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Abstract

Let F' be a non-archimedean local field with residual characteristic p # 2. In
this thesis we will deduce a formula for the number of irreducible supercuspidal
representations of GLy(F), N > 1, with w;(wp) = 1 and level less than or
equal to k. Following Blasco, we construct all irreducible supercuspidal repre-
sentations of the unitary groups U(1,1)(F/Fy) and U(2,1)(F/Fy) by looking
at their characteristic polynomials and then compute the number of all these
representations according to their level.



Introduction

Let G be a p-adic group defined over a non-archimedean local field F' with
a finite residue field kr of order ¢ = p™,m € N. In this thesis, we will be
concerned with the smooth complex representations of the group G which are
supercuspidal i.e. they are not subquotient of any parabolic induced repre-
sentation. These representations can be constructed by inducing from certain
compact open subgroups. Howe constructed the irreducible supercuspidal rep-
resentations of GLy(F) for p + N in [14]. Moy in his paper [24] proved that
all irreducible supercuspidal representations of GLy(F) are obtained this way.
For any prime [, a construction of irreducible supercuspidal representations of
GL,(F) was given by Carayol in [8] and Bushnell and Kutzko, in [6], general-
ized this construction to include the irreducible supercuspidal representations
of GLy(F), for any N and p.

We are interested in counting supercuspidal representations, more precisely,
in counting by the level up to unramified twist. Carayol in his paper [8] com-
puted, via construction, the number of irreducible supercuspidal representations
of GL;(F') of a fixed level and central character w, fixed on the uniformizer wp.
We first look at GLx(F), generalizing Carayol but the approach is different.
Rather than counting through the construction of supercuspidal representations,
we generalize a result of Bushnell and Henniart in [5] to include non-integer level.
The formula, in fact, is for the number of discrete series representations m of
GLN(F) with fixed level ¢(7) = k/N and w,(wp) = 1, which is a multiple sum

AvER= T L () (0 - 1) o

m|N m dim

This is proved using the same method which is passing via the Jacquet-Langlands
correspondence to the representations of the division algebra D*. These repre-
sentations are counted by Koch [18]. Theorem 9.3 in [38] says there is a bijection
map between the union, over the divisors d of N, of the sets of irreducible su-
percuspidal representations of GLy(F) with fixed level and wy(wr)? = 1 and
the set of discrete series An(F,k). We used this bijection to get a formula for
the number of supercuspidal representations of GLy (F).

In the case N =1, [ is a prime, we recover Carayol’s number. We can also simplify
the number when N is a power of [. For £(7) = 0, the number of supercuspidal
representations of GLy (F') become easier to count for any N, so, we will give
a formula for the number of supercuspidal representations of GLy (F') of level
zero and w,(wp) =1 for any N.



We denote the number of irreducible supercuspidal representations of GL;(F)
of minimal level k¥ and w,(wFr) = 1, up to equivalence by &(I,1k)™. We will
&(ln)™

prE

study some properties of zeta function of the form (,(s) = ,.50

Then we look at unramified unitary groups. Let Fy be a non-archimedean
local field with residual characteristic p # 2. Let F be an unramified quadratic
extension of Fy and let ~denotes the fixed points in F'. The involution ~extend
to the adjoint involution of a non-degenerate hermitian form on FV. We define
the unitary group G as follows

G={geGLN(F):gg=1}.

We will study the irreducible supercuspidal smooth complex representations of
G, for any N. For certain types of representations, which we call “totally split”,
we have a formula for the number of irreducible supercuspidal representations
of G of level k (the level must be integer).

Then we will study in more detail the irreducible supercuspidal representations
of G, where G is either U(1,1)(F/Fy) or U(2,1)(F/Fy). For level zero, we
will count the number of these representations for both groups. For positive
level, let m be an irreducible supercuspidal representation of G of level k > 0,
then 7 contains a fundamental skew stratum [A,n,n - 1,b], where k = n/e and
e =e(A), by [25, Theorem 5.2]. We classify the representations 7 by looking at
the characteristic polynomial (X ), which depends only on 7. We will consider
all possible ¢,(X) and then compute the number of irreducible supercuspidal
representations for each case. Finally we will give a formula for the number of
irreducible supercuspidal representations of G of level less than k.



Chapter 1

PRELIMINARIES

1.1 Notations

In the beginning we start by fixing some notations that we are going to use
regularly throughout this thesis. We fix a non-archimedean local field F' with
absolute value |- |.

Let Op be the ring of integers of F;
Op={xeF:|z|<1}.

We denote the unique maximal ideal of the ring of integers O by Pp:
Pr={zeF:|z|<1}.

The maximal ideal, in fact, is principal i.e. Pp is generated by one element,
called a uniformizer of F. We fix a uniformizer wp. We define the group of
units to be

Op={xeF:|z|=1}.

Any non-trivial ideal of O has the form P, for some integer m. The residue

field of F' is kr = Op [ Pr and it has characteristic p and size |kr| = ¢F.
Definition 1.1.1. We define a character of a field L to be a continuous map
x:L—C*

which is homomorphism. The set of characters of the field L is denoted by L.

Definition 1.1.2. Let ¥ be a non-trivial character of a local field F'. We define
the level of 1 to be the least integer m such that PR c Ker(). We denote the

level of ¥ by £(v).

Lemma 1.1.3. Let ¢ be a non-trivial character of F. Then there exists an
integer k > 0 such that £(y)) = k.



Proof. Let U be an open neighborhood of the identity in C* contained in
{zeC:Re(z) >0}.

Now the subset ¢"1(U) of F is a neighborhood of the identity in F. Since the
fractional ideals Py, m € Z, form a fundamental system of neighborhoods of the
identity in F', then ¢™*(U) must contain P for some integer m. Then ¢ (Pm)
is a group contained in U so ¢(PF) = {1} i.e, Ker(¢)) o PR.

O

Let z = w™u, u € OF, and let vp : F - Z U {co} be an additive valuation on F
defined by vr(2) =n and v(0) = co.

Lemma 1.1.4. Suppose ¥ is a non-trivial character of F with level k. Then
the map

F — F

a — ay

is an isomorphism, where a1 is the character of level k — vp(a) defined by
ap(x) = P(ax).

Proof. The map is clearly injective. For any «,8 € F, (a+ 8)y = atp + B, so
the map is a homomorphism.

We only need to prove it is surjective, so let ¢ € F of level r. For a = wf;ru,
where u € O, the character ay) has level r so @|pr = aylpr. If o/ = wh
where u' € OF., then

C“MP;:l = O/¢|7;;—1 —a=d (HlOd Pllg—r+1).

We have qr — 1 distinct non-trivial characters a1/1|7>;:1 which are trivial on Pp
so one of them must be ¢|7;;-1, say 11 where aq = w}‘kul. Keep doing this

we obtained a Cauchy sequence {a;,}, where «,, = unw]}_r, such that ¢|p;-n =

antlpr-n and
a”"lw??" = O‘nw|7>}‘" < Qp41 = (mod 77}3%_7" )

The Cauchy sequence {a,,} has a limit say «. Therefore, ¢ = at).
O

The multiplicative group F* has a (unique) maximal compact subgroup denoted
by Ur = OF which has a filtration

Up =1+Pp, n>1,
with Ug =Up.
Definition 1.1.5. Let x be a non-trivial character of F*. The level of x is the

least integer n > 0 such that x is trivial on Uptl. Again the level of x will be

denoted by (x).

Lemma 1.1.6. 1. For any non-trivial character x of F*, there exists k >0
such that £(x) = k.



2. For any ¢ € C* and k > 0, the number of characters x of F* which have
level k and such that x(wr) = is (qgr - 1)gk.

Proof. The proof of (1) is similar to Lemma 1.1.3. For part (2), the number
of the characters x is equal to the index [F* : <wF>U§*1] which is equal to

(qp - 1)qk-. O

For any two integers n, m satisfying 1 <n < m < 2n, the map = — 1+ z induces
an isomorphism [4, 1.8],

Pp/Py = Up/UF
Lemma 1.1.7. Let v be a character of F of level one and n,m integers with
0<m<n<2m. The map

Pr P — (UFUE)
o = wF,oz
is an isomorphism, where Y o(x) = Yr(a(z -1)).

Proof. See [4, Proposition 1.8]. O

1.2 Modulus Character

In this section we start by introducing the notion of locally profinite groups.

Definition 1.2.1. A group G is called a topological group if it is a topological
space such that the multiplication map G x G — G and the inversion map G - G
are both continuous.

Definition 1.2.2. A topological group G is called locally profinite if any open
neighborhood of the identity in G contains a compact open subgroup of G. Let
Q(G) denote the set of all compact open subgroups of G.

Example 1.2.3. 1. The additive group (F,+) and the multiplicative group
(F™, ) are both locally profinite groups.

2. The general linear group GL,(F) is also a locally profinite group.

Definition 1.2.4. Let K € Q(G). The modulus character g of G is defined
by
dc(9)=[gKg": K] geG.

We say the group G is unimodular if 6g(g) =1 for all g € G.

Lemma 1.2.5. 1. The modulus character dg is independent of choices K €

Q(G).
2. The modulus character d¢ is trivial on any compact subgroup K € Q(G).
Proof. See [35, I, 2.7 O

Example 1.2.6. The following groups are unimodular: compact subgroups-
abelian groups- general linear group GLy(F).



1.3 Smooth Representations

In this section we will give some of the basic definitions and results for the
representations of locally profinite groups. We will focus only on smooth repre-
sentations.

Definition 1.3.1. Let G be a locally profinite group and V a complex vector
space. A pair (w, V') is called a representation of G if

m: G — Aute(V)
is a homomorphism.

For K ¢ G, we denote by V¥ the set of all vectors v in V such that m(k)v = v,
for all ke K.

Definition 1.3.2. Let (7,V) be a representation of a locally profinite group
G. We say that the representation (mw,V) is smooth if one of the following
equivalent conditions holds:

1. for every v eV, there is a compact open subgroup K of G such that

w(k)v =wv,
for all ke K;
2. the space V' can be written as
v= U V&
KeQ(Q)

3. the stabilizer of v in G, Stabg(v) = {g € G : 7(g)v = v}, is open for all
veV.

Let U be a subspace of V. Then U is called G-invariant if, for any g € G and
u € U, we have
w(g)ueU.

Let (1, V1) and (72, V) be smooth representations of G. The set Homg (71, m2)
(or some people call it Homg(V,V2)) is the space of linear maps f: V; - Vs
such that

fomi(g)=ma(g)of, geG (1.1)

The representations (71, V) and (ma,V2) are equivalent if there exists a C-
isomorphism f € Homg (71, m3).

Proposition 1.3.3. Let (71,V1) and (ms,Va) be smooth representations of G
and f € Homg(my,m2). Then we have

1. Ker(f) is a G-invariant subspace of Vi;
2. Im(f) is a G-invariant subspace of Va.

Definition 1.3.4. Let (7, V') be a smooth representation of G. Then:



1. We define a subrepresentation of (m, V') to be a pair (p,U) where U is a
G-invariant subspace of V' and

p(g)u=m(g)u
forallge G and ueU.

2. A quotient of the representation (w,V') is the natural representation o of
G on the quotient space V /W, for W a G-invariant subspace of V,

a(g)(v+w)=0c(g)v+W.
3. A subquotient of the representation (w,V') is a quotient of a subrepresen-
tation of (w,V').

Definition 1.3.5. The representation (m,V) is admissible if, for any K ¢
Q(G), the space VE is finite-dimensional.

Definition 1.3.6. Let (m,V) be a smooth representation of G. Then (w,V) is
called:

1. irreducible if the only subrepresentations of © are {0} and V itself; other-
wise we say the representation (m,V') is reducible;

2. semisimple if the representation 7 is a direct sum of irreducible subrepre-
sentations;

3. finite type if there exists a finite subset {v1,...,vx} of V such that V is
spanned by
{(m(g)vi:geG,1<i<k}.

Lemma 1.3.7. Let (7,V) be a representation of G. The following are equiva-
lent:

1. the representation (w, V') is semisimple;

2. for any subrepresentation W of 7, there is a complementary subrepresen-
tation W+ of m such that
V=WeW".

Proof. See [4, Proposition 2.2]. O

Lemma 1.3.8. Let (7w, V) be a smooth representation of G. Suppose that (7,V)
is of finite type, then m has an irreducible quotient.

Proof. Consider the set
¥ = {W :W is a subrepresentation of m and, W # V'}.

The representation 7 is of finite type, which implies that the set ¥ is closed
under union of chains, i.e for Wy c Wy c ..., where W, € 3, then u;W; € ¥.. By
Zorn’s lemma, there is a maximal element W € ¥, so V /W is irreducible. O

Corollary 1.3.9. Let (w,V) be a smooth representation of G of finite type.
Then 7 has an irreducible subquotient.



From now on suppose that G/K is countable, for any compact open subgroup
K of G. Then we have the following lemma:

Lemma 1.3.10. Suppose (7,V) is an irreducible smooth representation of G.
Then the space V' has countable dimension.

Proof. Suppose v € V with v # 0. The smoothness of 7 implies that there exists
a compact open subgroup K of G such that v € V. The irreducibility of =
implies that V is spanned by the set

{r(g)v:geG}
and since v € VX then the set is
{m(g)v:gK ¢ G/K}.
This set is countable and, therefore, V' has countable dimension. O

Proposition 1.3.11. (Schur’s lemma) Suppose (7,V) is an irreducible smooth
representation of G. If f e Homg(m,7), then f is a scalar i.e. Endg(V) =C.

Proof. Let ¢ be a non-zero element in Endg (V). From Proposition 1.3.3, we
have that Ker(¢) and Im(¢) are both G-invariant subspaces of V. The rep-
resentation w is irreducible, therefore, Ker(¢) = {0} and Im(¢) = V. Thus ¢
is bijective and invertible so Endg (V) is a division algebra over the complex
numbers.

Now let v be a non-zero vector in V. Since the representation 7 is irreducible,
V' is spanned by the set

{r(g)v:geG}
so any element ¢, in fact, is determined by ¢(v). Since V has countable dimen-
sion, by Lemma 1.3.10, so does Endg (V).

Now if ¢ € Endg(V) but ¢ ¢ C, then ¢ is transcendental over C and the set
C(¢) is a field. Now consider the subset of C(¢)

{(¢-a)":aeC)

noting that ¢ — a # 0, for all @ € C. This is linearly independent and uncount-
able. However, this contradicts Endg (V) having countable dimension. The
only possible way is that Endg (V) = C. O

Corollary 1.3.12. Let (7,V) be an irreducible smooth representation of G and
Z be the center of the group G. Then there exists a character wy : Z — C* such
that:

7(2)v = we(2)v,

forzeZ andveV.

Proof. Let z € Z, then we have

m(g)m(z) = m(2)7(9),

for all g € G. Therefore, 7(z) € Endg(n). By Schur’s Lemma, we have
Endg(7) = C so there exists wy : Z — C* such that 7(z)v = wy(2z)v for all
z€Z and v e V. Now it is easy to check that wy(z122) = wr(21)wx(22), for any



21,22 € Z. Let v be a non-zero vector in V. Since the representation (m, V') is
smooth, then there exists a compact open subgroup K of G for which v e V.
Thus,

v=m(2)v =w(2)v,

and w, is trivial on K N Z so w, is a character of Z. O]
The character w, of Z is called the central character of the representation 7.

Corollary 1.3.13. If G is abelian then any irreducible smooth representation
of G is one-dimensional.

1.4 Invariants and Coinvariants

The space VE, for some closed subgroup K of G, is the largest subspace of V
on which the subgroup K acts trivially.

Proposition 1.4.1. Let (7;,V;) be a smooth representation of G, where i =
1,2,3. Let 0: V1 = V5 and p: Vo — V3 be G-homomorphisms. Then

ViV, 5V
is an exact sequence if and only if

VIS 1S v
is exact, for all compact open subgroups K in Q(G).

Proof. Suppose Vi = Vs 2 V3 is exact. Obviously, we have o|V;F is injective
and

T (o]V)  Ker(plV5F).
Let vy € Ker(p|V2K), then there exists v; € V; such that o(v1) = vo. Now, for

ke K,
Jom(k)vl = ’/TQ(]C) 00(1)1) = 7T2(k)1)2 =g = (T(’l)l).

Since ¢ is injective, then vy € Vi¥ and, therefore, the sequence Vi Z Vi 4 vE
is exact.
Conversely, suppose V& Z Vi LN VL is exact for all K € Q(G). By the
smoothness of 1, for any v; € Vi, there exists K € Q(G) such that v € VlK and
by the exactness we have poo(v;) = 0. Now suppose vy € Vo with p(vg) = 0.
By the smoothness of 7y, there exists K € (G) such that vy € VJX. By the
exactness, vy = o(vy) for some vy € VlK.

O

Proposition 1.4.2. Let (m;,V;) be a smooth representation of G, where i =
1,2,3, and
0>V, 51, 51 -0

be an exact sequence. Then the following are equivalent:

1. the representation mo is admissible;



2. the representations w1 and 73 are both admissible.
Proof. By Lemma 1.4.1, the sequence
0-VELSVELVE S (1.2)

is exact for all K € Q(G). Suppose (1) is holds. The properties of exact-
ness of (1.2) implies that the space V¥ is isomorphic to a subspace of V3 so
dim(Vi¥%) < dim(V5f). Thus, 7 is admissible. Also by the exactness of (1.2),
V£ is isomorphic to Vi& /VE so dim(V{) < dim(V;), therefore, 73 is admissi-
ble.

Now suppose (2) is holds. By the exactness of (1.2), dim(Vy*) = dim(V¥) +
dim(V{¥). Therefore, 7o is admissible. O

Now put
V(K) =Span{m(k)v-v:veV,ke K}.

The quotient Vi = V/V(K) is the largest quotient on which K acts trivially.

Proposition 1.4.3. Let (m;,V;) be a smooth representation of G where i =
1,2,3. Let 0: V1 = V5 and p: Vo = V3 be a G-homomorphism. Then

Vi 5V 5V
is an exact sequence if and only if
(V)x = (Va)x > (Va)x

is exact, for all compact open subgroups K in Q(G).
Proof. See [35, Chapter I, Proposition 4.9]. O
Corollary 1.4.4. For any K € Q(QG), we have:

1. V=VEeV(K);

2. Vi 2 VE,

Definition 1.4.5. Let N be a normal subgroup of G and let (o,V') be a repre-
sentation of the quotient group G/N and denote by

p:G -GN
the canonical homomorphism. We can define a representation of G as follow:

7:G — Autp(V),
g — a(e(9)
The representation m is called the inflation of o to G.

Remark 1.4.6. The relationship between the inflation and (co)-invariants is
Homg(r,inflo) = Homgn (7N, 0),

where o is a representation of G/N and inflo is the inflation of o to G.

10



1.5 Contragredients

Let (m, V) be a smooth representation of the locally profinite group G. Denote
by V* the dual space Homg(V,C) and

<>:V'xV —C

the natural non-degenerate pairing. The space V* is equipped with a represen-
tation 7* of G given by

< (g)v*,v> = <v*,7w(g 7 )v>

where g € G, v* € V* and v € V. Note that the representation 7 being smooth,
does not necessarily imply that 7* is also smooth. In fact, V* is only smooth if
V' is finite-dimensional.

Definition 1.5.1. Let (7, V) be a smooth representation of G. Set

V= U (vHk
KeQ(G)

Then V is a G-invariant subspace of V* which gives a smooth representation
(7, V) called the contragredient of (7,V).

Lemma 1.5.2. Let (m, V) be a smooth representation of G and K in Q(G)
then VE = (VE)*,

Proof. See [4, Proposition 2.8]. O

Remark 1.5.3. Let (m,V) is smooth representation of G and (%,V) be the
contragredient of (7,V'). It is not true, in general, that 7™ = w. However, there
is a condition that the representation (w,V') must satisfy in order to have T = .

Proposition 1.5.4. Let (w,V) be a smooth representation of G. The following
are equivalent:

e (m,V) is admissible.

e (7,V) is admissible.

Proof. [4, Proposition 2.9]. O

Proposition 1.5.5. Suppose that (7,V) is an admissible representation of G.
Then the following are equivalent:

1. (7, V) is irreducible;
2. (%,V) is irreducible.
Proof. See [4, Proposition 2.10]. O

Let (71, V1), (w2, Va) be smooth representations of G and let o : V3 - V5 be a

G-homomorphism. We define ¢ : V5 — V; as follows

<5’(62),Ul> = <UQ,0’(’U1)> V1 € V17’U2 eVs.
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Lemma 1.5.6. Let (m;,V;) be a smooth representation of G, where i = 1,2,3.
Let 0: Vi = Vo and p: Vo = V3 be G-homomorphisms. If

R g A

s exact, then

!

P~ & =~
3= Vo=V
18 also exact.

Proof. See [4, Lemma 2.10]. O

1.6 Structure of (¢

Here we will introduce some special subgroups of the group G which we will use
regularly in the rest of this thesis.

A Borel subgroup of G is a maximal connected solvable subgroup.

Lemma 1.6.1. Let By and Bs be Borel subgroups of G. Then there exists g € G
such that 9By = By (where 9By = g"'Byg).

Proof. See [15, Theorem 21.3] O

For G = GLy(F), the standard Borel subgroup B of G is the set of matrices in
G of the form
aq *
B= ta; € ™

0 an

where * represents entries in F'.

Definition 1.6.2. We define a parabolic subgroup of G to be a subgroup con-
taining a Borel subgroup.

A standard parabolic subgroup P of GLx(F) is a subgroup has the form

GLN] (F) *
P=
0 GLn, (F)

where (N1, Na,---, N,.) is a composition of N and * represents entries in F'.
Lemma 1.6.3. The Bruhat Decomposition of G = GLy(F') is

G=|J BwB
weW

where W is the group of permutation matrices.

Proof. See [29, Theorem 3.2]. O
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The unipotent radical N of a parabolic subgroup is its maximal connected nor-
mal unipotent subgroup. In the case of G = GLy(F'), the unipotent radical of
the standard parabolic subgroup P is a subgroup of the form
]1]\/'1 *
N = .

0 1y,
where 1, is the identity in GL,,(F') and * represents entries in F'. N is the
maximal connected normal unipotent subgroup.

A Levi subgroup of a standard parabolic subgroup P is a subgroup L such that
P = Lx N, in which case, L ~ P/N. The Levi subgroup L of the standard
parabolic subgroup in GLy (F') is called standard if it has the form

GLy, (F) 0
L=
0 GLy, (F)

Remark 1.6.4. In the case G = GLy(F'), we have that
L=]]GLn,(F) (1.3)
i=1

so L is a direct product of GLy,(F). However, for any reductive p-adic group,
it is not true, in general, that (1.3) is satisfied.

Lemma 1.6.5. The Iwasawa decomposition of G is
G =BKy=KyB
where Ko = GLN(OF).
Proof. See [27, Lemma p.38]. O

1.7 Induced Representations

Here in this section we will introduce the notion of induced representations.
Suppose (m,V) is a smooth representation of G and H is a closed subgroup
of G. To get a representation of H, we simply restrict the representation 7 to
the subgroup H, such a restriction is denoted by Resg 7. The idea of induced
representation is that of forming a smooth representation of G from a smooth
representation of the subgroup H.

Definition 1.7.1. Let H be a closed subgroup of G and (o,W) a smooth rep-
resentation of H. The induced representation of G, denoted by Indg o, is the
space of all functions f: G~ W such that

1. f(hg)=0c(h)f(g) for allhe H and g € G;
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2. there is a compact open subgroup K of G such that f(gk) = f(g) for all
g€ G and k € K. This condition is to ensure that the representation is
smooth.

The group G acts on the induced representation Indg o by

(9-/) (@) = f(zg)
for f e Indgo and geG.
Induced representations have a fundamental property called Frobenius Reci-
procity.

Proposition 1.7.2 (Frobenius Reciprocity). Let (w,V) and (o, W) be repre-
sentation of G and H respectively, where H is a closed subgroup of G. Then the
map

Homg (m,Ind% o) — Hompy(w,0)
p > Yooy
is an isomorphism, where 1, is the canonical H-homomorphism
Vo : Indo — W
fo— Q).
Proof. See [4, 2.4]. O

Definition 1.7.3. A compactly induced representation, denoted by c—Indg o,
is the subspace of the induced representation Indg o which consist all functions
mn Indgcr with compact support modulo H; in another words, f € C—Indga if
and only if there is a compact subset E of G such that

Supp(f) = HE.

Compact induction has its own form of Frobenius Reciprocity. Before we state
the property we need the following canonical H-homomorphism, where H is
open in G,

ot W — cIndSo
w i fU}’
where f,(h) =o(h)w, he H.

Proposition 1.7.4. [/, Proposition 2.5] Let H be an open subgroup of G, let
(o, W) be a smooth representation of H and (m,V) a smooth representation of
G. The canonical map

Homg(c-Ind% 0,7) — Homp(o,7)
f — foag,

s an tsomorphism.
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Proposition 1.7.5. Let (o, W) be a smooth representation of a closed subgroup
H. If H\G is compact and the representation o is admissible then Indga and
C—Indfl o are also admissible and, in fact, they are equal.

