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Abstract

We investigate a number of aspects of the inverse problem for Mahler

Measure. If β is an algebraic unit, we demonstrate how to determine if

there are any reciprocal numbers with measure β. We also give a formula for

the number of integer polynomials with measure β and given degree.
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Introduction

We investigate a number of aspects of the inverse problem for Mahler

Measure. The first two chapters cover background material and introduce

Mahler measure and the inverse problem. We also introduce Mahler sets,

which are sets of integer polynomials or algebraic numbers with the same

Mahler measure and degree.

In Chapter 3 we introduce Archimedean equivalence. Dixon and

Dubickas [4] showed how to determine if an algebraic number is the Mahler

measure of an integer polynomial or algebraic unit. Theorem 3.24 and

Theorem 3.25 show how to do this using Archimedean equivalence. We

introduce a third result of this format with Theorem 3.27. This shows how

to determine if an algebraic number is the Mahler measure of a reciprocal

algebraic unit. For an algebraic unit β, Section 3.3 describes the enumeration

of integer polynomials of a given degree and Mahler measure β.

Chapter 4 focuses on Mahler sets of algebraic units. We investigate

whether or not the unit group of the ring of integers of an algebraic

number field contains arbitrarily large Mahler sets. We provide some

sufficient conditions in Corollary 4.6, whilst Theorem 4.12 shows that this

phenomenon cannot occur in number fields of prime degree. In Section 4.2
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we define large Mahler sets. For large Mahler sets with degree less than or

equal to 11, Theorem 4.21 gives restrictions on the Mahler measure of the

Mahler set.
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Chapter 1

Background Material

1.1 Permutation Groups

In this section we introduce permutation groups. This material is all covered

in greater detail by Dixon and Mortimer in [5]. Let G be a group and let Ω

be a non-empty set, and suppose that (α, x) 7→ αx is a function of Ω × G

into Ω. We say this defines an action of G on Ω, or G acts on Ω, if the

following holds.

• α1 = α for all α ∈ Ω, where 1 is the identity element in G.

• (αx)y = αxy for all α ∈ Ω and all x, y ∈ G.

The degree of an action is defined to be the cardinalilty of Ω.

Let G and H be groups acting on ΩG and ΩH respectively. We say G

and H are permutation isomorphic if there exists a bijection λ : ΩG → ΩH
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and a group isomorphism ψ : G→ H such that

λ(αx) = λ(α)ψ(x) for all α ∈ ΩG and all x ∈ G.

The orbit of α under G is the set

αG = {αx | x ∈ G}.

Orbits partition Ω into mutually disjoint subsets.

A group G acting on a set Ω is said to be transitive on Ω if αG = Ω for

all α ∈ Ω. When a group G acts on Ω, it also acts on the subsets of Ω in

a natural way. Define Γx = {γx | γ ∈ Γ} for any Γ ⊂ Ω. Let G be a group

acting transitively on Ω. A nonempty subset ∆ of Ω is called a block for G

if, for each x ∈ G, either ∆x = ∆ or ∆x ∩ ∆ = ∅. For any group G acting

transitively on a set Ω, then Ω and singleton sets {α}, where α ∈ Ω, are

blocks. These blocks are called trivial blocks, and all other blocks are called

non-trivial. If G acts transitively on Ω, and ∆ and Γ are blocks for G then

either the two blocks are disjoint, or ∆ ∩ Γ is a block. Suppose G acts

transitively on Ω and that ∆ is a block for G. Then the sets contained in

Σ = {∆x | x ∈ G} are all blocks and partition Ω. We call such a partition

a system of blocks. If Σ is a system of blocks for a transitive group G, then

the action of G on Σ is also transitive. The following lemma captures the

relationship between a system of blocks and equivalence relations.

Lemma 1.1. Let G be a group acting transitively on Ω. A G-congruence
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on Ω is an equivalence relation ∼ on Ω with the property that, for α, β ∈ Ω,

α ∼ β ⇐⇒ αx ∼ βx for all x ∈ G.

If Σ is a system of blocks for G then Σ is the set of equivalence classes for

some G-congruence. If ∼ is a G-congruence then the equivalence classes of ∼

form a system of blocks for G.

We say the action of a transitive group G on Ω is minimally transitive

if the restriction of the action to Ω × H is not transitive for any proper

subgroup H of G.

1.2 Number Fields and Valuations

In this section we cover some fundamental results about number fields. We

first mention that we require a number field to be a subset of C, and not

just an arbritrary finite extension of Q. We begin with some defintions and

highlighting some facts about number fields.

Definition 1.2. Let α be an algebraic number.

• We say an integer polynomial is primitive if ±1 are the only integers

are which divide every coefficient of the polynomial.

• We define Irr(α) to be the unique non-zero, primitive, irreducible

polynomial in Z[X] of smallest degree, with positive leading coefficient

such that Irr(α) = 0.
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• α is called a Pisot number if it is a real algebraic integer, with α > 1

and if none of its other conjugates lie on or outside the unit circle.

• α is called a Salem number if it is a real algebraic unit with α > 1,

if none of its other conjugates lie outside the unit circle and if α has

conjugates on the unit circle.

Lemma 1.3. Let K be a number field of degree n.

• K contains at most 2n2 roots of unity. If n is odd, then ±1 are the

only roots of unity in K.

• Let α be an algebraic number, and let ad be the leading coefficient

of Irr(α). If {α1, . . . , αm} is a subset of the set of conjugates of α

then adα1 . . . αm is an algebraic integer. Furthermore kα is an

algebraic integer if and only if ad divides k.

• If K ⊂ R and n ≥ 2, then the unit group of OK contains a Pisot

number of degree n.

Proof. The majority of these statements are proven in Chapter 13 of Alaca

Williams [1]. The exception is the claim that adα1 . . . αm is an algebraic

integer. This is a classical result found for example on page 91 in Hecke [12].

We now cover Dirichlet’s unit theorem and the Archimedean valuations

on a number field. Both of these will be very important. Dirichlet’s unit

theorem describes the structure of the unit group of a ring of integers. A

proof can be found in Chapter 13 of Alaca and Williams [1].
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Theorem 1.4. Let K be a number field of degree n. Let r be the number

of real embeddings of K and 2s the number of complex embeddings of K.

Then OK contains r + s − 1 units ε1, . . . , εr+s−1 such that each unit of OK

can be expressed uniquely in the form

ρεn1
1 · · · ε

nr+s−1

r+s−1 ,

where ρ is a root of unity in OK and n1, . . . , nr+s−1 are integers.

We begin describing the Archimedean valuations of a number field by

defining the general notion of a valuation for a field. More information on

valuations and the following results can be found in Chapter 2 of Janusz [14].

Definition 1.5. Let K be a field. An valuation on K is a map a 7→ |a|

from K to R such that

1. |a| ≥ 0 and |a| = 0 ⇐⇒ a = 0,

2. |ab| = |a||b|,

3. |a+ b| ≤ |a|+ |b|.

The following example describes an important set of valuations for Q.

Example 1.6. Let p be a prime. Then there exists a valuation | · |p on Q

defined as follows. Any non-zero x ∈ Q can be written as x = pi r
s
, where

r, s ∈ Z and p - rs. Then |x|p is defined to be |x|p = p−i. A separate valuation

is the usual absolute value, sometimes denoted | · |∞ to avoid confusion.
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Definition 1.7. Let K be a field and let | · |v be a valuation on K. If L is a

subfield of K, then the restriction of | · |v to L is a valuation | · |u on L. We

say that | · |v extends | · |u.

Definition 1.8. Let K be a field. For any valuation | · | on K, we can define

a metric using d(a, b) = |a − b|. This metric then induces a topology on K.

We say two valuations on K are equivalent if they induce the same topology

on K.

There are three distinct types of valuation.

Definition 1.9. Let | · | be a valuation for a field K. The trivial valuation is

defined as |a| = 1 for all non-zero a ∈ K, whilst |0| = 0. We say a non-trivial

valuation | · | is non-Archimedean if it satisfies |a + b| ≤ max{|a|, |b|} for

all a, b ∈ K. A valuation | · | is Archimedean if it is neither of the previous

two types.

Lemma 1.10. Let | · |1 and | · |2 be valuations on a field K. The following

are equivalent statements.

1. | · |1 is equivalent to | · |2

2. | · |1 = | · |α2 for some α > 0.

The trivial valuation is equivalent only to itself. Furthermore an Archimedean

valuation on K can only be equivalent to an Archimedean valuation.

This allows us to describe the set of all valuations for Q.

Example 1.11. Let |·| be a non-trivial valuation for Q. If |·| is Archimedean,

then it is equivalent to | · |∞. If | · | is non-Archimedean, then there is a unique

prime p such that | · | is equivalent to | · |p.
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We now describe the Archimedean valuations for an algebraic number

field.

Lemma 1.12. Let K be a number field with r real embeddings σ1, . . . , σr

and 2s complex embeddings σr+1, . . . , σr+2s such that σr+i = σr+s+i for

1 ≤ i ≤ s. Then there exist r + s pairwise inequivalent Archimedean

valuations |x|v = |σv(x)| for 1 ≤ i ≤ r + s. Each of these valuations

extends the usual absolute value on Q and every Archimedean valuation is

equivalent to one of these r + s valuations.

1.3 CG-modules and Representations

In this section we introduce CG-modules and representations of groups. This

material is covered in greater detail by James and Liebeck in [13]. We will

also show a construction of CG-modules from the unit group of a normal

number field.

Let V be a vector space over C and let G be a group. We say V is

a CG-module if multiplication gv (g ∈ G,v ∈ V ) is defined so as to satisfy

the following properties:

• gv ∈ V for all g ∈ G and all v ∈ V ,

• g(hv) = (gh)v for all g, h ∈ G and all v ∈ V ,

• 1v = v for all v ∈ V where 1 is the identity in G,

• g(λv) = λ(gv) for all λ ∈ C, all g ∈ G and all v ∈ V ,

• g(u+ v) = gu+ gv for all g ∈ G and all u, v ∈ V .

13



A CG-submodule of V is a subspace of V which is also a CG-module. Let V

and W be CG-modules. We call a function θ : V → W a CG-isomorphism

if θ is an invertible linear transformation and if

θ(gv) = gθ(v) for all v ∈ V, g ∈ G.

We say two CG-modules V and W are isomorphic if there exists a CG-

isomorphism from V to W . We denote this by V ∼= W .

A CG-module is often easier to work with if a basis is defined for the

underlying vector space. It is also a convenient way to create a CG-module

from a vector space. If B is a basis for a vector space, it is sufficient to define

multiplication for the elements of B. The axioms listed above then extend

the multiplication to all elements of the vector space to give a CG-module.

The following is an example of this.

Definition 1.13. Let K be an algebraic number field, normal over Q, such

that K is neither Q nor an imaginary quadratic field. Let r and 2s be the

number of real and complex embeddings, respectively, and let m = r+ s− 1.

Let ζ ∈ K be a root of unity, and let ε1, . . . , εm be units such that the unit

group of OK is equal to U = 〈ζ, ε1, . . . , εm〉. Let G = Gal(K/Q). Let ei ∈ Cm

be the vector with the i-th entry equal to 1 and zeroes everywhere else.

Then for any ei ∈ {e1, . . . , em}, gei is defined as the vector (v1, . . . , vm) such

that g(εi) = ζv0εv11 · · · εvmm for some integer v0. This defines a CG-module of

dimension m, which we denote V (K, ζ, (ε1, . . . , εm)).

Definition 1.14. Suppose ε1, . . . , εn are independent algebraic units, and

that none of them are a root of unity. Suppose a1, . . . , an are integers and
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that ζ is a root of unity. Let

x = ζεa11 . . . εann .

and let ε = (ε1, . . . , εn). Then πε(x) is defined to be (a1, . . . , an).

Example 1.15. Let K = Q(
√

2,
√

3) which is a totally real quartic number

field. Let ε1 = 1 +
√

2, ε2 =
√

2 +
√

3 and ε3 = 1
2
(
√

2 +
√

6). These are three

independent units such that the unit group of the ring of integers of K is equal

to 〈−1, ε1, ε2, ε3〉. We label the four elements σ1, . . . , σ4 of G = Gal(K/Q)

such that:

σ1 is the identity, σ2 fixes
√

2, σ3 fixes
√

3 and σ4 fixes
√

6.

Then V (K,−1, (ε1, ε2, ε3)) is a 3-dimensional CG-module with multiplication

defined as follows;

σ1(v1, v2, v3) = (v1, v2, v3), σ2(v1, v2, v3) = (v1,−v2,−v3),

σ3(v1, v2, v3) = (−v1,−v2, v3), σ4(v1, v2, v3) = (−v1, v2,−v3)

The study of CG-modules leads to studying representations of G over C.

We begin by defining representations.

Let GL(n,C) be the group of invertible n × n matrices with entries

in C. Let G be a group. A representation of G over C of degree n is a

homomorphism ρ from G to GL(n,C), where n is a positive integer. Two

representations σ and ρ of the group G, are called equivalent if they have the
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same degree, say n, and there exists an invertible n× n matrix T such that,

for all g ∈ G,

σ(g) = T−1ρ(g)T.

It is straightforward to check that this relation is an equivalence relation.

Let V be a vector space over C, and let θ be an endomorphism of V.

Suppose B = {v1, . . . , vn} is a basis for V . Then there exist scalars aij ∈ C

where 1 ≤ i, j ≤ n such that for each i,

θ(vi) = ai1v1 + · · ·+ ainvn.

We then define the matrix of θ relative to the basis B to be the n × n

matrix (aij) and denote it [θ]B. The following lemma explains the relationship

between CG-modules and representations of G over C.

Lemma 1.16. Suppose that V is a CG-module with basis B, and let ρ be

the representation of G over C defined by

ρ : g → [g]B (g ∈ G)

1. If B′ is also a basis of V , then the representation

φ : g → [g]B′ (g ∈ G)

of G is equivalent to ρ.
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2. If σ is a representation of G, then there is a basis B′ of V such that

σ : g → [g]B′ (g ∈ G).

3. If W is another CG-module with basis B′, then V ∼= W if and only if

the representation

σ : g → [g]B′

is equivalent to ρ.

Example 1.17. Let K = Q(
√

2,
√

3) and let ε1, ε2, ε3 and G be defined as

in Example 1.15. Let B be the basis {(1, 0, 0), (0, 1, 0), (0, 0, 1)} for C3.

Then we can define a representation for G using V (K,−1, (ε1, ε2, ε3)) and

Lemma 1.16 as follows:

ρ(σ1) =


1 0 0

0 1 0

0 0 1

 , ρ(σ2) =


1 0 0

0 −1 0

0 0 −1

 ,

ρ(σ3) =


−1 0 0

0 −1 0

0 0 1

 , ρ(σ4) =


−1 0 0

0 1 0

0 0 −1

 .

We now give an important result about the structure of CG-modules.

If V and W are two disjoint CG-modules, then V ⊕W is also a CG-module.

A CG-submodule V is called irreducible if it is non-zero and it has no CG-

submodules apart from {0} and V . A representation ρ : G → GL(n,C) is
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irreducible if the corresponding CG-module Cn given by

gv = ρ(g)v (v ∈ Cn, g ∈ G)

is irreducible. A CG-module or representation that is not irreducible is known

as reducible.

Theorem 1.18. Let G be a finite group and let V be a CG-module. Then

there exist irreducible CG-modules U1, . . . , Um such that V = U1 ⊕ · · · ⊕ Um.

This decomposition is unique up to order and CG-isomorphism of the factors.

Lemma 1.19. Let G be the cyclic group of n elements generated by g and

let ω = e2πi/n. For each integer j with 0 ≤ j ≤ n− 1, let ρj be the represen-

tation of G over C such that

ρj(g
k) =

(
ωjk
)

for all integers k with 0 ≤ k ≤ n− 1. Then every irreducible representation

of G over C is equal to one of the representations ρj.
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Chapter 2

Introduction to Mahler

Measure

In this chapter we introduce Mahler measure and the problem of studying

polynomials with the same Mahler measure.

2.1 Mahler Measure

Mahler measure first appeared as an unnamed function in a paper of D.H.

Lehmer from 1933 [15]. His work on factoring large numbers is discussed in

Section 2.2. The following is a simple generalisation of Lehmer’s definition.

Definition 2.1. For a non-zero polynomial

f = ad

d∏
i=1

(X − αi) ∈ C[X]
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of degree d, the Mahler measure of f is defined to be

M(f) = |ad|
d∏
i=1

max(1, |αi|).

We say an algebraic number α is large if |α| > 1.

Kurt Mahler proved a number of results about this function, and it

now bears his name. His notation, M(f), has also replaced Lehmer’s as

the standard notation. We begin by covering a number of classical results

about Mahler measure. The first is that Mahler measure of polynomials is

multiplicative. The existence, or otherwise, of a multiplicative structure is a

recurrent theme in our work.

Lemma 2.2. For non-zero polynomials f, g ∈ C[X], Mahler measure is mul-

tiplicative: M(f · g) = M(f) ·M(g).

Proof. This follows immediately from the definition of Mahler measure.

The next result was proven by Mahler, and can be used as an alternative

definition for Mahler measure. It states that Mahler measure is equal to the

geometric mean of |f | around the unit circle. The result is an application

of Jensen’s formula and is given without proof. Further details are given by

Everest and Ward in [10] on page 9.

Theorem 2.3. For a non-zero polynomial f ∈ C[X],

M(f) = exp

(∫ 1

0

log |f(e2πit)|dt
)
.
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A number of applications for Mahler measure consider only integer

polynomials. The following theorem gives an upper and lower bound for

the Mahler measure of an integer polynomial.

Definition 2.4. For a non-zero integer polynomial f =
∑n

i=0 aix
i, let the

length L(f) of f be L(f) = |a0|+ · · ·+ |an|.

Lemma 2.5. Let f be a non-zero integer polynomial. Then

2−nL(f) ≤M(f) ≤ L(f).

Proof. The upper bound is proven using Theorem 2.3. It is clear that L(f) is

an upper bound for the value of |f(X)| on the unit circle, and so

M(f) ≤ L(f). The lower bound is straightforward once it is observed that

the coefficients ai satisfy |ai| ≤
(
d
i

)
M(f). To see this, treat the coefficients

of f as elementary symmetric functions in the roots α1, . . . , αn of f . Then

|ai| =

∣∣∣∣∣ad ∑
1≤j1<···<ji≤n

αj1 · · ·αji

∣∣∣∣∣ ≤ ad
∑

1≤j1<···<ji≤n

|αj1 · · ·αji |

≤
∑

1≤j1<···<ji≤n

M(f) =

(
d

i

)
M(f).

The inverse problem for Mahler measure is best considered in two parts,

following Boyd in [2].

1. Given an algebraic number β, does there exist an integer polynomial

with Mahler measure equal to β?

21



2. Assuming an affirmative answer to the first question, can you determine

all integer polynomials with Mahler measure β?

