium hydride, with 

evolution of hydrogen gas, followed by elimination of bromide to give ethyl acrylate.  

To try to overcome this problem different reaction conditions were tested. Stirring 

with potassium carbonate as a weaker base in acetone gave no reaction, either at room 

temperature or at reflux. Using sodium hydride, but carrying out the addition of 

alkylating reagent at 0 °C, still gave evolution of hydrogen and likewise there was no 

ether formation.  

 
Scheme 2.28: Attempted synthesis of 119 with ethyl 3-bromopropanoate. 

Since some of the base would be consumed in the deprotonation of the phenol, it 

was expected that some of the ethyl 3-bromopropanoate would remain intact to react 

with the calixarene. The lack of any reaction at all could be due to the phenoxide 

anion generated in the first stage of the reaction being sufficiently basic to deprotonate 

the alkylating agent rather than giving the desired SN2 reaction.  
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Since ethyl 3-bromopropanoate could not be used directly, the possibility of 

carrying out a conjugate addition of the phenol on the calixarene to ethyl acrylate was 

investigated. Since stirring with base alone was insufficient, as demonstrated by the 

lack of product in the reactions where ethyl acrylate formed, it was decided to use a 

catalysed method.  

Reaction of a number of different nucleophiles with ethyl acrylate was 

demonstrated by Yang et al.101 using potassium fluoride supported on alumina, which 

could be prepared by stirring potassium fluoride with neutral alumina in water then 

drying thoroughly.102 Compound 77 was then stirred with ethyl acrylate and 10 mol% 

of this catalyst in acetonitrile. After stirring for 3 hours, no reaction had occurred, 

raising concerns over the solubility of the calixarene in acetonitrile. Acetone was 

added to improve solubility and stirring continued for 18 hours. However after this 

time there was still only starting material present.  

 
Scheme 2.29: Attempted reaction of 77 with ethyl acrylate catalysed by KF/alumina. 

At this stage the strategy for creating two molecules with identical linkers was 

reconsidered. The problems surrounding the use of a 3-carbon acid could be easily 

circumvented by attaching a 4-carbon acid to the calixarene instead; the extra 

methylene between the α-position and the halide leaving group would reduce the 

acidity of the α-hydrogen and make elimination less favourable. In order to have an 

analogue of this with a different dye, the original NBDCalAm could be resynthesized 

using a 4-carbon linker via commercially available 4-bromobutylphthalimide.  

2.3.3.2.1 Synthesis of NBD-conjugate with 4-carbon linker 

The same strategy was used as for the synthesis of the original NBDCalAm.55 The 

primary aliphatic amine required for the conjugation of the NBD dye would be 

installed using a phthalimide that could later be deprotected with hydrazine.  

Compound 77 was stirred with sodium hydride in DMF for 30 minutes, followed 

by 4-bromobutylphthalimide for 24 hours. After removal of solvent under reduced 
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pressure and aqueous workup, the crude residue was triturated with hot methanol, 

filtered, and washed several times with methanol. Compound 120 was obtained as 

white solid in 51% yield.  

The correct product is easily confirmed by the 1H-NMR spectrum (see Figure 

2.30), which shows a characteristic pair of doublet of doublets for the phthalimide 

group around 7.8 ppm. The peaks arising from the propyl and butyl chains can be 

differentiated using a 2D-COSY spectrum which shows an interaction between the 

triplet at 3.88 ppm with the multiplet at 2.08 ppm, which in turn interacts with the 

multiplet at 1.08 ppm. This latter peak has a further interaction within the cluster of 

peaks at 3.81 ppm. These must correspond to the butyl peaks, whilst the remainder of 

the cluster at 3.81 ppm, along with the multiplet at 2.00 ppm and the overlapping 

triplets at 0.97 ppm must correspond to the propyl chains.  

 
Scheme 2.30: Synthesis of compound 120.  

  
Figure 2.30: 1H-NMR spectrum of 120. 
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Elucidation of which peak corresponds to which methylene in the butyl chain 

requires a 2D-HSQC spectrum (see Figure 2.31). Examination of the peaks around 3.8 

ppm reveals that within the cluster at 3.81 ppm there is an interaction with a secondary 

carbon that has a much lower chemical shift compared with the other carbon peaks 

that have interactions with this cluster. This suggests that this carbon is adjacent to a 

nitrogen, whereas the others around 75 ppm are adjacent to oxygen. This identifies the 

peak at 3.88 ppm as the methylene adjacent to the oxygen in the butyl chain, which in 

turn allows the differentiation of the peaks 2.08 and 1.80 ppm as the centre two 

methylene groups closest to the oxygen and the nitrogen, respectively.  

 
Figure 2.31: 2D-HSQC spectrum of 120. 

Conversion to the Boc-protected amine was carried out as previously. Compound 

120 was stirred with 100% nitric acid and glacial acetic acid in DCM for 4 hours 

before quenching with water. Aqueous work-up followed by trituration with methanol 

gave sufficiently pure tetra-nitrated product 121 as light-yellow solid in 87% yield. 

This product was heated to reflux in ethanol with tin chloride for 48 hours, 

followed by aqueous work-up with sodium hydroxide. The tetra-amine product 122 

was isolated as brown glass in 88% yield  
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Scheme 2.31: Conversion of 120 to 123 via nitration, reduction and Boc protection. 

Compound 122 was stirred with Boc-anhydride and DIPEA in DCM for 24 hours. 

The product was purified by column chromatography over silica gel, eluting with 19:1 

DCM/ethyl acetate, giving the protected tetra-amine 123 as off-white glass in 67% 

yield.  

The required lower-rim amine was next unmasked by cleaving the phthalimide. 

Compound 123 was stirred with hydrazine in ethanol for 18 hours. The resulting 

precipitate was removed by filtration and the solvent removed from the filtrate under 

reduced pressure. Due to the poor solubility of the product in organic solvent, aqueous 

work-up was avoided by precipitating the product from minimum methanol with 

water, filtering and drying under vacuum. Some of the solid was too fine to separate 

from the solvent by filtration so was salvaged by extracting from water with 10% 

methanol in ethyl acetate. The free-amine (124) was isolated as off-white solid in 72% 

yield and was carried forward as the crude product. 

This product could now be reacted with the dye via a nucleophilic aromatic 

substitution reaction. Compound 124 was stirred with sodium hydrogencarbonate in 
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acetonitrile and a solution of NBDCl in acetonitrile was added dropwise, resulting in 

the formation of an intense brown-orange colour. The mixture was heated to 60 °C for 

4 hours. Aqueous work-up followed by column chromatography over silica gel, 

eluting with 7:3 hexane/DCM, afforded the dye-conjugate (125) as a bright-orange 

solid in 53% yield.  

 
Scheme 2.32: Synthesis of 126 from 123 via phthalimide cleavage, SEAr reaction and 

removal of Boc groups.  

 
Figure 2.32: 1H-NMR spectrum of 125. 
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The 1H-NMR spectrum of 125 (see Figure 2.32) confirms the incorporation of the 

NBD dye. At 8.50 ppm there is a doublet arising from one of the two aromatic protons 

on the dye. The 2D-COSY spectrum shows that the second doublet is at 6.16 ppm. 

The former, being more deshielded, must be the one adjacent to the nitro group. 

Finally, the water soluble tetra-amine salt was formed by bubbling HCl gas through 

a solution of 125 in DCM for 10 minutes, followed by addition of methanol to 

dissolve the resulting precipitate and continuing the reaction for a further 20 minutes. 

The product was purified by reverse-phase column chromatography over C18, eluting 

with a gradient of 0-100% methanol in 60 mM aqueous HCl. Compound 126 was 

isolated as a bright-orange solid. Due to losses during purification, the final yield was 

just 20%.  

2.3.3.2.2 Synthesis of amide-linked coumarin 

The required butanoic acid group on the calixarene was put in place using ethyl 4-

bromobutanoate. This ester can be hydrolysed once the upper rim has been 

functionalised with Boc-protected amines to expose the acid for the amide coupling. 

The synthesis of a para-nitro functionalised calixarene with a single C4-acid on the 

lower rim has been previously reported.103 

Compound 77 was stirred with sodium hydride in DMF for 30 minutes, followed 

by addition of ethyl 4-bromobutanoate. After 18 hours, the solvent was removed under 

reduced pressure. Aqueous work-up followed by trituration with methanol gave 127 as 

white powder in 68% yield.  

This was then converted to the Boc-protected amine in the same manner as before. 

Compound 127 was stirred with 100% nitric acid and glacial acetic acid in DCM for 4 

hours before quenching with water. Following aqueous work-up, the residue was 

triturated with methanol to give 128 as light-orange powder in 92% yield. 

Compound 128 was heated to reflux in ethanol with tin chloride for 48 hours. After 

aqueous work-up with sodium hydroxide, the tetra-amine product 129 was isolated as 

light-brown solid in 79% yield.  

Finally, 129 was stirred with Boc anhydride and DIPEA in DCM for 72 hours. 

Purification by column chromatography over silica gel, eluting with 19:1 DCM/ethyl 

acetate gave 130 as off-white glass in 78% yield.  
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Scheme 2.33: Conversion of 77 to 130 via alkylation, nitration, reduction and Boc 

protection. 

The ester that was masking the acid moiety could now be cleaved by base-

catalysed hydrolysis. Although this has been accomplished on calixarene-based 

molecules using sodium hydroxide,104 in this case a satisfactory solvent system that 

balanced the solubility of the sodium hydroxide and the calixarene could not be found 

at room temperature. Therefore it was decided to use tetramethylammonium 

hydroxide, which has been shown to be effective for this transformation and which 

can be used in organic solvent alone.105  

To a solution of compound 130 in THF was added tetramethylammonium 

hydroxide solution in methanol and the mixture stirred for 6 hours at room 

temperature. After checking that no more starting material was present by TLC, the 

mixture was acidified with dilute HCl and extracted with ethyl acetate. Compound 

131 was isolated as light-yellow glass in 96% yield.  
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With the free acid now present on the calixarene, the amide bond could be formed 

to the coumarin dye according to the literature.99 Calixarene 131 was stirred with 

coumarin 115 and EDCI, using 30% pyridine in DCM as the solvent, for 18 hours 

before removing the solvent under reduced pressure. Dilute HCl was added and 

extraction attempted with ethyl acetate; this gave an emulsion that could only be 

broken by slowly adding methanol until two layers resolved. The solid isolated from 

the organic layer was purified by column chromatography over silica gel, eluting with 

3:2 hexane/ethyl acetate, giving the amide-linked coumarin 132 as off-white solid in 

49% yield.  

 
Scheme 2.34: Synthesis of 132 from 130 via ester hydrolysis and amide bond 

formation.  

 
Figure 2.33: 1H-NMR spectrum of 132. 
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The 1H-NMR spectrum (see Figure 2.33) confirms that the coumarin is present and 

joined by an amide bond. The characteristic peaks of the coumarin can be seen: a 

downfield singlet around 8.7 ppm, a doublet around 7.3 ppm, and a doublet of 

doublets next to a further doublet around 6.8 ppm. Two peaks are present at 8.25 and 

7.66 ppm that give rise to no peaks in the 2D-HSQC, suggesting that these are the NH 

of the amide bond and the OH of the coumarin. According to the 2D-HMBC 

spectrum, the proton peak at 8.25 ppm and the proton peaks corresponding to the butyl 

chain share a long-range interaction with a highly deshielded carbon. This suggests 

that this carbon is the carbonyl of the amide and so the proton peak at 8.25 ppm would 

be the NH of the amide. By elimination, the peak at 7.66 ppm must be the OH of the 

coumarin.  

2.3.3.2.3 Reduction of amide-linked coumarin 

The reduction of an amide to an amine could theoretically be accomplished using a 

strong nucleophilic reducing agent such as lithium aluminium hydride. However, 

amides are more difficult to reduce in this way than esters due to the increased 

electron density at the carbonyl; therefore in the presence of an ester, it will be the 

latter that will be reduced first. The presence of the lactone in the coumarin dye 

precludes the use of such a method in this case.  

Multiple methods exist for the selective reduction of amides in the presence of 

other functional groups, including esters. These include transition metal catalysed 

hydrosilation,106 treatment with tetrabutylammonium hydride,107 conversion to a 

thioamide prior to reduction108 and reduction with borane.109 The latter selectively 

delivers hydride to amide bonds in preference to esters by forming a coordination 

complex to the more electron-rich amide.110 Borane reduction has been applied to a 

coumarin, albeit for the reduction of a carboxylic acid instead of an amide, without 

reducing the lactone.111 For this reason, this reagent was selected for the reduction of 

the coumarin-amide.  

A solution of 132 in dry THF was cooled to 0 °C and stirred under argon whilst 

borane-THF complex was added. This was then heated to 60 °C for 4 hours before 

quenching with methanol. At this stage the 1H-NMR spectrum showed a complex 

mixture of products; this was also the case when the reaction was allowed to proceed 

at room temperature for 18 hours.  

A mixture of products could arise from excess borane forming a complex with the 

carbamates on the upper rim. A mild method for the cleavage of borane adducts was 
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found which utilises palladium on carbon or Raney nickel as a catalyst for 

methanolysis, which can otherwise require a very long period of stirring in 

methanol.112 The crude product was therefore stirred in methanol with 5 mol% of 

Raney nickel for 18 hours, followed by removal of the catalyst by filtration. The 

borate now present in the product was removed by azeotroping several times with 

methanol. However, the light-yellow glass that was obtained still proved to be a 

complex mixture by 1H-NMR.  

 
Scheme 2.35: Attempted synthesis of 133 by reduction of 132. 

Although examples are present in the literature of amide reductions being carried 

out in this way in the presence of Boc protecting groups,113 it would appear in this 

case that the carbamates are not stable to these conditions. However, if these were 

removed then the resulting free amines would necessitate the use of a greater excess of 

borane, due to their propensity to form adducts with the reagent, and subsequently 

would poison the catalyst used to effect methanolysis. An alternative method of 

reduction would therefore be more suitable.  

However, at this stage due to time constraints it was decided to proceed with the 

removal of the Boc protecting groups from 132 to provide a cationic molecule with an 

amide-linked coumarin. The cell-uptake properties could then be investigated to 

provide a comparison with the original triazole-linked coumarin. 

2.3.3.2.4 Deprotection of amide-linked coumarin conjugate 

Removal of the Boc protecting groups from 132 was initially attempted using the 

same procedure as in section 2.3.1.8. HCl(g) was bubbled through a solution of 132 in 

DCM for 10 minutes, followed by addition of methanol and stirring for a further 5 

minutes. However, the solid obtained was a mixture of two distinct products by 1H-

NMR; when the reaction was continued for a further 15 minutes, the minor component 

increased in concentration. This led to the conclusion that the deprotection conditions 
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were also cleaving the amide bond to the coumarin.  

A different deprotection protocol was therefore attempted, following the method 

used in the synthesis of the aminocoumarin.79 Compound 132 was stirred in a mixture 

of TFA and DCM for 2 hours. This time a single product was obtained by 1H-NMR. 

The product was then purified by reversed-phase column chromatography over C18, 

eluting with a gradient of 0-100% methanol in 60 mM aqueous HCl. This purification 

also converted the product to the hydrochloride salt and confirmed that the single 

product had not arisen from complete cleavage of the coumarin. Compound 134 was 

isolated as pale-orange solid in 88% yield.  

 
Scheme 2.36: Boc-deprotection of 132 to give 134. 

2.3.4 Biological analysis 

The collection of compounds taken through to biological analysis are summarised 

in Figure 2.34. These are the triazole-linked coumarin-appended calixarenes, 87 (non-

cationic control), 94 (aromatic amine functionalised), 97 (glycine functionalised) and 

109 (guanidine functionalised); triazole-linked pyrene- (95) and anthracene-appended 

(96) calixarenes; NBD-appended calixarene with C4 linker (126); and amide-linked 

coumarin-appended calixarene (134). 

2.3.4.1 Toxicity assays 

In order to assess the cell uptake and localisation properties of these compounds, 

the effect of the compounds on the viability of live cells first needed to be determined. 

Cell proliferation can be measured using a colorimetric assay by monitoring 

conversion of a tetrazolium dye to its formazan product by intracellular enzyme 

activity. For example, MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxy-

phenyl)-2-(4-sulfophenyl)-2H-tetrazolium) can be used in conjunction with phenazine 
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methosulphate (PMS). The activity of oxidoreductase enzymes, which is indicative of 

live cells, converts MTS to its formazan product to give an absorbance increase at 

490-500 nm that is proportional to the number of live cells present.114 

Selected cell-lines were incubated with increasing concentrations of the compounds 

to be tested for 72 hours before carrying out the MTS assays. Compounds 94, 95, 96, 

97, 126 and 134 were compared to a control where only sterile water was added. Due 

to their poor solubility in water, compounds 87 and 109 were dissolved in DMSO and 

therefore this was used as the control.  

The results of the MTS assays in THP-1 cells are shown in Figure 2.35 and are 

representative of the other cell lines tested.  

 

 
Figure 2.34: Summary of compounds subjected to in vivo testing.  
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Figure 2.35: MTS assays performed on THP-1 cells. a) Compound 87; b) Compounds 

94, 95 and 97; c) Compounds 96, 126 and 134; d) Compound 109. 
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In comparison with NBDCalAm,55 which was only toxic at high concentrations 

(around 100 mM), most of the compounds began to inhibit cell proliferation at much 

lower concentrations (of the order of 10-6 to 10-5 M) . One explanation for this could 

be the change in dye molecule: compounds 94, 95 and 96, with a coumarin, pyrene 

and anthracene dye respectively, all began to display cytotoxic effects at around 10-6 

M. However, the dye molecule clearly is not the only factor, as exemplified by the 

lower apparent toxicity of compound 97, which in particular displayed no toxicity 

towards HeLa cells at the concentrations tested, and the lack of dose-dependent 

behaviour of compounds 87 and 109 at the concentrations used. These all bear a 

coumarin moiety, but the difference in functionality in the upper rim compared with 

the aromatic amine of 94 seems to influence the toxicity; compound 87 features only 

tert-butyl groups, whilst 97 and 109 are functionalised with aliphatic amine and 

aromatic guanidine groups, respectively.  

The linker could also be a factor, since compounds 94, 95 and 96 all have triazole-

linked dyes, compared with the amine-linked dye of NBDCalAm. Compound 134, 

which has an amide-linked coumarin, in comparison with 94, begins to inhibit cell 

proliferation at a higher concentration in THP-1 cells (of the order of 10-5 M compared 

with 10-6 M), although this effect was not observed with HeLa cells. The sensitivity to 

the linker is particularly apparent in the case of 126, which provides an interesting 

comparison with NBDCalAm. Although the only structural difference between these 

two compounds is an increase in the length of linker from C3 to C4, 126 displays 

cytotoxic effects at much lower concentrations (of the order of 10-6 M). The increased 

length of linker may allow the calixarene to form interactions that could not be made 

by NBDCalAm, resulting in increased impact on cell viability. 

It is important to note that full characterisation of the cytotoxicity of these 

compounds would require collection of data at a larger number of concentrations, in 

order to determine IC50 values. Nevertheless, this data does reveal that at sub-

micromolar concentrations the cells remained viable with no significant change in 

morphology (see section 2.3.4.2). Investigation of cell uptake and localisation could 

therefore be carried out with low concentrations of the compounds.  
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2.3.4.2 Cellular uptake 

The ability of the tested compounds to penetrate living cells was subsequently 

tested. CHO cells were cultured on a glass coverslip followed by addition of the 

selected fluorescent compound and incubation for time intervals up to 72 hours. After 

washing to remove excess compound, these coverslips could directly be mounted onto 

glass slides and examined by fluorescence microscopy.  

The non-cationic control (87) did not exhibit observable uptake into cells. This 

could be due to the particularly poor water solubility of this calixarene. Unexpectedly, 

of the seven cationic compounds tested, two of the compounds did not exhibit 

observable uptake. After incubation with the pyrene conjugate (95) for 48 hours, 

fluorescence could only be observed inside of the cells by increasing the exposure 

time of the camera; however, under the same conditions the control, to which only 

water had been added, also displayed intracellular fluorescence (see Figure 2.36). 

Therefore, the possibility that the observed fluorescence for 95 was due to background 

fluorescence from the cells could not be ruled out. This led to the investigation of 

anthracene as an alternative hydrophobic dye for investigation of dye effects. 

However, the anthracene conjugate (96) likewise did not give rise to any intracellular 

fluorescence, even after 48 hours.  

 
Figure 2.36: Cellular uptake of 95 after 48 hours of incubation with CHO cells. 

The lack of increase in intracellular fluorescence relative to the controls for both 

compounds 95 and 96 could be due to either lack of uptake or poor fluorescence 

properties inside of cells. Given that Kumar et al.59 demonstrated intracellular 

fluorescence of a non-cationic tetra-pyrene appended calixarene, it is unlikely that a 

single pyrene unit would prevent cellular uptake compared to the coumarin-appended 

calixarenes (vide infra). However, it is possible that the lack of π-π stacking 

interactions that occur with multiple pyrene units59 results in insufficient intensity of 

emission to visualise in living cells. A similar principle could also apply to the 

anthracene-appended calixarene. Compounds 95 and 96 are therefore unsuitable for 

cellular imaging applications and were not investigated further.  
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By contrast, the coumarin-appended tetra-amino calixarene (94) showed clear 

uptake into CHO cells after 1 hour (see Figure 2.37). The initially diffuse intracellular 

fluorescence became more punctate after 24 hours and even more so from 48-72 

hours. This suggests gradual sequestration of the compound into intracellular 

compartments. 

Compound 97, the tetra-glycine coumarin-appended derivative, exhibited slower 

cellular uptake than 94 (see Figure 2.38). At 1 hour, few cells showed intracellular 

fluorescence and at a lower intensity compared with 94. This increased over the 

examined time intervals, but the uptake between different cells in the same culture 

remained inconsistent. From 24 hours onwards those cells that had taken up 97 began 

to show punctate rather than diffuse patterns of fluorescence. From 48 to 72 hours 

most cells were displaying uptake of the compound.  

The guanidinium derivative (109) also seemed to be taken up more slowly into 

cells (see Figure 2.39). Interestingly, from 1-4 hours fluorescence was only visible in 

globular structures that appeared to be dying or dead cells. Since the MTS assays for 

this compound indicated low toxicity relative to the DMSO control, this suggests 

accumulation of 109 in such cells rather than cytotoxic action. From 24 hours onwards 

an increasing number of live cells exhibited intense intracellular fluorescence, with a 

more punctate pattern as time went on.  

The different dynamics of 94, 97, 109 demonstrates the importance of upper-rim 

functionalisation in cellular uptake. Although the previous work on cell penetrating 

peptides suggests that guanidine groups give superior uptake to simple amines (see 

section 2.1.2.1.2), in this case the guanidine functionalised calixarene (109) did not 

give more rapid uptake compared with 94 or 97 as was expected. However, the 

aromatic guanidine groups of 109 may give different dynamics to the aliphatic 

guanidines of poly-arginine cell-penetrating peptides. 
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Figure 2.37: Cellular uptake of 94 at given time intervals after addition of compound 

to CHO cells.  

 
Figure 2.38: Cellular uptake of 97 at given time intervals after addition of compound 

to CHO cells.  
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Figure 2.39: Cellular uptake of 109 at given time intervals after addition of compound 

to CHO cells.  

 
Figure 2.40: Cellular uptake of 126 at given time intervals after addition of compound 

to CHO cells. 
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Figure 2.41: Cellular uptake of 134 at given time intervals after addition of compound 

to CHO cells. 

Compound 126 allowed the effect of an increased length of linker to be tested 

compared with its previously investigated counterpart, NBDCalAm.66 Although the 

increase in linker length resulted in higher cytotoxicity, the cellular uptake seemed to 

be similar: uptake was rapid, with intracellular fluorescence clearly visible after 1 

hour and intense fluorescence exhibited after 4 hours, and increasingly punctate 

patterns visible from 24 hours onwards (see Figure 2.40).  

Compound 134, despite the change of linker from triazole to amide, displayed 

similar uptake to 94 (see Figure 2.41). Some intracellular fluorescence was visible 

after 1 hour, increasing in intensity over time, with the diffuse pattern changing to 

more punctate from 24 hours onwards. This suggests that the more rapid uptake 

exhibited by the NBD-appended compounds 126 and NBDCalAm compared with 94 

could be due to the effect of the dye rather than that of the triazole ring.  

It is important to note that these uptake studies give only qualitative information 

about the relative rate of uptake. In order to obtain accurate measurements of uptake 

kinetics, flow cytometry experiments would be required. However, the above 

experiments do reveal that an incubation time of 48 hours gives good uptake of all 

compounds and is therefore a suitable amount of time to allow in further experiments. 
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2.3.4.3 Mechanism of uptake 

Incubation of cells with different inhibitors of endocytosis followed by incubation 

with the compounds under investigation allows the mechanism of their uptake to be 

investigated. As discussed in section 2.1.1, the two major pathways of endocytosis are 

via clathrin-coated pits or caveolae. Processes involving the latter can be inhibited by 

interfering with the function of cholesterol in the membrane. Suitable inhibitors 

include methyl-β-cyclodextrin (MCD),115 which forms soluble inclusion complexes 

with cholesterol and so extracts it from the membrane, and the polyene antibiotics 

filipin 116 and nystatin,117 which perturb the function of membrane domains by 

sequestering cholesterol within the membrane.  

Clathrin-mediated processes can be inhibited by hypertonic sucrose, which 

disperses clathrin lattices.118 The antibiotic monensin can also be used. This ionophore 

dissipates the proton gradient in lysosomes and interferes with transfer of compounds 

to these intracellular compartments; it therefore inhibits receptor-mediated uptake by 

interfering with receptor recycling.119,120 

Investigations were carried out with these five inhibitors by incubating CHO cells 

grown on coverslips with each inhibitor followed by addition of the calixarene 

compounds under investigation and incubation for a further 48 hours. Excess inhibitor 

and calixarene was removed by washing before mounting on slides for imaging. In 

some cases incubation with monensin or MCD for 48 hours reduced cell viability and 

gave rounded dead or dying cells. In these cases the results are omitted since the 

possibility that uptake was due to the loss of viability could not be excluded. 

The results for compound 94 are shown in Figure 2.42. Both MCD and nystatin 

resulted in a lower level of intracellular fluorescence, whilst filipin gave greatly 

diminished fluorescence. Conversely, monensin and sucrose had no inhibitory effect. 

This suggests that clathrin-mediated processes are not involved and that pathways 

involving caveolae are dominant in the uptake of 94. Interestingly, although monensin 

and sucrose did not prevent uptake, both resulted in altered distribution of the 

calixarene within the cell. Whilst the cells treated with monensin displayed widely 

distributed fluorescence as in the control, the fluorescence seemed to be beginning to 

form into more aggregated structures. This can be attributed to perturbed intracellular 

trafficking due to dispersion of proton gradients within the cell.120 Treatment with 

sucrose on the other hand gave a dramatically more punctate pattern of fluorescence; 

this could be due to side effects of hypertonic sucrose which include potential 

stimulation of rearrangement of the actin cytoskeleton.121 
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Figure 2.42: Uptake of compound 94 after incubation with specified inhibitors. 

 

 

Figure 2.43: Uptake of compound 97 after incubation with specified inhibitors.  
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A different effect was observed with compound 97 (see Figure 2.43). Although 

treatment with MCD resulted in less intense, more diffuse intracellular fluorescence, 

both nystatin and filipin exhibited no inhibitory effect and did not alter the puntate 

pattern of fluorescence.  However, the cells were not clearly visible when treated with 

monensin prior to 97. Interestingly, in some cases punctate fluorescent outlines of 

cells were observed, suggesting that the calixarene had become bound to the exterior 

of the cell but not internalised. Sucrose also exhibited a negative effect on uptake, 

generally giving greatly diminished and diffused fluorescence with only a few cells 

showing a small amount of the familiar punctate fluorescence. This suggests that in 

this case clathrin and receptor-mediated processes are the dominant mechanism of 

uptake, whilst caveolae seem to not be involved. The diminished fluorescence in the 

case of MCD could be due to the potential for this inhibitor to also have an impact on 

invagination of clathrin-coated pits.122 

The difference in apparent uptake mechanism between 94 and 97 highlights the 

importance in the upper rim functionalisation in the mode of internalisation. This also 

provides sharp contrast with NBDCalAm,66 which despite being furnished with the 

same aromatic amines as 94 appeared to be taken up by direct translocation. Therefore 

the change from NBD to triazole-linked coumarin cargo has an impact on uptake 

mechanism.  

 
Figure 2.44: Uptake of compound 109 after incubation with specified inhibitors. 
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In the case of 109, none of the inhibitors seemed to have any impact on 

internalisation. MCD, filipin, nystatin and sucrose all gave comparable fluorescence to 

the control (see Figure 2.39), although in some cases capturing the true level of 

fluorescence was difficult due to rapid photobleaching. This suggests a lack of 

involvement of endocytotic mechanisms in the uptake of this calixarene and 

potentially a direct translocation mechanism as was observed with NBDCalAm. This 

was unexpected, since the triazole-linked coumarin had resulted in uptake by 

endocytosis for 94 and 97. The clustered guanidine residues therefore seem to allow 

this cargo to be directly translocated, although with slower apparent uptake than 

NBDCalAm.   

As was observed for NBDCalAm,66 internalisation of compound 126 was not 

significantly affected by the inhibitors tested, suggesting a similar direct translocation 

across the membrane. As with compound 94, monensin and sucrose altered the 

distribution of the probe; this was particularly dramatic for the former, which gave the 

appearance of network-like structures within the cells. This could be due to inhibition 

of transfer to lysosomes from other cellular compartments such as the Golgi 

apparatus, which was previously observed for NBDCalAm on treatment with 

monensin.66 

 
Figure 2.45: Uptake of compound 126 after incubation with specified inhibitors. 
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For compound 134, no inhibition was observed with monensin or sucrose, 

suggesting that clathrin-mediated processes are not involved in uptake, although they 

did alter the distribution as observed for compounds 94 and 126. However, although 

nystatin and filipin gave no significant effect relative to the control, MCD gave a 

different result. Some rounded cells were present, suggesting loss of viability of these 

cells as discussed previously. However, there were also cells present with normal 

morphology, which exhibited greatly diminished fluorescence relative to the control. 

This is unexpected, even with the potential for MCD to effect both clathrin and 

caveolae mediated processes, given that the other inhibitors of both of these types of 

endocytosis did not impact on uptake. This could be accounted for if both mechanisms 

were in use, resulting in a compensatory effect when one of the two was inhibited. 

However, given that some cells in the sample were already dead or dying, the 

anomalous result could simply be due to the remaining cells suffering non-visible 

abnormalities.  

It does seem that the change in linker from a triazole to an amide has an impact on 

the uptake mechanism. Compound 134 is otherwise identical to 94 but uptake of the 

latter was inhibited by both nystatin and filipin, whilst 134 was not affected by either. 

The method of attachment of the cargo is therefore also an important factor. 

 
Figure 2.46: Uptake of compound 134 after incubation with specified inhibitors. 
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2.3.4.4 Intracellular localisation 

To determine if the cellular fate of the compounds tested was the same as the 

previously investigated NBDCalAm, cells were incubated with the compounds for 48 

hours followed by use of a selective lysosome stain. Weakly basic fluorescent probes 

are useful for this purpose, due to the tendency of weakly basic compounds to 

accumulate in lysosomes;123 LysoTracker Red was used in this case. Double-stained 

cells were then photographed using a combination of a green excitation filter (for the 

LysoTracker) followed by either a UV (for the coumarin-appended calixarenes) or 

blue (for the NBD probe) excitation filter. By comparing the two images and 

examining the overlay of the two, the degree of probable overlap could be determined. 

Overlay of the red and blue emissions results in a pink colour, whereas overlay of red 

and green emissions gives yellow.  

The results for compound 94 are shown in Figure 2.47. In general, the punctate 

fluorescence from the LysoTracker and 94 overlays, indicating co-localisation of the 

two compounds. However there is some diffuse blue fluorescence that does not 

overlay with red fluorescence of a similar intensity. This suggests that although some 

of 94 accumulates in acidic vesicles, not all of it is doing so. 

 
Figure 2.47: Co-localisation of 94 with LysoTracker Red. White arrows indicate a 

pink spot of overlaid fluorescence (a) and an area of blue fluorescence with poor 

overlay (b). 

Compound 97 displayed more inconsistent results between cells. Figure 2.48a 

shows a sample which exhibited good overlay of fluorescence as indicated by the high 

proportion of pink punctate colouring, although some blue fluorescence is visible 

between these pink spots suggesting that not all of 97 has localised into the lysosomes. 

However, Figure 2.48b shows a sample where overlay was relatively poor; although 

there is some pink overlaid fluorescence, there are many spots of blue fluorescence, so 

some of the apparent overlay could be due to coincidental overlay in different planes 

of the three dimensional structure of the cell. 
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Figure 2.48: a) Co-localisation of 97 with LysoTracker Red; white arrow indicates a 

pink spot of overlaid fluorescence. b) Cells showing limited overlay; white arrow 

indicates spot of blue fluorescence with no overlay.  

This inconsistency in localisation may correlate to the inconsistent rate of uptake 

observed for this compound (see section 2.3.4.2) between cells in the same sample and 

suggests that uptake and localisation could be sensitive to the state of the cell. If one 

cell begins to take up the calixarene before another in the sample, it stands to reason 

that the compound would reach its final cellular location earlier. Further experiments 

would be needed to confirm this; for example, samples could be taken at different 

time intervals to test for the proportion of cells displaying lysosome localisation. Co-

localisation studies of other cellular compartments such as the Golgi apparatus could 

also help to elucidate the pathway of 97 inside the cell. 

The results for compound 109 are shown in Figure 2.49. In this case, although there 

are areas of pink colour indicating overlay of red and blue fluorescence, there are 

numerous spots of blue fluorescence without overlay. Furthermore, in some of the 

pink areas there are spots that appear bluer in colour. This suggests that the apparent 

overlay could be coincidental. As a preliminary result, this suggests lack of 

localisation of 109 in lysosomes. This could be confirmed using confocal microscopy, 

which would allow individual planes of space through the cell to be sampled and 

allow apparently overlapping organelles to be differentiated. Further experiments with 

stains of other compartments would be required to determine the cellular fate of 109. 
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Figure 2.49: Limited overlay of 109 with LysoTracker Red; white arrow indicates spot 

of blue fluorescence with no overlay. 

Compound 126 showed consistently good overlay with LysoTracker (see Figure 

2.50). Although the staining from the LysoTracker was not as efficient in this case, 

resulting in lower intensity of red fluorescence and consequently a less dramatic 

yellow colour in the overlay, comparison of the fluorescence images from 

LysoTracker and 126 shows an almost identical pattern of staining. This suggests that 

like its analogue, NBDCalAm, 126 localises within acidic vesicles. 

 
Figure 2.50: Co-localisation of 126 with LysoTracker Red; white arrow indicates 

yellow spot of overlaid fluorescence. 

The results for compound 134 (see Figure 2.51) are similar to those of 94. The 

fluorescence from the calixarene generally overlays with that of the LysoTracker, 

although some areas of diffuse blue fluorescence do not overlay with red fluorescence 

of a similar intensity. This suggests that most, but not all, of 134 has localised in 

acidic vesicles and that the change in linker from triazole to amide does not have a 

noticeable impact on localisation after the 48 hour incubation time.  

As noted previously, the three dimensional nature of the cell means that the 

possibility of coincidental overlay cannot be ruled out. To confirm the obtained results 

and to obtain a quantitative measure of the degree of actual co-localisation of the 

compounds with LysoTracker, confocal microscopy would be required. From these 

preliminary results, it seems that the change in cargo from NBD to coumarin, whether 
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it is linked by a triazole or an amide bond, results in a slightly lower degree of 

localisation to acidic vesicles, although this could correlate to the slower uptake of the 

latter. Change in upper rim functionalisation from aromatic amine to aliphatic amine 

results in more inconsistent degree of localisation in acidic vesicles, whilst the 

guanidinium derivative did not seem to localise in acidic vesicles at all. This suggests 

that upper rim functionalisation has an impact on dynamics within the cell.  

 
Figure 2.51: Co-localisation of 134 with LysoTracker Red; white arrow indicates pink 

spot of overlaid fluorescence. 