Proof. See [35, 5.6]. O

Lemma 1.7.6. Suppose (p1,W1), (p2, Wa) and (p3, W3) are smooth represen-
tations of a closed subgroup H. Suppose o : Wy — Wy and 7 : Wy — W3 are
H-homomorphisms. If

[ea T

W1—>W2—>W3

1s exact then

d% Wy 29 10a6 W, 29, 104G W,
and
e-TndS W, <24, g G, ST, naS
are exact.
Proof. See [4, Propositions 2.4,2.5]. O

Proposition 1.7.7. Suppose H and K are subgroup of G and H c K and
(p, W) is a smooth representation of H. Then

Indg pe Ind?( Indg p

and
c-Ind p = c-Ind% c-Indfy p.

Proof. See [35, 5.3]. O

1.8 Matrix Coefficients

Let G be a locally profinite group and Z be the center of G. Let (mw,V) be a
smooth representation of G.

Definition 1.8.1. ForveV and T eV, the map
g G — C
g — (U,7(g)v)
is called the matrix coefficient of 7 associated to v and v.
Denote by C(m) the space spanned by the matrix coefficients pzg, of .

Definition 1.8.2. The representation 7 is called Z-compact if for allv eV and
v eV, the support of Yrgy is compact modulo Z, i.e.

Supp(pwey) = EZ

where F is compact.
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The space V ®V carries a smooth representation of the group G x G. The map

VeV — C(n)

T®v Prev
is a G x G-homomorphism and is surjective.

Proposition 1.8.3. 1. If (m,V) is an irreducible Z-compact representation
of G, then 7 is admissible.

2. Let (m,V) be an irreducible admissible representation of G and suppose
there exists v € V.U € V such that vzg, is compact supported modulo Z.
Then 7 is Z-compact.

Proof. See [4, Proposition 10.1] O

1.9 Supercuspidal Representations

In section (1.6), we introduced a Borel subgroup B, parabolic subgroups P, Levi
subgroup L and the unipotent radical N.

We are going to build a representation 7, starting with a representation o of
L. We inflate this representation to get a representation of P, inﬂf o. Finally

we induce from P to G to get a representation of G. This procedure is called

parabolic induction and is denoted by zf The parabolic restriction is the op-

posite of parabolic induction. We start with a representation 7 of G and then
restrict m to P to get a representation ResIGJ m of P. Finally a representation of
L can be obtained by the N-coinvariants of ResIGD . We denote the parabolic
restriction by r¢.

Lemma 1.9.1. We have the following:
1. 3¢ and r$ are exact.
2. i% and r¢ are transitive.
3. i respects admissibility.
4. rf respect finite type.
Proof. See [35, Chapter II, 2.1] O

For an irreducible smooth representation (o, W) of L, the Frobenius Reciprocity
is

Homg(n,i¥0) = Homp (r&n, 0)

Definition 1.9.2. Let (m, V) be a smooth representation of G. We say (m,V)
is quasi-cuspidal if, for any smooth representation o of a proper Levi subgroup
L, we have

Homg (7,i%0) = 0.

Let (7, V) be a smooth representation of G. We say (7, V) is cuspidal if it is:
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1. quasi-cuspidal;

2. admissible.

Definition 1.9.3. The representation 7 is called supercuspidal if it is not a
subquotient of a parabolically induced representation.

Theorem 1.9.4. Let (7, V') be an irreducible smooth representation of G. Then
the following are equivalent:

1. (m, V) is supercuspidal;
2. (w,V) is Z-compact.
Proof. See [27, Corollary p.56]. O

Theorem 1.9.5. (Jacquet) Let (7, V') be a smooth irreducible representation of
G. Then there exists a parabolic subgroup P = LN and an irreducible supercus-
pidal representation (o, W) of L such that

Homg (7, Ind$ o) #0.
Proof. See [27, Theorem p.54]. O

Remark 1.9.6. The Theorem 1.9.5, implies that the notion of irreducible su-
percuspidal and cuspidal representations of GLy(F) coincide.

Theorem 1.9.7. Let (7, V') be an irreducible smooth representation of GLy (F).
Then (7, V) is admissible.

Proof. See [27, Theorem p.55]. O

Corollary 1.9.8. If (w,V) is an irreducible cuspidal representation of G then
the contagredient representation (7,V') is also cuspidal.

Theorem 1.9.9. (Harish-Chandra) Let (7,V') be a smooth representation of
G. Then the following are equivalent:

1. The representation (mw,V') is supercuspidal;
2. rfﬂ' =0.
Proof. See [27, Theorem p.52]. O

A Haar measure on G is a non-zero measure g which is invariant under left-
translation by G. Now we define a new concept of irreducible supercuspidal
representations of GG, that is the formal degree.

Definition 1.9.10. The formal degree d(7) of m = ¢-Ind% o, where K € Q(G),
is given by
dim(o)

p(K)

which depends on the choice of the Haar measure.

d(r) =
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1.10 Intertwining

In this section let G be any p-adic reductive group.

Definition 1.10.1. Suppose (p;, W;) is an irreducible smooth representation of
a compact open subgroup K;, wherei=1,2. We say an element g € G intertwines
p1 with ps if

Hom g, (pi, p2) #0,

where K = g7 K19 and p(z) = p(gzg™), for x € K{. We say g intertwines a
representation p of G if g intertwines p with itself.

Remark 1.10.2. If both p1 and ps are characters then the definition is equiv-
alent to:

r’)‘?hr{an2 = P2|Kan2-

Definition 1.10.3. Let (m,V) be a smooth representation of G and (o, W)
an irreducible representation of a compact open subgroup K of G. We say m

contains o if
Hompg (o,7) # 0.

Proposition 1.10.4. Fori=1,2 let K; be a compact open subgroup of G and
pi be an irreducible smooth representation of K;. Let (m,V) be an irreducible
smooth representation of G. Then if (w, V) contains both py and ps then there
exists g € G which intertwines p1 with pa.

Proof. See [4, Proposition 11.1] O

Lemma 1.10.5. Let g € G. Then g intertwines p1 with ps if and only if gt
intertwines pa with p1.

Proof. See [4, §11]. O

The following Theorem is a very significant result proved by Caryol in his paper
[8, Proposition 1.5]. The importance of this theorem comes form the fact that
it gives us a way to construct supercuspidal representations.

Theorem 1.10.6. Suppose K is an open subgroup of G such that K|Z is com-
pact, where Z is the center of G. Let (p, W) be an irreducible smooth represen-
tation of K and suppose that g € G intertwines p if and only if g € K. Then the
compactly induced representation c—Ind% p is irreducible and supercuspidal.

Proof. See [8, Proposition 1.5]. O

1.11 Lattice Sequences and Chains

In this section, let

V= an N-dimensional vector space over F;
A = EndF(V);
G = AutF(V)EGLN(F).
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Definition 1.11.1. We say L is an Op-lattice in V if we can write it as
N
L= {Zaivi a; € OF}
i=1
where {vy,---,vN} is a basis for V.

Definition 1.11.2. An Og-lattice sequence in 'V is a function A from Z to the
set of Op-lattices in V' such that:

1. for m>m, integers, A(n) c A(m);
2. there exists a positive integer e = e(A), called the period of A, such that:
A(n+e) =wpA(n), neZ.
If the lattice sequence A is injective, we call it an Op-lattice chain.

Proposition 1.11.3. Suppose L is an Op-lattice chain in V. The value of the
period is 1 <e(L) <N.

Proof. Since L is a chain, then we can write it as
L={L;:i€Z}
where L; is an Og-lattice in V. Set e = e(£) and consider the quotient
Lo/L. = Lo/wr Lo.

This is a vector space over kr of dimension N. The quotients L;/ L., for 0 < i <e,
form a flag of subspaces of Lo/Le,

{0} @ Le1/Le @+ % L1/Le @ Lo/Le.

Therefore, the value which e can take is between 1 and N. O]

Suppose A is an Op-lattice sequence in V. We define an Op-lattice A(A) in A
by:

AA) = (1 Endo.(A(9)

0<i<e-1

{reA:xA() cA(i),ieZ}.

The Op-lattice A(A) in A forms a ring under multiplication and it is called an
Orp-order.

An Og-lattice sequence A in V' gives a filtration of A by
P(A)={x e A:xzA(m) S A(m +n),Vm e Z},
for n € Z. This induces a valuation on A given by:
vptA — Zu{oco}
x — max{neZ:xeP"(A)}.
where we understand 4 (0) = co. We say PB°(A) is the Op-order 2A(A) deter-

mined by the chain associated to A. When n = 1, we say P(A) =P (A) is the
Jacobson radical.
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Definition 1.11.4. An element g € G is called A-invertible if va(g™) = —va(g).-
Equivalently,
gA (i) = A(i + va(g)) VieZ.

Let A be an Og-lattice sequence in V. We define a compact open subgroup
U(A) of G by
U(A) =U"(A) =A(A)™.

This has a filtration given by
U"(A) =1+3"(A),
for any n > 1.

Remark 1.11.5. The unit subgroups U™(A), n > 1, are compact open subgroups
of G and, moreover, they are normal in U(A).

With the notations above, we have:
Lemma 1.11.6. Let n,m e Z with 0 <m <n <2m. The map
PUA)/B(A) — U™(AN)/U™(A)
z+P"(A) — (1+2)U"(AN)
is an isomorphism.

Proof. See [7, Section 3]. O

Let £ be an Op-lattice chain in V. We define the G-normalizer of 2A(L) to be
the set

K(2A(L)) {geG:gA(L)g™ =A(L)}

{9eG:gLeL="L}.

Remark 1.11.7. The subgroup F*U(L) is contained in K (A(L)). Moreover,
K (A(L)) normalizes both subgroups U(L) and U™(L).

1.12 Characters

Denote by A the set of characters of A. For any non-trivial character ¢ of F,
we can define a character ¥4 of A by

ha=totra

where tr 4 is the trace map.

Lemma 1.12.1. The map
A — A,

o — iy,

is an isomorphism where aa(x) =Y a(ax).
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Proof. See [37, Corollary p.41]. O

Recall that a non trivial character ¢ of F' has level one if Pgp ¢ Ker(vy) but
OF ¢ Ker(¢). From now we fix ¢ to be a non-trivial character of F' of level one.
Suppose L is an Op-lattice in A and define the following set:

L {reA:a(zy)=1, Vye L}

{reA:tra(ay)ePp, VyelL}

Remark 1.12.2. The set L* is also an Op-lattice with the following properties:
let L; be an Op-lattice in A for i =1,2 then,

1. L™ = L.
2. (L1 +L2)*:LIQL§.
3. (L1 ﬂLg)*:LI-FL;.

Lemma 1.12.3. Let A be an Op-lattice sequence in V. Then (PB*(A))* =
P (A) and hence

(P (A)/B"(A)) 2 B (A)/F ()
for any integers n,m with m <n.
Proof. See [7, 4.3]. O

Corollary 1.12.4. Let n,m € Z with 0 < m <n < 2m + 1 then we have the
following isomorphism:

m—n/m—m N (Um+1/Un+1)A,
b+P™ o Paplyme,
where Y ap(x) = Y (trab(z —1)). For brevity, we denote Y4, by .
Proof. See [7, 4.3]. O

Definition 1.12.5. Suppose (mw, V') is an irreducible smooth representation of
G. Let S(w) be the set of all pairs (A,n), where A is an Op-lattice chain in
V' and n is a non-negative integer, such that the representation ™ contains the
trivial character of U™ (A). Define the normalized level ¢(7) of 7 as:

£(7) = min{n/e(A) : (A,n) e S(m)}.

We say €(7) is minimal (or 7 is minimal) if £(7) < L(L(7®X)), for all characters
x of F. We say m is minimal if £(7) is minimal.

Theorem 1.12.6 (Existence). Let (w, V) be an irreducible smooth representa-
tion of G, then the normalized level ¢(m) exists.
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Proof. We prove this by showing that the set S(m) is not empty. Let v € V|
then by the smoothness of 7, there is a compact open subgroup K of G such
that

w(k)v =wv, Vke K.

The subgroup K contains U™ (A) for some positive integer m. The representa-
tion 7, therefore, contains the trivial character of U™ (A) so the set S(7) is not
empty. Moreover,{n/e(A): (A,n) e S(m)} is contained in the discrete series set
{n/e:n,eeN,e< N} so it has a minimal element. O

1.13 Strata

Definition 1.13.1. A stratum in A is a quadruple [A,n,r,b] consisting of an
Or-lattice sequence A, integers n>1r >0 and an element b € P~ (A).

Let [A,n,r,b1] and [A,n,7,ba] be two strata in A. We say they are equivalent
if
by =by (mod P (A)).

Remark 1.13.2. We say the stratum [A,n,r,b] is trivial if b e P~ (A). In this
case the stratum is equivalent to [A,n,r,0].

If 0 <7 <n<2r+1, we can associate the character 1, of U"(A)/U™ ! (A) to the
stratum [A,n,r,b] and it depends only on the equivalence class of the stratum.

Definition 1.13.3. Let (7,V) be an irreducible smooth representation of G and
let [A,n,r,b] be a stratum with n < 2r+1. We say m contains [A,n,r, b] if it
contains the character y.

Lemma 1.13.4. Let [A,n,r,b] be a stratum in A. Suppose b’ € b+ B (A) is
A-invertible and vy (b') = —n. Then P (A) ¢ P (A).

Proof. See [7, Proposition 3.5]. O

Lemma 1.13.5. For i = 1,2, let [A;,ni,ri,b;] be strata in A. If n; < 2r; + 1,
then the following are equivalent:

1. the element g € G intertwines the character vy, with the character ¥y, ;
2. the intersection
g (b + BT (A1) g N by + P2 (As) (1.4)
18 non-empty.
Proof. (1) = (2). Suppose g € G intertwines v, with ¢p, so
¥y () = P, (), for all z e U™ (A1) nU™(Ag)
where

(@) = U (grg™) = U(trabi(gag™ - 1))
= P(trag ' big(z —1)) = Yy1p, (),
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and U™ (A1)9 =1+ ¢ 1P (Ay)g. This implies

G(tra((g'brg—b2)y)) =1
for all y = & — 1 € B (A1)? NP2 (As). Therefore,

g b1g —ba € (g7 P (A1)g N B (A2))”
By remark (1.12.2),
(B (A1) NP 2 (A2))" = (B (A1)7)" + (B2 (A2))* =BT (A1)? + B2 (As)
Therefore, there are 81 € ™ (A1) and s € "2 (As) such that:
g big=b2=g ' Brg + s
Therefore,
g7 (b1 = B1)g =ba+ Bz € g7 (br + BT (A1))g nbo + BT (Ag).

so the intersection is not empty.

(2) = (1). Now suppose b e g~ (by + P11 (A1))gnby + P12 (As) is not empty
so there exist B € P11 (A1) and fo € P17"2(Ay) such that:
b=g " (b1 +B1)g=bz+ B

Now we have ¢p(2) = ¥g-14,4(x) = ¥ (2) for all 2 € U™ (A1)?. Also we have,
Yu(x) = thy, () for all z € U"2(Az). Therefore, vy, = 1 =y, on U™ (A1)? N
U™ (Ag). O

Remark 1.13.6. For arbitrary strata, we say that g € G intertwines [A1,m1,71, 1]
with [Ag,na,72,ba] if g satisfies (1.4). We denote the set of elements in G which
intertwines these strata by Zg([A1,n1,71,b1],[A2,na,72,b2]) and the set of ele-
ments in G which intertwine [Ay,nq,r1,b1] with itself by Zg([A1,n1,71,01]).

Definition 1.13.7. A stratum [A,n,r,b] in A is called fundamental if r =n—1
and the coset b+ (A) contains no nilpotent element.

Proposition 1.13.8. Let [A,n,n—1,b] be a stratum in A. Then the stratum
[A,n,n-1,b] is not fundamental if and only if there exists a stratum [A',n’,n'-
1,b"] such that:

Lo+ P(A) € (N
2. n'le(A) <nfe(A).
Proof. See [7, Theorem 5.3] O

Lemma 1.13.9. Let [A,n,n—1,b] be a fundamental stratum which is inter-
twined with another stratum [A';n';n" —=1,0'] in A. Then nfe(A) < n'[/e(A")
with equality if and only if [N, n',n' = 1,b'] is fundamental.

Proof. See [7, Corollary 5.4 O
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Theorem 1.13.10. Let w be an irreducible smooth representation of G. Then
one of the followings holds:

1. the representation ™ contains a fundamental stratum (positive level);

2. the representation m contains the trivial character of UY(A), for some
Or-lattice chain A (level zero).

Proof. For (1), suppose £(m) > 0. Then the representation m contains a charac-
ter of U™(A) trivial on U""1(A). This character has the form 4, by Lemma
1.12.4, which corresponds to the stratum [A,n,n —1,b]. If this stratum is not
fundamental, then by Proposition 1.13.8, there exists a stratum [A’,n’',n'-1,b']
such that

b+ PI(A) cBT(N).

which implies U”’”(A’) c U™(A), by duality. Proposition 1.13.8 also implies
n'[e(A") < nfe(A). Now the representation 7 contains the trivial character of
U™ *+1(A"), contradicts with the minimality of n/e(A). For (2), See [7, Theorem
5.5(a)]. O

Lemma 1.13.11. Let 7 be an irreducible smooth representation of GLy(F)
and let x be a character of F*. Suppose £() # £(x), then:

(7 ® x odet) = max{l(m),4(x)}.
Proof. We have two cases:

1. First case when £(7) > £(x): the character y o det is trivial on UKZ(W),
where e = ¢(A), and det (U™ (A)) = U;;(ﬂ). Therefore, the representation
7 ® x o det contains the trivial character of U*“(™*1(A). Hence,

(7 ® x odet) = £(r).

2. Second case when £(7) < £(x): the representation 7 ® x o det contains the
character x o det of U (A) which associated to a fundamental scalar
stratum of the form [A, el(x),el(x) - 1,b] where b ¢ '-¢C0) . Therefore,

L(m ® x odet) = £(x).

Corollary 1.13.12. If {(7) =n and {(7 ® x) <n then {(7) = £(Xx).

Definition 1.13.13. Let [A,n,n-1,b] be a stratum in A and e = e(A). Lety, =
w?/gbe/g € A(A) where g = ged(n,e). We define the characteristic polynomial
wp(X) of the stratum [A,n,n —1,b] to be the reduction of ®(X) modulo Pr,
where ®(X) is the characteristic polynomial of yp.

Remark 1.13.14. The stratum [A,n,n - 1,b] is fundamental if and only if
ep(X) # XN,

Definition 1.13.15. A stratum [A,n,n—1,b] in A is called split if the char-
acteristic polynomial pp(X) has at least two distinct prime factors.
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Definition 1.13.16. Letbe A and E := F[b]. We say the element b is minimal
over F, where e = e(E[F) is the ramification indez, if E is a field and it satisfies:

1. ged(vr(b),e) =1;

2. the element wl;uF(b)be + Pg generates the field kg /kp.

Definition 1.13.17. Let [A,n,n - 1,b] be a stratum of period e. We say the
stratum is simple if:

1. b is minimal;
2. the field E* = F[b]* normalizes P°(A);
3. l/A(b) =-Nn.

Lemma 1.13.18. Let [A,n,n—1,b] be a non-split fundamental stratum in A.
Then there exists a simple stratum [A';n’,n' = 1,0'] such that

b+PI(A) b+ ().
Proof. See [6, (2.3.4)]. O

Theorem 1.13.19. Let w be an irreducible supercuspidal representation of G.
Then one of the following holds:

1. the representation m has level zero;

2. the representation contains a simple stratum.

Proof. See [7, Corollary 7.13 ]. O
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Chapter 2

COUNTING
SUPERCUSPIDAL
REPRESENTATIONS OF
GLy(F)

In this section F' is a non-archimedean local field with the ring of integers O,
the maximal ideal Pr and the residue field kg of size q.

2.1 Discrete Series Representations of GLy(F)

In this section, we will study the discrete series representations of GLy(F), in
particular, supercuspidals and the Steinberg representations. Let G = GLy (F).

Definition 2.1.1. Let (7, V) be a smooth representation of G and x a character
of F*. The twist of m by x is the smooth representation (wx,V) of G defined
by

mx(9) =7(g9)x(det(g)),  geG

Lemma 2.1.2. Let (7,V) be a smooth representation of G and x a character
of F*. Then if (7,V) is irreducible then so is (wx,V). Moreover, the central
character of mx is

Wry = wax ™.

Proof. In (wx,V), if U is a G-invariant subspace of V then U is also a G-
invariant subspace of V in (7, V'), which is irreducible, so we must have U is
either {0} or V. Finally, for z € Z = F*, det(2) = 2V so

mx(2) = wr(2)x(det(2)) = wax " (2).
O

Definition 2.1.3. Let (7, V') be an irreducible smooth representation of G. We
say that the representation 7 is square-integrable modulo Z if the followings are
hold:
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1. The central character w, of ™ is unitary i.e.

lwr(2) =1, VzelZ

2. The integral
2
o0 d 2.1
fG/Zl%m(g)l g (2.1)

is finite, where dg is a Haar measure on G|Z and ¢zg,(g) is any matriz
coefficient.

Definition 2.1.4. A smooth representation (m,V) of the group G is called
discrete series if we can write the representation ™ as

7= ®yodet

where ' is square-integrable mod Z and x is a (quasi)-character of the multi-
plicative field F™.

Lemma 2.1.5. Let (m, V) be an irreducible supercuspidal representation of G.
Then m is a discrete series representation.

Proof. The representation 7 is Z-compact so the support of the integral (2.1)
is compact so it converges and the lemma then follows. O

For a non-negative integer j, denote by An (F,j) the set of equivalence classes of
irreducible smooth representations 7 of G which have the following properties:

1. 7 is square-integrable mod center;

2. we(wp)=1;
3. 4(m) <j/N.
and put

An(F) = U An(F. ).

§>1

2.1.1 Steinberg Representations

The Steinberg representation of GLy(F') is an example of a discrete series
representation. We will define the Steinberg representations of GLy (F') and we
will give some very important results.

Definition 2.1.6. Let d=(d;) andn=3_,d;. Let
T=7T1 ® QT

be an irreducible representation of a standard Levi subgroup L of G with m; an
irreducible representation of GLg,(F). We define the normalized induction

T X +oe X Ty o= Indf’pﬁ

where P is the standard parabolic subgroup containing L.

27



Let v = vy be the character of G, defined by

v(g) =|det(g)l, geG,

where || is the absolute value on F'.

Let d be a divisor of N, with N = md and let m be an irreducible smooth
supercuspidal representation of GL,,(F). Let

o(m,d) = V7—n(d—1)/2ﬂ_ < l/71n—(d—1)/27_r e x yfy(lj_l)/gﬂ.

Proposition 2.1.7. There is a unique irreducible quotient of o(m,d), denoted
by St(m,d) and called the Steinberg representation.

Proof. See [35, Chapter 111, Proposition 3.13]. O

There is a close relation between the discrete series and irreducible supercuspidal
representations. This relation will depends on the divisors of IV and is shown
by the following theorem.

Theorem 2.1.8. Let 7 be a discrete series representation of GLy(F). Then
there are a unique divisor d of N and a unique irreducible supercuspidal repre-
sentation mo of GLq(F') such that:

7 2 St(mo, N/d).
Proof. [38, Theorem 9.3]. O

Lemma 2.1.9. Let m = m ® - @ w, be an irreducible representation of L, a
standard Levi subgroup of G. Let

Il = Ind{ p 7.
Then any subquotient of I has central character
WIT = Way Wi,
Proof. The center Z of G acts on II as follows: let z€ Z,g € G and f € II, then

(z-£)(9) f(92) = f(29)
6p(2)Y2(2)m(2).f(g) as zelL.

Since 6p(2)'/%(2) = 1, we get
(z)(9) = me-em(z)f(9)

Wy wr, (2) f(9)
= wn(2)f(9).

O

Proposition 2.1.10. Suppose 7 is a discrete series representations of GLy (F)
which is isomorphic to St(mo, N/d) as above. Then:
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1. 4(m) = ¥(mp)

N
d

2. we(wp) =1 if and only if wy,(wp)d =1.

Proof. For part (1) Vigneras in [35, IT 5.12] proves that the parabolic induction
preserves the level i.e. every subquotient of Indg p o has the same level £(m),
(for mp irreducible). Therefore, ¢(7) = ¢(mp).

Part (2) follows from Lemma 2.1.9 . O

2.2 Representations of Division Algebras

In this section we will discuss the structure of central division algebras D. We
will concentrate on the irreducible smooth representations of the locally profinite
group D*.

Definition 2.2.1. A central division algebra D owver the field F is a finite
dimensional F-algebra which is a division algebra with center F.

Fix a central division algebra D over F of dimension N2. Let E/F be a separable
extension of degree N and My (FE) be the set of N x N matrices with entries in
E.

Proposition 2.2.2. There is an embedding E = D, unique up to D> -conjugacy.
Moreover, we have the following isomorphism

E®r Dz My(E).

