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Abstract

We investigate a number of aspects of the inverse problem for Mahler
Measure. If [ is an algebraic unit, we demonstrate how to determine if
there are any reciprocal numbers with measure 5. We also give a formula for

the number of integer polynomials with measure 8 and given degree.
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Introduction

We investigate a number of aspects of the inverse problem for Mahler
Measure. The first two chapters cover background material and introduce
Mabhler measure and the inverse problem. We also introduce Mahler sets,
which are sets of integer polynomials or algebraic numbers with the same
Mahler measure and degree.

In Chapter 3 we introduce Archimedean equivalence. Dixon and
Dubickas [4] showed how to determine if an algebraic number is the Mahler
measure of an integer polynomial or algebraic unit. Theorem 3.24 and
Theorem 3.25 show how to do this using Archimedean equivalence. We
introduce a third result of this format with Theorem 3.27. This shows how
to determine if an algebraic number is the Mahler measure of a reciprocal
algebraic unit. For an algebraic unit 3, Section 3.3 describes the enumeration
of integer polynomials of a given degree and Mahler measure 5.

Chapter 4 focuses on Mahler sets of algebraic units. We investigate
whether or not the unit group of the ring of integers of an algebraic
number field contains arbitrarily large Mahler sets. We provide some
sufficient conditions in Corollary 4.6, whilst Theorem 4.12 shows that this

phenomenon cannot occur in number fields of prime degree. In Section 4.2



we define large Mahler sets. For large Mahler sets with degree less than or
equal to 11, Theorem 4.21 gives restrictions on the Mahler measure of the

Mahler set.



Chapter 1

Background Material

1.1 Permutation Groups

In this section we introduce permutation groups. This material is all covered
in greater detail by Dixon and Mortimer in [5]. Let G be a group and let €
be a non-empty set, and suppose that («,z) — o® is a function of Q x G
into ). We say this defines an action of G on (), or G acts on ), if the

following holds.

e ol = for all a € Q, where 1 is the identity element in G.

o () =qa" foralla € Qandall z,y € G.

The degree of an action is defined to be the cardinalilty of (2.
Let G and H be groups acting on s and Qp respectively. We say G

and H are permutation isomorphic if there exists a bijection A\ : Qg — Qg



and a group isomorphism v : G — H such that

AMa®) = Ma)?@ for all & € Qg and all z € G.

The orbit of o under G is the set

o’ ={a" |z € G}

Orbits partition {2 into mutually disjoint subsets.

A group G acting on a set € is said to be transitive on Q if o = Q for
all @ € €. When a group G acts on (), it also acts on the subsets of €2 in
a natural way. Define I'* = {y* | v € I'} for any I' C Q. Let G be a group
acting transitively on 2. A nonempty subset A of Q is called a block for G
if, for each z € G, either A = A or A* N A = (). For any group G acting
transitively on a set , then  and singleton sets {«a}, where a € 2, are
blocks. These blocks are called trivial blocks, and all other blocks are called
non-trivial. If G acts transitively on 2, and A and I' are blocks for G then
either the two blocks are disjoint, or A N IT" is a block. Suppose G acts
transitively on  and that A is a block for G. Then the sets contained in
Y = {A” | x € G} are all blocks and partition Q. We call such a partition
a system of blocks. If 3 is a system of blocks for a transitive group G, then
the action of G on ¥ is also transitive. The following lemma captures the

relationship between a system of blocks and equivalence relations.

Lemma 1.1. Let G be a group acting transitively on 2. A G-congruence



on §2 is an equivalence relation ~ on ) with the property that, for a, € €2,

an~fp <= o ~p" forallx € G.

If ¥ is a system of blocks for G then X is the set of equivalence classes for
some G-congruence. If ~ is a G-congruence then the equivalence classes of ~

form a system of blocks for G.

We say the action of a transitive group G on Q is minimally transitive
if the restriction of the action to 2 x H is not transitive for any proper

subgroup H of G.

1.2 Number Fields and Valuations

In this section we cover some fundamental results about number fields. We
first mention that we require a number field to be a subset of C, and not
just an arbritrary finite extension of Q. We begin with some defintions and

highlighting some facts about number fields.
Definition 1.2. Let a be an algebraic number.

e We say an integer polynomial is primitive if £1 are the only integers

are which divide every coefficient of the polynomial.

e We define Irr(a) to be the unique non-zero, primitive, irreducible
polynomial in Z[X] of smallest degree, with positive leading coefficient

such that Irr(a) = 0.



e (« is called a Pisot number if it is a real algebraic integer, with o > 1

and if none of its other conjugates lie on or outside the unit circle.

e « is called a Salem number if it is a real algebraic unit with a > 1,
if none of its other conjugates lie outside the unit circle and if « has

conjugates on the unit circle.
Lemma 1.3. Let K be a number field of degree n.

e K contains at most 2n? roots of unity. If n is odd, then 1 are the

only roots of unity in K.

o Let a be an algebraic number, and let ag be the leading coefficient
of Irr(a). If {ai,...,am} is a subset of the set of conjugates of «
then agqoy...qu, is an algebraic integer.  Furthermore ka is an

algebraic integer if and only if ag divides k.

o [f K C R and n > 2, then the unit group of Ok contains a Pisot

number of degree n.

Proof. The majority of these statements are proven in Chapter 13 of Alaca
Williams [1]. The exception is the claim that agqo; ..., is an algebraic
integer. This is a classical result found for example on page 91 in Hecke [12].

]

We now cover Dirichlet’s unit theorem and the Archimedean valuations
on a number field. Both of these will be very important. Dirichlet’s unit
theorem describes the structure of the unit group of a ring of integers. A

proof can be found in Chapter 13 of Alaca and Williams [1].
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Theorem 1.4. Let K be a number field of degree n. Let r be the number
of real embeddings of K and 2s the number of complex embeddings of K.
Then Ok contains r + s — 1 units €1, ..., €451 such that each unit of Ok

can be expressed uniquely in the form

ni Nr4s—1
pey €r+s—1 )

where p is a root of unity in Ok and ny, ..., n.1s_1 are integers.

We begin describing the Archimedean valuations of a number field by
defining the general notion of a valuation for a field. More information on

valuations and the following results can be found in Chapter 2 of Janusz [14].

Definition 1.5. Let K be a field. An wvaluation on K is a map a — |a|

from K to R such that
l. |la| >0and |a]| =0 <= a =0,
2. |ab| = |al|0],
3. |la+0b| < al +1b].
The following example describes an important set of valuations for Q.

Example 1.6. Let p be a prime. Then there exists a valuation |- |, on Q
defined as follows. Any non-zero x € Q can be written as xr = pig, where
r,s € Z and p{rs. Then|z|, is defined to be |z|, = p~*. A separate valuation

is the usual absolute value, sometimes denoted | - |« to avoid confusion.

11



Definition 1.7. Let K be a field and let | - |, be a valuation on K. If L is a
subfield of K, then the restriction of | - |, to L is a valuation |- |, on L. We

say that |- |, extends | - |..

Definition 1.8. Let K be a field. For any valuation |- | on K, we can define
a metric using d(a,b) = |a — b|. This metric then induces a topology on K.
We say two valuations on K are equivalent if they induce the same topology

on K.
There are three distinct types of valuation.

Definition 1.9. Let |- | be a valuation for a field K. The trivial valuation is

defined as |a|] = 1 for all non-zero a € K, whilst |0] = 0. We say a non-trivial

valuation | - | is non-Archimedean if it satisfies |a + b] < max{|al, [b|} for
all a,b € K. A valuation | - | is Archimedean if it is neither of the previous
two types.

Lemma 1.10. Let |- |y and | - |2 be valuations on a field K. The following

are equivalent statements.
1. |+ |1 is equivalent to | - |
2. |-lh=1-1§ for some o > 0.

The trivial valuation is equivalent only to itself. Furthermore an Archimedean

valuation on K can only be equivalent to an Archimedean valuation.
This allows us to describe the set of all valuations for Q.

Example 1.11. Let |-| be a non-trivial valuation for Q. If|-| is Archimedean,
then it is equivalent to |- |~. If || is non-Archimedean, then there is a unique

prime p such that | - | is equivalent to | - |,.

12



We now describe the Archimedean valuations for an algebraic number

field.
Lemma 1.12. Let K be a number field with v real embeddings o1, ..., 0,
and 2s compler embeddings o.i1,...,0.195 such that o,.; = G151 for

1 < i < s. Then there exist v + s pairwise inequivalent Archimedean
valuations |x|, = |oy,(x)| for 1 < i < r+ s. Each of these valuations
extends the usual absolute value on Q and every Archimedean valuation is

equivalent to one of these r + s valuations.

1.3 CG-modules and Representations

In this section we introduce CG-modules and representations of groups. This
material is covered in greater detail by James and Liebeck in [13]. We will
also show a construction of CG-modules from the unit group of a normal
number field.

Let V be a vector space over C and let G be a group. We say V is
a CG-module if multiplication gv (g € G,v € V) is defined so as to satisfy

the following properties:

e gueV forallge Gand allv eV,

g(hv) = (gh)v for all g,h € G and all v € V,
e lv =w for all v € V where 1 is the identity in G,

e g(\v) =A(gv) forall A€ C, allge Gand allv eV,

g(u+v) =gu+ gv forall g € G and all u,v € V.

13



A CG-submodule of V is a subspace of V' which is also a CG-module. Let V
and W be CG-modules. We call a function 0 : V- — W a CG-isomorphism

if 6 is an invertible linear transformation and if

O(gv) = gb(v) forallveV,geqG.

We say two CG-modules V' and W are isomorphic if there exists a CG-
isomorphism from V' to W. We denote this by V' = .

A CG-module is often easier to work with if a basis is defined for the
underlying vector space. It is also a convenient way to create a CG-module
from a vector space. If 4 is a basis for a vector space, it is sufficient to define
multiplication for the elements of . The axioms listed above then extend
the multiplication to all elements of the vector space to give a CG-module.

The following is an example of this.

Definition 1.13. Let K be an algebraic number field, normal over Q, such
that K is neither Q nor an imaginary quadratic field. Let r and 2s be the
number of real and complex embeddings, respectively, and let m = r+s— 1.
Let ( € K be a root of unity, and let €, ..., €, be units such that the unit
group of Ok isequal to U = ((, €1,...,€n). Let G = Gal(K/Q). Let e; € C™
be the vector with the i-th entry equal to 1 and zeroes everywhere else.
Then for any e; € {e1,...,en}, ge; is defined as the vector (vy,...,v,,) such

that g(e;) = ("€} - - - €2 for some integer vg. This defines a CG-module of

dimension m, which we denote V (K, (, (e1,...,€mn)).
Definition 1.14. Suppose €1,...,€, are independent algebraic units, and
that none of them are a root of unity. Suppose aq,...,a, are integers and

14



that ¢ is a root of unity. Let

x=C(Celt ... e

and let € = (€1,...,€,). Then 7 (z) is defined to be (ay,...,a,).

Example 1.15. Let K = Q(v/2,v/3) which is a totally real quartic number
field. Let e, =1+2, € =2+ /3 and ¢35 = %(\/5—1— \/6) These are three
independent units such that the unit group of the ring of integers of K is equal
to (—1,€1,€,€3). We label the four elements o1,...,04 of G = Gal(K/Q)

such that:
o1 is the identity, oy fives V2,05 fives V'3 and oy fives V6.

Then V (K, —1, (€1, €2, €3)) is a 3-dimensional CG-module with multiplication

defined as follows;

01(01,1’2,%) = (711,?12,@3), 02(1}1,02703) = (Ul, —V2, —03),

03(01,172,273) = (_Uh —U2,Us), 04(2117112,03) = (—U1>U2, —U3)

The study of CG-modules leads to studying representations of G over C.
We begin by defining representations.

Let GL(n,C) be the group of invertible n x n matrices with entries
in C. Let G be a group. A representation of G over C of degree n is a
homomorphism p from G to GL(n,C), where n is a positive integer. Two

representations o and p of the group G, are called equivalent if they have the

15



same degree, say n, and there exists an invertible n x n matrix 7" such that,

for all g € G,

o(g) =T "p(g)T.

It is straightforward to check that this relation is an equivalence relation.
Let V be a vector space over C, and let § be an endomorphism of V.
Suppose & = {vy,...,v,} is a basis for V. Then there exist scalars a;; € C

where 1 < 4,5 < n such that for each 4,

0(vi) = anvi + -+ + Aintp.

We then define the matrix of 8 relative to the basis A to be the n x n
matrix (a;;) and denote it [f]4. The following lemma explains the relationship

between CG-modules and representations of G over C.

Lemma 1.16. Suppose that V is a CG-module with basis &, and let p be

the representation of G over C defined by

p:9—1lglz (9€G)

1. If &' is also a basis of V', then the representation

b:g9—lglw (9€q)

of G s equivalent to p.

16



2. If o is a representation of G, then there is a basis ' of V' such that

o:9—glw (9€G).

3. If W is another CG-module with basis ', then V.= W if and only if

the representation

0:9—=[gle

15 equivalent to p.

Example 1.17. Let K = Q(v/2,v/3) and let €1, €5,¢5 and G be defined as
in Ezample 1.15. Let & be the basis {(1,0,0),(0,1,0),(0,0,1)} for C3.
Then we can define a representation for G using V (K, —1, (€1, €2,€3)) and

Lemma 1.16 as follows:

100 1 0 0
plo)=10 1 0 |, plo)=10 -1 0 |,
00 1 0 0 -1
-1 0 0 ~10 0
plos) =1 0 -1 0 |, plos) =1 0 1 0
0 0 1 0 0 —1

We now give an important result about the structure of CG-modules.
If V and W are two disjoint CG-modules, then V @ W is also a CG-module.
A CG-submodule V is called irreducible if it is non-zero and it has no CG-

submodules apart from {0} and V. A representation p : G — GL(n,C) is

17



irreducible if the corresponding CG-module C" given by

guv=p(g)v (veC"geq)

is irreducible. A CG-module or representation that is not irreducible is known

as reducible.

Theorem 1.18. Let G be a finite group and let V be a CG-module. Then
there exist irreducible CG-modules Uy, . .., U,, such that V =U; @ ---® U,,.

This decomposition is unique up to order and CG-isomorphism of the factors.

Lemma 1.19. Let G be the cyclic group of n elements generated by g and

2mi/n

let w=e . For each integer j with 0 < j <n —1, let p; be the represen-

tation of G over C such that

pi(g") = (@)

for all integers k with 0 < k < n — 1. Then every irreducible representation

of G over C is equal to one of the representations p;.

18



Chapter 2

Introduction to Mahler

Measure

In this chapter we introduce Mahler measure and the problem of studying

polynomials with the same Mahler measure.

2.1 Mahler Measure

Mahler measure first appeared as an unnamed function in a paper of D.H.
Lehmer from 1933 [15]. His work on factoring large numbers is discussed in

Section 2.2. The following is a simple generalisation of Lehmer’s definition.

Definition 2.1. For a non-zero polynomial

d
f = adH(X — Oéi) € (C[X]

19



of degree d, the Mahler measure of f is defined to be

M(f) = |adl H max(1, |ay]).

We say an algebraic number « is large if |o] > 1.

Kurt Mahler proved a number of results about this function, and it
now bears his name. His notation, M(f), has also replaced Lehmer’s as
the standard notation. We begin by covering a number of classical results
about Mahler measure. The first is that Mahler measure of polynomials is
multiplicative. The existence, or otherwise, of a multiplicative structure is a

recurrent theme in our work.

Lemma 2.2. For non-zero polynomials f, g € C[X], Mahler measure is mul-

tiplicative: M(f-g) = M(f)- M(g).
Proof. This follows immediately from the definition of Mahler measure. []

The next result was proven by Mahler, and can be used as an alternative
definition for Mahler measure. It states that Mahler measure is equal to the
geometric mean of |f| around the unit circle. The result is an application
of Jensen’s formula and is given without proof. Further details are given by

Everest and Ward in [10] on page 9.

Theorem 2.3. For a non-zero polynomial f € C[X],

Mg e ( [ Lo ).

20



A number of applications for Mahler measure consider only integer
polynomials. The following theorem gives an upper and lower bound for

the Mahler measure of an integer polynomial.

Definition 2.4. For a non-zero integer polynomial f = """ ja;2", let the

length L(f) of f be L(f) = |ao| + - + |ax|-

Lemma 2.5. Let f be a non-zero integer polynomial. Then

27"L(f) < M(f) < L(J).

Proof. The upper bound is proven using Theorem 2.3. It is clear that L(f) is
an upper bound for the value of |f(X)| on the unit circle, and so
M(f) < L(f). The lower bound is straightforward once it is observed that
the coefficients a; satisfy |a;| < (‘f)M (f). To see this, treat the coefficients

of f as elementary symmetric functions in the roots o, ..., a, of f. Then

aq E : Qjy - Oy,

1<ji<-<gisn

> = (5)w.

1<ji<-<gisn

< aq E ‘O‘jl"'ajz‘

1<j1<-<gisn

lai| =

IN

]

The inverse problem for Mahler measure is best considered in two parts,

following Boyd in [2].