An effective method for solving the first question was provided by Dixon and

Dubickas in [4]. We develop the ideas of their paper in Chapter 3. It is

often necessary, or of interest, to restrict the inverse problem to irreducible

polynomials. This renders the first problem, in general, unresolved. The

second question is almost completely unanswered. There are only two

instances for which this question has been resolved. The first example we can

solve is the equation M(f) = 1. This is clearly the minimum value of Mahler

measure over the integer polynomials. To proceed we require the following

classical result of Kronecker. The following proof is taken from [10].

Lemma 2.6 (Kronecker). Suppose that α 6= 0 is an algebraic integer and the

algebraic conjugates α1 = α, . . . , αd of α all have modulus at most 1. Then α

is a root of unity.

Proof. Consider the polynomials

Fn =
d∏
i=1

(X − αni )

where n ranges over the positive integers. We see that Fn ∈ Z[X], since the

coefficients are symmetric functions in α1, . . . , αd. Since all roots of these

polynomials have modulus at most 1, the coefficients are uniformly bounded.

These ensures that Fn can take only finitely many values. Choose positive

integers n,m such that m > n and Fn = Fm. We then observe that

{αn1 , . . . , αnd} = {αm1 , . . . , αmd }.

22



We define a permutation τ on the set {1, . . . , d}, where τ(i) satisfies

αni = αmτ(i).

If r is the order of this permutation, then

αn
r

1

(
αm

r−nr
1 − 1

)
= 0,

and since α = α1 6= 0, α must be a root of unity. Permutations of finite sets

have finite order, so we can choose a positive integer r such that

αn
r

(αm
r−nr − 1) = 0.

Together with α 6= 0, this implies that α is a root of unity.

The following is the first complete solution for the inverse problem.

Theorem 2.7. Let f ∈ Z[X] be a non-zero polynomial such that f(0) 6= 0.

The following are equivalent.

• M(f) = 1

• f is primitive, and every root of f is a root of unity.

Proof. Write f = a0

∏d
i=1(X − αi). f is primitive if and only if a0 = ±1.

The result then follows by comparing the definition of Mahler measure with

the result of Kronecker.

The only other complete solution to the inverse problem is for the equation
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M(α) = θ0 where

θ0 =
(

1
2

+ 1
6

√
23
3

)1/3

+
(

1
2
− 1

6

√
23
3

)1/3

,

is the largest root of X3−X−1 = 0. It was shown by Siegel in [20] that θ0 is

the smallest Pisot number. To discuss the result, we first require a definition.

Definition 2.8. The reciprocal f ∗ of a non-zero polynomial f ∈ C[X] of

degree n is defined as f ∗(X) = Xnf(X−1). A polynomial f is called

reciprocal if f = f ∗.

The following theorem is the product of two results. From the work

of Smyth [22], we can give all non-reciprocal solutions f to the equation

M(f) = θ0. The result was completed by Dixon and Dubickas in [4], who

showed that there are no reciprocal solutions. We develop the ideas of this

final step with Theorem 3.27.

Theorem 2.9. Let f ∈ Z[X] be a polynomial such that f(0) 6= 0 and such

that no root of f is a root of unity. Then the following are equivalent:

• M(f) = θ0,

• f is equal to ε1(X3n − Xn − ε2) or ε1(ε2X
3n − X2n + 1) where n is a

positive integer, and ε1, ε2 ∈ {±1}.

The fact that only two complete solutions to the inverse problem are

known demonstrates the difficulty of the problem. Restricting the search for

solutions to polynomials of a given degree, however, transforms the problem.

We call a family of polynomials with the same Mahler measure and degree a

Mahler set.
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Definition 2.10. We call S ⊂ Z[X] a Mahler set if it has the following three

properties:

• S does not contain the zero polynomial,

• Every member of S has the same degree,

• Every member of S has the same Mahler measure.

The degree and measure of a Mahler set are defined to be the degree and

Mahler measure of any of its elements.

The following theorem is a classical result, and an important property of

Mahler measure in some applications. We however express it using the novel

framework of Mahler sets.

Theorem 2.11. If S ⊂ Z[X] is a Mahler set, then S is finite.

Proof. If f ∈ S, then L(f) ≤ β2d, where d is the degree of S and β is the

measure of S. This is immediate from Lemma 2.5. Since there are only

finitely many integer polynomials with bounded length and fixed degree, S

cannot be infinite.

This inspires the following definition.

Definition 2.12. We say a Mahler set S ⊂ Z[X] of degree d and measure β

is a maximal Mahler set if it contains every polynomial in Z[X] of degree d

and measure β.

Maximal Mahler sets can naturally be viewed as the fibres of Mahler

measure ranging over integer polynomials of a given degree. The method
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demonstrated in Theorem 2.11 can be used to calculate maximal Mahler sets.

Clearly the number of polynomials to be tested grows too rapidily in general

for this to be a practical method. Because of the difficulty of calculating

maximal Mahler sets, we often work with the more flexible notion of Mahler

sets. In later chapters we explore the question of how and when maximal

Mahler sets can be calculated without resorting to this approach. For now,

we highlight the importance of the restriction to integer coefficients.

Lemma 2.13. Suppose f ∈ C[X] is non-zero. Then there exists an

uncountable set S ⊂ C[X] containing f , such that every element in S has

the same degree and measure.

Proof. Let ε be on the unit circle, and let gε(X) = εf(X). By Lemma 2.2,

the two polynomials have the same Mahler measure and degree. Since the

unit circle is uncountable, the result follows.

We finish with some simple relationships between polynomials which

ensure that they have the same Mahler measure.

Lemma 2.14. Let f ∈ C[X] be a non-zero polynomial. Let g(X) = f(−X),

h(X) = −f(X) and j(X) = f(Xn) where n is a positive integer. Then

M(f) = M(f ∗) = M(g) = M(h) = M(j). The cardinality of any maxi-

mal Mahler set is even and, if f ∈ Z[X], there are infinitely many other

polynomials in Z[X] with the same Mahler measure.

Proof. The fact that M(f) = M(g) = M(h) follows directly from the

definition of Mahler measure. Since f and −f are distinct for all non-zero

polynomials, maximal Mahler sets must have even cardinalities. The claim
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that M(f) = M(f ∗) = M(j) comes directly from Theorem 2.3. Letting n

range over the positive integers gives the final claim if f has positive degree.

If f is a constant polynomial, say f = c for some positive integer c, then the

polynomials fn(X) = Xn − c can be used instead.

2.2 Lehmer-Pierce Sequences

Lehmer published many papers on prime numbers and factoring large

numbers. This included works on primality testing [16], and the Mersenne

numbers, Mn = 2n − 1 [17]. He also studied the following generalisation of

the Mersenne sequence, first described by Pierce [19]. Lehmer’s results in

this section were published in [15].

Definition 2.15 (Lehmer-Pierce Sequences). Let f ∈ Z[X] be a monic

polynomial, of degree d, where

f(X) = Xd + ad−1X
d−1 + · · ·+ a1X + a0 =

d∏
i=1

(X − αi).

To each polynomial f , we associate the sequence ∆n(f) as follows

∆n(f) =
d∏
i=1

|αni − 1|.

The Mersenne sequence is associated with the polynomial X − 2 since

∆n(X − 2) = 2n − 1.

Since the functions ∆n are symmetric in the roots of f , Lehmer-Pierce
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sequences are integer sequences. Lehmer was interested in being able to

factorize the terms of these sequences. An attraction of being able to do this,

was discovering novel, large prime numbers. The following lemma shows that

we can focus on sequences associated to irreducible polynomials.

Lemma 2.16. Let f and g be monic integer polynomials. Then for all

positive integers n, ∆n(f · g) = ∆n(f) ·∆n(g).

Proof. This follows immediately from the definition of ∆n.

We call a prime a characteristic prime factor of ∆n(f) if it divides no

number of the form ∆δ(f), where δ divides n. Because of the following

lemma, being able to calculate the characteristic prime factors of ∆n(f) is

sufficient to factor terms of Lehmer-Pierce sequences.

Lemma 2.17. Let n and m be positive integers such that n divides m. Then

∆n(f) divides ∆m(f) for any monic integer polynomial f .

Proof. Let α be any root of f and let m = qn. Then

αqn − 1 = (αn)(αn(q−1) + αn(q−2) + · · ·+ αn + 1).

The result is then obvious.

Clearly characteristic prime factors can be discovered using trial division.

Lehmer’s contribution was to prove modular relations which greatly reduce

the number of trial attempts that must be made.

Theorem 2.18. Suppose that f ∈ Z[X] is irreducible and of degree r. Let pe

be the highest power of a characteristic prime factor p of ∆n(f). If ω is the

exponent to which p belongs modulo n, then ω ≤ r and ω divides e.
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This theorem is most effective at reducing the difficultly of factorisation

of ∆n(f) when ∆n(f) is large compared to n. This led Lehmer to study the

growth rate of ∆n(f), and introduce the first definition of Mahler measure.

The following theorem is the connection that Lehmer proved between the

growth rate of Lehmer-Pierce sequences and Mahler measure.

Theorem 2.19. Suppose that no root of f ∈ Z[X] lies on the unit circle.

Then

lim
n→∞

∆n+1(f)

∆n(f)
= M(f).

Proof. This follows from the basic properties of limits. We treat each factor

of ∆n(f) separately. If α is a root of f , then

lim
n→∞

|αn+1 − 1|
|αn − 1|

=


|α| if |α| > 1

1 if |α| < 1

and the result follows.

When an integer polynomial has roots on the unit circle, this sequence

does not converge. However, if f has no cyclotomic factors, we can still

relate the growth rate of ∆n(f) to M(f). This result is proved using Baker’s

Theorem from transcendence theory. Further details are given by Everest

and Ward in [10] on page 9.

Theorem 2.20. Suppose that no root of f ∈ Z[X] is a root of unity. Then

lim
n→∞

1

n
log |∆n(f)| = logM(f).
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This motivates the use of polynomials with small Mahler measure. A

second application of Kronecker’s Theorem shows that we should choose

polynomials with Mahler measure greater than 1.

Theorem 2.21. Let f ∈ Z[X] be a monic, irreducible, non-zero polynomial.

The following are equivalent.

1. M(f) = 1

2. f(X) = ±X, or f is cyclotomic.

3. The sequence ∆n(f) is periodic.

4. The sequence ∆n(f) is bounded.

Proof. (1.) and (2.) are equivalent by Lemma 2.6. It is trivial to see

that (2.) =⇒ (3.) =⇒ (4.). If the sequence ∆n(f) is bounded, then by

Theorem 2.20, log(M(f)) = 0. Hence (4.) implies (1.), which completes the

proof.

We return to the search for large primes amongst the factors of Lehmer-

Pierce sequences. In order to reduce the effort needed we aim to find a

sequence which grows as slowly as possible, without being bounded. This re-

quires a polynomial with Mahler measure above one, but as small as possible.

This gives rise to a question known as Lehmer’s problem.

Question 2.22 (Lehmer’s problem). Amongst monic polynomials in Z[X]

with Mahler measure greater than 1, can polynomials be chosen with Mahler

measure arbitrarily close to 1?
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The problem is still unresolved. Lehmer showed that

M(X10 +X9 −X7 −X6 −X5 −X4 −X3 +X + 1) = 1.176 . . . ,

which is still the smallest known value, greater than 1. The level of interest

in Mersenne primes raises questions about primes in other Lehmer-Pierce

Sequences. Theorem 2.18 was used by subsequent authors [9] to suggest that

the terms of the seqeunce ∆n(f) are more likely to be prime if M(f) is small.

They provide numerical evidence and heuristic arguments to support their

conjectures. This encourages the use of polynomials with the same Mahler

measure. The simplest technique we have for creating lots of polynomials

with the same measure was given in Lemma 2.14. The following theorem

shows that this is of no use when interested in prime number generation.

Theorem 2.23. Let p be a prime number. Let g(X) = f(Xp). For n divisible

by p,

∆n(g) = ∆n/p(f)p,

and for n co-prime to p,

∆n(g) = ∆n(f).

Proof. Let α1, . . . , αm be the roots of f , where m = deg(f). For each root αi

we choose a solution to the equation Xp − αi and denote it p
√
αi. Let ζ be a

primitive p-th root of unity. Then the roots of g are

ζ0 p
√
α1, ζ

1 p
√
α1, . . . , ζ

p−1 p
√
α1, . . . , ζ

0 p
√
αm, . . . , ζ

p−1 p
√
αm,
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listed with multiplicity. Then if p divides n, we see that

∆n(g) =

∣∣∣∣∣
m∏
i=1

p−1∏
j=0

(
(ζj p
√
αi)

n − 1
)∣∣∣∣∣ =

∣∣∣∣∣
m∏
i=1

p−1∏
j=0

(α
n/p
i − 1)

∣∣∣∣∣
=

∣∣∣∣∣
m∏
i=1

(αn/pm − 1)p

∣∣∣∣∣ =
∣∣∆n/p(f)p

∣∣ .
If n and p are co-prime then

∆n(g) =

∣∣∣∣∣
m∏
i=1

p−1∏
j=0

(
ζjn( p
√
αi)

n − 1
)∣∣∣∣∣

=

∣∣∣∣∣
m∏
i=1

p−1∏
j=0

(
ζj( p
√
αi)

n − 1
)∣∣∣∣∣

=

∣∣∣∣∣
m∏
i=1

((
p−1∏
j=0

ζj

)
αi
n + (−1)p

)∣∣∣∣∣ .
The result then follows by considering the odd primes separately from 2.

This theorem nicely motivates the study of polynomials having the same

Mahler measure, where the relationship between them is non-trivial.

2.3 Algebraic Numbers

In this section we describe how Mahler measure is extended to algebraic

numbers.

Definition 2.24. The Mahler measure of an algebraic number is defined to

be M(Irr(α)).

We extend the definition of a Mahler set to algebraic numbers.
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Definition 2.25. We call S ⊂ Q a Mahler set if every element has the same

degree and Mahler measure. The degree and measure of a Mahler set are

defined to be the degree and Mahler measure of any of its elements. We say

a Mahler set S ⊂ Q of degree d and measure β, is a maximal Mahler set if

it contains every algebraic number in Q of degree d and measure β.

The following useful lemma relates the norm of an algebraic number to

the norm of its Mahler measure.

Lemma 2.26. Let α be an non-zero algebraic number of degree d, and let ad

be the leading coefficient of Irr(α). Let α1, . . . , αm be the large conjugates

of α and let ε be ±1 such that M(α) = εadα1 · · ·αm. Let K be the Galois

closure of Q(α) over Q and let N be the norm with respect to K. Then

N(M(α)) = (εad)
nN(α)m

where n is the degree of K. Furthermore α is a unit if and only if M(α) is

a unit.

Proof. The first claim is trivial since

N(M(α)) = N(εad)N(α1) . . . N(αm) = (εad)
nN(α)m.

We can see that if α is a unit, then ε,ad and N(α) all belong to {±1}. This

implies that N(M(α)) = ±1 and M(α) is a unit. To prove the converse,

assume that N(M(α)) = ±1. By considering the norm of the product of all
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conjugates of α we can see that

N(α) = (a0/ad)
n/d

where a0 is the last coefficient of Irr(α). Hence

N(M(α)) = εna
n(1−m/d)
d a

nm/d
0 . (2.1)

If m = 0, then M(α) is invariant under the action of Gal(K/Q), and

so M(α) = ±1. By Equation (2.1), ad = 1, and so, by Lemma 2.6, α is

a root of unity. If m = d, we can repeat this analysis for α−1. This would

show that α is a root of unity which is a contradiction, and so m 6= d.

If 0 < m < d, then all numbers dividing ada0 will divide N(M(α)), by

Equation (2.1). Hence ada0 = ±1 and so α is a unit.

In Section 2.1, we stated the first half of the inverse problem is trying to

determine if a number is the Mahler measure of a integer polynomial. We

complete this section by discussing properties of such numbers.

Definition 2.27.

M∗ = {M(f) such that f ∈ Z[X]}

The simplest property of M∗ is the following.

Theorem 2.28. If β ∈M∗, then β ≥ 1 and β is a real algebraic integer.

Proof. Let f be an integer polynomial with Mahler measure β. We can

assume f is irreducible, since Mahler measure is multiplicative. The fact
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that β ≥ 1 follows immediately from the definition of Mahler measure. The

complex conjugate of a large root of f is also large, which implies that β is

real. Finally β is an algebraic integer by Lemma 1.3.

The inverse problem naturally carries over to algebraic numbers. By

analogy withM∗, we study the set of algebraic integers which are the Mahler

measure of an algebraic number.

Definition 2.29.

M = {M(α) such that α ∈ Q}

We call β ∈ Q a measure if β belongs to M.

The following theorem describes the relationship between M∗ and M.

The non-trivial part, that M is not a monoid, was proven by Dixon and

Dubickas in [4]. We cover their proof in Example 3.22.

Theorem 2.30. The set M∗ is a monoid under multiplication, generated

by M. However M is not a monoid under multiplication and therefore

M∗ 6=M.

We now calculate some explicit maximal Mahler sets of algebraic numbers.

The result is straightforward, but demonstrates an enumeration technique we

use later. Corollary 4.13 gives a generalisation to Mahler sets of prime degree.

Lemma 2.31. Let S ⊂ Q be a maximal Mahler set of unit measure. If S

has degree 2 and measure 1, then |S| = 6. If S has degree 2 and measure

greater than 1, then |S| = 4. If S has degree 3 then |S| = 12.
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Proof. We know from Lemma 2.26 that S contains only units. By

Kronecker’s Theorem, the first claim simply restates the fact that there are

exactly 6 quadratic roots of unity. For any quadratic unit x, not a root of

unity, let Sx be the Mahler set Sx = {±x,±x−1}. Notice that for any such

quadratic units x and y, either Sx = Sy or Sx ∩ Sy = ∅. Each Sx contains a

single Pisot number, and hence Sx must contain its own measure. The same

method works for degree 3. For a cubic unit x let x1 = x, x2 and x3 be the

conjugates of x and let Sx be the set

Sx = {±x1,±x−1
1 ,±x2,±x−1

2 ,±x3,±x−1
3 }.

Again we see that for two cubic units x,y, either Sx = Sy or Sx ∩Sy = ∅ and

that each Sx contains a single Pisot number, and hence its own measure.

Although M is not a monoid under multiplication, there is still some

multiplicative structure. The following theorem was proven by Dubickas [8].

We give a generalisation for unit measures in Chapter 3.

Theorem 2.32. Let α be an algebraic number, and n a positive integer,

then M(α)n is a measure.

An important class of numbers in the study of Mahler measure are the

reciprocal numbers.

Definition 2.33. Let α 6= 0 be an algebraic number. We say α is reciprocal

if it is conjugate to its reciprocal α−1.

A well known property of a reciprocal number α 6= 1 is that Irr(α) is

palindromic.
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Lemma 2.34. Let α 6= ±1 be an algebraic number of degree n. Let

Irr(α) = a0 + · · · + anX
n. Then α is reciprocal if and only if n is even,

a0 = an = 1 and for 0 ≤ i ≤ n, ai = an−i.

Proof. We first observe that if a0 = an = 1, then

Irr(α−1) = an + an−1X + · · ·+ a1X
n−1 + a0X

n.

This follows by treating the coefficients of Irr(α) and Irr(α−1) as symmetric

functions in the conjugates of α and α−1 respectively.