2.4 Conclusions and further work 

A method of synthesising diverse scaffolds has been developed using a common 

intermediate. This features aromatic amines on the upper rim which give access to 

other basic functionalities and an alkyne on the lower rim to which azide derivatives 

of various dyes (or potentially other cargo) can be attached using a CuAAC reaction. 

The utility of alkyne protecting groups in facilitating the synthesis of this intermediate 

in high purity has been demonstrated.  

The synthesis of multifunctional scaffolds featuring aromatic guanidines on the 

upper rim is challenging due to the lability of the commonly utilised Boc protecting 

groups on this derivative. The validity of using Cbz protected guanidinylation agents 

has been demonstrated and has been shown to give improved integrity relative to the 

Boc protected analogue, allowing further reactions to take place on the guanidine-

furnished scaffold. This may allow more complex guanidinylated calixarenes to be 

synthesised as analogues of cell penetrating peptides, although deprotection conditions 

must be carefully optimised to avoid degradation of the molecule. The suitability of 

the different deprotection methods available will depend on the nature of the cargo.  

This approach may also allow the synthesis of the NBD-appended guanidinium 

derivative to be revisited. The decreased lability of the Cbz-protected guanidines on 

the upper rim should allow the phthalimide on the lower rim to be cleaved to expose 
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the amine required for coupling the NBD dye. A set of analogues to compare with the 

coumarin-appended calixarenes could be therefore be synthesised to determine if 

upper-rim functionalisation also effects the uptake and localisation of the NBD 

derivative.  

Since the uptake and intracellular dynamics of these probes seems to be sensitive to 

the upper rim functionalisation, it is of interest to create an expanded library of 

compounds to test. Using the common intermediate, the amines on the upper rim 

could be coupled to alternative amino acids to glycine, for example lysine; such upper 

rim functionalisation has been accomplished by Bagnacani et al.62 Similarly, coupling 

to arginine would provide a calixarene with aliphatic guanidine groups.  

Alternatively, functionalisation with aliphatic guanidines could be achieved via 

chloromethylation of the upper rim followed by conversion to methylamines and 

ultimately guanidines. Previous work on this route within the group has encountered 

difficulties, with side reactions occurring during chloromethylation on the lower-rim 

functionalised calixarene and also if alkylation of the lower rim is attempted after 

chloromethylation. However, this synthesis could be achieved using the method of 

Mourer et al.,86 which involves completing the guanidinylation of the upper rim prior 

to any functionalisation of the lower rim.  

Biological tests of the compounds showed that the non-cationic control was not 

taken up into the cells tested, presumably due to the poor water solubility. The pyrene 

and anthracene derivatives proved to be unsuitable for cellular imaging, although it is 

possible that installation of multiple dye units on the lower rim may improve the 

fluorescence properties by allowing π-stacking between them.59  

The coumarin derivatives were visibly taken up by cells and revealed sensitivity of 

the uptake, mechanism and localisation to the upper rim functionalisation. All of these 

derivatives were taken up more slowly than the NBD-appended calixarenes, but 

unexpectedly the guanidinium derivative seemed to be taken up most slowly, with 

probe only accumulating within dead or dying cells within the first 24 hours. The 

aliphatic amine derivative gave inconsistent uptake between cells in the same sample 

within this time frame, whilst the aromatic amine exhibited the fastest uptake of the 

three.  

Caveolae mediated processes were implicated in the uptake of the aromatic amine, 

whilst the aliphatic amine seemed to be taken up via clathrin coated pits and the 

guanidinium derivative did not seem to be taken up by either endocytotic pathway. 

Localisation of the calixarenes seemed to be mostly within the lysosomes in the case 
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of the aromatic amine, whilst localisation of the aliphatic amine seemed to be more 

inconsistent. The guanidinium derivative did not seem to localise within acidic 

vesicles.  

Comparison of the C4-linked NBD derivative with NBDCalAm revealed no 

considerable difference in uptake or localisation, although toxicity was increased. This 

suggests that increasing the length of the linker does not affect uptake mechanism or 

localisation and therefore allows the amide-linked coumarin, featuring a C4 length 

linker, to be compared with the triazole-linked coumarin, which has a C3 length linker. 

The triazole linker seemed to have no effect on relative rate of uptake or cellular 

localisation, since the amide-linked derivative was taken up in a similar time-frame 

and also seemed to localise within acidic vesicles; however, it resulted in uptake that 

was apparently not by endocytosis. The impact of the triazole ring was therefore 

limited. This suggests that the rapid uptake of NBDCalAm may have been due to the 

NBD dye, since the coumarin derivatives were taken up more slowly whether they 

featured a triazole or amide linker. The comparison of the triazole- and amide-linked 

compounds is also valuable in that it suggests that the triazole may be a suitable amide 

bioisostere in these compounds, although it can influence the mechanism of uptake. 

To gain more information about the dynamics of these probes, flow cytometry 

experiments will be required to allow comparison of the quantitative uptake kinetics. 

Further investigation of the cellular localisation is needed for those probes that did not 

fully localise in the lysosomes, for example by using a Golgi apparatus stain such as 

BODIPY TR ceramide.66 For those that did colocalise with LysoTracker, confocal 

microscopy experiments will be required to quantify the true degree of colocalisation.  

In general, the current progress has elucidated some of the factors that influence the 

uptake and intracellular dynamics of calixarene-based cell-penetration agents. 

Synthesis of additional derivatives may allow more of the subtleties of the behaviour 

of such molecules to be determined. This in turn will inform the design of cell-

penetration agents based on these scaffolds featuring other cargos such as antiviral or 

anticancer agents, or development of novel cellular imaging agents.  

2.5 Experimental 

2.5.1 General procedures - chemistry 

All chemicals were purchased from Sigma-Aldrich, Alfa Aesar, Acrôs Organics or 

Novabiochem and were used without further purification. Deuterated solvents for 

NMR use were purchased from Cambridge Isotope Laboratories or Sigma-Aldrich. 
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Dry solvents were purchased from previously listed suppliers. Analytical thin layer 

chromatography (TLC) was performed using Merck or Machery-Nagel Alugram silica 

gel 60 F254 plates, with visualisation by UV light (254 nm). Column chromatography 

was run using silica gel 60 (230-400 mesh). NMR spectra were acquired using a 

Varian Unity Plus spectrometer (operating at 400 MHz for proton and 100 MHz for 

carbon), a Gemini 2000 spectrometer (operating at 300 MHz for proton and 75 MHz 

for carbon) or a Bruker Avance 400 Ultrashield spectrometer (operating at 400 MHz 

for proton or 100 MHz for carbon). Chemical shifts are referenced relative to 

tetramethylsilane (TMS) as the internal reference standard and expressed in parts per 

million (ppm or δ) downfield from the standard. Coupling constants (J) are expressed 

in Hz. Multiplicities are abbreviated as follows: s (singlet), br s (broad singlet), d 

(doublet), t (triplet), m (multiplet), app (apparent). MALDI-TOF mass spectra were 

recorded using a Kratos Axima CFR MALDI Mass Spectrometer using α-cyano-4-

hydroxycinnamic acid as matrix. APCI and ESI or NSI mass spectra were recorded by 

the EPSRC National Mass Spectrometry Service, Swansea. Melting points were 

measured using an electrothermal Mel-temp® melting point apparatus and are 

reported uncorrected. Infrared spectra were recorded using a Perkin Elmer Spectrum 

BX or Spectrum 65 spectrometer fitted with an ATR attachment and are expressed in 

wavenumbers (cm-1).  

2.5.2 Synthesis 

5,11,17,23-p-tert-Butylcalix[4]arene (2)74 

In a 3 L flange flask, p-tert-butyl phenol (200.00 g, 1.33 mol), NaOH (2.40 g, 60 

mmol) and 37 wt% formaldehyde (130 mL, 1.74 mol) were heated to 120 °C with 

mechanical stirring over 2 h. The resultant yellow solid was dissolved in diphenyl 

ether (980 mL). Water of condensation (100 mL) was removed by distillation under a 

stream of air, following which the solution was heated to reflux for 3 hours. After 

cooling, ethyl acetate (750 mL) was added to precipitate the crude product, which was 

collected by filtration, washed with ethyl acetate (2 x 150 mL), acetic acid (2 x 150 

mL), water (2 x 150 mL) and acetone (1 x 150 mL) to give 2 as off-white crystals 

(143.63 g, 67%). Mp  338-340 °C; IR  ν 3158.5, 3052, 3028.5, 2952.5, 2903.5, 2864.5, 

1738, 1604, 1592, 1586, 1481.5, 1463, 1428, 1405.5, 1392, 1361.5, 1306, 1299, 

1285.5, 1240.5, 1229.5, 1199, 1158.5, 1124, 1102.5, 1039 cm-1; 1H-NMR  (400 MHz, 

CDCl3) δ 10.34 (s, 4H, OH), 7.05 (s, 8H, ArH), 4.26 (d, J = 13 Hz, 4H, ArCH2Ar), 

3.49 (d, J = 13 Hz, 4H, ArCH2Ar), 1.21 (s, 36H, C(CH3)3). 
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5,11,17,23-Tetra-tert-butyl-25,26,27-tripropoxy-28-hydroxy-calix[4]arene 

(77)73  

p-tert-Butylcalix[4]arene (2) (20.11 g, 31.03 mmol) was dissolved in DMF (300 

mL) and heated to 30 °C. BaO (7.15 g, 46.78 mmol) and Ba(OH)2.8H2O (33.82 g, 

107.35 mmol) were added and the mixture stirred for 30 mins. n-Propyl bromide (60 

mL, 660 mmol) was added and the mixture stirred for 18 hrs. The solution was diluted 

with water (200 mL) and the product extracted with DCM (3 x 100 mL). After 

washing with water (2 x 200 mL) then brine (200 mL) the organic layer was dried 

(MgSO4) and the solvent removed under reduced pressure. Precipitation from DCM 

with methanol and filtration gave 77 as white crystals (18.37 g, 79%). Mp  172-174 
oC; IR  ν 3479, 2956, 2898, 2684, 1584, 1480, 1462, 1431, 1385, 1360, 1295, 1239, 

1194, 1121 cm-1; 1H-NMR  (400 MHz, CDCl3) δ 7.07 (s, 2 H, ArH), 6.99 (s, 2 H, 

ArH), 6.45 (s, 4 H, ArH), 4.30 (d, J = 13 Hz, 2 H, ArCH2Ar), 4.27 (d, J = 13 Hz, 2 H, 

ArCH2Ar), 3.78 (t, J = 8 Hz, 2 H, OCH2CH2CH3), 3.69 (t, J = 7 Hz, 4 H, 

OCH2CH2CH3), 3.17 (d, J = 13 Hz, 2 H, ArCH2Ar),  3.10 (d, J = 13 Hz, 2 H, 

ArCH2Ar), 2.36-2.26 (m, 2H, OCH2CH2CH3),  1.99-1.78 (m, 4 H, OCH2CH2CH3),  

1.28 (s, 9 H, C(CH3)3), 1.27 (s, 9 H, CH3), 1.03 (t, J = 7 Hz, 6 H, OCH2CH2CH3), 0.89 

(t, J = 8 Hz, 3 H, OCH2CH2CH3), 0.76 (s, 18 H, C(CH3)3). 

 

5,11,17,23-Tetra-tert-butyl-25,26,27-tripropoxy-28-propargyloxy-calix[4]arene 

(78)124 

Compound 77 (12.51 g, 16.42 mmol) was dissolved in DMF (330 mL). NaH (1.54 

g, 64.17 mmol) was added and the mixture stirred for 1 hour before addition of n-

propargyl bromide (8.06 g, 80% w/w in toluene, 54.20 mmol). After stirring for 72 

hours, the solution was diluted with water (200 mL) and the product extracted with 

DCM (3 x 100 mL). After washing with water (2 x 200 mL) then brine (200 mL), the 

organic layer was dried (MgSO4) and the solvent removed under reduced pressure. 

Purification by column chromatography over silica (eluent: 1:1 DCM/hexane) gave 78 

as off-white crystals (12.60 g, 95%). Mp 203-205 oC; IR  ν 3539, 3285, 3261, 2950, 

2900, 2860, 2123, 1585, 1582, 1477, 1391, 1360, 1299, 1258, 1237, 1193, 1120 cm-1; 

1H-NMR  (400 MHz, CDCl3): δ 7.02 (s, 4 H, ArH), 6.58 (d, J = 2 Hz, 2 H, ArH), 6.52 

(d, J = 2 Hz, 2 H, ArH), 4.97 (d, J = 2 Hz, 2 H, OCH2CCH), 4.51 (d, J = 12 Hz, 2 H, 

ArCH2Ar), 4.43 (d, J = 13 Hz, 2 H, ArCH2Ar), 3.90 (t, J = 8 Hz, 2 H, OCH2CH2CH3), 

3.73 (t, J = 7 Hz, 4 H, OCH2CH2CH3), 3.14 (d, J = 13 Hz, 2 H, ArCH2Ar), 3.13 (d, J = 

12 Hz, 2 H, ArCH2Ar), 2.38 (t, J = 2 Hz, 1 H, OCH2CCH), 2.14 (sextet, J = 8 Hz, 2H, 



 
 

Chapter 2: Calixarene-Based Cell-Penetration Agents 

142 
 

 

OCH2CH2CH3),  2.04-1.91 (m, 4 H, OCH2CH2CH3), 1.27 (s, 9 H, C(CH3)3), 1.26 (s, 9 

H, C(CH3)3), 1.05 (t, J = 7 Hz, 6 H, OCH2CH2CH3), 0.99 (t, J = 8 Hz, 3 H, 

OCH2CH2CH3), 0.99 (s, 18 H, C(CH3)3). 

 

5,11,17,23-Tetranitro-25,26,27-tripropoxy-28-propargyloxy-calix[4]arene (79) 

Compound 78 (3.25 g, 4.00 mmol) was dissolved in 130 mL DCM. Glacial acetic 

acid (21.5 mL) and 100% nitric acid (21.5 mL) were added and the resulting blue-

black solution was stirred until the colour changed to bright orange. Iced H2O (45 mL) 

was added to quench. The product was extracted with DCM (3 x 100 mL) then 

washed with water (3 x 200 mL) then brine (200 mL). After drying (MgSO4) the 

solvent was removed under reduced pressure and the product precipitated from DCM 

with methanol to give 79 as light yellow crystals (2.61 g, 85%). Mp > 180 °C 

(decomp.); IR  ν 3285, 3069, 2959, 2921, 2867, 1722, 1638, 1597, 1583, 1514, 1449, 

1338, 1301, 1262, 1205, 1156 cm-1; 1H-NMR  (400 MHz, CDCl3): δ 8.07 (s, 2 H, 

ArH), 8.06 (s, 2 H, ArH), 7.16 (s, 4 H, ArH), 4.92 (d, J = 2 Hz, 2 H, OCH2CCH), 4.60 

(d, J = 14 Hz, 2 H, ArCH2Ar), 4.55 (d, J = 14 Hz, 2 H, ArCH2Ar), 4.14 (t, J = 8 Hz, 2 

H, OCH2CH2CH3), 3.82 (t, J = 7 Hz, 4 H, OCH2CH2CH3), 3.44 (d, J = 14 Hz, 2 H, 

ArCH2Ar), 3.42 (d, J = 14 Hz, 2 H, ArCH2Ar), 2.51 (t, J = 2 Hz, 1 H, OCH2CCH), 

1.98-1.87 (m, 6 H, OCH2CH2CH3), 1.10 (t, J = 8 Hz, 6 H, OCH2CH2CH3), 0.97 (t, J = 

7 Hz, 3 H, OCH2CH2CH3); 
13C-NMR  (100 MHz, CDCl3) δ 162.8, 160.9, 160.2, 

143.8, 142.9, 137.9, 136.6, 134.5, 134.2, 124.8, 124.7, 123.4, 123.3, 78.2, 78.2, 78.0, 

77.1, 60.7, 31.5, 31.1, 23.5, 23.4, 10.6, 10.0; ESI-MS m/z: [M]+ 768.2. 

 

5,11,17,23-Tetraamino-25,26,27-tripropoxy-28-propargyloxy-calix[4]arene 

(80) 

Compound 79 (2.4 g, 3.13 mmol) and SnCl2·2H2O (18.42 g, 81.64 mmol) were 

heated to reflux in ethanol (215 mL) for 48 hours. After removing the ethanol under 

reduced pressure, 10% NaOH (300 mL) was added, then the product extracted with 

DCM (3 x 100 mL). The organic layer was washed with water (200 mL) and brine 

(200 mL). After drying (MgSO4) and removing the solvent under reduced pressure, 80 

was obtained as an orange-brown glass (1.98 g, 98%). Mp >180 °C (decomp.); IR  ν 

3310, 2966, 2934, 2878, 1737, 1608, 1469, 1387, 1310, 1285, 1215, 1158, 1129 cm-1; 
1H-NMR  (300 MHz, CDCl3): δ 6.41 (s, 4 H, ArH), 5.78 (s, 2 H, ArH), 5.77 (s, 2 H, 

ArH),  4.77 (d, J = 2 Hz, 2 H, OCH2CCH), 4.39 (d, J = 14 Hz, 2 H, ArCH2Ar), 4.32 

(d, J = 13 Hz, 2 H, ArCH2Ar), 3.86 (t, J = 8 Hz, 2 H, OCH2CH2CH3), 3.61 (t, J = 7 
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Hz, 4 H, OCH2CH2CH3), 2.95 (d, J = 14 Hz, 2 H, ArCH2Ar), 2.92 (d, J = 13 Hz, 2 H, 

ArCH2Ar), 2.31 (t, J = 2.4 Hz, 1 H, OCH2CCH), 1.88 (sextet, J = 8 Hz, 2 H, 

OCH2CH2CH3), 1.84 (sextet, J = 7 Hz, 4 H, OCH2CH2CH3),  1.04 (t, J = 7 Hz, 6 H, 

OCH2CH2CH3), 0.97 (t, J = 8 Hz, 3 H, OCH2CH2CH3); 
13C-NMR (100 MHz, 

CDCl3): δ 150.6, 149.6, 147.9, 141.4, 140.4, 139.2, 138.1, 137.1, 134.3, 134.1, 116.2, 

116.0, 115.8, 81.4, 74.2, 59.5, 31.6, 31.0, 23.5, 23.1, 10.9, 10.1; HRMS (NSI) m/z: 

[M+H] + Calcd for C40H49N4O4 649.3748; Found 649.3745. 

 

3-acetamido-7-acetoxy-chromen-2-one (81)79 

4-Hydroxysalicylaldehyde (6.91 g, 50.01 mmol), N-acetyl glycine (5.85 g, 50.00 

mmol), anhydrous sodium acetate (16.4 g, 19.99 mmol) and acetic anhydride (40 mL) 

were heated to 120 °C for 5 hours. Ice-cold H2O was added and any solid broken up. 

After vacuum filtration and washing 3 times with cold water, the solid was air dried 

then triturated with ethyl acetate. Filtration under vacuum and air drying gave 81 as a 

yellow powder (6.33 g, 49%). Mp > 240 °C (decomp.); IR  ν 3339, 3088, 1757, 1716, 

1676, 1611, 1531, 1430, 1352, 1283, 1251, 1199, 1154, 1117 cm-1; 1H-NMR  (400 

MHz, CDCl3): δ 8.67 (s, 1 H, ArH), 8.04 (s, 1 H, NH), 8.51 (d, J = 8 Hz, 1 H, ArH), 

7.12 (d, J = 2.3 Hz, 1 H, ArH), 7.07 (dd, J = 8, 2.3 Hz, 1 H, ArH), 2.34 (s, 3 H, CH3), 

2.25 (s, 3 H, CH3). 

 

3-Azido-7-hydroxy-chromen-2-one (82)69 

Compound 81 (1 g, 3.83 mmol) was heated to reflux in a solution of 37% HCl and 

ethanol (2:1, 11 mL) for 1 hour. Iced H2O (15 mL) was added and the mixture cooled 

in an ice bath. NaNO2 (1 g, 14.5 mmol) was added in small portions then stirred for 10 

minutes. After adding NaN3 (1.4 g, 21.5 mmol) in small portions the mixture was 

stirred for a further 15 minutes then vacuum filtered. Washing with water several 

times then air drying gave crude 82 as a brown powder (0.64 g, 83%). Purification by 

column chromatography over silica (eluent: 3:2 hexane/ethyl acetate) gave pure 82 as 

yellow-orange needles (0.18 g, 23%). Mp  100-102 °C; IR  ν 3276, 3047, 2105, 1679, 

1609, 1593, 1449, 1370, 1340, 1315, 1256, 1217, 1153, 1119 cm-1; 1H-NMR  (400 

MHz, DMSO) δ 10.52 (s, 1H, ArOH), 7.59 (s, 1H, ArH), 7.48 (d, J = 8.5 Hz, 1H, 

ArH), 6.81 (dd, J = 8.5, 2.3 Hz, 1H, ArH), 6.76 (d, J = 2.3 Hz, 1H, ArH). 
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1-Bromomethylpyrene (83)70 

To a stirred suspension of 1-pyrene methanol (1.6 g, 6.83 mmol) in THF (8 mL) 

was added PBr3 (2.77 g, 10.25 mmol). After 30 minutes the solid was filtered and 

washed with diethyl ether to give 83 as light yellow crystals (1.76 g, 87%). Mp  150-

152 °C; IR  ν 3333.5, 3037, 2892.5, 2836, 1602, 1588.5, 1497.5, 1464, 1435.5, 1418.5, 

1386.5, 1373, 1312.5, 1269, 1243, 1222.5, 1204.5, 1180, 1138, 1107, 1093.5, 1083, 

1027.5 cm-1; 1H-NMR  (300 MHz, CDCl3): δ 8.41 (d, J = 9 Hz, 1 H, ArH), 8.27-8.21 

(m, 3 H, ArH), 8.14-8.01 (m, 5 H, ArH), 5.26 (s, 2 H, CH2). 

 

1-Azidomethylpyrene (84)70 

To a stirred suspension of 83 in DMF (9 mL), NaN3 (0.49 g, 7.54 mmol) was added 

and the mixture heated at 60 °C for 16 hours. The product was extracted into ether and 

washed with water 3 times. After drying and removing the solvent under reduced 

pressure, 84 was obtained as a waxy yellow solid (1.1 g, 88%). Mp  63-65 °C; IR ν 

3041, 2992, 2942, 2888.5, 2507, 2482, 2455.5, 2425, 2099, 2079.5, 1925.5, 1901.5, 

1875.5, 1861, 1793.5, 1724, 1678, 1652.5, 1603, 1596, 1589, 1509.5, 1489, 1456.5, 

1435.5, 1418.5, 1392.5, 1372, 1340, 1314.5, 1270.5, 1252.5, 1245, 1226.5, 1194.5, 

1181, 1169.5, 1150.5, 1136.5, 1100, 1059.5, 1026 cm-1; 1H-NMR (300 MHz, CDCl3): 

δ 8.31-8.17 (m, 5 H, ArH), 8.13-7.98 (m, 4 H, ArH), 5.05 (s, 2 H, CH2). 

 

Coumarin appended tert-butyl calix[4]arene (87) 

A solution of 78 (0.5 g, 0.62 mmol), 82 (125 mg, 0.62 mmol), sodium ascorbate 

(132 mg, 0.67 mmol) and CuSO4.5H2O (0.024 g, 0.095 mmol) in DMF (19 mL) was 

heated to 90 °C and stirred for 3 hours.  After cooling, water (25 mL) was added and 

the product extracted with DCM (3 x 25 mL), washed with water (2 x 25 mL) then 

brine (25 mL), dried and the solvent removed under reduced pressure. The product 

was purified by column chromatography over silica (eluent: 49:1 DCM/methanol) to 

give 87 as a light yellow glass (0.38 g, 60%). Mp  175-180 °C; IR  ν 2955, 2867, 1736, 

1610, 1514, 1480, 1387, 1360, 1298, 1233, 1196, 1121 cm-1; 1H-NMR  (300 MHz, 

CDCl3) δ 8.60 (s, 1H, ArHTriazole), 8.55 (s, 1H, ArHCoumarin), 7.55 (d, J = 9.2 Hz, 1H, 

ArHCoumarin), 6.97-6.93 (m, 2H, ArHCoumarin), 6.83 (s, 4H, ArH), 6.74 (s 2H, ArH), 6.70 

(s, 2H, ArH), 5.22 (s, 2H, OCH2C), 4.39 (d, J = 12.4 Hz, 2H, ArCH2Ar), 4.36 (d, J = 

12.4 Hz, 2H, ArCH2Ar), 3.83-3.73 (m, 6 H, OCH2CH2CH3), 3.10 (d, J = 12.4 Hz, 4H, 

ArCH2Ar), 2.06-1.85 (m, 4 H, OCH2CH2CH3), 1.11 (s, 18H, C(CH3)3), 1.03 (s, 9H, 

C(CH3)3), 1.01(s, 9H, C(CH3)3), 0.88-0.81 (m, 9 H, OCH2CH2CH3);
 13C-NMR (100 
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MHz, CDCl3): δ 162.8, 162.2, 159.8, 157.0, 155.0, 154.1, 154.0, 153.6, 152.2, 152.0, 

151.5, 145.6, 145.4, 145.2, 145.2, 144.6, 144.5, 144.4, 135.1, 134.4, 134.1, 134.0, 

133.8, 130.6, 125.3, 125.1, 125.0, 119.4, 115.6, 114.5, 110.9, 103.2, 102.8, 77.1, 66.5, 

62.8, 34.1, 34.0, 32.0, 31.7, 31.6, 31.6, 31.5, 31.3, 29.3, 23.7, 23.7, 23.4, 23.4, 10.7, 

10.6, 10.4, 10.3, 10.3; MALDI-TOF  m/z: [M+Na]+ 1039.95. 

 

5,11,17,23-Tetra-Boc-amino-25,26,27-tripropoxy-28-propargyloxy-

calix[4]arene (88) 

To a solution of 80 (0.58 g, 0.89 mmol) in DCM (25 mL), Boc anhydride (1.99 g, 

9.12 mmol) and DIPEA (0.33 mL, 2.00 mmol) were added. After stirring for 24 hours, 

the solvent was removed under reduced pressure and the product purified by column 

chromatography over silica (eluent: 15:1 DCM/ethyl acetate) to give 88 as off white 

crystals (0.78 g, 83%). Mp  179-181 °C; IR  ν 3433, 3294, 2967, 2924, 2870, 1693, 

1595, 1514, 1467, 1413, 1375, 1364, 1289, 1226, 1211, 1146 cm-1; 1H-NMR (400 

MHz, CDCl3) δ 7.05 (s, 2 H, ArH), 7.04 (s, 2 H, ArH), 6.37 (s, 2 H, NH), 6.26 (s, 2 H, 

ArH), 6.24 (s, 2 H, ArH), 5.90 (s, 2 H, NH), 4.85 (d, J = 3 Hz, 2 H, OCH2CCH), 4.43 

(d, J = 13 Hz, 2 H, ArCH2Ar), 4.36 (d, J = 13 Hz, 2 H, ArCH2Ar), 3.92 (t, J = 8 Hz, 2 

H, OCH2CH2CH3), 3.63 (t, J = 6 Hz, 4 H, OCH2CH2CH3), 3.10 (d, J = 13 Hz, 2 H, 

ArCH2Ar), 3.08 (d, J = 13 Hz, 2 H, ArCH2Ar), 2.31 (t, J = 3, 1 H, OCH2CCH), 1.96-

1.81 (m, 6 H, OCH2CH2CH3), 1.53 (s, 9 H, C(CH3)3), 1.53 (s, 9 H, C(CH3)3), 1.43 (s, 

18 H, C(CH3)3), 1.02 (t, J = 7 Hz, 6 H, OCH2CH2CH3), 0.90 (t, J = 7 Hz, 3 H, 

OCH2CH2CH3); 
13C NMR (100 MHz, CDCl3): δ 153.4, 153.3, 153.1, 152.3, 150.8, 

137.7, 136.6, 133.9, 133.6, 133.3, 132.4, 131.9, 120.3, 120.2, 119.5, 119.0, 80.9, 80.3, 

79.9, 77.2, 76.0, 74.7, 59.5, 31.7, 31.0, 28.5, 23.5, 23.1, 10.8, 10.1; HRMS (NSI) m/z: 

[M+NH4]
+ Calcd for C60H84N5O12 1066.6111; Found 1066.6101. 

 

Coumarin appended tetra-Boc-amino calix[4]arene (89) 

A solution of 88 (0.5 g, 0.48 mmol), 82 (0.15 g, 7.43 mmol), sodium ascorbate 

(0.10 g, 0.52 mmol) and CuSO4.5H2O (0.018 g, 0.074 mmol) in DMF (15 mL) was 

heated to 90 °C and stirred for 20 hours. Water (20 mL) was added then the product 

extracted with DCM (3 x 25 mL), washed with water (2 x 25 mL) then brine (25 mL) 

before drying and removing the solvent under reduced pressure. The product was 

purified by column chromatography over silica gel (eluent: 49:1 DCM/methanol) to 

give 89 as a light yellow glass (0.39 g, 65%). Mp  170-172 °C; IR  ν 2962, 2919, 2865, 

1689, 1602, 1514, 1466, 1412, 1365, 1290, 1219, 1213, 1149 cm-1; 1H-NMR  (300 
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MHz, CDCl3) δ 8.51 (s, 1H, ArHTriazole), 8.49 (s, 1H, ArHCoumarin), 7.50 (d, J = 8 Hz, 

1H, ArHCoumarin), 6.89-6.84 (m, 2H, ArHCoumarin), 6.71 (s, 4H, ArH), 6.52 (s, 4H, ArH), 

6.28 (s, 2H, NH), 6.21 (s, 2H, NH), 6.13 (s, 4H, NH), 5.21 (s, 2H, OCH2C), 4.37 (d, J 

= 13 Hz, 2H, ArCH2Ar), 4.25 (d, J = 13 Hz, 2H, ArCH2Ar), 3.85 (t, J = 8 Hz, 2H, 

OCH2CH2CH3), 3.67 (t, J = 7 Hz, 4H, OCH2CH2CH3), 3.07 (d, J = 13 Hz, 2H, 

ArCH2Ar), 3.02 (d, J = 13 Hz, 2H, ArCH2Ar), 1.90  (sextet, J = 8 Hz, 2H, 

OCH2CH2CH3), 1.81-1.70  (m, 4H, OCH2CH2CH3), 1.50 (s, 9H, C(CH3)3), 1.49 (s, 

9H, C(CH3)3), 1.47 (s, 18H, C(CH3)3), 0.96 (t, J = 7 Hz, 3H, OCH2CH2CH3), 0.86 (t, J 

= 8 Hz, 6H, OCH2CH2CH3); 
13C-NMR (100 MHz, CDCl3): δ 163.1, 162.8, 156.6, 

155.0, 153.9, 153.8, 153.7, 153.1, 153.0, 151.2, 144.6, 136.1, 135.7, 135.1, 135.0, 

134.7, 132.8, 132.1, 132.0, 130.4, 124.7, 120.4, 120.3, 120.1, 119.4, 115.2, 110.7, 

103.2, 80.4, 77.3, 77.1, 77.0, 66.0, 37.0, 31.9, 31.6, 31.3, 28.6, 23.4, 23.2, 10.5, 10.5; 

MALDI-TOF  m/z: [M+Na]+ 1274.96. 

 

Pyrene appended tetra-Boc-amino calix[4]arene (90) 

A solution of 88 (0.69 g, 0.66 mmol), 84 (0.18 g, 0.69 mmol), sodium ascorbate 

(0.13 g, 0.66 mmol) and CuSO4.5H2O (0.025 g, 0.099 mmol) in DMF (20 mL) were 

heated to 90 °C and stirred for 3 hours. After removal of solvent under reduced 

pressure, water (20 mL) was added then the product extracted with DCM (3 x 25 mL), 

washed with water (2 x 25 mL) then brine (25 mL) before drying and removing the 

solvent under reduced pressure. The product was purified by column chromatography 

over silica gel (eluent: 19:1 DCM/acetone) to give 90 as light yellow crystals (0.28 g, 

32%). Mp  175-177 °C; IR  ν 3499, 3480, 3445.5, 3416, 3323.5, 3292, 2973.5, 2932, 

2872.5, 1698.5, 1694, 1605.5, 1595.5, 1519.5, 1475, 1456, 1415, 1390, 1365.5, 1293, 

1241, 1214.5, 1150.5, 1059, 1045, 1000.5; 1H-NMR  (400 MHz, CDCl3) δ 8.28-8.25 

(m, 3H, ArHPyrene), 8.17-8.14 (m, 3H, ArHPyrene), 8.11-8.06 (m, 2H, ArHPyrene), 7.90 (d, 

J = 8 Hz, 1H, ArHPyrene), 6.90 (s, 1H, ArHTriazole), 6.58 (s, 2H, ArH), 6.53 (s, 2H, 

ArH), 6.17 (s, 2H, CH2), 6.12 (s, 2H, ArH), 6.10 (s, 1H, NH), 6.04 (s, 2H, ArH), 5.98 

(s, 2H, NH), 5.84 (s, 1H, NH), 5.02 (s, 2H, OCH2C), 4.28 (d, J = 13 Hz, 2H, 

ArCH2Ar), 3.86 (d, J = 13 Hz, 2H, ArCH2Ar), 3.73 (t, J = 7 Hz, 2H, OCH2CH2CH3), 

3.61-3.49 (m, 4H, OCH2CH2CH3), 3.00 (d, J = 13 Hz, 2H, ArCH2Ar), 2.41 (d, J = 13 

Hz, 2H, ArCH2Ar), 1.82 (sextet, J = 7 Hz, 2H, OCH2CH2CH3), 1.68 (sextet, J = 7 Hz, 

4H, OCH2CH2CH3), 1.55 (s, 9H, C(CH3)3), 1.48 (s, 18H, C(CH3)3), 1.45 (s, 9H, 

C(CH3)3), 0.91 (t, J = 7 Hz, 3H, OCH2CH2CH3), 0.77 (t, J = 7 Hz, 6H, 

OCH2CH2CH3). 
13C-NMR  (100 MHz, CDCl3) δ 153.43, 153.36, 153.22, 152.77, 
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150.13, 144.43, 135.66, 135.19, 135.16, 134.91, 132.37, 132.13, 131.99, 131.94, 

131.24, 130.77, 129.29, 129.17, 128.43, 127.86, 127.48, 126.67, 126.08, 125.13, 

124.58, 123.45, 122.29, 119.87, 119.81, 119.49, 119.40, 80.07, 80.05, 80.01, 77.36, 

76.93, 76.72, 65.94, 52.40, 31.26, 31.14, 28.65, 28.56, 28.52, 23.26, 22.98, 22.98, 

10.47, 10.30, 10.30; MALDI-TOF  m/z: [M+Na]+ 1329.41. 

 

Anthracene appended tetra-Boc-amino calix[4]arene (91) 

A solution of 9-bromomethyl-10-bromoanthracene (0.19 g, 0.70 mmol) and sodium 

azide (0.23 g, 3.50 mmol) in DMF (1.26 mL) was stirred under argon at 60 °C for 18 

hours. After removal of the solvent under reduced pressure, water (20 mL) was added 

and the product extracted with ethyl acetate (3 x 10 mL). The combined organic 

extracts were washed with water (20 mL) then brine (20 mL), dried over MgSO4 and 

the solvent removed under reduced pressure to give 86 as a yellow solid (0.12 g, 

70%). 1H-NMR  (400 MHz, CDCl3) δ 8.67 – 8.63 (m, 2H, ArH), 8.33 – 8.29 (m, 2H, 

ArH), 7.66 – 7.62 (m, 4H, ArH), 5.32 (s, 2H, CH2). A solution of 88 (0.22 g, 0.21 

mmol), 86 (0.054 g, 0.17 mmol), sodium ascorbate (0.032 g, 0.16 mmol) and 

CuSO4.5H2O (0.008 g, 0.032 mmol) in DMF (3 mL) were heated to 90 °C and stirred 

for 3 hours. After removal of solvent under reduced pressure, water (20 mL) was 

added then the product extracted with DCM (3 x 25 mL), washed with water (2 x 25 

mL) then brine (25 mL) before drying over MgSO4 and removing the solvent under 

reduced pressure. The product was purified by column chromatography over silica gel 

(eluent: 2:1 hexane/ethyl acetate) to give 91 as light orange crystals (0.096 g, 47%). 

