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Abstract 

The bacterial pathogen Campylobacter jejuni is the leading cause of foodborne 

gastroenteritis in the developed world. C. jejuni flagella are crucial virulence 

determinants, but the regulation of these complex organelles within different 

environments is not fully understood. Moreover, regulatory RNAs are important for 

virulence and flagellar gene expression in many prokaryotes, but their role in C. jejuni 

biology is unknown.  

The first aim was to understand flagellar regulation in acidic conditions and what effect 

this has on virulence. The most acidic pH C. jejuni was able to survive was pH 3.6 and 

acid-shock at this pH and pH 5 increased expression of a subset of flagellar genes and 

increased invasion of intestinal epithelial cells. 

The second aim of this study was to characterise the function of two paralogous small 

non-coding RNAs (less than 50 nucleotides), NC1 and NC4, which were identified in 

the C. jejuni NCTC11168 transcriptome and are predicted to regulate flagella gene 

expression. NC1 and NC4 expression was dependent on the flagellar sigma factor, 

sigma
28

, and post-transcriptionally regulated expression of predicted sigma
54

-dependent 

C. jejuni flagellar gene targets in an E. coli based GFP reporter system. However, 

microarray and phenotypic analysis showed no clear differences in gene expression 

between NC1/NC4 deletion and over-expression mutants compared to the wild-type 

strain.  

The conclusions are that flagellar gene expression is regulated by acidic conditions and 

C. jejuni invasion of intestinal epithelial cells may be primed in response to acid. In 

addition, the transcription of NC1 and NC4 is linked to flagella expression and they 

may function to post-transcriptionally regulate sigma
54

-dependent flagella genes in C. 

jejuni. Although the biological significance of NC1 and NC4 remains unknown, this is 

the first study to show that non-coding RNAs are potential regulators of gene expression 

in Campylobacter.  
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Section 1 Campylobacter jejuni 

1.1 Brief history 

The family Campylobacteraceae includes the genera Campylobacter, Arcobacter and 

Sulfurospirillum (On 2005), and the genus Campylobacter was first classified in 1963 

by Selbold (On 2005). Before that time, they were described as Vibrio, being spiral-rod 

shaped cells, and are thought to have been described as early as the 1880’s by Escherich 

(Butzler 2004). Vibrio-like species were reported a number of times, mostly within a 

veterinary setting causing abortion in livestock (Butzler 2004). The first reported human 

case of what was later characterised as C. jejuni infection originated from milk and was 

identified by microscopy of patients’ faeces and blood culture samples (Levy 1946). In 

1977, Skirrow reported successful culture of C. jejuni using a selective media in low 

oxygen concentrations (Skirrow 1977), which is still in use today.  

There are 17 formally recognised species of Campylobacter with the most recent 

member, C. ureolyticus, being added in 2010 (Vandamme et al. 1991). Campylobacters 

colonise many different niches, including a wide range of animals, aqueous 

environments and a variety of exposed surfaces. In humans, C. jejuni causes up to 90% 

of Campylobacter infections with the remainder of cases being attributed to C. coli and 

the other less prevalent Campylobacter species (DEFRA 2012). This thesis focuses on 

C. jejuni subspecies jejuni, which is a gram-negative, microaerophilic bacterium that 

commonly resides in water and colonises most warm-blooded animals (Young et al. 

2007). 

 

1.2 C. jejuni infection and incidence 

1.2.1 Clinical symptoms 

Human infection most commonly occurs through the ingestion of undercooked, 

contaminated poultry. The infection results in painful abdominal cramps followed by 

gastroenteritis producing mild watery diarrhoea after a 24-72 hour incubation period, 

but symptoms are usually self-limiting lasting for approximately one week (Zilbauer et 

al. 2008). Gastroenteritis can be severe with acute inflammatory bloody diarrhoea and 

other symptoms may include fever, headache and vomiting (Zilbauer et al. 2008). The 
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severity of gastroenteritis depends on the virulence of the C. jejuni strain and on the 

host immune response.  

C. jejuni can cause Guillain-Barré Syndrome (GBS), which is an autoimmune disease 

occurring after infection and causes a potentially life threatening paralysis. GBS affects 

less than 0.1% patients who have been infected by the bacterium, but approximately 

30% of all GBS cases are caused by C. jejuni (van Doorn et al. 2008). It occurs because 

C. jejuni lipooligosaccharide (LOS) is a molecular mimic of human peripheral nerve 

gangliosides (Komagamine and Yuki 2006). Autoreactive antibodies are generated to 

LOS, which causes systemic inflammation and tissue damage (Komagamine and Yuki 

2006). C. jejuni also causes Miller Fischer Syndrome, again causing paralysis, in 

particular within eye and urinary muscles (Yu et al. 2006). C. jejuni has been associated 

with reactive arthritis, with 1-5% of patients with Campylobacter infection developing 

loosely defined reactive arthritis symptoms (Pope et al. 2007). C. jejuni gastroenteritis 

may also be a risk factor for inflammatory bowel disease, where 4.2% of patients with 

previous Campylobacter infection have developed the disease (DuPont 2008). 

1.2.2 Emerging Campylobacters 

Campylobacter species colonise a number of animals, which are important for the 

farming industry and so may lead to disease in humans. Different Campylobacter 

species have been reported in cattle, pigs, sheep, chickens, turkeys, cats, dogs and 

rabbits, and many of these species have also been isolated from humans with 

gastroenteritis. C. upsaliensis and C. concisus are the most prevalent among emerging 

Campylobacter species, but C. curvus, C. fetus subsp. fetus, C. lari, C. hyointestinalis, 

C. insulaenigrae, C. mucosalis, C. sputorum biovar sputorum and C. ureolyticus have 

also been isolated from the faeces of humans with gastroenteritis (Man 2011). In 

addition, emerging Campylobacter species have been associated with inflammatory 

bowel disease, periodontal disease, septicaemia, meningitis and urinary tract infections 

(Man 2011). 

1.2.3 Antibiotic treatment 

Antibiotic treatment is given for those with severe symptoms and for those with 

extraintestinal complications. Resistance to fluoroquinolones was first detected in the 

1990’s, increasing remarkably since then and is highly prevalent in many countries 
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(Luangtongkum et al. 2009). Macrolide resistance is highly variable depending on the 

country, but rate of resistance is lower than the fluoroquinolones (Gibreel and Taylor 

2006). The macrolide erythromycin and the fluoroquinolone ciprofloxacin are employed 

most frequently, the latter is commonly used for travellers diarrhoea (Luangtongkum et 

al. 2009), and both are also used to control infection in livestock (Angulo et al. 2004). 

Increasing resistance is a concern and there is a strong possibility that frequent use in 

animal feed has contributed to antibiotic resistance (Gibreel and Taylor 2006), and so 

new therapies or interventions are needed. 

1.2.4 Incidence 

C. jejuni is the leading cause of food-poisoning outbreaks and is the most common 

cause of gastroenteritis in the UK with approximately 80,000 reported cases in 2011 

(DEFRA 2012; Tam et al. 2012). It is estimated that ten times as many cases are 

unreported and so the incidence of Campylobacter could be approximately 800,000 

cases per year (DEFRA 2012). It is also the most commonly reported zoonotic disease 

in Europe with 220,209 confirmed Campylobacter infections in 2011, and there has 

been an increase in Campylobacter cases over the last five years in both the UK and 

Europe overall (European Food Safety Authority 2013). The scale of C. jejuni infection 

means that it is a heavy economic burden on developed countries, due to a loss of 

workforce activity.  

Increased understanding of Salmonella biology, pathogenesis and infection routes has 

helped to reduce incidence of Salmonella infection to under 15,000 cases per year from 

approximately 50,000 (DEFRA 2012). However, understanding of C. jejuni 

pathogenesis is still lagging and this, combined with lack of effective control measures 

within industry, has hindered the reduction of Campylobacter infection. Research 

continues to accumulate knowledge of how C. jejuni survives in the environment and 

causes disease, and genomic approaches will help to understand the variation between 

Campylobacter species. A collaborative group in the UK, including government bodies 

and industry groups, aims to reduce the number of slaughterhouse chickens externally 

contaminated with more than 1000 colony forming units per gram Campylobacter from 

27% (the 2008 baseline) to 10% by 2015 (Wearne 2013). It is anticipated that this 

would lead to a 30% reduction of human Campylobacter cases, with every 1% 
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reduction resulting in an estimated £9 million saving to the UK economy (Wearne 

2013).  

1.2.5 Transmission 

As C. jejuni resides in warm blooded animals, consumption of animal products is a risk 

factor for infection. C. jejuni colonises poultry asymptomatically and rapid poultry 

slaughtering methods increase product contamination (Hue et al. 2010), which 

contributes to the prevalence of infections from this food source. Although C. jejuni can 

be associated with other livestock, very low levels of C. jejuni contaminate the animal 

products; 0.6% pork and 0.4% beef samples were contaminated with Campylobacter in 

the European Union in 2010 (European Food Safety Authority 2012). Campylobacter 

contamination of  broiler chickens in the European Union was remarkably higher at  

26.9% (European Food Safety Authority 2012) and is probably due to the slaughtering 

methods. All known sources of UK C. jejuni outbreaks were attributed to the 

consumption of poultry and, in particular, chicken or duck liver in catered foods, such 

as paté (DEFRA 2012). It is estimated that 60-80% of clinical cases can be linked to 

handling or consumption of poultry (DEFRA 2012). C. jejuni infection can occur 

through consumption of unpasteurised or improperly pasteurised milk and dairy 

products and this is the most common route of transmission in the USA (Jay-Russell et 

al. 2013). C. jejuni can also cause outbreaks through contaminated water sources, 

possibly via sewerage contamination or by C. jejuni persisting in amoebae (Snelling et 

al. 2005; Pitkanen 2013). 
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Figure 1.1 Routes of C. jejuni transmission.  

C. jejuni resides in warm blooded animals, but are considered to be commensal 

organisms of poultry. Humans can ingest C. jejuni through the consumption of 

contaminated poultry products, animal products and contaminated water sources, where 

C. jejuni may associate with amoebae. Human infection results in a self-limiting 

gastroenteritis, due to intestinal epithelial damage. Diagram taken from Young et al 

(Young et al. 2007). 

 

1.3 Morphology 

C. jejuni are Gram-negative, spiral rods with a cell size that is often less than 2 µm long, 

but have been reported to be 0.2-0.8 µm wide and 0.5-5 µm long (Ferrero and Lee 

1988). C. jejuni have a single, unsheathed polar flagellum at one or both poles of the 

cell and are highly motile. C. jejuni cells change shape into a coccoid form under stress, 

such as limited nutrient availability. These are often considered to be degenerate cells as 

they exhibit a loss of cell wall integrity and an abundance of extracellular debris (Buck 

et al. 1983). However, the coccoid form could be an alternative physiological state that 

remains viable but non-culturable, as some were found to have intact membranes and 

continued, but reduced metabolism (Rollins and Colwell 1986). Other bacteria display 

this phenomenon and potentially to contribute to disease, through antibiotic resistance 

and surface attachment (Oliver 2010). 
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1.4 C. jejuni growth requirements 

1.4.1 Temperature 

Optimal temperature for C. jejuni growth is 42°C, which is the body temperature of 

poultry, but can grow between 30 and 47°C (Jackson et al. 2009). However, C. jejuni 

can survive for several months at 4°C in batch cultures (Lazaro et al. 1999). It is 

unknown what mechanisms C. jejuni use to survive cold conditions, but long term, low 

temperature survival of polynucleotide phosphorylase mutants was impaired (Haddad et 

al. 2009). Polynucleotide phosphorylases down-regulate cold-shock protein expression 

in other prokaryotes, but no cold-shock proteins or other survival strategies have been 

elucidated in C. jejuni (Hazeleger et al. 1998; Jackson et al. 2009). In response to heat 

shock, C. jejuni express heat shock proteins, including heat shock protein 70 (hcrA-

cj0757, grpE-cj0758, dnaK-cj0759) (Thies et al. 1999), GroES/EL (cj1220/cj1221) 

(Thies et al. 1999) and DnaJ (cj1260c) (Konkel et al. 1998). The RacRS two-

component system is required for surviving at 42°C and heat-shock, possibly through 

the regulation of dnaJ expression (Apel et al. 2012). 

1.4.2 pH 

Optimum pH for C. jejuni growth is between 6.5 and 7.5. Above pH 9 or below pH 3.6 

(Chapter 3) survival of C. jejuni is severely reduced and enters the viable, but non-

culturable state (Chaveerach et al. 2003). In a recent study, oxidative stress proteins 

were up-regulated in hydrochloric and acetic acid exposed C. jejuni strains, but only 

transcripts for dps (cj1534c), ahpC (cj0334), sodB (cj0169) and p19 (cj1659), were 

confirmed as being up-regulated in strain NCTC11168 and in acetic acid-shock at pH 

5.7 only (Birk et al. 2012). Altered gene expression in acid-shocked C. jejuni has been 

reported in a number of experiments and these are discussed in more detail in Chapter 3. 

1.4.3 Nutrient uptake 

C. jejuni requires amino acids for growth, and favours serine, aspartate, asparagine and 

glutamine in that order of preference (Stahl et al. 2012). Serine is metabolised by SdaA 

(cj1624c), after uptake by the SdaC (cj1625c) transporter (Velayudhan et al. 2004). 

Aspartate and glutamate are largely taken up by the Peb1 system (cj0919c-cj0922c) 

(Leon-Kempis Mdel et al. 2006) and metabolised by AspA (cj0087) and AspB 
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(cj0762c), respectively (Guccione et al. 2008). The asparaginase AnsB is required for 

asparagine metabolism in C. jejuni strain 81-176  (Hofreuter et al. 2008), but only 

strains that carry this gene with a preceding signal peptide to allow periplasm export are 

able to use asparagine as a sole source of amino acid (Hofreuter et al. 2008). C. jejuni 

NCTC11168, which has ansB (cj0029) without the signal peptide shows reduced 

growth in defined media supplemented with asparagine (Hofreuter et al. 2008). If these 

amino acids have been exhausted, C. jejuni can metabolise proline (Wright et al. 2009), 

which is abundant in gut mucin, which is an important nutrient source if the preferred 

amino acids are limited. C. jejuni PutA (cj1503c) and PutP (cj1502c) for proline uptake 

and metabolism are homologous to those in E. coli (Zhou et al. 2008), and are required 

for C. jejuni to colonise the intestine (Hofreuter et al. 2012).  

C. jejuni is unable to use many carbon sources, as it lacks enzymes from the glycolytic 

pathway. C. jejuni lacks glucokinase and fructose metabolism enzymes and so cannot 

metabolise glucose or pentose sugars (Stahl et al. 2012). However, C. jejuni is able to 

take up the carbohydrate L-fucose using a FucP permease (cj0486), and L-fucose 

metabolism may involve some genes in the cj0480c-c0j490 region, but their functions 

remain unknown (Stahl et al. 2011). In addition, C. jejuni will use pyruvate as the 

primary carbon source if present in media, but how pyruvate is transported into the cell 

is unknown (Velayudhan and Kelly 2002). Citric acid cycle intermediates are easily 

transported and used by C. jejuni, and other carbon sources include the short chain fatty 

acids, acetate and lactate, which are by-products of metabolism by the intestinal 

microbiota (Stahl et al. 2012).  

C. jejuni requires transition metals for growth, colonisation and virulence because they 

have fundamental roles in biology, such as maintaining protein structure, functioning in 

enzyme catalytic sites or mediating metabolic reactions. For example, many enzymes 

involved in metabolism contain iron-sulphur clusters, which explain why iron is 

essential for growth and why there are many uptake and regulation systems. As free iron 

contributes to Fenton chemistry and damages cells, it is often bound with other 

molecules, such as siderophores, which are iron containing complexes made by bacteria 

and specific transport systems for different types of siderophores exist (Miethke and 

Marahiel 2007). C. jejuni can take up siderophores and uptake systems for these and 
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other iron regulation mechanisms are regulated by Fur, which binds ferrous iron (van 

Vliet et al. 1998; van Vliet et al. 2002). 

 Moreover, copper, zinc and nickel homeostasis is important for C. jejuni survival. 

Bacterial CeuO oxidises toxic cuprous ions after transport into the periplasm by CopA 

(Osman and Cavet 2008) and C. jejuni CeuO (cj1516) and CopA (cj1161) are required 

for survival in high copper environments (Hall et al. 2008). A ZnuABC (cj0141c-

cj0143c) transport system is required for survival in low zinc environments, including 

host niches (Davis et al. 2009). A nickel ABC cassette (cj1580c-cj1584c) is required for 

nickel uptake, which may be important for hydrogenase activity during host 

colonisation (Howlett et al. 2012). The E. coli general ion transporter, ZupT, has been 

shown to transport zinc, iron, cobalt and manganese, but the function of the C. jejuni 

homologue has not been investigated (Stahl et al. 2012).  

 

1.5 C. jejuni virulence factors 

To cause disease C. jejuni must survive transit through the host gastrointestinal system 

and reach the intestinal epithelium. Food contaminated with C. jejuni is ingested and 

enters the stomach, where bacteria must survive harsh acidic conditions. C. jejuni would 

then pass into the small intestine and would have to adapt to the change in pH before 

overcoming host defences. C. jejuni must then move to the epithelium and transverse 

the mucus layer, before invading and colonising epithelial cells. During this process, C. 

jejuni must also manipulate host cells for invasion and evade the innate and adaptive 

immune system. The molecular basis of C. jejuni infection is not well understood, 

including how it colonises humans and what role it has in the multifaceted diseases of 

reactive arthritis and inflammatory bowel disease. However, C. jejuni possess virulence 

factors that have been individually shown to contribute to aspects of pathogenicity. 

Despite our increasing knowledge of these virulence factors, we still do not fully 

understand how they function in synergy to cause disease. 

1.5.1 Capsule 

C. jejuni has a polysaccharide capsule that contributes to the development of diarrhoea 

and resistance to host defences (Bacon et al. 2001; Karlyshev et al. 2001). Invasion of 

the intestinal epithelium is important for virulence and the capsule was shown to 
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contribute to this phenotype (Bacon et al. 2001), and was required for virulence in 

mouse, ferret and wax moth models of infection (Champion et al. 2010; Maue et al. 

2013). C. jejuni capsular modifications increased interleukin-17 (IL-17) production 

from mouse small intestinal CD4+ cells and reduced Toll-like receptor (TLR) activation 

in vitro (Maue et al. 2013). Variations in capsular polysaccharide structures are 

reflected in the different C. jejuni serotypes and in the further modifications observed 

with sugars, O-methyl phosphoramidate, glycerol and ethanolamine (McNally et al. 

2007; Maue et al. 2013). This suggests that the capsule and its modifications modulate 

the immune response and may also dictate strain associated immune responses if 

capsular modification enzymes differ between strains.  

1.5.2 Lipooligosaccharide (LOS) 

C. jejuni express oligosaccharides attached to Lipid A (LOS) in the cell wall and the C. 

jejuni Lipid A core structure is different to that of other Gram negative bacteria (van 

Putten et al. 2009). The structure of LOS is highly variable and this, including 

differences in sialic acid incorporation, can modulate the host immune responses and 

determine the severity of disease (van Putten et al. 2009; Stephenson et al. 2013). LOS 

leads to an inflammatory response as it has been shown to activate TLR4, which leads 

to cytokine production and phagocytosis (Huizinga et al. 2012; Stephenson et al. 2013). 

LOS (cj1138c-cj1144c) is required for growth, natural transformation (Marsden et al. 

2009) and for pathogenesis, as mutations in LOS biosynthesis genes alter C. jejuni 

invasion of human intestinal epithelial cell lines (Fry et al. 2000; Javed et al. 2012). In 

addition, LOS is a molecular mimic of eukaryotic glycoproteins and glycolipids 

(Houliston et al. 2011), which generates the autoreactive antibodies responsible for 

GBS, as described earlier in 1.2.1. 

1.5.3 Protein glycosylation 

N-linked protein glycosylation is important for C. jejuni biology and is conserved in all 

strains, although this pathway is more common in eukaryotes (Nothaft et al. 2012). The 

pgl locus encodes this glycosylation system and mutations in pgl genes perturb a 

number of biological functions, including natural competence, adherence and invasion 

of epithelial cells and colonisation of hosts (Karlyshev et al. 2004; Young et al. 2007). 

Altered protein glycosylation also alters the immune response to C. jejuni, and the 

ability of C. jejuni to colonise tissues and invade intestinal epithelial cells, but the 
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mechanism of this is unclear as most of the glycosylated proteins are located in the 

periplasm (Young et al. 2002). Flagellins are modified by O-linked glycosylation, 

which is described in Section Two. 

1.5.4 Cytolethal distending toxin 

C. jejuni can produce a cytolethal distending toxin (CDT), which causes cell-cycle 

arrest (Ge et al. 2008). The toxin functions as a complex of three proteins, CdtABC, but 

CdtB is the active component that is able to localise to the host nucleus, with the aid of 

CdtAC, and act as a DNase to cause DNA damage (Ge et al. 2008). CDT elicits IL-8 

production in intestinal epithelial cells (Hickey et al. 2000), which is an important 

inflammatory cytokine released by the intestinal epithelium and leads to epithelial 

damage and diarrhoea. CDT might also have a role in asymptomatic infections as an 

immune tolerance or an evasion mechanism, as CDT was shown to be expressed by 

bacteria colonising chickens, but the chickens did not produce any anti-CDT antibodies 

(Abuoun et al. 2005). 

1.5.5 Outer membrane vesicles 

C. jejuni membrane blebbing releases outer membrane vesicles (OMV) that can contain 

many proteins (Lindmark et al. 2009). CDT and N-linked glycoproteins have been 

shown to be encapsulated in OMVs and so they may be important in pathogenesis (Elmi 

et al. 2012). Indeed CDT-associated OMVs are biologically active and are able to elicit 

an inflammatory response from eukaryotic cells (Lindmark et al. 2009).  OMVs are also 

cytotoxic to host cell lines and can kill Galleria mellonella (insect infection model) 

(Elmi et al. 2012). 

1.5.6 C. jejuni adherence and invasion mechanisms 

C. jejuni has many proteins that have been shown to contribute to host colonisation. 

CadF (cj1478c) forms membrane channels binding fibronectin and is required for 

maximal binding to and invasion of host cells, and for chick colonisation (Ziprin et al. 

1999; Monteville et al. 2003). FlpA (cj1279c) is another surface protein that is required 

for adherence to chicken cell lines and colonisation of broiler chickens (Flanagan et al. 

2009).  
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Lipoproteins JlpA (cj0983) and CapA (cj0628/cj0629) are required for adherence to 

host cells. CapA is a membrane bound autotransporter and these are known to promote 

adherence to host cells and was further shown to be required for colonisation of chicks 

(Ashgar et al. 2007). JlpA binds to host cells and triggers a proinflammatory response 

through the NF-kB signalling pathway (Jin et al. 2003). 

Periplasmic proteins Peb1A (cj0921c) and Cj1496c are required for invasion of human 

epithelial cells. Cj1496c is required for chick colonisation and Peb1A contributes to 

mouse model colonisation (Pei et al. 1998; Kakuda and DiRita 2006). Peb1A has been 

detected in culture supernatants and contains a motif that is common to surface 

expressed lipoproteins, and so may be accessible to host cells (Leon-Kempis Mdel et al. 

2006). However, the mechanisms by which periplasmic proteins facilitate colonisation 

are unknown.   

Recently, genes co-expressed with flagellar genes have been found to contribute to host 

cell invasion and colonisation, and these have been named flagellar co-expression 

determinants (Feds) (Barrero-Tobon and Hendrixson 2012). In C. jejuni 81-176, these 

genes include cjj0083 (FedA), cjj0414 (FedB), cjj1053 (FedC) and cjj1647 (FedD), 

which were shown to be dependent on sigma
28

 for expression, and therefore dependent 

on expression of upstream flagellar proteins (Barrero-Tobon and Hendrixson 2012). C. 

jejuni Fed mutants were still motile, but were less able to colonise chicks (Barrero-

Tobon and Hendrixson 2012). 

Certain strains of C. jejuni carry the pVir plasmid, which contains genes that are 

involved in adherence to host cells and is associated with virulence a ferret infection 

model (Bacon et al. 2001). Mutation of pVir comB3 and virB11 reduces adherence to 

INT407 cells (Bacon et al. 2002). A plasmid encoding tetracycline resistance (pTet) has 

been sequenced and was found to be conjugative by expression of a type IV secretion 

system (Batchelor et al. 2004). The type IV-like system, encoded by pVir is possibly 

required for DNA uptake as it was also found to be conjugative (Bacon et al. 2001). 

Both plasmids carry genes of unknown function, which may be important in host 

interactions. 

It is still unclear how C. jejuni enters host cells, but it may be that C. jejuni exploits 

caveolae as caveolin-1 is needed for entry and sequestration of cholesterol inhibits C. 
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jejuni entry (Douillard et al. 2008; Watson and Galán 2008). Dynamin, which is needed 

to form the caveosome, was not required for cell entry, suggesting that C. jejuni 

provides or uses some other mechanism to enter the cell (Hu and Kopecko 2008). 

Microtubules were shown to be needed for C. jejuni internalisation, which  may involve 

tyrosine or phosphoinositide 3 kinases as inhibitors of these enzymes reduced bacterial 

entry (Hu and Kopecko 2008), but the specific mechanism is unknown. Actin was not 

required for cell entry (Oelschlaeger et al. 1993), but Rho GTPase function in C. jejuni 

internalisation has been reported (Boehm et al. 2011). CadF and flagella were also 

shown to activate Rac-1 and so it is hypothesised that specific C. jejuni adhesins cause 

actin cytoskeleton rearrangements upon contact with host cells (Boehm et al. 2011). 

These conflicting reports mean that the mechanisms of C. jejuni host cell entry are still 

unclear and require further study.  

1.5.7 Flagella 

C. jejuni is highly motile with a single flagellum at one or both poles of the cell and it is 

well established that flagella are needed for C. jejuni to successfully colonise hosts 

(Nachamkin et al. 1993; Wassenaar et al. 1993; Hendrixson and DiRita 2004). 

Moreover, C. jejuni mutations in flagella structure, motor and chemotaxis genes are 

attenuated for chick colonisation (Hendrixson and DiRita 2004). Therefore, flagella and 

the associated apparatus need to be complete as well as functional in order to colonise 

hosts. More detail on the role of flagella in colonisation and protein secretion is given in 

Section Two. 

1.5.8 C. jejuni-host interaction models 

In vitro models for studying C. jejuni host-interactions are derived from cell types with 

intrinsic differences, which make it difficult to draw conclusions about infection 

mechanisms by comparing data from different studies. Commonly used cell lines for in 

vitro invasion and adherence experiments, include non-polarised HeLa (cervix epithelial 

carcinoma) and the derivatives HEp-2 (rat tumours induced by epidermal carcinoma 

tissue) and INT407 (human embryonic intestine) (Friis et al. 2005). Also common are 

the polarised colonic adenocarcinoma cell lines Caco-2, HT29 (and MTX clone 

producing mucin) and mucin producing T84 (Lesuffleur et al. 1990; Friis et al. 2005). 

However, partially differentiated Caco-2 cells have been recommended as models 

because they accurately mimic the sites of Campylobacter invasion in humans and are 
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well characterised (Friis et al. 2005). Human cell lines can be grown in vertical 

diffusion chambers to provide more physiologically relevant experimental conditions 

where apical microaerobic and basolateral aerobic compartments are used (Mills et al. 

2012).  

Porcine (IPEC-J2) and mouse intestinal cell lines (m-ICcl2) have been used for invasion 

assays using C. jejuni and both display small intestine cell characteristics, including cell 

polarisation, ion transport, tight junctions, a brush border and the expression of 

intestinal epithelial cell markers, which are common to all species (Bens et al. 1996; 

Parthasarathy and Mansfield 2009; Brosnahan and Brown 2012). Therefore, these may 

be the most suitable in vitro model for studying invasion and adherence, as well as 

molecular cell entry mechanisms, and could be grown in vertical diffusion chambers to 

provide more physiologically relevant culture conditions. A chicken hepatocellular 

carcinoma cell line has also been used for C. jejuni adherence assays (Quinones et al. 

2009), but this may not be the most suitable model considering the attributes of the 

aforementioned cell lines even though it is derived from the natural host of C. jejuni. 

Although the use of different cell lines makes it difficult to compare and confirm 

findings, any observations can be taken forward and can form further lines of 

investigation.  

It is important to validate in vitro results and provide more relevant experimental 

conditions when studying C. jejuni host-interactions and virulence determinants. In vivo 

infection models currently used for this include ferrets and pigs, and chickens have been 

used as colonisation models. Recent additions include insect and mouse infection 

models. The wax moth caterpillar (Galleria mellonella) can be used as a high-

throughput, cost effective infection model, as C. jejuni cause visible disease symptoms 

(melanisation) and kills the insect (Champion et al. 2010). This insect model is an 

effective system in which to assess the importance of specific C. jejuni mutations in 

virulence and is likely to become a widely used phenotype assay. C. jejuni readily 

colonise mice without causing disease (Bereswill et al. 2011), but recent developments 

using mice colonised with a humanised microbiota do show clinical disease symptoms 

and have been successfully used for characterising murine immune responses to C. 

jejuni (Bereswill et al. 2011). Murine models could be the most relevant for forming 



Introduction   Chapter 1 

 

28 

 

hypotheses about human immune responses, but would then require validation in 

humans. 

Early observation and infection studies using human volunteers provided 

characterisation of clinical symptoms and an understanding of virulence differences 

between strains (Black et al. 1988). Studies with human volunteers are now performed 

to examine Campylobacter vaccine responses and C. jejuni strains 81-176 and CG8421 

have been characterised for use as vaccine strains (Tribble et al. 2009). During the last 

decade, there have also been studies in primates attempting to establish models to study 

vaccine responses.  

Using in vivo models has the advantage that C. jejuni can be studied in physiologically 

relevant conditions, but establishing a model that exhibits the same symptoms and 

immune response as humans has been difficult. A variety of in vitro models are 

available, but differences in protocols may confound results and fundamental variations 

between cell lines make findings difficult to infer mechanisms for other cell types or in 

vivo models. The choice of model would depend on what aspect of host-interaction is 

being studied and what resources are available to maintain and develop the models. 

 

1.6 Gene regulation 

C. jejuni has a relatively small genome containing 1643 open reading frames (Parkhill 

et al. 2000). Along with this, C. jejuni also has a limited number of transcriptional 

regulators. There are only three sigma factors: FliA, RpoN and RpoD and genome 

analysis has revealed 34 transcriptional regulators that can be grouped into 15 different 

families based on conserved sequence motifs and similarity with other transcriptional 

regulators (Wösten et al. 2008). As well as transcriptional regulators, transcriptome 

analysis has identified potential regulatory RNAs that post-transcriptionally control 

gene expression. Physical genomic rearrangements and small molecules can also 

regulate gene expression. 



Introduction   Chapter 1 

 

29 

 

1.6.1 Transcriptional regulators 

(i) Sigma factors 

Sigma (σ) factors are required as part of the RNA polymerase holoenzyme to recognise 

and bind promoters, and transcribe different gene classes (Kazmierczak et al. 2005). 

RpoD (σ
70

) is the housekeeping σ factor, which regulates nearly all C. jejuni promoters. 

The consensus sequence TAtAAT at the -10 region (numbers correspond to the 

transcriptional start site +1) of promoters are recognised by C. jejuni σ
70

 (fig. 1.2)  

(Wösten et al. 2008). Recognition of the -10 promoter sequence is well conserved with 

E. coli, but a -35 sequence, which is present in E. coli, is not present in C. jejuni 

(Wosten et al. 1998a). This coincides with a lack of protein conservation in the -35 

binding site with E. coli  σ
70

 (Wosten et al. 1998a).  

RpoN (σ
54

) recognises GGaa-N6-TTGCTT -24 and -12  sequences (fig. 1.2) and 18 σ
54

-

dependent genes are known to encode proteins involved in and incorporated into 

flagella, secreted proteins and flagellar glycosylation proteins (Studholme and Dixon 

2003; Porcelli et al. 2013). A bacterial enhancer is required to bind upstream of σ
54 

promoters (usually approximately 100 bp) and DNA looping has to occur in order for 

the enhancer to contact the σ
54

-holoenzyme and catalyze formation of the open complex 

(Studholme and Dixon 2003). Because σ
54

 is dependent on these additional regulators, it 

can be more tightly and subtly controlled so that gene expression is precisely and 

deliberately coordinated. Therefore, σ
54

 is a flexible tool for the regulation of flagella 

assembly.  

FliA (σ
28

) regulates 26 promoters with -10 CGATwt sequences (Porcelli et al. 2013). 

The regulated genes also encode proteins involved in and incorporated into flagella, as 

well as secreted proteins. Expression of σ
54

 and σ
28

 is controlled by σ
70

, with expression 

of σ
54

 further regulated by at least one specific transcriptional regulator, and with σ
28

 

regulated by an anti-σ factor (Wösten et al. 2008; Wösten et al. 2010). Mutations in 

rpoN and fliA renders C. jejuni non-motile, but fliA mutants still assemble the hook 

structure (Wösten et al. 2008).  
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et al. 2004). FlgR regulation will be described further in Section 2. There are many 

other two component systems that control a wide range of biologically relevant 

functions, which have been reviewed by Wösten et al (Wösten et al. 2008). 

 

1.6.2 Post-transcriptional regulators of gene expression 

(i) Protein regulation 

The global, carbon storage regulator CsrA (cj1103) was identified in C. jejuni and 

mutants deficient in CsrA expression were attenuated for survival to oxidative stress, 

biofilm formation and invasion of intestinal epithelial cell lines (Fields and Thompson 

2012). In E. coli, CsrA acts post-transcriptionally by binding to the 5’ untranslated 

region (5’UTR) of mRNA and inhibiting ribosome access to the ribosome binding site 

(Romeo et al. 2012). The mechanism of C. jejuni CsrA (CjCsrA) function is still 

unclear, but CjCsrA can complement an E. coli csrA mutant to a degree, restoring 

several phenotypes of the mutant (Fields and Thompson 2012).  

Cj0706 is predicted to be a post-transcriptional regulator of flaA (Cj1339c) expression. 

It is 37% identical to H. pylori 26695 FlgZ (HP0958), which binds flaA mRNA, 

protects σ
54

 from proteolysis and is required for motility (Douillard et al. 2008). The 

structure of Cj0706 can be fitted to the known structure of FlgZ (Caly et al. 2010) and 

shares several FlgZ mRNA binding residues, which suggests it is a good candidate for 

RNA binding (analysis by Le, unpublished). Moreover, Cj0706 is predicted to interact 

with σ
54

, and so could perform similar functions to FlgZ. However, Cj0706 could not be 

inactivated in strains NCTC11168 or 81-176, and so its role in motility could not be 

assessed (Le, data unpublished). 

(ii) RNA regulation  

Non-protein-coding RNAs (ncRNAs) are established post-transcriptional regulators of 

gene expression, functioning directly on nucleic acids or indirectly on proteins. RNA 

regulation is required in many biological processes and is important in all kingdoms of 

life. In prokaryotes, RNA regulation has also been shown to contribute to the expression 

of virulence factors, and so is of importance in pathogenesis.  
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Approaches for discovering ncRNAs and their functions are progressing rapidly with 

advances in RNA sequencing methods generating a wealth of transcriptomic 

information and revealing novel RNA species. Although ncRNAs are present in many 

prokaryotes, our understanding of their individual roles and mechanisms largely comes 

from studies with the Gamma-Proteobacteria, and especially the Enterobacteriaceae. 

Notably, these have revealed complex ncRNA regulatory networks in Escherichia, 

Salmonella and Pseudomonas to name a few.  

Broad classes of ncRNA exist and can be grouped based on how they function. Perhaps 

the simplest ncRNAs are cis-located riboswitches, which are 5’ mRNA aptamers that 

bind specific metabolites or secondary structures in response to environmental stimuli 

(Papenfort and Vogel 2010). The result is a conformational change in the 5’UTR of the 

mRNA that allows access or blocks the ribosome binding site, which alters translation 

or stability of that particular mRNA (Serganov and Patel 2012). Only a single 

riboswitch has been identified in C. jejuni and this is the thiamine pyrophosphate (TPP) 

riboswitch, which was identified upstream of the thiamine biosynthesis protein ThiC 

(cj0453) (Gundogdu et al. 2007; Chaudhuri et al. 2011). However, the function of this 

riboswitch has not yet been evaluated experimentally in C. jejuni.  

Bacterial and archeal genomes contain clustered and regularly interspaced short 

palindrome repeats (CRISPR), which are repeated sequences of DNA that are 

transcribed together in a single RNA transcript and are subsequently cleaved into short 

repeats. These then act to prevent phage replication by guiding CRISPR associated 

proteins (Cas) to recognize and cleave invading foreign DNA, but also have the 

potential to regulate intrinsic nucleic acids (Makarova et al. 2011). C. jejuni has a 

CRISPR-cas system that may be required for virulence, as inactivation of the cas9 

marker gene reduced invasion of human intestinal cell lines (Louwen et al. 2012). In 

addition, CRISPR-cas gene degeneration is correlated with the presence of 

sialyltransferases that form the antigenic LOS structures in C. jejuni GBS strains, and so 

the CRISPR-cas system could be a marker for GBS causing strains (Louwen et al. 

2012).   

Discrete ncRNAs can interact with proteins and serve as molecular mimics, which 

compete for regulatory sites of proteins and inhibit their activity (Marzi and Romby 

2012). In E. coli, the CrsA family of post-transcriptional regulators are regulated by 
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ncRNAs CsrB/CrsC (Suzuki, Wang et al. 2002), but these and the two-component 

system that regulates their expression have not been identified in C. jejuni (Fields and 

Thompson 2008).  

Non-coding RNAs that interact with other RNAs can be located in trans or in cis of 

their target genes. Trans-acting ncRNAs, typically ~50 to 250 nt in length, are 

commonly located in intergenic regions and are currently the most extensively 

characterised ncRNAs (Papenfort and Vogel 2010). Trans-acting RNAs function by 

binding the 5’UTR of the target gene mRNA transcript via complementary, but 

imperfect, base pairing and largely results in negative regulation of gene expression by 

interfering with ribosome function or by targeting the complex for degradation (fig. 1.3) 

(Papenfort and Vogel 2010). However, ncRNAs can also promote gene expression by 

inhibiting mRNA secondary structures and titrating away RNAse E recruiting proteins 

that interact with ncRNA-mRNA complexes (fig. 1.3) (Frohlich and Vogel 2009; Gopel 

et al. 2013). Non-coding RNA binding regions are surprisingly short and perhaps 

explain the involvement of a RNA stabilising protein chaperone, Hfq, which is required 

for ncRNAs to function in many prokaryotes (Vogel and Luisi 2011). However, C. 

jejuni lacks Hfq and so either has novel RNA stabilising chaperones or ncRNAs are 

able to act independently of proteins. Putative C. jejuni hfq genes cj0138, cj0667 and 

cj1103, have been mutated, but did not result in any pleiotropic effects, suggesting that 

they were not major ncRNA protein chaperones (Meier et al. 2012). Identification of 

such a protein chaperone would aid in the study of C. jejuni ncRNAs. 
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Figure 1.3 Mechanisms of trans-acting non-coding RNA function.  

Hfq is a protein chaperone that stabilises interactions between trans-acting ncRNAs 

(ncRNA) and messenger RNA (mRNA). A) Trans-acting ncRNAs can silence gene 

expression by inhibiting translation through blocking the ribosome binding site (RBS) 

of target gene mRNA or targeting the mRNA for degradation by RNAse E and the 

exonuclease pathway (Exonuc). B) Trans-acting ncRNAs can promote gene expression 

by activating translation through relieving the formation of secondary RNA structures 

or inhibiting mRNA degradation by titrating away RNAse E recruiting proteins that 

interact with ncRNA-mRNA complexes (Protein +E).  
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Differential RNA sequencing of transcriptomes, enriched for primary transcripts, has 

identified many more ncRNAs in C. jejuni. Approximately 30 small ncRNAs (2% of the 

genome) have been identified and 10 of these have been confirmed by Northern 

hybridisation (Porcelli et al. 2013). Chapters 4-6 examine the function of two of these 

ncRNAs, but functions for any other C. jejuni ncRNAs have not been described so far. 

1.6.3 Phase variation 

It is well known for physical DNA rearrangements to regulate gene expression. In C. 

jejuni polymeric G- or C- tracts are present in the genome, which may result in slipped-

strand mispairing and may affect transcription if the region is in the promoter or there is 

differential expression of transcriptional regulators. For example, Cj1419c and Cj1420c 

are often differentially expressed on two-dimensional protein gels and sequence analysis 

reveals a polymeric G-tract in the cj1420c-cj1422c region (personal communication 

with Francis Mulholland). Expression of the flagellar regulator flgR is phase variable 

(Hendrixson 2006), which adds a layer of regulation, perhaps missing from the lack of a 

master regulator of flagellar gene transcription.  

1.6.4 Small molecules 

Small molecules can be regulators of gene expression during the stringent response in 

low nutrient availability. The characteristic molecules of this response are 5’-

diphosphate 3’-diphosphate/5’-triphosphate 3’-diphosphate (ppGpp/pppGpp), which are 

secondary messengers that down-regulate expression of translation machinery and up-

regulate stress response genes by binding directly to RNA polymerase (Boutte and 

Crosson 2013). C. jejuni deficient in SpoT, an enzyme that is involved in the production 

of ppGpp, shows decreased ppGpp production and increased sensitivity to rifampicin 

(Gaynor et al. 2005). This suggests that ppGpp might regulate gene transcription in C. 

jejuni stress responses, although its interaction with RNA polymerase has not yet been 

confirmed. Increased biofilm formation by SpoT mutants was associated with 

alterations in polysaccharide structure and implies that ppGpp may be required for C. 

jejuni survival mechanisms in different niches (McLennan et al. 2008).  
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Section 2 Bacterial flagella  

The following section reviews flagellar assembly and function in prokaryotes, and how 

this compares to C. jejuni. Prokaryotic flagella are complex, self-assembling organelles 

that extend out from the bacterial cell, and the structure of flagella and regulation of 

flagellar assembly are highly conserved between bacteria. Flagella are crucial for 

movement for many bacteria and are important for tactic responses that ultimately 

enable the microorganism to survive in a variety of environments and interact with hosts 

(Harshey 2003).  

Flagella are large macromolecular structures, which requires orchestration of over 50 

genes and approximately 20,000 subunits regulated by protein and RNA regulators in a 

sophisticated network (Chevance and Hughes 2008; Smith and Hoover 2009; De Lay 

and Gottesman 2012). Bacteria can vary in the number and the arrangement of flagella, 

but all follow a similar basic structure: a basal body, connecting hook, and the 

propeller-like filament (Chevance and Hughes 2008). Likewise, a set of core genes 

contributes to the structure of bacterial flagella and are thought to derive from one or 

few ancestors (Liu and Ochman 2007).  

Understanding flagellar functions and regulation is important for understanding 

bacterial pathogenesis and may lead to pharmacological interventions in industry or 

medicine and to the development of vaccines. Knowledge of flagella as self assembling 

macromolecular machines and biological motors can create opportunities in other areas 

of science, such as biomedical physics and nanotechnology.  

 

1.7 Structure and assembly of flagella 

Bacterial flagella follow a similar design and this is well characterised in Salmonella 

enterica serovar Typhimurium, which provides a model flagellum (fig. 1.4). The basal 

body comprises the flagella export apparatus (a type III-like Secretion System) and 

motor-rotor switch complex, which assemble in the centre of the membrane cytoplasmic 

embedded C and MS rings (Chevance and Hughes 2008). Core genes for the flagellar 

ring structures include fliG, fliM and fliN for the rotor switch (C ring), and fliF for the 

inner membrane ring (MS ring) (Chevance and Hughes 2008). The motor (motA and 

motB) is a core component of the flagellar system, which is associated with the rotor 
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switch proteins to provide a proton-motive force to power rotation and form stators 

responsible for rotation of the flagellum (Minamino et al. 2008). Interaction with 

chemotaxis proteins provides directional movement (Chevance and Hughes 2008).  

The FlgH peptidoglycan ring (P ring) and FlgI outer membrane ring (L ring) contain 

multiple subunits and are secreted via the Sec pathway (Jarrell and Mcbride 2008). 

These proteins/structures are not present in the ancient bacterial lineages of Firmicutes, 

which lack an outer membrane, and Spirochaetes, which have periplasmic flagella that 

do not cross the outer membrane. Therefore, FlgH and FlgI are thought to have evolved 

after the core genes (Liu and Ochman 2007). The core genes flhA, flhB, fliI, fliP, fliR, 

fliQ encode proteins to form the export apparatus, which then secretes proteins to 

assemble the rest of the flagella (Chevance and Hughes 2008). The FlgB, FlgC, FlgG 

and FlgF rod proteins are secreted and form part of the basal body, connecting the 

external flagellar structures and are associated with proteins that may be involved in 

flagellar export (Chevance and Hughes 2008).  