1. Given an algebraic number [, does there exist an integer polynomial

with Mahler measure equal to 37
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2. Assuming an affirmative answer to the first question, can you determine

all integer polynomials with Mahler measure 57

An effective method for solving the first question was provided by Dixon and
Dubickas in [4]. We develop the ideas of their paper in Chapter 3. It is
often necessary, or of interest, to restrict the inverse problem to irreducible
polynomials. This renders the first problem, in general, unresolved. The
second question is almost completely unanswered. There are only two
instances for which this question has been resolved. The first example we can
solve is the equation M (f) = 1. This is clearly the minimum value of Mahler
measure over the integer polynomials. To proceed we require the following

classical result of Kronecker. The following proof is taken from [10].

Lemma 2.6 (Kronecker). Suppose that o # 0 is an algebraic integer and the
algebraic conjugates oy = «, . .., aq of a all have modulus at most 1. Then «

1s a root of unity.

Proof. Consider the polynomials

where n ranges over the positive integers. We see that F,, € Z[X], since the
coefficients are symmetric functions in «q,...,aq. Since all roots of these
polynomials have modulus at most 1, the coefficients are uniformly bounded.
These ensures that F), can take only finitely many values. Choose positive

integers n, m such that m > n and F,, = F,,. We then observe that

{af,...,af} ={o", ..., a]'}.

22



We define a permutation 7 on the set {1,...,d}, where 7(i) satisfies

n__...m
;= aly).

If r is the order of this permutation, then

T

ol (o i 1) =0,

and since @ = a; # 0, a must be a root of unity. Permutations of finite sets

have finite order, so we can choose a positive integer r such that
a™ (o™ —1) = 0.

Together with o # 0, this implies that « is a root of unity. m
The following is the first complete solution for the inverse problem.

Theorem 2.7. Let f € Z[X] be a non-zero polynomial such that f(0) # 0.

The following are equivalent.
.« M(f)=1
o f is primitive, and every root of f is a root of unity.

Proof. Write f = ao[[_,(X — a;). f is primitive if and only if ag = +1.
The result then follows by comparing the definition of Mahler measure with

the result of Kronecker. O

The only other complete solution to the inverse problem is for the equation

23



M («a) = 6y where

is the largest root of X® — X —1 = 0. It was shown by Siegel in [20] that 6, is

the smallest Pisot number. To discuss the result, we first require a definition.

Definition 2.8. The reciprocal f* of a non-zero polynomial f € C[X] of
degree n is defined as f*(X) = X"f(X~'). A polynomial f is called
reciprocal if f = f*.

The following theorem is the product of two results. From the work
of Smyth [22], we can give all non-reciprocal solutions f to the equation
M(f) = 6o. The result was completed by Dixon and Dubickas in [4], who
showed that there are no reciprocal solutions. We develop the ideas of this

final step with Theorem 3.27.

Theorem 2.9. Let f € Z[X] be a polynomial such that f(0) # 0 and such

that no root of f is a root of unity. Then the following are equivalent:
o M(f) = 007

o [ is equal to €;(X® — X" — €3) or e1(a X3 — X?" + 1) where n is a

positive integer, and €1, €y € {£1}.

The fact that only two complete solutions to the inverse problem are
known demonstrates the difficulty of the problem. Restricting the search for
solutions to polynomials of a given degree, however, transforms the problem.
We call a family of polynomials with the same Mahler measure and degree a

Mahler set.
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Definition 2.10. We call S C Z[X| a Mahler set if it has the following three

properties:

e S does not contain the zero polynomial,
e Every member of S has the same degree,
e Every member of S has the same Mahler measure.

The degree and measure of a Mahler set are defined to be the degree and

Mabhler measure of any of its elements.

The following theorem is a classical result, and an important property of
Mahler measure in some applications. We however express it using the novel

framework of Mahler sets.
Theorem 2.11. If S C Z[X] is a Mahler set, then S is finite.

Proof. If f € S, then L(f) < 324, where d is the degree of S and f3 is the
measure of S. This is immediate from Lemma 2.5. Since there are only
finitely many integer polynomials with bounded length and fixed degree, S

cannot be infinite. O
This inspires the following definition.

Definition 2.12. We say a Mahler set S C Z[X] of degree d and measure [
is a mazimal Mahler set if it contains every polynomial in Z[X] of degree d

and measure 3.

Maximal Mahler sets can naturally be viewed as the fibres of Mahler

measure ranging over integer polynomials of a given degree. The method
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demonstrated in Theorem 2.11 can be used to calculate maximal Mahler sets.
Clearly the number of polynomials to be tested grows too rapidily in general
for this to be a practical method. Because of the difficulty of calculating
maximal Mahler sets, we often work with the more flexible notion of Mahler
sets. In later chapters we explore the question of how and when maximal
Mabhler sets can be calculated without resorting to this approach. For now,

we highlight the importance of the restriction to integer coefficients.

Lemma 2.13. Suppose f € C[X] is non-zero. Then there ezists an
uncountable set S C C[X] containing f, such that every element in S has

the same degree and measure.

Proof. Let € be on the unit circle, and let ¢g.(X) = ef(X). By Lemma 2.2
the two polynomials have the same Mahler measure and degree. Since the

unit circle is uncountable, the result follows. O

We finish with some simple relationships between polynomials which

ensure that they have the same Mahler measure.

Lemma 2.14. Let f € C[X] be a non-zero polynomial. Let g(X) = f(—X),
MX) = —f(X) and j(X) = f(X™) where n is a positive integer. Then
M(f) = M(f*) = M(g) = M(h) = M(j). The cardinality of any mazi-
mal Mahler set is even and, if f € Z[X], there are infinitely many other

polynomials in Z[X| with the same Mahler measure.

Proof. The fact that M(f) = M(g) = M(h) follows directly from the
definition of Mahler measure. Since f and —f are distinct for all non-zero

polynomials, maximal Mahler sets must have even cardinalities. The claim
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that M(f) = M(f*) = M(j) comes directly from Theorem 2.3. Letting n
range over the positive integers gives the final claim if f has positive degree.
If f is a constant polynomial, say f = ¢ for some positive integer ¢, then the

polynomials f,,(X) = X™ — ¢ can be used instead. ]

2.2 Lehmer-Pierce Sequences

Lehmer published many papers on prime numbers and factoring large
numbers. This included works on primality testing [16], and the Mersenne
numbers, M, = 2" — 1 [17]. He also studied the following generalisation of
the Mersenne sequence, first described by Pierce [19]. Lehmer’s results in

this section were published in [15].

Definition 2.15 (Lehmer-Pierce Sequences). Let f € Z[X] be a monic

polynomial, of degree d, where
d
FX) =X4 aa X7 4t o X +ag = [[(X - ).
i=1
To each polynomial f, we associate the sequence A, (f) as follows
d

i=1

The Mersenne sequence is associated with the polynomial X — 2 since
Ap(X —=2)=2"—1.

Since the functions A, are symmetric in the roots of f, Lehmer-Pierce
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sequences are integer sequences. Lehmer was interested in being able to
factorize the terms of these sequences. An attraction of being able to do this,
was discovering novel, large prime numbers. The following lemma shows that

we can focus on sequences associated to irreducible polynomials.

Lemma 2.16. Let f and g be monic integer polynomials. Then for all

positive integers n, A, (f - g) = An(f) - An(g).

Proof. This follows immediately from the definition of A,,. O]
We call a prime a characteristic prime factor of A, (f) if it divides no

number of the form Ag(f), where § divides n. Because of the following

lemma, being able to calculate the characteristic prime factors of A, (f) is

sufficient to factor terms of Lehmer-Pierce sequences.

Lemma 2.17. Let n and m be positive integers such that n divides m. Then

A, (f) divides A (f) for any monic integer polynomial f.

Proof. Let a be any root of f and let m = gn. Then

a® — 1= (a") (a7 4 o072 4 a4 1),

The result is then obvious. O

Clearly characteristic prime factors can be discovered using trial division.
Lehmer’s contribution was to prove modular relations which greatly reduce

the number of trial attempts that must be made.

Theorem 2.18. Suppose that f € Z[X] is irreducible and of degree r. Let p°
be the highest power of a characteristic prime factor p of A, (f). If w is the

exponent to which p belongs modulo n, then w < r and w divides e.
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This theorem is most effective at reducing the difficultly of factorisation
of A,(f) when A, (f) is large compared to n. This led Lehmer to study the
growth rate of A, (f), and introduce the first definition of Mahler measure.
The following theorem is the connection that Lehmer proved between the

growth rate of Lehmer-Pierce sequences and Mahler measure.

Theorem 2.19. Suppose that no root of f € Z[X] lies on the unit circle.

Then

lim An—‘—l (f)

oo A(f) M(f).

Proof. This follows from the basic properties of limits. We treat each factor

of A, (f) separately. If « is a root of f, then

! — 1| lal i ol >1
lim —— =
1 if la| <1
and the result follows. O]

When an integer polynomial has roots on the unit circle, this sequence
does not converge. However, if f has no cyclotomic factors, we can still
relate the growth rate of A, (f) to M(f). This result is proved using Baker’s
Theorem from transcendence theory. Further details are given by Everest

and Ward in [10] on page 9.

Theorem 2.20. Suppose that no root of f € Z[X] is a root of unity. Then

lim ~ log | A, ()] = log M(f).

n—oo N,
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This motivates the use of polynomials with small Mahler measure. A
second application of Kronecker’s Theorem shows that we should choose

polynomials with Mahler measure greater than 1.

Theorem 2.21. Let f € Z[X]| be a monic, irreducible, non-zero polynomial.

The following are equivalent.
1. M(f)=1
2. f(X)==xX, or f is cyclotomic.
3. The sequence A, (f) is periodic.
4. The sequence A, (f) is bounded.

Proof. (1.) and (2.) are equivalent by Lemma 2.6. It is trivial to see
that (2.) = (3.) = (4.). If the sequence A,(f) is bounded, then by
Theorem 2.20, log(M(f)) = 0. Hence (4.) implies (1.), which completes the

proof. O

We return to the search for large primes amongst the factors of Lehmer-
Pierce sequences. In order to reduce the effort needed we aim to find a
sequence which grows as slowly as possible, without being bounded. This re-
quires a polynomial with Mahler measure above one, but as small as possible.

This gives rise to a question known as Lehmer’s problem.

Question 2.22 (Lehmer’s problem). Amongst monic polynomials in Z[X]
with Mahler measure greater than 1, can polynomials be chosen with Mahler

measure arbitrarily close to 17
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The problem is still unresolved. Lehmer showed that

M(X10+X9—X7—X6_X5_X4_X3+X+1):1'176""

which is still the smallest known value, greater than 1. The level of interest
in Mersenne primes raises questions about primes in other Lehmer-Pierce
Sequences. Theorem 2.18 was used by subsequent authors [9] to suggest that
the terms of the seqeunce A, (f) are more likely to be prime if M(f) is small.
They provide numerical evidence and heuristic arguments to support their
conjectures. This encourages the use of polynomials with the same Mahler
measure. The simplest technique we have for creating lots of polynomials
with the same measure was given in Lemma 2.14. The following theorem

shows that this is of no use when interested in prime number generation.

Theorem 2.23. Let p be a prime number. Let g(X) = f(X?). Forn divisible

by p,

and for n co-prime to p,

Proof. Let ay, ..., a,, be the roots of f, where m = deg(f). For each root a;
we choose a solution to the equation X? — «; and denote it ¢/c;. Let ¢ be a

primitive p-th root of unity. Then the roots of g are
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listed with multiplicity. Then if p divides n, we see that

An(g) = ﬁH (¢ ya) —1)| = ﬁH<a/ 1)
_ ﬁ ol — 19| = [ A7V
If n and p are co-prime then
Aulg) = ﬁ (" (g/@y 1)
- ﬁﬁ(www—w
(I oo

The result then follows by considering the odd primes separately from 2. [

This theorem nicely motivates the study of polynomials having the same

Mahler measure, where the relationship between them is non-trivial.

2.3 Algebraic Numbers

In this section we describe how Mahler measure is extended to algebraic

numbers.

Definition 2.24. The Mahler measure of an algebraic number is defined to

be M (Irr(«)).

We extend the definition of a Mahler set to algebraic numbers.
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Definition 2.25. We call S C Q a Mahler set if every element has the same
degree and Mahler measure. The degree and measure of a Mahler set are
defined to be the degree and Mahler measure of any of its elements. We say
a Mahler set S C Q of degree d and measure 3, is a mazimal Mahler set if

it contains every algebraic number in Q of degree d and measure f3.

The following useful lemma relates the norm of an algebraic number to

the norm of its Mahler measure.

Lemma 2.26. Let a be an non-zero algebraic number of degree d, and let aq
be the leading coefficient of Irr(a). Let aq,...,q, be the large conjugates
of a and let € be £1 such that M(«) = eagay - - vy,. Let K be the Galois

closure of Q(a) over Q and let N be the norm with respect to K. Then

N(M(a)) = (eaq)"N(a)™

where n is the degree of K. Furthermore « is a unit if and only if M(«) is

a unit.

Proof. The first claim is trivial since

N(M(«a)) = N(eag)N(c) ... N(ay) = (eaq)"N(a)™.

We can see that if « is a unit, then €,a, and N(«) all belong to {£1}. This
implies that N(M(«)) = £1 and M(«a) is a unit. To prove the converse,

assume that N(M(a)) = £1. By considering the norm of the product of all
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conjugates of a we can see that
N(a) = (ao/aq)""
where ag is the last coefficient of Irr(«). Hence
N(M(«)) = enaz(l_m/d)agm/d. (2.1)

If m = 0, then M(«) is invariant under the action of Gal(K/Q), and
so M(«a) = £1. By Equation (2.1), aq = 1, and so, by Lemma 2.6, « is
a root of unity. If m = d, we can repeat this analysis for a~!. This would
show that a is a root of unity which is a contradiction, and so m # d.
If 0 < m < d, then all numbers dividing agag will divide N(M(«)), by

Equation (2.1). Hence agag = 1 and so « is a unit. O

In Section 2.1, we stated the first half of the inverse problem is trying to
determine if a number is the Mahler measure of a integer polynomial. We

complete this section by discussing properties of such numbers.

Definition 2.27.
M* = {M(f) such that f € Z[X]}

The simplest property of M* is the following.
Theorem 2.28. If § € M*, then > 1 and (8 is a real algebraic integer.

Proof. Let f be an integer polynomial with Mahler measure 5. We can

assume f is irreducible, since Mahler measure is multiplicative. The fact
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that § > 1 follows immediately from the definition of Mahler measure. The
complex conjugate of a large root of f is also large, which implies that [ is

real. Finally (8 is an algebraic integer by Lemma 1.3. [

The inverse problem naturally carries over to algebraic numbers. By
analogy with M*, we study the set of algebraic integers which are the Mahler

measure of an algebraic number.

Definition 2.29.

M = {M(a) such that o € Q}
We call 8 € Q a measure if 8 belongs to M.

The following theorem describes the relationship between M* and M.
The non-trivial part, that M is not a monoid, was proven by Dixon and

Dubickas in [4]. We cover their proof in Example 3.22.

Theorem 2.30. The set M* is a monoid under multiplication, generated

by M. However M 1is not a monoid under multiplication and therefore

M £ M.

We now calculate some explicit maximal Mahler sets of algebraic numbers.
The result is straightforward, but demonstrates an enumeration technique we

use later. Corollary 4.13 gives a generalisation to Mahler sets of prime degree.

Lemma 2.31. Let S C Q be a mazimal Mahler set of unit measure. If S
has degree 2 and measure 1, then |S| = 6. If S has degree 2 and measure

greater than 1, then |S| = 4. If S has degree 3 then |S| = 12.
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Proof. We know from Lemma 2.26 that S contains only units. By
Kronecker’s Theorem, the first claim simply restates the fact that there are
exactly 6 quadratic roots of unity. For any quadratic unit z, not a root of
unity, let S, be the Mahler set S, = {+x,+z~'}. Notice that for any such
quadratic units x and y, either S, = S, or S, N S, = (. Each S, contains a
single Pisot number, and hence S, must contain its own measure. The same
method works for degree 3. For a cubic unit = let 1 = x, x5 and x3 be the

conjugates of x and let S, be the set

S, = {Fx1, *a7t, £ag, £a5 !, Fag, £a3' )

Again we see that for two cubic units z,y, either S, = S, or S, NS, = 0 and

that each S, contains a single Pisot number, and hence its own measure. [

Although M is not a monoid under multiplication, there is still some
multiplicative structure. The following theorem was proven by Dubickas [8].

We give a generalisation for unit measures in Chapter 3.

Theorem 2.32. Let o be an algebraic number, and n a positive integer,

then M ()™ is a measure.

An important class of numbers in the study of Mahler measure are the

reciprocal numbers.

Definition 2.33. Let a # 0 be an algebraic number. We say « is reciprocal

if it is conjugate to its reciprocal o~

A well known property of a reciprocal number a # 1 is that Irr(«) is

palindromic.
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Lemma 2.34. Let a # +1 be an algebraic number of degree n. Let
Irr(e) = ag + -+ + a, X™. Then « is reciprocal if and only if n is even,

ag=a, =1 and for 0 <1< n, a; = ap_;.