Proof. [9, §7] O
Lemma 2.2.3. Let E be an extension of F' of degree N centered in D. Then
[E:F)*=[D:F]=[D:E}]*

Proof. See [9, §7, Corollary 1.11]. O
Definition 2.2.4. The reduce trace map Trp : D - F is given by

Trp(d) =try(gy(1®d), deD.
The the reduced norm map Nrp : D* — F* is defined by

NYD(d):detMN(E)(1®d), deD.

Proposition 2.2.5. For x,y € D,a € F, we have:
1. Trp(z+y) =Trp(z) + Trp(y);

Trp(ax) =aTrp(x) and Trp(l) = N;

Trp(zy) = Trp(yx);

Nrp(zy) = Nrp(z) Nrp(y);

Nrp(az) = a”¥ Nrp(z) and Nrp(1) = 1.

AR SR S
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Proof. See [9, §,7.3]. O
Now define

vp:D — Zu{oo}

r — vp(Np(7)),

where vp as defined in Section 1.1. Then the map vp is a valuation on D so,
for x,y € D, put

el = g7
Then, for x,y € D, we have:
lzylp = lz|plylp
and
|z +y|p < max{|z[p, |ylp}-

We define the ring of integers Op in D as follows:

Op={zeD:lz|p<1}.
The unique maximal ideal Pp of Op is then:

Po={xeD:|z|p<1}.

The ideal Pp is principal so it is generated by one element called a uniformizer
of D and denoted by wp.

The ideal Pp defines a filtration
. CPHcPLcPL=0pcPp cPyc..
where P7}, for m € Z, is defined as follows
Ph =wh Op.

We define the residue field of D to be the quotient kp = Op /Pp. The size of
the residue field kp is ¢ and the size of the quotient Op /P is then g™V,
where m > 0.

We define the unit group of D as
Up =U =05,

It has a filtration
Up=1+Pp, m>1.

Remark 2.2.6. The subgroups Uy, m > 0, are compact open subgroups and
they are normal in D*.

Definition 2.2.7. We define the level of a character 0 of D to be the least
integer m such that Py c Ker(0). x is trivial on U,
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We will denote the set of characters of D by D.

Lemma 2.2.8. Let 0 # 1 be a character of D, then the map
D — D
a +— O(ax)

is an isomorphism.

Proof. Similar to Lemma 1.1.4. O

For each character ¢ of F', we can define a character of D by setting
Yp =1 oNrp.

Remark 2.2.9. If the level of the character v is one then the character ¥p is
also of level one.

Proposition 2.2.10. For 0 <k <m < 2k, the map
Pp'[Pp" — (U™ /Up™)
a +— pa()
is an isomorphism, where ¥p o(x) = Yp(a(z —1)).

Proof. We only need to check the map is homomorphism which follows from the
condition 0 < k <m < 2k. O

Proposition 2.2.11. The map
P — D¥
X — xoNrp.
is an isomorphism.

Proof. See [37, Proposition 6, p.195]. O

Now consider an irreducible smooth representation 7 of the locally profinite
group D*.

Remark 2.2.12. As the quotient D* [F™ is compact, all smooth representations
of D* are discrete series and, in fact, cuspidal.

Definition 2.2.13. We define the level £(m) of m to be the least integer k such

that the representation w is trivial on Up.

Lemma 2.2.14 (Existence). Let (m, V') be an irreducible smooth representation
of D*. Then there exists a non-negative integer m such that £(m) =m

Proof. Similar to the proof in Lemma 1.12.6. O

Definition 2.2.15. Let (7,V) be a smooth representation of D*. We say the
representation w is minimal if for any character x of D*, we have

() < l(mx).
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Now denote by A(D,j), the set of equivalence classes of irreducible smooth
representations m of D* which satisfy the following:

1. wa(wr) =1;
2. The restriction of 7w to the open compact subgroup U gl is trivial.
Koch has proved in his paper [18] the following result:
Lemma 2.2.16. The set A(D,j) is finite and the order of A(D,j) is given by:
. n m g
A= 2 —5 2 u( )(qd— 1)ql7 ],

mln dlm d

2.3 L-Functions and Local Constant for GLy(F)

Here, let 7 be an irreducible smooth representation of G which we will assume
either GLx(F) or D*. We will attach to this representation 7 two invariants:
let s be a complex variable. The first invariant is the L-function L(m,s) and
the second one is called the local constant (7, s,1), where ¢ is a non-trivial
character of F'. The results of this section are originally in [11].

We are going to focus more on the L-function and the local constant of su-
percuspidal representations for GLy(F) and we will see later on that there is
a connection between these invariants for irreducible supercuspidal representa-
tions of GLy (F') and others defined for irreducible smooth representations of
D*.

We will fix the following notations. When G = GLy(F), then A = My (F). The
trace map on A is defined by T4 = try,p and the norm on A is N4 = deta.
When G is the central division algebra D>, then A will be D. The trace map
T4 on A will be the reduce trace map Tr 4 and norm map N4 on A is the reduce
norm map Nrp.

Denote by Ci°(A) the space of all functions f : A - C which have compact
support and are locally constant. Recall that: a function f: A - C is called
locally constant if for any element a in A, there exists a neighborhood U of a

such that f(u) = f(a), YueU.

Now fix a non-trivial character ¢ of F. For ® € C5°(A), we define the Fourier
transform @ of ® by

b= [ @@y o Ta(oy)du(y)
where u is a Haar measure on A.

Now consider the integral
(@, f.8) = [ @@)f(@) | Na@) | du* (@)

where p* is a Haar measure on G, ® € C°(A) and f € C(rr).
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Set
N-1

Z(ﬂ)z{{(@,f,s-r ):(I)eC§°(A),feC(7r)}.

Theorem 2.3.1. There is a unique polynomial P,(X) € C[X] such that

1. P(0)=1;
2. Z(m)Pr(q %) € Clq®, ¢ *].
Proof. See [19, Theorem 2.3 and Corollary 2.4 |]. O

Definition 2.3.2. The L-function L(w,s) of 7 is defined by

_
Pr(q7%)

where s is a complex variable. Note that L(w,s) is independent of the choice of
Haar measure p*.

L(m,s) =

For f € C(m) we define f € C(7) by f(g) = f(g7").

Theorem 2.3.3. Let (m,V) be an irreducible smooth representation of G. For
each ® € C(A) and f € C(w), there exists a unique function y(w,s,1) € C(¢™*)
such that

(@, £, 5 =) = (s, )6, 1, S )
Proof. See [19, Theorem 2.3 (2)]. O
Definition 2.3.4. We define the local constant of the representation m as fol-
lows
) =2 (s ) s

Corollary 2.3.5. The function e(w,s,1) has the form ag’ ™¥)* for some a € C*
and f(mw, ) € Z. Moreover, the local constant e(m,s,) satisfies the functional
equation:

e(m,s,)e(i,1-8,1) =wr(-1).

Remark 2.3.6. The integer f(m, 1) in Corollary 2.3.5 is called the conductor
of m. The conductor is called minimal if ™ is minimal. Let m be irreducible
supercuspidal representation of G of minimal conductor ¢, then [8, § 4] provides

flm,)=r(m-1)+N.
Remark 2.3.7. The local constant e(m,s,%) can be written as

N -1
2

N-1o
e(m,5,0) = ¢/ DT (7, )

for some f(m, ) € Z.
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Proposition 2.3.8. Let (m, V) be an irreducible smooth representation of G.
Let o) be a non-trivial character of F. For any z € Z(G), we have

e(m, s, 20) |2V e, 5,9) 7! = wa(2).
Proof. See [17, 1.3.9]. O

Proposition 2.3.9. Let (7,V) be an irreducible supercuspidal representation
of G. Then

1. Z(m)=C[X, X '].
2. L(m,s)=1;
Proof. See [17, 1.3.5]. O

Let ¢ be a non-trivial character of F of level one. For the following see [3,
(3.1.5),(3.2.11)], noting that it is independent of choice of ).

Remarks 2.3.10. Let mp be an irreducible representation of D*.

1. The L-function L(mp, ) is not trivial if and only if the dimension of wp is
one, in which case, the representation wp is of level zero and f(wp, ) <0.

2. If the L-function L(mp, ) is trivial, then {(mp) = f(7p,¥) =m, for some
positive integer m.

Recall that the set Ay (F') is union of Ay (F,j) over j > 1 as defined in section
(2.1).

Lemma 2.3.11 ([5, Lemma 5]). Forwe Ax(F) and ¥ a character of F of level
one. Then one of the following occur:

1. f(m, ) =-1 and £(7) =0, or
2. f(mw,p) = NU(r).

2.4 Jacquet-Langlands Correspondence

In this section G denotes either GLy (F') or D*.
Let g € D. The reduce characteristic polynomial of g is the characteristic poly-
nomial of 1 ® g in My (F) as in Proposition 2.2.2.

Definition 2.4.1. Let g € G, then we say g is:

1. regular semisimple if the element g has (reduce) characteristic polynomial
with distinct roots over F' (algebraic closure of F).

2. elliptic if g is regular semisimple and the (reduce) characteristic polynomial
of g is irreducible over F'.

We denote the set of regular semisimple elements in G by G*.

Definition 2.4.2. Let g € GLy(F) and g’ € D*. We say g corresponds to ¢,
and we write g < ¢, if they have the same characteristic polynomial.
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Recall that H(G) is the set of all functions f : G — C, which are locally constant
with compact support. Let (m, V) be an admissible representation of G and
feH(G). We can defined

(N = [ Hg)(g)dy.

This makes sense as an operator V' — V because the function g — w(g)v is
locally constant so the integral reduces to a finite sum. Moreover (see [13]), the
trace tr(m(f)) is well-defined and there is a function x, on G° such that

u(r()) = [ xx(9)1(9)dg
for all f e H(G) with support in G°.

Let A% (F) be the set of equivalence classes of discrete series representations of
the group GLy(F).
Let A®(D) be the set of irreducible smooth representations of the group D*.

Theorem 2.4.3 (Jacquet-Langlands Correspondence). There is a unique bi-
jection

AN(F) — A%(D)
™ == Tp

such that, for all me Ay,

Xx(9) = (-1)" xxp (9)
forall g« g'.

Proof. For N =2, the Theorem was proved by Jacquet-Langlands and a sketch
of the proof can be found in [4, 56]. For characteristic zero, it was proved by
Rogawski in [30]. For the positive characteristic case, the Jacquet-Langlands
correspondence was proved by Badulescu in [3]. O

The Jacquet-Langlands correspondence has very important consequences which
is relating the the L-functions and local constants in A% (F') to the L-functions
and local constants in A® (D). For the following proposition see [1].

Proposition 2.4.4. Suppose w < wp in the Jacquet-Langlands correspondence.
1. L(xm,s) = L(x7p,s) for all characters x of F*.
2. For all m € AL (F) and all characters x of F*,

E(Xﬂ-7 S, w) = (_1)N_1E(X7TD7 S, w)
holds for all character ¥ of F with v # 1.

Lemma 2.4.5. If 7 < mp in the Jacquet-Langlands correspondence then

Wr = Wrp
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Proof. By Proposition 2.4.4(2), we have
e(m,s,2.40) = (1) N te(np, s, 2.0)
for z € F* and z.4(x) =¥ (zz). Using this fact, we have the equality
(DN e(m, s, 2.0) 2N Pe(m, 5,0) 7 = (-1 N e(wp, 5, 2.40) 2N Pe(rp, 5, 0) 7L
Proposition 2.3.8 implies that
wr(2) = wrp (2)
as required. O

Now let

A(D) = J A(D, 7).

3>1
The Jacquet-Langlands correspondence implies that there is a unique bijection

An(F) — A(D),

T +— Tp.

Let m € Ay(F) and mp € A(D) be such that 7 — 7p. By Section (2.3), there
are integers f(m,v) and f(7p,®) such that:

(M) (- V-1
€(7T7S7¢) q E(7.‘-7 2 ,w)

and

_ N-1

Since the Jacquet-Langlands correspondence implies e(, s,%) = e(7p, s, 1), for
all s € C, then we deduce that

f(Wﬂl)) = f(WDﬂ/’)- (22)

Now we deduce a very useful proposition
Proposition 2.4.6. The map
An(F.j) — A(D,j)
T —> Tp
is well-defined and a bijection.

Proof. Let 1 be an addition character of level one. We prove this proposition
by showing the following are equivalent:

1. me AN(F,j);
2. mp e A(D,j);

36



3. f(m ) = f(mp,¢) <J.

This follows form Remarks (2.3.10), Lemma (2.3.11) and the equation (2.2).
O

Theorem 2.4.7. The set Ax(F,j) is finite and the order of An(F,j) is given
by
) N m g
AnED = 3 o ¥ (5 ) @ - Dl
m dim

m|N

Proof. Proposition 2.4.6 shows there is a bijection between the set A(D,j) and
the set Ax(F,j) so they have the same size:

| AN (F, )| = [A(D, j)].

The size of the set A(D,j) is given in Lemma 2.2.16 and that completes the
proof. O

Remark 2.4.8. This generalizes Theorem 1 of [5], where the result is proved
for j/N € Z. The proof given here is essentially the same as that in [5].

2.5 Counting Supercuspidal representations of
GLN(F)

In this section, we are going to compute the number of irreducible supercuspidal
representations of GLy (F') under some conditions. For any positive integer N,
we will deduce a formula for the number of these representations which will
depends on the divisors of the integer N. However, when N is a prime, the
formula becomes simpler as the only divisors of N are 1 and N.

A special case, is when these representations have level zero. We will give a
general formula for the number of these representations for any positive integer
N.

For a divisor d of N, let SY (F,j) be the set of equivalence classes of irreducible
smooth supercuspidal representations of GL4(F') with the following properties:

1. ¢(m) <jld;
2. we(wp)V=1.

Then Sj(F ,7) is the set of irreducible smooth supercuspidal representations of
GL4(F) with ¢(7) < j/d and w,(wr) = 1.

Denote by ¥, the set of characters of F* of order dividing N. Then we have
the following lemma,
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Lemma 2.5.1. The map

Si(F.j)x ¥ —  Si(F.j)
(mr,x) +— m®xodet

is surjective, with fibers
{(r @1 odet,xyy™) 19 is an unramified character of order dividing d}.
Proof. To prove the map is surjective, suppose 7 € Sflv(F,j) SO
wr(wp)Nt=1.
Now pick ¢ € C* such that ¢ = w;(wp). Then
¢N = we(wp)V = 1.
Define a character y of I by
x(@pu) ="
for r € Z and u € OF. Then by Lemma 2.1.2, we get
Wrayodet (TF) = wr (wr )wy (wr)? = 1.
Therefore, 7 ® y o det € S¢(F,j) and
(m® x odet,x ' odet) —> 7.
Now let 7 € S3(F,j) and x € ¥ such that 7 ® x o det € SYY(F, ) and consider
the set
Fib(r® x) = {(x',x') : 7' € S4F,j),x € ¥ and 7' @Y =27®x}.

The set Fib(mw ® x) is not-empty since it contains (m,x). Now let (7', x’) €
Fib(r® ) som 2w @ yx . Put ¢ =yx' ', then

wr (W) = wrey (@r) = wr(wp)(@)! = 1,
therefore, ¥ is a character of F* of order divides d. O

Corollary 2.5.2. The size of each fiber is d and
. N .
|Sa (F\ )| = E|55(F’J)|-

For r e R,r >0 and n € N, define A,,(F,r) to be the set of equivalence classes of
irreducible smooth representations of GL,,(F') which have the following prop-
erties:

1. 7 is square-integrable mod center;

2. we(wp)=1;
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3. L(m) <r/n.

Remarks 2.5.3. 1. A,(F,r) = A,(F,[r]) because, for all discrete series of
GL,(F) of level £(T) € %Z, we have

(7]

lm)<— = U(r) < —

3=

2. The formula of Theorem 2.4.7 is also valid for real number r:
n m o
AED= 5 > () @ - D'l
m\nm dlm d

Since [r/m] = [[r]/m] for any integer m > 1, then the formula for|A, (F,r)|
and |A, (F,[r])| are equal term by term.

Now we deduce the the following Theorem which will provide us with a formula
for the size of the set S¥ (F,j)

Theorem 2.5.4. For any non-negative integer j, the set SIJ\\;(F,j) is finite and
its size is given by:
. N\ N .
SNED = Y () g AP
AN d/) d

Proof. By Theorem 2.1.8, the following map

U SY(F,jd/N) — An(F.j)
d|N

T St(ﬂ‘o,N/d)

is a bijection.
Now for any two distinct divisors di,ds of N, we have

Sé\i(ijdl/N) mS(Ji\QI(F’de/N) =,
Therefore,

[AN(F )| = 3 183 (F,jdIN))|
dN
By Corollary 2.5.2, we get
. N cd/m -
[Aw(F.j)| = ¥ SISHF.j/N)
dN
Finally, using Mobius inversion, we conclude:

) N\ N .
SV = 3 () FHAaE s
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The previous Theorem works for any positive integer N. Let N = pi'..pl°,
where p; is a prime and r; > 1 is an integer for i € {1,...,s}. Put

J={p1,....,ps}-

For a subset I of J, define

Nr=[]p

pel

By Theorem 2.5.4, the size of the set SY (F, k) is

SN (F. k)|

>, i(N1).Nr.|An/n, (Fk/Nr)|
IcJ

> (DY Ni|Anyw, (F B[N
IcJ

As we can see, this involve a deep calculations when N is large. For this reason,
we are going to specialize the integer N in order to deduce a simpler formula.

We will denote the number of equivalence classes of irreducible supercuspidal
representations of GLy (F) with w,(wr) =1 and ¢(7) = k/N by &(N, k).

Remark 2.5.5. Denote by G(N, k)™, the number of equivalence classes of irre-
ducible supercuspidal representations of GLy (F) with w,(wr) =1 and minimal
level ¢(w) = k/N.

2.5.1 Level Zero Supercuspidal Representations of GLy(F’)

Here we will compute the number of irreducible supercuspidal representations
of GLN(F) with wy(wr) =1 and £(7) = 0, for any positive integer N. The
reason for considering the level zero supercuspidal representations is because
the number of discrete series |An (F,0)| of GLy(F') becomes easy to calculate

N m d

AEOl= % 5 () (- 1)
m|N dlm

and as a result of that G(N,0) becomes also easy to compute.

Remark 2.5.6. We have G(N,0) = G(N,0)™.

Theorem 2.5.7. The number of the irreducible smooth supercuspidal represen-
tations of GLn(F), upto equivalence, for any integer N > 1, with £(7) =0 and
wr(wr) =1 is given by the following:

s(V.0)- 5 Y ()"~ 1)

AN
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Proof. For abbreviation put

f(m)—Eu( )(q -1)

dlm

so we have:

AR = 3 5 7(m)

m|N

Now the number of equivalence classes of irreducible supercuspidal representa-
tions of GLy (F') of level zero and w,(wr) =1 is

2o(q)aro

- v g3 (2 o)

&(N,0)

d|N m|d
- N"%V—f(m %}iu(d)
- lezN—f( > (Z/m)

m‘m,

Now we have

5 N/m\ |1 if =1
a djm 0 otherwise

|
m

3\2

Therefore, we deduce

S(N,0)= - /(N).

as required. O

Corollary 2.5.8. When the integer N > 2, then:

s(V.0) =+ ¥ ()"

AN

Remark 2.5.9. The number in Corollary 2.5.8 is, in fact, the number of irre-
ducible polynomials of degree N over the residue field kp .

Green’s work in [12] shows that irreducible cuspidal representations of GLy (k)
are parametrized by the regular orbits of characters of ky. (where kr, /kF is the
unique degree N extension), which are parametrized by irreducible polynomials
of degree N over kp.

Finally there is a bijection [7, §6]
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representations of representations of GLy(F) with

irreducible cuspidal irreducible supercuspidal
GLy(kr) L(m) =0 and wy(wp) =1

given by
GLN(F) -

o~ IndFXGLN(OF) g,

where 5(wh.g) = 0(g), for k € Z and g e GLN(F) and g is the reduction mod
Pr of g.

2.5.2 Positive non-Integral Level Supercuspidal Represen-
tations of GLy(F)

In this section, we will compute &(N,k)™ for any positive integer N with
(N, k) =1 for some integer k > 1. The reason for imposing the condition (N, k) =
1 is to make the counting simpler because we have:

k k-1
EIN &
m m
for any divisor m > 1 of N. When (N, k) # 1, then (2.3) is not true anymore

and, therefore, the computations become more complicated. Before we count
the supercuspidals we need the following lemma.

Lemma 2.5.10. Any representation in SN (F,k) with a level {(7) = kN is
manimal.

Proof. Follows from Lemma 1.13.11. O
Corollary 2.5.11. We have &(N,k) = G(N,k)™.
Lemma 2.5.12. The number of irreducible supercuspidal representations of
GLN(F) of minimal level {(n) = k/N and w,(wr) =1 is

S(N,k) = N(gr -1)%qp 7",
Proof. By Lemma 2.5.10 and Theorem 2.5.4, we get

S(l, k)™ |S{(F, k)| - |S{(F. k- 1)]

;u<%>% ([4a(F kdN )| - |Aa(F, (k- 1)ANTY)) .
d|N

By (2.3) and Theorem 2.4.7, we obtain

S, k)™

[An (FB)| = [An (F, k= 1))

=z&zmmw~%ﬂﬁw¢ﬂ)

m|N dlm

N(gp-1)%gp

42



2.5.3 Positive Non-Integral Level Supercuspidal Repre-
sentations of GL; (F)

In this section, we deal with a special case when IV =" for some integer r > 0 and
I a prime. We will compute &(I", k) for some integer k > 1. When (I",k) =1,
this case was investigated in previous section and the number is

S k) =1"(ar - 1), 7.

Suppose (I", k) = 1*, where t > 0. For any divisor m = {% of [", if i > ¢ then
B
ml [ m
(2]
m m

£]-ruo

otherwise,

If i < t, we can write

Any irreducible supercuspidal representation in Sllr (F, k) with level k/I" is min-
imal by Lemma 2.5.10. This implies that G(I", k) = &(I", k)™ and

S, k) = |Sh (F k)| - |SL (F.k-1)|.

Now using Theorem 2.5.4, we obtained:

G(lr7k) |AlT(F7k)|_|AlT(Fak_1)|

X
= U(JAp (B R = [Apa (F (B = 1)I7H)).

Y

First we compute X.

>

m|lt
r "e(m)-1
= I'(gr-1)%""™

+ o2 ((q% _ 1)2 q;:@(rr)fl _ (QF _ 1)2q?*12(7r)71)

T

m dl = dr k=1
> Z/J'(E)(q(}’_l)(qF[m] g ])

dim

X

l
m

- ¢ 2 re(m)-it t-1 Imte(m)-1tt
+ 1 2‘”(((1%—1) A (SRS DR )

Thus

-2 ( g - 1)2 q?l(ﬂ)fl"

P
M-

=0

o, i1 "L o(m) -1
I 2Z(Qé~“ - 1)2qF ) :

|
\M“

N
Il
—_
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Now we compute Y. We will use [[kl7}]/m] = [k/ml].
r m d[ d[ k=1
(E) (q;i: _ 1) (qF[mz] _ qF[ mi ])

10—
= 1"(gr - 1)%qp -1

+or2 ((qﬁm —1)" g T (g - 1)2q?_2£(”)_1)

Y

g
|
Ng
=

— t-1 2 prlg(my-rtt t-2 1720y 1172
+ 1 Q(t)((Qﬁw —1) qr ™ —(CI% —1)QQF @ )

SO

t-1

r—2i 11 2 (-t
Y = Zl 2(q%—l) qp (™)
i=0
t-1 L i1 r-2 i-1
T—21 ¢ l L(m)-1
- Zl 2 (qi—' _1)2qF (™ .
i=1

Finally we subtract Y from X to get &(I", k).
b ai (g 20 memy-lt ()=t
B o (0
t . i 2 r~1p(n)_1i~ =2 p( ) _[i™
_ er—m(q%l_l) (q; O ON 1)
i=1

Lo [(qzt B 1)2 qlr’lé(‘n)fllt _( A )2#‘26(#)—#-1] '

S(", k)

2.5.4 Positive Integral Level Supercuspidal Representa-
tions of GL,(F)

Again we are considering N to be a prime .

Lemma 2.5.13. There ezists a representation 7 in St (F,1k) with level () = k
which is not minimal.

Proof. See [7, §9.2]. O
Corollary 2.5.14. We have &(1,1k) > &(1,1k)™.

Lemma 2.5.15. The number of equivalence classes of irreducible supercuspidal
representations of GLi(F') of level {(m) =k and wr(wp) =1 is

1 ) 1 ) )
S(1L1k) = 5 (ap - g 7™ - (5 + Dar - D27 4 lar - )07
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Proof. This is straight computations:
S(Lik) = |S(F k)|~ |S](F,lk-1)
= |A(F )| - [A(F, Ik - 1)]
- l(|A1(F k)| = [A(F k= 1)])

_ Z S ( )(qF 1)((]?[%]_(1?[““7*1])

m|l d\m

- Ugr-1)°¢5 "

Lemma 2.5.16. The map
SN(F,EN -1) x U, — SN(F,kN)
has fibers
{(mp,xp™ ") 24 is a character of F* of level <k —1}.
The size of each fiber is (q—1)¢"™ and the size of the image is q|SY (kN —1)|.