( =⇒ ) If σ is an embedding of Q(α) then σ(α)σ(α−1) = 1. This allows

us to partition the conjugates of α into pairs, which implies n is even. The

product of all n conjugates must be 1, which means a0 = an = 1. The last

condition follows by seeing that Irr(α) = Irr(α−1).

( ⇐= ) The last condition implies that Irr(α) = Irr(α−1). Hence α

and α−1 are conjugate as required.

We introduced Lehmer’s problem in Section 2.2 and θ0 in Section 2.1

Whilst the original problem remains unsolved, a number of weaker results

have been proven. The survey article of Smyth [23] gives a good overview of

such results. The following result was proven by Dobrowolski in [6].

Theorem 2.35. Let α be an algebraic integer of degree n, which is not a

root of unity. Then

M(α) > 1 +
1

1200

(
log(log(n))

log(n)

)3

.

Another interesting result was proven by Smyth in [21].
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Theorem 2.36. Let α 6= 0 be an algebraic number whose Mahler measure is

less than θ0. Then α is a reciprocal number.

An alternative to the inverse problem is to restrict attention to reciprocal

numbers or to non-reciprocal numbers. Theorem 2.36 shows that there exist

measures β such that the equation M(α) = β has no non-reciprocal solutions.

Conversely Theorem 2.9 shows that M(α) = θ0 has no reciprocal solutions.

To continue exploring this problem, we define the following sets.

Definition 2.37. Let R be the following set.

R = {M(α) such that α is a reciprocal unit}.

Let N be the following set.

N = {M(α) such that α is a non-reciprocal unit}.

An open problem is to determine if there is a smallest element of R∩N .

The following example shows that R∩N is non-empty.

Lemma 2.38. Let α be a real quadratic unit with α > 1. Then α2 ∈ R∩N .

Proof. Clearly α2 is quadratic with norm 1. Hence it is reciprocal, and

M(α2) = α2, and so α2 ∈ R. If α has norm 1, let ω be a primitive fourth

root of unity. Alternatively if α has norm−1, let ω be a primitive third root of

unity. Then ωα is non-reciprocal, and M(ωα) = α2. Hence α2 ∈ R∩N .

We now describe Perron numbers and explain some connections to the

inverse problem. Many of these results and more information about the
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arithmetic of Perron numbers are given by Lind in [18].

Definition 2.39. Let α be a real algebraic integer whose conjugates are

α1 = α, . . . , αn. We say α is a Perron number if α > 1 and, for all

integers i with 2 ≤ i ≤ n, |αi| < α. Let P denote the set of all Perron

numbers.

Like M∗, the set P is closed under multiplication.

Lemma 2.40. Suppose α, β ∈ P. Then αβ ∈ P.

Proof. Clearly αβ is a real algebraic number with αβ > 1. Let the conjugates

of α be α1 = α, . . . , αn and the conjugates of β be β1, . . . , βm. Then the

conjugates of αβ belong to the set {αiβj|1 ≤ i ≤ n, 1 ≤ j ≤ m}. For any

element αiβj in this set, |αiβj| ≤ |α||β|, where equality only holds if i = j = 1.

Furthermore αβ is a Perron number.

Theorem 2.41. Let β ∈M be greater than 1 with conjugates β1 = β, . . . , βn.

Then for all integers i with 2 ≤ i ≤ n, either β−1 < |βi| < β or βi = ±β−1.

Hence β is a Perron number.

Proof. Theorem 2.28 shows that β is a real algebraic integer. Let α be an

algebraic number with Mahler measure β, and degree d. Let the conjugates

of α be α1 = α, . . . , αd. Let ad be the leading coefficient of Irr(α) and a0 the

constant coefficient. We can assume they are labelled such that

|α1| ≥ |α2| ≥ · · · ≥ |αk| > 1 ≥ |αk+1| ≥ · · · ≥ |αd|,

where k is the number of conjugates of α outside the unit circle. If |ad| > 1

and k = 0, then β = ad and the theorem holds trivially. Hence we can
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assume k ≥ 1 since β > 1, and see that

β = ±adα1α2 · · ·αk.

Let K be a normal extension of Q containing α. Then any automorphism σ

of K permutes the conjugates of α, and hence the conjugates of β. We see

that

σ(β) = ±adσ(α1)σ(α2) · · · σ(αk).

If σ permutes the roots outside the unit circle then σ(β) = β. If σ sends β to

one of its conjugates, there must be i ≤ k and j > k such that σ(αi) = αj.

This ensures that |σ(β)| < β. We now use the fact that α1 · · ·αd = ±a0/ad

to show that

|σ(β)| = |adσ(α1) · · · σ(αk)| =
∣∣∣∣ ada0

adσ(αk+1) · · ·σ(αd)

∣∣∣∣ ≥ ad|a0|
β

.

We can see that |σ(β)| = |β−1| if and only if ad = |a0| = 1 and

{α1, . . . , αk} = {σ(αk+1), . . . , σ(αd)}.

This can only happen if d = 2k and for one conjugate of β, implying it must

be a real conjugate as required.

For future reference we record the following result, which was described

in the previous proof.

Lemma 2.42. Let α be an algebraic number and let K be a number field,

which is normal over Q and contains α. Let S be the set of large conjugates
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of α. Then the following holds for all σ ∈ Gal(K/Q);

σ(M(α)) = M(α) ⇐⇒ S = σ(S).

The elements of M can clearly be factorised into elements of M∗. This

corresponds to polynomials being expressed as a product of irreducible

factors. We can use the properties of Perron numbers to understand these

factorisations.

Theorem 2.43. If λ = αβ with α, β, λ ∈ P, then α, β ∈ Q(λ).

Proof. Let K be a number field, which is normal over Q and which

contains λ, α and β. Observe that either α, β ∈ Q(λ) or α, β /∈ Q(λ).

For example if α ∈ Q(λ), then β = λ/α ∈ Q(λ). Assume α, β /∈ Q(λ).

Then there will exist an automorphism σ of K which fixes λ, but not α or β.

Since α and β are Perron numbers, this implies that σ(αβ) < αβ. This would

imply that λ < λ, a contradiction. Hence α, β ∈ Q(λ).

Definition 2.44. We call λ ∈ P irreducible if λ > 1 and λ cannot be written

as λ = αβ with α, β ∈ P and α, β > 1.

We can factorise Perron numbers into a product of irreducible Perron

numbers, in the same way as integers are factorised into primes. We consider

two factorisations to be the same if the terms of one can be rearranged to

give the other.

Theorem 2.45. Every Perron number greater than one can be factored into

a finite number of irreducibles. There are only a finite number of such

factorisations, but factorisations into irreducibles are not always unique.
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Proof. Let α be a Perron number and let λ be a Perron number, which

appears in a factorisation of α into irreducible Perron numbers. By Theo-

rem 2.43, this implies that λ belongs to the set P ∩ Q(α) ∩ (1, α]. Hence to

prove the result, it is sufficient to prove that there are finitely many Perron

numbers of a given degree d, and below a given bound M . Any such Perron

number λ must have Mahler measure less than equal to Md and hence by

Lemma 2.5, L(Irr(λ)) ≤ (2M)d. Since there are only finitely many polyno-

mials of degree d with this property, the first claim holds.

The following example from [18] shows that such factorisations need not

be unique. Let λ = (1 +
√

5)/2. Then 5, λ and λ + 2 are all irreducible

Perron numbers. The number 5λ2 = (λ+ 2)2 can therefore be factorised into

irreducibles in two different ways.

We finish the section with two results which compare P with M∗. The

first is due to Boyd [2], whilst the second is due to Dubickas [7].

Theorem 2.46. Let fm = Xm −X − 1 for any integer m ≥ 4. Then f has

one positive, real root, which is a Perron number, but not a measure.
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Chapter 3

Archimedean Equivalence

In this chapter we introduce an equivalence relation for algebraic numbers.

This provides a novel framework for studying Mahler measure and we cover a

number of applications. Some of the results in this chapter were first proved

by Dixon and Dubickas in [4]. Our approach provides alternative proofs of

their results, and generalises some of the ideas they presented.

3.1 Archimedean Equivalence

In this section we define Archimedean equivalence, and introduce some of its

basic properties.

Definition 3.1. Let K be a number field and let α1, α2 ∈ K. We say α1 is

Archimedean equivalent to α2 over K, if |α1| > 1 ⇐⇒ |α2| > 1 holds for all

Archimedean valuations | · | on K.

It is straightforward to see that this forms an equivalence relation on the

elements of K. Using the following lemma, we can remove the dependence
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on a specific number field.

Lemma 3.2. Let K and L be number fields which contain α1 and α2. Then

α1 is Archimedean equivalent to α2 over K if and only if α1 is Archimedean

equivalent to α2 over L.

Proof. It is sufficient to prove the lemma for L ⊂ K since the intersection

of two number fields is always a number field. The result then follows by

considering all valuations on K as extensions of valuations on L, as described

by Definition 1.7.

Definition 3.3. Let α1 and α2 be algebraic numbers. We say α1 is

Archimedean equivalent to α2 if there exists a number field K, such that

α1, α2 ∈ K, and α1 is Archimedean equivalent to α2 over K. We write this

as α1 ∼ α2 and use the abbreviation A-equivalence.

Archimedean equivalence is an equivalence relation, ranging over the set

of all algebraic numbers. We use Lemma 3.2 to ensure that A-equivalence is

transitive. If α1 ∼ α2 and α2 ∼ α3 then we can use Q(α1, α2, α3) to show

that α1 ∼ α3. The following lemma records some of the basic properties of

Archimedean equivalence.

Lemma 3.4. Let α1, α2 be algebraic numbers. Let ζ be a root of unity. Then

the following results hold;

1. Suppose α1 ∼ α2. Then α1 ∼ α1α2 ∼ ζα1.

2. Suppose α is a non-zero algebraic integer. Then

α is a root of unity ⇐⇒ α ∼ 1 ⇐⇒ α ∼ α−1.
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3. Suppose α1 and α2 are non-zero algebraic numbers with no conjugates

on the unit circle. Then α1 ∼ α2 ⇐⇒ α−1
1 ∼ α−1

2 .

4. Archimedean equivalence divides any number field into a finite number

of equivalence classes.

Proof. (1) follows from valuations being multiplicative functions, and that

any valuation of a root of unity equals 1.

To prove (2), observe that all three conditions imply that α has no

conjugates outside the unit circle. For a non-zero algebraic integer this

ensures α is a root of unity, by Lemma 2.6.

(3) follows directly from the definition of A-equivalence.

(4) follows from Lemma 1.12 which shows that there are only a finite

number of inequivalent Archimedean valuations on any number field.

Archimedean equivalence is best understood using Galois groups. The

following theorem demonstrates how this is done.

Lemma 3.5. Let K be a number field, normal over Q with Galois group

G = Gal(K/Q). Let α1, α2 ∈ K be algebraic numbers. Let | · | be the usual

absolute norm on C. Then the following are equivalent;

1. α1 and α2 are Archimedean equivalent.

2. |σ(α1)| > 1 if and only if |σ(α2)| > 1 for all σ ∈ G.

Proof. Let | · |v be an archimedean valuation on K, and | · |u be the unique

equivalent valuation on K which extends the absolute norm on Q. By

Lemma 1.12,

|α|u > 1 ⇐⇒ |α|v > 1 for any α ∈ K.
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Hence to test Archimedean equivalence, it is sufficient to test the valuations

which extend the absolute value on Q. These valuations can be expressed

using the elements of G as shown in the result.

In the following example we show how Archimedean equivalence fibres

the unit group of an algebraic number field.

Example 3.6. Let K = Q( 4
√

2). The unit group of OK is U = 〈−1, ε1, ε2〉,

where ε1 = 1 + 4
√

2 and ε2 = 1 +
√

2 are independent units. Let ε = (ε1, ε2).

We can determine the equivalence class of a number x from the value of πε(x)

since by Lemma 3.4

πε(x) = πε(y) =⇒ x ∼ y for all x, y ∈ U.

Considering πε as a surjection from U to Z2, we can consider each embedding

of K as splitting Z2 in half. One half corresponds to elements of U mapped

outside the unit circle, whilst its complement corresponds to those mapped

inside or onto the unit circle. When all embeddings are considered, Z2 is split

up according to the A-equivalence classes for U , by Lemma 3.5. This division

of Z2 is shown in Figure 3.1. In total there are 7 A-equivalence classes

represented in U . The first contains only the roots of unity, as described by

Lemma 3.4, and is represented by the central point of Figure 3.1. The other

equivalence classes correspond to the six regions displayed. These have been

labelled with the embeddings which correspond to large roots.
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Figure 3.1: A-equivalence classes for ±εi1ε
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We now describe the four embeddings of K. For n = 1, . . . , 4, let σn

be the embedding that sends 4
√

2 to in−1 4
√

2. Notice that σ1(x) = x and

σ2(x) = σ4(x) for all x ∈ K. Observe that 1−
√

2 = −ε−1
2 , 1− 4

√
2 = −ε−1

1 ε−1
2

and (1 + i 4
√

2)(1 − i 4
√

2) = ε2. These facts allow us to describe when an

embedding of a number in U is outside the unit circle;

|σ1(x)| > 1 ⇐⇒ πε(x) = (i, j) where j > −i log(ε1)

log(ε2)
,

|σ2(x)| > 1 ⇐⇒ |σ4(x)| > 1 ⇐⇒ πε(x) = (i, j) where j <
i

2
,

|σ3(x)| > 1 ⇐⇒ πε(x) = (i, j) where j > i

(
1 +

log(ε1)

log(ε2)

)
.

We prove the last fact in order to demonstrate the general method. Let x ∈ U
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be such that |σ3(x)| > 1 and πε(x) = (i, j). Then

|σ3(x)| > 1 ⇐⇒ |σ3(εi1ε
j
2) > 1| ⇐⇒ | − ε−1

1 ε−1
2 |i|ε2|j > 1

⇐⇒ −i(log(ε1) + log(ε2)) + j log(ε2) > 0

⇐⇒ j > i

(
1 +

log(ε1)

log(ε2)

)
.

Repeating this method for |σ1| and |σ2σ4| completes the description of the

A-equivalence classes.

An important fact about Archimedean equivalence is that it is invariant

under the action of Galois groups.

Theorem 3.7. Let K be an algebraic number field normal over Q. Let

α1, α2 ∈ K and σ ∈ G = Gal(K/Q). Then α1 ∼ α2 ⇐⇒ σ(α1) ∼ σ(α2).

Proof. ( =⇒ )Assume that α1 ∼ α2. For any σ∗ ∈ G, σ∗σ ∈ G, hence

|σ∗(σ(α1))| > 1 ⇐⇒ |σ∗(σ(α2))| > 1,

as required.

(⇐= ) Let σ−1 ∈ G be the inverse of σ. Then

σ(α1) ∼ σ(α2) =⇒ σ−1(σ(α1)) ∼ σ−1(σ(α2)) =⇒ α1 ∼ α2,

using the first half of the proof.

We finish the section by giving the first connection between Archimedean

equivalence and Mahler measure.
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Theorem 3.8. Suppose α1 ∼ α2. Then Q(M(α1)) = Q(M(α2)).

Proof. Let K be a number field which is normal over Q and which contains α1

and α2. Let σ ∈ Gal(K/Q). We prove the result by showing that

σ(M(α1)) = M(α1) if and only if σ(M(α2)) = M(α2). (3.1)

For any g ∈ Gal(K/Q) and for i = 1 or 2, let

Gg
i =

{
θ ∈ Gal(K/Q)

∣∣|g(θ(αi))| > 1
}
.

We can see from Lemma 2.42 that

σ(M(α1)) = M(α1) if and only if Gσ
1 = Ge

1

where e is the identity element of Gal(K/Q). We now notice that for any

g ∈ Gal(K/Q), Gg
1 = Gg

2. This is due to Theorem 3.7. This gives

σ(M(α1)) = M(α1) if and only if Gσ
2 = Ge

2

We use Lemma 2.42 again to give (3.1) as required.

3.2 Condensed and Basal Polynomials

The concept of a basal polynomial was first introduced by Dixon and

Dubickas in [4]. We use a simpler definition, by dropping a superfluous

condition on the number of roots outside the unit circle. The results in [4]
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still hold with the new definition.

Definition 3.9. Let f ∈ Z[X]. We say f is basal if no polynomial in Z[X]

has smaller degree and the same Mahler measure. We say that f is basal

irreducible if no irreducible polynomial in Z[X] has smaller degree and the

same Mahler measure.

By Theorem 2.11, determining if a polynomial is basal can be considered

to be a finite calculation, even if it is impractical and unenlightening. The

following lemma can be used to create a simple, sufficient condition for being

basal. It is a useful result, which was first published by Boyd in [3]. We

follow the argument used by Boyd, but use a slightly different framework.

We introduce the sets Sθ to show the relationship between the proof of this

result and that of Theorem 3.12.

Lemma 3.10. Let α be an algebraic number of degree d, with s roots outside

the unit circle. Suppose M(α) has degree n. Then d divides sn.

Proof. Let the conjugates of α be α1 = α, . . . , αd and the conjugates of M(α)

be β1 = M(α), . . . , βn. Let K be the Galois closure of Q(α) over Q and

let G = Gal(K/Q). For each element of θ ∈ G, let Sθ be the conjugates of α

which are mapped outside the unit circle by θ. We wish to show that

θ(M(α)) = σ(M(α)) = βi implies Sθ = Sσ

for any βi and any σ, θ ∈ G. We proved this for the case βi = β1 in

Theorem 2.41. Assume the statement θ(M(α)) = σ(M(α)) = βi holds and

let ρ ∈ G send βi to M(α). We then see Sρθ = Sρσ. Applying ρ−1 to
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this set yields Sθ = Sσ. Hence for any integer i with 1 ≤ i ≤ n, we can

unambiguously define the set Ai to be set Sθ where θ(M(α)) = βi. We have

two ways of evaluating the sum
∑n

i=1 |Ai|. The first answer is ns because

each set Ai has size s. Alternatively let θ1, . . . , θm be the list of elements of G.

Then each conjugate of α appears equally often in the list θ1(α), . . . , θm(α).

This means there is a constant l such that each conjugate of α appears in

exactly l of the sets Ai. Hence
∑n

i=1 |Ai| = ld = ns and the result.

Corollary 3.11. Suppose α is an algebraic number of prime degree p, with

roots inside and outside the unit circle. Then Irr(α) is basal.

Proof. We can use Lemma 3.10 to show that p divides the degree of M(α),

since p cannot divide the number of roots outside the unit circle. If Irr(α)

is not basal, then there exists some f ∈ Z[X] with M(f) = M(α) and

deg(f) < p. By looking at the roots of f , there must exist an algebraic

number α∗ such that p divides deg(M(α∗)) with deg(α∗) = n < p. Let K

be the Galois closure of Q(α∗) over Q. Then the group Gal(K/Q) must be

isomorphic to a subgroup of Sn. Since p cannot divide n!, M(α∗) cannot

belong to K. This is a contradiction, and hence Irr(α) is basal.