Proof. We first observe that if ag = a,, = 1, then

Irr(a™) = ap + ap 1 X + -+ a; X"+ apX™.

This follows by treating the coefficients of Irr(a) and Irr(a™!) as symmetric
functions in the conjugates of o and o~! respectively.

(=) If o is an embedding of Q(«) then o(a)o(a™') = 1. This allows
us to partition the conjugates of « into pairs, which implies n is even. The
product of all n conjugates must be 1, which means ayg = a,, = 1. The last
condition follows by seeing that Irr(a) = Irr(a™').

( <= ) The last condition implies that Irr(a) = Irr(a™!). Hence a

and o~ ! are conjugate as required. O

We introduced Lehmer’s problem in Section 2.2 and 6y in Section 2.1
Whilst the original problem remains unsolved, a number of weaker results
have been proven. The survey article of Smyth [23] gives a good overview of

such results. The following result was proven by Dobrowolski in [6].

Theorem 2.35. Let o be an algebraic integer of degree n, which is not a

root of unity. Then

1 (log(log(n))\”
M(a)>1+1200( log(n) ) '

Another interesting result was proven by Smyth in [21].
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Theorem 2.36. Let a # 0 be an algebraic number whose Mahler measure is

less than 6y. Then « is a reciprocal number.

An alternative to the inverse problem is to restrict attention to reciprocal
numbers or to non-reciprocal numbers. Theorem 2.36 shows that there exist
measures  such that the equation M («) = 8 has no non-reciprocal solutions.
Conversely Theorem 2.9 shows that M («) = 6, has no reciprocal solutions.

To continue exploring this problem, we define the following sets.

Definition 2.37. Let R be the following set.

R = {M («) such that « is a reciprocal unit}.

Let N be the following set.

N = {M(a) such that « is a non-reciprocal unit}.

An open problem is to determine if there is a smallest element of R NN

The following example shows that R N A is non-empty.
Lemma 2.38. Let o be a real quadratic unit with o > 1. Then a®> € RNN.

Proof. Clearly a? is quadratic with norm 1. Hence it is reciprocal, and
M(a?) = a?, and so a? € R. If a has norm 1, let w be a primitive fourth
root of unity. Alternatively if a has norm —1, let w be a primitive third root of

unity. Then wa is non-reciprocal, and M (wa) = o®. Hence o> € RNN. [

We now describe Perron numbers and explain some connections to the

inverse problem. Many of these results and more information about the
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arithmetic of Perron numbers are given by Lind in [18].

Definition 2.39. Let a be a real algebraic integer whose conjugates are
ar = «a,...,a,. We say a is a Perron number if a« > 1 and, for all
integers ¢ with 2 < i < n, |oy] < a. Let P denote the set of all Perron

numbers.
Like M*, the set P is closed under multiplication.
Lemma 2.40. Suppose o, 5 € P. Then af € P.

Proof. Clearly af is a real algebraic number with a5 > 1. Let the conjugates
of @ be a;y = «,...,a, and the conjugates of 8 be fi,...,0,,. Then the
conjugates of a8 belong to the set {a;5;]1 <i < n,1 < j < m}. For any
element «; 5, in this set, |a;3;] < |a||5|, where equality only holdsifi = j = 1.
Furthermore af is a Perron number. O
Theorem 2.41. Let § € M be greater than 1 with conjugates B1 = B, ..., By.
Then for all integers i with 2 < i < n, either 71 < |B;] < B or B; = +7L.
Hence (B is a Perron number.

Proof. Theorem 2.28 shows that ( is a real algebraic integer. Let o be an
algebraic number with Mahler measure 3, and degree d. Let the conjugates

of a be oy = a,...,aq. Let ag be the leading coefficient of Irr(«) and ag the

constant coefficient. We can assume they are labelled such that

jan] > Jag] 2 -+ 2 Ja > 1> o] = -~ > |aul,

where k is the number of conjugates of a outside the unit circle. If a4 > 1

and £k = 0, then § = a4 and the theorem holds trivially. Hence we can
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assume k > 1 since > 1, and see that

b = *agoqan - - - oy

Let K be a normal extension of Q containing ov. Then any automorphism o
of K permutes the conjugates of a;, and hence the conjugates of 5. We see

that

o(p) = tago(ay)o(az) - o(ag).

If o permutes the roots outside the unit circle then o(5) = 8. If o sends /3 to
one of its conjugates, there must be ¢ < k and j > k such that o(w) = .
This ensures that |o(8)| < 8. We now use the fact that a; ---ag = £ag/aq

to show that

aqao Qq | Qo |

aqo (1) - oloa)| — B

l0(B)] = lago(ar) - - - o) =

We can see that |o(8)] = |57!| if and only if ag = |ag| = 1 and

{ag,...,ar} ={o(ags1),. .-, 0()}

This can only happen if d = 2k and for one conjugate of £, implying it must

be a real conjugate as required. O]

For future reference we record the following result, which was described

in the previous proof.

Lemma 2.42. Let a be an algebraic number and let K be a number field,

which is normal over Q and contains «. Let S be the set of large conjugates
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of a. Then the following holds for all o € Gal(K/Q);

o(M(a)) = M(a) < S =a(S).

The elements of M can clearly be factorised into elements of M*. This
corresponds to polynomials being expressed as a product of irreducible
factors. We can use the properties of Perron numbers to understand these

factorisations.
Theorem 2.43. If A = a8 with a, B, A € P, then a, B € Q(N).

Proof. Let K be a number field, which is normal over @Q and which
contains A, « and (. Observe that either o, € Q(\) or a, 8 ¢ Q(N).
For example if « € Q(A), then 8 = A/a € Q(N\). Assume «a, 3 ¢ Q(N).
Then there will exist an automorphism o of K which fixes A, but not « or j.
Since o and f are Perron numbers, this implies that o(«f) < af. This would

imply that A < A, a contradiction. Hence «, 5 € Q(A). O]

Definition 2.44. We call A € P i¢rreducible if A > 1 and )\ cannot be written

as A = af with o, € P and o, 5 > 1.

We can factorise Perron numbers into a product of irreducible Perron
numbers, in the same way as integers are factorised into primes. We consider
two factorisations to be the same if the terms of one can be rearranged to

give the other.

Theorem 2.45. Every Perron number greater than one can be factored into
a finite number of irreducibles. There are only a finite number of such

factorisations, but factorisations into irreducibles are not always unique.
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Proof. Let a be a Perron number and let A be a Perron number, which
appears in a factorisation of « into irreducible Perron numbers. By Theo-
rem 2.43, this implies that A belongs to the set PN Q(a) N (1, a]. Hence to
prove the result, it is sufficient to prove that there are finitely many Perron
numbers of a given degree d, and below a given bound M. Any such Perron
number A must have Mahler measure less than equal to M? and hence by
Lemma 2.5, L(Irr(\)) < (2M)4. Since there are only finitely many polyno-
mials of degree d with this property, the first claim holds.

The following example from [18] shows that such factorisations need not
be unique. Let A = (1 4+ /5)/2. Then 5, A and A + 2 are all irreducible
Perron numbers. The number 5% = (A4 2)? can therefore be factorised into

irreducibles in two different ways. O

We finish the section with two results which compare P with M*. The

first is due to Boyd [2], whilst the second is due to Dubickas [7].

Theorem 2.46. Let f,, = X™ — X — 1 for any integer m > 4. Then f has

one positive, real root, which is a Perron number, but not a measure.
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Chapter 3

Archimedean Equivalence

In this chapter we introduce an equivalence relation for algebraic numbers.
This provides a novel framework for studying Mahler measure and we cover a
number of applications. Some of the results in this chapter were first proved
by Dixon and Dubickas in [4]. Our approach provides alternative proofs of

their results, and generalises some of the ideas they presented.

3.1 Archimedean Equivalence

In this section we define Archimedean equivalence, and introduce some of its

basic properties.

Definition 3.1. Let K be a number field and let oy, ar € K. We say «; is
Archimedean equivalent to ag over K, if |ay| > 1 <= |asy| > 1 holds for all

Archimedean valuations |- | on K.

It is straightforward to see that this forms an equivalence relation on the

elements of K. Using the following lemma, we can remove the dependence
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on a specific number field.

Lemma 3.2. Let K and L be number fields which contain oy and as. Then
oy 1is Archimedean equivalent to ag over K if and only if aq is Archimedean

equivalent to ay over L.

Proof. 1t is sufficient to prove the lemma for L. C K since the intersection
of two number fields is always a number field. The result then follows by
considering all valuations on K as extensions of valuations on L, as described

by Definition 1.7. [

Definition 3.3. Let «; and as be algebraic numbers. We say a; is
Archimedean equivalent to oo if there exists a number field K, such that
a1, a0 € K, and o is Archimedean equivalent to oo over K. We write this

as ay ~ ag and use the abbreviation A-equivalence.

Archimedean equivalence is an equivalence relation, ranging over the set
of all algebraic numbers. We use Lemma 3.2 to ensure that A-equivalence is
transitive. If a; ~ as and ay ~ a3 then we can use Q(a, as, az) to show
that oy ~ 3. The following lemma records some of the basic properties of

Archimedean equivalence.

Lemma 3.4. Let aq, as be algebraic numbers. Let ¢ be a root of unity. Then

the following results hold;
1. Suppose ay ~ ay. Then oy ~ ayag ~ Cay.

2. Suppose « is a non-zero algebraic integer. Then

o is a root of unity = a~1 <= a~a .
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3. Suppose oy and as are non-zero algebraic numbers with no conjugates

on the unit circle. Then a; ~ oy <= a;' ~a;'.

4. Archimedean equivalence divides any number field into a finite number

of equivalence classes.

Proof. (1) follows from valuations being multiplicative functions, and that
any valuation of a root of unity equals 1.

To prove (2), observe that all three conditions imply that « has no
conjugates outside the unit circle. For a non-zero algebraic integer this
ensures « is a root of unity, by Lemma 2.6.

(3) follows directly from the definition of A-equivalence.

(4) follows from Lemma 1.12 which shows that there are only a finite

number of inequivalent Archimedean valuations on any number field. m

Archimedean equivalence is best understood using Galois groups. The

following theorem demonstrates how this is done.

Lemma 3.5. Let K be a number field, normal over Q with Galois group
G = Gal(K/Q). Let oy, a9 € K be algebraic numbers. Let | - | be the usual

absolute norm on C. Then the following are equivalent;

1. aq and oy are Archimedean equivalent.

2. lo(a1)| > 1 if and only if |o(ag)| > 1 for all o € G.

Proof. Let | - |, be an archimedean valuation on K, and | - |, be the unique
equivalent valuation on K which extends the absolute norm on Q. By
Lemma 1.12,

lal, >1 < |a|, > 1 for any a € K.
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Hence to test Archimedean equivalence, it is sufficient to test the valuations
which extend the absolute value on Q. These valuations can be expressed

using the elements of G as shown in the result. [

In the following example we show how Archimedean equivalence fibres

the unit group of an algebraic number field.

Example 3.6. Let K = Q(~+/2). The unit group of O is U = (—1,¢1, &),
where e, = 1+ /2 and €, = 1 4+ /2 are independent units. Let € = (1, €3).
We can determine the equivalence class of a number x from the value of m (z)

since by Lemma 3.4

Te(x) =7 (y) = x~vy forall z,y € U.

Considering . as a surjection from U to Z*, we can consider each embedding
of K as splitting Z* in half. One half corresponds to elements of U mapped
outside the unit circle, whilst its complement corresponds to those mapped
inside or onto the unit circle. When all embeddings are considered, Z? is split
up according to the A-equivalence classes for U, by Lemma 3.5. This division
of Z* is shown in Figure 3.1. In total there are 7 A-equivalence classes
represented in U. The first contains only the roots of unity, as described by
Lemma 3.4, and is represented by the central point of Figure 3.1. The other
equivalence classes correspond to the six regions displayed. These have been

labelled with the embeddings which correspond to large roots.
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Figure 3.1: A-equivalence classes for 4¢¢)

We now describe the four embeddings of K. Forn = 1,... 4, let o,
be the embedding that sends /2 to i*~*+/2. Notice that oi1(x) = = and
0o(2) = 04(z) for allz € K. Observe that 1 —v/2 = —e; ', 1 —v/2 = —¢7 '€y !
and (1 +iv/2)(1 — iv/2) = €. These facts allow us to describe when an

embedding of a number in U is outside the unit circle;

o . log(er)
1 € - ) h TR
lo1(z)] > 1 <= 7(x) = (i,j) where j > Zlog(ez)

02(2)] > 1 <= |ou(z)] > 1 <= 7.(z) = (i,5) where j < %

log(z)] > 1 <= 7(x) = (i,5) where j > i (1 + Eii;;) :

We prove the last fact in order to demonstrate the general method. Let x € U
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be such that |os(z)| > 1 and 7 (x) = (i,7). Then

log(z)] > 1 <~ ’O’g(EiGé) > 1| < |- eflegllileﬂj > 1

< —i(log(e1) +log(ez)) + jlog(er) > 0

=)

= j>i (1 +
Repeating this method for |o1| and |oy04| completes the description of the
A-equivalence classes.

An important fact about Archimedean equivalence is that it is invariant

under the action of Galois groups.

Theorem 3.7. Let K be an algebraic number field normal over Q. Let

aj,a3 € K and o € G = Gal(K/Q). Then ay ~ ay <= o(ag) ~ o(ay).

Proof. ( = )Assume that oy ~ ay. For any ¢* € G, "0 € G, hence
lo*(o(aq))| > 1 <= |o"(0(aw))| > 1,

as required.

(<= ) Let 07! € G be the inverse of o. Then
O'(Oél) ~ 0'(052) — 0'71(0'(041)) ~ 0'71(0'<052>> — 01 ~ Qo,

using the first half of the proof. O

We finish the section by giving the first connection between Archimedean

equivalence and Mahler measure.
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Theorem 3.8. Suppose a; ~ as. Then Q(M(ay)) = Q(M(az)).

Proof. Let K be a number field which is normal over (Q and which contains o

and as. Let 0 € Gal(K/Q). We prove the result by showing that
o(M(ay)) = M (o) if and only if o(M () = M(ay). (3.1)
For any g € Gal(K/Q) and for i = 1 or 2, let
GY = {0 € Gal(K/Q) |lg(0(cv))] > 1}.
We can see from Lemma 2.42 that
o(M(ay1)) = M (o) if and only if GY = GY

where e is the identity element of Gal(K/Q). We now notice that for any

g € Gal(K/Q), G{ = GY. This is due to Theorem 3.7. This gives
o(M(a)) = M(aq) if and only if G = G5

We use Lemma 2.42 again to give (3.1) as required. O

3.2 Condensed and Basal Polynomials

The concept of a basal polynomial was first introduced by Dixon and
Dubickas in [4]. We use a simpler definition, by dropping a superfluous

condition on the number of roots outside the unit circle. The results in [4]
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still hold with the new definition.

Definition 3.9. Let f € Z[X]. We say f is basal if no polynomial in Z[X]
has smaller degree and the same Mahler measure. We say that f is basal
irreducible if no irreducible polynomial in Z[X] has smaller degree and the

same Mahler measure.

By Theorem 2.11, determining if a polynomial is basal can be considered
to be a finite calculation, even if it is impractical and unenlightening. The
following lemma can be used to create a simple, sufficient condition for being
basal. It is a useful result, which was first published by Boyd in [3]. We
follow the argument used by Boyd, but use a slightly different framework.
We introduce the sets Sy to show the relationship between the proof of this

result and that of Theorem 3.12.

Lemma 3.10. Let o be an algebraic number of degree d, with s roots outside

the unit circle. Suppose M(«) has degree n. Then d divides sn.

Proof. Let the conjugates of a be ay = «, ..., g and the conjugates of M («a)

be 51 = M(a),...,B,. Let K be the Galois closure of Q(a) over Q and
let G = Gal(K/Q). For each element of § € G, let Sy be the conjugates of «

which are mapped outside the unit circle by . We wish to show that

O(M(a)) = o(M(a)) = 5; implies Sy = S,

for any f; and any 0,0 € G. We proved this for the case §5; = [ in
Theorem 2.41. Assume the statement 0(M(«)) = o(M(«)) = f; holds and

let p € G send B; to M(a). We then see S,y = S,,. Applying p~! to
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this set yields Sy = S,. Hence for any integer ¢ with 1 < ¢ < n, we can
unambiguously define the set A; to be set Sy where O(M («)) = ;. We have
two ways of evaluating the sum ) ., [A;|. The first answer is ns because
each set A; has size s. Alternatively let 61, ..., 0,, be the list of elements of G.
Then each conjugate of « appears equally often in the list 6;(«), ..., 0, ().
This means there is a constant [ such that each conjugate of a appears in

exactly [ of the sets A;. Hence )" | |4;] = ld = ns and the result. O

Corollary 3.11. Suppose « is an algebraic number of prime degree p, with

roots inside and outside the unit circle. Then Irr(a) is basal.