Core genes for the middle and upper external flagellar structures include flgE (main 

hook subunit), flgK and flgl (junction proteins between the hook and the filament), and 

fliC (major flagellin subunit) (Liu and Ochman 2007). The hook allows flagella to 

orientate in different positions so that the bacterium achieves directional movement, and 

hook length is controlled by export apparatus proteins (Chevance and Hughes 2008). 

Flagellins form the filament and are polymerised into long chains, called protofilaments, 

where one flagellum contains 11 protofilaments (Egelman 2010). The filament cap 

(fliD) enables repeating subunits to polymerise forming an elongated filament and is 

incorporated early in the hook and rod structures, but is removed from the end product 

(Chevance and Hughes 2008). The final macromolecular structure can extend over 

many cell lengths and contains a hollow channel from the proximal to the distal end that 

is a few nanometres in diameter (Jarrell and Mcbride 2008).  
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Figure 1.4 Model structure of a bacterial flagellum.  

Bacterial flagella consist of three main parts: the basal body, hook and filament. The 

basal body contains the membrane rings (FliF, FlgH, FlgI); flagella export apparatus 

(FlhA, FlhB, FliI, FliP, FliR, FliQ), which secretes protein subunits through the flagellar 

channel for assembly; motor (MotA, MotB) and rotor switch (FliM, FliN, FliG), which 

provides a proton-motive force to rotate the flagella; and rod proteins (FlgB, FlgC, 

FlgF, FlgG). Formation of the hook (FlgE), junction proteins (FlgK, FlgL) and filament 

(FliC) follows. Taken from Chevance and Hughes (Chevance and Hughes 2008). 

 

The basic structure of C. jejuni flagella follows the Salmonella model, including a 

motor and switch, membrane-embedded rings, basal body, hook, rod and filament (fig 

1.5). Again the C. jejuni flagellum is hollow allowing export of flagella proteins for 

assembly and for secretion of other proteins, but contains seven protofilaments rather 

than 11 (Egelman 2010). The filament consists of two flagellins: FlaA, the major 

flagellin, and FlaB, a minor flagellin that constitutes less than 20% of total flagellin 

units (Guerry et al. 1991). FlaC, a protein originally annotated from the genome 

sequence as a third flagellin, is highly conserved among C. jejuni strains (Guerry 2007). 
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However, it is not incorporated into the filament, but is secreted by the export apparatus, 

perhaps as an effector protein (Song et al. 2004). FlgE2 subunits, which are different to 

FlgE from Salmonella species, form the C. jejuni hook, although the C. jejuni genome 

does contain a flgE that is not required for motility (Hendrixson and Di Rita 2003). The 

C. jejuni rotor contains an extra rotor switch protein FliY, where other bacteria have 

either FliY or FliN (Lertsethtakarn et al. 2011). Another difference is that extra proteins 

are required for motility in C. jejuni, including FlgP, FlgQ and PflA, which are not 

incorporated into the flagella (Yao et al. 1994; Sommerlad and Hendrixson 2007).  

As C. jejuni flagella do not contain FliC, the immune response to C. jejuni differs to that 

of many other bacteria. Bacterial flagellin contains microbe-associated molecular 

patterns, which are recognised by the innate immune system (Vijay-Kumar and 

Gerwirtz 2009). In humans, extracellular FliC is recognised by TLR5, which is 

expressed on epithelial cells, macrophages and dendritic cells (Vijay-Kumar and 

Gerwirtz 2009). Activation of TLR5 on these cells results in a signalling cascade that 

regulates genes for antibacterial chemicals, chemokines, general stress induced genes 

and anti-apoptotic factors (Vijay-Kumar and Gerwirtz 2009). Many bacteria activate 

TLR5 signalling, but C. jejuni flagellins do not (Andersen-Nissen et al. 2005). A 

conserved amino acid sequence is required to trigger TLR5 that is lacking in C. jejuni 

FlaA allowing the bacteria to evade this response (fig. 1.6) (Andersen-Nissen et al. 

2005). Despite this, chemokines are still secreted from C. jejuni-invaded intestinal 

epithelial cells including IL-8, CXCL8-11, and CCL2-5, which target neutrophils, 

activated T cells, basophils and macrophages (Al-Salloom et al. 2003; Johanesen and 

Dwinell 2006).  
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Figure 1.5 Model of the C. jejuni flagellum.  

C. jejuni flagella are similar to model flagella (based on Salmonella species), except for 

the filament, which comprises seven protofilaments and consists of mainly FlaA 

subunits with some FlaB subunits, whereas a FliC-like flagellin subunit is present in 

many other bacteria flagella. The C. jejuni hook subunit is encoded by flgE2 and is 

different to the flgE from other bacteria. The C. jejuni rotor switch has an extra protein 

of unknown function FliY. C. jejuni also has extra non-flagellar proteins need for 

motility and these are FlgP, FlgQ and PflA (not shown).   

 

                   ***   *  *  *               * 

B.subtilis          86 LQRVRELVVQAGNTGTQDKATDLQSIQDE 114 

C.jejuni            88 LDTIKTKATQAAQD--GQSLKTRTMLQAD 114 

E.coli              88 LQRIRELTVQASTG--TNSDSDLDSIQDE 114 

L.monocytogenes     86 LQRMRQLAVQSSNG--SFSDEDRKQYTAE 112 

P.aeruginosa        88 LQRMRDLSLQSANG--SNSDSERTALNGE 114 

S.Typhimurium       88 LQRVRELAVQSANS--TNSQSDLDSIQAE 114 

S.Enterica          88 LQRVRELAVQSANG--TNSQSDLDSIQAE 114 

V.cholerae          88 LQRMRDLALQSANG--TNSASERQALN-E 114 

Figure 1.6 Sequence alignment of bacterial flagellin and conservation of TLR5 

activating residues.  

ClustlW2 was used to align protein sequences of bacterial flagellin. Amino acids 89-96 

account for most of the TLR5-stimulatory activity of the protein (Smith, Andersen-

Nissen et al. 2003). Important residues that stimulate a TLR5 response are indicated by 

* and those conserved are blue.  
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1.8 Flagellin O-linked glycosylation 

C. jejuni contains enzymes that glycosylate flagellin and this is well studied in C. jejuni, 

making it, in many respects, the model organism to study O-linked glycosylation. The 

glycans incorporated are pseudaminic acid, mediated by PseABCFGHI enzymes 

(McNally et al. 2006), and legionaminic acid with their derivatives depending on the C. 

jejuni strain (Logan 2006). Pseudaminic acid production is thought to be dependant on 

vitamin B6 (pyridoxal-5’-phosphate) synthesis as pdxA mutants were decreased in both 

these products (Asakura et al. 2013). The mutants also showed impaired motility, which 

was likely caused by improper flagellin glycosylation (Asakura et al. 2013). FlaA is 

glycosylated on up to 19 sites before export and is essential for flagellar assembly and 

function (Goon et al. 2003; Ewing et al. 2009). Flagellar glycans mediate aggregation 

of C. jejuni cells (termed autoagglutination), which is implicated in invasion of host 

cells (Guerry et al. 2006). Autoagglutination possibly contributes to biofilm formation 

aiding the establishment of microcolonies, and so glycosylation could aid C. jejuni 

survival and infection (Guerry et al. 2006).  

 

1.9 Transcriptional hierarchy of flagellar genes 

1.9.1 Flagellar regulation in prokaryotes  

A common regulation pathway exists in Gram-negative bacteria with peritrichous 

flagella (Smith and Hoover 2009), with a flagellar regulon comprising different 

promoter classes, which are temporally regulated during assembly. A master regulator is 

expressed from a Class I operon at the top the hierarchy. Class II genes are then 

transcribed leading to expression of a σ factor and regulatory proteins required for the 

transcription of the subsequent gene class (Mccarter 2006). Successful assembly of the 

hook-basal body complex then determines when Class III/IV genes are expressed, 

which finally leads to completion of the filament (Mccarter 2006). 

FlhDC is the master regulator in many Beta- and Gamma-Proteobacteria, but it is also 

the global transcriptional regulator for other genes (fig. 1.7) (Wang et al. 2006). It is 

controlled by environmental signals and promotes the expression of Class II genes via 

direct contact to σ
70

-RNA polymerase holoenzyme to activate transcription (Wang et al. 

2006). The expression of Class III genes is then transcribed by σ
28

, which is required for 
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transcription of the late flagellar genes in many bacteria, with 76% of flagellated 

bacterial species predicted to contain σ
28

/σ
D
 orthologues (fig. 1.7) (Smith and Hoover 

2009). 

Associated with σ
28

 is FlgM (the anti-σ
28 

factor) in the cytoplasm, which makes σ
28

 

unavailable for transcription and destabilises the σ
28

-RNA polymerase holoenzyme 

(Sorensona et al. 2004). FliA and FlgM become a substrate for export when the hook-

basal body has been fully assembled (Aldridge et al. 2006). When S. Typhimurium σ
28

 

binds FlgM, the N-terminus of FlgM is exposed becoming a suitable substrate for the 

flagellar export apparatus (Aldridge et al. 2006). In the same model, FlgM is separated 

from σ
28

 as it is secreted out of the cell leaving σ
28

 in the cytosol (Aldridge et al. 2006).  

Therefore, a net decrease in FlgM results in the release of σ
28

, which is then free to 

activate transcription of genes.  

Variations in gene classes and mechanisms of regulation can be observed or the system 

may be notably different (fig. 1.7). For example, CtrA is the master regulator found in 

C. crescentus, which is a response regulator that also controls the cell cycle and is 

controlled by cell-cycle regulators (Collier et al. 2007). Many bacteria employ σ
54

 to 

transcribe Class III/IV genes, and in C. crescentus σ
54 

and the enhancer FlbD allows 

completion of the hook-basal body complex (fig. 2.4) (Collier et al. 2007). Some master 

regulators function as σ
54

 bacterial enhancers and some bacteria have no master 

regulator, such as FleQ in Pseudomonas aeruginosa and FlrA in Vibrio cholera (Jyot et 

al. 2002; Syed et al. 2009). In these organisms, motility genes are also expressed with 

virulence genes (Ghosh et al. 2006; Syed et al. 2009). The FleRS and FlrBC are two-

component regulators of P. aeruginosa and V. cholerae that initialise σ
54

-dependent 

transcription of late-phase basal body, hook proteins and σ
28

, which is required for Class 

IV flagellin and FlgM expression (fig. 1.7) (Dasgupta et al. 2003; Syed et al. 2009).  
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Figure 1.7 Systems for flagellar gene regulation in different bacteria.  

Master regulators, encoded by Class I genes, activate transcription of Class II genes. 

This leads to the transcription of alternative σ factors and important regulatory proteins 

that control expression of the next classes of genes. Regulation of Class III genes is 

dependent upon completion of the HBB. Some bacteria transcribe four classes of genes 

in order to complete the flagellum. Abbreviations: flagellar export apparatus (FEA), 

hook associated proteins (HAP), and hook-basal body (HBB). Taken from Smith and 

Hoover (Smith and Hoover 2009). 
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1.9.2 Flagellar regulation in C. jejuni  

C. jejuni flagellar genes are not organised into distinct operons, but gene regulation is 

still provided via temporal control of transcription in a three-tiered system (fig. 1.8). 

Early phase genes are dependent on σ
70

 for transcription, and include rpoN, fliA, flgM, 

flgRS and flhF (Hendrixson 2008). Components of the flagellar export apparatus are 

also expressed including flhA, flhB, fliP, fliR, fliO, fliQ and fliF, but these may be 

constitutively expressed (Hendrixson 2008); genetic analysis has revealed that many of 

those genes are grouped in regulons that are likely to be involved in growth and 

metabolism (Hendrixson 2008).  

Master regulators have not been ascertained for the Epsilon-Proteobacteria C. jejuni and 

H. pylori.  However, the FlgRS two-component system regulates the expression of σ
54

-

dependent genes, which then allows transcription of σ
28

-dependent genes in a similar 

manner to the P. aeruginosa/V. cholerae systems. The sensor kinase, FlgS, is thought to 

be soluble like FleS and FlrB (Wosten et al. 2004), but unlike the FleR and FlrC 

cognate response regulators, the FlgR response regulator for FlgS does not bind DNA 

and is thought to directly contact the σ
54

-RNA polymerase holoenzyme instead 

(Brahmachary et al. 2004; Hendrixson 2008). Unusually, both FlgS and FlgR are phase 

variable via deletion or insertion of a nucleotide within homopolymeric tracts, which 

results in a truncated non-functional protein (Hendrixson 2006).  

After completion of the flagella export apparatus, expression of σ
54

-dependent genes via 

FlgR activation results in completion of the basal body, assembly of rod and hook 

proteins, and σ
28

, FlgM, and FlaB expression (fig. 1.8) (Hendrixson 2008). The flagellar 

export apparatus has been suggested to be more than a flagellar protein secretion 

apparatus and could provide regulatory signals for flagellar biosynthesis. Mutations in 

flhB truncate flagella as a result of down-regulating flagellin expression (Matz et al. 

2002) and have been shown to form an incomplete export apparatus with decreased 

expression of σ
54

-dependent flagellar genes (Joslin and Hendrixson 2009). However, 

blocking or hindering protein secretion did not effect σ
54

-dependent flagellar gene 

expression (Joslin and Hendrixson 2009), which suggests the export apparatus is needed 

for or to directly provide the signal for FlgS autophosphorylation. It has recently been 

shown that FlgS interacts with FliF (MS ring) and FliG (rotor protein) and so these must 

provide the activating signal for FlgS (Boll and Hendrixson 2013). Either the 
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completion of the flagellar export apparatus marked by completion of the MS ring and 

rotor, which is sensed as a whole by FlgS, or FliF and FliG form a cytoplasmic domain 

that interacts with FlgS in the cytoplasm (Boll and Hendrixson 2013). Such regulatory 

check points may compensate for the requirement of a master regulator. 

FlhF is thought to interact with the export apparatus perhaps influencing its location or 

the number of flagella formed, or monitoring the order and increasing the efficiency of 

flagellar protein secretion (Balaban et al. 2009). FlhF acts as a GTPase that is needed 

for proper biosynthesis of flagella, as flhF mutants were shown to produce flagella in 

improper numbers and locations (Balaban, Joslin et al. 2009).  

In C. jejuni, transcription of σ
28

-dependent genes results in expression of FlaA and the 

elongation of the filament, but the anti-σ factor FlgM may function differently to the 

systems previously reviewed. C. jejuni FlgM was identified based on homology with H. 

pylori FlgM, which is smaller than that of other bacteria and has a degenerate N-

terminus that is usually required for secretion from the export apparatus (Rust et al. 

2009). Also, most H. pylori FlgM remains in the cytoplasm and is found to interact with 

FlhA in the basal body instead of σ
28

, possibly by a protein-transfer mechanism (Rust et 

al. 2009). Subsequently, C. jejuni FlgM was found to be secreted, but its association 

with σ
28

 was temperature dependent; σ
28

 and FlgM did not form a complex at 42°C 

(Wösten et al. 2010) meaning that σ
28

 would only be available for σ
28

-dependent 

transcription at that temperature. However, flagella are produced at lower temperatures 

and so other mechanisms must regulate σ
28

 also to allow gene expression. C. jejuni 

FlgM could not be shown to suppress FlaA/B production when hook formation was 

incomplete and was not secreted in a flgE mutant, meaning that a minimum flagellar 

structure was required for FlgM secretion (Wösten et al. 2010).  
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Figure 1.8 Transcriptional hierarchy of flagellar gene expression in C. jejuni.  

C. jejuni does not have a master regulator of flagellar assembly. Early-phase flagella 

genes are σ
70

-dependent including the flagella export apparatus, motor/switch proteins 

and FlgRS two-component system. The response regulator FlgR activates transcription 

of middle-phase genes in a σ
54

-dependent manner. Basal body and hook genes are 

expressed and assembled before a switch to σ
28

-dependent transcription after secretion 

of FlgM. Transcription of the major flagellin, FlaA, by σ
28

 results in elongation of the 

filament.  

 

1.10 Flagellar functions 

1.10.1 Motility  

Flagella are able to provide movement by propelling bacteria in different directions and 

are driven by a biological motor. The motor consists of the motor and rotor switch, 

which are embedded in the cytoplasmic membrane, and the stators, which provide 

energy for flagellar rotation and convert energy into torque (Minamino et al. 2008). The 

typical stator system comprises two transmembrane proteins MotA and MotB (four 

MotA and two MotB), which form ion channels and pump protons across the membrane 

(Minamino et al. 2008). These interact with FliG in the motor switch complex and 

result in rotation of the flagellum (Thormann and Paulick 2010). Variations of the Mot 

proteins exist in other bacteria each involving different subunits and substrates, 

including sodium ions used by Bacillus subtillus, Aeromonas hydrophila and 

Shewanella oneidensis (Thormann and Paulick 2010). 

C. jejuni contains MotA and MotB, but direct investigations on how these function have 

not been conducted (Lertsethtakarn et al. 2011). H. pylori MotB was crystalised, which 

revealed that MotB has binding domains for peptidoglycan, suggesting that stators are 
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anchored to the cell wall (Lertsethtakarn et al. 2011). It remains to be seen whether 

stators in other bacteria are anchored in the same way. Indeed the motor and flagellar 

basal bodies appear to differ visually between different bacteria, with Epsilon-

Proteobacteria, C. jejuni and H. hepaticus, displaying quite distinct basal body 

structures (Chen et al. 2011).  

1.10.2 Taxis 

Taxis, coupled with motility, allows cells to sense more favourable environments and 

move from toxins or towards epithelia, for example. Chemotaxis, best studied in E. coli, 

occurs through the phosphorylation of Che proteins. When chemoreceptors detect the 

chemoattractant, they are activated and the scaffold protein, CheW, links the receptors 

to the Che system. CheA is activated and phosphorylates the response regulator CheY 

(Wadhams and Armitage 2004). CheZ removes the phosphoryl group from CheY so 

that CheY can continue to be phosphorylated and respond to the environment 

(Wadhams and Armitage 2004). The result is that flagellar rotation is altered, which 

changes the movement of the cell and in bacteria with bidirectional flagella, the cell 

continuously switches between runs and tumbles with less tumbling leading to 

migration towards an attractant (Chevance and Hughes 2008). Continuous resetting of 

the system by methylation adaption gives a mechanism that can respond to chemical 

concentrations over time, which allows sensing of the environment and movement in 

the favoured direction (Baker et al. 2005).  

C. jejuni is attracted to fucose, aspartate, fumarate, formate and pyruvate 

(Lertsethtakarn et al. 2011). In addition to the above Che proteins, C. jejuni has unique 

accessory proteins, including the CheY phosphatases, CheZ and FliY (part of the motor 

switch) (Lertsethtakarn et al. 2011). Although CheZ is present in other bacteria, C. 

jejuni CheZ only shares the active site of these proteins (Lertsethtakarn and Ottemann 

2010). FliY is also present in other bacteria and studies in B. subtilis have shown that 

FliY binds and dephosphorylates CheY (Szurmant et al. 2004). However, C. jejuni FliY 

does not contain CheY binding motifs and fliY mutants are non-motile and so its 

functions have not been studied (Lertsethtakarn et al. 2011). Moreover, other bacteria 

usually have either FliY or FliN in combination with FliG and FliM as part of the motor 

switch, whereas C. jejuni contains both and the reason for this is unknown. C. jejuni 
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also has another Che coupling protein, CheV, which is thought to perform a similar 

function to CheW, but its function is not yet known (Lertsethtakarn et al. 2011). 

1.10.3 Biofilm formation 

Bacteria can form biofilms, which are communities of microorganisms attached to a 

surface and enveloped in an extracellular matrix. Bacteria are likely to be found living 

in biofilms, rather than as planktonic cells, as biofilms aid survival and persistence 

(O’Toole et al. 2000). Biofilms contribute to bacterial pathogenesis as bacteria in 

biofilms are more resistant to host defences and antibiotics (O'Toole and Kolter 1998; 

Fux et al. 2005; Yildiz and Visick 2009). Flagella have roles in biofilm formation, for 

example aflagellate Vibrio and Pseudomonas species do not form biofilms (O'Toole and 

Kolter 1998; Yildiz and Visick 2009). In particular, flagella are important in the initial 

stages of biofilm formation enhancing movement along a surface and promoting 

attachment to surfaces to form microcolonies (O’Toole et al. 2000). Once bacteria are 

part of the biofilm they lose flagella, but continue to multiply and a mature biofilm may 

have bacteria that have regained flagella in order to leave the biofilm (Guttenplan and 

Kearns 2013). Thus, flagellated bacteria are required for the formation and spread of 

new biofilms, maintaining survival of a bacterial population.  

Flagella and motility are required for C. jejuni biofilm formation, but defects in flagella 

do not completely abolish biofilm formation (Kalmokoff et al. 2006; Reeser et al. 2007; 

Reuter et al. 2010). Flagella may enhance cell-cell interactions and other properties, 

such as flagellar protein secretion and interaction of flagellar glycoproteins, which then 

contribute to biofilm formation (Reeser et al. 2007). Biofilms do indeed increase the 

survival of C. jejuni in high oxygen, low nutrient environments and at lower 

temperatures and C. jejuni cells in biofilms may enter a viable but non-culturable state 

to endure stress inducing conditions (Reeser et al. 2007; Reuter et al. 2010). C. jejuni 

biofilms may have an important role in the persistence of C. jejuni in a food setting, as 

the presence of bacterial and C. jejuni autoinducer, which is involved in quorum 

sensing, was reported in a variety of food matrices (Murphy et al. 2006).  

1.10.4 Colonisation and invasion 

Flagellar dependent motility is required to bring bacteria in contact with host cells 

(Harshey 2003). However, bacteria have a range of adhesins and macromolecular 
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structures that interact with host cells, including pili and secretion systems. Although, 

flagella are not considered as part of this group it may be that C. jejuni flagella act as 

adhesins, but distinguishing their roles in adherence from those in motility has not been 

possible. In addition, C. jejuni flagella secrete effector proteins to enhance colonisation 

of and survival in host cells (Konkel et al. 1999), and so flagella are directly involved in 

colonisation and invasion performing the role of a type III secretion system. Type III 

secretion systems are common structures used by bacteria to interact with and deliver 

effector proteins into host cells to aid invasion and survival, and are evolutionary related 

to flagella (Blocker et al. 2003).  

(i) Flagella as an adhesin and invasion determinant 

Evidence from the early motility studies showed that centrifugation of strains onto the 

cell monolayer improved invasion, suggesting that flagella provide motility, rather than 

adhesion properties (Newell et al. 1985; Nachamkin et al. 1993; Wassenaar et al. 1993). 

Moreover, flagella did not act as adhesins when sheared and added to bacterial 

suspensions (Wassenaar et al. 1993) and C. jejuni with or without flagella showed 

similar levels of adherence to cell monolayers after centrifugation, although invasion by 

flagellated C. jejuni was higher than aflagellate bacteria (Grant et al. 1993). C. jejuni 

were also still invasive when flagella were coated in antibodies, indicating that other 

adhesins and invasion determinants must contribute to adherence and invasion (Konkel 

and Joens 1989).  

In contrast to these studies, C. jejuni with paralysed flagella (pflA mutants) have been 

shown to adhere to host cells, and it was suggested that flagella may primarily mediate 

C. jejuni attachment with the flagella tips and then pseudopods are extended to envelop 

the bacterium (Konkel et al. 1992; Yao et al. 1994). In vivo, a poorly motile C. jejuni 

variant expressing both flaA and flaB colonised chicks in high numbers, suggesting that 

flagella do act as an adhesin regardless of a lack of motility (Wassenaar et al. 1993). 

Moreover, C. jejuni expressing flaB, but not flaA showed at least 100 fold reduced 

colonisation compared to the wild-type, whereas C. jejuni expressing flaA, but not flaB 

were as invasive as wild-type (Wassenaar et al. 1993). Therefore, FlaA is implicated as 

a factor for adhesion and host colonisation, but it remains difficult to know whether 

flagella are important for motility alone or if they are adhesins in their own right. 
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Nevertheless, flagella are important virulence factors for C. jejuni, especially due to the 

ability to secrete non-flagellar proteins, as described below. 

(ii) C. jejuni secreted proteins 

C. jejuni flagella function as a secretion apparatus for non-flagellar proteins and these 

are important for virulence. At least eight secreted proteins have been described and 

were only secreted in the presence of epithelial cells or under certain nutrient-limited 

conditions, such as serum-free or exhausted media (Friis et al. 2007). It may be that Cia 

expression is triggered on entry into the small intestine, as deoxycholate was found to 

stimulate Cia protein synthesis (Rivera-Amill and Konkel 1999). Two of these proteins, 

CiaB (cj0914c) and CiaC (cj1242) require a minimum flagellar structure for secretion 

and are needed for human intestinal epithelial cell invasion and colonisation of chickens 

and pigs (Konkel et al. 1999; Konkel et al. 2004; Neal-McKinney and Konkel 2012). In 

contrast, CiaI (cj1450), has a type III secretion motif, but does not contribute to C. 

jejuni adherence to or invasion of host cells, but CiaI is required for C. jejuni 

intracellular survival and remodels the Campylobacter containing vacuole (Buelow et 

al. 2011). The processes and mechanisms in which Cia proteins are delivered into cells 

by flagella are still unknown. However, flagellar proteins have not been found to be 

delivered into host cells, which suggests the mechanism is specific for Cia protein 

delivery (Neal-McKinney and Konkel 2012).  

C. jejuni also secretes other non-flagellar proteins, including FlaC (cj0720c) and FspA 

(cj0859c), which are only secreted if the basal body and hook have been formed (Song 

et al. 2004). Purified FlaC binds to host cells and C. jejuni flaC mutants are decreased 

for epithelial cell invasion (Song et al. 2004). FspA is found in different forms in 

different strains of C. jejuni and FspA from strain CG8486, a clinical isolate from 

Thailand, bound to and caused apoptosis of eukaryotic cells, but FspA from 81-176 did 

not cause apoptosis (Poly et al. 2007). Other virulent strains of C. jejuni may contain 

both forms of the protein and so regulation of this protein has important implications for 

clinical disease (Poly et al. 2007). Secreted proteins could potentially be used as vaccine 

adjuvants as they also elicit host immune responses and patents for the use of non-

flagellar secreted proteins and polypeptides have been filed (Guerry-Kopecko and Baqar 

2008). 
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Section 3 Summary and research aims 

1.11 Summary 

C. jejuni is an important foodborne pathogen that places a large economic burden on 

developed countries and can cause unpleasant and sometimes life threatening sequelae. 

C. jejuni adapts to survive in many different environments, despite being a fastidious 

organism, and has virulence determinants that contribute to causing disease in humans. 

Flagella are important for C. jejuni virulence and flagellar structure differs from most 

bacteria with divergent major flagellin subunits and with extra proteins that are required 

for motility. Flagellar expression also differs as it does not require control by a master 

regulator and C. jejuni flagella have secretory functions that are unique. Despite its 

ability to adapt to various conditions and express many survival and virulence 

mechanisms, C. jejuni has a small genome and gene expression is regulated by mainly 

protein transcriptional regulators including the three σ factors, and by genetic 

rearrangements.    

Questions still remain, such as what are the mechanisms that allow C. jejuni to persist in 

varied and stressful environments, and knowledge gained may be directly applied to 

implementing cost effective measures to reduce C. jejuni in a variety of food matrices 

and livestock. A reduction of C. jejuni in the food chain would translate into reduced 

prevalence of C. jejuni foodborne outbreaks. 

In addition, it is known that C. jejuni has virulence factors and that they contribute to 

specific aspects of host infection, but how they work to together to cause disease in 

humans and why disease is not seen in poultry is unclear. A factor crucial for C. jejuni 

virulence is flagella-dependent motility, but the exact regulation in different 

environments and what signals triggers flagella expression is unknown. 

There is a lack of standardised in vitro experiments and limited availability of in vivo 

models generally. New techniques and cell lines mean that physiologically relevant 

model systems can now be exploited and shared by the community. As recent in vivo 

models become more established, they will be important tools in evaluating C. jejuni 

host-interactions. 

A continuing conundrum is that C. jejuni has a small genome, but is still able to regulate 

the expression of many proteins and adapt to many environments. Two of the three σ 



Introduction   Chapter 1 

 

52 

 

factors are dedicated to flagella expression and associated functions, so how does C. 

jejuni regulate gene expression when different conditions are met? To illustrate, C. 

jejuni lacks RpoS (σ
38

), which activates genes for a general stress response and responds 

to many stressors in E. coli (Hengge 2008). It may be that proteins have evolved to 

perform more functions to cope with genome reductions (Kelkar and Ochman 2013), or 

that small molecules (Gaynor et al. 2005) and regulatory RNAs may be significant 

genome regulators in C. jejuni (Dugar et al. 2013; Porcelli et al. 2013). Studies focussed 

on regulation or expression of specific systems, will ultimately lead to advances in our 

overall knowledge of genome regulation in C. jejuni.  

 

1.12 Aims 

The overall aim of this research was to understand flagellar regulation and how it 

contributes to the pathogenicity of C. jejuni infection.  

• The first aim was to understand C. jejuni responses to acidic pH and how flagellar 

regulation and function is affected, as acidic environments are encountered by C. 

jejuni during stomach passage and need to be overcome before causing human 

disease or colonising the avian intestine.  

• The second aim was to elucidate the role of small non-coding RNAs in regulating 

flagellar gene expression and C. jejuni virulence. Knowledge about prokaryotic non-

coding RNAs, generally, is rapidly expanding, but is still in the early stages of C. 

jejuni research. 

Understanding C. jejuni flagellar regulation is important because flagella are crucial 

virulence determinants, but the regulation of this complex and tightly regulated 

organelle is not fully understood. Furthering knowledge in these areas will enhance our 

understanding of C. jejuni virulence and may create opportunities for interventions 

preventing C. jejuni infections.  
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2.1 Bacterial strains and growth conditions 

C. jejuni strains were cultured in a MACS-MG-1000 controlled atmosphere cabinet 

(Don Whitley Scientific) under microaerobic conditions (85% N2, 5% O2, 10% CO2) at 

37°C. For growth on plates, strains were either grown on 1.5% agar plates with Brucella 

medium, blood medium, or Skirrow medium. Recipes are listed in 2.2.1. 

For broth culture, C. jejuni single use glycerol stocks were plated on Skirrow agar for 

16 h, prior to growth in Brucella broth. Bacteria were recovered in 2 ml pre-warmed 

Brucella broth and the bacterial suspension was used to inoculate fresh broth at 1:1000 

dilution. Cultures were incubated under the above conditions with shaking at 200 rpm 

for 16 h to form starter cultures for further experiments.  

Where appropriate, media were supplemented with 50 µg ml
-1

 kanamycin, 15 µg ml
-1

 

chloramphenicol and/or Skirrow antibiotics (10 µg ml
-1

 vancomycin, 5 µg ml
-1

 

trimethoprim, 2.5 IU polymyxin-B). 

Escherichia coli strains were cultured in Luria-Bertani (LB) medium at 37°C, with broth 

cultures shaken at 200 rpm. Where appropriate, media were supplemented with 30 µg 

ml
-1

 kanamycin, 15 µg ml
-1

 chloramphenicol and/or 100 µg ml
-1

 carbenicillin.  

 

2.2 Media 

All media were prepared by adding ingredients to 1 litre of water and autoclaving at 69 

KPa for 20 minutes. For plates, 1.5% agar (Difco) was added. Antibiotics, dyes or X-gal 

were added aseptically after autoclaving when necessary. 

 

2.2.1 LB Medium  

• 10 g BactoTM tryptone (Difco Laboratories)  

• 5 g BactoTM yeast extract (Difco Laboratories)  

• 10 g NaCl  
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2.2.2 SOC 

• Tryptone 2.0 g  

• Yeast extract 0.5 g  

• Glucose (2M) 1.0 ml 

• MgCl2 (1M) 0.5 ml 

• MgSO4 (1M) 0.5 ml  

• NaCl (1M) 1.0 ml  

• KCl (1M) 0.25 ml  

• Sterile distilled water to 100 ml 

2.2.3 Brucella Medium  

• 10 g BactoTM Pancreatic digest of casein (Difco Laboratories)  

• 10 g BactoTM Peptic digest of Animal Tissue (Difco Laboratories)  

• 1 g Dextrose 

• 5 g Yeast extract  

• 5g NaCl  

• 0.1g Sodium bisulfite  

2.2.4 Skirrow Medium (recipe from Blood agar base No.2, Oxoid)  

• 15 g Proteose peptone  

• 2.5 g Liver Digest  

• 5.0 g Yeast Extract  

• 5.0 g NaCl  

Campylobacter selective supplement (Oxoid, final concentration Vancomycin 0.1 mg 

ml
-1

, Trimethoprim 50 µg ml
-1

, Polmyxin B2 500 IU L
-1

) was added after autoclaving.  
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2.2.5 Blood medium 

• 15 g Proteose peptone  

• 2.5 g Liver Digest  

• 1% Yeast Extract  

• 5.0 g NaCl  

• 5% Horse Blood Oxalated (Oxoid) 

2.2.6 Antibiotics, dye and X-gal used in media  

• Antibiotics and triphenyl tetrazolium chloride dye were made to concentrated 

solution in water or 50% ethanol and filter sterilised (0.2 µM Sartorius Stedim 

Biotech) then added to autoclaved media. 

• X-gal (bromo-chloro-indolyl-galactopyranoside) was made into solution (1:10 w/v) 

with dimethyl formamide and then added to autoclaved media.  

 

 

2.3 Glycerol stocks 

To make main glycerol stocks, bacteria were cultured for 16 h in 15 ml Brucella 

supplemented with the appropriate antibiotics. Cells were precipitated by centrifugation 

(3, 200 x g) and then resuspended in 20% sterile glycerol in Brucella. Stocks were kept 

at -80°C. 

For routine experiments, single use glycerol stocks were prepared from the main stocks. 

Cells were scraped from the main glycerol stock with a loop, spread on blood plates for 

48 h and subcultured on Skirrow plates for 48 h. Cells were recovered in 2 ml Brucella 

and frozen in 50 µl aliquots at -80°C. 

 

2.4 Nucleic acid manipulations 

2.4.1 C. jejuni mutations 

Motile C. jejuni NCTC11168 was used to make all mutant strains. Digestion reactions, 

primers, and PCR reactions and protocols are listed in tables 2.1, 2.2 and 2.3, 

respectively. 
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(i) Gene deletions and inactivations 

To make gene deletions and inactivations, antibiotic cassettes were used to replace 

complete genes or to disrupt the gene on the C. jejuni chromosome. The mutation 

constructs were made in suicide vectors and positive insertions were selected from E. 

coli transformants, which were then sequence checked before being used to transform 

C. jejuni by electroporation. 

Kanamycin (kan
R
) and chloramphenicol (chlor

R
) antibiotic cassettes were amplified 

with primers containing BamHI ends, gel purified, digested with BamHI and PCR 

purified (Qiagen kit). 

The NC1 and NC4 deletion shuttle plasmids were constructed by Bruce Pearson. For 

the NC1 and NC4 deletions the flanking regions of the genes were amplified with a tag 

containing a BamHI restriction site. The fragments were joined by an overlap PCR and 

the joined fragment was purified and ligated to pGEM-T easy. Antibiotic cassettes with 

BamHI sticky ends were ligated in between the flanking regions contained on pGEM-T 

easy. A C. jejuni double NC1/NC4 deficient mutant was made by replacing NC4 with 

chlor
R
 in a previously made C. jejuni NC1::kan

R
 mutant. 

For cj0428 and cj1650 disruptions, the whole gene including the flanking regions was 

amplified using primers tagged with sequences containing restriction sites for EcoRI 

and PstI (for cj0428 and cj1650). The fragments were gel purified, digested, PCR 

purified and ligated into pGEM-T easy. An inverse PCR was performed amplifying the 

gene flanking regions with pGEM-T easy backbone with BamHI restriction sites, but 

without the majority of the gene. The inverse PCR was PCR purified (Qiagen) and 

antibiotic cassettes with BamHI sticky ends were ligated to the inverse PCR product.   

The flaAB deletion suicide plasmid was constructed by Duncan Gaskin. The flaAB 

disruptions were made by amplifying the flanking regions with tags on the 3’ end of the 

‘front’ flank and on the 5’ end of the ‘reverse’ flank. The kanamycin cassette was 

amplified with complimentary tags and all fragments were joined together using overlap 

PCR. The fragment PCR purified and was blunt-end ligated into pUC19.   

(ii) Gene over-expression 

Suicide plasmids were constructed and expressed in E. coli and positives were identified 

by colony PCR, isolated and sequences checked before being used to transform C. 
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jejuni. To over-express genes, the genes were amplified with primers with tags 

containing BsmBI restriction sites. The fragments were PCR purified and digested with 

BsmBI. The fragments were gel purified and ligated into suicide plasmids digested with 

BsmBI. The plasmids were designed by Duncan Gaskin to homologously recombine the 

desired insertion constructs into a pseudogene region; either the cj0046 (pC46 with 

chlor
R
) or cj0223 (pK223 with kan

R
) region (plasmid maps and sequence are in 

Appendix 1). Variations of the shuttle vectors have been made, which contain 

promoters with different expression levels: metK (low expression), fdxA (moderate 

expression), porA (high expression). The BsmBI site is situated downstream of the 

promoter and upstream of an antibiotic cassette. 

The NC1 and NC4 over-expression strains were made by synthesising each of the genes 

with either their native, metK or fdxA promoter in a plasmid with NcoI restriction sites 

in between (GeneArt). The plasmid was digested with NcoI, and fragments were DyeEx 

cleaned (Qiagen) and ligated into pC46 (no promoter). The desired inserts were 

identified by sequencing. 

2.4.2 Translational control plasmids 

Digestion reactions, primers, and PCR reactions and protocols are listed in tables 2.1, 

2.2 and 2.3, respectively.  

NC1 and NC4 translational control of their predicted targets was studied using green 

fluorescent protein (GFP) reporter plasmids, kindly provided by Jörg Vogel and 

colleagues, which are described by Urban and Vogel (Urban and Vogel 2007). The 

reporter plasmid containing the 5’ untranslated region (5’UTR) of a predicted target 

fused to gfp+ was constructed as follows. Complimentary oligonucleotides of the 

5’UTR of a target gene, including 10-15 codons, was synthesised with a 5’ NheI 

restriction site and a 3’ Mph11031 site (MWG Eurofins). Oligonucleotides were 

annealed in equal volumes and 2 µl of each 5’UTR insert was mixed with 20 µl pXG-10 

(30-70 ng) and digested with NheI and Mph11031. The digest was DyeEx (Qiagen) 

cleaned and 10 µl was used in a ligation reaction. E. coli were transformed using 1.5 µl 

of the ligation reaction and chloramphenicol resistant transformants were selected for 

plasmid purification.  
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The NC1 or NC4 containing plasmids were constructed as follows. A fragment was 

amplified from pZE12-luc and digested by XbaI to create a pZE12 working fragment. 

NC1 and NC4 complimentary oligonucleotides were synthesised with a 3’ XbaI 

restriction site (MWG Eurofins). These were annealed in equal volumes and 2 µl of 

each was added to a ligation reaction with 8 µl pZE12 working fragment with the 

addition of 1 µl polynucleotide kinase (NEB). NEB 5’ alpha F’lacI
q
 competent cells E. 

coli were transformed using 1 µl of the ligation and carbenicillin resistant transformants 

were selected for plasmid purification.  

Top10 E. coli were then co-transformed with different combinations of reporter and 

ncRNA containing plasmids. To measure the extent of translational control, the 

fluorescence of co-transformed E. coli was compared to E. coli containing the reporter 

vector alone. Plasmid pJV300 containing a nonsense ncRNA was used as a negative 

control, which does not regulate gfp+ expression (Urban and Vogel 2007).  

2.4.3 Ligations 

Routine ligations reactions used 1 µl T4 ligase (NEB), 2 µl 10 x T4 ligase buffer, 2 µl 

plasmid, 8 µl (unless specified differently elsewhere) of cleaned, digested DNA to be 

inserted and 7 µl water was incubated for 1 h at 20°C or 16 h at 4°C. Ligation reactions 

were directly used in E. coli transformations. 

Ligation into pGEM-T easy (Promega) was performed using  1 µl T4 ligase (Promega), 

5 µl 2 x Rapid Ligation Buffer, 1 µl pGEM-T easy (50 ng) and a variable volume of 

insert; the reaction was made up to a final volume of 10 µl with water. 

2.4.4 Sequencing  

Purified plasmids (50-100 ng) or PCR products (5 ng) and primers (10 mM) were sent 

to MWG Eurofins for sequencing. Sequences were assembled using Lasergene Seqman 

Pro (DNASTAR) and were compared to expected in silico constructed sequences made 

using pDraw (Acaclone). 

2.4.5 Transformations 

(i) Preparation of chemically competent E. coli cells  

Chemically competent E. coli were produced using the calcium chloride method. A 50 

µl aliquot of an overnight culture of E. coli was inoculated into 5 ml LB broth and 
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grown at 37°C until the OD600nm reached 0.6. The cells were then centrifuged at 3,220 x 

g for 10 min, the supernatant removed, the pellet resuspended in 1 ml 0.1 M CaCl2 and 

left on ice for 30 min. The cells were then washed twice in 0.1 M CaCl2 and left on ice 

for 1 h after the final wash. Finally, the cell suspension was dispensed into 100 µl 

aliquots, snap frozen on dye ice and stored at -80°C until required. 

(ii) E. coli transformation 

E. coli Top10 chemically competent cells (Invitrogen) were transformed unless 

specified elsewhere. Vials were thawed on ice after which DNA was added and 

incubated for 20 min on ice. Cells were then heat shock at 42°C for 45 sec and then 

incubated on ice for 2 min. For recovery, 300 µl SOC medium was added and the cell 

suspension was incubated for 60 min at 37°C with 200 rpm shaking. The cell suspension 

(50 and 200 µl) was plated on LB agar with antibiotics and X-GAL where appropriate.  

(iii) Preparation and transformation of C. jejuni 

C. jejuni, from glycerol stocks, were grown on Skirrow plates for 16 h. Lawns of C. 

jejuni were recovered in 2 ml Brucella broth and the cell suspension was centrifuged at 

9,200 x g for 3 min. The cells were resuspended in 1 ml Campylobacter transformation 

buffer (CTB, 272 mM sucrose and 15% glycerol in demineralised water) and 

centrifuged as above. A further two washes with CTB were applied. After the final 

wash, the cells were resuspended in 500 µl CTB and pooled if appropriate. Plasmid 

DNA (< 1 µg) was added to 100 µl of cell suspension in pre-cooled electroporation 

cuvettes and electroporated at 2.5 kV, 200 Ω, 25 µF (BioRad). Brucella broth, 200 µl, 

was added to the cuvettes and then the mix was plated onto blood agar plates to recover 

in microaerobic conditions at 37°C for 5 h. Lawns were recovered in 800 µl pre-warmed 

Brucella broth and plated onto Brucella agar plates with the appropriate antibiotics. 

Plates were incubated in microaerobic conditions. Genomic DNA was isolated from 

transformants and PCR was used to identify successful disruptions or insertions. 

 

Table 2.1 DNA digestions 

Enzymes Digest reagents  Incubation  

BamHI 10 µl Plasmid (0.5-1.0 µg) 37°C, 2 h 
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(NEB) 60 units enzyme  

 5 µl 10 x Buffer III 

Water to final volume 50 µl 

 

 

 

BsmBI 

(Thermo 

Scientific) 

10 µl pC46 (and antibiotic variants) 

2 µl enzyme  

5 µl 10 x Buffer Tango 

1 µl 50 mM DTT 

Water to final volume 50 µl 

37°C, 1h then add 

further 1 µl 

BsmBI and 

incubate  further 1 

h 

Double PstI-HF, 

EcoRI-HF (NEB) 

 

10 µl pUC19 (~0.5 µg) / purified PCR 

60 units EcoRI-HF and SacI-HF 

5 µl 10 x Buffer IV 

5 µl 10 mg ml
-1

 BSA 

Water to final volume 50 µl 

37°C, 2 h 

 

NcoI-HF (NEB) 

 

10 µl plasmid (0.5 µg) 

60 units enzyme  

 5 µl 10 x Buffer IV 

Water to final volume 50 µl 

37°C, 2 h 

 

pXG10 with 

NheI, Mph11031  

(Thermo 

Scientific) 

10 µl pXG10 (~70 ng) 

2 µl each annealed oligonucleotide 

6 µl 10 x Buffer Tango 

40 units NheI  

20 units Mph11031  

Water to final volume 60 µl 

37°C, 16 h 
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pZE12-luc PCR 

with XbaI  

(Roche) 

10 µl PCR (0.5-1.0 µg) 

30 units enzyme 

 5 µl 10 x Buffer A 

Water to final volume 50 µl 

37°C, 2 h 
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Table 2.2 Polymerase chain reactions.  

Performed using a Multigene OptiMax Thermal Cycler (Labnet International). 