Mp  182-184 °C; IR  ν 3416, 3325, 2970.5, 2930.5, 2874.5, 1698.5, 1595.5, 1519, 

1470.5, 1415, 1390, 1365.5, 1324.5, 1292.5, 1242, 1215, 1151, 1062, 1001 cm-1; 1H-

NMR  (400 MHz, CDCl3) δ 8.70-8.68 (m, 2H, ArHAnthracene), 8.32-8.30 (m, 2H, 

ArHAnthracene), 7.69-7.62 (m, 4H, ArHAnthracene), 6.71 (s, 2H, ArH), 6.60 (s, 1H, 

ArHTriazole), 6.49 (s, 2H, ArH), 6.40 (s, 2H, ArH), 6.32 (s, 2H, CH2), 6.24 (s, 2H, 

ArH), 6.17 (s, 1H, NH), 5.97 (s, 3H, NH), 4.99 (s, 2H, OCH2C), 4.30 (d, J = 13 Hz, 

2H, ArCH2Ar), 3.81 (t, J = 8 Hz, 2H, OCH2CH2CH3), 3.76 (d, J = 13 Hz, 2H, 

ArCH2Ar), 3.52-3.39 (m, 4H, OCH2CH2CH3), 3.02 (d, J = 13 Hz, 2H, ArCH2Ar), 2.49 

(d, J = 13 Hz, 2H, ArCH2Ar), 1.90-1.90 (m, 2H, OCH2CH2CH3), 1.66-1.55 (m, 4H, 

OCH2CH2CH3), 1.57 (s, 9H, C(CH3)3), 1.49 (s, 9H, C(CH3)3), 1.44 (s, 18H, C(CH3)3), 

0.90 (t, J = 7 Hz, 3H, OCH2CH2CH3), 0.75 (t, J = 7 Hz, 6H, OCH2CH2CH3). 
13C-

NMR  (100 MHz, CDCl3) δ 153.37, 153.25, 152.87, 152.83, 152.43, 149.92, 144.10, 

136.07, 135.51, 134.47, 134.26, 132.40, 132.00, 131.76, 130.99, 130.22, 128.81, 
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127.83, 127.23, 126.03, 124.78, 123.29, 122.60, 119.91, 119.76, 119.58, 118.70, 

79.89, 79.85, 79.74, 76.64, 76.56, 65.31, 60.34, 46.01, 31.05, 30.97, 28.48, 28.36, 

23.01, 22.85, 10.27, 10.21; MALDI-TOF  m/z: [M+Na]+ 1383.67. 

 

5,11,17,23-Tetra-Boc-glycine-25,26,27-tripropoxy-28-propargyloxy-

calix[4]arene (92) 

A solution of DCC (1.71 g, 8.29 mmol) in DCM (8 mL) was added to a solution of 

Boc-glycine (1.45 g, 8.29 mmol) in DCM (8 mL). This mixture was added to a stirred 

solution of 80 (0.6 g, 0.92 mmol) in DCM (8 mL). After 48 hours the precipitate was 

removed by filtration and the solvent removed under reduced pressure. The product 

was purified by column chromatography over silica gel (eluent: 19:1 DCM/methanol) 

to give 92 as a light orange glass (0.71 g, 61%). Mp  158-160 °C; IR  ν 3292, 2968, 

2925, 2869, 1668, 1599, 1501, 1465, 1416, 1389, 1364, 1268, 1242, 1211, 1157 cm-1; 
1H-NMR  (300 MHz, DMSO) δ 9.77 (s, 2 H, ArNH), 9.31 (s, 2 H, ArNH), 7.29 (s, 4 

H, ArH), 7.05 (t, J = 6 Hz, 2 H, CH2NH), 6.80 (s, J = 6 Hz, 2 H, CH2NH), 6.60 (s, 4 

H, ArH), 4.94 (d, J = 2 Hz, 2 H, OCH2CCH), 4.41 (d, J = 13 Hz, 2 H, ArCH2Ar), 4.35 

(d, J = 13 Hz, 2 H, ArCH2Ar), 3.92 (t, J = 8 Hz, 2 H, OCH2CH2CH3), 3.69-3.61 (m, 8 

H, CH2NH), 3.55-3.50 (m, 4 H, CH2NH), 3.09 (d, J = 13 Hz, 4 H, ArCH2Ar), 1.99-

1.81 (m, 6 H, OCH2CH2CH3), 1.40 (s, 18 H, C(CH3)3), 1.36 (s, 18 H, C(CH3)3), 1.03 

(t, J = 7 Hz, 6 H, OCH2CH2CH3), 0.91 (t, J = 7 Hz, 3 H, OCH2CH2CH3); 
13C NMR 

(100 MHz, CD3OD): δ 168.9, 168.5, 157.3, 152.6, 151.5, 137.5, 136.3, 133.7, 133.5, 

133.3, 132.5, 132.0, 120.9, 120.5, 120.4, 80.3, 79.5, 79.3, 77.3, 77.0, 75.4, 59.5, 53.7, 

43.8, 43.5, 31.5, 30.8, 27.6, 27.5, 23.4, 23.3, 10.1, 9.3; HRMS (NSI) m/z: [M+NH4]
+ 

Calcd for C68H96N9O16 1294.6970; Found 1294.6967.  

 

Coumarin appended tetra-Boc-glycine calix[4]arene (93) 

A solution of 92 (0.39 g, 0.31 mmol), 82 (0.13 g, 0.64 mmol), sodium ascorbate 

(0.06 g, 0.30 mmol) and CuSO4.5H2O (0.012 g, 0.04 mmol) in DMF (10 mL) were 

heated to 90 °C and stirred for 18 hours. After removal of solvent under reduced 

pressure, water (20 mL) was added. The product was extracted with 4:1 

DCM/methanol before drying and removing the solvent under reduced pressure. The 

product was purified by column chromatography over silica gel (eluent: 97:3 

DCM/methanol) to give 93 as a light yellow glass (0.15 g, 33%). Mp  >250 °C 

(decomp.); IR  ν 3301, 2981, 2939, 2883, 1682, 1609, 1519, 1475, 1423, 1394, 1368, 

1226, 1164 cm-1-; 1H-NMR  (400 MHz, CD3OD) δ 8.58 (s, 1 H, ArHTriazole), 8.57 (s, 1 
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H, ArHCoumarin), 7.70 (d, J = 9 Hz, 1 H, ArHCoumarin), 6.96-6.85 (m, 10 H, ArH), 5.28 

(s, 2 H, OCH2C), 4.49 (d, J = 13 Hz, 2 H, ArCH2Ar), 4.40 (d, J = 13 Hz, 2 H, 

ArCH2Ar), 3.93 (t, J = 7 Hz, 2 H, OCH2CH2CH3), 3.83 (t, J = 8 Hz, 4 H, 

OCH2CH2CH3), 3.77 (s, 8 H, CH2NH), 3.14 (d, J = 13 Hz, 2 H, ArCH2Ar), 3.10 (d, J 

= 13 Hz, 2 H, ArCH2Ar), 2.04 (sextet, J = 7 Hz, 2 H, OCH2CH2CH3), 1.97-1.85 (m, 4 

H, OCH2CH2CH3), 1.49 (s, 36 H, C(CH3)3), 1.08 (t, J = 7 Hz, 3 H, OCH2CH2CH3), 

0.96 (t, J = 8 Hz, 6 H, OCH2CH2CH3); 
13C-NMR (100 MHz, CD3OD): δ 168.7, 

163.1, 157.3, 156.7, 155.2, 153.4, 153.2, 151.6, 144.2, 135.6, 135.0, 132.8, 132.1, 

130.9, 125.3, 120.6, 119.3, 114.5, 110.7, 102.2, 80.3, 79.6, 77.0, 66.1, 43.7, 31.3, 

30.9, 29.6, 27.7, 23.4, 23.1, 9.9, 9.6; MALDI-TOF  m/z: [M+Na]+ 1503.38. 

 

Coumarin appended tetra-amino calix[4]arene (·4HCl) (94) 

HCl(g) was bubbled through a solution of 89 (0.16 g, 0.13 mmol) in DCM (12 mL). 

After 15 minutes, methanol (5 mL) was added to dissolve the precipitate and after a 

further 5 minutes the solvent was evaporated to give 94 as light orange-brown powder 

(0.12 g, 99%). Mp  280 °C (decomp.); IR  ν 3391, 3064, 2958.5, 2927.5, 2872.5, 2589, 

1729, 1699, 1608, 1575, 1516, 1466.5, 1386, 1310.5, 1281.5, 1228, 1217, 1148.5, 

1124.5, 1042, 1000.5 cm-1; 1H-NMR  (400 MHz, CD3OD) δ 8.54 (s, 2H, ArHCoumarin 

and ArHTriazole), 7.67 (d, J = 9 Hz, 1H, ArHCoumarin), 6.92 (dd, J = 9, 2 Hz, 1H, 

ArHCoumarin), 6.84-6.79 (m, 9H, ArH and ArHCoumarin), 5.30 (s, 2H, OCH2C), 4.54 (d, J 

= 13 Hz, 2H, ArCH2Ar), 4.45 (d, J = 14 Hz, 2H, ArCH2Ar), 3.98 (t, J = 7 Hz, 2H, 

OCH2CH2CH3), 3.88 (t, J = 7 Hz, 4H, OCH2CH2CH3), 3.36 (d, J = 13 Hz, 2H, 

ArCH2Ar), 3.32 (d, J = 14 Hz, 2H, ArCH2Ar), 2.01 (sextet, J = 7 Hz, 2H, 

OCH2CH2CH3), 1.94-1.85 (m, 4H, OCH2CH2CH3), 1.07 (t, J = 7 Hz, 3H, 

OCH2CH2CH3), 0.95 (t, J = 7 Hz, 6H, OCH2CH2CH3);
 13C-NMR  (100 MHz, CD3OD) 

δ 164.53, 158.16, 158.08, 157.96, 156.57, 156.17, 144.46, 138.37, 137.70, 137.58, 

137.23, 132.03, 126.86, 126.47, 125.87, 125.82, 124.54, 124.44, 124.40, 120.59, 

115.72, 111.91, 103.45, 78.70, 78.63, 67.43, 31.99, 31.62, 24.53, 24.30, 10.77, 10.59; 

HRMS (NSI) m/z: [M+H]+ Calcd for C49H54N7O7 852.4079; Found 852.4055.  

 

Pyrene appended tetra-amino calix[4]arene (·4HCl) (95) 

HCl(g) was bubbled through a solution of 90 (0.16 g, 0.12 mmol) in DCM (12 mL). 

After 15 minutes, methanol (5 mL) was added to dissolve the precipitate and after a 

further 5 minutes the solvent was evaporated to give 95 as a brown solid (0.13 g, 

99%). Mp  280 °C (decomp); IR  ν 3382, 2958, 2919.5, 2870, 2594.5, 1603.5, 1586.5, 
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1523, 1465.5, 1385, 1309.5, 1280, 1249, 1216.5, 1147.5, 1129.5, 1062.5, 1041 cm-1;  
1H-NMR  (400 MHz, CD3OD) δ 8.38 (d, J = 9 Hz, 1H, ArHPyrene), 8.30-8.03 (m, 8H, 

ArHPyrene), 7.84 (s, 1H, ArHTriazole), 6.81 (d, J = 2 Hz, 2H, ArH), 6.75 (d, J = 2 Hz, 2H, 

ArH), 6.69 (s, 2H, ArH), 6.67 (s, 2H, ArH), 6.39 (s, 2H, CH2), 5.06 (s, 2H, OCH2C), 

4.36 (d, J = 13.5 Hz, 2H, ArCH2Ar), 4.11 (d, J = 13.5 Hz, 2H, ArCH2Ar), 3.79 (t, J = 

7 Hz, 2H, OCH2CH2CH3), 3.54-3.41 (m, 4H, OCH2CH2CH3), 3.21 (d, J = 13.5 Hz, 

2H, ArCH2Ar), 2.95 (d, J = 13.5 Hz, 2H, ArCH2Ar), 1.83 (sextet, J = 7 Hz 2H, 

OCH2CH2CH3), 1.52-1.42 (m, 4H, OCH2CH2CH3), 0.94 (t, J = 7 Hz, 3H, 

OCH2CH2CH3), 0.52 (t, J = 7 Hz, 6H, OCH2CH2CH3); 
13C-NMR  (100 MHz, 

CD3OD) δ 157.92, 157.44, 155.80, 144.63, 137.67, 137.60, 137.51, 137.08, 133.30, 

132.40, 131.73, 130.22, 129.85, 129.19, 129.02, 128.95, 128.27, 127.47, 126.91, 

126.74, 126.20, 126.10, 125.96, 125.68, 125.64, 125.40, 124.45, 124.34, 124.15, 

123.23, 78.43, 78.13, 67.31, 53.17, 31.73, 31.33, 24.31, 23.85, 10.75, 10.23; HRMS 

(NSI) m/z: [M+H]+ Calcd for C57H60N7O4 906.4701; Found 906.4691.  

 

Anthracene appended tetra-amino calix[4]arene (·4HCl) (96) 

HCl(g) was bubbled through a solution of 91 (0.096 g, 0.075 mmol) in DCM (2 

mL). After 15 minutes, methanol (5 mL) to dissolve the precipitate and after a further 

5 minutes the solvent was evaporated to give 96 as a brown solid (0.077 g, 99%). Mp  

240 °C (decomp.); IR  ν 3390, 2958.5, 2921, 2871.5, 2592.5, 2356.5, 2343, 1583.5, 

1526, 1465.5, 1445, 1385, 1323, 1310, 1280, 1257.5, 1216.5, 1147.5, 1129.5, 1117.5, 

1063, 1038 cm-1; 1H-NMR  (400 MHz, CD3OD) δ 8.69-8.66 (m, 2H, ArHAnthracene), 

8.59-8.57 (m, 2H, ArHAnthracene), 7.74-7.71 (m, 5H, ArHAnthracene), 7.59 (s, 1H, 

ArHTriazole), 6.80 (d, J = 2.0 Hz, 3H, ArH), 6.73 (s, 2H ArH), 6.71 (d, J = 1.9 Hz, 2H, 

ArH), 6.67 (s, 2H, CH2), 6.59 (s, 2H, ArH), 5.00 (s, 2H, OCH2C), 4.38 (d, J = 13.5 

Hz, 2H, ArCH2Ar), 4.02 (d, J = 13.5 Hz, 2H, ArCH2Ar), 3.79 (t, J = 7 Hz, 2H, 

OCH2CH2CH3), 3.58-3.41 (m, 4H, OCH2CH2CH3), 3.23 (d, J = 13.5 Hz, 2H, 

ArCH2Ar), 2.83 (d, J = 13.5 Hz, 2H, ArCH2Ar), 1.84 (sextet, J = 7 Hz, 2H, 

OCH2CH2CH3), 1.50-1.40 (m, 4H, OCH2CH2CH3), 0.96 (t, J = 7 Hz, 3H, 

OCH2CH2CH3), 0.53 (t, J = 7 Hz, 6H, OCH2CH2CH3); 
13C-NMR (100 MHz, 

CD3OD) δ 157.96, 157.58, 155.75, 144.60, 137.75, 137.62, 137.50, 137.25, 132.55, 

131.69, 129.78, 129.04, 128.58, 127.07, 126.76, 125.81, 125.27, 125.17, 124.42, 

124.32, 124.18, 78.53, 78.23, 67.24, 47.37, 31.74, 31.45, 24.41, 23.94, 10.76, 10.41; 

HRMS (NSI) m/z: [M+H]+ Calcd for C55H59BrN7O4 960.3806; Found 960.3810.  
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Coumarin appended tetra-glycine calix[4]arene (·4HCl) (97) 

HCl(g) was bubbled through a solution of 93 (0.088 g, 0.059 mmol) in DCM (6 

mL). After 15 minutes, methanol (5 mL) to dissolve the precipitate and after a further 

5 minutes the solvent was evaporated to give 97 as beige powder (0.072 g, 99%). Mp  

>300 °C (decomp.); 1H-NMR  (400 MHz, CD3OD) δ 8.56 (s, 1H, ArHTriazole), 8.56 (s, 

1H, ArHCoumarin), 7.67 (d, J = 9 Hz, 1H, ArHCoumarin), 6.97 (s, 2H, ArH), 6.95 (s, 2H, 

ArH), 6.91 (dd, J = 9, 2 Hz, 1H, ArHCoumarin), 6.91 (s, 2H, ArH), 6.90 (s, 2H, ArH), 

6.83 (d, J = 2 Hz, 1H, ArHCoumarin), 5.27 (s, 2H, OCH2C), 4.49 (d, J = 13 Hz, 2H, 

ArCH2Ar), 4.41 (d, J = 13 Hz, 2H, ArCH2Ar), 3.91 (t, J = 8 Hz, 2H, OCH2CH2CH3), 

3.82 (t, J = 8 Hz, 4H, OCH2CH2CH3), 3.76 (s, 8H, CH2NH3
+), 3.14 (d, J = 13 Hz, 2H, 

ArCH2Ar), 3.11 (d, J = 13 Hz, 2H, ArCH2Ar), 2.06-1.97 (m, 2H, OCH2CH2CH3), 

1.94-1.83 (m, 4H, OCH2CH2CH3), 1.05 (t, J = 7 Hz, 3H, OCH2CH2CH3), 0.93 (t, J = 

7 Hz, 6H, OCH2CH2CH3); 
13C-NMR  (100 MHz, CD3OD) δ 164.93, 164.39, 157.98, 

156.48, 154.75, 154.62, 152.94, 145.22, 137.00, 136.82, 136.40, 136.26, 136.21, 

133.59, 132.90, 131.99, 126.57, 121.78, 120.61, 115.65, 111.92, 103.42, 78.30, 67.20, 

42.12, 32.43, 32.01, 24.53, 24.29, 10.86, 10.69; MALDI-TOF  m/z: [M+H]+ 1081.17, 

[M+Na]+ 1103.16. 

 

5,11,17,23-Tetra-tert-butyl-25,26,27-tripropoxy-28-[tert-butyl(dimethyl)silyl]-

propargyloxy-calix[4]arene (98) 

To a stirred solution of 78 (7.31 g, 9.00 mmol) in THF (63 mL) cooled to -80 °C 

was added 1 M LiHMDS in THF (9.45 mL, 9.45 mmol). After 5 minutes, TBDMSCl 

(2.03 g, 13.50 mmol) in 3 mL of THF was added dropwise. The reaction mixture was 

allowed to warm to room temperature and stirred for 18 hours. The reaction was 

quenched with saturated ammonium chloride, extracted with DCM (3 x 100 mL) and 

the combined organic extracts washed with water (200 mL) then brine (200 mL). 

After drying over MgSO4 the solution was concentrated under reduced pressure to an 

orange oil and 98 was precipitated with methanol as white crystals (7.77 g, 93%). Mp  

152-154 °C; IR  ν 2957.5, 2933.5, 2902.5, 2873, 2860, 2175.5, 1601.5, 1583.5, 1505, 

1480, 1470.5, 1415, 1389.5, 1361, 1300, 1279, 1248, 1239.5, 1200, 1121, 1105.5, 

1070.5, 1045, 1032.5, 1010 cm-1; 1H-NMR  (400 MHz, CDCl3) δ 7.42 (s, 2H, ArH), 

7.36 (s, 2H, ArH), 6.89 (d, J = 2 Hz, 2H, ArH), 6.82 (d, J = 2 Hz, 2H, ArH), 5.42 (s, 

2H, OCH2C), 4.83 (d, J = 12.5 Hz, 2H, ArCH2Ar), 4.77 (d, J = 12.5 Hz, 2H, 

ArCH2Ar), 4.30 – 4.26 (m, 2H, OCH2CH2CH3), 4.09 – 4.00 (m, 4H, OCH2CH2CH3), 

3.48 (d, J = 12.5 Hz, 2H, ArCH2Ar), 3.46 (d, J = 12.5 Hz, 2H, ArCH2Ar), 2.52– 2.42 
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(m, 2H, OCH2CH2CH3), 2.39 – 2.24 (m, 4H, OCH2CH2CH3), 1.65 (s, 9H, C(CH3)3), 

1.64 (s, 9H, C(CH3)3), 1.42 (t, J = 7.5 Hz, 6H, OCH2CH2CH3), 1.32 (t, J = 7.5 Hz, 3H, 

OCH2CH2CH3), 1.22 (s, 18H, C(CH3)3), 1.17 (s, 9H, SiC(CH3)3), 0.37 (s, 6H, SiCH3); 
13C-NMR  (100 MHz, CDCl3) δ 154.56, 153.23, 151.74, 145.34, 144.75, 144.13, 

136.69, 135.59, 132.62, 132.27, 125.46, 125.11, 124.64, 124.47, 104.31, 89.73, 77.54, 

59.48, 34.17, 33.73, 32.37, 31.87, 31.81, 31.70, 31.55, 31.49, 31.35, 31.11, 26.13, 

23.78, 23.63, 16.56, 10.90, 10.21, -4.57; HRMS (NSI) m/z: [M+NH4]
+ Calcd for 

C62H94O4SiN 944.6947; Found 944.6936. 

  

5,11,17,23-Tetranitro-25,26,27-tripropoxy-28-[tert-butyl(dimethyl)silyl]-

propargyloxy-calix[4]arene (99) 

Compound 98 (4.08 g, 4.40 mmol) was dissolved in 100 mL DCM. Glacial acetic 

acid (23 mL) and 100% nitric acid (23 mL) were added and the resulting blue-black 

solution was stirred until the colour changed to bright orange. Water (100 mL) was 

added to quench. The product was extracted with DCM (3 x 100 mL) then washed 

with water (3 x 200 mL) and brine (200 mL). After drying over MgSO4 the solvent 

was removed under reduced pressure and the product triturated with methanol to give 

99 as light yellow powder (3.22 g, 83%). Mp  238-240 °C; IR  ν 3079.5, 2958.5, 2936, 

2927.5, 2877.5, 2857, 2170, 1609, 1586.5, 1523.5, 1455.5, 1343.5, 1299.5, 1286.5, 

1263.5, 1233, 1209.5, 1202, 1159, 1096.5, 1060, 1041.5, 1018.5 cm-1; 1H-NMR  (300 

MHz, CDCl3) δ 8.08 (s, 2H, ArH), 8.07 (s, 2H, ArH), 7.16 (s, 4H, ArH), 5.00 (s, 2H, 

OCH2C), 4.57 (d, J = 14 Hz, 2H, ArCH2Ar), 4.54 (d, J = 14 Hz, 2H, ArCH2Ar), 4.15 

– 4.10 (m, 2H, OCH2CH2CH3), 3.87 – 3.75 (m, 4H, OCH2CH2CH3), 3.41 (d, J = 14 

Hz, 2H, ArCH2Ar), 3.41 (d, J = 14 Hz, 2H, ArCH2Ar), 2.00 – 1.84 (m, 6H, 

OCH2CH2CH3), 1.10 (t, J = 7 Hz, 6H, OCH2CH2CH3), 0.97 (t, J = 7 Hz, 3H, 

OCH2CH2CH3), 0.80 (s, 9H, SiC(CH3)3), 0.01 (s, 6H, SiCH3); 
13C-NMR  (100 MHz, 

CDCl3) δ 162.81, 160.84, 159.81, 143.75, 143.08, 138.34, 136.61, 134.62, 134.08, 

124.85, 124.46, 123.45, 123.32, 99.91, 93.45, 78.17, 78.02, 60.79, 31.64, 31.07, 

25.84, 23.53, 23.34, 16.36, 10.63, 10.02, -4.82; HRMS (NSI) m/z: [M+H]+ Calcd for 

C46H55N4O12Si 883.3580, Found 883.3586. 

 

5,11,17,23-Tetraamino-25,26,27-tripropoxy-28-[tert-butyl(dimethyl)silyl]-

propargyloxy-calix[4]arene (100) 

A solution of 99 (2.86 g, 3.24 mmol) and SnCl2·2H2O (19.01 g, 84.24 mmol) in 

ethanol (216 mL) were heated to reflux for 48 hours. After removing the solvent under 
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reduced pressure, 10% NaOH (200 mL) was added, then the product extracted with 

DCM (3 x 100 mL). The organic layer was washed with water (200 mL) and brine 

(200 mL). After drying over MgSO4 and removing the solvent under reduced pressure, 

100 was obtained as an orange-brown glass (2.22 g, 90%). Mp  157-159 °C; IR  ν 

3415.5, 3349, 3215.5, 2999.5, 2958.5, 2926, 2900, 2874, 2853.5, 2171, 1608, 1467.5, 

1384.5, 1361.5, 1304.5, 1281, 1247, 1212, 1164.5, 1152, 1130.5, 1106.5, 1068, 

1035.5, 1026, 1005.5 cm-1; 1H-NMR  (400 MHz, CDCl3) δ 6.37 (s, 2H, ArH), 6.33 (s, 

2H, ArH), 5.80 (s, 2H, ArH), 5.80 (s, 2H, ArH), 4.81 (s, 2H, OCH2C), 4.36 (d, J = 13 

Hz, 2H, ArCH2Ar), 4.32 (d, J = 13 Hz, 2H, ArCH2Ar), 3.86 – 3.82 (m, 2H, 

OCH2CH2CH3), 3.61 (t, J = 7 Hz, 4H, OCH2CH2CH3), 2.92 (d, J = 13 Hz, 4H, 

ArCH2Ar), 1.95 – 1.81 (m, 6H, OCH2CH2CH3), 1.02 (t, J = 7 Hz, 6H, OCH2CH2CH3), 

0.90 (t, J = 7.5 Hz, 3H, OCH2CH2CH3), 0.85 (s, 9H, SiC(CH3)3), 0.03 (s, 6H, SiCH3); 
13C-NMR  (100 MHz, CDCl3) δ 150.63, 149.37, 147.76, 141.10, 140.46, 140.40, 

138.19, 137.07, 134.48, 133.97, 115.95, 115.67, 115.58, 115.44, 104.19, 89.26, 77.12, 

76.84, 59.85, 31.86, 31.10, 26.05, 23.51, 23.13, 16.50, 10.84, 10.23, -4.61; HRMS 

(NSI) m/z: [M+H]+ Calcd for C46H63N4O4Si 763.4613; Found 763.4613. 

 

5,11,17,23-Tetraamino-25,26,27-tripropoxy-28-propargyloxy-calix[4]arene 

(80) 

To a stirred solution of 100 (1.05 g, 1.38 mmol) in THF (10 mL) was added 1 M 

TBAF in THF (6.9 mL, 6.9 mmol) and the mixture stirred for 18 hours. The reaction 

was quenched with saturated ammonium chloride, extracted with DCM (3 x 100 mL) 

and the combined organic extracts washed with water (200 mL) then brine (200 mL). 

After drying over MgSO4 the solvent was removed under reduced pressure and the 

residue triturated with hexane. After filtration and air drying 80 was obtained as light 

brown powder (0.7 g, 79%). Mp >180 °C (decomp.); IR  ν 3310, 2966, 2934, 2878, 

1737, 1608, 1469, 1387, 1310, 1285, 1215, 1158, 1129 cm-1; 1H-NMR  (300 MHz, 

CDCl3): δ 6.41 (s, 4 H, ArH), 5.78 (s, 2 H, ArH), 5.77 (s, 2 H, ArH),  4.77 (d, J = 2 

Hz, 2 H, OCH2CCH), 4.39 (d, J = 14 Hz, 2 H, ArCH2Ar), 4.32 (d, J = 13 Hz, 2 H, 

ArCH2Ar), 3.86 (t, J = 8 Hz, 2 H, OCH2CH2CH3), 3.61 (t, J = 7 Hz, 4 H, 

OCH2CH2CH3), 2.95 (d, J = 14 Hz, 2 H, ArCH2Ar), 2.92 (d, J = 13 Hz, 2 H, 

ArCH2Ar), 2.31 (t, J = 2.4 Hz, 1 H, OCH2CCH), 1.88 (sextet, J = 8 Hz, 2 H, 

OCH2CH2CH3), 1.84 (sextet, J = 7 Hz, 4 H, OCH2CH2CH3),  1.04 (t, J = 7 Hz, 6 H, 

OCH2CH2CH3), 0.97 (t, J = 8 Hz, 3 H, OCH2CH2CH3); 
13C-NMR (100 MHz, 

CDCl3): δ 150.6, 149.6, 147.9, 141.4, 140.4, 139.2, 138.1, 137.1, 134.3, 134.1, 116.2, 
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116.0, 115.8, 81.4, 74.2, 59.5, 31.6, 31.0, 23.5, 23.1, 10.9, 10.1; HRMS (NSI) m/z: 

[M+H] + Calcd for C40H49N4O4 649.3748; Found 649.3745. 

 

5,11,17,23-Tetrakis[(N,N′-di-Boc)guanidine]-25,26,27-tripropoxy-28-

propargyloxy-calix[4]arene (101) 

A mixture of 80 (0.30 g, 0.46 mmol), bis-Boc-methylthiopseudourea (0.64 g, 2.21 

mmol) and HgCl2 (0.6 g, 2.21 mmol) were stirred under argon in dry DMF (10 mL). 

Triethylamine (0.77 mL, 5.52 mmol) was added and the mixture stirred for 48 hours. 

The solvent was removed under reduced pressure and the product dissolved in DCM 

(10 mL). The HgSMe was removed by filtration, washed with DCM and the filtrate 

washed with water (100 mL) and brine (100 mL). After drying over MgSO4, the 

solvent was removed under reduced pressure and the solid recrystallized from 

minimum hexane, the excess reagent filtered off, then the filtrate purified by column 

chromatography over silica gel (eluent: 8:1:1 hexane/diethyl ether/triethylamine) to 

give 101 as white crystals (0.10 g, 13%).  IR  ν 3263, 2972, 2878, 1716, 1621, 1455, 

1409, 1393, 1366, 1249, 1214, 1142, 1102, 1057, 1003; 1H-NMR  (400 MHz, CDCl3) 

δ 11.62 (s, 1H, NHGuanidine), 11.60 (s, 1H, NHGuanidine), 11.46 (s, 2H, NHGuanidine), 10.22 

(s, 1H, ArNH), 10.14 (s, 1H, ArNH), 9.41 (s, 2H, ArNH), 7.20 (s, 2H, ArH), 7.19 (s, 

2H, ArH), 6.63 (d, J = 2.4 Hz, 2H, ArH), 6.56 (d, J = 2.4 Hz, 2H, ArH), 4.94 (d, J = 2 

Hz, 2H, OCH2CCH), 4.44 (d, J = 13 Hz, 2H, ArCH2Ar), 4.36 (d, J = 13 Hz, 2H, 

ArCH2Ar), 3.96 – 3.90 (m, 2H, OCH2CH2CH3), 3.60 (t, J = 7 Hz, 4H, OCH2CH2CH3), 

3.12 (d, J = 13 Hz, 2H, ArCH2Ar), 3.11 (d, J = 13 Hz, 2H, ArCH2Ar), 2.27 (t, J = 2 

Hz, 1H, OCH2CCH), 2.00 – 1.79 (m, 6H, OCH2CH2CH3), 1.46 (s, 18H, C(CH3)3), 

1.44 (s, 9H, C(CH3)3), 1.43 (s, 9H, C(CH3)3), 1.39 (s, 18H, C(CH3)3), 1.36 (s, 18H, 

C(CH3)3), 0.97 (t, J = 7 Hz, 6H, OCH2CH2CH3), 0.87 (t, J = 7 Hz, 3H, 

OCH2CH2CH3); 
13C-NMR  (100 MHz, CDCl3) δ 163.64, 163.47, 154.43, 153.66, 

153.39, 153.33, 153.19, 152.87, 151.88, 137.02, 135.89, 133.22, 133.12, 131.91, 

130.93, 130.67, 123.35, 122.90, 122.30, 83.28, 83.22, 82.77, 81.07, 79.33, 79.26, 

78.93, 77.44, 76.87, 74.83, 59.38, 31.95, 31.21, 28.22, 28.15, 28.06, 23.37, 23.04, 

10.63, 9.96; MALDI-TOF  m/z: [M+NH4]
+ 1634.9. 

 

5,11,17,23-Tetraguanidine-25,26,27-tripropoxy-28-propargyloxy-calix[4]arene 

(104) 

Route 1: 

A mixture of 100 (0.50 g, 0.66 mmol), bis-Boc-methylthiopseudourea (0.92 g, 3.17 
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mmol) and HgCl2 (0.86 g, 3.17 mmol) were stirred under argon in dry DMF (9 mL). 

Triethylamine (1.10 mL, 7.92 mmol) was added and the mixture stirred for 24 hours. 

The solvent was removed under reduced pressure and the product dissolved in DCM 

(10 mL). The HgSMe was removed by filtration, washed with DCM and the filtrate 

washed with water (2 x 100 mL) and brine (100 mL). After drying over MgSO4, the 

solvent was removed under reduced pressure to give a light orange solid, the identity 

of which was verified by 1H-NMR as 102 with residual reagent. 1H-NMR  (400 MHz, 

CDCl3) δ 11.68 (s, 1H, NHGuanidine), 11.64 (s, 1H, NHGuanidine), 11.53 (s, 2H, 

NHGuanidine), 10.20 (s, 1H, ArNH), 10.17 (s, 1H, ArNH), 9.52 (s, 2H, ArNH), 7.28 (s, 

2H, ArH), 7.21 (s, 2H, ArH), 6.74 (d, J = 2 Hz, 2H, ArH), 6.65 (d, J = 2 Hz, 2H, 

ArH), 4.99 (s, 2H, OCH2C), 4.51 (d, J = 13 Hz, 2H, ArCH2Ar), 4.42 (d, J = 13 Hz, 

2H, ArCH2Ar), 3.99 – 3.95 (m, 2H, OCH2CH2CH3), 3.67 (t, J = 7 Hz, 4H, 

OCH2CH2CH3), 3.17 (d, J = 13 Hz, 2H, ArCH2Ar), 3.16 (d, J = 13 Hz, 2H, 

ArCH2Ar), 2.01 – 1.88 (m, 6H, OCH2CH2CH3), 1.52 (s, 9H, C(CH3)3), 1.51 (s, 9H, 

C(CH3)3), 1.49 (s, 9H, C(CH3)3), 1.49 (s, 9H, C(CH3)3), 1.45 (s, 18H, C(CH3)3), 1.43 

(s, 18H, C(CH3)3), 1.02 (t, J = 7 Hz, 6H, OCH2CH2CH3), 0.93 (t, J = 7 Hz, 3H, 

OCH2CH2CH3), 0.87 (s, 9H, Si(CH3)3), 0.05 (s, 6H, SiCH3). Half of this material was 

dissolved in THF (3 mL) and stirred with TBAF (3.3 mL, 1 M in THF, 3.3 mmol) for 

18 hours. The reaction was quenched with saturated aqueous ammonium chloride and 

the product extracted with diethyl ether (3 x 50 mL). After washing with water (100 

mL) then brine (100 mL) and drying with MgSO4, the solvent was removed under 

reduced pressure. 1H-NMR verified the reappearance of the terminal alkyne.  The 

residue was redissolved in DCM (10 mL) and HCl(g) bubbled through the solution for 

30 minutes. Methanol was added to dissolve the resulting precipitate and the solution 

stirred for a further 1.5 hours. The solvent was removed under reduced pressure and 

the product purified by column chromatography over C18 (eluent: methanol in water, 

5-65%, 65%, then 65-100%) to give 104 as off white solid (0.07 g, 21% over three 

steps). 

Route 2: 

A mixture of 100 (0.70 g, 0.92 mmol), bis-Boc-methylthiopseudourea (1.20 g, 4.14 

mmol) and HgCl2 (1.12 g, 4.14 mmol) were stirred under argon in dry DMF (25 mL). 

Triethylamine (1.53 mL, 11.04 mmol) was added and the mixture stirred for 24 hours. 

The solvent was removed under reduced pressure and the product dissolved in DCM 

(10 mL). The HgSMe was removed by filtration, washed with DCM and the filtrate 

washed with water (2 x 100 mL) and brine (100 mL). After drying over MgSO4, the 
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solvent was removed under reduced pressure to give a light orange solid, the identity 

of which was verified by 1H-NMR as 102 with residual reagent. The solid was 

dissolved in DCM (30 mL) and HCl(g) bubbled through the solution for 30 minutes. 

Methanol was added to dissolve the resulting precipitate and the solution stirred for 1 

hour. Removal of solvent under reduced pressure gave a light grey-green solid. 