Proof. We can use Lemma 3.10 to show that p divides the degree of M(«),
since p cannot divide the number of roots outside the unit circle. If Irr(«)
is not basal, then there exists some f € Z[X] with M(f) = M(a) and
deg(f) < p. By looking at the roots of f, there must exist an algebraic
number o* such that p divides deg(M (a*)) with deg(a*) = n < p. Let K
be the Galois closure of Q(a*) over Q. Then the group Gal(K/Q) must be
isomorphic to a subgroup of S,,. Since p cannot divide n!, M(«*) cannot

belong to K. This is a contradiction, and hence Irr(«) is basal. [

A key technique of Dixon and Dubickas in [4] was to compare the splitting
field of a polynomial f with the Galois closure of Q(M(f)) over Q. They
showed that it is sufficient for f to be basal, or basal irreducible, for these
two fields to be equal. We can go further and give a precise description of

the relationship between the two fields.

Theorem 3.12. Let f € Z[X] and suppose J is the splitting field of f.
Let K be the Galois closure of Q(M(f)) over Q and let o € Gal(J/Q).
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Then o € Gal(J/K) if and only if o(x) ~ x for all roots x of f.

Proof. We first prove the result for f = Irr(«), where « is an algebraic
number. Let oy = ..., and fy = M(«),. .., By, be the conjugates of «
and M («) respectively. Let a be the leading coefficient of f. As in the proof
of Lemma 3.10, for all 8 € Gal(J/Q), let Sy be the following set of conjugates

of a:

Sg = {Oék HH(O&]C” > 1}

We first show that
o€ Gal(J/K) <= S,9 = 5 for all 0 € Gal(J/Q).

(=) It was shown during the proof of Lemma 3.10 that if 6 € Gal(J/Q),
then
og(0(M(a))) =0(M(a)) = So9 = Sp.

Since o fixes every conjugate of M («), we must have S,9 = Sy for all 6 as
required.

(<= For any 0 € Gal(J/Q), we can see that

07 (M(a)) =+a [ =

TESy

by applying 6. Hence

o0 (M) ==+a [[ o(z) =+a [] 2 =2a [ 2 =0"(M(a))

x€Sy zE€Syg €Sy
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for any 6 € Gal(J/Q). Therefore o fixes every conjugate of M («) as required.

(=) We now show that

Syg = Sp for all 0 € Gal(J/Q) <= o(ax) ~ a4 for all a.

From the definition of Sy, we see that S, = Sy for all § € Gal(J/Q) is

equivalent to

lo(6(a))| > 1 <= |0(aw)| > 1 for all oy, and all 6 € Gal(J/Q).

This implies that

o(ag) ~ ai for all oy

since # simply permutes the ay.

( <= ) This is clear from the definition of Sy and A-equivalence. This
completes the proof of the theorem for f = Irr(a).

We now let f = alrr(6,)---Irr(f,;) for some integer a and algebraic

numbers 61, ..., 60;. We wish to show that

o€ Gal(J/K) <= o(x) ~ x for all roots x of f.

(=) We recall from Theorem 2.41 that M(f) = |a|M(0;)--- M (64) gives a
factorisation of M (f) into Perron numbers. Since o fixes every element of K,
by Theorem 2.43, o fixes every conjugate of the numbers 6, ...,6,. We now
apply the first half of the proof to the polynomials Irr(6;),. .., Irr(6;) which

shows that o(x) ~ x for roots of f.
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( <= ) We again use the first half of the proof to see that o must fix
every conjugate of the numbers M (6,),...,M(6;). Hence o must also fix

every conjugate of M(f), and hence o € Gal(J/K) as required. O

The Galois closure J of Q(«) over Q will be equal to the Galois closure K
of Q(M(«)) over Q if and only if the Galois group Gal(J/K) is trivial. The
simplest instance of this is when no two conjugates of o are Archimedean

equivalent. This inspires the following definition.

Definition 3.13. We say a polynomial f € Z[X] is condensed if no root of f
is Archimedean equivalent to any other. We say an algebraic number « is

condensed if no two distinct conjugates of o are Archimedean equivalent.

An advantage of Archimedean equivalence is that it provides a useful

partition of the conjugates of an algebraic numbers.

Definition 3.14. Let « be an algebraic number. Define I'(«) to be the set

of conjugates of v that are Archimedean equivalent to a. Define I'*(«) to be

() = {T'(;) where «; is conjugate to a}.

Define the condensation of «, denoted C'(«), to be the product of all numbers

in I'(a). Define C*(a) to be

C*(a) = {C(«;) where «; is conjugate to a}.

We can show that I'*(«) is an explicit description for the block systems

defined by Dixon and Dubickas in [4].
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Definition 3.15. Let a be an algebraic number. Let K be the Galois closure
of Q(«) over Q and let G = Gal(K/Q). Suppose ¥ = {Ay,...,A,} is a
system of blocks for the action of G on the set of conjugates of a. We say

Y2 is DD-minimal if the following conditions hold:

e For each A; € X, A; contains either only large numbers, or no large

numbers.

e Further, the size m of the block system is as small as possible, with

respect to the previous condition.

Theorem 3.16. Let o be an algebraic number. Let K be the Galois closure
of Q(a) over Q and let G = Gal(K/Q). Suppose ¥ = {Aq,...,An} is a
system of blocks for the action of G on the set of conjugates of . Then X is
DD-minimal if and only if ¥ = I'*(«).

Proof. We assume ¥ is DD-minimal and let A € . If x,y € A then by
Lemma 3.5, x and y are A-equivalent. Hence every member of ¥ is a subset
of a member of I'(«). This implies that |["(«)| < ¥ where equality only
holds if I'*(«) = X. Since ¥ is DD-minimal, it cannot be larger than I'*(«)

and so the result holds. O

We intend to show that the condensation of an algebraic number a belongs
to the Galois closure of Q(M («)) over Q. This is part of a more general fact
about ['(«).

Theorem 3.17. Let « be an algebraic number, with T'(a) = {aq, ..., an}
and let K be the Galois closure of Q(M(«)) over Q. If f is a symmetric

polynomial in m variables with coefficients in Q, then f(aq,...,an) € K.
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Proof. Let J be the Galois closure of Q(a) over Q and let o € Gal(J/K).
Then o(f(a1,...,am)) = f(o(ar),...,0(am) = flaa,..., ). The first
equality is straight forward since ¢ is a homomorphism. For the second
equality notice that by Theorem 3.12, o permutes the elements of I'(a). The
equality then holds, since f is symmetric. Since f(a,...,q,,) is fixed by

any element of Gal(J/K), it must belong to K as required. O

We can now summarise the relationship between an algebraic number «,

C(a) and M(«).

Theorem 3.18. Let a be an algebraic number. Let K be the Galois closure

of Q(M(«)) over Q and suppose Irr(a) = a, X™ + -+ + ag. Then

4. There exists an integer ¢ such that cM(C(a)) = M(«).
5. If ged(an, ap) = 1, then M (o) = M(C(a)).

Proof. (1) is a special case of Theorem 3.17 using f(z1,...,%m) = &1 Ty
where m = |I'(a)]. (2) is a corollary of Lemma 3.4. To prove (3), we look
at the conjugates of C(«). These are all of the form C(a*), where o* is a
conjugate of a. If C(a*) ~ C(«) then a* ~ « by (2). This implies o* € I'(«)
and so C(a*) = C(a). Hence C(«) is condensed. The proof of (4) and (5)
are very similar. Let S be the set of large conjugates of a and let I'y, ..., T,

be the members of I'*(«) which consist of large conjugates. Notice that
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S =T1U---Ul},,. Let a be the leading coefficient of Irr(a) and let a. be the

leading coefficient of Irr(C'(«)). Then

M(@)=an [[ lel =a [T TT Il = ;- M(C(a)).

zES i=1 yely;

Hence (4) will hold if we can show that a. divides a. This follows from
using the second part of Lemma 1.3. Finally to prove (5), observe that

N(a) = ap/an, = N(C(«)). This ensures that a,, = a. as required. O

Theorem 3.19. If a; and as are algebraic numbers that are Archimedean

equivalent, then the following hold: s
1. Q(C(an)) = Q(C(a2)).
2. Clag) = a1 <= a1 € Q(Caw)).
3. If Clay) = aq and C(ag) = ag, then Clanas) = ajas.
Proof. (1) Let K be the Galois closure of Q(aj, ) over Q and let
G = Gal(K/Q). We need to show that
o(Clar)) = Clar) <= o(C(az)) = C(az)

for all 0 € G. Let 0 € G. Then

U(C(Oél)) = C(al) < U(Ofl) ~ 0
— o(ag) ~ g by Theorem 3.7

— 0(C(ay)) = Clay).
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(2) Proving ( = ) follows from (1). To prove the converse direction,

notice that
ola) ~a3 = o(Clag)) ~ Clae) = o(C(ag)) = C(ae)

for all 0 € G. If o fixes C(a2) it must fix all elements of Q(C'(az)). Hence
if a3 € Q(C(ay)), then

olag) ~ag = o() =

for all o € G as required.
(3) This follows immediately from (2) since ajas ~ «aq, by Lemma 3.4,

and ayas € Q(C(ay)). O
Theorem 3.20. Let f be a basal polynomial. Then f is condensed.

Proof. Any polynomial f € Z[X]| can be written as

f=a H Irr(ay),

where a # 0 is an integer, and «q,--- ,q,, is a list of algebraic numbers.
These numbers need not be distinct. We first show that each factor Irr(«;)

must be condensed. Assume some Irr(a;) is not condensed. Then
m

g=a ][ M(a)M(C(a:)) " Irr(C(an)),

=1
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has smaller degree than f. Further

M(g) = aHM(ai)M(C(Oéi))’1M(Irr(0(0@))) = GH M(ei) = M(f),

since M (c;)M(C(a;))™" is a positive integer by Theorem 3.18. This fact
also implies that ¢ € Z[X]. This contradicts f being basal. Hence if f is
basal and not condensed we can assume a; ~ s without loss of generality.
Since Irr(ay) and Irr(as) are condensed, we know that they and Irr(ajas)
all have the same degree. This means Irr(ajas) has smaller degree than
Irr(oq)Irr(a). Let ag and ag be the leading coefficients of Irr(a;) and Irr(as).
Let o1, ...,04 be the embeddings of Q(c). Then

M (Irr(aq)Irr(az)) = ajas H max(1, |o;(aq)|) max(1, |o;(c2)]|)

i=1
d

= 109 H max(l, |O'i(041042)|)

=1

= cM (Trr(ap )

for some integer c¢. This integer exists since the leading coefficient of Irr(a; )
must divide ajas. This again allows us to find a second polynomial g, with
smaller degree than f, but with the same Mahler measure. This contradicts f

being basal, so f must be condensed. O]

Theorem 3.21. Let f = a, X" + ...+ ag be a basal irreducible polynomial.

Suppose ged(ap, ag) = 1. Then f is condensed.

Proof. The proof is identical to the first half of the proof of Theorem 3.20.

The exception is that we must ensure that g is irreducible. By Theorem 3.18,
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the condition that ged(ay,, ap) = 1 will ensure this. O

The following example is proof that M is not closed under multiplication.
This result was discussed in Section 2.3. It was originally proven by Dixon
and Dubickas in [4]. The beginning of the proof is taken from Dixon and
Dubickas. Our proof is longer, since we give a description of the unit group

of the ring of integers.

Example 3.22. Let (; and (o be quadratic unit measures such that

Q(51) # Q(B2). Then B132 ¢ M.

Proof. Let B} and 5 be the conjugates of 3; and (5 respectively. The other

three conjugates of 3,3, are (155, 5152 and 37 3;. Since

18] = B # By = 183

we can see that (1, has exactly two conjugates outside the unit circle.
Suppose « is an algebraic unit such that M(«) = (182. We can assume
a € Q(F152) by Theorem 3.18(5). Obviously if o has 0, 1 or 3 conjugates
outside the unit circle, M(«) is either 1 or a Pisot number. Hence a must
have two conjugates outside the unit circle. Let Ky, Ky and K3 be the

following number fields;

K1 =Q(81) = Q(vm), K2 = Q(B2) = Q(Vn2), K3 = Q(y/nina).

For i« = 1,2,3 let 7, be the unique number such that 7; > 1 and the unit
group of the ring of integers of K is equal to (, —1,7;). Further let ¢; be \/7;

if \/n; € Q(B152), and n; otherwise. We claim that the unit group of the

60



ring of integers of Q(f1/52) is equal to (—1, €, €9, €3). Since Q(512) is a real
quartic number field, we require a system of 3 fundamental units. Further
the numbers €1,65 and €3 are independent, because the number fields K, K5
and K3 are distinct. If (—1, €, €9, €3) is not the complete unit group, then
there must be some unit z € Q(/3;52) which does not belong to (—1, €1, €3, €3).
We can assume that 2 = ¢; for some positive integer n and i € {1,2,3}.
However for m > 3, z/7; has a complex conjugate, and so cannot belong
to Q(B1P2). Hence (—1, €1, €2, €3) is the unit group as required.

The four conjugates of o are
i j k i —j —k —ij —k —i_—j k
CL€1€2€3, Co€r€s7 €3, Ga€1 ‘€363 and (ueq €7 €5

for some 7,5,k € Z and (,...,(4 € {£1}. The product of any of these

two conjugates is quadratic, which contradicts M («) having degree 4. Hence

B1B2 ¢ M. u
Theorem 3.23. Suppose [ € Z[X] has Mahler measure of degree d.
o If f is condensed, then the degree of f is less than or equal to 2¢.

o If f is condensed and irreducible, then the degree of f is less than or

equal to (Ldl}lgj)'
o [f f is basal, then the degree of f is less than or equal to Zlgrgd/Q (ff)

Proof. Let K be a splitting field for f, and G = Gal(K/Q). For each root €
of f, let
I'e={c(M(f))| o€ Gand |o(e)| > 1}.
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For two roots x,y of f, we can see that I'; =Ty, <= x ~ y. Hence if f
is condensed, the set of roots of f is smaller than the set of subsets of roots
of Irr(M(f)). Hence the degree of f is less than or equal to 2¢.

If f is irreducible, each set I'. must have the same size. This gives the
second result.

If f is basal, we choose another basal polynomial, g with the same Mahler
measure. If f =a[[", fi,let g = a][;", gi, where g; = f; if f; has at most
half of its roots lying outside the unit circle, and f otherwise. Then for
each root € of g, |T'¢| < g. Further no I'. is empty, since we could replace the
factor Irr(e) by the integer M () to reduce the degree of g, without changing

the Mahler measure. O

We now give two important results from [4], showing how to prove them
using the ideas we have introduced. In Section 2.1, we considered the inverse
problem for Mahler measure as two related problems. The first problem
was to determine for a given algebraic number §, if there exists an integer
polynomial with Mahler measure 5. We now explain how to construct such
a polynomial if possible, or show that such polynomials do not exist. Giving
an upper bound for the degree of basal polynomials is the key step. We recall
from Lemma 2.5, that if f is an integer polynomial with Mahler measure f3,
then

L(f) <2"M(f).

This gives an upper bound for the length and degree of a basal polynomial
of degree . It is clearly straightforward to construct a list of all integer

polynomials which satisfy this bound on their length and degree. We then
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search this list for polynomials of degree 5. This will determine if a basal
polynomial exists with Mahler measure § and give a specific example if it
does. If no basal polynomial of Mahler measure 3 exists, then no polynomial

of Mahler measure 3 can exist.

Theorem 3.24. Let § € M* and let d be the degree of B. Let K be the
Galois closure of Q(B) over Q. Then there exists a polynomial f € Z[X]

such that M(f) =  and every root of f belongs to K. Further, the degree

of f is at most Zlgrgd/Q (f)

Proof. Since € M*, let f be a basal polynomial with Mahler measure /3

and let J be the splitting field of f. Suppose o € Gal(J/Q). Then by

Theorem 3.12, we have
o€ Gal(J/K) <= o(x) ~ x for all roots x of f.
By Theorem 3.20, f is a condensed polynomial. Therefore
o€ Gal(J/K) <= o(x) = x for all roots x of f.
Since J is the splitting field of f,
o€ Gal(J/K) < o(x)=zxforallz e J

Hence J = K as required, whilst Theorem 3.23 gives the bound on the size

of f to complete the result. n

Dixon and Dubickas also proved a parallel result for algebraic units. We
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can use the process outlined prior to Theorem 3.24, to determine whether or
not a given algebraic unit belongs to M. We would again test the integer
polynomials whose degree and length are below given bounds. The search
however is conducted only amongst irreducible polynomials whose first and
last coefficients are £1. We can also use a lower bound on the degree of the

polynomials to be tested.

Theorem 3.25. Let 8 € M be an algebraic unit of degree d. Let K be the
Galois closure of Q(B) over Q. Then there exists an algebraic unit o in K

such that M(«) = 3. Further, the degree of « is at most (Ld;lzJ)'

Proof. The proof is nearly identical to that of Theorem 3.24. The main
change is that we choose a basal irreducible polynomial f with measure
instead of a basal one. We now must use Theorem 3.21 to show that f is
condensed. The last change needed is to use the second part of Theorem 3.23

to give the improved bound on the degree of f. m

We now show that these ideas can be adapted to determining whether
or not a given algebraic unit belongs to R. Again the key step is finding an
upper bound on the degree of reciprocal polynomials to be tested. We begin

with the following straightforward result.