A key technique of Dixon and Dubickas in [4] was to compare the splitting

field of a polynomial f with the Galois closure of Q(M(f)) over Q. They

showed that it is sufficient for f to be basal, or basal irreducible, for these

two fields to be equal. We can go further and give a precise description of

the relationship between the two fields.

Theorem 3.12. Let f ∈ Z[X] and suppose J is the splitting field of f .

Let K be the Galois closure of Q(M(f)) over Q and let σ ∈ Gal(J/Q).
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Then σ ∈ Gal(J/K) if and only if σ(x) ∼ x for all roots x of f .

Proof. We first prove the result for f = Irr(α), where α is an algebraic

number. Let α1 = α, . . . , αn and β1 = M(α), . . . , βm be the conjugates of α

and M(α) respectively. Let a be the leading coefficient of f . As in the proof

of Lemma 3.10, for all θ ∈ Gal(J/Q), let Sθ be the following set of conjugates

of α:

Sθ = {αk ||θ(αk)| > 1} .

We first show that

σ ∈ Gal(J/K) ⇐⇒ Sσθ = Sθ for all θ ∈ Gal(J/Q).

( =⇒ ) It was shown during the proof of Lemma 3.10 that if θ ∈ Gal(J/Q),

then

σ(θ(M(α))) = θ(M(α)) =⇒ Sσθ = Sθ.

Since σ fixes every conjugate of M(α), we must have Sσθ = Sθ for all θ as

required.

(⇐= ) For any θ ∈ Gal(J/Q), we can see that

θ−1(M(α)) = ±a
∏
x∈Sθ

x

by applying θ. Hence

σ(θ−1(M(α))) = ±a
∏
x∈Sθ

σ(x) = ±a
∏
x∈Sσθ

x = ±a
∏
x∈Sθ

x = θ−1(M(α))
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for any θ ∈ Gal(J/Q). Therefore σ fixes every conjugate of M(α) as required.

( =⇒ ) We now show that

Sσθ = Sθ for all θ ∈ Gal(J/Q) ⇐⇒ σ(αk) ∼ αk for all αk.

From the definition of Sθ, we see that Sσθ = Sθ for all θ ∈ Gal(J/Q) is

equivalent to

|σ(θ(αk))| > 1 ⇐⇒ |θ(αk)| > 1 for all αk and all θ ∈ Gal(J/Q).

This implies that

σ(αk) ∼ αk for all αk

since θ simply permutes the αk.

( ⇐= ) This is clear from the definition of Sθ and A-equivalence. This

completes the proof of the theorem for f = Irr(α).

We now let f = aIrr(θ1) · · · Irr(θd) for some integer a and algebraic

numbers θ1, . . . , θd. We wish to show that

σ ∈ Gal(J/K) ⇐⇒ σ(x) ∼ x for all roots x of f.

( =⇒ ) We recall from Theorem 2.41 that M(f) = |a|M(θ1) · · ·M(θd) gives a

factorisation of M(f) into Perron numbers. Since σ fixes every element of K,

by Theorem 2.43, σ fixes every conjugate of the numbers θ1, . . . , θd. We now

apply the first half of the proof to the polynomials Irr(θ1), . . . , Irr(θd) which

shows that σ(x) ∼ x for roots of f .
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( ⇐= ) We again use the first half of the proof to see that σ must fix

every conjugate of the numbers M(θ1), . . . ,M(θd). Hence σ must also fix

every conjugate of M(f), and hence σ ∈ Gal(J/K) as required.

The Galois closure J of Q(α) over Q will be equal to the Galois closure K

of Q(M(α)) over Q if and only if the Galois group Gal(J/K) is trivial. The

simplest instance of this is when no two conjugates of α are Archimedean

equivalent. This inspires the following definition.

Definition 3.13. We say a polynomial f ∈ Z[X] is condensed if no root of f

is Archimedean equivalent to any other. We say an algebraic number α is

condensed if no two distinct conjugates of α are Archimedean equivalent.

An advantage of Archimedean equivalence is that it provides a useful

partition of the conjugates of an algebraic numbers.

Definition 3.14. Let α be an algebraic number. Define Γ(α) to be the set

of conjugates of α that are Archimedean equivalent to α. Define Γ∗(α) to be

Γ∗(α) = {Γ(αi) where αi is conjugate to α}.

Define the condensation of α, denoted C(α), to be the product of all numbers

in Γ(α). Define C∗(α) to be

C∗(α) = {C(αi) where αi is conjugate to α}.

We can show that Γ∗(α) is an explicit description for the block systems

defined by Dixon and Dubickas in [4].
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Definition 3.15. Let α be an algebraic number. Let K be the Galois closure

of Q(α) over Q and let G = Gal(K/Q). Suppose Σ = {∆1, . . . ,∆m} is a

system of blocks for the action of G on the set of conjugates of α. We say

Σ is DD-minimal if the following conditions hold:

• For each ∆i ∈ Σ, ∆i contains either only large numbers, or no large

numbers.

• Further, the size m of the block system is as small as possible, with

respect to the previous condition.

Theorem 3.16. Let α be an algebraic number. Let K be the Galois closure

of Q(α) over Q and let G = Gal(K/Q). Suppose Σ = {∆1, . . . ,∆m} is a

system of blocks for the action of G on the set of conjugates of α. Then Σ is

DD-minimal if and only if Σ = Γ∗(α).

Proof. We assume Σ is DD-minimal and let ∆ ∈ Σ. If x, y ∈ ∆ then by

Lemma 3.5, x and y are A-equivalent. Hence every member of Σ is a subset

of a member of Γ∗(α). This implies that |Γ∗(α)| ≤ Σ where equality only

holds if Γ∗(α) = Σ. Since Σ is DD-minimal, it cannot be larger than Γ∗(α)

and so the result holds.

We intend to show that the condensation of an algebraic number α belongs

to the Galois closure of Q(M(α)) over Q. This is part of a more general fact

about Γ(α).

Theorem 3.17. Let α be an algebraic number, with Γ(α) = {α1, . . . , αm}

and let K be the Galois closure of Q(M(α)) over Q. If f is a symmetric

polynomial in m variables with coefficients in Q, then f(α1, . . . , αm) ∈ K.
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Proof. Let J be the Galois closure of Q(α) over Q and let σ ∈ Gal(J/K).

Then σ(f(α1, . . . , αm)) = f(σ(α1), . . . , σ(αm) = f(α1, . . . , αm). The first

equality is straight forward since σ is a homomorphism. For the second

equality notice that by Theorem 3.12, σ permutes the elements of Γ(α). The

equality then holds, since f is symmetric. Since f(α1, . . . , αm) is fixed by

any element of Gal(J/K), it must belong to K as required.

We can now summarise the relationship between an algebraic number α,

C(α) and M(α).

Theorem 3.18. Let α be an algebraic number. Let K be the Galois closure

of Q(M(α)) over Q and suppose Irr(α) = anX
n + · · ·+ a0. Then

1. C(α) ∈ K.

2. C(α) ∼ α.

3. C(C(α)) = C(α).

4. There exists an integer c such that cM(C(α)) = M(α).

5. If gcd(an, a0) = 1, then M(α) = M(C(α)).

Proof. (1) is a special case of Theorem 3.17 using f(x1, . . . , xm) = x1 · · ·xm

where m = |Γ(α)|. (2) is a corollary of Lemma 3.4. To prove (3), we look

at the conjugates of C(α). These are all of the form C(α∗), where α∗ is a

conjugate of α. If C(α∗) ∼ C(α) then α∗ ∼ α by (2). This implies α∗ ∈ Γ(α)

and so C(α∗) = C(α). Hence C(α) is condensed. The proof of (4) and (5)

are very similar. Let S be the set of large conjugates of α and let Γ1, . . . ,Γm

be the members of Γ∗(α) which consist of large conjugates. Notice that
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S = Γ1 ∪ · · · ∪Γm. Let a be the leading coefficient of Irr(α) and let ac be the

leading coefficient of Irr(C(α)). Then

M(α) = an
∏
x∈S

|x| = a

m∏
i=1

∏
y∈Γi

|y| = a

ac
M(C(α)).

Hence (4) will hold if we can show that ac divides a. This follows from

using the second part of Lemma 1.3. Finally to prove (5), observe that

N(α) = a0/an = N(C(α)). This ensures that an = ac as required.

Theorem 3.19. If α1 and α2 are algebraic numbers that are Archimedean

equivalent, then the following hold: s

1. Q(C(α1)) = Q(C(α2)).

2. C(α1) = α1 ⇐⇒ α1 ∈ Q(C(α2)).

3. If C(α1) = α1 and C(α2) = α2, then C(α1α2) = α1α2.

Proof. (1) Let K be the Galois closure of Q(α1, α2) over Q and let

G = Gal(K/Q). We need to show that

σ(C(α1)) = C(α1) ⇐⇒ σ(C(α2)) = C(α2)

for all σ ∈ G. Let σ ∈ G. Then

σ(C(α1)) = C(α1) ⇐⇒ σ(α1) ∼ α1

⇐⇒ σ(α2) ∼ α2 by Theorem 3.7

⇐⇒ σ(C(α2)) = C(α2).
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(2) Proving ( =⇒ ) follows from (1). To prove the converse direction,

notice that

σ(α1) ∼ α1 =⇒ σ(C(α2)) ∼ C(α2) =⇒ σ(C(α2)) = C(α2)

for all σ ∈ G. If σ fixes C(α2) it must fix all elements of Q(C(α2)). Hence

if α1 ∈ Q(C(α2)), then

σ(α1) ∼ α1 =⇒ σ(α1) = α1

for all σ ∈ G as required.

(3) This follows immediately from (2) since α1α2 ∼ α1, by Lemma 3.4,

and α1α2 ∈ Q(C(α1)).

Theorem 3.20. Let f be a basal polynomial. Then f is condensed.

Proof. Any polynomial f ∈ Z[X] can be written as

f = a
m∏
i=1

Irr(αi),

where a 6= 0 is an integer, and α1, · · · , αm is a list of algebraic numbers.

These numbers need not be distinct. We first show that each factor Irr(αi)

must be condensed. Assume some Irr(αi) is not condensed. Then

g = a
m∏
i=1

M(αi)M(C(αi))
−1Irr(C(αi)),

58



has smaller degree than f . Further

M(g) = a
m∏
i=1

M(αi)M(C(αi))
−1M(Irr(C(αi))) = a

m∏
i=1

M(αi) = M(f),

since M(αi)M(C(αi))
−1 is a positive integer by Theorem 3.18. This fact

also implies that g ∈ Z[X]. This contradicts f being basal. Hence if f is

basal and not condensed we can assume α1 ∼ α2 without loss of generality.

Since Irr(α1) and Irr(α2) are condensed, we know that they and Irr(α1α2)

all have the same degree. This means Irr(α1α2) has smaller degree than

Irr(α1)Irr(α2). Let a1 and a2 be the leading coefficients of Irr(α1) and Irr(α2).

Let σ1, . . . , σd be the embeddings of Q(α1). Then

M(Irr(α1)Irr(α2)) = a1a2

d∏
i=1

max(1, |σi(α1)|) max(1, |σi(α2)|)

= a1a2

d∏
i=1

max(1, |σi(α1α2)|)

= cM(Irr(α1α2))

for some integer c. This integer exists since the leading coefficient of Irr(α1α2)

must divide a1a2. This again allows us to find a second polynomial g, with

smaller degree than f , but with the same Mahler measure. This contradicts f

being basal, so f must be condensed.

Theorem 3.21. Let f = anX
n + . . . + a0 be a basal irreducible polynomial.

Suppose gcd(an, a0) = 1. Then f is condensed.

Proof. The proof is identical to the first half of the proof of Theorem 3.20.

The exception is that we must ensure that g is irreducible. By Theorem 3.18,
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the condition that gcd(an, a0) = 1 will ensure this.

The following example is proof thatM is not closed under multiplication.

This result was discussed in Section 2.3. It was originally proven by Dixon

and Dubickas in [4]. The beginning of the proof is taken from Dixon and

Dubickas. Our proof is longer, since we give a description of the unit group

of the ring of integers.

Example 3.22. Let β1 and β2 be quadratic unit measures such that

Q(β1) 6= Q(β2). Then β1β2 /∈M.

Proof. Let β∗1 and β∗2 be the conjugates of β1 and β2 respectively. The other

three conjugates of β1β2 are β1β
∗
2 , β∗1β2 and β∗1β

∗
2 . Since

|β∗1 | = β−1
1 6= β−1

2 = |β∗2 |

we can see that β1β2 has exactly two conjugates outside the unit circle.

Suppose α is an algebraic unit such that M(α) = β1β2. We can assume

α ∈ Q(β1β2) by Theorem 3.18(5). Obviously if α has 0, 1 or 3 conjugates

outside the unit circle, M(α) is either 1 or a Pisot number. Hence α must

have two conjugates outside the unit circle. Let K1, K2 and K3 be the

following number fields;

K1 = Q(β1) = Q(
√
n1), K2 = Q(β2) = Q(

√
n2), K3 = Q(

√
n1n2).

For i = 1, 2, 3 let ηi be the unique number such that ηi > 1 and the unit

group of the ring of integers of Ki is equal to 〈,−1, η1〉. Further let εi be
√
ηi

if
√
ηi ∈ Q(β1β2), and ηi otherwise. We claim that the unit group of the
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ring of integers of Q(β1β2) is equal to 〈−1, ε1, ε2, ε3〉. Since Q(β1β2) is a real

quartic number field, we require a system of 3 fundamental units. Further

the numbers ε1,ε2 and ε3 are independent, because the number fields K1, K2

and K3 are distinct. If 〈−1, ε1, ε2, ε3〉 is not the complete unit group, then

there must be some unit x ∈ Q(β1β2) which does not belong to 〈−1, ε1, ε2, ε3〉.

We can assume that xn = εi for some positive integer n and i ∈ {1, 2, 3}.

However for m ≥ 3, m
√
ηi has a complex conjugate, and so cannot belong

to Q(β1β2). Hence 〈−1, ε1, ε2, ε3〉 is the unit group as required.

The four conjugates of α are

ζ1ε
i
1ε
j
2ε
k
3, ζ2ε

i
1ε
−j
2 ε−k3 , ζ3ε

−i
1 ε

j
2ε
−k
3 and ζ4ε

−i
1 ε
−j
2 εk3

for some i, j, k ∈ Z and ζ1, . . . , ζ4 ∈ {±1}. The product of any of these

two conjugates is quadratic, which contradicts M(α) having degree 4. Hence

β1β2 /∈M.

Theorem 3.23. Suppose f ∈ Z[X] has Mahler measure of degree d.

• If f is condensed, then the degree of f is less than or equal to 2d.

• If f is condensed and irreducible, then the degree of f is less than or

equal to
(

d
bd/2c

)
.

• If f is basal, then the degree of f is less than or equal to
∑

1≤r≤d/2
(
d
r

)
.

Proof. Let K be a splitting field for f , and G = Gal(K/Q). For each root ε

of f , let

Γε = {σ(M(f)) | σ ∈ G and |σ(ε)| > 1}.
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For two roots x, y of f , we can see that Γx = Γy ⇐⇒ x ∼ y. Hence if f

is condensed, the set of roots of f is smaller than the set of subsets of roots

of Irr(M(f)). Hence the degree of f is less than or equal to 2d.

If f is irreducible, each set Γε must have the same size. This gives the

second result.

If f is basal, we choose another basal polynomial, g with the same Mahler

measure. If f = a
∏m

i=1 fi, let g = a
∏m

i=1 gi, where gi = fi if fi has at most

half of its roots lying outside the unit circle, and f ∗i otherwise. Then for

each root ε of g, |Γε| < d
2
. Further no Γε is empty, since we could replace the

factor Irr(ε) by the integer M(ε) to reduce the degree of g, without changing

the Mahler measure.

We now give two important results from [4], showing how to prove them

using the ideas we have introduced. In Section 2.1, we considered the inverse

problem for Mahler measure as two related problems. The first problem

was to determine for a given algebraic number β, if there exists an integer

polynomial with Mahler measure β. We now explain how to construct such

a polynomial if possible, or show that such polynomials do not exist. Giving

an upper bound for the degree of basal polynomials is the key step. We recall

from Lemma 2.5, that if f is an integer polynomial with Mahler measure β,

then

L(f) ≤ 2nM(f).

This gives an upper bound for the length and degree of a basal polynomial

of degree β. It is clearly straightforward to construct a list of all integer

polynomials which satisfy this bound on their length and degree. We then
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search this list for polynomials of degree β. This will determine if a basal

polynomial exists with Mahler measure β and give a specific example if it

does. If no basal polynomial of Mahler measure β exists, then no polynomial

of Mahler measure β can exist.

Theorem 3.24. Let β ∈ M∗ and let d be the degree of β. Let K be the

Galois closure of Q(β) over Q. Then there exists a polynomial f ∈ Z[X]

such that M(f) = β and every root of f belongs to K. Further, the degree

of f is at most
∑

1≤r≤d/2
(
d
r

)
.

Proof. Since β ∈ M∗, let f be a basal polynomial with Mahler measure β

and let J be the splitting field of f . Suppose σ ∈ Gal(J/Q). Then by

Theorem 3.12, we have

σ ∈ Gal(J/K) ⇐⇒ σ(x) ∼ x for all roots x of f.

By Theorem 3.20, f is a condensed polynomial. Therefore

σ ∈ Gal(J/K) ⇐⇒ σ(x) = x for all roots x of f.

Since J is the splitting field of f ,

σ ∈ Gal(J/K) ⇐⇒ σ(x) = x for all x ∈ J.

Hence J = K as required, whilst Theorem 3.23 gives the bound on the size

of f to complete the result.

Dixon and Dubickas also proved a parallel result for algebraic units. We
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can use the process outlined prior to Theorem 3.24, to determine whether or

not a given algebraic unit belongs to M. We would again test the integer

polynomials whose degree and length are below given bounds. The search

however is conducted only amongst irreducible polynomials whose first and

last coefficients are ±1. We can also use a lower bound on the degree of the

polynomials to be tested.

Theorem 3.25. Let β ∈ M be an algebraic unit of degree d. Let K be the

Galois closure of Q(β) over Q. Then there exists an algebraic unit α in K

such that M(α) = β. Further, the degree of α is at most
(

d
bd/2c

)
.

Proof. The proof is nearly identical to that of Theorem 3.24. The main

change is that we choose a basal irreducible polynomial f with measure β

instead of a basal one. We now must use Theorem 3.21 to show that f is

condensed. The last change needed is to use the second part of Theorem 3.23

to give the improved bound on the degree of f .

We now show that these ideas can be adapted to determining whether

or not a given algebraic unit belongs to R. Again the key step is finding an

upper bound on the degree of reciprocal polynomials to be tested. We begin

with the following straightforward result.

Theorem 3.26. Let α be a reciprocal algebraic unit with no conjugates on

the unit circle. Then C(α) is also reciprocal.