Proof. The map is not surjective, since all minimal representations in S ]Q,’ (F,kN)
of level k are not in the image as we cannot reduce the level. Now let 7 €
SN(F,kN -1) and x € W such that 7®y € SN (F,kN). Let Fib(r® x) denote
the fiber of 7 ® x, then Fib(m ® x) is not-empty as it contains the pair (m,x).
Now let (7',x') € Fib(r ® x), then 7’/ ® X' 2 7t ® x so 7’ 2 7 ® v . Put
¥ = xxX'"', then by Lemma 1.13.11, we must have £(¢) < k, so () <k-1.
Therefore,
Fib(m ® x) = {(7, x¥™*) : ¢ is a character of F* of level <k —1}.

By Lemma 1.1.6, the size of each fiber is (¢r — 1)¢kt and [¥oi| = (gr - 1)gk
Therefore, the size of the image of this map is

(qp - 1)qk

WW%(F, kN -1)].
F

O

Corollary 2.5.17. The number of equivalence classes of irreducible minimal
supercuspidal representations of GLi(F) with wy(wr) =1 and l(7) =k e€Z is

S(L, k)™ = *(qF gr)(dp - g 7Y,
Proof. By the previous lemma, the cardinality G(I,1k)™ is obtained by
S(1,1k)™ = |SH(F, k)| - qr|S!(F, 1k - 1)].

Now using Theorem 2.5.4, we get

Sl Ik)™ = IAz(F k)| = qr|Ai(F, Tk - 1)]
[ d[HE=17+1
_ Z Z:”( )(QF 1)(qu]_qF[ ] )
m|l d\m
The result then follows. O
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2.5.5 Carayol’s Number

In Carayol’s paper [8], he studied irreducible smooth supercuspidal representa-
tions of GLN(F), N = rs. In particular when N is prime, he gave a formula
for the number of irreducible very cuspidal representations of K(2(,) under cer-
tain conditions. We will go through his formula and we will see how to get the
number irreducible supercuspidals of GLy(F) from this formula. Eventually,
we will compare this number with the number we got in Lemma (2.5.12) and
Lemma (2.5.17).

4

Carayol defines the notion of a “very cuspidal” representation of IC(2ls) of level
¢(m) = (m—-1)/s and then he proves the following Theorem:

Theorem 2.5.18. [8, Theorem 8.1]

1. If N is a prime, then any irreducible supercuspidal representation of GLy (F)
of conductor mIN, minimal, is induced from a unique very cuspidal repre-
sentation of KK(1) of level £(w) =m -1 .

2. Letm > 2 such that m—1 is prime to N. Then any irreducible supercuspidal
representation of G of conductor n+m -1 is induced from a unique very
cuspidal representation of K(An) of level £(w) =(m-1)/N .

Now denote the number of very cuspidal representations of K(2(;) of level £(7) =
(m=1)/s with w;(wr) =1 by ng(N,m —1). Carayol in [8, 8.5] gave a formula
for ng(N,m - 1) which is:

ng(N,m-1) :sar(q}—l)q;(sz(ﬁ)fl), m>2

where .
,= = kreg
a 7,| (T)|
for k(,y the extension of k of degree r, and
kf:)g ={ae k(xr) tk(a) = k()

Now we will compare Carayol’s numbers with the number we deduced for the
representations of GL;(F). Set N =1,

1. If /(7) € Z then s =1, r = 1. The number of very cuspidal representations
of GL;(F) with wp(wr) =1 and level £() is

1 1(£(m)-
m(lm=1) = 5 (dp - ar) (@ - Dag 7.

Comparing this number and the number in Lemma (2.5.17), we deduce,
nl(laf(ﬂ—)) = 6(17 lé(ﬂ-))m7

where the letter m denotes the minimality.
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2. If {(7r) ¢ Z, then s =, r = 1. The number of irreducible supercuspidal
representations of GL;(F) with wr(wp) = 1 and level £(7) is

m(L16(m)) = Uar = 1)*gp ™
This number matches the number in Lemma (2.5.12),

n(1,10(m)) = &, 1(m)).

2.6 Zeta Function

Here in this section, we will study the zeta function of the number of irreducible
supercuspidal representations of G = GL;(F') with w;(wp) = 1 and minimal
level n/l. Put
®(l n)’m
G(s) =2 —
Recall that

%(ql -q) ifn=0
&(l,n)" ={l(qg-1)%*¢"! ifltn

1@ - -1 ifln

First we will put the function (,(s) in the form (1-¢7%)™*, so

Co(s) = ®(G,0)+Z®(l’”) +Z®((zl,_n))
lyn qns l|n q s)n
- ’(q —a)+Ua-1)%¢ " g gl (q ) (d' - 1)gt Y gt
lyn ln
but
Zq(l—s)n _ Zq(l s)n 2‘1(1 s)n
= Zq(lfs)n _ Z (q(ks)z)
1 1

1— ql—s - 1- q(l—s)l ’

Therefore, we get

(o) = 1(d'-a)+1(q-1)%q"" 1,S+[%(ql—Q)(ql—1)q'l—l(q—1)2q‘1]m~

1-

We can see that (,(s) is rational function in ¢'~* converges on the half-plane

Re(s) > 0 and diverges when Re(s) < 0. The function (,(s) has simple poles at

s=1+ (22 ), for i€ Z.
llogq )’

Lemma 2.6.1.

. 1 _J0 ifRe(s) <1
qlgg(l—ql‘s)_{l if Re(s) > 1
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Proof. This follows from

) 0 ifRe(2)<1
lim |¢]* = .
q—o0 oo if Re(z)>1

Lemma 2.6.2.

lim (qu(s)) 1 ifRe(s) <1
=\ gt ) |2 ifRe(s)>1

Proof. We have

l@(s):(1—1)+(q_1)2. ! +[(1—1)(1—1)—(q_1)2]. L
¢ g1 ¢l g g1 ¢ P 1- (-1

Now we apply Lemma 2.6.1, so lC‘;ﬁ has limit 1 if Re(s) < 1 and 2 if Re(s) >
1. O
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Chapter 3

GENERAL UNRAMIFIED
UNITARY GROUPS

3.1 Notations

In this chapter we fix Fjy a non-archimedean local field with residual character-
istic p # 2 and Og, Py, ko, wo as defined in chapter one.

Let F' be an unramified quadratic extension of Fjy with Galois involution x — Z.
Fix an additive character g of Fy of level one. We can define a character g
of I' by setting

YE =, 0trp g

where trg/p, is the trace map. Then 9 r has level one. Let

V= an F-vector space of dimension N
A = EHdF(V) EMN(F)
G = Autp(V)2GLy(F)

Definition 3.1.1. Let € = +. An e-hermitian form on V
h:VxV—F
is a non-degenerate sesquilinear form such that:
h(v,w) = eh(w,v)

The e-hermitian h induces an adjoint involution on A, which we denoted by bar
~given by: for any a € A
h(av,w) = h(v,aw),

for all v,w € V. For the field F embedded diagonally in A, the two involutions
on F' coincide.
Properties: For any a,be€ A:

all

1. a=a;
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2. ab = ba;

1l
Q|
+
<

3. a+b
Define

Fl={zeF: Ng/p,(x) =1},
where Np)p, is the norm map, Ng,p, (¢) = zz.
Definition 3.1.2. We define the unitary group G by:

G

{geG:h(gv,gw) = h(v,w),YVv,w eV}
= {geG:gg=1}.

An element a in A is called skew if it satisfies a + @ =0. We put
A_={aeA:a+a=0}.
We say the element a in A is symmetric if @ = a and we put

A, ={acA:a=a}.

3.2 Lattice Dual

In section (1.11), we defined lattice sequences in V. Now we need to define the
notion of self dual lattice.

Definition 3.2.1. Let A be an Op-lattice sequence in V. We define the dual
lattice sequence Af of A by

A (k) ={z eV :h(z,A(1-k)) CPr}.
Definition 3.2.2. An Og-lattice sequence A is called self-dual if A¥ = A.

Lemma 3.2.3. [31, Lemma 1.2.1] Let A be a self dual lattice sequence in V
and P" be the associated filtration. Then

PURER U
for each n e Z.
We can write " = PB"(A) as a direct sum
P =P 0 P
where

P =P"NnA_. and Pr=P"nA,.
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3.3 Parahoric Subgroups

Let A be a self-dual Op-lattice sequence in V. We defined compact open sub-
groups U(A) and U™(A) of G in section (1.11),

Now we define a parahoric subgroup of G by:
P=P(A)=U(A)NnG
It has a filtration given by:
P"=P"(A)=U"(A)nG n>1.

Lemma 3.3.1. [20, 2.14(a)] Let A be a self dual Op-lattice sequence in V. The
quotient P/P1 is isomorphic to

P ={zeA(A)/P:aT=1}.

Proof. By [20, 2.11], the map:

p:P— P*
is surjective. Now the kernel of the map ¢ is

Ker(¢)={zeP:zel+P} =P

By the first isomorphism theorem we have

P/P' = P*,

O

Definition 3.3.2. Let x be a skew element in A such that det(1-5) #0. We
define the Cayley map transform C of x by

co-(-2)(-3)

Proposition 3.3.3. [21, 2.13(c)] For each n > 1, the Cayley map provides a
bijection

p: P — P"
x — C(x).

Corollary 3.3.4. [21, 2.13(d)] For 2m > n > m > 1, there is an isomorphism
of abelian groups

SO . miﬂ/g’pr_b N Pm/Pn
induced by
r — l+ux.

Proof. We only need to show that the map is a homomorphism and it easily
follows from 2m >n>m > 1. O
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We define the trace map on A/Fy by
tro =trp/py otra/p A - Fy
Let S be an Op-lattice in A. Suppose S is stable under the involution i.e. S =S,

then
(S_)":={aeA_:trg(aS-) c Py} = (S)-_.

where S_ =S5n A_. In particular
(B2) = ((F")")- =PI
by Lemma (1.12.3).
Proposition 3.3.5. [37, II.5] The following map
AL — (ALY
z — (yr Yo(tro(zy)))
is an isomorphism of abelian groups.

Lemma 3.3.6. [22, 4.19] For 2m > n > m > 1, there exists a P-equivariant
isomorphism of abelian groups

pLop — (PP

R
where Yp(x) = Yo (tro(b(xz —1))) for x € py’.
Proof. This follows from Corollary 3.3.4. O

In the following let by, by € A_ and ¥y, , 1y, be characters of U™(A) trivial on
U ntl (A), for some lattice sequence A and let ¢, and v, be the characters
Up, s Yy, Testricted to P™(A).

Lemma 3.3.7. Let g€ G. Then the following are equivalent:

1. g intertwines vy, with Yy, ;

2. g intertwines 12;1 with zﬁ;
Proof. The implication (1) = (2) is clear. Now let g intertwines iy, with ey,
then

g+ B g N (b + P £ 2.
Thus there exists 8; € P, i = 1,2, such that:
g(bl + Bl)g_l = bg +ﬂ2.
Since P = P @ P there exists x; € P and y; € PL™ such that
Bi=x;+vy;, 1=1,2. Then
g(br +@1)g ™" +gy197" = (b2 +a2) + g
Since g(by +x1)g ™t € A_ and gyig7* € A, then, using A= A_LA,, we get
g(bi+21)g  =by+xs  and  gyig " =1y

Therefore,
g(br+ P 0 (b2 + P £ 2
and ¢ intertwines vy, with y,. O
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3.4 Skew Strata

Definition 3.4.1. A skew stratum in A is a quadruple [A,n,r,b] consisting of
a self dual Op-lattice sequence, integers n>1r >0 and an element b € P (A).

Two skew strata [A,n,r, b1] and [A,n,r, by] are equivalent if:

b1 =be  (mod P-"(A)).

Let 7 be an irreducible smooth representation of G and [A, n,r, b] a skew stratum
with n < 2r + 1. We say the representation m contains [A,n,r,b] if it contains
the character 1, of P"*1(A).

Definition 3.4.2. Let 7 be an irreducible smooth representation of G and S()
be the set of pairs (A,n), where A is a self dual Op-lattice sequence in V and
n >0, such that the representation m contains the trivial character of P"*1(A).
Then we define the normalized level of m by:

(m) =min{n/e(A): (A,n) e S(7)}.

Theorem 3.4.3. Let m be an irreducible smooth representation of G. Then,
either

1. 7 contains a skew fundamental stratum [A,n,n - 1,b] (positive level); or

2. There exists a self dual lattice sequence A such that the restriction of ™ to
the group P(A) contains an irreducible representation o trivial on P*(A)
(level zero).

Proof. See [25, Theorem 5.2]. O

Let [A,n,n —1,b] be a skew fundamental stratum in A and e = e(A). If 7
is irreducible smooth representation of G contains [A,n,n - 1,b], then £(7) =
nfe, by [28, §3 and §6] and [25, Theorem 5.2]. The characteristic polynomial
op € kp[X] is the characteristic polynomial of y = w;/gbe/g € 2A(A) modulo Pg,
where g = ged(n, e).

Remark 3.4.4. If y is skew then pp(X) = vp(=X) and if y is symmetric then
wp(X) = op(X). Note that, for b skew, y is skew if e/g is odd and symmetric if
elg is even.

Now if the integers n and r satisfy:
n<2r+1

then the equivalence class of the stratum [A, n, r, b] corresponds to the character
1y of PT1(A) which is trivial on P"*1(A) by Lemma 3.3.6.
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Lemma 3.4.5. Let w be an irreducible smooth representation of G and let x be
a character of F*. Suppose {(7) # £(x), then:

£(m ® x odet) = max{l(m),l(x)}.
Proof. The proof is essentially the same as Lemma 1.13.11. O

Corollary 3.4.6. Let w be an irreducible smooth representation of G and let x
be a character of F'. If {(m ® y odet) < £(7), then {(7) = £(x).

Proposition 3.4.7. [2, Proposition 4.1] Suppose N is a prime. Let © be an
irreducible smooth representation of G which contains a non-split fundamental
skew stratum. Then m either:

1. contains a skew fundamental scalar stratum i.e. there exists a character
x of F' such that
L(m® xodet) <l(m); or

2. is induced from a compact open subgroup K of G.

Let [A,n,7,b] be a skew stratum in A. We define the formal intertwining of the
stratum in G by:

To[A,n,r,b]={geG: g (b+P g (b+P ") # 2}

If n < 2r + 1, then this is the same as the intertwining of the character ¢ of
P!, by [32, §4].

Lemma 3.4.8. Let [A,n,n-1,b1] and [A,n,n—1,bs] be fundamental skew strata
in A which are intertwined. Then they have the same characteristic polynomials.

Proof. Suppose that g € G intertwines 1y, with ,, then

g by +PBIM)gn (b2 + BT

is not empty. If b lies in the intersection, then g~'bg € by +BPL" and b € by +PL ™.
The characteristic polynomial of y; = g’lw;/ 9p¢/9g modulo Pr is ¢, (X) and

the characteristic polynomial of ys = wg/ 9pe/9 modulo Py is b, (X). Since
any two conjugate elements have the same characteristic polynomial, then we
deduce ¢y, (X) = ¢y, (X). [

Definition 3.4.9. A semi-minimal skew stratum is a stratum [A,n,n-1,b] with
a decomposition V = V' 1 - L V! into orthogonal subspaces, such that

1. A(k) = @' (A(k) nV?), for each k € Z; we write A* for the (self-dual)
lattice sequence given by A*(k) = A(k) n V?;

2. b=Y!_, b;, where b; € Endp(V?);
3. each [A*,n,n —1,b;] is either minimal or b; = 0;

4. fori # j, each [A* L A9 ,n,n—1,b; +b;] is not null, i.e. by +by #0, or
equivalent to a minimal stratum.
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Theorem 3.4.10. Let [A,n,r,b] be a semi-minimal skew stratum in A. Then
the intertwining of the stratum [A,n,r,b] in G is

Ze[A, n,r, 0] = PP (B*nG)P™" ™"
where B is the centralizer of b in A.

Proof. See [32, Theorem 4.15] O

Definition 3.4.11. Let b e My (k), for a finite field k. Then we say b is:
e regular if all eigenvalue are distinct and skew.

e semi-simple if it is diagonalizable (over algebraic closure extension of k)
i.e. there exists g € GLn(k) such that gbg™ is diagonal.

Let
G(kr) = {g € Auty, (V) : h(guv, gw) = h(v, w),v,w e V}

where V is a kp-vector space and h is an e-hermitian form on V, where ¢ = +.
Now we have the following lemma

Lemma 3.4.12. Suppose by and bs are reqular semi-simple elements in My (kp).
Then they are conjugate in G(kr) if and only if they have the same character-
istic polynomials.

Proof. There exists a splitting by = Zi:l «; and by = 22:1 (; such that

Cor(b) = ke ]* = @hrlas] and Oy (b2) = kelba]* = DRrlf.

i=1

Note that when [ =1 then b; and by called simple. If the elements b; and by are
conjugate by g € G(kr); then we can take by = g 'bag so clearly they have the
same characteristic polynomial. Now suppose they have the same characteristic
polynomial so ¢y, (X) = ¢, (X). Now, by elementary algebra, there exists an
element g € GLy(kp) such that

gilblg = bQ (31)

Now, for i = 1,2, we have b; = —b; if b; is skew or b; = b; if b; is symmetric. We
apply the involution to both sides of (3.1), and get

(@) 'big=bs
thus
(9)7'b1g = b (3.2)
By (3.1) and (3.2) we have:
(G9)b1(39)~" = by

so gg lies in the centralizer of by in GLy(kr). Now put z = gg, so we can write
zZ= Z§=1 z;, where z; € kg, and F; = F[oy].
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Since z = Z, then we also have z; = Z; for all i. The map Nip, Jhpy k. — kf, is
surjective so there exists h; € ki, such that

hihi = Niy g, (hi) = Zizi

Put h= £, i, then hh = gg. Hence, gh™* = g e G(kr) and
(gh™)bi(gh™) ™" = g(h™'b1h)g™ = gbig™ = b

Therefore the elements b; and by are conjugate by gh™' € G(kr). O

3.5 Maximal Simple Skew Strata

A semi-minimal skew stratum [A,n,n —1,b] is mazimal simple if [ = 1 in Defi-
nition 3.4.9 and [F[b]: F'] = N. Since F[b]/F is of degree N, there is a unique
lattice chain £ normalized by F[b]*, and it is self dual. Moreover, the only
lattice sequences normalized by F[b]* are multiple of £ so we may, and we will,
assume A is a chain.

Let P =P(A) and B =B(A). The following is an analogue of [4, Lemma 16.1]

Lemma 3.5.1. Let [A,n,n-1,b;], i =1,2, be mazimal simple strata in A with
n > 1. Suppose g € G intertwines vy, with 1y, on P"*. Then:

1. ge P;

2. the characters Yy, |pn and ¥y, |pn are conjugate by the element g; equiva-
lently, the cosets by + B and by +PL" are conjugate by g.

Proof. (1) The element g intertwines the character 1y, with ¢, on P™, so:

g o+ B (b2 + B £

Suppose b lies in the intersection so b € by +PBL~™. Since the stratum is simple,
the element be is minimal over F' and [F[bs] : F'] = N, then by [6, proposition
2.2.2], b is minimal. We have F[b]* normalizes A. If £ is the chain of 2,-lattices
in V then L is the chain of all op[,-lattices in V.
Also, be g7t (b +B1")g so gbg™! € by +PBL™. Now L is the chain of all OF[lgbg—l]—
lattices in V so gL is the chain of all Opp)-lattices. By uniqueness, g7" L =L
soge K(L)nG=P.
(2) The intersection between the cosets g~!(b; +B1™)g = g7lbyg + P and
by +PL" is not empty so they are equal.

O

The following is analogous to [4, Lemma 15.2]

Theorem 3.5.2. For i = 1,2, let [A,n,n —1,b;] be a mazimal simple skew
stratum with n > 1. The characters iy, of the group PN gre intertwined in
G if and only if they are conjugate by an element of P.
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n

Proof. Suppose g € G intertwines the characters ¢, of P then:
g (b ) g (b + 32 4o
Since &]3:[%] c Pl ", Then

g b+ P (b + P £ 0

By Lemma 3.5.1(1), g € P. The cosets g~!(b; +q3:["/2]) =g lbig +‘J3:[n/2] and
(bg + ‘13:["/2]) intersect so they are equal. O

Lemma 3.5.3. Let [A,n,n—1,b] be a mazimal simple skew stratum in A. Then
the number of the characters wb|P[%]Jrl which extend the character p|P™ is

[(1 +Pg)’ (1 +P£;51])1]

up to G-intertwining.

Proof. Now Theorem 3.5.2 implies that G-intertwining is the same as P(A)-
conjugacy. Any g € P conjugating two extensions must normalize the character
Yy|P™, so g € E* P! by Theorem 3.4.10.

Let ' denote the set of characters ’(/J|P[%]+1 which extend |P™. The group
n+1l

E'P" acts on the set T’ and the stabilizer of ¢|Plz1*! is E'PI*3"] by Theorem
3.4.10, so, by the orbit-stabilizer theorem, the orbit of ¢|PlZ1*! has size

[£'P': B PUE]
The lemma follows since
)= [PLEFT p7)
O

For a maximal simple skew stratum [A,n,n — 1,b] with radical 9, define the
following compact subgroup:

J = E' Pl

Denote by R(A, ) the set of equivalence classes of irreducible representations 7
of J such that the restriction to PlZ1*! contains 1), (or, equivalently by Theorem
3.4.10, is a multiple of ), ).

Theorem 3.5.4. The representation Ind?n 1s irreducible and supercuspidal,
for n e R(A, ).

Proof. Since 7 is an irreducible smooth representation of J and the intertwin-
ing of  in G is J by Theorem 3.4.10, then Theorem 1.10.6 implies that the
representation IndF,; n is irreducible and supercuspidal. O
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Theorem 3.5.5 (Uniqueness). Fori=1,2, let [A,n;,n; —1,b;] be a mazimal
simple stratum in A. Let n; € R(A, vy, ). Suppose that the representations

m=Ind§n, =12
are equivalent. Then there exists g € G such that:
Jo=g ' Jig and nyz ny.

Proof. We may assume 71 = mo = . The representation 7 contains the stratum
[A,n;,n; —1,b;], i = 1,2, and since the two strata fundamental then they have
the same level as they are contained in the same representation . Thus, e; = es
and n; = ny. Now 7 contains the characters 1, and v, on PI31*1(A) so they
intertwine in G by Proposition 1.10.4. By Theorem 3.5.1, they are conjugate
by an element in P(A):

Un =, geP(A).

Now J; is the normalizer of the character wbi|P[%]+l(A). Therefore, Jo and Jy
are conjugate by g.

Finally, consider the representation nz = n{ of J>. Now ns] plB1+1,y I8 a multiple

(A)
of ¢y, and 73 is intertwined with 7y by an element h € G. The element h also
intertwines 1, on PLZ1*1(A). By Theorem 3.4.10, h € J,. Hence h fixes 7, and

we conclude that ns = ns. O

3.6 Essentially Scalar

Definition 3.6.1. Let [A,ne,ne — 1,b] be a fundamental skew stratum in A
where e = e(A). We say the stratum [A,ne,ne — 1,b] is essentially scalar if the
characteristic polynomial of y = wib has the form

(X)) = (X —a)

for some a € kp and o = —a. An irreducible supercuspidal representation m of
G is essentially scalar if it contains an essentially scalar skew simple stratum.

Lemma 3.4.8, implies that if two strata intertwine in G, then they have the
same characteristic polynomials. Let [A,n,n — 1,b;] be an essentially scalar
skew simple stratum in A, 7 =1,2. Suppose that

o, (X) = (X =)™ = (X - a2)™ = ¢y, (X)
for some «; € kp. Then a; = as and by Lemma 3.4.12 by, by are conjugate so
they intertwine.
Now we deduce the following lemma

Lemma 3.6.2. The number of fundamental essentially scalar skew simple strata
in A of level n up to G-intertwining is q — 1.

Lemma 3.6.3. [2, §4] Let 7 be an irreducible supercuspidal representation of G
which contains an essentially scalar skew stratum [A,ne,ne—1,b]. There exists
a character x of G such that the representation m ® x contains a skew stratum
of level strictly less than the level of the stratum [A,ne,ne—1,b].
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Let Rep(G,n)®® be the set of equivalence classes of essentially scalar irreducible
representations m of G of level n and Rep(G,< n) be the set of equivalence
classes of irreducible supercuspidal representations of G of level less than n. Let
U denote the set of characters of G of level less or equal n, then we have the
proposition:

Proposition 3.6.4. The map

Rep(G,<n)x ¥ — Rep(G,n)*®
(mx) — 7®x

is surjective. Moreover, the fibers of this map are

{(m//_l,xd)) 21 is a character of F of level k less than n}

Proof. Let m € Rep(G,n)®®. By Lemma 3.6.3, there exists a character y such
that
Ur®x) <l(m)=n.