PCR type Reagents Protocol 

40 cycle 

 

25 µl Hotstartaq  master mix (Qiagen) 

0.5 µl each primer* 

0.5 µl DNA template < 1 µg 

RNAse free water to final volume 50 µl 

Initial: 95°C 15 min; 

40 cycle: 94°C 1 min, 50°C 

1 min, 72°C 2 min; 

Final extension: 72°C, 10 

min. 

Amplification 

 

10 µl 5 x HF Buffer (NEB) 

0.5 µl Phusion DNA polymerase (NEB) 

0.5 µl DNA template (< 1 µg) 

0.5 µl each primer 

1 µl 10 mM dNTP (Invitrogen) 

Water to final volume 50 µl 

Initial: 98°C 1 min; 

30 cycle: 98°C 20 sec, 50°C 

30 sec, 72°C 30 sec per 

kilobase; 

Final extension: 72°C, 10 

min. 

Check 

 

10 µl Hotstartaq  master mix (Qiagen) 

0.5 µl each primer 

0.5 µl DNA template < 1 µg 

Water to final volume 20 µl 

Initial: 95°C 15 min; 

30 cycle: 94°C 1 min, 50°C 

1 min, 72°C 2 min; 

Final extension: 72°C, 10 

min. 

Colony # 10 µl Hotstartaq  master mix (Qiagen) 

0.5 µl each primer 

Variable bacterial cells 

Water to final volume 20 µl 

Initial: 95°C 15 min; 

30 cycle: 94°C 1 min, 50°C 

1 min, 72°C 2 min; 

Final extension: 72°C, 10 

min. 

Overlap 

 

10 µl 5 x HF Buffer (NEB) 

0.5 µl Phusion DNA polymerase (NEB) 

0.5 µl each fragment (~40 ng) 

0.5 µl each primer 

1 µl 10 mM dNTP (Invitrogen) 

Water to final volume 50 µl 

Initial: 98°C 1 min; 

30 cycle: 98°C 20 sec, 50°C 

30 sec, 72°C 30 sec per 

kilobase; 

Final extension: 72°C, 10 

min. 

* Primer working concentration is 10 mM. 

# Colony: E. coli cells picked with yellow tip and used to inoculate PCR reaction. C. 

jejuni were pick with yellow tip and suspended in 100 µl water, boiled 5 min 95°C and 

1 µl was added to PCR reaction. 

 



Materials and Methods   Chapter 2 

 

64 

 

Table 2.3 Primers. 

Nucleotides in blue are tags containing restriction sites. 

Gene 

deletion 

Primer name Primer Sequence (5' - 3') 

chlor cat for BamHI GTTTTGGATCCAAGGATATGACTATCTACTG 

 cat rev BamHI GTTTTGGATCCACTCTTCATGTCGATTGATG 

cj0428  cj0428 KOF 

EcoRI 

GTTTTGAATTCAATACAGCGCAGGT 

 cj0428 KOR 

PstI 

GTTTTCTGCAGTGATTTCAATCAAATTGTAG 

 cj0428 BamHI 

Rev inv 

CTAGGGATCCATCTCCGCTTGACTTCTCAT 

 cj0428 BamHI 

Fwd inv 

CTAGGGATCCAGTGCTAGCGTTCATAATGA 

 cj0428 F check TGGTAAGCTTACGGATTTTCGT 

 cj0428 R check AGCCGTTCATTTTGTCTATGCT 

cj1650  cj01650 KOF 

EcoRI 

GTTTTGAATTCCTTACTTTCTTCAACAAG 

 cj1650 KOR 

PstI 

GTTTTCTGCAGGAAATTCTTTCTATGATATG 

 cj1650 

BamHIRinv  

CTAGGGATCCTGCTCCTATAAAATCATTTGCA 

 cj1650 

BamHIFinv  

CTAGGGATCCATTACCATGGGCGAAACTAT 

 cj1650 F check TGCACCTTTGTATTTAAACTCA 

 cj1650 R check TGCATAGAGCCTATGATATG 

kan kan for BamHI GTTTTGGATCCTATTGACAATACTGATAAGA 

 kan rev BamHI GTTTTGGATCCCTAGGTACTAAAACAATTCA 
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NC1 NC1oligo1 F GATGGTTTTAGTGTAGATAC 

 NC1oligo2 R  GACGCGGATCCGCGTTGGCGCGCCA 

TATCGGTTTAAATCTTATC 

 NC1oligo3 F  GGCGCGCCAACGCGGATCCGCGTCA 

TAAATCTTTTAAAGCTTC 

 NC1oligo4 R GGAATGAGTTTTGAAAGCAC 

 NC1 F check TAATTATCTCTTAGGCTTAG 

 NC1 R check GGTAAAATTCCTATAGATTG 

NC4 NC4oligo1 F  ATTTAATCTTGCGTCCTATG 

 NC4oligo2 R  GACGCGGATCCGCGTTGGCGCGCCA 

ATTCAAATACTATATCGCTTG 

 NC4oligo3 F  GGCGCGCCAACGCGGATCCGCGTCA 

AGGCTTTTTTTATTTTAATCC 

 NC4oligo4 R  TTGATCCAAAACTAGAAAGT 

 NC4 F check TATGAGTCAAAGAAGTGATG 

 NC4 R check AAGTGGTGTTTTTGGAGTAG 
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Table 2.4 Translational control oligonucleotides and primers.  

Nucleotides in: red are of the 5’ untranslated region; black are codons; and in blue are 

sticky ends for ligation. 

Gene  Oligo Sequence (5’ – 3’) # aa 

Cj0428 
428 UTR 

ATG F 
GCATATTTTGAAAGGAGAAAACTATGG 1 

 
428 UTR 

ATG R 
CTAGCCATAGTTTTCTCCTTTCAAAATATGCTGCA  

Cj0428 
428 UTR 

long F 6 

GCATATTTTGAAAGGAGAAAACTATGCAGGTAAATTAT

AGAG 
6 

 
428 UTR 

long R 6 

CTAGCTCTATAATTTACCTGCATAGTTTTCTCCTTTCA

AAATATGCTGCA 
 

Cj0428 
428 UTR 

long F 

GCATATTTTGAAAGGAGAAAACTATGCAGGTAAATTAT

AGAACGATTAGCTCGTATGAAG 
12 

 
428 UTR 

long R 

CTAGCTTCATACGAGCTAATCGTTCTATAATTTACCTG

CATAGTTTTCTCCTTTCAAAATATGCTGCA 
 

Cj0428 
428 UTR 

long F 20 

GCATATTTTGAAAGGAGAAAACTATGCAGGTAAATTAT

AGAACGATTAGCTCGTATGAATACGATGCTATTAGTGG

TCAGTATG 

20 

 
428 UTR 

long R 20 

CTAGCATACTGACCACTAATAGCATCGTATTCATACGA

GCTAATCGTTCTATAATTTACCTGCATAGTTTTCTCCT

TTCAAAATATGCTGCA 

 

Cj0582 
LysC 

UTR F 

CTTGAGATTTAAGGAACAATATTGTGGAAAACGAGAAA

AATTATAGACCAAATGTTGCAG 
15 

 
LysC 

UTR R 

CTGCAACATTTGGTCTATAATTTTTCTCGTTTTCCACA

ATATTGTTCCTTAAATCTCAAGTGCA 
 

Cj1026c 
FlgP UTR 

long R 

CTAGCTCCTGCTATTGCTAGCATAAAATAAATTTTTTT

CATTTTTACACCTTCAAAATATTGTAATTTGCA 

12 

 
FlgP UTR 

long R 

CTAGCTCCTGCTATTGCTAGCATAAAATAAATTTTTTT

CATTTTTACACCTTCAAAATATTGTAATTTGCA 
 

Cj1026c 
FlgP UTR 

ATG F 
AATTACAATATTTTGAAGGTGTAAAAATGG 1 

 
FlgP UTR 

ATG R 
CTAGCCATTTTTACACCTTCAAAATATTGTAATTTGCA  
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Cj1338c 
FlaB UTR 

ATG F 
CGATGCAATATTTTGAAAGGATTTAAAATGG 1 

 
FlaB UTR 

ATG R 

CTAGCCATTTTAAATCCTTTCAAAATATTGCATCGTGC

A 
 

Cj1729c 

FlgE2 

UTR long 

F 

ATAAACGCAAAAGTTTTTTAAAGCCAAAGCGTTAAATT

TTTT 

AAAGCAATATTTTATAAAGGATTTAAGATGATGAGATC

ACTTTGGTCTGGCGTAAGCGGACTAG 

12 

 

FlgE2 

UTR long 

R 

CTAGCTAGTCCGCTTACGCCAGACCAAAGTGATCTCAT

CATCTTAAATCCTTTATAAAATATTGCTTTAAAAAATT

TAACGCTTTGGCTTTAAAAAACTTTTGCGTTTATTGCA 

 

Cj1650 
1650 UTR 

long F 

AGCAATATTTTTGAAAGGTAAACAATGAAAAGTGATTT

AGATATATTTAAAAAACACTTAG 
12 

 
1650 UTR 

long R 

CTAGCTAAGTGTTTTTTAAATATATCTAAATCACTTTT

CATTGTTTACCTTTCAAAAATATTGCTTGCA 
 

NC1  
NC1 Fwd 

oligo 

AAATCTTTTCAAAATATTGCAATTTGCCCATTTTTGGG

CATCTTTT 
n/a 

 
NC1 Rev 

oligo 

CTAGAAAAGATGCCCAAAAATGGGCAAATTGCAATATT

TTGAAAAGATTT 
 

NC4 
NC4 Fwd 

oligo 

GAATCTTTTCAAAATATTGCAATCAAGCCCATGAAAAT

GGGCTTTTTT 
n/a 

 
NC4 Rev 

oligo 

CTAGAAAAAAGCCCATTTTCATGGGCTTGATTGCAATA

TTTTGAAAAGATTC 
 

pXG10 
pXG-10 F 

check 
ACGGTCTGGTTATAGGTACA n/a 

pXG10 
pXG-10 R 

check 
CATGCCGTTTCATATGATCC  

pZE12-

luc 
PLlacOB CGCACTGACCGAATTCATTAAAG n/a 

pZE12-

luc 
PLlacOD GTGCTCAGTATCTTGTTATCCGCTCA  

Oligo – Oligonucleotide 

# aa – number of codons included in fusion 
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2.5 DNA purification 

DNA was purified for downstream applications and was stored at -20°C as necessary. 

2.5.1 PCR purification 

A QIAquick PCR Purification Kit (Qiagen) was used according to the manufacturer’s 

instructions to clean DNA. Buffer PB (5 volumes) was added to 1 volume of PCR 

product, mixed by pipetting and added to a QIAquick spin column in a 2 ml collection 

tube. The spin column was centrifuged for 1 min (20,000 x g), the flow-through 

discarded and the column washed with 750 µl buffer PE. The column was then 

centrifuged for an additional 3 min, to remove all traces of wash buffer, and placed into 

a clean 1.5 ml micro centrifuge tube. DNA was eluted in 50 µl buffer EB and DNA 

yield and quality was checked using a Nanodrop spectrophotometer (Thermo Scientific) 

or by agarose gel electrophoresis. 

2.5.2 DNA extraction from agarose gels 

DNA was separated on 0.8% agarose gels and the desired band was excised from the gel 

using a clean scalpel blade. Three volumes of buffer QG relative to the mass of the 

excised band were added. The band was then incubated at 50°C for 10 min. Once 

dissolved, 1 volume of isopropanol was added, mixed by pipetting and the sample 

added to a QIAquick spin column in a 2 ml collection tube. The spin column was 

centrifuged (20,000 x g) for 1 min, the flow-through discarded and the column washed 

with 500 µl buffer QC and 750 µl buffer PE. The column was then centrifuged for 3 min 

to remove any traces of wash buffer remaining, placed in a clean 1.5 ml microcentrifuge 

tube and the DNA eluted with 50 µl buffer EB. DNA yield and quality was checked 

using a Nanodrop spectrophotometer or by agarose gel electrophoresis. 

2.5.3 DyeEx 

The spin columns were vortexed for 30 sec, the seal lock broken and the lids loosened 

by a quarter turn. The columns were placed in collection tubes and centrifuged (770 x g) 

for 3 min. The columns were place in clean microcentrifuge tubes and the DNA solution 

to be purified was pipetted drop by drop into the centre of the gel. The column was 

centrifuged for 3 min to elute the DNA.  
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2.5.4 DNA isolation  

Genomic DNA was isolated from C. jejuni strains after 16 h growth in 25 ml Brucella 

broth. Cultures were centrifuged (3,220 x g) for 20 min and cell pellets were 

resuspended in 1 ml PBS. The cell suspension was centrifuged for 3 min at 20,000 x g. 

The pellet was resuspended in 400 µl TE buffer (10 mM Tris, pH 8.0 and 1 mM EDTA) 

and lysed with 70 µl 10% SDS and 5 µl 10 mg ml
-1

 proteinase K at 65°C for 10 min. 

The lysis reaction was incubated for a further 10 min after the addition of 100 µl 5 M 

NaCl was added and mixed, then 100 µl 10% Hexadecyl trimethyl ammonium bromide 

in 0.7 M NaCl (both solutions pre-warmed to 65°C). Choloroform/isomayl alcohol 

(24:1), 500 µl, was added, vortexed for 20 sec and centrifuged for 5 min. The upper 

aqueous phase was incubated at -20°C for 30 min with 0.6 volumes isopropanol. The 

mixture was centrifuged for 10 min and washed with 500 µl 70 % ethanol. The DNA 

pellet was air dried, resuspended in 50 µl TE buffer and incubated for 30 min at room 

temperature before storing at -20°C. 

DNA was also isolated using a DNeasy kit for Blood and Tissue (Qiagen) from C. 

jejuni cells grown 16 h in a maximum of 10 ml Brucella broth. Bacteria were 

centrifuged (3,200 x g, 20 min) and cells were resuspended in 180 µl ATL buffer. The 

sample was vortexed, 15 sec, and 200 µl AL buffer then 200 µl 100% ethanol were 

added sequentially with vortexing between stages. The sample was centrifuged through 

the DNeasy Mini Spin column (6,000 x g, 1 min), and the flow through was discarded. 

The column was washed with 500 µl AW1 buffer (6,000 x g, 1 min), then 500 µl AW2 

buffer (20,000 x g, 3 min). DNA was eluted in 200 µl AE buffer applied twice to the 

filter membrane (1 min incubation at room temperature, followed by 6,000 x g, 1 min). 

2.5.5 Plasmid purification 

(i) Mini-prep (isolation of up to 30 µg DNA) 

E. coli were grown 16 h over night in 5 ml LB broth with the appropriate antibiotics. 

Cells are pelleted by centrifugation (3,220 x g) for 10 min and the E.N.Z.A. Plasmid 

Mini Kit I (Omega Bio-tek) was used to isolate plasmid. Cells were resuspended in 250 

µl Solution I and then lysed 250 µl Solution II at 20°C, and neutralised in 350 µl 

Solution III. DNA binding columns were prepared with 100 µl Column Equilibration 

Buffer, which was discarded after centrifugation (20,000 x g) for 1 min. The column 
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was washed with 500 µl HB Wash and 700 µl DNA wash, and then dried by 

centrifugation for 3 min. DNA was eluted in 75 µl Elution Buffer.  

(ii) Midi-prep (isolation of up to 1 mg DNA) 

The GenElute HP Plasmid Midiprep Kit (Sigma-Aldrich) was used to isolate plasmids. 

E. coli were grown 16 h over night in 100 ml LB broth with the appropriate antibiotics. 

Cells are pelleted by centrifugation (3,220 x g, 2 x 20 min) and resuspended in 4 ml 

Resuspension buffer (with RNAse A, final concentration 0.2 µg ml
-1

). The cell 

suspension was lysed (4 min, 20°C) and neutralised with the appropriate buffers (4 ml 

each). The cell lysate was filtered with the provided syringes after the addition of 3 ml 

Bind solution. Spin columns were prepared by centrifuging (3000 x g, 2 min) with 4 ml 

Column Prep buffer and the filtered cell lysate was applied to the column, centrifuged 

and washed with Wash 1 and Wash 2 buffers (4 ml). The column was removed of 

excess ethanol by centrifuging for 5 min and the DNA was eluted in 1 ml elution buffer, 

which added re-applied to the column and eluted once more. 

(iii) Midi-prep for very low copy plasmids (isolation of up to 1 mg DNA) 

Plasmid XG-10 was isolated using a Midi Kit (Qiagen, UK), according to the ‘Very low 

copy’ protocol as it has a copy number of less than five per cell (pSC101 derivative). E. 

coli was grown 16 h in 400 ml LB. Cells were then pelleted by centrifugation at 3,220 x 

g for 20 min in 50 ml batches. The pellets were resuspended in 20 ml buffer P1 

containing RNase A at a final concentration of 100 µg ml
-1

, vortexed and transferred to 

a Duran bottle. Buffer P2 (20 ml) containing Lyseblue indicator (1:1000 dilution) was 

added, mixed by inversion until completely blue and incubated for 5 min at 20°C. 

Buffer P3 (20 ml) was added, mixed by inversion until completely white and incubated 

for 20 min on ice. The sample was then centrifuged (20,000 x g, 4°C) for 45 min, the 

supernatant was transferred to new centrifuge tubes promptly after centrifugation and 

centrifuged again for 30 min. DNA was precipitated by adding 42 ml (0.7 volumes) of 

room-temperature isopropanol and centrifugued for 30 min. The DNA pellet was 

dissolved in 500 µl TE buffer (pH 8.0) and buffer QF was added to a final volume of 5 

ml. A QIAGEN-tip 100 was equilibrated with 4 ml Buffer QBT and allowed to empty 

by gravity. The DNA in QF buffer from the previous step was applied to the column 

and allowed to enter the resin by gravity. The column was washed with 2 x 10 ml of 

buffer QC; the DNA was then eluted in 5 ml buffer QF. DNA was precipitated by 
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adding 3.5 ml (0.7 volumes) of room-temperature isopropanol, mixing and centrifuging 

for 30 min. The supernatant was decanted and the DNA pellet washed with 5 ml room-

temperature 70% ethanol with centrifugation 15 min. After complete removal of the 

supernatant, the pellet was air-dried for at 20°C and dissolved in 200 µl TE buffer.  

 

2.6 RNA isolation 

To extract total RNA from C. jejuni, broth cultures were grown to OD600nm 0.3 and 

mixed with 0.1 volume of ice-cold 5% phenol in ethanol, and cells were harvested by 

centrifugation at 7, 200 x g for 15 min at 4°C. The pellet was resuspended in 3ml 

extraction buffer (10mM sodium acetate, 0.15M sucrose, pH 4.8), 333 µl 10% SDS 

(Gibco) was added and the cell suspension was vortexed. Subsequently 5ml 65°C  

phenol was added and the cell suspension  was incubated at 65 and on ice for 5 min 

each, and then centrifuged (7, 200 x g at 4°C). The upper phase was transferred to a new 

centrifuge tube, 3 ml room temperature phenol was added and vortexed, and the 

solution was centifgured again. This step was repeated once with phenol and once with 

chloroform. Ethanol-sodium acetate (30:1, EtOH-NaAc) was added and incubated 16 h 

at -20°C. The solution was centrifuged and the pellet was awashed with 75% ethanol. 

The supernatant was discared and the pellet was air dried. The pellet was resusepedned 

in 100 µl RNAse, DNase free water (Gibco). A volume of nucleic acid suspension (75-

100 µg) was digested with DNaseI (Thermo Scientific, 1 U per 3 µg) for 45 min at 

37°C. EDTA (0.1 volumes) was added and the reaction was inactivated for 10 min at 

65°C and then incubated on ice 5 min. Removal of DNA was checked by a 40 cycle 

PCR table 2.2. RNA was extracted with equal volume Phenol:Chloroform:Isoamyl 

Alcohol 25:24:1 Saturated with 10 mM Tris, pH 8.0, 1 mM EDTA and vortexed and 

centrifuged. RNA was precipitated from the upper phase in EtOH-NaAc 16 h at -20°C. 

The solution was centrifuged and the pellet was washed with 75% ethanol (-20%). The 

pellet was air dried and resuspended in 100 µl RNAse, DNase free water (Gibco).  
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2.7 Microarray  

2.7.1 RNA reverse transcription, cDNA labelling and chip preparation 

Three µg of chromosomal DNA was labelled with Cy3-conjugated dCTP using the 

BioPrime labelling kit (Invitrogen), with labelling reactions performed overnight at 37 

°C. Labelled cDNA was prepared from 15 µg RNA using Stratascript Reverse 

Transcriptase (Stratagene) for direct incorporation of Cy5-conjugated dCTPs 

(Amersham), with labeling reactions performed for approximately 16 hr at 42°C. 

Labelled nucleic acids were cleaned with the Qiaquick purification kit (Qiagen) and 

dried before being resuspended in water and prepared for hybridisation. Samples were 

boiled for 2 min, cooled at 18-25°C for 5 min and centrifuged at maximum speed in a 

microfuge for 2 min to remove any solid particles from the hybridisation mixture. This 

mixture was put onto the microarray slide and incubated at 60°C for approximately 16 

h.  

The transcriptome of the NC4 deletion, NC1/NC4 deletion and NC4 over-expressing 

strains was compared to the wild-type. Labelled cDNA was prepared from 15 µg total 

RNA using Affinity Script Reverse Transcriptase (Agilent Technologies, UK) for direct 

incorporation of Cy3- and Cy5-conjugated dUTPs (PA55321, GE Healthcare, UK), with 

labelling reactions performed for approximately 16 hr at 42°C. Labelled DNA was then 

cleaned using a DyeEx gel filtration spin column (Qiagen, UK). The samples were then 

dehydrated using a Savant Speedivac Plus SC2104 (Thermoquest) with attached 

Vacuum System UV5400A (Thermoquest).  

The dried samples were resuspended in 10 µl diethylpyrocarbonate (DEPC) treated 

water and 25 µl 2 x HiRPM Hybridisation buffer (Aglilent) and 5 µl blocking agent 

were added (Agilent Hi-RPM Gene Expression Hybridisation Kit). The samples were 

heated to 103°C (3 minutes) and 40 µl was added onto the array. The array was securely 

fastened into the gasket and hybridisation occurred overnight in the hybridization oven 

chamber (Shell Lab) with constant rotation. The array slide was removed from the 

chamber and submerged in Agilent gene expression wash buffer 1, incubated for 5 min 

in the buffer 1 on a roller mixer SRTI (Stuart) (room temp., in dark), incubated for 2 

minutes in Agilent gene expression wash buffer 2 (37°C, in dark). This was followed by 

rinses in acetonitrile and stabilisation solution 1 sequentially.  
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2.7.2 Chip scanning 

DNA microarrays were scanned using an Axon GenePix 4000A microarray laser 

scanner (Axon Instruments) and the data from detected features initially processed using 

the GenePix 3.0 software. 

2.7.3 Analysis  

Data were obtained for 1608 genes. For each condition, two independent RNA 

isolations were hybridised. Each array was manually checked to ensure that detection of 

each probe was correct. Probe fluorescence intensities were exported into Excel. The 

data were combined for each biological replicate and Excel macros, including ‘Marray,’ 

were used to perform a regression analysis and analyse the statistical significance of 

changes in gene expression (Holmes et al. 2005). Briefly, LOWESS (locally weighted 

scatter plot smoothing) regression analysis was performed to determine the relationship 

of the estimated slope and intercept between the Cy3 and Cy5 signals, and so identified 

genes that had potentially changed in expression level. F-tests were carried out on the 

hypothesis that there was no change in gene expression, where if rejected then the gene 

was classified as having increased or decreased expression. 

 

2.7 Nested RT-PCR and detection of ncRNAs 

A reverse transcription (RT) reaction was performed using an specific RT primers for 

NC1, NC4 and NC3 with a 5’ extension. A reaction mix containing 500 ng total RNA, 1 

µl 10 mM primer and 5 µl nuclease free water (Gibco) was incubated 65°C for 5 min 

and cooled 10 min at room temperature. Added to this was 2 µl 100 mM DTT, 2 µl 

Affinity Script buffer, 8 µl 10 mM dNTPs and 1 µl Affinity Script (Aglient). The 

reaction was incubated at 55°C for 1 h and then inactivated at 70°C for 15 min. A PCR 

reaction (‘Check’ protocol, table 2.2) with a specific primer for the extension of the RT 

primer (‘RT tag’) and either NC1, NC4 or NC3, followed by gel electrophoresis in 2% 

low melting point agarose of the product was done to detect the ncRNAs. NC3 

(intergenic Cj1258-Cj1259) was included as a strain as it is highly transcribed, had a 

longer sequence and is not predicted to be controlled by σ
28

. Primers are listed in table 

2.5. 
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Table 2.5 Primers for nested RT-PCR 

Nucleotides in red are the added tags for reverse transcription. 

Primer name Primer sequence 

NC1 PCR tag AAATCTTTTCAAAATATTGCAA 

NC3 PCR tag GAATCTTTTCAAAATATTGCAATC 

NC4 PCR tag GAACCGAAAAACATTCATAAG 

RT NC1 GCCTTGCCAGCCCGCTCAGACGAGACATC 

AAAGATGCCCAAAAATGG 

RT NC4 GCCTTGCCAGCCCGCTCAGACGAGACATC 

AAAAAGCCCATTTTCATG 

RT NC3 GCCTTGCCAGCCCGCTCAGACGAGACATC 

AGGGATTTAAGCTAGGCGTG 

RT tag GCCTTGCCAGCCCGCTCAG 

 

 

2. 8 Northern hybridisations 

RNA samples (10 µg) were denatured in RNA loading buffer (95% (v/v) formamide, 

0.1% (w/v) xylene cyanol, 0.1% bromophenol blue, 10 mM EDTA) for 5 min at 95°C. 

They were then separated on 6% acrylamide, 8.3 M urea gels, and transferred to 

Hybond XL membranes (GE Healthcare) by semi-dry blotter at 25 V for 1 h (Biorad, 

UK). RNA was UV crosslinked and pre-conditioned in Rapid Hybridisation buffer (GE 

Healthcare, UK) at 42°C for 1 h, before 5’ [γ
32

P] end labelled probes for NC1 or NC4 

were added and incubated for 16 h. NC1 probe: GGCAAATTGCAATATTTTGAA. 

NC4 probe: TCATGGGCTTGATTGCAAT. Membranes were washed in 5 x SSC/0.1% 

SDS, 1 x SSC/0.1 SDS and 0.5 x SSC/0.1% SDS. Signals were visualized on a Typhoon 

9200 phosphorimager (GE lifesciences) after at least 16 h exposure to a phosphor 

screen.  
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2.8 Quantification and determining quality of nucleic acids 

RNA and DNA was quantified using the Nanodrop 2000 spectrophotometer (Thermo 

Scientific) to obtain 260/280 and 230/260 ratios. DNA was also visualised on agarose 

gels if appropriate. RNA quality was checked using the Bioanalyzer 1000 (Agilent).  

 

2.9 Prediction of non-coding RNA gene targets  

NC1 and NC4 targets were identified using TargetRNA 

http://snowwhite.wellesley.edu/targetRNA/ (Tjaden et al. 2006), which is no longer 

available.  

 

2.10 Protein 

2.10.1 Cell lysis and fractionation 

Bacterial cells were lysed by sonication (MSE) at 10 micron amplitude for 5 x 10 sec, 

with 30 sec pause on ice, in 1 ml 50 mM Tris-HCL pH 7.5.  

To separate the cytoplasmic fraction the lysed whole-cell suspension was centrifuged 

(17,900 x g) for 60 min at 4°C. A sample of the supernatant was kept. To obtain the 

inner membrane fraction the pellet was resuspended in 400 µl 50 mM Tris-HCL pH 7.5, 

1% sarkosyl and solubilised 1h on a rotator (Stuart, 15 rpm). The mix was centrifuged 

as before to separate the inner membrane fraction (supernatant) from the outer 

membrane fraction (pellet). The pellet was resuspended in 50 mM Tris-HCL pH 7.5. 

NuPage SDS loading buffer (Invitrogen) was added to each sample (to a 1 x final 

concentration) and heated at 95°C for 5 min with β-mercaptoethanol (10%). Samples 

were stored at 4°C until gel electrophoresis and were re-heated if usage was more than 

one week after fractionation. 

2.10.2 SDS-PAGE 

A C. jejuni culture was grown in Brucella broth until culture optical density reached 

OD600 0.3. Bacteria were centrifuged (3,220 x g) to precipitate cells, which were 

subsequently lysed and fractionated. Samples (10-30 µl) were loaded onto pre-made 
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polyacrylamide gels 4-20% (Expedeon) and run in NuPAGE MOPs SDS running buffer 

(Invitrogen) at 400 mA.  

Gels were stained with Coomassie blue by heating in a microwave (320 W) for 3 x 10 

sec, destained (40% isopropanol, 10% acetic acid) by 30 min rocking (Stuart, 30 rpm) 

and washed with water by 16 h rocking. 

2.10.3 Protein concentration 

Protein concentrations for 2D gel samples were determined using the 2D Quant Kit 

(Amersham) according to the manufacturer’s instructions. An appropriate amount of 

sample containing the required protein concentration (0-50 µg) and BSA was used as 

standard curve (5 different volumes 0-25 µl, 2 mg ml
-1

), was added to 500 µl precipitant 

(provided in 2D Quant Kit), vortexed and incubated (3 min, 20°C). To every sample and 

standards 500 µl co-precipitant was added, vortexed (10 sec), centrifuged (20,000 x g, 5 

minutes, 4°C). The pellet was resuspended into 100 µl copper solution and 400 µl water. 

Then, 1 ml working colour reagent (100 part solution A, 1 part solution B from kit), was 

added to each sample and inverted immediately. After 15-20 min the absorbance was 

measured at 480 nm (Spectrophotometer Uvikon XL, NorthStar Scientific) and a 

standard curve was general using the known BSA standards. The assay was performed 

in duplicate for each sample. 

Protein was concentrated to 50 µl or less using a Biomax-5K NMWL membrane filter 

(Millipore) to contain 100 µg protein (10,000 x g, 4°C). Non-bromophenol blue 

rehydration buffer (450 µl) was added and the sample mixed, then centrifuged using the 

same membrane filter (10,000 x g) until the volume ~50 µl. Then, 400 µl rehydration 

buffer was added to the sample ensuring all the protein was collected from the 

membrane filter. 

2.10.4 Two-dimensional protein separation  

(i) Gel casting 

Polyacrylamide gels were cast in-house. For 11 10% gels 344.75 ml 30% Duracryl 

0.65% Bis (Genomic Solutions), 257.79 ml 1.5 M Tris gel buffer (1.5 M Tris-HCl, pH 

9) and 425.50 ml water were mixed and de-gassed for 10 minutes. Added and mixed to 

the solution were 10% SDS solution (10.87 ml), tetramethyl ethylene diamine (0.520 
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ml) and 10% ammonium persulphate (2.64 ml). The SDS-acrylamide solution was 

poured between two custom-made glass plates in a specially designed chamber 

(Investigator, Genomic Solutions). Each gel was overlaid with 1 ml water saturated 

butanol and the gels polymerised after 3-4 h. Each gel was then cleaned to remove the 

butanol and the excess polyacrylamide gel. The gels were stored in sealed bags with 

~50 ml 1/5 diluted Tris gel buffer for up to 2 weeks at 4°C. 

(ii) Protein separation by isoelectric point 

Sample containing 100 µg protein was made to volume 400 µl with IPG strip 

rehydration buffer (7 M Urea, 2 M Thiourea, 2% CHAPS, 0.1% Bromophenol Blue, 28 

mg.ml-1 DTT) and loaded into re-swelling tray. A gel strip (18 cm 3–10NL Immobiline 

DryStrip, Amersham Biosciences) was laid into the solution. The gel strip was 

rehydrated at room temperature for minimum 12 h. A moist electrode wick was placed 

at either end of the IPG gel strip and each well was covered with mineral oil ~2.5 ml. 

Isoelectrical focussing was performed for 80 kVh at 20°C over 24 hours using the 

pHaser system (Genomic Solutions). First dimension gel strip can be stored at -80°C. 

(ii) Protein separation by molecular weight  

Prior to the second dimension the focused gel strips were incubated in filtered (0.45 µm, 

Sartorius Stedim Biotech) equilibration buffer (5% SDS and 0.01% bromophenol blue 

in 0.122 M Tris/acetate, Genomic Solutions). To reduce and alkylate cysteines the strips 

were treated first with 8 mg ml
-1

 DTT in the equilibration buffer (9 ml; 30 min with 

gentle rotation Rotatest shaker, R100/TW, Luckham. Then the strips were transferred 

into 25 mg ml
-1

 iodoacetamide containing equilibration buffer (9 ml; 30 min with gentle 

rotation). Polyacrylamide gels were placed in the gel tank, combs removed and wells 

washed, and the gel strip was placed on to the polyacrylamide, gel-side down). The 

Investigator 2nd Dimension Running System (Genomic Solutions) was used with 

cathode buffer (200 mM Tris base, 200 mM Tricine, 14 mM SDS,) and anode buffer 

(25 mM Tris-acetate buffer, pH 8.3). Electrophoresis was carried out using either a 

maximum voltage of 500 V or a maximum power of 20 W per gel. 

2.10.5 Imaging 2D Gels  

The gels were carefully removed from the glass plates. The proteins were fixed (400 ml, 

40% methanol, 10% acetic acid, 16 h). Then proteins were stained by Sypro-Ruby (Bio-
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Rad, 400ml, 24 h, in the dark). Finally, the gels were de-stained (400 ml, 10% 

methanol, 6% acetic acid, 4 h). The gels were imaged at 100 µm resolution using the 

Pharos FX Laser Scanning Fluorescent Imager (Bio-Rad) and a 16-bit image in 65,000 

shades of gray was obtained. Voltage of the Photo Multiplier Tube (PMT) was adjusted 

for each image to improve image quality. The excitation filter used was 532 nm. Gel 

images were compared using ProteomWeaver analysis software (Definiens). The gels 

were stored in the de-stain, in the dark at 4°C, for several weeks. 

 

2.11 Routine molecular biology buffers and agarose gels  

2.11.1 Phosphate buffered saline (PBS) 

PBS tablets (Sigma-Aldrich) were dissolved in 200 ml water and autoclaved. The 

manufacturer’s ingredients were: 

• 0.01 M phosphate buffer,  

• 0.0027 M potassium chloride 

• 0.137 M sodium chloride 

• adjusted to pH 7.4 

2.11.2 20 x SSC  

• 3 M sodium chloride  

• 300 mM trisodium citrate  

• adjusted to pH 7.0  

2.11.3 5 x TBE  

• 890mM Tris 

• 890mM Boric acid  

• 20mM EDTA  

2.11.4 TE  

• 10 mM Tris  

• 1 mM EDTA 

• adjusted to pH 8.0  
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2.11.5 Agarose 

Routine gels were made with 0.8% (w/v) agarose powder in 1 x TBE and gels were 

stained with Safe View (1:20,000 dilution, Applied Biological Materials).  

 

2.12 Phenotypic assays 

2.12.1 Viable bacterial counts 

To measure numbers of viable bacteria, cultures were grown on plates and colony 

forming units were counted. Serial 10-fold dilutions were made in sterile PBS and 20 µl 

of the appropriate dilutions were grown on Brucella-agar plates. Alternatively, 5 µl 

dilutions were grown on Brucella-agar, which are referred to as ‘spot-plates’ or 

‘spotting.’ If three or more colonies grew, then this was a positive indicator that there 

were significant numbers of viable bacteria in the dilution. The number of viable 

bacteria was taken to be one and so the estimated number of colony forming units (cfu) 

= 1 x (1000 µl / 5 µl) x dilution factor. Brucella-agar plates were incubated under 

microaerobic conditions for two days.  

2.12.2 Acid-shock survival  

Acid-shock was performed by growing C. jejuni to mid-exponential phase, and 

resuspending cells in Brucella broth adjusted with HCl to pH values from 2.0-7.0. 

Viability assays following acid-shock were performed by determining the number of cfu 

after incubation for 10 min and 30 min at pH 2.0, 3.0, 3.25, 3.5, 3.75, 4.0, 5.0, 6.0 and 

7.0 under microaerobic conditions at 37°C. C. jejuni was incubated with non-adjusted 

Brucella broth as a control. Serial, 10-fold dilutions were made, 5 µl of each dilution 

was spotted onto Brucella-agar plates and incubated under microaerobic conditions for 

48 h days at 37°C. Three independent assays were performed for each pH value, and 

survival was expressed as the percentage of surviving bacteria relative to the control. 

2.12.3 Growth 

To monitor growth C. jejuni were grown for 16 h in Brucella broth. Fresh media was 

inoculated to OD600nm 0.05 and aliquots of 200 µl were grown in a 96 well plate in 

triplicate. Optical density was monitored with a FLUOstar Omega plate reader with 

atmosphere control unit (BMG Labtech, Germany). C. jejuni were grown in 
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microaerobic conditions with shaking at 500 rpm at 37 or 42°C for 24 h. Experiments 

were done in triplicate per biological experiment.   

2.12.4 Autoagglutination 

To monitor autoagglutination, C. jejuni was grown for 16 h in Brucella broth and 1 ml 

was centrifuged at 9,200 x g and resuspended in 1 ml PBS. The OD600nm of the bacterial 

suspension was measured immediately and after 24 h incubation at room temperature in 

air. Experiments were done in triplicate per biological experiment.   

2.12.5 Motility  

Motility was assessed using soft agar plate assays. C. jejuni strains were grown to 

OD600nm
 
0.3 and 5 µl culture was spotted on 0.4% Brucella-agar (Reuter et al. 2010). 

Brucella agar plates were incubated under microaerobic conditions for 48 h. 

Experiments were done in triplicate per biological experiment.   

2.12.6 Aerotaxis 

A C. jejuni one-shot glycerol was thawed and grown 16 h on Brucella-agar. Cells were 

recovered in 2 ml PBS and 50 µl was added to a 15 ml centrifuge tube, filled 10 ml with 

0.4% Brucella-agar supplemented with triphenyl tetrazolium chloride which converts 

into a red formazan dye by oxidation. Tubes were incubated at 37 and 42°C in air for 5 

days and photographs were taken every 24 h. The distance between the top of the agar 

and the dye front was measured using ImageJ 1.41o.  

2.12.7 Flagella observation 

To visualise flagella, C. jejuni was grown to OD600nm 0.3 in Brucella broth and a 10% 

dilution was viewed under x 10,000 magnification using an Eclipse 50i microscope 

(Nikon UK Limited). Flagella were visualised using the Ryu stain described by Kodaka 

et al. (Kodaka et al. 1982). Briefly, two solutions were made: Solution I contained 10 µl 

5% phenol solution, 2 g tannic acid, 10 µl saturated aluminium potassium sulphate; 

Solution II contained 6 g crystal violet in 50 ml ethanol. Solution I and II were mixed in 

the ratio of 1:10. To the edge of the cover-slip, 5 µl of Ryu stain was applied and left to 

diffuse into the sample by capillary action. Slides were photographed using a Nikon 

Coolpix E4500 camera. 
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2.12.8 Scanning electron microscopy 

Approximately 200 µl of sample was pipetted drop by drop onto an Isopore membrane 

polycarbonate filter (HTTP01300, Millipore), which had been trimmed with a razor 

blade so that the inoculated surface could be identified. The cells were left to adhere to 

the surface for 5 min and the filters were subsequently placed in 2.5% glutaraldehyde in 

0.1 M PIPES buffer (pH 7.2) and fixed for 1 h. After washing with 0.1M PIPES buffer 

(Sigma-Aldrich), each sample was carefully inserted into a critical point drying capsule 

and dehydrated in a series of ethanol solutions (10, 20, 30, 40, 50, 60, 70, 80, 90, 3x 

100%) and 3x 100% ethanol. Samples were critical point dried in a Polaron E3000 

critical point drier using liquid carbon dioxide as the transition fluid. The filters were 

carefully mounted onto SEM stubs using sticky tabs, ensuring that the inoculated 

surface was facing upwards. The samples were coated with gold in an Agar high 

resolution sputter-coater apparatus. Scanning electron microscopy was carried out using 

a Zeiss Supra 55 VP FEG SEM, operating at 3kV. The method was carried out by 

Kathryn Cross at the Institute of Food Research. 

2.12.9 Biofilm formation 

C. jejuni was grown for 16 h in Brucella broth. From this, a 3% dilution was made and 1 

ml added to a sterile Pyrex disposable culture tubes (Sigma-Aldrich). These were 

incubated without shaking at 37°C under microaerobic or aerobic conditions for two 

days to allow biofilms to form. Three technical replicates were used for each strain 

under each growth condition per biological experiment. After incubation, viability was 

assessed by enumerating cfu.  

For crystal violet staining, the culture was poured out of the tubes and discarded. Tubes, 

containing the biofilm, were washed with water, and then dried at 60°C for 1 h. One 

millilitre of 1% crystal violet solution was added and the tubes were incubated on a 

rocker (Stuart) at 30 rpm, room temperature for 30 min. Crystal violet was disposed into 

chemical waste with excess unbounded stain washed with water and the tubes were 

dried at 37°C. Bound crystal violet was dissolved in 20% acetone in ethanol for 10 min 

and the OD590nm measured.          
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2.12.10 Invasion  

(i) m-ICcl2 culture 

The murine intestinal crypt-like cell line m-ICcl2 (Bens et al. 1996) was cultured in m-

ICcl2 media consisting of Dulbecco’s modified Eagle Medium/Ham’s F-12 12 g l
-1

 (1:1 

v/v; Gibco), 20 mM D-glucose (Sigma-Aldrich), 10 ng ml
-1

 mouse epidermal growth 

factor (Merck), 5 µg ml
-1

 insulin (Sigma-Aldrich), 60 nM selenium (Sigma-Aldrich, 

UK), 5 µg ml
-1

 human Apo-transferrin (Sigma-Aldrich), 1 nM triiodothyronine (Merck, 

UK), 20 mM HEPES (Sigma-Aldrich), 2% fetal calf serum (Gibco), 50 nM 

dexamethasone (Sigma-Aldrich), 2 mM L-alanyl-L-glutamine (Sigma-Aldrich) at 37 °C 

in 5% CO2 atmosphere. Cells of passage 9-15 were used for experiments. 

The m-ICcl2 cells were grown until confluent on a Type I collagen matrix (C7661, 

Sigma-Aldrich, UK), in plastic 24-well, flat-bottomed plates (Sarstedt) or on transwell 

inserts with 8 µm pores (Corning) at 37°C in 5% CO2 atmosphere. For transwell inserts 

the transelectrical resistance of membrane was measured with an epithelial 

voltohmmeter (EVOM2, World Precision Instruments) and cells were considered 

confluent when resistance was at least 130 Ω.cm
2
 (Bens et al. 1996). 

(ii) Caco-2 culture 

Caco-2 medium contained 10% fetal calf serum and 2 mM L-alanyl-L-glutamine in 

Dulbecco’s modified Eagle Medium. Caco-2 cells were grown until confluent and 

domes had developed on a Type I collagen matrix. Cells of passage 20-25 were used for 

experiments. 

(iii) Invasion 

C. jejuni strains were grown to OD600nm 0.3, centrifuged (3,220 x g for 10 min), 

resuspended in m-ICcl2 media and 500 µl was added to the cell monolayers (MOI 

1,000). Bacterial invasion was allowed for 2 h at 37°C and 5% CO2. To remove 

adherent C. jejuni, the cell monolayer was washed twice with PBS and incubated in 

fresh cell culture media containing 500 µg ml
-1

 gentamicin for 1 h (Friis et al. 2005). 

The infected cell monolayer was washed twice with PBS and then lysed with 1% Triton 

X-100 (Sigma-Aldrich, UK) to release intracellular C. jejuni. Viable C. jejuni were 

measured by enumerating cfu using spot-plates. This was also done for the initial 

inoculum so that the proportion of invaded bacteria could be calculated.  
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2.13 Fluorescence measurements by spectroscopy 

Bacteria were centrifuged (9,600 x g for 3 min) and resuspended in PBS to OD600nm 0.5. 

The cell suspension (200 µl) was assayed in triplicate in with a FluoStar OPTIMA plate 

reader and GFP+ was exited at 485 nm and detected at 520 nm.  

 

2.14 Fluorescence measurements by flow cytometry  

2.14.1 Sample preparation 

(i) E. coli  

E. coli was grown in LB broth supplemented with chloramphenicol and/or carbenicillin 

where appropriate and grown for 8 h with shaking. Cultures were diluted with PBS 

(1:200) supplemented with propidium iodide (PI, 1:1000 dilution). Fluorescence was 

measured triplicate in at least three independent experiments by flow cytometry using 

the Cytomics FC5000. Results were analysed using FlowJo (TreeStar) and at least 

10,000 live bacteria were included in the analyses.  