Proof. Since α is not a root of unity, by Lemma 3.4, Γ(α) 6= Γ(α−1). Then

for each γ ∈ Γ(α), Lemma 3.4 shows that γ−1 ∈ Γ(α−1). It then follows

that C(α−1) = C(α)−1.
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The fact that C(α) is reciprocal does not imply that α is reciprocal. The

non-reciprocal numbers used in Lemma 2.38 are proof of this. The restriction

that α has no conjugates on the unit circle is also important. For example

if α is a number with Irr(α) = X6 + X5 + 2X4 + 3X3 + 2X2 + X + 1,

then Irr(C(α)) = X3 − X2 − X − 1. We can however adapt Theorem 3.26

to solve the general problem of determining when an algebraic unit belongs

to R. This result was proven for cubic unit measures in [4]. This provided

the final step in the proof of Theorem 2.9.

Theorem 3.27. Let β be a measure that is the measure of a reciprocal

unit. Let K be the Galois closure of Q(β) over Q. Then there exists a

reciprocal unit α∗ ∈ K such that M(α∗) = β. Further, the degree of α∗ is at

most
(

d
bd/2c

) [(
d
bd/2c

)
− 1
]
.

Proof. Let α be a reciprocal unit with M(α) = β. Let Γ∗(α) = {Γ1, . . . ,Γn}.

Let Γ−1
i = {ε−1|ε ∈ Γi}. Let ∆ij = Γi ∩ Γ−1

j . These sets can alternatively be

generated by a new equivalence relation. If α1 and α2 are conjugates of α

then they belong to the same ∆ij if and only if αi ∼ αj and α−1
i ∼ α−1

j . The

rest of the proof can be understood as the condensation with respect to this

new equivalence relation. Lemma 3.4 show us that unless a number has a

conjugate on the unit circle, this will agree with the usual condensation.

We now prove a few results about the sets ∆ij. Let J be the Galois

closure of Q(α) over Q and let G = Gal(J/Q). Since the sets Γi and Γ−1
j are

blocks for the action of G, so are the intersections ∆ij where non-empty.

The action of G on the sets ∆ij is easy to describe. Suppose σ ∈ G,

and σ(Γk) = Γl. Then σ(Γ−1
k ) = Γ−1

l . Suppose σ ∈ Gal(J/K). Then by

65



Theorem 3.12, σ(Γi) = Γi for all i. Hence σ(∆ij) = ∆ij for all i and j.

Choose a non-empty ∆ij, and let α∗ be the product of elements in ∆ij.

It is clear that the conjugates of α∗ are the products of elements in any

non-empty ∆ij. Further if δ ∈ ∆ij then δ−1 ∈ ∆ji, and so the reciprocal

of α∗ is the product of elements in ∆ji.

The upper bound for the degree of α∗ is found by enumerating the

non-empty sets ∆ij. As seen in Theorem 3.23, Γ∗(α) has cardinality at

most
(

d
bd/2c

)
. The bound then follows from the fact that Γi ∩ Γ−1

i = ∅.

We finish by comparingR andN , which reveals an interesting dichotomy.

We can use Lemma 2.38 to show that the analogous version of Theorem 3.27

for N does not hold. If α > 1 is a quadratic unit, Lemma 2.38 shows

that α2 ∈ R∪N . However the only elements in Q(α) with Mahler measure α2

are ±α2 and ±α−2. These are all reciprocal, and Q(α) is normal over Q.

We finish with a couple of results about the multiplicative structure ofM.

If restricted to algebraic integers, Theorem 2.32 can be generalised as follows.

The original result is recovered by assuming α1 = α2 = . . . = αm. This shows

that M still has some multiplicative structure, despite Theorem 3.22.

Theorem 3.28. Let α1, . . . , αm be a list of algebraic integers, not necessarily

distinct, which are archimedean equivalent. Then
∏m

i=1M(αi) ∈M.

Proof. LetK = Q(C(α1)). Notice thatK contains C(α2), . . . , C(αm) and the

product C(α1) · · ·C(αm) by Lemma 3.19. Let θ1, . . . , θn be the embeddings

of K which map C(α1) outside the unit circle. By A-equivalence these are the

embeddings that map any of C(α2), . . . , C(αm) and C(α1) · · ·C(αm) outside
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the unit circle. Hence

M

(
m∏
i=1

C(αi)

)
=

n∏
j=1

∣∣∣∣∣θj
(

m∏
i=1

C(αi)

)∣∣∣∣∣ =
m∏
i=1

n∏
j=1

|θj(C(αi))| =
m∏
i=1

M(αi)

as required.

WhilstM is not a monoid under multiplication, we can still give a weak

form of multiplicative structure to the units in M.

Theorem 3.29. Let K be a normal algebraic number field of degree d.

Let S ⊂ K ∩M be a set of units with cardinality at least 2d−1. Then there

exist x, y ∈ S such that xy ∈M.

Proof. We can assume 1 /∈ S since this case is trivial. Let β1, . . . , βm be the

elements of S, and let α1, . . . , αm be units in K such that M(αi) = βi. These

can be chosen so that each αi is outside the unit circle and must always exist

by Lemma 2.6. By the pigeonhole principle we can choose two which are

A-equivalent, and apply Theorem 3.28 to obtain the result.

3.3 Calculating Maximal Mahler Sets

It was shown during the proof of Theorem 2.11 that we can calculate

maximal Mahler sets in an inefficient manner. In this section we develop

alternative methods for calculating these sets. The simplest situation is when

a maximal Mahler set S ⊂ Q is known to contain only condensed numbers.

For example, if β is a unit measure we can use the maximal Mahler set S ⊂ Q

with measure β and smallest possible degree by Theorem 3.20. This special
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case is convenient because by Theorem 3.18, we know that S ⊂ K, where K

is the Galois closure of Q(β) over Q. Having reduced the inverse problem

to searching within a single, known number field, we can use Dirichlet’s

Unit Theorem. Being able to operate inside a finitely generated group, with

a unique description for each unit makes it straightforward to calculate S.

The first step is to divide the unit group into equivalence classes generated by

archimedean equivalence, as demonstrated in Example 3.6. We then study

each equivalence class in turn. The examples in this section work with units

of degree 4, which requires the following fact to be checked.

Lemma 3.30. Suppose f ∈ Z[X] is irreducible, has degree 4 and the measure

of f is a unit of degree at least 4. Then f is basal irreducible.

Proof. All polynomials of degree at most three, have Mahler measure whose

degree is at most three. Hence no such polynomial can have the same degree

as f .

The following example demonstrates a general principle for calculating

maximal Mahler sets that contain only condensed numbers.

Example 3.31. Let β be a unit and a measure such that the Galois closure

of Q(β) over Q is equal to Q(i, 4
√

2). Then the maximal Mahler set S ⊂ Q

of degree 4 and measure β has cardinality 16.

Proof. There are 5 quartic subfields of Q(i, 4
√

2). These are

K1 = Q(
4
√

2), K2 = Q(i
4
√

2), K3 = Q((1 + i)
4
√

2),

K4 = Q((1− i) 4
√

2) and K5 = Q(
√

2, i).
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To calculate |S|, it is sufficient to study only K1 and K3. This is because K1

and K2 are conjugate fields, so |S ∩ K1| = |S ∩ K2|. Further since K1, K2

and S all have degree 4, K1∩K2∩S = ∅. The same argument applies to the

conjugate fields K3 and K4. The last field K5 is itself normal over Q, so the

Mahler measure of any number in K5 will belong to K5, implying K5∩S = ∅.

Hence |S| = 2(|S ∩K1|+ |S ∩K3|). Notice that β must belong to K1, since

it is the only real quartic subfield of Q(i, 4
√

2).

We begin with K1 = Q( 4
√

2), which was studied in Example 3.6. We saw

that Archimedean equivalence divides the unit group of K1 into 7 classes.

There are 4 classes which consist of numbers with quartic Mahler measure.

These are also the 4 classes which have exactly 1 or 3 large conjugates.

Keeping the notation of Example 3.6, let σ3 be the embedding of K1 which

sends 4
√

2 to − 4
√

2. For α ∈ S ∩K1, let Sα be the set

Sα = {±α,±α−1,±σ3(α),±σ3(α)−1}.

Notice that Sα is a Mahler set, contained in K1, and that exactly one element

of Sα is a Pisot or Salem number. Hence if S ∩K1 6= ∅, then S ∩K1 = Sβ,

and β must be a Pisot or Salem number. If β is a Pisot number, we can

check that the 8 numbers described above are distinct, and so |Sβ| = 8. If β

is a Salem number then β must be a positive power of (1 + 4
√

2)2(1 +
√

2).

Then β−1 = σ(β), but±β and±β−1 are all distinct numbers, and so |Sβ| = 4.

We now turn to K3 = Q((1 + i) 4
√

2). The unit group of K3 is equal

to 〈−1, ε〉 where ε = (1 + 4
√

2) + (
√

2 + 4
√

2)i. If n is a non-zero integer,

then ±εn has degree 4 and Mahler measure (1 + 4
√

2)2|n|(1 +
√

2)|n|. Hence
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if S ∩K3 6= ∅ then |S ∩K3| = |S ∩K1| = 4, completing the result.

We now present a novel framework for approaching the calculation of

maximal Mahler sets of integer polynomials. There are two main ideas

involved. The first is to repeatedly break the sets down into useful

disjoint subsets, whilst the second idea is to group the non-zero roots of a

polynomial by Archimedean equivalence. We begin with defining when an

integer polynomial is in Archimedean standard form.

Definition 3.32. Let f ∈ Z[X]. We say f is in Archimedean standard form

when the following conditions hold;

• f = aXn
∏m

i=1 fi where a, n ∈ Z, n ≥ 0 and the non-zero roots of f

fall into exactly m A-equivalence classes.

• Each factor fi is monic, has positive degree, and all of its roots are

non-zero and A-equivalent.

We define τ(f) to be the set of constant coefficients of the factors fi. For

any β ∈M∗, define T (β) to be

T (β) = {τ(f)|f ∈ Z[X] and M(f) = β}.

Lemma 3.33. Let f and g be integer polynomials and let β ∈ M∗. The

following hold:

1. If f and g have the same leading coefficient and if τ(g) = τ(f) then

M(f) = M(g).

2. The set τ(f) contains only condensed numbers.
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3. The set T (β) is finite.

Proof. (1.) We can calculate M(f) from just the leading coefficient a of f

and τ(f). Large algebraic numbers can only be A-equivalent to large

algebraic numbers, by the definition of A-equivalence. Hence the large

elements of τ(f) are the product of only large roots of f . Similarly the

non-large elements of τ(f) are the product of only non-large roots of f .

Hence M(f) is equal to a multiplied by the product of the large elements

of τ(f). This gives the result, as we obviously get the same Mahler measure

working with g.

(2.) Let fi be a factor that appears in the Archimedean standard form

of f . The set of roots of fi is equal to Γ(α1) ∪ · · · ∪ Γ(αn) for some

algebraic numbers α1, . . . , αn which are all A-equivalent. Then the constant

coefficient of fi is equal to C(α1) · · ·C(αn). Then by Theorem 3.19(3), this

is a condensed number.

(3.) For any t ∈ T (β), let

ft = at
∏
α∈t

(X − α)

where at is the positive integer such that M(ft) = β. This integer exists

by the definition of T (β). Let F (β) be the set of all such ft. Clearly

fs = ft ⇐⇒ s = t and so |F (β)| = |T (β)|. For a positive integer i,

let Fi be the polynomials in F (β) of degree i. Notice that these are Mahler

sets and so are finite. We notice that τ(ft) = t and so that ft is condensed.

Then by Theorem 3.23 deg(ft) ≤ 2d where d = deg(β) and so if i > 2d
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then Fi(β) = ∅. Hence

|T (β)| = |F (β)| = |F1(β)|+ · · ·+ |F2d(β)| <∞.

Definition 3.34. Let β ∈ M∗ and let d be a positive integer. Let S0(β, d)

be the maximal Mahler set of integer polynomials of degree d and measure β.

For any τ ∗ ∈ T (β), let S1(τ ∗, β, d) be the set

S1(τ ∗, β, d) = {f ∈ S0(β, d)|τ(f) = τ ∗}.

Lemma 3.35. Let β ∈M∗ and let d be a positive integer. Then

S0(β, d) =
⋃

τ∗∈T (β)

S1(τ ∗, β, d),

and

|S0(β, d)| =
∑

τ∗∈T (β)

|S1(τ ∗, β, d)|.

Proof. The first claim comes directly from the definition of S0(β, d) and

S1(τ ∗, β, d). The second claim requires that our decomposition of S0(β, d)

consists of pairwise disjoint sets. This is also true, since τ is a single-valued

function.

Definition 3.36. For an algebraic number α, we define E(α) to be the set of

conjugates of α. Let f be an integer polynomial. We say a vector (α1, . . . , αn)

of algebraic numbers is a basis for τ(f) if the following conditions hold:
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• τ(f) = E(α1) ∪ · · · ∪ E(αn)

• For any integers 1 ≤ i < j ≤ n, no conjugate of αi is Archimedean

equivalent to any conjugate of αj.

Definition 3.37. Let β ∈M∗, and let τ ∗ ∈ T (β). Let d be a positive integer

and let (α1, . . . , αn) be a basis for τ ∗. Then S2((α1, . . . , αn), (i1, . . . , in), β, d)

is defined to be the set

{f ∈ S1(τ ∗, β, d)|f has ij non-zero roots A-equivalent to αj}.

For an algebraic number α, define S2(α, i) to be S2({α}, (i),M(α), deg(α)i).

Lemma 3.38. Let β ∈ M∗ and let τ ∗ ∈ T (β). Let d be a positive integer,

and let (α1, . . . , αm) be a basis for τ ∗. Then

S1(τ ∗, β, d) =
⋃

d1,...,dm≥1, d1,...,dm∈Z
deg(α1)d1+···+deg(αm)dm≤d

S2((α1, . . . , αm), (d1, . . . , dm), β, d)

and

|S1(τ ∗, β, d)| =
∑

d1,...,dm≥1, d1,...,dm∈Z
deg(α1)d1+···+deg(αm)dm≤d

|S2((α1, . . . , αm), (d1, . . . , dm), β, d)| .

Proof. From the appropriate definitions, it is clear that

S1(τ ∗, β, d) =
⋃

d1,...,dm≥1,
d1,...,dm∈Z

S2((α1, . . . , αm), (d1, . . . , dm), β, d).

This infinite union can be replaced by the finite union given in the theorem.
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Suppose f ∈ S2((α1, . . . , αm), (d1, . . . , dm), β, d). The number of non-zero

roots of f , counted with multiplicity, is deg(α1)d1 + · · · + deg(αm)dm. This

must be less than the degree of f . Hence if deg(α1)d1 + · · ·+deg(αm)dm > d,

then S2((α1, . . . , αm), (d1, . . . , dm), β, d) is empty. The second claim requires

that our decomposition of S1(τ ∗, β, d) consists of pairwise disjoint sets. This

again follows from the appropriate definitions.

Lemma 3.39. Let β ∈ M∗ be a unit and let τ ∗ ∈ T (β). Let d be a positive

integer, and let (α1, . . . , αm) be a basis for τ ∗. Then

S2((α1, . . . , αm), (i1, . . . , im), β, d) = {Xqf1 · · · fm|fj ∈ S2(αj, ij)}

where q = d− deg(α1)i1 − · · · − deg(αm)im. Furthermore:

|S2((α1, . . . , αm), (i1, . . . , im), d)| = 21−m
m∏
j=1

|S2(αj, ij)|.

Proof. It follows from the appropriate definitions that

{Xqf1 · · · fm|fj ∈ S2(αj, ij)} ⊂ S2((α1, . . . , αm), (i1, . . . , im), β, d).

Suppose f ∈ S2((α1, . . . , αm), (i1, . . . , im), β, d) and let the Archimedean

standard form of f be

f = aX t

n∏
k=1

gk

where a 6= 0, t ≥ 0 and n ≥ 1 are integers. Looking at the degree of f shows
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that t = q;

deg(f) = t+
n∑
k=1

deg(gk) = t+
m∑
j=1

deg(αj)ij = q +
m∑
j=1

deg(αj)ij.

We also know that a = ±1 because M(f) = β is a unit. For i ∈ {1, . . . ,m}

let fi be the product of the polynomials gk which have a constant term which

is a conjugate of αi. Then fj and −fj belong to S2(αj, ij). Hence

f = Xq(af1)f2 · · · fm ∈ {Xqf1 · · · fm|fj ∈ S2(αj, ij)}.

This completes the proof of the first claim. For the second claim, we must

take into account the number of ways a polynomial can be factorised in

this way. Up to ordering, the roots of each factor are determined by f .

The leading coefficient of each factor fj can be chosen to be ±1. The only

restriction is that the product of all such leading coefficients is equal to

the leading coefficient of f . There are 2m−1 ways of doing this, giving the

result.

We aim to give a formula for the size of maximal Mahler sets with

unit measure. The following definition allows us to describe the possible

coefficients for a factor of a polynomial in standard form with unit measure.

Definition 3.40. Let α be a condensed unit and let K be the Galois

closure of Q(α) over Q. Let c = (c1, . . . , cm) be a vector of algebraic

integers in Q(α). We say c matches α if for every σ ∈ Gal(K/Q) the roots

of Xm+1 +
∑m

i=1 σ(ci)X
i+σ(α) are all A-equivalent to σ(α). We also say that

the vector of length zero matches with any condensed unit. Let N(α,m) be
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the number of distinct vectors of length m− 1 which match α where m is a

positive integer.

Lemma 3.41. Let α be a condensed unit and let i be a positive integer.

Let σ1, . . . , σn be the embeddings of Q(α). Then for any f ∈ Z[X], the

following are equivalent:

1. f ∈ S2(α, i),

2. The Archimedean standard form of f is equal to

f = a
n∏
j=1

(
X i +

(
i−1∑
k=1

σj(ck)X
k

)
+ σj(α)

)
,

where a = ±1, and (c1, . . . , ci−1) ∈ Oi−1
Q(α) matches α.

Furthermore |S2(α, i)| is equal to

2
∣∣∣{(c1, . . . , ci−1) ∈ Oi−1

Q(α)|(c1, . . . , ci−1) matches α
}∣∣∣ .

Proof. (1) =⇒ (2) By definition of S2(α, i), we know that M(f) = M(α),

deg(f) = in and τ(f) = {σ1(α), . . . , σn(α)}. Let the Archimedean standard

form of f be

f = aXm

d∏
j=1

fj

for some integers a 6= 0, m > 0 and d > 0. We first observe that d = n

since d = |τ(f)|. We can therefore assume that the constant coefficient of fj
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is σj(α). Looking at the Mahler measure of f , we can see that a = ±1 since

M(f) = M(aXm)
n∏
j=1

M(fj) = |a|
n∏
j=1

max (σj(α), 1)

= |a|M(α) = |a|M(f).

Each fi will have degree i, so deg(f) = m+ ni and hence m = 0. We define

the vector (c1, . . . , ci−1) ∈ Ci−1 to such that

f1 = X i +
i−1∑
k=1

ckX
k + α.

