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Abstract 

 

 

The mammalian gastrointestinal tract is home to a complex microbial community 

engaged in a dynamic interaction with the immune system. Mucus is the first point of 

contact of the microbiota with the host, acting as a first line of defence. Furthermore γδ 

intraepithelial lymphocytes (IELs) respond to the invading bacteria that circumvent the 

mucus barrier. In this study two approaches were used to investigate the role of mucus 

in intestinal homeostasis; firstly the impact of γδ IELs on the mucus layer, and secondly 

the adhesion properties of the gut symbiont Lactobacillus reuteri to mucus.  

 

To study the impact of IELs on mucus properties, a γδ T cell-deficient (TCRδ-/-) mouse 

model was used. TCRδ-/- mice showed increased susceptibility to dextran sodium 

sulphate (DSS)-induced colitis, alterations in mucin expression, glycosylation and 

goblet cell numbers, but maintained an intact mucus layer in vivo. Moreover, TCRδ-/- 

mice showed reduced levels of interleukin-33 mRNA, a mediator of mucosal healing. 

An ex vivo SI organoid model using input cells from TCRδ-/- mice showed, upon 

addition of keratinocyte growth factor, increases in crypt length, and both goblet cell 

numbers and redistribution. These findings provide novel mechanisms by which γδ 

IELs may modulate mucus properties, explaining the increased susceptibility of TCRδ-/- 

mice to chemically-induced colitis. 

 

L. reuteri strains protect against DSS-induced colitis in mice. To investigate the 

importance of L. reuteri adhesion to the intestinal mucus layer, the mucus-producing 

HT29-MTX cell line as well as murine and human intestinal tissues were used in 

conjunction with chemical treatments. The mucus-binding protein MUB of L. reuteri 

ATCC 53608 was found to promote L. reuteri adhesion to mucins in a host and tissue-

specific manner and display sialic acid-binding specificities. Together, these data 

provide insights into L. reuteri-mucus interactions; a key factor in influencing host 

response and exerting health effects. 
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PG   prostaglandin 

PGN   peptidoglycan 

pIgR   polymeric immunoglobulin receptor 

PNA   peanut agglutinin 
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PRRs   pattern recognition receptors 

PTS   proline, threonine and serine repeats 

PVDF   polyvinylidene fluoride 

qRT-PCR  quantitative reverse transcription polymerase chain reaction 

Rh   rhodamine 

RNA   ribonucleic acid 

RNase   ribonuclease 

RT   room temperature 

s  second(s) 

SabA  sialic acid-binding adhesin 

SasA  Staphylococcus aureus surface protein A 

SCFAs  short chain fatty acids 

SDS-PAGE  sodium dodecyl sulphate polyacrylamide gel electrophoresis 

SEA   sea-urchin sperm protein, enterokinase and agrin 

Ser   serine 

SI   small intestine 

SL   sialyllactose 

SNA-I   sambuccus nigra 

SP   sodium periodate 

SPF   specific pathogen-free 

SPR   surface plasmon resonance 

STs   sialyltransferases 

T/E   trypsin EDTA 

TA   transit amplifying 

TFF3   trefoil factor 3 

Thr   threonine 

TJs   tight junctions 

TLRs   toll like receptors 

TNB   tris NaCl blocking buffer 

TNF   tumour necrosis factor 

TR   texas red 

UC   ulcerative colitis 

UPR   unfolded protein response 

VNTR   variable number of tandem repeat 

vWF   von Willebrand Factor 
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WGA   wheat germ agglutinin 

wt   wild type 

wt/vol  weight per volume 

Zg  zymogen granulae 
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Chapter 1 Introduction 

 

 

1.1 Structure and function of the vertebrate gastrointestinal (GI) tract 

The human gastrointestinal (GI) tract is a system of organs that performs the functions 

of ingestion, digestion, absorption and defecation. While these functions render the GI 

tract a highly dynamic environment, factors such as temperature, regional pH, 

peristalsis and microbial biomass remain continuous. The GI tract can anatomically be 

divided into the upper GI tract (mouth, pharynx, oesophagus, stomach, and 

duodenum), and the lower GI tract (small intestine (SI), large intestine (colon) and 

anus) (Figure 1.1). The ~400 m2 surface of the adult human GI tract [1] is covered in 

mucus that is colonised by bacteria soon after birth. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1| Anatomy of the human GI tract. Shown are the upper and lower GI tract with their 

respective organ constituents [2].  

 

The intestinal epithelium is the most rapidly self-renewing tissue in adult mammals and 

forms a single-cell layer covering the length of the GI tract (Figure 1.2). It forms the 
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largest mucosal surface in the human body to create a barrier between the host, the 

bacteria residing in the GI lumen (microbiota) and luminal contents. While serving to 

absorb essential nutrients, the epithelium also functions to eliminate harmful pathogens 

that attempt to invade the underlying tissue. The intestinal epithelium is critically 

involved in the maintenance of intestinal immune homeostasis by providing a dynamic 

physical barrier between immune cells and the commensal bacteria, as well as by 

expressing antimicrobial peptides (AMPs) such as RegIIIγ (Figure 1.2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2| Structure of the human lower GI tract. Shown is the SI and colon epithelium with 

its protective features [3]. 

 

The colonic epithelium is a dynamic barrier that is in constant flux [4] and has a well-

defined architecture. The colonic mucosa forms invaginations known as crypts of 

Lieberkϋhn (Figure 1.3), embedded in connective tissue, whose folding nature provides 
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a large surface area for maximal absorption. Colonic crypts are composed of four 

different cell types, namely enterocytes, mucus-secreting goblet cells, stem cells and 

endocrine cells (Figure 1.3).  

 

 

 

Figure 1.3| Diagrammatic representation of the colon wall and a colonic crypt. Shown are 

the different wall components in the colon, and one interpretation of the position of the stem 

cells together with the other differentiated cell types in the colonic crypt [5]. 

 

Paneth cells are absent in the colon, but can be found in SI crypts. The epithelium of 

the murine SI renews every three to five days [6], with the exception of stem cells, 

which are pluripotent undifferentiated cells with the potential to self-renew, and Paneth 

cells [7]. Stem cells and their transit-amplifying (TA) daughter cells reside in the 

intestinal crypts [8]. While enterocytes predominate on the luminal surface, mucus-

secreting goblet cells are abundant in the crypt [9]. In the human SI, intestinal epithelial 

cells migrate from the base of the crypt to the villi where approximately 1010 cells are 

shed per day [10, 11]. The mechanism of cell shedding is central as abundant 

shedding must be achieved without a loss of intestinal barrier function. 5.3 % of villus 

sections contain a shedding cell, with an eosin-positive gap, devoid of cellular contents, 



24 

 

often seen within the epithelial monolayer beneath shedding cells [12, 13]. 

Furthermore, cells always undergo apoptosis during ejection from the monolayer [12]. 

 

 

1.2 The mammalian GI mucus layer 

Overlying intestinal epithelial cells (IECs) is the transparent mucus layer that forms a 

separation between the lumen and the host. The mucus layer serves to lubricate the 

mucosal surface, to protect underlying IECs from chemical and mechanical stress and 

bacteria, and as a transport medium between luminal contents and epithelial cells. 

Furthermore, it provides an habitat for commensal bacteria and signals to the 

underlying immune system. 

 

The understanding of the biological role of mucus has been limited due to experimental 

difficulties resulting from the large, oligomerised and highly glycosylated nature of 

mucins. Conventional tissue fixation methods cross-link proteins and cause the mucus 

layer to collapse, thus appearing as a thin film in stained tissue sections. Water-free 

Carnoy fixative is believed to conserve the mucus layer and provide results that are 

comparable with in vivo mucus thickness measurements [14, 15]. However, this 

approach has been difficult to replicate. To date three approaches are used to study 

mucus synthesis and secretion. In the human colon, [3H] glucosamine incorporation in 

cultured specimens has been used [16-18]. A major breakthrough in mucus studies 

was the development of an in vivo mucus thickness measurement system in 

anaesthetised rodents [19]. The third and most recent approach uses ex vivo mouse 

and human colon, and mouse SI, to measure mucus adhesion, properties, thickness 

and growth [20]. 

 

 

1.2.1 Structure and organisation of the mammalian GI mucus layer 

In the colon, the mucus layer overlying the IECs is composed of two layers; a firm inner 

layer that cannot be detached, and a loose outer later that can easily be removed by 

peristalsis and suction [20, 21]. Due to the similarities in the mucin and protein 

components of these two layers, it is most likely that the loose outer mucus layer is 
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formed from the firm inner mucus layer. Findings that bacteria produce proteases 

capable of disrupting the polymeric network of the inner mucus layer [22, 23] may 

indicate that bacteria play a role in the formation of the loose layer. In the colon, the 

firmly-attached stratified inner layer has been shown to exclude a majority of the 

bacteria, while the loose outer layer serves as a habitat for some intestinal commensal 

microbiota [24-26] (Figure 1.4A & 1.4B). The firm mucus layer is insoluble in the 

chaotropic salt guanidium choride (GuHCl), a property that may be a reflection of its 

function as a bacterial barrier [25]. The type of mucus that covers the SI, unlike the 

colon, is composed of a thinner single layer that is not attached to the epithelium and is 

permeable to bacteria [26, 27]. Mucus layer differences in the different GI tract 

locations suggest a functional organisation of the intestinal mucus barrier, where the SI 

has a loose and penetrable mucus that allows easy penetration of nutrients in contrast 

to the stomach where the mucus provides physical protection, and to the colon where 

the mucus separates bacteria from the epithelium [26]. A compact inner mucus layer in 

the SI would be detrimental to its primary function of nutrient absorption.  

 

 

 

 

Figure 1.4| Molecular organisation of the intestinal mucus layer. The colonic mucus (green) 

layer overlying the epithelium (e) is composed of a stratified inner layer (s) and an outer layer 

(o) (A). O provides a habitat for bacteria (red), whereas s excludes a majority of bacteria (B), as 

identified by 16S rRNA FISH staining [21]. 
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The thickness of the mucus layer varies along the GI tract (Figure 1.5), correlating with 

the microbial burden found in the respective GI regions [28]. In humans, the colonic 

mucus is thickest in the rectum, reaching up to 284.5 μm, and thinnest in the caecum 

[29]. In vivo mucus thickness measurements revealed that the mean mucus thickness 

in the colon of rats is 830±110 μm, and that the loose mucus layer performs a rapid 

regeneration following its removal by suction [19]. An ex vivo explant model confirmed 

a similar mucus thickness in mouse and human tissue, as previously reported in vivo, 

and represents the first study measuring mucus growth as a function of time in live 

human colon tissue [20]. Mucus regeneration and growth was observed in human (240 

μm/h) and mouse (100 μm/h) colon but not in mouse ileum [20].  

 

 

 

 

 

 

 

 

 

 

 

Figure 1.5| Schematic representation of mucus thickness along the GI tract. The in vivo 

thicknesses of the loose and firm mucus layers are shown in the corpus, antrum, mid-

duodenum, proximal jejunum, distal ileum and proximal colon of the rat GI tract [19]. 

 

 

The recent discovery of the molecular organisation of the two mucus layers has 

renewed interest in mucus research, with the potential of elucidating further defence 

mechanisms of the mucosal immune system. While the IECs with their tight junctions 

(TJs) were seen as the body’s main defence mechanism against opportunistic bacteria 
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and pathogens, new research may reveal a more important role of mucus than 

previously anticipated.  

 

 

1.2.2 Composition of the mammalian GI mucus 

Mucus has a high water content and is mainly composed of mucins, but is also made 

up of a wide variety of non-mucin proteins that are thought to contribute to mucus 

defense. Non-mucin proteins present in mucus include secretory immunoglobulin A 

(IgA), lysozyme, defensins and β-galectins. Mucus provides a matrix for AMPs and IgA 

secreted by IECs, which together restrain and separate commensal bacteria from the 

epithelial surface [30] (Figure 1.6). AMPs are produced in the SI by Paneth cells and 

include α-defensins, lysozymes, collectins, histatins and lectins such as RegIIIγ [31, 

32]. IgA is the dominant antibody produced in mammals, mostly secreted across 

mucus-covered membranes, especially in the intestine. The production of IgA is 

principally initiated in organised lymphoid tissues referred to as Peyer’s patches (PPs), 

where antigen is sampled, processed and presented by dendritic cells (DCs) to activate 

T cells, which ultimately leads to the development of IgA-producing plasma B cells in 

the lamina propria [33-35]. This plasma B cell-produced IgA is secreted into the inner 

and outer mucus layer [25, 36-38]. In mucosal secretions, IgA exists as a complex 

made of polymeric IgA in association with the secretory component (SC), called sIgA 

[39]. sIgA is formed from the cleavage from the polymeric immunoglobulin receptor 

(pIgR), expressed on the basolateral surface of epithelial cells, which ensures the 

transport of the immunoglobulin across the epithelium [39]. Secretory antibodies 

influence the commensal microbiota and contribute substantially to the capacity of the 

mucus to retain and clear potential pathogens [36, 38]. IgA fulfils a neutralising function 

by clearing potential pathogens at the epithelial interface [40, 41].  
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Figure 1.6| Composition of the intestinal mucus layer. The inner mucus layer is composed 

of mucin glycoproteins, antimicrobial proteins and immunoglobulin A (IgA) to maintain an 

environment that mainly excludes bacteria (adapted from [42]). 

 

 

The analysis of the protein composition of the two mucus layers in mouse colon 

identified more than 1000 proteins, a majority of which had an intracellular origin [43]. 

Among these, the Fc-gamma binding protein (Fcgbp), zymogen granulae protein (Zg) 

16 and calcium-activated chloride channel regulator (Clca) 1 were found strongly 

associated with Muc2 mucin, suggesting that these may aid in the stabilisation of this 

mucin [43]. Proteome analysis of the mucin granulae identified two further mucus 

vesicle-associated proteins (ATPase H+-transporting lysosomal accessory protein 2 

(ATP6AP2) and extended-synaptotagmin 2 (E-Syt2/FAM62B)) as novel potential actors 

in mucin vesicle secretion [44]. More recently, mucus composition was described not 

only in the colon, but along the whole length of the GI tract [45], confirming that this 

association with Muc2 mucin is extensible to the rest of the intestine, from stomach to 

colon. In light of Muc2 mucin being the major scaffold of intestinal mucus, this 

association of proteins with Muc2 mucin may suggest their involvement in mucus 

formation.  
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1.2.2.1 Mucins 

Mucins (MUC for humans and Muc for other species) belong to a family of high-

molecular-mass glycoproteins identified as the major structural components of mucus 

[46, 47]. All mucosal surfaces of the body comprise mucins, with the exact composition 

of the mucus layer relating to the demands of organ function. To date, twenty-two 

human mucins have been identified and can be classified into two categories on the 

basis of their structural characteristics: the secreted mucins, which can be further 

categorised into gel-forming (MUC2, MUC5AC, MUC5B, MUC6 and MUC19) and non-

gel-forming (MUC7, MUC8 and MUC9), and membrane-bound mucins (MUC1, 

MUC3A, MUC3B, MUC4, MUC10,  MUC11,  MUC12, MUC13, MUC15, MUC16, 

MUC17, MUC18, MUC20 and MUC21) [48]. For the majority of these mucins, 

homologues have been identified in rats and mice (Table 1.1). All mucins are involved 

in mucosal integrity, but the precise function of various secreted and membrane-bound 

mucins is not yet entirely known.  

 

 

Table 1.1| Human MUC genes with homologues in rats and mice. 

Gene Function GeneAtlas location of 
highest expression 

Selected references 

MUC1 Cellular signal transduction, 
barrier activity 

Lungs [49, 50] 

MUC2 Primary extracellular matrix 
constituent in colon, lubricant 

activity 

Colon  [50, 51] 

MUC3A Epithelial cell protection, 
adhesion modulation, and 

signalling 

Various [52] 

MUC3B Possibly cellular signal 
transduction 

Various [52] 

MUC4 Intestinal epithelial cell 
differentiation, renewal, 

lubrication 

Colon [53, 54] 
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MUC5B Primarily lubricant Various [55, 56] 

MUC5AC Major airway mucin, Intestinal 
epithelial cell differentiation 

Trachea, Lungs [57, 58] 

MUC6 Unknown, involved in renal 
morphogenesis processes 

Pancreas, GIT, reproductive 
system 

[58-60] 

MUC7 Facilitating clearance of oral 
bacteria 

Salivary gland [61, 62] 

MUC12 May be involved in epithelial 
cell regulation 

Colon [63] 

MUC13 Barrier function in epithelial 
tissues 

Pancreas, small intestine, 
colon 

[64] 

MUC15 Barrier function in epithelial 
tissues 

Testis Leydig cell [65] 

MUC16 Unknown, plays a role in 
ovarian cancer 

Lymph nodes, respiratory 
tract 

[66, 67] 

MUC17 Extracellular matrix constituent, 
lubricant activity 

Small intestine, stomach [68, 69] 

MUC19 Major gel-forming mucin in the 
human middle ear 

Secretory cells of the ears 
and eyes 

[70] 

MUC20 Cellular signal transduction Intestine, respiratory and 
urinary tract 

[71] 

 

 

1.2.2.2 Mucin glycosylation 

Apomucin is the basic structure of a mucin and it is made up of a core protein 

backbone with numerous O-linked oligosaccharides and N-glycan chains. Tandemly 

repeated (TR) motifs rich in proline, threonine (Thr) and serine (Ser) residues (PTS) 

provide potential sites for extensive O-glycosylation [46, 72]. Marked heterogeneity in 

the apomucin and oligosaccharide side chains and high carbohydrate content are 

characteristic for mucins [73]. Mucins are decorated with a dense array of complex O-
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linked carbohydrates assembled by the sequential action of glycosyltransferases 

(GTs). The synthesis of mucin oligosaccharides starts with the transfer of N-

acetylgalactosamine (GalNAc) to Ser and Thr residues of the mucin core [74]. The 

oligosaccharides may be extended with galactose (Gal), N-acetylglucosamine 

(GlcNAc), GalNAc, fucose or sialic acid (Neu5Ac) [75]. These terminal mucin O-

glycans have been proposed to serve as preferential binding sites for intestinal bacteria 

[48]. In human intestinal mucin, sialic acid increases proportionally from the ileum to 

the rectum, with a reverse gradient of fucose [76, 77]. The O-glycan structures 

associated with Muc2 showed that the colon is enriched for sulphated residues [78]. 

Eight core structures of the mucin O-glycan chain have been identified [79] (Figure 

1.7).  

 

 

 

 

Figure 1.7| The eight different reported core structures of mucin-type O-glycans. The 

linkage positions are illustrated by the line connecting the monosaccharides, and all linkages 

not labelled with α are β-anomers. As illustrated, many of the cores have the same mass [79]. 

 

The O-glycan structures present in SI and colonic mucins consist predominantly of core 

1-4 mucin-type O-glycans containing GalNAc, galactose and N-acetyl-glycosamine 

[75]. In humans, core-3 and core-4 structures make up the majority of colonic mucin 

glycans terminated with Neu5Ac [80, 81], whereas murine colonic mucins are instead 
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characterised by core-1 and core-2 structures with only low amounts of core-3 and 

core-4 type glycans [82, 83]. In the human SI, the main mucin core structure is core-3, 

whereas in murine SI mucins core-1 and core-2 glycan structures predominate [77, 84, 

85]. 

 

 

1.2.2.3 Mucin biosynthesis and structure 

MUC2/Muc2 is the most abundantly expressed secretory mucin in the SI and colon of 

humans, mice and rats [86], and constitutes the structural component of the mucus 

layer. Human MUC2 consists of 5,179 amino acids and contains multiple domains 

arranged in the following order (Figure 1.8): von Willebrand Factor (vWF) D1 domain 

(D1), D2, D′ and D3, first CysD, small PTS, second CysD, large PTS (tandemly 

repeated), C-terminal vWF D4, B, C, and a cystine-knot (CK) domain [87]. 

 

 

 

 

 

 

 

Figure 1.8| Diagram of the MUC2 protein core. The protein termini contain cysteine-rich 

regions homologous to von Willebrand Factor (vWF) domains (a); The N-terminal regions of 

MUC2 proteins contain vWF domain homologues D1, D2, D’, and D3 and the C-terminal regions 

contain vWF domain homologues D4, B, C and CK. These terminal domains are responsible for 

the extensive polymerisation between mucin monomers, along with the cysteine-rich 

interruptions between glycosylated tandem repeats (b); The first of the two repetitive domains 

(c) contains 21 repeats of an irregular motif, whereas the second domain (d) is formed of 50-

115 tandem 23 aa motifs (PTTTPITTTTTVTPTPTPTGTQT). Threonine in the repeats are O-

glycosylated, forming a densely packed envelope of short branched carbohydrate chains 

surrounding these regions (adapted from [88]). 

 

During biosynthesis, the primary translational product of full-length MUC2 is quickly 

dimerised in the endoplasmic reticulum (ER) via disulphide bonds in the CK domain 

NH
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[89]. The dimers pass through the Golgi apparatus, where the two PTS domains 

become O-glycosylated to form the two mucin domains. In the trans-Golgi network, the 

glycosylated dimers are then trimerised by disulphide bonding in the vWF D3 [90]. 

Figure 1.9 shows a schematic representation of the MUC2 mucin with its adopted net-

like sheet structure, in comparison with the membrane-tethered MUC1 mucin. During 

unpacking the MUC2-N ring structure is disrupted, and the mucin domains begin to 

separate. The net is formed by N-terminal vWF D3 disulphide-linked trimers and C-

terminal disulphide-linked dimers of the CK domains. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.9| Schematic representation of the intestinal membrane-bound and gel-forming 

mucins. Shown are the mucin protein cores (blue) with their associated oligosaccharides (red) 

in the stratified inner mucus layer (s). The net-like sheet structure adopted by MUC2 is 

composed of trimeric disulphide-linked MUC2-N in the sheet corners and dimeric MUC2-C 

along the sides (adapted from [27]). 

 

MUC1 is the most extensively studied membrane-bound mucin and is the most 

ubiquitously expressed mucin across all mucosal surfaces (Figure 1.10). Membrane-
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bound mucins, such as MUC1 and MUC3, cover the apical surface of mucosal 

epithelial cells and contain large extracellular variable number of tandem repeat 

(VNTR) domains predicted to form rigid extended structures [91]. The cytoplasmic 

domain (Cd) is anchored into the epithelial cell membrane and appears to interact with 

the cytoskeleton and secondary signalling molecules [92-94]. A series of studies have 

demonstrated a diverse role of the Cd of MUC1 in intracellular signalling, with potential 

roles in the physiology of malignant and non-malignant cells; MUC1 Cd 

phosphorylation via kinases and cell-surface growth factor receptors variously alters 

the interactions of MUC1 with other proteins such as β-catenin and heat shock protein 

90 kD [91, 95-98]. Such interactions are required for the movement of MUC1 Cd to the 

nucleus or mitochondria, where MUC1 is involved in activating β-catenin-responsive 

genes and contributing to the resistance to apoptosis and killing by anti-tumour drugs 

[99-101]. The enormous extracellular mucin domain, ranging from one million up to 

more than ten million Da in mass [27], interacts with extracellular matrix components 

and other cells [102-106]. During synthesis most membrane-bound mucins are cleaved 

in the sea-urchin sperm protein, enterokinase and agrin (SEA) module, and remain 

non-covalently associated through biosynthesis [107, 108]. The extracellular subunit 

can be shed from the cell surface via cleavage [109, 110] or physical shear forces 

[108]. 
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Figure 1.10| Diagram of the MUC1 domain organisation. The trans-membrane (Tm) MUC1 

mucin is cleaved in the sea-urchin sperm protein, enterokinase and agrin (SEA) module, in the 

endoplasmic reticulum (ER), to form an extracellular subunit and a Tm subunit. The extracellular 

VNTR domain is heavily O-glycosylated, and the complex cytoplasmic domain (Cd) is involved 

in intracellular signal transduction (adapted from [111]). 

 

 

1.2.3 Functional importance of mucus in health and disease 

Historically, mucus has been associated with protection, lubrication and hydration of 

the intestinal epithelial layer. Today, the mucus layer is known to play a role in the 

maintenance of intestinal homeostasis and microbial interactions. The involvement of 

mucins in epithelial cell renewal and differentiation, cell signalling, and cell adhesion 

suggests that the aberrant expression or secretion of mucins may impact on IEC 

function and immune signalling. Indeed, patterns of mucin expression are altered in 

inflammatory bowel diseases (IBD), cancers and infection [111, 112]. IBD is a collective 

term for chronic relapsing inflammatory conditions occurring in the GI tract [113, 114]. 

Crohn’s disease (CD) and ulcerative colitis (UC) are two complex forms of IBD. CD and 

UC show a similar prevalence of 100-150 per 100,000 individuals of European ancestry 

[115], but show biological differences; CD is a T helper 1-driven disease that can affect 
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any region of the intestine, whereas UC is a T helper 2-driven disease where 

inflammation is limited to the colonic mucosa [114, 116, 117]. Like most complex 

diseases, CD and UC result from a combination of genetic and non-genetic risk factors. 

An imputation-based association analysis using autosomal genotype-level data from 

fifteen genome-wide association studies (GWAS) of CD and/or UC identified 163 IBD 

loci, 71 of which are novel associations [118]. Of these, 110 loci are shared between 

DC and UC, while 30 loci are classified as CD-specific and the remaining 23 loci as 

UC-specific. Interestingly, risk alleles at two CD risk loci showed protective effects in 

UC, which may be a reflection of the biological differences between these two diseases 

[118]. Of interest here is the association of coding variants in MUC19 with IBD [119]. 

Alterations in mucin expression, maturation and secretion commonly occur in both CD 

and UC.  

 

 

1.2.3.1 Impact of mucus thickness on barrier permeability 

Cystic fibrosis (CF) lung disease is caused by mutations in the cystic fibrosis 

transmembrane conductance regulator (CFTR) gene and is the most common genetic 

form of chronic obstructive pulmonary disease (COPD) [120]. A key element of both 

chronic and obstructive lung disease, and CF, is the overproduction of mucins in the 

lungs [121]. The mucus layer of patients with active UC is often thinner and more 

discontinuous [122]. In the healthy colorectal epithelium MUC2 is abundantly 

expressed in bulky apical granules of the goblet cells [123]. A complete disappearance 

of MUC2 has been observed in CD lesions [124]. The causality of this effect has been 

investigated using mice deficient in Muc2 (Muc2-/-), which develop spontaneous chronic 

intestinal inflammation [125]. Muc2-/- mice show an increase in lymphocyte infiltration, 

significant growth retardation, failure to gain weight, and develop gross rectal bleeding 

that is not observed in Muc2+/+ or Muc2+/- mice [125]. Increased proliferation and 

survival of epithelial cells in Muc2-/- mice may be a direct consequence of the exposure 

of IECs to the luminal contents [126]. The finding that Muc2-/- mice have bacteria in 

direct contact with the epithelium (Figure 1.11A), and far down the crypt, with 

inflammation and cancer development [25], supports the proposed protective role of 

MUC2 in barrier function.  
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The dextran sodium sulphate (DSS) model of experimental colitis is one of the most 

widely used animal models of colitis [114]. Exposure of mice to DSS shows that the 

firm inner mucus layer is no longer free from bacteria, compared to control mice not 

treated with DSS (Figure 1.11B) [127]. After 24 h of DSS-treatment, the inner mucus 

layer has largely disappeared, completely losing its organisation after 120 h of DSS-

treatment (Figure 1.11B), indicating that alterations in the mucus layer contribute to the 

colitis phenotype induced by DSS.  

 

These studies indicate the importance of a functional mucus layer in maintaining an 

homeostatic relationship with the microbiota and protecting the underlying epithelium.  
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Figure 1.11| Functional importance of mucus. FISH using the EUB338-Alexa Fluor 555 

probe (staining bacteria), and DAPI (DNA staining) in the colon show a clear separation of the 

bacterial DNA and the epithelial surface in WT mice, but not Muc2
-/-

 mice. This separation 

corresponds to the stratified mucus layer (s) (A). Localisation of bacteria in the colon mucus of 

mice after DSS treatment for 12, 24, and 120 h, or in untreated control (control). The EUB338-

Alexa Fluor 555 probe and anti-Muc2 specific antiserum were used to monitor bacterial 

penetration and loss of mucus organisation (B). Stratified inner layer (s); outer layer (o); scale 

bars 50 µm (A), 100 µm (B) (adapted from [25, 127]). 

 

 

1.2.3.2 Impact of differential mucin expression and glycosylation 

In humans, the membrane-bound mucin gene cluster has been implicated in genetic 

susceptibility to IBD [128]. Ectopic expression of the gastric mucins MUC5AC and 

MUC6 have been observed in CD, suggesting a role of these mucins in wound healing 

in addition to their protective function [124]. Upregulation of MUC2 transcription in 

mucinous carcinoma is caused by altered epigenetic and genetic regulation of MUC2, 

A B 
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such as MUC2 promoter hypomethylation [129]. MUC1 is overexpressed and 

profoundly hypo-glycosylated in the majority of human adenocarcinomas and their 

precursor lesions [123], including human IBD [130]. Muc1-/- mice have a thinner inner 

mucus layer that cannot be removed by suction [131], demonstrating that Muc1 is 

involved in the regulation of mucus amount and mucus formation, but does not 

contribute to the attachment of the gastric mucus layer. Muc13 and Muc17 mucins are 

the main membrane-bound mucins expressed in the intestine under normal 

physiological conditions [27, 112]. Mice deficient in cell-surface Muc13 develop more 

severe acute colitis in response to DSS treatment [132]. Muc17 expression is lost in 

inflammatory, and early and late neoplastic conditions in the colon [133].  

 

Deficiency in the cell-surface Muc1 predisposes mice to intestinal infection with the GI 

pathogen Campylobacter jejuni (C. jejuni) [134] and the gastric pathogen Helicobacter 

pylori (H. pylori) [135], indicating that Muc1 on the mucosal surface forms a crucial 

element in the protection against these pathogens. In H. pylori infection Muc1 acts by 

steric hindrance, physically distancing the bacteria from the host cell, and by a release 

decoy through the detachment of the extracellular domain, preventing prolonged 

adhesion. Furthermore, Muc1 coating of H. pylori via its adhesins Blood group Antigen 

Binding Adhesin (BabA) and Sialic Acid Binding Adhesin (SabA), limits anchorage to 

the epithelium by blocking these key adhesins [136]. Infection with the attaching and 

effacing bacterial pathogens Escherichia coli (E. coli) and Citrobacter rodentium (C. 

rodentium) causes a dramatic goblet cell depletion in mice, and Muc2 production was 

shown to be critical for host protection during such infections, by limiting overall 

pathogen and commensal numbers associated with the colonic mucosal surface [137, 

138] 

 

Mucin glycosylation changes have been reported to coincide with inflammation in acute 

infection and IBD [139]. Alterations in mucin glycosylation cause a defective mucus 

barrier with increased permeability and susceptibility to DSS-induced colitis [127]. Loss 

of core-1-derived O-glycans in C1galt1-/- mice causes the rapid induction of severe 

spontaneous colitis that closely resembles human UC; dramatic thinning and increased 

permeability of the inner mucus layer [140, 141]. Similarly, mice lacking core-2 β1,6-N-

acetylglucosaminyl-transferase demonstrate increased intestinal permeability and 

increased susceptibility to DSS-induced colitis [142]. Mice lacking core-3 β1,3-N-

acetylglucosaminyl-transferase with defective O-glycans, causing decreased Muc2 
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synthesis, increased intestinal permeability and susceptibility to DSS-induced colitis 

[143].  

 

Together these findings indicate that mucins are active participants in the disease 

pathogenesis that with inappropriate expression or function can perpetuate chronic 

inflammation and also help drive cancer development. However whether alterations in 

mucins are a primary contributor to the disease cause or a consequence of 

inflammation, and whether the effect is direct or indirect, is currently under 

investigation.  

 

 

1.2.4 Mechanisms of mucin regulation 

The regulation of mucins in normal and pathological states is influenced by an 

elaborate signalling network initiated by environmental cues, immune cells, and IECs. 

A large number of biologically active molecules, such as cytokines, growth factors, 

bacterial products, and other factors, including pH and calcium (Ca2+) concentration, 

have been shown to regulate mucin synthesis (in vitro and in vivo) in IECs. 

 

The pH along the secretory pathway shifts gradually, from 7.2 in the ER to 6.0 in the 

trans-Golgi network and to 5.2 in the secretory granulae, at the same time as the 

intragranular Ca2+ concentration increases. The correct packing and expansion of 

MUC2 requires an increase in pH and Ca2+ removal [144]. The understanding of the 

packing and release of mucins has important medical implications, such as in cystic 

fibrosis. Because a correct expansion requires a fast pH increase and Ca2+ removal, 

HCO3
−-containing natural buffers, which fulfil both demands, are likely to be crucial. For 

example, the cystic fibrosis conductance regulator channel secretes HCO3
− and is 

required for intestinal mucus release [145-147]. Lower amounts of HCO3
− present 

during mucus secretion would potentially slow down and stop expansion, due to the 

MUC2 N-terminal rings still being intact. This may cause the viscous mucus phenotype 

of the disease cystic fibrosis. 

When the pH in the gastric lumen is acidic, the mucus layer is important for 

establishing and maintaining a pH gradient with a neutral pH in the mucus closest to 

the epithelium. Under normal conditions, the loosely adherent mucus layer of the 

gastric corpus is not needed for maintaining this neutral pH [148], indicating that the 
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firmly adherent mucus layer is more important in protecting the gastric mucosa from 

corrosive acid. The loosely adherent mucus layer has other functions, such as binding 

luminal noxious agents, binding swallowed nitrite, and continuously releasing nitric 

oxide (NO) [149]. Prostaglandins (PGs) are important in gastric mucosal protection, 

and the severe GI side effects of non-steroidal anti-inflammatory drugs (NSAIDs) have 

to some extent been attributed to the inhibition of the PG-synthesising enzymes and 

concomitant reduced gastric mucus thickness [150, 151]. In addition, in vitro studies 

have reported that PGE2 and NO stimulate mucus secretion and that the mucus layer 

can be altered, such as by a reduction in mature mucin glycosylation, by proteases 

originating from enteric parasites [23, 152-155]. In rats, application of luminal PGE2 

increased total mucus accumulation rate more than four times compared with control 

rats, and was shown to be due to increased accumulation of both the firm and the 

loose mucus layers [131]. NO present in the gastric mucosa can be either nitric oxide 

synthase (NOS)-derived or generated non-enzymatically in the gastric lumen [156, 

157]. Luminal NO stimulation results in an amplified total mucus accumulation rate, 

compared with untreated rats and mice, and occurs due to increased growth of the firm 

mucus layer but not an increase in the loose mucus layer [131]. Neuronal nitric oxide 

synthase (nNOS) is found in the gastric surface mucus cells and has previously been 

suggested to be involved in mucus secretion [153, 158, 159]. Inducible NOS (iNOS)-

derived but not nNOS-derived NO increases mucus accumulation [131]. Furthermore, a 

new gastroprotective role for iNOS is shown through iNOS-deficient mice, which have a 

thinner firmly adherent mucus layer and a lower mucus accumulation rate [131]. 

 

Cytokines are products of immune cells that are pivotal to important pathophysiological 

processes, including inflammation. For example, interleukin (IL)-10 contributes to 

maintaining intestinal homeostasis by suppressing pro-inflammatory cytokine 

production [160-162]. In case of Muc2 deficiency, anti-inflammatory IL-10 can control 

epithelial damage to a limited extent [163]. Furthermore, studies using Muc2/IL-10 

double knock-out (DKO) mice demonstrate that combined abnormalities in 

immunoregulatory and epithelial factors greatly accelerate and exacerbate colonic 

inflammation [163]. Tumour necrosis factor (TNF)-α, interferon (IFN)-γ and IL-6 are 

significantly upregulated systemically in the Muc2/IL-10 DKO at 5 weeks of age. These 

pro-inflammatory cytokines play a pivotal role in the pathogenesis of IBD [160-162].  
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A further feature of IBD is protein misfolding and endoplasmic reticulum (ER) stress. 

ER stress is emerging as an important contributor to the pathology observed in IBD 

[164, 165]. Murine models show that defective protein folding or disruption of the 

unfolded protein response (UPR) causes ER stress and spontaneous intestinal 

inflammation [166-171]. IL-10 directly modulates conditions within the ER, regulating 

MUC2 synthesis and secretion under adverse conditions [155]. Furthermore, IL-10 

directly regulates MUC2 synthesis and secretion, and when IL-10 is deficient, MUC2 

misfolding, ER stress and activation of the UPR occur [155].  

 

The epigenetic mechanisms of human mucin family genes are gradually emerging. 

Recruitment of diverse transcription factors to mucin genes results in their epigenetic 

modification by mechanisms including DNA methylation, histone methylation, and 

histone acetylation/deacetylation [172, 173]. For example, DNA methylation analysis 

revealed that MUC1 gene expression is regulated by DNA methylation and histone H3 

lysine 9 modification at the MUC1 promoter [174]. Furthermore, CpG methylation near 

the MUC2 transcriptional start site plays a critical role in MUC2 gene expression [175]. 

Hypomethylation of MUC2 plays an important role in the high level of MUC2 expression 

in mucinous colorectal cancer [129]. This control of cell differentiation in the GI tract is 

mediated by several transcription factors, especially those belonging to the hepatocyte 

nuclear factor (HNF), GATA and Caudal-related (Cdx) families [176-180]. For example, 

GATA transcription factors are zinc finger proteins belonging to a family of transcription 

factors involved in development and cell differentiation. During embryonic development 

GATA-4 mRNA is expressed in the primitive intestine [181, 182] in which Muc2 is also 

found [183]. Computer analysis of the murine Muc2 promoter sequence [184] revealed 

the presence of several putative GATA binding sites throughout the promoter region. 

GATA-4 is expressed in Muc2-expressing goblet cells in the SI, appears as an 

important general regulator of Muc2 expression and identifies Muc2 as a target gene of 

GATA-4 in differentiated intestinal mucosa and metaplastic stomach [185]. Further 

studies are needed to elucidate the relationships among expression levels of mucins, 

binding of transcriptional regulatory factors, and recruitment of DNA methyltransferases 

(DNMTs), histone deacetylases (HDACs), methylated DNA binding domain proteins, 

and polycomb group proteins. 
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Together, the above shows that mucin regulation results from a dynamic interaction of 

IECs and the host immune system. Such balanced interactions are necessary for the 

maintenance of intestinal mucosal homeostasis. Increased knowledge of the 

mechanisms involved in mucin regulation is vital for the prevention of mucin changes in 

cancer and inflammatory conditions.  

 

 

1.3 The human GI immune system 

1.3.1 Structure and function of the GI immune system 

The GI immune system has the challenge of responding to pathogens while remaining 

relatively unresponsive to food antigens and the commensal microbiota. The healthy GI 

mucosa contains the largest repository of immune cells within the human body [186]. 

After the mucus barrier, the innate immune system serves as the body’s second line of 

defence against invading organisms. This system is non-specific, immediate, and is 

composed of various cell types; innate leukocytes and phagocytic cells, including 

natural killer (NK) cells, mast cells, macrophages and DCs along with various 

granulocytes [187]. The intestinal immune system has co-evolved with the microbiota; 

a symbiotic relationship that may be threatened by opportunistic invasion of the 

microbiota. It is well established that colonisation with bacteria is critical for the normal 

structural and functional development and optimal functioning of the mucosal immune 

system. For example, germ-free mice exhibit smaller PPs [188] and fewer 

intraepithelial lymphocytes (IELs) [189], compared to specific pathogen-free or germ-

free mice colonised with single or multiple species of bacteria. 

 

The exposed surface of the intestinal mucosa is under constant challenge by ingested 

foreign antigens in micro-organisms, products of food digestion and drugs. It is 

therefore not surprising that the intestine contains the largest accumulation of lymphoid 

tissues in the body, known as the gut-associated lymphoid tissue (GALT), in the form of 

lymphoid aggregates in PPs and in the lamina propria (solitary lymphoid nodules), and 

as the scattered lymphocyte populations found in the epithelium and in the lamina 

propria. One of the key functions of the GALT is to distinguish innocuous antigens from 

pathogenic micro-organisms and to elicit an appropriate response. Antigens can cross 

the epithelial surface through breaks in TJs, as for example at villus tips where 



44 

 

epithelial cells are shed, or through the follicle-associated epithelium (FAE) that 

overlies the organised lymphoid tissues of the intestinal wall [190]. PPs are aggregates 

of lymphoid tissue found in the SI, although a vast number of much smaller individual 

follicles also line both the SI and colon. FAE contains M cells whose function it is to 

transport luminal antigens into the follicle [190]. Antigen-presenting DCs form a bridge 

between the innate and adaptive immune system by sending processes between gut 

epithelial cells and sampling commensal and pathogenic gut bacteria, which can 

subsequently be presented to T and B cells to initiate and adaptive immune response 

[191, 192]. The gut epithelial barrier therefore represents a highly dynamic structure 

that limits, but does not exclude, antigens from entering the tissues, while at the same 

time the immune system continuously samples gut antigens through the FAE and DC 

processes (Figure 1.12). 
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Figure 1.12| Maintenance of an extensive immune system in the intestine. M cells 

continuously transport luminal bacteria and antigens into the lymphoid tissue. DCs sample 

bacteria by sending processes through the epithelial barrier. CD8+ and CD4 T cells, 

macrophages and IgA-producing plasma cells make an enormous contribution to the body’s 

defence. Regulatory T cells and immunosuppressive cytokines serve to inhibit potentially 

damaging T cell responses [187].  

 

 

In the intestinal tract of a healthy individual, microbial and food antigens initiate a low 

level immune response, maintained in a primed but inactive state of suppression [193]. 

Oral tolerance refers to physiologic induction of tolerance that occurs in the GALT and 

more broadly at other mucosal surfaces, such as the respiratory tract [194-196]. Oral 

tolerance and homeostasis are maintained by lymphocytes expressing cell surface 

markers and anti-inflammatory properties in the GALT. Many inflammatory processes 

are self-limiting, supporting the existence of endogenous anti-inflammatory 

mechanisms. This homeostasis is often disturbed in IBD, during which abnormal 

immune responses to luminal bacteria play a key role in disease pathogenesis [197]. 

When a disease state is initiated, a potent inflammatory response is orchestrated. The 



46 

 

constitutive presence and trafficking of immune cells into the mucosal compartment 

has been termed physiologic inflammation [198]. The production of cytokines and other 

inflammatory mediators can lead to tissue damage and a chronically inflamed mucosa 

[199]. 

 

The exact mechanism of molecular recognition of commensal organisms, food antigens 

and pathogens by the colonic epithelial surface is still unclear [200]. Pathogen 

recognition receptors (PRRs) expressed by IECs can induce inflammation upon 

receptor activation. Toll like receptors (TLRs) consist of ten human PRRs that are 

homologous to the Drosophila Toll protein [201]. In the human SI, the expression of 

TLR3, TLR4 and TLR5 has been shown on the basolateral surfaces of villus 

enterocytes [202]. In the human colon, TLR3 and TLR5 are abundantly expressed, 

whereas TLR2 and TLR4 expression is low [202]. TLRs recognise microbe-associated 

molecular patterns (MAMPs) in the intestine, which are specific to prokaryotes, and 

translate them into signals for the expression of antimicrobial peptides, barrier 

strengthening and proliferation of IECs [203]. TLR co-operation helps to establish a 

combinatorial repertoire that is able to differentiate between the abundant MAMPs that 

can be found in nature. In the TLR signalling pathway the adaptor MyD88 was first 

characterised to play a crucial role, but recent accumulating evidence indicates that 

TLR signalling pathways consist of a MyD88-dependent pathway that is common to all 

TLRs, and a MyD88-independent pathway that is atypical to the TLR3- and TLR4 

signalling pathways [204]. A signalling cascade leads to the activation of the rapid-

acting primary transcription factor nuclear factor (NF)-кB. This transcription activates 

the expression of genes involved in cell proliferation and inhibition of apoptotic 

pathways. The essential role for NF-κB in the expression of pro-inflammatory genes, 

such as TNF-α, IL-1β, IL-6, and IL-8, has led to a vast effort to develop inhibitors of this 

pathway to aid the treatment of chronic inflammation [205].  

 

Cytokines are a class of small secreted proteins, induced mostly by the activation of 

NF-κB, and are extensively involved in cellular communication; orchestrating and 

regulating the processes of immunity and acute and chronic inflammation. Cytokines 

drive the differentiation of CD4+ T cells into T-helper (TH) 1 (IL-12), TH2 (IL-4), and 

TH17 (IL-6, TGFβ) cells (Figure 1.13) [206-210]. The effects of both acute and chronic 

inflammation in IBD are likely to result from the unregulated production of pro-

inflammatory cytokines, such as TNF-α, IL-1 and IL-6, or the inadequate synthesis of 
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anti-inflammatory cytokines, such as IL-4 and IL-10 [211]. The pro-inflammatory 

cytokines, TNF-α and IL-6, increase mucin secretion in the human colonic LS180 cell 

line, and increase expression of MUC2, MUC5AC, MUC5B and MUC6 [212]. The TH2 

cytokines IL-4 and IL-9 induce MUC2 and MUC5AC expression, respectively, and 

mucin production in airway epithelial cells [213-215]. Studies in IL-4 transgenic mice 

showed that IL-4 induces MUC5AC transcription in non-ciliated cells followed by 

MUC5AC mucin protein synthesis [216]. The ability of IL-1 to trigger mucin release and 

to upregulate MUC gene expression was shown in studies of perfused rat colons [217] 

and the LS180 cell line [212]. 

 

 

 

 

Figure 1.13| General scheme of T-helper cell differentiation. Naive CD4
+
T cells can 

differentiate into one of three lineages of effector T helper (TH) cells; TH1, TH2 or TH17 cells. 

These cells produce different cytokines and have distinct immunoregulatory functions [210]. 