(ii) C. jejuni  

C. jejuni growth in Brucella broth (Bru) and a defined minimal medium (Min, Gibco) 

was analysed using flow cytometry. C. jejuni ncRNA mutants were used to inoculate 

either Bru or Min media (table 2.6) and grown for 16 hr to be used as starter cultures for 

the study. Cultures were diluted with PBS (1:100) supplemented with PI and C. jejuni 

were enumerated by flow cytometry to inoculate fresh cultures at similar numbers. 

Samples were taken at 1, 2, (1:8 dilution) 5, 8, 12, (1:40 dilution) and 24 h (1:100 

dilution) and diluted in PBS for acquisition. To improve visualisation of C. jejuni, 

samples were stained with Syto 12 (1:80 dilution, Invitrogen).  
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Table 2.6 Contents of minimal medium. 

Components 
Molecular 

Weight 

Concentration 

(mg/L) 
mM 

Amino Acids 

Glycine 75 18.75 0.25 

L-Alanine 89 4.45 0.05 

L-Asparagine-H2O 150 7.5 0.05 

L-Aspartic acid 133 665 5.00 

L-Cysteine hydrochloride-H2O 176 17.56 0.0998 

L-Cystine 2HCl 313 31.29 0.1 

L-Glutamic Acid 147 7.35 0.05 

L-Histidine hydrochloride-H2O 210 31.48 0.15 

L-Isoleucine 131 54.47 0.416 

L-Leucine 131 59.05 0.451 

L-Methionine 149 17.24 0.116 

L-Phenylalanine 165 35.48 0.215 

L-Proline 115 17.25 0.15 

L-Serine 105 525 5.00 

L-Threonine 119 53.45 0.449 

L-Tryptophan 204 9.02 0.0442 

L-Tyrosine disodium salt 

dihydrate 
261 55.79 0.214 

L-Valine 117 52.85 0.452 

Vitamins 
   

Ascorbic Acid phosphate 289.54 2.5 0.00863 

Biotin 244    0.0035                       0.0000143 

Choline chloride 140 8.98 0.0641 
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D-Calcium pantothenate 477 2.24 0.0047 

Folic Acid 441 2.65 0.00601 

Niacinamide 122 2.02 0.0166 

Pyridoxine hydrochloride 206 2 0.00971 

Riboflavin 376 0.219 0.000582 

Thiamine hydrochloride 337 2.17 0.00644 

Vitamin B12 1355 0.68 0.000502 

i-Inositol 180 12.6 0.07 

Inorganic Salts    

Calcium Chloride (CaCl2) 

(anhyd.) 
111 116.6 1.05 

Cupric sulfate (CuSO4-5H2O)                                  250 0.0013 0.0000052 

Ferric Nitrate (Fe(NO3)3-9H2O) 404 0.05 0.000124 

Ferric sulfate (FeSO4-7H2O) 278 0.417 0.0015 

Magnesium Chloride (anhydrous) 95 28.64 0.301 

 

2.14.2 Acquisition 

The flow cytometer used was a Cytomics FC500 MPL (Beckman Coulter) using blue 

(488 nm) and red (633 nm) lasers. Side scatter discriminator was set to 1 and events 

were acquired at low flow for 30 sec (C. jejuni experiments) or 60 sec (E. coli 

experiments) for or until a maximum of 10
6
 events had been acquired. GFP+ 

fluorescence excitation maximum is 475 nm (major peak) and maximum emission is 

509 nm. Syto 12 (Invitrogen) fluorescence excitation maximum is 499 nm and 

maximum emission is 522 nm and was detected in the FL1 channel. Propidium Iodide 

(Invitrogen) fluorescence excitation maximum is 535 nm and emission maximum is 617 

nm and was detected in the FL3 channel when analysed individually or in the FL4 

channel when in conjunction with Syto 12. GFP and Syto 12 fluorescence was 

measured using a 525/20 band pass filter and PI was measured using a 615 dichroic 

short pass filter/620 short pass filter.  
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2.14.3 Analysis 

(i) E. coli  

E. coli cells were selected from SS/FS plots and PI negative (live) cells were gated 

(often 97 % of total population, fig. 2.1). GFP negative and positive E. coli were used to 

determine GFP positive events (fig. 2.1). The median GFP fluorescence of live cells 

was measured. 

 

Figure 2.1 Flow cytometry gating strategy for E. coli.  

E. coli cells were selected using forward and side scatter. The fluorescence intensity 

(GFP) of propidium iodide negative cells (PI
-
) was measured. 

 

(ii) C. jejuni  

C. jejuni cells were selected from SS/Fl-1 plots and then PI negative (live) cells were 

gated. A gate of 10 sec was placed where acquisition was regular (fig. 2.2) and live cells 

(PI negative) were gated for which the side scatter, forward scatter and counts of live 

cells were measured. Dead cells (PI positive) were gated separately and numbers were 

recorded. Different gating had to be used for 37 and 42°C, possibly due to release of 

DNA by cells at different growth phases.  
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Figure 2.2 Flow cytometry gating strategy for C. jejuni.  

C. jejuni were stained with Syto 12 to detect the cells and propidium iodide (PI) to 

select for live/dead cells. To measure numbers of C. jejuni, a 10 sec gate was used to 

define cell numbers. The GFP fluorescence intensity of propidium iodide (PI) negative 

cells was measured. Dot plots (coloured) and contour plots (black and white) were used 

to visualise the data. 

 

2.15 Statistics 

Statistics were performed using GenStat 15.1.0.8035 (VSN International) and Prism 5.1 

(GraphPad). Unless specified otherwise, One-Way Analysis of Variance was used to 

determine statistical significance of results and were considered to be statistically 

significant if P < 0.05.  
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Collaborative work: 

• Microarray performed and analysed by Ida Porcelli  

• Invasion assays with m-ICcl2 established with Caroline Weight and Duncan Gaskin 

• Based on Le, M. T., Porcelli, I., Weight, C. M., Gaskin, D. J. H., Carding, S. R. and 

van Vliet, A. H. (2012). Acid-shock of Campylobacter jejuni induces flagellar gene 

expression and host cell invasion. European Journal of Microbiology and 

Immunology 2(1): 12-19 (Appendix 2).  
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3.1 Introduction  

Ingestion of C. jejuni, either by humans or in the avian host, is inevitably followed by 

bacterial passage though the stomach, before entering the small intestine and causing 

disease. In the human stomach, the gastric pH can range from approximately 2 to 7 

depending on the state of the stomach (empty-full), gastrin production and stomach 

contents (Dressman et al. 1990). In addition, food is retained in the stomach for 30-60 

min before the stomach begins to empty (Siegel et al. 1988). Thus, C. jejuni must have 

the means to cope with sudden and variable exposures to acidic conditions. However, C. 

jejuni responses to acid stress have not been as extensively characterised as those in the 

well studied enteric pathogens Escherichia coli or Salmonella Typhimurium (Audia et 

al. 2001). 

Many Enterobacteriaceae, like E. coli, have specific acid-resistance systems allowing 

direct protection against acidic pH, such as the well characterised glutamate 

decarboxylase system, which metabolises glutamate to increase internal pH (Audia et 

al. 2001). This and other nutrient dependent acid-resistance are regulated by complex 

networks and are also shared with S. Typhimurium (Burton et al. 2010). However, 

while widespread in the Enterobacteriaceae, these specific systems are absent in C. 

jejuni and related organisms. 

C. jejuni has not been found to mount a specific acid response, but does have an 

adaptive tolerance response during stationary growth phase, where in the case of acid 

adaptation, bacteria are sensitised by mild acid-shock (e.g. pH 5), upon which they 

display increased survival at low pH (Ma et al. 2009). It has been suggested that C. 

jejuni has mechanisms enabling adaptive tolerance responses, which is initiated by a 

release of extracellular proteins (Murphy et al. 2003a; Ma et al. 2009).  

C. jejuni flagellar gene expression is altered in acidic conditions. C. jejuni is known to 

up-regulate stress response genes and down-regulate capsular polysaccharide 

biosynthesis genes in response to acid-shock (Reid et al. 2008a; Reid et al. 2008b). As 

well as these changes in gene expression, it has also been suggested that σ
54

 may play a 

role in acid resistance in C. jejuni (Hwang et al. 2011). Expression of C. jejuni flagellar 

and flagellar-associated genes is tightly regulated, which depends on a transcriptional 
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hierarchy of σ factors, and σ
28 

and σ
54

 are dedicated to this role (Smith and Hoover 

2009). 

Exposure to low pH can induce genes involved in virulence phenotypes, as was shown 

in the related human pathogen Helicobacter pylori, where acid-shock increases the 

expression of genes for the acid-resistance factor urease and the expression of motility-

associated genes (Merrell et al. 2003). Expression of urease enables H. pylori to survive 

acidic conditions and may aid taxis responses during initial colonisation of the gastric 

mucosa (Merrell et al. 2003). Acidic conditions are sensed by the ArsRS two-

component system, which regulates the expression of urease of other genes of unknown 

function. ArsSR orthologues exist in C. jejuni, although their function has not been 

evaluated experimentally (Muller et al. 2009). 

The aim the study was to understand how C. jejuni gene expression is affected by acid-

shock and whether acid-shock has the potential to induce C. jejuni virulence 

phenotypes. The objectives of the study were to:  

• Ascertain the most acidic pH in which C. jejuni is able survive  

• Examine C. jejuni gene expression after acid-shock by microarray 

• Assess the effect of acid-shock on C. jejuni invasion of intestinal epithelial cells.   
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3.2 Results 

3.2.1 The lowest pH that C. jejuni is able to survive is pH 3.5  

To determine if C. jejuni can survive the acidic conditions present in the stomach, 

bacteria were grown to exponential phase in Brucella broth adjusted with HCl to 

different pHs ranging from 2.0 to 7.0, with survival being assessed by viability counts. 

There was no significant loss in viability when C. jejuni was incubated for 10 minutes at 

pH values of 3.5 and higher, but below pH 3.5 there was a rapid loss of viability, with 

less than 0.1% of viable cells recovered after acid-shock at pH 3.25 (fig. 3.1). When the 

duration of acid-shock was increased to 30 minutes, the lowest pH at which C. jejuni 

showed no decrease of viability was pH 3.75, where less than 0.01% of viable cells 

were recovered at pH 3.5 (fig. 3.1).  

The acid adaptive tolerance response of C. jejuni was assayed by pre-incubating 

exponential phase bacterial cultures at pH 5.0 and 7.0 prior to acid-shock at pH 2.75. 

There were no viable cells recovered at pH 2.75 after a mild acid-shock (Ida Porcelli, 

data not shown), suggesting that C. jejuni lacks an acid tolerance response at this 

growth phase as previously observed (Murphy, Carroll et al. 2003). 
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Figure 3.1 The threshold pH for C. jejuni NCTC11168 survival is 3.5.  

Motile C. jejuni was grown to exponential phase and incubated for 10 and 30 min in 

Brucella broth adjusted to pH 2 to 7. C. jejuni was incubated with non-adjusted Brucella 

broth as a control. Survival was assessed by counting colony forming units after 10 min 

(solid bars) and 30 min (white bars). Results were expressed as a percentage of 

surviving bacteria relative to the survival of the control. Error bars denote standard error 

of the mean and results shown are an average of three biological replicates. 
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3.2.2 Acid-shock increases the expression of σ
54

-dependent flagellar biosynthesis 

genes. 

 To assess the effect of acid-shock on gene transcription in C. jejuni, transcriptomic 

analyses were performed using C. jejuni microarrays to compare transcriptional profiles 

at pH 7 and at acidic pH (pH 3.6 and pH 5, for 10 and 30 minutes). Levels of RNA were 

expressed as a ratio of acidic pH/pH 7, and genes were considered differentially 

expressed if transcript levels were more than two-fold different and if the False 

Discovery Rate (FDR) was below 0.1. The transcript level of 232 genes was > 2-fold 

increased and 294 genes were > 2-fold decreased upon acid shock in one of the four 

tested conditions, with an FDR < 0.1. Of the genes with increased transcript levels, 137 

showed a significant change in one of the four conditions, whereas 95 showed increased 

transcript levels in two or more of the tested conditions. Of the genes with decreased 

transcript levels upon acid shock, 151 genes were identified in one of the four 

conditions, whereas 143 showed decreased transcript levels in two or more of the tested 

conditions. At pH 3.6, 78 genes were differentially expressed during both 10 and 30 

minutes acid-shock and at pH 5, 42 genes were differentially expressed during both 10 

and 30 minutes acid-shock.  

(i) Down-regulated C. jejuni genes upon acid-shock at pH 3.6 and 5 

Down-regulated genes, as a result of acid-shock, included those encoding 50S and 30S 

ribosomal proteins (rpm, rpl and rps), which were consistently down-regulated across 

two or more conditions (table 3.1). Also, genes encoding the F0F1 ATPase subunits 

(atpDFH) were down-regulated after acid-shock at pH 3.6, and this was also the case 

for sec protein-export genes (secAFY) (table 3.2). Genes encoding leucine biosynthesis 

enzymes (leuABC) were down-regulated after 10 minutes acid-shock at pH 3.6 and pH 

5, as were genes encoding Pgl glycosylation enzymes (table 3.3). Genes cj0018c (dba, 

involved in sulphur protein production (Grabowska et al. 2011), cj0224 (argC, an 

oxidoreductase), cj0865 (lepP, a peptidase) and cj0882c (flhA, a flagellar protein) were 

between two- and 10-fold down-regulated in all conditions. Unknown genes that were 

down-regulated in all conditions include cj0331c, cj0520 cj0883c, and cj0949c. Overall, 

these changes suggest that the cells shut down protein synthesis and modification in 

response to acid stress, due to the change from exponential growth to adaptation for 

survival.  
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Table 3.1 Fold down-regulation of C. jejuni NCTC11168 ribosomal gene expression 

in two or more acid-shock conditions.  

Green shading indicates significant and greater than two-fold change decrease in gene 

expression. Significant genes have a false discovery rate < 0.1 from three biological 

replicates.  

Gene 

 

Name 

 

pH 3.6 

10 min 

pH 3.6 

30 min 

pH 5  

10 min 

pH 5  

30 min  

cj0094 rplU 2.79 3.34 2.36 2.56 

cj0095 rpmA 2.79 5.40 2.03 2.99 

cj0155c rpmE 5.67 5.08 4.35 5.36 

cj0244 rpmI 3.60 4.26 3.75 4.00 

cj0245 rplT 1.74 1.89 2.42 2.43 

cj0330c rpmF 3.17 2.66 2.57 2.92 

cj0370 rpsU 0.35 3.03 0.67 4.35 

cj0450c rpmB 2.12 2.28 3.67 4.06 

cj0471 rpmG 2.12 2.05 2.64 2.22 

cj0473 nusG 3.11 2.53 3.88 2.88 

cj0474 rplK 4.05 2.92 2.75 2.01 

cj0475 rplA 2.60 3.89 1.75 2.61 

cj0476 rplJ 2.62 2.99 1.16 1.46 

cj0477 rplL 2.24 3.81 1.20 2.04 

cj0478 rpoB 2.55 1.47 2.89 1.07 

cj0479 rpoC 3.15 2.49 2.66 1.53 

cj0491 rpsL 4.87 5.11 3.06 4.48 

cj0492 rpsG 3.82 3.86 3.68 4.41 

cj0664c rplI 1.01 1.16 0.69 0.78 



C. jejuni flagellar responses after acid-shock   Chapter 3 

 

94 

 

cj0710 rpsP 4.07 4.34 1.25 2.39 

cj0714 rplS 4.02 3.25 3.41 3.46 

cj0884 rpsO 2.97 3.50 1.59 3.44 

cj0891c serA 2.17 1.26 1.71 1.72 

cj0893c rpsA 1.17 1.26 1.36 2.25 

cj0960c rnpA 2.48 3.31 2.16 4.76 

cj0961c rpmH 2.31 5.18 1.85 8.32 

cj1070 rpsF 3.20 2.46 1.86 1.47 

cj1072 rpsR 3.01 2.762 1.15 1.26 

cj1182c rpsB 2.80 3.31 2.63 4.10 

cj1479c rpsI 3.68 2.30 8.87 3.47 

cj1591 rpmJ 3.61 2.33 1.80 1.49 

cj1592 rpsM 3.51 1.85 2.43 1.25 

cj1593 rpsK 4.16 2.83 2.77 1.44 

cj1594 rpsD 3.70 2.49 2.13 1.40 

cj1595 rpoA 4.70 4.50 2.10 1.52 

cj1596 rplQ 2.73 2.53 1.54 1.43 

cj1611 rpsT 8.71 5.96 6.21 7.15 

cj1689c rp10 3.03 2.63 2.91 2.06 

cj1691c rplR 4.18 2.69 4.43 1.94 

cj1692c rplF 3.73 2.76 3.62 2.17 

cj1693c rpsH 3.93 2.29 3.28 2.01 

cj1694c rpsN 3.77 2.79 3.28 2.38 

cj1695c rplE 2.15 1.56 3.65 2.34 
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cj1696c rplX 2.78 1.77 3.83 2.12 

cj1697c rplN 2.98 2.39 4.52 2.85 

cj1698c rpsQ 3.29 1.98 4.96 2.50 

cj1699c rpmC 3.72 2.20 5.07 2.44 

cj1700c rplP 2.20 1.64 4.90 2.68 

cj1701c rpsC 2.90 1.83 6.02 3.00 

cj1702c rplV 2.49 2.32 5.34 3.54 

cj1703c rpsS 3.13 2.31 5.44 3.44 

cj1704c rplB 2.51 2.51 4.65 3.73 

cj1705c rplW 2.71 1.86 8.85 4.62 

cj1706c rplD 3.72 2.75 15.4 7.30 

cj1707c rplC 5.30 2.80 17.7 8.84 

cj1708c rpsJ 5.36 3.97 14.2 10.83 
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Table 3.2 Fold down-regulation in secretion proteins (sec) and F0F1 ATPases (atp) 

gene expression in C. jejuni NCTC11168 acid-shocked at pH 3.6 for 10 and 30 min.  

Green shading indicates significant and greater than two-fold change decrease in gene 

expression. Significant genes have a false discovery rate < 0.1 from three biological 

replicates.  

Gene Name 
pH 3.6 

10 min 

pH 3.6 

30 min 

cj0235c secG 2.08 1.95 

cj0472 secE 3.23 2.63 

cj0942c secA 2.04 2.07 

cj1092c secF 2.94 2.32 

cj1093c secD 2.05 2.23 

cj1688c secY 3.11 3.21 

cj0102 atpF 4.02 4.09 

cj0103 atpF 2.79 3.37 

cj0104 atpH 2.88 2.45 

cj0105 atpA 2.58 2.92 

cj0106 atpG 4.08 2.25  

cj0107 atpD 2.74 2.31 
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Table 3.3 Fold down-regulation of glycosylation enzyme and leucine biosynthesis 

gene expression in C. jejuni NCTC11168 after 10 min acid-shocked at pH 3.6 and 

5.  

Green shading indicates significant and greater than two-fold change decrease in gene 

expression. Significant genes have a false discovery rate < 0.1 from three biological 

replicates.  

Gene Name pH 3.6 pH 5 

cj1123c pglD 2.87 2.68 

cj1124c pglC 2.95 2.59 

cj1125c pglA 2.99 2.21 

cj1126c pglB 3.66 2.53 

cj1127c pglJ 2.72 2.24 

cj1128c pglI 4.73 1.80 

cj1129c pglH 2.79 1.56 

cj1130c pglK 2.07 1.29 

cj1717c leuC 13.7 8.06 

cj1718c leuB 19.2 12.5 

cj1719c leuA 18.2 12.0 
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(ii) Up-regulated C. jejuni genes upon acid-shock at pH 3.6 and 5 

After acid-shock at pH 5, the up-regulated genes included those of heat shock proteins 

ClpB, DnaK, HrcA, and HtrA (encoded by cj0509c, cj0759, cj0757, cj1228c 

respectively), and the catalase gene (cj1385, katA), which were up-regulated between 

two- and ten-fold compared to non-shocked C. jejuni. Genes for respiratory functions, 

such as cj0533 and cj0534 (sucCD) encoding succinyl-coenzyme A synthase and 

cj1537c (acs) for acetyl-coenzyme A synthase were up-regulated under all conditions, 

the latter being up-regulated by more than 50-fold at pH 3.6. Other genes up-regulated 

under all conditions were: the lactate oxidase operon cj0073c-0075c (Thomas et al. 

2011); cj0203 encoding a possible transmembrane transport protein; cj0486 encoding 

the fucose permease and cj0487 required for fucose utilisation, an unknown gene; 

possible periplasmic protein genes cj0722c and cj0834c; possible membrane proteins 

genes cj0920c and cj0987c; cj1238 (pdxJ) encoding a pyridoxal-phosphate (vitamin B6) 

biosynthetic protein (Grubman et al. 2010); and cj1503c (putA) a possible proline 

metabolism enzyme, which was up-regulated by more than 20-fold at pH 3.6 (Table 

3.4).  

The oxidoreductase genes cj0535-cj0538 and NADH dehydrogenase (cj1569c, cj1570c, 

cj1572c, cj1573c and cj1578c) genes were up-regulated after 10 minutes acid-shock at 

pH 5 only. Gluconate dehydrogenase genes (cj0414, cj0415) were greatly up-regulated 

after acid-shock at pH 5 and are known to be stress-responsive (Pajaniappan et al. 

2008). Genes encoding putative tricarboxylic acid cycle enzymes GltA (cj1682c) and 

AcnB (cj0835c) are more than five-fold up-regulated in two or more conditions. Genes 

cj1658, cj1660 and cj1661 encoding putative membrane proteins are up-regulated after 

acid-shock at pH 5. Genes of unknown functions cj1540-cj1543 are more than three-

fold up-regulated at 30 minutes acid-shock at both pH 3.6 only. These changes suggest 

a general up-regulation in stress responses. 
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Table 3.4 Fold up-regulation of C. jejuni NCTC11168 gene expression after acid-

shock at pH 3.6 and 5 for 10 and 30 min.  

All genes are significantly regulated and have a false discovery rate < 0.1 from three 

biological replicates.  

Gene 

 

Name 

 

pH 3.6 

10 min 

pH 3.6 

30 min 

pH 5.0 

10 min 

pH 5.0 

30 min 

cj0073c cj0073c 14.9 12.0 10.7 7.30 

cj0074c cj0074c 15.0 12.4 9.02 7.03 

cj0075c cj0075c 20.2 19.6 9.50 7.71 

cj0203 cj0203 11.2 6.96 5.23 2.94 

cj0486 cj0486 4.37 3.62 2.60 3.31 

cj0487 cj0487 3.08 2.24 2.70 2.56 

cj0533 sucC 4.80 7.68 3.79 5.99 

cj0534 sucD 3.59 4.57 3.30 4.55 

cj0772c cj0772c 4.82 5.47 3.07 4.36 

cj0834c cj0834c 5.57 4.76 3.36 2.71 

cj0920c cj0920c 9.69 5.06 13.2 5.02 

cj0987c cj0987c 21.6 14.8 9.56 5.22 

cj1238 pdxJ 3.09 2.80 2.13 3.12 

cj1503c putA 36.7 24.9 3.83 2.88 

cj1537c acs 85.2 57.2 7.55 5.83 
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Flagellar genes that are transcribed from σ
54

-dependent promoters during the middle 

phase of flagellar assembly were up-regulated after acid-shock at pH 3.6 and 5 (fig. 

3.2). These genes included components of the basal body, hook, junction proteins and 

associated outer membrane proteins (fig. 3.2). Figure 3.3 shows flagellar gene products 

that are up-regulated after acid-shock at pH 5 for 10 min in relation to the main 

structural components of the flagellum. Genes expressed at the early and late phases of 

flagellar assembly remained mostly unaffected by acid-shock except for fliQ expression, 

which was significantly up-regulated in response to 10 minutes acid-shock at pH 5. The 

flaC and ciaB invasion and peb1A adhesion determinants (Pei et al. 1998; Konkel et al. 

1999; Song et al. 2004) were also significantly up-regulated under one or more acid 

conditions (fig. 3.2). 
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Figure 3.2 Acid-shock at pH 3.6 and 5 increases expression of a subset of flagellar 

biosynthesis genes in C. jejuni NCTC11168.  

Genes transcribed by σ
54

 during the middle phase of flagellar assembly are up-regulated 

by up to three-fold. RNA levels of log phase cells incubated at pH 7 was compared with 

cells incubated pH 3.6 and 5 for 10 and 30 min. Results are shown for a subset of genes, 

including flagellar genes and previously identified invasion and adhesion determinants. 

Flagellar genes are listed and grouped in approximate order of flagellar assembly: early 

phase genes are controlled by σ
70

, middle phase by σ
54

, and late phase by σ
28

; invasion 

and adhesion determinants are grouped separately. Up-regulated genes are shown in red 

and down-regulated genes are shown in green. Maximum colour output represents a 

threefold change in expression. Results shown are an average of three independent 

experiments. 
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Figure 3.3 Diagram of up-regulated components of the C. jejuni NCTC11168 

flagellum after acid-shock.  

Genes and locations of the flagellar gene products that are up-regulated after acid-shock 

at pH 5 for 10 min are named. The main structural components of the flagellum are also 

labelled. Adapted from Wösten et al. (Wosten et al. 2004). 

 

3.2.3 Acid-shock increases invasion of C. jejuni into mouse intestinal crypt (m-

ICcl2) cells grown on transwell inserts.  

To investigate the effect of acid-shock and the associated increase in flagellar gene 

expression on C. jejuni virulence phenotypes, we performed invasion assays with a 

mouse intestinal crypt cell line (m-ICcl2) (Bens et al. 1996). This cell line represents 

crypt-like cells of the small intestine and was used in preference to colon-derived cell 

lines such as Caco-2. Confluent layers of m-ICcl2 cells were grown either on transwell 

inserts, or on flat-bottomed wells (fig 3.4 A), and were subsequently incubated with C. 

jejuni at MOI 1000. The C. jejuni cultures had either been incubated at pH 5 for 30 

minutes, or at pH 7 as a control. Following the established gentamicin-killing method 

for determining numbers of invaded bacteria, m-ICcl2 cells were lysed and invasive, 

intracellular C. jejuni were enumerated as colony forming units (cfu).  

The transwell model assessed both bacterial intracellular invasion from the lysed 

monolayer and bacterial translocation through the m-ICcl2 cell layer to the basolateral 
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side of the well. However, the flat-bottomed well model tested for intracellular invasion 

from the apical side only. An example of C. jejuni cfu recovered from the lysed 

monolayer and the basal lateral side is shown in figure 3.4 B. When comparing control 

C. jejuni cultures, higher invasion levels were seen in the flat-bottomed well model than 

in the transwell model (fig. 3.4 C). In the flat-bottomed well model, there was no 

significant effect of acid-shock on the number of C. jejuni recovered from m-ICcl2 cells 

(fig. 3.4 C). However, in the transwell model, acid-shock increased the levels of C. 

jejuni invasion up to two logs compared to the control, so invasion levels became 

comparable to those observed in the flat-bottomed well model (fig. 3.4 C). The number 

of translocated C. jejuni (recovered from the compartment below the transwell insert) 

was also increased up to two logs after acid-shock, although cfu recovery of acid-

shocked C. jejuni was very variable across technical replicates (fig. 3.4 B, C).  
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Figure 3.4 Acid-shock increases C. jejuni NCTC11168 invasion of mouse intestinal 

crypt (m-ICcl2) cells grown on transwell inserts, but not on flat-bottomed wells.  

A) Schematic representations of the ‘Transwell’ and ‘Flat-bottom well’ in vitro invasion 

models. Highlighted are possible routes (green arrows) of C. jejuni invasion: apical and 

basolateral when m-ICcl2 cells are grown on transwell inserts and apical only when 

grown on flat-bottomed wells. Cells were grown until confluent on transwell inserts or 

flat-bottomed wells prior to exposure with motile C. jejuni (MOI 1000) that had been 

acid-shocked at pH 5 or incubated at pH 7 for 30 min. After 2 h invasion, a gentamicin-

killing wash was performed and m-ICcl2 cells were lysed and viable C. jejuni cfu 

determined. B) Image of C. jejuni colony forming unit spot-counts from inside m-ICcl2 

cells (Intracellular) and from the basal compartment (Translocated) of transwell assays. 

C) Bar chart showing the percentage of invasive or translocated bacteria relative to the 

inocula that were recovered from the monolayer grown in transwells (Transwell), the 

basal compartment of the transwell (Translocated) and from the monolayer grown on 

flat-bottomed wells (Flat-bottom). C. jejuni incubated at pH 7 is represented by solid 

bars and C. jejuni acid-shocked at pH 5 is represented by open bars. Error bars denote 

standard error of the mean. Transwell experiments comprised 10 technical replicates. 

Flat-bottomed well experiments comprised three biological repeats each with 6 

technical replicates. Asterisk indicates P < 0.05 (One-way ANOVA).  
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3.3 Discussion 

When C. jejuni colonises a new host, the faecal-oral route of infection will inevitably 

include exposure to the acidic environments of the stomach in mammals as well as the 

acidic proventriculus (glandular stomach) in birds (Avila et al. 1986). Enteric pathogens 

require acid-resistance mechanisms for successful transmission to the intestine. In this 

chapter, C. jejuni survival in mild and strong acid-shock conditions was observed and 

was linked with increased transcription of a subset of flagellar biosynthetic genes and 

stress responses, as well as a down-regulation in genes involved in cell division and 

metabolism. Furthermore, acid-shock increased C. jejuni invasion of mouse small 

intestinal crypt (m-ICcl2) cells in a transwell assay.  

In this study, the threshold for survival of C. jejuni was up to pH 3.5 for 10 minutes 

acid-shock and up to pH 3.75 for 30 minutes acid-shock (fig. 3.1), indicating that C. 

jejuni can survive physiological acidic conditions of the stomach. Previous work 

describing the response of C. jejuni to acid exposure reported that C. jejuni cannot be 

cultured, but remains viable after prolonged exposure at pH 4 (Chaveerach et al. 2003). 

At pH 3 C. jejuni was reported to survive for no more than four minutes exposure, but 

that high numbers of C. jejuni were recovered from the pig stomach, which has a pH 

range of 3.8 and 4.2, suggesting that pH alone cannot explain this increased survival 

(Reid et al. 2008a).  

We also investigated whether C. jejuni induced an adaptive tolerance response (ATR) to 

acid. Exponential phase cultures did not show an ATR to lethal acid-shock at pH 2.75 

after 2 hours pre-incubation with pH 5. This is in agreement with the results from 

Murphy et al.. although their pre-incubation step was longer (Murphy et al. 2003a). 

C. jejuni gene expression in response to acid-shock was analysed at the lower threshold 

of pH 3.6, and with the mildly acidic condition of pH 5, at both 10 and 30 minutes 

incubation. Transcriptomic analysis of acid-shocked C. jejuni showed that exposure to 

acidic conditions resulted in increased expression of a subset of flagellar biosynthetic 

genes. Flagellar gene expression is tightly regulated by a hierarchy of σ factors and 

begins with σ
70

-dependent transcription of the inner membrane ring and secretion 

apparatus (Carrillo et al. 2004). Middle phase expression of genes coding for the minor 

flagellin, basal body and junction proteins is σ
54

 dependent and expression of the major 
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flagellin gene is dependent on σ
28

 during late phase (Hendrixson 2008). The flagellar 

genes that were up-regulated are transcribed by σ
54

 during the middle phase of flagellar 

assembly. This finding is consistent with a recent report where a C. jejuni rpoN mutant, 

which lacks the σ
54

 factor, showed reduced survival at pH 5 (Hwang et al. 2011), and is 

comparable with studies that reported transient expression of many of these flagellar 

biosynthetic genes upon acid-shock (Reid et al. 2008a; Reid et al. 2008b). Perhaps a 

change in expression of flagellar genes may be part of a general stress response. Indeed, 

down-regulation of genes encoding the cell cycle ATPases and ribosomal proteins was 

observed, which indicates a cessation of cell division and replication, and an up-

regulation of oxidative stress and heat shock proteins. Although C. jejuni did not 

directly encounter these stressors, stress responses have been shown to overlap, which 

was shown with mutants lacking some of the heat shock proteins (Maurer et al. 2005; 

Pflock et al. 2006). However, alongside the reported overlap in responses, there were 

also a large number of differences compared with previously published datasets (Reid et 

al. 2008a; Reid et al. 2008b), which may be a consequence of experimental design and 

analysis, bacterial growth and the natural variations between strains.  

Flagellar genes are linked with acid responses in other bacterial pathogens, including E. 

coli and H. pylori. In E. coli, flagellar genes are strongly induced in acidic conditions, 

but few flagellar regulators are up-regulated (Maurer et al. 2005). Increased levels of 

flagellar gene transcription have also been observed in E. coli responses to long-term 

acid exposure, but were not observed after short-term exposure to acidic conditions 

(Polen et al. 2003). In H. pylori, acid-shock resulted in increased expression of σ
54

-

dependent flagellar genes, and this correlated with an increase in the number of motile 

cells and speed of motility (Merrell et al. 2003). Thus, exposure to a range of acidic 

conditions seems to correlate with increased flagellar gene expression among 

gastrointestinal bacterial pathogens. 

Specific sensing mechanisms that bacteria use to sense low pH are currently not well 

understood in C. jejuni. In C. jejuni and H. pylori, FlgS is a cytoplasmic histidine kinase 

that regulates flagella assembly (Joslin and Hendrixson 2009; Wen et al. 2009). In H. 

pylori, FlgS senses low pH and activates urease expression, which contributes to 

bacterial survival, although this occurs independently of the two-component response 

regulator partner FlgR (Wen et al. 2009). In C. jejuni, our transcriptomic analysis 
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showed no change in the expression of flgR or either of the alternative σ-factors, 

meaning that the up-regulation of flagellar genes in C. jejuni was mediated by an 

alternative regulatory pathway. It is possible that post-transcriptional regulators, such as 

other protein regulators or non-coding RNAs contributed to the change in expression of 

this subset of genes. Non-coding RNAs are abundant in the C. jejuni genome (Dugar et 

al. 2013; Porcelli et al. 2013) and their function in regulating flagellar gene expression 

are the subject of the remaining thesis chapters. However, the microarray did not 

include probes for non-coding RNAs as their sequences were not known at this time and 

no candidate proteins regulators were identified.  

One possible explanation for the observed acid-induced increase in transcript levels of 

flagellar genes could be that acid-shock prepares C. jejuni for invasion or colonisation 

of the small intestine. Therefore, in vitro invasion experiments were performed with 

acid-shocked C. jejuni cultures compared to a pH 7 control, which resulted in increased 

invasion of mouse intestinal epithelial (m-ICcl2) cells by C. jejuni when the m-ICcl2 cells 

were grown in a transwell model (fig. 3.4 C). Interestingly, this phenomenon was not 

observed when m-ICcl2 cells were grown on flat-bottomed wells. This could be due to 

the elimination of the basolateral route of invasion in cells grown on flat-bottomed 

wells. Since C. jejuni can translocate through epithelial cell monolayers (Grant et al. 

1993; Douillard et al. 2008; van Alphen et al. 2008), this may be an important route of 

invasion for more motile, acid-shocked bacteria. Acid-shock may therefore increase the 

numbers of C. jejuni with flagella, which are required for translocation (Grant et al. 

1993), enabling more bacteria to translocate the epithelial cell layer and invade cells. 

However, the numbers of translocated C. jejuni varied between individual wells, 

reflecting perhaps differences in invasion mechanisms or responses to host secreted 

factors within the bacterial population. Quantification or visualisation of translocated 

bacteria at different time points after infection would address this.  

Another difference was that lower invasion levels were seen in the transwell model than 

in the flat-bottomed well model when comparing control, non-shocked C. jejuni cultures 

(fig. 3.4 C). Translocated C. jejuni that did not subsequently invade m-ICcl2 cells may 

account for this difference. Acid-shock then increased invasion levels because C. jejuni 

were more able to invade m-ICcl2 cells or were forced to escape acid-shock. 

Alternatively, the transwell invasion model was more physiologically relevant due to 
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greater m-ICcl2 cell polarisation, and so invasion levels were, in fact, more realistic than 

those in the flat-bottomed well model. 

C. jejuni was able invade m-ICcl2 cells and so this cell line is suitable for use in C. jejuni 

invasion assays, providing a system that represents the mammalian small intestine, 

rather than the colon. These cells can be used to complement in vivo mouse studies 

(Chang and Miller 2006; Watson et al. 2007; Bereswill et al. 2011). There is, however, 

no perfect invasion model for studying C. jejuni pathogenesis currently making the 

choice of model to use for both in vitro and in vivo work difficult. The majority of in 

vitro studies have used Caco-2, INT407, Hep-2 and HeLa cell lines (Friis et al. 2005), 

which have greatly advanced our knowledge of the molecular mechanisms of C. jejuni 

pathogenesis. However, as C. jejuni initially colonises the small intestine, which is 

inflamed and damaged in C. jejuni infected patients (Konkel et al. 2001), we propose 

that m-ICcl2 cells may be a more relevant cell line for investigating host cell invasion, as 

they are morphologically and functionally similar to small intestinal crypts (Bens et al. 

1996). 

To date, this is the first attempt to characterise the capacity of acid-shock to induce C. 

jejuni invasion of intestinal epithelial cells. Acidic conditions may trigger the activation 

of C. jejuni virulence phenotypes in preparation for host cell invasion. One study 

investigating co-incubation of C. jejuni with amoebae demonstrated that incubation of 

C. jejuni under mildly acidic conditions increased its adherence to and invasion of 

amoebae (Axelsson-Olsson et al. 2010). This study also reported that bacterial survival 

increased after long term acid exposure and that incubation of C. jejuni with low pH for 

an hour increased motility on a swarm plate. However, this was not observed in an 

earlier study where C. jejuni motility was reduced when inoculated onto swarm plates 

adjusted to different pHs (Szymanski et al. 1995). The effect of acidic conditions on C. 

jejuni motility is therefore not clear and needs to be investigated further as motility is 

required for host cell invasion, which is important for virulence (Grant et al. 1993; 

Nachamkin et al. 1993; Hendrixson and DiRita 2004). 

In summary, this work shows that C. jejuni responds to acid-shock by down-regulating 

genes involved in cell division and replication and by up-regulating flagellar and stress 

response genes. Understanding flagellar regulation is key to piecing together aspects of 

pathogenesis and perhaps devising interventions to prevent morbidity. Acid-shock 



C. jejuni flagellar responses after acid-shock   Chapter 3 

 

109 

 

increases C. jejuni invasion of intestinal epithelial cells when the basolateral invasion 

route is available. More work is now needed to extend these observations using 

virulence models. Also, the mechanisms that C. jejuni employs to sense acid-shock need 

to be elucidated to enhance our understanding of C. jejuni survival and response to 

acidic conditions, which is relevant to both the food industries and C. jejuni 

pathogenesis.  
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Chapter 4 Discovery of small non-coding RNAs NC1 

and NC4 in C. jejuni  

 

 

 

 

 

 

 

 

Collaborative work: 

Differential RNA sequencing and confirmation of RNAs performed by Ida Porcelli et 

al. (Porcelli et al. 2013). 
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4.1 Introduction 

In the last decade, non-protein-coding RNAs (ncRNAs) have been established as post-

transcriptional regulators of gene expression. These ncRNAs are not messenger, transfer 

or ribosomal RNAs and are also referred to as regulatory or functional RNAs in the 

literature. Regulation by ncRNAs affects many biological processes and ncRNA 

regulatory networks are present in all kingdoms of life. In prokaryotes, ncRNAs have 

been shown to contribute to virulence factor expression, and so are important in 

bacterial pathogenesis (Papenfort and Vogel 2010).  

Rapid advances in high-throughput sequencing technologies have opened up the field of 

ncRNA research. Differential RNA sequencing of primary transcripts was first 

performed for ncRNA discovery in the related organism, Helicobacter pylori 26695 

(Sharma et al. 2010). Surprisingly over a quarter of all transcription start sites (TSS) 

were antisense and more than 60 riboregulators have been discovered and validated by 

Northern hybridisation (Sharma et al. 2010). Of note, one ncRNA regulates urease 

activity in cis, which is important for survival in the host (Wen et al. 2011) and one 

antisense ncRNA regulates chemotaxis receptor expression in trans (Pernitzsch and 

Sharma 2012). Thus, it is likely that regulation by ncRNAs is an important mechanism 

of gene expression in Epsilon-Proteobacteria and that they have relevant roles in 

bacterial survival and host interactions. 

The aims of the study were to discover potential regulatory ncRNAs. The objectives 

were to: 

• Sequence primary RNA transcripts 

• Identify ncRNAs that are potentially involved in regulating the expression of 

virulence factors by bioinformatic analysis  

• Confirm expression of potential regulatory ncRNAs.  
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4.2 Results 

4.2.1 Two small non-coding RNAs, NC1 and NC4, are present in the C. jejuni 

genome. 

Differential RNA sequencing of C. jejuni NCTC11168 transcriptome enriched for 

primary transcripts revealed the presence of several potential ncRNAs (Porcelli et al. 

2013). Two of these, designated NC1 and NC4 are transcribed from genes situated in 

different genomic locations, the cj0082-Cj0085c and cj1633-Cj1634c intergenic regions 

respectively (fig. 4.1). NC1 and NC4 are 45 and 47 nucleotides long and have similar 

sequences (fig. 4.2). Poly G and C tracts may lead to formation of a stem-loop 

transcription termination structure, suggesting that they are transcribed as discrete RNA 

species (fig. 4.2).   

 

Figure 4.1 NC1 and NC4 are expressed in primary transcripts.  

Differential RNA sequencing histograms are shown: the red histogram representing 

transcripts from the cDNA library enriched for primary transcripts by the addition of 

terminator exonuclease (TEX); and the blue histogram representing the non-enriched 

cDNA library. Above the histograms, the ncRNA and surrounding genes (cj numbers 

for C. jejuni NCTC11168) are shown as large arrows indicating the direction of 

transcription. The small arrows represent the ncRNA promoters. Taken from Porcelli et 

al. (Porcelli et al. 2013). 
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Figure 4.2 NC1 and NC4 have similar sequences.  

The sequences of NC1 and NC4 are shown. Bases that are predicted to from a stem-

loop structure are labelled bases forming the stem are indicated by < or >, which point 

to toward the top of the stem. Where bases match exactly is indicated by | .  

 

NC1 and NC4 are conserved in other thermophilic Campylobacter species including C. 

jejuni subspecies doylei and C. coli. NC1 is also present in the C. upsaliensis genome 

(fig. 4.3). Conservation of these RNAs suggests a conserved role in Campylobacter 

biology. The promoters of NC1 and NC4 contain consensus σ
28

 (CGATAT) -10 

sequences and these are also conserved. This suggests that the ncRNAs are transcribed 

during flagellar assembly, as σ
28

 is only expressed during this process.  

 

NC1: intergenic region cj0082 (cydB) - cj0085c 

                      -10                                  

Cjej           TTAAACCGATATAAGT-ATAAATCTTTTCAAAATATTGCAATT-TGCCCA--TTTT--TGGGCATCTTTTAA 

Cdoy           TTAAACCGATATAAGT-ATAAATCTTTTCAAAATATTGCAATT-TGCCCA--TTTT--TGGACATCTTTTAA 

Ccoli          TTAA-CCGATTTAGGA-TTAAATCTTTTCAAAATATTGCAATTTTGCCCATATTTATATGGGCA--TTTTTA 

Cups           AATAAACGATATAGTAGATGAATCTTTTCAAAATATTGCAA-T-AA-ACCCAAGTTAAAGCTTGGGTTTTTT 

                  *  ***** *     * ********************* *     *     *    *      ****  

 

NC4: intergenic region cj1633 - cj1634c (aroC) 

                      -10                                        

Cjej  AACAAGCGATATAGTATTTGAATCTTTTCAAAATATTGCAA-TCAA-GCCCATGAAAATGGGCTTTTTT 

Cdoy   AAGAAACGATATAGTATTTGAATCTTTTCAAAATATTGCAA-TCAA-GCCCATGAAAATGGGCTTTTTT 

Ccoli    AAGAGACGATATGG-AGTTAAATCTTTTCAAAATATTGCAAATTAAAGCCCA--AAAATGGGCTTTATC 

               ** *  ****** * * ** *********************   **  ****  ************ *            

 

Figure 4.3 NC1 and NC4 are conserved in different Campylobacter species. 

Conservation of NC1 and NC4 in C. jejuni subspecies jejuni NCTC11168 (Cjej), C. 

jejuni subspecies doylei 269.97 (Cdoy), C. coli RM2228 (Ccoli), C. upsaliensis 

RM3195 (Cups). The -10 promoter is shown in red. The non-coding RNA sequences 

are in blue and the predicted stem-loop structure is indicated. Bases conserved in all 

strains are indicated by * . 
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4.2.2 NC1 and NC4 are predicted to base pair with σ
54

-dependent gene mRNA 

transcripts. 