Complete removal of Boc groups was verified by 1H-NMR. The solid was suspended 

in THF (9 mL) and stirred with TBAF (9.2 mL, 1 M in THF, 9.2 mmol) for 18 hours. 

The reaction was quenched with saturated aqueous ammonium chloride and the 

precipitate filtered and washed with THF. The solvent was removed from the filtrate 

under reduced pressure and the residue purified by column chromatography over C18, 

0-100% methanol in water to give 104 as off-white solid (0.21 g, 24% over three 

steps). Mp  280 °C (decomp.); IR  ν 3310.5, 3144.5, 2961, 2934.5, 2874.5, 1667, 1651, 

1644.5, 1633.5, 1621.5, 1615, 1581.5, 1463.5, 1386, 1286, 1218.5, 1175.5, 1123.5, 

1104.5, 1065, 1042, 1001 cm-1; 1H-NMR  (400 MHz, CD3OD) δ 7.07 (s, 2H, ArH), 

7.06 (s, 2H, ArH), 6.36 (s, 4H, ArH), 4.99 (d, J = 2 Hz, 2H, OCH2CCH), 4.62 (d, J = 

13 Hz, 2H, ArCH2Ar), 4.54 (d, J = 13 Hz, 2H, ArCH2Ar), 4.11 – 4.07 (m, 2H, 

OCH2CH2CH3), 3.82 (t, J = 7 Hz, 4H, OCH2CH2CH3), 2.95 (t, J = 2 Hz, 1H, 

OCH2CCH), 2.12 – 1.95 (m, 6H, OCH2CH2CH3), 1.13 (t, J = 7 Hz, 6H, 

OCH2CH2CH3), 1.02 (t, J = 7 Hz, 3H, OCH2CH2CH3); 
13C-NMR  (100 MHz, 

CD3OD) δ 157.97, 157.86, 157.78, 157.49, 156.19, 155.42, 139.76, 138.63, 136.49, 

136.24, 131.09, 130.18, 129.84, 127.32, 126.87, 125.61, 125.56, 80.87, 78.60, 78.42, 

77.35, 61.23, 32.09, 31.47, 24.49, 24.44, 11.14, 10.38; HRMS (NSI) m/s: [M+H]+ 

Calcd for C44H57N12O4 817.4620; Found 817.4603. 

 

Coumarin appended tetraguanidine calix[4]arene (106) 

A mixture of 104 (0.050 g, 0.052 mmol), 82 (0.013 g, 0.062 mmol), CuSO4.5H2O 

(2 mg, 8 µmol) and sodium ascorbate (7 mg, 0.036 mmol) were stirred in 1:1 

ethanol/water (2 mL) at 90 °C for 4 hours. The mixture was allowed to cool to room 

temperature before filtering off the brown insoluble material and washing it with 

ethanol. Solvent was removed under reduced pressure from the filtrate. 1H-NMR 

confirmed reaction had taken place. Attempted purification by column 

chromatography over C18 (eluent: 0-100% methanol in water) and by ion exchange 

chromatography over Amberlite IRC-50 resin failed to give product.  
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5,11,17,23-Tetrakis[(N,N′-di-CBz)guanidine]-25,26,27-tripropoxy-28-

propargyloxy-calix[4]arene (107) 

A mixture of 80 (0.60 g, 0.92 mmol), bis-CBz-methylthiopseudourea (1.58 g, 4.42 

mmol) and HgCl2 (1.20 g, 4.42 mmol) were stirred under argon in dry DMF (13 mL). 

Triethylamine (1.53 mL, 4.42 mmol) was added and the mixture stirred for 24 hours. 

The solvent was removed under reduced pressure and the product dissolved in DCM 

(10 mL). The HgSMe was removed by filtration, washed with DCM and the filtrate 

washed with water (2 x100 mL) and brine (100 mL). After drying over MgSO4, the 

solvent was removed under reduced pressure and the residue purified by column 

chromatography over silica gel (eluent: 4:1 to 3:1 hexane/ethyl acetate) to give 107 as 

white crystals (0.5 g, 28%). Mp  105-107 °C; IR  ν 3280.5, 3164, 3092, 3064.5, 3034, 

2960, 2936, 2875, 1724.5, 1622, 1575, 1497.5, 1454, 1422.5, 1380, 1367.5, 1335.5, 

1309.5, 1250.5, 1234.5, 1204.5, 1167, 1103, 1081.5, 1053.5, 1028.5, 1003 cm-1; 1H-

NMR  (400 MHz, CDCl3) δ 11.79 (s, 2H, NHGuanidine), 11.69 (s, 2H, NHGuanidine), 10.07 

(s, 1H, ArNH), 10.03 (s, 1H, ArNH), 9.48 (s, 2H, ArNH), 7.35 – 7.14 (m, 44H, ArH 

and OCH2ArH), 6.55 (s, 2H, ArH), 6.52 (s, 2H, ArH), 5.14 – 5.12 (m, 8H, OCH2Ar), 

5.03 (s, 4H, OCH2Ar), 4.93 (s, 4H, OCH2Ar), 4.83 (d, J = 2 Hz, 2H, OCH2CCH), 4.47 

(d, J = 13.5 Hz, 2H, ArCH2Ar), 4.40 (d, J = 13 Hz, 2H, ArCH2Ar), 3.98 – 3.94 (m, 

2H, OCH2CH2CH3), 3.66 (t, J = 7 Hz, 4H, OCH2CH2CH3), 3.10 (d, J = 13.5 Hz, 2H, 

ArCH2Ar), 3.08 (d, J = 13 Hz, 2H, ArCH2Ar), 2.31 (app. s, 1H, OCH2CCH), 1.95 – 

1.82 (m, 6H, OCH2CH2CH3), 1.03 (t, J = 7 Hz, 6H, OCH2CH2CH3), 0.89 (t, J = 7 Hz, 

3H, OCH2CH2CH3); 
13C-NMR  (100 MHz, CDCl3) δ 164.07, 163.92, 155.11, 153.85, 

153.51, 153.45, 153.39, 153.27, 153.10, 152.58, 137.35, 137.13, 136.90, 136.23, 

134.64, 134.53, 133.79, 133.59, 131.35, 130.48, 130.37, 128.88, 128.76, 128.63, 

128.48, 128.40, 128.31, 127.97, 127.95, 127.85, 127.64, 127.43, 123.25, 122.79, 

122.47, 122.43, 80.73, 77.36, 77.24, 76.99, 74.88, 68.34, 68.32, 68.17, 67.45, 67.37, 

67.08, 59.82, 31.71, 31.64, 31.22, 23.47, 23.14, 10.79, 10.05; ESI-MS m/z: [M+H]+ 

1889.8.  

 

Coumarin appended tetrakis[(N,N′-di-CBz)guanidine-calix[4]arene (108) 

A mixture of 107 (1.02 g, 0.54 mmol), 82 (0.13 g, 0.65 mmol), CuSO4.5H2O 

(0.027 g, 0.11 mmol) and sodium ascorbate (0.075 g, 0.38 mmol) were stirred in DMF 

(20 mL) for 24 hours at room temperature. Solvent was removed under reduced 

pressure and the residue triturated with water before filtering. The solid was washed 

with H2O (2 x 10 mL) and methanol (10 mL) then purified by column 
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chromatography over silica gel (eluent: 19:1 DCM/ethyl acetate) to give 108 as a light 

yellow solid (0.83 g, 74%). Mp  133-135 °C; IR  ν 3275.5, 3164.5, 3087.5, 3065, 

3033.5, 2961, 2934.5, 2874, 1727.5, 1621.5, 1574.5, 1497, 1455, 1417.5, 1380, 1367, 

1335, 1311, 1292, 1234, 1205, 1167.5, 1155.5, 1103.5, 1081.5, 1053.5, 1028.5, 

1001.5 cm-1; 1H-NMR  (400 MHz, CDCl3) δ 11.81 (br s, 4H, NHGuanidine), 9.80 (s, 2H, 

ArNH), 9.74 (s, 2H, ArNH), 8.54 (s, 1H, ArHTriazole), 8.35 (s, 1H, ArHCoumarin), 7.32 – 

7.17 (m, 41H, ArHCoumarin and OCH2ArH), 6.84 (s, 2H, ArH), 6.81 (s, 2H, ArH), 6.75 

(s, 2H, ArH), 6.72 (s, 2H, ArH), 6.63 (dd, J = 8, 2 Hz, 1H, ArHCoumarin), 6.58 (d, J = 2 

Hz, 1H, ArHCoumarin), 5.09 – 5.05 (m, 18H, OCH2Ar and OCH2C), 4.33 (d, J = 13 Hz, 

2H, ArCH2Ar), 4.25 (d, J = 13 Hz, 2H, ArCH2Ar), 3.79 (t, J = 7 Hz, 2H, 

OCH2CH2CH3), 3.64 – 3.53 (m, 4H, OCH2CH2CH3), 3.05 (d, J = 13 Hz, 2H, 

ArCH2Ar), 3.02 (d, J = 13 Hz, 2H, ArCH2Ar), 1.86 (sextet, J = 7 Hz, 2H, 

OCH2CH2CH3), 1.75 – 1.57 (m, 4H, OCH2CH2CH3), 0.95 (t, J = 7 Hz, 3H, 

OCH2CH2CH3), 0.74 (t, J = 7 Hz, 6H, OCH2CH2CH3); 
13C-NMR  (100 MHz, CDCl3) 

δ 163.96, 163.84, 162.69, 156.34, 154.61, 154.37, 153.89, 153.68, 153.57, 153.04, 

144.29, 136.70, 136.57, 135.44, 135.13, 135.04, 134.86, 134.49, 134.35, 130.67, 

130.07, 129.84, 129.67, 128.83, 128.73, 128.58, 128.32, 127.96, 127.89, 127.83, 

124.23, 123.61, 123.47, 123.20, 119.00, 115.17, 110.16, 103.22, 77.36, 76.89, 68.37, 

67.37, 60.50, 31.43, 31.22, 23.25, 23.03, 21.11, 14.26, 10.38, 10.12; ESI-MS m/z: 

[M+H] + 2092.8.  

 

Coumarin appended tetraguanidine-calix[4]arene (·4HCl) (109) 

A mixture of 108 (25 mg, 12 µmol) and NaI (57 mg, 380 µmol) was stirred under 

argon in dry DMF (0.5 mL). To this was added dry chlorotrimethylsilane (48 µL, 380 

µmol) and the mixture heated to 50 °C for 24 hours. Methanol (1 mL) and dilute HCl 

(5 mL) were added and the mixture stirred for 15 minutes. Solvent was removed under 

reduced pressure and the major impurities removed by column chromatography over 

C18 (eluent: methanol in 60 mM HCl(aq), 30-70%) to give crude product (40 mg, 

93%). This was purified by further column chromatography over C18 (eluent: 

methanol in 60 mM HCl(aq), 0-50%) to give pure 109 as off-white powder (9.3 mg, 

22%). Mp  280 °C (decomp.); IR  ν 3312, 3142, 2965.5, 2934, 2874, 1733, 1668.5, 

1606.5, 1582.5, 1516.5, 1464, 1429, 1385.5, 1312, 1285, 1219, 1170.5, 1154.5, 1116, 

1043 cm-1; 1H-NMR  (400 MHz, CD3OD) δ 8.59-8.58 (2s, 2H, ArHCoumarin and 

ArHTriazole), 7.68 (d, J = 8.5 Hz, 1H, ArHCoumarin), 6.92 (dd, J = 8.5, 2 Hz, 1H, 

ArHCoumarin), 6.84 (d, J = 2 Hz, 1H, ArHCoumarin), 6.79 (s, 2H, ArH), 6.77 (s, 2H, ArH), 



 
 

Chapter 2: Calixarene-Based Cell-Penetration Agents 

159 
 

 

6.60 (s, 2H, ArH), 6.57 (s, 2H, ArH), 5.32 (s, 2H, OCH2C), 4.52 (d, J = 13 Hz, 2H, 

ArCH2Ar), 4.31 (d, J = 13 Hz, 2H, ArCH2Ar), 4.02 (t, J = 7 Hz, 2H, OCH2CH2CH3), 

3.86 (t, J = 7 Hz, 4H, OCH2CH2CH3), 3.32 (d, J = 13 Hz, 2H, ArCH2Ar), 3.18 (d, J = 

13 Hz, 2H, ArCH2Ar), 2.09 (sextet, J = 7 Hz, 2H, OCH2CH2CH3), 1.91 (sextet, J = 7 

Hz, 4H, OCH2CH2CH3), 1.10 (t, J = 7 Hz, 3H, OCH2CH2CH3), 0.97 (t, J = 7 Hz, 6H, 

OCH2CH2CH3). 
13C-NMR  (100 MHz, CD3OD) δ 164.56, 158.19, 158.07, 157.91, 

157.79, 157.32, 156.97, 156.58, 155.53, 144.73, 138.56, 137.92, 137.32, 137.23, 

132.10, 130.55, 129.89, 129.76, 127.39, 127.07, 126.96, 126.53, 126.38, 120.59, 

115.73, 111.92, 103.43, 78.59, 78.46, 67.17, 32.01, 31.73, 24.63, 24.37, 10.75, 10.68; 

MALDI-TOF m/z: [M+H]+ 1020.78. 

 

5,11,17,23-Tetra-tert-butyl-25,26,27-tripropoxy-28-bromopropoxy-

calix[4]arene (110)125 

To a stirred solution of 77 (2.00 g, 2.58 mmol) in DMF (60 mL) was added NaH 

(0.25 g, 10.32 mmol) and the mixture stirred for 30 minutes before addition of 1,3-

dibromopropane (5.26 mL, 51.60 mmol). The mixture was stirred for 24 hours then 

the solvent was removed under reduced pressure. Water (200 mL) was added and the 

solid filtered, washed with water (3 x 50 mL) and air dried. The product was purified 

by column chromatography over silica gel (eluent: 8:3 hexane/DCM) to give 110 as 

white powder (0.91 g, 39%). Mp  209-211 °C; IR  ν 3039, 2959, 2903.5, 2873, 1601.5, 

1578, 1480, 1463, 1434, 1415, 1388, 1360, 1299, 1279, 1255.5, 1248, 1237, 1198.5, 

1122.5, 1107.5, 1068.5, 1037.5, 1009 cm-1; 1H-NMR  (400 MHz, CDCl3) δ 6.90 (s, 

2H, ArH), 6.90 (s, 2H, ArH), 6.67 (d, J = 2.5 Hz, 2H, ArH), 6.64 (d, J = 2.5 Hz, 2H, 

ArH), 4.42 (d, J = 12.5 Hz, 2H, ArCH2Ar), 4.35 (d, J = 12.5 Hz, 2H, ArCH2Ar), 4.01 

(t, J = 7 Hz, 2H, OCH2CH2CH2Br), 3.91 – 3.87 (m, 2H, OCH2CH2CH3), 3.78 – 3.74 

(m, 4H, OCH2CH2CH3), 3.69 (t, J = 7 Hz, 2H, OCH2CH2CH2Br), 3.14 (d, J = 12.5 

Hz, 2H, ArCH2Ar), 3.12 (d, J = 12.5 Hz, 2H, ArCH2Ar), 2.65 (quintet, J = 7 Hz, 2H, 

OCH2CH2CH2Br), 2.02 – 1.93 (m, 6H, OCH2CH2CH3), 1.18 (s, 9H, C(CH3)3), 1.17 (s, 

9H, C(CH3)3), 1.03 – 0.97 (m, 27H, OCH2CH2CH3 and C(CH3)3). 

 

5,11,17,23-Tetra-nitro-25,26,27-tripropoxy-28-bromopropoxy-calix[4]arene 

(111) 

To a stirred solution of 110 (0.58 g, 0.68 mmol) in DCM (40 mL) was added 

glacial acetic acid (4 mL) and 100% nitric acid (4 mL). After 6 hours water (100 mL) 

was added to quench. The organic layer was separated and washed with water (2 x 
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200 mL) and brine (200 mL). After drying over MgSO4, the solvent was removed 

under reduced pressure and the residue triturated with methanol. The product was 

filtered and air dried to give 111 as light orange powder (0.50 g, 87%). Mp  270 °C; 

IR  ν 3075, 2968.5, 2932, 2877, 1607, 1585, 1513.5, 1463, 1450.5, 1435, 1385.5, 

1341, 1303, 1287, 1262.5, 1221.5, 1211, 1160.5, 1094, 1060, 1034.5 cm-1; 1H-NMR  

(400 MHz, CDCl3) δ 7.58 (s, 2H, ArH), 7.58 (s, 2H, ArH), 7.57 (s, 4H, ArH), 4.53 (d, 

J = 14 Hz, 2H, ArCH2Ar), 4.50 (d, J = 14 Hz, 2H, ArCH2Ar), 4.17 (t, J = 7 Hz, 2H, 

OCH2CH2CH2Br), 4.01 – 3.93 (m, 6H, OCH2CH2CH3), 3.57 (t, J = 6.5 Hz, 2H, 

OCH2CH2CH2Br), 3.44 (d, J = 14 Hz, 2H, ArCH2Ar), 3.41 (d, J = 14 Hz, 2H, 

ArCH2Ar), 2.43 (quintet, J = 6.5 Hz, 2H, OCH2CH2CH2Br), 1.96 – 1.85 (m, 6H, 

OCH2CH2CH3), 1.03 (t, J = 7 Hz, 6H, OCH2CH2CH3), 1.02 (t, J = 7 Hz, 3H, 

OCH2CH2CH3); 
13C-NMR  (100 MHz, CDCl3) δ 161.74, 161.71, 161.28, 143.17, 

142.95, 135.60, 135.55, 135.39, 124.20, 124.17, 124.09, 124.06, 77.88, 73.95, 32.52, 

31.20, 29.11, 23.40, 23.29, 10.29, 10.23; HRMS (APCI) m/z: [M]+ Calcd for 

C40H43BrN4O12 850.2055; Found 850.2058; [M+H]+ Calcd for C40H44BrN4O12 

851.2134; Found 851.2129. 

 

5,11,17,23-Tetra-Boc-amino-25,26,27-tripropoxy-28-bromopropoxy-

calix[4]arene (113) 

A mixture of 111 (0.45 g, 0.50 mmol) and SnCl2·2H2O (2.93 g, 13.00 mmol) was 

heated to reflux in ethanol (30 mL) for 48 hours. The solvent was removed under 

reduced pressure and 10% NaOH (100 mL) added. The product was extracted with 

DCM (3 x 100 mL) then washed with water (2 x 200 mL) and brine (200 mL). After 

drying over MgSO4, the solvent was removed under reduced pressure to give the 

intermediate tetra-amine (112) as a brown glass (crude yield: 0.33 g, 90%). 1H-NMR  

(400 MHz, CDCl3) δ 6.15 (s, 2H, ArH), 6.14 (s, 2H, ArH), 5.98 (app. s, 2H, ArH), 

5.97 ( app. s, 2H, ArH), 4.30 (d, J = 13 Hz, 2H, ArCH2Ar), 4.25 (d, J = 13 Hz, 2H, 

ArCH2Ar), 3.92 (t, J = 6.5 Hz, 2H, OCH2CH2CH2Br), 3.77 – 3.74 (m, 2H, 

OCH2CH2CH3), 3.69 (t, J = 7 Hz, 4H, OCH2CH2CH3), 3.60 (t, J = 6.5 Hz, 2H, 

OCH2CH2CH2Br), 2.94 (d, J = 13 Hz, 2H, ArCH2Ar), 2.92 (d, J = 13 Hz, 2H, 

ArCH2Ar), 2.42 (quintet, J = 6.5 Hz, 2H, OCH2CH2CH2Br), 1.90 – 1.79 (m, 6H, 

OCH2CH2CH3), 0.97 (t, J = 7 Hz, 6H, OCH2CH2CH3), 0.93 (t, J = 7 Hz, 3H, 

OCH2CH2CH3). A solution of crude 112 (0.28 g, 0.38 mmol), Boc-anhydride (0.66 g, 

3.04 mmol) and DIPEA (0.25 mL, 3.04 mmol) in DCM (10 mL) was stirred for 48 

hours. After diluting with DCM (20 mL), the product was washed with water (2 x50 
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mL) then brine (50 mL) before drying over MgSO4. The solvent was removed under 

reduced pressure and the product purified by column chromatography over silica gel 

(eluent: 19:1 DCM/ethyl acetate) to give 113 as off-white glass (0.26 g, 60%). Mp  

231-233 °C; IR  ν 3425.5, 3340, 3318.5, 3253, 3164, 2972.5, 2930.5, 2874, 1698, 

1595.5, 1532, 1511, 1470.5, 1416.5, 1389.5, 1365, 1294.5, 1241, 1214.5, 1151, 

1060.5, 1036.5, 1003.5 cm-1; 1H-NMR  (400 MHz, CDCl3) δ 6.71 (s, 4H, ArH), 6.51 

(s, 4H, ArH), 6.18 (s, 2H, NH), 6.06 (s, 2H, NH), 4.36 (d, J = 13 Hz, 2H, ArCH2Ar), 

4.32 (d, J = 13 Hz, 2H, ArCH2Ar), 3.97 (t, J = 7 Hz, 2H, OCH2CH2CH2Br), 3.82 – 

3.78 (m, 2H, OCH2CH2CH3), 3.73 (t, J = 7 Hz, 4H, OCH2CH2CH3), 3.57 (t, J = 7 Hz, 

2H, OCH2CH2CH2Br), 3.11 (d, J = 13 Hz, 2H, ArCH2Ar), 3.09 (d, J = 13 Hz, 2H, 

ArCH2Ar), 2.42 (quintet, J = 7 Hz, 2H, OCH2CH2CH2Br), 1.96 – 1.76 (m, 6H, 

OCH2CH2CH3), 1.50 (s, 18H, C(CH3)3), 1.47 (s, 18H, C(CH3)3), 0.97 (t, J = 7 Hz, 6H, 

OCH2CH2CH3), 0.93 (t, J = 7 Hz, 3H, OCH2CH2CH3); 
13C-NMR  (100 MHz, CDCl3) 

δ 153.50, 153.41, 153.37, 152.88, 152.52, 152.48, 135.59, 135.49, 134.90, 134.67, 

132.54, 132.18, 132.09, 120.12, 119.99, 119.89, 119.77, 80.10, 80.04, 79.98, 76.89, 

76.72, 72.83, 32.97, 31.12, 30.36, 28.48, 23.23, 22.99, 10.45, 10.31; MALDI-TOF  

m/z: [M+Na] 1154.49. 

 

(7-Hydroxy-2-oxo-2H-chromen-3-yl)carbamic acid t-butyl ester (114)79  

To a stirred solution of 81 (3.00 g, 11.49 mmol) and DMAP (0.28 g, 2.30 mmol) in 

THF (60 mL) was added Boc anhydride (10.53 g. 48.26 mmol). After stirring for 30 

minutes, hydrazine hydrate (7.02 mL, 114.90 mmol) and methanol (50 mL) were 

added and stirring continued for 20 minutes. Solvent was removed under reduced 

pressure and the residue dissolved in DCM (100 mL). The product was washed with 

dilute HCl (100 mL), 1 M CuSO4 (100 mL), saturated NaHCO3 (100 mL) then brine 

(100 mL). After drying over MgSO4, the solvent was removed under reduced pressure 

and the product purified by column chromatography over silica gel (eluent: 3:2 

hexane/ethyl acetate) to give 114 as light yellow solid (0.36 g, 62%). Mp  163-165 °C; 

IR  3314.5, 3080, 2999, 2978.5, 2933, 1719.5, 1701.5, 1681, 1651, 1633, 1607.5, 

1534, 1510.5, 1455, 1392.5, 1366, 1341, 1288, 1268, 1242, 1224, 1198.5, 1159, 1124, 

1045, 1020.5 cm-1; 1H NMR  (400 MHz, CDCl3) δ 8.23 (s, 1H, OH), 7.33 (d, J = 8 Hz, 

1H, ArH), 7.28 (s, 1H, NH), 6.83 (d, J = 2 Hz, 1H, ArH), 6.81 (dd, J = 8, 2 Hz, 1H, 

ArH), 5.73 (s, 1H, ArH), 1.53 (s, 9H, C(CH3)3). 
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3-Amino-7-hydroxy-2H-chromen-2-one (115)79  

A solution of 114 (1.29 g, 4.65 mmol) in 15% TFA/chloroform (57 mL) was stirred 

for 6 hours. The solvent was removed under reduced pressure and the product purified 

by column chromatography over silica gel (eluent: 1:1 hexane/ethyl acetate) to give 

115 as light orange-brown solid (0.67 g, 81%). Mp  250-252 °C; IR  ν 3435, 3343.5, 

3210.5, 1678.5, 1651, 1615, 1605.5, 1556.5, 1508, 1455.5, 1416.5, 1360, 1330.5, 

1280.5, 1241.5, 1197.5, 1152, 1124.5 cm-1; 1H-NMR  (400 MHz, DMSO) δ 9.80 (s, 

1H, OH), 7.23 (d, J = 8 Hz, 1H, ArH), 6.70 – 6.65 (m, 3H, ArH), 5.22 (s, 2H, NH2). 

 

5,11,17,23-Tetra-Boc-amino-25,26,27-tripropoxy-28-[(7’-hydroxy-2’-oxo-2H-

chromen-3’-ylamino)propoxy-calix[4]arene (116) 

A stirred solution of 113 (0.05 g, 0.044 mmol), 115 (0.016 g, 0.088 mmol) and 

pyridine (3.9 µL, 0.044 mmol) in ethyl acetate (1 mL) was heated at 70 °C for 18 

hours. Removal of solvent under reduced pressure gave a mixture of the starting 

materials with no product.  

 

3-Amino-7-(tert-butyl-dimethyl)silylether-2H-chromen-2-one (117)   

To a stirred solution of 115 (0.5 g, 2.82 mmol) and TBDMSCl (0.64 g, 4.23 mmol) 

in THF (14 mL) was added triethylamine (0.59 mL, 4.23 mmol) and the mixture 

stirred for 24 hours. Saturated ammonium chloride (25 mL) was added and the 

product extracted with ethyl acetate (3 x 50 mL) then washed with water (150 mL) 

and brine (150 mL). After drying over MgSO4, the solvent was removed under 

reduced pressure and the product purified by column chromatography over silica gel 

(eluent: 1:1 hexane/ethyl acetate) to give 117 as yellow needles (0.65 g, 79%). Mp  

109-110 °C; IR  ν 3452.5, 3405, 3354, 2954, 2929, 2883.5, 2858.5, 1689, 1634, 

1615.5, 1593.5, 1504.5, 1471, 1432, 1408, 1389, 1361, 1335.5, 1309.5, 1298, 1269.5, 

1258, 1250.5, 1199.5, 1159, 1118.5, 1008.5, 1003 cm-1; 1H-NMR  (400 MHz, 

CD3OD) δ 7.23 (d, J = 8 Hz, 1H, ArH), 6.78 – 6.73 (m, 3H, ArH), 1.00 (s, 9H, 

SiC(CH3)3), 0.22 (s, 6H, SiCH3); 
13C-NMR (100 MHz, CD3OD) δ 161.34, 155.91, 

150.99, 132.23, 126.92, 118.63, 117.21, 112.30, 108.08, 26.08, 19.06, -4.38; HRMS 

(NSI) m/z: [M+H]+ Calcd for C15H22NO3Si 292.1363; Found 292.1364. 

 

5,11,17,23-Tetra-Boc-amino-25,26,27-tripropoxy-28-[(7’-(tert-butyl-

dimethyl)silylether-2’-oxo-2H-chromen-3’-yl)amino]propoxy-calix[4]arene (118) 

Method A: A stirred solution of 113 (0.046 g, 0.041 mmol), 117 (0.012 g, 0.041 
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mmol) and K2CO3 (0.017 g, 0.12 mmol) in acetone (1 mL) was heated at reflux for 18 

hours. After cooling to room temperature, excess K2CO3 was removed by filtration. 

Water (20 mL) was added and the product extracted with ethyl acetate (3 x 20 mL) 

then washed with water (50 mL) and brine (50 mL). After drying over MgSO4, the 

solvent was removed under reduced pressure to give a mixture of starting materials 

and no product. 

Method B: To a stirred solution of 113 (0.030 g, 0.027 mmol) and 117 (0.015 g, 

0.053 mmol) in THF (1 mL) was added 1 M LiHMDS in THF (0.053 mL g, 0.053 

mmol) and the mixture stirred for 18 hours. The reaction was quenched with saturated 

ammonium chloride (20 mL) and the product extracted with ethyl acetate (3 x 20 mL) 

then washed with water (50 mL) and brine (50 mL). After drying over MgSO4, the 

solvent was removed under reduced pressure to give a mixture of starting materials 

and no product. 

 

5,11,17,23-Tetra-tert-butyl-25,26,27-tripropoxy-28-[(ethoxycarbonyl)propoxy-

calix[4]arene (119) 

Method A:  

To a stirred solution of 77 (5.00 g, 6.45 mmol) in DMF (150 mL) was added NaH 

(0.62 g, 25.80 mmol) and the mixture stirred for 1 hour before addition of ethyl 4-

bromopropionate (3.30 mL, 25.80 mmol). The mixture was stirred for 6 hours before 

addition of water (150 mL). The resulting precipitate was filtered and washed with 

methanol. 1H-NMR showed starting material only.  

Method B: 

A stirred solution of 77 (5.00 g, 6.45 mmol) in DMF (150 mL) was cooled to 0 °C 

before adding NaH (0.62 g, 25.80 mmol). After 30 mins ethyl 4-bromopropionate 

(3.30 mL, 25.80 mmol) was added. The mixture was stirred for 6 hours before 

addition of water (150 mL). The resulting precipitate was filtered and washed with 

methanol. 1H-NMR showed starting material only.  

Method C: 

A mixture of 77 (5.00 g, 6.45 mmol) and K2CO3 (3.57 g, 25.80 mmol) was heated 

to reflux in acetone (100 mL). After 30 mins ethyl 4-bromopropionate (3.30 mL, 

25.80 mmol) was added. The mixture was stirred for 72 hours then cooled to room 

temperature. After removal of base by filtration, the product was precipitated with 

water (100 mL), filtered and washed with methanol. 1H-NMR showed starting 

material only.  
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Method D: 

A mixture of 77 (1.00 g, 1.29 mmol), KF/Al2O3 (21 mg, 0.13 mmol) and ethyl 

acrylate (0.28 mL, 2.58 mmol) was stirred in acetonitrile for 3 hours. Acetone (5 mL) 

was added to improve solubility and the mixture stirred for a further 18 hours. The 

catalyst was removed by filtration and the product precipitated with water (20 mL), 

filtered and washed with methanol. 1H-NMR showed starting material only. 

 

5,11,17,23-Tetra-tert-butyl-25,26,27-tripropoxy-28-phthalimidobutoxy-

calix[4]arene (120) 

To a stirred solution of 77 (5.00 g, 6.45 mmol) in DMF (200 mL) was added NaH 

(0.62 g, 25.80 mmol) and the mixture stirred for 30 minutes before addition of 4-

bromobutylphthalimide (4.55 g, 16.13 mmol). The mixture was stirred for 24 hours 

then the solvent was removed under reduced pressure. The residue was dissolved in 

DCM (100 mL) and washed with water (3 x 200 mL) then brine (200 mL). After 

drying over MgSO4, the solvent was removed under reduced pressure and the solid 

triturated with hot methanol, filtered, washed with methanol and air dried to give 120 

as white powder (3.19 g, 51%). Mp  108-110 °C; IR  ν 2958, 2904, 2871.5, 1773.5, 

1714.5, 1480.5, 1467, 1437, 1394.5, 1360, 1299, 1278.5, 1247.5, 1196, 1122.5, 1108, 

1088, 1069, 1043, 1009 cm-1;  1H-NMR  (400 MHz, CDCl3) δ 7.86 (dd, J = 5.5, 3.0 

Hz, 2H, ArHPhthalimide), 7.72 (dd, J = 5.5, 3.0 Hz, 2H, ArHPhthalimide), 6.79 – 6.76 (m, 

8H, ArH), 4.41 (d, J = 12.5 Hz, 2H, ArCH2Ar), 4.38 (d, J = 12.5 Hz, 2H, ArCH2Ar), 

3.88 (t, J = 7.5 Hz, 2H, OCH2CH2CH2CH2N), 3.83 – 3.76 (m, 8H, OCH2CH2CH3 and 

OCH2CH2CH2CH2N), 3.11 (d, J = 12.5 Hz, 4H, ArCH2Ar), 2.12 – 1.96 (m, 8H, 

OCH2CH2CH2CH2N and OCH2CH2CH3), 1.84 – 1.76 (m, 2H, OCH2CH2CH2CH2N), 

1.08 (s, 18H, C(CH3)3), 1.07 (s, 9H, C(CH3)3), 1.06 (s, 9H, C(CH3)3), 1.02 – 0.96 (m, 

9H, OCH2CH2CH3). 
13C-NMR  (100 MHz, CDCl3) δ 168.34, 153.74, 153.69, 153.50, 

144.38, 144.20, 133.90, 133.85, 133.79, 132.26, 124.96, 124.94, 124.90, 123.22, 

77.42, 77.10, 77.02, 76.78, 74.55, 38.07, 33.85, 31.53, 31.13, 27.59, 25.46, 23.42, 

23.36, 10.41, 10.37; HRMS (APCI) m/z: [M+H]+ Calcd for C65H86NO6 976.6450; 

Found 976.6447.  

 

5,11,17,23-Tetranitro-25,26,27-tripropoxy-28-phthalimidobutoxy-

calix[4]arene (121) 

To a stirred solution of 120 (2.00 g, 2.05 mmol) in DCM (300 mL) was added 

glacial acetic acid (11 mL) and 100% nitric acid (11 mL). After 4 hours water (200 
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mL) was added to quench. The organic layer was separated and washed with water (3 

x 300 mL) and brine (300 mL). After drying over MgSO4, the solvent was removed 

under reduced pressure and the residue triturated with methanol. The product was 

filtered and air dried to give 121 as light yellow powder (1.67 g, 87%). Mp  164-166 

°C; IR  ν 3075, 2963, 2934.5, 2876, 1770, 1710.5, 1607.5, 1585, 1518, 1448.5, 1434.5, 

1396, 1340.5, 1302.5, 1286.5, 1262.5, 1209.5, 1170.5, 1159, 1092, 1038 cm-1; 1H-

NMR  (400 MHz, CDCl3) δ 7.84 (dd, J = 5.5, 3.0 Hz, 2H, ArHPhthalimide), 7.74 (dd, J = 

5.5, 3.0 Hz, 2H, ArHPhthalimide), 7.66 – 7.64 (m, 4H, ArH), 7.49 (s, 2H, ArH), 7.46 (s, 

2H, ArH), 4.51 (d, J = 14.0 Hz, 2H, ArCH2Ar), 4.48 (d, J = 14.0 Hz, 2H, ArCH2Ar), 

4.01 (t, J = 7.0 Hz, 2H, OCH2CH2CH2CH2N), 3.98 – 3.90 (m, 6H, OCH2CH2CH3), 

3.75 (t, J = 7.0 Hz, 2H, OCH2CH2CH2CH2N), 3.40 (d, J = 14.0 Hz, 2H, ArCH2Ar), 

3.39 (d, J = 14.0 Hz, 2H, ArCH2Ar), 1.97 – 1.77 (m, 10H, OCH2CH2CH3 and 

OCH2CH2CH2CH2N), 1.03 (t, J = 7.5 Hz, 3H, OCH2CH2CH3), 0.97 (t, J = 7.5 Hz, 6H, 

OCH2CH2CH3); 
13C-NMR  (100 MHz, CDCl3) δ 168.35, 162.00, 161.61, 161.30, 

142.91, 142.84, 142.82, 135.72, 135.67, 135.29, 134.26, 131.96, 124.20, 124.17, 

123.87, 123.85, 123.32, 77.87, 77.80, 75.33, 37.48, 31.19, 31.15, 27.40, 25.14, 23.34, 

23.29, 10.28, 10.07; HRMS (APCI) m/z: [M+H]+ Calcd for C49H50N5O14 932.3349; 

Found 932.3348.  