 

 

A defective or eroded mucus layer can result in a large number of bacteria bypassing 

the epithelial barrier and binding to TLRs. The subsequent cytokine release activates a 

strong immune response, decreasing the pH and causing the production of inorganic 

NOs [218, 219]. This causes structural changes in the epithelium, such as the opening 

of TJs that serve as intercellular seals, allowing further bacterial invasion and 

subsequent unfavourable immune activation [220]. Such events occur in inflammatory 

conditions such as IBD. 
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1.3.2 Intestinal intraepithelial lymphocytes (IELs)  

Through their immediate proximity to antigens in the intestinal lumen and their direct 

contact with enterocytes, IELs form a potentially important early line of immune 

defense against invading pathogens [221, 222]. IELs can be split into “type a” that are 

either TCRαβ+CD8αβ+ or TCRαβ+CD4+, or “type b” that consist of the CD8αα+ 

population (TCRαβ and TCRγδ) and the double negative TCRγδ [223]. More than 80 % 

of human and mouse IELs express CD3 and other markers consistent with their 

classification as T cells [224, 225]. Higher numbers of IELs are present in the SI (1 IEL 

for every 10 IECs) compared to the large intestine (1 IEL for every 40 IECs) [226]. IEL 

numbers are affected by species [227] and external factors, such as the intestinal 

microbiota [228-230]. 

 

The differentiation, activation and functional specialisation of IELs is controlled by 

interactions with other cell types and soluble factors, and is highly influenced by dietary 

and microbial products in the intestine. “Natural” IELs (type b) acquire their activated 

phenotype during development in the thymus in the presence of self-antigens, whereas 

“induced” IELs (type a) are the progeny of conventional T cells that are activated post-

thymically in response to peripheral antigens [231, 232] (Figure 1.14). IELs 

demonstrate regulatory functions and inhibit excessive inflammatory responses that 

could be harmful to epithelial barrier integrity [233-237] (Figure 1.14A). However, their 

heightened activation status and proximity to the intestinal epithelium suggest that IELs 

may add to immunopathological responses and inflammatory diseases such as IBD 

[238-241] (Figure 1.14B).  
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Figure 1.14| The light and the dark side of IELs. Natural and induced IELs have beneficial 

roles and preserve the epithelium (A), but can also have pathogenic roles by promoting 

inflammation and through excessive cytotoxicity (B) [232]. 

 

 

1.3.3 Gamma delta (γδ) IELs in the mammalian GI epithelium 

TCRγδ+, identified almost thirty years ago [242], constitute up to 60 % of SI IELs [224, 

231, 243]. IELs bearing the γδ T cell receptor are strategically intercalated between 

IECs on the basolateral side of the intestinal TJ barrier (Figure 1.15), for immediate 

detection of bacteria that penetrate the epithelium. γδ IELs are thought to provide a link 

between the innate and adaptive immune responses, being able to recognise both 

native protein antigen and non-protein in a major histocompatibility complex (MHC)-

independent manner [244-246]. IEL subsets can be both thymically derived and 

matured within the intestine, and develop extra-thymically from precursors within the 

intestine [247-249]. The location and level to which this IEL development occurs 

depends on age; increasing presence of γδ IELs in athymic nude mice with age 

revealed that the extra-thymic lymphopoiesis in the gut increases with age [229, 249]. 

Both thymic and extra-thymic development of γδ IELs is dependent on the IL-7 

cytokine, as shown in IL-7-/- mice that lack functional γδ IELs [250-252].  
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Figure 1.15| Location of γδ IELs in the SI epithelium.  γδ IELs are strategically intercalated 

between epithelial cells (A) [253]. Transmission electron micrographs show that multiple γδ IELs 

are tightly encased in the epithelium without any visible gaps (B), while scanning electron 

micrographs show γδ IELs in contact with IECs through spine-like processes and ample space 

at the basement membrane to move to and fro (C) [254]. 

 

 

Despite published findings on the role of γδ IELs during epithelial repair, inflammation 

and homeostasis, their functions are not fully understood. The absence of γδ IELs is 

associated with a reduction in epithelial cell turnover and a down-regulation of the 

expression of MHC class II molecules, indicating that γδ IELs regulate the generation 

and differentiation of intestinal epithelial cells to maintain a homeostatic environment 

[255]. γδ IELs secrete cytokines, chemokines and epithelial growth factors to recruit 

inflammatory cells, and are active contributors to the promotion of epithelial restitution 

following injury [255-257]. Intestinal epithelial progenitor proliferation and villus growth 

is brought about through the localised delivery of keratinocyte growth factor (KGF) by 

γδ IELs, a unique feature of this T cell population [256, 258]. KGF causes an increase 

in goblet cell number and trefoil factor (TFF)3 protein expression in the rat intestine 

[259]. Activated, but not resting γδ IELs express KGF [260]. γδ IELs are activated in 

A B 

C 



51 

 

vivo to express KGF after DSS treatment, and IEC cell proliferation is decreased in 

mice deficient in γδ IELs (TCRδ-/-) following DSS treatment [256]. This shows that γδ 

IELs help maintain intestinal integrity by promoting the repair of epithelial lesions, and 

that γδ IEL-derived KGF forms a component in this protective mechanism. 

Furthermore, TCRδ-/- mice show a significant decrease in BrdU-labelled epithelial cells 

in the intestine, suggesting the involvement of γδ IELs in the proliferation of crypt stem 

cells [255]. Furthermore, γδ IELs have been shown to regulate epithelial regeneration 

in a DSS-induced colitis model through coordinate expression of genes involved in 

immunoregulation, inflammatory cell recruitment and antibacterial factors [236] (Figure 

1.16). In addition, γδ IELs play a role in infection by maintaining the integrity of 

intestinal epithelial TJs in response to infection with the protozoan parasite Toxoplasma 

gondii [261]. 

 

 

 

 

 

 

 

 

 

Figure 1.16| The interactions between γδ IELs and the intestinal microbiota during 

colonic mucosal injury. Commensal bacteria stimulate γδ IELs to express antimicrobial factors 

(RegIIIγ) and chemotactic cytokines (KC, CXCL-9, IL-1β and MIP2α). Furthermore, γδ IELs limit 

the penetration of commensal bacteria through mucosal surfaces early on in injury [236]. 

 

 

Further to the above roles during homeostasis and injury, γδ IELs are involved in the 

regulation of the intestinal microbiota. Commensal bacteria deliver the necessary input, 

through MyD88-dependent and MyD88-independent pathways, into the γδ IEL 

response to mucosal injury [236]. Studies in TCRδ-/- mice showed that γδ IELs aid in 
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the limitation of opportunistic penetration of commensal bacteria across the mucosal 

surface; a phenomenon seen at early time points of injury by DSS-induced colitis [236]. 

In the SI, γδ IELs respond to the microbiota not only in the context of injury, but also 

during homeostasis [262]. The intestinal microbiota induces the expression of 

antimicrobial factors, including RegIIIγ, in SI γδ IELs [262]. Antibacterial lectin RegIIIγ 

expression correlates with the physical separation of the microbiota from the host 

mucosal surface in the SI [263]. This further substantiates the role of IELs and the 

overlying mucus layer as vital components of the innate immune system. In the 

intestine, the aryl hydrocarbon receptor (AhR) regulates IEL numbers, and its 

deficiency compromises IEL maintenance causing alterations in microbial load and 

composition [264]. Such alterations lead to heightened immune activation and 

increased susceptibility to epithelial injury, indicating a role of γδ IELs as essential 

mediators of host-microbial homeostasis at the intestinal mucosal surface.  

 

Together these findings show that γδ IELs play a multifaceted role in the maintenance 

of mucosal homeostasis following injury, and may be critical mediators of the host 

response in a dynamic cross-talk between themselves and the intestinal microbiota. 

Despite the recent advances, we lack details of the molecular processes and 

responses of γδ IELs, partly due to the experimental challenges; γδ IELs readily 

undergo spontaneous apoptosis when cultured outside of their intestinal niche [265]. 

Whether γδ IELs play a role in mucus production or the maintenance of an intact 

mucus layer, in a homeostatic environment and following mucosal injury, is currently 

unknown.  

 

 

1.4 The human GI microbiota 

1.4.1 Development and composition of the human GI microbiota 

The digestive tract forms an homeostatic environment and is home to ten times as 

many bacteria as there are human cells [25]. The process of microbial colonisation 

begins at birth [266], although interactions with microbes prior to birth have been 

suggested [267]. Natural sources of gut bacteria are represented by the mother’s 

vaginal and faecal microbiota, as well as other environmental microbes [268]. The 

microbiota is thought to establish itself early on in life, with genetic factors determining 
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its final composition, and shows substantial diversity in unrelated adults. Microbiota 

complexity increases with age, reaching a stable climax in adulthood [269].  

 

The intestinal microbiota is largely composed of bacteria (92.9 %), with archaea (0.8 

%), eukarya (0.5 %) and viruses (5.8 %) forming small components [270]. Aerobes and 

facultative anaerobes initiate colonisation of the firstly oxygen-positive environment, but 

disappear a few weeks after birth to be replaced by a rapidly increasing anaerobic 

community [271-273]. More than 99 % of the bacteria in the adult intestine are 

anaerobes, however aerobic bacteria are also present, particularly in the caecum [274]. 

The infant intestinal microbiota is much less complex than its adult equivalent in terms 

of total number of bacteria and encountered diversity of microbial taxa [275, 276]. 

Furthermore, a simplified intestinal microbiota is observed in the elderly population 

[277].  

 

The microbial burden in the GI tract is tissue specific, displaying an increase along its 

length, from the oral cavity to the rectum (Figure 1.17A). Being the most metabolically 

active organ in the body, the colon has the highest bacterial density and species 

variety, with approximately 1013 bacteria per gram of luminal content in the colon, 

belonging to approximately 500-1000 different species [25]. Microbes preferentially 

colonise certain areas of the intestine, known as niches. For example, whereas 

lactobacilli can be found in the stomach, Escherichia coli mainly reside in the colon 

[271]. The human intestinal microbiota consists of several microbial phyla, including 

Firmicutes and Bacteroides that together make up the vast majority (>90 %), 

Proteobacteria, Actinobacteria and Verrucomicrobia (Human microbiome project 

Nature 2012) (Figure 1.17B). Despite the high inter-individual variation, Firmicutes are 

generally higher in abundance compared to the Bacteroides phyla in humans [278-282] 

and rodents [283, 284]. Figure 1.17C represents the aggregate microbiota composition 

of the genus Lactobacillus as determined from adult faecal samples. The mucosa-

associated microbiota differs substantially from the luminal content within the distal GI 

tract, as well as the faecal microbiota [275, 281, 282, 285, 286]. A major drawback of 

the use of faecal samples to determine the intestinal microbial composition is the fact 

that faecal microbiota represents only the distal colon, leaving other parts of the GI 

tract, particularly the SI, unexplored. The SI is a harsh environment for microbial life 

because of the short transit time and excretion of digestive enzymes and bile [287], 

requiring different SI microbes to develop survival strategies of microbes compared 
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with those residing in the colon. Phylogenetic mapping indicates that Streptococcus 

sp., Escherichia coli, Clostridium sp. and high G+C organisms are most abundant in 

the SI, with the composition of these populations fluctuating in time and correlating with 

the short-chain fatty acid (SCFA) profiles [288]. Comparative functional analysis with 

faecal metagenomes (complete genetic material in faecal samples) identified functions 

that are overrepresented in the SI, including simple carbohydrate transport 

phosphotransferase systems (PTS), central metabolism and biotin production. 

Moreover, metatranscriptome (mRNA transcripts in a group of species) analysis 

supported high level in-situ expression of PTS and carbohydrate metabolic genes, 

especially those belonging to Streptococcus sp. [288].  

 

 

 

 

 

 

 

 

 

Figure 1.17| Bacterial distribution and abundance in the human GI tract. Schematic 

representation of the human GI tract showing its different compartments and relative abundance 

of bacteria (A). Relative abundance of the main microbial phyla detected in the adult fecal 

samples (B) and aggregate microbiota composition of the genus Lactobacillus as determined 

from adult faecal samples (C) [276, 289]. 

 

 

1.4.2 Role of the human microbiota in the GI tract in health and disease 

The symbiotic relationship of the intestinal microbiota with the human host is the 

consequence of a long history of various co-evolutionary processes, where neither 
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partner is disadvantaged, and where unique metabolic activities or other benefits are 

provided to both partners [290].  

 

 

1.4.2.1 Beneficial role of microbes 

Comparative studies with germ-free and conventional animals have recognised that the 

intestinal microbiota is required for the development of the mucosal immune system 

and its functioning early on in life, as well as nutrient absorption, epithelial cell renewal 

and angiogenesis [291-294]. Intestinal microbes are able to influence the expansion 

and functioning of the murine immune system, as for example the expansion of T cells 

in the PPs and mesenteric lymph nodes. The intestinal microbiota provides vitamins 

that are required by the host [295, 296]. A primary role of the microbiota, however, is 

the digestion of dietary polysaccharides. Non-digested residue that passes from the SI 

into the colon provides the major source of diet-derived energy for the growth of the 

colonic microbiota [297]. Several metatranscriptome and metaproteome studies 

describing the human intestinal microbiota have confirmed the importance of bacterial 

functions related to carbohydrate metabolism in the colon [298-301]. The colonic 

microbiota can ferment indigestible dietary fibre to provide energy through the 

production of SCFAs [302]. The intestinal microbiota in mice can affect the efficiency 

with which this energy is harvested from the diet and the way that this energy is 

utilised. Symbiosis appears to exist between the microbiota and the epithelium to 

maintain epithelial integrity, as is shown by the enhanced increase in gut barrier 

function in response to recognition of TLR2 and TLR9 ligands [303, 304]. Reductions in 

mucosal cell turnover, muscle wall thickness, baseline cytokine production, digestive 

enzyme activity and defective cell-mediated immunity are all associated with the 

absence of the microbiota [305, 306]. Studies have demonstrated that the commensal 

microbiota plays a crucial role in the maintenance of intestinal homeostasis during 

acute DSS-induces colitis. Mice lacking intestinal microbes exhibit increased 

susceptibility to colonic epithelial damage [307, 308]. The above demonstrates that the 

intestinal microbiota has important protective, metabolic and trophic functions.  

Additionally, the microbiota can prevent the attachment of pathogens to epithelial cells 

and compete for essential nutrients to prevent the survival of other organisms [309]. 

When an enteric pathogen by-passes barriers imposed by the commensal microbiota 

and the epithelial barrier, or when innate immune defects disrupt the natural tolerance 
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to the resident microbiota, intestinal inflammation occurs [30]. Host defences have the 

ability to precisely distinguish between commensal microbes and episodic pathogens, 

through the interpretation of MAMPs via host PRRs [30]. 

Interestingly, the microbiota also contributes to the thickness and strength of the 

defensive mucus layer, since it has been shown that several bacterial components 

such as lipopolysaccharides (LPS) and SCFAs to some extent stimulate mucin 

production by isolated goblet cells [310-312]. The ability of bacteria to regulate the 

thickness of the colonic mucus was further demonstrated through mucus thickness 

measurements in germ-free mice exposed to bacterial peptidoglycan (PGN) and LPS 

[313] (Figure 1.18). 

 

 

 

 

 

 

 

Figure 1.18| Germ-free mice have a thinner mucus layer that can be restored using 

bacterial products. Thickness (µm) of the adherent mucus in the colon in NMRI mice housed 

conventionally or under germ-free conditions either with luminal saline (A) or the bacterial 

products LPS or PGN (B). *p< 0.05 [313]. 

 

 

The mucus-binding capacity of microbes increases the colonisation capacity at the 

mucosal interface and is important for prolonged intestinal residency of beneficial 

microbes [88]. The expression of adhesion proteins aids in this process (Table 4.1). 

Mucus-degrading bacteria have an advantage in the mucosal niche that is rich in 

endogenous glycoproteins both from excreted mucin proteins and shed IECs. Species 

of mucin-degrading specialists include: Akkermansia (A.) municiphila [314-316], 

Bacteroides thetaiotaomicron [317-319], Bifidobacterium bifidum [314, 320-322], 
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Bacteroides fragilis [323, 324], Ruminococcus gnavus [314], and Ruminococcus 

torques [314, 322]. Akkermansia-like sequences are universally distributed among 

animals, ranging from mammals, to non-mammals [270]. This suggests co-evolution of 

Akkermansia spp. with their host and therefore a potential functionality in the GI tract. 

A. municiphila is a recently discovered mucin-degrading specialist [315]. Members of 

the genus Akkermansia have been suggested as biomarkers for a healthy intestine 

[325] due to their abundance in the healthy mucosa and their negative correlation with 

intestinal disorders, including IBD [314]. B. thetaiotaomicron is a well-studied mucin-

degrading expert that utilises a wide variety of dietary glycans as well as host mucin 

glycans and human milk oligosaccharides (HMOs) [326]. Members of the microbiota 

that have adapted to the glycan-rich environment of the intestine are important 

residents of the human intestine, and could be particularly important for nutrient 

exchange, communication with the host, development of the immune system and 

resistance against invading pathogens.  

 

 

1.4.2.2 Impact of dysbiosis on the host 

Numerous factors can harm the beneficial members of the GI tract microbiota, 

including antibiotic use, psychological and physical stress, radiation, altered GI tract 

peristalsis, and dietary changes. A disturbance of the normal balance of the intestinal 

microbiota (dysbiosis) is in part considered responsible for metabolic and inflammatory 

disorders [327]. In addition, certain diseases have been associated with a particular gut 

microbe, such as Helicobacter pylori in peptic ulcer disease (although 80 % of 

individuals infected display no symptoms), and Streptococcus gallolyticus, in colorectal 

cancer [328-330]. Obesity and IBD represent the most studied disorders associated 

with an alteration of the intestinal microbiota composition.  

 

The composition of the diet has been shown to have a significant impact on the content 

and metabolic activities of the human faecal flora [331]. Metagenomic sequence reads 

were used for phylogenetic profiling of human faecal samples, and revealed distinct 

clusters called enterotypes [270]. These enterotypes are identifiable by the variation in 

the levels of one of three genera: Bacteroides (enterotype 1), Prevotella (enterotype 2) 

and Ruminococcus (enterotype 3) [270]. Although no clear environmental or genetic 

explanation was found for the clustering of enterotypes, long-term diet has been 
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strongly associated with enterotype clustering [332]. A lower proportion of 

Bacteroidetes and a higher proportion of Actinobacteria were found in obese 

individuals, compared to lean individuals [299]. Furthermore, type 2 diabetes, caused 

by obesity-linked insulin resistance, is associated with a change in microbial 

composition in the intestine [333]. Although IBD is not associated with a particular gut 

microbe, chronic microbial infections are associated with its pathology [334-336]. 

Studies have shown a reduction in general species diversity in the GI tract microbiota 

in IBD patients, with a decrease in Firmicutes and an increase in Bacteroidetes, 

compared to healthy individuals [323, 337-339]. In agreement with these findings, 

Illumina-based metagenomic sequencing revealed that, on average, IBD patients 

harboured 25 % fewer bacterial genes when compared to healthy individuals [340]. A 

dysbiotic mucosal-adherent community enriched in Proteobacteria and depleted of 

Bacteroidia members has been associated with chronic inflammation in HIV-infected 

subjects, demonstrating a link between intestinal microbial populations and 

immunopathogenesis during progressive HIV infection [341]. Intestinal microbial 

dysbiosis is not only associated with intestinal diseases, but has also been observed in 

extra-intestinal diseases such as atopic and allergic diseases, autism, type 2 diabetes 

and rheumatoid arthritis [342], further highlighting the importance of intestinal microbial 

homeostasis in human health. 

 

 

1.4.3 L. reuteri in the human GI tract 

1.4.3.1 The Lactobacillus genus 

Lactobacilli belong to the lactic acid bacteria (LAB) due to the nature of the main end 

product of carbohydrate metabolism; lactic acid. The genus Lactobacillus comprises a 

large (about 145 species) heterogeneous group of low-G+C content gram-positive, 

non-sporulating, and anaerobic bacteria [343], recognised for its extensive 

phylogenetic, phenotypic and ecological diversity [344]. The taxonomic classification of 

the genus Lactobacillus is shown in Figure 1.19. Lactobacilli form only a minor 

proportion (0.01-0.6 %) of the human adult faecal microbiota [345]. The predominant 

autochthonous Lactobacillus species in the GI tract are L. gasseri, L. reuteri, L. 

crispatus, L. salivarus and L. ruminis [346].  
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Figure 1.19| Taxonomic classification of the Lactobacillus genus.  

 

 

Symbiotic microorganisms form intimate associations with most members of the animal 

kingdom [347]. Probiotics are live microorganisms that, when administered in adequate 

amounts, confer a health benefit on the host (Figure 1.20) [28, 348]. Probiotic bacteria 

have been used to prevent relapses in UC and may serve as potential prevention 

and/or treatment methods for diseases of the GI tract [349].  
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Figure 1.20| Schematic representation of the different modes of interaction that can be 

anticipated to underlie probiotic effects [28]. 

 

 

Lactobacilli have been shown to exert health benefits under various conditions. The 

efficacy of some lactobacilli in acute infectious diarrhoea and the prevention of 

antibiotic-associated diarrhoea has been established [350], with other findings showing 

that lactobacilli may reduce the recurrence of Clostridium difficile-associated diarrhoea 

[351]. Promising results have been obtained in the prevention of IBD, colorectal cancer 

and irritable bowel syndrome [352-354]. Different probiotic Lactobacillus strains have 

been associated with different effects related to their specific capacities to express 

particular surface molecules or to secrete proteins and metabolites that directly interact 

with host cells. The bacterial envelope of lactobacilli can comprise different cell wall-

associated proteins that often consist of repeating domains. It is generally assumed 

that a good adherence capacity is desirable for probiotic lactobacilli, to promote 

residence time, pathogen exclusion and host cell interaction [355].  
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1.4.3.2 Beneficial (probiotic) effects conferred by L. reuteri 

The beneficial characteristics of L. reuteri have been studied intensively during the past 

three decades because of the common use of different strains as probiotics. L. reuteri 

ATCC 55730 has been shown to have probiotic properties in humans, and is used in 

the prevention and amelioration of colitis, gastroenteritis and diarrhoea [336, 356-358]. 

In mice, L. reuteri 100-23 has been shown to trigger immune stimulation and regulation 

via IEC activation and development of regulatory T cells [359, 360]. Furthermore, L. 

reuteri strains (R2LC and JCM 5869 isolated from rat, and ATC PTA 4659 and ATCC 

55730 isolated from human) protect against DSS-induced colitis in rats [361]. This 

protection is associated with reduced P-selectin expression and a decrease in 

leukocyte- and platelet-endothelial cell interactions. Despite protecting against colitis, 

treatment with these L. reuteri strains did not improve the integrity of the mucus layer or 

prevent distortion of the mucus microbiota caused by DSS treatment [24]. However, L. 

reuteri decreased bacterial translocation from the intestine to mesenteric lymph nodes 

during DSS treatment, which may explain how L. reuteri ameliorates DSS-induced 

colitis [24]. It has been shown that the suppression of chemically-induced colitis in mice 

is associated with an increase in γδ IELs, induced by L. acidophilus and B. longum, 

suggesting both a novel importance of γδ IELs in probiotic protection and a new 

function of these probiotics in the prevention of colitis [362]. The ability of L. reuteri to 

prevent experimental colitis in animal models indicates that the above mentioned 

immunoregulatory effects of this organism can have a significant benefit for the host 

[357, 361, 363-365]. Intestinal resistance to the eukaryotic pathogen Cryptosporidium 

parvum was increased by L. reuteri in a murine model of acquired immunodeficiency 

syndrome [366]. Further beneficial attributes of L. reuteri are shown in Table 1.2. 
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Table 1.2| Beneficial attributes of L. reuteri studied in human and animal trials and with 

cell cultures. 

Function 
 

Observation 
 

References 

Humans 
Prevention of diarrhoea 

 
 

Reduction of infant colic 
 
 

Reduction of IgE-associated 
eczema and sensitisation 

 
Immune stimulations 

 
 

Reduced duration and severity of diarrhoea 
caused by rotavirus in children; reduced 

incidence of diarrhoea in infants. 
Reduced colicky symptoms in 95% of 
infants; improved gastric emptying and 

reduced crying time in premature infants. 
Reduction of IgE-associated eczema in 2 

year-olds; reduced levels of TGF-B2. 
 

Short-term survival of L. reuteri in the 
stomach and SI. Stimulation of CD4 

lymphocytes. 

 
 

[367, 368] 
 
 

[369, 370] 
 
 

[371, 372] 
 
 

[373] 

Animals 
Immune stimulation 

 
 

Immune regulation 

 
 

Transient increase in pro-inflammatory 
cytokines and chemokines in the intestinal 

tract. 
Increased levels of regulatory T cells upon 
colonisation of Lactobacillus-free mice with 

L. reuteri 

 
 

[360] 
 
 

[359] 

Cell cultures 
Modulation of immune 

function in cultured 
macrophages, DCs and T 

cells 

 
 

Reduction in TNF-α production in activated 
macrophages; reduced production of pro-

inflammatory cytokines in DCs, induction of 
regulatory T cells. 

 
 

[357, 359, 374-376] 

 

 

Several clinical trials have shown that L. reuteri confers health benefits in humans. In a 

double-blind, placebo-controlled, randomised trial, L. reuteri ATCC 55730 was shown 

to reduce the severity of diarrhoea of infants in a daycare setting [368]. 

Immunomodulation has also been shown in humans, where L. reuteri ATCC 55730 

temporarily colonises the stomach and SI of healthy subjects and increases CD4+ T 

lymphocytes in the ileum [373]. Recent research has also revealed that L. reuteri may 

play a crucial role in the induction of tolerance in the vertebrate gut; L. reuteri inhibited 

the induction of pro-inflammatory cytokines IL-12, IL-6, and TNF-α, and primed human 

DCs to drive the development of regulatory T cells [376]. 
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1.4.3.3 Interactions between L. reuteri and mucus 

A number of colonisation requirements have been identified for L. reuteri, including 

adherence to epithelial cells, mucus-binding ability and fibronectin-binding ability [377-

379]. Strain-specific cell surface proteins considered as mucus-binding proteins have 

been identified in L. reuteri, and include the collagen binding protein (CnBP) in L. 

reuteri NCIB11951 [380], Lr W1 in L. reuteri JCM 108 [381], and Lar_0958 in MM4-1a 

[382]. Porcine intestinal mucin and an α-D-galactose-specific lectin were shown to 

inhibit binding of CnBP to collagen, suggesting a potential lectin-like adhesion to mucus 

as its binding mechanism [380]. Lr W1 was shown to bind to epithelial cells and mucus 

[381]. Sequence similarities in CnBP and Lr W1 suggest that mucus binding 

mechanisms may be similar for these mucus-binding proteins.  

 

The most studied example of mucin-targeting bacterial adhesins is the mucus-binding 

protein, MUB, produced by L. reuteri [377, 383]. MUB is a 358 kDa protein from L. 

reuteri ATCC 53608 (1063) that contains repeated functional domains, termed Mub, 

responsible for the protein’s adhesive properties. The abundance of Mub domains in 

lactobacilli of the GI tract suggests that the Mub repeat is a functional unit capable of 

fulfilling an important function in host-microbe interactions. The 14 Mub domains of 

MUB can be divided into type 1 (six domains) and type 2 (eight highly conserved 

domains), based on sequence homology. MUB has a YSIRK signal peptide for the 

translocation across the cytoplasmic membrane, and a C-terminal LPxTG anchor motif 

(Figure 1.21A). Each Mub repeat consists of the B1 and the B2 domain. The B1 

domain of MubR5 (Figure 1.21B) shows structural similarity to the immunoglobulin-

binding L protein from Peptostreptococcus magnus, and was shown to bind to 

mammalian immunoglobulins, such as IgA [383]. The mucus-binding ability of MUB to 

colonic human, guinea pig and rabbit mucus was suggested using the chemically 

synthesised short MUB70 corresponding to the B1 domain of one repeat [384]. The Mub 

B2 domain is a member of the MucBP domain family (Pfam PF06458), whose 

sequences are present in all currently available L. reuteri strain genomes (JCM1112, 

100-23C, DSM 20016, MM2-3, MM4-1, ATCC 55730 and CF48-3A). Several MUB 

homologues and MucBP domain-containing proteins have been found, but almost 

exclusively in LAB and predominantly in lactobacilli found naturally in intestinal niches. 

Binding of MUB to mucus is inhibited by the glycoproteins fetuin and asialofetuin as 

well as fucose, suggesting that MUB interacts with specific muco-oligosaccharides 
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[377]. The fact that mucus-binding domains containing multiple Mub domains, were 

identified in 47 proteins from six Lactobacillus genomes, suggests that Mub may play 

an important role in host-microbe interactions [385] however; the molecular ligands in 

mucus that are recognised by MUB are unknown, and require investigation in order to 

better understand the interactions of L. reuteri with the host, thereby increasing the 

knowledge of the potentially beneficial roles of this gut symbiont in the GI tract. 

 

 

 

 

Figure 1.21| Structure of the mucus binding protein MUB of L. reuteri ATCC 53608. MUB 

consists of the YSIRK signal peptide sequence, the 14 Mub repeats and the C-terminal LPxTG 

anchor motif (A). Crystal structure of the MubR5 repeat (B) [383]. 
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1.5 Aim and objectives  

The intestinal mucus layer forms a protective barrier that is in part shaped by the 

luminal microbiota and by the host immune system, and plays a key role in the 

maintenance of gut homeostasis. γδ IELs reinforce barrier function by limiting bacterial 

translocation and regulating IEC generation and differentiation. On the other hand, 

probiotic bacteria such as L. reuteri have been shown to protect against bacterial 

translocation in mouse models of colitis. With the general aim of increasing our 

understanding of the role of the much overlooked mucus layer in health and disease, 

this PhD project explores the relationship and cross-talk between intestinal microbes, 

the mucus layer, and the intestinal immune system.  

 

 

Specific objectives: 

 

1. To investigate the impact of γδ IELs on mucus properties, a TCRδ-/- mouse model 

was used to assess the expression, organisation and glycosylation of intestinal 

mucus.  

 

2. To explore the specificity of L. reuteri adhesion to mucus, an intestinal mucin-

producing cell line and mammalian tissue sections were used to assess binding 

specificity to mucins, mechanisms of adhesion and the impact on the host 

response. 
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Chapter 2 Methods 

 

 

2.1 General Materials 

All chemicals were purchased from Sigma-Aldrich, unless otherwise specified. 

Laboratory reagent supplier names have been indicated in the text; a list of full names 

and address in in appendix 1. The water used was deionised and ultrapure to a 

resistance of 18.2 MΩ cm-1 (Barnstead Nanopure Diamond).  

The composition of phosphate buffered saline (PBS) used throughout the study is 0.01 

M phosphate buffer, 0.0027 M potassium chloride and 0.137 M sodium chloride, pH 

7.4, at 25 °C. PBS used for molecular biology was purchased as a 10x solution diluted 

to a 1x concentration, to yield a PBS solution with 0.01 M phosphate buffer and 0.154 

M sodium chloride, pH7.4. This was autoclaved before use. All imaging in this study 

was performed on Carl Zeiss light, fluorescent or confocal microscopes. All incubations 

in this study were performed at 19-23 °C (room temperature), unless otherwise stated.  

 

 

2.2 Mice 

C57Bl/6J wild type (Harlan Labs) and B6.129P2-Tcrdtm1Mom (TCRδ-/-; Jax Laboratories) 

mice were bred and maintained at a conventional animal unit at the University of East 

Anglia. All animals were specific pathogen-free (SPF), and had access to a standard 

mouse diet and water ad libitum. For all studies, 10-20 week-old, age- and sex-

matched mice were used. C57BL/6 mice were used as wild type controls. TCRδ-/- mice 

were used as our immune cell-deficient mouse model that has a neomycin targeted 

deletion of 4Kb of the Cδ region [386]. 
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2.3 In vivo mouse studies  

2.3.1 DSS-induced colitis model 

2.3.1.1 Induction and assessment of DSS-induced colitis 

Colitis was induced by replacing normal drinking water with a 2.5 % solution of dextran 

sodium sulphate (DSS) (w/v, MW 35-50 kDa; MP Biomedicals) in drinking water 

provided ad libitum for 7 days. For recovery experiments, mice were given DSS water 

for 3 days, followed by 3 days of normal drinking water without DSS. All mice used in 

the DSS studies were 13-20 week old male mice. The severity of colitis was assessed 

on the basis of stool consistency, faecal blood content (detected using a Haemoccult 

kit; POCT Ltd, Angus, UK) and weight loss as determined daily throughout the DSS 

study. These clinical parameters were scored as the disease activity index (DAI) using 

Cooper and Murthy’s scoring system (Table 2.1). Colon length was measured with a 

millimetre ruler on the final day of the study, as a further measure of severity of colitis. 

 

Table 2.1| Cooper and Murthy’s disease activity index (DAI) scoring system. 

Score % Weight loss Stool consistency Bleeding 

0 None Well-formed pellet Haemoccult negative 

1 1-5 - - 

2 5-10 Pasty and semi-formed stools Haemoccult positive 

3 10-15 - - 

4 >15 Liquid stools Gross rectal bleeding 
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2.3.1.2 Histological analysis of DSS-induced colitis 

Segments (0.5 cm) of the ileum, mid-colon and distal colon were fixed in 10 % formalin 

for a minimum of 24 h. Fixed tissue was placed inside labelled cassettes, incubated in 

70 % ethanol for 30 min, processed in a tissue processor (details in appendix 2) and 

embedded in paraffin wax. Sections (5 µm) were cut using a microtome (Zeiss). Cut 

paraffin ribbons were placed in a water bath at 37 °C and mounted onto adhesion 

slides (VWR, Leicestershire, UK). Slides were allowed to dry overnight (O/N) at 37 °C 

with 5 % CO2. Sections were deparaffinised twice in xylene (5 min each, Acros 

Organics, Geel, Belgium), and hydrated in 100 %, 90 % and 70 % ethanol followed by 

distilled water (5 min each). Nuclei were stained with haematoxylin (BDH, 

Leicestershire, UK) for 5 min, followed by three washes in tap water. Slides were briefly 

differentiated in acid-alcohol (96 % ethanol, 1 % HCl) and washed twice in tap water. 

Eosinophilic structures were stained with Eosin Y  for 10 s. Sections were washed in 

still tap water, and dehydrated in 70 %, 90 %, 100 % ethanol (30 seconds each) and 

two xylene changes (1 min each). Tissue sections were mounted in DEPEX mounting 

medium (VWR, Leicestershire, UK) and allowed to dry O/N. Haematoxylin and Eosin Y 

stained tissue sections were scored blindly by a histologist (James Sington, NNUH) on 

the basis of epithelial injury, chronic and acute inflammatory infiltrates, number of 

goblet cells and thickening of the ileum/colon wall (details in appendix 3).  

 

 

2.3.2 Mucus thickness measurements 

Mucus thickness measurements were performed in the Department of Medical Cell 

Biology at the University of Uppsala, Sweden, where the experimental set-up was 

kindly made available through a collaboration with Prof Lena Holm. The total mucus 

thickness (loose and firm) of female C57BL/6 and TCRδ-/- mice was measured in five 

separate areas using a glass micropipette held by a micromanipulator (Leitz, Wetzlar, 

Germany) at an angle of 30-35° to the cell surface, as described previously [19]. 

Briefly, the mice were continuously anaesthetised with inhalation gas (2.2 % isoflurane, 

40 % oxygen and 60 % nitrogen) and the body temperature maintained at 37-38 °C. 

The ileum/distal colon was exteriorised and fitted over a double-bottom mucosal 

chamber, exposing the mucosa through the hole. The loose mucus layer was then 

removed by suction and the firm layer covered with carbon particles suspended in a 
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saline solution, to allow the surface visualisation of the transparent mucus. The firm 

mucus layer was measured immediately following suction. Readings were repeated 

after 20, 40 and 60 min. The mucus thickness (T) was then calculated using the 

formula T= l x sin a, where l is the measurement made and a is the angle of 

measurement.  

 

 

2.4 Biochemistry 

2.4.1 Ninhydrin assay  

Sialic acid concentration in tissue samples was determined as previously described 

[387]. Small intestine and colon mucus scrapes were collected from C57BL/6 and 

TCRδ-/- mice and immediately frozen on dry ice, before freeze-drying O/N. Mucus 

samples were diluted in water to 1 mg ml-1. 333 µl of each sample and standard (sialic 

acid 0-250 µM) was mixed with 333µl glacial acetic acid and 333 µl acidic ninhydrin 

solution (5 g ninhydrin, 120 ml glacial acetic acid and 80 ml HCl), vortexed and briefly 

centrifuged to collect the sample at the bottom of the tube. Samples and standards 

were boiled for 10 min before cooling under a cold stream of water. All samples and 

standards were briefly centrifuged and transferred to cuvettes. The absorbance at 470 

nm was immediately measured using a U-3010 spectrophotometer (Hitachi, Tokyo, 

Japan). Sample concentration was calculated against the sialic acid standard curve. 

 

 

2.4.2 Alkaline borohydrate assay 

O-glycan concentration in tissue samples was determined as previously described 

[388]. SI and colon mucus scrapes were collected and diluted as in section 2.4.1. 100 

µl of each sample and standard (N-acetylgalactosamine 0-250 µM) was mixed with 120 

µl alkaline 2-cyanoacetamide (CNA) reagent (200 µl 0.6 M CNA, 1 ml 0.15 M NaOH) 

and boiled at 100 °C for 30 min. To this 1 ml of 0.6 M borate buffer (0.3 M 

sodiumtetraborate, 0.3 M potassium dihydrogenphosphate (Fisher Scientific); pH 8) 

was added, vortexed and briefly centrifuged. Each standard and sample was added to 
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an opaque 96-well plate in triplicate and fluorescence measured at λ= 420 nm, with an 

excitation of λ= 320 nm, using a Microplate reader (BMG Labtech, Offenburg, 

Germany). Sample concentration was estimated against the N-acetylgalactosamine 

standard curve.  

 

 

2.4.3 Faecal IgA ELISA 

Faecal pellet samples (50-70 mg) were collected from C57BL/6 or TCRδ-/- mice and 

homogenised in 100 µl PBS containing 0.01 % sodium azide (NaN3), per 10 mg of 

faeces. After centrifugation at 9000 xg for 5 min, the supernatants were collected and 

stored at -80 °C. Samples were diluted (1:200-1:400) and faecal IgA levels were 

determined using a mouse IgA ELISA quantitation kit (Bethyl Laboratories, Cambridge, 

UK), following the manufacturer’s instructions. Absorbance was determined at a 

wavelength of 450 nm using a Microplate reader (BMG Labtech).  

 

 

2.4.4 Intestinal IgA ELISA 

C57BL/6 or TCRδ-/- small intestines and colons were extracted and maintained in a 

Petri dish containing Dubecco’s Minimal Essential Media (DMEM; Lonza, Basel, 

Switzerland). Organs were tied at one end using black silk string (the SI was cut into 

two halves for easier flushing). Using 1 ml syringes with metal gavage needles, 250-

500 µl of ice cold wash solution (8 ml ddH2O, 1 ml 10x PBS, 1 ml 0.5M EDTA and 20 µl 

proteinase inhibitor cocktail) was slowly injected into the organ and inverted for 1 min to 

thoroughly wash intestinal contents. The solution with intestinal contents was 

transferred into an ice cold 15 ml Falcon tube containing 40 µl of proteinase inhibitor, 

and mixed briefly by rotation before being placed on dry ice and subsequently frozen at 

-80 °C until further use. Protein concentrations were estimated using the bicinchoninic 

acid (BCA) assay, following the manufacturer’s instructions. The intestinal IgA ELISA 

was performed using the Bethyl Laboratories mouse IgA ELISA kit, following 

manufacturer’s instructions. 
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2.4.5 Total protein extraction from epithelial tissue 

Whole small intestines and colons were extracted from C57BL/6 or TCRδ-/- mice and 

immediately snap frozen in liquid nitrogen. Frozen samples were crushed to a fine 

powder using a pestle and mortar, and dissolved in 500 µl NP-40 cell lysis buffer 

(Invitrogen, Life Technologies Ltd, Paisley, UK), 1 % protease inhibitor cocktail per 200 

mg of tissue. Following thorough vortexing, samples were centrifuged at 5000 xg for 5 

min, and the supernatants collected. Protein concentration was determined using a 

NanoDrop ND-1000 and samples were frozen at -80 °C until further use. 

 

 

2.4.6 SDS-PAGE and western blot 

Protein extracts (see section 2.4.5) were denatured at 70 °C for 12 min in lithium 

dodecyl sulphate (LDS) loading buffer and dithiothreitol (DTT) reducing agent, 

according to manufacturer’s instructions (Invitrogen, Life Technologies Ltd, Paisley, 

UK). A sample concentration of 100 µg protein was loaded onto an Expedeon RunBlue 

12 % acrylamide gel electrophoresis was carried out in 3-(N-

morpholino)propanesulphonic acid (MOPS) SDS running buffer for 45 min at 180 V 

constant voltage. Pre-stained 7-175 kDa Molecular Weight protein standard was used 

as a marker (New England BioLabs). Following three washes in water, gels were 

stained with Colloidal Blue staining kit (Life Technologies Ltd, Paisley, UK). Gels were 

de-stained in three washes of water and scanned in a GS-800 calibrated densitometer 

(Bio-Rad). 

The proteins were de-stained by fixing in 10 % (v/v) acetic acid, 50 % (v/v) ethanol for 1 

h, then transferring into 10 % (v/v) acetic acid for shaking O/N. The gel was incubated 

for 1 h in 50 mM Tris-HCl (pH 7.5), 1 % (w/v) SDS; followed by an incubation in 

Western blotting Transfer Buffer for 5 min before protein transfer. For western blot, 

proteins were electroblotted onto an ImmobilonTM-P PVDF membrane, following the 

Novex XCell II blot module protocol for 1 h at 30 V constant voltage in NuPAGE 

transfer buffer (Life Technologies Ltd, Paisley, UK). After transfer, membranes were 

blocked in PBS-T (PBS, 0.05 % (w/v) Tween-20), 5 % (w/v) bovine serum albumin 

(BSA) for 3 h, and incubated with rabbit anti-pIgR (1:500 dilution in PBS-T, 1 % BSA) 

O/N. Rabbit anti-human β-actin primary antibody (1:1000 dilution in PBS-T, 1 % BSA) 
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was used as a loading control. Following three washes in PBS-T, the blots were then 

incubated with goat anti-rabbit IgG-Alkaline Phosphatase conjugate (1:30,000 dilution 

in PBS-T, 1 % BSA) for 1 h. Following three washes in PBS-T, the blots were 

incubated with 0.1 M Tris-HCl (pH 9.6) twice for 5 min. For detection, the membranes 

were incubated with freshly prepared alklaline Phosphatase substrate (0.1 M Tris-HCl, 

pH 9.6; 100 µg ml-1 Nitroblue tetrazolium; 50 µg ml-1   5-bromo-4-chloro-3-indolyl 

phosphate-toluidine; 4 mM MgCl2) until the desired colour strength develops. Blots 

were washed in water, blotted dry and scanned in a GS-800 calibrated densitometer 

(Bio-Rad). Densitometry analysis was perfomed using the AlphaView SA software. 

 

 

2.4.7 IL-33 ELISA 

Protein extracts (see section 2.4.5) were used at a concentration of 2 mg ml-1 for colon 

samples, and 61 mg ml-1 for small intestine samples. The IL-33 ELISA was performed 

using the mouse IL-33 ELISA KIT (Biolegend, London, UK), following the 

manufacturer’s instructions. Absorbance was determined at a wavelength of 450 nm 

using a Microplate reader (BMG Labtech).  

 

 

2.4.8 Purification of MUB protein 

L. reuteri ATCC 53608 was grown to the early stationary phase by O/N incubation in 

MRS medium, followed by an O/N incubation in Lactobacillus defined medium II 

(LDMII, see appendix 4). After centrifugation at 7500 rpm for 15 min at 4 °C, the cell 

pellet was discarded and the medium was filtered through 0.45 µm and 0.2 µm filters 

before concentrating using VIVAFLOW 200 filtration system (Fisher Scientific, 

Loughborough, UK) at 4 °C. The filtered protein solution was dialysed two times using 

PBS (O/N followed by 4 h). The MUB solution was filtered using Ultrafree-Cl 0.45 µm 

spin columns (UFC0HV25, Millipore) and concentrated with 100K MW cut-off (MWCO) 

Vivaspin spin concentrators (Sartorius Stedim Biotech, Aubagne Cedex, France). 

Native MUB was purified by gel filtration using a pre-packed gel filtration Superose 6 

HR 16/50 column on an AKTA Fast Protein Liquid Chromatography (FPLC) system 
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(GE Healthcare, New Jersey, USA). MUB elution fractions were tested by 

electrophoresis using Tris acetate SDS-PAGE, and the protein concentration 

determined using a NanoDrop ND-1000 (Thermo Scientific, Waltham, USA). 

 

 

2.5 Microbiology 

2.5.1 Lactobacillus reuteri strains and culture conditions 

Lactobacillus reuteri (L. reuteri) strains used in this study are shown in Table 2.2. De 

Man, Rogosa and Sharpe (MRS) culture medium used is composed of 10 mg ml-1 

peptone, 8 mg ml-1 “Lab-Lemco”, 4 mg ml-1 yeast extract, 20 mg ml-1 glucose, 2 mg ml-1 

dipotassium hydrogen phosphate, 5 mg ml-1 sodium acetate 3H2O, 2 mg ml-1 

triammonium citrate, 0.2 mg ml-1 magnesium sulphate 7H2O, 0.05 mg ml-1 Manganese 

sulphate 4H2O and 1 ml sorbitan mono-oleate. L. reuteri cultures were grown from 

frozen stocks stored at -80 °C in MRS containing 20-50 % (v/v) glycerol. Bacterial cells 

were grown for 20 h at 37 °C to stationary phase. L. reuteri cells were then subcultured 

in MRS (0.2 % volume) and grown for 16 h at 37 °C to early stationary phase. Cells 

were centrifuged at 4000 rpm for 5 min at 15 °C, followed by two washes in PBS, and 

re-suspended in PBS. Using optical density measurements at 600 nm (OD600), a 

volume of cell suspension representing 1 x 109 cells ml-1 was collected for further 

experiments. 

 

Table 2.2| List of L. reuteri strains and their sources. 