The TargetRNA programme (Tjaden et al. 2006) was used to predict gene targets for 

NC1 and NC4 and six of the highly ranked genes were σ
54

 dependent genes: cj0243c 

(hypothetical gene), cj0428 (hypothetical gene), cj1026c (flgP), cj1338c (flaB), cj1729c 

(flgE2), and cj1650 (hypothetical gene) (table 4.1). Further analysis revealed that NC1 

and NC4 predicted interactions with target genes were characteristic of trans encoded 

ncRNAs. NC1 and NC4 were predicted to base pair with regions within the 5’ 

untranslated region (5’ UTR) of the target mRNA transcripts, with base-pairing being 

imperfect and short, incorporating around 20 nucleotides. NC1 and NC4 base-paring 

regions were predicted to be in close proximity to the translation start site and cover the 

ribosome binding sites, indicating that the ncRNAs may prevent ribosome binding and, 

therefore, translation (fig. 4.4). A further σ
54

-dependent target was added to the 

predictions, which was cj0887c encoding flgL (fig. 4.4). The binding region of NC1 and 

NC4 is predicted to be relatively distant from the translation start site of flgL and flgE2 

transcripts, at approximately 25 and 50 nucleotides from the translation start site, 

respectively (fig. 4.4). 
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Table 4.1 List of NC1 and NC4 predicted C. jejuni gene targets. 

Genes listed are predicted by TargetRNA to be targets of NC1 and NC4 (P < 0.001) and 

are ranked based on P value. * denotes sigma54 dependent genes. 

NC1 NC4 

Rank Gene P value Rank Gene P value 

1 cj1338c (flaB)* 3.21 x10
-7

 1 cj1338c (flaB)* 9.28 x10
-7

 

2 cj0243c* 9.28 x10
-7

 2 cj0243c* 2.68 x10
-7

 

3 cj1026c (flgP)* 6.51 x10
-5

 3 cj0878 8.04 x10
-5

 

4 cj0878 8.05 x10
-5

 4 cj0428* 9.95 x10
-5

 

5 cj0428* 9.95 x10
-5

 5 cj0582 (lysC) 1.88 x10
-4

 

6 cj1729c (flgE2)* 1.23 x10
-4

 6 cj1026c (flgP)* 1.88 x10
-4

 

7 cj0582 (lysC) 1.88 x10
-4

 7 cj0852c 2.33 x10
-4

 

8 cj0143c 2.33 x10
-4

 8 cj1650* 2.88 x10
-4

 

9 cj0852c 2.33 x10
-4

 9 cj1729c (flgE2)* 3.56 x10
-4

 

10 cj1650* 2.88 x10
-4

 10 cj0143c 4.41 x10
-4

 

11 cj0462 5.45 x10
-4

 11 cj0462 5.45 x10
-4
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cj0243c (hypothetical) 

                                                  CGUUAUAAAACUUUUCUAA –5’ 

                      -24         -12             |||||||||||:||||||| 

Cjej         5’- AACUUGGCACACCUUUUGCUUAUAAAAAA-UCAGCAAUAUUUUGGAAAGAUUUAAAAUG 

Cdoy         5’- AACUUGGCACACCUUUUGCUUAUAAAAAAAUCAGCAAUAUUUUGGAAAGAUUUAAAAUG 

Ccoli        5’- AACUUGGCACACCUUUUGCUUAUAAAAAA-CUAGCAAUAUUUUUGAAAGAUUUAAAAUG 

Cups         5’- AACUUGGCACAUUUUUUGCUUAAUUCUUA-CAAGCAAUAAUUUGAAAAGAGUAACAAUG  

               ***********  *********      *   ******* ***  ***** * * **** 

 

cj0428 (hypothetical)          

                                                 CGUUAUAAAACUUUUCUAA –5’ 

                      -24         -12            |||   |||  ||:: : 

Cjej         5’- AAAAAGGAACGCUUUUUGCUUGUAUAGUUUUUGCAUAUUUUGAAAGGAGAAAACUAUG 

Ccoli        5’- AUUAAGGAACACUUUUUGCUUGUAUAGUUUUUGCAUAUUUUGAAAGGAGAAAGCUAUG 

                 *  ******* ***************************************** *****  

                                    

cj0887c (flgL)   
                                                 CGUUAUAAAACUUUUCUAA –5’ 

                      -24         -12            |||||: |||||||||||| 

Cjej         5’- UUUUUGGAACAGUUAUUGCUUUUGUUUAUU-AGCAAUG-UUUGAAAAGAUUU--UAACUUU(nx19)AUG 

Cdoy         5’- UUUUUGGAACAGUUGUUGCUUUUGUUUAUU-AGCAAUA-UUUGAAAAGAUUU--UAACUUU(nx19)AUG 

Ccoli        5’- AAAUUGGAACAAUUAUUGCUUGUAUUUACAAAGCAAUG-UUUGAAAAGAUUUAUUUAAAUC(nx18)AUG 

Cups         5’- UUUUAGGAACGCUUUUUGCUUGUAAUAUCGUAGCAAUA-UUUGAAAAGAUC----AAAUUC(nx17)AUG 

                 ***  *****  ** ****** *  *     ******  ***********      *  *       ***  

 

cj1026c (flgP)                                         
                                                      CGUUAUAAAACUUUUCUAA –5’ 
                      -24         -12                  |||||||||||  ||:|  

Cjej         5’- AAGUUGGAACGCUUAUUGCUUUUUUAUUUUACUAAUUACAAUAUUUUGA--AGGUGUAAAAAUG 

Cdoy         5’- AAGUUGGAACGCUUAUUGCUUUUUAUUUUACUAAAUUACAAUAUUUUGA--AGGUGUAAAAAUG 

Ccoli        5’- GAGUUGGAACGCUUUUUGCUUUUUUAUCAAAU-AAUUACAAUAUUUUGA--AGGUGUAAAUAUG 

Cups         5’- GACUUGGAACGCUUUUUGCUUUCUCAU-AGUCAUAUUACAAUAUUUUGA--AGGUGUAAAUAUG 

                  * *********** ******* *  *       ***************  ********* *** 

 

cj1338c (flaB) 
                                                   CGUUAUAAAACUUUUCUAA –5’ 

                      -24         -12              ||||||||||||||:|||| 

Cjej         5’- AACUUGGAACACUUUUUGCUUUAAUCUUUUCGAUGCAAUAUUUUGAAAGGAUUUAAAAUG 

Ccoli        5’- AACUUGGAACACUUCUUGCUUUAAUCUUUUCGAUGCAAUAUUUUGAAAGGAUUUAAAAUG 

Cups         5’- AACUUGGAACACUUCUUGCUUUCUUCCUUUCGA-GCAAUAUUUUGAAAGGAUUUAAAAUG 

                 ************** *******  ** ****** ************************** 

 

cj1729c (flgE2) 
                                                       CGUUAUAAAACUUUUCUAA –5’ 

                      -24         -12                  |||| | |||   || : 

Cjej         5’- AAGUUGGAACAGAACUUGCUUGUAAACUUCACAUAAACGCAAAAGUUUUUUAAAGCCAAAGC(nx40)AUG 

Cdoy         5’- AAGUUGGAACAGAACUUGCUUAUAAACUUCACAUAAACGCAAAAUUUUUUUAAAGCCAAAGC(nX38)AUG 

Ccoli        5’- AAGUUGGAACAGAACUUGCUUGUAAACUUCACAUAAACGCAAAAGUUUUUUAAAGCCAAAGC(nx40)AUG 

                 ********************* ********************** *****************      *** 

 

cj1650 (hypothetical)  
                                                     CGUUAUAAAACUUUUCUAA –5’ 

                         -24         -12             ||||||||||  :|| : | 

Cjej            5’- AUUUAGGAACACUUUUUGCUUUUUAAAUAUUUAGCAAUAUUUUU-GAAAGGUAAACAAUG 

Ccoli           5’- AAAUAGGAACACUUUUUGCUUUUUAAACCUUUAGCAAUAUUUUUUGAAAGGUGUAAAAUG 

Cups            5’- AAAGAGGAACACUUUUUGCUUACCUAA-ACUUAGCAAUAUUU---GAAAGGAAGCAAAUG 

                    *   *****************    **   ************   ******     **** 
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Figure 4.4 NC1 and NC4 are predicted to bind the 5’ untranslated region of σ
54

-

dependent flagellar genes.  

The predicted 5’ untranslated region (5’ UTR) of each C. jejuni target gene is shown in 

purple and the preceding promoter region is shown with consensus σ
54 

sequences in 

red. The NC1/NC4 binding region is shown in blue and where base pairs match to the 

target 5’ UTR is indicated by | and partial binding is indicated by : .  

 

4.2.3 NC1 and NC4 expression is confirmed by Northern hybridisation. 

The expression of the ncRNAs was confirmed by Northern hybridisation analysis, 

where NC1 and NC4 were detected in RNA extracted from C. jejuni grown to early, 

mid-log and late-log phase and the amount of transcript expressed was similar across 

growth phases (fig. 4.5). However, the probe for NC1 required long exposure to [γ
32

P] 

radiation for detection with a band being visible after 24 hours exposure. This suggests 

that the probe for NC1 was not suitable for the detection of the RNA or that low levels 

are expressed (fig. 4.5).  

 

Figure 4.5 NC1 and NC4 are expressed in the C. jejuni NCTC11168 transcriptome. 

Northern hybridisation was performed using [γ
32

P] end labelled probes for detection of 

NC1 and NC4 transcripts in early logarithmic, mid-logarithmic and late logarithmic 

phases, lanes 1, 2 and 3, respectively. M - RNA marker (pUC Mix Marker, 8, 

Fermentas) and sizes of relevant fragments are indicated in base pairs (bp). NC1 and 

NC4 are 45 and 47 nucleotides long, respectively, and are indicated with black arrows. 

Performed by Ida Porcelli (Porcelli et al. 2013).  
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4.2.4 NC1 and NC4 expression is dependent on σ
28

 for transcription. 

In order to establish whether NC1 and NC4 are dependent on σ
28

 for transcription as 

predicted, expression of the RNAs was assessed in a C. jejuni wild-type and fliA 

inactivated mutant (fliA encodes σ
28

). Nested reverse transcription-PCR with gel 

analysis was used to detect NC1 and NC4 in the total RNA extract of these strains. NC1 

and NC4 were expressed in the wild-type (fig. 4.6 A), but expression was markedly 

decreased in the σ
28

 mutant. The expression of NC3 was also assessed as a control as 

expression is high as it is dependent on σ
70

, and so would be expressed and detected in 

both the wild-type and the mutant. NC3 expression was unaffected by the inactivation 

of fliA (fig. 4.6 A). No product was detected in the genomic DNA controls meaning that 

the primers only detected copy-DNA.  

Northern hybridisation showed that NC4 was present in the wild-type, but was absent in 

the fliA inactivated mutant (fig. 4.6 B). NC1 was undetectable by Northern hybridisation 

after five days exposure to [γ
32

P] radiation. 
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A              B      

                    

                  

Figure 4.6 NC1 and NC4 expression is driven by σ
28

 transcription in C. jejuni 

NCTC11168.  

NC1 and NC4 expression in a wild-type C. jejuni was compared to that of a fliA 

inactivated mutant, which would be deficient for functional σ
28

. A) NC1 and NC4 

expression was assessed in total RNA of the wild-type and the fliA inactivated mutant 

by PCR amplification of reverse transcribed RNA. Reverse transcription and 

amplification of NC3, a highly transcribed RNA upstream of the porA gene with a σ
70

 

promoter, was performed as a control. Image has been inverted to show black bands on 

a light background. B) NC4 expression was assessed by Northern hybridisation in total 

RNA of the wild-type and the fliA inactivated mutant. Black arrows indicate NC1 and 

NC4 and blue arrow indicates NC3 positions. Symbols: WT - wild-type; ∆28 - fliA 

inactivated mutant; g - genomic DNA; -ve - primers only; M - Marker: Low Molecular 

Weight marker for PCR (NEB) or pUC mix marker 8 for Northern hybridisation 

(Thermo Scientific); bp - base pair. 
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4.3 Discussion 

C. jejuni ncRNAs were discovered by differential RNA sequencing and were 

subsequently confirmed by Northern analysis (fig. 4.6, (Porcelli et al. 2013)). NC1 and 

NC4 were predicted to target σ
54

-dependent flagellar genes and so act in trans to 

regulate gene expression. NC1 and NC4 were shown to be dependent on σ
28 

for 

expression in C. jejuni (fig. 4.6), which may mean that they are part of the flagellar 

regulatory network.  

NC1 and NC4 were detected by differential RNA sequencing of C. jejuni NCTC11168 

transcripts. NC1 and NC4 are conserved in other C. jejuni strains (Dugar et al. 2013) 

and in a few thermophilic Campylobacter species (fig. 4.3) (Dugar et al. 2013) in which 

they may perform a conserved function. Recent work comparing transcriptomes of C. 

jejuni strains NCTC11168, RM1221, 81-176, 81116 showed that NC4 was expressed by 

all strains and that expression was high during mid-exponential and stationary phase, 

but was low after overnight culture (Dugar et al. 2013). NC1 was detected and 

expressed, although probes poorly detected NC1 in Northern blot analysis. NC1 is 

detected in RNA sequencing so it is likely that NC1 cannot be detected by the probe 

employed in the assay. The sequences of NC1 and NC4 are similar and so they could 

perform similar functions or have some functional redundancy. Both the RNAs were 

expressed during early, mid and late growth phase, indicative of functioning during all 

stages of C. jejuni growth. 

Approximately 30 potential trans-acting ncRNAs (2% of the genome) have been 

discovered in C. jejuni strains and several candidates have been found on 

Campylobacter plasmids pVir and pTet (Dugar et al. 2013; Porcelli et al. 2013).  These 

plasmids contain genes for type IV secretion systems and antibiotic resistance 

(tetracycline resistance on pTet) (Bacon et al. 2002; Friis et al. 2007), so it is possible 

that ncRNAs could regulate expression of these systems. Five ncRNAs were predicted 

by earlier genome screens using the Rfam database (Chaudhuri et al. 2011) and four of 

these were subsequently detected by differential RNA sequencing (Dugar et al. 2013). 

The functions of these ncRNAs have not yet been elucidated.  
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RNA Illumina and differential RNA sequencing confirmed the presence of other 

previously described ncRNAs: the TPP riboswitch; signal recognition particle RNA, 

which is involved in the co-translational targeting of proteins to membranes; the RNA 

component of RNaseP; and 10Sa RNA, which rescues stalled ribosomes and tags 

proteins for degradation (Chaudhuri et al. 2011; Dugar et al. 2013). 

NC1 and NC4 were predicted to be dependent on σ
28

 for transcription through the 

identification of σ
28

 consensus sequences. This was confirmed by the decreased 

expression of NC1 and NC4 expression in fliA inactivated strains (fig. 4.6). Faint bands 

were observed in semi-quantitative reverse transcription PCR of NC1 and NC4 in fliA 

inactivated C. jejuni RNA extracts, but these were not detected by Northern 

hybridisation of NC4. Leaky transcription from upstream promoters may have resulted 

in low levels of transcript detected by PCR, which is more sensitive than Northern 

analysis. The probe for NC1 failed and poorly detected NC1 in previous experiments. 

As the sequence of NC1 is short and approximately half the RNA forms a stem-loop 

structure, an alternative probe that did not cross-react with NC4 could not be made.  

NC1 and NC4 were predicted to target several genes and many were shared between 

both the ncRNAs, which was expected as the sequences of NC1 and NC4 are very 

similar. The base-pairing regions of NC1 and NC4 that do not form the stem-loop 

structure, are almost identical except for the first nucleotide. Of the 11 highly ranked 

target genes (P < 0.001), six were σ
54

-dependent genes. The highest ranked target was 

flaB with almost perfect complementary base-pairing and flaB is conserved in C. coli 

and C. upsaliensis also. The other σ
54

-dependent target genes were conserved in two or 

more species of Campylobacter, including C. jejuni subspecies jejuni, C. jejuni 

subspecies doylei, C. coli and C. upsaliensis. The prediction that NC1 and NC4 regulate 

flagella genes, together with the demonstrated σ
28

-dependent NC1 and NC4 expression, 

provide strong indicators for their involvement in flagellar regulation. 

  



C. jejuni non-coding RNA predictions  Chapter 4 

 

122 

 

The following chapter will examine whether NC1 and NC4 contribute to an observable 

phenotype. The Epsilon-Proteobacteria seem to have developed their ncRNA repertoires 

independently of other prokaryotes, as Campylobacter and Helicobacter species have 

ncRNAs that are not present outside each genus. It was anticipated that functional 

studies for the ncRNAs discovered would reveal interesting roles for these potential 

genome regulators. 
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mutants 

 

 

 

  



Phenotypes of C. jejuni non-coding RNA mutants   Chapter 5 

 

124 

 

5.1 Introduction 

The previous chapter showed that NC1 and NC4 are dependent on σ
28

 for expression 

and are predicted to target σ
54

-dependent flagellar genes. As these two σ factors are 

principally involved in flagellar assembly and expression of flagella-associated genes in 

C. jejuni, we hypothesised that NC1 and NC4 are part of the flagellar assembly 

regulatory network. Because flagellar assembly is tightly controlled and occurs in 

distinct stages, it was expected that altered expression of these ncRNAs would disrupt 

this network and alter flagellar assembly and function. Moreover, as NC1 and NC4 

expression is dependent on σ
28

, they would be produced at the late stage of flagellar 

assembly and then down-regulate translation of target, middle stage σ
54

 genes.  Thus, 

the ncRNAs could act as a negative feedback mechanism to stop unnecessary protein 

expression after the flagellum has been assembled (fig. 5.1).  

 

 

Figure 5.1 Hypothesis: NC1 and NC4 provide a negative feedback system of 

flagellar protein expression.  

Flagellum assembly is regulated by a hierarchy of sigma (σ) factors. NC1 and NC4 

would be expressed at the late stage of assembly by σ
28

 and they then target the 

expression of earlier σ
54

-dependent genes (cj0243c (hypothetical), cj0428 

(hypothetical), cj0887c (flgL), cj1338c (flaB), cj1026c (flgP), cj1729c (flgE2), and 

cj1650 (hypothetical)), during the middle stage of flagellar assembly. Known proteins 

encoded by these genes are labelled and hypothetical proteins are listed as being 

expressed in the middle phase of flagella assembly. Thus, NC1 and NC4 could act as a 

negative feedback mechanism to stop unnecessary protein expression after the flagellum 

has been assembled. 
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The predicted target genes for NC1 and NC4 are associated with motility phenotypes. 

FlgE2 (encoded by cj1729c) is the major hook subunit (Hendrixson and Di Rita 2003). 

Mutating flgE2 prevents filament formation and Campylobacter invasion proteins are 

not secreted, which prevents motility, and adherence to and invasion of intestinal 

epithelial cells (Konkel et al. 2004). FlgL (encoded by cj0887c) is a junction protein 

and flgL mutation also prevents filament formation, motility and Cia protein secretion 

(Neal-McKinney and Konkel 2012). Membrane ruffling of intestinal epithelial cells was 

not induced by C. jejuni flgL mutants, whereas wild-type and complemented mutants 

did cause membrane ruffling (Neal-McKinney and Konkel 2012). Therefore, mutating 

flgL would give a visible phenotype forming truncated flagella, and these studies 

indicate that the role of flgL in motility or protein secretion is important for eliciting a 

host response.  

FlgP (encoded by cj1026c) is an outer membrane associated protein that is required for 

motility only, as flgP mutants still assemble flagella, but are non-motile  (Sommerlad 

and Hendrixson 2007). FlaB (encoded by cj1338c) is the minor flagellin subunit of the 

filament, whereas FlaA (encoded by cj1339c) is the major subunit. C. jejuni flagella can 

function without FlaB, and these bacteria are still motile and can colonise hosts 

(Wassenaar et al. 1993). This means that FlaB deficient C. jejuni may be phenotypically 

indistinguishable from wild-type C. jejuni, but phenotypes should be seen as a result of 

differential regulation of the other target genes. Thus, if NC1 and NC4 did regulate 

these proposed targets then there may be specific phenotypes that can be expected of 

NC1 and NC4 mutants.  

The aims of this study were to assess the importance of NC1 and NC4 in C. jejuni 

motility and virulence, and whether they contribute to regulation of gene expression. 

The objectives were to: 

• Make C. jejuni NC1 and NC4 mutants with single NC1 and NC4 chromosomal 

deletions, and a double deletion mutant – as NC1 and NC4 are similar, one may 

compensate for the other in a single deletion mutant;   

• Make NC1 and NC4 over-expression mutants because if the ncRNAs silence gene 

expression, increased levels of NC1 and NC4 would be more likely to decrease 

expression of the target genes and give rise to a phenotype;  

• Examine the growth of C. jejuni ncRNA mutants under different conditions; 
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• Examine motility phenotypes of C. jejuni ncRNA mutants in comparison with the 

wild-type strain and a non-motile mutant with short or no flagellar filament – 

considering the genes targeted by NC1 and NC4, mutants of the ncRNAs are 

expected to be phenotypically similar to non-motile C. jejuni; 

• Examine protein expression of C. jejuni ncRNA mutants; 

• Examine C. jejuni ncRNA mutant gene expression, and in particular the expression 

of predicted target genes. 
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5.2 Results 

C. jejuni ncRNA mutants were made from a motile, spiral-rod variant of C. jejuni 

NCTC11168. A list of strains used in this chapter is given in table 5.2.1. Mutants were 

also made in a motile, straight-rod variant and phenotypic tests were performed, but 

these strains lost motility after passage, and so were re-made. However, this variant was 

later found by the group to have a growth defect at 42°C and so experiments with these 

bacteria ceased and the data are not included. As NC1 and NC4 are predicted to target 

flagellar genes, a range of motility-related assays were performed to investigate the 

involvement of NC1 and NC4 in flagellar formation and function. Because it was 

predicted that flagellar regulation would be disrupted in C. jejuni ncRNA mutants and 

result in aflagellate, non-motile bacteria, C. jejuni lacking flaA and flaB was included in 

motility assays for comparison. 

5.2.1 Deletion and over-expression of NC1 and NC4 in C. jejuni NCTC11168. 

NC1 and NC4 were each deleted and over-expressed in a motile C. jejuni NCTC11168 

to ascertain their function and contribution to C. jejuni biology. Both NC1 and NC4 

were also deleted to eliminate any possible compensatory actions one ncRNA might 

have in place of the other. To delete the genes, the flanking sequences of the intergenic 

regions with antibiotic resistance cassettes were constructed in shuttle vectors, which 

were used to transform C. jejuni by homologously recombining the mutation into the 

chromosome.  

To over-express NC1 and NC4, the genes were synthesised downstream of the fdxA 

promoter (moderate expression strength) with the NcoI restriction site at either side 

(GeneArt). The gene was excised from the synthesised plasmid and cloned into the 

shuttle vector pC46. Plasmid C46 contains flanking regions of the pseudogene cj0046 

with a chloramphenicol resistance cassette. This plasmid was then used to transform C. 

jejuni as described before. Detailed descriptions of NC1 and NC4 mutations are 

described in chapter 2. Shuttle plasmid constructs were verified by sequencing and C. 

jejuni mutants were verified by PCR. C. jejuni NC4 mutants were also confirmed by 

Northern hybridisation analysis (fig. 5.2). The strains used in this chapter are listed in 

table 5.1. 
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Figure 5.2 Confirmation of NC4 deletion from C. jejuni NCTC11168.  

Northern hybridisation was performed using [γ
32

P] end labelled probes to detect NC4 

transcripts in C. jejuni RNA extracts from bacteria grown to mid-logarithmic phase. 

NC4 is 47 nucleotides long. Each lane contains RNA from one strain of C. jejuni: WT - 

wild-type; NC4 - NC4 deletion; NC1NC4 - double NC1, NC4 deletion; ovNC1 - NC1 

over-expression; ovNC4 - NC4 over-expression. Lane M contains an RNA marker 

(pUC Mix Marker, 8, Fermentas) and sizes of relevant fragments are indicated in base 

pairs (bp). 
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Table 5.1 C. jejuni NCTC11168 strains used in phenotype assays. 

Symbol Description 

WT Wild-type Campylobacter jejuni NCTC11168 

NM Non-motile, flaAB inactivation, kan
R
 

NC1 NC1 deletion, kan
R
 

NC4 NC4 deletion, kan
R
 

NC1NC4 NC1 deletion, kan
R
 and NC4 deletion, chlor

R
 

ovNC1 NC1 over-expression in cj0046 region, PfdxA, chlor
R
 

ovNC4 NC4 over-expression in cj0046 region, PfdxA, chlor
R
 

kan
R 

- kanamycin resistance cassette 

chlor
R 

- chloramphenicol resistance cassette 

PfdxA – promoter of fdxA used for over-expression (van Vliet 2001). 

 

5.2.2 Growth of C. jejuni NC1/NC4 deletion and over-expression strains is similar 

to the wild-type strain. 

Growth of C. jejuni NC1 and NC4 deletion and over-expressing strains was monitored 

at 37 and 42°C for 24 hours. All NC1, NC4 and double NC1/NC4 deletion strains and 

the NC1 and NC4 over-expressing strains grew at the same rate as the wild-type strain 

at both temperatures (fig. 5.3). Growth rate of the non-motile flaAB inactivation strain 

was increased at both 37 and 42°C, which was expected because the strain would not 

have to expend energy producing flagella.  
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Figure 5.3 Growth of C. jejuni NCTC11168 NC1/NC4 deletion and over-expression 

strains is similar to wild-type at 37 and 42°C.  

The growth of C. jejuni NCTC11168 strains was monitored at 37 and 42°C by 

measuring the optical density of batch cultures over time. Error bars represent standard 

error of the mean of data from three biological replicates. Some error bars were too low 

to be plotted. Strains: WT - wild-type; NM - non-motile flaAB inactivation;  NC1 - NC1 

deletion; NC4 - NC4 deletion; NC1NC4 - double NC1 and NC4 deletion; ovNC1 - NC1 

over-expression; ovNC4 - NC4 over-expression. 

 

5.2.3 Autoagglutination of C. jejuni NC1/NC4 deletion and over-expression strains 

is similar to the wild-type strain. 

C. jejuni cells clump together in static broth cultures and this is known as 

autoagglutination. Autoagglutination is a common indicator of the presence of flagella 

or changes in the flagella surface (Friis et al. 2007). For autoagglutination experiments, 

C. jejuni cultures, grown to mid-exponential phase, were resuspended in phosphate 

buffered saline and the change in optical density was measured after 24 hours at 20°C in 
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air. The average initial optical density was 0.6-0.7 for all strains except for the flaAB 

inactivation mutant, which was ~1.0 (not shown). The NC1 deletion, NC4 deletion, 

NC1 over-expression and NC4 over-expression C. jejuni strains all autoagglutinated to 

the same extent as the wild-type as the final optical density of cell suspensions was 

reduced to approximately 20% of the initial optical density e (fig 5.4). The final optical 

density of double NC1/NC4 deletion mutant cell suspensions was 35% of the initial 

optical density, but this was not significantly different to the wild-type (P > 0.05). The 

non-motile strain did not autoagglutinate and final optical density remained at 

approximately 80% of the initial optical density (fig 5.4).  
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Figure 5.4 Autoagglutination of C. jejuni NCTC11168 NC1/NC4 deletion and over-

expression strains is similar to the wild-type.  

To measure autoagglutination (AAG), C. jejuni were resuspended in phosphate buffered 

saline and the optical density at 600 nm was measured immediately and after 24 hours. 

The average initial optical density was 0.6-0.7 for all strains except for NM, which was 

~1.0. Results are shown as the percentage final optical density of the initial optical 

density (% initial OD600 nm). Error bars represent standard error of the mean of data 

from three biological replicates. Asterisk indicates P < 0.05 relative to WT (One-way 

ANOVA). Strains: WT - wild-type; NM - non-motile flaAB inactivation;  NC1 - NC1 

deletion; NC4 - NC4 deletion; NC1NC4 - double NC1 and NC4 deletion; ovNC1 - NC1 

over-expression; ovNC4 - NC4 over-expression. 
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5.2.4 C. jejuni NC1/NC4 deletion and over-expression strains express flagella. 

C. jejuni and their flagella were directly visualised by light microscopy using a crystal 

violet based stain. All NC1 and NC4 mutant strains had flagella that were similar to the 

wild-type, except for the non-motile strain, which did not have flagella (fig. 5.5 A). The 

C. jejuni NC1 and NC4 deletion and the wild-type strains were visualised by scanning 

electron microscopy. All strains had flagella and had similar cell morphologies (fig. 5.5 

B).  

A 

   

B 

 

Figure 5.5 C. jejuni NCTC11168 NC1/NC4 deletion and over-expression strains 

express flagella.  

A) C. jejuni strains were observed by light microscopy using a crystal violet based stain. 

The non-motile strain did not have flagella. Images are representative of three biological 

replicates. B) Wild-type C. jejuni and the NC1 and NC4 deletion strains were observed 

by scanning electron microscopy (performed by Kathryn Cross). Images are 

representative of two biological replicates. Strains: WT - wild-type; NM - non-motile 

flaAB inactivation;  NC1 - NC1 deletion; NC4 - NC4 deletion; NC1NC4 - double NC1 

and NC4 deletion; ovNC1 - NC1 over-expression; ovNC4 - NC4 over-expression. 
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5.2.5 Motility of C. jejuni NC1/NC4 deletion and over-expression strains is similar 

to the wild-type strain. 

Motility was measured using a swarm plate assay, where soft agar was inoculated with 

C. jejuni strains and the diameter of spread after 48 hours, in microaerobic conditions, 

was measured. All C. jejuni NC1, NC4 and double NC1/NC4 deletion strains and the 

NC1 and NC4 over-expression strains were motile to the same degree as the wild-type 

(fig. 5.6). As expected the flaAB mutant was non-motile and did not spread out from the 

point of inoculation, and this was significantly different to the wild-type (P < 0.05). 
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Figure 5.6 Motility of C. jejuni NCTC11168 NC1/NC4 deletion and over-expression 

strains is similar to the wild-type.  

Motility of each strain was assessed by measuring the spread of bacteria on soft agar 

plates and is given in millimetres (mm). Error bars represent standard error of the mean 

of data from three biological replicates. Asterisk indicates P < 0.05 relative to WT 

(One-way ANOVA). Strains: WT - wild-type; NM - non-motile flaAB inactivation;  

NC1 - NC1 deletion; NC4 - NC4 deletion; NC1NC4 - double NC1 and NC4 deletion; 

ovNC1 - NC1 over-expression; ovNC4 - NC4 over-expression. 

 

5.2.6 C. jejuni NC1/NC4 deletion and over-expression strains have similar taxis 

profiles to the wild-type strain. 

In addition to the swarm plate assay, a tube-based assay that examines energy taxis was 

used to test flagellar function as flagella are required for taxis (Reuter et al. 2010; 

Reuter and van Vliet 2013). Brucella soft agar medium supplemented with triphenyl 

tetrazolium chloride (TTC), which is converted into a red formazan dye by respiration, 
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was set in a centrifuge tube. The agar was inoculated with C. jejuni strains at the top of 

the tube and these were incubated in air at 37°C. C. jejuni move away from the air-

surface interface in the agar to migrate away from the high oxygen environment and so 

the length of migration, indicated by the TTC dye front, was measured after 48 hours, as 

in the swarm plate assay (fig. 5.7 A). The C. jejuni NC1, NC4 and double NC1/NC4 

deletion strains and the NC1 and NC4 over-expression strains displayed similar 

motility-dependent taxis profiles to the wild-type (fig. 5.7 B).  The NC4 deletion mutant 

showed decreased taxis compared to the wild-type as the migration of the TTC dye 

front was 80% of that of the wild-type strain, but this decrease was not statistically 

significant (P > 0.05). The NC4 over-expression strain showed an average 20% increase 

in migration compared to the wild-type, but the data were variable and this increase was 

not significant (P > 0.05) (fig. 5.7 B). As expected the non-motile strain showed 

significantly reduced migration compared to the wild-type (fig. 5.7) (Reuter and van 

Vliet 2013). 
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Figure 5.7 C. jejuni NCTC11168 NC1/NC4 deletion and over-expression strains 

have a similar taxis profile to the wild-type.  

A) Example energy taxis assay using Brucella soft agar medium supplemented with 

triphenyl tetrazolium chloride (TTC), which turns red in the presence of live bacteria. C. 

jejuni was added to the medium at the top of the tube and migration of TTC front was 

measured after 48 hours incubation at 37°C in air. B) Migration of C. jejuni non-coding 

RNA mutant strains expressed as percentage of the wild-type (% WT) and error bars 

represent standard error of the mean of data from three biological replicates. Asterisk 

indicates P < 0.05 relative to WT (One-way ANOVA). Strains: WT - wild-type; NM - 

non-motile flaAB inactivation;  NC1 - NC1 deletion; NC4 - NC4 deletion; NC1NC4 - 

double NC1 and NC4 deletion; ovNC1 - NC1 over-expression; ovNC4 - NC4 over-

expression. 
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5.2.7 C. jejuni NC1/NC4 deletion and over-expression strains form similar amounts 

of biofilm to the wild-type. 

Flagella contribute to biofilm formation in C. jejuni (Kalmokoff et al. 2006; Reeser et 

al. 2007; Reuter et al. 2010). To ascertain whether NC1 and NC4 contribute to this 

aspect of flagellar function, biofilm assays were performed. C. jejuni strains were grown 

to stationary phase, and cultures were diluted in fresh media and incubated in air or 

under microaerobic conditions for two days. The biofilms formed were then stained 

with crystal violet, dissolved in a solvent and the amount of biofilm staining could then 

be determined by measuring the absorbance of the dissolved crystal violet in solution. 

The amount of biofilm formed by NC1, NC4 and double NC1/NC4 deletion strains was 

not significantly different from the wild-type in air or in microaerobic conditions (fig. 

5.8). The amount of biofilm formed in air by the NC1 and NC4 over-expression strains 

was slightly increased compared to the wild-type (fig. 5.8), but this increase was not 

significant (P > 0.05, Two-way ANOVA) and data were variable. The non-motile 

mutant formed significantly less biofilm in air than the wild-type as expected. 
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Figure 5.8 C. jejuni NCTC11168 NC1/NC4 deletion and over-expression strains 

form similar amounts of biofilm to wild-type.  

The amount of biofilm formation by two-day old static cultures of each strain in air or 

under microaerobic conditions was measured using a crystal violet stain. The level of 

staining was determined by dissolving the crystal violet in solvent and measuring 

absorbance at 590 nm. Error bars represent standard error of the mean of data from four 

biological replicates. Asterisk indicates P < 0.05 relative to WT (Two-way ANOVA). 

Strains: WT - wild-type; NM - non-motile flaAB inactivation;  NC1 - NC1 deletion; 

NC4 - NC4 deletion; NC1NC4 - double NC1 and NC4 deletion; ovNC1 - NC1 over-

expression; ovNC4 - NC4 over-expression. 
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5.2.8 C. jejuni NC1/NC4 deletion and over-expression strains invade intestinal 

epithelial cell monolayers to a similar extent as the wild-type strain. 

Flagellated C. jejuni can invade host cells and this is an important part of host 

colonisation, which can lead to disease (Grant et al. 1993; Wassenaar et al. 1993; 

Hendrixson and DiRita 2004). To ascertain whether NC1 and NC4 contribute to this 

aspect of flagellar function, invasion of intestinal epithelial cell monolayers by the 

ncRNA mutant strains was assessed. A confluent monolayer of m-ICcl2 (Chapter 3) 

(Bens et al. 1996) and Caco-2 cells was grown on the bottom of flat-bottomed wells on 

top of a collagen matrix and infected with the strains of C. jejuni at a multiplicity of 

infection (MOI) of 1000. An MOI of 1000 was chosen for Caco-2 based on existing 

literature (Russell and Blake 1994; MacCallum et al. 2005). An MOI of 1000 was 

chosen for m-ICcl2 as this gave the maximal invasion for all strains (fig. 5.9 A). After a 

gentamicin wash, cells were lysed and intracellular bacteria were enumerated. NC1, 

NC4 and double NC1/NC4 deletion and NC1 and NC4 over-expressing strains were all 

able to invade m-ICcl2
 

and Caco-2 monolayers (fig. 5.9 B). Invasion of Caco-2 

monolayers by all ncRNA mutant strains was consistently at the level of the wild-type, 

whereas invasion by the non-motile strain was at least 100-fold reduced, which was 

significant in one experiment (P < 0.05, fig. 5.9 B). Invasion of m-ICcl2 monolayers by 

NC1, NC4 and double NC1/NC4 deletion strains was 10-fold increased compared to the 

wild-type, but this was not statistically significant (P > 0.05, fig. 5.9 B). Invasion of m-

ICcl2 monolayers by the NC1 over-expression strain was 10-fold reduced compared to 

the wild-type, but this was also not significant (P > 0.05, fig. 5.9 B). Increased numbers 

of C. jejuni invaded m-ICcl2 monolayers in comparison with Caco-2 monolayers. Most 

notably the non-motile strain was 100-fold more invasive of m-ICcl2 monolayers than 

Caco-2 monolayers. As expected, the non-motile strain was less able to invade IEC 

monolayers (Novik et al. 2010).  
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Figure 5.9 C. jejuni NCTC11168 NC1/NC4 deletion and over-expression strains 

invade intestinal epithelial cell monolayers to a similar extent as the wild-type. 

Invasion assays were performed, where C. jejuni were allowed to invade m-ICcl2 for 2 h 

and Caco-2 monolayers and intracellular bacteria were enumerated by colony counts 

after a gentamicin wash. A) Invasion of m-ICcl2 monolayers by C. jejuni strains in 

increasing multiplicities of infection (MOI). Results are expressed in colony forming 

units per millilitre (cfu ml
-1

). B) Invasion of m-ICcl2 and Caco-2 monolayers by C. jejuni 

strains using an MOI of 1000. Results are expressed as percentage of invaded bacteria 

with respect to the inocula on a log scale (% inoculum log10). Error bars represent 

standard error of the mean of data from three biological replicates. Asterisk indicates P 

< 0.05 relative to WT (One-way ANOVA). Strains: WT - wild-type; NM - non-motile 

flaAB inactivation;  NC1 - NC1 deletion; NC4 - NC4 deletion; NC1NC4 - double NC1 

and NC4 deletion; ovNC1 - NC1 over-expression; ovNC4 - NC4 over-expression. 
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5.2.9 Protein expression of C. jejuni NC1/NC4 deletion and over-expression strains 

is similar to the wild-type strain. 

C. jejuni strains were grown to exponential phase at 37 and 42°C. For protein analysis, 

cells were separated into cytoplasm, inner membrane or outer membrane fractions. 

Proteins were denatured and separated using SDS-PAGE. There were no differences 

detected in the protein profiles of C. jejuni double NC1/NC4 deletion and NC4 over-

expressing strains compared to the wild-type at both temperatures (fig. 5.10). However, 

a low molecular weight protein was present in the inner and outer membrane fractions 

(fig. 5.10). The protein differed in molecular weight in all samples, but this was not 

associated with temperature, strain or cell fraction (fig. 5.10).  

 

Figure 5.10 C. jejuni NCTC11168 NC1/NC4 deletion and over-expression strains 

have protein profiles that are similar to the wild-type.  

C. jejuni strains were grown to exponential phase at 37 and 42°C under microaerobic 

conditions. For protein analysis, cells were fractionated so that samples contained 

proteins from the cytoplasm, inner membrane or outer membrane. Proteins were 

denatured, separated using SDS-PAGE and stained with Coomassie blue. The black 

arrow indicates a protein band that varies in molecular weight in all samples. Images are 

representative of two biological replicates. Strains: WT - wild-type; NC1NC4 - double 

NC1 and NC4 deletion; ovNC4 - NC4 over-expression. M1 - NEB Broadstain marker, 

M2 - Invitrogen Benchmark Ladder, molecular weight of bright bands are given in kDa.  

 



Phenotypes of C. jejuni non-coding RNA mutants   Chapter 5 

 

141 

 

5.2.10 Two-dimensional protein profiles of C. jejuni NC1/NC4 deletion strains are 

similar to the wild-type strain. 

To further analyse protein expression of all NC1, NC4 and double NC1/NC4 deletion 

strains, proteins of whole cell lysates were separated by two-dimensional gel 

electrophoresis (Shaw et al. 2012), separated according to isoelectric point (pH 3-11) in 

the first dimension and by molecular weight in the second (fig. 5.11 A). Three 

differences in protein expression were observed between deletion mutants and the wild-

type, but were not consistent between all strains. In the NC1 and NC4 deletion mutants, 

flagellin was up-regulated in the both of the mutants (fig. 5.11 B). Although these 

differences were seen in both deletion mutants and in two biological replicates, it is 

possible that they were due to differences in glycosylation or oxidation states. Also 

these differences were not observed in the double NC1/NC4 deletion strain. In the 

double NC1/NC4 deletion strain, there was a shift in the position of the nickel iron 

hydrogenase subunit, HydA (fig. 5.11 C) and there was differential expression of cj1419 

and cj1420 (fig. 5.11 C), which are known to be phase variable (personal 

communication with Francis Mulholland). The proteins were not selected for further 

analysis.  
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Figure 5.11 Two-dimensional protein profiles of C. jejuni NCTC11168 NC1/NC4 

deletion strains are similar to the wild-type.  

C. jejuni were grown to mid-log phase and proteins from whole cell lysates were 

separated by isoelectric point (pH 3-11) and by molecular weight. Proteins were 

strained with Sypro-Ruby and imaged with a phosphorimager. A) An example two-

dimensional gel and reference for the expanded images; each spot is a protein (WT 

strain). (B) An expanded region of the gel showing changes in flagellins (circular 

selection). (C) An expanded region of the gel showing a change in a putative 

oxidioreductase (rectangle selection) and hypothetical, phase variable proteins, Cj1419 

and Cj1420. Each panel shows overlaid images from a mutant strain (proteins coloured 

blue) with the wild-type (proteins coloured orange). The spot appears black, when the 

protein is expressed in both strains. Images are representative of two biological 

replicates. Strains: WT - wild-type; NC1 - NC1 deletion; NC4 - NC4 deletion; NC1NC4 

- double NC1 and NC4 deletion. 

 

5.2.11 The C. jejuni NCTC11168 NC1 over-expression strain has altered cell 

surface properties compared with the wild-type strain 

C. jejuni strains were analysed by flow cytometry to ascertain whether strains exhibited 

changes in morphology or whether different populations arose over time and in different 

conditions that were not detected by previous assays. Strains were analysed during 

growth in Brucella (rich) or defined media at 37 and 42°C. Forward Scatter (FS, 

indicates changes in cell size) and Side Scatter (SS, indicated changes in cell granularity 

or size) were monitored over time.  

SS of the double NC1/NC4 deletion strain and the NC4 over-expressing strains was 

similar to that of the WT in both rich and defined media at 37 and 42°C. In defined 

media at 37 and 42°C, SS of all strains decreased between 12 and 24 hours growth from 

approximately 1.9 to 1.4, whereas the SS profile of all strains grown in rich media at 
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37°C remained constant. In rich media at 42°C, SS of the wild-type strain and NC1/NC4 

deletion mutant decreased between 12 and 24 hours growth. In defined media there was 

an approximately 0.2 decrease in SS up to eight hours growth, whereas there was a 0.1 

to 0.3 SS increase in rich media (fig. 5.12).  

One notable difference was that the NC1 over-expression strain had a different SS that 

was consistently reduced and always below 1.6, compared to the wild-type strain, which 

was observed at all growth conditions, although all strains showed elevated SS in 

defined media. Another difference was that the SS of the NC4 over-expression strain 

remained high after 24 hours growth in rich media at 42°C, whereas that of the wild-

type and other strains were decreased (fig. 5.12). FS of all strains was similar to the 

wild-type across all conditions over time (data not shown). As the NC1 over-expression 

strain differed in SS, but not FS, it may be that NC1 has altered cell surface properties 

compared to wild-type C. jejuni. 
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Figure 5.12 C. jejuni NCTC11168 NC1 over-expression strain has a different side 

scatter profile to that of the wild-type.  

C. jejuni strains were analysed by flow cytometry under forward scatter and side scatter 

in a Brucella (rich) or defined media at 37 and 42°C. Values are given in arbitrary units 

[AU] and at least 10,000 events were acquired. Strains: WT - wild-type, NC1NC4 - 

double NC1 and NC4 deletion mutant, ovNC1 - NC1 over-expression mutant, ovNC4 - 

NC4 over-expression mutant. 
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5.2.12 Transcriptomic profile of C. jejuni NC1/NC4 deletion and over-expression 

strains are similar to the wild-type strain. 

Transcriptomic analysis was performed on total RNA extracted from an NC4 deletion, a 

double NC1/NC4 deletion and an NC4 over-expression mutant, and compared to the 

wild-type. Agilent 8 x 15,000 probe microarrays covering 1608 open reading frames 

were used. Gene expression was considered significantly different if genes were more 

than two-fold up- or down-regulated and P < 0.05 (Holmes et al. 2005).  