Theorem 3.26. Let o be a reciprocal algebraic unit with no conjugates on

the unit circle. Then C(«) is also reciprocal.

Proof. Since « is not a root of unity, by Lemma 3.4, I'(a) # T'(a™!). Then
for each v € I'(«), Lemma 3.4 shows that y~' € TI'(a™'). It then follows
that C(a™') = C(a)™ L. O
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The fact that C'(«) is reciprocal does not imply that « is reciprocal. The
non-reciprocal numbers used in Lemma 2.38 are proof of this. The restriction
that a has no conjugates on the unit circle is also important. For example
if a is a number with Irr(a) = X% + X° + 2X* + 3X3 + 2X? + X + 1,
then Irr(C(a)) = X? — X? — X — 1. We can however adapt Theorem 3.26
to solve the general problem of determining when an algebraic unit belongs
to R. This result was proven for cubic unit measures in [4]. This provided

the final step in the proof of Theorem 2.9.

Theorem 3.27. Let 3 be a measure that is the measure of a reciprocal
unit. Let K be the Galois closure of Q(B) over Q. Then there exists a

reciprocal unit o* € K such that M(«a*) = 5. Further, the degree of o* is at
d d
most (47, ) [(L%J) - 1]

Proof. Let a be a reciprocal unit with M(a) = . Let I () = {T'1,..., T}
Let T;' = {e'|e € I;}. Let Ay; =T; NT; . These sets can alternatively be
generated by a new equivalence relation. If o and ay are conjugates of «
then they belong to the same A;; if and only if oy ~ o; and a; b~ aj_l. The
rest of the proof can be understood as the condensation with respect to this
new equivalence relation. Lemma 3.4 show us that unless a number has a
conjugate on the unit circle, this will agree with the usual condensation.
We now prove a few results about the sets A;;. Let J be the Galois
closure of Q(«) over Q and let G = Gal(J/Q). Since the sets I'; and Fj_l are
blocks for the action of G, so are the intersections A;; where non-empty.
The action of G on the sets A;; is easy to describe. Suppose o € G,
and o(I'y) = . Then o(I';') = I';''. Suppose o € Gal(J/K). Then by
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Theorem 3.12, o(I';) = I; for all i. Hence o(4A;;) = A;; for all ¢ and j.
Choose a non-empty A;;, and let a* be the product of elements in A;;.
It is clear that the conjugates of a* are the products of elements in any

non-empty A;;. Further if § € A;; then 61 € Ay, and so the reciprocal

X
of a* is the product of elements in Aj;.
The upper bound for the degree of a* is found by enumerating the

non-empty sets A;;. As seen in Theorem 3.23, I'*(«) has cardinality at

most (Ld(;Z J). The bound then follows from the fact that I; NI, = @. O

We finish by comparing R and NV, which reveals an interesting dichotomy.
We can use Lemma 2.38 to show that the analogous version of Theorem 3.27
for N does not hold. If a > 1 is a quadratic unit, Lemma 2.38 shows
that o? € RUN. However the only elements in Q(«) with Mahler measure o2
are =a? and +a 2. These are all reciprocal, and Q(«) is normal over Q.

We finish with a couple of results about the multiplicative structure of M.
If restricted to algebraic integers, Theorem 2.32 can be generalised as follows.
The original result is recovered by assuming a; = ap = ... = @,. This shows

that M still has some multiplicative structure, despite Theorem 3.22.

Theorem 3.28. Let oy, ..., a,, be a list of algebraic integers, not necessarily

distinct, which are archimedean equivalent. Then [[, M(a;) € M.

Proof. Let K = Q(C(c)). Notice that K contains C'(aa), . .., C(a,,) and the
product C(aq)---C(ay,) by Lemma 3.19. Let 6y,...,6, be the embeddings
of K which map C'(aq) outside the unit circle. By A-equivalence these are the

embeddings that map any of C(as),...,C(ay,) and C(ay) - - - C(ayy,) outside
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the unit circle. Hence

M (H C(ai)> = H

0; (H C(%)) ‘ =TI 16:(Cl)) = H M(ev;)

i=1 i=1 j=1
as required. O

Whilst M is not a monoid under multiplication, we can still give a weak

form of multiplicative structure to the units in M.

Theorem 3.29. Let K be a normal algebraic number field of degree d.
Let S C KN M be a set of units with cardinality at least 271, Then there

exist x,y € S such that vy € M.

Proof. We can assume 1 ¢ S since this case is trivial. Let fy,..., 8, be the
elements of S, and let v, ..., a,, be units in K such that M («;) = ;. These
can be chosen so that each «; is outside the unit circle and must always exist
by Lemma 2.6. By the pigeonhole principle we can choose two which are

A-equivalent, and apply Theorem 3.28 to obtain the result. O

3.3 Calculating Maximal Mahler Sets

It was shown during the proof of Theorem 2.11 that we can calculate
maximal Mahler sets in an inefficient manner. In this section we develop
alternative methods for calculating these sets. The simplest situation is when
a maximal Mahler set S C Q is known to contain only condensed numbers.
For example, if § is a unit measure we can use the maximal Mahler set S C Q

with measure [ and smallest possible degree by Theorem 3.20. This special
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case is convenient because by Theorem 3.18, we know that S C K, where K
is the Galois closure of Q(5) over Q. Having reduced the inverse problem
to searching within a single, known number field, we can use Dirichlet’s
Unit Theorem. Being able to operate inside a finitely generated group, with
a unique description for each unit makes it straightforward to calculate S.
The first step is to divide the unit group into equivalence classes generated by
archimedean equivalence, as demonstrated in Example 3.6. We then study
each equivalence class in turn. The examples in this section work with units

of degree 4, which requires the following fact to be checked.

Lemma 3.30. Suppose f € Z[X] is irreducible, has degree 4 and the measure

of f is a unit of degree at least 4. Then f is basal irreducible.

Proof. All polynomials of degree at most three, have Mahler measure whose

degree is at most three. Hence no such polynomial can have the same degree

as f. O]

The following example demonstrates a general principle for calculating

maximal Mahler sets that contain only condensed numbers.

Example 3.31. Let S be a unit and a measure such that the Galois closure
of Q(B) over Q is equal to Q(i,/2). Then the mazimal Mahler set S C Q

of degree 4 and measure 5 has cardinality 16.

Proof. There are 5 quartic subfields of Q(i, v/2). These are

Ky = Q(V2), Ky = Qiv2), K3 = Q((1+)V2),
Ky =Q((1—i)v?2) and K5 = Q(v/2,4).
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To calculate |S], it is sufficient to study only K; and K3. This is because K
and K5 are conjugate fields, so |S N K| = |[S N K;|. Further since Ky, K,
and S all have degree 4, K;NK,N.S = @. The same argument applies to the
conjugate fields K3 and K. The last field Kj is itself normal over QQ, so the
Mabhler measure of any number in K5 will belong to K, implying K5NS = &.
Hence |S| = 2(]S N K;| + |S N K3|). Notice that 8 must belong to K7, since
it is the only real quartic subfield of Q(i, v/2).

We begin with K; = Q(v/2), which was studied in Example 3.6. We saw
that Archimedean equivalence divides the unit group of Kj into 7 classes.
There are 4 classes which consist of numbers with quartic Mahler measure.
These are also the 4 classes which have exactly 1 or 3 large conjugates.
Keeping the notation of Example 3.6, let o3 be the embedding of K; which
sends v2 to —v/2. For a € SN K1, let S, be the set

S, = {*a,+a ! +o3(a), +o3(a)" '}

Notice that S, is a Mahler set, contained in K, and that exactly one element
of S, is a Pisot or Salem number. Hence if SN K; # 0, then S N K; = S,
and 8 must be a Pisot or Salem number. If § is a Pisot number, we can
check that the 8 numbers described above are distinct, and so |Sz| = 8. If 8
is a Salem number then 8 must be a positive power of (1 4+ v/2)%(1 4+ v/2).
Then f~! = o(8), but =6 and £~ are all distinct numbers, and so |Ss| = 4.

We now turn to K3 = Q((1 4 4)v/2). The unit group of K3 is equal
to (—1,¢) where € = (1 + v/2) 4+ (V2 + +v/2)i. If n is a non-zero integer,

then £€" has degree 4 and Mahler measure (1 + v/2)2"(1 + 1/2)/"l. Hence
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if SN K3 # () then |SN K3| =[S N K;| =4, completing the result. O

We now present a novel framework for approaching the calculation of
maximal Mahler sets of integer polynomials. There are two main ideas
involved. The first is to repeatedly break the sets down into useful
disjoint subsets, whilst the second idea is to group the non-zero roots of a
polynomial by Archimedean equivalence. We begin with defining when an

integer polynomial is in Archimedean standard form.

Definition 3.32. Let f € Z[X]. We say f is in Archimedean standard form

when the following conditions hold;

o f=aX"][, f; where a,n € Z, n > 0 and the non-zero roots of f

fall into exactly m A-equivalence classes.

e Each factor f; is monic, has positive degree, and all of its roots are

non-zero and A-equivalent.

We define 7(f) to be the set of constant coefficients of the factors f;. For

any [ € M*, define T'(3) to be

T(B) =A{r(NHIf € Z[X] and M(f) = B}
Lemma 3.33. Let f and g be integer polynomials and let 5 € M*. The
following hold:

1. If f and g have the same leading coefficient and if T(g) = 7(f) then

M(f) = M(g)-
2. The set 7(f) contains only condensed numbers.
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3. The set T(B) is finite.

Proof. (1.) We can calculate M (f) from just the leading coefficient a of f
and 7(f). Large algebraic numbers can only be A-equivalent to large
algebraic numbers, by the definition of A-equivalence. Hence the large
elements of 7(f) are the product of only large roots of f. Similarly the
non-large elements of 7(f) are the product of only non-large roots of f.
Hence M(f) is equal to a multiplied by the product of the large elements
of 7(f). This gives the result, as we obviously get the same Mahler measure
working with g.

(2.) Let f; be a factor that appears in the Archimedean standard form
of f. The set of roots of f; is equal to I'(ag) U --- U I'(«v,) for some
algebraic numbers oy, ..., a, which are all A-equivalent. Then the constant
coefficient of f; is equal to C(ay) - C(ay,). Then by Theorem 3.19(3), this
is a condensed number.

(3.) For any t € T'(5), let

fi=a][(X -

act

where a; is the positive integer such that M(f;) = . This integer exists
by the definition of T'(5). Let F(8) be the set of all such f;. Clearly
fs = fi < s =tandso |F(p) = |T'(B)]. For a positive integer i,
let F; be the polynomials in F(3) of degree i. Notice that these are Mahler
sets and so are finite. We notice that 7(f;) = ¢t and so that f; is condensed.

Then by Theorem 3.23 deg(f;) < 2¢ where d = deg() and so if i > 24
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then F;(5) = @. Hence

TB) = FB) = [F(B)] + -+ + [F2a(B)] < oo.

]

Definition 3.34. Let § € M* and let d be a positive integer. Let Sy(f,d)
be the maximal Mahler set of integer polynomials of degree d and measure .

For any 7" € T'(3), let S1(7*, 5, d) be the set

SU(T, B, d) = {f € So(B,d)|7(f) =77}

Lemma 3.35. Let f € M* and let d be a positive integer. Then

So(ﬂvd) - U 51(7—*7ﬁ>d)7

€T (B)

and

[So(B, ) = D |Si(7*,8,d)|.

T*€T(B)
Proof. The first claim comes directly from the definition of Sy(8,d) and
S1(7*,8,d). The second claim requires that our decomposition of Sy(f,d)
consists of pairwise disjoint sets. This is also true, since 7 is a single-valued

function. O

Definition 3.36. For an algebraic number «, we define E(«) to be the set of
conjugates of a. Let f be an integer polynomial. We say a vector (aq, ..., a,)

of algebraic numbers is a basis for 7(f) if the following conditions hold:
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e 7(f)=E(q)U---UE(a,)

e For any integers 1 < i < 7 < n, no conjugate of «; is Archimedean

equivalent to any conjugate of a;.

Definition 3.37. Let § € M* and let 7* € T'(f). Let d be a positive integer
and let (av,...,a,) be a basis for 7*. Then Sy((av, ..., @), (i1,...,in), 5, d)

is defined to be the set
{f € Si(7*, B,d)| f has i; non-zero roots A-equivalent to a;}.

For an algebraic number «, define Sy(«,7) to be Sa({a}, (i), M(«), deg(w)i).

Lemma 3.38. Let f € M* and let 7* € T(B). Let d be a positive integer,

and let (aq, ..., ) be a basis for 7. Then

Si(r*, B,d) = U Sa((an, ... o), (dy, ... dn), B, d)

di,..., dm>1, di,...,dm€Z
deg(a1)di+--+deg(am)dm<d

and

1Sy (7*, B, d)| = > 1Sa((a, -y o), (d, - di), B, d)] .
diye.., dm>17 diy..., dm €7
deg(a1)di+-+deg(am)dm<d

Proof. From the appropriate definitions, it is clear that

Sir8d)= | Sallon,... am), (di,. .. dy), B,d).

This infinite union can be replaced by the finite union given in the theorem.
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Suppose f € Sa((aq,...,am), (d1,...,dy),B,d). The number of non-zero
roots of f, counted with multiplicity, is deg(ay)d; + - - - + deg(ay,)d,,. This
must be less than the degree of f. Hence if deg(ay)dy +- - -+ deg(ay,)d,, > d,
then Sy((av, ..., am), (di,...,dy), 5,d) is empty. The second claim requires
that our decomposition of S;(7*, 8, d) consists of pairwise disjoint sets. This

again follows from the appropriate definitions. n

Lemma 3.39. Let § € M* be a unit and let 7* € T(B). Let d be a positive

integer, and let (o, ..., ) be a basis for T*. Then

S2((CV17 cee 7am)7 (ila <o 7im)767d) = {qul te fm‘f] < 52<aj’ij)}

where ¢ = d — deg(a )iy — -+ - — deg(a, )im. Furthermore:

‘52((0517 st ,Oém), (ih S 7Zm>>d)| = 217mH |52(aj7ij)|'

j=1

Proof. 1t follows from the appropriate definitions that

{qul .. 'fm|fj - SQ(O(j,ij)} C SQ((O[l, Ce ,Oém)7 (il, .. ,Z'm),ﬂ,d).

Suppose f € Sy((aq,...,am), (i1,...,im),5,d) and let the Archimedean

standard form of f be
f=aX']] o
k=1

where a # 0, t > 0 and n > 1 are integers. Looking at the degree of f shows
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that t = ¢;

deg(f) =t+ Z deg(gr) =t + Z deg(oy)i; = q + Z deg(c;)i;.
k=1 j=1

j=1

We also know that a = 1 because M(f) = ( is a unit. For i € {1,...,m}
let f; be the product of the polynomials g, which have a constant term which

is a conjugate of a;. Then f; and — f; belong to Sa(«;, ;). Hence

f=Xaf))fe - fm €{X 1 S € Sa(ey,i5)}-

This completes the proof of the first claim. For the second claim, we must
take into account the number of ways a polynomial can be factorised in
this way. Up to ordering, the roots of each factor are determined by f.
The leading coefficient of each factor f; can be chosen to be £1. The only
restriction is that the product of all such leading coefficients is equal to

2m71

the leading coefficient of f. There are ways of doing this, giving the

result. O

We aim to give a formula for the size of maximal Mahler sets with
unit measure. The following definition allows us to describe the possible

coefficients for a factor of a polynomial in standard form with unit measure.

Definition 3.40. Let o be a condensed unit and let K be the Galois
closure of Q(«) over Q. Let ¢ = (c1,...,¢,) be a vector of algebraic
integers in Q(«r). We say ¢ matches « if for every o € Gal(K/Q) the roots
of XM 43" o(¢;) X'+ 0 () are all A-equivalent to o(a). We also say that

the vector of length zero matches with any condensed unit. Let N(a,m) be
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the number of distinct vectors of length m — 1 which match a where m is a

positive integer.

Lemma 3.41. Let a be a condensed unit and let © be a positive integer.
Let o1,...,0, be the embeddings of Q(a)). Then for any f € Z[X], the

following are equivalent:
1. f € SQ(O&,i),

2. The Archimedean standard form of f is equal to

f=a]] (XZHL (iaj(ck)Xk) +Uj(@)> ,
j=1 k=1

where a = £1, and (c1,...,¢i-1) € (’)ig_(;) matches a.