Since each root of f1 is an algebraic integer, the coefficients c1, . . . , ci−1

are also algebraic integers. Let K be the splitting field of f . We need to

show that (c1, . . . , ci−1) ∈ Q(α). We will do this by showing that for any

σ ∈ Gal(K/Q) and any c ∈ {c1, . . . , ci−1}, σ(α) = α =⇒ σ(c) = c. We

recall that the roots of f1 are A-equivalent to α, and are the only roots of f

A-equivalent to α. Then by Theorem 3.7, σ(α) = α implies that σ permutes

the roots of f1. Considering c as a symmetric function in the roots of f1, this

implies that σ(c) = c as required. Finally we must check that (c1, . . . , ci−1)

matches α. By definition, this would imply that for 1 ≤ j ≤ n, the roots

of fj are all A-equivalent to σj(α). Since f is in standard form, the roots of

each fj are A-equivalent to each other. Then by Lemma 3.4(1), σj(α) which

is the constant term of fj, is A-equivalent to the roots of fj as required.

(2) =⇒ (1) It is straightforward to check that f ∈ S2(α, i).

The final claim is also straightforward, since every integer polynomial has

exactly one standard form, up to the order of the factors.
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We are now ready to give an example of our explicit description of max-

imal Mahler sets. We first require the following lemma.

Lemma 3.42. Let a and b be real numbers. Then the following hold:

X2 + aX + b = 0 has two large roots ⇐⇒ b < −|a| − 1

or b > max(1, |a| − 1),

X2 + aX + b = 0 has no large roots ⇐⇒ 1 ≥ b ≥ |a| − 1.

Proof. Let f = X2 + aX + b. Notice that f has complex roots if and only

if a2 < 4b, and these roots both have modulus
√
b. We first show that the

theorem holds when f has complex roots. In order to do this, we simplify

the theorem using the fact that a2/4 ≥ |a| − 1 holds for all real a, and

so b > |a| − 1 holds if f has complex roots. A second simplification uses the

fact that if 4b > a2 then b > 0 > −|a| − 1. The theorem then reduces to f

has 2 large roots if b > 1 and no large roots otherwise. This is clear since

the roots have modulus
√
b.

We can now assume a2 ≥ 4b and let θ1, θ2 be the roots of f , where

θ1 =
−a+

√
a2 − 4b

2
and θ2 =

−a−
√
a2 − 4b

2
.
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We look at the cases θ1 > 1, θ1 < −1, θ2 > 1 and θ2 < −1 independently.

θ1 > 1 ⇐⇒
√
a2 − 4b > a+ 2 ⇐⇒

(
a < −2 or a2 − 4b > a2 + 4a+ 4

)
⇐⇒ (a < −2 or b < −a− 1)

θ1 < −1 ⇐⇒
√
a2 − 4b < a− 2 ⇐⇒

(
a > 2 and a2 − 4b < a2 − 4a+ 4

)
⇐⇒ (a > 2 and b > a− 1)

θ2 > 1 ⇐⇒
√
a2 − 4b < −(a+ 2)

⇐⇒
(
a < −2 and a2 − 4b < a2 + 4a+ 4

)
⇐⇒ (a < −2 and b > −a− 1)

θ2 < −1 ⇐⇒
√
a2 − 4b > 2− a ⇐⇒

(
a > 2 or a2 − 4b > a2 − 4a+ 4

)
⇐⇒ (a > 2 or b < a− 1)

We first prove the result about f having large roots, if b is negative. Notice

that a2 > 0 > 4b, and so f must have real roots. Since θ1 < −1 and θ2 > 1

cannot happen simultaneously, f has two large roots if and only if θ1 > 1

and θ2 < −1.

θ1 > 1 and θ2 < −1 ⇐⇒ (a < −2 or b < −a− 1) and (a > 2 or b < a− 1)

⇐⇒ (b < −a− 1 and b < a− 1) ⇐⇒ b < |a| − 1

This proves the result for f having two large roots when b is negative. We
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now look at when f has two large roots for b ≥ 0.

(θ1, θ2 > 1) or (θ1, θ2 < −1) ⇐⇒ (a < −2 and b < −a− 1)

or (a > 2 and b > a− 1)

⇐⇒ (|a| > 2 and b > |a| − 1)

⇐⇒ (b > 1 and b > |a| − 1)

⇐⇒ b > max(1, |a| − 1)

The non-obvious implication here is that if f has real roots and b > 1

then |a| > 2. This follows from using a2 ≥ 4b. This completes the proof

of the first half of the theorem. The proof for f having no large roots, when

the roots are real, is very similar.

|θ1|, |θ2| < 1 ⇐⇒ (|a| ≤ 2 and b ≥ a− 1 and b ≥ −a− 1)

⇐⇒ (|a| ≤ 2 and b ≥ |a| − 1) ⇐⇒ 1 ≥ b ≥ |a| − 1

Again the non-obvious step is that if f has real roots and |a| ≤ 2 then b ≤ 1.

This follows since |a| ≤ 2 =⇒ a2 ≤ 4 =⇒ b ≤ 1 using a2 ≥ 4b. This

completes the proof of the second half of the theorem.

Theorem 3.43. Let S ⊂ Z[X] be a maximal Mahler set with degree 4.

Suppose the measure β of S is a quadratic unit and suppose that Gal(Q(β)/Q)

is generated by σ. Then

|S| = 2 |N(β)|+ 2 |N(−β)|+ 36
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where

N(β) =
{
x ∈ OK

∣∣|x| < β and |σ(x)| ≤ 1 + σ(β)
}

and

N(−β) =
{
x ∈ OK

∣∣|x| < β and |σ(x)| ≤ 1− σ(β)
}
.

Proof. Let β1 = β and let β2 be its conjugate. Let K = Q(β) and let

T1 = {β1, β2}, T2 = { − β1,−β2}, T3 = {1, β1, β2}

T4 = {1,−β1,−β2}, T5 = {−1,β1, β2} and T6 = {−1,−β1,−β2}.

We first claim that T (β1) = {T1, . . . , T6}. We can now use Lemma 3.35 to

give

|S| =
6∑
i=1

|S1(Ti, β1, 4)| .

The next step is to use Lemma 3.38 on each term on the right hand side. We

start with S1(T1, β1, 4) to give

|S1(T1, β1, 4)| = |S2 (β1, 2)|+ |S2 ((β1), (1), β1, 4)| = |S2 (β1, 2)|+ 2

Here we use the fact that S2((β1), (1), β1, (4)) = {±X2(X − β1)(X − β2)}.

Repeating this analysis for S1(T2, β1, 4) to give

|S1(T2, β1, 4)| = |S2 (−β1, 2)|+ |S2 ((−β1), (1), β1, 4)| = |S2 (−β1, 2)|+ 2

We use the fact that S2((−β1), (1), β1, (4)) = {±X2(X + β1)(X + β2)}.
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Moving on to S1(T3, β1, 4), we obtain

|S1(T3, β1, 4)| = |S2((1, β1), (2, 1), β1, 4)|+ |S2((1, β1), (1, 1), β1, 4)| = 12

Here we use Lemma 3.39 to give

S2((1, β1), (2, 1), β1, 4) =
1

2
|S2(1, 2)| |S2(β1, 1)| ,

S2((1, β1), (1, 1), β1, 4) =
1

2
|S2(1, 1)| |S2(β1, 1)| .

We then use the followings facts;

S2(1, 1) = {±(X − 1)},

S2((β1), (1), β1, 4) = {±X2(X − β1)(X − β2)},

S2(1, 2) = {±(X2 + aX + 1)|a ∈ {±2,±1, 0}}.

The proof that |S2(T4, β1, 4)| = 12 and |S2(T5, β1, 4)| = |S2(T6, β1, 4)| = 4 is

almost identical. The followings facts are required for these cases;

S2(−1, 1) = {±(X + 1)},

S2((−β1), (1), β1, 4) = {±X2(X + β1)(X + β2)},

S2(1, 2) = {±(X2 − 1)}.

We combine these results to give

|S| = |S2(β1, 2)|+ |S2(−β1, 2)|+ 36.
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We now use Lemma 3.41 to calcuate |S2(β1, 2)|.

|S2(β1, 2)| = 2|{x ∈ OK |(x) agrees with β1}|

= 2

∣∣∣∣∣∣∣
x ∈ OK

∣∣∣∣∣∣∣
X2 + xX + β1 has two large roots,

X2 + σ(x)X + β2 has no large roots.


∣∣∣∣∣∣∣

= 2

∣∣∣∣∣∣∣
x ∈ OK

∣∣∣∣∣∣∣
β1 < −|x| − 1 or β1 > max(1, |x| − 1)

1 ≥ β2 ≥ |σ(x)| − 1


∣∣∣∣∣∣∣

= 2
∣∣{x ∈ OK ∣∣β1 > |x| − 1 and β2 ≥ |σ(x)| − 1

}∣∣
= 2

∣∣{x ∈ OK ∣∣|x| < β1 + 1 and |σ(x)| ≤ β2 + 1
}∣∣ = 2 |N(β)|

Repeating this method for S2(−β1, 2) gives the required result.

|S2(−β1, 2)| = 2|{x ∈ OK |(x) agrees with − β1}|

= 2

∣∣∣∣∣∣∣
x ∈ OK

∣∣∣∣∣∣∣
X2 + xX − β1 has two large roots,

X2 + σ(x)X − β2 has no large roots.


∣∣∣∣∣∣∣

= 2

∣∣∣∣∣∣∣
x ∈ OK

∣∣∣∣∣∣∣
β1 > |x|+ 1 or − β1 > max(1, |x| − 1)

1 ≥ −β2 ≥ |σ(x)| − 1


∣∣∣∣∣∣∣

= 2
∣∣{x ∈ OK ∣∣− β1 < −|x| − 1 and − β2 ≥ |σ(x)| − 1

}∣∣
= 2

∣∣{x ∈ OK ∣∣|x| < β1 − 1 and |σ(x)| ≤ 1− β2

}∣∣ = 2 |N(−β)|

Corollary 3.44. Let S ⊂ Z[X] be a maximal Mahler set of degree 4 with

Mahler measure β. If β is a quadratic unit then |S| ≥ 40 with equality if and

only if β = φ = 1+
√

5
2

.

83



Proof. Let K = Q(β) and let σ generate Gal(K/Q). Let β1 = β and let β2

be its conjugate. Let N(β) and N(−β) be defined as in Theorem 3.43,

which states that |S| = 2|N(β)|+ 2|N(−β)|+ 36. Observe that since β1 > 1

and |β2| < 1, it is trivial that 0 belongs to both N(β) and (−β). This implies

that |S| ≥ 40.

If β2 = β−1, then 1 belongs to N(β) and so |S| ≥ 42. This is clear since

1 < 1 + β2 < 1 + β. If β2 = −β−1, and β2 > 2 then 1 belongs to N(−β) and

so |S| ≥ 42. This is clear since 1 < β − 1 and 1 < 1− β∗ = 1 + β−1. Hence

if |S| = 40, we know that β2 = −β−1 < 2. The only quadratic unit β, greater

than 1, for which this holds is β = φ. We demonstrate that N(φ) = {0},

the argument that N(−φ) = {0} is identical. Assume x ∈ N(φ). Then there

exist integers a,b such that x = a+ bφ and that

|a+ bφ| < φ+ 1 |a− bφ−1| ≤ 1− φ−1.

We need to show that a = b = 0. The above equations imply that

a+bφ < φ+1, −a+bφ−1 ≤ 1−φ−1, a−bφ−1 ≤ 1−φ−1, −a−bφ < φ+1.

Combining the first two inequalities shows that b(φ + φ−1) < 3 whilst

combining the other inequalities give −b(φ + φ−1) < 3. Hence we know

that |b| ≤ 1. These cases can tested one by one. It is then straightforward

to see that a = b = 0 as required.
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Chapter 4

Mahler Sets

In this chapter we explore questions related to the size of Mahler sets.

4.1 Arbitrarily Large Mahler Sets

We begin by showing that the unit group of an algebraic number field can

contain arbitrarily large Mahler sets.

Example 4.1. Let n be a positive integer. Let S ⊂ Q be the maximal Mahler

set of degree 4 and measure (1 +
√

2)n. Then

∣∣∣S ∩Q(
4
√

2)
∣∣∣ = 8bnθc

where θ =
(

1 + 2 log(1+ 4√2)

log(1+
√

2)

)−1

.

Proof. We use the notation and ideas of Example 3.6, which described the
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A-equivalence classes of the unit group of Q( 4
√

2). Let Sα be the Mahler set

Sα = {±α,±α−1,±σ3(α),±σ3(α)−1}

for any α ∈ S, and let T be the set

T =

{
εi1ε

j
2

∣∣∣∣j > i

(
1 +

log(ε1)

log(ε2)

)
, i > 0

}
.

Then for any α ∈ S, |Sα ∩ T | = 1, which implies |S ∩ Q( 4
√

2)| = 8|S ∩ T |.

If α = εi1ε
j
2 ∈ T , then M(α) = ε2j−i2 . Hence

S ∩ T =

{
εi1ε

(i+n)/2
2

∣∣∣∣(i+ n)/2 > i

(
1 +

log(ε1)

log(ε2)

)
, i > 0

}
.

These conditions can be rearranged to give

S ∩ T = {εi1ε
(n+i)/2
2 |0 < i < nθ},

from which the result is clear.

We can then combine this result with Example 3.6 to compare all Mahler

sets S in the unit group of Q( 4
√

2). This reveals a threshold on the size of S,

beyond which S must be of a restricted form.

Example 4.2. Let S ⊂ Q( 4
√

2) be a Mahler set of degree 4 with unit measure.

Suppose |S| ≥ 9. Then the measure of S is of the form (1 +
√

2)n for some

positive integer n. Further there exist x, y ∈ S such that x/y is a Salem

number.
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Proof. We recall from Example 3.6 that the unit group of Q( 4
√

2) contains

seven A-equivalence classes. One contains only ±1, two contain only

elements with quadratic measure, and four contain only elements which

have quartic measure. During Example 3.31, we described the maximal

Mahler sets with quartic unit measure in Q( 4
√

2, i). These all have exactly 8

elements in Q( 4
√

2) and so the measure of S is not quartic since |S| ≥ 9.

This leaves only the units which are A-equivalent to 1 +
√

2 or (1 +
√

2)−1,

which have Mahler measure (1 +
√

2)n for some positive integer n. We

then look at the condensed units with Mahler measure (1 +
√

2)n for a

given n, which are ±(1+
√

2)n and ±(1+
√

2)−n. By the pigeonhole principle

principle we can choose α1, α2 ∈ S such that C(α1) = C(α2). We will also

assume that α1 ∼ α2 ∼ 1 +
√

2. The argument for (1 +
√

2)−1 is identical.

For any α = ζεi1ε
j
2 ∼ 1 +

√
2 where ζ = ±1, C(α) = ζ(−1)iε2j−i2 . Hence we

can assume

α1 = ζεk1ε
(n+k)/2
2 and α2 = ζεl1ε

(n+l)/2
2

where ζ ∈ {±1}, n, k, l are integers such that n ≡ k ≡ l (mod 2), n > 0

and k > l. Then α1/α2 = (ε21ε2)k−l which is a Salem number as required.

We will continue to explore such thresholds in Section 4.2. We now turn

to the following question;

Question 4.3. Given a number field K, does the unit group of OK contain

arbitrarily large Mahler sets?

We have already seen that the answer is affirmative for Q( 4
√

2) whilst

by Lemma 2.31 it is negative for any quadratic or cubic number field. The

principles used in Example 4.2 can be repeated for an arbitrary number field.
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Theorem 4.4. Let K be a number field of degree d and let U be the unit

group of OK. The following are equivalent

1. U contains arbitrarily large Mahler sets.

2. U contains a Mahler set of size 2d+1d2 + 1.

3. U contains x, y such that x ∼ y, M(x) = M(y), x and y have the same

degree, and x/y is not a root of unity.

Proof. We prove this by showing that (1) =⇒ (2) =⇒ (3) =⇒ (1), where

the first implication is trivial. We use the pigeonhole principle to show that

(2) =⇒ (3). Let S ⊂ U be a Mahler set of size 2d+1d2 + 1. Archimedean

equivalence divides K into at most 2d equivalence classes. By the pigeonhole

principle, there must be 2d2 +1 elements in S which are A-equivalent. There

are at most 2d2 roots of unity in K, and so by the pigeonhole principle again,

the implication holds. To prove that (3) =⇒ (1) we introduce relative height

on K. Let HK : OK → [1,∞) be the map

HK(α) =
d∏
i=1

max(1, |σi(α)|)

where σ1, . . . , σd are the d embeddings of K. Notice that if x and y are

A-equivalent algebraic units, then

HK(x)HK(y) = HK(xy).

Further if two algebraic units have the same degree and relative height on K,

then they have the same Mahler measure. Under the conditions of statement
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(3), let Sn be the set

Sn = {xiyn−i | 0 ≤ i ≤ n}

where n is a positive integer. In general, Sn need not be a Mahler set but

every element will have the same relative height on K. Hence any subset

of Sn whose elements have the same degree, will be a Mahler set. Further

since x/y is not a root of unity, |Sn| = n + 1. The degree of elements in Sn

must divide the degree of K so let m be the number of divisors of d. By the

pigeonhole principle, Slm must contain a Mahler set of size l, completing the

proof.

We now give two methods for constructing arbitrarily large Mahler sets

inside a number field.

Theorem 4.5. Suppose α is an algebraic integer such that C(α) 6= α and

deg(αk) = deg(α) for all positive integers k. Let m = |Γ(α)| and let Sn be the

set

Sn =
{
C(α)n−jαmj

∣∣j ∈ Z, 0 < j ≤ n
}

for some positive integer n. Then Sn is a Mahler set, with degree deg(α),

measure M(α)mn and cardinality n.

Proof. Suppose Γ(α) = {α1, . . . , αm}. Then for x = C(α)n−jαmj1 ∈ Sn, we

see that

Γ(x) = {C(α)n−jαmj1 , . . . , C(α)n−jαmjm }.

We can see that |Γ(x)| = m, since else there exist αk, αl ∈ Γ(α) with
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αn−jk = αn−jl , contradicting our assumption that deg(αn−j) = deg(α). This

also ensures the elements of Sn all have the same degree as α. To calculate the

Mahler measure of the elements of Sn, we first calculate their condensation:

C
(
C(α)n−jαmj

)
= C(α)m(n−j)αmj1 . . . αmjm = C(α)mn−mj+mj = C(α)mn.

By Theorem 3.19, C(α) and C(α)mn have the same degree, whilst α and C(α)

have the same Mahler measure by Theorem 3.18. This ensures every element

of Sn has Mahler measure M(α)mn. We now show |Sn| = n. If |Sn| < n,

then there exists 0 < k < l ≤ n such that C(α)n−kαmk = C(α)n−lαml.

Re-arranging we get that C(α)l−kαm(k−l) = 1. This cannot happen since by

our assumptions and Theorem 3.19,

deg(C(α)l−k) = deg(C(α)) 6= deg(α) = deg(αm(k−l)).

We can now answer Question 4.3 for many number fields that contain a

proper subfield.

Corollary 4.6. Let α be a condensed algebraic unit with no conjugates on

the unit circle. Let K be a proper extension of Q(α) which is not totally

complex if both [K : Q(α)] = 2 and Q(α) is totally real. Then the unit group

of OK contains arbitrarily large Mahler sets.