Overall there were up to six genes that had significantly altered expression levels in 

each strain and two or more of these were genes manipulated as part of the experiment 

(fig. 5.13, table 5.2). In the NC1/NC4 double deletion mutant, the pseudogene cj0565 

was down-regulated and a small RNA, which has been annotated as CjNC8, was up-

regulated. Down-regulation of cj0566 was also seen (fig. 5.13 A), but this was not 

significant. No genes were down-regulated in the NC4 deletion mutant and only genes 

cj1295-cj1298 were up-regulated (fig. 5.13 B). In the NC4 over-expression mutant, no 

genes were down-regulated and only cj1435c and cj1436c were up-regulated (fig. 5.13 

C). A summary of all the changes in gene expression are included in table 5.2. 

Expression of the predicted target genes in the ncRNA mutants was similar to wild-type 

C. jejuni and any minor changes in gene expression compared to the wild-type were not 

significant (table 5.3).  
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Figure 5.13 C. jejuni NCTC11168 NC1 and NC4 deletion and over-expression 

strains show similar gene expression profiles to the wild-type.  

Microarrays were performed to compare gene expression of a double NC1, NC4 

deletion (A), NC4 deletion (B) and NC4 over-expression strain (C) to the wild-type. A 

summary of changes is represented as volcano plots, where the fold change in gene 

expression of each gene probe (single point) is plotted against the statistical significance 

of the change (P value). Each gene has more than one probe and results shown are from 

two biological replicates. Notable changes in gene expression are labelled. 
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Table 5.2 Summary of all significant changes in gene expression of C. jejuni 

NCTC11168 NC1 and NC4 deletion and over-expression strains.  

Changes were considered to be significant if there was at least a two-fold change in 

gene expression and if P < 0.05.  

NC4 NC1NC4 ovNC4 

Gene 
Fold 

change 
Gene 

Fold 

change 
Gene 

Fold 

Change 

 NC4 -33.1 NC1 -61.1 NC4 13.7 

 KAN 384 NC4 -56.6 CAT 1470 

 cj1295 4.97 cj0565 -8.18 cj0046 62.9 

 cj1296 6.16 KAN 375 cj1435c 3.38 

 cj1297 6.08 CAT 388 cj1436c 5.07 

cj1298 6.25 NC8 4.33 
  

NC4 - NC4 deletion mutant 

NC1NC4 - double NC1 and NC4 deletion mutant 

ovNC4 -NC4 over-expression mutant 

KAN - kanamycin cassette 

CAT - chloramphenicol cassette 
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Table 5.3 Changes in expression of NC1 and NC4 predicted gene targets in C. 

jejuni NCTC11168 NC1 and NC4 deletion and over-expression strains. 

NC4 - NC4 deletion mutant 

NC1NC4 - double NC1 and NC4 deletion mutant 

ovNC4 - 4 over-expression mutant 

 

  

 NC4 NC1NC4 ovNC4 

Gene  
Fold 

change 
P value  

Fold 

change 
P value 

Fold 

change 
P value  

Cj0243c (hypothetical) -1.45  0.72  -1.32 0.20  1.07  0.73 

cj0428 (hypothetical) -1.09  0.51 -1.33  0.07 1.63  0.06 

cj0887c (flaD) -1.26  0.37  1.08  0.59 -1.08  0.24 

cj1026c (flgP) -1.08  0.44  1.05  0.45 1.24  0.11 

cj1338c (flaB) -1.48  0.30  -1.37  0.50 -1.06  0.14  

cj1729c (flgE2) 1.01  0.45  -1.09  0.50 1.14  0.36 

cj1650 (hypothetical) -1.05  0.60  1.04  0.70  1.26  0.26 
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5.3 Discussion 

To assess whether NC1 and NC4 have an important role in regulating flagellar assembly 

or function, the ncRNAs were both deleted and over-expressed in C. jejuni and these 

mutated strains were examined using phenotypic assays. Altered expression of NC1 and 

NC4 was expected to have notable effect on flagellar assembly or function, as it is a 

tightly regulated process, and so any interference in the regulatory network should be 

observable. However, the flagella of C. jejuni ncRNA mutants were similar to the wild-

type both morphologically and in function. 

In summary, there was an absence of a clear motility phenotype when the ncRNAs were 

deleted or over-expressed. C. jejuni still possessed flagella and were motile (fig. 5.5 and 

6). Functional flagella assays for energy taxis (fig. 5.7), biofilm formation (fig. 5.8), and 

intestinal epithelial cell invasion assay (fig. 5.9) revealed differences between wild-type 

and NC1 and NC4 mutant strains with invasion of m-ICcl2 monolayers only, which were 

not statistically significant. Protein profiles of cell fractions from NC1 and NC4 deletion 

and over-expression strains were similar after they were grown at either 37 or 42°C (fig. 

5.10). Two-dimensional resolution of proteins from NC1 and NC4 deletion mutants 

showed few changes in protein expression that were not consistent between strains (fig. 

5.11). 

We hypothesised that NC1 and NC4 may function as a negative feedback mechanism 

for down-regulating protein expression after the flagellum has been assembled. If NC1 

and NC4 do act as a negative regulator of excess protein, then it is possible that this 

would not produce a detectable phenotype. Extracellular proteins would be lost to 

culture supernatant leaving the flagellum intact. Even though NC1 and NC4 were over-

expressed, there may not have been enough ncRNA to down-regulate protein expression 

to an observable level, especially with one that is highly expressed for multi subunit 

structures, such as FlgE2. Likewise, it is possible that NC1 and NC4 down-regulation of 

flgE2 may be subtle and may not completely switch off allowing the formation of fully 

formed and functional flagellum, although the purpose of such a process is unclear. 

Stronger over-expression of NC1 and NC4 may be required to change gene expression 

to a level that is detectable in phenotype assays. Methods to study secreted flagellar 

proteins are not currently available as these proteins may precipitate with bacterial cell 

pellet.  
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However, a fundamental phenotype that was expected to be affected was motility as 

flgP was predicted to be target of NC1 and NC4. C. jejuni flagella are paralysed in flgP 

inactivated mutants (Sommerlad and Hendrixson 2007) and so bacteria are non-motile. 

NC1 and NC4 deletion and over-expression strains were all motile, which suggests that 

functional FlgP was still expressed. Again, the ncRNA over-expression may not have 

produced enough RNA to down-regulate all protein expression in C. jejuni. The 

stoichiometry of FlgP to each flagellum is unknown and it may be that very low levels 

of protein are associated with each flagellum.  

It is possible that the functions of the some target flagellar proteins are not essential for 

flagellar function and so would not be detected in phenotype assays. For example, FlaB 

is not essential for motility and the flagellum is still extended with FlaA subunits 

(Wassenaar et al. 1993). Ideally, the composition of flagellins should be elucidated in 

the NC1 and NC4 mutants, but this is difficult as they are extracellular proteins and 

protein sequences are highly similar. The hypothetical gene targets have yet to be 

attributed to function.  

The cj0428 deficient strain again has no motility phenotype (data not shown), although 

this gene is regulated with flhA, which is regulated with flagella (Carrillo et al. 2004). 

Recent studies found that cj0428 was up-regulated in C. jejuni that cause disease in 

germ free mice (Bell et al. 2013) and was up-regulated in iron limited conditions 

(Holmes et al. 2005). Therefore, if cj0428 expression is affected in NC1 and NC4 

mutants, then a phenotype might be demonstrable in colonisation studies. However, an 

in vitro study demonstrated that cj0428 was not important for adhesion to INT407 cells 

(John 2012), so if mutating cj0428 has no observable phenotype in vitro, then NC1 and 

NC4 regulation would not be detectable either.  

The functions of the other hypothetical genes cj0243c and cj1650 remain unknown. The 

protein encoded by cj1650 is 27% identical to H. pylori HP1076, which is a protein 

chaperone for a flagellar export chaperone FliS (Lam et al. 2010). In C. jejuni, it is co-

regulated with flgR and flgS and rpoN and so is thought to be secreted (Guerry-Kopecko 

and Baqar 2008). However, there is a contradictory report of both the up- and down-

regulation of cj1650 in an rpoN (σ
54

) mutant (Chaudhuri et al. 2011).  
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It was thought that cell invasion would be abrogated if altered ncRNA expression 

disrupted flagellar assembly or flagella function, due to a change regulation of the target 

genes. There were minimal differences observed in invasion of intestinal epithelial cells 

by the NC1 and NC4 deletion and over-expression strains. The deletion mutants were 

more able to invade a mouse small intestinal cell line and the NC1 over-expresser was 

less able to invade this cell line. However, these differences were not statistically 

significant across three independent experiments, and so more experiments should be 

performed. Furthermore, colonisation studies may reveal a role for ncRNAs in vivo. The 

environment inside the host is very difficult to replicate, especially the nutrient 

availability, and it may be that NC1 and NC4 are required in a niche where growth 

conditions and host factors impact upon bacterial survival. 

As phenotypic assays of NC1 and NC4 mutants did not reveal any remarkable 

differences in comparison with wild-type, experiments were done to ascertain whether 

NC1 and NC4 were regulating gene expression at the transcription level. Many ncRNAs 

function by degrading mRNA of target genes and this can be detected by transcriptome 

analysis. Microarrays performed with C. jejuni NC4 deletion, NC4 over-expression and 

the double NC1/NC4 deletion mutant revealed very similar transcription profiles when 

grown to mid-log growth phase (table 5.3). Moreover, there were no significant changes 

in predicted target transcript levels (table 5.4). One conclusion may be that NC1 and 

NC4 do not function by degrading mRNA. However, expression of ncRNAs may be 

transient and may be dependent on specific growth conditions and so it is possible that 

transcripts collected from a single time-point, in a single growth condition would miss 

changes in RNA levels. Furthermore, the undoubted heterogeneity of a sampled 

population may have masked changes in transcript levels. Measuring RNA levels of 

homogeneous populations at various growth phases or conditions would increase the 

power of this investigation.  

Motility in other prokaryotes is indeed regulated by ncRNAs and complex ncRNA 

networks have been shown to regulate motility in E. coli.  Several ncRNAs have been 

shown to interact with the 5’UTR of flhDC mRNA, which encodes the master regulator 

of flagellar assembly (De Lay and Gottesman 2012). These ncRNAs can either be 

positive or negative regulators of flagellar assembly and they can also undergo positive 

or negative regulation in response to the environment. Indirect action through other 
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regulators, such as the ArcB/A two-component system (De Lay and Gottesman 2012) or 

CsrA post-transcriptional protein regulator (Lucchetti-Miganeh et al. 2008), adds 

further complexity to the network.  

Epsilon-Proteobacteria do not have master regulators of flagellar assembly and so have 

fundamental differences in the mechanisms that initiate flagellar assembly (Smith and 

Hoover 2009). This means that any contributing ncRNA networks will also differ 

considerably. Other evidence for ncRNA regulation of motility is demonstrated in Hfq 

mutants. Hfq is a protein chaperone that stabilises trans-encoded ncRNA-mRNA 

complexes in many bacteria. For example, a Salmonella Typhimurium hfq mutant is 

non-motile due to reduced flagellin synthesis (Sittka et al. 2008) and in the 

Cyanobacterium Synechocystis sp. PCC 6803, a hfq mutant loses type IV pili and 

twitching motility (Dasgupta et al. 2003). The Epsilon-Proteobacteria, however, lack 

Hfq and so novel RNA-RNA or RNA-protein interactions may be involved.  

Because Epsilon-Proteobacteria have fundamental differences in their biology, ncRNA 

predictions and functions may not always be applicable when inferred from Gamma-

Proteobacteria. Our understanding of ncRNAs outside the Enterobacteriaceae remains in 

its infancy, but as more studies regarding ncRNA phenotypes and lack of phenotypes 

are published, a clearer picture of the importance of ncRNAs in all prokaryotes can be 

formed.  

In future experiments, it would be interesting to examine the motility phenotypes in a 

range of different conditions in vitro, but this could be time consuming and may not be 

relevant to in vivo conditions. Culture condition has been found to be important for the 

expression of certain ncRNAs. For example, RhyB, an ncRNA in E. coli, is highly 

expressed under iron-limited conditions, which then down-regulates expression of 

succinate dehydrogenase gene expression (Masse and Gottesman 2002). However, in 

rich broth culture very low, if any, RhyB is expressed and its target genes are expressed 

in its absence (Masse and Gottesman 2002). Therefore, changing culture conditions can 

reveal ncRNA functions, but finding the correct condition may be difficult without prior 

knowledge. It may be that NC1 and NC4 are necessary for survival in and infection of 

hosts, so colonisation of animal models by the NC1/NC4 deletion and over-expression 

mutants should be evaluated. If NC1 and NC4 are essential for host colonisation, then it 
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would still be important to know what the ncRNAs are responding to in this 

environment to understand what is regulating flagella. 

In addition, during phenotype assays population differences are not taken into account. 

Single cell analysis assays may be useful in detecting different population groups within 

a culture. Using flow cytometry to analyse growth of C. jejuni NC1 and NC4 mutants in 

media and temperature over time revealed that all strains had a similar growth rate to 

the wild-type and had similar side scatter (SS) and forward scatter measurements over 

time. However, the NC1 over-expresser had a consistently lower SS than the wild-type, 

even though the changes in SS followed the same pattern as that of the wild-type (fig. 

5.12). A lower SS may mean a difference in cell surface properties or size. Further 

imaging studies are required to investigate the morphological and cell surface properties 

of the NC1 over-expression strain in more detail. 

In the next chapter, the interaction between NC1 and NC4 and their predicted targets 

were investigated to further ascertain their function at the molecular level. 
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Collaborative work: 

Work in figures 6.6 and 6.7 was largely completed by Mart van Veldhuizen under the 

supervision of My Thanh Le.  
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6.1 Introduction 

In the previous chapter, it was shown that the altered expression of ncRNAs NC1 and 

NC4 did not result in a detectable phenotype in C. jejuni and that mRNA degradation 

may not be the mechanism of NC1 and NC4 function. An alternative ncRNA control 

mechanism common in prokaryotes is translation inhibition by the blocking of ribosome 

binding.  

The aim of this study was to use an established system for measuring translational 

control of gene expression developed in E. coli to assess translational control of C. 

jejuni flagella genes by NC1 and NC4 (fig. 6.1) (Urban and Vogel 2007). 

Transcriptional fusions of ncRNA target genes to a reporter gene expressed on a 

plasmid were used to investigate whether NC1 and NC4 regulate gene expression by 

controlling translation. Green fluorescent protein (GFP) was used as the reporter of 

translation, which can be measured directly and easily in vivo with increased 

fluorescence being directly proportional to protein expression; hence measuring GFP 

fluorescence would be a direct measure of translation. Another plasmid is used to 

express an ncRNA so that combinations of plasmids containing gfp transcriptional 

fusions and ncRNAs can be expressed in E. coli and fluorescence can be measured 

(Top10, Invitrogen). The gfp transcriptional fusions and the ncRNA are constitutively 

expressed so that changes in translation can be measured. 

Another advantage of using this system is that a C. jejuni ncRNA and one specific 

target can be studied in isolation of other targets and expression of the ncRNA is high, 

whilst that of target is low, increasing the opportunity to detect the any regulation. 

Moreover, genetic tools for E. coli are readily available and the ability to replicate 

plasmids gives greater flexibility for genetic manipulations over C. jejuni, for which 

plasmids are difficult to use and where polar effects of chromosomal insertions may be 

a problem.  
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Figure 6.1 Translational control method using E. coli.  

Schematic of experimental method: the 5’ untranslated region (UTR) of predicted target 

genes was fused to gfp under the control of a constitutive promoter in a low copy 

plasmid. NC1, NC4 and a non-sense RNA were also constitutively expressed in a high 

copy plasmid. The target gene-gfp fusion plasmids were then combined with the NC1 or 

NC4 expressing plasmids in E. coli and fluorescence was measured by flow cytometry 

or spectroscopy.  

 

 

The objectives were to: 

• Fuse the 5’UTRs of predicted flagellar target genes and at least one non-flagellar 

gene to gfp under the control of a constitutive promoter in a low copy plasmid 

expressed in E. coli and measure fluorescence by flow cytometry or fluorescence 

plate reader; 

• Express NC1, NC4 and a non-sense RNA in a high copy plasmid expressed in E. 

coli; 

• Co-transform E. coli with a combination of one gfp fusion plasmid and one ncRNA 

expression plasmid and measure fluorescence by flow cytometry or using a 

fluorescence plate reader.  

• Ascertain if regulation by NC1 and NC4 was specific and was dependent on 

complementary base-pairing by mutating the ncRNAs to disrupt regulation and 

subsequently compensating the mutations in E. coli; 

• Establish whether E. coli Hfq affects NC1 and NC4 regulation of target genes by 

conducting translational control assays in hfq mutants; 

• Assess translational control in C. jejuni by expressing the gfp transcriptional fusions 

in the chromosomes of C. jejuni NC1 and NC4 deletion and over-expression 

mutants, and measure fluorescence by flow cytometry or fluorescence plate reader. 
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As NC1 and NC4 were predicted to be trans-acting ncRNAs (Chapter 4), it was 

expected that the ncRNAs would inhibit translation of the predicted target genes as this 

is their typical mechanism of action (Papenfort and Vogel 2010). Therefore, target-gfp 

expression would be down-regulated, resulting in reduced expression of GFP-protein 

fusions.  
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6.2 Results 

6.2.1 Regulation of cj0428-gfp by NC1 and NC4 can be evaluated in E. coli. 

(i) NC1 and NC4 repress fluorescence of cj0428-gfp in E. coli 

Initial experiments were performed with a transcriptional fusion of the hypothetical 

gene cj0428 to gfp, which was expressed in E. coli. This was the first target gene that 

was successfully fused to gfp and so was used to test the E. coli system. E. coli 

containing the cj0428-gfp fusion did fluoresce and fluorescence was 10-fold greater 

than GFP negative E. coli (fig. 6.2). When a non-sense RNA was expressed with the 

fusion plasmid, E. coli fluorescence was of a similar level to the fusion expressed alone, 

but expression of both NC1 and NC4 with the fusion plasmid repressed fluorescence 

(fig. 6.2). Repression by NC1 was less than that of NC4. With each assay, E. coli 

positive for GFP and negative for GFP expression was included as a control.  
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Figure 6.2 NC1 and NC4 repress fluorescence of C. jejuni NCTC11168 cj0428-gfp 

in E. coli.  

A plasmid containing the transcriptional fusion of the C. jejuni cj0428 5’ untranslated 

region to gfp was constructed. This plasmid was used to transform E. coli, along with 

different combinations of plasmids expressing NC1, NC4 or a non-sense RNA 

(nsRNA). Bacteria containing the appropriate plasmids were grown 16 h and flow 

cytometry was used to measure fluorescence of live bacteria that excluded propidium 

iodide (PI
-
). Error bars represent standard error of the mean of three independent 

experiments. Results are represented as fluorescence intensities in arbitrary units [AU]. 

Asterisks represent P < 0.05 relative to the fusion alone (One-way ANOVA). 

Fluorescence of standard controls is also shown: a phosphate buffered saline blank 

(PBS); gfp negative E. coli containing a plasmid with gfp without an ATG start codon 

(pXG-10), and gfp positive E. coli containing a plasmid which expresses gfp (pXG-1). 

 

(ii) Fluorescence of cj0428-gfp requires inclusion of the cj0428 coding region 

Urban and Vogel recommended including 10-30 aa of the target gene into the gfp fusion 

construct to aid GFP folding and, therefore, fluorescence (Urban and Vogel 2007)). To 

test whether GFP fluorescence is dependent on the length of protein included in the 

transcriptional fusion, cj0428-gfp fusions containing different lengths of protein coding 

region were constructed (there are 128 codons in the cj0428 gene). The cj0428-gfp 

fusion that included 5, 12 (construct used for initial experiments) and 20 codons of the 

cj0428 coding region were fluorescent and were regulated by NC1 and NC4 (fig. 6.3). 

Repression of gfp expression was similar across E. coli with the different constructs 
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also. Both NC1 and NC4 repressed fluorescence, but NC1 consistently gave less 

repression than NC4 (fig. 6.3). This was similar to observations from the initial 

experiment, where NC1 and NC4 decreased fluorescence to different degrees (fig. 6.3). 

Omission of any cj0428 coding region, except a start codon required for GFP 

production, resulted in constructs that gave low fluorescence (fig. 6.3), indicating that 

cj0428-gfp fusions required additional amino acids for a fully functional protein.  
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Figure 6.3 NC1 and NC4 repress fluorescence of C. jejuni NCTC11168 cj0428-gfp 

fusions that include different lengths of cj0428.  

Transcriptional C. jejuni cj0428-gfp fusions including the start codon only (ATG-gfp), 5 

codons (5aa-gfp), 12 codons (12aa-gfp) and 20 codons (20aa-gfp) were made. These 

were used to transform E. coli, along with different combinations of plasmids 

expressing NC1, NC4 or a non-sense RNA (nsRNA). Bacteria containing the 

appropriate plasmids were grown 16 h in broth cultures and flow cytometry was used to 

measure fluorescence of live bacteria that excluded propidium iodide (PI
-
). Results of 

two biological replicates are shown and represented as fluorescence intensities in 

arbitrary units [AU]. Asterisks represent P < 0.05 relative to the fusion alone (One-way 

ANOVA).  
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6.2.2 NC1 and NC4 repress fluorescence of cj0428-gfp, flgP-gfp, flgE2-gfp and 

cj1650-gfp in E. coli. 

NC1 and NC4 translational control of other predicted targets was studied using the 

system in E. coli as described above. Six target-gfp fusions constructed including 

cj0428-gfp, lysC-gfp (cj0582), flgP-gfp (cj1026c), flaB-gfp (cj1338c), flgE2-gfp 

(cj1729c), cj1650-gfp. The cj0428-gfp fusion was the most fluorescent in E. coli and 

fluorescence was repressed by NC1 and NC4 to the greatest degree (fig. 6.4 A and B). 

NC4 repressed fluorescence of cj0428-gfp by 2.6 fold and NC1 repressed fluorescence 

by 2.3 fold (P < 0.05, fig. 6.4 B). Introduction of a non-sense RNA did not significantly 

alter fluorescence of E. coli containing cj0428-gfp. Both NC1 and NC4 significantly 

repressed fluorescence in E. coli containing flgE2-gfp, both giving ~1.5 fold repression 

(P < 0.05, fig. 6.2.3). 

Both NC1 and NC4 also reduced gfp expression of another target-gfp fusion of a 

hypothetical gene, cj1650-gfp.  NC1 and NC4 repressed fluorescence in E. coli 

containing cj1650-gfp by 1.3 and 3.3 fold, respectively, but only repression by NC4 was 

significant (P < 0.05, fig. 6.4). Fluorescence in E. coli containing flgP-gfp was repressed 

by both NC1 and NC4 by 1.2 and 1.4 fold respectively, but only NC4 repression was 

significant (P < 0.05, fig. 6.4).  

E. coli the containing flaB-gfp fusion did not fluoresce (not shown) and so regulation by 

NC1 and NC4 could not be evaluated. GFP was also undetectable by Western blot 

suggesting that the protein was not expressed (data not shown). 

LysC was a predicted target for NC1 and NC4 control (table 4.1), but is a σ
70

-dependent 

gene, whereas the other predicted targets were σ
54

-dependent genes. The lysC-gfp fusion 

did fluoresce and NC1 and NC4 did not alter fluorescence of the lysC-gfp fusion (figure 

6.4 C), which means that NC1 and NC4 are likely to control σ
54

 dependent genes only. 
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Figure 6.4 NC1 and NC4 repress fluorescence of C. jejuni NCTC11168 gene targets 

in the E. coli reporter system.  

Transcriptional fusions of C. jejuni flagella gene 5’ UTRs to gfp (labelled as gene-gfp) 

were constructed on plasmids in E. coli, including cj0428, cj1026c (flgP), cj1729c 

(flgE2) and cj1650, and a non-flagellar target cj0582 (lysC). These were used to 

transform E. coli, along with different combinations of plasmids expressing NC1, NC4 

or a non-sense RNA (nsRNA). Bacteria containing the appropriate plasmids were 

grown 16 h and flow cytometry was used to measure fluorescence of live bacteria that 

excluded propidium iodide (PI
-
). A) Results represent fluorescence intensities in 

arbitrary units [AU].  B) Results represent fold repression of fluorescence compared to 

E. coli expressing the fusion alone (fold repression of E. coli containing the fusion alone 

is one and shown by the dotted line). C) NC1 and NC4 do not control fluorescence in E. 

coli containing lysC-gfp. Bacteria containing the appropriate plasmids were grown 16 h 

and a fluorescence plate reader was used to measure fluorescence intensities in AU. 

Error bars represent standard error of the mean of three biological replicates. Asterisks 

represent P < 0.05 relative to the fusion alone (One-way ANOVA).  

 

 

6.2.3 NC1 and NC4 specifically repress fluorescence of flagellar gene-gfp. 

To verify that NC1 and NC4 regulation of their targets is due to specific base pairing to 

the target 5’ UTR, a region of the NC1 and NC4 binding nucleotides was mutated and 

fluorescence was evaluated using the E. coli system. Specific mutations of NC1 and 

NC4 were made for three target genes cj0428, flgE2 and cj1650. Subsequently, the 

mutations were rescued by making the compensatory mutation in the 5’ UTR. The 

ribosome binding site was excluded from mutations to allow translation of gene-gfp 

fusion. Diagrams of mutations made are shown in figure 6.5.  

 

Mutated NC1 and NC4 were no longer able to repress fluorescence of cj0428-gfp, flgP-

gfp or cj1650-gfp, whereas wild-type NC1 and NC4 were able to repress fluorescence, 

as was observed in earlier experiments. Regulation of cj0428-gfp fluorescence by wild-

type NC1 was variable in these experiments, but regulation by NC4 was similar to the 

previous experiment (fig. 6.4).  Both wild-type NC1 and NC4 repressed fluorescence of 

E. coli containing flgE2-gfp by ~1.8-fold (fig 6.6 B), which was increased compared to 

the previous experiment (fig. 6.4 B).  Regulation of cj1650-gfp fluorescence by wild-

type NC1 and NC4 (fig 6.6 C) was similar to the previous experiment (fig. 6.4). 
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Figure 6.5 Diagram of mutations made in NC1/NC4 to disrupt regulation and of 

mutations made in target gene 5’ untranslated target regions to restore regulation. 

Each panel shows the predicted binding region of C. jejuni NCTC11168 NC1/NC4 non-

coding RNAs (top strand, blue) to their target gene mRNA (bottom strand, purple): A) 

cj0428, B) flgE2 and C) cj1650. The ribosome binding site is shaded. The mutations 

made in the plasmids used for previous translational control experiments are shown 

above the top strand for those made in NC1 and NC4 and below the bottom strand for 

those made in the mRNA. The names of the mutations are indicated for reference to 

subsequent figures. To locate position of the mutations, nucleotide numbers (from +1 

transcript) is given. Where base pairs are complementary is indicated by | and possible 

partial binding is indicated by : . 
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Figure 6.6 Mutating NC1 and NC4 sequences disrupts regulation of C. jejuni 

NCTC11168 flagellar gene-gfp fusions in E. coli.  

Transcriptional fusions of C. jejuni cj0428 5’ UTR, flgE2 5’ UTR, or cj1650 5’ UTR 

(A, B, and C respectively) to gfp were constructed in plasmids. These were used to 

transform E. coli, along with different combinations of plasmids expressing mutated (*) 

or wild-type (wt) NC1, NC4 and a non-sense RNA (nsRNA). Bacteria containing the 

appropriate plasmids were grown 16 h in broth cultures and flow cytometry was used to 

measure fluorescence of live bacteria that excluded propidium iodide. Results represent 

fold repression of fluorescence compared to E. coli expressing the fusion alone (fold 

repression of E. coli containing the fusion alone is one and shown by the dotted line). 

Error bars represent standard error of the mean of three biological replicates. Asterisks 

above a bar represent P < 0.05 between the indicated results. 
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The compensatory mutations were then made in the target 5’ UTR, which were 

expected to restore repression by the ncRNAs if NC1 and NC4 specifically regulate 

their targets. Compensatory mutations in cj0428-gfp restored regulation by the mutated 

NC1 and NC4 ncRNAs. In fact, levels of repression were higher than previously seen, 

with mutated NC1 giving approximately four-fold repression and mutated NC4 giving 

up to nine-fold repression (fig. 6.7 A). Wild-type NC4 still repressed fluorescence of 

compensated cj0428-gfp to a similar degree as with wild-type cj0428-gfp in the 

previous experiment (fig. 6.6 A), which was unexpected as the RNAs should not 

interact with each other. However, it is clear that the mutated NC1 and NC4 ncRNAs 

were more able to repress fluorescence of the compensated cj0428-gfp (fig. 6.7 A). 

Compensatory mutations in flgE2-gfp restored repression to 1.4-fold repression by 

mutated NC1, and to 1.7-fold by mutated NC4 (fig. 6.7 B), which is similar to the level 

seen in the previous experiment (fig. 6.6 B). As expected, wild-type NC1 and NC4 

ncRNAs did not repress fluorescence of the compensated flgE2-gfp fusion (fig. 6.7 B).  

Co-transforming E. coli plasmids with compensated cj1650-gfp and mutated or wild-

type ncRNA plasmids did not demonstrate altered levels of fluorescence compared to E. 

coli with the vector alone (fig. 6.7 C, fig. 6.8), meaning that restoration of regulation 

could not be fully evaluated. Furthermore, fluorescence of all E. coli cultures containing 

compensated 5’UTR-gfp fusion vectors was reduced compared to fusion with the wild-

type 5’ UTR, which was most notable when comparing cj1650-gfp to compensated 

cj1650-gfp (fig. 6.8).  

In summary, mutation of NC1 and NC4 disrupted fluorescence regulation of the gene-

gfp fusions and this was, at least, partially restored by compensatory mutations in the 

mRNA 5’ UTR. This means that NC1 and NC4 are post-transcriptional regulators of 

gene expression in this experimental system. 
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Figure 6.7 Compensatory mutations in C. jejuni NCTC11168 flagellar gene-gfp 

fusions restores regulation by mutated NC1 and NC4 in E. coli.  

Compensated mutations in cj0428-gfp, flgE2-gfp, or cj1650-gfp (A, B, and C 

respectively) were constructed in plasmids used to transform E. coli, along with 

different combinations of plasmids expressing mutated (*) or wild-type (wt) NC1, NC4 

and a non-sense RNA (nsRNA). Bacteria containing the appropriate plasmids were 

grown 16 h in broth cultures and flow cytometry was used to measure fluorescence of 

live bacteria that excluded propidium iodide. Results are represented as fold repression 

of fluorescence compared to E. coli expressing the fusion alone (fold repression of E. 

coli containing the fusion alone is one and shown by the dotted line). Error bars 

represent standard error of the mean of three biological replicates. Asterisks above a bar 

represent P < 0.05 between the indicated results. 
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Figure 6.8 Fluorescence regulation of cj1650-gfp and compensated cj1650-gfp by 

wild-type mutated NC1 and NC4 in E. coli.  

A transcriptional fusion of C. jejuni cj1650 5’ UTR to gfp (cj1650-gfp) was constructed 

in a plasmids. These were used to transform E. coli, along with different combinations 

of plasmids expressing mutated (*) or wild-type (wt) NC1, NC4 and a non-sense RNA 

(nsRNA). A compensatory mutation to the mutated ncRNAs in the cj1650-gfp fusion 

was made (compensated cj1650-gfp) and combined with the ncRNA expression 

plasmids. Bacteria containing the appropriate plasmids were grown 16 h in broth 

cultures and a fluorescence plate reader was used to measure fluorescence. Fluorescence 

intensity is in arbitrary units [AU]. Error bars represent standard error of the mean of 

three biological replicates.  

 

6.2.4 NC1 and NC4 do not require Hfq for regulation in E. coli 

As C. jejuni does not express an Hfq-like, RNA-RNA chaperone protein, we performed 

translational control experiments with one target, cj0428-gfp, in an E. coli hfq 

inactivated mutant. This would assess whether Hfq, present in E. coli, may have 

artificially allowed NC1 and NC4 interaction with target mRNA in our E. coli system. 

An E. coli hfq mutant and the parental E. coli strain with the wild-type hfq were 

obtained from the Keio collection (Yale, USA). NC1 and NC4 both repressed 

fluorescence of hfq inactivated E. coli expressing cj0428-gfp to a similar degree as E. 

coli cj0428-gfp containing wild-type hfq (fig. 6.9). In addition, regulation was similar to 

that seen in previous experiments with E. coli Top10, but those inactivated in hfq were 

impaired in growth (data not shown) and this may have impacted on the lower 

fluorescence levels observed (fig. 6.9).   
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Figure 6.9 NC1 and NC4 repress fluorescence of cj0428-gfp in hfq inactivated E. 

coli.  

An hfq deficient E. coli (hfq-) and the parental stain with wild-type hfq (hfq+) were co-

transformed with a plasmid containing cj0428-gfp and a non-coding RNA containing 

plasmid, either NC1, NC4 or a non-sense RNA (nsRNA). Bacteria containing the 

appropriate plasmids were grown 16 h in broth cultures and a fluorescence plate reader 

was used to measure fluorescence in triplicate. Results are represented as fluorescence 

intensities in arbitrary units [AU]. Error bars represent standard error of the mean of 

three biological replicates. Asterisk represents P < 0.05 relative to the fusion alone 

(Two-way ANOVA). 

 

6.2.5 Regulation of cj0428-gfp by NC1 or NC4 cannot be demonstrated in C. jejuni. 

A transcriptional cj0428-gfp fusion was made and cloned into the C. jejuni chromosome 

using the pC46 suicide plasmids as described in Chapter 4. The cj0428-gfp fusion was 

used because it gave high fluorescence levels and was clearly regulated in E. coli. Two 

different promoters were used to control expression levels of cj0428-gfp fusion, as the 

levels of fluorescence obtained in C. jejuni were not known. Thus, the cj0428-gfp 

construct was fused to the weak expression metK promoter (PmetK-cj0428-gfp) and to 

the moderate expression fdxA promoter (PfdxA-cj0428-gfp) in the suicide plasmids. 

These were then used to transform wild-type C. jejuni and single NC1 and NC4 deletion 

C. jejuni strains. The promoter-gene-gfp constructs were homologously recombined into 

cj0046 or cj0223. A list of the C. jejuni strains made is given in table 6.1. 
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Table 6.1 C. jejuni NCTC11168 strains used in cj0428-gfp translational control 

experiments. 

Notation  Genotype Description  

WT - Wild-type C. jejuni 

WT NC PmetK46 cj0046::PmetK::cj0428::gfp::chlor C. jejuni with no ncRNA 

mutations and low 

cj0428::gfp expression 

NC1 PmetK46 NC1::kan, 

cj0046::PmetK::cj0428::gfp::chlor 

C. jejuni with NC1 

deletion and low 

cj0428::gfp expression 

NC4 PmetK46 NC4::kan, 

cj0046::PmetK::cj0428::gfp::chlor 

C. jejuni with NC4 

deletion and low 

cj0428::gfp expression 

WT NC PfdxA46 cj0046::PfdxA::cj0428::gfp::chlor C. jejuni with no ncRNA 

mutations and moderate 

cj0428::gfp expression 

NC4 PfdxA46 NC4::kan, 

cj0046::PfdxA::cj0428::gfp::chlor 

C. jejuni with NC4 

deletion and moderate 

cj0428::gfp expression 

WT NC PfdxA223 cj0223::PfdxA::cj0428::gfp::kan C. jejuni with no ncRNA 

mutations and moderate 

cj0428::gfp expression 

ovNC4 PfdxA223 cj0046::PfdxA::NC4::cat, 

cj0223::PfdxA::cj0428::gfp::kan 

C. jejuni with NC4 over-

expression and moderate 

cj0428::gfp expression 

Kan - kanamycin cassette  

Chlor - chloramphenicol cassette 

PmetK - promoter of the metK gene, low expression 

PfdxA - promoter of fdxA gene, moderate expression  

cj0046 and cj0223- pseudogenes used for chromosomal insertions. 
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The PmetK-cj0428-gfp fusion did fluoresce in C. jejuni with no ncRNA mutations, but 

the level of fluorescence was low and less than two-fold greater than that of wild-type 

C. jejuni, which autofluoresce (fig. 6.10 A). C. jejuni single NC1 and NC4 deletion 

strains with PmetK-cj0428-gfp were fluorescent, but were similar to the fluorescence of 

C. jejuni PmetK-cj0428-gfp with no ncRNA mutations (fig. 6.10 B). Fluorescence of C. 

jejuni containing PfdxA-cj0428-gfp was much greater than that of PmetK-cj0428-gfp 

(fig. 6.10 A). However, fluorescence of an NC4 mutant containing the PfdxA-cj0428-gfp 

was similar to C. jejuni PfdxA-cj0428-gfp with no ncRNA mutations (fig. 6.10 C). C. 

jejuni with PfdxA-cj0428-gfp homologously recombined into cj0223 also gave increased 

fluorescence compared to C. jejuni with PmetK-cj0428-gfp in cj0046 (fig. 6.10 A). 

However, fluorescence of NC4 over-expressing C. jejuni with PfdxA-cj0428-gfp in 

cj0223 was similar to C. jejuni with the same fluorescence construct with no ncRNA 

mutations (fig. 6.10 D). 
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Figure 6.10 Transcriptional cj0428-gfp fusions in C. jejuni NCTC11168 fluoresce, 

but do not show regulation by NC1 and NC4.  

Bacteria were grown to mid-logarithmic phase in broth cultures and fluorescence was 

measured using a fluorescence plate reader. Results are represented as fluorescence 

intensity in arbitrary units [AU] or fold repression of fluorescence compared to C. jejuni 

expressing wild-type ncRNAs and cj0428-gfp under the appropriate promoter. Error 

bars represent standard error of the mean of three independent experiments. A) cj0428-

gfp was expressed under the metK (weak) and fdxA (moderate) promoter in the cj0046 

pseudogene region of wild-type C. jejuni (PmetK46 and PfdxA46 respectively). cj0428-

gfp was also expressed under the fdxA promoters in the cj0223 pseudogene region 

(PfdxA223) of C. jejuni with wild-type non-coding RNA (ncRNA) expression. 

Fluorescence of a wild-type, non-gfp+ expressing C. jejuni (WT), was also measured. 

B) PmetK46-cj0428-gfp in single NC1 and NC4 deletion strains of C. jejuni (NC1 and 

NC4, respectively), and a strain with wild-type ncRNAs (WT NC). C) PfdxA46-cj0428-

gfp in a C. jejuni NC4 deletion strain (NC4) and a strain with wild-type ncRNAs (WT 

NC). D) PfdxA223-cj0428-gfp in a C. jejuni NC4 over-expression strain (ovNC4) and a 

strain with wild-type ncRNAs (WT NC). 
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6.3 Discussion 

This is the first study to demonstrate that C. jejuni ncRNAs target and control 

translation of gene expression in trans. NC1 and NC4 both controlled expression of 

cj0428, flgP, flgE2, and cj1650 in an E. coli heterologous reporter system (fig. 6.2-6.9). 

Mutation of NC1 and NC4 nucleotides predicted to be involved in the base-pairing with 

target gene mRNA disrupted the regulatory action of the ncRNAs, demonstrating that 

regulation of target gene expression by NC1 and NC4 is specific (fig. 6.6-6.7).  

As we have a limited number of genetic tools for C. jejuni, in particular the lack of 

plasmids, we used E. coli to express the C. jejuni target gene-reporter fusions and assess 

translational control by NC1 and NC4, which allowed for more flexible genetic 

manipulations. The E. coli system, using the fluorescence of GFP as a reporter, was 

developed for use in E. coli and has now been used to investigate post-transcriptional 

gene regulation by a several ncRNAs (Levine et al. 2007; Urban and Vogel 2007; 

Corcoran et al. 2012).  

Using this system, our experiments showed that NC1 and NC4 post-transcriptionally 

regulated σ
54

-dependent flagella genes (fig. 6.4 A and B) and not a σ
70

-dependent 

predicted target gene (fig. 6.4 C). The σ
70

 target lysC, which encodes an aspartokinase, 

was predicted by TargetRNA programme to be regulated by NC1 and NC4. Also, lysC 

was ranked as being a more likely target above others that were shown to be regulated 

by NC1 and NC4 in this study (Chapter 4, table 4.2.1). Therefore, current software may 

not be accurate in predicting ncRNA targets, especially for bacteria outside 

Enterobacteriaceae.  

Fluorescent reporter fusions of C. jejuni cj0428 and flgE2 5’ UTRs to gfp were 

successfully expressed in E. coli and when NC1 and NC4 were co-expressed with these 

reporter fusions, fluorescence was reduced (fig. 6.4 A and B). This means that NC1 and 

NC4 inhibit expression of these genes by preventing translation of mRNA, since 

reporter fusions and ncRNAs were controlled by constitutive promoters. For cj0428-gfp 

regulation, the number of amino acids included in the cj0428-gfp fusion did not alter the 

trend of NC1 or NC4 regulation (fig. 6.3). In addition, NC4, but not NC1, significantly 

repressed translation of the flgP-gfp and cj1650-gfp fusions in E. coli. Regulation of 

cj0428-gfp by NC1 and NC4 was maintained in an Hfq deficient mutant (fig. 6.9), 
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which means that Hfq is not required for NC1 and NC4 function. This was expected as 

C. jejuni does not express an Hfq-like protein, and so C. jejuni ncRNA function either 

requires an unknown protein chaperone or novel mechanisms of RNA-RNA interaction. 

Five C. jejuni flagella gene 5’UTRs fused to gfp were constructed on plasmids, but only 

four were successfully expressed in E. coli. The transcriptional flaB-gfp fusion was not 

fluorescent in E. coli, and so regulation of this gene could not be evaluated. Western 

blots showed that GFP protein was not expressed in E. coli (data not shown). Although, 

E. coli transformed with the flgP-gfp fusion were fluorescent, fluorescence was low. If 

additional codons were included in the fusion, no fluorescence was detected, which was 

possibly due to the inclusion of an outer membrane signal peptide motif at the start of 

the fusion protein. 

Expression of mutated NC1 and NC4 in the E. coli system resulted in a loss of 

fluorescence regulation. This was restored to a certain extent by making the 

compensatory mutations in the target mRNA (fig. 6.7 and 6.8). This means that 

translation is specifically regulated by NC1 and NC4 and that they directly interact with 

target gene mRNA via complementary base-pairing. RNA-RNA shift assays are needed 

to confirm binding of NC1 and NC4 to target gene mRNA. Compensatory mutations 

were less successful in that regulation was not always completely rescued and 

fluorescence of these fusions was lower than fusions with non-mutated 5’UTRs. 

Perhaps this was because the mutations interfered with ribosome binding preventing 

expression of the protein, even though mutations were designed to avoid the ribosome 

binding site. In these experiments, a third of the ncRNA binding region was mutated; it 

would be interesting to make site directed mutations to further investigate the level of 

binding needed for regulation, as little is known about Epsilon-Proteobacteria ncRNAs 

and their functions.  

Generally, levels of fluorescence repression of one gene were variable between different 

experiments, for example 1.5-2 fold repression. This may have been due to the growth 

phase of E. coli. Although, E. coli were grown for similar lengths in batch culture 

before measuring fluorescence and optical density was adjusted to OD600 = 1, growth 

was not strictly standardised. E. coli colonies were stored on plates for variable lengths 

of time and then used to inoculate broth cultures; fluorescence would often be decreased 

compared to a colony from a recent transformation (data not shown). Fluorescence 
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repression varies between different genes and has been shown in Salmonella and E. coli 

(Urban and Vogel 2007; Corcoran et al. 2012). 

Based on the E. coli system, target gene-gfp fusions were expressed in C. jejuni to 

examine translational control of these targets by NC1 and NC4 in the original organism. 

Expression of NC1 and NC4 was altered in the chromosome and the ncRNA target gene 

cj0428-gfp fusion was expressed within C. jejuni pseudogenes under different strength 

promoters: metK, a weak promoter and fdxA a moderate strength promoter. Fluorescent 

GFP was successfully expressed from the chromosomal inserts as they were more 

fluorescent than wild-type C. jejuni (fig. 6.10 A). The promoters were functional as 

fluorescence of C. jejuni containing the cj0428-gfp fusion was greater under the fdxA 

promoter than the metK promoter, when expressed in both the cj0046 and cj0223 

pseudogene regions.  

Despite successfully expressing the cj0428-gfp fusion in C. jejuni, regulation by NC1 or 

NC4 was not observed. This may have been because expression of the cj0428-gfp 

fusion was too high to allow regulation by the ncRNAs. A strain of C. jejuni expressing 

cj0428-gfp under the metK promoter in an NC1 or NC4 over-expression mutant was not 

constructed. Perhaps this strain or one that uses a single copy promoter for cj0428-gfp 

expression would allow regulation by NC1 and NC4. Alternatively, NC1 and NC4 

could be placed under a stronger promoter, such as the porA promoter to increase 

ncRNA expression. Another reason for the lack of NC1 and NC4 regulation, may be 

that all the strains contained a wild-type copy of the cj0428 5’UTR, which may titrate 

NC1 and NC4 away from the cj0428-gfp fusion. Making the additional mutation of 

deleting the cj0428 5’UTR would be desirable to examine this theory. In addition, 

known translational regulators could be tested to ensure that translational control can be 

evaluated by this method in C. jejuni.  