Moreover, we must have ¢(x) = £(7) = n, by Corollary 3.4.6.
The representation 7®Y, therefore, lies in Rep(G,< n) and since £(x) = £(x7!) =
n, then x™' € ¥ and (7 ® x, x" ') maps to 7.

Suppose 7 € Rep(G, < n) and x € ¥ such that 7 ® x € Rep(G,n)®®. Consider the
set

Fib(r® x) = {(7",x") : 7 € Rep(G,<n),x € ¥ and 7' @y =27m®x}.

The set Fib(m ® x) contains (7,x) so it is not-empty. Let 7’ € Rep(G,n) and
x' € ¥ such that 7’ ® X’ = 7® x, thus, 7’ 7r®xx’_1. But ¢(7") < n = £(r) so, by
Lemma 3.4.5, we must have £(xx' ") <n. Put yx' ' =1, for some character
¥ of F! of level less than n. Then 7 =7 ® yx' ' =7y~ and

(', x') = (™' xy)
for all characters 1 of F'* of level less than n. O
Corollary 3.6.5. The size of each fiber in Proposition 3.6.4 is (q+1)q" 2.
Corollary 3.6.6. We have

|Rep(G,n)*| = (¢ - 1)|Rep(G, < n)|.

Proof. We have |¥| = (g +1)(q—1)¢" 2 and the result follows. O

3.7 Construction of Supercuspidal Representa-
tions

In this section, we are going to generalize section (3.5) to construct irreducible
supercuspidal representations of the unitary group G that contain a semi-minimal
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stratum. These representations are not the only supercuspidals of G. There are
others coming from a more general construction, as we will see in chapter 5.

Let m be an irreducible supercuspidal representation of G which contains a
semi-minimal skew stratum [A,n,n — 1,b] so m has level n/e, where e = e(A).
Moreover, we assume the notation of Definition 3.4.9, that each [A%,n,n—1,b;]
is a maximal simple stratum, i.e.

[F[b;]: F] = dimg(V?).
Lemma 3.7.1. Any two semi-minimal skew strata which intertwine are conju-
gate.

Proof. If two semi-minimal skew strata intertwine, then the have the same char-
acteristic polynomials by Lemma 3.4.8. Now the proof follows from Lemma
3.4.12. O

Let P = P(A) and B =P(A). We have a decomposition
V=Vt .1V

where i € {1,...,1} and A is a self-dual lattice sequence in V. Put

E-QE;

l
i=1

where E; = F[b;] is a field with involution (the restriction of the adjoint involu-
tion on A) and fixed field E; o. Define

P = P P,
i=1
and l
E'=T]E}.
i=1

Now define the following subgroups

'H="HA) = PEF (14+Pp)!
Ly=1jn) = Pt
J=J) = plElH gL

If n is odd, then 'J =1H.

Now we start with the construction. The representation 7 contains the character
¥p|P™. By Lemma 3.3.6, the character 1| P™ extends to a character of plzl+
and the total number of these characters is

[t o5

We will denote the set of G-intertwining classes of characters 1/}|P[%]+1 which
extend 1p| P by Ext(¢s, P™).
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Remark 3.7.2. 1. The intertwining is not usually an equivalence relation,
however, Lemma 3.7.1 implies that the G-intertwining is the same as G-
conjugacy, so here the intertwining is, indeed an equivalence relation.

2. Any character which extend 1p|P"™ has the form vy with [A',n,n - 1,V']
still mazimal semi-minimal and

b'=b (mod P'"(A)),

so we may as well called it .

Now consider the quotient

1
1H/p[’§‘]+1~ l(1+7) 1 7)[221']+1
= E7)/ + g,
=1

K3

where e; = e(A?). The quotient is a product of cyclic groups and the group 'H
normalizes the character 1y, therefore, the character ¢|Pl31*1(A) extends to a
character 6y, of ' H. We denote the set of characters § which extend 1| PLZ171(A)

by (A, )
Lemma 3.7.3. Let 01,05 € T'(A,4y). They intertwine if and only if 61 = 65.

Proof. Let g € G intertwines 6y with 6. T Elen g must intertwines the character
1, and by Theorem 3.4.10, g€ J = ElP[%]7 but J normalizes both characters
01 and 6. Therefore, 61 = 0. O

We deduce
DA, wy)| = [MH - PLEF,
Now consider the case '.J # 1 H.

Lemma 3.7.4 (Heisenberg). Given 6 € T'(A,1by) There is a unique irreducible
representation ng of *J such that the restriction of ng to *H is a multiple of 6.

Moreover, dim(ng) =+/[*J : 1H].

Proof. The sequence
0-'H->'J >/ H -0 (3.3)
is exact. The paring
YJPrE<YJME —
(z.y) — 0y ay)

is non-degenerate as if (2 "1y 'zy) = 1, for all y € 1.J then x must be in ' H, by

[33, Proposition 4.1]. Clearly the paring is alternating.

By Theorem [3, Proposition 8.3.3] there is a unique irreducible representation

ng of 1.J such that the restriction of ng to ' H is a multiple of  and dim(ny) =
[1J:1H]. O
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Carayol’s Result:
Suppose that H is a group which is a central extension of an abelian group K
by another abelian group A i.e. the short sequence

1-oA-H->K->1
is exact and A is in the central of K. Let x be a character of A and

[,]:HXH — A
(h1,h2) — x([h1,h2])

a non-degenerate bilinear form, where [h1,ho] = hihohithst. There exists a
unique irreducible representation r, of dimension d = |[K |'/2 such that the re-
striction of r, to A contains x.

Suppose we another short exact sequence
1-H->H -B->1

with B is abelian group and A is in the center of H;. Then H; normalizes the
representation 7, .

Carayol in his paper [8, §4.2] show the following result

Lemma 3.7.5. Let A, H, K, Hy as above and suppose
B2ZlonwZ x ... x L]anZ.

If ged(ai,...,am,d) = 1, then the representation ry extends to a representation
7y of H such that the restriction of r to A contains x.

We apply Carayol’s Lemma with A = *H/Ker(6;), H = *.J/Ker(6,), K ='J/'H, H, =
J and
BEk‘El X...XkEl.

Clearly ged(qg,,--.,qg,,d) =1 and J normalizes the representation 7, there-

fore, the representation 7, of 1.J extends to an irreducible representation 1 of
J.

Denote by R(A, ), the set of equivalence classes of irreducible representations
n of J such that the restriction to '.J is a multiple of 6.

Lemma 3.7.6. Ifn; e R(A,0;) and 0; e T(A,¢y), i = 1,2, and n1,n2 intertwine,
then
mene and 61 =0.

Proof. Let g € G intertwine 77 with 79 then it must intertwine z/Jb|P[nTH] with
itself. By Theorem 3.4.10, g € J so g normalizes both 7; and 7. Hence, 11 2 1
and restricting to ' H, we get 6 = 65. O

Finally, we induce the representation 7 of J to the unitary group G to get an
irreducible supercuspidal representation.
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Lemma 3.7.7. The representation c—Ind? n is irreducible and supercuspidal and
equivalent to .

Proof. The intertwining in G of 7 is contained in

n+l

Ta (¢b|p[T]) =7

by Theorem 3.4.10. By Theorem (1.10.6), the induced representation c—Ind? Ui
is irreducible and supercuspidal. O]

A summary of the construction is shown by the following diagram:

c-IndS ) 7 G
U J(A)
L
L
" Pl31+1(4)
¥y P (A)

Denote the number of irreducible supercuspidal representations of G which con-
tain a semi-minimal skew stratum [A,n,n - 1,b], up to G-intertwining (conju-
gacy) by s(G,n/e)*™, where e = e(A). Tt is given by

s(G,A,nfe)™™ = (Z;x) Str(A,n/e)™?| Ext(yp, P™)|.T (A, 0p)|.[R(A,0)]| (3.4)
b,

where Str(A,n/e) is the number of semi-minimal skew strata [A,n,n —1,b] in
A of level n/e up to G-intertwining.

3.8 Level Zero Supercuspidals of G

Here in this section, we will consider irreducible smooth representations of G of
level zero. A full classification of these representations is given by Morris in his
paper [23].

Let 7 be an irreducible smooth representation of G of level £(7) = 0. By Theorem
3.4.3, there exists a self dual lattice A such that the restriction of w to P =
P(A) contains an irreducible representation o which is trivial on P'. The short

sequence
0>P'>P>P >0

63



is exact, where P* = P/P1.

Let & be the inflation of o to P and 7 be the compact induction of & from P to
G. The following Theorem will be useful to decide whether the representation
7 is supercuspidal or not.

Theorem 3.8.1. The representation 7 is supercuspidal if and only if P(A) is
mazimal (i.e e(A) is 1 or 2) and o is cuspidal.

Proof. See [23, Proposition 4.1 and Theorem 4.8]. O

Lemma 3.8.2. Suppose P, P’ are mazimal and o,0’ cuspidals. Let w = Indga
and 7' =1nd$, o'. Then 7 2 if and only if ¢ and o’ conjugate.

Proof. See [26, Proposition 6.1 and 6.2]. O

To count the number of irreducible supercuspidal representations of G of level
zero, we only need to compute the cuspidal representation o of P*. The rea-
son is we can inflate the representation o to P then we induce it to G which
is by previous Theorem equivalent to w. Also by the previous Theorem, the
representation 7 is supercuspidal if and only if P is maximal.

Denote by s(G,0), the number of irreducible cuspidal representations 7 of G of
level zero. Fix the measure p on G such that p(K) = 1, where K is the maximal
parahoric subgroup of period one.

3.8.1 Level Zero Supercuspidals of U(1,1)

Here we have two cases and in both cases we have
P = U(]-v 1)(kF/kF0)

The number of irreducible cuspidal representations of P* = K /K, can be found
in Ennola’s paper [10]. We will use his notation for the trace characters of
the cuspidal representations, without recalling their definition since we are only
interested in counting them and their dimensions. The notation xi(q) denotes
that the representation has dimension f(q) and the ¢ is some parameters.

(t,u)
-1

The irreducible cuspidals of P* is given by the character Xq

1,..,9+1,t<u.
The number of irreducible cuspidals of U(1,1)(F,2/F,) is:

where t,u =

1
- 1
5a(g+1)
Theorem 3.8.3. We have
s(U(L,1)(F/Fo),0) = q(g+1).
Proof. The number s(U(1,1)(F/F,),0) is twice of the number of irreducible

cuspidals of U(1,1)(F,2/F,). O
Proposition 3.8.4. The formal degree of m = Indg o, where P is K or L, is
q-1.

Proof. We have d(7) = dim(&) which is ¢ - 1, by [10, §6]. O
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3.8.2 Level Zero Supercuspidals of U(2,1)

Here we have

. {U(?, 1) (kp/kp,) if e(A) =1

U ) (ke k) x U (ki k) if e(A) =2

The number of irreducible cuspidal representations of P* for both periods e(A) =
1 and 2 can be found in Ennola’s paper [10] in section 7.

When A has period one, then the representation o is cuspidal if it is one of the
following characters:

(t)
(q2

Lo X, 0 for 1 <t < q+1. The number of these characters is g + 1.

2. XEZ)Jrl)(QQ—l) for 1<t< q37 t #0 (mod q2 —q+1) and if t; = qgt,tz _ q4t

(mod ¢* + 1), then
(B =y (01) =y (82)

The number of characters ngll)(qg_l) is ¢(¢> - 1)/3.
(tu,v)

3 X(g-1)(g2-g+1)’
these characters is q(¢* - 1)/6.

where t,u,v = 1,...,¢q+1 and t < u < v. The number of

Therefore, the number of irreducible cuspidal representations of P* is
Lo Lo Lo
(¢+ 1)+ |g0(@ D) |+|calg -1 |=(g+ 1)+ galg"-1).

Proposition 3.8.5. The formal degree of m = C—Indiif s

(®)

Q(q - 1) ifo=x a?-q)
d(ﬂ—) = (q + 1)((]2 - 1) Zf o= ngl)‘*'l)(QQ—l)
tu,v)

(¢- 1)((]2 -q+1) ifo= X(g-1)(¢q2—q+1)

Proof. Since p1(K) =1, then d(7) = dim(o) and the dimensions are given in [10,
§7]. O

When A has period two (P conjugate to L, we may assume P = L), then the
number of irreducible supercuspidals of G of level zero is equal to the number of
irreducible cuspidal representations of U(1,1)(F,/F,) and U(1)(F,2/F,). The
irreducible cuspidals of U(1,1)(F,2/F,) are given by the characters Xfl’fl where
1 <t<wu<qg+1 and the number of irreducible cuspidals of U(1,1)(F/F,) is
q(g+1)/2. The number of irreducible cuspidal representations of U(1)(F2/F,)
is ¢ + 1. Therefore,

1

= 1)%.

5a(g+1)
Proposition 3.8.6. The formal degree of w = c—Inde is (q-1)(¢* —q+1).
Proof. We have d(7) = dim(o) which is given in [10, §7]. O
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We, then, deduce the following Theorem,
Theorem 3.8.7. We have

s(U(2,1)(F[Fy),0) = (¢ +1)(¢* + 1).

3.9 Counting Totally Split Supercuspidals

In this section let U([5],|§])(F/Fy) and N > 2. Let K = U(N)(Op) be
the maximal compact parahoric subgroup of G of period one equipped with a
filtration

Ki={zeK:x=1 (modwr)}.
where I is Iwahori subgroup. The quotient K/K; is isomorphic to U(N)(kr/kr,)-
Let 7y be the size of the group K /K, then (see [36, p.33])

1 N ;
™ =¢2"V VT - (-1)").

i=1

The other maximal parahoric subgroup is L =2l which has period two, where

Or O - Or /P;ﬂl
Pr Or Op
A =1 :
o

It is equipped with a filtration

Lomi1 = (1+@PPI)NG, Loy =(1+@wAL)NG.

where
Pr Op - Op 7)1?1
: Pr - Or
Pr=| : wooe
731% Pg o o Pp

The quotient L/L; is isomorphic to U(2r)(kr/kr,) x U(N - 2r)(kp/kp,) for
some 1 <r < N/2. Let 75 (L) be the size of L/L;, then

L
TN = T2r.-TN-2r-

We also have 2
mN if 7
| q ifi=0
[L1: Lap-i] = { NN

Definition 3.9.1. A semi-minimal skew stratum [A,n,n—1,b] is called totally
split if the characteristic polynomial of y = w;/gbe/g, where e = e(A) and g =
(n,e), has the form

ep(X) = (X —a1)(X -an)

where a; = —a; for all i€ {1,..., N} and a; # a; fori#j.
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Remark 3.9.2. This is the special case of section 3.7 where b; € F', for each 1,
i=1,...,1. In this case e divides n.

Here we will compute the number these representations up to equivalence. Let
7w be an irreducible supercuspidal representations of G that contains a totally
split semi-minimal skew stratum [A,n,n —1,b], so 7 has level k = nfe € Z. We
have two cases for the period of A that are period one and period two.
Lemma 3.9.3. The number of totally split skew strata in A of level nfe up to
G-conjugacy is

Str(k)* = ~ra( - 1)(a - N).

Proof. Let [A,n,n—1,b] be a totally split skew stratum in A with characteristic
polynomial
Pp(X) = (X —a1) (X -an)

where a; = —a; for all ¢ € {1,...,N} and a; # a; for i # j. By Lemma 3.1.1, it
is sufficient to compute the number of possibilities of ¢,(X). The element a;
has the form x1+/¢ for some z; € kg, so we have ¢ possibilities including a; = 0.
The element ay € has g — 1 possibilities as a1 # az. We do this procedure with
all elements a;, we deduce

Str(nfe) = %qm “1)(g- (N 1))

as required. O

Now consider the character 1, of

P (A1) *
P" — PTL (A) —
* P"(A™)

As we saw in previous section | P"(A) extends to a character of PLZ1*1(A).

Proposition 3.9.4. The number of characters | P"2*1(A) which extend
Pp|P™(A) up to G-intertwining is
k-1
Ext(, P =" 7 )
Proof. By Theorem 3.4.10, we have
T ($o|P") = (F1)V P

Let T' be the set of characters |P21*! which extend ty|P"(A). Suppose 9y,
and 1, are characters in I' which intertwine by g € G, then g € P and

g(br + BT (A))g™ = by +BT(A)
thus, the characters 1, and v, are conjugated by ¢ in P. Now the group
(FY)N PL*3'] acts on T by G-intertwining. The stabilizer of Y| PLEI L is (FL)N plst],
By the orbit stabilizer theorem, the orbit of '(/Jb|P[%]+1 has size

n+1l

[(Fl)Npl : (Fl)NP[?]:I.
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Since || = [P[%]+1 : P"], we then deduce

[pL31*1 . pn]
[(Fl)Npl . (Fl)NP[nTH]]

| Ext(p, P")| =

Since [Pl . P[(n+1)/2]] — [P[n/2]+1 . Pn] and Pi+1 A (Fl)N — ((1 + P¥/5]+1)1)N,
then we get

N

Lt +1 !
| Ext (¢, P")| = (1+PF)1=(1+7>[ ] )

O
Now as the stratum is completely split, then
VH = PP (14 Pp)t)Y
where ((1+ ’Pp)l)N represents the group
(1+Pp)? 0
( 0 ) (1+ Pp)l)
Proposition 3.9.5. We have
DA, ) = ¢T3
Proof. By construction, ' H /P[%]Jrl is a product of cyclic groups and
T(Ap) = [H:pPIPHY
= [((1 +73p)1)N ((1+Pp)') N plale ]
where . N
(1+Pp)) N P2 ((1+7>2 1) )
O

The character 6 of ' H extends uniquely to an irreducible representation 7y of
LJ where

1= Pl () ((1+Pe))" .
The group J is
n+1
J=PU2 ()Y

The quotient J/1J, therefore, is

(FY/(1+Ps)t)Y
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Proposition 3.9.6. We have
[R(A0)] = (g+ D)™
Proof. The size of R(A,#) is the index [F': (1+Pp)!]V. O

Theorem 3.9.7. The number of irreducible supercuspidal representations of G
of level n which contain a totally split stratum [A,n,n—1,b] of level k for a fixed
A is

sté(G,AJq) = ﬁq...(q_ (N-1))(q+ 1)NqN(k—1) _

Remark 3.9.8. Let s'*(G,k) be the number of irreducible supercuspidal rep-
resentations of G of level k containing a totally split skew stratum. If n is the
number of lattice sequences A, up to conjugacy, such that P(A) is a mazimal,
then

s"(G k) =n.s" (G, A k).

Suppose m is irreducible supercuspidal representation of G containing two totally
split skew strata [A,n,n—1,b] and [A',n’,n' - 1,b"] with same level k and same
characteristic polynomial.

Question: Is there g € G such that g conjugate the two strata?

We know that the two strata intertwine but we do mot know whether they con-
jugate or not. Howewver, if they are conjugate, then the number of conjugacy
classes of P(A) is 2N71 so in this case s'*(G, k) = 2V"1s'5(G, A, k). Therefore,
s(G, k) is bounded in which case, so

s"(G, A k) < (G, k) < 2V s (GL A k).

Proposition 3.9.9. Let 7 = Ind?n be an irreducible supercuspidal represen-
tation of G which contains a completely split skew stratum. Then the formal
degree of T is

dmy =1V 1)~Ngz (V=MD ife=1
m) = N ‘I'L. o o
g3 N(N-D)-2r(N-2r) (q+1§?q:11))wff£<gfl>/4l ife=2

where 6 = [Ly : Lyj2].

Proof. First consider e =1. When n is odd then the dimension of 7, is one and
when n is even the the dimension of n; is [*J : "H]'? so

(7 H) = (K (0 P)) s Ky (1 P0)Y) ]

- [K[n;l]:K[g]+1]l((1+P£T])1)N:((1+7DL§]+1)1)N‘|—1
_ qNQ—N

By the definition of formal degree, we have d(7) = dim(n)u(J)™!, where J =
K[nTH](Fl)N7 SO
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()™ [K:J]= [K : K[%H](Fl)N]
[ Kpop

[ Kpoga ) (FOY : Ky

[ ) [ K1 Ko

N

n+l
2

P (1 Py [Pyt (1 PEE Dy
(K : Kq])gV ((%5]-1)
(q + ]_)NqN([nTH]_l)

= TN(q + 1)7Nq(N27N)([%]71)

Thus, the formal degree of m when e =1 is
d(m) = 7a(q+ 1) NV O,

Now consider e = 2. Since the level of m must be integer then n must be even
so the dimension of the representation 7 is d where

4 = [Lpnsny (L4 Pe)' )Y s Lyn (1 Pe))Y]

[L[HTH]L[%]*'J
) (2 2]+
[(1+PR 2 )L (1+P2 )Y

qN2—2r(N—2r)q—N.

so d = gNWN=D/2-2r(N=2) ' Now we compute pu(J) "

p(J)™

€|

2

[K:L)[L: L1). [Ly : Lineny]
D2l
[F1: (1 L]

Thus,

d(r) = qN(N—l)/Q—Qr(N—QT).(qN +1)(q+ 1)—1(q n 1)_NT]€[-Q6_[(H_1)/4]
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Chapter 4

SUPERCUSPIDAL
REPRESENTATIONS OF
UNRAMIFIED

U(1, D)(F/F)

4.1 Parahoric Subgroups and Filtrations

Now we start with defining the group G. Let F be an unramified quadratic
extension of Fy so we can write F' = Fy[\/€] for some unit element e.

V= an F-vector space of dimension 2
A = EndF(V) EMQ(F)

Let h be an e-hermitian form on V given by h(v,w) = vJw, for v, w € V, where
0 1
J- (1 O).

G={geGLy(F):¢g"Jg=J}.

The unitary group G is

In GLy(F'), there is the special linear group SLs(F'), which is the set of elements
in GLy(F) of determinant one. Similarly we define the special unitary group,
denoted by SU(1,1)(F/Fp), to be

SUQL)(F/Fy) = {g € UL, 1)(F/Fy) : det(g) = 1}.
Now the sequence
0~ SU(L1)(F[Fy) > UL, 1)(F/Fp) <> F* >0

is exact.
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Remark 4.1.1. The subgroup SU(1,1)(F/Fy) is, in fact, isomorphic to SLo(F)
since any element in SU(1,1)(F/Fy) is a conjugate of an element in SLo(Fy)

by
(55)

The group G has three conjugacy classes of parahoric subgroup in which two of
them are maximal. The maximal parahoric subgroups are

K =U(1,1)(Op) = (gi gi) nG.

and
L={geG:geAL}

_(Or PF
A= (PF Or
The non-maximal parahoric subgroup is the Iwahori subgroup, denoted by I,
which is

where

I={geG:geU}

A = (OF OF).

where

Pr Or

For each of these parahoric subgroups, we have a standard filtration. Let Ky = K
and
_[Or Ow

ay - ( o OF) |

The standard filtration on K is
Kn=(0+FHnG,  m>1.
where B = wpAx and P =radAx. We have
K/K1 = U(l, 1)(]{}]?)

Proposition 4.1.2. The group U(1,1)(kr/kr,) has order (¢* —q)(q+1)? and
has (q+1)? conjugacy classes.

Proof. See [10, §6]. O

For the parahoric subgroup L, the standard filtration is
L,=1+P7)nG m>1.

where P = wpAr and P = rad2A;. The quotient L/Lg is isomorphic to
U(1,1)(kr) which has size q(¢ - 1)(g + 1)?, by Proposition 4.1.2.

Finally, the standard filtration for the Iwahori subgroup is:

L,=(1+T"P)nG m> 1.
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where

’WFO

H:( 0 1) and &BIZI‘adQLIZHQL[.

The quotient I/1; is isomorphic to

a O %
T [ )
and has size ¢® - 1.

Let P be a parahoric subgroup. Then by Lemma 3.3.4, for 1 <i< j < 2i, the
quotient P*/P7 is abelian and isomorphic to % /P%. Lemma 3.3.6, implies
that there is an isomorphism,

PBp [Bp' > (P'/P)

4.2 Level Zero Supercuspidals

Let m be an irreducible supercuspidal representations of G of level zero. By
Theorem 3.4.3 there exists a self-dual lattice sequence A such that the restriction
of 7 to P = P(A) contains an irreducible representation ¢ which is trivial on
P'. Note that the parahoric subgroup P must be maximal and ¢ cuspidal by
Theorem 3.8.1. Here we have two maximal parahoric subgroups of period one
and in this case

P*=P/P' =U1,1)(kr/kR,).

We have seen in Section 3.8.1 that all irreducible cuspidal representations of P*,
given by the characters x((zt_’?), where t,u =1,...,g+ 1, t <u and the number of
these representations is ¢(q + 1)/2.

The representation 7 is equivalent to C—Indg 7, where 7 is the inflation of ¢ to
P. The formal degree of 7 is ¢—1, by Proposition 3.8.4, for a fixed Haar measure
w on G such that pu(K) =1.

Denote by s(G,0), the number of irreducible supercuspidal representations of
G of level zero. By Theorem 3.8.3, we have

s(G,0)=q(qg+1).