Proof. Let rα and rK be the number of real embeddings of Q(α) and K

respectively, and let sα and sK be the same for complex embeddings. We
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first show that under our assumptions

rK + sK/2− 1 > rα + sα/2− 1. (4.1)

Notice that each complex embedding of Q(α) contributes 1/2 to the right

hand side of (4.1) and [K : Q(α)]/2 to the left hand side. This is because

there will be [K : Q(α)] complex embeddings ofK which extend each complex

embedding of Q(α). For each real embedding σ, let nσ be the number of real

embeddings of K which extend σ. Then σ contributes 1 to the right hand

side of (4.1), and

nσ +
([K : Q(α)]− nσ)

2
= nσ/2 + [K : Q(α)]/2 (4.2)

to the left hand side. We observe that no embedding can contribute more to

the right hand side of (4.1) than the left hand side. Hence we have

rK + sK/2− 1 ≥ rα + sα/2− 1.

We now determine when equality holds. Since [K : Q(α)] > 1, equality

cannot hold if Q(α) has any complex embeddings. We also notice that the

quantity in (4.2) is larger than 1 if nσ > 1 or if [K : Q(α)] > 2. Thus

equality will hold if and only if Q(α) is totally real, K is totally complex

and [K : Q(α)] = 2. Hence (4.1) holds under our assumptions.

Let a = rα + sα/2 − 1 and let εα1 , . . . , ε
α
a be a system of fundamental

units for Q(α). Let b = rK + sK/2 − 1 and let εK1 , . . . , ε
K
b be a system of

fundamental units for K. We can assume that for 1 ≤ i ≤ a, εαi is some

91



power of εKi . If x = εKb , then no power of x is contained in Q(α). Since α has

no roots on the unit circle we can choose an integer n such that y = αnx ∼ α.

Notice that no power of y is in Q(α). Since the sequence deg(yi) is cyclic, we

can choose a second positive integer m such that deg((y)im) = deg(ym) for

all positive integers i. Then ym satisfies the conditions of Theorem 4.5 and

the result follows.

Corollary 4.7. Let K ⊂ R be a number field which is a proper extension of

some number field J 6= Q. Then the unit group of OK contains arbitrarily

large Mahler sets.

Proof. We first check that J contains a condensed algebraic unit with no

conjugates on the unit circle. This follows from Lemma 1.3, since J contains

a Pisot number. The result then follows from Corollary 4.6.

We can also construct arbitrarily large Mahler sets using condensed

numbers.

Theorem 4.8. Suppose α1 and α2 are condensed algebraic units that are

A-equivalent and have the same Mahler measure. Let Sn be the set

Sn =
{
αi1α

n−i
2

∣∣i ∈ Z, 0 ≤ i ≤ n
}
.

Then Sn is a Mahler set, with degree deg(α1) and measure M(α1)n. Further,

if α1

α2
is not a root of unity, then |Sn| = n+ 1.

Proof. The fact that Sn is a Mahler set with the given degree and measure

follows immediately from Theorem 3.19. Now assume α1/α2 is not a root
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of unity and suppose |Sn| < n + 1. Then there exist 0 ≤ i < j ≤ n such

that αi1α
n−i
2 = αj1α

n−j
2 . This implies αi−j1 αj−i2 = 1 which is impossible, and

hence |Sn| = n+ 1.

We can also show that for many number fields the answer to Question 4.3

is negative. To do this we introduce quasi-reciprocal numbers, which are

defined in a similar way to reciprocal numbers.

Definition 4.9. Let α be an algebraic number of degree d. We say α is

quasi-reciprocal if there exists a set S of conjugates of α, with 1 < |S| < d

and
∏

s∈S s = ±1.

It is important to note, and trivial to prove, that reciprocal numbers

are quasi-reciprocal if and only if they have degree greater than 2. Hence

Pisot numbers are never quasi-reciprocal whilst Salem numbers are always

quasi-reciprocal. The following lemma shows that quasi-reciprocal numbers

appear naturally when studying Mahler sets. Example 4.2 was an example

of this appearance, since all Salem numbers are quasi-reciprocal.

Lemma 4.10. Let α1 and α2 be algebraic units with the same Mahler measure

and such that the relationships Q(α1) = Q(α2) and α1 ∼ α2 hold. Then α1/α2

either belongs to a proper subfield of Q(α1), or is a root of unity, or is quasi-

reciprocal.

Proof. Let θ = α1/α2. It is clear that θ ∈ Q(α). We assume that θ ∈ Q(α1)

and that θ is not a root of unity. Note that this implies that α1 and α2 are

not roots of unity. If one of α1 or α2 is a root of unity, the other must also

be, since they have the same Mahler measure, by Theorem 2.7. This would
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then imply θ is a root of unity. We prove the result by showing that θ is

quasi-reciprocal.

Let σ1, . . . , σm be the set of embeddings of Q(α1) into C for which

|σi(α1)| > 1. Then

m∏
i=1

σi(θ) =
m∏
i=1

σi(α1)

σi(α2)
=
ε1M(α1)

ε2M(α2)
= ±1

where ε1, ε2 ∈ {±1}. Since α1 is not a root of unity, 1 < m < deg(θ) and

θ is quasi-reciprocal as required.

Lemma 4.11. Let K be an algebraic number field which is normal over Q

and let g1, . . . , gn be elements of G = Gal(K/Q). Suppose α is an algebraic

unit in K which is not a root of unity and such that g1(α) · · · gn(α) is a root

of unity. Let H be a subgroup of G which contains 〈g1, . . . , gn〉. Then there

exists an irreducible representation ρ of H over C such that

det (ρ(g1) + · · ·+ ρ(gn)) = 0.

Proof. Let r and 2s be the number of real and complex embeddings of K

respectively, and letm = r+s/2−1. Let ε1, . . . , εm be independent units inK,

and ζ a root of unity such that the unit group of K is 〈ζ, ε1, . . . , εm〉. Let V be

the CH-module formed by restricting the CG-module V (K, ζ, (ε1, . . . , εm))

to H. Let B′ = {e1, . . . , em} be the basis of elementary vectors. Then

([g1]B′ + . . .+ [gn]B′)πε(α) = πε(g1(α) · · · gn(α)) = 0
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where ε = (ε1, . . . , εm). Hence πε(α) is a non-zero vector in the null space of

the matrix [g1]B′ + · · ·+ [gn]B′ . Hence

det ([g1]B′ + · · ·+ [gn]B′) = 0.

Let V1, . . . , Vd be irreducible CH-modules such that V = V1 ⊕ · · · ⊕ Vd.

Let B1, . . . ,Bd be bases of V1, . . . , Vd respectively. We can amalgamate the

bases B1, . . . ,Bd to obtain a basis B of V , such that

[g]B =


[g]B1 0

. . .

0 [g]Bd


for all g ∈ G. Let T be the change of basis matrix from B to B′. Hence

det ([g1]B + · · ·+ [gn]B) = det
(
T−1[g1]B′T + · · ·+ T−1[gn]B′T

)
= det(T−1) det ([g1]B′ + · · ·+ [gn]B′) det(T ) = 0.

We can then see that

det ([g1]B + · · ·+ [gn]B) =
d∏
i=1

det ([g1]Bi
+ · · ·+ [gn]Bi

) = 0.

Therefore we can choose some i such that the function

g → [g]Bi
(g ∈ H)

is a representation of H over C with the required property.
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We can now show that no number field of prime degree contains arbitrarily

large Mahler sets.

Theorem 4.12. Let K be an algebraic number field of prime degree p. Let

S ⊂ K be a Mahler set with unit measure. Then |S| ≤ 2(2p − 2).

Proof. We first handle the case where K contains non-real roots of unity.

This can only happen when the degree of K is even, and hence the only

possibilities are K = Q(i) and K = Q(
√

3i). The unit group of Q(i)

is {±1,±i} and Q(
√

3i) has unit group {±1,±(−1 +
√

3i)/2,±(1 +
√

3)i/2}.

In either case, the result holds.

We now assume the only roots of unity in K are ±1. We assume

|S| > 2(2p − 2), and proceed to find a contradiction. By the pigeonhole

principle we can find α1, α2 ∈ S which are A-equivalent but such that

α1/α2 6= ±1. The argument is identical to that used in Theorem 4.4, except

that we know there are only 2 roots of unity in K. We can now consider K

as being Q(α1) = Q(α2) since α1 6= ±1 and the only proper subfield of K

is Q. Let J be the Galois closure of K over Q and let G = Gal(J/Q).

Let g ∈ G be an element of order p. This can always be done since p,

the degree of G divides the order of G, which allows the use of Cauchy’s

theorem. We now claim that g does not fix α1 or α2. If it did, p would

divide both |K| and [J : K] ensuring p2 divides G. This is impossible since G

is isomorphic to a subgroup of the symmetric group Sp which has order p!.

Hence the group 〈g〉 when restricted to K gives a complete set of embeddings

for K. Let g1, . . . , gm be the elements of 〈g〉 which map α1 and α2 outside

96



the unit circle. We can then see that

m∏
i=1

gi

(
α1

α2

)
= ±M(α1)

M(α2)
= ±1.

Then by Lemma 4.11, there exists an irreducible representation for 〈g〉

such that

det (ρ(g1) + · · ·+ ρ(gm)) = 0. (4.3)

Since 〈g〉 is cyclic of order p, we know that ρ(g) = (µ) for some p-th root of

unity µ by Lemma 1.19. It is clear that Equation (4.3) cannot hold if µ = 1,

so we can assume µ is a primitive p-th root of unity. Let q be an integer

such that the q-th power of g maps α1 inside the unit circle and 0 ≤ q < p.

Equation (4.3) then implies that the numbers µp−qρ(g1), . . . , µp−qρ(gm) are

not linearly independent over Q. However these numbers form a subset

of {µ, . . . , µp−1} which is an integral basis for Q(µ). This contradiction proves

that our assumption |S| > 2(2p − 2) is false, as required.

A very similar result is the generalisation of Lemma 2.31.

Corollary 4.13. Let p be a prime. There exists a finite, uniform upper

bound on all Mahler sets of degree p and unit measure.

Proof. Let S be a maximal Mahler set of degree p and unit measure β.

Let K be the Galois closure of Q(β) over Q. The case p = 2 is covered by

Lemma 2.31. Hence we can assume p is an odd prime. Let α be a unit of

degree p. Since there are no roots of unity of degree p, α has conjugates

inside and outside the unit circle and so |Γ| < p. Because |Γ∗(α)| is a block

system, we know that |Γ| divides p. This implies |Γ(α)| = 1 and so α is
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condensed. Hence S is contained inside K by Theorem 3.18. Since Gal(K/Q)

is isomorphic to a subgroup of Sp, there is a uniform upper bound on the

number of subfields of K with degree p. We can then use Theorem 4.12 to

give the result.

4.2 Mahler Sets of Condensed Numbers

In this chapter we consider Mahler sets of condensed algebraic units. We

wish to explore the relationship between the degree, measure and size of

such Mahler sets. We begin by defining some important notation.

Definition 4.14. Let n ≥ 2 be a integer and let Ωn be the set of condensed

units of degree n. For α ∈ Ωn let S(α) be the set

S(α) =
{
α∗ ∈ Ωn

∣∣α∗ ∼ α,M(α∗) = M(α)
}
.

Let Υn be the set

Υn =
{
α ∈ Ωn

∣∣x, y ∈ S(α) =⇒ x/y is a root of unity
}
,

and let cn = sup(|S|) where S runs over all Mahler sets contained in Υn.

The following lemma gives basic facts about Ωn, Υn and cn.

Lemma 4.15. Let n ≥ 2 be an integer. Then

1. Ωn contains no roots of unity.

2. If α belongs to Ωn, then so do all conjugates of α. Further, if α belongs

to Υn, then so do all conjugates of α.
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3. If α is a Pisot or Salem number of degree n, then α ∈ Υn.

4. If p is a prime number, then Ωp = Υp.

5. We have cn <∞.

Proof. Lemma 3.4 shows that the only condensed roots of unity are ±1,

which proves (1). For a condensed algebraic unit α, let K be the Galois

closure of Q(α) over Q. We know that the elements of G = Gal(K/Q)

preserve the property of being condensed. This gives the first claim of (2).

Using Theorem 3.7 we can then see that S(σ(α)) = {σ(x)|x ∈ S(α)} for

all σ ∈ G. This completes the proof of (2). To prove (3), we assume α is a

Pisot or Salem number, and let α∗ ∈ S(α). Since α and α∗ are A-equivalent

and condensed, we know that Q(α∗) = Q(α). Using this fact, and the fact

that α and α∗ are A-equivalent, shows that the only large conjugate of α∗

is α∗. Then α∗ = ±α since M(α) = M(α∗). This implies S(α) = {±α} as

required. A proof of (4) was contained within the proof of Theorem 4.12.

The proof of (5) is very similar to that used in Corollary 4.13. Let S ⊂ Υn

be a Mahler set with measure β, and let K be the Galois closure of Q(β)

over Q. Since S contains only condensed numbers, S ⊂ K by Theorem 3.18.

Since Gal(K/Q) is isomorphic to a subset of the symmetric group Sn, there

are at most 2n! A-equivalence classes in K. Further we know that |S(α)| is at

most 2n2 for any α ∈ S by Lemma 1.3. Hence cn ≤ 2n!+1n2, proving (5).

Having determined that the constants cn are finite, we can make the

following definition.

Definition 4.16. A Mahler set S ⊂ Ωn is called large if |S| > cn.
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The remainder of this section is spent trying to describe the constraints

placed upon the measure of a Mahler set S ⊂ Ωn if S is known to be large.

Any such large Mahler set must contain elements outside Υn. By studying

such elements we can study the measure of large Mahler sets. The following

lemmas explain how we prove our main results in this section.

Definition 4.17. Let Φn and Ψn be the sets

Φn =
{
α ∈ Ωn

∣∣ deg(M(α)) < n
}

;

Ψn =
{
α ∈ Ωn

∣∣M(α) is quasi-reciprocal
}
.

Lemma 4.18. Let α be an algebraic unit and let A = {α1 = α, . . . , αn} be

the set of conjugates of α. Let K be the Galois closure of Q(α) over Q and

let G = Gal(K/Q). Let H be a subgroup of Sn and let λ be an appropriate

bijection λ : A → [1, . . . , n] so that G and H are permutation isomorphic.

Let Γ be the image under λ of the large roots in A and let Σ = {Γx|x ∈ H}.

Let ρ1, . . . , ρm be a set of irreducible representations for H over C such that

every irreducible representation of H over C is equivalent to one of them.

Then

1. If {{1}, . . . , {n}} is the only block system such that Γ is a union of

blocks, then α ∈ Ωn .

2. If α ∈ Ωn and if there exists a subset J ⊂ H such that |J | = |Γ|,

Γ = {1x|x ∈ J} and det
(∑

j∈J ρi(j)
)
6= 0 for all 1 ≤ i ≤ m, then

α ∈ Υn.

3. If α ∈ Ωn and |Σ| < n then α ∈ Φn.
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4. If α ∈ Ωn and there exists Σ
′ ⊂ Σ such that 1 < |Σ′ | < |Σ| and each

integer 1 ≤ i ≤ n appears in exactly k elements of Σ
′
, then α ∈ Ψn.

Proof. (1) The image under λ of Γ∗(α) will be block system for H. If this

block system is {{1}, . . . , {n}}, then Γ∗(α) = {{αn}, . . . , {αn}} since λ is a

bijection.

(2) Assume α ∈ Ωn but that α /∈ Υn. Then there exists α∗ ∈ S(α) such

that α/α∗ is not a root of unity. Let this ratio be θ and let g1, . . . , g|Γ| be the

embeddings of Q(α) which map α outside the unit circle. Then

|Γ|∏
i=1

gi(θ) =

|Γ|∏
i=1

gi(α)

gi(α∗)
=

M(α)

M(α∗)
= ±1.

We can use the permutation isomorphism between G and H and the set J to

find σ1, . . . , σ|Γ| ∈ G which meet the requirements of Lemma 4.11. We can

then use Lemma 4.11 to show there exists an irreducible representation ρ

such that

det
(
ρ(σ1) + · · ·+ ρ(σ|Γ|)

)
= 0. (4.4)

We know that ρ must be equivalent to one of the representations ρi. We

recall from the proof of Lemma 4.11 that the value of the left hand side

of (4.4) depends only on the equivalence class of the representation. Hence

we have a contradiction and so α ∈ Υn.

(3) Let β1 = M(α) and let B = {β1, . . . , βd} be the set of conjugates

of M(α). The action of G on A defines an action on B, whilst H

acting on [1, . . . , n] defines an action on Σ. These two new actions are

permutation isomorphic and |B| = deg (M(α)) = |Σ|. Hence if |Σ| < n,
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then deg (M(α)) < n as required.

(4) Let θ : G→ H be a bijection such that

λ(αgi ) = (λ(αi))
θ(g)

for all αi ∈ A and all g ∈ G. This exists since the actions of G and H

are permutation isomorphic. Let Σ
′

= {Σ′1, . . . ,Σ
′
m} and let h1, . . . , hm be

such that Γhi = Σ
′
i. For each hi let gi = θ−1(hi). Since θ is a permutation

isomorphism, gi(M(α)) 6= gj(M(α)) for any i 6= j. It then follows that

{g1(M(α)), . . . , gm(M(α))} is a proper subset of the conjugates of M(α).

To show that M(α) is quasi-reciprocal, we show that the product of these

conjugates is ±1. Let S be the set of large conjugates of α, and let ε ∈ {±1}

be such that M(α) = ε
∏

a∈S a. Then

m∏
i=1

gi (M(α)) =
m∏
i=1

gi(ε)
∏
a∈S

gi(a) = εm
m∏
i=1

∏
a∈S

λ−1 (λ (agi)) .

We now use the permutation isomorphism relation to give

m∏
i=1

gi (M(α)) = εm
m∏
i=1

∏
a∈S

λ−1
(
λ (a)hi

)
.

We complete the proof by using the fact that each integer from 1 to n appears

in k elements of Σ
′
.

m∏
i=1

gi (M(α)) = εm
m∏
i=1

∏
x∈Σi

λ−1 (x) = εm
n∏
j=1

λ(j)k = εm

(∏
a∈A

a

)k

= ±1.
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Lemma 4.19. Let α be an algebraic unit of degree n ≥ 2.

1. α ∈ Ωn ⇐⇒ α−1 ∈ Ω−1
n .

2. If more than half the conjugates of α lie outside the unit circle, then

α−1 ∈ Υn =⇒ α ∈ Υn.

3. α ∈ Φn ⇐⇒ α−1 ∈ Φ−1
n .

4. α ∈ Ψn ⇐⇒ α−1 ∈ Ψ−1
n .

Proof. (1) Clearly if α is a unit of degree n, so is α−1. If α has no conjugates

on the unit circle, then we can use Lemma 3.4 to see that α is condensed if

and only if α−1 is condensed. If α has conjugates on the unit circle, then α

and α−1 are conjugates and the result again holds.