In summary, although phenotypes of C. jejuni NC1 and NC4 mutants were not detected, 

it was demonstrated that NC1 and NC4 post-transcriptionally regulate expression of 

their targets in E. coli. The method used has been successful in demonstrating and 

validating ncRNA-target interactions (Urban and Vogel 2007; Corcoran et al. 2012; De 

Lay and Gottesman 2012). NC1 and NC4 function may regulate flagellar gene 

expression in C. jejuni (Chapter 4), but the experimental methods may need refining and 

may only be relevant in specific conditions. Development of transcriptional reporter 
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systems, as well as construction of all the relevant C. jejuni mutants is needed so that 

systematic experiments could be performed. These experiments would build upon the 

work in this investigation and would help to further enhance the range of genetic tools 

for C. jejuni studies. 
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C. jejuni flagella are crucial virulence determinants and much is known about the 

structural components and its formation, but the regulation of this complex organelle 

within different environments and how this contributes to virulence is not fully 

understood. Non-coding RNAs are also important for virulence and flagellar gene 

regulation in many bacteria, but their role in C. jejuni biology is unknown. 

Understanding regulation of C. jejuni virulence may create opportunities for 

interventions that prevent C. jejuni infections and may reveal novel regulatory 

mechanisms that further our knowledge of C. jejuni biology as a whole. 

The first aim was to assess C. jejuni gene expression in response to acid, which is an 

inevitable stressor during faecal-oral transmission. A subset of flagellar genes and 

invasion of intestinal epithelial cells was up-regulated after mild acid-shock. Transition 

through an acidic environment may trigger expression of flagella so that greater 

numbers of C. jejuni are more likely to reach and colonise the intestinal epithelium. 

This is significant because it enhances our understanding of C. jejuni virulence and 

survival in host niches.  

In addition, the up-regulation of a subset of flagellar genes was not matched by changes 

in expression of the main flagellar gene regulators, which is significant because it 

suggests that other mechanisms of flagellar regulation may be important during 

pathogenesis of C. jejuni infections, such as post-transcriptional regulation and this 

influenced the remaining scope of the thesis. Studies on the mechanisms of flagella 

gene expression are needed and although the FlgRS two component system is known to 

be a central regulator in flagella expression, flagellar regulation in response to changing 

environments is still unclear.  

A limited number of invasion assays were performed and more are required to 

substantiate the outcomes observed and the invasion model could be improved by using 

cell monolayers or tissue in vertical diffusion chambers. The Galleria infection model 

could be used to screen survival of C. jejuni after exposure to different pHs and this 

could be followed by colonisation studies in animals.  

Wider questions remain about C. jejuni acid responses, such as what mechanism of acid 

sensing and what responses and adaption mechanisms do C. jejuni have to acid stress? 

Also, is flagellar regulation a specific response to acid and, if so, what then is the 
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response to the more basic environments, such as that of the small intestine? 

Understanding C. jejuni adaptations to pH generally are important in knowing how it 

survives in hosts and food matrices.  

The remainder of the thesis focused on the functions of ncRNAs NC1 and NC4. During 

the last decade ncRNAs have become established as in integral regulators of gene 

expression and virulence in bacteria. Recent transcriptome research has revealed 

ncRNAs in C. jejuni (Dugar et al. 2013; Porcelli et al. 2013). However, only two 

ncRNAs, NC1 and NC4, were predicted to interact with other genes, many of which 

were flagella genes. NC1 and NC4 were then shown to post-transcriptionally control 

expression of these target genes in trans in an E. coli experimental system. Expression 

of these ncRNAs was regulated by a flagella-associated alternative sigma factor so it 

was expected that NC1 and NC4 were important for regulating flagella assembly and 

function. However, no phenotype could be detected so the biological significance of 

NC1 and NC4 regulation remains unknown. 

From these studies on ncRNAs, it is now known that ncRNAs encoded in the C. jejuni 

genome are expressed by the bacteria and regulate target genes in an established 

translational control assay, which is a novel finding. This is the first insight into ncRNA 

functions in C. jejuni, but even with experiments on H. pylori ncRNAs, our 

understanding of these regulators is still in the early stages. This warrants more research 

into the importance and mechanisms of NC1, NC4 and other ncRNA function. 

Understanding of different ncRNA regulatory networks may help to explain how 

complex organisms function and adapt to their environment from seemingly limited 

genetic information, which is the case for C. jejuni. 

Questions remain about what other conditions the ncRNAs are expressed in and 

whether they contribute to biologically relevant phenotype, such as C. jejuni virulence.  

Therefore, to continue this work, the conditions of NC1 and NC4 expression need to be 

established, such as those under limited nutrient availability or in animal colonisation 

studies. If NC1 and NC4 contribute to a colonisation phenotype, the condition should be 

replicated in vitro to test relevant phenotypes of the NC1 and NC4 deletion and over-

expression strains. 
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Moreover, NC1 and NC4 mechanism of function, as seen in E. coli, requires 

verification in C. jejuni. For this, tools for studying the molecular mechanisms of 

ncRNA interactions need to be developed for Epsilon-Proteobacteria and these will be 

key to furthering investigations in this area. Developing methods and approaches for 

examining post-transcriptional control in C. jejuni would directly benefit this work. 

Transcriptional gfp fusions were expressed in C. jejuni, but further work needs to be 

completed to examine whether regulation can been seen in C. jejuni. LacZ reporter 

systems could be developed as this is a method widely used for measuring post-

transcriptional regulation in bacteria. A lacZ vector with a C. jejuni origin of replication 

is available (Wosten et al. 1998b), which would limit the number of mutations made to 

the chromosome. Controlling the expression level of the vector and/or transcriptional 

fusions would give a system analogous to the GFP system. These may also help develop 

approaches for investigating ncRNA function in other bacteria that do not maintain 

plasmids and require tools for chromosomal manipulations and gene expression.  

The functions of other C. jejuni ncRNAs remain unknown and so studies of other 

ncRNAs in C. jejuni are needed to reveal their functions, if any. The discovery of a 

protein chaperone, functionally analogous to Hfq, could greatly progress research as it 

opens up the possibility of co-immunoprecipitating ncRNA and their targets, which has 

been a successful approach (Sittka et al. 2008). This would also provide knowledge of 

other protein chaperones that could potentially stabilise RNA-RNA interactions in other 

bacteria. However, it may be that Epsilon-Proteobacteria have adapted a novel 

mechanism of RNA-RNA interaction that does not involve a protein chaperone, and this 

would equally be interesting and may uncover alternative mechanisms to Hfq in other 

bacteria that do not express Hfq, such as Streptococcus species (Chao and Vogel 2010). 

No targets were predicted for the other ncRNAs using the TargetRNA program, but 

development of the program was based on knowledge of Enterobacteriaceae regulators, 

and so may have missed C. jejuni targets and may not be suitable to make predictions in 

bacteria outside this family. Non-coding RNAs have been shown to be important in 

many aspects of bacterial biology, so there is the potential for these ncRNAs to be 

required for fundamental biological functions. However, if NC1 and NC4 and other 

ncRNAs are functionally redundant, then this would be an interesting outcome and 

would contribute to our knowledge of the proportion of ncRNAs that are functional 
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compared to those that are redundant. This may also lead to further questions about 

genome evolution in Epsilon-Proteobacteria and why they have excluded these RNAs 

from their regulatory network.   

The initial aims of this work were to investigate regulation of C. jejuni flagellar 

responses to environmental conditions and investigations were shifted to focus on a 

possible novel mechanism of flagellar gene regulation. The conclusions are that 

flagellar gene expression is regulated by acidic conditions and causes an increase in C. 

jejuni invasion of intestinal epithelial cells. In addition, the expression of NC1 and NC4 

is linked to flagella expression and they may function to post-transcriptionally control 

expression of σ
54

-dependent, flagellar genes. This is the first description of small RNA-

mediated gene regulation in a Campylobacter species, although its biological 

significance remains unknown. Regulation of C. jejuni flagella may be more complex 

than previously thought and ncRNAs are potential post-transcriptional regulators of 

gene expression in C. jejuni.  
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Appendices 

Appendix 1 Plasmid sequences and maps of pC46 and pK223 

Constructed by Duncan Gaskin. 

A) pC46 

 

Map 

 
Key: F – front fragement; R – rear fragment; Chlor – Chloramphenicol cassette; Ori – 

Origin. 

 

Sequence: 
GATTGAAAAGTGGATAGATTTATGATATAGTGGATAGATTTATGATATAATGAGTTATCAACAAATCGGA

ATTTACGGAGGATAAATGATGCAATTCACAAAGATTGATATAAATAATTGGACACGAAAAGAGTATTTCG

ACCACTATTTTGGCAATACGCCCTGCACATATAGTATGACGGTAAAACTCGATATTTCTAAGTTGAAAAA

GGATGGAAAAAAGTTATACCCAACTCTTTTATATGGAGTTACAACGATCATCAATCGACATGAAGAGTTC

AGGACCGCATTAGATGAAAACGGACAGGTAGGCGTTTTTTCAGAAATGCTGCCTTGCTACACAGTTTTTC

ATAAGGAAACTGAAACCTTTTCGAGTATTTGGACTGAGTTTACAGCAGACTATACTGAGTTTCTTCAGAA

CTATCAAAAGGATATAGACGCTTTTGGTGAACGAATGGGAATGTCCGCAAAGCCTAATCCTCCGGAAAAC

ACTTTCCCTGTTTCTATGATACCGTGGACAAGCTTTGAAGGCTTTAACTTAAATCTAAAAAAAGGATATG

ACTATCTACTGCCGATATTTACGTTTGGGAAGTATTATGAGGAGGGCGGAAAATACTATATTCCCTTATC

GATTCAAGTGCATCATGCCGTTTGTGACGGCTTTCATGTTTGCCGTTTTTTGGATGAATTACAAGACTTG

CTGAATAAATAAAATCCCTCAGGCGCGCCAATCGAAAAATAGTGAAAAAATCATGCTCAGTGTTTTTGTC

TCGCTTTTACTTTTATGGGCTGGAGCTTTGGGCTTGTTTTTTTGGAATTTCTCTTGATGCGACTAGTGTG

GCTTTGCTTGGGTTGTCTTTGGTGTTGATTAGTGGAGTTTTAACTTTTGGGGAAGTTTTGGCCGAAAAAG

CTGCTTGGAATACTTTAGTATGGTTTTCAGCTCTTGTAATGATGGCAATTTACTTGGCAAACTTGGCGTT

ACACAGTTTTTAGCTGAAGCTTAAGGTGAATTTGCTTCTGCTATGGGACTTGGGGAAATTTCTATTATGA

TATTTTTAAGCCTTGCTTTTTTATATACACACTATTTCTTTGCTTCCATTACAGCTCATATATCAGCAAT

GTTTTTTGTTTTTTATAGTGCAGGGCTTGCCTTAGGAGCACCACCACTTCTTTATGCTTTTATTATGATA

GCTTCAGGTAATGTTATGATGGCATTAACTCACTATGCAACAGGAACAGCTCCTGTTATTTTTGGAACGG

GCTATGTAACTCTTAAAAAATGGTGGAGTATAGGTTTTGTGATTTCCATAGTTGATATAGTAGTGATGAT

AGCTGTTGGGCTTTTTTGGTGGAAAATTTTAGGATTTTATTAATAATTTCTAGGAATTAATTCCTAGAAA

TTATTCTATAAAACCGCTTGCTATGACTTTATCATGATCATAAAAGACTGCCATTTGTCCGCTAGCAAGT

CCATAAACAGGATCTTTTAGAGTGATTTTTGCGCTTTTATCTTCATAAATTTCTACCTTACAAGGTGTAG

ATTTTGAACGATAGCGGATTTTTACTTCGCAATCAAGCTCTTTAGCGTCTATAAAAAGATTGATATTTTT

TAGCTTAAATTCACTGATTTTAAGTTCTTCTTTGGTTCCTACGATGATTTGATTTTGCTTAGGATTGATT

TTTAAAACAAAATGTGGTTCATGTGCCCCACGCACTTCAAAGCCCCTTCTTTAATCGAATTCCCGCGGCC

GCCATGGCGGCCGGGAGCATGCGACGTCGGGCCCAATTCGCCCTATAGTGAGTCGTATTACAATTCACTG

GCCGTCGTTTTACAAGACCCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCCTTTTTTTCTGCGCGTAA

pC46
3881 bp

O ri

cj
00

46F Chlor

Chlor P

cj0
0

4
6

R
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TCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAGCGGTGGTTTGTTTGCCGGATCAAGAGCTACCAAC

TCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAAATACTGTTCTTCTAGTGTAGCCGTAG

TTAGGCCACCACTTCAAGAACTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGG

CTGCTGCCAGTGGCGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCA

GCGGTCGGGCTGAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGA

TACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTAA

GCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTATAGTCC

TGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTGATGCTCGTCAGGGGGGCGGAGCCTATGG

AAAAACGCCAGCAACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACATGTTCTTTC

CTGCGTTATCCCCTGATTCTGTGGATAACCGTATTACCGCCTTTGAGTGAGCTGATACCGCTCGCCGCAG

CCGAACGACCGAGCGCAGCGAGTCAGTGAGCGAGGAAGCGGAAGAGCGCCCAATACGCAAACCGCCTCTC

CCCGCGCGTTGGCCGATTCATTAATGCAGCTGGCACGACAGGTTTCCCGACTGGAAAGCGGGCAGTGAGC

GCAACGCAATTAATGTGAGTTAGCTCACTCATTAGGCACCCCAGGCTTTACACTTTATGCTTCCGGCTCG

TATGTTGTGTGGAATTGTGAGCGGATAACAATTTCACACAGGAAACAGCTATGACCATGATTACGCCAAG

CTATTTAGGTGACACTATAGAATACTCAAGCTATGCATCCAACGCGTTGGGAGCTCTCCCATATGGTCGA

CCTGCAGGCGGCCGCGAATTCACTAGTGATTTCTTAATTACATTACCAATAATTACATTACCAATATCAA

AGGATAAACAATGGATAGAAAGAAAATTCCCTTGTTGGTGCTGCGTATTTTAATTGCAGCTGTGTTTTGG

CCTATACCTACTCCTTGTAGGTTTGGAAAATAATTCTTGGCATTTTCTTGGGCTTTTTATTGCTGTGATT

ATGGCAGTGATTTTACAAGTAATGCCTTTGGGGGCTGTTTGTATGATAGCTATTGCCATAGTAGCTCTTA

GTGGCATTACCACTACCCAATTGAAAATCTAAGTAAAATTTACACCAAAGCTACTTCGAAAACTTCTACG

CAACAACTTATTGATGAGACTAAAATTTCCTTTAAATACTTCAGTACTTGATTTTTTATATCAAAAGAGT

ATAAGATGAAAAGGTAAATACTGCTATATCAAATTTAAAATCTAAAACGGGTATAAAAGACGCTTTAAGT

GGTTTTTCAAATTCTCTTATTTAGCTTATAGTTATTCTATTATTGTGGCTCGTGGAGTTATTAAAACAGG

ACTTGGAGAGCATTTGGCTTATCATTTTATCAGTATTCTTGGTAAAAAAACCTTAGGTATTGCTTATTCT

ATAGCTTTTTGTGAAACTATTTTAGCTCCAGTTACTCCTTCAAATACTGCAAGAGCAGGGGCTATCATAA

ATTCTATAGTTCAAGTTATTGCAAGAAGTTTTAAATCCACTCCTGAAGATGGAACACAAAATAAAATAGG

CACTTATCTTTCTTTGGTAAATTATCAAGAGCCAATCCTATTTCATCAGCTATGTTTATTACAGCTACAG

CTCCAAATCCTTTGGTGCTTTATTTTCTCTCTCCGCTAGAAATTAAATCCACGCCTAATGCTTCTACTTT

TGCTAAAGATAAATTAAAACGTCTCACATG 

 
B) pK223 

 

Map 

 
Key: F – front fragement; R – rear fragment; Kan – kanamycin cassette (short version 

with promoter, P1 and a ribosome binding site); Ori – Origin. 

 

Sequence: 

CCTATTGACAATACTGATAAGATAATATATAATTAAATACTGTAGAAAAGAGGAAGGAAATAATAAATGG

CTAAAATGAGAATATCACCGGAATTGAAAAAACTGATCGAAAAATACCGCTGCGTAAAAGATACGGAAGG

AATGTCTCCTGCTAAGGTATATAAGCTGGTGGGAGAAAATGAAAACCTATATTTAAAAATGACGGACAGC

CGGTATAAAGGGACCACCTATGATGTGGAACGGGAAAAGGACATGATGCTATGGCTGGAAGGAAAGCTGC

pK223
3689 bp

P1

Kan

rbs

c
j0
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3F 
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CTGTTCCAAAGGTCCTGCACTTTGAACGGCATGATGGCTGGAGCAATCTGCTCATGAGTGAGGCCGATGG

CGTCCTTTGCTCGGAAGAGTATGAAGATGAACAAAGCCCTGAAAAGATTATCGAGCTGTATGCGGAGTGC

ATCAGGCTCTTTCACTCCATCGACATATCGGATTGTCCCTATACGAATAGCTTAGACAGCCGCTTAGCCG

AATTGGATTACTTACTGAATAACGATCTGGCCGATGTGGATTGCGAAAACTGGGAAGAAGACACTCCATT

TAAAGATCCGCGCGAGCTGTATGATTTTTTAAAGACGGAAAAGCCCGAAGAGGAACTTGTCTTTTCCCAC

GGCGACCTGGGAGACAGCAACATCTTTGTGAAAGATGGCAAAGTAAGTGGCTTTATTGATCTTGGGAGAA

GCGGCAGGGCGGACAAGTGGTATGACATTGCCTTCTGCGTCCGGTCGATCAGGGAGGATATCGGGGAAGA

ACAGTATGTCGAGCTATTTTTTGACTTACTGGGGATCAAGCCTGATTGGGAGAAAATAAAATATTATATT

TTACTGGATGAATTGTTTTAGTACCTAAGTCAGGCGCGCCAATCCAGGAAATCAAGGTAGATTAGATGAT

AATGATGGTTCGCATAATATTATCTTAAGTGCTGAGTTAGGTTATAGAAAAGCTTATGATAAATTTTATC

TTGAGCCGATTTGGAATTTATCAGTGGTTATGTAGGAGCTATGGATCTAAAAGGAGATATTGCTAGTTTA

AAACGATTTTCTTATATTCCTTTAGTCGTAAAAACAGCATTTTTCATAGGAAGTCAAAATTAAAATTTAA

ATTTTAGAACAGGACTTGGTTTGTATGCGGATCCGATTAAAGCAGGAGATCAAATTTTAGAGGATCAAGC

AAGTCAGAGAAGATATGAAGGAAAAAAGATCAAAGAATGTTTATAAATTTAGGAAATGATTATAAGCTTA

ACGATAAAACACGCTTTAATTTTGAATTTGAAAAGACATTTTTTGGCGATTTAAATGTAGATTGGAGTGC

AAATGCTAATTTAAGATATAGTTTTTAAATAAAAAATAATTTAAAAATTGTATTTTTATTTTAAGCTTTT

TTGTTTATAATACTTGCTTTTACATTTAAAGGGTAAAGATGAAAATAAAAGTTGGGATTTTAGGAGCGAG

TGGTTATGCGGGAAATGAACTTGTTCGCATTTTGCTTAATCATCCCAAGGTTGAAATTTCTTATTTGGGT

TCGAGTTCTAGCGTGGGGCAAAATTATCAAGATCTTTATCCTAACACCCCTTTAAATTTATGTTTTGAAA

ATAAAAATTTAGATGAACTTGAACTTGATCTTTTGTTTTTGGCTACTCCGCCATGGCGGCCGGGAGCATG

CGACGTCGGGCCCAATTCGCCCTATAGTGAGTCGTATTACAATTCACTGGCCGTCGTTTTACAAGACCCC

GTAGAAAAGATCAAAGGATCTTCTTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAA

AACCACCGCTACCAGCGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGG

CTTCAGCAGAGCGCAGATACCAAATACTGTTCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAAC

TCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTGGCGATAAGT

CGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCTGAACGGGGGG

TTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGATACCTACAGCGTGAGCTATGA

GAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTAAGCGGCAGGGTCGGAACAGGAG

AGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTG

ACTTGAGCGTCGATTTTTGTGATGCTCGTCAGGGGGGCGGAGCCTATGGAAAAACGCCAGCAACGCGGCC

TTTTTACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACATGTTCTTTCCTGCGTTATCCCCTGATTCTG

TGGATAACCGTATTACCGCCTTTGAGTGAGCTGATACCGCTCGCCGCAGCCGAACGACCGAGCGCAGCGA

GTCAGTGAGCGAGGAAGCGGAAGAGCGCCCAATACGCAAACCGCCTCTCCCCGCGCGTTGGCCGATTCAT

TAATGCAGCTGGCACGACAGGTTTCCCGACTGGAAAGCGGGCAGTGAGCGCAACGCAATTAATGTGAGTT

AGCTCACTCATTAGGCACCCCAGGCTTTACACTTTATGCTTCCGGCTCGTATGTTGTGTGGAATTGTGAG

CGGATAACAATTTCACACAGGAAACAGCTATGACCATGATTACGCCAAGCTATTTAGGTGACACTATAGA

ATACTCAAGCTATGCATCCAACGCGTTGGGAGCTCTCCCATATGGTCGACCTGCAGGAGTTGGCAAAGAA

ATGGCTTTTGAGCAAAAGCTTTAAAATACCCAAAATGCTAAGATAGAAAAGGTTTATTTTAGTGTAAATT

TAAATCTTGATCATTCTGATGTTACTTTGCAAAACACATTTTTTAGTGGTAATATCAAAGGTATCAATGA

TACGCAAAAAAAATCTTGCGATTAAAGATTCTTTGCTTGAGTCTCATATATAAATGAGCAATCTTCAAGT

AGAAAAAAGTGCTATTTATAGGAAAGTTGATGCAAAAAAATTAAGTGCAAATAATACAATATTTAAAATC

AATGCGGATTTTGAAAATTCTAAATCAGATTATATTAATTCTAAGGAAAGCACACAAGGAGTAAATAATA

CTTTAGTATTAATTTTTCTTAATAATCCTAGTAAAAAGCGGGTTTAAATATCTTACTAGCTCATTTAAAA

GATGAAAATAAACATTTAACAAAGGAATTTTTTACTATGCCAAATGTGAGCAAGGTTTTAGTACGTATAC

CCCAAATGTTGTTTTTTCTCATAATGAGGAAAATTTTGCCCAGAGTGGAATTTAGAAAAAATTGATTCTA

AGATTAAAGATGAATATTTTTTTACTAATGATAATACTCAAGCTATTGTAAAAACTAAATCTATACTTGC

TCAAGCTATTTTAGGCTCCATGATAGGAGTGGAATAATATGCATAAAAGAATGGGGGAATTACGCAATAA

TCCTTATGAAAGTGGTGTATGGTTAAGAACTTTTGGATGGGGTACGAGTGATGAGTATAATAGTGGAAAA

TACTTTGAAATTCAAAGCGGACATGCGTCTCTCATGAAAGCTAGGCCGG 
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Appendix 2 Publication containing work from Chapter 3

 



   Appendix 

 

185 

 

 



   Appendix 

 

186 

 

 



   Appendix 

 

187 

 

 

 



   Appendix 

 

188 

 

 



   Appendix 

 

189 

 



   Appendix 

 

190 

 



   Appendix 

 

191 

 

 



   References 

 

192 

 

References 

Abuoun, M., G. Manning, S. A. Cawthraw, A. Ridley, I. H. Ahmed, T. M. Wassenaar 

and D. G. Newell (2005). Cytolethal distending toxin (CDT)-negative 

Campylobacter jejuni strains and anti-CDT neutralizing antibodies are induced 

during human infection but not during colonization in chickens. Infection and 

Immunity 73: 3053-3062.  

Al-Salloom, F. S., A. Al Mahmeed, A. Ismaeel, G. A. Botta and M. Bakhiet (2003). 

Campylobacter-stimulated INT407 cells produce dissociated cytokine profiles. 

Journal of Infection 47(3): 217-224.  

Aldridge, P. D., J. E. Karlinsey, C. Aldridge, C. Birchall, D. Thompson, J. Yagasaki and 

K. T. Hughes (2006). The flagellar-specific transcription factor, σ 28 , is the type 

III secretion chaperone for the flagellar-specific anti- σ 28 factor FlgM. Genes & 

Development 20: 2315-2326.  

Andersen-Nissen, E., K. D. Smith, K. L. Strobe, S. L. Rassoulian Barre, B. T. Cookson, 

S. M. Logan and A. Aderem (2005). Evasion of Toll-like receptor 5 by 

flagellated bacteria. PNAS 102: 9247–9252.  

Angulo, F. J., V. N. Nargund and T. C. Chiller (2004). Evidence of an association 

between use of anti-microbial agents in food animals and anti-microbial 

resistance among bacteria isolated from humans and the human health 

consequences of such resistance. Journal of veterinary medicine. B, Infectious 

diseases and veterinary public health 51: 374-379. 

Apel, D., J. Ellermeier, M. Pryjma, V. J. Dirita and E. C. Gaynor (2012). 

Characterization of Campylobacter jejuni RacRS reveals roles in the heat shock 

response, motility, and maintenance of cell length homogeneity. J Bacteriol 

194(9): 2342-2354.  

Asakura, H., N. Hashii, M. Uema, N. Kawasaki, Y. Sugita-Konishi, S. Igimi and S. 

Yamamoto (2013). Campylobacter jejuni pdxA Affects Flagellum-Mediated 

Motility to Alter Host Colonization. PLoS One 8(8): e70418.  

Ashgar, S. S., N. J. Oldfield, K. G. Wooldridge, M. A. Jones, G. J. Irving, D. P. Turner 

and D. A. Ala'Aldeen (2007). CapA, an autotransporter protein of 

Campylobacter jejuni, mediates association with human epithelial cells and 

colonization of the chicken gut. J Bacteriol 189(5): 1856-1865.  

Audia, J. P., C. C. Webb and J. W. Foster (2001). Breaking through the acid barrier: an 

orchestrated response to proton stress by enteric bacteria. Int J Med Microbiol 

291(2): 97-106.  

Avila, R. E., M. E. Semar and S. P. de Fabro (1986). Ultrastructural diffrentiation of 

glandular stomach (proventriculus) in chick embryo. Folia Histochem Cytobiol 

24: 227-231. 

Axelsson-Olsson, D., L. Svensson, J. Olofsson, P. Salomon, J. Waldenström, P. 

Ellström and B. Olsen (2010). Increase in acid tolerance of Campylobacter 

jejuni through coincubation with amoebae. Applied and Environmental 

Microbiology 76(13): 4194-4200.  



   References 

 

193 

 

Bacon, D. J., R. A. Alm, L. Hu, T. E. Hickey, C. P. Ewing, R. A. Batchelor, T. J. Trust 

and P. Guerry (2002). DNA sequence and mutational analyses of the pVir 

plasmid of Campylobacter jejuni 81-176. Infect Immun 70(11): 6242-6250. 

Bacon, D. J., C. M. Szymanski, D. H. Burr, R. P. Silver, R. A. Alm and P. Guerry 

(2001). A phase-variable capsule is involved in virulence of Campylobacter 

jejuni 81-176. Molecular Microbiology 40: 769-777.  

Baker, M. D., P. M. Wolanin and J. B. Stock (2005). Signal transduction in bacterial 

chemotaxis. BioEssays 28: 9-22.  

Balaban, M., S. N. Joslin and D. R. Hendrixson (2009). FlhF and its GTPase activity are 

required for distinct processes in flagellar gene regulation and biosynthesis in 

Campylobacter jejuni. Journal of Bacteriology 191: 6602-6611.  

Barrero-Tobon, A. M. and D. R. Hendrixson (2012). Identification and analysis of 

flagellar coexpressed determinants (Feds) of Campylobacter jejuni involved in 

colonization. Mol Microbiol 84(2): 352-369.  

Batchelor, R. A., B. M. Pearson, L. M. Friis, P. Guerry and J. M. Wells (2004). 

Nucleotide sequences and comparison of two large conjugative plasmids from 

different Campylobacter species. Microbiology 150(Pt 10): 3507-3517.  

Bell, J. A., J. P. Jerome, A. E. Plovanich-Jones, E. J. Smith, J. R. Gettings, H. Y. Kim, 

J. R. Landgraf, T. Lefebure, J. J. Kopper, V. A. Rathinam, J. L. St Charles, B. A. 

Buffa, A. P. Brooks, S. A. Poe, K. A. Eaton, M. J. Stanhope and L. S. Mansfield 

(2013). Outcome of infection of C57BL/6 IL-10(-/-) mice with Campylobacter 

jejuni strains is correlated with genome content of open reading frames up- and 

down-regulated in vivo. Microb Pathog 54: 1-19.  

Bens, M., A. Bogdanova, F. Cluzeaud, L. Miquerol, S. Kerneis, J. P. Kraehenbuhl, A. 

Kahn, E. Pringault and A. Vandewalle (1996). Transimmortalized mouse 

intestinal cells (m-ICc12) that maintain a crypt phenotype. Am J Physiol 270(6 

Pt 1): C1666-1674.  

Bereswill, S., A. Fischer, R. Plickert, L. M. Haag, B. Otto, A. A. Kuhl, J. I. Dasti, A. E. 

Zautner, M. Munoz, C. Loddenkemper, U. Gross, U. B. Gobel and M. M. 

Heimesaat (2011). Novel murine infection models provide deep insights into the 

"menage a trois" of Campylobacter jejuni, microbiota and host innate immunity. 

PLoS One 6(6): 20953. 

Birk, T., M. T. Wik, R. Lametsch and S. Knochel (2012). Acid stress response and 

protein induction in Campylobacter jejuni isolates with different acid tolerance. 

BMC Microbiol 12: 174.  

Black, R. E., M. M. Levine, M. L. Clements, T. P. Hughes and M. J. Blaser (1988). 

Experimental Campylobacter jejuni infection in humans. Journal of Infectious 

Diseases 157: 472-479.  

Blocker, A., K. Komoriya and S. Aizawa (2003). Type III secretion systems and 

bacterial flagella: Insights into their function from structural similarities. PNAS 

100: 3027-3030. 

Boehm, M., M. Krause-Gruszczynska, M. Rohde, N. Tegtmeyer, S. Takahashi, O. A. 

Oyarzabal and S. Backert (2011). Major host factors involved in epithelial cell 

invasion of Campylobacter jejuni: role of fibronectin, integrin beta1, FAK, 



   References 

 

194 

 

Tiam-1, and DOCK180 in activating Rho GTPase Rac1. Front Cell Infect 

Microbiol 1: 17.  

Boll, J. M. and D. R. Hendrixson (2013). A Regulatory Checkpoint during Flagellar 

Biogenesis in Campylobacter jejuni Initiates Signal Transduction To Activate 

Transcription of Flagellar Genes. MBio 4(5).  

Boutte, C. C. and S. Crosson (2013). Bacterial lifestyle shapes stringent response 

activation. Trends Microbiol 21(4): 174-180. 

Brahmachary, P., M. G. Dashti, J. W. Olson and T. R. Hoover (2004). Helicobacter 

pylori FlgR is an enhancer-independent activator of sigma54-RNA polymerase 

holoenzyme. Journal of Bacteriology 186: 4535-4542.  

Brosnahan, A. J. and D. R. Brown (2012). Porcine IPEC-J2 intestinal epithelial cells in 

microbiological investigations. Vet Microbiol 156(3-4): 229-237.  

Buck, G. E., K. A. Parshall and C. P. Davis (1983). Electron microscopy of the coccoid 

form of Campylobacter jejuni. J Clin Microbiol 18(2): 420-421.  

Buelow, D. R., J. E. Christensen, J. M. Neal-McKinney  and M. E. Konkel (2011). 

Campylobacter jejuni survival within human epithelial cells is enhanced by the 

secreted protein CiaI. Molecular Microbiology 80(5): 1296-1312.  

Burton, N. A., M. D. Johnson, P. Antczak, A. Robinson and P. A. Lund (2010). Novel 

aspects of the acid response network of E. coli K-12 are revealed by a study of 

transcriptional dynamics. J Mol Biol 401(5): 726-742.  

Butzler, J. P. (2004). Campylobacter, from obscurity to celebrity. Clin Microbiol Infect 

10(10): 868-876.  

Caly, D. L., P. W. O'Toole and S. A. Moore (2010). The 2.2-A structure of the HP0958 

protein from Helicobacter pylori reveals a kinked anti-parallel coiled-coil 

hairpin domain and a highly conserved ZN-ribbon domain. J Mol Biol 403(3): 

405-419.  

Carrillo, C. D., E. Taboada, J. H. Nash, P. Lanthier, J. Kelly, P. C. Lau, R. Verhulp, O. 

Mykytczuk, J. Sy, W. A. Findlay, K. Amoako, S. Gomis, P. Willson, J. W. 

Austin, A. Potter, L. Babiuk, B. Allan and C. M. Szymanski (2004). Genome-

wide expression analyses of Campylobacter jejuni NCTC11168 reveals 

coordinate regulation of motility and virulence by flhA. J Biol Chem 279(19): 

20327-20338.  

Champion, O. L., A. V. Karlyshev, N. J. Senior, M. Woodward, R. La Ragione, S. L. 

Howard, B. W. Wren and R. W. Titball (2010). Insect infection model for 

Campylobacter jejuni reveals that O-methyl phosphoramidate has insecticidal 

activity. J Infect Dis 201(5): 776-782.  

Chang, C. and J. F. Miller (2006). Campylobacter jejuni colonization of mice with 

limited enteric flora. Infect Immun 74(9): 5261-5271.  

Chao, Y. and J. Vogel (2010). The role of Hfq in bacterial pathogens. Curr Opin 

Microbiol 13(1): 24-33.  

Chaudhuri, R. R., L. Yu, A. Kanji, T. T. Perkins, P. P. Gardner, J. Choudhary, D. J. 

Maskell and A. J. Grant (2011). Quantitative RNA-seq analysis of the 

Campylobacter jejuni transcriptome. Microbiology 157(Pt 10): 2922-2932.  



   References 

 

195 

 

Chaveerach, P., A. A. H. M. ter Huurne, L. J. A. Lipman and F. van Knapen (2003). 

Survival and resuscitation of ten strains of Campylobacter jejuni and 

Campylobacter coli under acid conditions. Applied and Environmental 

Microbiology 69(1): 711-714.  

Chen, S., M. Beeby, G. E. Murphy, J. R. Leadbetter, D. R. Hendrixson, A. Briegel, Z. 

Li, J. Shi, E. I. Tocheva, A. Muller, M. J. Dobro and G. J. Jensen (2011). 

Structural diversity of bacterial flagellar motors. EMBO J 30(14): 2972-2981. 

Chevance, F. F. and K. T. Hughes (2008). Coordinating assembly of a bacterial 

macromolecular machine. Nature Reviews Microbiology 6: 455-465.  

Collier, J., H. H. McAdams and L. Shapiro (2007). A DNA methylation ratchet governs 

progression through a bacterial cell cycle. PNAS 104: 17111-17116.  

Corcoran, C. P., D. Podkaminski, K. Papenfort, J. H. Urban, J. C. Hinton and J. Vogel 

(2012). Superfolder GFP reporters validate diverse new mRNA targets of the 

classic porin regulator, MicF RNA. Mol Microbiol 84(3): 428-445.  

Dasgupta, N., M. C. Wolfgang, A. L. Goodman, S. K. Arora, J. Jyot, S. Lory and R. 

Ramphal (2003). A four-tiered transcriptional regulatory circuit controls 

flagellar biogenesis in Pseudomonas aeruginosa. Molecular Microbiology 50: 

809-824.  

Davis, L. M., T. Kakuda and V. J. DiRita (2009). A Campylobacter jejuni znuA 

orthologue is essential for growth in low-zinc environments and chick 

colonization. J Bacteriol 191(5): 1631-1640.  

De Lay, N. and S. Gottesman (2012). A complex network of small non-coding RNAs 

regulate motility in Escherichia coli. Mol Microbiol.  

DEFRA (2012). Zoonoses report. United Kingdon 2011. London, Defra publications. 

Douillard, F. P., K. A. Ryan, D. L. Caly, J. Hinds, A. A. Witney, S. E. Husain and P. W. 

O'Toole (2008). Posttranscriptional regulation of flagellin synthesis in 

Helicobacter pylori by the RpoN chaperone HP0958. J Bacteriol 190(24): 7975-

7984.  

Dressman, J. B., R. R. Berardi, L. C. Dermentzoglou, T. L. Russell, S. P. Schmaltz, J. L. 

Barnett and K. M. Jarvenpaa (1990). Upper gastrointestinal (GI) pH in young, 

healthy men and women. Pharm Res 7(7): 756-761.  

Dugar, G., A. Herbig, K. U. Forstner, N. Heidrich, R. Reinhardt, K. Nieselt and C. M. 

Sharma (2013). High-Resolution Transcriptome Maps Reveal Strain-Specific 

Regulatory Features of Multiple Campylobacter jejuni Isolates. PLoS Genet 

9(5): e1003495.  

DuPont, A. W. (2008). Postinfectious irritable bowel syndrome. Clin Infect Dis 46(4): 

594-599. 

Egelman, E. H. (2010). Reducing irreducible complexity: divergence of quaternary 

structure and function in macromolecular assemblies. Curr Opin Cell Biol 22(1): 

68-74.  

Elmi, A., E. Watson, P. Sandu, O. Gundogdu, D. C. Mills, N. F. Inglis, E. Manson, L. 

Imrie, M. Bajaj-Elliott, B. W. Wren, D. G. Smith and N. Dorrell (2012). 

Campylobacter jejuni outer membrane vesicles play an important role in 



   References 

 

196 

 

bacterial interactions with human intestinal epithelial cells. Infect Immun 80(12): 

4089-4098.  

European Food Safety Authority (2012). The European Union Summary Report on 

Trends and Sources of Zoonoses, Zoonotic Agents and Food-borne Outbreaks in 

2011. EFSA Journal, European Centre for Disease Prevention and Control. 10: 

2597.  

European Food Safety Authority (2013). The European Union Summary Report on 

Trends and Sources of Zoonoses, Zoonotic Agents and Food-borne Outbreaks in 

2011. EFSA Journal, European Centre for Disease Prevention and Control. 11: 

3129.  

Ewing, C. P., E. Andreishcheva and P. Guerry (2009). Functional characterization of 

flagellin glycosylation in Campylobacter jejuni 81-176. Journal of Bacteriology 

191: 7086-7093. 

Ferrero, R. L. and A. Lee (1988). Motility of Campylobacter jejuni in a viscous 

environment: comparison with conventional rod-shaped bacteria. J Gen 

Microbiol 134(1): 53-59. 

Fields, J. A. and S. A. Thompson (2012). Campylobacter jejuni CsrA complements an 

Escherichia coli csrA mutation for the regulation of biofilm formation, motility 

and cellular morphology but not glycogen accumulation. BMC Microbiol 12(1): 

233.  

Flanagan, R. C., J. M. Neal-McKinney, A. S. Dhillon, W. G. Miller and M. E. Konkel 

(2009). Examination of Campylobacter jejuni putative adhesins leads to the 

identification of a new protein, designated FlpA, required for chicken 

colonization. Infect Immun 77(6): 2399-2407.  

Friis, L. M., C. Pin, B. M. Pearson and J. M. Wells (2005). In vitro cell culture methods 

for investigating Campylobacter invasion mechanisms. Journal of 

Microbiological Methods 61: 145-160.  

Friis, L. M., C. Pin, B. M. Pearson and J. M. Wells (2005). In vitro cell culture methods 

for investigating Campylobacter invasion mechanisms. J Microbiol Meth 61(2): 

145-160. 

Friis, L. M., C. Pin, D. E. Taylor, B. M. Pearson and J. M. Wells (2007). A role for the 

tet(O) plasmid in maintaining Campylobacter plasticity. Plasmid 57(1): 18-28. 

Frohlich, K. S. and J. Vogel (2009). Activation of gene expression by small RNA. Curr 

Opin Microbiol 12(6): 674-682.  

Fry, B. N., S. Feng, Y. Y. Chen, D. G. Newell, P. J. Coloe and V. Korolik (2000). The 

galE gene of Campylobacter jejuni is involved in lipopolysaccharide synthesis 

and virulence. Infect Immun 68(5): 2594-2601.  

Fux, C. A., J. W. Costerton, P. S. Stewart and P. Stoodley (2005). Survival strategies of 

infectious biofilms. Trends in Microbiology 13(1): 34-40.  

Gaynor, E. C., D. H. Wells, J. K. MacKichan and S. Falkow (2005). The Campylobacter 

jejuni stringent response controls specific stress survival and virulence-

associated phenotypes. Mol Microbiol 56(1): 8-27.  



   References 

 

197 

 

Ge, Z., D. B. Schauer and J. G. Fox (2008). In vivo virulence properties of bacterial 

cytolethal-distending toxin. Cell Microbiol 10(8): 1599-1607.  

Ghosh, A., K. Paul and R. Chowdhury (2006). Role of the histone-like nucleoid 

structuring protein in colonization, motility, and bile-dependent repression of 

virulence gene expression in Vibrio cholerae. Infection and Immunity 74: 3060-

3064.  

Gibreel, A. and D. E. Taylor (2006). Macrolide resistance in Campylobacter jejuni and 

Campylobacter coli. J Antimicrob Chemother 58(2): 243-255.  

Goon, S., J. F. Kelly, S. M. Logan, C. P. Ewing and P. Guerry (2003). Pseudaminic 

acid, the major modification on Campylobacter flagellin, is synthesized via the 

Cj1293 gene. Molecular Microbiology 50: 659-671.  

Gopel, Y., K. Papenfort, B. Reichenbach, J. Vogel and B. Gorke (2013). Targeted decay 

of a regulatory small RNA by an adaptor protein for RNase E and counteraction 

by an anti-adaptor RNA. Genes Dev 27(5): 552-564.  

Grabowska, A. D., M. P. Wandel, A. M. Lasica, M. Nesteruk, P. Roszczenko, A. 

Wyszynska, R. Godlewska and E. K. Jagusztyn-Krynicka (2011). 

Campylobacter jejuni dsb gene expression is regulated by iron in a Fur-

dependent manner and by a translational coupling mechanism. BMC Microbiol 

11: 166.  

Grant, C. C., M. E. Konkel, W. Cieplak Jr. and L. S. Tompkins (1993). Role of flagella 

in adherence, internalization, and translocation of Campylobacter jejuni in 

nonpolarized and polarized epithelial cell cultures. Infection and Immunity 61: 

1764-1771.  

Grubman, A., A. Phillips, M. Thibonnier, M. Kaparakis-Liaskos, C. Johnson, J. M. 

Thiberge, F. J. Radcliff, C. Ecobichon, A. Labigne, H. de Reuse, G. L. Mendz 

and R. L. Ferrero (2010). Vitamin B6 is required for full motility and virulence 

in Helicobacter pylori. MBio 1(3).  

Guccione, E., R. Leon-Kempis Mdel, B. M. Pearson, E. Hitchin, F. Mulholland, P. M. 

van Diemen, M. P. Stevens and D. J. Kelly (2008). Amino acid-dependent 

growth of Campylobacter jejuni: key roles for aspartase (AspA) under 

microaerobic and oxygen-limited conditions and identification of AspB 

(Cj0762), essential for growth on glutamate. Mol Microbiol 69(1): 77-93.  

Guerry-Kopecko, P. and S. Baqar (2008). Secreted Campylobacter flagella coregulated 

proteins as immunogens US 2008/0003234 A1. US.  

Guerry, P. (2007). Campylobacter flagella: not just for motility. Trends in microbiology 

15: 456-461.  

Guerry, P., R. A. Alm, M. E. Power, S. M. Logan and T. J. Trust (1991). Role of two 

flagellin genes in Campylobacter motility. Journal of Bacteriology 173: 4757-

4764.  

Guerry, P., C. P. Ewing, M. Schirm, M. Lorenzo, J. Kelly, D. Pattarini, G. Majam, P. 

Thibault and S. Logan (2006). Changes in flagellin glycosylation affect 

Campylobacter autoagglutination and virulence. Molecular Microbiology 60: 

299-311.  



   References 

 

198 

 

Gundogdu, O., S. D. Bentley, M. T. Holden, J. Parkhill, N. Dorrell and B. W. Wren 

(2007). Re-annotation and re-analysis of the Campylobacter jejuni NCTC11168 

genome sequence. BMC Genomics 8: 162.  

Guttenplan, S. B. and D. B. Kearns (2013). Regulation of flagellar motility during 

biofilm formation. FEMS Microbiol Rev.  