Strain Isolate Reference 

100-23C Rat [389] 

DSM 20016 Human [390] 

ATCC 53608 Pig [378] 

1063N Pig [391] 
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2.6 Molecular techniques 

2.6.1 Total RNA extraction 

2.6.1.1 Total RNA extraction from epithelial tissue 

Small intestine and colon epithelial scrapes were collected from C57BL/6 or TCRδ-/- 

mice and immediately transferred into 1 ml Tri-reagent and frozen on dry ice. For the 

extraction of RNA, Tri-reagent samples were thawed, vortexed and incubated for 5 min 

at RT. 200 µl chloroform was added and vortexed for 15 s followed by a 2 min 

incubation at RT. Samples were centrifuged at 12 000 xg for 15 min at 4 ºC. The upper 

transparent phase was transferred into a new RNase-free Eppendorf tube. 500 µl 

isopropanol was added and mixed by inversion, before centrifuging as above. The 

supernatant was poured off, 1 ml of 70 % ethanol added and mixed by inversion. 

Samples were centrifuged as above for 10 min. The supernatant was discarded and 

the pellet left to dry. The pellet was re-suspended in 30 µl RNase-free water, incubated 

for 5 min and transferred into a new RNase-free Eppendorf tube. DNase I treatment 

and RNA clean-up was performed using the RNase-free DNase Set and RNeasy Mini 

kit (Qiagen, West Sussex, UK), following the manufacturer’s instructions. The purity, 

integrity and quantity of RNA was analysed using a NanoDrop ND-1000 and a 2100 

Bioanalyser (Agilent Technologies, CA, USA).  

 

 

2.6.1.2 Total RNA extraction from cell cultures  

RNA was extracted from cultured cells using the Rneasy Mini kit (Qiagen, West 

Sussex, UK), following the manufacturer’s instructions. DNase I treatment and RNA 

clean-up was performed using the RNase-free DNase Set and RNeasy Mini kit 

(Qiagen, West Sussex, UK), following the manufacturer’s instructions. The purity, 

integrity and quantity of RNA was analysed using a NanoDrop ND-1000 and a 2100 

Bioanalyser.  
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2.6.2 Gene microarray analysis using GeneChips 

Target preparation for gene expression analysis was performed by the reverse 

transcription-in vitro transcription (IVT) method using the GeneChip® 3’ IVT express kit 

(Affymetrix, CA, USA), following the manufacturer’s instructions. During this process, 

total RNA (see section 2.6.1.1) was reverse transcribed to synthesize first-strand 

cDNA. This cDNA was converted to double stranded DNA to serve as a template for 

transcription. In vitro transcription synthesized anti-sense RNA (aRNA) and 

incorporated a biotin-conjugated nucleotide. The aRNA was then purified to remove 

unincorporated NTPs, salts, enzymes, and inorganic phosphate. Fragmentation of the 

biotin-labelled aRNA prepared the sample for hybridisation onto GeneChip 3’ 

expression arrays. This hybridisation was performed following the manufacturer’s 

instructions of the GeneChip® Hybridization, Wash, and Stain Kit (Affymetrix, CA, 

USA). For this, a hybridisation cocktail was prepared, including the fragmented target, 

probe array controls, BSA, and herring sperm DNA. This was hybridised to the probe 

array during a 16 h incubation. Immediately after hybridisation, the probe array 

underwent an automated washing and staining (streptavidin phycoerythrin conjugate) 

protocol on the fluidics station. This was followed by scanning of the hybridised probe 

array by the GeneChip® scanner 3000. The amount of light emitted at 570 nm is 

proportional to the bound target at each location on the probe array. Custom ClygoV4 

oligonucleotide array GeneChips (Glyco_v4a520670F; Scripps Institute, CA, USA) 

were used for gene expression analysis of ~1260 human probe-ids and ~1246 mouse 

probe-ids related to glyco-genes (details in appendix 5). GeneChips were analysed by 

the Scripps institute applying the Limma package in the R software, RMA Express 1.0 

and the dChip program to estimate fold changes and standard errors, and to perform 

quantile normalisation and data normalisation. This allowed the generation of heat 

maps for data interpretation.   

 

 

2.6.3 Gene expression analysis using quantitative RT-PCR (qRT-PCR) 

Total RNA (see sections 2.6.1.1 and 2.6.1.2) was used to synthesise cDNA using the 

QuantiTect reverse transcription kit (Qiagen, West Sussex, UK), following the 

manufacturer’s instructions. The qRT-PCR was performed using the QuantiFast SYBRr 

Green PCR kit (Qiagen, West Sussex, UK), and run in an ABI7500 Taqman 
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thermocyler (Life Technologies, Paisley, UK). All samples were run in triplicate or, 

where possible, quadruplicate for each gene tested. The results were analysed using 

the Taqman SDS system software and Microsoft Excel. Results are representative of 

the relative quantitation to 18S RNA using the formula 2-∆Ct. Primers for all target genes 

tested are shown in Table 2.3.  

 

 

Table 2.3| Primer sequences of target genes used for qRT-PCR expression analysis. 

Gene Primer sequence 

Reference gene  

18S F 5’CACGGGAAACCTCACCCGGC3’ 
R 5’CGGGTGGCTGAACGCCACTT3’ 

Mucin genes  

Muc1 F 5’TCCTTGCCCTGGCAGTGTGC3’ 
R 5’CCGCCAAAGCTGCCCCAAGT3’ 

Muc2 F 5’GGCCTCACCACCAAGCGTCC3’ 
R 5’TGGGCTGGCAGGTGGGTTCT3’ 

Muc3 F 5’GGTCTTCCATGAAACAGACACAGT3’ 
R 5’TGAAGGCCAGCCTCAGCAGGA3’ 

Muc4 F 5’TTGCACCTGTCCCCCCTGCCT3’ 
R 5’GTTCGCCACCGAGGCGTTGA3’ 

Muc5AC F 5’CTGCCCCAAAGGCACCTTCTTAGA3’ 
R 5’TGGGTGCAGGTGCAAATGGCC3’ 

Muc6 F 5’TGCATGCTCAATGGTATGGT3’ 
R 5’TGTGGGCTCTGGAGAAGAGT3’ 

Muc12 F 5’GGGACGCTGACCTGCGTGAA3’ 
R 5’TTGGGGCACACGCATTGGGG3’ 

Muc13 F 5’GCGGTGGAAGCACAGGTCCC3’ 
R 5’TGCTGACCGTGAAGGGGCTG3’ 

Muc17 F 5’CACACTGGGGCAGAAGGGCG3’ 
R 5’AGGCAGAGGCACTGGGGTCC3’ 

Muc19 F 5’ACTGGAACCACAGCCAAATC3’ 
R 5’CTACGGCCTGTTTTTCGGTA3’ 

Glycosyltransferase genes  

C1GalT1 F 5’ACTTAGCTCTGGGAAGGTGCATGG3’ 
R 5’ACAGCATCCAGGACCCTCTATGGGA3’ 

C1GalT2 F 5’TGGAGCCGTTCTAGATGCGGAAAA3’ 
R 5’GGGGCTTGCAGATGGTGATGCT3’ 

C2GnT1 F 5’GCTTGATAGGAACTTGGCAGCAC3’ 
R 5’CACCTTCTGGATTTCTTCTGGGTC3’ 

C2GnT2 F 5’ACCTTCACTCCACATCACTCACGG3’ 
R 5’TTATTCAGCAGAGCCTGGGTCACC3’ 
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C2GnT3 F 5’GCCGCTGTTCTTGCTGTTTTG3’ 
R 5’GGCCAGATTCTCCTCTCTCAAACG3’ 

C3GnT F 5’GGCCAGATTCTCCTCTCTCAAACG3’ 
R 5’AGTGCTCCGCTGTCCAGTCCA3’ 

Glyco genes  

IL-33 F 5’TCCTGTCTGTATTGAGAAACCTGA3’ 
R 5’TTATGGTGAGGCCAGAACGG3’ 

B3GALT5 F 5’TCACTCACCGGCTGCTCTTT3’ 
R 5’TGAGCCATCTTTGCCGAGTA3’ 

CD48 F 5’TGGGAACTGGATTTCAAGGTCAT3’ 
R 5’TCAGACTCGAAGATTGTCTTTGT3’ 

CD74 F 5’GGCTAGAGCCATGGATGACC3’ 
R 5’CACAGGTTTGGCAGATTTCGG3’ 

LGALS1 F 5’TCAATCATGGCCTGTGGTCT3’ 
R 5’ATGGGCATTGAAGCGAGGAT3’ 

COLEC12 F 5’AGGTTTGGTATTCAGGAGGGG3’ 
R 5’GGTGAGATGTCTCCATGCCA3’ 

LUM F 5’ATCCAGAGGCTGGCGTGATT3’ 
R 5’TCTGTGACCTTACTCTCTTGACAC3’ 

ANG4 F 5’TGGCCAGCTTTGGAATCACTG3’ 
R 5’ACAGTATCTGTCGTCCCGGCC3’ 

Sialyltransferase genes  

ST3Gal-I F 5’GCCCACTATGCCAGACACTT3’ 
R 5’TCAGCAGAGTCAAACCCAGC3’ 

ST3Gal-III F 5’TGCTGCGGTCATGTAGGAAA3’ 
R 5’CAGCGGAGTCAAGGGAAAGA3’ 

ST3Gal-IV F 5’GGCTCTGGTCCTTGTTGTTG3’ 
R 5’TCCCTAGAACGGTTGCCAAAA3’ 

ST3Gal-VI F 5’CACCCCAAAAGCGCAGATTTATT3’ 
R 5’CCTGCCTGAAACAGAGTCCAA3’ 

ST6Gal-I F 5’TAGACGGGGACGTATCGGA3’ 
R 5’AAAAACCATCTCAGCATCCGGC3’ 

ST6Gal-II F 5’CTAGCCAGCAGGTTTTGTCCA3’ 
R 5’AAAGAGCATTCGTTGTCGCC3’ 

ST6GAlNAc-I F 5’TGTTAGGGACCAGCCATCCA3’ 
R 5’ATGAACTGGCACCTGGAATC3’ 

ST6GAlNAc-II F 5’CGGATGTTGTTGCTCGTTGC3’ 
R 5’AGTCGGCTCTTTCTGTTTTCC3’ 
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2.7 Tissue histology and antibody-based techniques 

2.7.1 Periodic acid Schiff and alcian blue (PAS/AB) staining  

Formalin-fixed paraffin-embedded tissue sections were cut, deparaffinised and 

hydrated as in section 2.3.1.2. Acidic mucins were stained with 1 % alcian blue in 3 % 

acetic acid (pH 2.5) for 15 min, followed by two washes in still tap water. Sections were 

treated with 0.5 % periodic acid for 5 min, followed by a further two washes in still tap 

water. Neutral mucins were stained with Schiff’s reagent for 10 min. Tissue sections 

were washed thoroughly in still tap water. Nuclei were stained with haematoxylin for 1 

min, followed by a further two washes in still tap water and brief differentiation in acid-

alcohol (96 % ethanol, 1 % HCl). Sections were dehydrated and mounted as in section 

2.3.1.2. The number of goblet cells per crypt was calculated from an average of ten 

crypts per tissue section, for seven mice. Average Crypt lengths (µm) were calculated 

in a similar manner.  

 

 

2.7.2 Phloxine-tartrazine staining 

Formalin-fixed paraffin-embedded tissue sections were cut, deparaffinised and 

hydrated as in section 2.3.1.2. Nuclei were stained with haematoxylin for 5 min, 

followed by three washes in tap water. Slides were briefly differentiated in acid-alcohol 

and washed two times in tap water. The haematoxylin staining was intensified in 

Scott’s solution (20 mg Calcium chloride, 30 mg magnesium sulphate in 1 L of distilled 

water) for 1 min, to increase the contrast of the haematoxylin staining. Sections were 

washed once in tap water. Cytoplasmic components were then stained with Phloxine 

solution (1 g Phloxine B and 1 g calcium chloride in 100 ml of water) for 20 min. Slides 

were briefly washed in two changes of tap water. Tissue sections were differentiated 

with tartrazine in Cellosolve (5 g tartrazine (Fluka Chemika, Buchs, Switzerland) in 200 

ml Cellosolve) until only the granules stained intensely red (controlled microscopically). 

Slides were rinsed briefly in 95 % ethanol, dehydrated, and mounted as in section 

2.3.1.2. The number of paneth cells per crypt was calculated from an average of 10 

crypts per tissue section, for seven mice. 
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2.7.3 Fluorescence staining 

Formalin-fixed paraffin-embedded tissue sections (5 µm) or frozen tissue sections (6-8 

µm) were fixed for 4 min in acetone-methanol (50 % acetone, 50 % methanol), dried 

and circled with a wax pen. Slides were then washed in wash buffer (PBS, 0.05 % 

BSA) for 5 min at 60 rpm, followed by a blocking step in block solution (Tris-NaCl-Block 

(TNB) buffer (PerkinElmer, Cambridgeshire, UK) containing 5 % fresh goat serum 

(Dako)) for 30 min. Slides were washed as above, dried, and incubated O/N with 

primary antibody (diluted in TNB buffer) in a humid glass container at 4 °C, or for 2 h 

with lectins. The primary antibody/lectin was removed and the slides washed three 

times as described above. Briefly dried slides were incubated for 1 h in the dark with 

secondary antibody diluted in PBS. Slides were washed in the dark three times as 

described above. Nuclei were stained with 4',6-diamidino-2-phenylindole (DAPI; Life 

Technologies Ltd, Paisley, UK) for 10 min in the dark. Slides were washed in the dark 

three times as described above, before drying and mounting in Hydromount mounting 

medium (National Diagnostics, Hessle, UK). Stained slides were stored in the dark at 4 

°C. The sources and concentrations of antibodies and lectins used are shown in Table 

2.4. Fluorescent lectin staining was semi-quantitatively assessed using the ImageJ 

software system developed by the National Institutes of Health.  
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Table 2.4| Antibodies and lectins, concentrations and suppliers used for fluorescence 

staining 

Antigen/protein/
sugars/DNA 

stained 

Primary antibody Secondary antibody/lectin 
/stain 

Conc. 
[µg/ml] 

Chromogranin A 
 

Rabbit polyclonal anti-
Chromogranin A 

(Abcam) 

Goat anti-rabbit Alexa 488 
(Invitrogen) 

2;10 

DNA - 4',6-diamidino-2-phenylindole 
(DAPI) 

(Invitrogen) 

25 

Gal-β(1,3)-
GalNAc 

- PNA (Vector Laboratories) 40 

IL-33 Rabbit polyclonal anti-IL-
33 (Santa Cruz) 

Goat anti-rabbit Alexa 488 
(Invitrogen) 

20;10 

Lysozyme 
 

Rabbit anti-Lysozyme 
concentrate 

(ZYMED/Invitrogen) 

Goat anti-rabbit Alexa 488 
(Invitrogen) 

1/20;10 

MUB Rabbit anti-MUBR5 (titre 
1:200 000) 

 

Goat anti-rabbit Alexa 488 
(Invitrogen) 

1/100;10 

MUC1 
 

Rabbit anti-MUC1 
(Santa Cruz) 

Goat anti-rabbit Alexa 488 
(Invitrogen) 

4;10 

MUC2 Rabbit anti-MUC2 
(Santa Cruz) 

 
Mouse anti-MUC2 

(Abcam) 

Goat anti-rabbit Alexa 488 
(Invitrogen) 

 
Goat anti-mouse Rhodamine 

(Abcam) 

4;10 
 
 

10;10 

MUC5AC 
 

Rabbit anti-MUC5AC 
(Santa Cruz) 

Goat anti-rabbit Alexa 488 
(Invitrogen) 

4;10 

N-acetyl-D-
glucosamine 

(GlcNAc/NAG) 
 

- WGA (Vector Laboratories) 40 

α-2,3 linked sialic 
acid 

- MAA (EY Laboratories) 75  

α-2,6 linked sialic 
acid 

- SNA-I (Vector Laboratories) 75  

Isotype control 
 

Rabbit IgG  
(Vector Laboratories) 

Goat anti-rabbit Alexa 488 
(Invitrogen) 

4/10;10 

Isotype control 
 

Mouse IgG2b-FITC 
(Caltag) 

 10 
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2.7.4 Periodate treatment 

Formalin-fixed paraffin-embedded mouse and human gastric tissue sections were cut, 

deparaffinised and hydrated as in section 2.3.1.2. Slides were washed in 0.1 M NaAc 

buffer (0.35 % acetic acid, 0.32 % (w/v) sodium acetate; pH 4.5 or pH 5.5) twice for 5 

min, followed by an incubation in periodate buffer (10 mM periodate in 0.1 M NaAc 

buffer) pH 4.5 (2 h) or pH 5.5 (20 min) in the dark. Slides were washed in 0.1 M NaAc 

buffer once for 5 min, and twice in PBS. Tissue was reduced by immersion in borate 

buffer (50 mM NaBH4 in PBS, pH 7.6) for 30 min. Slides were washed twice in PBS for 

5 min before blocking in block solution (section 2.7.3 ) for 1 h. Slides were rinsed with 

PBS and incubated with lectins or MUB (4 µg ml-1 in PBS) O/N at 4 °C. Following three 

washes in PBS-T for 10 min, slides were incubated with neat antiserum of rabbit anti-

MUBR5 diluted in PBS for 3 h. Slides were washes three times in PBS-T for 10 min, 

and incubated with goat anti-rabbit Alexa Fluor 488 for 1 h in the dark. Following two 

washes in PBS-T for 10 min, nuclei were stained with DAPI for 10 min in the dark, 

washed three times and mounted in Hydromount. Sources and concentrations of 

antibodies and lectins used are shown in Table 2.4.   

 

 

2.7.5 MUB binding to tissue sections 

Mouse and human gastric, small intestine and colon frozen tissue sections were cut, 

fixed and blocked as described in section 2.7.3. Sections were incubated with 4 μg ml-1 

MUB diluted in PBS, for 2 h. Two washes (5 min, 60 rpm) were performed before 

completing the staining protocol as in 2.7.3. The sources and concentrations of 

antibodies used are shown in Table 2.4. 
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2.8 Cell culture 

2.8.1 Ex vivo organoid culture assays 

2.8.1.1 Small intestinal crypt isolation 

The small intestine was exteriorised from the mice and placed in a Petri dish containing 

PBS. The SI was cut open longitudinally and washed three times in PBS to remove any 

faecal matter and luminal contents. The small intestine was cut in 5 mm pieces into a 

50 ml Falcon tube containing 15 ml PBS with 2 mM EDTA. This was kept on ice for 30-

40 min. Small intestinal crypts were separated from the rest of the tissue through 

vigorous shaking in the 50 ml Falcon tube. This was repeated 3-4 times in fresh PBS, 

to obtain a high crypt fraction used for the isolation. This fraction was passed through a 

70 µm filter to remove villi. The sample was divided and transferred into two 15 ml 

tubes (to reduce pellet size), centrifuged at 300 xg for 5 min and the supernatant 

discarded. The pellet was resuspended in 200 µl Matrigel (BD Biosciences, Oxford, 

UK) and immediately plated out on a pre-warmed 96-well plate in small domes. The 

plate was incubated at 37 °C for 10 min to allow for the polymerisation of the Matrigel. 

To each well, 200 µl of complete organoid growth medium (Table 2.6) was added and 

the plate incubated at 37 °C/5 % CO2 for culture. 
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Table 2.5| Composition of complete organoid growth medium describing component 

functions and concentrations. 

Medium/supplement Function Conc. 

DMEM/F12 
(Invitrogen) 

Cell culture medium neat 

N2 
(Invitrogen) 

Recommended for the growth and 
expression of neuroblastomas and for the 
survival and expression of post-mitotic 
neurons in primary cultures from both the 
peripheral nervous system (PNS) and the 
central nervous system (CNS). 

1x 

B27 
(Invitrogen) 

Supports the growth of neuronal cells 
without an astrocyte feeder layer and is 
effective for the growth of neuronal 
tumour cell lines. 

1x 

Penicillin/Streptomycin 
(Lonza) 

Effective against Gram-negative and Gram-
positive bacteria 

1000/1000ml-1 

GlutaMax 
(Invitrogen) 

Prevents degradation and ammonia build-
up even during long-term cultures 

1x 

Recombinant murine 
epidermal growth factor 

(EGF) 
(Peprotech) 

regulation of cell growth, proliferation, and 
differentiation 

50 ng ml-1 

Noggin 
(Peprotech) 

Induces expansion of crypt structures 100 ng ml-1 

R-Spondin 1 
(R&D Systems) 

A Wnt agonist that induces marked crypt 
hyperplasia in vivo 

500 ng ml-1 

N-acetyl cysteine 
 

Promotes cell growth and survival, and 
reduces oxidative stress 

1mM 

 

 

2.8.1.2 Small intestinal crypt culture 

The complete organoid growth medium was replaced every 3 days, and confluent 

organoids were passaged every 7 days. To do this, the media was removed from each 

well and the Matrigel dome broken up using a p1000 pipette. The same pipette tip was 

used to flush the well twice with 1 ml DMEM/F12. The crypt-media solution was then 

centrifuged at 300 xg for 5 min, and the pellet re-suspended and re-plated as described 

above.  

 

http://en.wikipedia.org/wiki/Cell_growth
http://en.wikipedia.org/wiki/Cell_growth
http://en.wikipedia.org/wiki/Cellular_differentiation
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2.8.1.3 Staining  

Organoid cultures used for fluorescence staining were plated out in 24-well plates on 

glass coverslips, with 1 ml of complete growth medium (see Table 2.5) per well. All 

fluorescence staining was performed on organoids cultured for four days. The medium 

was removed from each well and washed with PBS for 5 min (all consecutive washing 

steps are 5 min). Organoids were fixed with 1 ml 4 % paraformaldehyde (PFA) for 30 

min, followed by a further two wash buffer (PBS containing 0.05 % BSA) steps. 

Organoids were permeabilised with 1 ml 0.2 % Triton X-100 in wash buffer for 60 min. 

Two washes were performed before blocking with block solution (see section 2.7.3) for 

60 min. Organoids were washed in wash buffer twice, followed by an O/N primary 

antibody (diluted in TNB buffer) incubation at 4 °C. Primary antibody solution was 

removed and organoids washed three times in wash buffer. Secondary antibody 

(diluted in PBS) was added to each well for 60 min in the dark. Organoids were washed 

three times in wash buffer, followed by a 10 min incubation with DAPI (diluted in PBS). 

Organoids were washed three times in wash buffer. Coverslips were removed from the 

wells, mounted with Hydromount on glass microscopic slides, and left to dry overnight 

at 4 °C. The sources and concentrations of antibodies and lectins used are shown in 

Table 2.4. 

 

 

2.8.1.4 Small intestinal organoid treatment 

Small intestinal organoids were stimulated with 100 ng ml-1 recombinant human 

keratinocyte growth factor (KGF, Peprotech, NJ, USA) in organoid culture medium for 

24 h. 

 

 

2.8.2 HT29-MTX cell culture assays 

2.8.2.1 Maintenance of cell stocks 

HT29-MTX frozen vials were taken from liquid nitrogen and thawed rapidly at RT. 1 ml 

of cells was added to 9 ml of pre-warmed complete culture medium (DMEM (Lonza, 
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Basel, Switzerland) supplemented with 10 % heat inactivated (HI) FCS (Biosera, 

Sussex, UK) and 1 % L-Glutamine (Lonza, Basel, Switzerland)) and centrifuged at 

1000 xg for 5 min. The cell pellet was resuspended in 7 ml of complete medium and 

transferred to a 25 cm2 culture flask for initial culture. Once confluent, cells were 

transferred to a 75 cm2 culture flask and subsequent cell cultures were maintained in 

75 cm2 culture flasks. The volume of complete medium in each flask was 20 ml and 

was changed every other day. Cells were used between passages 41-60. 

 

 

2.8.2.2 Cell passaging and seeding 

Cells were passaged at a confluency of 80-90 %. The medium was removed from the 

75 cm2 culture flask and replaced with 7 ml of warm Trypsin/EDTA (T/E; Lonza, Basel, 

Switzerland). Cells were detached from the culture flask surface during a 10-15 min 

T/E incubation at 37 °C. T/E action was neutralised by the addition of 3 ml of complete 

medium. Cells were thoroughly suspended in this solution, transferred to a 15 ml 

Falcon tube and centrifuged at 1000 xg for 5 min. A small aliquot was taken and a 10 µl 

sample counted using a bright line haemocytometer, with four fields counted and 

averaged to calculate the cell count ml-1. The volume of cell suspension required for the 

intended cell seeding density was calculated using the formula z = (1000/n)x, where z 

is the µl volume of cell suspension, n is the cell count ml-1 , and x is the total number of 

cells required. Following centrifugation, the supernatant was poured off and the cell 

pellet thoroughly resuspended in 10 ml of complete medium to form a homogenous 

single-cell suspension. For cell culture maintenance, a 1:10 or 3:10 ratio was 

transferred into a new 75 cm2 culture flask and grown until confluency was reached. 

For all experiments, cells were seeded at 4 x 104 cells well-1 in 24-well plates. For 

staining experiments, cells were seeded onto glass coverslips, and for all other 

experiments cells were seeded directly onto the plate. Culture medium in the 24-well 

plates was changed daily.  
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2.8.2.3 Staining 

Media was removed from the wells, washed with PBS and fixed with 4 % PFA for 10 

min. Wells were washed three times with wash buffer. Cell monolayers were incubated 

with 500 µl primary antibody diluted in TNB buffer O/N at 4 °C. Three washes with 

wash buffer were performed. Cell monolayers were incubated with secondary antibody 

diluted in PBS for 1 h in the dark. This was followed by three washes with wash buffer 

before mounting the slides in Hydromount. Acidic mucins were stained with alcian blue 

(1 % alcian blue in 3 % acetic acid) for 5 min. Monolayers were washed in PBS three 

times for 5 min at 80 rpm before mounting in DEPEX mounting medium. Cells were 

stained with lectins for 2 h, followed by three washes in PBS and mounting of slides in 

Hydromount. The sources and concentrations of antibodies and lectins used are shown 

in Table 2.4.  

 

 

2.8.2.4 Lactobacillus reuteri adhesion assays  

HT29-MTX cell monolayers (Day 14) were washed twice with PBS. L. reuteri cells, 

prepared as in 2.5.1, were incubated with HT29-MTX cell monolayers at a density of 1 

x 108 cells ml-1 in DMEM (without FCS), for 3 h at 37 °C. Unbound L. reuteri cells were 

removed through three washed with PBS, followed by trypsinisation of bound L. reuteri 

cells and HT29-MTX cells with 250 µl T/E at 37 °C for 10-15 min. T/E was neutralised 

with 750 µl PBS. Serial dilutions of the suspended L. reuteri bacteria in PBS were 

plated out on modified MRS (MRS supplemented with fructose and maltose) and 

incubated anaerobically for 24 h at 37 °C. Colony counts were performed and the % 

adhesion calculated using the formula % adhesion= ratio of colonies/ initial colony 

count.  

Binding of L. reuteri strains to the HT29-MTX monolayer was visualised through 

fluorescence staining. L. reuteri cells prepared as in 2.5.1 were resuspended in 1 ml 

carbonate-bicarbonate buffer. To this, 10 µl of Fluorescein isothiocyanate (FITC) was 

added to a final concentration of 0.1 mg ml-1. Cells were fluorescently labelled by 

incubating in the dark for 1 h, before washing three times with PBS to remove any 

unbound FITC. The FITC-labelled L. reuteri cells were resuspended in the desired 

volume of DMEM, and 1 ml of suspension added to the HT29-MTX monolayers (Day 
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14), at a cell density of 1 x 108 cells ml-1. Plates were incubated in the dark at 37 °C for 

3 h, followed by three washes with PBS to remove unbound bacteria. All wells were 

fixed, stained for MUC5AC using rabbit anti-MUC5AC (Santa Cruz Biotechnology, 

Heidelberg, Germany), and mounted as in 2.7.3.  

L. reuteri adhesion was assessed in competition with sialic acid sugars. L. reuteri 

strains were pre-incubated with sialic acid sugars (N-acetylneuraminic acid or 6’-O-

Sialyllactose (Glycom, Lyngby, Denmark); 100 mM) for 15 min. HT29-MTX cell 

monolayers (Day 14) were washed twice in PBS and incubated with the L. reuteri 

strains at a density of 1 x 108 cells ml-1 in DMEM (without FCS), for 3 h at 37 °C.   

 

 

2.8.2.5 Benzyl-α-GalNAc treatment  

HT29-MTX monolayers were cultured for 14 days in 24-well plates on glass coverslips. 

The medium was replaced with DMEM (without FCS) containing 5 mM Benzyl 2-

acetamido-2-deoxy-α-D-galactopyranoside (Benzyl-α-GalNAc). Control wells contained 

DMEM only. HT29-MTX monolayers were cultured for 24 h in the presence of Benzyl-

α-GalNAc. The culture medium was removed and wells washed once with PBS. HT29-

MTX monolayers were fixed and stained as in section 2.8.2.3. To test the reversibility 

of the effects of Benzyl-α-GalNAc, HT29-MTX monolayers cultured for 24 h with 5 mM 

Benzyl-α-GalNAc were washed once and cultured for a further 24 h in culture medium 

without Benzyl-α-GalNAc. Staining was repeated as above. 

 

 

2.8.2.6 MUB binding 

HT29-MTX monolayers were cultured for 14 days in 24-well plates on glass coverslips. 

The medium was removed and monolayers washed with PBS before fixation with 4 % 

PFA for 10 min. HT29-MTX coverslips were washed three times with PBS and blocked 

in block solution (see section 2.7.3) for 30 min. Following two further washes in PBS, 

coverslips were incubated with 4 µg ml-1 MUB diluted in PBS for 2 h. Cells were 

washed three times with PBS and incubated with antiserum of rabbit anti-MUBR5 
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diluted in PBS O/N at 4 °C. Three PBS washes were performed before incubation with 

goat anti-rabbit Alexa Fluor 488 for 1 h in the dark. Coverslips were washed three times 

in PBS and mounted in Hydromount. Sources and concentrations of antibodies and 

lectins used are shown in Table 2.4. MUB adhesion was assessed in competition with 

sialic acid sugars. MUB (4 μg ml-1) was pre-incubated with sialic acid sugars (N-

acetylneuraminic acid or 6’-O-Sialyllactose (Glycom, Lyngby, Denmark); 100 mM) for 1 

h. HT29-MTX cell monolayers (Day 14) were washed twice in PBS and incubated with 

MUB for 2 h.  

 

 

2.9 Statistical analysis 

Data for all experiments carried out in this study was analysed using Microsoft Excel. 

The Student’s T-test was performed for statistical analysis, with degrees of significance 

represented as *p<0.05, **p<0.01, ***p<0.001 and ***p<0.0001. 
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Chapter 3 Impact of gamma delta (γδ) IELs on murine intestinal 

mucus properties 

 

 

3.1 Introduction and objectives 

The mammalian gastrointestinal (GI) tract contains a dynamic community of trillions of 

microorganisms [42]. These microorganisms establish a mutualistic relationship with 

the host, making essential contributions to mammalian metabolism while occupying a 

protected, nutrient-rich environment [317]. However the close association of a dense 

bacterial community with intestinal tissues poses a serious risk to the host. Several 

immune mechanisms work in concert to limit commensal exposure to the epithelial 

surface [42]. The composition and functions of the mucus layer (first line of immune 

defense), and the roles of γδ IELs in the GI tract (second line of immune defense) are 

discussed in detail in Chapter 1. However, whether γδ IELs contribute to maintaining 

an intact mucus layer in an homeostatic environment and/or following mucosal injury is 

currently unknown. In this study the TCRδ-/- mouse model [386] was used to shed light 

on the role of γδ IELs in modulating mucus expression, organisation and glycosylation. 

 

The objectives of this study are to:  

 

1. Analyse the response of TCRδ-/- mice to DSS-induced colitis. 

2. Characterise TCRδ-/- mice in terms of mucus properties, including mucus 

organisation, mucin expression and glycosylation. 

3. Investigate underpinning mechanisms of γδ IEL function using an ex vivo SI 

organoid culture system.  
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3.2 TCRδ-/- mice are more susceptible to DSS-induced colitis 

The use of dextran sodium sulphate (DSS) administered in drinking water is a well-

established model system used for the induction of intestinal epithelial cell (IEC) 

damage [392-394]. Here, DSS-induced acute colitis studies were undertaken in 

C57BL/6 wild type (wt) and TCRδ-/- mice to compare DSS-susceptibility between the 

two groups of mice. Acute colitis was induced by replacing normal drinking water with a 

2.5 % w/v solution of DSS in drinking water provided ad libitum for 7 days. For recovery 

experiments, mice were given DSS in drinking water for 3 days, followed by 3 days of 

drinking water without DSS. The clinical severity of colitis was assessed on the basis of 

stool consistency, faecal blood content and weight loss as determined daily throughout 

the DSS study. These clinical parameters were scored as the disease activity index 

(DAI) as reported by Cooper HS and Murthy SN [393, 395]. Colon length was 

measured on the final day of the study, as a further measure of severity of colitis. 

Haematoxylin and Eosin Y (H&E) stained tissue sections were scored blindly by a 

histologist (James Sington, NNUH) on the basis of epithelial injury, chronic and acute 

inflammatory infiltrates, number of goblet cells and oedema. 

Figure 3.1 demonstrates that TCRδ-/- mice show increased susceptibility to DSS-

induced colitis compared to wt mice, in agreement with previous reports [256, 386]. 

After 7 days of treatment, TCRδ-/- mice rapidly developed severe colitis, and the DAI 

was significantly higher (p=0.001) within 4 days of DSS treatment, compared to DSS-

treated wt mice (Figure 3.1A). Furthermore, colon length was significantly shorter in 

TCRδ-/- mice (p=0.01) compared to wt mice, providing a further assessment parameter 

for the severity of DSS-induced colitis (Figure 3.1B). Blinded histological examination of 

H&E-stained tissue sections showed that DSS-treated TCRδ-/- mice displayed an 

increased extent of epithelial injury, showing diffuse injury in more than 50 % of the 

circumference of the tissue (p=0.02) in the distal colon, compared to DSS-treated wt 

mice (Figure 3.1C). However, the overall histological damage score that combines all 

parameters assessed (extent of epithelial injury, chronic inflammatory infiltrate, acute 

inflammatory infiltrate, goblet cell loss and oedema), was similar for the mid-colon and 

distal colon between the two groups of mice (Figure 3.2), indicating that not all criteria 

were significantly affected by the lack of γδ IELs at day 7 of this DSS-colitis model. 
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Figure 3.1| TCRδ
-/-

 mice are more susceptible to DSS-induced colitis compared to wt 

mice. TCRδ
-/-

 and wt mice (n=13 each) were given 2.5 % DSS in drinking water for 7 days. The 

DAI score for all four groups of mice (wt non-treated, wt DSS-treated, TCRδ
-/-

 non-treated and 

TCRδ
-/-

 DSS-treated) was calculated daily on the basis of stool consistency, faecal blood 

content and weight loss (A). Colon length was measured at autopsy using a millimetre ruler on 

the final day of the DSS study (B). The extent of epithelial injury was scored blindly from H&E 

stained tissue sections of the distal colon of DSS-treated wt and TCRδ
-/-

 mice (C). DAI, disease 

activity index; H&E, haematoxylin and Eosin Y; DSS, dextran sodium sulphate; *p<0.05; 

**p<0.01; ***p<0.001; ***p<0.0001. 
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Figure 3.2| Histological damage of distal colon and mid colon tissue of DSS-treated wt 

and TCRδ
-/-

 mice. The average histological damage score (n=16 each) was calculated from 

blinded histology scoring of six parameters: epithelial injury, extent of epithelial injury, chronic 

inflammatory infiltrate, acute inflammatory infiltrate, number of goblet cells, oedema. DC, distal 

colon; MC, mid-colon. 

 

 

Figure 3.3 indicates that TCRδ-/- mice showed delayed recovery from DSS treatment, 

as assessed by the DAI, in agreement with previous reports showing that TCRδ-/- mice 

are more prone to DSS-induced colitis and show delayed tissue repair after termination 

of DSS treatment [256]. The DAI was measured daily for 3 days following the 

termination of DSS treatment. Results showed that at day 5 and day 6 of recovery, 

DSS-treated TCRδ-/- mice had a significantly higher DAI (p=0.03) compared to DSS-

treated wt mice, supporting the role of γδ IELs in aiding the recovery process following 

mucosal injury [255-257]. 
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Figure 3.3| TCRδ
-/-

 mice show delayed recovery following DSS-induced colitis. TCRδ
-/-

 and 

wt mice (n=5) were given 2.5 % DSS in drinking water for 3 days followed by 3 days of normal 

drinking water without DSS. The DAI score for all four groups of mice (wt non-treated, wt DSS-

treated, TCRδ
-/-

 non-treated and TCRδ
-/-

 DSS-treated) was calculated daily on the basis of stool 

consistency, faecal blood content and weight loss. DAI, disease activity index; DSS, dextran 

sodium sulphate; *p<0.05.  

 

 

3.3 Impact of γδ IELs on goblet cells, crypt length and Paneth cells 

Goblet cells are specialised mucus-secreting cells that form one of the four 

differentiated cell types found in the intestinal epithelium [112, 396]. To investigate 

whether alterations in the mucus of TCRδ-/- mice may contribute to their increased 

susceptibility to DSS-induced colitis, the morphology of intestinal crypts and the 

number of goblet cells in wt and TCRδ-/- mice was assessed in healthy and DSS-

treated tissue. Paneth cells are lysozyme-secreting cells [31] of the SI epithelium that 

can exist as an intermediate between Paneth and goblet cells, and have been 

associated with mucus production [397], thus their relative numbers were also 

compared in wt and TCRδ-/- mice in this study. 
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Paraffin-embedded SI and colon tissue sections of healthy and DSS-treated wt and 

TCRδ-/- mice were stained with periodic acid-Schiff and alcian blue (PAS/AB) to 

analyse epithelial goblet cells. From this, average goblet cell counts and crypt length 

measurements were performed in a blinded manner. Paraffin-embedded SI tissue of wt 

and TCRδ-/- mice was stained with phloxine-tartrazine for the visualisation of crypt 

Paneth cells. This allowed the calculation of the average Paneth cell number. PAS/AB 

staining confirmed that mucus was stored within SI and colonic goblet cells in wt and 

TCRδ-/- mice (Figure 3.4A). Histology revealed a 1.2-fold decrease in the number of 

goblet cells per crypt in the SI (ileum) of TCRδ-/- mice (p=0.024), whereas a 1.3-fold 

increase was observed in the colon of TCRδ-/- mice (p=0.0048), compared to wt mice 

(Figure 3.4B). These data correlate with a 1.2-fold decrease in crypt length in the SI 

(p=0.036) and a 1.1-fold increase in crypt length in the colon (p=0.044) of TCRδ-/- mice 

compared to wt mice (Figure 3.4C). Phloxine-tartrazine staining confirmed that Paneth 

cells are filled with eosinophilic granules in wt and TCRδ-/- mice (Figure 3.5A). Results 

in Figure 3.5B show that Paneth cell numbers were similar in the SI of TCRδ-/- mice, 

compared to wt mice (p>0.05). 
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Figure 3.4| Goblet cell counts and crypt length measurements in the SI and colon of wt 

and TCRδ
-/-

 mice. SI and colon tissues of wt and TCRδ
-/- 

mice (n=7) were stained with PAS/AB 

(A). Average goblet cell (arrows) number per crypt (B) and crypt length (lines) (C) were 

calculated from ten crypts per mouse tissue. Magnification, 400x; scale bars, 50 µm; SI, small 

intestine; C, colon. *p<0.05; **p<0.01. 
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Figure 3.5| Paneth cell counts in the SI of wt and TCRδ
-/-

 mice. SI tissue of wt and TCRδ
-/-

 

mice (n=10) was stained with phloxine-tartrazine (A). Average Paneth cell (arrows) number per 

crypt was calculated from ten crypts per mouse tissue (B). Magnification, x400; scale bars 50 

µm. 

 

 

Following 2.5 % DSS treatment for 7 days, alterations in the goblet cell numbers in the 

colon were also observed. DSS-treated TCRδ-/- mice showed a significant reduction in 

the number of goblet cells in the distal colon (p=0.03), compared to DSS-treated wt 

mice (Figure 3.6A). The model of acute DSS-induced colitis used in this study did not 

induce inflammation in the SI in both groups of mice (histological scores of 0; data not 

shown). Histology revealed that DSS treatment of TCRδ-/- mice resulted in extensively 

damaged colonic epithelium, compared with DSS-treated wt mice, indicating that 

impaired goblet cell recovery during colitis associates with the more severe 

inflammation seen in mice lacking γδ IELs. Consistent with goblet cell counts, Muc2 

mucin fluorescence staining of distal colon tissue revealed that DSS-treated TCRδ-/- 

mice showed reduced expression of Muc2 protein compared to DSS-treated wt mice 

(Figure 3.6B).  
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Figure 3.6| Goblet cell counts and Muc2 mucin staining in the colon of wt and TCRδ
-/-

 

mice following DSS treatment. Average goblet cell number per µm
2
 (n=6) was calculated from 

tissue area measurements (A). Distal colon sections of DSS-treated wt and TCRδ
-/- 

mice (n=3) 

were stained with anti-Muc2 (green) and counterstained with PNA and WGA (red) and DAPI 

(blue). Rabbit IgG represents the isotype control. (B) Magnification, x200; scale bars, 100 µm; 

Insert magnification, x400; *p<0.05. 

 

 

3.4 TCRδ-/- mice display an intact mucus layer 

TCRδ-/- mice have altered goblet cell numbers in the SI and colon, compared to wt 

mice (see section 3.3). To determine whether the lack of γδ IELs and the resulting 

alteration in goblet cell numbers may impact on the architecture and thickness of the 

mucus layers of TCRδ-/- mice, mucus measurements were performed in vivo in the 

ileum and distal colon of wt and TCRδ-/- mice. 
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In vivo mucus thickness was measured following previous methods [19]. The intestinal 

mucus layer was visualised by the addition of charcoal to the exposed ileum or distal 

colon surface. Mucus thickness was measured using a micropipette attached to a 

digital micromanipulator. Removal of the loose mucus layer by suction allowed the 

measurement of the firm and loose mucus layer, as well as the total mucus thickness. 

Figure 3.7 reveals that the total mucus layer thickness was 56.2±14.8 µm and 53.3±9.8 

µm in the ileum of wt and TCRδ-/- mice, respectively. Total mucus thickness in the distal 

colon of wt and TCRδ-/- mice was 135.5±21.4 µm and 194.1±59 µm, respectively. The 

loose mucus layer could be easily aspirated showing that TCRδ-/- mice possessed a 

distinct outer mucus layer, as shown for wt mice, leaving a thin firmly adherent ileum 

layer of 23.8±2.1 µm and distal colon layer of 34.2±2.9 µm, compared to 20.6±1.9 µm 

and 41.7.8±6.0 µm in wt mice, respectively. These results indicate that both firm and 

loose mucus layer thickness was similar in wt and TCRδ-/- mice (p>0.05). Regeneration 

of the loose mucus layer occurred over a 60 min period following removal of the loose 

layer, as reported earlier in the ileum and colon of rats, mice, and human explants [19, 

20, 313]. The thickness of the firm mucus layer was also measured at the end of the 

regeneration process, and found to be 27.23±3.3 µm in the ileum and 40.87±2.8 µm in 

the colon of wt mice and 27.67±2.9 µm in the ileum and 35.53±2.3 µm in the colon of 

TCRδ-/- mice, thus very similar to the initial measurements, confirming that the 

procedure did not impact on the integrity of the mucus architecture. These data indicate 

that the gross molecular organisation of the mucus layer is similar in wt and TCRδ-/- 

mice.  
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Figure 3.7| In vivo mucus measurements in the ileum and distal colon of wt and TCRδ
-/-

 

mice. Mucus thickness was measured in wt and TCRδ
-/-

 mice (n=7) in vivo using a 

micromanipulator. Total mucus thickness (Total) indicates the thickness of the firm and loose 

layer. After removal of the loose layer, firm layer thickness was immediately measured (Firm 1). 

The mucus layer was allowed to regenerate and then measured (60 min). The firm mucus layer 

was measured again (Firm 2) to confirm its steady state. 

 

 

3.5 Impact of γδ IELs on luminal and faecal IgA and intestinal pIgR 

To investigate whether the lack of γδ IELs may have an effect on other mucosal 

secretions, concentrations of immunoglobulin A (IgA) and expression of the polymeric 

immunoglobulin receptor (pIgR) (see section 1.2.2) were compared in wt and TCRδ-/- 

mice. 

For the quantification of IgA in wt and TCRδ-/- mice by ELISA, two sample types were 

used: i) faecal pellets and ii) luminal contents collected through intestinal flushes of the 

SI and colon. Total protein was extracted from SI and colon tissue of the two groups of 

mice, and pIgR protein expression analysed by western blot. 

Figure 3.8A indicates that the faecal IgA concentration was 29.06 µg 100 mg-1 in wt 

mice and 128.85 µg 100 mg-1 in TCRδ-/- mice,  but statistically similar in both groups of 
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mice as revealed by the student’s T test (p>0.05). There was a large variability in 

faecal IgA concentrations in biological replicates of TCRδ-/- mice, compared to wt mice 

(Figure 3.8A). Average IgA levels in faecal extracts of wt mice were in agreement with 

previous findings (27 µg ml-1) [398]. The high variability across biological replicates 

may suggest that faecal samples are not always reliable for the accurate quantification 

of IgA. IgA concentrations in wt and TCRδ-/- mice were thus also determined from 

luminal flush samples of the SI and colon. IgA concentrations were found to be similar 

(p>0.05) for wt and TCRδ-/- mice in both the SI, 0.49 µg mg-1 and 3.03 µg mg-1 

respectively, and colon, 14.77 µg mg-1 and 9.4 µg mg-1, respectively (Figure 3.8B). 

Efficient transport of IgA from the lamina propria into mucosal secretions is mediated 

by pIgR, and up-regulation of pIgR has been reported in formerly germ-free mice 

colonised with the commensal Bacteroides thetaiotamicron [291]. By western blot, pIgR 

protein is detected in IECs at a molecular mass of 120 kDa and 100 kDa [399]. In order 

to separate proteins according to their molecular size, total protein extracts from SI and 

colon tissue of wt and TCRδ-/- mice were run on an SDS-PAGE gel (Figure 3.9A). 

Western blot analysis using anti-pIgR antibody against mouse pIgR revealed the 

presence of two discrete bands at the expected size for mouse pIgR (100 kDa and 120 

kDa) for SI wt and TCRδ-/- samples (Figure 3.9B). Densitometric analysis revealed that 

there was no significant difference in the relative abundance of pIgR in the SI of the two 

groups of mice (Figure 3.9C). These data are consistent with the IgA concentration in 

the SI of wt and TCRδ-/- mice (Figure 3.8B). Colon samples displayed a more diffuse 

pattern with no clear bands that correspond to mouse pIgR, and were therefore not 

quantified. β-actin was used as a loading control for western blot analysis.  