 

5,11,17,23-Tetraamino-25,26,27-tripropoxy-28-phthalimidobutoxy-

calix[4]arene (122) 

A mixture of 121 (1.50 g, 1.61 mmol) and SnCl2·2H2O (9.44 g, 41.86 mmol) was 

heated to reflux in ethanol (90 mL) for 48 hours. The solvent was removed under 

reduced pressure and 10% NaOH (300 mL) added. The product was extracted with 

DCM (3 x 100 mL) then washed with water (200 mL) and brine (200 mL). After 

drying over MgSO4, the solvent was removed under reduced pressure to give 122 as 

brown glass (1.15 g, 88%). Mp  154-156 °C; IR  ν 3418.5, 3347.5, 3210.5, 2956.5, 

2930.5, 2873, 1769, 1707, 1607.5, 1465.5, 1396, 1370.5, 1333, 1306, 1279, 1260, 

1213.5, 1188.5, 1169, 1149, 1130, 1106, 1088.5, 1067, 1040.5, 1007 cm-1; 1H-NMR  

(400 MHz, CDCl3) δ 7.85 – 7.83 (m, 2H, ArHPhthalimide), 7.72 – 7.69 (m, 2H, 

ArHPhthalimide), 6.07 (s, 4H, ArH), 6.03 – 6.02 (m, 4H, ArH), 4.30 (d, J = 13.0 Hz, 2H, 

ArCH2Ar), 4.27 (d, J = 13.0 Hz, 2H, ArCH2Ar), 3.79 (t, J = 7.0 Hz, 2H, 

OCH2CH2CH2CH2N), 3.75 – 3.70  (m, 8H, OCH2CH2CH3 and OCH2CH2CH2CH2N), 

2.91 (d, J = 13.0 Hz, 4H, ArCH2Ar), 1.95 – 1.73 (m, 10H, OCH2CH2CH3 and 

OCH2CH2CH2CH2N), 0.98 – 0.89 (m, 9H, OCH2CH2CH3); 
13C-NMR  (100 MHz, 
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CDCl3) δ 168.29, 150.07, 150.01, 149.74, 140.21, 140.02, 135.75, 135.69, 135.57, 

135.53, 133.87, 132.15, 123.16, 115.90, 76.68, 74.19, 38.00, 31.14, 27.48, 25.50, 

23.13, 10.43, 10.34; HRMS (NSI) m/z: [M+H]+ Calcd for C49H58N5O6 812.4382; 

Found 812.4380. 

 

5,11,17,23-Tetra-Boc-amino-25,26,27-tripropoxy-28-phthalimidobutoxy-

calix[4]arene (123) 

A solution of 122 (1.00 g, 1.23 mmol), Boc anhydride (2.15 g, 9.84 mmol) and 

DIPEA (0.81 mL, 4.92 mmol) in DCM (34 mL) was stirred for 24 hours. The solvent 

was removed under reduced pressure and the product purified by column 

chromatography over silica gel (eluent: 19:1 DCM/ethyl acetate) to give 123 as light-

yellow glass (0.99 g, 67%). Mp  146-148 °C; IR  ν 3332, 2975, 2931, 2874, 1772, 

1708.5, 1596, 1519, 1468, 1415, 1392, 1365.5, 1291.5, 1241, 1214.5, 1151, 1061.5, 

1042.5, 1002 cm-1; 1H-NMR  (400 MHz, CDCl3) δ 7.84 (dd, J = 5.5, 3.0 Hz, 2H, 

ArHPhthalimide), 7.70 (dd, J = 5.5, 3.0 Hz, 2H, ArHPhthalimide), 6.63 (s, 2H, ArH), 6.62 (s, 

2H, ArH), 6.57 (s, 2H, ArH), 6.56 (s, 2H, ArH), 6.16 (s, 2H, NH), 6.13 (s, 1H, NH), 

6.12 (s, 1H, NH), 4.35 (d, J = 13 Hz, 2H, ArCH2Ar), 4.32 (d, J = 13 Hz, 2H, 

ArCH2Ar), 3.82 (t, J = 7 Hz, 2H, OCH2CH2CH2CH2N), 3.77 – 3.71 (m, 8H, 

OCH2CH2CH3 and OCH2CH2CH2CH2N), 3.07 (d, J = 13 Hz, 4H, ArCH2Ar), 1.95 – 

1.73 (m, 10H, OCH2CH2CH3 and OCH2CH2CH2CH2N), 1.48 (s, 18H, C(CH3)3), 1.48 

(s, 18H, C(CH3)3), 0.95 (t, J = 7.5 Hz, 3H, OCH2CH2CH3), 0.91 (t, J = 7.5 Hz, 6H, 

OCH2CH2CH3); 
13C-NMR  (100 MHz, CDCl3) δ 168.40, 153.52, 153.47, 152.98, 

152.90, 152.63, 135.45, 135.37, 135.24, 135.19, 134.00, 132.25, 132.09, 123.31, 

119.98, 119.94, 80.09, 76.84, 74.40, 38.02, 31.23, 28.56, 27.53, 25.53, 23.24, 23.21, 

10.48, 10.36; MALDI-TOF  m/z: [M+Na]+ 1235.48, [M+K]+ 1251.52. 

 

NBD appended tetra-Boc-amino calix[4]arene (125) 

To a solution of 123 (0.9 g, 0.74 mmol) in ethanol (5 mL) was added hydrazine 

hydrate (0.14 mL, 80%, 2.22 mmol) and the mixture stirred for 24 hours. The 

resulting precipitate was removed by filtration. Solvent was removed from the filtrate 

under reduced pressure and the residue dissolved in minimum methanol followed by 

precipitation of the product with water. After separation of the product by filtration, 

the filtrate was extracted with 10% methanol in ethyl acetate (3 x 10 mL). After 

removal of solvent from the organic extracts under reduced pressure, the solid was 

combined with the previously isolated product and the two dried under reduced 
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pressure to give crude 124 as off-white solid (0.57 g, 72%). To a stirred mixture of 

this intermediate and NaHCO3 (45 mg, 0.53 mmol) in acetonitrile (4 mL), NBDCl 

(0.12 g, 0.58 mmol) in acetonitrile (2 mL) was added dropwise. The mixture was 

stirred at 60 °C for 4 hours. Water (20 mL) was added and the product extracted with 

DCM (3 x 20 mL), then washed with brine (20 mL). After removal of solvent under 

reduced pressure, the product was purified by column chromatography over silica gel 

(eluent: 7:3 hexane/DCM) to give 125 as bright orange solid (0.35 g, 53%). Mp  154-

156 °C; IR  ν 3328, 2975, 2926, 2875, 2854, 1726.5, 1696, 1623.5, 1576.5, 1517.5, 

1472, 1414.5, 1388, 1365.5, 1349.5, 1296.5, 1242, 1214.5, 1151.5, 1063.5, 1035 cm-1; 
1H-NMR  (400 MHz, CDCl3) δ 8.50 (d, J = 8.5 Hz, 1H, ArHNBD), 6.70 (s, 4H, ArH), 

6.53 (s, 2H, ArH), 6.51 (s, 2H, ArH), 6.22 (s, 2H, NH), 6.20 (s, 1H, NH), 6.16 (d, J = 

8.5 Hz, 1H, ArHNBD), 6.11 (s, 2H, NH), 4.34 (d, J = 13 Hz, 2H, ArCH2Ar), 4.32 (d, J 

= 13 Hz, 2H, ArCH2Ar), 3.95 (t, J = 7 Hz, 2H, OCH2CH2CH2CH2N), 3.81 – 3.67 (m, 

6H, OCH2CH2CH3), 3.52 (q, J = 7 Hz, 2H, OCH2CH2CH2CH2N), 3.11 (d, J = 13 Hz, 

2H, ArCH2Ar), 3.09 (d, J = 13 Hz, 2H, ArCH2Ar), 2.06 – 1.99 (m, 2H, 

CH2CH2CH2CH2), 1.91 – 1.79 (m, 8H, CH2CH2CH2CH2 and OCH2CH2CH3), 1.50 (s, 

18H, C(CH3)3), 1.48 (s, 18H, C(CH3)3), 0.96 – 0.91 (m, 9H, OCH2CH2CH3); 
13C-

NMR  (100 MHz, CDCl3) δ 153.55, 153.50, 152.78, 152.57, 152.46, 144.21, 143.97, 

136.61, 135.25, 135.21, 134.97, 134.67, 132.34, 132.12, 132.10, 123.39, 120.10, 

119.94, 119.86, 98.68, 80.09, 80.01, 76.69, 73.86, 44.07, 31.15, 31.05, 28.41, 27.37, 

25.23, 23.16, 23.06, 10.39, 10.37; MALDI-TOF  m/z: [M+Na]+ 1268.99, [M+K]+ 

1285.02. 

 

NBD appended tetra-amino calix[4]arene (·4HCl) (126) 

HCl(g) was bubbled through a solution of 125 (0.22 g, 0.18 mmol) in DCM (16 

mL). After 10 minutes, methanol was added to dissolve the precipitate and stirring 

continued for 30 minutes. After removing solvent under reduced pressure the product 

was purified by reverse-phase column chromatography over C18 (eluent: 0-100% 

methanol in 60 mM HCl) to give 126 as bright orange solid (30 mg, 20%). Mp  245 °C 

(decomp.); IR  ν 3379, 3196, 3134, 2921, 2873, 2592, 1617, 1576.5, 1529, 1507, 

1496.5, 1405, 1385, 1349.5, 1293, 1253.5, 1217, 1185.5, 1146.5, 1131, 1103, 1065.5, 

1035.5 cm-1; 1H-NMR  (400 MHz, CD3OD) δ 8.51 (d, J = 9 Hz, 1H, ArHNBD), 6.86 (s, 

2H, ArH), 6.85 (s, 2H, ArH), 6.77 (s, 4H, ArH), 6.40 (d, J = 9 Hz, 1H, ArHNBD), 4.50 

(d, J = 13 Hz, 2H, ArCH2Ar), 4.47 (d, J = 13 Hz, 2H, ArCH2Ar), 4.03 (t, J = 7 Hz, 

2H, OCH2CH2CH2CH2N), 3.91 – 3.86 (m, 6H, OCH2CH2CH3), 3.66 (app br s, 2H, 
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OCH2CH2CH2CH2N), 2.12 – 2.05 (m, 2H, CH2CH2CH2CH2), 1.98-1.85 (m, 8H, 

CH2CH2CH2CH2 and OCH2CH2CH3), 1.02 (t, J = 7 Hz, 3H, OCH2CH2CH3), 0.94 (t, J 

= 7 Hz, 6H, OCH2CH2CH3); 
13C-NMR  (100 MHz, CD3OD) δ 157.98, 157.78, 157.67, 

146.52, 145.84, 145.53, 138.47, 137.75, 137.64, 137.42, 125.93, 125.89, 125.83, 

124.54, 124.49, 124.42, 124.37, 122.99, 99.68, 78.57, 78.51, 76.42, 44.61, 31.69, 

31.57, 28.74, 26.03, 24.41, 24.36, 10.79, 10.63; HRMS (NSI) m/z: [M+H]+ Calcd for 

C47H57N8O7 845.4345; Found 845.4345. 

 

5,11,17,23-Tetra-tert-butyl-25,26,27-tripropoxy-28-[(ethoxycarbonyl)butoxy-

calix[4]arene (127)103 

To a solution of 77 (5.00 g, 6.45 mmol) in DMF (200 mL) was added NaH (0.62 g, 

25.80 mmol) and the mixture stirred for 1 hour before addition of ethyl 4-

bromobutyrate (3.7 mL, 25.80 mmol). The mixture was stirred for 18 hours then the 

solvent was removed under reduced pressure. The residue was dissolved in DCM (100 

mL) and washed with water (200 mL) then brine (200 mL). After drying over MgSO4, 

the solvent removed under reduced pressure and the residue repeatedly triturated with 

methanol until a solid was obtained, which was filtered and air dried to give 127 as 

white powder (3.92 g, 68%). Mp  122-124 °C; IR  ν 2959, 2903.5, 2872.5, 1737.5, 

1604, 1582, 1480, 1390.5, 1373, 1360.5, 1299, 1278, 1247.5, 1197.5, 1175.5, 1123, 

1109, 1090, 1069.5, 1036, 1009 cm-1; 1H-NMR  (400 MHz, CDCl3) δ 6.80 (s, 2H, 

ArH), 6.79 (s, 2H, ArH), 6.75 – 6.75 (m, 4H, ArH), 4.42 (d, J = 13 Hz, 2H, 

ArCH2Ar), 4.38 (d, J = 13 Hz, 2H, ArCH2Ar), 4.17 (q, J = 7 Hz, 2H, CO2CH2CH3), 

3.89 (t, J = 7.5 Hz, 2H, OCH2CH2CH2CO2), 3.85 – 3.79 (m, 6H, OCH2CH2CH3), 3.12 

(d, J = 13 Hz, 2H, ArCH2Ar), 3.11 (d, J = 13 Hz, 2H, ArCH2Ar), 2.52 (t, J = 7.5 Hz, 

2H, OCH2CH2CH2CO2), 2.33 (quintet, J = 7.5 Hz, 2H, OCH2CH2CH2CO2), 2.06 – 

1.95 (m, 6H, OCH2CH2CH3), 1.28 (t, J = 7 Hz, 3H, CO2CH2CH3), 1.10 (s, 9H, 

C(CH3)3), 1.09 (s, 9H, C(CH3)3), 1.06 (s, 18H, C(CH3)3), 0.99 (t, J = 7.5 Hz, 6H, 

OCH2CH2CH3), 0.99 (t, J = 7.5 Hz, 3H, OCH2CH2CH3). 

 

5,11,17,23-Tetra-nitro-25,26,27-tripropoxy-28-[(ethoxycarbonyl)butoxy-

calix[4]arene (128)103 

To a stirred solution of 127 (2.36 g, 2.65 mmol) in DCM (300 mL) was added 

glacial acetic acid (15 mL) and 100% nitric acid (15 mL). After 4 hours water (200 

mL) was added to quench. The organic layer was separated and washed with water (3 

x 300 mL) and brine (300 mL). After drying over MgSO4, the solvent was removed 
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under reduced pressure and the residue triturated with methanol. The product was 

filtered and air dried to give 128 as light orange powder (2.06 g, 92%). Mp  240-241 

°C; IR  ν 3078, 2969.5, 2934.5, 2877, 1731, 1609, 1585.5, 1519, 1451, 1386, 1341.5, 

1301.5, 1286, 1262.5, 1210, 1180, 1092, 1061.5, 1034 cm-1; 1H-NMR  (400 MHz, 

CDCl3) δ 7.62 (s, 4H, ArH), 7.54 (s, 4H, ArH), 4.52 (d, J = 14 Hz, 2H, ArCH2Ar), 

4.50 (d, J = 14 Hz, 2H, ArCH2Ar), 4.16 (q, J = 7 Hz, 2H, CO2CH2CH3), 4.02 (t, J = 7 

Hz, 2H, OCH2CH2CH2CO2), 3.99 – 3.93 (m, 6H, OCH2CH2CH3), 3.41 (d, J = 14 Hz, 

2H, ArCH2Ar), 3.41 (d, J = 14 Hz, 2H, ArCH2Ar), 2.45 (t, J = 7 Hz, 2H, 

OCH2CH2CH2CO2), 2.21 (quintet, J = 7 Hz, 2H, OCH2CH2CH2CO2), 1.95 – 1.85 (m, 

6H, OCH2CH2CH3), 1.26 (t, J = 7 Hz, 3H, CO2CH2CH3), 1.03 (t, J = 8 Hz, 3H, 

OCH2CH2CH3), 1.01 (t, J = 8 Hz, 6H, OCH2CH2CH3).  

 

5,11,17,23-Tetra-amino-25,26,27-tripropoxy-28-[(ethoxycarbonyl)butoxy-

calix[4]arene (129) 

A mixture of 128 (2.06 g, 2.44 mmol) and SnCl2·2H2O (14.31 g, 63.44 mmol) was 

heated to reflux in ethanol (140 mL) for 48 hours. The solvent was removed under 

reduced pressure and 10% NaOH (300 mL) added. The product was extracted with 

DCM (3 x 100 mL) then washed with water (200 mL) and brine (200 mL). After 

drying over MgSO4, the solvent was removed under reduced pressure to give 129 as 

light brown solid (1.39 g, 79%). Mp  139 °C; IR  ν 3418.5, 3344.5, 3214.5, 2958.5, 

2930.5, 2873.5, 2736, 1730, 1607, 1465, 1383, 1373.5, 1346, 1302.5, 1279.5, 1258.5, 

1213.5, 1175.5, 1131.5, 1106.5, 1096, 1067, 1038.5, 1007 cm-1; 1H-NMR  (400 MHz, 

CDCl3) δ 6.07 (s, 4H, ArH), 6.04 (s, 2H, ArH), 6.03 (s, 2H, ArH), 4.30 (d, J = 13.5 

Hz, 2H, ArCH2Ar), 4.27 (d, J = 13.5 Hz, 2H, ArCH2Ar), 4.14 (q, J = 7 Hz, 2H, 

CO2CH2CH3), 3.79 (t, J = 7 Hz, 2H, OCH2CH2CH2CO2), 3.74 – 3.70 (m, 6H, 

OCH2CH2CH3), 2.92 (d, J = 13.5 Hz, 2H, ArCH2Ar), 2.91 (d, J = 13.5 Hz, 2H, 

ArCH2Ar), 2.46 (t, J = 8 Hz, 2H, OCH2CH2CH2CO2), 2.20 – 2.12 (m, 2H, 

OCH2CH2CH2CO2), 1.90 – 1.79 (m, 6H, OCH2CH2CH3), 1.25 (t, J = 7 Hz, 3H, 

CO2CH2CH3), 0.95 (t, J = 7 Hz, 3H, OCH2CH2CH3), 0.94 (t, J = 7 Hz, 6H, 

OCH2CH2CH3); 
13C-NMR  (100 MHz, CDCl3) δ 173.45, 149.94, 149.64, 140.53, 

140.29, 135.70, 135.63, 135.54, 135.51, 115.85, 115.82, 115.78, 76.74, 76.70, 73.83, 

60.26, 31.29, 31.14, 30.93, 25.52, 23.13, 14.25, 10.41, 10.32; HRMS (NSI) m/z: 

[M+H] + Calcd for C43H57N4O6 725.4273; Found 725.4282. 

 

 



 
 

Chapter 2: Calixarene-Based Cell-Penetration Agents 

170 
 

 

5,11,17,23-Tetra-Boc-amino-25,26,27-tripropoxy-28-[(ethoxycarbonyl)butoxy-

calix[4]arene (130) 

A solution of 129 (1.39 g, 1.92 mmol), Boc anhydride (6.70 g, 30.72 mmol) and 

DIPEA (1.27 mL, 7.68 mmol) in DCM (50 mL) was stirred for 72 hours. The solvent 

was removed under reduced pressure and the product purified by column 

chromatography over silica gel (eluent: 19:1 DCM/ethyl acetate) to give 130 as an off-

white glass (1.68 g, 78%). Mp  144-146 °C; IR  ν 3446, 3328, 2975, 2930.5, 2875.5, 

1698.5, 1597.5, 1519.5, 1470.5, 1415.5, 1390, 1365.5, 1291.5, 1241.5, 1214.5, 

1150.5, 1061.5, 1037, 1004 cm-1; 1H-NMR  (400 MHz, CDCl3) δ 6.62 (s, 4H, ArH), 

6.59 (s, 4H, ArH), 6.16 (s, 2H, NH), 6.15 (s, 2H, NH), 4.36 (d, J = 13 Hz, 2H, 

ArCH2Ar), 4.33 (d, J = 13 Hz, 2H, ArCH2Ar), 4.14 (q, J = 7 Hz, 2H, CO2CH2CH3), 

3.83 (t, J = 7.5 Hz, 2H, OCH2CH2CH2CO2), 3.48 – 3.74 (m, 6H, OCH2CH2CH3), 3.09 

(d, J = 13 Hz, 2H), 3.08 (d, J = 13 Hz, 2H), 2.45 (t, J = 7.5 Hz, 2H, 

OCH2CH2CH2CO2), 2.17 (quintet, J = 7.5 Hz, 2H, OCH2CH2CH2CO2), 1.85 (sextet, J 

= 7 Hz, 6H, OCH2CH2CH3), 1.48 (s, 18H C(CH3)3), 1.48 (s, 18H, C(CH3)3), 1.25 (t, J 

= 7 Hz, 3H, CO2CH2CH3), 0.95 (t, J = 7 Hz, 3H, OCH2CH2CH3), 0.94 (t, J = 7 Hz, 

6H, OCH2CH2CH3); 
13C-NMR  (100 MHz, CDCl3) δ 172.95, 153.42, 153.39, 152.47, 

152.22, 134.97, 134.90, 134.80, 132.21, 132.01, 119.78, 119.72, 79.66, 76.53, 73.68, 

60.10, 30.98, 30.92, 28.28, 25.28, 22.89, 14.04, 10.17, 10.09; MALDI-TOF  m/z: 

[M+Na]+ 1148.15, [M+K]+ 1164.17. 

 

5,11,17,23-Tetra-Boc-amino-25,26,27-tripropoxy-28-[(hydroxycarbonyl)-

propoxycalix[4]arene (131) 

A solution of 130 (1.30 g, 1.06 mmol) and tetramethylammonium hydroxide (2.23 

mL, 2.2 5.30) in THF (10 mL) was stirred for 6 hours. Water (50 mL) was added and 

the pH adjusted to < 7 by addition of dilute HCl. The product was extracted with ethyl 

acetate (3 x 50 mL) then washed with water (100 mL) and brine (100 mL). After 

drying over MgSO4, the solvent was removed under reduced pressure to give 131 as a 

light yellow glass (1.12 g, 96%). Mp  165-167 °C; IR  ν 3444, 3327.5, 2975, 2930.5, 

2875.5, 1698, 1596.5, 1518, 1470, 1414.5, 1390, 1365.5, 1292.5, 1242, 1214.5, 

1150.5, 1063, 1036.5, 1002 cm-1; 1H-NMR  (400 MHz, CDCl3) δ 6.63 (s, 4H, ArH), 

6.60 (s, 2H, ArH), 6.55 (s, 2H, ArH), 6.30 (s, 1H, NH), 6.29 (s, 1H, NH), 6.22 (s, 2H, 

NH), 4.36 (d, J = 13 Hz, 2H, ArCH2Ar), 4.33 (d, J = 13 Hz, 2H, ArCH2Ar), 3.88 (t, J 

= 7.5 Hz, 2H, OCH2CH2CH2CO2), 3.79 – 3.73 (m, 6H, OCH2CH2CH3), 3.09 (d, J = 

13 Hz, 2H, ArCH2Ar), 3.08 (d, J = 13 Hz, 2H, ArCH2Ar), 2.50 (t, J = 7.5 Hz, 2H, 
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OCH2CH2CH2CO2), 2.20 (quintet, J = 7.5 Hz, 2H, OCH2CH2CH2CO2), 1.90 – 1.81 

(m, 6H, OCH2CH2CH3), 1.48 (s, 9H, C(CH3)3), 1.48 (s, 27H, C(CH3)3), 0.94 (t, J = 7 

Hz, 6H, OCH2CH2CH3), 0.94 (t, J = 7 Hz, 3H, OCH2CH2CH3); 
13C-NMR  (100 MHz, 

CDCl3) δ 178.42, 153.64, 152.74, 152.71, 152.45, 135.21, 135.17, 134.98, 132.36, 

132.06, 119.88, 80.11, 76.78, 76.70, 73.84, 31.12, 30.98, 28.44, 25.22, 23.11, 23.06, 

10.32, 10.29; MALDI-TOF  m/z: [M+Na]+ 1120.45. 

 

5,11,17,23-Tetra-Boc-amino-25,26,27-tripropoxy-28-[(7-hydroxy-2-oxo-2H-

chromen-3-yl)carbamoyl]propoxy-calix[4]arene (132) 

A solution of 131 (0.84 g, 0.77 mmol), 115 (0.32 g, 1.82 mmol) and EDCI·HCl 

(0.34 g, 1.82 mmol) in 30% pyridine in DCM (43 mL) was stirred for 18 hours. 

Solvent was removed under reduced pressure and dilute HCl (100 mL) was added 

followed by ethyl acetate (200 mL). Methanol was then added in small portions, with 

shaking, until the mixture resolved into two layers. The organic layer was collected, 

the solvent removed under reduced pressure and the product purified by column 

chromatography over silica gel (eluent: 3:2 hexane/ethyl acetate) to give 132 as off-

white solid (0.48 g, 49%). Mp  175-177 °C; IR  ν 3327.5, 2975, 2930.5, 2875.5, 1685, 

1607.5, 1521.5, 1476.5, 1465.5, 1414.5, 1388, 1365.5, 1319, 1293, 1242.5, 1214.5, 

1151.5, 1063.5, 1035.5, 1002 cm-1; 1H-NMR  (400 MHz, CDCl3) δ 8.69 (s, 1H, 

ArHCoumarin), 8.25 (s, 1H, OH), 7.66 (s, 1H, NHCoumarin), 7.32 (d, J = 8.5 Hz, 1H, 

ArHCoumarin), 6.80 (dd, J = 8.5, 2 Hz, 1H, ArHCoumarin), 6.73 (d, J = 2 Hz, 1H, 

ArHCoumarin), 6.62 (s, 2H, ArH), 6.58 (s, 4H, ArH), 6.57 (s, 2H, ArH), 6.27 (s, 1H, 

NH), 6.19 (s, 2H, NH), 6.17 (s, 1H, NH), 4.34 (d, J = 13 Hz, 4H, ArCH2Ar), 3.90 (t, J 

= 7.5 Hz, 2H, OCH2CH2CH2CO2), 3.82 – 3.64 (m, 6H, OCH2CH2CH3), 3.06 (d, J = 

13 Hz, 4H, ArCH2Ar), 2.54 (t, J = 7.5 Hz, 2H, OCH2CH2CH2CO2), 2.26 (quintet, J = 

7.5 Hz, 2H, OCH2CH2CH2CO2), 1.94 – 1.72 (m, 6H, OCH2CH2CH3), 1.49 (s, 9H, 

C(CH3)3), 1.49 (s, 27H, C(CH3)3), 0.95 (t, J = 7 Hz, 3H, OCH2CH2CH3), 0.92 (t, J = 7 

Hz, 6H, OCH2CH2CH3). 
13C-NMR  (100 MHz, CDCl3) δ 171.94, 159.28, 159.22, 

153.87, 153.74, 153.69, 152.85, 152.67, 151.47, 135.25, 135.21, 135.02, 132.02, 

131.91, 131.87, 128.73, 125.00, 120.99, 120.41, 120.21, 120.09, 119.97, 114.29, 

112.25, 102.89, 80.40, 80.24, 73.99, 34.32, 31.11, 28.45, 25.83, 23.13, 23.07, 10.39, 

10.32; MALDI-TOF  m/z: [M+Na]+ 1279.74, [M+K]+ 1295.77. 
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5,11,17,23-Tetra-amino-25,26,27-tripropoxy-28-[(7-hydroxy-2-oxo-2H-

chromen-3-yl)amino]butoxy-calix[4]arene 

A solution of 132 (20 mg, 0.016 mmol) in THF (1 mL) was cooled to 0 °C before 

addition of BH3.THF (0.16 mL, 1 M in THF, 0.16 mmol) under argon. The mixture 

was heated to 60 °C and stirred for 4 hours. After cooling to room temperature, the 

reaction was quenched with methanol and the solvent removed under reduced 

pressure. Methanol (1 mL) was added followed by Raney nickel (1 mg, 0.8 µmol) and 

the mixture stirred for 18 hours. After removal of the catalyst by filtration, solvent was 

removed from the filtrate under reduced pressure and residual borate removed by co-

evaporation with methanol three times. 1H-NMR showed a complex mixture of 

products.  

 

5,11,17,23-Tetra-amino-25,26,27-tripropoxy-28-[(7-hydroxy-2-oxo-2H-

chromen-3-ylcarbamoyl)butoxy-calix[4]arene (·4HCl) (134) 

A solution of 132 (0.20 g, 0.16 mmol) in 2:1 DCM/TFA (3 mL) was stirred for 2 

hours. The solvent was removed under reduced pressure and the product purified by 

column chromatography over C18 (eluent: 0-100% methanol in 60mM HCl) to give 

134 as pale orange solid (0.14 g, 88%). Mp  260 °C (decomp.); IR  ν 3390, 2958.5, 

2920.5, 2870.5, 2847, 2584.5, 1685, 1607.5, 1576.5, 1523, 1465, 1374, 1309.5, 

1263.5, 1249.5, 1216.5, 1180, 1148.5, 1127.5, 1063.5, 1035.5, 1000 cm-1; 1H-NMR  

(400 MHz, CD3OD) δ 8.56 (s, 1H, ArHCoumarin), 7.40 (d, J = 8.5 Hz, 1H, ArHCoumarin), 

6.91 (s, 2H, ArH), 6.90 (s, 2H, ArH), 6.82 (dd, J = 8.5, 2 Hz, 1H, ArHCoumarin), 6.79 (s, 

4H, ArH), 6.73 (d, J = 2 Hz, 1H, ArHCoumarin), 4.55 (d, J = 13.5 Hz, 2H, ArCH2Ar), 

4.54 (d, J = 13.5 Hz, 2H, ArCH2Ar), 4.09 (t, J = 7 Hz, 2H, OCH2CH2CH2CO2), 3.97 

(t, J = 7 Hz, 2H, OCH2CH2CH3), 3.91 (t, J = 7 Hz, 4H, OCH2CH2CH3), 3.36 (d, J = 

13.5 Hz, 2H, ArCH2Ar), 3.34 (d, J = 13.5 Hz, 2H, ArCH2Ar), 2.61 (t, J = 7 Hz, 2H, 

OCH2CH2CH2CO2), 2.33 (quintet, J = 7 Hz, 2H, OCH2CH2CH2CO2), 2.02 – 1.91 (m, 

6H, OCH2CH2CH3), 1.04 (t, J = 7 Hz, 9H, OCH2CH2CH3); 
13C-NMR  (100 MHz, 

CD3OD) δ 173.97, 161.48, 160.19, 158.02, 157.86, 157.83, 153.42, 137.89, 137.86, 

137.47, 137.43, 130.07, 127.83, 126.09, 125.90, 125.84, 124.66, 124.57, 124.46, 

124.44, 122.21, 114.99, 113.18, 103.33, 78.74, 78.57, 75.92, 34.06, 31.73, 31.63, 

26.98, 24.49, 24.38, 10.85, 10.80; HRMS (NSI) m/z: [M+H]+ Calcd for C50H58N5O8 

856.4280; Found 856.4268. 
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2.5.3 General procedures - biology 

THP-1, HL60, HeLa RC-49 and CHO.CCR5 cells have been described 

previously.55,126,127 CHO-K1 cells were purchased from ATCC. THP-1 cells were 

cultured in RPMI medium (Invitrogen) with 10% bovine calf serum, 100 units of 

penicillin/mL, 100 µg of streptomycin/mL and 2 mM L-glutamine at pH 7.4. The 

remaining cell lines were cultured in DMEM medium (Invitrogen) with 10% bovine 

calf serum, 100 units of penicillin/mL, 100 µg of streptomycin/mL and 2mM L-

glutamine at pH 7.4. All cell lines were incubated at 37 °C in a water-saturated 5% 

CO2 atmosphere. Nystatin, filipin, sucrose and methyl-β-cyclodextrin were purchased 

from Sigma-Aldrich. Monensin was purchased from Calbiochem. LysoTracker® Red 

(Invitrogen) was purchased from Molecular Probes. Remaining chemicals and 

reagents were purchased from Fisher Scientific. Fluorescence images were obtained 

using a Leica DM IL HC microscope.  

2.5.4 Toxicity assays 

MTS assays were performed using a CellTiter 96® AQueous Non-Radioactive Cell 

Proliferation Assay (Promega). THP-1 cells were suspended in RPMI medium and 

HL60, HeLa RC-49 and CHO.CCR5 cells were suspended in DMEM at a 

concentration of 1 x 105 cells/mL. Cell suspension (100 µL) was incubated with 

calixarene (2 µL) dissolved in sterile water or DMSO (for 87 and 109) at 

concentrations of 200 µM, 20 µM, 2 µM, 0.2 µM and 0.02 µM. After 72 hours, 10 µL 

(for compounds 87, 96, 109, 126 and 134) or 20 µL (for compounds 94, 95 and 97) of 

MTS was added followed by incubation for 4 hours. Absorbance readings were taken 

at 492 nm using a BMG Labtech Fluostar Galaxy 96 well plate reader. 

2.5.5 Cellular uptake 

CHO.CCR5 cells were grown on coverslips in 3 mL of DMEM for 24 hours then 

incubated with calixarene (10 µM) for time periods of 1, 4, 6, 24, 48 or 72 hours. 

After removal of medium, the cells were washed with phosphate buffered saline 

(PBS) (3 x 1 mL) and applied to glass slides with DPX mounting medium for 

imaging. 

2.5.6 Inhibition studies 

CHO.CCR5 or CHO-K1 cells were grown on coverslips in 3 mL of DMEM for 24 

hours then incubated with monensin (50 µg/mL), sucrose (0.4 M), methyl-β-

cyclodextrin (10 mM), filipin (5 µg/mL) or nystatin (5 µg/mL) for 1 hour. This was 
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followed by incubation with calixarene (10 µM) for 48 hours. After removal of 

medium, the cells were washed with PBS (3 x 1 mL) and applied to glass slides with 

DPX mounting medium for imaging. 

2.5.7 Co-localisation studies 

CHO.CCR5 or CHO-K1 cells were grown on coverslips in 3 mL of DMEM for 24 

hours then incubated with calixarene (10 µM) for 48 hours. The cells were then 

incubated with LysoTracker® Red (50 nM) for 15 minutes. After removal of medium, 

the cells were washed with PBS (3 x 1 mL) and applied to glass slides with DPX 

mounting medium for imaging. 
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3.1 Introduction 

Protein-carbohydrate interactions are involved in a range of biological processes,1 

including binding of bacterial toxins to cells, bacterial adhesion, viral infection, 

leukocyte trafficking and the response of the immune system to pathogens. Although 

the interactions of individual carbohydrate moieties can be weak, when they are 

clustered on a single scaffold the increase in binding strength can be much greater 

than that associated with an equivalent increase in concentration of the monomer; this 

is termed the glycoside cluster effect.2 This occurs due to pre-arrangement of multiple 

binding moieties so that they are optimally presented to a multivalent target. 

Due to the biological relevance of such interactions, there has been much interest in 

producing synthetic glycoconjugates to target specific biological processes. Various 

types of scaffold have been exploited to this end, including proteins,3 polymers,4 

dendrimers5 and fullerenes.6 Calixarenes are also an attractive choice as a scaffold 

since the conformation and the type and degree of functionalisation can be controlled, 

allowing the synthesis of glycoconjugates with selected valency and finely tuned 

orientation and flexibility of the presented sugar moieties in space.  

The use of these scaffolds as multivalent glycoconjugates will be examined in the 

following sections. 

3.1.1 Calixarene-based glycoconjugates 

A number of different biological targets have been pursued using calixarene-based 

glycoconjugates. For example, C-type lectin-like receptors found on the surface of NK 

cells have been targeted as they are involved in the activation of the immune response 

against tumours and intracellular pathogens, such as viruses. N-acetylglucosamine 

(GlcNAc) based glycoconjugates were synthesised7 and tested against NKR-P1 and 

CD69 receptors. Although binding was observed in both cases, a glycoside cluster 

effect was only observed with the latter. The conjugate with the greatest binding 

strength, compound 135 (see Figure 3.1), was also able to stimulate NK-mediated 

cytotoxicity against tumor cells.  
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Figure 3.1: Calixarene-based glycoconjugates for receptor binding (135)7, an 

artificial antibody (136)8, antiviral activity (137)9 and toxin binding (138).10 
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Certain cell-surface glycosyltransferases are involved in cell adhesion and 

mediation of cell-matrix interactions and have enhanced expression on metastatic 

cells, their activity being associated with increased invasiveness. A calix[8]arene 

analogue of compound 135 was tested against rat glioma cells and was found to 

inhibit wound closure in a scratch-wound model, with greater efficacy than 

monomeric GlcNAc even at high concentrations of the latter.11 Although this 

conjugate was found to affect proliferation of the cells as well as migration, 

comparison to a butyl-ureido control suggested that the sugar moieties were not 

responsible for this inhibition.  