4.3 Positive Level Supercuspidals

Any irreducible supercuspidal representation m of G of positive level k must
contain a skew fundamental stratum [A,n,n —1,b], by Theorem 3.4.3, where
k =nle and e = e(A). Let s(G, k) be the number of irreducible supercuspidal
representations of G of level k and S(G,k) be the number of irreducible su-
percuspidal representations of G of level strictly less than k. We classify © by
looking at the characteristic polynomial ¢,(X), which depends only on 7. Here
we have three different cases as follows:

(a) The first case b is split (in fact totally split) but not G-split. Here the
characteristic polynomial ¢, (X) = (X-a)(X-f), where o, B € kp, a = -,
B=-pand a# p.
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(b) The second case b is simple i.e. it one of the following:

(a) ¢p(X) is irreducible and k € Z;

(b) This is the case when y =7 50 ¢p(X) = (X - a)?, a € kp, a =@ and
A

(c) The last case is b essentially scalar i.e. ¢p(X) = (X - a)?, with a € kp,
a=-aand keZ.

Now we will study each case in more details.

4.3.1 Totally Split

Let [A,n,n —1,b] be totally split i.e. the characteristic polynomial (X)) has
the form (X - a)(X - ) where a = —@, f = - and « # 8. In this case, the
period e divides n. Let Str(k)! be the number of totally split strata of level
k =n/e, then Str(k)" = q(q-1)/2, by Lemma 3.9.3.

The representation 7 is constructed as follows: the character ¢,|P™ extends to
a character z/)b|P[”/ 241 by Lemma 3.3.6, and the number of these extensions
up to G-intertwining is ¢*{(("*D/21-1) 1y Proposition 3.9.4. Let T'(A, 1) be
the set of characters 6, of *H = PI"/21+1 ((1 + Pp)1)2 which extends v, | P["/21+1,
By Lemma 3.7.3, any two characters in I'(A, ;) intertwine if and only if they
are equal. The size of the set T'(A,4) is ¢?"/?, by Proposition 3.9.5. By
Heisenberg Lemma, there is a unique irreducible representation 7, of 'J =
pln+1)/2] ((1 + Pp)1)2 such that the restriction of 7, to 1 H contains the charac-

ter 6. Now let R(A,6,) be the set of representations 7 of J = PL+1)/2] (Fl)2
which extend 7. By Lemma 3.7.5, R(A,6,) is non-empty and by Proposition
3.9.6, the size of R(A,0;) is (¢ +1)2. The representation c-Ind 7 is irreducible
and supercuspidal and equivalent to 7, by Theorem 3.7.7. The formal degree of
m, by Proposition 3.9.9, is

d(m) = (q-1)q".

Finally, let s,(G, A, k) be the number of irreducible totally split supercuspidal
representations of G of level k which contain [A,n,n —1,b]. By Theorem 3.9.7,
we have

-1 *if keZ;
(G0 g) = {07 DIlDTT B
0 if k¢Z.
where fo(q) = ¢! (q+1)?/2.
Let s4(G, k) be the number of irreducible totally split supercuspidal represen-
tations of G of level k. By Remark 3.9.8, the number s,(G, k) is bounded,
S0

$a(G, A k) < 54(GL k) <25,(G, A k).

For purpose of computing s(G, k) and S(G, k), we will assume that s,(G, k) =
sa(G, A, k).
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4.3.2 Simple

Let [A,n,n - 1,b] be skew simple stratum. In this section, we will classify all
irreducible supercuspidal representations of G which contain [A,n,n —1,b], we
will call these representations simple. Denote by Str(k)®, k = n/e, the number of
simple strata [A,n,n—1,b] up to G-intertwining. We will compute Str(k)® and
then we will count the number of these representations of fixed level k which we
will denote the number by s;(G, k).

Integral Level

Suppose @p(X) is irreducible of degree 2, so [A,n,n—1,b] has integral level and
A is a multiple of a period one lattice chain.

Lemma 4.3.1. There is no skew simple stratum [A,n,n—1,b] such that vp(X)
is irreducible of degree 2.

Proof. Let y=wjb and
op(X) = X? + a1 X +ap € kp[X]

be the characteristic polynomial of . The element b is skew so b = —b and

y=-y

If pp(X) is irreducible, then [kr[y]: kr] = 2 and kp[y] has a unique involution
extending ~with y = —j. But then the fixed field of "has index 2 in kr[y] so (by
uniqueness of finite fields of given order) the fixed field is kr which is absurd
since ~"is not trivial on kf. O

The previous Lemma shows that there is no simple skew stratum of integral
level with ¢, (X) irreducible so we have the following corollaries:

Corollary 4.3.2.
Str(k)*=0 VE>O0.

Corollary 4.3.3. There is no irreducible simple supercuspidal representation
of G of integral level i.e
sp(G,n) =0

for allneZ.

Non-Integral Level

Suppose the stratum [A,n,n - 1,b] is simple of level in %Z but not in Z i.e
the period of A is two and (n,e(A)) = 1 so n must be odd, say, n = 2m + 1.
Let P = P(A), then P is conjugate to the Iwahori group I so we may assume
P = 1. We start by computing the number of maximal simple skew strata of
half-integer level.

Lemma 4.3.4. The number of mazimal simple skew strata in A of level k =
(2m+1)/2, up to G-intertwining, is

Str(k)® =q-1.
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Proof. Here the skew simple element b may be assumed to lie in

0 PN PR
(P;m NPE™ 0 ) MA-

The total number of simple skew strata of level (2m +1)/2 is (¢ - 1)2. We can

write
b 0 oy lz
1—77)’Ly 0 )

where z+7 =0, y+7 =0 and z,y € OF. By Theorem 3.5.1, intertwining in G is
the same as L-conjugacy. Now conjugating b by

_fa O 1
g_(o al)EP/Pﬂ

where a € OF, we have

1 0 wi" (aa)
gbg~" = (me(aa)ly 0 ’

Fix some § € OF% such that § +§ = 0. Then dx~! = §z7! so, since F/Fy is
unramified, there is an a € O}, such that
aa = ot

Therefore, a conjugate of b has the form

0 w6
w26t 0

where z € Op \Pr and z = Z. For different z, the characteristic polynomial
wp(X) are distinct so the strata cannot intertwine. We have (¢ — 1) choices for

z 50
Str(A,2m+1,b)° = ¢ - 1.

O

The character | P?™! extends to 1| P™*!, by Lemma 3.3.6. We denote the
set of characters 1,|P™" which extend 3|P*™*! up to G-intertwining (P-
conjugacy by Theorem 3.5.2) by Ext (v, P?"*1). By Lemma 3.5.3

|EXt(wb7P2m+1)| — |:P1E1 . Pm+1E1] .
Since e(Aloy) = e(Aog)/e(E/F) =1, then
m m 1 m m
| Ext(y, P20 = [(1+Pe)': (1 PE*Y) | = a = g™
The character 1| P™*! extends to a character 0, of ' H = P™*1(1+Pg)* and the

set of such extensions is denoted by I'(A, ). Any two extensions in I'(A, )
intertwine if and only if they are equal, by Lemma 3.7.3. Thus, the number of
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characters 0, of L H = P™*1(1+Pg)! which extend 3| P™*! up to G-intertwining
is

[1H:Pm+1]
[(1+Pe) nP:(1+Pg)nPmH]

= qp,=q".

|F(A7 'l/)b)|

Finally, for any given character 6, of 'H = '.J, the character 6, extends to a
representation 1 of J = P™*1F! (in fact a character), by Lemma 3.7.5, and we
denote the set of these extensions by R(A,6;). Lemma 3.7.6, implies that any
two extensions in R(A,0,) intertwine if and only they are equal. Thus,

IR(A, 6y)] [J:1J]

= [E':(1+Pr)']=qg, +1=q+1.

Theorem 4.3.5. The number of irreducible simple supercuspidal representa-
tions m of G of level k= (2m +1)/2 is

s5(G,k) = (4= 1) fu(9)g™*
up to equivalence classes, where fy(q) = ¢ (g +1).

Proof. By equation (3.4), the number of irreducible supercuspidal representa-
tions 7 of G up to equivalence is

s3(G, k) = Str(k)*.| Ext(vp, P2 )T (A, ¢5)|[R(A, 6)].
which leads to s,(G, k) = (¢ — 1) f»(q)g** . O

Proposition 4.3.6. Let A be of period two and 7w = Ind?n be an irreducible
simple supercuspidal representation of G of level (2m + 1)/2. Then the formal
degree of T is

d(r) = (¢° = 1)g™

Proof. Since n = 2m + 1 is odd, then 'J = 'H so 7 is, in fact, character so
dim(n) = 1. Now using [K : P]=¢+1 and e(Alp,) = 1, we get

d(m) = p(P"EY < [K: PUE
[K : Pt
[Pr+lEL: pm+l]
[K: P].[P:P.[P!: Pm*1]
(BT (L Pe) [0+ Po)t s (1+ P )]
(+ (@ -1 5\ m
G+ (¢"-1)¢™.
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4.3.3 Essentially Scalar

Let [A,n,n —1,b] be essentially scalar skew stratum i.e. k =n/e € Z and the
characteristic polynomial ¢,(X) has the form (X - )2, where a € k) and
«a = —a. Let m be an irreducible essentially scalar supercuspidal representation
of G which contains [A,n,n—-1,b]. If Str(k)°° is the number of essentially scalar
skew strata of level k up to G-intertwining, then Str(k)®® = ¢ - 1, by Lemma
3.6.2.

By Lemma 3.6.3, there exists a character xy of G such that the representation
7 ® x contains a skew stratum of level strictly less than k.

In Proposition 3.6.4, we have shown that the map
Rep(G,<k)x¥ — Rep(G,k)**
(mx) — 7mex

is surjective where W is the set of characters of F'! of level k, and the size of
each fiber of this map is (¢ + 1)¢*~2, by Corollary 3.6.5. Let s.(G, k) is the
number of essentially scalar supercuspidal representations of G of level k. Then
by Corollary 3.6.6, we have:

(q-1)S(G,k) ifkeZ;

se(Gok) = {0 it k¢ 7.

4.4 Computing s(G,k) and S(G, k)

We have classified all irreducible supercuspidal representations of G for any
positive level. We have seen that they are one of the following: totally split,
simple and essentially scalar. In each case we counted the number of irreducible
supercuspidal representations of G of level k. In this section, we will give general
formulas for s(G, k) and S(G, k).

The number s(G, k) is obtained by
S(Ga k) = S(L(Ga k) + Sb(G7 k) + SC(C7Y7 k)
Thus,

sa(G, k) +5.(G, k) if keZ;

s(G. k) = {sb(G,k;) Ty

For k € Z, we have

S(G,k+1)

s(G k+3)+s(G,k)+S(G, k) (4.1)
(su(G.k+3)+54(G, k) +qS(G, k) (4.2)

Now s,(G,k) = (¢ -1)fa(q)¢** and s,(G,k) = (¢ - 1)f5(q)g** for some func-
tions f,(q), f»(q) independent of the choice of k. Now we replace s,(G, k) and
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sp(G,k+ %) in (4.2) by (¢-1)fa(q)g®* and (¢-1)qfs(q)q*", we get

S(G,k+1) (a-1) (fa(q) + af5(q)) ¢°F +aS(G. k)
(a-1) (fa(@) + afs(D)) [¢®* + ]+ *S(G k- 1)

(a-1) (fa(@) + afs(0)) [ + @ + ...+ ¢"] + ¢"s(G, 0).
Therefore, we deduce
S(G k+1) = (fa(@) + afs(0)) @ (d" - 1) + ¢"s(G,0) (4.3)

In section (4.2), we have s(G,0) =q(g+1) so

S(G k+1)=¢""[f(a)(d" -1) +q(g+1)] (4.4)

where f(q) = fa(q) +qfs(q).

When k ¢ Z, then k+1/2€Z so

S(G k) = (G k+1) =5, (G, k) |

Now using the formula 4.4, we get

S(G.k) = ¢"2 [f(q) (qk’% - 1) s fo(@)(a-1)g" 3 + (g + 1)]

Finally we summarize the number of irreducible supercuspidal representations
of G by the following table:

| [ keZ kfZ
s(G,k), k=0 q(qg+1) -
sa(G, k) 39(¢* - D) (g + gD 0
sp(GL k) 0 (-1 1
s¢(G, k) (-D"(f( Q" T-1) +q(g+1)) 0
S(G.k) " [f(a)(d" - 1) +q(q+1)] f(q)(qz’“—q’“+5)+fb(ql)(q—1)q2’“
+q(g+1)g""2
where
1 -1 2
fa(q) = 54 (¢+1)
fl@) = a(qg+1)
f@) = Sl afila) = 5(a+ D +3).
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Chapter 5

SUPERCUSPIDAL
REPRESENTATIONS OF
U2, 1) (F/F)

In this chapter, Let F = Fy[\/€], € € Of, be an unramified quadratic extension
of Fy. Let

V= an F-vector space of dimension 3,
A = EIldF(‘/v)EIMI?,(F‘)7
G = Autp(V) =2 GL3(F).

Let {e;,€eq,€e_; } be the standard basis for V. Let h be the hermitian form on V'
given by h(v,w) = vT Jw, for v,w € V, where

0 0 1
J=10 1 0].
1 00

We define the unitary group G =U(2,1)(F/Fp) by

G={geGL3(F):¢g"Tg=J}.

5.1 Parahoric Subgroups and Filtrations

Let A be a self-dual Op-lattice sequence. We can form the parahoric subgroup
P(A). The group G has three conjugacy classes of parahoric subgroups equipped
with standard filtrations. Two of these classes are maximal (the level zero
irreducible smooth representations of G are constructed from these subgroups
as we studied in section (3.8)). The non-maximal is the Iwahori subgroup. The
subgroup P(A) is maximal if and only if the period of A is either one or two.
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¢Period One

This case happens when A has period one and P(A) is maximal and conjugate
to
K = U(2, 1)(0}?) = GLg(OF) nG.

Let Ky = K. The standard filtration of K is, then, given by
Km:(1+fp%)mG7 m 2 1.

where PR = wiAx and

Or Or O

Q[K = OF OF OF .

Or Or Or

The quotient of Ky modulo K is
Ko/Kl = U(?, 1)(kF/kF0)

Lemma 5.1.1. The size of the group U(2,1)(kr/kr,) is ¢*(¢+1)*(¢* -1)(¢* -
g+1).

Proof. See [16, Lemma 3.16]. O

The size of the index [K; : K;y1] is ¢°, for i > 1. We will fix once and for all, a
Haar measure p on G for which p(K) =1.

¢Period Two

Here A has period two and this is the second of the maximal parahoric sub-

groups. Let
Or Of 'P;vl Pr Orp Og
PL=|Pr Or Or|, BrL=|Pr Pr Or]|.
Pr Pr Or Pz Pr Pr
The group P(A) is conjugate to
Lo=L=9¢nG
The standard filtration of L is
Lomi1 = 1+ @@ PG, Loy =(1+ PRI nG.

We have
Lo/Ly 2U(1,1)(kp/kp,) xUQ)(kr/kr,)-

Thus,
[L:Li]=q(q-1)(g+ 1)

We also have, for i > i,

[Loi: Loiv1]=¢° and  [Loi 1 : Loi] = ¢*
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¢Period Three

This is the (non-maximal) Iwahori parahoric subgroup. The parahoric subgroup
P(A) is conjugate to the Iwahori subgroup

I = Q[[ nG
where
Or Or Op
A;=|Pr Or Or]|.
Pr Pr Or

The standard filtration on I is
I, =(1+37)nG.
where By is the radical of 2; and BT = [I™A where

0 1 0
m=1 0 0 1}].
’WFOO

The quotient of Iy modulo I; is isomorphic to

GLl(kF) X U(l, 1)(kF/kFo)

¢Period Four

Let {e,,ey,e_; } be the standard basis of V and put V! = (e;,e_,) and V2 = (e,).
Let £' = {L} : i € Z} be the period 2 self-dual lattice chain on V! given by
L= Ope; ®Oge_q, Li= Pre, ®Oge_; and L2 ={L? :i € Z} be the period 1
self-dual lattice chain on V2 given by L3 = Oge,. In order the take the “direct
sum” of these chains to obtain a self-dual lattice sequence in V', we must first
scale them to period 4; then we get A given by

A1) = LieL}
A(0) = LielL}
AQl) = LielL?
A2) = LielL}

This is the sequence for which P™(A) gives the non-standard filtration of the
Iwahori subgroup: for any integers 4,7 with 0 < j <4, and 4i + j > 0 the non-
standard filtration of I is

Iinj =(1+ wip‘ﬁﬂ)ﬂG

BL=|Pr Or Or|, Bl =|Pr Pr Or|,

where

Pr Pr O Pr Pr Pr
Pr Pr Or Pr Pr Pr
P =|Pe Pr Pe|.Bi-=|Pr Pr Prl.
Pe Pr Pr PL Pp Pr
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Fix a Haar measure p on G such that u(K) =1. Then

Proposition 5.1.2. Let P = P(A) be a parahoric subgroup and e = e(A). For
m >0, we have

A(g+1)(®-1)( +1)g"™ if P conjugate to K
WP (¢+1)(¢%-1)(¢* + 1)g*™* ™21 if P conjugate to L

(g+1)(¢®-1)(¢*+1)g*™ if P conjugate to I and e =3

a(q+1)(¢* - 1)(¢® +1)g*™ if P conjugate to I and e =4

5.2 Level Zero Supercuspidals

Let 7 be an irreducible smooth representation of G of level zero. By Theorem
3.4.3, there exists a self-dual Op-lattice sequence such that the restriction of 7 to
P = P(A) contains an irreducible representation o trivial on P'. The group P* =
P/P' is either U(2,1)(kr/kr,), if e=1, or U(1,1)(kr/kr,) x U(1)(kr/kg,), if
e = 2. We are not considering the period 3 or 4, since the supercuspidals do not
arise from non-maximal P, by Theorem 3.8.1. If  is the inflation of o to P,
then c—IndIGg 7 is irreducible and supercuspidal and equivalent to 7, by Theorem
3.8.1. The formal degree of 7 is given in Propositions 3.8.5 and 3.8.6. Finally,
by Theorem 3.8.7, the number of irreducible supercuspidal representations of G
of level zero is

5(G,0) = (g+1)(¢* +1).

5.3 Positive Level Supercuspidals

Let 7 be an irreducible smooth representation of G of positive level k. Then by
Theorem 3.4.3, 7 contains a fundamental skew stratum [A,n,n—1,b], where k =
nfe, e = e(A). We classify the representation m by looking at the characteristic
polynomial ¢, (X) which depends only on the representation 7 not the stratum
[A,n,n-1,b].

Definition 5.3.1. A skew fundamental stratum [A,n,n - 1,b] is called G-split
if the characteristic polynomial op(X) has the form

P5(X) = (X - a)(X = (-1)a)pp, (X)
where o # (-1)/9a.

Theorem 5.3.2. Let m be an irreducible smooth representation of G which
contains a G-split stratum. Then w is not supercuspidal.

Proof. See [34, Theorem 4.9]. O

For this reason, we will not consider G-split strata as we only interested in
supercuspidals

Here we have six possible cases for ¢, (X ), in which two of them are non-integral
level. The possibilities for ¢, (X) are:

1. pp(X) = (X —)® with a € k., a = —@ and k ¢ Z. This is the maximal
simple case where the period of A is 3 and k = n/3 with (3,n) = 1.
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2. op(X) = X(X-a)?witha=aandke %Z\Z. This is the second possibility
for the non-integral level case.

3. op(X) = (X - a)? with a € k., @ = —a@ and k € Z. This is the essentially
scalar case.

4. @b(X) = (X—Oé)(X—ﬁ)(X—’}/) with a = -q, 6 = _Ba Y= _ﬁ and Oé,ﬁ,’}/
are distinct. This is the totally split case.

5. p(X) is irreducible. This is the maximal simple case with k € Z.

6. Finally, there is the split, but not totally split, case i.e pp(X) = @p, (X)@p, (X)
where @p, (X) is polynomial in kg of degree 1 and ¢, (X) is polynomial
of degree 2 coprime to pp, (X) but not irreducible, by Lemma 4.3.1. So
0p, (X) = (X —a1)? and ¢y, (X) = (X - az), where a; = —ag, az = a3
and oy # as.

We will study each case and then will count the number of supercuspidals of
G. Then we will give formulas for the number s(G, k) of irreducible super-
cuspidal representations of G of level k and the number S(G, k) of irreducible
supercuspidal representations of G of level strictly less than k.

5.3.1 Maximal Simple and k € %Z

Let [A,n,n - 1,b] be maximal simple of period 3 i.e E = F[b] is a ramified
extension of F' of degree 3. The characteristic polynomial ¢,(X) has the form
op(X) = (X - )3 with a e k), a = -a.

We can assume that the lattice sequence A is a chain as in section (3.5) and the
maximal parahoric subgroup P = P(A) is conjugate to the Iwahori subgroup I,
so we may assume they are equal. Now e(Alopy) = e(Alog)/e(E/F) =1 so

P"(A)nE=1+P), Ym>1.

Let Str(k)® be the number of maximal simple strata in A of level k up to G-
intertwining. Then

Lemma 5.3.3. We have
Str(k)® =q-1.

Proof. Since (3,n) =1, then n=3m+1 or n=3m +2 for m > 0. We will prove
the lemma for n = 3m + 2 and the proof is exactly the same for n =3m + 1. We
have

be PTE(A) [P TH(A).

We can choose b to lie in

0 PETE N PR 0
0 0 pE N | n AL
PR N pE™ 0 0

The number of the simple skew strata in A of level (3m+2)/3 up to equivalence
is

(gr ~1)(g-1).
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Put

0z O
b=]10 0 -
y 0 0

where z € pp™ ™1 N pp™ and y € pp™ N pL™ with y +7 = 0. By Lemma 3.5.1,
the group P(A) acts on the set of simple skew strata of level (3m +2)/3 by
conjugation. Now if g € P}(A), then ¢! is also in P!(A) so we can write

g=1+X and g7' =1+Y where X,Y €B. We have
gbg™' =b (mod P'™)
so we need only consider conjugating by g in

a 0 0
H=1l0 d 0 :aek},dek}p ,
0 0 (a)t

where we identify elements of k7 with their Teichmiiller lifts in O%, since P(A) =
HP'(A).

Let a € k} be the unique element such that = = @wz" 'a (mod Pz™). Now we
conjugate the element b by
a 0 0
g=lo 1 o
0

0
We get
0 wpm! 0
g thg = 0 0 w1,
wiy 0 0

for some skew y’ € OF. The number of choices for ¢’ is ¢ — 1. The size of the
stabilizer of the stratum [A,3m +2,3m + 1,b] is

|Stabg (b)] = ¢ + 1.

Every orbit has size |H|/| Stab (b)| elements, which is equal to ¢?~1 = gr—1. By
Lemma 3.5.1, the G-intertwining of v, is the same as P(A)-conjugacy. Now the
number of P(A)-conjugacy classes of simple skew strata of period three which
is:

(gr-1)(g-1) _

Str(k)® = -1 =q-1.

O

The representation 7 is constructed as follows: The character 1| P™ extends
to a character of PI"/21*1 which we also call 1, by Lemma 3.3.6. Recall
that Ext(1y, P") denotes the set of characters PI"/21*1 which extend 1),|P"
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up to G-intertwining. Then the size of Ext(vy, P") is ¢l(**1/2-1 by Lemma
3.5.3. Let 'H = PI"/21*1(1 + Pg)'; then T'(vy, ' H) is the set of characters 6,
of 'H such that the restriction of 6, to Pl"/?1*1 is ¢,. By Lemma 3.7.3, any
6,0 € T'(p, ' H) intertwine if and only if they are equal. Moreover, the size
of T'(¢y, "H) is ¢!"/?] which is independent of the extension 1 to P2+
Let 'J = PlD/21(1 4 Pg)!, then by Heisenberg Lemma, there is a unique
irreducible representation 7, of !.J such that the restriction of 7, to ' H contains
the character 6. Now Let R(A,0,) denote the set of representations of J =
PLUD2IEL which extend n,. If 1; € R(A,6;) and 6; € T(A, 1), i = 1,2, and
11,72 intertwine, then 9 s and 6 = 63, by Lemma 3.7.6. The set R(A, 6;)
is non-empty, by Lemma 3.7.5, and it has size ¢ + 1, independent of 6;. Finally,
the representation c—Ind?n is irreducible and supercuspidal and equivalent to
7, by Theorem 3.5.4.

If s3(G, k) denotes the number of irreducible simple supercuspidal representa-
tions of G of level k£ up to equivalence, then

Theorem 5.3.4. We have
s3(G.k) = (¢° - 1)g**!

fork=n/3¢Z.

Lemma 5.3.5. Let w be an irreducible simple supercuspidal representation of
G of level k =n[3 ¢ Z. Then the formal degree of 7 is:

d(m) = (¢* - 1)(g+1)*¢*"

Proof. We have w = c—Ind? 7 where 7 is an irreducible representation of J which
extends 7,. The dimension of 7 is equal to the dimension of 7, which is [*.J :
VH]Y? which is 1 if n is odd and ¢ when n is even. Now we compute p(.J)™!.
Since P =1, then

w(J)™ :u(I[M])_l. E': (1+7>[En§1])1 7

2

The value of u(I[(n+1)/2])’1 is (¢ +1)(¢> - 1)(¢® + 1)@V by Lemma
5.1.2 and the size of the index [E : (1+ PE™/21] 45 (¢ + 1)glm+D/2-D),

Finally,
d(m) = dim(n)u(J) ™" = (¢® - 1)(¢* + 1)q3k—1.