 

 

 

 

 

 

 

 



101 

 

 

 

 

 

 

 

 

 

 

Figure 3.8| Faecal and luminal IgA concentrations in wt and TCRδ
-/-

 mice. IgA 

concentrations of faecal samples (n=9) (A) and intestinal flush samples (n=8) (B) of wt and 

TCRδ
-/-

 mice were determined by ELISA. C, colon; SI, small intestine.  
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Figure 3.9| pIgR expression in the SI and colon of wt and TCRδ
-/-

 mice. SDS-PAGE of total 

protein extracts from the SI (n=3/4) and colon (n=4) of wt and TCRδ
-/-

 mice. Lane 1 and 9, 

Broad range MW marker; Lanes 2-4, wt SI samples; Lanes 5-8, TCRδ
-/-

 SI samples, Lanes 10-

13, wt colon; Lanes 14-17 TCRδ
-/-

 colon (A). Western blots of SDS-PAGE of SI (top panel) and 

colon (bottom panel) protein extracts, probed with anti-pIgR (double band ~100 kDa and ~120 

kDa). Top panel: Lanes 1-3, wt SI samples; Lanes 4-7, TCRδ
-/-

 SI samples. Bottom panel: 

Lanes 1-4 wt colon samples; Lanes 4-8 TCRδ
-/-

 colon samples. β-actin was used as a loading 

control (B). Relative density was determined for SI wt and TCRδ
-/-

 pIgR bands, represented as 

the ratio between pIgR and β-actin (C). 
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3.6 TCRδ-/- mice display altered sialic acid content and glycosyltransferase 

expression 

Aberrant intestinal mucin expression and glycosylation are associated with chronic 

inflammation and colon cancer in humans [111]. To investigate the potential role of γδ 

IELs in shaping mucus properties, O-glycan and sialic acid concentrations were 

determined biochemically from mucus of the SI and colon of wt and TCRδ-/- mice. 

Furthermore, glycosyltransferase (GT) including sialyltransferase (ST) mRNA 

expression levels were analysed in the SI and colon of wt and TCRδ-/- mice.  

 

 

3.6.1 Sialic acid and O-glycan concentrations in wt and TCRδ-/- mice  

Sialic acid concentration was determined using the ninhydrin assay, as previously 

described [387]. TCRδ-/- mice showed a 2-fold decrease (p=0.04) in sialic acid 

concentration in the mucus of the SI, compared to wt mice (Figure 3.10A). Similarly, 

the sialic acid concentration was 39.5 µM lower in colonic mucus of TCRδ-/- mice 

(p=0.03), compared to wt mice (Figure 3.10A). O-glycan concentration was determined 

using the alkaline borohydrate assay, as previously described [388]. Figure 3.10B 

shows that the amount of O-linked oligosaccharide chains was similar in the SI and 

colon mucus of the two groups of mice. 
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Figure 3.10| Sialic acid and O-glycan concentration analysis in the SI and colon of wt and 

TCRδ
-/- 

mouse mucus. Sialic acid concentration was determined by ninhydrin colourimetric 

assay for SI and colon mucus (n=5) (A). O-glycan concentration was determined by alkaline 

borohydrate colourimetric assay for SI and colon mucus (n=6) (B). SI, small intestine; C, colon; 

*p<0.05. 

 

 

To further investigate the marked decrease in sialic acid concentration in the SI and 

colon of TCRδ-/- mice compared to wt mice, sialic acid lectin (see Table 3.1) binding 

was compared between the two groups of mice. Wt and TCRδ-/- SI and colon tissue 

sections were stained with Sambuccus nigra (SNA-I) and Maackia amurensis (MAA), 

and the staining was subsequently semi-quantified using the Image J software. Lectin 

staining images in Figure 3.11A and B showed that both sialic acid-binding lectins 

bound to intestinal tissue of wt and TCRδ-/- mice, indicating that both α-2,3 sialic acid 

(MAA) and α-2,6 sialic acid (SNA-I) are present, albeit at a low level. Staining also 

revealed that α-2,3 sialic acid was more abundant in the SI (Figure 3.11A) compared to 

the colon (Figure 3.11B). Semi-quantification of the stained images showed that there 

is no significant difference in SNA-I and MAA lectin staining between the two groups of 

mice in the SI (Figure 3.11C), but that there was a significantly higher amount of MAA 

binding (p=0.02) in in the colon of TCRδ-/- mice compared to wt mice (Figure 3.11D). 

These findings are not in agreement with results in Figure 3.10A, where a significant 
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decrease in sialic acid content was observed in TCRδ-/- mice compared to wt mice, 

however the quantification using the ninhydrin assay was deemed more accurate than 

the method of semi-quantification of lectin stained images using an image software, as 

reflected by the large error bars within the data set. Future work will include alcian blue 

staining of tissue sections in order to assess glycosaminoglycan and acidic mucin 

production in the two groups of mice. 
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Figure 3.11| Sialic acid lectin staining and semi-quantification in the SI and colon of wt 

and TCRδ
-/- 

mice. SI (A) and colon (B) tissue sections of wt and TCRδ
-/- 

mice were stained with 

SNA-I-FITC and MAA-TR (n=5). Sections were counterstained with DAPI. Lectin binding to SI 

(C) and colon (D) tissue sections was semi-quantified using the Image J software (n=5). 

Magnification x400; scale bars 50 µm; SNA-I, Sambuccus nigra lectin; MAA, Maackia 

amurensis lectin.  

 

 

3.6.2 Glycosyltransferase and sialyltransferase mRNA levels in wt and TCRδ-/-
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Here the expression of GT genes involved in the synthesis of the main mucin glycan 
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involved in chain elongation (ST3Gal-I, ST3Gal-III, ST3Gal-IV, ST3Gal-VI, ST6Gal-I, 

ST6Gal-II, ST6GalNAc-I and ST6GalNAc-II) was analysed by qRT-PCR. In mice, 

C1GalTs, C2GnT1, C2GnT2 and C3GnT1 are expressed in the colon, while C1GalTs, 

C2GnT1, C2GnT3 and low amounts of C3GnT1 are found in the SI [142, 400, 401]. It 

was found that core-1 C1GalT1 and C1GalT2 displayed the highest GT expression 

levels, albeit not significantly different between the two groups of mice (data not 

shown), in agreement with the increased proportion of core-1 structures [82, 83]. 

Significant differences in gene expression between wt and TCRδ-/- mice were observed 

for core-2 C2GnT1 and core-3 C3GnT in the SI. Figure 3.11 shows that C2GnT1 gene 

expression was 3.7-fold lower (p=0.00013) in TCRδ-/- mice compared to wt mice. A 5-

fold decrease was observed in the gene expression level of C3GnT (p=0.047) in TCRδ-

/- mice compared to wt mice (Figure 3.12). In the colon, GT gene expression was found 

similar (p>0.05) between the two groups of mice (data not shown). Furthermore, levels 

of ST gene expression were also similar (p>0.05) in the SI and colon of wt and TCRδ-/- 

mice (data not shown), suggesting that the observed reduction in sialic acid 

concentration in TCRδ-/- mice (Figure 3.10A) was not due to changes in ST mRNA 

expression. 
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Figure 3.12| Glycosyltransferase gene expression analysis in the SI and colon of wt and 

TCRδ
-/-

 mice. GT gene expression analysis of the SI and colon of wt and TCRδ
-/-

 mice (n=3) 

was performed by qRT-PCR, and is represented as relative gene expression (2
-∆Ct

). SI, small 

intestine; *p<0.05; ***p<0.001.  

 

 

3.7 TCRδ-/- mice display altered cytokine and mucin gene expression 

Cytokines are a family of proteins involved in immune signalling. Several cytokines 

including, for example, IL-1α and IL-18, have been linked to the induction of potent pro-

inflammatory responses as well as promoting protection and immune homeostasis 

[402, 403]. Furthermore, cytokines have been linked to mucus production; for example, 

IL-13 has been shown to stimulate mucus production in airways [404] and in a human 

colon cancer cell line [405], IL-1 stimulates mucus production in mouse intestinal 

explants [406] and airways [407], IL-10 directly regulates Muc2 synthesis [155] and IL-4 

increases MUC2 mRNA in a human colon cancer cell line [405]. To assess the impact 

of γδ IELs on mucin and cytokine gene expression, microarray and qRT-PCR analyses 

were performed on SI and colon tissue of wt and TCRδ-/- mice. 
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3.7.1 Gene microarray and cytokine analysis in wt and TCRδ-/- mice 

For a large scale gene expression analysis of glyco-genes, mRNAs were extracted 

from SI and colon epithelial scrapes of wt and TCRδ-/- mice and subjected to analysis 

on a custom Affymetrix-based DNA microarray (Glyco_v4a520670F; Scripps Institute, 

CA, USA), containing murine cytokine genes, made available by the Consortium for 

Functional Glycomics (www.functionalglycomics.org). Triplicate samples of the SI and 

colon from separate mice were collected to provide three independent RNA 

preparations for each mouse strain. Labeled samples were prepared for each RNA and 

then hybridised to microarrays yielding three sets of data per tissue type and mouse 

strain.  

Microarray analysis revealed that the variability between within group samples was too 

large to produce conclusive results, but analysis using the non-parametric Rank 

Product method identified a number of differentially expressed transcripts in the SI and 

colon of wt and TCRδ-/- mice (Figure 3.13, for details see appendix 6). Of these, a 

group of genes relevant to this study (IL-33, CD48, CD74, COLEC12, LGALS1, LUM) 

was selected for further gene expression analysis by qRT-PCR. Figure 3.14A shows 

that the transcript level of IL-33 in the SI was 3.6-fold lower (p=0.00031) in TCRδ-/- mice 

compared to wt mice. Gene expression of the other five genes selected was similar in 

the two groups of mice (data not shown). IL-33 (also known as IL-1F11), is the newest 

identified member of the IL-1 family. To further investigate this marked decrease in IL-

33, expression of IL-33 protein was assessed by ELISA and fluorescence staining. 

ELISA analysis confirmed that IL-33 protein expression was similar in the colon of wt 

and TCRδ-/- mice (p>0.05), whereas levels of IL-33 protein were below detection limit in 

the SI in both groups of mice (Figure 3.14B). This is in agreement with fluorescence 

staining of IL-33 in the SI, further confirming its low abundance and indicating that IL-33 

protein levels show no marked difference between wt and TCRδ-/- mice (Figure 3.14C). 

Fluorescence staining showed that IL-33 is localised to the apical surface of the 

epithelial cells and evenly distributed along villi and crypts of the SI, in both groups of 

mice (Figure 3.14C).  

 

 

 



110 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.13| Microarray gene expression analysis of the SI and colon from wt and TCRδ
-/-

 

mice. Heat maps showing the mean-scaled expression of differentially expressed transcripts in 

the SI (A) and colon (B) from wt and TCRδ
-/-

 mice (n=3), as identified by the Ranked Product 

(RP) method. Red indicates increased expression and blue indicates decreased expression. 
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Figure 3.14| IL-33 expression analysis in the SI and colon of wt and TCRδ
-/-

 mice. IL-33 

gene expression was analysed in the SI and colon of wt and TCRδ
-/-

 mice (n=3) by qRT-PCR, 

and is represented as the relative gene expression (2
-∆Ct

) (A). IL-33 protein expression in the SI 

and colon of wt and TCRδ
-/-

 mice (n=4) was analysed by ELISA (B). IL-33 protein expression 

was further analysed in the SI of wt and TCRδ
-/-

 mice (n=3) by fluorescence staining (C).  

Sections were counterstained with DAPI (blue). Magnification, x400; scale bars, 50 µm; SI, 

small intestine; ***p<0.001.  

 

 

3.7.2 Mucin mRNA levels in wt and TCRδ-/- mice 

Next, the mRNA expression of the main intestinal mucins, Muc1, Muc2, Muc3, Muc4, 

Muc5AC, Muc6, Muc12, Muc13, Muc17 and Muc19, was measured in the SI and colon 

of wt and TCRδ-/- mice. The secreted Muc2 mucin and the membrane-bound Muc13 

and Muc17 mucins are the major mucins expressed in the intestine under normal 

physiological conditions in humans and mice [27, 112]. In agreement with this, the 

Muc2 and Muc17 mucins were the most highly expressed in the SI and colon of both 
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groups of mice. There were significant differences in the mRNA expression of the 

secreted gel-forming Muc2 and the membrane-bound Muc3, Muc4, Muc13 and Muc17 

between wt and TCRδ-/- mice. Figure 3.15 shows that a significantly higher level of 

expression of Muc2 (p=0.024), Muc3 (p=0.048) and Muc17 (p=0.034) mRNA was 

observed in the SI of TCRδ-/- mice compared to wt mice. In the colon, a significantly 

higher level of expression of Muc3 (p=0.0043), Muc4 (p=0.047) and Muc13 (p=0.016) 

mRNA was shown in TCRδ-/- mice compared to wt mice (Figure 3.15). Taken together 

these findings suggest a role for γδ IELs in the regulation of mucin gene expression.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.15| Mucin gene expression analysis in the SI and colon of wt and TCRδ
-/-

 mice. 

Gene expression of Muc1, Muc2, Muc3, Muc4, Muc5AC, Muc6, Muc12, Muc13, Muc17 and 

Muc19 was analysed in the SI and colon of wt and TCRδ
-/-

 mice (n=3) by qRT-PCR, and 

represented as the relative gene expression (2
-∆Ct

). SI, small intestine; C, colon; *p<0.05; 

**p<0.01.  
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3.8 TCRδ-/- SI crypt organoid cultures support the role of γδ IELs in the 

modulation of crypt growth and mucin properties 

3.8.1 Characterisation of wt and TCRδ-/- SI organoids 

The establishment of a self-renewing long-term intestinal crypt culture system, 

maintained by a limited number of growth signals in the absence of a non-epithelial 

cellular niche, simplifies the study of crypt-villus biology [408]. To investigate the 

possible mechanisms leading to reduced goblet cell numbers and altered mucin 

expression levels in the SI of TCRδ-/- mice, and to uncouple the potential impact of γδ 

IELs on intestinal crypts in wt mice, SI crypts were isolated from wt and TCRδ-/- mice 

and maintained in culture. Organoids were cultured based on published methods [408]. 

Briefly, crypts were isolated from SI tissue using 2 mM EDTA and re-suspended in a 

Matrigel matrix. Small domes were plated out in 24-well plates and cultured in a growth 

factor-rich medium (see Table 2.6). Organoids were passaged every seven days, and 

maintained in culture for 61 days. Budding crypts and the central lumen of the organoid 

structures consisted of a single layer of polarised epithelial cells, in agreement with 

previous reports [408]. Figure 3.16 indicates that the growth pattern of TCRδ-/- SI crypts 

was similar to that of wt SI crypts; crypts from both groups of mice sealed by day 1 (D1) 

and continuously budded from the central lumen to form confluent organoids by day 7 

(D7).  
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Figure 3.16| TCRδ
-/- 

SI crypts display similar growth patterns compared to wt organoids. 

Images of SI crypts (n=30-40) that close to form a cyst (D1) to then further develop through the 

budding of new crypts (arrows) from the cyst body (D2-D7). Day 0 to day 7 images of wt crypts 

(A) and TCRδ
-/- 

crypts (B) are shown. Magnification x200; scale bars, 50μm; D, day. 

 

 

For fluorescence staining, SI crypts were cultured for four days to produce organoids 

composed of numerous newly-formed crypts that could be characterised on the basis 

of differentiation and integrity markers. Similar phenotypic characteristics were 

observed between the two groups of mice (Figure 3.17). Enteroendocrine cells 

(Chromogranin A staining, Figure 3.17A) were scattered throughout the crypt. Goblet 

cells (MUC2 staining, Figure 3.17B) were observed in the lower third of the crypt, while 
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Paneth cells (Lysozyme staining, Figure 3.17C) were seen along the whole length of 

the crypt. Plant lectin (see Table 3.1) staining (peanut agglutinin (PNA) and wheat 

germ agglutinin (WGA) staining, Figure 3.17D; SNA-I and MAA staining, Figure 3.17E) 

confirmed expression of extended sugar chains in cultured organoid structures from 

both groups of mice.  

 

 

Table 3.1| Specificity of lectins used in this study 

Lectin Abbreviation Sugar recognition 

Maackia amurensis lectin MAA α-2,3 neuraminic (sialic) acid 

Peanut agglutinin PNA Gal-β(1-3)-GalNAc 

Sambuccus nigra lectin SNA-I α-2,6 neuraminic (sialic) acid 

Wheat germ agglutinin WGA N-acetylglucosamine (GlcNAc), Neuraminic (sialic) 
acid 
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Figure 3.17| TCRδ
-/-

 SI organoid cultures show similar phenotypic characteristics to wt 

organoids. SI organoids (n=30-40) from both groups of mice were stained with anti-

chromogranin A (Chrom A, A), anti-MUC2 (B), anti-Lysozyme (C), PNA and WGA (D) and SNA-

I and MAA (E) lectins. Organoids were counterstained with DAPI (blue). Magnification x400.   
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3.8.2 Role of KGF in goblet cell and crypt properties of SI organoids 

The frequency of goblet cells, as determined by anti-MUC2 fluorescence staining of 

TCRδ-/- crypt organoid cultures was similar to the organoid cultures from wt mice. It 

was hypothesised that the higher number of goblet cells observed in the SI of wt mice, 

compared to TCRδ-/- mice (Figure 3.4B), required the presence of γδ IELs that are 

absent in the wt organoid cultures. KGF plays a critical role in intestinal epithelial 

growth and maintenance [409, 410], and DSS-activated γδ IELs express KGF in the 

intestinal mucosa [256]. Here it was investigated whether wt and TCRδ-/- SI organoids 

would respond to KGF in a similar manner. Four-day organoids were stimulated with 

100 ng ml-1 KGF in culture medium for 24 h before anti-MUC2 staining was performed. 

Control organoids were grown in culture medium only. KGF-stimulated organoids 

showed a marked increase in crypt length and goblet cell number compared to controls 

(Figure 3.18), similar to responses observed in rat tissue [259, 409], and the phenotype 

observed in wt tissue (Figure 3.4B), supporting its functional role in vivo. Changes in 

crypt numbers, crypt length and goblet cell numbers per organoid require 

quantification, which is currently being addressed. Furthermore, Figure 3.18 indicates 

that goblet cell distributions changed in response to KGF stimulation, with goblet cells 

being located not just in the lower third of the crypt, but distributed along the entire 

crypt length. The rapidity (24 h) of the observed response is in accordance with the cell 

cycle time of the SI crypt proliferating zone being 9-13 h [10]. These findings support a 

role of KGF-producing cells, which include γδ IELs, in modulating crypt and mucus 

properties, consistent with the exacerbation of the impact of DSS-treatment in the 

absence of the γδ IEL-signalling pathway in TCRδ-/- mice. 
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Figure 3.18| Treatment of wt and TCRδ
-/-

 SI organoids with KGF. MUC2-stained organoids 

grown in normal culture medium (control) (n=60) and culture medium supplemented with KGF 

(KGF) (n=60) for 24 h. Organoids were counterstained with DAPI (blue). Magnification, x400; 

KGF, keratinocyte growth factor; bar, crypt length designator; star, goblet cell designator. 

 

 

3.9 Discussion 

In accordance with previous studies [234, 256, 411], TCRδ-/- mice were found to be 

more susceptible to DSS-induced colitis compared to wt mice. It has been shown that 

γδ IELs aid in the limitation of opportunistic penetration of commensal bacteria across 

the mucosal surface; a phenomenon seen at early time points of injury by DSS-induced 

colitis [236]. γδ IEL activation appears to be dependent on epithelial cell-intrinsic 

MyD88, a key mediator of microbial-host cross-talk suggesting that epithelial cells 

supply microbial cues to γδ IELs [412]. Given the role played by the mucus layer in 

limiting bacterial penetration, it was hypothesised that γδ IELs may reinforce mucus 

barrier function, thereby decreasing the likelihood of detrimental tissue invasion. 
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3.9.1 Characterisation of mucus properties in TCRδ-/- mice  

Mucus properties in TCRδ-/- mice were investigated on the basis of goblet cell 

numbers, in vivo mucus thickness, mucus composition and mucin and glyco-gene 

expression. Results from PAS/AB staining of colon tissue suggest that goblet cell 

depletion in TCRδ-/- mice contributes to the more severe inflammation seen in mice 

lacking γδ IELs during DSS-induced colitis. Additionally, analysis of in vivo intestinal 

mucus thickness revealed that firm and loose mucus thickness was similar in TCRδ-/- 

and wt mice, despite goblet cell differences, which may suggest an alteration in the rate 

of mucus production or secretion. Expression analysis of the intestinal mucin and core 

GT genes showed major differences occurring in the SI of TCRδ-/- mice, compared to 

wt mice. This highly altered SI phenotype, compared to the colon, could be associated 

with the higher abundance of IELs in the SI (1 IEL for every 10 intestinal epithelial cells 

(IEC)) compared to the large intestine (1 IEL for every 40 IEC) [226].  

 

The addition of O-glycans is a post-translational modification characteristic of secreted 

and membrane-bound mucins. Mucin glycosylation is characterised by common core 

structures, which are variously elongated and terminated, comprising the basis for the 

structural diversity of glycans. Two of the most common mucin-type O-glycans in 

mouse intestinal mucins are based on the core-1 and core-2 structures [82, 83]. Here 

C1GalT1 and C1GalT2 were most highly expressed in both groups of mice. Expression 

of both C2GnT1 and C3GnT was down-regulated in the SI of TCRδ-/- mice compared to 

wt mice. Furthermore mucin sialic acid concentration was decreased in TCRδ-/- mice. 

However this change did not correlate with changes in gene expression of main ST 

genes tested. The STs constitute a family of ~20 members [413]. For O-linked mucin 

glycans, each tissue expresses one or more of the ST3Gal I/II and the ST6GalNAc I–VI 

enzymes that form the NeuAcα2–3Galβ1–3 (NeuAcα2–6) GalNAcαThr/Ser sequence, 

the most common O-linked glycan [414]. In light of the similar ST mRNA expression 

observed between wt and TCRδ-/- mice, the reduced mucin sialic acid concentration in 

TCRδ-/- mice may be the result of altered bacterial colonisation in these mice. γδ IELs 

of the SI have been shown to regulate the production of antimicrobial factors, such as 

RegIIIγ, in response to resident bacterial "pathobionts" that penetrate the intestinal 

epithelium [236]. Such a response is reduced in TCRδ-/- mice, allowing a different 

bacterial population to colonise the SI. Indeed gut bacteria, in particular pathogens, 

have evolved to utilise host sialic acids as a nutrient source and as a major strategy for 

colonisation and pathogenesis of mammalian mucosal surfaces [415]. Utilisation of 



120 

 

sialic acid by bacteria promotes bacterial survival in mucosal niche environments in 

several ways, including: (i) nutritional benefits of sialic acid catabolism, (ii) unmasking 

of cryptic host ligands used for adherence, (iii) participation in biofilm formation and (iv) 

modulation of immune function [416]. Determining the composition of the mucosa-

associated microbiota in TCRδ-/- mice compared to wt littermates will help assess the 

association between sialic catabolism and pathogenesis.  

 

3.9.2 Impact of γδ IELs on mucosal IgA secretions 

Further to mucins, IgA represents an additional immune defence component of the 

intestinal barrier. In humans, at least 80 % of plasma cells are located in the lamina 

propria, and together they produce more IgA than any other immunoglobulin isotypes 

combined [417, 418]. Secreted IgA can neutralise viruses or toxins intraluminally, or 

during transport via pIgR [419, 420]. IgA also plays a role in preventing commensal 

bacterial adherence and penetration, or limiting the growth of bacteria and their 

densities in the lumen of the intestine [38, 421]. IgA levels are close to the detection 

limit in germ-free animals, with physiological IgA levels being reached within a few 

weeks following conventionalisation [422-424]. It is worth noting that introduction of 

commensals is associated with the induction in the intestine of both strain-specific IgA 

[425] and natural IgA with unknown specificity [424]. Studies have underscored the 

natural “coating” of commensal bacteria by IgA, a process that may be involved in the 

sensing of the intestinal microbiota in homeostasis [421, 426, 427]. This is further 

supported by the fact that pIgR-/- mice display greater susceptibility to DSS-induced 

colitis compared to wt and IgA-/- mice [428]. In humans, IgA quantification has been 

assessed by sampling faeces [429, 430] whereas in experimental animals IgA is 

usually collected by flushing luminal contents [431]. Here, the faecal and luminal IgA 

concentrations were similar in TCRδ-/- mice compared to wt mice. This is in contrast to 

studies reporting an 80 % decrease in faecal IgA concentration of TCRδ-/- mice 

compared to TCRδ+/+ control mice [432], however other studies in TCRδ-/- mice showed 

no differences in faecal and luminal IgA concentrations compared to wt mice 

[MacPherson, personal correspondence]. Furthermore, pIgR expression was similar in 

the two groups of mice. Together these findings suggest that the lack of γδ IELs does 

not affect IgA or pIgR levels in TCRδ-/- mice, and is in agreement with findings that 

mucus thickness is similar in wt and TCRδ-/- mice. 
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3.9.3 Impact of γδ IELs on mucin gene expression 

Numerous studies have described mucin abnormalities in inflammatory bowel disease 

(IBD) and cancer, both in animal models and patients [68, 433-436]. Significantly 

higher gene expression of gel-forming Muc2 was observed in the SI of TCRδ-/- mice 

compared to wt mice. MUC2 is the most abundantly expressed secretory mucin in the 

intestine and is stored in bulky apical granules of the goblet cells which form the 

characteristic goblet cell thecae [437]. The mucin-containing granules can be secreted 

from the apical surface both constitutively and in response to a variety of stimuli. In 

addition, goblet cells can undergo compound exocytis; an accelerated secretory event 

resulting in the acute release of central mucin granules [438]. As γδ IELs protect 

against the invasion of intestinal tissues by resident bacteria, specifically during the first 

few hours after a bacterial encounter [236], increased bacterial translocation in TCRδ-/- 

mice could trigger increased secretory activity of goblet cells, as recently reported in 

the case of colonic ischaemia [396]. The maintenance of an apparent intact mucus 

layer is consistent with previous studies reporting that bacterial penetration in the 

TCRδ−/− mice did not arise from increased non-specific barrier permeability [236]. Muc2 

expression was also down-regulated in MyD88(ΔIEC) mice, consistent with a 

previously suggested role of the MyD88-dependent signalling pathway in γδ IEL-

modulation of mucosal homeostasis [236]. Expression of MUC2 mucin, the structural 

component of the colonic mucus layer, is lowered in ulcerative colitis (UC) [439]. A 

primary defect in colonic Muc2 synthesis is observed in IL-10-/- mice, whereas bacterial 

colonisation and colitis in these mice led to reduced Muc2 sulphation [440]. These 

quantitative and structural aberrations in Muc2 in IL-10-/- mice likely reduce the ability of 

the mucosa to cope with non-pathogenic commensal bacteria and may contribute to 

their susceptibility to develop colitis.  

 

Muc13 and Muc17 mucins are the main membrane-bound mucins expressed in the 

intestine under normal physiological conditions [27, 112]. In the colon, significantly 

higher levels of membrane-bound Muc3, Muc4 and Muc13 mRNA were measured in 

TCRδ-/- mice compared to wt mice. MUC13 mucin is the most abundant cell-surface 

mucin in the normal human GI tract and MUC13 polymorphisms have been linked to 

IBD [132]. This membrane-bound mucin has recently been shown to have a protective 

role in the colonic epithelium of mice with disruption or inappropriate expression of 

Muc13 predisposing to infectious and inflammatory diseases, and inflammation-

induced cancer [132]. Upregulation of Muc13 gene expression may be an epithelial 
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protective mechanism induced by the host in the absence of γδ IELs. In addition, 

results from qRT-PCR showed significantly higher levels of Muc17 mRNA in the SI of 

TCRδ-/- mice compared to wt mice. In humans, the region of the membrane-bound 

mucin gene cluster has been implicated in genetic susceptibility to IBD [128, 441]. 

Muc17 expression is lost in inflammatory, and early and late neoplastic conditions in 

the colon [133], suggesting that Muc17 may have anti-inflammatory roles, and 

therefore the observed upregulation of Muc17 in TCRδ-/- mice compared to wt mice 

may be a protective mechanism in the SI epithelium.  

 

3.9.4 Impact of KGF on ex vivo SI organoids 

The differentiation, activation and functional specialisation of IELs are controlled by 

interactions with other cell types and soluble factors. In particular, activated but not 

resting γδ IELs can produce KGF [260], a unique feature of this T cell population [256, 

258]. It has been reported that intestinal γδ IELs are activated in vivo to express KGF 

after DSS treatment, and that intestinal epithelial cell proliferation is decreased in 

TCRδ-/- mice following DSS treatment [256]. Here it was shown that KGF treatment can 

restore goblet cell numbers in ex vivo organoid cultures from TCRδ-/- mice, in line with 

previous reports showing an increase in goblet cell number and trefoil factor 3 (TFF3) 

protein expression in the rat intestine following KGF treatment [259]. This new line of 

evidence indicates that γδ IEL-derived KGF could form a component in this protective 

mechanism. Goblet cell depletion is a characteristic feature of many forms of infectious 

and non-infectious colitis, particularly UC, although it is not known whether it is a cause 

or consequence of inflammation [442]. Depletion may occur due to decreases in goblet 

cell number, decreases in mucin biosynthesis and/or increases in mucin secretion that 

are not matched by an increase in mucin biosynthesis. Aberrant mucin expression and 

glycosylation, and altered goblet cell numbers in TCRδ-/- mice may reduce the ability of 

the mucosa to cope with pathosymbionts, contributing to their increased susceptibility 

to DSS-induced colitis. 

 

3.9.5 Impact of γδ IELs on IL-33 cytokine expression 

Host-derived cytokines have been implicated in the alteration of mucin synthesis and 

secretions. Expression of the IL-1 family member, IL-33, is increased in the inflamed 

mucosa of IBD patients versus healthy controls, particularly in UC [443-446]. Here, IL-

33 gene expression was significantly reduced in the SI of TCRδ-/- mice, perhaps 
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indicating that IL-33 is a mediator of γδ IELs. However, this was not confirmed by 

fluorescence staining using anti-IL-33 antibody and would need to be investigated 

further at the protein level. The increased severity of DSS-induced colitis in TCRδ-/- 

mice, compared to DSS-treated wt mice, may be due to a potential role of IL-33 in 

modulating mucin production. Aside from its established function of promoting potent 

TH2 immune responses, IL-33 has emerged as an important cytokine in the induction of 

mucosal healing and restoration of intestinal homeostasis. In support of this concept, a 

protective role for IL-33 was reported in chemically-induced colitis models [447]. As 

such, IL-33 follows the trend of several innate-type cytokines, including members of the 

IL-1 family, that possess dichotomous roles of inducing a potent pro-inflammatory 

response, while also promoting protection and the return to immune homeostasis. This 

dual function is best depicted in the intestinal mucosa and is dependent upon the 

immunological/genetic status of the host and/or the type and phase of the ongoing 

inflammatory process [402]. IL-33 may have a pro-inflammatory effect on lamina 

propria immune cells while at the same time promoting wound healing and epithelial 

repair, when acting on epithelial cells [403]. It is worth noting that IL-33 has been 

described as a prototypic ‘alarmin’ that has the ability to signal local, innate immune 

responses in an effort to mount an effective, physiologic inflammatory reaction to 

induce mucosal healing and restore intestinal homeostasis [402]. In addition, IL-33 has 

the ability to potentiate epithelial defenses and enhance mucus production upon 

parasitic infections [448-451]. In vitro it was shown that IL-33 drives protein misfolding 

and endoplasmic reticulum (ER) stress, and blocks mucin biosynthesis in intestinal and 

respiratory goblet cells [Hasnain, personal correspondence]. The unfolded protein 

response (UPR) and ER-associated protein degradation are highly conserved 

molecular programs that are activated by ER stress, and are critical in the control of 

protein synthesis and secretion in goblet cells [164]. In vivo, TH1 and TH17 responses 

to mucosal pathogens resulted in ER stress and goblet cell failure, whereas TH2 

responses caused high mucus production [Hasnain, personal correspondence]. In 

inflammatory diseases such as IBD, pathways such as cytokine-induced ER stress 

exacerbate inflammation by causing mucus depletion to expose the epithelium to the 

microbiota. The receptor for IL-33 is ST2, a member of the IL-1 family of cytokine 

receptors [451]. It was demonstrated that IL-33 signal transduction depends on the 

expression of ST2 [451], but whether ST2 plays a role in TH2 development remains 

unclear [452, 453]. The epithelium in macroscopically non-inflamed colon displays 

abundant ST2, but during chronic inflammation of UC and CD, epithelial-derived ST2 
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expression is decreased and redistributed to the lamina propria immune cells [445]. 

Preliminary staining with anti-ST2 shows that ST2 expression is decreased in TCRδ-/- 

compared to wt mice, however further studies are requried to confirm this. Further 

mechanistic studies are warranted to determine whether IL-33 is a mediator of 

activated γδ IELs for maintenance of mucosal homeostasis and whether addition of IL-

33 can alleviate acute mucosal injury in these mice.  

 

 

γδ IELs are involved in the regulation of the mucosal microenvironment in response to 

intestinal disease, including IBD [444], celiac disease, graft-vs.-host disease [255], and 

parasite infection [454, 455]. However, the precise role of γδ IELs remains 

controversial. 

In this study, data demonstrating that TCRδ-/- mice show alterations in mucin 

expression and glycosylation, may compromise the nature of the mucosa-associated 

microbial community, resulting in increased vulnerability to epithelial damage. It 

remains to be determined how γδ IELs may regulate mucin expression and goblet cell 

function by investigating several mechanisms, such as the involvement of the IL-

33/ST2 axis. 
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Chapter 4 L. reuteri adhesion to mucus in vitro 

 

 

4.1 Introduction and objectives 

Gastrointestinal (GI) mucus forms the first point of contact between the intestinal 

microbiota and the host. Mucin O-glycans (see section 1.2.2.2) have been proposed to 

serve as preferential binding sites for intestinal bacteria [48], and provide nutritional 

benefits through catabolism [456, 457], such as sialic acid catabolism [416]. Symbiotic 

Lactobacillus bacteria have been shown to benefit the host through modulating the 

intestinal immune system and maintaining a balanced intestinal microbiota [458-460]. 

In order to fully understand the mutualistic relationship of intestinal commensals, it is 

vital to elucidate the mechanisms that facilitate host-microbe interactions. The 

Lactobacillus species reuteri was used in this study as a model gut symbiont since it is 

found to inhabit the GI tract of many vertebrate species including, humans, pigs, 

horses, rodents, birds, and fish, providing an excellent model to investigate host 

adaptation [461]. A number of colonisation requirements have been identified for 

Lactobacillus reuteri (L. reuteri), including adherence to epithelial cells, mucus-binding 

ability and fibronectin-binding ability [377-379]. However, compared with the current 

understanding of the adhesive mechanisms of numerous human pathogenic bacteria, 

knowledge on the surface molecules mediating Lactobacillus adhesion to the intestinal 

mucosa and their corresponding receptors is ill-defined. 

 

A simple model to assess the adhesion of bacterial strains to intestinal mucus is based 

on the immobilisation of commercially available mucin on a micro-well plate surface 

[462, 463]. These assays revealed the importance of strain-specific cell surface 

proteins in the adhesion to mucins (Table 4.1). The most studied example of mucin-

targeting bacterial adhesins is the canonical mucus-binding protein, MUB, produced by 

L. reuteri [377, 383, 391] (see section 1.4.3.3). Despite recent advances, the nature of 

the molecular ligands remains to be identified and whether MUB recognises mucin O-

glycans as previously postulated, is still a matter of debate [377, 464]. 
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Table 4.1| Mucus adhesion-promoting proteins in Lactobacillus spp. 

Protein Information Strain References 

MUB Demonstrates binding to mucus in 
vitro 

L. reuteri ATCC 
53608 

[465] 

MucBP Domain 
containing 
proteins 

Implicated in mucus adhesion 13 known 
Lactobacillus spp. 

[391] 

Pili Pilin subunit SpaC binds to mucus 
in vitro 

L. johnsonii, L. 
rhamnosus GG 

[466-468] 

32-Mmubp Demonstrates binding to mucus in 
vitro 

L. fermentum 
BCS87 

[469] 

S1pA Knockouts show diminished 
adhesion to mucus in vitro 

L. acidophilus 
NCFM 

[470] 

MapA Demonstrates binding to mucus in 
vitro 

L. reuteri 104R [471, 472] 

EF-Tu Expression upregulated in the 
presence of mucus 

L. johnsonii 
NCC533 La1 

[473-477] 

 

 

Here a well-established mucus-producing colorectal carcinoma cell line (HT29-MTX) as 

well as murine and human intestinal tissues, were used in conjunction with chemical 

treatments to investigate the adhesion specificities and impact of selected strains of the 

model gut symbiont L. reuteri to mucus.  
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The objectives of this study are to: 

 

1. Investigate the binding ability of selected L. reuteri strains to the mucin-

producing HT29-MTX cell line. 

2. Explore the effect of selected L. reuteri strains on HT29-MTX mucin gene 

expression. 

3. Determine binding specificities of L. reuteri strains and their adhesion protein(s) 

to mucin types, using HT29-MTX cells and murine/human tissue. 

4. Identify the binding specificities of MUB protein to mucin glycans using 

chemically treated cells and tissues.  

 

 

4.2 Characterisation of the HT29-MTX cell line 

HT-29 human colorectal adenocarcinoma cells selected by adaptation to 10-5 M 

methotrexate (HT29-MTX) have been identified as a homogenous cell population of a 

differentiated phenotype, producing high amounts of mucin [478]. The mucin secretion 

of the cells is a growth-related phenomenon that begins once the HT29-MTX cells have 

reached confluency [479]. In order to determine the mucus-producing phenotype of this 

cell line, mucin gene and protein expression were characterised in HT29-MTX cell 

monolayers in a time course experiment from confluency (day 7) up to day 28 of initial 

seeding. The cells were seeded into 24-well plates on glass coverslips at a density of 4 

x 104 cells well-1, and incubated without passaging for a period of 28 days. Secreted 

mucin expression was assessed at days 7, 14, 21 and 28 by anti-MUC2/5AC 

fluorescence staining and qRT-PCR gene expression analysis of MUC2/5AC. Acidic 

mucopolysaccharide production was assessed by alcian blue staining.  

Figure 4.1A shows representative (n=9) images of MUC2 and MUC5AC protein 

expression at selected time points. At confluency (day 7), mucin protein expression 

was at its lowest level. MUC2 and MUC5AC staining increased from approximately 5 % 

at day 7 to approximately 30 % at day 14. MUC2 and MUC5AC protein expression 

levels at day 14 and day 21 were similar and thus day 14 was selected as the optimal 

time point for all subsequent experiments. The progressive increase in mucus-

expressing cells with increased culture time is in agreement with previous observations 

[479], although in the present study the mucus layer covering the HT29-MTX cell 
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monolayer was not seen to reach 100 % confluency. However, compared to day 7, 

MUC2 gene expression levels remained similar (p>0.05) throughout the time course 

despite a trend for increasing levels of expression (Figure 4.1B), and MUC5AC gene 

expression levels were seen to significantly decrease at day 14 (p=0.03), day 21 

(p=7.46x10-28), and were below detection limit at day 28 (Figure 4.1C). The observed 

increase in mucin protein secretion at selected time points does therefore not correlate 

with mucin mRNA expression patterns. qRT-PCR analyses of mucin transcripts in 

HT29-MTX cells have shown that the genes become expressed at different time points 

before confluency, and that their levels reach a maximal level with the induction of cell 

differentiation [480]. It has previously been reported that the expression of mucin 

mRNAs occurs earlier than the production of mucus in differentiated cells, suggesting 

that the mucin biosynthesis involves a growth-related time lag between the activation of 

the mucin genes and the onset of glycosylation [479]. Furthermore, it has been shown 

that secretion of MUC5AC mucin increased without upregulation of MUC5AC gene 

expression in HT29-MTX cells [481].  
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Figure 4.1| Mucin characterisation of the HT29-MTX cell line. HT29-MTX cell monolayers 

(n=9) were stained with anti-MUC2 and anti-MUC5AC rabbit polyclonal antibodies and anti-

rabbit Alexa Fluor 488 secondary antibody at day 7 (confluency), 14, 21 and 28 (A). Rabbit IgG 

served as the isotype control. qRT-PCR gene expression analysis of MUC2 (B) and MUC5AC 

(C) was performed at day 7, 14, 21 and 28. Relative quantity relative to day 7 is represented (B, 

C). Magnification x400; scale bars 50 µm; D, day; *p<0,05; ****p<0.0001. 
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Alcian blue is a polyvalent basic dye containing four isothiouronium residues and can 

bind negatively charged macromolecules (e.g. mucopolysaccharides) through 

electrostatic forces. Alcian blue is widely used for staining glycosaminoglycans and 

acidic mucins, but mucins with low acidic glycan contents are not detected. Alcian blue 

staining was previously used to assess mucin production in the HT29-MTX-E12 cell 

line [482]. Figure 4.2 shows representative images of alcian blue staining of HT29-MTX 

monolayers at selected time points. At confluency (day 7), a small proportion of cells 

stained blue, and a steady increase in alcian blue staining was seen at days 14, 21 and 

28. After 14 days of growth, approximately 60 % of the HT29-MTX cell culture stained 

with alcian blue compared to approximately 30 % at day 7. The level of alcian blue 

staining is most intense at day 28, covering approximately 80 % of the total area. This 

indicates that, although mucin protein expression remained similar after day 14 of 

culture (Figure 4.1), a progressive increase in mucin glycosylation was observed with 

increased culture time of HT29-MTX cells. 

Taken together, the characterisation data show that the HT29-MTX cell line confirmed 

mucin protein expression and that day 14 proves as an optimal time point for mucus 

secretion, and was therefore selected in the rest of the study for mucus adhesion 

assays with selected L. reuteri strains.  

 

 

 

 

 

 

Figure 4.2| Acidic mucopolysaccharide characterisation of the HT29-MTX cell line. HT29-

MTX cell monolayers were stained with alcian blue at day 7 (confluency), 14, 21 and 28. 

Magnification x400; scale bars 50 µm; D, day.   
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4.3 Adhesion of selected L. reuteri strains to the HT29-MTX cell monolayer 

The characterised HT29-MTX monolayer was used to investigate the binding of L. 

reuteri strains to mucus. To compare the adhesion of L. reuteri strains isolated from 

different vertebrate hosts, three L. reuteri strains were chosen: 100-23C (rat), ATCC 

53608 (pig) and DSM 20016 (human). Moreover, the MUB-mutant L. reuteri 1063N 

(pig) strain was included in adhesion assays to compare binding abilities with the MUB-

positive L. reuteri ATCC 53608 wild-type. The extracellular 353 kDa MUB from L. 

reuteri ATCC 53608 contains two types of related amino acid repeats (Mub1 and 

Mub2); six copies (RI-RVI) of the type 1 repeat (Mub1) and eight copies (R1-R8) of the 

type 2 repeat (Mub2) [377]. The 1063N strain harbours a frameshift mutation in the 

MubR2 repeat, resulting in the expression of a C-terminally truncated MUB that is 

unable to anchor to the cell wall [391]. For adhesion assays, HT29-MTX cells were 

seeded into 24-well plates at a density of 4 x 104 cells well-1, and incubated without 

passaging for a period of 14 days. Cell monolayers were then incubated with L. reuteri 

at 1 x 108 cells ml-1 in DMEM (without FCS) for 3 h at 37 °C. Non-adherent bacteria 

were removed by repetitive washes. Percentage adhesion was assessed by a colony 

count assay. Furthermore, adhesion was visualised by fluorescence microscopy.  

Quantitative determination of the cell-associated L. reuteri bacteria revealed that 3 h 

post incubation, all four selected L. reuteri strains adhered to the apical surface of the 

HT29-MTX cell monolayer, with varying degrees of adhesion (10.5-48.22 %, Figure 

4.3A). The MUB-positive L. reuteri strain ATCC 53608 showed a 2.5-4.5 fold increase 

in binding to the cell line compared to 100-23C, 1063N and DSM 20016 (p=0.021-

0.037). Of particular importance is the significantly greater adhesion of the MUB-

positive strain ATCC 53608 (48.22 %) compared to the MUB-negative strain 1063N 

(14.68 %). Adhesion values of strains 100-23C, 1063N and DSM 20016 to the HT29-

MTX cell monolayer were similar (p>0.05). Fluorescence microscopy images of 

adhered L. reuteri bacteria support the observed binding pattern of the four selected 

strains (Figure 4.3B), and further confirmed the highly autoaggregating properties of L. 

reuteri ATCC 53608, forming multicellular L. reuteri ATCC 53608 aggregates, as 

previously reported in L. reuteri ATCC 53608 cell cultures in vitro [391, 483]. 
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Figure 4.3| L. reuteri adhesion to the HT29-MTX cell line. HT29-MTX cell monolayers (n=12) 

were incubated with L. reuteri (100-23C, 1063N, ATCC 53608 or DSM 20016) for 3 h at 37 °C. 

Percentage adhesion was calculated from colony forming unit counts as the ratio between 

colonies of adhered bacteria and colonies of initial bacteria added (A). L. reuteri adhesion was 

also assessed by fluorescence imaging of adhered FITC-labelled L. reuteri strains on HT29-

MTX monolayers stained with anti-MUC5AC rabbit polyclonal primary antibody and anti-rabbit 

Alexa Fluor 488 secondary antibody (B). Magnification x400; scale bars 50 µm; *p<0.05.  

 

 

To further investigate the increased mucus-binding ability of strain ATCC 53608 (MUB-

positive) compared to strain 1063N (MUB-negative), adhesion of these two strains to 
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(high mucin protein expression), as described above. Figure 4.4 shows that adhesion 
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whereas adhesion increases by 3-fold between these two time points following L. 

reuteri ATCC 53608 incubation (p=0.004). This finding supports the affinity of MUB for 

mucus, and its role in mediating L. reuteri adhesion to the intestinal epithelium in vitro. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4| L. reuteri adhesion to the HT29-MTX cell line at D7 and D14. HT29-MTX cell 

monolayers (n=12) were incubated with L. reuteri (1063N or ATCC 53608) for 3 h at 37 °C. 