A further potential anti-cancer application is the construction of an artificial 

antigen. A tumor associated antigen, Tn, is overexpressed on epithelial cancer cells 

due to incomplete glycosylation on the cell surface; however, it is a weak immunogen. 

To overcome this, glycoconjugate 136 (see Figure 3.1), featuring Tn moieties on the 

upper rim and tripalmitoyl-S-glycerylcysteinylserine (P3CS) on the lower rim as an 

immunoadjuvant, was synthesised.8 This combination resulted in stimulation of 

antibody production in mice with an apparent glycoside cluster effect when compared 

with a monovalent analogue. 

The use of glycoconjugates as antiviral agents against BK virus (BKV) and 

influenza A has also been investigated.9 BKV is known to bind to the sialic acid 5-

acetylneuraminic acid (Neu5Ac) on host cells. Influenza A also forms interactions 

with this epitope via hemagluttinin (HA) and a glycosidase (NA), allowing the virus to 

bind to host cells and proliferate. To interfere with these processes, tetrameric 

sialoside clusters were synthesised; the lower-rim tetravalent cluster 137 is shown in 

Figure 3.1.  

Although these conjugates displayed binding towards BKV, the opposite of the 

glycoside cluster effect was achieved, with a loss of activity per sugar unit relative to 

the monomer. This was attributed to a low concentration of viral hemagglutinin on the 

virus surface. However, a moderate glycoside cluster effect was apparent for the 

binding to influenza A. For both BKV and influenza A, infection of cells could be 

prevented by pre-incubation with the glycoconjugate. This demonstrates that the 

infection process can be interfered with by competing with the natural ligands of the 

viral proteins.  

Common targets for glycoconjugates are lectins. These are proteins that are 

characterised by binding to specific sugars with a lack of catalytic activity and are not 

the product of an immune response.12 For example, the cholera toxin, a pentavalent 
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protein-based toxin, presents sugar-binding sites on a single face of the molecule 

which it uses to bind to host cells. This process is mediated by the ganglioside GM1, 

which interacts via terminal galactose and sialic acid groups. To target this interaction, 

a GM1 oligosaccharide (GM1os) mimic (138) was synthesised10 with two 

pseudotrisaccharide moieties presented at the upper rim of a calixarene core, using 

long linkers to give the necessary flexibility (see Figure 3.1). This divalent 

glycoconjugate demonstrated superior binding to cholera toxin compared with 

GM1os, and was also better able to inhibit binding of cholera toxin to its natural 

target. Such a conjugate could potentially be applied to modulating the effect of such 

toxins.  

The targeting of lectins could potentially have applications in treatment of bacterial 

infections, for example Pseudomonas aeruginosa. This will be examined in more 

detail in the following section. 

  

3.1.2 Glycoconjugates against Pseudomonas aeruginosa 

Pseudomonas aeruginosa is an opportunistic pathogen that is capable of infecting 

most tissues when their defences are compromised.13 It is the predominant cause of 

nosocomial pneumonia14 and lung infections in cystic fibrosis patients.15 It is a highly 

adaptable pathogen and multiple drug-resistant strains have developed.13 This, along 

with its ability to form biofilms,16 makes treatment of infections with antibiotics 

difficult. This has led to the investigation of alternative means of treatment.  

Amongst the virulence factors of P. aeruginosa are two lectins, PA-IL and PA-IIL 

(sometimes referred to as LecA and LecB, respectively). Both are homo-tetramers 

featuring one Ca2+ dependent carbohydrate binding site per monomer (see Figure 3.2). 

PA-IL is selective for D-galactose and its derivatives, which it binds with moderate 

affinity, whereas PA-IIL has wider specificity, though it binds most strongly to L-

fucose and its derivatives. Both of these lectins have hemagglutination activity.17 

These lectins have inherent cytotoxicity and can inhibit ciliary beating. However, 

they are primarily implicated in the early stages of infection by binding to 

glycoconjugates on host cells, allowing other virulence factors to reach their targets. 

They have been shown to contribute to pathogenicity when acting in synergy with 

other factors.18 PA-IIL in particular has also been shown to play a role in the 

formation of protective biofilms.16 
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Figure 3.2: Crystal structures of a) PA-IL (PDB code: 1OKO) and b) PA-IIL (PDB 

code: 1UZV) showing Ca2+ binding sites in yellow and ball and stick representations 

of monosaccharides.  

Their contribution to pathogenicity makes these lectins attractive targets. Early 

investigation showed the potential to inhibit the interaction of the lectins with the host 

cells using their natural ligands. In vivo tests with lung epithelial cells showed reduced 

cytotoxicity in the presence of the preferred ligand, whilst tests in a mouse model 

showed a reduction in bacterial load and lung injury, along with improved survival.18 

Investigations were also carried out with cystic fibrosis patients, who were treated by 

inhalation of fucose or galactose; each of these resulted in reduction of bacterial load, 

although combination with antibiotic therapy did not give any further improvement, 

possibly due to antibiotic-related suppression of lectin synthesis.19  

Together, these studies showed that there was potential to treat infections by P. 

aeruginosa by competitive inhibition of lectin binding. However, the binding 
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strengths of the individual monosaccharides would make this an inefficient process. 

This led to the investigation of the use of artificial glycoconjugates to exploit the 

glycoside cluster effect. Those clusters utilising calixarene scaffolds will be the focus 

of the remainder of this chapter.  

An early attempt at exploiting the glycoside cluster effect with a multivalent 

calixarene was made with a scaffold functionalised at the upper rim with galactose 

using click chemistry.20 The calixarene (139) was conformationally locked using three 

propyl chains on the lower rim with the remaining phenolic position providing a linker 

to an oligonucleotide, which in turn was used to bind the scaffold to a DNA-based 

microarray (see Figure 3.3). A fluorescent dye (Cy3) on the oligonucleotide was used 

to confirm the presence of the glycoconjugates, whilst a different fluorescent dye 

(Alexa947) on PA-IL was used to measure the degree of binding between the lectin 

and the glycoconjugates. However, no binding of PA-IL was observed with the 

calixarene-based scaffold. It was concluded that the steric hindrance caused by the 

short linkers to the sugars was responsible for this lack of binding to the lectin.  

Following on from this, lower rim functionalised calixarenes were synthesised 

using propargylated scaffolds and sugars with triethyleneglycol linkers, to give greater 

flexibility whilst improving water solubility.21 A variety of scaffolds were synthesised 

with different valencies (mono-, 1,2-di-, 1,3-di-, tri- and tetra-functionalised) and 

geometries (tetra-functionalised in cone, partial cone and 1,3-alternate conformations). 

The 1,3-alternate tetravalent scaffold (140) is shown in Figure 3.3. The monovalent 

calixarene was insufficiently water-soluble for testing. Out of the remainder, the 

tetravalent conjugates gave the best binding to PA-IL (measured by isothermal 

titration calorimetry, ITC) and displayed a glycoside cluster effect when compared to 

the corresponding monomer. A mannose-functionalised analogue gave no binding, 

confirming that there was no non-specific binding from the calixarene core. 

The 1,3-alternate compound  gave the strongest binding of all and it was found that 

all four galactose moieties were each binding to one monomer. Since the geometry of 

the lectin would not allow for the simultaneous binding of all four sugars to a single 

lectin and the aggregation that would be expected if they were binding to four 

different lectins was not observed, an aggregative chelate binding mode was proposed 

where the two pairs of sugars were each binding to one face of two different lectins. 

Molecular modelling supported this binding mode.21 
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Figure 3.3: Calixarene-based glycoconjugates for targeting Pseudomonas aeruginosa 

lectins: compounds 139,20 140,21 and 14122 and the variable linkers23 applied to 140. 
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An analogue of the cone conformer of 140 based on calix[6]arene was also 

synthesised.24 Although this gave superior binding to PA-IL according to ITC and 

surface plasmon resonance (SPR), a hemagglutination inhibition assay (HIA) 

suggested that this hexavalent glycoconjugate was no better than a porphyrin-based 

tetravalent cluster that was also tested. This hexameric scaffold also lacks the 

conformational control that is possible with calix[4]arene.  

Further investigation of the binding mode of 140 was carried out using atomic 

force microscopy (AFM).25 A 1:1 mixture of PA-IL and 140 with CaCl2 was deposited 

on mica and dried. This revealed long filaments with occasional branch-points. It was 

proposed that these arose from rare defects in the symmetry of the conjugate, giving 

one free galactose that could bind to a third lectin. Molecular modelling confirmed 

that this was possible. 

Finally, work was carried out to attempt to optimise the interactions of this 

conjugate with PA-IL by varying the linker arms to the sugars.23 It was postulated that 

greater rigidity would reduce the entropic cost during multivalent binding and also 

provide additional contacts for binding. A series of four linkers were tested: the 

original triethyleneglycol (EG3), diethyleneglycol with an amide bond (EG2-NAz, 

where NAz is N-azidoacetyl), ethyleneglycol with two amide bonds (EG-Gly-NAz) 

and a phenyl linker with an amide bond (Ph-NAz). The structures of these linkers are 

shown in Figure 3.3. 

Although the monosaccharide featuring the Ph-NAz linker gave the strongest 

binding out of the set of monomers, the calixarene conjugates featuring this linker 

resulted in haemolysis in HIA and were insufficiently soluble for ITC studies. In some 

cases, for example with the partial cone and 1,3-alternate scaffolds with the EG-Gly-

NAz linker, there was a change in binding stoichiometry, with binding to 2-3 

monomers instead of 4 as with the EG3 linker. However, with the 1,3-alternate 

scaffold with the EG2-NAz linker, the 1:4 stoichiometry was retained; this was also 

the highest affinity glycol-conjugate to be synthesised thus far, with a KD of 90 nM. 

Contrary to the objective of the investigation, the entropic cost of binding had greatly 

increased relative to 140; however this failed to counterbalance the increase in the 

enthalpic contribution observed with this conjugate, postulated to be due to hydrogen 

bonds between the amide of the linker with the backbone of the lectin.  

Calix[4]arene glycoconjugates based on the propargylated scaffold are currently 

subject to a patent.26 The scope of this covers variation of the sugars, the linkers, the 
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functionalisation of the calixarene upper-rim and also the substitution of the 

calixarene methylene bridges with heteroatomic groups.  

Although PA-IIL has received less attention within the scope of calixarene-based 

glycoconjugates, some investigation has taken place with a fucose-functionalised 

calixarene (141).22 The sugars were installed via an amide bond to the upper rim, with 

glycine as a spacer. The calixarene was conformationally locked by exhaustive 

propylation of the lower rim. Although the conjugate had no direct antimicrobial 

effect, it was able to inhibit biofilm formation in a dose-dependent manner. With only 

the free amines on the upper rim, inhibition only occurred at higher concentrations, 

and to a lesser degree than the glycoconjugate. This research suggests that PA-IIL is a 

valid target, as well as PA-IL.  

It might be assumed that targeting both lectins would give an even more effective 

treatment. However, the experiments with the free sugars in the mouse model showed 

no improvement when both galactose and fucose were used. Although a multivalent 

scaffold could behave differently, there is little evidence of heteroglycoconjugates 

targeting PA-IL and PA-IIL in the literature. Non-calixarene based examples of 

glycoconjugates bearing both fucose and galactose show that although such a 

glycoconjugate can simultaneously bind both lectins, there is in fact a slight loss of 

binding affinity.27,28  

3.2 Aims 

Although the probable binding mode of compound 140 to free PA-IL in solution 

has been determined, and the ability of a fucose glycoconjugate (141) to inhibit P. 

aeruginosa biofilm formation has been demonstrated, no direct observation of the 

binding of a calixarene-based glycoconjugate to the bacterium has been made. To 

confirm the binding of a glycoconjugate to cell-surface exposed lectins, a bifunctional 

conjugate featuring a fluorescent tag in addition to the sugar units would be desirable. 

This would allow binding to bacterium, instead of just the free lectins, to be observed.  

The aim of this chapter was to synthesise a calixarene core featuring attachment 

points for sugars via a CuAAC reaction, preferably by propargylation of the 

calixarene, and to also attach a fluorescent dye, preferably on the opposite face to 

avoid interference with the binding of the sugars to the target lectin, PA-IL. The 

sugars could then be attached to the scaffold in collaboration with the research group 

of Sebastien Vidal in Lyon.  
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In summary, the aims are: 

• To suitably functionalise a calixarene for a CuAAC reaction; 

• To install a fluorescent dye on the calixarene, preferable on the opposite 

face to the groups installed for the CuAAC reaction; 

• To attach sugars via an ethyleneglycol linker, functionalised for the CuAAC 

reaction.  

3.3 Results and Discussion 

3.3.1 Design of the fluorescent glycoconjugate 

In order to synthesise the fluorescent glycoconjugate, attachment sites for both the 

sugars and the fluorescent dye were needed. It was decided to use the methodology of 

Vidal and coworkers21 to install the sugars, i.e. by using a CuAAC reaction between 

propargyl groups on the calixarene and an azide linked to the sugar via a 

triethyleneglycol chain. This linker would improve solubility and give the requried 

flexibility in the arrangement of the sugars.  

The required propargyl groups are easily installed on the lower rim of the 

calixarene using an ether formation as described in Chapter 2. The dye should 

therefore be placed on the upper rim to avoid interfering with the binding of the sugars 

to PA-IL, with the mode of attachment being dependent on the dye. A preference was 

expressed for fluorescent dyes with emission wavelengths above 570 nm, preferably 

red. Although red fluorescent dyes are commercially available, those commonly used 

for biological applications such as Cy5 and Alexa Fluor 633 were prohibitively 

expensive in this case. It was therefore decided to synthesise a suitable dye. 

Various Nile Red derivatives have been synthesised29 with different emission 

wavelengths. Of these, derivative 142 (see Figure 3.4) displayed suitable properties 

for this synthesis, with a carboxylic acid group providing a convenient point for 

attachment via an amide coupling reaction, and with an emission wavelength of its 

amide conjugates of around 580 nm. The synthesis of this dye uses a straightforward, 

one-pot procedure. 

 
Figure 3.4: Nile Red derivative (NRD) 142. 
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With the selection of this dye, an amine is required on the upper rim of the 

calixarene. This is easily accessible by reduction of the corresponding nitro group. 

The requirement for a single nitro group on the upper rim leads to two possibilities: 

regioselective nitration, using the functionalisation of the lower rim to control the 

substitution reaction, or non-selective nitration controlled by reaction time. Both of 

these routes will be examined.  

3.3.2 Route 1: Regioselective mono-nitration 

By selectively alkylating the lower-rim of the calixarene, the subsequent 

electrophilic aromatic substitution reaction can be controlled by the greater electron 

density donated by a free phenol compared with alkyl ethers. This has been 

demonstrated for the selective mono-nitration of calixarenes using a multistep process 

involving temporary installation of benzoyl groups on the lower rim,30 and also more 

directly by nitration31 or ipso-nitration32 of the desired alkyl ether. The latter 

procedure, containing the fewest synthetic steps, was selected.  

The required tripropargyl ether for the selective ipso-nitration was available from 

tetra-tert-butylcalix[4]arene (2) using a selective trialkylation as described in Chapter 

2. Compound 2 was stirred with a mixture of barium oxide and barium hydroxide, 

followed by addition of propargyl bromide. The mixture was stirred for 18 hours. 

Aqueous work up followed by column chromatography over silica (eluting with 2:1 

DCM/Hexane) gave 143 in the cone conformation as a white powder in 28% yield.  

Compound 143 was then reacted with a mixture of glacial acetic acid and 65% 

nitric acid in proportions used in the literature.32 The nitric acid was added dropwise 

over 2 minutes, then the solution stirred for a further 4 minutes, during which time the 

reaction mixture gained a blue-black colour, before quenching. Aqueous work up 

followed by purification by column chromatography over silica (eluting with 2:1 

DCM/Hexane) gave 144 as yellow crystals in 44% yield.  

The 1H-NMR spectrum of 144 (see Figure 3.5b) confirms the correct symmetry and 

the successful mono nitration. The single plane of symmetry results in a pair of triplets 

around 2.5 ppm corresponding to the terminal hydrogens of the alkynes, one for the 

propargyl groups adjacent to the phenol ring and one for the distal propargyl group. 

However, the same pattern is not observed for the methylene groups of the propargyl 

ethers.  
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Scheme 3.1: Synthesis of 144 via selective trialkylation and mono-nitration.  

 
Figure 3.5: a) Diagram of 144 showing diastereotopic hydrogens on the propargyl 

groups adjacent to the nitrophenol group; b) 1H-NMR spectrum of 144 (CDCl3). 
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The doublet corresponding to the distal propargyl methylene is seen at 5 ppm. The 

proximal propargyl groups instead give rise to a pair of doublet of doublets at 4.73 and 

4.59 ppm, the latter overlapping slightly with one of the methylene bridge doublets at 

4.57 ppm. This occurs because the hydrogens on the propargyl methylenes adjacent to 

the nitrophenol are diastereotopic (see Figure 3.5a); this was not observed for 143, but 

seems to be enhanced by the presence of the para nitro group on the adjacent phenol 

in 144. Therefore there are two couplings, one long range to the terminal hydrogen 

(with a J value around 2.4 Hz) and a second to the geminal hydrogen (with a larger J 

value of around 16 Hz). This gives one doublet of doublets for Ha and a second one 

for Hb. The mono-nitration is confirmed by the shift of one of the aromatic peaks to 

around 8.1 ppm. This shift to higher ppm results from the deshielding effect of the 

nearby nitro group.   

With the mono-nitro compound in hand, the lower rim now required exhaustive 

alkylation. The obvious choice was to use sodium hydride, as in the complete 

alkylations of Chapter 2. However, previous attempts to carry out this reaction within 

the group were met with limited success, achieving yields of less than 5% of the 

desired tetra-propargyl derivative. Although alkylations on partially nitrated 

calixarenes have been demonstrated,33,34 there is no evidence in the literature of this 

being accomplished with propargyl groups. The difficulties associated with installing 

the final propargyl group could be due to the propargyl ethers that are already present 

on the calixarene; under basic conditions, it is possible to effect isomerisation to an 

allene,35 facilitated by the phenolic oxygen. Therefore, milder alkylation conditions 

were sought to achieve this transformation.  

The Mitsunobu reaction presented one possible route to fully alkylating the lower 

rim. In this case, alkylation can be achieved using a mixture of triphenylphosphine 

(TPP) and a dialkylazodicarboxylate to mediate an SN2 type reaction between a 

nucleophile and an alcohol, using the loss of phosphine oxide as a leaving group as a 

driving force. The O-alkylation of calix[4]arene with allyl and benzyl alcohols using 

the Mitsunobu reaction has previously been investigated.36 The reaction has also been 

used to apply a bridging crown ether between two phenolic units of a calixarene.37 In 

this case, it was hoped that propargyl alcohol could be coupled to phenol, using the 

latter as the nucleophile. 



 
 

Chapter 3: Calixarene-Based Glycoconjugates 

196 
 

 

 
Scheme 3.2: Attempted synthesis of 145 via a Mitsunobu reaction on 144. 

Propargyl alcohol was treated with TPP and diisopropylazodicarboxylate (DIAD); 

the latter was added dropwise to the cooled reaction mixture. After stirring for 10 

minutes 144 was added and the mixture stirred overnight at room temperature. 

Trituration with MeOH/H2O gave only starting material. The same procedure was 

attempted with diethylazodicarboxylate (DEAD) instead of DIAD and with no 

cooling. The reaction mixture was stirred for 3 days. Trituration with MeOH/H2O 

gave an oil, so the product was extracted into DCM, though this again gave a red-

brown oil. The 1H-NMR spectrum showed starting material.  

The lack of reactivity of 144 may be due to the inactivation of the phenol ring by 

the electron withdrawing nitro group in the para position. This would reduce the 

reactivity of the phenolic oxygen as a nucleophile, such that even the activated 

intermediate provided by the Mitsunobu reaction could not promote the reaction. At 

this stage, instead of pursuing this route it was decided to attempt the alternative, non-

selective method.  

3.3.3 Route 2: Non-selective mono-nitration 

In order to access the desired upper-rim mono-nitro calixarene, the reaction can be 

performed in a non-selective manner, controlling the proportions of the different 

products of the nitration by varying the amount of time allowed for the reaction. The 

optimisation of such a reaction by monitoring it over time has been demonstrated on 

calix[4]arene with no t-butyl groups on the upper rim, where during the search for 

optimal yield of trinitro product it was found that maximum yield of mono-nitro 

(38%) could be achieved at around 25 minutes, with the return of 45% of starting 

material.38  

It was decided to attempt to carry out this transformation on a similarly 

unfunctionalised calixarene, which required the removal of the t-butyl groups from the 
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previously synthesised 2. This could be accomplished via a reverse Friedel-Crafts 

reaction with AlCl3 and phenol.39 

To a stirred mixture of 2 and phenol in toluene was added AlCl3 in small portions. 

After 4 hours the cloudy suspension had turned brown. The reaction mixture was 

poured onto ice followed by extraction of the product with DCM. After removal of 

solvent under reduced pressure, trituration of the residue with methanol gave 146 as 

off-white powder in 79% yield. 

This calixarene could be exhaustively alkylated at the lower rim with sodium 

hydride as described in Chapter 2, using sodium hydride followed by propargyl 

bromide. After stirring for 72 hours, aqueous work-up followed by column 

chromatography over silica gel (eluting with 2:1 hexane/toluene) gave 147 as white 

powder in 37%.  

The mono-nitration reaction was then tested. After stirring 147 in DCM with 

glacial acetic acid and 65% nitric acid for 30 minutes, the reaction was quenched. 

Aqueous work up gave only the starting material.   

It was decided to use a stronger nitrating mixture and monitor the reaction over 

time by TLC. To a solution of 147 in DCM, 100% nitric acid and a few drops of 95% 

sulphuric acid were added, giving an immediate colour change to purple-black. After 

stirring for 1 hour the reaction was quenched with water; aqueous work up followed 

by purification by column chromatography over silica (eluting with 1:1 DCM/hexane) 

gave 148 as light yellow solid and returned 147 in 60% yield.  

 
Scheme 3.3: Synthesis of 148 from 2 via de-tert-butylation, tetraalkyation and time-

controlled nitration.  
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Purification in this way was complicated by an unknown impurity that co-eluted 

with the product. This problem could be mitigated by re-crystallising impure column 

fractions from DCM/methanol, but it still led to a poor yield (total 21%) and made the 

synthesis less efficient. Once again, in the 1H-NMR spectrum the pattern of two 

doublets of doublets for the alkyne methylenes on the positions adjacent to the nitrated 

ring was observed.  

Although the overall yield over the three steps was lower than that achieved so far 

from the first route, the latter synthesis was incomplete. The final alkylation would 

have needed to have a yield of at least 50% to compare favourably, assuming that a 

successful method could be found. The second route could potentially be improved if 

the number of steps was reduced by carrying out an ipso-nitration on the tert-butyl 

derivative. However, at this stage, the synthesis was continued with product 148. 

3.3.3.1 Dye synthesis 

The selected NRD was synthesised according to the literature.29 A mixture of 2,3-

dichloro-1,4-napthoquinone, 4-amino-3-hydroxybenzoic acid and sodium acetate in 

methanol was heated to reflux for 24 hours, during which time the suspension turned 

from yellow to red. After cooling in ice, the solid was filtered and washed with water. 

The solid was triturated with hot methanol, filtered and washed with further methanol 

to give 142 as brick-red solid in 66% yield. 

 
Scheme 3.4: Synthesis of NRD 142. 

3.3.3.2 Sugar synthesis 

To selectively synthesise the target β-anomer of the azide-derivatised sugar, 

neighbouring group participation can be exploited. Lewis-acid promoted elimination 

of the leaving group at the anomeric centre can be accomplished with sugar-halides, 

for example using silver or mercury salts;40 however, for the installation of the azido-

triethyleneglycol linker, it has been found that the use of peracetylated sugar in 

combination with tin (IV) chloride and silver trifluoroacetate gave superior yield of 

the desired anomer with short reaction times and on large scales.41 
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Scheme 3.5: Synthesis of 149 from pentaacetyl-β-D-galactose. 

To a stirred solution of pentaacetyl-β-D-galactose, AgCO2CF3 and 2-[2-(2-

chloroethoxy)ethoxy]ethanol in dry DCM, SnCl4
 was added dropwise. After 2.5 hours, 

the reaction was quenched with sodium hydrogen carbonate and stirred for a further 

12 hours. After aqueous work-up, the intermediate glycosylated product was isolated 

as a yellow oil. This was stirred with NaN3 and Bu4NI in DMF for 18 hours at 70 °C. 

After filtration of excess reagent, aqueous work-up and flash column chromatography 

over silica gel (eluting with 1:1 petroleum ether/ethyl acetate), 149 was isolated as 

viscous, light yellow oil in 52% yield. 

3.3.3.3 Conjugation of the dye 

In preparation for the reaction with carboxylic acid group of 142, the nitro group of 

148 was next reduced to the amine. As in the reductions carried out during Chapter 2, 

the tin (II) chloride method was used. 

  
Scheme 3.6: Reduction of 148 and subsequent conjugation with 142 to give 151. 
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A mixture of 148 and SnCl2 was heated to reflux in ethanol for 48 hours. After 

removal of solvent under reduced pressure, aqueous work-up with sodium hydroxide 

gave the mono-amine 150 of moderate purity as brown glass in 63% yield. This crude 

product was taken through to the next step without further purification to minimise 

loss of product. 

Procedures that have been applied to the conjugation of 142 to amines include the 

use of amide coupling reagents and a one-pot acid-chloride mediated coupling using 

Ghosez’s reagent.29 Due to availability of reagents, amide coupling using EDCI was 

used.  

A mixture of 150, 142, EDCI, HOBt and N-methylmorpholine (NMM) were stirred 

in DMF for 18 hours. Aqueous work-up followed by column chromatography over 

silica gel (eluting with DCM) gave 151 as brick-red solid in 37% yield.  

The correct product was confirmed by 1H-NMR spectroscopy. The protons on the 

dye give rise to two multiplets around 8.5 ppm and a cluster of peaks around 8.0 ppm. 

The N-H of the amide bond can be observed at 7.59 ppm, and the aromatic protons 

adjacent to this on the calixarene are visible as a singlet at 7.03 ppm, separated from 

the cluster corresponding to the other aromatic protons around 6.75 ppm. 

Interestingly, in the 1H-NMR spectra of both the amine and the amide, the peaks 

corresponding to the alkyene methylene groups do not give rise to the previously 

observed doublets of doublets; this indicates a lack of inequivalence between the 

protons on the methylene bridges adjacent to the dye-appended ring. 

 
Figure 3.6: 1H-NMR spectrum of 151 (CDCl3). 
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At this stage, a serious problem with this scaffold was identified; although the dye 

absorbed long-wave UV light, there was no fluorescence. The previously synthesised 

fluorescent amide-conjugates of 142 were synthesised using aliphatic amines; 

therefore it was concluded that the loss of fluorescence was due to the extension of the 

conjugation onto the aromatic ring of the calixarene. The design of the scaffold 

therefore needed to be modified.  

However, with both a dye-conjugated scaffold and the required sugars in hand, it 

was decided to test the applicability of the sugar conjugation and deacetylation to this 

new scaffold.  

3.3.3.4 Sugar conjugation 

It was decided to first test the CuAAC conditions previously used for the 

conjugation of 149 to alkyne-functionalised calixarenes.21 This method utilised copper 

(I) iodide to directly provide the catalytic copper. This method also exploited 

microwave heating to accelerate the reaction.  

A mixture of 149, 151, CuI and DIPEA in DMF was heated to 100 °C for 20 

minutes. To avoid loss of product during aqueous work-up, the solvent was removed 

under reduced pressure and the residue directly subjected to column chromatography 

over silica gel. After eluting the excess sugar with 3:2 ethyl acetate/petroleum ether, 

the polarity was increased to first neat ethyl acetate and finally a gradient of methanol 

in ethyl acetate (1-13%) to elute the product. However, this failed to give pure product 

according to 1H-NMR and low-resolution mass spectrometry showed a mixture of 

products with lower than expected mass, suggesting that the scaffold had not been 

fully functionalised.  

The presence of poorly-soluble red material also raised concerns as to the stability 

of the dye conjugate to these conditions. Therefore, at this stage it was decided to 

carry out the reaction at room temperature, with a long reaction time to allow 

complete functionalisation. It was also decided to use copper (II) sulphate with 

sodium ascorbate for in situ generation of the copper catalyst, as this gave reliable 

results in Chapter 2.  
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Scheme 3.7: CuAAC reaction between 149 and 151 to give 152. 

A mixture of 149 and 151 were stirred with sodium ascorbate and catalytic copper 

sulphate in DMF for 24 hours, followed by addition of fresh catalyst and 149 and 

stirring for a further 24 hours. The product was purified by column chromatography 

over silica gel (eluting with 1:1 ethyl acetate/petroleum ether, ethyl acetate, and 19:1 

ethyl acetate/methanol) to give a dark-orange solid. Full substitution was confirmed 

by low resolution mass spectrometry indicating that 152 had been isolated. The yield 

of 44% is comparable with the yield previously obtained21 for conjugation of 149 to 

the tetra-propargyl calixarene in the cone confirmation; the lower yield obtained for 

this conformation compared with the others was proposed to be due to steric 

hindrance on the lower rim.  

The correct product is further confirmed by the 1H-NMR spectrum (see Figure 3.7). 

The characteristic pair of multiplets on the dye can be seen at 8.74 and 8.34 ppm, 

whilst the remaining dye peaks are around 7.9 ppm, along with the protons on the 

newly-formed triazole rings. The NH of the amide can be seen as a broad singlet at 

8.14 ppm. Interestingly, the aromatic protons adjacent to the NH appear as a pair of 

peaks around 7.1 ppm instead of just a singlet as expected from the symmetry of the 

molecule. The lack of any correlation to other peaks in the 2D-COSY spectrum 

suggests that these are two singlets rather than a doublet, although the loss of 

symmetry that would give two environments for these protons is not observed in the 

rest of the spectrum.  
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Figure 3.7: 1H-NMR spectrum of 152 (CDCl3).  

The sugar peaks are present as a complex series of multiplets due to the multiple 

environments on the lower rim of the calixarene. These obscure the methylene peaks 

between the triazole ring and the calixarene core around 5.1 ppm, and also one of the 

calixarene methylene bridge peaks around 4.2 ppm. The peaks corresponding to the 

ethylene glycol linker are present around 3.6, 3.9 and 4.5 ppm, with the latter two 

multiplets overlapping with two of the sugar environments. Finally, the acetyl 

protecting groups on the sugars can be seen around 2.0 ppm.  

3.3.3.5 Deprotection 

The protecting groups on the sugars could now be removed to give the final 

product. Commonly employed methods for deacetylation of sugars include the use of 

sodium ethoxide in methanol42 or triethylamine catalysed methanolysis.21 The latter 

method was selected as this was previously employed in the synthesis of galactose 

functionalised calixarenes. It provides simple, mild reaction conditions with reagents 

and byproducts that are easily removed under vacuum.  

A solution of 152 in a mixture of triethylamine, methanol and water was stirred 

under argon for 42 hours before removing solvent under reduced pressure. However, 

at this stage both the 1H-NMR and low resolution mass spectra indicated a mixture of 

products and were inconclusive. The reaction was therefore continued for a further 48 

hours to ensure that the compound had been fully deacetylated as partial deprotection 

would give rise to a wide range of different products. The 1H-NMR spectrum showed 

little change.  
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Purification by reversed-phase column chromatography over C18 (eluting with a 

gradient of 5-95% methanol in water) failed to give pure product. In addition, a 

fraction containing an unknown aromatic compound as the major component raised 

concerns as to the stability of the dye under the deprotection conditions.  

 
Scheme 3.8: Attempted deacetylation of 152 to give 153. 

At this stage, further investigation of the effect of the relative proportions of 

triethylamine, methanol and water may have yielded suitable deprotection conditions 

whilst maintaining the integrity of the dye-conjugated scaffold. Alternatively, 

deacetylation of the sugars prior to carrying out the CuAAC reaction may circumvent 

the problem of instability of the scaffold to deacetylation conditions; this procedure 

has been utilised in the synthesis of fullerene-based glycoconjugates.6 However, it was 

decided to focus attention on the synthesis of a scaffold with the correct fluorescent 

properties, which could then be conjugated to the sugars utilising the knowledge 

attained in sections 3.3.3.4 and 3.3.3.5. 

3.3.4 Route 3: Non-selective mono-nitration on tert-butyl calixarene 

In response to the loss of fluorescence on the conjugation of 142 to the aromatic 

amine, it was decided to put in place an aliphatic linker in the form of a glycine 

residue, which could be added via an amide bond to the mono-amine funtionalised 

calixarene. This would interrupt the extended conjugation across the amide bond and 

on to the aromatic ring of the calixarene. This also provided the opportunity to revisit 

the synthesis of the mono-nitrated product.  

To increase the efficiency of the synthesis of the scaffold, it was decided to attempt 

the mono-nitration directly on the tert-butyl calixarene. A time-controlled ipso-
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nitration has been accomplished previously using acetic acid and 100% nitric acid in 

much smaller amounts than used in the corresponding tetra-nitration.43 

Compound 2 was first tetra-alkylated in the same way as in the synthesis of 147. 

After stirring the reaction mixture for 48 hours the product was precipitated with 

excess water, filtered and washed with water to give 154 as light-brown powder in 

53% yield. This product was sufficiently pure to use in further reactions.  

The nitration reaction was tested on 154 by stirring it in DCM with acetic acid and 

100% nitric acid. After a 30, 60 or 90 minutes, the reaction was quenched by addition 

of water. After aqueous washes, the product (now identical to 145, the synthesis of 

which was previously attempted in section 3.3.2) was purified by column 

chromatography over silica gel (eluting with 8-10% ethyl acetate in hexane) and the 

proportions of starting material and products were assessed.  

The results are shown in Table 3.1. A reaction time of 30 minutes gave the 

optimum yield of 145 whilst returning maximal 154. Longer reaction times did not 

improve the yield of product, whilst returning less starting material. At 90 minutes, a 

significant amount of material was lost to a mixture of over-nitrated products.  

Table 3.1: Change in proportions of product 145 and recovered 154 over time. 

Reaction time / mins % recovery of 154 % yield of 145 

30 40 26 

60 13 23 

90 2 22 

 

In addition to removing one step from the synthesis, a noteworthy improvement in 

this route was the ease of purification relative to that of 148. This made this synthetic 

step a much more simple and efficient process.  

Reduction was carried out as in section 3.3.3. Compound 145 was heated to reflux 

with SnCl2 in ethanol for 18 hours, followed by removal of solvent and aqueous work 

up with sodium hydroxide, giving 155 as yellow solid in 83% yield. However, in this 

case, a small amount of unknown impurity was consistently found in the product. 

When the reaction was allowed to continue for 48 hours, the purity of the product was 

greatly diminished. Therefore 18 hours seems to be the optimum to allow the reaction 

to run to completion without diminishing the yield due to impurities.  
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Scheme 3.9: Synthesis of 155 via alkylation, mono-nitration and reduction. 

The addition of the glycine linker was accomplished in a similar manner to the 

conjugation of the dye molecule. To a stirred mixture of Boc-glycine, EDCI and 

HOBt in dry DMF under argon was added 155 in DMF, followed by DIPEA. This was 

stirred for 24 hours, followed by aqueous work-up and purification by column 

chromatography over silica gel (eluting with 5-7% ethyl acetate in DCM) to give 156 

as yellow solid in 64% yield.  

 
Scheme 3.10: Synthesis of 156 by amide coupling reaction of 155 with Boc-glycine; 

attempted deprotection to give 157. 

The 1H-NMR spectrum of 156 (see Figure 3.8) shows a doublet corresponding to 

the methylene of the glycine group at 3.71 ppm, which is coupled to the Gly-NH 

visible at 5.00 ppm as a broad singlet. The aromatic NH proton is visible at 7.23 ppm. 
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The methylenes of the alkynes adjacent to the functionalised ring once again give rise 

to a pair of doublet of doublets around 4.9 ppm; however, in this case there is a 

pronounced ‘rooftop’ effect due to the proximity of the two multiplets. The doublets 

of the other two alkynes are overlapping with one of the methylene bridge peaks at 

4.60 ppm.  

 
Figure 3.8: 1H-NMR spectrum of 156 (CDCl3). 