Haddad, N., C. M. Burns, J. M. Bolla, H. Prevost, M. Federighi, D. Drider and J. M. 

Cappelier (2009). Long-term survival of Campylobacter jejuni at low 

temperatures is dependent on polynucleotide phosphorylase activity. Appl 

Environ Microbiol 75(23): 7310-7318. 

Hall, S. J., A. Hitchcock, C. S. Butler and D. J. Kelly (2008). A Multicopper oxidase 

(Cj1516) and a CopA homologue (Cj1161) are major components of the copper 

homeostasis system of Campylobacter jejuni. J Bacteriol 190(24): 8075-8085. 

Harshey, R. M. (2003). Bacterial motility on a surface: many ways to a common goal. 

Annu Rev Microbiol 57: 249-273.  

Hazeleger, W. C., J. A. Wouters, F. M. Rombouts and T. Abee (1998). Physiological 

activity of Campylobacter jejuni far below the minimal growth temperature. 

Appl Environ Microbiol 64(10): 3917-3922.  

Hendrixson, D. R. (2006). A phase-variable mechanism controlling the Campylobacter 

jejuni FlgR response regulator influences commensalism. Molecular 

Microbiology 61: 1646-1659.  

Hendrixson, D. R. (2008). Regulation of flagella gene expression and assembly. 

Campylobacter. I. Nachamkin, C. M. Szymanski and M. J. Blaser. Washington 

DC, ASM Press: 545-558.  

Hendrixson, D. R. and V. J. Di Rita (2003). Transcription of sigma-54-dependent but 

not sigma-28-dependent flagellar genes in Campylobacter jejuni is associated 

with formation of the flagellar secretory apparatus. Molecular Microbiology 50: 

687-702.  

Hendrixson, D. R. and V. J. DiRita (2004). Campylobacter jejuni genes involved in 

commensal colonization of the chick gastrointestinal tract. Molecular 

Microbiology 52: 471-484. 

Hengge, R. (2008). The two-component network and the general stress sigma factor 

RpoS (sigma S) in Escherichia coli. Adv Exp Med Biol 631: 40-53.  

Hickey, T. E., A. L. McVeigh, D. A. Scott, R. E. Michielutti, A. Bixby, S. A. Carroll, 

A. L. Bourgeois and P. Guerry (2000). Campylobacter jejuni cytolethal 

distending toxin mediates release of interleukin-8 from intestinal epithelial cells. 

Infection and Immunity 68: 6535-6541.  

Hofreuter, D., J. Mohr, O. Wensel, S. Rademacher, K. Schreiber, D. Schomburg, B. 

Gao and J. E. Galan (2012). Contribution of amino acid catabolism to the tissue 

specific persistence of Campylobacter jejuni in a murine colonization model. 

PLoS One 7(11): e50699.  

Hofreuter, D., V. Novik and J. E. Galan (2008). Metabolic diversity in Campylobacter 

jejuni enhances specific tissue colonization. Cell Host Microbe 4(5): 425-433. 



   References 

 

199 

 

Holmes, K., F. Mulholland, B. M. Pearson, C. Pin, J. McNicholl-Kennedy, J. M. Ketley 

and J. M. Wells (2005). Campylobacter jejuni gene expression in response to 

iron limitation and the role of Fur. Microbiology 151(Pt 1): 243-257.  

Houliston, R. S., E. Vinogradov, M. Dzieciatkowska, J. Li, F. St Michael, M. F. 

Karwaski, D. Brochu, H. C. Jarrell, C. T. Parker, N. Yuki, R. E. Mandrell and 

M. Gilbert (2011). Lipooligosaccharide of Campylobacter jejuni: similarity with 

multiple types of mammalian glycans beyond gangliosides. J Biol Chem 

286(14): 12361-12370.  

Howlett, R. M., B. M. Hughes, A. Hitchcock and D. J. Kelly (2012). Hydrogenase 

activity in the foodborne pathogen Campylobacter jejuni depends upon a novel 

ABC-type nickel transporter (NikZYXWV) and is SlyD-independent. 

Microbiology 158(Pt 6): 1645-1655.  

Hu, L. and D. J. Kopecko (2008). Cell biology of human host cell entry by 

Campylobacter jejuni. Campylobacter. I. Nachamkin, C. M. Szymanski and M. 

J. Blaser. Washington DC,  USA, ASM Press: 289-296.  

Hue, O., S. Le Bouquin, M.-J. Laisney, V. Allain, F. Lalande, I. Petetin, S. Rouxel, S. 

Quesne, P.-Y. Gloaguen, M. Picherot, J. Santolini, G. Salvat, S. Bougeard and 

M. Chemaly (2010). Prevalence of and risk factors for Campylobacter spp. 

contamination of broiler chicken carcasses at the slaughterhouse. Food 

Microbiology 27(8): 992-999.  

Huizinga, R., A. S. Easton, A. M. Donachie, J. Guthrie, W. van Rijs, A. Heikema, L. 

Boon, J. N. Samsom, B. C. Jacobs, H. J. Willison and C. S. Goodyear (2012). 

Sialylation of Campylobacter jejuni lipo-oligosaccharides: impact on 

phagocytosis and cytokine production in mice. PLoS One 7(3): e34416.  

Hwang, S., B. Jeon, J. Yun and S. Ryu (2011). Roles of RpoN in the resistance of 

Campylobacter jejuni under various stress conditions. BMC Microbiol 11: 207. 

Jackson, D. N., B. Davis, S. M. Tirado, M. Duggal, J. K. van Frankenhuyzen, D. 

Deaville, M. A. K. Wijesinghe, M. Tessaro and J. T. Trevors (2009). Survival 

mechanisms and culturability of Campylobacter jejuni under stress conditions. 

Antonie van Leeuwenhoek 96: 377-394.  

Jarrell, K. F. and M. J. Mcbride (2008). The surprisingly diverse ways that prokaryotes 

move. Nature Reviews Microbiology 6: 466-476.  

Javed, M. A., S. A. Cawthraw, A. Baig, J. Li, A. McNally, N. J. Oldfield, D. G. Newell 

and G. Manning (2012). Cj1136 is required for lipooligosaccharide biosynthesis, 

hyperinvasion, and chick colonization by Campylobacter jejuni. Infect Immun 

80(7): 2361-2370.  

Jay-Russell, M. T., R. E. Mandrell, J. Yuan, A. Bates, R. Manalac, J. Mohle-Boetani, A. 

Kimura, J. Lidgard and W. G. Miller (2013). Using major outer membrane 

protein typing as an epidemiological tool to investigate outbreaks caused by 

milk-borne Campylobacter jejuni isolates in California. J Clin Microbiol 51(1): 

195-201.  

Jin, S., Y. C. Song, A. Emili, P. M. Sherman and V. L. Chan (2003). JlpA of 

Campylobacter jejuni interacts with surface-exposed heat shock protein 90alpha 

and triggers signalling pathways leading to the activation of NF-kappaB and p38 

MAP kinase in epithelial cells. Cell Microbiol 5(3): 165-174.  



   References 

 

200 

 

Johanesen, P. A. and M. B. Dwinell (2006). Flagellin-independent regulation of 

chemokine host defense in Campylobacter jejuni-infected intestinal epithelium. 

Infection and Immunity 74: 3437-3447.  

John, B. (2012). Indentification of Campylobacter proteins that interact with host cells. 

Doctor of Philosophy, RMIT University.  

Joslin, S. N. and D. R. Hendrixson (2009). Activation of the Campylobacter jejuni 

FlgSR two-component system is linked to the flagellar export apparatus. Journal 

of Bacteriology 191: 2656-2667.  

Jung, K., L. Fried, S. Behr and R. Heermann (2012). Histidine kinases and response 

regulators in networks. Curr Opin Microbiol 15(2): 118-124.  

Jyot, J., N. Dasgupta and R. Ramphal (2002). FleQ, the major flagellar gene regulator in 

Pseudomonas aeruginosa, binds to enhancer sites located either upstream or 

atypically downstream of the RpoN binding site. Journal of Bacteriology 184: 

5251-5260.  

Kakuda, T. and V. J. DiRita (2006). Cj1496c encodes a Campylobacter jejuni 

glycoprotein that influences invasion of human epithelial cells and colonization 

of the chick gastrointestinal tract. Infect Immun 74(8): 4715-4723.  

Kalmokoff, M., P. Lanthier, T. L. Tremblay, M. Foss, P. C. Lau, G. Sanders, J. Austin, 

J. Kelly and C. M. Szymanski (2006). Proteomic analysis of Campylobacter 

jejuni 11168 biofilms reveals a role for the motility complex in biofilm 

formation. J Bacteriol 188(12): 4312-4320.  

Karlyshev, A. V., P. Everest, D. Linton, S. Cawthraw, D. G. Newell and B. W. Wren 

(2004). The Campylobacter jejuni general glycosylation system is important for 

attachment to human epithelial cells and in the colonization of chicks. 

Microbiology 150(Pt 6): 1957-1964.  

Karlyshev, A. V., M. V. McCrossan and B. W. Wren (2001). Demonstration of 

polysaccharide capsule in Campylobacter jejuni using electron microscopy. 

Infect Immun 69(9): 5921-5924.  

Kazmierczak, M. J., M. Wiedmann and K. J. Boor (2005). Alternative sigma factors and 

their roles in bacterial virulence. Microbiol Mol Biol Rev 69(4): 527-543.  

Kelkar, Y. D. and H. Ochman (2013). Genome reduction promotes increase in protein 

functional complexity in bacteria. Genetics 193(1): 303-307.  

Komagamine, T. and N. Yuki (2006). Ganglioside mimicry as a cause of Guillain-Barre 

syndrome. CNS and Neurological Disorders - Drug Targets 5: 391-400.  

Konkel, M. E., M. D. Corwin, L. A. Joens and W. Cieplak (1992). Factors that 

influence the interaction of Campylobacter jejuni with cultured mammalian 

cells. J Med Microbiol 37(1): 30-37.  

Konkel, M. E. and L. A. Joens (1989). Adhesion to and invasion of HEp-2 cells by 

Campylobacter spp. Infect Immun 57(10): 2984-2990.  

Konkel, M. E., B. J. Kim, J. D. Klena, C. R. Young and R. Ziprin (1998). 

Characterization of the thermal stress response of Campylobacter jejuni. Infect 

Immun 66(8): 3666-3672. 



   References 

 

201 

 

Konkel, M. E., B. J. Kim, V. Rivera-Amill and S. G. Garvis (1999). Bacterial secreted 

proteins are required for the internaliztion of Campylobacter jejuni into cultured 

mammalian cells. Mol Microbiol 32(4): 691-701.  

Konkel, M. E., J. D. Klena, V. Rivera-Amill, M. R. Monteville, D. Biswas, B. Raphael 

and J. Mickelson (2004). Secretion of virulence proteins from Campylobacter 

jejuni is dependent on a functional flagellar export apparatus. Journal of 

Bacteriology 186: 3296-3303.  

Konkel, M. E., M. R. Monteville, V. Rivera-Amill and L. A. Joens (2001). The 

pathogenesis of Campylobacter jejuni-mediated enteritis. Curr Issues Intest 

Microbiol 2(2): 55-71. 

Lam, W. W., E. J. Woo, M. Kotaka, W. K. Tam, Y. C. Leung, T. K. Ling and S. W. Au 

(2010). Molecular interaction of flagellar export chaperone FliS and 

cochaperone HP1076 in Helicobacter pylori. FASEB J 24(10): 4020-4032.  

Lazaro, B., J. Carcamo, A. Audicana, I. Perales and A. Fernandez-Astorga (1999). 

Viability and DNA maintenance in nonculturable spiral Campylobacter jejuni 

cells after long-term exposure to low temperatures. Appl Environ Microbiol 

65(10): 4677-4681.  

Leon-Kempis Mdel, R., E. Guccione, F. Mulholland, M. P. Williamson and D. J. Kelly 

(2006). The Campylobacter jejuni PEB1a adhesin is an aspartate/glutamate-

binding protein of an ABC transporter essential for microaerobic growth on 

dicarboxylic amino acids. Mol Microbiol 60(5): 1262-1275.  

Lertsethtakarn, P. and K. M. Ottemann (2010). A remote CheZ orthologue retains 

phosphatase function. Mol Microbiol 77(1): 225-235.  

Lertsethtakarn, P., K. M. Ottemann and D. R. Hendrixson (2011). Motility and 

chemotaxis in Campylobacter and Helicobacter. Annu Rev Microbiol 65: 389-

410.  

Lesuffleur, T., A. Barbat, E. Dussaulx and A. Zweibaum (1990). Growth adaptation to 

methotrexate of HT-29 human colon carcinoma cells is associated with their 

ability to differentiate into columnar absorptive and mucus-secreting cells. 

Cancer Res 50(19): 6334-6343.  

Levine, E., Z. Zhang, T. Kuhlman and T. Hwa (2007). Quantitative characteristics of 

gene regulation by small RNA. PLoS Biol 5(9): e229.  

Levy, A. J. (1946). A gastro-enteritis cutbreak probably due to a bovine strain of vibrio. 

Yale J Biol Med 18: 243-258.  

Lindmark, B., P. K. Rompikuntal, K. Vaitkevicius, T. Song, Y. Mizunoe, B. E. Uhlin, 

P. Guerry and S. N. Wai (2009). Outer membrane vesicle-mediated release of 

cytolethal distending toxin (CDT) from Campylobacter jejuni. BMC Microbiol 

9: 220.  

Liu, R. and H. Ochman (2007). Stepwise formation of the bacterial flagellar system. 

Proc Natl Acad Sci U S A 104(17): 7116-7121.  

Logan, S. M. (2006). Flagellar glycosylation-a new component of the motility 

repertoire. Microbiology 152: 1249-1262.  



   References 

 

202 

 

Louwen, R., D. Horst-Kreft, A. G. de Boer, L. van der Graaf, G. de Knegt, M. 

Hamersma, A. P. Heikema, A. R. Timms, B. C. Jacobs, J. A. Wagenaar, H. P. 

Endtz, J. van der Oost, J. M. Wells, E. E. Nieuwenhuis, A. H. van Vliet, P. T. 

Willemsen, P. van Baarlen and A. van Belkum (2012). A novel link between 

Campylobacter jejuni bacteriophage defence, virulence and Guillain-Barre 

syndrome. Eur J Clin Microbiol Infect Dis.  

Luangtongkum, T., B. Jeon, J. Han, P. Plummer, C. M. Logue and Q. Zhang (2009). 

Antibiotic resistance in Campylobacter: emergence, transmission and 

persistence. Future Microbiol 4(2): 189-200.  

Lucchetti-Miganeh, C., E. Burrowes, C. Baysse and G. Ermel (2008). The post-

transcriptional regulator CsrA plays a central role in the adaptation of bacterial 

pathogens to different stages of infection in animal hosts. Microbiology 154: 16-

29.  

Ma, Y., H. Irene and M. Slavik (2009). Stress-induced adaptive tolerance response and 

virulence gene expression in Campylobacter jejuni. Journal of Food Safety 29 

126-143. 

MacCallum, A., G. Haddock and P. H. Everest (2005). Campylobacter jejuni activates 

mitogen-activated protein kinases in Caco-2 cell monolayers and in vitro 

infected primary human colonic tissue. Microbiology 151(Pt 8): 2765-2772. 

Makarova, K. S., D. H. Haft, R. Barrangou, S. J. Brouns, E. Charpentier, P. Horvath, S. 

Moineau, F. J. Mojica, Y. I. Wolf, A. F. Yakunin, J. van der Oost and E. V. 

Koonin (2011). Evolution and classification of the CRISPR-Cas systems. Nat 

Rev Microbiol 9(6): 467-477.  

Man, S. M. (2011). The clinical importance of emerging Campylobacter species. Nat 

Rev Gastroenterol Hepatol 8(12): 669-685.  

Marsden, G. L., J. Li, P. H. Everest, A. J. Lawson and J. M. Ketley (2009). Creation of 

a large deletion mutant of Campylobacter jejuni reveals that the 

lipooligosaccharide gene cluster is not required for viability. J Bacteriol 191(7): 

2392-2399.  

Masse, E. and S. Gottesman (2002). A small RNA regulates the expression of genes 

involved in iron metabolism in Escherichia coli. Proc Natl Acad Sci U S A 

99(7): 4620-4625.  

Matz, C., A. H. van Vliet, J. M. Ketley and C. W. Penn (2002). Mutational and 

transcriptional analysis of the Campylobacter jejuni flagellar biosynthesis gene 

flhB. Microbiology 148(Pt 6): 1679-1685.  

Maue, A. C., K. L. Mohawk, D. K. Giles, F. Poly, C. P. Ewing, Y. Jiao, G. Lee, Z. Ma, 

M. A. Monteiro, C. L. Hill, J. S. Ferderber, C. K. Porter, M. S. Trent and P. 

Guerry (2013). The polysaccharide capsule of Campylobacter jejuni modulates 

the host immune response. Infect Immun 81(3): 665-672.  

Maurer, L. M., E. Yohannes, S. S. Bondurant, M. Radmacher and J. L. Slonczewski 

(2005). pH regulates genes for flagellar motility, catabolism, and oxidative stress 

in Escherichia coli K-12. Journal of Bacteriology 187(1): 304-319.  

Mccarter, L. L. (2006). Regulation of flagella. Current Opinion in Microbiology 9: 180-

186. 



   References 

 

203 

 

McLennan, M. K., D. D. Ringoir, E. Frirdich, S. L. Svensson, D. H. Wells, H. Jarrell, C. 

M. Szymanski and E. C. Gaynor (2008). Campylobacter jejuni biofilms up-

regulated in the absence of the stringent response utilize a calcofluor white-

reactive polysaccharide. J Bacteriol 190(3): 1097-1107.  

McNally, D. J., J. P. Hui, A. J. Aubry, K. K. Mui, P. Guerry, J. R. Brisson, S. M. Logan 

and E. C. Soo (2006). Functional characterization of the flagellar glycosylation 

locus in Campylobacter jejuni 81-176 using a focused metabolomics approach. J 

Biol Chem 281(27): 18489-18498.  

McNally, D. J., M. P. Lamoureux, A. V. Karlyshev, L. M. Fiori, J. Li, G. Thacker, R. A. 

Coleman, N. H. Khieu, B. W. Wren, J. R. Brisson, H. C. Jarrell and C. M. 

Szymanski (2007). Commonality and biosynthesis of the O-methyl 

phosphoramidate capsule modification in Campylobacter jejuni. J Biol Chem 

282(39): 28566-28576.  

Meier, J., B. M. Pearson, A. Fischer, F. Mulholland, U. B. Gobel, A. H. M. van Vliet, S. 

Bereswill and M. Heimesaat (2012). Role of putative RNA-binding in 

Campylobacter jejuni gene expression and virulence. CampyUK, London School 

of Hygiene & Tropical Medicine, London.   

Merrell, D. S., M. L. Goodrich, G. Otto, L. S. Tompkins and S. Falkow (2003). pH-

regulated gene expression of the gastric pathogen Helicobacter pylori. Infect 

Immun 71(6): 3529-3539.  

Miethke, M. and M. A. Marahiel (2007). Siderophore-based iron acquisition and 

pathogen control. Microbiol Mol Biol Rev 71(3): 413-451.  

Mills, D. C., O. Gundogdu, A. Elmi, M. Bajaj-Elliott, P. W. Taylor, B. W. Wren and N. 

Dorrell (2012). Increase in Campylobacter jejuni invasion of intestinal epithelial 

cells under low-oxygen coculture conditions that reflect the in vivo environment. 

Infect Immun 80(5): 1690-1698.  

Minamino, T., K. Imada and K. Namba (2008). Molecular motors of the bacterial 

flagella. Current Opinion in Structural Biology 18: 693-701.  

Monteville, M. R., J. E. Yoon and M. E. Konkel (2003). Maximal adherence and 

invasion of INT 407 cells by Campylobacter jejuni requires the CadF outer-

membrane protein and microfilament reorganization. Microbiology 149(Pt 1): 

153-165.  

Muller, S., M. Gotz and D. Beier (2009). Histidine residue 94 is involved in pH sensing 

by histidine kinase ArsS of Helicobacter pylori. PLoS One 4(9): e6930.  

Murphy, C., C. Carroll and K. N. Jordan (2003a). Induction of an adaptive tolerance 

response in the foodborne pathogen, Campylobacter jejuni. FEMS Microbiol 

Lett 223: 89-93.  

Murphy, C., C. Carroll and K. N. Jordan (2006). Environmental survival mechanisms of 

the foodborne pathogen Campylobacter jejuni. J Appl Microbiol 100(4): 623-

632.  

Nachamkin, I., X. H. Yang and N. J. Stern (1993). Role of Campylobacter jejuni 

flagella as colonization factors for three-day-old chicks: analysis with flagellar 

mutants. Applied Environmental Microbiology 59: 1269-1273.  



   References 

 

204 

 

Neal-McKinney, J. M. and M. E. Konkel (2012). The Campylobacter jejuni CiaC 

virulence protein is secreted from the flagellum and delivered to the cytosol of 

host cells. Front Cell Infect Microbiol 2: 31.  

Newell, D. G., H. McBride and J. M. Dolby (1985). Investigations on the role of 

flagella in the colonization of infant mice with Campylobacter jejuni and 

attachment of Campylobacter jejuni to human epithelial cell lines. J Hyg (Lond) 

95(2): 217-227. 

Nothaft, H., N. E. Scott, E. Vinogradov, X. Liu, R. Hu, B. Beadle, C. Fodor, W. G. 

Miller, J. Li, S. J. Cordwell and C. M. Szymanski (2012). Diversity in the 

protein N-glycosylation pathways within the Campylobacter genus. Mol Cell 

Proteomics 11(11): 1203-1219. 

Novik, V., D. Hofreuter and J. E. Galan (2010). Identification of Campylobacter jejuni 

genes involved in its interaction with epithelial cells. Infection and Immunity  

78(8): 3540-3553.  

O'Toole, G. A. and R. Kolter (1998). Flagellar and twitching motility are necessary for 

Pseudomonas aeruginosa biofilm development. Molecular Microbiology 30: 

295-304. 

O’Toole, G., H. B. Kaplan and R. Kolter (2000). Biofilm formation as microbial 

development. Annual Review of Microbiology 54: 49-79.  

Oelschlaeger, T. A., P. Guerry and D. J. Kopecko (1993). Unusual microtubule-

dependent endocytosis mechanisms triggered by Campylobacter jejuni and 

Citrobacter freundii. Proc Natl Acad Sci U S A 90(14): 6884-6888.  

Oliver, J. D. (2010). Recent findings on the viable but nonculturable state in pathogenic 

bacteria. FEMS Microbiol Rev 34(4): 415-425.  

On, S. L. W. (2005). Taxonomy, Phylogeny, and methods for the Indentification of 

Campylobacter species. Campylobacter Molecular and Cellular biology. J. M. 

Ketley and M. E. Konkel. Wymondham, Great Britain, Horizon Bioscience. 

Osman, D. and J. S. Cavet (2008). Copper homeostasis in bacteria. Adv Appl Microbiol 

65: 217-247.  

Pajaniappan, M., J. E. Hall, S. A. Cawthraw, D. G. Newell, E. C. Gaynor, J. A. Fields, 

K. M. Rathbun, W. A. Agee, C. M. Burns, S. J. Hall, D. J. Kelly and S. A. 

Thompson (2008). A temperature-regulated Campylobacter jejuni gluconate 

dehydrogenase is involved in respiration-dependent energy conservation and 

chicken colonization. Mol Microbiol 68(2): 474-491.  

Papenfort, K. and J. Vogel (2010). Regulatory RNA in bacterial pathogens. Cell Host 

and Microbe 8: 116-127.  

Papenfort, K. and J. Vogel (2010). Regulatory RNA in bacterial pathogens. Cell Host 

Microbe 8(1): 116-127.  

Parkhill, J., B. W. Wren, K. Mungall, J. M. Ketley, C. Churcher, D. Basham, T. 

Chillingworth, R. M. Davies, T. Feltwell, S. Holroyd, K. Jagels, A. V. 

Karlyshev, S. Moule, M. J. Pallen, C. W. Penn, M. A. Quail, M. A. Rajandream, 

K. M. Rutherford, A. H. van Vliet, S. Whitehead and B. G. Barrell (2000). The 

genome sequence of the food-borne pathogen Campylobacter jejuni reveals 

hypervariable sequences. Nature 403(6770): 665-668.  



   References 

 

205 

 

Parthasarathy, G. and L. S. Mansfield (2009). Recombinant interleukin-4 enhances 

Campylobacter jejuni invasion of intestinal pig epithelial cells (IPEC-1). Microb 

Pathog 47(1): 38-46.  

Pei, Z., C. Burucoa, B. Grignon, S. Baqar, X. Z. Huang, D. J. Kopecko, A. L. 

Bourgeois, J. L. Fauchere and M. J. Blaser (1998). Mutation in the peb1A locus 

of Campylobacter jejuni reduces interactions with epithelial cells and intestinal 

colonization of mice. Infect Immun 66(3): 938-943.  

Pernitzsch, S. R. and C. M. Sharma (2012). Transcriptome Complexity and 

Riboregulation in the Human Pathogen Helicobacter pylori. Front Cell Infect 

Microbiol 2: 14.  

Pflock, M., N. Finsterer, B. Joseph, H. Mollenkopf, T. F. Meyer and D. Beier (2006). 

Characterization of the ArsRS regulon of Helicobacter pylori, involved in acid 

adaptation. J Bacteriol 188(10): 3449-3462.  

Pitkanen, T. (2013). Review of Campylobacter spp. in drinking and environmental 

waters. J Microbiol Methods.  

Polen, T., D. Rittmann, V. F. Wendisch and H. Sahm (2003). DNA microarray analyses 

of the long-term adaptive response of Escherichia coli to acetate and propionate. 

Appl Environ Microbiol 69(3): 1759-1774.  

Poly, F., C. Ewing, S. Goon, T. E. Hickey, D. Rockabrand, G. Majam, L. Lee, J. Phan, 

N. J. Savarino and P. Guerry (2007). Heterogeneity of a Campylobacter jejuni 

protein that is secreted through the flagellar filament. Infection and Immunity 75: 

3859-3867.  

Pope, J. E., A. Krizova, A. X. Garg, H. Thiessen-Philbrook and J. M. Ouimet (2007). 

Campylobacter reactive arthritis: a systematic review. Semin Arthritis Rheum 

37(1): 48-55.  

Porcelli, I., M. Reuter, B. M. Pearson, T. Wilhelm and A. H. M. v. Vliet (2013). Parallel 

evolution of genome structure and transcriptional landscape in the 

Epsilonproteobacteria. BMC Genomics 14: 616.  

Quinones, B., W. G. Miller, A. H. Bates and R. E. Mandrell (2009). Autoinducer-2 

production in Campylobacter jejuni contributes to chicken colonization. Appl 

Environ Microbiol 75(1): 281-285.  

Reeser, R. J., R. T. Medler, S. J. Billington, B. H. Jost and L. A. Joens (2007). 

Characterization of Campylobacter jejuni biofilms under defined growth 

conditions. Applied and Environmental Microbiology 73: 1908-1913.  

Reid, A. N., R. Pandey, K. Palyada, H. Naikare and A. Stintzi (2008a). Identification of 

Campylobacter jejuni genes involved in the response to acidic pH and stomach 

transit. Applied and Environmental Microbiology 74(5): 1583-1597.  

Reid, A. N., R. Pandey, K. Palyada, L. Whitworth, E. Doukhanine and A. Stintzi 

(2008b). Identification of Campylobacter jejuni genes contributing to acid 

adaptation by transcriptional profiling and genome-wide mutagenesis. Applied 

and Environmental Microbiology 74(5): 1598-1612.  

Reuter, M., A. Mallett, P. B. M. and A. H. M. van Vliet (2010). Biofilm formation in 

Campylobacter jejuni is increased under aerobic conditions. Applied and 

Environmental Microbiology 76(7): 2122-2128.  



   References 

 

206 

 

Reuter, M. and A. H. van Vliet (2013). Signal balancing by the CetABC and CetZ 

chemoreceptors controls energy taxis in Campylobacter jejuni. PLoS One 8(1): 

e54390. 

Rivera-Amill, V. and M. E. Konkel (1999). Secretion of Campylobacter jejuni Cia 

proteins is contact dependent. Adv Exp Med Biol 473: 225-229.  

Rollins, D. M. and R. R. Colwell (1986). Viable but nonculturable stage of 

Campylobacter jejuni and its role in survival in the natural aquatic environment. 

Appl Environ Microbiol 52(3): 531-538.  

Romeo, T., C. A. Vakulskas and P. Babitzke (2012). Post-transcriptional regulation on a 

global scale: form and function of Csr/Rsm systems. Environ Microbiol.  

Russell, R. G. and D. C. Blake, Jr. (1994). Cell association and invasion of Caco-2 cells 

by Campylobacter jejuni. Infect Immun 62(9): 3773-3779.  

Rust, M., S. Borchert, E. Niehus, A. Bajceta, J. L. Mcmurry, S. Suerbaum, K. T. 

Hughes and C. Josenhans (2009). Helicobacter pylori anti-sigma factor FlgM is 

predominantly cytoplasmic and cooperates with the flagellar basal body protein 

FlhA. Journal of Bacteriology 191: 4824-4834.  

Serganov, A. and D. J. Patel (2012). Molecular recognition and function of 

riboswitches. Curr Opin Struct Biol 22(3): 279-286.  

Sharma, C. M., S. Hoffmann, F. Darfeuille, J. Reignier, S. Findeiss, A. Sittka, S. 

Chabas, K. Reiche, J. Hackermuller, R. Reinhardt, P. F. Stadler and J. Vogel 

(2010). The primary transcriptome of the major human pathogen Helicobacter 

pylori. Nature 464(7286): 250-255.  

Shaw, F. L., F. Mulholland, G. Le Gall, I. Porcelli, D. J. Hart, B. M. Pearson and A. H. 

van Vliet (2012). Selenium-dependent biogenesis of formate dehydrogenase in 

Campylobacter jejuni is controlled by the fdhTU accessory genes. J Bacteriol 

194(15): 3814-3823.  

Siegel, J. A., J. L. Urbain, L. P. Adler, N. D. Charkes, A. H. Maurer, B. Krevsky, L. C. 

Knight, R. S. Fisher and L. S. Malmud (1988). Biphasic nature of gastric 

emptying. Gut 29(1): 85-89.  

Sittka, A., S. Lucchini, K. Papenfort, C. M. Sharma, K. Rolle, T. T. Binnewies, J. C. 

Hinton and J. Vogel (2008). Deep sequencing analysis of small noncoding RNA 

and mRNA targets of the global post-transcriptional regulator, Hfq. PLoS Genet 

4(8): e1000163.  

Skirrow, M. B. (1977). Campylobacter enteritis: a "new" disease. Br Med J 2(6078): 9-

11. 

Smith, T. G. and T. R. Hoover (2009). Deciphering bacterial flagellar gene regulatory 

networks in the genomic era. Advances in Applied Microbiology 67: 231-267. 

Snelling, W. J., J. P. McKenna, D. M. Lecky and J. S. Dooley (2005). Survival of 

Campylobacter jejuni in waterborne protozoa. Appl Environ Microbiol 71(9): 

5560-5571.  

Sommerlad, S. M. and D. R. Hendrixson (2007). Analysis of the roles of FlgP and FlgQ 

in flagellar motility of Campylobacter jejuni. Journal of Bacteriology 189: 179-

186.  



   References 

 

207 

 

Song, Y. C., S. Jin, H. Louie, D. Ng, R. Lau, Y. Zhang, R. Weerasekera, S. Al Rashid, 

L. A. Ward, S. D. Der and V. L. Chan (2004). FlaC, a protein of Campylobacter 

jejuni TGH9011 (ATCC43431) secreted through the flagellar apparatus, binds 

epithelial cells and influences cell invasion. Molecular Microbiology 53: 541-

553.  

Sorensona, M. K., S. S. Ray and S. A. Darst (2004). Crystal structure of the flagellar 

σ/anti-σ complex σ28/FlgM reveals an intact σ factor in an inactive 

conformation Molecular Cell 14: 127-138   

Stahl, M., J. Butcher and A. Stintzi (2012). Nutrient acquisition and metabolism by 

Campylobacter jejuni. Front Cell Infect Microbiol 2: 5.  

Stahl, M., L. M. Friis, H. Nothaft, X. Liu, J. Li, C. M. Szymanski and A. Stintzi (2011). 

L-fucose utilization provides Campylobacter jejuni with a competitive 

advantage. Proc Natl Acad Sci U S A 108(17): 7194-7199.  

Stephenson, H. N., C. M. John, N. Naz, O. Gundogdu, N. Dorrell, B. W. Wren, G. A. 

Jarvis and M. Bajaj-Elliott (2013). Campylobacter jejuni Lipooligosaccharide 

Sialylation, Phosphorylation, and Amide/Ester Linkage Modifications Fine-tune 

Human Toll-like Receptor 4 Activation. J Biol Chem 288(27): 19661-19672. 

Studholme, D. J. and R. Dixon (2003). Domain architectures of sigma-54-dependent 

transcriptional activators. Journal of Bacteriology 185: 1757-1767.  

Syed, K. A., S. Beyhan, N. Correa, J. Queen, J. Liu, F. Peng, K. J. F. Satchell, F. Yildiz 

and K. E. Klose (2009). The Vibrio cholerae flagellar regulatory hierarchy 

controls expression of virulence factors. Journal of Bacteriology 191: 6555-

6570.  

Szurmant, H., T. J. Muff and G. W. Ordal (2004). Bacillus subtilis CheC and FliY are 

members of a novel class of CheY-P-hydrolyzing proteins in the chemotactic 

signal transduction cascade. J Biol Chem 279(21): 21787-21792.  

Szymanski, C. M., M. King, M. Haardt and G. D. Armstrong (1995). Campylobacter 

jejuni motility and invasion of Caco-2 cells. Infection and Immunity 63(11): 

4295-4300.  

Tam, C. C., L. C. Rodrigues, L. Viviani, J. P. Dodds, M. R. Evans, P. R. Hunter, J. J. 

Gray, L. H. Letley, G. Rait, D. S. Tompkins and S. J. O'Brien (2012). 

Longitudinal study of infectious intestinal disease in the UK (IID2 study): 

incidence in the community and presenting to general practice. Gut 61(1): 69-77. 

Thies, F. L., H. Karch, H. P. Hartung and G. Giegerich (1999). Cloning and expression 

of the dnaK gene of Campylobacter jejuni and antigenicity of heat shock protein 

70. Infect Immun 67(3): 1194-1200.  

Thies, F. L., A. Weishaupt, H. Karch, H. P. Hartung and G. Giegerich (1999). Cloning, 

sequencing and molecular analysis of the Campylobacter jejuni groESL 

bicistronic operon. Microbiology 145 ( Pt 1): 89-98.  

Thomas, M. T., M. Shepherd, R. K. Poole, A. H. van Vliet, D. J. Kelly and B. M. 

Pearson (2011). Two respiratory enzyme systems in Campylobacter jejuni 

NCTC 11168 contribute to growth on L-lactate. Environ Microbiol 13(1): 48-61. 

Thormann, K. M. and A. Paulick (2010). Tuning the flagellar motor. Microbiology 

156(Pt 5): 1275-1283.  



   References 

 

208 

 

Tjaden, B., S. S. Goodwin, J. A. Opdyke, M. Guillier, D. X. Fu, S. Gottesman and G. 

Storz (2006). Target prediction for small, noncoding RNAs in bacteria. Nucleic 

Acids Res 34(9): 2791-2802.  

Tribble, D. R., S. Baqar, M. P. Carmolli, C. Porter, K. K. Pierce, K. Sadigh, P. Guerry, 

C. J. Larsson, D. Rockabrand, C. H. Ventone, F. Poly, C. E. Lyon, S. Dakdouk, 

A. Fingar, T. Gilliland, P. Daunais, E. Jones, S. Rymarchyk, C. Huston, M. 

Darsley and B. D. Kirkpatrick (2009). Campylobacter jejuni strain CG8421: a 

refined model for the study of Campylobacteriosis and evaluation of 

Campylobacter vaccines in human subjects. Clin Infect Dis 49(10): 1512-1519. 

Urban, J. H. and J. Vogel (2007). A green fluorescent protein (GFP)-based plasmid 

system to study post-transcriptional control of gene expression in vivo. Methods 

Mol Biol 540: 301-319.  

Urban, J. H. and J. Vogel (2007). Translational control and target recognition by 

Escherichia coli small RNAs in vivo. Nucleic Acids Res 35(3): 1018-1037.  

van Alphen, L. B., N. M. C. Bleumlnk-Pluym, K. D. Rochat, B. W. M. van Balkom, M. 

S. M. Wösten and J. P. M. van Putten (2008). Active migration into the 

subcellular space precedes Campylobacter jejuni invasion of epithelial cells. 

Cellular Microbiology 10(1): 53-66.  

van Doorn, P. A., L. Ruts and B. C. Jacobs (2008). Clinical features, pathogenesis, and 

treatment of Guillain-Barre syndrome. Lancet Neurol 7(10): 939-950.  

van Putten, J. P., L. B. van Alphen, M. M. Wosten and M. R. de Zoete (2009). 

Molecular mechanisms of campylobacter infection. Curr Top Microbiol 

Immunol 337: 197-229. 

van Vliet, A. H., J. Stoof, R. Vlasblom, S. A. Wainwright, N. J. Hughes, D. J. Kelly, S. 

Bereswill, J. J. Bijlsma, T. Hoogenboezem, C. M. Vandenbroucke-Grauls, M. 

Kist, E. J. Kuipers and J. G. Kusters (2002). The role of the Ferric Uptake 

Regulator (Fur) in regulation of Helicobacter pylori iron uptake. Helicobacter 

7(4): 237-244.  

van Vliet, A. H., K. G. Wooldridge and J. M. Ketley (1998). Iron-responsive gene 

regulation in a campylobacter jejuni fur mutant. J Bacteriol 180(20): 5291-5298. 

Vandamme, P., E. Falsen, R. Rossau, B. Hoste, P. Segers, R. Tytgat and J. De Ley 

(1991). Revision of Campylobacter, Helicobacter, and Wolinella taxonomy: 

emendation of generic descriptions and proposal of Arcobacter gen. nov. Int J 

Syst Bacteriol 41(1): 88-103.  

Velayudhan, J., M. A. Jones, P. A. Barrow and D. J. Kelly (2004). L-serine catabolism 

via an oxygen-labile L-serine dehydratase is essential for colonization of the 

avian gut by Campylobacter jejuni. Infect Immun 72(1): 260-268.  

Velayudhan, J. and D. J. Kelly (2002). Analysis of gluconeogenic and anaplerotic 

enzymes in Campylobacter jejuni: an essential role for phosphoenolpyruvate 

carboxykinase. Microbiology 148(Pt 3): 685-694.  

Vijay-Kumar, M. and A. T. Gerwirtz (2009). Flagellin: key target of mucosal innate 

immunity. Mucosal Immunology 2: 197-206.  

Vogel, J. and B. F. Luisi (2011). Hfq and its constellation of RNA. Nat Rev Microbiol 

9(8): 578-589.  



   References 

 

209 

 

Wadhams, G. H. and J. P. Armitage (2004). Making sense of it all: bacterial 

chemotaxis. Nat Rev Mol Cell Biol 5(12): 1024-1037.  

Wang, S., R. T. Fleming, E. M. Westbrook, P. Matsumura and D. B. McKay (2006). 

Structure of the Escherichia coli FlhDC complex, a prokaryotic heteromeric 

regulator of transcription. Journal of Molecular Biology 355: 798-808.  

Wassenaar, T. M., B. A. van der Zeijst, R. Ayling and D. G. Newell (1993). 

Colonization of chicks by motility mutants of Campylobacter jejuni 

demonstrates the importance of flagellin A expression. Journal of General 

Microbiology 139: 1171-1175.  

Watson, R. O. and J. E. Galán (2008). Interaction of Campylobacter jejuni with host 

cells. Campylobacter . I. Nachamkin, C. M. Szymanski and M. J. Blaser. 

Washington DC, ASM Press: 289-296.  

Watson, R. O., V. Novik, D. Hofreuter, M. Lara-Tejero and J. E. Galan (2007). A 

MyD88-deficient mouse model reveals a role for Nramp1 in Campylobacter 

jejuni infection. Infect Immun 75(4): 1994-2003.  

Wearne, S. (2013). A refreshed strategy to reduce Campylobacteriosis from poultry. 

http://www.food.gov.uk/news-

updates/news/2013/aug/campylobacter#.UjMaY9KsOtI, Food Standards 

Agency.  

Wen, Y., J. Feng, D. R. Scott, E. A. Marcus and G. Sachs (2009). The pH-responsive 

regulon of HP0244 (FlgS), the cytoplasmic histidine kinase of Helicobacter 

pylori. The Journal of Bacteriology 191(2): 449-460.  

Wen, Y., J. Feng, D. R. Scott, E. A. Marcus and G. Sachs (2011). A cis-encoded 

antisense small RNA regulated by the HP0165-HP0166 two-component system 

controls expression of ureB in Helicobacter pylori. J Bacteriol 193(1): 40-51. 

Wosten, M. M., M. Boeve, W. Gaastra and B. A. van der Zeijst (1998a). Cloning and 

characterization of the gene encoding the primary sigma-factor of 

Campylobacter jejuni. FEMS Microbiol Lett 162(1): 97-103.  

Wosten, M. M., M. Boeve, M. G. Koot, A. C. van Nuenen and B. A. van der Zeijst 

(1998b). Identification of Campylobacter jejuni promoter sequences. J Bacteriol 

180(3): 594-599.  

Wosten, M. M., J. A. Wagenaar and J. P. van Putten (2004). The FlgS/FlgR two-

component signal transduction system regulates the fla regulon in 

Campylobacter jejuni. J Biol Chem 279(16): 16214-16222.  

Wösten, M. M. S. M., L. V. Dijk, A. K. J. Veenendaal, M. R. D. Zoete, N. M. C. 

Bleumink-pluijm and J. P. M. V. Putten (2010). Temperature-dependent 

FlgM/FliA complex formation regulates Campylobacter jejuni flagella length. 

Molecular Microbiology: 1-15.  

Wösten, M. M. S. M., A. van Mourik and J. P. M. van Putten (2008). Regulation of 

genes in Campylobacter jejuni. Campylobacter. I. Nachamkin, C. M. Szymanski 

and M. J. Blaser. Washington DC, ASM Press: 611-613.  

Wright, J. A., A. J. Grant, D. Hurd, M. Harrison, E. J. Guccione, D. J. Kelly and D. J. 

Maskell (2009). Metabolite and transcriptome analysis of Campylobacter jejuni 



   References 

 

210 

 

in vitro growth reveals a stationary-phase physiological switch. Microbiology 

155(Pt 1): 80-94.  

Yao, R., D. H. Burr, P. Doig, T. J. Trust, H. Niu and P. Guerry (1994). Isolation of 

motile and non-motile insertional mutants of Campylobacter jejuni: the role of 

motility in adherence and invasion of eukaryotic cells. Mol Microbiol 14(5): 

883-893.  

Yildiz, F. H. and K. L. Visick (2009). Vibrio biofilms: so much the same yet so 

different. Trends in Microbiology 17(3): 109-118.  

Young, K. T., L. M. Davis and V. J. Di Rita (2007). Campylobacter jejuni: molecular 

biology and pathogenesis. Nature Reviews Microbiology 5: 665-679.  

Young, N. M., J. R. Brisson, J. Kelly, D. C. Watson, L. Tessier, P. H. Lanthier, H. C. 

Jarrell, N. Cadotte, F. St Michael, E. Aberg and C. M. Szymanski (2002). 

Structure of the N-linked glycan present on multiple glycoproteins in the Gram-

negative bacterium, Campylobacter jejuni. J Biol Chem 277(45): 42530-42539. 

Yu, R. K., S. Usuki and T. Ariga (2006). Ganglioside molecular mimicry and its 

pathological roles in Guillain-Barre syndrome and related diseases. Infect 

Immun 74(12): 6517-6527.  

Zhou, Y., J. D. Larson, C. A. Bottoms, E. C. Arturo, M. T. Henzl, J. L. Jenkins, J. C. 

Nix, D. F. Becker and J. J. Tanner (2008). Structural basis of the transcriptional 

regulation of the proline utilization regulon by multifunctional PutA. J Mol Biol 

381(1): 174-188.  

Zilbauer, M., N. Dorrell, B. W. Wren and M. Bajaj-Elliott (2008). Campylobacter 

jejuni-mediated disease pathogenesis: an update Transactions of the Royal 

Society of Tropical Medicine and Hygiene 102: 123-129.  

Ziprin, R. L., C. R. Young, L. H. Stanker, M. E. Hume and M. E. Konkel (1999). The 

absence of cecal colonization of chicks by a mutant of Campylobacter jejuni not 

expressing bacterial fibronectin-binding protein. Avian Dis 43(3): 586-589. 

 

 