Adhesion of 1063N and ATCC 53608 to HT29-MTX cell monolayers was compared at day 7 

(low mucin protein expression) and day 14 (high mucus protein expression). Percentage 

adhesion was calculated from colony forming unit counts as the ratio between colonies of 

adhered bacteria and colonies of initial bacteria added. D, day; *p<0.05. 
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order to investigate the effect of the selected L. reuteri strains on mucin gene 

expression, HT29-MTX cells were seeded into 24-well plates at a density of 4 x 104 

cells well-1, and incubated without passaging for a period of 14 days. Cell monolayers 

were then incubated with L. reuteri (1 x 108 cells ml-1) in DMEM (without FCS) for 14 h 

at 37 °C. Gene expression analysis of MUC1, MUC2, MUC3 and MUC5AC in response 

to strains 100-23C, 1063N, ATCC53608 or DSM 20016 was assessed by qRT-PCR. 

Figure 4.5 shows HT29-MTX mucin gene expression in response to L. reuteri strains, 

expressed as the relative expression level compared to the DMEM-only control. All four 

L. reuteri strains induced membrane-bound MUC1 gene expression in HT29-MTX cells 

(p=0.006-0.045), with L. reuteri 1063N producing a 2-fold increase (p=0.006). 

Furthermore, L. reuteri 1063N caused a reduction in secreted gel-forming MUC2 gene 

expression (p=0.047), and an increase in membrane-bound MUC3 (p=0.005) and 

secreted gel-forming MUC5AC (p=0.029) gene expression. None of the other L. reuteri 

strains tested (100-23C, ATCC 53608 and DSM 20016) showed an effect on MUC2, 

MUC3 or MUCAC gene expression in HT29-MTX cells. The greatest increase (23-fold) 

in mucin gene expression was observed for the membrane-bound MUC3 mucin in 

response to 1063N. These results are in agreement with previous studies showing 

upregulation of MUC3 in HT29 cells in response to different Lactobacillus strains, 

including L. plantarum strain 299v, L. acidophilus strain DDS-1 and L. rhamnosus strain 

GG [484, 486]. 
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Figure 4.5| HT29-MTX mucin gene expression in response to selected L. reuteri strains. 

HT29-MTX cell monolayers (n=12) were incubated with L. reuteri (100-23C, 1063N, ATCC 

53608 or DSM 20016) for 14 h at 37 °C. MUC1, MUC2, MUC3 and MUC5AC mucin gene 

expression was assessed by qRT-PCR. Gene expression is represented as the relative quantity 

compared to the untreated control. MUC, mucin; *p<0.05; **p<0.01. 

 

 

4.5 MUB binding profile and specificity 

4.5.1 MUB purification 

To further assess the role of MUB in the adhesion of strain ATCC 53608 to the HT29-

MTX cell line, compared to 1063N, native MUB was purified from spent media of L. 

reuteri ATCC 53608 cultures. Briefly, low MW proteins were removed from the media 

and the spent medium concentrated using the Vivaflow system. After extensive 

dialysis, MUB was purified by size-exclusion chromatography using fast protein liquid 

chromatography (FPLC) (Figure 4.6A). MUB protein containing fractions were analysed 

by SDS-PAGE (Figure 4.6B), indicating that MUB protein was successfully purified to 

apparent homogeneity. 
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Figure 4.6| Native MUB protein purification from L. reuteri ATCC 53608. Elution profile (blue 

line) of MUB purification sample from FPLC with gel filtration column. Fractions collected are 

indicated by red lines (A). SDS-PAGE of selected fractions from the gel filtration of MUB 

purification. Marker, MW marker; B14-D2, selected fractions. MUB indicated by black arrow (B). 

 

 

MUB ran at an apparent MW of ~ 500 kDa, thus higher than the theoretical MW of 358 

kDa, based on amino acid sequence, which may be due to post translational 

modifications of the native protein, such as glycosylation or phosphorylation. The 

identity of MUB protein sample, was confirmed by Western blotting using antibodies 

raised against Mub repeats and by mass spectrometry of the corresponding protein 

band after trypsin digest (data not shown). 
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anti-rabbit Alexa Fluor 488 secondary antibody. Fluorescence microscopy showed that 

mAU 
500 

450 
400 
350 

300 

250 
200 

150 
100 

50 

0 

A B 

500 kDa 



137 

 

MUB was adhered to mucus droplets overlying the HT29-MTX cell monolayer (Figure 

4.7A). The nature of mucus droplets was confirmed by MUC5AC staining (Figure 4.7B).  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7| MUB protein adheres to mucus droplets on HT29-MTX monolayers. HT29-MTX 

monolayers (n=12)  were incubated with MUB for 2 h at 37 ºC, followed by staining with rabbit 

anti-MUBR5 and goat anti-rabbit Alexa Fluor 488 secondary antibody (A).HT29-MTX 

monolayers were stained with polyclonal rabbit anti-MUC5AC followed by goat anti-rabbit Alexa 

Fluor 488 secondary antibody (B). Bright field images are shown adjacent to fluorescent images 

to demonstrate the correlation of fluorescence staining with mucus droplet structures. 

Magnification x400; scale bars, 50 µm. 

 

 

To determine whether the binding of MUB to mucus was mediated by mucin glycans, 

HT29-MTX cells were first treated with benzyl 2-acetamido-2-deoxy-α-D-

galactopyranoside (benzyl-α-GalNAc), a sugar analogue that acts as an O-

glycosylation inhibitor by terminating O-glycan extension [487], prior to MUB binding. 

A 

B 
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Briefly, HT29-MTX cells were seeded into 24-well plates at a density of 4 x 104 cells 

well-1, and incubated without passaging for a period of 14 days. Cell monolayers were 

incubated with 5 mM benzyl-α-GalNAc for 24 h, before staining with alcian blue, anti-

MUC5AC, and plant lectins, SNA-I, peanut agglutinin (PNA) and wheat germ agglutinin 

(WGA) (Table 3.1). Exposure of HT29-MTX cells to benzyl-α-GalNAc for 24 h led to 

changes in acidic mucopolysaccharides (Figure 4.8A), mucin secretion (MUC5AC) 

(Figure 4.8B) and mucin sialylation (SNA-I) (Figure 4.8C), in agreement with previous 

reports [488, 489]. To test the reversibility of benzyl-α-GalNAc action, monolayers were 

washed twice following the 24 h benzyl-α-GalNAc incubation, and cultured for a further 

24 h with normal culture medium lacking benzyl-α-GalNAc (48 h time point). The 48 h 

time point demonstrates that the reductions observed in 4.8A, B and C at the 24 h time 

point are reversible upon removal of the O-glycosylation inhibitor (Figure 4.8A, B and 

C). Benzyl-α-GalNAc treatment did not cause a reduction in PNA and WGA lectin 

staining (Figure 4.8D). By contrast, there was a marked reduction in MUB adhesion to 

treated HT29-MTX cells after 24 h (Figure 4.9A), which was reversible since binding 

was partially restored after a further 24 h without the inhibitor (Figure 4.9B). Taken 

together, these results indicate binding specificity of MUB to mucin glycans. 
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Figure 4.8| The O-glycosylation inhibitor benzyl-α-GalNAc reduces mucin secretion, 

sialylation and expression of mucopolysaccharides. HT29-MTX monolayers (n=9) were 

incubated with 5 mM benzyl-α-GalNAc for 24 h and stained with alcian blue (A), anti-MUC5AC 

(B), SNA-I-FITC (C) or PNA-Rh and WGA-Rh (D). Staining was repeated (A-D) at the 48 h time 

point (24 h treatment followed by 24 h culture in normal culture medium). Magnification x400, 

scale bars 50 µm (A,C,D); magnification x100, scale bars 200 µm (B). FITC, Fluorescein 

isothiocyanate; Rh, Rhodamine.  
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Figure 4.9| Benzyl-α-GalNAc treatment reduces MUB binding to the HT29-MTX cell line. 

HT29-MTX monolayers (n=9) were incubated with 5mM benzyl-α-GalNAc for 24 h, 

subsequently incubated with MUB for 2 h and stained with rabbit anti-MUBR5 and goat anti-

rabbit Alexa Fluor 488 (A). Staining was repeated at the 48 h time point (24 h treatment followed 

by 24 h culture in normal culture medium) (B). Magnification x200, scale bars 100 µm; inserts 

magnification x400; scale bars 50 µm. 

 

 

4.5.3 Binding specificities of MUB to mucin glycans in host tissues 

Given the binding specificity of MUB to specific mucin glycan structures and in light of 

the differences in mucin O-glycan structures in the SI and colon of humans and mice 

(section 4.1), it was investigated whether MUB displayed host and/or tissue specificity. 

Mouse and human gastric, SI and colon tissue sections were pre-incubated with MUB 

for 2 h followed by staining for MUB and MUC2. In the mouse, MUB showed gastric 

binding specificity when compared to the SI and colon (Figure 4.10A top panel). Note 

that the lack of Muc2 staining in the SI and colon mouse tissue is due to the particular 
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mouse anti-MUC2 antibody used here, but separate experiments using an alternative 

rabbit anti-MUC2 antibody confirmed the presence of Muc2 in these sections (Figure 

4.10A top panel inserts). Co-staining of MUB and MUC2 was not possible due to the 

rabbit origin of both antibodies, detected using the same goat anti-rabbit Alexa Fluor 

488. In the human tissues, MUB bound to all three tissue types, with particular 

abundance in the colon (Figure 4.10A bottom panel), in accordance with the high 

mucin content in this tissue. To investigate whether the murine gastric staining by MUB 

is representative of higher sialylation in this tissue, mouse gastric, SI and colon tissue 

sections were stained with SNA-I and MAA sialic acid-specific lectins. Figure 4.10B 

shows that SNA-I lectin staining is similar in all three tissues, whereas MAA lectin 

staining is more abundant in gastric tissue compared to the SI and colon. This indicates 

that α-2,3 linked sialic acid structures are more abundant in gastric tissue compared to 

the SI and colon, but that their expression is lower than that of  α-2,6 linked sialic acid 

structures in all three tissues. These findings suggest that the increased binding of 

MUB to gastric tissue may be a consequence of its affinity for α-2,3 linked sialic acid 

structures.  
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Figure 4.10| Purified MUB protein shows host and tissue specificity. Murine and human 

gastric, SI and colon tissue (n=3) was incubated with MUB for 2 h at RT and stained with rabbit 

anti-MUBR5 (green) and mouse anti-MUC2 (red). Mouse SI and colon corner insert images 

represent tissue stained with rabbit anti-MUC2 (green) only (A). Murine gastric, SI and colon 

tissue sections were stained with SNA-I-FITC (α-2,6 linked sialic acid specificity; green) and 

MAA-TR (α-2,3 linked sialic acid specificity; red) lectins (B). Tissue was counterstained with 

DAPI. Magnification x400, scale bars 50 µm. FITC, Fluorescein isothiocyanate; TR, Texas red. 

 

 

To further identify the nature of the MUB receptors, murine gastric tissue sections were 

treated with sodium periodate at pH 5.5 and pH 4.5. Sodium periodate is a mild oxidant 

that is able to cleave bonds between adjacent carbon atoms that contain hydroxyl 
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groups (cis-glycols), creating two aldehyde groups. Carbohydrate groups in 

glycoproteins are excellent sites for modification as they allow the conjugation reaction 

to be directed away from amino acids that may be critical for protein activity. Certain 

sugar groups are more susceptible to oxidation by sodium periodate, allowing for the 

cleavage of particular sugars in the polysaccharide chain depending on the treatment 

conditions applied. Oxidation by sodium periodate at pH 5.5 decreases sialylated 

structures [490], while treatment with sodium periodate at pH 4.5 abolishes almost all 

carbohydrate structures [491]. This was shown here by fluorescence staining of mouse 

gastric tissue with the sialic acid-specific lectin SNA-I (Figure 4.11A), and PNA and 

WGA lectins (Figure 4.11A). Compared to the PBS control, the level of SNA-I staining 

was reduced after sodium periodate treatment at pH 5.5. Binding of SNA-I, PNA and 

WGA was almost completely abolished following treatment at pH 4.5, demonstrating 

the efficacy of the treatment. Binding of MUB to the epithelial mucus surface was 

reduced following sodium periodate treatment of gastric tissue (Figure 4.11B), 

indicating that MUB is adhering to glycan epitopes. Reduced MUB binding at pH 5.5 

may be indicative of its sialylated-glycan reactivity. Interestingly, as well as reducing 

MUB adhesion, treatment of gastric tissue with sodium periodate also seemed to alter 

the location of MUB binding from the epithelial surface to within the crypts, and 

potentially goblet cells (Figure 4.11B). 
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Figure 4.11| Sodium periodate treatment of mouse gastric tissue reduces MUB adhesion. 

Mouse gastric tissue sections (n=3) were treated with sodium periodate (SP) at pH 5.5 or 4.5. 

PBS was used as a control. Tissue was stained with the sialic acid-binding lectin SNA-I-FITC, 

and PNA-Rh and WGA-Rh lectins (A). Tissue was incubated with MUB for 2 h, and 

subsequently stained with anti-MUBR5 and anti-rabbit Alexa Fluor 488 secondary antibody (B). 

Sections were counterstained with DAPI. Magnification x400; scale bars 50 µm; PBS, control; 

pH 5.5, periodate treatment pH 5.5; pH 4.5, periodate treatment pH 4.5; FITC, Fluorescein 

isothiocyanate; MUB, mucus binding protein; Rh, Rhodamine. 
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4.6 MUB-mediated L. reuteri ATCC 53608 binding profile 

In order to further investigate the contribution of MUB mucin glycan specificity to the 

adhesion of L. reuteri strains to mucus, purified MUB was further used in a competition 

assay. Briefly, HT29-MTX cells were seeded and cultured as above, and pre-incubated 

with purified MUB protein in DMEM for 2 h at 37 °C, to block potential MUB binding 

sites. Control wells were incubated with PBS in DMEM. This was followed by 

incubation with L. reuteri 1063N or ATCC 53608 as described above (section 4.3). The 

percentage adhesion was assessed by a colony count assay.  

L. reuteri 1063N adhesion was similar in the PBS control and the MUB pre-incubated 

cells (p>0.05) (Figure 4.12). However, no significant difference in binding was observed 

for L. reuteri ATCC 53608 between the two experimental conditions (p>0.05). This may 

be due to the concentration of MUB used in the assay which may not be sufficient to 

block available binding sites on the cell line, or due to the fact that binding of purified 

protein can be more readily displaced by bacteria. An alternative approach would be to 

pre-incubate bacteria with antibodies directed against Mub repeats (anti-MUBR5 and 

anti-MUBRI) prior to the adhesion assay [391]. Of note here is that the percentage 

adhesion of L. reuteri ATCC 53608 in Figure 4.12 is approximately 13 % lower 

compared to Figure 4.4, and is therefore not significantly higher than the L. reuteri 

1063N strain (as observed in Figure 4.4). This variance in adhesion may be attributed 

to the amount of mucus expressed by the HT29-MTX monolayer, or the particular L. 

reuteri batch grown for these two experiments that were conducted at different points in 

time.  
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Figure 4.12| L. reuteri adhesion following MUB pre-incubation of HT29-MTX cells. HT29-

MTX cell monolayers (n=9) were incubated with MUB for 2 h at 37 °C, followed by an incubation 

with L. reuteri (1063N or ATCC 53608) for 3 h at 37 °C. Percentage adhesion was calculated 

from colony forming unit counts as the ratio between colonies of adhered bacteria and colonies 

of initial bacteria added. PBS, phosphate buffered saline; MUB, mucus binding protein. 

 

 

Given the observed specificity of MUB to sialic acid residues (see section 4.5.3), the 

sialic acid binding specificity of L. reuteri 1063N and ATCC 53608 was investigated 

using the HT29-MTX cell line. HT29-MTX monolayers were first characterised for sialic 

acid expression using SNA-I and MAA lectins. HT29-MTX monolayers express α-2,6 

linked sialic acid, as shown by the SNA-I staining (Figure 4.13A). However, although 

MAA showed positive staining on mouse and human intestinal tissue sections (Figure 

4.10), no MAA lectin binding to HT29-MTX cells was observed (Figure 4.13B), 

indicating that α-2,3 linked sialic acid structures are absent in the monolayers. Similar 

binding patterns of SNA-I and MAA to HT29-MTX cells have been reported [492]. 
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Figure 4.13| Sialic acid lectin characterisation of the HT29-MTX cell monolayer. HT29-MTX 

monolayers (n=9) were incubated with sialic acid lectins SNA-I-FITC (A) or MAA-TR (B) for 2 h 

at 37 °C. Lectin staining is shown over bright field channel image. Magnification x400; scale 

bars 50 µm; FITC, Fluorescein isothiocyanate; TR, Texas red. 

 

 

HT29-MTX cells were seeded into 24-well plates at a density of 4 x 104 cells well-1, and 

incubated without passaging for a period of 14 days. An initial competition assay was 

performed by attempting to block sialic acid binding sites through the addition of sialic 

acid lectin SNA-I for 2 h at 37 °C. Cell monolayers were incubated with L. reuteri at 1 x 

108 cells ml-1 in DMEM (without FCS) for 3 h at 37 °C. Adhesion was assessed by 

colony count assays as described above (see section 4.3). A similar level of adhesion 

(p>0.05) was observed for L. reuteri 1063N and ATCC 53608 in the presence or 

absence of sialic acid lectin pre-incubation (Figure 4.14A), as observed above with 

MUB competition. In a second competition assay, L. reuteri 1063N or ATCC 53608 

were  pre-incubated with the sialic acid sugars Neu5Ac or 6’-O-Sialyllactose (6’-O-SL) 

for 15 min at RT (Figure 4.14B). Cell monolayers were then incubated with L. reuteri at 

1 x 108 cells ml-1 in DMEM (without FCS) for 3 h at 37 °C. Percentage adhesion was 

assessed by a colony count assay. Adhesion of L. reuteri 1063N was similar when cells 

were pre-incubated with Neu5Ac or 6’-O-SL (p>0.05), compared to the PBS control, 

indicating that L. reuteri 1063N has binding specificities for sugars other than Neu5Ac 

and 6’-O-SL (Figure 4.14B). However, adhesion of L. reuteri ATCC 53608 was 

decreased 3.5-fold (p=0.01) and 7-fold (p=0.006), compared to the PBS control, 

B A 
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following pre-incubation with Neu5Ac and 6’-O-SL, respectively. This result suggests 

that MUB has sialic acid sugar specificity, and particularly for 6’-O-SL. 

To further investigate this hypothesis, MUB was pre-incubated with sialic acid sugars 

(Neu5Ac or 6’-O-SL) for 1 h, before incubating with the HT29-MTX monolayers for 2 h 

at 37 °C (Figure 4.14C). Fluorescence microscopy of MUB adhesion to HT29-MTX 

cells following pre-incubation with Neu5Ac and 6’-O-SL followed a similar pattern, with 

binding being reduced following Neu5Ac pre-incubation, and further reduced after 

incubation with 6’-O-SL, compared to the PBS control (Figure 4.14C).  These findings 

are in accordance with results from sections 4.5.2 and 4.5.3 showing a reduction in 

MUB binding to intestinal tissue sections following the removal of mucin sialylated 

glycans or the inhibition of O-glycosylation, thus further suggesting specificity for MUB-

mediated L. reuteri adhesion to sialylated mucin O-glycans. 
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Figure 4.14| L. reuteri adhesion in competition with sialic acid lectins and sialic acid 

sugars. HT29-MTX monolayers (n=9) were incubated with sialic acid lectins (SNA-I and MAA) 

for 2 h at 37 °C, followed by an incubation with L. reuteri (1063N or ATCC 53608) for 3 h at 37 

°C (A). L. reuteri (1063N or ATCC 53608) strains were pre-incubated with sialic acid sugars (N-

acetylneuraminic acid or 6’-O-Sialyllactose) for 15 min, before incubating the HT29-MTX 

monolayers with the L. reuteri strains for 3 h at 37 °C (B). Percentage adhesion was calculated 

from colony forming unit counts as the ratio between colonies of adhered bacteria and colonies 

of initial bacteria added. MUB was pre-incubated with sialic acid sugars (N-acetylneuraminic 

acid or 6’-O-Sialyllactose) for 1 h, before incubating with the HT29-MTX monolayers for 2 h at 

37 °C. Monolayers were stained with rabbit anti-MUBR5 and goat anti-rabbit Alexa Fluor 488 

(C). Magnification x400; scale bars 50 µm. PBS, phosphate buffered saline; Neu5Ac, N-

acetylneuraminic acid; 6’-O-SL, 6’-O-Sialyllactose; *p<0.05; **p<0.01. 
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4.7 Discussion 

4.7.1 L. reuteri adhesion and effects on mucin gene expression 

Adhesion of bacteria to the intestinal mucosa may prolong their persistence in the GI 

tract and their beneficial effects to the host, and is thus believed to be a requirement for 

the compliance of certain probiotic effects, such as immunomodulation and pathogen 

exclusion [493, 494]. Several reports have been published using human intestinal cell 

lines as in vitro model systems for evaluating the colonisation potential of bacterial 

strains [495-498]. Mucin production is an important attribute of cell lines for in vitro 

models of the intestinal epithelium, because of the roles played by mucus in the 

intestine. Bacterial adhesion to the intestinal epithelium influences residence time and 

the ability of probiotic strains to modulate the immune response(s) and exert health 

effects in the gut [499].  

 

Results from adhesion experiments described in this study revealed that the binding 

ability of the selected L. reuteri strains to HT29-MTX cells may partly be determined by 

the nature of the cell-surface protein(s) rather than by their host origin; there was no 

correlation between species origin and binding i.e. the L. reuteri strain isolated from 

humans did not show significantly higher binding to the human HT29-MTX cell mucus, 

compared to the rat and pig strains. Similar levels of adhesion of L. reuteri were 

observed for the rat isolate (100-23C), human isolate (DSM 20016) and pig isolate 

(1063N). However, the 1063N (MUB-negative) mutant showed a significantly reduced 

binding ability to the human HT29-MTX cells, compared to the MUB-expressing ATCC 

53608 wild-type strain, suggesting that MUB has a role in the binding of L. reuteri to 

intestinal mucus. This is in agreement with previous studies showing that mucus 

binding abilities of L. reuteri to mouse mucus in vitro correlate with the expression of 

cell-surface MUB [391]. Additionally, the high adhesion of L. reuteri 1063N and ATCC 

53608 to HT29-MTX cells observed at day 14 (high mucus protein expression) 

compared to day 7 (low mucus protein expression), support the role of MUB in 

facilitating L. reuteri adhesion in the presence of mucus, also confirming the mucus-

binding specificity of MUB. Differences in aggregation patterns of Lactobacilli may also 

contribute to the observed differences in adhesion abilities [391, 500-502]. A dual role 

of adhesion and aggregation has previously been reported for the MUB protein in L. 
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reuteri ATCC 53608 [391] and for the transaldolase protein in Bifidobacterium bifidum 

A8 [503]. 

 

Some Lactobacillus strains appear to possess the capability to upregulate membrane-

bound and secreted mucins, although this property is not shared by all probiotic strains. 

For example, the upregulation of mucin expression was associated with the oral 

administration of a probiotic preparation (VSL#3) containing four strains of Lactobacilli 

(L. casei, L. plantarum, L. acidophilus, and L. delbrueckii subsp. bulgaricus), three 

strains of Bifidobacteria and one strain of Streptococcus salivarius subsp., which 

elicited the prevention of flare ups of chronic pouchitis [504]. To determine the impact 

of L. reuteri adhesion properties on the host response, changes in mucin gene 

expression were investigated in response to the four selected L. reuteri isolates. It was 

hypothesised that L. reuteri strains capable of epithelial cell adhesion may affect mucin 

gene expression in vitro, and thereby increase their probiotic potential. qRT-PCR gene 

expression analyses revealed that the L. reuteri isolate 1063N had the highest impact 

on mucin gene expression in HT29-MTX cells. However, adhesion of L. reuteri 1063N 

to HT29-MTX cells was 33.5 % lower compared to the ATCC 53608 wild-type isolate. 

This may suggest that adhesion properties are independent of mucin gene expression-

modulating properties. Studies investigating the role of mucus in infection with the 

attaching and effacing bacterial pathogen Citrobacter rodentium in mouse models, 

showed that the gene expression of Muc2 is significantly reduced at day 10 post-

infection, however the biological consequence of this modulation of mucin gene 

expression currently remains unclear [138]. Here, L. reuteri 1063N caused a down-

regulation of MUC2 mRNA. It would be of interest to assess whether changes in MUC2 

mRNA in response to L. reuteri 1063N correlate with changes in MUC2 protein. On the 

one hand, this down-regulation could compromise the host barrier, but on the other 

hand, a reduction in secreted MUC2 may be important for limiting nutrients and 

potential attachment sites for pathogenic organisms. In contrast, L. reuteri 1063N 

caused an upregulation of membrane-bound MUC1 mRNA and MUC3 mRNA, and 

secreted MUC5AC mRNA. In vitro, MUC3 mucin binds numerous enteropathogenic 

bacteria and viruses [486], stimulates cell migration and prevents apoptosis [505], 

supporting the importance of this mucin in preventing the attachment of pathogens to 

intestinal epithelial surfaces and in maintaining the epithelial barrier. In the present 

work, the highest increase in gene expression was observed for the membrane-bound 
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MUC3 mucin in response to L. reuteri 1063N. An induction of MUC3 was also reported 

with co-culture of L. plantarum 299v or Lactobacillus rhamnosus GG with HT29-MTX 

cells, resulting in the release of a secreted version of the membrane-bound mucin 

[484]. This secreted version of MUC3 observed by Mack and colleagues could facilitate 

the clearance of pathogenic organisms through MUC3-microbe interactions also in the 

loose mucus layer, with subsequent peristalsis, whereas an induction of only the 

membrane-bound version of MUC3 would require the binding of Lactobacillus strains to 

MUC3 in the firm layer to prevent pathogen binding. Whether L. reuteri 1063N used 

here similarly results in a secreted version of MUC3 requires further investigation. 

Furthermore, additional work is required to determine the influence of mucin regulation 

in vivo, and its impact on bacteria and the host.  

 

4.7.2 The nature of L. reuteri MUB molecular ligands 

In bacteria, exported proteins are sorted from the cytoplasm to the bacterial surface or 

to the surroundings of the microorganism. In probiotic bacteria, these proteins are of 

special relevance because they may determine important traits such as adhesion to 

intestinal surfaces and molecular cross-talk with the host. Several bacterial cell-surface 

proteins have been experimentally shown to be implicated in mucus adhesion, 

including the MUB of L. reuteri 1063 (ATCC 53608) [377], the MUB of L. acidophilus 

NCFM [470], the mannose lectin (Msa) of L. plantarum WCFS1 [506] and the 

Lactobacillus surface protein A (LspA) of L. reuteri 104R [471, 472]. However, the 

molecular ligands and implications of these proteins in binding to mucus remain 

unclear. 

 

MUB binding specificity was investigated in order to understand the underpinning 

mechanisms that facilitate increased adhesion of L. reuteri ATCC 53608 to HT29-MTX 

cells, compared to L. reuteri 1063N. MUB adhesion to gastric tissue was greatly 

reduced when carbohydrate structures were altered by sodium periodate treatment. 

Furthermore, binding of MUB was seen to change from an epithelial-surface to an 

epithelial cell-intrinsic/goblet cell-intrinsic binding phenotype, suggesting that the 

chemical treatment may disrupt the tissue to make epithelial cell binding sites more 

accessible to MUB. MUB adhesion to HT29-MTX cells following treatment with the 

glycosylation inhibitor, benzyl-α-GalNAc, was also markedly reduced. Together, these 
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findings suggest that MUB binds to mucin glycan structures at the mucosal epithelial 

surface. This was further reflected by the binding specificity of MUB to murine and 

human tissue of gastric, SI and colon origin. Whereas MUB was found to adhere to all 

three tissue types in human, it showed gastric tissue specificity in mice, suggesting that 

mucin-glycan structures may be dissimilar in gastric tissue compared to the SI and 

colon. Heavily glycosylated mucins can be modified or terminated with sialic acid 

groups. Since O-glycomic analyses in mice demonstrated that gastric, SI and colon 

tissues are all dominated by core-2 O-glycans [82], it was hypothesised that terminal 

epitopes of glycosylated mucins may be the target of mucus binding proteins. It was 

shown here that α-2,3 linked sialic acid structures were increased in gastric tissue 

compared to the SI and colon, but their expression was lower than that of α-2,6 linked 

sialic acid structures in all three tissues. These findings imply that the increased 

binding of MUB to gastric tissue may be the result of its affinity for α-2,3 linked sialic 

acid structures. Further investigations, including the binding of MUB in competition with 

3’-O-sialyllactose, would be required to validate these findings. 

 

The specific binding of some bacterial adhesins to sialic acid residues has previously 

been reported. For example, the sialic acid-binding serine-rich repeat protein (Hsa) of 

Streptococcus gordonii interacts with the carbohydrate portion of the heavily 

glycosylated gp340 protein found in saliva, tears, the SI and the lungs [507-510], and 

the Staphylococcus aureus surface protein A (SasA) binds to gp340 via the N-

acetylneuraminic acid moiety [511]. Helicobacter pylori (H. pylori) adheres to epithelial 

cells via bacteria sialic acid-binding lectins [512-514]. H. pylori binding to the gastric 

epithelium has been shown to occur via a glycoprotein containing N-acetylneuraminyl-α 

(2,3)-lactose [515]. Furthermore, the interaction of H. pylori adhesins, such as blood 

group antigen-binding adhesin (BabA) and sialic acid-binding adhesin (SabA), with 

several Lewis blood group structures of gastric mucin has been reported [516, 517]. To 

further investigate the sialic acid binding specificity of L. reuteri 1063N and ATCC 

53608 in the HT29-MTX cell line, adhesion assays were performed in competition with 

MUB, sialic acid lectins and sialic acid sugars. These data revealed that L. reuteri 

ATCC 53608 showed binding specificity for Neu5Ac and for 6’-O-sialyllactose. This 

provides biochemical evidence supporting the probiotic effect of Lactobacillus against 

pathogens, by competing for binding sites, such as Escherichia coli, Vibrio cholerae, 
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and Staphylococcus aureus that utilise Neu5Ac as a carbon source for growth and 

colonisation [518-520]. 

 

 

4.7.3 Perspectives and conclusions 

Mucus glycoproteins are suggested to act as the molecular receptors of bacterial 

binding. It has been proposed that bacterial adhesion to mucin glycans is a mechanism 

by which the host selects bacterial species presenting the complementary adhesins 

[464]. This study highlights the role of adhesion proteins such as MUB in promoting 

Lactobacillus adhesion to the intestinal epithelium. It was also shown that MUB has 

sialic acid specificities, particularly towards Neu5Ac and 6’-O-sialyllactose residues; a 

feature of mucin glycoproteins. The reported specificity of MUB to sialylated structures 

may explain the regio-specific colonisation of Lactobacillus in the vertebrate intestinal 

tract. Furthermore this study reveals that L. reuteri adhesion is necessary but not 

sufficient for inducing changes in host mucin gene expression. 

 

To date, only indirect evidence has been gathered for adhesion to mucin glycans in 

Lactobacillus species; L. fermentum was shown to have affinity to glycoprotein groups 

on gastric mucus [521], and studies using L. acidophilus bacteria suggest binding of 

lectin-like proteins to the carbohydrate portions of rat colonic mucus [522]. Due to the 

complexity of the mucin O-glycan structures, having an array of adhesive units with 

different sugar specificities would be advantageous for a mucus binding protein. Glycan 

arrays applying mucus and mucins extracted from the intestine, faecal samples, 

mucus-secreting cell lines or from a commercial source, followed by detailed mucin O-

glycan analysis of ligands using mass-spectrometry (MS) would provide alternative 

methods to assess direct binding and to determine the kinetics of the specific and non-

specific interactions involved. Furthermore, more quantitative techniques, such as 

surface plasmon resonance (SPR) could be used to determine binding of lactobacilli to 

mucin. 
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An important aspect of the function of probiotic bacteria is the protection of the host GI 

micro-environment from invading pathogens. Several reports have demonstrated the 

ability of probiotic Lactobacilli and Bifidobacteria to inhibit the cell association and 

invasion by pathogenic bacteria [484, 500, 523-531]. Further studies to investigate the 

mechanisms of L. reuteri 1063N and ATCC 53608 in the inhibition of adhesion of 

pathogenic bacteria to HT29-MTX cells, via changes in mucin expression and/or 

competitive exclusion would be of interest before progressing to the investigation of the 

role of these strains in animal models and humans. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



156 

 

Chapter 5 Conclusions and perspectives 

 

 

The focus of this PhD project was to investigate the relationship and cross-talk 

between intestinal microbes, the mucus layer, and the intestinal immune system, with 

the general aim of increasing our understanding of the role of the intestinal mucus layer 

in health and disease. To encompass the above, the first part of this thesis investigated 

the impact of γδ intraepithelial lymphocyte (IEL) immune cells on the intestinal mucus 

layer, while the second part shed light on the molecular mechanisms underpinning the 

adhesion and host response of the gut symbiont Lactobacillus reuteri (L. reuteri) to 

intestinal mucus. This discussion summarises the aims and findings of these two parts, 

the impact in their respective field, and future directions of work, and ends on 

proposing perspectives of research by building upon the two aspects studied here to 

bridge the interplay between γδ IELs and L. reuteri. 

 

 

5.1 TCRδ-/- mice show alterations in mucin expression, glycosylation and goblet 

cells, but maintain an intact mucus layer: conclusions and future work 

Intestinal homeostasis is maintained by a hierarchy of immune defences including 

mucus and immune cells acting in concert to minimise contact between luminal 

microorganisms and the intestinal epithelial surface. γδ IELs are strategically 

intercalated at the base of intestinal epithelial cells (IECs); a prime location for an early 

immune defence. The functions of γδ IELs remain poorly understood, despite reported 

roles in epithelial restitution and host-microbial homeostasis following injury, and the 

promotion of barrier maintenance at the intestinal mucosal surface. In light of the 

functional importance of the mucus layer in maintaining mucosal homeostasis, the 

relationship between γδ IELs and mucus properties was investigated here, shedding 

light on the mechanisms underpinning the interplay between these two important host 

defence mechanisms. 
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In this study, TCRδ-/- mice were used as a model that lacks γδ IELs, to examine 

whether and how γδ IELs modulate the properties of the intestinal mucus layer. The 

TCRδ-/- mice were characterised in terms of mucus properties, and the molecular 

mechanisms of γδ IEL function were investigated using an ex vivo small intestinal (SI) 

organoid culture system. In accordance with previous findings, data presented here 

showed an increased susceptibility of TCRδ-/- mice to DSS-induced colitis, which is 

associated with a reduced number of goblet cells. These alterations in the number of 

goblet cells correlated with the crypt lengths in the SI and colon of TCRδ-/- mice 

compared to C57BL/6 wt mice. Such phenotype is reminiscent of characteristic goblet 

cell depletion (fewer or smaller goblet cell thecae) of many forms of infectious and non-

infectious colitis, particularly ulcerative colitis (UC). This phenotype was restored after 

the addition of keratinocyte growth factor (KGF) to SI organoid cultures from TCRδ-/- 

mice, showing a marked increase in crypt length, and both goblet cell number and 

redistribution along the crypts, suggesting a mechanism by which γδ IELs (which 

produce KGF) modulate crypt and mucus properties. However future work is warranted 

to determine whether γδ IEL mechanisms of action are direct or indirect i.e. whether γδ 

IELs secrete factors that directly regulate crypt and mucus properties, or whether it is 

due to an indirect effect following increased immune-inflammatory stimulation, as 

suggested by the organoid culture work. The addition of isolated γδ IELs to SI organoid 

cultures would aid in the elucidation of the mechanisms involved. γδ IELs can be 

isolated from SI tissue by filtration through a glass wool column and centrifugation 

through a percoll gradient, to obtain isolated populations of γδ IEL subsets by flow-

cytometry (FCM). In particular it would be of interest to determine whether addition of 

γδ IELs directly impacts on goblet cell numbers and/or mucin gene expression, in the 

absence of other immune cells in SI organoid cultures. 

 

An alteration in mucus thickness is often associated with disease states in humans 

such as UC. Despite the reduction of goblet cells observed in TCRδ-/- mice, there was 

no apparent difference in the thickness or organisation of the inner and outer intestinal 

mucus layers between TCRδ-/- and wt mice, as measured in vivo. However, γδ IEL 

deficiency led to reduced sialylated mucins in association with increased gene 

expression of Muc2 and reduced interleukin-33 (IL-33) mRNA, a mediator of mucosal 

healing and epithelial restoration in the SI. An increased protein expression of Muc2 

has been reported for pancreatic adenocarcinomas and gastric carcinomas, and is 
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usually associated with better patient prognosis. Whether IL-33 is involved in 

maintaining mucosal homeostasis or alleviating acute mucosal injury in TCRδ-/- mice 

requires further investigation. Treatment of SI organoids with IL-33 would help to 

elucidate whether IL-33 is a mediator of γδ IELs to promote mucin biosynthesis. 

Furthermore, assessing ST2 gene expression levels by qRT-PCR, and protein levels 

by ELISA and fluorescence staining, in wt and TCRδ-/- mice, will provide an insight into 

IL-33 signalling that occurs through this receptor in the absence of γδ IELs. TCRδ-/- 

mice also showed increased colonic gene expression of membrane-bound mucins, 

including Muc13 and Muc17. These mucins have been implicated in inflammatory 

bowel disease (IBD) susceptibility in humans, providing further support for the 

importance of γδ IELs in the maintenance of mucosal homeostasis. The reported 

alteration in mucin expression and glycosylation may compromise the nature of the 

mucosa-associated microbial community, resulting in increased vulnerability to 

epithelial damage. Determining the composition of the mucosa-associated microbiota 

in TCRδ-/- mice compared to wt littermates will help assess the association between 

mucin glycan bacterial metabolism, in particular sialic catabolism, and perhaps 

pathogenesis.  

 

Collectively, these data provide novel evidence that γδ IELs may play a role in the 

maintenance of mucosal homeostasis through the regulation of mucin expression, 

glycosylation and by promoting goblet cell function in the SI. Studies performed here 

provided some indications of the mechanisms by which γδ IELs modulate mucus 

properties. A direct role of IL-33/ST2 in this process remains to be demonstrated. 

 

 

5.2 The mucus-binding protein MUB promotes L. reuteri adhesion to the 

intestinal epithelium and displays sialic acid-binding specificities: conclusions 

and future work 

Mucus is at the interface between the immune system and the microbiota. Unravelling 

the precise mechanisms of mucus-microbe interactions, and their protective, metabolic 

and/or immune actions, is essential to our understanding of intestinal homeostasis. 

Mucins and mucin glycosylation vary along the GI tract, and one of their proposed roles 
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is to regulate microbial composition. Indeed the diverse mucin glycan structures along 

the GI tract are believed to provide binding sites for intestinal bacteria, which have 

adapted to the mucosal environment by expressing the correct complement of 

adhesins. Given the link between the microbiota and gut inflammatory processes, 

mucin-binders may represent prime candidates to interact with the host immune 

system through the production of beneficial metabolites, such as short-chain fatty acids 

(SCFAs) and polyamines, or by enhancing colonisation resistance and stimulating the 

immune response. In line with this, microbe adhesion is believed to be a requirement 

for the realisation of certain probiotic effects, such as immunomodulation and pathogen 

exclusion. Furthermore, the association with the intestinal mucosa can initiate and 

extend transient associations, which confer a distinct advantage to these bacteria in the 

GI tract. In addition certain probiotic strains have been shown to exert a regulatory 

effect on mucin expression, thereby enhancing their protective effect. However despite 

the critical role played by the mucus layer in maintaining a homeostatic relationship 

with the microbiota, knowledge on the nature and structure of bacterial adhesins, as 

well as their binding specificities to mucin ligands, is limited.  

 

Lactobacilli constitute a normal component of the intestinal microbiota and appear to be 

a key factor in the processes of competitive exclusion and immunomodulation. Current 

knowledge suggests that the health-promoting effects of the probiotic L. reuteri strain 

might be partly dependent on its persistence in the intestine and adhesion to mucosal 

surfaces. The mucus-binding capacity of microbes increases the colonisation capacity 

at the mucosal interface and has been shown to be important for prolonged intestinal 

residency of beneficial microbes. In lactobacilli, mucus-binding proteins have been 

revealed as one class of effector molecules involved in adherence mechanisms of 

these commensal bacteria to their host. MUB is a mucus-binding protein of L. reuteri 

ATCC 53608 (1063), for which there is limited knowledge on the mucus-binding 

specificities.  

 

To improve our understanding of the molecular effectors involved in the interaction 

between GI mucus and L. reuteri, the adhesion specificities of L. reuteri strains were 

investigated with the MUB-positive ATCC 53608 and the MUB-negative 1063N, and 

purified MUB protein, to GI mucins. L. reuteri ATCC 53608 showed higher adhesion 
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ability to the mucin-expressing HT29-MTX cell line compared to the 1063N strain, with 

adhesion positively correlating with expression of MUC5AC, and indicating L. reuteri-

mucus interactions. This work also provided evidence for the potential of L. reuteri 

strains to modulate mucin expression; a mechanism by which probiotics may 

strengthen the mucus barrier to pathogens. Both L. reuteri strains induced MUC1 

mRNA, while only L. reuteri 1063N caused a reduction in MUC2 mRNA and an 

increase in MUC3 and MUC5AC mRNA. The rationale for these changes is not 

understood and in future work it would be of interest to assess changes in mucins at 

the protein level, and how they correlate with changes in mucin gene expression. To 

further investigate how these properties impact on L. reuteri’s protective role in the 

host, it would be of interest to compare the potential for L. reuteri 1063N and ATCC 

53608 strains to limit pathogen adhesion, both in vitro and in animal models. 

Furthermore, investigating the protective effect of these L. reuteri strains in a model of 

inflammation, such as SAMP1/YitFc (SAMP) mice that represent a well-described 

model of spontaneous Crohn’s disease (CD)-like ileitis and gastritis, would be of 

interest to assess their probiotic potential. HT29-MTX cells used in this study express 

mainly gastric MUC5AC and the L. reuteri strains investigated preferentially colonise 

the stomach, making the SAMP mouse gastritis model more suitable compared to, for 

example, the DSS-induced colitis model. Furthermore, work in collaboration with Eva 

Rajnavolgyi (Debrecen, Hungary) is in progress to measure pro and anti-inflammatory 

cytokine secretion by monocyte-derived dendritic cells (moDCs) activated in response 

to different lactobacilli strains, including ATCC 53608 and 1063N. 

 

This study also showed that the contribution of MUB to bacterial adhesion involved 

specific interactions with mucin glycans. Benzyl-α-GalNAc treatment of HT29-MTX 

cells caused a reduction in purified MUB protein binding, indicating specificity of MUB 

to mucin glycans. This was supported by the observed decrease in MUB binding to 

mouse gastric tissue treated with sodium periodate, suggesting that MUB adheres to 

sialylated glycan epitopes. Additionally, L. reuteri ATCC 53608 and MUB protein 

adhesion to HT29-MTX cells was reduced in competition with the sialic acid sugars 

Neu5Ac and 6’-O-SL. Further efforts, such as assays in competition with 3’-O-SL or the 

use of a range of sialylated mucin substrates, are necessary to fully characterise MUB 

protein binding specificities to sialic acid structures revealed by this study. Mucin 

glycan arrays displaying GI tract mucins will be a complementary approach to identify 
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other potential targets recognised by MUB. Furthermore, the contribution of MUB to 

mucus interactions could be assessed using methodologies such as atomic force 

microscopy (AFM) and FCM, allowing a better quantification of the interaction. H. pylori 

is a human pathogen that binds sialic acid structures of gastric mucins via its sialic 

acid-binding adhesin (SabA), and has been linked to chronic gastritis, gastric and 

duodenal ulcers, and stomach cancer. Given the similarity in the mucin glycan targets 

shared between MUB and SabA, it would be of interest to investigate the potential 

function of L. reuteri ATCC 53608 in H. pylori exclusion by pre-incubation of HT29-MTX 

cells with L. reuteri ATCC 53608 in a pathogen adhesion assay. Such in vitro work can 

then be followed up by in vivo rodent pathogen exclusion studies with H. pylori and pre-

treatment with L. reuteri ATCC 53608. 

 

Deciphering the molecular targets of mucus-binding proteins is important to increase 

our understanding of host-microbe interactions at the mucosal surface, where bacteria 

exert their health effect. This knowledge may lead to the identification of new probiotic 

candidates that display good host attachment and therefore longer residence time in 

the GI tract; competitive exclusion and immunomodulation mechanisms of such 

probiotics may aid in the prevention of dysbiosis and the maintenance of a healthy 

homeostatic environment in the GI tract. 

 

 

5.3 Investigating the relationship between γδ IELs and L. reuteri: future work  

The host-microbial symbiosis within the GI tract is fine-tuned at the epithelial interface 

where the host immune system and the microbiota interact through the mucus layer. 

Probiotics have been proposed for IBD treatment and clinical studies have reported 

alleviations of symptoms and prevention of relapses in IBD. The most widely used 

probiotics are lactobacilli and bifidobacteria but despite the evidence that some 

probiotics can represent a valid therapeutic approach in IBD treatment, the 

mechanisms underlying the protection by probiotics in IBD are largely unknown. In 

addition, not all probiotic strains are able to reduce intestinal inflammation. Since 

probiotic activity is considered to be genera, species, and strain-specific, investigating 

the interplay between mucus properties, specific and well-characterised probiotic 



162 

 

strains and immune system is needed to provide mechanistic-based evidences for their 

protective function. Of interest to this study is the relationship between L. reuteri and γδ 

IELs, and the potential of L. reuteri strains to serve as preventive treatment for IBD. 

 

Studies in rats have shown that a L. reuteri cocktail, particularly strain R2LC, protects 

against DSS-induced colitis, highlighting the anti-inflammatory potential of L. reuteri. 