5.3.2 Level in %Z

Let [A,n,n - 1,b] be split, but not G-split, of level k = n/e € $Z\Z. The
characteristic polynomial ¢p(X) has the form X (X - a)? with o = @. There
exist finite dimensional vector spaces V* over F, i = 1,2, in which h|yiy: is
non-degenerate and V = V! @ V2 is orthogonal, and
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1. A=A e A2 where A*(k) = A(k)nV?, ke Z and A’ is a self dual lattice
sequence in V*;

2. b=by @by for b; € A* = Endp(V?) and vyi(b;) = —n.
Then we can write
[A,n,n-1,b]=[A',n,n-1,b] @ [A% n,n—1,by],

with E)/F is ramified quadratic and Fy = F where F; = F[b;] for i = 1,2.
We may assume by = 0 because n/e ¢ Z but, for by # 0, vp(b) € Z so by =0
(mod P'"(A)).

Remark 5.3.6. Since the stratum [Ai,n,n— 1,b;], i = 1,2, is a mazimal simple
skew stratum, the lattice sequence N*, i =1,2, is a multiple of some chain L' so

e; = e(AY) = mye(LY)
for some positive integer m;. In fact, e(L') = 2 as E1/F is ramified and e(L?) =

1 as V? is 1-dimensional. So may = e(Ap,) = 2my and n = tmy, for some
t e Z\27Z.

Remark 5.3.7. We have two cases for the group U(V?'):
(a) Let {e,,eq,e_,} be the standard basis of V with h(ey,eq) = 1. Put V! =

(e1,6 1) and V2 = (ey), then U(V') =U(1,1)(F/Fy) and U(V?) = U(1)(F/Fp).

Here the period of A is 4 and P™(A) gives the non-standard filtration of
the Twahori subgroup, as we explained in Section 5.1.

(b) Let {e1,ep,e_1} be a basis for V such that h(ep,e9) = 1 and h(ey,eq) =
h(e_1,e_1) = wp. Put V' = (e1,e_1) and V? = (eg), then U(V') =
U2)(F|Fy) and U(V?) = U1)(F/Fy). Now let A* = {L} :ieZ} be the
multiple of period 2 self-dual lattice on V' given by L} = Ope; ® Ope_y,
L} =Prei®Ore_; and A% = {L? :i € Z} be a self-dual lattice sequence on
V2 of a period multiple of 1 given by L3 = Ogeg. Then the direct sum of
these self-dual lattices is a self-dual lattice sequence A given by

A1) = Lye L]
A(0) Lie L.

The period of A is 2 and P™(A) gives filtration on L.

Let Str(k)® be the number of split, but not G-split, skew strata in A of level k
upto G-intertwining, then since by = 0, we deduce:

Lemma 5.3.8. We have Str(t)™ =¢q- 1.

Proof. When U(V?') = U(1,1)(F/Fp), then the proof given by Lemma 4.3.4.
Now let U(V?1) = U(2)(F/F,), where V! has the basis {e1,e_1} with h(e;,e1) =
h(e-1,e-1) = wp. Now

- - —
if b:(x y) then b:(m ZWF).
z w YR w
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So b =-b if and only if 2 = ~Z,w = —w and z = wpy. The element b € P~27"1/
P~2™ s0 it has the form
Y U
b= (wa 0)

where y € k}.. We conjugate b by element g in P/P?, so let

- 3)

1, 0 aby
g bg_(wFaby 0

Finally, the number of orbits is Str(¢)™ = |k}5|/|kk| = ¢ - 1. O

Then

Define the following subgroups

‘g=HA) = (P aB).PlElM
Ly=1J) = (PlnB).P[ngl]
J=J) = (popyplT]

where B is the centralizer of b in G and P = P(A).

Suppose 7 is an irreducible supercuspidal representation of G which contains
the stratum [A,n,n — 1,b], then ¢(7) = k and the character ¢p, g0 of P" is
contained in . By Lemma 3.3.6, the character ¢, g0/ P™ extends to a character
Vb, e, P21 We denote the set of characters 1, gp, [P which extend
Yy, 00| P™ up to G-intertwining by Ext(tp, g0, P™).

Lemma 5.3.9. We have

(=], [F]
‘EXt(wb1®05Pn)| =q 2 q 41
Proof. By [32, Theorem 4.9], we have
To (¢b1$b2|P[§]+1) c JI; (wbl®b2|P[§]+1) J
where L = U(1,1)(F/Fy)xU(1)(F/F,). Since J normalizes the character ¢, g0,

then
|Ext (00, P™)| = [Ext (¢p,, P (AN))|. |[Ext (10, P*(A%))].

By Lemma 3.5.3, we get

|]3Xt (7/11)1@07 Pn)|

Il
| —
—~
[a—y
+
N
&
~
—
—
[a—y
+
s

;[;1"‘1]”)1] . [(1 +Pp)t (1 +7>¥41]”)1]
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Consider the quotient ' H /P["/ 2]+1 Tt is isomorphic to

n

(P'(A) nB)/(P[ﬂ“(A) mB) (5.1)

Since P (A)nB = Pgl/el]H(Al) xPIEf/eZ]H(A?), for ¢ > 0, then (5.1) isomorphic
to

(P /P )« (PR PR (49)).

This is a product of cyclic groups and since the group ' H normalizes the char-
acter 1y, op, P2 then the character ¢y, g, extends to a character 6y, of ' H
and the set of such extensions is denoted by I'(A, ¥y, @b, ). Any two characters
01,02 € T'(A,¥p, @b, ) intertwine in G if and only if they are equal, by Lemma
3.7.3. We, then, have the following proposition,

Proposition 5.3.10. The size of the set (A, by, op, ) is ¢(/?1ql1/*), independent
of the choice of ¥y, ab, -

Proof. The size of T'(A, ¥y, 0p,) 18
DA Gena)] = Ph, (A1) PRI (D] [ PRty - P a3,

O

By Heisenberg Lemma 3.7.4, there is a unique irreducible representation 1, of
LJ such that the restriction of Ny to LH contains the character 6.

Lemma 5.3.11. The representation ny, extends to a representation k of J.

Proof. This follows from Lemma 3.7.5 since

JIN =k, x kp.

Recall that R(A, ;) is the set of representations k of J which extend 7.
Lemma 5.3.12. Let x1,k2 € R(A,0,). If they intertwine, then k1 & ka.

Proof. If g € G intertwines k1 with ko then it must intertwine the character 6,
(so g also intertwines ¥y, gp,). Therefore g € J, but then g normalizes both k1
and k9. Hence k1 & Ko. O

Now we can deduce
IR(A, 0p)| = |k, | kE| = (g +1)%.

which is independent of the choice of 8,. Now the representation C—Ind? K is
irreducible and supercuspidal, by Theorem 1.10.6, since the intertwining of k in
Gis J.
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Let s2(G, k) be the number of irreducible supercuspidal representations of G of
level k up to equivalence, and Let so(G, e, k) be the number of irreducible su-
percuspidal representations of G of level k and A has period e up to equivalence,
then we have the following Theorem

Theorem 5.3.13. We have
(q-1)(g+1)%¢*"
(g-1)(g+1)%¢*"

and so(G, k) =2s2(G, e, k).

if2k=1 (mod 4);
if2k=3 (mod4).

[SI[S NI

s2(G,e k) = {

Now we compute the formal degree for ¢-Ind§ &.
Lemma 5.3.14. The formal degree of 7 is
(my=10a- 1)(q* + 1) 15t e =2,
(g-1)(g* + 1)g*—r! if e =4.
where 3 = [(t=1)/2] + [t~ 1)/4]

Proof. When e(A) =2, then n must be odd so the dimension of 7 is one. When
e(A) =4, then n must have the form 2¢, where is ¢ is positive odd integer, so
the dimension of 7 is [*.J : * H]/? which is equal to q. Now we compute p(.J)™".

w(J)™t = M(P[ngl])_l [P NnB: P[%l] n B]_l .

By Proposition 5.1.2, u(PL+D2N "1 is (+1)(¢2-1) (g% +1) ¢ H1(=D/4] when
e =2 (nis odd and n = 2k) and (¢+1)(¢> - 1)(¢® + 1)g" (n is even) when
e = 4, by Proposition 5.1.2. The size of the index [P n B : PL("*D/21 o B] is
(g +1)2q[(=2)/2] gL (e=D)/4] 0

5.3.3 Essentially Scalar

Let 7 be essentially scalar i.e k € Z so e|n and the characteristic polynomial
©p(X) has the form (X —a)?, where o € k. and o = —a. If Str(k)°® denotes the
number of essentially scalar skew strata in A of level k up to G-intertwining,
then by Lemma 3.6.2, Str(k)®® =¢ - 1.

By Lemma 3.6.3, there exists a character y of G such that the twist of m by x
contains a skew stratum of level strictly less than k. By Proposition 3.6.4, the
map

Rep(G,< k) x¥ — Rep(G,k)**
(mx) — m®x

is surjective and the size of each fiber of this map is (¢+1)¢*~2 by Corollary 3.6.5.
Let s§°(G, k) denotes the number of irreducible essentially scalar supercuspidal
representations of G of level k, then by Corollary 3.6.6, we have

(G, k) = (¢ - 1)S(G, k).
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5.3.4 Maximal Simple and ke€Z

Here in this section we will consider [A,n,n — 1,b] to be maximal simple of
integral level k i.e e = e(A) =1 (so k = n) and E = F[b] is an unramified
extension of F' of degree 3. Moreover, the characteristic polynomial ¢p(X) is
irreducible. As in section (3.5) we can assume that A is a chain. The parahoric
subgroup P = P(A) is conjugate to K, so we may assume that P = K. Thus,
e(Aog) =1 so

P"AE'=(1+P', vm>1.

Theorem 5.3.15. The number of maximal simple skew unramified strata of
level k € Z up to G-intertwining is

Str(k)° = 2a(* - 1).

Proof. The number of maximal simple skew strata of level k is equal to the num-
ber of characteristic polynomials of y, by Lemma 3.4.8. Every such polynomial
is the minimal polynomial of some skew element in kg, where [kp : kg, ] = 3.
The number of skew elements is ¢, all but ¢ of which are not in kp,. If 3 is one
of these elements, then the minimal characteristic polynomial of y is of the re-
quired form, but has 3 roots (each of which has the same minimal characteristic
polynomial) so the number of irreducible polynomials is (¢* - ¢)/3. O

We constructed 7 in the general case in section (3.7) and, in specific case, the
irreducible simple supercuspidal representation of G of level n/3 ¢ Z in section
(5.3.1) so we will not repeat the construction but we will give some facts we
need.

The number of characters of PI"/21*1 which extends 15| P™ up to G-intertwining
is |Ext(¢y, P™)| = q%ﬁl)/z]_l = @UC+D2ID 1y Lemma 3.5.3. The num-
ber of characters 6, of 'H = PI"21+1(1 + Pg)! which extend | P2+ is
IT(A, )| = a3, , = @21 by Section (3.7). The number of representations
n of J = PIDRIEY which extend mp|i;, where 'J = PIOD2I(1 £ Pg)t| s
IR(A,0)| = (¢ +1). Finally, if s1(G,k) denotes the number of irreducible sim-
ple supercuspidal representations of G of level k € Z, up to equivalence then we
deduce

Theorem 5.3.16. We have

1 .
s1(G,k) = gq(q2 ~1)(¢* +1)g** .

Now we compute the formal degree for 7

Lemma 5.3.17. Let m = c—Ind? n, for n € R(A,¢y), be an irreducible simple
supercuspidal representation of G of level k € Z. Then the formal degree of w is:

d(m) = (¢* - 1)(g+1)*¢**
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Proof. The dimension of 7 is ['J : YH]Y? which is 1 if n is odd and ¢* if n is
even. Now we compute u(.JJ)™*, Note that P = K so

N SE M(P[n;l])_l . lF (o +P§L51])1]1

By Proposition 5.1.2, u( P21 = 3 (¢+1) (g% -1) (¢ +1)¢?L+D/21=1) and
since k = n, then
d(m) = (¢* - (g + )",

5.3.5 Totally Split

Let [A,n,n —1,b] be totally split i.e k =n/e € Z (so en) and the characteristic
polynomial ¢,(X) has the form

(X—Oél)(X—Oég)(X—Oég)

where a € k} with «; = —a, i =1,2,3, and «a; # «; for j #4. If Str(k)* is the
number of totally split skew strata in A of level k£ up to G-intertwining, then

Str(k)* = éq(q -1)(g-2),

by Lemma 3.9.3.

Now 7 is constructed as follows: first we extend 1|P™ to 13| PI™?1*1 and the
number of these extensions up to G-intertwining is | Ext (v, P™)| = k2D
by Lemma 3.9.4. The character 1,|PI"/?1*! extends to a character 6 of 'H =
P21 ((1 4+ PE)')? in which any two extensions do not intertwine by Lemma
3.7.3. The number of these extensions is |T'(A, )| = @21 by Proposition
3.9.5. By Heisenberg Lemma, there is a unique irreducible representation 7, of
1y = PLD2)((1 4+ Pg)')3 such that the restriction of 7, to *H contains 6.
Now the representation 7, extends to a representation 7 of .J = PL*D/2I(F1)3]
by Lemma 3.7.5, and any two extensions intertwine if and only if they are
equivalent, by Lemma 3.7.6. The set of the representations 1 of J which extend
np is denoted by R(A, 6,) and the size of this set is (¢+1)3, by Proposition 3.9.6.
Now the representation c-Ind? 7 is irreducible and supercuspidal and equivalent
to w, Theorem 3.7.7.

Denote by s'*(G, A, k), the number of irreducible totally split supercuspidal
representations of G of level k = n/e up to equivalence, then

Theorem 5.3.18. We have

1
s"(G,A k) = gq(q ~1)(g-2)(g+1)3g3* D).

Recall that s**(G, k) is the number of irreducible supercuspidal representations
of G of level k which contain a skew totally split stratum. By Remark 3.9.8, we
have

s"(G, A k) < s"(GL k) < 45" (G, A k).
We will assume s (G, k) = s"(G, A, k).
We conclude this section by computing the formal degree of .
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Lemma 5.3.19. Let 7 = C—Indg n, for n € R(A, 1), be an irreducible totally
split supercuspidal representation of G of level k = nje. Then the formal degree
of m is:

(-D(@*-q+1)¢*"  ife=1
d(m)={(¢g-1)(?-q+1)¢*?% ife=2andn=0 (mod 4)
(g-D(?-qg+1)g* 1 ife=2andn=2 (mod4)

Proof. When e = 1, the dimension of 7 is 1 if n is odd and ¢? if n is even. By
Proposition 5.1.2, we have p( PLO*# D211 = ¢3(g+1) (¢?-1) (g% +1) ¢ [(+D/2]-1),
When e = 2, then n must be even and the dimension of ) is ¢* and by Proposition
5.1.2, we have ,u(P[(”“)/z])_1 =(¢g+1)(¢®>-1)(¢+ 1)q4([("“)/2]_1)*[(”_1)/4].
Finally,

11-
n+l,\ "1 n-1 +1
p(H)™ = M(P[T]) AP (1+P1[v26 ] )
and the size of the index [F: (1 + 731[,("’1)/261”)1] is (q+ 1)q[(n—1)/2e]+1_ 0

5.3.6 Split

Let [A,n,n —1,b] be split, but not totally split. The characteristic polynomial
©p(X) has the form

(X-a)*(X-8), afekp

with a = -@, 3=-5 and a # 3.

There exist finite-dimensional vector spaces V? over F, i = 1,2, in which h
is non-degenerate and V = V! @ V2 is orthogonal, and

VixVyi
1. A=A e A% where A*(k) = A(k) n Vi keZ and A’ is a self dual lattice
sequence in V.

2. b=by®by for b; € A = Endp(V*) and vp1(be) = —n and by is A2-invertible;

Remark 5.3.20. For i is 1 or 2, the space V' has dimension one and b; is
scalar. Twisting ™ by a character of G, we may assume that V' has dimension
two with by is A'-invertible and V2 has dimension one. The group G* = U(V?),
then, is U(1)(F/Fy) and G* = U(V?1) is either U(2)(F/Fy) or U(1,1)(F/Fy)
depending on the period e, by Remark 5.3.7.

There are g(g — 1) choices for ¢,(X) but, by twisting, we can assume « = 0,
£ # 0 which leaves us with ¢ — 1 choices for ¢(X).

Remark 5.3.21. The level k of w is in Z i.e. e divides n.

We can write the stratum [A,n,n —1,b] as follows:

[AY,n,n—1,b1] @ [A% n,n—1,by].
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where by € F'is a L£2-invertible with valuation —k where A? is a multiple of some
chain £? of period 1 so P™*1(A2) = plm/el+1(£2),

If {e_4,e,} (or {e1,e_1}) and {ey} (or {ep}) are Witt bases for V! and V?
respectively, then the union of these is a bases for V' and the form h on V has

the matrix
01 0 1 0 0
1 0 O or 0 wp 0 ].
0 0 1 0 0 wp

We can represents b as a matrix
(b1 O
=(5 o)

where b; e End(V?),b; = =b;, i = 1,2. We will write all matrices with respect of
the basis {e;,e_1,€eq} (or {e1,e_1,e0}) in this section.

In the following we define some Op-lattices in A which are stable under the
involution.

SO O SUELEY )
P (a2

"hy = q3r+1(1A1 Tii ]+1(A))
Pl (A) PrI(a?)

" A BT ())
PLT () Pr(A?)
Now put
"Hi=(1+"h;)nG and "Jy=(1+"31)nG

where i = 1,2. When r = n, put H; = "H;, i = 1,2, and J; = "J; ("b; = b; and
™y =j1). If n is odd, then "H;y ="J;.

Proposition 5.3.22. 1. The sets H;, i=1,2, and Jy are compact open sub-
groups of G.

2. The map x — 1+ x induces an isomorphism
b1/by — Hy/H,.
3. We have
b = (m{[jgm m;%“(m) and b (q@_;(]Al) m;_é’“m)_
Por” (A) PI(A%) Por” (A)  P(A%)
Proof. See [20, §2]. O
We define the character v, of Hy as

Yp(1+x) =1a(br), xeb.
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Theorem 5.3.23. We have

Za(plHy) = J1 (Zar (o, ) x Zg2(¥e,)) J1
where 1y, is the character P"(AY), i=1,2.

Proof. See [3, 5.2.2]. O

The sequence
1-> Hl/HQ d Jl/HQ g Jl/Hl -1

is exact and, in fact, H;/H> lies in the center of J;/Hs. Therefore, J;/Hs is a
central extension of Jy/H; by H;/Hs.

Lemma 5.3.24. The pairing

(x,y)'*?/}b([l',y]% fOT’ x7y€<]17
is a non-degenerate alternating bilinear form on Jy/Hj.

Proof. See [33, Proposition 4.1]. O

Lemma 5.3.25. There exists a unique irreducible representation n, of J1 such
that the restriction of n, to Hy contains the character vy (in fact, it is a multiple

of ¥y ). Moreover,

dlrn(m,) =1/ [Jl : Hl]
Proof. See Lemma 3.7.4. O
The following Lemma is important for our classification of .

Lemma 5.3.26. There exists a self dual lattice sequence A’ and an integer
r€{0,...,ke} such that m contains either:

1. (r>0) the character Yy ep, of "H1(A") such that the stratum A e -
1,b1] is fundamental.

2. (r=0) the irreducible representation of
()Hl(Al)/lHl(A/) ~ P(All)/Pl(All) % Pke(AIQ)/PkeJrl(AlQ).
and such representation has the form p ® vy, with p is cuspidal.

Proof. See [2, Lemma 5.6.1]. O

Here we have four different cases for the representation m depending on the type
of the stratum [A’", 7,7 —1,b;]. These cases are:

(a) essentially scalar;
(b) split, but not G split;

(¢) minimal non scalar;
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(d) r=0.

Remark 5.3.27. The reason we do not consider G-split is because the repre-
sentation 7 is supercuspidal (see [34, Theorem 4.9]).

Before we investigate each case, we need the following Lemma: let v, be a
character of "Hy(A) = (1+7h1(A)) NG and o = 1y, be characters of ” H(A') =
(1+7h(A)) NG and L =U(1,1)(F/Fy) x U(1)(F/Fy). Let L =L NG and let
Uy and ¥y be characters of "Hy(A) = 1+ 7hy(A) and "Hy(A') = 1+ 7 hy(A).
The characters Jb and Jbr are defined the same as ¢, and .

Lemma 5.3.28. Zg(¢y, Y) = "J1(A)ZL (Yol (Aynr Yol (aryar) 1 (A).
Proof. Surely we have
Ze: (P, V) € T (Vluz, () O o, (ary)-

By restricting ¢, Uy to "Hi(A),"Hi(A"), we get b = 0@ by = b'. Now let
ge IG(%FF[I(A),Jb’|nﬁ1(/\f))a then there exists x € "h7(A) and z’ € "h (A") such
that

gtb+z)g=b+2a

where
I=n (Al 3] 1-n A1’ -[51, s
"h;(A):(‘B[ngA) RUT: (A))’ ”hI(A’):(m[ngA) Py (A,))
Por? (A) P P2 (A)  PI(AY)

By [2, Lemma 5.10(2)], there exists j € "J;(A) = 1+ "1 (A) and j' € "Jy(A) =
1+™(A’) such that

et =veye@enann( )

and "
4 A ! Mg * ! A 0
J(b+x)j 1:b+ye(b+ [31(A))ﬂ( 0 A22)

where y € "h7 (A) and ¢’ € b (A"). Now put h = jgj’fl, then we have
h(b+y)h ™t =b+y' = hia=hy1 =0=>heL.

This implies that

Zars (Yo, Yor) € "T1 (Mg (Pblugz, (aynk> Vo lnii, (a)nz) "1 (A).
Now by [33, Corollary 2.5],we get

T (o, ) = Ty (Yo, Yo ) (G

and by the same proof as Theorem 2.3 in [32], we deduce
Lo (o, b)) € " T (ML T (A) (G = "1 (M) (P

since the groups "J1(A),"J1(A") normalize the characters 1y, 1y O

r iy (AL Yo 1 gy (anyar) T (A,
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In particular, this Lemma implies that the four cases (a), (b),(c) and (d) are
disjoint i.e we cannot get the same supercuspidal representation from different
cases. The reason is that if 7 contains two characters Yy ep, and ¢prep, of
"H(A'), by Lemma 5.3.28, the strata [A"" 7,7 —1,b,] and [A’", r,r—1,b"] inter-
twine. By Lemma 3.4.8, they have the same characteristic polynomial so they
must be the same type.

(a) [A",r,r —1,b]] is essentially scalar

Here we will consider the stratum [A’,r,r — 1,b]] to be essentially scalar so
t =r/e; € Z, where e; = e(A’") and op (X) = (X - a)?, where a € k} and
a=-q.

Let A be the set of irreducible supercuspidal representations of G of level k
which contain a character yrgp, of " H(A") with r”/e(A") < t, where by is
fixed. Let Af{® be the set of irreducible supercuspidal representations of G of
level k which contain a character vy gp, of "H (A') with b} is essentially scalar
with ¢ = r/e(A’) and by fixed. Let ¥; denote the set of characters of F'! of level
t. Then we have the following Lemma

Proposition 5.3.29. For m € A, and a character x of F' of level t, we have
T® xodete AF°.

Proof. By Lemma 3.4.5 we have
L(m @ x odet) = max{l(m),l(x)} = £(r).

Suppose 7 contains Yyrgp, of " H(A"), with 1" [e(A") < t and put r = te(A”).
The restriction of the character x to the group "H(A") is a character of the
form 1., where ¢ = wy ¢o € (P5")_, defined by

e(l+z)=9podet(cx), 1+xze"H(A).

Now the restriction of the representation m®yodet to the group " H(A”) contains
the character Veipr gerb,- If var (DY) = v < 7 then Yeyprecis, = Yeaerb, and

[A"", 7,7 —1,c] is scalar. Thus 7 ® x o det € A, O

Theorem 5.3.30. Let m,7n" € A, and x,X’ be characters of F' of level t. If
7@ xodet =7’ ®x odet then £(x'x7!) <t.

Proof. 1f £(x'x™') = t, then by Proposition 5.3.29, 7’ ® x'x ! odet € A?*. On the
other hand, the representation 7’ ® 'y~ ! o det is isomorphic to 7 which lies in
Aq;. This is impossible as 7 contains some character Yprgp, of " H 1(A") within
r"Je(A") <t and 7' ® x"x odet contains some character Vi, @b, Of "Hy(A") and
the two characters intertwine. By Lemma 5.3.28, [A”, 7" 7" - 1,b]] intertwines
with [A’,r,7 — 1,b]] and since they are both fundamental, then they have the
same level, contradiction. O]
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Lemma 5.3.31. The map
Agx¥, — AP
(m,x) — mex.
18 surjective.