Furthermore |Sa(a, )| is equal to
2 H(cl, ce,Cilq) € Oig_(tll)|(cl, ..., Ci—1) matches a}‘ )

Proof. (1) = (2) By definition of Sy(«, i), we know that M(f) = M(«),
deg(f) = in and 7(f) = {o1(),...,0n(a)}. Let the Archimedean standard
form of f be

d
[ = GXmej
j=1

for some integers a # 0, m > 0 and d > 0. We first observe that d = n

since d = |7(f)|. We can therefore assume that the constant coefficient of f;
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is 0;(a). Looking at the Mahler measure of f, we can see that a = %1 since

M(f)= M(aX™ ﬁM |a|HmaX oi(a
7j=1

= la|M(a) = |a|M(f).

Each f; will have degree i, so deg(f) = m + ni and hence m = 0. We define
the vector (cy,...,c;_1) € C! to such that
i1

N1 :Xi“f‘ZCka—i—a.

k=1

Since each root of f; is an algebraic integer, the coefficients c1,...,¢; 1
are also algebraic integers. Let K be the splitting field of f. We need to
show that (c,...,¢i-1) € Q(a). We will do this by showing that for any
o € Gal(K/Q) and any ¢ € {c1,...,¢i1}, 0(a) = a = o(c) = c. We
recall that the roots of f; are A-equivalent to «, and are the only roots of f
A-equivalent to a. Then by Theorem 3.7, o(«) = a implies that o permutes
the roots of f;. Considering ¢ as a symmetric function in the roots of fi, this
implies that o(c) = ¢ as required. Finally we must check that (cq,...,¢—1)
matches a. By definition, this would imply that for 1 < j < n, the roots
of f; are all A-equivalent to o;(«). Since f is in standard form, the roots of
each f; are A-equivalent to each other. Then by Lemma 3.4(1), o,(a) which
is the constant term of f;, is A-equivalent to the roots of f; as required.

(2) = (1) It is straightforward to check that f € Ss(c,1).

The final claim is also straightforward, since every integer polynomial has

exactly one standard form, up to the order of the factors. n
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We are now ready to give an example of our explicit description of max-

imal Mahler sets. We first require the following lemma.

Lemma 3.42. Let a and b be real numbers. Then the following hold:

X%+ aX +b=0 has two large roots <= b< —|a| —1
or b > max(1, |a] — 1),

X%+ aX 4+ b=0 has no large roots +~= 1>b>|a| —1.

Proof. Let f = X? +aX +b. Notice that f has complex roots if and only
if a? < 4b, and these roots both have modulus v/b. We first show that the
theorem holds when f has complex roots. In order to do this, we simplify
the theorem using the fact that a?/4 > |a| — 1 holds for all real a, and
so b > |a| — 1 holds if f has complex roots. A second simplification uses the
fact that if 4b > a® then b > 0 > —|a| — 1. The theorem then reduces to f
has 2 large roots if b > 1 and no large roots otherwise. This is clear since
the roots have modulus v/b.
We can now assume a? > 4b and let 6,0, be the roots of f, where

a—+Va?—4b

and 6y = — 5

91:

—a++va?2 —4b
2
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We look at the cases #; > 1, 6; < —1, §3 > 1 and 0, < —1 independently.

0 >1 <= Va2 —4b>a+2 — (a<—20ra2—4b>a2+4a+4)

— (a<—-2o0rb< —a-—1)

b <—1 &= Va2 —4b<a—2 < (a>2and a®—4b < a® —4a+4)
< (a>2and b>a—1)

fy>1 <= Va2 —4b< —(a+2)
— (a<—2anda2—4b<a2+4a+4)
— (a<—-2and b>—a—1)

Oy < —1 <= Va2 —4b>2—a < (a>20ra2—4b>a2—4a+4)
< (a>2o0orb<a-—1)

We first prove the result about f having large roots, if b is negative. Notice
that a®> > 0 > 4b, and so f must have real roots. Since §; < —1 and 6, > 1
cannot happen simultaneously, f has two large roots if and only if ¢; > 1

and 6, < —1.

01 >1land 0y < —1 < (a<—-2orb< —a—1)and (a>2orb<a—1)

<— (b<—a—-landb<a—1) <= b<|a| -1

This proves the result for f having two large roots when b is negative. We
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now look at when f has two large roots for b > 0.

(01,00 > 1) or (01,02 < —1) <= (a<—2and b< —a—1)
or (a>2andb>a—1)

< (Ja| >2and b > |a| — 1)

< (b>1land b>|a] —1)

<= b > max(l,|a| — 1)

The non-obvious implication here is that if f has real roots and b > 1
then |a| > 2. This follows from using a® > 4b. This completes the proof
of the first half of the theorem. The proof for f having no large roots, when

the roots are real, is very similar.

01],102] <1 <= (Jla|<2andb>a—1and b> —a—1)

— (Ja|<2andb>la|-1) <= 1>b>|a| -1

Again the non-obvious step is that if f has real roots and |a| < 2 then b < 1.
This follows since |a| < 2 = a®> <4 = b < 1 using a* > 4b. This

completes the proof of the second half of the theorem. O

Theorem 3.43. Let S C Z[X] be a mazimal Mahler set with degree 4.
Suppose the measure 3 of S is a quadratic unit and suppose that Gal(Q(3)/Q)

15 generated by o. Then

S| =2[N(B)| + 2|N(=p)| + 36
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where

N(B) ={z € 0K||$| < B and|o(z)] <1+0(8)}

and

N(=B) ={z € Ok ||z| < B and |o(z)]| <1 -0 () }.

Proof. Let f; = 8 and let (35 be its conjugate. Let K = Q(3) and let

Tl = {51562}a T2 = { - Bla _52}7 T3 = {1761752}
Ty =A{1,=p1,—p2}, Ts={-1,51, 5} and T = {—1,—B1, —f2}.

We first claim that T'(8;) = {T1,...,Ts}. We can now use Lemma 3.35 to

give
6
|S| - Z |Sl<n>ﬁ174)| :
i=1

The next step is to use Lemma 3.38 on each term on the right hand side. We

start with Sy (71, 81,4) to give

151(Tx, B, 4)] = 152 (B1,2)| + 152 ((B1), (1), Br, 4)| = |52 (Br, 2)] + 2

Here we use the fact that Sy((581), (1), 81, (4)) = {£X*(X — B1)(X — B2)}.

Repeating this analysis for Si(T3, 51,4) to give
151(T2, B1,4)| = |52 (=1, 2)[ + |52 (=51), (1), B1,4)| = |52 (=1, 2)[ + 2
We use the fact that Sy((—051), (1), 81, (4)) = {£X*(X + 51)(X + B2) }-
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Moving on to S1(T3, £1,4), we obtain

|151(T5, 1, 4)| = [52((1, 1), (2,1), B, 4)| + [52((1, Br), (1, 1), B1, 4)| = 12

Here we use Lemma 3.39 to give

SH((1,81). (2.1), 51,4) = 5 18:(1,2) 18051, 1)

So((1,81). (1,1), 51,4) = 5 1821, D] 8:(51, 1)

We then use the followings facts;

So(1,1) = {+(X = 1)},

S2((81), (1), B1,4) = {EX*(X = B1)(X — Bo)},

Sy(1,2) = {£(X* +aX +1)|a € {£2,£1,0}}.

The proof that |S3(Ty, B1,4)] = 12 and [S2(T5, 1, 4)| = [92(Ts, 1, 4)| = 4 is

almost identical. The followings facts are required for these cases;

So(—1,1) = {H(X + 1)},

Sa((=B1), (1), Br,4) = {£X*(X + B1)(X + o)},
S5(1,2) = {£(X? - 1)}

We combine these results to give

|S| = 1S2(51,2)] + [S2(—p41, 2)| + 36.
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We now use Lemma 3.41 to calcuate |S2(f1,2)].

|S2(81,2)] = 2|{x € Ok|(x) agrees with /3 }|

=2

(

<£B€OK

\
(

z € Ok

\

X?% 4+ 2X + B; has two large roots,
X? + o(x)X + B2 has no large roots.
pr1 < —|z| =1 or f; > max(l,|z| — 1)

1> 8, > |o(z)] - 1

=2{z € Ok |p1 > |z] =1 and B > |o(z)| — 1}]

=2{z € Ok ||lz| < B+ 1and |o(z)| < B2+ 1}| =2|N(B)]

Repeating this method for Ss(—/f,2) gives the required result.

|S2(—=p1,2)] = 2|{x € Ok|(x) agrees with — [ }|

=2

(

r € Ok

\
(

r € Ok

\

X2+ 2X — B3 has two large roots,

X? + o(x)X — 35 has no large roots.

\

pr>|z|+1or — B > max(l,|z| —1)

1> =y >|o(z)| —1

=2{z €Ok |- b1 < —|z|—1and — o > |o(x)| — 1}|

=2{z € Ok ||z| < B —1and |o(z)| <1 - B2 }| =2|N(-B)]

]

Corollary 3.44. Let S C Z[X] be a maximal Mahler set of degree 4 with

Mahler measure 5. If 5 is a quadratic unit then |S| > 40 with equality if and

+v5
R

only if B = ¢ =152
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Proof. Let K = Q(f) and let o generate Gal(K/Q). Let 8; = 8 and let S,
be its conjugate. Let N(5) and N(—f) be defined as in Theorem 3.43,
which states that |S| = 2|N(8)| + 2|N(—/3)| + 36. Observe that since 8; > 1
and | ;] < 1, it is trivial that 0 belongs to both N(8) and (—f). This implies
that |.S| > 40.

If By = 37!, then 1 belongs to N() and so |S| > 42. This is clear since
1<1+8y<1+4p. If B =—F7" and By > 2 then 1 belongs to N(—3) and
so |S| > 42. This is clear since 1 < f—1and 1 <1— 3* =1+ 1. Hence
if | S| = 40, we know that 8y = —3~! < 2. The only quadratic unit 3, greater
than 1, for which this holds is 8 = ¢. We demonstrate that N(¢) = {0},
the argument that N(—¢) = {0} is identical. Assume z € N(¢). Then there

exist integers a,b such that x = a + b¢ and that

la+bp| < p+1 la—bp™ | <1—¢ "

We need to show that a = b = 0. The above equations imply that

a+bp < p+1, —a+bp P <1—¢', a—bp ' <1—0¢"', —a—bp < p+1.

Combining the first two inequalities shows that b(¢ + ¢~') < 3 whilst
combining the other inequalities give —b(¢ + ¢~!) < 3. Hence we know
that [b] < 1. These cases can tested one by one. It is then straightforward

to see that a = b = 0 as required. O]
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Chapter 4

Mahler Sets

In this chapter we explore questions related to the size of Mahler sets.

4.1 Arbitrarily Large Mahler Sets

We begin by showing that the unit group of an algebraic number field can

contain arbitrarily large Mahler sets.

Example 4.1. Let n be a positive integer. Let S C Q be the mazimal Mahler

set of degree 4 and measure (1 ++/2)". Then
SNQ(V2)| = 8[nd)

. 2log(1+ v/2) -1
where § = <1 + Toe(L1v3) ) )

Proof. We use the notation and ideas of Example 3.6, which described the
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A-equivalence classes of the unit group of Q(v/2). Let S, be the Mahler set
S, = {*a, +a !, £o3(a), £oz(a) '}
for any a € S, and let T" be the set

j>i<1+%),i>0}.

Then for any o € S, |S, NT| = 1, which implies |S N Q(+v/2)| = 8/SNT].

— )i
T = {6162

If o = €€}, € T, then M(a) = 5’ ". Hence

SNT = {eieé”")ﬂ

(i+n)/2>i <1+ log(el)) > 0}.

log(ez)

These conditions can be rearranged to give
SNT = {20 < i < nb},

from which the result is clear. O]

We can then combine this result with Example 3.6 to compare all Mahler
sets S in the unit group of @({4/5) This reveals a threshold on the size of S,

beyond which S must be of a restricted form.

Example 4.2. Let S C Q(v/2) be a Mahler set of degree 4 with unit measure.
Suppose |S| > 9. Then the measure of S is of the form (1 ++/2)" for some
positive integer n. Further there exist x,y € S such that x/y is a Salem

number.
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Proof. We recall from Example 3.6 that the unit group of Q(v/2) contains
seven A-equivalence classes. One contains only +1, two contain only
elements with quadratic measure, and four contain only elements which
have quartic measure. During Example 3.31, we described the maximal
Mabhler sets with quartic unit measure in Q(v/2,4). These all have exactly 8
elements in Q(v/2) and so the measure of S is not quartic since |S| > 9.
This leaves only the units which are A-equivalent to 1 + /2 or (14 v/2)71,
which have Mahler measure (1 4+ v/2)" for some positive integer n. We
then look at the condensed units with Mahler measure (1 + v/2)" for a
given n, which are (14 +/2)" and +(1++/2)~". By the pigeonhole principle
principle we can choose oy, ag € S such that C(a;) = C(az). We will also
assume that oy ~ ay ~ 1 4+ v/2. The argument for (1+ \/ﬁ)_l is identical.
For any a = Cei€) ~ 1+ /2 where ¢ = £1, C(a) = ¢(—1)'&’ . Hence we
can assume

a1 = CFel™2 and qp = el

where ( € {£1}, n,k,[ are integers such that n = k = [ (mod 2), n > 0

and k > . Then a;/ay = (2€2)"~! which is a Salem number as required. []

We will continue to explore such thresholds in Section 4.2. We now turn

to the following question;

Question 4.3. Given a number field K, does the unit group of Ok contain

arbitrarily large Mahler sets?

We have already seen that the answer is affirmative for Q(v/2) whilst
by Lemma 2.31 it is negative for any quadratic or cubic number field. The

principles used in Example 4.2 can be repeated for an arbitrary number field.
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Theorem 4.4. Let K be a number field of degree d and let U be the unit

group of Ok . The following are equivalent
1. U contains arbitrarily large Mahler sets.
2. U contains a Mahler set of size 247 d? + 1.

3. U contains x,y such that x ~y, M(x) = M(y), x and y have the same

degree, and x/y is not a root of unity.

Proof. We prove this by showing that (1) = (2) = (3) = (1), where
the first implication is trivial. We use the pigeonhole principle to show that
(2) = (3). Let S C U be a Mahler set of size 24t1d®> + 1. Archimedean
equivalence divides K into at most 2% equivalence classes. By the pigeonhole
principle, there must be 2d? + 1 elements in S which are A-equivalent. There
are at most 2d? roots of unity in K, and so by the pigeonhole principle again,
the implication holds. To prove that (3) = (1) we introduce relative height

on K. Let Hy : O — [1,00) be the map

Hy (o) = HmaX(L oi(a)])

where oq,...,04 are the d embeddings of K. Notice that if x and y are

A-equivalent algebraic units, then
Hy(z)Hk(y) = Hi(zy).

Further if two algebraic units have the same degree and relative height on K,

then they have the same Mahler measure. Under the conditions of statement
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(3), let S,, be the set
S, ={z'y" " 0<i<n}

where n is a positive integer. In general, S,, need not be a Mahler set but
every element will have the same relative height on K. Hence any subset
of S, whose elements have the same degree, will be a Mahler set. Further
since x/y is not a root of unity, |S,| = n + 1. The degree of elements in S,
must divide the degree of K so let m be the number of divisors of d. By the
pigeonhole principle, S, must contain a Mahler set of size [, completing the

proof. O]

We now give two methods for constructing arbitrarily large Mahler sets

inside a number field.

Theorem 4.5. Suppose « is an algebraic integer such that C(a) # « and
deg(a®) = deg(a) for all positive integers k. Let m = |T'(a)| and let S, be the
set

Sp = {C’(oz)”_jozmj’j €Z,0<j<n}

for some positive integer n. Then S, is a Mahler set, with degree deg(a),

mn

measure M (a)™ and cardinality n.

Proof. Suppose I'(a) = {ay,...,ap}. Then for z = C(a)*7aj¥ € S,, we

see that

We can see that |['(x)| = m, since else there exist oy, oy € I'(a) with
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n—j

_ . n—j
o T = oy

, contradicting our assumption that deg(a™?) = deg(a). This
also ensures the elements of S,, all have the same degree as «. To calculate the
Mahler measure of the elements of S,,, we first calculate their condensation:

C (C(a)"am™) = Cla)"" Dol .. o = C(a)™ ™ = C(a)™.

m

By Theorem 3.19, C(«) and C'(a))™™ have the same degree, whilst o and C'(«)
have the same Mahler measure by Theorem 3.18. This ensures every element
of S, has Mahler measure M (a)™". We now show |S,| = n. If |S,| < n,
then there exists 0 < k < [ < n such that C(a)" *a™ = C(a)"la™.

Ik m(k—1)

Re-arranging we get that C'(a)' "« = 1. This cannot happen since by

our assumptions and Theorem 3.19,
deg(c(a)l_k) = deg(C(w)) # deg(a) = deg(am(k—l))_

O

We can now answer Question 4.3 for many number fields that contain a

proper subfield.

Corollary 4.6. Let o be a condensed algebraic unit with no conjugates on
the unit circle. Let K be a proper extension of Q(«) which is not totally
complex if both [K : Q(«)] = 2 and Q(«) is totally real. Then the unit group

of Ok contains arbitrarily large Mahler sets.