Despite protecting against colitis, treatment with L. reuteri did not improve the integrity 

of the mucus layer or prevent alterations in the mucus microbiota caused by DSS 

treatment. However, L. reuteri did decrease the bacterial translocation from the 

intestine to the mesenteric lymph nodes (MLN) in rats treated with DSS, which may be 

an important aspect of the mechanism by which L. reuteri ameliorates DSS-induced 

colitis. Mice lacking γδ IELs are more susceptible to DSS-induced colitis and show 

increased bacterial translocation compared to wt mice. In light of this, and the above 

mentioned roles of γδ IELs, we hypothesised that γδ IELs may play an important role in 

the protective effects induced by L. reuteri during DSS-induced colitis. In support of 

this, studies have shown that pre-treatment with Lactobacillus acidophilus and 

Bifidobacterium longum protected against chemically-induced colitis partly via an 

increase in the γδ IEL population. DSS-induced colitis studies with pre-treatment of L. 

reuteri in wt and TCRδ-/- mice are currently underway in collaboration with Lena Holm 

(Uppsala, Sweden) in order to address the interplay between L. reuteri strains, the 

mucus layer and γδ IELs in the protection against DSS-induced colitis. The severity of 

colitis in the two groups of mice will be assessed through body weight, macroscopic 

and microscopic evaluation of colitis, and compared between L. reuteri pre-treated 

DSS and DSS-only treatment groups. Furthermore, γδ IEL numbers will be assessed in 

wt DSS and wt L. reuteri pre-treated DSS groups to identify whether protection by L. 

reuteri is associated with an increase in γδ IELs. These approaches will increase our 

understanding of beneficial microbes and their relationship with the host, and provide 

mechanistic insights and potential novel strategies for the maintenance of a healthy 

homeostatic intestinal environment to prevent diseases, such as IBD.  
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Appendix 1 

 

 

Commercial suppliers of chemicals, reagents and equipment 

 

Abcam 
330 Cambridge Science Park 
Cambridge, CB4 0FL 
 
Acros Organics (part of Thermo Fisher Scientific) 
Bishop Meadow Road 
Loughborough, LE11 5RG 
 
Affymetrix 
3420 Central Expressway 
Santa Clara, CA 95051 
 
Agilent Technologies 
5301 Stevens Creek Blvd 
Santa Clara, CA 95051 
 
Barnstead (part of Thermo Fisher Scientific) 
Bishop Meadow Road 
Loughborough, LE11 5RG 
 
BD Biosciences 
Between Towns Road 
Oxford, OX4 3LY 
 
BDH Laboratory Supplies 
Poole, 
Dorset, BH15 1TD 
 
Bethyl Laboratories 
Munro House, Trafalgar Way, Bar Hill 
Cambridge CB23 8SQ 
 
Biolegend 
4B Highgate Business Centre, 33 Greenwood Place 
London, NW5 1LB 
 
Bio-Rad 
Bio-Rad House, Maylands Avenue,  
Hemel Hempsted, 
Hertfordshire, HP2 7TD 
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Biosera 
2 Birch House, Brambleside 
Bellbrook Industrial Estate 
East Sussex, TN22 1QQ 
 
BMG Labtech 
Allmendgruen 8, 
D-77799 Ortenberg 
Germany 
 
Caltag 
PO Box 6139, Silverstone 
Towcester, NN12 8GN 
 
EY Laboratories 
107 N. Amphlett Blvd 
San Mateo, CA. 94401 USA 
 
Fluka Chemika 
Industriestrasse 25,  
CH-9470 Buchs 
Switzerland 
 
GE Healthcare 
101 Carnegie Center  
Princeton, NJ 08540 
USA 
 
Glycom 
Diplomvej 373, 1 
DK-2800 Kgs. Lyngby 
Denmark  
 
Hitachi 
15-1, Konan 2-chome, Minato-ku  
Tokyo 108-6020 
Japan 
 
Invitrogen 
3 Fountain Drive 
Inchinnan Business Park 
Paisley PA4 9RF, UK 
 
Jackson Laboratories 
600 Main Street, Bar Harbor 
Maine, 04609 USA 
 
Leitz 
Ernst-Leitz-Straße 17-37 
Wetzlar, 35578 
Germany 
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Life Technologies Ltd 
3 Fountain Drive 
Inchinnan Business Park 
Paisley PA4 9RF, UK 
 
Lonza 
Muechensteinstrasse 38  
4002 Basel 
Switzerland  
 
Millipore 
Merck Millipore Headquarters  
290 Concord Road  
Billerica, MA 01821 
 
MP Biomedicals 
Wellington House, East Road 
Cambridge, CB1 1BH 
 
National Diagnostics 
Unit 4,  Hessle  
HU13 9LX  
 
New Englad BioLabs 
240 County Road 
Ipswich, MA 01938-2723 
 
Peprotech 
PeproTech House, 29 Margravine Road 
London, W6 8LL 
 
PerkinElmer 
204 Science Park, Milton Road 
Cambridge, CB4 0GZ 

Point Of Care Testing (POCT) Ltd 
Unit 18 Arbroath Business Centre, Dens Road,  
Arbroath, Angus, DD11 1RS 

Qiagen 
Qiagen House, Fleming Way 
Crawley, West Sussex 
RH10 9NQ 
 
R&D Systems 
19 Barton Lane, Abingdon Science Park,  
Abingdon, OC14 3NB 
 
Santa Cruz Biotechnologies 
Bergheimer Str. 89-2 
69115 Heidelberg, Germany 
 

http://www.thetimenow.com/united_kingdom/cambridge
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Sigma-Aldrich 
Fancy Road, Poole 
Dorset, BH17 7NH 
 
Thermo Fisher Scientific 
Bishop Meadow Road 
Loughborough, LE11 5RG 
 
Vector Laboratories 
3 Accent Park, Bakewell Road 
Peterborough, PE2 6XS 
 
VWR 
Hunter Boulevard, Magna Park 
Lutterworth, LE17 4XN 
 
Zeiss 
PO Box 78, Woodfield Road 
Welwyn Garden City, Hertfodshire 
 
Zymed 
3 Foundation Drive, Inchinnin Business Park 
Paisley, PA4 9RF 
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Appendix 2 

 

 

Processing protocol of formalin-fixed tissue 

 

Step Contents Duration (min) 

1 70 % ethanol 60 

2 80 % ethanol 90 

3 90 % ethanol 120 

4 100 % ethanol 60 

5 100 % ethanol 90 

6 100 % ethanol 120 

7 Xylene 30 

8 Xylene 60 

9 Xylene 90 

10 Wax 60 

11 Wax 60 

12 Wax 120 

13 Wax 120 

 



168 

 

Appendix 3 

 

Assessment parameters for tissue histology 

 

Parameter scored Score  Score description  

Epithelial injury 0 None 

 1 Crypt epithelial injury/flattening ± necrotic debirs in crypt lumen 
 2 Erosion in <50% mucosal thickness with basal half crypt preserved 
 3 Erosion in >50% mucosal thickness or crypt epithelium completely destroyed 
 4 Ulceration involving submucosa (involving muscularis mucosa) or deeper  

(transmural) 
Extent of epithelial injury 0 None 
 1 Focal 
 2 Multifocal (>2 areas) 
 3 Diffuse (> 50% circumference) 
Chronic inflammatory cells infiltrate 0 None 
 1 Mild 
 2 Moderate 
 3 Severe 
Acute inflammatory cells infiltrate 0 None 
 1 Mild (no crypt abscess/cryptitis) 
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 2 Moderate (occasional crypt abscess/cryptitis) 
 3 Severe (frequent crypt abscess/cryptitis) 
Number of goblet cells 0 No loss of goblet cells 
 1 Loss of goblet cells up to 1/3 
 2 Loss of goblet cells up to 2/3 
 3 Loss of goblet cells of >2/3 
Thickening of the colon/ileum wall (odoema) 0 No thickening of wall 
 1 Thickening of submucosa (1/3) 
 2 Thickening of submucosa and muscularis propria (2/3) 
 3 Thickening of submucosa, muscularis propria and serosa (>2/3) 
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Appendix 4 

 

Ingredients of LDM II broth 

INGREDIENT 
AMOUNT PER L 

K2HPO4 (anhydrous) 
1.5 g 

KH2PO4 (anhydrous) 
1.5 g 

Vitamin-free casamino acids 
10 g 

Sodium acetate 
15 g 

Sodium citrate 
0.22 g 

Tryptophan 
50 mg 

Asparagine 
0.2 g 

Cysteine-HCl 
0.2 g 

Thiamine-HCl 
0.2 mg 

para-Aminobenzoic acid 
0.04 mg 

Calcium pantothenic acid 
0.4 mg 

Niacin 
1.0 mg 

Pyridoxine-HCl 
0.5 mg 

Biotin 
0.05 mg 

Folic acid 
0.1 mg 

Riboflavin 
0.4 mg 

Adenine sulphate 
10 mg 

Uracil 
20 mg 

Guanine-HCl 
10 mg 

Cytidine (acid) 
50 mg 

Thymidine 
1.6 μg 
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Tween-80 
1.0 ml 

MgSO4.7H2O 
0.163 g 

MnSO4.H2O 
23.4 mg 

FeSO4.7H2O 
13 mg 

Sucrose 
20 g 
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Appendix 5 

Glycogene list 

 

Category Sub-category Common name 

CBP:C-Type Lectin 10-Polycystin Pkd1 [Polycystin] 
CBP:C-Type Lectin 10-Polycystin Pkd1l2 [Polycystin 1-like protein 2] 
CBP:C-Type Lectin 11-Attractin Atrnl1 [Attractin homolog] 
CBP:C-Type Lectin 11-Attractin Attractin 
CBP:C-Type Lectin 12-CTLD + acidic neck Prg2 [proteoglycan 2 bone marrow] 
CBP:C-Type Lectin 12-CTLD + acidic neck Prg3 [proteoglycan 3; Eosinophil major basic protein homolog] 
CBP:C-Type Lectin 13-IDD DGCR2 DiGeorge syndrome protein C 
CBP:C-Type Lectin 14-Endosialin Cd248 [CD248 antigen endosialin]  
CBP:C-Type Lectin 14-Endosialin CD93 [C1q receptor; Cd93 antigen] 
CBP:C-Type Lectin 14-Endosialin Thbd [Thrombomodulin]  
CBP:C-Type Lectin 1-Proteoglycan Aggrecan 
CBP:C-Type Lectin 1-Proteoglycan Brevican (BCAN) 
CBP:C-Type Lectin 1-Proteoglycan Neurocan 
CBP:C-Type Lectin 1-Proteoglycan Versican (CSPG2, PG-M) 
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CBP:C-Type Lectin 1-Proteoglycan Versican (CSPG2, PG-M) 
CBP:C-Type Lectin 1-Proteoglycan Versican (CSPG2, PG-M) 
CBP:C-Type Lectin 2-Type 2 Receptor Asialoglycoprotein receptor R1 
CBP:C-Type Lectin 2-Type 2 Receptor Asialoglycoprotein receptor R2 
CBP:C-Type Lectin 2-Type 2 Receptor CD207 [Langerin] 
CBP:C-Type Lectin 2-Type 2 Receptor CD209a [DC-SIGN]  
CBP:C-Type Lectin 2-Type 2 Receptor CD209b [SIGNR1] 
CBP:C-Type Lectin 2-Type 2 Receptor CD209b [SIGNR1] 
CBP:C-Type Lectin 2-Type 2 Receptor CD209c [SIGNR2] 
CBP:C-Type Lectin 2-Type 2 Receptor CD209d [SIGNR3] 
CBP:C-Type Lectin 2-Type 2 Receptor CD209e [SIGNR4]  
CBP:C-Type Lectin 2-Type 2 Receptor CD209f [SIGNR8] 
CBP:C-Type Lectin 2-Type 2 Receptor CD209g [SIGNR7] 
CBP:C-Type Lectin 2-Type 2 Receptor Clec4a2 
CBP:C-Type Lectin 2-Type 2 Receptor Clec4a3 [dendritic cell inhibitory receptor 3] 
CBP:C-Type Lectin 2-Type 2 Receptor Clec4b1 
CBP:C-Type Lectin 2-Type 2 Receptor Clec4d (Clecsf8), aka MCL 
CBP:C-Type Lectin 2-Type 2 Receptor Clec4e [Mincle; C-type lectin superfamily member 9]  
CBP:C-Type Lectin 2-Type 2 Receptor Clec4f 
CBP:C-Type Lectin 2-Type 2 Receptor Clec4g [LSECtin] 
CBP:C-Type Lectin 2-Type 2 Receptor Fcer2a [Fc receptor IgE low affinity II alpha] 
CBP:C-Type Lectin 2-Type 2 Receptor Fcer2a [Fc receptor IgE low affinity II alpha] 
CBP:C-Type Lectin 2-Type 2 Receptor Lman21 (lectin mannose-binding 2-like; DC-SIGN-X6] 
CBP:C-Type Lectin 2-Type 2 Receptor Mgl1 [macrophage galactose N-acetyl-galactosamine] 
CBP:C-Type Lectin 2-Type 2 Receptor Mgl2 [macrophage galactose N-acetyl-galactosamine] 
CBP:C-Type Lectin 2-Type 2 Receptor Mgl2 [macrophage galactose N-acetyl-galactosamine] 
CBP:C-Type Lectin 3-Collectin Colec10 
CBP:C-Type Lectin 3-Collectin Colec12 
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CBP:C-Type Lectin 3-Collectin Colec12 
CBP:C-Type Lectin 3-Collectin Mbl1 [Mannose-binding protein A] 
CBP:C-Type Lectin 3-Collectin Mbl2 [Mannose-binding protein C] 
CBP:C-Type Lectin 3-Collectin Sftpa1 [Surfactant associated protein A- Long Trans] 
CBP:C-Type Lectin 3-Collectin Sftpd [Surfactant associated protein SP-D] 
CBP:C-Type Lectin 4-Selectin Sele [E-Selectin] 
CBP:C-Type Lectin 4-Selectin Sell [L-selectin] 
CBP:C-Type Lectin 4-Selectin Selp [P-selectin] 
CBP:C-Type Lectin 5-NK Receptors CD69 
CBP:C-Type Lectin 5-NK Receptors CD72 
CBP:C-Type Lectin 5-NK Receptors CLEC1a 
CBP:C-Type Lectin 5-NK Receptors CLEC1b 
CBP:C-Type Lectin 5-NK Receptors Clec2d 
CBP:C-Type Lectin 5-NK Receptors Clec2h 
CBP:C-Type Lectin 5-NK Receptors Clec4n [Dectin-2] 
CBP:C-Type Lectin 5-NK Receptors Clec5a [MDL-1] 
CBP:C-Type Lectin 5-NK Receptors Clec7a;  dendritic cell-associated C-type lectin 1; Dectin-1 
CBP:C-Type Lectin 5-NK Receptors Klra10; Ly49J 
CBP:C-Type Lectin 5-NK Receptors Klra10; Ly49J 
CBP:C-Type Lectin 5-NK Receptors Klra12; Ly49L1 
CBP:C-Type Lectin 5-NK Receptors Klra13; Ly49M 
CBP:C-Type Lectin 5-NK Receptors Klra15; Ly49O 
CBP:C-Type Lectin 5-NK Receptors Klra15; Ly49O 
CBP:C-Type Lectin 5-NK Receptors Klra17 [LY49Q] 
CBP:C-Type Lectin 5-NK Receptors Klra18 [Ly49R, extensive crosshyb with Klra4,12,33[ 
CBP:C-Type Lectin 5-NK Receptors Klra2; Ly49B 
CBP:C-Type Lectin 5-NK Receptors Klra22; Ly49V 
CBP:C-Type Lectin 5-NK Receptors Klra3; Ly49C/Ly49I 
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CBP:C-Type Lectin 5-NK Receptors Klra3; Ly49C/Ly49I 
CBP:C-Type Lectin 5-NK Receptors Klra4; Ly49D 
CBP:C-Type Lectin 5-NK Receptors Klra4; Ly49D 
CBP:C-Type Lectin 5-NK Receptors Klra5; LY49E 
CBP:C-Type Lectin 5-NK Receptors Klra5; LY49E 
CBP:C-Type Lectin 5-NK Receptors Klra6; Ly49S 
CBP:C-Type Lectin 5-NK Receptors Klra7; LY49G 
CBP:C-Type Lectin 5-NK Receptors Klra8 [Ly49H/Ly49U] 
CBP:C-Type Lectin 5-NK Receptors Klra9 
CBP:C-Type Lectin 5-NK Receptors Klrb1f [Nkrp1f protein] 
CBP:C-Type Lectin 5-NK Receptors Klrc1 [killer cell lectin-like receptor subfamily C] 
CBP:C-Type Lectin 5-NK Receptors Klrc1 [killer cell lectin-like receptor subfamily C] 
CBP:C-Type Lectin 5-NK Receptors Klrc3 [killer cell lectin-like receptor subfamily C; NKG2 E] 
CBP:C-Type Lectin 5-NK Receptors Klrd1(killer cell lectin-like receptor subfamily D) CD94 
CBP:C-Type Lectin 5-NK Receptors KLRG1 [killer cell lectin-like receptor subfamily G] 
CBP:C-Type Lectin 5-NK Receptors Klrk1 [NKG2 D] 
CBP:C-Type Lectin 5-NK Receptors Klrk1 [NKG2 D] 
CBP:C-Type Lectin 5-NK Receptors Olr1 [oxidized low density lipoprotein (lectin-like)] 
CBP:C-Type Lectin 6-MMR Ly75 [ lymphocyte antigen 75; DEC205] 
CBP:C-Type Lectin 6-MMR Ly75 [ lymphocyte antigen 75; DEC205] 
CBP:C-Type Lectin 6-MMR Mrc1 [mannose receptor C type 1] 
CBP:C-Type Lectin 6-MMR Mrc2 [mannose receptor C type 2; Endo180 - Long Trans] 
CBP:C-Type Lectin 6-MMR Mrc2 [mannose receptor C type 2; Endo180 - Short trans] 
CBP:C-Type Lectin 6-MMR Pla2r1 [Phospholipase A2 receptor 1] 
CBP:C-Type Lectin 6-MMR Pla2r1 [Phospholipase A2 receptor 1] 
CBP:C-Type Lectin 6-MMR Pla2r1 [Phospholipase A2 receptor 1] 
CBP:C-Type Lectin 7-Free CTLDs Pap [Pancreatitis-associated protein] 
CBP:C-Type Lectin 7-Free CTLDs Reg1 [regenerating islet-derived 1] 
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CBP:C-Type Lectin 7-Free CTLDs Reg2 [regenerating islet-derived 2] 
CBP:C-Type Lectin 7-Free CTLDs Reg3d [regenerating islet-derived 3 delta] 
CBP:C-Type Lectin 7-Free CTLDs Reg4 [regenerating islet-derived family member 4] 
CBP:C-Type Lectin 8-Simple Type 1 receptors Chodl [chondrolectin; Layilin homolog] 
CBP:C-Type Lectin 8-Simple Type 1 receptors Chodl [chondrolectin; Layilin homolog] 
CBP:C-Type Lectin 8-Simple Type 1 receptors Layn [Layilin] 
CBP:C-Type Lectin 9-Tetranectins Clec11a [C-type lectin domain family 11 member a] 
CBP:C-Type Lectin 9-Tetranectins Clec3a [C-type lectin domain family 3 member a] 
CBP:C-Type Lectin 9-Tetranectins Clec3b [C-type lectin domain family 3 member b; Tetranectin] 
CBP:C-Type Lectin Novel Clec14a 
CBP:C-Type Lectin Novel Frem1 [Fras1 related extracellular matrix protein 1] 
CBP:C-Type Lectin Novel Mrcl [mannose receptor-like] 
CBP:I-Type Lectin Non-Siglec CD83 
CBP:I-Type Lectin Non-Siglec Icam1 [intercellular adhesion molecule possible short variant] 
CBP:I-Type Lectin Non-Siglec Icam1 [intercellular adhesion molecule] 
CBP:I-Type Lectin Non-Siglec Icam2 [ intercellular adhesion molecule 2] 
CBP:I-Type Lectin Non-Siglec L1cam [L1 cell adhesion molecule] 
CBP:I-Type Lectin Non-Siglec L1cam [L1 cell adhesion molecule] 
CBP:I-Type Lectin Non-Siglec Pecam1 [platelet/endothelial cell adhesion molecule 1] 
CBP:I-Type Lectin Non-Siglec Pecam1 [platelet/endothelial cell adhesion molecule 1] 
CBP:I-Type Lectin Non-Siglec Vcam1 [vascular cell adhesion molecule 1] 
CBP:I-Type Lectin Non-Siglec Vcam1 [vascular cell adhesion molecule 1] 

CBP:I-Type Lectin Siglec CD22 (Siglec-2)  
CBP:I-Type Lectin Siglec CD22 (Siglec-2)  
CBP:I-Type Lectin Siglec CD22 (Siglec-2)  
CBP:I-Type Lectin Siglec CD33 (Siglec-3) 
CBP:I-Type Lectin Siglec CD33 (Siglec-3) 
CBP:I-Type Lectin Siglec MAG [myelin-associated glycoprotein; Siglec-4] 



177 

 

CBP:I-Type Lectin Siglec MAG [myelin-associated glycoprotein; Siglec-4] 
CBP:I-Type Lectin Siglec Siglec1 [Sialoadhesin] 
CBP:I-Type Lectin Siglec Siglec1 [Sialoadhesin] 
CBP:I-Type Lectin Siglec Siglec1 [Sialoadhesin] 
CBP:I-Type Lectin Siglec Siglec15 [sialic acid binding Ig-like lectin 15] 
CBP:I-Type Lectin Siglec Siglec5 [sialic acid binding Ig-like lectin 5] 
CBP:I-Type Lectin Siglec Siglec5 [sialic acid binding Ig-like lectin 5] 
CBP:I-Type Lectin Siglec Siglece [SIGLEC-like 1] 
CBP:I-Type Lectin Siglec Siglecg [sialic acid binding Ig-like lectin G] 
CBP:I-Type Lectin Siglec Siglec-H 
CBP:I-Type Lectin Siglec Siglec-H 
CBP:I-Type Lectin Siglec Siglec-H 
CBP:I-Type Lectin Siglec Siglec-H (short form) 

Galectin Galectin 1110067D22Rik [hypothetical protein LOC216551; HSPC159] 
Galectin Galectin GRIFIN [galectin-related inter-fiber protein; Galectin 11] 
Galectin Galectin Lgals1 [lectin galactose binding soluble 1; Galectin 1] 
Galectin Galectin Lgals12 [lectin galactose binding soluble 12; Galectin 12] 
Galectin Galectin Lgals2 [lectin galactose-binding soluble 2; Galectin 2] 
Galectin Galectin Lgals3 [Galectin 3] 
Galectin Galectin Lgals4 [lectin galactose binding soluble 4; Galectin 4 (Lgals4 and Lgals6 overlap 

heavily)] 
Galectin Galectin Lgals6 [lectin galactose binding soluble 6; Galectin 6 (Lgals4 and Lgals6 overlap 

heavily)] 
Galectin Galectin Lgals7 [lectin galactose binding soluble 7; Galectin 7] 
Galectin Galectin Lgals8 [lectin galactose binding soluble 8; Galectin 8] 
Galectin Galectin Lgals9 [lectin galactose binding soluble 9; Galectin 9] 
Glycan Degradation Arylsufatases Arsa [Arylsulfatase A] 
Glycan Degradation Arylsufatases Arsb [Arylsulfatase B] 
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Glycan Degradation Galactosidase Gla [alpha-Galactosidase A] 
Glycan Degradation Galactosidase Glb1 [galactosidase beta 1] 
Glycan Degradation Galactosidase Glb1 [galactosidase beta 1] 
Glycan Degradation Galactosidase Glb1 [galactosidase beta 1] 
Glycan Degradation Galactosidase Glb1 [galactosidase beta 1] 
Glycan Degradation Galactosidase Glb1 [galactosidase beta 1] 
Glycan Degradation Galactosidase Glb1 [galactosidase beta 1] 
Glycan Degradation Galactosidase Glb1l3 [beta-Galactosidase (lactase)] 
Glycan Degradation Glucuronidases Gusb [glucuronidase beta] 
Glycan Degradation Glucuronidases Gusb [glucuronidase beta] 
Glycan Degradation Glucuronidases Gusb [glucuronidase beta] 
Glycan Degradation Glucuronidases Gusb [glucuronidase beta] 
Glycan Degradation Heparanases HPSE (Heparanase)  
Glycan Degradation Heparanases HPSE (Heparanase)  
Glycan Degradation Heparanases HPSE2 (similar to Heparanase 2;LOC545291 ) 
Glycan Degradation Hexosaminidases Hexa [hexosaminidase A] 
Glycan Degradation Hyaluronidases Hyal1 [hyaluronoglucosaminidase 1] 
Glycan Degradation Hyaluronidases Hyal1 [hyaluronoglucosaminidase 1] 
Glycan Degradation Hyaluronidases Hyal2 [hyaluronoglucosaminidase 2] 
Glycan Degradation Hyaluronidases Hyal2 [hyaluronoglucosaminidase 2] 
Glycan Degradation Hyaluronidases MGEA5 [meningioma expressed antigen 5 (hyaluronidase)] 
Glycan Degradation Hyaluronidases MGEA5 [meningioma expressed antigen 5 (hyaluronidase)] 
Glycan Degradation Hyaluronidases MGEA5 [meningioma expressed antigen 5 (hyaluronidase)] 
Glycan Degradation Iduronidases Idua [iduronidase alpha-L-] 
Glycan Degradation Lysozomal Enzymes Aga [aspartylglucosaminidase] 
Glycan Degradation Lysozomal Enzymes Asah1 [N-acylsphingosine amidohydrolase 1] 
Glycan Degradation Lysozomal Enzymes Asah1 [N-acylsphingosine amidohydrolase 1] 
Glycan Degradation Lysozomal Enzymes Ctns [cystinosis nephropathic] 
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Glycan Degradation Lysozomal Enzymes Ctsa [cathepsin A]  
Glycan Degradation Lysozomal Enzymes Gaa [acid alpha-glucosidase] 
Glycan Degradation Lysozomal Enzymes Gaa [acid alpha-glucosidase] 
Glycan Degradation Lysozomal Enzymes Galc [Galactosylceramidase] 
Glycan Degradation Lysozomal Enzymes Gba [glucosidase beta acid]  
Glycan Degradation Lysozomal Enzymes Lamp1 [lysosomal membrane glycoprotein 1] 
Glycan Degradation Lysozomal Enzymes Lamp2 [lysosomal membrane glycoprotein 2] 
Glycan Degradation Lysozomal Enzymes Lamp2 [lysosomal membrane glycoprotein 2] 
Glycan Degradation Lysozomal Enzymes Lamp2 [lysosomal membrane glycoprotein 2] 
Glycan Degradation Lysozomal Enzymes Lamp2 [lysosomal membrane glycoprotein 2] 
Glycan Degradation Lysozomal Enzymes Lamp2 [lysosomal membrane glycoprotein 2] 
Glycan Degradation Lysozomal Enzymes Lipa [lysosomal acid lipase A] 
Glycan Degradation Lysozomal Enzymes Lipa [lysosomal acid lipase A] 
Glycan Degradation Lysozomal Enzymes Mpi [mannose phosphate isomerase] 
Glycan Degradation Lysozomal Enzymes Naglu [alpha-N-Acetylglucosaminidase] 
Glycan Degradation Lysozomal Enzymes Smpd1 [sphingomyelin phosphodiesterase 1 acid] 
Glycan Degradation Lysozomal Enzymes Smpd1 [sphingomyelin phosphodiesterase 1 acid] 
Glycan Degradation Mannosidases Man2a1 [mannosidase 2 alpha 1] 
Glycan Degradation Mannosidases Man2a2 [mannosidase 2 alpha 2] 
Glycan Degradation Mannosidases Man2a2 [mannosidase 2 alpha 2] 
Glycan Degradation Mannosidases Man2a2 [mannosidase 2 alpha 2] 
Glycan Degradation Mannosidases Man2B1 [mannosidase 2 alpha B1] 
Glycan Degradation Mannosidases Manba [mannosidase beta A lysosomal] 
Glycan Degradation Mannosidases Manba [mannosidase beta A lysosomal] 
Glycan Degradation Mannosidases Manba [mannosidase beta A lysosomal] 
Glycan Degradation Miscellaneous Gm2a [GM2 ganglioside activator protein] 
Glycan Degradation Miscellaneous Naga [N-acetyl galactosaminidase alpha] 
Glycan Degradation Miscellaneous Naga [N-acetyl galactosaminidase alpha] 
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Glycan Degradation Miscellaneous Npl [N-acetylneuraminate pyruvate lyase] 
Glycan Degradation Sialidases Neu1 [neuraminidase 1] 
Glycan Degradation Sialidases Neu2 [neuraminidase 2] 
Glycan Degradation Sialidases Neu3 [neuraminidase 3] 
Glycan Degradation Sulfatase Galns [galactosamine (N-acetyl)-6-sulfate sulfatase] 
Glycan Degradation Sulfatases Ids [iduronate 2-sulfatase]  
Glycan Degradation Sulfatases (hep sulfate 

glucosamine-6 endosulfatase) 
Sulf1 [sulfatase 1] 

Glycan Degradation Sulfatases (hep sulfate 
glucosamine-6 endosulfatase) 

Sulf1 [sulfatase 1] 

Glycan degradation Sulfatases (hep sulfate 
glucosamine-6 endosulfatase) 

Sulf2 [sulfatase 2] 

Glycan Degradation Sulfohydrolases Sgsh [N-sulfoglucosamine sulfohydrolase (sulfamidase)] 
Glycan-transferase CS GalNAc/GlcA Transferase Chsy1 [Carbohydrate (chondroitin) synthase 1] 
Glycan-transferase CS GalNAc/GlcA Transferase D1Bwg1363e [DNA segment, Chr 1, Brigham & Women's Genetics 1363 expressed; 

aka chondroitin polymerizing factor isoform a] 
Glycan-transferase Fucosyl-T Fut1 [fucosyltransferase 1] 
Glycan-transferase Fucosyl-T Fut1 [fucosyltransferase 1] 
Glycan-transferase Fucosyl-T Fut10 [fucosyltransferase 10] 
Glycan-transferase Fucosyl-T Fut10 [fucosyltransferase 10] 
Glycan-transferase Fucosyl-T Fut11 [alpha (1 3) fucosyltransferase] 
Glycan-transferase Fucosyl-T Fut2 [fucosyltransferase 2] 
Glycan-transferase Fucosyl-T Fut2 [fucosyltransferase 2] 
Glycan-transferase Fucosyl-T Fut4 [fucosyltransferase 4] 
Glycan-transferase Fucosyl-T Fut4 [fucosyltransferase 4] 
Glycan-transferase Fucosyl-T Fut4 [fucosyltransferase 4] 
Glycan-transferase Fucosyl-T Fut7 [fucosyltransferase 7] 
Glycan-transferase Fucosyl-T Fut8 [fucosyltransferase 8] 
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Glycan-transferase Fucosyl-T Fut8 [fucosyltransferase 8] 
Glycan-transferase Fucosyl-T Fut9 [fucosyltransferase 9] 
Glycan-transferase Fucosyl-T Pofut1 [protein O-fucosyltransferase 1] 
Glycan-transferase Fucosyl-T Pofut1 [protein O-fucosyltransferase 1] 
Glycan-transferase Fucosyl-T Pofut2 [protein O-fucosyltransferase 2] 
Glycan-transferase Fucosyl-T Sec1 [secretory blood group 1] 
Glycan-transferase GalNAc-T B4galnt1 [beta-1 4-N-acetylgalactosaminyltransferase] 
Glycan-transferase GalNAc-T B4galnt1 [beta-1 4-N-acetylgalactosaminyltransferase] 
Glycan-transferase GalNAc-T B4galnt1 [beta-1 4-N-acetylgalactosaminyltransferase] 
Glycan-transferase GalNAc-T B4galnt2 [beta-1 4-N-acetyl-galactosaminyl transferase 2] 
Glycan-transferase GalNAc-T B4galnt3 [beta-1 4-N-acetyl-galactosaminyl transferase 3] 
Glycan-transferase GalNAc-T B4galnt4 [beta-1 4-N-acetyl-galactosaminyl transferase 4] 
Glycan-transferase GalNAc-T B4galnt4 [beta-1 4-N-acetyl-galactosaminyl transferase 4] 
Glycan-transferase GalNAc-T Galnact1 (4732435N03Rik) [CSGalNAcT1/ChGalNAcT1] 
Glycan-transferase GalNAc-T Galnact2 [Chondroitin sulfate GalNAcT-2] 
Glycan-transferase GalNAc-T Galnt1 [UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-

acetylgalactosaminyltransferase 1] 
Glycan-transferase GalNAc-T Galnt10 [UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-

acetylgalactosaminyltransferase 10] 
Glycan-transferase GalNAc-T Galnt10 [UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-

acetylgalactosaminyltransferase 10] 
Glycan-transferase GalNAc-T Galnt11 [UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-

acetylgalactosaminyltransferase 11] 
Glycan-transferase GalNAc-T Galnt12 [UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-

acetylgalactosaminyltransferase 12] 
Glycan-transferase GalNAc-T Galnt13 [UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-

acetylgalactosaminyltransferase 13] 
Glycan-transferase GalNAc-T Galnt14 [mpp-GalNAc-T14; UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-



182 

 

acetylgalactosaminyltransferase 14] 
Glycan-transferase GalNAc-T Galnt14 [UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-

acetylgalactosaminyltransferase 14] 
Glycan-transferase GalNAc-T Galnt15 [UDP-N-acetyl-alpha-D-galactosamine: polypeptide N-

acetylgalactosaminyltransferase15] 
Glycan-transferase GalNAc-T Galnt16[UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-

acetylgalactosaminyltransferase-16 ] 
Glycan-transferase GalNAc-T Galnt17[UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-

acetylgalactosaminyltransferase-17 
Glycan-transferase GalNAc-T Galnt18 [UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-

acetylgalactosaminyltransferase-18] 
Glycan-transferase GalNAc-T Galnt19[UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-

acetylgalactosaminyltransferase-19] 
Glycan-transferase GalNAc-T Galnt2 [UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-

acetylgalactosaminyltransferase 2] 
Glycan-transferase GalNAc-T Galnt20[UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-

acetylgalactosaminyltransferase-20] 
Glycan-transferase GalNAc-T Galnt3 [UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-

acetylgalactosaminyltransferase 3] 
Glycan-transferase GalNAc-T Galnt4 [UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-

acetylgalactosaminyltransferase 4] 
Glycan-transferase GalNAc-T Galnt5 [UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-

acetylgalactosaminyltransferase 5] 
Glycan-transferase GalNAc-T Galnt6 [UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-

acetylgalactosaminyltransferase 6] 
Glycan-transferase GalNAc-T Galnt7 [UDP-N-acetyl-alpha-D-galactosamine: polypeptide N-

acetylgalactosaminyltransferase 7] 
Glycan-transferase GalNAc-T Galnt7 [UDP-N-acetyl-alpha-D-galactosamine: polypeptide N-
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acetylgalactosaminyltransferase 7] 
Glycan-transferase GalNAc-T Galnt9 [UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-

acetylgalactosaminyltransferase 9] 
Glycan-transferase GalNAc-T Gbgt1 [globoside alpha-1,3-N-acetylgalactosaminyltransferase 1; a3GalNAcT(FS)] 
Glycan-transferase Gal-T 4833446K15Rik [hypothetical protein LOC78923] 
Glycan-transferase Gal-T 4833446K15Rik [hypothetical protein LOC78923] 
Glycan-transferase Gal-T 4833446K15Rik [hypothetical protein LOC78923] 
Glycan-transferase Gal-T A4GalT [alpha 1 4-galactosyltransferase] 
Glycan-transferase Gal-T Abo [cis AB transferase] 
Glycan-transferase Gal-T AK015826 [Similar to GalNAc transferase 10 isoform a] 
Glycan-transferase Gal-T B3galnt1 [UDP-GalNAc:betaGlcNAc beta 1,3-galactosaminyltransferase, polypeptide 

1] 
Glycan-transferase Gal-T B3galnt2  [UDP-GalNAc:betaGlcNAc beta 1,3-galactosaminyltransferase, polypeptide 

2] 
Glycan-transferase Gal-T B3galnt2  [UDP-GalNAc:betaGlcNAc beta 1,3-galactosaminyltransferase, polypeptide 

2] 
Glycan-transferase Gal-T B3galnt2  [UDP-GalNAc:betaGlcNAc beta 1,3-galactosaminyltransferase, polypeptide 

2] 
Glycan-transferase Gal-T b3galt1 [UDP-Gal:betaGlcNAc beta 1,3-galactosyltransferase, polypeptide 1] 
Glycan-transferase Gal-T b3galt1 [UDP-Gal:betaGlcNAc beta 1,3-galactosyltransferase, polypeptide 1] 
Glycan-transferase Gal-T b3galt1 [UDP-Gal:betaGlcNAc beta 1,3-galactosyltransferase, polypeptide 1] 
Glycan-transferase Gal-T b3galt2 [UDP-Gal:betaGlcNAc beta 1,3-galactosyltransferase, polypeptide 2] 
Glycan-transferase Gal-T B3galt4 [UDP-Gal:betaGalNAc beta 1,3-galactosyltransferase, polypeptide 4] 
Glycan-transferase Gal-T b3galt5 [UDP-Gal:betaGlcNAc beta 1,3-galactosyltransferase, polypeptide 5] 
Glycan-transferase Gal-T b3galt6 [UDP-Gal:betaGal beta 1,3-galactosyltransferase, polypeptide 6] 
Glycan-transferase Gal-T B3gnt8 [UDP-GlcNAc:betaGal beta-1,3-N-acetylglucosaminyltransferase 8] 
Glycan-transferase Gal-T b4galt1 [UDP-Gal:betaGlcNAc beta 1,4- galactosyltransferase, polypeptide 1] 
Glycan-transferase Gal-T b4galt2 [UDP-Gal:betaGlcNAc beta 1,4- galactosyltransferase, polypeptide 2] 
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Glycan-transferase Gal-T b4galt3 [UDP-Gal:betaGlcNAc beta 1,4-galactosyltransferase, polypeptide 3] 
Glycan-transferase Gal-T b4galt4 [UDP-Gal:betaGlcNAc beta 1,4-galactosyltransferase, polypeptide 4] 
Glycan-transferase Gal-T b4galt5 [UDP-Gal:betaGlcNAc beta 1,4-galactosyltransferase, polypeptide 5] 
Glycan-transferase Gal-T b4galt6 [UDP-Gal:betaGlcNAc beta 1,4-galactosyltransferase, polypeptide 6] 
Glycan-transferase Gal-T b4GalT7 [Xylosylprotein beta1,4-galactosyltransferase, polypeptide 7 

(galactosyltransferase I)] 
Glycan-transferase Gal-T b4GalT7 [Xylosylprotein beta1,4-galactosyltransferase, polypeptide 7 

(galactosyltransferase I)] 
Glycan-transferase Gal-T C1galt1 [core 1 synthase] 
Glycan-transferase Gal-T C1galt1c1 [C1GALT1-specific chaperone 1] 
Glycan-transferase Gal-T Ggta1 [glycoprotein galactosyltransferase alpha 1 3] 
Glycan-transferase Gal-T Ugt8a [UDP galactosyltransferase 8A] 
Glycan-transferase Gal-T Ugt8a [UDP galactosyltransferase 8A] 

Glycan-transferase GlcNAc-T Gyltl1b [glycosyltransferase-like 1B] 
Glycan-transferase GlcNAc-T Gyltl1b [glycosyltransferase-like 1B] 
Glycan-transferase GlcNAc-T Mgat5b [mannoside acetylglucosaminyltransferase 5] 
Glycan-transferase GlcNAc-T 4933434I20Rik [hypothetical protein LOC67555; GlcNAcT VI 
Glycan-transferase GlcNAc-T A4gnT [alpha-1 4-N-acetylglucosaminyltransferase] 
Glycan-transferase GlcNAc-T B3gnt 5 [UDP-GlcNAc:betaGal beta-1,3-N-acetylglucosaminyltransferase 5] 
Glycan-transferase GlcNAc-T B3gnt1  [UDP-GlcNAc:betaGal beta-1,3-N-acetylglucosaminyltransferase 1] 
Glycan-transferase GlcNAc-T B3gnt2 [UDP-GlcNAc:betaGal beta-1,3-N-acetylglucosaminyltransferase 2] 
Glycan-transferase GlcNAc-T B3gnt3 [UDP-GlcNAc:betaGal beta-1,3-N-acetylglucosaminyltransferase 3] 
Glycan-transferase GlcNAc-T B3gnt4 [UDP-GlcNAc:betaGal beta-1,3-N-acetylglucosaminyltransferase 4] 
Glycan-transferase GlcNAc-T B3gnt6 [UDP-GlcNAc:betaGal beta-1,3-N-acetylglucosaminyltransferase 6 (core 3 

synthase)] 
Glycan-transferase GlcNAc-T B3gnt7 [UDP-GlcNAc:betaGal beta-1,3-N-acetylglucosaminyltransferase 7] 
Glycan-transferase GlcNAc-T C76566 [hypothetical protein LOC97440; beta-1,3-galactosyltransferase-related 

protein gene] 
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Glycan-transferase GlcNAc-T Dpagt1 [Dolichyl-phosphate (UDP-N-acetylglucosamine) 
acetylglucosaminephosphotransferase 1 (GlcNAc-1-P transferase)] 

Glycan-transferase GlcNAc-T Dpagt1 [Dolichyl-phosphate (UDP-N-acetylglucosamine) 
acetylglucosaminephosphotransferase 1 (GlcNAc-1-P transferase)] 

Glycan-transferase GlcNAc-T Extl1 [Exostoses (multiple)-like 1] 
Glycan-transferase GlcNAc-T Extl2 [Exotoses (multiple)-like 2] 
Glycan-transferase GlcNAc-T Extl3 [exostoses (multiple)-like 3] 
Glycan-transferase GlcNAc-T Extl3 [exostoses (multiple)-like 3] 
Glycan-transferase GlcNAc-T Gcnt1 [Glucosaminyl (N-acetyl) transferase 1, core 2] 
Glycan-transferase GlcNAc-T Gcnt1 [Glucosaminyl (N-acetyl) transferase 1, core 2] 
Glycan-transferase GlcNAc-T Gcnt2 [Glucosaminyl (N-acetyl) transferase 2, I-branching enzyme] 
Glycan-transferase GlcNAc-T Gcnt2 [glucosaminyl (N-acetyl) transferase 2] 
Glycan-transferase GlcNAc-T Gcnt3 [Glucosaminyl (N-acetyl) transferase 3, mucin type] 
Glycan-transferase GlcNAc-T Gcnt3 [Glucosaminyl (N-acetyl) transferase 3, mucin type] 
Glycan-transferase GlcNAc-T Large [like-glycosyltransferase]  
Glycan-transferase GlcNAc-T Lfng [lunatic fringe gene homolog] 
Glycan-transferase GlcNAc-T Mfng [O-fucosylpeptide 3-beta-N-acetylglucosaminyltransferase; manic fringe 

homolog]  
Glycan-transferase GlcNAc-T Mgat1 [mannoside acetylglucosaminyltransferase 1] 
Glycan-transferase GlcNAc-T Mgat2 [mannoside acetylglucosaminyltransferase 2] 
Glycan-transferase GlcNAc-T Mgat3 [mannoside acetylglucosaminyltransferase 3] 
Glycan-transferase GlcNAc-T Mgat4a [mannoside acetylglucosaminyltransferase 4a] 
Glycan-transferase GlcNAc-T Mgat4b [mannoside acetylglucosaminyltransferase 4] 
Glycan-transferase GlcNAc-T Mgat4c [mannoside acetylglucosaminyltransferase 4c] 
Glycan-transferase GlcNAc-T Mgat5 [mannoside acetylglucosaminyltransferase 5] 
Glycan-transferase GlcNAc-T Mgat5 [mannoside acetylglucosaminyltransferase 5] 
Glycan-transferase GlcNAc-T Mgat5 [mannoside acetylglucosaminyltransferase 5] 
Glycan-transferase GlcNAc-T OGT1 [O-linked N-acetylglucosamine (GlcNAc) transferase (UDP-N-
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acetylglucosamine:polypeptide-N-acetylglucosaminyl transferase)] 
Glycan-transferase GlcNAc-T OGT1 [O-linked N-acetylglucosamine (GlcNAc) transferase (UDP-N-

acetylglucosamine:polypeptide-N-acetylglucosaminyl transferase)] 
Glycan-transferase GlcNAc-T Pigp [Phosphatidylinositol glycan anchor biosynthesis, class P; Down syndrome 

critical region protein c] 
Glycan-transferase GlcNAc-T Pigp [Phosphatidylinositol glycan anchor biosynthesis, class P; Down syndrome 

critical region protein c] 
Glycan-transferase GlcNAc-T Pomgnt1 [Protein O-linked mannose beta1,2-N-acetylglucosaminyltransferase] 
Glycan-transferase GlcNAc-T Rfng [O-fucosylpeptide 3-beta-N-acetylglucosaminyltransferase; Radical fringe] 
Glycan-transferase Glc-T ALG05 [Asparagine-linked glycosylation 5 homolog (yeast, dolichyl-phosphate beta-

glucosyltransferase)] 
Glycan-transferase Glc-T ALG05 [Asparagine-linked glycosylation 5 homolog (yeast, dolichyl-phosphate beta-

glucosyltransferase)] 
Glycan-transferase Glc-T ALG05 [Asparagine-linked glycosylation 5 homolog (yeast, dolichyl-phosphate beta-

glucosyltransferase)] 
Glycan-transferase Glc-T ALG06 [Asparagine-linked glycosylation 6 homolog (yeast, alpha-1,3,-

glucosyltransferase)] 
Glycan-transferase Glc-T ALG08 [Asparagine-linked glycosylation 8 homolog (yeast, alpha-1,3-

glucosyltransferase] 
Glycan-transferase Glc-T ALG10b [Asparagine-linked glycosylation 10 homolog B (yeast, alpha-1,2-

glucosyltransferase)] 
Glycan-transferase Glc-T B3gat2 [Beta-1,3-glucuronyltransferase 2 (glucuronosyltransferase S)] 
Glycan-transferase Glc-T B3gat2 [Beta-1,3-glucuronyltransferase 2 (glucuronosyltransferase S)] 
Glycan-transferase Glc-T Ugcg [UDP-glucose ceramide glucosyltransferase] 
Glycan-transferase Glc-T Ugcg [UDP-glucose ceramide glucosyltransferase] 
Glycan-transferase Glc-T Ugcgl1 [UDP-glucose ceramide glucosyltransferase-like 1] 
Glycan-transferase Glc-T Ugcgl1 [UDP-glucose ceramide glucosyltransferase-like 1] 
Glycan-transferase Glc-T Ugcgl2 [UDP-glucose ceramide glucosyltransferase-like 2] 
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Glycan-transferase Glc-T Ugcgl2 [UDP-glucose ceramide glucosyltransferase-like 2] 
Glycan-transferase Glc-T Ugcgl2 [UDP-glucose ceramide glucosyltransferase-like 2] 
Glycan-transferase GlcUA-T B3gat3 [Beta-1,3-glucuronyltransferase 3 (glucuronosyltransferase I)] 
Glycan-transferase GlcUA-T B3gat3 [Beta-1,3-glucuronyltransferase 3 (glucuronosyltransferase I)] 
Glycan-transferase GlcUA-T B3gat3 [Beta-1,3-glucuronyltransferase 3 (glucuronosyltransferase I)] 
Glycan-transferase GlcUA-T Ugt1a(1-10) [UDP glycosyltransferase 1 family polypeptide] 
Glycan-transferase GlcUA-T Ugt1a(1-10) [UDP glycosyltransferase 1 family polypeptide] 
Glycan-transferase GlcUA-T Ugt1a(1-10) [UDP glycosyltransferase 1 family polypeptide] 
Glycan-transferase GlcUA-T Ugt2a1 [UDP glucuronosyltransferase 2 family, polypeptide A1] 
Glycan-transferase GlcUA-T Ugt2a1 [UDP glucuronosyltransferase 2 family, polypeptide A1] 
Glycan-transferase GlcUA-T Ugt2a1 [UDP glucuronosyltransferase 2 family, polypeptide A1] 
Glycan-transferase GlcUA-T Ugt2b5 [UDP glucuronosyltransferase 2 family, polypeptide B5] 
Glycan-transferase GlcUA-T Ugt2b5 [UDP glucuronosyltransferase 2 family, polypeptide B5] 
Glycan-transferase HS GlcNAc/GlcA Transferase Ext1 [exostosin 1] 
Glycan-transferase HS GlcNAc/GlcA Transferase Ext2 [exostosin 2] 
Glycan-transferase HS GlcNAc/GlcA Transferase Ext2 [exostosin 2] 
Glycan-transferase HS GlcNAc/GlcA Transferase Ext2 [exostosin 2] 
Glycan-transferase HS GlcNAc/GlcA Transferase Ext2 [exostosin 2] 
Glycan-transferase HS GlcNAc/GlcA Transferase Ext2 [exostosin 2] 
Glycan-transferase HS GlcNAc/GlcA Transferase Has1 [hyaluronan synthase1] 
Glycan-transferase HS GlcNAc/GlcA Transferase Has1 [hyaluronan synthase1] 
Glycan-transferase HS GlcNAc/GlcA Transferase Has2 [hyaluronan synthase 2] 
Glycan-transferase HS GlcNAc/GlcA Transferase Has3 [hyaluronan synthase 3] 
Glycan-transferase HS GlcNAc/GlcA Transferase Has3 [hyaluronan synthase 3] 