(2) If α ∈ Ωn has more than half of its conjugates outside the unit circle,

we can show that

x ∈ S(α) =⇒ x−1 ∈ S(α−1).

Notice that if x ∈ S(α), then x has more than half its roots outside the unit

circle. Hence x and α have no roots on the unit circle and the above fact

follows from Lemma 3.4. The set of ratios of elements in S(α) is therefore a

subset of the set of ratios of elements in S(α−1). This completes the second

result.

(3) and (4) both follow from (1) and the fact that α and α−1 have the

same Mahler measure.

The following theorem shows how Lemma 4.18 and Lemma 4.19 can be

used.
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Theorem 4.20. Let α be an algebraic unit of degree 6 and let K be the

Galois closure of Q(α) over Q. If G = Gal(K/Q) ∼= A4 then

α ∈ Ω6 =⇒ α ∈ Υ6 ∪ Φ6 ∪Ψ6.

Proof. We assume that α has at most 3 large conjugates. This will be

sufficient to prove the result, by Lemma 4.19. If α were a root of unity, G

would be an abelian group so we know that α has exactly one, two or three

large conjugates. We use the transitive group library provided by the GAP

system [11]. Every transitive group of degree 6 is permutation isomorphic

to exactly one group in the library. Using the transitive group library shows

that G is permutation isomorphic to H = 〈(1, 3, 5)(2, 4, 6), (1, 4)(3, 6)〉. Let γ

be a permutation isomorphism γ : G → H and let λ be the associated map

between the conjugates of α and [1, . . . , 6]. Let Γ be the image of the set of

large conjugates of α under λ and let Σ = {Γx|x ∈ H}. Then Σ is equal to
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one of the following sets;

Σ1 =
{
{1}, {2}, {3}, {4}, {5}, {6}

}
,

Σ2 =
{
{1, 4}, {2, 5}, {3, 6}

}
,

Σ3 =
{
{1, 2}, {1, 3}, {1, 5}, {1, 6}, {2, 3}, {2, 4}, {2, 6},

{3, 4}, {3, 5}, {4, 5}, {4, 6}, {5, 6}
}
,

Σ4 =
{
{1, 2, 3}, {3, 4, 5}, {1, 5, 6}, {2, 4, 6}

}
,

Σ5 =
{
{1, 2, 4}, {1, 4, 5}, {2, 5, 6}, {2, 3, 5}, {3, 4, 6}, {1, 3, 6}

}
,

Σ6 =
{
{1, 2, 5}, {2, 4, 5}, {3, 5, 6}, {2, 3, 6}, {1, 3, 4}, {1, 4, 6}

}
,

Σ7 =
{
{1, 2, 6}, {4, 5, 6}, {2, 3, 4}, {1, 3, 5}

}
.

We see that Σ2 is the only non-trivial block system for H, and so if Σ = Σ2

then α /∈ Ω6. On the other hand, none of the other possibilities allow Γ to be

a disjoint union of elements of Σ2 and so if Σ ∈ {Σ1,Σ3, . . . ,Σ7} then α ∈ Ω6.

We consider the other possibilities one by one. If Σ = Σ1, then α has

exactly one large conjugate, which must be equal to ±α∗ for some Pisot

or Salem number. By Lemma 4.15(2), we can assume α = ±α∗. We

observe that S(α) = S(α∗), and so α ∈ Υ6 since α∗ ∈ Υ6 by Lemma 4.15(3).

If Σ ∈ {Σ4,Σ7} then α ∈ Φ6 by Lemma 4.18(3), since |Σ4|, |Σ7| < 6.

If Σ = Σ3, we let Σ
′

= {{1, 2}, {3, 4}, {5, 6}} and use Lemma 4.18(4) to

see that α ∈ Ψ6. This leaves the cases of Σ5 and Σ6, which we claim

both imply that α ∈ Υ6. In order to use Lemma 4.18(5), we must first

describe the irreducible representations of H up to equivalence. In the table

below, we list the elements of H together with 3 non-trivial irreducible
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representations ρ1, ρ2 and ρ3. Every non-trivial irreducible representation

of H is equivalent to exactly one of them. In the table, and the calculations

that follow, ω is a primitive cube root of unity.

By Lemma 4.15(2), we can assume Γ is equal to {1, 2, 4} or {1, 2, 5}.

If Γ = {1, 2, 4} let J = {h1, h3, h7}, whilst if Γ = {1, 2, 5} let J = {h1, h3, h9}.

Then the set J has the properties as required by Lemma 4.18(2). Verifying

the required calculations then completes the proof;

det(ρ1(h1) + ρ1(h3) + ρ1(h7)) = det(1 + ω2 + 1) = 2 + ω2,

det(ρ2(h1) + ρ2(h3) + ρ2(h7)) = det(1 + ω + 1) = 2 + ω,

det(ρ3(h1) + ρ3(h3) + ρ3(h7)) =

det




1 0 0

0 1 0

0 0 1

+


0 1 0

0 0 −1

−1 0 0

+


−1 0 0

0 −1 0

0 0 1


 = 1,

det(ρ1(h1) + ρ1(h3) + ρ1(h9)) = det(1 + ω2 + 1) = 1 + 2ω2,

det(ρ2(h1) + ρ2(h3) + ρ2(h9)) = det(1 + ω + 1) = 1 + 2ω,

det(ρ3(h1) + ρ3(h3) + ρ3(h9)) =

det




1 0 0

0 1 0

0 0 1

+


0 1 0

0 0 −1

−1 0 0

+


0 −1 0

0 0 1

−1 0 0


 = 1.
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h h1 = () h2 = (2, 5)(3, 6) h3 = (1, 2, 3)(4, 5, 6)

ρ1 1 1 ω2

ρ2 1 1 ω

ρ3


1 0 0

0 1 0

0 0 1




1 0 0

0 0 −1

0 −1 0




0 1 0

0 0 −1

−1 0 0


h h4 = (1, 2, 6)(3, 4, 5) h5 = (1, 3, 5)(2, 4, 6) h6 = (1, 3, 2)(4, 6, 5)

ρ1 ω2 ω ω

ρ2 ω ω2 ω2

ρ3


0 1 0

0 0 1

1 0 0




0 0 −1

−1 0 0

0 1 0




0 0 −1

1 0 0

0 −1 0


h h7 = (1, 4)(2, 5) h8 = (1, 4)(3, 6) h9 = (1, 5, 3)(2, 6, 4)

ρ1 1 1 ω2

ρ2 1 1 ω

ρ3


−1 0 0

0 −1 0

0 0 1



−1 0 0

0 1 0

0 0 −1




0 −1 0

0 0 1

−1 0 0


h h10 = (1, 5, 6)(2, 3, 4) h11 = (1, 6, 2)(3, 5, 4) h12 = (1, 6, 5)(2, 4, 3)

ρ1 ω2 ω ω2

ρ2 ω ω ω2

ρ3


0 −1 0

0 0 −1

1 0 0




0 0 1

1 0 0

0 1 0




0 0 1

−1 0 0

0 −1 0


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Theorem 4.21. Let n be an integer such that 2 ≤ n ≤ 11 or n is prime.

Then

Ωn = Υn ∪ Φn ∪Ψn.

If S ⊂ Ωn is a large Mahler set with measure β, then either β is

quasi-reciprocal or deg(β) < n.

Proof. We will assume n is composite, since the Theorem holds for prime n

by Lemma 4.15. Assume n ∈ {4, 6, 8, 9, 10}. The result then follows by

repeating the analysis of Theorem 4.20 for all transitive groups in the library

of degree n. This analysis can be performed using the GAP system and the

code listed in the appendix. The number of groups to be tested is reduced

significantly by considering only those which are minimally transitive. We

complete our discussion of this proof by explaining why.

Let α be a unit in Ωn, and let K be the Galois closure of Q(α) over Q.

Let G = Gal(K/Q) be permutation isomorphic to H1 a subgroup of the

symmetric group Sn. Let λ be the associated map between the conjugates

of α and [1, . . . , n]. Let H2 be a transitive subgroup of H1.

If J ⊂ H2 has the properties required in Lemma 4.18(2), then it will

also be suitable as a subset of H1. This stems from the fact that every

CH1-module is a direct sum of irreducible CH2-modules. We can then repeat

the process used in Lemma 4.11 to show that if ρ is a representation of H1

over C, then

det

(∑
j∈J

ρ(j)

)
=

m∏
i=1

det

(∑
j∈J

ρi(j)

)

for some irreducible representations ρ1, . . . , ρm of H2 over C.

We now turn to parts (3) and (4) of Lemma 4.18. Let Γ be the
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image under λ of the large conjugates of α. Let Γ∗1 = {Γx|x ∈ H1} and

Γ∗2 = {Γx|x ∈ H2}. Notice that Γ∗2 must be a subset of Γ∗1. If they are equal,

then we can determine if α belongs to Φn or Ψn using only H2. If they are

not equal, we can use Γ∗2 and Lemma 4.18(4) to show that α ∈ Ψn.

It is interesting to compare this result with some calculations performed by

Boyd [2]. Boyd showed that if α is a reciprocal number of degree 6 then M(α)

is either reciprocal or has degree less than 6. We can view Theorem 4.21 as

a parallel result where the assumption that α is reciprocal is dropped.
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Appendix

The following code was used to prove Theorem 4.21. All but the last function

are auxillary functions. The last function ReturnGroupData replicates the

analysis of Theorem 4.20. The three inputs are the group, the degree of the

action, and a positive integer. This positive integer is the number of attempts

made to find some group elements which are suitable for Lemma 4.18(2). We

found setting this to be 25 to always be sufficient. The output is a list of

useful information about the problem. The last element lists orbits which we

cannot show to correspond to elements of Υn,Φn or Ψn. Hence if it is empty,

the analogue of Theorem 4.20 holds, for the chosen group and degree.

#A function that gives the result of a permutation on a set of points

OnManyPoints:=function(Points,Permutation)

local Answer, RepeatedPermutation;

RepeatedPermutation:=ListWithIdenticalEntries(Size(Points),Permutation);

Answer:=ListN(Points,RepeatedPermutation,OnPoints);

return Answer;

end;

ReturnOrbitList:=function(Degree,GroupList)

local ListOfCombinations, iiter, jiter, TempCombinations, RepeatedOnes,

RepeatedPointsToActOn, SortingPermutations, InOrbitListFlag,

OrbitListWithRepeats, OrbitList;

ListOfCombinations:=[];
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for iiter in [1..(Int(Degree/2)-1)] do

TempCombinations:=Combinations([2..Degree],iiter);

RepeatedOnes:=ListWithIdenticalEntries(Size(TempCombinations),[1]);

TempCombinations:=ListN(RepeatedOnes,TempCombinations,Concatenation);

ListOfCombinations:=Concatenation(ListOfCombinations,

TempCombinations);

od;

OrbitListWithRepeats:=[];

for iiter in [1..Size(ListOfCombinations)] do

RepeatedPointsToActOn:=ListWithIdenticalEntries(Size(GroupList),

ListOfCombinations[iiter]);

OrbitListWithRepeats[iiter]:=ListN(RepeatedPointsToActOn,GroupList,

OnManyPoints);

SortingPermutations:=ListN(OrbitListWithRepeats[iiter],SortingPerm);

OrbitListWithRepeats[iiter]:=ListN(OrbitListWithRepeats[iiter],

SortingPermutations,Permuted);

od;

#We filter out repeated orbits and repeats inside orbits.

OrbitList:=[Unique(OrbitListWithRepeats[1])];

for iiter in [2..Size(OrbitListWithRepeats)] do

InOrbitListFlag:=true;

for jiter in [1..(iiter-1)] do

if OrbitListWithRepeats[jiter][1] in OrbitListWithRepeats[iiter]

then InOrbitListFlag:=false; fi;

od;

if InOrbitListFlag then OrbitList:=Concatenation(OrbitList,

[Unique(OrbitListWithRepeats[iiter])]); fi;

od;

return OrbitList;

end;
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CalculateSearchTerm:=function(InputSet,Degree,NumRepeats)

local Answer, iiter;

Answer:=[];

for iiter in [1..Degree] do

if Size(Positions(InputSet,iiter))<NumRepeats then

Add(Answer,iiter); fi;

od;

return Answer;

end;

QRSearch:=function(Orbit,NumberOfRoots,Degree)

local SearchTerms, ListOfCombinations, NewSearchTerm, Temp,

iiter, isQRflag;

SearchTerms:=[];

if NumberOfRoots=2 then

SearchTerms:=[CalculateSearchTerm(Orbit[1],Degree,

2*Size(Orbit[1])/Degree)];

else

if [Size(Orbit),NumberOfRoots] in [[6,3],[8,4],[9,3],[10,4],[10,5],

[12,3],[12,4],[12,6],[14,2],[14,7],[15,3],[15,5],[16,4],[16,8],

[20,10],[24,3],[24,4],[24,6],[25,5],[30,3],[30,5],[32,4],[32,8],

[45,5],[48,3],[48,4],[75,5],[81,3],[135,5]] then

ListOfCombinations:=Combinations([2..Size(Orbit)],NumberOfRoots-2);

for iiter in [1..Size(ListOfCombinations)] do

Temp:=Orbit{ListOfCombinations[iiter]};

Temp:=Concatenation(Temp);

Temp:=Concatenation(Temp,Orbit[1]);

NewSearchTerm:=CalculateSearchTerm(Temp,Degree,

NumberOfRoots*Size(Orbit[1])/Degree);

SearchTerms:=Concatenation(SearchTerms,[NewSearchTerm]);

od;
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fi;

fi;

isQRflag:=false;

for iiter in [1..Size(SearchTerms)] do

if SearchTerms[iiter] in Orbit then isQRflag:=true; fi;

od;

return isQRflag;

end;

ReturnGroupData:=function(MyGroup,Degree, NumberAttempts)

local GroupData, ListMyGroup, MyGroupIrr, RepeatedMyGroup,

MyGroupReps, OrbitList, NewGroupDataEntry, iiter, CurrentOrbit,

MinQRNumber, NumberOfRootsToUse, isQRflag, EmbeddingsList,

CurrentEmbeddings, RandomEmbeddings, Temp, Temp2, jiter, kiter;

#Entry number 1: The group

#Entry number 2: Degree of the action

GroupData:=[MyGroup,Degree];

#Entry number 3: list of elements of the group

ListMyGroup:=List(MyGroup);

GroupData:=Concatenation(GroupData,[ListMyGroup]);

#Entry number 4: Irreducible characters for the group

#Entry number 5: number of such characters.

MyGroupIrr:=Irr(MyGroup);

GroupData:=Concatenation(GroupData,[MyGroupIrr,Size(MyGroupIrr)]);

#Entry number 6: Representations

RepeatedMyGroup:=ListWithIdenticalEntries(Size(MyGroupIrr),MyGroup);

MyGroupReps:=ListN(RepeatedMyGroup,MyGroupIrr,

IrreducibleRepresentationsDixon);

GroupData:=Concatenation(GroupData,[MyGroupReps]);

#Entry number 7: Orbits
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#Entry number 8: Number of Orbits

NewGroupDataEntry:=ReturnOrbitList(Degree,ListMyGroup);

GroupData:=Concatenation(GroupData,

[NewGroupDataEntry,Size(NewGroupDataEntry)]);

#Entry number 9: Orbits with size >= Degree

#Entry number 10: Number of such orbits.

NewGroupDataEntry:=[];

for iiter in [1..GroupData[8]] do

if Size(GroupData[7][iiter]) >= Degree then

NewGroupDataEntry:=Concatenation(NewGroupDataEntry,

[GroupData[7][iiter]]);

fi;

od;

GroupData:=Concatenation(GroupData,

[NewGroupDataEntry,Size(NewGroupDataEntry)]);

#Entry number 11: Orbits we cannot show are "quasi-reciprocal".

#Entry number 12: Number of such orbits.

NewGroupDataEntry:=[];

for iiter in [1..GroupData[10]] do

CurrentOrbit:=GroupData[9][iiter];

# Number roots used in QR * Number Large Roots Original =

# Degree Original * Number of repeats

# MinQRNumber:=Minimum number roots of M(alpha) needed

# to get each root of original number repeated equally.

MinQRNumber:=Lcm(Size(CurrentOrbit[1]),Degree)/Size(CurrentOrbit[1]);

if MinQRNumber = Size(CurrentOrbit) then

NewGroupDataEntry:=Concatenation(NewGroupDataEntry,[CurrentOrbit]);

else

#Produce a list of number of roots to use in QR.

# require: < size(CurrentOrbit), divisible by MinQRNumber
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NumberOfRootsToUse:=MinQRNumber*Filtered(

DivisorsInt(Size(CurrentOrbit)/MinQRNumber),

n-> n <>Size(CurrentOrbit)/MinQRNumber);

# And an exception to that previous rule.

if (Degree=10 and Size(CurrentOrbit)=10 and Size(CurrentOrbit[1])=5)

then NumberOfRootsToUse:=Concatenation(NumberOfRootsToUse,[4]);

fi;

isQRflag:=false;

for jiter in [1..Size(NumberOfRootsToUse)] do

if QRSearch(CurrentOrbit,NumberOfRootsToUse[jiter],Degree)=true

then isQRflag:=true;break;

fi;

od;

if isQRflag=false then Add(NewGroupDataEntry,CurrentOrbit); fi;

fi;

od;

GroupData:=Concatenation(GroupData,

[NewGroupDataEntry,Size(NewGroupDataEntry)]);

#Entry number 13: One entry for each orbit in GroupData[11].

# contains either: false or

# A list of group elements for Lemma 5.18 such that number in Upsilon_n

NewGroupDataEntry:=[];

#Partitions G, according to the value of 1^x

EmbeddingsList:=[];

for iiter in [1..Degree] do

Add(EmbeddingsList,Filtered(ListMyGroup,x->1^x=iiter));

od;

for iiter in [1..GroupData[12]] do

CurrentOrbit:=GroupData[11][iiter];

CurrentEmbeddings:=EmbeddingsList{CurrentOrbit[1]};
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for jiter in [1..NumberAttempts] do

RandomEmbeddings:=List(CurrentEmbeddings,Random);

Temp:=[];

for kiter in [1..GroupData[5]] do

Temp2:=ListWithIdenticalEntries(Size(CurrentOrbit[1]),

MyGroupReps[kiter]);

if Determinant(Sum(ListN(Temp2,RandomEmbeddings,Image)))=0 then

Temp:=false; break;

fi;

od;

if Temp=[] then

Add(NewGroupDataEntry,RandomEmbeddings); break;

fi;

if (jiter=NumberAttempts and Temp=false) then

Add(NewGroupDataEntry,Temp);

fi;

od;

od;

Add(GroupData,NewGroupDataEntry);

#Entry number 14: Orbits we cannot place in Phi_n,Psi_n or Upsilon_n.

#If empty for all minimally transitive groups of degree n,

#Then Theorem 5.21 holds for degree n

Add(GroupData, GroupData[11]{Positions(GroupData[13],false)});

return GroupData;;

end;
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[7] Artūras Dubickas. On numbers which are Mahler measures. Monatsh.

Math., 141(2):119–126, 2004.

117
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