Proof. Let r, and rx be the number of real embeddings of Q(«) and K

respectively, and let s, and sk be the same for complex embeddings. We
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first show that under our assumptions
"k +Sk/2—1>r4+84/2—1. (4.1)

Notice that each complex embedding of Q(«) contributes 1/2 to the right
hand side of (4.1) and [K : Q(«)]/2 to the left hand side. This is because
there will be [K : Q(a)] complex embeddings of K which extend each complex
embedding of Q(«). For each real embedding o, let n, be the number of real
embeddings of K which extend o. Then o contributes 1 to the right hand
side of (4.1), and

My + S 1) ng )2+ (K Q(a))/2 (4.2)

to the left hand side. We observe that no embedding can contribute more to

the right hand side of (4.1) than the left hand side. Hence we have

TK+8K/2—1Z7’Q—|—SQ/2—1.

We now determine when equality holds. Since [K : Q(a)] > 1, equality
cannot hold if Q(«) has any complex embeddings. We also notice that the
quantity in (4.2) is larger than 1 if n, > 1 or if [K : Q(a)] > 2. Thus
equality will hold if and only if Q(«) is totally real, K is totally complex
and [K : Q(a)] = 2. Hence (4.1) holds under our assumptions.

Let @ = 14 + 5o/2 — 1 and let €},..., €2 be a system of fundamental

units for Q(a). Let b = rx + sx/2 — 1 and let €,... X be a system of

fundamental units for K. We can assume that for 1 < i < a, €' is some
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power of . If z = €/, then no power of z is contained in Q(«). Since « has
no roots on the unit circle we can choose an integer n such that y = a™x ~ a.
Notice that no power of y is in Q(«). Since the sequence deg(y') is cyclic, we
can choose a second positive integer m such that deg((y)™) = deg(y™) for
all positive integers ¢. Then y™ satisfies the conditions of Theorem 4.5 and

the result follows. O]

Corollary 4.7. Let K C R be a number field which is a proper extension of
some number field J # Q. Then the unit group of Ok contains arbitrarily

large Mahler sets.

Proof. We first check that J contains a condensed algebraic unit with no
conjugates on the unit circle. This follows from Lemma 1.3, since J contains

a Pisot number. The result then follows from Corollary 4.6. O

We can also construct arbitrarily large Mahler sets using condensed

numbers.

Theorem 4.8. Suppose oy and oy are condensed algebraic units that are

A-equivalent and have the same Mahler measure. Let S, be the set
S, = {o/io/;_ﬂi €Z,0<1< n}

Then S, is a Mahler set, with degree deg(cv) and measure M(aq)"™. Further,

if o is not a root of unity, then |S,| =n+ 1.

Proof. The fact that S,, is a Mahler set with the given degree and measure

follows immediately from Theorem 3.19. Now assume a;/as is not a root
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of unity and suppose |S,| < n + 1. Then there exist 0 < i < j < n such

that afa? ™ = alaj . This implies o 7o ™" = 1 which is impossible, and
hence |S,| =n+ 1. O

We can also show that for many number fields the answer to Question 4.3
is negative. To do this we introduce quasi-reciprocal numbers, which are

defined in a similar way to reciprocal numbers.

Definition 4.9. Let o be an algebraic number of degree d. We say « is
quasi-reciprocal if there exists a set S of conjugates of o, with 1 < |S| < d

and ] .g5 = %1

It is important to note, and trivial to prove, that reciprocal numbers
are quasi-reciprocal if and only if they have degree greater than 2. Hence
Pisot numbers are never quasi-reciprocal whilst Salem numbers are always
quasi-reciprocal. The following lemma shows that quasi-reciprocal numbers
appear naturally when studying Mahler sets. Example 4.2 was an example

of this appearance, since all Salem numbers are quasi-reciprocal.

Lemma 4.10. Let oy and as be algebraic units with the same Mahler measure
and such that the relationships Q(ay) = Q(ae) and ay ~ ag hold. Then ay /s
either belongs to a proper subfield of Q(ay), or is a root of unity, or is quasi-

reciprocal.

Proof. Let 0 = ay/ay. It is clear that 6 € Q(a). We assume that 6 € Q(a;)
and that 6 is not a root of unity. Note that this implies that a7 and a» are
not roots of unity. If one of a; or as is a root of unity, the other must also

be, since they have the same Mahler measure, by Theorem 2.7. This would
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then imply 6 is a root of unity. We prove the result by showing that 6 is
quasi-reciprocal.
Let o01,...,0, be the set of embeddings of Q(ay) into C for which

loi(a1)| > 1. Then

[Io:6) = Tzl _aMlen) _ 4,
i1 ‘ i1 O'Z'(Oég) 62M(OK2)
where €1,€e; € {£1}. Since ay is not a root of unity, 1 < m < deg(f) and

0 is quasi-reciprocal as required. n

Lemma 4.11. Let K be an algebraic number field which is normal over Q
and let g1, ..., g, be elements of G = Gal(K/Q). Suppose « is an algebraic
unit in K which is not a root of unity and such that gi(a) - - - g, () is a root
of unity. Let H be a subgroup of G which contains (g1, ...,gn). Then there

exists an irreducible representation p of H over C such that

det (p(g1) + -+ + p(gn)) = 0.

Proof. Let r and 2s be the number of real and complex embeddings of K
respectively, and let m = r+s/2—1. Let €1, . .., €, be independent units in K,
and ¢ a root of unity such that the unit group of K is ((, €1,...,€y,). Let V be
the CH-module formed by restricting the CG-module V (K, (, (€1,...,€n))

to H. Let &' = {ey,...,en} be the basis of elementary vectors. Then

(lg1]a + .-+ [gn) @) me(@) = me(g1(@) - - - gn(a)) = 0
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where € = (€1, ..., €,). Hence 7 (a) is a non-zero vector in the null space of

the matrix [g1]s + -+ + [gn]#. Hence

det ([g1]z + -+ + [gn]) = 0.

Let Vi,...,Vy be irreducible CH-modules such that V.=V, & --- @ V.
Let %, ..., %y be bases of V1,...,V, respectively. We can amalgamate the

bases %1, ..., 9B, to obtain a basis % of V', such that

for all g € G. Let T be the change of basis matrix from % to %’. Hence

det ([g1]z + -+ - + [gn)2) = det (T ' [g]a T + -+ T gl wT)

We can then see that
d
det ([g1] + -+ + [gal ) = [ [ det ([g1) + - + [gn] ) = 0.
i=1
Therefore we can choose some 7 such that the function
9= 9lz(g € H)

is a representation of H over C with the required property. O
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We can now show that no number field of prime degree contains arbitrarily

large Mahler sets.

Theorem 4.12. Let K be an algebraic number field of prime degree p. Let

S C K be a Mahler set with unit measure. Then |S| < 2(2P — 2).

Proof. We first handle the case where K contains non-real roots of unity.
This can only happen when the degree of K is even, and hence the only
possibilities are K = Q(i) and K = Q(v/3i). The unit group of Q(i)
is {#1, 44} and Q(+/37) has unit group {£1, £(—1++/3i)/2, £(14+/3)i/2}.
In either case, the result holds.

We now assume the only roots of unity in K are +£1. We assume
S| > 2(2P — 2), and proceed to find a contradiction. By the pigeonhole
principle we can find ay,as € S which are A-equivalent but such that
aj/ay # 1. The argument is identical to that used in Theorem 4.4, except
that we know there are only 2 roots of unity in K. We can now consider K
as being Q(a;) = Q(az) since oy # £1 and the only proper subfield of K
is Q. Let J be the Galois closure of K over Q and let G = Gal(J/Q).
Let ¢ € G be an element of order p. This can always be done since p,
the degree of G divides the order of (G, which allows the use of Cauchy’s
theorem. We now claim that g does not fix a; or as. If it did, p would
divide both |K| and [J : K] ensuring p? divides G. This is impossible since G
is isomorphic to a subgroup of the symmetric group .S, which has order p!.
Hence the group (g) when restricted to K gives a complete set of embeddings

for K. Let ¢1,...,gm be the elements of (g) which map «; and s outside
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the unit circle. We can then see that

e aq M(Oél)
() =+ _—
gg (042} M (az)
Then by Lemma 4.11, there exists an irreducible representation for (g)

such that

det (p(g1) + -+ + p(gm)) = 0. (4.3)

Since (g) is cyclic of order p, we know that p(g) = (p) for some p-th root of
unity g by Lemma 1.19. It is clear that Equation (4.3) cannot hold if p = 1,
SO we can assume f is a primitive p-th root of unity. Let ¢ be an integer
such that the ¢-th power of g maps «; inside the unit circle and 0 < ¢ < p.
Equation (4.3) then implies that the numbers p?~9p(g1), ..., " ~9p(gm) are
not linearly independent over Q. However these numbers form a subset
of {u, ..., uP~'} which is an integral basis for Q(u). This contradiction proves

that our assumption |S| > 2(27 — 2) is false, as required. O
A very similar result is the generalisation of Lemma 2.31.

Corollary 4.13. Let p be a prime. There exists a finite, uniform upper

bound on all Mahler sets of degree p and unit measure.

Proof. Let S be a maximal Mahler set of degree p and unit measure /.
Let K be the Galois closure of Q(/3) over Q. The case p = 2 is covered by
Lemma 2.31. Hence we can assume p is an odd prime. Let a be a unit of
degree p. Since there are no roots of unity of degree p, o has conjugates
inside and outside the unit circle and so |I'| < p. Because |I'™*(«)] is a block

system, we know that |I'| divides p. This implies |I'(«)|] = 1 and so « is
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condensed. Hence S is contained inside K by Theorem 3.18. Since Gal(K/Q)
is isomorphic to a subgroup of S,, there is a uniform upper bound on the
number of subfields of K with degree p. We can then use Theorem 4.12 to

give the result. O

4.2 Mahler Sets of Condensed Numbers

In this chapter we consider Mahler sets of condensed algebraic units. We
wish to explore the relationship between the degree, measure and size of

such Mahler sets. We begin by defining some important notation.

Definition 4.14. Let n > 2 be a integer and let €2,, be the set of condensed

units of degree n. For a € €, let S(«) be the set

S(a) ={a* €Q,

o ~a, M(a*) =M(a)}.
Let T,, be the set
T, ={a € Qy,|z,y € S(a) = z/y is a root of unity},

and let ¢, = sup(]S]) where S runs over all Mahler sets contained in Y1,.
The following lemma gives basic facts about €2,,, T,, and ¢,.
Lemma 4.15. Let n > 2 be an integer. Then

1. Q, contains no roots of unity.

2. If a belongs to €1, then so do all conjugates of . Further, if a belongs

to T, then so do all conjugates of .
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3. If a is a Pisot or Salem number of degree n, then o € Y,.
4. If p is a prime number, then Q, = T,,.
5. We have ¢,, < oco.

Proof. Lemma 3.4 shows that the only condensed roots of unity are +1,
which proves (1). For a condensed algebraic unit «, let K be the Galois
closure of Q(a) over Q. We know that the elements of G = Gal(K/Q)
preserve the property of being condensed. This gives the first claim of (2).
Using Theorem 3.7 we can then see that S(o(a)) = {o(z)|z € S(a)} for
all o € G. This completes the proof of (2). To prove (3), we assume « is a
Pisot or Salem number, and let o* € S(«). Since a and o are A-equivalent
and condensed, we know that Q(a*) = Q(«). Using this fact, and the fact
that a and a* are A-equivalent, shows that the only large conjugate of o*
is a*. Then o = £a since M(a) = M(«*). This implies S(a) = {*a} as
required. A proof of (4) was contained within the proof of Theorem 4.12.
The proof of (5) is very similar to that used in Corollary 4.13. Let S C T,
be a Mahler set with measure 3, and let K be the Galois closure of Q(/)
over Q. Since S contains only condensed numbers, S C K by Theorem 3.18.
Since Gal(K/Q) is isomorphic to a subset of the symmetric group S, there
are at most 2™ A-equivalence classes in K. Further we know that |S(a)] is at

most 2n? for any o € S by Lemma 1.3. Hence ¢, < 2"*+n2 proving (5). O

Having determined that the constants ¢, are finite, we can make the

following definition.
Definition 4.16. A Mahler set S C 2, is called large if |S| > ¢,.
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The remainder of this section is spent trying to describe the constraints
placed upon the measure of a Mahler set S C €2, if S is known to be large.
Any such large Mahler set must contain elements outside T,,. By studying
such elements we can study the measure of large Mahler sets. The following

lemmas explain how we prove our main results in this section.

Definition 4.17. Let ®,, and V¥,, be the sets

P, = {o € Q| deg(M(a)) < n};

U, ={ac Qn’M(a) is quasi-reciprocal } .

Lemma 4.18. Let a be an algebraic unit and let A = {on = «, ..., a,} be
the set of conjugates of a. Let K be the Galois closure of Q(a) over Q and
let G = Gal(K/Q). Let H be a subgroup of S, and let \ be an appropriate
bijection X : A — [1,...,n] so that G and H are permutation isomorphic.
Let T be the image under X\ of the large roots in A and let ¥ = {I'*|z € H}.
Let p1, ..., pm be a set of irreducible representations for H over C such that

every irreducible representation of H over C is equivalent to one of them.

Then

1. If {{1},...,{n}} is the only block system such that T is a union of

blocks, then a € €, .

2. If a € Q, and if there exists a subset J C H such that |J| = |I|,
' = {1%z € J} and det (Zjejpi(j)) # 0 for all 1 < i < m, then

aeT,.

3. If o € Q and |X| < n then o € ®,,.
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4. If a € Q, and there exists ¥ C X such that 1 < |X'| < |X| and each

integer 1 < i < n appears in exactly k elements of ¥, then a € U,,.

Proof. (1) The image under A\ of I'*(«) will be block system for H. If this
block system is {{1},...,{n}}, then T"(a) = {{a.},...,{an}} since X is a
bijection.

(2) Assume « € €, but that a ¢ Y,,. Then there exists a* € S(a) such
that a/a* is not a root of unity. Let this ratio be 6 and let gy,. .., g be the

embeddings of Q(«) which map « outside the unit circle. Then

o T 9ila)  M(a)
H91<9) = 11 91;(04*) - M(a*) =+

We can use the permutation isomorphism between G and H and the set J to
find 0y,...,0p € G which meet the requirements of Lemma 4.11. We can
then use Lemma 4.11 to show there exists an irreducible representation p
such that

det (p(o1) + - + plory)) = 0. (4.4)

We know that p must be equivalent to one of the representations p;. We
recall from the proof of Lemma 4.11 that the value of the left hand side
of (4.4) depends only on the equivalence class of the representation. Hence
we have a contradiction and so o € T,.

(3) Let f1 = M(a) and let B = {B,...,B4} be the set of conjugates
of M(«). The action of G on A defines an action on B, whilst H
acting on [1,...,n| defines an action on ¥. These two new actions are

permutation isomorphic and |B| = deg (M («)) = |X|. Hence if || < n,
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then deg (M («)) < n as required.

(4) Let 6 : G — H be a bijection such that

for all a; € A and all ¢ € G. This exists since the actions of G and H
are permutation isomorphic. Let ¥" = {X],...,% 1V and let hy, ..., hy, be
such that T" = ¥;. For each h; let g; = 67'(h;). Since 6 is a permutation
isomorphism, g;(M(a)) # ¢;(M(«)) for any i # j. It then follows that
{n(M(a)),...,gm(M())} is a proper subset of the conjugates of M(«).
To show that M(«a) is quasi-reciprocal, we show that the product of these
conjugates is +=1. Let S be the set of large conjugates of a, and let € € {£1}
be such that M(a) = e]],.qa. Then

m

[To @) =]Tate) [Tt =e"TTTIA" (A (@)

1=1 i=1 aesS i=1 a€S

We now use the permutation isomorphism relation to give

f[gz- (M(a)) =€ f[ JIE ()\ (a)hi> .

We complete the proof by using the fact that each integer from 1 to n appears

in k elements of X',
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Lemma 4.19. Let o be an algebraic unit of degree n > 2.
1. aeQ, < a'le

2. If more than half the conjugates of o lie outside the unit circle, then

aleY, = acT,.
3. a€ed, & aled L
j. eV, — alteV Ll

Proof. (1) Clearly if « is a unit of degree n, so is a~!. If a has no conjugates
on the unit circle, then we can use Lemma 3.4 to see that « is condensed if
and only if a~! is condensed. If o has conjugates on the unit circle, then «
and o~ ! are conjugates and the result again holds.

(2) If v € Q,, has more than half of its conjugates outside the unit circle,
we can show that

z€S() = 7' € Sa).

Notice that if x € S(«), then x has more than half its roots outside the unit
circle. Hence z and « have no roots on the unit circle and the above fact
follows from Lemma 3.4. The set of ratios of elements in S(«) is therefore a
subset of the set of ratios of elements in S(a™'). This completes the second
result.

(3) and (4) both follow from (1) and the fact that « and o' have the

same Mahler measure. O

The following theorem shows how Lemma 4.18 and Lemma 4.19 can be

used.
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Theorem 4.20. Let o be an algebraic unit of degree 6 and let K be the
Galois closure of Q(a) over Q. If G = Gal(K/Q) = Ay then

CYEQG — CYETGU(I)(;U\Dg.