In order to perform the conjugation reaction with 142, the Boc protecting group 

next needed to be removed to reveal the required amine. Based on the deprotection of 

the amide-linked coumarin conjugate (132) carried out in Chapter 2, it was decided to 

use the TFA deprotection method instead of using gaseous HCl as this appeared to be 

a milder method and better suited to compounds featuring amide bonds. Compound 

156 was stirred with TFA in DCM, resulting in a change in colour of the light orange-

yellow solution to orange then brown, finally gaining a pink hue. After 40 minutes the 

reaction was quenched with water to give a grey emulsion. The acid was neutralised 

with saturated aqueous NaHCO3; on shaking the emulsion resolved to give an orange 

organic layer. However, the isolated orange-brown solid proved to be a complex 

mixture of products by 1H-NMR.  

It was unclear exactly what unexpected transformation was taking place in this 

reaction. However, it was reasoned that such a complex mixture would likely arise 

from side-reactions of the alkynes. The potential of propargyl ethers to give rise to 

side-reactions was noted in Chapter 2. It was therefore decided to synthesise an 

analogous structure with TBDMS-protected alkynes to determine if these groups were 

resulting in the failure of this Boc deprotection reaction.  

3
.7

1

5
.0

0

7
.2

3

4
.6

0

4
.8

7

ArNH GlyNH 

GlyCH2 

OCH2 OCH2 
and 

ArCH2 



 
 

Chapter 3: Calixarene-Based Glycoconjugates 

208 
 

 

3.3.5 Route 4: Synthesis of scaffold using TBDMS-protected alkynes 

The TBDMS groups could be installed as in Chapter 2 using LiHMDS as a strong 

base and TBDMSCl as a silylating reagent. This was first attempted on compound 145 

as this compound was already available.  

To a solution of 145 in THF, cooled to -70 °C, LiHMDS solution in THF was 

added followed by TBDMSCl, also dissolved in minimum THF. The mixture was 

allowed to warm to room temperature and stirred for 24 hours. After aqueous work-up 

with saturated NH4Cl, a dark orange oil was isolated, from which the product could 

not be precipitated with methanol. Instead of the TBDMS protected mono-nitro 

product (158), the 1H-NMR spectrum of this residue revealed a complex mixture of 

products, which could not be accounted for by mixtures of partially protected products 

since the triplets corresponding to the terminal alkyne protons were not present.  

 
Scheme 3.11: Attempted TBDMS protection of 145 to give 158; analogous protection 

of 154 to give 159. 

Due to the apparent incompatibility of the protection reaction with the nitrated 

calixarene, the TBDMS groups were applied instead to the precursor 154. To a stirred 

solution of this compound in THF, cooled to -80 °C, LiHMDS solution in THF was 

added followed by TBDMSCl, also dissolved in minimum THF. The mixture was 

allowed to warm to room temperature and stirred for 18 hours. After aqueous work-up 
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with saturated NH4Cl, the product was precipitated from the isolated residue with 

methanol to give 159 as light brown powder in 88% yield.  

The 1H-NMR spectrum of 159 compared with that of 154 (see Figure 3.9) shows 

exhaustive protection of the lower rim alkynes. The doublet around 4.8 ppm is now a 

singlet, and the triplet corresponding to the terminal alkyne position around 2.4 ppm  

is now absent. The symmetry of the molecule is preserved, giving rise to just two 

doublets for the methylene bridges due to the equivalence between each pair of 

diastereotopic hydrogens. Finally, the integrals of the TBDMS peaks (not shown) are 

correct for 4 protecting groups. 

 
Figure 3.9: 1H-NMR spectra of a) compound 154 and b) compound 159 showing loss 

of terminal alkyne triplet (circled) and change of methylene doublet in a) to singlet in 

b). 

The mono-nitration of 159 was then performed as in 3.3.4. To a stirred solution of 

159 in DCM was added glacial acetic acid and 100% nitric acid. After 45 or 60 

minutes, the reaction was quenched by addition of water. After aqueous washes the 

product was purified by column chromatography over silica gel (eluting with 4:1 then 

2:1 hexane/DCM) and the proportions of starting material and products assessed. 

Slightly longer reaction times were required in this case with 60 minutes being the 

optimum, as shown in Table 3.2. 

Table 3.2: Change in proportions of product 158 and recovered 159 over time. 

Reaction time / mins % recovery of 159 % yield of 158 

45 71 15 

60 70 29 
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The 1H-NMR spectrum of 158 (see Figure 3.10a) shows that the singlet 

corresponding to the protons on the nitrated ring has been shifted downfield to 7.37 

ppm as expected. The methylene groups of two of the alkynes give rise to singlets at 

4.78 and 4.58 ppm; however, the other two peaks around 4.94 ppm have satellite 

peaks. This indicates the presence of diastereotopic hydrogens on the two alkynes 

adjacent to the functionalised ring as previously observed for the non-TBDMS 

protected compounds. In this case, with the loss of the long range coupling to the 

terminal alkyne position, a pair of doublets is observed, with a pronounced ‘rooftop’ 

effect due to their proximity to one other.  

 

Figure 3.10: a) 1H-NMR spectrum and b) 2D-HMBC spectrum of 158. 
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Although the methyl peaks of the TBDMS groups are easily identified around 0 

ppm, in this instance the tert-butyl peaks on the protecting groups are in the same 

region as the aromatic tert-butyl peaks. These can be differentiated using the 2D-

HMBC spectrum (see Figure 3.10b). This shows a long range interaction of the proton 

peak at 0.73 ppm with a carbon at 33.5 ppm, which is shared by one of the aromatic 

proton peaks at 6.35 ppm. Likewise, the proton peak at 1.28 ppm and the aromatic 

proton peaks around 7.0 ppm share a mutual interaction with a carbon at 34.3 ppm. 

This indicates that the peaks at 0.73 and 1.28 ppm correspond to the aromatic tert-

butyl peaks; by elimination, those of the TBDMS groups must give rise to the singlets 

at 0.93 and 0.85 ppm. 

The reduction was next carried out by heating 158 with SnCl2 in ethanol to reflux 

for 24 hours. Following removal of solvent and aqueous work-up with sodium 

hydroxide, 160 was obtained as light yellow solid in 80% yield. In contrast with the 

reduction of 145, the product was isolated in good purity, suggesting that the 

impurities present in 155 were due to side-reactions of the unprotected alkynes. This is 

consistent with the findings in Chapter 2 that TBDMS protection of the alkyne 

improved the purity of the product of SnCl2 mediated reduction.  

 
Scheme 3.12: Synthesis of 161 via mono-nitration, reduction and amide coupling to 

Boc-glycine.  
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The Boc-glycine residue could now be installed. A mixture of Boc-glycine, EDCI 

and HOBt were stirred together in dry DMF under argon, followed by addition of 160 

in DMF and finally DIPEA, before stirring for 24 hours. Aqueous work-up followed 

by purification by column chromatography over silica gel (eluting with 14:1 

DCM/ethyl acetate) gave 161 as yellow solid in 71% yield.  

The stability of 161 to the conditions used for removal of the Boc group could now 

be tested, initially using the original method of gaseous HCl. Through a solution of 

161 in DCM was bubbled HCl gas, monitoring the reaction by TLC until all starting 

material was consumed. This took 1.5 hours, which was an unexpectedly long period 

of time for the removal of a single Boc group. The product also remained soluble in 

the DCM. Following this, the compound was neutralised with saturated NaHCO3 

solution and extracted with DCM. The deprotected product 162 was isolated as 

colourless glass of satisfactory purity in 82% yield. It was decided to purify this 

compound at the next stage in the synthesis to avoid loss of the amine during 

purification.  

 
Scheme 3.13: Synthesis of 163 via Boc-deprotection of 161 followed by conjugation 

with 142 and attempted synthesis of 164 by removal of TBDMS groups. 
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The same deprotection with TFA was also tested. After 45 minutes, all starting 

material was consumed; however, the product that was isolated was of significantly 

lower purity than that obtained with gaseous HCl. The former therefore seems to be 

the better method in this case, with the TBDMS protecting groups preventing the 

degradation previously observed in the Boc deprotection. 

The TBDMS groups could be removed either at this stage or after the conjugation 

reaction with the dye. It was decided to follow the latter route in the belief that the 

TBDMS groups would help to give a purer conjugation product.  

A mixture of 162, 142, EDCI, HOBt and DIPEA were stirred in DMF under argon 

for 18 hours. Aqueous work-up followed by column chromatography over silica gel 

(eluting with 47:3 DCM/ethyl acetate) gave 163 as a red solid in 51% yield. In 

contrast with 151, this product was fluorescent.  

The correct product was confirmed from the 1H-NMR spectrum (see Figure 3.11). 

The peaks arising from the aromatic protons on the dye can be found between 7.7 and 

8.8 ppm. The two NH protons are both now linked to conjugated systems and so are 

both around 7.1 ppm. They can be distinguished by the coupling experienced by the 

NH adjacent to the methylene of the glycine linker; these give a broad triplet at 7.19 

ppm and a doublet at 4.08 ppm, respectively. The methylenes of the alkynes are 

visible around 4.94 and 4.62 ppm; there seems to be little inequivalence between the 

protons on the alkyne adjacent to the functionalised ring in this case.  

 
Figure 3.11: 1H-NMR spectrum of 163 (CDCl3) 
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The TBDMS groups could now be removed using TBAF as discussed in Chapter 2. 

However, when a solution of 163 was stirred with TBAF in THF, there was a colour 

change from red to darker red brown, and following aqueous work-up with saturated 

NH4Cl the orange-brown powder that was isolated proved to be a complex mixture of 

products. Repeated reaction with a larger excess of TBAF gave a more complex 

mixture, indicating that the mixture was not due to partial deprotection, and was rather 

due to degradation of the product. This conclusion was supported by the concomitant 

loss of fluorescence in the product.  

It was therefore concluded that the TBDMS protecting groups would need to be 

removed prior to conjugation of the dye. In this case, 162 was used directly as the 

hydrochloride salt and was isolated as off-white solid in 95% yield following reaction 

with gaseous HCl. This was stirred with TBAF in THF for 18 hours, followed by 

aqueous work-up with saturated NH4Cl. Trituration of the residue with hexane 

removed the cleaved TBDMS groups, giving 157 as white powder in 78% yield.  

 
Scheme 3.14: Synthesis of 164 from 161 via Boc-deprotection, removal of TBDMS 

groups and conjugation with 142. 

The 1H-NMR spectrum of 157 is shown in Figure 3.12. The terminal alkyne 

protons are present once again and the triplets corresponding to these can be seen 

around 2.5 ppm. Two of the associated doublets can be seen overlapping with the 

methylene bridge peaks of the calixarene at 4.63 ppm, whilst the two doublet of 
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doublets corresponding to the alkyne methylenes adjacent to the functionalised ring 

are overlapping at 4.88 ppm, giving rise to a pronounced ‘rooftop’ effect.  

 
Figure 3.12: 1H-NMR spectrum of 157 (CDCl3). 

The dye molecule could now be installed. A mixture of 142, EDCI and HOBt were 

stirred in dry DMF under argon. To this was added 157 in DMF followed by DIPEA. 

After 18 hours, aqueous work-up was carried out using sodium hydroxide to remove 

the excess of 142. After extracting the poorly soluble product with excess ethyl 

acetate, the isolated solid was subjected to column chromatography over silica gel 

(eluting with 3:2 hexane/ethyl acetate) to remove impurities of higher RF than the 

product. Due to the poor solubility of the product causing significant smearing on the 

silica, it was then removed from the column using ethyl acetate. This partially purified 

product was finally triturated with DCM to remove the final impurity, giving 164 as 

bright-orange powder in 47% yield. 

The 1H-NMR spectrum of 164 (see Figure 3.13) confirms the correct product. The 

dye peaks can be seen between 8.8 and 7.8 ppm. The NH peaks are shifted further 

downfield than they were in 163 and lie beyond the dye peaks. This could be due to 

the use of DMSO instead of CDCl3. Again, they can be distinguished from one 

another by the coupling of one of the NH protons to the methylene bridge of the 

glycine linker, giving a broad triplet at 9.08 ppm and a doublet at 3.97 ppm. The 

terminal alkyne peaks are visible as a set of 3 triplets at 3.43 ppm, with the methylene 

groups of the alkynes giving poorly resolved doublets around 4.7 ppm. In this case 

there appears to be no inequivalence between the protons on the alkynes adjacent to 

the functionalised ring.   
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Figure 3.13: 1H-NMR spectrum of 164 (DMSO-d6).  

This final route therefore successfully gave a suitable fluorescent scaffold to 

synthesise a bi-functional glycoconjugate. Compound 164 was subsequently passed on 

to the research group of Sebastien Vidal to undergo the final conjugation reactions to 

the sugar (149) using CuAAC chemistry. 

3.4 Conclusions and further work 

In this chapter, a suitable synthetic route to a bifunctional calixarene, with a 

fluorescent dye on the upper rim and alkynes for sugar attachment on the lower rim, 

was developed. This synthesis allows for the diversification of the scaffold; different 

dyes could be conjugated to the upper rim of 157, whilst different azide-functionalised 

sugars could be conjugated to the lower rim. A set of compounds could potentially be 

synthesised with different fluorescence wavelengths associated with different sugar 

conjugates to allow visualisation of multiple sugar-binding targets.  

The utility of protecting the alkynes with TBDMS groups was demonstrated in 

their ability to improve the purity of products obtained in key transformations and, 

more importantly, to allow Boc-deprotection to be carried out on the upper rim 

without significantly degrading the product. This, along with the results obtained in 

Chapter 2, demonstrates that silylation of propargyl ethers has general utility in the 

synthesis of functionalised calixarenes.  

An optimised procedure for the conjugation of the sugar moieties remains to be 

found. As discussed in section 3.3.3.5, this would require investigation of a method 

for deacetylation of the sugar-conjugate without compromising the dye-linked 
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scaffold, or alternatively the conjugation of deacetylated sugars. Whilst the latter 

method would circumvent the problem of degradation of the molecule under 

deacetylation conditions, the purification of the conjugate could prove to be 

challenging. It can be expected that such a reaction would not be completely efficient 

due to the aforementioned steric hindrance of the cone conformer; although 152 could 

be successfully purified, an analogous purification by reversed-phase chromatography 

would be more difficult to optimise.  

Once the bifunctional scaffold has been successfully synthesised in its deacetylated 

state, the biological tests will be carried out by co-workers of Sebastien Vidal in 

Grenoble. This will allow confirmation of the binding to the conjugate to the free 

lectins, followed by investigation of the binding to P. aeruginosa.  

 

3.5 Experimental 

5,11,17,23-Tetra-tert-butyl-25,26,27-tripropargyloxy-28-hydroxy-calix[4]arene 

(143)44 

p-tert-Butylcalix[4]arene 2 (20.10 g, 31.02 mmol) was dissolved in DMF (300 mL) 

and heated to 30 °C. BaO (7.15 g, 46.78 mmol) and Ba(OH)2.8H2O (33.83 g, 107.39 

mmol) were added and the mixture stirred for 30 mins. n-Propargyl bromide (94.29 g, 

80% w/w in toluene, 660 mmol) was added and the mixture stirred for 18 hrs. Water 

(200 mL) and dilute HCl (200 mL) were added and the product extracted with DCM 

(3 x 100 mL), then washed with water (200 mL) and brine (200 mL). After drying 

over MgSO4, the solvent was removed under reduced pressure. Purification by column 

chromatography over silica gel (eluent: 2:1 DCM/Hexane) gave 143 as light yellow 

crystals (6.7 g, 28%). Mp  155-157 °C; IR  ν 1120, 1193, 1238, 1259, 1299, 1361, 

1391, 1477, 1582, 1594, 2125, 2860, 2900, 2950, 3261, 3286, 3539 cm-1; 1H-NMR  

(400 MHz, CDCl3):  δ 7.10 (s, 2 H, ArH), 7.05 (s, 2 H, ArH), 6.56 (s, 2 H, ArH), 6.52 

(s, 2 H, ArH), 5.60 (d, J = 2 Hz, 2 H, OCH2CCH), 6.62 (d, J = 2 Hz, 4 H, OCH2CCH), 

4.60 (d, J = 13 Hz, 2 H, ArCH2Ar), 4.345 (d, J = 13 Hz, 2 H, ArCH2Ar), 3.275 (d, J = 

13 Hz, 2 H, ArCH2Ar), 3.19 (d, J = 13 Hz, 2 H, ArCH2Ar), 2.48 (t, J = 2 Hz, 2 H, 

OCH2CCH), 2.42 (t, J = 2 Hz, 4 H, OCH2CCH), 1.31 (s, 9 H, C(CH3)3), 1.30 (s, 9 H, 

C(CH3)3), 0.82 (s, 18 H, C(CH3)3).  
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5,11,17-Tri-tert-butyl-23-nitro-25,26,27-tripropargyloxy-28-hydroxy-

calix[4]arene (144) 

Compound 143 (1.00 g, 1.31 mmol) was dissolved in DCM (5 mL). Glacial acetic 

acid (3 mL) was added, followed by 65% nitric acid (0.5 mL), dropwise over 2 

minutes. After stirring for 4 minutes, the reaction was quenched with H2O (20 mL). 

The product was extracted into DCM (20 mL), washed with water (2 x 20 mL) and 

dried (MgSO4). Removal of solvent under reduced pressure followed by purification 

by column chromatography over silica gel (eluent: 2:1 DCM/hexane) gave 144 as 

yellow crystals (0.43 g, 44%). Mp  195-197 °C; IR  ν 1100, 1118, 1192, 1247, 1288, 

1327, 1361, 1391, 1435, 1474, 1510, 1592, 2861, 2900, 2954, 2960, 3301, 3315 cm-1; 
1H NMR  (400 MHz, CDCl3):  δ 8.07 (s, 2 H, ArH), 7.14 (s, 2 H, ArH), 6.62 (d, J = 2 

Hz, 2 H, ArH), 6.52 (d, J = 2 Hz, 2 H, ArH), 5.00 (d, J = 2 Hz, 2 H, OCH2CCH), 4.73 

(dd, J = 16, 2 Hz, 2 H, OCH2CCH), 4.59 (dd, J = 16, 2 Hz, 2 H, OCH2CCH), 4.58 (d, 

J = 13 Hz, 2 H, ArCH2Ar), 4.41 (d, J = 14 Hz, 2 H, ArCH2Ar), 3.43 (d, J = 14 Hz, 2 

H, ArCH2Ar), 3.245 (d, J = 13 Hz, 2 H, ArCH2Ar), 2.56 (t, J = 2 Hz, 2 H, 

OCH2CCH), 2.49 (t, J = 2 Hz, 4 H, OCH2CCH), 1.33 (s, 9 H, C(CH3)3), 0.84 (s, 18 H, 

C(CH3)3); 
13C NMR (100 MHz, CDCl3): δ 159.9, 152.2, 151.0 147.2, 147.0, 139.6, 

136.1, 133.0, 130.6, 129.7, 126.2, 125.9, 124.8, 124.5, 81.7, 79.3, 76.2, 74.8, 63.1, 

60.2, 53.7, 34.4, 34.0, 32.7, 31.9, 31.8, 31.2; HRMS (APCI) m/z: [M+H]+ Calcd for 

C49H54NO6 752.3946; Found 752.3942. 

 

5,11,17-Tri-tert-butyl-23-nitro-25,26,27,28-tetrapropargyloxy-calix[4]arene 

(145) 

Method A: To a stirred solution of propargyl alcohol (157 µL, 2.66 mmol) in 

toluene (20 mL) was added TPP (0.70 g, 2.66 mmol). The solution was cooled in an 

ice bath and DIAD (0.53 mL, 2.66 mmol) was added dropwise. After stirring for 10 

minutes, 144 (1.00 g, 1.33 mmol) dissolved in minimum toluene was added. The 

mixture was stirred for 16 hours at room temperature. The solvent was removed under 

reduced pressure and the product triturated with MeOH/H2O, then filtered. 1H-NMR 

showed no reaction.  

Method B: To a stirred solution of propargyl alcohol (310 µl, 5.32 mmol) in 

toluene (20 mL) was added TPP (1.4 g, 5.32 mmol), followed by DEAD (0.84 mL, 

5.32 mmol), dropwise. After stirring for 10 minutes, 144 (1.00 g, 1.33 mmol) 

dissolved in minimum toluene was added. The mixture was stirred for 72 hours at 

room temperature and then the solvent removed under reduced pressure. After 
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attempted trituration with MeOH/H2O, the product was extracted into DCM and the 

solvent removed under reduced pressure. 1H-NMR showed no reaction. 

 

Calix[4]arene (146)39 

To a mixture of tert-butyl calix[4]arene 2 (100 g, 154.08 mmol) and phenol (65 

mL, 739 mmol) in 1 L of toluene was added AlCl3 (112.72 g, 133.34 mmol) in small 

portions. After stirring for 4 hours the mixture was poured onto ice, mixed, then left to 

separate. The organic layer was decanted from the surface, washed with water, and the 

product extracted with DCM. Solvent was removed under reduced pressure and the 

product precipitated from the residue with methanol to give 146 as off-white powder 

(51.78 g, 79%). Mp  295-297 °C; IR  ν 3150.5, 3093, 3058.5, 2931.5, 2867, 2769.5, 

2706.5, 1608, 1594, 1466, 1463, 1448, 1446.5, 1410.5, 1376, 1299, 1267.5, 1259.5, 

1245, 1236, 1213.5, 1202, 1194, 1145.5, 1094, 1077.5 cm-1; 1H NMR  (400 MHz, 

CDCl3); 10.18 (s, 4H, ArOH), 7.04 (d, 8H, J = 7.5 Hz, ArH), 6.72 (t, 4H, J = 7.5 Hz, 

ArH), 4.25 (br s, 4H ArCH2Ar), 3.53 (br s, 4H, ArCH2Ar). 

 

25,26,27,28- Tetra-propargyloxy-calix[4]arene (147)45 

To a stirred solution of calix[4]arene (146) (10.00 g, 47.12 mmol) in DMF (400 

mL) was added NaH (9.05 g, 376.96 mmol). The mixture stirred for 30 minutes before 

addition of propargyl bromide (56.05 g, 80% w/w in toluene, 376.96 mmol). After 

stirring for 72 hours, the solvent was removed under reduced pressure. Dilute HCl 

(200 mL) was added and the product extracted with DCM (3 x 100 mL), then washed 

with water (200 mL) and brine (200 mL). After drying over MgSO4, the solvent was 

removed under reduced pressure. Purification by column chromatography over silica 

(eluent: 2:1 hexane/toluene) gave 147 as fine white powder (10.00 g, 37%). Mp  156-

158 °C; IR  ν 3298.5, 3278, 3058, 3010, 2982, 2972, 2950.5, 2911, 2847, 2117, 1585, 

1455.5, 1428.5, 1364, 1295.5, 1278, 1268.5, 1248, 1241, 1198.5, 1184.5, 1178, 1156, 

1088, 1076.5 cm-1; 1H NMR  (300 MHz, CDCl3):  δ 6.75-6.65 (m, 12H, ArH), 4.78 (d, 

J = 2 Hz, 2H, OCH2CCH), 4.63 (d, J = 14 Hz, 4H, ArCH2Ar), 3.23 (d, J = 14 Hz, 4H, 

ArCH2Ar), 2.47 (t, J = 2 Hz, 2H, OCH2CCH). 

 

5-Nitro-25,26,27,28-tetra-propargyloxy-calix[4]arene (148) 

To a stirred solution of 147 (1.5 g, 2.60 mmol) in DCM (150 mL) was added 100% 

nitric acid (1.5 mL) and 95% sulphuric acid (6 drops). The solution was stirred for 1 

hour before quenching with H2O (100 mL). The product was extracted with DCM (3 x 
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50 mL) then washed with water (3 x 100 mL) and brine (100 mL). After drying over 

MgSO4 the solvent was removed under reduced pressure and the product purified by 

column chromatography over silica gel (eluent: 1:1 DCM/hexane) to give 147 (0.93 g, 

60%) and 148 (0.19 g, 12%). Impure fractions were recrystallized from 

DCM/methanol to give further 148 as off-white crystals (0.15 g, 9%). Mp  157-159 

°C; IR  ν 1159, 1197, 1208, 1258, 1264, 1303, 1344, 1436, 1455, 1521, 1588, 2125, 

2862, 2930, 2987, 3036, 3071, 3274, 3303 cm-1; 1H NMR  (400 MHz, CDCl3): δ 7.38 

(s, 2H, ArH), 6.94-6.82 (m, 6H, ArH), 6.50-6.43 (m, 3H, ArH), 4.85 (dd, J = 16, 2 Hz, 

2H, OCH2CCH), 4.81 (d, J = 2 Hz, 2H, OCH2CCH), 4.75 (dd, J = 16, 2 Hz, 2H, 

OCH2CCH), 4.71 (d, J = 14 Hz, 2H, ArCH2Ar), 4.65 (d, J = 2 Hz, 2H, OCH2CCH), 

4.56 (d, J = 14 Hz, 2H, ArCH2Ar), 3.28 (d, J = 14 Hz, 2H, ArCH2Ar), 3.24 (d, J = 14 

Hz, 2H, ArCH2Ar), 2.50-2.49 (m, 4H, OCH2CCH); 13C NMR (100 MHz, CDCl3) δ 

159.99, 155.34, 154.78, 143.42, 137.03, 136.34, 134.97, 134.56, 129.44, 128.56, 

128.19, 123.97, 123.46, 123.30, 80.42, 80.10, 79.01, 76.07, 75.12, 75.07, 61.69, 

61.25, 32.08, 31.76; HRMS (APCI) m/z: [M+H]+ Calcd for C40H32NO6 622.2224; 

Found 622.2225.  

 

6-Chloro-5-oxo-5H-benzo[a]phenoxazine-9-carboxylic acid (142)29 

A mixture of 2,3-dichloro-1,4-napthoquinone (2.27 g, 10 mmol), 4-amino-3-

hydroxybenzoic acid (1.53 g, 10 mmol) and potassium acetate (1.96 g, 20 mmol) were 

suspended in methanol (20 mL) and heated to reflux, with stirring, for 24 hours. The 

resulting orange-red suspension was cooled to room temperature, filtered and washed 

with water. The crude product was washed with hot methanol to give 142 as red 

powder (2.14 g, 66%). Mp  >320 °C (decomp.); IR  ν 3066, 1615.5, 1593, 1561, 1557, 

1479, 1470.5, 1446.5, 1411, 1372.5, 1362, 1306.5, 1283, 1235, 1224.5, 1201.5, 1194, 

1163, 1144, 1099, 1080, 1046, 1020.5 cm-1; 1H-NMR  (400 MHz, 7:1 Tol-d8/DMSO-

d6) δ 8.53 – 8.51 (m, 1H, ArH), 8.30 – 8.28 (m, 1H, ArH), 8.10 (dd, J = 8.0, 1.5 Hz, 

1H, ArH), 8.08 (d, J = 1.5 Hz, 1H, ArH), 7.65 (d, J = 8.0 Hz, 1H, ArH), 7.45 – 7.38 

(m, 2H, ArH). 

 

1-Azido-3,6-dioxaoct-8-yl-2’,3’,4’,6’-tetra-O-acetyl-β-D-galactopyranoside 

(149)41 

To a stirred solution of 2,3,4,6-tetra-O-acetyl-β-D-galactopyranoside (15 g, 38.43 

mmol), AgCO2CF3 (12.72 g, 57.58 mmol) and 2-[2-(2-chloroethoxy)ethoxy]ethanol 

(8.40 mL, 57.79 mmol) in dry DCM (300 mL) under argon was added SnCl4 (1 M in 
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DCM, 115.2 mL, 115.2 mmol) dropwise over 30 minutes. After 90 minutes, saturated 

aq. NaHCO3 was added to adjust pH to >8, and the solution was stirred for 12 hours. 

The biphasic solution was diluted with water (1000 mL) and product extracted with 

DCM (3 × 450 mL). The combined organic layers were washed with saturated aq. 

NaHCO3 (450 mL), water (3 × 450 mL) and brine (2 × 450 mL). After drying over 

Na2SO4, the solvent was removed under reduced pressure. The yellow oil was 

dissolved in DMF (450 mL) before adding sodium azide (12.48 g, 192 mmol) and 

Bu4NI (14.19 g, 38.42 mmol). The mixture was stirred at 70°C under argon for 18 h 

then cooled to RT, filtered, and the solid was washed with EtOAc (3 × 400 mL). The 

filtrate was diluted with EtOAc (800 mL) then washed with saturated aq. NaHCO3 (3 

× 900 mL), water (3 × 1000 mL), and brine (1000 mL). After drying over Na2SO4, the 

solvent was removed under reduced pressure and the residue was purified by flash 

column chromatography over silica gel (1:1 petroleum ether/ethyl acetate) to give 149 

as viscous, light-yellow oil (10.01 g, 52% yield). IR  ν 2937, 2871, 2102, 1743.5, 

1436.5, 1367.5, 1214, 1174.5, 1132, 1122, 1073, 1055, 1043.5 cm-1; 1H-NMR  (300 

MHz, CDCl3) δ 5.38 (dd, J = 3.4, 1.0 Hz, 1H, CH), 5.21 (dd, J = 10.5, 7.9 Hz, 1H, 

CH), 5.01 (dd, J = 10.5, 3.4 Hz, 1H, CH), 4.57 (d, J = 7.9 Hz, 1H, CH), 4.20 – 4.08 

(m, 2H, CH2), 3.99 – 3.88 (m, 2H, CH, OCH2), 3.79 – 3.64 (m, 9H, OCH2), 3.39 (t, J 

= 5.0 Hz, 2H, CH2N3), 2.14 (s, 3H, CH3), 2.06 (s, 3H, CH3), 2.04 (s, 3H, CH3), 1.98 

(s, 3H, CH3); 
13C-NMR  (100 MHz, CDCl3) δ 169.80, 169.74, 169.52, 168.92, 100.77, 

70.43, 70.20, 70.17, 70.14, 69.89, 69.54, 68.55, 68.40, 66.75, 60.92, 53.37, 50.18, 

20.21, 20.11, 20.09, 20.02. 

 

NRD appended tetra-propargyloxy-calix[4]arene (151) 

A mixture of 148 (0.58 g, 0.93 mmol) and SnCl2·2H2O (1.37 g, 6.05 mmol) was 

heated to reflux in ethanol (60 mL) with stirring for 48 hours. Solvent was removed 

under reduced pressure and DCM (50 mL) added. After washing with 10% NaOH 

(100 mL), the product was extracted with DCM (3 x 50 mL) and washed with water (2 

x 100 mL) then brine (100 mL). After drying over MgSO4, the solvent was removed 

under reduced pressure to give a brown glass, which was verified by 1H NMR as the 

intermediate amine 150 (0.35 g, 63%). 1H-NMR  (400 MHz, CDCl3) δ 6.82 – 6.67 (m, 

9H, ArH), 6.12 (s, 2H, ArH), 4.84 (d, J = 2 Hz, 2H, OCH2CCH), 4.81 (d, J = 2 Hz, 

2H, OCH2CCH), 4.81 (d, J = 2 Hz, 2H, OCH2CCH), 4.75 (d, J = 2 Hz, 2H, 

OCH2CCH), 4.69 (d, J = 13 Hz, 2H, ArCH2Ar), 4.60 (d, J = 13 Hz, 2H, ArCH2Ar), 

3.28 (d, J = 13 Hz, 2H, ArCH2Ar), 3.15 (d, J = 13 Hz, 2H, ArCH2Ar), 2.50 – 2.49 (m, 
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4H, OCH2CCH). The crude amine was stirred with 142 (0.19 g, 0.59 mmol), 

EDCI·HCl (0.25 g, 1.30 mmol), HOBt hydrate (0.17 g, 1.30 mmol) and NMM (0.26 

mL, 2.42 mmol) in DMF (6 mL) for 18 hours. Water was added and the precipitate 

filtered. The solid was dissolved in ethyl acetate and washed with water (200 mL) and 

brine (200 mL). After drying over MgSO4, the solvent was removed under reduced 

pressure and the solid purified by column chromatography over silica gel (eluent: 

DCM) to give 151 as a red solid (0.20 g, 37%). Mp  250 °C (decomp.); IR  ν 3440, 

3288.5, 3258, 3061, 3014, 2991, 2920.5, 2878.5, 2851, 2127, 2112, 1675.5, 1673, 

1640.5, 1628.5, 1604, 1592.5, 1587, 1565, 1534, 1531.5, 1474, 1459.5, 1455, 1440, 

1424, 1413, 1358.5, 1331.5, 1302.5, 1282.5, 1256.5, 1234.5, 1212.5, 1203.5, 1191, 

1160, 1144.5, 1127.5, 1089, 1078, 1043.5, 1017.5, 1008.5 cm-1; 1H-NMR  (400 MHz, 

CDCl3) δ 8.75 – 8.73 (m, 1H, ArHNRD), 8.37 – 8.35 (m, 1H, ArHNRD), 7.93 – 7.76 (m, 

5H, ArHNRD), 7.56 (br s, 1H, ArNH), 7.00 (br s, 2H, ArH), 6.84 – 6.79 (m, 4H, ArH), 

6.74 – 6.71 (m, 4H, ArH), 6.67 – 6.62 (m, 1H, ArH), 4.82 (d, J = 2 Hz, 2H, 

OCH2CCH), 4.82 (d, J = 2 Hz, 2H, OCH2CCH), 4.78 (d, J = 2 Hz, 2H, OCH2CCH), 

4.77 (d, J = 2 Hz, 2H, OCH2CCH), 4.68 (d, J = 13 Hz, 2H, ArCH2Ar), 4.64 (d, J = 13 

Hz, 2H, ArCH2Ar), 3.27 (d, J = 13 Hz, 2H, ArCH2Ar), 3.25 (d, J = 13 Hz, 2H, 

ArCH2Ar), 2.50 – 2.48 (m, 4H, OCH2CCH). 13C-NMR  (100 MHz, CDCl3) δ 177.35, 

163.23, 155.08, 155.01, 152.35, 147.35, 146.40, 143.33, 137.96, 136.34, 135.48, 

135.44, 135.02, 134.28, 132.73, 132.57, 131.15, 129.93, 129.76, 128.52, 128.38, 

128.34, 126.71, 125.05, 124.43, 123.52, 123.22, 120.60, 115.24, 114.86, 80.44, 80.33, 

75.10, 74.88, 74.84, 61.34, 61.27, 61.21, 32.10, 31.94; HRMS (APCI) m/z: [M+H]+ 

Calcd for C57H40ClN2O7 899.2519; Found 899.2533.  

 

NRD appended 25,26,27,28-Tetra-{1’-[(2’’’,3’’’,4’’’ ,6’’’-tetra-O-acetyl- β-D-

galactopyranosyloxy)-3”,6”-dioxaoct-8”-yl]-1’,2’,3’ -triazol-4’-ylmethyleneoxy}-

calix[4]arene (152) 

A mixture of 149 (169 mg, 333.96 µmol), 151 (50 mg, 55.66 µmol), CuSO4 (0.1 M 

in water, 278 µL, 27.83 µmol) and sodium ascorbate (17 mg, 83.49 µmol) in DMF (3 

mL) was stirred at room temperature under argon for 24 hours. Further 149 (28.17 mg, 

55.66 µmol), CuSO4 (0.1 M in water, 278 µL, 27.83 µmol) and sodium ascorbate (17 

mg, 83.49 µmol) was added and stirring continued for 24 hours. After removing 

solvent under reduced pressure, the product was purified by column chromatography 

over silica gel (eluent: 1:1 petroleum ether/ethyl acetate, ethyl acetate and 19:1 ethyl 

acetate/methanol) to give 152 as dark-orange solid (0.16 mg, 44%). Mp  68-70 °C; IR  



 
 

Chapter 3: Calixarene-Based Glycoconjugates 

223 
 

 

ν 2920.5, 2871.5, 1790, 1651, 1595.5, 1565.5, 1540.5, 1460, 1435, 1367, 1301.5, 

1218.5, 1176.5, 1134, 1045, 1018.5 cm-1; 1H-NMR  (300 MHz, CDCl3) δ 8.75 – 8.72 

(m, 1H, ArHNRD), 8.37 – 8.34 (m, 1H, ArHNRD), 8.14 (s, 1H, NH), 7.96 – 7.75 (m, 9H, 

ArHNRD and ArHTriazole), 7.08 (s, 1H, ArH), 7.04 (s, 1H, ArH), 6.70 – 6.52 (m, 9H, 

ArH), 5.38 – 5.36 (m, 4H, CH), 5.21 – 5.14 (m, 8H, CH and OCH2C), 5.06 – 4.99 (m, 

8H, CH and OCH2C), 4.57 – 4.52 (m, 12H, CH and CH2N), 4.22 – 4.07 (m, 12H, 

ArCH2Ar and CH2OAc), 3.96 – 3.84 (m, 16H, CH and OCH2), 3.72 – 3.55 (m, 28H, 

OCH2), 2.97 (d, J = 13 Hz, 4H, ArCH2Ar), 2.12 – 1.96 (m, 48H, CH3); 
13C-NMR  (75 

MHz, CDCl3) δ 177.44, 170.46, 170.43, 170.29, 170.18, 169.64, 169.52, 163.13, 

155.12, 154.75, 152.13, 147.52, 146.70, 143.97, 143.53, 138.05, 136.51, 135.86, 

135.02, 134.62, 134.47, 132.80, 132.47, 131.37, 130.01, 128.42, 128.29, 128.15, 

126.79, 125.16, 124.66, 122.88, 120.54, 115.25, 115.19, 101.38, 70.92, 70.67, 70.52, 

70.20, 69.58, 69.15, 68.84, 67.09, 66.84, 61.28, 50.13, 31.95, 31.44, 29.72, 29.39, 

22.72, 20.85, 20.74, 20.72, 20.64; ESI-MS m\z: [M+2H]2+ 1461.5, [M+2Na]2+ 

1483.5, [M]+ 2921.8, [M+Na]+ 2943.8. 