Proof. Let m € Ay®, then m contains a character vy ep, of "Hi(A") with b}
essentially scalar with ¢ = r/e and b, fixed. There exists a character y of F'! such
that x odet |P"(A") = ¢y, for some X € wz OF%. Now the character x has level ¢.
The representation 7 ® x ™! o det contains the character Y —x@by-x Of "Hi(A),

but b} = A (mod P'~"(A’")), since 7 <1 —n, and hence 7 ® Y ' odet € Ayy. [

Lemma 5.3.32. The fibers of the map in Lemma 5.3.31 is
X = {(mp,xyp™") 24 is a character of F* of level < t}.
and the size of each fiber is (q+1)q'™2.
Proof. Let me Ay and x € ¥ such that 7 ® x € A7° and consider the set
Fib(r® x) = {(7',¢) : 7’ € A, for some t ,x" € ¥, and 7' ® ' 2 7 ® x}.

The set Fib(m ® x) is not-empty since it contains the pair (7,x). Now let
7' e Ay and y € U, such that 7' ® y' 2 7® . So we have 7’ = m® xy' ', within
E(Xx'_l) <t, by Theorem 5.3.30. Put ! = xx'~", a character 1 of F* of level
<t. Now ' 2r®xy '=mp! and

(7', x) = (7™t xap).
O

Let s§°(t) denote the number of irreducible supercuspidal representations of G
of level k which contain a character 1y p, of "H(A’) where b} is essentially
scalar and by is fixed. Let Sg(t) denote the number of irreducible supercuspidal
representations of G of level strictly less than ¢ which contain a character ¢y e,
of "TH(A') where b} is minimal non-scalar or split and b, is fixed. The size of
U, is (g+1)(g-1)¢'"2, by Corollary 3.6.6, so we have the following

Corollary 5.3.33. We have
sg”(t) = (¢ -1)55 (k)

(b) [AY,r,r—1,b]] is split, but not G-split

Let [AY, 7,7 —1,b]] be a split, but not G-split, stratum. Then ¢ = r/e € Z and
o (X) = (X - )(X - a2)

where a; = —ag, i = 1,2, and a1 # as. If Stry(¢)*P denotes the number of split
strata of level ¢, up to G-intertwining then Stry(¢)*P = ¢(¢ — 1)/2, by Lemma
3.9.3. In fact, the number Str,(¢)*? is for the case U(V') = U(1,1)(F/F),
however, in the case U(V?!) = U(2)(F/F), the number Str(¢)*" is the same
and, also, the same proof.
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Remark 5.3.34. Note that the group U(V'') is either U(1,1)(F/Fy) or U(2)(F/Fy).
Although they are different groups, but the construction of supercuspidals is ex-
actly the same.

We construct the representation 7 as follows: 7 contains the character ¢ gp, of

"Hi(A") which extends to wb’leab2|[r/2]+1Hl(A,)~ The set of these extensions up
to G-intertwining is denoted by Ext(ty ep,, " H1(A")) and the size of this set is

2
1 1, [+ '
(1+Pp) :|1+PL

)

Now the character wal@b2|[’”/2]+1H1(A') extends a character Oy ep, of 'H =
["/21¥1H (A").(B 0 G) n P'(A"), where B is the centralizer of b} @ by in A. We
denote the set of these extensions by I'(A’, ¥y ep,). Let 61,02 € T(A', ¢y gp,)-
Let g € G intertwines both characters, then g € J = [(*D/211, (B G) n P(A).

The group J normalizes both charcters 61,65, so 6; = ;. Now the quotient
LH /211 H (A7) is isomorphic to

| Ext (¢ @by, "H1(A"))]

1 1
(14 Pe)'/ (14 PEP) s (L Pe) (14 PEPY) s (4 Pe) (1 + PR

Thus, [['(A', Y eb, )| = ¢?lt21g5 =1 By Heisenberg Lemma, there is a unique ir-
reducible representation ny, gy, of 'J = (/2 1, (BnG)n P(A’) such that the
restriction of My, @by tO LH contains 9;,/1 ob,- By Lemma 3.7.5, the representation
M, @by Of 1J extends to a representation 7 of J and the number of these exten-
sions is [R(A', Oy op,)| = (g + 1)3. Now the representation c-Ind$ 7 is irreducible
and supercuspidal and equivalent to 7.

The number of irreducible supercuspidal representations of G of level k& which
contain a character 1y gp, of "H(A"), where b} is split and both A’ ! by fixed
denoted by sb(A'lﬂf). The number of irreducible supercuspidal representations

of G of level k which contain a character ¥y gp, of "H(A'), where b} is split and
by fixed denoted by s,(¢). so

sp(A ) = 2(g-1)(g+1)%¢* g

Remark 5.3.35. We have asked a question in Remark 3.9.8 about whether
there exists an element g € U(1,1) such that g conjugate two fundamental skew
strata [A'l,r,r -1,b] and [A"l,r,r - 1,b] or not? In either case the number
sp(t) is bounded

sp(A 1) < sp(t) <dsy(A'1).

We will assume that s,(t) = sy(A"1).
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(c) [AY, 7,7 - 1,b}] is minimal non-scalar

Now suppose 7 contains a character ¢y p, of "Hi(A’) where b} is minimal
non-scalar, where 0 < r < n.

Remark 5.3.36. Lemma 4.3.1 implies there is no skew mazimal simple stratum
of period one in the 2-dimensional space V1, therefore, A must be a multiple
of some chain L' of period two and Ey|F is ramified, E1 = F[b}], so

e(A o) =2m, m>1.

We also have

e /1 _ e(A,1|OF) -m
(A |OE1)_ e(EI/F) ’

where Fy = F[b}]. Then also r is an odd multiple of m, say, r = tm, where
t =2t +1. It is odd multiple because the stratum [N 7,7 —1,b1] has level in
1Z\Z as E\[F is ramified.

Let Str(¢#)™ is the number of minimal non-scalar skew strata in A! of level
t =r/e, up to P-conjugacy.

Lemma 5.3.37. We have Str(t)™ =q—1.

Proof. When U(V!') =U(1,1)(F/Fp), then the proof by Lemma 4.3.4 and when
U(VY) =U(2)(F/Fp), the proof given by Lemma 5.3.8. O

Remark 5.3.38. The construction of m in both cases U(V') = U(1,1)(F/Fp)
or U(2)(F|Fy) are exactly the same.

Denote by Ext (wbrl @bz,rHl), the set of G-intertwining classes of characters
Yy, b, |12171 H} which extend Vi @b, | H1. Now define the following subgroups

Y= Hy (PEFY(AT) (14 Pp) < (14 PR)!)

T (PEEIA) 1+ P ) < (1+Pr))
J o= (PEEIANE <P,

Ly

Lemma 5.3.39. 1. The character Yy, ob, |"H, extends to a character of 3171 |,y
and any such extension has the form Yy, where

V=1, (mod BT (AM)).

2. The number of these extension characters up to G-intertwining is
|Ext (Vo @by, "H1) | = q" .
Proof. For part (1), consider the quotient [31*1H; (A")/"Hy(A’). Tt is abelian
and isomorphic to
(P[;]H(A'l)/Pr(A'l) O)
0 1)
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We can see the change only in the block PL21*1(A"")/P"(A""). By Lemma 3.3.6,
the character y, [P"(A’ ') extends to a character Yy of PLEFL(A™) where

by =0} (mod P (A)).

For part (2), since J normalizes any extension, the number of characters of
(2141 [, which extend ’(/bel@b2|TH1 up to G-intertwining is equal to number of

characters vy, |P[%]+1(A’l) which extend )y |PT(A’1) up to G'-intertwining, by
Lemma 5.3.28. The number is given by Lemma 3.5.3 so

| Ext (i, P (A7)
[BLn P (A" : Bl a P I(A)]
[(1 +Pp) s (1+ Pt 1] .

| Exct (V1,577 HL) |

O

Lemma 5.3.40. The character wb’le;b2|[%]+1Hl(A,) extends to a character Oy ep,
of 'H.

Proof. Consider the quotient *H/I2*1H,. Tt is isomorphic to
N
((1+7:E1)1/(1+7>g1+1) )X((1+7>F)1/(1+7>§)1).

It is a product of cyclic groups and since * H normalizes the character Yy, , then,
the character ¢b’1®b2|[%]+1H1(AI) does extend to 9b'1@b2|1H. O

We denote the set of characters 917'1 ob, Of 'H which extend the characters
Vb, @b, |31+ 7 (A7) by T(A, Vi @b, ). Any two distinct extensions in T'(A', Yy e, ),
do not intertwine by Lemma 3.7.3 and Lemma 5.3.28.

Corollary 5.3.41. We have

(A %y @b,)| = ¢"'¢" .

Proof. Since none of the characters in I'(A’, ¢y gp, ) intertwine, then, the size of
the set I'(A’, ¥y @b, ) is, in fact, the index

[t L5l - [(1 +Pp) (14 ngl)l] [ +Pe) /(1 +PEY.
O

Proposition 5.3.42 (Heisenberg). There is a unique irreducible representation
M, @by Of LJ such that the restriction of N, @by L0 LH contains the character

Yy ob, - Moreover,
dim(ny, @b, ) =V [*J : 1H].
Proof. See [2, Lemma 5.4(1)]. O
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Lemma 5.3.43. There exists a representation n of J which extends ny, gb, -
Proof. See [2, 5.7.1]. O

Denote by R(A’,Hbfl @by ), the set of irreducible representations n of J which
extend 7y, b, Of 1J and the restriction of 5 to ' H contain O @b, -

Lemma 5.3.44. Let n1,m2 € R(A, 0y 0p,). Then they intertwine in G if and
only if n1 = na.

Proof. If g € G intertwines 71 with 79, then it must intertwines the character
Yy, @b, S0 g € J. Therefore, n1 2 1 since J normalizes both 7y and 7. O

Corollary 5.3.45. We have
IR(A, O a0,)| = (g + 1)
Proof. The quotient .J/!.J is isomorphic to
El/(1+Pg)' x F'/(1+Pp)".
Thus,

IR(A, Oy 00,)] = (Bl (1 +Pe)'[F': (1+Pr)']
(gm,, +D(g+1) = (g+1)°

as qgy, = q- O

Theorem 5.3.46. If w containsn € R(A, Gb/l@b2) then the representation c-Ind? n
is irreducible and supercuspidal and equivalent to «.

Proof. See [2, Proposition 5.7]. O

The following diagram summarize the construction of =:

¢-Ind5 n G
C
Vv, @b, (3141 )

102



Let s§(t, k) denote the number of irreducible supercuspidal representations of G
of level k =n/e which contain a character ¥y gp, of "Hi(A") with by is minimal
non-scalar, by fixed and ¢ = (2¢' +1)/2. Let s5(U(V'!'),t, k) denote the number
of irreducible supercuspidal representations of G (with G* = U(V?!)) of level
k = n/e which contain a character ¥y gy, of "Hi(A") with b; is minimal non-
scalar, by fixed and ¢ = (2t + 1)/2 Then

Theorem 5.3.47. We have
s6(t.k) =2q(q - 1) (g + 1) ¢*".
Proof. We have
se(U(L)(F[Fy),t,k) = s§(U(2)(F[Fo),t,k) = a(q-1)(q +1)°¢*¢"".

The result follow since s§(t, k) = s§(U(1,1)(F/Fp),t, k) + s§(U(2)(F/Fy),t, k).
O

Lemma 5.3.48. The formal degree of m = c—Ind?n 18
d(ny = |+ D) 1EDRL i e(A) =2
(g-1)(¢* + 1)g* 1+ ife(A) =4
where vy =[(t-1)/2] +[(k-1)/2] and k =n/e.

Proof. The period e of A’ is either 2, in this case r = 2t/ + 1, or 4, in this case
r = 2t with ¢ is odd. In both cases n must be even as k = n/e € Z. The dimension
of nis [*J: "H]Y?, where 'J/*H is isomorphic to

( IR I = %A')/m&%']“m'))
pli? oyl 1

ife=2, or

n

n+l 1
P (AR5 (A 1
if e = 4. Therefore,

(P[WA”)/P[S]“(A”) Pi* ]<A'>/mE;]”<A'>)

. q ife=2
d =
lm(n) {q2 if e = 4

Now we compute p(J)™,

n+1l

"QIJ(A))_l.[J:lJ]’l.[{J:P[ ; ](A)]_l.

()™ = (P

By Remark 5.3.7, P(A) is either L or I with the non-standard filtration, depend-
ing of the period of A. By Proposition 5.1.2, if e(A) = 2, then p(PL+D/21)-1 =
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(g+1)(*>-1)(?+1)g* [+ DR2I=D+I(n=D/4] and if e (A) = 4, then p(PH+D/21)~1 =
q(q+1)(¢*>-1)(g® +1)g> L D/2-) The size of the index [J: .J] is (¢+1)? and
the quotient '.J /P[WTH] is isomorphic to

t=11,,\" k1], \
((“7’&)1/(“7’][;12 | ) )X((1+7>F)1/(1+7>1L2 ] ) )

where n = tm. Thus,

P = (PEFI) g+ )P0,

(d) r=0:
Let 7 be an irreducible smooth representation of G which contains the character
woebz of

VHy = "Hy(A') = Hy (PY(A") x PPe(A"%)).

Remark 5.3.49. The element by is non-zero and lies in P~ Py " so we have

g -1 different choices for ba. Moreover, none of the characters ogp, intertwine
since for each by, we have different characteristic polynomial.

Define the following subgroups:

"H o= UHy (PY(A) x (1+Pp)")
Ji(PYAY) x (14 Pp))
Ji (P(A’l) x F').

Ly

J

Lemma 5.3.50. The character Yoep, of 1Hy extends to a character Oygp, of
1
H.

Proof. Consider the quotient
VH/UHy = 1% (1+Pp)/ (1+PE)".

It is abelian. The group ! H; normalizes the character Yoeb,, therefore, we can
extend 1/)0@1,2\1]{1 to a character Opgp, of IH. O

Let T'(A',%oes,) be the set of characters fpgp, of 'H which extend toep,|' Hi
Any two extensions in I'(A’, Yoep, ) intertwine if and only if they are equal, by
Lemma 3.7.3.

Corollary 5.3.51. We have

ID(A', %oen, )| = ¢

104



Proof. None of the characters in T'(A’, ¢ogp, ) intertwine so
DA, doep, )| = [(1+Pr)t = (1+Pp)'].
O

Proposition 5.3.52 (Heisenberg). There is a unique irreducible representation
N0®bs of 1.J such that the restriction of Nowb, 1O YH contains the character Oob, -

Moreover dim(nogp, ) = v/[1J : LH]

Proof. See [2, §5.8]. O

Lemma 5.3.53. The intertwining of nogs, in G is
T (Mosb,) = T (G x G*)' .
Moreover,

1 ifgelJ(G'xG*)'J;

dim(Z, =
im( g<no®b2)) {O Otherwise

Proof. See [2, Lemma 5.8(1)]. O

Definition 5.3.54. A b-extension of the representation noep, of 'J is a repre-
sentation k of J such that:

1. k|*J =7 and
2. the representation  is intertwined by the whole of G' x G2.
Lemma 5.3.55. [2, Lemma 5.8(ii)] There exists a b-extension k of ).

Theorem 5.3.56. Let x be a b-extension of n and £,&’ be the inflation to J of
some irreducible representations of J|*J. Then

1. For any h € G* x G?, the intertwining spaces In(k ® &,k ®¢") and I, (&,€")
have the same dimension.

2. IG(H®£aH®£,) = JIG1XG2(€7£,)J'

Proof. Let g intertwine k®¢ with £K®¢’ so it must intertwine k®¢| 7, with k®&’|;,
which are both multiple of n. Therefore, ¢ intertwines 7. By Lemma 5.3.53, we
have g € L.J(G' x G?)!J. Thus we may assume g € G' x G2. Let V; be the space
of x and V2 the space of £ and V4 the space of {'. Let ¢p € [,(k® &,k ®&") so

(k@& )(h)od=do (k@) (h) (5.2)
for all h e Jn9J. We may write

¢=>.8;8T;
J
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where S; € Endc (Vi) and T; € Home(Va, Vy) and {T;} is linearly independent.
Suppose h e 1.Jn (1) so

(50N (M) Y. S;8T; = Y8 0T 0 (58 &) (h) (5.3)

Since 1.J c Ker(¢) nKer(¢'), then we have
> (k(h) e 8; = Sjor’(h))®T; =0
J

The set {7} is linearly independent so
k(h)o S; =8;0k7(h), for each j.
Thus S; € Zy(k|17) = Zy(n) for all j. Now we have
To(k) = J(G* x G*)J = Y J(G* x GH) 1T =T (n)

and by Lemma 5.3.53, we have dimc(Z,(n)) =1. Let S € Z,(x) then S; = \;S
for some \; € C, so

¢ = Z)\]S®,Tj = ZS@()\jTj) =S®Z>\jTj =5SeT,
J J J
where S € Z,(x) and T = ¥; A\;T; € Endc(V2).

Now let h e Jn J9. We rewrite the equation (5.2) as follows
(k(h)oS=Sokr?(h))® ('(h)oT -To&%(h))=0.
Since S € Z,(k), then we get
€(h)oT =Tog(h)
so T e Z,(&).

Now fix S € Z;(k) the linear map

Ig(g) - Ig(’i‘@g)
T — S&T

is well defined and a bijection. O

Theorem 5.3.57. The representation Ind(C}v k®m is irreducible and supercuspidal
and equivalent to .

Proof. See [2, Proposition 5.7]. O
Corollary 5.3.58. The following map:

irreducible cuspidal N irreducible supercuspidal
representations of J/*.J representations containing Yogb,

given by
E-IndSre¢

is a bijection.
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The following diagram summarizes the construction of 7:

eInd§ ke ¢ G
C
Mo, 1y

Corollary 5.3.58 implies that the number of irreducible supercuspidal represen-
tations of G which contain the character gy, of ' H; is equal to the number
of irreducible cuspidal representations of .J/!.J. Now consider the quotient

JIN 2 U1,1) (kp/kr,) x UQ) (kr/ko). (5.4)

The number of irreducible cuspidal representations of J/*.J can be found in
[10, §5,6]. The number is as follows: the number of irreducible cuspidal rep-
resentations of U(1,1)(kr/kr,) is q(¢+ 1)/2 and the irreducible cuspidals for
U(1)(kr/ko) is (¢ +1). Multiplying these numbers we get the number of irre-
ducible cuspidals of J/!J which is

) 1
IR(A, Ooen, )| = ?J(q +1)°.

Let sg(O, k) denote the number of irreducible supercuspidal representations of
G of level k which contains the character °H;(A’). Then

Theorem 5.3.59. We have

1 }
s5(0,k) = Sa(g+ 1)(a* ~1)g"".

Lemma 5.3.60. The formal degree of m is

9 5
(q-D)(-q+1)q2F"7"2  ife(A)=1 and n odd
9
d(m) = (q-1)(¢% - q+1)g2"77® if e(A) =1 and n even
t-1
(a- (@ -q+ 1) 22 ife(n) =2

where v =[(t-1)/2] +[(k-1)/2].
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Proof. We have d(7) = dim(x ® n)/u(J) where dim(x ® ) = dim(x).dim(n).
The dimension of £ is ¢ — 1, by [10, §6]. The dimension of & is [*.J : 'H]Y/?,
where ' J/'H is isomorphic to

il / % 1 /
( 1 L7 Tyl a ))
gl / % 1 /
L7 ) el 1
Thus,

1 ife=1andnisodd

2

dim(k) ={¢* ife=1and n is even

q ife=2

Now we compute x(J)™. When U(V?') = U(2)(F/F), then e(A’) = 2 and when
UV =U(1,1)(F/Fy) then e(A’) is either 1 or 2.

w7 = M(P[ngl](A’))_l.[leJ]1.[1J:P[n;1](A’)]

By (5.4), the quotient J/'.J has size ¢(q+1)2(¢2~1). The quotient *.J/P[*#1(A")
is isomorphic to

(1+Pg,)"/ (1 +P[Et121]+1)1 x (1 +’PF)1/(1 +731[;“’1])1,

so it has size ¢7. Finally, the value of pu(PL"*D/21(A"))~! is given by Proposition
5.1.2 which is ¢*(q+1) (g% - 1)(¢* +1)¢*L+D21=D) "if (A7) = 1 and (g +1)(¢? -
1)(q3 T 1)q4([(n+1)/2]—1)+|:(n—1)/4]7 if B(A,) -9 ]

Computing S*P(G, k), s*(t) and S*(t):

Let S°P(G, k) be the number of the irreducible supercuspidal representations
of G of level k = nfe € Z which contains a split skew stratum [A,n,n — 1,b],
but not totally split. Denote by s*(t), the number of irreducible supercuspidal
representations of G containing the character vy gp, of "Hi(A") with ¢ = r/e.
Let S*(t) denotes the number of irreducible supercuspidal representations of G
containing the character 1y g3, of "Hi(A") with 7/e <t.

First we summarize the number of the cases (a),(b),(c) and (d) by the following
table:

] I teZ \ t¢zZ \
54(0) [ 2(g+1)(¢*-1)¢" -
se(t) || (¢-1)fo(@)a*q" 0
sc(t) 0 (-1 f.()¢*"¢"
se° (1) (¢-1)S*(1) 0

where f3(q) = ¢ (¢ +1)® and f.(q) = ¢'(¢+1)*.
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The number s* () is

(a-Df(q)®q" + (¢-1)S*(t) ifteZ
s"(t) = (¢ - ) fu(9)g*' ¢ ift¢7Z
3(g+1)(¢* - 1)¢" if =0

Suppose t € Z, then
S*(t+1)

s*(t+ 1) +s(t) +S*(t)

(a- 1) fo(@)d" ¢ + (g - 1) fo(a)q" ¢ +qS™(¢)
¢" [(a-1D)(afoa) + fo(@))a*] + ¢S (¢).

Now

S*t+1) = ¢"[(a-1)(afe(a) + fo(@)a® ] +aS*(¢)
= ¢"[(¢-1) (afs(@) + fe(@)) (" + 1) ]+ *S*(t - 1)

= " [(a-1) (@fs(q) + fo(@)) (¢ + "+ ...+ ¢"1)] + 471 57(0)
Thus

S*(t+1) = ¢"¢"" [(afo(a) + fo(@)) (" = 1) + 5(g+ 1) (¢” - 1)]

We have computed all irreducible split supercuspidal representations of G of
level k and the number is, in fact, the sum of s*(¢) over every possible ¢ which
is between 0 and & multiply by the number of the twists which is ¢, so s°P(G, k) =
qS* (k) and therefore,

s*P(G, k) = @ (afo(a) + fo(@)) + " (3(a+ 1)(¢® - 1) = (a¢fu(a) + f-(q)))

5.4 Computing s(G, k) and S(G, k)

We start this section by summarizing the number of irreducible supercuspidal
representations of G of level k that we obtained in previous sections:

’ | kel \ k¢z \

Sa(Gak)a k=0 (q+1)(q2+1) -
51(G, k) 19(® - 1)(g+1)°F*D 0
52(G, k) 0 (> -1 fo(q)g*"
53(G, k) 0 (> - 1)g** !
s*(G.k) | gala-D(g-2)(q+1)°¢*D 0
5°P(G, k) S + 57 ()™ 0
s (G, k) (g-1)S(G,k) 0

where f7(q) = ¢fo(q) + fe(a), 57 (q) = (3(a+1)(¢* - 1) = (¢s(q) + fo(q))) and

2(g+1)
2(g+1)

ifk=1 (mod4)
if k=3 (mod4)

fa(q) =

2
_5
2

QR
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Put

f1(q)
f3(q)
F(q)

Now we have

1q7%(q+1)°

q—l

7% (q-2)(g+1)?

(g+1)(¢*+1) ifk=0
(.0 51(G, k) + s (G, k) + s (G, k) + s*P (G, k) if keZ
s(GLk) = .
s2(G, k) if ke %Z\Z
s3(G, k) if ke 1Z\Z
If k € Z, then

S(G.k+1) = s3(Gk+2)+5:(G k+3)+s3(G,k+3)+5s(G,k)+S(G.k)
= 53(G.k+2)+52(G k+ %) +53(G k+ 5) +51(G, k) + (G, k)
+ §95(G, k) +5"(G, k) + S(G, k)

= (@D D)+ f2(@)a2 + Fi() + FH(@)g* +

Now put f(q)=(qg+1)+ fg(q)q% + f1(q) + f**(q), then

S(G,k+1)

(@® - 1)f(a)g* +qS* (k) +qS(G, k)

sP(G, k) + qSG, k),

= (@ - DF@@ +@F D) + (57(G k) + (G k- 1)) + ¢*S(G k- 1)

= (- DA+

Thus we deduce the following

k
+q"2) 4 Y s (GLi) + ¢"S(GL0),
i=1

S(G,k+1) = f(a)d"*(¢"" -

D+ [P (@)d* s

(+)1

+ 1570

2(k+1) -1

+q" M (g +1)(? +1)
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