Proof. We assume that o has at most 3 large conjugates. This will be
sufficient to prove the result, by Lemma 4.19. If o were a root of unity, G
would be an abelian group so we know that « has exactly one, two or three
large conjugates. We use the transitive group library provided by the GAP
system [11]. Every transitive group of degree 6 is permutation isomorphic
to exactly one group in the library. Using the transitive group library shows
that G is permutation isomorphic to H = ((1,3,5)(2,4,6), (1,4)(3,6)). Let v
be a permutation isomorphism v : G — H and let A be the associated map
between the conjugates of a and [1,...,6]. Let I be the image of the set of

large conjugates of & under \ and let ¥ = {I"*|x € H}. Then ¥ is equal to
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one of the following sets;

2y = {{1}, {2}, {3}, {4}, {5}, {6} } .

Do = {{1,4},{2.5},{3,6}},

25 = {{L,2},{1.3},{1,5},{1,6},{2,3}, {2, 4}, {2. 6},
{3,4},{3,5},{4,5},{4,6}, {56} },

¥, ={{1,2,3},{3,4,5},{1,5,6},{2,4,6} } ,

S5 = {{1,2,4},{1,4,5},{2,5,6},{2,3,5},{3,4,6},{1,3,6} } ,

Y6 = {{1,2,5},{2,4,5},{3,5,6},{2,3,6},{1,3,4},{1,4,6} } ,

Y= {{1,2,6},{4,5,6},{2,3,4},{1,3,5} }.

We see that Y5 is the only non-trivial block system for H, and so if ¥ = ¥,
then o ¢ Q. On the other hand, none of the other possibilities allow I" to be
a disjoint union of elements of 35 and so if ¥ € {3, 33,..., 37} then a € Q.

We consider the other possibilities one by one. If ¥ = ¥;, then « has
exactly one large conjugate, which must be equal to +a* for some Pisot
or Salem number. By Lemma 4.15(2), we can assume o = +a*. We
observe that S(a) = S(a*), and so a € T since a* € T by Lemma 4.15(3).
If ¥ € {¥4,%7} then @ € ®g by Lemma 4.18(3), since [34],|X7| < 6.
If ¥ = %5, we let ¥ = {{1,2},{3,4},{5,6}} and use Lemma 4.18(4) to
see that @ € Wg. This leaves the cases of X5 and Yg, which we claim
both imply that a € T4. In order to use Lemma 4.18(5), we must first
describe the irreducible representations of H up to equivalence. In the table

below, we list the elements of H together with 3 non-trivial irreducible
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representations py, po and p3. Every non-trivial irreducible representation
of H is equivalent to exactly one of them. In the table, and the calculations
that follow, w is a primitive cube root of unity.

By Lemma 4.15(2), we can assume I' is equal to {1,2,4} or {1,2,5}.
UT ={1,2,4} let J = {hy, hs, hr}, whilst if ' = {1,2,5} let J = {hq, hs, ho}.
Then the set J has the properties as required by Lemma 4.18(2). Verifying

the required calculations then completes the proof;

det(p1<h1> + pl(hg) + pl(h7)) = det(l + w2 + 1) =2 + w2,

det(pa(hy) + pa(hs) + pa(h7)) = det(l +w + 1) = 2 + w,

det(pg(hl) + P3(h3) + p3(h7)) =

100 0 1 0 -1 0 0
det otrLol|l+] o 0 —=1|+] 0o =10 =1,
00 1 -1 0 0 0 0 1

det(pl(hl) -+ p1<h3) + pl(hg)) = det(l + Ck)2 + 1) =1+ 2&.}2,
det(pg(hl) —+ pQ(hg) =+ ,02(]19)) = det(l + w + 1) =1 =+ 2&),

det(ps(h1) + p3(hs) + p3(hg)) =

100 0 1 0 0 —1 0
det ot1rLol|l+] o o0 —-1f+] o 0 1 =1
00 1 -1 0 0 -1 0 0
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hs = (1,2,3)(4,5,6)

P1 w
P2 1 1 w
1 00 1 0 O 0 1 0
Ps3 010 0 0 -1 0 0 -1
00 1 0 -1 0 -1 0 0
h | hy=(1,2,6)(3,4,5) | hs =(1,3,5)(2,4,6) | he = (1,3,2)(4,6,5)
p1 w? w w
P2 w w? w?
010 0 0 —1 0 0 -1
P3 001 -1 0 O 1 0 O
100 0 1 0 0 -1 0
h hy = (1,4)(2,5) hs = (1,4)(3,6) he = (1,5,3)(2,6,4)
p1 1 1 w?
o) 1 1 w
-1 0 0 -1 0 O 0 -1 0
P3 0 -1 0 0 1 0 0 0 1
0 0 1 0 0 -1 -1 0 0
h | hyo=(1,5,6)(2,3,4) | hi1 = (1,6,2)(3,5,4) | h12 = (1,6,5)(2,4,3)
p1 w? W w?
P2 w w w?
0 -1 0 0 01 0 0 1
Ps3 0 0 -1 1 00 -1 0 0
1 0 0 010 0 -1 0
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Theorem 4.21. Let n be an integer such that 2 < n < 11 or n is prime.
Then
Q, =71, Ud,UV,.

If S C Qp is a large Mahler set with measure (3, then either [ 1is

quasi-reciprocal or deg(f) < n.

Proof. We will assume n is composite, since the Theorem holds for prime n
by Lemma 4.15. Assume n € {4,6,8,9,10}. The result then follows by
repeating the analysis of Theorem 4.20 for all transitive groups in the library
of degree n. This analysis can be performed using the GAP system and the
code listed in the appendix. The number of groups to be tested is reduced
significantly by considering only those which are minimally transitive. We
complete our discussion of this proof by explaining why.

Let o be a unit in Q,, and let K be the Galois closure of Q(«) over Q.
Let G = Gal(K/Q) be permutation isomorphic to H; a subgroup of the
symmetric group S,. Let A be the associated map between the conjugates
of w and [1,...,n]|. Let Hy be a transitive subgroup of H;.

If J C H, has the properties required in Lemma 4.18(2), then it will
also be suitable as a subset of H;. This stems from the fact that every
CH; -module is a direct sum of irreducible C Hy-modules. We can then repeat
the process used in Lemma 4.11 to show that if p is a representation of H;

over C, then

det (Z p(j)) = ﬁdet (Z pi(j)>

jet jeJ
for some irreducible representations p1, ..., p, of Hy over C.

We now turn to parts (3) and (4) of Lemma 4.18. Let I" be the
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image under A of the large conjugates of a. Let I'f = {I"*|x € H;} and
['s = {I'"|z € Hy}. Notice that ['5 must be a subset of I']. If they are equal,
then we can determine if o belongs to ®,, or ¥,, using only Hs. If they are

not equal, we can use I'5 and Lemma 4.18(4) to show that a € ¥,,. O

It is interesting to compare this result with some calculations performed by
Boyd [2]. Boyd showed that if « is a reciprocal number of degree 6 then M («)
is either reciprocal or has degree less than 6. We can view Theorem 4.21 as

a parallel result where the assumption that « is reciprocal is dropped.
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Appendix

The following code was used to prove Theorem 4.21. All but the last function
are auxillary functions. The last function ReturnGroupData replicates the
analysis of Theorem 4.20. The three inputs are the group, the degree of the
action, and a positive integer. This positive integer is the number of attempts
made to find some group elements which are suitable for Lemma 4.18(2). We
found setting this to be 25 to always be sufficient. The output is a list of
useful information about the problem. The last element lists orbits which we
cannot show to correspond to elements of 1,,,®,, or ¥,,. Hence if it is empty,

the analogue of Theorem 4.20 holds, for the chosen group and degree.

#A function that gives the result of a permutation on a set of points
OnManyPoints:=function(Points,Permutation)
local Answer, RepeatedPermutation;
RepeatedPermutation:=ListWithIdenticalEntries(Size(Points) ,Permutation);
Answer:=ListN(Points,RepeatedPermutation,OnPoints) ;
return Answer;
end;
ReturnOrbitList:=function(Degree,GroupList)
local ListOfCombinations, iiter, jiter, TempCombinations, RepeatedOnes,
RepeatedPointsToActOn, SortingPermutations, InOrbitListFlag,
OrbitListWithRepeats, OrbitList;

ListOfCombinations:=[];
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for iiter in [1..(Int(Degree/2)-1)] do
TempCombinations:=Combinations([2..Degree],iiter);
RepeatedOnes:=ListWithIdenticalEntries(Size(TempCombinations), [1]);
TempCombinations:=ListN(RepeatedOnes,TempCombinations,Concatenation) ;
ListOfCombinations:=Concatenation(List0OfCombinations,
TempCombinations) ;
od;
OrbitListWithRepeats:=[];
for iiter in [1..Size(ListOfCombinations)] do
RepeatedPointsToActOn:=ListWithIdenticalEntries(Size(GroupList),
ListOfCombinations[iiter]);
OrbitListWithRepeats[iiter] :=ListN(RepeatedPointsToActOn,Grouplist,
OnManyPoints) ;
SortingPermutations:=ListN(OrbitListWithRepeats[iiter],SortingPerm);
OrbitListWithRepeats[iiter] :=ListN(OrbitListWithRepeats[iiter],
SortingPermutations,Permuted);
od;
#We filter out repeated orbits and repeats inside orbits.
OrbitList:=[Unique(OrbitListWithRepeats[1])];
for iiter in [2..Size(OrbitListWithRepeats)] do
InOrbitListFlag:=true;
for jiter in [1..(iiter-1)] do
if OrbitListWithRepeats[jiter][1] in OrbitListWithRepeats[iiter]
then InOrbitListFlag:=false; fi;
od;
if InOrbitListFlag then OrbitList:=Concatenation(OrbitList,
[Unique (OrbitListWithRepeats[iiter])]); fi;
od;
return OrbitList;

end;
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CalculateSearchTerm:=function(InputSet,Degree,NumRepeats)
local Answer, iiter;
Answer:=[];
for iiter in [1..Degree] do
if Size(Positions(InputSet,iiter))<NumRepeats then
Add(Answer,iiter); fi;
od;
return Answer;
end;
QRSearch:=function(Orbit,Number0fRoots,Degree)
local SearchTerms, ListOfCombinations, NewSearchTerm, Temp,
iiter, isQRflag;
SearchTerms:=[];
if NumberOfRoots=2 then
SearchTerms:=[CalculateSearchTerm(Orbit[1] ,Degree,
2%3ize (0rbit[1]) /Degree)];

else

if [Size(Orbit),NumberOfRoots] in [[6,3],[8,4],[9,3],[10,4],[10,5],
[12,31,[12,4],[12,61,[14,2],[14,7],[15,3],[15,5],[16,4],[16,8],
[20,10],[24,3]1,[24,4]1, [24,6],[25,5],[30,3], [30,5], [32,4],[32,8],
[45,5],[48,3],[48,4],(75,5],[81,3],[135,5]] then
List0OfCombinations:=Combinations([2..Size(0Orbit)],NumberOfRoots-2);
for iiter in [1..Size(ListOfCombinations)] do
Temp:=0rbit{List0fCombinations[iiter]};
Temp:=Concatenation(Temp) ;
Temp:=Concatenation(Temp,Orbit[1]);
NewSearchTerm:=CalculateSearchTerm(Temp,Degree,
NumberOfRoots*Size (Orbit[1]) /Degree) ;

SearchTerms:=Concatenation(SearchTerms, [NewSearchTerm]) ;

od;
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fi;
fi;
isQRflag:=false;
for iiter in [1..Size(SearchTerms)] do
if SearchTerms[iiter] in Orbit then isQRflag:=true; fi;
od;
return isQRflag;

end;

ReturnGroupData:=function(MyGroup,Degree, NumberAttempts)

local GroupData, ListMyGroup, MyGroupIrr, RepeatedMyGroup,
MyGroupReps, OrbitList, NewGroupDataEntry, iiter, CurrentOrbit,
MinQRNumber, NumberOfRootsToUse, isQRflag, EmbeddingsList,
CurrentEmbeddings, RandomEmbeddings, Temp, Temp2, jiter, kiter;

#Entry number 1: The group

#Entry number 2: Degree of the action

GroupData:=[MyGroup,Degree] ;

#Entry number 3: list of elements of the group

ListMyGroup:=List (MyGroup) ;

GroupData:=Concatenation(GroupData, [ListMyGroup]) ;

#Entry number 4: Irreducible characters for the group

#Entry number 5: number of such characters.

MyGroupIrr:=Irr(MyGroup) ;

GroupData:=Concatenation(GroupData, [MyGroupIrr,Size (MyGroupIrr)]);

#Entry number 6: Representations

RepeatedMyGroup:=ListWithIdenticalEntries(Size (MyGroupIrr) ,MyGroup) ;

MyGroupReps:=ListN(RepeatedMyGroup,MyGroupIrr,
IrreducibleRepresentationsDixon) ;

GroupData:=Concatenation(GroupData, [MyGroupReps]) ;

#Entry number 7: Orbits
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#Entry number 8: Number of Orbits
NewGroupDataEntry:=ReturnOrbitList (Degree,ListMyGroup) ;
GroupData:=Concatenation(GroupData,
[NewGroupDataEntry,Size (NewGroupDataEntry)]);
#Entry number 9: Orbits with size >= Degree
#Entry number 10: Number of such orbits.
NewGroupDataEntry:=[];
for iiter in [1..GroupDatal[8]] do
if Size(GroupDatal[7] [iiter]) >= Degree then
NewGroupDataEntry:=Concatenation(NewGroupDataEntry,
[GroupDatal[7] [iiter]]);
fi;
od;
GroupData:=Concatenation(GroupData,
[NewGroupDataEntry,Size (NewGroupDataEntry)]);
#Entry number 11: Orbits we cannot show are "quasi-reciprocal".
#Entry number 12: Number of such orbits.
NewGroupDataEntry:=[];
for iiter in [1..GroupData[10]] do
CurrentOrbit:=GroupData[9] [iiter];
# Number roots used in QR * Number Large Roots Original =
# Degree Original * Number of repeats
# MinQRNumber:=Minimum number roots of M(alpha) needed
# to get each root of original number repeated equally.
MinQRNumber:=Lcm(Size (CurrentOrbit [1]) ,Degree)/Size(CurrentOrbit[1]);
if MinQRNumber = Size(CurrentOrbit) then
NewGroupDataEntry:=Concatenation(NewGroupDataEntry, [CurrentOrbit]);
else
#Produce a list of number of roots to use in QR.

# require: < size(CurrentOrbit), divisible by MinQRNumber
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NumberOfRootsToUse:=MinQRNumber*Filtered (
DivisorsInt (Size (CurrentOrbit)/MinQRNumber) ,
n—> n <>Size(CurrentOrbit)/MinQRNumber) ;
# And an exception to that previous rule.
if (Degree=10 and Size(CurrentOrbit)=10 and Size(CurrentOrbit[1])=5)
then NumberOfRootsToUse:=Concatenation(NumberOfRootsToUse, [4]);
fi;
isQRflag:=false;
for jiter in [1..Size(NumberOfRootsToUse)] do
if QRSearch(CurrentOrbit,NumberOfRootsToUse[jiter] ,Degree)=true
then isQRflag:=true;break;
fi;
od;
if isQRflag=false then Add(NewGroupDataEntry,CurrentOrbit); fi;
fi;
od;
GroupData:=Concatenation(GroupData,
[NewGroupDataEntry,Size (NewGroupDataEntry)]);
#Entry number 13: One entry for each orbit in GroupData[11].
# contains either: false or
# A 1list of group elements for Lemma 5.18 such that number in Upsilon_n
NewGroupDataEntry:=[];
#Partitions G, according to the value of 17x
EmbeddingsList:=[];
for iiter in [1..Degree] do
Add (EmbeddingsList,Filtered (ListMyGroup,x->1"x=iiter));
od;
for iiter in [1..GroupData[12]] do
CurrentOrbit:=GroupData[11] [iiter];

CurrentEmbeddings:=EmbeddingsList{CurrentOrbit [1]};
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for jiter in [1..NumberAttempts] do
RandomEmbeddings:=List (CurrentEmbeddings,Random) ;
Temp:=[];
for kiter in [1..GroupData[5]] do
Temp2:=ListWithIdenticalEntries(Size(CurrentOrbit[1]),
MyGroupReps [kiter]) ;
if Determinant (Sum(ListN(Temp2,RandomEmbeddings,Image)))=0 then
Temp:=false; break;
fi;

od;

if Temp=[] then
Add (NewGroupDataEntry,RandomEmbeddings) ; break;
fi;
if (jiter=NumberAttempts and Temp=false) then
Add (NewGroupDataEntry, Temp) ;
fi;
od;
od;
Add (GroupData,NewGroupDataEntry) ;
#Entry number 14: Orbits we cannot place in Phi_n,Psi_n or Upsilon_n.
#If empty for all minimally transitive groups of degree n,
#Then Theorem 5.21 holds for degree n
Add (GroupData, GroupDatal[11]{Positions(GroupDatal[13],false)});
return GroupData;;

end;
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