 

NRD appended 25,26,27,28-Tetra-{1’-[(β-D-galactopyranosyloxy)-3”,6”-

dioxaoct-8”-yl]-1’,2’,3’-triazol-4’-ylmethyleneoxy} -calix[4]arene (153) 

Compound 152 (62 mg, 21.22 µmol) was stirred in a mixture of 1:2:1 

Et3N/methanol/water (2.2 mL) under argon for 42 hours, then the solvent removed 

under reduced pressure. Attempted purification by reversed-phase column 

chromatography over C18 failed to give the desired product. 

 

5,11,17,23-Tetra-tert-butyl-25,26,27,28-tetra-propargyloxy-calix[4]arene 

(154)21 

To a stirred suspension of tert-butyl-calix[4]arene 2 (8 g, 12.33 mmol) in DMF 

(160 mL) was added NaH (2.35 g, 97.92 mmol) and the mixture stirred for 1 hour. 

Propargyl bromide (8.74 mL, 80% w/w in toluene, 81.12 mmol) was added and the 

reaction stirred for 48 hours. Water was added and the precipitate filtered, washed 

with water twice and air dried to give 154 as light brown powder (5.55 g, 53%). Mp  

204-206 °C; IR  ν 3309.5, 3283, 2965.5, 2951, 2921, 2906, 2861.5, 1602, 1583.5, 

1478.5, 1474, 1438, 1434.5, 1414.5, 1392.5, 1363.5, 1299.5, 1273.5, 1261, 1237, 

1192, 1121.5, 1107, 1019.5, 1009, 1003 cm-1; 1H-NMR  (400 MHz, CDCl3) δ 6.79 (s, 

8H, ArH), 4.80 (d, J = 2 Hz, 8H, OCH2CCH), 4.61 (d, J = 13 Hz, 4H, ArCH2Ar), 3.17 
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(d, J = 13 Hz, 4H, ArCH2Ar), 2.47 (t, J = 2 Hz, 4H, OCH2CCH), 1.08 (s, 36H, 

C(CH3)3). 

 

5,11,17-Tetra-tert-butyl-23-nitro-25,26,27,28-tetra-propargyloxy-calix[4]arene 

(145) 

To a stirred solution of 154 (1.00 g, 1.125 mmol) in DCM (72 mL) was added 

glacial acetic acid (1.84 mL) and 100% HNO3 (1.04 mL). After stirring for 30 

minutes, the reaction was quenched with water (50 mL). The product was extracted 

with DCM (3 x 50 mL), washed with water (3 x 200 mL) and brine (200 mL). After 

drying over MgSO4, the solvent was removed under reduced pressure and the residue 

purified by column chromatography over silica gel (eluent: 8-10% ethyl acetate in 

hexane) to give recovered 154 (0.4 g, 40%) as white powder and 145 (0.26 g, 26%) as 

a light yellow solid. Mp  87-89 °C; IR  ν 3296, 3156, 2961, 2934, 2874, 1731, 1669.5, 

1609.5, 1583.5, 1518.5, 1478, 1463, 1437.5, 1392.5, 1361.5, 1341.5, 1308.5, 1261, 

1231.5, 1194.5, 1162, 1117.5, 1089, 1043, 1002 cm-1; 1H-NMR  (400 MHz, CDCl3) δ 

7.37 (s, 2H, ArH), 7.12 (d, J = 2 Hz, 2H, ArH), 7.08 (d, J = 2 Hz, 2H, ArH), 6.31 (s, 

2H, ArH), 4.98 (dd, J = 16, 2 Hz, 2H, OCH2CCH), 4.83 (dd, J = 16, 2 Hz, 2H, 

OCH2CCH), 4.75 (d, J = 13 Hz, 2H, ArCH2Ar), 4.73 (d, J = 2 Hz, 2H, OCH2CCH), 

4.56 (d, J = 2 Hz, 2H, OCH2CCH), 4.51 (d, J = 13 Hz, 2H, ArCH2Ar), 3.23 (d, J = 13 

Hz, 2H, ArCH2Ar), 3.20 (d, J = 13 Hz, 2H, ArCH2Ar), 2.50 (t, J = 2 Hz, 2H, 

OCH2CCH), 2.50 (t, J = 2 Hz, 1H, OCH2CCH), 2.47 (t, J = 2 Hz, 1H, OCH2CCH), 

1.32 (s, 18H, C(CH3)3), 0.69 (s, 9H, C(CH3)3). 
13C-NMR (100 MHz, CDCl3) δ 

159.46, 153.05, 152.11, 146.81, 145.86, 143.39, 136.32, 136.21, 134.74, 132.63, 

126.68, 125.20, 124.80, 123.17, 81.28, 80.24, 79.02, 75.94, 74.87, 74.72, 62.09, 

61.95, 60.73, 34.32, 33.44, 32.47, 32.12, 31.67, 30.75. HRMS (APCI) m/z: [M+H]+ 

Clcd for C52H56NO6 790.4102; Found 790.4110. 

 

5,11,17-Tetra-tert-butyl-23-BocGly-25,26,27,28-tetra-propargyloxy-

calix[4]arene (156) 

A mixture of 145 (1.02 g, 1.29 mmol) and SnCl2·2H2O (2.91 g, 12.9 mmol) in 

ethanol (70 mL) was heated to reflux for 18 hours. The solvent was removed under 

reduced pressure and the residue stirred with 10% NaOH (100 mL) for 5 minutes. The 

product was extracted with DCM (3 x 100 mL) then washed with water (200 mL) and 

brine (200 mL). After drying over MgSO4, the solvent was removed under reduced 

pressure to give the crude intermediate amine 155 as a yellow solid (crude yield: 0.81 
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g, 83%). 1H NMR  (400 MHz, CDCl3) δ 7.02 (d, J = 2.5 Hz, 2H, ArH), 6.94 (d, J = 2.5 

Hz, 2H, ArH), 6.42 (s, 2H, ArH), 5.83 (s, 2H, ArH), 4.88 (d, J = 2 Hz, 4H, 

OCH2CCH), 4.63 (d, J = 2 Hz, 2H, OCH2CCH), 4.62 (d, J = 12.9 Hz, 2H), 4.58 (d, J 

= 2 Hz, 2H, OCH2CCH), 4.54 (d, J = 13 Hz, 2H, ArCH2Ar), 3.18 (d, J = 13 Hz, 2H, 

ArCH2Ar), 3.05 (d, J = 13 Hz, 2H, ArCH2Ar), 2.47 (t, J = 2 Hz, 1H, OCH2CCH), 2.46 

(t, J = 2 Hz, 2H, OCH2CCH), 2.42 (t, J = 2 Hz, 1H, OCH2CCH), 1.26 (s, 18H, 

C(CH3)3), 0.86 (s, 9H, C(CH3)3). A mixture of BocGly (0.70 g, 4.01 mmol), 

EDCI·HCl (0.85 g, 4.42 mmol) and HOBt hydrate (0.60 g, 4.42 mmol) were stirred 

under argon in dry DMF (20 mL). To this was added 155 in dry DMF (1 mL) and 

DIPEA (1.44 mL, 8.24 mmol). The mixture was stirred for 24 hours and the solvent 

removed under reduced pressure. The residue was redissolved in DCM (100 mL) and 

washed with 10% NaOH (100 mL), water (100 mL) then brine (100 mL). After drying 

over MgSO4, the solvent was removed under reduced pressure and the residue purified 

by column chromatography over silica gel (eluent: 5-7% ethyl acetate in DCM) to 

give 156 as a light yellow solid (1.18 g, 1.29 mmol). Mp  106-108 °C; IR  ν 3405.5, 

3290, 2954.5, 2931.5, 2906, 2866, 1685.5, 1603.5, 1539, 1505.5, 1476.5, 1437, 

1417.5, 1392, 1363.5, 1285, 1274.5, 1251.5, 1241.5, 1193.5, 1166, 1132.5, 1116, 

1054, 1014 cm-1; 1H-NMR  (400 MHz, CDCl3) δ 7.23 (s, 1H, ArNH), 7.02 (s, 2H, 

ArH), 6.97 (s, 2H, ArH), 6.65 (s, 2H, ArH), 6.39 (s, 2H, ArH), 4.99 (s, 1H, CH2NH), 

4.90 (dd, J = 16, 2 Hz, 2H, OCH2CCH), 4.84 (dd, J = 16, 2 Hz, 2H, OCH2CCH), 4.63 

– 4.57 (m, 8H, OCH2CCH and ArCH2Ar), 3.72 (d, J = 6 Hz, 2H, CH2NH), 3.18 (d, J 

= 13 Hz, 2H, ArCH2Ar), 3.15 (d, J = 13 Hz, 2H, ArCH2Ar), 2.49 – 2.47 (m, 3H, 

OCH2CCH), 2.43 (t, J = 2 Hz, 1H, OCH2CCH), 1.45 (s, 9H, CO2C(CH3)3), 1.26 (s, 

18H, C(CH3)3), 0.81 (s, 9H, C(CH3)3); 
13C-NMR  (100 MHz, CDCl3) δ 166.70, 

156.29, 153.10, 152.44, 151.38, 146.08, 145.31, 135.74, 135.26, 135.07, 133.37, 

132.33, 125.90, 125.27, 124.85, 119.40, 81.45, 80.63, 80.51, 80.38, 74.90, 74.66, 

74.47, 61.79, 61.54, 60.84, 45.41, 34.18, 33.68, 32.44, 32.25, 31.67, 31.02, 28.41; 

HRMS (NSI) m/z: [M+NH4]
+ Calcd for C59H72N3O7 934.5365; Found 934.5352.  

 

5,11,17-Tetra-tert-butyl-23-Gly-25,26,27,28-tetra-propargyloxy-calix[4]arene 

(157) 

To a stirred solution of 156 (1.06 g, 1.16 mmol) in DCM (8 mL) was added TFA (4 

mL). After stirring for 40 minutes, the solution was diluted with DCM (50 mL), then 

water (50 mL) was added followed by sufficient saturated NaHCO3 to adjust to pH > 

7. After mixing thoroughly the emulsion separated and the product was extracted with 
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DCM (3 x 50 mL) and washed with brine (100 mL). After drying over MgSO4, the 

solvent was removed under reduced pressure to give an orange-brown solid that was 

revealed by 1H NMR to be a complex mixture of products.  

 

5,11,17-Tri-tert-butyl-23-nitro-25,26,27,28-tetra-[tert-butyl(dimethyl)silyl]-

propargyloxy-calix[4]arene (158) 

A solution of 145 (2.88 g, 3.65 mmol) in THF (25 mL) was cooled to -80 °C. To 

this was added 1 M LiHMDS in THF (21.9 mL, 21.9 mmol) followed by TBDMSCl 

(3.30 g, 21.9 mmol) in minimum THF. The mixture was allowed to warm to room 

temperature and stirred for 24 hours before quenching with saturated ammonium 

chloride (100 mL). Water (200 mL) was added to dilute and the product extracted 

with DCM (3 x 100 mL) then washed with brine (200 mL). After drying over MgSO4, 

the solvent was removed under reduced pressure to give sticky dark-orange oil. 1H-

NMR showed loss of the terminal alkyne triplet but a complex mixture of products.  

 

5,11,17,23-Tetra-tert-butyl-25,26,27,28-tetra-[tert-butyl(dimethyl)silyl]-

propargyloxy-calix[4]arene (159) 

A solution of 154 (10.00 g, 12.48 mmol) in THF (87 mL) was cooled to -80 °C. To 

this was added 1 M LiHMDS in THF (54.91 mL, 54.91 mmol) followed by 

TBDMSCl (11.29 g, 74.88 mmol) in minimum THF. The mixture was allowed to 

warm to room temperature and stirred for 18 hours before quenching with saturated 

ammonium chloride (150 mL). The product was extracted with ethyl acetate (3 x 150 

mL), washed with dilute HCl (200 mL) and brine (200 mL). After drying over 

MgSO4, the solvent was removed under reduced pressure and the product precipitated 

from the residue with methanol to give 159 as light brown powder (13.87 g, 88%). 

Mp  219-221 °C; IR  ν 2953, 2928.5, 2902, 2856.5, 2855, 2176, 1603, 1586, 1480.5, 

1471, 1462.5, 1411.5, 1391, 1361.5, 1314.5, 1301.5, 1280, 1247.5, 1197, 1121, 1106, 

1097, 1040.5 cm-1; 1H-NMR  (400 MHz, CDCl3) δ 6.75 (s, 8H, ArH), 4.82 (s, 8H, 

OCH2), 4.52 (d, J = 13 Hz, 4H, ArCH2Ar), 3.11 (d, J = 13 Hz, 4H, ArCH2Ar), 1.06 (s, 

36H, C(CH3)3), 0.88 (s, 36H, SiC(CH3)3), 0.08 (s, 24H, SiCH3); 
13C-NMR  (100 MHz, 

CDCl3) δ 152.09, 145.28, 134.79, 124.87, 103.58, 89.53, 61.39, 33.99, 32.75, 31.57, 

26.30, 16.61, -4.43; MALDI-TOF  m/z: [M+Na]+ 1281.40. 
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5,11,17-Tri-tert-butyl-23-nitro-25,26,27,28-tetra-[tert-butyl(dimethyl)silyl]-

propargyloxy-calix[4]arene (158) 

To a stirred solution of 159 (1.57 g, 1.25 mmol) in DCM (72 mL) was added 

glacial acetic acid (1.85 mL) and 100% nitric acid (1.04 mL). The solution was stirred 

for 1 hour before quenching with water (100 mL). The product was extracted with 

DCM (3 x 50 mL), washed with water (3 x 200 mL) and brine (200 mL). After drying 

over MgSO4, the solvent was removed under reduced pressure and the product 

purified by column chromatography over silica gel (eluent: 4:1 then 2:1 hexane/DCM) 

to give recovered 159 (1.10 g, 70%) as white powder and 158 (0.45 g, 29%) as a light 

yellow solid. Mp  200-202 °C; IR  ν 2953, 2928, 2898.5, 2885, 2856.5, 2181, 1585, 

1521.5, 1481, 1470.5, 1462, 1411.5, 1390.5, 1361.5, 1341, 1312.5, 1278.5, 1256, 

1249, 1205, 1195, 1158, 1116.5, 1085.5, 1035 cm-1; 1H-NMR  (400 MHz, CDCl3) δ 

7.37 (s, 2H, ArH), 7.04 (d, J = 2 Hz, 2H, ArH), 6.98 (d, J = 2 Hz, 2H, ArH), 6.35 (s, 

2H, ArH), 4.94 (s, 2H, OCH2), 4.92 (s, 2H, OCH2), 4.78 (s, 2H, OCH2), 4.66 (d, J = 

13 Hz, 2H, ArCH2Ar), 4.58 (s, 2H, OCH2), 4.44 (d, J = 13 Hz, 2H, ArCH2Ar), 3.18 

(d, J = 13 Hz, 2H, ArCH2Ar), 3.16 (d, J = 13.3 Hz, 2H, ArCH2Ar), 1.28 (s, 18H, 

C(CH3)3), 0.92 (s, 9H, SiC(CH3)3), 0.86 (s, 9H, SiC(CH3)3), 0.85 (s, 18H, SiC(CH3)3), 

0.73 (s, 9H, C(CH3)3), 0.12 (s, 6H, SiCH3), 0.07 (s, 6H, SiCH3), 0.06 (s, 12H, SiCH3); 
13C-NMR  (100 MHz, CDCl3) δ 159.61, 152.12, 152.02, 146.36, 145.71, 143.27, 

136.68, 136.36, 135.02, 133.08, 126.30, 124.88, 124.73, 123.08, 103.17, 102.70, 

101.14, 91.45, 90.07, 89.95, 62.62, 62.53, 60.67, 34.26, 33.52, 32.68, 32.33, 31.71, 

30.87, 26.23, 26.21, 26.10, 16.58, 16.55, 16.49, -4.51, -4.61; MALDI-TOF  m/z: 

[M+Na]+ 1270.37, [M+K]+ 1286.33. 

 

5,11,17-Tri-tert-butyl-23-amino-25,26,27,28-tetra-[tert-butyl(dimethyl)silyl]-

propargyloxy-calix[4]arene (160) 

A mixture of 158 (7.81 g, 6.26 mmol) and SnCl2·2H2O (14.12 g, 62.60 mmol) in 

ethanol (330 mL) were heated to reflux for 24 hours. The solvent was removed under 

reduced pressure and the residue stirred with 10% NaOH for 5 minutes. The product 

was extracted with DCM (3 x 100 mL) then washed with water (2 x 200 mL) and 

brine (200 mL). After drying over MgSO4, the solvent was removed under reduced 

pressure to give 160 as a light yellow solid (6.07 g, 80%). Mp  95-97 °C; IR  ν 2952.5, 

2927.5, 2899.5, 2885, 2855, 2176.5, 1741, 1615, 1605.5, 1589, 1479.5, 1471, 1463, 

1411.5, 1390.5, 1361.5, 1317.5, 1303.5, 1281.5, 1248.5, 1194.5, 1137.5, 1116, 1028, 

1005 cm-1; 1H-NMR  (400 MHz, CDCl3) δ 6.96 (d, J = 2.5 Hz, 2H, ArH), 6.88 (d, J = 
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2.5 Hz, 2H, ArH), 6.41 (s, 2H, ArH), 5.82 (s, 2H; ArH), 4.93 (d, J = 1.5 Hz, 4H, 

OCH2), 4.64 (s, 2H, OCH2), 4.55 (s, 2H, OCH2), 4.54 (d, J = 13 Hz, 2H, ArCH2Ar), 

4.45 (d, J = 13 Hz, 2H, ArCH2Ar), 3.13 (d, J = 13 Hz, 2H, ArCH2Ar), 3.00 (d, J = 13 

Hz, 2H, ArCH2Ar), 2.87 (s, 2H, NH2), 1.24 (s, 18H, C(CH3)3), 0.93 (s, 9H, 

SiC(CH3)3), 0.92 (s, 9H, SiC(CH3)3), 0.85 (s, 9H, C(CH3)3), 0.85 (s, 18H, SiC(CH3)3), 

0.11 (s, 6H, SiCH3), 0.11 (s, 6H, SiCH3), 0.04 (s, 12H, SiCH3); 
13C-NMR  (100 MHz, 

CDCl3) δ 152.27, 152.25, 147.90, 145.36, 144.92, 140.94, 136.44, 135.90, 135.05, 

133.61, 125.34, 124.85, 124.72, 114.86, 103.66, 103.41, 103.14, 89.56, 89.52, 89.20, 

62.47, 62.33, 60.51, 34.14, 33.75, 32.57, 32.54, 31.77, 31.71, 31.14, 26.27, 26.26, 

26.24, 16.59, 16.58, 16.55, -4.45, -4.48, -4.50; MALDI-TOF  m/z: [M+Na]+ 1239.97, 

[M+K] + 1255.95.  

 

5,11,17-Tri-tert-butyl-23-BocGly-25,26,27,28-tetra-[tert-butyl(dimethyl)silyl]-

propargyloxy-calix[4]arene (161) 

A mixture of Boc-glycine (1.71 g, 9.78 mmol), EDCI (1.87 g, 9.78 mmol) and 

HOBt (1.32 g, 9.78 mmol) was stirred in DMF (10 mL) under argon for 5 minutes. To 

this was added a solution of 160 (5.95 g, 4.89 mmol) in DMF (40 mL) and DIPEA 

(3.41 mL, 19.56 mmol). The mixture was stirred for 24 hours, the solvent removed 

under reduced pressure and water (200 mL) added. The product was extracted with 

DCM (3 x 100 mL), washed with water (2 x 200 mL) and brine (200 mL). After 

drying over MgSO4, the solvent was removed under reduced pressure and the product 

purified by column chromatography over silica gel (eluent: 19:1 DCM/ethyl acetate) 

to give 161 as a yellow solid. Mp  114-116 °C; IR  ν 2952.5, 2927, 2898.5, 2855.5, 

2173, 2160.5, 1731, 1701, 1698, 1685.5, 1680, 1603.5, 1558, 1539, 1504, 1478, 1470, 

1462.5, 1420, 1417.5, 1390.5, 1361.5, 1314.5, 1281, 1248.5, 1210, 1194, 1169, 

1132.5, 1115.5, 1028 cm-1; 1H NMR  (400 MHz, CDCl3) δ 7.17 (s, 1H, ArNH), 6.95 

(s, 2H, ArH), 6.91 (s, 2H, ArH), 6.63 (s, 2H, ArH), 6.39 (s, 2H, ArH), 5.01 (s, 1H, 

CH2NH), 4.91 (s, 4H, OCH2), 4.65 (s, 2H, OCH2), 4.62 (s, 2H, OCH2), 4.52 (d, J = 13 

Hz, 2H, ArCH2Ar), 4.51 (d, J = 13 Hz, 2H, ArCH2Ar), 3.73 (d, J = 6 Hz, 2H, 

CH2NH), 3.13 (d, J = 13 Hz, 2H, ArCH2Ar), 3.10 (d, J = 13 Hz, 2H, ArCH2Ar), 1.45 

(s, 9H, NHCO2C(CH3)3), 1.23 (s, 18H, C(CH3)3), 0.91 (s, 18H, SiC(CH3)3), 0.85 (s, 

18H, SiC(CH3)3), 0.82 (s, 9H, C(CH3)3), 0.11 (s, 6H, SiCH3), 0.10 (s, 6H, SiCH3), 

0.05 (s, 12H, SiCH3); 
13C NMR (100 MHz, CDCl3) δ 166.45, 156.08, 152.09, 152.07, 

151.43, 145.51, 144.84, 136.10, 135.32, 133.56, 131.88, 125.42, 124.78, 124.55, 

119.38, 103.32, 102.90, 102.67, 89.70, 89.56, 80.41, 62.16, 60.53, 60.40, 45.25, 
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34.01, 33.55, 32.44, 32.33, 31.60, 30.95, 28.30, 26.10, 26.09, 16.45, 16.41, -4.64; 

MALDI-TOF  m/z: [M+Na]+ 1397.63, [M+K]+ 1413.49. 

 

NRD appended tetra-[tert-butyl(dimethyl)silyl]propargyloxy-calix[4]arene 

(163) 

Through a stirred solution of 161 (0.15 g, 0.11 mmol) in DCM (10 mL) was 

bubbled HCl(g) for 1.5 hours, at which point no more starting material could be seen 

by TLC (19:1 DCM/ethyl acetate). Water (10 mL) was added then the pH adjusted to 

above 7 with saturated NaHCO3. The product was extracted with DCM (3 x 50 mL) 

and washed with brine (100 mL). After drying over MgSO4, the solvent was removed 

under reduced pressure to give the intermediate amine 162 as a colourless glass (crude 

yield 0.11 g, 82%). To a solution of this in dry DMF (1 mL) was added 142 (0.085 g, 

0.25 mmol), EDCI·HCl (0.10 g, 0.52 mmol), HOBt hydrate (0.11 g, 0.78 mmol) and 

DIPEA (0.059 mL, 0.34 mmol). The mixture was stirred under argon for 18 hours. 

Water (50 mL) was added and the product extracted with DCM (3 x 50 mL), washed 

with 10% NaOH (50 mL), dilute HCl (50 mL) and brine (100 mL). After drying over 

MgSO4, the solvent was removed under reduced pressure and the product purified by 

column chromatography over silica gel (eluent: 95:6 DCM/ethyl acetate) to give 163 

as a red solid (0.07 g, 51%). Mp  275-277 °C; IR  ν 3347, 2953, 2927.5, 2898.5, 

2855.5, 2176.5, 1694, 1658, 1650, 1633.5, 1596.5, 1565.5, 1537.5, 1510.5, 1478, 

1470.5, 1462, 1435, 1418, 1390, 1361.5, 1301, 1279.5, 1248.5, 1222.5, 1206.5, 

1193.5, 1159.5, 1135.5, 1128, 1115.5, 1028, 1020, 1004.5 cm-1; 1H-NMR  (400 MHz, 

CDCl3) δ 8.76 – 8.74 (m, 1H, ArHNRD), 8.38 – 8.36 (m, 1H, ArHNRD), 7.93 – 7.91 (m, 

2H, ArHNRD), 7.85 – 7.78 (m, 3H, ArHNRD), 7.19 (t, J = 4.5 Hz, 1H, CH2NH), 7.07 (s, 

1H, ArNH), 6.99 (d, J = 2 Hz, 2H, ArH), 6.95 (d, J = 2 Hz, 2H, ArH), 6.68 (s, 2H, 

ArH), 6.36 (s, 2H, ArH), 4.94 (s, 4H, OCH2), 4.63 (s, 2H, OCH2), 4.62 (s, 2H, OCH2), 

4.55 (d, J = 13 Hz, 2H, ArCH2Ar), 4.51 (d, J = 13 Hz, 2H, ArCH2Ar), 4.09 (d, J = 4.5 

Hz, 2H, CH2NH), 3.14 (d, J = 13 Hz, 2H, ArCH2Ar), 3.12 (d, J = 13 Hz, 2H, 

ArCH2Ar), 1.27 (s, 18H, C(CH3)3), 0.92 (s, 18H, SiC(CH3)3), 0.85 (s, 18H, 

SiC(CH3)3), 0.78 (s, 9H, C(CH3)3), 0.11 (s, 6H, SiCH3), 0.11 (s, 6H, SiCH3), 0.05 (s, 

12H, SiCH3); 
13C-NMR  (100 MHz, CDCl3) δ 177.38, 165.87, 165.66, 152.22, 152.18, 

151.69, 147.83, 146.62, 145.70, 144.84, 143.65, 136.42, 136.11, 135.52, 134.81, 

133.58, 132.85, 132.17, 131.43, 130.09, 130.02, 126.89, 125.63, 125.31, 124.91, 

124.66, 124.32, 119.21, 115.67, 115.51, 103.40, 102.95, 102.66, 89.92, 89.78, 89.74, 



 
 

Chapter 3: Calixarene-Based Glycoconjugates 

230 
 

 

62.49, 62.38, 60.57, 44.80, 34.16, 33.63, 32.62, 32.45, 31.72, 31.06, 26.25, 26.21, 

16.56, 16.54, -4.48, -4.51; MALDI-TOF  m/z: [M+Na]+ 1605.92, [M+K]+ 1621.92. 

 

NRD appended tetra-propargyloxy-calix[4]arene (164) 

To a stirred solution of 163 (0.04 g, 0.025 mmol) in THF (0.25 mL) was added 1 M 

TBAF in THF (1 mL, 1 mmol). The solution was stirred for 18 hours then quenched 

with saturated ammonium chloride (10 mL). The product was extracted with DCM (3 

x 20 mL), then washed with water (50 mL) and brine (50 mL). After drying over 

MgSO4, the solvent was removed under reduced pressure and the residue triturated 

with hexane to precipitate the product. This was filtered, washed with hexane and air 

dried to give a dark red-brown powder. 1H-NMR showed a complex mixture of 

products. 

 

5,11,17-Tri-tert-butyl-23-Gly-25,26,27,28-tetra-propargyloxy-calix[4]arene 

(157) 

Through a stirred solution of 162 (1.00 g, 0.73 mmol) in DCM (20 mL) was 

bubbled HCl(g) for 3 hours, at which point no more starting material could be seen by 

TLC (19:1 DCM/ethyl acetate). Solvent was removed under reduced pressure to give 

the hydrochloride salt of the intermediate amine 162 as an off-white solid (crude 

yield: 0.91 g, 95%). 1H-NMR  (400 MHz, CDCl3) δ 6.92 (s, 2H, ArH), 6.89 (s, 2H, 

ArH), 6.87 (s, 2H, ArH), 6.49 (s, 2H, ArH), 4.91 – 4.82 (m, 4H, OCH2), 4.72 (s, 2H, 

OCH2), 4.65 (s, 2H, OCH2), 4.52 (d, J = 13 Hz, 2H, ArCH2Ar), 4.50 (d, J = 13 Hz, 

2H, ArCH2Ar), 3.82 (s, 2H, CH2NH), 3.13 (d, J = 13 Hz, 2H, ArCH2Ar), 3.10 (d, J = 

13 Hz, 2H, ArCH2Ar), 1.18 (s, 18H, C(CH3)3), 0.92 (s, 9H, C(CH3)3), 0.90 (s, 9H, 

C(CH3)3), 0.86 (s, 27H, C(CH3)3), 0.10 (s, 6H, SiCH3), 0.09 (s, 6H, SiCH3), 0.06 (s, 

12H, SiCH3). To this was added 1 M TBAF in THF (27.6 mL, 27. 6 mmol) and the 

solution stirred for 18 hours. The reaction was quenched with saturated ammonium 

chloride solution (50 mL), diluted with water (100 mL) and the product extracted with 

DCM (3 x 50 mL) then washed with water (100 mL) and brine (100 mL). After drying 

over MgSO4, the solvent was removed under reduced pressure and the residue 

triturated with hexane to precipitate the product. This was filtered and washed with 

hexane to give 157 as white powder (0.44 g, 78%). Mp  115-117 °C; IR  ν 3293, 2953, 

2926, 2906, 2862.5, 2113, 1682, 1604, 1526, 1477, 1435, 1415, 1392.5, 1361.5, 

1300.5, 1273, 1260.5, 1238, 1194, 1135.5, 1116.5, 1075, 1014 cm-1; 1H-NMR  (400 

MHz, CDCl3) δ 8.70 (s, 1H, ArNH), 7.01 (d, J = 2 Hz, 2H, ArH), 6.99 (d, J = 2 Hz, 
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2H, ArH), 6.75 (s, 2H, ArH), 6.41 (s, 2H, ArH), 4.90 (dd, J = 16.5, 2.5 Hz, 2H, 

OCH2CCH), 4.85 (dd, J = 16.5, 2.5 Hz, 2H, OCH2CCH), 4.64 (d, J = 2.5 Hz, 2H, 

OCH2CCH), 4.63 (d, J = 2.5 Hz, 2H, OCH2CCH), 4.62 (d, J = 13 Hz, 2H, ArCH2Ar), 

4.60 (d, J = 13 Hz, 2H, ArCH2Ar), 3.26 (s, 2H, CH2NH2), 3.18 (d, J = 13 Hz, 2H, 

ArCH2Ar), 3.17 (d, J = 13 Hz, 2H, ArCH2Ar), 2.48 (t, J = 2.5 Hz, 1H, OCH2CCH), 

2.47 (t, J = 2.5 Hz, 2H, OCH2CCH), 2.42 (t, J = 2.5 Hz, 1H, OCH2CCH), 1.26 (s, 

18H, C(CH3)3), 0.82 (s, 9H, C(CH3)3); 
13C-NMR (100 MHz, CDCl3) δ 169.60, 

153.04, 152.40, 150.99, 146.01, 145.18, 135.66, 135.15, 135.00, 133.32, 132.59, 

125.77, 125.34, 124.81, 118.90, 81.44, 80.59, 80.41, 74.80, 74.65, 74.44, 61.75, 

61.51, 60.75, 44.93, 34.15, 33.62, 32.37, 32.23, 31.64, 31.03; HRMS (NSI) m/z: 

[M+H] + Calcd for C54H61N2O5 817.4575; Found 817.4565. 

 

NRD appended tetra-propargyloxy-calix[4]arene (164) 

A mixture of 142 (0.28 g, 0.86 mmol), EDCI·HCl (0.16 g, 0.86 mmol) and HOBT 

(0.12 g, 0.86 mmol) was stirred in DMF (1 mL) for 10 minutes before adding 157 

(0.39 g, 0.43 mmol) in DMF (3.5 mL). DIPEA (0.30 mL, 1.72 mmol) was added and 

the mixture stirred for 18 hours. The suspension was mixed with 10% NaOH (200 

mL) and the product extracted with ethyl acetate (3 x 200 mL), washed with water 

(300 mL) and brine (300 mL). After drying over MgSO4, the solvent was removed 

under reduced pressure and the crude product subjected to column chromatography 

over silica gel (eluent: 3:2 hexane/ethyl acetate then ethyl acetate). The isolated 

product was triturated with DCM, filtered and air dried to give 164 as bright orange 

powder (0.23 g, 47%). Mp  223-225 °C; IR  ν 3338, 3321, 3311, 3282.5, 3266, 3260.5, 

2966, 2951.5, 2920.5, 2909, 2863, 2113, 1686.5, 1651.5, 1628.5, 1607.5, 1593, 1563, 

1556, 1537.5, 1519.5, 1474.5, 1435.5, 1418, 1393, 1363.5, 1300, 1278, 1253.5, 

1237.5, 1213, 1193, 1157.5, 1141.5, 1131.5, 1116.5, 1078, 1043.5, 1018.5 cm-1; 1H-

NMR  (400 MHz, DMSO-d6) δ 9.50 (s, 1H, ArNH), 9.08 (t, J = 6 Hz, 1H, CH2NH), 

8.71 (d, J = 7 Hz, 1H, ArHNRD), 8.25 (dd, J = 8, 1 Hz, 1H, ArHNRD), 8.09 (d, J = 1 Hz, 

1H, ArHNRD), 8.04 – 7.90 (m, 4H, ArHNRD), 7.03 (s, 2H, ArH), 6.91 (d, J = 2 Hz, 2H, 

ArH), 6.80 (d, J = 2 Hz, 2H, ArH), 6.63 (s, 2H, ArH), 4.74 – 4.72 (m, 6H, 

OCH2CCH), 4.67 (d, J = 2 Hz, 2H, OCH2CCH), 4.48 (d, J = 13 Hz, 4H, ArCH2Ar), 

3.96 (d, J = 6 Hz, 2H, CH2NH), 3.46 (t, J = 2 Hz, 1H, OCH2CCH), 3.43 (t, J = 2 Hz, 

2H, OCH2CCH), 3.39 (t, J = 2 Hz, 1H, OCH2CCH), 3.18 (d, J = 13 Hz, 2H, 

ArCH2Ar), 3.10 (d, J = 13 Hz, 2H, ArCH2Ar), 1.11 (s, 18H, C(CH3)3), 0.93 (s, 9H, 

C(CH3)3); 
13C-NMR  (100 MHz, DMSO) δ 176.54, 166.39, 164.61, 152.32, 152.18, 
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149.98, 147.36, 147.10, 144.86, 144.76, 143.03, 136.52, 134.79, 134.54, 133.99, 

133.87, 133.63, 132.90, 132.63, 130.77, 129.84, 129.36, 125.91, 125.25, 124.92, 

124.78, 124.64, 124.51, 118.51, 114.83, 112.93, 80.93, 80.71, 80.53, 77.54, 77.45, 

77.30, 61.02, 60.55, 60.49, 54.89, 43.40, 33.62, 33.39, 32.04, 31.67, 31.22, 30.86; 

HRMS (NSI) m/z: [M+Na]+ Calcd for C71H66ClN3O8Na 1146.4431; Found 

1146.4403. 
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