Glycan-transferase Man-T Alg1 [Asparagine-linked glycosylation 1 homolog (yeast, beta-1,4-
mannosyltransferase)] 

Glycan-transferase Man-T Alg12 [Asparagine-linked glycosylation 12 homolog (yeast, alpha-1,6-
mannosyltransferase)] 
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Glycan-transferase Man-T ALG13 [Asparagine-linked glycosylation 13 homolog (S. cerevisiae); 
glycosyltransferase 28 domain containing 1] 

Glycan-transferase Man-T ALG13 [Asparagine-linked glycosylation 13 homolog (S. cerevisiae); 
glycosyltransferase 28 domain containing 1] 

Glycan-transferase Man-T Alg2 [Asparagine-linked glycosylation 2 homolog (yeast, alpha-1,3-
mannosyltransferase)] 

Glycan-transferase Man-T Alg9 [Asparagine-linked glycosylation 9 homolog (yeast, alpha 1,2 
mannosyltransferase); aka Dibd1, disrupted in bipolar disorder 1 homolog] 

Glycan-transferase Man-T Chga [chromogranin A] 
Glycan-transferase Man-T Dpm1 [Dolichol-phosphate (beta-D) mannosyltransferase 1] 
Glycan-transferase Man-T Dpm2 [Dolichol-phosphate (beta-D) mannosyltransferase 2] 
Glycan-transferase Man-T Piga [Phosphatidylinositol glycan anchor biosynthesis, class A] 
Glycan-transferase Man-T Piga [Phosphatidylinositol glycan anchor biosynthesis, class A] 
Glycan-transferase Man-T Pigb [Phosphatidylinositol glycan anchor biosynthesis, class B] 
Glycan-transferase Man-T Pigb [Phosphatidylinositol glycan anchor biosynthesis, class B] 
Glycan-transferase Man-T Pigm [Phosphatidylinositol glycan anchor biosynthesis, class M] 
Glycan-transferase Man-T Pigq [Phosphatidylinositol glycan anchor biosynthesis, class Q] 
Glycan-transferase Man-T Pigq [Phosphatidylinositol glycan anchor biosynthesis, class Q] 
Glycan-transferase Man-T Pigq [Phosphatidylinositol glycan anchor biosynthesis, class Q] 
Glycan-transferase Man-T Pigq [Phosphatidylinositol glycan anchor biosynthesis, class Q] 
Glycan-transferase Man-T Pigq [Phosphatidylinositol glycan anchor biosynthesis, class Q] 
Glycan-transferase Man-T Pomt1 [protein-O-mannosyltransferase 1] 
Glycan-transferase Man-T Pomt2 [Protein-O-mannosyltransferase 2] 
Glycan-transferase Man-T Pomt2 [Protein-O-mannosyltransferase 2] 
Glycan-transferase Miscellaneous Glce [D-glucuronyl C5-epimerase] 
Glycan-transferase N-glycans-transferase Dad1 [defender against cell death protein 1] 
Glycan-transferase N-glycans-transferase Dad1 [defender against cell death protein 1] 
Glycan-transferase N-glycans-transferase Ddost [Dolichyl-di-phosphooligosaccharide-protein glycotransferase] 
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Glycan-transferase N-glycans-transferase Rpn1 [Ribophorin I] 
Glycan-transferase N-glycans-transferase Rpn2 [Ribophorin II] 
Glycan-transferase Sia-T  St3gal6 [ST3 beta-galactoside alpha-2,3-sialyltransferase 6] 
Glycan-transferase Sia-T St3gal1 [ST3 beta-galactoside alpha-2,3-sialyltransferase 1] 
Glycan-transferase Sia-T St3gal2 [ST3 beta-galactoside alpha-2,3-sialyltransferase 2] 
Glycan-transferase Sia-T St3gal2 [ST3 beta-galactoside alpha-2,3-sialyltransferase 2] 
Glycan-transferase Sia-T St3gal2 [ST3 beta-galactoside alpha-2,3-sialyltransferase 2] 
Glycan-transferase Sia-T St3gal3  [ST3 beta-galactoside alpha-2,3-sialyltransferase 3; sialyltransferase 6] 
Glycan-transferase Sia-T St3gal4 [ST3 beta-galactoside alpha-2,3-sialyltransferase 4] 
Glycan-transferase Sia-T St3gal5 [ST3 beta-galactoside alpha-2,3-sialyltransferase 5] 
Glycan-transferase Sia-T St6gal1 [Beta galactoside alpha 2,6 sialyltransferase 1] 
Glycan-transferase Sia-T St6gal2 [Beta galactoside alpha 2,6 sialyltransferase 2] 
Glycan-transferase Sia-T St6gal2 [Beta galactoside alpha 2,6 sialyltransferase 2] 
Glycan-transferase Sia-T St6galnac1 [ST6 (alpha-N-acetyl-neuraminyl-2,3-beta-galactosyl-1,3)-N-

acetylgalactosaminide alpha-2,6-sialyltransferase 1] 
Glycan-transferase Sia-T St6galnac2 [ST6 (alpha-N-acetyl-neuraminyl-2,3-beta-galactosyl-1,3)-N-

acetylgalactosaminide alpha-2,6-sialyltransferase 2] 
Glycan-transferase Sia-T St6galnac3 [ST6 (alpha-N-acetyl-neuraminyl-2,3-beta-galactosyl-1,3)-N-

acetylgalactosaminide alpha-2,6-sialyltransferase 3] 
Glycan-transferase Sia-T St6galnac4 [ST6 (alpha-N-acetyl-neuraminyl-2,3-beta-galactosyl-1,3)-N-

acetylgalactosaminide alpha-2,6-sialyltransferase 4] 
Glycan-transferase Sia-T St6galnac4 [ST6 (alpha-N-acetyl-neuraminyl-2,3-beta-galactosyl-1,3)-N-

acetylgalactosaminide alpha-2,6-sialyltransferase 4] 
Glycan-transferase Sia-T St6galnac5 [ST6 (alpha-N-acetyl-neuraminyl-2,3-beta-galactosyl-1,3)-N-

acetylgalactosaminide alpha-2,6-sialyltransferase 5] 
Glycan-transferase Sia-T St6galnac6 [ST6 (alpha-N-acetyl-neuraminyl-2,3-beta-galactosyl-1,3)-N-

acetylgalactosaminide alpha-2,6-sialyltransferase 6] 
Glycan-transferase Sia-T St6galnac6 [ST6 (alpha-N-acetyl-neuraminyl-2,3-beta-galactosyl-1,3)-N-
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acetylgalactosaminide alpha-2,6-sialyltransferase 6] 
Glycan-transferase Sia-T St8sia1 [ST8 alpha-N-acetyl-neuraminide alpha-2,8-sialyltransferase 1] 
Glycan-transferase Sia-T St8sia2 [ST8 alpha-N-acetyl-neuraminide alpha-2,8-sialyltransferase 2] 
Glycan-transferase Sia-T St8sia3 [ST8 alpha-N-acetyl-neuraminide alpha-2,8-sialyltransferase 3] 
Glycan-transferase Sia-T St8sia4 [ST8 alpha-N-acetyl-neuraminide alpha-2,8-sialyltransferase 4] 
Glycan-transferase Sia-T St8sia4 [ST8 alpha-N-acetyl-neuraminide alpha-2,8-sialyltransferase 4] 
Glycan-transferase Sia-T St8sia4 [ST8 alpha-N-acetyl-neuraminide alpha-2,8-sialyltransferase 4] 
Glycan-transferase Sia-T St8sia5 [ST8 alpha-N-acetyl-neuraminide alpha-2,8-sialyltransferase 5] 
Glycan-transferase Sia-T St8sia6 [ST8 alpha-N-acetyl-neuraminide alpha-2,8-sialyltransferase 6] 
Glycan-transferase Sulfo-T 4631426J05Rik  [GalNAc4ST-6ST; N-acetylgalactosamine 4-sulfate]  
Glycan-transferase Sulfo-T Chst1 [Carbohydrate (keratan sulfate Gal-6) sulfotransferase 1] 
Glycan-transferase Sulfo-T Chst10 [Carbohydrate sulfotransferase 10] 
Glycan-transferase Sulfo-T Chst10 [Carbohydrate sulfotransferase 10] 
Glycan-transferase Sulfo-T Chst11 [Carbohydrate sulfotransferase 11] 
Glycan-transferase Sulfo-T Chst12 [Carbohydrate sulfotransferase 12] 
Glycan-transferase Sulfo-T Chst13 [Carbohydrate (chondroitin 4) sulfotransferase 13] 
Glycan-transferase Sulfo-T Chst14 [Carbohydrate (N-acetylgalactosamine 4-0) sulfotransferase 14; aka 

dermatan-4-sulfotransferase-1] 
Glycan-transferase Sulfo-T Chst2 [carbohydrate sulfotransferase 2] 
Glycan-transferase Sulfo-T Chst3 [Carbohydrate (chondroitin 6/keratan) sulfotransferase 3] 
Glycan-transferase Sulfo-T Chst4 [Carbohydrate (chondroitin 6/keratan) sulfotransferase 4] 
Glycan-transferase Sulfo-T Chst5 [Carbohydrate (N-acetylglucosamine 6-O) sulfotransferase 5] 
Glycan-transferase Sulfo-T Chst7 [Carbohydrate (N-acetylglucosamino) sulfotransferase 7] 
Glycan-transferase Sulfo-T Chst8 [Carbohydrate (N-acetylgalactosamine 4-0) sulfotransferase 8] 
Glycan-transferase Sulfo-T Chst8 [Carbohydrate (N-acetylgalactosamine 4-0) sulfotransferase 8] 
Glycan-transferase Sulfo-T Chst9 [Carbohydrate (N-acetylgalactosamine 4-0) sulfotransferase 9] 
Glycan-transferase Sulfo-T Gal3st1 [Galactose-3-O-sulfotransferase 1] 
Glycan-transferase Sulfo-T Gal3st2 [Galactose-3-O-sulfotransferase 2] 
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Glycan-transferase Sulfo-T Gal3st3 [galactose-3-O-sulfotransferase 3] 
Glycan-transferase Sulfo-T Gal3st4 [Galactose-3-O-sulfotransferase 4] 
Glycan-transferase Sulfo-T Hs2st1 [heparan sulfate 2-O-sulfotransferase 1] 
Glycan-transferase Sulfo-T Hs3st1 [Heparan sulfate (glucosamine) 3-O-sulfotransferase 1] 
Glycan-transferase Sulfo-T Hs3st2 [Heparan sulfate (glucosamine) 3-O-sulfotransferase 2] 
Glycan-transferase Sulfo-T Hs3st2 [Heparan sulfate (glucosamine) 3-O-sulfotransferase 2] 
Glycan-transferase Sulfo-T Hs3st3a1 [Heparan sulfate (glucosamine) 3-O-sulfotransferase 3A1] 
Glycan-transferase Sulfo-T Hs3st3b1 [Heparan sulfate (glucosamine) 3-O-sulfotransferase 3B1] 
Glycan-transferase Sulfo-T Hs3st5 [Heparan sulfate (glucosamine) 3-O-sulfotransferase 5] 
Glycan-transferase Sulfo-T Hs3st6 [Heparan sulfate (glucosamine) 3-O-sulfotransferase 6] 
Glycan-transferase Sulfo-T Hs6st1 [Heparan sulfate 6-O-sulfotransferase 1] 
Glycan-transferase Sulfo-T Hs6st2 [Heparan sulfate 6-O-sulfotransferase 2] 
Glycan-transferase Sulfo-T Hs6st3 [Heparan sulfate 6-O-sulfotransferase 3] 
Glycan-transferase Sulfo-T Ndst1 [N-deacetylase/N-sulfotransferase (heparan glucosaminyl) 1] 
Glycan-transferase Sulfo-T Ndst1 [N-deacetylase/N-sulfotransferase (heparan glucosaminyl) 1] 
Glycan-transferase Sulfo-T Ndst1 [N-deacetylase/N-sulfotransferase (heparan glucosaminyl) 1] 
Glycan-transferase Sulfo-T Ndst2 [N-deacetylase/N-sulfotransferase (heparan glucosaminyl) 2] 
Glycan-transferase Sulfo-T Ndst3 [N-deacetylase/N-sulfotransferase (heparan glucosaminyl) 3] 
Glycan-transferase Sulfo-T Ndst4 [N-deacetylase/N-sulfotransferase (heparin glucosaminyl) 4] 
Glycan-transferase Sulfo-T Tpst2 [protein-tyrosine sulfotransferase 2] 
Glycan-transferase Sulfo-T Ust [uronyl-2-sulfotransferase] 
Glycan-transferase Sulfo-T Ust [uronyl-2-sulfotransferase] 
Glycan-transferase Sulfo-T Dsel [dermatan sulfate epimerase-like; NCAG1 similar to sulfotransferase] 
Glycan-transferase Xyl-T Xylt1 [xylosyltransferase I] 
Glycan-transferase Xyl-T Xylt1 [xylosyltransferase I] 
Glycan-transferase Xyl-T Xylt2 [xylosyltransferase II] 
Glycoprotein Serum Glycoprotein Ahsg [alpha-2-HS-glycoprotein; Fetuin] 
Glycoproteins Mucins Capn1 [calpain 1]  
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Glycoproteins Mucins Capn1 [calpain 1]  
Glycoproteins Mucins Capn1 [calpain 1]  
Glycoproteins Mucins Cd164 [CD164 antigen] 
Glycoproteins Mucins Cd164l2 [CD164 sialomucin-like 2] 
Glycoproteins Mucins Dmbt1 [deleted in malignant brain tumors 1] 
Glycoproteins Mucins Emr1 [EGF-like module containing, mucin-like, hormone receptor-like sequence 1] 
Glycoproteins Mucins Emr1 [EGF-like module containing, mucin-like, hormone receptor-like sequence 1] 
Glycoproteins Mucins Emr4 [EGF-like module containing, mucin-like, hormone receptor-like sequence 4] 
Glycoproteins Mucins Fcrla [Fc receptor homolog expressed in B cells] 
Glycoproteins Mucins Fcrlb [Fc receptor-like B] 
Glycoproteins Mucins Havcr1 [hepatitis A virus cellular receptor 1] 
Glycoproteins Mucins Havcr2 [hepatitis A virus cellular receptor 2] 
Glycoproteins Mucins Itgae, integrin, alpha E, epithelial-associated 
Glycoproteins Mucins Itgae, integrin, alpha E, epithelial-associated 
Glycoproteins Mucins Mcam [melanoma cell adhesion molecule] 
Glycoproteins Mucins Mcoln1 [mucolipin 1] 
Glycoproteins Mucins Mcoln2 [mucolipin 2] 
Glycoproteins Mucins Mcoln3 [mucolipin 3] 
Glycoproteins Mucins Muc1 [mucin 1 transmembrane] 
Glycoproteins Mucins Muc10 [mucin 10] 
Glycoproteins Mucins Muc13 [mucin 13, epithelial transmembrane] 
Glycoproteins Mucins Muc15 [mucin 15] 
Glycoproteins Mucins Muc19 [mucin 19] 
Glycoproteins Mucins Muc2 [mucin 2] 
Glycoproteins Mucins Muc20 [mucin 20] 
Glycoproteins Mucins Muc3 [mucin 3] 
Glycoproteins Mucins Muc4 [mucin 4] 
Glycoproteins Mucins Muc4 [mucin 4] 
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Glycoproteins Mucins Muc4 [mucin 4] 
Glycoproteins Mucins Muc5ac [mucin 5 subtypes A and C] 
Glycoproteins Mucins Muc5b [mucin 5 subtype B tracheobronchial] 
Glycoproteins Mucins Muc6 [mucin 6, gastric] 
Glycoproteins Mucins Mupcdh [mucin-like protocadherin] 
Glycoproteins Mucins Ovgp1 [oviductal glycoprotein 1] 
Glycoproteins Mucins Timd2 [T-cell immunoglobulin and mucin domain containing 2] 
Glycoproteins Mucins Timd4, T-cell immunoglobulin and mucin domain containing 4 
Glycoproteins Mucins Umod [uromodulin] 
intracellular protein transport Golgi tethering factor Cog1 [component of oligomeric golgi complex 1] 
intracellular protein transport Golgi tethering factor Cog2 [component of oligomeric golgi complex 2] 
intracellular protein transport Golgi tethering factor Cog2 [component of oligomeric golgi complex 2] 
intracellular protein transport Golgi tethering factor Cog3 [component of oligomeric golgi complex 3] 
intracellular protein transport Golgi tethering factor Cog4 [component of oligomeric golgi complex 4] 
intracellular protein transport Golgi tethering factor Cog5 [component of oligomeric golgi complex 5] 
intracellular protein transport Golgi tethering factor Cog6 [component of oligomeric golgi complex 6] 
intracellular protein transport Golgi tethering factor Cog6 [component of oligomeric golgi complex 6] 
intracellular protein transport Golgi tethering factor Cog7 [component of oligomeric golgi complex 7] 
intracellular protein transport Golgi tethering factor Cog8 [component of oligomeric golgi complex 8] 
intracellular protein transport Golgi tethering factor Cog8 [component of oligomeric golgi complex 8] 
Miscellaneous Miscellaneous V1rc19 [vomeronasal 1 receptor C19] 
Notch pathway Notch Ligands Dll1 [delta-like 1] 
Notch pathway Notch Ligands Dll3 [delta-like 3] 
Notch pathway Notch Ligands Dll4 [delta-like 4] 
Notch pathway Notch Ligands Jag1 [jagged1]  
Notch pathway Notch Ligands Jag2 [Jagged2] 
Notch pathway Notch Receptors Notch1 [Notch gene homolog 1] 
Notch pathway Notch Receptors Notch2 [Notch gene homolog 2] 
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Notch pathway Notch Receptors Notch2 [Notch gene homolog 2] 
Notch pathway Notch Receptors Notch3 [Notch gene homolog 3] 
Notch pathway Notch Receptors Notch4 [Notch gene homolog 4] 
Notch pathway Notch Receptors Notch4 [Notch gene homolog 4] 
Notch pathway Notch Target Genes Hes1 [hairy and enhancer of split 1] 
Notch pathway Notch Target Genes Hes2 [hairy and enhancer of split 2] 
Notch pathway Notch Target Genes Hes3 [hairy and enhancer of split 3] 
Notch pathway Notch Target Genes Hes5 [hairy and enhancer of split 5] 
Notch pathway Notch Target Genes Hes6 [hairy and enhancer of split 6] 
Notch pathway Notch Target Genes Hes6 [hairy and enhancer of split 6] 
Notch pathway Notch Target Genes Hes7 [hairy and enhancer of split 7] 
Notch pathway Notch Target Genes Ncstn [Nicastrin] 
Notch pathway Notch Target Genes Psen1 [presenilin 1] 
Notch pathway Notch Target Genes Psen1 [presenilin 1] 
Notch pathway Notch Target Genes Psen2 [presenilin 2] 
Notch pathway Notch Target Genes Psen2 [presenilin 2] 
Notch pathway Notch Target Genes Rbpj [Recombination signal binding protein for immunoglobulin kappa J region] 
Nuc. Sugar Nuc. Sugars Transporters Slc35a1 [Solute carrier family 35 (CMP-sialic acid transporter), member 1] 
Nuc. Sugar Nuc. Sugars Transporters Slc35a2 [Solute carrier family 35 (UDP-galactose transporter), member A2] 
Nuc. Sugar Nuc. Sugars Transporters Slc35a2 [Solute carrier family 35 (UDP-galactose transporter), member A2] 
Nuc. Sugar Nuc. Sugars Transporters Slc35a3 [Solute carrier family 35 (UDP-N-acetylglucosamine (UDP-GlcNAc) 

transporter), member 3] 
Nuc. Sugar Nuc. Sugars Transporters Slc35a4 [solute carrier family 35 member A4] 
Nuc. Sugar Nuc. Sugars Transporters Slc35a5 [solute carrier family 35 member A5] 
Nuc. Sugar Nuc. Sugars Transporters Slc35b1 [solute carrier family 35 member B1] 
Nuc. Sugar Nuc. Sugars Transporters Slc35b2 [solute carrier family 35 member B2] 
Nuc. Sugar Nuc. Sugars Transporters Slc35b2 [solute carrier family 35 member B2] 
Nuc. Sugar Nuc. Sugars Transporters Slc35b3 [solute carrier family 35 member B3] 
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Nuc. Sugar Nuc. Sugars Transporters Slc35b3 [solute carrier family 35 member B3] 
Nuc. Sugar Nuc. Sugars Transporters Slc35b4 [solute carrier family 35 member B4] 
Nuc. Sugar Nuc. Sugars Transporters Slc35c1 [GDP-fucose transporter 1] 
Nuc. Sugar Nuc. Sugars Transporters Slc35c2 [solute carrier family 35 member C2] 
Nuc. Sugar Nuc. Sugars Transporters Slc35d1 [(one of several shorter splice variants) Solute carrier family 35 (UDP-

glucuronic acid/UDP-N-acetylgalactosamine dual transporter), member D1] 
Nuc. Sugar Nuc. Sugars Transporters Slc35d1 [(one of several shorter splice variants) Solute carrier family 35 (UDP-

glucuronic acid/UDP-N-acetylgalactosamine dual transporter), member D1] 
Nuc. Sugar Nuc. Sugars Transporters Slc35d1 [(one of several shorter splice variants) Solute carrier family 35 (UDP-

glucuronic acid/UDP-N-acetylgalactosamine dual transporter), member D1] 
Nuc. Sugar Nuc. Sugars Transporters Slc35d1 [Solute carrier family 35 (UDP-glucuronic acid/UDP-N-acetylgalactosamine 

dual transporter), member D1] 
Nuc. Sugar Nuc. Sugars Transporters Slc35d2 [solute carrier family 35 member D2] 
Nuc. Sugar Nuc. Sugars Transporters Slc35d3 [solute carrier family 35 member D3] 
Nuc. Sugar Nuc. Sugars Transporters Slc35e1 [solute carrier family 35 member E1] 
Nuc. Sugar Nuc. Sugars Transporters Slc35e3 [solute carrier family 35 member E3] 
Nuc. Sugar Nuc. Sugars Transporters Slc35e4 [solute carrier family 35 member E4] 
Nuc. Sugar Nuc. Sugars Transporters Slc35f1 [solute carrier family 35 member F1] 
Nuc. Sugar Nuc. Sugars Transporters Slc35f2 [solute carrier family 35 member F2] 
Nuc. Sugar Nuc. Sugars Transporters Slc35f3 [solute carrier family 35 member F3] 
Nuc. Sugar Nuc. Sugars Transporters Slc35f4 [solute carrier family 35 member F4] 
Nuc. Sugar Nuc. Sugars Transporters Slc35f4 [solute carrier family 35 member F4] 
Nuc. Sugar Nuc. Sugars Transporters Slc35f4 [solute carrier family 35 member F4] 
Nuc. Sugar Nuc. Sugars Transporters Slc35f5 [solute carrier family 35 member F5] 
Nuc. Sugar Nucleotide Synthesis  Cmah [Cytidine monophospho-N-acetylneuraminic acid hydroxylase] 
Nuc. Sugar Nucleotide Synthesis  Cmah [Cytidine monophospho-N-acetylneuraminic acid hydroxylase] 
Nuc. Sugar Nucleotide Synthesis  Cmah [Cytidine monophospho-N-acetylneuraminic acid hydroxylase] 
Nuc. Sugar Nucleotide Synthesis  Cmah [Cytidine monophospho-N-acetylneuraminic acid hydroxylase] 
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Nuc. Sugar Nucleotide Synthesis  Cmas [Cytidine monophospho-N-acetylneuraminic acid synthetase] 
Nuc. Sugar Nucleotide Synthesis  Fpgt [Fucose-1-phosphate guanylyltransferase]  
Nuc. Sugar Nucleotide Synthesis  Gale [Galactose-4-epimerase, UDP] 
Nuc. Sugar Nucleotide Synthesis  Galk1 [galactokinase 1] 
Nuc. Sugar Nucleotide Synthesis  Galk2 [galactokinase 2] 
Nuc. Sugar Nucleotide Synthesis  Galk2 [galactokinase 2] 
Nuc. Sugar Nucleotide Synthesis  Galt [galactose-1-phosphate uridylyltransferase] 
Nuc. Sugar Nucleotide Synthesis  Galt [galactose-1-phosphate uridylyltransferase] 
Nuc. Sugar Nucleotide Synthesis  Gfpt1 [glutamine-fructose-6-phosphate transaminase 1] 
Nuc. Sugar Nucleotide Synthesis  Gfpt1 [glutamine-fructose-6-phosphate transaminase 1] 
Nuc. Sugar Nucleotide Synthesis  Gfpt2 [glutamine-fructose-6-phosphate transaminase 2 
Nuc. Sugar Nucleotide Synthesis  Gmds [GDP-mannose 4, 6-dehydratase] 
Nuc. Sugar Nucleotide Synthesis  Gmds [GDP-mannose 4, 6-dehydratase] 
Nuc. Sugar Nucleotide Synthesis  Gmppa [GDP-mannose pyrophosphorylase A] 
Nuc. Sugar Nucleotide Synthesis  Gmppa [GDP-mannose pyrophosphorylase A] 
Nuc. Sugar Nucleotide Synthesis  Gmppb [GDP-mannose pyrophosphorylase B] 
Nuc. Sugar Nucleotide Synthesis  Gne [glucosamine; epimerase] 
Nuc. Sugar Nucleotide Synthesis  Gnpda1 [glucosamine-6-phosphate deaminase/isomerase 1 (oscillin)]  
Nuc. Sugar Nucleotide Synthesis  Gnpda2 [glucosamine-6-phosphate deaminase 2] 
Nuc. Sugar Nucleotide Synthesis  Gnpnat1 [glucosamine-phosphate N-acetyltransferase 1] 
Nuc. Sugar Nucleotide Synthesis  Gpi1 [glucose phosphate isomerase] 
Nuc. Sugar Nucleotide Synthesis  Hk1 [hexokinase 1]  
Nuc. Sugar Nucleotide Synthesis  Hk1 [hexokinase 1]  
Nuc. Sugar Nucleotide Synthesis  Khk [ketohexokinase (fructokinase)] 
Nuc. Sugar Nucleotide Synthesis  Nagk [N-acetylglucosamine kinase; GlcNAc/ManNAc kinase] 
Nuc. Sugar Nucleotide Synthesis  Nans [Neu5Ac 9-phosphate synthase; N-acetylneuraminic acid synthase (sialic acid 

synthase)] 
Nuc. Sugar Nucleotide Synthesis  Nans [Neu5Ac 9-phosphate synthase; N-acetylneuraminic acid synthase (sialic acid 



197 

 

synthase)] 
Nuc. Sugar Nucleotide Synthesis  Papss1 [PAPS synthetase-1; 3'-phosphoadenosine 5'-phosphosulfate synthase 1] 
Nuc. Sugar Nucleotide Synthesis  Papss2 [PAPS synthetase-2; 3'-phosphoadenosine 5'-phosphosulfate synthase 2] 
Nuc. Sugar Nucleotide Synthesis  Pgm1 [phosphoglucomutase 1] 
Nuc. Sugar Nucleotide Synthesis  Pgm2 [phosphoglucomutase 2] 
Nuc. Sugar Nucleotide Synthesis  Pgm2l1 [phosphoglucomutase 2-like 1] 
Nuc. Sugar Nucleotide Synthesis  Pgm3 [phosphoglucomutase 3] 
Nuc. Sugar Nucleotide Synthesis  Pgm3 [phosphoglucomutase 3] 
Nuc. Sugar Nucleotide Synthesis  Pgm3 [phosphoglucomutase 3] 
Nuc. Sugar Nucleotide Synthesis  Pgm5 [phosphoglucomutase 5] 
Nuc. Sugar Nucleotide Synthesis  Pgm5 [phosphoglucomutase 5] 
Nuc. Sugar Nucleotide Synthesis  Pmm1 [phosphomannomutase 1]  
Nuc. Sugar Nucleotide Synthesis  Pmm1 [phosphomannomutase 1]  
Nuc. Sugar Nucleotide Synthesis  Pmm2 [phosphomannomutase 2] 
Nuc. Sugar Nucleotide Synthesis  Renbp [renin binding protein; GlcNAc 2-epimerase] 
Nuc. Sugar Nucleotide Synthesis  TSTA3 [GDP fucose synthetase; tissue specific transplantation antigen P35B] 
Nuc. Sugar Nucleotide Synthesis  Uap1 [UDP-N-acetylglucosamine pyrophosphorylase 1] 
Nuc. Sugar Nucleotide Synthesis  Uap1 [UDP-N-acetylglucosamine pyrophosphorylase 1] 
Nuc. Sugar Nucleotide Synthesis  Uap1l1 [UDP-N-acteylglucosamine pyrophosphorylase 1-like] 
Nuc. Sugar Nucleotide Synthesis  Ugdh [UDP-Glucose Dehydrogenase] 
Nuc. Sugar Nucleotide Synthesis  Ugp2 [UDP-glucose pyrophosphorylase 2; uridine diphosphoglucose 

pyrophosphorylase 2] 
Nuc. Sugar Nucleotide Synthesis  Uxs1 [UDP-Glucuronic acid Decarboxylase 1] 
xAdhesion Molecule Adhesion Molecule Bsg [basigin; neurothein (CD147)] 
xAdhesion Molecule Adhesion Molecule Cd2 [CD2 antigen; LFA-2] 
xAdhesion Molecule Adhesion Molecule Cd48 [CD48 antigen; BCM1] 
xAdhesion Molecule Selectin & Selectin Ligands Cd34 [CD34 antigen] 
xAdhesion Molecule Selectin & Selectin Ligands Glycam1 [glycosylation dependent cell adhesion molec] 
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xAdhesion Molecule Selectin & Selectin Ligands Madcam1 [Mucosal vascular addressin cell adhesion molecule 1] 
xAdhesion Molecule Selectin & Selectin Ligands Madcam1 [Mucosal vascular addressin cell adhesion molecule 1] 
xAdhesion Molecule Selectin & Selectin Ligands Selplg [selectin platelet (p-selectin) ligand] 
xAdhesion Molecule Selectin & Selectin Ligands Selplg [selectin platelet (p-selectin) ligand] 
xAdhesion Molecule Selectin & Selectin Ligands Selplg [selectin platelet (p-selectin) ligand] 
xAdhesion Molecule Selectin Ligand Emcn [Endomucin, Muc14] 
xAdhesion Molecule Selectin Ligand Emcn [Endomucin] 
xAdhesion Molecule Selectin Ligand Podxl2 [podocalyxin-like 2; Endoglycan] 
xAdhesion Molecule Selectin Ligand Podxl2 [podocalyxin-like 2; Endoglycan] 
xChemokine C-CL&R Ccl1 [chemokine (C-C motif) ligand 1] 
xChemokine C-CL&R Ccl11 [small chemokine (C-C motif) ligand 11; Eotaxin-1] 
xChemokine C-CL&R Ccl17 [chemokine (C-C motif) ligand 17] 
xChemokine C-CL&R Ccl21a/c [ chemokine (C-C motif) ligand 21a/c (serine)] 
xChemokine C-CL&R Ccl21b [chemokine (C-C motif) ligand 21b (serine)] 
xChemokine C-CL&R Ccl22 [chemokine (C-C motif) ligand 22] 
xChemokine C-CL&R Ccl24 [chemokine (C-C motif) ligand 24] 
xChemokine C-CL&R Ccl24 [chemokine (C-C motif) ligand 24] 
xChemokine C-CL&R Ccl25 [chemokine (C-C motif) ligand 25] 
xChemokine C-CL&R Ccl27 [chemokine (C-C motif) ligand 27] 
xChemokine C-CL&R Ccl27 [chemokine (C-C motif) ligand 27] 
xChemokine C-CL&R Ccl27 [chemokine (C-C motif) ligand 27] 
xChemokine C-CL&R Ccr10 [chemokine (C-C motif) receptor 10] 
xChemokine C-CL&R Ccrl1 [chemokine (C-C motif) receptor-like 1] 
xChemokine CXCL&R Cx3cl1 [chemokine (C-X3-C motif) ligand 1] 
xChemokine CXCL&R Cx3cr1 [chemokine (C-X3-C) receptor 1] 
xChemokine CXCL&R Cxcl1 [chemokine (C-X-C motif) ligand 1; (GRO beta)] 
xChemokine CXCL&R Cxcl10 [chemokine (C-X-C motif) ligand 10; (IP-10)] 
xChemokine CXCL&R Cxcl11 [chemokine (C-X-C motif) ligand 11; (I-TAC)] 
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xChemokine CXCL&R Cxcl12 [Chemokine (C-X-C motif) ligand 12; stromal cell derived factor 1 isoform 
alpha] 

xChemokine CXCL&R Cxcl12 [Chemokine (C-X-C motif) ligand 12; stromal cell derived factor 1 isoform 
alpha] 

xChemokine CXCL&R Cxcl13 [chemokine (C-X-C motif) ligand 13] 
xChemokine CXCL&R Cxcl15 [chemokine (C-X-C motif) ligand 15; lungkine] 
xChemokine CXCL&R Cxcl2 [chemokine (C-X-C motif) ligand 2] 
xChemokine CXCL&R Cxcl4 [chemokine (C-X-C motif) ligand 4; (PF4)] 
xChemokine CXCL&R Cxcl5 [chemokine (C-X-C motif) ligand 5; (ENA-78)] 
xChemokine CXCL&R Cxcl9 [chemokine (C-X-C motif) ligand 9; Mig] 
xChemokine CXCL&R Cxcr3 [chemokine (C-X-C motif) receptor 3] 
xChemokine CXCL&R Cxcr4 [chemokine (C-X-C motif) receptor 4] 
xChemokine CXCL&R Cxcr5 (Blr1) [Burkitt lymphoma receptor 1] 
xChemokine CXCL&R Cxcr6 [chemokine (C-X-C motif) receptor 6] 
xChemokine CXCL&R Ppbp [pro-platelet basic protein] 
xChemokine MCP Ccl12 [chemokine (C-C motif) ligand 12] 
xChemokine MCP Ccl7 [chemokine (C-C motif) ligand 7] 
xChemokine MCP Ccl8 [chemokine (C-C motif) ligand 8] 
xChemokine MCP Ccr2 [chemokine (C-C motif) receptor 2] 
xChemokine MCP Ccr2 [chemokine (C-C motif) receptor 2] 
xChemokine MIP Ccl20 [chemokine (C-C motif) ligand 20] 
xChemokine MIP Ccl20/LARC [chemokine (C-C motif) ligand 20] 
xChemokine MIP Ccl3 [chemokine (C-C motif) ligand 3; (LD78_MIP1a)] 
xChemokine MIP Ccl4 [chemokine (C-C motif) ligand 4; (MIP1b)] 
xChemokine MIP Ccl9 [chemokine (C-C motif) ligand 9; (MIP1 g)] 
xChemokine MIP Ccr1 [chemokine (C-C motif) receptor 1] 
xChemokine MIP Ccr1l1 [chemokine (C-C motif) receptor 1-like 1] 
xChemokine MIP Ccr3 [CC chemokine receptor 3] 
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xChemokine MIP Ccr4 [chemokine (C-C motif) receptor 4] 
xChemokine MIP Ccr5 [chemokine (C-C motif) receptor 5] 
xChemokine MIP Ccr6 [chemokine (C-C motif) receptor 6] 
xChemokine MIP Ccr7 [chemokine (C-C motif) receptor 7] 
xChemokine MIP Ccr8 [chemokine (C-C motif) receptor 8] 
xChemokine MIP Ccr9 [chemokine (C-C motif) receptor 9] 
xChemokine MIP Ccr9 [chemokine (C-C motif) receptor 9] 
xChemokine MIP Cxcl14 [Chemokine (C-X-C motif) ligand 14; MIP-2g; kidney-expressed chemokine 

CXC] 
xChemokine Miscellaneous Cntfr [ciliary neurotrophic factor receptor]  
xChemokine Miscellaneous Cntfr [ciliary neurotrophic factor receptor]  
xChemokine Miscellaneous Erbb3 [v-erb-b2 erythroblastic leukemia viral oncogene] 
xChemokine Miscellaneous Erbb4 [v-erb-a erythroblastic leukemia viral oncogene] 
xChemokine Miscellaneous Kit [c-kit] 
xChemokine Miscellaneous Ptprt [protein tyrosine phosphatase receptor type T] 
xChemokine Miscellaneous Xcl1 [chemokine (C motif) ligand 1; Lymphotactin] 
xChemokine Miscellaneous Xcr1 [chemokine (C motif) receptor 1; Lymphotactin Receptor} 
xChemokine RANTES Ccl5 [chemokine (C-C motif) ligand 5; Tcell-specific protein (RANTES)] 
xChemokine RANTES Ccl5 [chemokine (C-C motif) ligand 5; Tcell-specific protein (RANTES)] 
xCytokine GDNF&R Gdnf [glial cell line derived neurotrophic factor] 
xCytokine GDNF&R Gfra1 [glial cell line derived neurotrophic factor family receptor alphafamily receptor 

alpha 1] 
xCytokine GDNF&R Gfra2 [GFRalpha2; glial cell line derived neurotrophic factor family receptor alpha 3 
xCytokine GDNF&R Gfra2 [glial cell line derived neurotrophic factor family receptor alpha 2] 
xCytokine GDNF&R Gfra2 [glial cell line derived neurotrophic factor family receptor alpha 2] 
xCytokine GDNF&R Gfra3 [Glial cell line derived neurotrophic factor family receptor alpha 3] 
xCytokine GDNF&R Gfra4 [Glial cell line derived neurotrophic factor family receptor alpha 4] 
xCytokine GDNF&R Gfra4 [Glial cell line derived neurotrophic factor family receptor alpha 4] 
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xCytokine GDNF&R Gfra4 [Glial cell line derived neurotrophic factor family receptor alpha 4] 
xCytokine GDNF&R Gfra4 [Glial cell line derived neurotrophic factor family receptor alpha 4] 

xCytokine Interferon Ifnab [interferon alpha family gene B] 
xCytokine Interferon Ifnab [interferon alpha family gene B] 
xCytokine Interferon Ifnar1 [interferon (alpha and beta) receptor 1] 
xCytokine Interferon Ifnar1 [interferon (alpha and beta) receptor 1] 
xCytokine Interferon Ifnar2 [interferon (alpha and beta) receptor 2] 
xCytokine Interferon Ifnar2 [interferon (alpha and beta) receptor 2] 
xCytokine Interferon Ifnb1 [interferon beta 1 fibroblast] 
xCytokine Interferon Ifng [interferon gamma] 
xCytokine Interferon Ifngr1 [interferon gamma receptor 1] 
xCytokine Interferon Ifngr2 [interferon gamma receptor 2] 
xGrowth Factors & Receptors Angiopoietin Angpt1 [angiopoietin 1] 
xGrowth Factors & Receptors Angiopoietin Angpt2 [angiopoietin 2] 
xGrowth Factors & Receptors Angiopoietin Angpt4 [angiopoietin 4] 
xGrowth Factors & Receptors Angiopoietin Angptl1 [angiopoietin-like 1] 
xGrowth Factors & Receptors Angiopoietin Angptl1 [angiopoietin-like 1] 
xGrowth Factors & Receptors Angiopoietin Angptl2 [angiopoietin-like 2] 
xGrowth Factors & Receptors Angiopoietin Angptl2 [angiopoietin-like 2] 
xGrowth Factors & Receptors Angiopoietin Angptl2 [angiopoietin-like 2] 
xGrowth Factors & Receptors Angiopoietin Angptl3 [angiopoietin-like 3] 
xGrowth Factors & Receptors Angiopoietin Angptl4 [angiopoietin-like 4] 
xGrowth Factors & Receptors Angiopoietin Angptl6 [angiopoietin-like 6] 
xGrowth Factors & Receptors Angiopoietin Angptl7 [angiopoietin-like 7] 
xGrowth Factors & Receptors BMP Bmp1 [bone morphogenetic protein 1] 
xGrowth Factors & Receptors BMP Bmp10 [bone morphogenetic protein 10 preproprotein] 
xGrowth Factors & Receptors BMP Bmp15 [bone morphogenetic protein 15] 
xGrowth Factors & Receptors BMP Bmp2 [bone morphogenetic protein 2] 
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xGrowth Factors & Receptors BMP Bmp3 [bone morphogenetic protein 3] 
xGrowth Factors & Receptors BMP Bmp3 [bone morphogenetic protein 3] 
xGrowth Factors & Receptors BMP Bmp4 [bone morphogenetic protein 4] 
xGrowth Factors & Receptors BMP Bmp5 [bone morphogenetic protein 5] 
xGrowth Factors & Receptors BMP Bmp6 [bone morphogenetic protein 6] 
xGrowth Factors & Receptors BMP Bmp7 [bone morphogenetic protein 7] 
xGrowth Factors & Receptors BMP Bmp7 [bone morphogenetic protein 7] 
xGrowth Factors & Receptors BMP Bmp8a [bone morphogenetic protein 8a] 
xGrowth Factors & Receptors BMP Bmp8b [bone morphogenetic protein 8b] 
xGrowth Factors & Receptors BMP Bmpr1a [bone morphogenetic protein receptor type 1A] 
xGrowth Factors & Receptors BMP Bmpr1a [bone morphogenetic protein receptor type 1A] 
xGrowth Factors & Receptors BMP Bmpr1b [bone morphogenetic protein receptor type 1B] 
xGrowth Factors & Receptors BMP Bmpr2 [bone morphogenic protein receptor type II] 
xGrowth Factors & Receptors EGF Areg [Amphiregulin] 
xGrowth Factors & Receptors EGF Btc [betacellulin epidermal growth factor family] 
xGrowth Factors & Receptors EGF Egfr [epidermal growth factor receptor isoform 1] 
xGrowth Factors & Receptors EGF Egfr [epidermal growth factor receptor isoform 2] 
xGrowth Factors & Receptors EGF Egfr [epidermal growth factor receptor] 
xGrowth Factors & Receptors EGF Fbln5 [fibulin 5] 
xGrowth Factors & Receptors EGF Fbln5 [fibulin 5] 
xGrowth Factors & Receptors EGF Hbegf [heparin-binding EGF-like growth factor] 
xGrowth Factors & Receptors EGF Hbegf [heparin-binding EGF-like growth factor] 
xGrowth Factors & Receptors EGF Odz4 [odd Oz/ten-m homolog 4]  
xGrowth Factors & Receptors EGF Odz4 [odd Oz/ten-m homolog 4]  
xGrowth Factors & Receptors EGF Odz4 related transcript AK053790 
xGrowth Factors & Receptors EGF Odz4 related transcript ten-m4  
xGrowth Factors & Receptors EGF Odz4 related transcript ten-m4  
xGrowth Factors & Receptors FGF&R Fgf1 [fibroblast growth factor 1] 
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xGrowth Factors & Receptors FGF&R Fgf10 [fibroblast growth factor 10] 
xGrowth Factors & Receptors FGF&R Fgf11 [fibroblast growth factor 11] 
xGrowth Factors & Receptors FGF&R Fgf12 [fibroblast growth factor 12] 
xGrowth Factors & Receptors FGF&R Fgf12 [fibroblast growth factor 12] 
xGrowth Factors & Receptors FGF&R Fgf13 [fibroblast growth factor 13] 
xGrowth Factors & Receptors FGF&R Fgf14 [fibroblast growth factor 14] 
xGrowth Factors & Receptors FGF&R Fgf14 [fibroblast growth factor 14] 
xGrowth Factors & Receptors FGF&R Fgf15 [fibroblast growth factor 15] 
xGrowth Factors & Receptors FGF&R Fgf16 [fibroblast growth factor 16] 
xGrowth Factors & Receptors FGF&R Fgf17 [fibroblast growth factor 17] 
xGrowth Factors & Receptors FGF&R Fgf18 [fibroblast growth factor 18] 
xGrowth Factors & Receptors FGF&R Fgf2 [fibroblast growth factor 2] 
xGrowth Factors & Receptors FGF&R Fgf20 [fibroblast growth factor 20] 
xGrowth Factors & Receptors FGF&R Fgf21 [fibroblast growth factor 21] 
xGrowth Factors & Receptors FGF&R Fgf22 [fibroblast growth factor 22] 
xGrowth Factors & Receptors FGF&R Fgf22 [fibroblast growth factor 22] 
xGrowth Factors & Receptors FGF&R Fgf23 [fibroblast growth factor 23] 
xGrowth Factors & Receptors FGF&R Fgf3 [fibroblast growth factor 3] 
xGrowth Factors & Receptors FGF&R Fgf4 [fibroblast growth factor 4] 
xGrowth Factors & Receptors FGF&R Fgf5 [fibroblast growth factor 5] 
xGrowth Factors & Receptors FGF&R Fgf6 [fibroblast growth factor 6] 
xGrowth Factors & Receptors FGF&R Fgf7 [fibroblast growth factor 7] 
xGrowth Factors & Receptors FGF&R Fgf7 [fibroblast growth factor 7] 
xGrowth Factors & Receptors FGF&R Fgf8 [fibroblast growth factor 8] 
xGrowth Factors & Receptors FGF&R Fgf9 [fibroblast growth factor 9] 
xGrowth Factors & Receptors FGF&R Fgf9 [fibroblast growth factor 9] 
xGrowth Factors & Receptors FGF&R Fgfr1 [fibroblast growth factor receptor 1] 
xGrowth Factors & Receptors FGF&R Fgfr1 [fibroblast growth factor receptor 1] 
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xGrowth Factors & Receptors FGF&R Fgfr2 [fibroblast growth factor receptor 2] 
xGrowth Factors & Receptors FGF&R Fgfr2 [fibroblast growth factor receptor 2] 
xGrowth Factors & Receptors FGF&R Fgfr2 [fibroblast growth factor receptor 2] 
xGrowth Factors & Receptors FGF&R Fgfr3 [fibroblast growth factor receptor 3] 
xGrowth Factors & Receptors FGF&R Fgfr4 [fibroblast growth factor receptor 4] 
xGrowth Factors & Receptors FGF&R Fibp [FGF intracellular binding protein] 
xGrowth Factors & Receptors FGF&R Fibp [FGF intracellular binding protein] 
xGrowth Factors & Receptors FGF&R Fibp [FGF intracellular binding protein] 
xGrowth Factors & Receptors FGF&R Fibp [FGF intracellular binding protein] 
xGrowth Factors & Receptors GDF Gdf1 [growth differentiation factor 1] 
xGrowth Factors & Receptors GDF Gdf10 [growth differentiation factor 10] 
xGrowth Factors & Receptors GDF Gdf11 [growth differentiation factor 11] 
xGrowth Factors & Receptors GDF Gdf15 [growth differentiation factor 15] 
xGrowth Factors & Receptors GDF Gdf2 [growth differentiation factor 2] 
xGrowth Factors & Receptors GDF Gdf3 [growth differentiation factor 3] 
xGrowth Factors & Receptors GDF Gdf3 [growth differentiation factor 3] 
xGrowth Factors & Receptors GDF Gdf5 [growth differentiation factor 5] 
xGrowth Factors & Receptors GDF Gdf6 [growth differentiation factor 6] 
xGrowth Factors & Receptors GDF Gdf7 [growth differentiation factor 7] 
xGrowth Factors & Receptors GDF Gdf9 [growth differentiation factor 9] 
xGrowth Factors & Receptors GMCSF Bdnf [brain derived neurotrophic factor] 
xGrowth Factors & Receptors GMCSF Csf1 [colony stimulating factor 1] 
xGrowth Factors & Receptors GMCSF Csf1 [colony stimulating factor 1] 
xGrowth Factors & Receptors GMCSF Csf1 [colony stimulating factor 1] 
xGrowth Factors & Receptors GMCSF Csf1 [colony stimulating factor 1] 
xGrowth Factors & Receptors GMCSF Csf1 [colony stimulating factor 1] 
xGrowth Factors & Receptors GMCSF Csf1r [colony stimulating factor 1 receptor] 
xGrowth Factors & Receptors GMCSF Csf1r [colony stimulating factor 1 receptor] 
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xGrowth Factors & Receptors GMCSF Csf1r [colony stimulating factor 1 receptor] 
xGrowth Factors & Receptors GMCSF Csf2 [colony stimulating factor 2] 
xGrowth Factors & Receptors GMCSF Csf2ra [colony stimulating factor 2 receptor alpha] 
xGrowth Factors & Receptors GMCSF Csf2rb [colony stimulating factor 2 receptor beta] 
xGrowth Factors & Receptors GMCSF Csf2rb2 [colony stimulating factor 2 receptor beta 2] 
xGrowth Factors & Receptors GMCSF Csf3 [colony stimulating factor 3] 
xGrowth Factors & Receptors GMCSF Csf3r [ colony stimulating factor 3 receptor] 
xGrowth Factors & Receptors HGF Hgf [hepatocyte growth factor] 
xGrowth Factors & Receptors HGF Hgf [hepatocyte growth factor] 
xGrowth Factors & Receptors HGF Hgf [hepatocyte growth factor] 
xGrowth Factors & Receptors HGF Met [met proto-oncogene] 
xGrowth Factors & Receptors HGF Met [met proto-oncogene] 
xGrowth Factors & Receptors HH/patched/smoothened Dhh [desert hedgehog] 
xGrowth Factors & Receptors HH/patched/smoothened Dhh [desert hedgehog] 
xGrowth Factors & Receptors HH/patched/smoothened Ihh [Indian hedgehog] 
xGrowth Factors & Receptors HH/patched/smoothened Ihh [Indian hedgehog] 
xGrowth Factors & Receptors HH/patched/smoothened Ptch1 [patched] 
xGrowth Factors & Receptors HH/patched/smoothened Ptch1 [patched] 
xGrowth Factors & Receptors HH/patched/smoothened Ptch2 [patched homolog 2] 
xGrowth Factors & Receptors HH/patched/smoothened Shh [sonic hedgehog] 
xGrowth Factors & Receptors HH/patched/smoothened Shh [sonic hedgehog] 
xGrowth Factors & Receptors HH/patched/smoothened Smo [smoothened] 
xGrowth Factors & Receptors IGF Igf1 [insulin-like growth factor 1] 
xGrowth Factors & Receptors IGF Igf1 [insulin-like growth factor 1] 
xGrowth Factors & Receptors IGF Igf1r [insulin-like growth factor I receptor] 
xGrowth Factors & Receptors IGF Igf1r [insulin-like growth factor I receptor] 
xGrowth Factors & Receptors IGF Igf2 [ insulin-like growth factor 2] 
xGrowth Factors & Receptors IGF Igf2 [ insulin-like growth factor 2] 
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xGrowth Factors & Receptors IGF Igf2bp1 [insulin-like growth factor 2 mRNA binding protein 1] 
xGrowth Factors & Receptors IGF Igf2bp2 [insulin-like growth factor 2 mRNA binding protein 2] 
xGrowth Factors & Receptors IGF Igf2bp3 [insulin-like growth factor 2 mRNA binding] 
xGrowth Factors & Receptors IGF Igf2bp3 [insulin-like growth factor 2 mRNA binding] 
xGrowth Factors & Receptors IGF Igf2bp3 [insulin-like growth factor 2 mRNA binding] 
xGrowth Factors & Receptors IGF Igf2bp3 [insulin-like growth factor 2 mRNA binding] 
xGrowth Factors & Receptors IGF Igf2r [insulin-like growth factor 2 receptor] 
xGrowth Factors & Receptors IGF Igfals [insulin-like growth factor binding protein acid labile subunit] 
xGrowth Factors & Receptors IGF Igfbp1 [insulin-like growth factor binding protein 1] 
xGrowth Factors & Receptors IGF Igfbp2 [insulin-like growth factor binding protein 2] 
xGrowth Factors & Receptors IGF Igfbp3 [insulin-like growth factor binding protein 3] 
xGrowth Factors & Receptors IGF Igfbp4 [insulin-like growth factor binding protein 4] 
xGrowth Factors & Receptors IGF Igfbp4 [insulin-like growth factor binding protein 4] 
xGrowth Factors & Receptors IGF Igfbp4 [insulin-like growth factor binding protein 4] 
xGrowth Factors & Receptors IGF Igfbp5 [insulin-like growth factor binding protein 5] 
xGrowth Factors & Receptors IGF Igfbp6 [insulin-like growth factor binding protein 6] 
xGrowth Factors & Receptors IGF Igfbp7 [insulin-like growth factor binding protein 7] 
xGrowth Factors & Receptors IGF Igfbpl1 [insulin-like growth factor binding protein like 1] 
xGrowth Factors & Receptors IGF Igfl3 [IGF-like family member 3] 
xGrowth Factors & Receptors Miscellaneous MDK (neurite GF2) 
xGrowth Factors & Receptors Miscellaneous NGF rec 
xGrowth Factors & Receptors PDGF (PDGFC) 
xGrowth Factors & Receptors PDGF (PDGFD) 
xGrowth Factors & Receptors PDGF PDGFa polypep var1 
xGrowth Factors & Receptors PDGF PDGFb polypep var2 
xGrowth Factors & Receptors PDGF PDGFR alpha 
xGrowth Factors & Receptors PDGF PDGFR beta 
xGrowth Factors & Receptors TGF beta ACVR1 [activin A receptor, type 1] 
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xGrowth Factors & Receptors TGF beta Acvr2a [activin receptor IIA] 
xGrowth Factors & Receptors TGF beta Acvr2b [activin receptor IIB] 
xGrowth Factors & Receptors TGF beta Acvrl1 [activin A receptor type II-like 1] 
xGrowth Factors & Receptors TGF beta Chrd [chordin] 
xGrowth Factors & Receptors TGF beta Chrd [chordin] 
xGrowth Factors & Receptors TGF beta Fst [follistatin] 
xGrowth Factors & Receptors TGF beta Fst [follistatin] 
xGrowth Factors & Receptors TGF beta Inhbc [inhibin beta-C] 
xGrowth Factors & Receptors TGF beta Inhbe [inhibin beta E] 
xGrowth Factors & Receptors TGF beta Magi2 [membrane associated guanylate kinase WW and PDZ]  
xGrowth Factors & Receptors TGF beta Magi2 [membrane associated guanylate kinase WW and PDZ]  
xGrowth Factors & Receptors TGF beta Nog [noggin] 
xGrowth Factors & Receptors TGF beta Nog [noggin] 
xGrowth Factors & Receptors TGF beta Pspn [persephin] 
xGrowth Factors & Receptors TGF beta Tgfb1 [transforming growth factor beta 1] 
xGrowth Factors & Receptors TGF beta Tgfb2 [transforming growth factor beta 2] 
xGrowth Factors & Receptors TGF beta Tgfb3 [transforming growth factor beta 3] 
xGrowth Factors & Receptors TGF beta Tgfbr1 [transforming growth factor beta receptor I] 
xGrowth Factors & Receptors TGF beta Tgfbr2 [transforming growth factor beta receptor II] 
xGrowth Factors & Receptors TGF beta Tgfbr2 [transforming growth factor beta receptor II] 
xGrowth Factors & Receptors TGF beta Tgfbr3 [transforming growth factor beta receptor III] 
xGrowth Factors & Receptors TGF beta Tgfbr3 [transforming growth factor beta receptor III] 

xGrowth Factors & Receptors VEGF  Figf [c-fos induced growth factor] 
xGrowth Factors & Receptors VEGF Flt3 [FMS-like tyrosine kinase 3] 
xGrowth Factors & Receptors VEGF Flt3l [FMS-like tyrosine kinase 3 ligand; Flt3 ligand] 
xGrowth Factors & Receptors VEGF Flt3l [FMS-like tyrosine kinase 3 ligand; Flt3 ligand] 
xGrowth Factors & Receptors VEGF Flt3l [FMS-like tyrosine kinase 3 ligand; Flt3 ligand] 
xGrowth Factors & Receptors VEGF Flt3l [FMS-like tyrosine kinase 3 ligand; Flt3 ligand] 
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xGrowth Factors & Receptors VEGF Vegfa [vascular endothelial growth factor A] 
xGrowth Factors & Receptors VEGF Vegfb [vascular endothelial growth factor B] 
xGrowth Factors & Receptors VEGF Vegfc [vascular endothelial growth factor C] 
xGrowth Factors & Receptors WNT Fzd1 [frizzled 1] 
xGrowth Factors & Receptors WNT Fzd10 [frizzled 10] 
xGrowth Factors & Receptors WNT Fzd10 [frizzled 10] 
xGrowth Factors & Receptors WNT Fzd2 [frizzled 2] 
xGrowth Factors & Receptors WNT Fzd3 [frizzled 3] 
xGrowth Factors & Receptors WNT Fzd4 [frizzled 4] 
xGrowth Factors & Receptors WNT Fzd5 [frizzled 5] 
xGrowth Factors & Receptors WNT Fzd6 [frizzled 6] 
xGrowth Factors & Receptors WNT Fzd7 [frizzled 7] 
xGrowth Factors & Receptors WNT Fzd8 [frizzled 8] 
xGrowth Factors & Receptors WNT Fzd9 [frizzled 9] 
xGrowth Factors & Receptors WNT Wnt1 [wingless-related MMTV integration site 1] 
xGrowth Factors & Receptors WNT Wnt10a [wingless related MMTV integration site 10a] 
xGrowth Factors & Receptors WNT Wnt10b [wingless related MMTV integration site 10b] 
xGrowth Factors & Receptors WNT Wnt11 [wingless-related MMTV integration site 11] 
xGrowth Factors & Receptors WNT Wnt16 [wingless-related MMTV integration site 16] 
xGrowth Factors & Receptors WNT Wnt16 [wingless-related MMTV integration site 16] 
xGrowth Factors & Receptors WNT Wnt2 [wingless-related MMTV integration site 2] 
xGrowth Factors & Receptors WNT Wnt2b [wingless related MMTV integration site 2b] 
xGrowth Factors & Receptors WNT Wnt3 [wingless-related MMTV integration site 3] 
xGrowth Factors & Receptors WNT Wnt3a [wingless-related MMTV integration site 3a] 
xGrowth Factors & Receptors WNT Wnt4 [wingless-related MMTV integration site 4] 
xGrowth Factors & Receptors WNT Wnt5a [wingless-related MMTV integration site 5A] 
xGrowth Factors & Receptors WNT Wnt5b [wingless-related MMTV integration site 5B] 
xGrowth Factors & Receptors WNT Wnt6 [wingless-related MMTV integration site 6] 
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xGrowth Factors & Receptors WNT Wnt7a [wingless-related MMTV integration site 7A] 
xGrowth Factors & Receptors WNT Wnt7b [wingless-related MMTV integration site 7B] 
xGrowth Factors & Receptors WNT Wnt8a [wingless related MMTV integration site 8a] 
xGrowth Factors & Receptors WNT Wnt8b [wingless related MMTV integration site 8b] 
xGrowth Factors & Receptors WNT Wnt9a [wingless related MMTV integration site 9a] 
xGrowth Factors & Receptors WNT Wnt9b [wingless related MMTV integration site 9b] 
xInterleukin & Receptors IL Il10 [Interleukin-10] 
xInterleukin & Receptors IL Il11 [interleukin 11] 
xInterleukin & Receptors IL Il12a [Interleukin-12a] 
xInterleukin & Receptors IL Il12b [Interleukin-12b]  
xInterleukin & Receptors IL Il13 [Interleukin-13] 
xInterleukin & Receptors IL Il15 [Interleukin-15] 
xInterleukin & Receptors IL Il15 [Interleukin-15] 
xInterleukin & Receptors IL Il16 [Interleukin-16] 
xInterleukin & Receptors IL Il16 [Interleukin-16] 
xInterleukin & Receptors IL Il17a [Interleukin-17a] 
xInterleukin & Receptors IL Il17b [Interleukin-17b] 
xInterleukin & Receptors IL Il17c [interleukin 17C] 
xInterleukin & Receptors IL Il17d [interleukin 17D] 
xInterleukin & Receptors IL Il17f [interleukin 17F] 
xInterleukin & Receptors IL Il18 [interleukin 18] 
xInterleukin & Receptors IL Il19 [interleukin 19] 
xInterleukin & Receptors IL Il1a [interleukin 1 alpha] 
xInterleukin & Receptors IL Il1b [Interleukin-1 beta] 
xInterleukin & Receptors IL Il1f10 [interleukin 1 family member 10] 
xInterleukin & Receptors IL Il1f5 [Interleukin 1 family member 5] 
xInterleukin & Receptors IL Il1f6 [Interleukin 1 family member 6] 
xInterleukin & Receptors IL Il1f8 [interleukin 1 family member 8] 
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xInterleukin & Receptors IL Il1f9 [interleukin 1 family member 9] 
xInterleukin & Receptors IL Il2 [Interleukin-2] 
xInterleukin & Receptors IL Il20 [interleukin 20] 
xInterleukin & Receptors IL Il21 [interleukin 21] 
xInterleukin & Receptors IL Il21 [interleukin 21] 
xInterleukin & Receptors IL Il22 [interleukin 22] 
xInterleukin & Receptors IL Il23a [interleukin 23 alpha subunit p19] 
xInterleukin & Receptors IL Il25 [Interleukin-25] 
xInterleukin & Receptors IL Il27 [interleukin 27] 
xInterleukin & Receptors IL Il28a [interleukin 28A] 
xInterleukin & Receptors IL Il28b [interleukin 28B] 
xInterleukin & Receptors IL Il3 [Interleukin-3] 
xInterleukin & Receptors IL Il33 [interleukin 33] 
xInterleukin & Receptors IL Il4 [Interleukin-4] 
xInterleukin & Receptors IL Il5 Interleukin-5] 
xInterleukin & Receptors IL Il6 [interleukin 6] 
xInterleukin & Receptors IL Il6st [Interleukin-6 (gp130); interleukin 6 signal transducer] 
xInterleukin & Receptors IL Il6st [Interleukin-6 (gp130); interleukin 6 signal transducer] 
xInterleukin & Receptors IL Il7 [Interleukin-7] 
xInterleukin & Receptors IL receptor Il10ra [interleukin 10 receptor alpha] 
xInterleukin & Receptors IL receptor Il10rb [interleukin 10 receptor beta] 
xInterleukin & Receptors IL receptor Il10rb [interleukin 10 receptor beta] 
xInterleukin & Receptors IL receptor Il11ra2 [interleukin 11 receptor alpha chain 2] 
xInterleukin & Receptors IL receptor Il11ra2 [interleukin 11 receptor alpha chain 2] 
xInterleukin & Receptors IL receptor Il12rb1 [interleukin 12 receptor beta 1]  
xInterleukin & Receptors IL receptor Il12rb2 [interleukin 12 receptor beta 2] 
xInterleukin & Receptors IL receptor Il13ra1 [interleukin 13 receptor alpha 1] 
xInterleukin & Receptors IL receptor Il13ra2 [interleukin 13 receptor alpha 2] 
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xInterleukin & Receptors IL receptor Il15ra [interleukin 15 receptor alpha chain ] 
xInterleukin & Receptors IL receptor Il15ra [interleukin 15 receptor alpha chain ] 
xInterleukin & Receptors IL receptor Il15ra [interleukin 15 receptor alpha chain ] 
xInterleukin & Receptors IL receptor Il17ra [interleukin 17 receptor] 
xInterleukin & Receptors IL receptor Il17rb [interleukin 17 receptor B] 
xInterleukin & Receptors IL receptor Il17rc [interleukin 17 receptor C] 
xInterleukin & Receptors IL receptor Il17rc [interleukin 17 receptor C] 
xInterleukin & Receptors IL receptor Il17rd [interleukin 17 receptor D] 
xInterleukin & Receptors IL receptor Il17rd [interleukin 17 receptor D] 
xInterleukin & Receptors IL receptor Il17rd [interleukin 17 receptor D] 
xInterleukin & Receptors IL receptor Il17re [interleukin 17 receptor E]  
xInterleukin & Receptors IL receptor Il17re [interleukin 17 receptor E]  
xInterleukin & Receptors IL receptor Il18r1 [interleukin 18 receptor 1] 
xInterleukin & Receptors IL receptor Il18r1 [interleukin 18 receptor 1] 
xInterleukin & Receptors IL receptor Il18r1 [interleukin 18 receptor 1] 
xInterleukin & Receptors IL receptor Il18rap [interleukin 18 receptor accessory protein] 
xInterleukin & Receptors IL receptor Il18rap [interleukin 18 receptor accessory protein] 
xInterleukin & Receptors IL receptor Il18rap [interleukin 18 receptor accessory protein] 
xInterleukin & Receptors IL receptor Il1r1 [interleukin 1 receptor type I] 
xInterleukin & Receptors IL receptor Il1r2 [interleukin 1 receptor type II] 
xInterleukin & Receptors IL receptor Il1rap [interleukin 1 receptor accessory protein] 
xInterleukin & Receptors IL receptor Il1rap [interleukin 1 receptor accessory protein] 
xInterleukin & Receptors IL receptor Il1rap [interleukin 1 receptor accessory protein] 
xInterleukin & Receptors IL receptor Il1rap [interleukin 1 receptor accessory protein] 
xInterleukin & Receptors IL receptor Il1rapl2 [interleukin 1 receptor accessory protein-like 2] 
xInterleukin & Receptors IL receptor Il1rapl2 [interleukin 1 receptor accessory protein-like 2] 
xInterleukin & Receptors IL receptor Il1rapl2 [interleukin 1 receptor accessory protein-like 2] 
xInterleukin & Receptors IL receptor Il1rl1 [interleukin 1 receptor-like 1] 
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xInterleukin & Receptors IL receptor Il1rl1 [interleukin 1 receptor-like 1] 
xInterleukin & Receptors IL receptor Il1rl2 [interleukin 1 receptor-like 2] 
xInterleukin & Receptors IL receptor Il1rn [interleukin 1 receptor antagonist] 
xInterleukin & Receptors IL receptor Il20ra [interleukin 20 receptor alpha] 
xInterleukin & Receptors IL receptor Il20rb [interleukin 20 receptor beta ] 
xInterleukin & Receptors IL receptor Il20rb [interleukin 20 receptor beta ] 
xInterleukin & Receptors IL receptor Il21r [interleukin 21 receptor] 
xInterleukin & Receptors IL receptor Il21r [interleukin 21 receptor] 
xInterleukin & Receptors IL receptor Il21r [interleukin 21 receptor] 
xInterleukin & Receptors IL receptor Il21r [interleukin 21 receptor] 
xInterleukin & Receptors IL receptor Il22ra1 [interleukin 22 receptor alpha 1] 
xInterleukin & Receptors IL receptor Il22ra2 [interleukin 22 receptor alpha 2] 
xInterleukin & Receptors IL receptor Il23r [interleukin 23 receptor] 
xInterleukin & Receptors IL receptor Il27ra [interleukin 27 receptor alpha] 
xInterleukin & Receptors IL receptor Il28ra [interleukin 28 receptor alpha] 
xInterleukin & Receptors IL receptor Il2ra [interleukin 2 receptor alpha chain] 
xInterleukin & Receptors IL receptor Il2rb [interleukin 2 receptor beta chain] 
xInterleukin & Receptors IL receptor Il2rg [interleukin 2 receptor gamma chain] 
xInterleukin & Receptors IL receptor Il2rg [interleukin 2 receptor gamma chain] 
xInterleukin & Receptors IL receptor Il31ra [interleukin 31 receptor A] 
xInterleukin & Receptors IL receptor Il31ra [interleukin 31 receptor A] 
xInterleukin & Receptors IL receptor Il31ra [interleukin 31 receptor A] 
xInterleukin & Receptors IL receptor Il3ra [interleukin 3 receptor alpha chain] 
xInterleukin & Receptors IL receptor Il4ra [interleukin 4 receptor alpha] 
xInterleukin & Receptors IL receptor Il4ra [interleukin 4 receptor alpha] 
xInterleukin & Receptors IL receptor Il5ra [interleukin 5 receptor alpha] 
xInterleukin & Receptors IL receptor Il6ra [Interleukin-6 R alpha] 
xInterleukin & Receptors IL receptor Il6ra [Interleukin-6 R alpha] 
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xInterleukin & Receptors IL receptor Il6ra [Interleukin-6 R alpha] 
xInterleukin & Receptors IL receptor Il7r [interleukin 7 receptor] 
xInterleukin & Receptors IL receptor Il7r [interleukin 7 receptor] 
xInterleukin & Receptors IL receptor Il8ra [interleukin 8 receptor alpha] 
xInterleukin & Receptors IL receptor Il8rb [interleukin 8 receptor beta] 
xInterleukin & Receptors IL receptor Il8rb [interleukin 8 receptor beta] 
xInterleukin & Receptors IL receptor Il9r [interleukin 9 receptor] 
xMouse Housekeeping xMouse Housekeeping 1200013P24Rik [RIKEN cDNA 1200013P24 gene]  
xMouse Housekeeping xMouse Housekeeping 2610209M04Rik [putative nucleic acid binding protein RY-1] 
xMouse Housekeeping xMouse Housekeeping 3100004P22Rik [hypothetical protein LOC68035] 
xMouse Housekeeping xMouse Housekeeping 4931406I20Rik [hypothetical protein LOC66743] 
xMouse Housekeeping xMouse Housekeeping 5730453I16Rik [pre-mRNA cleavage factor I 59 kDa subunit] 
xMouse Housekeeping xMouse Housekeeping 9130011J15Rik [hypothetical protein LOC66818] 
xMouse Housekeeping xMouse Housekeeping Aldoa [aldolase 1 A isoform] 
xMouse Housekeeping xMouse Housekeeping Aldoa [aldolase 1 A isoform] 
xMouse Housekeeping xMouse Housekeeping Anapc1 [anaphase promoting complex subunit 1] 
xMouse Housekeeping xMouse Housekeeping Anapc2 [anaphase promoting complex subunit 2]  
xMouse Housekeeping xMouse Housekeeping Angel2 [angel homolog 2 (Drosophila)]  
xMouse Housekeeping xMouse Housekeeping Ankrd17 [ankyrin repeat domain 17]  
xMouse Housekeeping xMouse Housekeeping Apoa1bp [apolipoprotein A-I binding protein]  
xMouse Housekeeping xMouse Housekeeping Arfgef1 [ADP-ribosylation factor guanine nucleotide-exchange factor 1(brefeldin A-

inhibited)] 
xMouse Housekeeping xMouse Housekeeping Armc1 [armadillo repeat containing 1]  
xMouse Housekeeping xMouse Housekeeping Atg5 [autophagy-related 5 (yeast)]  
xMouse Housekeeping xMouse Housekeeping Atox1 [(antioxidant protein 1) homolog 1 (yeast)] 
xMouse Housekeeping xMouse Housekeeping Atp6v0d1 [ATPase, H+ transporting, V0 subunit D isoform 1]  
xMouse Housekeeping xMouse Housekeeping Aup1 [ancient ubiquitous protein]  
xMouse Housekeeping xMouse Housekeeping Bat5 [HLA-B associated transcript 5]  
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xMouse Housekeeping xMouse Housekeeping BC031181 [hypothetical protein LOC407819] 
xMouse Housekeeping xMouse Housekeeping Btg2 [B-cell translocation gene 2, anti-proliferative] 
xMouse Housekeeping xMouse Housekeeping Canx [calnexin] 
xMouse Housekeeping xMouse Housekeeping Cdc42 [cell division cycle 42 homolog (S. cerevisiae)]  
xMouse Housekeeping xMouse Housekeeping Cdv3 [carnitine deficiency-associated gene expressed in ventricle 3]  
xMouse Housekeeping xMouse Housekeeping Cic [capicua homolog (Drosophila)]  
xMouse Housekeeping xMouse Housekeeping Cks1b [CDC28 protein kinase 1b]  
xMouse Housekeeping xMouse Housekeeping Cks2 [CDC28 protein kinase regulatory subunit 2]  
xMouse Housekeeping xMouse Housekeeping Copa [coatomer protein complex subunit alpha]  
xMouse Housekeeping xMouse Housekeeping Copg [coatomer protein complex, subunit gamma]  
xMouse Housekeeping xMouse Housekeeping Cox18 [COX18 cytochrome c oxidase assembly homolog] 
xMouse Housekeeping xMouse Housekeeping Ctbp1 [C-terminal binding protein 1]  
xMouse Housekeeping xMouse Housekeeping D10Bwg1364e [DNA segment, Chr 10, Brigham & Women's Genetics 1364 

expressed]  
xMouse Housekeeping xMouse Housekeeping Dctn5 [dynactin 5]  
xMouse Housekeeping xMouse Housekeeping Ddb1 [damage specific DNA binding protein 1]  
xMouse Housekeeping xMouse Housekeeping Ddx24 [DEAD (Asp-Glu-Ala-Asp) box polypeptide 24]  
xMouse Housekeeping xMouse Housekeeping Derl1 [Der1-like domain family, member 1]  
xMouse Housekeeping xMouse Housekeeping Dhrs1 [dehydrogenase/reductase (SDR family) member 1]  
xMouse Housekeeping xMouse Housekeeping Dlg1 [discs, large homolog 1 (Drosophila)]  
xMouse Housekeeping xMouse Housekeeping Dscr3 [Down syndrome critical region gene 3]  
xMouse Housekeeping xMouse Housekeeping Eif5 [eukaryotic translation initiation factor 5]  
xMouse Housekeeping xMouse Housekeeping Fryl [furry homolog-like isoform 1] 
xMouse Housekeeping xMouse Housekeeping G3bp2 [Ras-GTPase-activating protein (GAP120)] 
xMouse Housekeeping xMouse Housekeeping Ganab [alpha glucosidase 2 alpha neutral subunit] 
xMouse Housekeeping xMouse Housekeeping Gbf1 [golgi-specific brefeldin A-resistance factor 1]  
xMouse Housekeeping xMouse Housekeeping Gnb1 [guanine nucleotide-binding protein beta-1] 
xMouse Housekeeping xMouse Housekeeping Golga7 [golgi autoantigen, golgin subfamily a, 7]  
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xMouse Housekeeping xMouse Housekeeping Golm1 [golgi membrane protein 1] 
xMouse Housekeeping xMouse Housekeeping Gps1 [G protein pathway suppressor 1]  
xMouse Housekeeping xMouse Housekeeping Gps2 [G protein pathway suppressor 2] 
xMouse Housekeeping xMouse Housekeeping H2-Ke2 [H2-K region expressed gene 2]  
xMouse Housekeeping xMouse Housekeeping Hbxip [hepatitis B virus x interacting protein]  
xMouse Housekeeping xMouse Housekeeping Hdac5 [histone deacetylase 5]  
xMouse Housekeeping xMouse Housekeeping Hmgn2 [high mobility group nucleosomal binding domain] 
xMouse Housekeeping xMouse Housekeeping Hnrpul2 [heterogeneous nuclear ribonucleoprotein U-like 2] 
xMouse Housekeeping xMouse Housekeeping Hp1bp3 [heterochromatin protein 1, binding protein 3]  
xMouse Housekeeping xMouse Housekeeping Huwe1 [HECT, UBA and WWE domain containing 1]  
xMouse Housekeeping xMouse Housekeeping ILK [integrin linked kinase] 
xMouse Housekeeping xMouse Housekeeping Itch [itchy E3 ubiquitin protein ligase]  
xMouse Housekeeping xMouse Housekeeping Junb [Jun-B oncogene] 
xMouse Housekeeping xMouse Housekeeping Jund [Jun-D proto-oncogene] 
xMouse Housekeeping xMouse Housekeeping Lta4h [leukotriene A4 hydrolase] 
xMouse Housekeeping xMouse Housekeeping Mad2l1bp [MAD2L1 binding protein]  
xMouse Housekeeping xMouse Housekeeping Mrpl27 [mitochondrial ribosomal protein L27]  
xMouse Housekeeping xMouse Housekeeping Mrpl43 [mitochondrial ribosomal protein L43] 
xMouse Housekeeping xMouse Housekeeping Mrpl52 [mitochondrial ribosomal protein L52]  
xMouse Housekeeping xMouse Housekeeping Mtif2 [mitochondrial translational initiation factor 2]  
xMouse Housekeeping xMouse Housekeeping Nmt1 [N-myristoyltransferase 1]  
xMouse Housekeeping xMouse Housekeeping Nubp1 [nucleotide binding protein 1] 
xMouse Housekeeping xMouse Housekeeping Pabpn1 [poly(A) binding protein, nuclear 1]  
xMouse Housekeeping xMouse Housekeeping Pcbp1 [poly(rC) binding protein 1] 
xMouse Housekeeping xMouse Housekeeping Pdpk1 [Phosphoinositide-dependent protein kinase-1 beta (Pdk1beta)]  
xMouse Housekeeping xMouse Housekeeping Pfdn5 [prefoldin 5]  
xMouse Housekeeping xMouse Housekeeping Polr2f [polymerase (RNA) II (DNA directed) polypeptide F]  
xMouse Housekeeping xMouse Housekeeping Ppm1a [protein phosphatase 1A, magnesium dependent, alpha isoform]  
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xMouse Housekeeping xMouse Housekeeping Prdm1 [PR domain containing 1 with ZNF domain] 
xMouse Housekeeping xMouse Housekeeping Psap [prosaposin]  
xMouse Housekeeping xMouse Housekeeping Psenen [presenilin enhancer 2 homolog (C. elegans)]  
xMouse Housekeeping xMouse Housekeeping Psma1 [proteasome (prosome, macropain) subunit, alpha type 1]  
xMouse Housekeeping xMouse Housekeeping Psmb3 [proteasome beta 3 subunit] 
xMouse Housekeeping xMouse Housekeeping Psmb5 [proteasome (prosome, macropain) subunit, beta type 5]  
xMouse Housekeeping xMouse Housekeeping Psmc1 [protease (prosome macropain) 26S subunit ] 
xMouse Housekeeping xMouse Housekeeping Psmc5 [protease (prosome, macropain) 26S subunit, ATPase 5]  
xMouse Housekeeping xMouse Housekeeping Psph [phosphoserine phosphatase]  
xMouse Housekeeping xMouse Housekeeping Rab14 [member RAS oncogene family] 
xMouse Housekeeping xMouse Housekeeping Rab7 [member RAS oncogene family]  
xMouse Housekeeping xMouse Housekeeping Rfk [riboflavin kinase] 
xMouse Housekeeping xMouse Housekeeping Riok3 [RIO kinase 3 (yeast)] 
xMouse Housekeeping xMouse Housekeeping Riok3 [RIO kinase 3 (yeast)] 
xMouse Housekeeping xMouse Housekeeping Rpl23 [ribosomal protein L23]  
xMouse Housekeeping xMouse Housekeeping Rpl39l [ribosomal protein L39-like protein] 
xMouse Housekeeping xMouse Housekeeping Rps27 [ribosomal protein S27]  
xMouse Housekeeping xMouse Housekeeping Rragc [Ras-related GTP binding C]  
xMouse Housekeeping xMouse Housekeeping Rrn3 [RNA polymerase I transcription factor homolog (yeast)] 
xMouse Housekeeping xMouse Housekeeping S100a10 [S100 calcium binding protein A10] 
xMouse Housekeeping xMouse Housekeeping Sap30l [SAP30-like] 
xMouse Housekeeping xMouse Housekeeping Sar1a [Sar1agene homolog 1 (S. cerevisiae)] 
xMouse Housekeeping xMouse Housekeeping Sc4mol [sterol-C4-methyl oxidase-like]  
xMouse Housekeeping xMouse Housekeeping Snapin [SNAP-associated protein] 
xMouse Housekeeping xMouse Housekeeping Ssr3 [signal sequence receptor, gamma] 
xMouse Housekeeping xMouse Housekeeping Tbl3 [transducin (beta)-like 3]  
xMouse Housekeeping xMouse Housekeeping Tcea1 [transcription elongation factor A (SII) 1] 
xMouse Housekeeping xMouse Housekeeping Tmem129 [transmembrane protein 129] 
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xMouse Housekeeping xMouse Housekeeping Tmem165 [TPA regulated locus] 
xMouse Housekeeping xMouse Housekeeping Tmsb10 [thymosin beta 10] 
xMouse Housekeeping xMouse Housekeeping Trappc4 [trafficking protein particle complex 4]  
xMouse Housekeeping xMouse Housekeeping Tsnax [translin-associated factor X] 
xMouse Housekeeping xMouse Housekeeping Txndc12 [endoplasmic reticulum protein ERp19] 
xMouse Housekeeping xMouse Housekeeping Ube2g1 [ubiquitin-conjugating enzyme E2G 1 (UBC7 homolog, C. elegans)]  
xMouse Housekeeping xMouse Housekeeping Ube2v1 [ubiquitin-conjugating enzyme E2 variant 1]  
xMouse Housekeeping xMouse Housekeeping ubiquitin-conjugating enzyme E2R 2 (Ube2r2) 
xMouse Housekeeping xMouse Housekeeping Vta1 [1110059P08Rik protein] 
xMouse Housekeeping xMouse Housekeeping Wars [tryptophanyl-tRNA synthetase]  
xMouse Housekeeping xMouse Housekeeping Xpo7 [exportin 7]  
xMouse Housekeeping xMouse Housekeeping Ybx1 [nuclease sensitive element binding protein 1] 
xMouse Housekeeping xMouse Housekeeping Ythdf1 [YTH domain family 1]  
xMouse Housekeeping xMouse Housekeeping Ywhab [tyrosine 3-monooxygenase/tryptophan] 
xMouse Housekeeping xMouse Housekeeping Zc3h11a [zinc finger CCCH type containing 11A]  
xMouse Housekeeping xMouse Housekeeping Zkscan3 [zinc finger with KRAB and SCAN domains 3] 
xProteoglycan BMPG Agrn [Agrin]  
xProteoglycan BMPG Agrn [Agrin]  
xProteoglycan BMPG Agrn [Agrin]  
xProteoglycan BMPG Bamacan short (CSPG6; Smc3)  
xProteoglycan BMPG Col18a1 [Collagen 18a1, procollagen type XVIII alpha 1] 
xProteoglycan BMPG Perlecan (HSPG2)  
xProteoglycan Glypican Gpc1 [Glypican-1] 
xProteoglycan Glypican Gpc2 (Glypican-2, cerebroglycan) 
xProteoglycan Glypican Gpc2 [Glypican-2, cerebroglycan] 
xProteoglycan Glypican Gpc3 [Glypican-3, OCI-5] 
xProteoglycan Glypican Gpc3 [Glypican-3, OCI-5] 
xProteoglycan Glypican Gpc4 [Glypican-4]  
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xProteoglycan Glypican Gpc5 [Glypican-5]  
xProteoglycan Glypican Gpc5 [Glypican-5]  
xProteoglycan Glypican Gpc6 [Glypican-6] 
xProteoglycan Glypican Gpc6 [Glypican-6] 
xProteoglycan Miscellaneous  Spock3 [Testican-3, sparc/osteonectin cwcv and kazal-like domains] 
xProteoglycan Miscellaneous CD44 (Epican) 
xProteoglycan Miscellaneous CD44 (Epican) 
xProteoglycan Miscellaneous Cd74 [CD74 antigen] 
xProteoglycan Miscellaneous Col14a1 [procollagen type XIV alpha 1] 
xProteoglycan Miscellaneous Col14a1 [procollagen type XIV alpha 1] 
xProteoglycan Miscellaneous Col9a2 [procollagen type IX alpha 2] 
xProteoglycan Miscellaneous Cspg4 [NG2, chondroitin sulfate proteoglycan 4] 
xProteoglycan Miscellaneous Cspg4 [NG2, chondroitin sulfate proteoglycan 4] 
xProteoglycan Miscellaneous Dag1 [dystroglycan 1] 
xProteoglycan Miscellaneous Esm1 [Endocan, endothelial cell-specific molecule 1] 
xProteoglycan Miscellaneous Esm1 [Endocan, endothelial cell-specific molecule 1] 
xProteoglycan Miscellaneous Fcmd [Fukuyama type congenital muscular dystrophy] 
xProteoglycan Miscellaneous Fcmd [Fukuyama type congenital muscular dystrophy] 
xProteoglycan Miscellaneous Large [like-glycosyltransferase]  
xProteoglycan Miscellaneous Lepre1 [Leprecan-1] 
xProteoglycan Miscellaneous Prg4 [Lubricin, proteoglycan 4] 
xProteoglycan Miscellaneous Prg4 [Lubricin, proteoglycan 4] 
xProteoglycan Miscellaneous Prg4 [Lubricin, proteoglycan 4] 
xProteoglycan Miscellaneous Ptprz1 [Phosphacan, protein tyrosine phosphatase receptor type Z] 
xProteoglycan Miscellaneous Ptprz1 [Phosphacan, protein tyrosine phosphatase receptor type Z] 
xProteoglycan Miscellaneous Spock1 [Testican-1, sparc/osteonectin cwcv and kazal-like domains] 
xProteoglycan Miscellaneous Spock1 [Testican-1, sparc/osteonectin cwcv and kazal-like domains] 
xProteoglycan Miscellaneous Spock1 [Testican-1, sparc/osteonectin cwcv and kazal-like domains] 
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xProteoglycan Miscellaneous Spock2 [Testican-2, sparc/osteonectin cwcv and kazal-like domains] 
xProteoglycan Miscellaneous Spock2 [Testican-2, sparc/osteonectin cwcv and kazal-like domains] 
xProteoglycan Miscellaneous Srgn [Serglycin] 
xProteoglycan SLRP Bgn [Biglycan, PGI] 
xProteoglycan SLRP Bgn [Biglycan, PGI] 
xProteoglycan SLRP DCN [Decorin, PGII] 
xProteoglycan SLRP Fmod [Fibromodulin]   
xProteoglycan SLRP Lum [Lumican]  
xProteoglycan Syndecan Sdc1 [Syndecan-1] 
xProteoglycan Syndecan Sdc2 [Syndecan-2] 
xProteoglycan Syndecan Sdc3 [Syndecan-3] 
xProteoglycan Syndecan Sdc3 [Syndecan-3] 
xProteoglycan Syndecan Sdc4 [Syndecan-4] 
xSulfotransferase Sulfo-T cytosolic  Sult1a1 [phenol sulfotransferase] 
xSulfotransferase Sulfo-T cytosolic  Sult1a1 [phenol sulfotransferase] 
xSulfotransferase Sulfo-T cytosolic  Sult1b1 [thyroid hormone sulfotransferase] 
xSulfotransferase Sulfo-T cytosolic  Sult1c1 [cytosolic sulfotransferase family 1C] 
xSulfotransferase Sulfo-T cytosolic  Sult1c2 [cytosolic sulfotransferase family 1C] 
xSulfotransferase Sulfo-T cytosolic  Sult1d1 [cytosolic sulfotransferase family 1d] 
xSulfotransferase Sulfo-T cytosolic  Sult1e1 [cytosolic sulfotransferase family 1e] 
xSulfotransferase Sulfo-T Protein tyrosine  Tpst1 [tyrosylprotein sulfotransferase 1] 
xSulfotransferase Sulfo-T Protein tyrosine  Tpst2 [tyrosylprotein sulfotransferase 2] 
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Appendix 6 

 

 

Details of differentially expressed genes as identified by microarray analysis 

 

Tissue Gene Full name Function 

Small 
intestine 

IL-33 Interleukin-33 Promotes a potent Th2 response, mucosal healing and restores intestinal 
homeostasis following injury 

 MBL2 Mannose-binding lectin 2 Activation of the lectin pathway of the complement system 
 ANGPTL4 Angiopoietin-related protein 4 Promotes cell migration, increases E-cadherin expression 
 HBEGF Heparin-binding EGF-like growth factor Associated with a breakdown in gut barrier function 
 CCL5 Chemokine (C-C motif) ligand 5 Recruits leukocytes to inflammatory sites, proliferation and activation of 

natural killer cells 
 B3GALT5 beta-1, 3-galactosyltransferase 5 Functions in mucin glycosyltation 
 CD48 Cluster of differentiation 48 Regulates HSC and progenitor cell numbers, activates macrophages and T 

cells to maintain the inflammatory response 
 CD74 Cluster of differentiation 74 Pro-inflammatory cytokine that induces NF-κB 
 SMO Smoothened G protein-coupled receptor, molecular target for teratogen cyclopamine 
 UGT1A UDP glucuronosyltransferase 1 family, 

polypeptide A cluster 
Encodes several UDP-glucuronosyltransferases 

http://en.wikipedia.org/wiki/Lectin_pathway
http://en.wikipedia.org/wiki/Complement_system
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Colon  UGT8 UDP glycosyltransferase 8 Synthesis of galactosylceramide,  
 CXCL12 Chemokine (C-X-C motif) ligand 12 Pro-inflammatory cytokine chemotactic for polymorphonuclear leukocytes 

and haematopoietic stem cells 
 LGALS1 lectin, galactoside-binding, soluble, 1 Influences viability of enterocytes, integrity of the villus and epithelial 

barrier function 
 COLEC12 Collectin sub-family member 12 Recognition and removal of microorganisms 
 DCN decorin Component of extracellular matrix involved in matrix assembly, suppresses 

growth of various tumour cell lines 
 LUM Lumican Regulates collagen fibril organisation, epithelial cell migration and tissue 

repair 
 PGM5 phosphoglucomutase 5 Interconversion of glucose-1-phosphate and glucose-6-phosphate 
 B3GALNT1 beta-1,3-N-acetylgalactosaminyltransferase 1 Encodes membrane-bound glycoproteins with diverse enzymatic functions 
 COL14A1 collagen, type XIV, alpha Adhesive role by integrating collagen bundles 
 IGFBP5 insulin-like growth factor binding protein 5 Binds extracellular matrix and regulates mucosal growth response 
 THBD Thrombomodulin Regulates thrombin generation 
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